From:	Steve Panter <steve@flemingleeshue.com></steve@flemingleeshue.com>
Sent:	Thursday, February 08, 2018 11:01 AM
То:	Spellman, John (DEC)
Cc:	russos@gtlaw.com; Arnie Fleming; Adam Conti; wpryne@affco.com; Steve Panter
Subject:	RE: AFFCO Final Engineering Report
Attachments:	2018 AFFCO FER Final_combined.pdf

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

John,

Attached please find the signed Final Engineering Report for the AFFCO site. I incorporated the change noted in your February 8, 2018 FER approval letter.

I hope to have the final SMP to you shortly. Please contact me with any questions or comments.

Thank you,

Steve

Steven E. Panter, CGWP, PG Senior Consultant Fleming-Lee Shue, Inc. 158 W. 29th Street New York, NY 10001 212.675.3225

From: Spellman, John (DEC) [mailto:john.spellman@dec.ny.gov]
Sent: Thursday, February 08, 2018 8:33 AM
To: Steve Panter <steve@flemingleeshue.com>
Cc: russos@gtlaw.com; Arnie Fleming <arnie@flemingleeshue.com>; Adam Conti <adam@flemingleeshue.com>; wpryne@affco.com
Subject: RE: AFFCO Final Engineering Report

Hi Steve,

Please direct your attention to the attached letter. The report was determined to be acceptable.

Thank you,

John

John Spellman, P.E. New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway From: Steve Panter [mailto:steve@flemingleeshue.com]
Sent: Wednesday, October 25, 2017 9:00 AM
To: Spellman, John (DEC) <<u>john.spellman@dec.ny.gov</u>>
Cc: russos@gtlaw.com; Arnie Fleming <<u>arnie@flemingleeshue.com</u>>; Adam Conti <<u>adam@flemingleeshue.com</u>>; Steve Panter <<u>steve@flemingleeshue.com</u>>; wpryne@affco.com
Subject: AFFCO Final Engineering Report

Attached please find the AFFCO FER that has been revised per the Department's comments. I have also included the Word version. Please let me know if you require any changes. If acceptable, we will send up the signed engineer's form.

The revised SMP will be forthcoming soon.

Regards,

Steve

Steven E. Panter, CGWP, PG Senior Consultant Fleming-Lee Shue, Inc. 158 W. 29th Street New York, NY 10001 212.675.3225

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Remedial Bureau C 625 Broadway, 11th Floor, Albany, NY 12233-7014 P: (518) 402-9662 I F: (518) 402-9679 www.dec.ny.gov

February 8, 2018

Steven E. Panter, CGWP, PG Senior Consultant Fleming-Lee Shue, Inc. 158 W. 29th Street New York, NY 10001

RE: American Felt and Filter Co. Site, New Windsor, Orange Co. Site No. 336036 Final Engineering Report

Dear Mr. Panter:

Thank you for your October 25, 2017 transmittal of the "American Felt & Filter Company, New Windsor, New York, Final Engineering Report, October 2017", for the referenced site. The Report was found to be satisfactory and will be approved upon receipt of the engineer's certification. When re-submitting the report please modify the second bullet in Section 5 to include "residential use", thus:

• The controlled property area may not be used for a higher level of use, such as unrestricted, residential or restricted residential use without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;

If you have any questions, please contact me at (518) 402-9686.

Sincerely,

John bullman

John Spellman, P.E. Project Manager Division of Environmental Remediation

ec: Wilson Pryne, American Felt & Filter Company

AMERICAN FELT & FILTER COMPANY NEW WINDSOR, NEW YORK

Final Engineering Report

Consent Order Index # W3-0784-04-06 Site # 3-36-036

Prepared for

American Felt & Filter Company New Windsor, NY

Prepared by

Arnold F. Fleming, P.E. 158 W. 29th Street, 9th Floor New York, New York 10001

FEBRUARY 2018

CERTIFICATIONS

I, Arnold F. Fleming, am currently a registered professional engineer licensed by the State of New York, I had primary direct responsibility for implementation of the remedial program activities, and I certify that the Remedial Action Work Plan was implemented and that all construction activities were completed in substantial conformance with the Department-approved Remedial Action Work Plan.

I certify that the data submitted to the Department with this Final Engineering Report demonstrates that the remediation requirements set forth in the Remedial Action Work Plan and in all applicable statutes and regulations have been or will be achieved in accordance with the time frames, if any, established in for the remedy.

I certify that all documents generated in support of this report have been submitted in accordance with the Department's electronic data deliverable and have been accepted by the Department.

I certify that all data generated in support of this report have been submitted in accordance with the Department's electronic submission protocols and have been accepted by the Department.

I certify that all use restrictions, Institutional Controls, Engineering Controls, and/or any operation and maintenance requirements applicable to the site are contained in an environmental easement created and recorded pursuant ECL 71-3605 and that all affected local governments, as defined in ECL 71-3603, have been notified that such easement has been recorded.

I certify that a Site Management Plan has been submitted for the continual and proper operation, maintenance, and monitoring of all Engineering Controls employed at the site, including the proper maintenance of all remaining monitoring wells, and that such plan has been approved by Department.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Arnold F. Fleming, 158 West 29th Street, 9th Floor, New York, NY 10001, am certifying as Owner's Designated Site Representative for the site.

050411

2/8/18

NYS Professional Engineer #

Date

Arnold F. Fleming, P.E.

TABLE OF CONTENTS

TABLE	OF CONTENTS	III
LIST OF	F ACRONYMS	VI
FINAL E	ENGINEERING REPORT	1
1.0 BACI	KGROUND AND SITE DESCRIPTION	3
2.0 SUM	MARY OF SITE REMEDY	4
2.1 REM	EDIAL ACTION OBJECTIVES	4
2.1.1 (Groundwater	
	Soil RAOs	
	Surface Water RAOs	
	Sediment RAOs	
2.2 DESC	CRIPTION OF THE SELECTED REMEDY	5
3.0 INTE	ERIM REMEDIAL MEASURES, OPERABLE UNITS AND REMEDIAL	
CONTRA	ACTS	6
4.0 DESC	CRIPTION OF REMEDIAL ACTIONS PERFORMED	7
4.1 GOV	ERNING DOCUMENTS	7
4.1.1	Site Specific Health & Safety Plan (HASP)	7
	Community Air Monitoring Plan (CAMP)	
4.2 REM	EDIAL PROGRAM ELEMENTS	7
4.2.1 (Contractors and Consultants	7
	Community Air Monitoring Results	
4.3 REM	EDIAL ACTIONS	8
4.3.1	Chemical Oxidation	
4.3.2	Excavation	
4.3.3	Treatment Effectiveness	
4.3.4	Remaining Contamination	
	4.3.4.1 Unrestricted Use	
	4.3.4.2 Residential Use	
	4.3.4.3 Groundwater	

4.3.5	Soil Cover System	
4.3.6	Sub-Slab Depressurizatio System	
4.3.7	Deviations from Remedial Action Work Plan	
4.3.8	Quality Assurance/Quality Control Summary (DUSR)	
5.0 ENVI	RONMENTAL EASEMENT & SOIL MANAGEMENT AREA	29
6.0 SITE	MANAGEMENT PLAN	

FIGURES

Figure 1	Site Location and Layout
Figure 2	Site Plan and Injection Locations
Figure 3	Post-excavation/Post-treatment Soil Sampling Locations and Results Summary
Figure 4	Post-treatment Groundwater VOC Results and Groundwater Contour Map
Figure 5	TCA, DCE & TCE Reductions in Soils after 6 Days of Treatment (in text)
Figure 6	cis-1,2-DCE, 1,1,2-TCA, PCE & Benzene in Soils after 6 Days of Treatment (in text)
Figure 7	Groundwater VOC Treatment Trends in Treatment Area Well EW-0 (in text)
Figure 8	Groundwater Chloroethane Treatment Trends in Treatment Area Well EW-0 (in text)
Figure 9	Groundwater 1,1,2-TCA Treatment Trends in Treatment Area Well EW-0 (in text)
Figure 10	VOCs in Wells Outside Treatment Area (in text)
Figure 11	Piano Felt Building SSDS As-built

TABLES

Table 1	Soil Cleanup Objectives for the Project
Table 2A	End-point Post-excavation Soil sample Analytical results, Summary of VOCs
Table 2B	End-point Post-treatment Soil sample Analytical results, Summary of VOCs
Table 3	Post-treatment Groundwater Analytical Results, VOCs, Metals, General Chemistry
Table 4	Summary of Groundwater VOCs in treatment Area (in text)
Table 5	Pre-treatment Groundwater Parameters (in text)
Table 6	Post-treatment Groundwater Parameters (in text)
Table 7	Oxidant Volume by Injection Point (in text)
Table 8	Endpoint Soil Sample Results Unrestricted Use SCOs (in text)
Table 9	Post-treatment Groundwater Results (in text)

Table 10Soil Pile/Soil Cover Samples (in text)

APPENDICES

- Appendix A Soil Management Area Metes and Bounds
- Appendix B Digital Copy of FER
- Appendix C CAMP Certification
- Appendix D Raw Analytical Laboratory Data
- Appendix E DUSRs for End Point and Post-treatment Samples
- Appendix F VeruTEK Report
- Appendix G Project Photographic Log

ACRONYMS

Acronym	Definition
AWQS	Ambient Water Quality Standard
BTEX	Benzene, Toluene, Ethylbenzene, Total Xylenes
CAMP	Community Air Monitoring Plan
CPP	Citizen Participation Plan
DUSR	Data Usability Summary Report
EC	Engineering Control
FER	Final Engineering Report
ftbg	Feet below Grade
GA	Source of Drinking Water
HASP	Health and Safety Plan
IC	Institutional Control
IFT	Interfacial Tension
m	milli or Meter
NYSDEC	New York State Department of Environmental Conservation
Ν	Newtons
PAH	Polynuclear Aromatic Hydrocarbons
PRR	Periodic Review Report
QAPP	Quality Assurance Project Plan
RAWP	Remedial Action Work Plan
RI	Remedial Investigation
S-ISCO TM	Surfactant-Enhanced In-Situ Chemical Oxidation
SCO	Soil Cleanup Objective
S/MMP	Soil/Materials Management Plan
SSDS	Sub-Slab Depressurization System
SMP	Site Management Plan
SOP	Site Operation Plan
SVOCs	Semi-volatile Organic Compounds
SWPPP	Stormwater Pollution Prevention Plan
TCA	1,1,1-Trichloroethane
TCL	Target Compound List
TOGS	Technical and Operational Guidance Series
UST	Underground Storage Tank
VOCs	Volatile Organic Compounds

FINAL ENGINEERING REPORT

Introduction

On behalf of The American Felt and Filter Company (AFFCO), Arnold F. Fleming, P.E., and Fleming-Lee Shue, Inc. (collectively FLS) have prepared this Final Engineering Report (FER) to document the completion of remedial activities at 361 Walsh Avenue, New Windsor, New York (Site). The remediation was completed in accordance with the approved FLS 2012 Remedial Action Work Plan and was prepared in accordance with the NYSDEC's DER-10 Technical Guidance for Site Investigation and Remediation, May 2010. AFFCO is also under a Consent Order to remedy the property (Index No. W3-0784-04-06). The New York State Department of Environmental Conservation (NYSDEC) placed the Site on its Inactive Hazardous Waste Sites list in 1991 (Site Code 3-36-036) because of the potential threat to the adjacent Quassaick Creek.

The AFFCO property, located in New Windsor, Orange County, New York manufactures a variety of felt and filter products. The Site lies on the south side of Quassaick Creek, which flows into the Hudson River approximately 0.2 miles east of the Site. AFFCO is on industrial zoned land. Beyond the Site, the surrounding area is a mixture of land uses including industrial, commercial, and residential. The entire property occupies 23.185 acres but the Consent Order Environmental Easement Area is 0.5454 acres and includes the remediated soil area and the adjacent Piano Felt Building that houses a sub-slab depressurization system (SSDS). Most of the Site is level. Figure 1 shows the Site and an inset depicts the entire property outline. Appendix A shows the property and Environmental Easement area.

Site investigations completed in 1988 found soil and groundwater near the Feutron Building contained 1,1,1-Trichloroethane (TCA). The source of the contamination was believed to be from historic leakage within the enclosed process area and spillage in the adjacent drum storage area. Subsequent soil and groundwater sampling in September 1994, August 1998, and October 2001 indicated that residual TCA remained in the soil and groundwater in the former drum storage area near the Feutron Building. In response, FLS submitted a Remedial Design/Remedial Action Work Plan (RD/RAWP) in February 2005 to NYSDEC. The RD/RAWP work plan called for a Dual Phase Extraction System to remediate soil and groundwater near and beneath the Feutron Building. The RD/RAWP was approved in September 2005. After the RD/RAWP was approved, the northwestern portion of the Feutron Building was taken out of service and subsequently demolished. This changed conditions such that other more effective remediation alternatives became available, and the Dual Phase Extraction System was never implemented.

In 2008, FLS prepared a revised RAWP to remediate the TCA-impacted soil by excavation and disposal. This RAWP was subsequently approved by NYSDEC in October 2008 but not executed. Ultimately, FLS prepared a revise RAWP in March 2012 that was approved by NYSDEC on April 4, 2012. The 2012 RAWP called for excavation of the top 10 feet of impacted soil near the former Feutron Building and *in situ* chemical oxidation of the contaminant from the water table to the underlying till layer.

The treatment remedy was *in situ* chemical injection using alkaline-activated sodium persulfate, sodium hydroxide, and a plant-based surfactant. Sodium persulfate was the oxidant and was activated by the addition of sodium hydroxide to raise the pH. The plant-based surfactant, VeruSOL[®], was added to aid in the dissolution of the non-aqueous phase liquid (NAPL) to make it available for chemical oxidation. In all, 13,200 gallons of oxidant mixture were injected over a 6-day treatment period during July 2012. Comparison of pre-treatment and post-treatment soil contaminant mass estimates indicated that approximately 73 percent of the total volatile organic compound (VOC) mass was destroyed and approximately 76 percent of the TCA mass was destroyed. On a stratum-by-stratum basis, an average of 76 percent of the total VOC mass was degraded and an average of 87 percent of the TCA mass was degraded. Most soils met the Part 375 Residential Use Soil Cleanup objectives (SCO) and all soils met the Site cleanup standard, the Commercial Use Soil Cleanup Objectives. Groundwater exhibited large reductions on VOC concentrations. A number of VOCs met the TOGS GA cleanup goal.

Excavation was conducted by removing soils in each of five grid cells to a depth of approximately 10 feet below grade. The soils were staged on plastic sheeting before being tested and returned to the excavation if found to meet the Commercial Use SCOs. All soil met the SCOs. The Site contains a Soil Management Area that includes the remediated area and groundwater monitoring wells. The Soil Management Area is one component of the Environmental Easement. The second component includes the Piano Felt Building where there is a SSDS.

1.0 BACKGROUND AND SITE DESCRIPTION

The AFFCO Site, located in New Windsor, Orange County, New York (Figure 1), manufactures a variety of felt and filter products. The Site lies on the south side of Quassaick Creek, which flows into the Hudson River approximately 0.2 miles east of the Site. AFFCO is on industrial zoned land. Beyond the Site, the surrounding area is a mixture of land uses including industrial, commercial and residential. The entire property occupies 23.185 acres but the Environmental Easement area is 0.5454 acres.

Prior to 1978, the Site was owned and operated by the GAF Corporation, which manufactured the same products as AFFCO. During both GAF's and AFFCO's ownership, the facility used TCA as a solvent and carrier for zinc resinate, used to impregnate felt sheets in the Feutron Building. The TCA was stored on Site in 55-gallon drums in an enclosed area just outside the Feutron Building. Approximately 35 to 40 drums of TCA were generally present on-Site during regular operations. The facility stopped using TCA in 1992 when the AFFCO shut down the production line.

Site investigations completed in 1988 found soil and groundwater near the Feutron Building contained TCA. The source of the contamination was believed to be from historic leakage within the enclosed process area and spillage in the drum storage area. NYSDEC placed the Site on its Inactive Hazardous Waste Sites list in 1991 (Site Code 3-36-036) because of the potential threat to the adjacent Quassaick Creek. AFFCO is also under a Consent Order to remedy the property (Index No. W3-0784-04-06).

Subsequent soil and groundwater sampling in September 1994, August 1998, and October 2001 indicated that residual TCA remained in the soil and groundwater in the former drum storage area near the Feutron Building. FLS prepared the final RAWP in 2012 to remediate the TCA-impacted soil by excavation and *in situ* chemical treatment. This RAWP was subsequently approved by NYSDEC on April 4, 2012. The 2012 RAWP called for excavation of the top 10 feet of impacted soil near the former Feutron Building and *in situ* chemical oxidation of the contaminant from the water table to the underlying confining layer (glacial till).

The portion covered by a Soil Management Area, SSDS, and the Site boundaries are shown in Appendix A. An electronic copy of this FER with all supporting documentation is included as Appendix B.

2.0 SUMMARY OF SITE REMEDY

Based on the results of the Remedial Investigation, the following Remedial

Action Objectives (RAO) were identified for this Site.

2.1 REMEDIAL ACTION OBJECTIVES

2.1.1 Groundwater

RAOs for Public Health Protection

- Prevent ingestion of groundwater containing contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of, volatiles emanating from contaminated groundwater.
- The remedial action objectives for groundwater are the TOGS 1.1.1 GA ambient water quality standards (TOGS) or asymptotic levels of VOCs in groundwater following acceptable levels of treatment.

RAOs for Environmental Protection

- Restore ground water aquifer, to the extent practicable, to pre-disposal/pre-release conditions.
- Prevent the discharge of contaminants to surface water.
- Prevent further off-site migration of contaminated groundwater.
- Remove the source of groundwater contamination.

2.1.2 Soil RAOs

RAOs for Public Health Protection

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of, or exposure to, contaminants volatilizing from contaminated soil.
- The soil remedial action objectives are the Part 375 Commercial Use SCOs and a 90 percent reduction in contaminant mass as defined by the sum of the VOCs.

RAOs for Environmental Protection

- Prevent migration of contaminants that would result in groundwater contamination.
- Prevent impacts to biota due to ingestion/direct contact with contaminated soil that would cause toxicity or bioaccumulation through the terrestrial food chain.

2.1.3 Surface Water RAOs

There is no surface water on the Soil Management Area, so the remedial action did not address this medium.

2.1.4 Sediment RAOs

There are no sediment areas on Soil Management Area, so the remedial action did not address this medium.

2.1.5 Soil Vapor, RAOs for Public Health Protection

Mitigate impacts to public health resulting from existing, or the potential for, vapor intrusion into the buildings at a site.

2.2 DESCRIPTION OF THE SELECTED REMEDY

The remedy consisted of two parts. Part 1 consisted *in situ* chemical oxidation of soils within the 50-ft. by 50-ft. treatment area from 10 ft.-bg to 15 ft.-bg. Treatment used the RemMetrik[®] (U.S. Patent No. 8,739,867) methodology that targets the contaminant mass and injects the treatment amendment using subsurface pressure waves. In this instance, the subsurface pressure waves and injection were provided by Wavefront Technology Solutions Inc. PrimawaveTM methodology. Chemical oxidation was provided by VeruTEK's S-ISCOTM technology using alkaline-activated sodium persulfate and a plant-based surfactant.

Sodium persulfate was the oxidant and was activated by the addition of sodium hydroxide to raise the pH. The plant-based surfactant, VeruSOL[®], was added to aid in the dissolution of any NAPL to make it available for chemical oxidation.

Part 2 consisted of excavation of the upper 10 feet of soil within the 50-ft. by 50-ft. treatment area. Excavated soils were placed in a lined containment unit and were subsequently tested and returned to the excavation if the soils met the SCOs.

3.0 INTERIM REMEDIAL MEASURES, OPERABLE UNITS AND REMEDIAL CONTRACTS

A SSDS designed by FLS, was installed at the Piano Felt Building by AFFCO in October 2010. The SSDS was installed to mitigate residual TCA emissions potentially impacting indoor air quality for commercial/industrial land use at this Site and prevent potential migration of subsurface vapors to the nearby area. The system was designed in accordance with the New York State Department of Health (NYSDOH) *Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York* (2006).

A mitigation system was required based on concentrations of TCA in sub-slab vapor and indoor air samples collected in December 2009. The sub-slab vapor sample contained 539 micrograms per cubic meter (ug/m^3) of TCA and the indoor air sample contained 34 ug/m^3 of TCA.

The SSDS consists of centrally located depressurization pits with a pipe connected to a fan inserted into each pit. The soil vapor exhaust is located above the roof. The vacuum field is subsequently measured using pressure monitoring points located at each corner of the building. The performance goal for the system is a minimum of (-0.02) inches of water column (w.c.) in each of the vacuum monitoring points.

The piping from the pit is constructed of polyvinyl chloride (PVC) plastic and sealed into the replaced slab with silicone sealant. All pipe sizes are 4 inches in diameter. The fan is capable of operating at a minimum 375 cubic feet per minute (CFM) at 0 inches of water column (w.c.). See the SSDS Construction Completion Report, submitted May 2011, for more information regarding the system.

4.0 DESCRIPTION OF REMEDIAL ACTIONS PERFORMED

4.1 GOVERNING DOCUMENTS

4.1.1 Remedial Action Work Plan

All remedial work performed under this Remedial Action was in full compliance with the approved RAWP. The RAWP outlined the remedial methods and procedures and the remedial goals to be attained.

4.1.2 Site Specific Health & Safety Plan (HASP)

All remedial work performed under this Remedial Action was in full compliance with governmental requirements, including site and worker safety requirements mandated by Federal OSHA. All work was conducted in accordance with the OSHA-compliant HASP prepared for all remedial and invasive work performed at the Site.

Community Air Monitoring Plan (CAMP)

The purpose of the CAMP is to protect downwind receptors (e.g., residences, businesses, schools, nearby workers, and the public) from potential airborne contaminants released as a direct result of the Remedial Action being performed at the site. A modified CAMP was used because the remediated area is confined to an isolated portion of the Site that is a considerable distance from nearby residences, nearby workers, and the public.

Air monitoring for VOCs occurred during soil excavation. No VOCs were observed above the CAMP action limits. Monitoring for particulates was not done during soil excavation. It was not required under the approved modified CAMP. The area is primarily commercial/industrial and the nearest residence is approximately 500 feet from where soil was excavated and managed. Woodland separates the residence from the work area.

4.2 REMEDIAL PROGRAM ELEMENTS

4.2.1 Contractors and Consultants

• The Remedial Engineer for this project was Arnold F. Fleming, P.E. He is a registered professional engineer licensed by the State of New York.

- VeruTEK, Bloomfield, CT Remediation Contractor responsible for implementation of the surfactant-enhanced *in-situ* chemical oxidation S-ISCO[®] Treatment.
- Zebra, Lynbrook, NY Drilling Contractor responsible for implementing PrimawaveTM, the process used to enhance delivery of chemical amendments at the pore scale level.

4.2.2 Community Air Monitoring Results

VOCs in air were monitored using a photoionization detector (PID) during excavation and soil stockpiling. VOC air monitoring results were all below NYSDEC's CAMP guideline of 5 ppm. AFFCO received no complaints about air nuisance during the remedial work. Appendix C contains the signed certification from the safety manager conducting the CAMP.

4.3 **REMEDIAL ACTIONS**

Remediation of the AFFCO Site was completed in two stages: 1) *in situ* chemical oxidation of soils and groundwater in the 50-ft. by 50-ft. treatment area, from the water table to 15 feet below grade, atop the till layer, and 2) excavation of soils within the 50-ft. by 50-ft. treatment area from grade to slightly below the water table. Previous investigations found a compact till layer at 15 feet below grade that acted as a barrier to contaminant migration. For this reason remediation was limited to 15 feet below grade in the area of concern (treatment area).

The excavation encompassed the area near the former Feutron Building as shown on Figure 2. Excavation proceeded on a grid-cell-by-grid cell basis. The soil was removed from the impacted area and placed in a lined containment unit for testing and was returned to the respective grid cell after testing indicated that the results met the Part 375 Commercial Use SCOs. Remediation took place between July and September 2012. Figure 3 presents the pre-treatment and post-excavation results. Figure 4 presents the results of pre- and post-treatment groundwater sampling. Table 1 presents the SCOs. Table 2 presents the VOC endpoint sampling results. Appendix D contains the laboratory reports and Appendix E contains the Data Usability Summary Reports (DUSR).

4.3.1 Chemical Oxidation

Stage 1 occurred in July 2013. In preparation for chemical oxidation the treatment area was divided into six grid cells each approximately 17 feet by 25 feet (Figure 2). In May 2012, twenty-four, 6-inch-long pre-treatment soil cores within the treatment interval were collected from eight soil borings located within the six grid cells. Encore soil samples for VOC analysis were collected from the soil cores. A randomly selected X-coordinate and randomly selected Y-coordinate placed the boring within each grid cell. Then, three

randomly selected 6-inch-long depth intervals were sampled in each boring. Grid Cells 1 and 2 had two borings each. The objective was to augment the existing soil data from the 10-ft. to 15-ft. treatment interval so as to have a basis for comparing before and after *in situ* treatment results. In total, the combined soil characterization samples from earlier soil sampling and the randomly collected soil samples collected in May 2012 yielded 31 pre-treatment (baseline) soil samples.

Three injection wells (IW-1, IW-2, and IW-3) were installed in May 2012 for a total of 6 days of chemical treatment (Figure 2). The injection wells were built of 2-inchdiameter Schedule 80 PVC. The screened intervals were as follows:

Injection Well	Top of Screen, ftbg	Bottom of Screen, ftbg	Screen Length, ft.	Grid Cell
IW-1	9	12.3	3.3	2
IW-2	9	13.1	4.1	2
IW-3	9	12	3	4

In addition, five Geoprobe well points were used to inject chemical in the 13-ft to 14-ftand 14-ft. to 15-ft.-intervals in Grid Cell 2. The Geoprobe points were required because of the dense till layer. The intent was to install the injection well screens to 15 feet but this was infeasible due to the dense till layer beginning at approximately 13 feet that prevented further penetration while installing the injection wells.

The remedy for AFFCO was *in situ* chemical injection using the RemMetrik[®] methodology, which used Wavefront's Primawave[®] technology in this instance, and VeruTEK's Surfactant Enhanced *in situ* Chemical Oxidation (S-ISCO[®]) process, which used sodium persulfate, sodium hydroxide, and a plant-based surfactant. Sodium persulfate was the oxidant and was activated by the addition of sodium hydroxide to raise the pH. The plant-based surfactant, VeruSOL[®], was added to aid in the dissolution of the contaminant to make it available for chemical oxidation. In all, 13,200 gallons of oxidant were injected into the treatment interval on July 11 and 12 and again on July 23, 24, 25, and 26, 2012. The following concentrations formed the oxidant mixture: sodium persulfate, 15 – 50 g/L; sodium hydroxide, 12 – 50 g/L; VeruSOL[®], 0 – 15 g/L.

Groundwater was regularly monitored in nearby monitoring and injection wells during injections for pH, sodium persulfate, conductivity, oxidation reduction potential (ORP), dissolved oxygen, and temperature to ensure a proper chemical environment for oxidation and that conditions for *in situ* treatment were optimal.

The remedial excavation, Stage 2, took place in August-September 2012, in the interval between the end of the chemical injections and post-treatment soil sampling. Five bottom endpoint soil samples were collected at the bottom of the excavation, which was from 10 feet to 11 feet below grade, to document soil conditions. These samples were biased toward staining and were collected within the stratum previously treated by *in situ* chemical oxidation.

On March 27, 2013, another set of 24 randomly collected post-treatment Encore

soil samples were gathered from the six grid cells using an entirely new set of random coordinates (Figure 3). In total, the 24 randomly collected post-treatment soil samples and two duplicate samples, plus the five bottom endpoint samples yielded 31 post-treatment soil samples for comparison to pre-treatment conditions.

Chemical Oxidation Results

Post-treatment soil and groundwater sampling took place in March and April 2013. All of the oxidant had been expended prior to post-treatment sampling. Appendix F contains the remediation contractor, VeruTEK, report describing the treatment details.

Soils

The soil treatment goals were the Part 375 Commercial Use Soil Cleanup Objectives and 90 percent reduction in overall contaminant mass, which is defined as the sum of the Target Compound List (TCL) VOCs. The primary contaminants were the chlorinated VOCs. The principal VOC was TCA.

Of the 31 post-treatment soil samples, all but three VOC results met the Residential Use w/CP-51 Soil Cleanup Objectives, which are more stringent than the Commercial Use SCOs. The VOC compounds in the remaining three samples were well below the Commercial Use SCOs. An appreciable number of post-treatment soil samples were below the Unrestricted Use SCOs.

Contaminant reductions were computed by comparing the pre- and post-treatment mean soil concentrations. Since the bulk density and soil volume remain constant, the differences in mean concentrations yield the percent reduction in mass. Contaminant mass reduction is examined on an overall basis, by stratum, and by selected compounds.

The results for total VOCs and TCA concentrations follow a log-normal distribution, which is common in environmental data. For this reason, the pre and post-treatment reductions for total VOCs and TCA were calculated using log-transformed values as this yields more representative estimates of the means and confidence limits about the means.

Total VOCs Reduction

Comparing the 31 pre-treatment and 31 post-treatment samples yields a net total VOC mass reduction of 73 percent. Using arithmetic means the percent reduction is 63 percent.

$\kappa \delta u \delta m \mu g \kappa g$					
			Geometric		
Treatment	Sample Nos.	Lower Limit ¹	Mean	Upper Limit ¹	% Reduction
Pre-treatment	31	1,768	5,058	14,472	
Post-treatment	31	417	1,372	4, 520	73

Total VOCs in Soils – 95% Confidence Limits Results in ug/kg

¹ Limits about the geometric mean

Total VOCs in Soils

Results in $\mu g/kg$

	Pre-treat,	Post-treat,	
Sample Nos.	Arithmetic	Arithmetic	Percent
pre/post	Mean Conc. µg/kg	Mean Conc. µg/kg	Reduction
31/31	66,365	24,751	63

TCA Reduction

For TCA alone the net contaminant mass reduction measures 75 percent. Using arithmetic means the percent reduction is 67 percent.

TCA in Soils – 95% Confidence Limits Results in µg/kg Geometric Treatment Sample Nos. Lower Limit¹ Mean Upper Limit¹ % Reduction Pre-treatment 31 460 1,063 5,588 Post-treatment 31 115 406 1,436 75

¹ Limits about the geometric mean

TCA in Soils						
	Pre-treat, Post-treat,					
Samples Nos.	Arithmetic	Arithmetic	Percent			
pre/post	Mean Conc. µg/kg	Mean Conc. µg/kg	Reduction			
31/31	55,314	18,460	67			

Stratum-by-Stratum Reduction

On a stratum-by-stratum basis the contaminant mass reductions for total VOCs were based on arithmetic means as there is insufficient number of samples in most strata to use the geometric means. The results are as follows:

		Pre-treat, Arithmetic	Post-treat, Arithmetic	
	Sample Nos.	Mean Conc.	Mean Conc.	Percent
Stratum	pre/post	µg/kg	µg/kg	Reduction
1 (10 -11')	2/7	119,577	3,205	97
2 (11 – 12')	3/6	436,697	75,143	83
3 (12 – 13')	1/5	50	38,650	*
4 (13 – 14')	15/4	24,156	3,984	84
5 (14 -15')	10/9	14,568	8,803	40

Total VOCs in Soils Reduction by Stratum

Values rounded. * Too few pre-treatment samples for comparison.

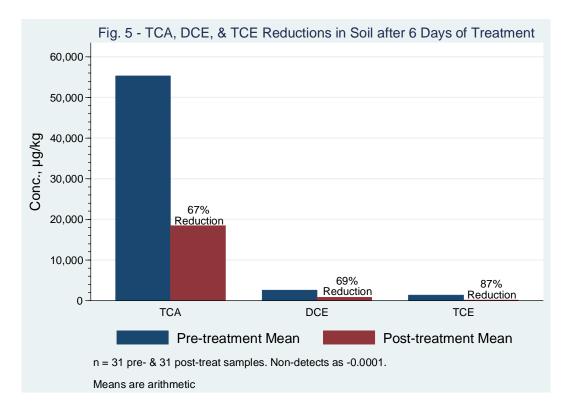
In the four strata where reductions could be measured, the average overall total VOC mass reduction is 76 percent.

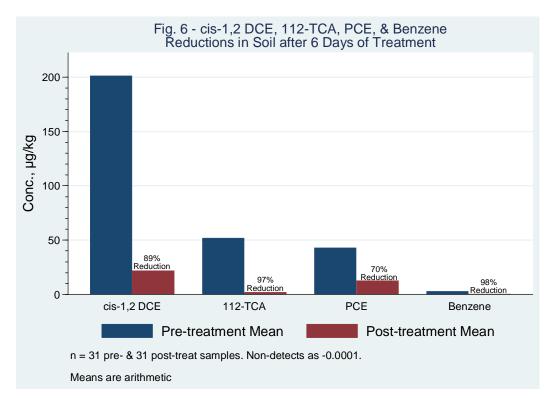
On a stratum-by-stratum basis the contaminant mass reductions for TCA, based on arithmetic means, are as follows:

	Sample Nos.	Pre-treat, Arithmetic Mean Conc.	Post-treat, Arithmetic Mean Conc.	Percent
Stratum	pre/post	µg/kg	µg/kg	Reduction
1 (10 -11')	2/7	115,385	2,621	98
2 (11 – 12')	3/6	388,693	66,639	83
3 (12 – 13')	1/5	0.49	26,602	*
4 (13 – 14')	15/4	15,761	2,493	84
5 (14 -15')	10/9	8,283	1,232	85

TCA Reduction in Soils by Stratum

Values rounded. * Too few pre-treatment samples for comparison.


In the four strata where reductions could be measured, the average overall TCA mass reduction is 87 percent.


Specific VOC Compound Reductions

Mass reductions for individual VOCs were calculated by comparing the pretreatment and post-treatment mean concentrations. Numerous values were below detection limits; non-detects were arbitrarily given a value of -0.0001 for calculation purposes. Arithmetic means were used for calculation purposes.

Mass reductions of specific VOCs on an overall basis show reductions ranging from 67 to 98 percent. Two of the more toxic compounds exhibited very high reductions. Benzene and 1,1,2-Trichloroethane (1,1,2-TCA), while having comparatively minor concentrations in soils, showed reductions of 98 and 97 percent, respectively. Figures 5

and 6 show the contaminant mass reductions for a number of compounds (TCA is repeated for the sake of comparison). The specific VOCs were selected on the basis of having the highest concentrations in pre-treatment soils and/or toxicity.

Groundwater

Baseline groundwater samples were collected in five wells: E1-X, EW-0, MW-1, E1-NEW, and S-8 in June-July 2012. Post-treatment groundwater samples were collected in April 2013. Monitoring wells EW-1X and EW-0 were inside or immediately adjacent to the treatment area (EW-1X). Wells S-8, E1-NEW, and MW-1 were outside the treatment area. MW-1 is approximately 12 feet downgradient from the treatment area and S-8 and E1-NEW (E1-(N)) are 55 or more feet downgradient from the treatment area (Figure 4). Tables 3 presents the pre- and post-treatment groundwater sampling results. Monitoring well construction details are as follows:

Monitoring	Top of	Bottom of	
Well	Screen, ftbg	Screen, ftbg	Location
EW-0	7	14.6	Treatment Area
EW-1X	6	11	Immediately Adjacent to Treatment Area
MW-1	6	13	12 ft. downgradient of Treatment Area
S-8	7	12	65 ft. downgradient of Treatment Area
E1-NEW	35	42	56 ft. downgradient of Treatment Area

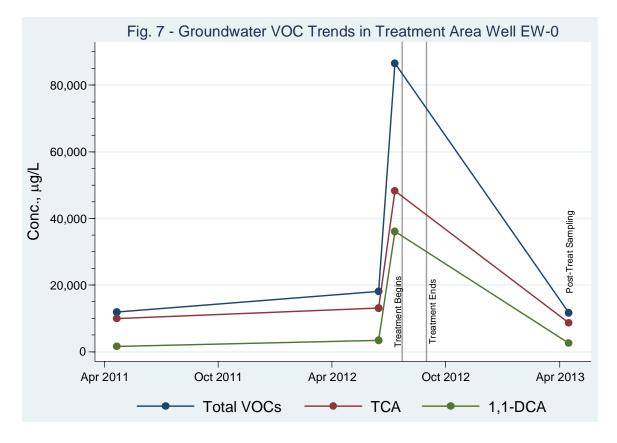
Treatment Area

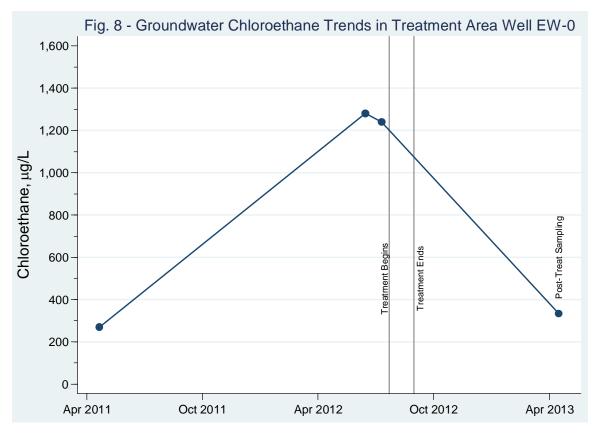
Pre-treatment groundwater samples were collected from wells inside the treatment area in June-July 2012 and in earlier site characterization groundwater samples. The July 2012 samples were collected before treatment from injection wells IW-1, IW-2, IW-3, and original monitoring well EW-0. Post-treatment groundwater samples were collected on April 17, 2013, from the two wells installed immediately adjacent to and inside the treatment area, EW-1X and EW-0, following remedial excavation.

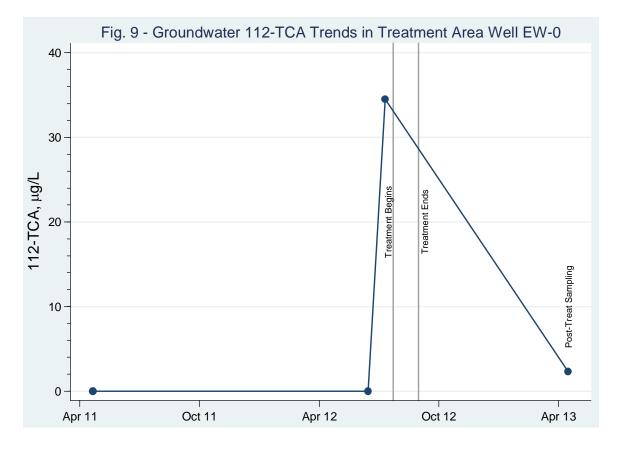
EW-1X was a new monitoring well installed immediately adjacent to Grid Cell 4 to add an additional monitoring point close to the treatment area. EW-0 was re-installed in Grid Cell 2 to replace the original EW-0 that was removed during remedial excavation. It was possible to penetrate the till layer with the drill rig at this location.

Groundwater concentrations typically fluctuate, often dramatically, with changing groundwater levels, the seasons, precipitation, and changes in groundwater flow direction throughout the year. This variation can dramatically affect contact between groundwater and contaminant, influence groundwater movement with more or less contaminated strata, affect contaminant migration and retardation through strata of different conductivities, and be influenced by geochemical factors that also occur within different strata. As a result, groundwater VOC concentrations can fluctuate dramatically from one sampling event to another. Under these conditions, the maximum concentrations likely approximate actual groundwater contaminant concentrations. For this reason it is more useful to compare the pre-treatment maximum groundwater concentrations with post-treatment groundwater. Table 3 contains the complete set of groundwater sample results. Table 4 summarizes the results of groundwater sampling.

Groundwater concentrations remain above TOGS for a number of compounds, but reductions in the principal VOCs range from 74 to 93 percent.

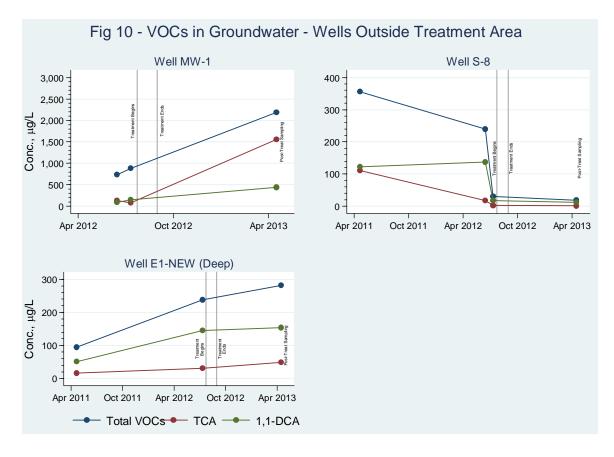

	Sample Nos.	Pre-treat	Post-treat	Percent
VOC	pre/post	Max. Conc. µg/L	Max. Conc. µg/L	Reduction
Total VOCs	9/2	86,530	11,706	86
TCA	9/2	48,300	8,630	82
112-TCA	9/2	34.5	2.3	93
1,1-DCA	9/2	36,100	2,540	93
Chloroethane	9/2	1,280	334	74
X7 .1				


Table 4 - Summary of Groundwater VOCs in Treatment Area


Values rounded.

Of the two wells immediately adjacent to or inside the injection treatment area, EW-1X (EW-1X is within the injection treatment radius but outside the excavation area) and EW-0, the VOC results in EW-1X were all below detection limits except for 1,1-Dichloroethane (DCA), 22.9 μ g/L. Accordingly, all but one VOC in this well met the TOGS GA standards in the post-treatment sampling round. In EW-0, 28 of the 36 VOC compounds are below TOGS criteria and/or guidelines and two VOCs are very close to the TOGS criteria.

Figures 7, 8, and 9 depict the trends for the principal VOCs in EW-0. All show large reductions compared to the pre-treatment maximum concentrations. The large VOC reductions in groundwater concentrations are consistent with an appreciable contaminant mass having been eliminated from the Site.



Outside Treatment Area

The three wells outside the treatment area are in the downgradient position. Two of these wells, MW-1 and deep well E1-NEW, showed increases following remediation. It is expected to be a temporary condition.

In contrast, the principal VOCs show a dramatic decrease in S-8 in the post-treatment groundwater samples compared to pre-treatment levels.

Basic Groundwater Parameters

Table 5 presents the pre-treatment results for basic groundwater parameters. Table 6 presents the post-treatment results. A comparison shows that pH is approximately the same, indicating that groundwater has returned to pre-treatment conditions. Conductivity increased in post-treatment groundwater in response to the oxidant added for *in situ* treatment. Dissolved oxygen remains about the same, but mean ORP is more than two-fold lower than pre-treatment levels. This is most likely the result of residual plant-based surfactant that is being degraded.

Well	pН	Cond. µS/cm	NTU	DO, mg/L	Temp., C	ORP, mV
EW-0	9.88	134	24	0	15.9	-106
IW-1	9.53	90	278	3.03	21.5	-98
IW-2	7.79	813	51	8.25	17	-92
IW-3	9.58	647	0	2.19	21.8	-50
S-8	8.62	593	2.3	0.88	16.6	-202
Mean	9.1	455	71	2.9	18.5	-110

Table 5 – Pre-Treatment Groundwater Parameters

Table 6 – Post-Treatment Groundwater Parameters

Well	pН	Cond. µS/cm	NTU	DO, mg/L	Temp., C	ORP, mV
MW-1	7.56	1,100	0	1.53	13.2	-148
EW-0	8.95	610	0	.65	10.9	-377
EW-1X	8.49	495	459	.62	12.6	-679
E1-NEW	9.08	522	57	.59	15.4	-207
S-8	7.53	356	205	8.42	13.3	59
Mean	8.3	617	144	2.4	13	-270

Sulfate and chloride were monitored both before and after treatment. The mean pre-treatment sulfate concentration measured 21.4 mg/L and the mean post-treatment level 48.8 mg/L. The more than two-fold increase is due to the sodium persulfate added as the oxidant. Some sulfate remains, but will dissipate with time.

The mean pre-treatment chloride concentration measured 108.7 mg/L and the mean post-treatment level 60.9 mg/L. This is a reduction of more than 40 percent. It is most likely due to the decomposition of chlorinated VOCs, the VOCs having been degraded and the chloride having washed through the soil.

Although chloride would be expected to increase in the short-term following destruction of chlorinated VOCs, this reduction suggests that the chloride resulting from oxidation has migrated with groundwater through the treated soil leaving lower concentrations behind. The appreciable reduction in chlorinated contaminant mass is thus being reflected in the lower chloride levels. In the eight months between the end of *in situ* treatment and post-treatment groundwater sampling, groundwater could flush through the more permeable zones in treatment area approximately two-dozen times.

Chemical Oxidation Treatment

The *in situ* treatment included injection of alkaline-activated sodium persulfate along with a surfactant, VeruSOL[®], to dissolve NAPL so as to promote

dissolution and optimal oxidation. The oxidant mixture was injected via specially designed injection wells using the RemMetrik[®] process and Wavefront Technology Solution's Sidewinder tool. The process employs subsurface pressure waves to promote even dispersion of the oxidant mixture into the small pores where most of the NAPL occurs. The treatment goal was 90 percent contaminant mass removal.

It was necessary to complete the *in situ* component before excavation in order for the injection wells to function optimally. The undisturbed overburden provides resistance that allows the subsurface pressure waves to move horizontally without being attenuated by vertical movement, which can occur without sufficient overburden or inadequately compacted overburden.

Prior to *in situ* treatment FLS collected soil samples to estimate contaminant mass and to identify the target zones for optimal injection well placement. The 50-ft. by 50-ft. treatment area was divided into six grid cells. Eight randomly placed soil borings in six grid cells were sampled randomly in 6-inch intervals from the water table to the underlying till layer at approximately 15 feet and sampled for VOCs using Method 8260. In all, 24 randomly selected samples for VOCs were collected using an Encore sampler.

Based on the randomly collected soil samples for VOC analysis, the estimated total contaminant mass measured approximately 79 pounds in the 10 – 15-ft. treatment interval. Approximately 89 percent of the contaminant mass occurred from 10 to 13 feet below grade. Three injection wells were installed where the contamination mass was highest. IW-1 and IW-2 were installed in Grid Cell 2, and IW-3 was installed in Grid Cell 4. All injection wells were installed to approximately 13 ft.-bg. Approximately 90 percent of the contaminant mass occurred in the 10- to 13-ft. interval near IW-2, and during the injections IW-2 was used as the primary injection well to account for the greater level of contaminant mass. To ensure greatest treatment in the 10- to 13-ft. zone, a packer was installed prior to injection to seal off the injection well at 10 feet. The oxidant mixture was also administered through five Geoprobe points from 13 to 14 ft.-bg and 14 to 15 ft.-bg (Figure 2).

Multiple rounds of injections took place between July 10 and July 27, although the total amount of injection time was approximately six days. A total of 13,200 gallons of oxidant mixture was injected. Sodium persulfate was injected at a concentration of 15 to 50 g/L, sodium hydroxide was injected at a concentration of 12 to 50 g/L and VeruSOL[®] was injected at a concentration of 0 to 15 g/L. Groundwater was monitored daily in the injection wells and nearby monitoring wells to check on the chemical response and distribution of the oxidant. Water in the adjacent stream was also monitored with field instruments and visual inspections during the injection to check for off-Site migration of treatment chemicals. None was found. Favorable chemical conditions were observed in the treatment area (Appendix F, VeruTEK report). Table 7 presents the volume of oxidant solution injected by treatment point.

	Injected Volume
Injection Point	(gallons)
IW-1	5,310
IW-2	5,320
IW-3	1,570
GP-1	200
GP-2	200
GP-3	200
GP-4	200
GP-5	200
Total	13,200

Table 7 – Oxidant Volume by Injection Point

IW- Injection well. GP – Geoprobe injection point.

4.3.2 Excavation

Prior to the start of excavation, the 50-ft. by 50-ft. treatment area, located in the footprint of the northwest portion of the former Feutron Building, was divided into six grid cells. Soil removal in this historic drum storage and felt press area and under the relict floor slab was performed by removing impacted material in Grid Cells 1 through 5. Based on analytical results of pre-excavation soil sampling and the proximity of Grid Cell 6 to the building wall, Grid Cell 6 was not sampled. The layout of the six grid cells is illustrated in Figure 3. Excavation was conducted from August 27, 2012 to September 4, 2012. Appendix G is a photographic log of the excavation and overall remedial effort.

A high density polyethylene (HDPE) soil containment structure (unit) was constructed to contain the excavated soils. The structure had dimensions of approximately 100 feet long and 50 feet wide. The HDPE structure was installed over a bed of clean fine sand to provide protection against puncture by debris or stones beneath the structure.

Excavation was conducted by removing soils in each of the five grid cells to the depth of approximately 11 feet below grade, approximately one (1) foot below the water table. In all, approximately 710 tons of soil were removed from the remedial excavation. The excavated soils were then stockpiled on Site and subsequently passed through a soil screener to remove larger materials that could potentially damage the HDPE containment structure. Once soil passed through the screener, the material was transported via dump truck to the HDPE containment structure. The excavated soils were then sampled in the HDPE containment structure at an interval of no less than one sample per 100 cubic yards. Samples were analyzed for VOCs and compared to the Part 375 Commercial Use SCOs. Soils meeting the SCOs were subsequently backfilled into the separate grid cells. No soil was removed from the Site to a disposal facility and no soil was imported from outside the Site. An additional 1,000 gallons of oxidant mixture was spread across the bottom of the open excavation prior to backfilling.

Soils were scanned for VOCs using a PID with an 11.2 eV bulb. PID screening was conducted either at the excavator bucket, at the soil stockpile in the containment unit, and in the excavation. Any observations regarding soil contamination were logged along with the PID readings.

Post-excavation bottom and sidewall endpoint sampling was conducted upon completion of excavation in each grid cell. Post-excavation sampling was biased towards areas of staining, odors, elevated PID readings, and areas of known contamination. Post excavation samples PX-01 to PX-06 were collected on August 28, 2012. Samples PX-07 and PX-08 were collected on August 30, 2012. Samples PX-09 to PX-15 were collected on September 4, 2012. Figure 3 shows the results of pre-treatment and post-treatment sampling.

Within the excavation were what appeared to be several relict concrete walls and footings that supported the former Feutron Building. One concrete structure was a nominal 20-ft. by 10-ft. vault that once housed manufacturing equipment (Pit L). The concrete vault contained various amounts of rainwater and algae during remediation. No signs of contamination were evident in the vault. A smaller nominal 5-ft. by 5-ft. vault (Pit S) occupied a portion of a larger concrete block and exhibited no signs of contamination. All concrete appeared free of staining or other discernable signs of contamination. The concrete structures were left in place and are shown on Figure 3 for documentation purposes.

4.3.3 Treatment Effectiveness

Post-excavation analytical sample results revealed all VOC concentrations below the NYSDEC Unrestricted Use Criteria with the exception of 1,1-Dichloroethane in sample PX-07 and 1,1-Dichloroethane, 1,1-Dichloroethene and 1,1,1-Trichloroethane in sample PX-3. The post-excavation sample locations and results summary is illustrated in Figure 3.

4.3.4 Remaining Contamination

All post-excavation and post-treatment soil sample results were below the Site cleanup criteria, the Part 375 Commercial Use SCOs.

4.3.4.1 Unrestricted Use

The following post-excavation and post-treatment soil sample results remain above the Unrestricted Use Soil Cleanup Criteria (Table 8):

Sample ID	Parameter	Result, µg/kg	Unrestricted Use SCO, μg/kg	Commercial Use SCO, µg/kg
PX03-BT-10	1,1-Dichloroethane	1,940	270	240,000
11105 D1 10	1,1-Dichloroethene	568	330	500,000
	1,1,1-Trichloroethane	4,980	680	500,000
C5SP02	1,1-Dichloroethene	2,750	330	500,000
000102	1,1,1-Trichloroethane	29,800	680	500,000
C5SP01	1,1,1-Trichloroethane	2,580	680	500,000
1.1 (12.5-13)	1,1-Dichloroethane	1,080	270	240,000
(1210 10)	1,2-Dichloroethane	232	20	30,000
	1,1-Dichloroethene	1,140	330	500,000
	1,1,1-Trichloroethane	18,700	680	500,000
	Trichloroethene	1,130	470	200,000
1.1 (1313.5)	1,1,1-Trichloroethane	2,860	680	500,000
1.2 (11-11.5)	1,1-Dichloroethane	6,220	270	240,000
	1,1,1-Trichloroethane	1,560	680	500,000
1.2 (14-14.5)	1,1-Dichloroethane	34,000	270	240,000
112 (11 1 110)	1,2-Dichloroethane	786	20	30,000
	1,1-Dichloroethene	1,620	330	500,000
	1,1,1-Trichloroethane	4,690	680	500,000
1.2 (13-13.5)	1,1-Dichloroethane	3,950	270	240,000
	1,1,1-Trichloroethane	2,130	680	500,000
2.1 (12.5-13)	2-Butanone (MEK)	893	120	500,000
	1,1-Dichloroethane	34,900	270	240,000
	1,2-Dichloroethane	1,590	20	30,000
	1,1-Dichloroethene	2,150	330	500,000
	cis-1,2-Dichloroethane	374	250	500,000
	trans-1,2-Dichloroethane	294	190	500,000
	Toluene	2,280	700	500,000
	1,1,1-Trichloroethane	42,300	680	500,000
	Trichloroethane	1,180	470	200,000
2.1 (11.5-12)	Acetone	62.4	50	500,000
	1,1-Dichloroethane	11,100	270	240,000
	1,2-Dichloroethane	27.7	20	30,000
2.1 (10-10.5)	1,2-Dichloroethane	20.7	20	30,000
	1,1,1-Trichloroethane	12,600	680	500,000
2.2 (12.5-13)	1,1-Dichloroethane	3,660	270	240,000
	1,2-Dichloroethane	179	20	30,000
	1,1-Dichloroethene	2,310	330	500,000
	1,1,1-Trichloroethane	70,700	680	500,000
2.2 (11-11.5)	1,1-Dichloroethane	6,040	270	240,000
	1,1-Dichloroethene	14,000	330	500,000
	Toluene	1,600	700	500,000
	1,1,1-Trichloroethane	398,000	680	500,000
2.2 (11-11.5)	Trichloroethane	2,040	470	200,000
2.2 (14-14.5)	Acetone	82.2	50	500,000
2.2 (14-14.5)	2-Butanone	129	120	500,000

Table 8 – Endpoint Soil Sample Results Above Unrestricted Use SCOs

Sample ID	Parameter	Result, μg/kg	Unrestricted Use SCO, µg/kg	Commercial Use SCO, µg/kg
	1,1-Dichloroethane	12,100	<u>µg/Kg</u> 270	240,000
	1,2-Dichloroethane	34.0	20	30,000
3 (13.5-14)	1,1-Dichloroethane	459	270	240,000
	1,1,1-Trichloroethane	1,500	680	500,000
3 (14.5-15)	1,1-Dichloroethane	5,820	270	240,000
	1,2-Dichloroethane	165	20	30,000
	1,1-Dichloroethene	423	330	500,000
	1,1,1-Trichloroethane	2,320	680	500,000
3 (12.5-13)	1,1-Dichloroethane	410	270	240,000
	1,2-Dichloroethane	134	20	30,000
	1,1-Dichloroethene	659	330	500,000
	1,1,1-Trichloroethane	1,270	680	500,000
4 (11-11.5)	1,1-Dichloroethane	2,000	270	240,000
	1,1-Dichloroethene	1,650	330	500,000
4 (14.5-15)	1,1-Dichloroethane	6,470	270	240,000
5 (13.5-14)	1,1,1-Trichloroethane	3,480	680	500,000
5 (14-14.5)	1,1,1-Trichloroethane	1,220	680	500,000
5 (14.5-15)	1,1,1-Trichloroethane	2,090	680	500,000

Table 8 – Endpoint Soil Sample Results Above Unrestricted Use SCOs

PX – Post Excavation sample. SP – Soil Pile/Cover sample. Remaining samples # (. . .) from post-treatment soil borings.

4.3.4.2 Residential Use

The following post-treatment soil sample results remain above the Residential Use soil cleanup criteria. All other samples were below the Residential Use SCOs:

		Result,	Residential
Sample ID	Parameter	μg/kg	Use SCO, µg/kg
1.2 (14-14.5)	1,1-Dichloroethane	34,000	19,000
2.1 (12.5-13)	1,1-Dichloroethane	34,900	19,000
2.2 (11-11.5)	1,1,1-Trichloroethane	398,000	100,000

4.3.4.3 Groundwater

Post-treatment groundwater sampling took place in April 2013. Five groundwater samples were collected for TCL VOC analysis by Method 8260 from wells within and downgradient from the treatment area.

Of the 35 VOCs in the 8260 list, 21 (60 percent) VOC results were below detection limits in all five groundwater samples. Of the 14 detected VOCs, five (14 percent of the total) were all below the TOGS or guidelines. Nine VOCs were above the TOGS AWQS or guidelines: chloroethane, 1,1-dichloroethane, 1,2-dichloroethane, 1,1-dichloroethane, toluene, 1,1,1-trichloroethane, 1,1,2-trichloroethane, trichloroethane, and vinyl chloride. Among these, nine VOCs, four of the compounds were below the TOGS AWQS or guidelines in 75 percent of the samples.

The VOCs with the highest groundwater concentrations were chloroethane $(334 \,\mu g/L)$, 1,1dichloroethane $(2,540 \,\mu g/L)$, and 1,1,1-trichloroethane $(8,630 \,\mu g/L)$ in monitoring well EW-0. EW-0 and MW-1 (a.k.a. MW-1N) had the highest concentrations of VOCs compared to all other wells, as shown.

Sample ID	Chloroethane	1,1-Dichloroethane	TCA
S-8	nd	11.8	1.4
E1-N	73.9	154	48.4
EW-1X	nd	22.9	nd
MW-1N	136	438	1,560
EW-0	334	2,540	8,630
1 1.			

Post-treatment Groundwater Results in µg/L

nd - non-detect

Table 9 summarizes the post-treatment detected VOC results for all groundwater samples.

VOC	Min	p25	p50	p75	p95	Max	TOGS*
2-Butanone	-	-	-	-	14.1	14.1	50
Chloroethane	-	-	<i>73.9</i>	136	334	334	5
Chloroform	-	-	-	1.2	3.1	3.1	7
1,1-Dichloroethane	11.8	22.9	154	<i>438</i>	2,540	2,540	5
1,2-Dichloroethane	-	-	0.7	5.2	17.5	17.5	0.6
1,1-Dichloroethene	-	3.5	5	36.6	144	144	5
cis-1,2-Dichloroethene	-	-	-	0.54	2.8	2.8	3
trans-1,2-Dichloroethene	-	-	-	-	2.2	2.2	5
Tetrachloroethene (PCE)	-	-	-	-	0.6	0.6	5
Toluene	-	-	-	1.6	8	8	5
1,1,1-Trichloroethane (TCA)	-	1.4	48.4	1,560	8,630	8,630	5
1,1,2-Trichloroethane	-	-	-	-	2.3	2.3	1
Trichloroethene (TCE)	-	-	1.1	4	6.2	6.2	5
Vinyl chloride	-	-	-	-	4.8	4.8	2

Table 9 – Summary of Detected Post-treatment Groundwater Results, All Wells Results in µg/L

Min – minimum, p25 – 25th percentile, p50– 50th percentile (median), p75 – 75th percentile, p95 – 95th percentile, Max – maximum. – non-detect. *TOGS or guidance value. Bold & italic exceed TOGS values/guidelines.

4.3.5 Soil Cover System

The excavation was backfilled to grade with soil meeting the Commercial Use SCOs. In nearly all cases, treated soil for backfilling met the Unrestricted Use or Residential Use SCOs. The soil used for the excavation cover was the excavated soil that met the Site SCOs (Section 4.3.2) and subsequently returned to the excavation after testing documented the soil met the cleanup goals. No soil was imported from off-Site. The data for the soil cover samples are the post-treatment soil pile samples. Table 10 lists the soil pile/soil cover samples. Table 2A presents the results.

Table 10 -	Soil Pile/Cover	Results, µg/kg
------------	-----------------	----------------

C1SP01	C4SP01	C3SP02
C2SP01	C5SP01	C5SP02
C3SP01	C2SP02	Bench01

4.3.6 Sub-slab Depressurization System

There is an existing SSDS operating under the Piano Felt Building (Figure 11). Now that soils containing the source contamination have been treated, AFFCO proposes to convert the SSDS and allow the system to operate in passive mode. A separate work plan will be prepared to demonstrate that passive operation of the SSDS will address potential exposure via soil vapor intrusion.

4.3.7 Deviations from Remedial Action Work Plan

There were no material deviations from the approved work plan. One minor deviation was omission of stream sampling following treatment.

4.3.8 Quality Assurance/Quality Control Summary

All post-excavation and post-treatment soil data were found usable for project decisions. All groundwater results were found usable for project decisions (Appendix E).

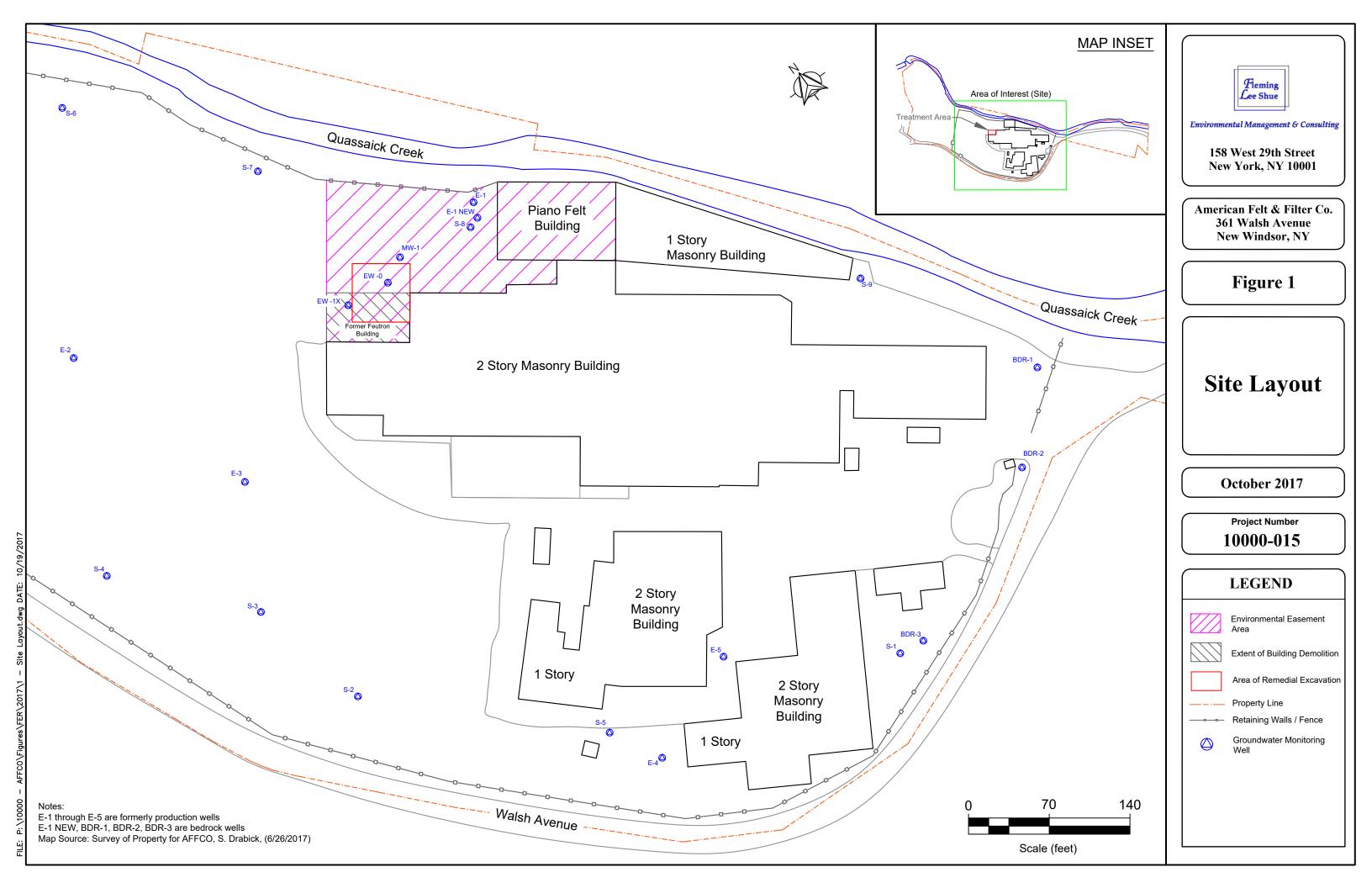
5.0 ENVIRONMENTAL EASEMENT, SOIL MANAGEMENT AREA & SSDS

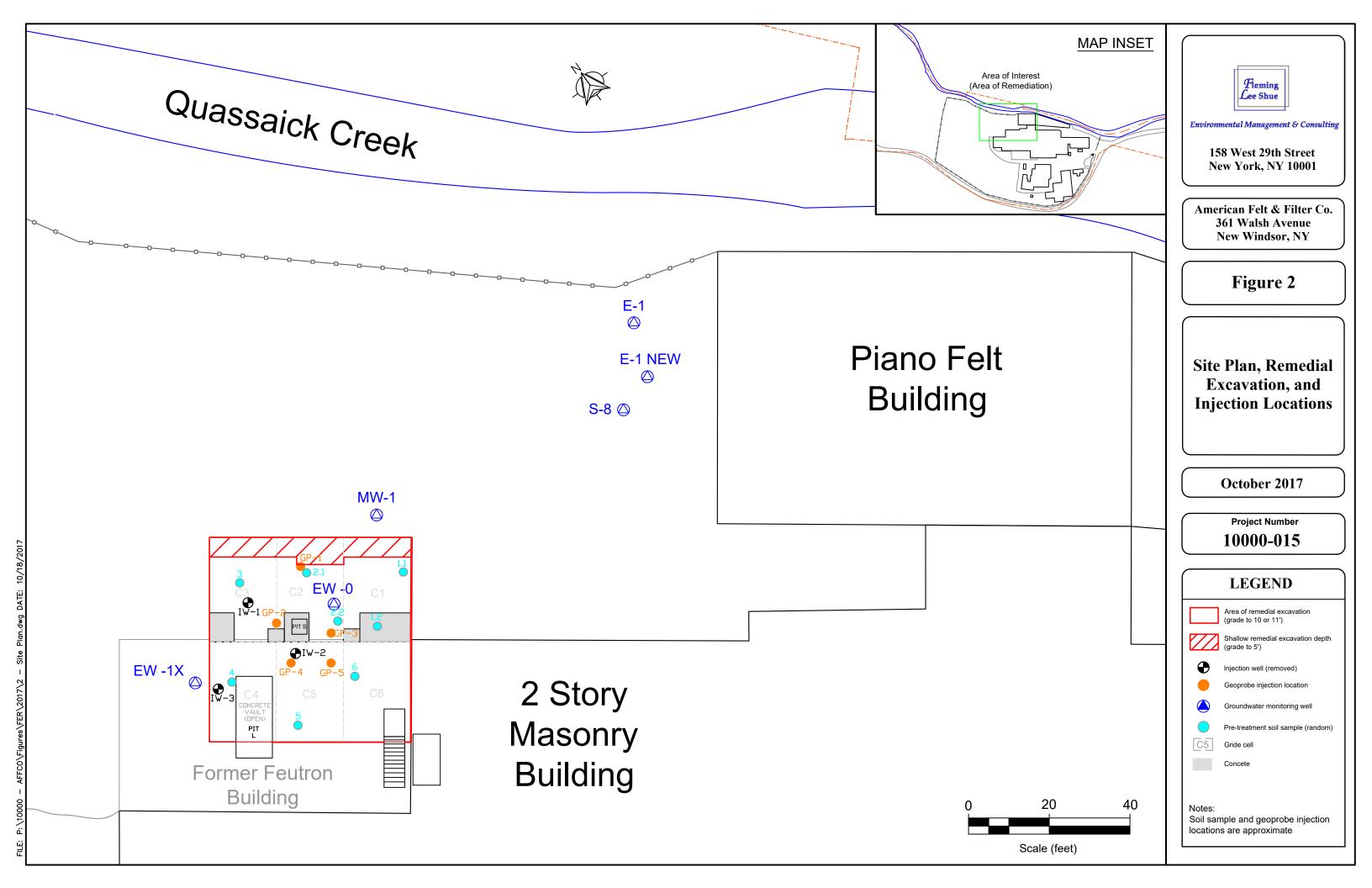
The Site has a series of Institutional Controls in the form of an Environmental Easement that encompasses a portion of the property (0.5454 acres) that includes a Soil Management Area (0.3845 acre) and a SSDS area (0.1619 acre) (Appendix A). Site restrictions that apply to the Environmental Easement Area of the Property are as follows:

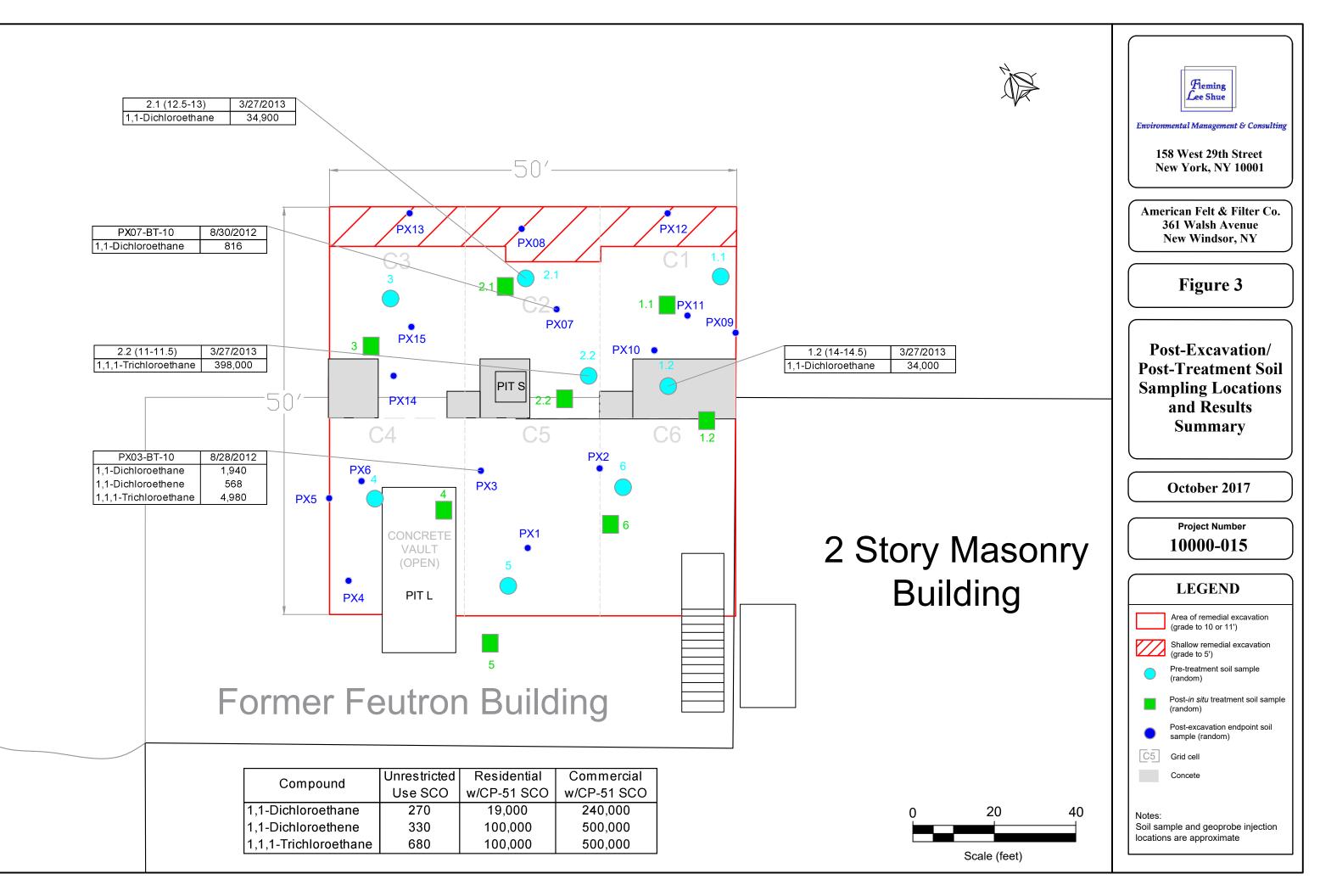
- The controlled property area may be used for commercial use provided that the long-term Engineering and Institutional Controls included in the attached Site Management Plan are employed. The controlled property also allows Industrial use as allowed by zoning;
- The controlled property may not be used for a higher level of use, such as unrestricted, residential or restricted residential use without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- The controlled property area may not be used for a higher level of use, such as unrestricted or restricted residential, use without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- All future activities on the controlled property area that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- The use of the groundwater underlying the property is prohibited without treatment rendering it safe for intended use;
- The potential for vapor intrusion must be evaluated for any new buildings on Site and any potential impacts that are identified must be monitored or mitigated;
- Vegetable gardens and farming on the property are prohibited;
- Inspection of the soil covering the Soil Management Area annually. The inspection results will be detailed in the Periodic Review Report (PRR) and certified by the engineer. Any damage to the soil cover will be repaired in kind;
- Inspection of the SSDS. The inspection results will be detailed in the PRR and certified by the engineer; and
- The Site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

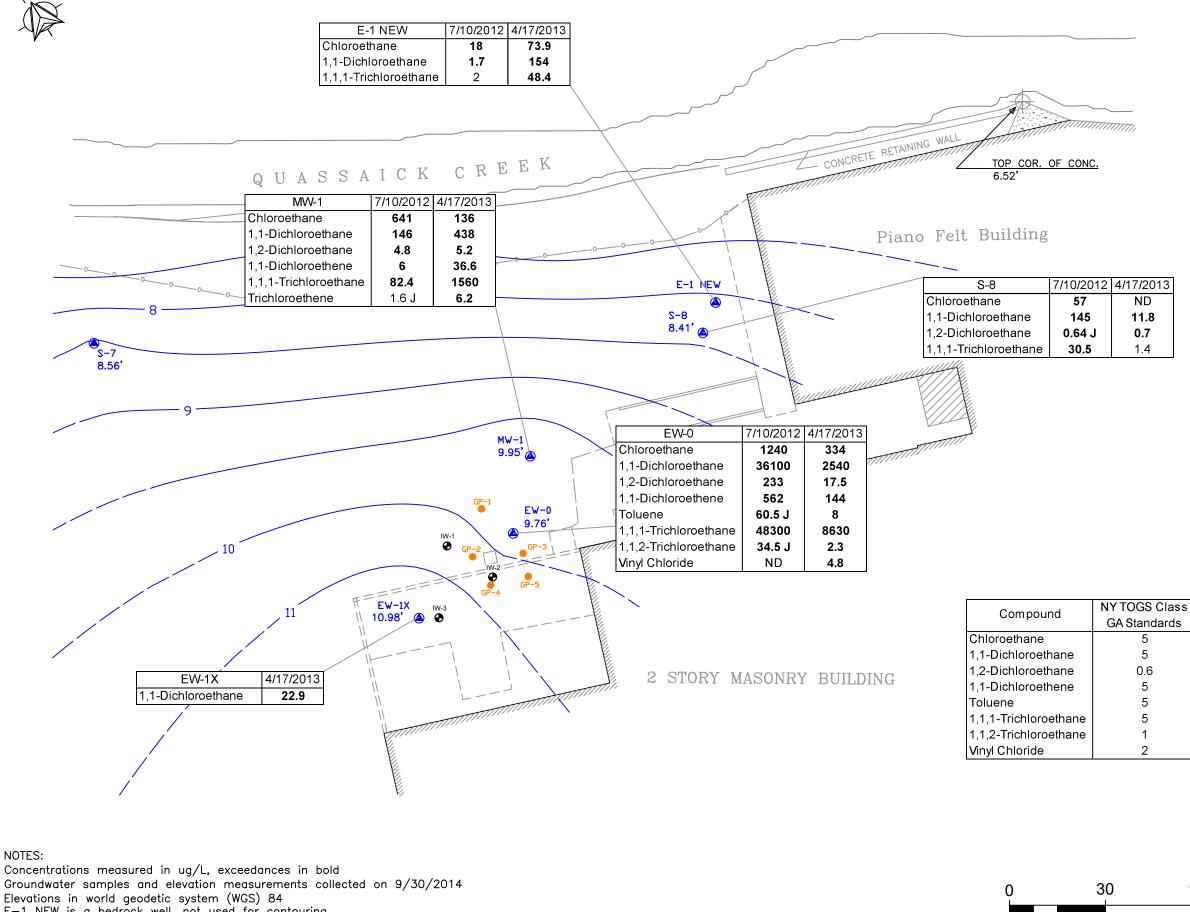
Institutional Controls identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement.

The Environmental Easement was accepted by NYSDEC on August 23, 2017 and filed with Orange County on September 15, 2017.submitted on.

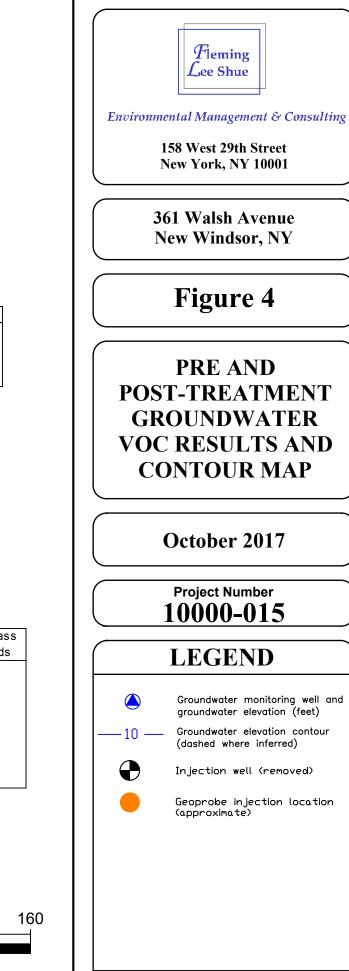

6.0 SITE MANAGEMENT PLAN


A SMP that describes actions subsequent to the remedial action is included as a separate document. The SMP calls for groundwater monitoring, SSDS operation and inspection, and inspection of the Soil Management Area soil cover.

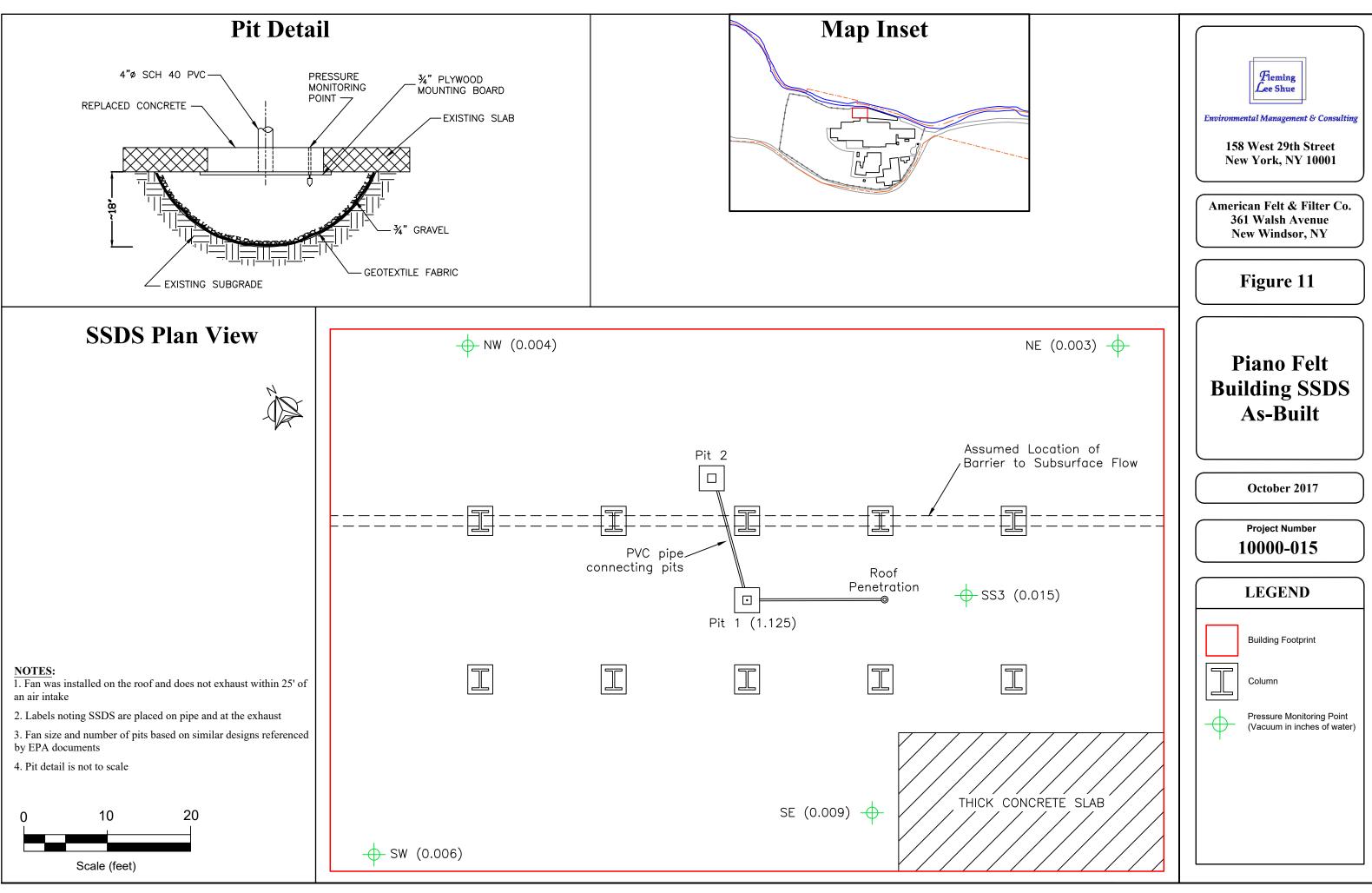

Since contaminated soil and groundwater remain beneath the Site after completion of the remedial action, institutional and engineering controls are required to protect human health and the environment. Long-term management of these controls and residual contamination will be conducted under the SMP approved by the NYSDEC


FIGURES

Elevations in world geodetic system (WGS) 84 E-1 NEW is a bedrock well, not used for contouring Pre-treatment samples collected on 7/10/2012 Post-treatment samples collected on 4/17/2013


2017\4

s\FER\


710/18/012

AC

Scale (feet)

ND 11.8 0.7 1.4

TABLES

Table 1 Commercial Use Soil Cleanup Objectives AFFCO, 361 Walsh Avenue, New Windsor, NY

Volatiles (SW846 8260C)

Semi-volatiles (SW846 8270D)

PCBs and Pesticides (SW846 8081B)

- Sidilioo (erre		-,			,	. eze ana i obtiola		
Acetone	ug/kg	500000	2-Chlorophenol	ug/kg		Aldrin	ug/kg	680
Benzene	ug/kg	44000	4-Chloro-3-methyl phenol	ug/kg	-	alpha-BHC	ug/kg	3400
Bromochloromethane	ug/kg	-	2,4-Dichlorophenol	ug/kg		beta-BHC	ug/kg	3000
Bromodichloromethane	ug/kg	-	2,4-Dimethylphenol	ug/kg	-	delta-BHC	ug/kg	500000
Bromoform	ug/kg	-	2,4-Dinitrophenol	ug/kg		gamma-BHC (Lindane)	ug/kg	9200
Bromomethane	ug/kg	-	4,6-Dinitro-o-cresol	ug/kg	-	alpha-Chlordane	ug/kg	24000
2-Butanone (MEK)	ug/kg	500000	2-Methylphenol	ug/kg	500000	gamma-Chlordane	ug/kg	4.400
Carbon disulfide	ug/kg	00000	3&4-Methylphenol	ug/kg	-	Dieldrin	ug/kg	1400
Carbon tetrachloride	ug/kg	22000	2-Nitrophenol	ug/kg		4,4'-DDD	ug/kg	92000
Chlorobenzene Chloroethane	ug/kg	500000	4-Nitrophenol Pentachlorophenol	ug/kg	6700	4,4'-DDE 4,4'-DDT	ug/kg	62000 47000
Chloroform	ug/kg ug/kg	350000	Phenol	ug/kg	500000	4,4-DDT Endrin	ug/kg	47000 89000
Chloromethane	ug/kg ug/kg	330000	2,3,4,6-Tetrachlorophenol	ug/kg	500000	Endosulfan sulfate	ug/kg ug/kg	200000
Cvclohexane	ug/kg ug/kg	-	2,4,5-Trichlorophenol	ug/kg ug/kg	-	Endrin aldehvde	ug/kg ug/kg	200000
1,2-Dibromo-3-chloropropane	ug/kg		2,4,6-Trichlorophenol	ug/kg		Endosulfan-I	ug/kg	200000
Dibromochloromethane	ug/kg		Acenaphthene	ug/kg	500000	Endosulfan-II	ug/kg	200000
1,2-Dibromoethane	ug/kg		Acenaphthylene	ug/kg	500000	Heptachlor	ug/kg	15000
1,2-Dichlorobenzene	ug/kg	500000	Acetophenone	ug/kg	-	Heptachlor epoxide	ug/kg	
1,3-Dichlorobenzene	ug/kg	280000	Anthracene	ug/kg	500000	Methoxychlor	ug/kg	
1,4-Dichlorobenzene	ug/kg	130000	Atrazine	ug/kg	-	Endrin ketone	ug/kg	-
Dichlorodifluoromethane	ug/kg	-	Benzo(a)anthracene	ug/kg	5600	Toxaphene	ug/kg	-
1,1-Dichloroethane	ug/kg	240000	Benzo(a)pyrene	ug/kg	1000	·	0.0	
1,2-Dichloroethane	ug/kg	30000	Benzo(b)fluoranthene	ug/kg	5600	Meta	als	
1,1-Dichloroethene	ug/kg	500000	Benzo(g,h,i)perylene	ug/kg	500000			
cis-1,2-Dichloroethene	ug/kg	500000	Benzo(k)fluoranthene	ug/kg	56000	Aluminum	mg/kg	
trans-1,2-Dichloroethene	ug/kg	500000	4-Bromophenyl phenyl ether	ug/kg	-	Antimony	mg/kg	
1,2-Dichloropropane	ug/kg		Butyl benzyl phthalate	ug/kg		Arsenic	mg/kg	16
cis-1,3-Dichloropropene	ug/kg	-	1,1'-Biphenyl	ug/kg		Barium	mg/kg	400
trans-1,3-Dichloropropene	ug/kg	-	Benzaldehyde	ug/kg	-	Beryllium	mg/kg	590
Ethylbenzene	ug/kg	390000	2-Chloronaphthalene	ug/kg	-	Cadmium	mg/kg	9.3
Freon 113	ug/kg		4-Chloroaniline	ug/kg		Calcium	mg/kg	
2-Hexanone	ug/kg	-	Carbazole	ug/kg	-	Chromium	mg/kg	-
Isopropylbenzene	ug/kg		Caprolactam	ug/kg	-	Cobalt	mg/kg	
Methyl Acetate	ug/kg	-	Chrysene	ug/kg	56000	Copper	mg/kg	270
Methylcyclohexane	ug/kg	-	bis(2-Chloroethoxy)methane	ug/kg	-	Iron	mg/kg	
Methyl Tert Butyl Ether	ug/kg	500000	bis(2-Chloroethyl)ether	ug/kg	-	Lead	mg/kg	1000
4-Methyl-2-pentanone(MIBK)	ug/kg	500000	bis(2-Chloroisopropyl)ether	ug/kg	-	Magnesium	mg/kg	-
Methylene chloride	ug/kg	500000	4-Chlorophenyl phenyl ether	ug/kg	-	Manganese	mg/kg	10000
Styrene	ug/kg		2,4-Dinitrotoluene	ug/kg	-	Mercury	mg/kg	2.8
1,1,2,2-Tetrachloroethane Tetrachloroethene	ug/kg ug/kg	150000	2,6-Dinitrotoluene 3,3'-Dichlorobenzidine	ug/kg		Nickel Potassium	mg/kg	310
Toluene	ug/kg ug/kg	500000	1,4-Dioxane	ug/kg	130000	Selenium	mg/kg mg/kg	1500
1,2,3-Trichlorobenzene	ug/kg ug/kg	500000	Dibenzo(a,h)anthracene	ug/kg	560	Silver	mg/kg	1500
1,2,4-Trichlorobenzene	ug/kg		Dibenzofuran	ug/kg ug/kg	350000	Sodium	mg/kg	1500
1,1,1-Trichloroethane	ug/kg	500000	Di-n-butyl phthalate	ug/kg	330000	Thallium	mg/kg	-
1,1,2-Trichloroethane	ug/kg	-	Di-n-octyl phthalate	ug/kg		Vanadium	mg/kg	
Trichloroethene	ug/kg	200000	Diethyl phthalate	ug/kg		Zinc	mg/kg	10000
Trichlorofluoromethane	ug/kg	-	Dimethyl phthalate	ug/kg				
Vinyl chloride	ug/kg	13000	bis(2-Ethylhexyl)phthalate	ug/kg				
m,p-Xylene	ug/kg	500000	Fluoranthene	ug/kg	500000			
o-Xylene	ug/kg	500000	Fluorene	ug/kg	500000			
Xylene (total)	ug/kg	500000	Hexachlorobenzene	ug/kg	6000			
, , ,	. 3. 3		Hexachlorobutadiene	ug/kg	-			
			Hexachlorocyclopentadiene	ug/kg				
			Hexachloroethane	ug/kg	-			
			Indeno(1,2,3-cd)pyrene	ug/kg	5600			
			Isophorone	ug/kg				
			2-Methylnaphthalene	ug/kg				
			2-Nitroaniline	ug/kg				
			3-Nitroaniline	ug/kg				
			4-Nitroaniline	ug/kg	-			
			Naphthalene	ug/kg	500000			
			Nitrobenzene	ug/kg	69000			
			N-Nitroso-di-n-propylamine	ug/kg	-			
			N-Nitrosodiphenylamine	ug/kg				
			Phenanthrene	ug/kg	500000			
			Pyrene	ug/kg	500000			
			1,2,4,5-Tetrachlorobenzene	ug/kg	-			
Nataa								

Notes The SCOs for unrestricted use were capped at a maximum value of 100 ppm. See Technical Support Document (TSD), section 9.3. For constituents where the calculated SCO was lower than the contract required quantitation limit (CRQL), the CRQL is used as the Track 1 SCO value.

For constituents where the calculated SCO was lower than the rural soil background concentration, as determined by the Department and Department of Health rural soil survey, the

rural soil background concentration is used as the Track 1 SCO value for this use of the site. Protection of ecological resources SCOs were not developed for contaminants identified in Table 375-6.8(b) with "NS". Where such contaminants appear in Table 375-6.8(a), the applicant may be required by the Department to calculate a protection of ecological resources SCO according to the TSD. Endosulfan SCO is the sum of endosulfan I, endosulfan II and endosulfan sulfate... The SCO is the lower of the values for mercury (elemental) or mercury (inorganic salts). See TSD Table 5.6-1.

Table 2AEnd-point Post-excavation Soil sample Analytical ResultsSummary of Volatile Organic Compounds

Client ID Lab Sample ID	NY Unrestricted	NY Commercial	BENCH01 JB15155-3	C1SP01 JB15405-8	C2SP01 JB15405-11	C2SP02 JB15405-12	C3SP01 JB15405-9	C3SP02 JB15405-10	C4SP01 JB14890-9	C5SP01 JB14890-7	C5SP02 JB14890-8	PX01-SW-5 JB14890-1	PX02-SW-5 JB14890-2	PX03-BT-10 JB14890-3
Date Sampled	Use Soil Cleanup Objectives	Use Soil Cleanup Objectives	8/30/2012	9/4/2012	9/4/2012	9/4/2012	9/4/2012	9/4/2012	8/28/2012	8/28/2012	8/28/2012	8/28/2012	8/28/2012	8/28/2012
	00)0011703	00/00/003	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
GC/MS Volatiles (µg/kg)														
Acetone	500000	500000	<1.9	<2.0	<1.8	<1.8	<2.0	<1.8	<2.3	14.7	13.3	<2.3	5.9 J	20.6
Benzene	44000	44000	<0.14	<0.14	<0.13	<0.13	<0.14	<0.12	1.0 J	<0.17	<0.15	0.76 J		<0.14
Bromodichloromethane	NS	NS	<0.12	<0.13	<0.11	<0.11	<0.13	<0.11	<0.14	<0.15	<0.13	<0.14	<0.13	<0.12
Bromoform	NS	NS	<0.17	<0.18	<0.16	<0.16	<0.18	<0.16	<0.20	<0.21	<0.19	<0.21	<0.19	<0.18
Bromomethane	NS	NS	<0.31	<0.33	<0.29	<0.30	<0.33	<0.29	<0.36	<0.38	<0.34	<0.37	<0.35	<0.32
2-Butanone (MEK)	500000	500000	<2.7	<2.9	<2.6	<2.6	<2.9	<2.5	<3.2	<3.4	<3.0	<3.3	<3.0	12.9
Carbon disulfide	NS	NS	<0.13	<0.14	<0.13	<0.13	<0.14	<0.12	<0.16	<0.16	1.2 J	<0.16	<0.15	1.5 J
Carbon tetrachloride	22000	22000	<0.15	<0.16	<0.14	<0.14	<0.16	<0.14	<0.18	<0.19	<0.17	<0.18	<0.17	<0.15
Chlorobenzene	500000	500000	<0.12	<0.13	<0.12	<0.12	<0.13	<0.11	<0.14	<0.15	<0.14	<0.15	<0.14	<0.13
Chloroethane	NS	NS	<0.26	<0.27	<0.24	<0.25	<0.27	<0.24	< 0.30	< 0.32	<0.28	<0.31	<0.29	1.9 J
Chloroform	350000	350000	< 0.094	<0.099	<0.088	<0.089	<0.099	<0.087	<0.11	0.73 J	0.79 J	<0.11	<0.11	0.56 J
Chloromethane	NS	NS	<0.21	<0.22	<0.20	<0.20	<0.22	<0.20	<0.25	<0.26	<0.23	<0.25	<0.24	<0.22
Dibromochloromethane	NS	NS	<0.19	<0.20	<0.18	<0.18	<0.20	<0.17	<0.22	<0.23	<0.21	<0.22	<0.21	<0.19
1,1-Dichloroethane	240000	240000	1.2 J	7.2	1.0 J	1.9 J	13.0	3.0 J	<0.18	3.1 J	214	<0.19	<0.17	1940
1,2-Dichloroethane	30000	30000	<0.15	0.65 J	0.78 J	1.7	1.2	0.76 J	<0.18	<0.19	2.9	<0.18	<0.17	13.8
1,1-Dichloroethene	500000	500000	1.6 J	2.0 J	0.43 J	0.90 J	5.8 J	1.5 J	< 0.34	2.5 J	2750	< 0.35	< 0.33	568
cis-1,2-Dichloroethene	500000	500000	0.92 J	0.61 J	0.37 J	1.1 J	0.54 J	0.41 J	<0.24	<0.26	1.2 J	<0.25	< 0.23	1.5 J
trans-1,2-Dichloroethene	500000	500000	0.61 J	0.50 J	<0.25	0.70 J	0.41 J	0.38 J	< 0.32	<0.33	2.2 J	< 0.32	<0.30	<0.28
1,2-Dichloroethene (total)	NS	NS	1.5 J	1.1 J	0.37 J	1.8 J	0.95 J		<0.24	<0.26	3.4 J	<0.25	<0.23	1.5 J
1,2-Dichloropropane	NS	NS	<0.17	<0.18	<0.16	<0.17	<0.19	<0.16	<0.21	<0.22	<0.19	<0.21	<0.20	<0.18
cis-1,3-Dichloropropene	NS	NS	<0.16	<0.17	<0.15	<0.15	<0.17	<0.15	<0.19	<0.20	<0.17	<0.19	<0.18	<0.16
trans-1,3-Dichloropropene	NS	NS	<0.18	<0.19	<0.17	<0.17	<0.19	<0.16	<0.21	<0.22	<0.19	<0.21	<0.20	<0.18
Ethylbenzene	390000	390000	< 0.30	< 0.32	<0.28	<0.28	< 0.32	<0.28	< 0.35	<0.37	< 0.33	< 0.36	< 0.34	<0.31
2-Hexanone	NS	NS	<0.71	<0.75	<0.66	<0.67	<0.75	<0.65	<0.83	<0.87	<0.78	<0.85	<0.79	<0.72
Methyl Tert Butyl Ether	500000	500000	<0.27	<0.28	<0.25	<0.25	<0.28	<0.25	<0.31	<0.33	<0.29	< 0.32	< 0.30	<0.27
4-Methyl-2-pentanone(MIBK)	NS	NS	<0.85	<0.90	<0.80	<0.81	<0.90	<0.79	<1.0	<1.1	<0.94	<1.0	<0.96	<0.87
Methylene chloride	500000	500000	<1.4	<1.5	<1.4	<1.4	<1.5	<1.3	<1.7	<1.8	<1.6	<1.7	<1.6	<1.5
Styrene	NS	NS	<0.10	<0.11	<0.098	< 0.099	<0.11	<0.096	<0.12	<0.13	<0.11	<0.13	<0.12	<0.11
1,1,2,2-Tetrachloroethane	NS	NS	<0.15	<0.16	<0.14	<0.14	<0.16	<0.14	<0.18	<0.19	<0.17	<0.18	<0.17	<0.15
Tetrachloroethene	150000	150000	0.62 J	1.1 J	<0.18	0.33 J	1.6 J		<0.23	<0.24	1.1 J	<0.23	<0.22	0.68 J
Toluene	500000	500000	1.1	1.3	<0.11	<0.11	2.8	0.27 J	0.43 J	<0.15	1.2 J	0.33 J		17.1
1,1,1-Trichloroethane	680	500000	47.9	513	51.7	59.9	41900	166	1.6 J		29800	<0.14	6.1 J	
1,1,2-Trichloroethane	NS	NS	1.6 J	3.5 J	1.4 J	2.5 J	5.2 J		<0.23	< 0.24	<0.22	<0.14	<0.22	0.64 J
Trichloroethene	200000	200000	0.93 J	5.0 J	1.4 J	6.9	5.2 J		3.6 J	<0.24	1.7 J	<0.24	<0.22	2.2 J
Vinyl chloride	13000	13000	<0.16	<0.17	<0.15	<0.16	<0.17	<0.15	<0.19	<0.24	1.7 J		<0.22	9.7
Xylene (total)	500000	500000	<0.16	<0.17	<0.15	<0.10	<0.17	<0.15	<0.19	<0.20	<0.17	<0.20	<0.18	<0.16
Total Confident Conc.	00000	00000	57.98	535.96	57.65	77.73	41937.2	175.98	6.63	2601.03	32794.79	1.09	12	7572.58
			01.90	000.90	37.03	11.13	41931.2	170.90	0.03	2001.03	32194.19	1.09	12	1012.00

Notes:

Exceedances in Unrestricted Use SCOs highlighted in blue

NS - no standard

Table 2AEnd-point Post-excavation Soil sample Analytical ResultsSummary of Volatile Organic Compounds

Client ID Lab Sample ID	NY Unrestricted Use Soil Cleanup	NY Commercial Use Soil Cleanup	PX04-SW-5 JB14890-4	PX05-SW-6 JB14890-5	PX06-BT-10 JB14890-6	PX07BT-10 JB15155-1	PX08SW-7 JB15155-2	PX09SW-3 JB15405-1	PX10SW-5 JB15405-2	PX11BT-10 JB15405-3	PX12SW-7 JB15405-4	PX14SW-6 JB15405-6	PX15BT-10 JB15405-7
Date Sampled	Objectives	Objectives	8/28/2012	8/28/2012	8/28/2012	8/30/2012	8/30/2012	9/4/2012	9/4/2012	9/4/2012	9/4/2012	9/4/2012	9/4/2012
	05,001703	05,001703	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
GC/MS Volatiles (µg/kg)													
Acetone	500000	500000	<2.3	<2.2	4.0 J	27.5	<2.0	<2.2	<2.2	<2.0	<2.1	<1.9	13.6
Benzene	44000	44000	0.77 J	1.3	0.86 J	<0.15	9.9	2.6	2.7	<0.14	2.6 J	<0.13	<0.15
Bromodichloromethane	NS	NS	<0.14	<0.13	<0.13	<0.13	<0.13	<0.14	<0.14	<0.12	<0.13	<0.12	<0.13
Bromoform	NS	NS	<0.20	<0.19	<0.19	<0.19	<0.18	<0.20	<0.20	<0.18	<0.19	<0.17	<0.19
Bromomethane	NS	NS	<0.36	<0.35	<0.34	<0.35	<0.33	<0.36	<0.36	<0.32	<0.34	<0.30	<0.35
2-Butanone (MEK)	500000	500000	<3.2	<3.1	<3.0	<3.0	<2.9	<3.1	<3.2	<2.8	<3.0	<2.7	<3.1
Carbon disulfide	NS	NS	<0.16	<0.15	<0.14	<0.15	<0.14	<0.15	<0.16	<0.14	<0.15	<0.13	<0.15
Carbon tetrachloride	22000	22000	<0.18	<0.17	<0.16	<0.17	<0.16	<0.17	<0.18	<0.15	<0.17	<0.15	<0.17
Chlorobenzene	500000	500000	<0.14	<0.14	<0.13	<0.14	<0.13	<0.14	<0.14	<0.13	<0.13	<0.12	<0.14
Chloroethane	NS	NS	<0.30	<0.29	<0.28	136	<0.27	< 0.30	<0.30	<0.26	<0.28	<0.25	<0.29
Chloroform	350000	350000	<0.11	<0.11	<0.10	0.49 J	<0.10	<0.11	<0.11	< 0.096	<0.10	< 0.092	1.0 J
Chloromethane	NS	NS	<0.25	<0.24	< 0.23	<0.24	<0.22	<0.24	<0.25	<0.22	<0.23	<0.21	<0.24
Dibromochloromethane	NS	NS	<0.22	<0.21	<0.20	<0.21	<0.20	<0.22	<0.22	<0.19	<0.20	<0.18	<0.21
1,1-Dichloroethane	240000	240000	<0.18	<0.18	<0.17	816	1.1 J	<0.18	1.8 J	<0.16	<0.17	0.87 J	8.3
1,2-Dichloroethane	30000	30000	<0.18	<0.17	<0.17	7.4	0.50 J	<0.18	<0.18	<0.16	<0.17	<0.15	0.60 J
1,1-Dichloroethene	500000	500000	1.0 J	< 0.33	< 0.32	34.5	<0.31	< 0.34	< 0.34	< 0.30	< 0.32	0.63 J	4.2 J
cis-1,2-Dichloroethene	500000	500000	<0.24	<0.24	<0.23	10.2	1.1 J	<0.24	<0.24	<0.21	<0.23	2.4 J	0.85 J
trans-1,2-Dichloroethene	500000	500000	<0.32	<0.31	<0.29	3.2 J	0.58 J	< 0.31	< 0.32	<0.28	<0.30	2.1 J	0.58 J
1,2-Dichloroethene (total)	NS	NS	<0.24	<0.24	<0.23	13.4	1.6 J	<0.24	<0.24	<0.21	<0.23	4.4 J	1.4 J
1,2-Dichloropropane	NS	NS	<0.21	<0.20	<0.19	<0.20	<0.19	<0.20	<0.20	<0.18	< 0.19	<0.17	<0.20
cis-1,3-Dichloropropene	NS	NS	<0.19	<0.18	<0.17	<0.18	<0.17	<0.18	<0.18	<0.16	<0.17	<0.15	<0.18
trans-1,3-Dichloropropene	NS	NS	<0.21	<0.20	<0.19	<0.20	<0.19	<0.20	<0.21	<0.18	<0.19	<0.17	<0.20
Ethylbenzene	390000	390000	< 0.35	< 0.34	< 0.33	< 0.33	0.73 J	< 0.35	< 0.35	<0.31	< 0.33	<0.29	< 0.34
2-Hexanone	NS	NS	< 0.83	<0.80	<0.77	< 0.79	<0.75	<0.82	<0.83	<0.72	<0.78	<0.69	<0.80
Methyl Tert Butyl Ether	500000	500000	< 0.31	< 0.30	<0.29	< 0.30	<0.28	< 0.31	<0.31	<0.27	<0.29	<0.26	< 0.30
4-Methyl-2-pentanone(MIBK)	NS	NS	<1.0	<0.96	< 0.93	< 0.96	<0.91	<0.99	<1.0	<0.87	< 0.94	<0.83	< 0.96
Methylene chloride	500000	500000	<1.7	<1.6	<1.6	<1.6	<1.5	<1.7	<1.7	<1.5	<1.6	<1.4	<1.6
Styrene	NS	NS	<0.12	<0.12	<0.11	<0.12	<0.11	<0.12	<0.12	<0.11	<0.11	<0.10	<0.12
1,1,2,2-Tetrachloroethane	NS	NS	<0.18	<0.17	<0.16	<0.17	<0.16	<0.17	<0.18	<0.15	<0.16	<0.15	<0.17
Tetrachloroethene	150000	150000	<0.23	<0.22	<0.21	1.6 J	0.44 J	<0.23	0.54 J	<0.20	<0.21	0.59 J	0.79 J
Toluene	500000	500000	0.35 J	0.53 J	<0.13	2.7	4.1	1.1 J		<0.12	1.1 J		0.58 J
1,1,1-Trichloroethane	680	500000	0.49 J	3.2 J	0.52 J	519	38.4	68.5	67.1	10.9	5.1	29.3	149
1,1,2-Trichloroethane	NS	NS	<0.23	<0.22	<0.22	3.8 J	4.6 J	<0.23	<0.23	0.83 J	<0.22	5.9	1.5 J
Trichloroethene	200000	200000	<0.23	<0.22 4.5 J	<0.22	20.5	4.0 J 2.4 J	<0.23 2.0 J		0.83 J 2.2 J	<0.22	4.0 J	4.7 J
Vinyl chloride	13000	13000	<0.23 <0.19	4.5 J <0.18	<0.22 <0.18	20.5 2.0 J		<0.19	<0.19	<0.17	<0.18	4.0 J <0.16	<0.18
-							<0.17						
Xylene (total)	500000	500000	< 0.19	< 0.18	< 0.17	<0.18	1.7	<0.18	<0.18	<0.16	<0.17	<0.15	< 0.18
Total Confident Conc.		1	2.61	9.53	5.38	1598.29	67.15	74.2	74.94	13.93	11.3	50.19	187.1

Notes:

Exceedances in Unrestricted Use SCOs highlighted in blue

NS - no standard

Table 2B End-point Post-treatment Soil sample Analytical Results Summary of Volatile Organic Compounds

Client ID Lab Sample ID	NY Unrestricted	NY Commercial	1.1 (12.5-13) JB32749-4	1.1 (13-13.5) JB32749-5	1.1 (14.5-15) JB32749-6	1.2 (11-11.5) JB32749-8	1.2 (13-13.5) JB32749-7	1.2 (14-14.5) JB32749-9	2.1 (10-10.5) JB32749-12	2.1 (11.5-12) JB32749-11	2.1 (12.5-13) JB32749-10	2.2 (11-11.5) JB32749-14	2.2 (12.5-13) JB32749-13
Date Sampled	Use Soil Cleanup	Use Soil Cleanup	3/27/2013	3/27/2013	3/27/2013	3/27/2013	3/27/2013	3/27/2013	3/27/2013	3/27/2013	3/27/2013	3/27/2013	3/27/2013
	Objectives	Objectives	Result Q			Result Q			Result Q				
GC/MS Volatiles (µg/kg)													
Acetone	500000	500000	<140	10.9 J	<2.2	30.1	27.2	<350	22.6	62.4	<130	<3800	<140
Benzene	44000	44000	<9.9	<0.14	<0.15	<0.17	<0.17	<25	<0.23	0.66 J	<9.1	<270	<10
Bromodichloromethane	NS	NS	<8.7	<0.12	<0.14	<0.15	<0.15	<22	<0.20	<0.17	<8.1	<230	<8.9
Bromoform	NS	NS	<13	<0.17	<0.20	<0.22	<0.21	<31	<0.29	<0.25	<12	<340	<13
Bromomethane	NS	NS	<23	<0.31	<0.36	<0.40	<0.38	<56	<0.52	<0.45	<21	<610	<23
2-Butanone (MEK)	500000	500000	<200	<2.8	<3.1	21.8	29.0	<490	<4.5	47.9	893	<5300	<200
Carbon disulfide	NS	NS	<9.7	1.8 J	2.2 J	1.5 J	1.1 J	<24	1.9 J	3.4 J	48.1 J	<260	<10
Carbon tetrachloride	22000	22000	<11	<0.15	<0.17	<0.19	<0.19	<27	<0.25	<0.22	<10	<300	<11
Chlorobenzene	500000	500000	<9.0	<0.12	<0.14	<0.16	<0.15	<22	<0.21	<0.18	<8.3	<240	<9.2
Chloroethane	NS	NS	<19	25.4	54.7	659 J	480 J	2960	14.5	5230	3530	<510	<19
Chloroform	350000	350000	<6.9	<0.095	<0.11	<0.12	<0.12	<17	5.6 J	<0.14	<6.3	<180	<7.0
Chloromethane	NS	NS	<15	<0.21	<0.24	<0.27	<0.26	<38	< 0.35	<0.31	<14	<410	<16
Dibromochloromethane	NS	NS	<14	<0.19	<0.21	<0.24	<0.23	<34	<0.31	<0.27	<13	<370	<14
1,1-Dichloroethane	240000	240000	1080	183	79.4	6220	3950	34000	121	11100	34900	6040 J	3660
1,2-Dichloroethane	30000	30000	232	1.0 J	<0.18	11.9	14.2	786	20.7	27.7	1590	<300	179
1,1-Dichloroethene	500000	500000	1140	32.0	15.3	85.3	41.7	1620	42.7	70.5	2150	14000	2310
cis-1,2-Dichloroethene	500000	500000	83.2 J	<0.21	<0.24	0.63 J	0.77 J	<38	7.9 J	10.1	374 J	<410	31.6 J
trans-1,2-Dichloroethene	500000	500000	101 J	<0.27	1.3 J	<0.35	0.47 J	<49	6.5 J	6.1 J	294 J	<530	<20
1,2-Dichloroethene (total)	NS	NS	184 J	<0.21	1.3 J	0.63 J	1.2 J	<38	14.3	16.1	668	<410	31.6 J
1,2-Dichloropropane	NS	NS	<13	<0.18	<0.20	<0.22	<0.22	<32	<0.29	<0.25	<12	<340	<13
cis-1,3-Dichloropropene	NS	NS	<12	<0.16	<0.18	<0.20	<0.19	<29	<0.26	<0.23	<11	<310	<12
trans-1,3-Dichloropropene	NS	NS	<13	<0.18	<0.20	<0.23	<0.22	<32	<0.29	<0.26	<12	<350	<13
Ethylbenzene	390000	390000	<22	<0.30	<0.34	0.80 J	<0.37	<54	2.0	<0.44	<20	<590	<22
2-Hexanone	NS	NS	<52	<0.72	<0.81	<0.90	<0.87	<130	<1.2	<1.0	<48	<1400	<53
Methyl Tert Butyl Ether	500000	500000	<20	<0.27	<0.31	<0.34	<0.33	<48	<0.45	<0.39	<18	<520	<20
4-Methyl-2-pentanone(MIBK)	NS	NS	<62	<0.86	<0.98	<1.1	<1.1	<150	<1.4	<1.2	<58	<1700	<64
Methylene chloride	500000	500000	<110	4.4 J	2.1 J	5.2 J	2.8 J	<260	6.5 J	4.5 J	<97	<2800	<110
Styrene	NS	NS	<7.6	<0.11	<0.12	<0.13	<0.13	<19	<0.17	<0.15	<7.0	<200	<7.8
1,1,2,2-Tetrachloroethane	NS	NS	<11	<0.15	<0.17	<0.19	<0.18	<27	<0.25	<0.22	<10	<290	<11
Tetrachloroethene	150000	150000	37.9 J	<0.20	<0.22	<0.25	<0.24	<35	2.3 J	2.3 J	288 J	<380	58.5 J
Toluene	500000	500000	109	0.43 J	1.0 J	2.3	5.7	184 J	4.6	5.6	2280	1600 J	284
1,1,1-Trichloroethane	680	500000	18700	2860	144	1560	2130	4690	12600	179	42300	398000	70700
1,1,2-Trichloroethane	NS	NS	<14	<0.20	<0.23	0.57 J	0.84 J	<36	3.0 J	3.0 J	39.1 J	<390	<15
Trichloroethene	200000	200000	1130	0.81 J	0.90 J	1.6 J	0.89 J	<36	32.1	19.5	1180	2040 J	337 J
Vinyl chloride	13000	13000	<12	<0.17	0.77 J	7.9	10.9	<30	<0.27	12.9	<11	<320	<12
Xylene (total)	500000	500000	<12	<0.16	<0.18	0.65 J	<0.19	<29	8.4	<0.23	83.5	<310	<12
Total Confident Conc.			22797.1	3119.74	302.97	8609.88	6696.77	44240	12916.6	16801.66	90617.7	421680	77591.7

Notes:

Exceedances in Unrestricted Use SCOs highlighted in blue

NS - no standard

Table 2B End-point Post-treatment Soil sample Analytical Results Summary of Volatile Organic Compounds

Client ID Lab Sample ID Date Sampled	NY Unrestricted Use Soil Cleanup Objectives	NY Commercial Use Soil Cleanup Objectives	2.2 (14-14.5) JB32749-15 3/27/2013 Result Q	3 (12.5-13) JB32749-18 3/27/2013 Result Q	3 (13.5-14) JB32749-16 3/27/2013 Result Q	3 (14.5-15) JB32749-17 3/27/2013 Result Q	4 (10-10.5) JB32749-20 3/27/2013	4 (11-11.5) JB32749-19 3/27/2013 Result 0	4 (14.5-15) JB32749-21 3/27/2013	5 (13.5-14) JB32749-22 3/27/2013	5 (14-14.5) JB32749-23 3/27/2013	5 (14.5-15) JB32749-24 3/27/2013 Result 0	6 (11.5-12) JB32749-25 3/27/2013	6 (12.5-13) JB32749-26 3/27/2013
GC/MS Volatiles (µg/kg)		-	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
Acetone	500000	500000	82.2	<200	<190	<130	13.0 J	10.9	14.6	4.6 J	19.2	37.1	<2.2	4.9 J
Benzene	44000	44000	< 0.097	<14	<13	<8.8	<0.23	<0.10	<0.15	<0.14	<0.11	<0.12	<0.16	<0.12
Bromodichloromethane	NS	NS	< 0.086	<13	<12	<7.8	<0.20	<0.088	<0.13	<0.12	<0.10	<0.11	<0.14	<0.11
Bromoform	NS	NS	<0.12	<18	<17	<11	<0.29	<0.13	<0.19	<0.18	<0.15	<0.16	<0.20	<0.15
Bromomethane	NS	NS	<0.22	<33	<30	<20	<0.52	<0.23	<0.35	<0.32	<0.26	<0.29	<0.36	<0.28
2-Butanone (MEK)	500000	500000	129	<290	<270	<180	<4.6	<2.0	40.1	<2.8	<2.3	<2.5	<3.1	<2.4
Carbon disulfide	NS	NS	1.9 J	<14	<13	<8.7	1.3 J	1.1 J	<0.15	<0.14	0.65 J	<0.12	<0.15	<0.12
Carbon tetrachloride	22000	22000	<0.11	<16	<15	<9.9	<0.25	<0.11	<0.17	<0.16	<0.13	<0.14	<0.17	<0.14
Chlorobenzene	500000	500000	<0.088	<13	<12	<8.0	<0.21	<0.090	<0.14	<0.13	<0.10	<0.11	<0.14	<0.11
Chloroethane	NS	NS	46.2	94.4 J	143 J	953	<0.43	3.4 J		<0.27	0.91 J	1.3 J	<0.30	<0.23
Chloroform	350000	350000	< 0.067	<10	<9.2	<6.1	0.50 J	<0.069	<0.10	<0.097	<0.079	<0.086	<0.11	<0.084
Chloromethane	NS	NS	<0.15	<23	<21	<14	<0.36	<0.16	<0.24	<0.22	<0.18	<0.19	<0.24	<0.19
Dibromochloromethane	NS	NS	<0.13	<20	<18	<12	< 0.31	<0.14	<0.21	<0.19	<0.16	<0.17	<0.21	<0.17
1.1-Dichloroethane	240000	240000	12100	410 J	459 J	5820	9.6	2000	6470	15.0	42.9	54.3	<0.18	2.0 J
1,2-Dichloroethane	30000	30000	34.0	134	<15	165	2.3	4.4	<0.17	1.2	< 0.13	<0.14	<0.18	2.8
1,1-Dichloroethene	500000	500000	72.4	659	293 J	423	31.4	1650	0.43 J	9.3	21.4	30.8	< 0.34	6.1
cis-1,2-Dichloroethene	500000	500000	3.7 J	104 J	<20	44.6 J	1.0 J	2.6 J	<0.23	0.36 J	<0.18	0.33 J	<0.24	1.2 J
trans-1,2-Dichloroethene	500000	500000	0.86 J	108 J	<27	81.2 J	0.67 J	0.43 J		<0.28	< 0.23	<0.25	<0.31	1.2 J
1,2-Dichloroethene (total)	NS	NS	4.6	212 J	<20	126 J	1.7 J	3.0 J		0.36 J	<0.18	0.33 J	< 0.24	2.4 J
1,2-Dichloropropane	NS	NS	<0.13	<19	<17	<11	<0.29	<0.13	<0.20	<0.18	<0.15	<0.16	<0.20	<0.16
cis-1,3-Dichloropropene	NS	NS	<0.11	<17	<16	<10	<0.27	<0.12	<0.18	<0.16	<0.13	<0.15	<0.18	<0.14
trans-1,3-Dichloropropene	NS	NS	<0.13	<19	<17	<11	< 0.30	<0.13	<0.20	<0.18	<0.15	<0.16	<0.20	<0.16
Ethylbenzene	390000	390000	<0.21	<32	<29	<20	<0.50	<0.22	< 0.33	<0.31	<0.25	<0.28	< 0.34	<0.27
2-Hexanone	NS	NS	<0.51	<75	<69	<46	<1.2	<0.52	<0.79	<0.73	<0.60	<0.65	<0.81	<0.64
Methyl Tert Butyl Ether	500000	500000	<0.19	<28	<26	<17	<0.45	<0.20	< 0.30	<0.28	<0.23	<0.25	<0.31	<0.24
4-Methyl-2-pentanone(MIBK)	NS	NS	<0.61	<91	<84	<56	<1.4	<0.63	< 0.95	<0.89	<0.72	<0.79	<0.98	<0.77
Methylene chloride	500000	500000	2.8 J	<150	<140	<94	15.1	4.0 J	12.4	2.7 J	<1.2	1.6 J	2.9 J	4.1 J
Styrene	NS	NS	<0.075	<11	<10	<6.8	<0.18	< 0.077	<0.12	<0.11	<0.088	< 0.096	<0.12	<0.094
1,1,2,2-Tetrachloroethane	NS	NS	<0.11	<16	<15	<9.8	<0.25	<0.11	<0.17	<0.16	<0.13	<0.14	<0.17	<0.13
Tetrachloroethene	150000	150000	<0.14	<21	<19	<13	0.99 J	<0.14	<0.22	<0.20	<0.17	<0.18	<0.23	<0.18
Toluene	500000	500000	1.4	<13	36.2 J	462	<0.20	<0.088	<0.13	<0.12	<0.10	<0.11	<0.14	<0.11
1,1,1-Trichloroethane	680	500000	617 J	1270	1500	2320	89.0	88.1	3.9 J	3480	1220	2090	2.9 J	41.5
1,1,2-Trichloroethane	NS	NS	1.6 J	<21	<19	<13	<0.33	<0.15	<0.22	0.44 J	<0.17	<0.18	<0.23	<0.18
Trichloroethene	200000	200000	0.39 J	279 J	175 J	55.3 J	3.5 J	0.45 J		2.0 J	<0.17	<0.18	<0.23	5.0 J
Vinyl chloride	13000	13000	3.4 J	<17	<16	<11	<0.28	1.8 J		<0.17	1.3 J		<0.19	<0.15
Xylene (total)	500000	500000	<0.11	<17	<16	<10	<0.27	<0.12	<0.18	<0.16	<0.13	<0.15	<0.18	<0.14
Total Confident Conc.			13101.45	3270.4	2606.2	10450.1	170.06	3770.18	7733.83	3515.96	1306.36	2216.96	5.8	71.2

Notes:

Exceedances in Unrestricted Use SCOs highlighted in blue

NS - no standard

Table 2B End-point Post-treatment Soil sample Analytical Results Summary of Volatile Organic Compounds

Client ID	NY Unrestricted	NY Commercial	6 (14.5-15)	. ,	FD-2 6(14.5-15)
Lab Sample ID Date Sampled	Use Soil Cleanup	Use Soil Cleanup	JB32749-27 3/27/2013	JB32749-28 3/27/2013	JB32749-29 3/27/2013
Date Sampled	Objectives	Objectives	Result Q	Result Q	Result Q
GC/MS Volatiles (µg/kg)					Hoodit Q
Acetone	500000	500000	<2.0	<1.8	<1.2
Benzene	44000	44000	<0.14	<0.13	<0.085
Bromodichloromethane	NS	NS	<0.12	<0.11	<0.075
Bromoform	NS	NS	<0.18	<0.16	<0.11
Bromomethane	NS	NS	< 0.32	<0.29	<0.20
2-Butanone (MEK)	500000	500000	<2.8	<2.6	<1.7
Carbon disulfide	NS	NS	<0.14	<0.13	<0.084
Carbon tetrachloride	22000	22000	<0.16	<0.14	<0.095
Chlorobenzene	500000	500000	<0.13	<0.12	<0.078
Chloroethane	NS	NS	<0.27	<0.24	<0.16
Chloroform	350000	350000	<0.097	<0.089	<0.059
Chloromethane	NS	NS	<0.22	<0.20	<0.13
Dibromochloromethane	NS	NS	<0.19	<0.18	<0.12
1,1-Dichloroethane	240000	240000	3.5 J	<0.15	0.71 J
1,2-Dichloroethane	30000	30000	<0.16	<0.15	<0.097
1,1-Dichloroethene	500000	500000	<0.30	<0.28	<0.18
cis-1,2-Dichloroethene	500000	500000	<0.21	<0.20	<0.13
trans-1,2-Dichloroethene	500000	500000	<0.28	<0.26	<0.17
1,2-Dichloroethene (total)	NS	NS	<0.21	<0.20	<0.13
1,2-Dichloropropane	NS	NS	<0.18	<0.17	<0.11
cis-1,3-Dichloropropene	NS	NS	<0.16	<0.15	<0.10
trans-1,3-Dichloropropene	NS	NS	<0.18	<0.17	<0.11
Ethylbenzene	390000	390000	<0.31	<0.28	<0.19
2-Hexanone	NS	NS	<0.73	<0.67	<0.45
Methyl Tert Butyl Ether	500000	500000	<0.28	<0.25	<0.17
4-Methyl-2-pentanone(MIBK)	NS	NS	<0.88	<0.81	<0.54
Methylene chloride	500000	500000	<1.5	3.2 J	<0.91
Styrene	NS	NS	<0.11	<0.099	<0.066
1,1,2,2-Tetrachloroethane	NS	NS	<0.15	<0.14	<0.095
Tetrachloroethene	150000	150000	<0.20	<0.18	<0.12
Toluene	500000	500000	<0.12	<0.11	<0.075
1,1,1-Trichloroethane	680	500000	0.93 J	3.6 J	3.6
1,1,2-Trichloroethane	NS	NS	<0.20	<0.19	<0.12
Trichloroethene	200000	200000	<0.20	0.89 J	<0.12
Vinyl chloride	13000	13000	<0.17	<0.15	<0.10
Xylene (total)	500000	500000	<0.16	<0.15	<0.10
Total Confident Conc.			4.43	7.69	4.31

Notes:

Exceedances in Unrestricted Use SCOs highlighted in blue

NS - no standard

Table 3

Groundwater Analytical Results

AFFCO, 361 Walsh Avenue, New Windsor, NY

					Pi	re-Excavatio	n						Post-Excavat	ion		
Client Sample ID:			EW-0	MW-1	E-1 NEW	IW-3	IW-1	S-8	IW-2	EW-1X	S-8	EW-0	E1-NEW	MW-1	FB041713	TRIP BLAN
Lab Sample ID:		NY TOGS	JB10868-1	JB10868-2	JB10868-3	JB10868-4	JB10868-5	JB10868-6	JB10868-7	JB34670-1	JB34670-2	JB34670-3	JB34670-4	JB34670-5	JB34670-6	JB34670-7
Date Sampled:	Units	Class GA GW	7/10/2012	7/10/2012	7/10/2012	7/10/2012	7/10/2012	7/10/2012	7/10/2012	4/17/2013	4/17/2013	4/17/2013	4/17/2013	4/17/2013	4/17/2013	4/17/2013
		Standards	Ground	Ground	Ground	Ground	Ground	Ground	Ground	Ground	Ground	Ground	Ground	Ground	Field Blank	Trip Blank
Matrix:			Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	FIEID DIAIIK	пр ыапк
GC/MS Volatiles (SW846 8260					-											
Acetone	ug/l	-	ND (330)	ND (8.2)	ND (3.3)	7980	143 J	ND (3.3)	1600	ND (33)	ND (3.3)	ND (3.3)	ND (3.3)	ND (16)	ND (3.3)	ND (3.3)
Benzene	ug/l	1	ND (24)	ND (0.59)	ND (0.24)	ND (12)	ND (4.7)	ND (0.24)	ND (5.9)	ND (2.4)	ND (0.24)	ND (0.24)	ND (0.24)	ND (1.2)	ND (0.24)	ND (0.24)
Bromodichloromethane	ug/l	-	ND (21)	ND (0.52)	ND (0.21)	ND (10)	ND (4.1)	ND (0.21)	ND (5.2)	ND (2.1)	ND (0.21)	ND (0.21)	ND (0.21)	ND (1.0)	ND (0.21)	ND (0.21)
Bromoform	ug/l	-	ND (21)	ND (0.54)	ND (0.21)	ND (11)	ND (4.3)	ND (0.21)	ND (5.4)	ND (2.1)	ND (0.21)	ND (0.21)	ND (0.21)	ND (1.1)	ND (0.21)	ND (0.21)
Bromomethane	ug/l	5	ND (22)	ND (0.55)	ND (0.22)	ND (11)	ND (4.4)	ND (0.22)	ND (5.5)	ND (2.2)	ND (0.22)	ND (0.22)	ND (0.22)	ND (1.1)	ND (0.22)	ND (0.22)
2-Butanone (MEK)	ug/l	-	ND (240)	ND (5.9)	ND (2.4)	18900	114 J	ND (2.4)	4210	ND (24)	ND (2.4)	14.1	ND (2.4)	ND (12)	ND (2.4)	ND (2.4)
Carbon disulfide	ug/l	60	ND (19)	ND (0.47)	ND (0.19)	ND (9.5)	ND (3.8)	ND (0.19)	ND (4.7)	ND (1.9)	ND (0.19)	ND (0.19)	ND (0.19)	ND (0.95)	ND (0.19)	ND (0.19)
Carbon tetrachloride	ug/l	5	ND (22)	ND (0.54)	ND (0.22)	ND (11)	ND (4.3)	ND (0.22)	ND (5.4)	ND (2.2)	ND (0.22)	ND (0.22)	ND (0.22)	ND (1.1)	ND (0.22)	ND (0.22)
Chlorobenzene	ug/l	5	ND (23)	ND (0.57)	ND (0.23)	ND (11)	ND (4.6)	ND (0.23)	ND (5.7)	ND (2.3)	ND (0.23)	ND (0.23)	ND (0.23)	ND (1.1)	ND (0.23)	ND (0.23)
Chloroethane	ug/l	5	1240	641	ND (0.26)	90.3	904	57	80.6	ND (2.6)	ND (0.26)	334	73.9	136	ND (0.26)	ND (0.26)
Chloroform	ug/l	/	ND (20)	ND (0.51)	ND (0.20)	ND (10)	ND (4.1)	ND (0.20)	ND (5.1)	ND (2.0)	ND (0.20)	1.2	ND (0.20)	3.1 J	ND (0.20)	ND (0.20)
Chloromethane	ug/l	5	ND (21)	ND (0.52)	ND (0.21)	ND (10)	ND (4.1)	ND (0.21)	ND (5.2)	ND (2.1)	ND (0.21)	ND (0.21)	ND (0.21)	ND (1.0)	ND (0.21)	ND (0.21)
Dibromochloromethane	ug/l	-	ND (14)	ND (0.34)	ND (0.14)	ND (6.8)	ND (2.7)	ND (0.14)	ND (3.4)	ND (1.4)	ND (0.14)	ND (0.14)	ND (0.14)	ND (0.68)	ND (0.14)	ND (0.14)
1,1-Dichloroethane	ug/l	5	36100	146	18	119	2540	145	327	22.9	11.8	2540	154	438	ND (0.11)	ND (0.11)
1,2-Dichloroethane	ug/l	0.6	233	4.8	1.7	ND (13)	60.5		ND (6.5)	ND (2.6)		17.5	ND (0.26)	5.2	ND (0.26)	ND (0.26)
1,1-Dichloroethene	ug/l	5	562	6	4.5	-	69.2	4.1	28.3	ND (1.9)	3.5	144	5	36.6	ND (0.19)	ND (0.19)
cis-1,2-Dichloroethene	ug/l	5	ND (19)			ND (9.4)	7.3 J		ND (4.7)	ND (1.9)		2.8	ND (0.19)	ND (0.94)	ND (0.19)	ND (0.19)
trans-1,2-Dichloroethene	ug/l	5	ND (21)	ND (0.53)		ND (11)	ND (4.2)	ND (0.21)	ND (5.3)	ND (2.1)	ND (0.21)	2.2	ND (0.21)	ND (1.1)	ND (0.21)	ND (0.21)
1,2-Dichloroethene (total)	ug/l		ND (19)		1.1	ND (9.4)			ND (4.7)	ND (1.9)		5	ND (0.19)	ND (0.94)	ND (0.19)	ND (0.19)
1,2-Dichloropropane	ug/l	1	ND (48)	ND (1.2)	ND (0.48)	ND (24)	ND (9.7)	ND (0.48)	ND (12)	ND (4.8)	ND (0.48)	ND (0.48)	ND (0.48)	ND (2.4)	ND (0.48)	ND (0.48)
cis-1,3-Dichloropropene	ug/l	-	ND (21) ND (19)	ND (0.52)	ND (0.21) ND (0.19)	ND (10)	ND (4.1)	ND (0.21) ND (0.19)	ND (5.2) ND (4.7)	ND (2.1) ND (1.9)	ND (0.21) ND (0.19)	ND (0.21) ND (0.19)	ND (0.21) ND (0.19)	ND (1.0) ND (0.95)	ND (0.21)	ND (0.21)
trans-1,3-Dichloropropene	ug/l	-	(.)	ND (0.47)	()	ND (9.5)	ND (3.8)	()		(-)	(2 - 2)	()	()	()	ND (0.19)	ND (0.19)
Ethylbenzene 2-Hexanone	ug/l	5	ND (23) ND (110)	ND (0.57) ND (2.8)	ND (0.23) ND (1.1)	ND (11) ND (57)	ND (4.6) ND (23)	ND (0.23) ND (1.1)	ND (5.7)	ND (2.3) ND (11)	ND (0.23) ND (1.1)	ND (0.23) ND (1.1)	ND (0.23) ND (1.1)	ND (1.1)	ND (0.23) ND (1.1)	ND (0.23) ND (1.1)
Z-Hexanone Methyl Tert Butyl Ether	ug/l	- 10	ND (110) ND (16)	ND (2.8) ND (0.41)	ND (1.1) ND (0.16)			ND (1.1) ND (0.16)	ND (28) ND (4.1)	ND (11) ND (1.6)	ND (1.1) ND (0.16)	ND (1.1) ND (0.16)	ND (1.1) ND (0.16)	ND (5.7) ND (0.82)	ND (1.1) ND (0.16)	ND (1.1) ND (0.16)
	ug/l	-		ND (0.41) ND (2.1)	ND (0.16) ND (0.83)	ND (8.2) ND (41)	ND (3.3) ND (17)	ND (0.16) ND (0.83)					ND (0.16) ND (0.83)		ND (0.16) ND (0.83)	
4-Methyl-2-pentanone(MIBK) Methylene chloride	ug/l ug/l	- 5	ND (83) ND (70)	ND (2.1) ND (1.8)	ND (0.83) ND (0.70)	ND (41) ND (35)	ND (17) ND (14)	ND (0.83) ND (0.70)	ND (21) ND (18)	ND (8.3) ND (7.0)	ND (0.83) ND (0.70)	ND (0.83) ND (0.70)	ND (0.83) ND (0.70)	ND (4.1) ND (3.5)	ND (0.83) ND (0.70)	ND (0.83) ND (0.70)
Styrene	ug/l	5	ND (70) ND (21)	ND (1.8) ND (0.54)	ND (0.70)	ND (35)	ND (14) ND (4.3)	ND (0.70) ND (0.21)	ND (18) ND (5.4)	ND (7.0) ND (2.1)	ND (0.70) ND (0.21)	ND (0.70) ND (0.21)	ND (0.21)	ND (3.5) ND (1.1)	ND (0.21)	ND (0.70)
1,1,2,2-Tetrachloroethane	ug/l	5	ND (21) ND (21)	ND (0.54)	ND (0.21)	ND (11)	ND (4.3)	ND (0.21)	ND (5.4) ND (5.4)	ND (2.1) ND (2.1)	ND (0.21)	ND (0.21)	ND (0.21) ND (0.21)	ND (1.1)	ND (0.21)	ND (0.21)
Tetrachloroethene	ug/l	5	ND (21)	ND (0.70)	ND (0.21)	ND (14)	ND (4.3)	ND (0.21)	ND (5.4)	ND (2.1) ND (2.8)	ND (0.21)		ND (0.28)	ND (1.4)	ND (0.21)	ND (0.28)
Toluene	ug/l	5		ND (0.57)	ND (0.23)	ND (14)	ND (4.5)	ND (0.23)	ND (7.0)	ND (2.3)	ND (0.23)	0.0 J	ND (0.23)	1.6 J	ND (0.23)	ND (0.23)
1,1,1-Trichloroethane	ug/l	5	48300	82.4	2	312	1420	30.5	891	ND (2.3) ND (2.4)	1.4	o 8630	ND (0.23) 48.4	1.6 J	ND (0.23)	ND (0.23)
1.1.2-Trichloroethane	ug/i ug/i	1		ND (0.72)	Z ND (0.29)	ND (14)	ND (5.7)	ND (0.29)	ND (7.2)	ND (2.4) ND (2.9)	1.4 ND (0.29)	2.3	40.4 ND (0.29)	ND (1.4)	ND (0.24)	ND (0.24)
Trichloroethene	ug/i ug/i	5	34.3 J ND (22)		1.7	ND (14) ND (11)	8.7 J	ND (0.29)	ND (7.2) ND (5.4)	ND (2.9) ND (2.2)	1.1	4	ND (0.29) ND (0.22)	6.2	ND (0.29)	ND (0.29)
Vinyl chloride	ug/i ug/i	2	ND (22) ND (21)		0.65 J	ND (10)	ND (4.1)	0.65 J	ND (5.4) ND (5.2)	ND (2.2) ND (2.1)	ND (0.21)	4	ND (0.22) ND (0.21)	ND (1.0)	ND (0.22) ND (0.21)	ND (0.22) ND (0.21)
Xylene (total)	ug/l	5	ND (21)	ND (0.60)	ND (0.24)	ND (10)	ND (4.1)	ND (0.24)	ND (5.2) ND (6.0)	ND (2.1) ND (2.4)	ND (0.24)	4.0 ND (0.24)	ND (0.24)	ND (1.2)	ND (0.24)	ND (0.24)
	ugn	5	(27)	14D (0.00)	110 (0.24)	110 (12)	110 (4.0)	110 (0.24)	110 (0.0)	(2.7)	110 (0.24)	(0.24)	(0.24)	112 (1.2)	110 (0.24)	14D (0.24)
Metals Analysis			1							1						
Iron	ug/l	300	-	-	-	-	-	-	-	934000	5790	546	804	805	18500	
	ugn	500	-	-	-	-	-	-	-	004000	0130	0+0	00-1	000	10000	-
General Chemistry			1							1						
Alkalinity, Total as CaCO3	mg/l			-		г. –	-	-		89.2	111	124	260	274	<5.0	T -
Chloride	ma/l	250	-	-			-	-	-	69.2 52.6	43.8	124	37.1	57.1	<2.0	-
Sulfate	mg/l	250	-	-			-	-	-	29.2	43.0	93.8	<10	104	<10	-
Sulfide	~	250		-	-	-	-	-	-	23.2	<2.0	93.8 <2.0	<10	<2.0	<2.0	-
Suillue	mg/l	-	-	-			-	-	-	I-	<2.0	<2.0	<2.0	<2.0	<2.0	1 -

Notes

Exceedances **bolded** and highlighted in gray

ND - concentration is non-detectable

J - value is estimated

Sample JB10868-3 was originally mislabeled 'E-1 NAW'

Sample JB34670-4 was originally mislabeled 'E-1 N'

Sample JB34670-5 was originally mislabeled 'MW-1N'

APPENDIX A

Environmental Easement, Metes & Bounds Description and Survey Map

ORANGE COUNTY – STATE OF NEW YORK ANN G. RABBITT, COUNTY CLERK 255 MAIN STREET GOSHEN, NEW YORK 10924

COUNTY CLERK'S RECORDING PAGE ***THIS PAGE IS PART OF THE DOCUMENT – DO NOT DETACH*** Recording: Recording Fee Cultural Ed Records Management – Coun Records Management – Stat

BOOK/PAGE: 14291 / 601 INSTRUMENT #: 20170066308 Receipt#: 2381301 Clerk: JM Rec Date: 09/15/2017 12:16:02 PM Doc Grp: D Descrip: RT WY Num Pgs: 10 Rec'd Frm: FIRST AMERICAN TITLE INS CO Party1: AMERICAN FELT & FILTER CO INC Party2: NYS DEPT OF ENVIRONMENTAL CONSERVATION Town: NEW WINDSOR (TN) 9-1-69.2

Recording Fee Cultural Ed Records Management - Coun Records Management - Stat TP584	70.00 14.25 1.00 4.75 5.00
Sub Total:	95.00
Transfer Tax Transfer Tax - State Sub Total:	0.00
Total: **** NOTICE: THIS IS NOT	95.00 A BILL ****
***** Transfer Tax ***** Transfer Tax #: 1693 Transfer Tax Consideration: 0.00	
Total:	0.00

Payment Type:	Check
	Cash
	Charge
	No Fee

Comment: _____

any G. Ralber

Ann G. Rabbitt Orange County Clerk

Record and Return To:

FIRST AMERICAN TITLE INS CO 666 THIRD AVE 5TH FLOOR NEW YORK, NY 10017

3020-869296

County: Orange Site No: 336036 Order on Consent Index : W3-0784-04-06

ENVIRONMENTAL EASEMENT GRANTED PURSUANT TO ARTICLE 71, TITLE 36 OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW

THIS INDENTURE made this **23^{BD}** day of **Auger**, 20<u>17</u>, between Owner(s) American Felt & Filter Company, Inc., having an office at 361 Walsh Avenue, New Windsor, New York 12553, County of Orange, State of New York (the "Grantor"), and The People of the State of New York (the "Grantee."), acting through their Commissioner of the Department of Environmental Conservation (the "Commissioner", or "NYSDEC" or "Department" as the context requires) with its headquarters located at 625 Broadway, Albany, New York 12233,

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and

WHEREAS, Grantor, is the owner of real property located at the address of 361 Walsh Avenue in the Town of New Windsor, County of Orange and State of New York, known and designated on the tax map of the County Clerk of Orange as tax map parcel numbers: Section 9 Block 1 Lot 69.2, being a portion of the property conveyed to Grantor by deed dated July 31, 1978 and recorded in the Orange County Clerk's Office in Liber and Page 2106/655. The property subject to this Environmental Easement (the "Controlled Property") comprises approximately 0.545 +/- acres, and is hereinafter more fully described in the Land Title Survey dated April 17, 1998 and last revised June 26, 2017 prepared by Steven P. Drabick, P.L.S., which will be attached to the Site Management Plan. The Controlled Property description is set forth in and attached hereto as Schedule A; and

WHEREAS, the Department accepts this Environmental Easement in order to ensure the protection of public health and the environment and to achieve the requirements for remediation established for the Controlled Property until such time as this Environmental Easement is

Environmental Easement Page 1

- -

extinguished pursuant to ECL Article 71, Title 36; and

NOW THEREFORE, in consideration of the mutual covenants contained herein and the terms and conditions of Order on Consent Index Number: W3-0784-04-06, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement").

1. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.

2. <u>Institutional and Engineering Controls</u>. The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.

A. (1) The Controlled Property may be used for:

Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

(2) All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);

(3) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP;

(4) The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Orange County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;

(5) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;

(6) Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP;

(7) All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;

Environmental Easement Page 2

(8) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;

(9) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP;

(10) Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.

B. The Controlled Property shall not be used for Residential or Restricted Residential purposes as defined in 6NYCRR 375-1.8(g)(2)(i) and (ii), and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.

C. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, New York 12233 Phone: (518) 402-9553

D. Grantor must provide all persons who acquire any interest in the Controlled Property a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.

E. Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of ECL Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the Environmental Conservation

Law.

F. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.

G. Grantor covenants and agrees that it shall, at such time as NYSDEC may require, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:

(1) the inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3).

the institutional controls and/or engineering controls employed at such site:
 (i) are in-place;

(ii) are unchanged from the previous certification, or that any identified changes to the controls employed were approved by the NYSDEC and that all controls are in the Department-approved format; and

(iii) that nothing has occurred that would impair the ability of such control to protect the public health and environment;

(3) the owner will continue to allow access to such real property to evaluate the continued maintenance of such controls;

(4) nothing has occurred that would constitute a violation or failure to comply with any site management plan for such controls;

(5) the report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;

(6) to the best of his/her knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and

(7) the information presented is accurate and complete.

3. <u>Right to Enter and Inspect</u>. Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.

4. <u>Reserved Grantor's Rights</u>. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Property, including:

A. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;

B. The right to give, sell, assign, or otherwise transfer part or all of the underlying fee interest to the Controlled Property, subject and subordinate to this Environmental Easement;

5. <u>Enforcement</u>

A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against

the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.

B. If any person violates this Environmental Easement, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.

C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.

D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.

6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to:	Site Number: 336036 Office of General Counsel NYSDEC 625 Broadway Albany New York 12233-5500
With a copy to:	Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, NY 12233

All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

7. <u>Recordation</u>. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the

recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

8. <u>Amendment</u>. Any amendment to this Environmental Easement may only be executed by the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

9. <u>Extinguishment.</u> This Environmental Easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

Remainder of Page Intentionally Left Blank

IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

American Felt & Filter Company, Inc.: By: Print Name:

Grantor's Acknowledgment

STATE OF NEW YORK)) ss: COUNTY OF OKAnge)

On the 8^{th} day of 4400, in the year 20 17, before me, the undersigned, personally appeared 401500 H. Prine, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument.

Notary Public - State of New York

LINDA S. MIRANDA NOTARY PUBLIC-STATE OF NEW YORK No. 01MI6064154 Qualified in Orange County My Commission Expires September 17, 2017

Environmental Easement Page 7

THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting By and Through the Department of Environmental Conservation as Designee of the Compressioner, /

By:

) ss:

)

Robert W. Schick, Director Division of Environmental Remediation

Grantee's Acknowledgment

On the 23° day of 43° , in the year 201° , before me, the undersigned, personally appeared Robert W. Schick, personally known to me or proved to me on the basis of satisfactory ovidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

Notary Public / State of New York

STATE OF NEW YORK

COUNTY OF ALBANY

David J. Chiusano Notary Public, State of New York No. 01CH5032146 Qualified in Schenectady County Commission Expires August 22, 20

R+R: First American Title Gleb Third Ave, 2 loor 5 Gleb Third Ave, 2 loor 5 New York, NY. 10017

Environmental Easement Page 8

County: Orange Site No: 336036 Order on Consent Index : W3-0784-04-06

SCHEDULE "A" PROPERTY DESCRIPTION

DESCRIPTION OF SOILS MANAGEMENT AREA & SUB-SLAB DEPRESSURIZATION SYSTEM, AN ENVIRONMENTAL EASEMENT TO THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

GRANT OF EASEMENT over, across and through all that certain plot, piece or parcel of land with the building and improvements thereon erected, situate, lying and being in the Town of New Windsor, County of Orange and State of New York bounded and described as follows:

BEGINNING at a point at the northwesterly corner of the 1story masonry building of the most northerly complex of buildings located on lands of American Felt & Filter Company Inc., Liber 5730, Page 201, said point of beginning being located South 65 degrees 16 minutes 40 seconds West for a distance of 42.37 feet from a corner in the northerly bounds of lands of the same at the intersection with the municipal boundary between the City of Newburgh and Town of New Windsor and lands now or formerly of Hudson Shipyard Lp, Liber 12960, Page 1797;

THENCE South 72 degrees 57 minutes 34 seconds East for a distance of 103.33 feet along the face of said masonry building to a point;

THENCE South 17 degrees 21 minutes 13 seconds West for a distance of 68.08 feet through said masonry building to a point at the outside corner of said building;

THENCE North 72 degrees 00 minutes 00 seconds West for a distance of 51.17 feet through said masonry building to a point at the outside corner of said building;

THENCE North 72 degrees 57 minutes 52 seconds West for a distance of 51.79 feet to a point at the outside corner of said building;

THENCE South 17 degrees 02 minutes 08 seconds West for a distance of 29.25 feet to a to a point at the northerly face of a two-story masonry building;

THENCE North 72 degrees 32 minutes 52 seconds West for a distance of 75.55 feet along the northerly face of said building to a point at the corner of said building;

THENCE South 17 degrees 20 minutes 58 seconds West for a distance of 43.06 feet along the westerly face of the two-story masonry building to a point at the corner of said building;

THENCE North 72 degrees 34 minutes 38 seconds West for a distance of 72.17 feet along the northerly face of the two story masonry building to a point at the most northwesterly corner of said building;

THENCE North 17 degrees 02 minutes 17 seconds East for a distance of 140.76 feet through lands of American Felt & Filter Company, Inc. to a point marked by an iron rod set at or near a chain link fence;

THENCE South 67 degrees 51 minutes 22 seconds East for a distance of 123.39 feet through lands of the same and along a chain link fence to a point marked by an iron rod set;

THENCE North 87 degrees 49 minutes 18 seconds East for a distance of 26.52 feet through lands of American Felt & Filter Company, Inc. to the POINT OR PLACE OF BEGINNING.

Together with and subject to covenants, and restrictions of record.

Said area contains 0.5454 acres more or less.

ORANGE COUNTY – STATE OF NEW YORK ANN G. RABBITT, COUNTY CLERK 255 MAIN STREET GOSHEN, NEW YORK 10924

COUNTY CLERK'S RECORDING PAGE ***THIS PAGE IS PART OF THE DOCUMENT – DO NOT DETACH*** Recording: Recording Fee Cultural Ed Records Management – Coun Pecords Management – Stat

BOOK/PAGE: 14291 / 601 INSTRUMENT #: 20170066308 Receipt#: 2381301 Clerk: JM Rec Date: 09/15/2017 12:16:02 PM Doc Grp: D Descrip: RT WY Num Pgs: 10 Rec'd Frm: FIRST AMERICAN TITLE INS CO AMERICAN FELT & FILTER CO INC Party1: Party2: NYS DEPT OF ENVIRONMENTAL CONSERVATION NEW WINDSOR (TN) Town: 9-1-69.2

Recording Fee Cultural Ed Records Management - Coun Records Management - Stat TP584	70.00 14.25 1.00 4.75 5.00
Sub Total:	95.00
Transfer Tax Transfer Tax - State Sub Total:	0.00
Sub Total:	0.00
Total: **** NOTICE: THIS IS NOT A	95.00 BILL ****
***** Transfer Tax ***** Transfer Tax #: 1693 Transfer Tax Consideration: 0.00	
Total:	0.00

Payment Type:	Check
	Cash
	Charge
	No Fee

Comment: _____

any G. Ralbert

Ann G. Rabbitt Orange County Clerk

Record and Return To:

FIRST AMERICAN TITLE INS CO 666 THIRD AVE 5TH FLOOR NEW YORK, NY 10017

3020-869296

County: Orange Site No: 336036 Order on Consent Index : W3-0784-04-06

ENVIRONMENTAL EASEMENT GRANTED PURSUANT TO ARTICLE 71, TITLE 36 OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW

THIS INDENTURE made this **23^{BD}** day of **August**, 20<u>17</u>, between Owner(s) American Felt & Filter Company, Inc., having an office at 361 Walsh Avenue, New Windsor, New York 12553, County of Orange, State of New York (the "Grantor"), and The People of the State of New York (the "Grantee."), acting through their Commissioner of the Department of Environmental Conservation (the "Commissioner", or "NYSDEC" or "Department" as the context requires) with its headquarters located at 625 Broadway, Albany, New York 12233,

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and

WHEREAS, Grantor, is the owner of real property located at the address of 361 Walsh Avenue in the Town of New Windsor, County of Orange and State of New York, known and designated on the tax map of the County Clerk of Orange as tax map parcel numbers: Section 9 Block 1 Lot 69.2, being a portion of the property conveyed to Grantor by deed dated July 31, 1978 and recorded in the Orange County Clerk's Office in Liber and Page 2106/655. The property subject to this Environmental Easement (the "Controlled Property") comprises approximately 0.545 +/- acres, and is hereinafter more fully described in the Land Title Survey dated April 17, 1998 and last revised June 26, 2017 prepared by Steven P. Drabick, P.L.S., which will be attached to the Site Management Plan. The Controlled Property description is set forth in and attached hereto as Schedule A; and

WHEREAS, the Department accepts this Environmental Easement in order to ensure the protection of public health and the environment and to achieve the requirements for remediation established for the Controlled Property until such time as this Environmental Easement is

Environmental Easement Page 1

- -

extinguished pursuant to ECL Article 71, Title 36; and

NOW THEREFORE, in consideration of the mutual covenants contained herein and the terms and conditions of Order on Consent Index Number: W3-0784-04-06, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement").

1. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.

2. <u>Institutional and Engineering Controls</u>. The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.

A. (1) The Controlled Property may be used for:

Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

(2) All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);

(3) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP;

(4) The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Orange County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;

(5) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;

(6) Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP;

(7) All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;

Environmental Easement Page 2

(8) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;

(9) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP;

(10) Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.

B. The Controlled Property shall not be used for Residential or Restricted Residential purposes as defined in 6NYCRR 375-1.8(g)(2)(i) and (ii), and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.

C. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, New York 12233 Phone: (518) 402-9553

D. Grantor must provide all persons who acquire any interest in the Controlled Property a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.

E. Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of ECL Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the Environmental Conservation

Law.

F. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.

G. Grantor covenants and agrees that it shall, at such time as NYSDEC may require, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:

(1) the inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3).

the institutional controls and/or engineering controls employed at such site:
 (i) are in-place;

(ii) are unchanged from the previous certification, or that any identified changes to the controls employed were approved by the NYSDEC and that all controls are in the Department-approved format; and

(iii) that nothing has occurred that would impair the ability of such control to protect the public health and environment;

(3) the owner will continue to allow access to such real property to evaluate the continued maintenance of such controls;

(4) nothing has occurred that would constitute a violation or failure to comply with any site management plan for such controls;

(5) the report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;

(6) to the best of his/her knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and

(7) the information presented is accurate and complete.

3. <u>Right to Enter and Inspect</u>. Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.

4. <u>Reserved Grantor's Rights</u>. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Property, including:

A. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;

B. The right to give, sell, assign, or otherwise transfer part or all of the underlying fee interest to the Controlled Property, subject and subordinate to this Environmental Easement;

5. <u>Enforcement</u>

A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against

the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.

B. If any person violates this Environmental Easement, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.

C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.

D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.

6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to:	Site Number: 336036 Office of General Counsel NYSDEC 625 Broadway Albany New York 12233-5500
With a copy to:	Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, NY 12233

All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

7. <u>Recordation</u>. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the

recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

8. <u>Amendment</u>. Any amendment to this Environmental Easement may only be executed by the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

9. <u>Extinguishment.</u> This Environmental Easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

Remainder of Page Intentionally Left Blank

IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

American Felt & Filter Company, Inc.: By: Print Name:

Grantor's Acknowledgment

STATE OF NEW YORK)) ss: COUNTY OF OKAnge)

On the 8^{th} day of 4400, in the year 20 17, before me, the undersigned, personally appeared 401500 H. Prine, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument.

Notary Public - State of New York

LINDA S. MIRANDA NOTARY PUBLIC-STATE OF NEW YORK No. 01MI6064154 Qualified in Orange County My Commission Expires September 17, 2017

Environmental Easement Page 7

THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting By and Through the Department of Environmental Conservation as Designee of the Compressioner, /

By:

) ss:

)

Robert W. Schick, Director Division of Environmental Remediation

Grantee's Acknowledgment

On the 23° day of 43° , in the year 201° , before me, the undersigned, personally appeared Robert W. Schick, personally known to me or proved to me on the basis of satisfactory ovidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

Notary Public / State of New York

STATE OF NEW YORK

COUNTY OF ALBANY

David J. Chiusano Notary Public, State of New York No. 01CH5032146 Qualified in Schenectady County Commission Expires August 22, 20

R+R: First American Title Gleb Third Ave, 2 loor 5 Gleb Third Ave, 2 loor 5 New York, NY. 10017

Environmental Easement Page 8

County: Orange Site No: 336036 Order on Consent Index : W3-0784-04-06

SCHEDULE "A" PROPERTY DESCRIPTION

DESCRIPTION OF SOILS MANAGEMENT AREA & SUB-SLAB DEPRESSURIZATION SYSTEM, AN ENVIRONMENTAL EASEMENT TO THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

GRANT OF EASEMENT over, across and through all that certain plot, piece or parcel of land with the building and improvements thereon erected, situate, lying and being in the Town of New Windsor, County of Orange and State of New York bounded and described as follows:

BEGINNING at a point at the northwesterly corner of the 1story masonry building of the most northerly complex of buildings located on lands of American Felt & Filter Company Inc., Liber 5730, Page 201, said point of beginning being located South 65 degrees 16 minutes 40 seconds West for a distance of 42.37 feet from a corner in the northerly bounds of lands of the same at the intersection with the municipal boundary between the City of Newburgh and Town of New Windsor and lands now or formerly of Hudson Shipyard Lp, Liber 12960, Page 1797;

THENCE South 72 degrees 57 minutes 34 seconds East for a distance of 103.33 feet along the face of said masonry building to a point;

THENCE South 17 degrees 21 minutes 13 seconds West for a distance of 68.08 feet through said masonry building to a point at the outside corner of said building;

THENCE North 72 degrees 00 minutes 00 seconds West for a distance of 51.17 feet through said masonry building to a point at the outside corner of said building;

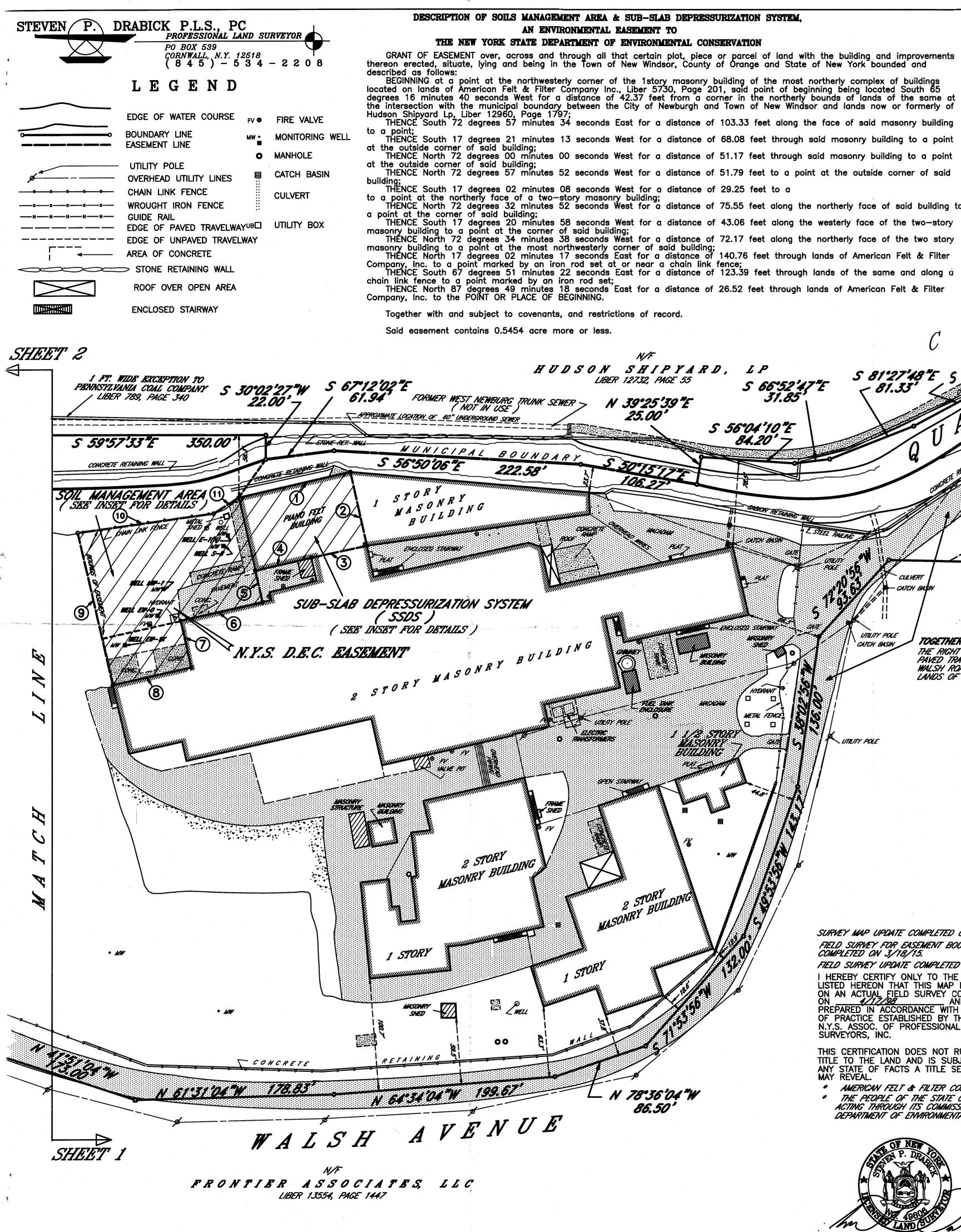
THENCE North 72 degrees 57 minutes 52 seconds West for a distance of 51.79 feet to a point at the outside corner of said building;

THENCE South 17 degrees 02 minutes 08 seconds West for a distance of 29.25 feet to a to a point at the northerly face of a two-story masonry building;

THENCE North 72 degrees 32 minutes 52 seconds West for a distance of 75.55 feet along the northerly face of said building to a point at the corner of said building;

THENCE South 17 degrees 20 minutes 58 seconds West for a distance of 43.06 feet along the westerly face of the two-story masonry building to a point at the corner of said building;

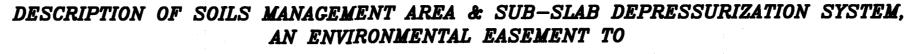
THENCE North 72 degrees 34 minutes 38 seconds West for a distance of 72.17 feet along the northerly face of the two story masonry building to a point at the most northwesterly corner of said building;

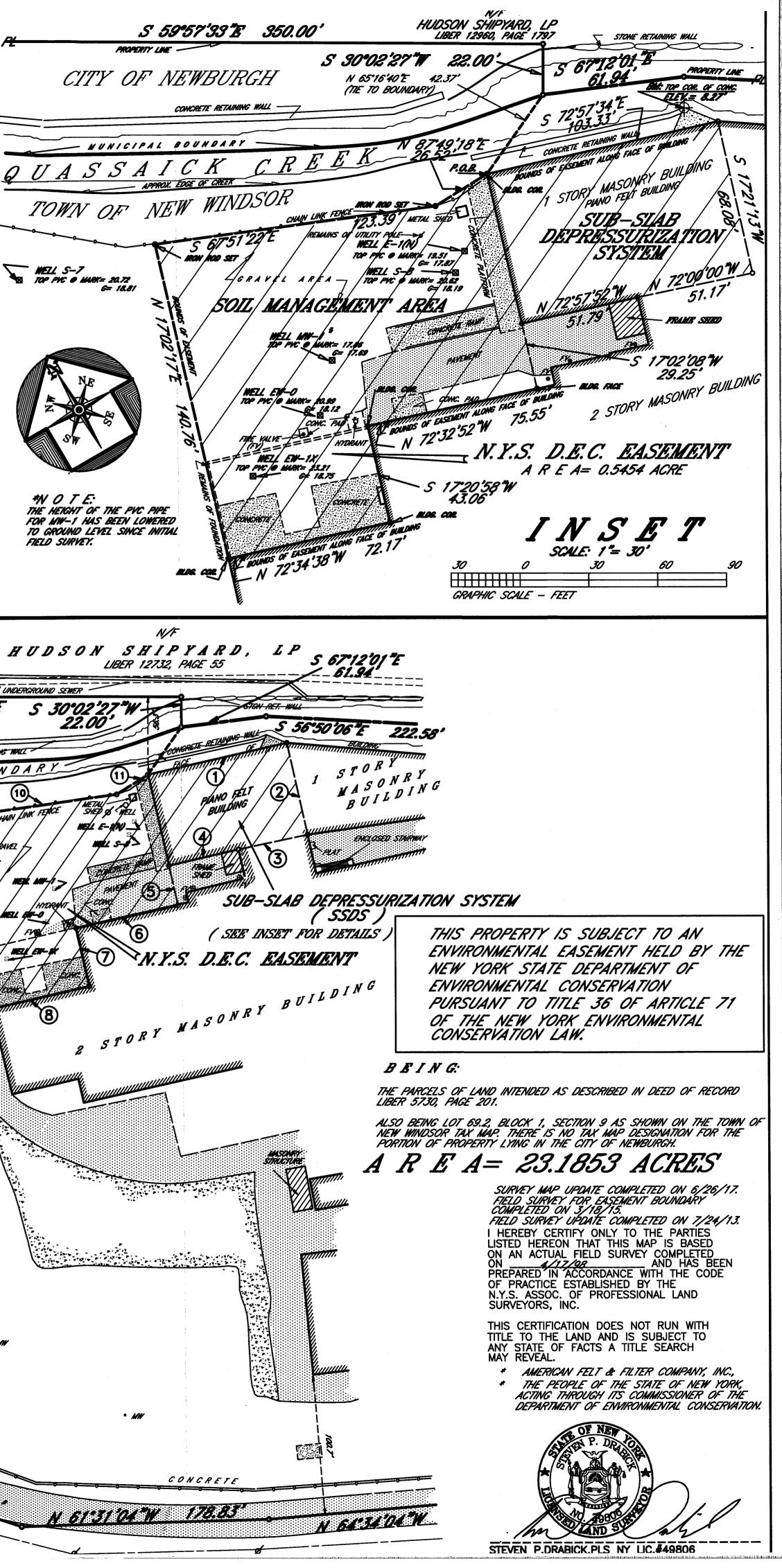

THENCE North 17 degrees 02 minutes 17 seconds East for a distance of 140.76 feet through lands of American Felt & Filter Company, Inc. to a point marked by an iron rod set at or near a chain link fence;

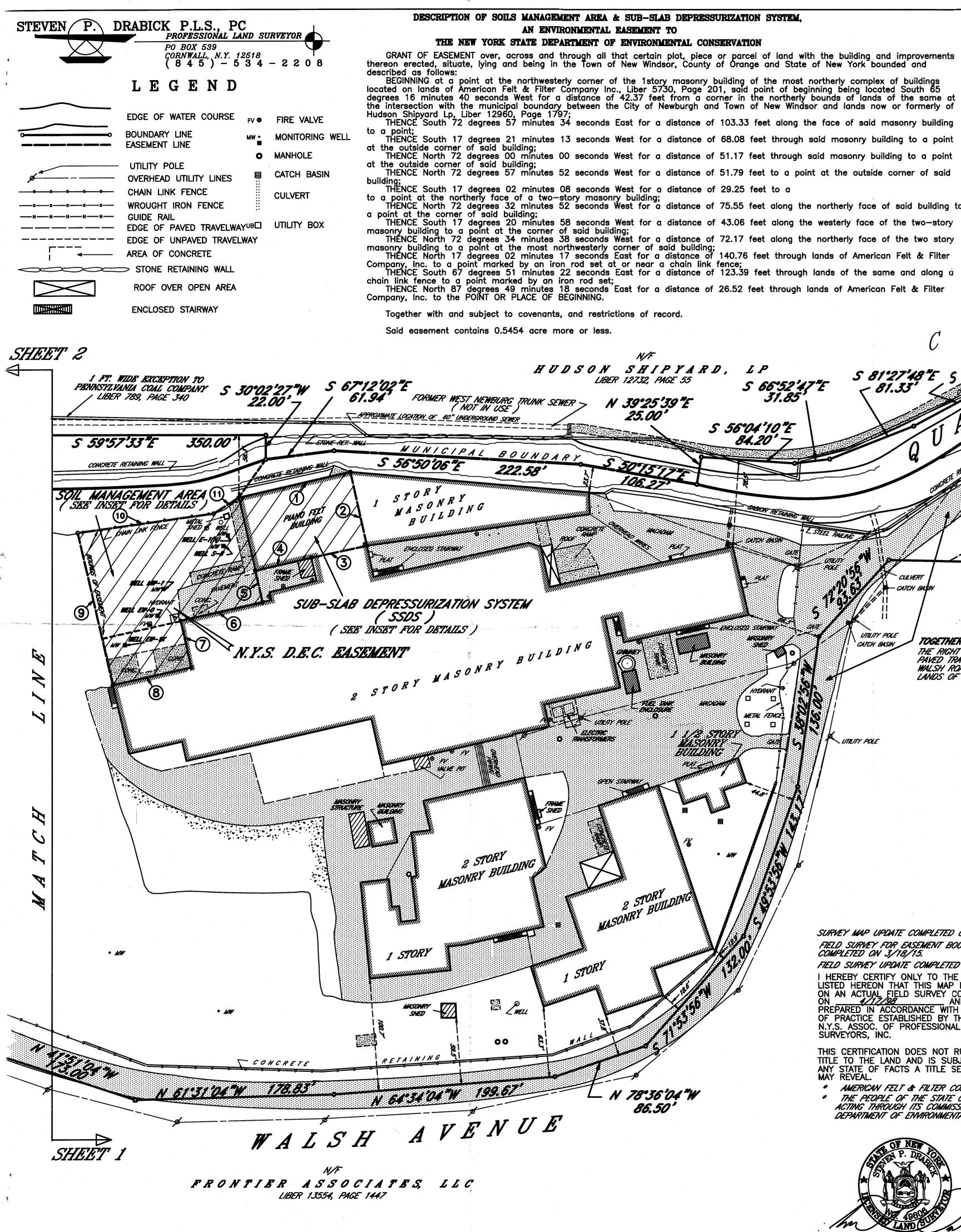
THENCE South 67 degrees 51 minutes 22 seconds East for a distance of 123.39 feet through lands of the same and along a chain link fence to a point marked by an iron rod set;

THENCE North 87 degrees 49 minutes 18 seconds East for a distance of 26.52 feet through lands of American Felt & Filter Company, Inc. to the POINT OR PLACE OF BEGINNING.

Together with and subject to covenants, and restrictions of record.

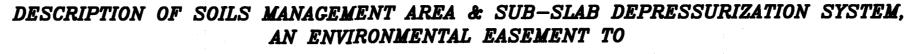

Said area contains 0.5454 acres more or less.

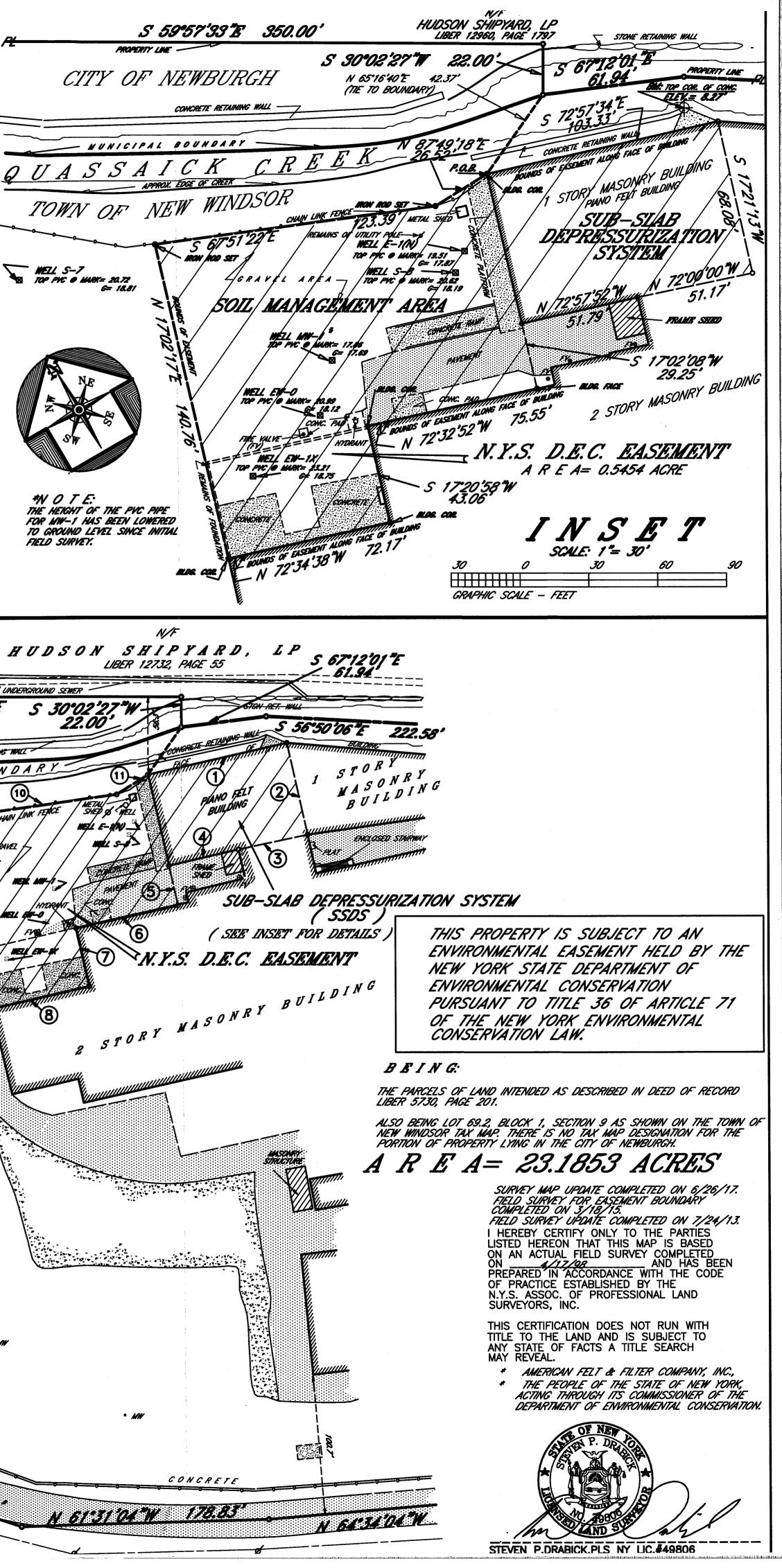



MAP ENTITLED ZOT LINE CHANGE PLAN BETWEEN THE LANDS OF DAVID PLOTKIN AND WAREX TERMINALS CORPORATION". GRANT OF EASEMENT over, across and through all that certain plot, piece or parcel of land with the building and improvements thereon erected, situate, lying and being in the Town of New Windsor, County of Orange and State of New York bounded and DATED AUGUST 17, 2207 BY RICHARD PAUL HANBACK, λ s. FILED IN THE ORANGE COUNTY CLERK'S OFFICE AS MAP \$406-08 described as follows: BEGINNING at a point at the northwesterly corner of the 1story masonry building of the most northerly complex of buildings located on lands of American Felt & Filter Company Inc., Liber 5730, Page 201, said point of beginning being located South 65 degrees 16 minutes 40 seconds West for a distance of 42.37 feet from a corner in the northerly bounds of lands of the same at the intersection with the municipal boundary between the City of Newburgh and Town of New Windsor and lands now or formerly of Hudson Shipyard Lp, Liber 12960, Page 1797; THENCE South 72 degrees 57 minutes 34 seconds East for a distance of 103.33 feet along the face of said masonry building WAREX TERMINAL'S CORPORATION RON DNA ROLNO ON LINE EASEMENT TO THE PEOPLE BRICK & FRAME POLE UTILITY PO OF THE RITLDING STATE OF NEW YORK FORMER WEST NEWBURG TRUNK SEWER < THENCE North 72 degrees 00 minutes 00 seconds West for a distance of 51.17 feet through said masonry building to a point LIBER 2685, PAGE 189 CONCRETE MONUMENT FOUND building; THENCE South 17 degrees 02 minutes 08 seconds West for a distance of 29.25 feet to a to a point at the northerly face of a two-story masonry building; THENCE North 72 degrees 32 minutes 52 seconds West for a distance of 75.55 feet along the northerly face of said building to a point at the corner of said building; THENCE South 17 degrees 20 minutes 58 seconds West for a distance of 43.06 feet along the westerly face of the two-story building to a point at the corner of said building; THENCE South 17 degrees 20 minutes 58 seconds West for a distance of 43.06 feet along the westerly face of the two-story building to a point at the corner of said building; THENCE South 17 degrees 20 minutes 58 seconds West for a distance of 43.06 feet along the westerly face of the two-story building to a point at the corner of said building; 5 20°21'12"W < <u>64°28'46"</u>E 40.55' CREEKCONC. MING<u>WAL</u> ICRETE MONUMENT - 73.45'33.-S 58°27'37"E MANHOLE MING MAL GUIDE RAIL *5 01°42'17"* 15.00 ר 79.31'-CATCH BASK AVENUE <u>36'02</u>"W 83.24 NEW WINDSOK 3 CONCRETE MONUMENT CATCH BASIN NEW YORK TELEPHONE S 81'27'48"E COMPANY EASEMENT LIBER 3443, PAGE 332 S 66'52'47"E 81.33' <u>GF22'40E</u> CENTERLINE OF EASEMENT CATCH BASIN 31.85 3 5 6722'40 E S 1829'14"W EASEMENT -150.21'-S 56'04'10"E TOWN OF NEW WINDSOR CULIERT 20 FT. MIDE EASEMENT FOR PUBLIC SEWER 84.20 UTILITY POLE AMERICAN FELT & FILTER COMPANY, LLC TOWN OF LIBER 5730, PAGE 881 NEW WINDSOR T. L. 9 - 1 - 69.2 LIBER 1830, PAGE 1040 624.01' CHAIN LINK FENCE N 58°45'56"W CONCRETE MONUMENT CULVER 698.08' PL UTILITY POLE FOUND ON LINE GLOBAL COMPANIES, LLC FRONTIER ASSOCIATES, LLC LIBER 12448, PAGE 881 LIBER 13554, PAGE 1447 UTILITY POLE TOGETHER WITH AND SUBJECT TO: THE RIGHT OF PUBLIC USE OF THE EXISTING BURDING ED IRAVELWAY AND APPURIENANCES OF MAP ENIILED WALSH ROAD OVER, ACROSS AND THROUGH LANDS OF AMERICAN FELT & FILTER, INC. SURVEY AND PROPOSED LOT LINE CHANGE PREPARED FOR DAVID PLOTKIN AND MOBIL OIL CORPORATION " FILED IN THE ORANGE COUNTY CLERK'S OFFICE AS MAP #74-94 NOTES METAL FENCE UNAUTHORIZED ALTERATION OR ADDITION TO A SURVEY MAP BEARING A LICENSED LAND SURVEYOR'S SEAL IA A VIOLATION OF SECTION 7209 SUB-DIVISION 2 OF THE NEW YORK STATE EDUCATION LAW. 1/8 STORI VASONRY -🔨 UTILITY POLE REFERENCES: RUTLDING COPIES OF THIS SURVEY MAP NOT HAVING THE EMBOSSED SEAL OF THE LAND SURVEYOR DEEDS OF RECORD SHALL NOT BE VALID. MAP ENTITLED "MAP OF LANDS OWNED BY THE STROOCK FELT CO. IN THE TOWN OF NEW WINDSOR", DATED AUGUST 1902, ON FILE IN THE NEWBURGH CITY ENGINEER'S CERTIFICATIONS SHOWN HEREON ARE NOT TRANSFERABLE TO ADDITIONAL INDIVIDUALS, INSTITUTIONS, THEIR SUCCESSORS AND/OR ASSIGNS OR SUBSEQUENT OWNERS. OFFICE THE CERTIFICATION AS STATED IS APPLICABLE TO THE RELATIONSHIP OF EXISTING BOUNDARIES, PROPERTY LINES & EASEMENTS (THOSE VISIBLE AND/OR OF RECORD) TO THE EXISTING IMPROVEMENTS & BUILDINGS INDICATED ON THE SURVEY AND ARE SHOWN HEREON MAP ENTITLED "MAP OF LANDS OF S STROOCK AND CO. INC FELT MILLS", DATED OCTOBER 1923 AND REVISED MARCH 1925 BY BLAKE AND WOODHULL, CIVIL ENGINEERS, ON FILE IN THE NEWBURGH CITY ENGINEER'S OFFICE. TO THE EXTENT THEREOF. MAP ENTITLED "MINOR SUBDIVISION, DIAMOND CANDLE CO., INC.", FILED IN THE ORANGE COUNTY CLERK'S OFFICE ON FEBRUARY 25, 1987 AS MAP #8131. ONLY THOSE UTILITIES VISIBLE ARE SHOWN. ALL UNDERGROUND UTILITIES AS SHOWN HEREON ARE APPROXIMATE AND SUBJECT TO PHYSICAL VERIFICATION. MAP ENTITLED "SURVEY MAP FOR AMERICAN FELT AND FILTER COMPANY", DATED JUNE EASEMENTS OR RIGHT OF WAYS ON, OR UNDER THE LANDS, AND NOT VISIBLE, ARE NOT 1990 BY WASHBURN ASSOCIATES. MAP ENTITLED "LOT LINE CHANGE PREPARED FOR AMERICAN FELT & FILTER COMPANY", FILED IN THE ORANGE COUNTY CLERK'S OFFICE ON JULY 12, 1993 AS MAP #122-93. THAT PORTION OF THE PROPERY LYING IN THE BED OF QUASSAICK CREEK IS LOCATED IN FEMA 100 YEAR FLOOD HAZARD ZONE DESIGNATED AS AS AS SHOWN ON THE FLOOD INSURANCE RATE MAP FOR THE TOWN OF NEW WINDSOR, COMMUNITY PANEL #360628 0010 B, PAGE 10 OF 10, DATED DECEMBER 15, 1978, NO FIELD DETERMINATION HAS BEEN MADE BY THIS SURVEY TO THE EXTENT OF THE PUBLISHED BASE FLOOD ELEVATIONS. MAP ENTITLED "SURVEY OF A PORTION OF LANDS OF THE AMERICAN FELT & FILTER SURVEY MAP UPDATE COMPLETED ON 6/26/17. COMPANY SHOWING OCCUPANCY PROPOSED BY NEW YORK TELEPHONE COMPANY, DATED JANUARY 1994 BY CHAZEN ENGINEERING & LAND SURVEYING CO., P.C. FIELD SURVEY FOR EASEMENT BOUNDARY COMPLETED ON 3/18/15. THIS SURVEY MAP SHALL BE DEEMED INVALID UNLESS ACCOMPANIED BY SHEET 2 OF 2. MAP ENTITLED "SURVEY AND PROPOSED LOT LINE CHANGE PREPARED FOR DAVID PLOTKIN AND MOBIL OIL CORPORATION", FILED IN THE ORANGE COUNTY CLERK'S OFFICE SEE SHEET 2 OF 2 FOR ADDITIONAL INFORMATION. FIELD SURVEY UPDATE COMPLETED ON 7/24/13. AS MAP \$74-94. I HEREBY CERTIFY ONLY TO THE PARTIES LISTED HEREON THAT THIS MAP IS BASED ON AN ACTUAL FIELD SURVEY COMPLETED ON <u>4/17/98</u> AND HAS BEEN PREPARED IN ACCORDANCE WITH THE CODE THIS PROPERTY IS SUBJECT TO AN ENVIRONMENTAL EASEMENT HELD BY THE SURVEY OF PROPERTY OF PRACTICE ESTABLISHED BY THE NEW YORK STATE DEPARTMENT OF N.Y.S. ASSOC. OF PROFESSIONAL LAND SURVEYORS, INC. ENVIRONMENTAL CONSERVATION FOR PURSUANT TO TITLE 36 OF ARTICLE 71 THIS CERTIFICATION DOES NOT RUN WITH TITLE TO THE LAND AND IS SUBJECT TO OF THE NEW YORK ENVIRONMENTAL AFFCO ANY STATE OF FACTS A TITLE SEARCH CONSERVATION LAW. MAY REVEAL. AMERICAN FELT & FILTER COMPANY, INC., THE PEOPLE OF THE STATE OF NEW YORK, BEING: ACTING THROUGH ITS COMMISSIONER OF THE THE PARCELS OF LAND INTENDED AS DESCRIBED IN DEED OF RECORD AMERICAN FELT & FILTER COMPANY, INC. DEPARTMENT OF ENVIRONMENTAL CONSERVATION. ALSO BEING LOT 69.2, BLOCK 1, SECTION 9 AS SHOWN ON THE TOWN OF **TOWN OF NEW WINDSOR, CITY OF NEWBURGH** NEW WINDSOR TAX MAP. THERE IS NO TAX MAP DESIGNATION FOR THE PORTION OF PROPERTY LYING IN THE CITY OF NEWBURGH. SCALE: 1"= 50' ORANGE COUNTY, NEW YORK AUGUST 8, 2019 REVISED: 3/23/15. 6/26/17 A R E A= 23.1853 ACRES GRAPHIC SCALE - FEET SHEET 1 OF 2 STEVEN P.DRABICK, PLS NY LIC. #49806 JOB NO. 140-171

DESCRIPTION OF SOILS MANAGEMENT AREA & SUB-SLAB DEPRESSURIZATION SYSTEM, AN ENVIRONMENTAL EASEMENT TO STEVEN P. DRABICK P.L.S., PC PROFESSIONAL LAND SURVEYOR CSX TRANSPORTATION, INC. LIBER 2110, PAGE 852 THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION PO BOX 539 GRANT OF EASEMENT over, across and through all that certain plot, piece or parcel of land with the $\begin{array}{c} \begin{array}{c} \text{CORNWALL, N.Y. } 12518 \\ (8 4 5) - 5 3 4 - 2 2 0 8 \end{array}$ building and improvements thereon erected, situate, lying and being in the Town of New Windsor, County of Orange and State of New York bounded and described as follows: 20 FT. WIDE CITY OF NEWBURGH SANITARY SEWER EASEMENT BEGINNING at a point at the northwesterly corner of the 1story masonry building of the most northerly complex of buildings located on lands of American Felt & Filter Company Inc., Liber 5730, Page 201, said point of beginning being located South 65 degrees 16 minutes 40 seconds West for a distance of 42.37 feet from a corner in the northerly bounds of lands of the same at the intersection KESSLER -LIBER 2384, PAGE 202 with the municipal boundary between the City of Newburgh and Town of New Windsor and lands now or formerly of Hudson Shipyard Lp, Liber 12960, Page 1797; THENCE South 72 degrees 57 minutes 34 seconds East for a distance of 103.33 feet along the 77.24° IMINY POLE face of said masonry building to a point; LISTONE RET THENCE South 17 degrees 21 minutes 13 seconds West for a distance of 68.08 feet through said masonry building to a point at the outside corner of said building; THENCE North 72 degrees 00 minutes 00 seconds West for a distance of 51.17 feet through said masonry building to a point at the outside corner of said building; THENCE North 72 degrees 57 minutes 52 seconds West for a distance of 51.79 feet to a point at S 87'52'56"E \bigcirc STONE RET. WALL the outside corner of said buildina: 42.32' THENCE South 17 degrees 02 minutes 08 seconds West for a distance of 29.25 feet to a REMS. OF CONC. WALLS & WEIR UTILITY POLE HI/ to a point at the northerly face of a two-story masonry building; N 19°34'04"W 41.00 THENCE North 72 degrees 32 minutes 52 seconds West for a distance of 75.55 feet along the RETURNS OF BLOCK BUILDING 3'SERIES E northerly face of said building to a point at the corner of said building; THENCE South 17 degrees 20 minutes 58 seconds West for a distance of 43.06 feet along the westerly face of the two-story masonry building to a point at the corner of said building; THENCE North 72 degrees 34 minutes 38 seconds West for a distance of 72.17 feet along the NY POLE CITY OF NEWBURGH LIBER 2853, PAGE 24 northerly face of the two story masonry building to a point at the most northwesterly corner of said building THENCE North 17 degrees 02 minutes 17 seconds East for a distance of 140.76 feet through lands of American Felt & Filter Company, Inc. to a point marked by an iron rod set at or near a chain link 0 3 fence: THENCE South 67 degrees 51 minutes 22 seconds East for a distance of 123.39 feet through PARCE LINE lands of the same and along a chain link fence to a point marked by an iron rod set; Y (2)5 THENCE North 87 degrees 49 minutes 18 seconds East for a distance of 26.52 feet through lands \bigcirc of American Felt & Filter Company. Inc. to the POINT OR PLACE OF BEGINNING. S Together with and subject to covenants, and restrictions of record. 0 7 Ń Said easement contains 0.5454 acres more or less. 7 \frown NEWBURGH 0 KESSLER (B)LIBER 2384. PAGE 205 \bigcirc SHEET 2 1 HI] 1 FT. WIDE EXCEPTION TO PENNSYLVANIA COAL COMPANY LIBER 789, PAGE 340 FORMER WEST NEWBURG TRUNK SEWE " CULVERT (NOT IN USE) APPROXIMATE LOCATION OF 60" UNDERGROUND SEMER -BLAKENORE LIBER 6216, PAGE 180 S 16°19'34" 50.01° N 30°02'27" 5 3325'03 LS 62°20'17"E 59.97 CONCRETE RETAINING WALL UNICIPAL 91.18' BOUNDAR < 5 51°07'29"E LINK FENCE CREEK 46.24' BOUNDS OF ENVIRONMENTAL EASEMENT WINDSOR' COURSE BEARINO DISTANCE 103.33' S 72'57'34"E S 1721'13"W 68.08° 51.17' N 72°00'00"W 51.79' N 72°57'52"W S 1702'08"W 29.25' SOIL MANAGEMENT AREA N 72°32'52"W 75.55' (SEE INSET FOR DETAILS) (\mathbf{A}) S 1720'58"W 43.06' 72.17' N 72°34'38"W N 17°02'17"E 140.76' MAP ENTITLED 123.39' S 67 51 22 E ZOT LINE CHANGE PREPARED FOR AMERICAN FELT & FILTER COMPANY" 26.52' N 87°49'18"E FILED IN THE ORANGE COUNTY CLERK'S OFFICE ON JULY 12, 1993 AS MAP \$122-93 A R E A= 0.5454 ACRE REMAINS OF BLOCK BUILDING. PLYMPTON HOUSE LTD. LIBER 6157, PAGE 289 2 STORY FRAME DWELLING PL JAPTON STREET N 36°02'47"W 122.58' N 31°32'47,"W N 46°55'04"W N 2502'47 W 90.00 TOGETHER WITH AND SUBJECT TO: N 70°18'03"W 221.79 THE RIGHT OF PUBLIC USE OF THE EXISTING PAVED TRAVELWAY AND APPURTENANCES OF WALSH ROAD OVER, ACROSS AND THROUGH LANDS OF AMERICAN FELT & FILTER, INC. SURVEY OF PROPERTY N 09°32'47"W 14.52' FOR AFFCO - Contraction of the second se N 24'59'22 MALSH 16.61 BOUNDS AMERICAN FELT & FILTER COMPANY, INC. NEW LINE PECHKAM MATERIALS CORP. LIBER 2736, PAGE 299 TOWN OF NEW WINDSOR, CITY OF NEWBURGH ORANGE COUNTY, NEW YORK SCALE: 1"= 50' AUGUST 8, 2019 REVISED: 3/23/15 FRONTIER ASSOCIATES LLC ENUET 6/26/17 LIBER 13554, PAGE 1447 NOTE: THIS SURVEY MAP SHALL BE DEEMED INVALID UNLESS ACCOMPANIED BY SHEET 1 OF 2. GRAPHIC SCALE - FEET SEE SHEET 1 OF 2 FOR REFERENCES, NOTES AND ADDITIONAL INFORMATION. SHEET SHEFT? OF?

.IOR NO. 140-172





MAP ENTITLED ZOT LINE CHANGE PLAN BETWEEN THE LANDS OF DAVID PLOTKIN AND WAREX TERMINALS CORPORATION". GRANT OF EASEMENT over, across and through all that certain plot, piece or parcel of land with the building and improvements thereon erected, situate, lying and being in the Town of New Windsor, County of Orange and State of New York bounded and DATED AUGUST 17, 2207 BY RICHARD PAUL HANBACK, λ s. FILED IN THE ORANGE COUNTY CLERK'S OFFICE AS MAP \$406-08 described as follows: BEGINNING at a point at the northwesterly corner of the 1story masonry building of the most northerly complex of buildings located on lands of American Felt & Filter Company Inc., Liber 5730, Page 201, said point of beginning being located South 65 degrees 16 minutes 40 seconds West for a distance of 42.37 feet from a corner in the northerly bounds of lands of the same at the intersection with the municipal boundary between the City of Newburgh and Town of New Windsor and lands now or formerly of Hudson Shipyard Lp, Liber 12960, Page 1797; THENCE South 72 degrees 57 minutes 34 seconds East for a distance of 103.33 feet along the face of said masonry building WAREX TERMINAL'S CORPORATION RON DNA ROLNO ON LINE EASEMENT TO THE PEOPLE BRICK & FRAME POLE UTILITY PO OF THE RITLDING STATE OF NEW YORK FORMER WEST NEWBURG TRUNK SEWER < THENCE North 72 degrees 00 minutes 00 seconds West for a distance of 51.17 feet through said masonry building to a point LIBER 2685, PAGE 189 CONCRETE MONUMENT FOUND building; THENCE South 17 degrees 02 minutes 08 seconds West for a distance of 29.25 feet to a to a point at the northerly face of a two-story masonry building; THENCE North 72 degrees 32 minutes 52 seconds West for a distance of 75.55 feet along the northerly face of said building to a point at the corner of said building; THENCE South 17 degrees 20 minutes 58 seconds West for a distance of 43.06 feet along the westerly face of the two-story building to a point at the corner of said building; THENCE South 17 degrees 20 minutes 58 seconds West for a distance of 43.06 feet along the westerly face of the two-story building to a point at the corner of said building; THENCE South 17 degrees 20 minutes 58 seconds West for a distance of 43.06 feet along the westerly face of the two-story building to a point at the corner of said building; 5 20°21'12"W < <u>64°28'46"</u>E 40.55' CREEKCONC. MING<u>WAL</u> ICRETE MONUMENT - 73.45'33.-S 58°27'37"E MANHOLE MING MAL GUIDE RAIL *5 01°42'17"* 15.00 ר 79.31'-CATCH BASK AVENUE <u>36'02</u>"W 83.24 NEW WINDSOK 3 CONCRETE MONUMENT CATCH BASIN NEW YORK TELEPHONE S 81'27'48"E COMPANY EASEMENT LIBER 3443, PAGE 332 S 66'52'47"E 81.33' <u>GF22'40E</u> CENTERLINE OF EASEMENT CATCH BASIN 31.85 3 5 6722'40 E S 1829'14"W EASEMENT -150.21'-S 56'04'10"E TOWN OF NEW WINDSOR CULIERT 20 FT. MIDE EASEMENT FOR PUBLIC SEWER 84.20 UTILITY POLE AMERICAN FELT & FILTER COMPANY, LLC TOWN OF LIBER 5730, PAGE 881 NEW WINDSOR T. L. 9 - 1 - 69.2 LIBER 1830, PAGE 1040 624.01' CHAIN LINK FENCE N 58°45'56"W CONCRETE MONUMENT CULVER 698.08' PL UTILITY POLE FOUND ON LINE GLOBAL COMPANIES, LLC FRONTIER ASSOCIATES, LLC LIBER 12448, PAGE 881 LIBER 13554, PAGE 1447 UTILITY POLE TOGETHER WITH AND SUBJECT TO: THE RIGHT OF PUBLIC USE OF THE EXISTING BURDING ED IRAVELWAY AND APPURIENANCES OF MAP ENIILED WALSH ROAD OVER, ACROSS AND THROUGH LANDS OF AMERICAN FELT & FILTER, INC. SURVEY AND PROPOSED LOT LINE CHANGE PREPARED FOR DAVID PLOTKIN AND MOBIL OIL CORPORATION " FILED IN THE ORANGE COUNTY CLERK'S OFFICE AS MAP #74-94 NOTES METAL FENCE UNAUTHORIZED ALTERATION OR ADDITION TO A SURVEY MAP BEARING A LICENSED LAND SURVEYOR'S SEAL IA A VIOLATION OF SECTION 7209 SUB-DIVISION 2 OF THE NEW YORK STATE EDUCATION LAW. 1/8 STORI VASONRY -🔨 UTILITY POLE REFERENCES: RUTLDING COPIES OF THIS SURVEY MAP NOT HAVING THE EMBOSSED SEAL OF THE LAND SURVEYOR DEEDS OF RECORD SHALL NOT BE VALID. MAP ENTITLED "MAP OF LANDS OWNED BY THE STROOCK FELT CO. IN THE TOWN OF NEW WINDSOR", DATED AUGUST 1902, ON FILE IN THE NEWBURGH CITY ENGINEER'S CERTIFICATIONS SHOWN HEREON ARE NOT TRANSFERABLE TO ADDITIONAL INDIVIDUALS, INSTITUTIONS, THEIR SUCCESSORS AND/OR ASSIGNS OR SUBSEQUENT OWNERS. OFFICE THE CERTIFICATION AS STATED IS APPLICABLE TO THE RELATIONSHIP OF EXISTING BOUNDARIES, PROPERTY LINES & EASEMENTS (THOSE VISIBLE AND/OR OF RECORD) TO THE EXISTING IMPROVEMENTS & BUILDINGS INDICATED ON THE SURVEY AND ARE SHOWN HEREON MAP ENTITLED "MAP OF LANDS OF S STROOCK AND CO. INC FELT MILLS", DATED OCTOBER 1923 AND REVISED MARCH 1925 BY BLAKE AND WOODHULL, CIVIL ENGINEERS, ON FILE IN THE NEWBURGH CITY ENGINEER'S OFFICE. TO THE EXTENT THEREOF. MAP ENTITLED "MINOR SUBDIVISION, DIAMOND CANDLE CO., INC.", FILED IN THE ORANGE COUNTY CLERK'S OFFICE ON FEBRUARY 25, 1987 AS MAP #8131. ONLY THOSE UTILITIES VISIBLE ARE SHOWN. ALL UNDERGROUND UTILITIES AS SHOWN HEREON ARE APPROXIMATE AND SUBJECT TO PHYSICAL VERIFICATION. MAP ENTITLED "SURVEY MAP FOR AMERICAN FELT AND FILTER COMPANY", DATED JUNE EASEMENTS OR RIGHT OF WAYS ON, OR UNDER THE LANDS, AND NOT VISIBLE, ARE NOT 1990 BY WASHBURN ASSOCIATES. MAP ENTITLED "LOT LINE CHANGE PREPARED FOR AMERICAN FELT & FILTER COMPANY", FILED IN THE ORANGE COUNTY CLERK'S OFFICE ON JULY 12, 1993 AS MAP #122-93. THAT PORTION OF THE PROPERY LYING IN THE BED OF QUASSAICK CREEK IS LOCATED IN FEMA 100 YEAR FLOOD HAZARD ZONE DESIGNATED AS AS AS SHOWN ON THE FLOOD INSURANCE RATE MAP FOR THE TOWN OF NEW WINDSOR, COMMUNITY PANEL #360628 0010 B, PAGE 10 OF 10, DATED DECEMBER 15, 1978, NO FIELD DETERMINATION HAS BEEN MADE BY THIS SURVEY TO THE EXTENT OF THE PUBLISHED BASE FLOOD ELEVATIONS. MAP ENTITLED "SURVEY OF A PORTION OF LANDS OF THE AMERICAN FELT & FILTER SURVEY MAP UPDATE COMPLETED ON 6/26/17. COMPANY SHOWING OCCUPANCY PROPOSED BY NEW YORK TELEPHONE COMPANY, DATED JANUARY 1994 BY CHAZEN ENGINEERING & LAND SURVEYING CO., P.C. FIELD SURVEY FOR EASEMENT BOUNDARY COMPLETED ON 3/18/15. THIS SURVEY MAP SHALL BE DEEMED INVALID UNLESS ACCOMPANIED BY SHEET 2 OF 2. MAP ENTITLED "SURVEY AND PROPOSED LOT LINE CHANGE PREPARED FOR DAVID PLOTKIN AND MOBIL OIL CORPORATION", FILED IN THE ORANGE COUNTY CLERK'S OFFICE SEE SHEET 2 OF 2 FOR ADDITIONAL INFORMATION. FIELD SURVEY UPDATE COMPLETED ON 7/24/13. AS MAP \$74-94. I HEREBY CERTIFY ONLY TO THE PARTIES LISTED HEREON THAT THIS MAP IS BASED ON AN ACTUAL FIELD SURVEY COMPLETED ON <u>4/17/98</u> AND HAS BEEN PREPARED IN ACCORDANCE WITH THE CODE THIS PROPERTY IS SUBJECT TO AN ENVIRONMENTAL EASEMENT HELD BY THE SURVEY OF PROPERTY OF PRACTICE ESTABLISHED BY THE NEW YORK STATE DEPARTMENT OF N.Y.S. ASSOC. OF PROFESSIONAL LAND SURVEYORS, INC. ENVIRONMENTAL CONSERVATION FOR PURSUANT TO TITLE 36 OF ARTICLE 71 THIS CERTIFICATION DOES NOT RUN WITH TITLE TO THE LAND AND IS SUBJECT TO OF THE NEW YORK ENVIRONMENTAL AFFCO ANY STATE OF FACTS A TITLE SEARCH CONSERVATION LAW. MAY REVEAL. AMERICAN FELT & FILTER COMPANY, INC., THE PEOPLE OF THE STATE OF NEW YORK, BEING: ACTING THROUGH ITS COMMISSIONER OF THE THE PARCELS OF LAND INTENDED AS DESCRIBED IN DEED OF RECORD AMERICAN FELT & FILTER COMPANY, INC. DEPARTMENT OF ENVIRONMENTAL CONSERVATION. ALSO BEING LOT 69.2, BLOCK 1, SECTION 9 AS SHOWN ON THE TOWN OF **TOWN OF NEW WINDSOR, CITY OF NEWBURGH** NEW WINDSOR TAX MAP. THERE IS NO TAX MAP DESIGNATION FOR THE PORTION OF PROPERTY LYING IN THE CITY OF NEWBURGH. SCALE: 1"= 50' ORANGE COUNTY, NEW YORK AUGUST 8, 2019 REVISED: 3/23/15. 6/26/17 A R E A= 23.1853 ACRES GRAPHIC SCALE - FEET SHEET 1 OF 2 STEVEN P.DRABICK, PLS NY LIC. #49806 JOB NO. 140-171

DESCRIPTION OF SOILS MANAGEMENT AREA & SUB-SLAB DEPRESSURIZATION SYSTEM, AN ENVIRONMENTAL EASEMENT TO STEVEN P. DRABICK P.L.S., PC PROFESSIONAL LAND SURVEYOR CSX TRANSPORTATION, INC. LIBER 2110, PAGE 852 THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION PO BOX 539 GRANT OF EASEMENT over, across and through all that certain plot, piece or parcel of land with the $\begin{array}{c} \begin{array}{c} \text{CORNWALL, N.Y. } 12518 \\ (8 4 5) - 5 3 4 - 2 2 0 8 \end{array}$ building and improvements thereon erected, situate, lying and being in the Town of New Windsor, County of Orange and State of New York bounded and described as follows: 20 FT. WIDE CITY OF NEWBURGH SANITARY SEWER EASEMENT BEGINNING at a point at the northwesterly corner of the 1story masonry building of the most northerly complex of buildings located on lands of American Felt & Filter Company Inc., Liber 5730, Page 201, said point of beginning being located South 65 degrees 16 minutes 40 seconds West for a distance of 42.37 feet from a corner in the northerly bounds of lands of the same at the intersection KESSLER -LIBER 2384, PAGE 202 with the municipal boundary between the City of Newburgh and Town of New Windsor and lands now or formerly of Hudson Shipyard Lp, Liber 12960, Page 1797; THENCE South 72 degrees 57 minutes 34 seconds East for a distance of 103.33 feet along the 77.24° IMINY POLE face of said masonry building to a point; LISTONE RET THENCE South 17 degrees 21 minutes 13 seconds West for a distance of 68.08 feet through said masonry building to a point at the outside corner of said building; THENCE North 72 degrees 00 minutes 00 seconds West for a distance of 51.17 feet through said masonry building to a point at the outside corner of said building; THENCE North 72 degrees 57 minutes 52 seconds West for a distance of 51.79 feet to a point at S 87'52'56"E \bigcirc STONE RET. WALL the outside corner of said buildina: 42.32' THENCE South 17 degrees 02 minutes 08 seconds West for a distance of 29.25 feet to a REMS. OF CONC. WALLS & WEIR UTILITY POLE HI/ to a point at the northerly face of a two-story masonry building; N 19°34'04"W 41.00 THENCE North 72 degrees 32 minutes 52 seconds West for a distance of 75.55 feet along the RETURNS OF BLOCK BUILDING 3'SERIES E northerly face of said building to a point at the corner of said building; THENCE South 17 degrees 20 minutes 58 seconds West for a distance of 43.06 feet along the westerly face of the two-story masonry building to a point at the corner of said building; THENCE North 72 degrees 34 minutes 38 seconds West for a distance of 72.17 feet along the NY POLE CITY OF NEWBURGH LIBER 2853, PAGE 24 northerly face of the two story masonry building to a point at the most northwesterly corner of said building THENCE North 17 degrees 02 minutes 17 seconds East for a distance of 140.76 feet through lands of American Felt & Filter Company, Inc. to a point marked by an iron rod set at or near a chain link 0 3 fence: THENCE South 67 degrees 51 minutes 22 seconds East for a distance of 123.39 feet through PARCE LINE lands of the same and along a chain link fence to a point marked by an iron rod set; 1 Y (2)5 THENCE North 87 degrees 49 minutes 18 seconds East for a distance of 26.52 feet through lands \bigcirc of American Felt & Filter Company. Inc. to the POINT OR PLACE OF BEGINNING. S Together with and subject to covenants, and restrictions of record. 0 7 Ń Said easement contains 0.5454 acres more or less. 7 \frown NEWBURGH 0 KESSLER (B)LIBER 2384. PAGE 205 \bigcirc SHEET 2 1 HI] 1 FT. WIDE EXCEPTION TO PENNSYLVANIA COAL COMPANY LIBER 789, PAGE 340 FORMER WEST NEWBURG TRUNK SEWE " CULVERT (NOT IN USE) APPROXIMATE LOCATION OF 60" UNDERGROUND SEMER -BLAKENORE LIBER 6216, PAGE 180 S 16°19'34" 50.01° N 30°02'27" 5 3325'03 LS 62°20'17"E 59.97 CONCRETE RETAINING WALL UNICIPAL 91.18' BOUNDAR < 5 51°07'29"E LINK FENCE CREEK 46.24' BOUNDS OF ENVIRONMENTAL EASEMENT WINDSOR' COURSE BEARINO DISTANCE 103.33' S 72'57'34"E S 1721'13"W 68.08° 51.17' N 72°00'00"W 51.79' N 72°57'52"W S 1702'08"W 29.25' SOIL MANAGEMENT AREA N 72°32'52"W 75.55' (SEE INSET FOR DETAILS) (\mathbf{A}) S 1720'58"W 43.06' 72.17' N 72°34'38"W N 17°02'17"E 140.76' MAP ENTITLED 123.39' S 67 51 22 E ZOT LINE CHANGE PREPARED FOR AMERICAN FELT & FILTER COMPANY" 26.52' N 87°49'18"E FILED IN THE ORANGE COUNTY CLERK'S OFFICE ON JULY 12, 1993 AS MAP \$122-93 A R E A= 0.5454 ACRE REMAINS OF BLOCK BUILDING. PLYMPTON HOUSE LTD. LIBER 6157, PAGE 289 2 STORY FRAME DWELLING PL JAPTON STREET N 36°02'47"W 122.58' N 31°32'47,"W N 46°55'04"W N 2502'47 W 90.00 TOGETHER WITH AND SUBJECT TO: N 70°18'03"W 221.79 THE RIGHT OF PUBLIC USE OF THE EXISTING PAVED TRAVELWAY AND APPURTENANCES OF WALSH ROAD OVER, ACROSS AND THROUGH LANDS OF AMERICAN FELT & FILTER, INC. SURVEY OF PROPERTY N 09°32'47"W 14.52' FOR AFFCO - Contraction of the second se N 24'59'22 MALSH 16.61 BOUNDS AMERICAN FELT & FILTER COMPANY, INC. NEW LINE PECHKAM MATERIALS CORP. LIBER 2736, PAGE 299 TOWN OF NEW WINDSOR, CITY OF NEWBURGH ORANGE COUNTY, NEW YORK SCALE: 1"= 50' AUGUST 8, 2019 REVISED: 3/23/15 FRONTIER ASSOCIATES LLC ENUET 6/26/17 LIBER 13554, PAGE 1447 NOTE: THIS SURVEY MAP SHALL BE DEEMED INVALID UNLESS ACCOMPANIED BY SHEET 1 OF 2. GRAPHIC SCALE - FEET SEE SHEET 1 OF 2 FOR REFERENCES, NOTES AND ADDITIONAL INFORMATION. SHEET SHEFT? OF?

.IOR NO. 140-172

ORANGE COUNTY CLERK

ANN G. RABBITT

Receipt

Receipt Date: 09/15/2017 12:1 RECEIPT # 2381301	6:03 РМ
Recording Clerk: JM Cash Drawer: CASH42 Rec'd Frm: FIRST AMERICAN TIT	LE INS CO
Instr#: 20170066308 Bk/Pg: 14 DOC: RIGHT OF WAY (R) DEED STAMP: 1693 OR Party: AMERICAN FELT & FILT EE Party: NYS DEPT OF ENVIRON CONSERVATION	FER CO INC
Recording Fees	\$95.00
Transfer Tax	\$0.00
DOCUMENT TOTAL:>	\$95.00
Misc Fees	
Overpayment	\$0.50
Receipt Summary	
TOTAL RECEIPT:>	\$95.50
TOTAL RECEIVED:>	\$95.50
CASH BACK:>	\$0.00
PAYMENTS	
Check # 2314148180 ->	\$95.50
FIRST AMERICAN TITLE INS CO	

First American Title NATIONAL COMMERCIAL SERVICES

666 Third Ave, Floor 5 New York, NY 10017 TEL 212-551-9421 • FAX 714-824-4998 WWW.FIRSTAM.COM

SUBMITTER SUMMARY SHEET

DATE: 9/14

TITLE NUMBER: 3020 - 869296

SUBMITTED BY: Mary Lettieri

COUNTY:

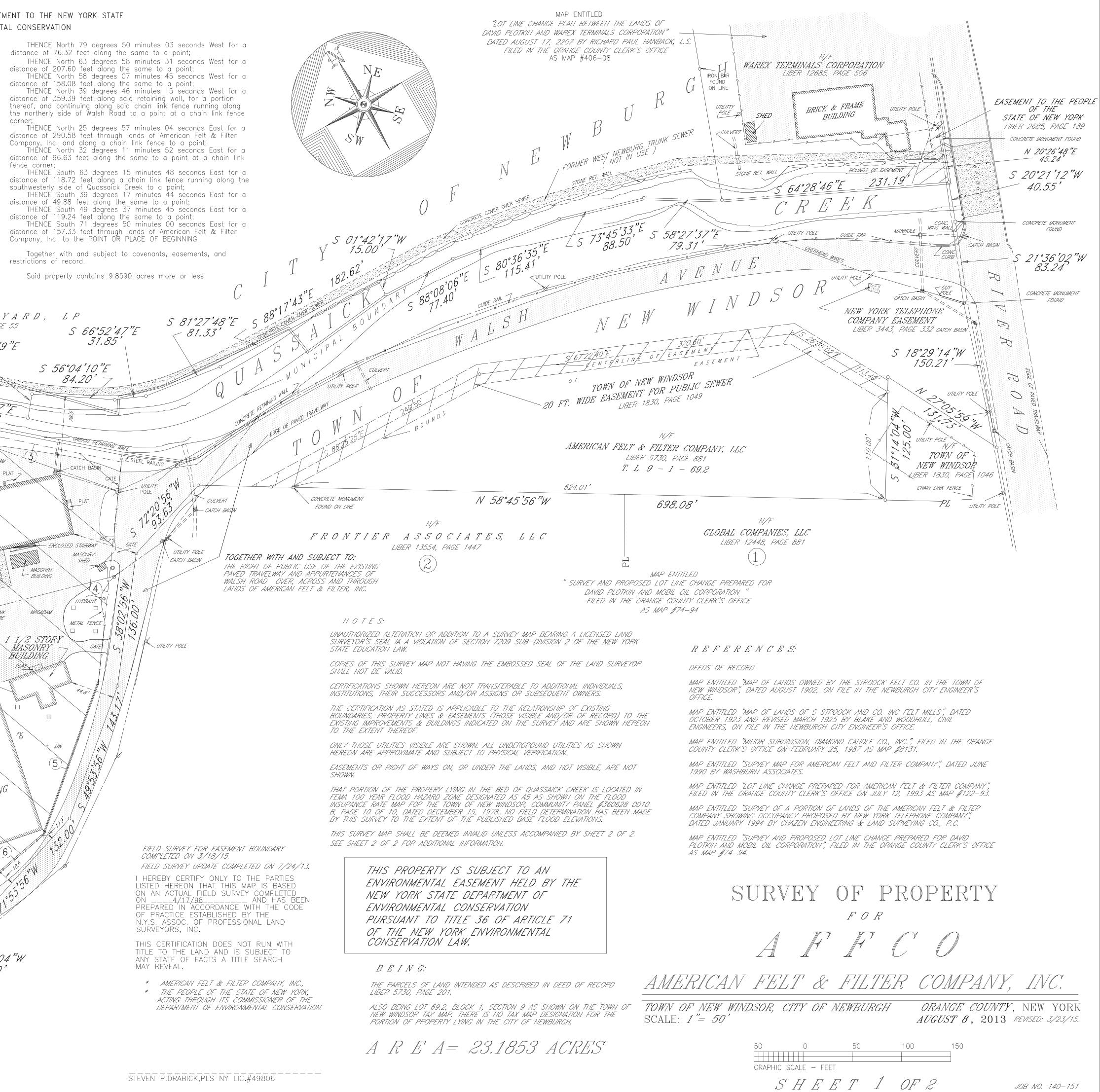
)kange

District:

Section: Q Block: | Lot: 69, 2

Please
WALKON
Rush
RUSIC

INSTRUMENT TYPE	PARTIES	DIRECT CHECK	TRANSFER TAX	MORTGAGE TAX	REC./ FEE
Epsement	Amencan Felt & Filter Company The				95.50
	of Environment Conserver	nt Len			
TOTAL :					95,57


CHECK INFORMATION:

Recording Fee/ TAX CHECK No:

AMOUNT:

STEVEN P. DRABICK P.L.S., PC DESCRIPTION OF GRANT OF ENVIRONMENTAL EASEMENT TO THE NEW YORK STATE PROFESSIONAL LAND SURVEYOR DEPARTMENT OF ENVIRONMENTAL CONSERVATION PO BOX 539 CORNWALL, N.Y. 12518 AN ENVIRONMENTAL EASEMENT over, across and through all (845) - 534 - 2208that certain plot, piece or parcel of land with the buildings and improvements thereon erected, situate, lying and being in the Town L E G E N Dof New Windsor, County of Orange and State of New York bounded and described as follows: BEGINNING at a point at the northwesterly corner of a one EDGE OF WATER COURSE story masonry building of the most northerly complex of buildings *FV* ⊕ *FIRE VALVE* located on lands of American Felt & Filter Company, Inc., Liber 5730, Page 201, said point of beginning being the northeasterly BOUNDARY LINE MW • MONITORING WELL corner of a describe Soils Management Area and being located South SOIL MANAGEMENT LINE _____ 65 degrees 16 minutes 40 seconds West for a distance of 42.37 feet EASEMENT LINE o *MANHOLE* _____ · ____ · ____ from a corner in the northerly bounds of lands of the same at the UTILITY POLE intersection with the municipal boundary between the City of E CATCH BASIN Newburgh and the Town of New Windsor and lands now or formerly of OVERHEAD UTILITY LINES Hudson Shipyard LP, Liber 12960, Page 1797; CHAIN LINK FENCE 0-----0-----0------0------CULVERT THENCE South 72 degrees 57 minutes 34 seconds East for a WROUGHT IRON FENCE ____ x _____ x _____ x _____ x _____ x _____ distance of 103.33 feet along the face of said building to a point; — H — H — H — H — H — GUIDF RAI THENCE South 55 degrees 20 minutes 14 seconds East for a distance of 229.78 feet along the same to a point; THENCE South 48 degrees 19 minutes 11 seconds East for a ---- EDGE OF UNPAVED TRAVELWAY distance of 181.72 feet through lands of American Felt & Filter Company, Inc. to a point in or near a chain link fence; AREA OF CONCRETE THÉNCE South 35 degrees 57 minutes 07 seconds West for a distance of 224.60 feet along a chain link fence running along the STONE RETAINING WALL northwesterly side of Walsh Road to a point at the end of a concrete retaining wall; ROOF OVER OPEN AREA THENCE South 49 degrees 48 minutes 02 seconds West for a distance of 165.72 feet along said retaining wall and chain link fence running along the northwesterly side of Walsh Road to a ENCLOSED STAIRWAY point; THENCE South 79 degrees 07 minutes 37 seconds West for a distance of 97.59 feet along the same to a point; SHEET 2 N/F HUDSON SHIPYARD, LP \leq 1 FT. WIDE EXCEPTION TO LIBER 12732, PAGE 55 67°12'02''E PENNSYLVANIA COAL COMPANY S 30°02'27' FORMER WEST NEWBURG TRUNK SEWER LIBER 789, PAGE 340 61.94 22.00 N 39°25'39"E NOT IN USE , 25.00 _____APPROXIMATE_LOCATION_OF___60"_UNDERGROUND_SEWER S 59°57'33"E 350.00° MUNICIPAL BOUNDARY 56°50'06"E 5 50°15'17" CONCRETE RETAINING WALL CRETE RETAINING WALL 222.58 106.27 SOIL MANAGEMENT AREA I, DING STOI (SEE INSET FOR DETAILS-, MASONRY BUI (16)CONSRET. RAMPS WELL E-1(N) ROOF MW 🗛 ENCLOSED STAIRWAY WELL S-8 MW 🕏 - BUILDUNG MASONRY STORY FUEL TANK ENCLOSURE UTILITY POLE ELECTRIC O TRANSFORMERS VALVE PIT OPEN STAIRWA MASONRY STRUCTURE FRAME MASONA SHED S BUILDING A IVO D D A IVO R AI ≈ STORY MASONRY BUILDING ,... A CONTRACTOR DE LA CONTRACTÓRIA \searrow STORY W BUILDING MASONRY . ENKIRONMENTALEASEMENT A R E A= 9.8590 ACRES 1 STORY 1 STORI MELL MASONRY SHED (10) N 11:51 0 1.11 - CONCRETE RETAINING <u>N 64°34'04''W 199.67'</u> 178.83 N 61°31'04"W ____ N 78°36'04"W 86.50' WALSH AVENUE \rightarrow SHEET . N/F FRONTIER ASSOCIATES, LLC

LIBER 13554, PAGE 1447

STEVEN P. DRABICK P.L.S., PC PROFESSIONAL LAND SURVEYOR CSX TRANSPORTATION, INC. LIBER 2110, PAGE 852 PO BOX 539 $\begin{array}{c} \text{CORNWALL, N.Y. 12518} \\ (845) - 534 - 2208 \end{array}$ 20 FT. WIDE CITY OF NEWBURGH SANITARY SEWER EASEMENT N/F KESSLER — LIBER 2384, PAGE 202 77.24' ITTILITY POLF - STONE RET. MALL UTILITY POLE S 87°52'56"E STONE RET. WALL 42.32' REMS. OF CONC. WALLS & WEIR UTILITY POLE MANHOLE N 19°34'04"W 41.00' — REMAINS OF BLOCK BUILDING N/F The eq. UTILITY POLE CITY OF NEWBURGH LIBER 2853, PAGE 24 CONC. MON. FOUND PARCEZ LINE N V CONC. MON. FOUND 2 \bigcirc 2 5 (B) \bigcirc B L A K E M O R E LIBER 6216, PAGE 180 09°06'36, POND COURSE 170.76; (A)10 MAP ENTITLED 11 "LOT LINE CHANGE PREPARED FOR AMERICAN FELT & FILTER COMPANY" 12 FILED IN THE ORANGE COUNTY CLERK'S OFFICE S 63°15'48"E 13 ON JULY 12, 1993 AS MAP #122-93 REMAINS OF 14 BLOCK BUILDING 15 16 N/F PLYMPTON HOUSE LTD. LIBER 6157, PAGE 289 PL MPTON STREET N 36°02'47"W / 22.58' N 31°32'47"W _____ 39.60' N 23°02'47."W 26.40' SURVEY OF PROPERTY N 09°32'47''W FOR14.52' AFFCO N 24°59'22"L 16.61 AMERICAN FELT & FILTER COMPANY, INC. TOWN OF NEW WINDSOR, CITY OF NEWBURGH ORANGE COUNTY, NEW YORK SCALE: 1 = 50 AUGUST 8, 2013 REVISED: 3/23/15 GRAPHIC SCALE - FEET SHEET 2 OF 2 JOB NO. 140-152

DESCRIPTION OF SOIL MANAGEMENT AREA WITHIN AN ENVIRONMENTAL EASEMENT TO THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

A SOIL MANAGEMENT AREA over, across and through all that certain plot, piece or parcel of land with the building and improvements thereon erected, situate, lying and being in the Town of New Windsor, County of Orange and State of New York bounded and described as follows:

BEGINNING at a point at the northwesterly corner of the 1story masonry building of the most northerly complex of buildings located on lands of American Felt & Filter Company Inc., Liber 5730, Page 201, said point of beginning being located South 65 degrees 16 minutes 40 seconds West for a distance of 42.37 feet from a corner in the northerly bounds of lands of the same at the intersection with the municipal boundary between the City of Newburgh and Town of New Windsor and lands now or formerly of Hudson Shipyard Lp, Liber 12960, Page 1797;

THENCE South 17 degrees 02 minutes 08 seconds West for a distance of 96.47 feet along the westerly face of said one story masonry building, for a portion thereof, and continuing to a point at the northerly face of a two-story masonry building;

THENCE North 72 degrees 32 minutes 52 seconds West for a distance of 75.55 feet along the northerly face of said building to a point at the corner of said building; THENCE South 17 degrees 20 minutes 58 seconds West for a distance of 43.06 feet along

the westerly face of the two-story masonry building to a point at the corner of said building; THENCE North 72 degrees 34 minutes 38 seconds West for a distance of 72.17 feet along the northerly face of the two story masonry building to a point at the most northwesterly corner of said building;

THENCE North 17 degrees 02 minutes 17 seconds East for a distance of 140.76 feet through lands of American Felt & Filter Company, Inc. to a point marked by an iron rod set at or near a chain link fence:

THENCE South 67 degrees 51 minutes 22 seconds East for a distance of 123.39 feet through lands of the same and along a chain link fence to a point marked by an iron rod set; THENCE North 87 degrees 49 minutes 18 seconds East for a distance of 26.52 feet through lands of American Felt & Filter Company, Inc. to the POINT OR PLACE OF BEGINNING.

WBURGH

S 51°07'29"E

1 FT. WIDE EXCEPTION TO PENNSYLVANIA COAL COMPANY

LIBER 789, PAGE 340

N 30°02'27"E _____25.00'

a LINK FENCE

REEK

IND COR

SOIL MANAGEMENT AREA

(SEE INSET FOR DETAILS)

- TAK FENCE

A D

BOUNDS

SHEET

235.000 N 41°57'04"

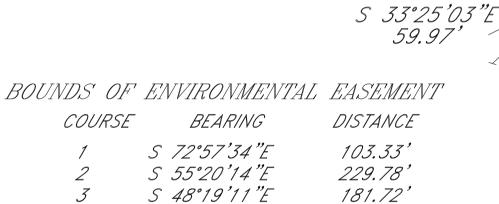
EN UE ».

SHEET 2

Together with and subject to covenants, and restrictions of record.

(NOT IN USE)

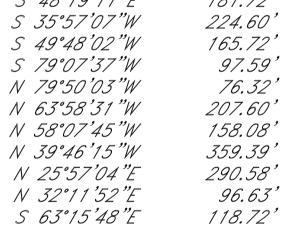
5 62°20'17"E 91.18

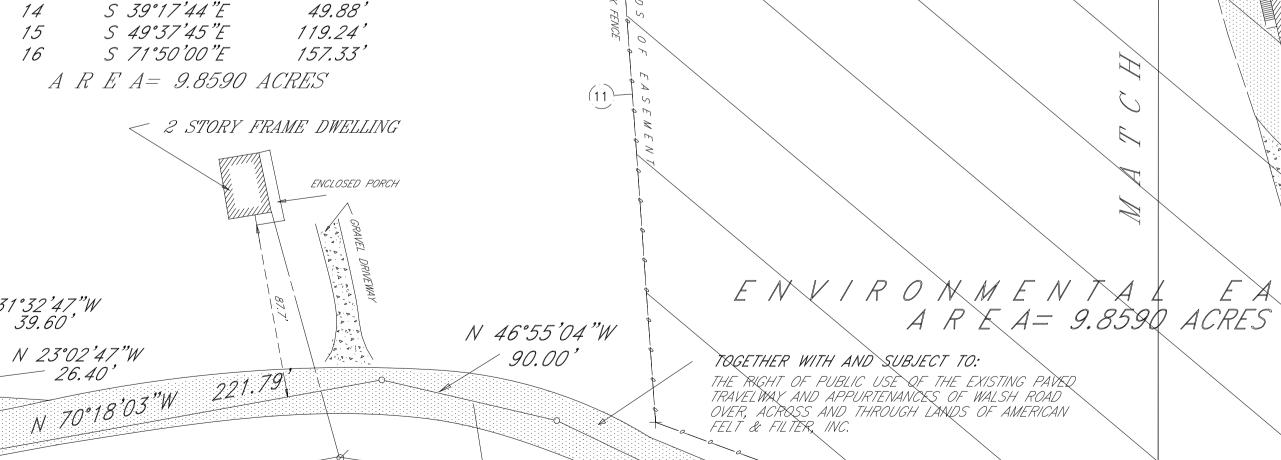

(12)-

GATE

Said area contains 0.3857 acres more or less.

KESSLER LIBER 2384, PAGE 205 FI "," CULVERT FORMER WEST NEWBURG TRUNK SEWER S 16°19'34"E 50.01

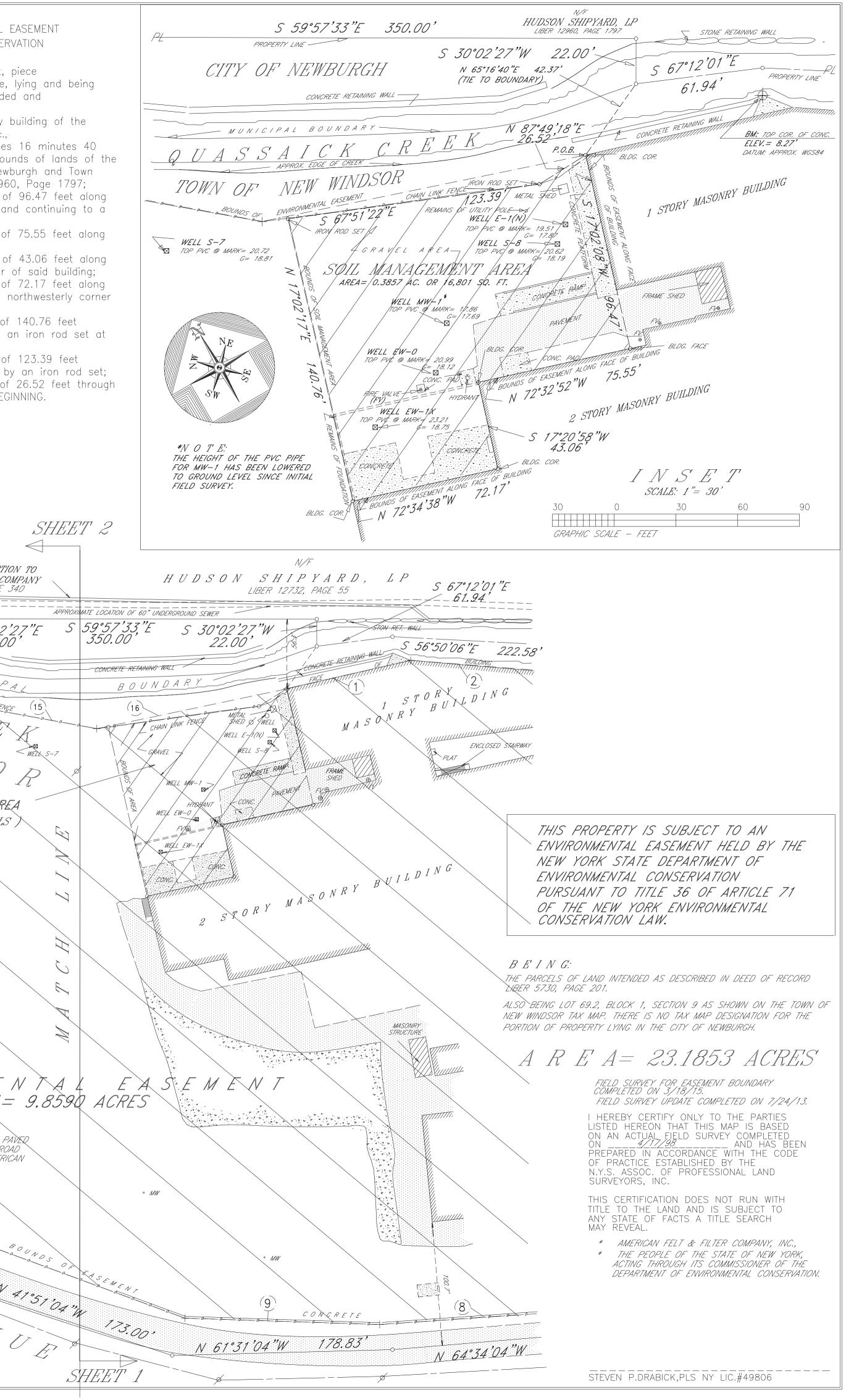

N/F



 \bigcirc

MANHOLE

FI


- Sterer of in

N/F PECHKAM MATERIALS CORP. LIBER 2736, PAGE 299

> FRONTIER ASSOCIATES LLC LIBER 13554, PAGE 1447

MALSH

NOTE: THIS SURVEY MAP SHALL BE DEEMED INVALID UNLESS ACCOMPANIED BY SHEET 1 OF 2. SEE SHEET 1 OF 2 FOR REFERENCES, NOTES AND ADDITIONAL INFORMATION.

APPENDIX B

Digital Copy of FER

AMERICAN FELT & FILTER COMPANY NEW WINDSOR, NEW YORK

Final Engineering Report

Consent Order Index # W3-0784-04-06 Site # 3-36-036

Prepared for

American Felt & Filter Company New Windsor, NY

Prepared by

Arnold F. Fleming, P.E. 158 W. 29th Street, 9th Floor New York, New York 10001

FEBRUARY 2018

CERTIFICATIONS

I, Arnold F. Fleming, am currently a registered professional engineer licensed by the State of New York, I had primary direct responsibility for implementation of the remedial program activities, and I certify that the Remedial Action Work Plan was implemented and that all construction activities were completed in substantial conformance with the Department-approved Remedial Action Work Plan.

I certify that the data submitted to the Department with this Final Engineering Report demonstrates that the remediation requirements set forth in the Remedial Action Work Plan and in all applicable statutes and regulations have been or will be achieved in accordance with the time frames, if any, established in for the remedy.

I certify that all documents generated in support of this report have been submitted in accordance with the Department's electronic data deliverable and have been accepted by the Department.

I certify that all data generated in support of this report have been submitted in accordance with the Department's electronic submission protocols and have been accepted by the Department.

I certify that all use restrictions, Institutional Controls, Engineering Controls, and/or any operation and maintenance requirements applicable to the site are contained in an environmental easement created and recorded pursuant ECL 71-3605 and that all affected local governments, as defined in ECL 71-3603, have been notified that such easement has been recorded.

I certify that a Site Management Plan has been submitted for the continual and proper operation, maintenance, and monitoring of all Engineering Controls employed at the site, including the proper maintenance of all remaining monitoring wells, and that such plan has been approved by Department.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Arnold F. Fleming, 158 West 29th Street, 9th Floor, New York, NY 10001, am certifying as Owner's Designated Site Representative for the site.

050411

2/8/18

NYS Professional Engineer #

Date

Arnold F. Fleming, P.E.

TABLE OF CONTENTS

TABLE	OF CONTENTS	III
LIST OF	F ACRONYMS	VI
FINAL E	ENGINEERING REPORT	1
1.0 BACI	KGROUND AND SITE DESCRIPTION	3
2.0 SUM	MARY OF SITE REMEDY	4
2.1 REM	EDIAL ACTION OBJECTIVES	4
2.1.1 (Groundwater	
	Soil RAOs	
	Surface Water RAOs	
	Sediment RAOs	
2.2 DESC	CRIPTION OF THE SELECTED REMEDY	5
3.0 INTE	ERIM REMEDIAL MEASURES, OPERABLE UNITS AND REMEDIAL	
CONTRA	ACTS	6
4.0 DESC	CRIPTION OF REMEDIAL ACTIONS PERFORMED	7
4.1 GOV	ERNING DOCUMENTS	7
4.1.1	Site Specific Health & Safety Plan (HASP)	7
	Community Air Monitoring Plan (CAMP)	
4.2 REM	EDIAL PROGRAM ELEMENTS	7
4.2.1 (Contractors and Consultants	7
	Community Air Monitoring Results	
4.3 REM	EDIAL ACTIONS	8
4.3.1	Chemical Oxidation	
4.3.2	Excavation	
4.3.3	Treatment Effectiveness	
4.3.4	Remaining Contamination	
	4.3.4.1 Unrestricted Use	
	4.3.4.2 Residential Use	
	4.3.4.3 Groundwater	

4.3.5	Soil Cover System	
4.3.6	Sub-Slab Depressurizatio System	
4.3.7	Deviations from Remedial Action Work Plan	
4.3.8	Quality Assurance/Quality Control Summary (DUSR)	
5.0 ENVI	RONMENTAL EASEMENT & SOIL MANAGEMENT AREA	29
6.0 SITE	MANAGEMENT PLAN	

FIGURES

Figure 1	Site Location and Layout
Figure 2	Site Plan and Injection Locations
Figure 3	Post-excavation/Post-treatment Soil Sampling Locations and Results Summary
Figure 4	Post-treatment Groundwater VOC Results and Groundwater Contour Map
Figure 5	TCA, DCE & TCE Reductions in Soils after 6 Days of Treatment (in text)
Figure 6	cis-1,2-DCE, 1,1,2-TCA, PCE & Benzene in Soils after 6 Days of Treatment (in text)
Figure 7	Groundwater VOC Treatment Trends in Treatment Area Well EW-0 (in text)
Figure 8	Groundwater Chloroethane Treatment Trends in Treatment Area Well EW-0 (in text)
Figure 9	Groundwater 1,1,2-TCA Treatment Trends in Treatment Area Well EW-0 (in text)
Figure 10	VOCs in Wells Outside Treatment Area (in text)
Figure 11	Piano Felt Building SSDS As-built

TABLES

Table 1	Soil Cleanup Objectives for the Project
Table 2A	End-point Post-excavation Soil sample Analytical results, Summary of VOCs
Table 2B	End-point Post-treatment Soil sample Analytical results, Summary of VOCs
Table 3	Post-treatment Groundwater Analytical Results, VOCs, Metals, General Chemistry
Table 4	Summary of Groundwater VOCs in treatment Area (in text)
Table 5	Pre-treatment Groundwater Parameters (in text)
Table 6	Post-treatment Groundwater Parameters (in text)
Table 7	Oxidant Volume by Injection Point (in text)
Table 8	Endpoint Soil Sample Results Unrestricted Use SCOs (in text)
Table 9	Post-treatment Groundwater Results (in text)

Table 10Soil Pile/Soil Cover Samples (in text)

APPENDICES

- Appendix A Soil Management Area Metes and Bounds
- Appendix B Digital Copy of FER
- Appendix C CAMP Certification
- Appendix D Raw Analytical Laboratory Data
- Appendix E DUSRs for End Point and Post-treatment Samples
- Appendix F VeruTEK Report
- Appendix G Project Photographic Log

ACRONYMS

Acronym	Definition
AWQS	Ambient Water Quality Standard
BTEX	Benzene, Toluene, Ethylbenzene, Total Xylenes
CAMP	Community Air Monitoring Plan
CPP	Citizen Participation Plan
DUSR	Data Usability Summary Report
EC	Engineering Control
FER	Final Engineering Report
ftbg	Feet below Grade
GA	Source of Drinking Water
HASP	Health and Safety Plan
IC	Institutional Control
IFT	Interfacial Tension
m	milli or Meter
NYSDEC	New York State Department of Environmental Conservation
Ν	Newtons
PAH	Polynuclear Aromatic Hydrocarbons
PRR	Periodic Review Report
QAPP	Quality Assurance Project Plan
RAWP	Remedial Action Work Plan
RI	Remedial Investigation
S-ISCO TM	Surfactant-Enhanced In-Situ Chemical Oxidation
SCO	Soil Cleanup Objective
S/MMP	Soil/Materials Management Plan
SSDS	Sub-Slab Depressurization System
SMP	Site Management Plan
SOP	Site Operation Plan
SVOCs	Semi-volatile Organic Compounds
SWPPP	Stormwater Pollution Prevention Plan
TCA	1,1,1-Trichloroethane
TCL	Target Compound List
TOGS	Technical and Operational Guidance Series
UST	Underground Storage Tank
VOCs	Volatile Organic Compounds

FINAL ENGINEERING REPORT

Introduction

On behalf of The American Felt and Filter Company (AFFCO), Arnold F. Fleming, P.E., and Fleming-Lee Shue, Inc. (collectively FLS) have prepared this Final Engineering Report (FER) to document the completion of remedial activities at 361 Walsh Avenue, New Windsor, New York (Site). The remediation was completed in accordance with the approved FLS 2012 Remedial Action Work Plan and was prepared in accordance with the NYSDEC's DER-10 Technical Guidance for Site Investigation and Remediation, May 2010. AFFCO is also under a Consent Order to remedy the property (Index No. W3-0784-04-06). The New York State Department of Environmental Conservation (NYSDEC) placed the Site on its Inactive Hazardous Waste Sites list in 1991 (Site Code 3-36-036) because of the potential threat to the adjacent Quassaick Creek.

The AFFCO property, located in New Windsor, Orange County, New York manufactures a variety of felt and filter products. The Site lies on the south side of Quassaick Creek, which flows into the Hudson River approximately 0.2 miles east of the Site. AFFCO is on industrial zoned land. Beyond the Site, the surrounding area is a mixture of land uses including industrial, commercial, and residential. The entire property occupies 23.185 acres but the Consent Order Environmental Easement Area is 0.5454 acres and includes the remediated soil area and the adjacent Piano Felt Building that houses a sub-slab depressurization system (SSDS). Most of the Site is level. Figure 1 shows the Site and an inset depicts the entire property outline. Appendix A shows the property and Environmental Easement area.

Site investigations completed in 1988 found soil and groundwater near the Feutron Building contained 1,1,1-Trichloroethane (TCA). The source of the contamination was believed to be from historic leakage within the enclosed process area and spillage in the adjacent drum storage area. Subsequent soil and groundwater sampling in September 1994, August 1998, and October 2001 indicated that residual TCA remained in the soil and groundwater in the former drum storage area near the Feutron Building. In response, FLS submitted a Remedial Design/Remedial Action Work Plan (RD/RAWP) in February 2005 to NYSDEC. The RD/RAWP work plan called for a Dual Phase Extraction System to remediate soil and groundwater near and beneath the Feutron Building. The RD/RAWP was approved in September 2005. After the RD/RAWP was approved, the northwestern portion of the Feutron Building was taken out of service and subsequently demolished. This changed conditions such that other more effective remediation alternatives became available, and the Dual Phase Extraction System was never implemented.

In 2008, FLS prepared a revised RAWP to remediate the TCA-impacted soil by excavation and disposal. This RAWP was subsequently approved by NYSDEC in October 2008 but not executed. Ultimately, FLS prepared a revise RAWP in March 2012 that was approved by NYSDEC on April 4, 2012. The 2012 RAWP called for excavation of the top 10 feet of impacted soil near the former Feutron Building and *in situ* chemical oxidation of the contaminant from the water table to the underlying till layer.

The treatment remedy was *in situ* chemical injection using alkaline-activated sodium persulfate, sodium hydroxide, and a plant-based surfactant. Sodium persulfate was the oxidant and was activated by the addition of sodium hydroxide to raise the pH. The plant-based surfactant, VeruSOL[®], was added to aid in the dissolution of the non-aqueous phase liquid (NAPL) to make it available for chemical oxidation. In all, 13,200 gallons of oxidant mixture were injected over a 6-day treatment period during July 2012. Comparison of pre-treatment and post-treatment soil contaminant mass estimates indicated that approximately 73 percent of the total volatile organic compound (VOC) mass was destroyed and approximately 76 percent of the TCA mass was destroyed. On a stratum-by-stratum basis, an average of 76 percent of the total VOC mass was degraded and an average of 87 percent of the TCA mass was degraded. Most soils met the Part 375 Residential Use Soil Cleanup objectives (SCO) and all soils met the Site cleanup standard, the Commercial Use Soil Cleanup Objectives. Groundwater exhibited large reductions on VOC concentrations. A number of VOCs met the TOGS GA cleanup goal.

Excavation was conducted by removing soils in each of five grid cells to a depth of approximately 10 feet below grade. The soils were staged on plastic sheeting before being tested and returned to the excavation if found to meet the Commercial Use SCOs. All soil met the SCOs. The Site contains a Soil Management Area that includes the remediated area and groundwater monitoring wells. The Soil Management Area is one component of the Environmental Easement. The second component includes the Piano Felt Building where there is a SSDS.

1.0 BACKGROUND AND SITE DESCRIPTION

The AFFCO Site, located in New Windsor, Orange County, New York (Figure 1), manufactures a variety of felt and filter products. The Site lies on the south side of Quassaick Creek, which flows into the Hudson River approximately 0.2 miles east of the Site. AFFCO is on industrial zoned land. Beyond the Site, the surrounding area is a mixture of land uses including industrial, commercial and residential. The entire property occupies 23.185 acres but the Environmental Easement area is 0.5454 acres.

Prior to 1978, the Site was owned and operated by the GAF Corporation, which manufactured the same products as AFFCO. During both GAF's and AFFCO's ownership, the facility used TCA as a solvent and carrier for zinc resinate, used to impregnate felt sheets in the Feutron Building. The TCA was stored on Site in 55-gallon drums in an enclosed area just outside the Feutron Building. Approximately 35 to 40 drums of TCA were generally present on-Site during regular operations. The facility stopped using TCA in 1992 when the AFFCO shut down the production line.

Site investigations completed in 1988 found soil and groundwater near the Feutron Building contained TCA. The source of the contamination was believed to be from historic leakage within the enclosed process area and spillage in the drum storage area. NYSDEC placed the Site on its Inactive Hazardous Waste Sites list in 1991 (Site Code 3-36-036) because of the potential threat to the adjacent Quassaick Creek. AFFCO is also under a Consent Order to remedy the property (Index No. W3-0784-04-06).

Subsequent soil and groundwater sampling in September 1994, August 1998, and October 2001 indicated that residual TCA remained in the soil and groundwater in the former drum storage area near the Feutron Building. FLS prepared the final RAWP in 2012 to remediate the TCA-impacted soil by excavation and *in situ* chemical treatment. This RAWP was subsequently approved by NYSDEC on April 4, 2012. The 2012 RAWP called for excavation of the top 10 feet of impacted soil near the former Feutron Building and *in situ* chemical oxidation of the contaminant from the water table to the underlying confining layer (glacial till).

The portion covered by a Soil Management Area, SSDS, and the Site boundaries are shown in Appendix A. An electronic copy of this FER with all supporting documentation is included as Appendix B.

2.0 SUMMARY OF SITE REMEDY

Based on the results of the Remedial Investigation, the following Remedial

Action Objectives (RAO) were identified for this Site.

2.1 **REMEDIAL ACTION OBJECTIVES**

2.1.1 Groundwater

RAOs for Public Health Protection

- Prevent ingestion of groundwater containing contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of, volatiles emanating from contaminated groundwater.
- The remedial action objectives for groundwater are the TOGS 1.1.1 GA ambient water quality standards (TOGS) or asymptotic levels of VOCs in groundwater following acceptable levels of treatment.

RAOs for Environmental Protection

- Restore ground water aquifer, to the extent practicable, to pre-disposal/pre-release conditions.
- Prevent the discharge of contaminants to surface water.
- Prevent further off-site migration of contaminated groundwater.
- Remove the source of groundwater contamination.

2.1.2 Soil RAOs

RAOs for Public Health Protection

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of, or exposure to, contaminants volatilizing from contaminated soil.
- The soil remedial action objectives are the Part 375 Commercial Use SCOs and a 90 percent reduction in contaminant mass as defined by the sum of the VOCs.

RAOs for Environmental Protection

- Prevent migration of contaminants that would result in groundwater contamination.
- Prevent impacts to biota due to ingestion/direct contact with contaminated soil that would cause toxicity or bioaccumulation through the terrestrial food chain.

2.1.3 Surface Water RAOs

There is no surface water on the Soil Management Area, so the remedial action did not address this medium.

2.1.4 Sediment RAOs

There are no sediment areas on Soil Management Area, so the remedial action did not address this medium.

2.1.5 Soil Vapor, RAOs for Public Health Protection

Mitigate impacts to public health resulting from existing, or the potential for, vapor intrusion into the buildings at a site.

2.2 DESCRIPTION OF THE SELECTED REMEDY

The remedy consisted of two parts. Part 1 consisted *in situ* chemical oxidation of soils within the 50-ft. by 50-ft. treatment area from 10 ft.-bg to 15 ft.-bg. Treatment used the RemMetrik[®] (U.S. Patent No. 8,739,867) methodology that targets the contaminant mass and injects the treatment amendment using subsurface pressure waves. In this instance, the subsurface pressure waves and injection were provided by Wavefront Technology Solutions Inc. PrimawaveTM methodology. Chemical oxidation was provided by VeruTEK's S-ISCOTM technology using alkaline-activated sodium persulfate and a plant-based surfactant.

Sodium persulfate was the oxidant and was activated by the addition of sodium hydroxide to raise the pH. The plant-based surfactant, VeruSOL[®], was added to aid in the dissolution of any NAPL to make it available for chemical oxidation.

Part 2 consisted of excavation of the upper 10 feet of soil within the 50-ft. by 50-ft. treatment area. Excavated soils were placed in a lined containment unit and were subsequently tested and returned to the excavation if the soils met the SCOs.

3.0 INTERIM REMEDIAL MEASURES, OPERABLE UNITS AND REMEDIAL CONTRACTS

A SSDS designed by FLS, was installed at the Piano Felt Building by AFFCO in October 2010. The SSDS was installed to mitigate residual TCA emissions potentially impacting indoor air quality for commercial/industrial land use at this Site and prevent potential migration of subsurface vapors to the nearby area. The system was designed in accordance with the New York State Department of Health (NYSDOH) *Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York* (2006).

A mitigation system was required based on concentrations of TCA in sub-slab vapor and indoor air samples collected in December 2009. The sub-slab vapor sample contained 539 micrograms per cubic meter (ug/m^3) of TCA and the indoor air sample contained 34 ug/m^3 of TCA.

The SSDS consists of centrally located depressurization pits with a pipe connected to a fan inserted into each pit. The soil vapor exhaust is located above the roof. The vacuum field is subsequently measured using pressure monitoring points located at each corner of the building. The performance goal for the system is a minimum of (-0.02) inches of water column (w.c.) in each of the vacuum monitoring points.

The piping from the pit is constructed of polyvinyl chloride (PVC) plastic and sealed into the replaced slab with silicone sealant. All pipe sizes are 4 inches in diameter. The fan is capable of operating at a minimum 375 cubic feet per minute (CFM) at 0 inches of water column (w.c.). See the SSDS Construction Completion Report, submitted May 2011, for more information regarding the system.

4.0 DESCRIPTION OF REMEDIAL ACTIONS PERFORMED

4.1 GOVERNING DOCUMENTS

4.1.1 Remedial Action Work Plan

All remedial work performed under this Remedial Action was in full compliance with the approved RAWP. The RAWP outlined the remedial methods and procedures and the remedial goals to be attained.

4.1.2 Site Specific Health & Safety Plan (HASP)

All remedial work performed under this Remedial Action was in full compliance with governmental requirements, including site and worker safety requirements mandated by Federal OSHA. All work was conducted in accordance with the OSHA-compliant HASP prepared for all remedial and invasive work performed at the Site.

Community Air Monitoring Plan (CAMP)

The purpose of the CAMP is to protect downwind receptors (e.g., residences, businesses, schools, nearby workers, and the public) from potential airborne contaminants released as a direct result of the Remedial Action being performed at the site. A modified CAMP was used because the remediated area is confined to an isolated portion of the Site that is a considerable distance from nearby residences, nearby workers, and the public.

Air monitoring for VOCs occurred during soil excavation. No VOCs were observed above the CAMP action limits. Monitoring for particulates was not done during soil excavation. It was not required under the approved modified CAMP. The area is primarily commercial/industrial and the nearest residence is approximately 500 feet from where soil was excavated and managed. Woodland separates the residence from the work area.

4.2 REMEDIAL PROGRAM ELEMENTS

4.2.1 Contractors and Consultants

• The Remedial Engineer for this project was Arnold F. Fleming, P.E. He is a registered professional engineer licensed by the State of New York.

- VeruTEK, Bloomfield, CT Remediation Contractor responsible for implementation of the surfactant-enhanced *in-situ* chemical oxidation S-ISCO[®] Treatment.
- Zebra, Lynbrook, NY Drilling Contractor responsible for implementing PrimawaveTM, the process used to enhance delivery of chemical amendments at the pore scale level.

4.2.2 Community Air Monitoring Results

VOCs in air were monitored using a photoionization detector (PID) during excavation and soil stockpiling. VOC air monitoring results were all below NYSDEC's CAMP guideline of 5 ppm. AFFCO received no complaints about air nuisance during the remedial work. Appendix C contains the signed certification from the safety manager conducting the CAMP.

4.3 **REMEDIAL ACTIONS**

Remediation of the AFFCO Site was completed in two stages: 1) *in situ* chemical oxidation of soils and groundwater in the 50-ft. by 50-ft. treatment area, from the water table to 15 feet below grade, atop the till layer, and 2) excavation of soils within the 50-ft. by 50-ft. treatment area from grade to slightly below the water table. Previous investigations found a compact till layer at 15 feet below grade that acted as a barrier to contaminant migration. For this reason remediation was limited to 15 feet below grade in the area of concern (treatment area).

The excavation encompassed the area near the former Feutron Building as shown on Figure 2. Excavation proceeded on a grid-cell-by-grid cell basis. The soil was removed from the impacted area and placed in a lined containment unit for testing and was returned to the respective grid cell after testing indicated that the results met the Part 375 Commercial Use SCOs. Remediation took place between July and September 2012. Figure 3 presents the pre-treatment and post-excavation results. Figure 4 presents the results of pre- and post-treatment groundwater sampling. Table 1 presents the SCOs. Table 2 presents the VOC endpoint sampling results. Appendix D contains the laboratory reports and Appendix E contains the Data Usability Summary Reports (DUSR).

4.3.1 Chemical Oxidation

Stage 1 occurred in July 2013. In preparation for chemical oxidation the treatment area was divided into six grid cells each approximately 17 feet by 25 feet (Figure 2). In May 2012, twenty-four, 6-inch-long pre-treatment soil cores within the treatment interval were collected from eight soil borings located within the six grid cells. Encore soil samples for VOC analysis were collected from the soil cores. A randomly selected X-coordinate and randomly selected Y-coordinate placed the boring within each grid cell. Then, three

randomly selected 6-inch-long depth intervals were sampled in each boring. Grid Cells 1 and 2 had two borings each. The objective was to augment the existing soil data from the 10-ft. to 15-ft. treatment interval so as to have a basis for comparing before and after *in situ* treatment results. In total, the combined soil characterization samples from earlier soil sampling and the randomly collected soil samples collected in May 2012 yielded 31 pre-treatment (baseline) soil samples.

Three injection wells (IW-1, IW-2, and IW-3) were installed in May 2012 for a total of 6 days of chemical treatment (Figure 2). The injection wells were built of 2-inchdiameter Schedule 80 PVC. The screened intervals were as follows:

Injection Well	Top of Screen, ftbg	Bottom of Screen, ftbg	Screen Length, ft.	Grid Cell
IW-1	9	12.3	3.3	2
IW-2	9	13.1	4.1	2
IW-3	9	12	3	4

In addition, five Geoprobe well points were used to inject chemical in the 13-ft to 14-ftand 14-ft. to 15-ft.-intervals in Grid Cell 2. The Geoprobe points were required because of the dense till layer. The intent was to install the injection well screens to 15 feet but this was infeasible due to the dense till layer beginning at approximately 13 feet that prevented further penetration while installing the injection wells.

The remedy for AFFCO was *in situ* chemical injection using the RemMetrik[®] methodology, which used Wavefront's Primawave[®] technology in this instance, and VeruTEK's Surfactant Enhanced *in situ* Chemical Oxidation (S-ISCO[®]) process, which used sodium persulfate, sodium hydroxide, and a plant-based surfactant. Sodium persulfate was the oxidant and was activated by the addition of sodium hydroxide to raise the pH. The plant-based surfactant, VeruSOL[®], was added to aid in the dissolution of the contaminant to make it available for chemical oxidation. In all, 13,200 gallons of oxidant were injected into the treatment interval on July 11 and 12 and again on July 23, 24, 25, and 26, 2012. The following concentrations formed the oxidant mixture: sodium persulfate, 15 – 50 g/L; sodium hydroxide, 12 – 50 g/L; VeruSOL[®], 0 – 15 g/L.

Groundwater was regularly monitored in nearby monitoring and injection wells during injections for pH, sodium persulfate, conductivity, oxidation reduction potential (ORP), dissolved oxygen, and temperature to ensure a proper chemical environment for oxidation and that conditions for *in situ* treatment were optimal.

The remedial excavation, Stage 2, took place in August-September 2012, in the interval between the end of the chemical injections and post-treatment soil sampling. Five bottom endpoint soil samples were collected at the bottom of the excavation, which was from 10 feet to 11 feet below grade, to document soil conditions. These samples were biased toward staining and were collected within the stratum previously treated by *in situ* chemical oxidation.

On March 27, 2013, another set of 24 randomly collected post-treatment Encore

soil samples were gathered from the six grid cells using an entirely new set of random coordinates (Figure 3). In total, the 24 randomly collected post-treatment soil samples and two duplicate samples, plus the five bottom endpoint samples yielded 31 post-treatment soil samples for comparison to pre-treatment conditions.

Chemical Oxidation Results

Post-treatment soil and groundwater sampling took place in March and April 2013. All of the oxidant had been expended prior to post-treatment sampling. Appendix F contains the remediation contractor, VeruTEK, report describing the treatment details.

Soils

The soil treatment goals were the Part 375 Commercial Use Soil Cleanup Objectives and 90 percent reduction in overall contaminant mass, which is defined as the sum of the Target Compound List (TCL) VOCs. The primary contaminants were the chlorinated VOCs. The principal VOC was TCA.

Of the 31 post-treatment soil samples, all but three VOC results met the Residential Use w/CP-51 Soil Cleanup Objectives, which are more stringent than the Commercial Use SCOs. The VOC compounds in the remaining three samples were well below the Commercial Use SCOs. An appreciable number of post-treatment soil samples were below the Unrestricted Use SCOs.

Contaminant reductions were computed by comparing the pre- and post-treatment mean soil concentrations. Since the bulk density and soil volume remain constant, the differences in mean concentrations yield the percent reduction in mass. Contaminant mass reduction is examined on an overall basis, by stratum, and by selected compounds.

The results for total VOCs and TCA concentrations follow a log-normal distribution, which is common in environmental data. For this reason, the pre and post-treatment reductions for total VOCs and TCA were calculated using log-transformed values as this yields more representative estimates of the means and confidence limits about the means.

Total VOCs Reduction

Comparing the 31 pre-treatment and 31 post-treatment samples yields a net total VOC mass reduction of 73 percent. Using arithmetic means the percent reduction is 63 percent.

$\mu_{\mathcal{B}}$ $\kappa_{\mathcal{B}}$					
			Geometric		
Treatment	Sample Nos.	Lower Limit ¹	Mean	Upper Limit ¹	% Reduction
Pre-treatment	31	1,768	5,058	14,472	
Post-treatment	31	417	1,372	4, 520	73

Total VOCs in Soils – 95% Confidence Limits Results in ug/kg

¹ Limits about the geometric mean

Total VOCs in Soils

Results in $\mu g/kg$

	Pre-treat,	Post-treat,	
Sample Nos.	Arithmetic	Arithmetic	Percent
pre/post	Mean Conc. µg/kg	Mean Conc. µg/kg	Reduction
31/31	66,365	24,751	63

TCA Reduction

For TCA alone the net contaminant mass reduction measures 75 percent. Using arithmetic means the percent reduction is 67 percent.

TCA in Soils – 95% Confidence Limits Results in µg/kg Geometric Treatment Sample Nos. Lower Limit¹ Mean Upper Limit¹ % Reduction Pre-treatment 31 460 1,063 5,588 Post-treatment 31 115 406 1,436 75

¹ Limits about the geometric mean

TCA in Soils					
Pre-treat, Post-treat,					
Samples Nos.	Arithmetic	Arithmetic	Percent		
pre/post	Mean Conc. µg/kg	Mean Conc. µg/kg	Reduction		
31/31	55,314	18,460	67		

Stratum-by-Stratum Reduction

On a stratum-by-stratum basis the contaminant mass reductions for total VOCs were based on arithmetic means as there is insufficient number of samples in most strata to use the geometric means. The results are as follows:

		Pre-treat, Arithmetic	Post-treat, Arithmetic	
	Sample Nos.	Mean Conc.	Mean Conc.	Percent
Stratum	pre/post	µg/kg	µg/kg	Reduction
1 (10 -11')	2/7	119,577	3,205	97
2 (11 – 12')	3/6	436,697	75,143	83
3 (12 – 13')	1/5	50	38,650	*
4 (13 – 14')	15/4	24,156	3,984	84
5 (14 -15')	10/9	14,568	8,803	40

Total VOCs in Soils Reduction by Stratum

Values rounded. * Too few pre-treatment samples for comparison.

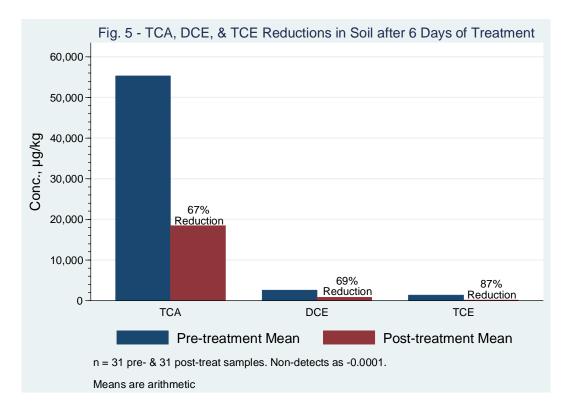
In the four strata where reductions could be measured, the average overall total VOC mass reduction is 76 percent.

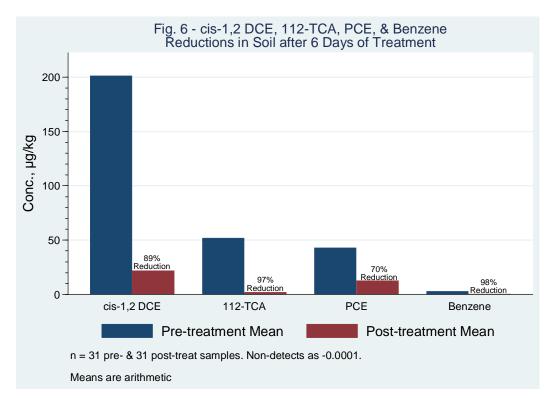
On a stratum-by-stratum basis the contaminant mass reductions for TCA, based on arithmetic means, are as follows:

	Sample Nos.	Pre-treat, Arithmetic Mean Conc.	Post-treat, Arithmetic Mean Conc.	Percent
Stratum	pre/post	µg/kg	µg/kg	Reduction
1 (10 -11')	2/7	115,385	2,621	98
2 (11 – 12')	3/6	388,693	66,639	83
3 (12 – 13')	1/5	0.49	26,602	*
4 (13 – 14')	15/4	15,761	2,493	84
5 (14 -15')	10/9	8,283	1,232	85

TCA Reduction in Soils by Stratum

Values rounded. * Too few pre-treatment samples for comparison.


In the four strata where reductions could be measured, the average overall TCA mass reduction is 87 percent.


Specific VOC Compound Reductions

Mass reductions for individual VOCs were calculated by comparing the pretreatment and post-treatment mean concentrations. Numerous values were below detection limits; non-detects were arbitrarily given a value of -0.0001 for calculation purposes. Arithmetic means were used for calculation purposes.

Mass reductions of specific VOCs on an overall basis show reductions ranging from 67 to 98 percent. Two of the more toxic compounds exhibited very high reductions. Benzene and 1,1,2-Trichloroethane (1,1,2-TCA), while having comparatively minor concentrations in soils, showed reductions of 98 and 97 percent, respectively. Figures 5

and 6 show the contaminant mass reductions for a number of compounds (TCA is repeated for the sake of comparison). The specific VOCs were selected on the basis of having the highest concentrations in pre-treatment soils and/or toxicity.

Groundwater

Baseline groundwater samples were collected in five wells: E1-X, EW-0, MW-1, E1-NEW, and S-8 in June-July 2012. Post-treatment groundwater samples were collected in April 2013. Monitoring wells EW-1X and EW-0 were inside or immediately adjacent to the treatment area (EW-1X). Wells S-8, E1-NEW, and MW-1 were outside the treatment area. MW-1 is approximately 12 feet downgradient from the treatment area and S-8 and E1-NEW (E1-(N)) are 55 or more feet downgradient from the treatment area (Figure 4). Tables 3 presents the pre- and post-treatment groundwater sampling results. Monitoring well construction details are as follows:

Monitoring	Top of	Bottom of	
Well	Screen, ftbg	Screen, ftbg	Location
EW-0	7	14.6	Treatment Area
EW-1X	6	11	Immediately Adjacent to Treatment Area
MW-1	6	13	12 ft. downgradient of Treatment Area
S-8	7	12	65 ft. downgradient of Treatment Area
E1-NEW	35	42	56 ft. downgradient of Treatment Area

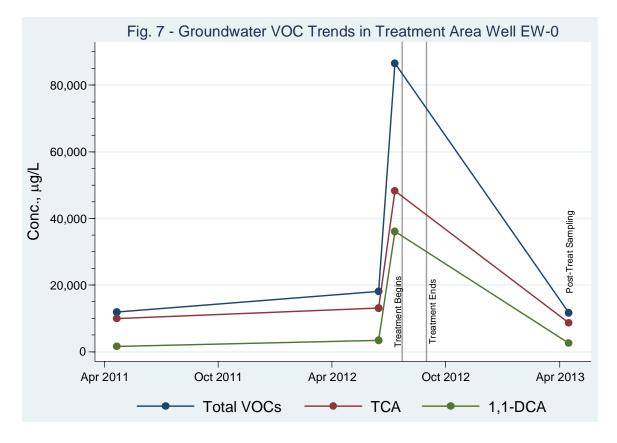
Treatment Area

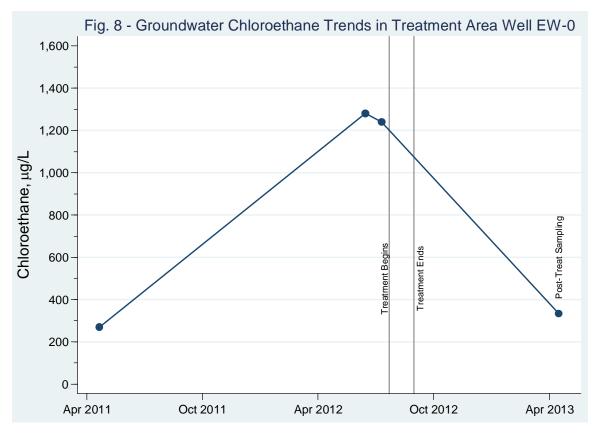
Pre-treatment groundwater samples were collected from wells inside the treatment area in June-July 2012 and in earlier site characterization groundwater samples. The July 2012 samples were collected before treatment from injection wells IW-1, IW-2, IW-3, and original monitoring well EW-0. Post-treatment groundwater samples were collected on April 17, 2013, from the two wells installed immediately adjacent to and inside the treatment area, EW-1X and EW-0, following remedial excavation.

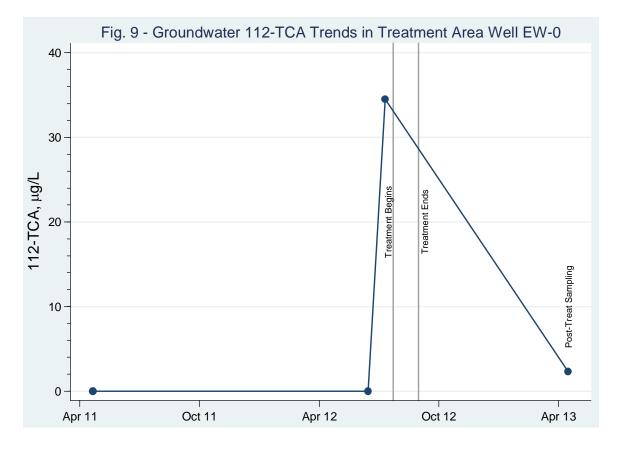
EW-1X was a new monitoring well installed immediately adjacent to Grid Cell 4 to add an additional monitoring point close to the treatment area. EW-0 was re-installed in Grid Cell 2 to replace the original EW-0 that was removed during remedial excavation. It was possible to penetrate the till layer with the drill rig at this location.

Groundwater concentrations typically fluctuate, often dramatically, with changing groundwater levels, the seasons, precipitation, and changes in groundwater flow direction throughout the year. This variation can dramatically affect contact between groundwater and contaminant, influence groundwater movement with more or less contaminated strata, affect contaminant migration and retardation through strata of different conductivities, and be influenced by geochemical factors that also occur within different strata. As a result, groundwater VOC concentrations can fluctuate dramatically from one sampling event to another. Under these conditions, the maximum concentrations likely approximate actual groundwater contaminant concentrations. For this reason it is more useful to compare the pre-treatment maximum groundwater concentrations with post-treatment groundwater. Table 3 contains the complete set of groundwater sample results. Table 4 summarizes the results of groundwater sampling.

Groundwater concentrations remain above TOGS for a number of compounds, but reductions in the principal VOCs range from 74 to 93 percent.

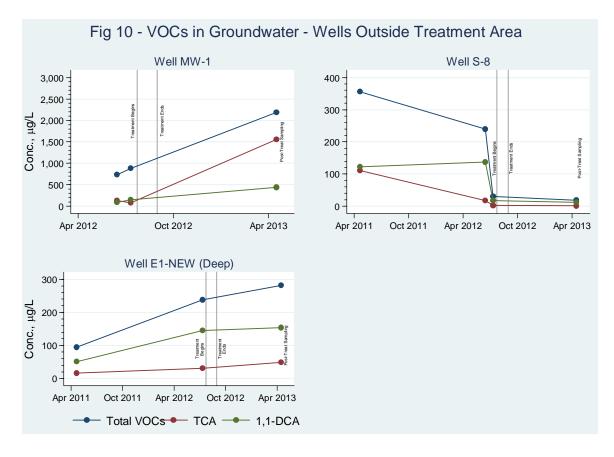

	Sample Nos.	Pre-treat	Post-treat	Percent	
VOC	pre/post	Max. Conc. µg/L	Max. Conc. µg/L	Reduction	
Total VOCs	9/2	86,530	11,706	86	
TCA	9/2	48,300	8,630	82	
112-TCA	9/2	34.5	2.3	93	
1,1-DCA	9/2	36,100	2,540	93	
Chloroethane	9/2	1,280	334	74	
X7.1					


Table 4 - Summary of Groundwater VOCs in Treatment Area


Values rounded.

Of the two wells immediately adjacent to or inside the injection treatment area, EW-1X (EW-1X is within the injection treatment radius but outside the excavation area) and EW-0, the VOC results in EW-1X were all below detection limits except for 1,1-Dichloroethane (DCA), 22.9 μ g/L. Accordingly, all but one VOC in this well met the TOGS GA standards in the post-treatment sampling round. In EW-0, 28 of the 36 VOC compounds are below TOGS criteria and/or guidelines and two VOCs are very close to the TOGS criteria.

Figures 7, 8, and 9 depict the trends for the principal VOCs in EW-0. All show large reductions compared to the pre-treatment maximum concentrations. The large VOC reductions in groundwater concentrations are consistent with an appreciable contaminant mass having been eliminated from the Site.



Outside Treatment Area

The three wells outside the treatment area are in the downgradient position. Two of these wells, MW-1 and deep well E1-NEW, showed increases following remediation. It is expected to be a temporary condition.

In contrast, the principal VOCs show a dramatic decrease in S-8 in the post-treatment groundwater samples compared to pre-treatment levels.

Basic Groundwater Parameters

Table 5 presents the pre-treatment results for basic groundwater parameters. Table 6 presents the post-treatment results. A comparison shows that pH is approximately the same, indicating that groundwater has returned to pre-treatment conditions. Conductivity increased in post-treatment groundwater in response to the oxidant added for *in situ* treatment. Dissolved oxygen remains about the same, but mean ORP is more than two-fold lower than pre-treatment levels. This is most likely the result of residual plant-based surfactant that is being degraded.

Well	pН	Cond. µS/cm	NTU	DO, mg/L	Temp., C	ORP, mV
EW-0	9.88	134	24	0	15.9	-106
IW-1	9.53	90	278	3.03	21.5	-98
IW-2	7.79	813	51	8.25	17	-92
IW-3	9.58	647	0	2.19	21.8	-50
S-8	8.62	593	2.3	0.88	16.6	-202
Mean	9.1	455	71	2.9	18.5	-110

Table 5 – Pre-Treatment Groundwater Parameters

Table 6 – Post-Treatment Groundwater Parameters

Well	pН	Cond. µS/cm	NTU	DO, mg/L	Temp., C	ORP, mV
MW-1	7.56	1,100	0	1.53	13.2	-148
EW-0	8.95	610	0	.65	10.9	-377
EW-1X	8.49	495	459	.62	12.6	-679
E1-NEW	9.08	522	57	.59	15.4	-207
S-8	7.53	356	205	8.42	13.3	59
Mean	8.3	617	144	2.4	13	-270

Sulfate and chloride were monitored both before and after treatment. The mean pre-treatment sulfate concentration measured 21.4 mg/L and the mean post-treatment level 48.8 mg/L. The more than two-fold increase is due to the sodium persulfate added as the oxidant. Some sulfate remains, but will dissipate with time.

The mean pre-treatment chloride concentration measured 108.7 mg/L and the mean post-treatment level 60.9 mg/L. This is a reduction of more than 40 percent. It is most likely due to the decomposition of chlorinated VOCs, the VOCs having been degraded and the chloride having washed through the soil.

Although chloride would be expected to increase in the short-term following destruction of chlorinated VOCs, this reduction suggests that the chloride resulting from oxidation has migrated with groundwater through the treated soil leaving lower concentrations behind. The appreciable reduction in chlorinated contaminant mass is thus being reflected in the lower chloride levels. In the eight months between the end of *in situ* treatment and post-treatment groundwater sampling, groundwater could flush through the more permeable zones in treatment area approximately two-dozen times.

Chemical Oxidation Treatment

The *in situ* treatment included injection of alkaline-activated sodium persulfate along with a surfactant, VeruSOL[®], to dissolve NAPL so as to promote

dissolution and optimal oxidation. The oxidant mixture was injected via specially designed injection wells using the RemMetrik[®] process and Wavefront Technology Solution's Sidewinder tool. The process employs subsurface pressure waves to promote even dispersion of the oxidant mixture into the small pores where most of the NAPL occurs. The treatment goal was 90 percent contaminant mass removal.

It was necessary to complete the *in situ* component before excavation in order for the injection wells to function optimally. The undisturbed overburden provides resistance that allows the subsurface pressure waves to move horizontally without being attenuated by vertical movement, which can occur without sufficient overburden or inadequately compacted overburden.

Prior to *in situ* treatment FLS collected soil samples to estimate contaminant mass and to identify the target zones for optimal injection well placement. The 50-ft. by 50-ft. treatment area was divided into six grid cells. Eight randomly placed soil borings in six grid cells were sampled randomly in 6-inch intervals from the water table to the underlying till layer at approximately 15 feet and sampled for VOCs using Method 8260. In all, 24 randomly selected samples for VOCs were collected using an Encore sampler.

Based on the randomly collected soil samples for VOC analysis, the estimated total contaminant mass measured approximately 79 pounds in the 10 – 15-ft. treatment interval. Approximately 89 percent of the contaminant mass occurred from 10 to 13 feet below grade. Three injection wells were installed where the contamination mass was highest. IW-1 and IW-2 were installed in Grid Cell 2, and IW-3 was installed in Grid Cell 4. All injection wells were installed to approximately 13 ft.-bg. Approximately 90 percent of the contaminant mass occurred in the 10- to 13-ft. interval near IW-2, and during the injections IW-2 was used as the primary injection well to account for the greater level of contaminant mass. To ensure greatest treatment in the 10- to 13-ft. zone, a packer was installed prior to injection to seal off the injection well at 10 feet. The oxidant mixture was also administered through five Geoprobe points from 13 to 14 ft.-bg and 14 to 15 ft.-bg (Figure 2).

Multiple rounds of injections took place between July 10 and July 27, although the total amount of injection time was approximately six days. A total of 13,200 gallons of oxidant mixture was injected. Sodium persulfate was injected at a concentration of 15 to 50 g/L, sodium hydroxide was injected at a concentration of 12 to 50 g/L and VeruSOL[®] was injected at a concentration of 0 to 15 g/L. Groundwater was monitored daily in the injection wells and nearby monitoring wells to check on the chemical response and distribution of the oxidant. Water in the adjacent stream was also monitored with field instruments and visual inspections during the injection to check for off-Site migration of treatment chemicals. None was found. Favorable chemical conditions were observed in the treatment area (Appendix F, VeruTEK report). Table 7 presents the volume of oxidant solution injected by treatment point.

	Injected Volume
Injection Point	(gallons)
IW-1	5,310
IW-2	5,320
IW-3	1,570
GP-1	200
GP-2	200
GP-3	200
GP-4	200
GP-5	200
Total	13,200

Table 7 – Oxidant Volume by Injection Point

IW- Injection well. GP – Geoprobe injection point.

4.3.2 Excavation

Prior to the start of excavation, the 50-ft. by 50-ft. treatment area, located in the footprint of the northwest portion of the former Feutron Building, was divided into six grid cells. Soil removal in this historic drum storage and felt press area and under the relict floor slab was performed by removing impacted material in Grid Cells 1 through 5. Based on analytical results of pre-excavation soil sampling and the proximity of Grid Cell 6 to the building wall, Grid Cell 6 was not sampled. The layout of the six grid cells is illustrated in Figure 3. Excavation was conducted from August 27, 2012 to September 4, 2012. Appendix G is a photographic log of the excavation and overall remedial effort.

A high density polyethylene (HDPE) soil containment structure (unit) was constructed to contain the excavated soils. The structure had dimensions of approximately 100 feet long and 50 feet wide. The HDPE structure was installed over a bed of clean fine sand to provide protection against puncture by debris or stones beneath the structure.

Excavation was conducted by removing soils in each of the five grid cells to the depth of approximately 11 feet below grade, approximately one (1) foot below the water table. In all, approximately 710 tons of soil were removed from the remedial excavation. The excavated soils were then stockpiled on Site and subsequently passed through a soil screener to remove larger materials that could potentially damage the HDPE containment structure. Once soil passed through the screener, the material was transported via dump truck to the HDPE containment structure. The excavated soils were then sampled in the HDPE containment structure at an interval of no less than one sample per 100 cubic yards. Samples were analyzed for VOCs and compared to the Part 375 Commercial Use SCOs. Soils meeting the SCOs were subsequently backfilled into the separate grid cells. No soil was removed from the Site to a disposal facility and no soil was imported from outside the Site. An additional 1,000 gallons of oxidant mixture was spread across the bottom of the open excavation prior to backfilling.

Soils were scanned for VOCs using a PID with an 11.2 eV bulb. PID screening was conducted either at the excavator bucket, at the soil stockpile in the containment unit, and in the excavation. Any observations regarding soil contamination were logged along with the PID readings.

Post-excavation bottom and sidewall endpoint sampling was conducted upon completion of excavation in each grid cell. Post-excavation sampling was biased towards areas of staining, odors, elevated PID readings, and areas of known contamination. Post excavation samples PX-01 to PX-06 were collected on August 28, 2012. Samples PX-07 and PX-08 were collected on August 30, 2012. Samples PX-09 to PX-15 were collected on September 4, 2012. Figure 3 shows the results of pre-treatment and post-treatment sampling.

Within the excavation were what appeared to be several relict concrete walls and footings that supported the former Feutron Building. One concrete structure was a nominal 20-ft. by 10-ft. vault that once housed manufacturing equipment (Pit L). The concrete vault contained various amounts of rainwater and algae during remediation. No signs of contamination were evident in the vault. A smaller nominal 5-ft. by 5-ft. vault (Pit S) occupied a portion of a larger concrete block and exhibited no signs of contamination. All concrete appeared free of staining or other discernable signs of contamination. The concrete structures were left in place and are shown on Figure 3 for documentation purposes.

4.3.3 Treatment Effectiveness

Post-excavation analytical sample results revealed all VOC concentrations below the NYSDEC Unrestricted Use Criteria with the exception of 1,1-Dichloroethane in sample PX-07 and 1,1-Dichloroethane, 1,1-Dichloroethene and 1,1,1-Trichloroethane in sample PX-3. The post-excavation sample locations and results summary is illustrated in Figure 3.

4.3.4 Remaining Contamination

All post-excavation and post-treatment soil sample results were below the Site cleanup criteria, the Part 375 Commercial Use SCOs.

4.3.4.1 Unrestricted Use

The following post-excavation and post-treatment soil sample results remain above the Unrestricted Use Soil Cleanup Criteria (Table 8):

Sample ID	Parameter	Result, µg/kg	Unrestricted Use SCO, μg/kg	Commercial Use SCO, µg/kg
PX03-BT-10	1,1-Dichloroethane	1,940	270	240,000
11105 D1 10	1,1-Dichloroethene	568	330	500,000
	1,1,1-Trichloroethane	4,980	680	500,000
C5SP02	1,1-Dichloroethene	2,750	330	500,000
000102	1,1,1-Trichloroethane	29,800	680	500,000
C5SP01	1,1,1-Trichloroethane	2,580	680	500,000
1.1 (12.5-13)	1,1-Dichloroethane	1,080	270	240,000
(1210 10)	1,2-Dichloroethane	232	20	30,000
	1,1-Dichloroethene	1,140	330	500,000
	1,1,1-Trichloroethane	18,700	680	500,000
	Trichloroethene	1,130	470	200,000
1.1 (1313.5)	1,1,1-Trichloroethane	2,860	680	500,000
1.2 (11-11.5)	1,1-Dichloroethane	6,220	270	240,000
	1,1,1-Trichloroethane	1,560	680	500,000
1.2 (14-14.5)	1,1-Dichloroethane	34,000	270	240,000
112 (11 1 110)	1,2-Dichloroethane	786	20	30,000
	1,1-Dichloroethene	1,620	330	500,000
	1,1,1-Trichloroethane	4,690	680	500,000
1.2 (13-13.5)	1,1-Dichloroethane	3,950	270	240,000
	1,1,1-Trichloroethane	2,130	680	500,000
2.1 (12.5-13)	2-Butanone (MEK)	893	120	500,000
	1,1-Dichloroethane	34,900	270	240,000
	1,2-Dichloroethane	1,590	20	30,000
	1,1-Dichloroethene	2,150	330	500,000
	cis-1,2-Dichloroethane	374	250	500,000
	trans-1,2-Dichloroethane	294	190	500,000
	Toluene	2,280	700	500,000
	1,1,1-Trichloroethane	42,300	680	500,000
	Trichloroethane	1,180	470	200,000
2.1 (11.5-12)	Acetone	62.4	50	500,000
	1,1-Dichloroethane	11,100	270	240,000
	1,2-Dichloroethane	27.7	20	30,000
2.1 (10-10.5)	1,2-Dichloroethane	20.7	20	30,000
	1,1,1-Trichloroethane	12,600	680	500,000
2.2 (12.5-13)	1,1-Dichloroethane	3,660	270	240,000
	1,2-Dichloroethane	179	20	30,000
	1,1-Dichloroethene	2,310	330	500,000
	1,1,1-Trichloroethane	70,700	680	500,000
2.2 (11-11.5)	1,1-Dichloroethane	6,040	270	240,000
· · · · · ·	1,1-Dichloroethene	14,000	330	500,000
	Toluene	1,600	700	500,000
	1,1,1-Trichloroethane	398,000	680	500,000
2.2 (11-11.5)	Trichloroethane	2,040	470	200,000
2.2 (14-14.5)	Acetone	82.2	50	500,000
2.2 (14-14.5)	2-Butanone	129	120	500,000

Table 8 – Endpoint Soil Sample Results Above Unrestricted Use SCOs

Sample ID	Parameter	Result, μg/kg	Unrestricted Use SCO, µg/kg	Commercial Use SCO, µg/kg
	1,1-Dichloroethane	12,100	<u>µg/Kg</u> 270	240,000
	1,2-Dichloroethane	34.0	20	30,000
3 (13.5-14)	1,1-Dichloroethane	459	270	240,000
	1,1,1-Trichloroethane	1,500	680	500,000
3 (14.5-15)	1,1-Dichloroethane	5,820	270	240,000
	1,2-Dichloroethane	165	20	30,000
	1,1-Dichloroethene	423	330	500,000
	1,1,1-Trichloroethane	2,320	680	500,000
3 (12.5-13)	1,1-Dichloroethane	410	270	240,000
	1,2-Dichloroethane	134	20	30,000
	1,1-Dichloroethene	659	330	500,000
	1,1,1-Trichloroethane	1,270	680	500,000
4 (11-11.5)	1,1-Dichloroethane	2,000	270	240,000
	1,1-Dichloroethene	1,650	330	500,000
4 (14.5-15)	1,1-Dichloroethane	6,470	270	240,000
5 (13.5-14)	1,1,1-Trichloroethane	3,480	680	500,000
5 (14-14.5)	1,1,1-Trichloroethane	1,220	680	500,000
5 (14.5-15)	1,1,1-Trichloroethane	2,090	680	500,000

Table 8 – Endpoint Soil Sample Results Above Unrestricted Use SCOs

PX – Post Excavation sample. SP – Soil Pile/Cover sample. Remaining samples # (. . .) from post-treatment soil borings.

4.3.4.2 Residential Use

The following post-treatment soil sample results remain above the Residential Use soil cleanup criteria. All other samples were below the Residential Use SCOs:

		Result,	Residential
Sample ID	Parameter	μg/kg	Use SCO, µg/kg
1.2 (14-14.5)	1,1-Dichloroethane	34,000	19,000
2.1 (12.5-13)	1,1-Dichloroethane	34,900	19,000
2.2 (11-11.5)	1,1,1-Trichloroethane	398,000	100,000

4.3.4.3 Groundwater

Post-treatment groundwater sampling took place in April 2013. Five groundwater samples were collected for TCL VOC analysis by Method 8260 from wells within and downgradient from the treatment area.

Of the 35 VOCs in the 8260 list, 21 (60 percent) VOC results were below detection limits in all five groundwater samples. Of the 14 detected VOCs, five (14 percent of the total) were all below the TOGS or guidelines. Nine VOCs were above the TOGS AWQS or guidelines: chloroethane, 1,1-dichloroethane, 1,2-dichloroethane, 1,1-dichloroethane, toluene, 1,1,1-trichloroethane, 1,1,2-trichloroethane, trichloroethane, and vinyl chloride. Among these, nine VOCs, four of the compounds were below the TOGS AWQS or guidelines in 75 percent of the samples.

The VOCs with the highest groundwater concentrations were chloroethane $(334 \,\mu g/L)$, 1,1dichloroethane $(2,540 \,\mu g/L)$, and 1,1,1-trichloroethane $(8,630 \,\mu g/L)$ in monitoring well EW-0. EW-0 and MW-1 (a.k.a. MW-1N) had the highest concentrations of VOCs compared to all other wells, as shown.

Sample ID	Chloroethane	1,1-Dichloroethane	TCA
S-8	nd	11.8	1.4
E1-N	73.9	154	48.4
EW-1X	nd	22.9	nd
MW-1N	136	438	1,560
EW-0	334	2,540	8,630
1 1.			

Post-treatment Groundwater Results in µg/L

nd - non-detect

Table 9 summarizes the post-treatment detected VOC results for all groundwater samples.

VOC	Min	p25	p50	p75	p95	Max	TOGS*
2-Butanone	-	-	-	-	14.1	14.1	50
Chloroethane	-	-	<i>73.9</i>	136	334	334	5
Chloroform	-	-	-	1.2	3.1	3.1	7
1,1-Dichloroethane	11.8	22.9	154	<i>438</i>	2,540	2,540	5
1,2-Dichloroethane	-	-	0.7	5.2	17.5	17.5	0.6
1,1-Dichloroethene	-	3.5	5	36.6	144	144	5
cis-1,2-Dichloroethene	-	-	-	0.54	2.8	2.8	3
trans-1,2-Dichloroethene	-	-	-	-	2.2	2.2	5
Tetrachloroethene (PCE)	-	-	-	-	0.6	0.6	5
Toluene	-	-	-	1.6	8	8	5
1,1,1-Trichloroethane (TCA)	-	1.4	48.4	1,560	8,630	8,630	5
1,1,2-Trichloroethane	-	-	-	-	2.3	2.3	1
Trichloroethene (TCE)	-	-	1.1	4	6.2	6.2	5
Vinyl chloride	-	-	-	-	4.8	4.8	2

Table 9 – Summary of Detected Post-treatment Groundwater Results, All Wells Results in µg/L

Min – minimum, p25 – 25th percentile, p50– 50th percentile (median), p75 – 75th percentile, p95 – 95th percentile, Max – maximum. – non-detect. *TOGS or guidance value. Bold & italic exceed TOGS values/guidelines.

4.3.5 Soil Cover System

The excavation was backfilled to grade with soil meeting the Commercial Use SCOs. In nearly all cases, treated soil for backfilling met the Unrestricted Use or Residential Use SCOs. The soil used for the excavation cover was the excavated soil that met the Site SCOs (Section 4.3.2) and subsequently returned to the excavation after testing documented the soil met the cleanup goals. No soil was imported from off-Site. The data for the soil cover samples are the post-treatment soil pile samples. Table 10 lists the soil pile/soil cover samples. Table 2A presents the results.

Table 10 -	Soil Pile/Cover	Results, µg/kg
------------	-----------------	----------------

C1SP01	C4SP01	C3SP02
C2SP01	C5SP01	C5SP02
C3SP01	C2SP02	Bench01

4.3.6 Sub-slab Depressurization System

There is an existing SSDS operating under the Piano Felt Building (Figure 11). Now that soils containing the source contamination have been treated, AFFCO proposes to convert the SSDS and allow the system to operate in passive mode. A separate work plan will be prepared to demonstrate that passive operation of the SSDS will address potential exposure via soil vapor intrusion.

4.3.7 Deviations from Remedial Action Work Plan

There were no material deviations from the approved work plan. One minor deviation was omission of stream sampling following treatment.

4.3.8 Quality Assurance/Quality Control Summary

All post-excavation and post-treatment soil data were found usable for project decisions. All groundwater results were found usable for project decisions (Appendix E).

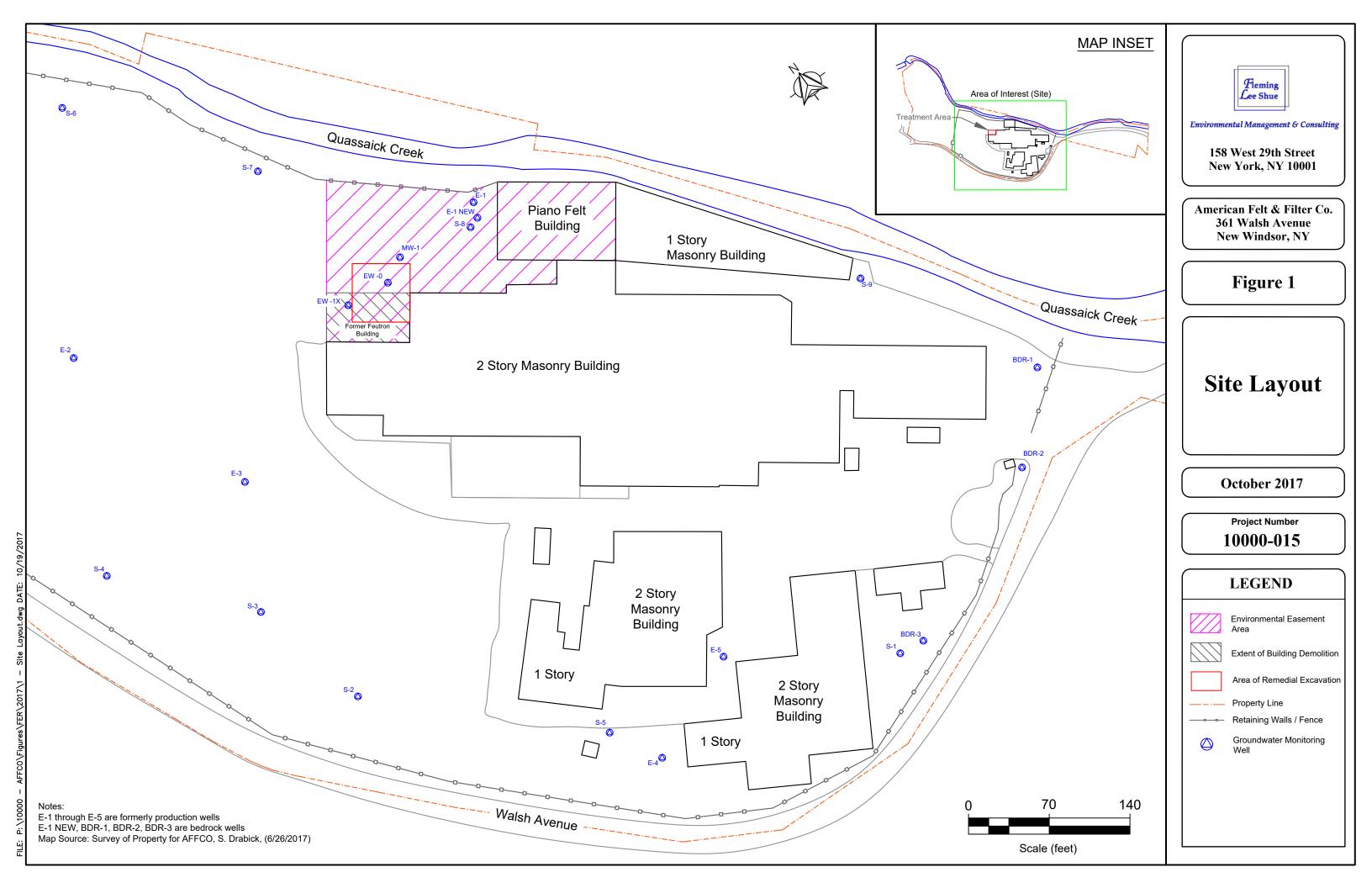
5.0 ENVIRONMENTAL EASEMENT, SOIL MANAGEMENT AREA & SSDS

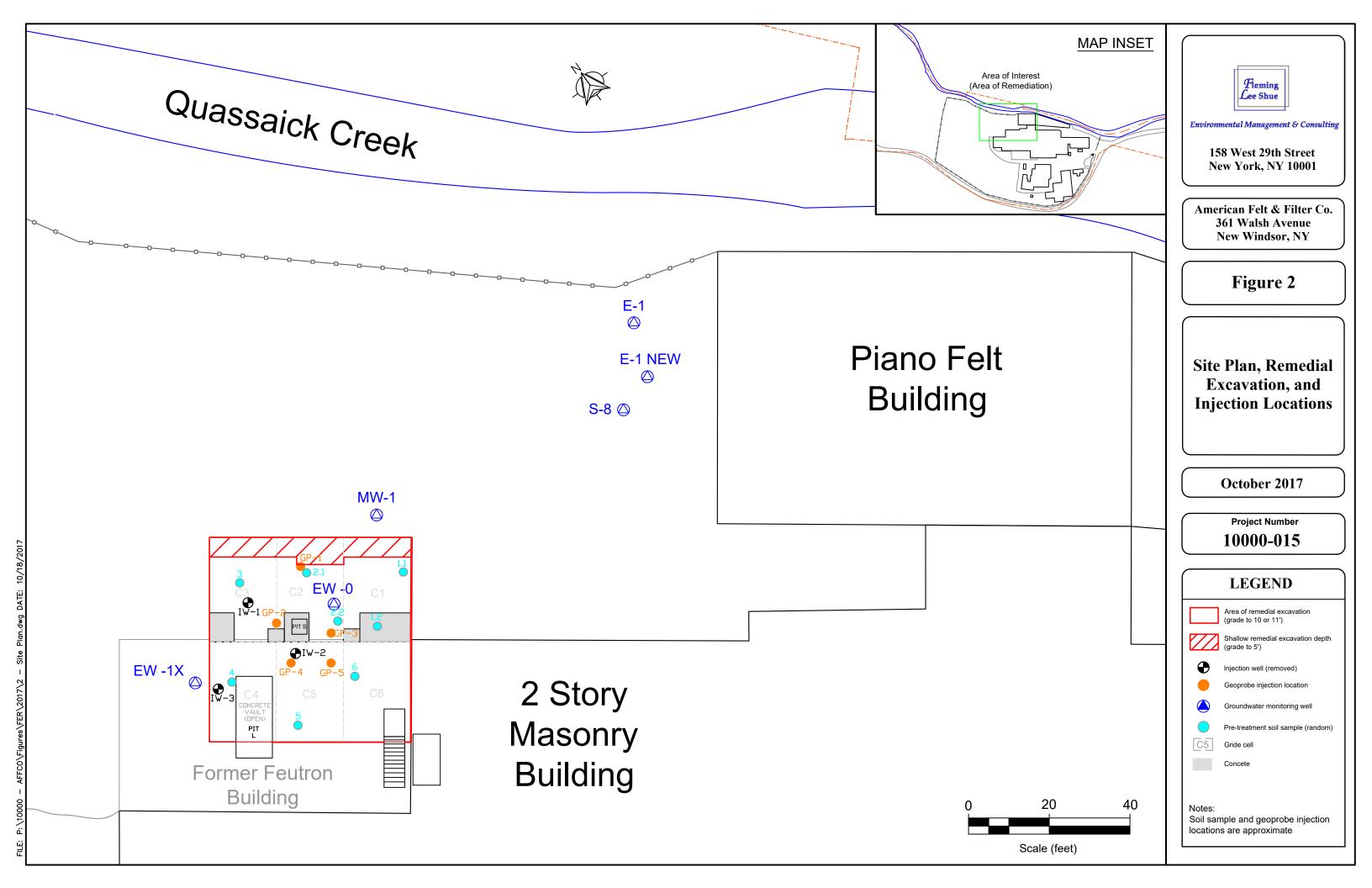
The Site has a series of Institutional Controls in the form of an Environmental Easement that encompasses a portion of the property (0.5454 acres) that includes a Soil Management Area (0.3845 acre) and a SSDS area (0.1619 acre) (Appendix A). Site restrictions that apply to the Environmental Easement Area of the Property are as follows:

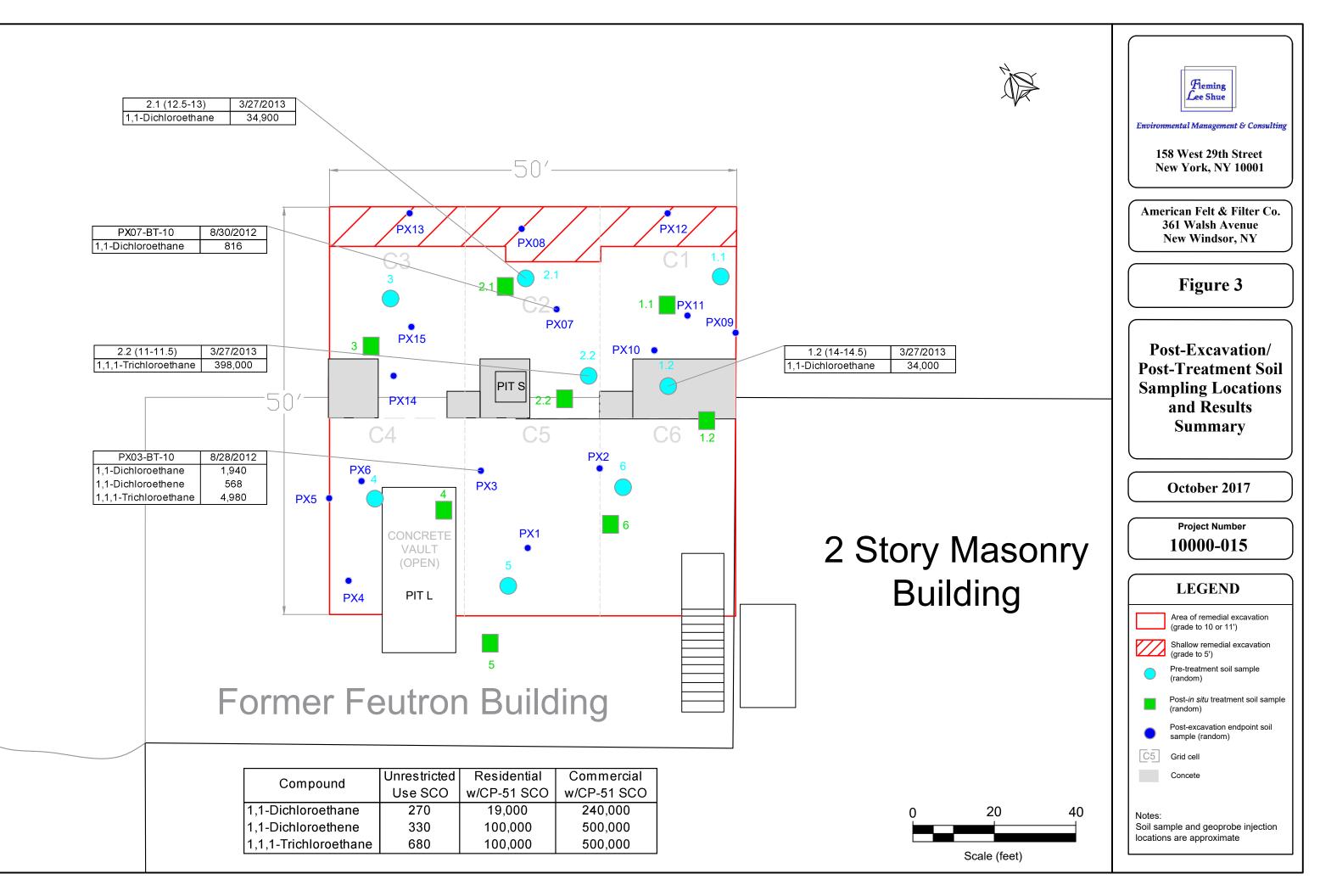
- The controlled property area may be used for commercial use provided that the long-term Engineering and Institutional Controls included in the attached Site Management Plan are employed. The controlled property also allows Industrial use as allowed by zoning;
- The controlled property may not be used for a higher level of use, such as unrestricted, residential or restricted residential use without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- The controlled property area may not be used for a higher level of use, such as unrestricted or restricted residential, use without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- All future activities on the controlled property area that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- The use of the groundwater underlying the property is prohibited without treatment rendering it safe for intended use;
- The potential for vapor intrusion must be evaluated for any new buildings on Site and any potential impacts that are identified must be monitored or mitigated;
- Vegetable gardens and farming on the property are prohibited;
- Inspection of the soil covering the Soil Management Area annually. The inspection results will be detailed in the Periodic Review Report (PRR) and certified by the engineer. Any damage to the soil cover will be repaired in kind;
- Inspection of the SSDS. The inspection results will be detailed in the PRR and certified by the engineer; and
- The Site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

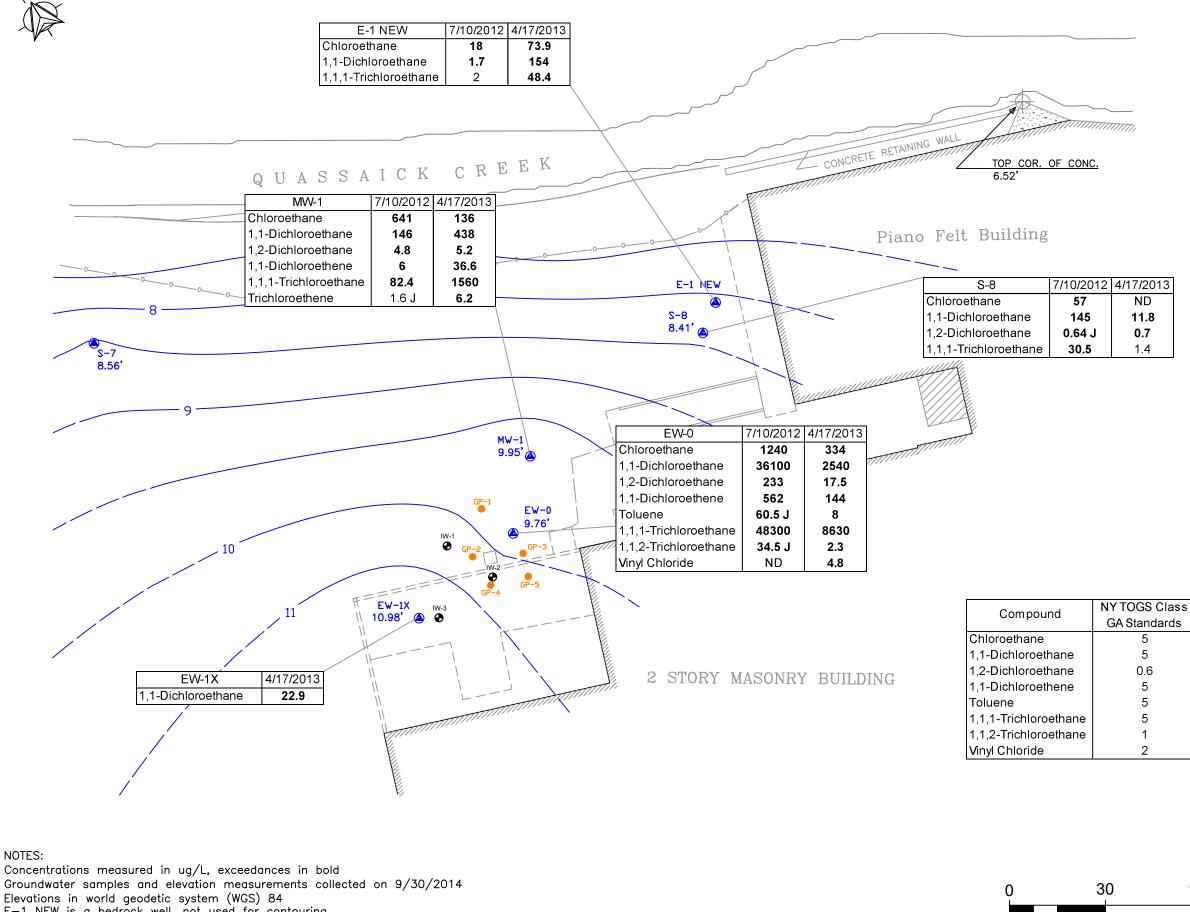
Institutional Controls identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement.

The Environmental Easement was accepted by NYSDEC on August 23, 2017 and filed with Orange County on September 15, 2017.submitted on.

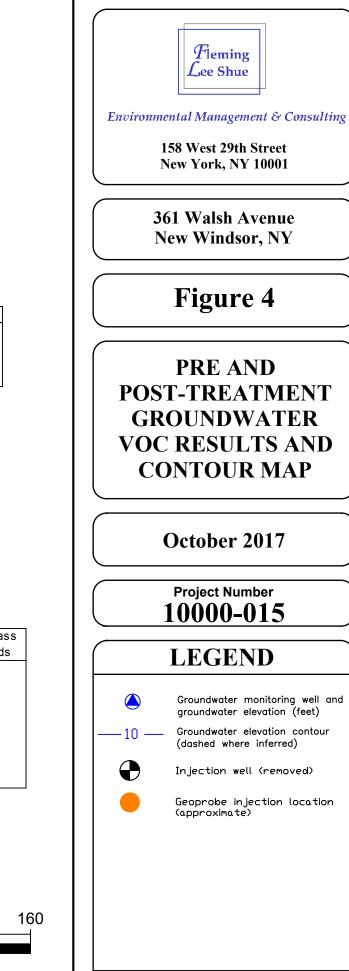

6.0 SITE MANAGEMENT PLAN


A SMP that describes actions subsequent to the remedial action is included as a separate document. The SMP calls for groundwater monitoring, SSDS operation and inspection, and inspection of the Soil Management Area soil cover.

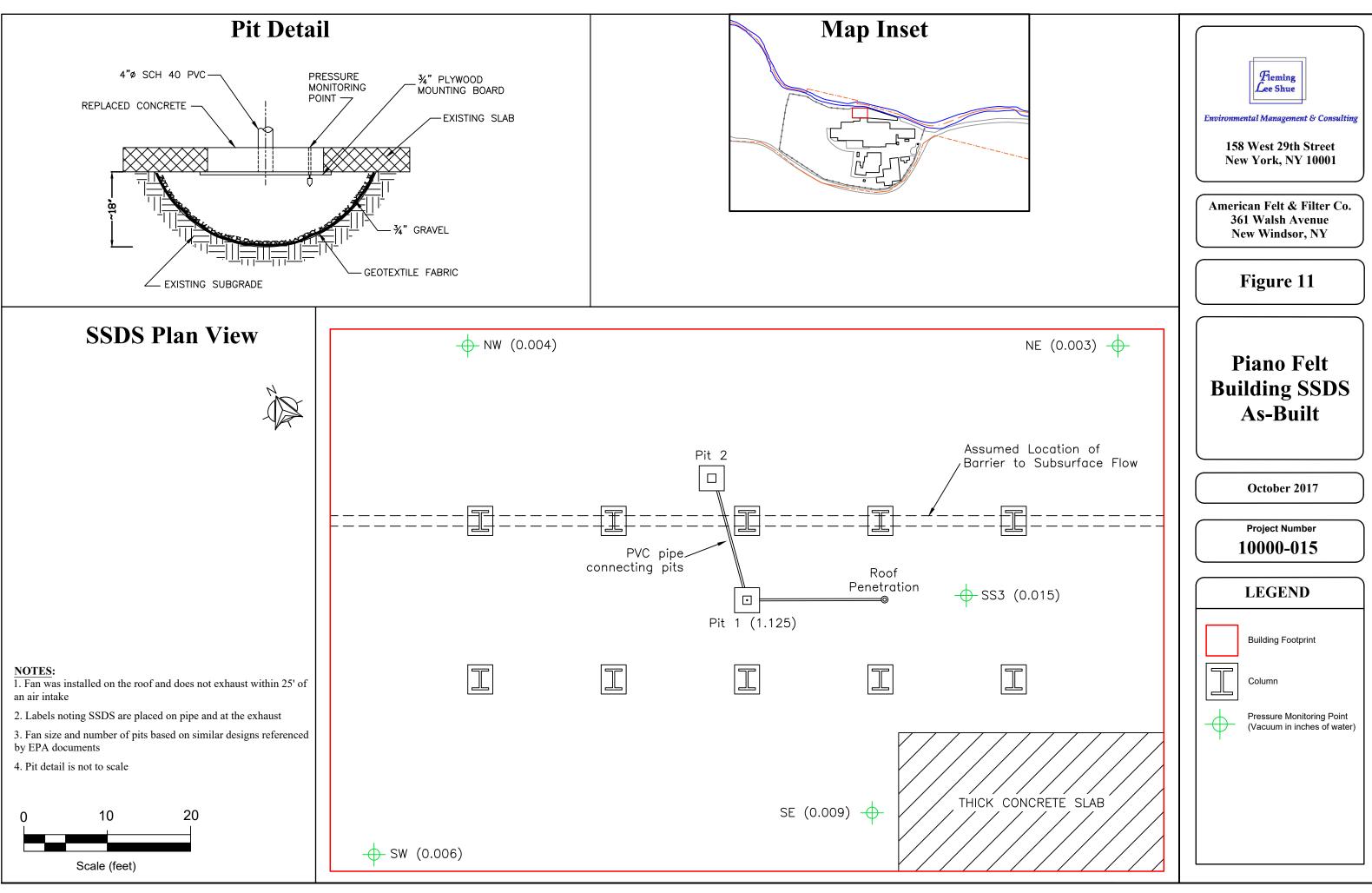

Since contaminated soil and groundwater remain beneath the Site after completion of the remedial action, institutional and engineering controls are required to protect human health and the environment. Long-term management of these controls and residual contamination will be conducted under the SMP approved by the NYSDEC


FIGURES

Elevations in world geodetic system (WGS) 84 E-1 NEW is a bedrock well, not used for contouring Pre-treatment samples collected on 7/10/2012 Post-treatment samples collected on 4/17/2013


2017\4

s\FER\


710/18/012

AC

Scale (feet)

ND 11.8 0.7 1.4

TABLES

Table 1 Commercial Use Soil Cleanup Objectives AFFCO, 361 Walsh Avenue, New Windsor, NY

Volatiles (SW846 8260C)

Semi-volatiles (SW846 8270D)

PCBs and Pesticides (SW846 8081B)

- Sidilioo (erre		-,			,	. eze ana i obtiola		
Acetone	ug/kg	500000	2-Chlorophenol	ug/kg		Aldrin	ug/kg	680
Benzene	ug/kg	44000	4-Chloro-3-methyl phenol	ug/kg	-	alpha-BHC	ug/kg	3400
Bromochloromethane	ug/kg	-	2,4-Dichlorophenol	ug/kg		beta-BHC	ug/kg	3000
Bromodichloromethane	ug/kg	-	2,4-Dimethylphenol	ug/kg	-	delta-BHC	ug/kg	500000
Bromoform	ug/kg	-	2,4-Dinitrophenol	ug/kg		gamma-BHC (Lindane)	ug/kg	9200
Bromomethane	ug/kg	-	4,6-Dinitro-o-cresol	ug/kg	-	alpha-Chlordane	ug/kg	24000
2-Butanone (MEK)	ug/kg	500000	2-Methylphenol	ug/kg	500000	gamma-Chlordane	ug/kg	4.400
Carbon disulfide	ug/kg	00000	3&4-Methylphenol	ug/kg	-	Dieldrin	ug/kg	1400
Carbon tetrachloride	ug/kg	22000	2-Nitrophenol	ug/kg		4,4'-DDD	ug/kg	92000
Chlorobenzene Chloroethane	ug/kg	500000	4-Nitrophenol Pentachlorophenol	ug/kg	6700	4,4'-DDE 4,4'-DDT	ug/kg	62000 47000
Chloroform	ug/kg ug/kg	350000	Phenol	ug/kg	500000	4,4-DDT Endrin	ug/kg	47000 89000
Chloromethane	ug/kg ug/kg	330000	2,3,4,6-Tetrachlorophenol	ug/kg	500000	Endosulfan sulfate	ug/kg ug/kg	200000
Cvclohexane	ug/kg ug/kg	-	2,4,5-Trichlorophenol	ug/kg ug/kg	-	Endrin aldehvde	ug/kg ug/kg	200000
1,2-Dibromo-3-chloropropane	ug/kg		2,4,6-Trichlorophenol	ug/kg		Endosulfan-I	ug/kg	200000
Dibromochloromethane	ug/kg		Acenaphthene	ug/kg	500000	Endosulfan-II	ug/kg	200000
1,2-Dibromoethane	ug/kg		Acenaphthylene	ug/kg	500000	Heptachlor	ug/kg	15000
1,2-Dichlorobenzene	ug/kg	500000	Acetophenone	ug/kg	-	Heptachlor epoxide	ug/kg	
1,3-Dichlorobenzene	ug/kg	280000	Anthracene	ug/kg	500000	Methoxychlor	ug/kg	
1,4-Dichlorobenzene	ug/kg	130000	Atrazine	ug/kg	-	Endrin ketone	ug/kg	-
Dichlorodifluoromethane	ug/kg	-	Benzo(a)anthracene	ug/kg	5600	Toxaphene	ug/kg	-
1,1-Dichloroethane	ug/kg	240000	Benzo(a)pyrene	ug/kg	1000	·	0.0	
1,2-Dichloroethane	ug/kg	30000	Benzo(b)fluoranthene	ug/kg	5600	Meta	als	
1,1-Dichloroethene	ug/kg	500000	Benzo(g,h,i)perylene	ug/kg	500000			
cis-1,2-Dichloroethene	ug/kg	500000	Benzo(k)fluoranthene	ug/kg	56000	Aluminum	mg/kg	
trans-1,2-Dichloroethene	ug/kg	500000	4-Bromophenyl phenyl ether	ug/kg	-	Antimony	mg/kg	
1,2-Dichloropropane	ug/kg		Butyl benzyl phthalate	ug/kg		Arsenic	mg/kg	16
cis-1,3-Dichloropropene	ug/kg	-	1,1'-Biphenyl	ug/kg		Barium	mg/kg	400
trans-1,3-Dichloropropene	ug/kg	-	Benzaldehyde	ug/kg	-	Beryllium	mg/kg	590
Ethylbenzene	ug/kg	390000	2-Chloronaphthalene	ug/kg	-	Cadmium	mg/kg	9.3
Freon 113	ug/kg		4-Chloroaniline	ug/kg		Calcium	mg/kg	
2-Hexanone	ug/kg	-	Carbazole	ug/kg	-	Chromium	mg/kg	-
Isopropylbenzene	ug/kg		Caprolactam	ug/kg	-	Cobalt	mg/kg	
Methyl Acetate	ug/kg	-	Chrysene	ug/kg	56000	Copper	mg/kg	270
Methylcyclohexane	ug/kg	-	bis(2-Chloroethoxy)methane	ug/kg	-	Iron	mg/kg	
Methyl Tert Butyl Ether	ug/kg	500000	bis(2-Chloroethyl)ether	ug/kg	-	Lead	mg/kg	1000
4-Methyl-2-pentanone(MIBK)	ug/kg	500000	bis(2-Chloroisopropyl)ether	ug/kg	-	Magnesium	mg/kg	-
Methylene chloride	ug/kg	500000	4-Chlorophenyl phenyl ether	ug/kg	-	Manganese	mg/kg	10000
Styrene	ug/kg		2,4-Dinitrotoluene	ug/kg	-	Mercury	mg/kg	2.8
1,1,2,2-Tetrachloroethane Tetrachloroethene	ug/kg ug/kg	150000	2,6-Dinitrotoluene 3,3'-Dichlorobenzidine	ug/kg		Nickel Potassium	mg/kg	310
Toluene	ug/kg ug/kg	500000	1,4-Dioxane	ug/kg	130000	Selenium	mg/kg mg/kg	1500
1,2,3-Trichlorobenzene	ug/kg ug/kg	500000	Dibenzo(a,h)anthracene	ug/kg	560	Silver	mg/kg	1500
1,2,4-Trichlorobenzene	ug/kg		Dibenzofuran	ug/kg ug/kg	350000	Sodium	mg/kg	1500
1,1,1-Trichloroethane	ug/kg	500000	Di-n-butyl phthalate	ug/kg	330000	Thallium	mg/kg	-
1,1,2-Trichloroethane	ug/kg	-	Di-n-octyl phthalate	ug/kg		Vanadium	mg/kg	
Trichloroethene	ug/kg	200000	Diethyl phthalate	ug/kg		Zinc	mg/kg	10000
Trichlorofluoromethane	ug/kg	-	Dimethyl phthalate	ug/kg				
Vinyl chloride	ug/kg	13000	bis(2-Ethylhexyl)phthalate	ug/kg				
m,p-Xylene	ug/kg	500000	Fluoranthene	ug/kg	500000			
o-Xylene	ug/kg	500000	Fluorene	ug/kg	500000			
Xylene (total)	ug/kg	500000	Hexachlorobenzene	ug/kg	6000			
, , ,	. 3. 3		Hexachlorobutadiene	ug/kg	-			
			Hexachlorocyclopentadiene	ug/kg				
			Hexachloroethane	ug/kg	-			
			Indeno(1,2,3-cd)pyrene	ug/kg	5600			
			Isophorone	ug/kg				
			2-Methylnaphthalene	ug/kg				
			2-Nitroaniline	ug/kg				
			3-Nitroaniline	ug/kg				
			4-Nitroaniline	ug/kg	-			
			Naphthalene	ug/kg	500000			
			Nitrobenzene	ug/kg	69000			
			N-Nitroso-di-n-propylamine	ug/kg	-			
			N-Nitrosodiphenylamine	ug/kg				
			Phenanthrene	ug/kg	500000			
			Pyrene	ug/kg	500000			
			1,2,4,5-Tetrachlorobenzene	ug/kg	-			
Nataa								

Notes The SCOs for unrestricted use were capped at a maximum value of 100 ppm. See Technical Support Document (TSD), section 9.3. For constituents where the calculated SCO was lower than the contract required quantitation limit (CRQL), the CRQL is used as the Track 1 SCO value.

For constituents where the calculated SCO was lower than the rural soil background concentration, as determined by the Department and Department of Health rural soil survey, the

rural soil background concentration is used as the Track 1 SCO value for this use of the site. Protection of ecological resources SCOs were not developed for contaminants identified in Table 375-6.8(b) with "NS". Where such contaminants appear in Table 375-6.8(a), the applicant may be required by the Department to calculate a protection of ecological resources SCO according to the TSD. Endosulfan SCO is the sum of endosulfan I, endosulfan II and endosulfan sulfate... The SCO is the lower of the values for mercury (elemental) or mercury (inorganic salts). See TSD Table 5.6-1.

Table 2AEnd-point Post-excavation Soil sample Analytical ResultsSummary of Volatile Organic Compounds

Client ID Lab Sample ID	NY Unrestricted	NY Commercial	BENCH01 JB15155-3	C1SP01 JB15405-8	C2SP01 JB15405-11	C2SP02 JB15405-12	C3SP01 JB15405-9	C3SP02 JB15405-10	C4SP01 JB14890-9	C5SP01 JB14890-7	C5SP02 JB14890-8	PX01-SW-5 JB14890-1	PX02-SW-5 JB14890-2	PX03-BT-10 JB14890-3
Date Sampled	Use Soil Cleanup Objectives	Use Soil Cleanup Objectives	8/30/2012	9/4/2012	9/4/2012	9/4/2012	9/4/2012	9/4/2012	8/28/2012	8/28/2012	8/28/2012	8/28/2012	8/28/2012	8/28/2012
	00)0011703	00/00/00	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
GC/MS Volatiles (µg/kg)														
Acetone	500000	500000	<1.9	<2.0	<1.8	<1.8	<2.0	<1.8	<2.3	14.7	13.3	<2.3	5.9 J	20.6
Benzene	44000	44000	<0.14	<0.14	<0.13	<0.13	<0.14	<0.12	1.0 J	<0.17	<0.15	0.76 J		<0.14
Bromodichloromethane	NS	NS	<0.12	<0.13	<0.11	<0.11	<0.13	<0.11	<0.14	<0.15	<0.13	<0.14	<0.13	<0.12
Bromoform	NS	NS	<0.17	<0.18	<0.16	<0.16	<0.18	<0.16	<0.20	<0.21	<0.19	<0.21	<0.19	<0.18
Bromomethane	NS	NS	<0.31	<0.33	<0.29	<0.30	<0.33	<0.29	<0.36	<0.38	<0.34	<0.37	<0.35	<0.32
2-Butanone (MEK)	500000	500000	<2.7	<2.9	<2.6	<2.6	<2.9	<2.5	<3.2	<3.4	<3.0	<3.3	<3.0	12.9
Carbon disulfide	NS	NS	<0.13	<0.14	<0.13	<0.13	<0.14	<0.12	<0.16	<0.16	1.2 J	<0.16	<0.15	1.5 J
Carbon tetrachloride	22000	22000	<0.15	<0.16	<0.14	<0.14	<0.16	<0.14	<0.18	<0.19	<0.17	<0.18	<0.17	<0.15
Chlorobenzene	500000	500000	<0.12	<0.13	<0.12	<0.12	<0.13	<0.11	<0.14	<0.15	<0.14	<0.15	<0.14	<0.13
Chloroethane	NS	NS	<0.26	<0.27	<0.24	<0.25	<0.27	<0.24	< 0.30	< 0.32	<0.28	<0.31	<0.29	1.9 J
Chloroform	350000	350000	< 0.094	<0.099	<0.088	<0.089	<0.099	<0.087	<0.11	0.73 J	0.79 J	<0.11	<0.11	0.56 J
Chloromethane	NS	NS	<0.21	<0.22	<0.20	<0.20	<0.22	<0.20	<0.25	<0.26	<0.23	<0.25	<0.24	<0.22
Dibromochloromethane	NS	NS	<0.19	<0.20	<0.18	<0.18	<0.20	<0.17	<0.22	<0.23	<0.21	<0.22	<0.21	<0.19
1,1-Dichloroethane	240000	240000	1.2 J	7.2	1.0 J	1.9 J	13.0	3.0 J	<0.18	3.1 J	214	<0.19	<0.17	1940
1,2-Dichloroethane	30000	30000	<0.15	0.65 J	0.78 J	1.7	1.2	0.76 J	<0.18	<0.19	2.9	<0.18	<0.17	13.8
1,1-Dichloroethene	500000	500000	1.6 J	2.0 J	0.43 J	0.90 J	5.8 J	1.5 J	< 0.34	2.5 J	2750	< 0.35	< 0.33	568
cis-1,2-Dichloroethene	500000	500000	0.92 J	0.61 J	0.37 J	1.1 J	0.54 J	0.41 J	<0.24	<0.26	1.2 J	<0.25	< 0.23	1.5 J
trans-1,2-Dichloroethene	500000	500000	0.61 J	0.50 J	<0.25	0.70 J	0.41 J	0.38 J	< 0.32	<0.33	2.2 J	< 0.32	< 0.30	<0.28
1,2-Dichloroethene (total)	NS	NS	1.5 J	1.1 J	0.37 J	1.8 J	0.95 J		<0.24	<0.26	3.4 J	<0.25	<0.23	1.5 J
1,2-Dichloropropane	NS	NS	<0.17	<0.18	<0.16	<0.17	<0.19	<0.16	<0.21	<0.22	<0.19	<0.21	<0.20	<0.18
cis-1,3-Dichloropropene	NS	NS	<0.16	<0.17	<0.15	<0.15	<0.17	<0.15	<0.19	<0.20	<0.17	<0.19	<0.18	<0.16
trans-1,3-Dichloropropene	NS	NS	<0.18	<0.19	<0.17	<0.17	<0.19	<0.16	<0.21	<0.22	<0.19	<0.21	<0.20	<0.18
Ethylbenzene	390000	390000	< 0.30	< 0.32	<0.28	<0.28	< 0.32	<0.28	< 0.35	<0.37	< 0.33	< 0.36	< 0.34	<0.31
2-Hexanone	NS	NS	<0.71	<0.75	<0.66	<0.67	<0.75	<0.65	<0.83	<0.87	<0.78	<0.85	<0.79	<0.72
Methyl Tert Butyl Ether	500000	500000	<0.27	<0.28	<0.25	<0.25	<0.28	<0.25	<0.31	<0.33	<0.29	< 0.32	< 0.30	<0.27
4-Methyl-2-pentanone(MIBK)	NS	NS	<0.85	<0.90	<0.80	<0.81	<0.90	<0.79	<1.0	<1.1	<0.94	<1.0	<0.96	<0.87
Methylene chloride	500000	500000	<1.4	<1.5	<1.4	<1.4	<1.5	<1.3	<1.7	<1.8	<1.6	<1.7	<1.6	<1.5
Styrene	NS	NS	<0.10	<0.11	<0.098	< 0.099	<0.11	<0.096	<0.12	<0.13	<0.11	<0.13	<0.12	<0.11
1,1,2,2-Tetrachloroethane	NS	NS	<0.15	<0.16	<0.14	<0.14	<0.16	<0.14	<0.18	<0.19	<0.17	<0.18	<0.17	<0.15
Tetrachloroethene	150000	150000	0.62 J	1.1 J	<0.18	0.33 J	1.6 J		<0.23	<0.24	1.1 J	<0.23	<0.22	0.68 J
Toluene	500000	500000	1.1	1.3	<0.11	<0.11	2.8	0.27 J	0.43 J	<0.15	1.2 J	0.33 J		17.1
1,1,1-Trichloroethane	680	500000	47.9	513	51.7	59.9	41900	166	1.6 J		29800	<0.14	6.1 J	
1,1,2-Trichloroethane	NS	NS	1.6 J	3.5 J	1.4 J	2.5 J	5.2 J		<0.23	< 0.24	<0.22	<0.14	<0.22	0.64 J
Trichloroethene	200000	200000	0.93 J	5.0 J	1.4 J	6.9	5.2 J		3.6 J	<0.24	1.7 J	<0.24	<0.22	2.2 J
Vinyl chloride	13000	13000	<0.16	<0.17	<0.15	<0.16	<0.17	<0.15	<0.19	<0.24	1.7 J		<0.22	9.7
Xylene (total)	500000	500000	<0.16	<0.17	<0.15	<0.10	<0.17	<0.15	<0.19	<0.20	<0.17	<0.20	<0.18	<0.16
Total Confident Conc.	00000	00000	57.98	535.96	57.65	77.73	41937.2	175.98	6.63	2601.03	32794.79	1.09	12	7572.58
			01.90	000.90	37.03	11.13	41931.2	170.90	0.03	2001.03	32194.19	1.09	12	1012.00

Notes:

Exceedances in Unrestricted Use SCOs highlighted in blue

NS - no standard

Table 2AEnd-point Post-excavation Soil sample Analytical ResultsSummary of Volatile Organic Compounds

Client ID Lab Sample ID	NY Unrestricted Use Soil Cleanup	NY Commercial Use Soil Cleanup	PX04-SW-5 JB14890-4	PX05-SW-6 JB14890-5	PX06-BT-10 JB14890-6	PX07BT-10 JB15155-1	PX08SW-7 JB15155-2	PX09SW-3 JB15405-1	PX10SW-5 JB15405-2	PX11BT-10 JB15405-3	PX12SW-7 JB15405-4	PX14SW-6 JB15405-6	PX15BT-10 JB15405-7
Date Sampled	Objectives	Objectives	8/28/2012	8/28/2012	8/28/2012	8/30/2012	8/30/2012	9/4/2012	9/4/2012	9/4/2012	9/4/2012	9/4/2012	9/4/2012
	05,001703	05,001703	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
GC/MS Volatiles (µg/kg)													
Acetone	500000	500000	<2.3	<2.2	4.0 J	27.5	<2.0	<2.2	<2.2	<2.0	<2.1	<1.9	13.6
Benzene	44000	44000	0.77 J	1.3	0.86 J	<0.15	9.9	2.6	2.7	<0.14	2.6 J	<0.13	<0.15
Bromodichloromethane	NS	NS	<0.14	<0.13	<0.13	<0.13	<0.13	<0.14	<0.14	<0.12	<0.13	<0.12	<0.13
Bromoform	NS	NS	<0.20	<0.19	<0.19	<0.19	<0.18	<0.20	<0.20	<0.18	<0.19	<0.17	<0.19
Bromomethane	NS	NS	<0.36	<0.35	<0.34	<0.35	<0.33	<0.36	<0.36	<0.32	<0.34	<0.30	<0.35
2-Butanone (MEK)	500000	500000	<3.2	<3.1	<3.0	<3.0	<2.9	<3.1	<3.2	<2.8	<3.0	<2.7	<3.1
Carbon disulfide	NS	NS	<0.16	<0.15	<0.14	<0.15	<0.14	<0.15	<0.16	<0.14	<0.15	<0.13	<0.15
Carbon tetrachloride	22000	22000	<0.18	<0.17	<0.16	<0.17	<0.16	<0.17	<0.18	<0.15	<0.17	<0.15	<0.17
Chlorobenzene	500000	500000	<0.14	<0.14	<0.13	<0.14	<0.13	<0.14	<0.14	<0.13	<0.13	<0.12	<0.14
Chloroethane	NS	NS	<0.30	<0.29	<0.28	136	<0.27	< 0.30	<0.30	<0.26	<0.28	<0.25	<0.29
Chloroform	350000	350000	<0.11	<0.11	<0.10	0.49 J	<0.10	<0.11	<0.11	< 0.096	<0.10	< 0.092	1.0 J
Chloromethane	NS	NS	<0.25	<0.24	<0.23	<0.24	<0.22	<0.24	<0.25	<0.22	<0.23	<0.21	<0.24
Dibromochloromethane	NS	NS	<0.22	<0.21	<0.20	<0.21	<0.20	<0.22	<0.22	<0.19	<0.20	<0.18	<0.21
1,1-Dichloroethane	240000	240000	<0.18	<0.18	<0.17	816	1.1 J	<0.18	1.8 J	<0.16	<0.17	0.87 J	8.3
1,2-Dichloroethane	30000	30000	<0.18	<0.17	<0.17	7.4	0.50 J	<0.18	<0.18	<0.16	<0.17	<0.15	0.60 J
1,1-Dichloroethene	500000	500000	1.0 J	< 0.33	< 0.32	34.5	<0.31	< 0.34	< 0.34	< 0.30	< 0.32	0.63 J	4.2 J
cis-1,2-Dichloroethene	500000	500000	<0.24	<0.24	<0.23	10.2	1.1 J	<0.24	<0.24	<0.21	<0.23	2.4 J	0.85 J
trans-1,2-Dichloroethene	500000	500000	<0.32	<0.31	<0.29	3.2 J	0.58 J	< 0.31	< 0.32	<0.28	< 0.30	2.1 J	0.58 J
1,2-Dichloroethene (total)	NS	NS	<0.24	<0.24	<0.23	13.4	1.6 J	<0.24	<0.24	<0.21	<0.23	4.4 J	1.4 J
1,2-Dichloropropane	NS	NS	<0.21	<0.20	<0.19	<0.20	<0.19	<0.20	<0.20	<0.18	< 0.19	<0.17	<0.20
cis-1,3-Dichloropropene	NS	NS	<0.19	<0.18	<0.17	<0.18	<0.17	<0.18	<0.18	<0.16	<0.17	<0.15	<0.18
trans-1,3-Dichloropropene	NS	NS	<0.21	<0.20	<0.19	<0.20	<0.19	<0.20	<0.21	<0.18	<0.19	<0.17	<0.20
Ethylbenzene	390000	390000	< 0.35	< 0.34	< 0.33	< 0.33	0.73 J	< 0.35	< 0.35	<0.31	< 0.33	<0.29	< 0.34
2-Hexanone	NS	NS	< 0.83	<0.80	<0.77	<0.79	<0.75	<0.82	<0.83	<0.72	<0.78	<0.69	<0.80
Methyl Tert Butyl Ether	500000	500000	<0.31	< 0.30	<0.29	< 0.30	<0.28	< 0.31	<0.31	<0.27	<0.29	<0.26	< 0.30
4-Methyl-2-pentanone(MIBK)	NS	NS	<1.0	< 0.96	< 0.93	< 0.96	<0.91	<0.99	<1.0	<0.87	< 0.94	<0.83	< 0.96
Methylene chloride	500000	500000	<1.7	<1.6	<1.6	<1.6	<1.5	<1.7	<1.7	<1.5	<1.6	<1.4	<1.6
Styrene	NS	NS	<0.12	<0.12	<0.11	<0.12	<0.11	<0.12	<0.12	<0.11	<0.11	<0.10	<0.12
1,1,2,2-Tetrachloroethane	NS	NS	<0.18	<0.17	<0.16	<0.17	<0.16	<0.17	<0.18	<0.15	<0.16	<0.15	<0.17
Tetrachloroethene	150000	150000	<0.23	<0.22	<0.21	1.6 J	0.44 J	<0.23	0.54 J	<0.20	<0.21	0.59 J	0.79 J
Toluene	500000	500000	0.35 J	0.53 J	<0.13	2.7	4.1	1.1 J		<0.12	1.1 J		0.58 J
1,1,1-Trichloroethane	680	500000	0.49 J	3.2 J	0.52 J	519	38.4	68.5	67.1	10.9	5.1	29.3	149
1,1,2-Trichloroethane	NS	NS	<0.23	<0.22	<0.22	3.8 J	4.6 J	<0.23	<0.23	0.83 J	<0.22	5.9	1.5 J
Trichloroethene	200000	200000	<0.23	<0.22 4.5 J	<0.22	20.5	4.0 J 2.4 J	<0.23 2.0 J		0.83 J 2.2 J	<0.22	4.0 J	4.7 J
Vinyl chloride	13000	13000	<0.23 <0.19	4.5 J <0.18	<0.22 <0.18	20.5 2.0 J		<0.19	<0.19	<0.17	<0.18	4.0 J <0.16	<0.18
-							<0.17						
Xylene (total)	500000	500000	< 0.19	< 0.18	< 0.17	<0.18	1.7	<0.18	<0.18	<0.16	<0.17	<0.15	< 0.18
Total Confident Conc.		1	2.61	9.53	5.38	1598.29	67.15	74.2	74.94	13.93	11.3	50.19	187.1

Notes:

Exceedances in Unrestricted Use SCOs highlighted in blue

NS - no standard

Table 2B End-point Post-treatment Soil sample Analytical Results Summary of Volatile Organic Compounds

Client ID Lab Sample ID	NY Unrestricted	NY Commercial	1.1 (12.5-13) JB32749-4	1.1 (13-13.5) JB32749-5	1.1 (14.5-15) JB32749-6	1.2 (11-11.5) JB32749-8	1.2 (13-13.5) JB32749-7	1.2 (14-14.5) JB32749-9	2.1 (10-10.5) JB32749-12	2.1 (11.5-12) JB32749-11	2.1 (12.5-13) JB32749-10	2.2 (11-11.5) JB32749-14	2.2 (12.5-13) JB32749-13
Date Sampled	Use Soil Cleanup	Use Soil Cleanup	3/27/2013	3/27/2013	3/27/2013	3/27/2013	3/27/2013	3/27/2013	3/27/2013	3/27/2013	3/27/2013	3/27/2013	3/27/2013
	Objectives	Objectives	Result Q			Result Q			Result Q				
GC/MS Volatiles (µg/kg)													
Acetone	500000	500000	<140	10.9 J	<2.2	30.1	27.2	<350	22.6	62.4	<130	<3800	<140
Benzene	44000	44000	<9.9	<0.14	<0.15	<0.17	<0.17	<25	<0.23	0.66 J	<9.1	<270	<10
Bromodichloromethane	NS	NS	<8.7	<0.12	<0.14	<0.15	<0.15	<22	<0.20	<0.17	<8.1	<230	<8.9
Bromoform	NS	NS	<13	<0.17	<0.20	<0.22	<0.21	<31	<0.29	<0.25	<12	<340	<13
Bromomethane	NS	NS	<23	<0.31	<0.36	<0.40	<0.38	<56	<0.52	<0.45	<21	<610	<23
2-Butanone (MEK)	500000	500000	<200	<2.8	<3.1	21.8	29.0	<490	<4.5	47.9	893	<5300	<200
Carbon disulfide	NS	NS	<9.7	1.8 J	2.2 J	1.5 J	1.1 J	<24	1.9 J	3.4 J	48.1 J	<260	<10
Carbon tetrachloride	22000	22000	<11	<0.15	<0.17	<0.19	<0.19	<27	<0.25	<0.22	<10	<300	<11
Chlorobenzene	500000	500000	<9.0	<0.12	<0.14	<0.16	<0.15	<22	<0.21	<0.18	<8.3	<240	<9.2
Chloroethane	NS	NS	<19	25.4	54.7	659 J	480 J	2960	14.5	5230	3530	<510	<19
Chloroform	350000	350000	<6.9	<0.095	<0.11	<0.12	<0.12	<17	5.6 J	<0.14	<6.3	<180	<7.0
Chloromethane	NS	NS	<15	<0.21	<0.24	<0.27	<0.26	<38	< 0.35	<0.31	<14	<410	<16
Dibromochloromethane	NS	NS	<14	<0.19	<0.21	<0.24	<0.23	<34	<0.31	<0.27	<13	<370	<14
1,1-Dichloroethane	240000	240000	1080	183	79.4	6220	3950	34000	121	11100	34900	6040 J	3660
1,2-Dichloroethane	30000	30000	232	1.0 J	<0.18	11.9	14.2	786	20.7	27.7	1590	<300	179
1,1-Dichloroethene	500000	500000	1140	32.0	15.3	85.3	41.7	1620	42.7	70.5	2150	14000	2310
cis-1,2-Dichloroethene	500000	500000	83.2 J	<0.21	<0.24	0.63 J	0.77 J	<38	7.9 J	10.1	374 J	<410	31.6 J
trans-1,2-Dichloroethene	500000	500000	101 J	<0.27	1.3 J	<0.35	0.47 J	<49	6.5 J	6.1 J	294 J	<530	<20
1,2-Dichloroethene (total)	NS	NS	184 J	<0.21	1.3 J	0.63 J	1.2 J	<38	14.3	16.1	668	<410	31.6 J
1,2-Dichloropropane	NS	NS	<13	<0.18	<0.20	<0.22	<0.22	<32	<0.29	<0.25	<12	<340	<13
cis-1,3-Dichloropropene	NS	NS	<12	<0.16	<0.18	<0.20	<0.19	<29	<0.26	<0.23	<11	<310	<12
trans-1,3-Dichloropropene	NS	NS	<13	<0.18	<0.20	<0.23	<0.22	<32	<0.29	<0.26	<12	<350	<13
Ethylbenzene	390000	390000	<22	<0.30	<0.34	0.80 J	<0.37	<54	2.0	<0.44	<20	<590	<22
2-Hexanone	NS	NS	<52	<0.72	<0.81	<0.90	<0.87	<130	<1.2	<1.0	<48	<1400	<53
Methyl Tert Butyl Ether	500000	500000	<20	<0.27	<0.31	<0.34	<0.33	<48	<0.45	<0.39	<18	<520	<20
4-Methyl-2-pentanone(MIBK)	NS	NS	<62	<0.86	<0.98	<1.1	<1.1	<150	<1.4	<1.2	<58	<1700	<64
Methylene chloride	500000	500000	<110	4.4 J	2.1 J	5.2 J	2.8 J	<260	6.5 J	4.5 J	<97	<2800	<110
Styrene	NS	NS	<7.6	<0.11	<0.12	<0.13	<0.13	<19	<0.17	<0.15	<7.0	<200	<7.8
1,1,2,2-Tetrachloroethane	NS	NS	<11	<0.15	<0.17	<0.19	<0.18	<27	<0.25	<0.22	<10	<290	<11
Tetrachloroethene	150000	150000	37.9 J	<0.20	<0.22	<0.25	<0.24	<35	2.3 J	2.3 J	288 J	<380	58.5 J
Toluene	500000	500000	109	0.43 J	1.0 J	2.3	5.7	184 J	4.6	5.6	2280	1600 J	284
1,1,1-Trichloroethane	680	500000	18700	2860	144	1560	2130	4690	12600	179	42300	398000	70700
1,1,2-Trichloroethane	NS	NS	<14	<0.20	<0.23	0.57 J	0.84 J	<36	3.0 J	3.0 J	39.1 J	<390	<15
Trichloroethene	200000	200000	1130	0.81 J	0.90 J	1.6 J	0.89 J	<36	32.1	19.5	1180	2040 J	337 J
Vinyl chloride	13000	13000	<12	<0.17	0.77 J	7.9	10.9	<30	<0.27	12.9	<11	<320	<12
Xylene (total)	500000	500000	<12	<0.16	<0.18	0.65 J	<0.19	<29	8.4	<0.23	83.5	<310	<12
Total Confident Conc.			22797.1	3119.74	302.97	8609.88	6696.77	44240	12916.6	16801.66	90617.7	421680	77591.7

Notes:

Exceedances in Unrestricted Use SCOs highlighted in blue

NS - no standard

Table 2B End-point Post-treatment Soil sample Analytical Results Summary of Volatile Organic Compounds

Client ID Lab Sample ID Date Sampled	NY Unrestricted Use Soil Cleanup Objectives	NY Commercial Use Soil Cleanup Objectives	2.2 (14-14.5) JB32749-15 3/27/2013 Result Q	3 (12.5-13) JB32749-18 3/27/2013 Result Q	3 (13.5-14) JB32749-16 3/27/2013 Result Q	3 (14.5-15) JB32749-17 3/27/2013 Result Q	4 (10-10.5) JB32749-20 3/27/2013	4 (11-11.5) JB32749-19 3/27/2013 Result 0	4 (14.5-15) JB32749-21 3/27/2013	5 (13.5-14) JB32749-22 3/27/2013	5 (14-14.5) JB32749-23 3/27/2013	5 (14.5-15) JB32749-24 3/27/2013 Result 0	6 (11.5-12) JB32749-25 3/27/2013	6 (12.5-13) JB32749-26 3/27/2013
GC/MS Volatiles (µg/kg)		-	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
Acetone	500000	500000	82.2	<200	<190	<130	13.0 J	10.9	14.6	4.6 J	19.2	37.1	<2.2	4.9 J
Benzene	44000	44000	< 0.097	<14	<13	<8.8	<0.23	<0.10	<0.15	<0.14	<0.11	<0.12	<0.16	<0.12
Bromodichloromethane	NS	NS	< 0.086	<13	<12	<7.8	<0.20	<0.088	<0.13	<0.12	<0.10	<0.11	<0.14	<0.11
Bromoform	NS	NS	<0.12	<18	<17	<11	<0.29	<0.13	<0.19	<0.18	<0.15	<0.16	<0.20	<0.15
Bromomethane	NS	NS	<0.22	<33	<30	<20	<0.52	<0.23	<0.35	<0.32	<0.26	<0.29	<0.36	<0.28
2-Butanone (MEK)	500000	500000	129	<290	<270	<180	<4.6	<2.0	40.1	<2.8	<2.3	<2.5	<3.1	<2.4
Carbon disulfide	NS	NS	1.9 J	<14	<13	<8.7	1.3 J	1.1 J	<0.15	<0.14	0.65 J	<0.12	<0.15	<0.12
Carbon tetrachloride	22000	22000	<0.11	<16	<15	<9.9	<0.25	<0.11	<0.17	<0.16	<0.13	<0.14	<0.17	<0.14
Chlorobenzene	500000	500000	<0.088	<13	<12	<8.0	<0.21	<0.090	<0.14	<0.13	<0.10	<0.11	<0.14	<0.11
Chloroethane	NS	NS	46.2	94.4 J	143 J	953	<0.43	3.4 J		<0.27	0.91 J	1.3 J	<0.30	<0.23
Chloroform	350000	350000	< 0.067	<10	<9.2	<6.1	0.50 J	<0.069	<0.10	<0.097	<0.079	<0.086	<0.11	<0.084
Chloromethane	NS	NS	<0.15	<23	<21	<14	<0.36	<0.16	<0.24	<0.22	<0.18	<0.19	<0.24	<0.19
Dibromochloromethane	NS	NS	< 0.13	<20	<18	<12	< 0.31	<0.14	<0.21	<0.19	<0.16	<0.17	<0.21	<0.17
1.1-Dichloroethane	240000	240000	12100	410 J	459 J	5820	9.6	2000	6470	15.0	42.9	54.3	<0.18	2.0 J
1,2-Dichloroethane	30000	30000	34.0	134	<15	165	2.3	4.4	<0.17	1.2	<0.13	<0.14	<0.18	2.8
1,1-Dichloroethene	500000	500000	72.4	659	293 J	423	31.4	1650	0.43 J	9.3	21.4	30.8	< 0.34	6.1
cis-1,2-Dichloroethene	500000	500000	3.7 J	104 J	<20	44.6 J	1.0 J	2.6 J	<0.23	0.36 J	<0.18	0.33 J	<0.24	1.2 J
trans-1,2-Dichloroethene	500000	500000	0.86 J	108 J	<27	81.2 J	0.67 J	0.43 J		<0.28	< 0.23	<0.25	<0.31	1.2 J
1,2-Dichloroethene (total)	NS	NS	4.6	212 J	<20	126 J	1.7 J	3.0 J		0.36 J	<0.18	0.33 J	< 0.24	2.4 J
1,2-Dichloropropane	NS	NS	<0.13	<19	<17	<11	<0.29	<0.13	<0.20	<0.18	<0.15	<0.16	<0.20	<0.16
cis-1,3-Dichloropropene	NS	NS	<0.11	<17	<16	<10	<0.27	<0.12	<0.18	<0.16	<0.13	<0.15	<0.18	<0.14
trans-1,3-Dichloropropene	NS	NS	<0.13	<19	<17	<11	< 0.30	<0.13	<0.20	<0.18	<0.15	<0.16	<0.20	<0.16
Ethylbenzene	390000	390000	<0.21	<32	<29	<20	<0.50	<0.22	< 0.33	<0.31	<0.25	<0.28	< 0.34	<0.27
2-Hexanone	NS	NS	<0.51	<75	<69	<46	<1.2	<0.52	<0.79	<0.73	<0.60	<0.65	<0.81	<0.64
Methyl Tert Butyl Ether	500000	500000	<0.19	<28	<26	<17	<0.45	<0.20	< 0.30	<0.28	<0.23	<0.25	<0.31	<0.24
4-Methyl-2-pentanone(MIBK)	NS	NS	<0.61	<91	<84	<56	<1.4	<0.63	<0.95	<0.89	<0.72	<0.79	<0.98	<0.77
Methylene chloride	500000	500000	2.8 J	<150	<140	<94	15.1	4.0 J	12.4	2.7 J	<1.2	1.6 J	2.9 J	4.1 J
Styrene	NS	NS	<0.075	<11	<10	<6.8	<0.18	< 0.077	<0.12	<0.11	<0.088	< 0.096	<0.12	<0.094
1,1,2,2-Tetrachloroethane	NS	NS	<0.11	<16	<15	<9.8	<0.25	<0.11	<0.17	<0.16	<0.13	<0.14	<0.17	<0.13
Tetrachloroethene	150000	150000	<0.14	<21	<19	<13	0.99 J	<0.14	<0.22	<0.20	<0.17	<0.18	<0.23	<0.18
Toluene	500000	500000	1.4	<13	36.2 J	462	<0.20	<0.088	<0.13	<0.12	<0.10	<0.11	<0.14	<0.11
1,1,1-Trichloroethane	680	500000	617 J	1270	1500	2320	89.0	88.1	3.9 J	3480	1220	2090	2.9 J	41.5
1,1,2-Trichloroethane	NS	NS	1.6 J	<21	<19	<13	<0.33	<0.15	<0.22	0.44 J	<0.17	<0.18	<0.23	<0.18
Trichloroethene	200000	200000	0.39 J	279 J	175 J	55.3 J	3.5 J	0.45 J		2.0 J	<0.17	<0.18	<0.23	5.0 J
Vinyl chloride	13000	13000	3.4 J	<17	<16	<11	<0.28	1.8 J		<0.17	1.3 J		<0.19	<0.15
Xylene (total)	500000	500000	<0.11	<17	<16	<10	<0.27	<0.12	<0.18	<0.16	<0.13	<0.15	<0.18	<0.14
Total Confident Conc.			13101.45	3270.4	2606.2	10450.1	170.06	3770.18	7733.83	3515.96	1306.36	2216.96	5.8	71.2

Notes:

Exceedances in Unrestricted Use SCOs highlighted in blue

NS - no standard

Table 2B End-point Post-treatment Soil sample Analytical Results Summary of Volatile Organic Compounds

Client ID	NY Unrestricted	NY Commercial	6 (14.5-15)	. ,	FD-2 6(14.5-15)
Lab Sample ID Date Sampled	Use Soil Cleanup	Use Soil Cleanup	JB32749-27 3/27/2013	JB32749-28 3/27/2013	JB32749-29 3/27/2013
Date Sampled	Objectives	Objectives	Result Q	Result Q	Result Q
GC/MS Volatiles (µg/kg)					Hoodit Q
Acetone	500000	500000	<2.0	<1.8	<1.2
Benzene	44000	44000	<0.14	<0.13	<0.085
Bromodichloromethane	NS	NS	<0.12	<0.11	<0.075
Bromoform	NS	NS	<0.18	<0.16	<0.11
Bromomethane	NS	NS	< 0.32	<0.29	<0.20
2-Butanone (MEK)	500000	500000	<2.8	<2.6	<1.7
Carbon disulfide	NS	NS	<0.14	<0.13	<0.084
Carbon tetrachloride	22000	22000	<0.16	<0.14	<0.095
Chlorobenzene	500000	500000	<0.13	<0.12	<0.078
Chloroethane	NS	NS	<0.27	<0.24	<0.16
Chloroform	350000	350000	<0.097	<0.089	<0.059
Chloromethane	NS	NS	<0.22	<0.20	<0.13
Dibromochloromethane	NS	NS	<0.19	<0.18	<0.12
1,1-Dichloroethane	240000	240000	3.5 J	<0.15	0.71 J
1,2-Dichloroethane	30000	30000	<0.16	<0.15	<0.097
1,1-Dichloroethene	500000	500000	< 0.30	<0.28	<0.18
cis-1,2-Dichloroethene	500000	500000	<0.21	<0.20	<0.13
trans-1,2-Dichloroethene	500000	500000	<0.28	<0.26	<0.17
1,2-Dichloroethene (total)	NS	NS	<0.21	<0.20	<0.13
1,2-Dichloropropane	NS	NS	<0.18	<0.17	<0.11
cis-1,3-Dichloropropene	NS	NS	<0.16	<0.15	<0.10
trans-1,3-Dichloropropene	NS	NS	<0.18	<0.17	<0.11
Ethylbenzene	390000	390000	<0.31	<0.28	<0.19
2-Hexanone	NS	NS	<0.73	<0.67	<0.45
Methyl Tert Butyl Ether	500000	500000	<0.28	<0.25	<0.17
4-Methyl-2-pentanone(MIBK)	NS	NS	<0.88	<0.81	<0.54
Methylene chloride	500000	500000	<1.5	3.2 J	<0.91
Styrene	NS	NS	<0.11	<0.099	<0.066
1,1,2,2-Tetrachloroethane	NS	NS	<0.15	<0.14	<0.095
Tetrachloroethene	150000	150000	<0.20	<0.18	<0.12
Toluene	500000	500000	<0.12	<0.11	<0.075
1,1,1-Trichloroethane	680	500000	0.93 J	3.6 J	3.6
1,1,2-Trichloroethane	NS	NS	<0.20	<0.19	<0.12
Trichloroethene	200000	200000	<0.20	0.89 J	<0.12
Vinyl chloride	13000	13000	<0.17	<0.15	<0.10
Xylene (total)	500000	500000	<0.16	<0.15	<0.10
Total Confident Conc.			4.43	7.69	4.31

Notes:

Exceedances in Unrestricted Use SCOs highlighted in blue

NS - no standard

Table 3

Groundwater Analytical Results

AFFCO, 361 Walsh Avenue, New Windsor, NY

				Pre-Excavation					Post-Excavation							
Client Sample ID:			EW-0	MW-1	E-1 NEW	IW-3	IW-1	S-8	IW-2	EW-1X	S-8	EW-0	E1-NEW	MW-1	FB041713	TRIP BLAN
Lab Sample ID:		NY TOGS	JB10868-1	JB10868-2	JB10868-3	JB10868-4	JB10868-5	JB10868-6	JB10868-7	JB34670-1	JB34670-2	JB34670-3	JB34670-4	JB34670-5	JB34670-6	JB34670-7
Date Sampled:	Units	Class GA GW	7/10/2012	7/10/2012	7/10/2012	7/10/2012	7/10/2012	7/10/2012	7/10/2012	4/17/2013	4/17/2013	4/17/2013	4/17/2013	4/17/2013	4/17/2013	4/17/2013
		Standards	Ground	Ground	Ground	Ground	Ground	Ground	Ground	Ground	Ground	Ground	Ground	Ground	Field Blank	Trip Blank
Matrix:			Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	FIEID DIAIIK	пр ыапк
GC/MS Volatiles (SW846 8260					-											
Acetone	ug/l	-	ND (330)	ND (8.2)	ND (3.3)	7980	143 J	ND (3.3)	1600	ND (33)	ND (3.3)	ND (3.3)	ND (3.3)	ND (16)	ND (3.3)	ND (3.3)
Benzene	ug/l	1	ND (24)	ND (0.59)	ND (0.24)	ND (12)	ND (4.7)	ND (0.24)	ND (5.9)	ND (2.4)	ND (0.24)	ND (0.24)	ND (0.24)	ND (1.2)	ND (0.24)	ND (0.24)
Bromodichloromethane	ug/l	-	ND (21)	ND (0.52)	ND (0.21)	ND (10)	ND (4.1)	ND (0.21)	ND (5.2)	ND (2.1)	ND (0.21)	ND (0.21)	ND (0.21)	ND (1.0)	ND (0.21)	ND (0.21)
Bromoform	ug/l	-	ND (21)	ND (0.54)	ND (0.21)	ND (11)	ND (4.3)	ND (0.21)	ND (5.4)	ND (2.1)	ND (0.21)	ND (0.21)	ND (0.21)	ND (1.1)	ND (0.21)	ND (0.21)
Bromomethane	ug/l	5	ND (22)	ND (0.55)	ND (0.22)	ND (11)	ND (4.4)	ND (0.22)	ND (5.5)	ND (2.2)	ND (0.22)	ND (0.22)	ND (0.22)	ND (1.1)	ND (0.22)	ND (0.22)
2-Butanone (MEK)	ug/l	-	ND (240)	ND (5.9)	ND (2.4)	18900	114 J	ND (2.4)	4210	ND (24)	ND (2.4)	14.1	ND (2.4)	ND (12)	ND (2.4)	ND (2.4)
Carbon disulfide	ug/l	60	ND (19)	ND (0.47)	ND (0.19)	ND (9.5)	ND (3.8)	ND (0.19)	ND (4.7)	ND (1.9)	ND (0.19)	ND (0.19)	ND (0.19)	ND (0.95)	ND (0.19)	ND (0.19)
Carbon tetrachloride	ug/l	5	ND (22)	ND (0.54)	ND (0.22)	ND (11)	ND (4.3)	ND (0.22)	ND (5.4)	ND (2.2)	ND (0.22)	ND (0.22)	ND (0.22)	ND (1.1)	ND (0.22)	ND (0.22)
Chlorobenzene	ug/l	5	ND (23)	ND (0.57)	ND (0.23)	ND (11)	ND (4.6)	ND (0.23)	ND (5.7)	ND (2.3)	ND (0.23)	ND (0.23)	ND (0.23)	ND (1.1)	ND (0.23)	ND (0.23)
Chloroethane	ug/l	5	1240	641	ND (0.26)	90.3	904	57	80.6	ND (2.6)	ND (0.26)	334	73.9	136	ND (0.26)	ND (0.26)
Chloroform	ug/l	/	ND (20)	ND (0.51)	ND (0.20)	ND (10)	ND (4.1)	ND (0.20)	ND (5.1)	ND (2.0)	ND (0.20)	1.2	ND (0.20)	3.1 J	ND (0.20)	ND (0.20)
Chloromethane	ug/l	5	ND (21)	ND (0.52)	ND (0.21)	ND (10)	ND (4.1)	ND (0.21)	ND (5.2)	ND (2.1)	ND (0.21)	ND (0.21)	ND (0.21)	ND (1.0)	ND (0.21)	ND (0.21)
Dibromochloromethane	ug/l	-	ND (14)	ND (0.34)	ND (0.14)	ND (6.8)	ND (2.7)	ND (0.14)	ND (3.4)	ND (1.4)	ND (0.14)	ND (0.14)	ND (0.14)	ND (0.68)	ND (0.14)	ND (0.14)
1,1-Dichloroethane	ug/l	5	36100	146	18	119	2540	145	327	22.9	11.8	2540	154	438	ND (0.11)	ND (0.11)
1,2-Dichloroethane	ug/l	0.6	233	4.8	1.7	ND (13)	60.5		ND (6.5)	ND (2.6)		17.5	ND (0.26)	5.2	ND (0.26)	ND (0.26)
1,1-Dichloroethene	ug/l	5	562	6	4.5	-	69.2	4.1	28.3	ND (1.9)	3.5	144	5	36.6	ND (0.19)	ND (0.19)
cis-1,2-Dichloroethene	ug/l	5	ND (19)			ND (9.4)	7.3 J		ND (4.7)	ND (1.9)		2.8	ND (0.19)	ND (0.94)	ND (0.19)	ND (0.19)
trans-1,2-Dichloroethene	ug/l	5	ND (21)	ND (0.53)		ND (11)	ND (4.2)	ND (0.21)	ND (5.3)	ND (2.1)	ND (0.21)	2.2	ND (0.21)	ND (1.1)	ND (0.21)	ND (0.21)
1,2-Dichloroethene (total)	ug/l	-	ND (19)		1.1	ND (9.4)			ND (4.7)	ND (1.9)		5	ND (0.19)	ND (0.94)	ND (0.19)	ND (0.19)
1,2-Dichloropropane	ug/l	1	ND (48)	ND (1.2)	ND (0.48)	ND (24)	ND (9.7)	ND (0.48)	ND (12)	ND (4.8)	ND (0.48)	ND (0.48)	ND (0.48)	ND (2.4)	ND (0.48)	ND (0.48)
cis-1,3-Dichloropropene	ug/l	-	ND (21) ND (19)	ND (0.52)	ND (0.21) ND (0.19)	ND (10)	ND (4.1)	ND (0.21) ND (0.19)	ND (5.2) ND (4.7)	ND (2.1) ND (1.9)	ND (0.21) ND (0.19)	ND (0.21) ND (0.19)	ND (0.21) ND (0.19)	ND (1.0) ND (0.95)	ND (0.21)	ND (0.21)
trans-1,3-Dichloropropene	ug/l	-	(.)	ND (0.47)	()	ND (9.5)	ND (3.8)	()		(-)	(2 - 2)	()	()	()	ND (0.19)	ND (0.19)
Ethylbenzene 2-Hexanone	ug/l	5	ND (23) ND (110)	ND (0.57) ND (2.8)	ND (0.23) ND (1.1)	ND (11) ND (57)	ND (4.6) ND (23)	ND (0.23) ND (1.1)	ND (5.7)	ND (2.3) ND (11)	ND (0.23) ND (1.1)	ND (0.23) ND (1.1)	ND (0.23) ND (1.1)	ND (1.1)	ND (0.23) ND (1.1)	ND (0.23) ND (1.1)
Z-Hexanone Methyl Tert Butyl Ether	ug/l	- 10	ND (110) ND (16)	ND (2.8) ND (0.41)	ND (1.1) ND (0.16)			ND (1.1) ND (0.16)	ND (28) ND (4.1)	ND (11) ND (1.6)	ND (1.1) ND (0.16)	ND (1.1) ND (0.16)	ND (1.1) ND (0.16)	ND (5.7) ND (0.82)	ND (1.1) ND (0.16)	ND (1.1) ND (0.16)
	ug/l	-		ND (0.41) ND (2.1)	ND (0.16) ND (0.83)	ND (8.2) ND (41)	ND (3.3) ND (17)	ND (0.16) ND (0.83)					ND (0.16) ND (0.83)		ND (0.16) ND (0.83)	
4-Methyl-2-pentanone(MIBK) Methylene chloride	ug/l ug/l	- 5	ND (83) ND (70)	ND (2.1) ND (1.8)	ND (0.83) ND (0.70)	ND (41) ND (35)	ND (17) ND (14)	ND (0.83) ND (0.70)	ND (21) ND (18)	ND (8.3) ND (7.0)	ND (0.83) ND (0.70)	ND (0.83) ND (0.70)	ND (0.83) ND (0.70)	ND (4.1) ND (3.5)	ND (0.83) ND (0.70)	ND (0.83) ND (0.70)
Styrene	ug/l	5	ND (70) ND (21)	ND (1.8) ND (0.54)	ND (0.70)	ND (35)	ND (14) ND (4.3)	ND (0.70) ND (0.21)	ND (18) ND (5.4)	ND (7.0) ND (2.1)	ND (0.70) ND (0.21)	ND (0.70) ND (0.21)	ND (0.21)	ND (3.5) ND (1.1)	ND (0.21)	ND (0.70)
1,1,2,2-Tetrachloroethane	ug/l	5	ND (21) ND (21)	ND (0.54)	ND (0.21)	ND (11)	ND (4.3)	ND (0.21)	ND (5.4) ND (5.4)	ND (2.1) ND (2.1)	ND (0.21)	ND (0.21)	ND (0.21) ND (0.21)	ND (1.1)	ND (0.21)	ND (0.21)
Tetrachloroethene	ug/l	5	ND (21)	ND (0.70)	ND (0.21)	ND (14)	ND (4.3)	ND (0.21)	ND (7.0)	ND (2.1) ND (2.8)	ND (0.21)		ND (0.28)	ND (1.4)	ND (0.21)	ND (0.28)
Toluene	ug/l	5		ND (0.57)	ND (0.23)	ND (14)	ND (4.5)	ND (0.23)	ND (7.0)	ND (2.3)	ND (0.23)	0.0 J	ND (0.23)	1.6 J	ND (0.23)	ND (0.23)
1,1,1-Trichloroethane	ug/l	5	48300	82.4	2	312	1420	30.5	891	ND (2.3) ND (2.4)	1.4	o 8630	ND (0.23) 48.4	1.6 J	ND (0.23)	ND (0.23)
1.1.2-Trichloroethane	ug/i ug/i	1		ND (0.72)	Z ND (0.29)	ND (14)	ND (5.7)	ND (0.29)	ND (7.2)	ND (2.4) ND (2.9)	1.4 ND (0.29)	2.3	40.4 ND (0.29)	ND (1.4)	ND (0.24)	ND (0.24)
Trichloroethene	ug/i ug/i	5	34.3 J ND (22)		1.7	ND (14) ND (11)	8.7 J	ND (0.29)	ND (7.2) ND (5.4)	ND (2.9) ND (2.2)	1.1	4	ND (0.29) ND (0.22)	6.2	ND (0.29)	ND (0.29)
Vinyl chloride	ug/i ug/i	2	ND (22) ND (21)		0.65 J	ND (10)	ND (4.1)	0.65 J	ND (5.4) ND (5.2)	ND (2.2) ND (2.1)	ND (0.21)	4	ND (0.22) ND (0.21)	ND (1.0)	ND (0.22) ND (0.21)	ND (0.22) ND (0.21)
Xylene (total)	ug/l	5	ND (21)	ND (0.60)	ND (0.24)	ND (10)	ND (4.1)	ND (0.24)	ND (5.2) ND (6.0)	ND (2.1) ND (2.4)	ND (0.21)	4.0 ND (0.24)	ND (0.24)	ND (1.2)	ND (0.24)	ND (0.24)
	ugn	5	(27)	14D (0.00)	110 (0.24)	110 (12)	110 (4.0)	110 (0.24)	110 (0.0)	(2.7)	110 (0.24)	(0.24)	(0.24)	112 (1.2)	110 (0.24)	14D (0.24)
Metals Analysis			1							1						
Iron	ug/l	300	-	-	-	-	-	-	-	934000	5790	546	804	805	18500	
	ugn	500	-	-	-	-	-	-	-	004000	0130	0+0	00-1	000	10000	-
General Chemistry			1							1						
Alkalinity, Total as CaCO3	mg/l			-		г. –	-	-		89.2	111	124	260	274	<5.0	T -
Chloride	ma/l	250	-	-			-	-	-	69.2 52.6	43.8	124	37.1	57.1	<2.0	-
Sulfate	mg/l	250	-	-			-	-	-	29.2	43.0	93.8	<10	104	<10	-
Sulfide	~	250		-	-	-	-	-	-	23.2	<2.0	93.8 <2.0	<10	<2.0	<2.0	-
Suillue	mg/l	-	-	-			-	-	-	I-	<2.0	<2.0	<2.0	<2.0	<2.0	1 -

Notes

Exceedances **bolded** and highlighted in gray

ND - concentration is non-detectable

J - value is estimated

Sample JB10868-3 was originally mislabeled 'E-1 NAW'

Sample JB34670-4 was originally mislabeled 'E-1 N'

Sample JB34670-5 was originally mislabeled 'MW-1N'

APPENDIX C

Community Air Monitoring Certification

TOPIC: AIR MONITORING CERTIFICATE OF COMPLIANCE

I, Corey Smith certify that air monitoring was executed in accordance with the Site-specific Health and Safety Plan and Community Air Monitoring Plan during the excavation remedial action at American Felt and Filter Company between August and September of 2012. During that time which no sustained volatile organic compound concentrations above action levels were found and no response actions were required during operations.

long doints

Corey Smith Industrial Engineer/ Safety Manager American Felt and Filter Company 361 Walsh Ave, New Windsor, NY 12553 (845) 561-3560

APPENDIX D

Raw Analytical Laboratory Data

05/21/13

Technical Report for

Fleming-Lee Shue, Inc. AFFCO, 361 Walsh Avenue, New Windsor, NY 10000-003 / PO#FP0099 Accutest Job Number: JB15405

Sampling Dates: 08/28/12 - 09/04/12

Report to:

Fleming-Lee Shue, Inc.

raphael@flemingleeshue.com

ATTN: Raphael Rosenbaum

Total number of pages in report: 70

Mancy F. Cole

Nancy Cole Laboratory Director

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Tammy McCloskey 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, MI, MT, NC, OH VAP (CL0056), PA, RI, SC, TN, VA, WV

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

New Jersey • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499 • http://www.accutest.com

Table of Contents

_

N

ω

4

G

-1-

-1-	•
Section 1: Sample Summary	
Section 2: Case Narrative/Conformance Summary	
Section 3: Summary of Hits	
Section 4: Sample Results	
4.1: JB14890-1: PX01-SW-5	-
4.2: JB14890-2: PX02-SW-5	
4.3: JB14890-3: PX03-BT-10	-
4.4: JB14890-4: PX04-SW-5	
4.5: JB14890-5: PX05-SW-6	
4.6: JB14890-6: PX06-BT-10	-
4.7: JB14890-7: C5SP01	
4.8: JB14890-8: C5SP02	
4.9: JB14890-9: C4SP01	-
4.10: JB15155-1: PX07BT-10	
4.11: JB15155-2: PX08SW-7	
4.12: JB15155-3: BENCH01	
4.13: JB15405-1: PX09SW-3	
4.14: JB15405-2: PX10SW-5	41
4.15: JB15405-3: PX11BT-10	-
4.16: JB15405-4: PX12SW-7	45
4.17: JB15405-5: PX13SW-7	47
4.18: JB15405-6: PX14SW-6	49
4.19: JB15405-7: PX15BT-10	51
4.20: JB15405-8: C1SP01	53
4.21: JB15405-9: C3SP01	55
4.22: JB15405-10: C3SP02	57
4.23: JB15405-11: C2SP01	59
4.24: JB15405-12: C2SP02	61
Section 5: Misc. Forms	63
5.1: Chain of Custody	64
-	

Sample Summary

Fleming-Lee Shue, Inc.

Job No: JB15405

AFFCO, 361 Walsh Avenue, New Windsor, NY Project No: 10000-003 / PO#FP0099

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
JB14890-1	08/28/12	10:05 GH	08/29/12	SO	Soil	PX01-SW-5
JB14890-2	08/28/12	10:15 GH	08/29/12	SO	Soil	PX02-SW-5
JB14890-3	08/28/12	10:25 GH	08/29/12	SO	Soil	PX03-BT-10
JB14890-4	08/28/12	15:30 GH	08/29/12	SO	Soil	PX04-SW-5
JB14890-5	08/28/12	15:40 GH	08/29/12	SO	Soil	PX05-SW-6
JB14890-6	08/28/12	15:50 GH	08/29/12	SO	Soil	PX06-BT-10
JB14890-7	08/28/12	11:00 GH	08/29/12	SO	Soil	C5SP01
JB14890-8	08/28/12	11:10 GH	08/29/12	SO	Soil	C5SP02
JB14890-9	08/28/12	11:10 GH	08/29/12	SO	Soil	C4SP01
JB15155-1	08/30/12	09:30 GH	08/31/12	SO	Soil	PX07BT-10
JB15155-2	08/30/12	09:40 GH	08/31/12	SO	Soil	PX08SW-7
JB15155-3	08/30/12	10:25 GH	08/31/12	SO	Soil	BENCH01
JB15405-1	09/04/12	16:05 GH	09/05/12	SO	Soil	PX09SW-3

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

Sample Summary (continued)

Fleming-Lee Shue, Inc.

Job No: JB15405

AFFCO, 361 Walsh Avenue, New Windsor, NY Project No: 10000-003 / PO#FP0099

Sample	Collected		Dessived	Matri		Client Sounds ID
Number	Date	Time By	Received	Code	гуре	Sample ID
JB15405-2	09/04/12	16:10 GH	09/05/12	SO	Soil	PX10SW-5
JB15405-3	09/04/12	16:15 GH	09/05/12	SO	Soil	PX11BT-10
JB15405-4	09/04/12	16:20 GH	09/05/12	SO	Soil	PX12SW-7
JB15405-5	09/04/12	16:25 GH	09/05/12	SO	Soil	PX13SW-7
JB15405-6	09/04/12	16:30 GH	09/05/12	SO	Soil	PX14SW-6
JB15405-7	09/04/12	16:45 GH	09/05/12	SO	Soil	PX15BT-10
JB15405-8	09/04/12	16:50 GH	09/05/12	SO	Soil	C1SP01
JB15405-9	09/04/12	16:55 GH	09/05/12	SO	Soil	C3SP01
JB15405-10	09/04/12	16:50 GH	09/05/12	SO	Soil	C3SP02
JB15405-11	09/04/12	17:05 GH	09/05/12	SO	Soil	C2SP01
JB15405-12	09/04/12	17:10 GH	09/05/12	SO	Soil	C2SP02

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

CASE NARRATIVE / CONFORMANCE SUMMARY

Client:	Fleming-Lee Shue, Inc.	Job No	JB15405
Site:	AFECO 361 Walsh Avenue New Windsor NY	Report Date	12/10/2012 9·13·06 A

Between 08/29/2012 and 09/05/2012, 24 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at Accutest Laboratories at a temperature of 4 C. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB15405 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method SW846 8260B

v	oratiles by GCMB by Met	100 5 0 040 0200	D				
	Matrix: SO	Batch ID:	V3C4027				
-	All samples were analyzed within the recommended method holding time.						
-	Sample(s) JB15405-1MS, JB15405-1MSD were used as the QC samples indicated.						
-	All method blanks for this batch meet method specific criteria.						

Matrix Spike Recovery(s) for 1,1,1-Trichloroethane are outside control limits. Outside control limits due to matrix interference.

Matrix Spike Duplicate Recovery(s) for 1,1,1-Trichloroethane are outside control limits. Probable cause due to matrix interference.

Matrix: SO	Batch ID:	VA6987	
All samples were analyzed within the	he recommended metho	d holding time.	

Sample(s) JB14720-5MS, JB14720-5MSD were used as the QC samples indicated.

All method blanks for this batch meet method specific criteria.

Matrix: SO Batch ID: VA6989 All samples were analyzed within the recommended method holding time.

- An samples were analyzed within the recommended method holding time.

Sample(s) JB14890-1MS, JB14890-1MSD were used as the QC samples indicated.

All method blanks for this batch meet method specific criteria.

|--|

All samples were analyzed within the recommended method holding time.

Sample(s) JB14606-1MS, JB14606-1MSD were used as the QC samples indicated.

All method blanks for this batch meet method specific criteria.

8	ch ID:	Batch ID:	Matrix: SO
---	--------	-----------	------------

All samples were analyzed within the recommended method holding time.

Sample(s) JB14890-3MS, JB14890-3MSD were used as the QC samples indicated.

All method blanks for this batch meet method specific criteria.

Matrix: SO Batch ID: VE8556

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) JB14605-2MS, JB14605-2MSD were used as the QC samples indicated.

Matrix: SO Batch ID: VE8565

All samples were analyzed within the recommended method holding time.

Volatiles by GCMS By Method SW846 8260B

Matrix: SO	Batch ID:	VE8565				
All method blanks for this batch n	neet method specific crite	eria.				
Sample(s) JB15405-9MS, JB1540	05-9MSD were used as t	he QC samples indicated.				
Matrix Spike Recovery(s) for 1,1, sample relative to spike amount.	1-Trichloroethane are ou	utside control limits. Outside control limits due to high level in				
Matrix: SO	Batch ID:	VV5563				
All samples were analyzed within	the recommended metho	od holding time.				
All method blanks for this batch n	neet method specific crite	eria.				
Sample(s) JB14795-1MS, JB1479	95-1MSD were used as t	he QC samples indicated.				
Matrix: SO	Batch ID:	VV5565				
All samples were analyzed within	the recommended metho	od holding time.				
All method blanks for this batch n	neet method specific crite	eria.				
Sample(s) JB14784-7MS, JB1478	35-1ADUP, JB14784-7N	MS were used as the QC samples indicated.				
Matrix Spike Recovery(s) for Eth interference.	ylbenzene, Toluene are c	outside control limits. Outside control limits due to matrix				
	Ether, Toluene, Xylene (t	zene, Carbon disulfide, Chlorobenzene, cis-1,2-Dichloroethene, total) are outside control limits for sample JB14785-1ADUP. High				
Matrix: SO	Batch ID:	VX5603				
All samples were analyzed within	the recommended metho	od holding time.				
Sample(s) JB15405-11MS, JB15405-11MSD were used as the QC samples indicated.						
All method blanks for this batch meet method specific criteria.						
Ethylbenzene, Styrene, Toluene, tr	rans-1,2-Dichloroethene,	rm, Carbon disulfide, Carbon tetrachloride, Chlorobenzene, , trans-1,3-Dichloropropene, Trichloroethene, Xylene (total) are ide control limits due to matrix interference.				
Matrix: SO	Batch ID:	VX5604				
All samples were analyzed within	the recommended metho	od holding time.				
Sample(s) JB15405-7MS, JB1540	05-7MSD were used as t	he QC samples indicated.				
All method blanks for this batch n	neet method specific crite	eria.				
Matrix: SO	Batch ID:	VY5399				
All samples were analyzed within	the recommended metho	od holding time.				
Sample(s) JB15155-1MS, JB151:	55-1MSD were used as t	he QC samples indicated.				
All method blanks for this batch n	neet method specific crite	eria.				
Matrix Spike Recovery(s) for 1,1	-Dichloroethene are outs	ide control limits. Outside control limits due to matrix interference.				
Matrix Spike Duplicate Recovery(matrix interference.	(s) for 1,1-Dichloroether	ne, Chloroethane are outside control limits. Probable cause due to				
Matrix Spike Recovery(s) for 1,1, control limits due to high level in		Dichloroethane, Chloroethane are outside control limits. Outside amount.				
Matrix: SO	Batch ID:	VY5401				
All samples were analyzed within	the recommended metho	od holding time.				
Sample(s) JB15155-2MS, JB1515	55-2MSD were used as t	he QC samples indicated.				
All method blanks for this batch n	neet method specific crite	eria.				
Matrix: SO	Batch ID:	VY5403				
All samples were analyzed within	the recommended metho					
Sample(s) JB15405-6MS, JB1540		, i i i i i i i i i i i i i i i i i i i				
Ionday, December 10, 2012		Page 2 of 3				

N

Volatiles by GCMS By Method SW846 8260B

Γ	Matrix: SO	Batch ID:	VY5403			
 All method blanks for this batch meet method specific criteria. 						
	Matrix: SO	Batch ID:	VY5405			
All samples were applying within the recommended method holding time.						

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) JB15064-26DUP, JB15064-27MS were used as the QC samples indicated.

Wet Chemistry By Method ASTM 4643-00

|--|

The data for ASTM 4643-00 meets quality control requirements.

Wet Chemistry By Method SM18 2540G

	Matrix: SO	Batch ID:	GN71254				
-	The data for SM18 2540G meets quality control requirements.						
	Matrix: SO	Batch ID:	GN71476				
-	The data for SM18 2540G meets quality control requirements.						
	Matrix: SO	Batch ID:	GN71587				
-	The data for SM18 2540G meets quality control requirements.						
	Matrix: SO	Batch ID:	GN71589				
-	The data for SM18 2540G meets quality control requirements.						
Γ	Matrix: SO	Batch ID:	GN71601				

The data for SM18 2540G meets quality control requirements.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

Page 3 of 3

Monday, December 10, 2012

Summary of Hits

Job Number:	JB15405				
Account:	Fleming-Lee Shue, Inc.				
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY				
Collected:	08/28/12 thru 09/04/12				

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method	
JB14890-1	PX01-SW-5						
Benzene Toluene		0.76 J 0.33 J	1.4 1.4	0.16 0.14	ug/kg ug/kg	SW846 8260B SW846 8260B	
JB14890-2	PX02-SW-5						
Acetone 1,1,1-Trichloroe	thane	5.9 J 6.1 J	13 6.4	2.2 0.14	ug/kg ug/kg	SW846 8260B SW846 8260B	
JB14890-3	PX03-BT-10						
Acetone 2-Butanone (MEK) Carbon disulfide Chloroethane Chloroform 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene (is-1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl chloride		20.6 12.9 1.5 J 1.9 J 0.56 J 1940 13.8 568 1.5 J 1.5 J 0.68 J 17.1 4980 0.64 J 2.2 J 9.7	12 12 5.8 5.8 5.8 300 1.2 300 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8	$\begin{array}{c} 2.0\\ 2.8\\ 0.14\\ 0.26\\ 0.096\\ 8.1\\ 0.16\\ 15\\ 0.21\\ 0.21\\ 0.20\\ 0.12\\ 6.3\\ 0.20\\ 0.20\\ 0.17\end{array}$	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B	
JB14890-4 PX04-SW-5							
Benzene 1, 1-Dichloroethe Toluene 1, 1, 1-Trichloroet		0.77 J 1.0 J 0.35 J 0.49 J	1.3 6.7 1.3 6.7	0.16 0.34 0.14 0.14	ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B	
JB14890-5	PX05-SW-6						
Benzene Toluene 1,1,1-Trichloroet Trichloroethene	thane	1.3 0.53 J 3.2 J 4.5 J	1.3 1.3 6.4 6.4	0.15 0.13 0.14 0.22	ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B	

ω

Job Number:	JB15405
Account:	Fleming-Lee Shue, Inc.
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY
Collected:	08/28/12 thru 09/04/12

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
JB14890-6	PX06-BT-10					
Acetone		4.0 J	12	2.1	ug/kg	SW846 8260B
Benzene		0.86 J	1.2	0.15	ug/kg	SW846 8260B
1,1,1-Trichloroe	thane	0.52 J	6.2	0.13	ug/kg	SW846 8260B
JB14890-7	C5SP01					
Acetone		14.7	14	2.4	ug/kg	SW846 8260B
Chloroform		0.73 J	7.0	0.12	ug/kg	SW846 8260B
1,1-Dichloroetha	ine	3.1 J	7.0	0.19	ug/kg	SW846 8260B
1,1-Dichloroethe	ene	2.5 J	7.0	0.36	ug/kg	SW846 8260B
1,1,1-Trichloroe	thane	2580	370	7.8	ug/kg	SW846 8260B
JB14890-8	C5SP02					
Acetone		13.3	13	2.1	ug/kg	SW846 8260B
Carbon disulfide		1.2 J	6.3	0.15	ug/kg	SW846 8260B
Chloroform		0.79 J	6.3	0.10	ug/kg	SW846 8260B
1,1-Dichloroetha	ine	214	6.3	0.17	ug/kg	SW846 8260B
1,2-Dichloroetha	ine	2.9	1.3	0.17	ug/kg	SW846 8260B
1,1-Dichloroethe	ene	2750	310	16	ug/kg	SW846 8260B
cis-1,2-Dichloro	ethene	1.2 J	6.3	0.23	ug/kg	SW846 8260B
trans-1,2-Dichlor	roethene	2.2 J	6.3	0.30	ug/kg	SW846 8260B
1,2-Dichloroethe	ene (total)	3.4 J	6.3	0.23	ug/kg	SW846 8260B
Tetrachloroethen	e	1.1 J	6.3	0.22	ug/kg	SW846 8260B
Toluene		1.2 J	1.3	0.13	ug/kg	SW846 8260B
1,1,1-Trichloroe	thane	29800	3100	65	ug/kg	SW846 8260B
Trichloroethene		1.7 J	6.3	0.22	ug/kg	SW846 8260B
Vinyl chloride		1.8 J	6.3	0.18	ug/kg	SW846 8260B
JB14890-9	C4SP01					
Benzene		1.0 J	1.3	0.16	ug/kg	SW846 8260B
Toluene		0.43 J	1.3	0.14	ug/kg	SW846 8260B
1,1,1-Trichloroe	thane	1.6 J	6.7	0.14	ug/kg	SW846 8260B
Trichloroethene		3.6 J	6.7	0.23	ug/kg	SW846 8260B
JB15155-1	PX07BT-10					
Acetone		27.5	13	2.2	ug/kg	SW846 8260B
Chloroethane		136	27	1.2	ug/kg	SW846 8260B
Chloroform		0.49 J	6.4	0.11	ug/kg	SW846 8260B
1,1-Dichloroetha	ine	816	27	0.74	ug/kg	SW846 8260B
1,2-Dichloroetha	ine	7.4	1.3	0.17	ug/kg	SW846 8260B
					-	

Job Number:	JB15405
Account:	Fleming-Lee Shue, Inc.
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY
Collected:	08/28/12 thru 09/04/12

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Analyte	Quai	KL	MIDL	Units	Wellou
1,1-Dichloroethene	34.5	6.4	0.33	ug/kg	SW846 8260B
cis-1,2-Dichloroethene	10.2	6.4	0.23	ug/kg	SW846 8260B
trans-1,2-Dichloroethene	3.2 J	6.4	0.30	ug/kg	SW846 8260B
1,2-Dichloroethene (total)	13.4	6.4	0.23	ug/kg	SW846 8260B
Tetrachloroethene	1.6 J	6.4	0.22	ug/kg	SW846 8260B
Toluene	2.7	1.3	0.13	ug/kg	SW846 8260B
1,1,1-Trichloroethane	519	27	0.57	ug/kg	SW846 8260B
1,1,2-Trichloroethane	3.8 J	6.4	0.22	ug/kg	SW846 8260B
Trichloroethene	20.5	6.4	0.22	ug/kg	SW846 8260B
Vinyl chloride	2.0 J	6.4	0.18	ug/kg	SW846 8260B
JB15155-2 PX08SW-7					
Benzene	9.9	1.2	0.14	ug/kg	SW846 8260B
1,1-Dichloroethane	1.1 J	6.0	0.17	ug/kg	SW846 8260B
1,2-Dichloroethane	0.50 J	1.2	0.16	ug/kg	SW846 8260B
cis-1,2-Dichloroethene	1.1 J	6.0	0.22	ug/kg	SW846 8260B
trans-1,2-Dichloroethene	0.58 J	6.0	0.29	ug/kg	SW846 8260B
1,2-Dichloroethene (total)	1.6 J	6.0	0.22	ug/kg	SW846 8260B
Ethylbenzene	0.73 J	1.2	0.32	ug/kg	SW846 8260B
Tetrachloroethene	0.44 J	6.0	0.21	ug/kg	SW846 8260B
Toluene	4.1	1.2	0.13	ug/kg	SW846 8260B
1,1,1-Trichloroethane	38.4	6.0	0.13	ug/kg	SW846 8260B
1,1,2-Trichloroethane	4.6 J	6.0	0.21	ug/kg	SW846 8260B
Trichloroethene	2.4 J	6.0	0.21	ug/kg	SW846 8260B
Xylene (total)	1.7	1.2	0.17	ug/kg	SW846 8260B
JB15155-3 BENCH01					
1,1-Dichloroethane	1.2 J	5.7	0.16	ug/kg	SW846 8260B
1,1-Dichloroethene	1.6 J	5.7	0.29	ug/kg	SW846 8260B
cis-1,2-Dichloroethene	0.92 J	5.7	0.21	ug/kg	SW846 8260B
trans-1,2-Dichloroethene	0.61 J	5.7	0.27	ug/kg	SW846 8260B
1,2-Dichloroethene (total)	1.5 J	5.7	0.21	ug/kg	SW846 8260B
Tetrachloroethene	0.62 J	5.7	0.20	ug/kg	SW846 8260B
Toluene	1.1	1.1	0.12	ug/kg	SW846 8260B
1,1,1-Trichloroethane	47.9	5.7	0.12	ug/kg	SW846 8260B
1,1,2-Trichloroethane	1.6 J	5.7	0.20	ug/kg	SW846 8260B
Trichloroethene	0.93 J	5.7	0.20	ug/kg	SW846 8260B
JB15405-1 PX098W-3					
Benzene	2.6	1.3	0.16	ug/kg	SW846 8260B
Toluene	1.1 J	1.3	0.14	ug/kg	SW846 8260B
1,1,1-Trichloroethane	68.5	6.6	0.14	ug/kg	SW846 8260B
1,1,1 Themoroculanc	00.0	0.0	0.17	46/ MB	ST1010 0200D

ω

Job Number:	JB15405
Account:	Fleming-Lee Shue, Inc.
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY
Collected:	08/28/12 thru 09/04/12

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Trichloroethene	2.0 J	6.6	0.23	ug/kg	SW846 8260B
JB15405-2 PX10SW-5					
Benzene 1, 1-Dichloroethane Tetrachloroethene Toluene 1, 1, 1-Trichloroethane Trichloroethene	2.7 1.8 J 0.54 J 1.3 67.1 1.5 J	1.3 6.6 6.6 1.3 6.6 6.6	0.16 0.18 0.23 0.14 0.14 0.23	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B
JB15405-3 PX11BT-10					
1, 1, 1-Trichloroethane 1, 1, 2-Trichloroethane Trichloroethene	10.9 0.83 J 2.2 J	5.8 5.8 5.8	0.12 0.20 0.20	ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B
JB15405-4 PX12SW-7					
Benzene Toluene 1, 1, 1-Trichloroethane Trichloroethene	2.6 1.1 J 5.1 J 2.5 J	1.2 1.2 6.2 6.2	0.15 0.13 0.13 0.22	ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B
JB15405-5 PX13SW-7					
Benzene Toluene 1,1,1-Trichloroethane	0.82 J 0.54 J 7.0	1.3 1.3 6.5	0.16 0.14 0.14	ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B
JB15405-6 PX14SW-6					
1, 1-Dichloroethane 1, 1-Dichloroethene cis-1, 2-Dichloroethene trans-1, 2-Dichloroethene 1, 2-Dichloroethene (total) Tetrachloroethene 1, 1, 1-Trichloroethane 1, 1, 2-Trichloroethane Trichloroethene	0.87 J 0.63 J 2.4 J 2.1 J 4.4 J 0.59 J 29.3 5.9 4.0 J	5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	$\begin{array}{c} 0.15\\ 0.29\\ 0.20\\ 0.26\\ 0.20\\ 0.19\\ 0.12\\ 0.19\\ 0.19\\ 0.19\end{array}$	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B
JB15405-7 PX15BT-10					
Acetone	13.6	13	2.2	ug/kg	SW846 8260B

ယ

Job Number:	JB15405
Account:	Fleming-Lee Shue, Inc.
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY
Collected:	08/28/12 thru 09/04/12

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Chloroform	1.0 J	6.4	0.11	ug/kg	SW846 8260B
1,1-Dichloroethane	8.3	6.4	0.18	ug/kg	SW846 8260B
1,2-Dichloroethane	0.60 J	1.3	0.17	ug/kg	SW846 8260B
1,1-Dichloroethene	4.2 J	6.4	0.33	ug/kg	SW846 8260B
cis-1,2-Dichloroethene	0.85 J	6.4	0.23	ug/kg	SW846 8260B
trans-1,2-Dichloroethene	0.58 J	6.4	0.31	ug/kg	SW846 8260B
1,2-Dichloroethene (total)	1.4 J	6.4	0.23	ug/kg	SW846 8260B
Tetrachloroethene	0.79 J	6.4	0.22	ug/kg	SW846 8260B
Toluene	0.58 J	1.3	0.13	ug/kg	SW846 8260B
1,1,1-Trichloroethane	149	6.4	0.14	ug/kg	SW846 8260B
1,1,2-Trichloroethane	1.5 J	6.4	0.22	ug/kg	SW846 8260B
Trichloroethene	4.7 J	6.4	0.22	ug/kg	SW846 8260B
JB15405-8 C1SP01					
1,1-Dichloroethane	7.2	6.0	0.16	ug/kg	SW846 8260B
1,2-Dichloroethane	0.65 J	1.2	0.16	ug/kg	SW846 8260B
1,1-Dichloroethene	2.0 J	6.0	0.31	ug/kg	SW846 8260B
cis-1,2-Dichloroethene	0.61 J	6.0	0.22	ug/kg	SW846 8260B
trans-1,2-Dichloroethene	0.50 J	6.0	0.29	ug/kg	SW846 8260B
1,2-Dichloroethene (total)	1.1 J	6.0	0.22	ug/kg	SW846 8260B
Tetrachloroethene	1.1 J	6.0	0.21	ug/kg	SW846 8260B
Toluene	1.3	1.2	0.13	ug/kg	SW846 8260B
1,1,1-Trichloroethane	513	25	0.52	ug/kg	SW846 8260B
1,1,2-Trichloroethane	3.5 J	6.0	0.21	ug/kg	SW846 8260B
Trichloroethene	5.0 J	6.0	0.21	ug/kg	SW846 8260B
JB15405-9 C3SP01					
1,1-Dichloroethane	13.0	6.0	0.16	ug/kg	SW846 8260B
1,2-Dichloroethane	1.2	1.2	0.16	ug/kg	SW846 8260B
1,1-Dichloroethene	5.8 J	6.0	0.31	ug/kg	SW846 8260B
cis-1,2-Dichloroethene	0.54 J	6.0	0.22	ug/kg	SW846 8260B
trans-1,2-Dichloroethene	0.41 J	6.0	0.29	ug/kg	SW846 8260B
1,2-Dichloroethene (total)	0.95 J	6.0	0.22	ug/kg	SW846 8260B
Tetrachloroethene	1.6 J	6.0	0.21	ug/kg	SW846 8260B
Toluene	2.8	1.2	0.13	ug/kg	SW846 8260B
1,1,1-Trichloroethane	41900	3200	67	ug/kg	SW846 8260B
1,1,2-Trichloroethane	5.2 J	6.0	0.21	ug/kg	SW846 8260B
Trichloroethene	5.7 J	6.0	0.21	ug/kg	SW846 8260B
JB15405-10 C3SP02					
1,1-Dichloroethane	3.0 J	5.2	0.14	ug/kg	SW846 8260B
1,2-Dichloroethane	0.76 J	1.0	0.14	ug/kg	SW846 8260B
1,2 Diemoroculuite	0.700	1.0	0.11	······································	2.1010 02000

ω

Job Number:	JB15405
Account:	Fleming-Lee Shue, Inc.
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY
Collected:	08/28/12 thru 09/04/12

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
1,1-Dichloroethene	1.5 J	5.2	0.27	ug/kg	SW846 8260B
cis-1,2-Dichloroethene	0.41 J	5.2	0.19	ug/kg	SW846 8260B
trans-1,2-Dichloroethene	0.38 J	5.2	0.25	ug/kg	SW846 8260B
1,2-Dichloroethene (total)	0.79 J	5.2	0.19	ug/kg	SW846 8260B
Toluene	0.27 J	1.0	0.11	ug/kg	SW846 8260B
1,1,1-Trichloroethane	166	5.2	0.11	ug/kg	SW846 8260B
1,1,2-Trichloroethane	0.97 J	5.2	0.18	ug/kg	SW846 8260B
Trichloroethene	1.9 J	5.2	0.18	ug/kg	SW846 8260B
JB15405-11 C2SP01					
1,1-Dichloroethane	1.0 J	5.3	0.15	ug/kg	SW846 8260B
1,2-Dichloroethane	0.78 J	1.1	0.14	ug/kg	SW846 8260B
1,1-Dichloroethene	0.43 J	5.3	0.27	ug/kg	SW846 8260B
cis-1,2-Dichloroethene	0.37 J	5.3	0.20	ug/kg	SW846 8260B
1,2-Dichloroethene (total)	0.37 J	5.3	0.20	ug/kg	SW846 8260B
1,1,1-Trichloroethane	51.7	5.3	0.11	ug/kg	SW846 8260B
1,1,2-Trichloroethane	1.4 J	5.3	0.19	ug/kg	SW846 8260B
Trichloroethene	1.6 J	5.3	0.19	ug/kg	SW846 8260B
JB15405-12 C2SP02					
1,1-Dichloroethane	1.9 J	5.4	0.15	ug/kg	SW846 8260B
1,2-Dichloroethane	1.7	1.1	0.15	ug/kg	SW846 8260B
1,1-Dichloroethene	0.90 J	5.4	0.28	ug/kg	SW846 8260B
cis-1,2-Dichloroethene	1.1 J	5.4	0.20	ug/kg	SW846 8260B
trans-1,2-Dichloroethene	0.70 J	5.4	0.26	ug/kg	SW846 8260B
1,2-Dichloroethene (total)	1.8 J	5.4	0.20	ug/kg	SW846 8260B
Tetrachloroethene	0.33 J	5.4	0.19	ug/kg	SW846 8260B
1,1,1-Trichloroethane	59.9	5.4	0.11	ug/kg	SW846 8260B
1,1,2-Trichloroethane	2.5 J	5.4	0.19	ug/kg	SW846 8260B
Trichloroethene	6.9	5.4	0.19	ug/kg	SW846 8260B

ω

Section 4

4

Sample Results

Report of Analysis

Client Sar Lab Samj Matrix: Method:	ple ID: JB148 SO - S				Da	···· · · · · · · · · · · · · · · · · ·	8/28/12 8/29/12 4
Project:			alsh Avenue, Ne	w Winds		i cent Sonus. 61	
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 Run #2	A186356.D	1	08/30/12	CL	n/a	n/a	VA6989
	Initial Weight	t					
Run #1 Run #2	4.5 g						

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	14	2.3	ug/kg	
71-43-2	Benzene	0.76	1.4	0.16	ug/kg	J
75-27-4	Bromodichloromethane	ND	6.8	0.14	ug/kg	
75-25-2	Bromoform	ND	6.8	0.21	ug/kg	
74-83-9	Bromomethane	ND	6.8	0.37	ug/kg	
78-93-3	2-Butanone (MEK)	ND	14	3.3	ug/kg	
75-15-0	Carbon disulfide	ND	6.8	0.16	ug/kg	
56-23-5	Carbon tetrachloride	ND	6.8	0.18	ug/kg	
108-90-7	Chlorobenzene	ND	6.8	0.15	ug/kg	
75-00-3	Chloroethane	ND	6.8	0.31	ug/kg	
67-66-3	Chloroform	ND	6.8	0.11	ug/kg	
74-87-3	Chloromethane	ND	6.8	0.25	ug/kg	
124-48-1	Dibromochloromethane	ND	6.8	0.22	ug/kg	
75-34-3	1,1-Dichloroethane	ND	6.8	0.19	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.4	0.18	ug/kg	
75-35-4	1,1-Dichloroethene	ND	6.8	0.35	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	6.8	0.25	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	6.8	0.32	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	6.8	0.25	ug/kg	
78-87-5	1,2-Dichloropropane	ND	6.8	0.21	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	6.8	0.19	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	6.8	0.21	ug/kg	
100-41-4	Ethylbenzene	ND	1.4	0.36	ug/kg	
591-78-6	2-Hexanone	ND	6.8	0.85	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.4	0.32	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	6.8	1.0	ug/kg	
75-09-2	Methylene chloride	ND	6.8	1.7	ug/kg	
100-42-5	Styrene	ND	6.8	0.13	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.8	0.18	ug/kg	
127-18-4	Tetrachloroethene	ND	6.8	0.23	ug/kg	
108-88-3	Toluene	0.33	1.4	0.14	ug/kg	J
71-55-6	1,1,1-Trichloroethane	ND	6.8	0.14	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	PX01-SW-5		
Lab Sample ID:	JB14890-1	Date Sampled:	08/28/12
Matrix:	SO - Soil	Date Received:	08/29/12
Method:	SW846 8260B	Percent Solids:	81.4
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND ND ND ND	6.8 6.8 6.8 1.4	0.24 0.24 0.20 0.19	ug/kg ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	99% 82% 113%		70-11 70-11 81-11	22%	
460-00-4	4-Bromofluorobenzene	99%		66-1		

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client Sa Lab Samj Matrix: Method: Project:	ple ID: JB14 SO - SW8	46 8260B	ılsh Avenue, Ne	ew Winds]	····· 1	3/28/12 3/29/12 3.5
Run #1 Run #2	File ID A186329.D	DF 1	Analyzed 08/29/12	By CL	Prep Date n/a	Prep Batch n/a	Analytical Batch VA6987
Run #1 Run #2	Initial Weigh 4.7 g	t					

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	5.9	13	2.2	ug/kg	J
71-43-2	Benzene	ND	1.3	0.15	ug/kg	
75-27-4	Bromodichloromethane	ND	6.4	0.13	ug/kg	
75-25-2	Bromoform	ND	6.4	0.19	ug/kg	
74-83-9	Bromomethane	ND	6.4	0.35	ug/kg	
78-93-3	2-Butanone (MEK)	ND	13	3.0	ug/kg	
75-15-0	Carbon disulfide	ND	6.4	0.15	ug/kg	
56-23-5	Carbon tetrachloride	ND	6.4	0.17	ug/kg	
108-90-7	Chlorobenzene	ND	6.4	0.14	ug/kg	
75-00-3	Chloroethane	ND	6.4	0.29	ug/kg	
67-66-3	Chloroform	ND	6.4	0.11	ug/kg	
74-87-3	Chloromethane	ND	6.4	0.24	ug/kg	
124-48-1	Dibromochloromethane	ND	6.4	0.21	ug/kg	
75-34-3	1,1-Dichloroethane	ND	6.4	0.17	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.3	0.17	ug/kg	
75-35-4	1,1-Dichloroethene	ND	6.4	0.33	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	6.4	0.23	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	6.4	0.30	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	6.4	0.23	ug/kg	
78-87-5	1,2-Dichloropropane	ND	6.4	0.20	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	6.4	0.18	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	6.4	0.20	ug/kg	
100-41-4	Ethylbenzene	ND	1.3	0.34	ug/kg	
591-78-6	2-Hexanone	ND	6.4	0.79	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.3	0.30	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	6.4	0.96	ug/kg	
75-09-2	Methylene chloride	ND	6.4	1.6	ug/kg	
100-42-5	Styrene	ND	6.4	0.12	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.4	0.17	ug/kg	
127-18-4	Tetrachloroethene	ND	6.4	0.22	ug/kg	
108-88-3	Toluene	ND	1.3	0.13	ug/kg	
71-55-6	1,1,1-Trichloroethane	6.1	6.4	0.14	ug/kg	J

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: Lab Sample ID:	PX02-SW-5 JB14890-2	Date Sampled:	08/28/12
Matrix:	SO - Soil	Date Received:	08/29/12
Method:	SW846 8260B	Percent Solids:	83.5
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1, 1, 2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND ND ND ND	6.4 6.4 6.4 1.3	0.22 0.22 0.18 0.18	ug/kg ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	97% 82% 109%		70-13 70-12 81-12	22%	
460-00-4	4-Bromofluorobenzene	94%		66-13		

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client Sam Lab Sampl Matrix: Method: Project:	le ID: JB14890 SO - So SW846)-3 il 8260B	h Avenue, N	lew Windsc	Da Pe	te Received: 08	3/28/12 3/29/12 1.4
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	A186330.D	1	08/29/12	CL	n/a	n/a	VA6987
Run #2	D199768.D	1	08/31/12	ET	n/a	n/a	VD8148
D #1	Initial Weight	Final Vol	ume	Methanol	Aliquot		
Run #1	4.7 g						
Run #2	10.0 g	10.0 ml		100 ul			
VOA TCL	List						
CAS No.	Compound		Result	RL	MDL Unit	s Q	

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	20.6	12	2.0	ug/kg	
71-43-2	Benzene	ND	1.2	0.14	ug/kg	
75-27-4	Bromodichloromethane	ND	5.8	0.12	ug/kg	
75-25-2	Bromoform	ND	5.8	0.18	ug/kg	
74-83-9	Bromomethane	ND	5.8	0.32	ug/kg	
78-93-3	2-Butanone (MEK)	12.9	12	2.8	ug/kg	
75-15-0	Carbon disulfide	1.5	5.8	0.14	ug/kg	J
56-23-5	Carbon tetrachloride	ND	5.8	0.15	ug/kg	
108-90-7	Chlorobenzene	ND	5.8	0.13	ug/kg	
75-00-3	Chloroethane	1.9	5.8	0.26	ug/kg	J
67-66-3	Chloroform	0.56	5.8	0.096	ug/kg	J
74-87-3	Chloromethane	ND	5.8	0.22	ug/kg	
124-48-1	Dibromochloromethane	ND	5.8	0.19	ug/kg	
75-34-3	1,1-Dichloroethane	1940 ^a	300	8.1	ug/kg	
107-06-2	1,2-Dichloroethane	13.8	1.2	0.16	ug/kg	
75-35-4	1,1-Dichloroethene	568 ^a	300	15	ug/kg	
156-59-2	cis-1,2-Dichloroethene	1.5	5.8	0.21	ug/kg	J
156-60-5	trans-1,2-Dichloroethene	ND	5.8	0.28	ug/kg	
540-59-0	1,2-Dichloroethene (total)	1.5	5.8	0.21	ug/kg	J
78-87-5	1,2-Dichloropropane	ND	5.8	0.18	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.8	0.16	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.8	0.18	ug/kg	
100-41-4	Ethylbenzene	ND	1.2	0.31	ug/kg	
591-78-6	2-Hexanone	ND	5.8	0.72	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.2	0.27	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.8	0.87	ug/kg	
75-09-2	Methylene chloride	ND	5.8	1.5	ug/kg	
100-42-5	Styrene	ND	5.8	0.11	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.8	0.15	ug/kg	
127-18-4	Tetrachloroethene	0.68	5.8	0.20	ug/kg	J
108-88-3	Toluene	17.1	1.2	0.12	ug/kg	
71-55-6	1,1,1-Trichloroethane	4980 ^a	300	6.3	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	PX03-BT-10		
Lab Sample ID:	JB14890-3	Date Sampled:	08/28/12
Matrix:	SO - Soil	Date Received:	08/29/12
Method:	SW846 8260B	Percent Solids:	91.4
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	0.64 2.2 9.7 ND	5.8 5.8 5.8 1.2	0.20 0.20 0.17 0.16	ug/kg ug/kg ug/kg ug/kg] J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	101% 87% 108%	97% 98% 101%	70-1 70-1 81-1	22%	
460-00-4	4-Bromofluorobenzene	100%	91%	66-1	32%	

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

JB15405

Lab Sam Matrix: Method: Project:	SO - S SW84	50il 6 8260B	alsh Avenue, Ne	w Windso	I F	····· P	8/28/12 8/29/12 1.3
Run #1 Run #2	File ID V128816.D	DF 1	Analyzed 08/30/12	By OTR	Prep Date n/a	Prep Batch n/a	Analytical Batch VV5565
Run #1 Run #2	Initial Weight 4.6 g						

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	13	2.3	ug/kg	
71-43-2	Benzene	0.77	1.3	0.16	ug/kg	J
75-27-4	Bromodichloromethane	ND	6.7	0.14	ug/kg	
75-25-2	Bromoform	ND	6.7	0.20	ug/kg	
74-83-9	Bromomethane	ND	6.7	0.36	ug/kg	
78-93-3	2-Butanone (MEK)	ND	13	3.2	ug/kg	
75-15-0	Carbon disulfide	ND	6.7	0.16	ug/kg	
56-23-5	Carbon tetrachloride	ND	6.7	0.18	ug/kg	
108-90-7	Chlorobenzene	ND	6.7	0.14	ug/kg	
75-00-3	Chloroethane	ND	6.7	0.30	ug/kg	
67-66-3	Chloroform	ND	6.7	0.11	ug/kg	
74-87-3	Chloromethane	ND	6.7	0.25	ug/kg	
124-48-1	Dibromochloromethane	ND	6.7	0.22	ug/kg	
75-34-3	1,1-Dichloroethane	ND	6.7	0.18	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.3	0.18	ug/kg	
75-35-4	1,1-Dichloroethene	1.0	6.7	0.34	ug/kg	J
156-59-2	cis-1,2-Dichloroethene	ND	6.7	0.24	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	6.7	0.32	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	6.7	0.24	ug/kg	
78-87-5	1,2-Dichloropropane	ND	6.7	0.21	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	6.7	0.19	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	6.7	0.21	ug/kg	
100-41-4	Ethylbenzene	ND	1.3	0.35	ug/kg	
591-78-6	2-Hexanone	ND	6.7	0.83	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.3	0.31	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	6.7	1.0	ug/kg	
75-09-2	Methylene chloride	ND	6.7	1.7	ug/kg	
100-42-5	Styrene	ND	6.7	0.12	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.7	0.18	ug/kg	
127-18-4	Tetrachloroethene	ND	6.7	0.23	ug/kg	
108-88-3	Toluene	0.35	1.3	0.14	ug/kg	J
71-55-6	1,1,1-Trichloroethane	0.49	6.7	0.14	ug/kg	J

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	PX04-SW-5		
Lab Sample ID:	JB14890-4	Date Sampled:	08/28/12
Matrix:	SO - Soil	Date Received:	08/29/12
Method:	SW846 8260B	Percent Solids:	81.3
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		
0			

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND ND ND ND	6.7 6.7 1.3	0.23 0.23 0.19 0.19	ug/kg ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	109% 91% 118%		70-12 70-12 81-12	22%	
460-00-4	4-Bromofluorobenzene	111%		66-1	32%	

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Lab Sam Matrix: Method: Project:	ple ID: JB148 SO - SW84	Soil 46 8260B	alsh Avenue, Ne	ew Windso		I I	08/28/12 08/29/12 86.5
Run #1 Run #2	File ID V128817.D	DF 1	Analyzed 08/31/12	By OTR	Prep Date n/a	Prep Batch n/a	Analytical Batch VV5565
Run #1 Run #2	Initial Weigh 4.5 g	t					

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	13	2.2	ug/kg	
71-43-2	Benzene	1.3	1.3	0.15	ug/kg	
75-27-4	Bromodichloromethane	ND	6.4	0.13	ug/kg	
75-25-2	Bromoform	ND	6.4	0.19	ug/kg	
74-83-9	Bromomethane	ND	6.4	0.35	ug/kg	
78-93-3	2-Butanone (MEK)	ND	13	3.1	ug/kg	
75-15-0	Carbon disulfide	ND	6.4	0.15	ug/kg	
56-23-5	Carbon tetrachloride	ND	6.4	0.17	ug/kg	
108-90-7	Chlorobenzene	ND	6.4	0.14	ug/kg	
75-00-3	Chloroethane	ND	6.4	0.29	ug/kg	
67-66-3	Chloroform	ND	6.4	0.11	ug/kg	
74-87-3	Chloromethane	ND	6.4	0.24	ug/kg	
124-48-1	Dibromochloromethane	ND	6.4	0.21	ug/kg	
75-34-3	1,1-Dichloroethane	ND	6.4	0.18	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.3	0.17	ug/kg	
75-35-4	1,1-Dichloroethene	ND	6.4	0.33	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	6.4	0.24	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	6.4	0.31	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	6.4	0.24	ug/kg	
78-87-5	1,2-Dichloropropane	ND	6.4	0.20	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	6.4	0.18	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	6.4	0.20	ug/kg	
100-41-4	Ethylbenzene	ND	1.3	0.34	ug/kg	
591-78-6	2-Hexanone	ND	6.4	0.80	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.3	0.30	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	6.4	0.96	ug/kg	
75-09-2	Methylene chloride	ND	6.4	1.6	ug/kg	
100-42-5	Styrene	ND	6.4	0.12	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.4	0.17	ug/kg	
127-18-4	Tetrachloroethene	ND	6.4	0.22	ug/kg	
108-88-3	Toluene	0.53	1.3	0.13	ug/kg	J
71-55-6	1,1,1-Trichloroethane	3.2	6.4	0.14	ug/kg	J

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: Lab Sample ID:	PX05-SW-6 JB14890-5	Date Sampled:	08/28/12
Matrix:	SO - Soil	Date Received:	08/29/12
Method: Project:	SW846 8260B AFFCO, 361 Walsh Avenue, New Windsor, NY	Percent Solids:	86.5

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1, 1, 2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND 4.5 ND ND	6.4 6.4 1.3	0.22 0.22 0.18 0.18	ug/kg ug/kg ug/kg ug/kg	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	110% 89% 118%		70-1 70-1 81-1	22%	
460-00-4	4-Bromofluorobenzene	110%		66-1		

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client Sa Lab Sam Matrix: Method: Project:		JB14890 SO - Soi SW846	-6 1 8260B	lsh Avenue, Ne	w Windso	r, NY	Date Sampled: Date Received: Percent Solids:	
Run #1 Run #2	File ID V128818	S.D	DF 1	Analyzed 08/31/12	By OTR	Prep Date n/a	Prep Batc n/a	h Analytical Batch VV5565
Run #1 Run #2	Initial W 4.4 g	eight						

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	4.0	12	2.1	ug/kg	J
71-43-2	Benzene	0.86	1.2	0.15	ug/kg	J
75-27-4	Bromodichloromethane	ND	6.2	0.13	ug/kg	
75-25-2	Bromoform	ND	6.2	0.19	ug/kg	
74-83-9	Bromomethane	ND	6.2	0.34	ug/kg	
78-93-3	2-Butanone (MEK)	ND	12	3.0	ug/kg	
75-15-0	Carbon disulfide	ND	6.2	0.14	ug/kg	
56-23-5	Carbon tetrachloride	ND	6.2	0.16	ug/kg	
108-90-7	Chlorobenzene	ND	6.2	0.13	ug/kg	
75-00-3	Chloroethane	ND	6.2	0.28	ug/kg	
67-66-3	Chloroform	ND	6.2	0.10	ug/kg	
74-87-3	Chloromethane	ND	6.2	0.23	ug/kg	
124-48-1	Dibromochloromethane	ND	6.2	0.20	ug/kg	
75-34-3	1,1-Dichloroethane	ND	6.2	0.17	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.2	0.17	ug/kg	
75-35-4	1,1-Dichloroethene	ND	6.2	0.32	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	6.2	0.23	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	6.2	0.29	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	6.2	0.23	ug/kg	
78-87-5	1,2-Dichloropropane	ND	6.2	0.19	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	6.2	0.17	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	6.2	0.19	ug/kg	
100-41-4	Ethylbenzene	ND	1.2	0.33	ug/kg	
591-78-6	2-Hexanone	ND	6.2	0.77	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.2	0.29	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	6.2	0.93	ug/kg	
75-09-2	Methylene chloride	ND	6.2	1.6	ug/kg	
100-42-5	Styrene	ND	6.2	0.11	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.2	0.16	ug/kg	
127-18-4	Tetrachloroethene	ND	6.2	0.21	ug/kg	
108-88-3	Toluene	ND	1.2	0.13	ug/kg	
71-55-6	1,1,1-Trichloroethane	0.52	6.2	0.13	ug/kg	J

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	PX06-BT-10		
Lab Sample ID:	JB14890-6	Date Sampled:	08/28/12
Matrix:	SO - Soil	Date Received:	08/29/12
Method:	SW846 8260B	Percent Solids:	91.7
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1, 1, 2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND ND ND ND	6.2 6.2 6.2 1.2	0.22 0.22 0.18 0.17	ug/kg ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	113% 96% 119%		70-13 70-12 81-12	22%	
460-00-4	4-Bromofluorobenzene	119%		66-13		

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client San Lab Samp Matrix: Method: Project:	le ID: JB14890 SO - So SW846	0-7 il 8260B	h Avenue, N	ew Windso	Da Pe	ate Received: 08	8/28/12 8/29/12 0.9
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	V128757.D	1	08/29/12	OTR	n/a	n/a	VV5563
Run #2	D199754.D	1	08/30/12	ET	n/a	n/a	VD8147
D ///	Initial Weight	Final Vo	lume	Methanol A	Aliquot		
Run #1	4.4 g						
Run #2	10.0 g	10.0 ml		100 ul			

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	14.7	14	2.4	ug/kg	
71-43-2	Benzene	ND	1.4	0.17	ug/kg	
75-27-4	Bromodichloromethane	ND	7.0	0.15	ug/kg	
75-25-2	Bromoform	ND	7.0	0.21	ug/kg	
74-83-9	Bromomethane	ND	7.0	0.38	ug/kg	
78-93-3	2-Butanone (MEK)	ND	14	3.4	ug/kg	
75-15-0	Carbon disulfide	ND	7.0	0.16	ug/kg	
56-23-5	Carbon tetrachloride	ND	7.0	0.19	ug/kg	
108-90-7	Chlorobenzene	ND	7.0	0.15	ug/kg	
75-00-3	Chloroethane	ND	7.0	0.32	ug/kg	
67-66-3	Chloroform	0.73	7.0	0.12	ug/kg	J
74-87-3	Chloromethane	ND	7.0	0.26	ug/kg	
124-48-1	Dibromochloromethane	ND	7.0	0.23	ug/kg	
75-34-3	1,1-Dichloroethane	3.1	7.0	0.19	ug/kg	J
107-06-2	1,2-Dichloroethane	ND	1.4	0.19	ug/kg	
75-35-4	1,1-Dichloroethene	2.5	7.0	0.36	ug/kg	J
156-59-2	cis-1,2-Dichloroethene	ND	7.0	0.26	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	7.0	0.33	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	7.0	0.26	ug/kg	
78-87-5	1,2-Dichloropropane	ND	7.0	0.22	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	7.0	0.20	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	7.0	0.22	ug/kg	
100-41-4	Ethylbenzene	ND	1.4	0.37	ug/kg	
591-78-6	2-Hexanone	ND	7.0	0.87	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.4	0.33	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	7.0	1.1	ug/kg	
75-09-2	Methylene chloride	ND	7.0	1.8	ug/kg	
100-42-5	Styrene	ND	7.0	0.13	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	7.0	0.19	ug/kg	
127-18-4	Tetrachloroethene	ND	7.0	0.24	ug/kg	
108-88-3	Toluene	ND	1.4	0.15	ug/kg	
71-55-6	1,1,1-Trichloroethane	2580 ^a	370	7.8	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	C5SP01		
Lab Sample ID:	JB14890-7	Date Sampled:	08/28/12
Matrix:	SO - Soil	Date Received:	08/29/12
Method:	SW846 8260B	Percent Solids:	80.9
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND ND ND ND	7.0 7.0 7.0 1.4	0.24 0.24 0.20 0.20	ug/kg ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	105% 85% 117%	94% 94% 99%	70-12 70-12 81-12	22%	

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

Client Sa Lab Samj Matrix: Method: Project:	SO - So SW846	0-8 il 8260B	sh Avenue, N	ew Windso	r, NY	Date Sampled: Date Received: Percent Solids:	08/28/12 08/29/12 90.8
	File ID	DF	Analyzed	By	Prep Date	Prep Batcl	h Analytical Batch
Run #1	V128758.D	1	08/29/12	OTR	n/a	n/a	VV5563
Run #2	E194541.D	1	08/30/12	OTR	n/a	n/a	VE8556
Run #3	E194542.D	1	08/30/12	OTR	n/a	n/a	VE8556
	Initial Weight	Final Vo	olume	Methanol A	Aliquot		
Run #1	4.4 g						
Run #2	9.8 g	10.0 ml		100 ul			
Run #3	9.8 g	10.0 ml		10.0 ul			

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	13.3	13	2.1	ug/kg	
71-43-2	Benzene	ND	1.3	0.15	ug/kg	
75-27-4	Bromodichloromethane	ND	6.3	0.13	ug/kg	
75-25-2	Bromoform	ND	6.3	0.19	ug/kg	
74-83-9	Bromomethane	ND	6.3	0.34	ug/kg	
78-93-3	2-Butanone (MEK)	ND	13	3.0	ug/kg	
75-15-0	Carbon disulfide	1.2	6.3	0.15	ug/kg	J
56-23-5	Carbon tetrachloride	ND	6.3	0.17	ug/kg	
108-90-7	Chlorobenzene	ND	6.3	0.14	ug/kg	
75-00-3	Chloroethane	ND	6.3	0.28	ug/kg	
67-66-3	Chloroform	0.79	6.3	0.10	ug/kg	J
74-87-3	Chloromethane	ND	6.3	0.23	ug/kg	
124-48-1	Dibromochloromethane	ND	6.3	0.21	ug/kg	
75-34-3	1,1-Dichloroethane	214	6.3	0.17	ug/kg	
107-06-2	1,2-Dichloroethane	2.9	1.3	0.17	ug/kg	
75-35-4	1,1-Dichloroethene	2750 ^a	310	16	ug/kg	
156-59-2	cis-1,2-Dichloroethene	1.2	6.3	0.23	ug/kg	J
156-60-5	trans-1,2-Dichloroethene	2.2	6.3	0.30	ug/kg	J
540-59-0	1,2-Dichloroethene (total)	3.4	6.3	0.23	ug/kg	J
78-87-5	1,2-Dichloropropane	ND	6.3	0.19	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	6.3	0.17	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	6.3	0.19	ug/kg	
100-41-4	Ethylbenzene	ND	1.3	0.33	ug/kg	
591-78-6	2-Hexanone	ND	6.3	0.78	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.3	0.29	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	6.3	0.94	ug/kg	
75-09-2	Methylene chloride	ND	6.3	1.6	ug/kg	
100-42-5	Styrene	ND	6.3	0.11	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.3	0.17	ug/kg	
127-18-4	Tetrachloroethene	1.1	6.3	0.22	ug/kg	J

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	C5SP02		
Lab Sample ID:	JB14890-8	Date Sampled:	08/28/12
Matrix:	SO - Soil	Date Received:	08/29/12
Method:	SW846 8260B	Percent Solids:	90.8
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
108-88-3 71-55-6	Toluene 1.1.1-Trichloroethane	1.2 29800 ^b	1.3 3100	0.13 65	ug/kg ug/kg	
79-00-5	1,1,2-Trichloroethane	29800 ND	6.3	0.22	ug/kg	
79-01-6	Trichloroethene	1.7	6.3	0.22	ug/kg	J
75-01-4	Vinyl chloride	1.8	6.3	0.18	ug/kg	J
1330-20-7	Xylene (total)	ND	1.3	0.17	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run	# 3	Limits
1868-53-7	Dibromofluoromethane	86%	89%	89%		70-130%
17060-07-0	1,2-Dichloroethane-D4	89%	93%	93%		70-122%
2037-26-5	Toluene-D8	118%	89%	88%		81-127%
460-00-4	4-Bromofluorobenzene	108%	84%	86%		66-132%

(a) Result is from Run# 2

(b) Result is from Run# 3

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

JB15405

Lab Sam Matrix: Method:	SO -	890-9			Da	ate Sampled: 08 ate Received: 08 ercent Solids: 89	
Project:	AFF	CO, 361 Wa	alsh Avenue, Ne	w Windso	r, NY		
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 Run #2	V128796.D	1	08/30/12	OTR	n/a	n/a	VV5565
	Initial Weigh	t					
Run #1	4.2 g						

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	13	2.3	ug/kg	
71-43-2	Benzene	1.0	1.3	0.16	ug/kg	J
75-27-4	Bromodichloromethane	ND	6.7	0.14	ug/kg	
75-25-2	Bromoform	ND	6.7	0.20	ug/kg	
74-83-9	Bromomethane	ND	6.7	0.36	ug/kg	
78-93-3	2-Butanone (MEK)	ND	13	3.2	ug/kg	
75-15-0	Carbon disulfide	ND	6.7	0.16	ug/kg	
56-23-5	Carbon tetrachloride	ND	6.7	0.18	ug/kg	
108-90-7	Chlorobenzene	ND	6.7	0.14	ug/kg	
75-00-3	Chloroethane	ND	6.7	0.30	ug/kg	
67-66-3	Chloroform	ND	6.7	0.11	ug/kg	
74-87-3	Chloromethane	ND	6.7	0.25	ug/kg	
124-48-1	Dibromochloromethane	ND	6.7	0.22	ug/kg	
75-34-3	1,1-Dichloroethane	ND	6.7	0.18	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.3	0.18	ug/kg	
75-35-4	1,1-Dichloroethene	ND	6.7	0.34	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	6.7	0.24	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	6.7	0.32	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	6.7	0.24	ug/kg	
78-87-5	1,2-Dichloropropane	ND	6.7	0.21	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	6.7	0.19	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	6.7	0.21	ug/kg	
100-41-4	Ethylbenzene	ND	1.3	0.35	ug/kg	
591-78-6	2-Hexanone	ND	6.7	0.83	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.3	0.31	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	6.7	1.0	ug/kg	
75-09-2	Methylene chloride	ND	6.7	1.7	ug/kg	
100-42-5	Styrene	ND	6.7	0.12	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.7	0.18	ug/kg	
127-18-4	Tetrachloroethene	ND	6.7	0.23	ug/kg	
108-88-3	Toluene	0.43	1.3	0.14	ug/kg	J
71-55-6	1,1,1-Trichloroethane	1.6	6.7	0.14	ug/kg	J

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	C4SP01		
Lab Sample ID:	JB14890-9	Date Sampled:	08/28/12
Matrix:	SO - Soil	Date Received:	08/29/12
Method:	SW846 8260B	Percent Solids:	89.1
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND 3.6 ND ND	6.7 6.7 1.3	0.23 0.23 0.19 0.19	ug/kg ug/kg ug/kg ug/kg	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	111% 91% 118%		70-11 70-11 81-11	22%	
460-00-4	4-Bromofluorobenzene	109%		01-12	32%	

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client Sa Lab Samj Matrix: Method:	ple ID: JB151 SO - S				Da	···· · · · · · · · · · · · · · · · · ·	8/30/12 8/31/12 7.0
Project:	AFFC	CO, 361 W	alsh Avenue, Ne	w Winds	or, NY		
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	Y125714.D	1	09/01/12	RS	n/a	n/a	VY5399
Run #2	Y125759.D	1	09/04/12	RS	n/a	n/a	VY5401
	Initial Weight	t					
Run #1	5.1 g						

Page 1 of 2

Run #2 1.2 g VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	27.5	13	2.2	ug/kg
71-43-2	Benzene	ND	1.3	0.15	ug/kg
75-27-4	Bromodichloromethane	ND	6.4	0.13	ug/kg
75-25-2	Bromoform	ND	6.4	0.19	ug/kg
74-83-9	Bromomethane	ND	6.4	0.35	ug/kg
78-93-3	2-Butanone (MEK)	ND	13	3.0	ug/kg
75-15-0	Carbon disulfide	ND	6.4	0.15	ug/kg
56-23-5	Carbon tetrachloride	ND	6.4	0.17	ug/kg
108-90-7	Chlorobenzene	ND	6.4	0.14	ug/kg
75-00-3	Chloroethane	136 ^a	27	1.2	ug/kg
67-66-3	Chloroform	0.49	6.4	0.11	ug/kg
74-87-3	Chloromethane	ND	6.4	0.24	ug/kg
124-48-1	Dibromochloromethane	ND	6.4	0.21	ug/kg
75-34-3	1,1-Dichloroethane	816 ^a	27	0.74	ug/kg
107-06-2	1,2-Dichloroethane	7.4	1.3	0.17	ug/kg
75-35-4	1,1-Dichloroethene	34.5	6.4	0.33	ug/kg
156-59-2	cis-1,2-Dichloroethene	10.2	6.4	0.23	ug/kg
156-60-5	trans-1,2-Dichloroethene	3.2	6.4	0.30	ug/kg
540-59-0	1,2-Dichloroethene (total)	13.4	6.4	0.23	ug/kg
78-87-5	1,2-Dichloropropane	ND	6.4	0.20	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	6.4	0.18	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	6.4	0.20	ug/kg
100-41-4	Ethylbenzene	ND	1.3	0.33	ug/kg
591-78-6	2-Hexanone	ND	6.4	0.79	ug/kg
1634-04-4	Methyl Tert Butyl Ether	ND	1.3	0.30	ug/kg
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	6.4	0.96	ug/kg
75-09-2	Methylene chloride	ND	6.4	1.6	ug/kg
100-42-5	Styrene	ND	6.4	0.12	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.4	0.17	ug/kg
127-18-4	Tetrachloroethene	1.6	6.4	0.22	ug/kg
108-88-3	Toluene	2.7	1.3	0.13	ug/kg
71-55-6	1,1,1-Trichloroethane	519 ^a	27	0.57	ug/kg

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

J

Q

J

J

Client Sample ID:	PX07BT-10		
Lab Sample ID:	JB15155-1	Date Sampled:	08/30/12
Matrix:	SO - Soil	Date Received:	08/31/12
Method:	SW846 8260B	Percent Solids:	77.0
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	3.8 20.5 2.0 ND	6.4 6.4 1.3	0.22 0.22 0.18 0.18	ug/kg ug/kg ug/kg ug/kg	J J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	100% 85% 106% 94%	102% 93% 108% 97%	70-1 70-1 81-1 66-1	22% 27%	

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

Client Sa Lab Samp Matrix: Method: Project:	ple ID: JB15 SO - SW8	46 8260B	alsh Avenue, Ne	ew Winds]	Date Received: 08	3/30/12 3/31/12 5.3
Run #1 Run #2	File ID Y125758.D	DF 1	Analyzed 09/04/12	By RS	Prep Date n/a	Prep Batch n/a	Analytical Batch VY5401
Run #1 Run #2	Initial Weigh 4.8 g	t					

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	12	2.0	ug/kg	
71-43-2	Benzene	9.9	1.2	0.14	ug/kg	
75-27-4	Bromodichloromethane	ND	6.0	0.13	ug/kg	
75-25-2	Bromoform	ND	6.0	0.18	ug/kg	
74-83-9	Bromomethane	ND	6.0	0.33	ug/kg	
78-93-3	2-Butanone (MEK)	ND	12	2.9	ug/kg	
75-15-0	Carbon disulfide	ND	6.0	0.14	ug/kg	
56-23-5	Carbon tetrachloride	ND	6.0	0.16	ug/kg	
108-90-7	Chlorobenzene	ND	6.0	0.13	ug/kg	
75-00-3	Chloroethane	ND	6.0	0.27	ug/kg	
67-66-3	Chloroform	ND	6.0	0.10	ug/kg	
74-87-3	Chloromethane	ND	6.0	0.22	ug/kg	
124-48-1	Dibromochloromethane	ND	6.0	0.20	ug/kg	
75-34-3	1,1-Dichloroethane	1.1	6.0	0.17	ug/kg	J
107-06-2	1,2-Dichloroethane	0.50	1.2	0.16	ug/kg	J
75-35-4	1,1-Dichloroethene	ND	6.0	0.31	ug/kg	
156-59-2	cis-1,2-Dichloroethene	1.1	6.0	0.22	ug/kg	J
156-60-5	trans-1,2-Dichloroethene	0.58	6.0	0.29	ug/kg	J
540-59-0	1,2-Dichloroethene (total)	1.6	6.0	0.22	ug/kg	J
78-87-5	1,2-Dichloropropane	ND	6.0	0.19	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	6.0	0.17	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	6.0	0.19	ug/kg	
100-41-4	Ethylbenzene	0.73	1.2	0.32	ug/kg	J
591-78-6	2-Hexanone	ND	6.0	0.75	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.2	0.28	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	6.0	0.91	ug/kg	
75-09-2	Methylene chloride	ND	6.0	1.5	ug/kg	
100-42-5	Styrene	ND	6.0	0.11	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.0	0.16	ug/kg	
127-18-4	Tetrachloroethene	0.44	6.0	0.21	ug/kg	J
108-88-3	Toluene	4.1	1.2	0.13	ug/kg	
71-55-6	1,1,1-Trichloroethane	38.4	6.0	0.13	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Client Sample ID:	PX08SW-7		
Lab Sample ID:	JB15155-2	Date Sampled:	08/30/12
Matrix:	SO - Soil	Date Received:	08/31/12
Method:	SW846 8260B	Percent Solids:	86.3
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	4.6 2.4 ND 1.7	6.0 6.0 1.2	0.21 0.21 0.17 0.17	ug/kg ug/kg ug/kg ug/kg	1 1
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
CAS No. 1868-53-7 17060-07-0 2037-26-5	Surrogate Recoveries Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	Run# 1 106% 97% 108%	Run# 2	Limi 70-13 70-13 81-13	30% 22%	

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

Client Sa Lab Sam Matrix: Method: Project:	ple ID: JB15 SO - SW8	46 8260B	alsh Avenue, Ne	ew Winds]	Date Received: 08	8/30/12 8/31/12 8.1
Run #1 Run #2	File ID Y125715.D	DF 1	Analyzed 09/01/12	By RS	Prep Date n/a	Prep Batch n/a	Analytical Batch VY5399
Run #1 Run #2	Initial Weigh 5.0 g	t					

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	11	1.9	ug/kg	
71-43-2	Benzene	ND	1.1	0.14	ug/kg	
75-27-4	Bromodichloromethane	ND	5.7	0.12	ug/kg	
75-25-2	Bromoform	ND	5.7	0.17	ug/kg	
74-83-9	Bromomethane	ND	5.7	0.31	ug/kg	
78-93-3	2-Butanone (MEK)	ND	11	2.7	ug/kg	
75-15-0	Carbon disulfide	ND	5.7	0.13	ug/kg	
56-23-5	Carbon tetrachloride	ND	5.7	0.15	ug/kg	
108-90-7	Chlorobenzene	ND	5.7	0.12	ug/kg	
75-00-3	Chloroethane	ND	5.7	0.26	ug/kg	
67-66-3	Chloroform	ND	5.7	0.094	ug/kg	
74-87-3	Chloromethane	ND	5.7	0.21	ug/kg	
124-48-1	Dibromochloromethane	ND	5.7	0.19	ug/kg	
75-34-3	1,1-Dichloroethane	1.2	5.7	0.16	ug/kg	J
107-06-2	1,2-Dichloroethane	ND	1.1	0.15	ug/kg	
75-35-4	1,1-Dichloroethene	1.6	5.7	0.29	ug/kg	J
156-59-2	cis-1,2-Dichloroethene	0.92	5.7	0.21	ug/kg	J
156-60-5	trans-1,2-Dichloroethene	0.61	5.7	0.27	ug/kg	J
540-59-0	1,2-Dichloroethene (total)	1.5	5.7	0.21	ug/kg	J
78-87-5	1,2-Dichloropropane	ND	5.7	0.17	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.7	0.16	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.7	0.18	ug/kg	
100-41-4	Ethylbenzene	ND	1.1	0.30	ug/kg	
591-78-6	2-Hexanone	ND	5.7	0.71	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.1	0.27	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.7	0.85	ug/kg	
75-09-2	Methylene chloride	ND	5.7	1.4	ug/kg	
100-42-5	Styrene	ND	5.7	0.10	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.7	0.15	ug/kg	
127-18-4	Tetrachloroethene	0.62	5.7	0.20	ug/kg	J
108-88-3	Toluene	1.1	1.1	0.12	ug/kg	
71-55-6	1,1,1-Trichloroethane	47.9	5.7	0.12	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	BENCH01		
Lab Sample ID:	JB15155-3	Date Sampled:	08/30/12
Matrix:	SO - Soil	Date Received:	08/31/12
Method:	SW846 8260B	Percent Solids:	88.1
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	1.6 0.93 ND ND	5.7 5.7 5.7 1.1	0.20 0.20 0.16 0.16	ug/kg ug/kg ug/kg ug/kg	1 1
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	101% 86% 105%		70-12 70-12 81-12	22% 27%	
460-00-4	4-Bromofluorobenzene	92%		66-1	32%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

JB15405

Client Sa Lab Sam Matrix: Method:	ple ID: JB15 SO -	9SW-3 405-1 Soil 46 8260B			D	L	0/04/12 0/05/12 4.5
Project:	AFF	CO, 361 Wa	alsh Avenue, Ne	ew Windso	or, NY		
Run #1 Run #2	File ID 3C90562.D	DF 1	Analyzed 09/06/12	By JTP	Prep Date n/a	Prep Batch n/a	Analytical Batch V3C4027
Run #1 Run #2	Initial Weigh 4.5 g	t					

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	13	2.2	ug/kg	
71-43-2	Benzene	2.6	1.3	0.16	ug/kg	
75-27-4	Bromodichloromethane	ND	6.6	0.14	ug/kg	
75-25-2	Bromoform	ND	6.6	0.20	ug/kg	
74-83-9	Bromomethane	ND	6.6	0.36	ug/kg	
78-93-3	2-Butanone (MEK)	ND	13	3.1	ug/kg	
75-15-0	Carbon disulfide	ND	6.6	0.15	ug/kg	
56-23-5	Carbon tetrachloride	ND	6.6	0.17	ug/kg	
108-90-7	Chlorobenzene	ND	6.6	0.14	ug/kg	
75-00-3	Chloroethane	ND	6.6	0.30	ug/kg	
67-66-3	Chloroform	ND	6.6	0.11	ug/kg	
74-87-3	Chloromethane	ND	6.6	0.24	ug/kg	
124-48-1	Dibromochloromethane	ND	6.6	0.22	ug/kg	
75-34-3	1,1-Dichloroethane	ND	6.6	0.18	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.3	0.18	ug/kg	
75-35-4	1,1-Dichloroethene	ND	6.6	0.34	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	6.6	0.24	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	6.6	0.31	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	6.6	0.24	ug/kg	
78-87-5	1,2-Dichloropropane	ND	6.6	0.20	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	6.6	0.18	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	6.6	0.20	ug/kg	
100-41-4	Ethylbenzene	ND	1.3	0.35	ug/kg	
591-78-6	2-Hexanone	ND	6.6	0.82	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.3	0.31	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	6.6	0.99	ug/kg	
75-09-2	Methylene chloride	ND	6.6	1.7	ug/kg	
100-42-5	Styrene	ND	6.6	0.12	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.6	0.17	ug/kg	
127-18-4	Tetrachloroethene	ND	6.6	0.23	ug/kg	
108-88-3	Toluene	1.1	1.3	0.14	ug/kg	J
71-55-6	1,1,1-Trichloroethane	68.5	6.6	0.14	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Page 1 of 2

39 of 70

ACCUTEST

JB15405

E = Indicates value exceeds calibration range

Client Sample ID: Lab Sample ID:	PX09SW-3 JB15405-1	Date Sampled:	09/04/12
Matrix:	SO - Soil	Date Received:	09/05/12
Method:	SW846 8260B	Percent Solids:	84.5
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1, 1, 2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND 2.0 ND ND	6.6 6.6 6.6 1.3	0.23 0.23 0.19 0.18	ug/kg ug/kg ug/kg ug/kg	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits			
1868-53-7 17060-07-0	Dibromofluoromethane 1,2-Dichloroethane-D4	101% 104%	70-130% 70-122% 81-127%			
2037-26-5	Toluene-D8	100%		81-1	27%	

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

Lab Samj Matrix: Method:	ple ID: JB15 SO - SW8	46 8260B	-1.1. A		D P	ate Sampled: 09 ate Received: 09 ercent Solids: 83	
Project: Run #1 Run #2	File ID 3C90563.D	DF 1	alsh Avenue, Ne Analyzed 09/06/12	By JTP	Prep Date n/a	Prep Batch n/a	Analytical Batch V3C4027
Run #1 Run #2	Initial Weigh 4.5 g	ıt					

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	13	2.2	ug/kg	
71-43-2	Benzene	2.7	1.3	0.16	ug/kg	
75-27-4	Bromodichloromethane	ND	6.6	0.14	ug/kg	
75-25-2	Bromoform	ND	6.6	0.20	ug/kg	
74-83-9	Bromomethane	ND	6.6	0.36	ug/kg	
78-93-3	2-Butanone (MEK)	ND	13	3.2	ug/kg	
75-15-0	Carbon disulfide	ND	6.6	0.16	ug/kg	
56-23-5	Carbon tetrachloride	ND	6.6	0.18	ug/kg	
108-90-7	Chlorobenzene	ND	6.6	0.14	ug/kg	
75-00-3	Chloroethane	ND	6.6	0.30	ug/kg	
67-66-3	Chloroform	ND	6.6	0.11	ug/kg	
74-87-3	Chloromethane	ND	6.6	0.25	ug/kg	
124-48-1	Dibromochloromethane	ND	6.6	0.22	ug/kg	
75-34-3	1,1-Dichloroethane	1.8	6.6	0.18	ug/kg	J
107-06-2	1,2-Dichloroethane	ND	1.3	0.18	ug/kg	
75-35-4	1,1-Dichloroethene	ND	6.6	0.34	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	6.6	0.24	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	6.6	0.32	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	6.6	0.24	ug/kg	
78-87-5	1,2-Dichloropropane	ND	6.6	0.20	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	6.6	0.18	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	6.6	0.21	ug/kg	
100-41-4	Ethylbenzene	ND	1.3	0.35	ug/kg	
591-78-6	2-Hexanone	ND	6.6	0.83	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.3	0.31	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	6.6	1.0	ug/kg	
75-09-2	Methylene chloride	ND	6.6	1.7	ug/kg	
100-42-5	Styrene	ND	6.6	0.12	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.6	0.18	ug/kg	
127-18-4	Tetrachloroethene	0.54	6.6	0.23	ug/kg	J
108-88-3	Toluene	1.3	1.3	0.14	ug/kg	
71-55-6	1,1,1-Trichloroethane	67.1	6.6	0.14	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	PX10SW-5		
Lab Sample ID:	JB15405-2	Date Sampled:	09/04/12
Matrix:	SO - Soil	Date Received:	09/05/12
Method:	SW846 8260B	Percent Solids:	83.6
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND 1.5 ND ND	6.6 6.6 6.6 1.3	0.23 0.23 0.19 0.18	ug/kg ug/kg ug/kg ug/kg	J
			Run# 2 Limits			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
CAS No. 1868-53-7 17060-07-0 2037-26-5	Surrogate Recoveries Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	Run# 1 101% 103% 99%	Run# 2	Limi 70-12 70-12 81-12	30% 22%	

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client Sa Lab Samj Matrix: Method: Project:	ple ID: JB154 SO - S SW84	05-3 Soil 6 8260B	alsh Avenue, Ne	ew Winds	E P	···· I ··· ··	0/04/12 0/05/12 5.2
Run #1 Run #2	File ID X129159.D	DF 1	Analyzed 09/05/12	By MS	Prep Date n/a	Prep Batch n/a	Analytical Batch VX5603
Run #1 Run #2	Initial Weight 5.0 g						

L

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	12	2.0	ug/kg	
71-43-2	Benzene	ND	1.2	0.14	ug/kg	
75-27-4	Bromodichloromethane	ND	5.8	0.12	ug/kg	
75-25-2	Bromoform	ND	5.8	0.18	ug/kg	
74-83-9	Bromomethane	ND	5.8	0.32	ug/kg	
78-93-3	2-Butanone (MEK)	ND	12	2.8	ug/kg	
75-15-0	Carbon disulfide	ND	5.8	0.14	ug/kg	
56-23-5	Carbon tetrachloride	ND	5.8	0.15	ug/kg	
108-90-7	Chlorobenzene	ND	5.8	0.13	ug/kg	
75-00-3	Chloroethane	ND	5.8	0.26	ug/kg	
67-66-3	Chloroform	ND	5.8	0.096	ug/kg	
74-87-3	Chloromethane	ND	5.8	0.22	ug/kg	
124-48-1	Dibromochloromethane	ND	5.8	0.19	ug/kg	
75-34-3	1,1-Dichloroethane	ND	5.8	0.16	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.2	0.16	ug/kg	
75-35-4	1,1-Dichloroethene	ND	5.8	0.30	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	5.8	0.21	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	5.8	0.28	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	5.8	0.21	ug/kg	
78-87-5	1,2-Dichloropropane	ND	5.8	0.18	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.8	0.16	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.8	0.18	ug/kg	
100-41-4	Ethylbenzene	ND	1.2	0.31	ug/kg	
591-78-6	2-Hexanone	ND	5.8	0.72	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.2	0.27	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.8	0.87	ug/kg	
75-09-2	Methylene chloride	ND	5.8	1.5	ug/kg	
100-42-5	Styrene	ND	5.8	0.11	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.8	0.15	ug/kg	
127-18-4	Tetrachloroethene	ND	5.8	0.20	ug/kg	
108-88-3	Toluene	ND	1.2	0.12	ug/kg	
71-55-6	1,1,1-Trichloroethane	10.9	5.8	0.12	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	PX11BT-10		
Lab Sample ID:	JB15405-3	Date Sampled:	09/04/12
Matrix:	SO - Soil	Date Received:	09/05/12
Method:	SW846 8260B	Percent Solids:	86.2
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1, 1, 2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	0.83 2.2 ND ND	5.8 5.8 5.8 1.2	0.20 0.20 0.17 0.16	ug/kg ug/kg ug/kg ug/kg] J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 2 Limits		
1868-53-7 17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	93% 90% 108%		70-13 70-13 81-13	22%	

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

Client Sa Lab Sam Matrix: Method: Project:	ple ID: JB154 SO - S SW84	05-4 Soil 6 8260B	alsh Avenue, Ne	ew Windso	-	Date Received: 09	9/04/12 9/05/12 9.0
Run #1 Run #2	File ID 3C90564.D	DF 1	Analyzed 09/06/12	By JTP	Prep Date n/a	Prep Batch n/a	Analytical Batch V3C4027
Run #1 Run #2	Initial Weight 4.5 g	;					

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	12	2.1	ug/kg	
71-43-2	Benzene	2.6	1.2	0.15	ug/kg	
75-27-4	Bromodichloromethane	ND	6.2	0.13	ug/kg	
75-25-2	Bromoform	ND	6.2	0.19	ug/kg	
74-83-9	Bromomethane	ND	6.2	0.34	ug/kg	
78-93-3	2-Butanone (MEK)	ND	12	3.0	ug/kg	
75-15-0	Carbon disulfide	ND	6.2	0.15	ug/kg	
56-23-5	Carbon tetrachloride	ND	6.2	0.17	ug/kg	
108-90-7	Chlorobenzene	ND	6.2	0.13	ug/kg	
75-00-3	Chloroethane	ND	6.2	0.28	ug/kg	
67-66-3	Chloroform	ND	6.2	0.10	ug/kg	
74-87-3	Chloromethane	ND	6.2	0.23	ug/kg	
124-48-1	Dibromochloromethane	ND	6.2	0.20	ug/kg	
75-34-3	1,1-Dichloroethane	ND	6.2	0.17	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.2	0.17	ug/kg	
75-35-4	1,1-Dichloroethene	ND	6.2	0.32	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	6.2	0.23	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	6.2	0.30	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	6.2	0.23	ug/kg	
78-87-5	1,2-Dichloropropane	ND	6.2	0.19	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	6.2	0.17	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	6.2	0.19	ug/kg	
100-41-4	Ethylbenzene	ND	1.2	0.33	ug/kg	
591-78-6	2-Hexanone	ND	6.2	0.78	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.2	0.29	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	6.2	0.94	ug/kg	
75-09-2	Methylene chloride	ND	6.2	1.6	ug/kg	
100-42-5	Styrene	ND	6.2	0.11	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.2	0.16	ug/kg	
127-18-4	Tetrachloroethene	ND	6.2	0.21	ug/kg	
108-88-3	Toluene	1.1	1.2	0.13	ug/kg	J
71-55-6	1,1,1-Trichloroethane	5.1	6.2	0.13	ug/kg	J

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Client Sample ID:	PX12SW-7		
Lab Sample ID:	JB15405-4	Date Sampled:	09/04/12
Matrix:	SO - Soil	Date Received:	09/05/12
Method:	SW846 8260B	Percent Solids:	89.0
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND 2.5 ND ND	6.2 6.2 6.2 1.2	0.22 0.22 0.18 0.17	ug/kg ug/kg ug/kg ug/kg	J
			Run# 2 Limits			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
CAS No. 1868-53-7 17060-07-0 2037-26-5	Surrogate Recoveries Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	Run# 1 103% 108% 99%	Run# 2	Limi 70-1: 70-1: 81-1:	30% 22%	

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client Sa Lab Sam Matrix: Method:	ple ID: JB154 SO - S	405-5			D	ate Received: 09	9/04/12 9/05/12 4.9
Project:	AFFC	CO, 361 W	alsh Avenue, Ne	w Windso	or, NY		
Run #1 Run #2	File ID 3C90565.D	DF 1	Analyzed 09/06/12	By JTP	Prep Date n/a	Prep Batch n/a	Analytical Batch V3C4027
Run #1 Run #2	Initial Weigh 4.5 g	t					

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	13	2.2	ug/kg	
71-43-2	Benzene	0.82	1.3	0.16	ug/kg	J
75-27-4	Bromodichloromethane	ND	6.5	0.14	ug/kg	
75-25-2	Bromoform	ND	6.5	0.20	ug/kg	
74-83-9	Bromomethane	ND	6.5	0.36	ug/kg	
78-93-3	2-Butanone (MEK)	ND	13	3.1	ug/kg	
75-15-0	Carbon disulfide	ND	6.5	0.15	ug/kg	
56-23-5	Carbon tetrachloride	ND	6.5	0.17	ug/kg	
108-90-7	Chlorobenzene	ND	6.5	0.14	ug/kg	
75-00-3	Chloroethane	ND	6.5	0.30	ug/kg	
67-66-3	Chloroform	ND	6.5	0.11	ug/kg	
74-87-3	Chloromethane	ND	6.5	0.24	ug/kg	
124-48-1	Dibromochloromethane	ND	6.5	0.21	ug/kg	
75-34-3	1,1-Dichloroethane	ND	6.5	0.18	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.3	0.18	ug/kg	
75-35-4	1,1-Dichloroethene	ND	6.5	0.34	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	6.5	0.24	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	6.5	0.31	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	6.5	0.24	ug/kg	
78-87-5	1,2-Dichloropropane	ND	6.5	0.20	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	6.5	0.18	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	6.5	0.20	ug/kg	
100-41-4	Ethylbenzene	ND	1.3	0.34	ug/kg	
591-78-6	2-Hexanone	ND	6.5	0.81	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.3	0.31	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	6.5	0.98	ug/kg	
75-09-2	Methylene chloride	ND	6.5	1.7	ug/kg	
100-42-5	Styrene	ND	6.5	0.12	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.5	0.17	ug/kg	
127-18-4	Tetrachloroethene	ND	6.5	0.23	ug/kg	
108-88-3	Toluene	0.54	1.3	0.14	ug/kg	J
71-55-6	1,1,1-Trichloroethane	7.0	6.5	0.14	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	PX13SW-7		
Lab Sample ID:	JB15405-5	Date Sampled:	09/04/12
Matrix:	SO - Soil	Date Received:	09/05/12
Method:	SW846 8260B	Percent Solids:	84.9
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND ND ND ND	6.5 6.5 1.3	0.23 0.23 0.19 0.18	ug/kg ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	99% 100% 100%		70-13 70-12 81-12	22%	
460-00-4	4-Bromofluorobenzene	101%		66-13		

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client Sar Lab Samj Matrix: Method:	ple ID: JB154 SO -				D	ate Sampled: 09 ate Received: 09 ercent Solids: 85	
Project:	AFF	CO, 361 Wa	alsh Avenue, Ne	w Winds	or, NY		
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 Run #2	Y125807.D	1	09/05/12	RS	n/a	n/a	VY5403
	Initial Weigh	t					
Run #1 Run #2	5.3 g						

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	11	1.9	ug/kg	
71-43-2	Benzene	ND	1.1	0.13	ug/kg	
75-27-4	Bromodichloromethane	ND	5.5	0.12	ug/kg	
75-25-2	Bromoform	ND	5.5	0.17	ug/kg	
74-83-9	Bromomethane	ND	5.5	0.30	ug/kg	
78-93-3	2-Butanone (MEK)	ND	11	2.7	ug/kg	
75-15-0	Carbon disulfide	ND	5.5	0.13	ug/kg	
56-23-5	Carbon tetrachloride	ND	5.5	0.15	ug/kg	
108-90-7	Chlorobenzene	ND	5.5	0.12	ug/kg	
75-00-3	Chloroethane	ND	5.5	0.25	ug/kg	
67-66-3	Chloroform	ND	5.5	0.092	ug/kg	
74-87-3	Chloromethane	ND	5.5	0.21	ug/kg	
124-48-1	Dibromochloromethane	ND	5.5	0.18	ug/kg	
75-34-3	1,1-Dichloroethane	0.87	5.5	0.15	ug/kg	J
107-06-2	1,2-Dichloroethane	ND	1.1	0.15	ug/kg	
75-35-4	1,1-Dichloroethene	0.63	5.5	0.29	ug/kg	J
156-59-2	cis-1,2-Dichloroethene	2.4	5.5	0.20	ug/kg	J
156-60-5	trans-1,2-Dichloroethene	2.1	5.5	0.26	ug/kg	J
540-59-0	1,2-Dichloroethene (total)	4.4	5.5	0.20	ug/kg	J
78-87-5	1,2-Dichloropropane	ND	5.5	0.17	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.5	0.15	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.5	0.17	ug/kg	
100-41-4	Ethylbenzene	ND	1.1	0.29	ug/kg	
591-78-6	2-Hexanone	ND	5.5	0.69	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.1	0.26	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.5	0.83	ug/kg	
75-09-2	Methylene chloride	ND	5.5	1.4	ug/kg	
100-42-5	Styrene	ND	5.5	0.10	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.5	0.15	ug/kg	
127-18-4	Tetrachloroethene	0.59	5.5	0.19	ug/kg	J
108-88-3	Toluene	ND	1.1	0.12	ug/kg	
71-55-6	1,1,1-Trichloroethane	29.3	5.5	0.12	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	PX14SW-6		
Lab Sample ID:	JB15405-6	Date Sampled:	09/04/12
Matrix:	SO - Soil	Date Received:	09/05/12
Method:	SW846 8260B	Percent Solids:	85.0
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1, 1, 2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	5.9 4.0 ND ND	5.5 5.5 5.5 1.1	0.19 0.19 0.16 0.15	ug/kg ug/kg ug/kg ug/kg	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	102% 87% 106%		70-12 70-12 81-12	22%	

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

Client Sa Lab Samj Matrix: Method: Project:	ple ID: JB154 SO - SW84	Soil 46 8260B	alsh Avenue, Ne	ew Winds	I I	Date Sampled:09Date Received:09Percent Solids:83	
Run #1 Run #2	File ID X129174.D	DF 1	Analyzed 09/06/12	By MS	Prep Date n/a	Prep Batch n/a	Analytical Batch VX5604
Run #1 Run #2	Initial Weigh 4.7 g	t					

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	13.6	13	2.2	ug/kg	
71-43-2	Benzene	ND	1.3	0.15	ug/kg	
75-27-4	Bromodichloromethane	ND	6.4	0.13	ug/kg	
75-25-2	Bromoform	ND	6.4	0.19	ug/kg	
74-83-9	Bromomethane	ND	6.4	0.35	ug/kg	
78-93-3	2-Butanone (MEK)	ND	13	3.1	ug/kg	
75-15-0	Carbon disulfide	ND	6.4	0.15	ug/kg	
56-23-5	Carbon tetrachloride	ND	6.4	0.17	ug/kg	
108-90-7	Chlorobenzene	ND	6.4	0.14	ug/kg	
75-00-3	Chloroethane	ND	6.4	0.29	ug/kg	
67-66-3	Chloroform	1.0	6.4	0.11	ug/kg	J
74-87-3	Chloromethane	ND	6.4	0.24	ug/kg	
124-48-1	Dibromochloromethane	ND	6.4	0.21	ug/kg	
75-34-3	1,1-Dichloroethane	8.3	6.4	0.18	ug/kg	
107-06-2	1,2-Dichloroethane	0.60	1.3	0.17	ug/kg	J
75-35-4	1,1-Dichloroethene	4.2	6.4	0.33	ug/kg	J
156-59-2	cis-1,2-Dichloroethene	0.85	6.4	0.23	ug/kg	J
156-60-5	trans-1,2-Dichloroethene	0.58	6.4	0.31	ug/kg	J
540-59-0	1,2-Dichloroethene (total)	1.4	6.4	0.23	ug/kg	J
78-87-5	1,2-Dichloropropane	ND	6.4	0.20	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	6.4	0.18	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	6.4	0.20	ug/kg	
100-41-4	Ethylbenzene	ND	1.3	0.34	ug/kg	
591-78-6	2-Hexanone	ND	6.4	0.80	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.3	0.30	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	6.4	0.96	ug/kg	
75-09-2	Methylene chloride	ND	6.4	1.6	ug/kg	
100-42-5	Styrene	ND	6.4	0.12	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.4	0.17	ug/kg	
127-18-4	Tetrachloroethene	0.79	6.4	0.22	ug/kg	J
108-88-3	Toluene	0.58	1.3	0.13	ug/kg	J
71-55-6	1,1,1-Trichloroethane	149	6.4	0.14	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	PX15BT-10		
Lab Sample ID:	JB15405-7	Date Sampled:	09/04/12
Matrix:	SO - Soil	Date Received:	09/05/12
Method:	SW846 8260B	Percent Solids:	83.0
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

Compound	Result	RL	MDL	Units	Q
1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	1.5 4.7 ND ND	6.4 6.4 1.3	0.22 0.22 0.18 0.18	ug/kg ug/kg ug/kg ug/kg	J J
Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	91% 84% 108%	70-130% 70-122% 81-127% 66-132%			
	1, 1, 2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total) Surrogate Recoveries Dibromofluoromethane 1, 2-Dichloroethane-D4	1, 1, 2-Trichloroethane1.5Trichloroethene4.7Vinyl chlorideNDXylene (total)NDSurrogate RecoveriesRun# 1Dibromofluoromethane91%1, 2-Dichloroethane-D484%	1,1,2-Trichloroethane1.56.4Trichloroethane4.76.4Vinyl chlorideND6.4Xylene (total)ND1.3Surrogate RecoveriesRun# 1Run# 2Dibromofluoromethane91%1,2-Dichloroethane-D484%	1,1,2-Trichloroethane 1.5 6.4 0.22 Trichloroethene 4.7 6.4 0.22 Vinyl chloride ND 6.4 0.18 Xylene (total) ND 1.3 0.18 Surrogate Recoveries Run# 1 Run# 2 Limit Dibromofluoromethane 91% 70-1 1,2-Dichloroethane-D4 84% 70-1	1,1,2-Trichloroethane 1.5 6.4 0.22 ug/kg Trichloroethane 4.7 6.4 0.22 ug/kg Vinyl chloride ND 6.4 0.18 ug/kg Xylene (total) ND 1.3 0.18 ug/kg Surrogate Recoveries Run#1 Run#2 Limits Dibromofluoromethane 91% 70-130% 1,2-Dichloroethane-D4 84% 70-122%

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

JB15405

Lab Sam Matrix:	-	5405-8 Soil				I	0/04/12 0/05/12
Method: Project:	SW8	46 8260B	alsh Avenue, Ne	w Winds	Pe	rcent Solids: 85	
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
	Y125814.D	1	09/05/12	RS	n/a	n/a	VY5403
Run #1			00/01/10	DC	1	,	
Run #1 Run #2	Y125848.D	1	09/06/12	RS	n/a	n/a	VY5405

Page 1 of 2

Run #2 1.2 g

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	12	2.0	ug/kg	
71-43-2	Benzene	ND	1.2	0.14	ug/kg	
75-27-4	Bromodichloromethane	ND	6.0	0.13	ug/kg	
75-25-2	Bromoform	ND	6.0	0.18	ug/kg	
74-83-9	Bromomethane	ND	6.0	0.33	ug/kg	
78-93-3	2-Butanone (MEK)	ND	12	2.9	ug/kg	
75-15-0	Carbon disulfide	ND	6.0	0.14	ug/kg	
56-23-5	Carbon tetrachloride	ND	6.0	0.16	ug/kg	
108-90-7	Chlorobenzene	ND	6.0	0.13	ug/kg	
75-00-3	Chloroethane	ND	6.0	0.27	ug/kg	
67-66-3	Chloroform	ND	6.0	0.099	ug/kg	
74-87-3	Chloromethane	ND	6.0	0.22	ug/kg	
124-48-1	Dibromochloromethane	ND	6.0	0.20	ug/kg	
75-34-3	1,1-Dichloroethane	7.2	6.0	0.16	ug/kg	
107-06-2	1,2-Dichloroethane	0.65	1.2	0.16	ug/kg	J
75-35-4	1,1-Dichloroethene	2.0	6.0	0.31	ug/kg	J
156-59-2	cis-1,2-Dichloroethene	0.61	6.0	0.22	ug/kg	J
156-60-5	trans-1,2-Dichloroethene	0.50	6.0	0.29	ug/kg	J
540-59-0	1,2-Dichloroethene (total)	1.1	6.0	0.22	ug/kg	J
78-87-5	1,2-Dichloropropane	ND	6.0	0.18	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	6.0	0.17	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	6.0	0.19	ug/kg	
100-41-4	Ethylbenzene	ND	1.2	0.32	ug/kg	
591-78-6	2-Hexanone	ND	6.0	0.75	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.2	0.28	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	6.0	0.90	ug/kg	
75-09-2	Methylene chloride	ND	6.0	1.5	ug/kg	
100-42-5	Styrene	ND	6.0	0.11	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.0	0.16	ug/kg	
127-18-4	Tetrachloroethene	1.1	6.0	0.21	ug/kg	J
108-88-3	Toluene	1.3	1.2	0.13	ug/kg	
71-55-6	1,1,1-Trichloroethane	513 ^a	25	0.52	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Client Sample ID:	C1SP01		
Lab Sample ID:	JB15405-8	Date Sampled:	09/04/12
Matrix:	SO - Soil	Date Received:	09/05/12
Method:	SW846 8260B	Percent Solids:	85.0
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	3.5 5.0 ND ND	6.0 6.0 1.2	0.21 0.21 0.17 0.17	ug/kg ug/kg ug/kg ug/kg	1 1
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	100% 85% 108% 90%	101% 87% 107% 92%	70-12 70-12 81-12 66-12	22% 27%	

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- $N= \ Indicates \ presumptive \ evidence \ of \ a \ compound$

Page 2 of 2

Client San Lab Samj Matrix: Method: Project:	ple ID: JB1540. SO - So SW846	5-9 il 8260B	sh Avenue, N	lew Windson		Date Sampled: Date Received: Percent Solids:	09/04/12 09/05/12 86.6
	File ID	DF	Analyzed	By	Prep Date	Prep Batcl	h Analytical Batch
Run #1	Y125815.D	1	09/05/12	RS	n/a	n/a	VY5403
Run #2	E194755.D	1	09/06/12	OTR	n/a	n/a	VE8565
Run #3	E194753.D	1	09/06/12	OTR	n/a	n/a	VE8565
	Initial Weight	Final Vo	olume	Methanol A	Aliquot		
Run #1	4.8 g						
Run #2	10.4 g	10.0 ml		10.0 ul			
Run #3	10.4 g	10.0 ml		100 ul			

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	12	2.0	ug/kg	
71-43-2	Benzene	ND	1.2	0.14	ug/kg	
75-27-4	Bromodichloromethane	ND	6.0	0.13	ug/kg	
75-25-2	Bromoform	ND	6.0	0.18	ug/kg	
74-83-9	Bromomethane	ND	6.0	0.33	ug/kg	
78-93-3	2-Butanone (MEK)	ND	12	2.9	ug/kg	
75-15-0	Carbon disulfide	ND	6.0	0.14	ug/kg	
56-23-5	Carbon tetrachloride	ND	6.0	0.16	ug/kg	
108-90-7	Chlorobenzene	ND	6.0	0.13	ug/kg	
75-00-3	Chloroethane	ND	6.0	0.27	ug/kg	
67-66-3	Chloroform	ND	6.0	0.099	ug/kg	
74-87-3	Chloromethane	ND	6.0	0.22	ug/kg	
124-48-1	Dibromochloromethane	ND	6.0	0.20	ug/kg	
75-34-3	1,1-Dichloroethane	13.0	6.0	0.16	ug/kg	
107-06-2	1,2-Dichloroethane	1.2	1.2	0.16	ug/kg	
75-35-4	1,1-Dichloroethene	5.8	6.0	0.31	ug/kg	J
156-59-2	cis-1,2-Dichloroethene	0.54	6.0	0.22	ug/kg	J
156-60-5	trans-1,2-Dichloroethene	0.41	6.0	0.29	ug/kg	J
540-59-0	1,2-Dichloroethene (total)	0.95	6.0	0.22	ug/kg	J
78-87-5	1,2-Dichloropropane	ND	6.0	0.19	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	6.0	0.17	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	6.0	0.19	ug/kg	
100-41-4	Ethylbenzene	ND	1.2	0.32	ug/kg	
591-78-6	2-Hexanone	ND	6.0	0.75	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.2	0.28	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	6.0	0.90	ug/kg	
75-09-2	Methylene chloride	ND	6.0	1.5	ug/kg	
100-42-5	Styrene	ND	6.0	0.11	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.0	0.16	ug/kg	
127-18-4	Tetrachloroethene	1.6	6.0	0.21	ug/kg	J

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: Lab Sample ID:	C3SP01 JB15405-9	Date Sampled:	00/04/12
Matrix:	SO - Soil	Date Sampled. Date Received:	
Method: Project:	SW846 8260B AFFCO, 361 Walsh Avenue, New Windsor, NY	Percent Solids:	86.6

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
108-88-3 71-55-6 79-00-5 79-01-6 75-01-4 1330-20-7	Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	2.8 41900 ^a 5.2 5.7 ND ND	1.2 3200 6.0 6.0 6.0 1.2	0.13 67 0.21 0.21 0.17 0.17	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	g J g J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run	#3	Limits
1868-53-7 17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	97% 84% 107%	90% 97% 87%	89% 97% 87%		70-130% 70-122% 81-127%
2037-26-5 460-00-4	Toluene-D8 4-Bromofluorobenzene	107% 89%	87% 85%	87% 83%		81-1279 66-1329

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

Lab Sam Matrix: Method: Project:	SO - S SW84	05-10 Soil 6 8260B	alsh Avenue, Ne	ww.Windo	D P	Date Received: 09	9/04/12 9/05/12 9.9
Run #1 Run #2	File ID Y125816.D	DF 1	Analyzed 09/05/12	By RS	Prep Date n/a	Prep Batch n/a	Analytical Batch VY5403
Run #1 Run #2	Initial Weight 5.3 g						

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	1.8	ug/kg	
71-43-2	Benzene	ND	1.0	0.12	ug/kg	
75-27-4	Bromodichloromethane	ND	5.2	0.11	ug/kg	
75-25-2	Bromoform	ND	5.2	0.16	ug/kg	
74-83-9	Bromomethane	ND	5.2	0.29	ug/kg	
78-93-3	2-Butanone (MEK)	ND	10	2.5	ug/kg	
75-15-0	Carbon disulfide	ND	5.2	0.12	ug/kg	
56-23-5	Carbon tetrachloride	ND	5.2	0.14	ug/kg	
108-90-7	Chlorobenzene	ND	5.2	0.11	ug/kg	
75-00-3	Chloroethane	ND	5.2	0.24	ug/kg	
67-66-3	Chloroform	ND	5.2	0.087	ug/kg	
74-87-3	Chloromethane	ND	5.2	0.20	ug/kg	
124-48-1	Dibromochloromethane	ND	5.2	0.17	ug/kg	
75-34-3	1,1-Dichloroethane	3.0	5.2	0.14	ug/kg	J
107-06-2	1,2-Dichloroethane	0.76	1.0	0.14	ug/kg	J
75-35-4	1,1-Dichloroethene	1.5	5.2	0.27	ug/kg	J
156-59-2	cis-1,2-Dichloroethene	0.41	5.2	0.19	ug/kg	J
156-60-5	trans-1,2-Dichloroethene	0.38	5.2	0.25	ug/kg	J
540-59-0	1,2-Dichloroethene (total)	0.79	5.2	0.19	ug/kg	J
78-87-5	1,2-Dichloropropane	ND	5.2	0.16	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.2	0.15	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.2	0.16	ug/kg	
100-41-4	Ethylbenzene	ND	1.0	0.28	ug/kg	
591-78-6	2-Hexanone	ND	5.2	0.65	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.25	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.2	0.79	ug/kg	
75-09-2	Methylene chloride	ND	5.2	1.3	ug/kg	
100-42-5	Styrene	ND	5.2	0.096	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.2	0.14	ug/kg	
127-18-4	Tetrachloroethene	ND	5.2	0.18	ug/kg	
108-88-3	Toluene	0.27	1.0	0.11	ug/kg	J
71-55-6	1,1,1-Trichloroethane	166	5.2	0.11	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 2

JB15405

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	C3SP02		
Lab Sample ID:	JB15405-10	Date Sampled:	09/04/12
Matrix:	SO - Soil	Date Received:	09/05/12
Method:	SW846 8260B	Percent Solids:	89.9
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1, 1, 2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	0.97 1.9 ND ND	5.2 5.2 5.2 1.0	0.18 0.18 0.15 0.15	ug/kg ug/kg ug/kg ug/kg	J J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	101% 86% 107% 96%		70-13 70-12 81-12	22%	

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

JB15405

Client Sa Lab Sam Matrix: Method: Project:	SO - SW84	405-11 Soil 46 8260B	alsh Avenue, Ne	ew Windso]	···· I ··· ·	9/04/12 9/05/12).0
Run #1 Run #2	File ID X129157.D	DF 1	Analyzed 09/05/12	By MS	Prep Date n/a	Prep Batch n/a	Analytical Batch VX5603
Run #1 Run #2	Initial Weigh 5.2 g	t					

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	11	1.8	ug/kg	
71-43-2	Benzene	ND	1.1	0.13	ug/kg	
75-27-4	Bromodichloromethane	ND	5.3	0.11	ug/kg	
75-25-2	Bromoform	ND	5.3	0.16	ug/kg	
74-83-9	Bromomethane	ND	5.3	0.29	ug/kg	
78-93-3	2-Butanone (MEK)	ND	11	2.6	ug/kg	
75-15-0	Carbon disulfide	ND	5.3	0.13	ug/kg	
56-23-5	Carbon tetrachloride	ND	5.3	0.14	ug/kg	
108-90-7	Chlorobenzene	ND	5.3	0.12	ug/kg	
75-00-3	Chloroethane	ND	5.3	0.24	ug/kg	
67-66-3	Chloroform	ND	5.3	0.088	ug/kg	
74-87-3	Chloromethane	ND	5.3	0.20	ug/kg	
124-48-1	Dibromochloromethane	ND	5.3	0.18	ug/kg	
75-34-3	1,1-Dichloroethane	1.0	5.3	0.15	ug/kg	J
107-06-2	1,2-Dichloroethane	0.78	1.1	0.14	ug/kg	J
75-35-4	1,1-Dichloroethene	0.43	5.3	0.27	ug/kg	J
156-59-2	cis-1,2-Dichloroethene	0.37	5.3	0.20	ug/kg	J
156-60-5	trans-1,2-Dichloroethene	ND	5.3	0.25	ug/kg	
540-59-0	1,2-Dichloroethene (total)	0.37	5.3	0.20	ug/kg	J
78-87-5	1,2-Dichloropropane	ND	5.3	0.16	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.3	0.15	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.3	0.17	ug/kg	
100-41-4	Ethylbenzene	ND	1.1	0.28	ug/kg	
591-78-6	2-Hexanone	ND	5.3	0.66	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.1	0.25	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.3	0.80	ug/kg	
75-09-2	Methylene chloride	ND	5.3	1.4	ug/kg	
100-42-5	Styrene	ND	5.3	0.098	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.3	0.14	ug/kg	
127-18-4	Tetrachloroethene	ND	5.3	0.18	ug/kg	
108-88-3	Toluene	ND	1.1	0.11	ug/kg	
71-55-6	1,1,1-Trichloroethane	51.7	5.3	0.11	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	C2SP01		
Lab Sample ID:	JB15405-11	Date Sampled:	09/04/12
Matrix:	SO - Soil	Date Received:	09/05/12
Method:	SW846 8260B	Percent Solids:	90.0
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	1.4 1.6 ND ND	5.3 5.3 5.3 1.1	0.19 0.19 0.15 0.15	ug/kg ug/kg ug/kg ug/kg	J J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
CAS No. 1868-53-7 17060-07-0 2037-26-5 460-00-4	Surrogate Recoveries Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	Run# 1 92% 89% 106% 101%	Run# 2	Limi 70-12 70-12 81-12 66-12	30% 22% 27%	

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Lab Sam Matrix: Method: Project:	SO - SW84	405-12 Soil 46 8260B	alsh Avenue, Ne	ew Windso	I I	Date Received: 09	0/04/12 0/05/12 3.9
Run #1 Run #2	File ID X129158.D	DF 1	Analyzed 09/05/12	By MS	Prep Date n/a	Prep Batch n/a	Analytical Batch VX5603
Run #1 Run #2	Initial Weigh 5.2 g	t					

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	11	1.8	ug/kg	
71-43-2	Benzene	ND	1.1	0.13	ug/kg	
75-27-4	Bromodichloromethane	ND	5.4	0.11	ug/kg	
75-25-2	Bromoform	ND	5.4	0.16	ug/kg	
74-83-9	Bromomethane	ND	5.4	0.30	ug/kg	
78-93-3	2-Butanone (MEK)	ND	11	2.6	ug/kg	
75-15-0	Carbon disulfide	ND	5.4	0.13	ug/kg	
56-23-5	Carbon tetrachloride	ND	5.4	0.14	ug/kg	
108-90-7	Chlorobenzene	ND	5.4	0.12	ug/kg	
75-00-3	Chloroethane	ND	5.4	0.25	ug/kg	
67-66-3	Chloroform	ND	5.4	0.089	ug/kg	
74-87-3	Chloromethane	ND	5.4	0.20	ug/kg	
124-48-1	Dibromochloromethane	ND	5.4	0.18	ug/kg	
75-34-3	1,1-Dichloroethane	1.9	5.4	0.15	ug/kg	J
107-06-2	1,2-Dichloroethane	1.7	1.1	0.15	ug/kg	
75-35-4	1,1-Dichloroethene	0.90	5.4	0.28	ug/kg	J
156-59-2	cis-1,2-Dichloroethene	1.1	5.4	0.20	ug/kg	J
156-60-5	trans-1,2-Dichloroethene	0.70	5.4	0.26	ug/kg	J
540-59-0	1,2-Dichloroethene (total)	1.8	5.4	0.20	ug/kg	J
78-87-5	1,2-Dichloropropane	ND	5.4	0.17	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.4	0.15	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.4	0.17	ug/kg	
100-41-4	Ethylbenzene	ND	1.1	0.28	ug/kg	
591-78-6	2-Hexanone	ND	5.4	0.67	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.1	0.25	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.4	0.81	ug/kg	
75-09-2	Methylene chloride	ND	5.4	1.4	ug/kg	
100-42-5	Styrene	ND	5.4	0.099	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.4	0.14	ug/kg	
127-18-4	Tetrachloroethene	0.33	5.4	0.19	ug/kg	J
108-88-3	Toluene	ND	1.1	0.11	ug/kg	
71-55-6	1,1,1-Trichloroethane	59.9	5.4	0.11	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	C2SP02		
Lab Sample ID:	JB15405-12	Date Sampled:	09/04/12
Matrix:	SO - Soil	Date Received:	09/05/12
Method:	SW846 8260B	Percent Solids:	88.9
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	2.5 6.9 ND ND	5.4 5.4 5.4 1.1	0.19 0.19 0.16 0.15	ug/kg ug/kg ug/kg ug/kg	J
a la N						
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
CAS No. 1868-53-7 17060-07-0 2037-26-5 460-00-4	Surrogate Recoveries Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	Run# 1 92% 86% 105% 104%	Run# 2	Limi 70-12 70-12 81-12 66-12	30% 22% 27%	

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Section 5

G

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

ACCUTEST			CHAI 2235 Ro															<u>/</u> 01	=
50		Tel	: 732-329-						0		FED-EX Tra	icking# 2654-	2440			ier Control #			
- · · · ·				www	accut/	est.com	1		1		Accutest Qu	iote #			Accutest	Job#J	BI	540	55
Client / Reporting Information			Project	Inform	ation						F	Requested	Analys	is (see	TEST CO	DDE shee	et)		Matrix Codes
Company Name Fleming - Lee Shue Street Accress	Project Name:	Co		1															DW - Drinking Water GW - Ground Water WW - Water
158 W. 2949 St City State Zio	361	Walsh	Ave		Information Name	on (if diffe	rent fror	n Report I	to)										SW - Surface Water SO - Soil SL- Sludge
New Yolk NY 10001 Project Contact Kurin @ E-mail	New V	Jind Sor	ŇΫ	Street A															SED-Sediment OI - Oil LIQ - Other Liquid
K. McGuinness Fleminiesshu	1.00	0-013																	AIR - Air SOL - Other Solid
Phone # -675-3225/ 322	Glient Purchase	Order #		City			Stat	le	Zip										WP - Wipe FB-Field Blank EB-Equipment Blank
Sampler(s) Name(s) Phone Grabal Horn 551-4277		Gunne		Attentior	n:						R								RB- Rinse Blank TB-Trip Blank
			Collection	1	4		NL	umber of pre	1.1	T	K/								
Accutest Sample Field ID / Point of Collection	MEOH/DI Vial #	Date	Time	Sampled by	Matrix	# of bottles	NaOH	HN03 H2SO	DI Water MEOH	ENCORE									LAB USE ONLY
1 PYCHSW-3	-1	9-4-12	1605	91A	S	2					X								1901
7 24103W-5	2,	Å	1610	X	S	2					X								0/0 97
3 PV 11 BT-10 A	-3	1	11015		5	2					X								
4 OX 17 SW-7	-4		1620		S	2					X								
5 PX13 SW-7	-5		1625		S	2					X								-
10 PX14 SW-6	-6		1630		5	2					X								
7 PX15 BT-10 X	- 7		1645	11	S	2					X								
\$ (1580)	- 8		1650		5	2					X								
9 635801	-9		1655		S	2					X								
10 (3 5802	- 10		1650		S	2					X								
11 6.2 5801	- 11	J	1705	V	5	2					X								
12 62 5802	-12	9-4-12	1710	A	5	2					X					·			
Turnaround Time (Business days)								able Inform				- T .		Cor	nments /	Special Ins	tructions	7 11 .	7
Std. 15 Business Days Std. 10 Business Days (by Contract only)	Approved By (Acci	utest PM): / Date:				ciàl "A" (Lo cial "B" (L			NYAS	P Categ P Categ		X	- (4N	spu	we	#3)#	lon
10 Day RUSH						(Level 3+4)	Ē		Forms			31	ila i	TAT	T A	11	whi	0.0
5 Day RUSH					NJ Reduc				EDD Other	Format			00	M	1 11	0.1	1	1.	-
2 Day EMERGENCY	***********					Commerci							SAU	1pl	<u>5 r</u>	rer	ru	De	run
1 Day EMERGENCY Emergency & Rush T/A data available VIA Lablink				<u> </u>			ed = Res	sults + QC	Summary	+ Partia	al Raw data		ON	2	<u>1 h</u>	CT	AL		
Relinguished by Sampler: Date Tin		Received By:	nust be docun	nented t	pelow ead	ch time sa	Relinqui		ossessi	on, incl	uding cou				Received	By:	H		
1		1	Fed	u			2		Fe	l L			Date Time:	1000	2				A
Relinquished by Sampler: Date Tin 3	ne:	Received By: 3	`				Relinqui 4						Date Time:		Received 4				<u>I</u>
Relinquished by: 5	ne:	Received By: 5			<i>3</i> .		Custody	Seal #	V/A		Intact Not intact	Preserv	ed where ap	oplicable				Cooler	Temp. 4.0 cg

21

JB15405: Chain of Custody Page 1 of 7

5.<u>1</u>

S

Accutest Laboratories Sample Receipt Summary

Accutest Job Number:	JB15405	Client:		Project:	
Date / Time Received:	9/5/2012		Delivery Method:	Airbill #	's:

Cooler Temps (Initial/Adjusted): #1: (4/4); 0

Cooler Security	Y or N	_		Y	or N	Sample Integrity - Documentation	Y	or	N	
n ouolou) ooulo i rooonii		- I	COC Present: pl Dates/Time OK	✓		 Sample labels present on bottles: Container labeling complete: 	✓ ✓			
Cooler Temperature	Y	or N				3. Sample container label / COC agree:	\checkmark			
 Temp criteria achieved: Cooler temp verification: Cooler media: No. Coolers: 		ar Therm e (Bag) 1				Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for: 3. Condition of sample:	Y ▼ ▼	or Intact		
Quality Control Preservati	ion Y	or N	N/A			Sample Integrity - Instructions	Y	or	N	N/A
1. Trip Blank present / cooler:						1. Analysis requested is clear:				
2. Trip Blank listed on COC:			\checkmark			2. Bottles received for unspecified tests				
3. Samples preserved properl	y: 🔽					3. Sufficient volume recvd for analysis:				
4. VOCs headspace free:			\checkmark			4. Compositing instructions clear:				\checkmark
						5. Filtering instructions clear:				

Comments

Accutest Laboratories V:732.329.0200 2235 US Highway 130 F: 732.329.3499

Dayton, New Jersey www/accutest.com

JB15405: Chain of Custody Page 2 of 7

	50																			
ACCUTEST.			CHA														PAG	E /	0	F_/_
LABORATORIES		Tel	2235 R 1: 732-329	Loute 1	30, Da	yton, N	JJ 088	10	100		FED-E	X Trackin	g#	Y 2#	0	Bottle	Order Control #			
		10.				test.cor		99/34	+80		Accute	est Quote	# 25>	9 24	2	Accutest Job #				<u></u>
Client / Reporting Information			Projec	t Inform	ation		58.95 M					Requested Analysis (see '			TFOT	Accutest Job # JB14890				
Company Name	Project Name:											Rec	lueste	Analy	sis (see	IEST	CODE she	et)		Matrix Codes
Fleming-Lee Shue	AFF	٥																		DW - Drinking Wate GW - Ground Wate
158 W. 2912 St State Zip	361 h	satsh,	the	Billing	Informat	ion (if diffe	erent from	n Repo	rt to}											WW - Water SW - Surface Water SO - Soil
New York NY 10001	Neww	Nesw	NY		ny Name															SL- Sludge SED-Sediment
Protect Contact Kerning E-mail K. McGuinness Fleming Leestwee	Project #	313			Address															OI - Oil LIQ - Other Liquid AIR - Air
Phone # 212-675-3225 / 3224	Client Purchase		. ,	City			Stal	e		Zip	7									SOL - Other Solid WP - Wipe FB-Field Blank
GADNE HOIN 551-427-7166	Project Manager		ligyinne.	Attentio	n:															EB-Equipment Blank RB- Rinse Blank TB-Trip Blank
			Collection	1	ł	1	N	mber of p	preserved	Bottles	ヨう									
Accodent Sample Field ID / Point of Collection	MEOH/DI Vial #	Date	Time	Sampled by	Matrix	# of bottles	NaOH	HNO3 H2SO4	NONE DI Water	MEOH	3									LAB USE ONLY
1 PX61-SW-5 *		8/28/12	1005	sut	S	2					X					1		+7	1	19K1
- 2 PX02-8W-5-*		1	1015	A	3	2					X							++	+	1/27
- 3 PX03-BT-10			1025	T	5	2					X							++	+	10-1
- 4 PXOY - 5W - 5			1530		S	1					X						<u>├</u>	\rightarrow	\leftarrow	
- 5 PX05- 8W-6			1540	11	S	2					V									
-6 PX06-BT-10			1550		S	Z					Ŷ					+			+	
7 (55801 \$			1100		5	2		++		++	Ê					+			+	
-8 K55802 K		V	1110	1.0	S	2	++			-++	1					+			$\left - \right $	
9 CYSPO1 *		8/18/n	1600	st	5	2	-++	++		-+-+	12					+-+				
		sport-	1000	10-4			-+-+	++		-++			-+						┼──┦	
				1.25			-+-+	++	++	++										
				+				++												
Turnaround Time (Business days)				1	L	Data	Deliveral	ole Info	mation		NIG-SA				Con		Special Inst		SHARE SHARE	
Std. 15 Business Days Std. 10 Business Days (by Contract only)	Approved By (Accus	est PM): / Date:				iài "A" (Le iai "B" (Le	evel 1)	Į] NY	ASP Cat		T	M	- 71	1 1.			-	1	_
						Level 3+4		L L		ASP Cat		ŀ					AU	01	<u>_</u>	
☐ 10 bay RUSH ☐ 5 bay RUSH ☐ 3 bay EMERGENCY ☐ 2 bay EMERGENCY ☐ 2 bay EMERGENCY				-	NJ Reduc			Ē		D Forma	ıt		31	gupt	es (_3 "((ه) 3	CAL	T	AT
2 Day EMERGENCY					Commerc	Commerci	al "A" = R		Oti	1er				•					/	
1 Day EMERGENCY Emergency & Rush T/A data available VIA Lablink						Commerci	al "B" = R	esults +	QC Su	nmary		ŀ					· · · · · · · · · · · · · · · · · · ·			
	Sar	nple Custody m	ust be docun	nented b	elow eac	NJ Reduce h time sa	nples c	hange	C Summ posses	ary + Par sion, in	ial Raw da	ta ourier o	ieliverv	etat	9	12000			0.0000000	
Relinguisherby Sampler: Date Time:	1655	Received By:		Fax			Relinquist	ed By:	[al'	(0	at Time:		Received	d By:	T.N.		
Reinquished by Sampler: Data Time:	Received By:					2 Relinquist	ed By:	1-9 1	<u>\</u>		· · · · · · · · · · · · · · · · · · ·		to Time	1000	2	Received By: 2 Mathuro				
3 Relinquished by: Date Time:	3 Received By:					4			G	Listers		4								
5					Custody Seal # 22 Intact Preserved where applicable On Ice 7.2. Not intact				Cooler	Temp. 1.800										
18																		E		

JB15405: Chain of Custody Page 3 of 7

5.<u>1</u>

S

		Tal	2235 Ro						1400	1		FED-EX	Tracking t				PAGE OF Bothe Order Control # Accelered Job # JB /5/55				
50		1 61	732-329-			732-3 est.con		99/2	5480	1		Accutes	Quote #								
Client / Reporting Information			Deview				. . 08050000				COLORADO A									5155	·····
ompany Name	Project Name:		Project	Inform	ation	2200000							Requ	ested A	nalysis	(see]	TEST C	ODE sh	eet)	_	Matrix Code
Fleminy - Lee Shue	AFFC	8		Processo -			00000.200														DW - Drinking Wa GW - Ground Wa
58 West 29th St By State Zio	Sel 1	Nalsh	Billing Information (if different from Report to)														WW - Water SW - Surface Wa SO - Soil				
New York NY 10001	New h	lindsor	NY	State Company Name														SL- Sludge SED-Sediment OI - OII			
McGuinness Flemigleeshue.com		10000-03																			LIQ - Other Liqui AIR - Air
11-675-3225/3224	Client Purchase	t Purchase Order # City				Sta	te		Zi	p	1									SOL - Other Soli WP - Wipe FB-Field Blank	
T. Horn 551-427-7(64	Project Manager	หโทกเรว	Attention:							J									EB-Equipment Bla RB- Rinse Blant TB-Trip Blank		
			Collection	r			N	umber	of prese	rved Bo	ttles	13									
Field ID / Point of Collection	MEOH/Di Viai #	Date	Tima	Sampled by	Matrix	# of bottles	HCI NaOH	HN03	NONE	DI Water MEOH	ENCORE	Í									LAB USE ONL
1 PX07BT-10		8-30-12	0830	SA	5-	2			_		1+	\checkmark	•			1				1	
2 PY08 SW-7		8-30-12	1040	84	Ś	T					++	A									
1 PX07BT-10	-	8-30-12	0930	14	S	2						~								17	19.44
2 Prossw-7 *	-2	8-30-12	0940	prt	S	2						~								\Box	%13Z
3 Bench 01	-3	8-30-12	1025	34	S	2			+	_	┼╌┝╴	~			_					$\left \right $	
· · ·																1				+	
	4.																				
									+		_⊢										
									+		$\left \right $									+	
									+		++										
Tumaround Time (Business days)			I	100		Data	Delivera	able in	forma	tion						Com	ments / S	Special In	structions		
Std. 15 Business Days	Approved By (Accu	test PM): / Date:				iài "A" (L iai "B" (L					SP Cate			Sam.	No	the	10		SW-'	Destruction	run
10 Day RUSH					FULLT1 (NJ Reduc	Level 3+4 ed)				Forms Format		Γ	04	2	41	NC	TAT	Γ		
3 Day EMERGENCY SE NO LES			Commercial "C"					Othe					×				•				
1 Day EMERGENCY						Commerci Commerci				Sum	าลณ		╞								
Emergency & Rush T/A data available VIA Lablink	Sa	mple Custody m	ust be docum	ented h		NJ Reduc	ed = Re	sults +	QC SL	ummar	/ + Parti	al Raw da	a	alivanu			Energiadoria			+	
Relingdished by Simpler: Date Time: /	2 Holes	Sample Custody must be documented below each time Received By: 1 5 4 4				anne 54	Relinqui			100351	on, mG	aang C	uner d		The:/	1030	Received	By:	YM	\rightarrow	
Relinquished by Sampler: Date Time:		Received By:									75/12 2 Date Time: Received By:										
nquished by: Date Time: Received By: S					4 4 Custody Seal # Infact Preserved where applicable On Ice Cooler Temp Not Infact / / / / / / / / / / / / / / / / / /					Temp.											

JB15405: Chain of Custody

Page 4 of 7

5.1

G

			JB15405: Chain of Custody Page 5 of 7
	Requested Date: Account Name: Project CSR:	Sample #: JB15155-all	Above Changes Per: To Client: This Change Orde
Job Change Order:	12/6/2012 Fleming-Lee Shue, Inc. AFFCO, 361 Walsh Avenue, New Windsor, NY TM :	Change: please move s	Above Changes Per: Steve Panter Date: To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service Pa
	Received Date: Due Date: Deliverable: TAT (Days):	please move samples from JB15155 to JB15405	Da with the Accutest Client S
JB15755_12/6/2012	8/31/2012 9/6/2012 COMMB 14	to JB15405	Date: 12/6/2012 nt Service Page 1 of 1

5.1

сл

JB14890_12/6/2012	8/29/2012 9/4/2012 COMMB 14	to JB15405	Date: 12/6/2012 Int Service Page 1 of 1
JB14890	Received Date: Due Date: Deliverable: TAT (Days):	please move samples from JB14890 to JB15405	Dat the Accutest Client S
Job Change Order:	12/6/2012 Fleming-Lee Shue, Inc. AFFCO, 361 Walsh Avenue, New Windsor, NY TM	Change: please move san	Above Changes Per: Steve Panter Date: To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service
	Requested Date: Account Name: Project CSR:	Sample #: JB14890-all	Above Changes Per: To Client: This Change Orde
			JB15405: Chain of Custody Page 6 of 7

5.1

сл

JB15405_12/13/2012	1 Date: 8/29/2012 9: 9/4/2012 ble: COMMB /s): 14		Date: 12/13/2012	est Client Service	Page 1 of 1
Ë	Received Date: Due Date: Deliverable: TAT (Days):	a a		h the Accut	
Job Change Order:	12/13/2012 Fleming-Lee Shue, Inc. AFFCO, 361 Walsh Avenue, New Windsor, NY TM	Change: upgrade to NYASPB	er: Steve Panter	To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service	
	Requested Date: Account Name: Project CSR:	Sample #: JB15406-all	Above Changes Per:	To Client: This Change C	

JB15405: Chain of Custody Page 7 of 7

5.1

S

Reissue #1 05/21/13

Technical Report for

Fleming-Lee Shue, Inc.

AFFCO, 361 Walsh Avenue, New Windsor, NY

10000-003 / PO#FP0099

Accutest Job Number: JB34670

Sampling Date: 04/17/13

Report to:

Fleming-Lee Shue, Inc.

raphael@flemingleeshue.com

ATTN: Raphael Rosenbaum

Total number of pages in report: 39

Mancy F. Cole

Nancy Cole Laboratory Director

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Tammy McCloskey 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, MI, MT, NC, OH VAP (CL0056), PA, RI, SC, TN, VA, WV

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

New Jersey • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499 • http://www.accutest.com

May 6, 2013

Mr. Steve Panter Fleming, Lee, Shue, Inc. 158 West 29th Street 9th Floor New York, NY 10001

Re: Accutest Job# JB34670

Dear Mr. Panter,

The final report for Accutest job number JB34670 has been edited to reflect corrections to the final report.

Specifically, the Case narrative summary's comment on QC batch V1A5479 has been revised to "All samples except JB34670-1 were analyzed within the recommended method holding time. JB34670-1 was analyzed outside 7 days holding time but results are confirmed on batch V1A5469 which was run within holding time, raw data from the confirmation run is included in this report." The revised report incorporates these revisions.

Please contact me if I can be of further assistance in the matter.

Sincerely,

Turning millisking

Accutest Laboratories

Cc: steve@flemingleeshue.com;kevin@flemingleeshue.com

Table of Contents

_

N

ω

4

G

-1-

Section 1: Sample Summary Section 2: Case Narrative/Conformance Summary	4 5						
Section 3: Summary of Hits							
Section 4: Sample Results							
4.1: JB34670-1: EW-1X	10						
4.2: JB34670-2: S-8	14						
4.3: JB34670-3: EW-0	18						
4.4: JB34670-4: E1-N	22						
4.5: JB34670-5: MW-1N	26						
4.6: JB34670-6: FB041713	30						
4.7: JB34670-7: TRIP BLANK	34						
Section 5: Misc. Forms	36						
5.1: Chain of Custody	37						

Sample Summary

Fleming-Lee Shue, Inc.

Job No: JB34670

AFFCO, 361 Walsh Avenue, New Windsor, NY Project No: 10000-003 / PO#FP0099

Sample Number	Collected Date	l Time By	Received	Matr Code		Client Sample ID
JB34670-1	04/17/13	09:51 RB	04/18/13	AQ	Ground Water	EW-1X
JB34670-2	04/17/13	12:25 RB	04/18/13	AQ	Ground Water	S-8
JB34670-3	04/17/13	11:10 RB	04/18/13	AQ	Ground Water	EW-0
JB34670-4	04/17/13	13:19 RB	04/18/13	AQ	Ground Water	E1-N
JB34670-5	04/17/13	11:51 RB	04/18/13	AQ	Ground Water	MW-1N
JB34670-6	04/17/13	08:45 RB	04/18/13	AQ	Field Blank Water	FB041713
JB34670-7	04/17/13	13:19 RB	04/18/13	AQ	Trip Blank Water	TRIP BLANK

CASE NARRATIVE / CONFORMANCE SUMMARY

Client:	Fleming-Lee Shue, Inc.	Job No	JB34670
Site:	AFFCO, 361 Walsh Avenue, New Windsor, NY	Report Date	5/6/2013 9:49:55 AM

On 04/18/2013, 5 Sample(s), 1 Trip Blank(s) and 1 Field Blank(s) were received at Accutest Laboratories at a temperature of 4 C. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB34670 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method SW846 8260B

	Matrix: AQ	Batch ID:	V1A5469
-			

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB33932-1MS, JB33932-1MSD were used as the QC samples indicated.
- JB34670-5: (pH=6)Sample is not acid preservation per method/client criteria. Sample analyzed within 7 days holding time.
- JB34670-5: (pH=6)Sample is not acid preservation per method/client criteria. Sample analyzed within 7 days holding time.
- JB34670-4: (pH=6)Sample is not acid preservation per method/client criteria. Sample analyzed within 7 days holding time.
- JB34670-3: (pH=6)Sample is not acid preservation per method/client criteria. Sample analyzed within 7 days holding time.
- JB34670-6: (pH=6)Sample pH did not satisfy field preservation criteria.

Matrix: AQ Batch ID: V1A5471

- The data for SW846 8260B meets quality control requirements.
- JB34670-1: Confirmation run. (pH=6)Sample is not acid preservation per method/client criteria. Sample analyzed within 7 days holding time.

Matrix: AQ Batch ID:	V1A5479
----------------------	---------

- All samples except JB34670-1 were analyzed within the recommended method holding time. JB34670-1 was analyzed outside 7 days holding time but results are confirmed on batch V1A5469 which was run within holding time, raw data from the confirmation run is included in this report.
- Sample(s) JB34453-4MS, JB34453-4MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- JB34670-1: (pH=6)Sample pH did not satisfy field preservation criteria. Dilution required due to limited volume per client's request.

Matrix: AQ	Batch ID:	V2A5720
------------	-----------	---------

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB34696-1MS, JB34696-1MSD were used as the QC samples indicated.
- Matrix Spike Recovery(s) for Bromomethane, Chloroethane, Chloromethane, Tetrachloroethene are outside control limits. Outside control limits due to matrix interference.
- Matrix Spike Duplicate Recovery(s) for Bromomethane, Chloroethane, Chloromethane, Tetrachloroethene are outside control limits. Probable cause due to matrix interference.
- JB34670-2: (pH=6)Sample is not acid preservation per method/client criteria. Sample analyzed within 7 days holding time.
- JB34670-3: (pH=6)Sample is not acid preservation per method/client criteria. Sample analyzed within 7 days holding time.

Metals By Method EPA 200.7

|--|

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB34670-4MS, JB34670-4MSD, JB34670-4SDL were used as the QC samples for metals.

Wet Chemistry By Method EPA 300/SW846 9056A

	Matrix: AQ	Batch ID:	GP71787
1			

All samples were prepared within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) JB34722-2DUP, JB34722-2MS were used as the QC samples for Chloride, Sulfate, Chloride.

Wet Chemistry By Method SM20 4500S2 F

Matrix: AQ Batch ID: GN83727

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) JB34670-2MS, JB34670-3DUP were used as the QC samples for Sulfide.

RPD(s) for Duplicate for Sulfide are outside control limits for sample GN83727-D1. RPD acceptable due to low duplicate and sample concentrations.

Wet Chemistry By Method SM2320 B-11

	Matrix: AQ	Batch ID:	GN84023
--	------------	-----------	---------

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) JB34670-4DUP were used as the QC samples for Alkalinity, Total as CaCO3.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

Summary of Hits

Job Number:	JB34670
Account:	Fleming-Lee Shue, Inc.
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY
Collected:	04/17/13

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
		~				
JB34670-1	EW-1X					
1,1-Dichloroetha	nne ^a	22.9	10	1.1	ug/l	SW846 8260B
Iron		934000	1000		ug/l	EPA 200.7
Alkalinity, Total	as CaCO3	89.2	5.0		mg/l	SM2320 B-11
Chloride		52.6	2.0		mg/l	EPA 300/SW846 9056A
Sulfate		29.2	10		mg/l	EPA 300/SW846 9056A
JB34670-2	S-8					
1,1-Dichloroetha	ne ^b	11.8	1.0	0.11	ug/l	SW846 8260B
1,2-Dichloroetha		0.70 J	1.0	0.26	ug/l	SW846 8260B
1,1-Dichloroethe		3.5	1.0	0.19	ug/l	SW846 8260B
cis-1,2-Dichloro		0.54 J	1.0	0.19	ug/l	SW846 8260B
1,2-Dichloroethe		0.54 J	1.0	0.19	ug/l	SW846 8260B
1,1,1-Trichloroe		1.4	1.0	0.24	ug/l	SW846 8260B
Trichloroethene		1.1	1.0	0.22	ug/l	SW846 8260B
Iron		5790	100		ug/l	EPA 200.7
Alkalinity, Total	as CaCO3	111	5.0		mg/l	SM2320 B-11
Chloride		43.8	2.0		mg/l	EPA 300/SW846 9056A
Sulfate		17.2	10		mg/l	EPA 300/SW846 9056A
JB34670-3	EW-0					
2-Butanone (ME	K) b	14.1	10	2.4	ug/l	SW846 8260B
Chloroethane ^b		334	50	13	ug/l	SW846 8260B
Chloroform ^b		1.2	1.0	0.20	ug/l	SW846 8260B
1,1-Dichloroetha	me ^b	2540	50	5.3	ug/l	SW846 8260B
1,2-Dichloroetha		17.5	1.0	0.26	ug/l	SW846 8260B
1,1-Dichloroethe		144	1.0	0.19	ug/l	SW846 8260B
cis-1,2-Dichloro		2.8	1.0	0.19	ug/l	SW846 8260B
trans-1,2-Dichlor		2.2	1.0	0.21	ug/l	SW846 8260B
1,2-Dichloroethe	ene (total) ^b	5.0	1.0	0.19	ug/l	SW846 8260B
Tetrachloroethen		0.60 J	1.0	0.28	ug/l	SW846 8260B
Toluene ^b		8.0	1.0	0.23	ug/l	SW846 8260B
1,1,1-Trichloroe	thane ^b	8630	50	12	ug/l	SW846 8260B
1,1,2-Trichloroe		2.3	1.0	0.29	ug/l	SW846 8260B
Trichloroethene		4.0	1.0	0.22	ug/l	SW846 8260B
Vinyl chloride b		4.8	1.0	0.21	ug/l	SW846 8260B
Iron		546	100		ug/l	EPA 200.7
Alkalinity, Total	as CaCO3	124	5.0		mg/l	SM2320 B-11
Chloride		114	2.0		mg/l	EPA 300/SW846 9056A
Sulfate		93.8	10		mg/l	EPA 300/SW846 9056A

Summary of Hits

Job Number:	JB34670
Account:	Fleming-Lee Shue, Inc.
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY
Collected:	04/17/13

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
JB34670-4	E1-N					
Chloroethane ^b		73.9	1.0	0.26	ug/l	SW846 8260B
1,1-Dichloroetha	ne ^b	154	1.0	0.11	ug/l	SW846 8260B
1,1-Dichloroethe	ne ^b	5.0	1.0	0.19	ug/l	SW846 8260B
1,1,1-Trichloroe	thane ^b	48.4	1.0	0.24	ug/l	SW846 8260B
Iron		804	100		ug/l	EPA 200.7
Alkalinity, Total	as CaCO3	260	5.0		mg/l	SM2320 B-11
Chloride		37.1	2.0		mg/l	EPA 300/SW846 9056A
JB34670-5	MW-1N					
Chloroethane ^b		136	5.0	1.3	ug/l	SW846 8260B
Chloroform ^b		3.1 J	5.0	1.0	ug/l	SW846 8260B
1,1-Dichloroetha	ne ^b	438	5.0	0.53	ug/l	SW846 8260B
1,2-Dichloroetha		5.2	5.0	1.3	ug/l	SW846 8260B
1,1-Dichloroethe		36.6	5.0	0.96	ug/l	SW846 8260B
Toluene ^b		1.6 J	5.0	1.1	ug/l	SW846 8260B
1,1,1-Trichloroe	thane ^b	1560	50	12	ug/l	SW846 8260B
Trichloroethene ¹		6.2	5.0	1.1	ug/l	SW846 8260B
Iron		805	100		ug/l	EPA 200.7
Alkalinity, Total	as CaCO3	274	5.0		mg/l	SM2320 B-11
Chloride		57.1	2.0		mg/l	EPA 300/SW846 9056A
Sulfate		104	10		mg/l	EPA 300/SW846 9056A
JB34670-6	FB041713					
Iron		18500	100		ug/l	EPA 200.7
JB34670-7	TRIP BLANK					

No hits reported in this sample.

(a) (pH= 6)Sample pH did not satisfy field preservation criteria. Dilution required due to limited volume per

client's request.

(b) (pH= 6)Sample is not acid preservation per method/client criteria. Sample analyzed within 7 days holding time.

ω

Section 4

4

Sample Results

Report of Analysis

Client San Lab Samp Matrix: Method: Project:	le ID: JB34 AQ SW8	670-1 - Ground Wa 46 8260B	ater alsh Avenue, Ne	ew Winds	or, NY	Date Sampled: Date Received: Percent Solids:	0 17 - 07 - 0
	File ID	DF	Analyzed	By	Prep Date	Prep Bate	h Analytical Batch
Run #1 ^a	1A127322.D	10	04/29/13	CC	n/a	n/a	V1A5479
Run #2 ^b	1A127141.D	10	04/24/13	CC	n/a	n/a	V1A5471
Run #1 Run #2	Purge Volum 5.0 ml 5.0 ml	ne					

Page 1 of 2

VOA	тсі	T ict
VUA	ICL	LISU

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	100	33	ug/l	
71-43-2	Benzene	ND	10	2.4	ug/l	
75-27-4	Bromodichloromethane	ND	10	2.1	ug/l	
75-25-2	Bromoform	ND	40	2.1	ug/l	
74-83-9	Bromomethane	ND	20	2.2	ug/l	
78-93-3	2-Butanone (MEK)	ND	100	24	ug/l	
75-15-0	Carbon disulfide	ND	20	1.9	ug/l	
56-23-5	Carbon tetrachloride	ND	10	2.2	ug/l	
108-90-7	Chlorobenzene	ND	10	2.3	ug/l	
75-00-3	Chloroethane	ND	10	2.6	ug/l	
67-66-3	Chloroform	ND	10	2.0	ug/l	
74-87-3	Chloromethane	ND	10	2.1	ug/l	
124-48-1	Dibromochloromethane	ND	10	1.4	ug/l	
75-34-3	1,1-Dichloroethane	22.9	10	1.1	ug/l	
107-06-2	1,2-Dichloroethane	ND	10	2.6	ug/l	
75-35-4	1,1-Dichloroethene	ND	10	1.9	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	10	1.9	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	10	2.1	ug/l	
540-59-0	1,2-Dichloroethene (total)	ND	10	1.9	ug/l	
78-87-5	1,2-Dichloropropane	ND	10	4.8	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	10	2.1	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	10	1.9	ug/l	
100-41-4	Ethylbenzene	ND	10	2.3	ug/l	
591-78-6	2-Hexanone	ND	50	11	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	10	1.6	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	50	8.3	ug/l	
75-09-2	Methylene chloride	ND	20	7.0	ug/l	
100-42-5	Styrene	ND	50	2.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	10	2.1	ug/l	
127-18-4	Tetrachloroethene	ND	10	2.8	ug/l	
108-88-3	Toluene	ND	10	2.3	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	10	2.4	ug/l	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Surrogate Recoveries

Dibromofluoromethane

1,2-Dichloroethane-D4

4-Bromofluorobenzene

Toluene-D8

CAS No.

1868-53-7

2037-26-5

460-00-4

17060-07-0

Client Sample ID: Lab Sample ID: Matrix: Method: Project:		EW-1X JB34670-1 AQ - Ground Water SW846 8260B AFFCO, 361 Walsh Avenue, New Windsor, NY					Sampled: Received: ent Solids:	04/17/13 04/18/13 n/a
VOA TCL	List							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
79-00-5 79-01-6 75-01-4 1330-20-7	Trichl Vinyl	Trichloroethane oroethene chloride e (total)	ND ND ND ND	10 10 10 10	2.9 2.2 2.1 2.4	ug/l ug/l ug/l ug/l		

Report of Analysis

Run# 2

86%

83%

90%

88%

(a) (pH= 6)Sample pH did not satisfy field preservation criteria. Dilution required due to limited volume per client's request.

Run#1

85%

82%

90%

89%

(b) The associated QC data can not be retrieved back for processing, so the original analysis reported as confirmation run only. (pH= 6)Sample is not acid preservation per method/client criteria. Sample analyzed within 7 days holding time.

J = Indicates an estimated value

Limits

81-121%

74-127%

80-122%

78-116%

- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

Accutest LabLink@732518 13:14 21-May-2013

Client Sample ID:	: EW-12	K							
Lab Sample ID:	JB3467	70-1					l	Date Sampled:	04/17/13
Matrix:	AQ - 0	Ground W	/ater				I	Date Received:	04/18/13
1							I	Percent Solids:	n/a
Project:	AFFC	O. 361 W	/alsh Ave	nue. N	New Windso	or NY			
		- ,			(ew mast	, , , , , ,			
Total Metals Anal	lysis	- ,				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	lysis esult	RL	Units	DF	Prep	Analyzed	By	Method	Prep Method

Report of Analysis

(1) Instrument QC Batch: MA31059

(2) Prep QC Batch: MP71452

Page 1 of 1

4

4

Client Sample ID:	EW-1X		
Lab Sample ID:	JB34670-1	Date Sampled:	04/17/13
Matrix:	AQ - Ground Water	Date Received:	04/18/13
		Percent Solids:	n/a
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as CaCO3	89.2	5.0	mg/l	1	04/25/13 17:03	NP	SM2320 B-11
Chloride	52.6	2.0	mg/l	1	04/30/13 11:56		EPA 300/SW846 9056A
Sulfate	29.2	10	mg/l	1	04/30/13 11:56		EPA 300/SW846 9056A

4.1 **4**

Client San Lab Samp Matrix: Method: Project:	AQ - 0 SW84	Ground Wa 6 8260B	ater alsh Avenue, Ne	ew Winds]	Date Sampled: 04 Date Received: 04 Percent Solids: n/	
Run #1 ^a Run #2	File ID 2A133950.D	DF 1	Analyzed 04/23/13	By CC	Prep Date n/a	Prep Batch n/a	Analytical Batch V2A5720
Run #1 Run #2	Purge Volume 5.0 ml	•					

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.3	ug/l	
71-43-2	Benzene	ND	1.0	0.24	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l	
75-25-2	Bromoform	ND	4.0	0.21	ug/l	
74-83-9	Bromomethane	ND	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.4	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.19	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	ND	1.0	0.26	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l	
75-34-3	1,1-Dichloroethane	11.8	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	0.70	1.0	0.26	ug/l	J
75-35-4	1,1-Dichloroethene	3.5	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	0.54	1.0	0.19	ug/l	J
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l	
540-59-0	1,2-Dichloroethene (total)	0.54	1.0	0.19	ug/l	J
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.23	ug/l	
591-78-6	2-Hexanone	ND	5.0	1.1	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l	
100-42-5	Styrene	ND	5.0	0.21	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l	
108-88-3	Toluene	ND	1.0	0.23	ug/l	
71-55-6	1,1,1-Trichloroethane	1.4	1.0	0.24	ug/l	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Page 1 of 2

E = Indicates value exceeds calibration range

4-Bromofluorobenzene

460-00-4

Client Samp Lab Sample Matrix: Method: Project:	ID: JB3 AQ SW	4670-2 - Ground Wate 846 8260B FCO, 361 Wals	er sh Avenue, New	Date	Sampled: Received: ent Solids:	04/17/13 04/18/13 n/a		
VOA TCL	List							
CAS No.	Compound		Result	RL	MDL	Units	Q	
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)		ND 1.1 ND ND	1.0 1.0 1.0 1.0	0.29 0.22 0.21 0.24	ug/l ug/l ug/l ug/l		
CAS No.	Surrogate	Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7Dibromofluoromethane17060-07-01,2-Dichloroethane-D42037-26-5Toluene-D8		89% 92% 91%		81-1 74-1 80-1	27%			

Report of Analysis

(a) (pH= 6)Sample is not acid preservation per method/client criteria. Sample analyzed within 7 days holding time.

78-116%

93%

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

Client Sampl Lab Sample Matrix: Project:	ID: JB34 AQ -	670-2 Ground V CO, 361 V		nue, N	New Windso	or, NY	Date Sampled: Date Received: Percent Solids:	04/18/13
Total Metals	Analysis							
Analyte	Result	RL	Units	DF	Prep	Analyzed	By Method	Prep Method
Iron	5790	100	ug/l	1	04/22/13	04/25/13	BL EPA 200.7 ¹	EPA 200.7 ²

(1) Instrument QC Batch: MA31053

(2) Prep QC Batch: MP71452

Page 1 of 1

4.2

Client Sample ID:	S-8		
Lab Sample ID:	JB34670-2	Date Sampled:	04/17/13
Matrix:	AQ - Ground Water	Date Received:	04/18/13
		Percent Solids:	n/a
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as CaCO3	111	5.0	mg/l	1	04/25/13 17:03	JA	SM2320 B-11
Chloride	43.8	2.0	mg/l	1	04/30/13 12:20	NP	EPA 300/SW846 9056A
Sulfate	17.2	10	mg/l	1	04/30/13 12:20	NP	EPA 300/SW846 9056A
Sulfide	< 2.0	2.0	mg/l	1	04/20/13	CB	SM20 4500S2 F

Page 1 of 1

4.2 4

Client Sar Lab Samp Matrix: Method: Project:	le ID: JB34 AQ - SW8	670-3 Ground Wa 46 8260B	ater alsh Avenue, Ne	w Winds]	Date Sampled: 0 Date Received: 0 Percent Solids: n	
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 ^a	2A133951.D	1	04/23/13	CC	n/a	n/a	V2A5720
Run #2 ^a	1A127096.D	50	04/23/13	CC	n/a	n/a	V1A5469
Run #1	Purge Volum 5.0 ml	ie					

Page 1 of 2

Run #2 5.0 ml

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.3	ug/l	
71-43-2	Benzene	ND	1.0	0.24	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l	
75-25-2	Bromoform	ND	4.0	0.21	ug/l	
74-83-9	Bromomethane	ND	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	14.1	10	2.4	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.19	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	334 ^b	50	13	ug/l	
67-66-3	Chloroform	1.2	1.0	0.20	ug/l	
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l	
75-34-3	1,1-Dichloroethane	2540 ^b	50	5.3	ug/l	
107-06-2	1,2-Dichloroethane	17.5	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethene	144	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	2.8	1.0	0.19	ug/l	
156-60-5	trans-1,2-Dichloroethene	2.2	1.0	0.21	ug/l	
540-59-0	1,2-Dichloroethene (total)	5.0	1.0	0.19	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.23	ug/l	
591-78-6	2-Hexanone	ND	5.0	1.1	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l	
100-42-5	Styrene	ND	5.0	0.21	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l	
127-18-4	Tetrachloroethene	0.60	1.0	0.28	ug/l	J
108-88-3	Toluene	8.0	1.0	0.23	ug/l	
71-55-6	1,1,1-Trichloroethane	8630 ^b	50	12	ug/l	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Dibromofluoromethane

1,2-Dichloroethane-D4

4-Bromofluorobenzene

Toluene-D8

1868-53-7

460-00-4

17060-07-0 2037-26-5

Client Sample ID: Lab Sample ID: Matrix: Method: Project:		EW-0 JB34670-3 AQ - Ground Water SW846 8260B AFFCO, 361 Walsł		Date	Sampled: Received: ent Solids:	04/17/13 04/18/13 n/a			
VOA TCL	List								
CAS No.	Compo	und	Result	RL	MDL	Units	Q		
79-00-5	, ,	richloroethane	2.3	1.0	0.29	ug/l			
79-01-6 75-01-4	Vinyl cl	roethene hloride	4.0 4.8	$\begin{array}{c} 1.0\\ 1.0\end{array}$	0.22 0.21	ug/l ug/l			
1330-20-7	Xylene	(total)	ND	1.0	0.24	ug/l			
CAS No.	Surrog	ate Recoveries	Run# 1	Run#	2 Lim	its			

Report of Analysis

(a) (pH= 6)Sample is not acid preservation per method/client criteria. Sample analyzed within 7 days holding time.(b) Result is from Run# 2

83%

78%

93%

90%

81-121%

74-127%

80-122%

78-116%

86%

86%

95%

93%

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

4.3

JB34670

Accutest LabLink@732518 13:14 21-May-2013

Client Sample Lab Sample I Matrix: Project:	D: JB346 AQ -	670-3 Ground V		nue, N	Jew Windso	or, NY	Date Sampled: Date Received: Percent Solids:	0 11 2 07 2 0
Total Metals	Analysis							
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	546	100	ug/l	1	04/22/13	04/25/13 BL	EPA 200.7 ¹	EPA 200.7 ²

Report of Analysis

(1) Instrument QC Batch: MA31053

(2) Prep QC Batch: MP71452

Page 1 of 1

4.3

4

Accutest LabLink@732518 13:14 21-May-2013

Client Sample ID:	EW-0		
Lab Sample ID:	JB34670-3	Date Sampled:	04/17/13
Matrix:	AQ - Ground Water	Date Received:	04/18/13
		Percent Solids:	n/a
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

Report of Analysis

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as CaCO3	124	5.0	mg/l	1	04/25/13 17:03	JA	SM2320 B-11
Chloride	114	2.0	mg/l	1	04/30/13 12:44	NP	EPA 300/SW846 9056A
Sulfate	93.8	10	mg/l	1	04/30/13 12:44	NP	EPA 300/SW846 9056A
Sulfide	< 2.0	2.0	mg/l	1	04/20/13	CB	SM20 4500S2 F

Page 1 of 1

4.3 **4**

Client Sar Lab Samp Matrix: Method: Project:	ole ID: JB346 AQ - SW84	Ground Wa	ater alsh Avenue, Ne	ew Winds]	····· 1	04/17/13 04/18/13 n/a
Run #1 ^a Run #2	File ID 1A127095.D	DF 1	Analyzed 04/23/13	By CC	Prep Date n/a	Prep Batch n/a	Analytical Batch V1A5469
Run #1 Run #2	Purge Volum 5.0 ml	e					

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.3	ug/l	
71-43-2	Benzene	ND	1.0	0.24	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l	
75-25-2	Bromoform	ND	4.0	0.21	ug/l	
74-83-9	Bromomethane	ND	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.4	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.19	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	73.9	1.0	0.26	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l	
75-34-3	1,1-Dichloroethane	154	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethene	5.0	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l	
540-59-0	1,2-Dichloroethene (total)	ND	1.0	0.19	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.23	ug/l	
591-78-6	2-Hexanone	ND	5.0	1.1	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l	
100-42-5	Styrene	ND	5.0	0.21	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l	
108-88-3	Toluene	ND	1.0	0.23	ug/l	
71-55-6	1,1,1-Trichloroethane	48.4	1.0	0.24	ug/l	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 2

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: Lab Sample ID: Matrix: Method: Project:		E1-N JB34670-4 AQ - Ground Wate SW846 8260B AFFCO, 361 Wals		Date	Sampled: Received: ent Solids:	04/17/13 04/18/13 n/a		
VOA TCL I	List							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
79-00-5	1,1,2-	Trichloroethane	ND	1.0	0.29	ug/l		
79-01-6	Trichl	oroethene	ND	1.0	0.22	ug/l		
75-01-4	Vinyl	chloride	ND	1.0	0.21	ug/l		
1330-20-7	Xylen	e (total)	ND	1.0	0.24	ug/l		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibro	nofluoromethane	85%		81-1	21%		
17060-07-0	1,2-Di	chloroethane-D4	81%		74-1	27%		
2037-26-5	Toluer	ne-D8	93%		80-1	22%		
460-00-4	4-Bron	nofluorobenzene	88%		78-1	16%		

(a) (pH= 6)Sample is not acid preservation per method/client criteria. Sample analyzed within 7 days holding time.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

Client Sample Lab Sample II Matrix: Project:): JB346 AQ -	570-4 Ground V		nue, N	lew Windso	or, NY	Date Sampled: Date Received: Percent Solids:	04/18/13			
Total Metals A	Total Metals Analysis										
Analyte	Result	RL	Units	DF	Prep	Analyzed I	By Method	Prep Method			
Iron	804	100	ug/l	1	04/22/13	04/23/13 N	ND EPA 200.7 ¹	EPA 200.7 ²			

(1) Instrument QC Batch: MA31028

(2) Prep QC Batch: MP71452

Page 1 of 1

4.4

4

Client Sample ID:	E1-N		
Lab Sample ID:	JB34670-4	Date Sampled:	04/17/13
Matrix:	AQ - Ground Water	Date Received:	04/18/13
		Percent Solids:	n/a
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as CaCO3	260	5.0	mg/l	1	04/25/13 17:03	JA	SM2320 B-11
Chloride	37.1	2.0	mg/l	1	04/30/13 13:08	NP	EPA 300/SW846 9056A
Sulfate	< 10	10	mg/l	1	04/30/13 13:08	NP	EPA 300/SW846 9056A
Sulfide	< 2.0	2.0	mg/l	1	04/20/13	CB	SM20 4500S2 F

Page 1 of 1

4.4 **4**

Lab Samp Matrix: Method:	AQ - SW8	670-5 Ground Wa 46 8260B			Da Pe	ate Sampled:04ate Received:04ercent Solids:n/	
Project:	AFF	CO, 361 W	alsh Avenue, Ne	w Windso	or, NY		
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 ^a	1A127097.D	5	04/23/13	CC	n/a	n/a	V1A5469
Run #2 ^a	1A127098.D	50	04/23/13	CC	n/a	n/a	V1A5469
iτun π2							

Page 1 of 2

Run #2 5.0 ml

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	50	16	ug/l	
71-43-2	Benzene	ND	5.0	1.2	ug/l	
75-27-4	Bromodichloromethane	ND	5.0	1.0	ug/l	
75-25-2	Bromoform	ND	20	1.1	ug/l	
74-83-9	Bromomethane	ND	10	1.1	ug/l	
78-93-3	2-Butanone (MEK)	ND	50	12	ug/l	
75-15-0	Carbon disulfide	ND	10	0.95	ug/l	
56-23-5	Carbon tetrachloride	ND	5.0	1.1	ug/l	
108-90-7	Chlorobenzene	ND	5.0	1.1	ug/l	
75-00-3	Chloroethane	136	5.0	1.3	ug/l	
67-66-3	Chloroform	3.1	5.0	1.0	ug/l	J
74-87-3	Chloromethane	ND	5.0	1.0	ug/l	
124-48-1	Dibromochloromethane	ND	5.0	0.68	ug/l	
75-34-3	1,1-Dichloroethane	438	5.0	0.53	ug/l	
107-06-2	1,2-Dichloroethane	5.2	5.0	1.3	ug/l	
75-35-4	1,1-Dichloroethene	36.6	5.0	0.96	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	5.0	0.94	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	5.0	1.1	ug/l	
540-59-0	1,2-Dichloroethene (total)	ND	5.0	0.94	ug/l	
78-87-5	1,2-Dichloropropane	ND	5.0	2.4	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	5.0	1.0	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	5.0	0.95	ug/l	
100-41-4	Ethylbenzene	ND	5.0	1.1	ug/l	
591-78-6	2-Hexanone	ND	25	5.7	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	5.0	0.82	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	25	4.1	ug/l	
75-09-2	Methylene chloride	ND	10	3.5	ug/l	
100-42-5	Styrene	ND	25	1.1	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	1.1	ug/l	
127-18-4	Tetrachloroethene	ND	5.0	1.4	ug/l	
108-88-3	Toluene	1.6	5.0	1.1	ug/l	J
71-55-6	1,1,1-Trichloroethane	1560 ^b	50	12	ug/l	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Dibromofluoromethane

1,2-Dichloroethane-D4

4-Bromofluorobenzene

Toluene-D8

1868-53-7

460-00-4

17060-07-0 2037-26-5

Client Sample ID: Lab Sample ID: Matrix: Method: Project:		MW-1N JB34670-5 AQ - Ground Water SW846 8260B AFFCO, 361 Wals		Windsor	Date	Sampled: Received: ent Solids:	04/17/13 04/18/13 n/a		
VOA TCL	List								
CAS No.	Comp	oound	Result	RL	MDL	Units	Q		
79-00-5 79-01-6 75-01-4 1330-20-7	Trichl Vinyl	Trichloroethane oroethene chloride e (total)	ND 6.2 ND ND	5.0 5.0 5.0 5.0	1.4 1.1 1.0 1.2	ug/l ug/l ug/l ug/l			
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	2 Lim	its			

Report of Analysis

(a) (pH= 6)Sample is not acid preservation per method/client criteria. Sample analyzed within 7 days holding time.(b) Result is from Run# 2

84%

80%

90%

88%

81-121%

74-127%

80-122%

78-116%

84%

78%

93%

88%

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

4.5

Client Sample ID	: MW-	1N							
Lab Sample ID:	JB340	570-5					Date S	ampled:	04/17/13
Matrix:	AQ -	Ground V	Vater				Date R	eceived:	04/18/13
							Percen	t Solids:	n/a
Project:	AFF	CO, 361 V	Valsh Ave	nue, N	New Windso	or, NY			
Total Metals Ana	lysis								
Total Metals Ana Analyte R	lysis Result	RL	Units	DF	Prep	Analyzed	By Metl	nod	Prep Method

(1) Instrument QC Batch: MA31053
 (2) Prep QC Batch: MP71452

Page 1 of 1

4.5 **4**

Client Sample ID:	MW-1N		
Lab Sample ID:	JB34670-5	Date Sampled:	04/17/13
Matrix:	AQ - Ground Water	Date Received:	04/18/13
		Percent Solids:	n/a
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as CaCO3	274	5.0	mg/l	1	04/25/13 17:03	JA	SM2320 B-11
Chloride	57.1	2.0	mg/l	1	04/30/13 13:32	NP	EPA 300/SW846 9056A
Sulfate	104	10	mg/l	1	04/30/13 13:32	NP	EPA 300/SW846 9056A
Sulfide	< 2.0	2.0	mg/l	1	04/20/13	CB	SM20 4500S2 F

4.5 **4**

Client San Lab Samp Matrix: Method: Project:	le ID: JB346 AQ - 1 SW84	70-6 Field Blanl 6 8260B	c Water alsh Avenue, Ne	w Winds	D P	Pate Sampled:04Pate Received:04Pate Received:04Pate Received:04Pate Received:04	
Run #1 ^a Run #2	File ID 1A127094.D	DF 1	Analyzed 04/23/13	By CC	Prep Date n/a	Prep Batch n/a	Analytical Batch V1A5469
Run #1 Run #2	Purge Volume 5.0 ml	2					

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.3	ug/l	
71-43-2	Benzene	ND	1.0	0.24	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l	
75-25-2	Bromoform	ND	4.0	0.21	ug/l	
74-83-9	Bromomethane	ND	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.4	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.19	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	ND	1.0	0.26	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l	
540-59-0	1,2-Dichloroethene (total)	ND	1.0	0.19	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.23	ug/l	
591-78-6	2-Hexanone	ND	5.0	1.1	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l	
100-42-5	Styrene	ND	5.0	0.21	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l	
108-88-3	Toluene	ND	1.0	0.23	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Page 1 of 2

JB34670

Client Sample ID: Lab Sample ID:	JB34670-6	Date Sampled:	04/17/13
Matrix:	AQ - Field Blank Water	Date Received:	
Method:	SW846 8260B	Percent Solids:	n/a
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

CAS No. Compound		Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND ND ND ND	1.0 1.0 1.0 1.0	0.29 0.22 0.21 0.24	ug/l ug/l ug/l ug/l	
~ ~ ~ ~						
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
CAS No. 1868-53-7 17060-07-0 2037-26-5	Surrogate Recoveries Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	Run# 1 83% 79% 91%	Run# 2	81-1 74-1	21%	

(a) (pH= 6)Sample pH did not satisfy field preservation criteria.

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

Accutest LabLink@732518 13:14 21-May-2013

Client Samp Lab Sample Matrix: Project:	ID: JB34 AQ	41713 4670-6 - Field Bla 7CO, 361 V		enue, N	lew Windso	or, NY	Date Sampled: Date Received: Percent Solids:	0 0 0
Total Metals	s Analysis							
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Iron	18500	100	ug/l	1	04/22/13	04/25/13 BL	EPA 200.7 ¹	EPA 200.7 ²

Report of Analysis

(1) Instrument QC Batch: MA31053

(2) Prep QC Batch: MP71452

Page 1 of 1

4.6

Accutest LabLink@732518 13:14 21-May-2013

Client Sample ID:	FB041713		
Lab Sample ID:	JB34670-6	Date Sampled:	04/17/13
Matrix:	AQ - Field Blank Water	Date Received:	04/18/13
		Percent Solids:	n/a
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

Report of Analysis

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Alkalinity, Total as CaCO3	< 5.0	5.0	mg/l	1	04/25/13 17:03	JA	SM2320 B-11
Chloride	< 2.0	2.0	mg/l	1	04/30/13 13:55	NP	EPA 300/SW846 9056A
Sulfate	< 10	10	mg/l	1	04/30/13 13:55	NP	EPA 300/SW846 9056A
Sulfide	< 2.0	2.0	mg/l	1	04/20/13	CB	SM20 4500S2 F

4.6 **4**

Client San Lab Samj Matrix: Method: Project:	ple ID: JB346' AQ - 7 SW846	Frip Blank 5 8260B	Water alsh Avenue, Ne	ew Winds	or, NY	Date Sampled: Date Received: Percent Solids:	
Run #1 Run #2	File ID 1A127093.D	DF 1	Analyzed 04/23/13	By CC	Prep Date n/a	Prep Bate n/a	h Analytical Batch V1A5469
Run #1 Run #2	Purge Volume 5.0 ml	1					

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.3	ug/l	
71-43-2	Benzene	ND	1.0	0.24	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l	
75-25-2	Bromoform	ND	4.0	0.21	ug/l	
74-83-9	Bromomethane	ND	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.4	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.19	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	ND	1.0	0.26	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l	
540-59-0	1,2-Dichloroethene (total)	ND	1.0	0.19	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.23	ug/l	
591-78-6	2-Hexanone	ND	5.0	1.1	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l	
100-42-5	Styrene	ND	5.0	0.21	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l	
108-88-3	Toluene	ND	1.0	0.23	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 2

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	TRIP BLANK		
Lab Sample ID:	JB34670-7	Date Sampled:	04/17/13
Matrix:	AQ - Trip Blank Water	Date Received:	04/18/13
Method:	SW846 8260B	Percent Solids:	n/a
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

Compound	Result	RL	MDL	Units	Q
1, 1, 2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND ND ND ND	1.0 1.0 1.0 1.0	0.29 0.22 0.21 0.24	ug/l ug/l ug/l ug/l	
Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
Dibromofluoromethane 1,2-Dichloroethane-D4	83% 78%		74-12	27%	
	1, 1, 2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total) Surrogate Recoveries Dibromofluoromethane 1, 2-Dichloroethane-D4	1, 1, 2-TrichloroethaneNDTrichloroetheneNDVinyl chlorideNDXylene (total)NDSurrogate RecoveriesRun# 1Dibromofluoromethane83%1, 2-Dichloroethane-D478%	1,1,2-TrichloroethaneND1.0TrichloroethaneND1.0Vinyl chlorideND1.0Xylene (total)ND1.0Surrogate RecoveriesRun# 1Run# 2Dibromofluoromethane83%1,2-Dichloroethane-D478%	1,1,2-TrichloroethaneND1.00.29TrichloroethaneND1.00.22Vinyl chlorideND1.00.21Xylene (total)ND1.00.24Surrogate RecoveriesRun# 1Run# 2LimiDibromofluoromethane83%81-121,2-Dichloroethane-D478%74-12	1,1,2-TrichloroethaneND1.00.29ug/lTrichloroethaneND1.00.22ug/lVinyl chlorideND1.00.21ug/lXylene (total)ND1.00.24ug/lSurrogate RecoveriesRun# 1Run# 2LimitsDibromofluoromethane83%81-121%

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Section 5

S

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

	PB WAB	AIN OF CUSTODY	FED-EX Tracking #	
	TEL. 7	32-329-0200 FAX: 732-329-3499/3480 www.accutest.com	Accutest Quote #	Accutesi Job # 11334670
Client / Reporting Information	Project Name:	ect Information	Requested Analysis (s	
Company Name	1			
Street Address	AFF(0 Street			DW - Drinking Water GW - Ground Water
158 WEST ZIRSTREET	Street <u>36</u> 0 WACSH <u>AUE</u> City VGW WINDOR Project # 1 = 0.000	Billing Information (if different from Report to)		WW - Water SW - Surface Water
NY NY (STATE)	City State	Company Name		SO - Soil SL- Sludge
Project Contact	Project# 1 Project N.	Z Street Address		SED-Sediment OI - Oil
S. PANTAR	0000	on our nucleas		LIQ - Other Liquid AIR - Air
Phone # Fax # Fax #	Client Purchase Order #	City State Zip	0	SOL - Other Solid WP - Wipe
Sampler(s) Name(s) S. PANTER Rahul BHATIA Rasanbuk	Project Manager	Attention;		EB-Equipment Blank RB-Rinse Blank
(646) 841-3/0		Number of preserved Bcttles	N W L K	TB-Trip Blank
Accutest Sample # Field ID / Point of Collection	MEOH/DI Via) # Date Time	Sampled Matrix #0"bottles H 10 P N 10 P P P P P P P P P P P P P P P P P P	SNT GE	
-1 EW-1X	41/7/13 95	1 KB GW @ 8 21 5	XXXX	LAB USE ONLY
-2 EI-N00	4/17/12 19:7	S RB GW 8 21 ST		
-2 EI-NO00 -3 EW-D	4/17/13 1/11			
4 5-8				(P35
5 MW-INGOR			XXXXX	GFLF
6 FB041713	4/17/13 115	B 648 21 5	XXXXX	841
S TREP MAN	4/7/3/8:45		XXXX	
CIT BLANK	4/15/13/60	2 TB 2 2		
Turnaround Time (Business days)		Data Deliverable Information		Comments / Special Instructions
Std. 10 Business Days	Approved By (Accutest PM): / Date:	Commercial "A" (Level 1) NYASP Category Commercial "B" (Level 2) NYASP Category N	gory A VMCC	are un preserved
5 Day RUSH 3 Day EMERGENCY		FULLT1 (Level 3+4)	POCS	are un preserved
2 Day EMERGENCY		NJ Reduced EDD Format Commercial "C" Other	t	
1 Day EMERGENCY		Commercial "C" Other Commercial "A" = Results Only	Th's discuss	
other Emergency & Rush T/A data available VIA Lablink		Commercial "B" = Results + QC Summary		
ANT A COM	Sample Custony must be do	NJ Reduced = Results + QC Summary + Partia	Inding courier delivery.	
Relify directory Sampler:	18/13 Received B!	APP' Relinquinted by	A Date Time:	Received By: And Mage
Relinguished by Sampler: Date Time:	Received By: 3	Relinquished By:	4/18/13/12 Date Time:	Received By:
Relinquished by: 7 Date Time: 5	Received By:		Intact Preserved where applicable	Dolton Casta Tur
2 4	وا		Not intact	Cooler reinp. 4. 0 _R
211) C

JB34670: Chain of Custody Page 1 of 3

Accutest Laboratories Sample Receipt Summary

Accutest Job Number:	JB34670	Client:		Project:	
Date / Time Received:	4/18/2013		Delivery Method:	Airbill #'s	:

Cooler Temps (Initial/Adjusted): #1: (4/4); 0

Cooler Security	Y or N	Y or N	Sample Integrity - Documentation	<u>Y or</u>	<u>r N</u>	
	☑ 3. COC Present: ☑ 4. Smpl Dates/Time OK		 Sample labels present on bottles: Container labeling complete: 	V		
Cooler Temperature	Y or N		3. Sample container label / COC agree:	\checkmark		
 Temp criteria achieved: Cooler temp verification: Cooler media: No. Coolers: 	☑ □ Bar Therm		Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for: 3. Condition of sample:	Yor ✓ ✓ Inta	r <u>N</u>	
Quality Control _Preservat	tio Y or N N/A		Sample Integrity - Instructions	Y or	rNN/A	
 Trip Blank present / cooler Trip Blank listed on COC: 			 Analysis requested is clear: Bottles received for unspecified tests 			
 Samples preserved proper VOCs headspace free: 	ly: ✔ □ ✔ □ □		 Sufficient volume recvd for analysis: Compositing instructions clear: 			
			5. Filtering instructions clear:			

Comments

Accutest Laboratories V:732.329.0200 2235 US Highway 130 F: 732.329.3499

Dayton, New Jersey www/accutest.com

JB34670: Chain of Custody Page 2 of 3

5.<u>1</u>

G

	Job Change Order:	JB34670_4_30_2013	30_2013
Requested Date: Account Name: Project CSR:	4/30/2013 Fleming-Lee Shue, Inc. AFFCO, 361 Walsh Avenue, New Windsor, NY tammym	Received Date: Due Date: Deliverable: TAT (Days):	4/18/2013 5/2/2013 NYASPB 1
Sample #: JB34670-2 Dept: E1-N		Change: revise sample ID to S-8	
Sample #: JB34670-4 Dept: S-8		Change: revise sample ID to E1-N	
Above Changes Per:	er: Rahul Bhatia	Date:	4/30/2013
To Client: This Change (To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service P	ith the Accutest Client Service	e Page 1 of 1

JB34670: Chain of Custody Page 3 of 3

5.<u>1</u>

G

05/21/13

Technical Report for

Fleming-Lee Shue, Inc.

AFFCO, 361 Walsh Avenue, New Windsor, NY

10000-003 / PO#FP0099

Accutest Job Number: JB32749

Sampling Date: 03/27/13

Report to:

Fleming-Lee Shue, Inc.

raphael@flemingleeshue.com

ATTN: Raphael Rosenbaum

Total number of pages in report: 80

Mancy F. Cole

Nancy Cole Laboratory Director

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Tammy McCloskey 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, MI, MT, NC, OH VAP (CL0056), PA, RI, SC, TN, VA, WV

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

New Jersey • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499 • http://www.accutest.com

Table of Contents

-1-

2 3 4

сл

Section 3: Summary of Hits 8 **4.28:** JB32749-28: FD-1 6(11.5-12) 71 **4.29:** JB32749-29: FD-2 6(14.5-15) 73 Section 5: Misc. Forms 75

Sample Summary

Fleming-Lee Shue, Inc.

Job No: JB32749

AFFCO, 361 Walsh Avenue, New Windsor, NY Project No: 10000-003 / PO#FP0099

ate	Time By	Received	Matri Code		Client Sample ID
8/27/13	17:30 RB	03/29/13	AQ	Trip Blank Soil	TRIP BLANK
8/27/13	07:30 RB	03/29/13	AQ	Field Blank Soil	FIELD BLANK 1
8/27/13	08:00 RB	03/29/13	AQ	Field Blank Soil	FIELD BLANK 2
8/27/13	13:40 RB	03/29/13	SO	Soil	1.1 (12.5-13)
8/27/13	13:45 RB	03/29/13	SO	Soil	1.1 (13-13.5)
8/27/13	13:50 RB	03/29/13	SO	Soil	1.1 (14.5-15)
8/27/13	10:55 RB	03/29/13	SO	Soil	1.2 (13-13.5)
8/27/13	10:50 RB	03/29/13	SO	Soil	1.2 (11-11.5)
8/27/13	11:00 RB	03/29/13	SO	Soil	1.2 (14-14.5)
8/27/13	12:40 RB	03/29/13	SO	Soil	2.1 (12.5-13)
8/27/13	12:35 RB	03/29/13	SO	Soil	2.1 (11.5-12)
8/27/13	12:30 RB	03/29/13	SO	Soil	2.1 (10-10.5)
8/27/13	11:45 RB	03/29/13	SO	Soil	2.2 (12.5-13)
	/27/13 /27/13 /27/13 /27/13 /27/13 /27/13 /27/13 /27/13 /27/13 /27/13 /27/13 /27/13 /27/13	/27/13 17:30 RB /27/13 07:30 RB /27/13 08:00 RB /27/13 13:40 RB /27/13 13:45 RB /27/13 13:50 RB /27/13 10:55 RB /27/13 10:55 RB /27/13 10:50 RB /27/13 11:00 RB /27/13 12:40 RB /27/13 12:35 RB	/27/13 17:30 RB 03/29/13 /27/13 07:30 RB 03/29/13 /27/13 08:00 RB 03/29/13 /27/13 13:40 RB 03/29/13 /27/13 13:40 RB 03/29/13 /27/13 13:45 RB 03/29/13 /27/13 13:50 RB 03/29/13 /27/13 10:55 RB 03/29/13 /27/13 10:50 RB 03/29/13 /27/13 10:50 RB 03/29/13 /27/13 12:40 RB 03/29/13 /27/13 12:35 RB 03/29/13 /27/13 12:30 RB 03/29/13	/27/13 17:30 RB 03/29/13 AQ /27/13 07:30 RB 03/29/13 AQ /27/13 08:00 RB 03/29/13 AQ /27/13 13:40 RB 03/29/13 AQ /27/13 13:40 RB 03/29/13 SO /27/13 13:45 RB 03/29/13 SO /27/13 13:50 RB 03/29/13 SO /27/13 13:50 RB 03/29/13 SO /27/13 10:55 RB 03/29/13 SO /27/13 10:50 RB 03/29/13 SO /27/13 11:00 RB 03/29/13 SO /27/13 12:40 RB 03/29/13 SO /27/13 12:35 RB 03/29/13 SO /27/13 12:30 RB 03/29/13 SO	/27/13 17:30 RB 03/29/13 AQ Trip Blank Soil /27/13 07:30 RB 03/29/13 AQ Field Blank Soil /27/13 08:00 RB 03/29/13 AQ Field Blank Soil /27/13 13:40 RB 03/29/13 SO Soil /27/13 13:40 RB 03/29/13 SO Soil /27/13 13:45 RB 03/29/13 SO Soil /27/13 13:50 RB 03/29/13 SO Soil /27/13 10:55 RB 03/29/13 SO Soil /27/13 10:50 RB 03/29/13 SO Soil /27/13 11:00 RB 03/29/13 SO Soil /27/13 12:40 RB 03/29/13 SO Soil /27/13 12:35 RB 03/29/13 SO Soil /27/13 12:30 RB 03/29/13 SO Soil

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

Sample Summary (continued)

Fleming-Lee Shue, Inc.

Job No:

JB32749

AFFCO, 361 Walsh Avenue, New Windsor, NY Project No: 10000-003 / PO#FP0099

-	Collected Date	Time By	Received	Matri Code		Client Sample ID
JB32749-14 ()3/27/13	11:40 RB	03/29/13	SO	Soil	2.2 (11-11.5)
JB32749-15 (03/27/13	11:50 RB	03/29/13	SO	Soil	2.2 (14-14.5)
JB32749-16 0	03/27/13	14:45 RB	03/29/13	SO	Soil	3 (13.5-14)
JB32749-17 (03/27/13	14:50 RB	03/29/13	SO	Soil	3 (14.5-15)
JB32749-18 (03/27/13	14:35 RB	03/29/13	SO	Soil	3 (12.5-13)
JB32749-19 ()3/27/13	15:20 RB	03/29/13	SO	Soil	4 (11-11.5)
JB32749-20)3/27/13	15:10 RB	03/29/13	SO	Soil	4 (10-10.5)
JB32749-21 (03/27/13	15:30 RB	03/29/13	SO	Soil	4 (14.5-15)
JB32749-22	03/27/13	17:20 RB	03/29/13	SO	Soil	5 (13.5-14)
JB32749-23 (03/27/13	17:25 RB	03/29/13	SO	Soil	5 (14-14.5)
JB32749-24 ()3/27/13	17:30 RB	03/29/13	SO	Soil	5 (14.5-15)
JB32749-25 ()3/27/13	16:30 RB	03/29/13	SO	Soil	6 (11.5-12)
JB32749-26 ()3/27/13	16:45 RB	03/29/13	SO	Soil	6 (12.5-13)

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

Sample Summary (continued)

Fleming-Lee Shue, Inc.

Job No: JB32749

AFFCO, 361 Walsh Avenue, New Windsor, NY Project No: 10000-003 / PO#FP0099

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
JB32749-27	03/27/13	17:00 RB	03/29/13	SO	Soil	6 (14.5-15)
JB32749-28	03/27/13	16:30 RB	03/29/13	SO	Soil	FD-1 6(11.5-12)
JB32749-29	03/27/13	17:00 RB	03/29/13	SO	Soil	FD-2 6(14.5-15)

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

CASE NARRATIVE / CONFORMANCE SUMMARY

Client:	Fleming-Lee Shue, Inc.	Job No	JB32749
Site:	AFFCO, 361 Walsh Avenue, New Windsor, NY	Report Date	4/18/2013 10:43:04 A

On 03/29/2013, 26 Sample(s), 1 Trip Blank(s) and 2 Field Blank(s) were received at Accutest Laboratories at a temperature of 12.1 C. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB32749 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section. *** Sample was received at 12.1 degrees C. and OK to analysis per Steve Panter .

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method SW846 8260B

	Matrix: LEACHATE	Batch ID:	V2C4870
-	 All samples were analyzed within the recommended method holding time. 		

- All method blanks for this batch meet method specific criteria.
- RPD(s) for Duplicate for Chloroform are outside control limits for sample JB32594-2DUP. High RPD due to low concentration of hit
- JB32594-2DUP for Tetrachloroethene: High RPD due to possible sample analyzed from different vials.
- Sample(s) JB32594-1MS, JB32594-2DUP were used as the QC samples indicated.

	▲ · ·			
Γ	Matrix: SO	Batch ID: VC6486		
	 All samples were analyzed within the recommended method holding time. 			

Sample(s) JB32836-1MS, JB32836-2DUP were used as the QC samples indicated.

All method blanks for this batch meet method specific criteria.

Matrix: SO Batch ID: VC6488

All samples were analyzed within the recommended method holding time.

- All method blanks for this batch meet method specific criteria.
- Sample(s) JB32749-27MS, JB32749-19DUP were used as the QC samples indicated.
- Matrix Spike Recovery(s) for 1,1,2,2-Tetrachloroethane are outside control limits. Outside control limits due to matrix interference.
- RPD(s) for Duplicate for 1,1,1-Trichloroethane, 1,1-Dichloroethane, 1,1-Dichloroethene, 1,2-Dichloroethane, 1,2-Dichloroethene (total), Acetone, Chloroethane, cis-1,2-Dichloroethene, trans-1,2-Dichloroethene, Trichloroethene, Vinyl chloride are outside control limits for sample JB32749-19DUP. High RPD due to possible sample analyzed from different vials.
- **JB32749-27MS** for 4-Bromofluorobenzene: Outside control limits due to matrix interference.

Matrix: SO Batch ID: VC6492

All samples were analyzed within the recommended method holding time.

- Sample(s) JB32653-1MS, JB32653-1MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- VC6492-BS for 1,1,2,2-Tetrachloroethane: High percent recoveries and no associated positive found in the QC batch.

Matrix: SO Batch ID: VE8870

All samples were analyzed within the recommended method holding time.

- All method blanks for this batch meet method specific criteria.
- Sample(s) JB33072-7MS, JB33072-7MSD were used as the QC samples indicated.

Volatiles by GCMS By Method SW846 8260B

	Matrix: SO	Batch ID:	: VE8871
	All samples were analyzed within the recommended method holding time.		
-	All method blanks for this batch	meet method specific crite	iteria.
-	Sample(s) JB32576-4MS, JB32	576-4MSD were used as the	s the QC samples indicated.
-	JB32749-18: Diluted due to high concentration of non-target compound.		
-	JB32749-16: Diluted due to high concentration of non-target compound.		
Γ	Matrix: SO	Batch ID:	: VE8875
-	All samples were analyzed within the recommended method holding time.		
-	All method blanks for this batch meet method specific criteria.		
-	Sample(s) JB32576-16MS, JB32576-16MSD were used as the QC samples indicated.		
Γ	Matrix: SO	Batch ID:	: VE8876
-	All samples were analyzed within	n the recommended metho	hod holding time.
 All method blanks for this batch meet method specific criteria. 			

Sample(s) JB32749-21MS, JB32749-21MSD were used as the QC samples indicated.

Batch ID: VE8878

All samples were analyzed within the recommended method holding time.

Sample(s) JB33550-8MS, JB33550-8MSD were used as the QC samples indicated.

All method blanks for this batch meet method specific criteria.

Matrix Spike Duplicate Recovery(s) for Toluene are outside control limits. Outside control limits due to matrix interference.

JB32749-17: Diluted due to high concentration of non-target compound.

Wet Chemistry By Method ASTM 4643-00

Matrix: SO	Batch ID:	GN82679

The data for ASTM 4643-00 meets quality control requirements.

Wet Chemistry By Method SM2540 G-97

Matrix: SO

Batch ID: GN82673

The data for SM2540 G-97 meets quality control requirements.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

Job Number:	JB32749
Account:	Fleming-Lee Shue, Inc.
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY
Collected:	03/27/13

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
JB32749-1	TRIP BLANK					
Bromoform Dibromochlorom	ethane	0.71 J 0.35 J	4.0 1.0	0.21 0.14	ug/l ug/l	SW846 8260B SW846 8260B

JB32749-2 FIELD BLANK 1

No hits reported in this sample.

JB32749-3 FIELD BLANK 2

No hits reported in this sample.

JB32749-4 1.1 (12.5-13)

1,1-Dichloroethane	1080	420	11	ug/kg	SW846 8260B
1,2-Dichloroethane	232	83	11	ug/kg	SW846 8260B
1,1-Dichloroethene	1140	420	21	ug/kg	SW846 8260B
cis-1,2-Dichloroethene	83.2 J	420	15	ug/kg	SW846 8260B
trans-1,2-Dichloroethene	101 J	420	20	ug/kg	SW846 8260B
1,2-Dichloroethene (total)	184 J	420	15	ug/kg	SW846 8260B
Tetrachloroethene	37.9 J	420	14	ug/kg	SW846 8260B
Toluene	109	83	8.7	ug/kg	SW846 8260B
1,1,1-Trichloroethane	18700	4200	88	ug/kg	SW846 8260B
Trichloroethene	1130	420	14	ug/kg	SW846 8260B
JB32749-5 1.1 (13-13.5)					
Acetone	10.9 J	12	1.9	ug/kg	SW846 8260B
Carbon disulfide	1.8 J	5.8	0.13	ug/kg	SW846 8260B
Chloroethane	25.4	5.8	0.26	ug/kg	SW846 8260B
1,1-Dichloroethane	183	5.8	0.16	ug/kg	SW846 8260B
1,2-Dichloroethane	1.0 J	1.2	0.16	ug/kg	SW846 8260B
1,1-Dichloroethene	32.0	5.8	0.30	ug/kg	SW846 8260B
Methylene chloride	4.4 J	5.8	1.5	ug/kg	SW846 8260B
Toluene	0.43 J	1.2	0.12	ug/kg	SW846 8260B
1,1,1-Trichloroethane	2860	500	11	ug/kg	SW846 8260B
Trichloroethene	0.81 J	5.8	0.20	ug/kg	SW846 8260B
JB32749-6 1.1 (14.5-15)					
Carbon disulfide	2.2 J	6.5	0.15	ug/kg	SW846 8260B
Chloroethane	54.7	6.5	0.30	ug/kg	SW846 8260B
1,1-Dichloroethane	79.4	6.5	0.18	ug/kg	SW846 8260B
1,1-Dichloroethene	15.3	6.5	0.33	ug/kg	SW846 8260B

Job Number:	JB32749
Account:	Fleming-Lee Shue, Inc.
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY
Collected:	03/27/13

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
trans-1,2-Dichloroethene	1.3 J	6.5	0.31	ug/kg	SW846 8260B
1,2-Dichloroethene (total)	1.3 J	6.5	0.24	ug/kg	SW846 8260B
Methylene chloride	2.1 J	6.5	1.7	ug/kg	SW846 8260B
Toluene	1.0 J	1.3	0.14	ug/kg	SW846 8260B
1,1,1-Trichloroethane	144	6.5	0.14	ug/kg	SW846 8260B
Trichloroethene	0.90 J	6.5	0.23	ug/kg	SW846 8260B
Vinyl chloride	0.77 J	6.5	0.19	ug/kg	SW846 8260B
JB32749-7 1.2 (13-13.5)					
Acetone	27.2	14	2.4	ug/kg	SW846 8260B
2-Butanone (MEK)	29.0	14	3.3	ug/kg	SW846 8260B
Carbon disulfide	1.1 J	7.0	0.16	ug/kg	SW846 8260B
Chloroethane	480 J	550	25	ug/kg	SW846 8260B
1,1-Dichloroethane	3950	550	15	ug/kg	SW846 8260B
1,2-Dichloroethane	14.2	1.4	0.19	ug/kg	SW846 8260B
1,1-Dichloroethene	41.7	7.0	0.36	ug/kg	SW846 8260B
cis-1,2-Dichloroethene	0.77 J	7.0	0.26	ug/kg	SW846 8260B
trans-1,2-Dichloroethene	0.47 J	7.0	0.33	ug/kg	SW846 8260B
1,2-Dichloroethene (total)	1.2 J	7.0	0.26	ug/kg	SW846 8260B
Methylene chloride	2.8 J	7.0	1.8	ug/kg	SW846 8260B
Toluene	5.7	1.4	0.15	ug/kg	SW846 8260B
1,1,1-Trichloroethane	2130	550	12	ug/kg	SW846 8260B
1,1,2-Trichloroethane	0.84 J	7.0	0.24	ug/kg	SW846 8260B
Trichloroethene	0.89 J	7.0	0.24	ug/kg	SW846 8260B
Vinyl chloride	10.9	7.0	0.20	ug/kg	SW846 8260B
JB32749-8 1.2 (11-11.5)					
Acetone	30.1	15	2.5	ug/kg	SW846 8260B
2-Butanone (MEK)	21.8	15	3.5	ug/kg	SW846 8260B
Carbon disulfide	1.5 J	7.3	0.17	ug/kg	SW846 8260B
Chloroethane	659 J	770	35	ug/kg	SW846 8260B
1,1-Dichloroethane	6220	770	21	ug/kg	SW846 8260B
1,2-Dichloroethane	11.9	1.5	0.20	ug/kg	SW846 8260B
1,1-Dichloroethene	85.3	7.3	0.37	ug/kg	SW846 8260B
cis-1,2-Dichloroethene	0.63 J	7.3	0.27	ug/kg	SW846 8260B
1,2-Dichloroethene (total)	0.63 J	7.3	0.27	ug/kg	SW846 8260B
Ethylbenzene	0.80 J	1.5	0.38	ug/kg	SW846 8260B
Methylene chloride	5.2 J	7.3	1.8	ug/kg	SW846 8260B
Toluene	2.3	1.5	0.15	ug/kg	SW846 8260B
1,1,1-Trichloroethane	1560	770	16	ug/kg	SW846 8260B
1,1,2-Trichloroethane	0.57 J	7.3	0.25	ug/kg	SW846 8260B
Trichloroethene	0.37 J 1.6 J	7.3	0.23		
Vinyl chloride	1.6J 7.9	7.3 7.3	0.23	ug/kg	SW846 8260B SW846 8260B
v myr chioriae	1.7	1.5	0.21	ug/kg	5 11 040 0200D

Job Number:	JB32749
Account:	Fleming-Lee Shue, Inc.
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY
Collected:	03/27/13

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Xylene (total)	0.65 J	1.5	0.20	ug/kg	SW846 8260B
JB32749-9 1.2 (14-14.5)					
Chloroethane	2960	1000	47	ug/kg	SW846 8260B
1,1-Dichloroethane	34000	1000	28	ug/kg	SW846 8260B
1,2-Dichloroethane	786	210	28	ug/kg	SW846 8260B
1,1-Dichloroethene	1620	1000	53	ug/kg	SW846 8260B
Toluene	184 J	210	22	ug/kg	SW846 8260B
1,1,1-Trichloroethane	4690	1000	22	ug/kg	SW846 8260B
1,1,1-111010000000	4070	1000	22	ug/ Kg	5 10 040 02000
JB32749-10 2.1 (12.5-13)					
2-Butanone (MEK)	893	770	180	ug/kg	SW846 8260B
Carbon disulfide	48.1 J	380	9.0	ug/kg	SW846 8260B
Chloroethane	3530	380	17	ug/kg	SW846 8260B
1,1-Dichloroethane	34900	3800	110	ug/kg	SW846 8260B
1,2-Dichloroethane	1590	77	10	ug/kg	SW846 8260B
1,1-Dichloroethene	2150	380	20	ug/kg	SW846 8260B
cis-1,2-Dichloroethene	374 J	380	14	ug/kg	SW846 8260B
trans-1,2-Dichloroethene	294 J	380	18	ug/kg	SW846 8260B
1,2-Dichloroethene (total)	668	380	14	ug/kg	SW846 8260B
Tetrachloroethene	288 J	380	13	ug/kg	SW846 8260B
Toluene	2280	77	8.1	ug/kg	SW846 8260B
1,1,1-Trichloroethane	42300	3800	81	ug/kg	SW846 8260B
1,1,2-Trichloroethane	39.1 J	3800	13	ug/kg	SW846 8260B
Trichloroethene	1180	380	13		SW846 8260B
				ug/kg	
Xylene (total)	83.5	77	11	ug/kg	SW846 8260B
JB32749-11 2.1 (11.5-12)					
Acetone	62.4	17	2.8	ug/kg	SW846 8260B
Benzene	0.66 J	1.7	0.20	ug/kg	SW846 8260B
2-Butanone (MEK)	47.9	17	4.0	ug/kg	SW846 8260B
Carbon disulfide	3.4 J	8.3	0.19	ug/kg	SW846 8260B
Chloroethane	5230	690	31	ug/kg	SW846 8260B
1,1-Dichloroethane	11100	690	19	ug/kg	SW846 8260B
1,2-Dichloroethane	27.7	1.7	0.22	ug/kg	SW846 8260B
1,1-Dichloroethene	70.5	8.3	0.43	ug/kg	SW846 8260B
cis-1,2-Dichloroethene	10.1	8.3	0.30	ug/kg	SW846 8260B
trans-1,2-Dichloroethene	6.1 J	8.3	0.30	ug/kg	SW846 8260B
1,2-Dichloroethene (total)	16.1	8.3	0.30	ug/kg	SW846 8260B
Methylene chloride	4.5 J	8.3	2.1	ug/kg	SW846 8260B
Tetrachloroethene	2.3 J	8.3	0.28	ug/kg	SW846 8260B
Toluene	5.6	8.3 1.7	0.28	ug/kg	SW846 8260B
Toruche	5.0	1./	0.17	ug/ ng	5 ff 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ω

JB32749

Job Number:	JB32749
Account:	Fleming-Lee Shue, Inc.
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY
Collected:	03/27/13

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
1, 1, 1-Trichloroethane	179	8.3	0.18	ug/kg	SW846 8260B
1,1,2-Trichloroethane	3.0 J	8.3	0.29	ug/kg	SW846 8260B
Trichloroethene	19.5	8.3	0.29	ug/kg	SW846 8260B
Vinyl chloride	12.9	8.3	0.24	ug/kg	SW846 8260B
JB32749-12 2.1 (10-10.5)					
Acetone	22.6	19	3.2	ug/kg	SW846 8260B
Carbon disulfide	1.9 J	9.5	0.22		
	1.9 J 14.5		0.22 0.43	ug/kg	SW846 8260B
Chloroethane		9.5		ug/kg	SW846 8260B
Chloroform	5.6 J	9.5	0.16	ug/kg	SW846 8260B
1,1-Dichloroethane	121	9.5	0.26	ug/kg	SW846 8260B
1,2-Dichloroethane	20.7	1.9	0.26	ug/kg	SW846 8260B
1,1-Dichloroethene	42.7	9.5	0.49	ug/kg	SW846 8260B
cis-1,2-Dichloroethene	7.9 J	9.5	0.35	ug/kg	SW846 8260B
trans-1,2-Dichloroethene	6.5 J	9.5	0.45	ug/kg	SW846 8260B
1,2-Dichloroethene (total)	14.3	9.5	0.35	ug/kg	SW846 8260B
Ethylbenzene	2.0	1.9	0.50	ug/kg	SW846 8260B
Methylene chloride	6.5 J	9.5	2.4	ug/kg	SW846 8260B
Tetrachloroethene	2.3 J	9.5	0.33	ug/kg	SW846 8260B
Toluene	4.6	1.9	0.20	ug/kg	SW846 8260B
1,1,1-Trichloroethane	12600	430	9.2	ug/kg	SW846 8260B
1,1,2-Trichloroethane	3.0 J	9.5	0.33	ug/kg	SW846 8260B
Trichloroethene	32.1	9.5	0.33	ug/kg	SW846 8260B
Xylene (total)	8.4	1.9	0.26	ug/kg	SW846 8260B
JB32749-13 2.2 (12.5-13)					
1,1-Dichloroethane	3660	430	12	ug/kg	SW846 8260B
1,2-Dichloroethane	179	85	11	ug/kg	SW846 8260B
1,1-Dichloroethene	2310	430	22	ug/kg	SW846 8260B
cis-1,2-Dichloroethene	31.6 J	430	16	ug/kg	SW846 8260B
1,2-Dichloroethene (total)	31.6 J	430	16	ug/kg	SW846 8260B
Tetrachloroethene	58.5 J	430	15	ug/kg	SW846 8260B
Toluene	284	85	8.9	ug/kg	SW846 8260B
1,1,1-Trichloroethane	70700	4300	90	ug/kg	SW846 8260B
Trichloroethene	337 J	430	15	ug/kg	SW846 8260B
JB32749-14 2.2 (11-11.5)					
1.1 Dishlamathan	(040 I	11000	210		CW046 0060D
1, 1-Dichloroethane	6040 J	11000	310	ug/kg	SW846 8260B
1,1-Dichloroethene	14000	11000	570	ug/kg	SW846 8260B
Toluene	1600 J	2200	230	ug/kg	SW846 8260B
1,1,1-Trichloroethane	398000	11000	240	ug/kg	SW846 8260B
Trichloroethene	2040 J	11000	390	ug/kg	SW846 8260B

ယ

Job Number:	JB32749
Account:	Fleming-Lee Shue, Inc.
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY
Collected:	03/27/13

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
JB32749-15 2.2 (14-14.5)					
Acetone	82.2	8.1	1.4	ug/kg	SW846 8260B
2-Butanone (MEK)	129	8.1	1.9	ug/kg	SW846 8260B
Carbon disulfide	1.9 J	4.1	0.095	ug/kg	SW846 8260B
Chloroethane	46.2	4.1	0.18	ug/kg	SW846 8260B
1,1-Dichloroethane	12100	1300	34	ug/kg	SW846 8260B
1,2-Dichloroethane	34.0	0.81	0.11	ug/kg	SW846 8260B
1,1-Dichloroethene	72.4	4.1	0.21	ug/kg	SW846 8260B
cis-1,2-Dichloroethene	3.7 J	4.1	0.15	ug/kg	SW846 8260B
trans-1,2-Dichloroethene	0.86 J	4.1	0.19	ug/kg	SW846 8260B
1,2-Dichloroethene (total)	4.6	4.1	0.15	ug/kg	SW846 8260B
Methylene chloride	2.8 J	4.1	1.0	ug/kg	SW846 8260B
Toluene	1.4	0.81	0.086	ug/kg	SW846 8260B
1,1,1-Trichloroethane	617 J	1300	27	ug/kg	SW846 8260B
1,1,2-Trichloroethane	1.6 J	4.1	0.14	ug/kg	SW846 8260B
Trichloroethene	0.39 J	4.1	0.14	ug/kg	SW846 8260B
Vinyl chloride	3.4 J	4.1	0.12	ug/kg	SW846 8260B
JB32749-16 3 (13.5-14)					
Chloroethane ^a	143 J	560	25	ug/kg	SW846 8260B
1,1-Dichloroethane ^a	459 J	560	15	ug/kg	SW846 8260B
1,1-Dichloroethene ^a	293 J	560	29	ug/kg	SW846 8260B
Toluene ^a	36.2 J	110	12	ug/kg	SW846 8260B
1,1,1-Trichloroethane ^a	1500	560	12	ug/kg	SW846 8260B
Trichloroethene ^a	175 J	560	19	ug/kg	SW846 8260B
JB32749-17 3 (14.5-15)					
Chloroethane ^a	953	370	17	ug/kg	SW846 8260B
1,1-Dichloroethane ^a	5820	370	10	ug/kg	SW846 8260B
1,2-Dichloroethane ^a	165	74	10	ug/kg	SW846 8260B
1,1-Dichloroethene ^a	423	370	19	ug/kg	SW846 8260B
cis-1,2-Dichloroethene ^a	44.6 J	370	14	ug/kg	SW846 8260B
trans-1,2-Dichloroethene ^a	81.2 J	370	18	ug/kg	SW846 8260B
1,2-Dichloroethene (total) ^a	126 J	370	10	ug/kg	SW846 8260B
Toluene ^a	462	74	7.8	ug/kg	SW846 8260B
1,1,1-Trichloroethane ^a	2320	370	7.9	ug/kg	SW846 8260B
Trichloroethene ^a	55.3 J	370	13	ug/kg	SW846 8260B
JB32749-18 3 (12.5-13)			-	60	
Chloroethane ^a	94.4 J	610	27	ug/kg	SW846 8260B

Job Number:	JB32749
Account:	Fleming-Lee Shue, Inc.
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY
Collected:	03/27/13

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
1,1-Dichloroethane ^a	410 J	610	17	ug/kg	SW846 8260B
1,2-Dichloroethane ^a	134	120	16	ug/kg	SW846 8260B
1,1-Dichloroethene ^a	659	610	31	ug/kg	SW846 8260B
cis-1,2-Dichloroethene ^a	104 J	610	22	ug/kg	SW846 8260B
trans-1,2-Dichloroethene ^a	108 J	610	29	ug/kg	SW846 8260B
1,2-Dichloroethene (total) ^a	212 J	610	22	ug/kg	SW846 8260B
1,1,1-Trichloroethane ^a	1270	610	13	ug/kg	SW846 8260B
Trichloroethene ^a	279 J	610	21	ug/kg	SW846 8260B
JB32749-19 4 (11-11.5)					
Acetone	10.9	8.4	1.4	ug/kg	SW846 8260B
Carbon disulfide	1.1 J	4.2	0.098	ug/kg	SW846 8260B
Chloroethane	3.4 J	4.2	0.19	ug/kg	SW846 8260B
1,1-Dichloroethane	2000	280	7.5	ug/kg	SW846 8260B
1,2-Dichloroethane	4.4	0.84	0.11	ug/kg	SW846 8260B
1,1-Dichloroethene	1650	280	14	ug/kg	SW846 8260B
cis-1,2-Dichloroethene	2.6 J	4.2	0.15	ug/kg	SW846 8260B
trans-1,2-Dichloroethene	0.43 J	4.2	0.20	ug/kg	SW846 8260B
1,2-Dichloroethene (total)	3.0 J	4.2	0.15	ug/kg	SW846 8260B
Methylene chloride	4.0 J	4.2	1.1	ug/kg	SW846 8260B
1,1,1-Trichloroethane	88.1	4.2	0.089	ug/kg	SW846 8260B
Trichloroethene	0.45 J	4.2	0.15	ug/kg	SW846 8260B
Vinyl chloride	1.8 J	4.2	0.12	ug/kg	SW846 8260B
JB32749-20 4 (10-10.5)					
Acetone	13.0 J	19	3.2	ug/kg	SW846 8260B
Carbon disulfide	1.3 J	9.6	0.22	ug/kg	SW846 8260B
Chloroform	0.50 J	9.6	0.16	ug/kg	SW846 8260B
1,1-Dichloroethane	9.6	9.6	0.26	ug/kg	SW846 8260B
1,2-Dichloroethane	2.3	1.9	0.26	ug/kg	SW846 8260B
1,1-Dichloroethene	31.4	9.6	0.49	ug/kg	SW846 8260B
cis-1,2-Dichloroethene	1.0 J	9.6	0.35	ug/kg	SW846 8260B
trans-1,2-Dichloroethene	0.67 J	9.6	0.46	ug/kg	SW846 8260B
1,2-Dichloroethene (total)	1.7 J	9.6	0.35	ug/kg	SW846 8260B
Methylene chloride	15.1	9.6	2.4	ug/kg	SW846 8260B
Tetrachloroethene	0.99 J	9.6	0.33	ug/kg	SW846 8260B
1,1,1-Trichloroethane	89.0	9.6	0.20	ug/kg	SW846 8260B
Trichloroethene	3.5 J	9.6	0.33	ug/kg	SW846 8260B
JB32749-21 4 (14.5-15)					
Acetone	14.6	13	2.1	ug/kg	SW846 8260B
2-Butanone (MEK)	40.1	13	3.0	ug/kg	SW846 8260B
				-	

Job Number:	JB32749
Account:	Fleming-Lee Shue, Inc.
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY
Collected:	03/27/13

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Chloroethane	1190	290	13	ug/kg	SW846 8260B
1,1-Dichloroethane	6470	290	8.0	ug/kg	SW846 8260B
1,1-Dichloroethene	0.43 J	6.4	0.33	ug/kg	SW846 8260B
Methylene chloride	12.4	6.4	1.6	ug/kg	SW846 8260B
1,1,1-Trichloroethane	3.9 J	6.4	0.13	ug/kg	SW846 8260B
Vinyl chloride	2.4 J	6.4	0.18	ug/kg	SW846 8260B
JB32749-22 5 (13.5-14)					
Acetone	4.6 J	12	2.0	ug/kg	SW846 8260B
1,1-Dichloroethane	15.0	5.9	0.16	ug/kg	SW846 8260B
1,2-Dichloroethane	1.2	1.2	0.16	ug/kg	SW846 8260B
1,1-Dichloroethene	9.3	5.9	0.30	ug/kg	SW846 8260B
cis-1,2-Dichloroethene	0.36 J	5.9	0.22	ug/kg	SW846 8260B
1,2-Dichloroethene (total)	0.36 J	5.9	0.22	ug/kg	SW846 8260B
Methylene chloride	2.7 J	5.9	1.5	ug/kg	SW846 8260B
1, 1, 1-Trichloroethane	3480	480	10	ug/kg	SW846 8260B
1,1,2-Trichloroethane	0.44 J	5.9	0.21	ug/kg	SW846 8260B
Trichloroethene	2.0 J	5.9	0.21	ug/kg	SW846 8260B
Themoroculenc	2.03	5.7	0.21	ug/ Kg	511010 02000
JB32749-23 5 (14-14.5)					
Acetone	19.2	9.6	1.6	ug/kg	SW846 8260B
Carbon disulfide	0.65 J	4.8	0.11	ug/kg	SW846 8260B
Chloroethane	0.91 J	4.8	0.22	ug/kg	SW846 8260B
1,1-Dichloroethane	42.9	4.8	0.13	ug/kg	SW846 8260B
1,1-Dichloroethene	21.4	4.8	0.25	ug/kg	SW846 8260B
1, 1, 1-Trichloroethane	1220	390	8.3	ug/kg	SW846 8260B
Vinyl chloride	1.3 J	4.8	0.14	ug/kg	SW846 8260B
JB32749-24 5 (14.5-15)					
Acetone	37.1	10	1.8	ug/kg	SW846 8260B
Chloroethane	1.3 J	5.2	0.24	ug/kg	SW846 8260B
1,1-Dichloroethane	54.3	5.2	0.14	ug/kg	SW846 8260B
1,1-Dichloroethene	30.8	5.2	0.27	ug/kg	SW846 8260B
cis-1,2-Dichloroethene	0.33 J	5.2	0.19	ug/kg	SW846 8260B
1,2-Dichloroethene (total)	0.33 J	5.2	0.19	ug/kg	SW846 8260B
Methylene chloride	1.6 J	5.2	1.3	ug/kg	SW846 8260B
1,1,1-Trichloroethane	2090	320	6.8	ug/kg	SW846 8260B
Vinyl chloride	1.2 J	5.2	0.15	ug/kg	SW846 8260B
JB32749-25 6 (11.5-12)					
Methylene chloride	2.9 J	6.5	1.7	ug/kg	SW846 8260B
,				00	

Job Number:	JB32749
Account:	Fleming-Lee Shue, Inc.
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY
Collected:	03/27/13

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
1,1,1-Trichloroethane	2.9 J	6.5	0.14	ug/kg	SW846 8260B
JB32749-26 6 (12.5-13)					
Acetone	4.9 J	10	1.7	ug/kg	SW846 8260B
1,1-Dichloroethane	2.0 J	5.1	0.14	ug/kg	SW846 8260B
1,2-Dichloroethane	2.8	1.0	0.14	ug/kg	SW846 8260B
1,1-Dichloroethene	6.1	5.1	0.26	ug/kg	SW846 8260B
cis-1,2-Dichloroethene	1.2 J	5.1	0.19	ug/kg	SW846 8260B
trans-1,2-Dichloroethene	1.2 J	5.1	0.24	ug/kg	SW846 8260B
1,2-Dichloroethene (total)	2.4 J	5.1	0.19	ug/kg	SW846 8260B
Methylene chloride	4.1 J	5.1	1.3	ug/kg	SW846 8260B
1,1,1-Trichloroethane	41.5	5.1	0.11	ug/kg	SW846 8260B
Trichloroethene	5.0 J	5.1	0.18	ug/kg	SW846 8260B
JB32749-27 6 (14.5-15)					
1,1-Dichloroethane	3.5 J	5.9	0.16	ug/kg	SW846 8260B
1,1,1-Trichloroethane	0.93 J	5.9	0.12	ug/kg	SW846 8260B
JB32749-28 FD-1 6(11.5-12)					
Methylene chloride	3.2 J	5.4	1.4	ug/kg	SW846 8260B
1,1,1-Trichloroethane	3.6 J	5.4	0.11	ug/kg	SW846 8260B
Trichloroethene	0.89 J	5.4	0.19	ug/kg	SW846 8260B
JB32749-29 FD-2 6(14.5-15)					
1,1-Dichloroethane	0.71 J	3.6	0.098	ug/kg	SW846 8260B
1,1,1-Trichloroethane	3.6	3.6	0.076	ug/kg	SW846 8260B

(a) Diluted due to high concentration of non-target compound.

Section 4

4

Sample Results

Report of Analysis

Client Sa Lab Samj Matrix: Method: Project:	ple ID: JB3274 AQ - T SW846	Frip Blank 5 8260B	: Soil alsh Avenue, Ne	ew Winds	D P	ate Sampled: 0. ate Received: 0. ercent Solids: n.	
Run #1 Run #2	File ID 2C106296.D	DF 1	Analyzed 04/10/13	By DR	Prep Date n/a	Prep Batch n/a	Analytical Batch V2C4870
Run #1 Run #2	Purge Volume 5.0 ml						

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.3	ug/l	
71-43-2	Benzene	ND	1.0	0.24	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l	
75-25-2	Bromoform	0.71	4.0	0.21	ug/l	J
74-83-9	Bromomethane	ND	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.4	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.19	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	ND	1.0	0.26	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	
124-48-1	Dibromochloromethane	0.35	1.0	0.14	ug/l	J
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l	
540-59-0	1,2-Dichloroethene (total)	ND	1.0	0.19	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.23	ug/l	
591-78-6	2-Hexanone	ND	5.0	1.1	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l	
100-42-5	Styrene	ND	5.0	0.21	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l	
108-88-3	Toluene	ND	1.0	0.23	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: T	TRIP BLANK		
Lab Sample ID: JI	B32749-1	Date Sampled:	03/27/13
Matrix: A	AQ - Trip Blank Soil	Date Received:	03/29/13
Method: S	W846 8260B	Percent Solids:	n/a
Project: A	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

Compound	Result	RL	MDL	Units	Q
1, 1, 2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND ND ND ND	1.0 1.0 1.0 1.0	0.29 0.22 0.21 0.24	ug/l ug/l ug/l ug/l	
Surrogate Recoveries	Run# 1	Run# 2	Limits		
Dibromofluoromethane 1,2-Dichloroethane-D4 Tolugne D8	87% 91%	81-121% 74-127% 80-122% 78-116%			
	1, 1, 2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total) Surrogate Recoveries Dibromofluoromethane 1, 2-Dichloroethane-D4	1, 1, 2-TrichloroethaneNDTrichloroetheneNDVinyl chlorideNDXylene (total)NDSurrogate RecoveriesRun# 1Dibromofluoromethane87%1, 2-Dichloroethane-D491%	1,1,2-TrichloroethaneND1.0TrichloroethaneND1.0Vinyl chlorideND1.0Xylene (total)ND1.0Surrogate RecoveriesRun# 1Run# 2Dibromofluoromethane87%1,2-Dichloroethane-D491%	1,1,2-TrichloroethaneND1.00.29TrichloroethaneND1.00.22Vinyl chlorideND1.00.21Xylene (total)ND1.00.24Surrogate RecoveriesRun# 1Run# 2LimitDibromofluoromethane87%81-111,2-Dichloroethane-D491%74-11	1, 1, 2-Trichloroethane ND 1.0 0.29 ug/l Trichloroethane ND 1.0 0.22 ug/l Vinyl chloride ND 1.0 0.21 ug/l Xylene (total) ND 1.0 0.24 ug/l Surrogate Recoveries Run#1 Run#2 Limits Dibromofluoromethane 87% 81-121% 1,2-Dichloroethane-D4 91% 74-127%

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client Sa Lab Samj Matrix: Method: Project:	ple ID: JB327 AQ - J SW84	Field Blan 6 8260B		w Winds		Date Sampled: Date Received: Percent Solids:	
Run #1 Run #2	File ID 2C106297.D	DF 1	Analyzed 04/10/13	By DR	Prep Date n/a	Prep Bate n/a	h Analytical Batch V2C4870
Run #1 Run #2	Purge Volume 5.0 ml						

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.3	ug/l	
71-43-2	Benzene	ND	1.0	0.24	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l	
75-25-2	Bromoform	ND	4.0	0.21	ug/l	
74-83-9	Bromomethane	ND	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.4	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.19	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	ND	1.0	0.26	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l	
540-59-0	1,2-Dichloroethene (total)	ND	1.0	0.19	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.23	ug/l	
591-78-6	2-Hexanone	ND	5.0	1.1	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l	
100-42-5	Styrene	ND	5.0	0.21	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l	
108-88-3	Toluene	ND	1.0	0.23	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	FIELD BLANK 1		
Lab Sample ID:	JB32749-2	Date Sampled:	03/27/13
Matrix:	AQ - Field Blank Soil	Date Received:	03/29/13
Method:	SW846 8260B	Percent Solids:	n/a
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.29	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.21	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.24	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		its	
1868-53-7	Dibromofluoromethane	87%	81-121%			
17060-07-0	1,2-Dichloroethane-D4	93%	74-127%			
2037-26-5	Toluene-D8	98%	80-122%			
460-00-4	4-Bromofluorobenzene	87%	78-116%			

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client Sat Lab Samj Matrix: Method: Project:	ple ID: JB3274 AQ - F SW846	ield Blan 5 8260B		ew Winds		Date Sampled: Date Received: Percent Solids:	
Run #1 Run #2	File ID 2C106298.D	DF 1	Analyzed 04/10/13	By DR	Prep Date n/a	Prep Batcl n/a	h Analytical Batch V2C4870
Run #1 Run #2	Purge Volume 5.0 ml						

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.3	ug/l	
71-43-2	Benzene	ND	1.0	0.24	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.21	ug/l	
75-25-2	Bromoform	ND	4.0	0.21	ug/l	
74-83-9	Bromomethane	ND	2.0	0.22	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.4	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.19	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.23	ug/l	
75-00-3	Chloroethane	ND	1.0	0.26	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
74-87-3	Chloromethane	ND	1.0	0.21	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.14	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.11	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.19	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.19	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.21	ug/l	
540-59-0	1,2-Dichloroethene (total)	ND	1.0	0.19	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.48	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.23	ug/l	
591-78-6	2-Hexanone	ND	5.0	1.1	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.16	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	0.83	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.70	ug/l	
100-42-5	Styrene	ND	5.0	0.21	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.28	ug/l	
108-88-3	Toluene	ND	1.0	0.23	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.24	ug/l	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Client Sample ID:	FIELD BLANK 2		
Lab Sample ID:	JB32749-3	Date Sampled:	03/27/13
Matrix:	AQ - Field Blank Soil	Date Received:	03/29/13
Method:	SW846 8260B	Percent Solids:	n/a
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND ND ND ND	1.0 1.0 1.0 1.0	0.29 0.22 0.21 0.24	ug/l ug/l ug/l ug/l	
				un# 2 Limits		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
CAS No. 1868-53-7 17060-07-0 2037-26-5 460-00-4	Surrogate Recoveries Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	Run# 1 88% 94% 99% 87%	Run# 2	Limi 81-1: 74-1: 80-1: 78-1	21% 27% 22%	

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

Client San Lab Samj Matrix: Method: Project:	ple ID: JB3274 SO - So SW846	9-4 il 8260B S	W846 5035 sh Avenue, N	Jew Windso	Date Perc	Sampled: Received: ent Solids:	
	File ID	DF	Analyzed	By	Prep Date	Prep Batc	h Analytical Batch
Run #1	E201771.D	1	04/06/13	OTR	03/29/13 12:00	n/a	VE8871
Run #2	E201870.D	1	04/09/13	OTR	03/29/13 12:00	n/a	VE8875
	Initial Weight	Final V	olume	Methanol	Aliquot		
Run #1	4.3 g	5.0 ml		100 ul			
Run #2	4.3 g	5.0 ml		10.0 ul			

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	830	140	ug/kg	
71-43-2	Benzene	ND	83	9.9	ug/kg	
75-27-4	Bromodichloromethane	ND	420	8.7	ug/kg	
75-25-2	Bromoform	ND	420	13	ug/kg	
74-83-9	Bromomethane	ND	420	23	ug/kg	
78-93-3	2-Butanone (MEK)	ND	830	200	ug/kg	
75-15-0	Carbon disulfide	ND	420	9.7	ug/kg	
56-23-5	Carbon tetrachloride	ND	420	11	ug/kg	
108-90-7	Chlorobenzene	ND	420	9.0	ug/kg	
75-00-3	Chloroethane	ND	420	19	ug/kg	
67-66-3	Chloroform	ND	420	6.9	ug/kg	
74-87-3	Chloromethane	ND	420	15	ug/kg	
124-48-1	Dibromochloromethane	ND	420	14	ug/kg	
75-34-3	1,1-Dichloroethane	1080	420	11	ug/kg	
107-06-2	1,2-Dichloroethane	232	83	11	ug/kg	
75-35-4	1,1-Dichloroethene	1140	420	21	ug/kg	
156-59-2	cis-1,2-Dichloroethene	83.2	420	15	ug/kg	J
156-60-5	trans-1,2-Dichloroethene	101	420	20	ug/kg	J
540-59-0	1,2-Dichloroethene (total)	184	420	15	ug/kg	J
78-87-5	1,2-Dichloropropane	ND	420	13	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	420	12	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	420	13	ug/kg	
100-41-4	Ethylbenzene	ND	83	22	ug/kg	
591-78-6	2-Hexanone	ND	420	52	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	83	20	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	420	62	ug/kg	
75-09-2	Methylene chloride	ND	420	110	ug/kg	
100-42-5	Styrene	ND	420	7.6	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	420	11	ug/kg	
127-18-4	Tetrachloroethene	37.9	420	14	ug/kg	J
108-88-3	Toluene	109	83	8.7	ug/kg	
71-55-6	1,1,1-Trichloroethane	18700 ^a	4200	88	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	1.1 (12.5-13)		
Lab Sample ID:	JB32749-4	Date Sampled:	03/27/13
Matrix:	SO - Soil	Date Received:	03/29/13
Method:	SW846 8260B SW846 5035	Percent Solids:	81.2
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		
-			

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND 1130 ND ND	420 420 420 83	14 14 12 12	ug/kg ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	81% 83% 91%	86% 91% 91%	70-1 70-1 81-1	22%	
460-00-4	4-Bromofluorobenzene	95%	102%	66-1		

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

			кер	ort of A	marysis			Page 1 of 1
Client Sam Lab Sample Matrix: Method: Project:	e ID: JB32749 SO - Soi SW846	9-5		New Windso	r, NY	Date	Received:	03/27/13 03/29/13 83.5
	File ID	DF	Analyzed	By	Prep D	ate	Prep Batch	Analytical Batch
Run #1	C180730.D		04/05/13	TYG	-	3 12:00	n/a	VC6486
Run #2	E201894.D	1	04/09/13	OTR	03/29/1	13 12:00	n/a	VE8876
	Initial Weight	Final Volu	me	Methanol	Aliquot			
Run #1	5.2 g		ine		inquot			
Run #2	3.3 g	5.0 ml		100 ul				
VOA TCL	List							
CAS No.	Compound		Result	RL	MDL	Units	Q	
67-64-1	Acetone		10.9	12	1.9	ug/kg	J	
71-43-2	Benzene		ND	1.2	0.14	ug/kg		
75-27-4	Bromodichloro	methane	ND	5.8	0.12	ug/kg		
75-25-2	Bromoform		ND	5.8	0.17	ug/kg		
74-83-9	Bromomethane		ND	5.8	0.31	ug/kg		
78-93-3	2-Butanone (MI	EK)	ND	12	2.8	ug/kg		
75-15-0	Carbon disulfid		1.8	5.8	0.13	ug/kg	J	
56-23-5	Carbon tetrachl	oride	ND	5.8	0.15	ug/kg		
108-90-7	Chlorobenzene		ND	5.8	0.12	ug/kg		
75-00-3	Chloroethane		25.4	5.8	0.26	ug/kg		
67-66-3	Chloroform		ND	5.8	0.095	ug/kg		
74-87-3	Chloromethane		ND	5.8	0.21	ug/kg		
124-48-1	Dibromochloro	methane	ND	5.8	0.19	ug/kg		
75-34-3	1,1-Dichloroeth	nane	183	5.8	0.16	ug/kg		
107-06-2	1,2-Dichloroeth	nane	1.0	1.2	0.16	ug/kg	J	
75-35-4	1,1-Dichloroeth	nene	32.0	5.8	0.30	ug/kg		
156-59-2	cis-1,2-Dichlor	oethene	ND	5.8	0.21	ug/kg		
156-60-5	trans-1,2-Dichle	oroethene	ND	5.8	0.27	ug/kg		
540-59-0	1,2-Dichloroeth	nene (total)	ND	5.8	0.21	ug/kg		
78-87-5	1,2-Dichloropro	opane	ND	5.8	0.18	ug/kg		
10061-01-5	cis-1,3-Dichlor	opropene	ND	5.8	0.16	ug/kg		
10061-02-6	trans-1,3-Dichle	oropropene	ND	5.8	0.18	ug/kg		
100-41-4	Ethylbenzene		ND	1.2	0.30	ug/kg		
591-78-6	2-Hexanone		ND	5.8	0.72	ug/kg		
1634-04-4	Methyl Tert Bu	tyl Ether	ND	1.2	0.27	ug/kg		
108-10-1	4-Methyl-2-pen	tanone(MIBk	K) ND	5.8	0.86	ug/kg		
75-09-2	Methylene chlo	oride	4.4	5.8	1.5	ug/kg	J	
100-42-5	Styrene		ND	5.8	0.11	ug/kg		
79-34-5	1,1,2,2-Tetrach		ND	5.8	0.15	ug/kg		
127-18-4	Tetrachloroethe	ene	ND	5.8	0.20	ug/kg		
108-88-3	Toluene		0.43	1.2	0.12	ug/kg	J	
71 55 6	1 1 1 Trichloro	athona	2060 a	500	11	$n\alpha/lr\alpha$		

ND = Not detected MDL - Method Detection Limit

1,1,1-Trichloroethane

2860 a

500

11

RL = Reporting Limit

71-55-6

J = Indicates an estimated value

ug/kg

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Client Sample ID:	1.1 (13-13.5)		
Lab Sample ID:	JB32749-5	Date Sampled:	03/27/13
Matrix:	SO - Soil	Date Received:	03/29/13
Method:	SW846 8260B SW846 5035	Percent Solids:	83.5
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		
-			

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND 0.81 ND ND	5.8 5.8 5.8 1.2	0.20 0.20 0.17 0.16	ug/kg ug/kg ug/kg ug/kg	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	Limits	
1868-53-7 17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	101% 89% 108%	85% 92% 91%	70-13 70-13 81-13	22% 27%	
460-00-4	4-Bromofluorobenzene	103%	99%	66-13	32%	

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

Client Sa Lab Sam Matrix: Method: Project:	ple ID: JB327 SO - S SW84	Soil 6 8260B	SW846 5035 alsh Avenue, Ne	ew Windso	Date Perc	Sampled: 03 Received: 03 ent Solids: 91	
Run #1 Run #2	File ID C180731.D	DF 1	Analyzed 04/05/13	By TYG	Prep Date 03/29/13 12:00	Prep Batch n/a	Analytical Batch VC6486
Run #1 Run #2	Initial Weight 4.2 g	ţ					

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	13	2.2	ug/kg	
71-43-2	Benzene	ND	1.3	0.15	ug/kg	
75-27-4	Bromodichloromethane	ND	6.5	0.14	ug/kg	
75-25-2	Bromoform	ND	6.5	0.20	ug/kg	
74-83-9	Bromomethane	ND	6.5	0.36	ug/kg	
78-93-3	2-Butanone (MEK)	ND	13	3.1	ug/kg	
75-15-0	Carbon disulfide	2.2	6.5	0.15	ug/kg	J
56-23-5	Carbon tetrachloride	ND	6.5	0.17	ug/kg	
108-90-7	Chlorobenzene	ND	6.5	0.14	ug/kg	
75-00-3	Chloroethane	54.7	6.5	0.30	ug/kg	
67-66-3	Chloroform	ND	6.5	0.11	ug/kg	
74-87-3	Chloromethane	ND	6.5	0.24	ug/kg	
124-48-1	Dibromochloromethane	ND	6.5	0.21	ug/kg	
75-34-3	1,1-Dichloroethane	79.4	6.5	0.18	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.3	0.18	ug/kg	
75-35-4	1,1-Dichloroethene	15.3	6.5	0.33	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	6.5	0.24	ug/kg	
156-60-5	trans-1,2-Dichloroethene	1.3	6.5	0.31	ug/kg	J
540-59-0	1,2-Dichloroethene (total)	1.3	6.5	0.24	ug/kg	J
78-87-5	1,2-Dichloropropane	ND	6.5	0.20	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	6.5	0.18	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	6.5	0.20	ug/kg	
100-41-4	Ethylbenzene	ND	1.3	0.34	ug/kg	
591-78-6	2-Hexanone	ND	6.5	0.81	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.3	0.31	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	6.5	0.98	ug/kg	
75-09-2	Methylene chloride	2.1	6.5	1.7	ug/kg	J
100-42-5	Styrene	ND	6.5	0.12	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.5	0.17	ug/kg	
127-18-4	Tetrachloroethene	ND	6.5	0.22	ug/kg	
108-88-3	Toluene	1.0	1.3	0.14	ug/kg	J
71-55-6	1,1,1-Trichloroethane	144	6.5	0.14	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	1.1 (14.5-15)		
Lab Sample ID:	JB32749-6	Date Sampled:	03/27/13
Matrix:	SO - Soil	Date Received:	03/29/13
Method:	SW846 8260B SW846 5035	Percent Solids:	91.5
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1, 1, 2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND 0.90 0.77 ND	6.5 6.5 1.3	0.23 0.23 0.19 0.18	ug/kg ug/kg ug/kg ug/kg	J J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	98% 89% 108%		70-13 70-12 81-12	22%	

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

			кер	UIT UI A	11a1 y 515			Page 1 of
Client Sam Lab Sample Matrix: Method: Project:	SO - So SW846	49-7		lew Windso	r, NY	Date	Sampled: Received: ent Solids:	03/27/13 03/29/13 87.2
	File ID	DF	Analyzed	By	Prep D	Date	Prep Batc	h Analytical Batch
Run #1	C180745.D		04/05/13	TYG	-	13 12:00	n/a	VC6486
Run #2	E201895.D	1	04/09/13	OTR	03/29/1	13 12:00	n/a	VE8876
	Initial Weight	Final Volu	ne	Methanol	Aliquot			
Run #1	4.1 g				•			
Run #2	2.8 g	5.0 ml		100 ul				
VOA TCL	List							
CAS No.	Compound		Result	RL	MDL	Units	Q	
67-64-1	Acetone		27.2	14	2.4	ug/kg		
71-43-2	Benzene		ND	1.4	0.17	ug/kg		
75-27-4	Bromodichloro	omethane	ND	7.0	0.15	ug/kg		
75-25-2	Bromoform		ND	7.0	0.21	ug/kg		
74-83-9	Bromomethane	e	ND	7.0	0.38	ug/kg		
78-93-3	2-Butanone (M	1EK)	29.0	14	3.3	ug/kg		
75-15-0	Carbon disulfi		1.1	7.0	0.16	ug/kg	J	
56-23-5	Carbon tetrach	nloride	ND	7.0	0.19	ug/kg		
108-90-7	Chlorobenzene	e	ND	7.0	0.15	ug/kg		
75-00-3	Chloroethane		480 a	550	25	ug/kg	J	
67-66-3	Chloroform		ND	7.0	0.12	ug/kg		
74-87-3	Chloromethan	e	ND	7.0	0.26	ug/kg		
124-48-1	Dibromochlor	omethane	ND	7.0	0.23	ug/kg		
75-34-3	1,1-Dichloroet	thane	3950 a		15	ug/kg		
107-06-2	1,2-Dichloroet		14.2	1.4	0.19	ug/kg		
75-35-4	1,1-Dichloroet		41.7	7.0	0.36	ug/kg		
156-59-2	cis-1,2-Dichlo	roethene	0.77	7.0	0.26	ug/kg	J	
156-60-5	trans-1,2-Dich	loroethene	0.47	7.0	0.33	ug/kg	J	
540-59-0	1,2-Dichloroet	thene (total)	1.2	7.0	0.26	ug/kg	J	
78-87-5	1,2-Dichlorop		ND	7.0	0.22	ug/kg		
10061-01-5	cis-1,3-Dichlo	ropropene	ND	7.0	0.19	ug/kg		
10061-02-6	trans-1,3-Dich		ND	7.0	0.22	ug/kg		
100-41-4	Ethylbenzene	- *	ND	1.4	0.37	ug/kg		
591-78-6	2-Hexanone		ND	7.0	0.87	ug/kg		
1634-04-4	Methyl Tert B	utyl Ether	ND	1.4	0.33	ug/kg		
108-10-1	4-Methyl-2-pe	ntanone(MIBK) ND	7.0	1.1	ug/kg		
75-09-2	Methylene chl	oride	2.8	7.0	1.8	ug/kg	J	
100-42-5	Styrene		ND	7.0	0.13	ug/kg		
79-34-5	1,1,2,2-Tetrac		ND	7.0	0.18	ug/kg		
127-18-4	Tetrachloroeth	nene	ND	7.0	0.24	ug/kg		
100 00 2	TT 1			1 4	0.15	/1		

ND = Not detected MDL - Method Detection Limit

1,1,1-Trichloroethane

5.7

2130 a

1.4

550

0.15

12

RL = Reporting Limit

108-88-3

71-55-6

Toluene

ug/kg

ug/kg

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	1.2 (13-13.5)		
Lab Sample ID:	JB32749-7	Date Sampled:	03/27/13
Matrix:	SO - Soil	Date Received:	03/29/13
Method:	SW846 8260B SW846 5035	Percent Solids:	87.2
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		
Ū			

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1, 1, 2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	0.84 0.89 10.9 ND	7.0 7.0 7.0 1.4	0.24 0.24 0.20 0.19	ug/kg ug/kg ug/kg ug/kg	1 1
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	Limits	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	101% 88% 109% 102%	83% 91% 91% 99%	70-1 70-1 81-1 66-1	22% 27%	

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

			1	Mary 515				1 age 1 01 2
Client Sam Lab Sample Matrix: Method: Project:	e ID: JB32749-8 SO - Soil SW846 8260F	3 SW846 5035 Walsh Avenue,		sor, NY	Date	Sampled: Received: ent Solids:		27/13 29/13
	File ID DF	Analyz	ed By	Prep 1	Date	Prep Batc	ch	Analytical Batch
Run #1	C180746.D 1	04/05/1	-	-	13 12:00	n/a		VC6486
Run #2	E201896.D 1	04/09/1	3 OTR	03/29/	13 12:00	n/a		VE8876
	U U	al Volume	Methano	l Aliquot				
Run #1	4.3 g		100 1					
Run #2	2.2 g 5.0	ml	100 ul					
VOA TCL	List							
CAS No.	Compound	Resu	ılt RL	MDL	Units	Q		
67-64-1	Acetone	30.1	15	2.5	ug/kg			
71-43-2	Benzene	ND	1.5	0.17	ug/kg			
75-27-4	Bromodichlorometha		7.3	0.15	ug/kg			
75-25-2	Bromoform	ND	7.3	0.22	ug/kg			
74-83-9	Bromomethane	ND	7.3	0.40	ug/kg			
78-93-3	2-Butanone (MEK)	21.8		3.5	ug/kg			
75-15-0	Carbon disulfide	1.5	7.3	0.17	ug/kg	J		
56-23-5	Carbon tetrachloride	ND	7.3	0.19	ug/kg	U U		
108-90-7	Chlorobenzene	ND	7.3	0.16	ug/kg			
75-00-3	Chloroethane	659		35	ug/kg	J		
67-66-3	Chloroform	ND	7.3	0.12	ug/kg			
74-87-3	Chloromethane	ND	7.3	0.27	ug/kg			
124-48-1	Dibromochlorometha		7.3	0.24	ug/kg			
75-34-3	1,1-Dichloroethane	6220		21	ug/kg			
107-06-2	1,2-Dichloroethane	11.9		0.20	ug/kg			
75-35-4	1,1-Dichloroethene	85.3		0.37	ug/kg			
156-59-2	cis-1,2-Dichloroether		7.3	0.27	ug/kg	J		
156-60-5	trans-1,2-Dichloroeth		7.3	0.35	ug/kg			
540-59-0	1,2-Dichloroethene (t			0.27	ug/kg	J		
78-87-5	1,2-Dichloropropane	ND	7.3	0.22	ug/kg			
10061-01-5		ene ND	7.3	0.20	ug/kg			
10061-02-6	trans-1,3-Dichloropro		7.3	0.23	ug/kg			
100-41-4	Ethylbenzene	0.80	1.5	0.38	ug/kg	J		
591-78-6	2-Hexanone	ND	7.3	0.90	ug/kg			
1634-04-4	Methyl Tert Butyl Et		1.5	0.34	ug/kg			
108-10-1	4-Methyl-2-pentanon		7.3	1.1	ug/kg			
75-09-2	Methylene chloride	5.2	7.3	1.8	ug/kg	J		
100-42-5	Styrene	ND	7.3	0.13	ug/kg			
79-34-5	1,1,2,2-Tetrachloroe	thane ND	7.3	0.19	ug/kg			
127-18-4	Tetrachloroethene	ND	7.3	0.25	ug/kg			
108-88-3	Toluene	2.3	1.5	0.15	ug/kg			
71-55-6	1,1,1-Trichloroethan	e 1560) ^a 770	16	ug/kg			

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Client Sample ID:	1.2 (11-11.5)		
Lab Sample ID:	JB32749-8	Date Sampled:	03/27/13
Matrix:	SO - Soil	Date Received:	03/29/13
Method:	SW846 8260B SW846 5035	Percent Solids:	80.1
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		
-			

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5	1,1,2-Trichloroethane	0.57	7.3	0.25	ug/kg	J
79-01-6	Trichloroethene	1.6	7.3	0.25	ug/kg	J
75-01-4	Vinyl chloride	7.9	7.3	0.21	ug/kg	
1330-20-7	Xylene (total)	0.65	1.5	0.20	ug/kg	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1868-53-7	Dibromofluoromethane	100%	82%	70-1	30%	
17060-07-0	1,2-Dichloroethane-D4	88%	93%	70-1	22%	
2037-26-5	Toluene-D8	109%	92%	81-1	27%	
460-00-4	4-Bromofluorobenzene	102%	98%	66-1	32%	

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

4

Page 2 of 2

				Rep	ort of A	nalysis		Page 1 of 2	
Client Sa Lab Samj Matrix: Method: Project:	1	JB3274 SO - So SW846	2 (14-14.5) 332749-9 O - Soil W846 8260B SW846 5035 FFCO, 361 Walsh Avenue, New Windse			Date Perc	Received: (
Run #1 Run #2	File ID E20187	2.D	DF 1	Analyzed 04/09/13	By OTR	Prep Date 03/29/13 12:00	Prep Batch n/a	Analytical Batch VE8875	
Run #1	Initial V 5.4 g	Weight	Final V 5.0 ml	olume	Methanol A 25.0 ul	Aliquot			

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	2100	350	ug/kg	
71-43-2	Benzene	ND	210	25	ug/kg	
75-27-4	Bromodichloromethane	ND	1000	22	ug/kg	
75-25-2	Bromoform	ND	1000	31	ug/kg	
74-83-9	Bromomethane	ND	1000	56	ug/kg	
78-93-3	2-Butanone (MEK)	ND	2100	490	ug/kg	
75-15-0	Carbon disulfide	ND	1000	24	ug/kg	
56-23-5	Carbon tetrachloride	ND	1000	27	ug/kg	
108-90-7	Chlorobenzene	ND	1000	22	ug/kg	
75-00-3	Chloroethane	2960	1000	47	ug/kg	
67-66-3	Chloroform	ND	1000	17	ug/kg	
74-87-3	Chloromethane	ND	1000	38	ug/kg	
124-48-1	Dibromochloromethane	ND	1000	34	ug/kg	
75-34-3	1,1-Dichloroethane	34000	1000	28	ug/kg	
107-06-2	1,2-Dichloroethane	786	210	28	ug/kg	
75-35-4	1,1-Dichloroethene	1620	1000	53	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	1000	38	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	1000	49	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	1000	38	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1000	32	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1000	29	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1000	32	ug/kg	
100-41-4	Ethylbenzene	ND	210	54	ug/kg	
591-78-6	2-Hexanone	ND	1000	130	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	210	48	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	1000	150	ug/kg	
75-09-2	Methylene chloride	ND	1000	260	ug/kg	
100-42-5	Styrene	ND	1000	19	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1000	27	ug/kg	
127-18-4	Tetrachloroethene	ND	1000	35	ug/kg	
108-88-3	Toluene	184	210	22	ug/kg	J
71-55-6	1,1,1-Trichloroethane	4690	1000	22	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: 1.2 (14-14.5) Lab Sample ID: JB32749-9 Matrix: SO - Soil Method: SW846 8260B SW846 8260B SW846 5035 Project: AFFCO, 361 Walsh Avenue, New Windsor, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	01-6Trichloroethene01-4Vinyl chloride		1000 1000 1000 210	36 36 30 29	ug/kg ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
CAS No. 1868-53-7 17060-07-0 2037-26-5	Surrogate Recoveries Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	Run# 1 86% 94% 91%	Run# 2	Lim 70-1 70-1 81-1	30% 22%	

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client Sample ID: 2.1 (12.5-13) Lab Sample ID: JB32749-10 Matrix: SO - Soil Method: SW846 8260B SW846 8260B SW846 5035 Project: AFFCO, 361 Walsh Avenue, New Windsor, NY						03/29/13	
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	E201758.D	1	04/05/13	OTR	03/29/13 12:00	n/a	VE8870
Run #2	E201873.D	1	04/09/13	OTR	03/29/13 12:00	n/a	VE8875
	Initial Weight	Final Vo	l Volume Methanol A		Aliquot		
Run #1	4.2 g	5.0 ml		100 ul			
Run #2	4.2 g	5.0 ml		10.0 ul			

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	770	130	ug/kg	
71-43-2	Benzene	ND	77	9.1	ug/kg	
75-27-4	Bromodichloromethane	ND	380	8.1	ug/kg	
75-25-2	Bromoform	ND	380	12	ug/kg	
74-83-9	Bromomethane	ND	380	21	ug/kg	
78-93-3	2-Butanone (MEK)	893	770	180	ug/kg	
75-15-0	Carbon disulfide	48.1	380	9.0	ug/kg	J
56-23-5	Carbon tetrachloride	ND	380	10	ug/kg	
108-90-7	Chlorobenzene	ND	380	8.3	ug/kg	
75-00-3	Chloroethane	3530	380	17	ug/kg	
67-66-3	Chloroform	ND	380	6.3	ug/kg	
74-87-3	Chloromethane	ND	380	14	ug/kg	
124-48-1	Dibromochloromethane	ND	380	13	ug/kg	
75-34-3	1,1-Dichloroethane	34900 a	3800	110	ug/kg	
107-06-2	1,2-Dichloroethane	1590	77	10	ug/kg	
75-35-4	1,1-Dichloroethene	2150	380	20	ug/kg	
156-59-2	cis-1,2-Dichloroethene	374	380	14	ug/kg	J
156-60-5	trans-1,2-Dichloroethene	294	380	18	ug/kg	J
540-59-0	1,2-Dichloroethene (total)	668	380	14	ug/kg	
78-87-5	1,2-Dichloropropane	ND	380	12	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	380	11	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	380	12	ug/kg	
100-41-4	Ethylbenzene	ND	77	20	ug/kg	
591-78-6	2-Hexanone	ND	380	48	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	77	18	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	380	58	ug/kg	
75-09-2	Methylene chloride	ND	380	97	ug/kg	
100-42-5	Styrene	ND	380	7.0	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	380	10	ug/kg	
127-18-4	Tetrachloroethene	288	380	13	ug/kg	J
108-88-3	Toluene	2280	77	8.1	ug/kg	
71-55-6	1,1,1-Trichloroethane	42300 ^a	3800	81	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: 2.1 (12.5-13) Lab Sample ID: JB32749-10 Matrix: SO - Soil Method: SW846 8260B SW846 8260B SW846 5035 Project: AFFCO, 361 Walsh Avenue, New Windsor, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	39.1 1180 ND 83.5	380 380 380 77	13 13 11 11	ug/kg ug/kg ug/kg ug/kg	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
CAS No. 1868-53-7 17060-07-0 2037-26-5	Surrogate Recoveries Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	Run# 1 81% 87% 89%	Run# 2 86% 93% 91%	Limi 70-1 70-1 81-1	30% 22%	

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

JB32749

			-		•				ruge rorz
Client Sam Lab Sample Matrix: Method: Project:	SO - S SW846	49-11		w Windson	r, NY	Date	Sampled: Received: ent Solids:	03/2 03/2 81.7	
	File ID	DF	Analyzed	By	Prep D	ate	Prep Batc	h /	Analytical Batch
Run #1	C180747.D		04/05/13	TYG	-	3 12:00	n/a		VC6486
Run #2	E201897.D	1	04/09/13	OTR	03/29/1	3 12:00	n/a		VE8876
	Initial Weight	Final Volu	me M	lethanol A	Aliquot				
Run #1	3.7 g								
Run #2	2.4 g	5.0 ml	10	00 ul					
VOA TCL	List								
CAS No.	Compound		Result	RL	MDL	Units	Q		
67-64-1	Acetone		62.4	17	2.8	ug/kg			
71-43-2	Benzene		0.66	1.7	0.20	ug/kg	J		
75-27-4	Bromodichlor	omethane	ND	8.3	0.17	ug/kg	C C		
75-25-2	Bromoform		ND	8.3	0.25	ug/kg			
74-83-9	Bromomethan	e	ND	8.3	0.45	ug/kg			
78-93-3	2-Butanone (N		47.9	17	4.0	ug/kg			
75-15-0	Carbon disulfi	,	3.4	8.3	0.19	ug/kg	J		
56-23-5	Carbon tetracl		ND	8.3	0.22	ug/kg			
108-90-7	Chlorobenzen		ND	8.3	0.18	ug/kg			
75-00-3	Chloroethane		5230 ^a	690	31	ug/kg			
67-66-3	Chloroform		ND	8.3	0.14	ug/kg			
74-87-3	Chloromethan	e	ND	8.3	0.31	ug/kg			
124-48-1	Dibromochlor	omethane	ND	8.3	0.27	ug/kg			
75-34-3	1,1-Dichloroe	thane	11100 a	690	19	ug/kg			
107-06-2	1,2-Dichloroe	thane	27.7	1.7	0.22	ug/kg			
75-35-4	1,1-Dichloroe	thene	70.5	8.3	0.43	ug/kg			
156-59-2	cis-1,2-Dichlo	oroethene	10.1	8.3	0.30	ug/kg			
156-60-5	trans-1,2-Dich	nloroethene	6.1	8.3	0.39	ug/kg	J		
540-59-0	1,2-Dichloroe	thene (total)	16.1	8.3	0.30	ug/kg			
78-87-5	1,2-Dichlorop		ND	8.3	0.25	ug/kg			
10061-01-5	cis-1,3-Dichlo	oropropene	ND	8.3	0.23	ug/kg			
10061-02-6	trans-1,3-Dich	nloropropene	ND	8.3	0.26	ug/kg			
100-41-4	Ethylbenzene		ND	1.7	0.44	ug/kg			
591-78-6	2-Hexanone		ND	8.3	1.0	ug/kg			
1634-04-4	Methyl Tert B		ND	1.7	0.39	ug/kg			
108-10-1		entanone(MIBk		8.3	1.2	ug/kg			
75-09-2	Methylene chl	oride	4.5	8.3	2.1	ug/kg	J		
100-42-5	Styrene		ND	8.3	0.15	ug/kg			
79-34-5	1,1,2,2-Tetrac		ND	8.3	0.22	ug/kg	.		
127-18-4	Tetrachloroeth	nene	2.3	8.3	0.28	ug/kg	J		
108-88-3	Toluene	.1	5.6	1.7	0.17	ug/kg			
71-55-6	1,1,1-Trichlor	roethane	179	8.3	0.18	ug/kg			

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Client Sample ID: 2.1 (11.5-12) Lab Sample ID: JB32749-11 Matrix: SO - Soil Method: SW846 8260B SW846 8260B SW846 5035 Project: AFFCO, 361 Walsh Avenue, New Windsor, NY

VOA TCL List

Compound	Result	RL	MDL	Units	Q	
1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	3.0 19.5 12.9 ND	8.3 8.3 8.3 1.7	0.29 0.29 0.24 0.23	ug/kg ug/kg ug/kg ug/kg	J	
Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	99% 85% 108%	86% 94% 91%	70-1	22%		
	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total) Surrogate Recoveries Dibromofluoromethane 1,2-Dichloroethane-D4	1,1,2-Trichloroethane3.0Trichloroethene19.5Vinyl chloride12.9Xylene (total)NDSurrogate RecoveriesRun# 1Dibromofluoromethane99%1,2-Dichloroethane-D485%	1,1,2-Trichloroethane3.08.3Trichloroethane19.58.3Vinyl chloride12.98.3Xylene (total)ND1.7Surrogate RecoveriesRun# 1Run# 2Dibromofluoromethane99%86%1,2-Dichloroethane-D485%94%	1,1,2-Trichloroethane 3.0 8.3 0.29 Trichloroethane 19.5 8.3 0.29 Vinyl chloride 12.9 8.3 0.24 Xylene (total) ND 1.7 0.23 Surrogate Recoveries Run#1 Run#2 Lim Dibromofluoromethane 99% 86% 70-1 1,2-Dichloroethane-D4 85% 94% 70-1	1,1,2-Trichloroethane 3.0 8.3 0.29 ug/kg Trichloroethane 19.5 8.3 0.29 ug/kg Vinyl chloride 12.9 8.3 0.24 ug/kg Xylene (total) ND 1.7 0.23 ug/kg Surrogate Recoveries Run#1 Run#2 Limits Dibromofluoromethane 99% 86% 70-130% 1,2-Dichloroethane-D4 85% 94% 70-122%	1,1,2-Trichloroethane 3.0 8.3 0.29 ug/kg J Trichloroethane 19.5 8.3 0.29 ug/kg J Vinyl chloride 12.9 8.3 0.24 ug/kg J Xylene (total) ND 1.7 0.23 ug/kg Surrogate Recoveries Run#1 Run#2 Limits Dibromofluoromethane 99% 86% 70-130% 1,2-Dichloroethane-D4 85% 94% 70-122%

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

			- T -		J				1 age 1 01 2
Client Sam Lab Sampl Matrix: Method: Project:	e ID: JB3274 SO - So SW846	9-12		ew Windsor	, NY	Date	Sampled: Received: ent Solids:		/27/13 /29/13 .9
	File ID	DF	Analyzed	By	Prep D	ate	Prep Bate	ch	Analytical Batch
Run #1	C180793.D		04/07/13	TYG	-	3 12:00	n/a		VC6488
Run #2	E201898.D	1	04/09/13	OTR	03/29/1	3 12:00	n/a		VE8876
	Initial Weight	Final Volu	ne	Methanol A	liquot				
Run #1	3.1 g								
Run #2	3.8 g	5.0 ml		100 ul					
VOA TCL	List								
CAS No.	Compound		Result	RL	MDL	Units	Q		
67-64-1	Acetone		22.6	19	3.2	ug/kg			
71-43-2	Benzene		ND	1.9	0.23	ug/kg			
75-27-4	Bromodichloro	omethane	ND	9.5	0.20	ug/kg			
75-25-2	Bromoform		ND	9.5	0.29	ug/kg			
74-83-9	Bromomethane	<u>,</u>	ND	9.5	0.52	ug/kg			
78-93-3	2-Butanone (M		ND	19	4.5	ug/kg			
75-15-0	Carbon disulfi	,	1.9	9.5	0.22	ug/kg	J		
56-23-5	Carbon tetrach		ND	9.5	0.25	ug/kg	·		
108-90-7	Chlorobenzene		ND	9.5	0.21	ug/kg			
75-00-3	Chloroethane		14.5	9.5	0.43	ug/kg			
67-66-3	Chloroform		5.6	9.5	0.16	ug/kg	J		
74-87-3	Chloromethane	e	ND	9.5	0.35	ug/kg	-		
124-48-1	Dibromochloro		ND	9.5	0.31	ug/kg			
75-34-3	1,1-Dichloroet		121	9.5	0.26	ug/kg			
107-06-2	1,2-Dichloroet		20.7	1.9	0.26	ug/kg			
75-35-4	1,1-Dichloroet		42.7	9.5	0.49	ug/kg			
156-59-2	cis-1,2-Dichlor		7.9	9.5	0.35	ug/kg	J		
156-60-5	trans-1,2-Dich		6.5	9.5	0.45	ug/kg	J		
540-59-0	1,2-Dichloroet		14.3	9.5	0.35	ug/kg			
78-87-5	1,2-Dichloropi	. ,	ND	9.5	0.29	ug/kg			
10061-01-5	cis-1,3-Dichlor		ND	9.5	0.26	ug/kg			
10061-02-6		· ·	ND	9.5	0.29	ug/kg			
100-41-4	Ethylbenzene		2.0	1.9	0.50	ug/kg			
591-78-6	2-Hexanone		ND	9.5	1.2	ug/kg			
1634-04-4	Methyl Tert B	utyl Ether	ND	1.9	0.45	ug/kg			
108-10-1	4-Methyl-2-per	•		9.5	1.4	ug/kg			
75-09-2	Methylene chlo		6.5	9.5	2.4	ug/kg	J		
100-42-5	Styrene		ND	9.5	0.17	ug/kg			
79-34-5	1,1,2,2-Tetrac	hloroethane	ND	9.5	0.25	ug/kg			
127-18-4	Tetrachloroeth		2.3	9.5	0.33	ug/kg	J		
108-88-3	Toluene		4.6	1.9	0.20	ug/kg			
71-55-6	1,1,1-Trichlor	oethane	12600 a	430	9.2	ug/kg			

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Client Sample ID:	2.1 (10-10.5)		
Lab Sample ID:	JB32749-12	Date Sampled:	03/27/13
Matrix:	SO - Soil	Date Received:	03/29/13
Method:	SW846 8260B SW846 5035	Percent Solids:	84.9
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	3.0 32.1 ND 8.4	9.5 9.5 9.5 1.9	0.33 0.33 0.27 0.26	ug/kg ug/kg ug/kg ug/kg	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	101% 89% 110%	84% 94% 92%	% 70-12		
460-00-4	4-Bromofluorobenzene	105%	98%	66-13	32%	

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- $N= \ Indicates \ presumptive \ evidence \ of \ a \ compound$

Page 2 of 2

Client San Lab Samj Matrix: Method: Project:	ple ID: JB32744 SO - So SW846	9-13 il 8260B S	W846 5035 sh Avenue, N	Jew Windso	Date Perc	Sampled: 0 Received: 0 ent Solids: 8	
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	E201759.D	1	04/05/13	OTR	03/29/13 12:00	n/a	VE8870
Run #2	E201874.D	1	04/09/13	OTR	03/29/13 12:00	n/a	VE8875
	Initial Weight	Initial Weight Final Volume Methano		Methanol	Aliquot		
Run #1	4.2 g	5.0 ml		100 ul			
Run #2	4.2 g	5.0 ml		10.0 ul			

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	850	140	ug/kg	
71-43-2	Benzene	ND	85	10	ug/kg	
75-27-4	Bromodichloromethane	ND	430	8.9	ug/kg	
75-25-2	Bromoform	ND	430	13	ug/kg	
74-83-9	Bromomethane	ND	430	23	ug/kg	
78-93-3	2-Butanone (MEK)	ND	850	200	ug/kg	
75-15-0	Carbon disulfide	ND	430	10	ug/kg	
56-23-5	Carbon tetrachloride	ND	430	11	ug/kg	
108-90-7	Chlorobenzene	ND	430	9.2	ug/kg	
75-00-3	Chloroethane	ND	430	19	ug/kg	
67-66-3	Chloroform	ND	430	7.0	ug/kg	
74-87-3	Chloromethane	ND	430	16	ug/kg	
124-48-1	Dibromochloromethane	ND	430	14	ug/kg	
75-34-3	1,1-Dichloroethane	3660	430	12	ug/kg	
107-06-2	1,2-Dichloroethane	179	85	11	ug/kg	
75-35-4	1,1-Dichloroethene	2310	430	22	ug/kg	
156-59-2	cis-1,2-Dichloroethene	31.6	430	16	ug/kg	J
156-60-5	trans-1,2-Dichloroethene	ND	430	20	ug/kg	
540-59-0	1,2-Dichloroethene (total)	31.6	430	16	ug/kg	J
78-87-5	1,2-Dichloropropane	ND	430	13	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	430	12	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	430	13	ug/kg	
100-41-4	Ethylbenzene	ND	85	22	ug/kg	
591-78-6	2-Hexanone	ND	430	53	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	85	20	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	430	64	ug/kg	
75-09-2	Methylene chloride	ND	430	110	ug/kg	
100-42-5	Styrene	ND	430	7.8	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	430	11	ug/kg	
127-18-4	Tetrachloroethene	58.5	430	15	ug/kg	J
108-88-3	Toluene	284	85	8.9	ug/kg	
71-55-6	1,1,1-Trichloroethane	70700 ^a	4300	90	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	2.2 (12.5-13)		
Lab Sample ID:	JB32749-13	Date Sampled:	03/27/13
Matrix:	SO - Soil	Date Received:	03/29/13
Method:	SW846 8260B SW846 5035	Percent Solids:	81.1
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		
5			

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND 337 ND ND	430 430 430 85	15 15 12 12	ug/kg ug/kg ug/kg ug/kg	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1868-53-7 17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	83% 83% 91%	85% 93% 93%	70-1 70-1 81-1	22%	
460-00-4	4-Bromofluorobenzene	92%	98%	66-1	32%	

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

			1		J		e
Client Sa	mple ID: 2.2 (11-	-11.5)					
Lab Sam	ple ID: JB3274	9-14			Date	Sampled:	03/27/13
Matrix:	SO - So	oil			Date	Received:	03/29/13
Method:	SW846	8260B S	W846 5035		Perc	ent Solids:	82.6
Project:	AFFCC), 361 Wal	lsh Avenue, N	lew Windsor	r, NY		
	File ID	DF	Analyzed	By	Prep Date	Prep Batcl	h Analytical Batch
Run #1 Run #2	E201871.D	1	04/09/13	OTR	03/29/13 12:00	n/a	VE8875
	Initial Weight	Final Volume		Methanol Aliquot			
Run #1 Run #2	3.0 g	5.0 ml		5.0 ul			

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	22000	3800	ug/kg	
71-43-2	Benzene	ND	2200	270	ug/kg	
75-27-4	Bromodichloromethane	ND	11000	230	ug/kg	
75-25-2	Bromoform	ND	11000	340	ug/kg	
74-83-9	Bromomethane	ND	11000	610	ug/kg	
78-93-3	2-Butanone (MEK)	ND	22000	5300	ug/kg	
75-15-0	Carbon disulfide	ND	11000	260	ug/kg	
56-23-5	Carbon tetrachloride	ND	11000	300	ug/kg	
108-90-7	Chlorobenzene	ND	11000	240	ug/kg	
75-00-3	Chloroethane	ND	11000	510	ug/kg	
67-66-3	Chloroform	ND	11000	180	ug/kg	
74-87-3	Chloromethane	ND	11000	410	ug/kg	
124-48-1	Dibromochloromethane	ND	11000	370	ug/kg	
75-34-3	1,1-Dichloroethane	6040	11000	310	ug/kg	J
107-06-2	1,2-Dichloroethane	ND	2200	300	ug/kg	
75-35-4	1,1-Dichloroethene	14000	11000	570	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	11000	410	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	11000	530	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	11000	410	ug/kg	
78-87-5	1,2-Dichloropropane	ND	11000	340	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	11000	310	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	11000	350	ug/kg	
100-41-4	Ethylbenzene	ND	2200	590	ug/kg	
591-78-6	2-Hexanone	ND	11000	1400	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	2200	520	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	11000	1700	ug/kg	
75-09-2	Methylene chloride	ND	11000	2800	ug/kg	
100-42-5	Styrene	ND	11000	200	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	11000	290	ug/kg	
127-18-4	Tetrachloroethene	ND	11000	380	ug/kg	
108-88-3	Toluene	1600	2200	230	ug/kg	J
71-55-6	1,1,1-Trichloroethane	398000	11000	240	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: 2.2 (11-11.5) Lab Sample ID: JB32749-14 Matrix: SO - Soil Method: SW846 8260B SW846 8260B SW846 5035 Project: AFFCO, 361 Walsh Avenue, New Windsor, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND 2040 ND ND	11000 11000 11000 2200	390 390 320 310	ug/kg ug/kg ug/kg ug/kg	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	85%		70-13	200%	
17060-07-0 2037-26-5	1,2-Dichloroethane-D4 Toluene-D8	93% 91%		70-12	22%	

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

JB32749 44 of 80 ACCUTEST.

	Report of Analysis Page									
Client Sam Lab Sample Matrix: Method: Project:	e ID: JB32' SO - SW84	14-14.5) 749-15 Soil 46 8260B SW8 CO, 361 Walsh		ew Windsor,	, NY	Date	Received: 03	3/27/13 3/29/13 3.0		
	File ID	DF	Analyzed	By	Prep D	ate	Prep Batch	Analytical Batch		
Run #1	C180794.D		04/07/13	TYG		3 12:00	n/a	VC6488		
Run #2	E201899.D	1	04/09/13	OTR	03/29/1	3 12:00	n/a	VE8876		
	Initial Weigh	t Final Volu	me	Methanol A	liquot					
Run #1	6.6 g									
Run #2	5.8 g	5.0 ml		20.0 ul						
VOA TCL	List									
CAS No.	Compound		Result	RL	MDL	Units	Q			
67-64-1	Acetone		82.2	8.1	1.4	ug/kg				
71-43-2	Benzene		ND	0.81	0.097	ug/kg				
75-27-4	Bromodichlo	promethane	ND	4.1	0.086	ug/kg				
75-25-2	Bromoform		ND	4.1	0.12	ug/kg				
74-83-9	Bromometha	ine	ND	4.1	0.22	ug/kg				
78-93-3	2-Butanone (129	8.1	1.9	ug/kg				
75-15-0	Carbon disul		1.9	4.1	0.095	ug/kg	J			
56-23-5	Carbon tetra		ND	4.1	0.11	ug/kg				
108-90-7	Chlorobenze		ND	4.1	0.088	ug/kg				
75-00-3	Chloroethand		46.2	4.1	0.18	ug/kg				
67-66-3	Chloroform		ND	4.1	0.067	ug/kg				
74-87-3	Chlorometha	ine	ND	4.1	0.15	ug/kg				
124-48-1	Dibromochlo	oromethane	ND	4.1	0.13	ug/kg				
75-34-3	1,1-Dichloro	bethane	12100 a	¹ 1300	34	ug/kg				
107-06-2	1,2-Dichloro	bethane	34.0	0.81	0.11	ug/kg				
75-35-4	1,1-Dichloro	bethene	72.4	4.1	0.21	ug/kg				
156-59-2	cis-1,2-Dich	loroethene	3.7	4.1	0.15	ug/kg	J			
156-60-5	trans-1,2-Die	chloroethene	0.86	4.1	0.19	ug/kg	J			
540-59-0	,	ethene (total)	4.6	4.1	0.15	ug/kg				
78-87-5	1,2-Dichloro		ND	4.1	0.13	ug/kg				
10061-01-5	cis-1,3-Dich		ND	4.1	0.11	ug/kg				
10061-02-6		chloropropene	ND	4.1	0.13	ug/kg				
100-41-4	Ethylbenzen	e	ND	0.81	0.21	ug/kg				
591-78-6	2-Hexanone		ND	4.1	0.51	ug/kg				
1634-04-4	Methyl Tert		ND	0.81	0.19	ug/kg				
108-10-1		pentanone(MIBk		4.1	0.61	ug/kg	T			
75-09-2	Methylene cl	hloride	2.8	4.1	1.0	ug/kg	J			
100-42-5	Styrene	a ablance the sur-	ND	4.1	0.075	ug/kg				
79-34-5		achloroethane	ND	4.1	0.11	ug/kg				
127-18-4	Tetrachloroe Toluene	suielle	ND 1.4	4.1	0.14	ug/kg				
108-88-3 71-55-6	1,1,1-Trichle	oroethere	1.4 617 ^a	0.81	0.086 27	ug/kg	T			
11-33-0	1, 1, 1-1110110	oroeutaile	01/ -	1300	<i>∠1</i>	ug/kg	J			

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

45 of 80 ACCUTEST JB32749

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	2 2 (14-14 5)		
Lab Sample ID:	JB32749-15	Date Sampled:	03/27/13
Matrix:	SO - Soil	Date Received:	03/29/13
Method:	SW846 8260B SW846 5035	Percent Solids:	93.0
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

Compound	Result	RL	MDL	Units	Q
1, 1, 2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	1.6 0.39 3.4 ND	4.1 4.1 4.1 0.81	0.14 0.14 0.12 0.11	ug/kg ug/kg ug/kg ug/kg	1 1 1
Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	102% 91% 109%	83% 89% 92%	70-1	22%	
	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total) Surrogate Recoveries Dibromofluoromethane 1,2-Dichloroethane-D4	1,1,2-Trichloroethane1.6Trichloroethene0.39Vinyl chloride3.4Xylene (total)NDSurrogate RecoveriesRun# 1Dibromofluoromethane102%1,2-Dichloroethane-D491%	1,1,2-Trichloroethane1.64.1Trichloroethane0.394.1Vinyl chloride3.44.1Xylene (total)ND0.81Surrogate RecoveriesRun# 1Run# 2Dibromofluoromethane102%83%1,2-Dichloroethane-D491%89%	1,1,2-Trichloroethane 1.6 4.1 0.14 Trichloroethene 0.39 4.1 0.14 Vinyl chloride 3.4 4.1 0.12 Xylene (total) ND 0.81 0.11 Surrogate Recoveries Run#1 Run#2 Limit Dibromofluoromethane 102% 83% 70-1 1,2-Dichloroethane-D4 91% 89% 70-1	1,1,2-Trichloroethane 1.6 4.1 0.14 ug/kg Trichloroethane 0.39 4.1 0.14 ug/kg Vinyl chloride 3.4 4.1 0.12 ug/kg Xylene (total) ND 0.81 0.11 ug/kg Surrogate Recoveries Run#1 Run#2 Limits Dibromofluoromethane 102% 83% 70-130% 1,2-Dichloroethane-D4 91% 89% 70-122%

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

			- 1		J		6
Client Sar	nple ID: 3 (13.5	-14)					
Lab Samp	le ID: JB3274	9-16			Date	Sampled:	03/27/13
Matrix:	SO - So	oil			Date	Received:	03/29/13
Method:	SW846	8260B	SW846 5035		Perc	ent Solids:	79.3
Project:	AFFCO	D, 361 Wa	alsh Avenue, N	lew Windso	r, NY		
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 ^a Run #2	E201773.D	1	04/06/13	OTR	03/29/13 12:00	n/a	VE8871
	Initial Weight		olume	Methanol	Aliquot		
Run #1	3.2 g	5.0 ml		100 ul			

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	1100	190	ug/kg	
71-43-2	Benzene	ND	110	13	ug/kg	
75-27-4	Bromodichloromethane	ND	560	12	ug/kg	
75-25-2	Bromoform	ND	560	17	ug/kg	
74-83-9	Bromomethane	ND	560	30	ug/kg	
78-93-3	2-Butanone (MEK)	ND	1100	270	ug/kg	
75-15-0	Carbon disulfide	ND	560	13	ug/kg	
56-23-5	Carbon tetrachloride	ND	560	15	ug/kg	
108-90-7	Chlorobenzene	ND	560	12	ug/kg	
75-00-3	Chloroethane	143	560	25	ug/kg	J
67-66-3	Chloroform	ND	560	9.2	ug/kg	
74-87-3	Chloromethane	ND	560	21	ug/kg	
124-48-1	Dibromochloromethane	ND	560	18	ug/kg	
75-34-3	1,1-Dichloroethane	459	560	15	ug/kg	J
107-06-2	1,2-Dichloroethane	ND	110	15	ug/kg	
75-35-4	1,1-Dichloroethene	293	560	29	ug/kg	J
156-59-2	cis-1,2-Dichloroethene	ND	560	20	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	560	27	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	560	20	ug/kg	
78-87-5	1,2-Dichloropropane	ND	560	17	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	560	16	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	560	17	ug/kg	
100-41-4	Ethylbenzene	ND	110	29	ug/kg	
591-78-6	2-Hexanone	ND	560	69	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	110	26	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	560	84	ug/kg	
75-09-2	Methylene chloride	ND	560	140	ug/kg	
100-42-5	Styrene	ND	560	10	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	560	15	ug/kg	
127-18-4	Tetrachloroethene	ND	560	19	ug/kg	
108-88-3	Toluene	36.2	110	12	ug/kg	J
71-55-6	1,1,1-Trichloroethane	1500	560	12	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sam Lab Sample Matrix: Method: Project:	-	JB32749-16 SO - Soil	7846 5035 n Avenue, New	/ Windsor	, NY	Date	Sampled: Received: ent Solids:	03/27/13 03/29/13 79.3		
VOA TCL	VOA TCL List									
CAS No.	Comp	oound	Result	RL	MDL	Units	Q			
79-00-5 79-01-6 75-01-4 1330-20-7	Trichl Vinyl	Trichloroethane oroethene chloride e (total)	ND 175 ND ND	560 560 560 110	19 19 16 16	ug/kg ug/kg ug/kg ug/kg	J			

Run#1

82%

85%

92%

95%

Report of Analysis

Run# 2

Limits

70-130%

70-122%

81-127%

66-132%

(a) Diluted due to high concentration of non-target compound.

Surrogate Recoveries

Dibromofluoromethane

1,2-Dichloroethane-D4

4-Bromofluorobenzene

Toluene-D8

CAS No.

1868-53-7

2037-26-5

460-00-4

17060-07-0

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

48 of 80 ACCUTEST. JB32749

			- 1		J		6
Client Sar	nple ID: 3 (14.5	5-15)					
Lab Samp	ole ID: JB3274	9-17			Date	Sampled:	03/27/13
Matrix:	SO - S	oil			Date	Received:	03/29/13
Method:	SW846	5 8260B	SW846 5035		Perc	ent Solids:	94.7
Project:	AFFC	D, 361 Wa	alsh Avenue, N	lew Windso	r, NY		
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 ^a Run #2	E201929.D	1	04/10/13	OTR	03/29/13 12:00	n/a	VE8878
	Initial Weight		olume	Methanol	Aliquot		
Run #1	3.7 g	5.0 ml		100 ul			

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	740	130	ug/kg	
71-43-2	Benzene	ND	74	8.8	ug/kg	
75-27-4	Bromodichloromethane	ND	370	7.8	ug/kg	
75-25-2	Bromoform	ND	370	11	ug/kg	
74-83-9	Bromomethane	ND	370	20	ug/kg	
78-93-3	2-Butanone (MEK)	ND	740	180	ug/kg	
75-15-0	Carbon disulfide	ND	370	8.7	ug/kg	
56-23-5	Carbon tetrachloride	ND	370	9.9	ug/kg	
108-90-7	Chlorobenzene	ND	370	8.0	ug/kg	
75-00-3	Chloroethane	953	370	17	ug/kg	
67-66-3	Chloroform	ND	370	6.1	ug/kg	
74-87-3	Chloromethane	ND	370	14	ug/kg	
124-48-1	Dibromochloromethane	ND	370	12	ug/kg	
75-34-3	1,1-Dichloroethane	5820	370	10	ug/kg	
107-06-2	1,2-Dichloroethane	165	74	10	ug/kg	
75-35-4	1,1-Dichloroethene	423	370	19	ug/kg	
156-59-2	cis-1,2-Dichloroethene	44.6	370	14	ug/kg	J
156-60-5	trans-1,2-Dichloroethene	81.2	370	18	ug/kg	J
540-59-0	1,2-Dichloroethene (total)	126	370	14	ug/kg	J
78-87-5	1,2-Dichloropropane	ND	370	11	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	370	10	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	370	11	ug/kg	
100-41-4	Ethylbenzene	ND	74	20	ug/kg	
591-78-6	2-Hexanone	ND	370	46	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	74	17	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	370	56	ug/kg	
75-09-2	Methylene chloride	ND	370	94	ug/kg	
100-42-5	Styrene	ND	370	6.8	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	370	9.8	ug/kg	
127-18-4	Tetrachloroethene	ND	370	13	ug/kg	
108-88-3	Toluene	462	74	7.8	ug/kg	
71-55-6	1,1,1-Trichloroethane	2320	370	7.9	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: Lab Sample ID: Matrix: Method: Project:		JB32749-17 SO - Soil	7846 5035 1 Avenue, New	v Windsor	, NY	Date	Sampled: Received: ent Solids:	03/27/13 03/29/13 94.7	
VOA TCL List									
CAS No.	Comp	oound	Result	RL	MDL	Units	Q		
79-00-5 79-01-6 75-01-4 1330-20-7	Trichl Vinyl	Trichloroethane oroethene chloride e (total)	ND 55.3 ND ND	370 370 370 74	13 13 11 10	ug/kg ug/kg ug/kg ug/kg	J		

Run#1

84%

91%

92%

96%

Report of Analysis

Run# 2

Limits

70-130%

70-122%

81-127%

66-132%

(a) Diluted due to high concentration of non-target compound.

Surrogate Recoveries

Dibromofluoromethane

1,2-Dichloroethane-D4

4-Bromofluorobenzene

Toluene-D8

CAS No.

1868-53-7

2037-26-5

460-00-4

17060-07-0

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client San	nple ID: 3 (12.5	-13)					
Lab Samp	ole ID: JB3274	9-18			Date	Sampled:	03/27/13
Matrix:	SO - So	oil			Date	Received:	03/29/13
Method:	SW846	8260B S	SW846 5035		Perc	ent Solids:	85.4
Project:	AFFCO	D, 361 Wa	llsh Avenue, Ne	ew Windson	r, NY		
	File ID	DF	Analyzed	By	Prep Date	Prep Batcl	h Analytical Batch
Run #1 ^a Run #2	File ID E201774.D	DF 1	Analyzed 04/06/13	By OTR	Prep Date 03/29/13 12:00	Prep Batcl n/a	h Analytical Batch VE8871
		DF 1 Final V	04/06/13	e	03/29/13 12:00	-	•

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	1200	200	ug/kg	
71-43-2	Benzene	ND	120	14	ug/kg	
75-27-4	Bromodichloromethane	ND	610	13	ug/kg	
75-25-2	Bromoform	ND	610	18	ug/kg	
74-83-9	Bromomethane	ND	610	33	ug/kg	
78-93-3	2-Butanone (MEK)	ND	1200	290	ug/kg	
75-15-0	Carbon disulfide	ND	610	14	ug/kg	
56-23-5	Carbon tetrachloride	ND	610	16	ug/kg	
108-90-7	Chlorobenzene	ND	610	13	ug/kg	
75-00-3	Chloroethane	94.4	610	27	ug/kg	J
67-66-3	Chloroform	ND	610	10	ug/kg	
74-87-3	Chloromethane	ND	610	23	ug/kg	
124-48-1	Dibromochloromethane	ND	610	20	ug/kg	
75-34-3	1,1-Dichloroethane	410	610	17	ug/kg	J
107-06-2	1,2-Dichloroethane	134	120	16	ug/kg	
75-35-4	1,1-Dichloroethene	659	610	31	ug/kg	
156-59-2	cis-1,2-Dichloroethene	104	610	22	ug/kg	J
156-60-5	trans-1,2-Dichloroethene	108	610	29	ug/kg	J
540-59-0	1,2-Dichloroethene (total)	212	610	22	ug/kg	J
78-87-5	1,2-Dichloropropane	ND	610	19	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	610	17	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	610	19	ug/kg	
100-41-4	Ethylbenzene	ND	120	32	ug/kg	
591-78-6	2-Hexanone	ND	610	75	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	120	28	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	610	91	ug/kg	
75-09-2	Methylene chloride	ND	610	150	ug/kg	
100-42-5	Styrene	ND	610	11	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	610	16	ug/kg	
127-18-4	Tetrachloroethene	ND	610	21	ug/kg	
108-88-3	Toluene	ND	120	13	ug/kg	
71-55-6	1,1,1-Trichloroethane	1270	610	13	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Page 1 of 2

51 of 80

ACCUTEST

JB32749

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: Lab Sample ID: Matrix: Method: Project:		3 (12.5-13) JB32749-18 SO - Soil SW846 8260B SW AFFCO, 361 Walsh	7846 5035 1 Avenue, New	v Windsor	, NY	Date	Sampled: Received: ent Solids:	007 - 277 - 20
VOA TCL	List							
CAS No.	Comp	ound	Result	RL	MDL	Units	Q	
79-00-5 79-01-6 75-01-4 1330-20-7	Trichl Vinyl	Trichloroethane oroethene chloride e (total)	ND 279 ND ND	610 610 610 120	21 21 17 17	ug/kg ug/kg ug/kg ug/kg	J	

Run#1

82%

85%

91%

94%

Report of Analysis

Run# 2

Limits

70-130%

70-122%

81-127%

66-132%

(a) Diluted due to high concentration of non-target compound.

Surrogate Recoveries

Dibromofluoromethane

1,2-Dichloroethane-D4

4-Bromofluorobenzene

Toluene-D8

CAS No.

1868-53-7

17060-07-0

2037-26-5

460-00-4

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

JB32749 52 of 80 ACCUTEST.

			-		v				1 age 1 01 2
Client Sam Lab Sample Matrix: Method: Project:	e ID: JB3274 SO - S SW846	49-19		ew Windsor	, NY	Date	Sampled: Received: ent Solids:		/27/13 /29/13 .6
	File ID	DF	Analyzed	By	Prep D	ate	Prep Bate	h	Analytical Batch
Run #1	C180795.D		04/07/13	TYG	-	3 12:00	n/a		VC6488
Run #2	E201930.D	1	04/10/13	OTR	03/29/1	3 12:00	n/a		VE8878
	Initial Weight	Final Volu	ne]	Methanol A	liquot				
Run #1	6.9 g	5.0 ml		1001					
Run #2	6.1 g	5.0 ml		100 ul					
VOA TCL	List								
CAS No.	Compound		Result	RL	MDL	Units	Q		
67-64-1	Acetone		10.9	8.4	1.4	ug/kg			
71-43-2	Benzene		ND	0.84	0.10	ug/kg			
75-27-4	Bromodichlor	omethane	ND	4.2	0.088	ug/kg			
75-25-2	Bromoform		ND	4.2	0.13	ug/kg			
74-83-9	Bromomethan	e	ND	4.2	0.23	ug/kg			
78-93-3	2-Butanone (N		ND	8.4	2.0	ug/kg			
75-15-0	Carbon disulfi	<i>,</i>	1.1	4.2	0.098	ug/kg	J		
56-23-5	Carbon tetrach		ND	4.2	0.11	ug/kg	5		
108-90-7	Chlorobenzen		ND	4.2	0.090	ug/kg			
75-00-3	Chloroethane	•	3.4	4.2	0.19	ug/kg	J		
67-66-3	Chloroform		ND	4.2	0.069	ug/kg	-		
74-87-3	Chloromethan	e	ND	4.2	0.16	ug/kg			
124-48-1	Dibromochlor		ND	4.2	0.14	ug/kg			
75-34-3	1,1-Dichloroe		2000 a	280	7.5	ug/kg			
107-06-2	1,2-Dichloroe		4.4	0.84	0.11	ug/kg			
75-35-4	1.1-Dichloroe		1650 a	280	14	ug/kg			
156-59-2	cis-1,2-Dichlo	oroethene	2.6	4.2	0.15	ug/kg	J		
156-60-5	trans-1,2-Dich		0.43	4.2	0.20	ug/kg	J		
540-59-0	1,2-Dichloroe		3.0	4.2	0.15	ug/kg	J		
78-87-5	1,2-Dichlorop		ND	4.2	0.13	ug/kg			
10061-01-5	cis-1,3-Dichlo	propropene	ND	4.2	0.12	ug/kg			
10061-02-6	trans-1,3-Dich	· ·	ND	4.2	0.13	ug/kg			
100-41-4	Ethylbenzene		ND	0.84	0.22	ug/kg			
591-78-6	2-Hexanone		ND	4.2	0.52	ug/kg			
1634-04-4	Methyl Tert B	utyl Ether	ND	0.84	0.20	ug/kg			
108-10-1		entanone(MIBK) ND	4.2	0.63	ug/kg			
75-09-2	Methylene chl	oride	4.0	4.2	1.1	ug/kg	J		
100-42-5	Styrene		ND	4.2	0.077	ug/kg			
79-34-5	1,1,2,2-Tetrac		ND	4.2	0.11	ug/kg			
127-18-4	Tetrachloroeth	nene	ND	4.2	0.14	ug/kg			
108-88-3	Toluene		ND	0.84	0.088	ug/kg			
71-55-6	1,1,1-Trichlor	oethane	88.1	4.2	0.089	ug/kg			

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	4 (11-11.5)		
Lab Sample ID:	JB32749-19	Date Sampled:	03/27/13
Matrix:	SO - Soil	Date Received:	03/29/13
Method:	SW846 8260B SW846 5035	Percent Solids:	86.6
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		
5			

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND 0.45 1.8 ND	4.2 4.2 4.2 0.84	0.15 0.15 0.12 0.12	ug/kg ug/kg ug/kg ug/kg	1 1
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	102% 92% 110%	85% 91% 91%	70-1 70-1 81-1	22%	
460-00-4	4-Bromofluorobenzene	102%	98%	66-1		

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Report of Analysis									
Client Sar Lab Sam Matrix: Method: Project:	ple ID: JB3 SO SW3		SW846 5035 Ilsh Avenue, Ne	ew Windso	Date Perc	Sampled: Received: ent Solids:			
Run #1 Run #2	File ID C180796.D	DF 1	Analyzed 04/07/13	By TYG	Prep Date 03/29/13 12:00	Prep Batc n/a	h Analytical Batch VC6488		
Run #1 Run #2	Initial Weig 3.1 g	ht							

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	13.0	19	3.2	ug/kg	J
71-43-2	Benzene	ND	1.9	0.23	ug/kg	
75-27-4	Bromodichloromethane	ND	9.6	0.20	ug/kg	
75-25-2	Bromoform	ND	9.6	0.29	ug/kg	
74-83-9	Bromomethane	ND	9.6	0.52	ug/kg	
78-93-3	2-Butanone (MEK)	ND	19	4.6	ug/kg	
75-15-0	Carbon disulfide	1.3	9.6	0.22	ug/kg	J
56-23-5	Carbon tetrachloride	ND	9.6	0.25	ug/kg	
108-90-7	Chlorobenzene	ND	9.6	0.21	ug/kg	
75-00-3	Chloroethane	ND	9.6	0.43	ug/kg	
67-66-3	Chloroform	0.50	9.6	0.16	ug/kg	J
74-87-3	Chloromethane	ND	9.6	0.36	ug/kg	
124-48-1	Dibromochloromethane	ND	9.6	0.31	ug/kg	
75-34-3	1,1-Dichloroethane	9.6	9.6	0.26	ug/kg	
107-06-2	1,2-Dichloroethane	2.3	1.9	0.26	ug/kg	
75-35-4	1,1-Dichloroethene	31.4	9.6	0.49	ug/kg	
156-59-2	cis-1,2-Dichloroethene	1.0	9.6	0.35	ug/kg	J
156-60-5	trans-1,2-Dichloroethene	0.67	9.6	0.46	ug/kg	J
540-59-0	1,2-Dichloroethene (total)	1.7	9.6	0.35	ug/kg	J
78-87-5	1,2-Dichloropropane	ND	9.6	0.29	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	9.6	0.27	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	9.6	0.30	ug/kg	
100-41-4	Ethylbenzene	ND	1.9	0.50	ug/kg	
591-78-6	2-Hexanone	ND	9.6	1.2	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.9	0.45	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	9.6	1.4	ug/kg	
75-09-2	Methylene chloride	15.1	9.6	2.4	ug/kg	
100-42-5	Styrene	ND	9.6	0.18	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	9.6	0.25	ug/kg	
127-18-4	Tetrachloroethene	0.99	9.6	0.33	ug/kg	J
108-88-3	Toluene	ND	1.9	0.20	ug/kg	
71-55-6	1,1,1-Trichloroethane	89.0	9.6	0.20	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: 4 (10-10.5) Lab Sample ID: JB32749-20 Matrix: SO - Soil Method: SW846 8260B SW846 8260B SW846 5035 Project: AFFCO, 361 Walsh Avenue, New Windsor, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND 3.5 ND ND	9.6 9.6 9.6 1.9	0.33 0.33 0.28 0.27	ug/kg ug/kg ug/kg ug/kg	J
CAGN	~					
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
CAS No. 1868-53-7 17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	Run# 1 101% 92% 110%	Run# 2	Limi 70-13 70-13 81-13	30% 22%	

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Report of Analysis Page 1 of 2									
Client Samj Lab Sample Matrix: Method: Project:	e ID: JB3274 SO - So SW846	9-21		w Windsor	·, NY	Date	Received: 03	3/27/13 3/29/13 5.0	
	File ID		nalyzed	By	Prep D		Prep Batch	Analytical Batch	
Run #1	C180797.D		4/07/13	TYG		3 12:00	n/a	VC6488	
Run #2	E201887.D	1 0	4/09/13	OTR	03/29/1	3 12:00	n/a	VE8876	
Run #1	Initial Weight 4.1 g	Final Volum	ie N	Iethanol A	Aliquot				
Run #2	4.6 g	5.0 ml	1	00 ul					
VOA TCL	- I ist								
CAS No.	Compound		Result	RL	MDL	Units	Q		
(7 (4 1			14 6	12	2.1		-		
67-64-1	Acetone		14.6	13	2.1	ug/kg			
71-43-2 75-27-4	Benzene Bromodichloro	mathana	ND ND	1.3	0.15 0.13	ug/kg			
75-27-4 75-25-2	Bromoform	methane	ND	6.4 6.4	0.13	ug/kg			
73-23-2 74-83-9	Bromomethane		ND	0.4 6.4	0.19	ug/kg ug/kg			
78-93-3	2-Butanone (M		40.1	13	3.0	ug/kg			
75-15-0	Carbon disulfic		40.1 ND	6.4	0.15	ug/kg			
56-23-5	Carbon tetrach		ND	6.4	0.15	ug/kg			
108-90-7	Chlorobenzene		ND	6.4	0.17	ug/kg			
75-00-3	Chloroethane	, ,	1190 a	290	13	ug/kg			
67-66-3	Chloroform		ND	6.4	0.10	ug/kg			
74-87-3	Chloromethane	2	ND	6.4	0.24	ug/kg			
124-48-1	Dibromochloro		ND	6.4	0.21	ug/kg			
75-34-3	1,1-Dichloroet	hane	6470 ^a	290	8.0	ug/kg			
107-06-2	1,2-Dichloroet		ND	1.3	0.17	ug/kg			
75-35-4	1,1-Dichloroet		0.43	6.4	0.33	ug/kg	J		
156-59-2	cis-1,2-Dichlor		ND	6.4	0.23	ug/kg			
156-60-5	trans-1,2-Dich		ND	6.4	0.30	ug/kg			
540-59-0	1,2-Dichloroet	hene (total)	ND	6.4	0.23	ug/kg			
78-87-5	1,2-Dichloropr		ND	6.4	0.20	ug/kg			
10061-01-5	cis-1,3-Dichlor		ND	6.4	0.18	ug/kg			
10061-02-6		loropropene	ND	6.4	0.20	ug/kg			
100-41-4	Ethylbenzene		ND	1.3	0.33	ug/kg			
591-78-6	2-Hexanone		ND	6.4	0.79	ug/kg			
1634-04-4	Methyl Tert Bu	•	ND	1.3	0.30	ug/kg			
108-10-1	4-Methyl-2-per			6.4	0.95	ug/kg			
75-09-2	Methylene chlo	oride	12.4	6.4	1.6	ug/kg			
100-42-5	Styrene	1.1 .1	ND	6.4	0.12	ug/kg			
79-34-5	1,1,2,2-Tetrack		ND	6.4	0.17	ug/kg			
127-18-4	Tetrachloroeth	ene	ND	6.4	0.22	ug/kg			
108-88-3	Toluene	4 1	ND	1.3	0.13	ug/kg	т		
71-55-6	1,1,1-Trichloro	oetnane	3.9	6.4	0.13	ug/kg	J		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

57 of 80

ACCUTEST

JB32749

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

1	
	ed: 03/27/13
Method: SW846 8260B SW846 5035 Percent So	red: 03/29/13
	ids: 96.0
Project: AFFCO, 361 Walsh Avenue, New Windsor, NY	

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND ND 2.4 ND	6.4 6.4 1.3	0.22 0.22 0.18 0.18	ug/kg ug/kg ug/kg ug/kg	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	100% 92% 110%	86% 95% 90%	70-1 70-1 81-1	22%	
460-00-4	4-Bromofluorobenzene	103%	94%	66-1	32%	

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

			кер		Analysis			Page 1 of 2
Client Sam Lab Sample Matrix: Method: Project:	SO - Soi SW846	9-22		Jew Wind	lsor, NY	Date	Received:	03/27/13 03/29/13 84.8
	File ID	DF	Analyzed	By	Prep	Date	Prep Batch	n Analytical Batch
Run #1	C180798.D		04/07/13	TYG		13 12:00	n/a	VC6488
Run #2	E201891.D	1	04/09/13	OTR		13 12:00	n/a	VE8876
	Initial Weight	Final Volu	me	Methan	ol Aliquot			
Run #1	5.0 g							
Run #2	3.4 g	5.0 ml		100 ul				
VOA TCL	List							
CAS No.	Compound		Result	RI	, MDL	Units	Q	
67-64-1	Acetone		4.6	12	2.0	ug/kg	J	
71-43-2	Benzene		ND	1.2		ug/kg		
75-27-4	Bromodichloror	nethane	ND	5.9	0.12	ug/kg		
75-25-2	Bromoform		ND	5.9		ug/kg		
74-83-9	Bromomethane		ND	5.9		ug/kg		
78-93-3	2-Butanone (MI	EK)	ND	12	2.8	ug/kg		
75-15-0	Carbon disulfid		ND	5.9		ug/kg		
56-23-5	Carbon tetrachle		ND	5.9		ug/kg		
108-90-7	Chlorobenzene		ND	5.9		ug/kg		
75-00-3	Chloroethane		ND	5.9		ug/kg		
67-66-3	Chloroform		ND	5.9		ug/kg		
74-87-3	Chloromethane		ND	5.9		ug/kg		
124-48-1	Dibromochloro	methane	ND	5.9		ug/kg		
75-34-3	1,1-Dichloroeth	ane	15.0	5.9		ug/kg		
107-06-2	1,2-Dichloroeth		1.2	1.2		ug/kg		
75-35-4	1,1-Dichloroeth		9.3	5.9		ug/kg		
156-59-2	cis-1,2-Dichloro		0.36	5.9		ug/kg	J	
156-60-5	trans-1,2-Dichlo		ND	5.9		ug/kg		
540-59-0	1,2-Dichloroeth		0.36	5.9		ug/kg	J	
78-87-5	1,2-Dichloropro	· /	ND	5.9		ug/kg		
10061-01-5	cis-1,3-Dichloro	•	ND	5.9		ug/kg		
10061-02-6	trans-1,3-Dichlo		ND	5.9		ug/kg		
100-41-4	Ethylbenzene	1 1	ND	1.2		ug/kg		
591-78-6	2-Hexanone		ND	5.9		ug/kg		
1634-04-4	Methyl Tert But	tyl Ether	ND	1.2		ug/kg		
108-10-1	4-Methyl-2-pen	•		5.9		ug/kg		
75-09-2	Methylene chlor		2.7	5.9		ug/kg	J	
100-42-5	Styrene		ND	5.9		ug/kg		
79-34-5	1,1,2,2-Tetrach	loroethane	ND	5.9		ug/kg		
127-18-4	Tetrachloroethe		ND	5.9		ug/kg		
108-88-3	Toluene		ND	1.2		ug/kg		
71 55 6	1 1 1 Tuishlong	ath an a	2490.8					

ND = Not detected MDL - Method Detection Limit

1,1,1-Trichloroethane

3480 a

480

10

RL = Reporting Limit

71-55-6

ug/kg

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	5 (13.5-14)		
Lab Sample ID:	JB32749-22	Date Sampled:	03/27/13
Matrix:	SO - Soil	Date Received:	03/29/13
Method:	SW846 8260B SW846 5035	Percent Solids:	84.8
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1, 1, 2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	0.44 2.0 ND ND	5.9 5.9 5.9 1.2	0.21 0.21 0.17 0.16	ug/kg ug/kg ug/kg ug/kg	1 1
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	101% 90% 108% 102%	85% 92% 90% 95%	70-12 70-12 81-12 66-12	22% 27%	

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- $N= \ Indicates \ presumptive \ evidence \ of \ a \ compound$

			кер	ort of A	narysis			Page 1 of
Client Sam Lab Sample Matrix: Method: Project:	e ID: JB3274 SO - So SW846	19-23		New Windson	, NY	Date	Received:	03/27/13 03/29/13 85.3
	File ID	DF	Analyzed	By	Prep D	ate	Prep Batcl	n Analytical Batch
Run #1	C180799.D		04/07/13	TYG	-	3 12:00	n/a	VC6488
Run #2	E201892.D		04/09/13	OTR		13 12:00	n/a	VE8876
	Initial Weight	Final Volu	me	Methanol A	Aliquot			
Run #1	6.1 g				1			
Run #2	4.2 g	5.0 ml		100 ul				
VOA TCL	List							
CAS No.	Compound		Result	RL	MDL	Units	Q	
67-64-1	Acetone		19.2	9.6	1.6	ug/kg		
71-43-2	Benzene		ND	0.96	0.11	ug/kg		
75-27-4	Bromodichloro	omethane	ND	4.8	0.10	ug/kg		
75-25-2	Bromoform		ND	4.8	0.15	ug/kg		
74-83-9	Bromomethane	e	ND	4.8	0.26	ug/kg		
78-93-3	2-Butanone (M	IEK)	ND	9.6	2.3	ug/kg		
75-15-0	Carbon disulfic	de	0.65	4.8	0.11	ug/kg	J	
56-23-5	Carbon tetrach	nloride	ND	4.8	0.13	ug/kg		
108-90-7	Chlorobenzene	9	ND	4.8	0.10	ug/kg		
75-00-3	Chloroethane		0.91	4.8	0.22	ug/kg	J	
67-66-3	Chloroform		ND	4.8	0.079	ug/kg		
74-87-3	Chloromethane	e	ND	4.8	0.18	ug/kg		
124-48-1	Dibromochloro	omethane	ND	4.8	0.16	ug/kg		
75-34-3	1,1-Dichloroet	thane	42.9	4.8	0.13	ug/kg		
107-06-2	1,2-Dichloroet	thane	ND	0.96	0.13	ug/kg		
75-35-4	1,1-Dichloroet	thene	21.4	4.8	0.25	ug/kg		
156-59-2	cis-1,2-Dichlor	roethene	ND	4.8	0.18	ug/kg		
156-60-5	trans-1,2-Dich		ND	4.8	0.23	ug/kg		
540-59-0	1,2-Dichloroet	thene (total)	ND	4.8	0.18	ug/kg		
78-87-5	1,2-Dichloropi	*	ND	4.8	0.15	ug/kg		
10061-01-5	cis-1,3-Dichlor		ND	4.8	0.13	ug/kg		
10061-02-6	trans-1,3-Dich	loropropene	ND	4.8	0.15	ug/kg		
100-41-4	Ethylbenzene		ND	0.96	0.25	ug/kg		
591-78-6	2-Hexanone		ND	4.8	0.60	ug/kg		
1634-04-4	Methyl Tert B	•	ND	0.96	0.23	ug/kg		
108-10-1	4-Methyl-2-per			4.8	0.72	ug/kg		
75-09-2	Methylene chlo	oride	ND	4.8	1.2	ug/kg		
100-42-5	Styrene		ND	4.8	0.088	ug/kg		
79-34-5	1,1,2,2-Tetrac		ND	4.8	0.13	ug/kg		
127-18-4	Tetrachloroeth	ene	ND	4.8	0.17	ug/kg		
108-88-3	Toluene		ND	0.96	0.10	ug/kg		
11 55 6	1 1 1 Trichler	a atla area	1000 8	200	07	11 m/lr m		

ND = Not detected MDL - Method Detection Limit

1,1,1-Trichloroethane

1220 a

390

8.3

RL = Reporting Limit

71-55-6

ug/kg

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	5 (14-14.5)		
Lab Sample ID:	JB32749-23	Date Sampled:	03/27/13
Matrix:	SO - Soil	Date Received:	03/29/13
Method:	SW846 8260B SW846 5035	Percent Solids:	85.3
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
79-00-5 79-01-6 75-01-4 1330-20-7	1, 1, 2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND ND 1.3 ND	4.8 4.8 4.8 0.96	0.17 0.17 0.14 0.13	ug/kg ug/kg ug/kg ug/kg	J	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	102% 94% 109% 103%	82% 90% 90% 96%	70-1 70-1 81-1 66-1	22% 27%		

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Report of Analysis Pa								
Client Sam Lab Sampl Matrix: Method: Project:	e ID: JB3274 SO - So SW846	19-24		ew Windsor	, NY	Date	Received: 03	3/27/13 3/29/13 3.7
	File ID	DF	Analyzed	By	Prep D	ate	Prep Batch	Analytical Batch
Run #1	C180800.D		04/07/13	TYG		3 12:00	n/a	VC6488
Run #2	E201893.D	1	04/09/13	OTR	03/29/1	3 12:00	n/a	VE8876
	Initial Weight	Final Volu	ne	Methanol A	liquot			
Run #1	5.1 g							
Run #2	4.4 g	5.0 ml		100 ul				
VOA TCL	List							
CAS No.	Compound		Result	RL	MDL	Units	Q	
67-64-1	Acetone		37.1	10	1.8	ug/kg		
71-43-2	Benzene		ND	1.0	0.12	ug/kg		
75-27-4	Bromodichloro	omethane	ND	5.2	0.12	ug/kg		
75-25-2	Bromoform	sinethane	ND	5.2	0.16	ug/kg		
74-83-9	Bromomethan	e	ND	5.2	0.29	ug/kg		
78-93-3	2-Butanone (N		ND	10	2.5	ug/kg		
75-15-0	Carbon disulfi		ND	5.2	0.12	ug/kg		
56-23-5	Carbon tetrach		ND	5.2	0.14	ug/kg		
108-90-7	Chlorobenzene	e	ND	5.2	0.11	ug/kg		
75-00-3	Chloroethane		1.3	5.2	0.24	ug/kg	J	
67-66-3	Chloroform		ND	5.2	0.086	ug/kg		
74-87-3	Chloromethan	e	ND	5.2	0.19	ug/kg		
124-48-1	Dibromochlor	omethane	ND	5.2	0.17	ug/kg		
75-34-3	1,1-Dichloroet	thane	54.3	5.2	0.14	ug/kg		
107-06-2	1,2-Dichloroet	thane	ND	1.0	0.14	ug/kg		
75-35-4	1,1-Dichloroet	thene	30.8	5.2	0.27	ug/kg		
156-59-2	cis-1,2-Dichlo		0.33	5.2	0.19	ug/kg	J	
156-60-5	trans-1,2-Dich	loroethene	ND	5.2	0.25	ug/kg		
540-59-0	1,2-Dichloroet	· /	0.33	5.2	0.19	ug/kg	J	
78-87-5	1,2-Dichlorop		ND	5.2	0.16	ug/kg		
10061-01-5		· ·	ND	5.2	0.15	ug/kg		
10061-02-6	,	lloropropene	ND	5.2	0.16	ug/kg		
100-41-4	Ethylbenzene		ND	1.0	0.28	ug/kg		
591-78-6	2-Hexanone	utul Ethan	ND	5.2	0.65	ug/kg		
1634-04-4 108-10-1	Methyl Tert B 4-Methyl-2-pe	•	ND ND	1.0 5.2	0.25 0.79	ug/kg		
75-09-2	Methylene chl		1.6	5.2	0.79 1.3	ug/kg ug/kg	J	
100-42-5	Styrene	ortue	ND	5.2	0.096	ug/kg ug/kg	J	
79-34-5	1,1,2,2-Tetrac	hloroethane	ND	5.2	0.090	ug/kg ug/kg		
127-18-4	Tetrachloroeth		ND	5.2	0.14	ug/kg		
108-88-3	Toluene		ND	1.0	0.10	ug/kg		
71-55-6	1,1,1-Trichlor	oethane	2090 a	320	6.8	ug/kg		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Client Sample ID:	5 (14.5-15)		
Lab Sample ID:	JB32749-24	Date Sampled:	03/27/13
Matrix:	SO - Soil	Date Received:	03/29/13
Method:	SW846 8260B SW846 5035	Percent Solids:	93.7
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND ND 1.2 ND	5.2 5.2 5.2 1.0	0.18 0.18 0.15 0.15	ug/kg ug/kg ug/kg ug/kg	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	103% 93% 109%	84% 90% 91%	70-1 70-1 81-1	22% 27%	
460-00-4	4-Bromofluorobenzene	103%	95%	66-1	32%	

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

	Report of Analysis P										
Client San Lab Sam Matrix: Method: Project:	-	6 (11.5-12) JB32749-25 SO - Soil SW846 826 AFFCO, 36]	Date Sampled: Date Received: Percent Solids:					
Run #1 Run #2	File ID C18086	D 7.D 1	F Analy 04/09,	•	Prep Date 03/29/13 12	Prep Bate :00 n/a	ch Analytical Batch VC6492				
Run #1 Run #2	Initial V 4.8 g	Weight									

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	13	2.2	ug/kg	
71-43-2	Benzene	ND	1.3	0.16	ug/kg	
75-27-4	Bromodichloromethane	ND	6.5	0.14	ug/kg	
75-25-2	Bromoform	ND	6.5	0.20	ug/kg	
74-83-9	Bromomethane	ND	6.5	0.36	ug/kg	
78-93-3	2-Butanone (MEK)	ND	13	3.1	ug/kg	
75-15-0	Carbon disulfide	ND	6.5	0.15	ug/kg	
56-23-5	Carbon tetrachloride	ND	6.5	0.17	ug/kg	
108-90-7	Chlorobenzene	ND	6.5	0.14	ug/kg	
75-00-3	Chloroethane	ND	6.5	0.30	ug/kg	
67-66-3	Chloroform	ND	6.5	0.11	ug/kg	
74-87-3	Chloromethane	ND	6.5	0.24	ug/kg	
124-48-1	Dibromochloromethane	ND	6.5	0.21	ug/kg	
75-34-3	1,1-Dichloroethane	ND	6.5	0.18	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.3	0.18	ug/kg	
75-35-4	1,1-Dichloroethene	ND	6.5	0.34	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	6.5	0.24	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	6.5	0.31	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	6.5	0.24	ug/kg	
78-87-5	1,2-Dichloropropane	ND	6.5	0.20	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	6.5	0.18	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	6.5	0.20	ug/kg	
100-41-4	Ethylbenzene	ND	1.3	0.34	ug/kg	
591-78-6	2-Hexanone	ND	6.5	0.81	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.3	0.31	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	6.5	0.98	ug/kg	
75-09-2	Methylene chloride	2.9	6.5	1.7	ug/kg	J
100-42-5	Styrene	ND	6.5	0.12	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	6.5	0.17	ug/kg	
127-18-4	Tetrachloroethene	ND	6.5	0.23	ug/kg	
108-88-3	Toluene	ND	1.3	0.14	ug/kg	
71-55-6	1,1,1-Trichloroethane	2.9	6.5	0.14	ug/kg	J

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: 6 (11.5-12) Lab Sample ID: JB32749-25 Matrix: SO - Soil Method: SW846 8260B SW846 8260B SW846 5035 Project: AFFCO, 361 Walsh Avenue, New Windsor, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND ND ND ND	6.5 6.5 6.5 1.3	0.23 0.23 0.19 0.18	ug/kg ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0	Dibromofluoromethane 1,2-Dichloroethane-D4	97% 92%	70-130% 70-122%			
2037-26-5	Toluene-D8	108%	81-127% 66-132%			

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client Sa Lab Sam	mple ID: 6 (12. ple ID: JB327	/			Date	Sampled: (03/27/13		
Matrix:	SO - S	loil			Date Received: 03/29/13				
Method:	SW84	6 8260B	SW846 5035		Percent Solids: 85.9				
Project:	AFFC	O, 361 Wa	alsh Avenue, Ne	w Windson	r, NY				
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch		
			e	e	-	-	v		
Run #1	C180802.D	1	04/07/13	TYG	03/29/13 12:00	n/a	VC6488		
	C180802.D	1	04/07/13	TYG	03/29/13 12:00	n/a	VC6488		
	C180802.D	1	04/07/13	TYG	03/29/13 12:00	n/a	VC6488		
Run #1 Run #2 Run #1		1	04/07/13	TYG	03/29/13 12:00	n/a	VC6488		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	4.9	10	1.7	ug/kg	J
71-43-2	Benzene	ND	1.0	0.12	ug/kg	
75-27-4	Bromodichloromethane	ND	5.1	0.11	ug/kg	
75-25-2	Bromoform	ND	5.1	0.15	ug/kg	
74-83-9	Bromomethane	ND	5.1	0.28	ug/kg	
78-93-3	2-Butanone (MEK)	ND	10	2.4	ug/kg	
75-15-0	Carbon disulfide	ND	5.1	0.12	ug/kg	
56-23-5	Carbon tetrachloride	ND	5.1	0.14	ug/kg	
108-90-7	Chlorobenzene	ND	5.1	0.11	ug/kg	
75-00-3	Chloroethane	ND	5.1	0.23	ug/kg	
67-66-3	Chloroform	ND	5.1	0.084	ug/kg	
74-87-3	Chloromethane	ND	5.1	0.19	ug/kg	
124-48-1	Dibromochloromethane	ND	5.1	0.17	ug/kg	
75-34-3	1,1-Dichloroethane	2.0	5.1	0.14	ug/kg	J
107-06-2	1,2-Dichloroethane	2.8	1.0	0.14	ug/kg	
75-35-4	1,1-Dichloroethene	6.1	5.1	0.26	ug/kg	
156-59-2	cis-1,2-Dichloroethene	1.2	5.1	0.19	ug/kg	J
156-60-5	trans-1,2-Dichloroethene	1.2	5.1	0.24	ug/kg	J
540-59-0	1,2-Dichloroethene (total)	2.4	5.1	0.19	ug/kg	J
78-87-5	1,2-Dichloropropane	ND	5.1	0.16	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.1	0.14	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.1	0.16	ug/kg	
100-41-4	Ethylbenzene	ND	1.0	0.27	ug/kg	
591-78-6	2-Hexanone	ND	5.1	0.64	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.24	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.1	0.77	ug/kg	
75-09-2	Methylene chloride	4.1	5.1	1.3	ug/kg	J
100-42-5	Styrene	ND	5.1	0.094	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.1	0.13	ug/kg	
127-18-4	Tetrachloroethene	ND	5.1	0.18	ug/kg	
108-88-3	Toluene	ND	1.0	0.11	ug/kg	
71-55-6	1,1,1-Trichloroethane	41.5	5.1	0.11	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: 6 (12.5-13) Lab Sample ID: JB32749-26 Matrix: SO - Soil Method: SW846 8260B SW846 8260B SW846 5035 Project: AFFCO, 361 Walsh Avenue, New Windsor, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND 5.0 ND ND	5.1 5.1 5.1 1.0	0.18 0.18 0.15 0.14	ug/kg ug/kg ug/kg ug/kg	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	98% 89% 109%		70-13 70-12 81-12	22%	

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

			Repo	ort of A	nalysis		Page 1 of 2
Client San Lab Sam Matrix: Method: Project:	ple ID: JB3 SO SW		SW846 5035 Ilsh Avenue, Ne	ew Windsc	Date Perc	L	03/27/13 03/29/13 92.6
Run #1 Run #2	File ID C180803.D	DF 1	Analyzed 04/07/13	By TYG	Prep Date 03/29/13 12:00	Prep Batch n/a	n Analytical Batch VC6488
Run #1 Run #2	Initial Wei 4.6 g	ght					

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	12	2.0	ug/kg	
71-43-2	Benzene	ND	1.2	0.14	ug/kg	
75-27-4	Bromodichloromethane	ND	5.9	0.12	ug/kg	
75-25-2	Bromoform	ND	5.9	0.18	ug/kg	
74-83-9	Bromomethane	ND	5.9	0.32	ug/kg	
78-93-3	2-Butanone (MEK)	ND	12	2.8	ug/kg	
75-15-0	Carbon disulfide	ND	5.9	0.14	ug/kg	
56-23-5	Carbon tetrachloride	ND	5.9	0.16	ug/kg	
108-90-7	Chlorobenzene	ND	5.9	0.13	ug/kg	
75-00-3	Chloroethane	ND	5.9	0.27	ug/kg	
67-66-3	Chloroform	ND	5.9	0.097	ug/kg	
74-87-3	Chloromethane	ND	5.9	0.22	ug/kg	
124-48-1	Dibromochloromethane	ND	5.9	0.19	ug/kg	
75-34-3	1,1-Dichloroethane	3.5	5.9	0.16	ug/kg	J
107-06-2	1,2-Dichloroethane	ND	1.2	0.16	ug/kg	
75-35-4	1,1-Dichloroethene	ND	5.9	0.30	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	5.9	0.21	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	5.9	0.28	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	5.9	0.21	ug/kg	
78-87-5	1,2-Dichloropropane	ND	5.9	0.18	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.9	0.16	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.9	0.18	ug/kg	
100-41-4	Ethylbenzene	ND	1.2	0.31	ug/kg	
591-78-6	2-Hexanone	ND	5.9	0.73	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.2	0.28	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.9	0.88	ug/kg	
75-09-2	Methylene chloride	ND	5.9	1.5	ug/kg	
100-42-5	Styrene	ND	5.9	0.11	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.9	0.15	ug/kg	
127-18-4	Tetrachloroethene	ND	5.9	0.20	ug/kg	
108-88-3	Toluene	ND	1.2	0.12	ug/kg	
71-55-6	1,1,1-Trichloroethane	0.93	5.9	0.12	ug/kg	J

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: 6 (14.5-15) Lab Sample ID: JB32749-27 Matrix: SO - Soil Method: SW846 8260B SW846 8260B SW846 5035 Project: AFFCO, 361 Walsh Avenue, New Windsor, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND ND ND ND	5.9 5.9 5.9 1.2	0.20 0.20 0.17 0.16	ug/kg ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0	Dibromofluoromethane 1,2-Dichloroethane-D4	101% 92%	70-130% 70-122%			
2037-26-5	Toluene-D8	110%	81-127% 66-132%			

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client Sa Lab Samj Matrix: Method: Project:	ple ID: JB32 SO - SW8	 FD-1 6(11.5-12) JB32749-28 SO - Soil SW846 8260B SW846 5035 AFFCO, 361 Walsh Avenue, New Windsor, 			Date Perc	Sampled: (Received: (ent Solids: 8		
Run #1 Run #2	File ID C180804.D	DF 1	Analyzed 04/07/13	By TYG	Prep Date 03/29/13 12:00	Prep Batch n/a	Analytical Batch VC6488	
Run #1 Run #2	Initial Weigh 5.4 g	ıt						

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	11	1.8	ug/kg	
71-43-2	Benzene	ND	1.1	0.13	ug/kg	
75-27-4	Bromodichloromethane	ND	5.4	0.11	ug/kg	
75-25-2	Bromoform	ND	5.4	0.16	ug/kg	
74-83-9	Bromomethane	ND	5.4	0.29	ug/kg	
78-93-3	2-Butanone (MEK)	ND	11	2.6	ug/kg	
75-15-0	Carbon disulfide	ND	5.4	0.13	ug/kg	
56-23-5	Carbon tetrachloride	ND	5.4	0.14	ug/kg	
108-90-7	Chlorobenzene	ND	5.4	0.12	ug/kg	
75-00-3	Chloroethane	ND	5.4	0.24	ug/kg	
67-66-3	Chloroform	ND	5.4	0.089	ug/kg	
74-87-3	Chloromethane	ND	5.4	0.20	ug/kg	
124-48-1	Dibromochloromethane	ND	5.4	0.18	ug/kg	
75-34-3	1,1-Dichloroethane	ND	5.4	0.15	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.1	0.15	ug/kg	
75-35-4	1,1-Dichloroethene	ND	5.4	0.28	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	5.4	0.20	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	5.4	0.26	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	5.4	0.20	ug/kg	
78-87-5	1,2-Dichloropropane	ND	5.4	0.17	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.4	0.15	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.4	0.17	ug/kg	
100-41-4	Ethylbenzene	ND	1.1	0.28	ug/kg	
591-78-6	2-Hexanone	ND	5.4	0.67	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	1.1	0.25	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.4	0.81	ug/kg	
75-09-2	Methylene chloride	3.2	5.4	1.4	ug/kg	J
100-42-5	Styrene	ND	5.4	0.099	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.4	0.14	ug/kg	
127-18-4	Tetrachloroethene	ND	5.4	0.18	ug/kg	
108-88-3	Toluene	ND	1.1	0.11	ug/kg	
71-55-6	1,1,1-Trichloroethane	3.6	5.4	0.11	ug/kg	J

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Client Sample ID:	FD-1 6(11.5-12)		
Lab Sample ID:	JB32749-28	Date Sampled:	03/27/13
Matrix:	SO - Soil	Date Received:	03/29/13
Method:	SW846 8260B SW846 5035	Percent Solids:	86.1
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		

VOA TCL List

Compound	Result	RL	MDL	Units	Q
1, 1, 2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND 0.89 ND ND	5.4 5.4 5.4 1.1	0.19 0.19 0.15 0.15	ug/kg ug/kg ug/kg ug/kg	J
Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	100% 91% 109%	70-130% 70-122% 81-127% 66-132%			
	1, 1, 2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total) Surrogate Recoveries Dibromofluoromethane 1, 2-Dichloroethane-D4	1, 1, 2-TrichloroethaneNDTrichloroethene0.89Vinyl chlorideNDXylene (total)NDSurrogate RecoveriesRun# 1Dibromofluoromethane100%1, 2-Dichloroethane-D491%	1,1,2-TrichloroethaneND5.4Trichloroethane0.895.4Vinyl chlorideND5.4Xylene (total)ND1.1Surrogate RecoveriesRun# 1Run# 2Dibromofluoromethane100%1,2-Dichloroethane-D491%	1, 1, 2-Trichloroethane ND 5.4 0.19 Trichloroethene 0.89 5.4 0.19 Vinyl chloride ND 5.4 0.15 Xylene (total) ND 1.1 0.15 Surrogate Recoveries Run#1 Run#2 Limi Dibromofluoromethane 100% 70-12 1,2-Dichloroethane-D4 91% 70-12	1,1,2-Trichloroethane ND 5.4 0.19 ug/kg Trichloroethane 0.89 5.4 0.19 ug/kg Vinyl chloride ND 5.4 0.19 ug/kg Xylene (total) ND 1.1 0.15 ug/kg Surrogate Recoveries Run#1 Run#2 Limits Dibromofluoromethane 100% 70-130% 70-122%

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

			Repo	ort of A	nalysis		Page 1 of 2
Client San Lab Sam Matrix: Method: Project:	ple ID: JI S S	D-2 6(14.5-15) B32749-29 O - Soil W846 8260B S JFFCO, 361 Wa		ew Windso	Date Perc	Sampled: Received: ent Solids:	00/20/10
Run #1 Run #2	File ID C180868.	DF D 1	Analyzed 04/09/13	By TYG	Prep Date 03/29/13 12:00	Prep Batcl n/a	h Analytical Batch VC6492
Run #1 Run #2	Initial W 7.3 g	eight					

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	7.2	1.2	ug/kg	
71-43-2	Benzene	ND	0.72	0.085	ug/kg	
75-27-4	Bromodichloromethane	ND	3.6	0.075	ug/kg	
75-25-2	Bromoform	ND	3.6	0.11	ug/kg	
74-83-9	Bromomethane	ND	3.6	0.20	ug/kg	
78-93-3	2-Butanone (MEK)	ND	7.2	1.7	ug/kg	
75-15-0	Carbon disulfide	ND	3.6	0.084	ug/kg	
56-23-5	Carbon tetrachloride	ND	3.6	0.095	ug/kg	
108-90-7	Chlorobenzene	ND	3.6	0.078	ug/kg	
75-00-3	Chloroethane	ND	3.6	0.16	ug/kg	
67-66-3	Chloroform	ND	3.6	0.059	ug/kg	
74-87-3	Chloromethane	ND	3.6	0.13	ug/kg	
124-48-1	Dibromochloromethane	ND	3.6	0.12	ug/kg	
75-34-3	1,1-Dichloroethane	0.71	3.6	0.098	ug/kg	J
107-06-2	1,2-Dichloroethane	ND	0.72	0.097	ug/kg	
75-35-4	1,1-Dichloroethene	ND	3.6	0.18	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	3.6	0.13	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	3.6	0.17	ug/kg	
540-59-0	1,2-Dichloroethene (total)	ND	3.6	0.13	ug/kg	
78-87-5	1,2-Dichloropropane	ND	3.6	0.11	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	3.6	0.10	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	3.6	0.11	ug/kg	
100-41-4	Ethylbenzene	ND	0.72	0.19	ug/kg	
591-78-6	2-Hexanone	ND	3.6	0.45	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	0.72	0.17	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	3.6	0.54	ug/kg	
75-09-2	Methylene chloride	ND	3.6	0.91	ug/kg	
100-42-5	Styrene	ND	3.6	0.066	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	3.6	0.095	ug/kg	
127-18-4	Tetrachloroethene	ND	3.6	0.12	ug/kg	
108-88-3	Toluene	ND	0.72	0.075	ug/kg	
71-55-6	1,1,1-Trichloroethane	3.6	3.6	0.076	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID:	FD-2 6(14.5-15)		
Lab Sample ID:	JB32749-29	Date Sampled:	03/27/13
Matrix:	SO - Soil	Date Received:	03/29/13
Method:	SW846 8260B SW846 5035	Percent Solids:	95.4
Project:	AFFCO, 361 Walsh Avenue, New Windsor, NY		
Ũ			

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
79-00-5 79-01-6 75-01-4 1330-20-7	1,1,2-Trichloroethane Trichloroethene Vinyl chloride Xylene (total)	ND ND ND ND	3.6 3.6 3.6 0.72	0.12 0.12 0.10 0.10	ug/kg ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	100% 96% 108%	70-130% 70-122%			
460-00-4	4-Bromofluorobenzene	115%	81-127% 66-132%			

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 2 of 2

4.29 4

Section 5

G

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

	<i>C</i>		CILAT			מריצה ווי	0.0	X 7										1	CD R
ACCUTES	T. Sh		CHAI	NU	Jr (USI	ΟD	Y								PA	AGE	\square	of <u>&</u> 31
LABORATORI			2235	Route 13	30. Daytor	, NJ 08810			1		FED.EX	Curcking #43	54 1	3158	Bott	ie Order Co	ntroi #		
			TEL. 732-3;		FAX: 7. accutest.c		/3480				Acculest	Cucte #		<u></u>	Acc	utest Job #	TB	3274	19
Client / Reporting Information	Project Name:		Project	Inform	ation							Request	ed Anal	ysis (se	e TEST	CODE	sheet)	2	Matrix Codes
FLEMING LEE -SH	ACT	-00																	DW - Drinking Water
Street Address	Street_	-10					50050405												GW - Ground Water WW - Water
158 WEST 7912	ST 36	O WAS	H AVE	Billing	Informatio	on (if differe	ent from	Report	to)		1								SW - Surface Water SO - Soil
NY NY IST	AL ATEL	LANDON	P AJ	Compa	ny Name														SL- Sludge SED-Sediment
Project Contact	E-mail Project #	WINDO	r	Street A	Address						-								OI - Oil LIQ - Other Liquid
STEVE PAPIER SEVICE	FLGAMING LEES,	AK. (DM	-																AIR - Air SOL - Other Solid
212-675-3225	Glient Purchase	Urder #		City			State	e	Z	Zip									WP - Wipe FB-Field Blank
Sampler(s) Name(s) BHATIA	Phone # Project Manager	MCGUIN		Attentio	n:	****					- ·								EB-Equipment Blank RB- Rinse Blank
KITTUL PITTAINT	KTU/N	MCGUIN	NVESS			······		mhor n'	reserved B	7-141									TB-Trip Blank
			Collection	[]	-			TT	6	12	2	đ							
Accutest Sample # Field ID / Point of Collection	MEOH/DI Vial #	Date	Time	Sample: by	d Matrix	# of bottles	HCI NaOH	HNO3 H2SO4	NONE DI Wat	MEOH									LAB USE ONLY
1 TRIP BLANK		3/27/13	1	RB	TB	2	X	11			X						-		
2 FIELD BLANK		1	8-730	1	FB	3	X				X								999
3 FIELD BLANK	2		0800		FB	3	χH		-+-+		X								M3Z T3
4 1.1 (17,5-13)			1:40		50	3	"			Y	X								1462
511 (13-13-1			1:45-		50	3				X	X								4083
6 1.1 (14.5-15)			1:50		50	3				X	X								4084
7 1.7 (13-13.5)		11	10:55	\square	50	3				Ϋ́Υ	Ń		1						- 903
8 1.2 (11-11.5)		1 1	10:50		50	3				Ń	X		++						
9 1.2 (14-14.5)			11:00		SD	3			++	X	X		+						
10 71 (12,5-13)		1	12:40	11 ·	50	3	-+-+	++		-K	X								
11 2.1 (115-12)			17:35		50	3	-+-+	++		X	X								
12 21 (10-10-5)			17:30		SO	3	++	++		X	1X								+
Turnaround Time (Business days)		- V	116.75	*			Deliverat	ble Infor	mation		<u> '_l</u>		.1		l Commen	ts / Speci	ial Instruc	tions	
X Std. 10 Business Days	Approved By (Acc	utest PM): / Date:				ial "A" (Lev ial "B" (Lev				ASP Categ		A	L	VO	d.	A DIC	se	11 0	JACLUDE
5 Day RUSH						Level 3+4)		р Г		ASP Categ te Forms	lory B								
3 Day EMERGENCY 2 Day EMERGENCY				· ······	NJ Reduc			Ē) Format	******	H	• 6	01	m 1	VIA	HL_	FOR	2
1 Day EMERGENCY					Commerc	ial "C" Commercia	l °A" ≃ Re		Oth	er		5				DS			
other Emergency & Rush T/A data available VIA Lablink						Commercia	1 "B" = Re	esults +	, QC Sumi				<i>V</i> -						
	S	ample Custody	rust be docum	i ented i	pelow eac		nples ch	hange p	opessess	iy + Partial sion, incl	uding co	l urier delive					,	,	
Relinquished by Singler:	3 28 3	Received By:	den			1	Relinquis) 2		cd	Qr.	đ			12 9.19	O Rec	eived By:	in the	1	· ·
Relinquished by Sampler: E	Date Time:	Received By:					∠ Relinquist	hed By:		$\sim r$			Date Tim	2	Rec	eived By:	H^{-}		
	Date Time:	3 Received By:					4 Custody S	SeaL#	11		(ntac)	Person	rved where	applicatio	4	-/-	On Ice		
5		5						10	4		Not intaci			eppiicaDi6	•	(1	100) ***	oler Temp. 1210
28									'								-	Mh	1 IP

JB32749: Chain of Custody Page 1 of 5

5.<u>1</u>

S

ACCUTEST		CHAIN OF CUSTODY												racting #									
LABDRATORIES			2235 TEL. 732-33	Route 13 9-0200	0, Daytor FAX: 7	, NJ 08	810 499/34	480		į.			cutes!	-				Accutest					
Client / Reporting Information	1			www	accutest.c								- Cutes								327	749	
Company Name	Project Name:		Project	nform	ation									Reque	sted An	alysis (see T	ESTCO	ODE sh	eet)			Matrix Codes
FLEMING LEE-SHUR	AFF	70				-																	DW - Drinking Water GW - Ground Water WW - Water
158 WEST 29TH ST	360	WALSH	AVE	Billing	Informati	on (if dit	fferent	from R	eport te	2)													SW - Surface Water SO - Soil
City State Zip Project Confact E-mail	NEW	WINDSON	e, NY	Compar Compar Street A	ny Name			e															SL- Sludge SED-Sediment OI - Oil
STEVE PANER STEVED FL	Client Purchase	<u>FESHUZ-(</u> Order#	an	Street A	dress			State			Zip												LIQ - Other Liquid AIR - Air SOL - Other Solid
212-675-3225																							WP - Wipe FB-Field Blank EB-Equipment Blank
Sampler(s) Name(s) Phone #	Project Manager KEVIN	, rich	JINNES	Attention	ז: י								2										RB- Rinse Blank TB-Trip Blank
Accuted Sample # Field ID / Point of Collection	MEOH/DI Vial #	Date	Time	Sampleo by	Matrix	# of bott	ies P	E S	H2SO4	15	MEOH ENCORE		Ž									f	LAB USE ONLY
13 29 (17.5-13)		3/27/13	ę.	RB		3	1		1 × 2		R		V									-+	
14 2.2 (11-11.5)		16 113	11:40	NU	1				+		1	<u>+</u>	Ø									-+	
15 2.2 (14-14.5)			011:50						++				Ŷt			-							
16 3 (13:5-14)			7:45						++			\pm	x										
17 3 145-15			2:50	1	11-		1	$^{++}$					v			-							
18 3 (125-13)			7:35								1	1 1	£†									-	
19 4 611-11.57-			3:20	1	++		-	\square	$\uparrow \uparrow$	1		+	V									-	
70 4 (10-10,5)			3:10				1					$\uparrow \uparrow \langle$	2									+	
21 4 (14.5-15)			3:30				1					tΚ	\overline{c}									-	
22 5 (3,5-14)			5:20				-					tΚ	\overline{c}										
23 5 (14-14,5)		1.1	5:25				-		++			++!	Żt							+		\neg	
24 5 (14,5-15)			5:30	V	J	1	-	+-+-					\leq			+						+	
Turnaround Time (Business days)		d	15 4-		J			iverable	e Inforr	natior		11/	~ 1	l		- L	Com	ments /	Special	Instruct	ions		
Std. 10 Business Days 5 Day RUSH	Approved By (Accu	utest PM): / Date:			Commen Commen FULLT1	iał "B" (Level			₹'N1		ategory ategory ms											
3 Day EMERGENCY	-				NJ Reduc						D For	-											
1 Day EMERGENCY					Commer	ial "C" Comme	ercial "A	A" = Res			her												
other Emergency & Rush T/A data available VIA Lablink						Comme	ercial "E	3" = Res	ults + C	C Sur												******	
	Si	ample Custody r	nust be docum	ented b	elow ea	NJ Red h time	samp	Result	s + QC ange p	osses	ary + Pa ssion, i	artial Ra includi	w data	urier del	ivery.						1		
Reliequishedby Sampler: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13	Received By:	POLI					inquishe			20 K	EV				Tinfa: 7/13 9	รก	Receive		THE	17	1	
Relinquished by Sampler: Date Time:		Received By:	1					linquishe	d By:	10	1	Γ-			Date		<i>JU</i>	2 Receive 4	d By:	#			
Relinquished by: Date Time: 5		Received By:					Cut	stody Se	al#/	11/	-		lact		served wh		ble		1	On ice		Cooler 1	Temp.
23		1. 							−t¢	Y	ć	140	e angel		<u>ل</u> پ					ш			

JB32749: Chain of Custody Page 2 of 5

5.1

G

			CHAI			CUS.		DY				FED-E	EX Trac	:king #					Bottle			3	_ 01	3
			TEL. 732-3	29-0200	FAX: 7	32-329-34		0		1		Accute	est Qua	25e #					Accute	# dot ta	TA		014	2
Client / Reporting Information			Project		accutest.	om								0.000		Anab		7	TOTO	2005	sheet)	> 32	.199	1
Company Name FLAMING LEG-SHUE	Project Name:	0												eque	ested	Anar		see I	ESIC	JODE	sheet)			Matrix Codes
Street Address <u>29</u> ST City, State <u>Zip</u>	360 City	WALSH ,	AVE State	Billing	Informati 1y Name	on (if diff	erent fr	om Rep	ort to)															WW - Water SW - Surface Water SO - Soil
Project Contact Stave RADIER E-mail	NEW (NIVDSOR,	NY	Street A							******	-												SL- Sludge SED-Sediment OI - Oil LIQ - Other Liquid
Phone # 12-675-3225 Fax#	Client Purchase (Order #		City			5	State		Zi	p	-												AIR - Air SOL - Other Solid WP - Wipe FB-Field Blank
Sampler(s) Name(s) Phone #	Project Manager		Collecton	Attentior	י: ד			Number			W													EB-Equipment Blank RB- Rinse Blank TB-Trip Blank
Accutest Sample # Field ID / Point of Collection	MEOH/DI Viel #	Date	Time	Sampled by	Matrix	# of bottle				2	W L													LAB USE ONLY
25 6 (11.5-12)		3/27/3	4:30	RB	SO	3						X	1											
$\frac{24}{27}$ 6 (12.5-13) 27 6 (14.5-15)			4:45				++				+	ĻΧ		_				ļ						
28 FD-1 (6(11.5-12)]			4:30							-	++-	X	+	+						+	1	$\left \right $		
												X		_										
29 FD-2 6(14:5-15)			5.00									X												
THE A					$\left \right $			++	+		+	X												
		V				1						X												
				t			++		+-+		$\left \cdot \right $	X												
Turnaround Time (Business days)								erable Ir			1							Corr	I ments	/ Speci	Ial I∩stru	ctions		
Std. 10 Business Days 5 Day RUSH 3 Day BHERGENCY 2 Day EMERGENCY	Approved By (Accu	test PM); / Date:			Commen FULLT1 NJ Redu		evel 2)			State EDD	SP Cate Forms Forma													
the second					Commer	Commerc Commerc NJ Redu	cial "B" : ced = R	≃ Result esults +	s Only s + QC QC Su	mmary	ary + Parti	ai Raw da	ata	-										
Relinguished by Sampler: Date Time:	sa 1,3	mple Custody m Received By:	ust be docum		elow ea	ch time s	Relinc	s chang uished E	je pos	sessi ED	on, inc	luding	couri	ier de		ate Tin	le:	57.4	Receive	ed By:	Ny1	the		
Relinquished by Sampler: Date Time:	112	1 Received By: 3	10/7				2 Relinc	juished E			7	!				ate Tim		<u>130</u>	2 Receiv	ed By:	Ĥŀ	U		
Relinquished by: Date Time: 5		Received By: 5					Custo	dy Seal #	0	Ĺ		Intact Not int	act	Pre	eserved	where	applica	ble	14	1	On los	>	Cooler	Temp.
2B								(-/	,														

JB32749: Chain of Custody Page 3 of 5

5.1

G

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: JB327	49	Client	FLEMING	LEE SHUE		Project: AFFCO				
Date / Time Received: 3/29/20	013 0930)	Delivery N	lethod:	FedEx	Airbill #'s: 8026 4354 3	158			
Cooler Temps (Initial/Adjusted)	: <u>#1:(12</u>	<u>2.1/12.1); 0</u>								
Cooler Security Y	or N			Y or N	Sample Int	tegrity - Documentation	<u>Y</u>	or	N	
1. Custody Seals Present:		3. COC			1. Sample i	labels present on bottles:	\checkmark			
2. Custody Seals Intact:		4. Smpl Da	es/Time OK		2. Containe	er labeling complete:	\checkmark			
Cooler Temperature	Y or	N			3. Sample of	container label / COC agree:	\checkmark			
1. Temp criteria achieved:		\checkmark			Sample In	ntegrity - Condition	Y	or	N	
2. Cooler temp verification:	IR G		_		1. Sample r	recvd within HT:			\checkmark	
3. Cooler media:	No	ce	-		2. All conta	iners accounted for:	\checkmark			
4. No, Coolers			_		3. Condition	n of sample:		Intac	t	
Quality Control_Preservation	<u>Y</u>	<u>N N</u>	<u>/A</u>		Sample In	ntegrity - Instructions	Y		N	N/A
1. Trip Blank present / cooler:	\checkmark]		1. Analysis	s requested is clear:	\checkmark			
2. Trip Blank listed on COC:	\checkmark]		2. Bottles r	received for unspecified tests			✓	
3. Samples preserved properly:	\checkmark				3. Sufficier	nt volume recvd for analysis:	\checkmark			
4. VOCs headspace free:	✓]		4. Compos	siting instructions clear:				\checkmark
			-		5. Filtering	instructions clear:				

Samples were received at 12.1 degrees C. There was no ice present but there was a small amount water from what we assume is melted ice.
 Information 2.1 and the state of the s

Accutest Laboratories V:732.329.0200 2235 US Highway 130 F: 732.329.3499 Dayton, New Jersey www/accutest.com 5 -1

G

JB32749: Chain of Custody Page 4 of 5

Sample Receipt Summary - Problem Resolution

Accutest Job Number: JB32749

CSR: Tammy McCloskey

Response Date:

3/29/2013

Response: 1. Proceed with analysis per Steve Panter 2. Proceed with analysis per Steve Panter 3. Proceed as noted

Accutest Laboratories V:732.329.0200

2235 US Highway 130 F: 732.329.3499

Dayton, New Jersey www/accutest.com

JB32749: Chain of Custody Page 5 of 5

APPENDIX E

DUSRs for Endpoint and Post-treatment Samples

Data Usability Summary Report (DUSR) NYSDEC ASP Category B

Client/Company:	Fleming-Lee Shue, Inc., New York, New York (FLS)
Site/Project Name:	AFFCO, 361 Walsh Avenue, New Windsor, NY
Laboratory:	Accutest Laboratories, Dayton, New Jersey
SDGs/Lab Project #:	<u>JB34670</u>
Date(s) of Collection:	<u>April 17, 2013</u>
Number and type Samples & analyses:	5 Groundwater samples, 1 Field Blank, and 1 Trip Blank for project- specific Target Compound List (TCL) of Volatile Organic Compounds (VOCs)
Senior Data Reviewers:	Dr. Nancy C. Rothman, New Environmental Horizons, Inc.
	Susan D. Chapnick, New Environmental Horizons, Inc.
Date Completed:	June 4, 2013

This Data Usability Summary Report (DUSR) is based on guidance developed by the New York State Department of Conservation (NYSDEC), June 1999, for technical review of analytical data in lieu of a full third party data validation and technical guidance presented in *DER-10 / Technical Guidance for Site Investigation and Remediation*, NYSDEC, May 3, 2010. The objective of the DUSR is to determine whether or not the data as presented meet the site/project specific criteria for data quality and data use based on the NYSDEC ASP 2005 or EPA method QC acceptance criteria.

I. Required DUSR Questions

1. Is the data package complete as defined under the requirements for the most current NYSDEC ASP Category B or USEPA CLP deliverables?

Yes.

2. Have all holding times been met?

Yes.

3. Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data fall within the protocol required limits and specifications?

Yes, analyses generally met QC criteria. Exceedances of QC criteria, where data were qualified but considered usable for project decisions, are noted in Section III of this DUSR.

4. Have all of the data been generated using established and agreed upon analytical protocols?

Yes. Analytical data were generated using established EPA Methods, Standard Methods, and ASTM Methods (see analytical references in Section II below). Deviations from EPA or other method protocols and NYSDEC ASP 2005 QC protocols are discussed in Section III of this DUSR.

5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms?

Yes. The raw data were checked to verify that detected results met retention time and mass spectral criteria, where applicable, for qualitative identification. A spot check was performed to verify quantitative accuracy for reporting of all results (presented in the Data Review Checklists attached to this DUSR).

6. Have the correct data qualifiers been used and are they consistent with the most current NYSDEC ASP?

Yes. The laboratory used the correct data qualifiers in reporting of results. Data qualifiers were changed for several results during this review, as shown in Table 2 and explained in Section III of this DUSR.

7. Have any quality control (QC) exceedances been specifically noted in the DUSR and have the corresponding QC summary sheets from the data package been attached to the DUSR?

Yes. QC exceedances are specified in Section III of this DUSR. QC summary sheets from the data package have not been attached; however, all QC exceedances that required data qualification are summarized in Table 2 of the DUSR and flagged in the validated electronic data deliverable (EDD).

II. Sample Descriptions and Analytical Parameters

The sample IDs, date of sampling, identification of MS/MSD/MD, FD, EB, TB, if applicable and the analytical parameters reviewed in this DUSR are listed in Table 1. Any deviations noted for sample collection or receipt (*e.g.*, temperature or preservation issues) are included in Section III, below.

Sample ID	Collection Date	Matrix	Analytical Parameters ¹	Sample Type
EW-1X	4/17/13	GW	VOCs	Field Sample
S-8	4/17/13	GW	VOCs	Field Sample
EW-0	4/17/13	GW	VOCs	Field Sample
E1-N	4/17/13	GW	VOCs	Field sample
MW-1N	4/17/13	GW	VOCs	Field sample
FB041713	4/17/13	Water	VOCs	Field Blank
TRIP BLANK	4/17/13	Water	VOCs	Trip Blank

Table 1. Sample Descriptions and Analytical Parameters

Analytical method references:

TCL VOC: EPA SW846 Method 8260B

¹ These samples, excluding the Trip Blank, were also analyzed for Sulfide, Sulfate, Chloride, Alkalinity, Iron, and Hardness; however, review of these parameters as part of this NYS DUSR was not required.

III. Data Deficiencies, Analytical Protocol Deviations, and Quality Control Exceedances

The following QC elements, as applicable to the analytical methods, were reviewed during this DUSR:

- Data package completeness and reporting protocols
- Sample receipt, holding times and preservation criteria
- Calibration criteria (instrument tuning, initial and continuing calibration verifications)
- Method, field, and instrument blank results
- Laboratory Control Sample (LCS), Blank Spike (BS), or Matrix Spike Blank (MSB) recoveries
- Surrogate or System Monitoring Compound (SMC) Recoveries
- Matrix Spike (MS) / Matrix Spike Duplicate (MSD) Recoveries
- MS/MSD, sample/Matrix Duplicate (MD), or sample/Field Duplicate (FD) Relative Percent Differences (RPDs)
- Sample result reporting (including reporting limits and units)
- Other method-specific QC if applicable and reported (e.g., internal standard areas)
- Deficiencies or protocol deviations as noted in the Laboratory Narrative

During this review of VOCs, all results were estimated (J) due to QC issues. Table 2 summarizes the actions taken during this review. NEH generated a validated data spreadsheet based on the electronic project database file received from Accutest for these SDGs. All results were considered acceptable compared to NYSDEC ASP 2005 and method criteria, with the understanding of the potential uncertainty (bias) in the qualified results.

Field Sample ID	Analyte	Qualifier	Bias	Validation Comments
S-8	1,2-Dichloroethane cis-1,2-Dichloroethene 1,2-Dichloroethene (total)	J	Ι	Result reported below the calibration range
EW-0	Tetrachloroethene	J	Ι	Result reported below the calibration range
MW-1N	Toluene Chloroform	J	Ι	Result reported below the calibration range

Table 2. Summary of Data Validation Actions	
---	--

Qualifiers: U = Analyte is non-detect at the "DV Result" value; UJ = Non-detect is estimated; J = Result is estimated; R = Result is rejected and is unusable for project decisions.

Bias: L = Low; H = High; I = Indeterminate

As required by the DUSR, the following sections document the QC reviewed and the issues that required action or affected the data certainty in terms of the project data quality objectives (DQO)

of accuracy, precision, representativeness, comparability, and sensitivity. The DQO of completeness can be evaluated by the project manager after all data are generated.

Data Package Completeness and Reporting Protocols

- The initial and continuing calibrations for VOCs contained many compounds in addition to the targets requested. During this review, only the target compounds were assessed.
- For organic analyses, the laboratory used in-house QC limits to judge acceptability of surrogates, MS/MSD, LCS, and calibrations. In addition, the laboratory spiked all VOC targets for the LCS and MS/MSD analyses rather than just a representative subset of analytes as suggested by NYSDEC ASP 2005. During this review, the NYSDEC ASP 2005 QC limits for the compounds specified in Exhibit E were used to evaluate the acceptability of the laboratory quality control, unless otherwise discussed below, while the in-house limits were used to judge the other spiked compounds.
- The laboratory reported too many significant figures for some data. For organic results, NYSDEC ASP 2005 indicates that one significant figure should be reported for values < 10 and two significant figures for values > 10; however, the laboratory reported two significant figures for values < 10 and three for values > 10.

Sample Receipt, Holding Times, and Preservation

• Samples for VOC analysis were not preserved in the field. All VOC samples were received with pH > 2. All samples were analyzed within 7 days of sample collection; however, sample EW-1X was reported from an analysis performed on April 29, 2013, 5 days outside of 7 day holding time, due to an apparent QA/QC issue with the original analysis. The results from the initial analysis within holding time for EW-1X confirmed the results reported from the second analysis; therefore, based on professional judgment, the results reported for EW-1X from April 29, 2013 were accepted without qualification.

Calibration

• For VOC analysis, the laboratory used two additional Internal Standard (IS) compounds, t-butyl alcohol-d₉ and pentafluorobenzene, in addition to the NYSDEC ASP 2005 required IS' of 1,4-difluorobenzene, chlorobenzene-d₅, and 1,4-dichlorobenzene-d₄. Since SW846 Method 8260B allows the use of alternative IS', no action was required.

Method, Field, and Instrument Blank Results

• No contamination that would require blank actions was observed in the method blanks, field blank, or trip blank.

Laboratory Control Sample (LCS), Blank Spike (BS), or Matrix Spike Blank (MSB) recoveries

• The LCS recoveries were acceptable for all VOCs indicating acceptable accuracy for the methods as performed by the laboratory.

Surrogate or System Monitoring Compound (SMC) Recoveries

• The laboratory used a fourth surrogate, dibromofluoromethane, in addition to those specified in NYSDEC ASP2005. Since EPA SW-846 allows the use of alternative surrogates, no action was required.

Matrix Quality Control (Matrix Spike/Matrix Duplicate/Matrix Spike Duplicate and Field Duplicate Samples)

- There were no MS/MSD analyses performed on samples from this site (only batch QC analysis reported). Therefore, accuracy and precision for analysis of VOCs for the site matrix could not be evaluated.
- There were no Field Duplicate samples associated with the samples in this SDG; therefore, precision from sample collection through analysis could not be evaluated.

Sample Result Reporting (including reporting limits and units)

- All results are reported with sample-specific reporting limits (adjusted for sample-specific preparation and dilution factors) in units of µg/L for VOCs.
- The list of compounds reported for VOCs is a project-specific list consisting of 35 VOCs as compared to the TCL VOC list in NYSDEC ASP 2005, which contains 51 compounds. The VOC list of compounds reported in this project is, according to the laboratory, an older NYSDEC TCL list with methyl tert-butyl ether added.
- Two of the five groundwater samples were initially analyzed at dilutions ranging from dilution factor (DF) = 5 to 10. Two samples were analyzed at secondary dilutions to report all detected results within the instrument calibration range. An evaluation of the dilutions indicated that the laboratory reported the data correctly.
- Sensitivity for all results was considered acceptable since all non-detects were reported at levels less than or equal to the NYS TOGS AWQS - Water Class GA with the cis-1,3-dichloropropene, exceptions of: 1.2-dichloroethane. and trans-1.3dichloropropene due to method limitations; and benzene, bromomethane, 1,2dichloropropane, methylene chloride, styrene, 1,1,2-trichloroethane, and vinyl chloride in samples MW-1N and EW-1X and acetone, 2-butanone, carbon tetrachloride, chlorobenzene, chloroethane, chloroform, chloromethane, cis-1,2-dichloroethene, trans-1,2-dichloroethene, 1,1-dichloroethene, ethylbenzene, 1,1,2,2-tetrachloroethane, tetrachloroethene, toluene, 1,1,1-trichloroethane, trichloroethene, and xylene (total) in sample EW-1X due to dilutions used for analysis of these samples. The data user will need to evaluate these non-detects at elevated levels for project uses.
- Six detected VOC results were reported at concentrations below the sample-specific reporting limits (RL). During this assessment, these results were qualified as estimated (J) with indeterminate bias due to uncertainty in quantitation at a level below the instrument calibration range. Table 2 identifies the analytes and samples that were estimated due to reporting at levels below the RL.

Lab: Accutest	<u>t</u>								
Date Sampled:	8/28/12, 8/30/1	2, & 9/4/12						No. Samples	24
Method of Ana	lysis: 8260B							Matrix:	Soil
Data Element Acceptable	Preservation & HT	SMCs	LCS / Blank Spike	MS/MSD	FD	Tunes ICALs CCALs	IS'	QL & Quant. Correct	Other Issues
	4	SMC3	· · ·	NIS/ WISD			,	Contect	Other Issues
Yes	ν	ν	ν		NA		ν		
No				Estimate (J or UJ) 14 results in 3 samples		Estimate (UJ) 1 compound in 20 samples		Accept 127 "J" results	See data acceptance for multiple analyses - lab reported data correctly

Comments:

The data package consisted of a NYDEC Category B deliverable.

Coolers of samples were received the day after sample collection as follows: 8/29/12 (9 samples with Lab ID beginning JB14890); 8/31/12 (3 samples with Lab IDs beginning with JB15155); and 9/5/12 (12 samples with Lab IDs beginning JB15405). All samples were received intact at Temperatures within 4 ± 2 °C criteria except shipment received on 8/29/12 was at 1.8°C. Since the samples were intact, no action for slightly low receipt temperature for this one cooler. After samples were analyzed, the client requested the results for all 24 samples be reported as a single report under SDG JB15405. There were no COC issues noted.

Soils were unpreserved (i.e., Method 5035A preservation of soils for VOCs not followed nor required for this site based on Work Plan, according to FLS). All soil samples were analyzed as low-level soils and six soils were re-analyzed as medium-level methanol preserved soils to report analytes within he instrument calibration range. All analyses were performed within 14 days of sample collection (by 9/6/12) - HT met. No Action required.

Surrogates: The lab used surrogate dibromofluoromethane in addition to 1,2-dichloroethane-d4, toluene-d8 and 4-bromofluorobenzene, which are in ASP2005. Since SW-846 method used for analysis allows use of alternate surrogates, no action required. All surrogates are within NYSDEC ASP2005 criteria - acceptable recoveries. No action required.

LCS (also known as Blank Spike) : The lab spiked all VOCs into LCS as compared to NYSDEC ASP 2005 requirement of a subset of compounds. LCS VA6987-BS (low-level associated with the analysis JB14890-2 & -3), VV5563-BS (low-level assoc. with analysis of JB14890-7 & -8), VE8556-BS (medium-level for 2 VOCs only assoc. with analysis of JB14890-8), VV5565-BS (low-level assoc. with JB-14890-9), VA6989-BS (low-level assoc. with analysis of JB14890-1), VD8147-BS (medium-level for 1 VOC assoc. with the analysis of JB-14890-7), VV5565-BS2 (low-level assoc. with JB14890-4, -5, & -6), VD8148-BS (medium-level assoc. with 3 VOCs for JB14890-3), VY5399-BS (low-level assoc. with JB15155-1 & -3), VY5401-BS (low-level assoc. with JB15155-1 & -2), VY5403-BS (low-level assoc. with JB15405-6, -8, -9, & -10), VX5603-BS (low-level assoc. with JB15405-3, -11, & -12), VX5604-BS (low-level assoc. with the analysis of JB15405-7), VE8565-BS (medium-level for 1 VOC assoc.. with JB15405-9), V3C4027-BS (low-level assoc. with analysis of JB15405-1, -2, -4, & -5), and VY5405-BS (low-level assoc. with 1 VOC for re-analysis of B15405-8). All %Rec were within lab criteria in LCS; therefore, lab demonstrated acceptable accuracy for analysis in the absence of the site matrix. No Action required.

Lab: <u>Accutest</u>

Method Blanks: VA6987-MB, VV5563- MB, VE8556-MB, VV5565-MB, VA6989-MB, VD8147-MB, VV5565-MB2, Blanks Reviewed: VD8148-MB1, VY5399-MB, VY5401-MB, VY5403-MB, VX5603-MB, VX5604-MB, VE8565-MB, V3C4027-MB, & VY5405-MB

Blank Action:

No Trip Blank or Equipment Blank

Blank ID	Contaminant / Level	Related?	/ Action	Sample and Reported Result	Result
VA6987-MB	None	Y		No Blank Action required	
VV5563-MB	None	Y		No Blank Action required	
VE8556-MB	None	Y		No Blank Action required	
VV5565-MB	None	Y		No Blank Action required	
VD8147-MB	None	Y		No Blank Action required	
VA6989-MB	None	Y		No Blank Action required	
VV5565-MB2	None	Y		No Blank Action required	
VD8148-MB1	None	Y	- I	No Blank Action required	
VY5399-MB	None	Y		No Blank Action required	
VY5401-MB	None	Y		No Blank Action required	
VY5403-MB	None	Y		No Blank Action required	
VX5603-MB	None	Y		No Blank Action required	
VX5604-MB	None	Y	- I	No Blank Action required	
VE8565-MB	None	Y	- I	No Blank Action required	
V3C4027-MB	None	Y	T	No Blank Action required	
VY5405-MB	None	Y	· ·	No Blank Action required	

Additional Notes:

MS/MSD: Several non-site related MS/MSDs performed (batch QC) which do not affect the samples reported herein; therefore, review of these MS/MSD not performed. Sitespecific MS/MSD performed on PX01-SW-5 [JB14890-1], PX03-BT-10 [JB14890-3], PX07BT-10 [JB15115-1], PX08SW-7 [JB15155-2], C2SP01 [JB15405-11], PX14SW-6 [JB15405-6], PX15BT-10 [JB15405-7], PX09SW-3 [JB15405-1], and C3P01 [JB15405-9]. Lab spiked all target VOCs into MS/MSD (for medium-level MS/MusDs, only the compound reported for the unspiked sample summarized. For review, ASP2005 criteria used for 5 compounds in Table 12 and lab criteria used for remaining compounds.

MS/MSD performed on PX01-SW-5 [JB14890-1]: low-level analysis with MS and MSD % Rec and MS/MSD RPDs within criteria; therefore, no action required.

MS/MSD performed on PX03-BT-10 [JB14890-3]: medium-level analysis for 1,1-dichloroethane, 1,1-dichloroethane, and 1,1,1-trichloroethane only. MS and MSD % Rec and MS/MSD RPDs were all within criteria; therefore, no action required.

Additional Notes:

MS/MSD performed on PX07BT-10 [JB15115-1]: low-level analysis with MS and MSD % Rec and MS/MSD RPDs within criteria except for: chloroethane, 1,1dichloroethane, 1,1-dichloroethene, and 1,1,1-trichloroethene % Rec were all low. For 1,1-dichloroethene, the level of the MS/MSD spike was acceptable for the matrix whereas for the other 3 compounds out in the MS, these compounds were reported as over the calibration range (flagged "E") by the lab and the spike level was > 4 times lower than the level of these compounds in the unspiked sample (i.e., spike was swamped out). Therefore, only action required is for low, but > 10%, recovery of 1,1-dichloroethene.

*ACTION: 1,1-Dichloroethene estimated (J) in sample PX07BT-10 with possible low bias due to low MS/MSD recoveries.

MS/MSD performed on PX08SW-7 [JB15155-2]: low-level analysis with MS and MSD % Rec and MS/MSD RPDs within criteria; therefore, no action required.

MS/MSD performed on C2SP01 [JB15405-11]: low-level analysis with MS and MSD % Rec and MS/MSD RPDs within criteria however, MSD recoveries low, but in criteria, for several compounds causing high RPDs. The following MS/MSD RPDs were not acceptable: bromoform, carbon disulfide, carbon tetrachloride, chlorobenzene, trans-1,2-dichloroethene, 1,2-dichloroethene (total), trans-1,3-dichloropropene, ethylbenzene, stryrene, toluene, trichloroethene, and xylene (total).

*ACTION: Bromoform, carbon disulfide, carbon tetrachloride, chlorobenzene, trans-1,2-dichloroethene, 1,2-dichloroethene (total), trans-1,3-dichloropropene, ethylbenzene, stryrene, toluene, trichloroethene, and xylene (total) estimated (J or UJ) in sample C2SP01 with indeterminate bias due to MS/MSD imprecision.

MS/MSD performed on PX14SW-6 [JB15405-6]: low-level analysis with MS and MSD % Rec and MS/MSD RPDs within criteria; therefore, no action required.

MS/MSD performed on PX15BT-10 [JB15405-7]: low-level analysis with MS and MSD % Rec and MS/MSD RPDs within criteria; therefore, no action required.

MS/MSD performed on PX09SW-3 [JB15405-1]: low-level analysis with MS and MSD % Rec and MS/MSD RPDs within criteria except: 1,1,1-trichloroethane recoveries very low (negative). Since spike level for MS/MSD was appropriate for this sample, low MS/MSD results suggest possible sample heterogeneity issues.

*ACTION: 1,1,1-Trichloroethane estimated (J) in sample PX09SW-3 with possible low bias due to low MS/MSD recoveries.

MS/MSD performed on PX03-BT-10 [JB15405-9]: medium-level analysis for 1,1,1-trichloroethane only. MS and MSD % Rec and MS/MSD RPDs were unacceptable since the spike level was too low for the matrix making the MS/MSD results meaningless - No Action required.

FD pairs: there were no FD pair associated with the samples in this SDG. Therefore, precision from sample collection through analysis could not be evaluated.

Tunes: Instrument GCMS3C 8/30/12 (ICAL) & 9/6/12; GCMSA 8/20/12 (ICAL), 8/29/12, & 8/30/12; GCMSD 7/30/12 (ICAL), 8/30/12, & 2nd tune on 8/30/12; GCMSE 7/16/12 (ICAL), 8/30/12, & 9/6/12; GCMSV 6/7/12 (ICAL), 8/29/12, 8/30/12, & 2nd tune on 8/30/12; GCMSX 9/4/12 (ICAL) 9/5/12, & 2nd tune on 9/5/12; and GCMSY 4/26/12 (ICAL), 8/31/12, 9/4/12, 9/5/12, & 9/6/12. All Abundances were acceptable and all samples were analyzed within 12 hours of tune. Average of scans across peak with background correction used to generate tunes - acceptable. No action required.

Additional Notes:

ICALs: 7 different CGC/MS systems used for analysis. GCMSD and GCMSE used for medium-level analyses while GCMS3, GCMSA, GCMSV, GCMSX, and GCMSY were used for low-level VOC analysis. 6- to 10-level ICALs from 0.5, 1, 2, 5, or 10 to 200 μ g/L for many compounds in addition to those reported. Min. RRF and Maximum %RSD given in Table 10 of NYDEC ASP2005 achieved for all compounds except trichloroethene min RRF of 0.300 not achieved on instruments GCMSA, GCMSV, GCMSX, and GCMSY. Also, lab used regression analysis for compounds with %RSD > 15% - these all had r2 > 0.99 - since SW-846 allows regression analysis so this was an acceptable calibration method. All Trichloroethene data were reported from low-level analyses of the samples so all low-level data impacted by low sensitivity during ICAL except for 4 samples analyzed on GCMS3.

*ACTION: Trichloroethene estimated (J or UJ) with possible low bias, unless other QC issues affect the data, in all soil samples except PX09SW-3, PX10SW-5, PX12SW-7, and PX13SW-7 (4 low-level soils analyzed on GCMS3) due to low sensitivity in the initial calibration.

CCAL: GCMS3 9/6/12. CCAL Min. RRF and maximum %D achieved for all compounds. Lab flagged several compounds as being outside criteria but this wasn't based on Table 10 ASP 2005 criteria. No Action required

CCALs: GCMSD 8/30/12 (2 CCALs). CCAL Min. RRF and maximum %D achieved for all compounds except %D = -25.4% and -31.2% for bromomethane in both CCALs. Bromomethane verification was outside criteria in both CCALs due to enhanced detection of this compound during CCALs as compared to sensitivity during ICAL. Since bromomethane was non-detect in all samples associated with these CCALs, no action required. Lab flagged several compounds as being outside criteria but this wasn't based on Table 10 ASP 2005 criteria. No Action required

CCALs: GCMSE 8/30/12 & 9/6/12. CCAL Min. RRF and maximum %D achieved for all compounds in both CCALs. Lab flagged several compounds as being outside criteria but this wasn't based on Table 10 ASP 2005 criteria. No Action required

CCALs: GCMSA 8/29/12 & 8/30/12. CCAL Min. RRF and maximum %D achieved for all compounds except Trichloroethene min. RRF of 0.300 not met in either CCAL. Lab flagged several compounds as being outside criteria but this wasn't based on Table 10 ASP 2005 criteria.

CCALs: GCMSV 8/29/12 & 8/30/12 (2 CCALs on this day). CCAL Min. RRF and maximum %D achieved for all compounds except Trichloroethene min. RRF of 0.300 not met in any of the 3 CCALs. Lab flagged several compounds as being outside criteria but this wasn't based on Table 10 ASP 2005 criteria.

CCALs: GCMSX 9/5/12 (2 CCALs on this day). CCAL Min. RRF and maximum %D achieved for all compounds except Trichloroethene min. RRF of 0.300 not met in both CCALs. Lab flagged several compounds as being outside criteria but this wasn't based on Table 10 ASP 2005 criteria.

CCALs: GCMSY 8/31/12, 9/4/12, 9/5/12, & 9/6/12. CCAL Min. RRF and maximum %D achieved for all compounds except Trichloroethene min. RRF of 0.300 not met in any of the 4 CCALs. Lab flagged several compounds as being outside criteria but this wasn't based on Table 10 ASP 2005 criteria.

*ACTION: Trichloroethene estimated (J or UJ) with possible low bias, unless other QC issues affect the data, in all soil samples except PX09SW-3, PX10SW-5, PX12SW-7, and PX13SW-7 (4 low-level soils analyzed on GCMS3) due to low calibration verification.

4 of 7

Additional Notes:

IS: lab used a two more IS compounds, tert-Butyl Alcohol-d9 and Pentafluorobenzene, in addition to three IS' required by NYSDEC ASP2005 (1,4-Difluorobenzene, Chlorobenzene-d5, and 1,4-Dichlorobenzene-d4) - this is acceptable based upon lab using SW-846 method for analysis. All 5 IS Areas and Retention Times were in criteria in all samples and QC - No Action required.

The list of compounds reported for VOCs is a project-specific list consisting of thirty-five VOCs as compared to the TCL VOC list in NYSDEC ASP2005, which contains fiftyone compounds. The VOC list of compounds reported in this project is, according to the laboratory, an older NYSDEC TCL list with methyl tert-butyl ether added. There are 36 results per sample reported since cis-1,2-dichloroethene, trans-1,2-dichloroethene, and 1,2-dichloroethene (total) are reported.

Six samples were analyzed as low-level soils and one or more compounds were reported above the instrument calibration range (lab flagged data "E"). For two of these, the lab analyzed a smaller weight of sample and reanalyzed the samples as low-level soils. For the other 4 samples, the laboratory analyzed the samples as medium-level methanol extracts. Data for all analyses for these six samples were reviewed and data accepted as follows: Sample C1SP01 [JB15405-8] all initial low-level results accepted for reporting except 1,1,1-trichloroethane, which was accepted from the second low-level analysis; sample PX07BT-10 [JB15155-1] all initial low-level results accepted for reporting except 1,1,1-trichloroethane, and 1,1-dichloroethane, and 1,1-dichloroethane, and 1,1-dichloroethane, and 1,1-dichloroethane, and 1,1-dichloroethane, which were accepted for reporting from the medium-level analysis; sample C5SP01 [JB14890-7] all low-level results accepted for reporting except 1,1,1-trichloroethane, which was accepted for reporting except 1,1,1-trichloroethane, which was accepted for reporting except 1,1,1-trichloroethane, and 1,1-dichloroethane, and 1,1-dichloroethane, which was accepted for reporting from the medium-level analysis; sample C5SP01 [JB14890-7] all low-level results accepted for reporting except 1,1,1-trichloroethane, which were accepted for reporting from the medium-level analysis; and sample C3SP01 [JB15405-9] all low-level results accepted for reporting except 1,1,1-trichloroethane, and 1,1-dichloroethane, which was accepted for reporting from the medium-level analysis; and sample C3SP01 [JB15405-9] all low-level results accepted for reporting except 1,1,1-trichloroethane, which was accepted for reporting from the medium-level analysis; and sample C3SP01 [JB15405-9] all low-level results accepted for reporting except 1,1,1-trichloroethane, which was accepted for reporting from the medium-level analysis. The laboratory reported the data properly based on this review.

The lab reported 127 results at a level < RL and qualified the data as "J". The 127 "J" results were accepted with indeterminate bias due to uncertainty in quantitation below the instrument calibration range.

All non-detects for VOCs were reported at levels less the Unrestricted Use Soil Cleanup Objective and/or Supplemental Soil Cleanup Objectives; therefore, sensitivity was acceptable for these data.

Calculation check:C5SP01 [JB14890-7] medium-level analysis

10g of 80.9% solid sample dissolved in 10 mL Methanol and 100 μ L of extract was purged in 5 mL water

Sample moisture contribution to extract = 10g (1-0.809) = 1.91 "mL" of added moisture. Total extract volume = 10 + 1.91 = 11.91 mL or 11,910 µL

Sample Response = 104163; IS Response = 193724 @ 50; RRF ICAL = 0.767 (GCMSD)

 $1,1,1-\text{Trichloroethane Conc.} = \frac{104163 \text{ x } 11910 \text{ x } 5 \text{ x } 50}{193724 \text{ x } 10 \text{ x } 0.809 \text{ x } 100 \text{ x } 0.767} = 2580 \text{ } \mu\text{g/Kg}$

Additional Notes:

All % Solids were > 75% - No action required

The sample chromatograms, mass spectra of detects and quantitation reports were scanned and data appeared to have been reported correctly. The laboratory did not report Tentatively Identified Compounds (TICs) as these were not requested.

The narrative did not mention any issues that were not already addressed in this review.

Lab reported results with too many significant figures. Values < 10 should be reported to 1 sig. fig, and values > 10 to 2 sig.fig. but lab reported values < 10 to 2 sig.fig and > 10 with 3 sig.fig. Since EDD and hardcopy match in how data were reported, no action except to note issue.

Lab: <u>Accutest</u>

Method of Analysis: 8260B

SW-846 Method 8260B and NYSDEC ASP2005

- Preservation: Temperature upon receipt 4°±°2C; use judgment if outside criteria
 - HT: waters- pH > 2 or no HCl: 7d<HT; J det/R NDs
 - pH < 2, 14d <HT; J det/R NDs
 - low- or medium-level solid 14d <HT< 28 d, J det/J NDs; HT > 28 days, J det/R NDs
 - unfrozen solid 48 hrs < HT < 96 hrs, J det/J NDs; HT > 96 hrs, J det/R NDs
 - SMCs: Criteria per Table 11A of NYSDEC ASP2005 Exhibit E or lab limits as long as results within ± 10% of ASP limits
 - %Rec<10%, J det/ R NDs; 10% <%Rec<LCL, J det/ J NDs; %Rec >UCL, J det/Accept NDs.
 - LCS: Lab limits accepted since LCS not required for NYSDEC ASP2005
 - %Rec<10%, J det/ R NDs; 10% <%Rec<LCL, J det/ J NDs; %Rec >UCL, J det/Accept NDs
 - Tunes: Samples analyzed within 12-hrs and criteria met per Table 7, NYSDEC ASP2005. If out, use professional judgment.
 - ICAL: 5-Level; min. RRF and %RSD per Table 10 (NYSDEC ASP2005).
 - CCAL: min. RRF and %D per Table 10 (NYSDEC ASP2005)
 - Blanks: Surrogates outside criteria Use Judgment if isolated or analysis related Non-Matrix related Blank contamination, TB or EB contaminant in all samples associated with Blank If contamination in blank(s) exist, if Result < RL, U result at RL; Result<Blank Action, U result at level reported
- MS/MSD: Table 12 of Exhibit E, NYSDEC ASP2005 or lab limits as long as results within ± 10% of ASP limits %Rec<10%, J det/ R NDs; 10% <%Rec<LCL, J det/ J NDs; %Rec >UCL, J det/Accept NDs- Unspiked Sample only. RPD > Control limit, J det / J ND; %RSD of non-spiked > 50%, J det
 - FD: Both Conc. > 2xQL, RPD >30% (water) 50% (soil), J det; One result ND, other >2 x QL, J det/J NDs; Both Conc. < 2xQL; RPD >criteria, LCS OK, Accept data
 - IS: 25% ≤ Area < 50% of IS in CCAL, J det/J NDs; Area < 25% of CCAL, J det/R NDs; Area > 150% IS in CCAL, J det/Accept NDs
 - QLs: If result > upper calibration range, J result, if result < lowest calibration standard, J result. Verify all J data reported properly, if applicable. Verify QLs are sample specific and that all compounds requested were reported.
- Sensitivity: Identify any non-detects which exceed TOGS 1.1.1 (TOGS GA AWQS) criteria for waters or Unrestricted Use Soil Cleanup Objectives from 6 NYCRR Part 375, Table 375-6.8(a) (December 14, 2006) and/or Supplemental Soil Cleanup Objectives (SSCO) from CP-51 Soil Cleanup Guidance, Table 1 (October 21, 2010) for soil samples

Lab: <u>Accutes</u> Date Sampled Method of An			T LG	5. ATT CO, 501	Waish Avenue	, New Windsor,		No. Samples Matrix:	24 + 2FD + 2FB + 1TB Soil
Data Element Acceptable	Preservation & HT	SMCs	LCS / Blank Spike	MS/MSD	FD/MD	Tunes ICALs CCALs	IS'	QL & Quant. Correct	Other Issues
Yes		٧	V	V			V		
No	All samples estimated (J or UJ) due to high receipt Temperature				Estimate (J) 4 results in sample 4 (11-11.5)	Estimate (J / UJ) 1 compound in 21 samples; 1 compound in 1 sample		Accept 133 "J" results	See data acceptance for multiple analyses - lab reported data correctly

Comments:

The data package consisted of a NYDEC Category B deliverable.

Cooler of samples was received two days after sample collection on 3/29/13 and the receipt temperature was 12.1° C, above $4\pm2^{\circ}$ C criteria. In addition, several samples could not be preserved within 48 hours from collection since the samples were received so late from the field. The laboratory preserved the samples as soon as possible. There were no COC issues noted.

*ACTION: All soil data estimated (J or UJ) with possible low bias, unless other QC issues affect the data, due to high temperature upon receipt (sample preservation issue).

Soils were collected in Encore sample devices and extruded into vials and preserved ~ 1:1 with methanol or water (e.g., approximately 5 g of soil was preserved with either 5 mL methanol to create the medium-level VOC or ~ 5mL water to create the low-level VOC). Soils were analyzed as follows: samples 1.1 (12.5-13), 1.2 (14-14.5), 2.1 (12.5-13), 2.2 (11-11.5), 3 (13.5-14), 3 (14.5-15), and 3 (12.5-13) were analyzed using only the medium-level soil aliquot; samples 1.1 (13-13.5), 1.2 (11-11.5), 2.1 (11-11.5), 2.1 (11-11.5), 2.1 (11-11.5), 2.2 (14-14.5), 4 (11-11.5), 4 (14.5-15), 5 (13.5-14), 5 (14-14.5), and 5 (14.5-15) were analyzed as low-level soils and re-analysis for over-range compounds using medium-level soil aliquot; and samples 1.1 (14.5-15), 4 (10-10.5), 6 (11.5-12), 6 (12.5-13), 6 (14.5-15), FD-1 6 (11.5-12), and FD-2 6 (14.5-15) were analyzed using only the low-level soil aliquot. All analyses were performed within 14 days of sample collection (by 4/10/13) - HT met. No Action required.

Surrogates : The lab used surrogate dibromofluoromethane in addition to 1,2-dichloroethane-d4, toluene-d8 and 4-bromofluorobenzene, which are in ASP2005. Since SW-846 method used for analysis allows use of alternate surrogates, no action required. All surrogates are within NYSDEC ASP2005 criteria except 4-BFB recovery high in JB32749-27MS. Since the other 3 surrogates were within criteria in the MS, the high recovery should not affect the sample data - no action required.

Blank Action:

Blanks Reviewed: Method Blanks: VE8870-MB, VC6486-MB, VE8871-MB, VC6488-MB, VE8875-MB, VE8876-MB, VC6492-MB, V2C4870-MB, VE8878-MB, & VC6488-MB2

TB: TRIP BLANK; FBs: FIELD BLANK 1 & FIELD BLANK 2

		Matrix	Action Level		Corrected
Blank ID	Contaminant / Level	Related?	/ Action	Sample and Reported Result	Result
VE8870-MB	None	Y	L - IL	No Blank Action required	
VC6486-MB	None	Y	- [No Blank Action required	
VE8871-MB	None	Y	- [No Blank Action required	
VC6488-MB	None	Y	- I	No Blank Action required	
VE8875-MB	None	Y		No Blank Action required	
VE8876-MB	None	Y		No Blank Action required	
VC6492-MB	None	Y	- T	No Blank Action required	
V2C4870-MB	None	Y		No Blank Action required	
VE8878-MB	None	Y		No Blank Action required	
VC6488-MB2	None	Y	· ·	No Blank Action required	
TRIP BLANK	Bromoform 0.71 J μg/L	N		All samples ND - no Action required	
	Dibromochloromethane 0.35 J µg/L	Ν		All samples ND - no Action required	
FIELD BLANK 1	None	N	-	No Blank Action required	
FIELD BLANK 2	None	Ν		No Blank Action required	

Additional Notes:

LCS (also known as Blank Spike) : The lab spiked all VOCs into LCS as compared to NYSDEC ASP 2005 requirement of a subset of compounds. LCS VE8870-BS (medium-level associated with the analysis JB32749-10 & -13), VC6486-BS (low-level assoc. with analysis of JB32749-5, -6, -7, -8, & -11), VE8871-BS (medium-level assoc. with analysis of JB32749-4, -16, & -18), VC6488-BS (low-level assoc. with JB32749-12, -15, -19 through -24, -26, -27, & -28), VE8875-BS (medium-level assoc. with analysis of JB32749-4, -9, -10, -13, & -14), VE8876-BS (medium-level for 3 VOCs assoc. with the analysis of JB32749-5, -7, -8, -11, -12, -15, -21, -22, -23, & -24), VC6492-BS (low-level assoc. with JB32749-25 & -29), V2C4870-BS (low-level assoc. with JB32749-1, -2, & -3); and VE8878-BS (medium-level associated with JB32749-17 & -19). All %Rec were within lab criteria in LCS except 1,1,2,2-tetrachloroethane recovery high in VC6492-BS; however, since neither JB32749-25 or -29 reported this compound detected, no action required. Lab demonstrated acceptable accuracy for analysis in the absence of the sample matrix.

Additional Notes:

MS/MSD and MD: Several non-site related MS/MSDs performed (batch QC) which do not affect the samples reported herein; therefore, review of these MS/MSD not performed. Site-specific MS/MSD performed on sample 4 (14.5-15) [JB32749-21] and sample 6 (14.5-15) [JB32749-27]. In addition, Sample/MD analysis performed on sample 4 (11-11.5) [JB32749-19]. For review, ASP2005 criteria used for 5 compounds in Table 12 and lab criteria used for remaining compounds.

MS performed on sample 6 (14.5-15) [JB32749-27] - no MSD: low-level analysis with MS %Rec all OK except 1,1,2,2-tetrachloroethane recovery high. Since the unspiked sample was non-detect for this compound, no action required. MSD not possible since insufficient aliquots of sample collected to allow low-level analysis of sample, MS and MSD.

MS/MSD performed on 6 (14.5-15) [JB32749-27]: medium-level analysis for chloroethane, 1,1-dichloroethane, and 1,1,1-trichloroethane only. MS and MSD % Rec and MS/MSD RPDs were all within criteria; therefore, no action required.

MD analysis performed on 4 (11-11.5) [JB32749-19]: low-level analysis comparison. RPDs all < lab limits except for 1,1-dichloroethane, 1,2-dichloroethane, 1,1-dichloroethane, and 1,1,1-trichloroethane. Several other compounds reported RPDs > lab criteria; however, for these compounds, levels reported in samples were < 2 x RL (e.g., "J" qualified data).

*ACTION: 1,1-dichloroethane, 1,2-dichloroethane, 1,1-dichloroethene, and 1,1,1-trichloroethane estimated (J) in sample 4 (11-11.5) with indeterminate bias due to MD imprecision.

FD pairs : 6 (11.5-12) & FD-1 6 (11.5-12) and 6 (14.5-15) & FD-2 6 (14.5-15). A comparison of detected results shown below.

Field Duplicate Evaluation_ Sample IDs:		Sample	e = 6	FD = FD-1 6 (11.5-12)					
	DF=1	Sample Sample Result FD				FD Result			
Analyte Name	RL (µg/Kg)	µg/Kg	Q	Level	µg/Kg	Q	Level	RPD	Action
1,1,1-Trichloroethane	5.4	3.6	J	< RL	2.9	J	< RL	21.5	None
Methylene chloride	5.4	3.2	J	< RL	2.9	J	< RL	9.8	None
Trichloroethene	5.4	0.89	J	< RL	6.5	U	RL	NA	None

FD precision acceptable for all detected VOCs in 6 (11.5-12) & FD-1 6 (11.5-12) - No Action required.

Additional Notes

riduitionul riote	
E' II Devil'	F 1 <i>d</i>

Field Duplicate Evaluation_Sample IDs:		Sample	e = 6 (14.5-15)		FD = FD-26(14.5-15)				
	DF=1	Sample	Sample Sample Result		FD Result				
Analyte Name	RL (µg/Kg)	µg/Kg	Q Level	µg/Kg	Q Level	RPD	Action		
1,1,1-Trichloroethane	5.9	0.93	J < RL	3.6	< 2 x RL	117.9	None *		
1,1-Dichloroethane	5.9	3.5	J < RL	0.71	J < RL	132.5	None *		
* No Action taken over though RDD > 500/ since nother result was > 2 x BI									

* No Action taken even though RPD > 50% since neither result was $> 2 \times RL$

FD precision acceptable for all detected VOCs in 6 (14.5-15) & FD-1 6 (14.5-15) - No Action required.

Tunes: Instrument GCMS2C 3/18/13 (ICAL) & 4/9/13; Instrument GCMSC 3/26/13 (ICAL), 4/5/13, 4/7/13, 4/8/13 & 4/9/13; Instrument GCMSE 2/22/13 (ICAL), 4/5/13, 4/5/13 (2nd tune), 4/8/13, 4/9/13, & 4/10/13. All Abundances were acceptable and all samples were analyzed within 12 hours of tune. Average of scans across peak with/without background correction used to generate tunes - acceptable. No action required.

ICAL: GCMS2C 3/18/13, GCMSC 3/26/13, and GCMSE 2/22/13. Lab analyzed 5- to 9-level ICALs from 0.5, 1, 2, or 5 to 200 µg/L for many compounds in addition to those reported. Min. RRF and Maximum %RSD given in Table 10 of NYDEC ASP2005 achieved for all compounds in all 3 ICALs except Trichloroethene RRF low (0.286 and 0.265 as compared to criteria of \ge 0.300) on Instrument GCMS2C and GCMSC (RRF OK on GCMSE). Also, lab used regression analysis for compounds with %RSD > 15% - these all had r2 > 0.99 - since SW-846 allows regression analysis so this was an acceptable calibration method. Valid ICALs generally, only action for low sensitivity for trichloroethene in 2 ICALs.

*ACTION: Trichloroethene estimated (J or UJ) in samples TRIP BLANK, FIELD BLANK 1, FIELD BLANK 2, 1.1 (13-13.5, 1.1 (14.5-15), 1.2 (11-11.5), 1.2 (13-13.5), 2.1 (10-10.5), 2.1 (11.5-12), 2.2 (14-14.5), 4 (10-10.5), 4 (11-11.5), 4 (14.5-15), 5 (13.5-14), 5 (14-14.5), 5 (14.5-15), 6 (11.5-12), 6 (12.5-13), 6 (14.5-15), FD-1 6 (11.5-12), and FD-2 6 (14.5-15) with possible low bias, unless other issues affect the data, due to low sensitivity during initial calibration.

CCALs: GCMS2C 4/9/13. CCAL Min. RRF and maximum %D achieved for all compounds except min. RRF not met for trichloroethene (0.255 compared to 0.0300 criteria). Lab flagged several compounds as being outside criteria but this wasn't based on Table 10 ASP 2005 criteria.

CCALs: GCMSC 4/5/13, 4/7/13, 4/8/13 & 4/9/13. CCAL Min. RRF and maximum %D achieved for all compounds in all Coals except min. RRF not met for trichloroethene. Lab flagged several compounds as being outside criteria but this wasn't based on Table 10 ASP 2005 criteria.

*ACTION: Trichloroethene estimated (J or UJ) in samples TRIP BLANK, FIELD BLANK 1, FIELD BLANK 2, 1.1 (13-13.5, 1.1 (14.5-15), 1.2 (11-11.5), 1.2 (13-13.5), 2.1 (10-10.5), 2.1 (11.5-12), 2.2 (14-14.5), 4 (10-10.5), 4 (11-11.5), 4 (14.5-15), 5 (13.5-14), 5 (14-14.5), 5 (14.5-15), 6 (11.5-12), 6 (12.5-13), 6 (14.5-15), FD-1 6 (11.5-12), and FD-2 6 (14.5-15) with possible low bias, unless other issues affect the data, due to low calibration verification (same samples as for ICAL Action).

CCALs: GCMSE 4/5/13, 4/5/13 (2nd CCAL), 4/8/13, 4/9/13, & 4/10/13. min. RRF and maximum %D achieved for all compounds except Acetone %D = 49.6% in 4/10/13 CCAL due loss of sensitivity on 4/10/13 as compared to ICAL sensitivity for acetone detection. Only sample 3 (14.5-15) had acetone reported following this CCAL. Lab flagged several compounds as being outside criteria but this wasn't based on Table 10 ASP 2005 criteria.

*ACTION: Acetone estimated (UJ) with possible low bias in sample 3 (14.5-15) due to low calibration verification.

Additional Notes:

IS: lab used a two more IS compounds, tert-Butyl Alcohol-d9 and Pentafluorobenzene, in addition to three IS' required by NYSDEC ASP2005 (1,4-Difluorobenzene, Chlorobenzene-d5, and 1,4-Dichlorobenzene-d4) - this is acceptable based upon lab using SW-846 method for analysis. All 5 IS Areas and Retention Times were in criteria in all samples and QC - No Action required.

The list of compounds reported for VOCs is a project-specific list consisting of thirty-five VOCs as compared to the TCL VOC list in NYSDEC ASP2005, which contains fifty-one compounds. The VOC list of compounds reported in this project is, according to the laboratory, an older NYSDEC TCL list with methyl tert-butyl ether added. There are 36 results per sample reported since cis-1,2-dichloroethene, trans-1,2-dichloroethene, and 1,2-dichloroethene (total) are reported.

Eleven samples (1.1 (13-13.5), 1.2 (13-13.5), 1.2 (11-11.5), 2.1 (11.5-12), 2.1 (10-10.5), 2.2 (14-14.5), 4 (11-11.5), 4 (14.5-15), 5 (13.5-14), 5 (14-14.5), and 5 (14.5-15)) were analyzed as low-level soils and one or more compounds were reported above the instrument calibration range (lab flagged data "E"). For these samples, the laboratory analyzed the samples using the medium-level methanol extracts. Samples 1.1 (12.5-13), 2.1 (12.5-13), and 2.2 (12.5-13) were analyzed as medium-level aliquots and required reanalysis with a secondary aliquot of methanol for dilution purposes. Data for all analyses for these fourteen samples were reviewed and the data as reported were acceptable. The laboratory reported the data properly based on this review.

The lab reported 133 results at a level < RL and qualified the data as "J". The 133 "J" results were accepted with indeterminate bias due to uncertainty in quantitation below the instrument calibration range.

All non-detects for VOCs were reported at levels less the Unrestricted Use Soil Cleanup Objective and/or Supplemental Soil Cleanup Objectives except for acetone, benzene, 2-butanone, carbon disulfide, carbon tetrachloride, chloroethane, chloroform, cis-1,2-dichloroethene, trans-1,2-dichloroethene, ethylbenzene, MTBE, methylene chloride, 1,1,2,2-tetrachloroethane, tetrachloroethene, vinyl chloride and xylenes in 2.2 (11-11.5); acetone, benzene, cis-1,2-dichloroethene, cis-1,3-dichloropropene, methylene chloride, trans-1,3-dichloropropene, and vinyl chloride in samples 1.1 (12.5-13), 1.2 (14-14.5), 2.1 (12.5-13), 2.2 (12.5-13), 3 (12.5-13), 3 (13.5-14), and 3 (14.5-15); 1,2-dichloroethane in sample 3 (13.5-14); 2-butanone in sample 1.1 (12.5-13), 1.2 (14-14.5), 2.2 (12.5-13), 3 (12.5-13), and 3 (13.5-14); carbon tetrachloride in sample 1.2 (14-14.5); chloroform in samples 1.1 (12.5-13), 1.2 (12.5-13), 3 (12.5-13), and 3 (13.5-14); carbon tetrachloride in sample 1.2 (14-14.5); chloroform in samples 1.1 (12.5-13), 1.2 (12.5-13), 3 (12.5-13), and 3 (13.5-14); carbon tetrachloride in samples 1.2 (14-14.5), 3 (12.5-13), and 3 (13.5-14); due to reporting of these compounds from the medium-level preserved sample aliquot. The data user will need to evaluate these non-detects at elevated levels for project uses.

Calculation check: 2.2 (11-11.5) [JB32749-14] medium-level analysis

3g of 82.6% solid sample dissolved in 5 mL Methanol and 5 µL of extract was purged in 5 mL water

Sample moisture contribution to extract = 3g (1-0.826) = 0.522 "mL" of added moisture. Total extract volume = 5 + 0.522 = 5.522 mL or 5,522 µL Sample Response = 505908; IS Response = 189298@ 50; RRF ICAL = 0.749 (GCMSE)

$$1,1,1-\text{Trichloroethane Conc.} = \underbrace{505908 \text{ x } 5522 \text{ x } 5 \text{ x } 50}_{189298 \text{ x } 3 \text{ x } 0.826 \text{ x } 5 \text{ x } 0.749} = 397566 = 398,000 \text{ } \mu\text{g/Kg}$$

Additional Notes:

All %Solids were > 75% - No action required

The sample chromatograms, mass spectra of detects and quantitation reports were scanned and data appeared to have been reported correctly. The laboratory did not report Tentatively Identified Compounds (TICs) as these were not requested.

The narrative did not mention any issues that were not already addressed in this review.

Lab reported results with too many significant figures. Values < 10 should be reported to 1 sig. fig, and values > 10 to 2 sig.fig. but lab reported values < 10 to 2 sig.fig and > 10 with 3 sig.fig. Since EDD and hardcopy match in how data were reported, no action except to note issue.

Method of Analysis: 8260B

SW-846 Method 8260B and NYSDEC ASP2005

- Preservation: Temperature upon receipt 4°±°2C; use judgment if outside criteria
 - HT: waters- pH > 2 or no HCl: 7d<HT; J det/R NDs
 - pH < 2, 14d <HT; J det/R NDs
 - low- or medium-level solid 14d < HT < 28 d, J det/J NDs; HT > 28 days, J det/R NDs
 - unfrozen solid 48 hrs < HT < 96 hrs, J det/J NDs; HT > 96 hrs, J det/R NDs
 - SMCs: Criteria per Table 11A of NYSDEC ASP2005 Exhibit E or lab limits as long as results within ± 10% of ASP limits %Rec<10%, J det/ R NDs; 10% <%Rec<LCL, J det/ J NDs; %Rec >UCL, J det/Accept NDs.
 - LCS: Lab limits accepted since LCS not required for NYSDEC ASP2005

%Rec<10%, J det/ R NDs; 10% <%Rec<LCL, J det/ J NDs; %Rec >UCL, J det/Accept NDs

- Tunes: Samples analyzed within 12-hrs and criteria met per Table 7, NYSDEC ASP2005. If out, use professional judgment.
- ICAL: 5-Level ; min. RRF and %RSD per Table 10 (NYSDEC ASP2005).
- CCAL: min. RRF and %D per Table 10 (NYSDEC ASP2005)
- Blanks: Surrogates outside criteria Use Judgment if isolated or analysis related Non-Matrix related Blank contamination, TB or EB contaminant in all samples associated with Blank If contamination in blank(s) exist, if Result < RL, U result at RL; Result<Blank Action, U result at level reported
- MS/MSD: Table 12 of Exhibit E, NYSDEC ASP2005 or lab limits as long as results within ± 10% of ASP limits %Rec<10%, J det/ R NDs; 10% <%Rec<LCL, J det/ J NDs; %Rec >UCL, J det/Accept NDs- Unspiked Sample only. RPD > Control limit, J det / J ND; %RSD of non-spiked > 50%, J det
 - FD: Both Conc. > 2xQL, RPD >30% (water) 50% (soil), J det; One result ND, other >2 x QL, J det/J NDs; Both Conc. < 2xQL; RPD >criteria, LCS OK, Accept data
 - IS: 25% ≤ Area < 50% of IS in CCAL, J det/ J NDs; Area < 25% of CCAL, J det / R NDs; Area > 150% IS in CCAL, J det / Accept NDs
 - QLs: If result > upper calibration range, J result, if result < lowest calibration standard, J result. Verify all J data reported properly, if applicable. Verify QLs are sample specific and that all compounds requested were reported.
- Sensitivity: Identify any non-detects which exceed TOGS 1.1.1 (TOGS GA AWQS) criteria for waters or Unrestricted Use Soil Cleanup Objectives from 6 NYCRR Part 375, Table 375-6.8(a) (December 14, 2006) and/or Supplemental Soil Cleanup Objectives (SSCO) from CP-51 Soil Cleanup Guidance, Table 1 (October 21, 2010) for soil samples

Lab: Accutes	<u>t</u>		1 20			, new windson,			
Date Sampled:	<u>4/17/13</u>							No. Samples	5 + 1FB + 1TB
Method of Ana	alysis: 8260B							Matrix:	Groundwater
Data Element	Preservation		LCS /			Tunes ICALs		QL & Quant.	
Acceptable	& HT	SMCs	Blank Spike	MS/MSD	FD	CCALs	IS'	Correct	Other Issues
Yes	V	V	V	NA	NA	V	V		
No								Accept 6 "J" results	None

Comments:

The data package consisted of a NYDEC Category B deliverable.

Cooler of samples was received on 4/18/13. All samples were received intact within 4 ± 2 °C criteria. Samples were not preserved with acid, as indicated on the COC and samples had pH =6. There were no COC issues noted.

All samples had pH > 2 and were analyzed within 7 days of sample collection (by 4/24/13) except sample EW-1X, which was reported from an analysis performed on 4/29/13 (outside HT by 5 days). This sample was originally analyzed within HT; however, there was an apparent QC issue with this analysis so it was not reported. The results from the analysis within HT confirm the results presented from the 4/29/13 analysis of this sample; therefore, a decision was made based on professional judgment to accept the results for EW-1X from 4/29/13 without taking any action for HT exceedance.

Surrogates: The lab used surrogate dibromofluoromethane in addition to 1,2-dichloroethane-d4, toluene-d8 and 4-bromofluorobenzene, which are in ASP2005. Since SW-846 method used for analysis allows use of alternate surrogates, no action required. All surrogates are within lab criteria and within \pm 10% of NYSDEC ASP2005 criteria - acceptable recoveries. No action required.

LCS (also known as Blank Spike): The lab spiked all VOCs into LCS as compared to NYSDEC ASP 2005 requirement of a subset of compounds. LCS V2A5720-BS associated with analysis of JB34670-2 & -3; V1A5469-BS assoc. with the analysis of samples JB34670-3 through-7; and V1A5479-BS associated with the analysis of JB34670-1. All %Rec were within criteria in LCS; therefore, lab demonstrated acceptable accuracy for analysis in the absence of the site matrix. No Action required.

MS/MSD: Batch QC on a sample not related to the site performed for all three of the MS/MSDs; therefore, since the results of these MS/MSDs will not affect the site samples reported in this SDG, no further review of these QC performed. Field did not provide extra quantity of sample for performing MS/MSD analysis on site-specific samples. No action required.

Lab: Accutest

Blank Action:

Blanks Reviewed: Method Blanks: V2A5720-MB, V1A5469-MB, V1A5479-MB

TB: Trip Blank ; FB = FB041713

Blank ID	Contaminant / Level	Related?	/ Action	Sample and Reported Result	Result
V2A5720-MB	None	Y	· · ·	No Blank Action required	
V1A5469-MB	None	Y		No Blank Action required	
V1A5479-MB	None	Y		No Blank Action required	
Trip Blank	None	Y	- I	No Blank Action required	
FB041713	None	Y		No Blank Action required	

Additional Notes:

FD pair: There were no field duplicate samples associated with the samples reported in this SDG. Therefore, precision from collection through analysis could not be assessed for these samples.

Tunes: Instrument GCMS1A 4/17/13 (ICAL), 4/23/13, & 4/29/13 and Instrument GCMS2A 4/9/13 (ICAL) & 4/22/13. All Abundances were acceptable and all samples were analyzed within 12 hours of tune. Average of scans across peak with background correction used to generate tunes - acceptable. No action required.

ICAL: GCMS1A & GCMS2A analyzed 5- to 9-level ICALs from 0.5, 1, 2, or 5 to 200 μ g/L for many compounds in addition to those reported. Min. RRF and Maximum %RSD given in Table 10 of NYDEC ASP2005 achieved for all compounds. Lab used regression analysis for compounds with %RSD > 15% - these all had r2 > 0.99 - since SW-846 allows regression analysis so this was an acceptable calibration method. No Action required.

CCALs: Inst. GCMS1A 4/23/13 & 4/29/13 & Inst. GCMS2A 4/22/13. CCAL Min. RRF and maximum %D achieved for all compounds in all CCALs for compounds reported in samples except bromomethane %D=-30.8% in 4/29/13 CCAL due to increase in sensitivity of instrument to this compound on day of CCAL as compared to sensitivity during ICAL. Since the associated sample was non-detect for bromomethane, no action required. Lab also flagged several compounds as being outside criteria but this wasn't based on Table 10 ASP 2005 criteria and the flagged compounds were not targets for these samples. No Action required.

IS: lab used a two more IS compounds, tert-Butyl Alcohol-d9 and Pentafluorobenzene, in addition to three IS' required by NYSDEC ASP2005 (1,4-Difluorobenzene, Chlorobenzene-d5, and 1,4-Dichlorobenzene-d4) - this is acceptable based upon lab using SW-846 method for analysis. All 5 IS Areas and Retention Times were in criteria in all samples and QC - No Action required.

Lab reported results for 35 VOCs (thirty-six results reported since 1,2-dichloroethene (total) was reported in addition to the cis- and trans- isomers of 1,2-dichloroethene). The list of compounds reported for VOCs is a project-specific list consisting of thirty-five VOCs as compared to the TCL VOC list in NYSDEC ASP 2005, which contains fifty-one compounds. The VOC list of compounds reported in this project is, according to the laboratory, an older NYSDEC TCL list with methyl tert-butyl ether added.

Additional Notes:

The lab reported 6 results at a level < RL and qualified the data as "J". The 6 "J" results were accepted with indeterminate bias due to uncertainty in quantitation below the instrument calibration range.

All samples were initially analyzed at DF=1 except EW-1X, which was analyzed at DF=10 and MW-1N, which was analyzed at DF=5. Samples EW-0 and MN-1N were also analyzed at a secondary dilution since some analytes in the original analysis were reported over the instrument calibration range. A review of the sample quantitation reports and chromatograms indicate the choices of dilution made for analysis were appropriate. The sample chromatograms, mass spectra of detects and quantitation reports were scanned and data appeared to have been reported correctly. The laboratory did not report Tentatively Identified Compounds (TICs) as these were not requested; however, there appear to be TICs in some of the samples.

All non-detects for VOCs were reported at levels less than or equal to the NYS Ambient Water Quality Standards and Guidance Values – Water Class "GA" (TOGS AWQS – Water Class GA) included in the Division of Water Technical and Operational Guidance Series (TOGS 1.1.1), Ambient Water Quality Standards And Guidance Values and Groundwater Effluent Limitations (June 1998 with 2000 and 2004 Addenda) with the exceptions of: 1,2-dichloroethane, cis-1,3-dichloropropene, and trans-1,3-dichloropropene due to method limitations; benzene, bromomethane, 1,2-dichloropropane, methylene chloride, styrene, 1,1,2-trichloroethane, and vinyl chloride in samples MW-1N and EW-1X; and acetone, 2-butanone, carbon tetrachloride, chlorobenzene, chloroethane, clioroform, chloromethane, cis-1,2-dichloroethene, trans-1,2-dichloroethene, 1,1-dichloroethene, ethylbenzene, 1,1,2,2-tetrachloroethane, tetrachloroethene, toluene, 1,1,1-trichloroethane, trichloroethene, and xylene (total) in sample EW-1X due to dilutions used for sample analyses. The data user will need to evaluate non-detects at elevated levels for project decisions.

Calculation check: EW-0 [JB4670-3] 5 mL purged; DF = 50 Sample Response = 409935; IS Response = 161959 @ 50; RRF ICAL = 0.734 (GCMS1A)

1,1,1-Trichloroethane Conc. $= \frac{409935 \times 50 \times 50}{161959 \times 0.734} = 8,620 \ \mu g/L$

Lab reported $8,630 \mu g/L$ for this compound which might be due to difference in using rounded values for RRFs, etc. Since difference between calculated and reported value was < 0.2%, no action required. To 2 significant figures, as these data should have been reported, 8620 and 8630 are both 8600 - they are the same.

The narrative did not mention any issues that were not already addressed in this review.

Lab reported results with too many significant figures. Values < 10 should be reported to 1 sig. fig, and values > 10 to 2 sig.fig. but lab reported values < 10 to 2 sig.fig and > 10 with 3 sig.fig. Since EDD and hardcopy match in how data were reported, no action except to note issue.

Method of Analysis: 8260B

SW-846 Method 8260B and NYSDEC ASP2005

- Preservation: Temperature upon receipt 4°±°2C; use judgment if outside criteria
 - HT: waters- pH > 2 or no HCl: 7d<HT; J det/R NDs
 - pH < 2, 14d <HT; J det/R NDs
 - low- or medium-level solid 14d < HT < 28 d, J det/J NDs; HT > 28 days, J det/R NDs
 - unfrozen solid 48 hrs < HT < 96 hrs, J det/J NDs; HT > 96 hrs, J det/R NDs
 - SMCs: Criteria per Table 11A of NYSDEC ASP2005 Exhibit E or lab limits as long as results within ± 10% of ASP limits %Rec<10%, J det/ R NDs; 10% <%Rec<LCL, J det/ J NDs; %Rec >UCL, J det/Accept NDs.
 - LCS: Lab limits accepted since LCS not required for NYSDEC ASP2005

%Rec<10%, J det/ R NDs; 10% <%Rec<LCL, J det/ J NDs; %Rec >UCL, J det/Accept NDs

- Tunes: Samples analyzed within 12-hrs and criteria met per Table 7, NYSDEC ASP2005. If out, use professional judgment.
- ICAL: 5-Level; min. RRF and %RSD per Table 10 (NYSDEC ASP2005).
- CCAL: min. RRF and %D per Table 10 (NYSDEC ASP2005)
- Blanks: Surrogates outside criteria Use Judgment if isolated or analysis related Non-Matrix related Blank contamination, TB or EB contaminant in all samples associated with Blank If contamination in blank(s) exist, if Result < RL, U result at RL; Result<Blank Action, U result at level reported
- MS/MSD: Table 12 of Exhibit E, NYSDEC ASP2005 or lab limits as long as results within ± 10% of ASP limits %Rec<10%, J det/ R NDs; 10% <%Rec<LCL, J det/ J NDs; %Rec >UCL, J det/Accept NDs- Unspiked Sample only. RPD > Control limit, J det / J ND; %RSD of non-spiked > 50%, J det
 - FD: Both Conc. > 2xQL, RPD >30% (water) 50% (soil), J det; One result ND, other >2 x QL, J det/J NDs; Both Conc. < 2xQL; RPD >criteria, LCS OK, Accept data
 - IS: 25% ≤ Area < 50% of IS in CCAL, J det/J NDs; Area < 25% of CCAL, J det / R NDs; Area > 150% IS in CCAL, J det / Accept NDs
 - QLs: If result > upper calibration range, J result, if result < lowest calibration standard, J result. Verify all J data reported properly, if applicable. Verify QLs are sample specific and that all compounds requested were reported.

Sensitivity: Identify any non-detects which exceed TOGS 1.1.1 (TOGS GA AWQS) criteria for waters or Soil Cleanup Objectives from 6 NYCRR Part 375 for soils

Data Usability Summary Report (DUSR) NYSDEC ASP Category B

Client/Company:	Fleming-Lee Shue, Inc., New York, New York (FLS)
Site/Project Name:	AFFCO, 361 Walsh Avenue, New Windsor, NY
Laboratory:	Accutest Laboratories, Dayton, New Jersey
SDGs/Lab Project #:	<u>JB15405</u>
Date(s) of Collection:	August 26, 2012, August 30, 2012 & September 4, 2012
Number and type Samples & analyses:	24 soil samples for project-specific Target Compound List (TCL) of Volatile Organic Compounds (VOCs)
Senior Data Reviewers:	Dr. Nancy C. Rothman, New Environmental Horizons, Inc.
	Susan D. Chapnick, New Environmental Horizons, Inc.
Date Completed:	<u>February 4, 2013</u>

This Data Usability Summary Report (DUSR) is based on guidance developed by the New York State Department of Conservation (NYSDEC), June 1999, for technical review of analytical data in lieu of a full third party data validation and technical guidance presented in *DER-10 / Technical Guidance for Site Investigation and Remediation*, NYSDEC, May 3, 2010. The objective of the DUSR is to determine whether or not the data as presented meet the site/project specific criteria for data quality and data use based on the NYSDEC ASP 2005 or EPA method QC acceptance criteria.

I. Required DUSR Questions

1. Is the data package complete as defined under the requirements for the most current NYSDEC ASP Category B or USEPA CLP deliverables?

Yes.

2. Have all holding times been met?

Yes.

3. Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data fall within the protocol required limits and specifications?

Yes, analyses generally met QC criteria. Exceedances of QC criteria, where data were qualified but considered usable for project decisions, are noted in Section III of this DUSR.

4. Have all of the data been generated using established and agreed upon analytical protocols?

Yes. Analytical data were generated using established EPA Methods, Standard Methods, and ASTM Methods (see analytical references in Section II below). Deviations from EPA or other method protocols and NYSDEC ASP 2005 QC protocols are discussed in Section III of this DUSR.

5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms?

Yes. The raw data were checked to verify that detected results met retention time and mass spectral criteria, where applicable, for qualitative identification. A spot check was performed to verify quantitative accuracy for reporting of all results (presented in the Data Review Checklists attached to this DUSR).

6. Have the correct data qualifiers been used and are they consistent with the most current NYSDEC ASP?

Yes. The laboratory used the correct data qualifiers in reporting of results. Data qualifiers were changed for several results during this review, as shown in Table 2 and explained in Section III of this DUSR.

7. Have any quality control (QC) exceedances been specifically noted in the DUSR and have the corresponding QC summary sheets from the data package been attached to the DUSR?

Yes. QC exceedances are specified in Section III of this DUSR. QC summary sheets from the data package have not been attached; however, all QC exceedances that required data qualification are summarized in Table 2 of the DUSR and flagged in the validated electronic data deliverable (EDD).

II. Sample Descriptions and Analytical Parameters

The sample IDs, date of sampling, identification of MS/MSD/MD, FD, EB, TB, if applicable and the analytical parameters reviewed in this DUSR are listed in Table 1. Any deviations noted for sample collection or receipt (*e.g.*, temperature or preservation issues) are included in Section III, below.

Sample ID	Lab ID	Collection Date	Matrix	Analytical Parameters	Sample Type
PX01-SW-5	JB14890-1	8/28/12	Soil	VOCs	Field sample [used for MS/MSD]
PX02-SW-5	JB14890-2	8/28/12	Soil	VOCs	Field sample
PX03-BT-10	JB14890-3	8/28/12	Soil	VOCs	Field sample [used for MS/MSD]
PX04-SW-5	JB14890-4	8/28/12	Soil	VOCs	Field sample
PX05-SW-6	JB14890-5	8/28/12	Soil	VOCs	Field sample
PX06-BT-10	JB14890-6	8/28/12	Soil	VOCs	Field sample
C5SP01	JB14890-7	8/28/12	Soil	VOCs	Field sample
C5SP02	JB14890-8	8/28/12	Soil	VOCs	Field sample
C4SP01	JB14890-9	8/28/12	Soil	VOCs	Field sample
PX07BT-10	JB15155-1	8/30/12	Soil	VOCs	Field sample [used for MS/MSD]
PX08SW-7	JB15155-2	8/30/12	Soil	VOCs	Field sample [used for MS/MSD]
BENCH01	JB15155-3	8/30/12	Soil	VOCs	Field sample
PX09SW-3	JB15405-1	9/4/12	Soil	VOCs	Field sample [used for MS/MSD]
PX10SW-5	JB15405-2	9/4/12	Soil	VOCs	Field sample

Sample ID	Lab ID	Collection Date	Matrix	Analytical Parameters	Sample Type
PX11BT-10	JB15405-3	9/4/12	Soil	VOCs	Field sample
PX12SW-7	JB15405-4	9/4/12	Soil	VOCs	Field sample
PX13SW-7	JB15405-5	9/4/12	Soil	VOCs	Field sample
PX14SW-6	JB15405-6	9/4/12	Soil	VOCs	Field sample [used for MS/MSD]
PX15BT-10	JB15405-7	9/4/12	Soil	VOCs	Field sample [used for MS/MSD]
C1SP01	JB15405-8	9/4/12	Soil	VOCs	Field sample
C3SP01	JB15405-9	9/4/12	Soil	VOCs	Field sample [used for MS/MSD]
C3SP02	JB15405-10	9/4/12	Soil	VOCs	Field sample
C2SP01	JB15405-11	9/4/12	Soil	VOCs	Field sample [used for MS/MSD]
C2SP02	JB15405-12	9/4/12	Soil	VOCs	Field sample

 Table 1. Sample Descriptions and Analytical Parameters - continued

Analytical method references:

TCL VOC: EPA SW846 Method 8260B

Percent Moisture / Percent Solids: ASTM 4643-00 were performed and reported for all samples to convert results to dry-weight units.

III. Data Deficiencies, Analytical Protocol Deviations, and Quality Control Exceedances

The following QC elements, as applicable to the analytical methods, were reviewed during this DUSR:

- Data package completeness and reporting protocols
- Sample receipt, holding times and preservation criteria
- Calibration criteria (instrument tuning, initial and continuing calibration verifications)
- Method, field, and instrument blank results
- Laboratory Control Sample (LCS), Blank Spike (BS), or Matrix Spike Blank (MSB) recoveries

- Surrogate or System Monitoring Compound (SMC) Recoveries
- Matrix Spike (MS) / Matrix Spike Duplicate (MSD) Recoveries
- MS/MSD, sample/Matrix Duplicate (MD), or sample/Field Duplicate (FD) Relative Percent Differences (RPDs)
- Sample result reporting (including reporting limits and units)
- Other method-specific QC if applicable and reported (e.g., internal standard areas)
- Deficiencies or protocol deviations as noted in the Laboratory Narrative

During this review of VOCs, several results were estimated (J and UJ) due to QC issues. Table 2 summarizes the actions taken during this review. NEH generated a validated data spreadsheet based on the electronic project database file received from Accutest for these SDGs. All results were considered acceptable compared to NYSDEC ASP 2005 and method criteria, with the understanding of the potential uncertainty (bias) in the qualified results.

Field Sample ID	Analyte	Qualifier	Bias	Validation Comments
PX07BT-10	1,1-Dichloroethene	J	L	Low MS/MSD recoveries
PX09SW-3	1,1,1-Trichloroethane	J	L	Low MS/MSD recoveries
C2SP01	Bromoform Carbon disulfide Carbon tetrachloride Chlorobenzene Ethylbenzene Styrene Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropropene Xylene (total)	UJ	Ι	MS/MSD imprecision
C2SP01	1,2-Dichloroethene (total)	J	Ι	MS/MSD imprecision + Result uncertain below the calibration range
C2SP01	Trichloroethene	J	I	MS/MSD imprecision + Initial Calibration outside criteria + Low Calibration verification + Result uncertain below the calibration range
PX01-SW-5 PX02-SW-5 PX04-SW-5 PX06-BT-10 C5SP01	Trichloroethene	UJ	L	Initial Calibration outside criteria + Low Calibration verification

Field Sample ID	Analyte	Qualifier	Bias	Validation Comments
PX07BT-10 C2SP02	Trichloroethene	J	L	Initial Calibration outside criteria + Low Calibration verification
PX03-BT-10 PX05-SW-6 C5SP02 C4SP01 PX08SW-7 BENCH01 C3SP02 PX11BT-10 PX14SW-6 PX15BT-10 C1SP01 C3SP01	Trichloroethene	J	Ι	Initial Calibration outside criteria + Low Calibration verification + Result uncertain below the calibration range
PX02-SW-5 PX04-SW-5 PX05-SW-6 PX06-BT-10 C4SP01 PX12SW-7	1,1,1-Trichloroethane	J	Ι	Result uncertain below the calibration range
PX03-BT-10 PX07BT-10 PX08SW-7 BENCH01 C3SP02 C2SP01 C2SP02 PX11BT-10 PX15BT-10 C1SP01 C3SP01	1,1,2-Trichloroethane	J	Ι	Result uncertain below the calibration range
C5SP01 PX08SW-7 BENCH01 C3SP02 C2SP01 C2SP02 PX10SW-5 PX14SW-6	1,1-Dichloroethane	J	Ι	Result uncertain below the calibration range
PX08SW-7 C3SP02 C2SP01 PX15BT-10 C1SP01	1,2-Dichloroethane	J	Ι	Result uncertain below the calibration range

Table 2. Summary of Data Validation Actions - continued

Field Sample ID	Analyte	Qualifier	Bias	Validation Comments
PX04-SW-5				
C5SP01				
BENCH01				
C3SP02				
C2SP01	1.1 Dishlaraathana	J	Ι	Result uncertain below the
C2SP02	1,1-Dichloroethene	J	1	calibration range
PX14SW-6				_
PX15BT-10				
C1SP01				
C3SP01				
PX03-BT-10				
C5SP02				
PX08SW-7				
BENCH01				
C3SP02	1.2 Diablereathers (total)	т	I	Result uncertain below the
C2SP02	1,2-Dichloroethene (total)	J	1	calibration range
PX14SW-6				_
PX15BT-10				
C1SP01				
C3SP01				
PX02-SW-5	A	т	т	Result uncertain below the
PX06-BT-10	Acetone	J	Ι	calibration range
PX01-SW-5				<u> </u>
PX04-SW-5				
PX06-BT-10	Benzene	J	Ι	Result uncertain below the
C4SP01				calibration range
PX13SW-7				
PX03-BT-10	Carbon disulfide	J	Ι	Result uncertain below the
C5SP02	Carbon disunde	J	1	calibration range
PX03-BT-10	Chloroethane	J	Ι	Result uncertain below the
		5	-	calibration range
PX03-BT-10				
C5SP01		_	_	Result uncertain below the
C5SP02	Chloroform	J	Ι	calibration range
PX07BT-10				
PX15BT-10				
PX03-BT-10				
C5SP02				
PX08SW-7				
BENCH01				
C3SP02		_	_	Result uncertain below the
C2SP01	cis-1,2-Dichloroethene	J	Ι	calibration range
C2SP02				
PX14SW-6				
PX15BT-10				
C1SP01				
C3SP01				

Table 2. Summary of Data Validation Actions - continued

Field Sample ID	Analyte	Qualifier	Bias	Validation Comments
PX08SW-7	Ethylbenzene	J	Ι	Result uncertain below the calibration range
PX03-BT-10 C5SP02 PX07BT-10 PX08SW-7 BENCH01 C2SP02 PX10SW-5 PX14SW-6 PX15BT-10 C1SP01 C3SP01	Tetrachloroethene	J	Ι	Result uncertain below the calibration range
PX01-SW-5 PX04-SW-5 PX05-SW-6 C5SP02 C4SP01 PX09SW-3 C3SP02 PX12SW-7 PX13SW-7 PX15BT-10	Toluene	J	Ι	Result uncertain below the calibration range
C5SP02 PX07BT-10 PX08SW-7 BENCH01 C3SP02 C2SP02 PX14SW-6 PX15BT-10 C1SP01 C3SP01	trans-1,2-Dichloroethene	J	Ι	Result uncertain below the calibration range
PX09SW-3 PX10SW-5 PX12SW-7	Trichloroethene	J	Ι	Result uncertain below the calibration range
C5SP02 PX07BT-10	Vinyl chloride	J	Ι	Result uncertain below the calibration range

Table 2. Summary of Data Validation Actions - continued

Qualifiers: U = Analyte is non-detect at the "DV Result" value; UJ = Non-detect is estimated; J = Result is estimated; R = Result is rejected and is unusable for project decisions.

Bias: L = Low; H = High; I = Indeterminate

Abbreviations used in Table 2: MS = Matrix Spike MSD = Matrix Spike Duplicate

As required by the DUSR, the following sections document the QC reviewed and the issues that required action or affected the data certainty in terms of the project data quality objectives (DQO)

of accuracy, precision, representativeness, comparability, and sensitivity. The DQO of completeness can be evaluated by the project manager after all data are generated.

Data Package Completeness and Reporting Protocols

- The samples reported in this SDG were initially analyzed in three separate SDGs (JB14890, JB15405, and JB15155). After completion of the sample analyses, FLS requested that all data in these three SDGs be reported in this one SDG JB15405. The laboratory maintained the original laboratory IDs for the samples throughout the Category B deliverable, as shown in Table 1.
- The initial and continuing calibrations for VOCs contained many compounds in addition to the targets requested. During this review, only the target compounds were assessed.
- For organic analyses, the laboratory used in-house QC limits to judge acceptability of surrogates, MS/MSD, LCS, and calibrations. In addition, the laboratory spiked all VOC targets for the LCS and MS/MSD analyses rather than just a representative subset of analytes as suggested by NYSDEC ASP 2005. During this review, the NYSDEC ASP 2005 QC limits for the compounds specified in Exhibit E were used to evaluate the acceptability of the laboratory quality control, unless otherwise discussed below, while the in-house limits were used to judge the other spiked compounds.
- The laboratory reported too many significant figures for some data. For organic results, NYSDEC ASP 2005 indicates that one significant figure should be reported for values < 10 and two significant figures for values > 10; however, the laboratory reported two significant figures for values < 10 and three for values > 10.

Sample Receipt, Holding Times, and Preservation

Samples were not preserved in the field for VOC analysis (i.e., Method 5035A preservation of soils for VOC analysis was not used). FLS indicated that this was not a requirement of the project Work Plan. Data users are cautioned that VOC concentrations in field-unpreserved soils can be biased low due to loss of volatile compounds prior to analysis. Soils were preserved and analyzed using the low-level or medium-level (methanol) aliquots prepared at the laboratory.

Calibration

- For VOC analysis, the laboratory used two additional Internal Standard (IS) compounds, t-butyl alcohol-d₉ and pentafluorobenzene, in addition to the NYSDEC ASP 2005 required IS' of 1,4-difluorobenzene, chlorobenzene-d₅, and 1,4-dichlorobenzene-d₄. Since SW846 Method 8260B allows the use of alternative IS', no action was required.
- The response for trichloroethene was low compared to NYSDEC ASP 2005 criteria in several VOC initial and continuing calibrations. Twenty trichloroethene results were estimated (J or UJ) with possible low bias, as shown in Table 2.
- Various other VOC calibrations reported compounds outside of criteria; however, action to qualify sample data was not required as explained in the Data Review Checklist.

Method, Field, and Instrument Blank Results

• No contamination that would require blank actions was observed in the method blanks.

• There were no trip or field equipment blanks associated with the samples in this SDG.

Laboratory Control Sample (LCS), Blank Spike (BS), or Matrix Spike Blank (MSB) recoveries

• The LCS recoveries were acceptable for all VOCs, indicating acceptable accuracy for the methods as performed by the laboratory.

Surrogate or System Monitoring Compound (SMC) Recoveries

- The laboratory used a fourth surrogate, dibromofluoromethane, in addition to those specified in NYSDEC ASP2005. Since EPA SW-846 allows the use of alternative surrogates, no action was required.
- All surrogates recovered within criteria in all samples and QC.

Matrix Quality Control (Matrix Spike/Matrix Duplicate/Matrix Spike Duplicate and Field Duplicate Samples)

- MS/MSD analysis for VOCs was performed on nine site samples: PX01-SW-5, PX03-BT-10, PX07BT-10, PX08SW-7, PX09SW-3, PX14SW-6, PX15BT-10, C3P01, and C2SP01. Accuracy and precision for the MS/MSD were considered acceptable for all VOCs in the analyses of six samples: PX01-SW-5, PX03-BT-10, PX08SW-7, PX14SW-6, PX15BT-10, and PX03-BT-10. The spike levels for several of these MS/MSD analyses were too low compared to the relatively high VOC concentrations in the unspiked sample, which resulted in recoveries that were not applicable to the matrix. In these instances, no action was taken based on professional judgment as explained in the Data Validation Checklist. The MS/MSD results in three site samples showed exceedances as explained below and listed in Table 2:
 - PX07BT-10: 1,1-Dichloroethene was estimated (J) with possible low bias due to low MS/MSD recoveries.
 - PX09SW-3: 1,1,1-Trichloroethane was estimated (J) with possible low bias due to low MS/MSD recoveries.
 - C2SP01: Bromoform, carbon disulfide, carbon tetrachloride, chlorobenzene, trans-1,2-dichloroethene, 1,2-dichloroethene (total), trans-1,3-dichloropropene, ethylbenzene, stryrene, toluene, trichloroethene, and xylene (total) were estimated (J or UJ) with indeterminate bias due to MS/MSD imprecision.
- There were no field duplicates associated with the samples in this SDG; therefore, precision from sample collection through analysis and representativeness could not be evaluated.

Sample Result Reporting (including reporting limits and units)

- All results are reported with sample-specific reporting limits (adjusted for sample-specific preparation and dilution factors) on a dry-weight basis (based on sample percent solids) in units of µg/Kg.
- The list of compounds reported for VOCs is a project-specific list consisting of thirtyfive VOCs as compared to the TCL VOC list in NYSDEC ASP 2005, which contains fifty-one compounds. The VOC list of compounds reported in this project is, according to the laboratory, an older NYSDEC TCL list with methyl tert-butyl ether added.
- Sensitivity for all results was considered acceptable since all non-detects were reported at levels less than the Soil Cleanup Objectives (SCOs) listed in 6 NYCRR Part 375

Environmental Remediation Programs Subpart 375-6, NYSDEC, Table 375-6.8(a): Unrestricted Use Soil Cleanup Objectives (SCOs effective December 14, 2006) and the lowest Supplemental Soil Cleanup Objectives (SSCOs) listed in Table 1 of CP-51 / Soil Cleanup Guidance, NYSDEC (October 21, 2010).

- Six samples reported one or more results above the calibration range (flagged "E" by the laboratory) in the initial low-level analyses of the samples. The laboratory reanalyzed these samples either as low-level soils with reduced initial weights or as medium-level methanol extracts. Data for all analyses for these six samples were reviewed and data accepted for reporting of valid results as follows:
 - C1SP01: all initial low-level results accepted except 1,1,1-trichloroethane, which was accepted from the second low-level analysis;
 - PX07BT-10: all initial low-level results accepted except 1,1,1-trichloroethane, chloroethane, and 1,1-dichloroethane, which were accepted from the second low-level analysis;
 - PX03-BT-10: all low-level results accepted except 1,1,1-trichloroethane, 1,1dichloroethane, and 1,1-dichloroethene, which were accepted from the medium-level analysis;
 - C5SP01: all low-level results accepted except 1,1,1-trichloroethane, which was accepted from the medium-level analysis;
 - C5SP02: all low-level results accepted except 1,1,1-trichloroethane and 1,1dichloroethene, which were accepted from the medium-level analysis; and
 - C3SP01: all low-level results accepted except 1,1,1-trichloroethane, which was accepted from the medium-level analysis.

Only accepted data were reported in the validated EDD. The laboratory reported the data properly for these samples based on this review.

• Several detected VOC results were reported at concentrations below the samplespecific reporting limits (RL). During this assessment, these results were qualified as estimated (J) with indeterminate bias due to uncertainty in quantitation at a level below the instrument calibration range. Table 2 identifies the analytes and samples that were estimated due to reporting at levels below the RL.

Data Usability Summary Report (DUSR) NYSDEC ASP Category B

Client/Company:	Fleming-Lee Shue, Inc., New York, New York (FLS)
Site/Project Name:	AFFCO, 361 Walsh Avenue, New Windsor, NY
Laboratory:	Accutest Laboratories, Dayton, New Jersey
SDGs/Lab Project #:	<u>JB32749</u>
Date(s) of Collection:	March 27, 2013
Number and type Samples & analyses:	26 soil samples, 2 Field Blanks, and 1 Trip Blank for project-specific Target Compound List (TCL) of Volatile Organic Compounds (VOCs)
Senior Data Reviewers:	Dr. Nancy C. Rothman, New Environmental Horizons, Inc.
	Susan D. Chapnick, New Environmental Horizons, Inc.
Date Completed:	<u>May 16, 2013</u>

This Data Usability Summary Report (DUSR) is based on guidance developed by the New York State Department of Conservation (NYSDEC), June 1999, for technical review of analytical data in lieu of a full third party data validation and technical guidance presented in *DER-10 / Technical Guidance for Site Investigation and Remediation*, NYSDEC, May 3, 2010. The objective of the DUSR is to determine whether or not the data as presented meet the site/project specific criteria for data quality and data use based on the NYSDEC ASP 2005 or EPA method QC acceptance criteria.

I. Required DUSR Questions

1. Is the data package complete as defined under the requirements for the most current NYSDEC ASP Category B or USEPA CLP deliverables?

Yes.

2. Have all holding times been met?

Yes.

3. Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data fall within the protocol required limits and specifications?

Yes, analyses generally met QC criteria. Exceedances of QC criteria, where data were qualified but considered usable for project decisions, are noted in Section III of this DUSR.

4. Have all of the data been generated using established and agreed upon analytical protocols?

Yes. Analytical data were generated using established EPA Methods, Standard Methods, and ASTM Methods (see analytical references in Section II below). Deviations from EPA or other method protocols and NYSDEC ASP 2005 QC protocols are discussed in Section III of this DUSR.

5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms?

Yes. The raw data were checked to verify that detected results met retention time and mass spectral criteria, where applicable, for qualitative identification. A spot check was performed to verify quantitative accuracy for reporting of all results (presented in the Data Review Checklists attached to this DUSR).

6. Have the correct data qualifiers been used and are they consistent with the most current NYSDEC ASP?

Yes. The laboratory used the correct data qualifiers in reporting of results. Data qualifiers were changed for several results during this review, as shown in Table 2 and explained in Section III of this DUSR.

7. Have any quality control (QC) exceedances been specifically noted in the DUSR and have the corresponding QC summary sheets from the data package been attached to the DUSR?

Yes. QC exceedances are specified in Section III of this DUSR. QC summary sheets from the data package have not been attached; however, all QC exceedances that required data qualification are summarized in Table 2 of the DUSR and flagged in the validated electronic data deliverable (EDD).

II. Sample Descriptions and Analytical Parameters

The sample IDs, date of sampling, identification of MS/MSD/MD, FD, EB, TB, if applicable and the analytical parameters reviewed in this DUSR are listed in Table 1. Any deviations noted for sample collection or receipt (*e.g.*, temperature or preservation issues) are included in Section III, below.

Sample ID	Lab ID	Collection Date	Matrix	Analytical Parameters	Sample Type
TRIP BLANK	JB32749-1	3/27/13	Water	VOCs	Trip Blank
FIELD BLANK 1	JB32749-2	3/27/13	Water	VOCs	Field Blank
FIELD BLANK 2	JB32749-3	3/27/13	Water	VOCs	Field Blank
1.1 (12.5-13)	JB32749-4	3/27/13	Soil	VOCs	Field sample
1.1 (13-13.5)	JB32749-5	3/27/13	Soil	VOCs	Field sample
1.1 (14.5-15)	JB32749-6	3/27/13	Soil	VOCs	Field sample
1.2 (13-13.5)	JB32749-7	3/27/13	Soil	VOCs	Field sample
1.2 (11-11.5)	JB32749-8	3/27/13	Soil	VOCs	Field sample
1.2 (14-14.5)	JB32749-9	3/27/13	Soil	VOCs	Field sample
2.1 (12.5-13)	JB32749-10	3/27/13	Soil	VOCs	Field sample
2.1 (11.5-12)	JB32749-11	3/27/13	Soil	VOCs	Field sample
2.1 (10-10.5)	JB32749-12	3/27/13	Soil	VOCs	Field sample
2.2 (12.5-13)	JB32749-13	3/27/13	Soil	VOCs	Field sample
2.2 (11-11.5)	JB32749-14	3/27/13	Soil	VOCs	Field sample

Table 1. Sample Descriptions and Analytical Parameters

Sample ID	Lab ID	Collection Date	Matrix	Analytical Parameters	Sample Type
2.2 (14-14.5)	JB32749-15	3/27/13	Soil	VOCs	Field sample
3 (13.5-14)	JB32749-16	3/27/13	Soil	VOCs	Field sample
3 (14.5-15)	JB32749-17	3/27/13	Soil	VOCs	Field sample
3 (12.5-13)	JB32749-18	3/27/13	Soil	VOCs	Field sample
4 (11-11.5)	JB32749-19	3/27/13	Soil	VOCs	Field sample [used for MD analysis]
4 (10-10.5)	JB32749-20	3/27/13	Soil	VOCs	Field sample
4 (14.5-15)	JB32749-21	3/27/13	Soil	VOCs	Field sample [used for MS/MSD]
5 (13.5-14)	JB32749-22	3/27/13	Soil	VOCs	Field sample
5 (14-14.5)	JB32749-23	3/27/13	Soil	VOCs	Field sample
5 (14.5-15)	JB32749-24	3/27/13	Soil	VOCs	Field sample
6 (11.5-12)	JB32749-25	3/27/13	Soil	VOCs	Field sample
6 (12.5-13)	JB32749-26	3/27/13	Soil	VOCs	Field sample
6 (14.5-15)	JB32749-27	3/27/13	Soil	VOCs	Field sample [used for MS]
FD-1 6(11.5-12)	JB32749-28	3/27/13	Soil	VOCs	Field Duplicate of 6 (11.5-12)
FD-2 6(14.5-15)	JB32749-29	3/27/13	Soil	VOCs	Field Duplicate of 6 (14.5-15)

 Table 1. Sample Descriptions and Analytical Parameters
 - continued

Analytical method references:

TCL VOC: EPA SW846 Method 8260B

Percent Moisture / Percent Solids: ASTM D4643-00 or Standard Method 2540G were performed and reported for all samples to convert results to dry-weight units.

III. Data Deficiencies, Analytical Protocol Deviations, and Quality Control Exceedances

The following QC elements, as applicable to the analytical methods, were reviewed during this DUSR:

- Data package completeness and reporting protocols
- Sample receipt, holding times and preservation criteria
- Calibration criteria (instrument tuning, initial and continuing calibration verifications)
- Method, field, and instrument blank results
- Laboratory Control Sample (LCS), Blank Spike (BS), or Matrix Spike Blank (MSB) recoveries
- Surrogate or System Monitoring Compound (SMC) Recoveries
- Matrix Spike (MS) / Matrix Spike Duplicate (MSD) Recoveries
- MS/MSD, sample/Matrix Duplicate (MD), or sample/Field Duplicate (FD) Relative Percent Differences (RPDs)
- Sample result reporting (including reporting limits and units)
- Other method-specific QC if applicable and reported (e.g., internal standard areas)
- Deficiencies or protocol deviations as noted in the Laboratory Narrative

During this review of VOCs, all results were estimated (J and UJ) due to QC issues. Table 2 summarizes the actions taken during this review. NEH generated a validated data spreadsheet based on the electronic project database file received from Accutest for these SDGs. All results were considered acceptable compared to NYSDEC ASP 2005 and method criteria, with the understanding of the potential uncertainty (bias) in the qualified results.

Field Sample ID	Analyte	Qualifier	Bias	Validation Comments
TRIP BLANK	Bromoform Dibromochloromethane	J	Ι	Sample Preservation issue + Result reported below the calibration range
TRIP BLANK FIELD BLANK 1 FIELD BLANK 2 2.1 (11.5-12) 2.1 (10-10.5) 4 (14.5-15) 5 (14-14.5) 5 (14-14.5) 5 (14.5-15) 6 (11.5-12) 6 (14.5-15) FD-2 6(14.5-15)	Trichloroethene	IJ	L	Sample Preservation issue + Initial Calibration outside criteria + Low Calibration verification
TRIP BLANK	All VOCs except: Bromoform Dibromochloromethane Trichloroethene	UJ	L	Sample Preservation issue

|--|

Field Sample ID	Analyte	Qualifier	Bias	Validation Comments
FIELD BLANK 1	All VOCs except:	UJ	L	Sample Preservation issue
FIELD BLANK 2	Trichloroethene	0J	L	Sample Preservation issue
1.1 (12.5-13)	1,2-Dichloroethene (total) cis-1,2-Dichloroethene Tetrachloroethene trans-1,2-Dichloroethene	J	I	Sample Preservation issue + Result reported below the calibration range
1.1 (12.5-13)	All VOCs except: 1,2-Dichloroethene (total) cis-1,2-Dichloroethene Tetrachloroethene trans-1,2-Dichloroethene	J or UJ	L	Sample Preservation issue
1.1 (13-13.5) 1.1 (14.5-15) 1.2 (13-13.5) 1.2 (11-11.5) 2.2 (14-14.5) 4 (11-11.5) 4 (10-10.5) 5 (13.5-14) 6 (12.5-13) FD-1 6(11.5-12)	Trichloroethene	J	I	Sample Preservation issue + Initial Calibration outside criteria + Low Calibration verification + Result reported below the calibration range
1.1 (13-13.5)	1,2-Dichloroethane Acetone Carbon disulfide Methylene chloride Toluene	J	I	Sample Preservation issue + Result reported below the calibration range
1.1 (13-13.5)	All VOCs except: Trichloroethene 1,2-Dichloroethane Acetone Carbon disulfide Methylene chloride Toluene	J or UJ	L	Sample Preservation issue
1.1 (14.5-15)	1,2-Dichloroethene (total) Carbon disulfide Methylene chloride Toluene trans-1,2-Dichloroethene Vinyl chloride	J	I	Sample Preservation issue + Result reported below the calibration range
1.1 (14.5-15)	All VOCs except: Trichloroethene 1,2-Dichloroethene (total) Carbon disulfide Methylene chloride Toluene trans-1,2-Dichloroethene Vinyl chloride	J or UJ	L	Sample Preservation issue

Field Sample ID	Analyte	Qualifier	Bias	Validation Comments
1.2 (13-13.5)	1,1,2-Trichloroethane 1,2-Dichloroethene (total) Carbon disulfide Chloroethane cis-1,2-Dichloroethene Methylene chloride trans-1,2-Dichloroethene	J	I	Sample Preservation issue + Result reported below the calibration range
1.2 (13-13.5)	All VOCs except: Trichloroethene 1,1,2-Trichloroethane 1,2-Dichloroethene (total) Carbon disulfide Chloroethane cis-1,2-Dichloroethene Methylene chloride trans-1,2-Dichloroethene	J or UJ	L	Sample Preservation issue
1.2 (11-11.5)	1,1,2-Trichloroethane 1,2-Dichloroethene (total) Carbon disulfide Chloroethane cis-1,2-Dichloroethene Ethylbenzene Methylene chloride Xylene (total)	J	Ι	Sample Preservation issue + Result reported below the calibration range
1.2 (11-11.5)	All VOCs except: Trichloroethene 1,1,2-Trichloroethane 1,2-Dichloroethene (total) Carbon disulfide Chloroethane cis-1,2-Dichloroethene Ethylbenzene Methylene chloride Xylene (total)	J or UJ	L	Sample Preservation issue
1.2 (14-14.5)	Toluene	J	Ι	Sample Preservation issue + Result reported below the calibration range
1.2 (14-14.5)	All VOCs except: Toluene	J or UJ	L	Sample Preservation issue
2.1 (12.5-13)	1,1,2-Trichloroethane Carbon disulfide cis-1,2-Dichloroethene Tetrachloroethene trans-1,2-Dichloroethene	J	I	Sample Preservation issue + Result reported below the calibration range

Field Sample ID	Analyte	Qualifier	Bias	Validation Comments
2.1 (12.5-13)	All VOCs except: 1,1,2-Trichloroethane Carbon disulfide cis-1,2-Dichloroethene Tetrachloroethene trans-1,2-Dichloroethene	J or UJ	L	Sample Preservation issue
2.1 (11.5-12)	1,1,2-Trichloroethane Benzene Carbon disulfide Methylene chloride Tetrachloroethene trans-1,2-Dichloroethene	J	I	Sample Preservation issue + Result reported below the calibration range
2.1 (11.5-12)	All VOCs except: Trichloroethene 1,1,2-Trichloroethane Benzene Carbon disulfide Methylene chloride Tetrachloroethene trans-1,2-Dichloroethene	J or UJ	L	Sample Preservation issue
2.1 (10-10.5)	1,1,2-Trichloroethane Carbon disulfide Chloroform cis-1,2-Dichloroethene Methylene chloride Tetrachloroethene trans-1,2-Dichloroethene	J	Ι	Sample Preservation issue + Result reported below the calibration range
2.1 (10-10.5)	All VOCs except: Trichloroethene 1,1,2-Trichloroethane Carbon disulfide Chloroform cis-1,2-Dichloroethene Methylene chloride Tetrachloroethene trans-1,2-Dichloroethene	J or UJ	L	Sample Preservation issue
2.2 (12.5-13)	1,2-Dichloroethene (total) cis-1,2-Dichloroethene Tetrachloroethene Trichloroethene	J	Ι	Sample Preservation issue + Result reported below the calibration range
2.2 (12.5-13)	All VOCs except: 1,2-Dichloroethene (total) cis-1,2-Dichloroethene Tetrachloroethene Trichloroethene	J or UJ	L	Sample Preservation issue
2.2 (11-11.5)	1,1-Dichloroethane Toluene Trichloroethene	J	Ι	Sample Preservation issue + Result reported below the calibration range

Field Sample ID	Analyte	Qualifier	Bias	Validation Comments
	All VOCs except:			
22(11, 11, 5)	1,1-Dichloroethane	Len III	т	Samala Drasamatian issue
2.2 (11-11.5)	Toluene	J or UJ	L	Sample Preservation issue
	Trichloroethene			
	1,1,1-Trichloroethane			
	1,1,2-Trichloroethane			
	Carbon disulfide			Sample Preservation issue +
2.2 (14-14.5)	cis-1,2-Dichloroethene	J	Ι	Result reported below the
	Methylene chloride			calibration range
	trans-1,2-Dichloroethene			
	Vinyl chloride			
	All VOCs except:			
	Trichloroethene			
	1,1,1-Trichloroethane			
	1,1,2-Trichloroethane			
2.2 (14-14.5)	Carbon disulfide	J or UJ	L	Sample Preservation issue
2.2 (14-14.3)	cis-1,2-Dichloroethene	J 01 0J	L	Sample Treservation issue
	Methylene chloride			
	trans-1,2-Dichloroethene			
	Vinyl chloride			
	1,1-Dichloroethane			
	·			Sample Preservation issue
2(12514)	1,1-Dichloroethene Chloroethane	т	т	Sample Preservation issue +
3 (13.5-14)		J	Ι	Result reported below the
	Toluene			calibration range
	Trichloroethene			
	All VOCs except:			
	1,1-Dichloroethane			
3 (13.5-14)	1,1-Dichloroethene	J or UJ	L	Sample Preservation issue
	Chloroethane			
	Toluene			
	Trichloroethene			
3 (14.5-15)	Acetone	UJ	L	Sample Preservation issue +
· · /				Low Calibration verification
	1,2-Dichloroethene (total)			Sample Preservation issue +
3 (14.5-15)	cis-1,2-Dichloroethene	J	Ι	Result reported below the
- ()	trans-1,2-Dichloroethene	-	1	calibration range
	Trichloroethene			8-
	All VOCs except:			
	Acetone			
3 (14.5-15)	1,2-Dichloroethene (total)	J or UJ	L	Sample Preservation issue
	cis-1,2-Dichloroethene		-	
	trans-1,2-Dichloroethene			
	Trichloroethene			
	1,1-Dichloroethane			
	1,2-Dichloroethene (total)			Sample Preservation issue +
3 (12.5-13)	Chloroethane	J	Ι	Result reported below the
5 (12.5 15)	cis-1,2-Dichloroethene	3		calibration range
	trans-1,2-Dichloroethene			canoration range
	Trichloroethene			

Field Sample ID	Analyte	Qualifier	Bias	Validation Comments
3 (12.5-13)	All VOCs except: 1,1-Dichloroethane 1,2-Dichloroethene (total) Chloroethane cis-1,2-Dichloroethene trans-1,2-Dichloroethene Trichloroethene	J or UJ	L	Sample Preservation issue
4 (11-11.5)	1,1,1-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane	J	Ι	Sample Preservation issue + MD imprecision
4 (11-11.5)	1,2-Dichloroethene (total) Carbon disulfide Chloroethane cis-1,2-Dichloroethene Methylene chloride trans-1,2-Dichloroethene Vinyl chloride	J	Ι	Sample Preservation issue + Result reported below the calibration range
4 (11-11.5)	All VOCs except: Trichloroethene 1,1,1-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene (total) Carbon disulfide Chloroethane cis-1,2-Dichloroethene Methylene chloride trans-1,2-Dichloroethene Vinyl chloride	J or UJ	L	Sample Preservation issue
4 (10-10.5)	1,2-Dichloroethene (total) Acetone Carbon disulfide Chloroform cis-1,2-Dichloroethene Tetrachloroethene trans-1,2-Dichloroethene	J	Ι	Sample Preservation issue + Result reported below the calibration range
4 (10-10.5)	All VOCs except: Trichloroethene 1,2-Dichloroethene (total) Acetone Carbon disulfide Chloroform cis-1,2-Dichloroethene Tetrachloroethene trans-1,2-Dichloroethene	J or UJ	L	Sample Preservation issue

Field Sample ID	Analyte	Qualifier	Bias	Validation Comments
	1,1,1-Trichloroethane			Sample Preservation issue +
4 (14.5-15)	1,1-Dichloroethene	J	Ι	Result reported below the
	Vinyl chloride			calibration range
	All VOCs except:			
	Trichloroethene			
4 (14.5-15)	1,1,1-Trichloroethane	J or UJ	L	Sample Preservation issue
	1,1-Dichloroethene			_
	Vinyl chloride			
	1,1,2-Trichloroethane			
	1,2-Dichloroethene (total)			Sample Preservation issue +
5 (13.5-14)	Acetone	J	Ι	Result reported below the
	cis-1,2-Dichloroethene			calibration range
	Methylene chloride			
	All VOCs except:			
	Trichloroethene			
	1,1,2-Trichloroethane			
5 (13.5-14)	1,2-Dichloroethene (total)	J or UJ	L	Sample Preservation issue
	Acetone		1	
	cis-1,2-Dichloroethene			
	Methylene chloride			
	Carbon disulfide			Sample Preservation issue +
5 (14-14.5)	Chloroethane	J	Ι	Result reported below the
	Vinyl chloride			calibration range
	All VOCs except:			
	Trichloroethene			
5 (14-14.5)	Carbon disulfide	J or UJ	L	Sample Preservation issue
	Chloroethane			
	Vinyl chloride			
	1,2-Dichloroethene (total)			
	Chloroethane			Sample Preservation issue -
5 (14.5-15)	cis-1,2-Dichloroethene	J	Ι	Result reported below the
	Methylene chloride			calibration range
	Vinyl chloride			
	All VOCs except:			
	Trichloroethene			
	1,2-Dichloroethene (total)			
5 (14.5-15)	Chloroethane	J or UJ	L	Sample Preservation issue
	cis-1,2-Dichloroethene			
	Methylene chloride			
	Vinyl chloride			
6 (11.5-12)	1,1,1-Trichloroethane			Sample Preservation issue +
FD-1 6(11.5-12)	Methylene chloride	J	Ι	Result reported below the
12 1 0(11.5 12)	-			calibration range
	All VOCs except:			
6 (11.5-12)	Trichloroethene	UJ	L	Sample Preservation issue
FD-1 6(11.5-12)	1,1,1-Trichloroethane	UJ		
	Methylene chloride			

Field Sample ID	Analyte	Qualifier	Bias	Validation Comments
6 (12.5-13)	1,1-Dichloroethane 1,2-Dichloroethene (total) Acetone cis-1,2-Dichloroethene Methylene chloride trans-1,2-Dichloroethene	J	Ι	Sample Preservation issue + Result reported below the calibration range
6 (12.5-13)	All VOCs except: Trichloroethene 1,1-Dichloroethane 1,2-Dichloroethene (total) Acetone cis-1,2-Dichloroethene Methylene chloride trans-1,2-Dichloroethene	J or UJ	L	Sample Preservation issue
6 (14.5-15)	1,1,1-Trichloroethane 1,1-Dichloroethane	J	Ι	Sample Preservation issue + Result reported below the calibration range
6 (14.5-15)	All VOCs except: Trichloroethene 1,1,1-Trichloroethane 1,1-Dichloroethane	IJ	L	Sample Preservation issue
FD-2 6(14.5-15)	1,1-Dichloroethane	J	Ι	Sample Preservation issue + Result reported below the calibration range
FD-2 6(14.5-15)	All VOCs except: Trichloroethene 1,1-Dichloroethane	J or UJ	L	Sample Preservation issue

Qualifiers: U = Analyte is non-detect at the "DV Result" value; UJ = Non-detect is estimated; J = Result is estimated; R = Result is rejected and is unusable for project decisions.

Bias: L = Low; H = High; I = Indeterminate

Abbreviations used in Table 2: MD = Matrix Duplicate

As required by the DUSR, the following sections document the QC reviewed and the issues that required action or affected the data certainty in terms of the project data quality objectives (DQO) of accuracy, precision, representativeness, comparability, and sensitivity. The DQO of completeness can be evaluated by the project manager after all data are generated.

Data Package Completeness and Reporting Protocols

• The initial and continuing calibrations for VOCs contained many compounds in addition to the targets requested. During this review, only the target compounds were assessed.

- For organic analyses, the laboratory used in-house QC limits to judge acceptability of surrogates, MS/MSD, LCS, and calibrations. In addition, the laboratory spiked all VOC targets for the LCS and MS/MSD analyses rather than just a representative subset of analytes as suggested by NYSDEC ASP 2005. During this review, the NYSDEC ASP 2005 QC limits for the compounds specified in Exhibit E were used to evaluate the acceptability of the laboratory quality control, unless otherwise discussed below, while the in-house limits were used to judge the other spiked compounds.
- The laboratory reported too many significant figures for some data. For organic results, NYSDEC ASP 2005 indicates that one significant figure should be reported for values < 10 and two significant figures for values > 10; however, the laboratory reported two significant figures for values < 10 and three for values > 10.

Sample Receipt, Holding Times, and Preservation

- Samples, in Encore sample collection devices, were received at the laboratory at 12.1°C, above acceptable temperature criteria of 4 ± 2°C and two days after sample collection. All samples were estimated (J or UJ) with possible low bias, unless other QC issues affected the data, due to improper sample preservation.
- Three Encore devices per soil sample were collected: two for preparation of low-level water-preserved VOC aliquots and one for preparation of a medium-level methanol-preserved VOC aliquot. Since the samples were received two days after sample collection, it was not possible for the laboratory to prepare all of the preserved soil aliquots within 48 hours of sample collection. Since all samples were already qualified due to improper sample preservation for receipt temperature exceedance, no additional action was taken.
- Soil samples were analyzed as follows: samples 1.1 (12.5-13), 1.2 (14-14.5), 2.1 (12.5-13), 2.2 (12.5-13), 2.2 (11-11.5), 3 (13.5-14), 3 (14.5-15), and 3 (12.5-13) were analyzed using only the medium-level soil aliquot; samples 1.1 (13-13.5), 1.2 (13-13.5), 1.2 (11-11.5), 2.1 (11.5-12), 2.1 (10-10.5), 2.2 (14-14.5), 4 (11-11.5), 4 (14.5-15), 5 (13.5-14), 5 (14-14.5), and 5 (14.5-15) were analyzed as low-level soils and reanalyzed using the medium-level soil aliquots to report certain results, which exceeded the calibration range in the low-level analysis; and samples 1.1 (14.5-15), 4 (10-10.5), 6 (11.5-12), 6 (12.5-13), 6 (14.5-15), FD-1 6 (11.5-12), and FD-2 6 (14.5-15) were analyzed using only the low-level soil aliquot.

Calibration

- For VOC analysis, the laboratory used two additional Internal Standard (IS) compounds, t-butyl alcohol-d₉ and pentafluorobenzene, in addition to the NYSDEC ASP 2005 required IS' of 1,4-difluorobenzene, chlorobenzene-d₅, and 1,4-dichlorobenzene-d₄. Since SW846 Method 8260B allows the use of alternative IS', no action was required.
- The response for trichloroethene was low compared to NYSDEC ASP 2005 criteria in several VOC initial and continuing calibrations. Twenty-one trichloroethene results were estimated (J or UJ) with possible low bias, unless other QC issues affected the data, as shown in Table 2.

Method, Field, and Instrument Blank Results

- No contamination that would require blank actions was observed in the method blanks or field blanks.
- The trip blank reported detected results for bromoform and dibromochloromethane; however, since all samples were non-detect for these two compounds, no action was required.

Laboratory Control Sample (LCS), Blank Spike (BS), or Matrix Spike Blank (MSB) recoveries

• The LCS recoveries were acceptable for all VOCs except for high recovery of 1,1,2,2tetrachloroethane in one of the nine LCS samples. Since the samples associated with this LCS were non-detect for this compound, no action was required. The LCS results indicate acceptable accuracy for the methods as performed by the laboratory.

Surrogate or System Monitoring Compound (SMC) Recoveries

- The laboratory used a fourth surrogate, dibromofluoromethane, in addition to those specified in NYSDEC ASP2005. Since EPA SW-846 allows the use of alternative surrogates, no action was required.
- All surrogates recovered within criteria in all field samples and QC except one high recovery in one of the matrix spike (MS) samples. No action was required since the other surrogates demonstrated acceptable recoveries and since this surrogate recovery exceedance in the MS did not directly affect any field sample results.

Matrix Quality Control (Matrix Spike/Matrix Duplicate/Matrix Spike Duplicate and Field Duplicate Samples)

- MS analysis for low-level VOCs was performed on sample 6 (14.5-15) and recovery was acceptable for all VOCs except 1,1,2,2-tetrachloroethane, which recovered high. Since sample 6 (14.5-15) was non-detect for this compound, no action was required. No MSD was performed for low-level analysis due to insufficient sample volume.
- MS/MSD analysis using the medium-level soil aliquot was performed on sample 4 (14.5-15). Only three compounds were reported from this medium-level MS/MSD analysis: chloroethane, 1,1-dichloroethane, and 1,1,1-trichloroethane. MS/MSD accuracy and precision were acceptable for these three compounds. The medium-level analysis was not performed for other VOCs in sample 4 (14.5-15).
- MD analysis was performed on sample 4 (11-11.5). Precision between the sample and MD was acceptable for all VOCs (i.e., RPDs all < lab criteria) except for 1,1dichloroethane, 1,2-dichloroethane, 1,1-dichloroethene, and 1,1,1-trichloroethane. These four results in sample 4 (11-11.5) were estimated (J) with indeterminate bias due to MD imprecision as shown in Table 2. Several other compounds reported RPDs > lab criteria; however, levels reported in the field samples were below the Reporting Limit (e.g., "J" qualified data). RPD is not an appropriate measure of precision for low-level results detected below the RL and therefore, no further action was taken.
- The FD pairs were 6 (11.5-12) / FD-1 6 (11.5-12) and 6 (14.5-15) / FD-2 6 (14.5-15) FD precision was acceptable for all VOCs in both FD pairs, which is an indication of acceptable precision from sample collection through analysis for the site locations for VOCs.

Sample Result Reporting (including reporting limits and units)

- All results are reported with sample-specific reporting limits (adjusted for sample-specific preparation and dilution factors) on a dry-weight basis (based on sample percent solids) in units of $\mu g/Kg$.
- The list of compounds reported for VOCs is a project-specific list consisting of thirtyfive VOCs as compared to the TCL VOC list in NYSDEC ASP 2005, which contains fifty-one compounds. The VOC list of compounds reported in this project is, according to the laboratory, an older NYSDEC TCL list with methyl tert-butyl ether added.
- Sensitivity for all results was considered acceptable since all non-detects were reported at levels less than the Soil Cleanup Objectives (SCOs) listed in 6 NYCRR Part 375 Environmental Remediation Programs Subpart 375-6, NYSDEC, Table 375-6.8(a): Unrestricted Use Soil Cleanup Objectives (SCOs effective December 14, 2006) and the lowest Supplemental Soil Cleanup Objectives (SSCOs) listed in Table 1 of CP-51 / Soil Cleanup Guidance, NYSDEC (October 21, 2010) except for: acetone, benzene, 2-butanone, carbon disulfide, carbon tetrachloride, chloroethane, chloroform, cis-1,2dichloroethene, trans-1,2-dichloroethene, ethylbenzene, MTBE, methylene chloride, 1,1,2,2-tetrachloroethane, tetrachloroethene, vinyl chloride and xylenes in sample 2.2 (11-11.5);acetone, benzene, cis-1,2-dichloroethene, cis-1,3-dichloropropene, methylene chloride, trans-1,3-dichloropropene, and vinyl chloride in samples 1.1 (12.5-13), 1.2 (14-14.5), 2.1 (12.5-13), 2.2 (12.5-13), 3 (12.5-13), 3 (13.5-14), and 3 (14.5-15); 1,2-dichloroethane in sample 3 (13.5-14); 2-butanone in samples 1.1 (12.5-13), 1.2 (14-14.5), 2.2 (12.5-13), 3 (12.5 -13), and 3 (13.5-114); carbon tetrachloride in sample 1.2 (14-14.5); chloroform in samples 1.1 (12.5-13), 1.2 (14-14.5), 2.1 (12.5-13), 2.2 (12.5-13), 3 (12.5-13), and 3 (13.5-14); and 1,1,2-trichloroethane in samples 1.2 (14-14.5), 3 (12.5-13), and 3 (13.5-14) due to reporting of these compounds from the medium-level soil aliquot. The data user will need to evaluate these non-detects at elevated levels for project uses.
- Eleven samples, 1.1 (13-13.5), 1.2 (13-13.5), 1.2 (11-11.5), 2.1 (11.5-12), 2.1 (10-10.5), 2.2 (14-14.5), 4 (11-11.5), 4 (14.5-15), 5 (13.5-14), 5 (14-14.5), and 5 (14.5-15), were analyzed as low-level soils and one or more compounds were reported above the instrument calibration range (lab flagged data "E"). For these samples, the laboratory re-analyzed the samples using the medium-level methanol extracts. Samples 1.1 (12.5-13), 2.1 (12.5-13), and 2.2 (12.5-13) were analyzed as medium-level and required reanalysis with a secondary aliquot of methanol for dilution purposes. Data for all analyses for these fourteen samples were reviewed and the data as reported were considered acceptable (i.e., data reported over the instrument calibration range in the initial analysis was properly reported from the secondary dilution analysis). Only accepted data were maintained in the validated EDD.
- Several detected VOC results were reported at concentrations below the samplespecific reporting limits (RL). During this assessment, these results were qualified as estimated (J) with indeterminate bias due to uncertainty in quantitation at a level below the instrument calibration range. Table 2 identifies the analytes and samples that were estimated due to reporting at levels below the RL.

CASE NARRATIVE / CONFORMANCE SUMMARY

Client:	Fleming-Lee Shue, Inc.	Job No	JB32749
Site:	AFFCO, 361 Walsh Avenue, New Windsor, NY	Report Date	4/18/2013 10:43:04 A

On 03/29/2013, 26 Sample(s), 1 Trip Blank(s) and 2 Field Blank(s) were received at Accutest Laboratories at a temperature of 12.1 C. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB32749 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section. *** Sample was received at 12.1 degrees C. and OK to analysis per Steve Panter .

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method SW846 8260B

	Matrix: LEACHATE	Batch ID:	V2C4870
-	All samples were analyzed within the r	ecommended metho	od holding time.

- All method blanks for this batch meet method specific criteria.
- RPD(s) for Duplicate for Chloroform are outside control limits for sample JB32594-2DUP. High RPD due to low concentration of hit
- JB32594-2DUP for Tetrachloroethene: High RPD due to possible sample analyzed from different vials.
- Sample(s) JB32594-1MS, JB32594-2DUP were used as the QC samples indicated.

	Matrix: SO	Batch ID:	VC6486
_	All commissions an alread with	hin the necessary ded meeths	d halding time

All samples were analyzed within the recommended method holding time.

Sample(s) JB32836-1MS, JB32836-2DUP were used as the QC samples indicated.

All method blanks for this batch meet method specific criteria.

Matrix: SO Batch ID: VC6488

All samples were analyzed within the recommended method holding time.

- All method blanks for this batch meet method specific criteria.
- Sample(s) JB32749-27MS, JB32749-19DUP were used as the QC samples indicated.
- Matrix Spike Recovery(s) for 1,1,2,2-Tetrachloroethane are outside control limits. Outside control limits due to matrix interference.
- RPD(s) for Duplicate for 1,1,1-Trichloroethane, 1,1-Dichloroethane, 1,1-Dichloroethene, 1,2-Dichloroethane, 1,2-Dichloroethene (total), Acetone, Chloroethane, cis-1,2-Dichloroethene, trans-1,2-Dichloroethene, Trichloroethene, Vinyl chloride are outside control limits for sample JB32749-19DUP. High RPD due to possible sample analyzed from different vials.
- JB32749-27MS for 4-Bromofluorobenzene: Outside control limits due to matrix interference.

Matrix: SO Batch ID: VC6492

All samples were analyzed within the recommended method holding time.

- Sample(s) JB32653-1MS, JB32653-1MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- VC6492-BS for 1,1,2,2-Tetrachloroethane: High percent recoveries and no associated positive found in the QC batch.

Matrix: SO Batch ID: VE8870

All samples were analyzed within the recommended method holding time.

- All method blanks for this batch meet method specific criteria.
- Sample(s) JB33072-7MS, JB33072-7MSD were used as the QC samples indicated.

Volatiles by GCMS By Method SW846 8260B

Matrix: SO	Batch ID:	VE8871					
All samples were analyzed within the recommended method holding time.							
All method blanks for this batch	meet method specific crite	eria.					
Sample(s) JB32576-4MS, JB325	576-4MSD were used as t	the QC samples indicated.					
JB32749-18: Diluted due to high	concentration of non-targ	get compound.					
JB32749-16: Diluted due to high	concentration of non-targ	get compound.					
Matrix: SO	Batch ID:	VE8875					
All samples were analyzed within	the recommended metho	od holding time.					
All method blanks for this batch	All method blanks for this batch meet method specific criteria.						
Sample(s) JB32576-16MS, JB32	2576-16MSD were used a	as the QC samples indicated.					
Matrix: SO	Batch ID:	VE8876					
All samples were analyzed within	the recommended metho	od holding time.					
All method blanks for this batch	All method blanks for this batch meet method specific criteria.						
Sample(s) JB32749-21MS, JB32	Sample(s) JB32749-21MS, JB32749-21MSD were used as the QC samples indicated.						
Matrix: SO	Batch ID:	VE8878					
All samples were analyzed within	the recommended metho	od holding time.					
Sample(s) JB33550-8MS, JB33550-8MSD were used as the QC samples indicated.							
	mant mathed an art for a sta						

All method blanks for this batch meet method specific criteria.

Matrix Spike Duplicate Recovery(s) for Toluene are outside control limits. Outside control limits due to matrix interference.

JB32749-17: Diluted due to high concentration of non-target compound.

Wet Chemistry By Method ASTM 4643-00

Batch ID: (GN82679
	Datah ID:

The data for ASTM 4643-00 meets quality control requirements.

Wet Chemistry By Method SM2540 G-97

SO

Batch ID: GN82673

The data for SM2540 G-97 meets quality control requirements.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

APPENDIX F

VeruTEK Report

Injection Summary Report Surfactant-enhanced In Situ Chemical Oxidation (S-ISCO[®]) Treatment of TCA located at the American Felt and Filter Company

Submitted to: Fleming Lee-Shue, Inc. 158 West 29th Street, 9th Floor New York, NY 10001

Submitted by: VeruTEK Technologies, Inc. 65 West Dudley Town Road, Suite 100 Bloomfield, CT 06002 (860) 242-9800 (860) 242-9899 (Fax)

September, 2012

1.0 Background

On behalf of Fleming Lee-Shue, Inc. (FLS), VeruTEK[®] Technologies Inc.(VeruTEK) implemented its patented Surfactant-enhanced In Situ Chemical Oxidation (S-ISCO[®]) to remediate contamination related to TCA DNAPL present in the subsurface soil and groundwater at the former Fuetron building at the American Felt and Filter Company (AFFCO) located in Newburgh, New York (the site). S-ISCO is one of VeruTEK's patented Green Chemistry technologies that use VeruSOL[®], a proprietary, biodegradable plant-based surfactant and co-solvent mixture, to desorb and solubilize non-aqueous phase liquids (NAPL) into a fixed emulsion for in-place destruction by a simultaneously injected free-radical oxidant.

Contamination of Concern at the Site included TCA DNAPL and other volatile organic compounds (VOCs). The DNAPL release possibly occurred from a series of small spills mostly near the machine that was housed outside the former Fuetron building and from the drum storage area reportedly abutting the machine area. Most DNAPL was retained in the silty sand layers above the water table, but some DNAPL migrated downward below the water table. According to historic groundwater and recent soil data collected prior to mobilization elevated total VOC concentrations were observed at 15 ft., the lowest depth sampled. The highest VOC concentrations would found located adjacent to the release area, with elevated concentrations extending down gradient of the machine area.

In July and August 2012, VeruTEK conducted injections of its patented S-ISCO chemistry at the Site. The S-ISCO treatment consisted of injections of VeruSOL, along with alkaline activated sodium persulfate using sodium hydroxide. The following report summarizes VeruTEK's work on site, including mobilization and site set-up, the injection process and the monitoring program conducted; presents the data collected; and evaluates the results of the implementation.

2.0 Summary of S-ISCO Activities

VeruTEK conducted multiple rounds of S-ISCO injections between July 10 and July 27. The S-ISCO treatment was designed to target an estimated 79 pounds contaminant mass located at the depth interval between 10 to 15 feet bgs. Of the contaminant mass located in the 10 to 15 ft depth interval 89% of the contaminant mass was located in the 10 – 13 ft zone. A grid cell layout was used to delineate the treatment areas. Based on historic site data analyzed by FLS, three injection wells were installed in the area of the site where contamination was highest. IW-1 and IW-2 were installed in Grid Cell 2, and IW-3 was installed in Grid Cell 4. All injection wells were installed to approximately 13 ft bgs. Prior to conducting injections, analysis conducted by FLS revealed that approximately 90% of the contaminant mass in the 10 to 13 ft zone was located nearest IW-2. During the S-ISCO injection process IW-2 was used as the primary injection well to account for the levels of contaminant mass. To ensure greatest treatment in the 10 to 13 ft zone, a packer was installed prior to injection to seal off the injection well at 10 feet. Wavefront's sidewinder pressure pulse injection system was used to deliver the S-ISCO chemistry into the subsurface throughout the injection process. The sidewinder log is presented in **Appendix A**. The S-ISCO injections were followed by a round of I-SCO injections. Upon completion of

injections into the injection wells, Geoprobe injections were performed at five select locations. At the end of the project, VeruTEK performed an ISCO soil surface wash on the excavation footprint. **Table 1** summarizes the volume of chemistry injected during the remedial operation.

Table 1: Remedial Chemistry Summary						
VeruSOL	Sodium Persulfate	Sodium Hydroxide				
0-15g/L	15-50g/L	12-50g/L				
Total Volume Injected 14,200 gal						

Groundwater was periodically sampled during various phases of treatment using multiple parameter groundwater monitoring devices and samples were collected for analysis at VeruTEK's lab. A complete summary of the troll data by well, and the laboratory data for all S-ISCO performance parameters measured at each monitoring well is provided in **Appendix B**.

Implementation of the injection process consisted of the following activities:

- Mobilization and set-up;
- Pre-injection monitoring;
- S-ISCO injections
- Performance monitoring.

2.1 Mobilization and Set up

On Monday July 9th 2012 mobilization took place in the course of one day, including deliveries and equipment set-up. Dry sodium persulfate in bags, drums of sodium hydroxide (25%), and drums of VeruSOL were all delivered to the Site. Two separate berms were constructed; one for sodium hydroxide storage, and one for injection system/chemical batching. VeruTEK's injection system included a 1000 gallon mixing tank for sodium hydroxide/VeruSOL batching, a 350 gallon open top mixing tank for sodium persulfate batching with recirculation pump, a metered injection system and secondary centrifugal water pump. An eyewash/safety shower system was set up adjacent to the batching station and water was sourced using a garden hose from inside the AFFCO facility. Pretreatment groundwater samples were collected on Monday, July 9, 2012 to establish baseline conditions. Troll® 9500 low flow sampling device was used to collect samples from the following wells- MW-1, EW-0, EW-1, EW-1N, S-8, IW-1, IW-2, IW-3, and the two site "Pits".

2.3 S-ISCO injections

S-ISCO Phase I

Phase I of S-ISCO injection comprised of two consecutive days of injections on Tuesday, July 10 and Wednesday July 11. On the first day of injection, the injection system was hooked up to IW-2. The

packer was installed by Zebra Environmental Corp to isolate injections at a depth of 11-13 ft. Injections took place through the Sidewinder pressure pulse tool. The pressure pulse was set to 750 RPM. Injections began at 4 GPM and were gradually increased up to 10 GPM. For the first phase of injections, injections remained constant to IW-2 with flow rate maintained at 10 GPM. A total of 2,700 gallons of S-ISCO chemistry was injected into IW-2. Concentrations of injected fluid during this phase were held constant at 15 g/L VeruSOL, 15 g/L sodium persulfate and 12.5 g/L sodium hydroxide. **Table 2** summarizes the Phase I of S-ISCO injections.

Table 2: S-ISCO Phase I Injection Summary						
VeruSOL	Sodium Persulfate	Sodium Hydroxide				
15 g/L	15 g/L	12.5 g/L				
Total Volume Injected 2700 gal						

Interim groundwater sampling was conducted during Phase I of S-ISCO injections to track the progress of the treatment process and to monitor the transport of the injected chemicals. Analysis of groundwater parameters showed an increase in pH at EW-0, on the second day of injection. Also, sodium persulfate was detected at the same location at concentrations up to 5.89 g/L. Increase in conductivity, and decrease in IFT was also observed at EW-0. The pH, IFT, sodium persulfate, and conductivity data indicates that the persulfate was activated and is suggestive of effective transport of injected chemistry.

S-ISCO Phase II

The second phase of S-ISCO injections was conducted over a three day period from Monday July 23 through Wednesday July 25. During this phase, remedial chemistry was injected through IW-1, IW-2, and IW-3 at flow rates ranging up to 10 gpm. Day 1 of Phase II injections focused on completing injections to both IW-1 and IW-3. A total of 1000 gallons of S-ISCO chemistry was injected to both of these injection wells. The concentration of injected fluid included 10 g/L VeruSOL, 15 g/L sodium persulfate, and 12.5 g/L sodium hydroxide. On the second day of the phase II, injections focused on injections to IW-2. Four thousand gallons of S-ISCO were injected to IW-2 on this day with concentration of 10 g/L VeruSOL, 15 g/L sodium persulfate, and 12.5 g/L sodium persulfate, and 12.5 g/L sodium hydroxide. On the final day of Phase II, injections continued to focus on IW-2. The first batches of persulfate contained the same S-ISCO concentrations as the day previous. On the third batch of the day a five hundred gallon batch of higher persulfate concentration S-ISCO was prepared. The concentration of persulfate was increased up to 50g/L, sodum hydroxide was increased to 25 g/L and VeruSOL concentrations were reduced to 8g/L. Phase II was completed with a final round of ISCO injection with 25g/L persulfate with 20 g/L sodium hydroxide. Table 3 summarizes the Phase II injections.

Table 3: Phase II Injection Summary						
VeruSOL	Sodium Persulfate	Sodium Hydroxide (g/L)				
8-10 g/L	25-50 g/L	12.5-25 g/L				
Total S-IS	CO Volume Injected	8,500 gal				
	I-SCO Injections					
VeruSOL	Sodium Persulfate	Sodium Hydroxide (g/L)				
0 g/L	25 g/L	12.5 g/L				
Total I-SO	CO Volume Injected	1,000 gal				

Groundwater sampling was conducted during Phase II injections to monitor the transport of the injected chemicals and contaminant oxidation. Throughout this phase, EW-0 maintained sodium persulfate detections, increase in conductivity, and decrease in IFT. Low concentrations of persulfate was also detected at EW-1N and the pit areas during this Phase.

S-ISCO Phase –III Geoprobe Injections

On Thursday July 26, Zebra mobilized a Geoprobe rig to the Site. The Geoprobe rig was to be used to target any contamination that may have remained in the 13 to 15 ft depth interval. Five locations were selected in Grid Cell 2 and Grid Cell 5. Two probes were conducted in Grid Cell 5, and three probes in Grid Cell 2. During this phase, a foot-long injection probe was used to conduct top-down injections. Depending on the locations, flow rates ranged from 4 to 7 GPM. Each Geoprobe point received 100 gallons of S-ISCO chemicals to the 13-14 ft depth zone, and 14-15 ft depth. S-ISCO injections included VeruSOL, sodium persulfate and sodium hydroxide, injected at 5 g/L, 25g/L and 25 g/L respectively. Table 4 summarizes the Geoprobe injections.

Table 4: S-ISCO Phase I Injection Summary						
VeruSOL Sodium Persulfate Sodium Hydroxide						
5 g/L	25 g/L	25 g/L				
Total Volume Injected 1,000 gal						

Groundwater sampling during Geoprobe injections showed increase in pH at wells EWO, MW-1, S-8 and the pit area. EW-0 maintained elevated pH, conductivity, and persulfate detections.

Phase – IV Soil Surface Washing

During the week of August 27th to August 31st Fleming Lee-Shue was on-site for the excavated of the upper most portions of the contaminated soil mass located at 10 ft and above. VeruTEK on was onsite Thursday August 30th 2012 to perform ISCO soil surface washing of the excavated pit. 1,000 gallons of ISCO chemicals were sprayed at approximately 6 GPM and focused on injecting to Grid Cell 2 and Grid Cell 5. Table 5 summarizes the soil wash chemistry.

Table 5: Phase IV Summary						
VeruSOL	Sodium Hydroxide					
0 g/L	25 g/L	12.5 g/L				
Тс	otal Volume	1,000 gal				

2.4 Performance Monitoring

Groundwater was monitored in MW-1, EW-0, EW-1, EW-1N, S-8, IW-1, IW-2, IW-3, PIT S, and PIT L during and after S-ISCO injections to track the performance of the remedial chemistry in the subsurface. Performance monitoring included using multiple parameter groundwater monitoring devices to measure water quality parameters in Site groundwater including: turbidity, temperature, pH, dissolved oxygen (DO), oxidation-reduction potential (ORP), conductivity. Groundwater samples collected throughout the injection phase and were brought to the VeruTEK's laboratory for interfacial tension (IFT), pH, ORP, turbidity, specific conductivity analysis.

2.5 Post Injection Monitoring

During the on-site excavation all monitoring/injection wells located in the vicinity of S-ISCO treatment were destroyed. No additional performance monitoring was conducted following the excavation event.

3. Discussion of Performance Monitoring Results

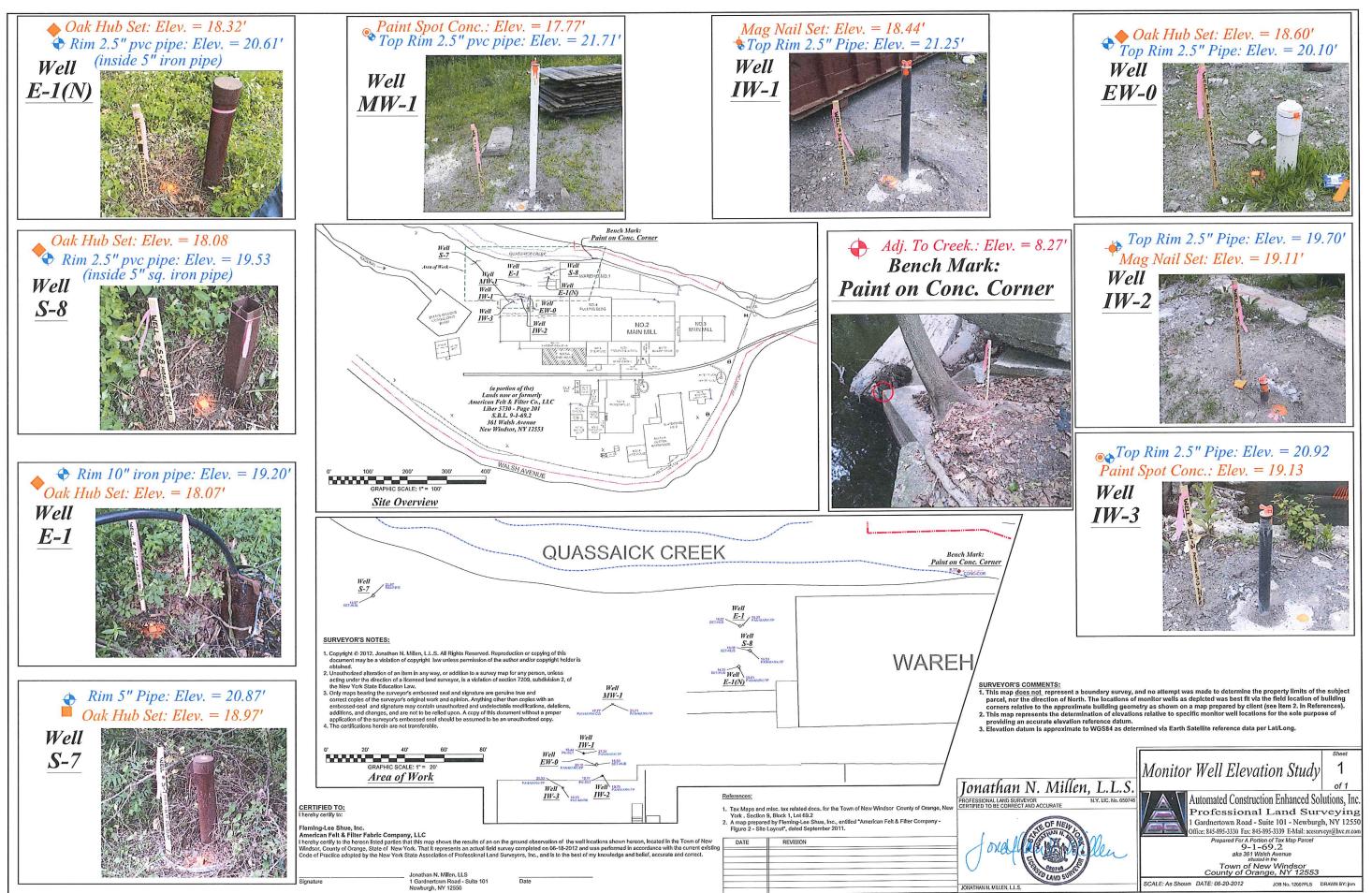
EW -0

EW-0 was a historic monitoring well located in the immediate area of highest VOC concentrations. Analysis of groundwater from EW-0 indicates that the remedial chemistry was present and reacting at this well location. Increase in pH, conductivity, sodium persulfate concentrations and decrease in IFT in response injections were observed as early as the second day of S-ISCO Phase I injections. pH levels remained alkaline during all phases of treatment. The highest pH, sodium persulfate and conductivity were measured at this well. The most prominent responses to the injection chemistry at EW-0 were observed during S-ISCO Phase II injections. IFT levels were reduced to as low as 48.5 Nm/m on July 23, but increased gradually during ISCO treatments. Persulfate was measured at 7.24 6g/L, while the pH remained alkaline, showing effective transport of the sodium hydroxide. Conductivity was highest at this well, also indicating that the persulfate was present.

MW-1, EW-1N, S-8

Groundwater monitoring data from MW-1, EW-1, S-8 indicates a minimal response to injections at these locations. Slight increases in pH were measured during S-ISCO Phase II at these locations. EW-1N showed persulfate measurement of 0.269 mg/L on July 24, 2012. No notable increase in conductivity and IFT decreases were measured during the treatment period. Persulfate was never detected above detection limits at MW-1 or S-8.

Pits-L & S


Minor increases in groundwater pH were observed in Pits L and S following S-ISCO Phase II injections. Sodium persulfate concentration at Pit-S was measured at 0.133g/L on July 24 2012, however never detected at Pit L. All other parameters remained relatively consistent at these locations.

4. Conclusions & Recommendations

Application of the S-ISCO injections at the Site operated according to plan. The achievable flow rates were higher than initially expected and no technical problems occurred. The primary focus of the injections was to target TCA and VOC concentrations located in Grid Cell 2. Process monitoring from wells located in Grid Cell 2 showed effective parameter control. Elevated pH, conductivity, decreased IFT, and sodium persulfate concentrations all showed that the sodium persulfate was activated and indicates effective transport of injected chemistry in the treatment zone.

Due to the post-injection excavation there are no more existing monitoring wells in the treatment area. Therefore no more groundwater monitoring was conducted following the excavation. Fleming Lee-Shue will be responsible for collecting post-injection confirmation soil samples. It has been VeruTEK's experience that post-injection samples should be collected between two to six months following S-ISCO treatment. Upon completion of the soil sampling, additional analysis will be conducted to determine the effectiveness of the S-ISCO treatments.

Figure 1.

Appendix A

AFFCO Pulsing Log

		date	time	input_press (psi)	output- press (psi)	Pulse_per_min	gpm	Comment
start 1	ZW Z	7/10/12		5-7	0	750	10	
	IN Z	7/11/12	930	5-7	G	760	ь	,
	TWZ	7/11/12	1000	5-7	U	760	8	
	IW2	7/11/12	1030	6-8	Ó	760	10	
	FW 2	7/11/2	1130	6-8 5-7	0	760	10 10	- 1st batch done
start Z	IWZ	21/11/72	120	3-5	D	760	ID	
	IW 2	7/11/12	150	3-5	0	760	10	
	IWZ	7/11/12	250	3-5	0	760	10	
	JW2	7/11/12	335	3.5	O	760	10	-Znd batch dong
start 3	IW2	7/11/12	405	3.5	0	760	10	
	JWZ	7/11/12	५५४	30405 4-6	0	760	10	
	IWZ	5/11/12	5:15	4-6	0	760	10	
n s						42		
							-	
1		9						
				-				
			1999 (A. 1997)					

John Diamond - zebra environmental

				input_press	output- press			
	[]	date	time	(psi)	(psi)	Pulse_per_min	gpm	Comment
Г	Inj_well I∽ 3	·7)23)12	1,30	2-4	0	750	6-8	
-	1-23	7/23/12	12.00	2-4	0	750	8	
-	I.W 3	7/23/12	100	2-17-9	0	750	\$10	
ŀ	TW3	7/23/12	205	7.9	0	75	10	Davie
-	IN /	TIGITE	<u> </u>					
			t.				_	
	IW I	7/23/12	315	2-4	0	750	8	
	TN 1	7/23/12	415	3-5	0	750	10	
	TWI	7/23/12.	505	3-5	O	1750	10	
	TUV 2	7/23/12	520	3-5	0	750	10 .	- Dann
	6.	1101110	ta l				Name and Address of States	
	TWZ	7/24/12	845	0-2	0	750	4-5	
	14	11	835	0-Z	0	750	6	
	₽ ⁱ¹	2124/2	915	2.4	0	750	9.	
	P	11	940	3.5	0	750	10	•
	(1	71,24/12	1045	3-5	0	750	10	Dure
	1	7/20/12	1200	34-6	U U	750	10	
	12	7/2/12	100	4-6	0	and the second		
	11	11	200	3-5	0	750	10	Done
	11	7/24/12	330	5.5	. J	-750	10	
	11	1,	430	3-5	0	750	10.	Dong
	1612	12mlip	530	3.5	0	5750	10	Long
'tw 2	77-24	7/25/12	815	0-2	0	750	6	
100 2	1:02	7/25/18-	895	4-6	Ð	750	10	
() ()	112	juste	945	4-6	0	550	10	
	102	2 2 10	1048	3-5	0	250	10	Done
						7.00		
	1002	aluta	1155	4.2	0	750	10	
	102	nostr	1230	4.4	D	750	10	
	11		130	4. le-	0	750	10	Dong
	IWZ	7/25/12		0	0	0	10	NO sidewinder Done Gener
i.	11	11	230	0	0	0	10	Done (255)
Thi	INZ	TIZSIA	325	476	0	750	10	
1 \ \	1.52	Than	400	4-4	0	7.50	10	Nau
11	IWZ	7/25/0	430	<u>U-6</u>	0	750	10	Dare
200 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	TWI	Alta	. 44r	2-4	0	750	-	Day
~	11	()	Sox	2-24	0	7:0-	10	irouq
2	L. Spites	17/25/12	595	2-9	0		10	Don
	' h	1.2	0			and Charles		

3

			input_press	output- press			
Inj_well	date	time	(psi)	(psi)	Pulse_per_min	gpm	Comment
GP-1	7/26/12	915	7-10	0	6750	6	13-14
BP-1A	7/21/12	9朝5	7-10	0	\$ 750	6	14-15
GP-2	7/26/12	1000	10-12	0-15	750	6	17-14
G8-2A	7/20/12	1045	11-13	Ú	750	6	14-15
6P-3	2/20/12	1110	11-13	Ó	750	164	13-14
GP-314	7/20/12	1145	7.9	0	750	4	14-15
					250		
Br-4	7/20/12	1220	8-10	0	750	5	13-14
GPMA	7/40/12	1295	5-10	6	750	5	14-15
1		140		0			12 114
G1-5	7/26/12		4-6		.750	7	13-14
GP-5A	7)26/12	220	4-6	O	750	7	14.15
(1 11						
Flush	ad all	equipm	nr en	u end			
				1			
		-					
			1				
			1				
			-				
-							

Appendix B

	AFFCO													
	MW-1													
Sample Date	Time	Analyst	Sample Matrix	рН	ORP (mV)	Cd (ms/cm)	IFT (mN/m)	Temp (C)	Turbidity (NTU)	SP (g/L)	DTW (m)			
7/9/2012	15:35	LLL	GW	6.49	480	1.209	71.9	25.5	36.9	<0.1				
7/10/2012	11:55	LLL	GW	6.59	-2	1.35	71.1	25.5	103.4	<0.1				
7/11/2012	14:00	LLL	GW	6.80	184	1.225	72.1	25.4	20.78	<0.1	13.1			
7/11/2012	16:30	LLL	GW	6.76	203	1.252	71.6	25.4	26.74	<0.1				
7/17/2012	10:31	LLL	GW	7.01	240	1.231	71.9	24.1	8.73	<0.1	12.86			
7/23/2012	14:45	JL	GW	6.44	312	1.545	74.1	18.6	447.6	0.14	12.70			
7/24/2012	14:15	JL	GW	7.52	199	1.645	73.2	20.5	339.8	<0.1	12.6			
7/25/2012	17:00	LLL	GW	7.93	218	1.39	72.6	15.1	248	<0.1	12.5			
7/26/2012	9:40	LLL	GW	8.17	185	1.632	73.6	15	304.1	<0.1	12.63			
8/1/2012	10:10	LLL	GW	6.66	89	1.554	71.2	22.6	61.49	<0.1	12.00			
8/8/2012	16:10	GD	GW	8.11	224	0.807	74.6	17.7	79.7	<0.1	12.40			
8/22/2012	13:15	LLL	GW	7.30	210	1.656	74.6	29.5	183.6	<0.1	12.50			
8/30/2012	11:00	LLL	GW	7.05	255	1.335	71.0	27.2	172.3	<0.1	12.45			

AFFCO												
EW-0												
Sample Date	Time	Analyst	Sample Matrix	рН	ORP (mV)	Cd (ms/cm)	IFT (mN/m)	Temp (C)	Turbidity (NTU)	SP (g/L)	DTW (I	
7/10/2012	12:30	LLL	GW	6.36	154	4.074	72.0	26.0	41.7	<0.1		
7/11/2012	14:40	LLL	GW	13.88	-49	100.2	58.4	25.5	633	5.89	10.4	
7/17/2012	11:28	LLL	GW	13.88	-76	104.8	67.8	24.1	100.2	0.160	10.4	
7/23/2012	15:30	JL	GW	14.60	-111	115.0	48.5	18.2	221.5	0.104	10.3	
7/24/2012	14:40	JL	GW	14.27	-23	125.1	49.1	20	664.8	3.892	10.2	
7/25/2012		LLL	GW	12.28	45	112	69.8	14.8	789.4	7.241		
7/26/2012	10:00	LLL	GW	12.78	73	102.2	70.9	15.2	664.4	6.661	10.6	
8/1/2012	11:00	LLL	GW	13.71	-39	114.4	71.9	22.0	87.63	0.694	10.0	
8/8/2012	9:10	GD	GW	13.74	-57	52.35	75.1	17.5	7.46	0.195	10.5	
8/22/2012	12:10	LLL	GW	13.34	-56	90.73	70.2	28.7	824.7	0.204		

	AFFCO												
					E1-N								
Sample Date	Time	Analyst	Sample Matrix	рН	ORP (mV)	Cd (ms/cm)	IFT (mN/m)	Temp (C)	Turbidity (NTU)	SP (g/L)	DTW (m)		
7/10/2012	16:00	LLL	GW	6.97	211	0.746	71.8	25.4	14.28	<0.1			
7/11/2012	16:50	LLL	GW	7.05	163	4.635	71.6	25.3	29.89	<0.1	12.5		
7/17/2012	10:05	LLL	GW	6.67	163	0.659	71.4	24.0	2.79	<0.1	12.30		
7/23/2012	14:35	JL	GW	7.55	234	0.639	73.1	19.0	5.08	<0.1	12.30		
7/24/2012	13:30	JL	GW	7.67	281	0.697	73.5	19.9	7.22	0.269	12.26		
7/25/2012	16:50	LLL	GW	7.96	343	0.486	72.2	15.5	6.78	<0.1	12.2		
7/26/2012	9:30	LLL	GW	7.91	276	0.564	72.8	15.7	28.96	<0.1	12.4		
8/1/2012	9:50	LLL	GW	6.11	149	0.506	73.0	21.9	2.07	<0.1	12.20		
8/8/2012	8:40	GD	GW	6.29	419	1.382	74.5	13.6	0.72	<0.1	12.24		
8/22/2012	11:30	LLL	GW	6.64	375	0.539	71.2	29.3	5.09	<0.1	12.40		
8/30/2012	10:50	LLL	GW	7.82	382	0.46	71.0	27.5	17.13	<0.1	12.50		
-													
-		1											
-													
		1											
		1			1								

AFFCO													
IW-1													
Sample Date	Time	Analyst	Sample Matrix	рН	ORP (mV)	Cd (ms/cm)	IFT (mN/m)	Temp (C)	Turbidity (NTU)	SP (g/L)	DTW (m		
7/11/2012	14:10	LLL	GW	6.79	126	1.036	71.8	25.4	9.91	<0.1	10.5		
7/17/2012	11:17	LLL	GW	6.84	138	0.903	72.0	24.0	8.48	<0.1	10.26		
8/1/2012	10:20	LLL	GW	9.95	12	1.418	70.2	21.2	216.9	<0.1	9.92		
8/8/2012	10:20	GD	GW	12.01	8	1.698	72.6	17.0	14.3	<0.1	10.20		
8/22/2012	12:17	LLL	GW	9.59	48	1.215	70.6	29.3	18.2	<0.1			

	AFFCO												
					IW-2								
Sample Date	Time	Analyst	Sample Matrix	рН	ORP (mV)	Cd (ms/cm)	IFT (mN/m)	Temp (C)	Turbidity (NTU)	SP (g/L)	DTW (m)		
7/10/2012	9:25	LLL	GW	7.24	222	0.849	71.8	25.3	24.58	<0.1			
8/1/2012		LLL	GW	10.11	35	2.147	70.7	21.2	695.7	<0.1	9.63		
8/8/2012	13:00	GD	GW	13.41	-13	10.09	65.6	17.5	58.95	0.361	10.02		
8/22/2012	13:00	LLL	GW	13.60	-62	75.23	48.3	28.7	4.55	<0.1			
	1												

	AFFCO												
					IW-3								
Sample Date	Time	Analyst	Sample Matrix	рН	ORP (mV)	Cd (ms/cm)	IFT (mN/m)	Temp (C)	Turbidity (NTU)	SP (g/L)	DTW (m)		
7/10/2012	10:10	LLL	GW	7.25	115	0.825	71.5	25.8	28.53	<0.1			
7/11/2012	14:15	LLL	GW	6.92	160	0.995	71.1	25.3	7.88	<0.1	11.8		
7/17/2012	11:00	LLL	GW	7.18	197	0.864	72.0	24.0	12.56	<0.1	11.29		
8/1/2012	10:25	LLL	GW	13.03	-31	8.735	57.3	21.3	248.7	0.2	10.89		
8/8/2012	13:00	GD	GW	13.56	-15	14.03	66.9	17.6	18.21	0.212	11.27		
8/22/2012	12:55	LLL	GW	11.68	15	4.435	64.7	29.0	253.4	<0.1			
8/30/2012	11:30	LLL	GW	13.41	-19	18.96	44.8	27.5	419.3	<0.1	11.40		
L													

					AFFCO							
S-8												
Sample Date	Time	Analyst	Sample Matrix	рН	ORP (mV)	Cd (ms/cm)	IFT (mN/m)	Temp (C)	Turbidity (NTU)	SP (g/L)	DTW (m)	
7/10/2012	15:45	LLL	GW	8.04	112	0.644	71.8	25.4	2.44	<0.1		
7/11/2012	14:42	LLL	GW	7.93	173	0.689	71.5	25.2	4.05	<0.1	10.3	
7/17/2012	10:15	LLL	GW	8.36	218	0.539	72.8	24.0	0	<0.1	10.80	
7/23/2012	14:30	JL	GW	9.06	208	0.713	74.1	19.7	1.23	<0.1	10.22	
7/24/2012	13:47	JL	GW	9.16	203	0.692	73.5	20.2	1.91	<0.1	10.2	
7/25/2012	16:40	LLL	GW	8.75	243	0.558	73.2	15.6	2.15	<0.1	10.2	
7/26/2012	9:20	LLL	GW	9.38	180	0.609	73.3	15.7	27.22	<0.1	10.3	
8/1/2012	10:00	LLL	GW	8.49	154	0.533	70.6	22.5	2.79	<0.1	9.70	
8/8/2012	15:30	GD	GW	9.22	211	0.382	74.7	18.5	5.1	<0.1	10.05	
8/22/2012	10:45	LLL	GW	8.75	199	0.58	71.6	30.0	3.68	<0.1	10.20	
8/30/2012	10:45	LLL	GW	8.79	201	0.594	71.0	27.7	2.84	<0.1	10.30	

AFFCO													
	LPIT												
Sample Date	Time	Analyst	Sample Matrix	рН	ORP (mV)	Cd (ms/cm)	IFT (mN/m)	Temp (C)	Turbidity (NTU)	SP (g/L)	DTW (m)		
7/11/2012	9:30	LLL	GW	7.49	237	0.629	71.9	25.4	2.1	<0.1	3.9		
7/17/2012	10:45	LLL	GW	7.91	230	0.571	72.0	24.0	1.22	<0.1	3.50		
7/23/2012	15:50	JL	GW	8.91	210	0.595	74.0	18.4	2.51	0.309			
7/24/2012	14:25	JL	GW	9.05	237	0.502	74.1	19.8	3.02	<0.1	3.43		
7/25/2012	17:20	LLL	GW	8.91	201	0.471	72.7	15.9	12.06	<0.1	3.2		
7/26/2012	9:50	LLL	GW	9.21	182	0.562	73.7	14.8	3.83	<0.1	3.1		
8/1/2012	10:45	LLL	GW	8.49	161	0.541	71.8	21.5	3.33	<0.1	2.75		
8/8/2012	16:20	GD	GW	9.17	198	0.217	73.7	17.9	0.62	<0.1	3.12		
8/22/2012	12:00		GW	8.65	208	0.527	71.4	30.2	2.23	<0.1	3.50		

AFFCO S PIT											
7/11/2012	9:35	LLL	GW	7.52	248	0.18	71.9	25.3	0.81	<0.1	
7/17/2012	11:08	LLL	GW	8.28	237	0.136	72.2	24.0	0	<0.1	
7/23/2012	15:45	JL	GW	9.43	194	0.173	73.8	18.7	0.51	<0.1	
7/24/2012	14:30	JL	GW	9.11	230	0.164	74.2	19.7	0.82	0.133	
7/25/2012	17:10	LLL	GW	8.51	235	0.146	73.3	15.5	0	<0.1	
7/26/2012	9:50	LLL	GW	9.15	179	0.156	72.8	15.1	0	<0.1	
8/1/2012	10:50	LLL	GW	8.51	176	0.155	71.1	22.3	3.51	<0.1	
8/8/2012		GD	GW	9.33	220	0.809	74.1	18.6	1.3	<0.1	NA
8/22/2012	12:50	LLL	GW	8.83	216	0.137	71.7	29.8	0.02	<0.1	
					I						

APPENDIX G

Project Photographic Log

Treatment Area

5/11/12

Photo 1 – Approximate treatment area

Photo 2 – Collecting pre-treatment baseline soil samples

Photo 3 – Baseline soil samples and cores

Soil & Groundwater Treatment by Chemical Oxidation 7/11/12

Photo 1 – Chemical mixing area

Photo 2 – Mixing sodium persulfate for injections

Photo 3 – Injection equipment control panel

Photo 4 – Inserting injection tool into well

Photo 5 – Preparing for injections

Photo 6 – Injecting persulfate

Photo 7 – Injecting persulfate

Soil Excavation

8/22/12 · 8/29/12

Photo 1 – Preparing lined staging area

Photo 2 – Stockpiled soil

Photo 3 – Stockpiled soil covered to protect from rain

Photo 4 – Soil in windrows for exposure to air

Photo 5 – Excavating soil

Photo 6 – Excavation

Photo 7 – Excavation

Photo 8 – Soil going through screener to remove large debris

Photo 9 – Loading soil into screener

Photo 10 - Loading soil into screener

Photo 11 - Loading soil into screener