

Design Analysis Report Motor Pool East Landfill Closure U.S. Military Academy West Point, New York

Prepared for

U.S. Army Corps of Engineers–Baltimore District Baltimore, Maryland DACA31-94-D-0025

Prepared by

EA Engineering, Science, and Technology 15 Loveton Circle Sparks, Maryland 21152 (410) 771-4950

June 1999

Project No. 60787.77

d 10/20/99

20

Ì

1

1

CONTENTS

Page

LIST	OF FIG	GURESiii					
LIST	OF AC	CRONYMS AND ABBREVIATIONS iv					
1.	INTRODUCTION						
	1.1	Project Scope 1-1					
	1.2	Site Description/History					
	1.3	Existing Conditions					
		1.3.1 Ground-Water Characterization					
		1.3.2 Surface Water Characterization					
		1.3.3 Stream Sediment Characterization					
		1.3.4 Leachate Seep Characterization					
		1.3.5 Geology					
		1.3.6 Hydrogeology					
2.	PREVIOUS INVESTIGATIONS/PRE-DESIGN ACTIVITIES						
	2.1	Previous U.S. Military Academy Investigations					
		2.1.1 RCRA Facility Assessement					
	2.2	Aerial Survey					
	2.3	Magnetometer Survey					
	2.4	Geotechnical Data					
		2.4.1 Ground Conductivity Survey					
		2.4.2 Soil Boring/Monitoring Well Network					
3.	SITE	DRAINAGE					
	3.1	Scope and Purpose					
	3.2	Site Grading					
	3.3	Stormwater Management					
	3.4						
4.	LANDFILL CAP						
	4.1	Scope and Purpose					
	4.2	Pavement Design					

APPENDIX D:

CONTENTS (continued)

	4.3	Gas Management	
5.1	SCH	EDULE	
	5.1	Erosion and Sediment Control	
	5.2	Swale and Drainage Improvements	
	5.3	Asphalt Cap	
REF	ERENC	ES	References-1
APP	ENDIX	A: GEOPHYSICAL INVESTIGATION	
APP	ENDIX	B: BORING LOGS (1995)	
	ENDIX		ESIGN

PAVEMENT DESIGN

LIST OF FIGURES

Number	Title	
1-1	Vicinity map, United States Military Academy, West Point, New York.	
1-2	Site map.	
5-1	Anticipated construction schedule	

ø

LIST OF ACRONYMS AND ABBREVIATIONS

ACGIH ASTM	American Conference of Government Industrial Hygienists American Society for Testing and Materials
bgs	Below Ground Surface
BTEX	Benzene, Toluene, Ethylbenzene, and Xylene
cf	Cubic Foot/Feet
CFR	Code of Federal Regulations
CHPPM cm	Center for Health Promotion and Preventative Medicine Centimeter(s)
EAL	Equivalent Axle Load
EOC	Environment One Corporation
EPA	Environmental Protection Agency
ft	Foot/Feet
gpd	Gallons Per Day
in.	Inch(es)
IR Program	Installation Restoration Program
L	Liter(s)
lb	Pound(s)
LEL	Lower Explosive Limit
LMA	Leachate Management Analysis
m	Meter(s)
MCL	Maximum Contaminant Level
ml	Milliliter(s)
NAD	North American Datum
NYSDEC	New York State Department of Environmental Conservation
PCB	Polychlorinated Biphenyls
ppb_v	Parts Per Billion, Volume
ppm_v	Parts Per Million, Volume
PVC	Polyvinyl Chloride

Project: 60787.77 Page v June 1999

1

EA Engineering, Science, and Technology

LIST OF ACRONYMS AND ABBREVIATIONS (continued)

RCP	Reinforced Concrete Pipe Rock Quality Density
RQD	Rock Quanty Density
sec	Second(s)
SVCA®	Soil Vapor Contaminant Assessment
SVOC	Semivolatile Organic Compounds
TAL	Target Analyte List
TCL	Target Compound List
UEL	Upper Explosive Limit
USACE	United States Army Corps of Engineers
USAEHA	United States Army Environmental Hygiene Agency
USMA	United States Military Academy
VOC	Volatile Organic Compounds

1. INTRODUCTION

1.1 PROJECT SCOPE

On 30 September 1997, the U.S. Army Corps of Engineers-Baltimore District (USACE-Baltimore), issued Delivery Order No. 132 under Contract No. DACA31-94-D-0025 to EA Engineering, Science, and Technology. Under this Delivery Order, EA is tasked to develop design documents for improvement of the Motor Pool East Landfill at the U.S. Military Academy (USMA), West Point, New York.

This design work is being performed in response to findings and recommendations proffered in previous investigations conducted in accordance with provisions of the Installation Restoration (IR) Program, including AR 200-1 Executive Order 12580 and DA PAM 40-578.

This project deliverable comprises a design analysis report, design drawings, technical specifications, a bid form, a price schedule, and a cost estimate for improvements to the Motor Pool East Landfill. The design concepts incorporated herein have been developed in part from previous investigations, and recent pre-design activities conducted under this delivery order.

The design incorporates the following concepts and components based on EA's understanding of the planned future use of the Motor Pool East Landfill property:

- Regrade and improve the perimeter drainage course to minimize stormwater run-on/infiltration into the fill mass, thus minimizing the potential for leachate generation.
- Install new pavement system including subgrade improvements as required for stability and performance. The new pavement system will conform to a grading plan designed to promote and manage surface water run-off and minimize infiltration into the landfill mass.

This Design Analysis Report is based upon information from pre-design activities and prior investigations and analyses conducted by EA and others as referenced in the document entitled: *Expanded RCRA Facility Assessment of Four Landfills, U.S. Military Academy, West Point, New York* (EA 1996).

1.2 SITE DESCRIPTION/ HISTORY

USMA is adjacent to the Town of Highland Falls in southeastern New York State. USMA consists of the West Point cantonment area, the range areas outside of West Point, Stewart Army Subpost, and Galeville. The Academy is located along the west shore of the Hudson River at the base of several prominent hillsides (Figure 1-1). The area is dissected by several small streams and is the source for many ground-water springs (Frimpter 1970). Much of the original topography has been altered by construction of buildings and roads.

The Academy currently consists of facilities and infrastructure which support USMA's primary training mission. USMA has a population of residents living permanently onsite and additional workers who commute to the Academy.

The Motor Pool East Landfill is located between Route 218 and Building 793 and 795 near Washington Gate (Figure 1-2). The site is fenced and paved, currently serving as the Motor Pool East Parking Lot. The parking lot occupies an estimated total area of 1.7 acres. An unnamed stream flows along the landfill to the east. A single orange colored seep was observed on the southeast portion of the site along the stream bed (LAW 1994). This site reportedly received garbage, household items, trees, and brush from 1964 to 1969. Sources of the materials were reportedly the USMA and surrounding municipalities. The waste bearing layer may range from 10 to 30 ft below ground surface. It was reportedly USMA practice to place waste material using the pit and fill method with excavated soil used as daily cover. Wastes types (e.g. garbage, wood, metals, and construction materials) were initially segregated and placed into designated areas. However, these materials were reportedly mixed during subsequent regrading activities. The Motor Pool East parking area reportedly received large boulders and blast spoils (from past USMA building construction) as supplemental fill material. Soil cover was placed over the boulders, and a 2-ft sub-base of gravel was placed and graded.

1.3 EXISTING CONDITIONS

The Motor Pool East Landfill is currently paved with asphalt and is used as a parking area for heavy equipment and USMA service vehicles. The pavement system exhibits areas of cracking and disintegration particularly in the west and northwest quadrants. Small isolated areas of surface subsidence are also evident. Surface water includes a stream flowing from south to north along the eastern boundary of the site. A swale located along the northern and western boundaries of the site receives run off from the north and west as well as from a culvert passing

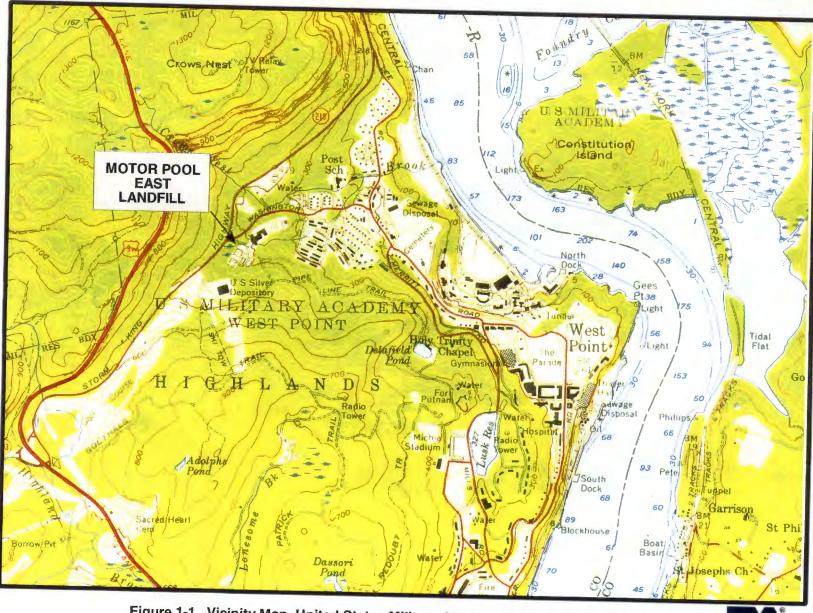
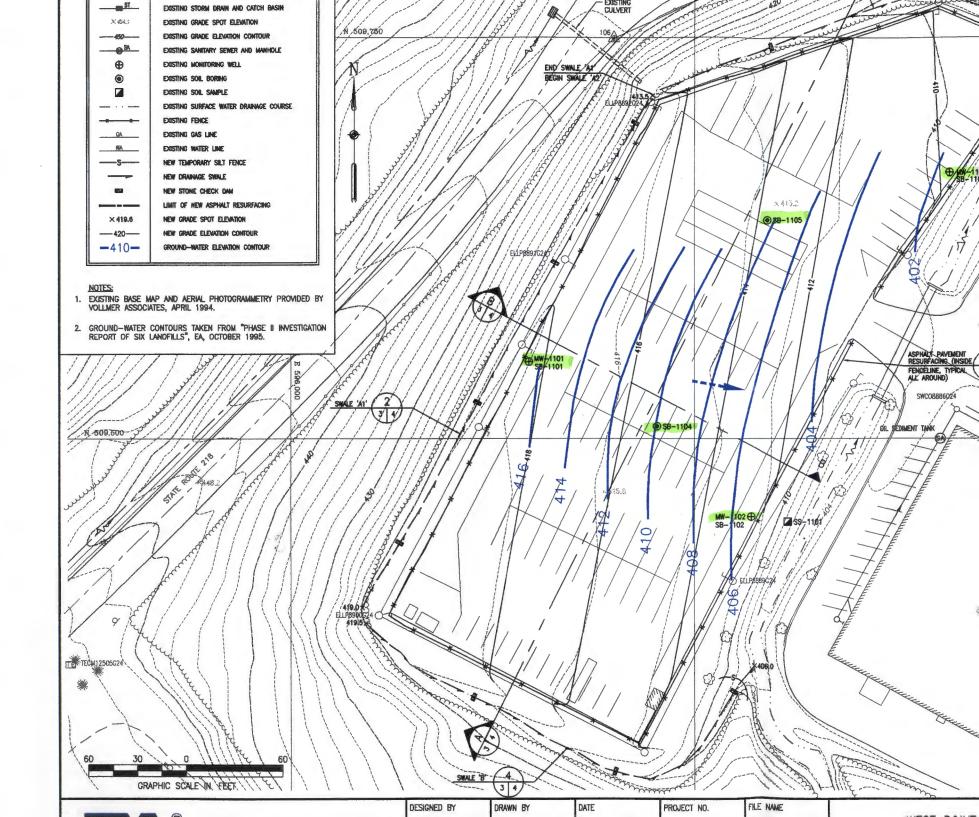



Figure 1-1. Vicinity Map, United States Military Academy, West Point, New York.

EA

under Route 218. A swale located along the southern boundary of the site receives runoff from the south. Both swales have localized areas where water ponds until it infiltrates into the ground or evaporates.

1.3.1 Ground-Water Characterization

Water quality in the vicinity of the Motor Pool East Landfill was examined during an expanded RCRA Facility Assessment (EA 1996) to determine if landfill waste was contributing to degradation of the surface water or ground water adjacent to the landfill. Figure 1-2 provides relative locations of ground water, and soil boring sampling points used during the RCRA Facility Assessment.

Four ground-water samples were collected from the three monitoring wells (three well samples plus one duplicate) and were analyzed for TCL VOC, TCL SVOC, TCL pesticides/PCB, chlorinated herbicides, TAL metals plus cyanide, and 15 water quality parameters. Samples were collected on 5 and 8 June 1995. There were no VOC, SVOC, pesticides/PCB, or chlorinated herbicides reported in the four samples.

The upgradient well (MW11-01) showed a larger number of inorganic analytes, and analytes at a greater concentration, than observed in the background spring. The 2 downgradient wells showed comparable or slightly lower concentrations of most metals relative to the upgradient location. Downgradient monitoring well MW11-03 showed the lowest overall metal concentrations compared to the other wells.

The analytical results were also compared to the NYSDEC Class GA standards and guidance values (NYSDEC 1993a). Chromium in well MW11-02 (60.8 μ g/L) exceeded the Class GA standard (50 μ g/L) for this parameter. However, this exceedance may be an artifact of the solids present in the sample, since the duplicate collected from this well (MW11-02 Dup) showed a chromium concentration (21.3 μ g/L) that was lower and less than the class GA standard. Iron, manganese, and sodium exceeded their respective Class GA standards or guidance values in all four ground-water samples (three wells plus one duplicate), while zinc exceeded the Class GA standards are secondary standards based upon the aesthetic properties (e.g., taste and color) of these inorganics in potable water.

Comparison of the upgradient and downgradient water quality parameter results showed that higher concentrations were noted in the upgradient sample for 2 water quality parameters (pH and nitrate) relative to the downgradient samples. Higher concentrations were noted downgradient relative to the upgradient station for 11 water quality parameters (alkalinity, ammonia, color, chemical oxygen demand, biological oxygen demand, dissolved organic carbon, chloride, total suspended solids, hardness, sulfate, and total Kjeldahl nitrogen). None of the observed concentrations exceeded the NYSDEC Class GA standards or guidance values, except for chloride in the original and duplicate samples collected from well MW11-02.

1.3.2 Surface Water Characterization

Four surface water samples were collected from the stream adjacent to the landfill (three samples plus one duplicate) and were analyzed for TCL VOC, TCL SVOC, TCL pesticides/PCB, chlorinated herbicides, TAL metals plus cyanide, and 15 water quality parameters. Samples were collected on 6 June 1995 (EA 1996). There were no VOC or SVOC reported in the four samples.

There were no detectable pesticides/PCB or herbicides in Sample SW11-01. Dieldrin was reported above the NYSDEC Class A standard for 2 samples as well as the sample duplicates (SW11-02, SW11-02 Dup, and SW11-03). Although the reported concentrations were above the Class GA standard for this compound, the results are suspect since in all cases the results were flagged with a "P" by the laboratory indicating poor duplication between the two analytical columns used for sample analysis.

Comparison of the upstream and downstream results showed that higher concentrations were noted in the upstream sample for 11 TAL metals (aluminum, barium, calcium, chromium, iron, lead, magnesium, manganese, potassium, sodium, and vanadium) relative to the downstream samples. Higher concentrations were noted downstream relative to the upstream station for three TAL metals (antimony, copper, and zinc). The upstream sample was collected just upstream of the small rust-colored seep emanating from the perimeter of the landfill. The surface water quality at this location may be influenced by this seep, but also from a seep from the adjacent Ski Lot Landfill, which discharges to a feeder tributary to this stream.

The analytical results were also compared to the NYSDEC Class A standards for human and wildlife protection. The upstream results (SW11-01) for two inorganics (iron and manganese) were above the NYSDEC Class A standard for human protection. The downstream results were less than the NYSDEC Class A standard for human protection.

The upstream results (SW11-01) for five inorganics (aluminum, iron, lead, manganese, and zinc) were above the NYSDEC Class A standards for wildlife protection. The most downstream sampling location (SW11-03) exceeded the NYSDEC Class A standards for wildlife protection for two inorganics (iron and zinc). The mid-point downstream station (and its duplicate) showed all inorganic concentrations less than the NYSDEC Class A standards for wildlife protection.

The three surface water samples (plus one duplicate) were analyzed for the 15 water quality parameters. Comparison of the upstream and downstream results showed that higher concentrations were noted in the upstream sample for eight water quality parameters (alkalinity, chloride, pH, chemical oxygen demand, dissolved organic carbon, total suspended solids, hardness, and sulfate) relative to the downstream sample. Higher concentrations were noted downstream relative to the upstream station for three water quality parameters (ammonia, color, and nitrate). None of the observed concentrations exceeded the NYSDEC Class A surface water standards for either human consumption or wildlife protection.

1.3.3 Stream Sediment Characterization

Stream sediment samples were collected at three locations from the stream adjacent to the Motor Pool East Landfill, and were analyzed for TCL SVOC, TCL pesticides/PCB, chlorinated herbicides, TAL metals plus cyanide, and total organic carbon.

The upstream sample (SD11-01) was free of detectable SVOC. One phthalate compound (bis[2-ethylhexyl]phthalate) and 15 polycyclic aromatic hydrocarbons (PAH) were identified in one or more of the downstream samples. The duplicate collected from location SD11-02 showed the highest overall PAH concentration. PAH are commonly found in road surface runoff. The proximity of the stream to the Motor Pool East access road and parking lot suggests that this was the likely source of PAH contamination in the sediments.

The observed SVOC concentrations to the four guidance criteria (Human Health Bioaccumulation, Benthic Aquatic Life Acute Toxicity, Benthic Aquatic Life Chronic Toxicity, and Wildlife Bioaccumulation) listed in the NYSDEC Technical Guidance for Screening Contaminated Sediments (NYSDEC 1993b). These values were calculated using the average observed total organic carbon concentration (26,425 mg/Kg) observed in the sediment samples, and the organic carbon normalized concentrations presented in NYSDEC (1993b). Reported concentrations of benzo[a]anthracene in sample SD11-02 and three analytes (benzo[a]pyrene,

.

Project: 60787.77 Page 1-6 June 1999

EA Engineering, Science, and Technology

benzo[k]fluoranthene, and benzo[a]anthracene) in duplicate sample SD11-02 Dup exceeded guidance criteria for Human Health Bioaccumulation. Phenanthrene concentration in duplicate sample SD11-02 Dup exceeded guidance criteria for Benthic Aquatic Life Chronic Toxicity.

The three stream sediment samples (plus one duplicate sample), and one rinsate blank were analyzed for the 28 TCL pesticides/PCB and chlorinated herbicides. Comparison of the upstream and downstream results showed that higher concentrations were noted in the upstream sample (SD11-01) for three analytes (4,4'-DDD, 4,4'- DDE, and gamma-chlordane) relative to the downstream samples. Higher concentrations were noted downstream relative to the upstream station for eight analytes (aldrin, Aroclor-1254, Aroclor-1260, dieldrin, endosulfan I, endosulfan sulfate, heptachlor epoxide, and methoxychlor).

Comparison of the results to the sediment criteria (NYSDEC 1993b) showed that all of the observed concentrations were below those concentrations which may induce acute or chronic toxic effects in benthic organisms. All of the pesticide results were also below the concentrations which may result in significant bioaccumulation of the chemicals by wildlife. Aroclor-1254 in the duplicate sample (SD11-02 Dup) and Aroclor-1260 in three samples (SD11-01, SD11-02, and SD11-02 Dup) were above the concentration which may result in bioaccumulation by wildlife.

With the exception of aldrin and dieldrin, the observed pesticide and PCB concentrations were above the concentrations which may result in significant bioaccumulation of the chemicals by humans, if the biota are used as a food source.

Three stream sediment samples, one duplicate sample, and one rinsate blank were analyzed for the 25 TAL metals plus cyanide. Comparison of the upstream and downstream results showed that higher concentrations were noted in the upstream sample for cyanide and 15 TAL metals (aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, lead, manganese, nickel, potassium, selenium, vanadium, and zinc) relative to the downstream samples. Higher concentrations were noted downstream relative to the upstream station for six TAL metals (cobalt, copper, iron, magnesium, silver, and sodium). Downstream concentrations for chromium were less than the upstream station except for Sample SD11-03 which had the same concentration.

The observed concentrations were generally consistent with anticipated background concentrations for the 10 analytes that background data were available. None of the observed

chromium or zinc concentrations were greater than the NYSDEC lower effect limits or severe effect limits (NYSDEC 1993a). The upstream sample result for antimony exceeded the lower effect limit but was less than the severe effect limit. The cadmium, iron, and manganese concentrations in all four sample results (three samples plus the duplicate) were greater than the lower effect limit, and the cadmium and iron results were all less than the severe effect limits. The upstream sample also exceeded the severe effect limit. The copper and nickel results were above the lower effect limit in the three samples (but not the duplicate), and were all less than the severe effect limit. The lead concentration in the upstream sample was above the severe effect limit with the proximal downstream station (SD11-02 and SD11-02 Dup) exceeding the lower effect limit.

1.3.4 Leachate Seep Characterization

A single leachate sample was collected from the seep located approximately 15 ft south of monitoring well MW11-02, along the edge of the stream. The leachate seep sample was analyzed for the 33 TCL VOC, 64 TCL SVOC, 28 TCL pesticides/PCB, and two chlorinated herbicides. None of these compounds were detected in the sample.

The leachate seep sample was also analyzed for the 23 TAL metals plus cyanide. A total of 15 metals were detected in these samples. Comparison of the results to the NYSDEC Class GA standards showed that only iron and sodium were present above this standard. The observed iron concentration was also above the Class A standard for human consumption and wildlife protection.

The leachate seep analysis also included 15 water quality parameters. A total of 11 water quality parameters were detected. None of the reported results exceeded the NYSDEC Class GA standards, Class A standards for human consumption, or Class A standards for wildlife protection.

1.3.5 Geology

The regional geology in the vicinity of the USMA consists of a crystalline base overlain by glacial deposits. Most of the site bedrock is comprised of Pre-Cambrian granite with some gneiss. Within the bedrock, quartz, feldspar, and mica occur in a medium-grained configuration. The Pleistocene glacial deposits are composed of a mixture of clay, sand, and gravel with boulders prevalent. In some areas, the glacial deposits are more fine-grained and act to confine

Project: 60787.77 Page 1-8 June 1999

ground-water movement (USAEHA 1990). Fracture systems recorded within the West Point topographic quadrangle indicate that the rock strata contain joint systems, generally dipping 60 degrees to vertical (Isachsen and McKendree 1977; USGS 1967a). This joint orientation may have environmental relevance, as it could provide potential pathways for ground-water flow.

The dominant soil type at the USMA is Hollis-Rock outcrop (USDA 1981). The Hollis series consists of shallow, well drained gently sloping to very steep soil overlying schist, granite, and gneiss bedrock in mountainous uplands. The soil units mapped in the area, described as glacial till deposits, are composed of a heterogeneous mixture of very large boulders, cobbles, gravel, silt, sand, and clay. The maximum depth of frost penetration in these types of soil is approximately 60 in. (Sowers and Sowers 1970). Particle size segregation is typically confined to glacial features or modern stream development. Very large boulders, up to 10 ft in diameter, are common in the area.

Specific to the Motor Pool East Landfill and parking area, waste fill material was encountered just below ground surface in six soil borings. Waste was identified as predominantly wood chips, weeds, and other organic material. The vertical extent of the waste material was undetermined in the borings since the borehole depths were not extended into native soil, and also due to auger refusal. Boulders were encountered at depths ranging from 4 ft to 32 ft. The cap material placed atop the fill material as final cover consists of fine-coarse sand, silty clay, and gravel and boulder mixtures. All of the soil boring locations were overlain with macadam.

1.3.6 Hydrogeology

The hydrogeology of the Motor Pool East investigative area consists of an unconfined overburden zone. Ground-water elevations recorded in the 3 site overburden monitoring wells suggest that the overburden thickness may be relatively consistent and that existing ground-water elevations are a consequence of the localized topographic setting. The dominant direction of overburden ground-water flow beneath the site is generally to the southeast. Figure 1-2 provides the interpreted direction of ground-water flow in overburden soil around the Motor Pool East parking area.

1.3.6.1 Hydrogeologic Linkage of Ski Lot and Motor Pool East Landfills

The analytical results from the overburden monitoring wells at the Motor Pool East Landfill suggest that the upgradient well exhibits higher relative concentrations of metals when compared to the downgradient wells. This landfill is adjacent to the Ski Lot Landfill which exhibited elevated downgradient concentrations of metals (EA 1996). In addition, there is a seep located between the Ski Lot Landfill and Motor Pool East Landfill which drains to the swale between the two landfills.

The comparison of the ground-water elevations of the overburden wells from the Motor Pool East Landfill (EA 1996) and the adjacent Ski Lot Landfill (EA 1995) showed that the unconfined overburden zone within the Motor Pool East Landfill was linked to the Ski Lot Landfill unconfined overburden aquifer. The intermittent seeps located between the two landfills and from the Motor Pool East Landfill are in areas where the interpreted ground-water surface can intercept the ground surface. Seasonal fluctuations in the ground-water elevation result in the seeps discharging to the surface. The hydrogeologic interpretation, combined with the analytical results and absence of any metallic debris based on the geophysical survey, suggests that the metals present in the ground water at the Motor Pool East Landfill are not attributable to waste fill mass, but rather ground water that is migrating from the Ski Lot Landfill.

2. PREVIOUS INVESTIGATIONS/ PRE-DESIGN ACTIVITIES

This section summarizes previous investigations conducted at the Motor Pool East Landfill as well as supplemental pre-design work performed under this delivery order. Previous investigation and pre-design activities at the Motor Pool East Landfill have included an aerial survey, magnetometer survey, and installation of a soil boring/monitoring well network. Previous USMA investigations contain supplemental pre-design information. Applicable portions of previous investigations have been incorporated into this section as cited, and into the overall concept design as applicable.

2.1 PREVIOUS U.S. MILITARY ACADEMY INVESTIGATIONS

The following previous investigations were reviewed and cited for their applicability to the RCRA Facility Assessment. As cited in this document, these investigations provide supplemental information on soil lithology, water quality, hydrogeology, and other related RCRA Facility Assessment objectives. Several of the previous investigations were performed on property adjacent to the four RCRA Facility Assessment areas of concern, including the Motor Pool East Landfill.

- EA Engineering, Science, and Technology. September 1996. Expanded RCRA Facility Assessment of Four Landfills, U.S. Military Academy, West Point New York.
- Woodward-Clyde Federal Services. November 1994. West Point RCRA Facility Assessment Investigation at 10 Landfills, Final Progress Report.
- Paulus, Sokolowski, and Sartor (PSS). 1985. Analysis of Existing Facilities, Draft Environmental Assessment Report. United States Military Academy, West Point, New York. Warren, New Jersey. February.
- Metcalf and Eddy. 1992. One Stop Shopping Area Feasibility Study Pilot Geotechnical Report. September.
- LAW Environmental Inc. 1994. Subsurface Investigation Report for Subsurface Investigation, USMA, West Point, New York.

• Bionetics Corporation. 1984. Installation Assessment, U.S. Military Academy, West Point, New York. Report No. TS-PIC-84001. April. 15 pp.

2.1.1 RCRA Facility Assessment

The principle source for recent Motor Pool East site investigation data is the *Expanded RCRA* Facility Assessment of Four Landfills, U.S. Military Academy, West Point New York (EA 1996). This investigation was designed to gather and assess site-specific data relative to:

- Presence of buried ferrous material at the Motor Pool East Landfill.
- Characterization of the lithology of surface and subsurface soil.
- Examination of ground-water and surface-water quality at the Motor Pool East and adjacent landfills where ground water may be impacted.
- Characterization of stream sediment samples.
- Analysis of aqueous sample collected from apparent seep at Motor Pool East Landfill.

2.2 AERIAL SURVEY

In order to provide an up-to-date topographic map USMA commissioned a basewide topographic survey. The survey was conducted by Vollmer Associates, New York, using aerial photogrammetry (dated 22 April 1994) and supplemental field-run surveys. The photogrammetric scale was 1 in. = 50 ft. Electronic files of the survey were transferred to EA from USMA to provide the basis for the 30% design drawing set and calculations. Topographic maps were produced using a 2-ft contour interval as specified by USMA. Existing physical features of the Motor Pool East landfill and adjacent properties including utility lines, monitoring wells, roads, fences, utility service vaults, buildings, and fences identifiable by the aerial survey were plotted. Horizontal and vertical control points for the aerial survey were provided by USMA staff.

2.3 MAGNETOMETER SURVEY

An orange-colored seep is located on the southeastern side of the Motor Pool East Landfill. Historical records indicate that buried ferrous materials are the probable source of the discolored seep located on the southeastern side of the Motor Pool East Landfill. A magnetometer survey was used as a non-invasive technique to define the approximate locations of the buried ferrous materials.

2.4 GEOTECHNICAL DATA

Geotechnical data cited in this section is summarized from previous investigation by LAW (1994) and EA (1996). No additional pre-design geotechnical data was collected under this delivery order.

2.4.1 Ground Conductivity Survey

During the RCRA Facility Assessment (EA 1995), EA directed a limited geophysical investigation to estimate the lateral extent of the fill mass at the Motor Pool East Landfill. The investigation which included EM-31 ground conductivity and in-phase data acquisition was conducted on 23 and 24 May 1995 by Quantum Geophysics, Inc., Phoenixville, Pennsylvania.

A 20-ft survey grid interval was established across the Motor Pool East Landfill using a Warren McKnight Model 1B transit, fiberglass survey tapes, and existing fence poles for points of origin. EM-31 ground conductivity instrumentation interfaced with an OmniData 720 Digital Logger was calibrated and phase adjusted in accordance with the manufacturer's operating manual. Quadrature phase (ground conductivity) and in-phase data were acquired on 10-ft stations (at and between adjacent grid nodes) and simultaneously logged.

The combination of EM-31 and in-phase technologies was selected to provide reliable interpretation of the extent of the landfill mass and the location of buried metal debris. EM-31 is the preferred geophysical method for mapping the edges of landfills and the lateral extent of leachate plumes. Leachate-saturated fill will typically be high in total dissolved solids, particularly high dissolved metals concentrations which are distinguishable from surrounding unsaturated, or non-fill material due to high EM-31 response values. In-phase technology is useful in tracing underground metallic piping and electrical conduit, as well steel-reinforced concrete structures and concentrations of buried metal debris.

2.4.1.1 Ground Conductivity and In-Phase Results

Appendix A, Figure A-2 presents the ground conductivity (EM-31) contour map for Motor Pool East Landfill. Figure A-3 presents the in-phase contour map for the landfill. The ground

conductivity data suggest that two probable landfill cells exist at the Motor Pool East Landfill: one cell has dimensions of approximately 55 ft \times 90 ft; the limit and approximate dimensions of the other cell could not be established due to the presence of nearby immovable vehicles. However, due to the absence of corresponding elevated in-phase measurements, it is likely that both landfill cells contain mostly non-metallic, electrically conductive material.

2.4.2 Soil Boring/Monitoring Well Network

As reported by EA (1995), 6 soil borings were completed at the Motor pool East, 3 of which were completed as monitoring wells. Relative locations of the monitoring wells are provided in Figure 1-3. Results of the soil boring work indicate that the Motor Pool East landfill overburden at all 3 monitoring well locations consists of glacial till or reworked till. The layer of reworked till was typically observed within the upper 5 ft of the overburden. Boulders were encountered in the subsurface at monitoring wells MW11-01 and MW11-03, and were evident on the site surface. The overburden composition is generally a fine to medium silty sand with gravel and/or trace clay. The vertical extent of the overburden material is undetermined, since the borehole depths were not extended into native soil. Four soil borings advanced to 19-22 ft below ground surface exhibited saturated fill at the completion depth. The Motor Pool East parking area is entirely overlain with a pavement layer consisting of an estimated 2-in. thickness of asphalt underlain by a stone subbase layer is underlain by a fine-coarse sand, silty clay, and gravel and boulder mixture. Logs of borings are provided in Appendix B for six soil borings installed during the subsurface investigation.

3. SITE DRAINAGE

3.1 SCOPE AND PURPOSE

Site drainage is an important aspect of leachate minimization at the Motor Pool East Landfill. Improved drainage will reduce the amount of stormwater infiltrating the landfill and potentially reduce leachate generation. By improving the drainage of the site and controlling stormwater run-on and run-off, stormwater will more readily drain to the stormwater drainage swales and surrounding streams, thus allowing less opportunity for infiltration into the landfill. While not all leachate is produced via the infiltration of stormwater into the landfill, reducing the amount of precipitation infiltration decreases the potential for additional leachate generation.

3.2 SITE GRADING

The existing surface of the Motor Pool East Landfill does not allow for complete drainage of stormwater due to inconsistent grades, localized subsidence, and cracking of the existing pavement. The lot contains localized low spots which permit water ponding after storm events. The existing swales along the southern, western, and northern perimeters of the site do not have consistent slopes, and therefore do not adequately drain to the surrounding stream.

In order to alleviate these problems, the site will be graded to promote surface water drainage from the cap surface and into the drainage swales and surrounding stream. Recognizing that USMA anticipates continued use of the Motor Pool East Landfill as a parking area, the present grades will be generally maintained; however, they will be made more consistent over the area of the lot. The lot will therefore be graded at a minimum 3 percent slope to promote drainage off the cap. The grades are shown on the Final Grading Plan.

3.3 STORMWATER MANAGEMENT

Presently, stormwater from the Motor Pool East pavement drains to the stream east of the site. Stormwater from the north, south, and west of the site is collected by swales to prevent run-on to the parking lots. The swales discharge to the stream east of the site.

The total area of Motor Pool East surface is approximately 1.7 acres. The pavement is graded to drain to the stream east of the site. Currently, erosion rills exist on the stream bank where the water flows off of the pavement down into the stream. An asphalt curb will be constructed along

Project: 60787.77 Page 3-2 June 1999

the eastern side of the parking lot to collect runoff and direct it into gabion downchutes down into the stream. This will alleviate the erosion problem along the stream bank.

Swales collecting run-off from the drainage areas north, south, and west of Motor Pool East will be improved. Based on the surrounding topography, a limited amount of rock excavation may be necessary during the excavation and improvement of the existing drainage swales. Swale "A1" will receive flow from west and north of the site. Swale "A2" will receive flow from swale "A1," from west of the site, and from the culvert under Route 218. Swale "B" will receive flow from south of the site. The swales will carry surface run-off water to the stream east of the site.

The new drainage swales are sized to carry the peak discharge of a 24-hour, 10-year frequency storm event at a non-erosive velocity. Surface water drainage calculations in support of the swale design are presented in Appendix C along with a figure of the designated drainage areas.

3.4 SEDIMENT CONTROL

Temporary sediment control will be provided during construction, consisting of silt fence located at the swale outlets, and stone check dams in the swales. The silt fence will reduce sediment carried in the runoff, protecting water quality in the stream. The stone check dams will reduce the velocity of flow in the swales, minimizing erosion potential and reducing sediment in the runoff.

4. LANDFILL CAP

4.1 SCOPE AND PURPOSE

The Motor Pool East Landfill cap has been designed to reduce precipitation infiltration into the landfill and serve as a parking area for USMA vehicles. An asphalt cap is the best alternative to serve this dual purpose. By creating a low permeability barrier between the existing waste and the surrounding environment, there will be a reduction of stormwater infiltration into the landfill and a subsequent reduction in the production of leachate.

The existing flexible pavement landfill cap includes approximately 10 in. of aggregate sub-base and 2-in. of bituminous surface course, based on information provided in the 1995 Boring Logs (Appendix B.) The existing asphalt is cracked and has subsided locally in various locations. Two varying pavement sections will be provided based on the current conditions and expected future uses of the lot. In both cases, the lot will be resurfaced to seal out rain water. Details of the flexible pavement sections are discussed below and illustrated on the Details and Cross-Sections Sheet.

4.2 PAVEMENT DESIGN

The existing asphalt surface is cracked across the entire lot and has subsided in some areas. The condition of the existing pavement surface of the lot was evaluated and was determined to exhibit obvious cracking within the common driving lanes as well as around the perimeter of the lot. Additionally, the pavement along the north and west side of the lot is expected to be fairly wet due to the ponding of stormwater. This may be compromising the integrity of the existing pavement system.

For design purposes, the existing Motor Pool East Landfill has been segmented into two distinct areas based on these existing surface conditions. Only the areas exhibiting obvious cracking, as designated on the Existing Conditions Plan, will receive a complete flexible pavement section, as shown on the Final Conditions Plan. The central area of the lot, however, shows few signs of settlement relative to the other areas of the lot. The existing pavement in this area has small "alligator" cracks due to pavement fatigue and thus needs to be repaired. The central region of the lot will be remedied by covering the entire surface first with a new tack coat and a woven geotextile to supply reinforcement. Next, the area will be finished with an overtopping pavement consisting of a 1.5-in. layer of new bituminous final course.

Due to the extent of the cracking, the suspected wet subbase, and the localized subsidence in the surrounding areas of the lot, the existing pavement and underlying subbase in these areas will be demolished and removed. Upon arriving at the final excavation grades shown on the Details and Cross-Sections Sheet, the subgrade shall be scarified to a minimum depth of 4-in. The existing subgrade will also be proof-rolled to locate soft spots. Identified soft spots will be undercut and filled in a controlled manner. Soft spots that extend into the sanitary waste will only be undercut to the top of the waste. The complete flexible pavement section that this area will receive consists of: 11-in. of aggregate base course, a prime coat, 2-in. of bituminous intermediate course, a tack coat, and 1.5-in. of bituminous final course, as shown on the Details and Cross-Sections Sheet. The two differing pavement sections will be joined together at the same grade by transitioning the adjoining areas together as shown on the Detail Sheet.

This total approach addresses three factors of the pavement strength and permeability:

- The existing subbase can be dried in areas where it is wet due to the infiltration of the ponded stormwater in the north and west regions of the lot.
- The subbase can be recompacted to provide a better foundation for the asphalt.
- The subbase can be regraded to smooth out areas where localized subsidence has occurred and to promote drainage off of the finished pavement.

An analysis in accordance with TM 5-822-5, "Pavement Design for Roads, Streets, Walks, and Open Storage Areas", was conducted to design the flexible pavement at the Motor Pool East Landfill. The method accounts for vehicular loading based on two factors: the traffic category and the street classification. The traffic category is based on the weight of the mix of vehicles using the pavement. The street classification considers the traffic frequency or repetition of loading. Parking areas are considered Class E. The combination of traffic category and street classification is used to select a pavement design index.

The design method presented in TM 5-822-5 uses the pavement design index and the existing surface soil conditions to define the thickness of the flexible pavement layers. The existing subgrade is best defined as a sandy-gravelly soil with a significant amount of fines. Additionally, the seasonal frost conditions were evaluated by taking into consideration the Frost-Area Soil Support Indexes for the subgrade soils. Pavement design calculations for the lot are located in Appendix D.

4.3 GAS MANAGEMENT

A soil vapor survey was not performed at the Motor Pool East Landfill as part of the pre-design investigations or the previously performed Six Landfills Investigation. Based on discussions with the site manager, Russ Goodrich, there has not been an odor problem or noticeable vapors emanating from the Motor Pool East Landfill. No evidence of stressed vegetation or surface cracking of the grassed areas surrounding the Motor Pool East Landfill was observed, indicating that landfill gas generation is not significant at the site. Paving of the lot is expected to reduce stormwater infiltration into the fill mass and further reduce what limited gas generation is occurring. For this reason, vents will not be placed in the parking area.

Although no evidence of gas generation has been observed at the site, some gas generation may be expected because of the nature of the fill (refer to Chapter 1). The asphalt surface is graded so the high point of the pavement is at the pavement's edge. Therefore, small amounts of gas that may be generated will pass through the aggregate subbase and will be vented to the atmosphere along the western edge of the pavement. This will reduce the chance of the pavement cracking due to gas pressure building up beneath it.

5. SCHEDULE

The anticipated construction schedule for accomplishing the work is shown in Figure 5-1. Major scheduling milestone activities are discussed in the following sections.

5.1 EROSION AND SEDIMENT CONTROL

Erosion and sediment control devices will be installed prior to construction activities to ensure that sediment loss and erosion is minimized. Silt fencing will be installed along the eastern perimeter of the Motor Pool East Lot and temporary check dams will be placed in the new - surface drainage swales.

5.2 SWALE AND DRAINAGE IMPROVEMENTS

The existing perimeter swales will be improved to increase their capacity and reduce ponding around the Motor Pool East.

5.3 ASPHALT CAP

The construction of the new asphalt cap will consist of two phases to permit continuing operation of the Motor Pool East. The two phases are illustrated on the Construction Phasing Plan, where a detailed description of them is included.

	cipated Construction Scl						2nd Quarter		
D	Task Name	Duration	Start	Finish	Mar '00	Apr '00	2nd Quarter May '00	Jun '00	Jul '00
1	Notice to Proceed	0d	4/3/00	4/3/00		•			
2	Mobilization	1w	4/3/00	4/7/00					
3	Install Erosion and Sediment Contro	1w	4/10/00	4/14/00			4		
4	Swale and Drainage Improvements	2w	4/17/00	4/28/00			1		
5	Asphalt Cap	40d	5/1/00	6/23/00					
6	Phase 1	4w	5/1/00	5/26/00		- - 	ן		
7	Phase 2	4w	5/29/00	6/23/00		* 6 4 1			
8	Demobilization	1w	6/26/00	6/30/00		5 5 5			1
9	Substantial Completion	Od	6/30/00	6/30/00					

					· · · · ·	
Designet: Drangood Schedule for	Task		Summary	 Rolled Up Progress		
Project: Proposed Schedule for Motor Pool East Landfill - West Point Date: 6/14/99	Progress		Rolled Up Task			
Date. 0/ 14/33	Milestone	•	Rolled Up Mileston			
F:\6078777\reports\desanal\schedule.m	рр			Figure	e 5-1	

REFERENCES

- EA Engineering, Science, and Technology. 1996. Final Expanded RCRA Facility Assessment of Four Landfills, U.S. Military Academy, West Point, New York. Prepared for Department of the Army, Baltimore District, Corps of Engineers, Baltimore, Maryland. September.
- EA Engineering, Science, and Technology. 1995. Draft Phase II Investigation Report of Six Landfills, U.S. Military Academy, West Point, New York. Prepared for Department of the Army, Baltimore District, Corps of Engineers, Baltimore, Maryland. October.
- Environment One Corporation (EOC). 1989. Analysis Report for Golf Course. Schenectady, New York. 1 August.
- Frimpter, M.H. 1970. Ground-Water Basic Data-Orange and Ulster Counties, New York. NYSDEC Water Resources Commission Bulletin 65.
- Isachsen and McKendree. 1977. Final Subsurface Investigation Report for U.S. Military Academy, West Point, New York. New York Environmental Law, Inc.pp 2-4.
- Law Environmental Inc., Government Services Division (LAW). 1994. Final Subsurface Investigation Report for Subsurface Investigation, U.S. Military Academy, West Point, New York.

Meade, J. 1992. Personal Communication. Site visit interview at areas of concern. 17 June.

- New York State Department of Environmental Conservation (NYSDEC). 1991. Water Quality Regulations for Surface Waters and Groundwaters. Division of Water. 6NYCRR Parts 700-705.
- New York State Department of Environmental Conservation (NYSDEC). 1993a. Ambient Water Quality Standards and Guidance Values. Division of Water. Technical and Operational Guidance, Series 1.1.1. 89 pp. October.
- New York State Department of Environmental Conservation (NYSDEC). 1993b. Technical Guidance for Screening Contaminated Sediments. Division of Fish and Wildlife. Division of Marine Resources. 36 pp. November.
- Sowers, G.B. and G.F. Sowers. 1970. Introductory Soil Mechanics and Foundations. MacMillan Publishing Company, Inc. 3rd Edition, 556 pp.
- U.S. Army Environmental Hygiene Agency (USAEHA). 1990. Evaluation of Solid Waste Management Units, U.S. Military Academy, West Point, New York. Ground-Water Quality Survey No. 38-26-K967-91. USAEHA, Aberdeen Proving Ground, Maryland.

Project: 60787.77 References-2 April 1999

- U.S. Department of Agriculture (USDA). 1981. Soil Survey of Orange County. New York. Soil Conservation Service.
- U.S. Geological Survey (USGS), 1967a. Engineering Geology of the Northeast Corridor. Washington, D.C. to Boston, Massachusetts: Coastal Plains and Surficial Deposits. USGS Miscellaneous Geologic Investigations Map I-514-B, Sheets 3 and 7.

Appendix A

Geophysical Investigation

Engineering, Groundwater & Environmental Geophysics

June 1, 1995

John Samuelian EA Engineering, Science and Technology 3 Washington Center, The Maple Building Newburgh, New York 12550

RE: REPORT EM31 SURVEY UNITED STATES MILITARY ACADEMY WEST POINT, NEW YORK

Dear Mr. Samuelian,

This report presents the findings of Quantum Geophysics, Inc.'s EM31 survey at the United States Military Academy, West Point, New York. The survey was conducted to identify anomalous subsurface conditions at 3 suspected landfills: WSTPT-12 (Building 917), WSTPT-11A (Motor Pool), and WSTPT-48 (Building 706).

The survey was carried-out on May 23 and 24, 1995 by Quantum's principal geophysicist Richard K. Lee. A partially constructed 10 x 20-foot survey grid by EA Engineering, Science, and Technology was used to guide the EM31 survey.

The remainder of this report briefly describes our technical approach and then details the geophysical findings with respect to anomalous subsurface conditions at the 3 suspected landfills. Included in this report, under separate cover, is a 3.5 inch high density diskette with .DWG files of fully annotated contour maps of the geophysical data and findings.

TECHNICAL APPROACH

A. EM31

The electromagnetic survey incorporated a Geonics Limited EM31 ground conductivity meter coupled to an OmniData Polycorder 720 digital programmable data logger and supported by Geonics' data acquisition and processing program **DAT31** and a Dell 386 laptop computer.

Engineering, Groundwater & Environmental Geophysics

Samuelian, J. EA Engineering, Science, and Technology Page 2

The EM31 is a battery-operated instrument that works on the principal of induction. It is constructed of 2 circular coils, a transmitter and receiver, mounted in the ends of a 13-foot-long PVC boom and interfaced with a measurement console. The transmitter coil is energized with an alternating current which induces a "primary magnetic field". This field causes very small electric currents to flow through the earth and they in turn induce a "secondary magnetic field". Both the primary and secondary fields are sensed by the receiver coil.

The intensity of the secondary field is a function of intercoil spacing, operating frequency, and soil conductivity. The EM31 is designed so that these factors are incorporated into it and the secondary field is a simple function of soil conductivity.

The EM31 measures 2 components of the induced field: 1) quadrature phase, and 2) inphase. The quadrature phase is related to ground conductivity. It is measured in millimhos/meter (mmhos/m) and is equivalent to millisiemens/meter. The in-phase component is more sensitive to metal (compared to the quadrature phase) and is measured in parts per thousand (ppt).

In most cases, the ratio of the secondary and primary fields is linearly proportional to ground conductivity. In the presence of massive conductors such as drums, fences, and buildings, the induction principal "breaks-down" and the ratio of the 2 fields is no longer proportional to ground conductivity. Under such circumstances, rapidly changing readings as well as negative values can be expected. Such readings indicate the presence of metal and are not related to ground conductivity.

The EM31 is sensitive to both ferrous and non-ferrous metal.

The EM31 was taken to a metal-free environment, assembled, interfaced with the data logger, the battery condition checked, and the sensitivity and phasing adjusted following procedures outlined in the operating manual. Both the quadrature phase and in-phase data were collected with the instrument in the vertical dipole orientation for a depth of exploration of roughly 18 feet below the ground surface.

The EM data were downloaded onto the laptop computer for storage at the end of each field day. In the office, the EM data were entered into **SURFER for Windows**, gridded using the Kriging Method, contoured at appropriate contour intervals, written to .DXF files, imported into **GenericCADD**, annotated, printed by a Panasonic KX-P4420 laser printer and saved as .DWG files.

Engineering, Groundwater & Environmental Geophysics

Samuelian, J. EA Engineering, Science, and Technology Page 3

FINDINGS

A. WSTPT-12 (BUILDING 917)

Contour maps of the ground conductivity and in-phase data collected at WSTPT-12 are paneled and shown in Figure 1. The data indicate:

- A 30 x 50-foot lobate-shaped ground conductivity anomaly (55 to 75+ mmhos/m) identified as a possible landfill cell or septic leach field. It is centered roughly 45 feet from Building 917. A linear trend in the conductivity data suggests that there is an underground pipe that most likely extends from Building 917 into the landfill cell or leach field. The pipe's appearance in the conductivity data and its' absence in the in-phase data indicate that it is a nonmetallic pipe that contains water or other electrically conductive material.
- The in-phase data indicate at least 2 underground pipes leading into/out-of several ground valves located roughly 25 feet from Building 917, near the southeast corner of the building. They appear to be constructed of metal. A site location map provided by EA Engineering, Science, and Technology (Figure 1-5) shows a UST at where the valve covers are located. The absence of a large, geometric-shaped anomaly at this location suggests that the UST, if present, is probably located immediately adjacent to or inside the building.

B. WSTPT-11A (MOTOR POOL)

Contour maps of the ground conductivity and in-phase data collected at WSTPT-11A are shown in Figures 2 and 3, respectively. The data show:

 Two (2) probable landfill cells, based upon the ground conductivity data. One is lobate-shaped, measures roughly 55 x 90 feet, is characterized by ground conductivities of about 30 to 50+ mmhos/m, and is centered at Line 260 station 100.

Engineering, Groundwater & Environmental Geophysics

Samuelian, J. EA Engineering, Science, and Technology Page 4

The other probable cell is irregular-shaped, is characterized by ground conductivities of 25 to 45+ mmhos/m, and is located between Lines 320 and 380. It's southern limit is uncertain because no data were collected in this location as a result of non-moveable vehicles.

The absence of corresponding elevated in-phase measurements suggest that the 2 landfill cells contain mostly non-metallic, electrically conductive material.

- Low ground conductivity values of 10 mmhos/m and less between Lines 40 and 120, stations 60 and 140, most likely indicate relatively shallow depth to bedrock.
- C. WSTPT-48 (BUILDING 706)

WSTPT-48 consists of 2 parts, an area located west of Building 706 which we have designated WSTPT48A, and a smaller area adjacent to Building 706 designated WSTPT48B.

WSTPT48A

Contour maps of the ground conductivity and in-phase data collected at WSTPT48A are paneled and shown in Figure 4. The data indicate:

 Two (2) probable landfill cells. One is rectangular-shaped, measures roughly 30 x 50-feet, and is centered at Line 40 station 100. It comprises several anomalies which may be caused by metal debris. One anomaly, centered at Line 60 station 90, is characterized by ground conductivities as great as 121 mmhos/m and in-phase values as high as 49 ppt. It has a geometric shape which, along with the "dramatic" response in the data, suggest that the anomaly may be caused by a UST. It is located beneath and very close to the edge of the concrete slab.

The interpretation of a UST is reasonable considering that the reinforced slab appears to have been constructed as a parking area as opposed to being the floor slab of a razed building. Building foundations are generally supported by reinforced footers which, in turn, cause regularly-spaced and, oft times, small

Engineering, Groundwater & Environmental Geophysics

Samuelian, J. EA Engineering, Science, and Technology Page 5

> "bulls' eye-shaped" targets in the data. Regularly-spaced, small bulls eyeshaped targets are not associated with the anomaly caused by the slab at WSTPT48A. The suspected UST probably fueled vehicles that were assigned or parked on the concrete slab.

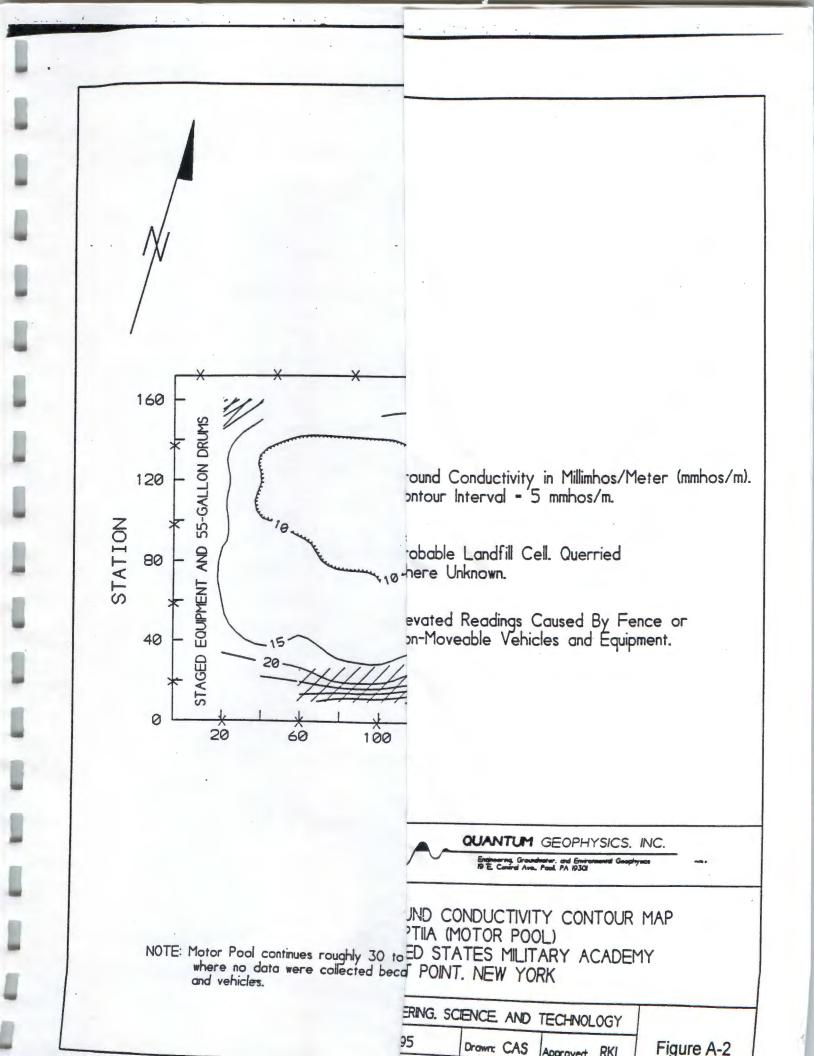
> The other landfill cell wraps around the southeast corner of the slab. It is characterized by ground conductivities of 30 to 80+ mmhos/m and in-phase values of 5 to 10+ ppts. Buried metal debris is suspected where in-phase values are elevated, specifically in the immediate area of Line 140 station 60.

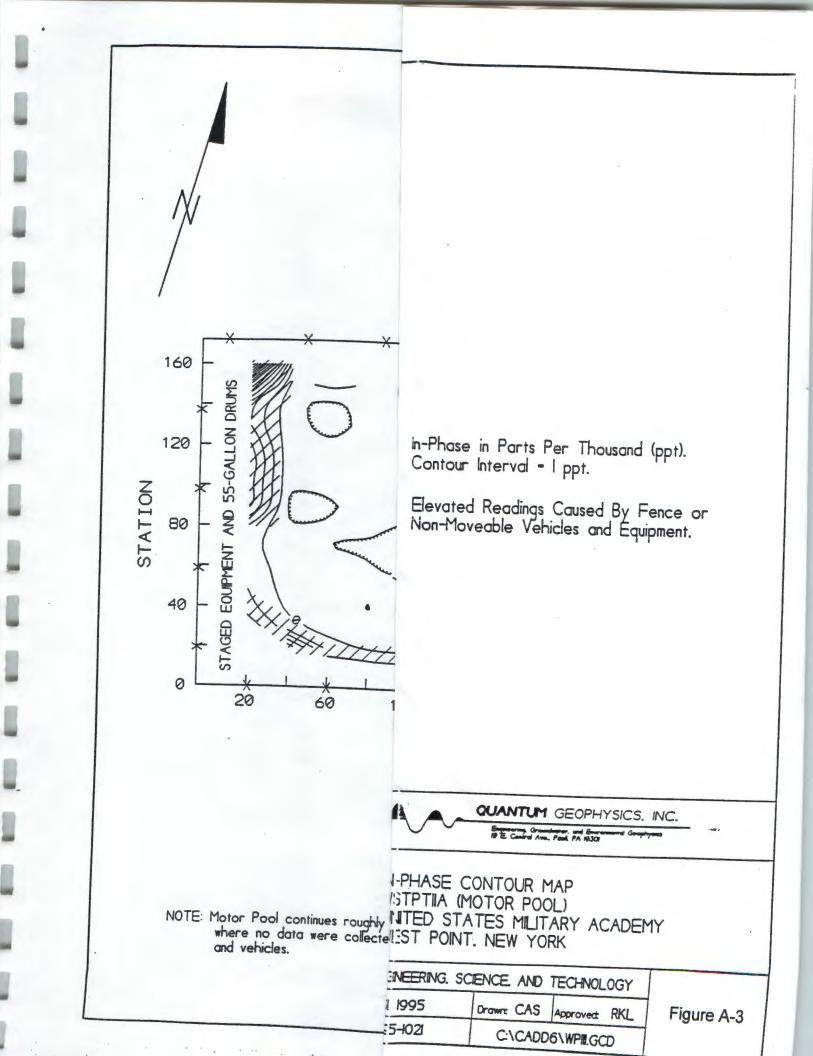
WSTPT48B

Contour maps of the ground conductivity and in-phase data collected at WSTPT48B are also paneled and are shown in Figure 5. The data show:

 A lobate-shaped ground conductivity anomaly centered at Line 120 station 100. It is characterized by ground conductivities of 20 to 50+ mmhos/m and is probably the leach field indicated in EA Engineering, Science, and Technology Figure 1-6 (Site Location Map, WSTPT-48, Building 706, Parking Lot Landfill). It is located about 60 feet west of Building 706.

Quantum appreciates the opportunity to be of service to EA Engineering, Science, and Technology at the U.S. Military Academy, West Point, New York. Please call if you have any questions or if we can be of further assistance.


Sincerely,


archard K. Nee

Richard K. Lee, R. GP. and R. G. President and Principal Geophysicist

RKL/jas

C:\WPWINVREPORTSVEA2.REP

Appendix B

.

1

U

Boring Logs (1995)

	T		EA En			cience,			,		Job. No. 60787.50	Client U.S. Army Co	orps of Engine	ers	Location West Poin	
-			and	Techno	iogy							d: Diedrich [D-50 drill rig 4	1/4 in. ID hollow	Boring No	
			1								stem auger				SB11-01	
												thod: 2 in. Ol		2 ft length		
			LOG OI				1.0.0				140-lb hamm	er falling 30 in			Sheet 1	
	dinates				48.13	: E 5961	47.80									rilling
	ce Elev			418.20					-		Water Lev.	0.71	0.80		Start	Finish
	g Belo			417.78	_				-		Time					50 123
	ence E			Top of I	PVC	asing			-		Date	04/27/95	06/05/95		18 April 19	95 18 April 199
	ence D			Perman							Reference	TOC	TOC			
Samp	le Incl		Depth	Samp		PID	Blows	Depth		USCS	Surface Cond	litions:	North end of	asphalt parking lo	t, upgradient to the lai	ndfill.
Туре			Casing	/sam		(ppm)	per	in		Log						
	Rec	cvrd.		dept	h	HNu	6 in.	Feet								
SS	24			1			8	0				halt fragments				
		12	0		2	0.6	12			FILL	Middle 2 in. b	rown fine san	d; loose; dry			
							14	1			Bottom 9 in. b	prown - grey c	layey SAND w	ith numerous rock	fragments; medium o	lense; dry
							17									
SS	6			2			35	2			Brown - grey	silty SAND; de	ense; moist			
		4	0		2.4	0.0	50/0.1			FILL		nts (quartz) at		on		
	-							3								
					-											
	-							4			Hit something	hard at 4 ft	No split barrel	sample, augered	through	
											- m comouning			campier augered		
					-			5	\square							
								3								
00	24			3			6	6			Prown cilby C	AND with from	monto of fino	ravel; loose; wet		
SS	24			3		0.0	7	0			Water table a		ments of the g	lavel, loose, wet		
		1	6		8	0.0		-		-	water table a	16.51				
							11	7		FILL			1 Aug. 1944			
	-				_		10	-								
SS	24			4			3	8			Brown silty S.	AND with frag	ments of fine g	ravel; loose; wet		
	_	16	8		10	0.0	4									
							6	9								
_	_						6									
								10								
								11								
						-					-					
								12								
		-														
								13								
1010			_													
								14								
		-	-													
SS	24			5			10	15			Top 2 in. brow	wn-grey fine S.	AND and silty	CLAY; loose; satu	rated	
	-	12			17	0.0	32			FILL		rey wheathere				
							22	16						ilty CLAY: mediun	n dense; saturated	
							20	,0				gier and	Status and a	in the second second		
							20	17			End of boring	16#				<u> </u>
								17			End of boining	ION			10. 30 april 200	
				-	-		<u> </u>	10	H							
								18								
-	-								\vdash							a contraction
								19	\mathbf{H}							dar miner
						-								-		
								20			CC - Calit Fr	mal complex				
					-					-	SS = Split ba	rrei sampier				
Logge	d by:				S	uzanne	Chase						Date:	18 April 1	995	
									-							
Drilling	g Contr	ractor:			Pa	rratt Wo	lff, Inc.		-				Driller:	Ronald B	ush	
AFL	CDEC	IEICA	TIONS													
/VELL			TIONS: 21			Screen	Interval		5 ft - 15	ft		Filter Pack:	4.0 ft - 16.0 ft	Gr	out: 0.0	ft - 3.0 ft
Diam	01 00mi															

BOH:

Riser Interval: 0.0 ft - 4.5 ft

Bentonite: 3.0 ft - 4.0 ft

	V	0		gineering		9,				Job. No. 60787.50	Client U.S. Army Co	orps of Engine	ers		Location West Point 1	1A
	V .		and	Technolo	gy					Drilling Meth	od: Diedrich I	0-50 drill rig 4	1/4 in. ID hol	w	Boring No.	
_	3 A									stem auger					SB11-02	
					-					Sampling Me	thod: 2 in. O	D split barrel, 2	2 ft length			
			LOG OI	F SOIL BC						140-lb hamm	ner falling 30 in				Sheet 1 o	of 1
Coordin				N 509451	.36: E 59	6285.41		-							Drilli	ng
Surface				412.67				-		Water Lev.	8.85	6.73			Start	Finish
Casing				412.17	-			-		Time					1510	
Referen				Top of PV						Date	04/27/95	06/05/95			18 April 1995	18 April 1
Referen Sample			Depth	Permaner Samp. #		Blows	Denth		11000	Reference	TOC	TOC				
Туре	Drv		Casing	/samp.	(ppm		Depth		USCS	Surface Con	ditions:	South end of	asphalt parki	ng lot, adjacer	nt to seep area,	
iypo	Rec		Casing	depth	HNU		Feet		Log			north of strea	m.			
S	24	viu.		1	TIN	13	Peel	-		Top 2 in ach	halt fragments					_
0		12	0	-	2 0.0	10	U		FILL		AND with som		O.F.in diama	terl. Income	-1-1	
	-				- 0.0	9	1		TILL	DIOWIT SILLY S	AND WIT SOIT	e graver (up to	U.S In. diame	iter); ioose; m	oist	
						5										
S	24			2		11	2			Top 2 in brow	wn silty SAND	loose moist	wet			
		14	0	12	4 0.0	16	-				y SAND with s			nse moist		
-			-			54	3			and the one	or inter mult of	and graver an	a nuo olay, Ut	noo, moist		
						7										
S	24	T		3		2	4		FILL	Grey fine silt	SAND with fr	agments of wo	od, weeds, a	nd gravel: ver	v loose: moist	
		22	4		6 0.0	2				Band of dark	brown SAND	with roots and	wood at 5.5 f	ia gravoi, voi	10000, 110101	
						3	5									
						4										
S	23			4		3	6			Top 2 in. loos	se; wet					
	_	6	4		7 0.0	6			FILL	Bottom 4 in. I	oose; moist					
						54/0.3	7			Dark grey silt	y SAND with s	ome clay; grav	el at bottom :	2 in.		
0	04	-		-												
S	24			5		5	8			Brown silty C	LAY with some	gravel and ro	ck fragments	(quartz and n	nuscuvite); loos	e; moist
	-	6	8		0 0.7	5										
						8	9			Water table a	ά 9.0 π					
S	24	-		6		6	10			Prown silty C			and loss state			
		12	10	-	2 1.1	6	10	-	FILL	DIOWIT SILLY C	LAY with grave	er, muscuvite, a	and iron stain	ng; loose; we	<u>(</u>	
						6	11									
						6										
S	24			7		3	12			Top 6 in, brow	wn silty CLAY	with gravel: loc	se: wet			
		21	10		4 1.3	5					AY with iron sta					
						8	13									
				-	-	16										
S	24			8		3	14		-	Top 6 in. brow	vn fine-mediun	SAND; very	oose; wet			
		14	14		6 0.0	4			FILL	Brown fine-sil	ty CLAY with s	ome gravel; lo	ose; wet			
						6	15									
s	24	-+		9		6				T						
0	24	24	14	-	8 0.0	10	16	-			wn fine-mediu			loose; wet		
		24	14		0.0	12	17				n fine-silty CLA					
						8	17	-		Bottom 4 in. b	prown fine-silty	CLAY; loose;	wet			
	-	+	-		-		18	-					_			
							10									
		-			-		19			End of boring	19.8					
										and or borning	1311					
							20									
					1					SS = Split bar	rel sampler					
gged b	10				Jeanette	Scalzo						Date:	18 Apr	1995		

WELL SPECIFICATIONS: Diam of casing: 2 in. BOH: 19 ft

 Screen Interval:
 5.0 ft - 18 ft

 Riser Interval:
 0.0 ft - 5.0 ft

Filter Pack: <u>4.0 ft - 19.0 ft</u> Bentonite: <u>3.0 ft - 4.0 ft</u>

Grout: Cover: 8 in.

0.0 - 3.0 ft 8 in. bolt down curb box

-	Y	C	EA En	gineering, S Technology	cience,		_		Job. No. 60787.50	Client U.S. Army Co	orps of Engine	ers 1/4 in. ID holio	NW/	Location West Point 11A Boring No.
pordin		3		501L BORI N 509666.07	NG	108 19			stem auger Sampling Me		D split barrel,			SB11-03 Sheet 1 of 2
Surface Casing Peteren	Eleva Below ce El	v Surfievatio	n:	409.52 409.12 Top of PVC	casing	100.10			Water Lev. Time Date	7.38	7.35			Drilling Start Finish 830 11 19 April 1995 19 April 19
eferen ample Type	Inc	hes	Depth Casing	Permanent r Samp. # /samp. depth	PID (ppm) HNu	Blows per 6 in.	Depth in Feet	USCS Log	Reference Surface Cond	ditions:	South end of	f asphalt parking	g lot, north of	Bldg. 795
S	24	16	0	1 2		7 5 6	01	FILL	Middle 10 in.	halt fragments brown silty SA Jellow brown f	AND with som	e gravel; loose; AND with some	moist gravel; loose	e; wet
S	24	18	0	2 4	0.0	6 6 11 15	2		Top 1 in. grav Middle 12 in. Bottom 5 in. d	increasing bro	own SAND wit CLAY with so	h some silt; me me gravel and s	dium dense; sand; cohesiv	wet /e; wet
S	18	5	4	3 4.4	0.0	18 50/0.4	4	FILL	Grey CLAY w Bottom 2 in. r	vith some sand ock fragments	d and gravel; o s (quartz); non	dense; wet icohesive		
							6							
3	11	11	8	4 8.9	0.0	16 50/0.4	8	FILL	Top 8 in. dark Bottom 3 in. r Auger refusal Moved drill rig	ock fragments 9 ft.	AY with wood (quartz)	and seed type p	particles; wet	
							10 11 12							
	_						14							
S	24	20	15	5 17	0.0	3 4 8 8	15 16 17	FILL	Brown SAND Bottorn 6 in. s	with some gra ilty CLAY with	ivel; loose; we a trace of gra	et ivel; loose; wet		
							18							
							20	-	SS = Split bar	rel sampler				
ogged b	y:		-	Je	anette S	calzo					Date:	19 April	1995	
rilling Co			-	Par	ratt Wol	ff, Inc.					Driller:	Ronald	Bush	
VELL SP Diam of c OH:			ONS: 2 in 23 i		Screen I Riser Int		8.0 - 2 0.0 - 8			Filter Pack: Bentonite:	6.0 - 23.0 ft 3.0 -6.0 ft		Grout: Cover:	0.0 - 3.0 ft 8 in. bolt down curb box

			gineering, So	ciance					Job. No. 60787.50	Client U.S. Army Co	orps of Engineer	rs	Location West Point 1	1A
	-	and	Technology	sionice,					Drilling Metho	d: Diedrich I	D-50 drill rig 4 1	/4 in. ID hollow	Boring No.	1.2.5.
	Y 🔺 \		. comercing y						stern auger				SB11-03	
											D split barrel, 2	ft length		
		LOG OI	F SOIL BORI	NG					140-lb hamm	er falling 30 in	l		Sheet 2 c	
oordina													Drilli	
	Elevation:								Water Lev.				Start 830	Finish 111
asing I	Below Surf	ace:							Time				19 April 1995	10 April 10
	ce Elevatio		Top of PVC of						Date Reference					19 April 19
	ce Descrip		Permanent m		Diama	Denth		ISCS	Surface Cond	titione:	South and of a	sphalt parking lot, north	n of Bldg 795	
mple ype	Drvn/In.	Depth Casing	Samp. # /samp.	PID (ppm)	Blows per	Depth in		Log	Sunace Conc	anons.	South end of a	Sphart parking lot, nora	Tor Didg. Too	
	Recvrd.		depth	HNu	6 in.	Feet			Dark group all		nodium brown a	and lawars: yany loosa:	wot	
	24		6		3	20		FILL			silty SAND; loos	and layers; very loose;	wei	
	24	20	22	0	3	21	-	FILL	Bottom o m.	Venow Drown's	SILLY SAIND, 1003	e, wol		
					4	21			End of boring	23 ft				
					4	22			End or bonne	2011				
									-					
						23					1.12 - T			
						24								
						25								
-														
		-				26								
				-										
						27	_							
					-		_							
					-	28								
		-			-	20								
		-			-	29								
			-		-	30								
					-		-							
						31			-					
	-					32								
-			1			33								
						34								
					-									
					-	35								
									-					
					-	36								
		-				37					· · · ·			**
			STATISTICS.	-	-	3/						1.1.1.1.1.1.1.1.1.1.1.1	Charles In States In	
		-				38			1					
						1								
						39								
						40						REAL PORT		
_					-				SS = Split ba	arrel sampler				
gged	by:		J	eanette	Scalzo						Date:	19 April 1995	_	
illing (Contractor:		Pa	arratt W	olff, Inc.						Driller:	Ronald Bush		
	PECIFICA													
	casing:	2	in.		n Interva	8.0	- 22.0	t	_	Filter Pack:	6.0 - 23.0 ft	. Grout:		- 3.0 ft
			3 ft	Bicor	nterval:	00	0 - 8.0 fi			Bentonite:	3.0 -6.0 ft	Cover:	8 in. bolt do	OWN CUID DO

-	Y		® EA Er and	igineeri Techno	ng, Scier iogy	108,		•		Drilling Metho		y Corps of Eng ch D-50 drill rig	ineers g 4 1/4 in. ID h	ollow	Location West Point 11A Boring No.
-	-									stem auger					SB11-04
	_/				-							. OD split barn	el, 2 ft length		
			LOG O	FSOIL	BORING					140-lb hamm	er falling 3	0 in.			Sheet 1 of 1
Coordin								-						*	Drilling
Surface						_				Water Lev.					Start Finish
Casing										Time					1340 16
Referen	ce El	levatio	on:	Top of	PVC casi	ng				Date					20 April 1995 20 April 1
Referen	ce De	escrip	tion:	Perman	ent mark	er				Reference					
Sample	Inc	hes	Depth	Samp.	# PID	Blows	Depth		USCS	Surface Cond	litions:	Middle of	asphalt parking	lot between SE	311-01 and SB11-02
Туре	Drv	n/In.	Casing	/samp	(ppm)	per	in		Log						
	Rec	cvrd.		depth	HNU	6 in.	Feet								
S	24			1		12	0			Top 2 in. asp	halt				
	-	11	0		2 0.0	6			FILL			h brown SAN	and GRAVEL	(up to 2 in. dia	meter): loose
						7	1								color staining: loose: moist
						6				- Stierre S III. I		in or the man	giaroi, ye	now and prick t	solor starring, 10036, 1101st
S	24			2		5	2			Grev fine SAL	VD with a t	race of silt- lor	ne gravel (up t	o 2 in. diameter)	
-		12	0	-	4 0.0	6	-		FILL	with some co			ge glavel (up to		
	-	16			. 0.0	7	3		1 Hala	Some Co	a se sano;	iouse, dry			
						7	3								
	-									Augor	A.F.H				
							4					ved south 5 ft			
0	0.4			0			-			Water table 4					
S	24			3		10	5			Grey brown S	ILT with se	ome sand and	gravel (up to 2	in. diameter); d	ark grey greenish and
		13	5		7 0.0	14				yellowish brow	wn lenses;	loose; wet			
						9	6								
						8									
							7		FILL						
					-										
S	24			4		12	8			Top 3 in. yello	w brown S	SAND and GR	AVEL (up to 3/-	4 in. diameter) v	vith some silt; loose; wet
		11	8	1	0.0	9							ining; loose; w		
						8	9			Bottom 6 in. y	ellow brow	In SAND and	GRAVEL (up to	3/4 in. diamete	r) with some silt; loose; we
-				-		8									
S	24		_	5		5	10			Grey fine-med	dium SAN) with trace of	gravel and son	ne clay: vellowis	h brown lenses; loose; we
		13	10	1	2 0.5	5							and guartz frag		
			-			5	11								
						6									
S	24			6		6	12			Top 3 in grey	SAND an	d GRAVEL; de	nse: wet		
		13	12	1	4 0.5	11			FILL					el (up to 1 5 in	diameter); loose; wet
						6	13			Bottom 2 in la	arge GRAN	/EL (namite ar	nd pyrite); loose	- wat	Giumotor), 10036, W6t
						8	10				a go ar iAn	Le iganne al	a pyrita), 100st	, 401	
S	24			7		5	14			Brown sandy	CLAV. Inc	se: wet			
-		10	14	1	6 0.5	2	14						own CLAY: de	060: WO	
-		10	17		0.0	5	15			Dottom 2 m. a	inguidi GH	AVEL, UAIR DI	OWIT OLAT, de	iso, wet	
						11	15			Bottom 2 in	nauler CD		own CLAY; de	near wat	
S	24			5		14	16			bollom 2 m. a	ingular GM	AVEL; Dark Dr	OWN GLAT; DE	ise, wet	
3	24	24	16	5 1	8 0.0	50/0.3	10								
		24	16	1	8 0.0	50/0.3									
							17								
					-										
							18								
										Auger refusal					
							19			End of boring	19.6 ft				
					-										
							20								
										SS = Split bar	rel sample	r			
ogged t	y:				Jeanett	Scalzo						Date:	20 4	pril 1995	
ina C	ontra	otor			Parratt V	Volff, Inc.						Driller:	Bon	ald Bush	

Driller:

	Y		B EA E	ngin I Tec	eering chnoio	, Scien gy	ce ,		•		Job. No. 60787.50 Drilling Metho	Client U.S. Army (d: Diedrich	Corps of Eng D-50 drill rig	ineers 4 1/4 in. ID	hollow	Location West Point 11 Boring No.	A
. –	<u> </u>	<u> </u>									stem auger					SB11-04A	
				-							Sampling Me			el, 2 ft length			100
			LOGO	F 50	DIL BO	RING					140-lb hamm	er falling 30 i	n.			Sheet 1 of	F 1
Coordi				_					-							Drillin	ng
Surfac									_		Water Lev.					Start	Finish
Casing				-	1010				-		Time					730	110
Refere Refere						C casin			-		Date					21 April 1995	21 April 199
Sample			Depth			t marke		-			Reference						
Туре		/n/In.	Casing	1	mp. #	PID	Blows	Depth		USCS	Surface Cond	litions:	Middle of a	asphalt parkin	ig lot between S	B11-01 and SB1	1-02,
туре		cvrd.	Casing		amp.	(ppm)	per	in		Log			approxima	itely 10' east of	of the first attern	pt, SB11-04	
SS	24	cvia.		1	epth	HNu	6 in.	Feet			-						
50	24	6	0	1	2	00	21	C	-		Top 2 in. aspl						
	-	0		1-	2	0.0	10 15		-		Brown fine-m	Balum SAND	with gravel;	loose; moist			
							15	1	-	EUL	Bottom 2 in. la	arge GRAVE	L				
SS	24		-	2		-	27	2		FILL	Ten tin Ir	004115					
	24	5	0	1	4	0.0	26	2	-		Top 1 in. large	GHAVEL; (iense; dry				
	-	5	0	-	4	0.0	20	3	-		Brown tine SA	IND with sor	ne silt and gi	avel; green s	taining; dense; i	noist	
							22	3	-								
SS	24			3			5	4	-		Creanish	alles CANID	tab. I				
		14	4	ľ	6	1.8	4	4	-		Bottom 2 in	SILLY SAND	with large gr	avel, wood, a	nd slate fragme	nts; loose; moist	
	-	1.4		-	0	1.0	5	5		FILL	Bottom 2 in. b	rown yellowi	sn staining				
							6	5	-	FILL							
SS	24			4	-		3	6	-		Top Q in gras	ninh many all	CANID	1			
		14	4		8	0.0	3	0			Niddle 4 in lie	nish grey sin	y SAND WITH	large gravel,	wood, and slate	e fragments; loos	e; moist
	-					0.0	6	7			Rottom 9 in d	int grey sity	CLAY WITH a	large wood fi	ragment; loose;	moist	
							8	'			Water table at	ark grey sitty	SAND WITH	some clay; we	ood; large grave	el; moist	
SS	24			5	-		6	8			Top 3 in. grey						
		4	8	Ŭ.	10	0.0	11	0			GRAVEL (UP)	CLAT, medi	um dense; w	/et			
	-				10	0.0	17	9		FILL	GHAVEL (UP	o i in. diami	eter) with sor	ne ciay; medi	um dense; wet		
							10	5		TILL	-						
SS	24			6			10	10			No recovery in	solit spoon	nuchad eno	on down and	recovered 2 in.		
		2	10	-	12	0.0	19	10			Brown-dark ve	low fino.mo	dium CAND	uith como old	recovered 2 in.	el; medium dense	
						010	18	11			Diowin-Gark ye	now me-me	ulum SAND	with some cia	ly, silt and grave	er; meaium aense	; saturated
			-				15										
S	24			7			7	12			Top 2 in brow	n-dark vello	v fine-mediu	m SAND with	some clay, silt a	and gravel:	
		3	10	1	14	0.0	17				medium dense	a: saturated	This mould	IT OATED WITH	Some ciay, Sitt	anu gravei,	
							15	13			Bottom 1in. la						
-							12			FILL							
S	24			8			17	14			Brown silty CL	AY with som	e gravel; cot	nesive: mediu	m dense; wet		
		12	14		16	0.2	19						a	, mould	and a mot		
							16	15							-		
	-		-				22										
S	24			9			20	16			Top 2 in. brow	n silty CLAY	with some a	ravel: cohesiv	/e; medium den	se: wet	
		20	14		18	0.2	22				Middle 2 in. la	ge GRAVEL					
							24	17			Bottom brown			VD with some	silt and clay:		
							20			FILL	large gravel (u	p to 1 in. dia	meter): slate	: iron staining	; medium dense	e: wet	
S	21	I		10			14	18									
		12	18		19.3	0.3	17				Brown fine-me	dium SAND	with some of	ravel: reddish	orange staining	; medium dense;	wet
							18	19			Auger refusal		y and a		change oraning		
							50/0.3				End of boring	19.3 ft					
		1						20									
_										1	SS = Split barr	el sampler					

Parratt Wolff, Inc.

Driller:

			EA En	gineering	, Scienc	;e,	50			Job. No. 60787.50	Client . U.S. Army	Corps of Engin	eers		Location West Point 1	1A
		A		Technolo		-,						h D-50 drill rig		ollow	Boring No.	
	1				37					stem auger	a. Diodito	to oo ann ng	1 11 11 11 11	onon	SB11-05	
											thod: 2 in	OD split barrel,	2 ft length		001100	-
	-		LOGO	F SOIL BO	DRING					140-lb hamm			Entiongui	6	Sheet 1 d	of 2
Coordin	ates:										or running ou				Drill	
Surface		ation:								Water Lev.			-	1	Start	Finish
Casing										Time					1600	
Referer				Top of P	/C casin	7				Date						20 April 1995
Referen				Permane				•		Reference						
Sample		hes		Samp. #		Blows	Depth	US	SCS	Surface Cond	titions:	Middle of as	phalt parking	lot	-	1
Туре		n/In.	Casing		(ppm)	per	in		og					er of Bldg. 795		
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Rec			depth	HNU	6 in.	Feet					north of the	Horthost oon	ici of Didg. 100		
SS	24	Tu.		1	1	22	0			Top 2 in. aspi	halt fragmer	nts				
		15	0	2	0.0	11	v		ILL			h some gravel;	dense: dn/			
-		10			0.0	9	1		Theodore	Diowinicadio	I OAND WIL	i some glavel,	dense, dry			
						8										A
SS	24			2		11	2			Top 14 in br	wa reddieb	SAND with sor	no oravel: de	neo: dor		
00	64	20	0	-	0.0	17	-					ne gravel up to		nise, ury		
	-	20	-		0.0	25	3		ILL.	Citey Sinty Orti	NUT SUIT	ne graver up to	i, diy			
						32	5									
-	-					52								•		
			_				4			Augeractural	1			anise and a Dista Tr	0.5	
S	24			3		0						ed approximate	iy 4 n south t	owards Bldg. 7	95	
10	24	19	5	-	0.2	3	5			Water table a						
	-	19	5	7	0.2		~			Grey fine SAI	ND with som	ne silt and grave	el; wood ; loo	se; moist		
						5	6									
SS	24	-		4			-			0						
55	24	24	~	4	0.0	5	7	-		Grey fine SAF	ND with silt	and gravel; non	cohesive; loc	ise; moist		
		24	6	9	0.0					Bottom 4 in si	ITY CLAY WI	th organic matt	er; cohesive;	loose; wet		
						6	8		ILL		1					-
SS	12			5	-	5				0						
33	12		8	-	0.0	2	9								medium dense	e; wet
S	12	8	0	10 6	0.0	16	10			Bottom 3 In. C	revish brow	In CLAY and SA	AND; medium	n dense; wet		
20	12	12	0	11.2	00		10			Causiah harris		Southly an and a star		1		
-	-	14	8	11.4	0.0	20				Greyish brow	n sity SANL	o with some cla	y; conesive; (dense; wet		
	÷			-		50/0.2	11	-								
SS	24			7			10			Orac Kara and	-	141				
55	24	10	10	14	0.0	4	12			Grey fine-med	alum SAND	with some grav	el; loose; sat	urated		
	-	10	10	14	0.0	7	10		ILL							
						8	13									
00	24			8		8				Tan horizon			ter lan	while he are and	-	
SS	24	10	10	-	0.0		14			Tan-brown co	arse SAND	with Iron staini	ng; large grav	vel; loose; satur	aleo	
	-	12	10	16	0.0	6	10									
						8	15							-		
00	04		-	e		6				Designed						
SS	24	~	10	5		-	16			Brown well so	orted silty SA	ND; loose; sat	urated			
		24	16	18	0.0	6			Ш	Bottom 3" coa	arse gravel u	up to 3"; loose;	saturated			
						6	17									
20	0.4			0		7					11. 6					
SS	24		10	6		6	18			Brown CLAY	with fine sai	nd lens; cohesi	ve; loose; we			
	-	16	18	20		6				-						
						8	19									
				-		8										
4							20									
										SS = Split bar	rrel sampler					
Logged I					Jeanette	Conizo						Date:	10 00	April 1995		

Parratt Wolff, Inc.

Driller:

			gineering Technolog		:0,			Job. No. Client 60787.50 U.S. Army Corps of Engineers Drilling Method: Diedrich D-50 drill rig 4 1/4 in. ID hollow stem auger	Location West Point 11A Boring No. SB11-05
_		LOGO	F SOIL BO	RING				Sampling Method: 2 in. OD split barrel, 2 ft length 140-lb hammer falling 30 in.	Sheet 2 of 2
Coordin	ates:	200.0	0012 00					THO ID Hammer raining 50 m.	Drilling
	Elevation							Water Lev.	Start Finish
	Below Su			_				Time	1600 110
	ce Elevati		Top of PV					Date	19 April 1995 20 April 199
	ce Descri		Permaner				1.110.000	Reference	
Sample Type	Inches Drvn/In.	Depth Casing	Samp. #	PID (ppm)	Blows	Depth	USCS	Surface Conditions: Middle of asphalt parking lot,	1 705
Type	Recvrd.	Casing	depth	(ppili) HNu	6 in.	in Feet	Log	north of the northest corner of Bl	ag. 795
S	24		7	THAC	5	20	-	Brown CLAY with fine sand lens; cohesive; loose; wet	
-	14	20	22	0.0	8		-	Bottom 3" brown coarse SAND with some gravel and slate fra	agments: medium dense: saturated
					7	21	FILL		
					11				
S	24		8		15	22		Brown coarse SAND with gravel; medium dense; saturated	
	20	20	24	0.0	12		-	Bottom 6 in. rock fragments (quartz); coarse SAND with grav	el; medium dense; saturated
					10	23	-		
S	24		0		17		-	Draws fine second CAND, madium draws with	
	24 10	24	9 26	0.0	69 60	24	-	Brown fine-coarse SAND; medium dense; wet Bottom 6 in. finer SAND with rock fragments (up to 2 in. diam	atas)
	10	24	20	0.0	30	25	FILL	Bottom o m. mer SAND with rock fragments (up to 2 in. diam	8(81)
					27				
S	24		10		18	26	-	Brown fine-medium SAND; medium dense; saturated	
	22	24	28	0.0	10			Bottom 2 in. coarse SAND with gravel; medium dense; satura	ted
					13	27			
					13				
S	24		11		6	28	_	Brown fine-medium SAND with large gravel; loose; saturated	
	20	28	30	0.0	5		-		and the second
		-			8	29	-		
S	24		12		6	30	FILL	Top 4 in. brown fine-medium SAND with gravel; medium dens	co: wot
·	16	30	32	0.0	10	~		Fine SAND with little silt and some gravel; slate fragments; de	
				0.0	28	31	-	The office with the office of the graves, state wagmente, at	5166, 460
					31				
5	24		13		13	32		Brown fine-medium SAND with gravel; dense; wet	
-	11	30	33.5	0.0	31	_	_	Bottom 2 in. banded rock fragments (slate, quartz)	
					65/0.5	33		Auger refusal 32 ft	
-							-		
						34	-	End of boring 33.5 ft	
						35	-		
							-		
						36	1		
						37			
71		1.00	C. T. C. C. C.	1000			_		A Constant of the
					2.55	38	-	1981年1月18日至4月後期後1月後には、1月1日(1991)	
	-					39	-		
						39	-		
						40	-		
								SS = Split spoon sampler	

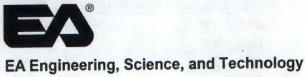
Parratt Wolff, Inc.

Driller:

Appendix C

1

Ĩ


Drainage Calculations and Swale Design

	Y .	

Project WEST	POINT - MO	TOR POOL	EAST LAN	DFILL	Project No.	60	787.	77
Subject Swale	Calculations an	d Assumpti	ions	they is a closed as	Sheet No.	1	of	2
					Drawing No.	12912	1100	192
Computed by	JDM	Date	3/26/99	Checked by	Date			

SWALE "A1"	Flow from drainage area (TR-55 calculations) provides 4 cfs to swale.
	Existing:
	Length of Swale until union with Swale $A_2 = 370'$
	Top of Swale @ beginning = 419.5 '
	Top of Swale $@$ end = 416'
	Existing Slope = approximately $.8\%$
	Proposed:
	Slope = 1.3%
	Grass Lined; $n = .035$
	Depth = 1'
	Bot. Width $= 2$ '
	Side Slope = $2:1$ on both sides (H:V)
	Top of Swale @ end = 414.8 '
	Bot. of Swale $@$ end = 413.8'
SWALE "A2"	Assume that the existing 30" RCP at the existing slope will have a maximum flow of 80 cfs during a 10-year storm event. Additional flow from Swale A1 and drainage area (TR-55 calculations) provides 6 cfs.
	Total flow to swale $= 86$ cfs.
	Existing:
	Length of swale to stream (terminating at existing 404' contour line) = $285'$
	Top of Swale @ beginning = 416 '
	Top of Swale @ end = 403 '
	Existing Slope = approximately 4.5%
	Proposed:
	Slope = 3.7%
	Grass Lined; $n = .035$
	Depth = 2'
	Bot. Width $= 2'$
	Side Slope = $2:1$ both slopes (H:V)

	Subject Swa	e Calcu	ulations an	nd Assumpt	ions		Sheet	-	2	of .	2
							Drawing	-	_		
	Computed by	_	JDM	Date	3/26/99	Checked by	Da	ite			
	Т	op of	Swale	@ begin	ning $= 41$	5.8'					
		-		-	ning $= 41$						
	Т	on of	Swale	@ end =	= 406.0'						
		•			= 404.0'						
SWALE "B"	n	naxim	um flov	w of 50 c	cfs during	t the existing sl a 10-year storn lations) provide	n event. Ad		nal	l flo	w
				swale =							
	r		flow to s								
	T	otal f	flow to s	swale =							
	T H I	otal f xistiu ength	flow to s ng: n of swa	swale =	63 cfs.	5'					
	T H I J	otal f xistin ength	flow to s ng: n of swa f Swale	swale =	63 cfs. eam = 30: ning = 419	5'					
	T F I J J	otal f xistin ength op of	flow to s ng: n of swa f Swale f Swale	swale = le to stru - beginn - end =	63 cfs. eam = 30: ning = 419	5' 9.5'					
	T F I J F	otal f constinuength op of cop of cxistin	flow to s ng: n of swa f Swale f Swale ng Slope	swale = le to stru - beginn - end =	63 cfs. eam = 30: ning = 419 406'	5' 9.5'					
	T H I J J H H	otal f cxistin ength op of op of cxistin	flow to s ng: n of swa f Swale f Swale ng Slope sed:	swale = le to stro - beginn - end = e = appr	63 cfs. eam = 30: ning = 419 406'	5' 9.5'					
	T H I T H H S	otal f cotal f cotal f cotal cotal cotal cotal cotal cotal cotal cotal cotal f cotal f	flow to s ng: n of swale f Swale ng Slope sed: = 4.0%	swale = le to stru- beginn - end = e = appr	63 cfs. eam = 30: ning = 419 406'	5' 9.5'					
	T H I J J H H S S (otal f xistin ength op of cy of xistin ropo lope drass	flow to s ng: n of swale f Swale ng Slope sed: = 4.0%	swale = lle to stru- begint - end = e = approxe- $n = .035$	63 cfs. eam = 30: ning = 419 406'	5' 9.5'					
	T F I J J F F F F F F F F F F F T T T T T T T	otal f ength op of op of xistin ropo lope Grass	flow to s ng: n of swale f Swale ng Slope sed: = 4.0% Lined; n	swale = le to stru- beginn - end = e = appn n = .035	63 cfs. eam = 30: ning = 419 406'	5' 9.5'					
	T H I T H H S S (I H H	otal f xistin ength op of op of xistin ropo lope Grass Oepth Sot. W	flow to sing: a of swale f Swale f Swale ang Slope sed: = 4.0% Lined; m = 1.5' Vidth $=$	swale = lle to stru- beginn - end = e = appn n = .035 3'	63 cfs. eam = 30: ning = 419 406'	5' 9.5' 4.5%					
		otal f cotal f cotal f cotation cotatio	flow to so ng: n of swale f Swale f Swale ng Slope sed: = 4.0% Lined; n = 1.5' Vidth $=$ lope $=$	swale = lle to stru- beginn - end = e = appn n = .035 3'	63 cfs. eam = 30: ning = 419 406' roximately	5' 9.5' 4.5%					

Project: West Point - Motor Pool East

Project #: 60787.77

Task: 0001

· Calculated: JDM

Date: 18-Jun-99

A Engineering, oolenoo		Checked:			Date:	
11 (517-)	TR-55 Worksheet #2: Runoff Curve	e Number a	and Runo	off ·		
Stage of Development: Pos	t-Development					
Drainage Area Description: Dra	inage to Swale "A1"					
	Cover Description		CN			
Soil Name and Hydrologic Group	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Area (acres)	CN*Area
C	woods, good condition	70			0.92	6
<u> </u>						
on and an and a second s						
	1			Totals	0.92	

Use CN = 70

	Storm #1	Storm #2	Storm #3	Storm #4	Storm #5
Frequency (years)	2	5	10	25	0
24 Hour Rainfall, P (in)	3.5	4.5	5	5.5	0
Runoff, Q (in) (use P and CN with Table 2-1, Fig. 2-1, or Eqn. 2-3 and 2-4)	1.01	1.67	2.04	2.41	0.00

Project:	West Point - Motor Pool East		
Project #:	60787.77		
Task:	0001		
Calculated:	JDM	Date:	18-Jun-99
Checked:		Date:	

EA Engineering, Science, and Technology

Sheet Flow	Segment				
1 Surface Description (Table 3-1)					
2 Manning's Roughness Coeff., n (Table 3-1)					
3 Flow Length, L (total L <= 300 ft)	ft				
4 Two year 24 hour Rainfall, P2	in				
5 Land Slope, s	ft/ft				
6 Tt	hr	0.000	0.000	0.000	0.000
Shallow Concentrated Flow	Segment	B2C2			
7 Surface Description (1=paved, 2=unpaved)		2			
8 Flow Length, L	ft	90			
9 Watercourse Slope, s	ft/ft	0.267			
10 Average Velocity, V (Fig. 3-1)	ft/s	8.34	0.00	0.00	
11 Tt	hr	0.003	0.000	0.000	0.003
Channel Flow	Segment	A2B2	C2D2		
Bottom width of trapezoidal channel	ft	2	2		
Depth of trapezoidal channel	ft	1	1		
Side slopes of trapezoidal channel (?H:1V)		1	2		
12 Cross Sectional Flow Area, a	sq ft	3.00	4.00	0.00	
13 Wetted Perimeter, pw	ft	4.83	6.47	0.00	
14 Hydraulic Radius, r	ft	0.621	0.618	0.000	
15 Channel Slope, s	ft/ft	0.030	0.013		
16 Manning's Roughness Coeff., n		0.025	0.035		
17 V	ft/s	7.517	3.522	0.000	
18 Flow Length, L	ft	420	220		
to Hon Longan L			0.017		0.033

1 Drainage Area, Am	sq mi	0.001				
Runoff Curve Number, CN (worksheet #2)		70				
Time of Concentration, Tc (worksheet #3)	hr	0.036				
Rainfall Distribution Type (I, IA, II, III)		1				
Pond and Swamp Areas Spread	% Am	0				
Throughout Watershed						
		Storm #1	Storm #2	Storm #3	Storm #4	Storm #5
2 Frequency	yr	2	5	10	25	
3 Rainfall, P (24 hour)	in	3.5	4.5	5.0	5.5	0.
4 Initial Abstraction, la (Table 4-1)	in	0.857	0.857	0.857	0.857	0.00
5 la/P		0.245	0.190	0.171	0.156	0.00
6 Unit Peak Discharge, qu (Exhibit 4-II)	csm/in	1304.8	1286.9	1280.7	1275.7	0.
7 Runoff, Q (worksheet 2)	in	1.01	1.67	2.04	2.41	0.0
8 Pond & Swamp Adjustment Factor, Fp (Table 4-2, Fp = 1.0 for none)		1	1	1	1	*
9 Peak Discharge, qp	cfs	1.89	3.10	3.75	4.43	0.0

SWALE "A1" (Path A2B2)

>

Channel	Characteristics:
---------	------------------

Flow Rate, Q =	3.75	cfs
Bottom width, B =	0.5	ft
Side slope, Z =	1.0	?H:1V
Side slope, Z =	1.0	?H:1V
Manning roughness, n =	0.03	
Channel slope, S =	0.052	ft/ft
Rock filter height, H =	0.0	ft
Flow Depth, D =	0.6	ft
Top width =	1.70	ft
Flow area, A =	0.66	sq ft
Wetted perimeter, P =	2.20	ft
Mean depth, Dm =	0.388	ft
Hydraulic radius, R =	0.300	ft
Velocity, V =	5.68	fps

Flow Depth* (ft)	Hydraulic Radius (ft)	Velocity (fps)	Hydraulic Radius (ft)	Difference
0.1	0.077	62.5	13.052	-12.976
0.2	0.131	26.8	3.662	-3.531
0.3	0.178	15.6	1.632	-1.454
0.4	0.221	10.4	0.888	-0.667
0.5	0.261	7.5	0.543	-0.281
0.6	0.300	5.7	0.358	-0.057 <
0.7	0.339	4.5	0.249	0.090
0.8	0.376	3.6	0.181	0.196
0.9	0.414	3.0	0.136	0.278
1.0	0.451	2.5	0.104	0.346
1.1	0.487	2.1	0.082	0.405
1.2	0.524	1.8	0.066	0.458
1.3	0.560	1.6	0.054	0.507
1.4	0.596	1.4	0.044	0.552
1.5	0.633	1.2	0.037	0.596
1.6	0.669	1.1	0.031	0.637
1.7	0.705	1.0	0.027	0.678
1.8	0.740	0.9	0.023	0.718
1.9	0.776	0.8	0.020	0.757
2.0	0.812	0.7	0.017	0.795
2.1	0.848	0.7	0.015	0.833
2.2	0.884	0.6	0.013	0.870
2.3	0.919	0.6	0.012	0.908
2.4	0.955	0.5	0.010	0.945
2.5	0.991	0.5	0.009	0.981
2.6	1.026	0.5	0.008	1.018
2.7	1.062	0.4	0.008	1.054
2.8	1.097	0.4	0.007	1.091
2.9	1.133	0.4	0.006	1.127
3.0	1.169	0.4	0.006	1.163
3.1	1.204	0.3	0.005	1.199
3.2	1.240	0.3	0.005	1.235
3.3	1.275	0.3	0.004	1.271
3.4	1.311	0.3	0.004 0.004	1.307 1.343
3.5	1.346	0.3 0.3	0.004	1.378
3.6	1.382 1.417	0.3	0.003	1.414
3.7 3.8	1.417	0.2		1.450
3.9	1.488	0.2		1.485
4.0	1.524	0.2		1.521
4.1	1.559	0.2		1.557
4.2	1.595	0.2		1.592
4.3	1.630	0.2		1.628
4.4	1.665	0.2		1.664
4.5	1.701	0.2		1.699

* Actual flow depth (D) is where hydraulic radii match (smallest "difference")

SWALE "A1" (Path C2D2)

Channel Characteristics:			Flow Depth*	Hydraulic Radius	Velocity	Hydraulic Radius	Difference	
Flow Rate, Q = Bottom width, B =	3.75 cfs 2.0 ft		(ft)	(ft)	(fps)	(ft)		
Side slope, Z =	2.0 R 2.0 ?H:1V		0.1	0.090	17.0	6 606	6 526	
Side slope, Z =	2.0 ?H:1V		0.1	0.090		6.626	-6.536	
Manning roughness, n =	0.035		0.2	0.233	7.8 4.8	2.056	-1.890	
Channel slope, S =	0.013 ft/ft		0.3	0.235	3.3	0.993	-0.759	
Rock filter height, H =	0.0 ft	>	0.4	0.290		0.577	-0.281	
Flow Depth, D =	0.5 ft	-	0.6		2.5	0.372	-0.018	<
Flow Depill, D =	0.5 11			0.410	2.0	0.257	0.153	
Top width =	4.00 ft		0.7	0.464	1.6	0.186	0.278	
			0.8	0.516	1.3	0.140	0.376	
Flow area, A =	1.50 sq ft		0.9	0.568	1.1	0.108	0.460	
Wetted perimeter, P =	4.24 ft		1.0	0.618	0.9	0.085	0.533	
Mean depth, Dm =	0.375 ft		1.1	0.668	0.8	0.069	0.599	
Hydraulic radius, R =	0.354 ft		1.2	0.717	0.7	0.056	0.660	
Velocity, V =	2.50 fps		1.3	0.765	0.6	0.047	0.719	
			1.4	0.813	0.6	0.039	0.774	
			1.5	0.861	0.5	0.033	0.828	
			1.6	0.909	0.5	0.028	0.880	
			1.7	0.956	0.4	0.025	0.931	
			1.8	1.003	0.4	0.021	0.982	
			1.9	1.050	0.3	0.019	1.031	
			2.0	1.096	0.3	0.016	1.080	
			2.1	1.143	0.3	0.015	1.128	
			2.2	1.189	0.3	0.013	1.176	
			2.3	1.236	0.2	0.012	1.224	
			2.4	1.282	0.2	0.010	1.271	
			2.5	1.328	0.2	0.009	1.318	
			2.6	1.374	0.2	0.008	1.365	
			2.7	1.420	0.2	0.008	1.412	
			2.8	1.465	0.2	0.007	1.458	
			2.9	1.511	0.2	0.006	1.505	
			3.0	1.557	0.2	0.006	1.551	
			3.1	1.602	0.1	0.005	1.597	
			3.2	1.648	0.1	0.005	1.643	
			3.3	1.694	0.1	0.005	1.689	
			3.4	1.739	0.1	0.004	1.735	
			3.5	1.784	0.1	0.004	1.781	
			3.6	1.830	0.1	0.004	1.826	
			3.7	1.875	0.1	0.003	1.872	
			3.8	1.921	0.1	0.003	1.917	
			3.9	1.966	0.1	0.003	1.963	
			4.0	2.011	0.1	0.003	2.009	
			4.1	2.056	0.1	0.003	2.054	
			4.2	2.102	0.1	0.002	2.099	
			4.3	2.147	0.1	0.002	2.145	
			4.4	2.192	0.1	0.002	2.190	
			4.5	2.237	0.1	0.002	2.235	

* Actual flow depth (D) is where hydraulic radii match (smallest "difference")

EA Engineering, Science, and Technology

Project:	West Point - Moto	r Pool East
Project #:	60787.77	
Task:	0001	
Calculated:	JDM	Da
Checked:		Da
Number	and Runoff	

Date: 26-Mar-99

Date:

TR-55 Worksheet #2: Runoff Curve Number and Runoff

	Cover Description		CN			
Soil Name and Hydrologic Group	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Area (acres)	CN*Area
C	woods, good condition	70			0.50	35
					3	0
						0
						0
						0
						C
						0
						C
						C
						C
				Totals	0.50	3

Use CN = 70

	Storm #1	Storm #2	Storm #3	Storm #4	Storm #5
Frequency (years)	2	5	10	25	0
24 Hour Rainfall, P (in)	3.5	4.5	5	5.5	0
Runoff, Q (in) (use P and CN with Table 2-1, Fig. 2-1, or Eqn. 2-3 and 2-4)	1.01	1.67	2.04	2.41	0.00

Project:	West Point - Motor	Pool East	
Project #:	60787.77		
Task:	0001		
Calculated:	JDM	Date:	26-Mar-99
Checked:		Date:	

EA Engineering, Science, and Technology

Sheet Flow	Segment				
1 Surface Description (Table 3-1)					
2 Manning's Roughness Coeff., n (Table 3-1)					
3 Flow Length, L (total L <= 300 ft)	ft				
4 Two year 24 hour Rainfall, P2	in				
5 Land Slope, s	ft/ft				
6 Tt	hr	0.000	0.000	0.000	0.000
Shallow Concentrated Flow	Segment	A3B3			
7 Surface Description (1=paved, 2=unpaved)		2			
8 Flow Length, L	ft	35			
9 Watercourse Slope, s	ft/ft	0.400			
10 Average Velocity, V (Fig. 3-1)	ft/s	10.20	0.00	0.00	
11 Tt	hr	0.001	0.000	0.000	0.001
Channel Flow	Segment	B3C3			
Bottom width of trapezoidal channel	ft	2			
Depth of trapezoidal channel	ft	2			
Side slopes of trapezoidal channel (?H:1V)		2			
12 Cross Sectional Flow Area, a	sq ft	12.00	0.00	0.00	
13 Wetted Perimeter, pw	ft	10.94	0.00	0.00	
14 Hydraulic Radius, r	ft	1.096	0.000	0.000	
15 Channel Slope, s	ft/ft	0.035			
16 Manning's Roughness Coeff., n		0.035			
17 V	ft/s	8.469	0.000	0.000	
18 Flow Length, L	ft	285			

1 Drainage Area, Am	sq mi	0.001				
Runoff Curve Number, CN (worksheet #2)		70				
Time of Concentration, Tc (worksheet #3)	hr	0.010				
Rainfall Distribution Type (I, IA, II, III)		11				
Pond and Swamp Areas Spread	% Am	0				
Throughout Watershed						
		Channe did	Ctores #0	Charme #2	Charme HA	Charme HE
		Storm #1	Storm #2	Storm #3	Storm #4	Storm #5
2 Frequency	yr	Storm #1	Storm #2 5	Storm #3 10	25	Storm #5
2 Frequency 3 Rainfall, P (24 hour)	yr in	Storm #1 2 3.5				
3 Rainfall, P (24 hour)		2	5	10	25	Storm #5 0. 0.00
	in	2 3.5	5 4.5	10 5.0	25 5.5	0. 0.00
3 Rainfall, P (24 hour) 4 Initial Abstraction, la (Table 4-1) 5 Ia/P	in	2 3.5 0.857	5 4.5 0.857	10 5.0 0.857	25 5.5 0.857	0. 0.00 0.00
 3 Rainfall, P (24 hour) 4 Initial Abstraction, la (Table 4-1) 5 Ia/P 6 Unit Peak Discharge, qu (Exhibit 4-II) 	in in	2 3.5 0.857 0.245	5 4.5 0.857 0.190	10 5.0 0.857 0.171	25 5.5 0.857 0.156	0. 0.00 0.00 0.00
3 Rainfall, P (24 hour) 4 Initial Abstraction, Ia (Table 4-1)	in in csm/in	2 3.5 0.857 0.245 1624.2	5 4.5 0.857 0.190 1512.0	10 5.0 0.857 0.171 1474.5	25 5.5 0.857 0.156 1444.6	0.

SWALE "A2"

Flow

>

Hydraulic

Channel Characteristics:

Flow Rate, Q =	86.40	cfs
Bottom width, B =	2.0	ft
Side slope, Z =	2.0	?H:1V
Side slope, Z =	2.0	?H:1V
Manning roughness, n =	0.035	
Channel slope, S =	0.037	ft/ft
Rock filter height, H =	0.0	ft
Flow Depth, D =	1.8	ft
Top width =	9.20	ft
Flow area, A =	10.08	sq ft
Wetted perimeter, P =	10.05	ft
Mean depth, Dm =	1.096	ft
Hydraulic radius, R =	1.003	ft
Velocity, V =	8.57	fps

FIOW	Hydraulic		Hyuraunc	
Depth*	Radius	Velocity	Radius	Difference
(ft)	(ft)	(fps)	(ft)	
0.1	0.090	392.7	334.403	-334.313
0.2	0.166	180.0	103.763	-103.597
0.3	0.233	110.8	50.091	-49.858
0.4	0.296	77.1	29.112	-28.817
0.5	0.354	57.6	18.783	-18.429
0.6	0.410	45.0	12.970	-12.560
0.7	0.464	36.3	9.398	-8.934
0.8	0.516	30.0	7.060	-6.544
0.9	0.568	25.3	5.456	-4.888
1.0	0.618	21.6	4.313	-3.695
1.1	0.668	18.7	3.475	-2.807
1.2	0.717	16.4	2.844	-2.127
1.3	0.765	14.4	2.360	-1.594
1.4	0.813	12.9	1.981	-1.167
1.5	0.861	11.5	1.680	-0.819
1.6	0.909	10.4	1.438	-0.529
1.7	0.956	9.4	1.241	-0.285
1.8	1.003	8.6	1.078	-0.075 <
1.9	1.050	7.8	0.943	0.107
2.0	1.096	7.2	0.830	0.266
2.1	1.143	6.6	0.734	0.408
2.2	1.189	6.1	0.653	0.536
2.3	1.236	5.7	0.583	0.652
2.4	1.282	5.3	0.523	0.758
2.5	1.328	4.9	0.471	0.856
2.6	1.374	4.6	0.426	0.948
2.7	1.420	4.3	0.386	1.033
2.8	1.465	4.1	0.352	1.114
2.9	1.511	3.8	0.321	1.190
3.0	1.557	3.6	0.293	1.263
3.1	1.602	3.4	0.269	1.333
3.2	1.648	3.2	0.248	1.400
3.3	1.694	3.0	0.228	1.465
3.4	1.739	2.9	0.211	1.528
3.5	1.784	2.7	0.195	1.589
3.6	1.830	2.6	0.181	1.649
3.7	1.875	2.5	0.168	1.707
3.8	1.921	2.4	0.157	1.764
3.9	1.966	2.3	0.146	1.820
4.0	2.011	2.2	0.136	1.875
4.1	2.056	2.1	0.128	1.929
4.2	2.102	2.0	0.120	1.982
4.3	2.147	1.9	0.112	2.035
4.4	2.192	1.8	0.105	2.087
4.5	2.237	1.7	0.099	2.138

Hydraulic

* Actual flow depth (D) is where hydraulic radii match (smallest "difference")

EA Engineering, Science, and Technology

Project:	West Point - Motor F	Pool East	
Project #:	60787.77		
Task:	0001		
Calculated:	JDM	Date:	29-Sep-98
Checked:	MAS	Date:	10/1/98

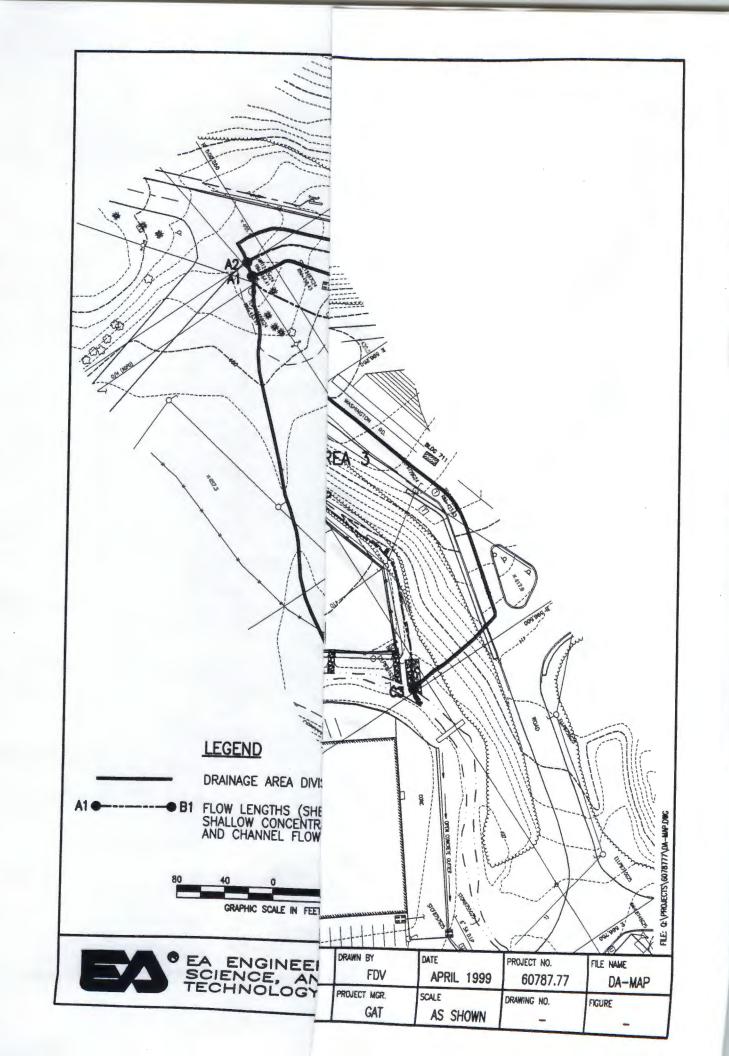
TR-55 Worksheet #2: Runoff Curve Number and Runoff

	Cover Description (cover type, treatment, and		CN			
Soil Name and Hydrologic Group	(cover type, treatment, and hydrologic condition; percent impervious; unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Area (acres)	CN*Area
Asphalt C	paved parking lot	98			0.95	93
C	woods, good condition	70			1.20	84
						0
						0
						0
						0
						0
						0
			_			0
						0
				Totals	2.15	177

Use CN = 82

	Storm #1	Storm #2	Storm #3	Storm #4	Storm #5
Frequency (years)	2	5	10	25	0
24 Hour Rainfall, P (in)	3.5	4.5	5	5.5	0
Runoff, Q (in) (use P and CN with Table 2-1, Fig. 2-1, or Eqn. 2-3 and 2-4)	1.81	2.67	3.11	3.57	0.00

	R
1	
E	A Engineering


®	Project:	ast			
	Project #:	60787.77			
		0001			
EA Engineering, Science, and Technology	Calculated:			Date: 2	9-Sep-98
EA Engineering, Science, and Technology	Checked:			Date: 10/1/98	
TR-55 Worksheet #3: Time of Con			e (Tt)		1.1.0
Sheet Flow	Segment	A1B1			
1 Surface Description (Table 3-1)		asphalt			
2 Manning's Roughness Coeff., n (Table 3-1)		0.011			
3 Flow Length, L (total L <= 300 ft)	ft	200			
4 Two year 24 hour Rainfall, P2	in	3.5			
5 Land Slope, s	ft/ft	0.070			
6 Tt	hr	0.020	0.000	0.000	0.020
Shallow Concentrated Flow	Segment	B1C1			
7 Surface Description (1=paved, 2=unpaved)		2			
8 Flow Length, L	ft	140			
9 Watercourse Slope, s	ft/ft	0.214			
10 Average Velocity, V (Fig. 3-1)	ft/s	7.46	0.00	0.00	
11 Tt	hr	0.005	0.000	0.000	0.00
Channel Flow	Segment	C1D1			
Bottom width of trapezoidal channel	ft	3			
Depth of trapezoidal channel	ft	1.4			
Side slopes of trapezoidal channel (?H:1V)		2			
12 Cross Sectional Flow Area, a	sq ft	8.12	0.00	0.00	
13 Wetted Perimeter, pw	ft	9.26	0.00	0.00	
14 Hydraulic Radius, r	ft	0.877	0.000	0.000	
15 Channel Slope, s	ft/ft	0.043			
16 Manning's Roughness Coeff., n		0.035			
17 V	ft/s	8.087	0.000	0.000	
18 Flow Length, L	ft	225			
19 Tt	hr	0.008	0.000	0.000	0.00

1 Drainage Area, Am	sq mi	0.003				
Runoff Curve Number, CN (worksheet #2)		82				
Time of Concentration, Tc (worksheet #3)	hr	0.033				
Rainfall Distribution Type (I, IA, II, III)		11				
Pond and Swamp Areas Spread Throughout Watershed	% Am	0				
		Storm #1	Storm #2	Storm #3	Storm #4	Storm #5
2 Frequency	yr	Storm #1	Storm #2 5	Storm #3 10	Storm #4 25	
2 Frequency 3 Rainfall, P (24 hour)	yr in	Storm #1 2 3.5	Storm #2 5 4.5			0.
		2	5	10	25 5.5 0.428	0.00
3 Rainfall, P (24 hour) 4 Initial Abstraction, Ia (Table 4-1)	in	2 3.5	5 4.5	10 5.0	25 5.5	0.
3 Rainfall, P (24 hour) 4 Initial Abstraction, Ia (Table 4-1) 5 Ia/P	in	2 3.5 0.428	5 4.5 0.428	10 5.0 0.428	25 5.5 0.428	0.00 0.00 0.00
3 Rainfall, P (24 hour) 4 Initial Abstraction, Ia (Table 4-1) 5 Ia/P 6 Unit Peak Discharge, qu (Exhibit 4-II)	in in	2 3.5 0.428 0.122	5 4.5 0.428 0.095	10 5.0 0.428 0.086	25 5.5 0.428 0.078	0 0.00 0.00
3 Rainfall, P (24 hour)	in in csm/in	2 3.5 0.428 0.122 1279.3	5 4.5 0.428 0.095 1270.5	10 5.0 0.428 0.086 1270.5	25 5.5 0.428 0.078 1270.5	0.00 0.00

SWALE "B"

Channel Characteristics:				Flow Depth*	Hydraulic Radius	Velocity	Hydraulic Radius	Difference	
Flow Rate, Q =	63.00	cfe		(ft)	(ft)	(fps)	(ft)	Difference	
Bottom width, B =	3.0			(11)	(11)	(ips)	(11)		
Side slope, Z =		?H:1V		0.1	0.093	196.9	106.040	-105.947	
Side slope, Z =		?H:1V		0.2	0.175	92.6	34.232	-34.057	
Manning roughness, n =	0.035			0.3	0.249	58.3	17.102	-16.854	
Channel slope, S =	0.043	ft/ft		0.4	0.317	41.4	10.243	-9.926	
Rock filter height, H =	0.0			0.5	0.382	31.5	6.787	-6.405	
Flow Depth, D =	1.4			0.6	0.443	25.0	4.798	-4.355	
				0.7	0.502	20.5	3.551	-3.049	
Top width =	8.60	ft		0.8	0.559	17.1	2.719	-2.160	
Flow area, A =		sq ft		0.9	0.615	14.6	2.138	-1.523	
Wetted perimeter, P =	9.26			1.0	0.669	12.6	1.717	-1.048	
Mean depth, Dm =	0.944			1.1	0.722	11.0	1.403	-0.681	
Hydraulic radius, R =	0.877			1.2	0.775	9.7	1.164	-0.389	
Velocity, V =	7.76			1.3	0.826	8.7	0.977	-0.151	
			>	1.4	0.877	7.8	0.830	0.047	<
				1.5	0.927	7.0	0.711	0.216	
				1.6	0.977	6.4	0.614	0.362	
				1.7	1.026	5.8	0.535	0.491	
				1.8	1.075	5.3	0.469	0.606	
				1.9	1.124	4.9	0.413	0.710	
				2.0	1.172	4.5	0.366	0.806	
				2.1	1.220	4.2	0.326	0.894	
				2.2	1.268	3.9	0.292	0.976	
				2.3	1.316	3.6	0.263	1.053	
				2.4	1.363	3.4	0.237	1.126	
				2.5	1.410	3.1	0.215	1.196	
				2.6	1.458	3.0	0.195	1.263	
				2.7	1.505	2.8	0.178	1.327	
				2.8	1.551	2.6	0.162	1.389	
				2.9	1.598	2.5	0.149	1.449	
				3.0	1.645	2.3	0.137	1.508	
				3.1	1.691	2.2	0.126	1.565	
				3.2	1.738	2.1	0.116	1.621	
				3.3	1.784	2.0	0.108	1.676	
				3.4	1.830	1.9	0.100	1.730	
				3.5	1.876	1.8	0.093	1.784	
				3.6	1.923	1.7	0.086	1.836	
				3.7	1.969	. 1.6	0.080	1.888	
				3.8	2.015	1.6	0.075	1.940	
				3.9	2.061	1.5	0.070	1.990	
				4.0	2.106	1.4	0.066	2.041 2.091	
				4.1	2.152	1.4 1.3	0.062 0.058	2.091	
				4.2	2.198 2.244	1.3	0.058	2.140	
				4.3		1.3	0.054	2.109	
				4.4	2.290	1.2	0.031	2.238	
				4.5	2.335	1.2	0.040	2.201	

* Actual flow depth (D) is where hydraulic radii match (smallest "difference")

Appendix D

Pavement Design

	\mathbf{v}	®
-	7	
-		
		 _

Project	West P	oint - Motor	Pool Eas	Project No.	60	0787.77			
Subject	Motor F	Pool East Pa	Sheet No.	1	of	3			
				•		Drawing No.			
Compute	d by	JDM	Date	06/14/99	Checked by	MJG	Date	06/1	4/99

OBJECTIVE:

Design the pavement cross-section at the Motor Pool East Landfill to serve the mix of cars and military trucks that are stored within the parking lot area. Utilize the design method presented in "Pavement Design for Roads, Streets, Walks, and Open Storage Areas" (TM 5-822-5).

PROCEDURE:

1. Quantify the types of vehicles that utilize the lower Motor Pool East Landfill parking area to determine the traffic category.

Based on dimensions of the available parking area, assume 100 military trucks (2-axle) and passenger vehicles, along with a few 3-axle trucks utilize the Motor Pool East parking area.

This corresponds to traffic category III – traffic containing as much as 15 percent trucks, but with not more than 1 percent of the total traffic composed of trucks having 3 or more axles.

2. Determine the class of the parking area.

Vehicular parking areas are considered a class E road and street.

3. Based on (1) and (2) above, identify the pavement design index.

The pavement design index is 3.

4. Determine the subgrade compaction depth below the top of pavement.

Assuming the existing subgrade is compacted to 95% Modified Proctor density and that it is cohesionless, a minimum of 9-in. of material compacted to 100% Modified Proctor density is required on top of the existing subgrade and below the top of the pavement.

TM 5-822-5

- I'm - I - I

Site visit - Winter 1999

TM 5-822-5, 3-2c(1)

TM 5-822-5, Table 3-1

TM 5-822-5, Table 4-1

TM 5-822-5, Table 6-1

Project	West F	Point - Motor	Project No.	60787.77					
Subject	Motor F	Pool East Pa	Sheet No.	2	of	3			
						Drawing No.		-	
Compute	ed by	JDM	Date	06/14/99	Checked by	MJG	Date	06/1	4/99

5. Using the pavement design index and the CBR of the base course, find the minimum thicknesses of the pavement and the base course.

Assume the provided base course will be graded crushed aggregate with a CBR of 50. Typically, a base course of 50-CBR will only be used for Class E road and street. The required pavement thickness is 2.5-in. minimum and the base course thickness is 4-in. minimum.

Based on experience, a final bituminous wearing course of 1.5-in. minimum should be placed above an intermediate bituminous course of 2-in. minimum. Therefore, the total pavement thickness will be increased from 2.5-in. to 3.5-in. The total pavement and base course section is 7.5-in. thick - without including the underlying subbase material.

6. Determine the thickness of the subbase material, underlying the base course.

Based on an existing subgrade CBR of 7 and a pavement design index of 3, the *total* pavement section (pavement, base course, and subbase) must be a minimum of 13-in. thick. Based on the suspected Proctor density of the subgrade (from step 4), the total pavement section must be a minimum of 9-in. thick.

Therefore, the suspected density of the subgrade controls the design of the subbase material. The subbase material will be 5-in. thick to provide a *total* pavement thickness of 12.5-in. above the existing subgrade.

Note that in this design, the subbase course and base course materials will be the *same* select material; thereby providing a total of 9-in of subbase/base course below the 3.5-in asphalt section. The 9-in. of subbase/base course will be placed in a single lift and compacted

7. Check total pavement thickness against possible detrimental effects of frost action in subsurface soils.

Based on the Reduced Subgrade Strength design method, the frost group of the subgrade soil is F-2 and S-2, which are sandy-gravelly soils with 10-20% fines by weight. Using this frost group, the frost-area soil support index is 6.5. This frost-area soil support index can be equated to the CBR of the subgrade and used to determine the total thickness of the subbase material (as in step 6).

TM 5-822-5, Figure 8-1

TM 5-822-5, Table 18-2

Project	West P	oint - Motor	Project No.		60787.77				
	Motor F	Pool East Pa	Sheet No.	3	of	3			
						Drawing No.			
Computed	by	JDM	Date	06/14/99	Checked by	MJG	Date	06/1	4/99

TM 5-822-5, Table 18-3

Recalculating the total minimum thickness using a CBR of 6.5 indicates that the total pavement section must be a minimum of 14-in. thick. The pavement section must be increased from 12.5-in. to a minimum of 14-in. thick, to take frost action into account.

RESULTS:

The following flexible pavement section will be constructed on the Ski Lot Landfill to serve the current Motor Pool vehicles:

- Asphalt pavement = 3.5-in. (2-in. intermediate course and 1.5-in. final wearing course)
- Base course = 4-in.
- Subbase course = 7-in. (Combined Base course and Subbase = 11-in., placed and compacted in a single lift.)

• Total Flexible Pavement Section = 14.5-in.

The following assumptions were used to develop this pavement crosssection:

- The representative traffic utilizing the Motor Pool East parking area contains as much as 15 percent trucks, with not more than 1 percent composed of trucks having 3 or more axles.
- The subgrade is cohesionless, compacted to a minimum of 95% Modified Proctor density, and has a minimum CBR of 7.
- The subgrade frost design soil classification is sandy-gravelly soils with 10-20% fines by weight with a frost-area soil support index (CBR) of 6.5. This CBR is lower and controls the design.
- The base and subbase courses will be compacted to a minimum of 100% Modified Proctor density.
- Both the subbase and base courses will be a graded crushed aggregate with a minimum CBR of 50.