Prepared for: SUPERFUND STANDBY PROGRAM NYSDEC 625 Broadway Albany, New York 12233 Prepared by: AECOM Latham, New York August 2017

Three-Year Periodic Review Report June 2014 – June 2017 Tuxedo Waste Disposal NYSDEC Site No. 3-36-035 Work Assignment No. D007626-36

FINAL

Prepared for: SUPERFUND STANDBY PROGRAM NYSDEC 625 Broadway Albany, New York 12233 Prepared by: AECOM Latham, New York August 2017

Three-Year Periodic Review Report June 2014 — June 2017 Tuxedo Waste Disposal NYSDEC Site No. 3-36-035 Work Assignment No. D007626-36 FINAL

Engineering Certification

For each institutional or engineering control identified for the site, I, Daniel Servetas, certify that all of the following statements are true:

- (a) the institutional control and/or engineering control employed at this site is unchanged from the date the control was put in place, or last approved by DER;
- (b) nothing has occurred that would impair the ability of such control to protect public health and the environment;
- (c) nothing has occurred that would constitute a violation or failure to comply with any Site Management Plan for this control;
- (d) access to the site will continue to be provided to DER to evaluate the remedy, including access to evaluate the continued maintenance of this control.
- (e) if a financial assurance mechanism is required under the oversight document for the site, the mechanism remains valid and sufficient for their intended purpose under the document.

AECOM Technical Services Northeast, Inc.

Daniel Servetas, PE

Registered Professional Engineer New York License No. 079068 Date

Contents

Eng	jineerii	ng Certi	fication	i
1.0	Site C	verviev	v	1-1
	1.1	Remed	dial History	1-2
		1.1.1	Remaining Contamination	1-4
		1.1.2	Site Management Plan	1-5
		1.1.3	Groundwater and Ramapo River Monitoring	1-5
		1.1.4	Combustible Gas Monitoring	1-5
2.0	Evalu	ate Ren	nedy Performance, Effectiveness and Protectiveness	2-1
	2.1	IC/EC	Report	2-1
		2.1.1	IC/EC Requirements and Compliance	2-2
	2.2	Monito	ring Plan Compliance Report	2-2
		2.2.1	Confirm Compliance with Site Management Plan and Long Term Monitorin	_
		2.2.2	Confirm that Performance Standards are Being Met	2-2
	2.3	Operat	ion and Maintenance Plan Compliance Report	2-6
		2.3.1	O&M Plan Compliance Report	
		2.3.2	Maintenance/Inspection	2-7
		2.3.3	Groundwater Monitoring Reporting	2-7
		2.3.4	Evaluation of O&M Activities	2-8
3.0	Evalu	ate Cos	its	3-1
	3.1	Summa	ary of Costs	3-1
4.0	Conc	lusions	and Recommendations	4-1
	4.1	Conclu	isions	4-1
	4.2	Recom	nmendations	4-2

List of Tables

Γable 1	Monitoring Well and Groundwater Details (October 2014 and September 2016)
Γable 2	Groundwater Analytical Results – TAL Metals and Mercury (2000 to 2001)
Γable 3	Groundwater Analytical Results – TAL Metals and Mercury (2005 to 2016)
Γable 4	Groundwater Analytical Results – Unfiltered Vs. Filtered TAL Metals and Mercury
Γable 5	Surface Water and Sediment Analysis of the Ramapo River
Γable 6	Combustible Gas Monitoring – Gas Vent Stations (2007 – 2016)
Table 7	Combustible Gas Monitoring – Perimeter Monitoring Points (2005 – 2016)

List of Figures

Figure 1	Site Location Map
Figure 2	Site Plan and Monitoring Locations
Figure 3	Groundwater Monitoring Results (October 2014 and September 2016)
Figure 4	Groundwater Results – Iron (1988 – 2016)
Figure 5	Groundwater Results – Manganese (1988 – 2016)
Figure 6	Groundwater Results – Sodium (1988 – 2016)
Figure 7	Conceptual Site Model
Figure 8	Combustible Gas Monitoring Results (March 2017)

AECOM Environment iv

List of Appendices

Appendix A Institutional and Engineering Controls Certification Form

Appendix B AECOM Annual Site-Wide Inspection Checklists (2014 – 2016)

Appendix C AECOM Biennial Groundwater Monitoring Report (October 2014)

Appendix D AECOM Biennial Groundwater Monitoring Report (October 2016)

Appendix E Property Deeds

Executive Summary

The Tuxedo Waste Disposal Site is located in the Town of Tuxedo, Orange County, New York. The Site is approximately 12 acres in size and is located in a rural area approximately one mile north of the Village of Tuxedo Park, between State Route 17 and the New York State Thruway.

The Site was added to the New York State Department of Environmental Conservation Registry of Inactive Hazardous Waste Disposal Sites as a Class 2a site (Site No. 3-36-035) following the discovery of nonexempt waste at an active construction and demolition debris landfill in 1987. The presence of nonexempt waste was in violation of the standards and regulations in place at that time. The Site was ultimately reclassified to Class 4 following the completion of the remedial investigation and feasibility study in 1991. A Record of Decision was issued in February 1992 for impacted soil, refuse, groundwater and landfill gas on the Site and surface water and sediment within the Ramapo River.

Due to the nature of the landfill and contamination of soil, bedrock and the underlying bedrock aquifers with Target Analyte List Metals, the selected remedies in the Record of Decision consisted of: excavation of refuse with consolidation and reclamation of soil; an engineered final cover; a passive gas collection and treatment system; a surface water diversion system; site restrictions to protect the integrity of the final cover; and groundwater, surface water, sediment, and air emissions monitoring.

Based on AECOM's review of available historical and current data and information, the selected remedies at the Site continue to function as intended. Periodic sampling of the groundwater monitoring well network continues to be performed, although, MW-7 is not accessible for sampling due to an obstruction in the well riser.

The three-year costs for one-time operation and maintenance events as well as long-term environmental monitoring and reporting were approximately \$84,450 based on costs incurred between 2014 and 2017.

Recommendations for the Site include: repairs to MW-7; continued analysis of groundwater for TAL Metals and mercury; continue monitoring of combustible gas; assess compliance with the Site Management Plan; and preparation of an triennial, field oversight periodic review report.

1.0 Site Overview

This periodic review report (PRR) covers the period of June 12, 2014 through June 12, 2017 and has been prepared to evaluate the continuing effectiveness of the remedies selected and their implementation at the Site. AECOM services and monitors the Site for the New York State Department of Environmental Conservation (NYSDEC) under Work Assignment D007626-36. The NYSDEC classified the Site (Site No. 3-36-035) as Class 2a in 1987 and reclassified the Site to Class 2 in 1989. In 1996, the NYSDEC reclassified the site again to Class 4 following implementation of the remedial actions. A Class 4 site is defined as having been properly closed, but requires continued monitoring. A Record of Decision (ROD) for the Tuxedo Waste Disposal Site was issued by the NYSDEC in February 1992.

The Site is a former waste disposal facility located in the Town of Tuxedo, Orange County, New York (**Figure 1**). The Site consists of approximately 12 acres along State Route 17, in a rural area approximately one mile north of the Village of Tuxedo Park. The Site is located between State Route 17 (to the west) and an active rail line currently owned by the Metro-North Railroad to the east (refer to **Figure 2**). The NYS Thruway (I-87) is located approximately 250 feet to the east of the rail line. The Site lies on two separate parcels of land with separate landowners. A majority of the Site is situated on a portion of a 12.2-acre parcel owned jointly by Renard Barone and Sarkis Khourouzian. The remainder is located on a portion of a 7.9-acre parcel formerly owned by the Georgia Tech Foundation (the property was sold to Ronald lazzetti in 1994). For the purpose of this PRR, the two parcels will together be referred to as the Site, and will be distinguished from one another when necessary.

The Site is located in the Ramapo River Valley. The Ramapo River is located between the rail line and the NYS Thruway. The Ramapo River Valley is described as having steep grades with abrupt elevation changes to the west of the Site, where the land rises approximately 300 feet along the Ramapo River Valley wall (NYSDEC ROD, 1992).

The Site is a gentle hillside at the base of a steeply graded slope with dense tree cover. State Route 17 separates the steep slope from the Site. The north-northeast portions of the Site are a gently sloping hillside with bedrock outcrops, which transitions into a steep slope to the rail line. The cap of the landfill has a moderate grade and is covered with tall grasses.

Previous investigation of the Site states that before the remedial actions were implemented, the depth to bedrock ranged from 0 to approximately 70 feet below ground surface (bgs), with bedrock deepest and fill material thickest at the center of the Site (Metcalf & Eddy, 1991). Bedrock outcrops in the northern and eastern portions of the Site, located just west of the rail line, dip to the southwest.

The unconsolidated materials are highly variable in thickness and are comprised of construction and demolition (C&D) debris, recent alluvial deposits, outwash sand and gravel, and glacial till (Metcalf & Eddy, 1991).

Groundwater depth beneath the Site ranges from approximately 8 to 40 feet bgs. Groundwater flow occurs within two separate water-bearing units: unconsolidated soil and weathered bedrock; and unweathered, competent bedrock. Permeability studies from the Phase II Investigation and results from the Remedial Investigation/Feasibility Study (RI/FS) show connectivity between the two water-

bearing units, resulting in one aquifer system. According to the RI/FS Report and the ROD, the natural direction of groundwater flow from the upper unconsolidated water-bearing unit is generally from the relatively high elevations west of the Site to the east, toward the Ramapo River. Groundwater flow direction in the competent bedrock is less defined due to natural irregularities in the bedrock (e.g., joints, fractures, and discontinuities). The water table at the perimeter of the Site is relatively shallow and is present in the unconsolidated soil layer.

1.1 Remedial History

Prior to 1985, the Site was used as a sand and gravel mine, providing aggregate to a bituminous concrete plant. The Thruway Asphalt Company operated the mine and plant through 1985, when parcel number 9-1-11 was sold to Renard Barone and Sarkis Khourouzian (refer to **Figure 2** for location). Beginning in February 1987, Barone and Khourouzian allowed Frank Sacco to use the Site as a construction and demolition debris landfill until the NYS Department of Law terminated dumping activities in October 1987, following inspections and the discovery that nonexempt wastes were being disposed of. These operations violated the solid waste regulations in place at the time. During dumping operations, the Site amassed approximately 500,000 to 600,000 cubic yards of waste. In an effort to abide by a court order and to control objectionable odors emanating from the Site, soil from an industrial site in Mahwah, New Jersey was used as cover material. Subsequent analysis determined the cover material was contaminated with low concentrations of polychlorinated biphenyls (PCBs).

In December 1987, the Site was added to the NYSDEC Registry of Inactive Hazardous Waste Disposal Sites as a Class 2a site. This designation means that disposal of hazardous waste has been confirmed, and the presence of such hazardous waste or its components or breakdown products represents a significant threat to public health or the environment. The NYSDEC notified the property owners of the Site's classification and stated that a Phase II investigation would be performed, and the property owners would be responsible for the costs. Barone and Khourouzian declined the opportunity to take financial responsibility for the Phase II investigation.

Concurrently, the presence of an illegal landfill on the former Georgia Tech Foundation property, parcel number 9-1-13 (see **Figure 2**) was recognized and incorporated into the investigation and classification of the main parcel. The Georgia Tech Foundation was declared the "responsible party" for this property because the Foundation had been given the parcel in December 1977. The Georgia Tech Foundation was a participating party and agreed to pay for the costs of the investigation associated with the parcel.

The final report for the Phase II investigation was submitted to the NYSDEC in March 1989 by Lawler, Matusky and Skelly Engineers. The following conclusions summarize the results of the Phase II investigation:

- Ambient air sampling indicated off-site migration of methane and hydrogen sulfide. These
 gases were also detected on-site during intrusive activities. While volatile organic compounds
 (VOCs) were detected on-site, perimeter readings indicated that VOCs did not mobilize
 beyond the property boundary. Large quantities of hydrogen sulfide were also detected in the
 soil gas beneath the cap material.
- Metals were the primary contaminants of concern (COCs) in the groundwater, while VOCs and semi-volatile organic compounds (SVOCs) were not detected in monitoring wells;
- Samples of waste material possessed high concentrations of lead leachate, and the presence of petroleum resulted in the waste being characterized as borderline ignitable hazardous waste;

 Petroleum-related constituents were detected in the soil gas throughout the Site, with the highest concentrations in the central and south-central portions of the landfill;

- Chlorinated solvents such as tetrachloroethene, trichloroethene, and 1,2-dichloroethene were also detected in the soil gas;
- No organic compounds were detected in surface water samples, and metals were not present at levels significantly above background concentrations;
- Downstream river sediment samples contained elevated concentrations of SVOCs and tentatively identified compounds (TICs); these compounds are generally associated with petroleum contamination. Downstream metals concentrations were higher than upstream concentrations, suggesting landfill influence; and
- Permeability studies indicated a hydraulic connection between the groundwater beneath the Site and the Ramapo River.

Based on the results of the Phase II investigation, the Tuxedo Waste Disposal Site was reclassified from Class 2a to Class 2, which indicates that hazardous waste had been confirmed and that action was required to mitigate the threat to human health and the environment. An RI/FS was deemed necessary to expand on the Phase II results, and to further define the nature and extent of contamination to enable development of remedial alternatives.

The final report for the RI/FS was submitted to the NYSDEC in December 1991 by Metcalf & Eddy. Volume I and portions of Volume II of the RI/FS, which contain groundwater, soil gas, ambient air, and surface water data collected during the remedial investigation, were presented as Appendix A of the initial PRR.

A ROD for the Site was issued in February 1992. The selected remedies per the ROD consisted of:

- Excavation of refuse (approximately 14,600 cubic yards) from the southeast corner of the Site with consolidation into the main area and reclamation of the southeast corner;
- Design and installation of an engineered final cover in accordance with applicable regulations and guidance, including a gas collection layer;
- Installation and operation of a passive gas collection and treatment system using activated carbon to remove hydrogen sulfide and VOCs;
- Design and construction of a surface water diversion system to reduce surface run-on, infiltration, and generation of leachate;
- Implementation of site use restrictions to prevent any activities that could damage or compromise the integrity of the remedy; and
- Monitoring of groundwater, surface water and sediment, and air emission sources to determine the effectiveness of the remedial program.

Site-related COCs were identified in the ROD for each media type, including air, soil gas, soil, groundwater, surface water, and sediment. A full list of COCs per media type as presented in the ROD was included as Appendix B in the initial PRR. In accordance with the current NYSDEC work assignment D007626-36, dated May 31, 2014, groundwater samples are only analyzed for Target Analyte List (TAL) Metals and mercury. Per the ROD, the metals of concern in groundwater consist of:

- Aluminum
- Arsenic
- Cadmium
- Copper
- Iron
- Lead

- Magnesium
- Manganese
- Mercury
- Nickel
- Selenium
- Silver
- Sodium
- Zinc

The Site was remediated in accordance with the following design and construction documents:

- NYSDEC. 1992. "New York State Superfund Record of Decision, Tuxedo Waste Disposal Site, Orange County, New York, Site Number 3-36-035." February 1992.
- Clough, Harbour & Associates. 1996. "New York State Superfund Contract Post-Closure Monitoring and Maintenance Manual, Tuxedo Waste Disposal Site, Site No. 3-36-035, Work Assignment No. D002676-3." Revised August 1996.
- Clough, Harbour & Associates. 1998. "Amended New York State Superfund Contract Post-Closure Monitoring and Maintenance Manual, Tuxedo Waste Disposal Site, Site No. 3-36-035, Work Assignment No. D002676-3." Revised August 1998.
- NYSDEC. 2004. "New York State Long Term Monitoring Plan, Tuxedo Waste Disposal Site, Orange County, New York, Site Number 3-36-035." December 2004.

The following is a summary of the Remedial Actions performed at the Site:

- Excavation of refuse, consolidation of refuse and soil, and reclamation of soil from the southeast corner of the Site.
- Construction and maintenance of an engineered final cover with a passive collection layer to prevent human exposure to contaminated soil and fill remaining at the Site.
- A passive gas collection and treatment system using activated carbon was installed after the
 installation of the engineered final cover. In 1998, active mini-blowers were installed at select
 gas vent stations and utilized until they were replaced with passive, stainless steel wind
 turbine ventilators in 2005. Additional ventilators have been installed between 2005 and 2010.
 The activated carbon drums were removed in August 2008.
- A surface water diversion system was designed and built when the engineered final cover was constructed at the Site.
- In 2007, two areas of slumping were identified on the eastern side of the Site. Site
 conditions were further investigated and a corrective action was implemented and
 completed in September 2008.

1.1.1 Remaining Contamination

Source material (waste fill) and contaminated soil were not removed from the Site and are present beneath the cap in thicknesses up to 70 feet. These materials were consolidated and contained beneath the engineered final cover. For the purposes of providing a baseline for post-remedial site conditions, groundwater monitoring data from 2000 and 2001 and landfill gas monitoring data from 2010 were used. The previous long-term monitoring plan established for the site reduced monitoring to metals concentrations in groundwater, and hydrogen sulfide and methane concentrations at the gas ventilation stations (GVS) and perimeter monitoring points (PMP).

1.1.2 Site Management Plan

A site management plan (SMP) was finalized in December 2014. The SMP consists of three components: institutional controls and engineering controls (IC/ECs); maintenance plan; and monitoring plan (AECOM 2014).

1.1.3 Groundwater and Ramapo River Monitoring

The network of monitoring wells was installed to monitor both upgradient and downgradient groundwater conditions at the Site. The network of on-site wells has been designed primarily based on the following criteria:

- Historical analytical results identifying contamination in excess of standards;
- Anticipated contaminant plume migration; and
- Adequate assessment of overburden and bedrock groundwater conditions and contaminant distribution towards the Ramapo River.

The locations of on-site wells are shown on **Figure 2**. Well details are summarized in **Table 1**, along with groundwater elevations recorded in October 2014 and September 2016.

In general, the shallow overburden wells (MW-1, MW-4, MW-5, MW-6, MW-7, and RI-4) are screened within recent alluvial deposits, outwash sand and gravel, and glacial till, with screen depths ranging from 5 to 27 feet bgs in ten-foot lengths. The bedrock wells (MW-2, MW-3, RI-1, and RI-5A) are either open holes with risers (i.e., no screen attached to the riser) or screened, at depths ranging from 12 to 73.2 feet bgs, based on the highly variable bedrock surface elevation.

In 2000 and 2001, groundwater samples were collected from Site monitoring wells (MW-1, MW-2, MW-3, MW-4, MW-5, MW-6, RI-1, RI-2, and RI-4) and submitted for laboratory analysis of VOCs, SVOCs, PCBs, and TAL metals. These results represent the baseline post-remedial groundwater quality conditions. Only metals were detected in the groundwater samples above the applicable NYS Ambient Water Quality Standards and Guidance Values (AWQS).

The surface water and sediment of the Ramapo River had not been sampled since the remedial investigation phase in 1990. In order to determine current concentrations of contaminants in the river, surface water and sediment samples were collected and analyzed for VOCs, SVOCs, total organic compounds (TOC), PCBs, pesticides, metals, and mercury during the first groundwater monitoring event only. Surface water and sediment samples were collected at two locations: one upstream and one downstream relative to the Site, for a total of two surface water samples and two sediment samples. See **Figure 2** for sediment and surface water sample locations.

1.1.4 Combustible Gas Monitoring

A post-closure gas monitoring program was initiated to verify that decomposition gases generated at the Site are controlled by the gas collection and ventilation system to avoid hazards to health and safety of the public and the environment or property. The gas monitoring program includes measurement of the concentrations of methane and hydrogen sulfide (measured in % by volume). The baseline or action levels for VOCs, hydrogen sulfide, and methane detected in the ambient air at the site perimeter are 5 ppm, 10 ppm, and greater than 10% of the LEL (0.51% on the meter), respectively.

Upon detection of methane or other explosive gas levels exceeding the LEL (5% methane by volume, 4% hydrogen sulfide by volume) in the ambient air at the Site perimeter or beyond the property boundary, the NYSDEC shall be notified immediately in order to take all steps necessary to ensure the safety and protection of health and property. There is no threshold for acceptable gas concentrations at GVS within the waste boundary.

2.0 Evaluate Remedy Performance, Effectiveness and Protectiveness

2.1 IC/EC Report

The Tuxedo Waste Disposal Site is located in the Town of Tuxedo, Orange County, New York in postal zone 10987. The Site is approximately 12 acres in size and is located in a rural area approximately one mile north of the Village of Tuxedo Park, between State Route 17 and the New York State Thruway. The Site lies on two separate parcels of land with separate landowners. A majority of the Site is situated on a portion of a 12.2-acre parcel (Parcel No. 9-1-11) owned jointly by Renard Barone and Sarkis Khourouzian. The remainder is located on a portion of a 7.9-acre parcel (Parcel No. 9-1-13) owned by Ronald lazzetti.

During this reporting period (June 2014 through June 2017), the Site property was not sold, subdivided, merged, did not undergo a tax map amendment, and was not issued any federal, state, and/or local permits.

The institutional controls (ICs) reported in this PRR for the Site, specifically for Tax Parcel 9-1-11 and 9-1-13, and listed in the IC/EC Certification Form (**Appendix A**) include:

- Soil Management Plan
- Monitoring Plan
- Site Management Plan
- O&M Plan

The engineering controls (ICs) reported in this PRR for the Site, specifically for Tax Parcel 9-1-11 and 9-1-13, and listed in the IC/EC Certification Form (**Appendix A**) include:

- Cover system;
- FencingAccess Control (9-1-11 only);
- Gas venting system (9-1-11 only); and
- Surface water diversion system (9-1-11 only).

A cover system is in place on top of the landfill, and chain link fencing exists along portions of the Route 17 (western) side of the Site, limiting unauthorized vehicular access. As shown on **Figure 2**, the engineered landfill cover system is present over portions of both properties.

While not listed in the NYSDEC's database, surface water diversion and gas venting systems are also in place at the Site. The surface water diversion system is located adjacent to the landfill to promote the redirection of precipitation runoff and to prevent infiltration beyond the upper layers of the cap. The gas venting system prevents the buildup of landfill gases in the subsurface.

The ECs employed at the site remain unchanged since the date that the controls were implemented/approved by the NYSDEC. The ability of the controls to protect public health and the environment has not been impaired.

2.1.1 IC/EC Requirements and Compliance

Annual site-wide inspections of the Site were completed during the reporting period by AECOM personnel; except, the annual site-wide inspection for 2017 has not been completed at this time. See **Appendix B** for the Annual Site-Wide Inspection Checklists for 2014 to 2016.

During the time of the last annual site-wide inspection, the landfill cover was in good condition and well-maintained. The passive gas vents and their turbine ventilators were also in good condition. Surface grades were adequate to promote surface drainage to the east, and there were no surface depressions or ponding. The grass cover was thick and was deemed adequate for erosion protection. No significant erosion was observed.

2.2 Monitoring Plan Compliance Report

2.2.1 Confirm Compliance with Site Management Plan and Long Term Monitoring Plan

Activity	Require	d Frequer	ncy (X)	Compliance Dates					
Activity	Quarterly	Annual Biennial		Compliance Dates					
Groundwater Monitoring			×	Biennially in October 2014 and September 2016					
Combustible Gas Monitoring (GVS)	Х			Monitored quarterly from 2014 to 2017					
Combustible Gas Monitoring (PMP)	Х			Monitored quarterly from 2014 to 2017					

In accordance with the SMP and reflected in the current work assignment between the NYSDEC and AECOM, groundwater samples were collected every two years (biennially) and analyzed for TAL metals and mercury. In addition, all groundwater results were compared to NYSDEC AWQS.

The wells at the Site were sampled twice (October 2014 and September 2016) between June 2012 and June 2017. Only eleven wells were sampled in October 2014, because an obstruction in the PVC riser precluded sampling of MW-7 and only 10 wells were sampled in September 2016, due to the obstruction in MW-7 and the inability to locate MW-1.

Since 2005, AECOM has monitored the combustible gas and hydrogen sulfide emanating from the landfill and in the PMP. The M&MM states that the landfill gas emissions should be monitored quarterly for the first two years, with one of the four monitoring events performed during the winter months when there is a frost layer and possibility of snow cover. These procedures have since been incorporated into the SMP.

2.2.2 Confirm that Performance Standards are Being Met

2.2.2.1 Groundwater Elevations

Depth-to-groundwater measurements were recorded for 11 monitoring wells in October 2014 and ten monitoring wells in September 2016. These measurements as well as the resultant groundwater elevations and other pertinent information can be found in **Table 1**.

Due to the presence of the waste material prior to well installation, groundwater contour maps for the aquifers beneath the Site could not be developed. The composition and construction of the landfill prohibits the natural flow of groundwater beneath and surrounding the Site. According to the Phase II investigation and RI/FS, the overall direction of groundwater flow in the unconsolidated aquifer beneath the Site and the surrounding area is predominantly to the east toward the Ramapo River. The overall flow direction in the unweathered bedrock is controlled by joints, fractures, and discontinuities in the bedrock.

2.2.2.2 Groundwater Analytical Results

During the October 2014 groundwater sampling event, in addition to collecting samples for TAL Metals and mercury, monitoring wells with a recorded turbidity over 50 NTU are analyzed for both total and dissolved metals.

Data (**Tables 2 and 3**) were reviewed to determine if there are any notable trends in the concentrations of metals in the on-site monitoring wells. Previous investigations indicate that the primary contaminants of concern for this site are aluminum, arsenic, cadmium, chromium, copper, iron, lead, magnesium, manganese, mercury, nickel, selenium, silver, sodium, and zinc. **Figure 3** displays a summary of the results of the October 2014 and September 2016 sampling events.

Unfiltered Metals Samples

The results of the most recent groundwater sampling events (October 2014 and September 2016) are displayed in **Figure 3** and summarized as follows:

- The results of the sample collected from monitoring well MW-2 reported relatively low concentrations of metals, none of which exceeded AWQS or GV. Generally, the concentrations decreased relative to the October 2014 sampling event.
- The sample results from monitoring well MW-3 reported iron and sodium in excess of the AWQS, with concentrations reported to be 515 μg/l and 107,000 μg/l, respectively. These results are a decrease from the October 2014 results and the historical data.
- Two metals (iron and sodium) exceeded the AWQS in the sample collected from MW-4, with concentrations reported to be 466 µg/l and 43,100 µg/l, respectively. Recent and historical data from samples collected from MW-4 indicate that iron and sodium are commonly detected at concentrations exceeding the AWQS, including the results of the October 2014 sampling event.
- The sample collected from monitoring well MW-5 contained no analytes in excess of AWQS or GV. Iron, manganese, and sodium have historically been detected at concentrations in excess of the AWQS; while in more recent data, only iron and manganese have been detected at concentrations exceeding the AWQS.
- Only one metal (manganese) exceeded the AWQS or GV in the sample collected from MW-6, with manganese reported to be 1,450 µg/l. These results are consistent with past sampling results.
- The September 2016 sampling results from monitoring well RI-1 reported a sodium concentration of 23,200 μ g/l, an exceedance of the 20,000 μ g/l AWQS. These results are

consistent with the results of the October 2014 groundwater sampling event, when sodium was reported to be $22,700 \mu g/l$.

- The RI-2 monitoring well sample results reported only one metal (sodium) in excess of the AWQS. Sodium was reported to be 53,400 μg/l, an increase from 51,600 μg/l in October 2014.
- The results of the sample collected from RI-3 in September 2016 reported exceedances of AWQS for three metals: iron (3,780 μg/l), manganese (999 μg/l), and sodium (32,300 μg/l). These results are consistent with the results of the October 2014 groundwater sampling event.
- The results of the sample collected from monitoring well RI-4 are consistent with the October 2014 results, with iron (2,430 μg/l) and manganese (402 μg/l) reported to exceed their respective AWQS. These results are consistent with historical and recent data, except in two previous sampling events. In October 2001, sodium was reported at a concentration exceeding AWQS and in November 2005, magnesium and sodium were reported at concentrations exceeding the GV (35,000 μg/l) for magnesium and the AWQS (20,000 μg/l) for sodium.
- The groundwater sample collected from monitoring well RI-5A reported no metals at concentrations that exceed the AWQS or GV. However, iron and sodium have been historically detected at concentrations in excess of the AWQS.

Overall, TAL metals concentrations in the Site wells remain consistent with historical data, with few notable trends (**Figures 4 to Figure 6**). Mercury continues to not be detected or is detected in the onsite wells only at estimated concentrations (i.e., greater than the instrument detection limit and less than the contract required detection limit).

Filtered Metals Samples

Turbidity is typically correlated with the presence of suspended matter (e.g., entrained soil particles in the sample). Therefore, both total metals (unfiltered) and dissolved metals (laboratory filtered) groundwater samples were collected during the October 2014 sampling event to evaluate the effect of turbidity on the metals concentrations. At the Site, turbidity was greater than 50 NTU at the time of sampling in three (MW-6, RI-1, and RI-3) of the 11 samples.

Table 4 presents a comparison of the total metals and the dissolved metals data for the three filtered/ unfiltered sample pairs collected in October 2014. The "percent dissolved" shown in the table is the ratio of the filtered sample concentration to the total (unfiltered) sample concentration.

Concentrations of metals that typically exist primarily in the dissolved phase (e.g., sodium, potassium, and calcium) were generally similar in the filtered and unfiltered samples, regardless of the sample turbidity. The remaining metals showed consistently large decreases in the filtered samples, including iron and manganese.

While iron remained at a concentration greater than the AWQS (300 μ g/l) in two the three filter samples (MW-6 and RI-3), the concentrations reduced significantly and the percent of dissolved iron was less than 10%. This indicates the iron was adhering to the suspended particles rather than present in a dissolved phase in the groundwater.

Manganese was detected in two of the three samples at concentrations exceeding AWQS (300 μ g/l) in the unfiltered samples and decreased in the filtered samples as well. In monitoring well RI-3,

manganese decreased from 7,120 μ g/l to 329 μ g/l with 4.6% present in a dissolved phase, indicating manganese was adhering to the suspended particles rather than dissolved in the groundwater in this area of the Site. However, in the filtered sample collected from MW-6, manganese only decreased from 2.200 μ g/l to 1,940 μ g/l with 88.2% present in the dissolved phase, indicating manganese is not only adhering to the suspended particles and is present in the groundwater in this area of the Site.

The most significant decrease in metals concentrations between an unfiltered and filtered sample was evident in the samples collected from RI-3. Six metals (beryllium, chromium, iron, lead, manganese, and sodium) were reported at concentrations exceeding the GV and AWQS in the unfiltered sample collected from this well. Only three metals (iron, manganese, and sodium) were reported to exceed the AWQS in the results of the filtered sample. The percentage of dissolved iron and manganese calculated between the unfiltered and filtered sample was 1.9% and 4.6%, respectively, indicating these metals are not present in the dissolved phase.

The other three metals (beryllium, chromium, and lead) reduced significantly and the percentage of metals in the dissolved phase indicate these metals were adhering to the suspended particles and are not present in the groundwater in these areas of the Site at concentrations in excess of the water quality standards.

A Conceptual Site Model (CSM) was prepared to illustrate current site conditions, based on available data (**Figure 7**). The CSM shows that the engineered cover and surface water diversion system were designed to eliminate infiltration. Groundwater flows to the east toward the Ramapo River.

2.2.2.3 Surface Water and Sediment Samples

During the October 2014 sampling event, two surface water and two sediment samples were collected from the Ramapo River. These samples were analyzed for volatile organic compounds (VOCs), semi-VOCs (SVOCs), pesticides, polychlorinated biphenyls (PCBs), and metals (**Table 5**).

The upstream surface water sample (USSW) only contained sodium at a level greater than all standards, criteria and guidances (SCGs) with a concentration of 138,000 μ g/L. The AWQS for sodium is 20,000 μ g/l. In the downstream surface water sample (DSSW), only sodium was detected at a concentration exceeding SCGs as well, with a concentration reported to be 13,000 μ g/L.

The upstream surface sediment sample (USSED) contained seven analytes at concentrations exceeding SCGs, six of which were pesticides. 4,4' DDE, endrin, 4,4' DDD, 4,4' DDT, alphachlordane, and gamma-Chlordane were reported to be 6.3 micrograms per kilogram (μ g/kg), 5.3 μ g/kg, 9.2 μ g/kg, 21 μ g/kg, 12 μ g/kg, and 19 μ g/kg, respectively. The other analyte to be detected at a concentration greater than the sediment criteria in USSED was mercury with a concentration of 0.24 μ g/kg. The sediment criterion for mercury is 0.15 μ g/kg. The downstream surface sediment sample (DSSED) reported two analytes above the sediment criteria, copper (34.4 μ g/kg) and mercury (0.4 μ g/kg). The sediment criterion for copper is 0.32 μ g/kg.

2.2.2.4 Combustible Gas Monitoring Results

The combustible gas (i.e., hydrogen sulfide and methane) data collected from the GVS and PMP during the reporting period are presented in **Table 6** and **Table 7**, respectively.

Gas Vent Stations

In March 2017, methane was found in nine of the 12 GVS, with levels ranging from 0.5% to 11.2%, while hydrogen sulfide was detected in five of the GVS, at concentrations of 0.0001% to 0.0005%. There are no action levels associated with GVS emissions. Refer to **Figure 8** for wind turbine

ventilator locations and combustible gas results for March 2017. The figure shows that methane emissions are mainly restricted to the northern portion of the Site.

Perimeter Monitoring Points

The SMP states that the NYSDEC must be contacted when methane or hydrogen sulfide concentrations meet or exceed their respective action levels at any of the PMP. The action levels at the PMP for methane and hydrogen sulfide are defined as 25% of LEL, which equates to 1.28% and 1%, respectively. **Figure 8** shows that the action levels for methane and hydrogen sulfide have not been exceeded, and no action has been warranted.

2.3 Operation and Maintenance Plan Compliance Report

The schedule of maintenance and monitoring events is provided in the SMP and detailed below. The frequency of events will be maintained as specified until otherwise approved by NYSDEC and NYSDOH. Unscheduled inspections and/or sampling may take place when a suspected failure of the remedial systems has been reported or an emergency occurs that is deemed likely to affect the operation of the EC/ICs. Features to be monitored include, but are not limited to, the following:

- Site fence/gate;
- Signage;
- · Cover system inspection and grass mowing;
- Runoff control structures;
- Settlement and subsidence control;
- Flexible membrane liner repairs;
- Groundwater monitoring system;
- Gas venting system;
- Vermin and vector observations;
- Access road; and
- Leachate seepage.

2.3.1 O&M Plan Compliance Report

Activity	Requ	ired Freque	ncy (X)	Compliance Dates
	Monthly	Quarterly	Annually	•
Site Gate Inspection		X		
Signage Inspection		Х		
Cover Inspection, Grass Mowing (seasonal)		Х		
Runoff Control Structures Inspection		Х		12 increations between June
Flexible Membrane Liner Repairs Inspection (as needed)				12 inspections between June 2014 and June 2017
Groundwater Monitoring System Inspection		X		
Gas Venting System Inspection		X		

Leachate Seepage	X		
Vermin and Vector Observations		X	2 inapportions between June
Vehicle Access Road		X	3 inspections between June 2014 and June 2017
Comprehensive Site-Wide Inspection		X	2014 and June 2017

2.3.2 Maintenance/Inspection

According to the SMP, maintenance/inspection and monitoring documentation will be completed during each event and provided to NYSDEC as part of future PRRs, unless corrective action is warranted. Documentation shall be as described below:

Report Title	Requ	Date Submitted		
	Per Event	Quarterly	Biennially	Submitted
October 2014 Biennial Groundwater Monitoring Report			Х	December 2014
September 2016 Biennial Groundwater Monitoring Report			Х	April 2017

2.3.3 Groundwater Monitoring Reporting

Groundwater monitoring reports will be prepared and submitted subsequent to each groundwater monitoring event. This report will include, at a minimum:

- Date of event;
- Personnel conducting sampling;
- Description of the activities performed;
- Type of samples collected and list of wells sampled;
- Copies of all field forms completed (e.g., sampling logs, chain-of-custody documentation);
- Sampling results in comparison to appropriate standards/criteria;
- A figure illustrating sample type and sampling locations;
- Copies of all laboratory data sheets and the required laboratory data deliverables required for all points sampled (to be submitted electronically in the NYSDEC-identified format);
- Any observations, conclusions, or recommendations; and
- A determination as to whether the groundwater quality and/or conditions have changed since the last reporting event where groundwater monitoring well data was provided.
- All documents and data are to be submitted in electronic format to the NYSDEC Division of Environmental Remediation. The Department will not approve a final report unless, and until, all documents and data generated in support of that report have been submitted in accordance with the electronic submission protocols.

Two groundwater monitoring reports were submitted within this reporting period (**Appendix C** and **Appendix D**). See table in previous section (Section 2.3.2) for details.

2.3.4 Evaluation of O&M Activities

2.3.4.1 Evaluation of Treatment Units and General Maintenance

Within this reporting period, the passive wind turbine ventilators were serviced periodically and were lubricated to decrease surface friction and to prevent seizure when necessary.

2.3.4.2 PMP Replacement

Prior to the August 2014 combustible gas monitoring event, AECOM personnel removed and replaced all existing PMP. Each new point was constructed of a 1-inch PVC riser approximately three feet in length above ground for surface protection with an approximately 2-foot slotted section for below the ground surface. The points were installed utilizing a hand-augured to bore approximately two to three feet bgs and were set in place with sand pack. The PMP were completed with a 5-foot length of ¼-inch polyethylene tubing for sample extraction.

3.0 Evaluate Costs

3.1 Summary of Costs

Total costs for one-time repairs or facility changes (i.e., PMP replacement), one-time sediment and surface water sampling of the Ramapo River, completion of the required activities associated with groundwater and gas emissions monitoring between June 2014 and July 2017, and two PRRs were approximately \$84,450. Major cost components were allocated as follows:

Task	Quantity/ Frequency	Estimated Cost
1. Landfill Gas Monitoring	12	\$34,129.46
2. PMP Repair and Survey	1	\$9,894.64
3. Groundwater and Ramapo Monitoring	2	\$25,194.70
4. Periodic Review Reports	2	\$12,155.89
5. Site Management Plan Update	1	\$3,077.79
Total:		\$84,452.48

Operations and maintenance costs as shown in Task #2 were one-time capital costs which may occur at irregular intervals in the future.

Two biennial groundwater monitoring events took place (October 2014 and September 2016) during this reporting period (June 2014 to June 2017). The costs associated with the October 2014 include sampling the sediment and surface water of the Ramapo River.

4.0 Conclusions and Recommendations

The periodic review process is used for determining if the selected remedies continue to be properly managed (as set forth in the ROD, LTMP and SMP), and if the remedies continue to be protective of human health and the environment.

4.1 Conclusions

The following conclusions discuss the effectiveness of the Site remedies in comparison to the applicable Site remedial goals presented from the ROD:

 Excavation of refuse (approximately 14,600 cubic yards) from the southeast corner of the Site with consolidation into the main area and reclamation of the southeast corner.

Per the NYSDEC's 2004 LTMP, excavation of refuse, consolidation of refuse and soil, and reclamation of soil from the southeast corner of the site were completed during the remedial program.

2. Design and installation of an engineered final cover in accordance with applicable regulations and guidance, including a gas collection layer.

An engineered final cover was installed during the remedial program. The cap was repaired in 2012 due to slumping conditions.

3. Installation and operation of a passive gas collection and treatment system using activated carbon to remove hydrogen sulfide and VOCs.

A gas collection layer and a passive gas collection and treatment system using activated carbon were installed along with the engineered final cover. Active mini-blowers were utilized until they were replaced with passive, stainless steel wind turbine ventilators between 2005 and 2010. The activated carbon drums were removed in August 2008. There are no emissions limits for the gas vent stations. Based on the available monitoring data, the Site has not exceeded the limits established for the perimeter monitoring points.

4. Design and construction of a surface water diversion system to reduce surface run-on, infiltration, and the subsequent generation of leachate.

A surface water diversion system was designed and built when the engineered final cover was constructed at the Site. The diversion ditches are in good condition.

5. Site use restrictions to prevent any activities that could damage or compromise the integrity of the remedy.

There are currently no site use restrictions in the property deed for either parcel on the Site (refer to **Appendix E**); however, fencing along Route 17 somewhat meets the intent of a site use restriction with respect to vehicular access.

6. Monitor groundwater, surface water, surface water sediments, and air emission sources to determine the effectiveness of the remedial program.

Groundwater and air emission sources are routinely monitored (refer to Section 2.0). Surface water and sediment have not been tested since the remedial investigation work in 1990.

4.2 Recommendations

The following recommendations are made for the Site:

- 1. Groundwater monitoring should be performed at the interval established by the SMP (i.e., biennially) until the NYSDEC determines that either adequate attenuation of contamination has been achieved at the Site, or there is sufficient evidence that a threat of offsite migration of contaminants to the Ramapo River no longer exists. This would be denoted by repeatable groundwater analytical results that meet AWQS, and favorable results from surface water and sediment from the river (recommendation below). Each groundwater monitoring event should include wells MW-1, MW-2, MW-3, MW-4, MW-5, MW-6, MW-7, RI-1, RI-2, RI-3, RI-4 and RI-5A, following repairs to MW-7:
 - a. Per the September 2016 Groundwater Sampling Report, MW-7 is no longer accessible for sampling due to an obstruction lodged in the riser.
 - b. All future groundwater monitoring events should continue to include TAL Metals (dissolved and total) and mercury.
- Combustible gas monitoring should continue at the interval established by the SMP (i.e., quarterly) until the NYSDEC determines that either adequate attenuation of contamination has been achieved at the Site, or there is sufficient evidence that a threat of offsite migration of contaminants.
- 3. All activities conducted at the Site should comply with the plans outlined in the SMP.
- 4. In accordance with the SMP, a field oversight PRR should be submitted every three years (i.e., triennially).

Tables

Table 1 Monitoring Well and Groundwater Details (October 2014 and September 2016)

Tuxedo Waste Disposal Site Site No. 3-36-035 Tuxedo, Orange County, New York

Well	Well Cod	ordinates	Well	W. II T	Measuring	Well Depth	Well Depth	October	6, 2014	September 8, 2016		
ID	Longitude	Latitude	Construction	Well Type	Point Elevation (ft.)	2014 (ft. bgs)	2016 (ft. bgs)	Depth to Water (ft. bgs)	GW Elevation (ft.)	Depth to Water (ft. bgs)	GW Elevation (ft.)	
MW-1	41º12.822N	074°11.043W	4" Steel Surface Casing 2" PVC Riser and Screen	Overburden	468.40	29.83	NM	20.37	448.03	NM	NA	
MW-2	41º12.535N	074º11.106W	4" Steel Surface Casing 2" PVC Riser and Screen	Bedrock	480.06	89.65	89.86	27.41	452.65	26.28	453.78	
MW-3	41º12.571N	074°10.990W	6" Steel Cutter Casing 3" PVC Riser	Bedrock	459.00	30.11	30.30	17.32	441.68	18.11	440.89	
MW-4	41°12.599N	074°10.984W	4" Steel Surface Casing 2" PVC Riser and Screen	Overburden	460.07	26.14	26.38	18.89	441.18	18.92	441.15	
MW-5	41°12.706N	074°10.968W	4" Steel Surface Casing 2" PVC Riser and Screen	Overburden	448.81	19.40	19.36	10.55	438.26	11.21	437.60	
MW-6	41°12.729N	074°10.977W	4" Steel Surface Casing 2" PVC Riser and Screen	Overburden	456.83	18.39	18.40	9.36	447.47	9.39	447.44	
MW-7	41°12.820N	074°11.026W	4" Steel Surface Casing 2" PVC Riser and Screen	Overburden	466.93	NM	NM	NM	NA	NM	NA	
RI-1	41°12.707N	074°10.971W	8" Steel Cutter Casing 2" Steel Riser	Bedrock	459.48	93.36	93.53	12.53	446.95	12.81	446.67	
RI-2	41°12.728N	074°10.976W	6" Steel Surface Casing 4" Steel Riser and Screen	Interface	458.02	72.63	70.54	10.59	447.43	11.38	446.64	
RI-3	41º12.568N	074º11.092W	6" PVC Surface Casing 2" PVC Riser and Screen	Interface	479.79	44.65	44.66	38.13	441.66	37.92	441.87	
RI-4	41°12.777N	074°10.997W	4" Steel Surface Casing 2" PVC Riser and Screen	Overburden	463.45	15.65	16.87	15.32	448.13	15.95	447.50	
RI-5A	41º12.746N	074º11.038W	4" Steel Surface Casing 2" PVC Riser and Screen	Bedrock	495.70	82.65	81.88	41.38	454.32	42.61	453.09	

Notes:

Measuring Point Elevation is at top of PVC casing

NA - Not Available

NM - Not Measured; MW-7 is obstructed

bgs - below ground surface

GW - groundwater

Table 2 Groundwater Analytical Results TAL Metals and Mercury (2000 to 2001)

Tuxedo Waste Disposal Site Site No. 3-36-035 Tuxedo, Orange County, New York

Monitoring We	II ID		MV	V-1			MV	V-2			MV	V-3			MV	N-4		MW-5				
Sample Date	9	10/26/2000	5/1/2001	8/2/2001	10/30/2001	10/26/2000	5/1/2001	8/2/2001	10/30/2001	10/26/2000	5/1/2001	8/2/2001	10/30/2001	10/26/2000	5/1/2001	8/2/2001	10/30/2001	10/26/2000	5/1/2001	8/2/2001	10/30/2001	
Analyte (μg/L)	AWQS or GV																					
Aluminum	NA	NS	130B	U	NS	528	300	92B	NS	1,140	210	260	410	489	U	78B	320	3,900	340	160B	170B	
Antimony	3	NS	U	U	NS	U	U	U	NS	U	U	U	U	U	U	U	U	U	U	U	U	
Arsenic	25	NS	U	U	NS	U	U	U	NS	U	U	U	U	U	U	U	U	9.2B	U	U	U	
Barium	1,000	NS	U	U	NS	14.7B	U	U	NS	28.6B	U	U	U	23.7B	U	U	U	104B	U	U	U	
Beryllium	3 (GV)	NS	U	U	NS	U	U	U	NS	U	U	U	U	U	U	U	U	0.79B	U	U	U	
Cadmium	5	NS	U	U	NS	U	U	U	NS	U	U	U	U	U	U	U	U	U	U	U	U	
Calcium	NA	NS	18,000	9,700	NS	24,600	29,000	27,000	NS	41,300	22,000	42,000	41,000	39,500	39,000	43,000	40,000	92,000	110,000	99,000	97,000	
Chromium	50	NS	U	U	NS	3.0B	U	U	NS	U	U	U	U	U	U	U	U	7.0B	U	U	U	
Cobalt	NA	NS	U	U	NS	4.7B	U	J	NS	U	J	U	U	U	U	U	U	5.5B	U	U	U	
Copper	200	NS	U	U	NS	2.5B	U	U	NS	5.2B	U	U	U	6.3B	U	U	U	101	63	U	26	
Iron	300	NS	330	55B	NS	757	380	160	NS	1,740	180	410	650	830	83B	94B	570	17,400	5,900	2,700	3,700	
Lead	25	NS	U	U	NS	2.3B	U	J	NS	2.6B	J	U	U	2.1B	U	U	U	11.7	5.7	U	U	
Magnesium	35,000 (GV)	NS	4,700B	2,400B	NS	5,530	7,000	6,200	NS	9,850	5,400	10,000	9,300	10,700	11,000	11,000	10,000	24,000	16,000	25,000	22,000	
Manganese	300	NS	26	U	NS	36.2	34	31	NS	81.3	7.5B	42	36	324	71	76	350	3,210	290	3,800	2,600	
Mercury	0.7	NS	U	U	NS	U	U	U	NS	U	U	U	U	U	U	U	U	0.56	U	U	U	
Nickel	100	NS	U	U	NS	U	U	U	NS	2.4B	U	U	U	U	U	U	U	6.7B	U	U	U	
Potassium	NA	NS	U	U	NS	1,380BE	U	U	NS	3,570BE	U	U	U	3,530BE	U	U	U	8,470E	7,000	6,000	5,700	
Selenium	10	NS	U	U	NS	2.8UW	U	U	NS	2.8UW	U	U	U	2.8UW	U	U	U	2.8UW	U	U	U	
Silver	50	NS	U	U	NS	3.0UN	U	U	NS	3.0UN	U	U	U	3.0UN	U	U	U	3.0UN	U	U	U	
Sodium	20,000	NS	40,000	29,000	NS	3,560B	5,000B	3,900B	NS	25,200	39,000	32,000	34,000	22,500	39,000	30,000	28,000	22,600	11,000	23,000	21,000	
Thallium	0.5 (GV)	NS	U	U	NS	U	U	U	NS	U	U	U	U	U	U	U	U	U	U	U	U	
Vanadium	NA	NS	U	U	NS	3.1B	U	U	NS	2.3B	U	U	U	U	U	U	U	8.7B	U	U	U	
Zinc	2,000 (GV)	NS	U	U	NS	9.7B*	U	U	NS	15.6B*	U	U	U	23.8*	U	U	U	58.8*	10.0B	U	10B	

Notes:

All data presented in micrograms per liter (µg/L).

- U Analyte was analyzed for, but not detected.
- B The reported value is less than the Contract Required Detection Limit (CRDL), but greater than the Instrument Detection Limit (IDL).
- E Indicates an estimated value because of the presence of interference.
- W Post digestion spike for furnace AA analysis is out of control limits (85-115%), while sample absorbance is less than 50% of spike absorbance.
- N Spiked sample recovery not within control limits.
- * Duplicate analysis not within control limits.

AWQS - New York State Ambient Water Quality Standards (TOGs 1.1.1); GV - guidance value.

NA - No standard or guidance value exists for the analyte.

NS - Not sampled

BOLD font in shaded cell - indicates exceedance of AWQS or GV.

Table 2 Groundwater Analytical Results TAL Metals and Mercury (2000 to 2001)

Tuxedo Waste Disposal Site Site No. 3-36-035 Tuxedo, Orange County, New York

Monitoring We	II ID		MV	V-6			R	l-1			RI	l-2		RI-4					
Sample Dat	е	10/26/2000	5/1/2001	8/2/2001	10/30/2001	10/26/2000	5/1/2001	8/2/2001	10/30/2001	10/26/2000	5/1/2001	8/2/2001	10/30/2001	10/26/2000	5/1/2001	8/2/2001	10/30/2001		
Analyte (μg/L)	AWQS or GV																		
Aluminum	NA	725	U	U	U	718	140B	100B	100B	96.3B	U	U	82B	5,960	3,600	90B	320		
Antimony	3	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		
Arsenic	25	11.7	U	U	U	U	U	U	U	U	U	U	U	3.8B	U	U	U		
Barium	1,000	47.7B	U	U	U	10.6B	U	U	U	11.2B	U	U	U	101B	U	U	U		
Beryllium	3 (GV)	0.21B	U	U	U	U	U	U	U	U	U	U	U	0.24B	U	U	U		
Cadmium	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		
Calcium	NA	92,700	110,000	98,000	120,000	50,800	74,000	57,000	54,000	19,700	43,000	32,000	30,000	90,400	64,000	95,000	120,000		
Chromium	50	1.2B	U	U	U	3.4B	U	U	U	130	11	U	64	8.3B	U	U	U		
Cobalt	NA	U	U	U	U	U	U	U	U	U	U	U	U	16.3B	U	U	U		
Copper	200	30.3	U	U	U	13.4B	U	U	U	4.1B	U	U	U	37.4	90	U	U		
Iron	300	15,300	8,900	5,900	5,600	752	190	70B	90B	804	260	110	870	11,600	12,000	240	1,200		
Lead	25	5	U	U	U	U	U	U	U	U	U	U	U	10	12	U	U		
Magnesium	35,000 (GV)	12,800	17,000	15,000	16,000	7,160	11,000	8,800	7,900	6,010	13,000	9,700	8,800	11,600	8,600	11,000	13,000		
Manganese	300	2,050	1,600	1,900	2,300	7.9B	8.0B	U	U	79.4	64	43	87	1,500	1,200	390	350		
Mercury	0.7	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		
Nickel	100	U	U	U	U	6.2B	U	U	U	41	U	U	U	24.5B	U	U	U		
Potassium	NA	3,770BE	U	U	U	2,860BE	U	U	U	1,390BE	U	U	U	28,500E	18,000	19,000	23,000		
Selenium	10	2.8UW	U	U	U														
Silver	50	3.0BN	U	U	U	3.0UN	U	U	U	3.0UN	U	U	U	3.0UN	U	U	U		
Sodium	20,000	3,840	7,000	4,100B	6,500	18,500	28,000	19,000	19,000	25,400	56,000	44,000	43,000	16,400	17,000	18,000	21,000		
Thallium	0.5 (GV)	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U		
Vanadium	NA	2.1B	U	U	U	U	U	U	U	U	U	U	U	10.4B	U	U	U		
Zinc	2,000 (GV)	25.5*	U	U	U	22*	U	U	U	30.7*	U	U	14B	67.3*	85	U	U		

Notes:

All data presented in micrograms per liter (µg/L).

- U Analyte was analyzed for, but not detected.
- B The reported value is less than the Contract Required Detection Limit (CRDL), but greater than the Instrument Detection Limit (IDL).
- E Indicates an estimated value because of the presence of interference.
- W Post digestion spike for furnace AA analysis is out of control limits (85-115%), while sample absorbance is less than 50% of spike absorbance.
- N Spiked sample recovery not within control limits.
- * Duplicate analysis not within control limits.

AWQS - New York State Ambient Water Quality Standards (TOGs 1.1.1); GV - guidance value.

- NA No standard or guidance value exists for the analyte.
- NS Not sampled

BOLD font in shaded cell - indicates exceedance of AWQS or GV.

Table 3 Groundwater Analytical Results -TAL Metals and Mercury (2005 to 2016)

Tuxedo Waste Disposal Site Site No. 3-36-035 Tuxedo, Orange County, New York

Monitoring We	ell ID				MW-1				MW-2									MW-3				MW-4							
Sample Dat	te	5/3/2005	11/1/2005	8/7/2007	6/30/2009	10/11/2011	10/7/2014	9/8/2016	5/3/2005	11/1/2005	8/7/2007	6/30/2009	10/11/2011	10/8/2014	9/9/2016	5/3/2005	11/2/2005	8/6/2007	6/30/2009	10/11/2011	10/8/2014	9/8/2016	5/3/2005	11/2/2005	8/6/2007	6/30/2009	10/11/2011	10/8/2014	9/9/2016
Analyte (μg/L)	AWQS or GV																												
Aluminum	NA	130J	114J	U	NS	261	337	NS	444	304	U	1060N*	1,330	505	92.3B	11,400	4,180	178	561N*	179B	2,690	292	63.4J	73.7J	U	60.3N*	U	3,090	290
Antimony	3	8.74J	U	U	NS	U	U	NS	5.5J	U	U	U	U	U	U	U	U	U	U	U	U	5.1B	9.19J	U	U	U	U	U	U
Arsenic	25	U	U	U	NS	U	U	NS	U	U	U	U	U	6.3B	U	U	U	U	U	U	U	U	U	U	U	U	U	U	6.9B
Barium	1,000	4.85JN	U	U	NS	3.5B	9.4B	NS	9.96JN	4.4J	U	18.7J	19.4B	15.0B	7.3B	78.3JN	28.9J	13.8 J	17.3 J	10.2B	103B	29.6B	17.1JN	11.7J	10.1 J	21.1 J	12.6B	48.4B	26.7B
Beryllium	3 (GV)	U	U	U	NS	U	U	NS	U	U	U	U	U	U	U	0.58J	0.2J	U	U	U	U	0.084B	U	U	U	U	U	U	0.073B
Cadmium	5	U	U	U	NS	1.5B	U	NS	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Calcium	NA	26,600	14,400	12,600	NS	5,580	9,290	NS	19,700	19,800	25,100	23,100	22,400	23,300	23,800	18,000	12,100	39,100	19,300	12,600	95,000	41,400	45,000	35,700	38,400	45,600	28,100	55,100	52,600
Chromium	50	1.16JN	U	1.7 J	NS	1.6B	3.3B	NS	1.02JN	U	U	3.65 J	3.8B	1.8B	0.95B	13N	6.2J	1.5 J	1.92 J	0.73B	3.4B	1.3B	0.343UN	0.79J	1.8 J	2.4 J	U	3.9B	1.1B
Cobalt	NA	U	U	2.3 J	NS	U	1.4B	NS	0.625J	U	U	U	1.8B	1.3B	0.36B	14.3J	1.8J	2.1 J	U	U	3.3B	1.3B	U	U	2.2 J	U	U	5.2B	0.64B
Copper	200	14.9J	U	U	NS	13.7B	5.8B	NS	9.22J	U	U	7.71J	4.8B	U	U	43.1	55.5	U	36.1	3.6B	8.6B	2.9B	U	U	U	8 J	U	15.3B	5.1B
Iron	300	635N	116	46.7 J	NS	962	889	NS	809N	454	U	1,570N*	1,780	671	125B	21,700N	8,350	221	1,110N*	471	4,180	515	150N	U	U	647N*	218	4,980	466
Lead	25	U	U	U	NS	U	U	NS	U	15.2	U	U	U	4.2	U	U	4.5J	U	U	U	U	U	U	U	U	U	U	U	U
Magnesium	35,000 (GV)	6,310	3,450J	2,870	NS	1,300	2,160	NS	5,010	4,730J	6,340	6,170	6,470	6,410	6,390	9,320	4,280	9,430	4,610	3,150	22,900	10,700	10,600	8,660	9,310	9,400	6,370	13,300	11,200
Manganese	300	17.6	4.5J	1.8 J	NS	31.7B	50.4	NS	37.8	7.3J	U	38.6	24.9B	24.1B	4.5B	958	319	19.3	46.5	13.6B	271	80.2	55.2	1.1J	3.1 J	15.2	13.0B	1,310	152
Mercury	0.7	U	0.077J	U	NS	U	U	NS	U	U	U	0.07UN	U	U	0.044B	0.04J	U	U	0.07UN	0.031B	U	U	U	U	U	0.07UN	U	0.062B	U
Nickel	100	U	U	U	NS	1.2B	2.4B	NS	U	U	U	U	2.1B	U	U	22J	8.0J	U	U	U	5.5B	2.1B	U	U	U	U	U	6.1B	2.5B
Potassium	NA	2,420J	1,090JN	589 J	NS	573B	493B	NS	960J	935JN	1,080	1,570	1,540	1,040	1,260	2,700J	1,730JN	1,770	2,030	1,210	3,390	1,970	2,830J	2,930JN	2,140	2,270	2,380	2,880	2,360
Selenium	10	U	U	U	NS	U	U	NS	U	26.9	5.6 J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Silver	50	U	U	Į U	NS	U	U	NS	U	U	U	U	U	U	U	4.32J	U	U	U	U	U	U	U	U	U	U	U	U	U
Sodium	20,000	42,900	37,500	25,900	NS	36,100	40,600	NS	3,060J	2,910J	3,480	5,530N	4,710	4,090	4,130	35,700	18,300	46,200	68,300N	85,200	379,000	107,000	47,700	41,800	32,100	32,900N	35,900	39,900	43,100
Thallium	0.5 (GV)	U	4.5J	U	NS	U	U	NS	U	23.5	U	U	U	U	U	U	U	U	U	U	U	6.8B	U	U	U	U	U	6.2B	U
Vanadium	NA	4.5J	U	U	NS	1.3B	1.8B	NS	5.28J	U	2.5 J	5.42 J	6.4B	2.4B	2.8B	28.1J	1.9J	U	U	U	6.0B	1.1B	2.9J	U	U	U	U	7.6B	0.70B
Zinc	2,000 (GV)	37.2	23.6	37	NS	19.8B	15.1B	NS	27	11.2J	33	15.7 J	12.2B	U	U	82.9	30.8	34.7	27.4	12.5B	12.7B	6.4B	23.9	15.1J	34.4	23.8	14.1B	17.2B	5.4B

Notes:
All data presented in micrograms per liter (µg/L).
Metals analysis by ICP Method 6010, except mercury by USEPA Method 7470.
U - Analyte was analyzed for, but not detected.

J & B - Éstimated concentration above the instrument detection limit (IDL) but less than the contract required detection limit (CRDL).

N - Spiked sample recovery not within control limits.

* - Duplicate analysis is not within control limits.

** - Water quality measurements indicate turbidity greater than 50 NTU; Second column reports dissolved metals AWQS - New York State Ambient Water Quality Standards (TOGs 1.1.1); GV - guidance value.

NA - No standard or guidance value exists for the analyte.

NS - Not sampled.

BOLD font in shaded cell - indicates exceedances of AWQS or GV.

Table 3 Groundwater Analytical Results -TAL Metals and Mercury (2005 to 2016)

Tuxedo Waste Disposal Site Site No. 3-36-035 Tuxedo, Orange County, New York

Monitoring We	ell ID				ı	/IW-5								MW-6								R	I-1			
Sample Date	te	5/2/2005	11/2/2005	8/6/2007	6/30/2009	10/11/	2011**	10/7/2014	9/8/2016	5/2/2005	11/2/2005	8/6/2007	6/30/2009	10/11/	/2011**	10/7/2	2014**	9/8/2016	5/2/2005	11/2/2005	8/6/2007	6/30/2009	10/11/2011	10/8/2	2014**	9/8/2016
Analyte (μg/L)	AWQS or GV																									
Aluminum	NA	520	83.3J	U	218N*	4,020	U	886	U	137J	79.2J	U	281N*	1,070	U	438	155B	22.0B	58.3J	673	97.6	408N*	1,620	3,210	172B	308
Antimony	3	6.88J	U	U	U	U	U	U	U	6.72J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5.8B
Arsenic	25	8.94J	U	U	4.54 J	U	U	U	8.1B	27.4	U	U	40.9	11.7B	U	24	U	U	U	U	U	U	U	U	U	U
Barium	1,000	98.7JN	67.7J	51.3	72.9	98.7B	64.6B	84.5B	63.0B	76.5JN	39.8J	37.2 J	137	114B	47.2B	99.1B	44.4B	46.8B	4.2JN	17.4J	U	14.7 J	22.0B	21.2B	16.2B	16.2B
Beryllium	3 (GV)	0.18J	U	U	U	0.28B	U	U	0.055B	U	U	U	U	U	U	U	U	0.058B	U	0.12J	U	U	U	U	U	0.15B
Cadmium	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Calcium	NA	99,200	81,100	94,300	90,500	111,000	109,000	93,300	115,000	87,900	94,300	88,900	92,700	115,000	112,000	108,000	110,000	99,100	24,800	65,500	46,500	52,300	52,800	56,400	53,200	56,100
Chromium	50	2.28JN	1.6J	7.5	2.66 J	6.2B	U	4.0B	1.3B	1.16JN	1.4J	U	5.83	4.5B	U	5.7B	U	0.40B	11.1N	2.6J	3.4 J	11.5	1.6B	5.0B	0.96B	1.3B
Cobalt	NA	7.52J	2.5J	2.6 J	U	5.8B	U	7.7B	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	0.84B	U	U
Copper	200	105	11.7J	13	45.8	88.3	9.8B	65.7	5.4B	17.3J	U	U	27.3	24.4B	U	31.1	7.8B	U	19.2J	45.3	3.8 J	19.9	5.4B	7.4B	19.1B	1.3B
Iron	300	22,000N	596	35.3 J	5,460N*	15,800	U	16,600	U	37,300N	951	4,510	72,900N*	30,500	U	36,000	1,940	U	223N	408	555	440N*	855	1,360	127B	201
Lead	25	U	U	U	2.43 J	5.9B	U	U	U	U	10.7	U	U	U	U	U	U	U	U	4.1J	U	2.03J	U	U	U	U
Magnesium	35,000 (GV)	15,900	17,200	20,200	10,100	18,400	17,200	22,500	16,600	12,800	10,000	12,000	10,900	12,700	12,100	11,800	12,000	8,530	7,150	11,000	7,740	8,760	9,400	10,500	9,860	9,920
Manganese	300	1,100	1,250	1,160	256	1,350	232	5,400	244	1,540	510	1,350	1,350	1,700	1,270	2,200	1,940	1,450	4.22J	5.4J	1.6 J	8.4 J	31.9B	23.6B	18.3B	5.1B
Mercury	0.7	0.28	U	U	0.07UN	0.23	U	U	U	0.04J	U	U	0.15JN	U	U	U	U	U	U	U	U	0.07UN	U	U	0.057B	U
Nickel	100	1.69J	7.5J	5.9 J	U	9.9B	3.7B	7.8B	2.0B	U	U	U	U	1.9B	U	1.4B	U	U	5.62J	U	16.1 J	11.4J	2.6B	4.0B	0.92B	1.5B
Potassium	NA	6,640	6,700N	5,460	4,510	6,890	6,360	3,500	4,920	2,630J	3,330JN	3,850	3,790	5,300	4,950	3,810	3,870	3,840	45,000	2,310JN	5,900	4,230	3,170	2,630	2,550	2,760
Selenium	10	U	U	U	U	U	U	U	11.9B	U	9.0J	U	10.3	U	U	U	U	13.8B	U	U	U	U	U	U	U	U
Silver	50	1.68J	U	U	U	U	U	U	U	2.34J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Sodium	20,000	12,800	21,800	15,500	5,170N	16,800	17,100	12,500	11,100	3,170J	6,310	3,400	6,380N	12,300	11,400	11,700	14,400	8,300	33,100	25,800	24,800	20,400N	27,500	22,300	22,700	23,200
Thallium	0.5 (GV)	U	U	U	U	U	U	U	5.3B	U	8.2J	U	U	U	U	7.4B	U	U	U	U	U	U	U	U	U	U
Vanadium	NA	8.48J	U	U	U	7.6B	U	3.9B	U	9.25J	U	U	5.73 J	4.7B	U	5.6B	U	U	3.88J	U	U	U	U	1.9B	1.2B	1.3B
Zinc	2,000 (GV)	48.7	41.5	46.1	32	45.8B	14.5B	31.8B	14.8B	24.1	25.3	32.9	36.6	25.6B	12.9B	11.3B	36.4B	U	30.8	17.6J	36.9	164	17.0B	6.0B	119	U

Notes:
All data presented in micrograms per liter (µg/L).
Metals analysis by ICP Method 6010, except mercury by USEPA Method 7470.

U - Analyte was analyzed for, but not detected.

- J & B Estimated concentration above the instrument detection limit (IDL) but less than the contract required detection limit (CRDL).

 N Spiked sample recovery not within control limits.
- * Duplicate analysis is not within control limits.
- ** Water quality measurements indicate turbidity greater than 50 NTU; Second column reports dissolved metals AWQS New York State Ambient Water Quality Standards (TOGs 1.1.1); GV guidance value.

NA - No standard or guidance value exists for the analyte.

NS - Not sampled.

BOLD font in shaded cell - indicates exceedances of AWQS or GV.

Table 3 Groundwater Analytical Results -TAL Metals and Mercury (2005 to 2016)

Tuxedo Waste Disposal Site Site No. 3-36-035 Tuxedo, Orange County, New York

Monitoring We	II ID				RI-2								RI-3								RI-4					RI-5A	$\overline{}$
Sample Date	е	5/2/2005	11/2/2005	8/6/2007	6/30/2009	10/11/2011	10/7/2014	9/8/2016	5/3/2005	11/1/2005	8/7/2007	6/30/2009	10/11/	2011**	10/7/2	2014**	9/9/2016	5/2/2005	11/2/2005	8/6/2007	6/30/2009	10/11/2011	10/7/2014	9/8/2016	10/11/2011	10/7/2014	9/9/2016
Analyte (μg/L)	AWQS or GV																										
Aluminum	NA	31.1J	69.3J	U	21.1 JN*	U	U	U	35,800	438	26,400	24,200N*	52,200	U	89,900	2,990	5,630	2,080	2,590	440	654N*	1,080	1,910	912	654	318	152B
Antimony	3	10.2J	U	U	U	U	U	6.7B	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5.9B	U	U	U
Arsenic	25	U	U	U	U	U	U	U	15.7	U	5.7 J	16.8	17.3B	U	33.8	U	4.6B	U	U	U	U	U	U	7.3B	U	U	U
Barium	1,000	12JN	17.9J	7.0 J	26.1 J	10.5B	14.2B	11.8B	190JN	19.3J	158	140	334	18.5B	710	111B	134B	55.2JN	160J	61.4	62.1	45.8B	59.5B	62.0B	17.6B	17.6B	16.5B
Beryllium	3 (GV)	U	U	U	U	U	J	U	2.32J	U	1.4 J	1.48 J	3.9B	U	8.4	0.51B	1.2B	0.095J	0.25J	U	U	U	U	0.095B	U	U	U
Cadmium	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	2.5J	U	0.626 J	1.2B	U	1.3B	U	U	U
Calcium	NA	25,800	40,000	20,100	22,400	18,000	28,800	26,700	36,400	21,100	34,100	35,500	45,700	34,800	74,300	51,700	54,400	70,700	238,000	105,000	82,200	60,300	96,500	90,500	34,300	31,400	36,000
Chromium	50	846N	32.8	27.9	240	13.1B	21	3.0B	47.6N	U	30.2	37.7	70	U	130	4.1B	5.2B	3.1JN	11.9	U	2.61 J	1.9B	4.9B	1.9B	15.3B	6.7B	1.6B
Cobalt	NA	10.3J	U	U	U	U	U	U	40.2J	U	18.1	28.5	46.0B	U	141	5.4B	13.6B	5.12J	14.4J	U	U	2.3B	3.5B	3.3B	0.84B	U	0.42B
Copper	200	22J	U	U	13.8	U	U	U	137	U	62	74.8	168	U	458	49.4	35.6	26.7	47.3	9.1 J	17.2	12.2B	15.2B	22.4B	U	U	U
Iron	300	3,860N	109	160	1,150N*	120B	130B	U	71,500N	712	36,200	51,400N*	94,200	U	158,000	3,070	3,780	4,940N	7,160	1,890	2,030N*	2,850	4,060	2,430	339	173B	74.1B
Lead	25	C	U	U	U	U	J	U	64.5	U	30.3	42.2	55.1	U	203	10.3	9.5B	U	7	2.3 J	2.31 J	U	U	U	U	U	U
Magnesium	35,000 (GV)	7,190	11,200	5,450	4,820	5,070	7,860	6,820	22,200	4,210J	15,300	17,000	27,500	8,680	47,900	13,600	13,600	8,500	40,300	12,700	7,980	7,910	11,100	8,910	1,490	1,910	4,270
Manganese	300	201	60	8.6 J	59.8	28.8B	22.8B	7.4B	2,130	164	830	1,500	2,830	U	7,120	329	999	1,050	3,590	1,680	302	417	580	402	10.1B	U	6.4B
Mercury	0.7	U	U	U	0.1JN	U	U	U	0.25	U	U	0.12JN	0.18B	U	0.28	0.032B	U	U	U	U	0.1 JN	U	U	U	U	U	U
Nickel	100	1,730	39.2J	111	1,740	22.5B	21.2B	28.0B	68.2	U	31.8	51.2	97	U	184	4.9B	10.4B	11.7J	74.6	15.6 J	18.9 J	17.1B	19.8B	36.1B	U	U	U
Potassium	NA	11,300	2,200JN	1,060	7,750	839B	801B	1,230	5,260	1,410JN	6,990	3,930	7,430	1,150	9,890	1,740	2,010	16,700	45,100N	18,700	14,600	10,700	10,600	9,240	9,590	7,390	4,950
Selenium	10	U	U	U	U	U	U	U	U	U	U	U	15.0B	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Silver	50	U	U	U	U	U	U	U	2.04J	U	3.0 J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Sodium	20,000	47,100	63,700	36,300	36,300N	41,400	51,600	53,400	19,600	17,800	25,500	29,600N	38,300	34,200	31,800	30,300	32,300	13,900	100,000	19,200	10,100N	10,200	10,100	8,180	25,700	17,000	12,200
Thallium	0.5 (GV)	Ü	U	U	U	U	Ū	2.7B	U	U	U	U	U	Ū	U	U	U	U	U	U	U	Ū	U	6.4B	Ū	U	15.2B
Vanadium	NA	3.82J	Ū	U	Ü	U	U	U	75.3	U	47.6	47.1	104	Ü	192	6.3B	5.6B	6.55J	U	U	U	2.2B	4.6B	1.6B	3.1B	2.5B	1.8B
Zinc	2,000 (GV)	39.7	20.6	37.9	26.1	14.2B	U	U	305	32.2	159	164	261	11.1B	535	16.6B	37.0B	50.8	101	56.5	41.5	33.1B	31.4B	72.6	12.9B	U	U

Notes:
All data presented in micrograms per liter (µg/L).
Metals analysis by ICP Method 6010, except mercury by USEPA Method 7470.
U - Analyte was analyzed for, but not detected.

J & B - Estimated concentration above the instrument detection limit (IDL) but less than the contract required detection limit (CRDL).

N - Spiked sample recovery not within control limits.

* - Duplicate analysis is not within control limits.

** - Water quality measurements indicate turbidity greater than 50 NTU; Second column reports dissolved metals AWQS - New York State Ambient Water Quality Standards (TOGs 1.1.1); GV - guidance value.

NA - No standard or guidance value exists for the analyte.

NS - Not sampled. **BOLD** font in shaded cell - indicates exce

Table 4 **Groundwater Analytical Results -Unfiltered Vs. Filtered TAL Metals and Mercury**

Tuxedo Waste Disposal Site Site No. 3-36-035 **Tuxedo, Orange County, New York**

Monitoring W	/ell ID		MW-6			RI-1			RI-3	
Sample Da	ate		10/7/2014			10/8/2014			10/7/2014	
Unfiltered/Fil	tered	Unfiltered	Filtered	Percent Dissolved	Unfiltered	Filtered	Percent Dissolved	Unfiltered	Filtered	Percent Dissolved
Analyte (μg/L)	AWQS or GV									
Aluminum	NA	438	155B	35.4%	3,210	172B	5.4%	89,900	2,990	3.3%
Antimony	3	U	U	-	U	U	-	U	U	-
Arsenic	25	24	U	0.0%	U	U	-	33.8	U	0.0%
Barium	1,000	99.1B	44.4B	44.8%	21.2B	16.2B	76.4%	710	111B	15.6%
Beryllium	3 (GV)	U	U	-	U	U	-	8.4	0.51B	6.4%
Cadmium	5	U	U	-	U	U	-	U	U	-
Calcium	NA	108,000	110,000	100%	56,400	53,200	94.3%	74,300	51,700	69.6%
Chromium	50	5.7B	U	0.0%	5.0B	0.96B	19.2%	130	4.1B	3.2%
Cobalt	NA	U	U	-	0.84B	U	0.0%	141	5.4B	3.8%
Copper	200	31.1	7.8B	25.1%	7.4B	19.1B	100%	458	49	10.8%
Iron	300	36,000	1,940	5.4%	1,360	127B	9.3%	158,000	3,070	1.9%
Lead	25	U	U	-	U	U	-	203.0	10.3	5.1%
Magnesium	35,000 (GV)	11,800	12,000	100%	10,500	9,860	93.9%	47,900	13,600	28.4%
Manganese	300	2,200	1,940	88.2%	23.6B	18.3B	77.5%	7,120	329	4.6%
Mercury	0.7	U	U	-	U	0.057B	-	0	0.032B	0.0%
Nickel	100	1.4B	U	0.0%	4.0B	0.92B	23.0%	184	4.9B	2.7%
Potassium	NA	3,810	3,870	100%	2,630	2,550	97.0%	9,890	1,740	17.6%
Selenium	10	U	U	-	U	U	-	U	U	0.0%
Silver	50	U	U	-	U	U	-	U	U	-
Sodium	20,000	11,700	14,400	100%	22,300	22,700	100%	31,800	30,300	95.3%
Thallium	0.5 (GV)	7.4B	U	-	U	U	-	U	U	-
Vanadium	NA	5.6B	U	0.0%	1.9B	1.2B	63.2%	192	6.3B	3.3%
Zinc	2,000 (GV)	11.3B	36.4B	100%	6.0B	119	100%	535	16.6B	3.1%

Notes:

All data presented in micrograms per liter (µg/L).

Metals analysis by ICP Method 6010, except mercury by USEPA Method 7470.

Water quality measurements indicated turbidity greater than 50 NTU for these samples; Second column reports dissolved metals AWQS - New York State Ambient Water Quality Standards (TOGs 1.1.1); GV - guidance value.

- U Analyte was analyzed for, but not detected.
- B Estimated concentration above the instrument detection limit (IDL) but less than the contract required detection limit (CRDL).
- NA No standard or guidance value exists for the analyte.

BOLD font in shaded cell - indicates exceedances of AWQS or GV.

Table 5 Surface Water and Sediment Analysis of the Ramapo River

Tuxedo Waste Disposal Site Site No. 3-36-035 Tuxedo, Orange County, New York

Sample ID Sampling Date Matrix	NYSAWQS (µg/L)*	USSW 100 10/8/201 Water	14	DSSW 100 10/8/20 Water	14	USSED 10/8/: SEDIM	2014	10/	D 100814 8/2014 DIMENT	Sedin Criter (µg/l	ria**	Sample ID Sampling Date Matrix
						223	300	1:	25000			Total Organic Carbon (mg/kg)
voc		(μg/l)		(μg/l)		(μg/gOC)	(µg/kg)	(μg/gOC) (μg/kg)		voc
Acetone	50	5	U	5	U	0.94	21	1.21	27	NI		Acetone
Dichlorodifluoromethane	5	5	U	5	U	0.04 J	0.81 J	5 U	5 U	NI	L	Dichlorodifluoromethane
SVOC		(μg/l)		(μg/l)		(μg/	/kg)	()	ıg/kg)			SVOC
Di-n-butylphthalate	50(GV)	2.5	BJ	3.7	BJ	650	В	1,3	00 B	NS		Di-n-butylphthalate
Fluoranthene	50(GV)	10	U	10	U	440	U	18		NS		Fluoranthene
Pyrene	50(GV)	10	U	10	U	96	J	20	0 J	NS	S	Pyrene
Pesticides		(μg/l)		(µg/l)		(μg/	/kg)	(<i>l</i>	ıg/kg)			Pesticides
4,4'-DDE	0.2	1.7	U	1.7	U	6.3		1.	7 U	0.6	62	4,4'-DDE
Endrin	NS	1.7	U	1.7	U	5.3	Р	1.	7 U	5.2	2	Endrin
4,4' DDD	0.3	1.7	U	1.7	U	9.2	Р	1.	7 U	1.4	4	4,4' DDD
4,4' DDT	0.2	1.7	Ū	1.7	Ū	21		1.	7 Ü	0.4	14	4,4' DDT
alpha-Chlordane	0.5	1.7	U	1.7	U	12	Р	1.	7 U	0.3	32	alpha-Chlordane
gamma-Chlordane	0.5	1.7	Ū	1.7	Ū	19	Р	1.	7 Ü	0.3	32	gamma-Chlordane
Metals		(μg/l)		(µg/l)		(mg/	/kg)	(n	ng/kg)			Metals
Aluminum	NS	191	В	115	BJ	5,670		8,1	30	NS	S	Aluminum
Antimony	NS	9.3	U	9.3	U	0.33	В	0.5	3 B	NS	S	Antimony
Arsenic	25	4.3	U	4.3	U	3		6.	1	10	0	Arsenic
Barium	1,000	23.3	В	21.9	В	21		52	.8	NS	S	Barium
Beryllium	3	0.26	U	0.26	U	0.39		0.6	6	NS	S	Beryllium
Cadmium	5	0.89	U	0.89	U	0.035	Б	0.0	36 B	1		Cadmium
Calcium	NS	51,600		50,400		2060		2.4	40	NS	S	Calcium
Chromium	50	1.2	В	1	В	8.8		12	.6	43	3	Chromium
Cobalt	NS	0.67	U	0.67	U	6.1		7.	1	NS	S	Cobalt
Copper	200	6.3	В	6	В	18.2		34	.4	32	2	Copper
Iron	300	407		229		13,100	0	15,7	'00	NS	S	Iron
Lead	25	4.2	U	4.2	U	40.9		4:	2	47	7	Lead
Magnesium	35,000(GV)	16,500		16,000		2,330	1	2,8	00	NS	S	Magnesium
Manganese	300	98.5		81.8		109		20		NS		Manganese
Mercury	0.7	0.028	U	0.028	U	0.24		0.	4	0.1	15	Mercury
Nickel	100	2.1	В	2.1	В	9.6		13		21		Nickel
Potassium	NS	9,380		8,740		368		45	2	NS		Potassium
Selenium	NS	12	U	12	U	1.3		1.		NS		Selenium
Silver	NS	6.9	U	6.9	U	0.1	В	0.		1		Silver
Sodium	20,000	138,000		13,000		105		24		NS	S	Sodium
Thallium	NS	6.2	U	6.2	U	0.25	В	0.2		NS	S	Thallium
Vanadium	NS	1.2	В	1.1	Ū	11.9		16		NS		Vanadium
Zinc	2,000(GV)	18.3	В	19.2	В	78.5		94		15		Zinc

Notes

mg/kg - milligrams per kilogram

μg/gOC - microgram per gram of organic carbon

BOLD - The compound was detected at a concentration greater than the method detection limits.

BOLD/SHADED - The compound was detected above AWQS/GV or Sediment Cleanup Criteria

- U The compound was not detected at the indicated concentration.
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than MDL. The concentration given is an approximate value.

NA - Not analyzed

- NS No standard, guidance value, or criteria established
- B For organic analyses compound detected in laboratory method blank. For inorganic analyses indicates trace concentration below reporting limit and equal to or above the detecti
- P This flag is used for pesticides/PCB/herbicide compound when there is a greater than 40% difference for detected concentration between the two GC columns used for primary and

^{*} AWQS/GV Values - New York State Ambient Water Quality Standards (TOGs 1.1.1) guidance values.

^{**} New York State Sediment Criteria for non-Polar Organic Contaminants, Protection Levels for Human Health Bioaccumulation January 1999 µg/l - micrograms per liter

Combustible Gas Monitoring - Gas Vent Stations (2007 - 2016) Tuxedo Waste Disposal Site Site No. 3-36-035 Tuxedo, Orange County, New York

Date	4/2	0/07	8/7	/07	9/1	8/07	5/2	3/08	7/8	3/08	8/6	6/08	9/1	2/08	10	/10/08	11.	/7/08
Gas Vent Station	LEL%	H ₂ S (ppm)																
1	0	0	0	0	0	0	0	0	100	0	5	0	100	0	21	0	0	0
2	0	0	1	0	0	0	0	0	17	0	11	0	100	0	0	0	86	0
3	0	0	0	0	0	0	72	0	100	0	6	3	100	6	100	6	100	0
4	22	0	0	0	27	0	93	0	100	6	3	1	100	0	0	0	100	4
5	0	0	0	0	0	0	0	0	86	0	4	0	0	0	0	0	0	0
6	0	0	0	0	87	0	67	0	100	2	0	0	64	0	12	0	100	2
7	0	0	2	0	0	0	0	0	0	0	0	0	0	0	37	0	100	0
8	10	0	0	0	23	0	0	0	100	2	3	1	0	0	0	0	100	2
9	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	5	0
10	0	0	0	0	0	0	0	0	100	2	3	0	0	0	0	0	100	0
11	0	0	0	0	8	0	20	0	0	0	- 11	0	16	0	0	0	0	0
12	5	0	26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Date	6/18	3/09	8/3	/09	9/3	/09	10/	8/09		4/8/2010*				6/7/2010*				9/14/10	
Gas Vent Station	LEL%	H ₂ S	CH₄%	H ₂ S (ppm)	H₂S %	CH₄%	LEL %	H ₂ S (ppm)	H₂S %	VOCs (ppm)	CH₄%	H ₂ S (ppm)	H₂S %						
1	69	0	100	0	100	0	100	0	0.0	1	0.0001	3.4	0.0	0.0	0.0	0.1	12.3	0.0	0.0
2	72	0	0	0	5	0	50	0	2.0	1	0.0001	4.4	Max	0.0	0.0	0.6	12.1	2.2	0.0002
3	100	0	100	0	100	0	0	0	24.6	0	0.0	24.6	Max	4.0	0.0004	0.0	24.4	13.0	0.0013
4	100	0	0	0	100	0	0	0	8.1	1	0.0001	8.3	4.0	0.0	0.0	0.0	10.3	2.0	0.0002
5	0	0	100	0	100	0	100	0	0.9	1	0.0001	9.0	Max	2.0	0.0002	0.0	13.0	0.0	0.0
6	100	0	100	0	100	3	0	0	5.6	2	0.0002	6.3	0.0	0.0	0.0	0.0	7.7	5.0	0.0005
7	0	0	0	0	0	0	0	0	0.2	1	0.0001	0.0	15.0	0.0	0.0	0.1	2.2	0.0	0.0
8	84	3	0	0	100	3	0	0	4.7	2	0.0002	4.6	3.0	0.0	0.0	0.0	0.6	0.0	0.0
9	3	0	0	0	0	0	0	0	0.1	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10	65	0	0	0	6	0	0	0	0.0	0	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
11	24	0	0	0	30	0	0	0	0.1	1	0.0001	0.3	0.0	0.0	0.0	0.0	0.3	0.0	0.0
12	0	0	0	0	0	0	0	0	0.0	1	0.0001	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Date		1/7/11			6/2/11			9/9/11			2/16/12			5/10/12			8/14/14			10/6/14	
Gas Vent Station	CH₄%	H ₂ S (ppm)	H₂S %	CH₄%	H ₂ S (ppm)	H₂S %	CH₄%	H ₂ S (ppm)	H₂S %	CH ₄ %	H ₂ S (ppm)	H₂S %	CH₄%	H ₂ S (ppm)	H₂S %	CH₄%	H ₂ S (ppm)	H₂S %	CH ₄ %	H ₂ S (ppm)	H₂S %
1	0.0	0.0	0.0	4.9	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.7	2.0	0.0002	4.7	1.0	0.0001
2	6.7	0.0	0.0	0.1	0.0	0.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.6	0.0	0.0
3	22.0	0.0	0.0	0.0	0.0	0.0	2.9	0.0	0.0	0.6	0.0	0.0	0.7	0.0	0.0	0.1	0.0	0.0	0.0	2.0	0.0002
4	10.2	10.0	0.001	1.4	0.0	0.0	10.0	4.0	0.0004	4.3	2.0	0.0002	8.6	1.0	0.0001	7.4	0.0	0.0	7.8	2.0	0.0002
5	0.0	0.0	0.0	7.0	2.0	0.0002	8.3	7.0	0.0007	0.0	0.0	0.0	4.3	0.0	0.0	8.6	6.0	0.0006	8.6	1.0	0.0001
6	7.8	8.0	0.0008	0.2	0.0	0.0	6.8	6.0	0.0006	6.2	2.0	0.0002	5.3	0.0	0.0	0.1	0.0	0.0	8.5	2.0	0.0002
7	8.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.4	1.0	0.0001	0.0	0.0	0.0	0.1	0.0	0.0	0.1	1.0	0.0001
8	3.5	6.0	0.0006	0.3	1.0	0.0001	5.8	6.0	0.0006	1.5	0.0	0.0	0.7	0.0	0.0	4.2	1.0	0.0001	2.6	0.0	0.0
9	3.4	5.0	0.0005	0.0	0.0	0.0	0.0	0.0	0.0	3.9	2.0	0.0002	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
10	10.5	2.0	0.0002	7.9	2.0	0.0002	0.1	0.0	0.0	7.5	1.0	0.0001	6.0	0.0	0.0	9.0	3.0	0.0003	11.3	2.0	0.0002
11	1.5	1.3	0.0001	0.0	0.0	0.0	0.5	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0
12	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.1	0.0	0.0

Date		1/21/15			6/15/15			9/25/15			12/21/15			3/15/16			6/22/16			9/27/16	
Gas Vent Station	CH₄ %	H ₂ S (ppm)	H₂S %	CH₄ %	H ₂ S (ppm)	H₂S %	CH₄ %	H ₂ S (ppm)	H₂S %	CH ₄ %	H ₂ S (ppm)	H₂S %	CH ₄ %	H ₂ S (ppm)	H ₂ S %	CH₄ %	H ₂ S (ppm)	H₂S %	CH₄ %	H ₂ S (ppm)	H₂S %
1	0.0	0.0	0.0	8.9	1.0	0.0001	9.4	2.0	0.0002	0.0	0.0	0.0	0.0	0.0	0.0	6.4	5.0	0.0005	1.3	3.0	0.0003
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0.0	0.0	1.0	0.0	0.0	1.1	2.0	0.0002
3	10.0	0.0	0.0	0.0	0.0	0.0	0.1	1.0	0.0001	4.1	0.0	0.0	20.1	0.0	0.0	0.1	0.0	0.0	0.5	3.0	0.0003
4	0.0	0.0	0.0	8.6	0.0	0.0	0.0	1.0	0.0001	0.0	0.0	0.0	8.3	2.0	0.0002	2.5	0.0	0.0	2.0	5.0	0.0005
5	0.0	0.0	0.0	7.7	2.0	0.0002	9.0	6.0	0.0006	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	1.6	4.0	0.0004
6	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	6.6	1.0	0.0001	0.2	0.0	0.0	0.8	3.0	0.0003
7	8.1	0.0	0.0	0.2	0.0	0.0	0.1	1.0	0.0001	8.1	0.0	0.0	10.8	0.0	0.0	0.0	0.0	0.0	0.5	3.0	0.0003
8	0.5	0.0	0.0	0.0	0.0	0.0	5.5	3.0	0.0003	2.9	0.0	0.0	5.6	6.0	0.0006	0.1	0.0	0.0	0.7	3.0	0.0003
9	3.2	3.0	0.0003	3.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0	0.0	0.1	0.0	0.0	0.3	2.0	0.0002
10	11.1	1.0	0.0001	0.0	0.0	0.0	2.0	1.0	0.0001	9.1	0.0	0.0	11.2	0.0	0.0	0.0	0.0	0.0	0.4	2.0	0.0002
11	1.3	1.0	0.0001	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.3	1.0	0.0001
12	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.3	2.0	0.0002

		10/00/10				
Date		12/28/16			3/30/2017	
Gas Vent Station	CH ₄ %	H ₂ S (ppm)	H ₂ S %	CH₄ %	H ₂ S (ppm)	H ₂ S %
1	0.0	NS	NS	0.0	0.0	0.0
2	0.3	NS	NS	1.7	0.0	0.0
3	NA	NS	NS	11.2	0.0	0.0
4	18.3	NS	NS	8.2	5.0	0.0005
5	0.3	NS	NS	0.0	0.0	0.0
6	NA	NS	NS	0.5	0.0	0.0
7	NA	NS	NS	8.4	0.0	0.0
8	9.5	NS	NS	3.0	2.0	0.0002
9	4.0	NS	NS	0.9	3.0	0.0003
10	NA	NS	NS	6.9	1.0	0.0001
11	3.5	NS	NS	1.3	1.0	0.0001
12	3.0	NS	NS	0.0	0.0	0.0

H₂S - Hydrogen Sulfide ppm - parts per million CH₄ - methane

Cn1. "methane
Mini-blowers were not reliably operating in 2007 and were removed from the site on August 29, 2007.

A Gem2000+ Landfill Gas Meter has been used to collect measurements since the April 2010 sampling event.
Prior to the April 2010 sampling event a BW Technologies Gas Alert Micro Meter or similar meter was used to collected measurements.

A Gem2000+ Landfill Gas Meter and a MultiRae Gas Meter were used to collect measurements during the June 2010 sampling event.
Gas Vent Locations not subject to monitoring action levels
Highlighted stations are equipped with turbine ventilators.

Table 7 Combustible Gas Monitoring - Perimeter Monitoring Points (2005-2016) Tuxedo Waste Disposal Site Site No. 3-36-035 Tuxedo, Orange County, New York

Station No.		4/14/05			5/13/05			4/8/10				6/7/10				9/14/10			1/7/11			6/2/11			9/9/11			2/16/12	
Perimeter Monitoring Point	LEL %	H ₂ S (ppm)	H ₂ S %	LEL %	H ₂ S (ppm)	H ₂ S %	CH ₄ %	H ₂ S (ppm)	H ₂ S %	CH ₄ %	LEL %	H ₂ S (ppm)	H ₂ S %	VOCs (ppm)	CH ₄ %	H ₂ S (ppm)	H ₂ S %	CH ₄ %	H ₂ S (ppm)	H ₂ S %	CH ₄ %	H ₂ S (ppm)	H ₂ S %	CH ₄ %	H ₂ S (ppm)	H ₂ S %	CH ₄ %	H ₂ S (ppm)	H ₂ S %
1	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	NM***	NM***	NM***	0.2	0.0	0.0	0.1	0.0	0.0	NM***	NM***	NM***
2	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	2.8	0.0	0.0	0.0	NM	NM	NM	0.0	0.0	0.0	NM	MM	NM	0.0	0.0	0.0
3	0.0	0	0.0	0.0	0	0.0	0.0	1	0.0001	0.0	0.0	1.0	0.0001	1.4	0.0**	0.0**	0.0**	NM	NM	NM	NM	NM	NM	NM	MM	NM	0.0	0.0	0.0
4	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.5	NM**	NM**	NM**	NM	NM	NM	NM	NM	NM	0.0	0.0	0.0	0.0	0.0	0.0
5	0.0	0	0.0	0.0	0	0.0	0.0	1	0.0001	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	NM	NM	NM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	0.0	0	0.0	0.0	0	0.0	NM	NM	NM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NM	NM	NM	NM	NM	NM	NM	MM	NM	NM	NM	NM
7	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0001	0.0	0.0	0.0	0.0	0.0	0.0
9	0.0	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10	0.0	0	0.0	0.0	0	0.0	NM	NM	NM	0.0*	0.0	0.0*	0.0*	0.0	NM*	NM*	NM*												
11	0.0	0	0.0	0.0	0	0.0	0.1	1	0.0001	0.0	0.0	0.0	0.0	0.0	NM*	NM*	NM*	NM	NM	NM	NM***	NM***	NM***	NM	NM	NM	NM***	NM***	NM***
12	0.0	0	0.0	0.0	0	0.0	1.0	1	0.0001	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NM	NM	NM	NM***	NM***	NM***
13	MM	NM	NM	MM	MM	NM	NM	NM	NM	0.0*	0.0	0.0*	0.0*	0.0	NM*	NM*	NM*	NM***	NM***	NM***	NM***	NM***	NM***	0.0	0.0	0.0	NM***	NM***	NM***

Station No.		5/10/12			8/14/14			10/6/14			1/21/15			6/15/15			9/25/15			12/21/15			3/15/16			6/22/16			9/27/16	
Perimeter Monitoring Point	CH ₄ %	H ₂ S (ppm)	H ₂ S %	CH ₄ %	H ₂ S (ppm)	H ₂ S %	CH ₄ %	H ₂ S (ppm)	H ₂ S %	CH ₄ %	H ₂ S (ppm)	H ₂ S %	CH ₄ %	H ₂ S (ppm)	H ₂ S %	CH ₄ %	H ₂ S (ppm)	H ₂ S %	CH ₄ %	H ₂ S (ppm)	H ₂ S %	CH ₄ %	H ₂ S (ppm)	H ₂ S %	CH ₄ %	H ₂ S (ppm)	H ₂ S %	CH ₄ %	H ₂ S (ppm)) H ₂ S %
1	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	1.0	0.0	NM	NM	NM									
2	0.0	0.0	0.0	0.1	0.0	0.0	0.0	2.0	0.0002	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.3	2.0	0.0002
3	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.4	3.0	0.0003
4	NM*	NM*	NM*	0.1	0.0	0.0	0.0	1.0	0.0001	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	3.0	0.0003
5	0.0	0.0	0.0	0.1	0.0	0.0	0.0	1.0	0.0001	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.6	2.0	0.0002
6	NM**	NM**	NM**	0.1	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.3	2.0	0.0002
7	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.2	1.0	0.0001
8	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	0.0001
9	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0
10	NM*	NM*	NM*	0.1	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0
11	NM	NM	NM	0.1	0.0	0.0	0.1	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	4.0	0.0	0.1	1.0	0.0001
12	0.0	0.0	0.0	0.1	0.0	0.0	0.1	1.0	0.0001	0.0	0.0	0.0	0.0	0.0	0.0	0.1	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	1.0	0.0001
13	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	1.0	0.0001

Station No.		12/28/16			3/30/2017	
Perimeter Monitoring Point	CH ₄ %	H ₂ S (ppm)	H ₂ S %	CH ₄ %	H ₂ S (ppm)	H ₂ S %
1	NM	NS	NS	NS	NS	NS
2	0.5	NS	NS	0.0	0.0	0.0
3	0.3	NS	NS	0.0	0.0	0.0
4	0.3	NS	NS	0.0	0.0	0.0
5	0.0	NS	NS	0.0	0.0	0.0
6	0.3	NS	NS	0.0	0.0	0.0
7	0.3	NS	NS	0.0	0.0	0.0
8	0.3	NS	NS	0.0	0.0	0.0
9	0.8	NS	NS	0.0	0.0	0.0
10	0.0	NS	NS	0.0	0.0	0.0
11	0.3	NS	NS	0.0	0.0	0.0
12	0.3	NS	NS	0.0	0.0	0.0
13	0.3	NS	NS	0.0	0.0	0.0

13 0.3 NS NS 0.0 0.0 0.0

Notes:

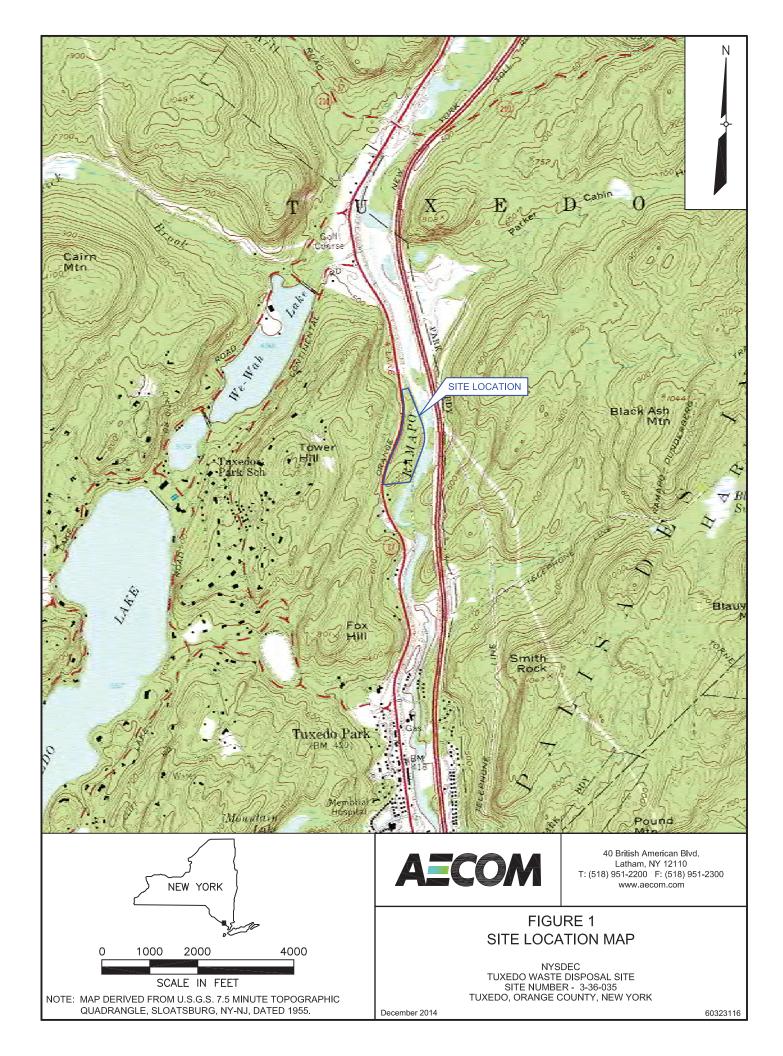
LEL - lower explosive limit
H,S - Hydrogen Sulfide

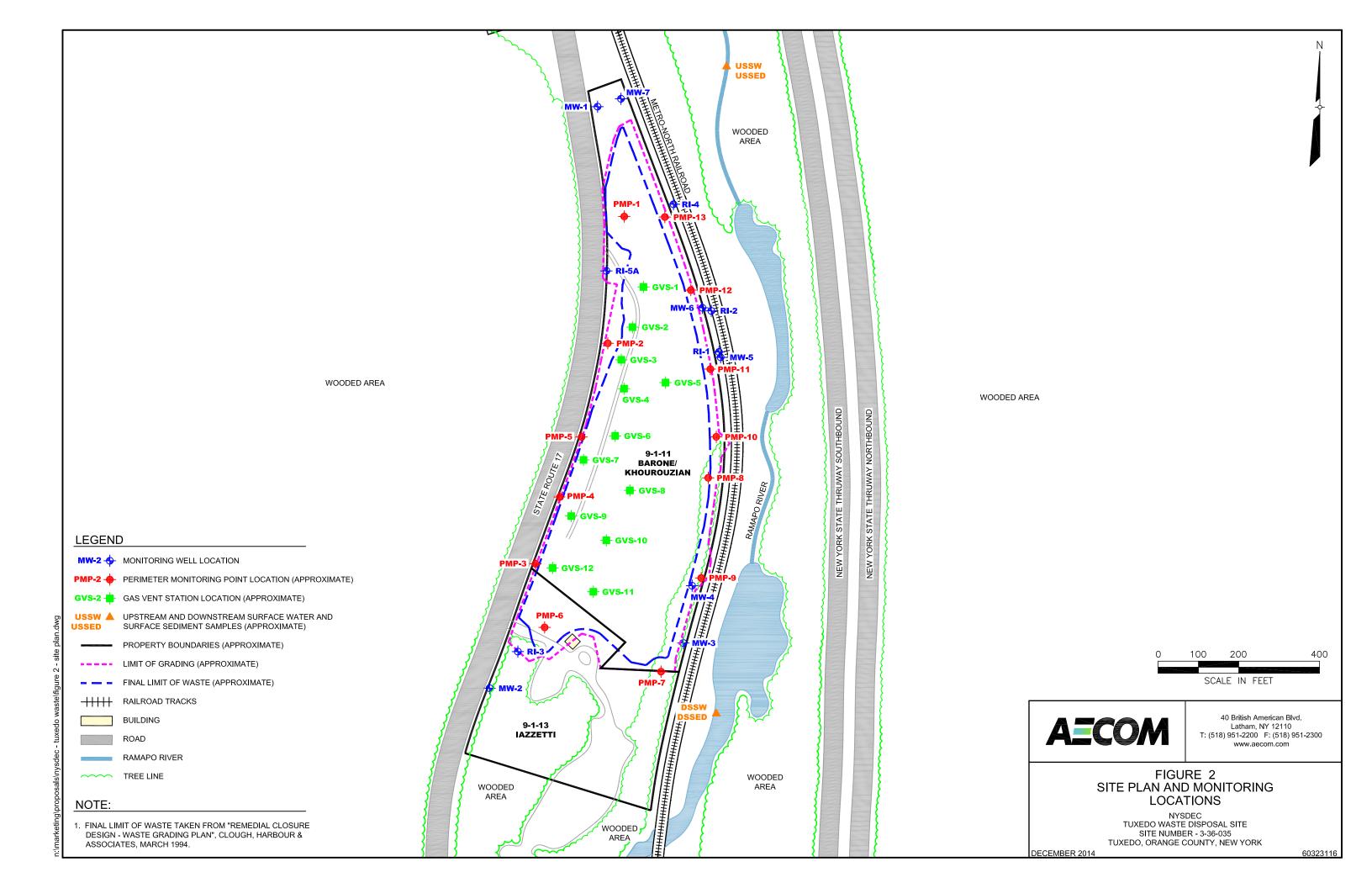
ppm - parts per million

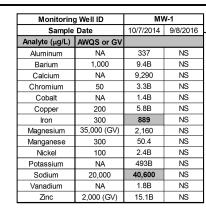
CH₄ - methane

1 Water present in sample tube

1 Water present in sample tube


1 Impacted by lawn mower


1 No flow


Monitoring action level for Methane is defined as 25% of LEL (5.1%) or 1.28% on the gas meter.

Monitoring action level for Hydrogen Sulfide is defined as 25% of LEL (4.%) or 1% on the gas meter.

Figures

Monitoring	Well ID	RI-	5A	
Sample	Date	10/7/2014	9/9/2016	
Analyte (μg/L)	AWQS or GV			
Aluminum	NA	318	152B	
Barium	1,000	17.6B	16.5B	
Calcium	NA	31,400	36,000	
Chromium	50	6.7B	1.6B	
Cobalt	NA	U	0.42B	
Iron	300	173B	74.1B	
Magnesium	35,000 (GV)	1,910	4,270	
Manganese	300	U	6.4B	
Potassium	NA	7,390	4,950	
Sodium	20,000	17,000	12,200	
Thallium	0.5 (GV)	U	15.2B	
Vanadium	NA	2.5B	1.8B	

RI-3

89,900 2,990 5,630

U

74.300 51.700 54.400

130 4.1B 5.2B

158,000 3,070 3,780

203 10.3 9.5B

47,900 13,600 13,600

7,120 329 999

111B 134B

0.51B 1.2B

5.4B 13.6B

49.4 35.6

9/9/2016

4.6B

10/7/2014**

33.8

8.4

141

458

<u> </u>		Monitoring	Well ID
\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Sample	Date
5	(1) (1) (1)	Analyte (μg/L)	AWQS or G
	RI-4 ()	Antimony	3
)		Barium	1,000
. ₹		Calcium	NA
₹	(‡)	Chromium	50
<u> </u>		Iron	300
V		Magnesium	35,000 (G\
		Manganese	300
<u> </u>		Nickel	100
√	-RI-5A	Potassium	NA
-	\	Sodium	20,000
<u> </u>	RI-5A	Thallium	0.5 (GV)
5	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		

WOODED

AREA

	Monitoring	g Well ID	RI-4			
	Sample	Date	10/7/2014	9/8/2016		
	Analyte (μg/L)	AWQS or GV				
	Aluminum	NA	1,910	912		
	Antimony	3	U	5.9B		
_	Arsenic	25	U	7.3B		
	Barium	1,000	59.5B	62.0B		
	Beryllium	3 (GV)	U	0.095B		
	Cadmium	5	U	1.3B		
	Calcium	NA	96,500	90,500		
	Chromium	50	4.9B	1.9B		
	Cobalt	NA	3.5B	3.3B		
	Copper	200	15.2B	22.4B		
	Iron	300	4,060	2,430		
	Magnesium	35,000 (GV)	11,100	8,910		
	Manganese	300	580	402		
	Nickel	100	19.8B	36.1B		
	Potassium	NA	10,600	9,240		
	Sodium	20,000	10,100	8,180		
	Thallium	0.5 (GV)	U	6.4B		
	Vanadium	NA	4.6B	1.6B		
	Zinc	2,000 (GV)	31.4B	72.6		

RI-2

U 6.7B 14.2B 11.8B 28,800 26,700 21 3.0B 130B

22.8B 7.4B 21.2B 28.0B 801B 1,230 51,600 53,400 U 2.7B

MW-5

10/7/2014 9/8/2016

U 8.1B

84.5B 63.0B

U 0.055B

93,300 115,000

7.8B 2.0B

U 11.9B

U 5.3B

3.9B U

1.3B

5.4B

U

16.600

244

4,920

886

4.0B

7.7B

16,600

5,400

22.500

3,500

12,500

400

AUGUST 2017

2,000 (GV) 31.8B 14.8B

Monitoring Well ID Sample Date

Analyte (μg/L) AWQS or GV

25

1,000

3 (GV)

NA

50

NA

200

300

35.000 (GV

300

100

NA

20,000

0.5 (GV)

NA

Aluminum

Arsenic

Barium Beryllium

Calcium

Chromium

Cobalt

Copper

Iron

Magnesium

Manganese

Nickel

Potassium

Selenium

Sodium

Thallium

Vanadium

Zinc

NEW

NEW

100

200

SCALE IN FEET

U 7,860 6,820

10/7/2014 9/8/2016

Monitoring	a Well ID		RI-1		
Sample		10/8/2	2014**	9/8/2016	
Analyte (μg/L)	AWQS or GV				
Aluminum	NA	3,210	172B	308	
Antimony	3	U	U	5.8B	
Barium	1,000	21.2B	16.2B	16.2B	
Beryllium	3 (GV)	U	U	0.15B	
Calcium	NA	56,400	53,200	56,100	
Chromium	50	5.0B	0.96B	1.3B	
Cobalt	NA	0.84B	U	U	
Copper	200	7.4B	19.1B	1.3B	
Iron	300	1,360	127B	201	
Magnesium	35,000 (GV)	10,500	9,860	9,920	
Manganese	300	23.6B	18.3B	5.1B	
Mercury	0.7	U	0.057B	U	
Nickel	100	4.0B	0.92B	1.5B	
Potassium	NA	2,630	2,550	2,760	
Sodium	20,000	22,300	22,700	23,200	
Vanadium	NA	1.9B	1.2B	1.3B	
Zinc	2,000 (GV)	6.0B	119	U	

Monitoring	n Well ID	MV	V-4
Sample		10/8/2014	9/9/2016
Analyte (μg/L)	AWQS or GV		
Aluminum	NA	3,090	290
Arsenic	25	U	6.9B
Barium	1,000	48.4B	26.7B
Beryllium	3 (GV)	U	0.073B
Calcium	NA	55,100	52,600
Chromium	50	3.9B	1.1B
Cobalt	NA	5.2B	0.64B
Copper	200	15.3B	5.1B
Iron	300	4,980	466
Magnesium	35,000 (GV)	13,300	11,200
Manganese	300	1,310	152
Mercury	0.7	0.062B	U
Nickel	100	6.1B	2.5B
Potassium	NA	2,880	2,360
Sodium	20,000	39,900	43,100
Thallium	0.5 (GV)	6.2B	U
Vanadium	NA	7.6B	0.70B
Zinc	2,000 (GV)	17.2B	5.4B

WOODED	ARFA

Monitoring	g Well ID		MW-6	•	
Sample	Date	10/7/2	2014**	9/8/2016	
Analyte (μg/L)	AWQS or GV				
Aluminum	NA	438	155B	22.0B	
Arsenic	25	24	U	U	
Barium	1,000	99.1B	44.4B	46.8B	
Beryllium	3 (GV)	U	U	0.058B	
Calcium	NA	108,000	110,000	99,100	
Chromium	50	5.7B	U	0.40B	
Copper	200 300	31.1	7.8B	U	
Iron		36,000	1,940	U	
Magnesium	35,000 (GV)	11,800	12,000	8,530	
Manganese	300	2,200	1,940	1,450	
Nickel	100	1.4B	U	U	
Potassium	NA	3,810	3,870	3,840	
Selenium	10	U	U	13.8B	
Sodium	20,000	11,700	14,400	8,300	
Thallium	0.5 (GV)	7.4B	U	U	
Vanadium	NA	5.6B	U	U	
Zinc	2,000 (GV)	11.3B	36.4B	U	

		Monitoring	g Well ID	Γ
		Sample	Date	Γ
LEGEN		Analyte (µg/L)	AWQS or GV	Ī
		Aluminum	NA	ſ
MW-2 -	MONITORING WELL LOCATION	Arsenic	25	ı
Τ.		Barium	1,000	
	PROPERTY BOUNDARIES	Beryllium	3 (GV)	l
	(APPROXIMATE)	Calcium	NA	L
	,	Chromium	50	ı
	LIMIT OF GRADING (APPROXIMATE)	Cobalt	NA	L
	,	Copper	200	l
	FINAL LIMIT OF WASTE (APPROXIMATE)	Iron	300	ı
	,	Lead	25	L
-++++	RAILROAD TRACKS	Magnesium	35,000 (GV)	l
		Manganese	300	
	BUILDING	Mercury	0.7	L
		Nickel	100	l
	ROAD	Potassium	NA	L
		Sodium	20,000	l
	RAMAPO RIVER	Vanadium	NA	L
		Zinc	2,000 (GV)	Ĺ
~~~	TDEE LINE			_

inc	2,000 (GV		SV) 535		16.6B	37.0B	
						7	
		Monitoring	g W	MW-2			
	Sample Analyte (μg/L)			ate	10/8/2014	9/9/2016	
				NQS or GV			
	Α	luminum		NA	505	92.3B	
		Arsenic		25	6.3B	U	
		Barium		1,000	15.0B	7.3B	
	(	Calcium		NA	23,300	23,800	
	Chromium		50		1.8B	0.95B	
		Cobalt	oalt NA		1.3B	0.36B	
	Iron		Iron 300		671	125B	
	Lead		25		4.2	U	
	Ma	agnesium	3	5,000 (GV)	6,410	6,390	
	Ma	anganese		300	24.1B	4.5B	
		Mercury		0.7	U	0.044B	
	Р	otassium		NA	1,040	1,260	
		Sodium		20,000	4,090	4,130	
	٧	anadium		NA	2.4B	2.8B	

000	-,			1 \ \ \ /			10	AI A A 7			1	4			
0.7	0.28	0.032B	U	J 🛚 📈	<u> </u>			_	<mark>5</mark> [‡			<del></del>			
100	184	4.9B	10.4B	<u> </u>	[ <mark>-</mark>	<b>\</b>		E 1	<b>)</b> [‡]		5	1			
NA	9,890	1,740	2,010	J/\	7			( 4	<i>   ≢ </i>	<b>/</b>	₹				
20,000	31,800	30,300	32,300	] // \/#				S 18	≢	/	3	Monitorin	g Well ID	MV	N-3
NA	192	6.3B	5.6B	] // ) ) //		W-2		<b>}</b>	≢		3	Sample	Date	10/8/2014	9/8/2016
2,000 (GV	535	16.6B	37.0B		7		MW	V-3 🦀		<b>\</b>	<b>₹</b>	Analyte (μg/L)	AWQS or GV		
				5/ // <del>/</del> /	F NVX	Y			[# <del>]</del> _		3	Aluminum	NA	2,690	292
onitoring	Well ID	M\	N-2	$\frac{1}{RI}$	3 77			<b>~ (/                                   </b>	'≢/		₹	Antimony	3	U	5.1B
Sample		10/8/2014	9/9/2016		3/ /	~ " <del> </del>		<b>//</b> /:	<b>‡</b> /		5	Barium	1,000	103B	29.6B
	AWQS or GV			1 //3	₹/ /,		<i>\$</i>	<b>5</b> [ ]3	E/		3	Beryllium	3 (GV)	U	0.084B
ninum	NA	505	92.3B	<b>₩-2</b> MW-2	2 {	5//	8	<i>`)</i>   ≢	:/		<u> </u>	Calcium	NA	95,000	41,400
enic	25	6.3B	U	<b>∕//</b> ?		3///	\$	<i>₹∐≸</i>	/		<b>X</b>	Chromium	50	3.4B	1.3B
rium	1,000	15.0B	7.3B	1///	• •	3)/	}	<i>{    ≣ </i>		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<b>₹</b>	Cobalt	NA	3.3B	1.3B
cium	NA	23,300	23,800	<b>1</b>		\	۱ کم	<b>(</b>      <u>≢</u>	/		<u> </u>	Copper	200	8.6B	2.9B
mium	50	1.8B	0.95B	<i>)</i>			رک کے	±			51	Iron	300	4,180	515
balt	NA	1.3B	0.36B	1/		- }  \ \	( )	≢			₹	Magnesium	35,000 (GV)	22,900	10,700
on	300	671	125B	7		7)	<i>&gt;</i> } ?!	[]≢[		//	3	Manganese	300	271	80.2
ead	25	4.2	U	_		الركب	/ <i>E</i> {	[≢]	/ /	4	<b>5</b>	Nickel	100	5.5B	2.1B
esium	35,000 (GV)	6,410	6,390			/		[≢]			₹	Potassium	NA	3,390	1,970
anese	300	24.1B	4.5B		- J	10	·	l <b>‡</b>   .		WOODED	5	Sodium	20,000	379,000	107,000
cury	0.7	U	0.044B	WOODED	<i>5/-</i>		<b>31</b> 1.	'±		AREA	5	Thallium	0.5 (GV)	U	6.8B
ssium	NA	1,040	1,260	AREA	₹/		<b>)</b> [:			AKEA	₹	Vanadium	NA	6.0B	1.1B
dium	20,000	4,090	4,130	AREA	3/		<b> ≀</b> I I∃	<b></b> ≢I /	7}		5	Zinc	2,000 (GV)	12.7B	6.4B
dium	NΔ	2 4B	2.8B	1	7/		- <b>- 1</b>	‡  <b>/</b>	/ }		)				

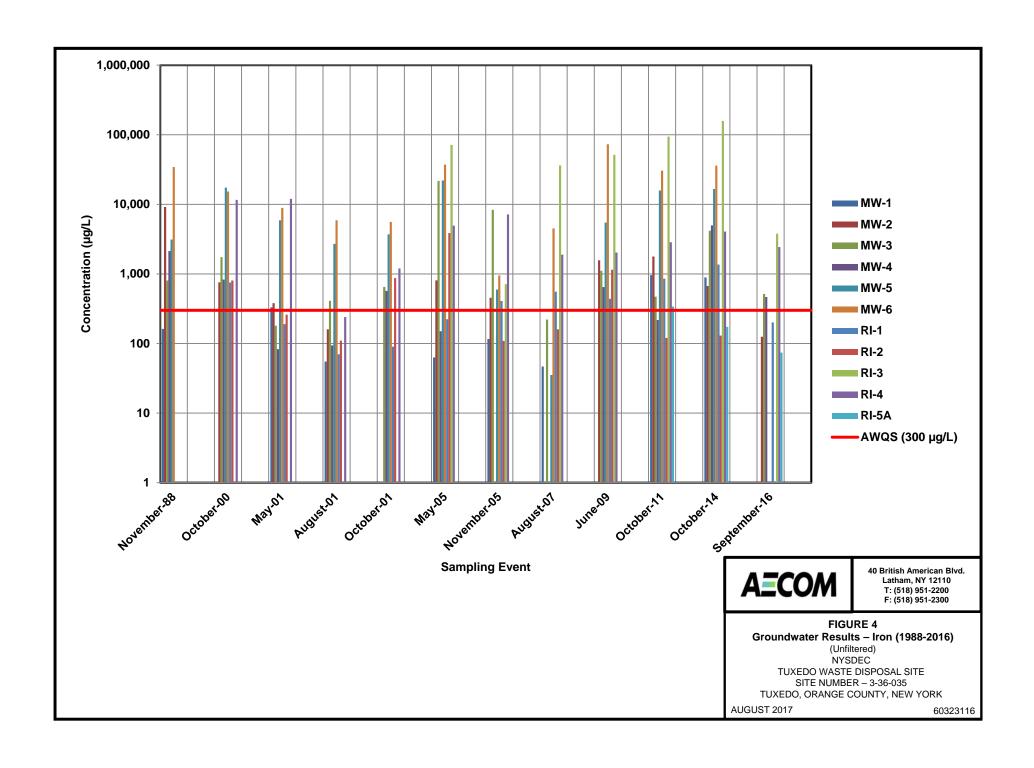
WOODED ,

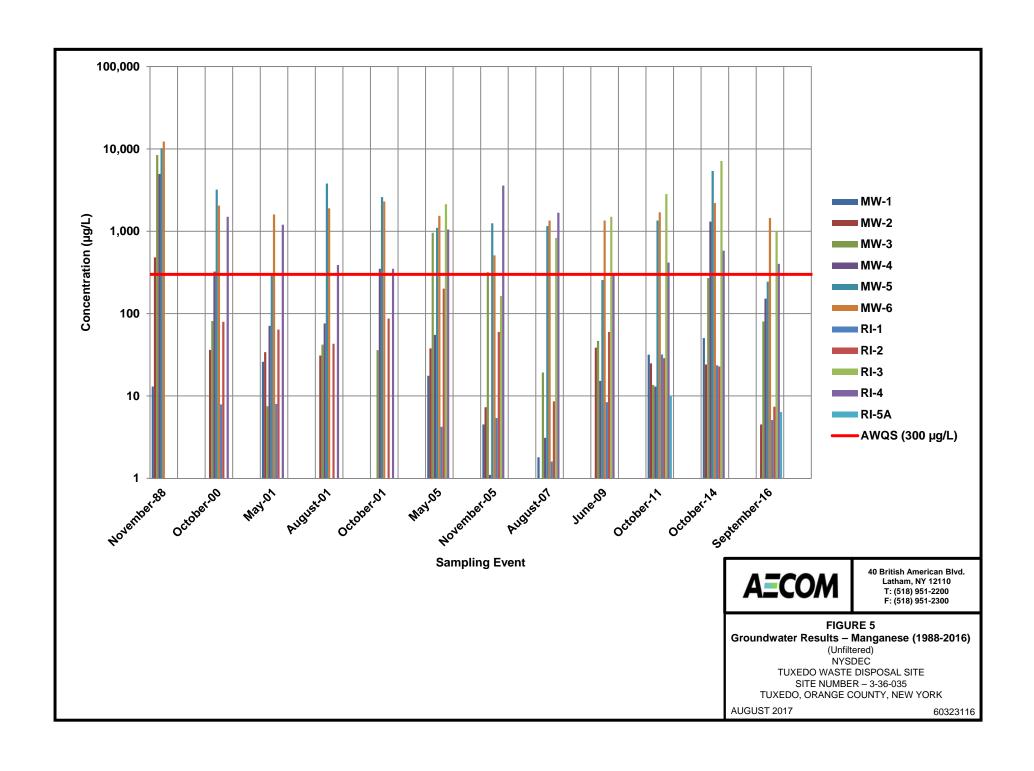
**AECOM** 

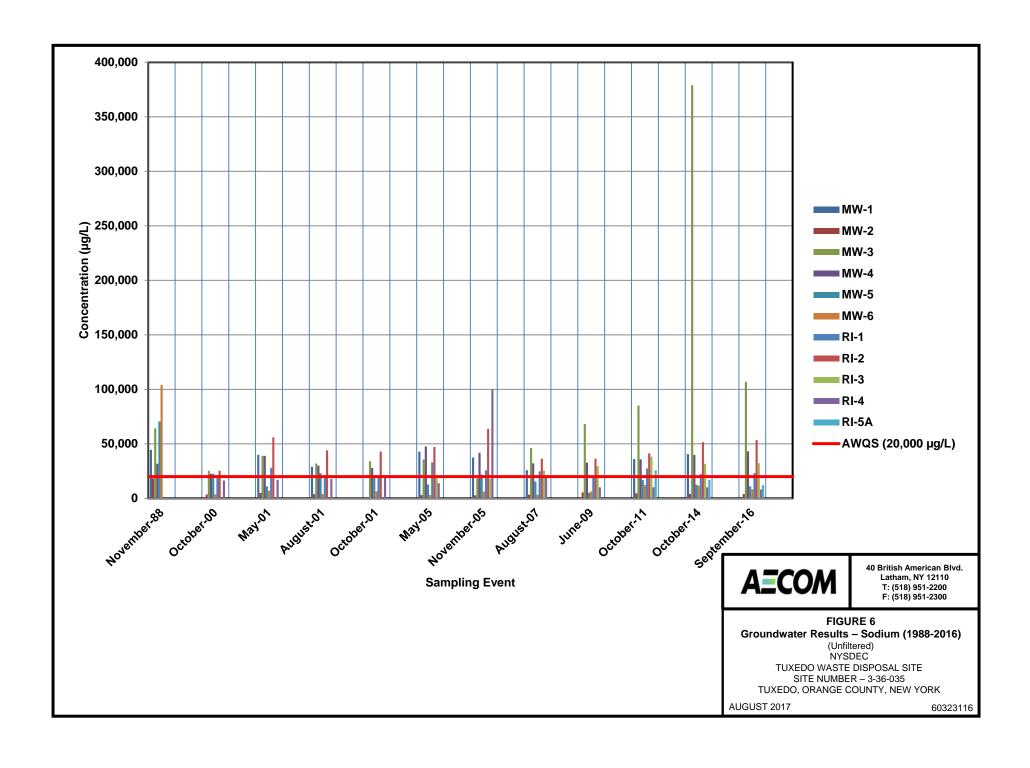
40 British American Blvd. Latham, NY 12110 T: (518) 951-2200 F: (518) 951-2300 www.aecom.com

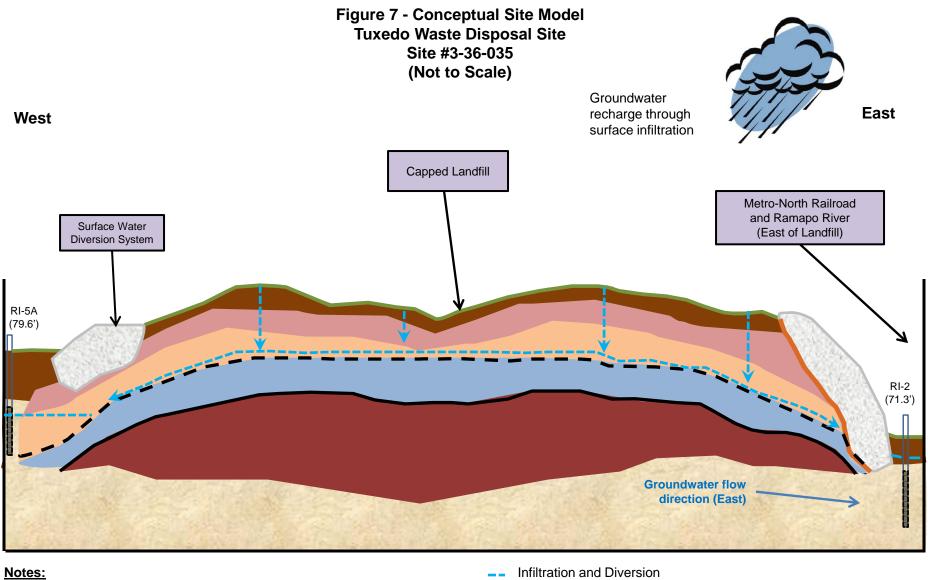
#### FIGURE 3 **GROUNDWATER MONITORING RESULTS** (OCTOBER 2014 AND SEPTEMBER 2016)

NYSDEC TUXEDO WASTE DISPOSAL SITE SITE NUMBER - 3-36-035 TUXEDO, ORANGE COUNTY, NEW YORK

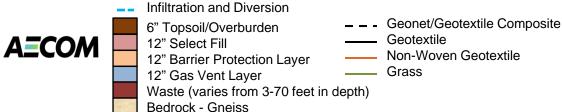

e me	MW-2 -	MONITORING WELL LOCATION
als∖nysdec - tuxedo waste∖prr figure updates - august 2017/figure 3 - gw mon septem		PROPERTY BOUNDARIES (APPROXIMATE)
gw m		LIMIT OF GRADING (APPROXIMATE)
re 3 -		FINAL LIMIT OF WASTE (APPROXIMA
7\figu	+++++	RAILROAD TRACKS
t 201		BUILDING
augus		ROAD
es - s		RAMAPO RIVER
updat	~~~	TREE LINE
gure	NS	NOT SAMPLED
∮prr fi	NA	NOT APPLICABLE
waste	В	ESTIMATED CONCENTRATION
xedo	AWQS or GV	NEW YORK STATE AMBIENT WATER QUALITY
c-tu	μg/L	STANDARD OR GUIDANCE VALUE
ıysde	μg/L	MICROGRAMS PER LITER
als∖r	NOTE:	

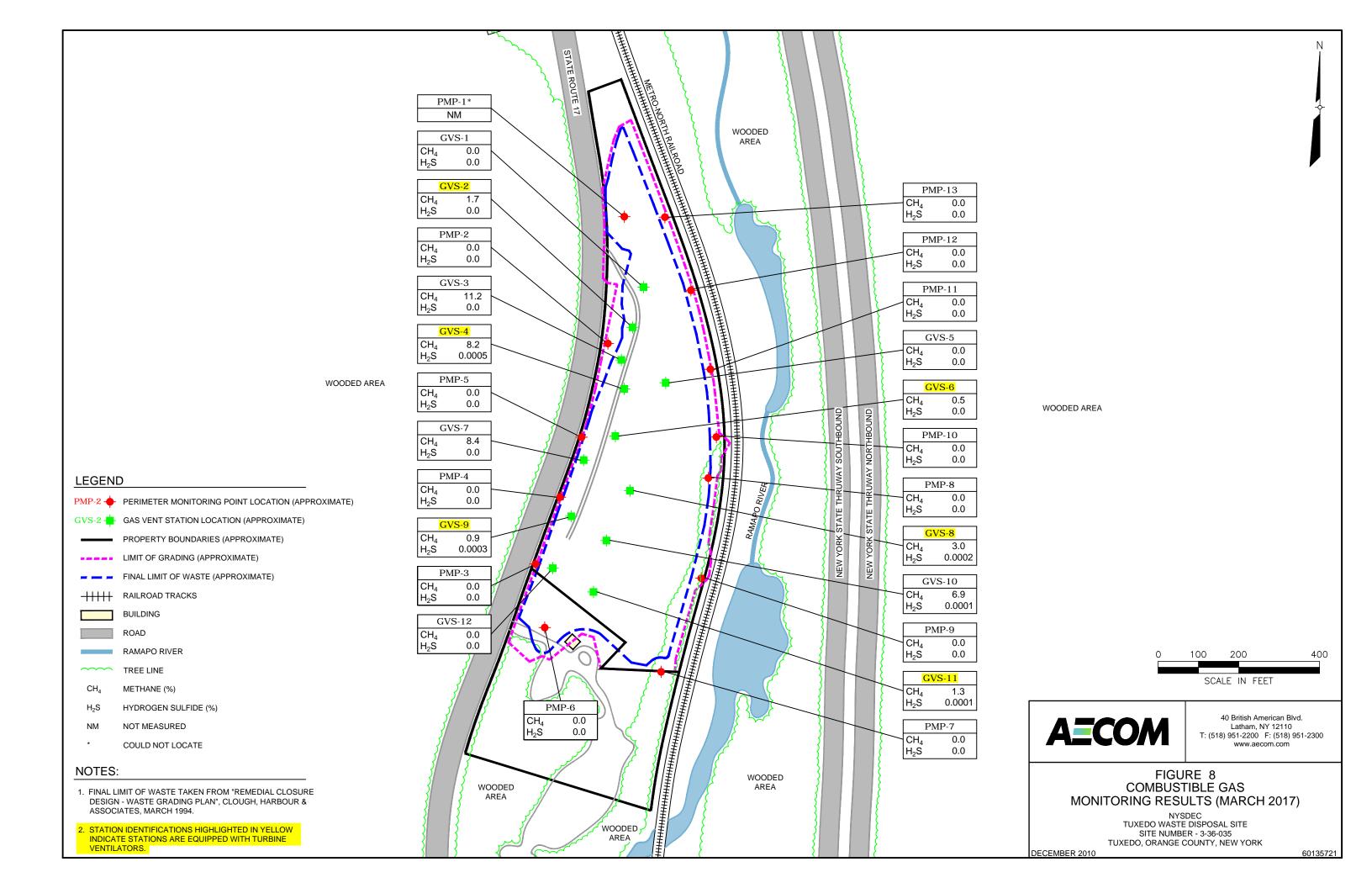

**BOLD** AND HIGHLIGHTED RESULTS INDICATE AN EXCEEDANCE OF THE AWQS OR GV.


FINAL LIMIT OF WASTE TAKEN FROM "REMEDIAL


CLOUGH, HARBOUR & ASSOCIATES, MARCH 1994.

CLOSURE DESIGN - WASTE GRADING PLAN",








- 1. Developed from information collected during the June 2009 groundwater sampling event and the Remedial Investigation and Feasibility Study (Metcalf & Eddy, December 1991).
- 2. (79.6') Indicates original bottom of slotted casing depth (feet below ground surface).





AECOM Environment

### Appendix A

**Institutional and Engineering Controls Certification Form** 



# Enclosure 1 Engineering Controls - Standby Consultant/Contractor Certification Form



Site Details		Box 1
Site No. 336035		
Site Name Tuxedo Waste Disposal Site		
Site Address: Route 17 Zip Code: 10987 City/Town: Tuxedo County: Orange Site Acreage: 12.0		
Reporting Period: June 12, 2014 to June 12, 2017		
	YES	NO
Is the information above correct?		
If NO, include handwritten above or on a separate sheet.		
2. To your knowledge has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		1
<ol> <li>To your knowledge has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?</li> </ol>		1
4. To your knowledge have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		1
If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form		,
5. To your knowledge is the site currently undergoing development?		
		*]
		Box 2
	YES	NO
<ol> <li>Is the current site use consistent with the use(s) listed below?</li> <li>Closed Landfill</li> </ol>		
7. Are all ICs/ECs in place and functioning as designed?		
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and contact DEC PM regarding the development of a Corrective Measures Work Plan to address the		ues.
Signature of Standby Consultant/Contractor Date		

SITE NO. 336035

**Description of Institutional Controls** 

<u>Parcel</u>

Owner

Institutional Control

9-1-11

Sarkis Khourouzian

Soil Management Plan Monitoring Plan

Site Management Plan

O&M Plan

ICs in ROD include site use restrictions

9-1-13

Patricia lazzetti

Monitoring Plan
O&M Plan

Soil Management Plan Site Management Plan

IC:

1994 Consent Order with owner (Ronald lazzetti) provides for a land-use restriction such that there is no disturbance or excavation of waste materials on site; no change in use unless written approval is obtained from the NYSDEC; access is granted to the NYSDEC and its agents for the purposes of inspection, sampling, testing and remediation; 60-day prior notification to NYSDEC of any proposed property transfer. The consent agreement is binding on all successors and assigns.

A Deed restriction was required by Consent Order to be filed with the County Clerk for parcel 9-1-13. Verification of placement of this DCR is needed.

A Site Management Plan is in place which species requirements for maintaiing the Engineering controls and adhering to requirements for or restrictions to land and groundwater use.

Box 4

#### **Description of Engineering Controls**

Parcel

**Engineering Control** 

9-1-11

Cover System

Fencing/Access Control

Engineering Controls include fencing, a geotextile and soil cover, and groundwater monitoring well network. **9-1-13** 

Cover System

Cover system and monitoring wells. A small portion of the landfill cap and two monitoring wells are on this property and must be maintained.

Box	5
	•

	Periodic Review Report (PRR) Certification States	nents		
1.	I certify by checking "YES" below that:			
	<ul> <li>a) the Periodic Review report and all attachments were previewed by, the party making the certification, including contractors for the current certifying period, if any;</li> </ul>			
	<li>b) to the best of my knowledge and belief, the work and of are in accordance with the requirements of the site remedengineering practices; and the information presented is an</li>	dial program, and generate	ally acc	
	A very large to the same of th		YES	NO
2.	If this site has an IC/EC Plan (or equivalent as required in the D or Engineering control listed in Boxes 3 and/or 4, I certify by che following statements are true:			
	(a) the Institutional Control and/or Engineering Control(s) the date that the Control was put in-place, or was last app			nged since
	<ul><li>(b) nothing has occurred that would impair the ability of s the environment;</li></ul>	such Control, to protect p	oublic h	ealth and
	(c) nothing has occurred that would constitute a failure to equivalent if no Site Management Plan exists.	comply with the Site M	anagen	nent Plan, o
			YES	NO
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below an DEC PM regarding the development of a Corrective Measures W		ese issu	les.
	Signature of Standby Consultant/Contractor	Date		

#### IC/EC CERTIFICATIONS

#### **Professional Engineer Signature**

I certify that all information in Boxes 2 through 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

1 <u>Daniel Servetas</u> at <u>AB</u>	ECOM
40	British American Blud
Lat	hanc OF NEW York 12110,
am certifying as a Professional Engineer.	Sent Sent Sent Sent Sent Sent Sent Sent
/ and	9/5/2017
Signature of Professional Engineer	Date (Required for PE)

AECOM Environment

### Appendix B

AECOM Annual Site-Wide Inspection Checklists (2014 – 2016) Please note that "O&M" is referred to throughout this checklist. At sites where Long-Term Response Actions are in progress, O&M activities may be referred to as "system operations" since these sites are not considered to be in the O&M phase while being remediated under the Superfund program.

## **Annual Site-Wide Inspection Checklist**

"N/A" refers to "not applicable."

I. SITE INFORMATION					
Site name: /4xedo waste Disposal	Date of inspection:				
Location and Region: Tuxedo, NY / 3	Site ID: 3-36-0.35				
Agency, office, or company leading the annual review: #ECOM hatham NY	Weather/temperature: Sunay 10° to 86°				
Remedy Includes: (Check all that apply)  Donitored natural attenuation Access controls Institutional controls Groundwater containment Groundwater pump and treatment					
Gas Venting Gy Stem Surt	Surface water collection and treatment  Other Engineer Ingloritals - Cover System, Chain Link Fence  Gas Venting Gy Hem Surface Water Diversion System				
Attachments:   Inspection team roster attached	Attachments:				
II. INTERVIEWS (	Check all that apply)				
1. O&M site manager  Name Title Date  Interviewed □ at site □ at office □ by phone Phone no.  Problems, suggestions; □ Report attached					
2. O&M staff  Name  Interviewed □ at site □ at office □ by phone  Problems, suggestions; □ Report attached	Title Date				

Agency				
ContactN	íame	Title	Date	Phone no
Problems; suggestion	s; Report attached			3
			A. A. A.	
Agency				
Contact	Vame	Title	Date	Phone no
Problems: suggestion	ns;  Report attached		_ 8	
	,		9	
Agency				
Contact	Name	Title	Date	Phone no
Droblems: suggestio	ns; □ Report attached	11110		
Agency				
Contact	Name	Title	Date	Phone no
I	Name ns; □ Report attached	Title		
	ns, 🗆 Report attached			
Other interviews (	optional)   Report attach	ied.		
			13	

<u></u>	III. ON-SITE DOCUMENTS &	RECORDS VERIFIED	(Check all that app	olv)	
1.	O&M Documents  □ O&M manual □ As-built drawings □ Maintenance logs Remarks	☐ Readily available☐ Readily available☐ Readily available☐	☐ Up to date ☐ Up to date ☐ Up to date	□ N/A □ N/A □ N/A	_
2.	Site-Specific Health and Safety Plan  Contingency plan/emergency response Remarks			□ N/A □ N/A	
3.	O&M and OSHA Training Records Remarks_	☐ Readily available	☐ Up to date	□ N/A	<del>-</del>
4.	Permits and Service Agreements  ☐ Air discharge permit ☐ Effluent discharge ☐ Waste disposal, POTW ☐ Other permits ☐ Remarks	□ Readily available □ Readily available □ Readily available □ Readily available	☐ Up to date	□ N/A □ N/A □ N/A □ N/A	
5.	Gas Generation Records Remarks	☐ Readily available	☐ Up to date	□ N/A	
6.	Settlement Monument Records Remarks	☐ Readily available	☐ Up to date	□ N/A	· <u> </u>
7.	Groundwater Monitoring Records Remarks	☐ Readily available	☐ Up to date	□ N/A	-
8.	Leachate Extraction Records Remarks	☐ Readily available	☐ Up to date	□ N/A	
9.	Discharge Compliance Records  ☐ Air ☐ Water (effluent) Remarks	<ul><li>□ Readily available</li><li>□ Readily available</li></ul>	☐ Up to date ☐ Up to date	□ N/A □ N/A	
10.	Daily Access/Security Logs Remarks	☐ Readily available	☐ Up to date	□ N/A	

	IV. O&M COSTS
1.	O&M Organization  State in-house Contractor for State  PRP in-house Contractor for PRP  Federal Facility in-house Contractor for Federal Facility  Other
2.	Common Cost Records   Common Cost Records   Common Cost Readily available   Up to date   Common Cost Section 3.0   Common Cost Section 3.0   Common Cost Section 3.0   Common Cost Section 3.0   Cost Sec
	Date Date Total cost   From To □ Breakdown attached   Date Date Total cost   From To □ Breakdown attached   Date Date Total cost
3.	Unanticipated or Unusually High O&M Costs During Review Period  Describe costs and reasons:  Describe costs and reasons:  Cap Repair (Good Condition / Grass Cover Grann In
	V. ACCESS AND INSTITUTIONAL CONTROLS    Applicable    N/A
A Fo	encing (
1.	Fencing damaged □ Location shown on site map ☐ Gates secured □ N/A  Remarks
B. O	ther Access Restrictions
1.	Signs and other security measures  Remarks  Located on Gate

CI	nstitutional Controls (ICs)			
	<del></del>			<del></del>
1.	Implementation and enforcement Site conditions imply ICs not properly implemented Site conditions imply ICs not being fully enforced	□ Yes □ Yes	□ No	□ N/A □ N/A
	Type of monitoring (e.g., self-reporting, drive by) Frequency			
	Responsible party/agency			
	Contact Name Title	Da	te -	Phone no.
	Reporting is up-to-date Reports are verified by the lead agency	□ Yes □ Yes	□ No □ No	□ N/A □ N/A
	Specific requirements in deed or decision documents have been m Violations have been reported Other problems or suggestions:   Report attached	et □ Yes □ Yes	_	□ N/A □ N/A
2.	Adequacy ☐ ICs are adequate ☐ ICs are in Remarks	-		□ N/A
D. G	eneral			
1.	Vandalism/trespassing ☐ Location shown on site map  Remarks	No vandalism	evident	
 2.	Land use changes on site N/A Remarks		*	
3.	Land use changes off site N/A Remarks			: "
	VI. GENERAL SITE CONDITION	S		
A. Ro	pads E Applicable D N/A			
1.	Roads damaged	loads adequate	e 	□ N/A

B. Ot	her Site Conditions		
	A/		
	VII. LA	NDFILL COVERS Applicable	] N/A
A. La	andfill Surface		/
1.	Settlement (Low spots) Areal extent	☐ Location shown on site map Depth	Settlement not evident
2.	Cracks Lengths W Remarks	☐ Location shown on site map	
3.	Erosion Areal extent Remarks	☐ Location shown on site map Depth	Erosion not evident
4.	Holes Areal extent Remarks		Holes not evident
5.	☐ Trees/Shrubs (indicate size	Grass Cover properly estable and locations on a diagram)	ished No signs of stress
6.	Alternative Cover (armore Remarks fact of C	drock, concrete, etc.) DNA	ystem - No damage
7.	Bulges Areal extentRemarks	☐ Location shown on site map Height	Bulges not evident

8.	Wet Areas/Water Damage	Wet areas/water damage not evident
	☐ Wet areas	☐ Location shown on site map Areal extent
	☐ Ponding	☐ Location shown on site map Areal extent
1	☐ Seeps	☐ Location shown on site map Areal extent
	☐ Soft subgrade	☐ Location shown on site map Areal extent
	Remarks	•
L	* A	
9.	Slope Instability	Es    Location shown on site map    No evidence of slope instability
B. Be	enches	e □N/A
		ands of earth placed across a steep landfill side slope to interrupt the slope
	in order to slow down the vel	city of surface runoff and intercept and convey the runoff to a lined
	channel.)	ory or smill and mississpitatic solitory and famous to a finion
1.	Flows Bypass Bench	TI continue alconome a site and a
1.	Remarks	☐ Location shown on site map ☐ N/A or okay
	Tomarks	
2.	Bench Breached	☐ Location shown on site map ☐ N/A or okay
	Remarks	
3.	Bench Overtopped	☐ Location shown on site map ☐ N/A or okay
	Remarks	
C. Le	etdown Channels Applicat	e □ N/A
		ntrol mats, riprap, grout bags, or gabions that descend down the steep side
	slope of the cover and will all	w the runoff water collected by the benches to move off of the landfill
	cover without creating erosion	gullies.)
1	jr.	<del></del>
1.	Settlement	ocation shown on site map No evidence of settlement
	Areal extent	Depth
	Remarks	
2.	Material Degradation	ocation shown on site map
	Material type	Areal extent
	Remarks	
3.	Erosion	contion shows on site man
J.	Areal extent	ocation shown on site map
	Dialoga 1 a	Depth
	ixellial k5	

4.	Undercutting
5.	Obstructions TypeNo obstructions  Location shown on site map Areal extent  Size Remarks
6.	Excessive Vegetative Growth  No evidence of excessive growth  Vegetation in channels does not obstruct flow  Location shown on site map  Areal extent  Remarks
D. Co	ver Penetrations Applicable
1.	Gas Vents Properly secured/locked Functioning Noutinely sampled Good condition Evidence of leakage at penetration Needs Maintenance  N/A Remarks  Passive Routinely sampled Good condition Needs Maintenance
2.	Gas Monitoring Probes  Properly secured/locked Functioning   Routinely sampled   Good condition  Evidence of leakage at penetration   Needs Maintenance   N/A    Remarks   Placec   May Not Apply Hee
3.	Monitoring Wells (within surface area of landfill)  □ Properly secured/locked □ Functioning □ Routinely sampled □ Good condition □ Evidence of leakage at penetration □ Needs Maintenance □ N/A  Remarks
4.	Leachate Extraction Wells  □ Properly secured/locked □ Functioning □ Routinely sampled □ Good condition □ Evidence of leakage at penetration □ Needs Maintenance □ N/A  Remarks □
5.	Settlement Monuments

E. G	Sas Collection and Treatmen	t Applicable	le □ N/A	
1.	Gas Treatment Facilitie  ☐ Flaring ☐ Good condition Remarks	☐ Thermal destruction ☐ Needs Maintenance		
2.	Gas Collection Wells, M Good condition Remarks	anifolds and Piping ☐ Needs Maintenanc	ce	
3.	Gas Monitoring Facilities Good condition Remarks	es (e.g., gas monitoring  Needs Maintenance  August	g of adjacent homes or buildings)	
F. C	over Drainage Layer	☐ Applicabl	le □ N/A	
1.	Outlet Pipes Inspected Remarks	[3 Functionin	ing □ N/A	
2.	Outlet Rock Inspected Remarks	Functionin	ing □ N/A	
G. D	etention/Sedimentation Pon	ds □ Applicabl	le [4N/A	
1.	Siltation Areal extent ☐ Siltation not evident Remarks	-	pth \(\sim \text{N/A}\)	
2.	Erosion Areal ex  ☐ Erosion not evident  Remarks		Depth	
3.	Outlet Works Remarks	☐ Functioning ☐ N	N/A	
4.	Dam Remarks	☐ Functioning ☐ N	N/A	

		/		
H. Ret	taining Walls	Applicable [	⊃ N/A	
1.	Deformations Horizontal displacement_ Rotational displacement_ Remarks		Vertical displace	Deformation not evident ement
2.	<b>Degradation</b> Remarks	☐ Location shown	on site map	Degradation not evident
I. Peri	meter Ditches/Off-Site Di	scharge [	4 Applicable	□ N/A
1.	Siltation	Depth		not evident
2.	Vegetative Growth Vegetation does not im Areal extent Remarks	pede flow Type		
3.	Erosion Areal extent Remarks	_	on site map	Erosion not evident
4.	Discharge Structure Remarks			
	VIII. VEF	TICAL BARRIER	R WALLS	Applicable N/A
1.	Areal extent			□ Settlement not evident
2.	Performance Monitorin  ☐ Performance not moni Frequency Head differential Remarks	tored	□ Evide	nce of breaching
	IX. GROUNDWAT	ER/SURFACE WA	ATER REMED	IES □ Applicable □ N/A
A. Gr	oundwater Extraction We	ells, Pumps, and Pi	pelines	☐ Applicable ☐ N/A

l .				
1.	Pumps, Wellhead Plum  ☐ Good condition  Remarks	☐ All required wel		Needs Maintenance □ N/A
	<del></del>			
2.	Extraction System Pipe  ☐ Good condition  Remarks	□ Needs Maintena	nce	urtenances
_	G B ( 15		· ·	
3.	Spare Parts and Equipor  ☐ Readily available  Remarks	□ Good condition	☐ Requires upgrade	□ Needs to be provided
B. S	urface Water Collection St	ructures, Pumps, an	d Pipelines	licable N/A
1.	Collection Structures, F	Jumps and Floatrice		····
1.	Good condition Remarks	☐ Needs Maintena	nce	
2.	Surface Water Collection	on Cristone Dinelines	Value Value Dance	
2.	☐ Good condition  Remarks			nd Other Appurtenances
			<del></del>	
3.	Spare Parts and Equipr  ☐ Readily available  Remarks	☐ Good condition		□ Needs to be provided
	☐ Readily available	☐ Good condition		□ Needs to be provided
C. T	☐ Readily available Remarks reatment System	☐ Good condition ☐ Applicable	M/A	□ Needs to be provided
	☐ Readily available Remarks  reatment System  Treatment Train (Check	☐ Good condition ☐ Applicable ☐ components that applicable	N/A ply)	
C. T	☐ Readily available Remarks  reatment System  Treatment Train (Check ☐ Metals removal	☐ Good condition ☐ Applicable ☐ components that applicable ☐ Oil/water	N/A ply) er separation	□ Needs to be provided □ Bioremediation
C. T	reatment System  Treatment Train (Check  Metals removal  Air stripping	☐ Good condition ☐ Applicable ☐ components that applicable	N/A ply) er separation	
C. T	☐ Readily available Remarks  Treatment System  Treatment Train (Checl ☐ Metals removal ☐ Air stripping ☐ Filters	Good condition  Applicable  components that app  Oil/wate	ply) er separation adsorbers	□ Bioremediation
C. T	☐ Readily available Remarks  Treatment System  Treatment Train (Check ☐ Metals removal ☐ Air stripping ☐ Filters ☐ Additive (e.g., chelatic	Good condition  Applicable  components that app  Oil/wate	ply) er separation adsorbers	□ Bioremediation
C. T	☐ Readily available Remarks  Treatment System  Treatment Train (Check ☐ Metals removal ☐ Air stripping ☐ Filters ☐ Additive (e.g., chelation ☐ Others	Good condition  Applicable  components that app  Oil/wate  Carbon  an agent, flocculent)	ply) er separation adsorbers	□ Bioremediation
C. T	☐ Readily available Remarks  Treatment System  Treatment Train (Check ☐ Metals removal ☐ Air stripping ☐ Filters ☐ Additive (e.g., chelation ☐ Others ☐ Good condition	Good condition  Applicable  components that app  Oil/wate  Carbon  agent, flocculent)  Needs M	ply) er separation adsorbers  Maintenance	□ Bioremediation
C. T	☐ Readily available Remarks  Treatment System  Treatment Train (Check ☐ Metals removal ☐ Air stripping ☐ Filters ☐ Additive (e.g., chelation ☐ Others	Good condition  Applicable Components that application Carbon Carbon Needs My marked and function	ply) er separation adsorbers  Maintenance onal	□ Bioremediation
C. T	☐ Readily available  Remarks  Treatment System  Treatment Train (Check ☐ Metals removal ☐ Air stripping ☐ Filters ☐ Additive (e.g., chelation ☐ Others ☐ Good condition ☐ Sampling ports proper ☐ Sampling/maintenance ☐ Equipment properly id	Good condition  Applicable  Components that app  Oil/wate  Carbon  n agent, flocculent)  Needs M  y marked and function  log displayed and upentified	ply) er separation adsorbers  Maintenance onal o to date	□ Bioremediation
C. T	☐ Readily available  Remarks  Treatment System  Treatment Train (Check ☐ Metals removal ☐ Air stripping ☐ Filters ☐ Additive (e.g., chelation ☐ Others ☐ Good condition ☐ Sampling ports proper ☐ Sampling/maintenance ☐ Equipment properly id ☐ Quantity of groundwate	Good condition  Applicable  Components that app  Carbon  n agent, flocculent)  Needs M  y marked and function  log displayed and up  entified  er treated annually	ply) er separation adsorbers  Maintenance onal o to date	□ Bioremediation
C. T	☐ Readily available  Remarks  Treatment Train (Check ☐ Metals removal ☐ Air stripping ☐ Filters ☐ Additive (e.g., chelation ☐ Others ☐ Good condition ☐ Sampling ports proper ☐ Sampling/maintenance ☐ Equipment properly id ☐ Quantity of groundwat ☐ Quantity of surface wa	Good condition  Applicable Components that applicable Carbon  Needs Now marked and function long displayed and upentified er treated annually_ter treated an	ply) er separation adsorbers  Maintenance onal o to date	□ Bioremediation
C. T	☐ Readily available  Remarks  Treatment Train (Check ☐ Metals removal ☐ Air stripping ☐ Filters ☐ Additive (e.g., chelation ☐ Others ☐ Good condition ☐ Sampling ports proper ☐ Sampling/maintenance ☐ Equipment properly id ☐ Quantity of groundwat ☐ Quantity of surface wa	Good condition  Applicable Components that applicable Carbon  Needs Now marked and function long displayed and upentified er treated annually_ter treated an	ply) er separation adsorbers  Maintenance onal o to date	□ Bioremediation
C. T	☐ Readily available  Remarks  Treatment Train (Check ☐ Metals removal ☐ Air stripping ☐ Filters ☐ Additive (e.g., chelation ☐ Others ☐ Good condition ☐ Sampling ports proper ☐ Sampling/maintenance ☐ Equipment properly id ☐ Quantity of groundwat ☐ Quantity of surface wa	Good condition  Applicable Components that applicable Carbon  Needs Now marked and function long displayed and upentified er treated annually_ter treated an	ply) er separation adsorbers  Maintenance onal o to date	□ Bioremediation
C. T	☐ Readily available Remarks  Treatment Train (Check ☐ Metals removal ☐ Air stripping ☐ Filters ☐ Additive (e.g., chelation ☐ Others ☐ Good condition ☐ Sampling ports proper ☐ Sampling/maintenance ☐ Equipment properly id ☐ Quantity of groundwat ☐ Quantity of surface was Remarks	Good condition  Applicable  components that applicable Carbon  n agent, flocculent)  Needs My marked and function log displayed and upentified er treated annually ter treated annually	ply) er separation adsorbers  Maintenance onal o to date	□ Bioremediation
<b>C. T</b>	☐ Readily available Remarks  Treatment Train (Check ☐ Metals removal ☐ Air stripping ☐ Filters ☐ Additive (e.g., chelation ☐ Others ☐ Good condition ☐ Sampling ports proper. ☐ Sampling/maintenance ☐ Equipment properly id ☐ Quantity of groundwat ☐ Quantity of surface was Remarks  Electrical Enclosures and	Good condition  Applicable Components that applicable Carbon  Needs Now marked and function alog displayed and upentified er treated annually_ter treated annually_ter treated annually_ter treated (properly readed)	ply) er separation adsorbers  Maintenance onal o to date  ated and functional)	□ Bioremediation
<b>C. T</b>	☐ Readily available Remarks  Treatment Train (Check ☐ Metals removal ☐ Air stripping ☐ Filters ☐ Additive (e.g., chelation ☐ Others ☐ Good condition ☐ Sampling ports proper. ☐ Sampling/maintenance ☐ Equipment properly id ☐ Quantity of groundwat ☐ Quantity of surface was Remarks  Electrical Enclosures and	Good condition  Applicable  Components that applicable Carbon  nagent, flocculent)  Needs Marked and function log displayed and upentified er treated annually ter treated annually  and Panels (properly radicondition	Maintenance on al o to date and functional) Needs Maintenance	□ Bioremediation

3.	Tanks, Vaults, Storage Vessels  □ N/A □ Good condition □ Proper secondary containment □ Needs Maintenance  Remarks
4.	Discharge Structure and Appurtenances  □ N/A □ Good condition □ Needs Maintenance  Remarks
5.	Treatment Building(s)  □ N/A □ Good condition (esp. roof and doorways) □ Needs repair □ Chemicals and equipment properly stored  Remarks
6.	Monitoring Wells (pump and treatment remedy)  □ Properly secured/locked □ Functioning □ Routinely sampled □ Good condition □ All required wells located □ Needs Maintenance □ N/A  Remarks
D. Mo	onitoring Data
1.	Monitoring Data  Is routinely submitted on time  Is of acceptable quality
2.	Monitoring data suggests: Groundwater plume is effectively contained  Contaminant concentrations are declining
E. M	onitored Natural Attenuation
1.	Monitoring Wells (natural attenuation remedy)  ☐ Properly secured/locked ☐ Functioning ☐ Routinely sampled ☐ Good condition ☐ All required wells located ☐ Needs Maintenance ☐ N/A  Remarks ☐ N/A
	X. OTHER REMEDIES
	If there are remedies applied at the site which are not covered above, attach an inspection sheet describing the physical nature and condition of any facility associated with the remedy. An example would be soil vapor extraction.
	XI. OVERALL OBSERVATIONS
A.	Implementation of the Remedy

D.	Opportunities for Optimization
	Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.
	Increasing the Amount of Gas Vent Stations and Wind Turbines,

	Describe issues and observations relating to whether the remedy is effective and functioning as designed. Begin with a brief statement of what the remedy is to accomplish (i.e., to contain contaminant plume, minimize infiltration and gas emission, etc.).
	Lover - Functioning as Designed Surface Water Diversion - Functioning as Designed Sas Vent Stations - Upiking Properly  Lemely Functioning Ms designed  No Issues Observed
В.	Adequacy of O&M
	Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy.
C.	Early Indicators of Potential Remedy Problems
	Describe issues and observations such as unexpected changes in the cost or scope of O&M or a high frequency of unscheduled repairs that suggest that the protectiveness of the remedy may be compromised in the future.

Please note that "O&M" is referred to throughout this checklist. At sites where Long-Term Response Actions are in progress, O&M activities may be referred to as "system operations" since these sites are not considered to be in the O&M phase while being remediated under the Superfund program.

### **Annual Site-Wide Inspection Checklist**

"N/A" refers to "not applicable."

I. SITE IN	NFORMATION
Site name: / Lixedo Waste 1) is 1050/	Date of inspection: 9/24/15
Location and Region: Tyrede, Ny 3	Site ID: 3-36-035
Agency, office, or company leading the annual review: TECM Lathem NY	Weather/temperature:
Remedy Includes: (Check all that apply)  ☐ Monitored natural attenuation ☐ Access controls ☐ Institutional controls ☐ Groundwater containment ☐ Groundwater pump and treatment	
Curface water collection and treatment	- Lover System, Charalink france, System water Direction System
Surface water collection and treatment  Other Engineering Control's  Venting System	
Surface water collection and treatment  Other  Other  Venting  Tyskyn  Attachments:   Inspection team roster attached	
Surface water collection and treatment  Other  Mas Venting System  Attachments:   Inspection team roster attached	S (Check all that apply)  Title Date
Surface water collection and treatment Other  Inspection team roster attached II. INTERVIEW  1. O&M site manager  Name Interviewed  at site  at office  by phone Ph	S (Check all that apply)  Title Date

Name Problems; suggestions; □ Report attached  Agency Contact Name Problems; suggestions; □ Report attached  Agency Contact Name Title Date Phone r  Phone r  Problems; suggestions; □ Report attached  Title Date Phone r  Problems; suggestions; □ Report attached	Agency			
Agency Contact  Name Problems; suggestions; □ Report attached	Contact			
Contact Name Problems; suggestions; □ Report attached  Agency Contact Name Problems; suggestions; □ Report attached  Agency Contact Name Title Date Phone of the problems of	Name Problems; suggestions; □ Report attached	Title	Date	Phone n
Agency	Agency		= * =	-
Agency	Name Problems: suggestions:  Report attached	Title	Date	Phone n
Name Title Date Phone r  Problems; suggestions; □ Report attached  Agency Contact Name Title Date Phone r  Problems; suggestions; □ Report attached	Trobens, suggestions, A report attached	10 S. A. (1)	Green green and a	
Name Title Date Phone r  Problems; suggestions; □ Report attached  Agency Contact  Name Title Date Phone r  Problems; suggestions; □ Report attached	Agency		a comment	
Agency	Name	Title	Date	Phone n
Name Title Date Phone r  Problems; suggestions; ☐ Report attached	Problems; suggestions;  Report attached			
Problems; suggestions; Report attached	Agency			
and the state of t	Name Problems: suggestions: □ Report attached		Date	Phone r
	Tropicus, suggestions, II respire analysis		अवर्त केन्द्रेश हैं है के कि विद्युष्ट के किया है कि कि	
other linterviews (optional) in report unusited.		,		
	other interviews (optional) in report and			
		4 0		A 1-
	- 10		-	

	III. ON-SITE DOCUMENTS & RE	ECORDS VERIFIED (C	heck all that app	ly)
1.	☐ As-built drawings	☐ Readily available☐ Readily available☐ Readily available☐	☐ Up to date☐ Up to date☐ Up to date☐ Up to date☐	□ N/A □ N/A □ N/A
2.	Site-Specific Health and Safety Plan  Contingency plan/emergency response planemarks	☐ Readily available an ☐ Readily available	☐ Up to date☐ Up to date	□ N/A □ N/A
3.0.0	Q&M and OSHA Training Records Remarks	☐ Readily available	☐ Up to date	□ N/A
4.		☐ Readily available ☐ Readily available ☐ Readily available ☐ Readily available	☐ Up to date	□ N/A □ N/A □ N/A □ N/A
5.	Gas Generation Records Remarks	☐ Readily available	☐ Up to date	□ N/A
6.	Settlement Monument Records Remarks	☐ Readily available	☐ Up to date	□ N/A
7.	Groundwater Monitoring Records Remarks	☐ Readily available	□ Up to date	□ N/A
8.	Leachate Extraction Records Remarks	☐ Readily available	□ Up to date	□ N/A
9.	Discharge Compliance Records  ☐ Air ☐ Water (effluent) Remarks	☐ Readily available ☐ Readily available	☐ Up to date☐ Up to date	□ N/A □ N/A
10.	Daily Access/Security Logs Remarks	☐ Readily available	Úp to date	□ N/A

	The state of the s
	IV. O&M COSTS
1.	O&M Organization  State in-house Contractor for State  PRP in-house Contractor for PRP  Federal Facility in-house Contractor for Federal Facility  Other
2.	O&M Cost Records  Readily available  Up to date Funding mechanism/agreement in place Original O&M cost estimate  Breakdown attached
3.	Total annual cost by year for review period if available
110	V. ACCESS AND INSTITUTIONAL CONTROLS  Applicable / N/A
A. Fen	ing
1.	Fencing damaged ☐ Location shown on site map ☐ Gates secured ☐ N/A  Remarks
B. Oth	r Access Restrictions
1.	Signs and other security measures   Location shown on site map   N/A Remarks   Ocated on Cate

C. Institutional Controls (ICs)		- Pitters Citerio
Implementation and enforcement     Site conditions imply ICs not properly implemented     Site conditions imply ICs not being fully enforced	□ Yes	
Type of monitoring (e.g., self-reporting, drive by) Frequency Responsible party/agency Contact		*
Name Titl	e Da	Phone no.
Reporting is up-to-date Reports are verified by the lead agency	□ Yes □ Yes	□ No □ N/A
Specific requirements in deed or decision documents Violations have been reported Other problems or suggestions:	□ Yes	
Mar Bernetti v De are dis menonali mili.	NET SANISA	Silvensol
2. Adequacy Remarks ICs are adequate	☐ ICs are inadequate	□ N/A
D. General		
1. Vandalism/trespassing ☐ Location shown on site Remarks	map No vandalism	n evideŋt
2. Land use changes on site N/A Remarks	and the state of t	A sounding Care
3. Land use changes off site N/A Remarks	Sinto, true Nivarian, is	2 Navitaciona
VI. GENERAL SITE O	CONDITIONS	A STATE OF THE STA
A. Roads Applicable N/A	175	Bules
1. Roads damaged	map Roads adequ	ate

B. Oth	er Site Conditions		
	Remarks No.	21 3 3 3 3 3 3 4 3 4 5 4 5 4 5 5 5 5 5 5 5	
<i>8</i>	VIII I ANDE	FILL COVERS Applicable	NI/A
A Lon	dfill Surface	TLL COVERS & Applicable	IV/A
1.			Settlement not evident
2.		□ Location shown on site map Depths	Cracking not evident
3.	Erosion Areal extent Remarks	☐ Location shown on site map  Depth	Erosion not evident
4.	Holes Areal extentRemarks	☐ Location shown on site map Depth	Moles not evident
5.	Vegetative Cover ☐ Gras ☐ Trees/Shrubs (indicate size and Remarks_	s Cover properly established locations on a diagram)	shed  No signs of stress
6.	Alternative Cover (armored rock Remarks Syrtaca Wa	k, concrete, etc.) $\square N/A$	in good
7.	Bulges Areal extent Remarks	☐ Location shown on site map Height	<b>B</b> ulges not evident

8.	Wet Areas/Water Damage Wet areas/water damage not evident
	☐ Wet areas ☐ Location shown on site map Areal extent
	☐ Ponding ☐ Location shown on site map Areal extent
	☐ Seeps ☐ Location shown on site map Areal extent ☐
	☐ Soft subgrade ☐ Location shown on site map Areal extent
	Remarks
	Approximate the first transfer of the second
9.	Slope Instability ☐ Slides ☐ Location shown on site map  No evidence of slope instability  Areal extent  Remarks
В.	Benches
1.	Flows Bypass Bench
2.	Bench Breached Location shown on site map N/A or olyay
	Remarks
3.	Bench Overtopped
	Lather Change Manufaction DNA
C.	Letdown Channels Applicable N/A  (Channel lined with erosion control mats, riprap, grout bags, or gabions that descend down the steep side slope of the cover and will allow the runoff water collected by the benches to move off of the landfill cover without creating erosion gullies.)
1.	Settlement
	Remains
2.	Material Degradation ☐ Location shown on site map ☑ No evidence of degradation
۲.	Material type Areal extent
	Remarks
3.	Erosion ☐ Location shown on site map
	Areal extent Depth
	Remarks 2
	4 1001
	·

4.	Undercutting
5.	Obstructions Type No obstructions  Location shown on site map Size Remarks
6.	Excessive Vegetative Growth  No evidence of excessive growth  Vegetation in channels does not obstruct flow  Location shown on site map  Areal extent  Remarks
D. Co	ver Penetrations
1.	Gas Vents  Active Passive Properly secured/locked Functioning Routinely sampled  Good condition Needs Maintenance NA Remarks
2.	Gas Monitoring Probes  ☐ Properly secured/locked ☐ Functioning ☐ Routinely sampled ☐ Good condition ☐ Evidence of leakage at penetration ☐ Needs Maintenance ☐ N/A  Remarks
3.	Monitoring Wells (within surface area of landfill)  ☐ Properly secured/locked ☐ Functioning ☐ Routinely sampled ☐ Good condition ☐ Evidence of leakage at penetration ☐ Needs Maintenance ☐ N/A  Remarks
4.	Leachate Extraction Wells  ☐ Properly secured/locked ☐ Functioning ☐ Routinely sampled ☐ Good condition ☐ Evidence of leakage at penetration ☐ Needs Maintenance ☑ N/A  Remarks
5.	Settlement Monuments

E. Gas	Collection and Treatmen	t 🗴 Applic	cable	□ N/A	× 3.	lly, V = 4	The Property		
1.	Gas Treatment Facilitie  ☐ Flaring ☐ Good condition Remarks	☐ Thermal destri			tion for r	euse			
2.	Gas Collection Wells, M Good condition Remarks	anifolds and Pipi ☐ Needs Mainter		A - Med	46	L underlys			
3.	Gas Monitoring Facilities Good condition Remarks	es (e.g., gas monito	oring of a	djacent ho □ N/A	mes or b	uildings)			
F. Cov	er Drainage Layer	Appli	icable		□ N/A				
1.	Outlet Pipes Inspected Remarks	Func	tioning	71.5	□ N/A	k is killer fre, iv arktis levi arktis levi			
2.	Outlet Rock Inspected Remarks	Funct	tioning		⊐ N/A	T Heory	и		
G. Detention/Sedimentation Ponds □ Applicable ☑ N/A									
1.	Siltation Areal extent  Siltation not evident Remarks		Depth_			□ N/A	AL.		
2.	Erosion Areal e.  □ Erosion not evident Remarks	xtent	Dep	alest I		in ship?			
3.	Outlet Works Remarks	☐ Functioning	□ N/A	ogno == 1	(5 - ad) 2000;as				
4.	Dam Remarks	☐ Functioning	□ N/A			in extends by			

н. г	Retaining Walls	Applicable D	I/A		
1.	Deformations Horizontal displacement_ Rotational displacement_ Remarks_	Ver	tical displace	▶ Deformation not evident ment	
2.	<b>Degradation</b> Remarks	☐ Location shown on	-	Degradation not evident	- X
I. Po	erimeter Ditches/Off-Site Di	scharge 🕱 A	pplicable	□ N/A	-
1.	Siltation ☐ Loca Areal extent Remarks	tion shown on site map Depth	Siltation r	not evident	, A
2.	Vegetative Growth Vegetation does not im Areal extent Remarks	pede flow	site map	□ N/A	
3.	Erosion Areal extent Remarks	☐ Location shown on Depth		■Erosion not evident	
4.	Discharge Structure Remarks	Functioning D	J/A		
-	VIII. VER	RTICAL BARRIER W	ALLS	Applicable ⊠N/A	
1.	Settlement Areal extent Remarks	☐ Location shown on Depth_	-	☐ Settlement not evident	W
2.	Performance Monitorin  ☐ Performance not monitoring Frequency Head differential Remarks		_ □ Evider	nce of breaching	, ° ,
	IX. GROUNDWAT	ER/SURFACE WATI	ER REMED	IES □ Applicable ☑ N	'A
A. (	Groundwater Extraction We	ells, Pumps, and Pipeli	nes	☐ Applicable ☐ N/A	

1.	Pumps, Wellhead Plur  ☐ Good condition  Remarks	nbing, and Electrical ☐ All required wells properly operating ☐ Needs Maintenance ☐ N/A
2.	Extraction System Pip ☐ Good condition Remarks	pelines, Valves, Valve Boxes, and Other Appurtenances  ☐ Needs Maintenance
3.	Spare Parts and Equip  ☐ Řeadily available  Remarks	oment ☐ Good condition ☐ Requires upgrade ☐ Needs to be provided
B. Sur	face Water Collection S	tructures, Pumps, and Pipelines   Applicable   N/A
1.	Collection Structures,  Good condition Remarks	Pumps, and Electrical  ☐ Needs Maintenance
2.	Surface Water Collect Good condition Remarks	ion System Pipelines, Valves, Valve Boxes, and Other Appurtenances  ☐ Needs Maintenance
3.	D 1	oment  ☐ Good condition ☐ Requires upgrade ☐ Needs to be provided
C. Tre	eatment System	□ Applicable ▼ N/A
1.	☐ Metals removal ☐ Air stripping ☐ Filters ☐ Additive (e.g., chelat ☐ Others ☐ Good condition ☐ Sampling ports prope	ck components that apply)  Oil/water separation Carbon adsorbers  ion agent, flocculent)  Needs Maintenance erly marked and functional ce log displayed and up to date
	☐ Quantity of groundw ☐ Quantity of surface w	ater treated annuallyvater treated annually
2.		and Panels (properly rated and functional) od condition □ Needs Maintenance

3.	Tanks, Vaults, Storage Vessels  □ N/A □ Good condition □ Proper secondary containment □ Needs Maintenance Remarks
4.	Discharge Structure and Appurtenances  □ N/A □ Good condition □ Needs Maintenance  Remarks
5.	Treatment Building(s)  □ N/A □ Good condition (esp. roof and doorways) □ Needs repair □ Chemicals and equipment properly stored Remarks
6.	Monitoring Wells (pump and treatment remedy)  ☐ Properly secured/locked ☐ Functioning ☐ Routinely sampled ☐ Good condition ☐ All required wells located ☐ Needs Maintenance ☐ N/A  Remarks
D. Mo	nitoring Data
1.	Monitoring Data  ✓ Is routinely submitted on time  ✓ Is of acceptable quality
2.	Monitoring data suggests:
E. Me	onitored Natural Attenuation
1.	Monitoring Wells (natural attenuation remedy)  Properly secured/locked  All required wells located  Needs Maintenance  N/A  Remarks
	X. OTHER REMEDIES
	If there are remedies applied at the site which are not covered above, attach an inspection sheet describing the physical nature and condition of any facility associated with the remedy. An example would be soil vapor extraction.
	XI. OVERALL OBSERVATIONS
A.	Implementation of the Remedy

	Describe issues and observations relating to whether the remedy is effective and functioning as designed.  Begin with a brief statement of what the remedy is to accomplish (i.e., to contain contaminant plume, minimize infiltration and gas emission, etc.).  Surface Water Livering — Functioning as designed.  Gas Ven Stateons — Weeker Parket
В.	Adequacy of O&M
	Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy.  No Ssee S Described
C.	Early Indicators of Potential Remedy Problems
	Describe issues and observations such as unexpected changes in the cost or scope of O&M or a high frequency of unscheduled repairs that suggest that the protectiveness of the remedy may be compromised in the future.

D.	Opportunities for Optimization
	Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.
	A CONTRACTOR OF THE PROPERTY O
	Wasterstand to the fields stored back of the stored party party party
	the many profession of the state of the stat
	increasing amount at (74) Vent Stations
	Mild Actives)

PANNET SANDI- 9/

Bring it was 5 31

Please note that "O&M" is referred to throughout this checklist. At sites where Long-Term Response Actions are in progress, O&M activities may be referred to as "system operations" since these sites are not considered to be in the O&M phase while being remediated under the Superfund program.

## **Annual Site-Wide Inspection Checklist**

"N/A" refers to "not applicable."

I. SITE INF	ORMATION
Site name: Turedo Worte Dispusal	Date of inspection: 3/15/16
Location and Region: Tredo, NY /3	Site ID: 3-36-035
Agency, office, or company leading the annual review:	Weather/temperature:  Sunny, 50°
Fruce, 263 Ventury System	(4:
Attachments:	Site map attached
II. INTERVIEWS	(Check all that apply)
1. O&M site manager  Name  Interviewed □ at site □ at office □ by phone Phone  Problems, suggestions; □ Report attached	e no
2. O&M staff  Name	Title Date
Interviewed ☐ at site ☐ at office ☐ by phone Phon Problems, suggestions; ☐ Report attached	

Agency			
Contact Name	28		
Name Problems; suggestions; ☐ Report attached		Date	
Agency	-2-	ж.	
ContactName	Title		Phone i
Problems; suggestions; ☐ Report attached	Title	Date	
Agency	= 14		
Contact		<u></u>	
Name Problems; suggestions; □ Report attached	Title	Date	Phone
Agency			
ContactName	Title	Date	Phone
Problems; suggestions; ☐ Report attached		Date	T HONC
	10-17	3 3	
Other interviews (optional)   Report attached	ed.		- F -
9			
		-	

	III. ON-SITE DOCUMENTS & RECORDS VE	RIFIED (Check all that app	ly)
1.	O&M Documents  ☐ O&M manual ☐ As-built drawings ☐ Maintenance logs Remarks  ☐ Readily av	ailable	□ N/A □ N/A □ N/A
2.		ly available Up to date Iy available Up to date	□ N/A □ N/A
3.	O&M and OSHA Training Records  ☐ Readily av Remarks	ailable	□ N/A
4.	Permits and Service Agreements  ☐ Air discharge permit ☐ Effluent discharge ☐ Waste disposal, POTW ☐ Other permits ☐ Readily av ☐ Readily av ☐ Readily av	ailable	□ N/A □ N/A □ N/A □ N/A
5.	Gas Generation Records ☐ Readily av Remarks	ailable	□ N/A
6.	Settlement Monument Records	ailable 🔲 Up to date	□ N/A
7.	Groundwater Monitoring Records ☐ Readily av Remarks	ailable	□ N/A
8.	Leachate Extraction Records ☐ Readily av Remarks	ailable 🔲 Up to date	□ N/A
9.	Discharge Compliance Records  ☐ Air ☐ Water (effluent)  Readily av  Remarks		□ N/A □ N/A
10.	Daily Access/Security Logs ☐ Readily av Remarks	ailable	□ N/A

	IV. O&M COSTS		
1.	O&M Organization  State in-house Contractor for State  PRP in-house Contractor for PRP  Federal Facility in-house Contractor for Federal Facility  Other		
2.	O&M Cost Records Readily available Up to date Funding mechanism/agreement in place Original O&M cost estimate Breakdown attached  Total annual cost by year for review period if available	section 3.	.0
	From To Breakdown attached  Date Date Total cost  From To Breakdown attached  Date Date Total cost	8	
3. A. Fei	Unanticipated or Unusually High O&M Costs During Review Period  Describe costs and reasons:  V. ACCESS AND INSTITUTIONAL CONTROLS Applicable  N/A		
1.	Fencing damaged	□ N/A	
B. Otl	her Access Restrictions		
1.	Signs and other security measures Remarks Located on 3th		

C. Institutional Controls (ICs)			A March	9_6y = 1 - 1 ²
Implementation and enforcement     Site conditions imply ICs not properly in     Site conditions imply ICs not being fully		□ Yes		□ N/A □ N/A
Type of monitoring (e.g., self-reporting, Frequency	drive by)			
Contact Name	Title	Dat	e –	Phone no.
Reporting is up-to-date Reports are verified by the lead agency		□ Yes □ Yes	□ No	□ N/A □ N/A
Specific requirements in deed or decisio Violations have been reported Other problems or suggestions:	n documents have be	en met ☐ Yes ☐ Yes	_	□ N/A □ N/A
( Life feet mark 22°- M. instructions	possily anima 1°;	ald it		Matter 1
2. Adequacy ☐/ICs are ade Remarks_	equate ICs a	are inadequate		□ N/A
D. General				
1. Vandalism/trespassing □ Location s Remarks	hown on site map	Ŋ No vandalism	evident	January 1
2. Land use changes on site X N/A Remarks_		1000 - 1000 20 2 1 1000	س وگ	ingery - i
3. Land use changes off site N/A Remarks	15,017,1904	Tenderer men	i i	00/07
VI. GENE	RAL SITE CONDIT	ΓIONS		ALPES TO THE TOTAL PROPERTY OF THE PARTY OF
A. Roads	iw dependents			
1. Roads damaged ☐ Location s Remarks	hown on site map	Roads adequa	te	□ N/A

	ther Site Conditions
	Remarks
	Name
15	VII. LANDFILL COVERS → Applicable □ N/A
A. La	andfill Surface
1.	Settlement (Low spots)
2.	Cracks
<b>3.</b>	Erosion
••	Holes
5.	Vegetative Cover Grass Cover properly established No signs of stress ☐ Trees/Shrubs (indicate size and locations on a diagram) Remarks
5.	Alternative Cover (armored rock, concrete, etc.)   N/A Remarks   Fart & Surface Water Diversion System - No downage
7.	Bulges

8.	Wet Areas/Water Damage Wet areas/water damage not evident
	☐ Wet areas ☐ Location shown on site map Areal extent
	☐ Ponding ☐ Location shown on site map Areal extent
	☐ Seeps ☐ Location shown on site map Areal extent
	☐ Soft subgrade ☐ Location shown on site map Areal extent
	Remarks
9.	Slope Instability
B.	Benches
1.	Flows Bypass Bench
2.	Bench Breached ☐ Location shown on site map  Remarks
3.	Bench Overtopped ☐ Location shown on site map  N/A or okay  Remarks
C.	Letdown Channels Applicable \sum N/A  (Channel lined with erosion control mats, riprap, grout bags, or gabions that descend down the steep side slope of the cover and will allow the runoff water collected by the benches to move off of the landfill cover without creating erosion gullies.)
1.	Settlement
2.	Material Degradation
3.	Erosion
	National State of the Control of the

4.	Undercutting
5.	Obstructions Type
6.	Excessive Vegetative Growth  No evidence of excessive growth  Vegetation in channels does not obstruct flow  Location shown on site map  Remarks
D. Cov	ver Penetrations Applicable
1.	Gas Vents Properly secured/locked A Functioning   Routinely sampled Good condition   Evidence of leakage at penetration   Needs Maintenance   N/A   Remarks   Norted Overterly
2.	Gas Monitoring Probes Properly secured/locked Functioning   Routinely sampled Good condition   Evidence of leakage at penetration   Needs Maintenance   N/A   Remarks   Replaced in Agree 2014
3.	Monitoring Wells (within surface area of landfill)  □ Properly secured/locked □ Functioning □ Routinely sampled □ Good condition □ Evidence of leakage at penetration □ Needs Maintenance ▼N/A  Remarks
4.	Leachate Extraction Wells  ☐ Properly secured/locked ☐ Functioning ☐ Routinely sampled ☐ Good condition ☐ Evidence of leakage at penetration ☐ Needs Maintenance N/A  Remarks
5.	Settlement Monuments

Е.	Gas Collection and Treatment	Applicable	□ N/A	the state of the state of
1.	_ 5 _	nermal destruction eeds Maintenance	□ Collection for a	reuse
2.	Gas Collection Wells, Manifol  ☐ Good condition ☐ No  Remarks	ds and Piping eeds Maintenance	Type of the party of	
3.	Gas Monitoring Facilities (e.g	, gas monitoring of eeds Maintenance		ouildings)
F. (	Cover Drainage Layer	Applicable	□ N/A	
1.	Outlet Pipes Inspected Remarks	Functioning	g □ N/A	macoult of
2.	Outlet Rock Inspected Remarks	Functioning	g □ N/A	optopali - T
G.	Detention/Sedimentation Ponds	☐ Applicable	M/A	- and the y
1.	Siltation Areal extent  ☐ Siltation not evident  Remarks	Dept	h	□ N/A
2.	Erosion Areal extent_  □ Erosion not evident  Remarks_	mic stg*e= i	Depth	Tanicatking the
3.	Outlet Works	nctioning \( \square\)	A	seconds and perfect
4.	<b>Dam</b> □ Ft Remarks_	nctioning D/	'A	

H. Re	taining Walls	Applicable	□ N/A		
1.	Deformations Horizontal displacement Rotational displacement Remarks		vn on site map Vertical displac		
2.	<b>Degradation</b> Remarks	☐ Location show	vn on site map	Degradation not evident	_
I. Per	imeter Ditches/Off-Site D	ischarge	Applicable	□ N/A	
1.	Siltation	ation shown on site Depth_	e map 👿 Siltation	n not evident	
2.	Vegetative Growth  Vegetation does not in  Areal extent  Remarks	npede flow		□ N/A	E - 4
3.	Erosion Areal extent Remarks	☐ Location show Depth_	vn on site map	Erosion not evident	
4.	Discharge Structure Remarks	Functioning	□ N/A		
	VIII. VEI	RTICAL BARRII	ER WALLS	Applicable □ N/A	
1.	Settlement Areal extent Remarks	☐ Location show Depth_	vn on site map	☐ Settlement not evident	
2.	Performance Monitorin  ☐ Performance not monitoring Frequency Head differential Remarks		□ Evid	ence of breaching	
	IX. GROUNDWAT	TER/SURFACE V	VATER REME	DIES ☐ Applicable	
A. Gı	roundwater Extraction W	ells, Pumps, and I	Pipelines	☐ Applicable ☐ N/A	

1.	Pumps, Wellhead Plumbing, and Electrical  ☐ Good condition ☐ All required wells properly operating ☐ Needs Maintenance ☐ N/A  Remarks
2.	Extraction System Pipelines, Valves, Valve Boxes, and Other Appurtenances  Good condition Needs Maintenance Remarks
3.	Spare Parts and Equipment  ☐ Readily available ☐ Good condition ☐ Requires upgrade ☐ Needs to be provided  Remarks_
В.	Surface Water Collection Structures, Pumps, and Pipelines
1.	Collection Structures, Pumps, and Electrical  Good condition  Needs Maintenance Remarks
2.	Surface Water Collection System Pipelines, Valves, Valve Boxes, and Other Appurtenances  Good condition  Needs Maintenance Remarks
3.	Spare Parts and Equipment  ☐ Readily available ☐ Good condition ☐ Requires upgrade ☐ Needs to be provided  Remarks
C.	Treatment System □ Applicable □ N/A
1.	Treatment Train (Check components that apply)    Metals removal
	□ Sampling ports properly marked and functional □ Sampling/maintenance log displayed and up to date □ Equipment properly identified □ Quantity of groundwater treated annually □ Quantity of surface water treated annually Remarks
2.	Electrical Enclosures and Panels (properly rated and functional)  □ N/A □ Good condition □ Needs Maintenance  Remarks

3.	Tanks, Vaults, Storage Vessels  □ N/A □ Good condition □ Proper secondary containment □ Needs Maintenance  Remarks
4.	Discharge Structure and Appurtenances  □ N/A □ Good condition □ Needs Maintenance  Remarks
5.	Treatment Building(s)  □ N/A □ Good condition (esp. roof and doorways) □ Chemicals and equipment properly stored  Remarks
6.	Monitoring Wells (pump and treatment remedy)  □ Properly secured/locked □ Functioning □ Routinely sampled □ Good condition  □ All required wells located □ Needs Maintenance □ N/A  Remarks
D. Mo	nitoring Data
1.	Monitoring Data  Is routinely submitted on time  If is of acceptable quality
2.	Monitoring data suggests:  ☐ Contaminant concentrations are declining
E. Mo	onitored Natural Attenuation
1,	Monitoring Wells (natural attenuation remedy)  Properly secured/locked Survey Functioning Routinely sampled Good condition  All required wells located Needs Maintenance N/A  Remarks Nw-7 13 3564 No14
	X. OTHER REMEDIES
	If there are remedies applied at the site which are not covered above, attach an inspection sheet describing the physical nature and condition of any facility associated with the remedy. An example would be soil vapor extraction.
	XI. OVERALL OBSERVATIONS
A.	Implementation of the Remedy

Parel I			
Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.			
13			

	Describe issues and observations relating to whether the remedy is effective and functioning as designed. Begin with a brief statement of what the remedy is to accomplish (i.e., to contain contaminant plume, minimize infiltration and gas emission, etc.).
	So-tace-Wolf- Diversion - Functioning as Designed  Fas Vent Stations - Working proporty  Permity Pretenting as designed  No Issues operand
В.	Adequacy of O&M
	Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy.  No TSSNS Observations and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy.
C.	Early Indicators of Potential Remedy Problems
	Describe issues and observations such as unexpected changes in the cost or scope of O&M or a high frequency of unscheduled repairs that suggest that the protectiveness of the remedy may be compromised in the future.
	None doserted

AECOM Environment

# **Appendix C**

AECOM Biennial Groundwater Monitoring Report (October 2014) Prepared for: SUPERFUND STANDBY PROGRAM NYSDEC 625 Broadway Albany, New York 12233

Prepared by: AECOM Latham, New York February 2015

Biennial Groundwater Monitoring Report October 2014 Tuxedo Waste Disposal Site Site No. 3-36-035 Work Assignment No. D007626-36



Prepared for: SUPERFUND STANDBY PROGRAM NYSDEC 625 Broadway Albany, New York 12233

Prepared by: AECOM Latham, New York February 2015

Biennial Groundwater Monitoring Report October 2014 Tuxedo Waste Disposal Site Site No. 3-36-035 Work Assignment No. D007626-36

Prepared By: Matthew Dean, Geologist

Reviewed By: Mark Howard, Project Manager

### **Contents**

1.0	Introduction		1-1
	1.1	Site Description	1-1
2.0	Samp	oling	2-1
	2.1	Sample Locations and Field Observations	2-1
	2.2	Groundwater Sampling Methodology	2-1
	2.3	Analytical Results	2-1
	2.4	Historical Analytical Results	2-2
3.0	Sumr	mary of Analytical Results	3-1
	3.1	Unfiltered Metals Samples	3-1
	3.2	Filtered Metals Samples	3-2
	3.3	Surface Water and Sediment Samples	3-3
4.0	Conc	lusions	4-1
5.0	Dlann	and Activities and Pacammandations	5-1

AECOM Environment ji

# **List of Appendices**

Appendix A Monitoring Well Sampling Observation Logs

Appendix B Laboratory Report

AECOM Environment iii

### **List of Tables**

Table 1	Depth-to-Groundwater Measurements and Groundwater Elevations (October 2014)
Table 2	Groundwater Analytical Results – TAL Metals and Mercury (2005 to 2014)
Table 3	Groundwater Analytical Results – TAL Metals and Mercury (2000 to 2001)
Table 4	Unfiltered vs. Filtered TAL Metals and Mercury (October 2014)
Table 5	Surface Water and Sediment Analysis (October 2014)
Table 6	Summary of Groundwater Analytical Results and Exceedances (October 2014)

## **List of Figures**

Figure 1 Site Location Map

Figure 2 Site Plan and Monitoring Locations

Figure 3 Groundwater Monitoring Results (October 2014)

AECOM Environment ES-1

### **Executive Summary**

The Tuxedo Waste Disposal Site is located in the Town of Tuxedo, Orange County, New York. The Site is approximately 12 acres in size and is located in a rural area approximately one mile north of the Village of Tuxedo Park, between State Route 17 and the New York State Thruway.

The Site was added to the New York State Department of Environmental Conservation Registry of Inactive Hazardous Waste Disposal Sites as a Class 2a site (Site No. 3-36-035) following the discovery of nonexempt waste at an active construction and demolition debris landfill in 1987. The presence of nonexempt waste was in violation of the standards and regulations in place at that time. The Site was reclassified to Class 4 following the completion of the remedial investigation and feasibility study in 1991. A Record of Decision was issued in February 1992 for impacted soil, refuse, groundwater, landfill gas, and surface water and sediment within the Ramapo River.

Due to the nature of the landfill and contamination of soil, bedrock, and the underlying bedrock aquifers with Target Analyte List metals and mercury, the selected remedies in the Record of Decision consisted of: excavation of refuse with consolidation and reclamation of soil; an engineered final cover; a passive gas collection and treatment system; a surface water diversion system; site restrictions to protect the integrity of the final cover; and groundwater, surface water, sediment, and air emissions monitoring.

Based on AECOM's review, the concentration of Target Analyte List metals and mercury reported in the samples collected from the Tuxedo Waste Disposal Site during the October 2014 biennial sampling event remained consistent with historical (October 2000 to October 2001) and recent (May 2005 to October 2011) data. The filtered groundwater samples indicate several of the metals detected in the samples are not present in a dissolved phase in the groundwater at the Site, but rather can be attributed to suspended matter (e.g., soil particles) recovered in the groundwater samples with high turbidity (i.e., greater than 50 NTU).

All available data indicate that the selected remedies established in the 1992 Record of Decision to design and install an engineered, final cover and to design and construct a surface water diversion system to reduce surface run-on, infiltration, and subsequent generation of leachate continue to be protective of human health and the environment (including the Ramapo River) by containing more harmful metals.

Groundwater will continue to be monitored on a biennial basis to document the concentration of TAL metals and mercury in the groundwater at the Site in accordance with the final Site Management Plan issued in December 2014. The next groundwater sampling event will be completed in 2016.

Prior to the next scheduled sampling event (2016), the obstruction in MW-7 should be addressed. All attempts should be made to remove the obstruction from within the riser and rehabilitate the existing monitoring well. If MW-7 cannot be rehabilitated, the groundwater monitoring well should be properly decommissioned and a new monitoring well should be installed.

AECOM Environment 1_-1

#### 1.0 Introduction

In accordance with the July 2011 draft Site Management Plan (SMP; since finalized in December 2014), developed for the Tuxedo Waste Disposal Site (the "Site"), and per New York State Department of Environmental Conservation (NYSDEC) instruction, AECOM conducted a biennial groundwater sampling event under NYSDEC Work Assignment No. D007626-36 at the Site. This report describes and presents the results of the groundwater sampling event and the additional surface water and sediment sampling of the Ramapo River conducted on October 7 – 8, 2014. As part of the evaluation process for the Site, available historical data provided by the NYSDEC is presented and compared to the most recent data.

#### 1.1 Site Description

The Site is a former waste disposal facility located in the Town of Tuxedo, Orange County, New York (**Figure 1**). The Site consists of approximately 12 acres along State Route 17, in a rural area approximately one mile north of the Village of Tuxedo Park. The Site is located between State Route 17 (to the west) and an active rail line currently owned by the Metro-North Railroad to the east (**Figure 2**). The NYS Thruway (I-87) is located approximately 250 feet to the east of the rail line. The Site lies on two separate parcels of land with separate landowners. A majority of the Site is situated on a portion of a 12.2-acre parcel owned jointly by Renard Barone and Sarkis Khourouzian. The remainder is located on a portion of a 7.9-acre parcel formerly owned by the Georgia Tech Foundation (the property was sold to Ronald lazzetti in 1994).

The Site is located in the Ramapo River Valley. The Ramapo River Valley is described as having steep grades with abrupt elevation changes (seen to the west of the Site), where the land rises approximately 300 feet along the Ramapo River Valley wall (NYSDEC ROD, 1992). The Ramapo River, located between the rail line and the NYS Thruway, is a Class A stream and a hydraulic connection has been determined to exist between the Site and the river. However, surface water and sediment samples collected from the river during the remedial investigation indicate that dumping activities had no measurable impact on the river at that time.

The Tuxedo Waste Disposal Site is a gentle hillside at the base of a steeply graded slope with dense tree cover. State Route 17 separates the steep slope from the Site. The north-northeast portions of the Site are a gently sloping hillside with bedrock outcrops, which transitions into a steep slope to the rail line. The cap of the landfill has a moderate grade and is covered with tall grasses.

Previous investigation of the Site states that before the remedial actions were implemented, the depth to bedrock ranged from 0 to approximately 70 feet below ground surface (bgs), with bedrock deepest and fill material thickest at the center of the Site (Metcalf & Eddy, 1991). Bedrock outcrops in the northern and eastern portions of the Site, located just west of the rail line, dip to the southwest.

The unconsolidated materials are highly variable in thickness and are comprised of construction and demolition (C&D) debris, recent alluvial deposits, outwash sand and gravel, and glacial till (Metcalf & Eddy, 1991).

Groundwater depth beneath the Site ranges from approximately 8 to 40 feet bgs. Groundwater flow occurs within two separate water-bearing units: unconsolidated soil and weathered bedrock; and unweathered, competent bedrock. Permeability studies from the Phase II Investigation and results from the Remedial Investigation/Feasibility Study (RI/FS) show connectivity between the two water-

AECOM Environment 1-2

bearing units, resulting in one aquifer system. According to the RI/FS Report and the Record of Decision (ROD), the natural direction of groundwater flow from the upper unconsolidated water-bearing unit is generally from the relatively high elevations west of the Site to the east, toward the Ramapo River. Groundwater flow direction in the competent bedrock is less defined due to natural irregularities in the bedrock (e.g., joints, fractures, and discontinuities). The water table at the perimeter of the Site is relatively shallow and is present in the unconsolidated soil layer.

The Site was added to the NYSDEC Registry of Inactive Hazardous Waste Disposal Sites as a Class 2a site (Site No. 3-36-035) following the discovery of nonexempt waste at an active C&D debris landfill in 1987. The presence of nonexempt waste was in violation of the standards and regulations in place at that time. The RI/FS report was completed and submitted to the NYSDEC in 1989, and the Site was reclassified to Class 4. The ROD for this site was issued in February of 1992.

The selected remedy for the Site included 1) excavation of fill from the southeast corner of the Site and the reclamation of this area, 2) design and installation of a cover on the landfill, including a gas collection layer, 3) installation of a passive gas collection and treatment system, 4) installation of a surface water diversion system, 5) implementation of site-use restrictions to protect the integrity of the remedy and 6) environmental monitoring to determine the effectiveness of the remedy.

An operation and maintenance (O&M) program was initiated in December 1996 and amended in January 1998. Presently, the Site is a capped landfill that utilizes wind turbine ventilators at selected locations to actively vent landfill gas under breezy conditions. In addition, monitoring for combustible gas and hydrogen sulfide is performed at the gas vents distributed across the landfill cap. Previous groundwater sampling events were performed in May 2005, November 2005, August 2007, June 2009, and October 2011 to monitor the impacts of the landfill on the underlying aguifer.

AECOM Environment 2-1

### 2.0 Sampling

#### 2.1 Sample Locations and Field Observations

Groundwater monitoring, which includes measuring and recording depth-to-groundwater, total well depth, and water quality parameters, is conducted on a biennial basis for twelve on-site wells. Depth-to-groundwater measurements are then utilized to calculate groundwater elevations in each of the wells (**Table 1**). During the October 2014 sampling event, the riser in MW-7 was obstructed and therefore, only eleven wells were sampled along with two surface water and sediment samples from the Ramapo River. The overall conditions of all other wells were acceptable. The obstruction in MW-7 should be addressed before the next sampling event.

Due to the presence of the waste material prior to well installation, groundwater contour maps for the aquifer beneath the Site could not be developed. The composition and construction of the waste material and the landfill prohibits the natural flow of groundwater beneath and surrounding the Site. According to the Phase II investigation and RI/FS, the overall direction of groundwater flow in the unconsolidated aquifer beneath the Site and the surrounding area is predominantly to the east toward the Ramapo River, and the overall flow direction in the unweathered bedrock is controlled by joints, fractures, and discontinuities in the bedrock.

#### 2.2 Groundwater Sampling Methodology

Prior to sampling each well, depth-to-groundwater and depth-to-bottom measurements are taken using a water level indicator. The indicator is decontaminated with a Liquinox® and spring water rinse and sprayed with distilled water before each use. Each monitoring well is purged of three water column volumes prior to sampling. Dependent on the purge volume, dedicated, polyethylene tubing and a submersible pump (e.g., Grundfos™) or a dedicated, polyethylene bailer is utilized. The pump is decontaminated between each monitoring well in a Liquinox® and spring water bath and then in a distilled water bath.

Water quality parameters, which include temperature, conductivity, specific conductivity, dissolved oxygen (DO), oxygen-reduction potential (ORP), pH, turbidity, color, and odor, are measured and recorded on the monitoring well sampling observation logs (**Appendix A**). A total of four sets of parameters are measured and recorded; one for the initial discharge removed from the well and one for each of the subsequent three water column volumes removed prior to sampling.

Each sample recording a turbidity measurement less than 50 nephelometric turbidity units (NTU) is analyzed for Target Analyte List (TAL) metals by United States Environmental Protection Agency (US EPA) Method 6010 and mercury by US EPA Method 7470. Samples recording a turbidity measurement greater than 50 NTU are filtered by the laboratory and analyzed for dissolved metals as well.

All samples are collected in laboratory supplied bottles and shipped to Mitkem Laboratories of Warwick, Rhode Island. Samples are packed in a cooler on ice and submitted under standard chain-of-custody procedure.

#### 2.3 Analytical Results

A cumulative summary of the analytical data collected by AECOM to date, including the October 2014

AECOM Environment 2-2

sampling event, is presented as **Table 2** and compared to the New York State Ambient Water Quality Standards (AWQS) and Guidance Values (GV) for groundwater as a drinking water source. Analytes detected and reported above the applicable AWQS or GV are presented in bold font in a shaded cell. A copy of the analytical results and chains-of-custody are included as **Appendix B**.

#### 2.4 Historical Analytical Results

Historical data made available to AECOM by the NYSDEC are presented in **Table 3**. The available historical data for the Site included groundwater sampling events in October 2000 and May, August and October 2001. No other data for the Site were made available to AECOM at this time.

AECOM Environment 3-1

### 3.0 Summary of Analytical Results

Present and available historical data (**Tables 2** and **3**) were reviewed to determine if there are any notable trends in the concentrations of metals in the on-site monitoring wells. Previous investigations indicate that the primary contaminants of concern for this Site are aluminum, arsenic, cadmium, chromium, copper, iron, lead, magnesium, manganese, mercury, nickel, selenium, silver, sodium, and zinc. **Figure 3** displays a summary of the results of the October 2014 sampling event.

#### 3.1 Unfiltered Metals Samples

During the October 2014 sampling event, MW-7 was not sampled due to an obstruction in the riser. The overall conditions of all other wells were acceptable.

Analytical results from the October 2014 sampling event reported several detections of TAL metals in the sample collected from MW-1. Two analytes (iron and sodium) exceeded the AWQS with concentrations reported to be 889 micrograms per liter ( $\mu$ g/l) and 40,600  $\mu$ g/l, respectively. The AWQS for iron and sodium are 300  $\mu$ g/l and 20,000  $\mu$ g/l, respectively. The results of the October 2014 sampling event are consistent with the historical data (October 2000 to October 2001) and the more recent results (May 2005 to October 2011).

The results of the sample collected from monitoring well MW-2, a bedrock well located at the southern end of the Site, reported relatively low concentrations of metals. Only iron was reported at a concentration (671  $\mu$ g/l) exceeding the AWQS, which is a decrease from the October 2011 concentration of 1,780  $\mu$ g/l.

The October 2014 results for the sample collected from monitoring well MW-3 reported iron and sodium in excess of the AWQS with concentrations reported to be 4,180  $\mu$ g/l and 379,000  $\mu$ g/l, respectively. These results are an increase from the October 2011 analytical results and the historical data.

Four metals (iron, manganese, sodium, and thallium) were reported to exceed the AWQS in the sample collected from MW-4 with concentrations reported to be 4,980  $\mu$ g/l, 1,310  $\mu$ g/l, 39,900  $\mu$ g/l, and 6.2  $\mu$ g/l, respectively. Recent and historical data from samples collected from MW-4 indicate sodium is consistently detected at concentrations exceeding the AWQS, including the results of the October 2011 sampling event. In October 2011, the sample collected from MW-4 reported an iron concentration of 218  $\mu$ g/l, which was not in excess of the AWQS. In all available data, this is the first time thallium was detected in a sample collected from MW-4 at a concentration greater than the GV (0.5  $\mu$ g/l) and the first time since 2001 for manganese. The AWQS for manganese is 300  $\mu$ g/l.

The sample collected from monitoring well MW-5 contained two analytes (iron and manganese) that were reported in excess of the respective AWQS, which were 16,600  $\mu$ g/l and 5,400  $\mu$ g/l, respectively. Iron, manganese (AWQS of 300  $\mu$ g/l), and sodium have been historically detected at concentrations in excess of the AWQS, but in more recent data only iron and manganese have been detected at concentrations exceeding the AWQS.

Only two metals (iron and manganese) exceeded the AWQS in the sample collected from MW-6 during the October 2014 sampling event with reported concentrations of  $36,000~\mu g/l$  and  $2,200~\mu g/l$ , respectively. The results of the October 2014 sampling event are consistent with past sampling results.

AECOM Environment 3-2

The October 2014 sampling results from monitoring well RI-1 reported iron and sodium at concentrations (1,360  $\mu$ g/l and 22,300  $\mu$ g/l, respectively) in excess of the AWQS. These results are consistent with the results of the October 2011 groundwater sampling event, when iron and sodium were reported to 855  $\mu$ g/l and 27,500  $\mu$ g/l, respectively.

At monitoring well RI-2, the analytical results of this sampling event (October 2014) reported only one metal in excess of the AWQS. Sodium was reported to be 51,600  $\mu$ g/l, which is an increase from 41,400  $\mu$ g/l reported in October 2011.

The results of the sample collected from RI-3 in October 2014 reported exceedances of ten metals, including arsenic, beryllium, chromium, copper, iron, lead, magnesium, manganese, nickel, and sodium. These results are consistent with the results of the October 2011 groundwater sampling event with the addition of arsenic, copper, and magnesium, which were all detected at a concentration less than AWQS and GV.

The results of the sample collected from monitoring well RI-4 are consistent with the October 2011 results with iron and manganese reported to exceed the AWQS with concentrations at 4,060  $\mu$ g/l and 580  $\mu$ g/l, respectively. These results are consistent with historical and recent data, except in two previous sampling events. In October 2001, sodium was reported at a concentration exceeding AWQS and in November 2005, magnesium and sodium were reported at concentrations exceeding the GV for magnesium (35,000  $\mu$ g/l) and the AWQS for sodium.

The groundwater sample collected from monitoring well RI-5A reported two metals (iron and sodium) at concentrations that exceed the AWQS, which were reported to be 173  $\mu$ g/l and 17,000  $\mu$ g/l, respectively. During the October 2011 sampling event, RI-5A reported similar results with iron and sodium reported to 339  $\mu$ g/l and 25,700  $\mu$ g/l, respectively.

Overall, TAL metals and mercury concentrations in the Site wells remain consistent with historical data, with few notable trends.

#### 3.2 Filtered Metals Samples

Turbidity is typically correlated with the presence of suspended matter (e.g., entrained soil particles in the sample). Therefore, both total metals (unfiltered) and dissolved metals (laboratory filtered) groundwater samples were collected during the October 2014 sampling event to evaluate the effect of turbidity on the metals concentrations. At the Site, turbidity was greater than 50 NTU at the time of sampling in three (MW-6, RI-1, and RI-3) of the 11 samples.

**Table 4** presents a comparison of the total metals and the dissolved metals data for the three filtered/ unfiltered sample pairs collected in October 2014. The "percent dissolved" shown in the table is the ratio of the filtered sample concentration to the total (unfiltered) sample concentration.

Concentrations of metals that typically exist primarily in the dissolved phase (e.g., sodium, potassium, and calcium) were generally similar in the filtered and unfiltered samples, regardless of the sample turbidity. The remaining metals showed consistently large decreases in the filtered samples, including iron and manganese.

While iron remained at a concentration greater than the AWQS (300  $\mu$ g/l) in two the three filter samples (MW-6 and RI-3), the concentrations reduced significantly and the percent of dissolved iron was less than 10%. This indicates the iron was adhering to the suspended particles rather than present in a dissolved phase in the groundwater.

Manganese was detected in two of the three samples at concentrations exceeding AWQS (300  $\mu$ g/l) in the unfiltered samples and decreased in the filtered samples as well. In monitoring well RI-3, manganese decreased from 7,120  $\mu$ g/l to 329  $\mu$ g/l with 4.6% present in a dissolved phase, indicating

AECOM Environment 3-3

manganese was adhering to the suspended particles rather than dissolved in the groundwater in this area of the Site. However, in the filtered sample collected from MW-6, manganese only decreased from 2.200  $\mu$ g/l to 1,940  $\mu$ g/l with 88.2% present in the dissolved phase, indicating manganese is not only adhering to the suspended particles and is present in the groundwater in this area of the Site.

The most significant decrease in metals concentrations between an unfiltered and filtered sample was evident in the samples collected from RI-3. Six metals (beryllium, chromium, iron, lead, manganese, and sodium) were reported at concentrations exceeding the GV and AWQS in the unfiltered sample collected from this well. Only three metals (iron, manganese, and sodium) were reported to exceed the AWQS in the results of the filtered sample. The percentage of dissolved iron and manganese calculated between the unfiltered and filtered sample was 1.9% and 4.6%, respectively, indicating these metals are not present in the dissolved phase.

The other three metals (beryllium, chromium, and lead) reduced significantly and the percentage of metals in the dissolved phase indicate these metals were adhering to the suspended particles and are not present in the groundwater in these areas of the Site at concentrations in excess of the water quality standards.

#### 3.3 Surface Water and Sediment Samples

During the October 2014 sampling event, two surface water and two sediment samples were collected from the Ramapo River. These samples were analyzed for volatile organic compounds (VOCs), semi-VOCs (SVOCs), pesticides, polychlorinated biphenyls (PCBs), and metals (**Table 5**).

The upstream surface water sample (USSW) only contained sodium at a level greater than all standards, criteria and guidances (SCGs) with a concentration of 138,000  $\mu$ g/L. The AWQS for sodium is 20,000  $\mu$ g/l. In the downstream surface water sample (DSSW), only sodium was detected at a concentration exceeding SCGs as well, with a concentration reported to be 13,000  $\mu$ g/L.

The upstream surface sediment sample (USSED) contained seven analytes at concentrations exceeding SCGs, six of which were pesticides. 4,4' DDE, endrin, 4,4' DDD, 4,4' DDT, alphachlordane, and gamma-Chlordane were reported to be 6.3 micrograms per kilogram ( $\mu$ g/kg), 5.3  $\mu$ g/kg, 9.2  $\mu$ g/kg, 21  $\mu$ g/kg, 12  $\mu$ g/kg, and 19  $\mu$ g/kg, respectively. The other analyte to be detected at a concentration greater than the sediment criteria in USSED was mercury with a concentration of 0.24  $\mu$ g/kg. The sediment criterion for mercury is 0.15  $\mu$ g/kg. The downstream surface sediment sample (DSSED) reported two analytes above the sediment criteria, copper (34.4  $\mu$ g/kg) and mercury (0.4  $\mu$ g/kg). The sediment criterion for copper is 0.32  $\mu$ g/kg.

AECOM Environment 4-1

#### 4.0 Conclusions

This report presents the activities completed by AECOM on behalf of the NYSDEC under Work Assignment No. D007626-36 at the Tuxedo Waste Disposal Site in Tuxedo, New York during the 2014 biennial groundwater sampling event, and the additional surface water and sediment sampling of the Ramapo River.

#### 4.1 Groundwater

As demonstrated in a summary of the October 2014 groundwater sampling event results (**Table 6**), the metals detected at concentrations greater than SCGs most frequently were: iron (ten wells), sodium (seven wells), and manganese (five wells). The metal with the maximum concentration detected most frequently was sodium (six wells). Magnesium was detected at a maximum concentration in three wells, however, these concentrations were not greater than the GV (35,000  $\mu$ g/l).

Additionally, the filtered groundwater samples collected during October 2011 and October 2014 sampling events indicate several of the metals detected in the samples are not present in a dissolved phase in the groundwater at the Site, but rather can be attributed to suspended matter (e.g., soil particles) recovered in the groundwater samples with high turbidity (i.e., greater than 50 NTU).

Overall, the concentration of TAL metals and mercury reported in the groundwater samples collected in October 2014 from the Site remained consistent with historical (October 2000 to October 2001) and recent (May 2005 to October 2014) data.

#### 4.2 Surface Water and Sediment Sampling

The concentration of analytes reported in the surface water samples indicate that the selected remedies established in the 1992 ROD to design and install an engineered, final cover and to design and construct a surface water diversion system to reduce surface run-on, infiltration, and subsequent generation of leachate continue to be protective of human health and the environment (including the Ramapo River) by containing more harmful metals.

However, according to the NYSDEC 2014 screening criteria, the elevated concentrations of pesticides and mercury in the upstream sediment sample and the elevated concentrations of mercury and copper in the downstream sample constitute a Class B categorization for these sediment samples. Class B sediments are defined as being slightly to moderately contaminated and additional testing is required to evaluate the potential risks to aquatic life. It should be noted that pesticides were not detected at any concentration greater than the method detection limits in the downstream sample and mercury was not detected above AWQS in any of the monitoring wells during the 2014 groundwater sampling event. Therefore, the Site is not considered to be the source of the elevated concentrations of mercury or pesticides detected in the sediment samples collected from the Ramapo River.

AECOM Environment 5-1

#### 5.0 Planned Activities and Recommendations

Groundwater will continue to be monitored on a biennial basis to document the concentration of TAL metals and mercury in the groundwater at the Site in accordance with the final SMP (AECOM, 2014). The next groundwater sampling event will be completed in 2016.

Due to the nature of the Site (capped landfill), its current status (post-remedial), and the fact that the Class B sediments observed in the Ramapo River are not associated with the Site, no additional testing, including toxicity or benthic, is recommended at this time.

Additionally, prior to the next scheduled sampling event (2016), the obstruction in MW-7 should be addressed. All attempts should be made to remove the obstruction from within the riser and rehabilitate the existing monitoring well. If MW-7 cannot be rehabilitated, the groundwater monitoring well should be properly decommissioned and a new monitoring well should be installed.

DRAFT - 2014 GW Report.docx December 2014

AECOM Environment

## **Tables**

# Table 1 Depth-to-Groundwater Measurements and Groundwater Elevations (October 2014)

## Tuxedo Waste Disposal Site Site No. 3-36-035 Tuxedo, Orange County, New York

Well	Well Cod	ordinates	Well	<del>-</del>	Measuring	Well Depth	October	6, 2014
ID	Longitude	Latitude	Construction	Well Type	Point Elevation (ft.)	(ft. bgs)	Depth to Water (ft. bgs)	GW Elevation (ft.)
MW-1	41º12.822N	074°11.043W	4" Steel Surface Casing 2" PVC Riser and Screen	Overburden	468.40	29.83	20.37	448.03
MW-2	41º12.535N	074º11.106W	4" Steel Surface Casing 2" PVC Riser and Screen	Bedrock	480.06	89.65	27.41	452.65
MW-3	41º12.571N	074°10.990W	6" Steel Cutter Casing 3" PVC Riser	Bedrock	459.00	30.11	17.32	441.68
MW-4	41°12.599N	074°10.984W	4" Steel Surface Casing 2" PVC Riser and Screen	Overburden	460.07	26.14	18.89	441.18
MW-5	41°12.706N	074°10.968W	4" Steel Surface Casing 2" PVC Riser and Screen	Overburden	448.81	19.40	10.55	438.26
MW-6	41°12.729N	074º10.977W	4" Steel Surface Casing 2" PVC Riser and Screen	Overburden	456.83	18.39	9.36	447.47
MW-7	41°12.820N	074º11.026W	4" Steel Surface Casing 2" PVC Riser and Screen	Overburden	466.93	NM	NM	NA
RI-1	41°12.707N	074°10.971W	8" Steel Cutter Casing 2" Steel Riser	Bedrock	459.48	93.36	12.53	446.95
RI-2	41°12.728N	074°10.976W	6" Steel Surface Casing 4" Steel Riser and Screen	Interface	458.02	72.63	10.59	447.43
RI-3	41º12.568N	074°11.092W	6" PVC Surface Casing 2" PVC Riser and Screen	Interface	479.79	44.65	38.13	441.66
RI-4	41°12.777N	074°10.997W	4" Steel Surface Casing 2" PVC Riser and Screen	Overburden	463.45	15.65	15.32	448.13
RI-5A	41°12.746N	074º11.038W	4" Steel Surface Casing 2" PVC Riser and Screen	Bedrock	495.70	82.65	41.38	454.32

## Notes:

Measuring Point Elevation is at top of PVC casing

NA - Not Available

NM - Not Measured; MW-7 is obstructed

bgs - below ground surface

GW - groundwater

## Table 2 **Groundwater Analytical Results -TAL Metals and Mercury** (2005 to 2014)

**Tuxedo Waste Disposal Site** Site No. 3-36-035 **Tuxedo, Orange County, New York** 

Monitoring We	ell ID			M\	W-1					M	W-2					MV	V-3					M\	W-4		
Sample Dat	te	5/3/2005	11/1/2005	8/7/2007	6/30/2009	10/11/2011	10/7/2014	5/3/2005	11/1/2005	8/7/2007	6/30/2009	10/11/2011	10/8/2014	5/3/2005	11/2/2005	8/6/2007	6/30/2009	10/11/2011	10/8/2014	5/3/2005	11/2/2005	8/6/2007	6/30/2009	10/11/2011	10/8/2014
Analyte (μg/L)	AWQS or GV																								
Aluminum	NA	130J	114J	U	NS	261	337	444	304	U	1060N*	1,330	505	11,400	4,180	178	561N*	179B	2,690	63.4J	73.7J	U	60.3N*	U	3,090
Antimony	3	8.74J	U	U	NS	U	U	5.5J	U	U	U	U	U	U	U	U	U	U	U	9.19J	U	U	U	U	U
Arsenic	25	U	U	U	NS	U	U	U	U	U	U	U	6.3B	U	U	U	U	U	U	U	U	U	U	U	U
Barium	1,000	4.85JN	U	U	NS	3.5B	9.4B	9.96JN	4.4J	U	18.7J	19.4B	15.0B	78.3JN	28.9J	13.8 J	17.3 J	10.2B	103B	17.1JN	11.7J	10.1 J	21.1 J	12.6B	48.4B
Beryllium	3 (GV)	U	U	U	NS	U	U	U	U	U	U	U	U	0.58J	0.2J	U	U	U	U	U	U	U	U	U	U
Cadmium	5	U	U	U	NS	1.5B	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Calcium	NA	26,600	14,400	12,600	NS	5,580	9,290	19,700	19,800	25,100	23,100	22,400	23,300	18,000	12,100	39,100	19,300	12,600	95,000	45,000	35,700	38,400	45,600	28,100	55,100
Chromium	50	1.16JN	U	1.7 J	NS	1.6B	3.3B	1.02JN	U	U	3.65 J	3.8B	1.8B	13N	6.2J	1.5 J	1.92 J	0.73B	3.4B	0.343UN	0.79J	1.8 J	2.4 J	U	3.9B
Cobalt	NA	U	U	2.3 J	NS	U	1.4B	0.625J	U	U	U	1.8B	1.3B	14.3J	1.8J	2.1 J	U	U	3.3B	U	U	2.2 J	U	U	5.2B
Copper	200	14.9J	U	U	NS	13.7B	5.8B	9.22J	U	U	7.71J	4.8B	U	43.1	55.5	U	36.1	3.6B	8.6B	U	U	U	8 J	U	15.3B
Iron	300	635N	116	46.7 J	NS	962	889	809N	454	U	1,570N*	1,780	671	21,700N	8,350	221	1,110N*	471	4,180	150N	U	U	647N*	218	4,980
Lead	25	U	U	U	NS	U	U	U	15.2	U	U	U	4.2	U	4.5J	U	U	U	U	U	U	U	U	U	U
Magnesium	35,000 (GV)	6,310	3,450J	2,870	NS	1,300	2,160	5,010	4,730J	6,340	6,170	6,470	6,410	9,320	4,280	9,430	4,610	3,150	22,900	10,600	8,660	9,310	9,400	6,370	13,300
Manganese	300	17.6	4.5J	1.8 J	NS	31.7B	50.4	37.8	7.3J	U	38.6	24.9B	24.1B	958	319	19.3	46.5	13.6B	271	55.2	1.1J	3.1 J	15.2	13.0B	1,310
Mercury	0.7	U	0.077J	U	NS	U	U	U	U	U	0.07UN	U	U	0.04J	U	U	0.07UN	0.031B	U	U	U	U	0.07UN	U	0.062B
Nickel	100	U	U	U	NS	1.2B	2.4B	U	U	U	U	2.1B	U	22J	8.0J	U	U	U	5.5B	U	U	U	U	U	6.1B
Potassium	NA	2,420J	1,090JN	589 J	NS	573B	493B	960J	935JN	1,080	1,570	1,540	1,040	2,700J	1,730JN	1,770	2,030	1,210	3,390	2,830J	2,930JN	2,140	2,270	2,380	2,880
Selenium	10	U	U	U	NS	U	U	U	26.9	5.6 J	U	U	U	0	U	U	U	U	U	U	U	U	U	U	U
Silver	50	U	07.500	0	NS	0	U	U	U	0	U 5.500M	U	U 4 000	4.32J	U 40.000	10.000	U	U	0	47.700	11.000	U	U	0 0	U
Sodium	20,000	42,900	37,500	25,900	NS	36,100	40,600	3,060J	2,910J	3,480	5,530N	4,710	4,090	35,700	18,300	46,200	68,300N	85,200	379,000	47,700	41,800	32,100	32,900N	35,900	39,900
Thallium	0.5 (GV)	U	4.5J	U	NS	4.00	U	U 5 00 1	23.5	0	5 40 1	U	0.40	00.41	U	U	U	U	0	0	U	U	U		6.2B
Vanadium	NA	4.5J	00.0	0 27	NS	1.3B	1.8B	5.28J	11.01	2.5 J	5.42 J	6.4B	2.4B	28.1J	1.9J	0	07.4	10.FD	6.0B	2.9J	45.41	0	0	4440	7.6B
Zinc	2,000 (GV)	37.2	23.6	37	NS	19.8B	15.1B	27	11.2J	33	15.7 J	12.2B	U	82.9	30.8	34.7	27.4	12.5B	12.7B	23.9	15.1J	34.4	23.8	14.1B	17.2B

All data presented in micrograms per liter (µg/L).

Metals analysis by ICP Method 6010, except mercury by USEPA Method 7470.

U - Analyte was analyzed for, but not detected.

J & B - Estimated concentration above the instrument detection limit (IDL) but less than the contract required detection limit (CRDL).

N - Spiked sample recovery not within control limits.
 Duplicate analysis is not within control limits.

** - Water quality measurements indicate turbidity greater than 50 NTU; Second column reports dissolved metals

AWQS - New York State Ambient Water Quality Standards (TOGs 1.1.1); GV - guidance value.

NA - No standard or guidance value exists for the analyte.

NS - Not sampled.

BOLD font in shaded cell - indicates exceedances of AWQS or GV.

## Table 2 **Groundwater Analytical Results -TAL Metals and Mercury** (2005 to 2014)

**Tuxedo Waste Disposal Site** Site No. 3-36-035 **Tuxedo, Orange County, New York** 

Monitoring Wel	I ID				MW-5							MW	<b>V-6</b>							RI-1			
Sample Date	)	5/2/2005	11/2/2005	8/6/2007	6/30/2009	10/11/2	2011**	10/7/2014	5/2/2005	11/2/2005	8/6/2007	6/30/2009	10/11/	2011**	10/7/2	2014**	5/2/2005	11/2/2005	8/6/2007	6/30/2009	10/11/2011	10/8/2	014**
Analyte (μg/L)	AWQS or GV																						
Aluminum	NA	520	83.3J	U	218N*	4,020	U	886	137J	79.2J	U	281N*	1,070	U	438	155B	58.3J	673	97.6	408N*	1,620	3,210	172B
Antimony	3	6.88J	U	U	U	U	U	U	6.72J	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Arsenic	25	8.94J	U	U	4.54 J	U	U	U	27.4	U	U	40.9	11.7B	U	24	U	U	U	U	U	U	U	U
Barium	1,000	98.7JN	67.7J	51.3	72.9	98.7B	64.6B	84.5B	76.5JN	39.8J	37.2 J	137	114B	47.2B	99.1B	44.4B	4.2JN	17.4J	U	14.7 J	22.0B	21.2B	16.2B
Beryllium	3 (GV)	0.18J	U	U	U	0.28B	U	U	U	U	U	U	U	U	U	U	U	0.12J	U	U	U	U	U
Cadmium	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Calcium	NA	99,200	81,100	94,300	90,500	111,000	109,000	93,300	87,900	94,300	88,900	92,700	115,000	112,000	108,000	110,000	24,800	65,500	46,500	52,300	52,800	56,400	53,200
Chromium	50	2.28JN	1.6J	7.5	2.66 J	6.2B	U	4.0B	1.16JN	1.4J	U	5.83	4.5B	U	5.7B	U	11.1N	2.6J	3.4 J	11.5	1.6B	5.0B	0.96B
Cobalt	NA	7.52J	2.5J	2.6 J	U	5.8B	U	7.7B	U	U	U	U	U	U	U	U	U	U	U	U	U	0.84B	U
Copper	200	105	11.7J	13	45.8	88.3	9.8B	65.7	17.3J	U	U	27.3	24.4B	U	31.1	7.8B	19.2J	45.3	3.8 J	19.9	5.4B	7.4B	19.1B
Iron	300	22,000N	596	35.3 J	5,460N*	15,800	U	16,600	37,300N	951	4,510	72,900N*	30,500	U	36,000	1,940	223N	408	555	440N*	855	1,360	127B
Lead	25	U	U	U	2.43 J	5.9B	U	U	U	10.7	U	U	U	U	U	U	U	4.1J	U	2.03J	U	U	U
Magnesium	35,000 (GV)	15,900	17,200	20,200	10,100	18,400	17,200	22,500	12,800	10,000	12,000	10,900	12,700	12,100	11,800	12,000	7,150	11,000	7,740	8,760	9,400	10,500	9,860
Manganese	300	1,100	1,250	1,160	256	1,350	232	5,400	1,540	510	1,350	1,350	1,700	1,270	2,200	1,940	4.22J	5.4J	1.6 J	8.4 J	31.9B	23.6B	18.3B
Mercury	0.7	0.28	U	U	0.07UN	0.23	U	U	0.04J	U	U	0.15JN	U	U	U	U	U	U	U	0.07UN	U	U	0.057B
Nickel	100	1.69J	7.5J	5.9 J	U	9.9B	3.7B	7.8B	U	U	U	U	1.9B	U	1.4B	U	5.62J	U	16.1 J	11.4J	2.6B	4.0B	0.92B
Potassium	NA	6,640	6,700N	5,460	4,510	6,890	6,360	3,500	2,630J	3,330JN	3,850	3,790	5,300	4,950	3,810	3,870	45,000	2,310JN	5,900	4,230	3,170	2,630	2,550
Selenium	10	U	U	U	U	U	U	U	U	9.0J	U	10.3	U	U	U	U	U	U	U	U	U	U	U
Silver	50	1.68J	U	U	U	U	U	U	2.34J	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Sodium	20,000	12,800	21,800	15,500	5,170N	16,800	17,100	12,500	3,170J	6,310	3,400	6,380N	12,300	11,400	11,700	14,400	33,100	25,800	24,800	20,400N	27,500	22,300	22,700
Thallium	0.5 (GV)	U	U	U	U	U	U	U	U	8.2J	U	U	U	U	7.4B	U	U	U	U	U	U	U	U
Vanadium	NA	8.48J	U	U	U	7.6B	U	3.9B	9.25J	U	U	5.73 J	4.7B	U	5.6B	U	3.88J	U	U	U	U	1.9B	1.2B
Zinc	2,000 (GV)	48.7	41.5	46.1	32	45.8B	14.5B	31.8B	24.1	25.3	32.9	36.6	25.6B	12.9B	11.3B	36.4B	30.8	17.6J	36.9	164	17.0B	6.0B	119

All data presented in micrograms per liter (µg/L).

Metals analysis by ICP Method 6010, except mercury by USEPA Method 7470.

- U Analyte was analyzed for, but not detected.
- J & B Estimated concentration above the instrument detection limit (IDL) but less than the contract required detection limit (CRDL).
- N Spiked sample recovery not within control limits.

  * Duplicate analysis is not within control limits.
- ** Water quality measurements indicate turbidity greater than 50 NTU; Second column reports dissolved metals

AWQS - New York State Ambient Water Quality Standards (TOGs 1.1.1); GV - guidance value.

NA - No standard or guidance value exists for the analyte.

NS - Not sampled.

**BOLD** font in shaded cell - indicates exceedances of AWQS or GV.

## Table 2 **Groundwater Analytical Results -**TAL Metals and Mercury (2005 to 2014)

**Tuxedo Waste Disposal Site** Site No. 3-36-035 **Tuxedo, Orange County, New York** 

Monitoring We	II ID			R	I-2						RI	-3						RI	-4			RI	-5A
Sample Date	е	5/2/2005	11/2/2005	8/6/2007	6/30/2009	10/11/2011	10/7/2014	5/3/2005	11/1/2005	8/7/2007	6/30/2009	10/11/	/2011**	10/7/2	2014**	5/2/2005	11/2/2005	8/6/2007	6/30/2009	10/11/2011	10/7/2014	10/11/2011	10/7/2014
Analyte (μg/L)	AWQS or GV																						
Aluminum	NA	31.1J	69.3J	U	21.1 JN*	U	U	35,800	438	26,400	24,200N*	52,200	U	89,900	2,990	2,080	2,590	440	654N*	1,080	1,910	654	318
Antimony	3	10.2J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Arsenic	25	U	U	U	U	U	U	15.7	U	5.7 J	16.8	17.3B	U	33.8	U	U	U	U	U	U	U	U	U
Barium	1,000	12JN	17.9J	7.0 J	26.1 J	10.5B	14.2B	190JN	19.3J	158	140	334	18.5B	710	111B	55.2JN	160J	61.4	62.1	45.8B	59.5B	17.6B	17.6B
Beryllium	3 (GV)	U	U	U	U	U	U	2.32J	U	1.4 J	1.48 J	3.9B	U	8.4	0.51B	0.095J	0.25J	U	U	U	U	U	U
Cadmium	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	2.5J	U	0.626 J	1.2B	U	U	U
Calcium	NA	25,800	40,000	20,100	22,400	18,000	28,800	36,400	21,100	34,100	35,500	45,700	34,800	74,300	51,700	70,700	238,000	105,000	82,200	60,300	96,500	34,300	31,400
Chromium	50	846N	32.8	27.9	240	13.1B	21	47.6N	U	30.2	37.7	70	U	130	4.1B	3.1JN	11.9	U	2.61 J	1.9B	4.9B	15.3B	6.7B
Cobalt	NA	10.3J	U	U	U	U	U	40.2J	U	18.1	28.5	46.0B	U	141	5.4B	5.12J	14.4J	U	U	2.3B	3.5B	0.84B	U
Copper	200	22J	U	U	13.8	U	U	137	U	62	74.8	168	U	458	49.4	26.7	47.3	9.1 J	17.2	12.2B	15.2B	U	U
Iron	300	3,860N	109	160	1,150N*	120B	130B	71,500N	712	36,200	51,400N*	94,200	U	158,000	3,070	4,940N	7,160	1,890	2,030N*	2,850	4,060	339	173B
Lead	25	U	U	U	U	U	U	64.5	U	30.3	42.2	55.1	U	203	10.3	U	7	2.3 J	2.31 J	U	U	U	U
Magnesium	35,000 (GV)	7,190	11,200	5,450	4,820	5,070	7,860	22,200	4,210J	15,300	17,000	27,500	8,680	47,900	13,600	8,500	40,300	12,700	7,980	7,910	11,100	1,490	1,910
Manganese	300	201	60	8.6 J	59.8	28.8B	22.8B	2,130	164	830	1,500	2,830	U	7,120	329	1,050	3,590	1,680	302	417	580	10.1B	U
Mercury	0.7	U	U	U	0.1JN	U	U	0.25	U	U	0.12JN	0.18B	U	0.28	0.032B	U	U	U	0.1 JN	U	U	U	U
Nickel	100	1,730	39.2J	111	1,740	22.5B	21.2B	68.2	U	31.8	51.2	97	U	184	4.9B	11.7J	74.6	15.6 J	18.9 J	17.1B	19.8B	U	U
Potassium	NA 10	11,300	2,200JN	1,060	7,750	839B	801B	5,260	1,410JN	6,990	3,930	7,430	1,150	9,890	1,740	16,700	45,100N	18,700	14,600	10,700	10,600	9,590	7,390
Selenium	10	U	U	U	U	U	U	U	U	U	U	15.0B	U	U		U	U	U	U	U	U	U	U
Silver	50	U 47.400	U	0	0	U	U 54.000	2.04J	U 47.000	3.0 J	U	U	U	0	0	10.000	100.000	U	U	U	U 40.400	U	17.000
Sodium	20,000	47,100	63,700	36,300	36,300N	41,400	51,600	19,600	17,800	25,500	29,600N	38,300	34,200	31,800	30,300	13,900	100,000	19,200	10,100N	10,200	10,100	25,700	17,000
Thallium	0.5 (GV)	U	U	U	U	U	U	75.0	U	U	U 47.4	U	U	U	U	U	U	U	U	U	U	U	U
Vanadium	NA 2 000 (CV)	3.82J	U	07.0	00.4	U	U	75.3	U	47.6	47.1	104	U	192	6.3B	6.55J	U 404	U	U 44.5	2.2B	4.6B	3.1B	2.5B
Zinc	2,000 (GV)	39.7	20.6	37.9	26.1	14.2B	U	305	32.2	159	164	261	11.1B	535	16.6B	50.8	101	56.5	41.5	33.1B	31.4B	12.9B	U

## Notes:

All data presented in micrograms per liter (µg/L).

Metals analysis by ICP Method 6010, except mercury by USEPA Method 7470.

U - Analyte was analyzed for, but not detected.

J & B - Estimated concentration above the instrument detection limit (IDL) but less than the contract required detection limit (CRDL).

N - Spiked sample recovery not within control limits.

* - Duplicate analysis is not within control limits.

** - Water quality measurements indicate turbidity greater than 50 NTU; Second column reports dissolved metals

AWQS - New York State Ambient Water Quality Standards (TOGs 1.1.1); GV - guidance value. NA - No standard or guidance value exists for the analyte.

NS - Not sampled.

BOLD font in shaded cell - indicates exce

# Table 3 Groundwater Analytical Results TAL Metals and Mercury (2000 to 2001)

Tuxedo Waste Disposal Site Site No. 3-36-035 Tuxedo, Orange County, New York

Monitoring We	II ID		MV	V-1			MV	V-2			MV	V-3			MV	V-4			MV	<b>/</b> -5	
Sample Dat	9	10/26/2000	5/1/2001	8/2/2001	10/30/2001	10/26/2000	5/1/2001	8/2/2001	10/30/2001	10/26/2000	5/1/2001	8/2/2001	10/30/2001	10/26/2000	5/1/2001	8/2/2001	10/30/2001	10/26/2000	5/1/2001	8/2/2001	10/30/2001
Analyte (μg/L)	AWQS or GV																				
Aluminum	NA	NS	130B	U	NS	528	300	92B	NS	1,140	210	260	410	489	U	78B	320	3,900	340	160B	170B
Antimony	3	NS	U	U	NS	U	U	U	NS	U	U	U	U	U	U	U	U	U	U	U	U
Arsenic	25	NS	U	U	NS	U	U	U	NS	U	U	U	U	U	U	U	U	9.2B	U	U	U
Barium	1,000	NS	U	U	NS	14.7B	U	U	NS	28.6B	U	U	U	23.7B	U	U	U	104B	U	U	U
Beryllium	3 (GV)	NS	U	U	NS	U	U	U	NS	U	U	U	U	U	U	U	U	0.79B	U	U	U
Cadmium	5	NS	U	U	NS	U	U	U	NS	U	U	U	U	U	U	U	U	U	U	U	U
Calcium	NA	NS	18,000	9,700	NS	24,600	29,000	27,000	NS	41,300	22,000	42,000	41,000	39,500	39,000	43,000	40,000	92,000	110,000	99,000	97,000
Chromium	50	NS	U	U	NS	3.0B	U	U	NS	U	U	U	U	U	J	U	U	7.0B	U	U	U
Cobalt	NA	NS	U	U	NS	4.7B	U	U	NS	U	U	U	U	U	J	U	U	5.5B	U	U	U
Copper	200	NS	U	U	NS	2.5B	U	U	NS	5.2B	U	U	U	6.3B	U	U	U	101	63	U	26
Iron	300	NS	330	55B	NS	757	380	160	NS	1,740	180	410	650	830	83B	94B	570	17,400	5,900	2,700	3,700
Lead	25	NS	U	U	NS	2.3B	U	U	NS	2.6B	U	U	U	2.1B	U	U	U	11.7	5.7	U	U
Magnesium	35,000 (GV)	NS	4,700B	2,400B	NS	5,530	7,000	6,200	NS	9,850	5,400	10,000	9,300	10,700	11,000	11,000	10,000	24,000	16,000	25,000	22,000
Manganese	300	NS	26	U	NS	36.2	34	31	NS	81.3	7.5B	42	36	324	71	76	350	3,210	290	3,800	2,600
Mercury	0.7	NS	U	U	NS	U	U	U	NS	U	U	U	U	U	U	U	U	0.56	U	U	U
Nickel	100	NS	U	U	NS	U	U	U	NS	2.4B	U	U	U	U	U	U	U	6.7B	U	U	U
Potassium	NA	NS	U	U	NS	1,380BE	U	U	NS	3,570BE	U	U	U	3,530BE	U	U	U	8,470E	7,000	6,000	5,700
Selenium	10	NS	U	U	NS	2.8UW	U	U	NS	2.8UW	U	U	U	2.8UW	U	U	U	2.8UW	U	U	U
Silver	50	NS	U	U	NS	3.0UN	U	U	NS	3.0UN	U	U	U	3.0UN	U	U	U	3.0UN	U	U	U
Sodium	20,000	NS	40,000	29,000	NS	3,560B	5,000B	3,900B	NS	25,200	39,000	32,000	34,000	22,500	39,000	30,000	28,000	22,600	11,000	23,000	21,000
Thallium	0.5 (GV)	NS	U	U	NS	U	U	U	NS	U	U	U	U	U	U	U	U	U	U	U	U
Vanadium	NA	NS	U	U	NS	3.1B	U	U	NS	2.3B	U	U	U	U	U	U	U	8.7B	U	U	U
Zinc	2,000 (GV)	NS	U	U	NS	9.7B*	U	U	NS	15.6B*	U	U	U	23.8*	U	U	U	58.8*	10.0B	U	10B

## Notes:

All data presented in micrograms per liter (µg/L).

- U Analyte was analyzed for, but not detected.
- B The reported value is less than the Contract Required Detection Limit (CRDL), but greater than the Instrument Detection Limit (IDL).
- E Indicates an estimated value because of the presence of interference.
- W Post digestion spike for furnace AA analysis is out of control limits (85-115%), while sample absorbance is less than 50% of spike absorbance.
- N Spiked sample recovery not within control limits.
- * Duplicate analysis not within control limits.

AWQS - New York State Ambient Water Quality Standards (TOGs 1.1.1); GV - guidance value.

NA - No standard or guidance value exists for the analyte.

NS - Not sampled

**BOLD** font in shaded cell - indicates exceedance of AWQS or GV.



# Table 3 Groundwater Analytical Results TAL Metals and Mercury (2000 to 2001)

## Tuxedo Waste Disposal Site Site No. 3-36-035 Tuxedo, Orange County, New York

Monitoring We	II ID		MV	V-6			R	l-1			RI	l-2			R	-4	
Sample Dat	9	10/26/2000	5/1/2001	8/2/2001	10/30/2001	10/26/2000	5/1/2001	8/2/2001	10/30/2001	10/26/2000	5/1/2001	8/2/2001	10/30/2001	10/26/2000	5/1/2001	8/2/2001	10/30/2001
Analyte (μg/L)	AWQS or GV																
Aluminum	NA	725	U	U	U	718	140B	100B	100B	96.3B	U	U	82B	5,960	3,600	90B	320
Antimony	3	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Arsenic	25	11.7	U	U	U	U	U	U	U	U	U	U	U	3.8B	U	U	U
Barium	1,000	47.7B	U	U	U	10.6B	U	U	U	11.2B	U	U	U	101B	U	U	U
Beryllium	3 (GV)	0.21B	U	U	U	U	U	U	U	U	U	U	U	0.24B	U	U	U
Cadmium	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Calcium	NA	92,700	110,000	98,000	120,000	50,800	74,000	57,000	54,000	19,700	43,000	32,000	30,000	90,400	64,000	95,000	120,000
Chromium	50	1.2B	U	U	U	3.4B	U	U	U	130	11	U	64	8.3B	U	U	U
Cobalt	NA	U	U	U	U	U	U	U	U	U	U	U	U	16.3B	U	U	U
Copper	200	30.3	U	U	U	13.4B	U	U	U	4.1B	U	U	U	37.4	90	U	U
Iron	300	15,300	8,900	5,900	5,600	752	190	70B	90B	804	260	110	870	11,600	12,000	240	1,200
Lead	25	5	U	U	U	U	U	U	U	U	U	U	U	10	12	U	U
Magnesium	35,000 (GV)	12,800	17,000	15,000	16,000	7,160	11,000	8,800	7,900	6,010	13,000	9,700	8,800	11,600	8,600	11,000	13,000
Manganese	300	2,050	1,600	1,900	2,300	7.9B	8.0B	U	U	79.4	64	43	87	1,500	1,200	390	350
Mercury	0.7	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Nickel	100	U	U	U	U	6.2B	U	U	U	41	U	U	U	24.5B	U	U	U
Potassium	NA	3,770BE	U	U	U	2,860BE	U	U	U	1,390BE	U	U	U	28,500E	18,000	19,000	23,000
Selenium	10	2.8UW	U	U	U												
Silver	50	3.0BN	U	U	U	3.0UN	U	U	U	3.0UN	U	U	U	3.0UN	U	U	U
Sodium	20,000	3,840	7,000	4,100B	6,500	18,500	28,000	19,000	19,000	25,400	56,000	44,000	43,000	16,400	17,000	18,000	21,000
Thallium	0.5 (GV)	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Vanadium	NA	2.1B	U	U	U	U	U	U	U	U	U	U	U	10.4B	U	U	U
Zinc	2,000 (GV)	25.5*	U	U	U	22*	U	U	U	30.7*	U	U	14B	67.3*	85	U	U

## Notes:

All data presented in micrograms per liter (µg/L).

- U Analyte was analyzed for, but not detected.
- B The reported value is less than the Contract Required Detection Limit (CRDL), but greater than the Instrument Detection Limit (IDL).
- E Indicates an estimated value because of the presence of interference.
- W Post digestion spike for furnace AA analysis is out of control limits (85-115%), while sample absorbance is less than 50% of spike absorbance.
- N Spiked sample recovery not within control limits.
- * Duplicate analysis not within control limits.

AWQS - New York State Ambient Water Quality Standards (TOGs 1.1.1); GV - guidance value.

NA - No standard or guidance value exists for the analyte.

NS - Not sampled

**BOLD** font in shaded cell - indicates exceedance of AWQS or GV.



# Table 4 Groundwater Analytical Results Unfiltered Vs. Filtered TAL Metals and Mercury

## Tuxedo Waste Disposal Site Site No. 3-36-035 Tuxedo, Orange County, New York

Monitoring W	/ell ID		MW-6			RI-1			RI-3	
Sample Da	ate		10/7/2014			10/8/2014			10/7/2014	
Unfiltered/Fil	tered	Unfiltered	Filtered	Percent Dissolved	Unfiltered	Filtered	Percent Dissolved	Unfiltered	Filtered	Percent Dissolved
Analyte (μg/L)	AWQS or GV									
Aluminum	NA	438	155B	35.4%	3,210	172B	5.4%	89,900	2,990	3.3%
Antimony	3	U	U	-	U	U	-	U	U	-
Arsenic	25	24	U	0.0%	U	U	-	33.8	U	0.0%
Barium	1,000	99.1B	44.4B	44.8%	21.2B	16.2B	76.4%	710	111B	15.6%
Beryllium	3 (GV)	U	U	-	U	U	-	8.4	0.51B	6.4%
Cadmium	5	U	U	-	U	U	-	U	U	-
Calcium	NA	108,000	110,000	101.9%	56,400	53,200	94.3%	74,300	51,700	69.6%
Chromium	50	5.7B	U	0.0%	5.0B	0.96B	19.2%	130	4.1B	3.2%
Cobalt	NA	U	U	-	0.84B	U	0.0%	141	5.4B	3.8%
Copper	200	31.1	7.8B	25.1%	7.4B	19.1B	258.1%	458	49	10.8%
Iron	300	36,000	1,940	5.4%	1,360	127B	9.3%	158,000	3,070	1.9%
Lead	25	U	U	-	U	U	-	203.0	10.3	5.1%
Magnesium	35,000 (GV)	11,800	12,000	101.7%	10,500	9,860	93.9%	47,900	13,600	28.4%
Manganese	300	2,200	1,940	88.2%	23.6B	18.3B	77.5%	7,120	329	4.6%
Mercury	0.7	U	U	-	U	0.057B	-	0	0.032B	0.0%
Nickel	100	1.4B	U	0.0%	4.0B	0.92B	23.0%	184	4.9B	2.7%
Potassium	NA	3,810	3,870	101.6%	2,630	2,550	97.0%	9,890	1,740	17.6%
Selenium	10	U	U	-	U	U	-	U	U	0.0%
Silver	50	U	U	-	U	U	-	U	U	-
Sodium	20,000	11,700	14,400	123.1%	22,300	22,700	101.8%	31,800	30,300	95.3%
Thallium	0.5 (GV)	7.4B	U	-	U	U	-	U	U	-
Vanadium	NA	5.6B	U	0.0%	1.9B	1.2B	63.2%	192	6.3B	3.3%
Zinc	2,000 (GV)	11.3B	36.4B	322.1%	6.0B	119	1983.3%	535	16.6B	3.1%

## Notes:

All data presented in micrograms per liter (µg/L).

Metals analysis by ICP Method 6010, except mercury by USEPA Method 7470.

Water quality measurements indicated turbidity greater than 50 NTU for these samples; Second column reports dissolved metals AWQS - New York State Ambient Water Quality Standards (TOGs 1.1.1); GV - guidance value.

- U Analyte was analyzed for, but not detected.
- B Estimated concentration above the instrument detection limit (IDL) but less than the contract required detection limit (CRDL).
- NA No standard or guidance value exists for the analyte.

**BOLD** font in shaded cell - indicates exceedances of AWQS or GV.



## Table 5 Surface Water and Sediment Analysis

## Tuxedo Waste Disposal Site Site No. 3-36-035 Tuxedo, Orange County, New York

Sample ID Sampling Date Matrix	NYSAWQS (µg/L)*	USSW 100 10/8/201 Water	14	DSSW 100 10/8/201 Water	14		10081 /2014 MENT	4	DSSED 10/8/2 SEDIN	2014	Sediment Criteria** (µg/kg)	Sample ID Sampling Date Matrix
						223	300		1250	000		Total Organic Carbon (mg/kg)
voc		(µq/l)		(µq/l)		(μg/gOC)	(µq/l	kg)	(μg/gOC)	(µg/kg)		voc
Acetone	50	5	U	5	U	0.94	21		1.21	27	NL	Acetone
Dichlorodifluoromethane	5	5	U	5	U	0.04 J	0.81	J	5 U	5 U	NL	Dichlorodifluoromethane
SVOC		(μg/l)		(µg/l)		(µg.	/kg)		(μg/	(kg)		SVOC
Di-n-butylphthalate	50(GV)	2.5	BJ	3.7	BJ	650		В	1,300	В	NS	Di-n-butylphthalate
Fluoranthene	50(GV)	10	U	10	U	440		U	180	J	NS	Fluoranthene
Pyrene	50(GV)	10	U	10	U	96		J	200	J	NS	Pyrene
Pesticides		(μg/l)		(µg/l)		(μg.	/kg)		(μg/	(kg)		Pesticides
4,4'-DDE	0.2	1.7	U	1.7	U	6.3			1.7	U	0.62	4,4'-DDE
Endrin	NS	1.7	U	1.7	U	5.3		Р	1.7	U	5.2	Endrin
4,4' DDD	0.3	1.7	U	1.7	U	9.2		Р	1.7	U	1.4	4,4' DDD
4,4' DDT	0.2	1.7	U	1.7	U	21			1.7	U	0.44	4,4' DDT
alpha-Chlordane	0.5	1.7	U	1.7	U	12		Р	1.7	U	0.32	alpha-Chlordane
gamma-Chlordane	0.5	1.7	U	1.7	U	19		Р	1.7	U	0.32	gamma-Chlordane
Metals		(μg/l)		(μg/l)		(mg	ı/kg)		(mg/	/kg)		Metals
Aluminum	NS	191	В	115	BJ	5,670	)		8,130		NS	Aluminum
Antimony	NS	9.3	U	9.3	U	0.33		В	0.53	В	NS	Antimony
Arsenic	25	4.3	U	4.3	U	3			6.1		10	Arsenic
Barium	1,000	23.3	В	21.9	В	21			52.8		NS	Barium
Beryllium	3	0.26	U	0.26	U	0.39			0.66		NS	Beryllium
Cadmium	5	0.89	U	0.89	U	0.035	5	В	0.036	В	1	Cadmium
Calcium	NS	51,600		50,400		2060	)		2,440		NS	Calcium
Chromium	50	1.2	В	1	В	8.8			12.6		43	Chromium
Cobalt	NS	0.67	U	0.67	U	6.1			7.1		NS	Cobalt
Copper	200	6.3	В	6	В	18.2			34.4		32	Copper
Iron	300	407		229		13,10	0		15,700	)	NS	Iron
Lead	25	4.2	U	4.2	U	40.9			42		47	Lead
Magnesium	35,000(GV)	16,500		16,000		2,330	)		2,800		NS	Magnesium
Manganese	300	98.5		81.8		109			200		NS	Manganese
Mercury	0.7	0.028	U	0.028	U	0.24			0.4		0.15	Mercury
Nickel	100	2.1	В	2.1	В	9.6			13.5		21	Nickel
Potassium	NS	9,380		8,740		368			452		NS	Potassium
Selenium	NS	12	U	12	U	1.3			1.3	В	NS	Selenium
Silver	NS	6.9	U	6.9	U	0.1		В	0.2	В	1	Silver
Sodium	20,000	138,000		13,000		105			246	В	NS	Sodium
Thallium	NS	6.2	U	6.2	U	0.25		В	0.23	U	NS	Thallium
Vanadium	NS	1.2	В	1.1	U	11.9			16.8		NS	Vanadium
Zinc	2,000(GV)	18.3	В	19.2	В	78.5			94.3		150	Zinc

## Notes

mg/kg - milligrams per kilogram

μg/gOC - microgram per gram of organic carbon

**BOLD** - The compound was detected at a concentration greater than the method detection limits.

BOLD/SHADED - The compound was detected above AWQS/GV or Sediment Cleanup Criteria

- U The compound was not detected at the indicated concentration.
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than MDL. The concentration given is an approximate value.

NA - Not analyzed

- NS No standard, guidance value, or criteria established
- B For organic analyses compound detected in laboratory method blank. For inorganic analyses indicates trace concentration below reporting limit and equal to or above the detecti
- P This flag is used for pesticides/PCB/herbicide compound when there is a greater than 40% difference for detected concentration between the two GC columns used for primary and



^{*} AWQS/GV Values - New York State Ambient Water Quality Standards (TOGs 1.1.1) guidance values.

^{**} New York State Sediment Criteria for non-Polar Organic Contaminants, Protection Levels for Human Health Bioaccumulation January 1999 µg/l - micrograms per liter

## Table 6 Summary of Groundwater Analytical Results and Exceedances (October 2014)

Tuxedo Waste Disposal Site Site No. 3-36-035 Tuxedo, Orange County, New York

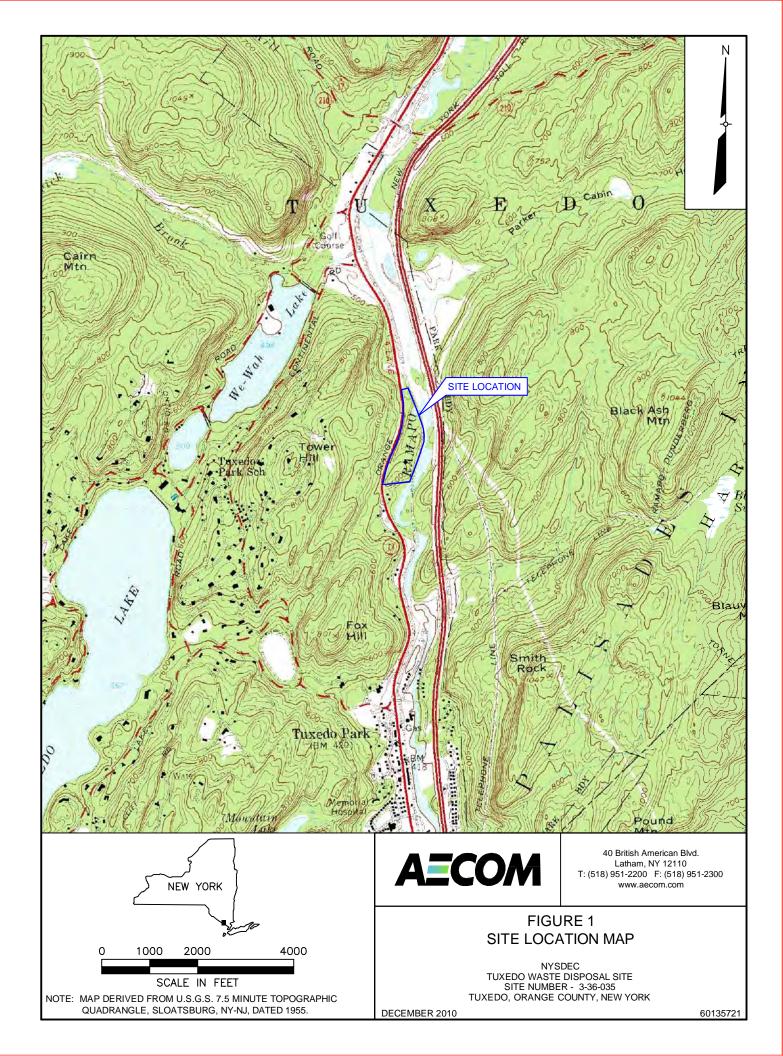
Monitoring We	II ID	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	RI-1	RI-2	RI-3	RI-4	RI-5A	Number of
Sample Dat	е	10/7/2014	10/8/2014	10/8/2014	10/8/2014	10/7/2014	10/7/2014	10/8/2014	10/7/2014	10/7/2014	10/7/2014	10/7/2014	Exceedances
Analyte (μg/L)	AWQS or GV												LACEEdances
Arsenic	25	U	6.3B	U	U	U	24	U	U	33.8	U	U	1
Beryllium	3 (GV)	U	U	U	U	U	U	U	U	8.4	U	U	1
Chromium	50	3.3B	1.8B	3.4B	3.9B	4.0B	5.7B	5.0B	21	130	4.9B	6.7B	1
Copper	200	5.8B	U	8.6B	15.3B	65.7	31.1	7.4B	U	458	15.2B	U	1
Iron	300	889	671	4,180	4,980	16,600	36,000	1,360	130B	158,000	4,060	173B	10
Lead	25	U	4.2	U	U	U	U	U	U	203	U	U	1
Magnesium	35,000 (GV)	2,160	6,410	22,900	13,300	22,500	11,800	10,500	7,860	47,900	11,100	1,910	1
Manganese	300	50.4	24.1B	271	1,310	5,400	2,200	23.6B	22.8B	7,120	580	U	5
Nickel	100	2.4B	U	5.5B	6.1B	7.8B	1.4B	4.0B	21.2B	184	19.8B	U	1
Sodium	20,000	40,600	4,090	379,000	39,900	12,500	11,700	22,300	51,600	31,800	10,100	17,000	7
Thallium	0.5 (GV)	U	U	U	6.2B	U	7.4B	U	U	U	U	U	1
Maximum Concer	itration	40,600	6,410	379,000	39,900	22,500	36,000	22,300	51,600	158,000	11,100	17,000	30
(Metal)		(Sodium)	(Magnesium)	(Sodium)	(Sodium)	(Magnesium)	(Iron)	(Sodium)	(Sodium)	(Iron)	(Magnesium)	(Sodium)	30

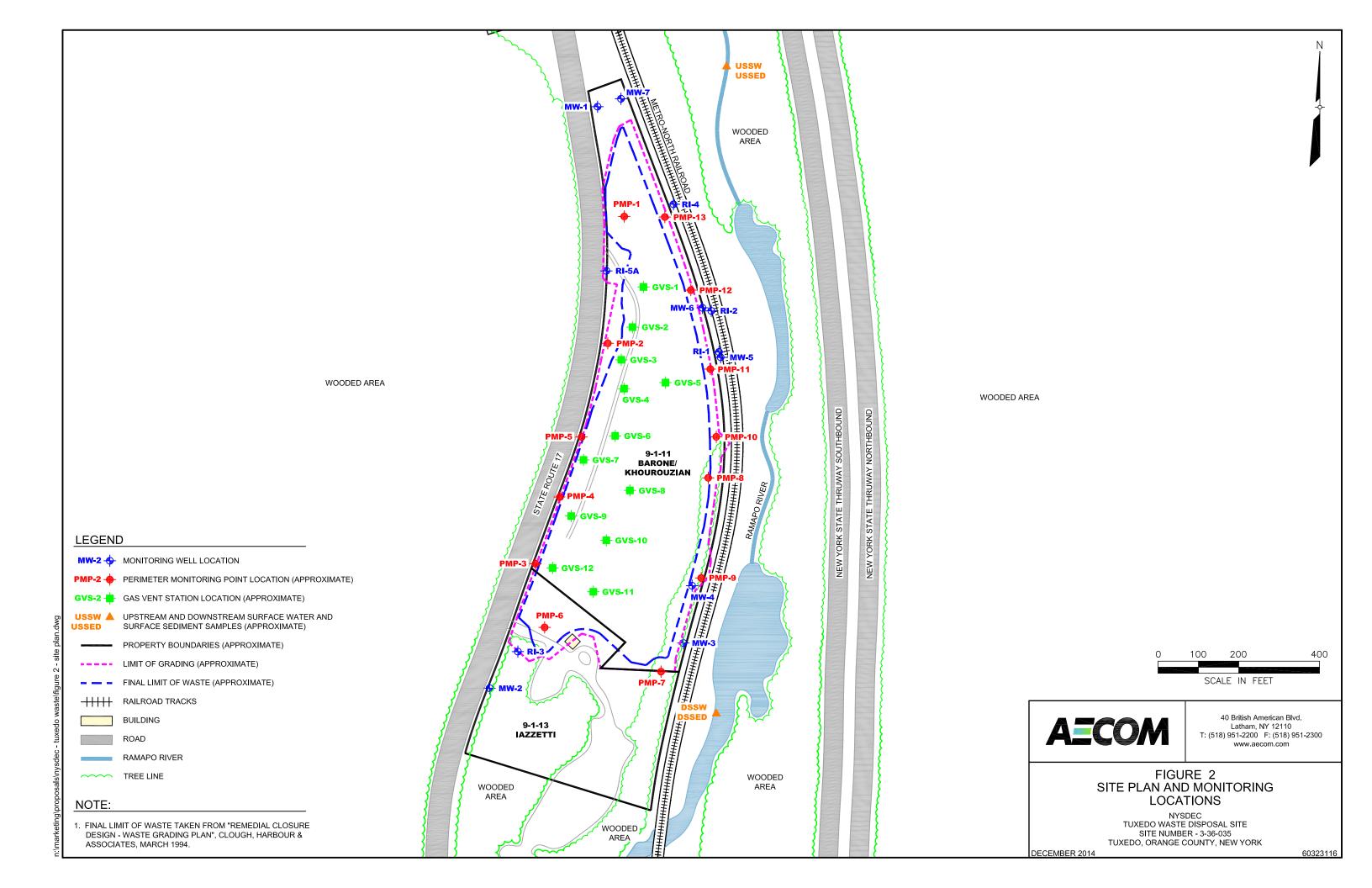
## Notes:

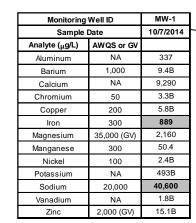
All data presented in micrograms per liter (µg/L).

Metals analysis by ICP Method 6010.

AWQS - New York State Ambient Water Quality Standards (TOGs 1.1.1); GV - guidance value.


U - Analyte was analyzed for, but not detected.


B - Estimated concentration above the instrument detection limit (IDL) but less than the contract required detection limit (CRDL).


BOLD font in shaded cell - indicates exceedances of AWQS or GV.

AECOM Environment

## **Figures**







Monitoring	Well ID	RI-5A
Sample I	Date	10/7/2014
Analyte (μg/L)	AWQS or GV	
Aluminum	NA	318
Barium	1,000	17.6B
Calcium	NA	31,400
Chromium	50	6.7B
Iron	300	173B
Magnesium	35,000 (GV)	1,910
Potassium	NA	7,390
Sodium	20,000	17,000
Vanadium	NA	2.5B
toring Well ID	MV	V-6
	Sample I Analyte (µg/L) Aluminum Barium Calcium Chromium Iron Magnesium Potassium Sodium Vanadium	Aluminum         NA           Barium         1,000           Calcium         NA           Chromium         50           Iron         300           Magnesium         35,000 (GV)           Potassium         NA           Sodium         20,000           Vanadium         NA

Sample Date Analyte (µg/L) AWQS or GV

Arsenic

Barium

Calcium

Chromium

Copper

Iron Magnesium

Manganese

Nickel

Potassium

Sodium

Thallium

Vanadium

Zinc

Aluminum

Arsenic

Barium

Beryllium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Magnesium

Manganese

Mercury

Nickel

Monitoring Well ID

Analyte (μg/L) AWQS or GV

NA

1.000

NA

50

200

300

35,000 (GV)

300

100

NA

20,000

0.5 (GV)

2,000 (GV)

NA

25

1,000

3 (GV)

NA

50

NA

200

300

25

35,000 (GV)

300

0.7 100

MW-6 10/7/2014**

438

23.7

99.1B

108000

5.7B

31.1

36,000

11,800

2,200

1 4B

3,810

11,700

7.4B

5.6B

11.3B

89.900

34

710

8

74,300

130

141

458

158,000

203.0

47,900

7,120

0.28

184

RI-3

10/7/2014**

155B

U

44.4B

110,000

7.8B

1,940

12,000

1,940

U

3,870

14,400

U

36.4B

2,990

111B

0.51B

51,700

4.1B

5.4B

49

3,070

10.3

13,600

329

0.032B

WOODED

AREA

Sample	Date	10/7/2014
Analyte (µg/L)	AWQS or GV	
Aluminum	NA	1,910
Barium	1,000	59.5B
Calcium	NA	96,500
Chromium	50	4.9B
Cobalt	NA	3.5B
Copper	200	15.2B
Iron	300	4,060
Magnesium	35,000 (GV)	11,100
Manganese	300	580
Nickel	100	19.8B
Potassium	NA	10,600
Sodium	20,000	10,100
Vanadium	NA	4.6B
Zinc	2,000 (GV)	31.4B
-		

Monitoring Well ID

WOODED

AREA

Monitoring Well ID

Sample Date

Aluminum

Barium

Cobalt

Magnesium

Mercury

Nickel

Potassium

Sodium

Vanadium

WOODED ,

AREA

Analyte (µg/L) AWQS or GV

NA

1,000

NA

50

NA

200

300

35,000 (GV)

300

0.7

100.0

NA

20.000

NA

2,000 (GV)

6.0B

12.7B

RI-4

Monitoring	Well ID	RI-2
Sample	Date	10/7/2014
Analyte (µg/L)	AWQS or GV	
Barium	1,000	14.2B
Calcium	NA	28,800
Chromium	50	21
Iron	300	130B
Magnesium	35,000 (GV)	7,860
Manganese	300	22.8B
Nickel	100	21.2B
Potassium	NA	801B
Sodium	20,000	51,600

Sa	mple l	Date	10/8/2	2014**
Analyte (μ	g/L)	AWQS or GV		
Aluminu	m	NA	3,210	172B
Barium		1,000	21.2B	16.2B
Calciun	1	NA	56,400	53,200
Chromiu	m	50	5.0B	0.96B
Cobalt		NA	0.84B	U
Coppei		200	7.4B	19.1B
Iron		300	1,360	127B
Magnesiu	ım	35,000 (GV)	10,500	9,860
Mangane	se	300	23.6B	18.3B
Mercury	/	0.7	U	0.057B
Nickel		100	4.0B	0.92B
Potassiu	m	NA	2,630	2,550
Sodium		20,000	22,300	22,700
Vanadiu	m	NA	1.9B	1.2B
Zinc		2,000 (GV)	6.0B	119

Monitoring Well ID

Monitoring	Well ID	RI-2
Sample	Date	10/7/2014
Analyte (µg/L)	AWQS or GV	
Barium	1,000	14.2B
Calcium	NA	28,800
Chromium	50	21
Iron	300	130B
Magnesium	35,000 (GV)	7,860
Manganese	300	22.8B
Nickel	100	21.2B
Potassium	NA	801B
Sodium	20,000	51,600

Monitoring	Well ID	MW-5
Sample	Date	10/7/2014
Analyte (μg/L)	AWQS or GV	
Aluminum	NA	886
Barium	1,000	84.5B
Calcium	NA	93,300
Chromium	50	4.0B
Cobalt	NA	7.7B
Copper	200	65.7
Iron	300	16,600
Magnesium	35,000 (GV)	22,500
Manganese	300	5,400
Nickel	100	7.8B
Potassium	NA	3,500
Sodium	20,000	12,500
Vanadium	NA	3.9B
Zinc	2,000 (GV)	31.8B

Monitoring	Well ID	MW-4
Sample	Date	10/8/2014
Analyte (µg/L)	AWQS or GV	
Aluminum	NA	3090
Barium	1,000	48.4B
Calcium	NA	55,100
Chromium	50	3.9B
Cobalt	NA	5.2B
Copper	200	15.3B
Iron	300	4,980
Magnesium	35,000 (GV)	13,300
Manganese	300	1,310
Mercury	0.7	0.062B
Nickel	100	6.1B
Potassium	NA	2,880
Sodium	20,000	39,900
Thallium	0.5(GV)	6.2B
Vanadium	NA	7.6B
Zinc	2,000 (GV)	17.2B

Cobait	NA	U.04D	U
Copper	200	7.4B	19.1B
Iron	300	1,360	127B
Magnesium	35,000 (GV)	10,500	9,860
Manganese	300	23.6B	18.3B
Mercury	0.7	U	0.057B
Nickel	100	4.0B	0.92B
Potassium	NA	2,630	2,550
Sodium	20,000	22,300	22,700
Vanadium	NA	1.9B	1.2B
Zinc	2,000 (GV)	6.0B	119
		_	

## WOODED AREA

## LEGEND

MW-2 
 MONITORING WELL LOCATION

PROPERTY BOUNDARIES (APPROXIMATE)

LIMIT OF GRADING (APPROXIMATE)

FINAL LIMIT OF WASTE (APPROXIMATE)

+++++ RAILROAD TRACKS

BUILDING

ROAD

RAMAPO RIVER

TREE LINE

NS NOT SAMPLED

NA NOT APPLICABLE

B ESTIMATED CONCENTRATION

U ANALYTE WAS ANALYZED FOR, BUT NOT DETECTED.

AWQS or GV NEW YORK STATE AMBIENT WATER QUALITY STANDARD OR GUIDANCE VALUE

μg/L MICROGRAMS PER LITER

WATER QUALITY MEASUREMENTS INDICATE TURBIDITY GREATER THAN 50 NTU; SECOND COLUMN REPORTS DISSOLVED ME

## NOTE:

- 1. FINAL LIMIT OF WASTE TAKEN FROM "REMEDIAL CLOS DESIGN - WASTE GRADING PLAN", CLOUGH, HARBOU ASSOCIATES, MARCH 1994.
- 2. **BOLD** AND HIGHLIGHTED RESULTS INDICATE AN EXCEEDANCE OF THE AWQS OR GV.

Potassiu	m	NA	9,890	1,740
Sodium		20,000	31,800	30,300
Vanadiu	m	NA	192	6.3B
Zinc		2,000 (GV)	535	16.6B
				- 7/
·		Monitoring	Well ID	MW-2
'		Sample I	Date	10/8/2014
	Ana	alyte (μg/L)	AWQS or GV	
	А	luminum	NA	505
		Arsenic	25	6.3B
		Barium	1,000	15.0B
TALC	(	Calcium	NA	23,300
TALS	С	hromium	50	1.8B
		Cobalt	NA	1.3B
		Iron	300	671
SURE		Lead	25	4.2
IR &	Ma	agnesium	35,000 (GV)	6,410
	Ma	anganese	300	24.1B
	P	otassium	NA	1,040
		Sodium	20,000	4,090
	V	anadium	NA	2.4B

<b>&gt;</b>	Analyte (µg/l
3	Aluminum
MW-3	Barium
10/8/2014	Calcium
	Chromium
2,690	Cobalt
103B	Copper
95,000	Iron
3.4B	Magnesium
3.3B	Manganese
8.6B	Mercury
4,180	Nickel
22,900	Potassium
271	Sodium
0.031B	Thallium
5.5B	Vanadium
3,390	Zinc
379,000	}

YORK STATE THRUWAY

STATE THRUMAY

NEW YORK

**AECOM** 

40 British American Blvd. Latham, NY 12110 T: (518) 951-2200 F: (518) 951-2300 www.aecom.com

## FIGURE 3 **GROUNDWATER** MONITORING RESULTS (OCTOBER 2014)

100

200

SCALE IN FEET

NYSDEC TUXEDO WASTE DISPOSAL SITE SITE NUMBER - 3-36-035 TUXEDO, ORANGE COUNTY, NEW YORK

DECEMBER 2014

400

AECOM Environment

## Appendix A

**Monitoring Well Sampling Observation Logs** 

Monitoring Well Number: Samplers:			ste Disposal		60323116	)	
Samplers:		MW-1		Date:		10/7/14	1.5
		Chris Frenc	h & Ross Mc	Credy			
Sample Number:		MW-1		QA/Q	C Collected?		No
Purging / Sampling Method:		Hand Bailer	, Grundfos, V	Whale or Wa	aterra Pump/	3 Well Volum	es
1. L = Well Depth:				29.98	feet	D (inches)	D (feet
2. D = Riser Diameter (I.D.):				71.0	feet	1-inch	0.08
3. W = Depth to Water:				20.37	feet	2-inch	0.17
4. C = Column of Water in We	II:			9.61	feet	3-inch	0.25
5. V = Volume of Water in Wel		9)(0.5D) ² (7	48)	1.6	gal	4-inch	0.33
6. 3(V) = Target Purge Volume		0,(0.0-) (	,	4.9	_ gal	6-inch	0.50
		D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
							-
		V (gal / ft)	0.041	0.163	0.37	4-inch 0.65	1.5
Water Quality Readings Collec	eted Using	V (gal / ft)		0.163	0.37		-
	eted Using Units	V (gal / ft)	0.041	0.163	0.37		-
Parameter		V (gal / ft) YSI 556 MI	0.041	0.163	0.37 E		-
Parameter Fime	Units	V (gal / ft) YSI 556 MI	0.041 PS & Lamot	0.163 te 2020 W	0.37		-
Parameter Time Water Level (0.33) Volume Purged	Units 24 hr	V (gal / ft) YSI 556 MI	0.041 PS & Lamot	0.163 te 2020 W	0.37		-
Parameter Time Water Level (0.33) Volume Purged	Units 24 hr feet	V (gal / ft)  YSI 556 MI  /// :55  20.37	0.041 PS & Lamot	0.163 te 2020 W	0.37  Readings  /0:45  5.0		-
Parameter  Time Water Level (0.33) Volume Purged Flow Rate  Turbidity (+/- 10%)	Units 24 hr feet gal	V (gal / ft)  YSI 556 MI  10:37 20:37 5.48	0.041 PS & Lamot  /o:38 - /.6 - 35.9	0.163 te 2020 WI	0.37  Readings  /0:45		-
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min	V (gal / ft)  YSI 556 MI  10:35 26.37 0 - 5.68 61.9	0.041 PS & Lamot  /o:38 - /.6 - 35.9 66.7	0.163 te 2020 W	0.37  Readings 10:45 5.0 139 60.2		-
Water Quality Readings Collect Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units  24 hr feet gal mL/min NTU	V (gal / ft)  YSI 556 MI  10:35 20:37 0 - 5.68 61.9 6.72	0.041 PS & Lamot  /o:38 - /.6 - 35.9 66.7 7.49	0.163 te 2020 W	0.37  Readings  10:45  5.0  13.9  60.2  6.71		-
Parameter  Time Water Level (0.33) Volume Purged Flow Rate  Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	Units  24 hr feet gal mL/min NTU %	V (gal / ft)  YSI 556 MI  10:35 26.37 0 - 5.68 61.9	0.041 PS & Lamot  /o:38 - /.6 - 35.9 66.7	0.163 te 2020 W	0.37  Readings 10:45 5.0 139 60.2		-
Parameter  Fime Water Level (0.33) Volume Purged Flow Rate Furbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units  24 hr feet gal mL/min NTU % mg/L	V (gal / ft)  YSI 556 MI  10:35 20:37 0 - 5.68 61.9 6.72	0.041 PS & Lamot  /o:38 - /.6 - 35.9 66.7 7.49	0.163 te 2020 W	0.37  Readings  10:45  5.0  13.9  60.2  6.71		-
Parameter  Fime Water Level (0.33) Volume Purged Flow Rate Furbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	Units  24 hr feet gal mL/min NTU % mg/L MeV	V (gal / ft)  YSI 556 MI  10:35 20:37 0 - 5.68 61.9 6.72 594.7	0.041 PS & Lamot  /0:38 35.9 66.7 7.49 467.0 0.273	0.163 te 2020 W	0.37  Readings  /0:45  5.0  - 13.9  60.2  6.71  236.6		-
Parameter Time Water Level (0.33) Volume Purged Flow Rate Furbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm	V (gal / ft)  YSI 556 MI  10:55 20:37 0 - 5.68 61.9 6.72 594.7 0.305 0.230	0.041 PS & Lamot  10:38 - 1.6 - 35.9 66.7 7.49 467.0	0.163 te 2020 W  10:42 - 3.2 - 16.4 67.3 7.50 318.5 0.269	0.37  Readings  /0:45  5.0  13.9  60.2  6.71  236.6  0.269		-
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cmc	V (gal / ft)  YSI 556 MI  10:35 20:37 0 - 5.68 61.9 6.72 594.7 0.305 0.230 6.81	0.041 PS & Lamot  10:38 - 1.6 - 35.9 66.7 7.49 467.0 0.273 0.20	0.163 te 2020 W  10:42 - 3.2 - 16.4 67.3 7.50 318.5 0.269 6.197	0.37  Readings  10:45  5.0  13.9  60.2  6.71  236.6  0.269  0.196  6.38		-
Parameter  Time Water Level (0.33) Volume Purged Flow Rate  Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) OH (+/- 0.1)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit	V (gal / ft)  YSI 556 MI  10:55 20:37 0 - 5.68 61.9 6.72 594.7 0.305 0.230	0.041 PS & Lamot  10:38 - 1.6 - 35.9 66.7 7.49 467.0 0.273 0.206 655	0.163  te 2020 W  10:42  - 3.2  16.4 67.3 7.50 318.5 0.269 6.197 6.53 11.20	0.37  Readings  10:45  5.0  13.9  60.2  6.71  236.6  0.269  0.196		-

Project Name and Number:		Tuxedo Wa	ste Disposal		60323116		
Monitoring Well Number:		MW-2		_ Date:		10/8 /14	
Samplers:		Chris Frenc	h & Ross M	lcCredy			
Sample Number:		MW-2 (00	314	_ QA/Q	C Collected?		No
Purging / Sampling Method:	- 7	Hand Bailgi	Grundfos,	Whale or W	aterra Pump/3	Well Volum	ies
1. L = Well Depth: 2. D = Riser Diameter (I.D.): 3. W = Depth to Water: 4. C = Column of Water in Wel 5. V = Volume of Water in Wel		0)/0 5D) ² /7	48)	81.73 0.17 27.41 62.32 10.6	feet feet feet feet gal	D (inches) 1-inch 2-inch 3-inch 4-inch	D (feet) 0.08 0.17 0.25 0.33
6. 3(V) = Target Purge Volume		Σχο.σ <i>Σ</i> ) (1.	·	32	gal determine V	6-inch	0.50
		D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
				Z-Inch	3-111011		
Water Quality Readings Collec		V (gal / ft) YSI 556 MI	0.041	0.163 otte 2020 W	5-73	0.65	1.5
Parameter	Units	YSI 556 MI	PS & Lamo	otte 2020 W	Readings	0.65	1.5
Parameter Time	Units 24 hr	YSI 556 MI		4	E	0.65	1.5
Parameter Time Water Level (0.33)	Units 24 hr feet	YSI 556 MI	PS & Lamo	otte 2020 W	Readings /S:00	0.65	1.5
Parameter Time Water Level (0.33) Volume Purged	Units 24 hr feet gal	YSI 556 MI	PS & Lamo	otte 2020 W	Readings	0.65	1.5
Parameter Time Water Level (0.33) Volume Purged Flow Rate	Units  24 hr feet gal mL/min	YSI 556 MI	PS & Lamo	14:50 - 22	Readings /S:00	0.65	1.5
Water Quality Readings Collect  Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal	YSI 556 MI	PS & Lamo	otte 2020 W	Readings /S:00	0.65	1.5
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	Units  24 hr feet gal mL/min NTU %	YSI 556 MI	PS & Lamo 14:46 - 11 - 34 \$68 6.27	14:50 - 22 - 56	Readings /S:00 - 53 - 19 49,1	0.65	1.5
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%)	Units  24 hr feet gal mL/min NTU	YSI 556 MI 14:30 27.41 0 - 22.9 69.3 7.26	PS & Lamo 14:46 - 11 - 34 \$68 6.27	14:50 - 22 - 56 63.9	Readings  /S:00  -  \$3  -  19  49.1  5.45	0.65	1.5
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	Units  24 hr feet gal mL/min NTU % mg/L MeV	YSI 556 MI  14:30 27:41 0 - 22.9 69.3 7.26 135.7	14:46 - 11 - 34 568 6.27 1900	14:50 - 22 - 56 63.9 7.20 179.9	Readings  /S:00  -  \$3  -  19  49.1  5.45  /52.4	0.65	1.5
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cmc	YSI 556 MI  14:30 27.41 0 - 22.9 69.3 7.26 135.7 0.16	14:46 - 11 - 34 568 6:27 1900 6.086	14:50 - 22 - 56 63.9 7.20 179.9 0.092	Readings  15:00  53  -  19  49.1  5.45  152.4  0.149	0.65	1.5
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cm mS/cm	YSI 556 MI  14:30 27.41 0 - 22.9 69.3 7.26 135.7 0.16 0.087	14:46 - 11 - 34 568 6.27 1900 6.086	14:50 - 22 - 56 63.9 7.20 179.9 0.092 0.067	Readings  15:00  - 53 - 19 49.1 5.45 152.4 0.149 0.10	0.65	1.5
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit	YSI 556 MI  14:30 27:41 0 - 22.9 69.3 7.26 135.7 0.10 0.087 6.73	PS & Lamo 14:46 - 11 - 34 56.8 6.27 190.0 6.086 0.063 6.17	14:50 - 22 - 56 63.9 7.20 179.9 0.092 0.061 6.17	Readings  15:00 - 53 - 19 49.1 5.45 152.4 0.149 0.149 0.160 (0.57	0.65	1.5
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cm pH unit C°	YSI 556 MI  17:30 27:41 0 - 22.9 69.3 7.26 135.7 0.10 0.087 6.73 14.33	PS & Lamo 14:46 - 11 - 34 56.8 6.27 190.0 6.086 0.063 6.17 11.19	14:50 - 22 - 56 63.9 7.20 179.9 0.092 0.067 6.17 11.28	Readings  15:00  -  53  -  19  49.1  5.45  152.4  6.149  6.149  6.160  6.57  11.10	0.65	1.5
Parameter  Time Water Level (0.33) Volume Purged Flow Rate  Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Onductivity (+/- 3%) OH (+/- 0.1)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit	YSI 556 MI  14:30 27:41 0 - 22.9 69.3 7.26 135.7 0.10 0.087 6.73	PS & Lamo 14:46 - 11 - 34 56.8 6.27 190.0 6.086 0.063 6.17	14:50 - 22 - 56 63.9 7.20 179.9 0.092 0.061 6.17	Readings  15:00 - 53 - 19 49.1 5.45 152.4 0.149 0.149 0.160 (0.57	0.65	1.5

		Tuxedo Wa	ste Disposal		60323116	i .	
Monitoring Well Number:		MW-3		_ Date:		10/8/14	
Samplers:		Chris Frenc	h & Ross M	cCredy			
Sample Number:		MW-3 100	814	QA/Q	C Collected?		No
Purging / Sampling Method:		Hand Bailer	, Grundfos,	Whale or Wa	aterra Pump/3	Well Volum	es
1. L = Well Depth: 2. D = Riser Diameter (I.D.): 3. W = Depth to Water: 4. C = Column of Water in Well 5. V = Volume of Water in Well 6. 3(V) = Target Purge Volume		9)(0.5D) ² (7.		30.06 0.37 17.32 12.74 4.7 14	feet feet feet gal gal determine	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.50
			Conversio				
		D (inches)			0	_	6-inch
Water Quality Readings Collect	ed Using	D (inches) V (gal / ft) YSI 556 MI	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5
Water Quality Readings Collect Parameter Time	Units	V (gal / ft) YSI 556 MI	1-inch 0.041 PS & Lamo	2-inch 0.163 tte 2020 W	3-inch 0.37	4-inch	
Parameter Fime	Units 24 hr	V (gal / ft)  YSI 556 MI	1-inch 0.041	2-inch 0.163 tte 2020 W	3-inch 0.37	4-inch	
Parameter Time Water Level (0.33)	Units 24 hr feet	YSI 556 MI	1-inch 0.041 PS & Lamo	2-inch 0.163 tte 2020 W	3-inch 0.37 Readings	4-inch	
Parameter Time Water Level (0.33) Volume Purged	Units 24 hr feet gal	V (gal / ft)  YSI 556 MI	1-inch 0.041 PS & Lamo	2-inch 0.163 tte 2020 W	3-inch 0.37	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate	Units  24 hr feet gal mL/min	YSI 556 MI	1-inch 0.041 PS & Lamo	2-inch 0.163 tte 2020 W	3-inch 0.37 Readings 15:50	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%)	Units  24 hr feet gal mL/min NTU	YSI 556 MI  15:20 17.32 0 17.6	1-inch 0.041 PS & Lamo	2-inch 0.163 tte 2020 W	3-inch 0.37 Readings 15:50 - 15 - 73.0	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	Units  24 hr feet gal mL/min NTU %	YSI 556 MI  15:30 17.32 0 17.6 65.2	1-inch 0.041 PS & Lamo	2-inch 0.163 tte 2020 W	3-inch 0.37 Readings 15:50 - 15 - 43.0 31.1	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units  24 hr feet gal mL/min NTU % mg/L	YSI 556 MI 15:20 17:32 0 17.6 68:2 6.79	1-inch 0.041 PS & Lamo	2-inch 0.163 tte 2020 W	3-inch 0.37 Readings 15:50 	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	Units  24 hr feet gal mL/min NTU % mg/L MeV	YSI 556 MI  15:30 17.32 0 17.6 68.2 6.79 141.6	1-inch 0.041 PS & Lamo (\$:36 	2-inch 0.163 tte 2020 W	3-inch 0.37 Readings 15:50 - 15 - 43.0 31.1 170.2	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cm ^c	YSI 556 MI 15:30 17.32 0 17.6 65:2 (2.79 141.6 0.568	1-inch 0.041 PS & Lamo (\$:35 - 5 47.5 39.4 4.35 148.2 (.971	2-inch 0.163 tte 2020 W	3-inch 0.37 Readings 15:50 - 15 - 43.0 31.1 3.41 170.2 2.571	4-inch	
Parameter  Time Water Level (0.33) Volume Purged Flow Rate Furbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm	YSI 556 MI IS: 30 17.32 0 17.6 68.2 6.79 141.6 0.868 0.449	1-inch 0.041 PS & Lamo (\$:36 	2-inch 0.163 tte 2020 W	3-inch 0.37 Readings 15:50 - 15 - 43.0 31.1 3.41 170.2 2.571 1.984	4-inch	
Parameter  Time Water Level (0.33) Volume Purged Flow Rate  Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) OH (+/- 0.1)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit	YSI 556 MI  IS: 20 17.32  17.6 68.2 6.79 141.6 0.568 0.449 6.83	1-inch 0.041 PS & Lamo 15:35 5 47.5 39.4 4.35 148.2 (.971 6.56	2-inch 0.163 tte 2020 W	3-inch 0.37 Readings 15.50 - 15 - 43.0 31.1 3.41 170.2 2.5.71 1.984 6.37	4-inch	
Parameter  Time Water Level (0.33) Volume Purged Flow Rate  Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) OH (+/- 0.1) Temp (+/- 0.5)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit C°	V (gal / ft)  YSI 556 MI  IS:30 17.32 0 17.6 68.2 6.79 141.6 0.568 0.449 6.83 141.14	1-inch 0.041 S & Lamo 15:36 5 47.5 39.4 4.35 148.2 1.971 6.56 13.13	2-inch 0.163 tte 2020 WI 15:41 10 43.0 32.7 3.37 151.2 2.495 1.934 6.28 13.22	3-inch 0.37 Readings 15:50 15 - 43.0 31.1 3.41 170.2 2.571 1.984 6.37 13.09	4-inch	
Parameter  Time Water Level (0.33) Volume Purged Flow Rate  Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) OH (+/- 0.1)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit	YSI 556 MI  IS: 20 17.32  17.6 68.2 6.79 141.6 0.568 0.449 6.83	1-inch 0.041 PS & Lamo 15:35 5 47.5 39.4 4.35 148.2 (.971 6.56	2-inch 0.163 tte 2020 W	3-inch 0.37 Readings 15.50 - 15 - 43.0 31.1 3.41 170.2 2.5.71 1.984 6.37	4-inch	

Project Name and Number:		Tuxedo Wa	ste Disposal		60323116		
Monitoring Well Number:		MW-4		Data		10/ 🗚 🗸 / 14	
Monitoring Well Number.		101 00 -4		Date	-	10/ \$6/14	_
Samplers:		Chris Frenc	h & Ross Mc	Credy			
Sample Number:		MW-41008	814	QA/Q	C Collected?		No
Purging / Sampling Method:	/	Hand Bailer	Grundfos, V	Whale or Wa	aterra Pump/3	Well Volum	es
	(						
1. L = Well Depth:				26.14	feet	D (inches)	D (feet
2. D = Riser Diameter (I.D.):				0.17	feet	1-inch	0.08
3. W = Depth to Water:				18.89	feet	2-inch	0.17
4. C = Column of Water in Wel	l:			7.25	feet	3-inch	0.25
5. V = Volume of Water in Wel	I = C(3.1415)	9)(0.5D) ² (7.	48)	1.2	gal	4-inch	0.33
6. 3(V) = Target Purge Volume		,, ,,		3.7	gal	6-inch	0.50
		D (inches)	Conversion 1-inch	1 factors to 2-inch	determine V	4-inch	6-inch
		D (inches) V (gal / ft)					6-inch 1.5
			1-inch	2-inch	3-inch	4-inch	
Water Quality Readings Collec	ted Using	V (gal / ft)	1-inch	2-inch 0.163	3-inch 0.37	4-inch	
	1.7	V (gal / ft)	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch	
Water Quality Readings Collec	Units	V (gal / ft) YSI 556 M	1-inch 0.041 PS & Lamot	2-inch 0.163 te 2020 W	3-inch 0.37	4-inch	
Parameter Time	Units 24 hr	V (gal / ft)  YSI 556 M	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch	
Parameter Time Water Level (0.33)	Units 24 hr feet	V (gal / ft) YSI 556 M	1-inch 0.041 PS & Lamot	2-inch 0.163 te 2020 W	3-inch 0.37 E Readings	4-inch	
Parameter Time Water Level (0.33) Volume Purged	Units 24 hr feet gal	V (gal / ft)  YSI 556 M	1-inch 0.041 PS & Lamot	2-inch 0.163 te 2020 W	3-inch 0.37 E Readings (6:13	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate	Units  24 hr feet gal mL/min	YSI 556 M	1-inch 0.041 PS & Lamot	2-inch 0.163 te 2020 W	3-inch 0.37 E Readings (6:13	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%)	Units  24 hr feet gal mL/min NTU	V (gal / ft)  YSI 556 M  16:06 18.89	1-inch 0.041 PS & Lamot	2-inch 0.163 te 2020 W	3-inch 0.37 E Readings (6:13 3.7 32.4	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	Units  24 hr feet gal mL/min NTU %	V (gal / ft)  YSI 556 MI  16:06 18:89  13.1 13.6	1-inch 0.041 PS & Lamot	2-inch 0.163 te 2020 W	3-inch 0.37 E Readings [6:13] 3.7 32.4 25.7	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units  24 hr feet gal mL/min NTU % mg/L	YSI 556 MI  YSI 556 MI  16:06 18:89  13.1 13.6 1.50	1-inch 0.041 PS & Lamot 16:09 	2-inch 0.163 te 2020 W	3-inch 0.37 E Readings [6:13] - 3.7 - 32.4 25.7 2.89	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	Units  24 hr feet gal mL/min NTU % mg/L MeV	V (gal / ft)  YSI 556 M  16:06 18:89 0 13.1 13.6 1.50 101.2	1-inch 0.041 PS & Lamot 16:09 - 1.2 - 25.4 15.0 263201 162.8	2-inch 0.163 te 2020 W	3-inch 0.37 E Readings [6:13] - 3.7 - 32.4 25.7 2.89 126.7	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cm ^c	V (gal / ft)  YSI 556 M  16:06 18:89 0 13.1 13.6 1.50 101.2 0.585	1-inch 0.041 PS & Lamot 16:09 - 1.2 - 25.4 15.0 263202 162.8 6.523	2-inch 0.163 te 2020 W 16:11 2.4 - 25.0 19.2 2.19 1/1.9 0.521	3-inch 0.37 E Readings (6:13 3.7 - 32.4 25.7 2.84 126.7 0.522	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cm mS/cm	V (gal / ft)  YSI 556 M  16:06 18:89 0 13.1 13.6 1.50 101.2 0.585 0.459	1-inch 0.041 PS & Lamot 16:09 	2-inch 0.163 te 2020 W 16:11 - 25:0 19.2 2.19 1/2.9 0.521 6.404	3-inch 0.37 E Readings (6:13 - 37 - 32.4 25.7 2.84 126.7 0.522 6.464	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cm pH unit	V (gal / ft)  YSI 556 M  16:06 18:89 0 13.1 13.6 1.50 101.2 0.585 0.459 6.36	1-inch 0.041 PS & Lamot 16:09 	2-inch 0.163 te 2020 W 16:11 2.4 - 25.0 19.2 2.19 1/2.9 0.521 6.404 6.46	3-inch 0.37 E Readings (6:13 3.7 - 32.4 25.7 2.84 126.7 0.522 6.404 6.40	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cm pH unit C°	V (gal / ft)  YSI 556 M  IG:06 IB:89 0 13.1 I3.6 I.50 I01.2 0.587 0.459 6.36 I3.75°	1-inch 0.041 PS & Lamot 16:09 1.2 25.4 15.0 25.4 15.0 26.525 0.525 0.525 0.525	2-inch 0.163 te 2020 W 16:11 2.4 - 25.0 19.2 2.19 1/2.9 0.521 0.404 (446 13.25	3-inch 0.37 E Readings [6:13] - 3.7 - 32.4 25.7 2.84 126.7 0.522 6.404 (6.40) 13.21	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cm pH unit	V (gal / ft)  YSI 556 M  16:06 18:89 0 13.1 13.6 1.50 101.2 0.585 0.459 6.36	1-inch 0.041 PS & Lamot 16:09 	2-inch 0.163 te 2020 W 16:11 2.4 - 25.0 19.2 2.19 1/2.9 0.521 6.404 6.46	3-inch 0.37 E Readings (6:13 3.7 - 32.4 25.7 2.84 126.7 0.522 6.404 6.40	4-inch	

Project Name and Number:		ning wei	rurging	, annpn	ing Form			
roject ivallie and ivalliber.		Tuxedo Was	ste Disposal		60323116			
Monitoring Well Number:		MW-5		Date:		10/7/14		
Samplers:		Chris French	h & Ross M	cCredy				
Sample Number:		MW-5 106	714	QA/Q	C Collected?		No	
Purging / Sampling Method:	. (	Hand Bailer	r, Grundfos,	Whale or Wa	aterra Pump/3	Well Volum	es	
1. L = Well Depth: 2. D = Riser Diameter (I.D.): 3. W = Depth to Water: 4. C = Column of Water in Well: 5. V = Volume of Water in Well: 6. 3(V) = Target Purge Volume		9)(0.5D) ² (7.	·	19.38 6.17 (0.55 8.82 1.5 4.5	feet feet feet feet gal gal determine V	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.50	
			Conversion	in lactors to	determine v	given c		
Vater Quality Readings Collecte	ed Using	D (inches) V (gal / ft) YSI 556 M	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5	
	ed Using Units	V (gal / ft) YSI 556 M	1-inch 0.041 PS & Lamo	2-inch 0.163 otte 2020 W	3-inch 0.37	4-inch		
arameter		V (gal / ft)	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch		
Parameter	Units	V (gal / ft) YSI 556 M	1-inch 0.041 PS & Lamo	2-inch 0.163 tte 2020 WI	3-inch 0.37 E Readings	4-inch		
Parameter Time Water Level (0.33)	Units 24 hr	V (gal / ft) YSI 556 M	1-inch 0.041 PS & Lamo	2-inch 0.163 otte 2020 W	3-inch 0.37	4-inch		
Parameter Time Water Level (0.33) Volume Purged Flow Rate	Units 24 hr feet	YSI 556 MI  /4:13 10:55	1-inch 0.041 PS & Lamo	2-inch 0.163 htte 2020 WI	3-inch 0.37 E Readings /4:25	4-inch		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Furbidity (+/- 10%)	Units  24 hr feet gal mL/min NTU	YSI 556 M  /4:13 /0:\$  0  - 22.1	1-inch 0.041 PS & Lamo	2-inch 0.163 htte 2020 WI	3-inch 0.37 E Readings /4:25 -4.5 -29.2	4-inch		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Furbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	Units  24 hr feet gal mL/min NTU %	YSI 556 M  /4:13 /0:55 0 - 22:1 12:8	1-inch 0.041 PS & Lamo	2-inch 0.163 atte 2020 WI	3-inch 0.37 E Readings /4:25 -4.5 -29.2 31.2	4-inch		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Furbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units  24 hr feet gal mL/min NTU % mg/L	YSI 556 MI  /4:13 /0.55 0 - 22.1 12.8 1.32	1-inch 0.041 PS & Lamo 14:15 - 1.5 - 14.0 24,1 2.46	2-inch 0.163 atte 2020 WI	3-inch 0.37 Readings /4:25 	4-inch		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units  24 hr feet gal mL/min NTU % mg/L MeV	YSI 556 MI  /4:13 10.55 0 - 22.1 12.8 1.32 155.6	1-inch 0.041 PS & Lamo 14:15 - 1.5 - 14.0 24.1 2.46 131.8	2-inch 0.163 htte 2020 WI	3-inch 0.37 E Readings /4:25 - 4.5 - 29.2 31,2 3.49 (84.4)	4-inch		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	Units  24 hr feet gal mL/min NTU % mg/L	YSI 556 MI  /4:13 /0.55 0 - 22.1 12.8 1.32	1-inch 0.041 PS & Lamo 14:15 - 1.5 - 14.0 24,1 2.46	2-inch 0.163 htte 2020 WI	3-inch 0.37 Readings /4:25 - 4:5 - 29.2 31,2 3.49 (84.4) 6.646	4-inch		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%)	Units  24 hr feet gal mL/min NTU % mg/L MeV	YSI 556 MI  /4:13 10.55 0 - 22.1 12.8 1.32 155.6	1-inch 0.041 PS & Lamo 14:15 - 1.5 - 14.0 24.1 2.46 131.8	2-inch 0.163 tte 2020 WI	3-inch 0.37 Readings /4:25 - 4:5 - 29.2 31.2 3.49 (84.4 6.64\$ 6.5/6	4-inch		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cm ^c	V (gal / ft)  YSI 556 M  14:13 10:55 0 22.1 12.8 1:32 155.6 0.643	1-inch 0.041 PS & Lamo 14:15 - 1.5 - 14.0 24.1 2.46 131.8 0.649	2-inch 0.163 tte 2020 WI	3-inch 0.37  Readings  /4:25 -4:5 -29.2 31.2 3.49 (84.4) 0.648 0.5/6 4.29	4-inch		
Parameter  Time Water Level (0.33) Volume Purged Flow Rate Furbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) DH (+/- 0.1)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm	YSI 556 M  YSI 556 M  14:13 10:55 0 22.1 12.8 1:32 155.6 0.643 0.532	1-inch 0.041 PS & Lamo 14:15 - 1.5 - 14.0 24.1 2.46 131.8 0.649 0.524	2-inch 0.163 tte 2020 WI	3-inch 0.37 Readings /4:25 - 4:5 - 29.2 31.2 3.49 (84.4 6.64\$ 6.5/6	4-inch		
Water Quality Readings Collecter  Parameter  Time  Water Level (0.33)  Volume Purged  Flow Rate  Turbidity (+/- 10%)  Dissolved Oxygen (+/- 10%)  Dissolved Oxygen (+/- 10%)  Eh / ORP (+/- 10)  Specific Conductivity (+/- 3%)  Conductivity (+/- 3%)  pH (+/- 0.1)  Temp (+/- 0.5)  Color	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit	V (gal / ft)  YSI 556 M  14:13 10:55 0 - 22.1 12.8 1.32 155.6 0.643 0.632 4.12	1-inch 0.041 PS & Lamo 14:15 - 1.5 - 14.0 24.1 2.46 131.8 0.649 0.524 3.97	2-inch 0.163 tte 2020 WI	3-inch 0.37  Readings  /4:25 -4:5 -29.2 31.2 3.49 (84.4) 0.648 0.5/6 4.29	4-inch		

Sample Number:  Purging / Sampling Method:  1. L = Well Depth:  2. D = Riser Diameter (I.D.):		MW-7 Chris French	& Ross Mc	Date:				
Samplers: Sample Number: Purging / Sampling Method:  1. L = Well Depth: 2. D = Riser Diameter (I.D.):			& Ross Mc			10/ /14		
Purging / Sampling Method:  1. L = Well Depth:  2. D = Riser Diameter (I.D.):		MW-7		Credy				
1. L = Well Depth: 2. D = Riser Diameter (I.D.):					Collected?		No	
2. D = Riser Diameter (I.D.):	_			Vhale or Wa	terra Pump/3	3 Well Volumes		
<ul><li>3. W = Depth to Water:</li><li>4. C = Column of Water in Wel</li><li>5. V = Volume of Water in Wel</li><li>6. 3(V) = Target Purge Volume</li></ul>	I = C(3.1415	9)(0.5D) ² (7.4	3)		feet feet feet feet gal gal	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.50	
			Conversior	n factors to	determine V	/ given C		
		D (inches)	1 inch	2 inch	2 inch	4 inch	6 inch	
		D (inches) V (gal / ft)	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5	
	Units		S & Lamot		Readings			
Time	24 hr							
Time Water Level (0.33)	24 hr feet							
Time Water Level (0.33) Volume Purged	24 hr feet gal							
Time Water Level (0.33) Volume Purged Flow Rate	24 hr feet gal mL/min							
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	24 hr feet gal mL/min NTU							
Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	24 hr feet gal mL/min NTU %							
Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	24 hr feet gal mL/min NTU % mg/L							
Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	24 hr feet gal mL/min NTU % mg/L MeV							
Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%)	24 hr feet gal mL/min NTU % mg/L MeV mS/cmc							
Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%)	24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm							
Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1)	24 hr feet gal mL/min NTU % mg/L MeV mS/cmc pH unit							
Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm							

Activities .		Tuxedo was	te Disposal		60323116		
Monitoring Well Number:		MW-6		Date:		10/7 /14	
Samplers:		Chris French	a & Ross Mo	Credy			
Sample Number:		MW-6		QA/QC	Collected?		No
Purging / Sampling Method:		Hand Bailer.	Grundfos.	- Whale or Wa	terra Pump/;	Well Volum	es
diging / Camping Modical			,	18.40			
1. L = Well Depth: 2. D = Riser Diameter (I.D.):	= Riser Diameter (I.D.):				feet feet	D (inches) 1-inch	D (feet) 0.08
3. W = Depth to Water:	to Water:			9.36	feet	2-inch	0.17
4. C = Column of Water in Well		0		9.04	feet	3-inch	0.25
5. V = Volume of Water in Well	= C(3.14159)	9)(0.5D)²(7.4	48)	1.5	gal	4-inch	0.33
6, 3(V) = Target Purge Volume				4.6	gal	6-inch	0.50
			Conversio				0: 1
Water Quality Readings Collec	ted Using	D (inches) V (gal / ft) YSI 556 Mi	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5
	Units	V (gal / ft) YSI 556 Mi	1-inch 0.041 PS & Lamo	2-inch 0.163 tte 2020 WB	3-inch 0.37	4-inch	
Parameter Time	Units 24 hr	V (gal / ft)  YSI 556 MI	1-inch 0.041	2-inch 0.163	3-inch 0.37 Readings /3:25	4-inch	
Water Quality Readings Collect  Parameter  Time  Water Level (0.33)	Units 24 hr feet	V (gal / ft)  YSI 556 MI  13:18  9.36	1-inch 0.041 PS & Lamo	2-inch 0.163 tte 2020 WE	3-inch 0.37 Readings /3:25	4-inch	
Parameter Time Water Level (0.33) Volume Purged	Units 24 hr feet gal	V (gal / ft)  YSI 556 MI  13:18  9.36	1-inch 0.041 PS & Lamo	2-inch 0.163 tte 2020 WB	3-inch 0.37 Readings /3:2= 4.5	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate	Units 24 hr feet gal mL/min	V (gal / ft)  YSI 556 MI  13:18  9.36	1-inch 0.041 PS & Lamo	2-inch 0.163 tte 2020 WE	3-inch 0.37 Readings /3:2= 	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%)	Units  24 hr feet gal mL/min NTU	YSI 556 MI 13:18 9.36 0 11.3	1-inch 0.041 PS & Lamo	2-inch 0.163 tte 2020 WE /3:23 - 3.6 - 95.9	3-inch 0.37 Readings /3:2= 4.5	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	Units  24 hr feet gal mL/min NTU %	V (gal / ft)  YSI 556 MI  13:18 9.36 0 11.3 h.o	1-inch 0.041 PS & Lamo	2-inch 0.163 tte 2020 WE /3:23 - 3.0 - 95.9 /4.8	3-inch 0.37 Readings (3:25 	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units  24 hr feet gal mL/min NTU % mg/L	V (gal / ft)  YSI 556 MI  13:18 9.36 0 11.3 11.0	1-inch 0.041 PS & Lamo	2-inch 0.163 tte 2020 WE //3:23 - 3.6 - 95.9 //4.8 //.54	3-inch 0.37 Readings /3:25 4.5	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	Units  24 hr feet gal mL/min NTU % mg/L MeV	V (gal / ft)  YSI 556 MI  13:18  9.36  11.3  1.08  - 62.4	1-inch 0.041 PS & Lamo (2:26 - 1.S - (8.9 (8.0 1.86 -67.3	2-inch 0.163 tte 2020 WE /3:23 - 3.6 - 95.9 /4.8 /. 54 - 76.2	3-inch 0.37 Readings /3:2= 	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cmc	V (gal / ft)  YSI 556 MI  13:18 9.36 0 11.3 11.0 1.08 -62.4 0.675	1-inch 0.041 PS & Lamo (2:20 - 1.5 - (8.9 (8.0 1.86 -67.3 0.691	2-inch 0.163 tte 2020 WE /3:23 - 3.0 - 95.9 /4.8 /. 54 - 76.2 0.697	3-inch 0.37  Readings /3:2=	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cm mS/cm	V (gal / ft)  YSI 556 MI  13:18 9.36 0 11.3 11.0 1.08 -62.4 0.675 0.572	1-inch 0.041 PS & Lamo 1.5 - 1.5 - 1.86 -67.3 6.691 0.573	2-inch 0.163 tte 2020 WE /3:23 - 3.6 - 95.9 /4.8 /. 54 - 76.2	3-inch 0.37 Readings /3:25 -4.5 -68.5 K6.0 1.89 -66.8 0.690 0.557	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cm pH unit	V (gal / ft)  YSI 556 MI  13:18  9.36  0  11.3  1.0  1.08  -62.4  0.675  0.572  7.71	1-inch 0.041 PS & Lamo 1.5 - 1.5 - 1.86 -67.3 6.691 0.573 7.66	2-inch 0.163 tte 2020 WE 13:23 - 3.0 - 95.9 14.8 1.54 - 70.2 6.697 0.569 7.92	3-inch 0.37  Readings /3:2=	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cm mS/cm	V (gal / ft)  YSI 556 MI  13:18 9.36 0 11.3 11.0 1.08 -62.4 0.675 0.572	1-inch 0.041 PS & Lamo 1.5 - 1.5 - 1.86 -67.3 6.691 0.573	2-inch 0.163 tte 2020 WE 13:23 - 3.0 - 95.9 14.8 1.54 - 70.2 0.697 0.569	3-inch 0.37  Readings /3:25  4.5  - 68.5  1.89  - 16.8  6.696  6.557  7.56	4-inch	

	MOUITO	ring Wei	l Purging	/ Sampli	ng Form		
Project Name and Number:		Tuxedo Was	ste Disposal		60323116		
Monitoring Well Number:		RI-1		Date:		10/8 /14	
Samplers:		Chris Frenc	h & Ross Mc	Credy			
Sample Number:		RI-1 100814	(	QA/Q0	Collected?		No
urging / Sampling Method:  Hand Bailer, Grundfos,			Whale or Waterra Pump/3 Well Volumes				
<ol> <li>L = Well Depth:</li> <li>D = Riser Diameter (I.D.):</li> <li>W = Depth to Water:</li> <li>C = Column of Water in Well</li> <li>V = Volume of Water in Well</li> <li>3(V) = Target Purge Volume</li> </ol>		9)(0.5D) ² (7.	48)	93.53 0.17 12.53 81.00 13.8 41.0	feet feet feet feet gal gal	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	0.08 -0.17 -0.25 -0.33 -0.50
			Conversio	n factors to	determine \	/ given C	
Water Quality Readings Collect	ed Using	D (inches) V (gal / ft) YSI 556 M	Conversio 1-inch 0.041 PS & Lamo	2-inch 0.163	3-inch 0.37	/ given C 4-inch 0.65	6-inch 1.5
Water Quality Readings Collect Parameter	ed Using Units	V (gal / ft)	1-inch 0.041 PS & Lamo	2-inch 0.163 tte 2020 WI	3-inch 0.37	4-inch	
Parameter Time	Units 24 hr	V (gal / ft) YSI 556 M	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch	
Parameter Time Water Level (0.33)	Units 24 hr feet	V (gal / ft) YSI 556 M	1-inch 0.041 PS & Lamo	2-inch 0.163 tte 2020 Wi	3-inch 0.37  Readings  \\\`\`\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4-inch	
Parameter Time Water Level (0.33) Volume Purged	Units 24 hr feet gal	V (gal / ft)  YSI 556 M  /o!o2 12.53	1-inch 0.041 PS & Lamo	2-inch 0.163 tte 2020 WI	3-inch 0.37	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate	Units 24 hr feet gal mL/min	V (gal / ft)  YSI 556 M  /o!o2 12.53	1-inch 0.041 PS & Lamo	2-inch 0.163 tte 2020 WE	3-inch 0.37 Readings  \(\frac{1}{2}\)	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%)	Units  24 hr feet gal mL/min NTU	V (gal / ft)  YSI 556 M  /o!o2 12.53 6 - 17.8	1-inch 0.041 PS & Lamo	2-inch 0.163 tte 2020 WE	3-inch 0.37 Readings	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	Units  24 hr feet gal mL/min NTU %	V (gal / ft)  YSI 556 M  /o:o2 12.53 6 - 17.8 6.4	1-inch 0.041 PS & Lamo	2-inch 0.163 tte 2020 WE (0:42 - 28 - 1355 23.6	3-inch 0.37 Readings 11:00 - 42 - 51.3 15.5	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units  24 hr feet gal mL/min NTU % mg/L	YSI 556 M  /o:o2 12.S3 - 17.8 6.4 1.12	1-inch 0.041 PS & Lamo	2-inch 0.163 tte 2020 WE (0:42 - 28 - 1355 23.6 2.58	3-inch 0.37 Readings  \\'.oo - 42 - 51.3  5.5  .71	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	Units  24 hr feet gal mL/min NTU % mg/L MeV	V (gal / ft)  YSI 556 M  /0:02 12.53 6 - 17.8 65.4 6.12 120.0	1-inch 0.041 PS & Lamo	2-inch 0.163 tte 2020 WE (0:4/2 - 2.8 - 1355 23.6 2.58 - 5.0	3-inch 0.37 Readings  \frac{1}{2} - 51.3  5.5  .71  \frac{4}{6.0}	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units  24 hr feet gal mL/min NTU % mg/L	V (gal / ft)  YSI 556 M  /o:o2 12.53 6 - 17.8 6.4 6.4 6.12 120.0 0.486	1-inch 0.041 PS & Lamo (0:20 	2-inch 0.163 tte 2020 WI (0:42 - 2.8 - 1355 2.58 - 5.0 0.489	3-inch 0.37 Readings 1\'000 - 42 - 51.3 15.5 1.71 40.0 0.477	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cm mS/cm	V (gal / ft)  YSI 556 M  /0:02 12.53 0 17.8 6.4 1.12 120.0 0.486 0.371	1-inch 0.041 PS & Lamo (0:20 	2-inch 0.163 tte 2020 Wi tte 2020 Wi (0:42 - 28 - 1355 23.6 2.58 - 5.0 0.489 Q.370	3-inch 0.37  Readings 11:00 - 42 - 51.3 15.5 1.71 46.0 0.477 0.357	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit	V (gal / ft)  YSI 556 M  /o:o2 12.53 6 - 17.8 6.4 6.4 6.12 120.0 0.486	1-inch 0.041 PS & Lamo (0:20 	2-inch 0.163 tte 2020 WI (0:42 - 2.8 - 1355 2.58 - 5.0 0.489	3-inch 0.37  Readings 11:00 - 42 - 51.3 15.5 1.71 46.0 0.477 0.357 7.98	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cm mS/cm	V (gal / ft)  YSI 556 M  /0:02 12.53 0 17.8 6.4 1.12 120.0 0.486 0.371	1-inch 0.041 PS & Lamo (0:20 	2-inch 0.163 tte 2020 Wi tte 2020 Wi (0:42 - 28 - 1355 23.6 2.58 - 5.0 0.489 Q.370	3-inch 0.37 Readings  \'.oo - 42 - 51.3  5.5  .71  \(\frac{1}{6}.0\) 0.477 0.357 7.98  \ .76	4-inch	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit	V (gal / ft)  YSI 556 M  /0:02 12.53 0 17.8 6.4 1.12 1200 0.486 0.371 9.47	1-inch 0.041 PS & Lamo (0:25 14 - 262 27.8 3.04 51.4 0.492 0.367 9.08	2-inch 0.163 tte 2020 WE (0:42 - 28 - 1355 23.6 2.58 -5.0 0.489 0.375 8.48	3-inch 0.37  Readings 11:00 - 42 - 51.3 15.5 1.71 46.0 0.477 0.357 7.98	4-inch	

	Monito	oring We	II Purging	g / Sampl	ing Form			
Project Name and Number:		Tuxedo Wa	aste Disposal		60323116	5		
Monitoring Well Number:		RI-2		Date	:	10/7/14		
Samplers:		Chris Fren	ch & Ross M	cCredy				
Sample Number:		RI-2 1007	14	QA/Q	C Collected?		No	
Purging / Sampling Method:		Hand Baile	er, Grundfos,	Whale or W	hale or Waterra Pump/3 Well Volumes			
1. L = Well Depth: 2. D = Riser Diameter (I.D.): 3. W = Depth to Water: 4. C = Column of Water in We 5. V = Volume of Water in We 6. 3(V) = Target Purge Volume	II = C(3.1415	9)(0.5D) ² (7	.48)	70.54 0.65 10.59 59.95 39 117	feet feet feet feet gal gal	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.50	
			Conversion	on factors to	determine	V given C		
Water Quality Readings Collec	eted Using	D (inches) V (gal / ft)		2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5	
Parameter	Units	1013301	II O Q Lame	NIC 2020 W	Readings	-		
Time	24 hr	13:50	14:04	14:22	14:38			
Water Level (0.33)	feet	10.59		_	-			
Volume Purged	gal	0	40	80	120	1		
Flow Rate	mL/min/	-	_	20	,			
	NTU /	13.2	4.58	4.31	397			
Turbidity (+/- 10%)	%	56.7	29.1	28.0	31.6			
	mg/L	5.96	3.07	2.80	3.42			
Dissolved Oxygen (+/- 10%)	MeV	- 18.6	158.7	197.7	187.4			
Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)		0.187	0.501	6.509	6.505			
Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	mS/cm ^c			0.395	6.386	+		
Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%)	mS/cm ^c		10 342		100	-		
Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%)	mS/cm	0.145	0.392		3.55			
Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) bH (+/- 0.1)	mS/cm pH unit	0.145	0.01	3.55	3.55	-		
Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1)	mS/cm	0.145			3.55 1257 Cloal			
Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5)	mS/cm pH unit C°	0.145 4.54 13.12	0.01	3.55	1257			

	Wonite	oring vve	ll Purging	j / Sampi	ing Form		
Project Name and Number:	1.0	Tuxedo Wa	ste Disposal		60323116		
Monitoring Well Number:		RI-3		Date:	4	10/7/14	
Samplers:	-	Chris Frenc	ch & Ross Mo	cCredy			
Sample Number:		RI-3 160	114	QA/Q	C Collected?		No
Purging / Sampling Method:	/ Sampling Method: Hand Bailer Grundfos				aterra Pump/3	Well Volum	nes
1. L = Well Depth: 2. D = Riser Diameter (I.D.): 3. W = Depth to Water: 4. C = Column of Water in Well 5. V = Volume of Water in Well 6. 3(V) = Target Purge Volume		9)(0.5D) ² (7	.48)	51.50 5.17 58.13 645 1.10 3.3	feet feet feet feet gal gal	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 -0.33 0.50
			Conversion	n factors to	determine \	given C	
		D (inches) V (gal / ft)	0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5
Water Quality Readings Collect		V (gal / ft)		0.163	0.37		
Parameter	Units	V (gal / ft) YSI 556 M	0.041 IPS & Lamo	0.163 tte 2020 W	0.37		
Parameter Time	Units 24 hr	V (gal / ft) YSI 556 M	0.041	0.163	0.37		
Parameter Time Water Level (0.33)	Units 24 hr feet	V (gal / ft) YSI 556 N /6:03 38.13	0.041	0.163 tte 2020 W	0.37  Readings 16:15		
Parameter Time Water Level (0.33) Volume Purged	Units 24 hr feet gal	V (gal / ft) YSI 556 M	0.041 IPS & Lamo	0.163 tte 2020 W	0.37		
Parameter Time Water Level (0.33) Volume Purged Flow Rate	Units 24 hr feet gal mL/min	V (gal / ft) YSI 556 N  /6:03 38.13	0.041  IPS & Lamo  16:06  - 1.10	0.163 tte 2020 W	0.37  Readings 16:15 3.30		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%)	Units  24 hr feet gal mL/min NTU	V (gal / ft) YSI 556 N  16:03 38.13 0 - 44.6	0.041  IPS & Lamo  16:06  - 1.10 2357	0.163 tte 2020 W	0.37  Readings 16:15 3.30 Lingt		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	Units  24 hr feet gal mL/min NTU %	V (gal / ft) YSI 556 N  16:03 38.13 0 - 44.6 25.2	0.041  IPS & Lamo  16:06  - 1.10  2357  41.0	0.163 tte 2020 W	0.37  Readings 16:15 3.30  Linit 36.6		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units  24 hr feet gal mL/min NTU % mg/L	V (gal / ft)  YSI 556 M  16:03 38.13 0 - 44.6 2-9.2 3.17	0.041  IPS & Lamo  16:06  - 1.10  2357  41.0  4.89	0.163 tte 2020 W  16:10  2.2-  Limit 31.8 3.57	0.37  Readings 16:15  3.30  Linit 36.6 4.39		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	Units  24 hr feet gal mL/min NTU % mg/L MeV	V (gal / ft) YSI 556 M  16:03 38.13 0 - 44.6 25.2 3.17 22.9	0.041  IPS & Lamo  16:06  1.10  2357  41.0  4.89  219.7	0.163 tte 2020 W  16:16  2.2e  Limit 31.8 3.57 217.1	0.37  Readings 16:15  3.30  Linit 36.6 4.39 217.3		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cmc	V (gal / ft) YSI 556 N  16:03 38.13 0 - 44.6 29.2 3.17 222.9 0.463	0.041  IPS & Lamo  16:06   1.10  2357  41.0  4.89  219.7  0.461	0.163 tte 2020 W  16:10  2.20  Limit 31.8 3.57 217.1 6.476	0.37  Readings  16:15  3.30  Linit 36.6  4.39  217.3  0.472		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm	V (gal / ft) YSI 556 N  16:03 38.13 0 - 44.6 25.2 3.17 22.9 0.463 0.352	0.041  IPS & Lamo  16:06	0.163 tte 2020 W  16:10  2.2= Limit 31.8 3.57 217.1 6.47= 0.349	0.37  Readings  16:15  3.30  Linit 36.6  4.39  217.3  0.472  0.349		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit	V (gal / ft)  YSI 556 N  16:03 38.13 0 - 44.6 29.2 3.17 22.9 0.463 0.352 5.70	0.041  IPS & Lamo  16:06  - 1.10  2357  41.0  4.89  219.7  0.161  0.343  5.41	0.163 tte 2020 W  16:76  2.20  Limit 31.8 3.57 217.1 0.475 0.549 5.30	0.37  Readings 16:15  3.30  Linit 36.6  4.39  217.3  0.472  0.349  5.32		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cm pH unit C°	V (gal / ft) YSI 556 N  16:03 38.13 0 - 44.6 29.2 3.17 22.9 0.463 0.352 5.70 12.42	0.041  IPS & Lamo  16:06  - 1.10  2357  41.0  4.89  219.7  0.161  0.343  5.41  12.21	0.163 tte 2020 W  16:76  2.20  Limit 31.8 3.57 217.1 0.470 0.349 5.30 11.55	0.37  Readings 16:15  3.30  Linit 26.6 4.39 217.3 0.472 0.349 5.32  III.56		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit	V (gal / ft)  YSI 556 N  16:03 38.13 0 - 44.6 29.2 3.17 22.9 0.463 0.352 5.70	0.041  IPS & Lamo  16:06  - 1.10  2357  41.0  4.89  219.7  0.161  0.343  5.41	0.163 tte 2020 W  16:76  2.20  Limit 31.8 3.57 217.1 0.475 0.549 5.30	0.37  Readings 16:15  3.30  Linit 36.6  4.39  217.3  0.472  0.349  5.32		

Project Name and Number:  Monitoring Well Number:  Samplers:  Sample Number:  Purging / Sampling Method:  1. L = Well Depth: 2. D = Riser Diameter (I.D.): 3. W = Depth to Water:		RI-4 Chris Frenc	iste Disposal	Date:	60323116	10/ <b>7</b> /14	q
Samplers: Sample Number: Purging / Sampling Method:  1. L = Well Depth: 2. D = Riser Diameter (I.D.): 3. W = Depth to Water:		Chris Frenc	ch & Ross Mo			10/7/14	
Sample Number:  Purging / Sampling Method:  1. L = Well Depth:  2. D = Riser Diameter (I.D.):  3. W = Depth to Water:			ch & Ross Mo	Credy			
Purging / Sampling Method:  1. L = Well Depth:  2. D = Riser Diameter (I.D.):  3. W = Depth to Water:		RI-4 100			redy		
1. L = Well Depth: 2. D = Riser Diameter (I.D.): 3. W = Depth to Water:							No
2. D = Riser Diameter (I.D.): 3. W = Depth to Water:		Hand Baile	r, Grundfos,	Whale or Wa	Vhale or Waterra Pump/3 Well Volumes		
<ol> <li>C = Column of Water in Well</li> <li>V = Volume of Water in Well</li> <li>3(V) = Target Purge Volume</li> </ol>		9)(0.5D) ² (7	.48)	16.67 17 ##\$ 15.32 1.35 .23 .68	feet feet feet feet gal gal	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.50
				n factors to	determine V	given C	
		D (inches) V (gal / ft)		2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5
Water Quality Readings Collect	ted Using Units	YSI 556 M	IPS & Lamo	tte 2020 W			
		T			Readings		
ime	24 hr	11:22	11:25	11:27	Readings //: 30		
		15.32	11:25	11:27	Readings //: 30		
Vater Level (0.33)	feet	15.32		_	//:30		
Water Level (0.33) Volume Purged	feet gal		0.3	0.6			
Nater Level (0.33) Volume Purged Flow Rate	feet gal mL/min	15.32	0.3	0.6	//:30 - 0.75 -		
Water Level (0.33) Volume Purged Flow Rate Furbidity (+/- 10%)	feet gal mL/min NTU	15.32 0 - 11.3	- 0.3 - 45.1	0.6	//:30 - 0.75 - 32.3		
Water Level (0.33) Volume Purged Flow Rate Furbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	feet gal mL/min NTU %	15.32 0 - 11.3 18.4	- 6.3 - 45.1 16.4	0.6  45.3 16.3	//:30 - 0.75 - 32.3 16.4		
Vater Level (0.33)  Volume Purged  Flow Rate  Furbidity (+/- 10%)  Dissolved Oxygen (+/- 10%)  Dissolved Oxygen (+/- 10%)	feet gal mL/min NTU % mg/L	15.32 0 - 11.3 18.4 1.84	- 0.3 - 45.1	0.6  45.3 16.3	//:30  0.75  32.3 16.4 1.66		
Vater Level (0.33) Volume Purged Flow Rate Furbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	feet gal mL/min NTU % mg/L MeV	15.32 0 - 11.3 18.4 1.84	- 0.3 - 45.1 16.4 1.72 46.6	0.6 - 45.3 16.3 1.65	//:30 - 0.75 - 32.3 16.4 1.66 9.7		
Water Level (0.33) Volume Purged Flow Rate Furbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%)	feet gal mL/min NTU % mg/L MeV mS/cmc	15.32 0 - 11.3 18.4 1.84 76.7	- 0.3 - 45.1 (6.4 1.72 46.6 0.575	0.6 - 45.3 16.3 1.65 15.4 0.577	//:30 		
Vater Level (0.33)  Volume Purged  Flow Rate  Furbidity (+/- 10%)  Dissolved Oxygen (+/- 10%)  Dissolved Oxygen (+/- 10%)  Eh / ORP (+/- 10)  Specific Conductivity (+/- 3%)  Conductivity (+/- 3%)	feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm	15.32 0 - 11.3 18.4 1.84 76.7 6.581	 0.3  45.1 16.4 1.72 40.6 0.575 0.475	0.6 - 45.3 16.3 1.65 15.4 0.577 0.480	//:30  0.75  32.3 16.4 1.66 9.7 0.571		
Water Level (0.33) Volume Purged Flow Rate Furbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) DH (+/- 0.1)	feet gal mL/min NTU % mg/L MeV mS/cm pH unit	15.32 0 - 11.3 18.4 1.84 76.7 6.581 0.470 6.21		0.6 - 45.3 16.3 1.65 15.4 0.577 0.480 6.24	//: 30 0.75 - 32.3 16.4 1.66 9.7 0.571 0.475 6.23		
Fime Water Level (0.33) Volume Purged Flow Rate Furbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) DH (+/- 0.1) Femp (+/- 0.5) Color	feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm	15.32 0 - 11.3 18.4 1.84 76.7 6.581	 0.3  45.1 16.4 1.72 40.6 0.575 0.475	0.6 - 45.3 16.3 1.65 15.4 0.577 0.480	//:30  0.75  32.3 16.4 1.66 9.7 0.571		

Project Name and Number:					ing Form		
•		Tuxedo Was	ste Disposal		60323116		
Monitoring Well Number:		RI-5A		Date:		10/7/14	
Samplers:		Chris French	h & Ross Mo	Credy			
Sample Number:		RI-5A		QA/Q0	C Collected?		No
Purging / Sampling Method:		Hand Bailer	, Grundfos,	Whale or Waterra Pump/3 Well Volumes			ies
1, L = Well Depth: 2. D = Riser Diameter (I.D.): 3. W = Depth to Water: 4. C = Column of Water in Wel 5. V = Volume of Water in Wel 6. 3(V) = Target Purge Volume	D.): in Well: in Well = C(3.14159)(0.5D) ² (7.48)			81.21 0.17 41.35 39.83 6.7 20	feet feet feet gal gal determine	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.50
		D (inches)	1-inch 0.041	2-inch	3-inch	4-inch 0.65	6-inch 1.5
		V (gal / ft)	1	0.163		0.00	1.0
Parameter	Units	YSI 556 MI	PS & Lamo	tte 2020 WI	Readings	0.00	-1.0
arameter	Units 24 hr	YSI 556 MI	PS & Lamo			0.00	1.0
arameter ime Vater Level (0.33)	Units 24 hr feet	YSI 556 MF	PS & Lamo	tte 2020 WE	Readings	0.00	1.0
arameter ime Vater Level (0.33) olume Purged	Units 24 hr feet gal	YSI 556 MI	PS & Lamo	(2:30 -	Readings	0.00	1.0
arameter ime Vater Level (0.33) olume Purged low Rate	Units  24 hr feet gal mL/min	YSI 556 MI	12:/g	(2:30 - 14	Readings / 2:35 - /5 -	0.00	1.0
arameter ime /ater Level (0.33) folume Purged low Rate urbidity (+/- 10%)	Units  24 hr feet gal mL/min NTU	YSI 556 MI (2:13 41.28 0 -	12:/8 7 39.2	12:30 - 14 - 16.58	Readings /2:35 - 15 - 10.15	0.00	1.0
arameter ime /ater Level (0.33) folume Purged low Rate urbidity (+/- 10%) rissolved Oxygen (+/- 10%)	Units  24 hr feet gal mL/min NTU %	YSI 556 MI 12:13 41.28 0 - 14.6 700	12:18 7 39.2 68.5	12:30 - 14 - 16.58 62.2	Readings /2:35 - 15 - 10.15 71.9	0.00	1.0
arameter ime /ater Level (0.33) folume Purged low Rate urbidity (+/- 10%) sissolved Oxygen (+/- 10%) sissolved Oxygen (+/- 10%)	Units  24 hr feet gal mL/min NTU % mg/L	YSI 556 MI (2:13 41.28 - 14.6 70.0 7.33	12:18 	12:30 - 14 - 16.58 62.2 (634	Readings   12:35   -   15   -	0.00	
arameter ime Vater Level (0.33) Volume Purged low Rate urbidity (+/- 10%) vissolved Oxygen (+/- 10%) vissolved Oxygen (+/- 10%)	Units  24 hr feet gal mL/min NTU %	YSI 556 MI 12:13 41.28 0 - 14.6 700	12:18 7 39.2 68.5	12:30 - 14 - 16.58 62.2	Readings /2:35 - 15 - 10.15 71.9	0.00	
arameter ime /ater Level (0.33) folume Purged low Rate urbidity (+/- 10%) tissolved Oxygen (+/- 10%) h / ORP (+/- 10)	Units  24 hr feet gal mL/min NTU % mg/L	YSI 556 MI (2:13 41.28 - 14.6 70.0 7.33	12:18 	12:30 - 14 - 16.58 62.2 (e34 97.8	Readings   12:35   -   15   -	0.00	
arameter ime /ater Level (0.33) folume Purged low Rate urbidity (+/- 10%) rissolved Oxygen (+/- 10%) h / ORP (+/- 10) pecific Conductivity (+/- 3%)	Units  24 hr feet gal mL/min NTU % mg/L MeV	YSI 556 MI 12:13 41.28 0 - 14.6 70.0 7.33 99.0	7 39.2 68.5 7.25	12:30 - 14 - 16.58 62.2 (e34 97.8 6.276	Readings   12:35	0.00	
arameter ime Vater Level (0.33) Volume Purged low Rate urbidity (+/- 10%) Vissolved Oxygen (+/- 10%) Vissolved Oxygen (+/- 10%) A ORP (+/- 10) pecific Conductivity (+/- 3%) Conductivity (+/- 3%)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cm mS/cm	YSI 556 MI 12:13 41.28 0 - 14.6 70.0 7.33 99.0 0.288 0.227	7 39.2 68.5 7.25 101.6 0.258 0.200	12:30 - 14 - 16.58 62.2 (a.34 97.8 6.276 6.210	Readings   12:38	0.00	
arameter ime Vater Level (0.33) Volume Purged low Rate urbidity (+/- 10%) vissolved Oxygen (+/- 10%) vissolved Oxygen (+/- 10%) h / ORP (+/- 10) pecific Conductivity (+/- 3%) onductivity (+/- 3%) H (+/- 0.1)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cm mS/cm pH unit	YSI 556 MI 12:13 41.28 0 - 14.6 70.0 7.33 99.0 0.288 0.227 9.26	7 39. 2 68.5 7. 25 101.6 0. 258 0. 200 9.53	12:30 - 14 - 16.58 62.2 634 97.8 6.276 6.110 9.43	Readings 12:35 - 15 - 10.15 71.9 7.56 1]9.1 0.266 0.210 8.95		
Varameter Vater Level (0.33) Volume Purged low Rate Variotity (+/- 10%) Varioticy (+/- 10%) Varioticy (+/- 10%) Varioticy (+/- 10) Varioticy (+/- 10) Varioticy (+/- 3%) Varioticy (+/-	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cm pH unit C°	YSI 556 MI 12:13 41.28 0 - 14.6 70.0 7.33 99.0 0.288 0.227 9.26 14.00	12:18 7 39.2 68.5 7.25 101.6 0.258 0.200 9.53	12:30 - 14 - 16.58 62.2 (254 97.8 6.276 6.210 9.43 13.43	Readings 12:35 - 15 - 10.15 71.9 7.56 119.1 0.266 0.210 8.95 14.15		
Vater Quality Readings Collect Parameter Time Water Level (0.33) Volume Purged Flow Rate Furbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) OH (+/- 0.1) Temp (+/- 0.5) Color	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cm mS/cm pH unit	YSI 556 MI 12:13 41.28 0 - 14.6 70.0 7.33 99.0 0.288 0.227 9.26	7 39. 2 68.5 7. 25 101.6 0. 258 0. 200 9.53	12:30 - 14 - 16.58 62.2 634 97.8 6.276 6.110 9.43	Readings 12:35 - 15 - 10.15 71.9 7.56 1]9.1 0.266 0.210 8.95		

Project Name and Number:  Monitoring Well Number:  Samplers:  Sample Number:		Upstream	edo Wa	ste			
Samplers:		Upstream					
			Surface	_ Date:	10/8/14		
Sample Number:		RM !					
		US 10081	4	QA/QC	Collected?	_ No	
Purging / Sampling Method:							
1. L = Well Depth:					feet	D (inches)	D (feet)
2. D = Riser Diameter (I.D.):					feet	1-inch	0.08
3. W = Depth to Water:					feet	2-inch	0.17
<ol><li>C = Column of Water in Well</li></ol>					feet	3-inch	0.25
<ol><li>V = Volume of Water in Well</li></ol>		9)(0.5D) ² (7.4	8)		gal	4-inch	0.33
6. 3(V) = Target Purge Volume					gal	6-inch	0.50
			Conversior	ı factors to	determine \	/ given C	
							0 : 1
		D (inches)	1-inch	2-inch	3-inch	4-inch	6-inch
		D (inches) V (gal / ft)	1-inch 0.041	2-inch 0.163	0.37	4-inch 0.65	6-inch 1.5
Parameter	ted Using Units 24 hr						
Parameter Fime	Units	V (gal / ft)			0.37		
Parameter Time Water Level (0.33) Volume Purged	Units 24 hr	V (gal / ft)			0.37		
Parameter Fime Water Level (0.33) Volume Purged Flow Rate	Units 24 hr feet	//:3»			0.37		
Parameter Fime Water Level (0.33) Volume Purged Flow Rate Furbidity (+/- 10%)	Units  24 hr feet gal mL/min NTU	//:3			0.37		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	Units  24 hr feet gal mL/min NTU %	//: 22 - - - 9.69 63.1			0.37		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units  24 hr feet gal mL/min NTU % mg/L	//: 32 - - - 9.69 63.1 5.75			0.37		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	Units  24 hr feet gal mL/min NTU % mg/L MeV	//:3= - - 9.69 63.1 5.75 //80			0.37		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cmc	//:32 			0.37		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cm° mS/cm	//:3. 			0.37		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) DH (+/- 0.1)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cm mS/cm pH unit	//:3. 			0.37		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) DH (+/- 0.1) Temp (+/- 0.5)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cm pH unit C°	//:3. 			0.37		
Water Quality Readings Collect  Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5) Color Odor	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cm mS/cm pH unit	//:3. 			0.37		

				•	ng Form		
Project Name and Number:		Tuxe	do				
Monitoring Well Number:		DSSW		Date:	10/8/	14	
Samplers:							
Sample Number:		RM/CF DSW1008H		QA/QC	Collected?		
Purging / Sampling Method:							
1. L = Well Depth: 2. D = Riser Diameter (I.D.): 3. W = Depth to Water: 4. C = Column of Water in Well 5. V = Volume of Water in Well 6. 3(V) = Target Purge Volume		9)(0.5D) ² (7.4	8)		feet feet feet feet gal gal	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	.D (feet) 0.08 0.17 0.25 0.33 0.50
			Conversior	factors to	determine	V given C	
				0:1		1 77 7	0: 1
Water Quality Readings Collect	ed Using	D (inches) V (gal / ft)	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5
Parameter	Units	V (gal / ft)				0.65	
Parameter Time	Units 24 hr	D (inches) V (gal / ft)			0.37	0.65	
Parameter Time Water Level (0.33)	Units 24 hr feet	V (gal / ft)			0.37	0.65	
Parameter Time Water Level (0.33) Volume Purged	Units 24 hr feet gal	V (gal / ft)			0.37	0.65	
Parameter Time Water Level (0.33) Volume Purged Flow Rate	Units  24 hr feet gal mL/min	12:45			0.37	0.65	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%)	Units  24 hr feet gal mL/min NTU	12:45 - - 5.16			0.37	0.65	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	Units  24 hr feet gal mL/min NTU %	12:45 - - 5./6 82.2			0.37	0.65	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units  24 hr feet gal mL/min NTU % mg/L	12:45 - - 5.16 82.2 7.35			0.37	0.65	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	Units  24 hr feet gal mL/min NTU % mg/L MeV	12:45 - - 5.16 82.2 7.35 63.5			0.37	0.65	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cm ^c	12:45 - 5.16 82.2 7.35 63.5			0.37	0.65	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm	12:45 - 5.16 82.2 7.35 63.5 1.041			0.37	0.65	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit	12:45 - 5.16 82.2 7.35 63.5 1.041 0.962 951			0.37	0.65	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cm pH unit C°	12:45 - 5.16 82.2 7.35 63.5 1.041 0962 951 20.25			0.37	0.65	
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) pH (+/- 0.1)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit	12:45 - 5.16 82.2 7.35 63.5 1.041 0.962 951			0.37	0.65	

AECOM Environment

Appendix B

**Laboratory Data** 



✓ Final Report
Re-Issued Report
Revised Report

## Laboratory Report

AECOM Technical Services, Inc.

Work Order: N1893

40 British American Blvd. Project: Tuxedo Waste Disposal

Latham, NY 12110 Project #:

Attn: Mark Howard

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
N1893-01	MW-1 100714	Aqueous	07-Oct-14 10:45	09-Oct-14 10:25
N1893-02	RI-4 100714	Aqueous	07-Oct-14 11:30	09-Oct-14 10:25
N1893-03	RI-5A 100714	Aqueous	07-Oct-14 12:38	09-Oct-14 10:25
N1893-04	MW-6 100714	Aqueous	07-Oct-14 13:25	09-Oct-14 10:25
N1893-05	MW-5 100714	Aqueous	07-Oct-14 14:25	09-Oct-14 10:25
N1893-06	RI-2 100714	Aqueous	07-Oct-14 14:38	09-Oct-14 10:25
N1893-07	RI-3 100714	Aqueous	07-Oct-14 16:15	09-Oct-14 10:25
N1893-08	RI-1 100814	Aqueous	08-Oct-14 11:00	09-Oct-14 10:25
N1893-09	MW-2 100814	Aqueous	08-Oct-14 15:00	09-Oct-14 10:25
N1893-10	MW-3 100814	Aqueous	08-Oct-14 15:50	09-Oct-14 10:25

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. The results relate only to the samples(s) as received. This report may not be reproduced, except in full, without written approval from Spectrum Analytical.

All applicable NELAC or USEPA CLP requirments have been meet.

Spectrum Analytical (Rhode Island) is accredited under the National Environmental Laboratory Approval Program (NELAP) and DoD Environmental Laboratory Accreditation Program (ELAP), holds Organic and Inorganic contracts under the USEPA CLP Program and is certified under several states. The current list of our laboratory approvals and certifications is available on the Certifications page on our web site at www.spectrum-analytical.com.

Please contact the Laboratory or Technical Director at 401-732-3400 with any questions regarding the data contained in the laboratory report.

Department of Defense N/A PH-0153 Connecticut Delaware N/A Florida E87664 Maine 2007037 Massachusetts M-RI907 New Hampshire 2631 New Jersey RI001 New York 11522 Rhode Island LAI00301 P330-08-00023 USDA USEPA - ISM EP-W-09-039 USEPA - SOM EP-W-11-033





Authorized by:

Yihai Ding Laboratory Director

# **New York State Department of Environmental Conservation Sample Identification and Analytical Requirements Summary**

Project Name: Tuxedo Waste Disposal

SDG: N1893

			Analy	tical Requirement	S	
Customer Sample ID	Laboratory Sample ID	MSVOA Method #	MSSEMI Method #	GC* Method #	ME	Other
MW-1 100714	N1893-01				SW6010_W	
MW-1 100714	N1893-01				SW7470	
RI-4 100714	N1893-02				SW6010_W	
RI-4 100714	N1893-02				SW7470	
RI-5A 100714	N1893-03				SW6010_W	
RI-5A 100714	N1893-03				SW7470	
MW-6 100714	N1893-04				SW6010_W	
MW-6 100714	N1893-04				SW6010_W	
MW-6 100714	N1893-04				SW7470	
MW-6 100714	N1893-04				SW7470	
MW-5 100714	N1893-05				SW6010_W	
MW-5 100714	N1893-05				SW7470	
RI-2 100714	N1893-06				SW6010_W	
RI-2 100714	N1893-06				SW7470	
RI-3 100714	N1893-07				SW6010_W	
RI-3 100714	N1893-07				SW6010_W	
RI-3 100714	N1893-07				SW7470	
RI-3 100714	N1893-07				SW7470	
RI-1 100814	N1893-08				SW6010_W	
RI-1 100814	N1893-08				SW6010_W	
RI-1 100814	N1893-08				SW7470	
RI-1 100814	N1893-08				SW7470	
MW-2 100814	N1893-09				SW6010_W	
MW-2 100814	N1893-09				SW7470	
MW-3 100814	N1893-10				SW6010_W	
MW-3 100814	N1893-10				SW7470	

**Page 1** 10/27/2014 16:29

## New York State Department of Environmental Conservation Sample Preparation and Analysis Summary ME

Project Name : Tuxedo Waste Disposal

SDG: N1893

Laboratory		Metals	Date Received	Date
Sample ID	Matrix	Requested	By Lab	Analyzed
SW6010_W			-	
N1893-01A	AQ	SW6010_W	10/9/2014	10/18/2014
N1893-02A	AQ	SW6010_W	10/9/2014	10/18/2014
N1893-03A	AQ	SW6010_W	10/9/2014	10/18/2014
N1893-04A	AQ	SW6010_W	10/9/2014	10/18/2014
N1893-04B	AQ	SW6010_W	10/9/2014	10/18/2014
N1893-05A	AQ	SW6010_W	10/9/2014	10/18/2014
N1893-06A	AQ	SW6010_W	10/9/2014	10/18/2014
N1893-07A	AQ	SW6010_W	10/9/2014	10/18/2014
N1893-07B	AQ	SW6010_W	10/9/2014	10/18/2014
N1893-08A	AQ	SW6010_W	10/9/2014	10/18/2014
N1893-08B	AQ	SW6010_W	10/9/2014	10/18/2014
N1893-09A	AQ	SW6010_W	10/9/2014	10/18/2014
N1893-10A	AQ	SW6010_W	10/9/2014	10/18/2014
SW7470				
N1893-01A	AQ	SW7470	10/9/2014	10/22/2014
N1893-02A	AQ	SW7470	10/9/2014	10/22/2014
N1893-03A	AQ	SW7470	10/9/2014	10/22/2014
N1893-04A	AQ	SW7470	10/9/2014	10/22/2014
N1893-04B	AQ	SW7470	10/9/2014	10/22/2014
N1893-05A	AQ	SW7470	10/9/2014	10/22/2014
N1893-06A	AQ	SW7470	10/9/2014	10/24/2014
N1893-07A	AQ	SW7470	10/9/2014	10/24/2014
N1893-07B	AQ	SW7470	10/9/2014	10/24/2014
N1893-08A	AQ	SW7470	10/9/2014	10/24/2014
N1893-08B	AQ	SW7470	10/9/2014	10/24/2014
N1893-09A	AQ	SW7470	10/9/2014	10/24/2014
N1893-10A	AQ	SW7470	10/9/2014	10/24/2014

Page 8 10/27/2014 16:29

WorkOrder: N1893

Report Level: ASP-A

EDD:

Fax Report:

Special Program:

HC Due: 10/21/14 Fax Due: Case: SDG: **Project:** Tuxedo Waste Disposal © Client ID: AECOM_LATHAM

Location: AECOM_TUXEDO,

WO Name: Tuxedo Waste Disposal

Comments: N/A

**PO:** 60323116.3

Lab Samp ID	Client Sample ID	Collection Date	Date Recv'd	Matrix	Test Code	Samp / Lab Test Comments	HF HT MS SEL Storage
N1893-01A	MW-1 100714	10/07/2014 10:45	10/09/2014	Aqueous	SW6010_W	/ TAL	Y M2
N1893-01A	MW-1 100714	10/07/2014 10:45	10/09/2014	Aqueous	SW7470	/TAL	M2
N1893-02A	RI-4 100714	10/07/2014 11:30	10/09/2014	Aqueous	SW6010_W	/TAL	Y M2
N1893-02A	RI-4 100714	10/07/2014 11:30	10/09/2014	Aqueous	SW7470	/TAL	M2
N1893-03A	RI-5A 100714	10/07/2014 12:38	10/09/2014	Aqueous	SW6010_W	/TAL	Y M2
N1893-03A	RI-5A 100714	10/07/2014 12:38	10/09/2014	Aqueous	SW7470	/TAL	M2
N1893-04A	MW-6 100714	10/07/2014 13:25	10/09/2014	Aqueous	SW6010_W	/TAL	Y M2
N1893-04A	MW-6 100714	10/07/2014 13:25	10/09/2014	Aqueous	SW7470	/TAL	M2
N1893-04B	MW-6 100714	10/07/2014 13:25	10/09/2014	Aqueous	SW6010_W	/ Dissolved, TAL	Y M2
N1893-04B	MW-6 100714	10/07/2014 13:25	10/09/2014	Aqueous	SW7470	/ Dissolved, TAL	M2
N1893-05A	MW-5 100714	10/07/2014 14:25	10/09/2014	Aqueous	SW6010_W	/TAL	Y M2
N1893-05A	MW-5 100714	10/07/2014 14:25	10/09/2014	Aqueous	SW7470	/ TAL	M2
N1893-06A	RI-2 100714	10/07/2014 14:38	10/09/2014	Aqueous	SW6010_W	/TAL	Y M2
N1893-06A	RI-2 100714	10/07/2014 14:38	10/09/2014	Aqueous	SW7470	/TAL	M2
N1893-07A	RI-3 100714	10/07/2014 16:15	10/09/2014	Aqueous	SW6010_W	/ TAL	Y M2
N1893-07A	RI-3 100714	10/07/2014 16:15	10/09/2014	Aqueous	SW7470	/ TAL	M2
N1893-07B	RI-3 100714	10/07/2014 16:15	10/09/2014	Aqueous	SW6010_W	/ Dissolved, TAL	Y M2
N1893-07B	RI-3 100714	10/07/2014 16:15	10/09/2014	Aqueous	SW7470	/ Dissolved, TAL	M2
N1893-08A	RI-1 100814	10/08/2014 11:00	10/09/2014	Aqueous	SW6010_W	/ TAL	Y M2
N1893-08A	RI-1 100814	10/08/2014 11:00	10/09/2014	Aqueous	SW7470	/TAL	M2
N1893-08B	RI-1 100814	10/08/2014 11:00 10/09/2014	10/09/2014	Aqueous	SW6010_W	/ Dissolved, TAL	Y M2
6 F = Fracti	(G) The area of the sets of the sets of the sets of the sets of the set of t	e been placed on h	plot			HT = Test logged	HT = Test logged in but has been placed on hold
of 54	10/20/2014 11:47	Lab Client	Lab Client Rep: Aones R Huntlev	Huntley			Paσe 01 of 02
	0/2014 11:17	)	CP: 120mpr	Lamma			10101010101

WorkOrder: N1893

Report Level: ASP-A EDD: Special Program: HC Due: 10/21/14 Fax Report: Fax Due: Case: SDG:

**PO:** 60323116.3

Location: AECOM_TUXEDO,

**Project:** Tuxedo Waste Disposal WO Name: Tuxedo Waste Disposal

© Client ID: AECOM_LATHAM

Comments: N/A

Lab Samp ID	Lab Samp ID Client Sample ID	Collection Date Date Recv'd Matrix Test Code	Date Recv'd	Matrix	Test Code	Samp / Lab Test Comments	HF HT MS SEL Storage
N1893-08B RI-1 100814	RI-1 100814	10/08/2014 11:00 10/09/2014	10/09/2014	Aqueous	leous SW7470	/ Dissolved, TAL	M2
N1893-09A	MW-2 100814	10/08/2014 15:00 10/09/2014	10/09/2014	Aqueous	Jeous SW6010_W	/TAL	Y M2
N1893-09A	MW-2 100814	10/08/2014 15:00 10/09/2014	10/09/2014	Aqueous	SW7470	/ TAL	M2
N1893-10A N1893-10A	MW-3 100814 MW-3 100814	10/08/2014 15:50 10/09/2014 10/08/2014 15:50 10/09/2014	10/09/2014 10/09/2014	Aqueous	ueous SW6010_W ueous SW7470	/ TAL / TAL	Y M2

HT = Test logged in but has been placed on hold

Sample Transmittal Documentation

N1893 Page 3 of 54

NTU > SO bilke & PRING Mry > 50, Liter & Preseria NTU > 50, liter & preserve Condition upon receipt: Custody Seals: CPresent ZIntact Broken Ambient ZI Iced Befrigerated DIVOA Frozen Soil Jar Frozen · All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes. State-specific reporting standards: 13/10 QA/QC Reporting Notes: QA/QC Reporting Level □ Level IV NTV <50, do not tilter Samples disposed of after 60 days unless ☐ Level II *TO < 50, Ro not filter DE-mail to Mark, Howard a accour. com NTV < 50, do not liter NTV NSO, do Not tilled State: NY IAT- Ind icate Date Needed: \$7D Nov < 50, Lo Mat NTU < 56, do not 100 x 50, do ned Special Handling: TOther ASP ☐ Level III ☐ Level I otherwise instructed. Site Name: [execlo Wash Sampler(s): Tes: Merch List preservative code below: Project No.: 60323116 Location: Texedo ☐ EDD Format N Kingstown, RI 02852 Analyses: ✓ 646 Camp Avenue CUSTODY RECORD (401) 732-3400 Temp°C 3 20 X 71/1 Time: ☐ 8405 Benjamin Road, Ste A S 10.7. Containers: 7=CH₃OH Tampa, FL 33634 # of Clear Glass (813) 888-9507 RQN: # of Amber Glass 10/00/11 19/8/19 6=Ascorbic Acid s IsiV AOV 10 # MECON. Ž Ì S U <u>2</u> Z Ū ₹ Ĉ S V GW Ž Ū S O xinsM CHAIN OF Туре T  $\mathcal{G}$ U ণ্ড J Ċ T J D Invoice To: P.O. No.: ☐ 11 Almgren Drive Agawam, MA 01001 54:01 5,90 5=NaOH 17:52 14:38 11:00 15:50 13:25 (413) 789-9018 DW=Drinking Water GW=Groundwater WW=Wastewater SL=Sludge A=Air Time: 13 17:38 9.12 Received by 10=H₃PO₄ 4=HNO, h1/8/0) 3260 10/7/14 10/8/01 Date: C=Composite SO=Soil  $3=H_2SO_4$ 9= Deionized Water fax ence a 951-2200 MW- 1 100714 SPECTRUM ANALYTICAL, INC. RI-SA 100714 RT-4 1007114 H1200) F)800) MW-6 100714 MM-5 160714 100714 Sample Id: SW= Surface Water 11800) X2= Featuring HANIBAL TECHNOLOGY MW-3 100814 G=Grab 2=HCI NO. 2 Relinquished by: Telephone #: (S/8) Bit Sk RI-2 Report To: Mark ZT-3  $1 = Na_2S2O_3$ - MM 1 EroM 8= NaHSO₄ Project Mgr. 3 20 5 8 ō 2. CS 50 Ce 0=0i1 1893 Lab Id: 0 X1=

N1893

www.spectrum-analytical.com

Page 4 of 54

Received By: W						P	age 01	of 00	
Reviewed By: KP						L	og-in	Date 10/0	09/2014
Work Order: N1893	Client Name: Al	ECOM Technical	Serv	ices,	Inc.				
Project Name/Event:	Tuxedo Waste Disposal								
Remarks: (1/2) Please sample/extract transfe submitted with this da	r logbook pages	Lab Sample ID	ниоз	Preser	rvation HC1		H3PO4	VOA Matrix	Soil HeadSpace or Air Bubble > or equal to 1/4"
1. Custody Seal(s)	Present / Absent	N1893-01	<2					Matrix	
	Intact/Broken	N1893-02	<2						
2. Custody Seal Nos.	N/A	N1893-03	<2						
- -		N1893-04	<2						
<ol> <li>Traffic Reports/ Chain of Custody Records</li> </ol>	Present / Absent	N1893-05	<2						
(TR/COCs) or Packing Lists		N1893-06	<2						
		N1893-07	<2						
4. Airbill	AirBill/Sticker	N1893-08	<2						
	Present / Apsent	N1893-09	<2						
		N1893-10	<2						
5. Airbill No.	FedEx 8059 4123 7928								
6. Sample Tags	Present / Absent								
Sample Tag Numbers	rresent / Absent	)							;
	Listed/								
	Not Listed on Chain- of-Custody								
7. Sample Condition	Intact/Broken/ Leaking								
8. Cooler Temperature Indicator Bottle	Present / Absent								
9. Cooler Temperature	3.9 °C								1
10. Does information on TR/COCs and sample tags agree?	Yas / No								
11. Date Received at Laboratory	10/09/2014								
12. Time Received	10:25								
Sample	Transfer								
Fraction (1) TVOA/VOA	Fraction (2) SVOA/PEST/ARO								
Area #	Area #								
Ву	Ву								
On	On .								
IR Temp Gun ID:MT-74		V	OA Matr	ix Key:					
CoolantCondition: ICE				US = Un	preserv	ed Soil	A=	Air	
Preservative Name/Lot No:				UA = Un	preserv	ed Aque	ous H	= HCI	
		į		M = MeC	DΗ		E=	= Encore	
	,			N = NaH	SO4		F=	= Freeze	
		Se	ee Samp	ie Condi	tion Not	tification/	Correctiv	ve Action For	m Yes No
		Ra	ad OK	Yes	No				



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

* Metals *

## REPORT NARRATIVE

Spectrum Analytical, Inc. Featuring Hanibal Technology, RI Division.

Client: AECOM Technical Services, Inc.

**Project: Tuxedo Waste Disposal** 

Laboratory Workorder / SDG #: N1893 SW846 6010C, SW846 7470A

#### I. SAMPLE RECEIPT

No exceptions or unusual conditions were encountered unless a Sample Condition Notification Form, or other record of communication is included with the Sample Receipt Documentation.

#### II. HOLDING TIMES

## A. Sample Preparation:

All samples were prepared within the method-specified holding times.

#### B. Sample Analysis:

All samples were analyzed within the method-specified holding times.

#### III. METHODS

Samples were analyzed following procedures in laboratory test codes: SW846 6010C, SW846 7470A

#### IV. PREPARATION

Aqueous Samples were prepared following procedures in laboratory test

code: SW3005A

Aqueous Samples were prepared following procedures in laboratory test

code: SW7470A

#### V. INSTRUMENTATION

The following instrumentation was used:

N1893 Page 7 of 54 Instrument Code: FIMS2 Instrument Type: CVAA

Description: FIMS

Manufacturer: Perkin-Elmer

Model: FIMS100

Instrument Code: OPTIMA3

Instrument Type: ICP

Description: Optima ICP-OES Manufacturer: Perkin-Elmer

Model: 4300 DV

## VI. ANALYSIS

#### A. Calibration:

Calibrations met the method/SOP acceptance criteria.

#### B. Blanks:

All method blanks were within the acceptance criteria.

# C. Spikes:

# 1. Laboratory Control Spikes (LCS):

Percent recoveries for laboratory control samples were within the QC limits.

## 2. Matrix spike (MS):

A matrix spike was not performed on any sample in this SDG.

# D. Post Digestion Spike (PDS):

A post-digestion spike was not performed on any sample in this SDG.

## E. Duplicate sample:

A duplicate analysis was not performed on any sample in this SDG.

# F. Serial Dilution (SD):

A serial dilution was not performed on any sample in this SDG.

## G. Samples:

N1893 Page 8 of 54

No unusual occurrences were noted during sample analysis.

Shann B Law le

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Spectrum, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

Signed:

Date: 10/27/2014

N1893 Page 9 of 54



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

# Data Flag/Qualifiers (Page 1 of 2):

- U Not Detected. This compound was analyzed-for but not detected. For most analyses the reporting limit (lowest standard concentration) is the value listed. For Department of Defense programs, this is the Limit of Detection (LOD).
- J This flag indicates an estimated value due to either
  - the compound was detected below the reporting limit, or
  - estimated concentration for Tentatively Identified Compound
- B This flag indicates the compound was also detected in the associated Method Blank. The B flag has an alternative meaning for Inorganics analyses reported using CLP ILM-type metals forms, indicating a "trace" concentration below the reporting limit and equal to or above the detection limit.
- D For Organics analysis, this flag indicates the compound concentration was obtained from a secondary dilution analysis
- E This flag indicates the compound concentration exceeded the Calibration Range. The E flag has an alternative meaning for Inorganics analyses reported using CLP metals forms, indicating an estimated concentration due to the presence of interferences, as determined by the serial dilution analysis.
- P This flag is used for pesticides/PCB/herbicide compound when there is a greater than 40% difference for detected concentration between the two GC columns used for primary and confirmation analyses. This difference typically indicates interference, causing one value to be unusually high. The **lower** of the two values is generally reported on the Form 1, and both values reported on the Form 10.
- A Used to flag semivolatile organic Tentatively Identified Compound library search results for compounds identified as an aldol condensation by-product.



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

# Data Flag/Qualifiers (Page 2 of 2):

- N Used to flag results for volatile and semivolatile Organics analysis Tentatively Identified Compounds where an analyte has passed the identification criteria, and is considered to be positively identified. For Inorganics analysis the N flag indicates the matrix spike recovery falls outside of the control limit.
- * For Inorganics analysis the * flag indicates Relative Percent Difference for duplicate analyses is outside of the control limit.
- L NYSDEC qualifier: Result is biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.



# **Sample ID Suffixes**

- DL Diluted analysis. The sample was diluted and reanalyzed. The DL may be followed by a digit if more than one diluted reanalysis is provided. The DL suffix is not attached to an analysis initially performed at dilution, only to reanalyses performed at dilution
- RE Reanalysis. Appended to the client sample ID to indicate a reextraction and reanalysis or a reanalysis of the original sample extract.
- RA Reanalysis. Appended to the laboratory sample ID indicates a reanalysis of the original sample extract.
- RX Reextraction. Appended to the laboratory sample ID indicates a reextraction of the sample.
- MS Matrix Spike.
- MSD Matrix Spike Duplicate
- DUP Duplicate analysis
- SD Serial Dilution
- PS Post-digestion or Post-distillation spike. For metals or inorganic analyses

# U.S.EPA - CLP COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Lab	Name:	Spectrum Ana	lytical, Inc.	Contract:	60323116.3			
Lab	Code:	MITKEM	Case No.:	SAS No.:		SDG 1	No.:	SN1893
SOW	No.:	SW846						
			EPA Sample No.		Lab Sample	ID		
			MW-1 100714 MW-2 100814		N1893-01			
			MW-2 100814 MW-3 100814		N1893-09 N1893-10			
			MW-5 100714 MW-6 100714		N1893-05 N1893-04			
			RI-1 100814		N1893-08			
			RI-2 100714 RI-3 100714		N1893-06 N1893-07			
			RI-4 100714		N1893-02			
			RI-5A 100714		N1893-03			
Were	e ICP i	nterelement c	orrections applied?	Υe	es/No	Yes		
Were	e backg	round correct	ions applied?	Υe	es/No	Yes		
	If y	res-were raw d	ata generated before					
	appl	ication of ba	ckground corrections?	Ye	es/No	No		
Comn	ments:							
			ca package is in compliand echnically and for compl				ons.	
		tions detailed					opy da	ata
pac	kage aı	nd in the comp	outer-readable data submi					
			ratory Manager or the Mana	ager's desig	gnee, as ver	ified	by	
the	follo	wing signature	Sharyn & Lawler					
Sig	nature	:		Name: Sl	naryn B. Lawle	er		
Dat	e:	10/27/14		Title: Q	AD			
ilm14.04	.17.1043		COVER PAGE -	- IN		SW84	5	

N1893 Page 13 of 54

#### INORGANIC ANALYSIS DATA SHEET

Lab	Name:	Spectrum	Analytical,	Inc	Contract:	60323116.3
цар	name.	Spectrum	Analytical,	111C •	Concract.	00323110.3

SDG No.: SN1893 Lab Code: MITKEM Case No.: SAS No.:

Lab Sample ID: N1893-01 Matrix (soil/water): WATER

Level (low/med): MED Date Received: 10/09/2014

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	337			P
7440-36-0	Antimony	9.3	U		P
7440-38-2	Arsenic	4.3	U		P
7440-39-3	Barium	9.4	В		P
7440-41-7	Beryllium	0.26	U		P
7440-43-9	Cadmium	0.89	U		P
7440-70-2	Calcium	9290			P
7440-47-3	Chromium	3.3	В		P
7440-48-4	Cobalt	1.4	В		P
7440-50-8	Copper	5.8	В		P
7439-89-6	Iron	889			P
7439-92-1	Lead	4.2	U		P
7439-95-4	Magnesium	2160			P
7439-96-5	Manganese	50.4			P
7439-97-6	Mercury	0.028	U		CV
7440-02-0	Nickel	2.4	В		P
7440-09-7	Potassium	493	В		P
7782-49-2	Selenium	12.0	U		P
7440-22-4	Silver	6.9	U		P
7440-23-5	Sodium	40600			P
7440-28-0	Thallium	6.2	U		P
7440-62-2	Vanadium	1.8	В		P
7440-66-6	Zinc	15.1	В		Р

Commen	nts:			
_				
•				

N1893

#### INORGANIC ANALYSIS DATA SHEET

MW - 2	100814
--------	--------

Lab	Name:	Spectrum	Analytical,	Inc.	Contract:	60323116.3
цар	name.	Spectrum	Analytical,	1110.	Concract.	00323110.3

SDG No.: SN1893 Lab Code: MITKEM Case No.: SAS No.:

Lab Sample ID: N1893-09 Matrix (soil/water): WATER

Level (low/med): MED Date Received: 10/09/2014

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	505			P
7440-36-0	Antimony	9.3	U		P
7440-38-2	Arsenic	6.3	В		P
7440-39-3	Barium	15.0	В		P
7440-41-7	Beryllium	0.26	U		Р
7440-43-9	Cadmium	0.89	U		Р
7440-70-2	Calcium	23300			Р
7440-47-3	Chromium	1.8	В		Р
7440-48-4	Cobalt	1.3	В		Р
7440-50-8	Copper	3.6	U		Р
7439-89-6	Iron	671			Р
7439-92-1	Lead	4.2	U		Р
7439-95-4	Magnesium	6410			Р
7439-96-5	Manganese	24.1	В		Р
7439-97-6	Mercury	0.028	U		CV
7440-02-0	Nickel	0.85	U		Р
7440-09-7	Potassium	1040			Р
7782-49-2	Selenium	12.0	U		Р
7440-22-4	Silver	6.9	U		P
7440-23-5	Sodium	4090			Р
7440-28-0	Thallium	6.2	U		Р
7440-62-2	Vanadium	2.4	В		Р
7440-66-6	Zinc	4.9	U		Р

Commen	ıcs.			
=	-			
=				

1

EPA SAMPLE NO.

# INORGANIC ANALYSIS DATA SHEET MW-3 100814

Lab Name: Spectrum Analytical, Inc. Contract: 60323116.3	Lab Name: Spectrum Analytica	l, Inc.	Contract:	60323116.3
----------------------------------------------------------	------------------------------	---------	-----------	------------

Lab Code: MITKEM Case No.: SAS No.: SDG No.: SN1893

Matrix (soil/water): WATER Lab Sample ID: N1893-10

Level (low/med): MED Date Received: 10/09/2014

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	0	М
	_		C	Q	
7429-90-5	Aluminum	2690			P
7440-36-0	Antimony	9.3	U		P
7440-38-2	Arsenic	4.3	U		P
7440-39-3	Barium	103	В		P
7440-41-7	Beryllium	0.26	U		P
7440-43-9	Cadmium	0.89	U		P
7440-70-2	Calcium	95000			P
7440-47-3	Chromium	3.4	В		P
7440-48-4	Cobalt	3.3	В		P
7440-50-8	Copper	8.6	В		P
7439-89-6	Iron	4180			P
7439-92-1	Lead	4.2	U		P
7439-95-4	Magnesium	22900			P
7439-96-5	Manganese	271			P
7439-97-6	Mercury	0.028	U		CV
7440-02-0	Nickel	5.5	В		P
7440-09-7	Potassium	3390			P
7782-49-2	Selenium	12.0	U		P
7440-22-4	Silver	6.9	U		P
7440-23-5	Sodium	379000			P
7440-28-0	Thallium	6.2	U		P
7440-62-2	Vanadium	6.0	В		P
7440-66-6	Zinc	12.7	В		P
	1	l .			

Commen	nts:			
_				
-				

N1893 Page 16 of 54

#### INORGANIC ANALYSIS DATA SHEET

4

Lab Name: Spectrı	um Analytical,	Inc.	Contract:	60323116.3

SDG No.: SN1893 Lab Code: MITKEM Case No.: SAS No.:

Lab Sample ID: N1893-05 Matrix (soil/water): WATER

Level (low/med): MED Date Received: 10/09/2014

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	886			P
7440-36-0	Antimony	9.3	U		P
7440-38-2	Arsenic	4.3	U		P
7440-39-3	Barium	84.5	В		P
7440-41-7	Beryllium	0.26	U		P
7440-43-9	Cadmium	0.89	U		P
7440-70-2	Calcium	93300			P
7440-47-3	Chromium	4.0	В		P
7440-48-4	Cobalt	7.7	В		P
7440-50-8	Copper	65.7			P
7439-89-6	Iron	16600			P
7439-92-1	Lead	4.2	U		P
7439-95-4	Magnesium	22500			P
7439-96-5	Manganese	5400			P
7439-97-6	Mercury	0.028	U		CV
7440-02-0	Nickel	7.8	В		P
7440-09-7	Potassium	3500			P
7782-49-2	Selenium	12.0	U		P
7440-22-4	Silver	6.9	U		P
7440-23-5	Sodium	12500			P
7440-28-0	Thallium	6.2	U		P
7440-62-2	Vanadium	3.9	В		P
7440-66-6	Zinc	31.8	В		Р

Commen	ıls.			
=				
-				

N1893

#### INORGANIC ANALYSIS DATA SHEET

MW-6 10071
------------

Lab	Name:	Spectrum	Analytical,	Inc	Contract:	60323116.3
цар	name.	Spectrum	Analytical,	111C •	Concract.	00323110.3

SDG No.: SN1893 Lab Code: MITKEM Case No.: SAS No.:

Lab Sample ID: N1893-04 Matrix (soil/water): WATER

Level (low/med): MED Date Received: 10/09/2014

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	0	М
7429-90-5	_	438		~	P
7440-36-0	Antimony	9.3	U		P
7440-38-2	_	23.7			P
7440-39-3	Barium	99.1	В		P
	Beryllium	0.26	ŢŢ		P
7440-43-9		0.89	IJ		P
7440-70-2		108000	_		P
7440-47-3		5.7	В		P
7440-48-4		0.67	IJ		P
7440-48-4		31.1	U		P
7439-89-6		36000			P
7439-92-1		4.2	IJ		P
7439-95-4	Magnesium	11800			P
7439-96-5	Manganese	2200			P
7439-97-6	Mercury	0.028	U		CV
7440-02-0	Nickel	1.4	В		Р
7440-09-7	Potassium	3810			P
7782-49-2	Selenium	12.0	U		P
7440-22-4	Silver	6.9	U		Р
7440-23-5	Sodium	11700			Р
7440-28-0	Thallium	7.4	В		Р
7440-62-2	Vanadium	5.6	В		Р
7440-66-6	Zinc	11.3	В		Р

Commen	ils.		
-			
-			

-

EPA SAMPLE NO.

#### INORGANIC ANALYSIS DATA SHEET

Lab N	ame: S	Spectrum	Analytical,	Inc.	Contract:	60323116.3
Lab IV	anc.	PCCCLun	miary crear,	1110.	COILCEACC	00020110.0

_____

 Lab Code:
 MITKEM
 Case No.:
 SAS No.:
 SDG No.:
 SN1893

Matrix (soil/water): WATER Lab Sample ID: N1893-08

Level (low/med): MED Date Received: 10/09/2014

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	3210			P
7440-36-0	Antimony	9.3	U		Р
7440-38-2	Arsenic	4.3	U		P
7440-39-3	Barium	21.2	В		Р
7440-41-7	Beryllium	0.26	U		P
7440-43-9	Cadmium	0.89	U		Р
7440-70-2	Calcium	56400			P
7440-47-3	Chromium	5.0	В		Р
7440-48-4	Cobalt	0.84	В		P
7440-50-8	Copper	7.4	В		Р
7439-89-6	Iron	1360			Р
7439-92-1	Lead	4.2	U		P
7439-95-4	Magnesium	10500			Р
7439-96-5	Manganese	23.6	В		Р
7439-97-6	Mercury	0.028	U		CV
7440-02-0	Nickel	4.0	В		Р
7440-09-7	Potassium	2630			Р
7782-49-2	Selenium	12.0	U		Р
7440-22-4	Silver	6.9	U		Р
7440-23-5	Sodium	22300			P
7440-28-0	Thallium	6.2	U		P
7440-62-2	Vanadium	1.9	В		P
7440-66-6	Zinc	6.0	В		Р

Commer	its:			

ilm14.04.17.1043 FORM I - IN SW846

N1893 Page 19 of 54

1

EPA SAMPLE NO.

# INORGANIC ANALYSIS DATA SHEET RI-2 100714

 60202116	2	

Lab Name: Spectrum Analytical, Inc. Contract: 60323116.3

Lab Code: MITKEM Case No.: SAS No.: SDG No.: SN1893

Matrix (soil/water): WATER Lab Sample ID: N1893-06

Level (low/med): MED Date Received: 10/09/2014

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	66.0	U		P
7440-36-0	Antimony	9.3	U		P
7440-38-2	Arsenic	4.3	U		P
7440-39-3	Barium	14.2	В		P
7440-41-7	Beryllium	0.26	U		P
7440-43-9	Cadmium	0.89	U		P
7440-70-2	Calcium	28800			P
7440-47-3	Chromium	21.0			P
7440-48-4	Cobalt	0.67	U		P
7440-50-8	Copper	3.6	U		P
7439-89-6	Iron	130	В		P
7439-92-1	Lead	4.2	U		Р
7439-95-4	Magnesium	7860			Р
7439-96-5	Manganese	22.8	В		Р
7439-97-6	Mercury	0.028	U		CV
7440-02-0	Nickel	21.2	В		P
7440-09-7	Potassium	801	В		P
7782-49-2	Selenium	12.0	U		P
7440-22-4	Silver	6.9	U		P
7440-23-5	Sodium	51600			P
7440-28-0	Thallium	6.2	U		P
7440-62-2	Vanadium	1.1	U		P
7440-66-6	Zinc	4.9	U		P

Commen	nts:			
-				

N1893 Page 20 of 54

#### INORGANIC ANALYSIS DATA SHEET

Lab	Name:	Spectrum	Analytical,	Inc	Contract:	60323116.3
цар	name.	Spectrum	Analytical,	111C •	Concract.	00323110.3

SDG No.: SN1893 Lab Code: MITKEM Case No.: SAS No.:

Lab Sample ID: N1893-07 Matrix (soil/water): WATER

Level (low/med): MED Date Received: 10/09/2014

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

				_	
CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	89900			P
7440-36-0	Antimony	9.3	U		P
7440-38-2	Arsenic	33.8			P
7440-39-3	Barium	710			P
7440-41-7	Beryllium	8.4			P
7440-43-9	Cadmium	0.89	U		P
7440-70-2	Calcium	74300			P
7440-47-3	Chromium	130			P
7440-48-4	Cobalt	141			P
7440-50-8	Copper	458			P
7439-89-6	Iron	158000			P
7439-92-1	Lead	203			P
7439-95-4	Magnesium	47900			P
7439-96-5	Manganese	7120			P
7439-97-6	Mercury	0.28			CV
7440-02-0	Nickel	184			P
7440-09-7	Potassium	9890			P
7782-49-2	Selenium	12.0	U		P
7440-22-4	Silver	6.9	U		P
7440-23-5	Sodium	31800			P
7440-28-0	Thallium	6.2	U		P
7440-62-2	Vanadium	192			Р
7440-66-6	Zinc	535			Р

Commen	ils.		
-			
-			

N1893 Page 21 of 54

# INORGANIC ANALYSIS DATA SHEET RI-4 100714

60202116 2

Lab Name: Spectrum Analytical, Inc. Contract: 60323116.3

Lab Code: MITKEM Case No.: SAS No.: SDG No.: SN1893

Matrix (soil/water): WATER Lab Sample ID: N1893-02

Level (low/med): MED Date Received: 10/09/2014

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS NO.         Analyte         Concentration         C         Q         M           7429-90-5 Aluminum         1910         P           7440-36-0 Antimony         9.3         U         P           7440-38-2 Arsenic         4.3         U         P           7440-43-9 Barium         59.5         B         P           7440-41-7 Beryllium         0.26         U         P           7440-43-9 Cadmium         0.89         U         P           7440-40-2 Calcium         96500         P         P           7440-47-3 Chromium         4.9         B         P           7440-48-4 Cobalt         3.5         B         P           7440-50-8 Copper         15.2         B         P           7439-89-6 Iron         4060         P         P           7439-92-1 Lead         4.2         U         P           7439-95-4 Magnesium         11100         P           7439-96-5 Manganese         580         P           7440-02-0 Nickel         19.8         B         P           7440-02-7 Potassium         10600         P           7782-49-2 Selenium         12.0         U         P           7440-	CAC No	71	Can ann bunch i an	~	0	3.4
7440-36-0         Antimony         9.3         U         P           7440-38-2         Arsenic         4.3         U         P           7440-39-3         Barium         59.5         B         P           7440-41-7         Beryllium         0.26         U         P           7440-43-9         Cadmium         0.89         U         P           7440-43-9         Cadmium         96500         P           7440-47-3         Chromium         4.9         B         P           7440-48-4         Cobalt         3.5         B         P           7439-89-6         Iron         4060         P           7439-89-6         Iron         4060         P           7439-95-4         Magnesium         11100         P           7439-96-5         Manganese         580         P           7440-02-0         Nickel         19.8         B         P           7440-09-7         Potassium         10600         P           7440-22-4         Silver         6.9         U         P           7440-22-5         Sodium         10100         P           7440-22-0         Thallium         6.2	CAS No.	Analyte	Concentration	С	Q	M
7440-38-2 Arsenic       4.3       U       P         7440-39-3 Barium       59.5       B       P         7440-41-7 Beryllium       0.26       U       P         7440-43-9 Cadmium       0.89       U       P         7440-43-9 Cadmium       96500       P         7440-47-3 Chromium       4.9       B       P         7440-48-4 Cobalt       3.5       B       P         7439-89-6 Iron       4060       P         7439-92-1 Lead       4.2       U       P         7439-95-4 Magnesium       11100       P         7439-96-5 Manganese       580       P         7440-02-0 Nickel       19.8       B       P         7440-02-0 Nickel       19.8       B       P         7440-02-2 Selenium       10600       P         7440-22-4 Silver       6.9       U       P         7440-23-5 Sodium       10100       P         7440-28-0 Thallium       6.2       U       P         7440-62-2 Vanadium       4.6       B       P	7429-90-5	Aluminum	1910			P
7440-39-3 Barium       59.5       B       P         7440-41-7 Beryllium       0.26       U       P         7440-43-9 Cadmium       0.89       U       P         7440-70-2 Calcium       96500       P         7440-47-3 Chromium       4.9       B       P         7440-48-4 Cobalt       3.5       B       P         7440-50-8 Copper       15.2       B       P         7439-89-6 Iron       4060       P         7439-92-1 Lead       4.2       U       P         7439-95-4 Magnesium       11100       P         7439-96-5 Manganese       580       P         7440-02-0 Nickel       19.8       B       P         7440-02-0 Nickel       19.8       B       P         7440-09-7 Potassium       10600       P         7782-49-2 Selenium       12.0       U       P         7440-22-4 Silver       6.9       U       P         7440-23-5 Sodium       10100       P         7440-28-0 Thallium       6.2       U       P         7440-62-2 Vanadium       4.6       B       P	7440-36-0	Antimony	9.3	U		P
7440-41-7 Beryllium       0.26       U       P         7440-43-9 Cadmium       0.89       U       P         7440-70-2 Calcium       96500       P         7440-47-3 Chromium       4.9       B       P         7440-48-4 Cobalt       3.5       B       P         7439-89-6 Iron       4060       P         7439-92-1 Lead       4.2       U       P         7439-95-4 Magnesium       11100       P         7439-96-5 Manganese       580       P         7439-97-6 Mercury       0.028       U       CV         7440-02-0 Nickel       19.8       B       P         7440-09-7 Potassium       10600       P         7782-49-2 Selenium       12.0       U       P         7440-22-4 Silver       6.9       U       P         7440-23-5 Sodium       10100       P         7440-28-0 Thallium       6.2       U       P         7440-62-2 Vanadium       4.6       B       P	7440-38-2	Arsenic	4.3	U		P
7440-43-9 Cadmium       0.89       U       P         7440-70-2 Calcium       96500       P         7440-47-3 Chromium       4.9       B       P         7440-48-4 Cobalt       3.5       B       P         7439-89-6 Iron       4060       P         7439-92-1 Lead       4.2       U       P         7439-95-4 Magnesium       11100       P         7439-96-5 Manganese       580       P         7439-97-6 Mercury       0.028       U       CV         7440-02-0 Nickel       19.8       B       P         7440-09-7 Potassium       10600       P         7782-49-2 Selenium       12.0       U       P         7440-22-4 Silver       6.9       U       P         7440-23-5 Sodium       10100       P         7440-28-0 Thallium       6.2       U       P         7440-62-2 Vanadium       4.6       B       P	7440-39-3	Barium	59.5	В		Р
7440-70-2 Calcium       96500       P         7440-47-3 Chromium       4.9       B       P         7440-48-4 Cobalt       3.5       B       P         7440-50-8 Copper       15.2       B       P         7439-89-6 Iron       4060       P         7439-92-1 Lead       4.2       U       P         7439-95-4 Magnesium       11100       P         7439-96-5 Manganese       580       P         7439-97-6 Mercury       0.028       U       CV         7440-02-0 Nickel       19.8       B       P         7440-09-7 Potassium       10600       P         7782-49-2 Selenium       12.0       U       P         7440-22-4 Silver       6.9       U       P         7440-23-5 Sodium       10100       P         7440-28-0 Thallium       6.2       U       P         7440-62-2 Vanadium       4.6       B       P	7440-41-7	Beryllium	0.26	U		Р
7440-47-3 Chromium       4.9       B       P         7440-48-4 Cobalt       3.5       B       P         7440-50-8 Copper       15.2       B       P         7439-89-6 Iron       4060       P         7439-92-1 Lead       4.2       U       P         7439-95-4 Magnesium       11100       P         7439-96-5 Manganese       580       P         7439-97-6 Mercury       0.028       U       CV         7440-02-0 Nickel       19.8       B       P         7440-09-7 Potassium       10600       P         7782-49-2 Selenium       12.0       U       P         7440-22-4 Silver       6.9       U       P         7440-23-5 Sodium       10100       P         7440-28-0 Thallium       6.2       U       P         7440-62-2 Vanadium       4.6       B       P	7440-43-9	Cadmium	0.89	U		P
7440-48-4Cobalt       3.5       B       P         7440-50-8Copper       15.2       B       P         7439-89-6Iron       4060       P         7439-92-1Lead       4.2       U       P         7439-95-4Magnesium       11100       P         7439-96-5Manganese       580       P         7439-97-6Mercury       0.028       U       CV         7440-02-0Nickel       19.8       B       P         7440-09-7Potassium       10600       P         7782-49-2Selenium       12.0       U       P         7440-22-4Silver       6.9       U       P         7440-23-5Sodium       10100       P         7440-28-0Thallium       6.2       U       P         7440-62-2Vanadium       4.6       B       P	7440-70-2	Calcium	96500			P
7440-50-8 Copper       15.2       B       P         7439-89-6 Iron       4060       P         7439-92-1 Lead       4.2       U       P         7439-95-4 Magnesium       11100       P         7439-96-5 Manganese       580       P         7439-97-6 Mercury       0.028       U       CV         7440-02-0 Nickel       19.8       B       P         7440-09-7 Potassium       10600       P         7782-49-2 Selenium       12.0       U       P         7440-22-4 Silver       6.9       U       P         7440-23-5 Sodium       10100       P         7440-28-0 Thallium       6.2       U       P         7440-62-2 Vanadium       4.6       B       P	7440-47-3	Chromium	4.9	В		P
7439-89-6 Iron       4060       P         7439-92-1 Lead       4.2       U       P         7439-95-4 Magnesium       11100       P         7439-96-5 Manganese       580       P         7439-97-6 Mercury       0.028       U       CV         7440-02-0 Nickel       19.8       B       P         7440-09-7 Potassium       10600       P         7782-49-2 Selenium       12.0       U       P         7440-22-4 Silver       6.9       U       P         7440-23-5 Sodium       10100       P         7440-28-0 Thallium       6.2       U       P         7440-62-2 Vanadium       4.6       B       P	7440-48-4	Cobalt	3.5	В		P
7439-92-1 Lead       4.2       U       P         7439-95-4 Magnesium       11100       P         7439-96-5 Manganese       580       P         7439-97-6 Mercury       0.028       U       CV         7440-02-0 Nickel       19.8       B       P         7440-09-7 Potassium       10600       P         7782-49-2 Selenium       12.0       U       P         7440-22-4 Silver       6.9       U       P         7440-23-5 Sodium       10100       P         7440-28-0 Thallium       6.2       U       P         7440-62-2 Vanadium       4.6       B       P	7440-50-8	Copper	15.2	В		P
7439-95-4 Magnesium       11100       P         7439-96-5 Manganese       580       P         7439-97-6 Mercury       0.028 U       CV         7440-02-0 Nickel       19.8 B       P         7440-09-7 Potassium       10600       P         7782-49-2 Selenium       12.0 U       P         7440-22-4 Silver       6.9 U       P         7440-23-5 Sodium       10100       P         7440-28-0 Thallium       6.2 U       P         7440-62-2 Vanadium       4.6 B       P	7439-89-6	Iron	4060			P
7439-96-5 Manganese       580       P         7439-97-6 Mercury       0.028 U       CV         7440-02-0 Nickel       19.8 B       P         7440-09-7 Potassium       10600 P         7782-49-2 Selenium       12.0 U P         7440-22-4 Silver       6.9 U P         7440-23-5 Sodium       10100 P         7440-28-0 Thallium       6.2 U P         7440-62-2 Vanadium       4.6 B       P	7439-92-1	Lead	4.2	U		P
7439-97-6 Mercury       0.028 U       CV         7440-02-0 Nickel       19.8 B       P         7440-09-7 Potassium       10600       P         7782-49-2 Selenium       12.0 U       P         7440-22-4 Silver       6.9 U       P         7440-23-5 Sodium       10100       P         7440-28-0 Thallium       6.2 U       P         7440-62-2 Vanadium       4.6 B       P	7439-95-4	Magnesium	11100			P
7440-02-0 Nickel       19.8       B       P         7440-09-7 Potassium       10600       P         7782-49-2 Selenium       12.0       U       P         7440-22-4 Silver       6.9       U       P         7440-23-5 Sodium       10100       P         7440-28-0 Thallium       6.2       U       P         7440-62-2 Vanadium       4.6       B       P	7439-96-5	Manganese	580			P
7440-09-7 Potassium       10600       P         7782-49-2 Selenium       12.0       U       P         7440-22-4 Silver       6.9       U       P         7440-23-5 Sodium       10100       P         7440-28-0 Thallium       6.2       U       P         7440-62-2 Vanadium       4.6       B       P	7439-97-6	Mercury	0.028	U		CV
7782-49-2 Selenium       12.0       U       P         7440-22-4 Silver       6.9       U       P         7440-23-5 Sodium       10100       P         7440-28-0 Thallium       6.2       U       P         7440-62-2 Vanadium       4.6       B       P	7440-02-0	Nickel	19.8	В		P
7440-22-4 Silver       6.9       U       P         7440-23-5 Sodium       10100       P         7440-28-0 Thallium       6.2       U       P         7440-62-2 Vanadium       4.6       B       P	7440-09-7	Potassium	10600			P
7440-23-5 Sodium       10100       P         7440-28-0 Thallium       6.2       U       P         7440-62-2 Vanadium       4.6       B       P	7782-49-2	Selenium	12.0	U		P
7440-28-0 Thallium 6.2 U P 7440-62-2 Vanadium 4.6 B P	7440-22-4	Silver	6.9	U		P
7440-62-2 Vanadium 4.6 B P	7440-23-5	Sodium	10100			P
	7440-28-0	Thallium	6.2	U		P
7440-66-6 Zinc 31.4 B P	7440-62-2	Vanadium	4.6	В		P
	7440-66-6	Zinc	31.4	В		Р

Commen	ils.		
-			
-			

N1893

#### INORGANIC ANALYSIS DATA SHEET

RT.	-5A	ΤÜ	U	7	Τ	4

	_			
Lab Name: Sj	pectrum Anal	ytical, Inc.	Contract:	60323116.3

______

Lab Code: MITKEM Case No.: SAS No.: SDG No.: SN1893

Matrix (soil/water): WATER Lab Sample ID: N1893-03

Level (low/med): MED Date Received: 10/09/2014

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	318			P
7440-36-0	Antimony	9.3	U		Р
7440-38-2	Arsenic	4.3	U		Р
7440-39-3	Barium	17.6	В		Р
7440-41-7	Beryllium	0.26	U		Р
7440-43-9	Cadmium	0.89	U		Р
7440-70-2	Calcium	31400			Р
7440-47-3	Chromium	6.7	В		Р
7440-48-4	Cobalt	0.67	U		Р
7440-50-8	Copper	3.6	U		Р
7439-89-6	Iron	173	В		Р
7439-92-1	Lead	4.2	U		P
7439-95-4	Magnesium	1910			Р
7439-96-5	Manganese	10.0	U		P
7439-97-6	Mercury	0.028	U		CV
7440-02-0	Nickel	0.85	U		Р
7440-09-7	Potassium	7390			P
7782-49-2	Selenium	12.0	U		P
7440-22-4	Silver	6.9	U		P
7440-23-5	Sodium	17000			P
7440-28-0	Thallium	6.2	U		Р
7440-62-2	Vanadium	2.5	В		P
7440-66-6	Zinc	4.9	U		Р
1	1	I .			

Commen	its:			
•				

N1893

3

BLANKS

Lab Name:	Spectrum Analy	tical, Inc.	Contract:	60323116.3		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SN1893
Preparatio	on Blank Matrix	(soil/water): WAT	ER		Method	Blank ID:
Preparatio	on Blank Concer	ntration Units (ug/L	or mg/kg): UG	/L	MB-7958	31

FIMS2_141022A

	Initial										
	Calibration	ı	Co	ont	inuing Calib	rati	ion		Preparation	ı	
	Blank (ug/L	)	Blank (ug/L)		Blank						
Analyte		С	10/22/14 9:05	С		С	(	С		С	M
Mercury	0.028	U	0.028	U					0.028	U	CV

im14.04.17.1043 FORM III - IN SW846

N1893 Page 24 of 54

3

BLANKS

Lab Name:	Spectrum Analy	tical, Inc.	Contract:	60323116.3			
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SN1893	
Preparatio	on Blank Matrix	(soil/water): WAT	ER		Method 1	Blank ID:	

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

FIMS2_141024D

MB-79691

	Initial										
	Calibration	n	Co	ont	inuing Calib	rat	cion		Preparation	n	
	Blank (ug/L	)		Blank (ug/L)				Blank			
Analyte		С	10/24/14 15:54	С	10/24/14 16:09	С		С		С	М
Mercury	0.028	U	0.028	U	0.028	U			0.028	U	CV

N1893 Page 25 of 54

3

#### BLANKS

Lab	Name:	Spectrum	Analytical,	Tnc	Contract:	60323116.3
цар	manic •	DPCCCL an	miary crear,	111C •	COIICI acc.	00022110.5

Lab Code: MITKEM Case No.: SAS No.: SDG No.: SN1893

Preparation Blank Matrix (soil/water): WATER

Method Blank ID:

Preparation Blank Concentration Units (ug/L or mg/kg): ug/L

MB-79544

## OPTIMA3_141018A

	Initial										
	Calibration	า	Co	ont	inuing Calib	ra	tion		Preparation	1	
	Blank (ug/L	)			Blank (ug/L	)			Blank		
Analyte		С	10/18/14 15:36	С	10/18/14 16:18	С	10/18/14 16:55	С		С	M
Aluminum	66.0	U	66.0	U	66.0	U	66.0	U	66.000	U	Р
Antimony	9.3	U	9.3	U	9.3	U	9.3	U	9.300	U	P
Arsenic	4.3	U	4.3	U	4.3	U	4.5	В	4.300	U	Р
Barium	2.4	В	3.9	В	3.2	В	3.5	В	1.100	U	P
Beryllium	0.3	U	0.3	U	0.3	U	0.3	U	0.260	U	Р
Cadmium	0.9	U	0.9	U	0.9	U	0.9	U	0.890	U	Р
Calcium	169.5	В	110.0	U	117.4	В	114.8	В	112.581	В	Р
Chromium	0.6	U	0.6	U	0.6	U	0.6	U	0.640	U	P
Cobalt	0.9	В	1.1	В	0.8	В	1.0	В	0.670	U	P
Copper	3.6	U	3.6	U	3.6	U	3.6	U	3.600	U	P
Iron	31.0	U	31.0	U	31.0	U	31.0	U	31.000	U	Р
Lead	4.2	U	4.2	U	4.2	U	4.2	U	4.200	U	Р
Magnesium	76.0	U	76.0	U	76.0	U	76.0	U	76.000	U	Р
Manganese	10.0	U	10.0	U	10.0	U	10.0	U	10.000	U	Р
Nickel	0.9	U	1.0	В	0.8	U	1.1	В	0.850	U	Р
Potassium	111.0	В	76.0	U	-348.0	В	-238.8	В	76.000	U	Р
Selenium	12.0	U	12.0	U	12.0	U	12.0	U	12.000	U	Р
Silver	6.9	U	6.9	U	6.9	U	6.9	U	6.900	U	Р
Sodium	29.0	U	93.4	В	110.9	В	129.5	В	116.364	В	Р
Thallium	6.2	U	6.2	U	6.2	U	6.2	U	6.200	U	P
Vanadium	1.1	U	1.1	U	1.1	U	1.3	В	1.100	U	P
Zinc	4.9	U	4.9	U	4.9	U	4.9	U	4.900	U	P

N1893 Page 26 of 54

7

# LABORATORY CONTROL SAMPLE

Lab Name:	Spectrum Anal	ytical, Inc.	Contract:	60323116.3		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SN1893
Solid LCS	Source:				LCS(D) ID:	
Aqueous LO	CS Source:				LCS-79544	

	Aque	eous (ug/L	1)		Sol	id (mg/	Kg)	
Analyte	True	Found	%R	True	Found	С	Limits	%R
Aluminum	9100.0	9787.97	107.6					
Antimony	455.0	479.73	105.4					
Arsenic	455.0	496.05	109.0					
Barium	9100.0	9817.10	107.9					
Beryllium	227.0	244.29	107.6					
Cadmium	227.0	245.52	108.2					
Calcium	22700.0	23931.47	105.4					
Chromium	910.0	988.38	108.6					
Cobalt	2270.0	2449.69	107.9					
Copper	1130.0	1218.25	107.8					
Iron	4550.0	5101.85	112.1					
Lead	455.0	484.10	106.4					
Magnesium	22700.0	24417.79	107.6					
Manganese	2270.0	2445.00	107.7					
Nickel	2270.0	2451.41	108.0					
Potassium	22700.0	24440.95	107.7					
Selenium	455.0	481.42	105.8					
Silver	1130.0	1256.90	111.2					
Sodium	22700.0	25183.21	110.9					
Thallium	455.0	449.74	98.8					
Vanadium	2270.0	2410.44	106.2					
Zinc	2270.0	2460.08	108.4					

7

# LABORATORY CONTROL SAMPLE

Lab Name:	Spectrum Ar	nalytical, Inc.	Contract:	60323116.3		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SN1893
Solid LCS	Source:				LCS(D) ID:	
Aqueous LO	CS Source:				LCS-79581	

	Aque	eous (ug/I	1)		Soli	ld (	mg/Kg)	
Analyte	True	Found	%R	True	Found	С	Limits	%R
Mercury	4.6	4.58	99.6					

N1893 Page 28 of 54

7

# LABORATORY CONTROL SAMPLE

Lab Name:	Spectrum Analytical, Inc.		Contract:	60323116.3		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SN1893
Solid LCS	Source:				LCS(D) ID:	
Aqueous LO	CS Source:				LCS-79691	

	Aque	eous (ug/L	)		Soli	id (	mg/Kg)	
Analyte	True	Found	%R	True	Found	С	Limits	%R
Mercury	4.6	4.52	98.3					

N1893 Page 29 of 54

7

# LABORATORY CONTROL SAMPLE

Aqueous LO					LCS(D) ID: LCSD-79544	
Solid LCS	Source:					
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SN1893
Lab Name:	Spectrum Analy	ytical, Inc.	Contract:	60323116.3		

	Aque	Aqueous (ug/L)			Solid (mg/Kg)					
Analyte	True	Found	%R	True	Found	С	Limits	%R		
Aluminum	9100.0	9671.70	106.3							
Antimony	455.0	472.62	103.9							
Arsenic	455.0	490.15	107.7							
Barium	9100.0	9732.49	107.0							
Beryllium	227.0	241.44	106.4							
Cadmium	227.0	240.48	105.9							
Calcium	22700.0	23506.67	103.6							
Chromium	910.0	961.07	105.6							
Cobalt	2270.0	2379.93	104.8							
Copper	1130.0	1206.19	106.7							
Iron	4550.0	4968.61	109.2							
Lead	455.0	477.92	105.0							
Magnesium	22700.0	24168.20	106.5							
Manganese	2270.0	2417.15	106.5							
Nickel	2270.0	2379.49	104.8							
Potassium	22700.0	24115.14	106.2							
Selenium	455.0	475.45	104.5							
Silver	1130.0	1242.78	110.0							
Sodium	22700.0	24378.92	107.4							
Thallium	455.0	442.44	97.2							
Vanadium	2270.0	2382.29	104.9							
Zinc	2270.0	2380.73	104.9							
	(				1					

7

# LABORATORY CONTROL SAMPLE

Lab Name:	Spectrum Ar	nalytical, Inc.	Contract:	60323116.3		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SN1893
Solid LCS	Source:				LCS(D) ID:	
Aqueous LO	CS Source:				LCSD-79581	

	Aque	ous (ug/L	1)	Solid (mg/Kg)					
Analyte	True	Found	%R	True	Found	С	Limits	%R	
Mercury	4.6	4.04	87.8						

N1893 Page 31 of 54

7

# LABORATORY CONTROL SAMPLE

Lab Name:	Spectrum Analytical, Inc.		Contract:	60323116.3		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SN1893
Solid LCS	Source:				LCS(D) ID:	
Aqueous LO	CS Source:				LCSD-79691	

	Aqueous (ug/L)			Solid (mg/Kg)					
Analyte	True	Found	%R	True	Found	С	Limits	%R	
Mercury	4.6	4.43	96.3						



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

* Metals *

#### REPORT NARRATIVE

Spectrum Analytical, Inc. Featuring Hanibal Technology, RI Division.

Client: AECOM Technical Services, Inc.

**Project: Tuxedo Waste Disposal** 

Laboratory Workorder / SDG #: N1893D

SW846 6010C, SW846 7470A

#### I. SAMPLE RECEIPT

No exceptions or unusual conditions were encountered unless a Sample Condition Notification Form, or other record of communication is included with the Sample Receipt Documentation.

#### II. HOLDING TIMES

## A. Sample Preparation:

All samples were prepared within the method-specified holding times.

#### B. Sample Analysis:

All samples were analyzed within the method-specified holding times.

#### III. METHODS

Samples were analyzed following procedures in laboratory test code: SW846 6010C, SW846 7470A

#### IV. PREPARATION

Aqueous Samples were filtered in the laboratory prior to preparation following procedures in test codes: SW3005A, SW7470A. Filtration blank MB-79454 was created during the filtration step for both ICP and Hg tests but was not prepared for Hg analysis. All associated filtered samples were non-detects for Mercury so no further action was taken.

## V. INSTRUMENTATION

The following instrumentation was used:

N1893 Page 34 of 54

Instrument Code: FIMS2
Instrument Type: CVAA

Description: FIMS

Manufacturer: Perkin-Elmer

Model: FIMS100

Instrument Code: OPTIMA3

Instrument Type: ICP

Description: Optima ICP-OES Manufacturer: Perkin-Elmer

Model: 4300 DV

## VI. ANALYSIS

#### A. Calibration:

Calibrations met the method/SOP acceptance criteria.

#### B. Blanks:

All method blanks were within the acceptance criteria.

# C. Spikes:

# 1. Laboratory Control Spikes (LCS):

Percent recoveries for laboratory control samples were within the QC limits.

# 2. Matrix spike (MS):

A matrix spike was not performed on any sample in this SDG.

## D. Post Digestion Spike (PDS):

A post-digestion spike was not performed on any sample in this SDG.

# E. Duplicate sample:

A duplicate analysis was not performed on any sample in this SDG.

# F. Serial Dilution (SD):

A serial dilution was not performed on any sample in this SDG.

# G. Samples:

N1893 Page 35 of 54

No other unusual occurrences were noted during sample analysis.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Spectrum, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

Shann B Law le

Signed:

Date: 10/27/2014

N1893 Page 36 of 54



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

# Data Flag/Qualifiers (Page 1 of 2):

- U Not Detected. This compound was analyzed-for but not detected. For most analyses the reporting limit (lowest standard concentration) is the value listed. For Department of Defense programs, this is the Limit of Detection (LOD).
- J This flag indicates an estimated value due to either
  - the compound was detected below the reporting limit, or
  - estimated concentration for Tentatively Identified Compound
- B This flag indicates the compound was also detected in the associated Method Blank. The B flag has an alternative meaning for Inorganics analyses reported using CLP ILM-type metals forms, indicating a "trace" concentration below the reporting limit and equal to or above the detection limit.
- D For Organics analysis, this flag indicates the compound concentration was obtained from a secondary dilution analysis
- E This flag indicates the compound concentration exceeded the Calibration Range. The E flag has an alternative meaning for Inorganics analyses reported using CLP metals forms, indicating an estimated concentration due to the presence of interferences, as determined by the serial dilution analysis.
- P This flag is used for pesticides/PCB/herbicide compound when there is a greater than 40% difference for detected concentration between the two GC columns used for primary and confirmation analyses. This difference typically indicates interference, causing one value to be unusually high. The **lower** of the two values is generally reported on the Form 1, and both values reported on the Form 10.
- A Used to flag semivolatile organic Tentatively Identified Compound library search results for compounds identified as an aldol condensation by-product.



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

# Data Flag/Qualifiers (Page 2 of 2):

- N Used to flag results for volatile and semivolatile Organics analysis Tentatively Identified Compounds where an analyte has passed the identification criteria, and is considered to be positively identified. For Inorganics analysis the N flag indicates the matrix spike recovery falls outside of the control limit.
- * For Inorganics analysis the * flag indicates Relative Percent Difference for duplicate analyses is outside of the control limit.
- L NYSDEC qualifier: Result is biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.



# **Sample ID Suffixes**

- DL Diluted analysis. The sample was diluted and reanalyzed. The DL may be followed by a digit if more than one diluted reanalysis is provided. The DL suffix is not attached to an analysis initially performed at dilution, only to reanalyses performed at dilution
- RE Reanalysis. Appended to the client sample ID to indicate a reextraction and reanalysis or a reanalysis of the original sample extract.
- RA Reanalysis. Appended to the laboratory sample ID indicates a reanalysis of the original sample extract.
- RX Reextraction. Appended to the laboratory sample ID indicates a reextraction of the sample.
- MS Matrix Spike.
- MSD Matrix Spike Duplicate
- DUP Duplicate analysis
- SD Serial Dilution
- PS Post-digestion or Post-distillation spike. For metals or inorganic analyses

# U.S.EPA - CLP COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Lab	Name:	Spectrum Ana	lytical, Inc.	Contract:	60323116.3		
Lab	Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SN1893D
SOW	No.:	SW846	_				
		SW010	EPA Sample No.  MW-6 100714  RI-1 100814  RI-3 100714		Lab Sample N1893-04 N1893-08 N1893-07	ID	
Were	e ICP i	nterelement c	orrections applied?	Y	es/No	Yes	
Were	If y		ions applied? ata generated before ckground corrections?			Yes No	
Comr	ments:	reaction of ba	onground corrections.				
I contact of the significant states of the s	ertify the con condit kage an horized follow	ntract, both to tions detailed and in the compart of the Laboration of the Laboratory of the Laborator	puter-readable data submi ratory Manager or the Man	eteness, for data contacted on distager's designation.  Name:	r other than ined in this kette has be gnee, as ver	hardcopy o en ified by	data
Dat	e:	10/27/14		Title: (	QAD		

N1893 Page 40 of 54

SW846

COVER PAGE - IN

ilm14.04.17.1043

EPA SAMPLE NO.

### INORGANIC ANALYSIS DATA SHEET

MW – 6	1007	14

rah	Name:	Croatan	720111+1001	Tna	Contract:	60323116.3
Lab	Name.	Spectrum	Analytical,	IIIC.	Contract.	00323110.3

SDG No.: SN1893D Lab Code: MITKEM Case No.: SAS No.:

Lab Sample ID: N1893-04 Matrix (soil/water): WATER

Date Received: 10/09/2014 Level (low/med): MED

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	155	В		P
7440-36-0	Antimony	9.3	U		P
7440-38-2	Arsenic	4.3	U		P
7440-39-3	Barium	44.4	В		P
7440-41-7	Beryllium	0.26	U		P
7440-43-9	Cadmium	0.89	U		P
7440-70-2	Calcium	110000			P
7440-47-3	Chromium	0.64	U		P
7440-48-4	Cobalt	0.67	U		P
7440-50-8	Copper	7.8	В		P
7439-89-6	Iron	1940			P
7439-92-1	Lead	4.2	U		P
7439-95-4	Magnesium	12000			P
7439-96-5	Manganese	1940			P
7439-97-6	Mercury	0.028	U		CV
7440-02-0	Nickel	0.85	U		P
7440-09-7	Potassium	3870			P
7782-49-2	Selenium	12.0	U		P
7440-22-4	Silver	6.9	U		P
7440-23-5	Sodium	14400			P
7440-28-0	Thallium	6.2	U		P
7440-62-2	Vanadium	1.1	U		P
7440-66-6	Zinc	36.4	В		P

Commen	its:			
•				

N1893 Page 41 of 54

EPA SAMPLE NO.

### INORGANIC ANALYSIS DATA SHEET RI-1 100814

Lab	Name:	Spectrum	Analytical,	Inc.	Contract:	60323116.3
цар	name.	Spectrum	Analytical,	1110.	Concract.	00323110.3

SDG No.: SN1893D Lab Code: MITKEM Case No.: SAS No.:

Lab Sample ID: N1893-08 Matrix (soil/water): WATER

Date Received: 10/09/2014 Level (low/med): MED

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	172	В		P
7440-36-0	Antimony	9.3	U		P
7440-38-2	Arsenic	4.3	U		P
7440-39-3	Barium	16.2	В		P
7440-41-7	Beryllium	0.26	U		P
7440-43-9	Cadmium	0.89	U		P
7440-70-2	Calcium	53200			P
7440-47-3	Chromium	0.96	В		P
7440-48-4	Cobalt	0.67	U		P
7440-50-8	Copper	19.1	В		P
7439-89-6	Iron	127	В		P
7439-92-1	Lead	4.2	U		P
7439-95-4	Magnesium	9860			P
7439-96-5	Manganese	18.3	В		P
7439-97-6	Mercury	0.057	В		CV
7440-02-0	Nickel	0.92	В		P
7440-09-7	Potassium	2550			P
7782-49-2	Selenium	12.0	U		P
7440-22-4	Silver	6.9	U		Р
7440-23-5	Sodium	22700			P
7440-28-0	Thallium	6.2	U		P
7440-62-2	Vanadium	1.2	В		P
7440-66-6	Zinc	119		_	P

Commen	ts:			
-				
=				

EPA SAMPLE NO.

### INORGANIC ANALYSIS DATA SHEET

 0714

Lab N	Jame: Sr	pectrum	Analytical,	Inc.	Contract:	60323116.3
Lab i	iaiic - Di	OCCUT and	imiary crear,	T11C •	COLLCTACC	000223110.3

Lab Code: MITKEM Case No.: SAS No.: SDG No.: SN1893D

Matrix (soil/water): WATER Lab Sample ID: N1893-07

Level (low/med): MED Date Received: 10/09/2014

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	2990			P
7440-36-0	Antimony	9.3	U		P
7440-38-2	Arsenic	4.3	U		P
7440-39-3	Barium	111	В		P
7440-41-7	Beryllium	0.51	В		P
7440-43-9	Cadmium	0.89	U		P
7440-70-2	Calcium	51700			P
7440-47-3	Chromium	4.1	В		P
7440-48-4	Cobalt	5.4	В		P
7440-50-8	Copper	49.4			P
7439-89-6	Iron	3070			P
7439-92-1	Lead	10.3			P
7439-95-4	Magnesium	13600			P
7439-96-5	Manganese	329			P
7439-97-6	Mercury	0.032	В		CV
7440-02-0	Nickel	4.9	В		P
7440-09-7	Potassium	1740			P
7782-49-2	Selenium	12.0	U		P
7440-22-4	Silver	6.9	U		P
7440-23-5	Sodium	30300			P
7440-28-0	Thallium	6.2	U		P
7440-62-2	Vanadium	6.3	В		P
7440-66-6	Zinc	16.6	В		Р

Commen	its:			
•				

3

BLANKS

Lab Name:	Spectrum Analy	tical, Inc.	Contract:	60323116.3		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SN1893D
Preparation Blank Matrix (soil/water): WATER					Method	Blank ID:
Preparatio	on Blank Concen	tration Units (ug/L	or mg/kg): UG	/L	MB-7958	1

FIMS2_141022A

	Initial										
	Calibration	ı	Co	Continuing Calibration				Preparation			
	Blank (ug/L	)	Blank (ug/L)				Blank				
Analyte		С	10/22/14 9:05	С		С		С		С	M
Mercury	0.028	U	0.028	U					0.028	U	CV

N1893 Page 44 of 54

3

BLANKS

Lab Na	ame:	me: Spectrum Analytical, Inc.		Contract:	60323116.3		
Lab Co	ode:	MITKEM	Case No.:	SAS No.:		SDG No.:	SN1893D
Prepar	ratio	n Blank Matrix	(soil/water): WATE	⊆R		Method 1	3lank ID:

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

MB-79691

### $\mathtt{FIMS2_14102}\overline{\mathtt{4D}}$

	Initial										
	Calibration	ı	Co	Continuing Calibration  Blank (ug/L)				Preparation			
	Blank (ug/L	)						Blank			
Analyte		С	10/24/14 15:54	С		С		С		С	M
Mercury	0.028	U	0.028	U					0.028	U	CV

N1893 Page 45 of 54

3

### BLANKS

Tah	Mamo:	Cnoatrum	Analytical,	Tna	Contract:	60323116.3
LаD	name.	Spectrum	Alialytical,	IIIC.	Contract.	003Z3TT0.3

Lab Code: MITKEM Case No.: SAS No.: SDG No.: SN1893D

Preparation Blank Matrix (soil/water): WATER

Method Blank ID:

MB-79454

Preparation Blank Concentration Units (ug/L or mg/kg): ug/L

### OPTIMA3_141018A

	Initial										
	Calibration	n	Co	ont	inuing Calib	ra	tion		Preparation	1	
	Blank (ug/L	.)			Blank (ug/L	)			Blank		
Analyte		С	10/18/14 15:36	С	10/18/14 16:18	С	10/18/14 16:55	С		С	М
Aluminum	66.0	U	66.0	U	66.0	U	66.0	U	66.000	U	Р
Antimony	9.3	U	9.3	U	9.3	U	9.3	U	9.300	U	P
Arsenic	4.3	U	4.3	U	4.3	U	4.5	В	4.300	U	P
Barium	2.4	В	3.9	В	3.2	В	3.5	В	1.100	U	P
Beryllium	0.3	U	0.3	U	0.3	U	0.3	U	0.260	U	P
Cadmium	0.9	U	0.9	U	0.9	U	0.9	U	0.890	U	P
Calcium	169.5	В	110.0	U	117.4	В	114.8	В	110.000	U	Р
Chromium	0.6	U	0.6	U	0.6	U	0.6	U	0.640	U	Р
Cobalt	0.9	В	1.1	В	0.8	В	1.0	В	0.670	U	Р
Copper	3.6	U	3.6	U	3.6	U	3.6	U	3.600	U	P
Iron	31.0	U	31.0	U	31.0	U	31.0	U	31.000	U	Р
Lead	4.2	U	4.2	U	4.2	U	4.2	U	4.200	U	Р
Magnesium	76.0	U	76.0	U	76.0	U	76.0	U	76.000	U	Р
Manganese	10.0	U	10.0	U	10.0	U	10.0	U	10.000	U	Р
Nickel	0.9	U	1.0	В	0.8	U	1.1	В	0.850	U	P
Potassium	111.0	В	76.0	U	-348.0	В	-238.8	В	76.000	U	Р
Selenium	12.0	U	12.0	U	12.0	U	12.0	U	12.000	U	Р
Silver	6.9	U	6.9	U	6.9	U	6.9	U	6.900	U	P
Sodium	29.0	U	93.4	В	110.9	В	129.5	В	75.814	В	P
Thallium	6.2	U	6.2	U	6.2	U	6.2	U	6.200	U	P
Vanadium	1.1	U	1.1	U	1.1	U	1.3	В	1.100	U	P
Zinc	4.9	U	4.9	U	4.9	U	4.9	U	4.900	U	Р

3

BLANKS

Lab Name: Spectrum Analytic	cal, Inc.	Contract:	60323116.3		
Lab Code: MITKEM Ca	se No.:	SAS No.:		SDG No.:	SN1893D
Preparation Blank Matrix (s	soil/water): WATE	IR .		Method	Blank ID:
Preparation Blank Concentra	ation Units (ug/L	or mg/kg): ug/	'L	MB-7954	4
	0	PTIMA3_141018A			
Tnitial					

	Initial						
	Calibration	Co	ntinuing Calik	oration	Preparation	n	
	Blank (ug/L)		Blank (ug/I	٦)	Blank		
Analyte	(	C	С	C	C	С	М
Aluminum					66.000	U	P
Antimony					9.300	U	P
Arsenic					4.300	U	P
Barium					1.100	U	P
Beryllium					0.260	U	P
Cadmium					0.890	U	P
Calcium					112.581	В	P
Chromium					0.640	U	P
Cobalt					0.670	U	P
Copper					3.600	U	P
Iron					31.000	U	P
Lead					4.200	U	P
Magnesium					76.000	U	P
Manganese					10.000	U	P
Nickel					0.850	U	P
Potassium					76.000	U	P
Selenium					12.000	U	P
Silver					6.900	U	P
Sodium					116.364	В	P
Thallium					6.200	U	P
Vanadium					1.100	U	P
Zinc					4.900	U	P

Page 47 of 54 N1893

7

Lab Name:	Lab Name: Spectrum Analytical, Inc.		Contract:	60323116.3		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SN1893D
Solid LCS	Source:				LCS(D) ID:	
Aqueous LO	CS Source:				LCS-79544	

	_	, ,-	,		6.3		/ \	
	_	eous (ug/L				id (mg/		
Analyte	True	Found	%R	True	Found	С	Limits	%R
Aluminum	9100.0	9787.97	107.6					
Antimony	455.0	479.73	105.4					
Arsenic	455.0	496.05	109.0					
Barium	9100.0	9817.10	107.9					
Beryllium	227.0	244.29	107.6					
Cadmium	227.0	245.52	108.2					
Calcium	22700.0	23931.47	105.4					
Chromium	910.0	988.38	108.6					
Cobalt	2270.0	2449.69	107.9					
Copper	1130.0	1218.25	107.8					
Iron	4550.0	5101.85	112.1					
Lead	455.0	484.10	106.4					
Magnesium	22700.0	24417.79	107.6					
Manganese	2270.0	2445.00	107.7					
Nickel	2270.0	2451.41	108.0					
Potassium	22700.0	24440.95	107.7					
Selenium	455.0	481.42	105.8					
Silver	1130.0	1256.90	111.2					
Sodium	22700.0	25183.21	110.9					
Thallium	455.0	449.74	98.8					
Vanadium	2270.0	2410.44	106.2					
Zinc	2270.0	2460.08	108.4					

7

Lab Name:	Spectrum A	nalytical, Inc.	nc. Contract: 6	60323116.3		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SN1893D
Solid LCS	Source:				LCS(D) ID:	
Aqueous LO	CS Source:				LCS-79581	

	Aque	eous (ug/L	)		Soli	_d (	mg/Kg)	
Analyte	True	Found	%R	True	Found	С	Limits	%R
Mercury	4.6	4.58	99.6					

7

Lab Name: Spectrum Analytica		nalytical, Inc.	Contract:	60323116.3		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SN1893D
Solid LCS	Source:				LCS(D) ID:	
Aqueous LO	CS Source:				LCS-79691	

	Aque	eous (ug/L	)	Solid (mg/Kg)			mg/Kg)	
Analyte	True	Found	%R	True	Found	C	Limits	%R
Mercury	4.6	4.52	98.3					

7

Lab Code:	MITKEM	Case No.:	SAS No.:	SDG No.:	SN1893D
Solid LCS	Source:			LCS(D) ID:	
Aqueous LO	CS Source:			LCSD-79544	

	Aque	eous (ug/I	١)	Solid (mg/Kg)					
Analyte	True	Found	%R	True	Found	С	Limits	%R	
Aluminum	9100.0	9671.70	106.3						
Antimony	455.0	472.62	103.9						
Arsenic	455.0	490.15	107.7						
Barium	9100.0	9732.49	107.0						
Beryllium	227.0	241.44	106.4						
Cadmium	227.0	240.48	105.9						
Calcium	22700.0	23506.67	103.6						
Chromium	910.0	961.07	105.6						
Cobalt	2270.0	2379.93	104.8						
Copper	1130.0	1206.19	106.7						
Iron	4550.0	4968.61	109.2						
Lead	455.0	477.92	105.0						
Magnesium	22700.0	24168.20	106.5						
Manganese	2270.0	2417.15	106.5						
Nickel	2270.0	2379.49	104.8						
Potassium	22700.0	24115.14	106.2						
Selenium	455.0	475.45	104.5						
Silver	1130.0	1242.78	110.0						
Sodium	22700.0	24378.92	107.4						
Thallium	455.0	442.44	97.2						
Vanadium	2270.0	2382.29	104.9						
Zinc	2270.0	2380.73	104.9						
					1				

7

Lab Name:	Spectrum A	nalytical, Inc.	Contract:	60323116.3		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SN1893D
Solid LCS	Source:				LCS(D) ID:	
Aqueous LO	CS Source:				LCSD-79581	

	Aque	ous (ug/L	)	Solid (mg/Kg)				
Analyte	True	Found	%R	True	Found	С	Limits	%R
Mercury	4.6	4.04	87.8					

7

Lab Name:	Spectrum A	nalytical, Inc.	Contract:	60323116.3		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SN1893D
Solid LCS	Source:				LCS(D) ID:	
Aqueous LO	CS Source:				LCSD-79691	

	Aque	ous (ug/L	1)	Solid (mg/Kg)				
Analyte	True	Found	%R	True	Found	С	Limits	%R
Mercury	4.6	4.43	96.3					

Last Page of Data Report

N1893 Page 54 of 54



✓	Final Report						
	Re-Issued	Report					
	Revised R	eport					

### Laboratory Report

AECOM Technical Services, Inc.

Work Order: N1895
40 British American Blvd.

Project: Tuxedo

Project: Tuxedo Waste Disposal

Project #:

Attn: Mark Howard

Latham, NY 12110

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
N1895-01	USSW 100814	Aqueous	08-Oct-14 11:35	09-Oct-14 10:25
N1895-02	USSED 100814	Soil	08-Oct-14 11:40	09-Oct-14 10:25
N1895-03	DSSW 100814	Aqueous	08-Oct-14 12:45	09-Oct-14 10:25
N1895-04	DSSED 100814	Soil	08-Oct-14 12:50	09-Oct-14 10:25
N1895-05	MW-4 100814	Aqueous	08-Oct-14 16:13	09-Oct-14 10:25
N1895-06	TRIP BLANK	Aqueous	08-Oct-14 00:00	09-Oct-14 10:25

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. The results relate only to the samples(s) as received. This report may not be reproduced, except in full, without written approval from Spectrum Analytical.

All applicable NELAC or USEPA CLP requirments have been meet.

Spectrum Analytical (Rhode Island) is accredited under the National Environmental Laboratory Approval Program (NELAP) and DoD Environmental Laboratory Accreditation Program (ELAP), holds Organic and Inorganic contracts under the USEPA CLP Program and is certified under several states. The current list of our laboratory approvals and certifications is available on the Certifications page on our web site at www.spectrum-analytical.com.

Please contact the Laboratory or Technical Director at 401-732-3400 with any questions regarding the data contained in the laboratory report.

Department of Defense Connecticut PH-0153 Delaware N/AFlorida E87664 2007037 Maine M-RI907 Massachusetts New Hampshire 2631 New Jersey RI001 New York 11522 Rhode Island LAI00301 USDA P330-08-00023 USEPA - ISM EP-W-09-039 USEPA - SOM EP-W-11-033





Authorized by:

Yihai Ding Laboratory Director

## **New York State Department of Environmental Conservation Sample Identification and Analytical Requirements Summary**

Project Name : Tuxedo Waste Disposal

SDG: N1895

		Analytical Requirements							
Customer Sample ID	Laboratory Sample ID	MSVOA Method #	MSSEMI Method #	GC* Method #	ME	Other			
USSW 100814	N1895-01	SW8260_W	SW8270_W	SW8081_W	SW6010_W				
USSW 100814	N1895-01			SW8082_W	SW7470				
USSED 100814	N1895-02	SW8260_LOW_S	SW8270_S	SW8081_S	SW6010_S	SEE DATA			
USSED 100814	N1895-02			SW8082_S	SW7471				
DSSW 100814	N1895-03	SW8260_W	SW8270_W	SW8081_W	SW6010_W				
DSSW 100814	N1895-03			SW8082_W	SW7470				
DSSED 100814	N1895-04	SW8260_LOW_S	SW8270_S	SW8081_S	SW6010_S	SEE DATA			
DSSED 100814	N1895-04			SW8082_S	SW7471				
MW-4 100814	N1895-05				SW6010_W				
MW-4 100814	N1895-05				SW7470				
TRIP BLANK	N1895-06	SW8260_W							

**Page 1** 10/28/2014 14:58

### New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name: Tuxedo Waste Disposal SDG: N1895

Laboratory		Date	Date Received	Date	Date
Sample ID	Matrix	Collected	By Lab	Extracted	Analyzed
SW8260_LOW_S					•
N1895-02A	SL	10/8/2014	10/9/2014	NA	10/10/2014
N1895-04A	SL	10/8/2014	10/9/2014	NA	10/10/2014
SW8260_W					
N1895-01A	AQ	10/8/2014	10/9/2014	NA	10/21/2014
N1895-03A	AQ	10/8/2014	10/9/2014	NA	10/21/2014
N1895-06A	AQ	10/8/2014	10/9/2014	NA	10/21/2014

Page 2 10/28/2014 14:58

### New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSSEMI

Project Name: Tuxedo Waste Disposal SDG: N1895

Laboratory		Date	Date Received	Date	Date
Sample ID	Matrix	Collected	By Lab	Extracted	Analyzed
SW8270_S	•				
N1895-02D	SL	10/8/2014	10/9/2014	10/18/2014	10/20/2014
N1895-04D	SL	10/8/2014	10/9/2014	10/18/2014	10/20/2014
SW8270_W					
N1895-01D	AQ	10/8/2014	10/9/2014	10/15/2014	10/20/2014
N1895-03D	AQ	10/8/2014	10/9/2014	10/15/2014	10/20/2014

Page 3 10/28/2014 14:58

### New York State Department of Environmental Conservation Sample Preparation and Analysis Summary GC*

Project Name: Tuxedo Waste Disposal SDG: N1895

Laboratory		Date	Date Received	Date	Date
Sample ID	Matrix	Collected	By Lab	Extracted	Analyzed
SW8081_S					•
N1895-02D	SL	10/8/2014	10/9/2014	10/18/2014	10/20/2014
N1895-04D	SL	10/8/2014	10/9/2014	10/18/2014	10/20/2014
SW8081_W					
N1895-01D	AQ	10/8/2014	10/9/2014	10/15/2014	10/17/2014
N1895-03D	AQ	10/8/2014	10/9/2014	10/15/2014	10/17/2014
SW8082_S					
N1895-02D	SL	10/8/2014	10/9/2014	10/18/2014	10/20/2014
N1895-04D	SL	10/8/2014	10/9/2014	10/18/2014	10/20/2014
SW8082_W			•		•
N1895-01D	AQ	10/8/2014	10/9/2014	10/15/2014	10/17/2014
N1895-03D	AQ	10/8/2014	10/9/2014	10/15/2014	10/17/2014

Page 4 10/28/2014 14:58

### New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name: Tuxedo Waste Disposal SDG: N1895

Laboratory		Analytical	Extraction	Low/Medium	Dil/Conc
Sample ID	Matrix	Protocol	Method	Level	Factor
SW8260_LOW_S	•				
N1895-02A	SL	SW8260_LOW_S	NA	LOW	1
N1895-04A	SL	SW8260_LOW_S	NA	LOW	1
SW8260_W					
N1895-01A	AQ	SW8260_W	NA	LOW	1
N1895-03A	AQ	SW8260_W	NA	LOW	1
N1895-06A	AQ	SW8260_W	NA	LOW	1

Page 5 10/28/2014 14:58

### New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSSEMI

Project Name: Tuxedo Waste Disposal SDG: N1895

Laboratory		Analytical	Extraction	Auxiliary	Dil/Conc
Sample ID	Matrix	Protocol	Method	Cleanup	Factor
SW8270_S	•				
N1895-02D	SL	SW8270_S	3550B	NA	1
N1895-04D	SL	SW8270_S	3550B	NA	1
SW8270_W					
N1895-01D	AQ	SW8270_W	3510C	NA	1
N1895-03D	AQ	SW8270_W	3510C	NA	1

**Page 6** 10/28/2014 14:58

### New York State Department of Environmental Conservation Sample Preparation and Analysis Summary GC*

Project Name: Tuxedo Waste Disposal SDG: N1895

Laboratory		Analytical	Extraction	Auxiliary	Dil/Conc
Sample ID	Matrix	Protocol	Method	Cleanup	Factor
SW8081_S			•	•	•
N1895-02D	SL	SW8081_S	3550B	Sulfur	1
N1895-04D	SL	SW8081_S	3550B	Sulfur	1
SW8081_W					
N1895-01D	AQ	SW8081_W	3510C	Sulfur	1
N1895-03D	AQ	SW8081_W	3510C	Sulfur	1
SW8082_S					
N1895-02D	SL	SW8082_S	3550B	Acid/Sulfur	1
N1895-04D	SL	SW8082_S	3550B	Acid/Sulfur	1
SW8082_W			•	•	-
N1895-01D	AQ	SW8082_W	3510C	Acid/Sulfur	1
N1895-03D	AQ	SW8082_W	3510C	Acid/Sulfur	1

Page 7 10/28/2014 14:58

### New York State Department of Environmental Conservation Sample Preparation and Analysis Summary ME

Project Name: Tuxedo Waste Disposal

SDG: M1895

Laboratory		Metals	Date Received	Date
Sample ID	Matrix	Requested	By Lab	Analyzed
SW6010_S			- '	
N1895-02C	SL	SW6010_S	10/9/2014	10/20/2014
N1895-04C	SL	SW6010_S	10/9/2014	10/20/2014
SW6010_W				
N1895-01B	AQ	SW6010_W	10/9/2014	10/18/2014
N1895-03B	AQ	SW6010_W	10/9/2014	10/18/2014
N1895-05A	AQ	SW6010_W	10/9/2014	10/18/2014
SW7470				
N1895-01B	AQ	SW7470	10/9/2014	10/24/2014
N1895-03B	AQ	SW7470	10/9/2014	10/24/2014
N1895-05A	AQ	SW7470	10/9/2014	10/22/2014
SW7471				
N1895-02C	SL	SW7471	10/9/2014	10/21/2014
N1895-04C	SL	SW7471	10/9/2014	10/21/2014

Page 8 10/28/2014 14:58

# WorkOrder: N1895

Report Level: ASP-A

Special Program:

# Spectrum Analytical Inc. - North Kingstown RI -- Rhode Island Division

**Project:** Tuxedo Waste Disposal Client ID: AECOM_LATHAM

WO Name: Tuxedo Waste Disposal

Location: AECOM_TUXEDO,

Comments: N/A

HC Due: 10/21/14 Fax Report: Fax Due: Case: SDG:

**PO:** 60323116.3

MS SEL Storage VOA VOA VOA VOA SUB  $M_2$ M2 **™ № №** 02 02 02 02 05 02 002 002 003 M2M2  $M_2$ > > HI > > > > > Ħ Samp / Lab Test Comments / Dissolved, TAL / Dissolved, TAL / Dissolved, TAL / SPECTRUM--/TAL /TAL /TAL /TAL /TAL /TAL SW8260_LOW_S SW8260_MED_S SW6010_W SW8081_W SW8082_W SW8270_W SW6010_W SW6010_W SW8260_W SW6010_W SW6010_S SW8081_S SW8082_S SW8270_S LK_TOC_S SW8260_W Test Code SW7470 SW7470 SW7470 SW7471 **PMoist** Aqueous Matrix Soil Soil Soil Soil Soil Soil Soil Soil Soil Date Recv'd 10/08/2014 12:45 10/09/2014 10/09/2014 10/09/2014 10/09/2014 10/09/2014 10/09/2014 10/09/2014 10/09/2014 10/09/2014 10/09/2014 10/09/2014 10/09/2014 10/09/2014 10/09/2014 10/09/2014 10/09/2014 10/09/2014 10/09/2014 10/09/2014 10/09/2014 10/09/2014 M895-03C DSSW 100814 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 12:45 10 10/08/2014 11:40 10/08/2014 11:35 10/08/2014 11:40 10/08/2014 11:35 10/08/2014 11:35 10/08/2014 11:35 10/08/2014 11:40 10/08/2014 12:45 10/08/2014 11:35 10/08/2014 11:35 10/08/2014 11:40 10/08/2014 11:40 10/08/2014 11:40 10/08/2014 11:40 10/08/2014 12:45 10/08/2014 12:45 10/08/2014 11:35 10/08/2014 11:35 10/08/2014 11:40 10/08/2014 11:40 Collection Date Lab Samp ID Client Sample ID **USSED 100814 USSED 100814 USSW 100814** DSSW 100814 DSSW 100814 **USSW 100814 USSW 100814 USSW 100814 USSW 100814 USSW 100814 USSW 100814 USSW 100814** DSSW 100814 N1895-01C N1895-02C N1895-02E N1895-01A N1895-01B N1895-01B N1895-01C N1895-01D N1895-01D N1895-01D N1895-02B N1895-02C N1895-02D N1895-02D N1895-02D N1895-03B N1895-03B N1895-02D N1895-03A N1895-02A

10/20/2014 11:57

Lab Client Rep: Agnes R Huntley

HT = Test logged in but has been placed on hold

WorkOrder: N1895

Report Level: ASP-A

EDD:

Special Program:

Spectrum Analytical Inc. - North Kingstown RI -- Rhode Island Division

**Project:** Tuxedo Waste Disposal Gient ID: AECOM_LATHAM

WO Name: Tuxedo Waste Disposal

Location: AECOM_TUXEDO, Comments: N/A

HC Due: 10/21/14 Fax Report: Fax Due: Case: SDG:

**PO:** 60323116.3

Lab Samp ID	Lab Samp ID Client Sample ID	Collection Date Date Recv'd		Matrix	Test Code	Samp / Lab Test Comments	HF HT MS SEL Storage	Storage
N1895-03C	DSSW 100814	10/08/2014 12:45 10/09/2014		Aqueous	SW7470	/ Dissolved, TAL	ν ->	M2
N1895-03D	DSSW 100814	10/08/2014 12:45 10/09/2014		Aqueous	SW8081_W	/	0	02
N1895-03D	DSSW 100814	10/08/2014 12:45	10/09/2014	Aqueous	SW8082_W	/	O	02
N1895-03D	DSSW 100814	10/08/2014 12:45	10/09/2014	Aqueous	SW8270_W	/	0	02
N1895-04A	DSSED 100814	10/08/2014 12:50 10/09/2014		Soil	SW8260_LOW_S	/	>	VOA
N1895-04B	DSSED 100814	10/08/2014 12:50	10/09/2014	Soil	SW8260_MED_S		> >	VOA
N1895-04C	DSSED 100814	10/08/2014 12:50 10/09/2014		Soil	SW6010_S	/TAL	>	02
N1895-04C	DSSED 100814	10/08/2014 12:50	10/09/2014	Soil	SW7471	/ TAL	O	02
N1895-04D	DSSED 100814	10/08/2014 12:50	10/09/2014	Soil	PMoist	/	0	02
N1895-04D	DSSED 100814	10/08/2014 12:50	10/09/2014	Soil	SW8081_S	/	O	02
N1895-04D	DSSED 100814	10/08/2014 12:50	10/09/2014	Soil	SW8082_S	/	O	02
N1895-04D	DSSED 100814	10/08/2014 12:50	10/09/2014	Soil	SW8270_S	/	0	02
N1895-04E	DSSED 100814	10/08/2014 12:50	10/09/2014	Soil	LK_TOC_S	/ SPECTRUM	S	SUB
N1895-05A	MW-4 100814	10/08/2014 16:13	10/09/2014	Aqueous	SW6010_W	/TAL	N	M2
N1895-05A	MW-4 100814	10/08/2014 16:13	10/09/2014	Aqueous	SW7470	/ TAL	2	M2
N1895-06A	TRIP BLANK	10/08/2014 00:00	10/09/2014	Aqueous	SW8260_W	/	Λ	VOA

de de de la faction logged in but all tests have been placed on hold de de la faction logged in but all tests have been placed on hold de de la faction logged in but all tests have been placed on hold de la faction logged in but all tests have been placed on hold de la faction logged in but all tests have been placed on hold de la faction logged in but all tests have been placed on hold de la faction logged in but all tests have been placed on hold de la faction logged in but all tests have been placed on hold de la faction logged in but all tests have been placed on hold de la faction logged in but all tests have been placed on hold de la faction logged in but all tests have been placed on hold de la faction logged in but all tests have been placed on hold de la faction logged in but all tests have been black de la faction logged in but all tests have been black de la faction logged in but all tests have been black de la faction logged in but all tests have been black de la faction logged in but all tests have been black de la faction logged in but all tests have been black de la faction logged in but all tests have black de la faction logged in black de la

HT = Test logged in but has been placed on hold

Sample Transmittal Documentation

N1895 Page 3 of 214

Condition upon receipt: Custody Seals: Present Pintact Broken Ambient Preed Drefigerated DIVOA Frozen Soil Jar Frozen · All TATs subject to laboratory approval. State-specific reporting standards: Min. 24-hour notification needed for rushes. QA/QC Reporting Notes: QA/QC Reporting Level NTV < 50, do not filter ☐ Level IV · Samples disposed of after 60 days unless ☐ Level II 3 TAT- Ind icate Date Needed: STV ITE-mail to Mark. Howard A GRECOM, COM Special Handling: State: □ Level III ■Other___ □ Level I otherwise instructed. 60323116 List preservative code below: Site Name: Toxeolo Sampler(s): FC. 1 1 sxedo ☐ EDD Format N Kingstown, RI 02852 Analyses ☐ 646 Camp Avenue Project No.: USTODY RECORD (401) 732-3400 201 Location: Merculy 8260 Vocs  $Temp^{\circ}C$ 3.5 St 24 Time: ☐ 8405 Benjamin Road, Ste A 10.25 # of Plastic Containers: 7=CH₃OH Tampa, FL 33634 # of Clear Glass (813) 888-9507 RON: # of Amber Glass 3 10/8/14 17:01 3 T 10/02/14 HECOM Date: 6=Ascorbic Acid s IsiV AOV 10 # 4 S R N V <u>~</u> SW R CHAIN OF Type 5 6 ( J Invoice To: P.O. No.: ☐ 11 Almgren Drive Agawam, MA 01001 5=NaOH [6:13]05:21 (413) 789-9018 WW=Wastewater SL=Sludge A=Air Time: St. Z 07:1 11:35 Received by: X3= 10=H₃PO₄ 10/0/14 4=HNO, 10/8/14 10/8/01 10/0/14 Date: C=Composite DW=Drinking Water GW=Groundwater SW= Surface Water SO=Soil 951-1260 9= Deionized Water めころ toward 12 War A SPECTRUM ANALYTICAL, INC. 100814 DSSW (00814) Block 3 MN-4100814 Black X2= Sample Id: Featuring HANIBAL TECHNOLOGY This This G=Grab (000/4 1 USSW 100814 2=HCl Relinquished by: (5/8) Mark No 13.46h DSsed 45CON 1155ed  $1=Na_2S2O_3$ 8= NaHSO₄ Telephone #: _ Project Mgr. Report To: 05 0 Fe 95 Z Lab Id: 0=0il \$ 180°

N1895

www.spectrum-analytical.com

Page 4 of 214

Revised Feb 2013

-F									
Received By:								of 00	
Reviewed By: KP						L	og-in	Date 10/	09/2014
Work Order: N1895	Client Name: AI	ECOM Technical	Serv	ices,	Inc.				
Project Name/Event:	Tuxedo Waste Disposal								
Remarks: (1/2) Please sample/extract transfe				Preser	rvatio	n (pH)			Soil HeadSpace
submitted with this da		Lab Sample ID	пиоз	H2SO4	HCl	NaOU	H3PO4	VOA	or Air Bubble > or equal to 1/4"
1. Custody Seal(s)	Dragent / Negent	Lab Sample in	пиоз	n2504	UCI	NaOn	n3F04	Matrix	
i. Custody Seal(s)	Present / Absent	N1895-01	<2					Н	
	Intact / Broken	N1895-02						F/M	
2. Custody Seal Nos.	N/A	N1895-03	<2	<b>†</b>				Н	
		N1895-04						F/M	
<ol><li>Traffic Reports/ Chair of Custody Records</li></ol>	Present / Absent	N1895-05	<2					Н	
(TR/COCs) or Packing Lists		N1895-06						Н	
		111000 00							
4. Airbill	AirBill/Sticker								
	Present / Absent								
	1103cHt/ Abbellt								
5. Airbill No.	FedEx 8059 4123 7939								
6. Sample Tags	Present / Absent								
Sample Tag Numbers									
•	Listed/								
(	Not Listed on Chain- of-Custody								
7. Sample Condition	Intact/Broken/								
	Leaking								
B. Cooler Temperature Indicator Bottle	Present / Absent								
9. Cooler Temperature	3.7 °C								
•									
10. Does information on TR/COCs and sample	Yes / No								
tags agree?									
11. Date Received at	10/09/2014								
Laboratory	10/09/2014								
2 min position	10.05								
12. Time Received	10:25								
Sample	Transfer								
Fraction (1) TVOA/VOA	Fraction (2) SVOA/PEST/ARO								
Area #	Area #								
Зу	Ву	•							
On	On								
IR Temp Gun ID:MT-74		V	DA Matr	ix Kev:					
CoolantCondition: ICE				US = Un	preserv	ed Soil	Δ=	Air	
Preservative Name/Lot No:				UA = Un	•				
				M = MeC		oa nque		= Ficore	
				N = NaH				Freeze	
						tification			m Voc / No
		5€	e oam	ve coudi	HOH MO	uncation	Conecti	ve Action For	rm Yes No
			~ O~ (	Vo=	)				
		Ra	ad OK $^{<}$	res /	// No				



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

* Volatiles *

### REPORT NARRATIVE

Spectrum Analytical, Inc. Featuring Hanibal Technology, RI Division.

Client: AECOM Technical Services, Inc.

**Project: Tuxedo Waste Disposal** 

Laboratory Workorder / SDG #: N1895

SW846 8260C, VOC by GC-MS

### I. SAMPLE RECEIPT

No exceptions or unusual conditions were encountered unless a Sample Condition Notification Form, or other record of communication is included with the Sample Receipt Documentation.

### II. HOLDING TIMES

### A. Sample Preparation:

All samples were prepared within the method-specified holding times.

### B. Sample Analysis:

All samples were analyzed within the method-specified holding times.

### III. METHODS

Samples were analyzed following procedures in laboratory test code: SW846 8260C

### IV. PREPARATION

Aqueous Samples were prepared following procedures in laboratory test

code: SW5030B

Soil Samples were prepared following procedures in laboratory test

code: SW5035

### V. INSTRUMENTATION

The following instrumentation was used

N1895 Page 7 of 214

Instrument Code: V1

Instrument Type: GCMS-VOA
Description: HP5890 II / HP5972
Manufacturer: Hewlett-Packard

Model: 5890 / 5972

GC Column used: 30 m X 0.25 mm ID [1.40 um thickness] DB-624

capillary column.

Instrument Code: V10

Instrument Type: GCMS-VOA

Description: HP7890A Manufacturer: Agilent Model: 7890A / 5975C

GC Column used: 30 m X 0.25 mm ID [1.40 um thickness] DB-624

capillary column.

### VI. ANALYSIS

### A. Calibration:

Calibrations met the method/SOP acceptance criteria.

### B. Blanks:

All method blanks were within the acceptance criteria.

### C. Surrogates:

Surrogate standard percent recoveries were within the QC limits.

### D. Spikes:

### 1. Laboratory Control Spikes (LCS):

Percent recoveries for lab control samples were within the QC limits with the following exceptions. Please note that most test procedures allow for several compounds outside of the QC limits for the LCS, although this may indicate a bias for this specific compound.

LCS-79463 in batch 79463, recovery is below criteria for 1,4-Dioxane at 63% with criteria of (70-130).

### 2. Matrix Spike / Matrix Spike Duplicate (MS/MSD):

No client-requested MS/MSD analyses were included in this SDG.

N1895 Page 8 of 214

### E. Internal Standards:

Internal standard peak areas were within the QC limits.

### F. Dilutions:

No sample in this SDG required analysis at dilution.

### G. Samples:

No other unusual occurrences were noted during sample analysis.

### H. Manual Integration

Where needed, manual integrations were performed to improve data quality. The corrections were reviewed and associated hardcopies generated and reported as required. Manual integrations are coded to provide the data reviewer justification for such action. The codes are labeled on the ion chromatogram signal (GC/MS signal) and chromatogram for GC based analysis as follows:

- · M1 peak tailing or fronting
- M2 peak co-elution
- · M3 rising or falling baseline
- M4 retention time shift
- $\cdot$  M5  $\,$  miscellaneous under this category, the justification is explained
- M6 software did not integrate peak
- M7 partial peak integration

Manual integration was performed on the following:

VSTD00110Q lodomethane due to M7

VSTD00510Q lodomethane due to M7

VSTD0051A Acetonitrile due to M1

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Spectrum, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

N1895 Page 9 of 214

\$\frac{1}{V}\$ Signed:		
Date:	_10/22/2014	

N1895 Page 10 of 214



# SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

### Data Flag/Qualifiers (Page 1 of 2):

- U Not Detected. This compound was analyzed-for but not detected. For most analyses the reporting limit (lowest standard concentration) is the value listed. For Department of Defense programs, this is the Limit of Detection (LOD).
- J This flag indicates an estimated value due to either
  - the compound was detected below the reporting limit, or
  - estimated concentration for Tentatively Identified Compound
- B This flag indicates the compound was also detected in the associated Method Blank. The B flag has an alternative meaning for Inorganics analyses reported using CLP ILM-type metals forms, indicating a "trace" concentration below the reporting limit and equal to or above the detection limit.
- D For Organics analysis, this flag indicates the compound concentration was obtained from a secondary dilution analysis
- E This flag indicates the compound concentration exceeded the Calibration Range. The E flag has an alternative meaning for Inorganics analyses reported using CLP metals forms, indicating an estimated concentration due to the presence of interferences, as determined by the serial dilution analysis.
- P This flag is used for pesticides/PCB/herbicide compound when there is a greater than 40% difference for detected concentration between the two GC columns used for primary and confirmation analyses. This difference typically indicates interference, causing one value to be unusually high. The **lower** of the two values is generally reported on the Form 1, and both values reported on the Form 10.
- A Used to flag semivolatile organic Tentatively Identified Compound library search results for compounds identified as an aldol condensation by-product.



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

### Data Flag/Qualifiers (Page 2 of 2):

- N Used to flag results for volatile and semivolatile Organics analysis Tentatively Identified Compounds where an analyte has passed the identification criteria, and is considered to be positively identified. For Inorganics analysis the N flag indicates the matrix spike recovery falls outside of the control limit.
- * For Inorganics analysis the * flag indicates Relative Percent Difference for duplicate analyses is outside of the control limit.
- L NYSDEC qualifier: Result is biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.



### **Sample ID Suffixes**

- DL Diluted analysis. The sample was diluted and reanalyzed. The DL may be followed by a digit if more than one diluted reanalysis is provided. The DL suffix is not attached to an analysis initially performed at dilution, only to reanalyses performed at dilution
- RE Reanalysis. Appended to the client sample ID to indicate a reextraction and reanalysis or a reanalysis of the original sample extract.
- RA Reanalysis. Appended to the laboratory sample ID indicates a reanalysis of the original sample extract.
- RX Reextraction. Appended to the laboratory sample ID indicates a reextraction of the sample.
- MS Matrix Spike.
- MSD Matrix Spike Duplicate
- DUP Duplicate analysis
- SD Serial Dilution
- PS Post-digestion or Post-distillation spike. For metals or inorganic analyses

	EPA	SAMPLE	NO.	
Ι	cs-7	9592		

Lab Name:	SPECTRUM ANA	LYTICAL, IN	IC.		Contract:		
Lab Code:	MITKEM	Case No.:	N1895		Mod. Ref No.:	SDG No.: SN1895	
Matrix: (So	OIL/SED/WATER	) WATER			Lab Sample ID:	LCS-79592	
Sample wt/	vol: 5.	00 (g/mL)	ML		Lab File ID:	V8D7663.D	
Level: (TR	ACE/LOW/MED)	LOW			Date Received:		
% Moisture	: not dec.				Date Analyzed:	10/21/2014	
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume: (u	L)
Purge Volum	me: 5.0			(mL)			

	gov.	CONCENTRATION UNITS:	_
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	44	
74-87-3	Chloromethane	51	
75-01-4	Vinyl chloride	50	
74-83-9	Bromomethane	56	
75-00-3	Chloroethane	47	
75-69-4	Trichlorofluoromethane	46	
75-35-4	1,1-Dichloroethene	47	
67-64-1	Acetone	54	
74-88-4	Iodomethane	58	
75-15-0	Carbon disulfide	47	
75-09-2	Methylene chloride	48	
156-60-5	trans-1,2-Dichloroethene	47	
1634-04-4	Methyl tert-butyl ether	49	
75-34-3	1,1-Dichloroethane	49	
108-05-4	Vinyl acetate	51	
78-93-3	2-Butanone	48	
156-59-2	cis-1,2-Dichloroethene	49	
594-20-7	2,2-Dichloropropane	46	
74-97-5	Bromochloromethane	50	
67-66-3	Chloroform	48	
71-55-6	1,1,1-Trichloroethane	48	
563-58-6	1,1-Dichloropropene	51	
56-23-5	Carbon tetrachloride	48	
107-06-2	1,2-Dichloroethane	51	
71-43-2	Benzene	49	
79-01-6	Trichloroethene	48	
78-87-5	1,2-Dichloropropane	49	
74-95-3	Dibromomethane	47	
75-27-4	Bromodichloromethane	49	
10061-01-5	cis-1,3-Dichloropropene	53	
108-10-1	4-Methyl-2-pentanone	50	
108-88-3	Toluene	49	
10061-02-6	·	52	
79-00-5	1,1,2-Trichloroethane	48	
142-28-9	1,3-Dichloropropane	48	

EPA	SAMPLE	NO.
LCS-7	9592	

Lab Name:	SPECTRUM ANAI	YTICAL, IN	С.		Contract:	
Lab Code:	MITKEM	Case No.:	N1895		Mod. Ref No.:	SDG No.: SN1895
Matrix: (S	OIL/SED/WATER	WATER			Lab Sample ID:	LCS-79592
Sample wt/	vol: 5.0	00 (g/mL)	ML		Lab File ID:	V8D7663.D
Level: (TR	ACE/LOW/MED)	LOW			Date Received:	
% Moisture	: not dec.				Date Analyzed:	10/21/2014
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume: (uL
Purge Volu	me: 5.0			(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L	Q
127-18-4	Tetrachloroethene	48	
591-78-6	2-Hexanone	51	
124-48-1		51	
106-93-4	•	50	
	Chlorobenzene	49	
630-20-6		49	
100-41-4	Ethylbenzene	52	
179601-23-1	m,p-Xylene	100	
95-47-6		51	
1330-20-7		150	
100-42-5	Styrene	52	
75-25-2	Bromoform	52	
98-82-8	Isopropylbenzene	52	
79-34-5	1,1,2,2-Tetrachloroethane	46	
108-86-1	Bromobenzene	49	
96-18-4	1,2,3-Trichloropropane	51	
103-65-1	n-Propylbenzene	50	
95-49-8		49	
108-67-8	1,3,5-Trimethylbenzene	51	
106-43-4	4-Chlorotoluene	49	
98-06-6	tert-Butylbenzene	53	
95-63-6	1,2,4-Trimethylbenzene	51	
135-98-8	sec-Butylbenzene	51	
99-87-6	4-Isopropyltoluene	51	
541-73-1	1,3-Dichlorobenzene	48	
106-46-7	1,4-Dichlorobenzene	48	
104-51-8	n-Butylbenzene	52	
95-50-1	1,2-Dichlorobenzene	50	
96-12-8	1,2-Dibromo-3-chloropropane	50	
120-82-1		48	
87-68-3	Hexachlorobutadiene	45	
87-61-6		49	
91-20-3	Naphthalene	44	

EPA	SAMPLE	NO.	
LCSD-	79592		

Lab Name: SPECTRUM ANA	LYTICAL, IN	C.		Contract:	
Lab Code: MITKEM	Case No.:	N1895		Mod. Ref No.:	SDG No.: SN1895
Matrix: (SOIL/SED/WATER	) WATER			Lab Sample ID:	LCSD-79592
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V8D7664.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	
% Moisture: not dec.				Date Analyzed:	10/21/2014
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL
Purge Volume: 5.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	45	
74-87-3	Chloromethane	51	
75-01-4	Vinyl chloride	52	
74-83-9	Bromomethane	58	
75-00-3	Chloroethane	48	
75-69-4	Trichlorofluoromethane	47	
75-35-4	1,1-Dichloroethene	49	
67-64-1	Acetone	50	
74-88-4	Iodomethane	43	
75-15-0	Carbon disulfide	50	
75-09-2	Methylene chloride	49	
156-60-5	trans-1,2-Dichloroethene	47	
1634-04-4	Methyl tert-butyl ether	50	
75-34-3	1,1-Dichloroethane	51	
108-05-4	Vinyl acetate	52	
78-93-3	2-Butanone	53	
156-59-2	cis-1,2-Dichloroethene	51	
594-20-7	2,2-Dichloropropane	47	
74-97-5	Bromochloromethane	53	
67-66-3	Chloroform	49	
71-55-6	1,1,1-Trichloroethane	50	
563-58-6	1,1-Dichloropropene	50	
56-23-5	Carbon tetrachloride	50	
107-06-2	1,2-Dichloroethane	53	
71-43-2	Benzene	50	
79-01-6	Trichloroethene	50	
78-87-5	1,2-Dichloropropane	51	
74-95-3	Dibromomethane	49	
75-27-4	Bromodichloromethane	50	
10061-01-5	cis-1,3-Dichloropropene	54	
108-10-1	4-Methyl-2-pentanone	51	
108-88-3	Toluene	50	
10061-02-6	trans-1,3-Dichloropropene	53	
79-00-5	1,1,2-Trichloroethane	49	
142-28-9	1,3-Dichloropropane	50	

EPA	SAMPLE	NO.
LCSD-	-79592	

Lab Name:	SPECTRUM ANAI	YTICAL, IN	С.		Contract:	
Lab Code:	MITKEM	Case No.:	N1895		Mod. Ref No.:	SDG No.: SN1895
Matrix: (S	OIL/SED/WATER	) WATER			Lab Sample ID:	LCSD-79592
Sample wt/	vol: 5.0	00 (g/mL)	ML		Lab File ID:	V8D7664.D
Level: (TR	ACE/LOW/MED)	LOW			Date Received:	
% Moisture	: not dec.				Date Analyzed:	10/21/2014
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extra	.ct Volume:			(uL)	Soil Aliquot Vol	ume: (uL
Purge Volu	me: 5.0			(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)	Q
127-18-4	Tetrachloroethene	50	
591-78-6	2-Hexanone	55	
124-48-1	Dibromochloromethane	51	
106-93-4	1,2-Dibromoethane	51	
108-90-7	Chlorobenzene	49	
630-20-6	1,1,1,2-Tetrachloroethane	50	
100-41-4	Ethylbenzene	53	
179601-23-1	m,p-Xylene	100	
95-47-6		52	
1330-20-7	_	160	
100-42-5	Styrene	54	
75-25-2	Bromoform	53	
98-82-8	Isopropylbenzene	54	
79-34-5	1,1,2,2-Tetrachloroethane	45	
108-86-1		49	
96-18-4	1,2,3-Trichloropropane	46	
103-65-1	n-Propylbenzene	51	
95-49-8	2-Chlorotoluene	50	
108-67-8	1,3,5-Trimethylbenzene	51	
106-43-4	4-Chlorotoluene	51	
98-06-6	tert-Butylbenzene	48	
95-63-6	1,2,4-Trimethylbenzene	52	
135-98-8	sec-Butylbenzene	50	
99-87-6	4-Isopropyltoluene	52	
541-73-1	1,3-Dichlorobenzene	50	
106-46-7	1,4-Dichlorobenzene	48	
104-51-8	n-Butylbenzene	53	
95-50-1	<u> </u>	50	
96-12-8	1,2-Dibromo-3-chloropropane	49	
120-82-1	1,2,4-Trichlorobenzene	49	
87-68-3	Hexachlorobutadiene	46	
87-61-6		48	
91-20-3	Naphthalene	43	

EPA	SAMPLE	NO.	
MB-79	592		

Lab Name: SPECTRUM ANA	LYTICAL, IN	C.		Contract:	
Lab Code: MITKEM	Case No.:	N1895		Mod. Ref No.:	SDG No.: SN1895
Matrix: (SOIL/SED/WATER	WATER			Lab Sample ID:	MB-79592
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V8D7666.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	
% Moisture: not dec.				Date Analyzed:	10/21/2014
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uI
Purge Volume: 5 0			(mT.)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	1.0	U
74-87-3	Chloromethane	1.0	U
75-01-4	Vinyl chloride	1.0	U
74-83-9	Bromomethane	1.0	U
75-00-3	Chloroethane	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	1.0	U
75-15-0	Carbon disulfide	1.0	U
75-09-2	Methylene chloride	1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	U
1634-04-4	Methyl tert-butyl ether	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U
108-05-4	Vinyl acetate	1.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	1.0	U
594-20-7	2,2-Dichloropropane	1.0	U
74-97-5	Bromochloromethane	1.0	U
67-66-3	Chloroform	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
56-23-5	Carbon tetrachloride	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
71-43-2	Benzene	1.0	U
79-01-6	Trichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
74-95-3	Dibromomethane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
10061-01-5	cis-1,3-Dichloropropene	1.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	1.0	U
10061-02-6	trans-1,3-Dichloropropene	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U

EPA	SAMPLE	NO.
MB-79	592	

Lab Name:	SPECTRUM ANA	LYTICAL, II	1C.		Contract:		
Lab Code:	MITKEM	Case No.:	N1895		Mod. Ref No.:	SDG No.: SN1895	
Matrix: (S	OIL/SED/WATER	WATER			Lab Sample ID:	MB-79592	
Sample wt/	vol:5.	00 (g/mL)	ML		Lab File ID:	V8D7666.D	
Level: (TR	ACE/LOW/MED)	LOW			Date Received:		
% Moisture	: not dec.				Date Analyzed:	10/21/2014	
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume: (1	uL)
Purge Volu	me: 5.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	1.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U
108-90-7	Chlorobenzene	1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
100-41-4	Ethylbenzene	1.0	U
179601-23-1	m,p-Xylene	1.0	U
95-47-6	o-Xylene	1.0	U
1330-20-7	Xylene (Total)	1.0	U
100-42-5	Styrene	1.0	U
75-25-2	Bromoform	1.0	U
98-82-8	Isopropylbenzene	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
108-86-1	Bromobenzene	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	U
103-65-1	n-Propylbenzene	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
106-43-4	4-Chlorotoluene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
104-51-8	n-Butylbenzene	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U
91-20-3	Naphthalene	1.0	U

EPA	SAMPLE	NO.
USSW	100814	

Lab Name:	SPECTRUM ANA	LYTICAL, I	NC.		Contract:	
Lab Code:	MITKEM	Case No.:	N1895		Mod. Ref No.:	SDG No.: SN1895
Matrix: (S	OIL/SED/WATER	R) WATER			Lab Sample ID:	N1895-01A
Sample wt/	vol: 5.	00 (g/mL)	ML		Lab File ID:	V8D7668.D
Level: (TR	ACE/LOW/MED)	LOW			Date Received:	10/09/2014
% Moisture	: not dec.				Date Analyzed:	10/21/2014
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volu	me: 5.0			(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

EPA	SAMPLE	NO.
USSW	100814	

Lab Name:	SPECTRUM ANA	LYTICAL, I	NC.		Contract:	
Lab Code:	MITKEM	Case No.:	N1895		Mod. Ref No.:	SDG No.: SN1895
Matrix: (S	OIL/SED/WATER	R) WATER			Lab Sample ID:	N1895-01A
Sample wt/	vol: 5.	00 (g/mL)	ML		Lab File ID:	V8D7668.D
Level: (TR	ACE/LOW/MED)	LOW			Date Received:	10/09/2014
% Moisture	: not dec.				Date Analyzed:	10/21/2014
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volu	me: 5.0			(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
179601-23-1	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

EPA	SAMPLE	NO.
DSSW	100814	

Lab Name: SPECTRUM ANA	SPECTRUM ANALYTICAL, INC.			Contract:	
Lab Code: MITKEM	Case No.:	N1895		Mod. Ref No.:	SDG No.: SN1895
Matrix: (SOIL/SED/WATE)	R) WATER			Lab Sample ID:	N1895-03A
Sample wt/vol: 5	.00 (g/mL)	ML		Lab File ID:	V8D7669.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	10/09/2014
% Moisture: not dec.				Date Analyzed:	10/21/2014
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Durge Volume: 5 0			(mT.)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

EPA SAMPLE NO.
DSSW 100814

Lab Name: S	SPECTRUM ANALYTICAL, INC.				Contract:	
Lab Code: M	MITKEM	Case No.:	N1895		Mod. Ref No.:	SDG No.: SN1895
Matrix: (SO	IL/SED/WATER	) WATER			Lab Sample ID:	N1895-03A
Sample wt/vo	5.	00 (g/mL)	ML		Lab File ID:	V8D7669.D
Level: (TRAC	CE/LOW/MED)	LOW			Date Received:	10/09/2014
% Moisture:	not dec.				Date Analyzed:	10/21/2014
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract	t Volume:			(uL)	Soil Aliquot Vol	ume: (uL
Purge Volume	e: 5.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
179601-23-1	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

EPA	SAMPLE	NO.	
TRIP	BLANK		

Lab Name: SPECTRUM ANA	SPECTRUM ANALYTICAL, INC.			Contract:	
Lab Code: MITKEM	Case No.:	N1895		Mod. Ref No.:	SDG No.: SN1895
Matrix: (SOIL/SED/WATER	) WATER			Lab Sample ID:	N1895-06A
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V8D7667.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	10/09/2014
% Moisture: not dec.				Date Analyzed:	10/21/2014
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 5.0			(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

EPA	SAMPLE	NO.
TRIP	BLANK	

Lab Name: SPECTRUM ANAL	SPECTRUM ANALYTICAL, INC.			Contract:	
Lab Code: MITKEM	Case No.:	N1895		Mod. Ref No.:	SDG No.: SN1895
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	N1895-06A
Sample wt/vol: 5.0	0 (g/mL)	ML		Lab File ID:	V8D7667.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	10/09/2014
% Moisture: not dec.				Date Analyzed:	10/21/2014
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (ul
Purge Volume: 5.0			(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
179601-23-1	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

EPA	SAMPLE	NO.	
LCS-7	9463		

Lab Name: SPECTRUM ANAI	LYTICAL, IN	C.		Contract:		
Lab Code: MITKEM	Case No.:	N1895		Mod. Ref No.:	SDG No.: SN1895	
Matrix: (SOIL/SED/WATER	) SOIL			Lab Sample ID:	LCS-79463	
Sample wt/vol: 5.	00 (g/mL)	G		Lab File ID:	V1N1673.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:		
% Moisture: not dec.	0.0			Date Analyzed:	10/10/2014	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume: 10.0			(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
75-71-8	Dichlorodifluoromethane	32	
74-87-3	Chloromethane	51	
75-01-4	Vinyl chloride	44	
74-83-9	Bromomethane	50	
75-00-3	Chloroethane	48	
75-69-4	Trichlorofluoromethane	54	
75-35-4	1,1-Dichloroethene	51	
67-64-1	Acetone	47	
74-88-4	Iodomethane	48	
75-15-0	Carbon disulfide	51	
75-09-2	Methylene chloride	51	
156-60-5	trans-1,2-Dichloroethene	51	
1634-04-4	Methyl tert-butyl ether	49	
75-34-3		51	
108-05-4	Vinyl acetate	46	
78-93-3	2-Butanone	53	
156-59-2	cis-1,2-Dichloroethene	52	
594-20-7	2,2-Dichloropropane	51	
74-97-5	Bromochloromethane	48	
67-66-3	Chloroform	54	
71-55-6	1,1,1-Trichloroethane	55	
563-58-6	1,1-Dichloropropene	50	
56-23-5	Carbon tetrachloride	55	
107-06-2	1,2-Dichloroethane	52	
71-43-2	Benzene	52	
79-01-6	Trichloroethene	48	
78-87-5	1,2-Dichloropropane	50	
74-95-3	Dibromomethane	53	
75-27-4	Bromodichloromethane	54	
10061-01-5	cis-1,3-Dichloropropene	51	
108-10-1	4-Methyl-2-pentanone	41	
108-88-3	Toluene	52	
10061-02-6	·	50	
79-00-5	1,1,2-Trichloroethane	51	
142-28-9	1,3-Dichloropropane	53	

EPA	SAMPLE	NO.
LCS-	79463	

Lab Name: SPECTRUM ANALYTICAL, INC.			Contract:			
Lab Code: MITKEM	Case No.:	N1895		Mod. Ref No.:	SDG No.: SN1895	
Matrix: (SOIL/SED/WATER	) SOIL			Lab Sample ID:	LCS-79463	
Sample wt/vol: 5.	00 (g/mL)	G		Lab File ID:	V1N1673.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:		
% Moisture: not dec.	0.0			Date Analyzed:	10/10/2014	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL
Purge Volume: 10 0			(mT.)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg	Q
127-18-4	Tetrachloroethene	46	
591-78-6	2-Hexanone	42	
124-48-1	Dibromochloromethane	52	
106-93-4	1,2-Dibromoethane	50	
108-90-7		51	
630-20-6		51	
100-41-4	Ethylbenzene	51	
179601-23-1	m,p-Xylene	100	
95-47-6		51	
1330-20-7	- '	150	
100-42-5	Styrene	49	
75-25-2	Bromoform	45	
98-82-8	Isopropylbenzene	50	
79-34-5	1,1,2,2-Tetrachloroethane	52	
108-86-1	Bromobenzene	48	
96-18-4	1,2,3-Trichloropropane	49	
103-65-1	n-Propylbenzene	50	
95-49-8	2-Chlorotoluene	50	
108-67-8	1,3,5-Trimethylbenzene	52	
106-43-4	4-Chlorotoluene	49	
98-06-6	tert-Butylbenzene	51	
95-63-6	1,2,4-Trimethylbenzene	50	
135-98-8	sec-Butylbenzene	51	
99-87-6	4-Isopropyltoluene	51	
541-73-1	1,3-Dichlorobenzene	48	
106-46-7	1,4-Dichlorobenzene	48	
104-51-8	n-Butylbenzene	53	
95-50-1	1,2-Dichlorobenzene	48	
96-12-8	1,2-Dibromo-3-chloropropane	61	
120-82-1		49	
87-68-3		51	
87-61-6		51	
91-20-3	Naphthalene	48	

Ε	PA	SAMPLE	NO.	
LC	SD-	79463		

Lab Name: SPECTRUM ANALYTICAL, INC.		•	Contract:		
Lab Code: MITKEM	Case No.: 1	N1895	Mod. Ref No.:	SDG No.: SN1895	
Matrix: (SOIL/SED/WATER	SOIL		Lab Sample ID:	LCSD-79463	
Sample wt/vol: 5.	00 (g/mL) (	G	Lab File ID:	V1N1674.D	
Level: (TRACE/LOW/MED)	LOW		Date Received:		
% Moisture: not dec.	0.0		Date Analyzed:	10/10/2014	
GC Column: DB-624	ID: (	0.25 (mm)	Dilution Factor:	1.0	
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (1	аL
Purge Volume: 10.0		(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS:	
	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
75-71-8	Dichlorodifluoromethane	42	
74-87-3	Chloromethane	52	
75-01-4	Vinyl chloride	45	
74-83-9	Bromomethane	52	
75-00-3	Chloroethane	50	
75-69-4	Trichlorofluoromethane	57	
75-35-4	1,1-Dichloroethene	53	
67-64-1	Acetone	54	
74-88-4	Iodomethane	54	
75-15-0	Carbon disulfide	53	
75-09-2	Methylene chloride	54	
156-60-5	trans-1,2-Dichloroethene	53	
1634-04-4	Methyl tert-butyl ether	51	
75-34-3	1,1-Dichloroethane	52	
108-05-4	Vinyl acetate	48	
78-93-3	2-Butanone	53	
156-59-2	cis-1,2-Dichloroethene	53	
594-20-7	2,2-Dichloropropane	53	
74-97-5	Bromochloromethane	50	
67-66-3	Chloroform	55	
71-55-6	1,1,1-Trichloroethane	56	
563-58-6	1,1-Dichloropropene	50	
56-23-5	Carbon tetrachloride	54	
107-06-2	1,2-Dichloroethane	55	
71-43-2	Benzene	53	
79-01-6	Trichloroethene	50	
78-87-5	1,2-Dichloropropane	52	
74-95-3	Dibromomethane	57	
75-27-4	Bromodichloromethane	55	
10061-01-5	cis-1,3-Dichloropropene	52	
108-10-1	4-Methyl-2-pentanone	44	
108-88-3	Toluene	53	
10061-02-6	trans-1,3-Dichloropropene	52	
79-00-5	1,1,2-Trichloroethane	53	
142-28-9	1,3-Dichloropropane	55	

	EPA	SAMPLE	NO.
L(	CSD-	79463	

Lab Name: SPECTRUM ANAI	LYTICAL, IN	C		Contract:		
Lab Code: MITKEM	Case No.:	N1895		Mod. Ref No.:	SDG No.: SN1895	
Matrix: (SOIL/SED/WATER	) SOIL			Lab Sample ID:	LCSD-79463	
Sample wt/vol: 5.	00 (g/mL)	G		Lab File ID:	V1N1674.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:		
% Moisture: not dec.	0.0			Date Analyzed:	10/10/2014	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL
Purge Volume: 10.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg	Q
127-18-4	Tetrachloroethene	45	
591-78-6	2-Hexanone	43	
124-48-1	Dibromochloromethane	53	
106-93-4	1,2-Dibromoethane	52	
108-90-7	Chlorobenzene	52	
630-20-6	1,1,1,2-Tetrachloroethane	53	
100-41-4	Ethylbenzene	50	
79601-23-1	m,p-Xylene	100	
95-47-6	_	51	
1330-20-7	Xylene (Total)	150	
100-42-5	Styrene	52	
75-25-2	Bromoform	47	
98-82-8	Isopropylbenzene	52	
79-34-5	1,1,2,2-Tetrachloroethane	53	
108-86-1	Bromobenzene	49	
96-18-4	1,2,3-Trichloropropane	49	
103-65-1	n-Propylbenzene	52	
95-49-8	2-Chlorotoluene	51	
108-67-8	1,3,5-Trimethylbenzene	52	
106-43-4	4-Chlorotoluene	50	
98-06-6	tert-Butylbenzene	53	
95-63-6	1,2,4-Trimethylbenzene	52	
135-98-8	sec-Butylbenzene	52	
99-87-6	4-Isopropyltoluene	52	
541-73-1	1,3-Dichlorobenzene	49	
106-46-7	1,4-Dichlorobenzene	49	
104-51-8	n-Butylbenzene	55	
95-50-1	1,2-Dichlorobenzene	49	
96-12-8	1,2-Dibromo-3-chloropropane	57	
120-82-1	1,2,4-Trichlorobenzene	49	
87-68-3	Hexachlorobutadiene	52	
87-61-6		54	
91-20-3	Naphthalene	51	-

EPA	SAMPLE	NO.	
MB-79	463		

Lab Name: SPECTRUM ANA	CTRUM ANALYTICAL, INC.		Contract:			
Lab Code: MITKEM	Case No.:	N1895		Mod. Ref No.:	SDG No.: SN1895	
Matrix: (SOIL/SED/WATER	SOIL			Lab Sample ID:	MB-79463	
Sample wt/vol: 5.	00 (g/mL)	G		Lab File ID:	V1N1676.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:		
% Moisture: not dec.	0.0			Date Analyzed:	10/10/2014	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL
Purge Volume: 10.0			(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

SAMPLE	NO.
9463	
	SAMPLE 9463

Lab Name: SPECTRUM ANA	CTRUM ANALYTICAL, INC.		Contract:			
Lab Code: MITKEM	Case No.:	N1895		Mod. Ref No.:	SDG No.: SN1895	
Matrix: (SOIL/SED/WATER	SOIL			Lab Sample ID:	MB-79463	
Sample wt/vol: 5.	00 (g/mL)	G		Lab File ID:	V1N1676.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:		
% Moisture: not dec.	0.0			Date Analyzed:	10/10/2014	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL
Purge Volume: 10.0			(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
179601-23-1	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

EPA SAMPLE NO.

USSED 100814

Lab Name: SPECTRUM ANA	LYTICAL, INC.		Contract:		
Lab Code: MITKEM	Case No.: N1895		Mod. Ref No.:	SDG No.: SN1895	
Matrix: (SOIL/SED/WATER	) SOIL		Lab Sample ID:	N1895-02A	
Sample wt/vol: 9.	20 (g/mL) <u>G</u>		Lab File ID:	V1N1679.D	
Level: (TRACE/LOW/MED)	LOW		Date Received:	10/09/2014	
% Moisture: not dec.	28		Date Analyzed:	10/10/2014	
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume: 10.0		(mL)			

		CONCENTRATION UNITS:	1
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
75-71-8	Dichlorodifluoromethane	0.81	J
74-87-3	Chloromethane	3.8	U
75-01-4	Vinyl chloride	3.8	U
74-83-9	Bromomethane	3.8	U
75-00-3	Chloroethane	3.8	U
75-69-4	Trichlorofluoromethane	3.8	U
75-35-4	1,1-Dichloroethene	3.8	U
67-64-1	Acetone	21	
74-88-4	Iodomethane	3.8	U
75-15-0	Carbon disulfide	3.8	U
75-09-2	Methylene chloride	3.8	U
156-60-5	trans-1,2-Dichloroethene	3.8	U
1634-04-4	Methyl tert-butyl ether	3.8	U
75-34-3	1,1-Dichloroethane	3.8	U
108-05-4	Vinyl acetate	3.8	U
78-93-3	2-Butanone	3.8	U
156-59-2	cis-1,2-Dichloroethene	3.8	U
594-20-7	2,2-Dichloropropane	3.8	U
74-97-5	Bromochloromethane	3.8	U
67-66-3	Chloroform	3.8	U
71-55-6	1,1,1-Trichloroethane	3.8	U
563-58-6	1,1-Dichloropropene	3.8	U
56-23-5	Carbon tetrachloride	3.8	U
107-06-2	1,2-Dichloroethane	3.8	U
71-43-2	Benzene	3.8	U
79-01-6	Trichloroethene	3.8	U
78-87-5	1,2-Dichloropropane	3.8	U
74-95-3	Dibromomethane	3.8	U
75-27-4	Bromodichloromethane	3.8	U
10061-01-5	cis-1,3-Dichloropropene	3.8	U
108-10-1	4-Methyl-2-pentanone	3.8	U
108-88-3	Toluene	3.8	U
10061-02-6	trans-1,3-Dichloropropene	3.8	U
79-00-5	1,1,2-Trichloroethane	3.8	U
142-28-9	1,3-Dichloropropane	3.8	U

EPA SAMPLE NO.
USSED 100814

Lab Name: SPECTRUM ANA	RUM ANALYTICAL, INC.		Contract:	
Lab Code: MITKEM	Case No.: N	1895	Mod. Ref No.:	SDG No.: SN1895
Matrix: (SOIL/SED/WATER	) SOIL		Lab Sample ID:	N1895-02A
Sample wt/vol: 9.	20 (g/mL) G	<u> </u>	Lab File ID:	V1N1679.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	10/09/2014
% Moisture: not dec.	28		Date Analyzed:	10/10/2014
GC Column: DB-624	ID: 0	.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Volu	ume: (uL
Purge Volume: 10.0		(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Q
127-18-4	Tetrachloroethene	3.8	U
591-78-6	2-Hexanone	3.8	U
124-48-1	Dibromochloromethane	3.8	U
106-93-4	1,2-Dibromoethane	3.8	U
108-90-7		3.8	U
630-20-6	1,1,1,2-Tetrachloroethane	3.8	U
100-41-4	Ethylbenzene	3.8	U
179601-23-1	m,p-Xylene	3.8	U
95-47-6	o-Xylene	3.8	U
1330-20-7	Xylene (Total)	3.8	U
100-42-5	Styrene	3.8	U
75-25-2	Bromoform	3.8	U
98-82-8	Isopropylbenzene	3.8	U
79-34-5	1,1,2,2-Tetrachloroethane	3.8	U
108-86-1	Bromobenzene	3.8	U
96-18-4	1,2,3-Trichloropropane	3.8	U
103-65-1	n-Propylbenzene	3.8	U
95-49-8	2-Chlorotoluene	3.8	U
108-67-8	1,3,5-Trimethylbenzene	3.8	U
106-43-4	4-Chlorotoluene	3.8	U
98-06-6	tert-Butylbenzene	3.8	U
95-63-6	1,2,4-Trimethylbenzene	3.8	U
135-98-8	sec-Butylbenzene	3.8	U
99-87-6	4-Isopropyltoluene	3.8	U
541-73-1	1,3-Dichlorobenzene	3.8	U
106-46-7	1,4-Dichlorobenzene	3.8	U
104-51-8	n-Butylbenzene	3.8	U
95-50-1	1,2-Dichlorobenzene	3.8	U
96-12-8	1,2-Dibromo-3-chloropropane	3.8	U
120-82-1	1,2,4-Trichlorobenzene	3.8	U
87-68-3	Hexachlorobutadiene	3.8	U
87-61-6	1,2,3-Trichlorobenzene	3.8	U
91-20-3	Naphthalene	3.8	U

DSSED 100814

Lab Name: SPECTRUM A	NALYTICAL, IN	IC.	Contract:	
Lab Code: MITKEM	Case No.:	N1895	Mod. Ref No.:	SDG No.: SN1895
Matrix: (SOIL/SED/WAT	ER) SOIL		Lab Sample ID:	N1895-04A
Sample wt/vol:	7.80 (g/mL)	G	Lab File ID:	V1N1680.D
Level: (TRACE/LOW/MED	)) LOW		Date Received:	10/09/2014
% Moisture: not dec.	48		Date Analyzed:	10/10/2014
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 10.0		(mL)	)	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Q
75-71-8	Dichlorodifluoromethane	6.2	U
74-87-3	Chloromethane	6.2	U
75-01-4	Vinyl chloride	6.2	U
74-83-9	Bromomethane	6.2	U
75-00-3	Chloroethane	6.2	U
75-69-4	Trichlorofluoromethane	6.2	U
75-35-4	1,1-Dichloroethene	6.2	U
67-64-1	Acetone	27	
74-88-4	Iodomethane	6.2	U
75-15-0	Carbon disulfide	6.2	U
75-09-2	Methylene chloride	6.2	U
156-60-5	trans-1,2-Dichloroethene	6.2	U
1634-04-4	Methyl tert-butyl ether	6.2	U
75-34-3	1,1-Dichloroethane	6.2	U
108-05-4	Vinyl acetate	6.2	U
78-93-3	2-Butanone	6.2	U
156-59-2	cis-1,2-Dichloroethene	6.2	U
594-20-7	2,2-Dichloropropane	6.2	U
74-97-5	Bromochloromethane	6.2	U
67-66-3	Chloroform	6.2	U
71-55-6	1,1,1-Trichloroethane	6.2	U
563-58-6	1,1-Dichloropropene	6.2	U
56-23-5	Carbon tetrachloride	6.2	U
107-06-2	1,2-Dichloroethane	6.2	U
71-43-2	Benzene	6.2	U
79-01-6	Trichloroethene	6.2	U
78-87-5	1,2-Dichloropropane	6.2	U
74-95-3	Dibromomethane	6.2	U
75-27-4	Bromodichloromethane	6.2	U
10061-01-5	cis-1,3-Dichloropropene	6.2	U
108-10-1	4-Methyl-2-pentanone	6.2	U
108-88-3	Toluene	6.2	U
10061-02-6	trans-1,3-Dichloropropene	6.2	U
79-00-5	1,1,2-Trichloroethane	6.2	U
142-28-9	1,3-Dichloropropane	6.2	U

DSSED 100814

Lab Name: SPECTRUM A	NALYTICAL, IN	IC.	Contract:	
Lab Code: MITKEM	Case No.:	N1895	Mod. Ref No.:	SDG No.: SN1895
Matrix: (SOIL/SED/WAT	ER) SOIL		Lab Sample ID:	N1895-04A
Sample wt/vol:	7.80 (g/mL)	G	Lab File ID:	V1N1680.D
Level: (TRACE/LOW/MED	)) LOW		Date Received:	10/09/2014
% Moisture: not dec.	48		Date Analyzed:	10/10/2014
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 10.0		(mL)	)	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Q
127-18-4	Tetrachloroethene	6.2	U
591-78-6	2-Hexanone	6.2	U
124-48-1	Dibromochloromethane	6.2	U
106-93-4	-	6.2	U
108-90-7		6.2	U
630-20-6		6.2	U
100-41-4	Ethylbenzene	6.2	U
179601-23-1	m,p-Xylene	6.2	U
95-47-6	o-Xylene	6.2	U
1330-20-7	Xylene (Total)	6.2	U
100-42-5	Styrene	6.2	U
75-25-2	Bromoform	6.2	U
98-82-8	Isopropylbenzene	6.2	U
79-34-5	1,1,2,2-Tetrachloroethane	6.2	U
108-86-1	Bromobenzene	6.2	U
96-18-4	1,2,3-Trichloropropane	6.2	U
103-65-1	n-Propylbenzene	6.2	U
95-49-8	2-Chlorotoluene	6.2	U
108-67-8	1,3,5-Trimethylbenzene	6.2	U
106-43-4	4-Chlorotoluene	6.2	U
98-06-6	tert-Butylbenzene	6.2	U
95-63-6	1,2,4-Trimethylbenzene	6.2	U
135-98-8	sec-Butylbenzene	6.2	U
99-87-6	4-Isopropyltoluene	6.2	U
541-73-1	1,3-Dichlorobenzene	6.2	U
106-46-7	1,4-Dichlorobenzene	6.2	U
104-51-8	n-Butylbenzene	6.2	U
95-50-1	1,2-Dichlorobenzene	6.2	U
96-12-8	1,2-Dibromo-3-chloropropane	6.2	U
120-82-1	1,2,4-Trichlorobenzene	6.2	U
87-68-3	Hexachlorobutadiene	6.2	U
87-61-6	1,2,3-Trichlorobenzene	6.2	U
91-20-3	Naphthalene	6.2	U

#### 2B - FORM II VOA-2

#### WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1895 Mod. Ref No.: SDG No.: SN1895

Level: (TRACE or LOW) LOW

	EPA	VDMC1	VDMC2	VDMC3	VDMC4		TOT
	SAMPLE NO.	(DBFM) #	(DCE) #	(TOL) #	(BFB) #		OUT
01	LCS-79592	99	96	99	99		0
02	LCSD-79592	99	97	101	101		0
03	MB-79592	99	100	99	94		0
04	TRIP BLANK	101	103	98	99		0
05	USSW 100814	104	104	98	95		0
06	DSSW 100814	104	100	98	96		0

		QC LIMITS
VDMC1	(DBFM) Dibromofluoromethane	(85-115)
VDMC2	(DCE) = 1,2-Dichloroethane-d4	(70-120)
VDMC3	(TOL) = Toluene-d8	(85-120)
VDMC4	(BFB) = Bromofluorobenzene	(75-120)

[#] Column to be used to flag recovery values

som14.10.02.1616

Page 1 of 1 SW846

N1895 Page 36 of 214

^{*} Values outside of contract required QC limits

#### 2D - FORM II VOA-4

#### SOIL VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1895 Mod. Ref No.: SDG No.: SN1895

Level: (LOW/MED) LOW

	EPA	VDMC1	VDMC2	VDMC3	VDMC4	TOT
	SAMPLE NO.	(DBFM) #	(DCE) #	(TOL) #	(BFB) #	OUT
01	LCS-79463	102	106	107	106	0
02	LCSD-79463	101	100	104	105	0
03	MB-79463	102	94	109	98	0
04	USSED 100814	110	95	113	95	0
05	DSSED 100814	106	99	110	96	0

		QC LIMITS
VDMC1	(DBFM) Dibromofluoromethane	(76-128)
VDMC2	(DCE) = 1,2-Dichloroethane-d4	(88-110)
VDMC3	(TOL) = Toluene-d8	(85-115)
VDMC4	(BFB) = Bromofluorobenzene	(85-120)

[#] Column to be used to flag recovery values

som14.10.02.1616

Page 1 of 1 SW846

N1895 Page 37 of 214

^{*} Values outside of contract required QC limits

# 3 - FORM III WATER LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

LCS-79592

Lab	Name:	SPECTR	RUM ANAI	LYTICAL, IN	C.	Contract:		
Lab	Code:	MITKEM	1	Case No.:	N1895	Mod. Ref No.:	SDG No.:	SN1895
Lab	Sample	ID:	LCS-795	592		LCS Lot No.:		
Date	e Extrac	cted:	10/20/2	2014		Date Analyzed (1):	10/21/2014	

						1
	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
						REC.
Dichlorodifluoromethane	50.0000	0.0000	44.0179	88		30 - 155
Chloromethane	50.0000	0.0000	50.9322	102		40 - 125
Vinyl chloride	50.0000	0.0000	49.7367	99		50 - 145
Bromomethane	50.0000	0.0000	55.6575	111		30 - 145
Chloroethane	50.0000	0.0000	46.8533	94		60 - 135
Trichlorofluoromethane	50.0000	0.0000	45.5082	91		60 - 145
1,1-Dichloroethene	50.0000	0.0000	47.3596	95		70 - 130
Acetone	50.0000	0.0000	54.0315	108		40 - 140
Iodomethane	50.0000	0.0000	57.6159	115		72 - 121
Carbon disulfide	50.0000	0.0000	47.0322	94		35 - 160
Methylene chloride	50.0000	0.0000	47.7812	96		55 - 140
trans-1,2-Dichloroethene	50.0000	0.0000				60 - 140
Methyl tert-butyl ether	50.0000					65 - 125
1,1-Dichloroethane	50.0000	0.0000				70 - 135
Vinyl acetate	50.0000					38 - 163
2-Butanone	50.0000					30 - 150
cis-1,2-Dichloroethene	50.0000	0.0000				70 - 125
2,2-Dichloropropane	50.0000					70 - 135
Bromochloromethane	50.0000	0.0000				65 - 130
Chloroform	50.0000					65 - 135
1,1,1-Trichloroethane	50.0000	0.0000				65 - 130
1,1-Dichloropropene	50.0000					75 - 130
Carbon tetrachloride	50.0000					65 - 140
1,2-Dichloroethane	50.0000	0.0000				70 - 130
Benzene	50.0000					80 - 120
Trichloroethene	50.0000	0.0000				70 - 125
1,2-Dichloropropane Dibromomethane	50.0000					75 - 125
	50.0000					75 - 125
Bromodichloromethane	50.0000					75 - 120
cis-1,3-Dichloropropene	50.0000					70 - 130
4-Methyl-2-pentanone	50.0000					60 - 135
Toluene	50.0000					75 - 120
trans-1,3-Dichloropropene	50.0000	0.0000				55 - 140
1,1,2-Trichloroethane	50.0000					75 - 125
1,3-Dichloropropane	50.0000					75 - 125
Tetrachloroethene	50.0000					45 - 150
2-Hexanone	50.0000					55 - 130
Dibromochloromethane	50.0000					60 - 135
1,2-Dibromoethane	50.0000					80 - 120
Chlorobenzene	50.0000					80 - 120
1,1,1,2-Tetrachloroethane	50.0000					80 - 130
Ethylbenzene	50.0000					75 - 125
m,p-Xylene	100.0000					75 - 130
o-Xylene	50.0000	0.0000	50.6169	101		80 - 120

# 3 - FORM III WATER LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

LCS-79592

Lab Name: SPECTRUM ANALYTICAL, INC.		Contract:						
Lab Code:	MITKEN	ſ	Case No.:	N1895	Mod. Ref No.:		SDG No.:	SN1895
Lab Sample	ID:	LCS-79	592		LCS Lot No.:			
Date Extrac	eted:	10/20/	2014		Date Analyzed (1):	10/21	/2014	

	SPIKE	SAMPLE	LCS		QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC #	LIMITS
					REC.
Xylene (Total)	150.0000	0.0000	151.3287	101	81 - 121
Styrene	50.0000	0.0000	51.9661	104	65 - 135
Bromoform	50.0000	0.0000	52.2625	105	70 - 130
Isopropylbenzene	50.0000	0.0000	51.8554	104	75 - 125
1,1,2,2-Tetrachloroethane	50.0000	0.0000	45.6216	91	65 - 130
Bromobenzene	50.0000	0.0000	49.0507	98	75 - 125
1,2,3-Trichloropropane	50.0000	0.0000	50.7397	101	75 - 125
n-Propylbenzene	50.0000	0.0000	50.3789	101	70 - 130
2-Chlorotoluene	50.0000	0.0000	48.5550	97	75 - 125
1,3,5-Trimethylbenzene	50.0000	0.0000	50.6408	101	75 - 130
4-Chlorotoluene	50.0000	0.0000	49.0569	98	75 - 130
tert-Butylbenzene	50.0000	0.0000	52.8490	106	70 - 130
1,2,4-Trimethylbenzene	50.0000	0.0000	50.9542	102	75 - 130
sec-Butylbenzene	50.0000	0.0000	50.5724	101	70 - 125
4-Isopropyltoluene	50.0000	0.0000	51.3573	103	75 - 130
1,3-Dichlorobenzene	50.0000	0.0000	48.4958	97	75 - 125
1,4-Dichlorobenzene	50.0000	0.0000	48.3265	97	75 - 125
n-Butylbenzene	50.0000	0.0000	51.7858	104	70 - 135
1,2-Dichlorobenzene	50.0000	0.0000	50.1652	100	70 - 120
1,2-Dibromo-3-chloropropan	50.0000	0.0000	49.6235	99	50 - 130
1,2,4-Trichlorobenzene	50.0000	0.0000	47.6885	95	65 - 135
Hexachlorobutadiene	50.0000	0.0000	45.3289	91	50 - 140
1,2,3-Trichlorobenzene	50.0000	0.0000	48.7619	98	55 - 140
Naphthalene	50.0000	0.0000	43.7061	87	55 - 140

# Column to be used to flag recovery and RPD values with an asterisk

* Values outside	of QC limits		
Spike Recovery:	0out of	68outside limits	
COMMENTS:			

#### 3 - FORM III

# WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

LCSD-79592

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1895 Mod. Ref No.: SDG No.: SN1895

Lab Sample ID: LCSD-79592 LCS Lot No.:

	SPIKE	LCSD				QC	LIMITS	
	ADDED	CONCENTRATION	LCSD %REC	#	%RPD #			
COMPOUND						RPD	REC.	
Dichlorodifluoromethane	50.0000	44.6581	89		1	40	30 - 15	
Chloromethane	50.0000	51.2065	102		0	40	40 - 12	
Vinyl chloride	50.0000	51.7711	104		5	40	50 - 14	
Bromomethane	50.0000	57.5894	115		4	40	30 - 14	
Chloroethane	50.0000	47.6158	95		1	40	60 - 13	
Trichlorofluoromethane	50.0000	46.8842	94		3	40	60 - 14	
1,1-Dichloroethene	50.0000	49.3701	99		4	40	70 - 13	
Acetone	50.0000	49.8178	100		8	40	40 - 14	
Iodomethane	50.0000	42.9529	86		29	40	72 - 13	
Carbon disulfide	50.0000	49.5934	99		5	40	35 - 10	
Methylene chloride	50.0000	48.5682	97		1	40	55 - 14	
trans-1,2-Dichloroethene	50.0000	47.4495	95		0	40	60 - 14	
Methyl tert-butyl ether	50.0000	50.0398	100		2	40	65 - 13	
1,1-Dichloroethane	50.0000	50.5848	101		4	40	70 - 1	
Vinyl acetate	50.0000	51.9322	104		3	40	38 - 1	
2-Butanone	50.0000	53.4023	107		12	40	30 - 1	
cis-1,2-Dichloroethene	50.0000	50.7689	102		4	40	70 - 1	
2,2-Dichloropropane	50.0000	47.4759	95		3	40	70 - 1	
Bromochloromethane	50.0000	52.7171	105		4	40	65 - 1	
Chloroform	50.0000	49.3325	99		3	40	65 - 1	
1,1,1-Trichloroethane	50.0000	49.8394	100		5	40	65 - 1	
1,1-Dichloropropene	50.0000				1	40	75 - 1	
Carbon tetrachloride	50.0000	49.5841	99		2	40	65 - 1	
1,2-Dichloroethane	50.0000				4	40	70 - 1	
Benzene	50.0000				3	40	80 - 1	
Trichloroethene	50.0000				3	40	70 - 1	
1,2-Dichloropropane	50.0000				4	40	75 - 1	
Dibromomethane	50.0000				4	40	75 - 1	
Bromodichloromethane	50.0000				3	40	75 - 1	
cis-1,3-Dichloropropene	50.0000				2	40	70 - 1	
4-Methyl-2-pentanone	50.0000				2	40	60 - 1	
Toluene	50.0000				2	40	75 - 1	
trans-1,3-Dichloropropene	50.0000				3	40	55 - 1	
1,1,2-Trichloroethane	50.0000				3	40	75 - 1	
1,3-Dichloropropane	50.0000				3	40	75 - 1	
Tetrachloroethene	50.0000				3	40	45 - 1	
2-Hexanone	50.0000				6	40	55 - 1	
Dibromochloromethane	50.0000				0	40	60 - 1	
1,2-Dibromoethane	50.0000				3	40	80 - 1	
Chlorobenzene	50.0000				0	40	80 - 1	
1,1,1,2-Tetrachloroethane	50.0000				3	40	80 - 1	
Ethylbenzene	50.0000				3	40	75 - 1	
m,p-Xylene	100.0000				2	40	75 - 1	
o-Xylene	50.0000				3	40	80 - 1	
Xylene (Total)	150.0000				2	40	81 - 1	
Styrene (10tal)	50.0000				3	40	65 - 1	

# 3 - FORM III WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

LCSD-79592

Lab	Name:	SPECTE	RUM ANALYTICAL, INC.	C	ontract:		
Lab	Code:	MITKEM	Case No.: N1	L895 M	od. Ref No.:	SDG No.:	SN1895
Lab	Sample	ID:	LCSD-79592	L	CS Lot No.:		

	SPIKE ADDED	LCSD CONCENTRATION	LCSD %REC	#	%RPD	) #	QC	LIMITS
COMPOUND	112222		2002 11120	"	01112	"	RPD	REC.
Bromoform	50.0000	52.7020	105		0		40	70 - 130
Isopropylbenzene	50.0000	53.6569	107		3		40	75 - 125
1,1,2,2-Tetrachloroethane	50.0000	45.2450	90		1		40	65 - 130
Bromobenzene	50.0000	49.2932	99		1		40	75 - 125
1,2,3-Trichloropropane	50.0000	46.0701	92		9		40	75 - 125
n-Propylbenzene	50.0000	50.9649	102		1		40	70 - 130
2-Chlorotoluene	50.0000	49.7855	100		3		40	75 - 125
1,3,5-Trimethylbenzene	50.0000	50.9446	102		1		40	75 - 130
4-Chlorotoluene	50.0000	50.6034	101		3		40	75 - 130
tert-Butylbenzene	50.0000	47.9097	96		10		40	70 - 130
1,2,4-Trimethylbenzene	50.0000	51.5586	103		1		40	75 - 130
sec-Butylbenzene	50.0000	49.8330	100		1		40	70 - 125
4-Isopropyltoluene	50.0000	51.8740	104		1		40	75 - 130
1,3-Dichlorobenzene	50.0000	49.8750	100		3		40	75 - 125
1,4-Dichlorobenzene	50.0000	48.4260	97		0		40	75 - 125
n-Butylbenzene	50.0000	52.8091	106		2		40	70 - 135
1,2-Dichlorobenzene	50.0000	49.7780	100		0		40	70 - 120
1,2-Dibromo-3-chloropropan	50.0000	48.6833	97		2		40	50 - 130
1,2,4-Trichlorobenzene	50.0000	48.6666	97		2		40	65 - 135
Hexachlorobutadiene	50.0000	45.9296	92		1		40	50 - 140
1,2,3-Trichlorobenzene	50.0000	47.6866	95		3		40	55 - 140
Naphthalene	50.0000	43.3497	87		0		40	55 - 140

 $\ensuremath{\mathtt{\#}}$  Column to be used to flag recovery and RPD values with an asterisk

RPD:	0	out of	68	outsio	de lin	nits	
Spike	Recov	ery:	0	out of	68	_outside	limits
COMME	NTS:						

* Values outside of QC limits

# 3 - FORM III SOIL LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

LCS-79463

Lab	Name:	SPECTR	RUM ANAI	LYTICAL, IN	C.	Contract:		
Lab	Code:	MITKEM	1	Case No.:	N1895	Mod. Ref No.:	SDG No.:	SN1895
Lab	Sample	ID:	LCS-794	163		LCS Lot No.:		
Date	e Extra	cted:	10/10/2	2014		Date Analyzed (1):	10/10/2014	

Dichlorodifluoromethane					1		
Dichlorodifluoromethane		SPIKE	SAMPLE	LCS			QC.
Dichlorodifluoromethane	COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
Chloromethane							REC.
Vinyl chloride	Dichlorodifluoromethane	50.0000	0.0000	32.3655	65		35 - 135
Bromomethane	Chloromethane	50.0000	0.0000	50.5390	101		50 - 130
Chloroethane	Vinyl chloride	50.0000	0.0000	43.9143	88		60 - 125
Trichlorofluoromethane	Bromomethane	50.0000	0.0000	49.7990	100		30 - 160
1,1-Dichloroethene	Chloroethane	50.0000	0.0000	47.5112	95		40 - 155
1,1-Dichloroethene	Trichlorofluoromethane	50.0000	0.0000	54.1600	108		25 - 185
Acetone	1,1-Dichloroethene	50.0000	0.0000	51.1517	102		65 - 135
Iodomethane	Acetone	50.0000	0.0000	47.3219	95		20 - 160
Carbon disulfide	Iodomethane	50.0000	0.0000	48.0250	96		70 - 126
Methylene chloride         50.0000         0.0000         51.3656         103         55 - 1           trans-1, 2-bichloroethene         50.0000         0.0000         50.9577         102         65 - 1           Methyl tert-butyl ether         50.0000         0.0000         49.4161         99         75 - 1           1,1-Dichloroethane         50.0000         0.0000         50.9095         102         75 - 1           Vinyl acetate         50.0000         0.0000         46.2147         92         65 - 1           2-Butanone         50.0000         0.0000         51.7806         104         65 - 1           2,2-Dichloroptopane         50.0000         0.0000         51.7806         104         65 - 1           2,2-Dichloroptopane         50.0000         0.0000         51.2317         102         65 - 1           Bromochloromethane         50.0000         0.0000         48.1587         96         70 - 1           1,1-Trichloroethane         50.0000         0.0000         54.1702         108         70 - 1           1,1-Dichloroptopene         50.0000         0.0000         55.1988         110         70 - 1           1,2-Dichloroptopene         50.0000         0.0000         52.2685 <t< td=""><td>Carbon disulfide</td><td>50.0000</td><td>0.0000</td><td>51.4763</td><td>103</td><td></td><td>45 - 160</td></t<>	Carbon disulfide	50.0000	0.0000	51.4763	103		45 - 160
trans-1,2-Dichloroethene         50.0000         0.0000         50.9577         102         65 - 1           Methyl tert-butyl ether         50.0000         0.0000         49.4161         99         75 - 1           1,1-Dichloroethane         50.0000         0.0000         50.9095         102         75 - 1           Vinyl acetate         50.0000         0.0000         46.2147         92         65 - 1           2-Butanone         50.0000         0.0000         53.0653         106         30 - 1           cis-1,2-Dichloroptopane         50.0000         0.0000         51.7806         104         65 - 1           Bromochloromethane         50.0000         0.0000         51.2317         102         65 - 1           Bromochloromethane         50.0000         0.0000         54.1702         108         70 - 1           Chloroform         50.0000         0.0000         54.1702         108         70 - 1           1,1-1-Trichloroethane         50.0000         0.0000         55.1988         110         70 - 1           1,1-1-Dichloropropene         50.0000         0.0000         55.2271         100         70 - 1           Carbon tetrachloride         50.0000         0.0000         52.2885 <t< td=""><td>Methylene chloride</td><td>50.0000</td><td>0.0000</td><td></td><td></td><td></td><td>55 - 140</td></t<>	Methylene chloride	50.0000	0.0000				55 - 140
Methyl tert-butyl ether         50.0000         0.0000         49.4161         99         75 - 1           1,1-Dichloroethane         50.0000         0.0000         50.9095         102         75 - 1           Vinyl acetate         50.0000         0.0000         46.2147         92         65 - 1           2-Butanone         50.0000         0.0000         53.0653         106         30 - 1           cis-1,2-Dichloroethene         50.0000         0.0000         51.7806         104         65 - 1           2,2-Dichloropropane         50.0000         0.0000         51.2317         102         65 - 1           Bromochloromethane         50.0000         0.0000         48.1587         96         70 - 1           Chloroform         50.0000         0.0000         54.1702         108         70 - 1           1,1-Dichloroptome         50.0000         0.0000         55.1988         110         70 - 1           1,1-Dichloroptopene         50.0000         0.0000         55.1988         110         70 - 1           1,2-Dichlorotethane         50.0000         0.0000         50.2171         100         70 - 1           1,2-Dichloropropene         50.0000         0.0000         52.2685         105							65 - 135
1,1-Dichloroethane							75 - 126
Vinyl acetate							75 - 125
2-Butanone							65 - 138
cis-1,2-Dichloroethene         50.0000         0.0000         51.7806         104         65 - 1           2,2-Dichloropropane         50.0000         0.0000         51.2317         102         65 - 1           Bromochloromethane         50.0000         0.0000         51.2317         102         65 - 1           Chloroform         50.0000         0.0000         54.1702         108         70 - 1           1,1,1-Trichloroethane         50.0000         0.0000         55.1988         110         70 - 1           1,1-Dichloropropene         50.0000         0.0000         55.1988         110         70 - 1           Carbon tetrachloride         50.0000         0.0000         55.0081         110         65 - 1           1,2-Dichloroethane         50.0000         0.0000         52.2685         105         70 - 1           Trichloroethane         50.0000         0.0000         52.1648         104         75 - 1           1,2-Dichloropropane         50.0000         0.0000         48.2537         97         75 - 1           1,2-Dichloropropane         50.0000         0.0000         53.0567         106         75 - 1           Bromodichloromethane         50.0000         0.0000         53.6067							
2,2-Dichloropropane							
Bromochloromethane							
Chloroform         50.0000         0.0000         54.1702         108         70 - 1           1,1,1-Trichloroethane         50.0000         0.0000         55.1988         110         70 - 1           1,1-Dichloropropene         50.0000         0.0000         55.1988         110         70 - 1           1,2-Dichloropropene         50.0000         0.0000         55.0081         110         65 - 1           1,2-Dichloroethane         50.0000         0.0000         52.2685         105         70 - 1           Benzene         50.0000         0.0000         52.1648         104         75 - 1           Trichloroethene         50.0000         0.0000         48.2537         97         75 - 1           1,2-Dichloropropane         50.0000         0.0000         49.9868         100         70 - 1           1,2-Dichloropropane         50.0000         0.0000         53.6667         106         75 - 1           Bromodichloromethane         50.0000         0.0000         53.6067         107         70 - 1           4-Methyl-2-pentanone         50.0000         0.0000         50.7289         101         70 - 1           trans-1,3-Dichloropropene         50.0000         0.0000         52.0195         104<							
1,1,1-Trichloroethane       50.0000       0.0000       55.1988       110       70 - 1         1,1-Dichloropropene       50.0000       0.0000       50.2171       100       70 - 1         Carbon tetrachloride       50.0000       0.0000       55.0081       110       65 - 1         1,2-Dichloroethane       50.0000       0.0000       52.2685       105       70 - 1         Benzene       50.0000       0.0000       52.1648       104       75 - 1         Trichloroethene       50.0000       0.0000       48.2537       97       75 - 1         1,2-Dichloropropane       50.0000       0.0000       49.9868       100       70 - 1         1,2-Dichloropropane       50.0000       0.0000       53.0567       106       75 - 1         1,2-Dichloromethane       50.0000       0.0000       53.6067       107       70 - 1         Bromodichloromethane       50.0000       0.0000       53.6067       107       70 - 1         cis-1,3-Dichloropropene       50.0000       0.0000       50.7289       101       70 - 1         trans-1,3-Dichloropropene       50.0000       0.0000       52.0195       104       70 - 1         trans-1,3-Dichloropropene       50.0000 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
1,1-Dichloropropene       50.0000       0.0000       50.2171       100       70 - 1         Carbon tetrachloride       50.0000       0.0000       55.0081       110       65 - 1         1,2-Dichloroethane       50.0000       0.0000       52.2685       105       70 - 1         Benzene       50.0000       0.0000       52.1648       104       75 - 1         Trichloroethene       50.0000       0.0000       48.2537       97       75 - 1         1,2-Dichloropropane       50.0000       0.0000       49.9868       100       70 - 1         Dibromomethane       50.0000       0.0000       53.0567       106       75 - 1         Bromodichloromethane       50.0000       0.0000       53.6067       107       70 - 1         cis-1,3-Dichloropropene       50.0000       0.0000       50.7289       101       70 - 1         4-Methyl-2-pentanone       50.0000       0.0000       41.2233       82       45 - 1         Toluene       50.0000       0.0000       52.0195       104       70 - 1         trans-1,3-Dichloropropene       50.0000       0.0000       49.5085       99       65 - 1         1,1,2-Trichloroethane       50.0000       0.0000       5							
Carbon tetrachloride         50.0000         0.0000         55.0081         110         65 - 1           1,2-Dichloroethane         50.0000         0.0000         52.2685         105         70 - 1           Benzene         50.0000         0.0000         52.1648         104         75 - 1           Trichloroethene         50.0000         0.0000         48.2537         97         75 - 1           1,2-Dichloropropane         50.0000         0.0000         49.9868         100         70 - 1           Dibromomethane         50.0000         0.0000         53.0567         106         75 - 1           Bromodichloromethane         50.0000         0.0000         53.6067         107         70 - 1           cis-1,3-Dichloropropene         50.0000         0.0000         53.6067         107         70 - 1           4-Methyl-2-pentanone         50.0000         0.0000         41.2233         82         45 - 1           Toluene         50.0000         0.0000         41.2233         82         45 - 1           trans-1,3-Dichloropropene         50.0000         0.0000         49.5085         99         65 - 1           1,1,2-Trichloroethane         50.0000         0.0000         52.8734         106							
1,2-Dichloroethane       50.0000       0.0000       52.2685       105       70 - 1         Benzene       50.0000       0.0000       52.1648       104       75 - 1         Trichloroethene       50.0000       0.0000       48.2537       97       75 - 1         1,2-Dichloropropane       50.0000       0.0000       49.9868       100       70 - 1         Dibromomethane       50.0000       0.0000       53.0567       106       75 - 1         Bromodichloromethane       50.0000       0.0000       53.6067       107       70 - 1         cis-1,3-Dichloropropene       50.0000       0.0000       50.7289       101       70 - 1         4-Methyl-2-pentanone       50.0000       0.0000       41.2233       82       45 - 1         Toluene       50.0000       0.0000       52.0195       104       70 - 1         trans-1,3-Dichloropropene       50.0000       0.0000       49.5085       99       65 - 1         1,1,2-Trichloroethane       50.0000       0.0000       51.4578       103       60 - 1         1,3-Dichloropropane       50.0000       0.0000       52.8734       106       75 - 1         2-Hexanone       50.0000       0.0000       51.5599 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Benzene         50.0000         0.0000         52.1648         104         75 - 1           Trichloroethene         50.0000         0.0000         48.2537         97         75 - 1           1,2-Dichloropropane         50.0000         0.0000         49.9868         100         70 - 1           Dibromomethane         50.0000         0.0000         53.0567         106         75 - 1           Bromodichloromethane         50.0000         0.0000         53.6067         107         70 - 1           cis-1,3-Dichloropropene         50.0000         0.0000         50.7289         101         70 - 1           4-Methyl-2-pentanone         50.0000         0.0000         41.2233         82         45 - 1           Toluene         50.0000         0.0000         52.0195         104         70 - 1           trans-1,3-Dichloropropene         50.0000         0.0000         49.5085         99         65 - 1           1,1,2-Trichloroethane         50.0000         0.0000         51.4578         103         60 - 1           1,3-Dichloropropane         50.0000         0.0000         52.8734         106         75 - 1           Tetrachloroethane         50.0000         0.0000         45.6232         91							
Trichloroethene         50.0000         0.0000         48.2537         97         75 - 1           1,2-Dichloropropane         50.0000         0.0000         49.9868         100         70 - 1           Dibromomethane         50.0000         0.0000         53.0567         106         75 - 1           Bromodichloromethane         50.0000         0.0000         53.6067         107         70 - 1           cis-1,3-Dichloropropene         50.0000         0.0000         50.7289         101         70 - 1           4-Methyl-2-pentanone         50.0000         0.0000         41.2233         82         45 - 1           Toluene         50.0000         0.0000         52.0195         104         70 - 1           trans-1,3-Dichloropropene         50.0000         0.0000         49.5085         99         65 - 1           1,1,2-Trichloroethane         50.0000         0.0000         51.4578         103         60 - 1           1,3-Dichloropropane         50.0000         0.0000         52.8734         106         75 - 1           Tetrachloroethene         50.0000         0.0000         45.6232         91         65 - 1           2-Hexanone         50.0000         0.0000         50.1953         100	·						
1,2-Dichloropropane       50.0000       0.0000       49.9868       100       70 - 1         Dibromomethane       50.0000       0.0000       53.0567       106       75 - 1         Bromodichloromethane       50.0000       0.0000       53.6067       107       70 - 1         cis-1,3-Dichloropropene       50.0000       0.0000       50.7289       101       70 - 1         4-Methyl-2-pentanone       50.0000       0.0000       41.2233       82       45 - 1         Toluene       50.0000       0.0000       52.0195       104       70 - 1         trans-1,3-Dichloropropene       50.0000       0.0000       49.5085       99       65 - 1         1,1,2-Trichloroethane       50.0000       0.0000       51.4578       103       60 - 1         1,3-Dichloropropane       50.0000       0.0000       52.8734       106       75 - 1         Tetrachloroethene       50.0000       0.0000       45.6232       91       65 - 1         2-Hexanone       50.0000       0.0000       51.5599       103       65 - 1         1,2-Dibromoethane       50.0000       0.0000       50.7086       101       75 - 1         Chlorobenzene       50.0000       0.0000       50.8							
Dibromomethane         50.0000         0.0000         53.0567         106         75 - 1           Bromodichloromethane         50.0000         0.0000         53.6067         107         70 - 1           cis-1,3-Dichloropropene         50.0000         0.0000         50.7289         101         70 - 1           4-Methyl-2-pentanone         50.0000         0.0000         41.2233         82         45 - 1           Toluene         50.0000         0.0000         52.0195         104         70 - 1           trans-1,3-Dichloropropene         50.0000         0.0000         49.5085         99         65 - 1           1,1,2-Trichloroethane         50.0000         0.0000         51.4578         103         60 - 1           1,3-Dichloropropane         50.0000         0.0000         52.8734         106         75 - 1           Tetrachloroethene         50.0000         0.0000         45.6232         91         65 - 1           2-Hexanone         50.0000         0.0000         51.5599         103         65 - 1           1,2-Dibromoethane         50.0000         0.0000         50.1953         100         70 - 1           Chlorobenzene         50.0000         0.0000         50.7086         101							
Bromodichloromethane         50.0000         0.0000         53.6067         107         70 - 1           cis-1,3-Dichloropropene         50.0000         0.0000         50.7289         101         70 - 1           4-Methyl-2-pentanone         50.0000         0.0000         41.2233         82         45 - 1           Toluene         50.0000         0.0000         52.0195         104         70 - 1           trans-1,3-Dichloropropene         50.0000         0.0000         49.5085         99         65 - 1           1,1,2-Trichloroethane         50.0000         0.0000         51.4578         103         60 - 1           1,3-Dichloropropane         50.0000         0.0000         52.8734         106         75 - 1           Tetrachloroethene         50.0000         0.0000         45.6232         91         65 - 1           2-Hexanone         50.0000         0.0000         42.0111         84         45 - 1           Dibromochloromethane         50.0000         0.0000         50.1953         100         70 - 1           Chlorobenzene         50.0000         0.0000         50.7086         101         75 - 1           Ethylbenzene         50.0000         0.0000         51.1563         102							
cis-1,3-Dichloropropene         50.0000         0.0000         50.7289         101         70 - 1           4-Methyl-2-pentanone         50.0000         0.0000         41.2233         82         45 - 1           Toluene         50.0000         0.0000         52.0195         104         70 - 1           trans-1,3-Dichloropropene         50.0000         0.0000         49.5085         99         65 - 1           1,1,2-Trichloroethane         50.0000         0.0000         51.4578         103         60 - 1           1,3-Dichloropropane         50.0000         0.0000         52.8734         106         75 - 1           Tetrachloroethene         50.0000         0.0000         45.6232         91         65 - 1           2-Hexanone         50.0000         0.0000         42.0111         84         45 - 1           Dibromochloromethane         50.0000         0.0000         50.1953         100         70 - 1           Chlorobenzene         50.0000         0.0000         50.7086         101         75 - 1           Ethylbenzene         50.0000         0.0000         51.1563         102         75 - 1							
4-Methyl-2-pentanone50.00000.000041.22338245 - 1Toluene50.00000.000052.019510470 - 1trans-1,3-Dichloropropene50.00000.000049.50859965 - 11,1,2-Trichloroethane50.00000.000051.457810360 - 11,3-Dichloropropane50.00000.000052.873410675 - 1Tetrachloroethene50.00000.000045.62329165 - 12-Hexanone50.00000.000042.01118445 - 1Dibromochloromethane50.00000.000051.559910365 - 11,2-Dibromoethane50.00000.000050.195310070 - 1Chlorobenzene50.00000.000050.708610175 - 11,1,1,2-Tetrachloroethane50.00000.000050.825510275 - 1Ethylbenzene50.00000.000051.156310275 - 1							70 - 130
Toluene         50.0000         0.0000         52.0195         104         70 - 1           trans-1,3-Dichloropropene         50.0000         0.0000         49.5085         99         65 - 1           1,1,2-Trichloroethane         50.0000         0.0000         51.4578         103         60 - 1           1,3-Dichloropropane         50.0000         0.0000         52.8734         106         75 - 1           Tetrachloroethene         50.0000         0.0000         45.6232         91         65 - 1           2-Hexanone         50.0000         0.0000         42.0111         84         45 - 1           Dibromochloromethane         50.0000         0.0000         51.5599         103         65 - 1           1,2-Dibromoethane         50.0000         0.0000         50.1953         100         70 - 1           Chlorobenzene         50.0000         0.0000         50.7086         101         75 - 1           1,1,1,2-Tetrachloroethane         50.0000         0.0000         50.8255         102         75 - 1           Ethylbenzene         50.0000         0.0000         51.1563         102         75 - 1							70 - 125
trans-1,3-Dichloropropene       50.0000       0.0000       49.5085       99       65 - 1         1,1,2-Trichloroethane       50.0000       0.0000       51.4578       103       60 - 1         1,3-Dichloropropane       50.0000       0.0000       52.8734       106       75 - 1         Tetrachloroethene       50.0000       0.0000       45.6232       91       65 - 1         2-Hexanone       50.0000       0.0000       42.0111       84       45 - 1         Dibromochloromethane       50.0000       0.0000       51.5599       103       65 - 1         1,2-Dibromoethane       50.0000       0.0000       50.1953       100       70 - 1         Chlorobenzene       50.0000       0.0000       50.7086       101       75 - 1         1,1,1,2-Tetrachloroethane       50.0000       0.0000       50.8255       102       75 - 1         Ethylbenzene       50.0000       0.0000       51.1563       102       75 - 1							45 - 145
1,1,2-Trichloroethane       50.0000       0.0000       51.4578       103       60 - 1         1,3-Dichloropropane       50.0000       0.0000       52.8734       106       75 - 1         Tetrachloroethene       50.0000       0.0000       45.6232       91       65 - 1         2-Hexanone       50.0000       0.0000       42.0111       84       45 - 1         Dibromochloromethane       50.0000       0.0000       51.5599       103       65 - 1         1,2-Dibromoethane       50.0000       0.0000       50.1953       100       70 - 1         Chlorobenzene       50.0000       0.0000       50.7086       101       75 - 1         1,1,1,2-Tetrachloroethane       50.0000       0.0000       50.8255       102       75 - 1         Ethylbenzene       50.0000       0.0000       51.1563       102       75 - 1							70 - 125
1,3-Dichloropropane       50.0000       0.0000       52.8734       106       75 - 1         Tetrachloroethene       50.0000       0.0000       45.6232       91       65 - 1         2-Hexanone       50.0000       0.0000       42.0111       84       45 - 1         Dibromochloromethane       50.0000       0.0000       51.5599       103       65 - 1         1,2-Dibromoethane       50.0000       0.0000       50.1953       100       70 - 1         Chlorobenzene       50.0000       0.0000       50.7086       101       75 - 1         1,1,1,2-Tetrachloroethane       50.0000       0.0000       50.8255       102       75 - 1         Ethylbenzene       50.0000       0.0000       51.1563       102       75 - 1							65 - 125
Tetrachloroethene       50.0000       0.0000       45.6232       91       65 - 1         2-Hexanone       50.0000       0.0000       42.0111       84       45 - 1         Dibromochloromethane       50.0000       0.0000       51.5599       103       65 - 1         1,2-Dibromoethane       50.0000       0.0000       50.1953       100       70 - 1         Chlorobenzene       50.0000       0.0000       50.7086       101       75 - 1         1,1,1,2-Tetrachloroethane       50.0000       0.0000       50.8255       102       75 - 1         Ethylbenzene       50.0000       0.0000       51.1563       102       75 - 1							60 - 125
2-Hexanone       50.0000       0.0000       42.0111       84       45 - 1         Dibromochloromethane       50.0000       0.0000       51.5599       103       65 - 1         1,2-Dibromoethane       50.0000       0.0000       50.1953       100       70 - 1         Chlorobenzene       50.0000       0.0000       50.7086       101       75 - 1         1,1,1,2-Tetrachloroethane       50.0000       0.0000       50.8255       102       75 - 1         Ethylbenzene       50.0000       0.0000       51.1563       102       75 - 1							75 - 125
Dibromochloromethane         50.0000         0.0000         51.5599         103         65 - 1           1,2-Dibromoethane         50.0000         0.0000         50.1953         100         70 - 1           Chlorobenzene         50.0000         0.0000         50.7086         101         75 - 1           1,1,1,2-Tetrachloroethane         50.0000         0.0000         50.8255         102         75 - 1           Ethylbenzene         50.0000         0.0000         51.1563         102         75 - 1							65 - 140
1,2-Dibromoethane       50.0000       0.0000       50.1953       100       70 - 1         Chlorobenzene       50.0000       0.0000       50.7086       101       75 - 1         1,1,1,2-Tetrachloroethane       50.0000       0.0000       50.8255       102       75 - 1         Ethylbenzene       50.0000       0.0000       51.1563       102       75 - 1							45 - 145
Chlorobenzene         50.0000         0.0000         50.7086         101         75 - 1           1,1,1,2-Tetrachloroethane         50.0000         0.0000         50.8255         102         75 - 1           Ethylbenzene         50.0000         0.0000         51.1563         102         75 - 1	Dibromochloromethane	50.0000					65 - 130
1,1,1,2-Tetrachloroethane       50.0000       0.0000       50.8255       102       75 - 1         Ethylbenzene       50.0000       0.0000       51.1563       102       75 - 1	1,2-Dibromoethane	50.0000			100		70 - 125
Ethylbenzene 50.0000 0.0000 51.1563 102 75 - 1	Chlorobenzene	50.0000	0.0000	50.7086	101		75 - 125
	1,1,1,2-Tetrachloroethane	50.0000	0.0000	50.8255	102		75 - 125
	Ethylbenzene	50.0000	0.0000	51.1563	102		75 - 125
m,p-Xylene   100.0000   0.0000   100.1722   100   80 - 1	m,p-Xylene	100.0000	0.0000				80 - 125
	o-Xylene	50.0000	0.0000	50.9220	102		75 - 125

# 3 - FORM III SOIL LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

LCS-79463

Lab	Name:	SPECTR	RUM ANAI	YTICAL, INC	C	Contract:		
Lab	Code:	MITKEM	1	Case No.:	N1895	Mod. Ref No.:	SDG No.:	SN1895
Lab	Sample	ID:	LCS-794	163		LCS Lot No.:		
Date	Extra	cted:	10/10/2	2014		Date Analyzed (1):	10/10/2014	

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
						REC.
Xylene (Total)	150.0000	0.0000	151.0941	101		83 - 125
Styrene	50.0000	0.0000	49.2685	99		75 - 125
Bromoform	50.0000	0.0000	44.7269	89		55 - 135
Isopropylbenzene	50.0000	0.0000	50.4603	101		75 - 130
1,1,2,2-Tetrachloroethane	50.0000	0.0000	52.1421	104		55 - 130
Bromobenzene	50.0000	0.0000	47.6612	95		65 - 120
1,2,3-Trichloropropane	50.0000	0.0000	48.8834	98		65 - 130
n-Propylbenzene	50.0000	0.0000	49.8990	100		65 - 135
2-Chlorotoluene	50.0000	0.0000	50.3039	101		70 - 130
1,3,5-Trimethylbenzene	50.0000	0.0000	51.6699	103		65 - 135
4-Chlorotoluene	50.0000	0.0000	49.2324	98		75 - 125
tert-Butylbenzene	50.0000	0.0000	51.2278	102		65 - 130
1,2,4-Trimethylbenzene	50.0000	0.0000	50.2935	101		65 - 135
sec-Butylbenzene	50.0000	0.0000	51.0187	102		65 - 130
4-Isopropyltoluene	50.0000	0.0000	51.0219	102		75 - 135
1,3-Dichlorobenzene	50.0000	0.0000	48.0782	96		70 - 125
1,4-Dichlorobenzene	50.0000	0.0000	47.5186	95		70 - 125
n-Butylbenzene	50.0000	0.0000	53.0154	106		65 - 140
1,2-Dichlorobenzene	50.0000	0.0000	47.5636	95		75 - 120
1,2-Dibromo-3-chloropropan	50.0000	0.0000	60.5779	121		40 - 135
1,2,4-Trichlorobenzene	50.0000	0.0000	48.8227	98		65 - 130
Hexachlorobutadiene	50.0000	0.0000	50.6184	101		55 - 140
1,2,3-Trichlorobenzene	50.0000	0.0000	50.6073	101		60 - 135
Naphthalene	50.0000	0.0000	47.5356	95		40 - 125

 $\mbox{\#}$  Column to be used to flag recovery and RPD values with an asterisk

* Values outs	de of QC	limits				
Spike Recovery	<i>y</i> : 0	_out of	68	outside limits		
COMMENTS:					 	

### 3 - FORM III SOIL LABORATORY CONTROL

LCSD-79463

EPA SAMPLE NO.

			L
SAMPLE	DUPLICATE	RECOVERY	

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1895 Mod. Ref No.: SDG No.: SN1895

Lab Sample ID: LCSD-79463 LCS Lot No.:

	SPIKE	LCSD				QC	LIMITS
	ADDED	CONCENTRATION	LCSD %REC	#	%RPD #		
COMPOUND						RPD	REC.
Dichlorodifluoromethane	50.0000	42.3139	85		27	40	35 - 13
Chloromethane	50.0000	52.3835	105		4	40	50 - 13
Vinyl chloride	50.0000	45.1917	90		2	40	60 - 12
Bromomethane	50.0000	51.9633	104		4	40	30 - 16
Chloroethane	50.0000	49.7996	100		5	40	40 - 15
Trichlorofluoromethane	50.0000	57.4210	115		6	40	25 - 18
1,1-Dichloroethene	50.0000	52.8479	106		4	40	65 - 13
Acetone	50.0000	53.6106	107		12	40	20 - 16
Iodomethane	50.0000	54.3346	109		13	40	70 - 12
Carbon disulfide	50.0000	53.2946	107		4	40	45 - 16
Methylene chloride	50.0000	53.5639	107		4	40	55 - 14
trans-1,2-Dichloroethene	50.0000	52.5301	105		3	40	65 - 13
Methyl tert-butyl ether	50.0000	51.1343	102		3	40	75 - 12
1,1-Dichloroethane	50.0000	51.5063	103		1	40	75 - 12
Vinyl acetate	50.0000	48.2805	97		5	40	65 - 13
2-Butanone	50.0000	52.6772	105		1	40	30 - 16
cis-1,2-Dichloroethene	50.0000	53.4581	107		3	40	65 - 12
2,2-Dichloropropane	50.0000	53.1964	106		4	40	65 - 13
Bromochloromethane	50.0000	50.3209	101		5	40	70 - 12
Chloroform	50.0000	54.7028	109		1	40	70 - 12
1,1,1-Trichloroethane	50.0000	55.6291	111		1	40	70 - 13
1,1-Dichloropropene	50.0000	49.8210	100		0	40	70 - 13
Carbon tetrachloride	50.0000	54.4719	109		1	40	65 - 13
1,2-Dichloroethane	50.0000	54.7124	109		4	40	70 - 13
Benzene	50.0000	52.7738	106		2	40	75 - 12
Trichloroethene	50.0000	49.6609	99		2	40	75 - 12
1,2-Dichloropropane	50.0000	52.3525	105		5	40	70 - 12
Dibromomethane	50.0000	56.7459	113		6	40	75 - 13
Bromodichloromethane	50.0000	54.9666	110		3	40	70 - 13
cis-1,3-Dichloropropene	50.0000	52.2219	104		3	40	70 - 12
4-Methyl-2-pentanone	50.0000	43.5901	87		6	40	45 - 14
Toluene	50.0000	53.0754	106		2	40	70 - 12
trans-1,3-Dichloropropene	50.0000	52.2382	104		5	40	65 - 12
1,1,2-Trichloroethane	50.0000	53.4915	107		4	40	60 - 12
1,3-Dichloropropane	50.0000				4	40	75 - 12
Tetrachloroethene	50.0000				0	40	65 - 14
2-Hexanone	50.0000				2	40	45 - 14
Dibromochloromethane	50.0000				3	40	65 - 13
1,2-Dibromoethane	50.0000				5	40	70 - 12
Chlorobenzene	50.0000				2	40	75 - 12
1,1,1,2-Tetrachloroethane	50.0000				4	40	75 - 12
Ethylbenzene Ethylbenzene	50.0000				1	40	75 - 12
m,p-Xylene	100.0000				3	40	80 - 12
o-Xylene	50.0000				0	40	75 - 12
Xylene (Total)	150.0000				1	40	83 - 12
Styrene (10tal)	50.0000				5	40	75 - 12

# 3 - FORM III SOIL LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

LCSD-79463

Lab	Name:	SPECTE	RUM ANALYTICAL, INC.	Contract:			
Lab	Code:	MITKEN	Case No.: N1895	Mod. Ref No.:	SDG No.:	SN1895	
Lab	Sample	ID:	LCSD-79463	LCS Lot No.:			

	SPIKE	LCSD					QC	LIMITS
COMPOSIND	ADDED	CONCENTRATION	LCSD %REC	#	%RPD	#	DDD	DEG
COMPOUND							RPD	REC.
Bromoform	50.0000	46.6383	93		4		40	55 - 135
Isopropylbenzene	50.0000	52.3237	105		4		40	75 - 130
1,1,2,2-Tetrachloroethane	50.0000	52.8203	106		2		40	55 - 130
Bromobenzene	50.0000	48.5222	97		2		40	65 - 120
1,2,3-Trichloropropane	50.0000	48.5916	97		1		40	65 - 130
n-Propylbenzene	50.0000	52.3404	105		5		40	65 - 135
2-Chlorotoluene	50.0000	51.4030	103		2		40	70 - 130
1,3,5-Trimethylbenzene	50.0000	52.1784	104		1		40	65 - 135
4-Chlorotoluene	50.0000	50.0565	100		2		40	75 - 125
tert-Butylbenzene	50.0000	52.5753	105		3		40	65 - 130
1,2,4-Trimethylbenzene	50.0000	51.9973	104		3		40	65 - 135
sec-Butylbenzene	50.0000	51.7424	103		1		40	65 - 130
4-Isopropyltoluene	50.0000	51.8897	104		2		40	75 - 135
1,3-Dichlorobenzene	50.0000	49.4891	99		3		40	70 - 125
1,4-Dichlorobenzene	50.0000	48.9462	98		3		40	70 - 125
n-Butylbenzene	50.0000	54.8884	110		4		40	65 - 140
1,2-Dichlorobenzene	50.0000	49.3652	99		4		40	75 - 120
1,2-Dibromo-3-chloropropan	50.0000	56.6024	113		7		40	40 - 135
1,2,4-Trichlorobenzene	50.0000	49.2941	99		1		40	65 - 130
Hexachlorobutadiene	50.0000	52.3604	105		4		40	55 - 140
1,2,3-Trichlorobenzene	50.0000	53.7271	107		6		40	60 - 135
Naphthalene	50.0000	50.8915	102		7		40	40 - 125

 $\mbox{\tt\#}$  Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery:0 out of68 outside limits  COMMENTS:	RPD: 0 out of	68outside limits
COMMENTS:	Spike Recovery:	0 out of 68 outside limits
	COMMENTS:	

* Values outside of QC limits

# 4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.
MB-79592

	EPA	LAB	LAB	TIME	
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	
01	LCS-79592	LCS-79592	V8D7663.D	2:58	
02	LCSD-79592	LCSD-79592	V8D7664.D	3:29	
03	TRIP BLANK	N1895-06A	V8D7667.D	5:01	
04	USSW 100814	N1895-01A	V8D7668.D	5:32	
05	DSSW 100814	N1895-03A	V8D7669.D	6:03	

COMMENTS:			

# 4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.
MB-79463

Lab Name: SPECTRUM ANALYT		ANALYTICAL,	'ICAL, INC.		Contract:			
Lab Code:	MITKEM	Case No	.: <u>N1895</u>	5	Mod. Ref No.:		SDG No.:	SN1895
Lab File I	D: <u>V11</u>	N1676.D			Lab Sample ID:	MB-79463		
Instrument	ID: V1							
Matrix: (So	OIL/SED/W	ATER) SOIL			Date Analyzed:	10/10/20	14	
Level: (TR	ACE or LO	W/MED) LOW			Time Analyzed:	11:26		
GC Column:	DB-624	I	D: 0.25	(mm)	Heated Purge: (Y	/N) N		

	EPA	LAB	LAB	TIME	
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	
01	LCS-79463	LCS-79463	V1N1673.D	9:21	
02	LCSD-79463	LCSD-79463	V1N1674.D	9:49	
03	USSED 100814	N1895-02A	V1N1679.D	12:49	
04	DSSED 100814	N1895-04A	V1N1680.D	13:16	

COMMENTS:



* Semivolatile Organics *

#### REPORT NARRATIVE

Spectrum Analytical, Inc. Featuring Hanibal Technology, RI Division.

Client: AECOM Technical Services, Inc.

**Project: Tuxedo Waste Disposal** 

Laboratory Workorder / SDG #: N1895

**SW846 8270D, SVOA by GC-MS** 

#### I. SAMPLE RECEIPT

No exceptions or unusual conditions were encountered unless a Sample Condition Notification Form, or other record of communication is included with the Sample Receipt Documentation.

#### **II. HOLDING TIMES**

### A. Sample Preparation:

All samples were prepared within the method-specified holding times.

#### B. Sample Analysis:

All samples were analyzed within the method-specified holding times.

#### III. METHODS

Samples were analyzed following procedures in laboratory test code: SW846 8270D

#### IV. PREPARATION

Aqueous Samples were prepared following procedures in laboratory test

code: SW3510C

Soil Samples were prepared following procedures in laboratory test

code: SW3550B

#### V. INSTRUMENTATION

The following instrumentation was used

N1895 Page 49 of 214

Instrument Code: S3

Instrument Type: GCMS-SEMI Description: HP6890 / HP5973 Manufacturer: Hewlett-Packard

Model: 6890 / 5973

### VI. ANALYSIS

#### A. Calibration:

Calibrations met the method/SOP acceptance criteria.

#### B. Blanks:

All method blanks were within the acceptance criteria.

### C. Surrogates:

Surrogate standard percent recoveries were within the QC limits.

### D. Spikes:

### 1. Laboratory Control Spikes (LCS):

Percent recoveries for lab control samples were within the QC limits with the following exceptions. Please note that most test procedures allow for several compounds outside of the QC limits for the LCS, although this may indicate a bias for this specific compound.

LCS-79507 in batch 79507, recovery is above criteria for Hexachloroethane at 100% with criteria of (30-95) and Naphthalene at 100% with criteria of (40-100).

### 2. Matrix Spike / Matrix Spike Duplicate (MS/MSD):

No client-requested MS/MSD analyses were included in this SDG.

### E. Internal Standards:

Internal standard peak areas were within the QC limits.

### F. Dilutions:

No sample in this SDG required analysis at dilution.

N1895 Page 50 of 214

### G. Samples:

No other unusual occurrences were noted during sample analysis.

### H. Manual Integration

No manual integrations were performed on any sample or standard.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Spectrum, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

Signed:		
Date:	10/22/2014	_

N1895 Page 51 of 214



# SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

### Data Flag/Qualifiers (Page 1 of 2):

- U Not Detected. This compound was analyzed-for but not detected. For most analyses the reporting limit (lowest standard concentration) is the value listed. For Department of Defense programs, this is the Limit of Detection (LOD).
- J This flag indicates an estimated value due to either
  - the compound was detected below the reporting limit, or
  - estimated concentration for Tentatively Identified Compound
- B This flag indicates the compound was also detected in the associated Method Blank. The B flag has an alternative meaning for Inorganics analyses reported using CLP ILM-type metals forms, indicating a "trace" concentration below the reporting limit and equal to or above the detection limit.
- D For Organics analysis, this flag indicates the compound concentration was obtained from a secondary dilution analysis
- E This flag indicates the compound concentration exceeded the Calibration Range. The E flag has an alternative meaning for Inorganics analyses reported using CLP metals forms, indicating an estimated concentration due to the presence of interferences, as determined by the serial dilution analysis.
- P This flag is used for pesticides/PCB/herbicide compound when there is a greater than 40% difference for detected concentration between the two GC columns used for primary and confirmation analyses. This difference typically indicates interference, causing one value to be unusually high. The **lower** of the two values is generally reported on the Form 1, and both values reported on the Form 10.
- A Used to flag semivolatile organic Tentatively Identified Compound library search results for compounds identified as an aldol condensation by-product.



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

## Data Flag/Qualifiers (Page 2 of 2):

- N Used to flag results for volatile and semivolatile Organics analysis Tentatively Identified Compounds where an analyte has passed the identification criteria, and is considered to be positively identified. For Inorganics analysis the N flag indicates the matrix spike recovery falls outside of the control limit.
- * For Inorganics analysis the * flag indicates Relative Percent Difference for duplicate analyses is outside of the control limit.
- L NYSDEC qualifier: Result is biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.



# **Sample ID Suffixes**

- DL Diluted analysis. The sample was diluted and reanalyzed. The DL may be followed by a digit if more than one diluted reanalysis is provided. The DL suffix is not attached to an analysis initially performed at dilution, only to reanalyses performed at dilution
- RE Reanalysis. Appended to the client sample ID to indicate a reextraction and reanalysis or a reanalysis of the original sample extract.
- RA Reanalysis. Appended to the laboratory sample ID indicates a reanalysis of the original sample extract.
- RX Reextraction. Appended to the laboratory sample ID indicates a reextraction of the sample.
- MS Matrix Spike.
- MSD Matrix Spike Duplicate
- DUP Duplicate analysis
- SD Serial Dilution
- PS Post-digestion or Post-distillation spike. For metals or inorganic analyses

EPA	SAMPLE	NO.	
LCS	-79507		

Lab Name: SPECTRU	M ANALYTICAL, INC.	Contract:	
Lab Code: MITKEM	Case No.: N1895	Mod. Ref No.:	SDG No.: SN1895
Matrix: (SOIL/SED/	WATER) WATER	Lab Sample ID:	LCS-79507
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	S3J2373.D
Level: (LOW/MED)	LOW	Extraction: (Typ	e) SEPF
% Moisture:	Decanted: (Y/N)	Date Received:	
Concentrated Extra	act Volume:1000 (uL)	Date Extracted:	10/15/2014
Injection Volume:	1.0 (uL) GPC Factor: 1.00	Date Analyzed:	10/20/2014
GPC Cleanup:(Y/N)	N pH:	Dilution Factor:	1.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
108-95-2	Phenol	13	
111-44-4	Bis(2-chloroethyl)ether	50	
95-57-8	2-Chlorophenol	35	
541-73-1	1,3-Dichlorobenzene	49	
106-46-7	1,4-Dichlorobenzene	48	
95-50-1	1,2-Dichlorobenzene	49	
95-48-7	2-Methylphenol	29	
108-60-1	2,2'-oxybis(1-Chloropropane)	49	
106-44-5	4-Methylphenol	24	
621-64-7	N-Nitroso-di-n-propylamine	46	
67-72-1	Hexachloroethane	50	
98-95-3	Nitrobenzene	51	
78-59-1	Isophorone	51	
88-75-5	2-Nitrophenol	46	
105-67-9	2,4-Dimethylphenol	38	
120-83-2	2,4-Dichlorophenol	43	
120-82-1	1,2,4-Trichlorobenzene	50	
91-20-3	Naphthalene	50	
106-47-8	4-Chloroaniline	39	
111-91-1	Bis(2-chloroethoxy)methane	51	
87-68-3	Hexachlorobutadiene	51	
59-50-7	4-Chloro-3-methylphenol	38	
91-57-6	2-Methylnaphthalene	48	
77-47-4	Hexachlorocyclopentadiene	50	
88-06-2	2,4,6-Trichlorophenol	44	
95-95-4	2,4,5-Trichlorophenol	48	
91-58-7	2-Chloronaphthalene	51	
88-74-4	2-Nitroaniline	48	
131-11-3	Dimethylphthalate	50	
208-96-8	Acenaphthylene	51	1
606-20-2	2,6-Dinitrotoluene	50	
99-09-2	3-Nitroaniline	39	
83-32-9	Acenaphthene	50	
51-28-5	2,4-Dinitrophenol	26	
100-02-7		14	J
132-64-9	Dibenzofuran	47	

EPA	SAMPLE	NO.	
LCS	-79507		

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: LCS-79507
Sample wt/vol:1000 (g/mL) ML	Lab File ID: S3J2373.D
Level: (LOW/MED) LOW	Extraction: (Type) SEPF
% Moisture: Decanted: (Y/N)	Date Received:
Concentrated Extract Volume:1000 (uL)	Date Extracted: 10/15/2014
Injection Volume:1.0 (uL) GPC Factor:1.00	Date Analyzed: 10/20/2014
GPC Cleanup:(Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q
121-14-2	2,4-Dinitrotoluene	49	
84-66-2	Diethylphthalate	50	
7005-72-3	4-Chlorophenyl-phenylether	50	
86-73-7	Fluorene	50	
100-01-6	4-Nitroaniline	51	
534-52-1	4,6-Dinitro-2-methylphenol	45	
86-30-6	N-Nitrosodiphenylamine	51	
101-55-3	4-Bromophenyl-phenylether	53	
118-74-1	Hexachlorobenzene	54	
87-86-5	Pentachlorophenol	48	
85-01-8	Phenanthrene	52	
120-12-7	Anthracene	53	
86-74-8	Carbazole	49	
84-74-2	Di-n-butylphthalate	54	В
206-44-0	Fluoranthene	50	
129-00-0	Pyrene	52	
85-68-7	Butylbenzylphthalate	52	
91-94-1	3,3´-Dichlorobenzidine	50	
56-55-3	Benzo(a)anthracene	51	
218-01-9	Chrysene	53	
117-81-7	Bis(2-ethylhexyl)phthalate	52	
117-84-0	Di-n-octylphthalate	54	
205-99-2	Benzo(b)fluoranthene	55	
207-08-9	Benzo(k)fluoranthene	52	
50-32-8	Benzo(a)pyrene	54	
193-39-5	Indeno(1,2,3-cd)pyrene	51	
53-70-3	Dibenzo(a,h)anthracene	54	
191-24-2	Benzo(q,h,i)perylene	53	

EPA	SAMPLE	NO.
LCS	D-79507	

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: LCSD-79507
Sample wt/vol:1000 (g/mL) ML	Lab File ID: S3J2381.D
Level: (LOW/MED) LOW	Extraction: (Type) SEPF
% Moisture: Decanted: (Y/N)	Date Received:
Concentrated Extract Volume:1000 (uL)	Date Extracted: 10/15/2014
Injection Volume:1.0 (uL) GPC Factor:1.00	Date Analyzed: 10/20/2014
GPC Cleanup:(Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q
108-95-2	Phenol	12	
111-44-4		47	
95-57-8	2-Chlorophenol	34	
	1,3-Dichlorobenzene	46	
	1,4-Dichlorobenzene	44	
95-50-1	1,2-Dichlorobenzene	45	
95-48-7	2-Methylphenol	26	
108-60-1		47	
106-44-5		23	
621-64-7		44	
67-72-1		47	
98-95-3	Nitrobenzene	48	
78-59-1	Isophorone	46	
	2-Nitrophenol	44	
105-67-9	_	35	
120-83-2		37	
120-82-1		46	
91-20-3		46	
106-47-8		26	
111-91-1	Bis(2-chloroethoxy)methane	47	
87-68-3	Hexachlorobutadiene	48	
59-50-7	4-Chloro-3-methylphenol	35	
91-57-6	2-Methylnaphthalene	44	
77-47-4	Hexachlorocyclopentadiene	40	
88-06-2	2,4,6-Trichlorophenol	43	
95-95-4	2,4,5-Trichlorophenol	41	
91-58-7	2-Chloronaphthalene	48	
88-74-4	2-Nitroaniline	42	
131-11-3	Dimethylphthalate	46	
208-96-8	Acenaphthylene	47	
606-20-2	2,6-Dinitrotoluene	48	
99-09-2	3-Nitroaniline	33	
83-32-9		47	
51-28-5	2,4-Dinitrophenol	23	
	4-Nitrophenol	13	J
132-64-9	Dibenzofuran	44	

EPA	SAMPLE	NO.
LCS	D-79507	

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: LCSD-79507
Sample wt/vol:1000 (g/mL) ML	Lab File ID: S3J2381.D
Level: (LOW/MED) LOW	Extraction: (Type) SEPF
% Moisture: Decanted: (Y/N)	Date Received:
Concentrated Extract Volume:1000 (uL)	Date Extracted: 10/15/2014
Injection Volume:1.0 (uL) GPC Factor:1.00	Date Analyzed: 10/20/2014
GPC Cleanup:(Y/N) N pH:	Dilution Factor: 1.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
121-14-2	2,4-Dinitrotoluene	46	
84-66-2	Diethylphthalate	46	
7005-72-3	4-Chlorophenyl-phenylether	47	
86-73-7	Fluorene	45	
100-01-6	4-Nitroaniline	40	
534-52-1	4,6-Dinitro-2-methylphenol	42	
86-30-6	N-Nitrosodiphenylamine	46	
101-55-3	4-Bromophenyl-phenylether	51	
118-74-1	Hexachlorobenzene	50	
87-86-5	Pentachlorophenol	46	
85-01-8	Phenanthrene	47	
120-12-7	Anthracene	49	
86-74-8	Carbazole	45	
84-74-2	Di-n-butylphthalate	49	В
206-44-0	Fluoranthene	45	
129-00-0	Pyrene	48	
85-68-7	Butylbenzylphthalate	49	
91-94-1	3,3'-Dichlorobenzidine	43	
56-55-3	Benzo(a)anthracene	47	
218-01-9	Chrysene	51	
117-81-7	Bis(2-ethylhexyl)phthalate	48	
117-84-0	Di-n-octylphthalate	49	
205-99-2	Benzo(b)fluoranthene	51	
207-08-9	Benzo(k)fluoranthene	49	
50-32-8	Benzo(a)pyrene	51	
193-39-5	Indeno(1,2,3-cd)pyrene	48	
53-70-3	Dibenzo(a,h)anthracene	51	
191-24-2	Benzo(g,h,i)perylene	50	

EPA	SAMPLE	NO.	
MB-	79507		

Lab Name: SPECTRUM	M ANALYTICAL, INC.	Contract:	
Lab Code: MITKEM	Case No.: N1895	Mod. Ref No.:	SDG No.: SN1895
Matrix: (SOIL/SED/	WATER) WATER	Lab Sample ID:	MB-79507
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	S3J2372.D
Level: (LOW/MED)	LOW	Extraction: (Type	e) SEPF
% Moisture:	Decanted: (Y/N)	Date Received:	
Concentrated Extra	ct Volume:1000 (uL)	Date Extracted:	10/15/2014
Injection Volume:	1.0 (uL) GPC Factor: 1.00	Date Analyzed:	10/20/2014
GPC Cleanup:(Y/N)	N pH:	Dilution Factor:	1.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
108-95-2	Phenol	10	U
111-44-4	Bis(2-chloroethyl)ether	10	U
95-57-8	2-Chlorophenol	10	U
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	U
95-50-1	1,2-Dichlorobenzene	10	U
95-48-7	2-Methylphenol	10	U
108-60-1	2,2'-oxybis(1-Chloropropane)	10	U
106-44-5	4-Methylphenol	10	U
621-64-7	N-Nitroso-di-n-propylamine	10	U
67-72-1	Hexachloroethane	10	U
98-95-3	Nitrobenzene	10	U
78-59-1	Isophorone	10	U
88-75-5	2-Nitrophenol	10	U
105-67-9	2,4-Dimethylphenol	10	U
120-83-2	2,4-Dichlorophenol	10	U
120-82-1	1,2,4-Trichlorobenzene	10	U
91-20-3	Naphthalene	10	U
106-47-8	4-Chloroaniline	10	U
111-91-1	Bis(2-chloroethoxy)methane	10	U
87-68-3	Hexachlorobutadiene	10	U
59-50-7	4-Chloro-3-methylphenol	10	U
91-57-6	2-Methylnaphthalene	10	U
77-47-4	Hexachlorocyclopentadiene	10	U
88-06-2	2,4,6-Trichlorophenol	10	U
95-95-4	2,4,5-Trichlorophenol	20	U
91-58-7	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	20	U
131-11-3	Dimethylphthalate	10	U
208-96-8	Acenaphthylene	10	U
606-20-2	2,6-Dinitrotoluene	10	U
99-09-2	3-Nitroaniline	20	U
83-32-9	Acenaphthene	10	U
51-28-5	2,4-Dinitrophenol	20	U
100-02-7	4-Nitrophenol	20	U
132-64-9	Dibenzofuran	10	U

EPA	SAMPLE	NO.	
MB-	79507		

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: MB-79507
Sample wt/vol:1000 (g/mL) ML	Lab File ID: S3J2372.D
Level: (LOW/MED) LOW	Extraction: (Type) SEPF
% Moisture: Decanted: (Y/N)	Date Received:
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 10/15/2014
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 10/20/2014
GPC Cleanup:(Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q
121-14-2	2,4-Dinitrotoluene	10	U
84-66-2	Diethylphthalate	10	U
7005-72-3	4-Chlorophenyl-phenylether	10	U
86-73-7	Fluorene	10	U
100-01-6	4-Nitroaniline	20	U
534-52-1	4,6-Dinitro-2-methylphenol	20	U
86-30-6	N-Nitrosodiphenylamine	10	U
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1		10	U
87-86-5	Pentachlorophenol	20	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	Ū
86-74-8	Carbazole	10	Ū
84-74-2	Di-n-butylphthalate	3.1	J
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3´-Dichlorobenzidine	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
117-81-7	Bis(2-ethylhexyl)phthalate	10	U
117-84-0	Di-n-octylphthalate	10	U
205-99-2	Benzo(b)fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

EPA SAMPLE NO.
USSW 100814

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: N1895-01D
Sample wt/vol:1000 (g/mL) ML	Lab File ID: S3J2375.D
Level: (LOW/MED) LOW	Extraction: (Type) SEPF
% Moisture: Decanted: (Y/N)	Date Received: 10/09/2014
Concentrated Extract Volume: 1000 (1	L) Date Extracted: 10/15/2014
Injection Volume: (uL) GPC Factor:1.	00 Date Analyzed: 10/20/2014
GPC Cleanup:(Y/N) N pH:	Dilution Factor: 1.0

GIG NO	GOVENIN	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
108-95-2	Phenol	10	U
111-44-4	Bis(2-chloroethyl)ether	10	U
95-57-8	2-Chlorophenol	10	U
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	U
95-50-1	1,2-Dichlorobenzene	10	U
95-48-7	2-Methylphenol	10	U
108-60-1	2,2'-oxybis(1-Chloropropane)	10	U
106-44-5	4-Methylphenol	10	U
621-64-7	N-Nitroso-di-n-propylamine	10	U
67-72-1	Hexachloroethane	10	U
98-95-3	Nitrobenzene	10	U
78-59-1	Isophorone	10	U
88-75-5	2-Nitrophenol	10	U
105-67-9	2,4-Dimethylphenol	10	U
120-83-2	2,4-Dichlorophenol	10	U
120-82-1	1,2,4-Trichlorobenzene	10	U
91-20-3	Naphthalene	10	U
106-47-8	4-Chloroaniline	10	U
111-91-1	Bis(2-chloroethoxy)methane	10	U
87-68-3	Hexachlorobutadiene	10	U
59-50-7	4-Chloro-3-methylphenol	10	U
91-57-6	2-Methylnaphthalene	10	U
77-47-4	Hexachlorocyclopentadiene	10	U
88-06-2	2,4,6-Trichlorophenol	10	U
95-95-4	2,4,5-Trichlorophenol	20	U
91-58-7	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	20	U
131-11-3	Dimethylphthalate	10	U
208-96-8	Acenaphthylene	10	U
606-20-2	2,6-Dinitrotoluene	10	U
99-09-2	3-Nitroaniline	20	U
83-32-9	Acenaphthene	10	U
51-28-5	2,4-Dinitrophenol	20	U
100-02-7	4-Nitrophenol	20	U
132-64-9	Dibenzofuran	10	U

USSW 100814

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: N1895-01D
Sample wt/vol:1000 (g/mL) ML	Lab File ID: S3J2375.D
Level: (LOW/MED) LOW	Extraction: (Type) SEPF
% Moisture: Decanted: (Y/N)	Date Received: 10/09/2014
Concentrated Extract Volume:1000 (uL)	Date Extracted: 10/15/2014
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 10/20/2014
GPC Cleanup:(Y/N) N pH:	Dilution Factor: 1.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
121-14-2	2,4-Dinitrotoluene	10	U
84-66-2	Diethylphthalate	10	U
7005-72-3	4-Chlorophenyl-phenylether	10	U
86-73-7	Fluorene	10	U
100-01-6	4-Nitroaniline	20	U
534-52-1	4,6-Dinitro-2-methylphenol	20	U
86-30-6	N-Nitrosodiphenylamine	10	U
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachlorobenzene	10	U
87-86-5	Pentachlorophenol	20	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
86-74-8	Carbazole	10	U
84-74-2	Di-n-butylphthalate	2.5	ВJ
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3´-Dichlorobenzidine	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
117-81-7	Bis(2-ethylhexyl)phthalate	10	U
117-84-0	Di-n-octylphthalate	10	U
205-99-2	Benzo(b)fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U
	•	•	

DSSW 100814

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: N1895-03D
Sample wt/vol:1000 (g/mL) ML	Lab File ID: S3J2376.D
Level: (LOW/MED) LOW	Extraction: (Type) SEPF
% Moisture: Decanted: (Y/N)	Date Received: 10/09/2014
Concentrated Extract Volume:1000 (uL)	Date Extracted: 10/15/2014
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 10/20/2014
GPC Cleanup:(Y/N) N pH:	Dilution Factor: 1.0

GIG NO	GOVENIN	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
108-95-2	Phenol	10	U
111-44-4	Bis(2-chloroethyl)ether	10	U
95-57-8	2-Chlorophenol	10	U
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	U
95-50-1	1,2-Dichlorobenzene	10	U
95-48-7	2-Methylphenol	10	U
108-60-1	2,2'-oxybis(1-Chloropropane)	10	U
106-44-5	4-Methylphenol	10	U
621-64-7	N-Nitroso-di-n-propylamine	10	U
67-72-1	Hexachloroethane	10	U
98-95-3	Nitrobenzene	10	U
78-59-1	Isophorone	10	U
88-75-5	2-Nitrophenol	10	U
105-67-9	2,4-Dimethylphenol	10	U
120-83-2	2,4-Dichlorophenol	10	U
120-82-1	1,2,4-Trichlorobenzene	10	U
91-20-3	Naphthalene	10	U
106-47-8	4-Chloroaniline	10	U
111-91-1	Bis(2-chloroethoxy)methane	10	U
87-68-3	Hexachlorobutadiene	10	U
59-50-7	4-Chloro-3-methylphenol	10	U
91-57-6	2-Methylnaphthalene	10	U
77-47-4	Hexachlorocyclopentadiene	10	U
88-06-2	2,4,6-Trichlorophenol	10	U
95-95-4	2,4,5-Trichlorophenol	20	U
91-58-7	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	20	U
131-11-3	Dimethylphthalate	10	U
208-96-8	Acenaphthylene	10	U
606-20-2	2,6-Dinitrotoluene	10	U
99-09-2	3-Nitroaniline	20	U
83-32-9	Acenaphthene	10	U
51-28-5	2,4-Dinitrophenol	20	U
100-02-7	4-Nitrophenol	20	U
132-64-9	Dibenzofuran	10	U

DSSW 100814

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: N1895-03D
Sample wt/vol:1000 (g/mL) ML	Lab File ID: S3J2376.D
Level: (LOW/MED) LOW	Extraction: (Type) SEPF
% Moisture: Decanted: (Y/N)	Date Received: 10/09/2014
Concentrated Extract Volume:1000 (uL)	Date Extracted: 10/15/2014
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 10/20/2014
GPC Cleanup:(Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q
121-14-2	2,4-Dinitrotoluene	10	U
84-66-2	Diethylphthalate	10	U
7005-72-3	4-Chlorophenyl-phenylether	10	U
86-73-7	Fluorene	10	U
100-01-6	4-Nitroaniline	20	U
534-52-1	4,6-Dinitro-2-methylphenol	20	U
86-30-6	N-Nitrosodiphenylamine	10	U
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachlorobenzene	10	U
87-86-5	Pentachlorophenol	20	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
86-74-8	Carbazole	10	U
84-74-2	Di-n-butylphthalate	3.7	BJ
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3´-Dichlorobenzidine	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
117-81-7	Bis(2-ethylhexyl)phthalate	10	U
117-84-0	Di-n-octylphthalate	10	U
205-99-2	Benzo(b)fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

EPA	SAMPLE	NO.	
LCS	-79562		

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID: LCS-79562
Sample wt/vol:15.0 (g/mL) G	Lab File ID: S3J2378.D
Level: (LOW/MED) LOW	Extraction: (Type) SONC
% Moisture: Decanted: (Y/N)	Date Received:
Concentrated Extract Volume:1000 (uL)	Date Extracted: 10/18/2014
Injection Volume:1.0 (uL) GPC Factor:1.00	Date Analyzed: 10/20/2014
GPC Cleanup:(Y/N) N pH:	Dilution Factor: 1.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
108-95-2	Phenol	2200	
111-44-4	Bis(2-chloroethyl)ether	2600	
95-57-8	2-Chlorophenol	2300	
541-73-1	1,3-Dichlorobenzene	2400	
106-46-7	1,4-Dichlorobenzene	2300	
95-50-1	1,2-Dichlorobenzene	2400	
95-48-7	2-Methylphenol	2300	
108-60-1	2,2'-oxybis(1-Chloropropane)	2500	
106-44-5	4-Methylphenol	2300	
621-64-7	N-Nitroso-di-n-propylamine	2300	
67-72-1	Hexachloroethane	2500	
98-95-3	Nitrobenzene	2700	
78-59-1	Isophorone	2500	
88-75-5		2600	
105-67-9	2,4-Dimethylphenol	2300	
120-83-2		2400	
120-82-1	1,2,4-Trichlorobenzene	2500	
91-20-3	Naphthalene	2600	
106-47-8	4-Chloroaniline	560	
111-91-1	Bis(2-chloroethoxy)methane	2600	
87-68-3	Hexachlorobutadiene	2600	
59-50-7	4-Chloro-3-methylphenol	2200	
91-57-6	2-Methylnaphthalene	2500	
77-47-4	Hexachlorocyclopentadiene	2700	
88-06-2	2,4,6-Trichlorophenol	2400	
95-95-4	2,4,5-Trichlorophenol	2600	
91-58-7	2-Chloronaphthalene	2600	
88-74-4	2-Nitroaniline	2400	
131-11-3	Dimethylphthalate	2500	
208-96-8	Acenaphthylene	2600	
606-20-2	2,6-Dinitrotoluene	2600	
99-09-2	3-Nitroaniline	970	
83-32-9	Acenaphthene	2600	
51-28-5	2,4-Dinitrophenol	2300	
100-02-7	4-Nitrophenol	2300	
132-64-9	Dibenzofuran	2400	

EPA	SAMPLE	NO.	
LCS	-79562		

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID: LCS-79562
Sample wt/vol:15.0 (g/mL) G	Lab File ID: S3J2378.D
Level: (LOW/MED) LOW	Extraction: (Type) SONC
% Moisture: Decanted: (Y/N)	Date Received:
Concentrated Extract Volume:1000 (uL	Date Extracted: 10/18/2014
Injection Volume:1.0 (uL) GPC Factor:1.00	Date Analyzed: 10/20/2014
GPC Cleanup:(Y/N) N pH:	Dilution Factor: 1.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
121-14-2	2,4-Dinitrotoluene	2500	
84-66-2	Diethylphthalate	2500	
7005-72-3	4-Chlorophenyl-phenylether	2500	
86-73-7	Fluorene	2500	
100-01-6	4-Nitroaniline	2300	
534-52-1	4,6-Dinitro-2-methylphenol	2300	
86-30-6	N-Nitrosodiphenylamine	2600	
101-55-3	4-Bromophenyl-phenylether	2800	
118-74-1	Hexachlorobenzene	2800	
87-86-5	Pentachlorophenol	2500	
85-01-8	Phenanthrene	2700	
120-12-7	Anthracene	2700	
86-74-8	Carbazole	2400	
84-74-2	Di-n-butylphthalate	2600	В
206-44-0	Fluoranthene	2500	
129-00-0	Pyrene	2900	
85-68-7	Butylbenzylphthalate	2800	
91-94-1	3,3´-Dichlorobenzidine	1300	
56-55-3	Benzo(a)anthracene	2600	
218-01-9	Chrysene	2800	
117-81-7	Bis(2-ethylhexyl)phthalate	2800	
117-84-0	Di-n-octylphthalate	3000	
205-99-2	Benzo(b)fluoranthene	2700	
207-08-9	Benzo(k)fluoranthene	2900	
50-32-8	Benzo(a)pyrene	2700	
193-39-5	Indeno(1,2,3-cd)pyrene	2400	
53-70-3	Dibenzo(a,h)anthracene	2600	
191-24-2	Benzo(g,h,i)perylene	2600	

LCSD-79562

Lab Name: SPECTRUI	M ANALYTICAL, INC.	Contract:	
Lab Code: MITKEM	Case No.: N1895	Mod. Ref No.:	SDG No.: SN1895
Matrix: (SOIL/SED/	WATER) SOIL	Lab Sample ID:	LCSD-79562
Sample wt/vol:	15.0 (g/mL) G	Lab File ID:	S3J2379.D
Level: (LOW/MED)	LOW	Extraction: (Type	e) SONC
% Moisture:	Decanted: (Y/N)	Date Received:	
Concentrated Extra	ct Volume:1000 (uL)	Date Extracted:	10/18/2014
Injection Volume:	1.0 (uL) GPC Factor: 1.00	Date Analyzed:	10/20/2014
GPC Cleanup:(Y/N)	N pH:	Dilution Factor:	1.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
108-95-2	Phenol	2300	
111-44-4	Bis(2-chloroethyl)ether	2800	
95-57-8	2-Chlorophenol	2400	
541-73-1	1,3-Dichlorobenzene	2500	
106-46-7	1,4-Dichlorobenzene	2500	
95-50-1	1,2-Dichlorobenzene	2500	
95-48-7	2-Methylphenol	2400	
108-60-1	2,2'-oxybis(1-Chloropropane)	2600	
106-44-5	4-Methylphenol	2400	
621-64-7	N-Nitroso-di-n-propylamine	2400	
67-72-1	Hexachloroethane	2600	
98-95-3	Nitrobenzene	2700	
78-59-1	Isophorone	2600	
88-75-5	2-Nitrophenol	2600	
105-67-9		2400	
120-83-2	2,4-Dichlorophenol	2500	
120-82-1	1,2,4-Trichlorobenzene	2600	
91-20-3	Naphthalene	2600	
106-47-8	4-Chloroaniline	870	
111-91-1	Bis(2-chloroethoxy)methane	2700	
87-68-3	Hexachlorobutadiene	2600	
59-50-7	4-Chloro-3-methylphenol	2400	
91-57-6	2-Methylnaphthalene	2400	
77-47-4	Hexachlorocyclopentadiene	2800	
88-06-2	2,4,6-Trichlorophenol	2700	
95-95-4	2,4,5-Trichlorophenol	3000	
91-58-7	2-Chloronaphthalene	2900	
88-74-4	2-Nitroaniline	2700	
131-11-3	Dimethylphthalate	2800	
208-96-8	Acenaphthylene	2800	
606-20-2	2,6-Dinitrotoluene	2900	
99-09-2	3-Nitroaniline	1500	
83-32-9	Acenaphthene	2800	
51-28-5	2,4-Dinitrophenol	2500	
100-02-7	4-Nitrophenol	2500	
132-64-9	Dibenzofuran	2700	

EPA	SAMPLE	NO.
LCS	D-79562	

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID: LCSD-79562
Sample wt/vol:15.0 (g/mL) G	Lab File ID: S3J2379.D
Level: (LOW/MED) LOW	Extraction: (Type) SONC
% Moisture: Decanted: (Y/N)	Date Received:
Concentrated Extract Volume:1000 (uL)	Date Extracted: 10/18/2014
Injection Volume:1.0 (uL) GPC Factor:1.00	Date Analyzed: 10/20/2014
GPC Cleanup:(Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Q
121-14-2	2,4-Dinitrotoluene	2700	
84-66-2	Diethylphthalate	2800	1
7005-72-3	4-Chlorophenyl-phenylether	2900	
86-73-7	Fluorene	2800	
100-01-6	4-Nitroaniline	2400	
534-52-1	4,6-Dinitro-2-methylphenol	2500	
86-30-6	N-Nitrosodiphenylamine	2900	
101-55-3	4-Bromophenyl-phenylether	3000	
118-74-1	Hexachlorobenzene	3000	
87-86-5	Pentachlorophenol	2800	
85-01-8	Phenanthrene	2800	
120-12-7	Anthracene	2800	
86-74-8	Carbazole	2600	
84-74-2	Di-n-butylphthalate	2900	В
206-44-0	Fluoranthene	2600	
129-00-0	Pyrene	3100	
85-68-7	Butylbenzylphthalate	3100	
91-94-1	3,3´-Dichlorobenzidine	1800	
56-55-3	Benzo(a)anthracene	2900	
218-01-9	Chrysene	3000	
117-81-7	Bis(2-ethylhexyl)phthalate	3100	
117-84-0	Di-n-octylphthalate	3300	
205-99-2	Benzo(b)fluoranthene	3200	
207-08-9	Benzo(k)fluoranthene	3100	
50-32-8	Benzo(a)pyrene	3000	
193-39-5	Indeno(1,2,3-cd)pyrene	2900	
53-70-3	Dibenzo(a,h)anthracene	2900	
191-24-2	Benzo(g,h,i)perylene	3000	

EPA	SAMPLE	NO.	
MB-	79562		

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID: MB-79562
Sample wt/vol:15.0 (g/mL) G	Lab File ID: S3J2377.D
Level: (LOW/MED) LOW	Extraction: (Type) SONC
% Moisture: Decanted: (Y/N)	Date Received:
Concentrated Extract Volume:1000 (uL)	Date Extracted: 10/18/2014
Injection Volume:1.0 (uL) GPC Factor:1.00	Date Analyzed: 10/20/2014
GPC Cleanup:(Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg	Q
108-95-2	Phenol	330	U
111-44-4	Bis(2-chloroethyl)ether	330	U
95-57-8		330	U
541-73-1	1,3-Dichlorobenzene	330	U
106-46-7	1,4-Dichlorobenzene	330	U
95-50-1	1,2-Dichlorobenzene	330	U
95-48-7	2-Methylphenol	330	U
108-60-1	2,2'-oxybis(1-Chloropropane)	330	U
106-44-5	4-Methylphenol	330	U
621-64-7	N-Nitroso-di-n-propylamine	330	U
67-72-1	Hexachloroethane	330	U
98-95-3	Nitrobenzene	330	U
78-59-1	Isophorone	330	U
88-75-5	2-Nitrophenol	330	U
105-67-9	2,4-Dimethylphenol	330	U
120-83-2	2,4-Dichlorophenol	330	U
120-82-1	1,2,4-Trichlorobenzene	330	U
91-20-3	Naphthalene	330	U
106-47-8	4-Chloroaniline	330	U
111-91-1	Bis(2-chloroethoxy)methane	330	U
87-68-3	Hexachlorobutadiene	330	U
59-50-7	4-Chloro-3-methylphenol	330	U
91-57-6	2-Methylnaphthalene	330	U
77-47-4	Hexachlorocyclopentadiene	330	U
88-06-2	2,4,6-Trichlorophenol	330	U
95-95-4	2,4,5-Trichlorophenol	670	U
91-58-7	2-Chloronaphthalene	330	U
88-74-4	2-Nitroaniline	670	U
131-11-3	Dimethylphthalate	330	U
208-96-8	Acenaphthylene	330	U
606-20-2	2,6-Dinitrotoluene	330	U
99-09-2	3-Nitroaniline	670	U
83-32-9	Acenaphthene	330	U
51-28-5	2,4-Dinitrophenol	670	U
100-02-7	4-Nitrophenol	670	U
132-64-9	Dibenzofuran	330	U

EPA	SAMPLE	NO.	
MB-	79562		

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID: MB-79562
Sample wt/vol:15.0 (g/mL) G	Lab File ID: S3J2377.D
Level: (LOW/MED) LOW	Extraction: (Type) SONC
% Moisture: Decanted: (Y/N)	Date Received:
Concentrated Extract Volume:1000 (uL)	Date Extracted: 10/18/2014
Injection Volume:1.0 (uL) GPC Factor:1.00	Date Analyzed: 10/20/2014
GPC Cleanup:(Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Q
121-14-2	2,4-Dinitrotoluene	330	U
84-66-2	Diethylphthalate	330	U
7005-72-3	4-Chlorophenyl-phenylether	330	U
86-73-7	Fluorene	330	U
100-01-6	4-Nitroaniline	670	U
534-52-1	4,6-Dinitro-2-methylphenol	670	U
86-30-6	N-Nitrosodiphenylamine	330	U
101-55-3	4-Bromophenyl-phenylether	330	U
118-74-1	Hexachlorobenzene	330	U
87-86-5	Pentachlorophenol	670	U
85-01-8	Phenanthrene	330	U
120-12-7	Anthracene	330	U
86-74-8	Carbazole	330	U
84-74-2	Di-n-butylphthalate	85	J
206-44-0	Fluoranthene	330	U
129-00-0	Pyrene	330	U
85-68-7	Butylbenzylphthalate	330	U
91-94-1	3,3´-Dichlorobenzidine	330	U
56-55-3	Benzo(a)anthracene	330	U
218-01-9	Chrysene	330	U
117-81-7	Bis(2-ethylhexyl)phthalate	330	U
117-84-0	Di-n-octylphthalate	330	U
205-99-2	Benzo(b)fluoranthene	330	U
207-08-9	Benzo(k)fluoranthene	330	U
50-32-8	Benzo(a)pyrene	330	U
193-39-5	Indeno(1,2,3-cd)pyrene	330	U
53-70-3	Dibenzo(a,h)anthracene	330	U
191-24-2	Benzo(g,h,i)perylene	330	U

USSED 100814

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID: N1895-02D
Sample wt/vol:15.5 (g/mL) G	Lab File ID: S3J2380.D
Level: (LOW/MED) LOW	Extraction: (Type) SONC
% Moisture: Decanted: (Y/N) N	Date Received: 10/09/2014
Concentrated Extract Volume:1000 (uL)	Date Extracted: 10/18/2014
Injection Volume:1.0 (uL) GPC Factor:1.00	Date Analyzed: 10/20/2014
GPC Cleanup:(Y/N) N pH:	Dilution Factor: 1.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
108-95-2	Phenol	440	U
111-44-4	Bis(2-chloroethyl)ether	440	U
95-57-8	2-Chlorophenol	440	U
541-73-1	1,3-Dichlorobenzene	440	U
106-46-7	1,4-Dichlorobenzene	440	U
95-50-1	1,2-Dichlorobenzene	440	U
95-48-7	2-Methylphenol	440	U
108-60-1	2,2'-oxybis(1-Chloropropane)	440	U
106-44-5	4-Methylphenol	440	U
621-64-7	N-Nitroso-di-n-propylamine	440	U
67-72-1	Hexachloroethane	440	U
98-95-3	Nitrobenzene	440	U
78-59-1	Isophorone	440	U
88-75-5	2-Nitrophenol	440	U
105-67-9	2,4-Dimethylphenol	440	U
120-83-2	2,4-Dichlorophenol	440	U
120-82-1	1,2,4-Trichlorobenzene	440	U
91-20-3	Naphthalene	440	U
106-47-8	4-Chloroaniline	440	U
111-91-1	Bis(2-chloroethoxy)methane	440	U
87-68-3	Hexachlorobutadiene	440	U
59-50-7	4-Chloro-3-methylphenol	440	U
91-57-6	2-Methylnaphthalene	440	U
77-47-4	Hexachlorocyclopentadiene	440	U
88-06-2	2,4,6-Trichlorophenol	440	U
95-95-4	2,4,5-Trichlorophenol	900	U
91-58-7	2-Chloronaphthalene	440	U
88-74-4	2-Nitroaniline	900	U
131-11-3	Dimethylphthalate	440	U
208-96-8	Acenaphthylene	440	U
606-20-2	2,6-Dinitrotoluene	440	U
99-09-2	3-Nitroaniline	900	U
83-32-9	Acenaphthene	440	U
51-28-5	2,4-Dinitrophenol	900	U
100-02-7	4-Nitrophenol	900	U
132-64-9	Dibenzofuran	440	U

EPA SAMPLE NO.
USSED 100814

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID: N1895-02D
Sample wt/vol:15.5 (g/mL) G	Lab File ID: S3J2380.D
Level: (LOW/MED) LOW	Extraction: (Type) SONC
% Moisture: Decanted: (Y/N) N	Date Received: 10/09/2014
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 10/18/2014
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 10/20/2014
GPC Cleanup:(Y/N) N pH:	Dilution Factor: 1 0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Q
121-14-2	2,4-Dinitrotoluene	440	U
84-66-2	Diethylphthalate	440	U
7005-72-3	4-Chlorophenyl-phenylether	440	U
86-73-7	Fluorene	440	U
100-01-6	4-Nitroaniline	900	U
534-52-1	4,6-Dinitro-2-methylphenol	900	U
86-30-6	N-Nitrosodiphenylamine	440	U
101-55-3	4-Bromophenyl-phenylether	440	U
118-74-1	Hexachlorobenzene	440	U
87-86-5	Pentachlorophenol	900	U
85-01-8	Phenanthrene	440	U
120-12-7	Anthracene	440	U
86-74-8	Carbazole	440	U
84-74-2	Di-n-butylphthalate	650	В
206-44-0	Fluoranthene	440	U
129-00-0	Pyrene	96	J
85-68-7	Butylbenzylphthalate	440	U
91-94-1	3,3´-Dichlorobenzidine	440	U
56-55-3	Benzo(a)anthracene	440	U
218-01-9	Chrysene	440	U
117-81-7	Bis(2-ethylhexyl)phthalate	440	U
117-84-0	Di-n-octylphthalate	440	U
205-99-2	Benzo(b)fluoranthene	440	U
207-08-9	Benzo(k)fluoranthene	440	U
50-32-8	Benzo(a)pyrene	440	U
193-39-5	Indeno(1,2,3-cd)pyrene	440	U
53-70-3	Dibenzo(a,h)anthracene	440	U
191-24-2	Benzo(g,h,i)perylene	440	U

EPA SAMPLE NO.

DSSED 100814

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID: N1895-04D
Sample wt/vol:15.4 (g/mL) G	Lab File ID: S3J2382.D
Level: (LOW/MED) LOW	Extraction: (Type) SONC
% Moisture: 48 Decanted: (Y/N) N	Date Received: 10/09/2014
Concentrated Extract Volume:1000 (uL)	Date Extracted: 10/18/2014
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 10/20/2014
GPC Cleanup:(Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Q
108-95-2	Phenol	620	- U
111-44-4	Bis(2-chloroethyl)ether	620	Ū
95-57-8	2-Chlorophenol	620	U
541-73-1	1,3-Dichlorobenzene	620	U
106-46-7	1,4-Dichlorobenzene	620	U
95-50-1	1,2-Dichlorobenzene	620	U
95-48-7	2-Methylphenol	620	U
108-60-1	2,2'-oxybis(1-Chloropropane)	620	U
106-44-5	4-Methylphenol	620	U
621-64-7	N-Nitroso-di-n-propylamine	620	U
67-72-1	Hexachloroethane	620	U
98-95-3	Nitrobenzene	620	U
78-59-1	Isophorone	620	U
88-75-5	2-Nitrophenol	620	U
105-67-9	2,4-Dimethylphenol	620	U
120-83-2	2,4-Dichlorophenol	620	U
120-82-1	1,2,4-Trichlorobenzene	620	U
91-20-3	Naphthalene	620	U
106-47-8	4-Chloroaniline	620	U
111-91-1	Bis(2-chloroethoxy)methane	620	U
87-68-3	Hexachlorobutadiene	620	U
59-50-7	4-Chloro-3-methylphenol	620	U
91-57-6	2-Methylnaphthalene	620	U
77-47-4	Hexachlorocyclopentadiene	620	U
88-06-2	2,4,6-Trichlorophenol	620	U
95-95-4	2,4,5-Trichlorophenol	1300	U
91-58-7	2-Chloronaphthalene	620	U
88-74-4	2-Nitroaniline	1300	U
131-11-3	Dimethylphthalate	620	U
208-96-8	Acenaphthylene	620	U
606-20-2	2,6-Dinitrotoluene	620	U
99-09-2	3-Nitroaniline	1300	U
83-32-9	Acenaphthene	620	U
51-28-5	2,4-Dinitrophenol	1300	U
100-02-7	4-Nitrophenol	1300	U
132-64-9	Dibenzofuran	620	U

DSSED 100814

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID: N1895-04D
Sample wt/vol:15.4 (g/mL) G	Lab File ID: S3J2382.D
Level: (LOW/MED) LOW	Extraction: (Type) SONC
% Moisture:	Date Received: 10/09/2014
Concentrated Extract Volume:1000 (uL)	Date Extracted: 10/18/2014
Injection Volume:1.0 (uL) GPC Factor:1.00	Date Analyzed: 10/20/2014
GPC Cleanup:(Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Q
121-14-2	2,4-Dinitrotoluene	620	U
84-66-2	Diethylphthalate	620	Ū
7005-72-3	4-Chlorophenyl-phenylether	620	U
86-73-7	Fluorene	620	U
100-01-6	4-Nitroaniline	1300	U
534-52-1	4,6-Dinitro-2-methylphenol	1300	U
86-30-6	N-Nitrosodiphenylamine	620	U
101-55-3	4-Bromophenyl-phenylether	620	U
118-74-1	Hexachlorobenzene	620	U
87-86-5	Pentachlorophenol	1300	U
85-01-8	Phenanthrene	620	U
120-12-7	Anthracene	620	U
86-74-8	Carbazole	620	U
84-74-2	Di-n-butylphthalate	1300	В
206-44-0	Fluoranthene	180	J
129-00-0	Pyrene	200	J
85-68-7	Butylbenzylphthalate	620	U
91-94-1	3,3´-Dichlorobenzidine	620	U
56-55-3	Benzo(a)anthracene	620	U
218-01-9	Chrysene	160	J
117-81-7	Bis(2-ethylhexyl)phthalate	620	U
117-84-0	Di-n-octylphthalate	620	U
205-99-2	Benzo(b)fluoranthene	150	J
207-08-9	Benzo(k)fluoranthene	620	U
50-32-8	Benzo(a)pyrene	620	U
193-39-5	Indeno(1,2,3-cd)pyrene	620	U
53-70-3	Dibenzo(a,h)anthracene	620	U
191-24-2	Benzo(g,h,i)perylene	620	U

#### 2H - FORM II SV-2

#### WATER SEMIVOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1895 Mod. Ref No.: SDG No.: SN1895

	EPA	SDMC1	SDMC2	SDMC3	SDMC4	SDMC5	SDMC6	TO	ОТ
	SAMPLE NO.	(NBZ) #	(FBP) #	(TPH) #	(PHL) #	(2FP) #	(TBP) #	OU	UT
01	MB-79507	100	110	117	21	43	91	0	0
02	LCS-79507	104	99	103	23	37	96	0	0
03	USSW 100814	96	99	84	14	27	84	0	0
04	DSSW 100814	91	97	82	13	27	88	0	0
05	LCSD-79507	93	94	95	21	36	88	0	0

		QC LIMITS
SDMC1	(NBZ) = Nitrobenzene-d5	(40-110)
SDMC2	(FBP) = 2-Fluorobiphenyl	(50-110)
SDMC3	(TPH) = Terphenyl-d14	(50-135)
SDMC4	(PHL) = Phenol-d5	(10-115)
SDMC5	(2FP) = 2-Fluorophenol	(20-110)
SDMC6	(TBP) = 2,4,6-Tribromophenol	(40-125)

 $[\]mbox{\tt\#}$  Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

D DMC diluted out

### 2K - FORM II SV-4

#### SOIL SEMIVOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1895 Mod. Ref No.: SDG No.: SN1895

Level: (LOW/MED) LOW

	EPA	SDMC1	SDMC2	SDMC3	SDMC4	SDMC5	SDMC6	TOT
	SAMPLE NO.	(NBZ) #	(FBP) #	(TPH) #	(PHL) #	(2FP) #	(TBP) #	OUT
01	MB-79562	78	79	90	72	80	71	0
02	LCS-79562	81	80	88	70	77	74	0
03	LCSD-79562	81	84	93	75	79	83	0
04	USSED 100814	75	83	88	70	79	68	0
05	DSSED 100814	78	80	89	70	78	75	0

		QC LIMITS
SDMC1	(NBZ) = Nitrobenzene-d5	(35-100)
SDMC2	(FBP) = 2-Fluorobiphenyl	(45-105)
SDMC3	(TPH) = Terphenyl-d14	(30-125)
SDMC4	(PHL) = Phenol-d5	(40-100)
SDMC5	(2FP) = 2-Fluorophenol	(35-105)
SDMC6	(TBP) = 2,4,6-Tribromophenol	(35-125)

som14.10.02.1616

 $[\]mbox{\tt\#}$  Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

D DMC diluted out

# 3 - FORM III WATER LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

LCS-79507

Lab	Name:	SPECTRUM	ANALYTICAL,	TNC.	Contract:
цар	manic •	DIECTION	$A_{11}A_{11} + A_{11}$	T11C.	concract.

Lab Code: MITKEM Case No.: N1895 Mod. Ref No.: SDG No.: SN1895

Lab Sample ID: LCS-79507 LCS Lot No.: A0103342

Date Extracted: 10/15/2014 Date Analyzed (1): 10/20/2014

-	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	T.CS %REC	#	LIMITS
COMPOUND	NDDDD	CONCENTION	CONCENTRATION	LCD WILLC	π	REC.
Phenol	50.0000	0.0000	12.5492	25		0 - 115
Bis(2-chloroethyl)ether	50.0000	0.0000	50.0087	100		35 - 110
2-Chlorophenol	50.0000	0.0000	35.3545	71		35 - 105
1,3-Dichlorobenzene	50.0000	0.0000	48.5500	97		30 - 100
1,4-Dichlorobenzene	50.0000	0.0000	47.9108	96		30 - 100
1,2-Dichlorobenzene	50.0000	0.0000	49.0703	98		35 - 100
2-Methylphenol	50.0000	0.0000	29.1024	58		40 - 110
2,2'-oxybis(1-Chloropropan	50.0000	0.0000	49.2984	99		30 - 123
4-Methylphenol	50.0000	0.0000	23.6634	47		30 - 110
N-Nitroso-di-n-propylamine	50.0000	0.0000	46.4169	93		35 - 130
Hexachloroethane	50.0000	0.0000	50.1067	100	*	30 - 95
Nitrobenzene	50.0000	0.0000	51.2819	103		45 - 110
Isophorone	50.0000	0.0000	51.3259	103		50 - 110
2-Nitrophenol	50.0000	0.0000	45.9603	92		40 - 115
2,4-Dimethylphenol	50.0000	0.0000	37.8804	76		30 - 110
2,4-Dichlorophenol	50.0000	0.0000	42.9165	86		50 - 105
1,2,4-Trichlorobenzene	50.0000	0.0000	49.6312	99		35 - 105
Naphthalene	50.0000	0.0000	50.2056	100	*	40 - 100
4-Chloroaniline	50.0000	0.0000				15 - 110
Bis(2-chloroethoxy)methane	50.0000					45 - 105
Hexachlorobutadiene	50.0000	0.0000	50.8666			25 - 105
4-Chloro-3-methylphenol	50.0000			76		45 - 110
2-Methylnaphthalene	50.0000					45 - 105
Hexachlorocyclopentadiene	50.0000					27 - 147
2,4,6-Trichlorophenol	50.0000					50 - 115
2,4,5-Trichlorophenol	50.0000					50 - 110
2-Chloronaphthalene	50.0000					50 - 105
2-Nitroaniline	50.0000					50 - 115
Dimethylphthalate	50.0000					25 - 125
Acenaphthylene	50.0000					50 - 105
2,6-Dinitrotoluene	50.0000					50 - 115
3-Nitroaniline	50.0000		39.2756			20 - 125
Acenaphthene	50.0000		50.3868			45 - 110
2,4-Dinitrophenol	50.0000					15 - 140
4-Nitrophenol	50.0000					0 - 125
Dibenzofuran	50.0000					55 - 105
2,4-Dinitrotoluene	50.0000					50 - 120
Diethylphthalate	50.0000					40 - 120
4-Chlorophenyl-phenylether	50.0000					50 - 110
Fluorene	50.0000					50 - 110
4-Nitroaniline 4,6-Dinitro-2-methylphenol	50.0000					35 - 120
N-Nitrosodiphenylamine						40 - 130
4-Bromophenyl-phenylether	50.0000					50 - 110 50 - 115
4-promobnenil-bueniletuer	50.0000	0.0000	53.2825	107		50 - 115

## 3 - FORM III WATER LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

LCS-79507

Lab Name: SPECT		CTRUM ANALYTICAL, INC.			Contract:				
Lab	Code:	MITKEM	1	Case No.:	N1895	Mod. Ref No.:		SDG No.:	SN1895
Lab	Sample	ID:	LCS-79	507		LCS Lot No.:	A0103342		
Date	e Extrac	cted:	10/15/	2014		Date Analyzed (1)	10/20	/2014	

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
						REC.
Hexachlorobenzene	50.0000	0.0000	53.7538	108		50 - 110
Pentachlorophenol	50.0000	0.0000	47.7957	96		40 - 115
Phenanthrene	50.0000	0.0000	51.7855	104		50 - 115
Anthracene	50.0000	0.0000	53.0858	106		55 - 110
Carbazole	50.0000	0.0000	48.8621	98		50 - 115
Di-n-butylphthalate	50.0000	0.0000	53.6891	107		55 - 115
Fluoranthene	50.0000	0.0000	49.9494	100		55 - 115
Pyrene	50.0000	0.0000	51.7156	103		50 - 130
Butylbenzylphthalate	50.0000	0.0000	52.2123	104		45 - 115
3,3´-Dichlorobenzidine	50.0000	0.0000	50.0939	100		20 - 110
Benzo(a)anthracene	50.0000	0.0000	50.7218	101		55 - 110
Chrysene	50.0000	0.0000	52.7879	106		55 - 110
Bis(2-ethylhexyl)phthalate	50.0000	0.0000	51.9112	104		40 - 125
Di-n-octylphthalate	50.0000	0.0000	53.5779	107		35 - 135
Benzo(b)fluoranthene	50.0000	0.0000	55.1742	110		45 - 120
Benzo(k)fluoranthene	50.0000	0.0000	52.3350	105		45 - 125
Benzo(a)pyrene	50.0000	0.0000	53.8798	108		55 - 110
Indeno(1,2,3-cd)pyrene	50.0000	0.0000	51.0667	102		45 - 125
Dibenzo(a,h)anthracene	50.0000	0.0000	54.0262	108		40 - 125
Benzo(g,h,i)perylene	50.0000	0.0000	52.7138	105		40 - 125

 $\mbox{\tt\#}$  Column to be used to flag recovery and RPD values with an asterisk

* Values outs:	de of QC limits		
Spike Recovery	7: out of	64 outside limits	
COMMENTS:			

#### 3 - FORM III

# WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO	)	
---------------	---	--

LCSD-79507

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1895 Mod. Ref No.: SDG No.: SN1895

Lab Sample ID: LCSD-79507 LCS Lot No.: A0103342

	SPIKE	LCSD					QC	LIMITS
	ADDED	CONCENTRATION	LCSD %REC	#	%RPD	#		
COMPOUND							RPD	REC.
Phenol	50.0000	11.8220	24		4		40	0 - 115
Bis(2-chloroethyl)ether	50.0000	47.1110	94		6		40	35 - 110
2-Chlorophenol	50.0000	33.6553	67		6		40	35 - 105
1,3-Dichlorobenzene	50.0000	46.2477	92		5		40	30 - 100
1,4-Dichlorobenzene	50.0000	44.4052	89		8		40	30 - 100
1,2-Dichlorobenzene	50.0000	45.0911	90		9		40	35 - 100
2-Methylphenol	50.0000	26.4714	53		9		40	40 - 110
2,2'-oxybis(1-Chloropropan	50.0000	46.5977	93		6		40	30 - 123
4-Methylphenol	50.0000	23.1904	46		2		40	30 - 110
N-Nitroso-di-n-propylamine	50.0000	44.0937	88		6		40	35 - 130
Hexachloroethane	50.0000	47.3853	95		5		40	30 - 95
Nitrobenzene	50.0000	47.7306	95		8		40	45 - 110
Isophorone	50.0000	46.3087	93		10		40	50 - 110
2-Nitrophenol	50.0000	44.1726	88		4		40	40 - 115
2,4-Dimethylphenol	50.0000	34.5448	69		10		40	30 - 110
2,4-Dichlorophenol	50.0000	36.9868	74		15		40	50 - 105
1,2,4-Trichlorobenzene	50.0000	45.5205	91		8		40	35 - 105
Naphthalene	50.0000	46.4335	93		7		40	40 - 100
4-Chloroaniline	50.0000	25.8358	52		40		40	15 - 110
Bis(2-chloroethoxy)methane	50.0000	47.4184	95		7		40	45 - 105
Hexachlorobutadiene	50.0000	48.3772	97		5		40	25 - 105
4-Chloro-3-methylphenol	50.0000	34.5931	69		10		40	45 - 110
2-Methylnaphthalene	50.0000	44.3693	89		8		40	45 - 105
Hexachlorocyclopentadiene	50.0000	40.3135	81		21		40	27 - 147
2,4,6-Trichlorophenol	50.0000	42.9192	86		3		40	50 - 115
2,4,5-Trichlorophenol	50.0000	40.9141	82		15		40	50 - 110
2-Chloronaphthalene	50.0000	47.7513	96		6		40	50 - 105
2-Nitroaniline	50.0000	42.4685	85		11		40	50 - 115
Dimethylphthalate	50.0000	46.2434	92		8		40	25 - 125
Acenaphthylene	50.0000	47.3236	95		7		40	50 - 105
2,6-Dinitrotoluene	50.0000	47.5056	95		5		40	50 - 115
3-Nitroaniline	50.0000	32.7700	66		18		40	20 - 125
Acenaphthene	50.0000	47.1230	94		7		40	45 - 110
2,4-Dinitrophenol	50.0000	22.9899	46		12		40	15 - 140
4-Nitrophenol	50.0000				7		40	0 - 125
Dibenzofuran	50.0000				5		40	55 - 105
2,4-Dinitrotoluene	50.0000				5		40	50 - 120
Diethylphthalate	50.0000				7		40	40 - 120
4-Chlorophenyl-phenylether	50.0000				7		40	50 - 110
Fluorene	50.0000				9		40	50 - 110
4-Nitroaniline	50.0000				25		40	35 - 120
4,6-Dinitro-2-methylphenol	50.0000				7		40	40 - 130
N-Nitrosodiphenylamine	50.0000				8		40	50 - 110
4-Bromophenyl-phenylether	50.0000				6		40	50 - 115
Hexachlorobenzene	50.0000				8		40	50 - 110
Pentachlorophenol	50.0000				5		40	40 - 115

# 3 - FORM III WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

LCSD-79507

Lab	Name:	SPECTRUM ANAI	LYTICAL, INC	C.	Contract:				
Lab	Code:	MITKEM	Case No.:	N1895	Mod. Ref No.:		SDG No.:	SN1895	
Lab	Sample	ID: LCSD-79	9507		LCS Lot No.:	A0103342			

	SPIKE ADDED	LCSD CONCENTRATION	LCSD %REC	#	%RPD	#	QC LIMITS	
COMPOUND							RPD	REC.
Phenanthrene	50.0000	47.3791	95		9		40	50 - 115
Anthracene	50.0000	48.9448	98		8		40	55 - 110
Carbazole	50.0000	45.0165	90		9		40	50 - 115
Di-n-butylphthalate	50.0000	49.0789	98		9		40	55 - 115
Fluoranthene	50.0000	45.1175	90		11		40	55 - 115
Pyrene	50.0000	48.4738	97		6		40	50 - 130
Butylbenzylphthalate	50.0000	48.7248	97		7		40	45 - 115
3,3´-Dichlorobenzidine	50.0000	43.1987	86		15		40	20 - 110
Benzo(a)anthracene	50.0000	46.9233	94		7		40	55 - 110
Chrysene	50.0000	50.8795	102		4		40	55 - 110
Bis(2-ethylhexyl)phthalate	50.0000	48.0992	96		8		40	40 - 125
Di-n-octylphthalate	50.0000	48.8285	98		9		40	35 - 135
Benzo(b)fluoranthene	50.0000	50.7947	102		8		40	45 - 120
Benzo(k)fluoranthene	50.0000	49.4612	99		6		40	45 - 125
Benzo(a)pyrene	50.0000	50.5533	101		7		40	55 - 110
Indeno(1,2,3-cd)pyrene	50.0000	48.3863	97		5		40	45 - 125
Dibenzo(a,h)anthracene	50.0000	50.8616	102		6		40	40 - 125
Benzo(g,h,i)perylene	50.0000	50.4263	101		4		40	40 - 125

 $\mbox{\#}$  Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

Spike Recovery:0_out of64_outside limits  COMMENTS:	RPD: 0 out o	of 64 outside limits
COMMENTS:	Spike Recovery:	out of64outside limits
	COMMENTS:	

# 3 - FORM III SOIL LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

LCS-79562

Lah	Name:	SPECTRIM	ANALYTICAL,	TNC	Contract:
цаы	name.	SPECIKUM	ANADITICAD,	TIVC.	Concract.

Lab Code: MITKEM Case No.: N1895 Mod. Ref No.: SDG No.: SN1895

Lab Sample ID: LCS-79562 LCS Lot No.: A0103342

Date Extracted: 10/18/2014 Date Analyzed (1): 10/20/2014

10/10/2011				0/20/2011		
	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
Phenol	3333.0000	0.0000	2158.3051	65		REC.
Bis(2-chloroethyl)ether	3333.0000					40 - 100
2-Chlorophenol	3333.0000					45 - 105
1,3-Dichlorobenzene	3333.0000					40 - 100
1,4-Dichlorobenzene	3333.0000					35 - 105
1,2-Dichlorobenzene	3333.0000					45 - 95
2-Methylphenol	3333.0000					40 - 105
2,2'-oxybis(1-Chloropropan	3333.0000					20 - 115
4-Methylphenol	3333.0000					40 - 105
N-Nitroso-di-n-propylamine	3333.0000					40 - 115
Hexachloroethane	3333.0000					35 - 110
Nitrobenzene	3333.0000					40 - 115
Isophorone	3333.0000					45 - 110
2-Nitrophenol	3333.0000					40 - 110
2,4-Dimethylphenol	3333.0000					30 - 105
2,4-Dichlorophenol	3333.0000					45 - 110
1,2,4-Trichlorobenzene	3333.0000					45 - 110
Naphthalene	3333.0000					40 - 105
4-Chloroaniline	3333.0000					10 - 100
Bis(2-chloroethoxy)methane	3333.0000		2626.0560	79		45 - 110
Hexachlorobutadiene	3333.0000	0.0000				40 - 115
4-Chloro-3-methylphenol	3333.0000					45 - 115
2-Methylnaphthalene	3333.0000	0.0000	2483.3727	75		45 - 105
Hexachlorocyclopentadiene	3333.0000	0.0000	2655.8535	80		8 - 148
2,4,6-Trichlorophenol	3333.0000	0.0000	2444.1044	73		45 - 110
2,4,5-Trichlorophenol	3333.0000	0.0000	2625.2719	79		50 - 110
2-Chloronaphthalene	3333.0000	0.0000	2642.7141	79		45 - 105
2-Nitroaniline	3333.0000	0.0000	2412.0413	72		45 - 120
Dimethylphthalate	3333.0000	0.0000	2500.6637	75		50 - 110
Acenaphthylene	3333.0000	0.0000	2633.1448	79		45 - 105
2,6-Dinitrotoluene	3333.0000	0.0000	2579.3154	77		50 - 110
3-Nitroaniline	3333.0000	0.0000	965.0647	29		25 - 110
Acenaphthene	3333.0000					45 - 110
2,4-Dinitrophenol	3333.0000	0.0000	2338.1404	70		15 - 130
4-Nitrophenol	3333.0000	0.0000	2251.5492	68		15 - 140
Dibenzofuran	3333.0000	0.0000	2422.4727	73		50 - 105
2,4-Dinitrotoluene	3333.0000					50 - 115
Diethylphthalate	3333.0000					50 - 115
4-Chlorophenyl-phenylether	3333.0000					45 - 110
Fluorene	3333.0000					50 - 110
4-Nitroaniline	3333.0000					35 - 115
4,6-Dinitro-2-methylphenol	3333.0000					30 - 135
N-Nitrosodiphenylamine	3333.0000					50 - 115
4-Bromophenyl-phenylether	3333.0000	0.0000	2837.5841	85		45 - 115

# 3 - FORM III SOIL LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

LCS-79562

Lab	Name:	SPECTR	RUM ANAI	YTICAL, INC	C.	Contract:			
Lab	Code:	MITKEM	1	Case No.:	N1895	Mod. Ref No.:		SDG No.:	SN1895
Lab	Sample	ID:	LCS-795	662		LCS Lot No.:	A0103342		
Date	e Extrac	cted:	10/18/2	2014		Date Analyzed (1)	10/20	/2014	

	SPIKE	SAMPLE	LCS		QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC :	LIMITS
		!			REC.
Hexachlorobenzene	3333.0000	0.0000	2762.0176	83	45 - 120
Pentachlorophenol	3333.0000	0.0000	2547.7433	76	25 - 120
Phenanthrene	3333.0000	0.0000	2661.8990	80	50 - 110
Anthracene	3333.0000	0.0000	2702.9437	81	55 - 105
Carbazole	3333.0000	0.0000	2426.1767	73	45 - 115
Di-n-butylphthalate	3333.0000	0.0000	2649.7074	79	55 - 110
Fluoranthene	3333.0000	0.0000	2453.7622	74	55 - 115
Pyrene	3333.0000	0.0000	2865.7718	86	45 - 125
Butylbenzylphthalate	3333.0000	0.0000	2832.8608	85	50 - 125
3,3´-Dichlorobenzidine	3333.0000	0.0000	1302.8369	39	10 - 130
Benzo(a)anthracene	3333.0000	0.0000	2640.0135	79	50 - 110
Chrysene	3333.0000	0.0000	2799.5010	84	55 - 110
Bis(2-ethylhexyl)phthalate	3333.0000	0.0000	2802.1545	84	45 - 125
Di-n-octylphthalate	3333.0000	0.0000	2995.7732	90	40 - 130
Benzo(b)fluoranthene	3333.0000	0.0000	2730.9390	82	45 - 115
Benzo(k)fluoranthene	3333.0000	0.0000	2861.2727	86	45 - 125
Benzo(a)pyrene	3333.0000	0.0000	2730.1822	82	50 - 110
Indeno(1,2,3-cd)pyrene	3333.0000	0.0000	2434.2623	73	40 - 120
Dibenzo(a,h)anthracene	3333.0000	0.0000	2565.6797	77	40 - 125
Benzo(g,h,i)perylene	3333.0000	0.0000	2588.8198	78	40 - 125

 $\mbox{\#}$  Column to be used to flag recovery and RPD values with an asterisk

* Values outside	of QC	limits			
Spike Recovery:	0	out of	64	_outside limits	
COMMENTS:					

## 3 - FORM III

# SOIL LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

LCSD-79562

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1895 Mod. Ref No.: SDG No.: SN1895

Lab Sample ID: LCSD-79562 LCS Lot No.: A0103342

	SPIKE	LCSD					QC	LIMITS
	ADDED	CONCENTRATION	LCSD %REC	#	%RPI	) #		
COMPOUND						,	RPD	REC.
Phenol	3333.0000	2305.7425	69		6		40	40 - 100
Bis(2-chloroethyl)ether	3333.0000	2752.7394	83		8		40	40 - 105
2-Chlorophenol	3333.0000	2426.9162	73		4		40	45 - 105
1,3-Dichlorobenzene	3333.0000	2514.1375	75		3		40	40 - 100
1,4-Dichlorobenzene	3333.0000	2488.1758	75		7		40	35 - 105
1,2-Dichlorobenzene	3333.0000	2480.6785	74		4		40	45 - 95
2-Methylphenol	3333.0000	2415.2000	72		6		40	40 - 105
2,2'-oxybis(1-Chloropropan	3333.0000	2567.9029	77		3		40	20 - 115
4-Methylphenol	3333.0000	2367.2556	71		4		40	40 - 105
N-Nitroso-di-n-propylamine	3333.0000	2442.3339	73		6		40	40 - 115
Hexachloroethane	3333.0000	2635.5467	79		4		40	35 - 110
Nitrobenzene	3333.0000	2746.7171	82		2		40	40 - 115
Isophorone	3333.0000	2602.1761	78		4		40	45 - 110
2-Nitrophenol	3333.0000	2569.2746	77		0		40	40 - 110
2,4-Dimethylphenol	3333.0000	2395.6109	72		3		40	30 - 105
2,4-Dichlorophenol	3333.0000	2514.3661	75		5		40	45 - 110
1,2,4-Trichlorobenzene	3333.0000	2591.7532	78		3		40	45 - 110
Naphthalene	3333.0000	2642.6685	79		3		40	40 - 105
4-Chloroaniline	3333.0000	873.0790	26		42	*	40	10 - 100
Bis(2-chloroethoxy)methane	3333.0000	2674.8438	80		1		40	45 - 110
Hexachlorobutadiene	3333.0000	2648.8814	79		1		40	40 - 115
4-Chloro-3-methylphenol	3333.0000	2410.9178	72		7		40	45 - 115
2-Methylnaphthalene	3333.0000	2439.6759	73		3		40	45 - 105
Hexachlorocyclopentadiene	3333.0000	2762.0990	83		4		40	8 - 148
2,4,6-Trichlorophenol	3333.0000	2728.2180	82		12		40	45 - 110
2,4,5-Trichlorophenol	3333.0000	2981.4451	89		12		40	50 - 110
2-Chloronaphthalene	3333.0000	2887.5903	87		10		40	45 - 105
2-Nitroaniline	3333.0000	2716.3366	81		12		40	45 - 120
Dimethylphthalate	3333.0000	2826.7965	85		13		40	50 - 110
Acenaphthylene	3333.0000	2849.5544	85		7		40	45 - 105
2,6-Dinitrotoluene	3333.0000	2873.2776	86		11		40	50 - 110
3-Nitroaniline	3333.0000	1461.7756	44		41	*	40	25 - 110
Acenaphthene	3333.0000	2831.7885	85		9		40	45 - 110
2,4-Dinitrophenol	3333.0000	2478.5414	74		6		40	15 - 130
4-Nitrophenol	3333.0000	2469.0977	74		8		40	15 - 140
Dibenzofuran	3333.0000	2666.1811	80		9		40	50 - 105
2,4-Dinitrotoluene	3333.0000	2712.9824	81		8		40	50 - 115
Diethylphthalate	3333.0000	2774.2167	83		9		40	50 - 115
4-Chlorophenyl-phenylether	3333.0000	2850.0333	86		12		40	45 - 110
Fluorene	3333.0000	2796.1979	84		10		40	50 - 110
4-Nitroaniline	3333.0000	2448.4147	73		7		40	35 - 115
4,6-Dinitro-2-methylphenol	3333.0000	2450.3586	74		6		40	30 - 135
N-Nitrosodiphenylamine	3333.0000	2873.2051	86		8		40	50 - 115
4-Bromophenyl-phenylether	3333.0000	2991.8568	90		6		40	45 - 115
Hexachlorobenzene	3333.0000	3000.4595	90		8		40	45 - 120
Pentachlorophenol	3333.0000	2763.8316	83		9		40	25 - 120

# 3 - FORM III SOIL LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

LCSD-79562

Lab	Name:	SPECTRUM ANAI	LYTICAL, INC	7.	Contract:				
Lab	Code:	MITKEM	Case No.:	N1895	Mod. Ref No.:		SDG No.:	SN1895	
Lab	Sample	ID: LCSD-79	9562		LCS Lot No.:	A0103342			

	SPIKE ADDED	LCSD CONCENTRATION	I.CSD &PEC	#	%RPD	#	QC	LIMITS
COMPOUND	ADDED	CONCENTRATION	DCDD WREC	π	9KFD #		RPD	REC.
Phenanthrene	3333.0000	2818.1781	85		6		40	50 - 110
Anthracene	3333.0000	2841.9451	85		5		40	55 - 105
Carbazole	3333.0000	2637.5756	79		8		40	45 - 115
Di-n-butylphthalate	3333.0000	2914.6872	87		10		40	55 - 110
Fluoranthene	3333.0000	2612.8898	78		5		40	55 - 115
Pyrene	3333.0000	3118.7019	94		9		40	45 - 125
Butylbenzylphthalate	3333.0000	3076.1761	92		8		40	50 - 125
3,3'-Dichlorobenzidine	3333.0000	1816.9146	55		34		40	10 - 130
Benzo(a)anthracene	3333.0000	2891.2751	87		10		40	50 - 110
Chrysene	3333.0000	2954.0015	89		6		40	55 - 110
Bis(2-ethylhexyl)phthalate	3333.0000	3091.5244	93		10		40	45 - 125
Di-n-octylphthalate	3333.0000	3305.0780	99		10		40	40 - 130
Benzo(b)fluoranthene	3333.0000	3194.2924	96		16		40	45 - 115
Benzo(k)fluoranthene	3333.0000	3090.9546	93		8		40	45 - 125
Benzo(a)pyrene	3333.0000	2971.8373	89		8		40	50 - 110
Indeno(1,2,3-cd)pyrene	3333.0000	2925.1246	88		19		40	40 - 120
Dibenzo(a,h)anthracene	3333.0000	2850.5544	86		11		40	40 - 125
Benzo(g,h,i)perylene	3333.0000	2963.3463	89		13		40	40 - 125

 $\ensuremath{\text{\#}}$  Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

Spike Recovery:0out of64outside limits  COMMENTS:	RPD:2	out of 6	4 outside lin	mits		
COMMENTS:	Spike Recove	ery: 0	out of64	_outside l	imits	
	COMMENTS:					 

### 4C - FORM IV SV SEMIVOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

MB-79507

Lab Name: SPECT	RUM ANALYTICAL, INC.	Contract:			
Lab Code: MITKE	M Case No.: N1895	Mod. Ref No.:	SDG No.: SN1895		
Lab File ID:	S3J2372.D	Lab Sample ID:	MB-79507		
Instrument ID: S3		Date Extracted:	10/15/2014		
Matrix: (SOIL/SED/WATER) WATER		Date Analyzed:	10/20/2014		
Level: (LOW/MED)	LOW	Time Analyzed:	11:49		
Extraction: (Typ	e) SEPF	GPC Cleanup: (Y/	'N) N		

	EPA	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	LCS-79507	LCS-79507	S3J2373.D	10/20/2014
02	USSW 100814	N1895-01D	S3J2375.D	10/20/2014
03	DSSW 100814	N1895-03D	S3J2376.D	10/20/2014
04	LCSD-79507	LCSD-79507	S3J2381.D	10/20/2014

COMMENTS:		

som14.10.02.1616 Page 1 of 1 SW846

### 4C - FORM IV SV SEMIVOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

MB-79562

Lab Name: SPECT	RUM ANALYTICAL, INC.	Contract:	
Lab Code: MITKE	M Case No.: N1895	Mod. Ref No.:	SDG No.: SN1895
Lab File ID:	S3J2377.D	Lab Sample ID:	MB-79562
Instrument ID:	S3	Date Extracted:	10/18/2014
Matrix: (SOIL/SE	D/WATER) SOIL	Date Analyzed:	10/20/2014
Level: (LOW/MED)	LOW	Time Analyzed:	13:55
Extraction: (Typ	e) SONC	GPC Cleanup: (Y/	N) N

	EPA	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	LCS-79562	LCS-79562	S3J2378.D	10/20/2014
02	LCSD-79562	LCSD-79562	S3J2379.D	10/20/2014
03	USSED 100814	N1895-02D	S3J2380.D	10/20/2014
04	DSSED 100814	N1895-04D	S3J2382.D	10/20/2014

COMMENTS:			
			-

som14.10.02.1616 Page 1 of 1 SW846

N1895 Page 86 of 214



* Pesticide Organics *

### REPORT NARRATIVE

Spectrum Analytical, Inc. Featuring Hanibal Technology, RI Division.

Client: AECOM Technical Services, Inc.

**Project: Tuxedo Waste Disposal** 

Laboratory Workorder / SDG #: N1895

SW846 8081B, Organochlorine Pesticides by GC-ECD

#### I. SAMPLE RECEIPT

No exceptions or unusual conditions were encountered unless a Sample Condition Notification Form, or other record of communication is included with the Sample Receipt Documentation.

#### II. HOLDING TIMES

### A. Sample Preparation:

All samples were prepared within the method-specified holding times.

### B. Sample Analysis:

All samples were analyzed within the method-specified holding times.

### III. METHODS

Samples were analyzed following procedures in laboratory test code: SW846 8081B

#### IV. PREPARATION

Aqueous Samples were prepared following procedures in laboratory test

code: SW3510C

Soil Samples were prepared following procedures in laboratory test

code: SW3550B

#### V. INSTRUMENTATION

The following instrumentation was used

Instrument Code: E6

Instrument Type: GC-ECD

N1895 Page 88 of 214

Description: HP6890

Manufacturer: Hewlett-Packard

Model: 6890

GC Column used: 30 m X 0.53 mm ID [0.50 um thickness] CLPPest

capillary column.

GC Column used: 30 m X 0.53 mm ID [0.42 um thickness] CLPPestII

capillary column.

#### VI. ANALYSIS

#### A. Calibration:

Calibrations met the method/SOP acceptance criteria.

#### B. Blanks:

All method blanks were within the acceptance criteria.

### C. Surrogates:

Surrogate standard percent recoveries were within the QC limits with the following exceptions. Please note that the acceptance criteria allow one surrogate recovery outside of the QC limits per fraction.

USSED 100814 (N1895-02D), recovery is below criteria for Decachlorobiphenyl on front column at 54% with criteria of (55-130).

#### D. Spikes:

### 1. Laboratory Control Spikes (LCS):

Percent recoveries for lab control samples were within the QC limits.

#### 2. Matrix Spike / Matrix Spike Duplicate (MS/MSD):

No client-requested MS/MSD analyses were included in this SDG.

#### E. Dilutions:

No sample in this SDG required analysis at dilution.

#### F. Samples:

The lower concentration between the primary and confirmatory GC column concentrations is reported due to the presence of interferences unless otherwise indicated. P flags are assigned to

N1895 Page 89 of 214

compounds when D% between the two columns are greater than 40%.

No other unusual occurrences were noted during sample analysis.

### G. Manual Integration

Where needed, manual integrations were performed to improve data quality. The corrections were reviewed and associated hardcopies generated and reported as required. Manual integrations are coded to provide the data reviewer justification for such action. The codes are labeled on the ion chromatogram signal (GC/MS signal) and chromatogram for GC based analysis as follows:

- M1 peak tailing or fronting
- · M2 peak co-elution
- · M3 rising or falling baseline
- · M4 retention time shift
- · M5 miscellaneous under this category, the justification is explained
- M6 software did not integrate peak
- · M7 partial peak integration

The following samples were manually integrated:

INDC1E6 Decachlorobiphenyl on front column , delta-BHC on rear column , Heptachlor on rear column due to M3

PEMEA beta-BHC on rear column due to M3

TOXAPH3E6 Decachlorobiphenyl on front column, Toxaphene on front column due to M3

TOXAPH4E6 Decachlorobiphenyl on front column, Toxaphene on front column due to M3

TOXAPH5E6 Decachlorobiphenyl on front column, Toxaphene on front column due to M3

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Spectrum, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

N1895 Page 90 of 214

	11-6	
Signed:	_	

Date:_____10/22/2014_____

N1895 Page 91 of 214



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

### Data Flag/Qualifiers (Page 1 of 2):

- U Not Detected. This compound was analyzed-for but not detected. For most analyses the reporting limit (lowest standard concentration) is the value listed. For Department of Defense programs, this is the Limit of Detection (LOD).
- J This flag indicates an estimated value due to either
  - the compound was detected below the reporting limit, or
  - estimated concentration for Tentatively Identified Compound
- B This flag indicates the compound was also detected in the associated Method Blank. The B flag has an alternative meaning for Inorganics analyses reported using CLP ILM-type metals forms, indicating a "trace" concentration below the reporting limit and equal to or above the detection limit.
- D For Organics analysis, this flag indicates the compound concentration was obtained from a secondary dilution analysis
- E This flag indicates the compound concentration exceeded the Calibration Range. The E flag has an alternative meaning for Inorganics analyses reported using CLP metals forms, indicating an estimated concentration due to the presence of interferences, as determined by the serial dilution analysis.
- P This flag is used for pesticides/PCB/herbicide compound when there is a greater than 40% difference for detected concentration between the two GC columns used for primary and confirmation analyses. This difference typically indicates interference, causing one value to be unusually high. The **lower** of the two values is generally reported on the Form 1, and both values reported on the Form 10.
- A Used to flag semivolatile organic Tentatively Identified Compound library search results for compounds identified as an aldol condensation by-product.



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

### Data Flag/Qualifiers (Page 2 of 2):

- N Used to flag results for volatile and semivolatile Organics analysis Tentatively Identified Compounds where an analyte has passed the identification criteria, and is considered to be positively identified. For Inorganics analysis the N flag indicates the matrix spike recovery falls outside of the control limit.
- * For Inorganics analysis the * flag indicates Relative Percent Difference for duplicate analyses is outside of the control limit.
- L NYSDEC qualifier: Result is biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.



### **Sample ID Suffixes**

- DL Diluted analysis. The sample was diluted and reanalyzed. The DL may be followed by a digit if more than one diluted reanalysis is provided. The DL suffix is not attached to an analysis initially performed at dilution, only to reanalyses performed at dilution
- RE Reanalysis. Appended to the client sample ID to indicate a reextraction and reanalysis or a reanalysis of the original sample extract.
- RA Reanalysis. Appended to the laboratory sample ID indicates a reanalysis of the original sample extract.
- RX Reextraction. Appended to the laboratory sample ID indicates a reextraction of the sample.
- MS Matrix Spike.
- MSD Matrix Spike Duplicate
- DUP Duplicate analysis
- SD Serial Dilution
- PS Post-digestion or Post-distillation spike. For metals or inorganic analyses

EPA SAMPLE NO.
MB-79500

Lab Name: SPECTRUM A	ANALYTICAL, INC.	Contract:	
Lab Code: MITKEM	Case No.: <u>N1895</u>	Mod. Ref No.:	SDG No.: SN1895
Matrix: (SOIL/SED/WAT	TER) WATER	Lab Sample ID:	MB-79500
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	E6B3525F.D/E6B3525R.D
% Moisture:	Decanted: (Y/N)	Date Received:	
Extraction: (Type)	SEPF	Date Extracted:	10/15/2014
Concentrated Extract	Volume:10000 (uL)	Date Analyzed:	10/17/2014
Injection Volume:	1.0 (uL) GPC Factor: 1.00	Dilution Factor:	1.0
GPC Cleanup:(Y/N) N	рН:	Sulfur Cleanup:	(Y/N) Y

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
319-84-6	alpha-BHC	0.050	U
319-85-7	beta-BHC	0.050	U
319-86-8	delta-BHC	0.050	U
58-89-9	gamma-BHC (Lindane)	0.050	U
76-44-8	Heptachlor	0.050	U
309-00-2	Aldrin	0.050	U
1024-57-3	Heptachlor epoxide	0.050	U
959-98-8	Endosulfan I	0.050	U
60-57-1	Dieldrin	0.10	U
72-55-9	4,4´-DDE	0.10	U
72-20-8	Endrin	0.10	U
33213-65-9	Endosulfan II	0.10	U
72-54-8	4,4´-DDD	0.10	U
1031-07-8	Endosulfan sulfate	0.10	U
50-29-3	4,4´-DDT	0.10	U
72-43-5	Methoxychlor	0.50	U
53494-70-5	Endrin ketone	0.10	U
7421-93-4	Endrin aldehyde	0.10	U
5103-71-9	alpha-Chlordane	0.050	U
5103-74-2	gamma-Chlordane	0.050	U
8001-35-2	Toxaphene	5.0	U

EPA SAMPLE NO.
USSW 100814

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: N1895-01D
Sample wt/vol:1000 (g/mL) ML	Lab File ID: <u>E6B3528F.D/E6B3528R.D</u>
% Moisture: Decanted: (Y/N)	Date Received: 10/09/2014
Extraction: (Type) SEPF	Date Extracted: 10/15/2014
Concentrated Extract Volume: 10000	0 (uL) Date Analyzed: 10/17/2014
Injection Volume:1.0 (uL) GPC Factor:	1.00 Dilution Factor: 1.0
GPC Cleanup:(Y/N) N pH:	Sulfur Cleanup: (Y/N) Y

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
319-84-6	alpha-BHC	0.050	U
319-85-7	beta-BHC	0.050	U
319-86-8	delta-BHC	0.050	U
58-89-9	gamma-BHC (Lindane)	0.050	U
76-44-8	Heptachlor	0.050	U
309-00-2	Aldrin	0.050	U
1024-57-3	Heptachlor epoxide	0.050	U
959-98-8	Endosulfan I	0.050	U
60-57-1	Dieldrin	0.10	U
72-55-9	4,4´-DDE	0.10	U
72-20-8	Endrin	0.10	U
33213-65-9	Endosulfan II	0.10	U
72-54-8	4,4´-DDD	0.10	U
1031-07-8	Endosulfan sulfate	0.10	U
50-29-3	4,4´-DDT	0.10	U
72-43-5	Methoxychlor	0.50	U
53494-70-5	Endrin ketone	0.10	U
7421-93-4	Endrin aldehyde	0.10	U
5103-71-9	alpha-Chlordane	0.050	U
5103-74-2	gamma-Chlordane	0.050	U
8001-35-2	Toxaphene	5.0	U

EPA SAMPLE NO.
DSSW 100814

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q
319-84-6	alpha-BHC	0.050	U
319-85-7	beta-BHC	0.050	U
319-86-8	delta-BHC	0.050	U
58-89-9	gamma-BHC (Lindane)	0.050	U
76-44-8	Heptachlor	0.050	U
309-00-2	Aldrin	0.050	U
1024-57-3	Heptachlor epoxide	0.050	U
959-98-8	Endosulfan I	0.050	U
60-57-1	Dieldrin	0.10	U
72-55-9	4,4´-DDE	0.10	U
72-20-8	Endrin	0.10	U
33213-65-9	Endosulfan II	0.10	U
72-54-8	4,4´-DDD	0.10	U
1031-07-8	Endosulfan sulfate	0.10	U
50-29-3	4,4´-DDT	0.10	U
72-43-5	Methoxychlor	0.50	U
53494-70-5	Endrin ketone	0.10	U
7421-93-4	Endrin aldehyde	0.10	U
5103-71-9	alpha-Chlordane	0.050	U
5103-74-2	gamma-Chlordane	0.050	U
8001-35-2	Toxaphene	5.0	U

LCS-79500(1)

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: LCS-79500
Sample wt/vol:1000 (g/mL) ML	Lab File ID: E6B3526F.D
% Moisture: Decanted: (Y/N)	Date Received:
Extraction: (Type) SEPF	Date Extracted: 10/15/2014
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 10/17/2014
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Dilution Factor: 1.0
GPC Cleanup:(Y/N) N pH:	Sulfur Cleanup: (Y/N) Y

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
319-84-6	alpha-BHC	0.20	
319-85-7	beta-BHC	0.16	
319-86-8	delta-BHC	0.25	
58-89-9	gamma-BHC (Lindane)	0.19	
76-44-8	Heptachlor	0.18	
309-00-2	Aldrin	0.19	
1024-57-3	Heptachlor epoxide	0.19	
959-98-8	Endosulfan I	0.19	
60-57-1	Dieldrin	0.41	
72-55-9	4,4´-DDE	0.40	
72-20-8	Endrin	0.42	
33213-65-9	Endosulfan II	0.41	
72-54-8	4,4´-DDD	0.39	
1031-07-8	Endosulfan sulfate	0.45	
50-29-3	4,4´-DDT	0.41	
72-43-5	Methoxychlor	1.8	
53494-70-5	Endrin ketone	0.42	
7421-93-4	Endrin aldehyde	0.42	
5103-71-9	alpha-Chlordane	0.19	
5103-74-2	gamma-Chlordane	0.19	
8001-35-2	Toxaphene	5.0	U

EPA SAMPLE NO. LCS-79500(2)

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: LCS-79500
Sample wt/vol:1000 (g/mL) ML	Lab File ID: E6B3526R.D
% Moisture: Decanted: (Y/N)	Date Received:
Extraction: (Type) SEPF	Date Extracted: 10/15/2014
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 10/17/2014
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Dilution Factor: 1.0
GPC Cleanup:(Y/N) N pH:	Sulfur Cleanup: (Y/N) Y

	COMPOUND	CONCENTRATION UNITS:	0
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
319-84-6	alpha-BHC	0.19	
319-85-7	beta-BHC	0.20	
319-86-8	delta-BHC	0.25	
58-89-9	gamma-BHC (Lindane)	0.20	
76-44-8	Heptachlor	0.19	
309-00-2	Aldrin	0.19	
1024-57-3	Heptachlor epoxide	0.19	
959-98-8	Endosulfan I	0.20	
60-57-1	Dieldrin	0.38	
72-55-9	4,4´-DDE	0.38	
72-20-8	Endrin	0.41	
33213-65-9	Endosulfan II	0.43	
72-54-8	4,4´-DDD	0.38	
1031-07-8	Endosulfan sulfate	0.44	
50-29-3	4,4´-DDT	0.41	
72-43-5	Methoxychlor	1.8	
53494-70-5	Endrin ketone	0.40	
7421-93-4	Endrin aldehyde	0.42	
5103-71-9	alpha-Chlordane	0.19	
5103-74-2	gamma-Chlordane	0.19	
8001-35-2	Toxaphene	5.0	U

EPA	SAMPLE	NO.
LCS	D-79500	(1)

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: LCSD-79500
Sample wt/vol:1000 (g/mL) ML	Lab File ID: E6B3527F.D
% Moisture: Decanted: (Y/N)	Date Received:
Extraction: (Type) SEPF	Date Extracted: 10/15/2014
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 10/17/2014
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Dilution Factor: 1.0
GPC Cleanup:(Y/N) N pH:	Sulfur Cleanup: (Y/N) Y

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
319-84-6	alpha-BHC	0.20	
319-85-7	beta-BHC	0.17	
319-86-8	delta-BHC	0.25	
58-89-9	gamma-BHC (Lindane)	0.19	
76-44-8	Heptachlor	0.19	
309-00-2	Aldrin	0.19	
1024-57-3	Heptachlor epoxide	0.19	
959-98-8	Endosulfan I	0.19	
60-57-1	Dieldrin	0.41	
72-55-9	4,4´-DDE	0.40	
72-20-8	Endrin	0.42	
33213-65-9	Endosulfan II	0.41	
72-54-8	4,4´-DDD	0.39	
1031-07-8	Endosulfan sulfate	0.45	
50-29-3	4,4´-DDT	0.40	
72-43-5	Methoxychlor	1.8	
53494-70-5	Endrin ketone	0.42	
7421-93-4	Endrin aldehyde	0.43	
5103-71-9	alpha-Chlordane	0.19	
5103-74-2	gamma-Chlordane	0.19	
8001-35-2	Toxaphene	5.0	U

EPA	SAMPLE	NO.
LCS	D-79500	(2)

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: LCSD-79500
Sample wt/vol:1000 (g/mL) ML	Lab File ID: <u>E6B3527R.D</u>
% Moisture: Decanted: (Y/N)	Date Received:
Extraction: (Type) SEPF	Date Extracted: 10/15/2014
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 10/17/2014
Injection Volume:1.0 (uL) GPC Factor:1.00	Dilution Factor: 1.0
GPC Cleanup:(Y/N) N pH:	Sulfur Cleanup: (Y/N) Y

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
319-84-6	alpha-BHC	0.20	
319-85-7	beta-BHC	0.21	
319-86-8	delta-BHC	0.25	
58-89-9	gamma-BHC (Lindane)	0.20	
76-44-8	Heptachlor	0.19	
309-00-2	Aldrin	0.19	
1024-57-3	Heptachlor epoxide	0.20	
959-98-8	Endosulfan I	0.20	
60-57-1	Dieldrin	0.39	
72-55-9	4,4´-DDE	0.37	
72-20-8	Endrin	0.41	
33213-65-9	Endosulfan II	0.43	
72-54-8	4,4´-DDD	0.38	
1031-07-8	Endosulfan sulfate	0.44	
50-29-3	4,4´-DDT	0.40	
72-43-5	Methoxychlor	1.8	
53494-70-5	Endrin ketone	0.41	
7421-93-4	Endrin aldehyde	0.42	
5103-71-9	alpha-Chlordane	0.19	
5103-74-2	gamma-Chlordane	0.19	
8001-35-2	Toxaphene	5.0	U

EPA SAMPLE NO.
MB-79563

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID: MB-79563
Sample wt/vol:30.0 (g/mL) G	Lab File ID: <u>E6B3574F.D/E6B3574R.D</u>
% Moisture: Decanted: (Y/N)	Date Received:
Extraction: (Type) SONC	Date Extracted: 10/18/2014
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 10/20/2014
Injection Volume:1.0 (uL) GPC Factor:1.00	Dilution Factor: 1.0
GPC Cleanup:(Y/N) N pH:	Sulfur Cleanup: (Y/N) Y

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Q
319-84-6	alpha-BHC	1.7	U
319-85-7	beta-BHC	1.7	U
319-86-8	delta-BHC	1.7	U
58-89-9	gamma-BHC (Lindane)	1.7	U
76-44-8	Heptachlor	1.7	U
309-00-2	Aldrin	1.7	U
1024-57-3	Heptachlor epoxide	1.7	U
959-98-8	Endosulfan I	1.7	U
60-57-1	Dieldrin	3.3	U
72-55-9	4,4´-DDE	3.3	U
72-20-8	Endrin	3.3	U
33213-65-9	Endosulfan II	3.3	U
72-54-8	4,4´-DDD	3.3	U
1031-07-8	Endosulfan sulfate	3.3	U
50-29-3	4,4´-DDT	3.3	U
72-43-5	Methoxychlor	17	U
53494-70-5	Endrin ketone	3.3	U
7421-93-4	Endrin aldehyde	3.3	U
5103-71-9	alpha-Chlordane	1.7	U
5103-74-2	gamma-Chlordane	1.7	U
8001-35-2	Toxaphene	170	U

EPA SAMPLE NO.

USSED 100814

Lab Name: SPECTRUM ANALYTICAL, INC. Contract: SDG No.: SN1895 Lab Code: MITKEM Case No.: N1895 Mod. Ref No.: Matrix: (SOIL/SED/WATER) SOIL Lab Sample ID: N1895-02D Sample wt/vol: 30.4 (g/mL) G Lab File ID: E6B3577F.D/E6B3577R.D % Moisture: ____ Decanted: (Y/N) N Date Received: 10/09/2014 Extraction: (Type) SONC Date Extracted: 10/18/2014 Concentrated Extract Volume: 10000 (uL) Date Analyzed: 10/20/2014 Injection Volume: 1.0 (uL) GPC Factor: 1.00 Dilution Factor: 1.0 GPC Cleanup:(Y/N) N pH: Sulfur Cleanup: (Y/N) Y

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Q
319-84-6	alpha-BHC	2.3	U U
319-85-7	beta-BHC	2.3	U
319-86-8	delta-BHC	2.3	U
58-89-9	gamma-BHC (Lindane)	2.3	U
76-44-8	Heptachlor	2.3	U
309-00-2	Aldrin	2.3	U
1024-57-3	Heptachlor epoxide	2.3	U
959-98-8	Endosulfan I	2.3	U
60-57-1	Dieldrin	4.5	U
72-55-9	4,4´-DDE	6.3	
72-20-8	Endrin	5.3	Р
33213-65-9	Endosulfan II	4.5	U
72-54-8	4,4´-DDD	9.2	Р
1031-07-8	Endosulfan sulfate	4.5	U
50-29-3	4,4´-DDT	21	
72-43-5	Methoxychlor	23	U
53494-70-5	Endrin ketone	4.5	U
7421-93-4	Endrin aldehyde	4.5	U
5103-71-9	alpha-Chlordane	12	Р
5103-74-2	gamma-Chlordane	19	P
8001-35-2	Toxaphene	230	U

EPA SAMPLE NO.

DSSED 100814

Lab Name: SPECTRUM ANALYTICAL, INC. Contract: SDG No.: SN1895 Lab Code: MITKEM Case No.: N1895 Mod. Ref No.: Matrix: (SOIL/SED/WATER) SOIL Lab Sample ID: N1895-04D Sample wt/vol: 30.4 (g/mL) G Lab File ID: E6B3578F.D/E6B3578R.D % Moisture: 48 Decanted: (Y/N) N Date Received: 10/09/2014 Extraction: (Type) SONC Date Extracted: 10/18/2014 Concentrated Extract Volume: 10000 (uL) Date Analyzed: 10/20/2014 Injection Volume: 1.0 (uL) GPC Factor: 1.00 Dilution Factor: 1.0 GPC Cleanup:(Y/N) N pH: Sulfur Cleanup: (Y/N) Y

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Q
319-84-6	alpha-BHC	3.3	- U
319-85-7	beta-BHC	3.3	U
319-86-8	delta-BHC	3.3	U
58-89-9	gamma-BHC (Lindane)	3.3	U
76-44-8	Heptachlor	3.3	U
309-00-2	Aldrin	3.3	U
1024-57-3	Heptachlor epoxide	3.3	U
959-98-8	Endosulfan I	3.3	U
60-57-1	Dieldrin	6.3	U
72-55-9	4,4´-DDE	6.3	U
72-20-8	Endrin	6.3	U
33213-65-9	Endosulfan II	6.3	U
72-54-8	4,4´-DDD	6.3	U
1031-07-8	Endosulfan sulfate	6.3	U
50-29-3	4,4´-DDT	6.3	U
72-43-5	Methoxychlor	33	U
53494-70-5	Endrin ketone	6.3	U
7421-93-4	Endrin aldehyde	6.3	U
5103-71-9	alpha-Chlordane	3.3	U
5103-74-2	gamma-Chlordane	3.3	U
8001-35-2	Toxaphene	330	U

EPA SAMPLE NO. LCS-79563(1)

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID: LCS-79563
Sample wt/vol: 30 (g/mL) G	Lab File ID: <u>E6B3575F.D</u>
% Moisture: Decanted: (Y/N)	Date Received:
Extraction: (Type) SONC	Date Extracted: 10/18/2014
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 10/20/2014
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Dilution Factor: 1.0
GPC Cleanup:(Y/N) N pH:	Sulfur Cleanup: (Y/N) Y

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Q
319-84-6	alpha-BHC	6.3	
319-85-7	beta-BHC	5.1	
319-86-8	delta-BHC	7.5	
58-89-9	gamma-BHC (Lindane)	6.0	
76-44-8	Heptachlor	5.5	
309-00-2	Aldrin	6.2	
1024-57-3	Heptachlor epoxide	5.7	
959-98-8	Endosulfan I	5.9	
60-57-1	Dieldrin	12	
72-55-9	4,4´-DDE	11	
72-20-8	Endrin	12	
33213-65-9	Endosulfan II	13	
72-54-8	4,4´-DDD	11	
1031-07-8	Endosulfan sulfate	12	
50-29-3	4,4´-DDT	11	
72-43-5	Methoxychlor	46	
53494-70-5	Endrin ketone	12	
7421-93-4	Endrin aldehyde	13	
5103-71-9	alpha-Chlordane	5.9	
5103-74-2	gamma-Chlordane	5.9	
8001-35-2	Toxaphene	170	U

EPA SAMPLE NO.

LCS-79563(2)

Lab Name: SPECTRUM A	NALYTICAL, INC.	Contract:	
Lab Code: MITKEM	Case No.: N1895	Mod. Ref No.:	SDG No.: SN1895
Matrix: (SOIL/SED/WAT	'ER) SOIL	Lab Sample ID:	LCS-79563
Sample wt/vol:	30 (g/mL) <u>G</u>	Lab File ID:	E6B3575R.D
% Moisture:	Decanted: (Y/N)	Date Received:	
Extraction: (Type)	SONC	Date Extracted:	10/18/2014
Concentrated Extract	Volume:10000 (uL)	Date Analyzed:	10/20/2014
Injection Volume:1	.0 (uL) GPC Factor: 1.00	Dilution Factor:	1.0
GPC Cleanup:(Y/N) N	PH:	Sulfur Cleanup:	(Y/N) <u>Y</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/KG	Q
319-84-6	alpha-BHC	6.1	
319-85-7	beta-BHC	5.8	
319-86-8	delta-BHC	6.2	
58-89-9	gamma-BHC (Lindane)	5.7	
76-44-8	Heptachlor	6.0	
309-00-2	Aldrin	6.3	
1024-57-3	Heptachlor epoxide	6.0	
959-98-8	Endosulfan I	5.6	
60-57-1	Dieldrin	11	
72-55-9	4,4´-DDE	11	
72-20-8	Endrin	11	
33213-65-9	Endosulfan II	13	
72-54-8	4,4´-DDD	11	
1031-07-8	Endosulfan sulfate	12	
50-29-3	4,4´-DDT	11	
72-43-5	Methoxychlor	46	
53494-70-5	Endrin ketone	10	
7421-93-4	Endrin aldehyde	11	
5103-71-9	alpha-Chlordane	6.1	
5103-74-2	gamma-Chlordane	5.9	
8001-35-2	Toxaphene	170	U

EPA	SAMPLE	NO.
LCS	D-79563	(1)

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID: LCSD-79563
Sample wt/vol: 30 (g/mL) G	Lab File ID: E6B3576F.D
% Moisture: Decanted: (Y/N)	Date Received:
Extraction: (Type) SONC	Date Extracted: 10/18/2014
Concentrated Extract Volume: 10000 (uL	Date Analyzed: 10/20/2014
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Dilution Factor: 1.0
GPC Cleanup:(Y/N) N pH:	Sulfur Cleanup: (Y/N) Y

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q
319-84-6	alpha-BHC	5.6
319-85-7	beta-BHC	5.0
319-86-8	delta-BHC	6.9
58-89-9	gamma-BHC (Lindane)	5.5
76-44-8	Heptachlor	5.0
309-00-2	Aldrin	5.6
1024-57-3	Heptachlor epoxide	5.6
959-98-8	Endosulfan I	5.8
60-57-1	Dieldrin	12
72-55-9	4,4´-DDE	11
72-20-8	Endrin	12
33213-65-9	Endosulfan II	12
72-54-8	4,4´-DDD	10
1031-07-8	Endosulfan sulfate	11
50-29-3	4,4´-DDT	11
72-43-5	Methoxychlor	45
53494-70-5	Endrin ketone	11
7421-93-4	Endrin aldehyde	12
5103-71-9	alpha-Chlordane	5.7
5103-74-2	gamma-Chlordane	5.7
8001-35-2	Toxaphene	170 U

EPA	SAMPLE	NO.
LCS	D-79563	(2)

Lab Name: SPECTRUM	ANALYTICAL, INC.	Contract:	
Lab Code: MITKEM	Case No.: N1895	Mod. Ref No.:	SDG No.: SN1895
Matrix: (SOIL/SED/W	NATER) SOIL	Lab Sample ID:	LCSD-79563
Sample wt/vol:	30 (g/mL) G	Lab File ID:	E6B3576R.D
% Moisture:	Decanted: (Y/N)	Date Received:	
Extraction: (Type)	SONC	Date Extracted:	10/18/2014
Concentrated Extra	ct Volume:10000 (uL)	Date Analyzed:	10/20/2014
Injection Volume:	1.0 (uL) GPC Factor: 1.00	Dilution Factor:	1.0
GPC Cleanup:(Y/N)	N pH:	Sulfur Cleanup:	(Y/N) <u>Y</u>

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
319-84-6	alpha-BHC	5.4	
319-85-7	beta-BHC	5.9	
319-86-8	delta-BHC	5.8	
58-89-9	gamma-BHC (Lindane)	5.3	
76-44-8	Heptachlor	5.4	
309-00-2	Aldrin	5.6	
1024-57-3	Heptachlor epoxide	5.8	
959-98-8	Endosulfan I	5.4	
60-57-1	Dieldrin	11	
72-55-9	4,4´-DDE	11	
72-20-8	Endrin	11	
33213-65-9	Endosulfan II	13	
72-54-8	4,4´-DDD	10	
1031-07-8	Endosulfan sulfate	11	
50-29-3	4,4´-DDT	10	
72-43-5	Methoxychlor	46	
53494-70-5	Endrin ketone	10	
7421-93-4	Endrin aldehyde	11	
5103-71-9	alpha-Chlordane	5.9	
5103-74-2	gamma-Chlordane	5.7	
8001-35-2	Toxaphene	170	U

#### 2N - FORM II PEST-1

#### WATER PESTICIDE SURROGATE RECOVERY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

GC Column(1): CLPPest ID: 0.53 (mm) GC Column(2): CLPPestII ID: 0.53 (mm)

	EPA	TCX 1	TCX 2	DCB 1	DCB 2	OTHER	OTHER	TOT
	SAMPLE NO.	%REC #	%REC #	%REC #	%REC #	(1)	(2)	OUT
01	MB-79500	80	79	79	79			0
02	LCS-79500	82	80	81	81			0
03	LCSD-79500	82	80	81	80			0
04	USSW 100814	80	78	78	80			0
05	DSSW 100814	79	78	77	79			0

QC LIMITS

(25-140)

(30-135)

# Column to be used to flag recovery values

* Values outside of QC limits

D Surrogate diluted out

TCX = Tetrachloro-m-xylene

DCB = Decachlorobiphenyl

som14.10.02.1616

Page 1 of 1 SW846

N1895 Page 109 of 214

#### 2P - FORM II PEST-2

#### SOIL PESTICIDE SURROGATE RECOVERY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

Lab Code: MITKEM Case No.: N1895 Mod. Ref No.: SDG No.: SN1895

GC Column(1): CLPPest ID: 0.53 (mm) GC Column(2): CLPPestII ID: 0.53 (mm)

	EPA	TCX 1	TCX 2	DCB 1	DCB 2	OTHER	OTHER	TOT
	SAMPLE NO.	%REC #	%REC #	%REC #	%REC #	(1)	(2)	OUT
01	MB-79563	74	65	66	68			0
02	LCS-79563	79	69	68	70			0
03	LCSD-79563	69	61	67	70			0
04	USSED 100814	91	81	54 *	105			1
05	DSSED 100814	67	67	57	57			0

QC LIMITS

TCX = Tetrachloro-m-xylene (14-113)

DCB = Decachlorobiphenyl (55-130)

# Column to be used to flag recovery values

* Values outside of QC limits

D Surrogate diluted out

som14.10.02.1616

Page 1 of 1 SW846

N1895 Page 110 of 214

# 3L - FORM III PEST-3 WATER PESTICIDE LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

LCS-79500

Lab Name:	SPECTRUM AI	NALYTICAL,	INC.	Contract:		
Lab Code:	MITKEM	Case No.	: N1895	Mod. Ref No.:	SDG No.:	SN1895

Lab Sample ID: LCS-79500 LCS Lot No.: A092276

Date Extracted: 10/15/2014 Date Analyzed (1): 10/17/2014

Instrument ID (1): E6 GC Column(1): CLPPest ID: 0.53 (mm)

COMPOUND	AMOUNT ADDED	AMOUNT RECOVERED	%REC #	QC LIMITS
	(UG/L)	(UG/L)		
alpha-BHC	0.2000	0.1977	99	60-130
beta-BHC	0.2000	0.1648	82	65-125
delta-BHC	0.2000	0.2510	125	45-135
gamma-BHC (Lindane)	0.2000	0.1925	96	25-135
Heptachlor	0.2000	0.1845	92	40-130
Aldrin	0.2000	0.1929	96	25-140
Heptachlor epoxide	0.2000	0.1857	93	60-130
Endosulfan I	0.2000	0.1875	94	50-110
Dieldrin	0.4000	0.4137	103	60-130
4,4´-DDE	0.4000	0.3989	100	35-140
Endrin	0.4000	0.4232	106	55-135
Endosulfan II	0.4000	0.4068	102	30-130
4,4´-DDD	0.4000	0.3892	97	25-150
Endosulfan sulfate	0.4000	0.4498	112	55-135
4,4´-DDT	0.4000	0.4078	102	45-140
Methoxychlor	2.0000	1.8139	91	55-150
Endrin ketone	0.4000	0.4196	105	75-125
Endrin aldehyde	0.4000	0.4247	106	55-135
alpha-Chlordane	0.2000	0.1894	95	65-125
gamma-Chlordane	0.2000	0.1907	95	60-125

Instrument ID (2): E6 GC Column(2): CLPPestII ID: 0.53 (mm)

Date Analyzed (2): 10/17/2014

COMPOUND	AMOUNT ADDED	AMOUNT RECOVERED	%REC #	QC LIMITS
	(UG/L)	(UG/L)		
alpha-BHC	0.2000	0.1944	97	60-130
beta-BHC	0.2000	0.2039	102	65-125
delta-BHC	0.2000	0.2538	127	45-135
gamma-BHC (Lindane)	0.2000	0.1972	99	25-135

COMMENTS:

### 3L - FORM III PEST-3 WATER PESTICIDE LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

LCS-79500

ab Code: MITK	EM Case No	.: N1895	Mod. Ref No.:		SDG No.:	SN1895
Lab Sample ID:	LCS-79500		LCS Lot No.:	A0922	276	
Date Extracted:	10/15/2014		Date Analyzed (	1): 1	.0/17/2014	
Heptachlor		0.20	00	1870	93	40-130
Aldrin		0.20	00	1918	96	25-140
Heptachlor epo	xide	0.20	00 0.	1934	97	60-130
Endosulfan I		0.20	00 0.	2021 1	L01	50-110
Dieldrin		0.40	00 0.	3847	96	60-130
4,4'-DDE		0.40	00 0.	3758	94	35-140
Endrin		0.40	00 0.	4144 1	L04	55-135
Endosulfan II		0.40	00 0.	4339 1	L08	30-130
4,4´-DDD		0.40	00 0.	3816	95	25-150
Endosulfan sul	fate	0.40	00 0.	4438 1	L11	55-135
4,4´-DDT		0.40	00 0.	4067 1	L02	45-140
Methoxychlor		2.00	00 1.	8019	90	55-150
Endrin ketone		0.40	00 0.	4039 1	L01	75-125
Endrin aldehyd	е	0.40	00 0.	4172 1	L04	55-135
alpha-Chlordan	е	0.20	00 0.	1926	96	65-125
gamma-Chlordan	е	0.20	00 0.	1859	93	60-125

COMMENTS:	

# 3L - FORM III PEST-3 WATER PESTICIDE LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

LCSD-79500

Lab	Name:	SPECTRUM ANAL	LYTICAL, IN	С.	Contract:	:				
Lab	Code:	MITKEM	Case No.:	N1895	Mod. Ref	No.:		SDG No.:	SN1895	
Lab	Sample	ID: LCSD-79	9500		LCS Lot N	No.:	A092276			

Date Extracted: 10/15/2014 Date Analyzed (1): 10/17/2014

Instrument ID (1): E6 GC Column(1): CLPPest ID: 0.53 (mm)

COMPOUND	AMOUNT ADDED	AMOUNT RECOVERED	%REC #	QC LIMITS	%RPD #	RPD LIMIT
	(UG/L)	(UG/L)				
alpha-BHC	0.2000	0.2000	100	60-130	1.0	30
beta-BHC	0.2000	0.1651	83	65-125	1.0	30
delta-BHC	0.2000	0.2495	125	45-135	0	30
gamma-BHC (Lindane)	0.2000	0.1942	97	25-135	1.0	30
Heptachlor	0.2000	0.1862	93	40-130	1.0	30
Aldrin	0.2000	0.1948	97	25-140	1.0	30
Heptachlor epoxide	0.2000	0.1877	94	60-130	1.0	30
Endosulfan I	0.2000	0.1876	94	50-110	0	30
Dieldrin	0.4000	0.4139	103	60-130	0	30
4,4´-DDE	0.4000	0.3985	100	35-140	0	30
Endrin	0.4000	0.4214	105	55-135	1.0	30
Endosulfan II	0.4000	0.4076	102	30-130	0	30
4,4´-DDD	0.4000	0.3885	97	25-150	0	30
Endosulfan sulfate	0.4000	0.4506	113	55-135	1.0	30
4,4´-DDT	0.4000	0.4037	101	45-140	1.0	30
Methoxychlor	2.0000	1.8240	91	55-150	0	30
Endrin ketone	0.4000	0.4235	106	75-125	1.0	30
Endrin aldehyde	0.4000	0.4283	107	55-135	1.0	30
alpha-Chlordane	0.2000	0.1891	95	65-125	0	30
gamma-Chlordane	0.2000	0.1916	96	60-125	1.0	30

Instrument ID (2):  $\underline{\text{E6}}$   $\underline{\text{GC Column(2):}}$   $\underline{\text{CLPPestII}}$   $\underline{\text{ID:}}$   $\underline{0.53}$  (mm)

Date Analyzed (2): 10/17/2014

COMPOUND	AMOUNT ADDED	AMOUNT RECOVERED	%REC #	QC LIMITS	%RPD #	RPD LIMIT
	(UG/L)	(UG/L)				
alpha-BHC	0.2000	0.1971	99	60-130	2.0	30
beta-BHC	0.2000	0.2054	103	65-125	1.0	30
delta-BHC	0.2000	0.2523	126	45-135	1.0	30
gamma-BHC (Lindane)	0.2000	0.2000	100	25-135	1.0	30

COMMENTS:

# 3L - FORM III PEST-3 WATER PESTICIDE LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

LCSD-79500

Lab Name: SPECTRUM ANA	LYTICAL, INC.	Contract:	
Lab Code: MITKEM	Case No.: N1895	Mod. Ref No.:	SDG No.: SN1895
Lab Sample ID: LCSD-7	9500	LCS Lot No.: A	092276
Date Extracted: 10/15/	2014	Date Analyzed (1):	10/17/2014
Heptachlor	0.2000	0.1881 94	40-130 1.0 30
Aldrin	0.2000	0.1937 97	25-140 1.0 30
Heptachlor epoxide	0.2000	0.1952 98	60-130 1.0 30
Endosulfan I	0.2000	0.2000 100	50-110 1.0 30
Dieldrin	0.4000	0.3863 97	60-130 1.0 30
4,4´-DDE	0.4000	0.3712 93	35-140 1.0 30
Endrin	0.4000	0.4139 103	55-135 1.0 30
Endosulfan II	0.4000	0.4263 107	30-130 1.0 30
4,4´-DDD	0.4000	0.3785 95	25-150 0 30
Endosulfan sulfate	0.4000	0.4447 111	55-135 0 30
4,4´-DDT	0.4000	0.3953 99	45-140 3.0 30
Methoxychlor	2.0000	1.8126 91	55-150 1.0 30
Endrin ketone	0.4000	0.4065 102	75-125 1.0 30
Endrin aldehyde	0.4000	0.4161 104	55-135 0 30
alpha-Chlordane	0.2000	0.1929 96	65-125 0 30
gamma-Chlordane	0.2000	0.1867 93	60-125 0 30

# Column to be used to flag recovery values with an asterisk

* Values outside of QC limits

LCS	Recovery:	0	out of	40	outside	limits
	RPD:	0	out of	40	outside	limits

COMMENTS:			

# 3M - FORM III PEST-3 SOIL PESTICIDE LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

LCS-79563

Lab	Name:	SPECTR	UM ANAL	YTICAL, IN	C.	Contract:				
Lab	Code:	MITKEM	[	Case No.:	N1895	Mod. Ref No.:		SDG No.:	SN1895	
Lab	Sample	ID:	LCS-795	63		LCS Lot No.:	A092276			

Instrument ID (1): E6 GC Column(1): CLPPest ID: 0.53 (mm)

Date Analyzed (1): 10/20/2014

COMPOUND	AMOUNT ADDED	AMOUNT RECOVERED	%REC #	QC LIMITS
	(UG/KG)	(UG/KG)		
alpha-BHC	6.6670	6.3256	95	60-125
beta-BHC	6.6670	5.1035	77	60-125
delta-BHC	6.6670	7.4780	112	55-130
gamma-BHC (Lindane)	6.6670	5.9981	90	60-125
Heptachlor	6.6670	5.4755	82	50-140
Aldrin	6.6670	6.1674	93	45-140
Heptachlor epoxide	6.6670	5.7172	86	65-130
Endosulfan I	6.6670	5.9448	89	15-135
Dieldrin	13.3330	12.3254	92	65-125
4,4´-DDE	13.3330	11.4608	86	70-125
Endrin	13.3330	12.3880	93	60-135
Endosulfan II	13.3330	12.5371	94	35-140
4,4´-DDD	13.3330	10.6751	80	30-135
Endosulfan sulfate	13.3330	12.1423	91	60-135
4,4´-DDT	13.3330	11.1816	84	45-140
Methoxychlor	66.6670	45.6223	68	55-145
Endrin ketone	13.3330	11.6658	87	65-135
Endrin aldehyde	13.3330	12.5905	94	35-145
alpha-Chlordane	6.6670	5.8540	88	65-120
gamma-Chlordane	6.6670	5.8786	88	65-125

Instrument ID (2): <u>E6</u> <u>GC Column(2): CLPPestII</u> ID: <u>0.53</u> (mm)

Date Analyzed (2): 10/20/2014

Date Extracted: 10/18/2014

COMPOUND	AMOUNT ADDED	AMOUNT RECOVERED	%REC #	QC LIMITS
	(UG/KG)	(UG/KG)		
alpha-BHC	6.6670	6.0544	91	60-125
beta-BHC	6.6670	5.8174	87	60-125
delta-BHC	6.6670	6.1664	92	55-130
gamma-BHC (Lindane)	6.6670	5.7380	86	60-125

COMMENTS:

# 3M - FORM III PEST-3 SOIL PESTICIDE LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

55-145

65-135

35-145

65-120 65-125

LCS-79563

Lab Code: MITKEM Case No		RUM ANALYTICAL	, INC.	Cor	ntract:		
		No.: N1895 Mod. Ref No.:		d. Ref No.:		SDG No.: SN1895	
Lab Sample I	D:	LCS-79563	LCS Lot No.: A		S Lot No.: A09	A092276	
Date Extract	ed:	10/18/2014		Dat	ce Analyzed (1):	10/20	/2014
Heptachlor			6.66	570	6.0086	90	50-140
Aldrin			6.66	570	6.2841	94	45-140
Heptachlor	epox	ide	6.66	570	5.9599	89	65-130
Endosulfan	I		6.66	570	5.5727	84	15-135
Dieldrin			13.33	330	11.2728	85	65-125
4,4´-DDE			13.33	330	10.6648	80	70-125
Endrin			13.33	330	11.1096	83	60-135
Endosulfan	ΙII		13.33	330	13.2972	100	35-140
4,4´-DDD			13.33	330	10.5420	79	30-135
Endosulfan	sulfa	ate	13.33	330	11.8500	89	60-135
4,4´-DDT		13.3330 10.6		10.6745	80	45-140	

66.6670

13.3330

13.3330

6.6670

6.6670

46.3935

10.3563

11.1764

6.0518

5.8597

70

78

84

91

88

 $\sharp$  Column to be used to flag recovery values with an asterisk

* Values outside of QC limits

Methoxychlor Endrin ketone

Endrin aldehyde

alpha-Chlordane

gamma-Chlordane

LCS Recovery: 0 out of 40 outside limits.

COMMENTS:			

# 3M - FORM III PEST-3 SOIL PESTICIDE LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

LCSD-79563

Lab Name:	SPECTRUM ANALYTICAL, INC.	Contract:

Lab Code: MITKEM Case No.: N1895 Mod. Ref No.: SDG No.: SN1895

Lab Sample ID: LCSD-79563 LCS Lot No.: A092276

Date Extracted: 10/18/2014 Date Analyzed (1): 10/20/2014

Instrument ID (1): E6 GC Column(1): CLPPest ID: 0.53 (mm)

COMPOUND	AMOUNT ADDED	AMOUNT RECOVERED	%REC #	QC LIMITS	%RPD #	RPD LIMIT
	(UG/KG)	(UG/KG)				
alpha-BHC	6.6670	5.6199	84	60-125	12	30
beta-BHC	6.6670	4.9975	75	60-125	3.0	30
delta-BHC	6.6670	6.8651	103	55-130	8.0	30
gamma-BHC (Lindane)	6.6670	5.4728	82	60-125	9.0	30
Heptachlor	6.6670	4.9685	75	50-140	9.0	30
Aldrin	6.6670	5.6294	84	45-140	10	30
Heptachlor epoxide	6.6670	5.5515	83	65-130	4.0	30
Endosulfan I	6.6670	5.7852	87	15-135	2.0	30
Dieldrin	13.3330	12.0730	91	65-125	1.0	30
4,4´-DDE	13.3330	11.3861	85	70-125	1.0	30
Endrin	13.3330	12.1409	91	60-135	2.0	30
Endosulfan II	13.3330	12.3270	92	35-140	2.0	30
4,4´-DDD	13.3330	10.4201	78	30-135	3.0	30
Endosulfan sulfate	13.3330	11.4522	86	60-135	6.0	30
4,4´-DDT	13.3330	11.1621	84	45-140	0	30
Methoxychlor	66.6670	45.1660	68	55-145	0	30
Endrin ketone	13.3330	11.3313	85	65-135	2.0	30
Endrin aldehyde	13.3330	12.1176	91	35-145	3.0	30
alpha-Chlordane	6.6670	5.7401	86	65-120	2.0	30
gamma-Chlordane	6.6670	5.7252	86	65-125	2.0	30

Instrument ID (2): E6 GC Column(2): CLPPestII ID: 0.53 (mm)

Date Analyzed (2): 10/20/2014

COMPOUND	AMOUNT ADDED	AMOUNT RECOVERED	%REC #	QC LIMITS	%RPD #	RPD LIMIT
	(UG/KG)	(UG/KG)				
alpha-BHC	6.6670	5.3713	81	60-125	12	30
beta-BHC	6.6670	5.9246	89	60-125	2.0	30
delta-BHC	6.6670	5.7841	87	55-130	6.0	30
gamma-BHC (Lindane)	6.6670	5.3013	80	60-125	7.0	30

COMMENTS:

# 3M - FORM III PEST-3 SOIL PESTICIDE LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

LCSD-79563

Lab Name: SPECTRUM ANA	ALYTICAL, INC.	Contract:	
Lab Code: MITKEM	Case No.: <u>N1895</u>	Mod. Ref No.:	SDG No.: SN1895
Lab Sample ID: LCSD-	79563	LCS Lot No.: A0	92276
Date Extracted: 10/18/	/2014	Date Analyzed (1):	10/20/2014
Heptachlor	6.6670	5.4461 82	50-140 9.0 30
Aldrin	6.6670	5.6055 84	45-140 11 30
Heptachlor epoxide	6.6670	5.7816 87	65-130 2.0 30
Endosulfan I	6.6670	5.4200 81	15-135 4.0 30
Dieldrin	13.3330	11.1117 83	65-125 2.0 30
4,4´-DDE	13.3330	10.6035 80	70-125 0 30
Endrin	13.3330	11.0170 83	60-135 0 30
Endosulfan II	13.3330	12.9773 97	35-140 3.0 30
4,4´-DDD	13.3330	10.3179 77	30-135 3.0 30
Endosulfan sulfate	13.3330	11.0660 83	60-135 7.0 30
4,4´-DDT	13.3330	10.3874 78	45-140 3.0 30
Methoxychlor	66.6670	46.3269 69	55-145 1.0 30
Endrin ketone	13.3330	10.1626 76	65-135 3.0 30
Endrin aldehyde	13.3330	10.8674 82	35-145 2.0 30
alpha-Chlordane	6.6670	5.9219 89	65-120 2.0 30
gamma-Chlordane	6.6670	5.7490 86	65-125 2.0 30

# Column to be used to flag recovery values with an asterisk

* Values outside of QC limits

LCS	Recovery:	0	out o	of 40	outside	limits
	RPD:	0	out o	of 40	outside	limits

COMMENTS:			

## 4E - FORM IV PEST PESTICIDE METHOD BLANK SUMMARY

EPA SAMPLE NO.

MB-79500

Lab Name: SPECTRUM	ANALYTICAL, INC.	Contract:	
Lab Code: MITKEM	Case No.: N1895	Mod. Ref No.:	SDG No.: SN1895
Lab File ID: E6B	3525F.D / E6B3525R.D	Lab Sample ID: MB-	-79500
Matrix: (SOIL/SED/WA	TER) WATER Extraction:	(Type) SEPF Da	ate Extracted: 10/15/2014
Sulfur Cleanup: (Y/N	1) A	GPC Cleanup:(Y/N)	N
Date Analyzed (1):	10/17/2014	Date Analyzed (2):	10/17/2014
Time Analyzed (1):	16:31	Time Analyzed (2):	16:31
Instrument ID (1):	E6	Instrument ID (2):	E6
GC Column(1): CLPP	est ID: 0.53 (mm)	GC Column(2): CLPP	PestII ID: 0.53 (mm)

	EPA	LAB	DATE	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED (1)	ANALYZED (2)
01	LCS-79500	LCS-79500	10/17/2014	10/17/2014
02	LCSD-79500	LCSD-79500	10/17/2014	10/17/2014
03	USSW 100814	N1895-01D	10/17/2014	10/17/2014
04	DSSW 100814	N1895-03D	10/17/2014	10/17/2014

COMMENTS:			

## 4E - FORM IV PEST PESTICIDE METHOD BLANK SUMMARY

EPA SAMPLE NO.

MB-79563

Lab Name: SPECTRUM	ANALYTICAL, INC.	Contract:	
Lab Code: MITKEM	Case No.: N1895	Mod. Ref No.:	SDG No.: SN1895
Lab File ID: E6E	33574F.D / E6B3574R.D	Lab Sample ID: MB-	-79563
Matrix: (SOIL/SED/W	ATER) SOIL Extraction:	(Type) SONC Da	ate Extracted: 10/18/2014
Sulfur Cleanup: (Y/	N) Y	GPC Cleanup:(Y/N)	N
Date Analyzed (1):	10/20/2014	Date Analyzed (2):	10/20/2014
Time Analyzed (1):	16:48	Time Analyzed (2):	16:48
<pre>Instrument ID (1):</pre>	E6	Instrument ID (2):	E6
GC Column(1): CLPF	Pest ID: 0.53 (mm)	GC Column(2): CLPF	PestII ID: 0.53 (mm)

	EPA	LAB	DATE	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED (1)	ANALYZED (2)
01	LCS-79563	LCS-79563	10/20/2014	10/20/2014
02	LCSD-79563	LCSD-79563	10/20/2014	10/20/2014
03	USSED 100814	N1895-02D	10/20/2014	10/20/2014
04	DSSED 100814	N1895-04D	10/20/2014	10/20/2014

COMMENTS:		



* PCB Organics *

#### REPORT NARRATIVE

Spectrum Analytical, Inc. Featuring Hanibal Technology, RI Division.

Client: AECOM Technical Services, Inc.

**Project: Tuxedo Waste Disposal** 

Laboratory Workorder / SDG #: N1895

SW846 8082A, PCB by GC-ECD

#### I. SAMPLE RECEIPT

No exceptions or unusual conditions were encountered unless a Sample Condition Notification Form, or other record of communication is included with the Sample Receipt Documentation.

#### II. HOLDING TIMES

#### A. Sample Preparation:

All samples were prepared within the method-specified holding times.

### B. Sample Analysis:

All samples were analyzed within the method-specified holding times.

#### III. METHODS

Samples were analyzed following procedures in laboratory test code: SW846 8082A

#### IV. PREPARATION

Aqueous Samples were prepared following procedures in laboratory test

code: SW3510C

Soil Samples were prepared following procedures in laboratory test

code: SW3550B

#### V. INSTRUMENTATION

The following instrumentation was used

Instrument Code: E2

Instrument Type: GC-ECD

N1895 Page 122 of 214

Description: HP5890 II +

Manufacturer: Hewlett-Packard

Model: 5890

GC Column used: 30 m X 0.53 mm ID [0.50 um thickness] CLPPest

capillary column.

GC Column used: 30 m X 0.53 mm ID [0.42 um thickness] CLPPestII

capillary column.

#### VI. ANALYSIS

#### A. Calibration:

Calibrations met the method/SOP acceptance criteria.

#### B. Blanks:

All method blanks were within the acceptance criteria.

#### C. Surrogates:

Surrogate standard percent recoveries were within the QC limits with the following exceptions. Please note that the acceptance criteria allow one surrogate recovery outside of the QC limits per fraction.

USSED 100814 (N1895-02D), recovery is above criteria for Decachlorobiphenyl on rear column at 172% with criteria of (60-125), recovery is below criteria for Decachlorobiphenyl on front column at 45% with criteria of (60-125).

#### D. Spikes:

#### 1. Laboratory Control Spikes (LCS):

Percent recoveries for lab control samples were within the QC limits.

#### 2. Matrix Spike / Matrix Spike Duplicate (MS/MSD):

No client-requested MS/MSD analyses were included in this SDG.

#### E. Dilutions:

No sample in this SDG required analysis at dilution.

#### F. Samples:

The lower concentration between the primary and confirmatory GC

N1895 Page 123 of 214

column concentrations is reported due to the presence of interferences unless otherwise indicated. P flags are assigned to compounds when D% between the two columns are greater than 40%.

No other unusual occurrences were noted during sample analysis.

#### G. Manual Integration

Where needed, manual integrations were performed to improve data quality. The corrections were reviewed and associated hardcopies generated and reported as required. Manual integrations are coded to provide the data reviewer justification for such action. The codes are labeled on the ion chromatogram signal (GC/MS signal) and chromatogram for GC based analysis as follows:

- · M1 peak tailing or fronting
- · M2 peak co-elution
- · M3 rising or falling baseline
- · M4 retention time shift
- · M5 miscellaneous under this category, the justification is explained
- · M6 software did not integrate peak
- · M7 partial peak integration

The following samples were manually integrated:

AR12426J2 Aroclor-1242 on front column due to M3

AR12482J2 Aroclor-1248 on front column due to M3

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Spectrum, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

N1895 Page 124 of 214

Signed:	
oignicu	

Date:_____10/22/2014_____

N1895 Page 125 of 214



# SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

### Data Flag/Qualifiers (Page 1 of 2):

- U Not Detected. This compound was analyzed-for but not detected. For most analyses the reporting limit (lowest standard concentration) is the value listed. For Department of Defense programs, this is the Limit of Detection (LOD).
- J This flag indicates an estimated value due to either
  - the compound was detected below the reporting limit, or
  - estimated concentration for Tentatively Identified Compound
- B This flag indicates the compound was also detected in the associated Method Blank. The B flag has an alternative meaning for Inorganics analyses reported using CLP ILM-type metals forms, indicating a "trace" concentration below the reporting limit and equal to or above the detection limit.
- D For Organics analysis, this flag indicates the compound concentration was obtained from a secondary dilution analysis
- E This flag indicates the compound concentration exceeded the Calibration Range. The E flag has an alternative meaning for Inorganics analyses reported using CLP metals forms, indicating an estimated concentration due to the presence of interferences, as determined by the serial dilution analysis.
- P This flag is used for pesticides/PCB/herbicide compound when there is a greater than 40% difference for detected concentration between the two GC columns used for primary and confirmation analyses. This difference typically indicates interference, causing one value to be unusually high. The **lower** of the two values is generally reported on the Form 1, and both values reported on the Form 10.
- A Used to flag semivolatile organic Tentatively Identified Compound library search results for compounds identified as an aldol condensation by-product.



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

## Data Flag/Qualifiers (Page 2 of 2):

- N Used to flag results for volatile and semivolatile Organics analysis Tentatively Identified Compounds where an analyte has passed the identification criteria, and is considered to be positively identified. For Inorganics analysis the N flag indicates the matrix spike recovery falls outside of the control limit.
- * For Inorganics analysis the * flag indicates Relative Percent Difference for duplicate analyses is outside of the control limit.
- L NYSDEC qualifier: Result is biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.



## **Sample ID Suffixes**

- DL Diluted analysis. The sample was diluted and reanalyzed. The DL may be followed by a digit if more than one diluted reanalysis is provided. The DL suffix is not attached to an analysis initially performed at dilution, only to reanalyses performed at dilution
- RE Reanalysis. Appended to the client sample ID to indicate a reextraction and reanalysis or a reanalysis of the original sample extract.
- RA Reanalysis. Appended to the laboratory sample ID indicates a reanalysis of the original sample extract.
- RX Reextraction. Appended to the laboratory sample ID indicates a reextraction of the sample.
- MS Matrix Spike.
- MSD Matrix Spike Duplicate
- DUP Duplicate analysis
- SD Serial Dilution
- PS Post-digestion or Post-distillation spike. For metals or inorganic analyses

EPA SAMPLE NO.
MB-79501

Lab Name: SPECTRUM	ANALYTICAL, INC.	Contract:	
Lab Code: MITKEM	Case No.: N1895	Mod. Ref No.:	SDG No.: SN1895
Matrix: (SOIL/SED/W.	ATER) WATER	Lab Sample ID:	MB-79501
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	E2N3129F.D/E2N3129R.D
% Moisture:	Decanted: (Y/N)	Date Received:	
Extraction: (Type)	SEPF	Date Extracted:	10/15/2014
Concentrated Extrac	t Volume:10000 (uL)	Date Analyzed:	10/17/2014
Injection Volume:	1.0 (uL) GPC Factor: 1.00	Dilution Factor:	1.0
GPC Cleanup:(Y/N)	N pH:	Sulfur Cleanup:	(Y/N) <u>Y</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q
12674-11-2	Aroclor-1016	1.0	U
11104-28-2	Aroclor-1221	1.0	U
11141-16-5	Aroclor-1232	1.0	U
53469-21-9	Aroclor-1242	1.0	U
12672-29-6	Aroclor-1248	1.0	U
11097-69-1	Aroclor-1254	1.0	U
11096-82-5	Aroclor-1260	1.0	U

EPA SAMPLE NO.
USSW 100814

NALYTICAL, INC.	Contract:	
Case No.: N1895	Mod. Ref No.:	SDG No.: SN1895
'ER) WATER	Lab Sample ID:	N1895-01D
1000 (g/mL) ML	Lab File ID:	E2N3132F.D/E2N3132R.D
Decanted: (Y/N)	Date Received:	10/09/2014
SEPF	Date Extracted:	10/15/2014
Volume: 10000 (uL)	Date Analyzed:	10/17/2014
0 (uL) GPC Factor: 1.00	Dilution Factor:	1.0
рн:	Sulfur Cleanup:	(Y/N) Y
	Case No.: N1895  ER) WATER  1000 (g/mL) ML  Decanted: (Y/N)  SEPF  Volume: 10000 (uL)  .0 (uL) GPC Factor: 1.00	Case No.: N1895 Mod. Ref No.:  ER) WATER Lab Sample ID:  1000 (g/mL) ML Lab File ID:  Decanted: (Y/N) Date Received:  SEPF Date Extracted:  Volume: 10000 (uL) Date Analyzed:  .0 (uL) GPC Factor: 1.00 Dilution Factor:

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q
12674-11-2	Aroclor-1016	1.0	U
11104-28-2	Aroclor-1221	1.0	U
11141-16-5	Aroclor-1232	1.0	U
53469-21-9	Aroclor-1242	1.0	U
12672-29-6	Aroclor-1248	1.0	U
11097-69-1	Aroclor-1254	1.0	U
11096-82-5	Aroclor-1260	1.0	U

DSSW 100814

Lab Name: SPECTRUM A	ANALYTICAL, INC.	Contract:	
Lab Code: MITKEM	Case No.: <u>N1895</u>	Mod. Ref No.:	SDG No.: SN1895
Matrix: (SOIL/SED/WA	TER) WATER	Lab Sample ID:	N1895-03D
Sample wt/vol:	1000 (g/mL) <u>ML</u>	Lab File ID:	E2N3133F.D/E2N3133R.D
% Moisture:	Decanted: (Y/N)	Date Received:	10/09/2014
Extraction: (Type)	SEPF	Date Extracted:	10/15/2014
Concentrated Extract	Volume:10000 (uL)	Date Analyzed:	10/17/2014
Injection Volume:	1.0 (uL) GPC Factor: 1.00	Dilution Factor:	1.0
GPC Cleanup:(Y/N) N	рН:	Sulfur Cleanup:	(Y/N) Y

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q
12674-11-2	Aroclor-1016	1.0	U
11104-28-2	Aroclor-1221	1.0	U
11141-16-5	Aroclor-1232	1.0	U
53469-21-9	Aroclor-1242	1.0	U
12672-29-6	Aroclor-1248	1.0	U
11097-69-1	Aroclor-1254	1.0	U
11096-82-5	Aroclor-1260	1.0	U

EPA SAMPLE NO.
LCS-79501(1)

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:	
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: _SN1895	
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: LCS-79501	
Sample wt/vol:1000 (g/mL) ML	Lab File ID: E2N3130F.D	
% Moisture: Decanted: (Y/N)	Date Received:	
Extraction: (Type) SEPF	Date Extracted: 10/15/2014	
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 10/17/2014	
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Dilution Factor: 1.0	
GPC Cleanup:(Y/N) N pH:	Sulfur Cleanup: (Y/N) Y	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q
12674-11-2	Aroclor-1016	4.8	
11104-28-2	Aroclor-1221	1.0	U
11141-16-5	Aroclor-1232	1.0	U
53469-21-9	Aroclor-1242	1.0	U
12672-29-6	Aroclor-1248	1.0	U
11097-69-1	Aroclor-1254	1.0	U
11096-82-5	Aroclor-1260	4.5	

EPA SAMPLE NO.
LCS-79501(2)

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: LCS-79501
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: E2N3130R.D
% Moisture: Decanted: (Y/N)	Date Received:
Extraction: (Type) SEPF	Date Extracted: 10/15/2014
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 10/17/2014
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Dilution Factor: 1.0
GPC Cleanup:(Y/N) N pH:	Sulfur Cleanup: (Y/N) Y
Acid Cleanup:(Y/N) Y	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q
12674-11-2	Aroclor-1016	4.6	
11104-28-2	Aroclor-1221	1.0	U
11141-16-5	Aroclor-1232	1.0	U
53469-21-9	Aroclor-1242	1.0	U
12672-29-6	Aroclor-1248	1.0	U
11097-69-1	Aroclor-1254	1.0	U
11096-82-5	Aroclor-1260	4.5	

EPA	SAMPLE	NO.
LCS	D-79501	(1)

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: LCSD-79501
Sample wt/vol:1000 (g/mL) ML	Lab File ID: E2N3131F.D
% Moisture: Decanted: (Y/N)	Date Received:
Extraction: (Type) SEPF	Date Extracted: 10/15/2014
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 10/17/2014
Injection Volume: (uL) GPC Factor: 1.00	Dilution Factor: 1.0
GPC Cleanup:(Y/N) N pH:	Sulfur Cleanup: (Y/N) Y
Acid Cleanup:(Y/N) Y	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q
12674-11-2	Aroclor-1016	4.8	
11104-28-2	Aroclor-1221	1.0	U
11141-16-5	Aroclor-1232	1.0	U
53469-21-9	Aroclor-1242	1.0	U
12672-29-6	Aroclor-1248	1.0	U
11097-69-1	Aroclor-1254	1.0	U
11096-82-5	Aroclor-1260	4.6	

EPA	SAMPLE	NO.
LCS	D-79501	(2)

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: LCSD-79501
Sample wt/vol:1000 (g/mL) ML	Lab File ID: E2N3131R.D
% Moisture: Decanted: (Y/N)	Date Received:
Extraction: (Type) SEPF	Date Extracted: 10/15/2014
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 10/17/2014
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Dilution Factor: 1.0
GPC Cleanup:(Y/N) N pH:	Sulfur Cleanup: (Y/N) Y
Acid Cleanup:(Y/N) Y	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q
12674-11-2	Aroclor-1016	4.7	
11104-28-2	Aroclor-1221	1.0	U
11141-16-5	Aroclor-1232	1.0	U
53469-21-9	Aroclor-1242	1.0	U
12672-29-6	Aroclor-1248	1.0	U
11097-69-1	Aroclor-1254	1.0	U
11096-82-5	Aroclor-1260	4.6	

EPA SAMPLE NO.
MB-79564

Lab Name: SPECTRUM	ANALYTICAL, INC.	Contract:	
Lab Code: MITKEM	Case No.: N1895	Mod. Ref No.:	SDG No.: SN1895
Matrix: (SOIL/SED/W	JATER) SOIL	Lab Sample ID:	MB-79564
Sample wt/vol:	30.0 (g/mL) G	Lab File ID:	E2N3146F.D/E2N3146R.D
% Moisture:	Decanted: (Y/N)	Date Received:	
Extraction: (Type)	SONC	Date Extracted:	10/18/2014
Concentrated Extrac	t Volume: 10000 (uL)	Date Analyzed:	10/20/2014
Injection Volume: _	1.0 (uL) GPC Factor: 1.00	Dilution Factor:	1.0
GPC Cleanup:(Y/N)	<u>м</u> рн:	Sulfur Cleanup:	(Y/N) <u>Y</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Q
12674-11-2	Aroclor-1016	33	U
11104-28-2	Aroclor-1221	33	U
11141-16-5	Aroclor-1232	33	U
53469-21-9	Aroclor-1242	33	U
12672-29-6	Aroclor-1248	33	U
11097-69-1	Aroclor-1254	33	U
11096-82-5	Aroclor-1260	33	U

EPA SAMPLE NO.

USSED 100814

Lab Name: SPECIRUM ANALYTICAL, INC.	Contract.	
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.:	SDG No.: SN1895
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID:	N1895-02D
Sample wt/vol:30.4 (g/mL) G	Lab File ID:	E2N3149F.D/E2N3149R.D
% Moisture: Decanted: (Y/N) N	Date Received:	10/09/2014
Extraction: (Type) SONC	Date Extracted:	10/18/2014
Concentrated Extract Volume: 10000 (uL)	Date Analyzed:	10/20/2014
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Dilution Factor:	1.0

Sulfur Cleanup: (Y/N) Y

Acid Cleanup:(Y/N) Y

GPC Cleanup:(Y/N) N pH:

	<u></u>	CONCENTRATION UNITS:	1
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
12674-11-2	Aroclor-1016	45	U
11104-28-2	Aroclor-1221	45	U
11141-16-5	Aroclor-1232	45	U
53469-21-9	Aroclor-1242	45	U
12672-29-6	Aroclor-1248	45	U
11097-69-1	Aroclor-1254	45	U
11096-82-5	Aroclor-1260	45	U

DSSED 100814

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:	
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.:	SDG No.: SN1895
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID:	N1895-04D
Sample wt/vol:30.4 (g/mL) G	Lab File ID:	E2N3150F.D/E2N3150R.D
% Moisture: 48 Decanted: (Y/N) N	Date Received:	10/09/2014
Extraction: (Type) SONC	Date Extracted:	10/18/2014
Concentrated Extract Volume:10000 (ul	) Date Analyzed:	10/20/2014
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Dilution Factor:	1.0
GPC Cleanup:(Y/N) N pH:	Sulfur Cleanup:	(Y/N) Y

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Q
12674-11-2	Aroclor-1016	63	U
11104-28-2	Aroclor-1221	63	U
11141-16-5	Aroclor-1232	63	U
53469-21-9	Aroclor-1242	63	U
12672-29-6	Aroclor-1248	63	U
11097-69-1	Aroclor-1254	63	U
11096-82-5	Aroclor-1260	63	U

EPA SAMPLE NO.
LCS-79564(1)

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.: SDG No.: SN1895
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID: LCS-79564
Sample wt/vol:30 (g/mL) G	Lab File ID: E2N3147F.D
% Moisture: Decanted: (Y/N)	Date Received:
Extraction: (Type) SONC	Date Extracted: 10/18/2014
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 10/20/2014
Injection Volume:1.0 (uL) GPC Factor:1.00	Dilution Factor: 1.0
GPC Cleanup:(Y/N) N pH:	Sulfur Cleanup: (Y/N) Y

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Q
12674-11-2	Aroclor-1016	130	
11104-28-2	Aroclor-1221	33	U
11141-16-5	Aroclor-1232	33	U
53469-21-9	Aroclor-1242	33	U
12672-29-6	Aroclor-1248	33	U
11097-69-1	Aroclor-1254	33	U
11096-82-5	Aroclor-1260	150	

EPA SAMPLE NO. LCS-79564(2)

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:	
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.:	SDG No.: SN1895
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID: LO	CS-79564
Sample wt/vol:30 (g/mL) G	Lab File ID: E2	2N3147R.D
% Moisture: Decanted: (Y/N)	Date Received:	
Extraction: (Type) SONC	Date Extracted: 10	)/18/2014
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 10	)/20/2014
Injection Volume:1.0 (uL) GPC Factor:1.00	Dilution Factor:	1.0
GPC Cleanup:(Y/N) N pH:	Sulfur Cleanup: (Y,	/N) Y
Acid Cleanup:(Y/N) Y		

CAS NO.		CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Q	
12674-11-2	Aroclor-1016	140		Ì
11104-28-2	Aroclor-1221	33	U	İ
11141-16-5	Aroclor-1232	33	U	

53469-21-9 Aroclor-1242 33 12672-29-6 Aroclor-1248 33 U 11097-69-1 Aroclor-1254 33 U 11096-82-5 Aroclor-1260 160

EPA	SAMPLE	NO.
LCS	D-79564	(1)

Lab Name: SPECTRUM ANALYTICAL, INC.	Contract:	
Lab Code: MITKEM Case No.: N1895	Mod. Ref No.:	SDG No.: SN1895
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID:	LCSD-79564
Sample wt/vol: 30 (g/mL) G	Lab File ID:	E2N3148F.D
% Moisture: Decanted: (Y/N)	Date Received:	
Extraction: (Type) SONC	Date Extracted:	10/18/2014
Concentrated Extract Volume: 10000 (uL)	Date Analyzed:	10/20/2014
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Dilution Factor:	1.0
GPC Cleanup:(Y/N) N pH:	Sulfur Cleanup:	(Y/N) <u>Y</u>
Acid Cleanup:(Y/N) Y		

			1 1
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Q
12674-11-2	Aroclor-1016	140	
11104-28-2	Aroclor-1221	33	U
11141-16-5	Aroclor-1232	33	U
53469-21-9	Aroclor-1242	33	U
12672-29-6	Aroclor-1248	33	U
11097-69-1	Aroclor-1254	33	U
11096-82-5	Aroclor-1260	140	

EPA	SAMPLE	NO.
LCS	D-79564	(2)

Lab Name: SPECTRUM AND	ALYTICAL, INC.	Contract:	
Lab Code: MITKEM	Case No.: N1895	Mod. Ref No.:	SDG No.: SN1895
Matrix: (SOIL/SED/WATE	R) SOIL	Lab Sample ID:	LCSD-79564
Sample wt/vol:	30 (g/mL) G	Lab File ID:	E2N3148R.D
% Moisture:	Decanted: (Y/N)	Date Received:	
Extraction: (Type) SC	NC	Date Extracted:	10/18/2014
Concentrated Extract V	olume:10000 (uL)	Date Analyzed:	10/20/2014
Injection Volume: 1.	0 (uL) GPC Factor: 1.00	Dilution Factor:	1.0
GPC Cleanup:(Y/N) N	pH:	Sulfur Cleanup:	(Y/N) <u>Y</u>

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Q
12674-11-2	Aroclor-1016	160	
11104-28-2	Aroclor-1221	33	U
11141-16-5	Aroclor-1232	33	U
53469-21-9	Aroclor-1242	33	U
12672-29-6	Aroclor-1248	33	U
11097-69-1	Aroclor-1254	33	U
11096-82-5	Aroclor-1260	150	

#### 2Q - FORM II ARO-1

#### WATER AROCLOR SURROGATE RECOVERY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

GC Column(1): CLPPest ID: 0.53 (mm) GC Column(2): CLPPestII ID: 0.53 (mm)

	EPA	TCX 1	TCX 2	DCB 1	DCB 2	OTHER	OTHER	TOT
	SAMPLE NO.	%REC #	%REC #	%REC #	%REC #	(1)	(2)	OUT
01	MB-79501	111	121	113	103			0
02	LCS-79501	106	116	114	103			0
03	LCSD-79501	105	116	114	104			0
04	USSW 100814	104	116	111	105			0
05	DSSW 100814	101	114	107	103			0

QC LIMITS

(34-137)

TCX = Tetrachloro-m-xylene
DCB = Decachlorobiphenyl

(40-135)

# Column to be used to flag recovery values

- * Values outside of QC limits
- D Surrogate diluted out

som14.10.02.1616

Page 1 of 1 SW846

N1895 Page 143 of 214

#### 2R - FORM II ARO-2

#### SOIL AROCLOR SURROGATE RECOVERY

Lab Name: SPECTRUM ANALYTICAL, INC. Contract:

GC Column(1): CLPPest ID: 0.53 (mm) GC Column(2): CLPPestII ID: 0.53 (mm)

	EPA	TCX 1	TCX 2	DCB 1	DCB 2	OTHER	OTHER	TOT
	SAMPLE NO.	%REC #	%REC #	%REC #	%REC #	(1)	(2)	OUT
01	MB-79564	104	114	112	100			0
02	LCS-79564	89	95	118	107			0
03	LCSD-79564	105	115	111	103			0
04	USSED 100814	146	126	45 *	172 *			2
05	DSSED 100814	84	98	82	93			0

QC LIMITS

(34-147)

TCX = Tetrachloro-m-xylene
DCB = Decachlorobiphenyl

(60-125)

# Column to be used to flag recovery values

- * Values outside of QC limits
- D Surrogate diluted out

som14.10.02.1616

Page 1 of 1 SW846

N1895 Page 144 of 214

# 3N - FORM III ARO-3 WATER AROCLOR LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

LCS-79501

	011111111111111111111111111111111111111	00 / 2111				
Lab Name: SPECTRUM ANALYTICAL	, INC. C	Contract:				
Lab Code: MITKEM Case N	o.: N1895 M	Mod. Ref No.:		G No.: SN189	5	
Lab Sample ID: LCS-79501	L	LCS Lot No.: a094177				
Date Extracted: 10/15/2014		ate Analyzed (1):	10/17/20	14		
Instrument ID (1): E2		C Column(1): CLPF	Pest	ID: 0.53	( mm )	
COMPOUND	AMOUNT ADDED	AMOUNT RECOVERED	%REC #	QC LIMITS		
	(UG/L)	(UG/L)				
Aroclor-1016	4.0000	4.7532	119	25-145		
Aroclor-1260	4.0000	4.5292	113	30-145		
Instrument ID (2): E2		C Column(2): CLPF	PestII	ID: 0.53	( mm )	
Date Analyzed (2): 10/17/2014	<u> </u>					
COMPOUND	AMOUNT ADDED	AMOUNT RECOVERED	%REC #	QC LIMITS		
	(UG/L)	(UG/L)				
Aroclor-1016	4.0000	4.6159	115	25-145		
Aroclor-1260	4.0000	4.4805	112	30-145		
# Column to be used to flag re	covery values with	ı an asterisk				
* Values outside of QC limits	-					
I GG Demonstration of	4 outside limit:	_				
LCS Recovery: 0 out of	—— 4 OULSIGE IIMIL!	S.				

COMMENTS:

# 3N - FORM III ARO-3 WATER AROCLOR LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

LCSD-79501

NALYTICAL, INC.		Contract:	:					
Case No.: N18	395	Mod. Ref	No.:		SDG	No.:	SN189	5
-79501		LCS Lot N	10.:	a	094177			
5/2014		Date Anal	Lyzed	(1):	10/17/201	4		
2		GC Column	n(1):	CLI	PPest	ID:	0.53	( mm )
AMOUNT ADDED			%REC	#	QC LIMITS	%RPD	# RPD	LIMIT
4.0000		4.7983	120		25-145	1.0		30
4.0000		4.6054	115		30-145	2.0		30
2		GC Column	n(2):	CLI	PPestII	ID:	0.53	( mm )
0/17/2014								
AMOUNT ADDED (UG/L)			%REC	#	QC LIMITS	%RPD	# RPD	LIMIT
4.0000		4.7365	118		25-145	3.0		30
4.0000		4.6170	115		30-145	3.0		30
ut of4 out								
	Case No.: N18 -79501  5/2014  2  AMOUNT ADDED (UG/L) 4.0000 4.0000  2  0/17/2014  AMOUNT ADDED (UG/L) 4.0000 4.0000 4.0000 5 flag recovery Climits ut of 4 out	Case No.: N1895 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501 -79501	Case No.: N1895 Mod. Ref  -79501 LCS Lot N  6/2014 Date Anal  2 GC Column  AMOUNT ADDED AMOUNT RECOVERED (UG/L) (UG/L)  4.0000 4.7983  4.0000 4.6054  2 GC Column  0/17/2014  AMOUNT ADDED AMOUNT RECOVERED (UG/L) (UG/L)  4.0000 4.7365  4.0000 4.7365  4.0000 4.7365  4.0000 4.6170  of flag recovery values with an asternation of the column o	Case No.: N1895	Case No.: N1895	Case No.:       N1895       Mod. Ref No.:       SDG         -79501       LCS Lot No.:       a094177         5/2014       Date Analyzed (1):       10/17/2014         2       GC Column(1):       CLPPest         AMOUNT ADDED (UG/L)       AMOUNT RECOVERED (UG/L)       %REC # QC LIMITS (UG/L)         4.0000       4.7983 120 25-145 30-145         4.0000       4.6054 115 30-145         2       GC Column(2):       CLPPestII         0/17/2014         AMOUNT ADDED (UG/L)       AMOUNT RECOVERED %REC # QC LIMITS (UG/L)         4.0000 4.7365 118 25-145 4.0000 4.6170 115 30-145         5 flag recovery values with an asterisk climits         5 ut of 4 outside limits.	Case No.: N1895	Case No.: N1895

#### 3P - FORM III ARO-4 SOIL AROCLOR LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO. LCS-79564

Lab Name: SPECTRUM ANALYTICAL	, INC. C	ontract:			
Lab Code: MITKEM Case N	o.: <u>N1895</u> M	od. Ref No.:		SDG No.: SN189	5
Lab Sample ID: LCS-79564	L	CS Lot No.: a0	94177		
Date Extracted: 10/18/2014	D	ate Analyzed (1):	10/20/	2014	
Instrument ID (1): E2	G	C Column(1): CLP	Pest	ID: 0.53	( mm )
COMPOUND	AMOUNT ADDED	AMOUNT RECOVERED (UG/KG)	%REC	# QC LIMITS	
Aroclor-1016	133.3330	127.6052	96	40-140	
Aroclor-1260	133.3330	148.3241	111	60-130	
Instrument ID (2): E2	G	C Column(2): CLPI	PestII	ID: 0.53	( mm )
Date Analyzed (2): 10/20/2014	1				
COMPOUND	AMOUNT ADDED	AMOUNT RECOVERED (UG/KG)	%REC	# QC LIMITS	
Aroclor-1016	133.3330	139.0881	104	40-140	
Aroclor-1260	133.3330	157.9070	118	60-130	

*	Values	outside	of	OC	limits
---	--------	---------	----	----	--------

LCS	Recovery	<i>7</i> : 0	)	out	of	4	outside	limits.

COMMENTS:		
-		

# 3P - FORM III ARO-4 SOIL AROCLOR LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

LCSD-79564

Lab Name: SPECTRUM ANALYTICAL, INC.			Contract	:				
Lab Code: MITKEM	Case No.: N18	395	Mod. Ref	No.:		SDG	No.: S	N1895
Lab Sample ID: LCSD-7	79564		LCS Lot 1	No.:	a	094177		
Date Extracted: 10/18/	2014		Date Ana	lyzed	(1):	10/20/2014	1	
Instrument ID (1): E2			GC Column	n(1):	CLI	PPest	ID: 0	).53 (mm)
COMPOUND	AMOUNT ADDED (UG/KG)		ECOVERED /KG)	%REC	#	QC LIMITS	%RPD #	RPD LIMIT
Aroclor-1016	133.3330		135.0245	101		40-140	5.0	30
Aroclor-1260	133.3330		142.0217	107		60-130	4.0	30
Instrument ID (2): E2		_	GC Column	n(2):	CLI	PPestII	ID: 0	).53 (mm)
Date Analyzed (2): 10	/20/2014							
COMPOUND	AMOUNT ADDED (UG/KG)		ECOVERED /KG)	%REC	#	QC LIMITS	%RPD #	RPD LIMIT
Aroclor-1016	133.3330		156.6715	118		40-140	13	30
Aroclor-1260	133.3330		152.1576	114		60-130	3.0	30
* Values outside of QC  LCS Recovery:0 ou  RPD:0 ou  COMMENTS:	t of4 out	side lim						

# 4F - FORM IV ARO AROCLOR METHOD BLANK SUMMARY

EPA SAMPLE NO.

MB-79501

Contract:
Mod. Ref No.: SDG No.: SN1895
Lab Sample ID: MB-79501
(Type) SEPF Date Extracted: 10/15/2014
GPC Cleanup:(Y/N) N
_
Date Analyzed (2): 10/17/2014
Time Analyzed (2): 12:38
Instrument ID (2): E2
GC Column(2): CLPPestII ID: 0.53 (mm)

	EPA	LAB	DATE	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED (1)	ANALYZED (2)
01	LCS-79501	LCS-79501	10/17/2014	10/17/2014
02	LCSD-79501	LCSD-79501	10/17/2014	10/17/2014
03	USSW 100814	N1895-01D	10/17/2014	10/17/2014
04	DSSW 100814	N1895-03D	10/17/2014	10/17/2014

COMMENTS:	

som14.10.02.1616 Page 1 of 1

SW846

# 4F - FORM IV ARO AROCLOR METHOD BLANK SUMMARY

EPA SAMPLE NO.

MB-79564

Lab Name: SPECTRUM	ANALYTICAL, INC.	Contract:	
Lab Code: MITKEM	Case No.: N1895	Mod. Ref No.:	SDG No.: SN1895
Lab File ID: E2N	3146F.D / E2N3146R.D	Lab Sample ID: MB	-79564
Matrix: (SOIL/SED/WA	TER) SOIL Extraction:	(Type) SONC D	ate Extracted: 10/18/2014
Sulfur Cleanup: (Y/N	Y	GPC Cleanup:(Y/N)	N
Acid Cleanup: (Y/N	Y		
Date Analyzed (1):	10/20/2014	Date Analyzed (2):	10/20/2014
Time Analyzed (1):	11:38	Time Analyzed (2):	11:38
Instrument ID (1):	E2	<pre>Instrument ID (2):</pre>	E2
GC Column(1): CLPPe	est ID: 0.53 (mm)	GC Column(2): CLPF	PestII ID: 0.53 (mm)

	EPA	LAB	DATE	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED (1)	ANALYZED (2)
01	LCS-79564	LCS-79564	10/20/2014	10/20/2014
02	LCSD-79564	LCSD-79564	10/20/2014	10/20/2014
03	USSED 100814	N1895-02D	10/20/2014	10/20/2014
04	DSSED 100814	N1895-04D	10/20/2014	10/20/2014

COMMENTS:		



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

* Metals *

#### REPORT NARRATIVE

Spectrum Analytical, Inc. Featuring Hanibal Technology, RI Division.

Client: AECOM Technical Services, Inc.

**Project: Tuxedo Waste Disposal** 

Laboratory Workorder / SDG #: N1895

SW846 6010C, SW846 7470A, SW846 7471B

#### I. SAMPLE RECEIPT

No exceptions or unusual conditions were encountered unless a Sample Condition Notification Form, or other record of communication is included with the Sample Receipt Documentation.

#### II. HOLDING TIMES

#### A. Sample Preparation:

All samples were prepared within the method-specified holding times.

#### B. Sample Analysis:

All samples were analyzed within the method-specified holding times.

#### III. METHODS

Samples were analyzed following procedures in laboratory test codes: SW846 6010C, SW846 7470A, SW846 7471B

#### IV. PREPARATION

Aqueous Samples were prepared following procedures in laboratory test

code: SW3005A

Aqueous Samples were prepared following procedures in laboratory test

code: SW7470A

Soil Samples were prepared following procedures in laboratory test

code: SW3050B

Soil Samples were prepared following procedures in laboratory test

code: SW7471B

N1895 Page 152 of 214

#### V. INSTRUMENTATION

The following instrumentation was used:

Instrument Code: FIMS2 Instrument Type: CVAA Description: FIMS

Manufacturer: Perkin-Elmer

Model: FIMS100

Instrument Code: OPTIMA3

Instrument Type: ICP

Description: Optima ICP-OES Manufacturer: Perkin-Elmer

Model: 4300 DV

#### VI. ANALYSIS

#### A. Calibration:

Calibrations met the method/SOP acceptance criteria.

#### B. Blanks:

All method blanks were within the acceptance criteria.

#### C. Spikes:

#### 1. Laboratory Control Spikes (LCS):

Percent recoveries for laboratory control samples were within the QC limits.

#### 2. Matrix spike (MS):

A matrix spike was not performed on any sample in this SDG.

#### D. Post Digestion Spike (PDS):

A post-digestion spike was not performed on any sample in this SDG.

#### E. Duplicate sample:

A duplicate analysis was not performed on any sample in this SDG.

### F. Serial Dilution (SD):

N1895 Page 153 of 214

A serial dilution was not performed on any sample in this SDG.

#### G. Samples:

No other unusual occurrences were noted during sample analysis.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Spectrum, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

Shann B Lan le

Signed:

Date: 10/28/2014

N1895 Page 154 of 214



# SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

### Data Flag/Qualifiers (Page 1 of 2):

- U Not Detected. This compound was analyzed-for but not detected. For most analyses the reporting limit (lowest standard concentration) is the value listed. For Department of Defense programs, this is the Limit of Detection (LOD).
- J This flag indicates an estimated value due to either
  - the compound was detected below the reporting limit, or
  - estimated concentration for Tentatively Identified Compound
- B This flag indicates the compound was also detected in the associated Method Blank. The B flag has an alternative meaning for Inorganics analyses reported using CLP ILM-type metals forms, indicating a "trace" concentration below the reporting limit and equal to or above the detection limit.
- D For Organics analysis, this flag indicates the compound concentration was obtained from a secondary dilution analysis
- E This flag indicates the compound concentration exceeded the Calibration Range. The E flag has an alternative meaning for Inorganics analyses reported using CLP metals forms, indicating an estimated concentration due to the presence of interferences, as determined by the serial dilution analysis.
- P This flag is used for pesticides/PCB/herbicide compound when there is a greater than 40% difference for detected concentration between the two GC columns used for primary and confirmation analyses. This difference typically indicates interference, causing one value to be unusually high. The **lower** of the two values is generally reported on the Form 1, and both values reported on the Form 10.
- A Used to flag semivolatile organic Tentatively Identified Compound library search results for compounds identified as an aldol condensation by-product.



SPECTRUM ANALYTICAL, INC.
Featuring
HANIBAL TECHNOLOGY

## Data Flag/Qualifiers (Page 2 of 2):

- N Used to flag results for volatile and semivolatile Organics analysis Tentatively Identified Compounds where an analyte has passed the identification criteria, and is considered to be positively identified. For Inorganics analysis the N flag indicates the matrix spike recovery falls outside of the control limit.
- * For Inorganics analysis the * flag indicates Relative Percent Difference for duplicate analyses is outside of the control limit.
- L NYSDEC qualifier: Result is biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.



## **Sample ID Suffixes**

- DL Diluted analysis. The sample was diluted and reanalyzed. The DL may be followed by a digit if more than one diluted reanalysis is provided. The DL suffix is not attached to an analysis initially performed at dilution, only to reanalyses performed at dilution
- RE Reanalysis. Appended to the client sample ID to indicate a reextraction and reanalysis or a reanalysis of the original sample extract.
- RA Reanalysis. Appended to the laboratory sample ID indicates a reanalysis of the original sample extract.
- RX Reextraction. Appended to the laboratory sample ID indicates a reextraction of the sample.
- MS Matrix Spike.
- MSD Matrix Spike Duplicate
- DUP Duplicate analysis
- SD Serial Dilution
- PS Post-digestion or Post-distillation spike. For metals or inorganic analyses

# U.S.EPA - CLP COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Lab Name	e: Spectrum Anal	lytical, Inc.	Contract:	60323116.3		
Lab Code	e: MITKEM	Case No.:	SAS No.:		SDG No.:	SN1895
SOW No.	: SW846				_	
		- EPA Sample No.		Lab Sample	ID	
		DSSED 100814		N1895-04		
		DSSW 100814 MW-4 100814		N1895-03 N1895-05		
		USSED 100814 USSW 100814		N1895-02 N1895-01		
		<u> </u>		111093 01		
Were ICE	P interelement c	orrections applied?	Ye	es/No	Yes	
Were bac	ckground correct	ions applied?	Ye	es/No	Yes	
		ata generated before	77	/ > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / > / >	NT-	
		ckground corrections?	Ye	es/No	No	
Comments	3 <b>:</b>					
		a package is in compliand				
		echnically and for comple above. Release of the				n+ a
		outer-readable data submit				ica
		catory Manager or the Mana	ager's desig	gnee, as ver	ified by	
the fol	lowing signature	M. A. S. Sunda				
Signatu	re:	Sharyn & Lawler	Name: Sh	aryn B. Lawle	r	
Date:	10/28/14		Title: QA	AD		
ilm14.04.17.1043		COVER PAGE -	IN		SW846	

N1895 Page 158 of 214

1

EPA SAMPLE NO.

# INORGANIC ANALYSIS DATA SHEET

Lab	Name:	Spectrum	Analytical,	Inc.	Contract:	60323116.3
цар	name.	Spectrum	Analytical,	1110.	Concract.	00323110.3

Lab Name: Spectrum Analytical, Inc. Contract: 60323116.3

Lab Code: MITKEM Case No.: SAS No.: SDG No.: SN1895

Matrix (soil/water): SOIL Lab Sample ID: N1895-04

Level (low/med): MED Date Received: 10/09/2014

% Solids: 51.6

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	_	8130	)	×	P
7440-36-0	Antimony	0.53	В		P
7440-38-2	Arsenic	6.1			P
7440-39-3	Barium	52.8			P
7440-41-7	Beryllium	0.66			P
7440-43-9	Cadmium	0.036	В		P
7440-70-2	Calcium	2440			P
7440-47-3	Chromium	12.6			P
7440-48-4	Cobalt	7.1			P
7440-50-8	Copper	34.4			P
7439-89-6	Iron	15700			P
7439-92-1	Lead	42.0			P
7439-95-4	Magnesium	2800			P
7439-96-5	Manganese	200			P
7439-97-6	Mercury	0.40			CV
7440-02-0	Nickel	13.5			P
7440-09-7	Potassium	452			P
7782-49-2	Selenium	1.3	В		P
7440-22-4	Silver	0.20	В		P
7440-23-5	Sodium	246			P
7440-28-0	Thallium	0.23	U		Р
7440-62-2	Vanadium	16.8			P
7440-66-6	Zinc	94.3			P

Commen	its:			
<del>-</del>				
-				

-1

EPA SAMPLE NO.

# INORGANIC ANALYSIS DATA SHEET

DDDW 100014		DSSW	100814
-------------	--	------	--------

Lab N	ame: S	Spectrum	Analytical,	Inc.	Contract:	60323116.3
Lab IV	anc.	PCCCLun	miary crear,	1110.	COILCEACC	00023110.3

Matrix (soil/water): WATER Lab Sample ID: N1895-03

Level (low/med): MED Date Received: 10/09/2014

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	115	В		P
7440-36-0	Antimony	9.3	U		Р
7440-38-2	Arsenic	4.3	U		P
7440-39-3	Barium	21.9	В		Р
7440-41-7	Beryllium	0.26	U		P
7440-43-9	Cadmium	0.89	U		Р
7440-70-2	Calcium	50400			Р
7440-47-3	Chromium	1.0	В		P
7440-48-4	Cobalt	0.67	U		Р
7440-50-8	Copper	6.0	В		Р
7439-89-6	Iron	229			Р
7439-92-1	Lead	4.2	U		Р
7439-95-4	Magnesium	16000			Р
7439-96-5	Manganese	81.8			Р
7439-97-6	Mercury	0.028	U		CV
7440-02-0	Nickel	2.1	В		P
7440-09-7	Potassium	8740			Р
7782-49-2	Selenium	12.0	U		Р
7440-22-4	Silver	6.9	U		Р
7440-23-5	Sodium	130000			P
7440-28-0	Thallium	6.2	U		P
7440-62-2	Vanadium	1.1	U		P
7440-66-6	Zinc	19.2	В		Р

Commen	nts:			
-				

EPA SAMPLE NO.

# INORGANIC ANALYSIS DATA SHEET

.w I IOOOII	4 – WΡ	100814
-------------	--------	--------

Lab	Name:	Spectrum	Analytical,	Inc.	Contract:	60323116.3
цар	name.	Spectrum	Analytical,	1110.	Concract.	00323110.3

SDG No.: SN1895 Lab Code: MITKEM Case No.: SAS No.:

Lab Sample ID: N1895-05 Matrix (soil/water): WATER

Date Received: 10/09/2014 Level (low/med): MED

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	М
				Q	
7429-90-5 A		3090			Р
7440-36-0 A	Antimony	9.3	U		P
7440-38-2A	Arsenic	4.3	U		P
7440-39-3 E	Barium	48.4	В		P
7440-41-7E	Beryllium	0.26	U		P
7440-43-9	Cadmium	0.89	U		P
7440-70-20	Calcium	55100			P
7440-47-3	Chromium	3.9	В		P
7440-48-40	Cobalt	5.2	В		P
7440-50-80	Copper	15.3	В		P
7439-89-6 I	Iron	4980			P
7439-92-1L	Lead	4.2	U		P
7439-95-4 M	Magnesium	13300			Р
7439-96-5 M	Manganese	1310			P
7439-97-6 M	Mercury	0.062	В		CV
7440-02-0 N	Nickel	6.1	В		P
7440-09-7 F	Potassium	2880			P
7782-49-2S	Selenium	12.0	U		P
7440-22-48	Silver	6.9	U		Р
7440-23-5 S	Sodium	39900			P
7440-28-01	Thallium	6.2	U		P
7440-62-2V	/anadium	7.6	В		Р
7440-66-6 Z	Zinc	17.2	В		Р

Commen	ils.		
-			
-			

1

EPA SAMPLE NO.

# INORGANIC ANALYSIS DATA SHEET

Lab Name: Spectrum Analytical, Inc	. Contract: 60323116.3
------------------------------------	------------------------

Matrix (soil/water): SOIL Lab Sample ID: N1895-02

Level (low/med): MED Date Received: 10/09/2014

% Solids: 71.9

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	5670			P
7440-36-0	Antimony	0.33	В		P
7440-38-2	Arsenic	3.0			P
7440-39-3	Barium	21.0			P
7440-41-7	Beryllium	0.39			P
7440-43-9	Cadmium	0.035	В		P
7440-70-2	Calcium	2060			P
7440-47-3	Chromium	8.8			P
7440-48-4	Cobalt	6.1			P
7440-50-8	Copper	18.2			P
7439-89-6	Iron	13100			P
7439-92-1	Lead	40.9			P
7439-95-4	Magnesium	2330			P
7439-96-5	Manganese	109			P
7439-97-6	Mercury	0.24			CV
7440-02-0	Nickel	9.6			P
7440-09-7	Potassium	368			P
7782-49-2	Selenium	1.3			P
7440-22-4	Silver	0.10	В		P
7440-23-5	Sodium	105			P
7440-28-0	Thallium	0.25	В		P
7440-62-2	Vanadium	11.9			P
7440-66-6	Zinc	78.5			P

Commen	nts:			
-				

1

EPA SAMPLE NO.

# INORGANIC ANALYSIS DATA SHEET

USSW 1	00	81	4
--------	----	----	---

Lab	Name:	Spectrum	Analytical,	Inc.	Contract:	60323116.3
цар	name.	Spectrum	Analytical,	1110.	Concract.	00323110.3

Lab Name: Spectrum Analytical, inc. Contract: 60323116.3

Lab Code: MITKEM Case No.: SAS No.: SDG No.: SN1895

Matrix (soil/water): WATER Lab Sample ID: N1895-01

Level (low/med): MED Date Received: 10/09/2014

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	191	В		P
7440-36-0	Antimony	9.3	U		P
7440-38-2	Arsenic	4.3	U		P
7440-39-3	Barium	23.3	В		P
7440-41-7	Beryllium	0.26	U		Р
7440-43-9	Cadmium	0.89	U		Р
7440-70-2	Calcium	51600			Р
7440-47-3	Chromium	1.2	В		Р
7440-48-4	Cobalt	0.67	U		P
7440-50-8	Copper	6.3	В		Р
7439-89-6	Iron	407			Р
7439-92-1	Lead	4.2	U		P
7439-95-4	Magnesium	16500			P
7439-96-5	Manganese	98.5			P
7439-97-6	Mercury	0.028	U		CV
7440-02-0	Nickel	2.1	В		Р
7440-09-7	Potassium	9380			P
7782-49-2	Selenium	12.0	U		Р
7440-22-4	Silver	6.9	U		P
7440-23-5	Sodium	138000			P
7440-28-0	Thallium	6.2	U		P
7440-62-2	Vanadium	1.2	В		P
7440-66-6	Zinc	18.3	В		Р

Collillen	ils.			
-				
_				

3

BLANKS

Lab Name:	b Name: Spectrum Analytical, Inc.		Contract:	60323116.3		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SN1895
Preparation	on Blank Mat		Method	Blank ID:		
Preparation	on Blank Con	centration Units (	ug/L or mg/kg): N	MG/KG	MB-795	82

FIMS2_141021A

	Initial									
	Calibration	ı	Continuing Calibration		Continuing Calibration Preparation		Preparation	1		
	Blank (ug/L	)	Blank (ug/L)		Blank					
Analyte		С	10/21/14 11:23	С	(	7	С		С	М
Mercury	0.028	U	0.028	U				0.012	В	CV

N1895 Page 164 of 214

3

BLANKS

Lab Name:	e: Spectrum Analytical, Inc.		Contract:	60323116.3		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SN1895
Preparation	on Blank Matrix		Method	Blank ID:		
Preparation	on Blank Concer	ntration Units (ug/	L or ma/ka): UC	G/L	MB-7958	31

 $\mathtt{FIMS2_14102} \overline{\mathtt{2A}}$ 

	Initial										
	Calibration	n	Co	Continuing Calibration				Preparation			
	Blank (ug/L	)		Blank (ug/L)				Blank			
Analyte		С	10/22/14 9:05	С		C	(	С		С	М
Mercury	0.028	U	0.028	U					0.028	U	CV

N1895 Page 165 of 214

3

BLANKS

Lab Name:	Spectrum A	nalytical, Inc.	Contract:	60323116.3		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SN1895
Preparatio	on Blank Ma	trix (soil/water):			Method	Blank ID:
Preparatio	on Blank Co	ncentration Units (ug	/L or mg/kg):		_	
			FIMS2_141022	С		

	Initial										
	Calibration	ı	Co	Continuing Calibration P					Preparation		
	Blank (ug/L	)		Blank (ug/L)				Blank			
Analyte		С	10/22/14 12:21	С		С		С		С	М
Mercury	0.028	U	0.028	U							CV

N1895 Page 166 of 214

3

BLANKS

Lab Name: Spectrum Analytical, Inc. Contract: 60323116.3	3
----------------------------------------------------------	---

Lab Code: MITKEM Case No.: SAS No.: SDG No.: SN1895

Preparation Blank Matrix (soil/water): WATER Met

Method Blank ID:
MB-79691

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

FIMS2_141024D

	Initial										
	Calibration	n	Co	Continuing Calibration P						n	
	Blank (ug/L	)		Blank (ug/L)				Blank			
Analyte		С	10/24/14 15:54	С	10/24/14 16:09	С		С		С	М
Mercury	0.028	U	0.028	U	0.028	U			0.028	U	CV

3

# BLANKS

Lab Name: Spectrum Analytical,	Inc.	Contract:	60323116.3
--------------------------------	------	-----------	------------

Lab Code: MITKEM Case No.: SAS No.: SDG No.: SN1895

Preparation Blank Matrix (soil/water): WATER

Method Blank ID:

Preparation Blank Concentration Units (ug/L or mg/kg): ug/L

MB-79544

# OPTIMA3_141018A

	Initial										
	Calibration	n	Co	ont	inuing Calib	ra	tion		Preparation	n	
	Blank (ug/L	)			Blank (ug/L	)			Blank		
Analyte		С	10/18/14 15:36	С	10/18/14 16:18	С	10/18/14 16:55	С		С	M
Aluminum	66.0	U	66.0	U	66.0	U	66.0	U	66.000	U	Р
Antimony	9.3	U	9.3	U	9.3	U	9.3	U	9.300	U	Р
Arsenic	4.3	U	4.3	U	4.3	U	4.5	В	4.300	U	P
Barium	2.4	В	3.9	В	3.2	В	3.5	В	1.100	U	Р
Beryllium	0.3	U	0.3	U	0.3	U	0.3	U	0.260	U	Р
Cadmium	0.9	U	0.9	U	0.9	U	0.9	U	0.890	U	P
Calcium	169.5	В	110.0	U	117.4	В	114.8	В	112.581	В	Р
Chromium	0.6	U	0.6	U	0.6	U	0.6	U	0.640	U	P
Cobalt	0.9	В	1.1	В	0.8	В	1.0	В	0.670	U	Р
Copper	3.6	U	3.6	U	3.6	U	3.6	U	3.600	U	P
Iron	31.0	U	31.0	U	31.0	U	31.0	U	31.000	U	Р
Lead	4.2	U	4.2	U	4.2	U	4.2	U	4.200	U	Р
Magnesium	76.0	U	76.0	U	76.0	U	76.0	U	76.000	U	Р
Manganese	10.0	U	10.0	U	10.0	U	10.0	U	10.000	U	Р
Nickel	0.9	U	1.0	В	0.8	U	1.1	В	0.850	U	P
Potassium	111.0	В	76.0	U	-348.0	В	-238.8	В	76.000	U	Р
Selenium	12.0	U	12.0	U	12.0	U	12.0	U	12.000	U	Р
Silver	6.9	U	6.9	U	6.9	U	6.9	U	6.900	U	P
Sodium	29.0	U	93.4	В	110.9	В	129.5	В	116.364	В	Р
Thallium	6.2	U	6.2	U	6.2	U	6.2	U	6.200	U	Р
Vanadium	1.1	U	1.1	U	1.1	U	1.3	В	1.100	U	Р
Zinc	4.9	U	4.9	U	4.9	U	4.9	U	4.900	U	P

3 BLANKS

Lab Name:	Name: Spectrum Analytical, Inc.		Contract:	60323116.3		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SN1895
Preparatio	n Blank Matrix	(soil/water):			Method	Blank ID:

Preparation Blank Concentration Units (ug/L or mg/kg):

# OPTIMA3_141018A

	Initial									
	Calibration	C	ont	inuing Calib	ra	tion		Preparation		
	Blank (ug/L)			Blank (ug/L	)			Blank		
Analyte	C	10/18/14 17:28	С		С	(	7.	(	C	М
Aluminum		66.0	U							P
Antimony		9.3	U							P
Arsenic		7.2	В							P
Barium		3.3	В							P
Beryllium		0.3	U							P
Cadmium		0.9	U							P
Calcium		153.1	В							P
Chromium		0.6	U							P
Cobalt		0.7	В							P
Copper		3.6	U							P
Iron		31.0	U							P
Lead		4.2	U							Р
Magnesium		76.0	U							Р
Manganese		10.0	U							P
Nickel		0.8	U							Р
Potassium		76.0	U							Р
Selenium		12.0	U							P
Silver		6.9	U							P
Sodium		128.5	В							P
Thallium		6.2	U							P
Vanadium		1.1	U							P
Zinc		4.9	U							P

3 BLANKS

Lah Name:	Spectrum	Analytical,	Tnc	Contract:	60323116.3
Lab Maille.	SPECLIUM	Analycical,	T11C .	concract:	00022110.0

Lab Code: MITKEM Case No.: SAS No.: SDG No.: SN1895

Preparation Blank Matrix (soil/water): SOIL Method Blank ID:

MB-79545

Preparation Blank Concentration Units (ug/L or mg/kg): MG/KG OPTIMA3_141020B

				<del></del>					
	Initial								
	Calibration	Co	ont	inuing Calib	ra	tion	Preparation	n	
	Blank (ug/L)			Blank (ug/L	)		Blank		
Analyte	(	C 10/20/14 13:33	С	10/20/14 14:14	С	C		С	М
Aluminum	66.0	J 66.0	U	66.0	U		1.295	В	P
Antimony	9.3	9.3	U	9.3	U		0.380	U	P
Arsenic	4.3	4.3	U	4.3	U		0.410	U	P
Barium	4.5	B 4.0	В	2.7	В		0.034	В	P
Beryllium	0.3	0.3	U	0.3	U		0.002	U	P
Cadmium	0.9	0.9	U	0.9	U		0.015	U	P
Calcium	110.0	110.0	U	110.0	U		6.100	U	P
Chromium	0.6	0.6	U	0.6	U		0.019	U	P
Cobalt	0.8	0.9	В	0.7	U		0.044	U	P
Copper	3.6	3.6	U	3.6	U		0.110	U	P
Iron	31.0	31.0	U	46.7	В		1.500	U	P
Lead	4.2	J 4.2	U	4.2	U		0.170	U	P
Magnesium	76.0	76.0	U	76.0	U		0.837	В	P
Manganese	10.0	10.0	U	10.0	U		0.130	U	P
Nickel	1.3	1.0	В	0.8	U		0.043	U	P
Potassium	76.0	76.0	U	76.0	U		3.400	U	P
Selenium	12.0	12.0	U	12.0	U		0.640	U	P
Silver	6.9	J 6.9	U	6.9	U		0.065	В	P
Sodium	29.0	29.0	U	29.0	U		1.100	U	P
Thallium	6.2	J 6.2	U	6.2	U		0.220	U	P
Vanadium	1.4	B 1.2	В	1.1	U		0.060	U	P
Zinc	4.9	J 4.9	U	4.9	U		0.180	U	P

7

Lab Name:	Spectrum Analy	ytical, Inc.	Contract:	60323116.3		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SN1895
Solid LCS	Source:				LCS(D) ID:	
Aqueous LO	CS Source:				LCS-79544	

	_	, ,-	,		6.3		/ \	
	_	eous (ug/L				id (mg/		
Analyte	True	Found	%R	True	Found	С	Limits	%R
Aluminum	9100.0	9787.97	107.6					
Antimony	455.0	479.73	105.4					
Arsenic	455.0	496.05	109.0					
Barium	9100.0	9817.10	107.9					
Beryllium	227.0	244.29	107.6					
Cadmium	227.0	245.52	108.2					
Calcium	22700.0	23931.47	105.4					
Chromium	910.0	988.38	108.6					
Cobalt	2270.0	2449.69	107.9					
Copper	1130.0	1218.25	107.8					
Iron	4550.0	5101.85	112.1					
Lead	455.0	484.10	106.4					
Magnesium	22700.0	24417.79	107.6					
Manganese	2270.0	2445.00	107.7					
Nickel	2270.0	2451.41	108.0					
Potassium	22700.0	24440.95	107.7					
Selenium	455.0	481.42	105.8					
Silver	1130.0	1256.90	111.2					
Sodium	22700.0	25183.21	110.9					
Thallium	455.0	449.74	98.8					
Vanadium	2270.0	2410.44	106.2					
Zinc	2270.0	2460.08	108.4					

7

Lab Name:	Spectrum A	nalytical, Inc.	Contract:	60323116.3		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SN1895
Solid LCS	Source:				LCS(D) ID:	
Aqueous L	CS Source:				LCS-79545	

	Aqu	eous (ug/I	١)		Solid	(mg/Kg)		
Analyte	True	Found	%R	True	Found (	C Lim:	its	%R
Aluminum				455.0	474.6	364	546.0	104.3
Antimony				22.8	24.3	18.2	27.3	106.6
Arsenic				22.8	25.1	18.2	27.3	110.1
Barium				455.0	483.6	364	546.0	106.3
Beryllium				11.4	11.7	9.1	13.6	102.6
Cadmium				11.4	12.5	9.1	13.6	109.6
Calcium				1135.0	1164.8	908	1362.0	102.6
Chromium				45.5	48.8	36.4	54.6	107.3
Cobalt				113.5	121.3	90.8	136.2	106.9
Copper				56.5	59.6	45.2	67.8	105.5
Iron				227.5	253.4	182	273.0	111.4
Lead				22.8	24.9	18.2	27.3	109.2
Magnesium				1135.0	1197.6	908	1362.0	105.5
Manganese				113.5	120.3	90.8	136.2	106.0
Nickel				113.5	121.0	90.8	136.2	106.6
Potassium				1135.0	1213.1	908	1362.0	106.9
Selenium				22.8	23.6	18.2	27.3	103.5
Silver				56.5	60.1	42.4	67.8	106.4
Sodium				1135.0	1207.8	908	1362.0	106.4
Thallium				22.8	22.8	18.2	27.3	100.0
Vanadium				113.5	118.0	90.8	136.2	104.0
Zinc				113.5	119.7	90.8	136.2	105.5

7

Lab Name:	Spectrum Ana	lytical, Inc.	Contract:	60323116.3		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SN1895
Solid LCS	Source:				LCS(D) ID:	
Aqueous LO	CS Source:				LCS-79581	

	Aque	eous (ug/L	1)					
Analyte	True	Found	%R	True	Found	С	Limits	%R
Mercury	4.6	4.58	99.6					

7

Lab Name:	Spectrum A	nalytical, Inc.	Contract:	60323116.3		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SN1895
Solid LCS	Source:				LCS(D) ID:	
Aqueous LO	CS Source:				LCS-79582	

	Aque	eous (ug/l	.')		Solid	(mg/Kg)		
Analyte	True	Found	%R	True	Found (	C Lim	its	%R
Mercury				0.8	0.8	0.6	0.9	100.0

7

Lab Name:	Spectrum A	nalytical, Inc.	Contract:	60323116.3		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SN1895
Solid LCS	Source:				LCS(D) ID:	
Aqueous LO	CS Source:				LCS-79691	

	Aque	ous (ug/L	)		Soli	ld (1	mg/Kg)	
Analyte	True	Found	%R	True	Found	С	Limits	%R
Mercury	4.6	4.52	98.3					

7

Lab Name:	Spectrum Analy	ytical, Inc.	Contract:	60323116.3		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SN1895
Solid LCS	Source:				LCS(D) ID:	
Aqueous LO	CS Source:				LCSD-79544	

	Aque	eous (ug/I	٦)	Solid (mg/Kg)					
Analyte	True	Found	%R	True	Found	С	Limits	%R	
Aluminum	9100.0	9671.70	106.3						
Antimony	455.0	472.62	103.9						
Arsenic	455.0	490.15	107.7						
Barium	9100.0	9732.49	107.0						
Beryllium	227.0	241.44	106.4						
Cadmium	227.0	240.48	105.9						
Calcium	22700.0	23506.67	103.6						
Chromium	910.0	961.07	105.6						
Cobalt	2270.0	2379.93	104.8						
Copper	1130.0	1206.19	106.7						
Iron	4550.0	4968.61	109.2						
Lead	455.0	477.92	105.0						
Magnesium	22700.0	24168.20	106.5						
Manganese	2270.0	2417.15	106.5						
Nickel	2270.0	2379.49	104.8						
Potassium	22700.0	24115.14	106.2						
Selenium	455.0	475.45	104.5						
Silver	1130.0	1242.78	110.0						
Sodium	22700.0	24378.92	107.4						
Thallium	455.0	442.44	97.2						
Vanadium	2270.0	2382.29	104.9						
Zinc	2270.0	2380.73	104.9						
					1				

7

Lab Name:	Spectrum Analy	tical, Inc.	Contract:	60323116.3		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SN1895
Solid LCS	Source:				LCS(D) ID:	
Aqueous LC	S Source:		<u>—</u>		LCSD-79581	

	Aque	ous (ug/L	1)		Soli	ld (	mg/Kg)	
Analyte	True	Found	%R	True	Found	С	Limits	%R
Mercury	4.6	4.04	87.8					

7

Lab Name:	Spectrum A	nalytical, Inc.	Contract:	60323116.3		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SN1895
Solid LCS	Source:				LCS(D) ID:	
Aqueous LO	CS Source:				LCSD-79691	

	Aque	eous (ug/L	)		Soli	.d (	mg/Kg)	
Analyte	True	Found	%R	True	Found	С	Limits	%R
Mercury	4.6	4.43	96.3					



* Wet Chemistry *



# SPECTRUM ANALYTICAL, INC. Featuring Hanibal Technology

# **Quality Assurance/Quality Control Data Deliverable ASP-A**

# **Prepared for**

Spectrum Analytical, Inc. - North Kingstown, RI

Project/Number: Tuxedo Waste Disposal / N1895

Work Order: SB98348

SDG# 98348

Submitted on October 20th, 2014

N1895 Page 180 of 214



# **Table of Contents**

Laboratory Name: Spectrum Analytical, Inc. featuring Hanibal Technology

City/Sate: Agawam, MA

Client Name: Spectrum Analytical, Inc. - North Kingstown, RI

**Project Name/Number:** Tuxedo Waste Disposal / N1895

**SDG#:** 98348

**Associated Work Orders: SB98348** 

	Pag	ge Nos.
	From	То
1. Cover Page		
2. Table of Contents		
3. General Narrative	1	2
4. Sample Analytical Summary	3	3
5. Sample Transmittal Documentation	4	8
6. Lloyd Kahn	9	9
6.1 Cross Reference Table	10	10
6.2 Analysis Narrative	11	12
6.3 Sample Summaries	13	15
6.4 QC Summaries	16	25
6.5 Calibration Summaries	26	30
7. Notes and Definitions	31	31
8. Last Page of Data Report	32	32

N1895 Page 181 of 214





# SPECTRUM ANALYTICAL, INC. Featuring Hanibal Technology

Spectrum Analytical, Inc. - North Kingstown, RI

Client Project: Tuxedo Waste Disposal

Project Number: N1895 Spectrum Analytical, Inc. Project ID: SB98348

10/21/2014

Prepared for: Spectrum Analytical, Inc. - North Kingstown, RI

646 Camp Ave.

North Kingstown, RI 02852

Attn: Agnes Huntley

Prepared By: Spectrum Analytical, Inc.

830 Silver Street

Agawam, MA 01001

(800)789-9115

# **SDG98348**

# SB98348 General Narrative

Spectrum Analytical, Inc. submits the enclosed data package for the site characterization of Tuxedo Waste Disposal. Samples submitted for analysis by Spectrum Analytical, Inc. - North Kingstown, RI. Under this deliverable, analysis results are presented for two Soil samples submitted on October 20th, 2014.

The analyses were performed according to USEPA SW846 method analytical guidelines and other methods. In addition the analyses were performed according to criteria dictated by National Environmental Laboratory Accreditation Conference (NELAC) and in accordance with project contract requirements and chain of custody forms.

Observations and/or deviations observed for specific analyses can be found in the analysis narrative:

# 1. Overall Observations:

Where needed, manual integrations were performed to improve data quality. The corrections were reviewed and associated hardcopies generated and reported as required. Manual Integrations are coded to provide the data reviewer justification for such action. The codes are labeled on corresponding raw data for GC/MS and GC analysis as follows:

- · M1 peak tailing or fronting
- · M2 peak co-elution
- · M3 rising or failing baseline
- · M4 retention time shift
- · M5 miscellaneous under this category, the justification is explained
- · M6 software did not integrate peak
- · M7 partial peak integration

The enclosed report includes the originals of all data with the exception of logbook pages and certain initial calibrations. Scanned copies of logbook pages are included, with the originals are archived within the laboratory.

The pages in this report have been numbered consecutively, starting with the general narrative and ending with the page labeled as "Last Page of data Report".

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this electronic data package, has been authorized by the laboratory director as verified by the following signature.

Nicole Leja

**Laboratory Director** 

Micole Leja

N1895 Page 183 of 214

Date:

10/21/2014

# Sample Identification and Analytical Requirements Summary

Project Name: Tuxedo Waste Disposal SDG: SB98348

Customer	Laboratory		An	alytical Requireme	ents	
Sample ID	Laboratory Sample ID	VOC Method #	SVOC Method #	GC Method #	Metals	Other
USSED 100814	SB98348-01					Lloyd Kahn
DSSED 100814	SB98348-02					Lloyd Kahn

N1895 SDG 98348 Page 3 / 32



# SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

# **Sample Transmittal Documentation**

NPECTRUM ANALYTICAL, INC. HANIBAL TECHNOLOGY

# CHAIN-OF-CUSTODY RECORD

WorkOrder: N1895

Project: Tuxedo Waste Disposal

Report Type: ASP-A

Requested Test

Due Date: 10/21/2014

FAX Due Date : Report To: Agnes R Huntley

Purchase Order: N1895

EDD Types: Please generate a

EQuISFacilityCode: N/A

Client Sample ID

DSSED 100814 USSED 100814

10/08/2014 12:50 10/08/2014 11:40

Soil

Soil

Collection Date

# Matrix

Phone: (413) 789-9018

Agawam, Massachusetts 01001

11 Almgren Drive

Spectrum Analytical, Inc. - Agawam, MA

Subcontractor:

DUP/MS/MSD Mitkem Sample ID

# = number of containers

N1895-04E N1895-02E

1) LK_TOC_S, TOTAL ORGANIC CARBON BY COMBUSTION

Comments: Level 2 not needed, just the ASP-A

Date/Time

Use 'Client Sample IDs' when reporting data. If needed, truncate 'Client Sample IDs' to fit on reports. Use full 'Client Sample ID' when generating EDD.

646 Camp Ave * North Kingstown * RI * 028524008 # 401-732-3400 * 401-732-3499 www.spectrum-analytical.com

Received by: Received by:

0

17.15 Page 1 of 1 10/20/2014

Date/Time

Relinquished by: Relinquished by:

08/0/08/RU

N1895 SDG 98348 Page 5 / 32

(650)

SANGE GOODE Page 186 of 214

# SB98348

# Spectrum Analytical, Inc. - Agawam, MA

Report To:

Spectrum Analytical, Inc. - North Kingstown, RI

Agnes Huntley 646 Camp Ave.

North Kingstown, RI 02852 Phone: (401) 732-3400

Fax: (401) 732-3499

Project #:

Project:

N1895

Tuxedo Waste Disposal

Date Due:

21-Oct-14 17:00-

Received By:

Jessica Hoffman,

Date Received: Temperature:

20-Oct-14 16:50,

0.8°C /

PO #:

N1895

Containers Intact

Properly Labeled

✓ COC/Labels Agree

Received On Ice

Recd within hold time

Air-tight containers (Encore device)

Refrigerated

DW Field QC

Frozen vials

Frozen soil jars

State EDD

✓ COC present

Custody seal present

Custody seal intact

COC complete

Lab ID	Client ID	Sampled	Lab Matrix / Report Matrix	Containers
SB98348-01	USSED 100814	08-Oct-14 11:40	Soil/Sediment / Soil	A - 2 oz. jar
SB98348-02	DSSED 100814,	08-Oct-14 12:50	Soil/Sediment / Soil	A - 2 oz. jar

Printed: 10/20/2014 5:59:24PM

SB98348

# Spectrum Analytical, Inc. - Agawam, MA

Analysis		Due	TAT	Comments	
SB98348-01	USSED 100814				
wc-TOC	- Lloyd Kahn	21-Oct-14 15:00	1	ASP-A	
SB98348-02	DSSED 100814				
we-TOC-	- Lloyd Kahn	***	H	Á	
	1				

Page 2 of 2

# SPECTRUM ANALYTICAL, INC.

# SAMPLE INTEGRITY FORM

Sample ID			Prese	rvative	Added				Notes
	Initial pH	Sample split	50% HCl - Element # 14E0016	50% H2SO4 - Element # 14E1332	50% NaOH - Element # 13B0204	Final pH	Chlorinated? (Y/N)	10% Na2S2O3 - Element # 14C0156	Work Order No.  SB98348  Solid samples for VOC analyses: Submitted in SA provided CH30H/DI/NaHS04 vials Submitted in CH30H/DI/NaHS04, not SA Not submitted in CH30H/DI/NaHS04

N1895 SDG 98348 Page 8 / 32 Page 189 of 214



# SPECTRUM ANALYTICAL, INC. Featuring Hanibal Technology

Lloyd Kahn

# **CROSS REFERENCE TABLE**

# Lloyd Kahn

Laboratory: Spectrum Analytical, Inc. - Agawam, MA SDG: 98348

Client: Spectrum Analytical, Inc. - North Kingstown, RI Project: Tuxedo Waste Disposal

Project Number: N1895

Client Sample ID: Lab Sample ID:

<u>USSED 100814</u> <u>SB98348-01</u> <u>DSSED 100814</u> <u>SB98348-02</u>

N1895 SDG 98348 Page 10 / 32 Page 191 of 214

# **CASE NARRATIVE**

# Spectrum Analytical, Inc. Lab Reference No. SB98348

Client: Spectrum Analytical, Inc. - North Kingstown, RI

Project: Tuxedo Waste Disposal / N1895

SDG #: 98348

### I. RECEIPT

No exceptions were encountered unless a Sample Receipt Exception or a communication form is included in the addendum with this package.

### II. HOLDING TIMES

All samples were prepared and analyzed within the method-specific holding time.

# III. METHODS

Analyses were performed according to Lloyd Kahn.

# IV. PREPARATION

Soil/Sediment samples were prepared according to General Preparation.

## V. INSTRUMENTATION

The following equipment was used to analyze Lloyd Kahn:

TOC2 details: Teledyne Tekmar Apollo 9000 / TOC Boat Sampler Model 183

# VI. ANALYSIS

#### A. Calibration:

All quality control samples were within the acceptance criteria.

#### **B.** Blanks:

All blanks were within the acceptance criteria.

# C. Spikes:

# 1. Laboratory Control Samples (LCS):

All method criteria were met.

# 2. Matrix Spike / Matrix Spike Duplicate Samples (MS/MSD):

No matrix spike or matrix spike duplicates were analyzed.

## 3. Reference:

All method criteria were met.

# **D. Duplicates:**

A duplicate was analyzed.

In batch 1424839 from source sample DSSED 100814 (SB98348-02).

All method criteria were met with the following exceptions:

Total Organic Carbon in batch 1424839, sample 1424839-DUP1 from source sample DSSED 100814 (SB98348-02): This flag indicates the concentration for this analyte is an estimated value due to exceeding the calibration range or interferences resulting in a biased final concentration.

# E. Samples:

All method criteria were met with the following exceptions:

Total Organic Carbon in batch 1424839, sample DSSED 100814 (SB98348-02): This flag indicates the concentration for this analyte is an estimated value due to exceeding the calibration range or interferences resulting in a biased final concentration.

Total Organic Carbon in batch 1424839, sample DSSED 100814 (SB98348-02): This sample was analyzed in quadruplicate. The % RSD is 5.709929%.

TOC Estimate Qualifier Clarification Case Narrative:

Please note, specific TOC values within this work order are flagged as estimated. The TOC value is initially measured in ug (microgram) of carbon but converts to ppm in the instrument software program. The initial ug of carbon reading fell within the midrange of the calibration curve of the instrumentation; however, the limited sample weight used elevated the ppm value above the maximum value listed in Element. As a result, the sample value is not over the calibration range of the instrument and was not reanalyzed.

N1895 Page 193 of 214



# SPECTRUM ANALYTICAL, INC. Featuring Hanibal Technology

Lloyd Kahn

**Sample Summaries** 

## FORM I - INORGANIC ANALYSIS DATA SHEET Lloyd Kahn

USSED 100814

Laboratory: Spectrum Analytical, Inc. - Agawam, MA SDG: 98348

Client: Spectrum Analytical, Inc. - North Kingstown, RI Project: Tuxedo Waste Disposal

Project Number: <u>N1895</u> Received: <u>10/20/14 16:50</u>

Matrix: Soil Laboratory ID: SB98348-01 File ID: 10211107

Sampled: <u>10/08/14 11:40</u> Prepared: <u>10/21/14 10:00</u> Analyzed: <u>10/21/14 11:36</u>

% Solids: Preparation: <u>General Preparation</u> Initial/Final: <u>10 g / 10 ml</u>

Batch: <u>1424839</u> Sequence: <u>S411974</u> Calibration: <u>1407011</u>

Instrument:  $\underline{TOC2}$ Reported to:  $\underline{MRL}$ 

CAS NO.	Analyte	Result (mg/kg)	Dilution Factor	MDL	MRL	Q
NA	Total Organic Carbon	22300	1	44.9	1000	

## FORM I - INORGANIC ANALYSIS DATA SHEET Lloyd Kahn

**DSSED 100814** 

Laboratory: Spectrum Analytical, Inc. - Agawam, MA SDG: 98348

Client: Spectrum Analytical, Inc. - North Kingstown, RI Project: Tuxedo Waste Disposal

Project Number: <u>N1895</u> Received: <u>10/20/14 16:50</u>

Matrix: Soil Laboratory ID: SB98348-02 File ID: 10211210

Sampled: <u>10/08/14 12:50</u> Prepared: <u>10/21/14 10:00</u> Analyzed: <u>10/21/14 12:27</u>

% Solids: Preparation: <u>General Preparation</u> Initial/Final: <u>10 g / 10 ml</u>

Batch: <u>1424839</u> Sequence: <u>S411974</u> Calibration: <u>1407011</u>

Instrument:  $\underline{TOC2}$ Reported to:  $\underline{MRL}$ 

CAS NO.	Analyte	Result (mg/kg)	Dilution Factor	MDL	MRL	Q
NA	Total Organic Carbon	125000	1	44.9	1000	Е



# SPECTRUM ANALYTICAL, INC. Featuring Hanibal Technology

Lloyd Kahn

**QC** Summaries

#### FORM IIa - INITIAL AND CONTINUING CALIBRATION CHECK

#### Lloyd Kahn

Laboratory: Spectrum Analytical, Inc. - Agawam, MA SDG: 98348

Client: Spectrum Analytical, Inc. - North Kingstown, RI Project: Tuxedo Waste Disposal

Instrument ID: TOC2 Calibration: 1407011

Sequence: <u>S411974</u>

Lab Sample ID	Analyte	True	Found	%R	QC Limits	Units	Method
1424839-CCV1	Total Organic Carbon	8000	7610	95	85 - 115	mg/kg	Lloyd Kahn
1424839-CCV2	Total Organic Carbon	8000	8210	103	85 - 115	mg/kg	Lloyd Kahn
1424839-CCV3	Total Organic Carbon	8000	7890	99	85 - 115	mg/kg	Lloyd Kahn

^{*} Values outside of QC limits

N1895 SDG 98348 Page 17 / 32

#### FORM IIa - INITIAL AND CONTINUING CALIBRATION CHECK

#### Lloyd Kahn

Laboratory: Spectrum Analytical, Inc. - Agawam, MA

Client: Spectrum Analytical, Inc. - North Kingstown, RI Project: Tuxedo Waste Disposal

Instrument ID: TOC2 Calibration: 1407011

Sequence: <u>S407572</u>

SDG: 98348

Lab Sample ID	Analyte	True	Found	%R	QC Limits	Units	Method
S407572-ICV1	Total Organic Carbon	8000	8590	107	85 - 115	mg/kg	Lloyd Kahn

^{*} Values outside of QC limits

N1895 SDG 98348 Page 18 / 32

## FORM III - BLANKS Lloyd Kahn

Laboratory: Spectrum Analytical, Inc. - Agawam, MA SDG: 98348

Client: Spectrum Analytical, Inc. - North Kingstown, RI Project: Tuxedo Waste Disposal

Instrument ID: TOC2 Calibration: 1407011

Sequence: S411974 Matrix: Soil/Sediment

Lab Sample ID	Analyte	Found	MRL	Units	С	Method
1424839-CCB1	Total Organic Carbon	496.6179	100	mg/kg		Lloyd Kahn
1424839-BLK1	Total Organic Carbon	55.0	1000	mg/kg	J	Lloyd Kahn
1424839-CCB2	Total Organic Carbon	214.6522	100	mg/kg		Lloyd Kahn
1424839-CCB3	Total Organic Carbon	611.4197	100	mg/kg		Lloyd Kahn

N1895 Page 200 of 214

## FORM III - BLANKS Lloyd Kahn

Laboratory: Spectrum Analytical, Inc. - Agawam, MA SDG: 98348

Client: Spectrum Analytical, Inc. - North Kingstown, RI Project: Tuxedo Waste Disposal

Instrument ID: TOC2 Calibration: 1407011

Sequence: S407572 Matrix: Soil/Sediment

Lab Sample ID	Analyte	Found	MRL	Units	C	Method
S407572-ICB1	Total Organic Carbon	131.394	100	mg/kg		Lloyd Kahn

N1895 Page 201 of 214

## FORM IIIa - LCS / LCS DUPLICATE RECOVERY

#### Lloyd Kahn

Laboratory: Spectrum Analytical, Inc. - Agawam, MA SDG: 98348

Client: Spectrum Analytical, Inc. - North Kingstown, RI Project: Tuxedo Waste Disposal

Matrix: Soil/Sediment Instrument: TOC2

Batch: <u>1424839</u> Laboratory ID: <u>1424839-BS1</u>

Preparation: General Preparation Initial/Final: 10 g / 10 ml

<u>10/21/14 10:59</u> Spike ID: 14G0275

File ID: <u>10211054</u>

	SPIKE ADDED	LCS CONCENTRATION	LCS %	QC LIMITS
COMPOUND	(mg/kg)	(mg/kg)	REC. #	REC.
Total Organic Carbon	8000	7480	93	75 - 125

[#] Column to be used to flag recovery and RPD values with an asterisk

Analyzed:

Individual peaks for multi-component analytes are indicated by a number in parentheses

N1895 SDG 98348 Page 21 / 32

^{*} Values outside of QC limits

#### FORM IIIc - DUPLICATES

#### Lloyd Kahn

Laboratory: Spectrum Analytical, Inc. - Agawam, MA SDG: 98348

Client: Spectrum Analytical, Inc. - North Kingstown, RI Project: Tuxedo Waste Disposal

Matrix: Soil/Sediment Laboratory ID: 1424839-DUP1

Batch: <u>1424839</u> Lab Source ID: <u>SB98348-02</u>

Preparation: General Preparation Initial/Final: 10 g / 10 ml

Source Sample Name: <u>DSSED 100814</u> % Solids:

File ID: <u>10211229</u>

ANALYTE	CONTROL LIMIT	SAMPLE CONCENTRATION (mg/kg)	С	DUPLICATE CONCENTRATION (mg/kg)	С	RPD %	Q	метнор
Total Organic Carbon	20	125000		115000		8		Lloyd Kahn

^{*} Values outside of QC limits

Individual peaks for multi-component analytes are indicated by a number in parentheses

# FORM VIII(Organics)/FORM XIII(Inorganics) ANALYSIS BATCH (SEQUENCE) SUMMARY

Lloyd Kahn

Laboratory: Spectrum Analytical, Inc. - Agawam, MA SDG: 98348

Client: Spectrum Analytical, Inc. - North Kingstown, RI Project: Tuxedo Waste Disposal

Sequence: <u>S411974</u> Instrument: <u>TOC2</u>

Calibration: <u>1407011</u>

Sample Name	Lab Sample ID	Lab File ID	Analyzed
Calibration Check	1424839-CCV1	10211032	10/21/14 10:37
Calibration Blank	1424839-CCB1	10211042	10/21/14 10:45
Blank	1424839-BLK1	10211048	10/21/14 10:51
LCS	1424839-BS1	10211054	10/21/14 10:59
Reference	1424839-SRM1	10211101	10/21/14 11:05
USSED 100814	SB98348-01	10211107	10/21/14 11:36
DSSED 100814	SB98348-02	10211210	10/21/14 12:27
DSSED 100814	1424839-DUP1	10211229	10/21/14 12:45
Calibration Check	1424839-CCV2	10211328	10/21/14 13:33
Calibration Blank	1424839-CCB2	10211334	10/21/14 13:40
Calibration Check	1424839-CCV3	10211356	10/21/14 14:03
Calibration Blank	1424839-CCB3	10211404	10/21/14 14:08

N1895 Page 204 of 214

## FORM VIII(Organics)/FORM XIII(Inorganics) ANALYSIS BATCH (SEQUENCE) SUMMARY

## Lloyd Kahn

Laboratory: Spectrum Analytical, Inc. - Agawam, MA SDG: 98348

Client: Spectrum Analytical, Inc. - North Kingstown, RI Project: Tuxedo Waste Disposal

Sequence:  $\underline{S407572}$  Instrument:  $\underline{TOC2}$ 

Calibration: <u>1407011</u>

Sample Name	Lab Sample ID	Lab File ID	Analyzed
Cal Standard	S407572-CAL1		04/29/14 15:58
Cal Standard	S407572-CAL2		04/29/14 16:04
Cal Standard	S407572-CAL3		04/29/14 16:12
Cal Standard	S407572-CAL4		04/29/14 16:19
Cal Standard	S407572-CAL5		04/29/14 16:44
Cal Standard	S407572-CAL6		04/29/14 16:56
Cal Standard	S407572-CAL7		04/29/14 17:07
Initial Cal Check	S407572-ICV1		04/29/14 17:25
Initial Cal Blank	S407572-ICB1		04/29/14 17:30

N1895 Page 205 of 214

# Organic/FORM IX(Inorganic) - METHOD DETECTION AND REPORTING LIMITS Lloyd Kahn

Laboratory: Spectrum Analytical, Inc. - Agawam, MA SDG: 98348

Client: Spectrum Analytical, Inc. - North Kingstown, RI Project: Tuxedo Waste Disposal

Analyte	MDL	MRL	Units
Total Organic Carbon	44.9	100	mg/kg

N1895 Page 206 of 214



# SPECTRUM ANALYTICAL, INC. Featuring Hanibal Technology

Lloyd Kahn

**Calibration Summaries** 

#### FORM VI - INITIAL CALIBRATION DATA

#### Lloyd Kahn

Laboratory: Spectrum Analytical, Inc. - Agawam, MA SDG: 98348

Client: Spectrum Analytical, Inc. - North Kingstown, RI Project: Tuxedo Waste Disposal

Calibration: 1407011 Instrument: TOC2

Matrix: Soil/Sediment Calibration Date: 07/07/14 14:31

File ID: <u>1407011</u>

	L	evel 01	L	evel 02	L	evel 03	L	evel 04	Level 05		Level 06	
Compound	mg/kg	RF	mg/kg	RF	mg/kg	RF	mg/kg	RF	mg/kg	mg/kg RF		RF
Total Organic Carbon	0	0	1000	2494.785	2000	2741.113	4000	2740.35	8000	2647.826	12500	2710.605

Individual peaks for multi-component analytes are indicated by a number in parentheses

N1895 SDG 98348 Page 27 / 32

## FORM VI - INITIAL CALIBRATION DATA (Continued)

#### Lloyd Kahn

Laboratory: Spectrum Analytical, Inc. - Agawam, MA SDG: 98348

Client: Spectrum Analytical, Inc. - North Kingstown, RI Project: Tuxedo Waste Disposal

Calibration: <u>1407011</u> Instrument: <u>TOC2</u>

Matrix: Soil/Sediment Calibration Date: 07/07/14 14:31

File ID: <u>1407011</u>

	Level 07		Level 08		Level 09		Level 10		Level 11		Level 12	
Compound	mg/kg	RF	mg/kg	RF	mg/kg	RF	mg/kg	RF	mg/kg	RF	mg/kg	RF
Total Organic Carbon	25000	2547.415										

Individual peaks for multi-component analytes are indicated by a number in parentheses

N1895 SDG 98348 Page 28 / 32

## FORM VI - INITIAL CALIBRATION DATA (Continued)

#### Lloyd Kahn

Laboratory: Spectrum Analytical, Inc. - Agawam, MA SDG: 98348

Client: Spectrum Analytical, Inc. - North Kingstown, RI Project: Tuxedo Waste Disposal

Calibration: <u>1407011</u> Instrument: <u>TOC2</u>

Matrix: Soil/Sediment Calibration Date: 07/07/14 14:31

File ID: <u>1407011</u>

Compound	Mean RF	RF RSD	Mean RT	RT RSD	Linear r	Quad COD	LIMIT	Q
Total Organic Carbon	2268.871	44.29622			0.9989743		0.997	

Individual peaks for multi-component analytes are indicated by a number in parentheses

N1895 SDG 98348 Page 29 / 32

## FORM VIIb(Inorganics) - STANDARD REFERENCE MATERIAL RECOVERY

#### Lloyd Kahn

**Project:** <u>Tuxedo Waste Disposal</u>

Laboratory: Spectrum Analytical, Inc. - Agawam, MA

Client: Spectrum Analytical, Inc. - North Kingstown, RI

**SDG:** 98348

**Spike ID:** 14A1386 Matrix: Soil/Sediment

**Batch:** <u>1424839</u> **Laboratory ID:** 1424839-SRM1

**Preparation:** General Preparation Initial/Final: 10 g / 10 ml

ANALYTE	TRUE (mg/kg)	FOUND (mg/kg)	SRM % REC.	QC LIMITS REC.
Total Organic Carbon	3470	4450	128	49 - 151

^{*} Values outside of QC limits

Page 211 of 214 N1895

#### **Notes & Definitions**

BRL Below the reporting limit and also indicates there are no detections between the MDL and MRL

#### Form I 'Q' column

- **B** The analyte was found in the associated blank as well as the sample
- D All identified compounds in the analysis are at a secondary dilution factor
- E The identified compound's concentration exceeds the calibration range of the instrument for this specific analysis
- J Compound detected but below the reporting limit and above the minimum detection limit (MDL); therefore, the result is an estimated concentration
- N Included for TIC that indicates presumptive evidence of a compound
- P Used for a Dual Column target analyte when the concentration difference between the two GC columns is greater than 40%.
- U Compound was analyzed for but not detected

#### Form IIa 'Method' column

This column refers to the instrument used for analysis

IR Iris ICP

MS Thermo ICP/MS AV Mercury analyzer

#### Form VI 'Q' column

* indicates that:

Mean RF is above the value in the LIMIT column, or Linear COD is below the value in the LIMIT column, or Quad COD is below the value in the LIMIT column

#### Form VII 'Type' column

- A average of response factor
- L linear regression
- **Q** quadratic equation

#### Form VIII 'Q' column for Inorganics

E The dilution analysis is not within a control limit of 10%, therefore a chemical or physical interference effect must be suspected

N1895 Page 212 of 214

**Last Page of Data Report** 

Last Page of Data Report

N1895 Page 214 of 214

AECOM Environment

# **Appendix D**

AECOM Biennial Groundwater Monitoring Report (October 2016) Prepared for: SUPERFUND STANDBY PROGRAM NYSDEC 625 Broadway Albany, New York 12233

Prepared by: AECOM Latham, New York April 2017

Biennial Groundwater Monitoring Report September 2016 Tuxedo Waste Disposal Site Site No. 3-36-035 Work Assignment No. D007626-36 Prepared for: SUPERFUND STANDBY PROGRAM NYSDEC 625 Broadway Albany, New York 12233 Prepared by: AECOM Latham, New York April 2017

Biennial Groundwater Monitoring Report September 2016 Tuxedo Waste Disposal Site Site No. 3-36-035 Work Assignment No. D007626-36

Prepared By: Ross McCredy, Geologist

Reviewed By: Mark J. Howard, Project Manager

## **Contents**

1.0	Introd	duction	1-1
	1.1	Site Description	1-1
2.0	Samp	oling	2-1
	2.1	Sample Locations and Field Observations	2-1
	2.2	Groundwater Sampling Methodology	2-1
	2.3	Analytical Results	2-1
	2.4	Historical Analytical Results	2-2
3.0	Sumr	mary of Analytical Results	3-1
4.0	Conc	clusions	4-1
5.0	Planr	ned Activities and Recommendations	5-1

AECOM Environment

## **List of Tables**

Table 1	Depth-to-Groundwater Measurements and Groundwater Elevations (September 2016)
Table 2	Groundwater Analytical Results – TAL Metals and Mercury (2005 to 2016)
Table 3	Groundwater Analytical Results – TAL Metals and Mercury (2000 to 2001)
Table 4	Summary of Groundwater Analytical Results and Exceedances (September 2016)

## **List of Figures**

Figure 1 Site Location Map

Figure 2 Site Plan and Monitoring Locations

Figure 3 Groundwater Monitoring Results (September 2016)

## **List of Appendices**

Appendix A Monitoring Well Sampling Observation Logs

Appendix B Laboratory Report

AECOM Environment ES-1

## **Executive Summary**

The Tuxedo Waste Disposal Site is located in the Town of Tuxedo, Orange County, New York. The Site is approximately 12 acres in size and is located in a rural area approximately one mile north of the Village of Tuxedo Park, between State Route 17 and the New York State Thruway.

The Site was added to the New York State Department of Environmental Conservation Registry of Inactive Hazardous Waste Disposal Sites as a Class 2a site (Site No. 3-36-035) following the discovery of nonexempt waste at an active construction and demolition debris landfill in 1987. The presence of nonexempt waste was in violation of the standards and regulations in place at that time. The Site was reclassified to Class 4 following the completion of the remedial investigation and feasibility study in 1991. A Record of Decision was issued in February 1992 for impacted soil, refuse, groundwater, landfill gas, and surface water and sediment within the Ramapo River.

Due to the nature of the landfill and contamination of soil, bedrock, and the underlying bedrock aquifers with Target Analyte List metals and mercury, the selected remedies in the Record of Decision consisted of: excavation of refuse with consolidation and reclamation of soil; an engineered final cover; a passive gas collection and treatment system; a surface water diversion system; site restrictions to protect the integrity of the final cover; and groundwater, surface water, sediment, and air emissions monitoring.

During the September 2016 sampling event, the riser in MW-7 was obstructed and MW-1 was unable to be located due to overgrown vegetation. Therefore, these wells were not sampled during the September 2016 groundwater sampling event. The overall conditions of all other wells were acceptable.

The obstruction in MW-7 will be addressed during the next landfill gas monitoring event (June 2017). All attempts will be made to remove the obstruction from within the riser and rehabilitate the existing monitoring well. If MW-7 cannot be rehabilitated, the groundwater monitoring well should be properly decommissioned and a new monitoring well should be installed. MW-1 will be located and the vegetation obscuring the well will be cleared.

Based on AECOM's review, the concentration of Target Analyte List metals and mercury reported in the samples collected from the Tuxedo Waste Disposal Site during the September 2016 biennial sampling event remained consistent with historical (October 2000 to October 2001) and recent (May 2005 to October 2014) data.

All available data indicate that the selected remedies established in the 1992 Record of Decision to design and install an engineered, final cover and to design and construct a surface water diversion system to reduce surface run-on, infiltration, and subsequent generation of leachate continue to be protective of human health and the environment (including the Ramapo River) by containing more harmful metals.

Groundwater will continue to be monitored on a biennial basis to document the concentration of TAL metals in the groundwater at the Site in accordance with the final Site Management Plan issued in December 2014. The next groundwater sampling event will be completed in 2018.

AECOM Environment 1-1

#### 1.0 Introduction

In accordance with the Site Management Plan (SMP; AECOM, 2014) developed for the Tuxedo Waste Disposal Site (the "Site"), and per New York State Department of Environmental Conservation (NYSDEC) instruction, AECOM conducted a biennial groundwater sampling event under NYSDEC Work Assignment No. D007626-36 at the Site. This report describes and presents the results of the groundwater sampling event conducted on September 8 – 9, 2016. As part of the evaluation process for the Site, available historical data provided by the NYSDEC is presented and compared to the most recent data.

#### 1.1 Site Description

The Site is a former waste disposal facility located in the Town of Tuxedo, Orange County, New York (**Figure 1**). The Site consists of approximately 12 acres along State Route 17, in a rural area approximately one mile north of the Village of Tuxedo Park. The Site is located between State Route 17 (to the west) and an active rail line currently owned by the Metro-North Railroad to the east (**Figure 2**). The NYS Thruway (I-87) is located approximately 250 feet to the east of the rail line. The Site lies on two separate parcels of land with separate landowners. A majority of the Site is situated on a portion of a 12.2-acre parcel owned jointly by Renard Barone and Sarkis Khourouzian. The remainder is located on a portion of a 7.9-acre parcel formerly owned by the Georgia Tech Foundation (the property was sold to Ronald lazzetti in 1994).

The Site is located in the Ramapo River Valley. The Ramapo River Valley is described as having steep grades with abrupt elevation changes (seen to the west of the Site), where the land rises approximately 300 feet along the Ramapo River Valley wall (NYSDEC ROD, 1992). The Ramapo River, located between the rail line and the NYS Thruway, is a Class A stream and a hydraulic connection has been determined to exist between the Site and the river; however, surface water and sediment samples collected from the river during the remedial investigation indicate that dumping activities had no measurable impact on the river at that time.

The Tuxedo Waste Disposal Site is a gentle hillside at the base of a steeply graded slope with dense tree cover. State Route 17 separates the steep slope from the Site. The north-northeast portions of the Site are a gently sloping hillside with bedrock outcrops, which transitions into a steep slope to the rail line. The cap of the landfill has a moderate grade and is covered with tall grasses.

Previous investigation of the Site states that before the remedial actions were implemented, the depth to bedrock ranged from 0 to approximately 70 feet below ground surface (bgs), with bedrock deepest and fill material thickest at the center of the Site (Metcalf & Eddy, 1991). Bedrock outcrops in the northern and eastern portions of the Site, located just west of the rail line, dip to the southwest.

The unconsolidated materials are highly variable in thickness and are comprised of construction and demolition (C&D) debris, recent alluvial deposits, outwash sand and gravel, and glacial till (Metcalf & Eddy, 1991).

Groundwater depth beneath the Site ranges from approximately 9 to 43 feet bgs. Groundwater flow occurs within two separate water-bearing units: unconsolidated soil and weathered bedrock; and unweathered, competent bedrock. Permeability studies from the Phase II Investigation and results from the Remedial Investigation/Feasibility Study (RI/FS) show connectivity between the two water-bearing units, resulting in one aquifer system. According to the RI/FS Report and the Record of

AECOM Environment 1-2

Decision (ROD), the natural direction of groundwater flow from the upper unconsolidated water-bearing unit is generally from the relatively high elevations west of the Site to the east, toward the Ramapo River. Groundwater flow direction in the competent bedrock is less defined due to natural irregularities in the bedrock (e.g., joints, fractures, and discontinuities). The water table at the perimeter of the Site is relatively shallow and is present in the unconsolidated soil layer.

The Site was added to the NYSDEC Registry of Inactive Hazardous Waste Disposal Sites as a Class 2a site (Site No. 3-36-035) following the discovery of nonexempt waste at an active C&D debris landfill in 1987. The presence of nonexempt waste was in violation of the standards and regulations in place at that time. The RI/FS report was completed and submitted to the NYSDEC in 1989, and the Site was reclassified to Class 4. The ROD for this site was issued in February of 1992.

The selected remedy for the Site included: 1) excavation of fill from the southeast corner of the Site and the reclamation of this area, 2) design and installation of a cover on the landfill, including a gas collection layer, 3) installation of a passive gas collection and treatment system, 4) installation of a surface water diversion system, 5) implementation of site-use restrictions to protect the integrity of the remedy and 6) environmental monitoring to determine the effectiveness of the remedy.

An operation and maintenance (O&M) program was initiated in December 1996 and amended in January 1998. Presently, the Site is a capped landfill that utilizes wind turbine ventilators at selected locations to actively vent landfill gas under breezy conditions. In addition, monitoring for combustible gas and hydrogen sulfide is performed at the gas vents distributed across the landfill cap. Previous groundwater sampling events were performed in May 2005, November 2005, August 2007, June 2009, October 2011, and October 2014 to monitor the impacts of the landfill on the underlying aquifer.

AECOM Environment 2-1

## 2.0 Sampling

#### 2.1 Sample Locations and Field Observations

Groundwater monitoring, which includes measuring and recording depth-to-groundwater, total well depth, and water quality parameters, is conducted on a biennial basis for twelve on-site wells. Depth-to-groundwater measurements are then utilized to calculate groundwater elevations in each of the wells (**Table 1**). During the September 2016 sampling event, the riser in MW-7 was obstructed and MW-1 was unable to be located due to overgrown vegetation. Therefore, only ten wells were sampled during the September 2016 groundwater sampling event. The overall conditions of all other wells were acceptable.

Due to the presence of the waste material prior to well installation, groundwater contour maps for the aquifer beneath the Site could not be developed. The composition and construction of the waste material and the landfill prohibits the natural flow of groundwater beneath and surrounding the Site. According to the Phase II investigation and RI/FS, the overall direction of groundwater flow in the unconsolidated aquifer beneath the Site and the surrounding area is predominantly to the east toward the Ramapo River, and the overall flow direction in the unweathered bedrock is controlled by joints, fractures, and discontinuities in the bedrock.

#### 2.2 Groundwater Sampling Methodology

Prior to sampling each well, depth-to-groundwater and depth to bottom measurements are taken using a water level indicator. The indicator is decontaminated with a Liquinox® and spring water rinse and sprayed with distilled water before each use. Each monitoring well is purged of three water column volumes prior to sampling. Dependent on the purge volume, dedicated, polyethylene tubing and a submersible pump (e.g., Grundfos™) or a dedicated, polyethylene bailer is utilized. The pump is decontaminated between each monitoring well in a Liquinox® and potable water bath and then in a distilled water bath.

Water quality parameters, which include temperature, conductivity, specific conductivity, dissolved oxygen (DO), oxygen-reduction potential (ORP), pH, turbidity, color, and odor, are measured and recorded on the monitoring well sampling observation logs (**Appendix A**). A total of four sets of parameters are measured and recorded; one for the initial discharge removed from the well and one for each of the subsequent three water column volumes removed prior to sampling.

All samples are collected in laboratory supplied bottles, packed in a cooler with ice, and shipped to Mitkem Laboratories of Warwick, Rhode Island under standard chain-of-custody procedure. Each sample is analyzed for Target Analyte List (TAL) metals by United States Environmental Protection Agency (US EPA) Method 6010 and mercury by US EPA Method 7470.

#### 2.3 Analytical Results

A cumulative summary of the analytical data collected by AECOM to date, including the September 2016 sampling event, is presented as **Table 2** and compared to the New York State Ambient Water Quality Standards (AWQS) and Guidance Values (GV) for groundwater as a drinking water source. Analytes detected and reported above the applicable AWQS or GV are presented in bold font in a shaded cell. A copy of the analytical results and chains-of-custody are included as **Appendix B**.

AECOM Environment 2-2

## 2.4 Historical Analytical Results

Historical data made available to AECOM by the NYSDEC are presented in **Table 3**. The available historical data for the Site included groundwater sampling events in October 2000 and May, August and October 2001. No other data for the Site were made available to AECOM at this time.

AECOM Environment 3-1

## 3.0 Summary of Analytical Results

Present and available historical data (**Tables 2** and **3**) were reviewed to determine if there are any notable trends in the concentrations of metals in the on-site monitoring wells. Previous investigations indicate that the primary contaminants of concern for the Site are aluminum, arsenic, cadmium, chromium, copper, iron, lead, magnesium, manganese, mercury, nickel, selenium, silver, sodium, and zinc.

The results of the September 2016 sampling event are displayed in **Figure 3** and summarized as follows:

- The results of the sample collected from monitoring well MW-2 reported relatively low concentrations of metals, none of which exceeded AWQS or GV. Generally, the concentrations decreased relative to the October 2014 sampling event.
- The sample results from monitoring well MW-3 reported iron and sodium in excess of the AWQS, with concentrations reported to be 515 μg/l and 107,000 μg/l, respectively. These results are a decrease from the October 2014 results and the historical data.
- Two metals (iron and sodium) exceeded the AWQS in the sample collected from MW-4, with concentrations reported to be 466 μg/l and 43,100 μg/l, respectively. Recent and historical data from samples collected from MW-4 indicate that iron and sodium are commonly detected at concentrations exceeding the AWQS, including the results of the October 2014 sampling event.
- The sample collected from monitoring well MW-5 contained no analytes in excess of AWQS or GV. Iron, manganese, and sodium have historically been detected at concentrations in excess of the AWQS; while in more recent data, only iron and manganese have been detected at concentrations exceeding the AWQS.
- Only one metal (manganese) exceeded the AWQS or GV in the sample collected from MW-6, with manganese reported to be 1,450 μg/l. These results are consistent with past sampling results.
- The September 2016 sampling results from monitoring well RI-1 reported a sodium concentration of 23,200  $\mu$ g/l, an exceedance of the 20,000  $\mu$ g/l AWQS. These results are consistent with the results of the October 2014 groundwater sampling event, when sodium was reported to be 22,700  $\mu$ g/l.
- The RI-2 monitoring well sample results reported only one metal (sodium) in excess of the AWQS. Sodium was reported to be 53,400 μg/l, an increase from 51,600 μg/l in October 2014.
- The results of the sample collected from RI-3 in September 2016 reported exceedances of AWQS for three metals: iron (3,780 μg/l), manganese (999 μg/l), and sodium (32,300 μg/l). These results are consistent with the results of the October 2014 groundwater sampling event.

AECOM Environment 3-2

• The results of the sample collected from monitoring well RI-4 are consistent with the October 2014 results, with iron (2,430 μg/l) and manganese (402 μg/l) reported to exceed their respective AWQS. These results are consistent with historical and recent data, except in two previous sampling events. In October 2001, sodium was reported at a concentration exceeding AWQS and in November 2005, magnesium and sodium were reported at concentrations exceeding the GV (35,000 μg/l) for magnesium and the AWQS (20,000 μg/l) for sodium.

 The groundwater sample collected from monitoring well RI-5A reported no metals at concentrations that exceed the AWQS or GV. However, iron and sodium have been historically detected at concentrations in excess of the AWQS.

Overall, TAL metals concentrations in the Site wells remain consistent with historical data, with few notable trends, and mercury continues to not be detected or is detected in the on-site wells only at estimated concentrations (i.e., greater than the instrument detection limit and less than the contract required detection limit).

AECOM Environment 4-1

#### 4.0 Conclusions

This report presents the activities completed by AECOM on behalf of the NYSDEC under Work Assignment No. D007626-36 at the Tuxedo Waste Disposal Site in Tuxedo, New York during the 2016 biennial groundwater sampling event.

#### 4.1 Groundwater

As demonstrated in a summary of the September 2016 groundwater sampling event results (**Table 4**), the metals detected at concentrations greater than AWQS or GV most frequently were: sodium (five wells), thallium (five wells), iron (four wells), antimony (four wells), manganese (three wells), and selenium (two wells).

Overall, the concentration of TAL metals and mercury reported in the groundwater samples collected in September 2016 remained consistent with historical (October 2000 to October 2001) and recent (May 2005 to October 2014) data. Additionally, all available data indicates mercury has never been detected or has only been detected in the on-site wells at estimated concentrations.

AECOM Environment 5-1

#### 5.0 Planned Activities and Recommendations

Based on all available data, AECOM recommends that mercury be removed from the list of analyses for all subsequent groundwater sampling events.

The obstruction in MW-7 and the vegetation obscuring MW-1 will be addressed during the next landfill gas monitoring event (June 2017). MW-1 will be located and the vegetation cleared. All attempts will be made to remove the obstruction in MW-7 and rehabilitate it. If MW-7 cannot be rehabilitated, the groundwater monitoring well should be properly decommissioned and a new monitoring well should be installed.

Groundwater should continue to be monitored on a biennial basis to document the concentration of TAL metals in the groundwater at the Site in accordance with the final SMP (AECOM, 2014). The next groundwater sampling event should be completed in 2018.

AECOM Environment

## **Tables**

# Table 1 Depth-to-Groundwater Measurements and Groundwater Elevations (September 2016)

# Tuxedo Waste Disposal Site Site No. 3-36-035 Tuxedo, Orange County, New York

Well	Well Cod	ordinates	Well	Mall Torre	Measuring	Well Depth	Septembe	er 8, 2016
ID	Longitude	Latitude	Construction	Well Type	Point Elevation (ft.)	(ft. bgs)	Depth to Water (ft. bgs)	GW Elevation (ft.)
MW-1	41º12.822N	074°11.043W	4" Steel Surface Casing 2" PVC Riser and Screen	Overburden	468.40	NM	NM	NA
MW-2	41º12.535N	074º11.106W	4" Steel Surface Casing 2" PVC Riser and Screen	Bedrock	480.06	89.86	26.28	453.78
MW-3	41º12.571N	074º10.990W	6" Steel Cutter Casing 3" PVC Riser	Bedrock	459.00	30.30	18.11	440.89
MW-4	41°12.599N	074°10.984W	4" Steel Surface Casing 2" PVC Riser and Screen	Overburden	460.07	26.38	18.92	441.15
MW-5	41º12.706N	074°10.968W	4" Steel Surface Casing 2" PVC Riser and Screen	Overburden	448.81	19.36	11.21	437.60
MW-6	41º12.729N	074°10.977W	4" Steel Surface Casing 2" PVC Riser and Screen	Overburden	456.83	18.40	9.39	447.44
MW-7	41º12.820N	074º11.026W	4" Steel Surface Casing 2" PVC Riser and Screen	Overburden	466.93	NM	NM	NA
RI-1	41º12.707N	074°10.971W	8" Steel Cutter Casing 2" Steel Riser	Bedrock	459.48	93.53	12.81	446.67
RI-2	41º12.728N	074°10.976W	6" Steel Surface Casing 4" Steel Riser and Screen	Interface	458.02	70.54	11.38	446.64
RI-3	41º12.568N	074°11.092W	6" PVC Surface Casing 2" PVC Riser and Screen	Interface	479.79	44.66	37.92	441.87
RI-4	41º12.777N	074°10.997W	4" Steel Surface Casing 2" PVC Riser and Screen	Overburden	463.45	16.87	15.95	447.50
RI-5A	41°12.746N	074º11.038W	4" Steel Surface Casing 2" PVC Riser and Screen	Bedrock	495.70	81.88	42.61	453.09

### Notes:

Measuring Point Elevation is at top of PVC casing

NA - Not Available

NM - Not Measured; MW-7 is obstructed

bgs - below ground surface

GW - groundwater

Table 2 Groundwater Analytical Results -TAL Metals and Mercury (2005 to 2016)

**Tuxedo Waste Disposal Site** Site No. 3-36-035 Tuxedo, Orange County, New York

Monitoring We	ell ID				MW-1							MW-2							MW-3							MW-4			
Sample Date	е	5/3/2005	11/1/2005	8/7/2007	6/30/2009	10/11/2011	10/7/2014	9/8/2016	5/3/2005	11/1/2005	8/7/2007	6/30/2009	10/11/2011	10/8/2014	9/9/2016	5/3/2005	11/2/2005	8/6/2007	6/30/2009	10/11/2011	10/8/2014	9/8/2016	5/3/2005	11/2/2005	8/6/2007	6/30/2009	10/11/2011	10/8/2014	9/9/2016
Analyte (μg/L)	AWQS or GV																												
Aluminum	NA	130J	114J	U	NS	261	337	NS	444	304	U	1060N*	1,330	505	92.3B	11,400	4,180	178	561N*	179B	2,690	292	63.4J	73.7J	U	60.3N*	U	3,090	290
Antimony	3	8.74J	U	U	NS	U	U	NS	5.5J	U	U	U	U	U	U	U	U	U	U	U	U	5.1B	9.19J	U	U	U	U	U	U
Arsenic	25	U	U	U	NS	U	U	NS	U	U	U	U	U	6.3B	U	U	U	U	U	U	U	U	U	U	U	U	U	U	6.9B
Barium	1,000	4.85JN	U	U	NS	3.5B	9.4B	NS	9.96JN	4.4J	U	18.7J	19.4B	15.0B	7.3B	78.3JN	28.9J	13.8 J	17.3 J	10.2B	103B	29.6B	17.1JN	11.7J	10.1 J	21.1 J	12.6B	48.4B	26.7B
Beryllium	3 (GV)	U	U	U	NS	U	U	NS	U	U	U	U	U	U	U	0.58J	0.2J	U	U	U	U	0.084B	U	U	U	U	U	U	0.073B
Cadmium	5	U	U	U	NS	1.5B	U	NS	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Calcium	NA	26,600	14,400	12,600	NS	5,580	9,290	NS	19,700	19,800	25,100	23,100	22,400	23,300	23,800	18,000	12,100	39,100	19,300	12,600	95,000	41,400	45,000	35,700	38,400	45,600	28,100	55,100	52,600
Chromium	50	1.16JN	U	1.7 J	NS	1.6B	3.3B	NS	1.02JN	U	U	3.65 J	3.8B	1.8B	0.95B	13N	6.2J	1.5 J	1.92 J	0.73B	3.4B	1.3B	0.343UN	0.79J	1.8 J	2.4 J	U	3.9B	1.1B
Cobalt	NA	U	U	2.3 J	NS	U	1.4B	NS	0.625J	U	U	U	1.8B	1.3B	0.36B	14.3J	1.8J	2.1 J	U	U	3.3B	1.3B	U	U	2.2 J	U	U	5.2B	0.64B
Copper	200	14.9J	U	U	NS	13.7B	5.8B	NS	9.22J	U	U	7.71J	4.8B	U	U	43.1	55.5	U	36.1	3.6B	8.6B	2.9B	U	U	U	8 J	U	15.3B	5.1B
Iron	300	635N	116	46.7 J	NS	962	889	NS	809N	454	U	1,570N*	1,780	671	125B	21,700N	8,350	221	1,110N*	471	4,180	515	150N	U	U	647N*	218	4,980	466
Lead	25	U	U	U	NS	U	U	NS	U	15.2	U	U	U	4.2	U	U	4.5J	U	U	U	U	U	U	U	U	U	U	U	U
Magnesium	35,000 (GV)	6,310	3,450J	2,870	NS	1,300	2,160	NS	5,010	4,730J	6,340	6,170	6,470	6,410	6,390	9,320	4,280	9,430	4,610	3,150	22,900	10,700	10,600	8,660	9,310	9,400	6,370	13,300	11,200
Manganese	300	17.6	4.5J	1.8 J	NS	31.7B	50.4	NS	37.8	7.3J	U	38.6	24.9B	24.1B	4.5B	958	319	19.3	46.5	13.6B	271	80.2	55.2	1.1J	3.1 J	15.2	13.0B	1,310	152
Mercury	0.7	U	0.077J	U	NS	U	U	NS	U	U	U	0.07UN	U	U	0.044B	0.04J	U	U	0.07UN	0.031B	U	U	U	U	U	0.07UN	U	0.062B	U
Nickel	100	U	U	U	NS	1.2B	2.4B	NS	U	U	U	U	2.1B	U	U	22J	8.0J	U	U	U	5.5B	2.1B	U	U	U	U	U	6.1B	2.5B
Potassium	NA	2,420J	1,090JN	589 J	NS	573B	493B	NS	960J	935JN	1,080	1,570	1,540	1,040	1,260	2,700J	1,730JN	1,770	2,030	1,210	3,390	1,970	2,830J	2,930JN	2,140	2,270	2,380	2,880	2,360
Selenium	10	U	U	U	NS	U	U	NS	U	26.9	5.6 J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Silver	50	U	U	U	NS	U	U	NS	U	U	U	U	U	U	U	4.32J	U	U	U	U	U	U	U	U	U	U	U	U	U
Sodium	20,000	42,900	37,500	25,900	NS	36,100	40,600	NS	3,060J	2,910J	3,480	5,530N	4,710	4,090	4,130	35,700	18,300	46,200	68,300N	85,200	379,000	107,000	47,700	41,800	32,100	32,900N	35,900	39,900	43,100
Thallium	0.5 (GV)	U	4.5J	U	NS	U	U	NS	U	23.5	U	U	U	U	U	U	U	U	U	U	U	6.8B	U	U	U	U	U	6.2B	U
Vanadium	NA NA	4.5J	U	U	NS	1.3B	1.8B	NS	5.28J	U	2.5 J	5.42 J	6.4B	2.4B	2.8B	28.1J	1.9J	U	U	U	6.0B	1.1B	2.9J	U	U	U	U	7.6B	0.70B
Zinc	2,000 (GV)	37.2	23.6	37	NS	19.8B	15.1B	NS	27	11.2J	33	15.7 J	12.2B	U	U	82.9	30.8	34.7	27.4	12.5B	12.7B	6.4B	23.9	15.1J	34.4	23.8	14.1B	17.2B	5.4B

Notes:
All data presented in micrograms per liter (µg/L).
Metals analysis by ICP Method 6010, except mercury by USEPA Method 7470.
U - Analyte was analyzed for, but not detected.

J & B - Éstimated concentration above the instrument detection limit (IDL) but less than the contract required detection limit (CRDL).

N - Spiked sample recovery not within control limits.

* - Duplicate analysis is not within control limits.

** - Water quality measurements indicate turbidity greater than 50 NTU; Second column reports dissolved metals AWQS - New York State Ambient Water Quality Standards (TOGs 1.1.1); GV - guidance value.

NA - No standard or guidance value exists for the analyte.

NS - Not sampled.

BOLD font in shaded cell - indicates exceedances of AWQS or GV.

Table 2 Groundwater Analytical Results -TAL Metals and Mercury (2005 to 2016)

**Tuxedo Waste Disposal Site** Site No. 3-36-035 Tuxedo, Orange County, New York

Monitoring We	ell ID				1	/IW-5								MW-6								RI	-1			
Sample Dat	te	5/2/2005	11/2/2005	8/6/2007	6/30/2009	10/11/2	2011**	10/7/2014	9/8/2016	5/2/2005	11/2/2005	8/6/2007	6/30/2009	10/11/	2011**	10/7/2	014**	9/8/2016	5/2/2005	11/2/2005	8/6/2007	6/30/2009	10/11/2011	10/8/2	2014**	9/8/2016
Analyte (μg/L)	AWQS or GV																									
Aluminum	NA	520	83.3J	U	218N*	4,020	U	886	U	137J	79.2J	U	281N*	1,070	U	438	155B	22.0B	58.3J	673	97.6	408N*	1,620	3,210	172B	308
Antimony	3	6.88J	U	U	U	U	U	U	U	6.72J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5.8B
Arsenic	25	8.94J	U	U	4.54 J	U	U	U	8.1B	27.4	U	U	40.9	11.7B	U	24	U	U	U	U	U	U	U	U	U	U
Barium	1,000	98.7JN	67.7J	51.3	72.9	98.7B	64.6B	84.5B	63.0B	76.5JN	39.8J	37.2 J	137	114B	47.2B	99.1B	44.4B	46.8B	4.2JN	17.4J	U	14.7 J	22.0B	21.2B	16.2B	16.2B
Beryllium	3 (GV)	0.18J	U	U	U	0.28B	U	U	0.055B	U	U	U	U	U	U	U	U	0.058B	U	0.12J	U	U	U	U	U	0.15B
Cadmium	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Calcium	NA	99,200	81,100	94,300	90,500	111,000	109,000	93,300	115,000	87,900	94,300	88,900	92,700	115,000	112,000	108,000	110,000	99,100	24,800	65,500	46,500	52,300	52,800	56,400	53,200	56,100
Chromium	50	2.28JN	1.6J	7.5	2.66 J	6.2B	U	4.0B	1.3B	1.16JN	1.4J	U	5.83	4.5B	U	5.7B	U	0.40B	11.1N	2.6J	3.4 J	11.5	1.6B	5.0B	0.96B	1.3B
Cobalt	NA	7.52J	2.5J	2.6 J	U	5.8B	U	7.7B	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	0.84B	U	U
Copper	200	105	11.7J	13	45.8	88.3	9.8B	65.7	5.4B	17.3J	U	U	27.3	24.4B	U	31.1	7.8B	U	19.2J	45.3	3.8 J	19.9	5.4B	7.4B	19.1B	1.3B
Iron	300	22,000N	596	35.3 J	5,460N*	15,800	U	16,600	U	37,300N	951	4,510	72,900N*	30,500	U	36,000	1,940	U	223N	408	555	440N*	855	1,360	127B	201
Lead	25	U	U	U	2.43 J	5.9B	U	U	U	U	10.7	U	U	U	U	U	U	U	U	4.1J	U	2.03J	U	U	U	U
Magnesium	35,000 (GV)	15,900	17,200	20,200	10,100	18,400	17,200	22,500	16,600	12,800	10,000	12,000	10,900	12,700	12,100	11,800	12,000	8,530	7,150	11,000	7,740	8,760	9,400	10,500	9,860	9,920
Manganese	300	1,100	1,250	1,160	256	1,350	232	5,400	244	1,540	510	1,350	1,350	1,700	1,270	2,200	1,940	1,450	4.22J	5.4J	1.6 J	8.4 J	31.9B	23.6B	18.3B	5.1B
Mercury	0.7	0.28	U	U	0.07UN	0.23	U	U	U	0.04J	U	U	0.15JN	U	U	U	U	U	U	U	U	0.07UN	U	U	0.057B	U
Nickel	100	1.69J	7.5J	5.9 J	U	9.9B	3.7B	7.8B	2.0B	U	U	U	U	1.9B	U	1.4B	U	U	5.62J	U	16.1 J	11.4J	2.6B	4.0B	0.92B	1.5B
Potassium	NA	6,640	6,700N	5,460	4,510	6,890	6,360	3,500	4,920	2,630J	3,330JN	3,850	3,790	5,300	4,950	3,810	3,870	3,840	45,000	2,310JN	5,900	4,230	3,170	2,630	2,550	2,760
Selenium	10	U	U	U	U	U	U	U	11.9B	U	9.0J	U	10.3	U	U	U	U	13.8B	U	U	U	U	U	U	U	U
Silver	50	1.68J	U	U	U	U	U	U	U	2.34J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Sodium	20,000	12,800	21,800	15,500	5,170N	16,800	17,100	12,500	11,100	3,170J	6,310	3,400	6,380N	12,300	11,400	11,700	14,400	8,300	33,100	25,800	24,800	20,400N	27,500	22,300	22,700	23,200
Thallium	0.5 (GV)	U	U	U	U	U	U	U	5.3B	U	8.2J	U	U	U	U	7.4B	U	U	U	U	U	U	U	U	U	U
Vanadium	NA	8.48J	U	U	U	7.6B	U	3.9B	U	9.25J	U	U	5.73 J	4.7B	U	5.6B	U	U	3.88J	U	U	U	U	1.9B	1.2B	1.3B
Zinc	2,000 (GV)	48.7	41.5	46.1	32	45.8B	14.5B	31.8B	14.8B	24.1	25.3	32.9	36.6	25.6B	12.9B	11.3B	36.4B	U	30.8	17.6J	36.9	164	17.0B	6.0B	119	U

Notes:

All data presented in micrograms per liter (µg/L).

Metals analysis by ICP Method 6010, except mercury by USEPA Method 7470.

U - Analyte was analyzed for, but not detected.

- J & B Estimated concentration above the instrument detection limit (IDL) but less than the contract required detection limit (CRDL).

  N Spiked sample recovery not within control limits.
- * Duplicate analysis is not within control limits.
- ** Water quality measurements indicate turbidity greater than 50 NTU; Second column reports dissolved metals AWQS New York State Ambient Water Quality Standards (TOGs 1.1.1); GV guidance value.

NA - No standard or guidance value exists for the analyte.

NS - Not sampled.

BOLD font in shaded cell - indicates exceedances of AWQS or GV.

Table 2 Groundwater Analytical Results -TAL Metals and Mercury (2005 to 2016)

**Tuxedo Waste Disposal Site** Site No. 3-36-035 Tuxedo, Orange County, New York

Monitoring W	/ell ID				RI-2								RI-3								RI-4					RI-5A	
Sample Da	ate	5/2/2005	11/2/2005	8/6/2007	6/30/2009	10/11/2011	10/7/2014	9/8/2016	5/3/2005	11/1/2005	8/7/2007	6/30/2009	10/11/	/2011**	10/7/2	2014**	9/9/2016	5/2/2005	11/2/2005	8/6/2007	6/30/2009	10/11/2011	10/7/2014	9/8/2016	10/11/2011	10/7/2014	9/9/2016
Analyte (μg/L)	AWQS or GV																										
Aluminum	NA	31.1J	69.3J	U	21.1 JN*	U	U	U	35,800	438	26,400	24,200N*	52,200	U	89,900	2,990	5,630	2,080	2,590	440	654N*	1,080	1,910	912	654	318	152B
Antimony	3	10.2J	U	U	U	U	U	6.7B	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	5.9B	U	U	U
Arsenic	25	U	U	U	U	U	U	U	15.7	U	5.7 J	16.8	17.3B	U	33.8	U	4.6B	U	U	U	U	U	U	7.3B	U	U	U
Barium	1,000	12JN	17.9J	7.0 J	26.1 J	10.5B	14.2B	11.8B	190JN	19.3J	158	140	334	18.5B	710	111B	134B	55.2JN	160J	61.4	62.1	45.8B	59.5B	62.0B	17.6B	17.6B	16.5B
Beryllium	3 (GV)	U	U	U	U	U	U	U	2.32J	U	1.4 J	1.48 J	3.9B	U	8.4	0.51B	1.2B	0.095J	0.25J	U	U	U	U	0.095B	U	U	U
Cadmium	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	2.5J	U	0.626 J	1.2B	U	1.3B	U	U	U
Calcium	NA	25,800	40,000	20,100	22,400	18,000	28,800	26,700	36,400	21,100	34,100	35,500	45,700	34,800	74,300	51,700	54,400	70,700	238,000	105,000	82,200	60,300	96,500	90,500	34,300	31,400	36,000
Chromium	50	846N	32.8	27.9	240	13.1B	21	3.0B	47.6N	U	30.2	37.7	70	U	130	4.1B	5.2B	3.1JN	11.9	U	2.61 J	1.9B	4.9B	1.9B	15.3B	6.7B	1.6B
Cobalt	NA	10.3J	U	U	U	U	U	U	40.2J	U	18.1	28.5	46.0B	U	141	5.4B	13.6B	5.12J	14.4J	U	U	2.3B	3.5B	3.3B	0.84B	U	0.42B
Copper	200	22J	U	U	13.8	U	U	U	137	U	62	74.8	168	U	458	49.4	35.6	26.7	47.3	9.1 J	17.2	12.2B	15.2B	22.4B	U	U	U
Iron	300	3,860N	109	160	1,150N*	120B	130B	U	71,500N	712	36,200	51,400N*	94,200	U	158,000	3,070	3,780	4,940N	7,160	1,890	2,030N*	2,850	4,060	2,430	339	173B	74.1B
Lead	25	U	U	U	U	U	U	U	64.5	U	30.3	42.2	55.1	U	203	10.3	9.5B	U	7	2.3 J	2.31 J	U	U	U	U	U	U
Magnesium	35,000 (GV)	7,190	11,200	5,450	4,820	5,070	7,860	6,820	22,200	4,210J	15,300	17,000	27,500	8,680	47,900	13,600	13,600	8,500	40,300	12,700	7,980	7,910	11,100	8,910	1,490	1,910	4,270
Manganese	300	201	60	8.6 J	59.8	28.8B	22.8B	7.4B	2,130	164	830	1,500	2,830	U	7,120	329	999	1,050	3,590	1,680	302	417	580	402	10.1B	U	6.4B
Mercury	0.7	U	U	U	0.1JN	U	U	U	0.25	U	U	0.12JN	0.18B	U	0.28	0.032B	U	U	U	U	0.1 JN	U	U	U	U	U	U
Nickel	100	1,730	39.2J	111	1,740	22.5B	21.2B	28.0B	68.2	U	31.8	51.2	97	U	184	4.9B	10.4B	11.7J	74.6	15.6 J	18.9 J	17.1B	19.8B	36.1B	U	U	U
Potassium	NA	11,300	2,200JN	1,060	7,750	839B	801B	1,230	5,260	1,410JN	6,990	3,930	7,430	1,150	9,890	1,740	2,010	16,700	45,100N	18,700	14,600	10,700	10,600	9,240	9,590	7,390	4,950
Selenium	10	U	U	U	U	U	U	U	U	U	U	U	15.0B	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Silver	50	U	U	U	U	U	U	U	2.04J	U	3.0 J	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Sodium	20,000	47,100	63,700	36,300	36,300N	41,400	51,600	53,400	19,600	17,800	25,500	29,600N	38,300	34,200	31,800	30,300	32,300	13,900	100,000	19,200	10,100N	10,200	10,100	8,180	25,700	17,000	12,200
Thallium	0.5 (GV)	U	U	U	U	U	U	2.7B	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	6.4B	U	U	15.2B
Vanadium	NA	3.82J	U	U	U	U	U	U	75.3	U	47.6	47.1	104	U	192	6.3B	5.6B	6.55J	U	U	U	2.2B	4.6B	1.6B	3.1B	2.5B	1.8B
Zinc	2,000 (GV)	39.7	20.6	37.9	26.1	14.2B	U	U	305	32.2	159	164	261	11.1B	535	16.6B	37.0B	50.8	101	56.5	41.5	33.1B	31.4B	72.6	12.9B	U	U

Notes:
All data presented in micrograms per liter (µg/L).
Metals analysis by ICP Method 6010, except mercury by USEPA Method 7470.
U - Analyte was analyzed for, but not detected.

J & B - Estimated concentration above the instrument detection limit (IDL) but less than the contract required detection limit (CRDL).

N - Spiked sample recovery not within control limits.

* - Duplicate analysis is not within control limits.

** - Water quality measurements indicate turbidity greater than 50 NTU; Second column reports dissolved metals AWQS - New York State Ambient Water Quality Standards (TOGs 1.1.1); GV - guidance value.

NA - No standard or guidance value exists for the analyte.

NS - Not sampled. **BOLD** font in shaded cell - indicates exce

# Table 3 Groundwater Analytical Results TAL Metals and Mercury (2000 to 2001)

# Tuxedo Waste Disposal Site Site No. 3-36-035 Tuxedo, Orange County, New York

Monitoring We	II ID		MV	V-1			MV	V-2			MV	N-3			M\	N-4			MV	V-5	
Sample Date	9	10/26/2000	5/1/2001	8/2/2001	10/30/2001	10/26/2000	5/1/2001	8/2/2001	10/30/2001	10/26/2000	5/1/2001	8/2/2001	10/30/2001	10/26/2000	5/1/2001	8/2/2001	10/30/2001	10/26/2000	5/1/2001	8/2/2001	10/30/2001
Analyte (μg/L)	AWQS or GV																				
Aluminum	NA	NS	130B	U	NS	528	300	92B	NS	1,140	210	260	410	489	U	78B	320	3,900	340	160B	170B
Antimony	3	NS	U	U	NS	U	U	U	NS	U	U	U	U	U	U	U	U	U	U	U	U
Arsenic	25	NS	U	U	NS	U	U	U	NS	U	U	U	U	U	U	U	U	9.2B	U	U	U
Barium	1,000	NS	U	U	NS	14.7B	U	U	NS	28.6B	U	U	U	23.7B	U	U	U	104B	U	U	U
Beryllium	3 (GV)	NS	U	U	NS	U	U	U	NS	U	U	U	U	U	U	U	U	0.79B	U	U	U
Cadmium	5	NS	U	U	NS	U	U	U	NS	U	U	U	U	U	U	U	U	U	U	U	U
Calcium	NA	NS	18,000	9,700	NS	24,600	29,000	27,000	NS	41,300	22,000	42,000	41,000	39,500	39,000	43,000	40,000	92,000	110,000	99,000	97,000
Chromium	50	NS	U	U	NS	3.0B	U	U	NS	U	U	U	U	U	U	U	U	7.0B	U	U	U
Cobalt	NA	NS	U	U	NS	4.7B	U	J	NS	U	J	U	U	U	U	U	U	5.5B	U	J	U
Copper	200	NS	U	U	NS	2.5B	U	U	NS	5.2B	J	U	U	6.3B	U	U	U	101	63	U	26
Iron	300	NS	330	55B	NS	757	380	160	NS	1,740	180	410	650	830	83B	94B	570	17,400	5,900	2,700	3,700
Lead	25	NS	U	U	NS	2.3B	U	U	NS	2.6B	U	U	U	2.1B	U	U	U	11.7	5.7	U	U
Magnesium	35,000 (GV)	NS	4,700B	2,400B	NS	5,530	7,000	6,200	NS	9,850	5,400	10,000	9,300	10,700	11,000	11,000	10,000	24,000	16,000	25,000	22,000
Manganese	300	NS	26	U	NS	36.2	34	31	NS	81.3	7.5B	42	36	324	71	76	350	3,210	290	3,800	2,600
Mercury	0.7	NS	U	U	NS	U	U	U	NS	U	U	U	U	U	U	U	U	0.56	U	U	U
Nickel	100	NS	U	U	NS	U	U	U	NS	2.4B	U	U	U	U	U	U	U	6.7B	U	U	U
Potassium	NA	NS	U	U	NS	1,380BE	U	U	NS	3,570BE	U	U	U	3,530BE	U	U	U	8,470E	7,000	6,000	5,700
Selenium	10	NS	U	U	NS	2.8UW	U	U	NS	2.8UW	U	U	U	2.8UW	U	U	U	2.8UW	U	U	U
Silver	50	NS	U	U	NS	3.0UN	U	U	NS	3.0UN	U	U	U	3.0UN	U	U	U	3.0UN	U	U	U
Sodium	20,000	NS	40,000	29,000	NS	3,560B	5,000B	3,900B	NS	25,200	39,000	32,000	34,000	22,500	39,000	30,000	28,000	22,600	11,000	23,000	21,000
Thallium	0.5 (GV)	NS	U	U	NS	U	U	U	NS	U	U	U	U	U	U	U	U	U	U	U	U
Vanadium	NA	NS	U	U	NS	3.1B	U	U	NS	2.3B	U	U	U	U	U	U	U	8.7B	U	U	U
Zinc	2,000 (GV)	NS	U	U	NS	9.7B*	U	U	NS	15.6B*	U	U	U	23.8*	U	U	U	58.8*	10.0B	U	10B

# Notes:

All data presented in micrograms per liter (µg/L).

- U Analyte was analyzed for, but not detected.
- B The reported value is less than the Contract Required Detection Limit (CRDL), but greater than the Instrument Detection Limit (IDL).
- E Indicates an estimated value because of the presence of interference.
- W Post digestion spike for furnace AA analysis is out of control limits (85-115%), while sample absorbance is less than 50% of spike absorbance.
- N Spiked sample recovery not within control limits.
- * Duplicate analysis not within control limits.

AWQS - New York State Ambient Water Quality Standards (TOGs 1.1.1); GV - guidance value.

NA - No standard or guidance value exists for the analyte.

NS - Not sampled

**BOLD** font in shaded cell - indicates exceedance of AWQS or GV.



# Table 3 Groundwater Analytical Results TAL Metals and Mercury (2000 to 2001)

# Tuxedo Waste Disposal Site Site No. 3-36-035 Tuxedo, Orange County, New York

Monitoring W	ell ID		MV	V-6			R	-1			R	l-2			R	-4	
Sample Da	te	10/26/2000	5/1/2001	8/2/2001	10/30/2001	10/26/2000	5/1/2001	8/2/2001	10/30/2001	10/26/2000	5/1/2001	8/2/2001	10/30/2001	10/26/2000	5/1/2001	8/2/2001	10/30/2001
Analyte (μg/L)	AWQS or GV																
Aluminum	NA	725	U	U	U	718	140B	100B	100B	96.3B	U	U	82B	5,960	3,600	90B	320
Antimony	3	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Arsenic	25	11.7	U	U	U	U	U	U	U	U	U	U	U	3.8B	U	U	U
Barium	1,000	47.7B	U	U	U	10.6B	U	U	U	11.2B	U	U	U	101B	U	U	U
Beryllium	3 (GV)	0.21B	U	U	U	U	U	U	U	U	U	U	U	0.24B	U	U	U
Cadmium	5	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Calcium	NA	92,700	110,000	98,000	120,000	50,800	74,000	57,000	54,000	19,700	43,000	32,000	30,000	90,400	64,000	95,000	120,000
Chromium	50	1.2B	U	U	U	3.4B	U	U	U	130	11	U	64	8.3B	U	U	U
Cobalt	NA	U	U	U	U	U	U	U	U	U	U	U	U	16.3B	U	U	U
Copper	200	30.3	U	U	U	13.4B	U	U	U	4.1B	U	U	U	37.4	90	U	U
Iron	300	15,300	8,900	5,900	5,600	752	190	70B	90B	804	260	110	870	11,600	12,000	240	1,200
Lead	25	5	U	U	U	U	U	U	U	U	U	U	U	10	12	U	U
Magnesium	35,000 (GV)	12,800	17,000	15,000	16,000	7,160	11,000	8,800	7,900	6,010	13,000	9,700	8,800	11,600	8,600	11,000	13,000
Manganese	300	2,050	1,600	1,900	2,300	7.9B	8.0B	U	U	79.4	64	43	87	1,500	1,200	390	350
Mercury	0.7	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Nickel	100	U	U	U	U	6.2B	U	U	U	41	U	U	U	24.5B	U	U	U
Potassium	NA	3,770BE	U	U	U	2,860BE	U	U	U	1,390BE	U	U	U	28,500E	18,000	19,000	23,000
Selenium	10	2.8UW	U	U	U												
Silver	50	3.0BN	U	U	U	3.0UN	U	U	U	3.0UN	U	U	U	3.0UN	U	U	U
Sodium	20,000	3,840	7,000	4,100B	6,500	18,500	28,000	19,000	19,000	25,400	56,000	44,000	43,000	16,400	17,000	18,000	21,000
Thallium	0.5 (GV)	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Vanadium	NA	2.1B	U	U	U	U	U	U	U	U	U	U	U	10.4B	U	U	U
Zinc	2,000 (GV)	25.5*	U	U	U	22*	U	U	U	30.7*	U	U	14B	67.3*	85	U	U

### Notes:

All data presented in micrograms per liter (µg/L).

- U Analyte was analyzed for, but not detected.
- B The reported value is less than the Contract Required Detection Limit (CRDL), but greater than the Instrument Detection Limit (IDL).
- E Indicates an estimated value because of the presence of interference.
- W Post digestion spike for furnace AA analysis is out of control limits (85-115%), while sample absorbance is less than 50% of spike absorbance.
- N Spiked sample recovery not within control limits.
- * Duplicate analysis not within control limits.

AWQS - New York State Ambient Water Quality Standards (TOGs 1.1.1); GV - guidance value.

- NA No standard or guidance value exists for the analyte.
- NS Not sampled

**BOLD** font in shaded cell - indicates exceedance of AWQS or GV.



# Table 4 **Summary of Groundwater Analytical Results and Exceedances** (September 2016)

# **Tuxedo Waste Disposal Site** Site No. 3-36-035 **Tuxedo, Orange County, New York**

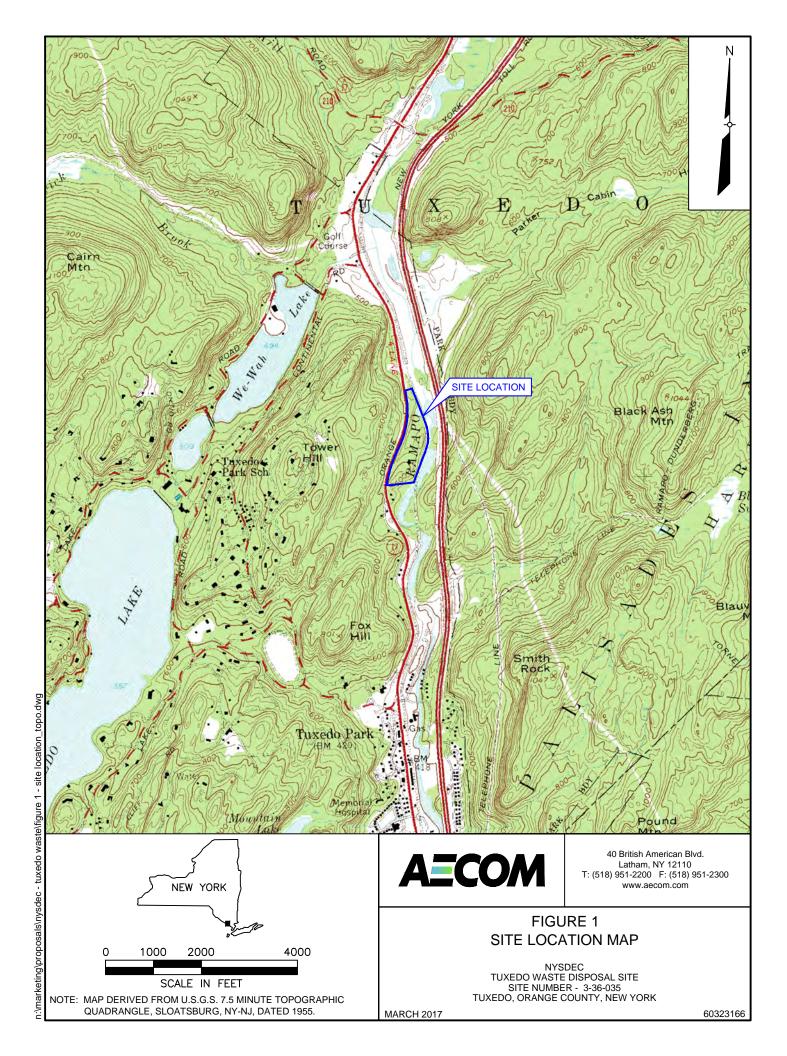
Monitoring V	/ell ID	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	RI-1	RI-2	RI-3	RI-4	RI-5A
Sample D	ate	9/8/2016	9/9/2016	9/8/2016	9/9/2016	9/8/2016	9/8/2016	9/8/2016	9/8/2016	9/9/2016	9/8/2016	9/9/2016
Analyte (µg/L)	AWQS or GV											
Aluminum	NA	NA	92.3	292	290	U	22.0B	308	U	5,630	912	152
Antimony	3	NA	U	5.1B	U	U	U	5.8B	6.7B	U	5.9B	U
Arsenic	25	NA	U	U	6.9B	8.1B	U	U	U	4.6B	7.3B	U
Barium	1,000	NA	7.3B	29.6B	26.7B	63.0B	46.8B	16.2B	11.8B	134B	62.0B	16.5B
Beryllium	3 (GV)	NA	U	0.084B	0.073B	0.055B	0.058B	0.15B	U	1.2B	0.095B	U
Cadmium	5	NA	U	U	U	U	U	U	U	U	1.3B	U
Calcium	NA	NA	23,800	41,400	52,600	115,000	99,100	56,100	26,700	54,400	90,500	36,000
Chromium	50	NA	0.95B	1.3B	1.1B	1.3B	0.4B	1.3B	3.0B	5.2B	1.9B	1.6B
Cobalt	NA	NA	0.36B	1.3B	0.64B	U	U	U	U	13.6B	3.3B	0.42B
Copper	200	NA	U	2.9B	5.1 B	5.4B	U	1.3B	U	35.6	22.4B	U
Iron	300	NA	125B	515	466	U	U	201	U	3,780	2,430	74.1B
Lead	25	NA	U	U	U	U	U	U	U	9.5B	U	U
Magnesium	35,000 (GV)	NA	6,390	10,700	11,200	16,600	8,530	9,920	6,820	13,600	8,910	4,270
Manganese	300	NA	4.5B	80.2	152	244	1,450	5.1B	7.4B	999	402	6.4B
Mercury	0.7	NA	0.044B	U	U	U	U	U	U	U	U	U
Nickel	100	NA	U	2.1B	2.5B	2.0B	U	1.5B	28.0B	10.4B	36.1B	U
Potassium	NA	NA	1,260	1,970	2,360	4,920	3,840	2,760	1,230	2,010	9,240	4,950
Selenium	10	NA	U	U	U	11.9B	13.8B	U	U	U	U	U
Sodium	20,000	NA	4,130	107,000	43,100	11,100	8,300	22,300	53,400	32,300	8,180	12,200
Thallium	0.5 (GV)	NA	U	6.8B	U	5.3B	U	U	2.7B	U	6.4B	15.2B
Vanadium	NA	NA	2.8B	1.1B	0.7B	U	U	1.3B	U	5.6B	1.6B	1.8B
Zinc	2,000 (GV)	NA	U	6.4B	5.4B	14.8B	U	U	U	37.0B	72.6	U
Maximum Conc	entration	NA	23,800	107,000	52,600	115,000	99,100	56,100	53,400	54,400	90,500	36,000
(Metal)			(Calcium)	(Sodium)	(Calcium)	(Calcium)	(Calcium)	(Calcium)	(Sodium)	(Calcium)	(Calcium)	(Calcium)

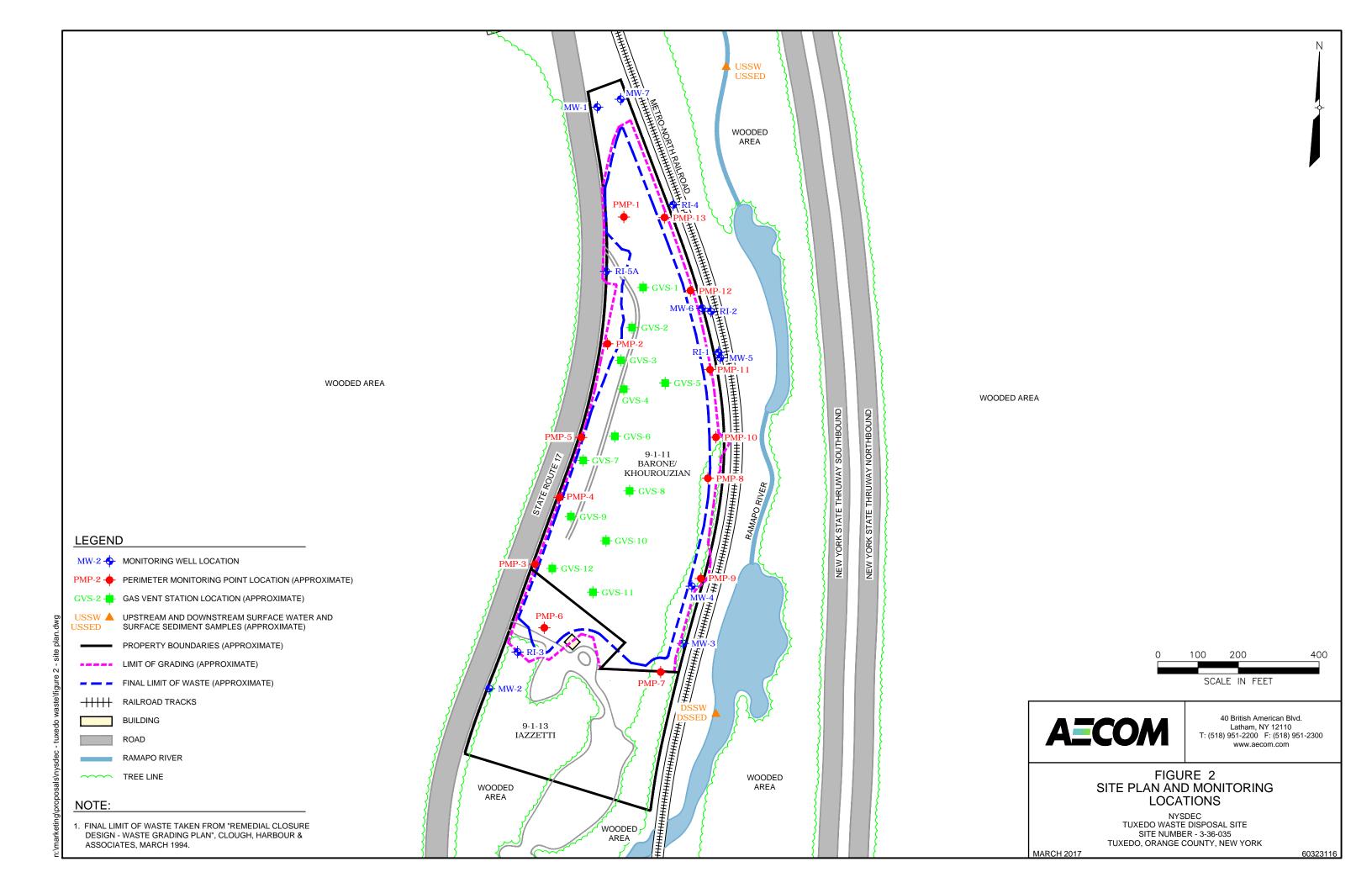
### Notes:

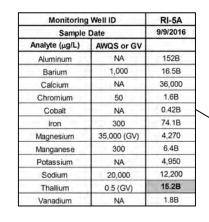
All data presented in micrograms per liter (µg/L).

Metals analysis by ICP Method 6010.

AWQS - New York State Ambient Water Quality Standards (TOGs 1.1.1); GV - guidance value.


U - Analyte was analyzed for, but not detected.


B - Estimated concentration above the instrument detection limit (IDL) but less than the contract required detection limit (CRDL).


BOLD font in shaded cell - indicates exceedances of AWQS or GV.

AECOM Environment

# **Figures**







Monitoring	Well ID	MW-6
Sample	Date	9/8/2016
Analyte (μg/L)	AWQS or GV	
Aluminum	NA	22.0B
Barium	1,000	46.8B
Beryllium	3 (GV)	0.058B
Calcium	NA	99,100
Chromium	50	0.40B
Magnesium	35,000 (GV)	8,530
Manganese	300	1,450
Potassium	NA.	3,840
Selenium	10	13.8B
Sodium	20,000	8,300

Monitoring	Well ID	RI-3
Sample	Date	9/9/2016
Analyte (µg/L)	AWQS or GV	
Aluminum	NA .	5,630
Arsenic	25	4.6B
Barium	1,000	134B
Beryllium	3 (GV)	1.2B
Calcium	NA .	54,400
Chromium	50	5.2B
Cobalt	NA.	13.6B
Copper	200	35.6
Iron	300	3,780
Lead	25	9.5B
Magnesium	35,000 (GV)	13,600
Manganese	300	999
Nickel	100	10.4B
Potassium	NA	2,010
Sodium	20,000	32,300
Vanadium	NA	5.6B
Zinc	2 000 (GV)	37.0B

Monitoring	Well ID	MW-2
Sample	Date	9/9/2016
Analyte (µg/L)	AWQS or GV	
Aluminum	NA.	92.3B
Barium	1,000	7.3B
Calcium	NA	23,800
Chromium	50	0.95B
Cobalt	NA.	0.36B
Iron	300	125B
Magnesium	35,000 (GV)	6,390
Manganese	300	4.5B
Mercury	0.7	0.044B
Potassium	NA	1,260
Sodium	20,000	4,130
Vanadium	NA	2.8B

WOODED

AREA

1 }	Monitoring	Well ID	RI-2
13	Sample	Date	9/8/2016
18	Analyte (µg/L)	AWQS or GV	
13	Antimony	3	6.7B
1 8	Barium	1,000	11.8B
<b>\</b> \ \	Calcium	NA	26,700
1}	Chromium	50	3.0B
18	Magnesium	35,000 (GV)	6,820
13	Manganese	300	7.4B
1	Nickel	100	28.0B
<b>1</b>	Potassium	NA	1,230
1 }	Sodium	20,000	53,400
<b>1</b> }	Thallium	0.5 (GV)	2.7B

WOODED

AREA

Monitoring Well ID

Sample Date

Antimony

Barium

Beryllium

Calcium

Copper

Iron

Magnesium

Manganese

Nickel

Potassium

Sodium

Thallium

Vanadium

WOODED -

AREA

Analyte (μg/L) AWQS or GV

NA

1.000

3 (GV)

NA

50

NA

200

300

35,000 (GV)

300

100.0

NA

20,000

0.5 (GV)

NA

2,000 (GV)

9/8/2016

292

5.1B

29.6B 0.084B

41,400

1.3B

1.3B

2.9B

515

10,700

80.2

2.1B

1,970

107,000

6.8B

1.1B

6.4B

Monitoring	Well ID	MW-5
Sample	Date	9/8/2016
Analyte (µg/L)	AWQS or GV	
Arsenic	25	8.1B
Barium	1,000	63.0B
Beryllium	3 (GV)	0.055B
Calcium	NA	115,000
Chromium	50	1,3B
Copper	200	5.4B
Magnesium	35,000 (GV)	16,600
Manganese	300	244
Nickel	100	2.0B
Potassium	NA	4,920
Selenium	10	11.9B
Sodium	20,000	11,100
Thallium	0.5 (GV)	5,3B
Zinc	2,000 (GV)	14.8B

Monitoring	Well ID	MW-4	
Sample	Date	9/9/2016	
Analyte (µg/L)	AWQS or GV		
Aluminum	NA NA	290	
Arsenic	25	6.9B	
Barium	1,000	26.7B	
Beryllium	3 (GV)	0.073B	
Calcium	NA NA	52,600	
Chromium	50	1.1B	╎┌
Cobalt	NA NA	0.64B	
Copper	200	5.1B	
Iron	300	466	
Magnesium	35,000 (GV)	11,200	
Manganese	300	152	l ⊨
Nickel	100	2.5B	Н
Potassium	NA	2,360	Н
Sodium	20,000	43,100	
Vanadium	NA NA	0.70B	
Zinc	2,000 (GV)	5.4B	

Monitoring	Well ID	RI-4
Sample	Date	9/8/2016
Analyte (µg/L)	AWQS or GV	
Aluminum	NA	912
Antimony	3	5.9 B
Arsenic	25	7.3B
Barium	1,000	62.0B
Beryllium	3 (GV)	0.095B
Cadmium	5	1.3B
Calcium	NA	90,500
Chromium	50	1.9B
Cobalt	NA.	3.3B
Copper	200	22.4B
Iron	300	2,430
Magnesium	35,000 (GV)	8,910
Manganese	300	402
Nickel	100	36.1B
Potassium	NA .	9,240
Sodium	20,000	8,180
Thallium	0.5 (GV)	6.4B
Vanadium	NA NA	1.6B
Zinc	2,000 (GV)	72.6

Monitoring	Well ID	RI-1
Sample	Date	9/8/2016
Analyte (µg/L)	AWQS or GV	
Aluminum	NA NA	308
Antimony	3	5.8B
Barium	1,000	16.2B
Beryllium	3 (GV)	0.15B
Calcium	NA NA	56,100
Chromium	50	1,3B
Copper	200	1,3B
Iron	300	201
Magnesium	35,000 (GV)	9,920
Manganese	300	5.1B
Nickel	100	1.5B
Potassium	NA NA	2,760
Sodium	20,000	23,200
Vanadium	NA NA	1.3B

100 200 400 SCALE IN FEET



40 British American Blvd. Latham, NY 12110 T: (518) 951-2200 F: (518) 951-2300 www.aecom.com

# FIGURE 3 GROUNDWATER MONITORING RESULTS (SEPTEMBER 2016)

NYSDEC TUXEDO WASTE DISPOSAL SITE SITE NUMBER - 3-36-035

NOTE:

**LEGEND** 

MW-2 • MONITORING WELL LOCATION

+++++ RAILROAD TRACKS BUILDING ROAD

TREE LINE

RAMAPO RIVER

NS NOT SAMPLED

NA NOT APPLICABLE

LIMIT OF GRADING (APPROXIMATE) FINAL LIMIT OF WASTE (APPROXIMATE)

PROPERTY BOUNDARIES (APPROXIMATE)

1. FINAL LIMIT OF WASTE TAKEN FROM "REMEDIAL CLOSURE DESIGN - WASTE GRADING PLAN", CLOUGH, HARBOUR & ASSOCIATES, MARCH 1994.

WOODED AREA

2. **BOLD** AND HIGHLIGHTED RESULTS INDICATE AN EXCEEDANCE OF THE AWQS OR GV.

B ESTIMATED CONCENTRATION

μg/L MICROGRAMS PER LITER

AWQS or GV NEW YORK STATE AMBIENT WATER QUALITY

STANDARD OR GUIDANCE VALUE

TUXEDO, ORANGE COUNTY, NEW YORK

MARCH 2017

60323116

AECOM Environment

# Appendix A

**Monitoring Well Sampling Observation Logs** 

	Monit	oring Wel			_		
Project Name and Number:			hxed	3			
Monitoring Well Number:		R1-	-4	_ Date:	9/	8/16	
Samplers:			<u></u>		<u> </u>		
Sample Number:		R1-	4 090	28/CONOC	Collected?		
Purging / Sampling Method:		Three Well	Volumes				
1. L = Well Depth: 2. D = Riser Diameter (I.D.): 3. W = Depth to Water: 4. C = Column of Water in Well: 5. V = Volume of Water in Well: 6. 3(V) = Target Purge Volume		9)(0.5D) ² (7.4	48)	15,95 0.15 6.45	feet feet feet feet gal gal	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.50
			Conversio	n factors to	determine V	given C	
		D (inches)	1 inch	1 (2 inch	2 inch	4 inch	6 inch
		D (inches) V (gal / ft)	1-inch 0.041	2-inch 0.168	3-inch 0.37	4-inch 0.65	6-inch 1.5
Nater Quality Readings Collecte	ed Using	Y51	556	Mac	4 21	COG	
Parameter	Units				Readings		
Time	24 hr	1420	1422	1424	1426		
Vater Level (0.33)	feet	15,95	_				
olume Purged	gal	U	6.15	6,30	0,45		
low Rate	mL/min						
urbidity (+/- 10%)	NTU	13,8	52.1	44.3	46.7		
Dissolved Oxygen (+/- 10%)	%	11.4		15.3	11.7		
Dissolved Oxygen (+/- 10%)	mg/L	1.04	16.3	1.55	1, 11		•
th / ORP (+/- 10)	MeV	81.9	77.1	44.3	36.2		
specific Conductivity (+/- 3%)	mS/cm ^c						
Conductivity (+/- 3%)	mS/cm	0.547	6,550	0-551	0,554		
H (+/- 0.1)		6.08	6.07		1111		
	pH unit C*		19.88	6,07	6.64		
emp (+/- 0.5) olor		19.37			19.95		
	Visual	Cler	Clean	Clear	Clean		
Odor	Olfactory	None	None	None	NoR		
Comments:		@			70000	Ĭ	

	Monit	oring We	II Purgin	g / Sampli	ing Form			
	HIOHIG		-	-	_			
Project Name and Number:		100	redo				-	
Monitoring Well Number:		Mh	J-3	_ Date:	_9	18/1	6	
Samplers:			607	+ MI	KC_			
Sample Number:	/	1W-3	0908/6	2 QA/QC	Collected?			
Purging / Sampling Method:		Three Wel	l Volumes	/Grundfo		ursible)	Pump	
<ol> <li>L = Well Depth:</li> <li>D = Riser Diameter (I.D.):</li> <li>W = Depth to Water:</li> <li>C = Column of Water in Well:</li> <li>V = Volume of Water in Well =</li> <li>3(V) = Target Purge Volume</li> </ol>		9)(0.5D) ² (7.	48)	30,30;- 18:1/ 12.19 3.04 9.12	feet feet feet feet gel gal gal	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch		
			Conversio	on factors to	determine \	√ given C		
	i	D (inches) V (gal / ft)	1-inch 0.041	2-inch 1 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5	]
Water Quality Readings Collecte	ed Using	Y51		, 10001	2100			
Parameter	Units		20.4	14	Readings			
Time	24 hr	1128	1131	1134	1136			
Water Level (0.33)	feet	14.33	20 11	1134	21.46			
Volume Purged	gal	- (	(NO) 3	6	9			
Flow Rate	mL/min							
Turbidity (+/- 10%)	NTU	9.05	[0,3	30.0	32.0			
Dissolved Oxygen (+/- 10%)	%	28,9	419	32.4	29.1			
Dissolved Oxygen (+/- 10%)	mg/L	2.97	4.47	35.56	314			
Eh / ORP (+/- 10)	MeV	25.2	40.3 (	P32 1 73	1 83.5			
Specific Conductivity (+/- 3%)	mS/cm ^c	1.294	0.837	0.820	A 477			t
Conductivity (+/- 3%)	mS/cm	1.21	0.07	0.000	0.835			
	pH unit	774	776	1 . 77	1 120			-
pH (+/- 0.1) Temp (+/- 0.5)	C,	7.7%	7.39	6.72	4.45	-		1
Color	the state of the s	14.02	12.57	12.27	11.92			
Odor	Visual	cloudy	clear	ilear	clear			
Jdor	Olfactory	noru	nene	none	nene	<u> </u>		
Comments:	Samp	,le ©	2 1138	\$				

	Monit	oring Wel	l Purging	/ Sampli	ng Form			
Project Name and Number:		7	Thread	0				
roject rame and rames.		ΑΛ Ι			01	1~1.1		
Monitoring Well Number:		/1h	1-5	Date:	_7/	8/16		
Samplers:			bD+	MKC	<u></u>			
Sample Number:		MW-5	0908	16 QAVQC	Collected?			
Purging / Sampling Method:		Three Well	l Volumes	- Bu	1/2			
1. L = Well Depth: 2. D = Riser Diameter (I.D.): 3. W = Depth to Water: 4. C = Column of Water in Well: 5. V = Volume of Water in Well 6. 3(V) = Target Purge Volume		9)(0.5D) ² (7.4	48)	19.36 11.21 1.33 3.99	feet feet feet feet gal	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.50	
			Conversion	n factors to	determine V	/ given C		
		D (inches) V (gal / ft)	1-inch 0.041	2-inch 0.168	3-inch 0.37	4-inch 0.65	6-inch 1.5	
Water Quality Readings Collecte	ed Using	Y S	51556	, Ha	ch Z	100a		
Parameter	Units				Readings			
Time	24 hr	1229	1232	1236	1240			
Water Level (0.33)	feet	12.18		13.85	1436			
Volume Purged	gal	LLILV	13,01	12100	17_0	<b> </b>		
Flow Rate	mL/min	Now	1.33	2.66	3.99	<u> </u>		
Turbidity (+/- 10%)	NTU	48.9	47		6810			
Dissolved Oxygen (+/- 10%)	%		76.6	68.2	26,4			
Dissolved Oxygen (+/- 10%)	mg/L	28.7	100	249	2,04			
Eh / ORP (+/- 10)	MeV	50.4	79.7 1,99 61.2	64.0	64.6			
Specific Conductivity (+/- 3%)	mS/cm ^c	0.685	0.697	0,764	0.705			
Conductivity (+/- 3%)	mS/cm	0.605	0.677	-	-	died.		
pH (+/- 0.1)	pH unit	7.35	127	6.61	6.56			0.1
Temp (+/- 0.5)	C,	17.74	6.72	15.45	15.37		5-00-1-4	-
Color	Visual	1/5/1-1	Cloudy	12.73	12.31		ġ.	
Odor	Olfactory	ilouoly	none	Clarely	Cloudy			
0001	Ollacion	NOW	1000	10.00	1000			-
Comments:	Samp	ok O		TO I	1242	(z)		

	Monit	oring We	l Purgin	g / Sampli	ng Form			764
Project Name and Number:			uxed	8				
Monitoring Well Number:		Mh	uxedi 1-6	_ Date:	9	7/8/10	<i>'</i>	
Samplers:				MKC				
Sample Number:				8/ QAIQC		_		
Purging / Sampling Method:		Three Well						1
The state of the s		-						11
1. L = Well Depth:				18.40	_	D (inches)	-	-3
2. D = Riser Diameter (I.D.):					feet	1-inch	0.08	
3. W = Depth to Water:				9.39	-	2-inch	0.17	
4. C = Column of Water in Well:		0) (0 = 5) 2(7	40)	, , , , , ,	_feet	3-inch	0.25	
5. V = Volume of Water in Well 6. 3(V) = Target Purge Volume	= C(3.1415)	9)(0.5D)*(7.4	48)	1147	_gal	4-inch	0.33	
o. 5(v) – rarget Pulge volume				4,41	_gal	6-inch	<b>40.50</b>	1
			Conversion	n factors to	determine \	V given C		
		D (inches)	1-inch	2-inch)	3-inch	4-inch	6-inch	1
		V (gal / ft)	0.04		0.37	0.65	1.5	
Water Quality Readings Collect	Ü	Y5.	556	, 14.		100 0		
Parameter Time	Units	1336	1341	1345	Readings			
Water Level (0.33)	24 hr feet	10:11	9,97	16.10	1349			
Volume Purged	gai	0		2.94	10.15			
Flow Rate	mL/min		1.44	6114	741			
Turbidity (+/- 10%)	NTU	864	80.4	58.1	75.6			
Dissolved Oxygen (+/- 10%)	%	717	17.6	30.1	29.5	1		
Dissolved Oxygen (+/- 10%)	mg/L	1.88	2.45	2.82	29.5 2.74 -53.9			
Eh / ORP (+/- 10)	MeV	-16.6	-57.5	-56.2	-53.9			
Specific Conductivity (+/- 3%)	mS/cm ^c	0.546	0.590	0.587	0.585			
Conductivity (+/- 3%)	mS/cm			1 ~				
pH (+/- 0.1)	pH unit	7.07	6.58	6,95	6.88		14	A
Temp (+/- 0.5)	C,	21.50	20.58	19.01	18.31			100
Color	Visual	Cloudy	Cloudy	Clordy	Clandy			
Odor	Olfactory	North	None	None	Nece			No.
Comments:		4.	-3					
	5.	mole	@	1350	0 (2	)		
		- P		-				

	Monit	oring Wel	l Purging	/ Sampli	ng Form	-		
Project Name and Number:		live						
Monitoring Well Number:		RI-1		_ Date:	9/8	5/2016		
Samplers:		Mike K	Luza-la	roul, G	9/2 24, Dun	lavey		
Sample Number:		RI-1 09		QA/QC	Collected?	No		
Purging / Sampling Method:		Three Well	Volumes	Grund	Tos Pur	лр		
1. L = Well Depth: 2. D = Riser Diameter (I.D.): 3. W = Depth to Water: 4. C = Column of Water in Well: 5. V = Volume of Water in Well: 6. 3(V) = Target Purge Volume		9)(0.5D) ² (7.4		93.53 6,17 12.81 80.72 13.14 39.48	feet feet	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.50	
		D (inches) V (gal / ft)	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5	
Water Quality Readings Collecte	ed Using	YSI	556	Huch	2100			
Parameter	Units		****		Readings			
Time	24 hr	1227	1243	1258	1311			
Water Level (0.33)	feet	18.71	34.83	41.12	41,93			
Volume Purged	gal	init	13	26	39			
Flow Rate	mĽ/min					1500		
Turbidity (+/- 10%)	NTU	10.7	9.34	22,7	38.5			
Dissolved Oxygen (+/- 10%)	%	153	41.2	30.5	40.8			
Dissolved Oxygen (+/- 10%)	mg/L	65.3 6.47	4.43	3.14	4.24			
Eh / ORP (+/- 10)	MeV	43.8	28.4	~1.7	2,1			
Specific Conductivity (+/- 3%)	mS/cm ^c		0.510	0.496	0.443			
Conductivity (+/- 3%)	mS/cm	0.482	0.210	-1710	0, 175	·		
pH (+/- 0.1)	pH unit	217	- 1.21	714	~ .			
Temp (+/- 0.5)	C,	8.17	7.04	7.58	7.55			
Color	Visual	13.44	124	13/12	15.33			
Odor	Olfactory	clear	clear	dess	Clear			
Odoi	Ollaciory	none	NEW	none	none			
Comments: Sample	0	13/5					Page 1 of 1	

	Monit	oring We	II Purging	/ Sampli	ng Form		
Project Name and Number:			Tuxedo				
Monitoring Well Number:		PI	2	Date:	9/8	12014	
Samplers:		Mila	e Kuz	ia- Carre	ul bre	a Pun	lavey
Sample Number:		RI-2	090814	QA/QC	Collected?	1 No	
Purging / Sampling Method:		Three Wel	l Volumes	1 bour	dfos (	Submers	ible) Pump
1. L = Well Depth: 2. D = Riser Diameter (I.D.): 3. W = Depth to Water: 4. C = Column of Water in Well: 5. V = Volume of Water in Well 6. 3(V) = Target Purge Volume		9)(0.5D) ² (7.4	- (48)	11.70.50 37.005 6 11.38 59.16 38.45 115.36		D (inches 1-inch 2-inch 3-inch 4-inch 6-inch	0.08 0.17 0.25 0.33
		D (inches) V (gal / ft)	1-inch 0.041	2-inch 0.163	determine \ 3-inch 0.37	4-inch 0.65	6-inch 1.5
Water Quality Readings Collect	ed Using	YSI	-556	Hach 2	100		
Parameter	Units				Readings		
Time	24 hr	1330	1356	1418	1440		
Water Level (0.33)	feet	11.60	11.80	11.80	11.80	10	
Volume Purged	gal	init	38,45	78	115.36		
Flow Rate	mL/min						
Turbidity (+/- 10%)	NTU	9.71	1.63	1.14	0.62	k i	
Dissolved Oxygen (+/- 10%)	%	44.0	1.63	50.6	39.4		
Dissolved Oxygen (+/- 10%)	mg/L	4.63	4.52	5.33	4.08		
Eh / ORP (+/- 10)	MeV	12.8	4.52	73.1	65.9		
Specific Conductivity (+/- 3%)	mS/cm ^c	0.308	0.492	6.488	0.489		***************************************
Conductivity (+/- 3%)	mS/cm		0.112	01100			
pH (+/- 0.1)	pH unit	7.61	7,06	6.39	6.54		
Temp (+/- 0.5)	C"	37.44 13.	01 12.92	1262	13.25		
Color	Visual			1442			
Odor	Olfactory	clear	rene	clear	clear		
Cuoi	Onactory	none	1010	none	none		<u> </u>
Sample (	P) 14	45					Page 1 of 1

	Monit	oring Wel						
Project Name and Number:			To	redo				
Monitoring Well Number:		Mn	-2	redo Date:	9,	19/16		
Samplers:			60 r	MICC	_			
Sample Number:		Mh-2	20909	16 QA/QC	Collected?			
Purging / Sampling Method:		Three Well	Volumes					
1. L = Well Depth: 2. D = Riser Diameter (I.D.): 3. W = Depth to Water: 4. C = Column of Water in Well: 5. V = Volume of Water in Well: 6. 3(V) = Target Purge Volume		9)(0.5D) ² (7.4			feet feet feet gal gal	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.50	
		D (inches)	Conversio	n factors to	determine \	/ given C	6-inch	
		V (gal / ft)	0.041	2-inch 0.168	0.37	0.65	1.5	
Water Quality Readings Collecte	ed Using	<u> </u>	51 5	56,	March	2100	Q	
Parameter	Units				Readings			
Time	24 hr	1328	1347	1402	49.76			
Water Level (0.33)	feet	27.51	37.92	47.71	44.76			
Volume Purged	gal		10.5	91	31,00			
Flow Rate	mL/min							
Turbidity (+/- 10%)	NTU	24.5	137	ML	14.3			
Dissolved Oxygen (+/- 10%)	%		137	14.4 39.6				
		54.5	73.0	27.6	35 8			
Dissolved Oxygen (+/- 10%)	mg/L	5.22	45.6	4.18				- 4
Eh / ORP (+/- 10)	MeV	-7.6		12,8	63.6			- 1
Specific Conductivity (+/- 3%)	mS/cm ^c	0.201	6,186	0,198	0,203			
Conductivity (+/- 3%)	mS/cm				- 67			
pH (+/- 0.1)	pH unit	6.75	7.07	7,19	6,61			- 1
Temp (+/- 0.5)	C,	17.30	14.15	13,71	12.9			
Color	Visual	elear	cloudy	cloudy	cloudy			
Odor	Olfactory	organic	nory	Nuce	None			
Comments:			vegetab	les				
	50	mple			5			
							Page 1 of 1	

Desired Norman and 121 and a							
Project Name and Number:			Tuxes	Le			
Monitoring Well Number:		R1-	3	_ Date:	9	19/16	5
Samplers:			b +				
Sample Number:		R1-3	09091	6 ONOC	Collected?		
Purging / Sampling Method:		Three Well	I Volumes			<del>.</del>	
1. L = Well Depth: 2. D = Riser Diameter (I.D.): 3. W = Depth to Water: 4. C = Column of Water in Well: 5. V = Volume of Water in Well: 6. 3(V) = Target Purge Volume		9)(0.5D) ² (7.	48)	37.92 1.10 3.3	_ feet	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	0.08 0.17 0.25 0.33 0.50
			Conversion	n factors to	determine \	V given C	
		D (inches) V (gal / ft)	1-inch 0.041	2-inch 0.168	3-inch 0.37	4-inch 0.65	6-inch 1.5
Water Quality Readings Collect	ed Using	1	5/ 5	556	7 /	Mach	21009
Parameter	Units				Readings	•	
Time	24 hr	12412	1416	1420	1423		
Water Level (0.33)	feet		785-800-				
Volume Purged	gal	0	1,1	ひて	3,3		
Flow Rate	mL/min		200				
Turbidity (+/- 10%)	NTU	38.1	43.7	28.2	33,1		
Dissolved Oxygen (+/- 10%)	%	33.7	3/12	28.2	29.0		
Dissolved Oxygen (+/- 10%)	mg/L	3.52	3.33	3,21	3,03		
Eh / ORP (+/- 10)	MeV	68,3	101.2	3.21	108,6		
Specific Conductivity (+/- 3%)	mS/cm ^c	6,487	101.2	6.500	0,501		
Conductivity (+/- 3%)	mS/cm				-		
oH (+/- 0.1)	pH unit	6:47	5.77	\$5.81	5.7/		
Temp (+/- 0.5)	C,	13,05	1225	12.33	5.71 12.83 Clar		
Color	Visual	Cloudy	Cloud	Clar	Clar		
Odor	Olfactory	None	Nuc	Mr	None		
Comments:		Samp	,la 6				

					ing Form		
Project Name and Number:			Tuteda	,		7/9/16	
Monitoring Well Number:		MI	-4	Date	9	2/4//	/
Workoning Well Mailiber.		7100	(n:	_ Jake.		11/10	
Samplers:			6D+	MKC			
Sample Number:		MW-4	09091	& QAVQC	Collected?		
Purging / Sampling Method:		Three Wei	l Volumes				
<ol> <li>L = Well Depth:</li> <li>D = Riser Diameter (I.D.):</li> <li>W = Depth to Water:</li> <li>C = Column of Water in Well:</li> <li>V = Volume of Water in Well:</li> <li>3(V) = Target Purge Volume</li> </ol>		9)(0.5D) ² (7.	48)	2638 0.17 18.92 9.46 1.84 4.67	feet feet feet gal	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.50
			Conversio	n factors to	determine \	√ given C	
		D (inches) V (gal / ft)	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5
	•	N/10					
Water Quality Readings Collecte	ed Using	75	<u>L 556</u>	Hach	7100	-	
	ed Using Units	75	556		7100 Readings		
Parameter Time		1225	1227	1229			
Parameter Time Water Level (0.33)	Units	1225	1227		Readings		
Parameter Time Water Level (0.33) Volume Purged	Units 24 hr	1225		1229	Readings		
Parameter Time Water Level (0.33) Volume Purged Flow Rate	Units 24 hr feet	1225 18.91 init.	1227	1229	Readings 1231 1893 4.16		
Water Quality Readings Collecter Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%)	Units 24 hr feet gal mL/min NTU	1225 18.91 init 76.2	1227	1229	Readings 1231 1893 4.16		<b>T</b>
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min	1225 18.91 init.	1227 1851 1.5 40.6 30.4	1229 18.92 3 39.5 31.9	Readings 1231 1893 4.16		Ψ
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min NTU % mg/L	1225 18.91 10it 76.2 33.7 3.44	1227 1851 1.5 40.6 30.4 3.10	1229 18.92 3 39.5 31.9 3.28	Readings 1231 1893 4.16		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%)	Units 24 hr feet gal mL/min NTU % mg/L MeV	1225 18.91 init 26.2 33.7	1227 1851 1.5 40.6 30.4 3.10	1229 18.92 3 39.5 31.9 3.28	Readings 123 1 1893 4.16 44.0 78.3 2.12		Ψ
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10)	Units 24 hr feet gal mL/min NTU % mg/L	1225 18.91 18.1 18.2 26.2 33.7 344 74.0	1227 1851 1.5 40.6 30.4	1229 18.92 3 39.5 31.9 3.28 94.9	Readings 123 1 18 93 4.16 44.0 78.3 2.12 100 4		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%)	Units 24 hr feet gal mL/min NTU % mg/L MeV	1225 18.91 10it 76.2 33.7 3.44	1227 18.91 1.5 40.6 30.4 3.10 87.2 0.527	1229 18.92 39.5 31.9 3.28 94.9	Readings 1231 1893 4.15 44.0 78.3 2.12 100 4 0.528		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit	1225 18.91 10.11 26.2 33.7 3.44 74.0 0.528	1227 18.91 1.5 40.6 30.4 3.10 87.2 0.527	1229 18.92 39.5 31.9 3.28 94.9	Readings 1231 1893 4.15 44.0 78.3 2.12 100 4 0.528		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1) Temp (+/- 0.5)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm	1225 18.91 10.11 26.2 33.7 3.44 74.0 0.528	1227 18.91 1.5 40.6 30.4 3.10 87.2 0.527	1229 18.92 39.5 31.9 3.28 94.9	Readings 1231 1893 4.15 44.0 78.3 2.12 100 4 0.528		
Parameter Time Water Level (0.33) Volume Purged Flow Rate Turbidity (+/- 10%) Dissolved Oxygen (+/- 10%) Dissolved Oxygen (+/- 10%) Eh / ORP (+/- 10) Specific Conductivity (+/- 3%) Conductivity (+/- 3%) pH (+/- 0.1)	Units  24 hr feet gal mL/min NTU % mg/L MeV mS/cmc mS/cm pH unit	1225 18.91 10.11 26.2 33.7 3.44 74.0 0.528	1227 18.91 1.5 40.6 30.4 3.10 87.2 0.527	1229 18.92 3 39.5 31.9 3.28 94.9	Readings 123 1 18 93 4.16 44.0 78.3 2.12 100 4		

	Monit	oring We	l Purgino	/ Sampl	ing Form		
Project Name and Number:			400	•		0 1 1	
Monitoring Well Number:		21-5	A	_ Date:		9/9/	16
Samplers:			60	+ M	KC		
Sample Number:		R1-51	7 0901	2/6 QA/QC	Collected?		1077 - 1072
Purging / Sampling Method:		Three Well	Volumes	-wal	Lerra		
1. L = Well Depth: 2. D = Riser Diameter (I.D.); 3. W = Depth to Water: 4. C = Column of Water in Well: 5. V = Volume of Water in Well: 6. 3(V) = Target Purge Volume		9)(0:5D) ² (7.4	·	81.88 0,17 17.61 39.27 4.40 19.20	feet feet feet gal gal	D (inches) 1-inch 2-inch 3-inch 4-inch 6-inch	D (feet) 0.08 0.17 0.25 0.33 0.50
			Conversio	n factors to	determine \	√ given C	
		D (inches) V (gal / ft)	1-inch 0.041	2-inch 0.163	3-inch 0.37	4-inch 0.65	6-inch 1.5
Water Quality Readings Collect	ed Using	<u> Y</u> 5	1556	+ /	Mach	2100,9	
Parameter	Units				Readings		
Time	24 hr	1124	1128	1133	1140		
Water Level (0.33)	feet		1				
Volume Purged	gal	0	6.5	13	19.5		
Flow Rate	mL/min	_	-		_		
Turbidity (+/- 10%)	NTU	524	42.1	67.5	37.5		
Dissolved Oxygen (+/- 10%)	%	163.8	102.6	80,1	95.3		
Dissolved Oxygen (+/- 10%)	mg/L	10.12	10.51	67,5 40,1 9,44	37,5 95,3 4,53 31.4		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Eh / ORP (+/- 10)	MeV	16.4	21.7	23.8	31.4		
Specific Conductivity (+/- 3%)	mS/cm ^c	0.289	0.218	0.260	0.269		
Conductivity (+/- 3%)	mS/cm		0.40	i		- )	
pH (+/- 0.1)	pH unit	8.24	8.39	8.64	8.80		
Temp (+/- 0.5)	C'		0.71		15.62		
Color	Visual	Clarky	cloudy	cloudy	ckirdy		
Odor	Olfactory	None					
	Onactory	100.0	New	none	NONC		
Comments:							
	, •	Senp	le (	<u>a</u> /	147		
				,	سبه ي	4	
				,			Page 1 of 1

AECOM Environment

Appendix B

**Laboratory Data** 



Final Report
Re-Issued Report
Revised Report
Report Date:
30-Sep-16 13:10

# Laboratory Report

AECOM Technical Services, Inc.

Work Order: R0834

Project: Tuxedo Waste Disposal

Project #:

Attn: Mark Howard

Latham, NY 12110

40 British American Blvd.

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
R0834-01	MW-3	Aqueous	08-Sep-16 11:38	10-Sep-16 10:00
R0834-02	RI-1	Aqueous	08-Sep-16 13:15	10-Sep-16 10:00
R0834-03	MW-5	Aqueous	08-Sep-16 12:42	10-Sep-16 10:00
R0834-04	MW-6	Aqueous	08-Sep-16 13:50	10-Sep-16 10:00
R0834-05	RI-2	Aqueous	08-Sep-16 14:45	10-Sep-16 10:00
R0834-06	RI-4	Aqueous	08-Sep-16 14:28	10-Sep-16 10:00
R0834-07	RI-5A	Aqueous	09-Sep-16 11:42	10-Sep-16 10:00
R0834-08	MW-4	Aqueous	09-Sep-16 12:35	10-Sep-16 10:00
R0834-09	RI-3	Aqueous	09-Sep-16 14:25	10-Sep-16 10:00
R0834-10	MW-2	Aqueous	09-Sep-16 14:30	10-Sep-16 10:00

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. The results relate only to the samples(s) as received. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

All applicable NELAC or USEPA CLP requirements have been met.

Use of the NELAP logo does not insure that Eurofins Spectrum Analytical is currently accredited for the specific test method or analyte. Please refer to our Quality page of our web site at www.EurofinsUS.com for the current list of certifications and fields of accreditation.

Please contact the Laboratory or Technical Director at 401-732-3400 with any questions regarding the data contained in the laboratory report.

**Certification List:** 

Connecticut PH-0153 Florida E87664 Massachusetts M-RI907 New Hampshire 2060 New Jersey RI001 New York 11522 Rhode Island LAI00349 USDA P330-16-00031 USEPA - ISM EP-W-14-032 USEPA - SOM EP-W-14-032 Dod ELAP L2247





Authorized by:

Davon & Wagash

Dawn Wojcik Laboratory Director

# **Eurofins Spectrum Analytical, Inc. -- ESAI-RI**

# **New York State Department of Environmental Conservation Sample Identification and Analytical Requirements Summary**

Project Name : Tuxedo Waste Disposal SDG : R0834

			Analy	rtical Requirement	S	
Customer Sample ID	Laboratory Sample ID	MSVOA Method #	MSSEMI Method #	GC* Method #	ME	Other
MW-3	R0834-01				SW6010_W	
MW-3	R0834-01				SW7470	
RI-1	R0834-02				SW6010_W	
RI-1	R0834-02				SW7470	
MW-5	R0834-03				SW6010_W	
MW-5	R0834-03				SW6010_W	
MW-5	R0834-03				SW7470	
MW-5	R0834-03				SW7470	
MW-6	R0834-04				SW6010_W	
MW-6	R0834-04				SW6010_W	
MW-6	R0834-04				SW7470	
MW-6	R0834-04				SW7470	
RI-2	R0834-05				SW6010_W	
RI-2	R0834-05				SW7470	
RI-4	R0834-06				SW6010_W	
RI-4	R0834-06				SW7470	
RI-5A	R0834-07				SW6010_W	
RI-5A	R0834-07				SW7470	
MW-4	R0834-08				SW6010_W	
MW-4	R0834-08				SW7470	
RI-3	R0834-09				SW6010_W	
RI-3	R0834-09				SW7470	
MW-2	R0834-10				SW6010_W	
MW-2	R0834-10				SW7470	

Page 1 09/30/2016 10:17

# **Eurofins Spectrum Analytical, Inc. -- ESAI-RI**

# New York State Department of Environmental Conservation Sample Preparation and Analysis Summary ME

Project Name : Tuxedo Waste Disposal SDG : R0834

Laboratory		Metals	Date Received	Date
Sample ID	Matrix	Requested	By Lab	Analyzed
SW6010_W	•		- '	
R0834-01A	AQ	SW6010_W	9/10/2016	9/22/2016
R0834-02A	AQ	SW6010_W	9/10/2016	9/22/2016
R0834-03A	AQ	SW6010_W	9/10/2016	9/22/2016
R0834-03B	AQ	SW6010_W	9/10/2016	9/22/2016
R0834-04A	AQ	SW6010_W	9/10/2016	9/22/2016
R0834-04B	AQ	SW6010_W	9/10/2016	9/22/2016
R0834-05A	AQ	SW6010_W	9/10/2016	9/22/2016
R0834-06A	AQ	SW6010_W	9/10/2016	9/22/2016
R0834-07A	AQ	SW6010_W	9/10/2016	9/22/2016
R0834-08A	AQ	SW6010_W	9/10/2016	9/22/2016
R0834-09A	AQ	SW6010_W	9/10/2016	9/22/2016
R0834-10A	AQ	SW6010_W	9/10/2016	9/22/2016
R0834-10ADUP	AQ	SW6010_W	9/10/2016	9/22/2016
R0834-10ADUP	AQ	SW6010_W	9/10/2016	9/21/2016
R0834-10AMS	AQ	SW6010_W	9/10/2016	9/21/2016
R0834-10AMS	AQ	SW6010_W	9/10/2016	9/22/2016
SW7470	•			
R0834-01A	AQ	SW7470	9/10/2016	9/22/2016
R0834-02A	AQ	SW7470	9/10/2016	9/22/2016
R0834-03A	AQ	SW7470	9/10/2016	9/22/2016
R0834-03B	AQ	SW7470	9/10/2016	9/22/2016
R0834-04A	AQ	SW7470	9/10/2016	9/22/2016
R0834-04B	AQ	SW7470	9/10/2016	9/22/2016
R0834-05A	AQ	SW7470	9/10/2016	9/22/2016
R0834-06A	AQ	SW7470	9/10/2016	9/22/2016
R0834-07A	AQ	SW7470	9/10/2016	9/22/2016
R0834-08A	AQ	SW7470	9/10/2016	9/22/2016
R0834-09A	AQ	SW7470	9/10/2016	9/22/2016
R0834-10A	AQ	SW7470	9/10/2016	9/22/2016

Page 8 09/30/2016 10:17

Report Level: ASP-A

HC Due: 09/22/2016

Case:

# Eurofins Spectrum Analytical, Inc. -- ESAI-RI

Client ID: AECOM LATHAM

MS SEL Storage **⊼ ₹ ⊼ ⊼ 4** ₹ **⊼ ₹ ⊼ ₹** ₹  $\frac{2}{4}$ ₹ Δ  $\frac{2}{4}$  $\frac{2}{4}$ > > > > > > > > HIĦ Special Program: Samp / Lab Test Comments / Dissolved, TAL / Dissolved, TAL Dissolved, TAL Dissolved, TAL Fax Report: Fax Due: /TAL **PO:** 60323116.3 SW6010_W SW6010_W SW6010_W SW6010_W SW6010_W SW6010_W SW6010_W SW6010_W SW6010_W SW7470 SW7470 SW7470 SW7470 SW7470 SW7470 SW7470 SW7470 SW7470 SDG: Aqueous Matrix Date Recv'd 09/10/2016 09/10/2016 09/10/2016 09/10/2016 09/10/2016 09/10/2016 09/10/2016 09/10/2016 09/10/2016 09/10/2016 09/10/2016 09/10/2016 09/10/2016 09/10/2016 09/10/2016 09/10/2016 09/10/2016 09/10/2016 09/08/2016 13:15 09/08/2016 13:50 09/08/2016 14:45 09/08/2016 14:45 09/08/2016 14:28 09/09/2016 11:42 09/08/2016 11:38 09/08/2016 13:15 09/08/2016 12:42 09/08/2016 12:42 09/08/2016 12:42 09/08/2016 13:50 09/08/2016 14:28 09/08/2016 11:38 09/08/2016 12:42 09/08/2016 13:50 09/08/2016 13:50 09/09/2016 11:42 Collection Date **Project:** Tuxedo Waste Disposal WO Name: Tuxedo Waste Disposal Location: AECOM_TUXEDO, Lab Samp ID Client Sample ID Comments: N/A MW-5 MW-5 MW-5 MW-5 9-WW 9-WM MW-3 MW-3 9-WW 9-WM RI-5A RI-5A RI-2 R -4 문 <u>F</u> R<del>|-</del>2 <u>R</u> R0834-01A R0834-01A 30834-02A R0834-04A R0834-04B R0834-04B R0834-07A 30834-07A R0834-03A ₹0834-03A R0834-03B R0834-03B R0834-04A R0834-05A R0834-05A R0834-06A R0834-06A ₹0834-02A

Lab Client Rep: Agnes R Huntley

09/30/2016 13:13

Page 01 of 02

HT = Test logged in but has been placed on hold

₹

>

/TAL /TAL /TAL

SW6010_W

Aqueous

09/10/2016

09/09/2016 12:35

MW-4 MW-4

R0834-08A

R0834-08A

SW7470

Aqueous

09/10/2016

09/09/2016 12:35

Aqueous SW6010_W

09/09/2016 14:25 09/10/2016

Reg34-09A RI-3 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/2016 14:25 09/09/20

₹ ₹

>

Report Level: ASP-A

EDD:

Fax Report:

Special Program:

HC Due: 09/22/2016 Fax Due: Case: SDG: Fairofins Spectrum Analytical, Inc. -- ESAI-RI

**Project:** Tuxedo Waste Disposal WO Name: Tuxedo Waste Disposal

Location: AECOM_TUXEDO,

Comments: N/A

**PO:** 60323116.3

Lab Samp II	Lab Samp ID Client Sample ID	Collection Date Date Recv'd Matrix Test Code	Date Recv'd	Matrix	Test Code	Samp / Lab Test Comments	HF HT MS SEL Storage
R0834-09A RI-3	RI-3	09/09/2016 14:25 09/10/2016	09/10/2016	Aqueous	seous SW7470	/TAL	M4
R0834-10A MW-2	MW-2	09/09/2016 14:30 09/10/2016	09/10/2016	Aqueous	s SW6010_W	/TAL	Y M4
R0834-10A	MW-2	09/09/2016 14:30 09/10/2016	09/10/2016	Aqueous	SW7470	/ TAL	M4

HT = Test logged in but has been placed on hold

Sample Transmittal Documentation

R0834 Page 3 of 49

eurofins	
eurofin	S
eurof	
eurof	
s eurol	
3	G-
3	
3	- Comp
R0 <b>834</b>	-
R0834	Control of the Contro
U R0 <b>834</b>	
R0834	<i>(</i> 1)
R0834	4
	R0834

Spectrum Analytical

# CHAIN OF CUSTODY RECORD

jo
-
Page

al Handling:	
Special H	

Standard TAT - 7 to 10 business days

☐ Rush TAT - Date Needed;

All TATs subject to laboratory approval
Min. 24-hr notification needed for rushes
Samples disposed after 60 days unless otherwise instructed.

Project No: 6032311(e	Site Name: Turedo Waste Disposal	Location: Lax do State: NY	Hilliael Kuzia- Coma	boxy Dunlavey	List Preservative Code below:  QA/QC Reporting Notes:	* additional charges may appply	Analysis MA DEP MCP CAM Report? Yes No	C1 DPH KCF Report/ Tess		117000000000000000000000000000000000000	Other: State-specific reporting standards:	MYULSO, do not Filter	1 NTU 250, do not Filter	□ NTU>SO, F. HEF HUNDS PRISLING	SAN COLUMNIA CON CITY OS COLUMNIA CONTRACTOR COLUMNIA COL	Driveso, do not laker	1 NO 550, do not Filler	DNTU-SO of not Filter	DATURSO, do not Eller	1 NOLSO, So not filled	1 NTV-50, do not Filled	□ EDD format:	A E-mail to: Mark. howard of allow. com		Condition upon receipt: Custody Seals: Lefresent latact   Broken	☐ Ambient ☐ Ced ☐ Refrigerated ☐ DI VOA Frozen ☐ Soil Jar Frozen
Invoice To: AECOM				P.O No.:	6=Ascorbic Acid List		Water Containers	4	r Glass Glass	Clear Plastic	L TO #	8 6 GWWA WANAIX	5 1 1 1 1 1 1 X	2 X X	0 × Z ×	5	× 1	7	×	× 1 1 1 1 1 1 1 1 5	> ) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Date: Time: Temp °C	9/9/14 1530 Oberred	$\Rightarrow$ 4 liolity 10, 20 0	Corrected On-3	RD#
Howard	Rother Australy Story	N 2110	1 451. 2200		ared $1=Na_2S2O_3$ $2=HCI$ $3=H_2SO_4$ $4=HNO_3$ $5=NaOH$ $8=NaHSO_4$ $9=Deionized Water 10=H_3PO_4 11=$		GW=Groundwater SW=Surface Water WW=Waste Water	SL=Sludge A=Indoor/Ambient Air SG=Soil Gas	X2= X3=	ab C=Compsite	Sample ID: Date: Time:	MN-3 090816 9/8/14 1138	RI-1 090816 1, 1315	MW-5 090816 1242	MW-6 69081/2 1350	22-2 090816 1, 1445	RI-4 690816 V 1428	KI-5A 090916 9/4/16 1142	MW-4 0909112 11235	I-2 090914 1 1425	MW-2 OGDGIFE V 1420		- lame MK TIDER	Gones Hentlet	0	
Report To:	AEC 40	-	Telephone #:	Project Mgr:	F=Field Filtered 1=N ₄ 7=CH3OH 8=NaHSO ₄		DW=Dinking Water	O=Oil SO=Soil S	X1=	G= Grab	Lab D:		8	\$	M	R		K		B		Relinquished by:	Behal Kuzin	-	4 of 4	<b>4</b> 9

Rev. Sep 2015

Eurofins Spectrum Analytical, Inc. -- ESAI-RI

			- TITICE J C							
Received By: (5/3)							P	age 01	of 00	
Reviewed By: CC							L	og-in	Date 09/	10/2016
Work Order: R0834	Client Name: A	ECOM	Technical	Serv	ices,	Inc.				
Project Name/Event:	Tuxedo Waste Disposal									
Remarks: (1/2) Please					Preser	vatio	n (pH)			Soil HeadSpace
sample/extract transfe submitted with this da									VOA	or Air Bubble >
bashing coda witch chilb do	package.	Lab	Sample ID	ниоз	H2SO4	HCl	NaOH	НЗРО4	Matrix	or equal to 1/4'
1. Custody Seal(s)	Present / Apsent		R0834-01	<2			<u> </u>			
	Intact / Broken		R0834-02	<2						
2. Custody Seal Nos.	N/A		R0834-02	<2						
		-								
<ol> <li>Traffic Reports/ Chair of Custody Records</li> </ol>	Present / Absent	-	R0834-04	<2						
(TR/COCs) or Packing			R0834-05	<2						
TIPCP			R0834-06	<2			ļ			
4. Airbill	Principle 1		R0834-07	<2						
4. AIRDIII	AirBil(/Sticker	<u> </u>	R0834-08	<2						
	Present / Absent		R0834-09	<2						
5. Airbill No.	FedEx 8104 1309 9580		R0834-10	<2						
6. Sample Tags	Present / Absent	_								
Sample Tag Numbers										
	Listed/									
(	Not Listed on Chain- of-Custody	<u> </u>								,
	Of cascody									
7. Sample Condition	Intact / Broken/									
	Leaking									
8. Cooler Temperature Indicator Bottle	Present / Absent	$\supset$								
9. Cooler Temperature	2.3 °C	1								
-										
10. Does information on TR/COCs and sample	Yes / No	$\triangleright$								
tags agree?										
11. Date Received at	09/10/2016									
Laboratory	03/10/2010									
12. Time Received	10:00	1								
Time Received	10:00									
Sample	Transfer									
Fraction (1) TVOA/VOA	Fraction (2) SVOA/PEST/ARO									
Area #	Area #	1								
Ву	Ву									
On	On	Tarana and a same and a same and a same a sam								
IR Temp Gun ID:MT-74		-	V	OA Mati	ix Key:					
CoolantCondition: ICE					US = Un	preserv	ved Soil	A=	- Air	
Preservative Name/Lot No:		·						eous H	= HCI	
					M = Me0				= Encore	
					N = Nah				= Freeze	
			Se	ee Sam			otification		ve Action Fo	rm Yes / No
		•	infrared in a strong							
			1							

* Metals *

# REPORT NARRATIVE

**Eurofins Spectrum Analytical, Inc.** 

Client: AECOM Technical Services, Inc.

**Project: Tuxedo Waste Disposal** 

Laboratory Workorder / SDG #: R0834 SW846 6010C, SW846 7470A

# I. SAMPLE RECEIPT

No exceptions or unusual conditions were encountered unless a Sample Condition Notification Form, or other record of communication is included with the Sample Receipt Documentation.

# II. HOLDING TIMES

# A. Sample Preparation:

All samples were prepared within the method-specified holding times.

# B. Sample Analysis:

All samples were analyzed within the method-specified holding times.

# III. METHODS

Samples were analyzed following procedures in laboratory test codes: SW846 6010C, SW846 7470A

# IV. PREPARATION

Aqueous Samples were prepared following procedures in laboratory test

code: SW3005A

Aqueous Samples were prepared following procedures in laboratory test

code: SW7470A

# V. INSTRUMENTATION

The following instrumentation was used:

R0834 Page 7 of 49

Instrument Code: FIMS2 Instrument Type: CVAA

Description: FIMS

Manufacturer: Perkin-Elmer

Model: FIMS100

Instrument Code: OPTIMA3

Instrument Type: ICP

Description: Optima ICP-OES Manufacturer: Perkin-Elmer

Model: 4300 DV

Instrument Code: OPTIMA4

Instrument Type: ICP

Description: Optima 8300 ICP-OES

Manufacturer: Perkin-Elmer Model: Optima 8300 ICP-OES

# VI. ANALYSIS

# A. Calibration:

Calibrations met the method/SOP acceptance criteria.

# B. Blanks:

All method blanks were within the acceptance criteria.

# C. Spikes:

# 1. Laboratory Control Spikes (LCS):

Percent recoveries for laboratory control samples were within the QC limits.

# 2. Matrix spike (MS):

Matrix spikes were performed on sample: MW-2 (R0834-10AMS).

Percent recoveries were within the QC limits.

# D. Post Digestion Spike (PDS):

A post-digestion spike was not performed on any sample in this SDG.

# E. Duplicate sample:

R0834 Page 8 of 49

Duplicate analyses were performed on sample: MW-2 (R0834-10ADUP).

Relative percent differences were within the QC limits.

# F. Serial Dilution (SD):

Serial Dilution analyses were performed on sample: MW-2 (R0834-10ASD).

Percent differences were within the QC limits.

# G. Samples:

No other unusual occurrences were noted during sample analysis.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Eurofins Spectrum Analytical, Inc. RI, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

Shann B Law le

Signed:

Date: 09/30/16

R0834 Page 9 of 49

# Data Flag/Qualifiers (Page 1 of 2):

- U Not Detected. This compound was analyzed-for but not detected. For most analyses the reporting limit (lowest standard concentration) is the value listed. For Department of Defense programs, this is the Limit of Detection (LOD).
- J This flag indicates an estimated value due to either
  - the compound was detected below the reporting limit, or
  - estimated concentration for Tentatively Identified Compound
- B This flag indicates the compound was also detected in the associated Method Blank. The B flag has an alternative meaning for Inorganics analyses reported using CLP ILM-type metals forms, indicating a "trace" concentration below the reporting limit and equal to or above the detection limit.
- D For Organics analysis, this flag indicates the compound concentration was obtained from a secondary dilution analysis
- E This flag indicates the compound concentration exceeded the Calibration Range. The E flag has an alternative meaning for Inorganics analyses reported using CLP metals forms, indicating an estimated concentration due to the presence of interferences, as determined by the serial dilution analysis.
- P This flag is used for pesticides/PCB/herbicide compound when there is a greater than 40% difference for detected concentration between the two GC columns used for primary and confirmation analyses. This difference typically indicates interference, causing one value to be unusually high. The **lower** of the two values is generally reported on the Form 1, and both values reported on the Form 10.
- A Used to flag semivolatile organic Tentatively Identified Compound library search results for compounds identified as an aldol condensation by-product.

# Data Flag/Qualifiers (Page 2 of 2):

- N Used to flag results for volatile and semivolatile Organics analysis Tentatively Identified Compounds where an analyte has passed the identification criteria, and is considered to be positively identified. For Inorganics analysis the N flag indicates the matrix spike recovery falls outside of the control limit.
- * For Inorganics analysis the * flag indicates Relative Percent Difference for duplicate analyses is outside of the control limit.
- L NYSDEC qualifier: Result is biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.
- Q Qualified Results. This compound has an associated Continuing Calibration Verification (CCV) with a %Difference or %Drift above the control limit.

# **Sample ID Suffixes**

DL	Diluted analysis. The sample was diluted and reanalyzed. The DL may be followed by a digit if more than one diluted reanalysis is provided. The DL suffix is not attached to an analysis initially performed at dilution, only to reanalyses performed at dilution
RE	Reanalysis. Appended to the client sample ID to indicate a reextraction and reanalysis or a reanalysis of the original sample extract.
RA	Reanalysis. Appended to the laboratory sample ID indicates a reanalysis of the original sample extract.
RX	Reextraction. Appended to the laboratory sample ID indicates a reextraction of the sample.
MS	Matrix Spike.
MSD	Matrix Spike Duplicate
DUP	Duplicate analysis
SD	Serial Dilution

Post-digestion or Post-distillation spike. For metals or inorganic analyses

PS

# U.S.EPA - CLP COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Lab	Name:	Eurofins Spec	ctrum Analytic	al, Inc.	Contract:	60323116.3		
Lab	Code:	ESAI-RI	Case No.:		SAS No.:		SDG No.:	SR0834
SOW	No.:	SW846	_					
			- EPA Sample No	).		Lab Sample	[D	
			$\frac{MW-2}{MW-2D}$			R0834-10		
			MW-2D MW-2S			R0834-10DUP R0834-10MS		
			$\frac{MW-3}{MW-4}$			R0834-01 R0834-08		
			<u>MW-5</u>			R0834-03		
			$\frac{MW-6}{RI-1}$			R0834-04 R0834-02		
			RI-2			R0834-05		
			RI-3 RI-4			R0834-09 R0834-06		
			RI-5A			R0834-07		
Were	ICP in	nterelement co	orrections app	olied?	Ye	es/No Y	es	
Were	backg	round correct:	ions applied?		Ye	es/No Y	es	
			ata generated			-		
	appl:	ication of bac	ckground corre	ections?	Ye	es/No No		
Comm	ents:							
T ce	ertify	that this dat	a package is	in complianc	e with the	terms and co	nditions	
			echnically and					
		ions detailed				ned in this		ata
			outer-readable					
		i by the Labor ving signature	ratory Manager			niee, as vell	ried Dà	
	nature:		Sharyn (.	3 Lawler 1	Name: Sh	ıaryn B. Lawleı	•	
Date	e:	09/30/16	U			AD		
ilm15.09.2	23.1015		C	OVER PAGE -			SW846	<del></del> -

R0834 Page 13 of 49

EPA SAMPLE NO.

MW-2

me: Eurofins Spectrum Analytical, Inc. Contract: 60323116.3	.3	,	,	323116.3	act:	Cont	Inc.	,	Analytical,	Spectrum	Eurofins	Name:	Lab
-------------------------------------------------------------	----	---	---	----------	------	------	------	---	-------------	----------	----------	-------	-----

Lab Code: ESAI-RI Case No.: SAS No.: SDG No.: SR0834

Matrix (soil/water): WATER Lab Sample ID: R0834-10

Level (low/med): MED Date Received: 09/10/2016

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS No.   Analyte   Concentration   C   C	Q M
7429-90-5 Aluminum 92.3 B	P
7440-36-0 Antimony 5.1 U	P
7440-38-2 Arsenic 3.9 U	P
7440-39-3 Barium 7.3 B	P
7440-41-7Beryllium 0.054 U	P
7440-43-9 Cadmium 0.53 U	P
7440-70-2 Calcium 23800	P
7440-47-3 Chromium 0.95 B	P
7440-48-4 Cobalt 0.36 B	P
7440-50-8 Copper 1.2 U	P
7439-89-6 Iron 125 B	P
7439-92-1 Lead 4.5 U	P
7439-95-4 Magnesium 6390	P
7439-96-5 Manganese 4.5 B	P
7439-97-6 Mercury 0.044 B	CV
7440-02-0 Nickel 1.2 U	P
7440-09-7 Potassium 1260	P
7782-49-2 Selenium 7.8 U	P
7440-22-4 Silver 2.7 U	P
7440-23-5 Sodium 4130	P
7440-28-0 Thallium 2.4 U	P
7440-62-2 Vanadium 2.8 B	P
7440-66-6 Zinc 3.2 U	P

Commen	its:			
•				

.

EPA SAMPLE NO.

MW-3

#### INORGANIC ANALYSIS DATA SHEET

Lab Name: Eurofins Spectrum Analytical, Inc. Contract: 60323116.3	Lab Name:	Eurofins	Spectrum	Analytical,	Inc.	Contract:	60323116.3	
-------------------------------------------------------------------	-----------	----------	----------	-------------	------	-----------	------------	--

Lab Code: ESAI-RI Case No.: SAS No.: SDG No.: SR0834

Matrix (soil/water): WATER Lab Sample ID: R0834-01

Level (low/med): MED Date Received: 09/10/2016

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

7429-90-5 Aluminum 292 7440-36-0 Antimony 5.1 B	P P P
7440-36-0 Antimony 5.1 B	
	P
7440-38-2 Arsenic 3.9 U	
7440-39-3 Barium 29.6 B	Р
7440-41-7 Beryllium 0.084 B	P
7440-43-9 Cadmium 0.53 U	P
7440-70-2 Calcium 41400	P
7440-47-3 Chromium 1.3 B	P
7440-48-4Cobalt 1.3 B	Р
7440-50-8 Copper 2.9 B	P
7439-89-6 Iron 515	P
7439-92-1 Lead 4.5 U	P
7439-95-4 Magnesium 10700	P
7439-96-5 Manganese 80.2	Р
7439-97-6 Mercury 0.028 U	CV
7440-02-0 Nickel 2.1 B	P
7440-09-7 Potassium 1970	P
7782-49-2 Selenium 7.8 U	Р
7440-22-4 Silver 2.7 U	Р
7440-23-5 Sodium 107000	Р
7440-28-0 Thallium 6.8 B	Р
7440-62-2 Vanadium 1.1 B	Р
7440-66-6 Zinc 6.4 B	Р

Commen	ts:			
-				
=				

 $ilm 15.09.23.1015 \hspace{1.5cm} FORM \hspace{.1cm} I \hspace{.1cm} - \hspace{.1cm} IN \hspace{.1cm} SW846 \hspace{.1cm}$ 

.

EPA SAMPLE NO.

MW-4

#### INORGANIC ANALYSIS DATA SHEET

Spectrum Analytical, Inc. Contract: 60323116.3	s Spectrum Analytical, Inc. Contract: 60323116.3
------------------------------------------------	--------------------------------------------------

Lab Code: ESAI-RI Case No.: SAS No.: SDG No.: SR0834

Matrix (soil/water): WATER Lab Sample ID: R0834-08

Level (low/med): MED Date Received: 09/10/2016

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	290			P
7440-36-0	Antimony	5.1	U		P
7440-38-2	Arsenic	6.9	В		P
7440-39-3	Barium	26.7	В		P
7440-41-7	Beryllium	0.073	В		P
7440-43-9	Cadmium	0.53	U		P
7440-70-2	Calcium	52600			P
7440-47-3	Chromium	1.1	В		P
7440-48-4	Cobalt	0.64	В		P
7440-50-8	Copper	5.1	В		P
7439-89-6	Iron	466			P
7439-92-1	Lead	4.5	U		P
7439-95-4	Magnesium	11200			P
7439-96-5	Manganese	152			P
7439-97-6	Mercury	0.028	U		CV
7440-02-0	Nickel	2.5	В		P
7440-09-7	Potassium	2360			P
7782-49-2	Selenium	7.8	U		P
7440-22-4	Silver	2.7	U		P
7440-23-5	Sodium	43100			P
7440-28-0	Thallium	2.4	U		P
7440-62-2	Vanadium	0.70	В		P
7440-66-6	Zinc	5.4	В		P

Commen	its:		
•			

EPA SAMPLE NO.

MW-5

#### INORGANIC ANALYSIS DATA SHEET

Lab Name:	Eurofins	Spectrum	Analytical,	Inc.	Contract:	60323116.3	
-----------	----------	----------	-------------	------	-----------	------------	--

Lab Code: ESAI-RI Case No.: SAS No.: SDG No.: SR0834

Matrix (soil/water): WATER Lab Sample ID: R0834-03

Level (low/med): MED Date Received: 09/10/2016

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	11.0	U		P
7440-36-0	Antimony	5.1	U		P
7440-38-2	Arsenic	8.1	В		P
7440-39-3	Barium	63.0	В		P
7440-41-7	Beryllium	0.055	В		P
7440-43-9	Cadmium	0.53	U		P
7440-70-2	Calcium	115000			P
7440-47-3	Chromium	1.3	В		P
7440-48-4	Cobalt	0.36	U		P
7440-50-8	Copper	5.4	В		P
7439-89-6	Iron	47.0	U		P
7439-92-1	Lead	4.5	U		P
7439-95-4	Magnesium	16600			P
7439-96-5	Manganese	244			P
7439-97-6	Mercury	0.028	U		CV
7440-02-0	Nickel	2.0	В		P
7440-09-7	Potassium	4920			P
7782-49-2	Selenium	11.9	В		P
7440-22-4	Silver	2.7	U		P
7440-23-5	Sodium	11100			P
7440-28-0	Thallium	5.3	В		P
7440-62-2	Vanadium	0.16	U		P
7440-66-6	Zinc	14.8	В		P

EPA SAMPLE NO.

MW-6

#### INORGANIC ANALYSIS DATA SHEET

|--|

Lab Code: ESAI-RI Case No.: SAS No.: SDG No.: SR0834

Matrix (soil/water): WATER Lab Sample ID: R0834-04

Level (low/med): MED Date Received: 09/10/2016

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	22.0	В		P
7440-36-0	Antimony	5.1	U		Р
7440-38-2	Arsenic	3.9	U		Р
7440-39-3	Barium	46.8	В		Р
7440-41-7	Beryllium	0.058	В		P
7440-43-9	Cadmium	0.53	U		P
7440-70-2	Calcium	99100			P
7440-47-3	Chromium	0.40	В		P
7440-48-4	Cobalt	0.36	U		P
7440-50-8	Copper	1.2	U		P
7439-89-6	Iron	47.0	U		Р
7439-92-1	Lead	4.5	U		P
7439-95-4	Magnesium	8530			P
7439-96-5	Manganese	1450			P
7439-97-6	Mercury	0.028	U		CV
7440-02-0	Nickel	1.2	U		P
7440-09-7	Potassium	3840			P
7782-49-2	Selenium	13.8	В		P
7440-22-4	Silver	2.7	U		Р
7440-23-5	Sodium	8300			P
7440-28-0	Thallium	2.4	U		P
7440-62-2	Vanadium	0.16	U		P
7440-66-6	Zinc	3.2	U		Р

Commen	ts:			
-				
=				

EPA SAMPLE NO.

RI-1

, Inc. Contract: 60323116.3	Analytical,	Spectrum	Eurofins	Name:	Lab
-----------------------------	-------------	----------	----------	-------	-----

Lab Code: ESAI-RI Case No.: SAS No.: SDG No.: SR0834

Matrix (soil/water): WATER Lab Sample ID: R0834-02

Level (low/med): MED Date Received: 09/10/2016

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	308			P
7440-36-0	Antimony	5.8	В		P
7440-38-2	Arsenic	3.9	U		Р
7440-39-3	Barium	16.2	В		Р
7440-41-7	Beryllium	0.15	В		Р
7440-43-9	Cadmium	0.53	U		P
7440-70-2	Calcium	56100			P
7440-47-3	Chromium	1.3	В		P
7440-48-4	Cobalt	0.36	U		P
7440-50-8	Copper	1.3	В		P
7439-89-6	Iron	201			Р
7439-92-1	Lead	4.5	U		P
7439-95-4	Magnesium	9920			P
7439-96-5	Manganese	5.1	В		P
7439-97-6	Mercury	0.028	U		CV
7440-02-0	Nickel	1.5	В		P
7440-09-7	Potassium	2760			P
7782-49-2	Selenium	7.8	U		P
7440-22-4	Silver	2.7	U		P
7440-23-5	Sodium	23200			P
7440-28-0	Thallium	2.4	U		P
7440-62-2	Vanadium	1.3	В		P
7440-66-6	Zinc	3.2	U		P

Commen	ts:			
-				
=				

EPA SAMPLE NO.

RI-2

	INORGANIC	ANALYSIS	DATA	SHEET
--	-----------	----------	------	-------

Lab Name:	Eurofins	Spectrum	Analytical,	Inc.	Contract:	60323116.3	
-----------	----------	----------	-------------	------	-----------	------------	--

Lab Code: ESAI-RI Case No.: SAS No.: SDG No.: SR0834

Matrix (soil/water): WATER Lab Sample ID: R0834-05

Level (low/med): MED Date Received: 09/10/2016

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	М
	_			Q	
7429-90-5	Aluminum	11.0	Ŭ		Р
7440-36-0	Antimony	6.7	В		P
7440-38-2	Arsenic	3.9	U		Р
7440-39-3	Barium	11.8	В		Р
7440-41-7	Beryllium	0.054	U		P
7440-43-9	Cadmium	0.53	U		P
7440-70-2	Calcium	26700			P
7440-47-3	Chromium	3.0	В		P
7440-48-4	Cobalt	0.36	U		Р
7440-50-8	Copper	1.2	U		P
7439-89-6	Iron	47.0	U		P
7439-92-1	Lead	4.5	U		P
7439-95-4	Magnesium	6820			P
7439-96-5	Manganese	7.4	В		P
7439-97-6	Mercury	0.028	U		CV
7440-02-0	Nickel	28.0	В		P
7440-09-7	Potassium	1230			P
7782-49-2	Selenium	7.8	U		P
7440-22-4	Silver	2.7	U		Р
7440-23-5	Sodium	53400			P
7440-28-0	Thallium	2.7	В		P
7440-62-2	Vanadium	0.16	U		Р
7440-66-6	Zinc	3.2	U		Р

Commen	ils.			
-				
-				

ilm15.09.23.1015 FORM I - IN SW846

R0834 Page 20 of 49

EPA SAMPLE NO.

RI-3

Lab Code: ESAI-RI Case No.: SAS No.: SDG No.: SR0834

Matrix (soil/water): WATER Lab Sample ID: R0834-09

Level (low/med): MED Date Received: 09/10/2016

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	5630			P
7440-36-0	Antimony	5.1	U		P
7440-38-2	Arsenic	4.6	В		P
7440-39-3	Barium	134	В		P
7440-41-7	Beryllium	1.2	В		Р
7440-43-9	Cadmium	0.53	U		P
7440-70-2	Calcium	54400			P
7440-47-3	Chromium	5.2	В		P
7440-48-4	Cobalt	13.6	В		P
7440-50-8	Copper	35.6			P
7439-89-6	Iron	3780			P
7439-92-1	Lead	9.5	В		P
7439-95-4	Magnesium	13600			P
7439-96-5	Manganese	999			P
7439-97-6	Mercury	0.028	U		CV
7440-02-0	Nickel	10.4	В		P
7440-09-7	Potassium	2010			P
7782-49-2	Selenium	7.8	U		P
7440-22-4	Silver	2.7	U		P
7440-23-5	Sodium	32300			P
7440-28-0	Thallium	2.4	U		P
7440-62-2	Vanadium	5.6	В		P
7440-66-6	Zinc	37.0	В		P

Commen	ts:			
-				
=				

EPA SAMPLE NO.

RI-4

|--|

Lab Code: ESAI-RI Case No.: SAS No.: SDG No.: SR0834

Matrix (soil/water): WATER Lab Sample ID: R0834-06

Level (low/med): MED Date Received: 09/10/2016

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	912			P
7440-36-0	Antimony	5.9	В		P
7440-38-2	Arsenic	7.3	В		P
7440-39-3	Barium	62.0	В		P
7440-41-7	Beryllium	0.095	В		P
7440-43-9	Cadmium	1.3	В		P
7440-70-2	Calcium	90500			P
7440-47-3	Chromium	1.9	В		P
7440-48-4	Cobalt	3.3	В		P
7440-50-8	Copper	22.4	В		P
7439-89-6	Iron	2430			P
7439-92-1	Lead	4.5	U		P
7439-95-4	Magnesium	8910			P
7439-96-5	Manganese	402			P
7439-97-6	Mercury	0.028	U		CV
7440-02-0	Nickel	36.1	В		P
7440-09-7	Potassium	9240			P
7782-49-2	Selenium	7.8	U		P
7440-22-4	Silver	2.7	U		P
7440-23-5	Sodium	8180			P
7440-28-0	Thallium	6.4	В		P
7440-62-2	Vanadium	1.6	В		P
7440-66-6	Zinc	72.6			P

Commen	its:		
•			

EPA SAMPLE NO.

RI-5A

INORGANIC ANALYSIS DATA SHEET

ns Spectrum Analytical, Inc. Contract: 60323116.3	Name: Eurofins Spectrum Analytical, Inc
---------------------------------------------------	-----------------------------------------

Lab Code: ESAI-RI Case No.: SAS No.: SDG No.: SR0834

Matrix (soil/water): WATER Lab Sample ID: R0834-07

Level (low/med): MED Date Received: 09/10/2016

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	152	В		P
7440-36-0	Antimony	5.1	U		P
7440-38-2	Arsenic	3.9	U		P
7440-39-3	Barium	16.5	В		P
7440-41-7	Beryllium	0.054	U		P
7440-43-9	Cadmium	0.53	U		P
7440-70-2	Calcium	36000			P
7440-47-3	Chromium	1.6	В		P
7440-48-4	Cobalt	0.42	В		P
7440-50-8	Copper	1.2	U		P
7439-89-6	Iron	74.1	В		P
7439-92-1	Lead	4.5	U		P
7439-95-4	Magnesium	4270			P
7439-96-5	Manganese	6.4	В		P
7439-97-6	Mercury	0.028	U		CV
7440-02-0	Nickel	1.2	U		P
7440-09-7	Potassium	4950			P
7782-49-2	Selenium	7.8	U		P
7440-22-4	Silver	2.7	U		P
7440-23-5	Sodium	12200			P
7440-28-0	Thallium	15.2	В		P
7440-62-2	Vanadium	1.8	В		P
7440-66-6	Zinc	3.2	U		P

Commen	ts:			
-				
=				

R0834 Page 23 of 49

# LABORATORY CONTROL SAMPLE

Aqueous LO	CS Source:				LCS-85460	
Solid LCS	Source:		<u> </u>		LCS(D) ID:	
Lab Code:	ESAI-RI	Case No.:	SAS No.:		SDG No.:	SR0834
Lab Name:	Eurofins Spec	trum Analytical, Inc.	Contract:	60323116.3		

	Aque	eous (ug/L	1)		Sol	id (mg/	'Kg)	
Analyte	True	Found	%R	True	Found	С	Limits	%R
Aluminum	10000.0	10291.30	102.9					
Antimony	500.0	542.67	108.5					
Arsenic	500.0	408.04	81.6					
Barium	10000.0	10220.89	102.2					
Beryllium	250.0	256.75	102.7					
Cadmium	250.0	255.55	102.2					
Calcium	25000.0	25375.55	101.5					
Chromium	1000.0	993.78	99.4					
Cobalt	2500.0	2504.03	100.2					
Copper	1250.0	1231.12	98.5					
Iron	5000.0	4625.58	92.5					
Lead	500.0	505.41	101.1					
Magnesium	25000.0	25492.71	102.0					
Manganese	2500.0	2559.99	102.4					
Nickel	2500.0	2500.61	100.0					
Potassium	25000.0	26888.66	107.6					
Selenium	500.0	536.13	107.2					
Silver	1250.0	1251.11	100.1					
Sodium	25000.0	27135.75	108.5					
Thallium	500.0	468.58	93.7					
Vanadium	2500.0	2490.33	99.6					
Zinc	2500.0	2569.83	102.8					

7

# LABORATORY CONTROL SAMPLE

Lab Name:	Eurofins Spec	trum Analytical, Inc.	Contract:	60323116.3		
Lab Code:	ESAI-RI	Case No.:	SAS No.:		SDG No.:	SR0834
Solid LCS	Source:				LCS(D) ID:	
Aqueous LO	CS Source:				LCS-85481	

	Aque	eous (ug/L	)		Soli	.d (	mg/Kg)	
Analyte	True	Found	%R	True	Found	С	Limits	%R
Mercury	4.6	4.64	100.9					

5A

EPA SAMPLE NO.

MW-2S

#### SPIKE SAMPLE RECOVERY

Lab Name: Eurofins Spectrum Analytical, Inc. Contract: 60323116.3

Lab Code: ESAI-RI Case No.: SAS No.: SDG No.: SR0834

Matrix (soil/water): WATER Level (low/med): MED

% Solids for Sample: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

	Control							
	Limit	Spiked Sample	Sample		Spike			ı
Analyte	%R	Result (SSR) C	Result (SR)	С	Added (SA)	%R	Q	M
Aluminum	75-125	10500	92.3	В	10000	104		Р
Antimony	75-125	558	5.1	U	500	112		Р
Arsenic	75-125	456	3.9	U	500	91		Р
Barium	75-125	10500	7.3	В	10000	105		Р
Beryllium	75-125	260	0.054	U	250	104		Р
Cadmium	75-125	259	0.53	U	250	104		Р
Calcium	75-125	49500	23800		25000	103		Р
Chromium	75-125	1010	0.95	В	1000	101		P
Cobalt	75-125	2540	0.36	В	2500	102		Р
Copper	75-125	1250	1.2	U	1250	100		P
Iron	75-125	5050	125	В	5000	99		P
Lead	75-125	509	4.5	U	500	102		Р
Magnesium	75-125	32500	6390		25000	105		Р
Manganese	75-125	2630	4.5	В	2500	105		Р
Nickel	75-125	2510	1.2	U	2500	101		Р
Potassium	75-125	27900	1260		25000	107		Р
Selenium	75-125	534	7.8	U	500	107		Р
Silver	75-125	1290	2.7	U	1250	103		Р
Sodium	75-125	30700	4130		25000	106		Р
Thallium	75-125	492	2.4	U	500	98		Р
Vanadium	75-125	2550	2.8	В	2500	102		Р
Zinc	75-125	2570	3.2	U	2500	103		Р

Colliner	ıts.			

6

EPA SAMPLE NO.

DUPLICATES

SAS No.:

Lab Name: Eurofins Spectrum Analytical, Inc. Contract: 60323116.3

0323110.3

MW-2D

____

Case No.:

Lab Code: ESAI-RI

SDG No.: SR0834

Matrix (soil/water): WATER Level (low/med): MED

% Solids for Sample: 0.0 % Solids for Duplicate: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L  $\,$ 

	Control							
Analyte	Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	M
Aluminum		92.2861	В	90.1527	В	2.3		Р
Antimony		5.1000	U	5.1000	U			Р
Arsenic		3.9000	U	3.9000	U			Р
Barium		7.2673	В	7.3243	В	0.8		Р
Beryllium		0.0540	U	0.0540	U			Р
Cadmium		0.5300	U	0.5300	U			Р
Calcium		23790.9305		24443.8992		2.7		Р
Chromium		0.9539	В	1.0985	В	14.1		Р
Cobalt		0.3627	В	0.3600	U	200		Р
Copper		1.2000	U	1.2000	U			Р
Iron		125.3850	В	127.4203	В	1.6		Р
Lead		4.5000	U	4.5000	U			Р
Magnesium		6393.2818		6472.5985		1.2		Р
Manganese		4.5375	В	4.4525	В	1.9		Р
Nickel		1.2000	U	1.2000	U			Р
Potassium	1000.0	1262.4358		1300.3372		3		Р
Selenium		7.8000	U	7.8000	U			Р
Silver		2.7000	U	2.7000	U			Р
Sodium	1000.0	4129.7011		4229.8527		2.4		P
Thallium		2.4000	U	6.5944	В	200		P
Vanadium		2.7518	В	2.8689	В	4.2		P
Zinc		3.2000	U	3.2000	U			Р

3

BLANKS

Lab Name:	Eurofins Spec	trum Analytical, In	c Contract:	60323116.3		
Lab Code:	ESAI-RI	Case No.:	SAS No.:		SDG No.:	SR0834
Preparation	on Blank Matrix	x (soil/water): WA	TER		Method	Blank ID:
Preparatio	on Blank Concer	ntration Units (ug/	L or mg/kg): UG	/L	MB-8548	31

FIMS2_160922A

	Initial										
	Calibration	n	Co	ont	inuing Calib	ra	tion		Preparation	n	
	Blank (ug/L	)		Blank (ug/L)							
Analyte		С	09/22/16 16:55	С	09/22/16 17:22	С	09/22/16 17:37	С		С	М
Mercury	0.028	U	0.028	U	0.028	U	0.028	U	0.028	U	CV

R0834 Page 28 of 49

## BLANKS

Lab Name:	Eurofins	Spectrum Analytical,	Inc	Contract:	60323116.3		
Lab Code:	ESAI-RI	Case No.:		SAS No.:		SDG No.:	SR0834
Preparation	on Blank Ma	atrix (soil/water):	WATE	ER		Method	Blank ID:
	-3 3 -			(3. )		MB-8546	50

Preparation Blank Concentration Units (ug/L or mg/kg): ug/L

## OPTIMA3_160921A

					111115_10051.						
	Initial										
	Calibration	Calibration Continuing Calibration									
	Blank (ug/L	( ر			Blank (ug/L	( ۱			Blank		
Analyte		С	09/21/16 14:27	С	09/21/16 15:06	С	09/21/16 15:50	С		С	M
Aluminum	11.0	U	27.9	В	11.0	U	11.0	U	21.914	В	Р
Arsenic	3.9	U	5.0	В	3.9	U	3.9	U	3.900	U	Р
Barium	1.2	В	1.5	В	1.2	В	1.8	В	0.730	U	Р
Beryllium	0.1	U	0.1	U	0.1	В	0.1	U	0.054	U	Р
Cadmium	0.5	U	0.5	U	0.5	U	0.5	U	0.530	U	Р
Calcium	183.6	В	98.0	В	52.0	U	115.4	В	188.634	В	Р
Chromium	0.3	U	0.3	В	0.3	U	0.3	U	0.250	U	Р
Cobalt	0.4	U	0.5	В	0.4	U	0.4	U	0.419	В	Р
Copper	1.2	U	1.2	U	1.2	U	1.2	U	1.200	U	Р
Iron	47.0	U	47.0	U	47.0	U	47.0	U	47.000	U	Р
Lead	4.5	U	4.5	U	4.5	U	4.5	U	4.500	U	Р
Magnesium	5.2	U	15.3	В	5.8	В	5.2	U	5.200	U	P
Manganese	0.6	U	0.6	U	0.6	U	0.6	U	0.610	U	Р
Nickel	1.2	U	1.2	U	1.2	U	1.2	U	1.200	U	Р
Potassium	92.0	U	92.0	U	93.6	В	92.0	U	105.309	В	Р
Selenium	7.8	U	7.8	U	7.8	U	7.8	U	7.800	U	Р
Sodium	24.3	В	17.2	В	28.3	В	34.6	В	15.000	U	Р
Thallium	-9.5	В	2.4	U	3.6	В	-4.9	В	8.258	В	Р
Vanadium	0.6	В	0.4	В	0.4	В	0.6	В	0.160	U	Р
Zinc	3.2	U	3.2	U	3.2	U	3.2	U	3.200	U	Р

R0834 Page 29 of 49

3

BLANKS

Lab Name:	Eurofins S	pectrum Analytical,	Inc	Contract:	60323116.3		
Lab Code:	ESAI-RI	Case No.:		SAS No.:		SDG No.:	SR0834
Preparation	on Blank Mat	trix (soil/water):	WATI	ER		Method	Blank ID:
Preparatio	on Blank Cor	ncentration Units (u	ıg/L	or mg/kg): u	g/L	MB-8546	50

# OPTIMA4_160922A

	Initial										
	Calibration	n	Co	ont	inuing Calib	ra	tion		Preparation	n	
	Blank (ug/L	١)			Blank (ug/L	)			Blank		
Analyte		С	09/22/16 16:04	С	09/22/16 16:43	С	09/22/16 17:21	С		С	М
Antimony	5.1	U	5.1	U	5.1	U	5.1	U	5.100	U	Р
Silver	2.7	U	2.7	U	2.7	U	2.7	U	2.700	U	P

R0834 Page 30 of 49

* Metals *

R0834

## REPORT NARRATIVE

**Eurofins Spectrum Analytical, Inc.** 

Client: AECOM Technical Services, Inc.

**Project: Tuxedo Waste Disposal** 

Laboratory Workorder / SDG #: R0834D

SW846 6010C, SW846 7470A (Dissolved Metals)

#### I. SAMPLE RECEIPT

No exceptions or unusual conditions were encountered unless a Sample Condition Notification Form or other record of communication is included with the Sample Receipt Documentation.

#### II. HOLDING TIMES

# A. Sample Preparation:

All samples were prepared within the method-specified holding times.

## B. Sample Analysis:

All samples were analyzed within the method-specified holding times.

#### III. METHODS

Samples were analyzed following procedures in laboratory test code: SW846 6010C, SW846 7470A

#### IV. PREPARATION

Aqueous samples were reported as dissolved metals. The samples were filtered in the lab as soon as possible prior to digestion by method SW3005A and SW7470A.

#### V. INSTRUMENTATION

The following instrumentation was used:

Instrument Code: FIMS2 Instrument Type: CVAA

R0834 Page 32 of 49

Description: FIMS

Manufacturer: Perkin-Elmer

Model: FIMS100

Instrument Code: OPTIMA3

Instrument Type: ICP

Description: Optima ICP-OES Manufacturer: Perkin-Elmer

Model: 4300 DV

Instrument Code: OPTIMA4

Instrument Type: ICP

Description: Optima 8300 ICP-OES

Manufacturer: Perkin-Elmer Model: Optima 8300 ICP-OES

## VI. ANALYSIS

#### A. Calibration:

Calibrations met the method/SOP acceptance criteria.

#### B. Blanks:

All method blanks were within the acceptance criteria.

# C. Spikes:

## 1. Laboratory Control Spikes (LCS):

Percent recoveries for laboratory control samples were within the QC limits.

# 2. Matrix spike (MS):

A Matrix Spike was not performed on any sample in this SDG.

# D. Post Digestion Spike (PDS):

A post-digestion spike was not performed on any sample in this SDG.

## E. Duplicate sample:

A Duplicate Analysis was not performed on any sample in this SDG.

## F. Serial Dilution (SD):

R0834 Page 33 of 49

A Serial Dilution Analysis was not performed on any sample in this SDG.

## G. Samples:

No other unusual occurrences were noted during sample analysis.

I certify that this data package is in compliance with the terms and conditions agreed to by the client and Eurofins Spectrum Analytical, Inc. RI, both technically and for completeness, except for the conditions noted above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or designated person, as verified by the following signature.

Shann B Law le

Signed:

Date: 09/30/16

R0834 Page 34 of 49

# Data Flag/Qualifiers (Page 1 of 2):

- U Not Detected. This compound was analyzed-for but not detected. For most analyses the reporting limit (lowest standard concentration) is the value listed. For Department of Defense programs, this is the Limit of Detection (LOD).
- J This flag indicates an estimated value due to either
  - the compound was detected below the reporting limit, or
  - estimated concentration for Tentatively Identified Compound
- B This flag indicates the compound was also detected in the associated Method Blank. The B flag has an alternative meaning for Inorganics analyses reported using CLP ILM-type metals forms, indicating a "trace" concentration below the reporting limit and equal to or above the detection limit.
- D For Organics analysis, this flag indicates the compound concentration was obtained from a secondary dilution analysis
- E This flag indicates the compound concentration exceeded the Calibration Range. The E flag has an alternative meaning for Inorganics analyses reported using CLP metals forms, indicating an estimated concentration due to the presence of interferences, as determined by the serial dilution analysis.
- P This flag is used for pesticides/PCB/herbicide compound when there is a greater than 40% difference for detected concentration between the two GC columns used for primary and confirmation analyses. This difference typically indicates interference, causing one value to be unusually high. The **lower** of the two values is generally reported on the Form 1, and both values reported on the Form 10.
- A Used to flag semivolatile organic Tentatively Identified Compound library search results for compounds identified as an aldol condensation by-product.

Page 35 of 49

# Data Flag/Qualifiers (Page 2 of 2):

- N Used to flag results for volatile and semivolatile Organics analysis Tentatively Identified Compounds where an analyte has passed the identification criteria, and is considered to be positively identified. For Inorganics analysis the N flag indicates the matrix spike recovery falls outside of the control limit.
- * For Inorganics analysis the * flag indicates Relative Percent Difference for duplicate analyses is outside of the control limit.
- L NYSDEC qualifier: Result is biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.
- Q Qualified Results. This compound has an associated Continuing Calibration Verification (CCV) with a %Difference or %Drift above the control limit.

# **Sample ID Suffixes**

DL	followed by a digit if more than one diluted reanalysis is provided. The DL suffix is not attached to an analysis initially performed at dilution, only to reanalyses performed at dilution
RE	Reanalysis. Appended to the client sample ID to indicate a reextraction and reanalysis or a reanalysis of the original sample extract.
RA	Reanalysis. Appended to the laboratory sample ID indicates a reanalysis of the original sample extract.
RX	Reextraction. Appended to the laboratory sample ID indicates a reextraction of the sample.
MS	Matrix Spike.
MSD	Matrix Spike Duplicate
DUP	Duplicate analysis
SD	Serial Dilution

Post-digestion or Post-distillation spike. For metals or inorganic analyses

PS

# U.S.EPA - CLP COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Lab	Name:	Eurofins Spec	ctrum Analytical, Inc.	Contrac	t: 60323116	.3	
Lab	Code:	ESAI-RI	Case No.:	SAS No.	:	SDG No.:	SR0834D
SOW	No.:	SW846					
			EPA Sample No.  MW-5  MW-6		Lab Samp R0834-03 R0834-04		
Were	e ICP i	nterelement co	orrections applied?		Yes/No	Yes	
Were		round correct:	ions applied? ata generated before		Yes/No	Yes	
			ckground corrections?		Yes/No	No	
Comn	ments:						
TC	ertify	that this dat	a package is in complianc	e with t	the terms and	d conditions	
of	the cor	ntract, both t	echnically and for comple	eteness,	for other th	nan	
pac	kage ar		l above. Release of the outer-readable data submit ratory Manager or the Mana	ted on o	diskette has	been	ata
		ving signature	Sharyn & Lawler,				
Sig	nature		v		Sharyn B. Lav	vler	
Dat	e:	09/30/16		Title:	QAD		

R0834 Page 38 of 49

SW846

COVER PAGE - IN

ilm15.09.23.1015

.

EPA SAMPLE NO.

MW-5

#### INORGANIC ANALYSIS DATA SHEET

|--|

Lab Code: ESAI-RI Case No.: SAS No.: SDG No.: SR0834D

Matrix (soil/water): WATER Lab Sample ID: R0834-03

Level (low/med): MED Date Received: 09/10/2016

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

CAS No.	Analyte	Concentration	С	Q	M
	-		_	Q	
7429-90-5	Aluminum	74.5	В		P
7440-36-0	Antimony	5.1	U		P
7440-38-2	Arsenic	6.5	В		P
7440-39-3	Barium	89.4	В		P
7440-41-7	Beryllium	0.16	В		P
7440-43-9	Cadmium	0.53	U		P
7440-70-2	Calcium	117000			P
7440-47-3	Chromium	1.2	В		P
7440-48-4	Cobalt	2.8	В		P
7440-50-8	Copper	32.4			P
7439-89-6	Iron	5940			P
7439-92-1	Lead	4.5	U		P
7439-95-4	Magnesium	16900			P
7439-96-5	Manganese	2230			P
7439-97-6	Mercury	0.028	U		CV
7440-02-0	Nickel	5.0	В		P
7440-09-7	Potassium	5110			P
7782-49-2	Selenium	10.1	В		P
7440-22-4	Silver	2.7	U		P
7440-23-5	Sodium	9440			P
7440-28-0	Thallium	2.4	U		P
7440-62-2	Vanadium	0.16	U		P
7440-66-6	Zinc	22.2	В		P
	l				

ilm15.09.23.1015 FORM I - IN SW846

R0834 Page 39 of 49

EPA SAMPLE NO.

MW-6

#### INORGANIC ANALYSIS DATA SHEET

23116.3																																																																							

Lab Code: ESAI-RI Case No.: SAS No.: SDG No.: SR0834D

Matrix (soil/water): WATER Lab Sample ID: R0834-04

Level (low/med): MED Date Received: 09/10/2016

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

T			1	
Analyte	Concentration	С	Q	M
Aluminum	30.3	В		P
Antimony	5.1	U		P
Arsenic	3.9	U		P
Barium	48.2	В		P
Beryllium	0.054	U		P
Cadmium	0.53	U		P
Calcium	99600			P
Chromium	0.77	В		P
Cobalt	0.40	В		P
Copper	3.3	В		Р
Iron	7600			P
Lead	4.5	U		Р
Magnesium	8670			P
Manganese	1500			P
Mercury	0.028	U		CV
Nickel	1.2	U		P
Potassium	3990			P
Selenium	10.9	В		P
Silver	2.7	U		P
Sodium	6430			Р
Thallium	2.4	U		P
Vanadium	0.16	U		Р
Zinc	3.2	U		P
	Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium	Aluminum       30.3         Antimony       5.1         Arsenic       3.9         Barium       48.2         Beryllium       0.054         Cadmium       0.53         Calcium       99600         Chromium       0.77         Cobalt       0.40         Copper       3.3         Iron       7600         Lead       4.5         Magnesium       8670         Manganese       1500         Mercury       0.028         Nickel       1.2         Potassium       3990         Selenium       10.9         Silver       2.7         Sodium       6430         Thallium       2.4         Vanadium       0.16	Aluminum 30.3 B Antimony 5.1 U Arsenic 3.9 U Barium 48.2 B Beryllium 0.054 U Cadmium 0.53 U Calcium 99600 Chromium 0.77 B Cobalt 0.40 B Copper 3.3 B Iron 7600 Lead 4.5 U Magnesium 8670 Manganese 1500 Mercury 0.028 U Nickel 1.2 U Potassium 3990 Selenium 10.9 B Silver 2.7 U Sodium 6430 Thallium 2.4 U Vanadium 0.16 U	Aluminum 30.3 B Antimony 5.1 U Arsenic 3.9 U Barium 48.2 B Beryllium 0.054 U Cadmium 0.53 U Calcium 99600 Chromium 0.77 B Cobalt 0.40 B Copper 3.3 B Iron 7600 Lead 4.5 U Magnesium 8670 Manganese 1500 Mercury 0.028 U Nickel 1.2 U Potassium 3990 Selenium 10.9 B Silver 2.7 U Sodium 6430 Thallium 2.4 U Vanadium 0.16 U

Commen	ts:			
-				
=				

ilm15.09.23.1015 FORM I - IN SW846

R0834 Page 40 of 49

# LABORATORY CONTROL SAMPLE

Aqueous LO	CS Source:				LCS-85460	
Solid LCS	Source:		<u>—</u>		LCS(D) ID:	
Lab Code:	ESAI-RI	Case No.:	SAS No.:		SDG No.:	SR0834D
Lab Name:	Eurofins Spec	trum Analytical, Inc.	Contract:	60323116.3		

	Aque	eous (ug/L	1)		Sol	id (mg/	'Kg)	
Analyte	True	Found	%R	True	Found	С	Limits	%R
Aluminum	10000.0	10291.30	102.9					
Antimony	500.0	542.67	108.5					
Arsenic	500.0	408.04	81.6					
Barium	10000.0	10220.89	102.2					
Beryllium	250.0	256.75	102.7					
Cadmium	250.0	255.55	102.2					
Calcium	25000.0	25375.55	101.5					
Chromium	1000.0	993.78	99.4					
Cobalt	2500.0	2504.03	100.2					
Copper	1250.0	1231.12	98.5					
Iron	5000.0	4625.58	92.5					
Lead	500.0	505.41	101.1					
Magnesium	25000.0	25492.71	102.0					
Manganese	2500.0	2559.99	102.4					
Nickel	2500.0	2500.61	100.0					
Potassium	25000.0	26888.66	107.6					
Selenium	500.0	536.13	107.2					
Silver	1250.0	1251.11	100.1					
Sodium	25000.0	27135.75	108.5					
Thallium	500.0	468.58	93.7					
Vanadium	2500.0	2490.33	99.6					
Zinc	2500.0	2569.83	102.8					

7

# LABORATORY CONTROL SAMPLE

Lab Name:	Eurofins Spec	trum Analytical, Inc.	Contract:	60323116.3		
Lab Code:	ESAI-RI	Case No.:	SAS No.:		SDG No.:	SR0834D
Solid LCS	Source:		_		LCS(D) ID:	
Aqueous LO	CS Source:				LCS-85481	

	Aqueous (ug/L) True Found %R				Soli	.d (	mg/Kg)	
Analyte	True	Found	%R	True	Found	С	Limits	%R
Mercury	4.6	4.64	100.9					

3

BLANKS

Lab Name:	Eurofins Spec	trum Analytical, In	c Contract:	60323116.3		
Lab Code:	ESAI-RI	Case No.:	SAS No.:		SDG No.:	SR0834D
Preparation	on Blank Matrix	k (soil/water): WA	TER		Method	Blank ID:
					MB-8539	8

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L FIMS2_160922A

0.028 U

	Initial			
	Calibration	Continuing Calibration	Preparation	
	Blank (ug/L)	Blank (ug/L)	Blank	
Analyte	С	09/22/16 16:55 C 09/22/16 17:22 C C	C	M

0.028 U

Mercury

0.028 U

R0834 Page 43 of 49

3 BLANKS

Lab	Name:	Eurofins	Spectrum	Analytical,	Inc	Contract:	60323116.3

Preparation Blank Matrix (soil/water): WATER Method Blank ID:

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L MB-85481

#### FIMS2_160922A

	Initial							
	Calibration	Con	tinuing Calibra	ation		Preparation	n	
	Blank (ug/L)	Blank (ug/L)				Blank		
Analyte	C	C	C		С		С	М
Mercury						0.028	U	CV

R0834 Page 44 of 49

## BLANKS

		-				MB-8539	8
Preparation	on Blank Matri	ix (soil/water):	WATI	- ER		Method	Blank ID:
Lab Code:	ESAI-RI	Case No.:		SAS No.:		SDG No.:	SR0834D
Lab Name:	Eurofins Spec	ctrum Analytical,	Inc	Contract:	60323116.3		

Preparation Blank Concentration Units (ug/L or mg/kg): ug/L

## OPTIMA3_160921A

					111113_10051.					
	Initial									
	Calibration	n	Co	Continuing Calibration					n	
	Blank (ug/I	۱)		Blank (ug/L)						
Analyte		С	09/21/16 14:27	С	09/21/16 15:06	С	C		С	M
Aluminum	11.0	U	27.9	В	11.0	U		11.000	Ū	Р
Arsenic	3.9	U	5.0	В	3.9	U		3.900	U	P
Barium	1.2	В	1.5	В	1.2	В		0.730	Ū	Р
Beryllium	0.1	U	0.1	U	0.1	В		0.054	· U	P
Cadmium	0.5	U	0.5	U	0.5	U		0.530	U	Р
Calcium	183.6	В	98.0	В	52.0	U		52.000	U	Р
Chromium	0.3	U	0.3	В	0.3	U		0.250	U	Р
Cobalt	0.4	U	0.5	В	0.4	U		0.360	U	Р
Copper	1.2	U	1.2	U	1.2	U		1.200	U	P
Iron	47.0	U	47.0	U	47.0	U		47.000	U	P
Lead	4.5	U	4.5	U	4.5	U		4.500	U	P
Magnesium	5.2	U	15.3	В	5.8	В		5.200	U	Р
Manganese	0.6	U	0.6	U	0.6	U		0.610	U	P
Nickel	1.2	U	1.2	U	1.2	U		1.200	U	P
Potassium	92.0	U	92.0	U	93.6	В		121.149	В	Р
Selenium	7.8	U	7.8	U	7.8	U		7.800	U	P
Sodium	24.3	В	17.2	В	28.3	В		15.000	U	Р
Thallium	-9.5	В	2.4	U	3.6	В		7.989	В	P
Vanadium	0.6	В	0.4	В	0.4	В		0.253	В	Р
Zinc	3.2	U	3.2	U	3.2	U		3.200	U	P

R0834 Page 45 of 49

# BLANKS

Lab Name:	Eurofins Spect	trum Analytical, In	c Contract:	60323116.3		
Lab Code:	ESAI-RI	Case No.:	SAS No.:		SDG No.:	SR0834D
Preparation	on Blank Matrix	(soil/water): WA	TER		Method	Blank ID:
Preparation	on Blank Concer	ntration Units (ug/	L or mg/kg): ug	g/L	MB-8546	50

# OPTIMA3_160921A

				_					
	Initial								
	Calibration		Contin	uing Calib	ration		Preparation	n	
	Blank (ug/L)	1	В	Blank (ug/L		Blank	ınk		
Analyte		С	C		С	С		С	M
Aluminum							21.914	В	Р
Arsenic							3.900	U	P
Barium							0.730	U	Р
Beryllium							0.054	U	P
Cadmium							0.530	U	P
Calcium							188.634	В	Р
Chromium							0.250	U	Р
Cobalt							0.419	В	Р
Copper							1.200	U	Р
Iron							47.000	U	P
Lead							4.500	U	Р
Magnesium							5.200	U	P
Manganese							0.610	U	Р
Nickel							1.200	U	Р
Potassium							105.309	В	P
Selenium							7.800	U	Р
Sodium							15.000	U	Р
Thallium							8.258	В	P
Vanadium							0.160	U	P
Zinc							3.200	U	Р

R0834 Page 46 of 49

3

BLANKS

Lab Name:	Eurofins Spect	trum Analytical, I	Inc Contract:	60323116.3		
Lab Code:	ESAI-RI	Case No.:	SAS No.:		SDG No.:	SR0834D
Preparation	on Blank Matrix	(soil/water): W	<i>I</i> ATER		Method	Blank ID:
Preparatio	on Blank Concer	ntration Units (ug	/L or mg/kg): ug	ŋ/L	MB-8539	8

# OPTIMA4_160922A

	Initial										
	Calibration	n	Continuing Calibration Pre						Preparation	n	
	Blank (ug/L	)		Blank (ug/L)							
Analyte		С	09/22/16 16:04	С	09/22/16 16:43	С		С		С	М
Antimony	5.1	U	5.1	U	5.1	U			5.100	U	Р
Silver	2.7	U	2.7	U	2.7	U			2.700	U	Р

R0834 Page 47 of 49

3

BLANKS

Lab Name:	Eurofins Spect	trum Analytical, In	nc Contract:	60323116.3			
Lab Code:	ESAI-RI	Case No.:	SAS No.:		SDG No.:	SR0834D	
Preparation Blank Matrix (soil/water): WATER					Method Blank ID:		
Preparation	on Blank Concer	ntration Units (ug/	L or mg/kg): ug	g/L	MB-8546	50	

# OPTIMA4_160922A

	Initial								
	Calibration	Con	ntinuing Calib	rat	ion		Preparation	n	
	Blank (ug/L)		Blank (ug/L	١)			Blank		
Analyte	C	C		С		С		С	М
Antimony							5.100	U	P
Silver							2.700	U	P

R0834 Page 48 of 49

Last Page of Data Report

R0834 Page 49 of 49

AECOM Environment

Appendix E

**Property Deeds** 

# QRANGE COUNTY CLERK'S OFFICE RECORDING PAGE THIS PAGE IS PART OF THE INSTRUMENT - DO NOT REMOVE

TYPE NAME(S) OF PARTY(S) TO DOCUMENT: BLACK INK

GEORGIA TECH FOUNDATION, INC

SECTION _9 BLOCK_/

ICONALD IAZZETTI

RECORD AND RETURN TO:
(Name and Address)

THERE IS NO FEE FOR THE RECORDING OF THIS PAGE ATTACH THIS SHEET TO THE FIRST PAGE OF EACH

H.V. ABSTRACT CORP. **43 MAPLE AVENUE** NEW CITY, N.Y. 10956 914-634-8794/5

RECORDED INSTRUMENT ONLY

	DO NOT WRITE BELOW THIS LI	NE
INSTRUMENT TYPE: DEED MI	ORTGAGE SATISFACTION A	SSIGNMENT OTHER
PROPERTY LOCATION		•
2089 BLOOMING GROVE (TN) 2001 WASHINGTONVILLE (VL 2289 CHESTER (TN) 2201 CHESTER (VLG) 2489 CORNWALL (TN) 2401 CORNWALL (VLG) 2600 CHAWFORD (TN) 2800 DEERPARK (TN) 3089 GOSHEN (TN) 3001 GOSHEN (VLG) 3003 FLORIDA (VLG) 3005 CHESTER (VLG) 3200 GREENVILLE (TN) 3489 HAMPTONBURGH (TN) 3401 MAYBROOK (VLG) 3601 HIGHLANDS (TN) 3601 HIGHLAND FALLS (VLG) 3889 MINISIÑK (TN) 3601 UNIONVILLE (VLG) 4089 MONROE (TN) 4001 MONROE (VLG) 4003 HARRIMAN (VLG) 4003 HARRIMAN (VLG)	4203 MONTGOMERY (VLG) 4205 WALDEN (VLG) 4489 MOUNT HOPE (TN) 4401 OTISVILLE (VLG) 4600 NEWBURGH (TN) 4800 NEW WINDSOR (TN) 5089 TUXEDO (TN) 5001 TUXEDO PARK (VLG) 5200 WALLKILL (TN) 5489 WARWICK (TN) 5401 FLORIDA (VLG) 5403 GREENWOOD LAKE (VLG) 5405 WARWICK (VLG) 5600 WAWAYANDA (TN)	PAYMENT TYPE: CHECK / CASH CHARGE NO FEE CONSIDERATION \$ 40,0000.  MORTGAGE AMT \$ DATE DATE
Joan A Marchi	9999 HOLD	M: At ranch
JOAN A. MACCHI Orange County Clerk		, ———

LIBER 4164 PAGE 234

STATE OF NEW YORK (COUNTY OF ORANGE) CO. L. DOWN L. BENSON, COUNTY CLERK AND C. SCYCL SUPREME AND COUNTY COURTS, ORANGE OF HEREBY PERTIFY THAT I HAVE COMPARED THE ORIGINAL TWEREOF FILED OR GROOSE ON 1/6 95 AND THE SAME IS THAN SCRIPT THEREOF. IN WITNESS WHEREOF I NAME HERELY TO SET MY HAND AND AFFIXED MY CHARLES AND SET MY HAND AND AND SET MY CHARLES AND SE

RECEIVED

DEC 06 2010

AECUM - Altony N

Jours E. General COUNTY OLERK & CLERK OF THE SUPREME COUNTY COUNTY FEEB ORANGE COUNTY DECEMBER 3, 2010 SERIAL

DRANGE COUNTY CLERKS OFFICE 956 MLV RECORDED/FILED 01/06/95 02:52:34 PM

SERIAL NUMBER:

44.00 EDUCATION FUND

004381

DEED CHTL NO 50622 RE TAX

HE HELL HERE Standard N.Y.B.T.U. Form \$103 Bargain and Sale Deed, with Covenant against Grantor's Acta-Individual or Corporation (Si Consult your lawyer sepore signing this instrument—this instrument should be used by lawyers only.

THIS INDENTURE, made the 29 th day of December , mincten hundred and minety-four BETWEEN GEORGIA TECH FOUNDATION, INC., a corporation organized under the laws of the State of Georgia with organization office and a post office address at Atlanta, Georgia 30332, located at 225 North Avenue

party of the first part, and

RONALD IAZZETTI, residing at (no number) Acoma Road P.O. Box 515 Tuxedo Park, New York 10987

party of the second part

gride the WTINESSETH, that the party of the first part, in consideration of an dollars and other valuable consideration paid by the party of the second part, does hereby grant and release unto the party of the second part, the heirs or successors and assigns of the party of the second part forever, FORTY THOUSAND (\$40,000.00) ALL that certain plot piece or parcel of land, with the building and improvements thereon crected, situate, lying and being in the

SEE SCHEDULE A ATTACHED HERETO AND MADE A PART HEREOF.

This conveyance is made pursuant to a Resolution of the Board of Trustees of Georgia Tech Foundation, Inc. duly adopted on December 20, 1994.

BEING AND INTENDED TO BE the same premises conveyed to the party of the first part herein by deed dated December 12, 1977, made by HAZARD E. REEVES and recorded in the Orange County Clerk's Office on December 23, 1977, in Liber 2088, Page 70.

TOGETHER with all right, title and interest, if any, of the party of the first part in and to any streets and roads abutting the above described premises to the center lines thereof; TOGETHER with the appurtenances and all the estate and rights of the party of the first part in and to said premises; TO HAVE AND TO HOLD the premises herein granted unto the party of the second part, the heirs or successors and assigns of the party of the second part forever.

AND the party of the first part covenants that the paty of the first part has not done or suffered anything whereby the said premises have been encumbered in any way whatever, except as aforesaid.

AND the party of the first part, in compliance with Section 13 of the Lien Law, covenants that the party of the first part will receive the consideration for this conveyance and will hold the right to receive such consideration as a trust fond to be applied first for the purpose of paying the cost of the improvement and will apply the same first to the payment of the cost of the improvement before using any part of the total of the same for any other nurses. The word "party" shall be construed as if it read "parties" whenever the sense of this indenture so

IN WITNESS WHEREOF, the party of the first part has duly executed this deed the day and year first

IN PRESENCE OF:

GEORGIA TECH FOUNDATION, INC.

LIBER 4164 PAGE 235

19.moken

	STATE OF NEW YORK, COUNTY OF	STATE OF NEW YORK COUNTY
	On the day of 19 , before me personally came	On the day of 19 before me personally came
	to me known to be the individual described in and who executed the foregoing instrument, and acknowledged that executed the same.	to me known to be the individual described in and who executed the foregoing instrument, and acknowledged that executed the same.
AND THE PROPERTY OF THE PROPER		
A CONTRACTOR OF THE PARTY OF TH	GEORGIA STATE OF MONAXERES COUNTY Of FOUR SE	GEORGIA
	On the 29 day of December 10 04 below	STATE OF MRN YORK COUNTY of FULTOW :: 89: On the 27 day of December, 19 94, before
	to me known, who, being by me duly sworn, did depose and say that he resides at No. 2382 16420	the subscribing witness to the foregoing instrument
	ATLANTA: GAOGGIA,	sworn, did depose and say that the resides a Mo
*	of GEORGIA TECH FOUNDATION, INC	days Windersone Care, Tucker, Guercia that he knows
	in and which executed the foregoing instrument; that he	James M. Langley
	affixed by order of the board of directors of said corporation,	described in and who executed the foregoing instrument; that he, said subscribing witness, was presert and saw execute the same; and that he sa d witness at the same time subscribed he name as witness thereto.
	innumum of the state of the sta	The day willing a princip
	1 min Sun	Thomas Sma 2 de la companya del companya de la companya del companya de la compan
in a	Notary Public (Notary Public)  Notary Public, Fullon County, Georgia	(Notary Publicy 70)
	PUBLICATION Commission Expires August 3, 1997  The County Commission Expires August 3, 1997  Bargain and Sale Area  SEC	My Commission Explica August 3 1997 in miles
	Bargoin and Sale Ared	2 1330 mm
	WITH COVENANT AGAINST GRANTOR'S ACTS BLO	rtion 9 ICK 1
	TITLE NO. 1 40-191 LOT	13
	GEORGIA TECH FOUNDATION, INC.	INTYORTOWN Town of Tuxedo
	RONALD IAZZETTI	
	• · · · · · · · · · · · · · · · · · · ·	
!	STANDARD FORM OF NEW YORK BOARD OF TITLE UNDERWRITERS	RETURN BY MAIL TO:
	Distributed by SECURITY TITLE AND GUARANTY COMPANY Security TITLE AND GUARANTY COMPANY We	RICHARD WINGKELLO, ESO  amsondale Professional Bldg. est Hayerstraw, N.Y. 10993
	CHARTERED 1928 N NEW YORK	Zīp No.
ш		H.V. ABSTRACT CORP. 43 MAPLE AVENUE
RECORDING OFFICE	The second secon	NEW CITY, N.Y. 10956 914-634-8794/5
SNBC		
OF RECO		
* LES	URRA1CA	
SPACE FOR USE OF	UBER 4164 PAGE 236	A hamsty
HS SP	Shows a series	6- min man of 10 ft 30 30
F	unid161mg 235	
RESERVE		
RESERVE	THE PARTY OF THE P	Here a lat later a language that where was done and

de character and a second

Tille No. TUX-191

#### SCHEDULÉ A -

Pailcy No.

ALL that piece, parcel or plot of land, situate, lying and being in the Town of Tuxedo, County of Orange and State of New York, bounded and described as follows:

BEGINNING at a point being located at the northwesterly corner of Lot Number 535, as shown on a Map entitled "Map of Property of The Tuxedo Park Association, Inc.", dated August, 1947, and filed in the Orange County Clerk's Office as Map Number 2320 on February 15, 1968, and going thence, along the easterly Right of Way of New York State Route 17 on the following six (6) courses and distances:

- (1) North 14° 17' 53" East, a distance of 224.37 feet to a point;
- (2) North 25° 54' 35" East, a distance of 234.58 feet to a point;
- (3) North 32° 49' 20" East, a distance of 137.45 feet to a point;
- (4) North 40° 38' 20" East, a distance of 83.68 feet to a point;
- (5) North 32° 51' 55" East, a distance of 105.96 feet to a point;
- (6) North 25° 23' 25" East, a distance of 87.86 feet to a point; and thence, along lands now or formerly of Anthony Cucolo, Sr., on the following three (3) courses and distances:
- (1) South 43° 54' 08" East, a distance of 299.04 feet to a point;
- (2) South 59° 22' 10" West, a distance of 93.64 feet to a point;
- (3) South 75° 39' 18" East, a distance of 250 feet more or less to a point; thence,

along the westerly right of way line of the Erie-Lackawanna Railroad Company on a curve to the south and east having a radius of 2914.43 feet and a length of 406.15 feet to a point, and going thence along lands of The Tuxedo Park Association, Inc., being on the westerly bank of the Ramapo River South 38° 32′ 58″ West, a distance of 240 feet more or less to a point located at the northeasterly corner of Lot Number 535, as shown on the aforesaid Map Number 2320, and going thence along the northerly line of Lot Number 535 North 75° 42′ 07″ West, a distance of 440 feet back to the point or place of BEGINNING.

LIBER 4164 PAGE 237

FORM 28-088-74 -A(4-93)

NYSUTA CERTIFICATE OF TITLE-SCHEDULE A

THIS INDENTURE, made the 7th day of October , nineteen hundred and eighty-five
BETWEEN THRUWAY ASPHALT CO., a co-partnership consisting of
Frank D. Cooney, Jr., John T. Cooney and Edward
Petrillo, 1671, 16.00, at 189 Main ST, TONGY TWO, NY, 1059,

party of the first part, and

Renard A. Barone Route 17 P.O. 656 Tuxedo, New York 10987

and Sarkis Khourouzian 7 Ann Place Sloatsburg, New York

party of the second part,

WITNESSETH, that the party of the first part, in consideration of Fifty-Five Thousand

dollars,

lawful money of the United States,

paid

by the party of the second part, does hereby grant and release unto the party of the second part, the heirs or successors and assigns of the party of the second part forever,

ALL that certain plot, piece or parcel of land, with the buildings authinocorocock thereon erected, situate,

lying and being in the Town of Tuxedo, County of Orange, State of New York, lying on the easterly side of New York State Route 17 and being more particularly bounded and described as follows: BEGINNING at the northeasterly corner of a 1.375 acre parcel of land conveyed to PAUL BARTIE by the Tuxedo Park Association; Thence along the northeasterly line of said parcel and beyond, North 43 degrees 54' 08' West 260.67 feet to the easterly line of New York Route 17; Thence along the southeasterly line of New York State Route 17 on the following seven courses and distances: (1) North 31 degrees 01' 40" East 203.53 feet; (2) North 38 degrees 32' 10" East 193.33 feet; (3) North 18 degrees 07' 30" East 234.03 feet; (4) North 17 degrees 26' 40" East 75.98 feet; (5) North 15 degrees, 42' 30" East 232.41 feet; (6) North 13 degrees 14' 20" East 268.25 feet; (7) North 10 degrees 22' 10" West 175.00 feet; thence along lands to be retained by Tuxedo Park Association, North 83 degrees 11' 10" East 91.20 feet to the westerly line of the Erie Railroad Company; thence along the westerly line of the Erie Railroad Company on the following ten courses and distances: (1) South 10 degrees 12' 30" East 449.97 feet to a point of tangency; (2) On a curve to the right having a radius of 1383.00 feet for a distance of about 100.00 feet, the chord of said curve bears South 9 degrees 56' 20" East 100.00 feet; (3) A curve to the right having a radius of 1383.00 feet for a distance of about 97 feet, the chord of said curve bears South 6 degrees 47' 00" East 97.21 feet; (4) A curve to the right having a radius of 1383.00 feet for a distance of about 100 feet, the chord of said curve bears South 0 degrees 45' 30" West 100.45 feet; (5) A curve to the right having a radius of 1383.00 feet for a distance of about 171 feet, the chord of said curve bears South 0 degrees 36' 20" East 170.65 feet; (6) A curve to the right having a radius of 1383.00 feet for a distance of about 133 feet, the chord of said curve bears South 8 degrees 38' 20" West 133.15 feet; (7) A curve to the right having a radius of 1383.00 feet for a distance of about 153 feet, the chord of said curve bears South 14 degrees 27' 50" West 152.78 feet; (8) A curve to the right having a radius of 1383.00 feet for a distance of about 89 feet, the chord of said curve bears South 20 degrees 59' 10" West 88.51 feet; (9) A curve to the right having a radius of 1383.00 feet for a distance of about 138 feet, the chord of said curve bears South 24 degrees 14' 00" West 138.06 to a point of tangency; (10) South 25 degrees 43' 50" West 243.14 feet; thence along lands to be retained by Tuxedo Park Association North 76 degrees 31' 10" West 237.01 feet; thence North 30 degrees 37' 50" West 50.00 to the southeasterly line of lands now or formerly of Paul Bartie, thence along the southeasterly line of lands now or formerly of Paul Bartie, North 59 degrees 22' 10" East 81.85 feet to the point and place of beginning.

UBER 2436 PG 77

81-1-1

TOGETHER with all right, title and interest, if any, of the party of the first part of, in and to any streets and roads abutting the above-described premises to the center lines thereof,

TOGETHER with the appurtenances and all the estate and rights of the party of the first part in and to said premises,

TO HAVE AND TO HOLD the premises herein granted unto the party of the second part, the heirs or successors and assigns of the party of the second part forever.

AND the party of the first part, in compliance with Section 13 of the Lieu Law, covenants that the party of the first part will receive the consideration for this conveyance and will hold the right to receive such consideration as a trust fund to be applied first for the purpose of paying the costs of the improvement and will apply the same first to the payment of the cost of the improvement before using any part of the total of the same for any other purpose.

AND the party of the first part covenants as follows:

FIRST.—That said party of the first part is seized of the said premises in fee simple, and has good right to convey the same;

SECOND .- That the party of the second part shall quietly enjoy the said premises;

THIRD.—That the said premises are free from incumbrances, except as aforesaid;

FOURTH.—That the party of the first part will execute or procure any further necessary assurance of the title to said premises;

FIFTH. That said party of the first part will forever warrant the title to said premises.

The word "party" shall be construed as if it read "parties" whenever the sense of this indenture so requires.

IN WITNESS WHEREOF, the party of the first part has duly executed this deed the day and year first above

IN PRESENCE OF:

written.

Thruway Asphalt, Co.

UBER 2436 PG 78

STATE OF NEW YORK, COUNTY OF Washchoster 55: STATE OF NEW YORK, COUNTY OF On the 7th day of October 1987, before me day of , before me personally came Fresh D. Cong, to personally came to me known to be the individual described in and who executed the foregoing instrument, and acknowledged that executed the same. to me known to be the individual described in and who executed the foregoing instrument, and acknowledged that executed the same. hos 1. Constructor JANES P. DONOHUE, JR. Notary Public State of New York No. 60-4631181 Ownithed in Westchester County. Commission Explic. March 30, 1986 STATE OF NEW YORK, COUNTY OF STATE OF NEW YORK, COUNTY OF On the day of , before me day of 19 , before me the subscribing witness to the foregoing instrument, with whom I am personally acquainted, who, being by me duly sworn, did depose and say that he resides at No. personally came to me known, who, being by me duly sworn, did depose and say that he resides at No. say that that he is the that he knows , the corporation described in and which executed the foregoing instrument; that he knows the scal of said corporation; that the scal affixed to said instrument is such corporate seal; that it was so affixed by order of the board of directors of said corporation, and that he signed h name thereto by like order. to be the individual described in and who executed the foregoing instrument; that he, said subscribing witness, was present and saw execute the same; and that he, said witness, at the same time subscribed h name as witness thereto. BARONE & MACKAY, ESQS. Tuxedo Square, P.O. Box 656 Tuxedo, New York 10987 The land affected by the within instrument NEW YORK BOARD **Barranty Deed** BARONE & KHOUROUZIAN RECORDED AT REQUEST THRUWAY ASPHALT CO. Standard form of And Return To: Land Map of the County of TITLE No. HA 5803

RESERVE THIS SPACE FOR USE OF RECORDING OFFICE 9888 Jest 2436 or

ONANGE COUNTY DECEMBER COUNTY CLERK & CLERK OF

55:

TITLE UNDERWRITERS

SPREME