Site Characterization Summary and Data Transmittal for the Goshen Site

New York State Electric & Gas Corporation Goshen Former MGP Goshen, New York

February 2001

consultants with focus

Section	1.	Introduction	1-1
	1.1	General	1-1
	1.2	Site Description and History	
_			
Section	2.	Site Prioritization Investigation	2-1
	2.1	Overview	2-1
	2.2	Activities	
	2.2	2.2.1 Site Screening Samples	
		2.2.2 Site Ranking	
	2.3	Investigation Findings	
		2.3.1 Surface Soil	
		2.3.2 Surface Water and Sediment.	
	2.4	Conclusions	2-3
Section	3	Task II Remedial Investigation	3-1
000000	υ.		
	3.1	Overview	3-1
	3.2	Activities	
		3.2.1 Background Information Review	
		3.2.2 Source Investigation	
		3.2.2.1 Excavation of Test Pits/Trenches	
		3.2.2.2 Drilling of Test Borings	3-3
		3.2.2.3 Characterization of Underground Steel Tank	
		3.2.2.4 Characterization of the Cistern	
		3.2.3 Surface-Soil Investigation	
		3.2.4 Groundwater Investigation	
		3.2.4.1 Monitoring Well Installation	
		3.2.4.2 Groundwater Sampling and Analysis 3.2.5 Sediment Investigation	
		\mathbf{v}	
		3.2.5.1 Sediment Probing 3.2.5.2 Sediment Sampling and Analysis	
		3.2.6 Investigation Derived Waste	
		3.2.6.1 The Recharge Pit	
		3.2.6.2 Waste Characterization	
	3.3	Findings	
		3.3.1 Site Physical Characterization	
		3.3.1.1 Physiography	
		3.3.1.2 Hydrogeology	3-8
		3.3.2 Site Chemical Characterization	3-9
		3.3.2.1 Source Areas	3-9
		3.3.2.2 Groundwater	3-10
		3.3.2.3 Surface Soil	3-10
		3.3.2.4 Sediment	3-10
Section	4.	Site Overview/Conceptual Model	4-1

Section	4.	Site Overview/Conceptual Model
---------	----	--------------------------------

BLASLAND, BOUCK & LEE, INC.

Tables

- 1 Summary of Task II RI Analytical Samples
- 2 Source Area Investigation Analytical Data
- 3 Waste Characterization Data
- 4 Surface-Soil Analytical Data
- 5 Monitoring Well Details and Water-Level Elevations
- 6 Groundwater Analytical Data October 18, 1993
- 7 Groundwater Analytical Data January 24, 1994
- 8 Groundwater Analytical Data April 27, 1994
- 9 Groundwater Analytical Data July 20, 1994
- 10 Sediment Analytical Data

Figures

- 1 Site Location Map
- 2 Site Screening Sampling Locations
- 3 Boring, Test Pit, and Monitoring Well Location Map
- 4 Water Table Map April 27, 1994
- 5 Deep Potentiometric Surface Map April 27, 1994
- 6 Chemical Distribution in Groundwater
- 7 Chemical Distribution in Sediment

Appendices

- A Site Screening Samples Laboratory Analytical Data
- B Subsurface Logs
- C Hydraulic Conductivity Calculations
- D Survey Data
- E Sediment Probing and Sampling Technical Memorandum
- F Task II RI Field Notes

BLASLAND, BOUCK & LEE, INC.

1. Introduction

1.1 General

This report presents the data and findings of two voluntary environmental investigations conducted by the New York State Electric & Gas Corporation (NYSEG) at a former manufactured gas plant (MGP) located in Goshen, New York (the Goshen Site). NYSEG undertook both investigations between 1990 and 1994 in order to characterize the environmental conditions of its property and to provide a foundation for later work, if needed. The first investigation, the Site Prioritization Investigation (SPI), was conducted by Engineering Science, Inc. (ES) of Liverpool, New York, and was reported in the internal Site Prioritization Report in September 1991. Based on the findings and recommendations of that report, NYSEG contracted with Blasland, Bouck & Lee, Inc. (BBL) to conduct a Task II Remedial Investigation (Task II RI).

NYSEG undertook these investigations voluntarily and has not, until now, provided the New York State Department of Environmental Conservation (NYSDEC) with its findings. NYSEG has chosen to condense its reporting to this single unified document. On NYSEG's behalf, BBL has prepared this Site Characterization Summary and Data Transmittal (SCS). This report provides a brief review of the activities, analytical data and other findings of each investigation. Sections 2 and 3 describe the SPI and the Task II RI, respectively. Section 4 provides a synopsis of the investigation findings and serves as NYSEG's current conceptual model for the site.

The Goshen Site is currently scheduled for additional investigation, beginning in 2007. This schedule was outlined in a January 25, 2000 letter from Joseph Simone (NYSEG) to James VanHoesen (NYSDEC) and approved in a March 10, 2000 letter from David Crosby (NYSDEC) to Joseph Simone.

1.2 Site Description and History

The Goshen Site is located on West Main Street in the Village of Goshen, Orange County, New York, and encompasses approximately one acre. The site is bounded by the Rio Grande (a creek) at the northwest corner, by property belonging to the Village of Goshen to the north and northeast, by private commercial property to the east and west, and by West Main Street to the south. The site is owned by NYSEG and presently serves as a service center for its gas operations in that area. Figure 1 shows the site location.

NYSEG undertook the site investigation due to its history as an MGP. The known extent of the former MGP is shown on the site figures (Figures 2 through 7) and includes features located off the NYSEG-owned property. Most notably, the structure identified as Gas Holder 3 was located west of the Goshen Site, on property owned at the time of the investigation by the McBride Development Corporation. Due to property access limitations, these investigations were limited to properties owned by NYSEG and the Village of Goshen. Therefore, former Gas Holder 3 is not addressed in this report.

MGP operations began at the Goshen Site between 1885 and 1889 and continued until sometime between 1945 and 1947, when the facility was converted to a natural gas operations center (ES, 1991). During this time period, site ownership was held by the A. VanDerwerken Water Gas Works (circa 1889-circa 1905), Goshen Gas Light Company Water Gas Works (circa 1905-circa 1923), Goshen Illuminating Company Coal Gas Plant (circa 1923-1945), Associated Gas & Electric Company (1945-1947), and NYSEG. During the period of its operation, the

MGP is known to have included a gas house (composed of a meter house, purifying/purifier houses, oil tanks, a boiler, a generator, a washer, and a superheater), three gas holders, a shed, furnace area, coal storage area, and a lime kiln.

2.1 Overview

In October and November 1990, ES conducted a Site Prioritization Investigation (SPI) on behalf of NYSEG. The SPI was a preliminary site evaluation designed to meet two objectives:

- Determine if the site posed an imminent threat to human health and/or the environment; and
- Establish a rank for the site relative to NYSEG's other MGP sites.

2.2 Activities

2.2.1 Site Screening Samples

To meet the SPI objectives, ES collected a limited number of analytical samples of the three media considered potential exposure routes: surface soil, surface water, and sediment. These sample locations are shown on Figure 2.

Five surface-soil samples were collected from the upper 0.5 feet of soil. Surface-soil sample SS-1 was collected in the former furnace/shed area. Surface-soil sample SS-2 was collected at the edge of the site, north of Gas Holder 1. Surface-soil sample SS-3 was collected off site at the edge of the Rio Grande. Surface-soil samples SS-4 and SS-5 were collected in the northwest corner of the site. Note that the nomenclature "SS-1, SS-2, etc." has been used twice to identify analytical samples at the Goshen Site. As a result, some of the surface-soil samples collected for the SPI and sediment samples collected during the Task II RI have the same names, but can be distinguished by date and location.

Three surface-water samples were collected from the Rio Grande: SW-1 upstream of the site, SW-2 adjacent to the site, and SW-3 100 feet downstream of the site. Three sediment samples, SED-1, SED-2, and SED-3, were collected at the same locations as the surface-water samples.

All surface-soil, surface-water and sediment samples were analyzed using United States Environmental Protection Agency (USEPA) methods for the parameters listed below.

Analyses	Surface-Soil and Sediment Analytical Method	Surface Water Analytical Method
Volatile organic compounds (VOCs)	USEPA Method 8270	USEPA Method 624
Semivolatile organic compounds (SVOCs)	USEPA Method 8240	USEPA Method 625
Iron, zinc, aluminum, cadmium, antimony, copper, cobalt, manganese, and nickel	USEPA Method 6010	USEPA Method 200.7
Lead	USEPA Method 7421	USEPA Method 7421
Chromium	USEPA Method 7191	USEPA Method 7191
Cyanide	USEPA Method 9010	USEPA Method 335

Site Prioritization Investigation Analyses

2.2.2 Site Ranking

As part of the SPI, NYSEG used the Site Screening and Priority Setting System (SSPSS) to rank the Goshen Site relative to its other MGP sites. This system was developed by the Electric Power Research Institute (EPRI) to provide a consistent means for utilities to prioritize and manage former MGP sites. The SSPSS takes into account potential routes of exposure to calculate both an actual and a perceived risk. The SSPS ranking generated for the Goshen Site incorporated the site screening sampling results, information about land use near the site, and (where site specific data were unavailable) statistical data derived from other former MGP sites.

2.3 Investigation Findings

The laboratory results of the site screening samples are presented in Appendix A. The following sections briefly review those results.

2.3.1 Surface Soil

ES submitted surface-soil samples from the four locations shown on Figure 2. They are identified SS-1 through SS-4. The sample SS-5 was a blind duplicate of SS-4. The results are summarized as follows:

- Methylene chloride was the only VOC detected in the surface soil, but is considered a probable laboratory contaminant.
- SVOCs were detected at two of the four sample locations (SS-3 and SS-4). All of the SVOCs detected were Polycyclic Aromatic Hydrocarbons (PAHs), with pyrene and fluoranthene most abundant. Total concentrations of SVOCs in surface soils were as follows: non-detect in SS-1 and SS-2; 230 parts per million (ppm) in SS-3; and 4,011 ppm in SS-4. Note that the correlation between SS-4 and SS-5 (its duplicate) was poor: 320 ppm total SVOCs at SS-5, versus the 4,011 ppm at SS-4.
- Cyanide was detected in two surface-soil samples, SS-4 (13 ppm) and its duplicate SS-5 (6.2 ppm). None of the cyanide in these samples was amenable.
- All the metals detected were within the naturally occurring ranges for the Goshen Site, as determined from a United States Geological Survey (USGS) reference (Shacklette and Boerngen, 1984).

2.3.2 Surface Water and Sediment

ES submitted surface-water and sediment samples from three locations in the Rio Grande. They are identified SS-1/SW-1, SS-2/SW-2, and SS-3/SW-3. The results are summarized as follows:

- No VOCs were detected in the surface-water samples. Methylene chloride was the only VOC detected in the sediment samples, but is considered a probable laboratory contaminant.
- Only one SVOC, bis(2-ethylhexyl)phthalate, was detected in the surface-water samples. This compound is a common laboratory and/or sampling contaminant. No SVOCs were detected in the sediment samples.

• Lead and zinc were detected at comparable concentrations in all three surface water samples. Aluminum, iron, and manganese were detected at slightly higher concentrations in samples SW-2 and/or SW-3. All the metals detected in sediment were judged by ES to be within the naturally occurring ranges. Cyanide was not detected in the sediment or surface-water samples.

2.4 Conclusions

In its September 1991 submittal to NYSEG, ES reached the following conclusions:

- The most significant risk associated with the Goshen Site was direct contact with surface soil, fill, and residues exposed along the banks of the Rio Grande, where SS-3 and SS-4/5 were collected.
- Sampling of sediment and surface water for the Rio Grande showed no indications of MGP impacts.
- Groundwater and subsurface soil had not been investigated and posed the most significant data gap.

Based on these findings and the site priority ranking, NYSEG chose to initiate further investigation of the Goshen Site in the form of a Task II Remedial Investigation.

3.1 Overview

Following completion of the SPI, NYSEG initiated its second voluntary investigation of the Goshen Site, the Task II Remedial Investigation. In 1992, at NYSEG's request, BBL developed a conceptual model for the Goshen Site which noted data gaps to be addressed by the Task II RI. These gaps included the nature of potential source areas, and the extent of MGP impacts on environmental media, particularly subsurface soil and groundwater.

The Task II RI consisted of the following five activities:

- Background Information Review
- Source Investigation
- Surface-Soil Investigation
- Groundwater Investigation
- Sediment Investigation

Each activity is discussed in Section 3.2. These activities were performed in accordance with the RI Work Plan, finalized by BBL in July 1993. This work plan included a Sampling and Analysis Plan (SAP), a Health and Safety Plan (HASP), and a Quality Assurance Project Plan (QAPP), all conforming to industry standard practice.

3.2 Activities

3.2.1 Background Information Review

The background review consisted of a site reconnaissance and a review of the NYSEG project files, Orange County real estate records, and documents available at the Village of Goshen Tax Assessment Office and Orange County Historical Society. BBL also contacted local and public sources of information (e.g., USGS and local utilities). The findings are summarized below.

On July 30, 1992, BBL and NYSEG performed a site visit. The following information was obtained during this visit. In the basement of the former gas house, a shallow tar tank referred to as the drip tank, was present approximately one foot below the floor. The volume of this drip tank was not known. In addition, in the northwest corner of the former gas house was an opening in the basement floor, referred to as a "cistern." A tar odor was noted in this area, but no tar was observed. Outside the former gas house to the northeast lies an underground steel tank. NYSEG had no information on this tank other than its existence.

At the time of the investigation, the McBride Development Corporation owned two groundwater production wells located near the site: one on the adjacent property west of the site, and another south and upgradient of the site. The Village of Goshen received its water from the Goshen Reservoir located on Reservoir Road, approximately 6,200 feet south of the Goshen Site. At the time of the investigation, the Village had installed and tested a new water supply well, known as the "High School Well," located on the Goshen High School property approximately 5,800 feet north-northeast of the Goshen Site. The Village received approval to put this well on line as a public

water supply but had not done so as of August 1994. The High School Well is installed 500 feet deep in shale bedrock.

At the time of the investigation, the Town of Goshen had two water supply well fields located outside the village boundary. The first well field is called Goshen Water Distinct No. 1 and is located in Hambiltonian Park on Craigville Road, approximately 1.5 miles east of the Goshen Site. This well field consists of five to six wells installed approximately 500 feet deep into bedrock. The second well field is called Goshen Water District No. 2 and is located on Arcadia Hill Road, approximately 2 to 3 miles southeast of the Goshen Site. This well field consists of 14 wells installed between 400 and 500 feet deep into bedrock.

3.2.2 Source Investigation

The objective of the Source Investigation was to verify the locations of potential MGP related source areas and confirm the presence and extent of MGP residues. The Source Investigation was divided into the following tasks:

- Excavation of Test Pits;
- Drilling of Test Borings;
- Characterization of the Underground Tank; and
- Characterization of the Cistern.

The test pit and test boring locations are shown on Figure 3. The underground tank is shown on the same figure. The cistern is located in the basement of the former gas house, but is not labeled on the figures.

3.2.2.1 Excavation of Test Pits/Trenches

A total of six test pits were excavated on September 13 and 14, 1993. The depths of the test pits ranged between 1.5 feet to 7 feet below grade. The test pits were excavated until significant coal tar residue was encountered, a foundation was encountered, or groundwater entered the excavation. The test pits logs are presented in Appendix B. As shown on Figure 3, the test pits were located in or near potential source areas.

The following table lists the name, location and rationale for each test pit. Where analytical samples were collected, the sample depth is listed, along with the categories of analysis. General analyses included VOCs, SVOCs, metals, and total and amenable cyanide. Waste characterization included a full Toxicity Characteristics Leaching Procedure (TCLP) analysis, British Thermal Unit (BTU) content, reactivity testing, and a total petroleum hydrocarbon (TPH) scan. A summary of these analyses and their laboratory methods is provided in Table 1.

Test Pit ID	General Location	Rationale	Sample Depth (if submitted)	Analyses Conducted
TP-1	Furnace area	Potential source area identification	6.0 ft.	General
TP-2	Gas Holder 1	Delineate horizontal extent of gas holder foundation	4.5 ft.	General & Waste Characterization
TP-3	Gas Holder 2	Delineate horizontal extent of gas holder foundation	2.0 ft.	General & Waste Characterization

Test Pit ID	General Location	Rationale	Sample Depth (if submitted)	Analyses Conducted
TP-4	Furnace/shed area	Potential source area identification	none submitted	_
TP-5	Coal Storage	Potential source area identification	none submitted	_
TP-6	Underground steel tank	Delineate horizontal and vertical extent of the oil tank	Water Sample	General (see below)

BBL submitted three soil samples from the test pits for general chemical characterization. These analytical samples (from TP-1, TP-2 and TP-4) were selected from representative samples of potential source areas to determine their chemical composition. The laboratory results are summarized in Table 2. No soil samples were submitted from TP-6; however, a water sample was collected from the steel tank uncovered in that excavation. Characterization of the steel tank is discussed later in Section 3.2.2.3.

As noted in the table above, two of the test pit soil samples were submitted for waste disposal characterization. The laboratory results of these analyses are summarized in Table 3.

3.2.2.2 Drilling of Test Borings

The Source Area Investigation included seven test borings, drilled to depths between 24 and 40 feet. The boring locations, shown on Figure 3, were chosen to be in or near potential MGP source areas to delineate their horizontal and vertical extent. Note that the boring names begin at TB-4, rather than TB-1. The prior three borings are associated with the groundwater investigation and were converted to monitoring wells, as discussed later in this report.

Each test boring was advanced to the top of till, as determined by split spoon/auger refusal and visual observation. Drilling was conducted using a conventional truck rig, with 4 ¼-inch inner-diameter hollow stem augers, and 2-inch diameter split spoons. Upon completion, each boring was tremie-grouted to grade. Geologic descriptions and additional drilling details are available on the boring logs in Appendix B.

The following table lists the name and location of each test boring. Where analytical samples were collected, the sample depth is listed along with the categories of analysis. General analyses included VOCs, SVOCs, metals, and total and amenable cyanide. Waste characterization included a full TCLP analysis, BTU content, reactivity, and TPH. A summary of these analyses and their laboratory methods is provided in Table 1.

Test Boring ID	General Location	(if submitted)	
TB-4	Furnace area	none	none
TB-5	Inside Gas Holder 1	17 to 19.5 ft.	General & Waste Characterization
TB-6	Inside Gas Holder 2	10 to 12.5 ft.	General
TB-7	Downgradient of oil tanks	none	none
TB-8	Northern perimeter of Gas Holder 1 downgradient of tar drip	5.5 to 20 ft.	General & Waste Characterization
TB-9	Downgradient of purifier	none	none
TB-10	Downgradient of Gas Holder 1	7.2 to 10 ft.	General & Waste Characterization

Four soil samples from the test borings were submitted to the laboratory for general chemical characterization. Three samples were selected from visually affected soil intervals. One sample (TB-10) was selected from a soil interval below visually affected soils and above till to assess the vertical distribution of constituents. The analytical results of the general analyses are summarized in Table 2.

As noted in the table above, three of the test boring soil samples were submitted to the laboratory for waste disposal characterization. These analytical results are summarized in Table 3.

3.2.2.3 Characterization of Underground Steel Tank

The location of Test Pit 6 (TP-6) was chosen to uncover an underground steel tank northeast of the former gas house. The excavation revealed that the tank is approximately 5 feet in diameter by approximately 12 feet long and is filled with water to within 0.5 feet of the top of the tank. Gravel filled the tank to 2.7 feet below the top of the tank. The field staff noted a coal tar odor when the top of the tank was removed, but found no further evidence of MGP impacts. A sample of the water in the tank was obtained and submitted for chemical characterization (VOCs, SVOCs, metals, and total and amenable cyanide). A summary of these analyses and their laboratory methods is provided in Table 1. The analytical results are presented in Table 2.

3.2.2.4 Characterization of the Cistern

The investigation of potential source areas included a cistern located in the basement of the former gas house. To determine if the water in the cistern had been affected by MGP-related constituents, BBL collected and submitted a water sample for chemical characterization (VOCs, SVOCs, metals, and total and amenable cyanide). A summary of these analyses and their laboratory methods is provided in Table 1. The analytical results are presented in Table 2.

3.2.3 Surface-Soil Investigation

The objective of the surface-soil investigation was to evaluate the presence and concentration of MGP-related constituents in the near-surface soils. Five surface-soil samples were collected using a decontaminated stainless steel scoop. Four of the five samples were collected at the surface where MGP-related residues had been observed in the subsurface during the source investigation. Care was taken to avoid sampling directly within the areas disturbed by the test pits and test borings. One background sample was obtained from an area where MGP-related activities were not documented to have occurred.

The surface-soil sampling locations are shown on Figure 3 and summarized below.

Surface-Soil ID	General Location
SF-1	Background sample obtained southeast of
	former gas house
SF-2	Inside Gas Holder 2
SF-3	Inside Gas Holder 1
SF-4	In furnace area
SF-5	Near coal storage area

BBL submitted each of the surface-soil samples for laboratory analysis of VOCs, SVOCs, metals, total and amenable cyanide, and polychlorinated biphenyls (PCBs). A summary of these analyses and their laboratory methods is provided in Table 1. The analytical results are presented in Table 4.

3.2.4 Groundwater Investigation

Prior to the Task II RI, groundwater at the site had not been investigated. The tasks outlined for this investigation would provide means to characterize groundwater presence, flow patterns, and general quality beneath the Goshen Site. The groundwater investigation consisted of the following two phases: monitoring well installation; and groundwater sampling and analysis.

3.2.4.1 Monitoring Well Installation

In September 1993, six overburden monitoring wells were installed in three well pairs. The locations of the wells are shown on Figure 3. The MW93-1 well pair was installed by the site entrance, hydraulically upgradient of affected areas, to determine the background quality of water entering the site. The other two monitoring well pairs (MW93-2 and MW93-3) were installed hydraulically downgradient of the former MGP to determine if MGP-related constituents were migrating in groundwater.

The monitoring wells consisted of 2-inch diameter stainless steel well casings and 5 or 10-foot lengths of 0.010inch slotted stainless steel screen. As with the test borings, each well was drilled with a conventional truck-mounted rig, using 4 ¼-inch inner-diameter holiow stem augers. The deep wells were continuously sampled using 2-inch diameter split spoons until the till unit was identified (generally from 35 to 40 feet deep).

The deep wells were designed with 5-foot lengths of screen to span the interval directly above the till. The shallow wells were designed with 10-foot lengths of screen spanning the uppermost portion of the saturated overburden. A summary of the monitoring well construction details is presented in Table 5. Geologic descriptions and well installation details are included on the monitoring wells logs in Appendix B.

After well installation, the following tasks were completed:

- Each well was developed to remove fine-grained materials that may have settled in or around the well screen during installation and to enhance hydraulic communication between the screen and the formation.
- In-situ hydraulic conductivity tests were performed at each well on October 21, 1993. The results of the hydraulic conductivity tests are presented in Section 3.3.1.2 and Appendix C.
- The monitoring well locations and elevations were surveyed and referenced to the National Geodetic Vertical Datum (NGVD) of 1929 based on the site datum provided by Modi Associates, Land Surveyor (ES, 1991). Survey data are provided in Appendix D.

3.2.4.2 Groundwater Sampling and Analysis

The six site monitoring wells were sampled quarterly for one year to evaluate groundwater quality. Groundwater samples were obtained on October 18, 1993, and January 25, April 27, and July 20, 1994.

Prior to each event, the field staff recorded water-levels in each monitoring well. Table 5 includes a summary of the water-level elevations calculated from these measurements. When sampled, each well was purged of three well-casing volumes using a dedicated TeflonTM bailer. With a field instrument, the pH, temperature and specific conductivity of the water was measured and recorded. During all four quarters, the groundwater samples were submitted for analysis of VOCs, SVOCs, metals, and total and amenable cyanide. For the first quarter only (October 1993), the water samples were also submitted for PCB analysis. A summary of these analyses and their laboratory methods is provided in Table 1. Each quarter's analytical results are tabulated separately on Tables 6, 7, 8, and 9, consecutively.

3.2.5 Sediment Investigation

The Task II RI expanded upon the sediment sampling conducted for the SPI with a more extensive program to determine the presence and distribution site related constituents in the Rio Grande sediments. This phase of the investigation included two tasks, sediment probing and sediment sampling, completed September 27 and 28, 1993. More details on methods and findings of the sediment investigation are include in a short technical memorandum, attached as Appendix E.

3.2.5.1 Sediment Probing

BBL probed sediment along the near edge of the Rio Grande upstream, downstream, and adjacent to the site. The study included a total of 25 sediment probes at approximately 20-foot intervals starting 80 feet downstream of the former MGP property line. The field staff used LexanTM core tubes to retrieve and visually characterize the sediment at each probing location. A summary of these observations is included in Appendix E.

3.2.5.2 Sediment Sampling and Analysis

BBL collected eight sediment samples from the Rio Grande. Three samples were collected upstream of the site, two adjacent to site, and three downstream of the site. Sediment samples were collected from areas with visual evidence of contamination, and/or from locations where a significant depth of sediment was encountered. The field staff collected each sample by driving Lexan[™] core tubes into the sediment with a stainless steel core driver. The locations of the sediment samples shown on Figure 7, and are summarized below:

Sediment Sample ID	Depth of SampleLocation Relative to Site(feet below bed)								
SS-1	0 to 1.2	Downstream	oil sheen						
SS-2	0 to 1.9	Downstream	oil sheen						
SS-3	0 to 1.7	Downstream	oil sheen						
<u>SS-4</u>	0 to 1.5	Adjacent	oil sheen						
SS-5	0 to 1.5	Adjacent	oil sheen						

Sediment Sample ID	Depth of Sample (feet below bed)	Location Relative to Site	Sample Rationale
SS-6	0 to 1.0	Upstream	organics and oil sheen
<u>SS-7</u>	0 to 1.7	Upstream	oil sheen
	0 to 2.2	Upstream	oil sheen

The eight sediment samples listed above were submitted to the laboratory and analyzed for VOCs, SVOCs, metals, total and amenable cyanide, moisture content, and total organic carbon. A summary of these analyses and their laboratory methods is provided in Table 1. The analytical results are presented in Table 10.

3.2.6 Investigation Derived Waste

3.2.6.1 The Recharge Pit

A recharge pit was installed at the Goshen Site to accept groundwater extracted from site monitoring wells and decontamination water generated throughout the investigation. The recharge pit was installed near the center of Gas Holder 1, an area known to have fill materials and MGP residues in the subsurface. The pit is a 4-foot square by 5-foot deep hole that was excavated by a backhoe. A 6-inch diameter, 5-foot long casing was perforated, braced with reinforcing bar, placed in the pit, and surrounded with pea gravel to grade. The recharge pit is identified as "recharge well" on the site figures.

3.2.6.2 Waste Characterization

In addition to the five test pit and test boring soil samples submitted for waste characterization analyses, the field staff submitted four samples composited from drums of soil cuttings. Thus, a total of nine soil samples were submitted for full TCLP analysis, BTU content, reactivity, and TPH. A summary of these analyses and their laboratory methods is provided in Table 1. The laboratory results are summarized on Table 3. These data were used to determine the appropriate disposal methods for the investigation-derived waste. Note that no reported values exceeded the RCRA TCLP Regulatory Levels.

3.3 Findings

The investigations outlined above provided a broad base of data for assessing the environmental conditions of the Goshen Site. The following sections provide a brief review of those data (both analytical results and the observations of field staff). Section 4 of this document provides a brief overview of these findings as a conceptual model for the site.

3.3.1 Site Physical Characterization

3.3.1.1 Physiography

The land surface at the Goshen Site slopes gently to the north across most of the site, from West Main Street to the more steeply sloping south bank of the Rio Grande. The elevation of the site ranges between 430 and 437 feet

above mean sea level (AMSL). The eastern property boundary of the site is bordered by a concrete wall that is approximately 3 feet high in the southeast corner and approximately 10 feet high in the northeast corner.

The site contains no distinctive surface water runoff pathways, such as drainage ditches. The paved driveway and parking areas allow for surface runoff to the Rio Grande. The Rio Grande flows from the northeast to the southwest.

3.3.1.2 Hydrogeology

The Task II RI test pit, test boring, and monitoring well data provided specific information on the subsurface geology of the Goshen Site to a maximum depth of 41 feet. Detailed test pit and boring logs are included in Appendix B of this report. Based on observations of field geologists, the overburden geology can be divided into the four units described below, in order of increasing depth:

- A fill unit consisting of varying amounts of sand, gravel, and silt with fill materials (e.g., slag, ash, wood, brick).
- A silt and sand unit consisting primarily of a brown to gray silt with varying amounts of sand and gravel;
- A sand and gravel unit composed primarily of shale fragments; and
- Till consisting of very dense silt, sand, and gravel.

The water table occurs at depths between 8 to 15 feet across the site, and is interpreted to intercept the Rio Grande to the north. Figure 4 depicts the water table based on water-level measurements in the three shallow monitoring wells taken April 27, 1994. The water table shows a gradient to the northwest toward the Rio Grande. Figure 5 depicts a potentiometric surface developed from water-level measurements in the three deep monitoring wells, taken April 27, 1994. Though less steep, the gradient of the deep potentiometric surface mimics the water table and trends to the northwest. Groundwater elevations from all four quarters are shown on Table 5. Review of those data shows little seasonal shift in groundwater flow patterns.

The slug-test data for each monitoring well were analyzed using the Bouwer-Rice method for unconfined aquifers. These calculations are shown in Appendix E. The calculated hydraulic conductivities are summarized below:

Well ID	In-Situ Slug Test	Hydraulic Conductivity (cm/sec)	Screened Lithology
MW93-1S	Rising Head	6.4 x 10 ⁻⁵	Fine sand and silt, loose
MW93-1D	Rising Head	5.7 x 10-4	Silt and fine sand, loose
MW93-2S	Rising Head	7.8 x 10-5	Sand and silt some clay, loose
MW93-2D	Rising Head	8.5 x 10-4	Sand and gravel, loose
MW93-3S	Rising Head	4.9 x 10-5	Silt and fine to coarse sand, loose
MW93-3D	Rising Head	1.1 x10-3	Sand and gravel, loose

3.3.2 Site Chemical Characterization

3.3.2.1 Source Areas

The Task II RI investigated seven locations as potential source areas: Gas Holder 1, Gas Holder 2, the tar drip tank, the eastern and western portions former gas house, the underground steel tank, the cistern, and the furnace/shed/coal storage area. Analytical samples collected from test pits and soil borings provide the best measure of each area's potential MGP impacts. A summary of the analytical samples submitted is provided on Table 1. Figure 3 shows the sample locations and the approximate locations of the former MGP structures. Table 2 summarizes the analytical results of the source area samples.

A review of the analytical data shows that the extent of affected soil, sediment, and groundwater at the Goshen Site is relatively limited. The subsurface does show evidence of MGP-impacts, most notably near former Gas Holder 1, Gas Holder 2, and the tar drip tank. Potential coal tar non-aqueous phase liquid (NAPL) was identified only in these three areas, and to a maximum depth of 20 feet below grade (in Gas Holder 1 and near the tar drip tank). The other areas did not appear to have been greatly affected by the MGP.

<u>Gas Holder 1</u>

Test Pit 2 (TP-2) uncovered the holder's brick wall foundation. Test Boring 5 (TB-5) did not identify a floor to the holder. Potential coal tar was identified in a sand and silt unit between 17 and 20 feet below grade. An analytical sample from this interval exceeded the NYSDEC Soil Cleanup Objectives (Technical and Administrative Guidance Memorandum #4046, 1994) for four SVOCs (see Table 2). No evidence of MGP-impacts was observed below this interval.

Gas Holder 2

Test Pit 3 (TP-3) uncovered the holder's brick wall foundation. Test Boring 6 (TB-6) did not identify a floor to the holder. Potential coal tar was identified at the base of a coarse fill unit between 10 and 12.5 feet below grade. An analytical sample from this interval exceeded the NYSDEC Soil Cleanup Objectives for five VOCs and eight SVOCs. No evidence of MGP-impacts was observed below this interval.

<u>Tar Drip Tank</u>

The tar drip tank is located inside the former gas house and was not investigated directly. Test Boring 8 (TB-8) was advanced outside the building, just north (downgradient) of the tank. Potential coal tar was identified at the base of a coarse fill unit and in the uppermost silt and sand unit, between approximately 14 and 20 feet below grade. An analytical sample from this interval exceeded the NYSDEC Soil Cleanup Objectives for four VOCs, and five SVOCs. No evidence of MGP-impacts was observed below this interval.

Former Gas House (eastern and western portions)

Test Borings 7 and 9 (TB-7 and TB-9) were advanced outside the former gas house north of the western and eastern sections, respectively. These locations were chosen to identify impacts related to the purifiers and oil tanks located inside the former gas house, if any. The field geologist observed no coal tar or other evidence of MGP-related impacts in either boring. No analytical samples were submitted.

Underground Steel Tank

This tank was uncovered in Test Pit 6 (TP-6), northeast of the former gas house. A water sample collected from the tank had no detections of VOCs or SVOCs.

BLASLAND, BOUCK & LEE, INC.

Cistern

A water sample collected from the cistern in the basement of the former gas house returned trace detections of VOCs and SVOCs. These amounted to 0.002 ppm total VOCs, and 0.299 ppm total SVOCs.

Furnace/Shed/Coal Storage Area

This area in the northwest corner of the site was investigated by three test pits (TP-1, 4, and 5), one test boring (TB-4), and the MW93-2 monitoring well pair. An oil sheen was identified at 6 feet below grade on water pooling in TP-1. An analytical sample of soil submitted from this interval exceeded the NYSDEC Soil Cleanup Objectives for four SVOCs. No other soil samples were submitted from this area.

3.3.2.2 Groundwater

Analytical results from four quarterly rounds of groundwater sampling are summarized in Tables 6, 7, 8, and 9, consecutively. Figure 6 posts the total concentrations of VOCs, PAHs, other SVOCs, and Cyanide, for each well over all four quarters. The data show little impact on groundwater quality in either the shallow or deep monitoring units, with no consistent detections or exceedances of the NYSDEC Class GA Standards for VOCs or SVOCs. Cyanide was consistently found in the two downgradient shallow monitoring wells (MW93-2S and MW93-3S). The total cyanide concentration at MW-933S exceeded the 0.2-ppm Class GA Standard each quarter, with a maximum concentration of 0.479 ppm reported during the October 1993 event. Amenable cyanide was detected periodically at both MW93-2S and MW93-3S, albeit at much lower concentrations.

3.3.2.3 Surface Soil

The analytical results of the five surface-soil samples submitted are summarized in Table 4. The results show low level SVOC exceedances of the NYSDEC Soil Cleanup Objectives in SF-1 through SF-4. The concentrations in SF-5 are an order of magnitude higher, with a total SVOCs concentration of 463 ppm.

3.3.2.4 Sediment

The sediment data collected from the Rio Grande adjacent to the Goshen Site were evaluated based on a criteriaspecific analysis. The evaluation includes samples collected from adjacent to and downstream of the Site, and background samples (i.e., samples SS-6, SS-7, and SS-8). Specifically, this evaluation compares detected concentrations against ecological-based screening values. The criteria used for the comparison are from NYSDEC (1999) Technical Guidance for Screening Contaminated Sediments. The NYSDEC (1999) sediment criteria for organic and inorganic compounds are based on three ecological risk levels of protection: acute toxicity to aquatic life, chronic toxicity to aquatic life, and protection of wildlife from bioaccumulation in the food chain. For this evaluation, only the NYSDEC (1999) sediment criteria based on the protection of aquatic life are relevant because bioaccumulation-based criteria are not available for any of the constituents detected in sediment. In addition to the NYSDEC criteria, sediment screening values from the Ontario Ministry of Environment (1993) are used. These values are used for sediment constituents when NYSDEC criteria are not available. A comparison of the chemical concentrations detected in sediment to criteria is presented in Table 10. The results are shown on Figure 7 and described below.

Volatile Organic Compounds

Several volatile organic compounds were detected in the sediment samples, including 2-butanone, acetone, carbon disulfide, chloromethane, ethylbenzene, methylene chloride, toluene, and xylene. Each of these compounds was detected at extremely low concentrations, and detections were generally infrequent (except for acetone, which was detected in each of the samples, including the background samples). Of these compounds, sediment criteria are available only for ethylbenzene, toluene, and xylene. The detected concentrations of these constituents are well below both the acute toxicity and chronic toxicity criteria.

Semivolatile Organic Compounds

Several semivolatile organic compounds were detected in the sediment samples collected from the Rio Grande River. The detected concentrations for most constituents typically exceed the more conservative chronic toxicity sediment criteria, and some of the constituents [i.e., acenaphthylene, benzo(a)anthracene, chrysene, fluorene, and indeno(1,2,3-cd)pyrene] exceed the acute values. Similar exceedances are also frequently observed for the background samples. In almost all instances, the concentrations detected in samples collected adjacent to or immediately downstream of the Goshen Site are not significantly higher (i.e., less than 3X) than the concentrations detected in upstream (background) samples.

Inorganics

Several inorganic constituents were detected in the sediment samples. As shown in Table 10, some concentrations exceed the more conservative chronic toxicity sediment criteria. In addition, several of the constituents (i.e., copper, lead, mercury, silver, and zinc) exceed the acute toxicity sediment criteria. Similar to the results for the semivolatile organic compounds, in most instances the concentrations detected adjacent to or downstream of the site are comparable to results for upstream (background) samples. The only exception is a single detected concentration of silver [4.1 mg/kg in sample SS-2(DUP)]. However, this sample was a duplicate of sample SS-2, which has a detected concentration of only 0.82 mg/kg, which is below both the acute and chronic toxicity criteria.

<u>Cyanide</u>

Cyanide was detected in only one of the nine samples, with a concentration of 16.2 mg/kg detected in sediment sample SS-4. Sediment criteria are not available for cyanide.

<u>Summary</u>

Several volatile organic compounds, semivolatile organic compounds, inorganics, and cyanide were detected in sediment samples collected from locations adjacent to and immediately downstream of the Site. According to the criteria-specific analysis, several of the sediment samples collected from the Rio Grande near the site exhibit concentrations greater than conservative screening criteria. However, similar exceedances are observed in the upstream (background) samples. Similarly, the concentrations detected in the samples collected adjacent to and downstream of the site are not significantly greater than the concentrations reported for the background samples.

4. Site Overview/Conceptual Model

NYSEG conducted the SPI and the Task II RI at the Goshen Site in order to characterize the environmental conditions of its property and to provide a foundation for later work, scheduled to begin in 2007. The following discussion briefly summarizes BBL's understanding of these investigation findings, as presented in this document.

The physical setting of the Goshen Site is relatively simple. Surface water runoff follows the low site relief to the northwest into the Rio Grande, just north of the site. Groundwater, both shallow and deep, appears to follow this same pattern and is expected to discharge to the Rio Grande. Based on the available subsurface data, the stratigraphy can be divided into four generalized units: fill, a silt and sand unit, a sand and gravel unit, and a very dense till. Groundwater is present in each unit with a water table ranging from 8 to 15 feet below grade across the site. The till unit, identified at depths of 35 to 40 feet, is expected to act as a confining unit and form a lower boundary for the shallow groundwater flow system at the site.

The site investigations have shown that the extent of MGP-affected soil, sediment, and groundwater at the Goshen Site is relatively limited. These investigations have identified several areas with evidence of limited MPG impacts. In particular, subsurface soils from test borings in Gas Holders 1 and 2, and north of the former tar drip tank were observed to contain a coal tar-type NAPL. Laboratory analyses and field observations have documented lower levels of MGP-type impacts in the subsurface soils of the furnace area, and downgradient of Gas Holders 1 and 2 at boring TB-10.

Groundwater monitoring has shown that water quality at the site perimeter is largely unaffected by the MGP sources, with the exception of low levels of total and amenable cyanide in the shallow downgradient wells. It should also be noted that NAPL was observed no deeper than 20-feet below grade and does not appear to have penetrated the intervals of silt found in the silt and sand unit.

The results of the sediment samples collected in the Rio Grande exceed the conservative screening criteria used in this report. However, the concentrations and constituents detected are similar in upstream (background) samples and in samples adjacent to and downstream of the site. These sediment impacts therefore do not appear to be related to the former MGP.

Tables

BLASLAND, BOUCK & LEE, INC.

-.

. --

engineers & scientists

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

SUMMARY OF TASK II RI ANALYTICAL SAMPLES

					ß						29	ent				
				7	Includes MS/MSD	s	S	SI1	ide			Moisture Content	P	BTU content	Reactivity	Statistics Statistics
Sample Location	Depth (ft.bgs)	Field ID	Soll	Water	Inclu	VOCs	SVOCS	Metals	Cyanide	PCBs	100	Mois	TCLP	BTU	Reac	HAT
Test Pit Samples				eneri) Eneri			l	 	 	l						L ÇEQ
TP-1	6.0	GSVITP9301GG	x			x	х	x	x							
TP-2	4.5	GSVITP9302G4.5	x			x	x	x	x	T			x	x	x	x
TP-2 (DUP)	4.5	GSVITP9342G	x			x	x	x	x							
TP-3	2.0	GSVITP9303	x		x	x	x	x	x				x	x	x	x
Test Boring Samples	<u> </u>		5.665	5 () 5 ()	l Dec	- 	l	 	 }@		. 1917 -	- 			l kari	 1949
TB-5	17 to 19.5	GSVIB-9305	x	ľ.	<u> </u>	x	x	x	x	 		Ť	x	x	x	x
TB-6	10 to 12.5	GSVIB-9306C10-12.5	x			x	x	x	x							<u> </u>
TB-8	15.5 to 20	GSVIB-9308	x			x	x	x	x				x	x	x	x
TB-10	7.2 to 10	GSVIB-9310	x			x	x	x	x				x	x	x	x
Tanks & Cistom West	on Complex				ļ							<u> </u>		<u> </u>		L
Tanks & Cistern Wat Steel Tank (TP-6)	er Sampies	GSQICR9301	<u>anizeri</u>	x		x	x	x	x	, ««"§).	4. <u>89</u> .			18 <u>1</u> 1	<u>ki s</u>	<u> </u>
						-						-				
Cistern		GSSIPS9311B		x		x	x	x	x			\vdash				
Surface Soil Samples			1906-					4.3		0.08	2.3			÷.		-
SF-1		GSUUSF9301	x			x	x	x	х	x						
SF-2		GSUCSF9302	x			x	x	x	x	x						
SF-3		GSUCSF9303	x		x	x	x	x	x	x						
SF-4		GSUCSF9304	x			x	x	x	x	x						
SF-4 (DUP)		GSUCSF9314	x			x	x	x	x	x						
SF-5		GSUDSF9305	x			x	x	x	x	x						
			1.18.1	<u> </u>	ļ.,		Constant Constant	L					5,0 <u>,</u> v	ļ		
Sediment Samples	<u> </u>			148	2015		<u> </u>	<u>%: 30</u> I	932) 1			-2:60	na t			1.17
SS-1	0 to 1.2	GSTDSS9301	x			x	x	x	x		x	x				
SS-2	0 to 1.9	GSTDSS9302	x			x	x	x	x	<u> </u>	x	x				
SS-2 (DUP)	0 to 1.9	GSTDDU9302	x			x	x	x	x		x	x				
SS-3	0 to 1.7	GSTCSS9303	x	ļ	x	x	x	x	x		x	x	L			
SS-4	0 to 1.5	GSTCSS9304	x			x	x	x	x		x	x				
SS-5	0 to 1.5	GSTCSS9305	x			x	x	x	x		x	x				
SS-6	0 to 1.0	GSTCSS9306	x			x	x	x	x		x	x				
SS-7	0 to 1.7	GSTUSS9307	х			x	x	x	x		x	x				
SS-8	0 to 2.2	GSTUSS9308	x			x	x	x	x		x	x				
Groundwater Sample	s 10/18/93			L disi r												
MW93-1D		GSGUD-9301B1-93		x		x	x	x	x	x						
MW93-1S		GSGUSH9301B10-95		x		x	x	x	x	x						
MW93-2D		GSGDD-9302B10-93		x		x	x	x	x	x						
MW93-2S		GSGDSH9302B10-92		x		x	x	x	x	x						
MW93-3D		GSGDD-9303B10-93		x		x	x	x	x	x						
MW93-3D (DUP)		GSGXDUXX96B10-93		x		x	x	x	x	x						
MW93-3S		GSGSH9303B10-93		x	x	x	x	x	x	x		.				
Croundwater Samula	s1/24/94			L		ļ	L	29 2 3			L			L	Ļ	L
MW93-1D	9 14 47/3	GSGUD-9301B1-94	9.6 	x		T •		· · ·	v	: 83.'	1.19E) 	150	67 (. :	·
		GSGUD-9301B1-94 GSGUSH9301B1-94				X	X	x	X			-				
MW93-1S MW93-2D		GSGDD-9302B1-94		x x		x x	x x	x x	x x							
MW93-2S		GSGDSH9302B1-94		x	-	x	x	x	x							
MW93-3D		GSGDD-9303B1-94				x			x							
MW93-3D MW93-3D (DUP)				X			x	x								
. ,		GSGXDUXX96B1-94		X		X	X	X	X			<u> </u>				
MW93-3S		GSGSH-9303B1-94		x	X	x	x	x	x							

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

SUMMARY OF TASK II RI ANALYTICAL SAMPLES

Sample Location	Depth (ff.bgs)	Field ID	Soll	Water	Includes MS/MSD	VOCS	svocs	Metals	Cyanide	PCBs	TOC	Molsture Content	TICLP	BTU content	Reactivity	TPH Specification
Groundwater Sample	s 4/27/94					I 192				I			i d			
MW93-1D		GSGUD-9301B4-94	Γ	x		x	x	x	x							\square
MW93-1S		GSGUSH9301B4-94		x		x	x	x	x							
MW93-2D		GSGDD-9302B4-94		x		х	x	x	x					1		
MW93-2S		GSGDSH9302B4-94		x		x	x	x	x			T				
MW93-3D		GSGDD-9303B4-94		x		x	x	x	x							
MW93-3D (DUP)		GSGXDUXX96B4-94	1	x		x	x	x	x							
MW93-3S		GSGSH-9303B4-94		x	x	x	x	x	x							
Groundwater Sample	s 7/20/94					I	L	1 2023,	L /:		85	- 145				
MW93-1D		GSGUD-9301B7-94		x	Γ	x	x	x	x							
MW93-1S		GSGUSH9301B7-94		x		x	x	x	x							
MW93-2D		GSGDD-9302B7-94		x		x	x	x	x							
MW93-2S		GSGDSH9302B7-94		x		x	x	x	x							
MW93-3D		GSGDD-9303B7-94		x		x	x	x	x							
MW93-3D (DUP)		GSGXDUXX96B7-94		x		x	x	х	x							
MW93-3S		GSGSH-9303B7-94		x	x	x	х	x	x							

Analysis (short form)	Explanation	Analytical Method
VOCs	Volatile Organic Compounds	EPA Method 8240
SVOCs	Semivolatile Organic Compounds	EPA Method 8270
PCBs	Polychlorinated Biphenols	EPA Method 8080
TOC	Total Organic Carbon	EPA Lloyd Kahn Method
Moisture Content		ASP 91
Cyanide	Includes total and amenable	EPA Method 9010
Metals	Including: Cu, Ni, Sb, Fe, Se, As, Pb, Ag,	EPA Method 6010/7000
	Ba, Mn, V, Cd, Hg, Zn, Cr	
TCLP	Toxicity Characteristic Leaching Procedure	EPA Method 1311
BTU content	British Thermal Unit	Method A006 (USEPA, 1984)
Reactivity	Includes both reactive cyanide and sulfide	
ТРН	Total Petroleum Hydrocarbons	EPA Method 418.1

Abbreviations:

ft. bgs	feet below ground surface
DUP	blind duplicate sample
MS/MSD	matrix spike/matrix spike duplicate

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

SOURCE AREA INVESTIGATION ANALYTICAL DATA SEPTEMBER & OCTOBER 1993

					Te	Test Pit/Test Boring Soil Samples	ing Soil Sampl	8				Water	Water Samples
Sample ID	NYSDEC	T.P.1	TP-2	TP-1	TP-2DL	TP-3	TB-5	TB-6	TB-6DL	TB-8	TB-10	Steel	Basement
	Soil Cleanup	ţ		(400)	DUP/Dilution				dilution			Tank	Cistern
		(0)	(c.)	(4.2)	(C.+)	(1.1)	(C'61-/1)	(071-01)	(0.21-01)	(07-6"01)	(nr-**))		
VOLATILES (ppm)				1. J. S. C. S.		New WOMMEN						South States	
1,1,1-Trichloroethane	0.76	0.006 U	0.007 U	0.007 U	-	0.006 U	0.03	4 UD	•	0.7 U	0.006 U	0.005 U	0.005 U
1,1,2,2-Tetrachloroethane	0.6	0.006 U	0.007 U	0.007 U		0.006 U	0.03 UD	4 UD		0.7 U	0.006 U	0.005 U	0.005 U
1,1,2-Trichloroethane	NA	0.006 U	0.007 U	0.007 U	•	0.006 U	0.03 UD	4 UD		0.7 U	0.006 U	0.005 U	0.005 U
1,1- Dichloroethane	0.2	0.006 U	0.007 U	0.007 U		0.006 U	0.03 UD	4 UD		0.7 U	0.006 U	0.005 U	0.005 U
1,1- Dichloroethylene	0.4	0.006 U	0.007 U	0.007 U		0.006 U	0.03 UD	4 UD	.	0.7 U	0.006 U	0.005 U	0.005 U
1,2-Dichloroethane	0.1	0.006 U	0.007 U	0.007 U		0.006 U	0.03 UD	4 UD		0.7 U	0.006 U	0.00 <u>5 U</u>	0.005 U
1,2-Dichloroethene,Total	0.25*	0.006 U	0.007 U	0.007 U		0.006 U	0.03 UD	4 UD		0.7 U	0.006 U	0.005 U	0.005 U
1,2-Dichloropropane	NA	0.006 U	0.007 U	0.007 U		0.006 U	0.03 UD	4 MD	•	0.7 U	0.006 U	0.005 U	0.005 U
2-Butanone	0.3	0.012 U	0.014 U	0.014 U		0.013 U	0.06 UD	8.1 UD		1.4 U	0.013 U	0.01 U	0.01 U
2-Hexanone	NA	0.012 U	0.014 U	0.014 U		0.013 U	0.06 UD	8.1 UD		1.4 U	0.013 U	0.01 U	0.01 U
4-Methyl-2-Pentanone	1.0	0.012 U	0.014 U	0.014 U		0.013 U	0.06 UD	8.1 UD		1.4 U	0.013 U	0.01 U	0.01 U
Acetone	0.11	0.012 U	0.025 N	0.068 N	ſ	0.024 N	0.06 UD	8.1 UD		1.4 U	0.1 N	0.01 U	0.01 U
Benzene	0.06	0.006 U	0.007 U	0.007 U	•	0.006 U	0.35 UD	34 ND		4.4 N	0.075 N	0.005 U	0.005 U
Bromodichloromethane	NA	0.006 U	0.007 U	0.007 U	•	0.006 U	0.03 ND	4 UD		0.7 U	0.006 U	0.005 U	0.005 U
Bromoform	NA	0.006 U	0.007 U	0.007 U	,	0.006 U	0.03 UD	4 UD		0.7 U	0.006 U	0.005 U	0.005 U
Methyl Bromide (Bromomethane)	NA	0.012 U	0.014 U	0.014 U	ı	0.013 U	0.06 UD	8.1 UD		1.4 U	0.013 U	0.01 U	0.01 U
Carbon Disulfide	2.7	0.006 U	0.007 U	0.007 U		0.006 U	0.03 UD	4 UD		0.7 U	0.006 U	0.005 U	0.005 U
Carbon Tetrachloride	0.6	0.006 U	0.007 U	0.007 U	1	0.006 U	0.03 UD	4 UD	,	0.7 U	0.006 U	0.005 U	0.005 U
Chlorobenzene	1.7	0.006 U	0.007 U	0.007 U	•	0.006 U	0.03 UD	4 UD	•	0.7 U	0.006 U	0.005 U	0.005 U
Chloroethane	1.9	0.012 U	0.014 U	0.014 U		0.013 U	0.06 UD	8.1 UD		1.4 U	0.013 U	0.01 U	0.01 U
Chloroform	0.3	0.006 U	0.007 U	0.007 U	ı	0.006 U	0.03 UD	4 UD		0.7 U	0.006 U	0.005 U	0.005 U
Chloromethane	NA	0.012 U	0.014 U	0.014 U	•	0.013 U	0.06 UD	1.1 JD	-	1.4 U	0.013 U	0.01 U	0.002 J
Dibromochloromethane	N A	0.006 U	0.007 U	0.007 U	1	0.006 U	0.03 UD	4 UD	•	0.7 U	0.006 U	0.005 U	0.005 U
Ethylbenzene	5.5	0.006 U	0.007 U	0.007 U	•	0.006 U	an 6.0	29 ND		0.88 N	0.059 N	0.005 U	0.005 U
Methylene Chloride	1.0	0.006 U	0.007 U	0.007 U		0.006 U	0.03 ND	1.6 JD		1.2 N	0.003 J	0.005 U	0.005 U
Styrene	AN	0.006 U	0.007 U	0.007 U		0.006 U	0.093 UD	4 UD		3.4 N	0.006 U	0.005 U	0.005 U
Tetrachloroethene	1.4	0.006 U	0.007 U	0.007 U		0.006 U	0.03 ND	4 UD		0.7 U	0.000 U	0.005 U	0.005 U
Toluene	1.5	0.006 U	0.007 U	0.007 U		0.002 J	0.07 UD	62 ND		9.6 N	0.04 N	0.005 U	0.005 U
Trichloroethene	0.7	0.006 U	0.007 U	0.007 U		0.006 U	0.03 ND	4 UD		0.7 U	0.006 U	0.005 U	0.005 U
Vinyl Acetate	NA	0.012 U	0.014 U	0.014 U		0.013 U	0.06 UD	8.1 UD	•	1.4 U	0.013 U	0.01 U	0.01 U
Vinył Chloride	0.12	0.012 U	0.014 U	0.014 U	-	0.013 U	0.06 UD	8.1 UD		1.4 U	0.013 U	0.01 U	0.01 U
Total Xylenes	1.2	0.006 U	0.007 U	0.007 U		0.006 U	UU 8.1	100 ND		16 N	N 160.0	0.005 U	0.005 U
Cis-1,3-Dichloropropene	0.3**	0.006 U	0.007 U	0.007 U	-	0.006 U	0.03 ND	4 UD		0.7 U	0.006 U	0.005 U	0.005 U
Trans-1,3-Dichloropropene	0.3**	0.006 U	0.007 U	0.007 U	-	0.006 U	0.03 UD	4 UD	•	0.7 U	0.006 U	0.005 U	0.005 U
TOTAL VOLATILES DETECTED		DN	0.025	0.068	방송 : 발생들 : 아이는	0.026	3.213 UD	257.7		35.48	0.368	ND	0.002

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

SOURCE AREA INVESTIGATION ANALYTICAL DATA SEPTEMBER & OCTOBER 1993

Sample ID	A 100 10 10 10 10 10 10 10 10 10 10 10 10	and the second state of th			I es	t Pit/Lest Bo	ring Soil Samp	169				Water	Samples
	NYSDEC	TP-1	TP-2	TP-2	TP-2DL	TP-3	TB-5	TB-6	TB-6DL	TB-8	TB-1 0	Steel	Basement
	Soil Cleanup			(DUP)	DUP/Dilution				dilution			Tank	Cistern
Depth (feet bgs)	Objectives	ര്	(4.5)	(4.5)	(4.5)	(2.0)	(17-19.5)	(10-12.5)	(10-12.5)	(15.5-20)	(7.2-10)		
SEMIVOLATILES (ppm)				n Thailin an Sain San Saintean									
1,2,4-Trichlorobenzene	3.4	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD	11 UD	2.2 UD	1.9 UD	0.42 U	0.012 U	0.012 U
1,2-Dichlorobenzene	7.9	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD	11 UD	2.2 UD	1.9 UD	0.42 U	0.012 U	0.012 U
1,3-Dichlorobenzene	1.55	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD	11 UD	2.2 UD	1.9 UD	0.42 U	0.012 U	0.012 U
1,4 - Dichlorobenzene	8.5	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD	11 UD	2.2 UD	1.9 UD	0.42 U	0.012 U	0.012 U
Bis(2-Chloroisopropyl) Ether	NA	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD	11 UD	2.2 UD	1.9 UD	0.42 U	0.012 U	0.012 U
2,4,5-Trichlorophenol	0.1	4.9 UD	1.1 U	1.1 U	5.7 UD	1 U	5 UD	27 UD	5.4 UD	4.7 UD	10	0.029 U	0.029 U
2,4,6 Trichlorophenol	NA	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD	11 UD	2.2 UD	1.9 UD	0.42 U	0.012 U	0.012 U
2,4 -Dichlorophenol	0.4	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD	11 UD	2.2 UD	1.9 UD	0.42 U	0.012 U	0.012 U
2,4- Dimethylphenol	NA	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD	11 UD	2.2 UD	0.29 JD	0.07 J	0.012 U	0.012 U
2,4- Dinitrophenol	0.2	4.9 UD	1.1 U	1.1 U	5.7 UD	1 U	5 UD	27 UD	5.4 UD	4.7 UD	1 U	0.029 U	0.029 U
2,4- Dinitrotoluene	NA	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD	11 UD	2.2 UD	1.9 UD	0.42 U	0.012 U	0.012 U
2,6-Dinitrotoluene	1.0	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD	11 UD	2.2 UD	1.9 UD	0.42 U	0.012 U	0.012 U
2-Chloronaphthalene	NA	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD	11 UD	2.2 UD	1.9 UD	0.42 U	0.012 U	0.012 U
2-Chlorophenol	0.8	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD	11 UD	2.2 UD	1.9 UD	0.42 U	0.012 U	0.012 U
2-Methylnaphthalene	36.4	0.48 JD	0.057 J	0.063 J	2.3 UD	0.42 U	5.9 ND	10 JD	12 ND	6.3 ND	0.51 N	0.012 U	0.002 J
2-Methylphenol	0.1	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD	11 UD	0.22 JD	0.3 JD	0.42 U	0.012 U	0.012 U
2-Nitroaniline	0.43	4.9 UD	1.1 U	1.1 U	5.7 UD	1 U	5 UD	27 UD	5.4 UD	4.7 UD	1 U	0.029 U	0.029 U
2-Nitrophenol	0.33	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD	11 UD	2.2 UD	1.9 UD	0.42 U	0.012 U	0.012 U
3,3 Dichlorobenzidine	NA	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD	11 UD	2.2 UD	1.9 UD	0.42 U	0.012 U	0.012 U
3-Nitroaniline	0.5	4.9 UD	1.1 U	1.1 U	5.7 UD	1 U	5 UD	27 UD	5.4 UD	4.7 UD	1 U	0.029 U	0.029 U
2-Methyl-4.6-Dinitrophenol	NA	4.9 UD	1.1 U	1.1 U	5.7 UD	1 U	5 UD	27 UD	5.4 UD	4.7 UD	1 U	0.029 U	0.029 U
4-Bromophenyl Phenyl Ether	NA	2 UD	0.45 U	0.46 U	2,3 UD	0.42 U	2 UD	11 UD	2.2 UD	1.9 UD	0.42 U	0.012 U	0.012 U
4-Chloro-3-Methylphenol	0.24	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD	11 UD	2.2 UD	1.9 UD	0.42 U	0.012 U	0.012 U
4-Chloroaniline	0.22	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD	11 UD	2.2 UD	1.9 UD	0.42 U	0.012 U	0.012 U
4-Chlorophenyl Phenyl Ether	NA	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD	11 UD	2.2 UD	1.9 UD	0.42 U	0.012 U	0.012 U
4-Methylphenol	0.9	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD	11 UD	0.6 JD	0.44 JD	0.088 J	0.012 U	0.012 U
4-Nitroaniline	NA	4.9 UD	1.1 U	1.1 U	5.7 UD	1 U	5 UD	27 UD	5.4 UD	4.7 UD	1 U	0.029 U	0.029 U
4-Nitrophenol	0.1	4.9 UD	1.1 U	1.1 U	5.7 UD	10	5 UD	27 UD	5.4 UD	4.7 UD	1 U	0.012 U	0.012 U
Acenaphthene	90	0.23 JD	0.33 J	0.3 J	0.29 JD	0.42 U	1.6 JD	7.8 JD	8.3 ND	0.71 JD	1.1 N	0.012 U	0.012 U
Acenaphthylene	41	1.3 JD	0.46 N	0.4 J	0.33 JD	0.42 U	7.2 ND	7.7 JD	8.6 ND	4.3 ND	0.54 N	0.012 U	0.002 J
Anthracene	700	3.6 ND	1.8 N	2.5 N	2.8 ND	0.03 J	8.5 ND	11 ND	13 ND	4.4 ND	0.68 N	0.012 U	0.014 N
Benzo (A) Anthracene	3.0	11 ND	5.2 N	5.6 N	6 ND	0.092 J	6.6 ND	21 ND	24 ND	3.1 ND	0.59 N	0.012 U	0.016 N
Benzo (A) Pyrene	11	10 ND	4.6 N	5.1 N	5.6 ND	0.092 J	4,7 ND	21 ND	24 ND	2.2 ND	0.48 N	0.012 U	0.010 IX
Benzo (B) Fluoranthene	 [.]	12 ND	6 N	6.6 N	6.4 ND	0.083 J	4.2 ND	20 ND	23 ND	2 ND	0.31 J	0.012 U	0.011 0 0.013 N

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

SOURCE AREA INVESTIGATION ANALYTICAL DATA SEPTEMBER & OCTOBER 1993

(F) (F) <th></th> <th></th> <th></th> <th></th> <th></th> <th>Tesi</th> <th>t Pit/Test Bor</th> <th>Test Pit/Test Boring Soil Samples</th> <th>8</th> <th></th> <th></th> <th></th> <th>Water</th> <th>Water Samples</th>						Tesi	t Pit/Test Bor	Test Pit/Test Boring Soil Samples	8				Water	Water Samples
Vietnessing Solution Cutry Upblinding Cutry Upblinding Cutry Upblinding Cutry Cutry <t< th=""><th>Sample</th><th><u>Nori</u></th><th>TP-1</th><th>C-41</th><th>TP-2</th><th>TP-2DL</th><th>TP-3</th><th>TB-5</th><th>TB-6</th><th>TB-6DL</th><th>TB-8</th><th>TB-10</th><th>Steel</th><th>Basement</th></t<>	Sample	<u>Nori</u>	TP-1	C-41	TP-2	TP-2DL	TP-3	TB-5	TB-6	TB-6DL	TB-8	TB-10	Steel	Basement
(164.16) (6.5) (6.5) (6.5) (6.5) (6.5) (6.5) (7.2.10) (7.2.10) (7.2.10) 10 7.00 34.N 33.N 43.00 11 13.00					(DUP)	DUP/Dilution				dilution			Tank	Cistern
800 6.6 ND 2.6 N 3.3 N 4.2 ND 0.4 2 U 1.7 JD 1.7 ND 6.7 ND 0.7 ND <th0.7 nd<="" th=""> 0.7 ND</th0.7>	Depth (feet t	2.3	(0)	(4.5)	(4.5)	(4.5)	(2:0)	(17-19.5)	(10-12.5)	(10-12.5)	(15.5-20)	(1.2-10)		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Benzo (G,H,I,) Perylene	800	6.8 ND	2.6 N	3.3 N	4.2 ND	0.42 U	01.7 JD	12 ND	16 ND	0.78 JD	0.27 J	0.012 U	0.008 J
NA 49 ¹⁰ 11 ¹⁰ 11 ¹⁰ 51 ¹⁰	Benzo (K) Fluoranthene	I.I	DN 2	N 4'E	3.8 N	5.2 ND	0.062 J	3.6 ND	15 ND	DN 61	1.8 JD	0.33 J	0.012 U	0.012 N
NA 2 UD 045 U 04	Benzoic Acid	NA	4.9 UD	1.1 U	1.1 U	5.7 UD	1 U	s un	27 UD	5.4 UD	4.7 UD	1 U	0.029 U	0.029 U
	Benzyl Alcohol	NA	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD	an 11	2.2 UD	DU 6.1	0.42 U .	0.012 U	0.012 U
	Butyibenzyiphthalate	122	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD		2.2 UD	UN 6.1	0.42 N	0.012 U	0.012 U
	Carbazole	NA	1 JD	0.78 N	0.85 N	0.85 JD	0.42 U	2 ND	5.8 JD	6.6 ND	1.6 JD	0.27 J	0.012 U	0.008 J
81 0.41 0.431 0.431 0.431 0.431 0.431 0.431 0.012 0.321 0.031 0.012 0.031 0.012 0.031 0.012 0.031 0.012 0.031 0.012 0.031 0.012 0.031 0.012 0.031 0.012 $0.$	Chrysene	0.4	UN 6. 6	5.4 N	5.6 N	6.1 ND	0.087 J	GN 1.3	25 ND	25 ND	2.6 ND	0.6 N	0.012 U	0.022 N
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Di-N-Butylphthalate	8.1	0.74 JD	0.21 J	0.35 J	0.32 JD	0.38 J	0.51 JD	11 UD	0.58 JD	0.7 JD	6.6 N	0.012 U	0.012 U
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Di-N-Octylphthalate	120	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD	11 UD	2.2 UD	UD 6.1	0.42 U	0.012 U	0.012 U
6.2 0.96 0.75 0.35 0.32 0.42 0.32 0.42 0.012	Dibenzo (A,H) Anthracene	165,000	2.6 ND	0.83 N	0.96 N	2.3 UD	0.42 U	0.55 JD	4.8 JD	4.6 ND	0.4 JD	0.078 J	0.012 U	0.012 U
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dibenzofuran	6.2	0.96 JD	0.75 N	N £6.0	0.94 JD	0.42 U	5.9 ND	5.9 JD	6.4 ND	3.2 ND	0.43 N	0.012 U	0.004 J
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Diethylphthalate	7.1	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD	11 UD	2.2 UD	UU 6.1	0.42 U	0.012 U	0.012 U
	Dimethylphthalate	2.0	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD		2.2 UD	1.9 UD	0.42 U	0.012 U	0.012 U
350 1 JD 1.5 N 1.7 N 1.8 JD 0.42 U 7.5 ND 12 ND 3.8 ND 0.88 N 0.012 U 0 14 2 UD 0.45 U 0.45 U 2.3 UD 0.42 U 2.1 UD 0.42 U 0.012 U	Fluoranthene	1,900	Z0 ND	N 11	N II	IS ND	0.2 J	14 ND	63 ND	57 ND	QN 6'9	2.6 N	0.012 U	0.057 N
	Fluorene	350	ar i	1.5 N	1.7 N	1.8 JD	0.42 U	7.5 ND	12 ND	13 ND	3.8 ND	0.88 N	0.012 U	0.003 J
NA 2 UD 0.45 U 0.46 U 2.3 UD 0.42 U 2.0 UD 1.9 UD 0.42 U 0.012 U	Hexachlorobenzene	1.4	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD		2.2 UD	1.9 UD	0.42 U	0.012 U	0.012 U
NA 2 UD 0.45 U 0.45 U 0.42 U 2.2 UD 19 UD 0.42 U 0.012 U 0 NA 2 UD 0.45 U 0.46 U 2.3 UD 0.42 U 2.0 D 0.42 U 0.012 U 0 3.2 9 3 ND 3.9 N 0.45 U 0.46 U 2.3 UD 0.42 U 2.0 D 0.42 U 0.012 U 0 * 1.3 1.0 0.45 U 0.46 U 2.3 UD 0.42 U 2.0 D 0.42 U 0.012 U 0 0 0 0 0 1 0.1 D 2.2 UD 0.42 U 0.012 U 0	Hexachloro-1,3-Butadiene	NA	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD		2.2 UD	QUD 6.1	0.42 U	0.012 U	0.012 U
NA 2 UD 0.45 U 0.46 U 2.3 UD 0.42 U 2.3 UD 11 UD 2.2 UD 19 UD 0.42 U 0.012 U 0 32 93 ND 359 N 0.46 U 2.3 UD 0.42 U 2.7 ND 15 ND 2.0 D 0.42 U 0.012 U 0 44 2 UD 0.45 U 0.46 U 2.3 UD 0.42 U 2.7 ND 11 UD 2.2 UD 19 UD 0.42 U 0.012 U 0 6 NA 2 UD 0.45 U 2.3 UD 0.42 U 2.7 ND 11 UD 2.2 UD 19 UD 0.42 U 0.012 U 0 <	Hexachlorocyclopentadiene	NA	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD		2.2 UD	du 6.1	0.42 U	0.012 U	0.012 U
3.2 9.3 ND 3.9 ND 3.0 ND 3.7 ND 1.5 ND 1.2 JD 0.32 J 0.012 U 0.012	Hexachloroethane	NA	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD	11 UD	2.2 UD	UD 6.1	0.42 U	0.012 U	0.012 U
4.4 2.0 mm 0.45 mm 0.46 mm 2.3 mm 0.42 mm 11 mm 2.2 mm 1.9 mm 0.42 mm 0.012 mm 0 e NA 2 up 0.45 mm 0.46 mm 2.3 up 0.42 mm 2.1 mm 1.9 up 0.42 mm 0.012 mm 0 i NA 2 up 0.45 u 0.46 u 2.3 up 0.42 u 2.0 mm 1.9 up 0.42 u 0.012 u 0 i NA 2 up 0.45 u 0.46 u 2.3 up 0.42 u 2.1 up 2.2 up 1.9 up 0.42 u 0.012 u 0 13 13 up 0.36 up 0.45 u 0.46 u 2.3 up 0.42 u 2.1 up 2.2 up 1.9 up 0.42 u 0.012 u 0 10 10 0.45 u 0.46 u 2.3 up 0.42 u 2.7 up 2.7 up 0.7 up 0.7 up 0.1 u	Indeno (1,2,3-CD) Pyrene	3.2	DN £.6	3.9 N	4 N	5 ND	0.42 U	2.7 ND	15 ND	19 ND	1.2 JD	0.32 J	0.012 U	0.01 J
(a) (b) (c) (c) <th>Isophorone</th> <th>4.4</th> <th>2 UD</th> <th>0.45 U</th> <th>0.46 U</th> <th>2.3 UD</th> <th>0.42 U</th> <th>2 UD</th> <th></th> <th>2.2 UD</th> <th>1.9 UD</th> <th>0.42 U</th> <th>0.012 U</th> <th>0.012 U</th>	Isophorone	4.4	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD		2.2 UD	1.9 UD	0.42 U	0.012 U	0.012 U
NA 2 UD 0.45 U 0.46 U 2.3 UD 0.42 U 0.19 UD 0.42 U 0.012 U 0 13 1.3 JD 0.36 J 0.37 J 0.38 JD 0.059 J 29 ND 86 ND 83 ND .56 ND 2.7 N 0.012 U 0 13 1.3 JD 0.45 U 0.46 U 2.3 UD 0.42 U 2.7 ND .56 ND .56 ND .56 ND .57 ND 0.012 U 0 0 0.012 U 0 0 0.012 U 0 0 0 0 0 0 0 .51 UD 1.1 UD 2.7 UD 2.7 UD 2.7 UD 0.47 UD 0.012 U 0 <	N-Nitroso-Dí-N-Propylamine	NA	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD	11 UD	2.2 UD	1.9 UD	0.42 U	0.012 U	0.012 U
13 1.3 JD 0.36 J 0.37 J 0.38 JD 0.059 J 29 ND 86 ND 83 ND 36 ND 2.7 N 0.012 U 0 0.2 2 UD 0.45 U 0.46 U 2.3 UD 0.42 U 2.1 UD 0.42 U 0.012 U 0 1.0 4.9 UD 1.1 U 1.1 U 5.1 UD 1.0 5.4 UD 4.7 UD 1.1 U 0.029 U 0 220 12 ND 2.5 N 1.8 N 1.9 JD 0.092 J 2.1 ND 5.4 UD 4.7 UD 1.0 0.012 U 0 220 12 ND 2.5 ND 1.8 N 1.9 JD 0.092 J 2.1 ND 69 ND 65 ND 1.0 ND 2.9 N 0.012 U 0 26GCMS 0.03 2 UD 0.45 U 2.3 UD 0.42 U 2.1 UD 2.2 UD 1.9 UD 0.42 U 0.012 U 0 0 0.012 U 0 0 0.1 U 0.012 U 0 0.1 U	N-Nitrosodiphenylamine	NA	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD		2.2 UD	QUD 6.1	0.42 U	0.012 U	0.012 U
0.2 2 UD 0.45 U 0.46 U 2.3 UD 0.42 U 0.41 UD 0.42 U 0.012 U 0 1.0 4.9 UD 1.1 U 1.1 U 1.1 U 5.7 UD 5.4 UD 4.7 UD 1.0 0.029 U 0 220 12 ND 2.5 N 1.8 N 1.9 UD 0.029 U 0.029 U 0 200 12 ND 2.5 N 1.8 N 1.9 UD 0.02 U 1.0 ND 2.9 N 0.012 U 0 201 0.03 2 UD 0.45 U 0.41 U 2.1 UD 5.4 UD 4.7 UD 1.0 ND 2.9 N 0.012 U 0 200 0.3 2 UD 0.45 U 0.46 U 2.3 UD 0.42 U 2.1 UD 2.2 UD 1.9 UD 0.42 U 0.012 U 0 665 20 ND 11 N 11 N 14 ND 0.15 J 12 ND 5.3 ND 7.4 N 0.012 U 0 0.12 U 0 0 0 2.4 N 0.012 U 0 0 0 0 0 0 0 0 0 0 0 0 0	Naphthalene	13	1.3 JD	0.36 J	0.37 J	0.38 JD	0.059 J	29 ND	86 ND	83 ND	36 ND	2.7 N	0.012 U	0.006 J
1.0 4.9 UD 1.1 U 1.1 U 5.7 UD 5.4 UD 4.7 UD 1.0 0.029 U 0 220 12 ND 2.5 N 1.8 N 1.9 JD 0.092 J 21 ND 65 ND 65 ND 10 ND 2.9 N 0.012 U 0 XGCMS 0.03 2 UD 0.45 U 0.46 U 2.3 UD 0.45 U 2.1 ND 5.3 ND 1.9 UD 0.42 U 0.012 U 0 665 20 ND 11 N 11 N 14 ND 0.15 J 12 ND 5.3 ND 7.9 ND 0.42 U 0.012 U 0 665 20 ND 11 N 11 N 14 ND 0.15 J 12 ND 5.3 ND 7.9 ND 0.42 U 0.012 U 0 66 NA 2 UD 0.45 U 0.46 U 2.3 UD 0.42 U 0.012 U 0 0 4.4 N 0.012 U 0 0 1.9 UD 0.42 U 0.012 U 0 1.9 UD 0.42 U 0.012 U 0 1.9 UD 0.42 U 0.012 U 0 1.9 U 0 1.9 UD 0.42 U 0.012 U 0 1.9 U	Nitrobenzene	0.2	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD		2.2 UD	du 6.1	0.42 U	0.012 U	0.012 U
220 12 ND 2.5 N 1.8 N 1.9 JD 6.092 J 21 ND 65 ND 10 ND 2.9 N 0.012 U 0 XGCMS 0.03 2 UD 0.45 U 0.46 U 2.3 UD 0.42 U 2.1 ND 2.2 UD 1.9 UD 0.42 U 0.012 U 0 665 20 ND 11 N 11 N 14 ND 0.15 J 12 ND 5.3 ND 70 ND 5.3 ND 0.42 U 0.012 U 0 665 20 ND 11 N 11 N 14 ND 0.15 J 12 ND 5.3 ND 70 ND 5.3 ND 2.4 N 0.012 U 0 1e NA 2 UD 0.45 U 0.46 U 2.3 UD 0.42 U 2.1 UD 0.42 U 0.012 U 0 0 4.1 N 10 4.1 UD 2.2 UD 1.9 UD 0.42 U 0.012 U 0 4.4 N 0.012 U <th>Pentachlorophenol</th> <th>1.0</th> <th>4.9 UD</th> <th>1.1 U</th> <th>U 1.1</th> <th>5.7 UD</th> <th>1 U</th> <th>s UD</th> <th>27 UD</th> <th>5.4 UD</th> <th>4.7 UD</th> <th>1 U</th> <th>0.029 U</th> <th>0.029 U</th>	Pentachlorophenol	1.0	4.9 UD	1.1 U	U 1.1	5.7 UD	1 U	s UD	27 UD	5.4 UD	4.7 UD	1 U	0.029 U	0.029 U
XGCMS 0.03 2 UD 0.45 U 2.3 UD 0.42 U 2.4 UD 0.012 U 0.012 U 665 20 ND 11 N 11 N 14 ND 0.15 J 12 ND 53 ND 70 ND 5.3 ND 2.4 N 0.012 U 0.012 U 1e NA 2 UD 0.45 U 0.46 U 2.3 UD 0.42 U 2.0 UD 11 UD 2.2 UD 1.9 UD 0.42 U 0.012 U 1e NA 2 UD 0.45 U 0.46 U 2.3 UD 0.42 U 2 UD 11 UD 2.2 UD 1.9 UD 0.42 U 0.012 U 1e NA 2 UD 0.73 J 0.42 U 2.0 UD 11 UD 2.2 UD 1.9 UD 0.42 U 0.012 U 1e NA 2 UD 0.73 J 0.13 J 2.3 UD 0.49 JD 1.1 UD 2.2 UD 0.45 U 0.012 U 0.012 U 1e NA 2 UD 0.73 J 0.13 JD 0.14 JD 0.26 JD 0.48 JD 0.48 N 0.012 U 0.012 U 1e NA 2.1 UD 0.13 JD 0.11 UD 0.26 JD 0.48 N </th <th>Phenanthrene</th> <td></td> <td>12 ND</td> <td>2.5 N</td> <td>1.8 N</td> <td>Uf 6.1</td> <td>0.092 J</td> <td>21 ND</td> <td>DN 69</td> <td>65 ND</td> <td>UN 01</td> <td>2.9 N</td> <td>0.012 U</td> <td>0.04 N</td>	Phenanthrene		12 ND	2.5 N	1.8 N	Uf 6.1	0.092 J	21 ND	DN 69	65 ND	UN 01	2.9 N	0.012 U	0.04 N
665 20 ND 11 N 11 N 14 ND 0.15 J 12 ND 53 ND 70 ND 5.3 ND 2.4 N 0.012 U 1e NA 2 UD 0.45 U 0.46 U 2.3 UD 0.42 U 2 UD 11 UD 2.2 UD 1.9 UD 0.42 U 0.012 U 1 NA 2 UD 0.45 U 0.46 U 2.3 UD 0.42 U 2 UD 1.9 UD 0.42 U 0.012 U 1 VA 2 UD 0.45 U 2.3 UD 0.42 U 2.0 UD 1.9 UD 0.42 U 0.012 U 435 2 UD 0.67 J 0.13 J 2.3 UD 0.49 JD 1.1 UD 2.2 UD 1.9 UD 0.42 U 0.012 U 435 2 UD 0.072 J 0.13 J 2.3 UD 0.19 JD 11 UD 0.26 JD 0.8 N 0.012 U 50 DETECTED 65.749 66.353 77.11 1.318 144.45 455 455 0.8 OT 2.5066 ND	Phenol, Acid Extract. By GC/GCM:		2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD		2.2 UD	du 6.1	0.42 U	0.012 U	0.012 U
Inc NA 2 UD 0.45 U 0.46 U 2.3 UD 0.42 U 2.0 UD 1.9 UD 0.42 U 0.012 U NA 2 UD 0.45 U 0.46 U 2.3 UD 0.42 U 2 UD 1.9 UD 0.42 U 0.012 U 435 2 UD 0.67 J 0.41 J 2.3 UD 0.42 U 2 UD 1.1 UD 2.2 UD 1.9 UD 0.42 U 0.012 U 435 2 UD 0.72 J 0.13 J 2.3 UD 0.42 U 0.19 JD 11 UD 2.5 UD 0.65 JD 0.81 U 0.012 U SUPTECTED 66/355 7.71H 0.13 IS 144.45 465 98.97 25.966 ND 70	Pyrene	665	20 ND	N 11	II N	14 ND	0.15 J	12 ND	53 ND	70 ND	5.3 ND	2.4 N	0.012 U	0.043 N
NA 2 UD 0.45 U 0.46 U 2.3 UD 0.42 U 2.2 UD 1.9 UD 0.42 U 0.012 U 435 2 UD 0.072 J 0.13 J 2.3 UD 0.42 U 0.19 JD 11 UD 0.36 JD 0.65 JD 0.81 V 0.012 U SDETECTED 62.749 66.353 7.711 0.1318 144.45 465 98.97 25.966 ND ND ND 1 ND 1 1 0.11 0.11 0.11 0.11 1 0.11	Bis (2-Chloroethoxy) Methane	NA	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD	GU 11	2.2 UD	du 6.1	0.42 U	0.012 U	0.012 U
435 2 UD 0.072 J 0.13 J 2.3 UD 0.42 U 0.19 JD 11 UD 0.36 JD 0.65 JD 0.65 JD 0.612 U 0.012 U SDETECTED 7492 26.9235 1 7711 01218 144.45 1455 1455 1455 25.956 28.97 25.966 ND 1	Bis (2-Chloroethyl) Ether	NA	2 UD	0.45 U	0.46 U	2.3 UD	0.42 U	2 UD	UD 11	2.2 UD	1.9 UD	0.42 U	0.012 U	0.012 U
131.21 62.249 66353 1 71.11 1318 144.45 465 1499.26 98.97 25.966 1 ND 1	Bis (2-Ethylhexyl) Phthalate			0.072 J	0.13 J	2.3 UD	0.42 U	01 01 0D	an II	0.36 JD	0.65 JD	0.8 N	0.012 U	0.004 J
	TOTAL SEMIVOLATILES DET	ECTED	131.21	62.749	66.353	11.17	1.318	144.45	465	499.26	98.97	25.966	ND	0.299

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

SOURCE AREA INVESTIGATION ANALYTICAL DATA SEPTEMBER & OCTOBER 1993

	6 - 18 - Augusta				Tes	t Pit/Test Bor	ing Soil Samp	oles	en arren ezer			Water	Samples
Sample ID Depth (feet bgs)	NYSDEC Soil Cleanup Objectives	TP-1 (6)	TP-2 (4.5)	TP-2 (DUP) (4.5)	TP-2DL DUP/Dilution (4.5)	TP-3 (2.0)	TB-5 (17-19.5)	TB-6 (10-12.5)	TB-6DL dilution (10-12.5)	TB-8 (15.5-20)	TB-10 (7,2-10)	Steel Tank	Basement Cistern
INORGANICS (ppm)						Constant St						an long a sing a	
Aluminum, Total	SB	12600 N	19000 N	20500 N	-	13100 N	8800 N	12100 N		11000 N	21000 N	0.253 N	4.01 N
Antimony, Total	SB	0.56 U	0.61 U	0.67 U	-	0.55 U	0.52 U	0.62 U	-	0.54 U	0.59 U	0.005 U	0.005 U
Arsenic, Total	7.5 or SB	16 N .	7.9 N	10.6 N	-	7.9 N	6.4 N	8.3 N	-	4.4 N	11.2 N	0.002 U	0.0121 N
Barium, Total	300 or SB	70.9 N	106 N	111 N	-	60.6 N	28.3 N	76.1 N	-	52.9 N	147 N	0.041 J	0.049 J
Cadmium, Total	10	0.89 N	0.49 U	0.54 U	-	0.44 U	0.42 U	0.5 U	-	0.43 U	0.47 U	0.004 U	0.004 U
Chromium, Total	50	20.8 N	30.8 N	29.5 N	-	19.6 N	14 N	19 N	-	17.8 N	33.6 N	0.004 U	0.019 N
Copper, Total	25 or SB	94,1 N	31.7 N	28.8 N	-	30,6 N	21.6 N	31 N	-	25,4 N	35,8 N	0.004 U	0.021 J
Iron, Total	2,000 or SB	27700 N	28600 N	27600 N	-	26600 N	19300 N	34200 N	-	22700 N	48600 N	1.9 N	11.1 N
Lead, Total	400	178 N	72 N	122 N		19.9 N	11.5 N	218 N	•	7.9 N	23.1 N	0.0049 N	0.0488 N
Manganese, Total	SB	891 N	286 N	261 N		543 N	466 N	798 N	-	612 N	329 N	0.891 N	0.352 N
Mercury, Total	0.1	0.18 N	0.07 J	0.07 J	-	0.21 N	0.06 U	0.19 N	-	0.06 U	0.06 J	0.0001 U	0.0378 N
Nickel, Total	13 or SB	27 N	30.2 N	30.6 N		26.7 N	17.8 N	24.2 N	-	23.6 N	44.4 N	0.008 U	0.014 J
Selenium, Total	2 or SB	0.09 U	0.14 U	0.13 U	-	0.11 U	0.11 U	0.12 U	-	0.1 U	0.12 U	0.001 U	0.001 U
Silver, Total	SB	0.78 U	0.86 U	0.94 U		0.78 U	0.73 U	0.87 U	-	0.75 U	0.83 U	0.007 U	0.007 U
Total Vanadium	150 or SB	22 N	35.8 N	36.2 N	-	20.3 N	13.7 N	20.1 N	-	18.5 N	31.4 N	0.006 U	0.019 J
Zinc, Total	20 or SB	287 N	89.9 N	92.3 N	. 1	77 N	48.8 N	95.8 N	-	65.3 N	93.6 N	0.015 J	0.184 N
Cyanide, Total	***	72.6 N	39.3 N	125 N	- 1	2.7 U	2.3 U	6.7 N	-	1.9 U	1.2 U	0.01 U	1.45 N
Cyanide, Amenable	***	10 U	10 U	2.5 U	-	-	-	10 U	-	-	-	1.	0.01 U
Reactive Cyanide	***	-	100 U	-	-	100 U	100 U	-	-	100 U	100 U		-
Reactive Sulfide	NA	-	100 U	-	tt	100 U	100 U	-	-	100 U	100 U	<u> </u>	1 -
Total Petroleum Hydrocarbons	NA	-	70 U		<u> </u>	60 U	270 U	-		270 U	120 N		-
Heat Content (BTU/LB)	NA	-	333 N	- 1	-	100 U	126 N	-	-	100 U	73.5 N	-	-

Notes:

Except as notes, all values expressed as as parts per million (ppm), equivalent to milligrams per kilogram (mg/Kg) for soil, milligrams per liter (mg/L) for water.

NYSDEC TAGMs Soil Cleanup Objectives, revised 4/95.

Shaded values exceed criteria.

Criteria are not valid for water samples, and therefore are not used for comparision.

SB - Site background.

bgs - below ground surface.

NA - Not Available.

U - Undetected. The value listed is the detection limit.

The detection limit is defined for organic compounds as the quantitation limit.

The inorganic detection limit is the instrument detection limit.

J - Detected at an estimated concentration below the minimum quantitation limit.

I - Possible matrix interference.

N - Detected concentrations.

D - Indicates the sample was diluted to quantify the concentration.

B - Indicates the compound was found in the blank.

• - Value is for cis- isomer.

•• - Value is for total of both cis- and trans- isomers.

*** - Some cyanide complexes can be very stable while others are pH dependent and can be unstable. Site-specific form(s) of cyanide should be taken into consideration.

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

WASTE CHARACTERIZATION DATA SEPTEMBER & OCTOBER 1993

	RCRA TCLP		Subsurfa	ce Soil Gra	b Samples		Dra	m Compos	ite Soil San	ples
Sample ID	Regulatory	TP-2	TP-3	TB-5	TB-8	TB-10	MW-3S	MW-2D	MW-1D	TB-7
Depth (feet BGS)	Level	(4.5)	(2.0)	(17-19.5)	(5.5-20)	(7.2-10)				
VOLATILE TCLP (ppm)										
1,1-Dichloroethylene	0.7	0.005 U	0.005 U	0.005 U	0.008 UD	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
1,2-Dichloroethane	0.5	0.005 U	0.005 U	0.005 U	0.008 UD	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Methylethylketone	200	0.01 U	0.01 U	0.01 U	0.017 UD	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Benzene	0.5	0.005 U	0.005 U	0.17 N	0.24 ND	0.005 U	0.005 U	0.005 U	0.005 U	0.18 N
Carbon Tetrachloride	0.5	0.005 U	0.005 U	0.005 U	0.008 UD	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Chlorobenzene	100	0.005 U	0.005 U	0.005 U	0.008 UD	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Chloroform	6.0	0.005 U	0.005 U	0.005 U	0.008 UD	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Tetrachloroethene	0.7	0.005 U	0.005 U	0.005 U	0.008 UD	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Trichloroethene	0.5	0.005 U	0.005 U	0.005 U	0.008 UD	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Vinyl Chloride	0.2	0.01 U	0.01 U	0.01 U	0.017 UD	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
				T: 1886 387,087, 75	- 272 C. T. D. C. 48					
SEMIVOLATILES TCLP (ppm) 1,4-Dichlorobenzene TCLP/Base Neutrals	7.5	0.01 U	0.012 U	0.011 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
	400	0.01 U	0.012 U	0.011 U	0.01 U 0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
2,4,5-Trichlorophenol TCLP/Acid Extraction										
2,4,6-Trichlorophenol TCLP/Acid Extraction	2.0	0.01 U	0.012 U	0.011 U	0.01 U	0.01 U	0.01 U 0.01 U	0.01 U	0.01 U	0.01 U
2,4-Dinitrotoluene TCLP/Base Neutrals	0.13	0.01 U	0.012 U	0.011 U	0.01 U	0.01 U		0.01 U	0.01 U	0.01 U
O-Cresol TCLP/Acid Extraction	200	0.01 U	0.012 U	0.011 U	0.015 N	0.002 J	0.01 U	0.01 U	0.01 U	0.042 N
M,P Cresol TCLP/Acid Extraction	200	0.01 U	0.012 U	0.011 U	0.022 N	0.006 J	0.004 J	0.01 U	0.01 U	0.017 N
Hexachlorobenzene TCLP/Base Neutrals	0.13	0.01 U	0.012 U	0.011 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Hexachloro-1,3-Butadiene TCLP/Base Neutral	0.5	0.01 U	0.012 U	0.011 U	• 0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Hexachloroethane TCLP/Base Neutral	3.0	0.1 U	0.12 U	0.11 U	0.096 U	0.1 U	0.1 U	0.1 U	0.096 U	0.01 U
Nitrobenzene TCLP/Base Neutral	2.0	0.01 U	0.012 U	0.011 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Pentachlorophenol TCLP/Acid Extraction	100.0	0.005 U	0.006 U	0.006 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Pyridine TCLP/Base Neutral	5.0	0.1 U	0.12 U	0.11 U	0.096 U	0.1 U	0.1 U	0.1 U	0.096 U	0.01 U
HERBICIDE TCLP (ppm)								145-7223 146-7223	ATA 197	
2,4,5-TP (Silvex)	1.0	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
2,4-D	10	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
PESTICIDE TCLP (ppm)									Care of the state of the state	
	0.03	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Chlordane	0.03	5E-04 U			5E-04 U	5E-04 U			5E-04 U	5E-04 U
Endrin		5E-04 U	5E-04 U	5E-04 U			5E-04 U	5E-04 U		
Heptachlor	0.008		5E-04 U	1E-04 JP 5E-04 U	5E-04 U	3E-05 JP	5E-04 U	5E-04 U 5E-04 U	5E-04 U	5E-04 U
Heptachlor Epoxide	0.008	5E-04 U	5E-04 U	0.1 U	5E-04 U	5E-04 U	5E-04 U	0.1 U	5E-04 U 0.1 U	5E-04 U 0.1 U
Methoxychlor	10	0.1 U	0.1 U	0.1 U 0.01 U	0.1 U 0.01 U	0.1 U 0.01 U	0.1 U 0.01 U	0.1 U 0.01 U	0.1 U 0.01 U	0.1 U
Toxaphene	0.5	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Lindane	0.4	0.01 0	0.01 0	0.01 0	0.01 0	0.01 0	0.010	0.01 0	0.01 0	0.01 0
INORGANICS TELP (ppm)										
Arsenic	5.0	0.1 U	0.1 U	-0.1 U	0.1 U	0.1 U	0.2 U	0.2 U	0.2 U	0.2 U
Barium	100.0	0.161 J	0.678 J	0.474 J	0.65 J	0.543 J	0.38 J	0.69 J	0.37 J	0.62 J
Cadmium	1.0	0.004 J	0.004 U	0.004 U	0.004 U	0.005 J	0.005 U	0.05 U	0.005 J	0.006 N
Chromium	5.0	0.004 U	0.004 U	0.004 U	0.004 U	0.004 J	0.01 U	0.01 U	0.015 N	0.014 N
Lead	5.0	0.182 J	0.052 J	0.038 U	0.038 U	0.0 <mark>38</mark> U	0.09 U	0.09 U	0.09 U	0.09 U
Mercury	0.2	1E-04 U	1E-04 U	1E-04 U	1E-04 U	1E-04 U	2E-04 U	2E-04 U	2E-04 U	2E-04 U
increally										
Selenium	1.0	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.1 U	0.1 U	0.1 U	0.1 U

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

WASTE CHARACTERIZATION DATA SEPTEMBER & OCTOBER 1993

	RCRA TCLP		Subsurfa	ce Soil Gra	b Samples		Dru	m Compos	ite Soil San	ples
Sample ID Depth (feet BGS)		TP-2 (4.5)	TP-3 (2.0)	TB-5 (17-19.5)	TB-8 (5.5-20)	TB-10 (7.2-10)		MW-2D	MW-1D	- TB-7
Other Analyses										
Reactive Cyanide (ppm)	NA	100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U
Reactive Sulfide (ppm)	NA	100 U	-100 U	100 U	100 U	100 U	100 U	100 U	159 N	100 U
Total Petroleum Hydrocarbons (ppm)	NA		60 U	270 U	270 U	120 N	250 U	60 U	70 U	65 J
BTU Content (BTU/LB)	NA	333 N	100 U	126 N	100 U	73.5 N	162 N	DNB U	20 N	87 N

Notes:

Except as noted, all values expressed as parts per million (ppm), equivalent to milligrams per liter (mg/L).

RCRA TCLP Regulatory Level - revised 11/91.

Shaded values exceed criteria.

SB - Site background.

NA - Not Available.

U - Undetected. The value listed is the detection limit.

The detection limit is defined for organic compounds as the quantitation limit.

The inorganic detection limit is the instrument detection limit.

J - Detected at an estimated concentration below the minimum detection limit.

N - Detected concentration.

D - Indicates the sample was diluted to quantify the concentration.

E - Indicates the compound was found in the blank.

* - Value is for cis- isomer.

** - Value is for total of both cis- and trans- isomers.

*** - Some cyanide complexes can be very stable while others are pH dependent and can be unstable. Site-specific form(s)

of Cyanide should be taken into consideration.

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

SURFACE SOIL ANALYTICAL DATA OCTOBER 19, 1993

FIELD LOCATION:	NYSDEC Soft	SF-01	SF-02	SF-03	SF-04	SF-04	SF-05
	Cleannp Objectives	Background				Dup.	
1,1,1-Trichloroethane	0.76	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.006 U
1,1,2,2-Tetrachloroethane	0.6	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.006 U
1,1,2-Trichloroethane	NA	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.006 U
1,1- Dichloroethane	0.2	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.006 U
1,1- Dichloroethylene	0.4	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.006 U
1,2-Dichloroethane	0.1	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.006 U
1,2-Dichloroethene,Total	0.25*	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.006 U
1,2-Dichloropropane	NA	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.006 U
2-Butanone	0.3	0.01 U	0.01 U	0.011 U	0.011 U	0.011 U	0.012 U
2-Hexanone	NA	0.01 U	0.01 U	0.011 U	0.011 U	0.011 U	0.012 U
4-Methyl-2-Pentanone	1.0	0.01 U	0.01 U	0.011 U	0.011 U	0.011 U	0.012 U
Acetone	0.11	0.018 B	0.018 B	0.019 B	0.021 B	0.019 B	0.02 B
Benzene	0.06	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.006 U
Bromodichloromethane	NA	0.005 U		0.005 U	0.005 U	0.005 U	0.006 U
Bromoform	NA	0.005 U		0.005 U	0.005 U	0.005 U	0.006 U
Methyl Bromide (Bromomethane)	9 7 NA	0.01 U	0.01 U	0.011 U	0.011	0.011 U	0.012 U
Carbon Tetrachloride	0.6	0.005 U				0.005 U	0.006 U
Chlorobenzene	1.7	0.005 U				0.005 U	0.006 U
Chloroethane	1.9	0.01 U	0.01 U	0.011 U	0.011 U	0.011 U	0.012 U
Chioroform	0.3	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.006 U
Chloromethane	NA	0.01 U	0.01 U	0.011 U	0.011 U	0.011 U	0.012 U
Dibromochloromethane	NA	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.006 U
Ethylbenzene	5.5	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.006 U
Methylene Chloride	0.1	0.021 B	0.022 B	0.022 B	0.02 B	0.02 B	0.023 B
Styrene	NA	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.006 U
Tetrachloroethene	1.4	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.006 U
Toluene	1.5	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.006 U
Trichloroethene	0.7	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.006 U
Vinyl Acetate	NA	0.01 U	0.01 U	0.011 U	0.011 U	0.011 U	0.012 U
Vinyl Chloride	0.12	0.01 U	0.01 U	0.011 U	0.011 U	0.011 U	0.012 U
Total Xylenes	1.2	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.006 U
Cis-1,3-Dichloropropene	0.3**	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.006 U
Trans-1,3-Dichloropropene	0.3**	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.006 U
TOTAL DETECTED VOLATILES:		0.039	0.04	0.041	0.041	0.039	0.043
SEMIVOLATILIES (ppm)							
1,2,4-Trichlorobenzene	3.4	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
1,2-Dichlorobenzene	7.9	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
1,3-Dichlorobenzene	1.55	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
1,4 - Dichlorobenzene	8.5	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
Bis(2-Chloroisopropyl) Ether	NA	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
					ļ	-	
1							

See notes on Page 4.

J

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

SURFACE SOIL ANALYTICAL DATA OCTOBER 19, 1993

FIELD LOCATION:	NYSDEC Soil Cleanup Objectives	SF-01 Background	SF-02	SF-03	SF-04	SF-04 Dup.	SF-05
2,4,5-Trichlorophenol	0.1	0.88 U	4.4 UD	4.5 UD	0.89 U	0.89 U	19 UD
2,4,6 Trichlorophenol	NA	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
2,4 -Dichlorophenol	0.4	0.35 U	1.8 ŬD	1.8 UD	0.36 U	0.36 U	7.7 UD
2,4- Dimethylphenol	NA	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
2,4- Dinitrophenol	0.2	0.88 U	4.4 UD	4.5 UD	0.89 U	0.89 U	19 UD
2,4- Dinitrotoluene	NA	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
2,6-Dinitrotoluene	1.0	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
2-Chloronaphthalene	NA	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
2-Chlorophenol	0.8	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
2-Methylnaphthalene	36.4	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
2-Methylphenol	0.1	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
2-Nitroaniline	0.43	0.88 U	4.4 UD	4.5 UD	0.89 U	0.89 U	19 UD
2-Nitrophenol	0.33	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
3,3 Dichlorobenzidine	NA NA	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
3-Nitroaniline	0.5	0.88 U	4.4 UD	4.5 UD	0.89 U	0.89 U	19 UD
2-Methyl-4,6-Dinitrophenol	NA	0.88 U	4.4 UD	4.5 UD	0.89 U	0.89 U	19 UD
4-Bromophenyl Phenyl Ether	NA —	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
4-Chloro-3-Methylphenol	0.24	0.35 Ū	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
4-Chloroaniline	0.22	0.35 U	1.8 ŪD	1.8 UD	0.36 U	0.36 U	7.7 UD
4-Chlorophenyl Phenyl Ether	NA	0.35 U	1.8 ŪD	1.8 UD	0.36 U	0.36 U	7.7 UD
4-Methylphenol	0.9	0.35 U		1.8 UD	0.36 U	0.36 U	7.7 UD
4-Nitroaniline	NA	0.88 U	4.4 UD	4.5 UD	0.89 U	0.89 U	19 UD
4-Nitrophenol	0.1	0.88 U	4.4 UD	4.5 UD	0.89 U	0.89 U	19 UD
Acenaphthene	90	0.35 U	1.8 ŪD	1.8 UD	0.36 U	0.36 U	7.7 UD
Acenaphthylene	41	0.13 J	0.38 JD	0.65 JD	0.28 J	0.11 J	5.9 JD
Anthracene	700	0.29 J	0.78 JD	0.97 JD	0.19 J	0.14 J	12 ND
Benzo (A) Anthracene	3.0	1.6 N	4 ND	6.1 ND	1.5 N	1.2 N	52 ND
Benzo (A) Pyrene	11	0.95 N	3.5 ND	5.2 ND	1 N	0.73 N	42 ND
Benzo (B) Fluoranthene	1.1	1.5 N	3.4 ND	5.9 ND	1.6 N	1.2 N	39 ND
Benzo (G,H,I,) Perylene	800	0.059 J	1.2 JD	1.7 JD	0.092 J	0.36 U	
Benzo (K) Fluoranthene	<u> </u>	1.4 N	2.8 ND	5.4 ND	1.1 N	1.4 N	40 ND
Benzoic Acid	NA	0.88 U	4.4 UD	4.5 UD	0.89 U	0.89 U	19 UD
Benzyl Alcohol	NA NA	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
Butylbenzylphthalate	122	0.35 U	1.8 UD	1.8 UD	0.36 U	0.69 N	7.7 UD
Carbazole	NA NA	0.13 J	0.45 JD	0.36 JD	0.062 J	0.065 J	2 JD
Chrysene	0.4	1.3 N	4.1 ND	5 ND	1.1 N	1.1 N	41 ND
Di-N-Butylphthalate	8.1	0.35 U	1.8 UD	1.8 UD	0.36 U	0.083 J	7.7 UD
Di-N-Octylphthalate	120	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
Dibenzo (A,H) Anthracene	165,000	0.32 J	0.74 JD	1.2 JD	0.28 J	0.26 J	7.9 ND
Dibenzofuran	6.2	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	1.8 JD
Diethylphthalate	7.1	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
Dimethylphthalate	2.0	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
Fluoranthene	1,900	3.1 N	8.6 ND	10 ND	3.1 N	2.1 N	74 ND

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

SURFACE SOIL ANALYTICAL DATA OCTOBER 19, 1993

FIELD LOCATION:	NYSDEC Soil Cleanup Objectives	SF-01 Background	SF-02	SF-03	SF-04	SF-04 Dup.	SF-05
			0.45.10		0.1 5 X		- 15 10
Fluorene	350	0.11 J	0.45 JD	1.8 UD	0.17 J	0.36 U	3.7 JD
Hexachlorobenzene	1.4	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
Hexachloro-1,3-Butadiene	NA	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
Hexachlorocyclopentadiene	NA	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
Hexachloroethane	NA	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
Indeno (1,2,3-CD) Pyrene	3.2	0.54 N	1.7 JD	2.6 ND	0.58 N	0.4 N	14 ND
Isophorone	4.4	0.35 U	1.8 UD	1.8 UD	0.36 Ū	0.36 U	7.7 UD
N-Nitroso-Di-N-Propylamine	NA	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
N-Nitrosodiphenylamine	NA	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
Naphthalene	13	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
Nitrobenzene	0.2	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
Pentachlorophenol	1.0	0.88 U	4.4 UD	4.5 UD	0.89 U	0.89 U	19 UD
Phenanthrene		1.4 N	5.1 ND	4.7 ND	2 N	0.74 N	41 ND
Phenol, Acid Extract. By GC/GCMS	0.03	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
Pyrene	665	2.2 N	9.2 ND	10 ND	3.3 N	1.8 N	76 ND
Bis (2-Chloroethoxy) Methane	NA	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
Bis (2-Chloroethyl) Ether	NA NA	0.35 U	1.8 UD	1.8 UD	0.36 U	0.36 U	7.7 UD
Bis (2-Ethylhexyl) Phthalate	435	0.17 J	1.8 UD	1.8 UD	0.1 J	0.13 J	7.7 UD
TOTAL DETECTED SEMIVOLATI	LES	15.2	46.4	59.8	16.5	11.5	463
PCBs (ppm)							
PCB-1016	10	0.035 U	0.035 U	0.036 U	0.036 U	0.036 U	0.039 U
PCB-1221	10	0.07 U	0.07 U	0.072 U	0.072 U	0.072 U	0.077 U
PCB-1232	10	0.035 U	0.035 U	0.036 U	0.036 U	0.036 U	0.039 U
PCB-1242	10	0.035 U	0.035 U	0.036 U	0.036 U	0.036 U	0.039 U
PCB-1248	10	0.035 U	0.035 U	0.036 U	0.036 U	0.036 U	0.039 U
PCB-1254	10	0.035 U	0.035 U	0.012 JP	0.017 JP	0.041 N	0.039 U
PCB-1260	10	0.035 U	0.03 JP	0.036 U	0.036 U	0.044 N	0.039 U
TOTAL DETECTED PCBs		ND	0.03	0.012	0.017	0.085	ND
INORGANICS (ppm)		_				a di si saka	
Aluminum, Total	SB	12700 N	7870 N	9440 N	10300 N	9330 N	14100 N
Antimony, Total	SB	0.52 U	0.52 U	0.53 U	0.54 U	0.53 U	0.79 U
Arsenic, Total	7.5 or SB	12.6 N	5.1 N	6.6 N	6.9 N		
Barium, Total	300 or SB	39.9 N	31 N	36.7 N	33.7 N	29.8 N	108 N
Cadmium, Total	10	0.42 U	0.41 U	0.43 J	0.54 N	0.53 N	0.79 N
·	50		14 N	16.7 N	16.3 N	15.5 N	25.8 N
Chromium, Total		19.8 N	25.3 N	30.3 N	28.3 N	27.2 N	59.9 N
Copper, Total	25 or SB	34.1 N	 Jankard 			27.2 N	1.1.1.12.013.0 <u>0.3.8</u>
Iron, Total	2,000 or SB	27300 N	18800 N	21400 N	24000 N		34700 N
Lead, Total	400	27.6 N	52 N	57.2 N	42 N	42 N	143 N
Manganese, Total	SB	722 N	478 N	476 N	631 N	640 N	836 N
Mercury, Total	0.1	0.07 J	0.22 N	2.8 N	0.11 N	0.1 J	0.41 N
Nickel, Total	13 or SB	47.2 N	19.6 N	21.8 N	24.9 N	22.2 N	34.7 N

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

SURFACE SOIL ANALYTICAL DATA OCTOBER 19, 1993

FIELD LOCATION:	NYSDEC Soil Cleanup Objectives	SF-01 Background	SF-02	SF-03	SF-04	SF-04 Dup.	SF-05
Selenium, Total	2 or SB	0.1 U	0.1 U	0.11 U	0.11 U		0.16 Ū
Silver, Total	SB	0.73 U	0.72 U	2.1 N	0.75 U	0.74 U	1.1 U
Total Vanadium	150 or SB	18.8 N	17 N	18 N	17.7 N	17.7 N	31.3 N
Zinc, Total	20 or SB	89.6 N	140 N	121 N	95.2 N	90.5 N	210 N
Cyanide, Total	***	2.4 U	2.3 U	2.4 Ŭ	2.5 U	2.3 U	3.3 U

Notes:

All units expressed as parts per million (ppm), equivalent to milligrams per kilogram (mg/Kg).

NYSDEC TAGMs Soil Cleanup Objectives, revised 4/95.

Shaded values exceed criteria.

- SB Site background.
- NA Not Available.
- U Undetected. The value listed is the detection limit.

The detection limit is defined for organic compounds as the quantitation limit.

The inorganic detection limit is the instrument detection limit.

- J Detected at an estimated concentration below the minimum quantitation limit.
- I Possible matrix interference.
- N Detected concentration.
- D Indicates the sample was diluted to quantify the concentration.
- B Indicates the compound was found in the blank.
- * Value is for cis- isomer.
- ** Value is for total of both cis- and trans- isomers.
- *** Some cyanide complexes can be very stable while others are pH dependent and can be unstable. Site-specific form(s)

of Cyanide should be taken into consideration.

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

MONITORING WELL DETAILS AND WATER-LEVEL ELEVATIONS

			Bottom of	Screen	Groundwater Elevations					
Well	Ground Elevation	Top of Well Elevation	Boring Elevation	Interval Elevation	9/28/93	10/19/93	01/25/94	04/27/94	07/20/94	
	ft. AMSL	ft. AMSL	ft. AMSL	ft. AMSL	ft. AMSL	ft. AMSL	ft. AMSL	ft. AMSL	ft. AMSL	
MW93-1S	436.3	432.23	412.3	413.65 - 423.65	428.91	429.00	426.93	429.05	429.03	
MW93-1D	436.7	436.51	399.3	399.65 - 404.65	425.29	425.11	421.39	425.87	425.11	
MW93-2S	430.5	430.32	408.5	408.9 - 418.9	425.29	421.83	420.22	421.97	421.11	
MW93-2D	430.5	430.29	394.1	394.5 - 399.5	422.99	418.32	417.18	422.55	418.08	
MW93-3S	430.1	432.16	407.6	408 - 418	421.96	422.70	420.73	422.85	422.52	
MW93-3D	430.1	342.57	392.1	393.95 - 398.95	422.16	420.54	418.36	423.23	420.69	

Notes:

Elevations based on National Geodetic Vertical Datum of 1929.

ft. AMSL = feet Above Mean Sea Level

.

.

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

GROUNDWATER ANALYTICAL DATA OCTOBER 18, 1993

	NYSDEC							
	Class GA	MW93-1D	MW93-1S	MW93-2D	MW93-2S	MW93-3D	MW93-3D	MW93-3S
	Standards						DUP	
VOLATILES (ppm)			osta organis pr					
1,1,1-Trichloroethane	0.005	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
1,1,2,2-Tetrachloroethane	0.005	0.005 U	0.005 U		0.005 U	0.005 U		
1,1,2-Trichloroethane	0.001	0.005 U			0.005 U	0.005 U		0.005 U
1,1- Dichloroethane	0.005	0.005 U	0.005 U		0.005 U			0.005 U
1,1- Dichloroethylene	0.005	0.005 U	0.005 U		0.005 U	0.005 U	0.005 U	0.005 U
1,2-Dichloroethane	0.001	0.005 U	0.005 U		0.005 U	0.005 U	0.005 U	0.005 U
1,2-Dichloroethene,Total	0.005 c	0.005 U	0.005 U		0.005 U	0.005 U	0.005 U	0.005 U
1,2-Dichloropropane	0.001	0.005 U	0.005 U		0.005 U	0.005 U	0.005 U	0.005 U
2-Butanone	0.050 G	0.01 U	0.01 U			0.01 U	0.01 U	0.01 U
2-Hexanone	0.050 G	0.01 U						0.01 U
4-Methyl-2-Pentanone	NA	0.01 U						0.01 U
Acetone	0.050 G	0.011 B	0.010 B		0.011 B	0.011 B		0.012 B
Benzene	0.001	0.005 U	0.005 U			0.005 U		
Bromodichloromethane	0.050 G	0.005 U	0.005 U		0.005 U	0.005 U	0.005 U	0.005 U
Bromoform	0.050 G	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Methyl Bromide (Bromomethane)	0.005	0.01 U	0.01 U			0.01 U	0.01 U	0.01 U
Carbon Disulfide	NA	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Carbon Tetrachloride	0.005	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Chlorobenzene	0.005	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Chloroethane	0.005	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Chloroform	0.007	0.005 U	0.005 U	0.005 U	0.005 Ū	0.005 U	0.005 U	0.005 U
Chloromethane	0.005	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Dibromochloromethane	0.050 G	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Ethylbenzene	0.005	0.005 U	0.005 U	0.005 U	0.005 U	0.005 Ū	0.005 U	0.005 U
Methylene Chloride	0.005	0.019 B	0.018 B	0.019 B	0.019 B	0.020 B	0.019 B	0.019 B
Styrene	0.005	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Tetrachloroethene	0.005	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Toluene	0.005	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Trichloroethene	0.005	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Vinyl Acetate	NA	0.01 Ū	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Vinyl Chloride	0.002	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Total Xylenes	0.005 d	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Cis-1,3-Dichloropropene	0.0004 e	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Trans-1,3-Dichloropropene	0.0004 e	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
TOTAL DETECTED VOLATILES		0.030	0.028	0.033	0.030	0.031	0.031	0.031
SEMIVOLATILES (ppm)	alge gent eine wei						areanta a	
1,2,4-Trichlorobenzene	0.005	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
1,2-Dichlorobenzene	0.003	0.01 U	0.01 U	0.01 U	0.01 U	$-\frac{0.01}{0.01}$ U	0.01 U	0.01 U
1,3-Dichlorobenzene	0.003	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
1,4 - Dichlorobenzene	0.003	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Bis(2-Chloroisopropyl) Ether	0.003 NA	0.01 U	0.01 U	0.01 U	0.01 U 0.01 U	0.01 U	0.01 U 0.01 U	0.01 U
2,4,5-Trichlorophenol	0.001 a	0.01 U	0.01 U 0.024 U	0.01 U 0.025 U	0.01 U	0.01 U	0.01 U	0.01 U 0.032 U
	0.001 a	0.023 U	0.024 0	0.023 0	0.023 0	V.031 U	0.024 0	0.032 0

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

GROUNDWATER ANALYTICAL DATA OCTOBER 18, 1993

	NYSDEC Class GA Standards	MW93-1D	MW93-18	MW93-2D	MW93-2S	MW93-3D	MW93-3D DUP	MW93-3S
2,4,6 Trichlorophenol	0.001 a	0.01 U	0.01 U					
2,4 -Dichlorophenol	0.001 a	0.01 U	0.01 U					
2,4- Dimethylphenol	0.001 a	0.01 U	0.01 U					
2,4- Dinitrophenol	0.001 a	0.01 U	0.01 U	0.01 U	0.01 U	0.031 U	0.024 U	0.032 U
2,4- Dinitrotoluene	0.001 a	0.023 U	0.01 U	0.025 U	0.01 U	0.01 U	0.01 U	0.01 U
2,6-Dinitrotoluene	0.005	0.01 U	0.01 U					
2-Chloronaphthalene	0.010 G	0.01 U	0.01 U					
2-Chlorophenol	0.001 a	0.01 U	0.01 U					
2-Methylnaphthalene	NA	0.01 U	0.01 U					
2-Methylphenol	0.001 a	0.01 U	0.01 U					
2-Nitroaniline	0.005	0.025 U	0.024 U	0.025 U	0.025 U	0.031 U	0.024 U	0.032 U
2-Nitrophenol	0.001 a	0.01 U	0.032 U					
3,3 Dichlorobenzidine	0.005	0.01 U	0.01 U					
3-Nitroaniline	0.005	0.025 U	0.024 U	0.025 U	0.025 U	0.031 U	$-\frac{0.024}{0.024}$ U	0.032 U
2-Methyl-4,6-Dinitrophenol	0.001 a	0.025 U	0.024 U	0.025 U	0.025 U	0.031 U	0.024 U	0.032 U
4-Bromophenyl Phenyl Ether	NA	0.01 U	0.01 U					
4-Chloro-3-Methylphenol	0.001 a	0.01 U	0.01 U					
4-Chloroaniline	0.005	0.01 U	0.01 U					
4-Chlorophenyl Phenyl Ether	NA	0.01 U	0.01 U					
4-Methylphenol	0.001 a	0.01 U	0.01 U					
4-Nitroaniline	0.005	0.025 U	0.024 U	0.025 U	0.025 U	0.031 U	0.024 U	0.032 U
4-Nitrophenol	0.001 a	0.01 U	0.01 U					
Acenaphthene	0.020 G	0.01 U	0.01 U					
Acenaphthylene	NA –	0.01 U	0.01 U					
Anthracene	0.050 G	0.01 U	0.01 U					
Benzo (A) Anthracene	0.000002 G	0.01 U	0.01 U					
Benzo (A) Pyrene	ND	0.01 U	0.01 U					
Benzo (B) Fluoranthene	0.000002 G	0.01 U	0.01 U					
Benzo (G,H,I,) Perylene	ŇA	0.01 U	0.01 U					
Benzo (K) Fluoranthene	0.000002 G	0.01 U	0.01 U					
Benzoic Acid	NA	0.025 U	0.024 U	0.025 U	0.025 U	0.031 U	0.024 U	0.032 U
Benzyl Alcohol	NA	0.01 U	0.01 U					
Butylbenzylphthalate	0.050 G	0.01 U	0.01 U					
Carbazole	NA	0.01 U	0.01 U					
Chrysene	0.000002 G	0.01 U	0.01 U					
Di-N-Butylphthalate	0.050	0.01 U	0.01 U					
Di-N-Octylphthalate	0.050 G	0.01 U	0.01 U					
Dibenzo (A,H) Anthracene	NA	0.01 U	0.01 U					
Dibenzofuran	NA	0.01 U	0.01 U					
Diethylphthalate	0.050 G	0.01 U	0.01 U					
Dimethylphthalate	0.050 G	0.01 U	0.01 U					
Fluoranthene	0.050 G	0.01 U	0.01 U					
Fluorene	0.050 G	0.01 U	0.01 U					
Hexachlorobenzene	0.00004	0.01 U	0.01 U					

I	0/\$/	I

See notes on Page 4.

1

lr.	-	_					_		_	_				
<u> </u>	N 980			140.0		0.048	1	<u> </u>	N	820.0	1	220.0	∀ N	Total Vanadium
<u>n 700.0</u>	N 700		n	200.0		200.0		L00 [.] 0	U	<u>200.0</u>	n	700.0	050.0	Silver, Total
<u>U 100.0</u>	U 100			100.0		100.0		100.0	n	100.0	n	100.0	010.0	Selenium, Total
<u>N</u> #\$0.0	N 971			<u> 0.084</u>	N	620.0	N	6,043		280.0		670.0	001.0	Nickel, Total
<u>U 1000.0</u>	<u>1 100</u>			1000.0		1000.0	n			1000.0	n	1000.0	100.0	Mercury, Total
<u>N 10.5</u>	<u>N 881</u>			21.2		16.4		51.2	N	15.2		20.1	4 05.0	Manganese, Total
<u>N 6810.0</u>	N SIZ		<u>N</u> _	6410.0		S220.0		S210.0		8120.0		2700.0	520.0	Lead, Total
<u>N L'LE</u>	N 6'L			1.8£		£.82	-	6.62		1.92		6.91	4.05.0	Iron, Total
<u>N 090'0</u>	N 8E1			090.0		980.0		020.0	N			<u> </u>	0.200	Copper, Total
<u>N_</u> \$‡0'0	N 760			670.0		190.0		6£0.0	N			£20.0	050.0	Chromium, Total
<u>0.004 U</u>	N \$00			<u>+00.0</u>		<u>†00.0</u>		† 00.0	n	<u> 700.0</u>		\$00.0	\$00.0	Cadmium, Total
<u>N 757.0</u>	N 577			192.0		581.0		612.0		867.0		141.0	000.1	Barium, Total
<u>N ##10.0</u>	<u>N 85</u>			6,0143		1160.0		9010.0		£910.0		1700.0	0.025	Arsenic, Total
<u>n \$00.0</u>	<u>n 500</u>			\$00.0		\$00.0		<u>\$00'0</u>	<u>n</u>	<u>\$00.0</u>	n	\$00.0	<u>600.0</u>	Antimony, Total
<u>N 01.02</u>	N 07	05	N	08.02	N	<u> </u>	N	08.91	N	05.62	N	<u>50'6</u>	∀N	Aluminum, Total
	ator and	2344	ia Thŵ					<u>.</u>	(6. iy	Weight Status	849	640.0 <u>8</u>		INORGANICS (ppm)
an	au					an		a				au		
				<u>IN</u>	T					<u>an</u>		<u>an</u>		LOLYT DELECTED FOR
<u>U 100.0</u>	<u>n 100</u>			100.0		100.0		100.0	n	100.0	n	100.0	9 60000:0	bCB-1560
<u>U 100.0</u>	Ω 100 Ω 100			100.0		100.0		100.0	n	100.0	n	100:0	<u>9.60000'0</u>	bCB-152t
<u>U 100.0</u>				100.0		100 [.] 0		100 [.] 0	n	100.0	n	100:0	9 60000:0	bCB-1548
U 100.0 U 100.0	N 100			100.0		100.0			ח ח	100.0	<u>ח</u>	100.0	9 60000:0	bCB-1545
U 100.0	11 100 11 100			100 [.] 0	n n	100.0	n U	<u>100.0</u>	n n	100.0	n n	100.0	9 60000 [.] 0	bCB-1535
	11 100	V I	11	100.0	11				11	100.0	11	100.0	4 00000 0	bCB-1551
ILO 100.0		n l	0	100.0	0	100.0		100.0		100.0	0	100.0	0 60000.0	
U 100.0	<u>n 100</u>	0	<u>n</u>	100.0	U	100.0	U	100.0	U	100.0	U	100.0	<u>9 60000'0</u>	LCB-1019 LCB2 (bbm)
U 100.0	<u>n 100</u>	0	<u>n</u>	100.0	U	100.0	U	100.0	U	100.0	n	100.0	<u> </u>	PCB-1016 PCBs (bbm)
				<u></u>								<u></u>		PCBs (ppm)
an	an			IN		an		an		an		an .		POTAL DETECTED SEMIYOLATHES PCBs (ppm)
an n 10 [.] 0	<u>а</u> м п 101) 1	n N	IN 10 [.] 0	n	GN 10'0	n	an 10 [.] 0	n	an 10:0		an 10 [.] 0	\$00.0	Bis (2-Ethylhexyl) Phthalate PCBs (ppm)
GN <u>10'0</u> <u>0</u> 10'0	ал П 10 ⁻ 0 П 10 ⁻ 0) 1	n n	IN 10 [.] 0 10 [.] 0	n n	GN 10'0 10'0	n n	an 10 [.] 0 10 [.] 0		GN 10 [.] 0 10 [.] 0	n	an 10 [.] 0 10 [.] 0	<u>\$00'0</u> 100'0	Bis (2-Chloroethyl) Ether TOTAL DETECTED SEMIVOLATHES PCBs (ppm)
α Ν <u>Ω</u> 10'0 <u>Ω</u> 10'0 <u>Ω</u> 10'0	<u>а</u> м п 101) 1 () 1 ()	n n n	IN 10'0 10'0 10'0	<u>п</u> п	GN 10 [.] 0 10 [.] 0 10 [.] 0	n n n	CN 10:0 10:0 10:0	n 1	an 10 [.] 0 10 [.] 0 10 [.] 0	<u>п</u> п	AN 10:0 10:0 10:0	<u>\$00'0</u> 100'0 <u>\$00'0</u>	Bis (2-Ethylhexyl) Phthalate PCBs (ppm)
α Ν Ω 10 [.] 0 Ω 10 [.] 0 Ω 10 [.] 0	ал п 10°0 п 10°0 п 10°0	1 (1)	n n n n	IN 10 [.] 0 10 [.] 0 10 [.] 0 10 [.] 0	П П П П	GN 10'0 10'0 10'0 10'0 10'0	1 1 1 1	CN 10 [°] 0 10 [°] 0 10 [°] 0 10 [°] 0	n n	AN 10 [.] 0 10 [.] 0 10 [.] 0 10 [.] 0	n n n	GN 10 [.] 0 10 [.] 0 10 [.] 0 10 [.] 0	<u>\$00'0</u> 100'0	Bis (2-Chloroethoxy) Methane Bis (2-Chloroethyl) Ether TOTAL DETECTED SEMIVOLATILES TOTAL DETECTED SEMIVOLATILES
α Ν Λ 10'0 Λ 10'0 Λ 10'0 Λ 10'0 Λ 10'0	an a a b a b a b a b a b b b b c c c c c c c c	1 (1 (1 (1 (1 (1 (1 (1 (n n n n n	IN 10'0 10'0 10'0	л л л л	GN 10 [.] 0 10 [.] 0 10 [.] 0		CN 10:0 10:0 10:0	n n n	an 10 [.] 0 10 [.] 0 10 [.] 0	n n n	AN 10:0 10:0 10:0	500.0 100.0 500.0 500.0	Pyrene Bis (2-Chloroethoxy) Methane Bis (2-Chloroethyl) Ether Frot AL DETECTED SEMIYOLATHES FOTAL DETECTED SEMIYOLATHES
ΔN Ω 10'0 Ω 10'0 Ω 10'0 Ω 10'0 Ω 10'0 Ω 10'0	GN ח 10°0	1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (n n n n n	IN 10 [.] 0 10 [.] 0 10 [.] 0 10 [.] 0 10 [.] 0		GN 10 [°] 0 10 [°] 0 10 [°] 0 10 [°] 0 10 [°] 0		GN 10 [°] 0 10 [°] 0 10 [°] 0 10 [°] 0 10 [°] 0		AN 10 [.] 0 10 [.] 0 10 [.] 0 10 [.] 0 10 [.] 0		AN 10 [°] 0 10 [°] 0 10 [°] 0 10 [°] 0 10 [°] 0	50000 50000 50000 50000 50000 90000 90000	Phenol, Acid Extract. By GC/GCMS Pyrene Bis (2-Chloroethoxy) Methane Bis (2-Chloroethyl) Ether PoTAL DETECTED SEMIVOLATILES POTAL DETECTED SEMIVOLATILES
AN <u>0</u> 10'0 <u>0</u> 10'0 <u>0</u> 10'0 <u>0</u> 10'0 <u>0</u> 10'0 <u>0</u> 10'0	Image: Constraint of the	1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (n n n n n	IN 10'0 10'0 10'0 10'0 10'0 10'0 10'0		GN 10 ^{.0} 10 ^{.0} 10 ^{.0} 10 ^{.0} 10 ^{.0} 10 ^{.0}		an 10 ^{.0} 10 ^{.0} 10 ^{.0} 10 ^{.0} 10 ^{.0} 10 ^{.0}		GN 10 [.] 0 10 [.] 0 10 [.] 0 10 [.] 0 10 [.] 0 10 [.] 0		AN 10.0 10.0 10.0 10.0 10.0 10.0 10.0	500'0 100'0 500'0 5050'0 100'0 5050'0 5050'0	Phenanthrene Phenol, Acid Extract. By GC/GCMS Pyrene Bis (2-Chloroethoxy) Methane Bis (2-Chloroethoxy) Methane PCBs (ppm) PCBs (ppm)
AN <u>10'0</u> <u>0 10'0</u> <u>0 10'0</u> <u>0 10'0</u> <u>0 10'0</u> <u>0 10'0</u> <u>0 10'0</u> <u>0 10'0</u> <u>0 10'0</u>	Imp Imp 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1 (1) 1	n n n n n n n	IN 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0		GN 10 ⁻ 0 10 ⁻ 0 10 ⁻ 0 10 ⁻ 0 10 ⁻ 0 570 ⁻ 0 10 ⁻ 0 10 ⁻ 0 10 ⁻ 0 10 ⁻ 0		GN 10 [°] 0 10 [°] 0 10 [°] 0 10 [°] 0 10 [°] 0 570 [°] 0 10 [°] 0 10 [°] 0		dN 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0		an 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0	0.001 a 0.005 0.005 0.005 0.005 0.001 a 0.0000 0.0000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	Pentachlorophenol Phenanthrene Phenol, Acid Extract. By GC/GCMS Bis (2-Chloroethoxy) Methane Bis (2-Chloroethoxy) Methane Bis (2-Chloroethoxy) Phthalate PGIS, DETECTED SEMIVOLATH.ES PCBS (ppm)
AN 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 1260'0 10'0	ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	n n n n n n n	IN 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0		GN 10 ⁻ 0 10 ⁻ 0 10 ⁻ 0 10 ⁻ 0 10 ⁻ 0 570 ⁻ 0 10 ⁻ 0 10 ⁻ 0 10 ⁻ 0 10 ⁻ 0		GN 10 [°] 0 10 [°] 0 10 [°] 0 10 [°] 0 10 [°] 0 570 [°] 0 10 [°] 0		AN 10 ^{.0} 10 ^{.0} 10 ^{.0} 10 ^{.0} 10 ^{.0} 10 ^{.0} 10 ^{.0} 10 ^{.0} 10 ^{.0} 10 ^{.0}		an 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 520'0 10'0	0.000 0.000 0.001 0.002 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	N-Nitrosodiphenylamine Naphthalene Pientachlorophenol Phenanthrene Bis (2-Chloroethoxy) Methane Bis (2-Chloroethoxy) Methane Bis (2-Chloroethyl) Ether Pytene Pytene Porta DETECTED SEMIVOLATILES Porta DETECTED SEMIVOLATILES Porta DETECTED SEMIVOLATILES Porta DETECTED SEMIVOLATILES Porta DETECTED SEMIVOLATILES Porta DETECTED SEMIVOLATILES Porta DETECTED SEMIVOLATILES Presson Porta P
AN 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0	ON 10°0	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	n n n n n n n n n	IN 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0		IO'O		GN 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0		dN 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0		an 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0	0.000 0.000 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	N-Nitroso-Di-N-Propylamine N-Nitroso-Di-N-Propylamine Naphthalene Prenachlorophenol Bis (2-Chloroethoxy) Methane Bis (2-Chloroethoxy) Methane Bis (2-Chloroethoxy) Methane Pytene Pytene Porta, DETECTED SFMIVOLATILES Porta, DETECTED SFMIVOLATILES P
AN 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0	Image: Constraint of the	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	n n n n n n n n n	IN 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0		IO'O		GN 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0		GN 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0 10°0		dN 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	50000 1000 5000 5000 5000 5000 81000 50500 81000 50000 50100 50100 50500	Isophorone N-Nitroso-Di-N-Propylamine Naphthalene Pentachlorophenol Phenol, Acid Extract. By GC/GCMS Phenol, Acid Extract. By GC/GCMS Phenol, Acid Extract. By GC/GCMS Bis (2-Chloroethoxy) Methane Bis (2-Chloroethoxy) Methane Phenol, Acid Extract. By GC/GCMS Phenol, Acid Extract. By GC/GCMS Phenol
AN 10'0	GN Π 10°			IN 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0		GN 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0		IO'O		GN 10.0		IO'0	50000 1000 50000 50000 50000 8 10000 505000 8 10000 50000 501000 505000 505000 505000 505000 505000 505000 505000 505000	Indeno (1,2,3-CD) Pytene Isophorone N-Nitroso-Di-N-Propylamine Maphthalene Pentachlorophenol Phenol, Acid Extract. By GC/GCMS Phenol, Acid Extract. By GC/GCMS Pytene Bis (2-Chloroethoxy) Methane Bis (2-Chloroethoxy) Methane Pytene Pytene Portache Phenol, Acid Extract. By GC/GCMS Portache Pentachiene Penta
GN ∩ 10'0 ∩ 10'0 ∩ 10'0 ∩ 10'0 ∩ 10'0 ∩ 10'0 ∩ 10'0 ∩ 10'0 ∩ 10'0 ∩ 10'0 ∩ 10'0 ∩ 10'0 ∩ 10'0 ∩ 10'0 ∩ 10'0	GN 0 10.0	1 (1 (IN 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0		AN 10 ⁻⁰ 10 ⁻⁰ 10 ⁻⁰ 10 ⁻⁰ 10 ⁻⁰ 570 ⁻⁰ 10 ⁻⁰		IO'O		AN 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.01 0.		and 10°0	20000 1000 200	Hexachloroethane Indeno (1,2,3-CD) Pyrene Isophorone N-Nitroso-Di-N-Propylamine Maphthalene Piernachlorophenol Piernol, Acid Extract. By GC/GCMS Pyrene Bis (2-Chloroethoxy) Methane Bis (2-Chloroethoxy) Methane Pyrene Pyrene Pyrene Pyrene Pyrene Portachiene Portachiene Prenol, Acid Extract. By GC/GCMS Pyrene Portachiene Portachiene Portachiene Prena Pyrene Prena Pyrene Prena Pyrene Prena Pyrene Prena Pyrene Prena Pyrene Prena Pyrene Pyrene Prena Pyrene P
AN 10'0	Image: 1	1 (1 (IN 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0		AN 10 ⁻⁰ 10 ⁻⁰ 10 ⁻⁰ 10 ⁻⁰ 10 ⁻⁰ 570 ⁻⁰ 10 ⁻⁰		IO'0		dN 10.0		IO'0 10'0	0.000 0.002 0.001 0.002 0.002 0.002 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.00000 0.000000	Hexachlorocyclopentadiene Hexachlorocyclopentadiene Indeno (1,2,3-CD) Pyrene Jaophorone N-Nitroso-Di-N-Propylamine Maphihalene Phenanthrene Phenanthrene Phenol, Acid Extract. By GC/GCMS Pyrene Phenanthrene Pyrene Pyrene Pyrene Pyrene Phenanthrene Phena
dN 10'0 10'0	GN 0 10.0	1 (1 (IN 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0		AN 10 ⁻⁰ 10 ⁻⁰ 10 ⁻⁰ 10 ⁻⁰ 10 ⁻⁰ 570 ⁻⁰ 10 ⁻⁰		IO'0		AN 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.01 0.		and 10°0	0.000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000	Hexachloroethane Indeno (1,2,3-CD) Pyrene Isophorone N-Nitroso-Di-N-Propylamine Maphthalene Piernachlorophenol Piernol, Acid Extract. By GC/GCMS Pyrene Bis (2-Chloroethoxy) Methane Bis (2-Chloroethoxy) Methane Pyrene Pyrene Pyrene Pyrene Portachi Phenol, Acid Extract. By GC/GCMS Pyrene Portachi Phenol, Acid Extract. By GC/GCMS Pyrene Portachi Phenol, Acid Extract. By GC/GCMS Pyrene Prenachi Phenol, Acid Extract. By GC/GCMS Prenachi Phenol, Acid Extract. By GC/GCMS Pyrene Prenachi Phenol, Acid Extract. By GC/GCMS Prenachi Phenol, Acid Extract. By GC/GCMS Pyrene Phenol, Acid Extract. By GC/GCMS Prenachi Phenol, Acid Extract. By GC/GCMS Phenol, Acid Extract. By GC/GCMS Prenachi Phenol, Acid Extract. By GC/GCMS Phenol, A
AN 10'0 10'0	O O Π 10.0			IN 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0 10'0		dN 10'0		IO'0		dN 10.0		IO'0 10'0	200000 2000 2000 2000 2000 2000 2000 2000 2000 20000 20000 200000 200000 20000 20000 20000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 20000000 2000000 20000000 2000000 20000000 20000000 20000000 200000000	Hexachlorocyclopentadiene Hexachlorocyclopentadiene Indeno (1,2,3-CD) Pyrene Jaophorone N-Nitroso-Di-N-Propylamine Maphihalene Phenanthrene Phenanthrene Phenol, Acid Extract. By GC/GCMS Pyrene Phenanthrene Pyrene Pyrene Pyrene Pyrene Phenanthrene Phena
AN 1000	ON 0 10.0 1 10.0	1		IN 10'0 10		IO'O		dN 10'0		dN 10.0		dN 10.0	50000 00000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000	Hexachlorocyclopentadiene Hexachlorocyclopentadiene Indeno (1,2,3-CD) Pyrene Jaophorone N-Nitroso-Di-N-Propylamine Maphihalene Phenanthrene Phenanthrene Phenol, Acid Extract. By GC/GCMS Pyrene Phenanthrene Pyrene Pyrene Pyrene Pyrene Phenanthrene Phena
AN 1000	ON 0 10.0 1 10.0	1		IN 10'0 10		IO'O		GN 10 [°] 0 10 [°] 0 10 [°] 0 10 [°] 0 10 [°] 0 520 [°] 0 10 [°] 0		dN 10.0		IO'0 10'0	200000 2000 2000 2000 2000 2000 2000 2000 2000 20000 20000 200000 200000 20000 20000 20000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 20000000 2000000 20000000 2000000 20000000 20000000 20000000 200000000	Hexachlorocyclopentadiene Hexachlorocyclopentadiene Indeno (1,2,3-CD) Pyrene Jaophorone N-Nitroso-Di-N-Propylamine Maphihalene Phenanthrene Phenanthrene Phenol, Acid Extract. By GC/GCMS Pyrene Phenanthrene Pyrene Pyrene Pyrene Pyrene Phenanthrene Phena

OCLOBEE 18' 1993 GEBONNDAVELEE VANLYTICAL DATA

COSHEN WCL SILE' COSHEN' NEM XOBR NEM XOBR SLELE EFECLEIC VAD CVS

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

GROUNDWATER ANALYTICAL DATA OCTOBER 18, 1993

	NYSDEC Class GA Standards	MW93-	1D	MW93-	1S	MW93-:	2D	MW93-	25	MW93-	3D	MW93- DUP	3D	MW93-	38
Zinc, Total	2.0 G	0.068	N	0.173	N	0.104	N	0.176	N	0.142	N	0.297	N	0.166	N
Cyanide, Total	0.20 L	0.01	U	0.01	U	0.01	U	0.075	Ν	0.01	U	0.01	U	0.479	U
Cyanide, Amenable	0.20 L	-		-		-		0.010	U	-		-		0.052	N

Notes:

ppm - parts per million.

NYSDEC TOGS Class GA Ambient Water Quality Standards and Guidance Values, revised 6/98.

SB - Site background.

NA - Not Available.

Shaded values exceed criteria.

Data Qualifiers:

U - Undetected. The value listed is the detection limit. The detection limit is defined for organic compounds as the quantitation limit.

The inorganic detection limit is the instrument detection limit.

- J Detected at an estimated concentration below the minimum quantitation limit.
- 1 Possible matrix interference.
- N Detected concentration.
- D Indicates the sample was diluted to quantify the concentration.
- B Indicates the compound was found in the blank.

Criteria Qualifiers:

- a Value listed applies to the sum of these substances.
- b Value listed applies to the sum of these substances.
- c Value listed applies to both the cis and trans isomers separately.
- d Value listed applies to each isomer individually.
- e Value listed applies to the sum of the isomers.
- G Guidance Value.
- h Iron and Manganese criteria are 0.3 ppm individually or 0.5 ppm as a sum.
- L Applies to total Cyanide.
- NA No GA standard or guidance value for ground water is available for these substances.

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

GROUNDWATER ANALYTICAL DATA JANUARY 24, 1994

	NYSDEC Class GA Standards	MW93-1S	MW93-1D	MW93-2S	MW93-2D	MW93-3S	MW93-3D	MW93-3D DUP
VOLATILES (ppm)								
1,1,1- Trichloroethane	0.005	0.005 U	0.005 U	0.005 U	0.005 Ū	0.005 U	0.005 U	0.005 U
1,1,2,2-Tetrachloroethane	0.005	0.005 U	0.005 U					
1,1,2-Trichloroethane	0.001	0.005 U	0.005 U					
1,1- Dichloroethane	0.005	0.005 U	0.005 U					
1,1- Dichloroethylene	0.005	0.005 U	0.005 U					
1,2-Dichloroethane	0.001	0.005 U	0.005 U					
1,2-Dichloroethene,Total	0.005 c	0.005 U	0.005 U					
1,2-Dichloropropane	0.001	0.005 U	0.005 U					
2-Butanone	0.050 G	0.010 U	0.003 J	0.010 U				
2-Hexanone	0.050 G	0.010 U	0.010 U					
4-Methyl-2-Pentanone	NA	0.010 U	0.010 U					
Acetone	0.050 G	0.006 J	0.010 U	0.010 U	0.010 U	0.004 J	0.007 J	0.012 N
Benzene	0.001	0.005 U	0.002 J	0.002 J				
Bromodichloromethane	0.050 G	0.005 U	0.005 U					
Bromoform	0.050 G	0.005 U	0.005 U					
Methyl Bromide (Bromomethane)	0.005	0.010 U	0.010 U					
Carbon Disulfide	NA	0.005 U	0.005 U					
Carbon Tetrachloride	0.005	0.005 U	0.005 U					
Chlorobenzene	0.005	0.005 U	0.005 U					
Chloroethane	0.005	0.010 U	0.010 U					
Chloroform	0.007	0.005 U	0.005 U					
Chloromethane	0.005	0.010 U	0.010 U					
Dibromochloromethane	0.050 G	0.005 U	0.005 U					
Ethylbenzene	0.005	0.005 U	0.005 U					
Methylene Chloride	0.005	0.005 U	0.005 U					
Styrene	0.005	0.005 U	0.005 U					
Tetrachloroethene	0.005	0.005 U	0.005 U					
Toluene	0.005	0.005 U	0.005 U					
Trichloroethene	0.005	0.005 U	0.005 U					
Vinyl Acetate	NA	0.010 U	0.010 U					
Vinyl Chloride	0.002	0.010 U		0.010 U	0.010 U	0.010 U		0.010 U
Total Xylenes	0.005 d	0.005 U	0.005 U					
Cis-1,3-Dichloropropene	0.0004 e	0.005 U	0.005 U					
Trans-1,3-Dichloropropene	0.0004 e	0.005 U	0.005 U					
TOTAL DETECTED VOLATILE		0.006	ND	ND	ND	0.004	0.012	0.014
SEMIVOLATILES (ppm)	14. 7. C						1419 <u>8</u> 1 1 1	
1,2,4-Trichlorobenzene	0.005	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
_								
1,2-Dichlorobenzene	0.003	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
1,3-Dichlorobenzene	0.003	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
1,4 - Dichlorobenzene	0.003	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

GROUNDWATER ANALYTICAL DATA JANUARY 24, 1994

Class GA	X #XX 100 10					10. 10. 101 M	en se no d
	NIW95-15	MW93-1D	MW93-2S	MW93-2D	MW93-3S	MW93-3D	MW93-3D
Standards							DUP
NA	0.012 U	0.010 U	0.010 U	$\overline{0.011}$ U	0.010 U	0.010 U	0.012 U
					1		0.030 U
							0.012 U
				_			0.012 U
							0.012 U
							0.030 U
				1			0.012 U
							0.012 U
							0.012 U
							0.012 U
							0.012 U
							0.012 U
							0.030 U
			-				0.012 U
							0.012 U
	0.030 U	0.025 U	0.024 U	0.029 U	0.025 U		0.030 U
0.001 a		0.025 U	0.024 U	0.029 U	0.025 U	0.025 U	0.030 U
NA	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
0.001 a	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
0.005	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
NĀ	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
0.001 a	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
0.005	0.030 U	0.025 U	0.024 U	0.029 U	0.025 U	0.025 U	0.030 U
0.001 a	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
0.020 G	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
NA	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
0.050 G	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
.000002 G	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
ND	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
.000002 G	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
NA	0.012 Ū	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
.000002 G	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
NA			0.024 U	0.029 U	0.025 U	0.025 U	0.030 U
NA	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
0.050 G	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
NA		0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
.000002 G				0.011 U	0.010 U		0.012 U
							0.012 U
							0.012 U
							0.012 U
			1				0.012 U
							0.012 U
	0.001 a 0.001 a 0.001 a 0.001 a 0.001 a 0.005 0.005 0.005 0.010 G 0.001 a 0.005 0.001 a 0.005 0.0002 G NA 0.00002 G NA 0.0050 G 0.005 0.001 A 0.0050 G 0.0002 G NA 0.00002 G NA 0.0050 G 0.005 0.001 A 0.0050 G 0.00002 G 0.005 0.001 A 0.0050 G 0.00002 G 0.005 0.0	0.001 a 0.030 U 0.001 a 0.012 U 0.001 a 0.030 U 0.005 0.012 U 0.005 0.012 U 0.001 a 0.012 U	0.001 a 0.030 U 0.025 U 0.001 a 0.012 U 0.010 U 0.005 0.012 U 0.010 U 0.005 0.012 U 0.010 U 0.001 a 0.012 U 0.010 U 0.005 0.030 U 0.025 U 0.001 a 0.012 U 0.010 U 0.001 a 0.012 U 0.010 U 0.001 a 0.012 U 0.010 U	0.001 a 0.030 U 0.025 U 0.024 U 0.001 a 0.012 U 0.010 U 0.010 U 0.001 a 0.012 U 0.010 U 0.010 U 0.001 a 0.030 U 0.025 U 0.024 U 0.005 0.012 U 0.010 U 0.010 U 0.005 0.012 U 0.010 U 0.010 U 0.010 G 0.012 U 0.010 U 0.010 U 0.001 a 0.012 U 0.010 U 0.010 U 0.001 a 0.012 U 0.010 U 0.010 U 0.001 a 0.012 U 0.010 U 0.010 U 0.005 0.030 U 0.025 U 0.024 U 0.001 a 0.012 U 0.010 U 0.010 U	0.001 a 0.030 U 0.025 U 0.024 U 0.029 U 0.001 a 0.012 U 0.010 U 0.010 U 0.011 U 0.001 a 0.012 U 0.010 U 0.010 U 0.011 U 0.001 a 0.012 U 0.010 U 0.010 U 0.011 U 0.001 a 0.030 U 0.025 U 0.024 U 0.029 U 0.005 0.012 U 0.010 U 0.010 U 0.011 U 0.005 0.012 U 0.010 U 0.010 U 0.011 U 0.001 a 0.012 U 0.010 U 0.010 U 0.011 U 0.012 U 0.010 U 0.010 U 0.011 U 0.001 a 0.012 U 0.010 U 0.010 U 0.011 U 0.001 a 0.012 U 0.010 U 0.010 U 0.011 U 0.005 0.030 U 0.025 U 0.024 U 0.029 U 0.001 a 0.012 U 0.010 U 0.010 U 0.011 U 0.005 0.030 U 0.025 U 0.024 U 0.029 U 0.01a 0.012 U 0.010 U </td <td>0.001 a 0.030 U 0.025 U 0.024 U 0.029 U 0.025 U 0.001 a 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.001 a 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.001 a 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.005 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.005 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.010 G 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.011 a 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.011 a 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.005 0.030 U 0.025 U 0.024 U 0.029 U 0.025 U 0.005 0.030 U 0.025 U 0.024 U 0.029 U 0.025 U 0.005 0.030 U 0.025 U 0.024 U 0.029 U 0.025 U 0.001</td> <td>0.001 a 0.030 U 0.025 U 0.024 U 0.029 U 0.025 U 0.025 U 0.001 a 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.010 U 0.001 a 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.010 U 0.001 a 0.030 U 0.025 U 0.024 U 0.029 U 0.025 U 0.025 U 0.005 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.010 U 0.005 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.010 U 0.010 a 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.010 U 0.001 a 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.010 U 0.001 a 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.010 U 0.001 a 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.010 U 0.001 a 0.030 U 0.025 U 0.024 U</td>	0.001 a 0.030 U 0.025 U 0.024 U 0.029 U 0.025 U 0.001 a 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.001 a 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.001 a 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.005 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.005 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.010 G 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.011 a 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.011 a 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.005 0.030 U 0.025 U 0.024 U 0.029 U 0.025 U 0.005 0.030 U 0.025 U 0.024 U 0.029 U 0.025 U 0.005 0.030 U 0.025 U 0.024 U 0.029 U 0.025 U 0.001	0.001 a 0.030 U 0.025 U 0.024 U 0.029 U 0.025 U 0.025 U 0.001 a 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.010 U 0.001 a 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.010 U 0.001 a 0.030 U 0.025 U 0.024 U 0.029 U 0.025 U 0.025 U 0.005 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.010 U 0.005 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.010 U 0.010 a 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.010 U 0.001 a 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.010 U 0.001 a 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.010 U 0.001 a 0.012 U 0.010 U 0.010 U 0.011 U 0.010 U 0.010 U 0.001 a 0.030 U 0.025 U 0.024 U

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

GROUNDWATER ANALYTICAL DATA JANUARY 24, 1994

	NYSDEC				3 81 25 B				
	Class GA	MW93-	15	MW93-1D	MW93-2S	MW93-2D	MW93-3S	MW93-3D	MW93-3D
	Standards								DUP
Dimethylphthalate	0.050 G		U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
Fluoranthene	0.050 G	0.012	U	0.010 U	0.010 U	0.011 U	0.004 J	0.010 U	0.012 U
Fluorene	0.050 G		Ū	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
Hexachlorobenzene	0.000	0.012	U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 Ū
Hexachloro-1,3-Butadiene	0.001	0.012	U	0.010 U	0.010 U	0.011 Ū	0.010 U	0.010 U	0.012 U
Hexachlorocyclopentadiene	0.005		Ū	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
Hexachloroethane	0.005	0.012	U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
Indeno(1,2,3-CD)Pyrene	0.000002 G	0.012	U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
Isophorone	0.050 G	0.012	U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
N-Nitroso-Di-N-Propylamine	NA	0.012	U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
N-Nitrosodiphenylamine	0.050 G	0.012	U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
Naphthalene	0.010 G	0.012	Ū	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
Nitrobenzene	0.000	0.012	U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
Pentachlorophenol	0.001 a	0.030	U	0.025 U	0.024 U	0.029 U	0.025 U	0.025 U	0.030 U
Phenanthrene	0.050 G	0.012	U	0.010 Ū	0.010 U	0.011 U	0.005 J	0.010 U	0.012 U
Phenol	0.001 a	0.012	U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
Pyrene	0.050 G	0.012	U	0.010 Ū	0.010 U	0.011 U	0.005 J	0.010 U	0.012 U
Bis(2-Chloroethoxy)Methane	0.005	0.012	U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
Bis (2-Chloroethyl) Ether	0.001	0.012	U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
Bis (2-Ethylhexyl) Phthalate	0.005	0.012	Ū	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
TOTAL SEMIVOLATILES		ND	23	ND	ND	ND	0.014	ND	ND
2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2		and Straff and	<u></u>	<u></u>	<u>El Alexandre d'Arresso, r</u>		trie en la	<u></u>	<u>in an ei filde</u> r ei ferste.
INORGANICS (ppm)					45433433				
Aluminum, Total	NA	3.410	N	3.780 N	1.430 N	1.960 N	41.100 N	23.800 N	26.400 N
Antimony, Total	0.003	0.003	U	0.003 U	0.004 J	0.003 U	0.003 U	0.003 U	0.003 U
Arsenic, Total	0.025	0.005	J	0.002 J	0.015 N	0.003 J	0.033 N	0.016 N	0.018 N
Barium, Total	1.000	0.232	N	0.156 J	0.090 J	0.193 J	0.209 N	0.301 N	0.301 N
Cadmium, Total	0.005	0.004	J	0.003 U	0.003 J	0.003 U	0.006 N	0.006 N	0.004 J
Chromium, Total	0.050	0.008	J	0.008 J	0.005 J	0.010 N	0.102 N	0.061 N	0.082 N
Copper, Total	0.200	0.041	N	0.025 N	0.033 N	0.028 N	0.186 N	0.070 N	0.073 N
Iron, Total	0.30 h	9.030	N	5.360 N	8.610 N	4.720 N	75.000 N	43.700 N	48.000 N
Lead, Total	0.025	0.011	N	0.001 J	0.006 N	0.005 N	0.001 U	0.021 N	0.023 N
Manganese, Total	0.30 h	3.250	N	1.460 N	4.550 N	2.290 N	6.230 N	2.300 N	2.300 N
Mercury, Total	0.001	0.0002	Ĵ	0.0001 U	0.0001 U	0.0001 U	0.0002 J	0.0001 U	0.0001 U
Nickel, Total	0.100	0.027	J	0.009 J	0.016 J	0.010 J	0.104 N	0.059 N	0.069 N
Selenium, Total	0.010	0.001	U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Silver, Total	0.050	0.003	U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U
Total Vanadium	NA	0.022	J	0.016 J	0.018 J	0.019 J	0.083 N	0.051 N	0.055 N

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

GROUNDWATER ANALYTICAL DATA JANUARY 24, 1994

	NYSDEC Class GA Standards		MW93-1D	MW93-2S	MW93-2D	MW93-38	MW93-3D	MW93-3D DUP
Zinc, Total	2.0 G	0.033 N	0.031 N	0.032 N	0.028 N	0.281 N	0.118 N	0.130 N
Cyanide, Total	0.20 L	0.010 U	0.010 U	0.039 N	0.010 U	0.476 N	0.010 U	0.010 U
Cyanide, Amenable	0.20 L			0.010 U		0.010 U		

Notes:

ppm - parts per million.

NYSDEC TOGS Class GA Ambient Water Quality Standards and Guidance Values, revised 6/98.

SB - Site background.

NA - Not Available.

Shaded values exceed criteria.

Data Qualifiers:

U - Undetected. The value listed is the detection limit.

The detection limit is defined for organic compounds as the quantitation limit. The inorganic detection limit is the instrument detection limit.

- J Detected at an estimated concentration below the minimum quantitation limit.
- I Possible matrix interference.
- N Detected concentration.
- D Indicates the sample was diluted to quantify the concentration.
- B Indicates the compound was found in the blank.

Criteria Qualifiers:

- a Value listed applies to the sum of these substances.
- b Value listed applies to the sum of these substances.
- c Value listed applies to both the cis and trans isomers separately.
- d Value listed applies to each isomer individually.
- e Value listed applies to the sum of the isomers.
- G Guidance Value.
- h Iron and Manganese criteria are 0.3 ppm individually or 0.5 ppm as a sum.
- L Applies to total Cyanide.
- NA No GA standard or guidance value for ground water is available for these substances.

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

GROUNDWATER ANALYTICAL DATA APRIL 27, 1994

	NYSDEC Class GA Standards	MW93-1S	MW93-1D	MW93-2S	MW93-2D	MW93-3S	MW93-3D	MW93-3D DUP
VOLATILES (ppm)								
1,1,1- Trichloroethane	0.005	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
1,1,2,2-Tetrachloroethane	0.005	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
1,1,2-Trichloroethane	0.001	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
1,1- Dichloroethane	0.005	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
1,1-Dichloroethylene	0.005	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
1,2-Dichloroethane	0.001	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
1,2-Dichloroethene,Total	0.005 c	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
1,2-Dichloropropane	0.001	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
2-Butanone	0.050 G	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
2-Hexanone	0.050 G	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
4-Methyl-2-Pentanone	NA	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Acetone	0.050 G	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Benzene	0.001	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Bromodichloromethane	0.050 G	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Bromoform	0.050 G	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Methyl Bromide (Bromomethane)	0.005	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Carbon Disulfide	NA	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Carbon Tetrachloride	0.005	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Chlorobenzene	0.005	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Chloroethane	0.005	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Chloroform	0.007	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Chloromethane	0.005	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Dibromochloromethane	0.050 G	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Ethylbenzene	0.005	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Methylene Chloride	0.005	0.005 U	0.005 U	0.001 JB	0.005 U	0.001 JB	0.001 JB	0.001 JB
Styrene	0.005	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Tetrachloroethene	0.005	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Toluene	0.005	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Trichloroethene	0.005	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Vinyl Acetate	NA	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Vinyl Chloride	0.002	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Total Xylenes	0.005 d	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Cis-1,3-Dichloropropene	0.0004 e	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Trans-1,3-Dichloropropene	0.0004 e	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
TOTAL DETECTED VOLATILES		ND	ND	0.001	ND	0.001	0.001	0.001
SEMIVOLATILES (ppm)								
1,2,4-Trichlorobenzene	0.005	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
1,2-Dichlorobenzene	0.003	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

GROUNDWATER ANALYTICAL DATA APRIL 27, 1994

	NYSDEC Class GA							
		MW93-1S	MW93-1D	MW93-2S	MW93-2D	MW93-3S	MW93-3D	MW93-3D
	Standards							DUP
1,3-Dichlorobenzene	0.003	0.010 U						
1,4 - Dichlorobenzene	0.003	0.010 U						
Bis (2-Chloroisopropyl) Ether	NA	0.010 U						
2,4,5-Trichlorophenol	0.001 a	0.026 U	0.025 U	0.026 U	0.025 U	0.025 U	0.025 U	0.025 U
2,4,6 Trichlorophenol	0.001 a	0.010 U						
2,4 -Dichlorophenol	0.001 a	0.010 U						
2,4- Dimethylphenol	0.001 a	0.010 U						
2,4- Dinitrophenol	0.001 a	0.026 U	0.025 U	0.026 U	0.025 U	0.025 U	0.025 U	0.025 U
2,4- Dinitrotoluene	0.005	0.010 U						
2,6-Dinitrotoluene	0.005	0.010 U						
2-Chloronaphthalene	0.010 G	0.010 U						
2-Chlorophenol	0.001 a	0.010 U						
2-Methylnaphthalene	NA	0.010 U						
2-Methylphenol	0.001 a	0.010 U	0.010 U	0.010 U	0.010 Ú	0.010 U	0.010 U	0.010 U
2-Nitroaniline	0.005	0.026 U	0.025 U	0.026 U	0.025 U	0.025 U	0.025 U	0.025 U
2-Nitrophenol	0.001 a	0.010 U						
3,3 Dichlorobenzidine	0.005	0.010 U						
3-Nitroaniline	0.005	0.026 U	0.025 U	0.026 U	0.025 U	0.025 U	0.025 U	0.025 U
2-Methyl-4,6-Dinitrophenol	0.001 a	0.026 U	0.025 U	0.026 U	0.025 U	0.025 U	0.025 U	0.025 U
4-Bromophenyl Phenyl Ether	NA	0.010 U						
4-Chloro-3-Methylphenol	0.001 a	0.010 U						
4-Chloroaniline	0.005	0.010 U						
4-Chlorophenyl Phenyl Ether	NA	0.010 U						
4-Methylphenol	0.001 a	0.010 U						
4-Nitroaniline	0.005	0.026 U	0.025 U	0.026 U	0.025 U	0.025 U	0.025 U	0.025 U
4-Nitrophenol	0.001 a	0.010 U	0.010 Ū	0.010 U				
Acenaphthene	0.020 G	0.010 U						
Acenaphthylene	NA	0.010 U						
Anthracene	0.050 G	0.010 U	0.010 Ū	0.010 U				
Benzo (A) Anthracene	0.000002 G	0.010 U						
Benzo (A) Pyrene	ND	0.010 U						
Benzo (B) Fluoranthene	0.000002 G	0.010 U	0.010 Ū	0.010 U				
Benzo (G,H,I,) Perylene	NA	0.010 U						
Benzo (K) Fluoranthene	0.000002 G	0.010 U						
Benzoic Acid	NA	0.026 U	0.025 U	0.026 U	0.025 U	0.025 U	0.025 U	0.025 Ū
Benzyl Alcohol	NA	0.010 U						
Butylbenzylphthalate	0.050 G	0.010 U						
Carbazole	NA	0.010 U						
Chrysene	0.000002 G	0.010 U						
Di-N-Butylphthalate	0.050	0.010 U						
Di-N-Octylphthalate	0.050 G	0.010 U						

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

GROUNDWATER ANALYTICAL DATA APRIL 27, 1994

	NYSDEC Class GA Standards	MW93-IS	MW93-1S MW93-1D	MW93-2S	MW93-2D	MW93-3S	MW93-3D	MW93-3D
Dibenzo (A,H) Anthracene	NA	0.010 11	11 010 0	0.010 11	30		1.2	
Dibenzofuran	NA	1			0 010 11	1		1
Diethylphthalate	0.050 G	- L				0 010 0	0.010 0	
Dimethylphthalate	0.050 G	1	_			- 1		
Fluoranthene	0.050 G	- L	- I	- I			0.010 11	0 010 11
Fluorene	0.050 G	0.010 U	0.010 U		- I		_	
Hexachlorobenzene	0.000	0.010 U	0.010 U	0.010 U	i	- 1	- 1	
Hexachloro-1,3-Butadiene	0.001		0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	
Hexachloroethane	200.0			1			0.010 U	0.010 U
Indeno(1,2,3-CD)Pyrene	0.000002 G	0 010 0	0.010 U	0.010 U		L I	1	
Isophorone	0.050 G					l I		
N-Nitroso-Di-N-Propylamine	NA			0.010 U	0.010 0	0.010 0	0.010 0	
N-Nitrosodiphenylamine	0.050 G	0.010 U		- I	1	1		0.010 17
Naphthalene	0.010 G	0.010 U	0.010 U	0.010 U	- I	1		
Nitrobenzene	0.000	0.010 U	0.010 U	0.010 U	0.010 U	- L	_ I	
rentachlorophenol	0.001 a		0.025 U	0.026 U	0.025 U	0.025 U	0.025 U	0.025 U
Phenol	0.000 G	0.010				1 1		0.010 U
Pyrene	0.050 G		0 010 11	0.010 11	0.010 0			
Bis(2-Chloroethoxy)Methane	0.005	- 1		- 1	0.010 U	0 010 11	0 010 0	
Bis (2-Chloroethyl) Ether	0.001	0.010 U			1		0.010 U	0.010 0
Bis (2-Ethylhexyl) Phthalate	0.005	0.010 U	0.010	- I				
FOTAL DEFECTED SEMIVOLATILES	ILES	ND	0.010	UN	0.010		1 . T. A	1. A.
INORGANICS (ppm)								1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Aluminum, Total	NA	23.600	15.400	28.100	12.300	32.300	14.800	14 400
Antimony, Total	0.003	0.003 U		0.003 U	С	9		0.003 U
Arsemic, Total	0.025	0.019	0.011	0.059	0.009 B	0.071	0.012	- 1
Gadming Total	1.000		Ц		0.225	0.178 B	0.255	0.254
Chromium Total	0.005			0.003 U	0.003 U	0.003 U	0.003 U	0.003 U
Copper, Total	0.200	0.068	0.042	860'0	0.041			0.143
ron, Total	0.30 h	(4707) GANY CONTRA			A Long	66.600	28.800	28 000
ead, Total	0.025	0.029	1.10.200				1000	0.015
Manganese, Total	1		1.700					1.740
Microlly, Iotal	0.001	C		0.000 U	0.000 U	0.000	4	0.000 U
Selenium Total	0.100	-		1	в	0.076	0.053	0.049
Silver, Total	0.050	0.015	0.004 B	0.001 C	0.001	0.001		1
	NA	_	∞	- I	. (0	0.000 C	

50 JO S rage 4.

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

GROUNDWATER ANALYTICAL DATA APRIL 27, 1994

	NYSDEC Class GA Standards	M₩93-1S	MW93-1D	MW93-2S	MW93-2D	MW93-3S	MW93-3D	MW93-3D DUP
Zinc, Total	2.0 G	0.142	0.093	0.195	0.248	0.661	1.060	0.276
Cyanide, Total	0.20 L	0.010 U	0.010 U	0.049	0.010 U	0.237	0.010 U	0.010 U
Cyanide, Amenable	0.20 L	-	-	0.010 U	-	0.025	-	

Notes:

ppm - parts per million.

NYSDEC TOGS Class GA Ambient Water Quality Standards and Guidance Values, revised 6/98.

SB - Site background.

NA - Not Available.

Shaded values exceed criteria.

Data Qualifiers:

U - Undetected. The value listed is the detection limit.

The detection limit is defined for organic compounds as the quantitation limit.

- The inorganic detection limit is the instrument detection limit.
- J Detected at an estimated concentration below the minimum quantitation limit.
- I Possible matrix interference.
- N Detected concentration.
- D Indicates the sample was diluted to quantify the concentration.
- B Indicates the compound was found in the blank.

Criteria Qualifiers:

- a Value listed applies to the sum of these substances.
- b Value listed applies to the sum of these substances.
- c Value listed applies to both the cis and trans isomers separately.
- d Value listed applies to each isomer individually.
- e Value listed applies to the sum of the isomers.
- G Guidance Value.
- h Iron and Manganese criteria are 0.3 ppm individually or 0.5 ppm as a sum.
- L Applies to total Cyanide.

NA - No GA standard or guidance value for ground water is available for these substances.

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

GROUNDWATER ANALYTICAL RESULTS JULY 20, 1994

	NYSDEC Class GA	MW93-1D	MW93-1S	MW93-2D	MW93-2S	MW93-3D	MW93-3D	MW93-3S
	Standards						DUP	
VOLATILES (ppm)			<u></u>	<u></u>			<u> 21422-248</u>	Kartha an in
1,1,1- Trichloroethane	0.005	<u>0.005</u> U	0.005 U	0.005_U	0.005 U	0.005 U	<u>0.005</u> U	0.005 U
1,1,2,2-Tetrachloroethane	0.005	0.005 U	0.005 U	0.005_U	<u>0.005</u> U	<u>0.005 U</u>	0.005 U	0.005 U
1,1,2-Trichloroethane	0.001	0.005 U	0.005 U	0.005 U	0.005 U	<u>0.005 U</u>	0.005 U	0.005 <u>U</u>
1,1-Dichloroethane	0.005	0.005 U	0.005 U	0.005 U	<u>0.005</u> U	<u>0.005</u> U	0.005 U	<u>0.005</u> U
1,1-Dichloroethene	0.005	0.005 U	0.005 U	0.005 U	0.005 U	<u>0.005</u> U	0.005 U	<u>0.005</u> U
1,2-Dichloroethane	0.001	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	<u>0.005 U</u>
1,2-Dichloroethene,Total	<u>0.005 c</u>	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
1,2-Dichloropropane	0.001	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
2-Butanone	0.050 G	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
2-Hexanone	0.050 G	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
4-Methyl-2-Pentanone	NA	0.010 U	0.010 U	0.010 U	0.010 U	0.010 Ū	0.010 U	0.010 U
Acetone	0.050 G	0.010 U	0.011	0.003 J	0.006 J	0.005 J	0.010 U	0.010 U
Benzene	0.001	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Bromodichloromethane	0.050 G	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Bromoform	0.050 G	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Methyl Bromide (Bromomethane)	0.005	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Carbon Disulfide	NA	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Carbon Tetrachloride	0.005	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Chlorobenzene	0.005	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Chloroethane	0.005	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Chloroform	0.007	0.005 U	0.010 U	0.010 U	0.005 U	0.005 U	0.005 U	0.005 U
Chloromethane	0.005	0.010 U	0.000 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Dibromochloromethane	0.050 G	0.005 U	0.010 U	0.005 U	0.010 U	0.010 U	0.005 U	0.005 U
Ethylbenzene	0.000	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Methylene Chloride	0.005	0.003 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.003 U 0.002 JB
	0.005	0.004 J	0.005 U	0.005 U	0.005 U	0.003 U	0.005 U	0.002 JB
Styrene Tetrachloroethene	0.005		0.005 U	0.003 U	0.005 U	0.005 U	0.005 U	0.005 U
Toluene	0.005	0.005 U			0.005 U 0.005 U	0.005 U		
Trichloroethene	0.005	0.005 U		0.005 U		0.005 U	0.005 U	0.005 U
Vinyl Acetate	<u>NA</u>	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Vinyl Chloride	0.002	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Total Xylenes	0.005 d	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Cis-1,3-Dichloropropene	0.0004 e	0.005 U	<u>0.005</u> U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Trans-1,3-Dichloropropene	<u>0.0004_e</u>	<u>0.005 U</u>	<u>0.005 U</u>	<u>0.005 U</u>	0.005 U	<u>0.005 U</u>	0.005 U	<u>0.005 U</u>
TOTAL DETECTED VOCs		0.004	0.011	0.003	0.006	0.005	ND	0.002
SEMIVOLATILES (ppm)						40 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -		
1.2.4-Trichlorobenzene	0.005	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
1,2-Dichlorobenzene	0.003	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
1,3-Dichlorobenzene	0.003	0.012 U	0.010 U		0.011 U			0.012 U
1,4 - Dichlorobenzene	0.003	0.012 U	0.010 U		0.011 U	0.010 U	0.010 U	0.012 U
Bis (2-Chloroisopropyl) Ether	0.005 NA	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U 0.012 U
2,4,5-Trichlorophenol	0.001 a	0.030 U	0.010 U	0.010 U	0.028 U	0.010 U	0.024 U	0.012 U 0.029 U
2,4,6 Trichlorophenol	0.001 a	0.012 U	0.024 U 0.010 U	0.024 U	0.028 U 0.011 U	0.010 U	0.010 U	0.029 U 0.012 U
2,4,0 Trichlorophenol	0.001 a	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U 0.012 U
2,4 -Dichlorophenol							0.010 U	0.012 U 0.012 U
	0.001 a	0.012 U	0.010 U					
2,4- Dinitrophenol	0.001 a	0.030 U	0.024 U	0.024 U	0.028 U	0.024 U	0.024 U	0.029 U
2,4- Dinitrotoluene	0.005	0.012 U	<u>0.010 U</u>	0.010 U	0.011 U	<u>0.010 U</u>	0.010 U	<u>0.012 U</u>
2,6-Dinitrotoluene	0.005	<u>0.012</u> U	<u>0.010 U</u>	<u>0.010</u> U	<u>0.011 U</u>	<u>0.010</u> U	<u>0.010 U</u>	<u>0.012 U</u>

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

GROUNDWATER ANALYTICAL RESULTS JULY 20, 1994

	NYSDEC						<u> 778 90 8</u>	<u></u>
	Class GA	MW93-1D	MW93-15	MW93-2D	MW93-2S	MW93-3D	MW93-3D	MW93-3S
	Standards						DUP	797 (13 () 14 () 16 ()
2-Chloronaphthalene	0.010 G	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
2-Chlorophenol	0.001 a	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
2-Methylnaphthalene	NA	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
2-Methylphenol	0.001 a	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 Ū	0.012 U
2-Nitroaniline	0.005	0.030 U	0.024 U	0.024 U	0.028 U	0.024 U	0.024 U	0.029 U
2-Nitrophenol	0.001 a	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
3,3 Dichlorobenzidine	0.005	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
3-Nitroaniline	0.005	0.030 U	0.024 U	0.024 U	0.028 U	0.024 U	0.024 U	0.029 U
2-Methyl-4,6-Dinitrophenol	0.001 a	0.030 U	0.024 U	0.024 U	0.028 U	0.024 U	0.024 U	0.029 U
4-Bromophenyl Phenyl Ether	NA	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
4-Chloro-3-Methylphenol	0.001 a	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
4-Chloroaniline	0.005	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
4-Chlorophenyl Phenyl Ether	NA	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
4-Methylphenol	0.001 a	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
4-Nitroaniline	0.005	0.030 U	0.024 U	0.024 U	0.028 U	0.024 U	0.024 U	0.029 U
4-Nitrophenol	0.001 a	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
Acenaphthene	0.020 G	0.012 Ū	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
Acenaphthylene	NA	0.012 U	0.010 U	0.010 Ū	0.011 U	0.010 U	0.010 U	0.012 U
Anthracene	0.050 G	0.012 U	<u>0.010</u> U	0.010 U	0.011 U	0.010 U	0.010 U	0.012_U
Benzo (A) Anthracene	0.000002 G	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 <u>U</u>	0.012 U
Benzo (A) Pyrene	ND	0.012 U	0.010 U	0.01 <u>0</u> U	0.011 U	0.010 U	0.010 U	0.012 U
Benzo (B) Fluoranthene	0.000002 G	0.012 · U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.01 <u>2</u> U
Benzo (G,H,I,) Perylene	NA	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
Benzo (K) Fluoranthene	0.000002 G	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
Benzoic Acid	NA NA	0.030 U	0.024 U	0.024 U	0.028 U	0.024 U	0.024 U	0.029 U
Benzyl Alcohol	NA	0.012 U	0.010 <u>U</u>	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
Butylbenzylphthalate	0.050 G	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.01 <u>2</u> U
Carbazole	NA	0.012 U	0. <u>01</u> 0 <u>U</u>	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
Chrysene	0.000002 G	0.012 <u>U</u>	<u>0.010 U</u>	0.010 U	0.011 U	0.010 U	0.010 U	<u>0.01</u> 2 U
Di-N-Butylphthalate	0.050	<u>0.012 U</u>	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
Di-N-Octylphthalate	0.050 G	0.012 U	0.010 U	0.010 U	<u>0.011 U</u>	<u>0.010 U</u>	0.010 U	0.012 U
Dibenzo (A,H) Anthracene	NA	0.012 U	<u>0.010 U</u>	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
Dibenzofuran	NA	0.012 U	0.010 U	<u>0.010</u> U	0.011 U	0.010 U	0.010 U	0.012 U
Diethylphthalate	0.050 G	0.012 U	0.010 U	0.010 U	<u>0.011 U</u>	<u>0.010</u> U	0.010 U	0.012 U
Dimethylphthalate	0.050 G	0.012_U	0.010 U	<u>0.010 U</u>	0.011 U	0.010 U	<u>0.010</u> U	0.012 U
Fluoranthene	0.050 G	0.012 U	0.010 U	<u>0.010 U</u>	0.011 U	0.010 U	0.010 U	0.012 U
Fluorene	0.050 G	0.012 U	0.010 U	0.010 U	<u>0.011</u> U	<u>0.010 U</u>	<u>0.010</u> U	0.012 U
Hexachlorobenzene	0.00004	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U	<u>0.010</u> U	0.012 U
Hexachloro-1,3-Butadiene	0.001	0.012 U	0.010 U	0.010 U	<u>0.011</u> U	<u>0.010 U</u>	0.010 U	0.012 U
Hexachlorocyclopentadiene	0.005	0.012_U	0.010 U	0.010 U	0.011 U	0.010 U	0.010 U	0.012 U
Hexachloroethane	0.005	0.012 U	0.010 U	0.010 U	0.011 U	0.010 U		0.012 U
Indeno(1,2,3-CD)Pyrene	0.000002 G	<u>0.012 U</u>			0.011 U	0.010 U	0.010 U	0.012 U
Isophorone	0.050 G	<u>0.012</u> U		0.010 U		0.010 U		0.012 U
N-Nitroso-Di-N-Propylamine	NA NA	0.012 U			0.011 U		0.010 U	0.012 U
N-Nitrosodiphenylamine	0.050 G	0.012 U		0.010 U	0.011 U		0.010 U	0.012 U
Naphthalene	0.010 G	0.012 U	0.010 U	<u>0.010 U</u>			0.010 U	0.012 U
Nitrobenzene	0.000	0.012 U		0.010 U	0.011 U		0.010 U	0.012_U
Pentachlorophenol	0.001 a	0.030 U	0.024 U	0.024 U	0.028 U	<u>0.024 U</u>	<u>0.024 U</u>	0.029 U
Phenanthrene	0.050 G	0.012 U	0.010 U	0.010 U	<u>0.011 U</u>		0.010 U	0.012 U
Phenol	0.001 a	0.012 U	0.010 U	<u>0.010 U</u>	<u>0.011</u> U	0.010 U	0.010 Ŭ	<u>0.012</u> U

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

GROUNDWATER ANALYTICAL RESULTS JULY 20, 1994

	NYSDEC Class GA Standards	MW93-1	D	MW93-18	5	MW93-:	2D	MW93-2S	MW93-3D	MW93-3D DUP	MW93	9-3S
Pyrene	0.050 G	0.012	U	0.010 U	Ū	0,010	U	0.011 U	0.010 0	0.010 U	0.012	U
Bis(2-Chloroethoxy)Methane	0.005	0.012	U	0.010 U	U	0.010	U	0.011 U	0.010 L	0.010 U	0.012	U
Bis (2-Chloroethyl) Ether	0.001	0.012	U	0.010 1	U	0.010	U	0.011 U	0.010 U	0.010 U	0.012	U
Bis (2-Ethylhexyl) Phthalate	0.005	0.012	U	0.010 1	U	0.010	U	0.011 U	0.010 U	0.010 U	0.012	U
TOTAL DETECTED SVOCs		ND		ND		ND		ND	ND	ND	ND	
INORGANICS (ppm)				14 (19 19 19 19 19 19 19 19 19 19 19 19 19 1		<u></u>				l catalogue as		5 & J
Aluminum, Total	NA	9.30		24.7		7.61		12.3	5.1	6.3	15.7	
Antimony, Total	0.003	0.003	U	0.003 U	U	0.003	U	0.003 U	0.003 L	0.003 U	0.003	U
Arsenic, Total	0.025	0.0063	B	0.0221		0.0065	B	0.0227	0.0064 E	0.0076 <u>B</u>	0.019	B
Barium, Total	1.000	0.168	B	0.286		0.203		0.125 B	0.207	0.225	0.105	
Cadmium, Total	0.005	0.004	U	0.004 (U	0.015		0.004 U	0.004 L	0.004 U	0.004	U
Chromium, Total	0.050	0.015		0.140		0.050		0.077	0.033	0.044	0.033	
Copper, Total	0.200	0.024	B	0.067		0.020	B	0.042	0.018 E	0.054	0.041	
Iron, Total	0.30 h	15.4		50.5		13.1		30.4	9,3	12.5	28.9	2.7 34
Lead, Total	0.025	0.0099		0.0332		0.0094		0.0190	0.0068	0.0061	0.0130	
Manganese, Total	0.30 h	1.19		2.34		1.48		3.55	1.22	1.33	5.50	2.960
Mercury, Total	0.001	0.0001	U	0.0001 <u>U</u>	U	0.0001	U	0.0001_U	0.0001 U	0.0001 U	0.0001	<u>U</u>
Nickel, Total	0.100	0.018	B	0.059	1	0.038	B	0.036 B	<u>0.013</u> E	0.047	0.043	
Selenium, Total	0.010	0.001	U	0.001 U	U	0.001	U	0.001 <u>U</u>	<u>0.001</u> L	0.0 <u>0</u> 1 <u>U</u>	0.001	Ū
Silver, Total	0.050	0.007	U	0. <u>0</u> 07 <u>t</u>	U	0.007	U	0.007 U	<u>0.007</u> L	0.007 U	0.007	U
Total Vanadium	NA	0.017	B	0.046 E	B	0.020	B	0.025 B	<u>0.015</u> B	0.021 B	0.042	B
Zinc, Total	2.0 G	0.045		0.144		0.054		0.085	0.036	0.041	0.920	
Cyanide, Total	0.20 L	0.010	Ū	0.010 U	IJ	0.010	U	0.0662	0.010 U	0.010 U	0.371	
Cyanide, Amenable	0.20 L							0.0662			0.371	1960

Notes:

ppm - parts per million.

NYSDEC TOGS Class GA Ambient Water Quality Standards and Guidance Values, revised 6/98.

SB - Site background.

NA - Not Available.

Shaded values exceed criteria.

Data Qualifiers:

- U Undetected. The value listed is the detection limit.
 - The detection limit is defined for organic compounds as the quantitation limit. The inorganic detection limit is the instrument detection limit.
- J Detected at an estimated concentration below the minimum quantitation limit.
- I Possible matrix interference.
- N Detected concentration.
- D Indicates the sample was diluted to quantify the concentration.
- B (organic compounds) Indicates the compound was found in the blank.
- B (inorganic compounds) Indicates the reported value is greater than the contract required detection limit but greater than the instrument detection limit.

Criteria Qualifiers:

- a Value listed applies to the sum of these substances.
- b Value listed applies to the sum of these substances.
- c Value listed applies to both the cis and trans isomers separately.
- d Value listed applies to each isomer individually.
- e Value listed applies to the sum of the isomers.
- G Guidance Value.
- h Iron and Manganese criteria are 0.3 ppm individually or 0.5 ppm as a sum.
- L Applies to total Cyanide.
- NA No GA standard or guidance value for ground water is available for these substances.

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

SEDIMENT ANALYTICAL DATA OCTOBER 28, 1993

	Benthic Ac	juatic Life			Down	stream		1.000	1289 X	Backgroun	d 20 - S - L
	Toxicity C	riteria (1,2)								1.36.24	
Field Location:	Chronic	A successful sector	SS-1	SS-2	SS-2	SS-3	SS-4	SS-5	SS-6	SS-7	SS-8
	(ug/g OC)	Acute (ug/g OC)	NO X	0.05-4	Dup.	05-5	90.4	00-0	55-6	1 Start	
	(46/5 00)					N 2 - 24					
Volatiles (mg/Kg)											
2-Butanone			0.014 U	0.062 UD	0.066 UD	0.032 UD	0.027	0.017 U	0.029	0.019 U	0.027
Acetone			0.081	0.13 D	0.13 D	0.15 D	0.14	0.06	0.14	0.052	0.12
Carbon Disulfide			0.007 U	0.031 UD	0.033 UD	0.016 UD	0.009 U	0.008 U	0.009 Ū	0.009 U	0.002 J
Chloromethane			0.014 U	0.062 UD	0.066 UD	0.021 JD	0.018 U	0.017 U	0.018 U	0.019 U	0.01 6 U
Ethylbenzene	24	212	0.004 J	0.031 UD	0.033 UD	0.016 UD	0.009 U	0.008 U	0.009 U	0.009 U	0.008 U
Methylene Chloride			0.007 U	0.02 JD	[0.033 UD	0.013 JD	0.009 U	0.008 U	0.009 U	0.009 U	0.008 U
Toluene	49	235	0.007 U	0.007 JD	0.033 UD	0.016 UD	0.009 U	0.008 U	0.009 U	0.009 U	0.002 J
Xylene, Total	92	833	0.009	0.031 UD	0.033 UD	0.016 UD	0.009 U	0.008 U	0.009 U	0.009 U	0.008 U
Semivolatiles (mg/Kg)						-					
2-Methylnaphthalene	34	304	1.4 JD	0.32 JD	0.4 JD	1.8 D	0.088 J	0.16 JD	0.055 J	0.19 JD	0.37 JD
Acenaphthene	140		2.3 D	4 D	4.3 D	3 D	3.6	0.47 JD	0.12 J	0.72 JD	0.87 JD
Acenaphthylene	0.044 (a)	0.64 (a)	1.1 JD	1.1 JD	1.4 JD	0.77 JD	0.63	0.39 JD	0.12 J	0.27 JD	0.55 JD
Anthracene	107	986	4.9 D	5.3 D	5.7 D	2.8 D	1.2	1.2 D	0.29 J	1 JD	2.5 JD
Benzo (A) Anthracene	12	94	14 D	12 D	14 D	8.9 D	4	5.1 D	1.4	4 D	7.3 D
Benzo (A) Pyrene	0.37 (c)	1440 (b)	12 D	9.8 D	12 D	7.5 D	3.5	4.4 D	1.4	3.5 D	6.4 D
Benzo (B) Fluoranthene			13 D	10 D	10 D	8 D	4.3	5.1 D	1.7	4.4 D	6.3 D
Benzo (G,H,I,) Pervlene	0.17 (c)	320 (b)	6 D	4.6 D	5.2 D	3.6 D	1.6	2.3 D	0.71	1.9 D	3 D
Benzo (K) Fluoranthene	0.24 (c)	1340 (b)	7.9 D	6.8 D	10 D	5.2 D	2.8	3.3 D	1.2	2.6 D	5.4 D
Butylbenzylphthalate			1.5 JD	0.58 JD	0.58 JD	1.7 UD	0.46 J		0.6 U	1.2 UD	2.7 UD
Carbazole			0.74 JD	0.62 JD	0.9 JD	0.37 JD	0.33 J	0.35 JD	0.079 J	0.22 JD	0.36 JD
Chrysene	0.34 (c)	460 (b)	14 D	11 D	12 D	8.6 D	4.2	5.2 D	1.8	4.4 D	8.1 D
Di-N-Butylphthalate			4.3 D	3.7 D	1.8 JD	2.8 D	5.2	0.77 JD	1.5	3.9 D	1.2 JD
Di-N-Octylphthalate			1.9 UD	2.1 UD	2.2 UD	1.7 UD	0.048 J	1.1 UD	0,6 U	1.2 UD	2.7 UD
Dibenzo (A,H) Anthracene	0.06 (c)	130 (b)	1.9 UD	2 JD	2.4 D	1.4 JD	0.72	0.96 JD	0.29 J	1.2 UD	2.7 UD
Dibenzofuran			1.1 JD	1.4 JD	1.6 JD	0.88 JD	0.66	0.21 JD	0.051 J	0.23 JD	0.43 JD
Fluoranthene	1020		26 D	24 D	26 D	17 D	7.7	10 D	2.7	8.8 D	16 D
Fluorene	8	73	3.4 D	4.7 D	5.3 D	3.1 D	1.7	0.73 JD	0.18 J	1.1 JD	1.6 JD
Indeno (1,2,3-CD) Pyrene	0.2 (c)	320 (b)	8.7 D	7 D	8.3 D	5.3 D	2.4	3.4 D	0.93	2.7 D	4.3 D
Naphthalene	30	258	0.38 JD	0.42 JD	0.48 JD	0.41 JD	0.25 J	0.34 JD	0.051 J	0.21 JD	0.26 JD
Phenanthrene	120	950 (b)	18 D	16 D	18 D	11 D	4	6.2 D	1	5.4 D	12 D
	961	8775	29 D	24 D	27 D	20 D		0.2 D	3.9	9.6 D	12 D
Pyrene	199.5		1.7 JD		1.1 JD		1.6	1.6 D	1.4	9.0 D	1.5 JD
Bis (2-Ethylhexyl) Phthalate				1.1 JD		1.1 JD	1.0	1.0 D	1.4	130	1.5 JU
Inorganics (mg/Kg)			11000	5420	9380	9930	11400	11100	11400	10000	10100
Aluminum, Total			11900 6.8	3420		7.2	11400	11100	11400	10800	10100
Arsenic, Total	66	33		56.1	5.4 197		12.1 136	8.5 83.1	<u>12</u> 95,4	10	8.5
Barium, Total		9	<u>130</u> 4.6	0.94	197	151 2.5	1.6		<u>95,4</u> <u>1.3</u>	101	111 I.2
Cadmium, Total	0.6							0.75		1.6	
Chromium, Total	26	110	26.1	13.8	14.8	19.5	28.2	31.2	24.5	22.5	19.5
Copper, Total	16	110	88.4	43.3	138	84.3	97.6	70.1	120	73.2	57.6
Iron, Total	20000	40000	26900	15500	15900	22600	29800	23100	22600	22900	20200
Lead, Total	31	110	344	203	195	284	332	306	334	604	326
Manganese, Total	460	1100	392	181	185	333	391	205	269	289	268
Mercury, Total	0.15	1.3	0.23	0.16	0.11 J	0.18	0.42	1.5	0.69	0.42	0.52
Nickel, Total	16	50	25.7	13.3	13.9	21.9	25	23.8	24.8	22.5	20.6
Silver, Total	<u> </u>	2.2	1.2 U	0.82 J	4.1	0.99 U	1.4 U	1.2 J	1.2 U	<u>1.4 U</u>	1.2 U
Vanadium, Total			26.6	12.1	12.6	22.3	24.5	21	26.1	22.5	19.7
Zinc, Total	120	270	879	127	244	236	406	240	423	360	292
Cyanide (mg/Kg)											
Cyanide, Total			1.4 U	1.2 U	LIU	1.2 U	16.2	1.5 U	3.2 U	3.4 U	3.5 U
TOC (%)											
% TOC			3.6	5.8	2.5	5.6	6	4.6	7	9.5	7.6

See Notes on Page 2.

NEW YORK STATE ELECTRIC AND GAS GOSHEN MGP SITE, GOSHEN, NEW YORK

SEDIMENT ANALYTICAL DATA OCTOBER 28, 1993

Notes:

(1) Sediment criteria are from NYSDEC (1999) <u>Technical Guidance for Screening Contaminated Sediments</u>. Criteria for organic compounds are in ug/g OC and are adjusted for TOC concentration. If NYSDEC criteria are not available, additional values are used as described below.

(a) Chronic and acute sediment criteria are ERL and ERM values, respectively from Long et al. (1995), as reported in NYSDEC (1999). Units are in mg/kg and are not adjusted for TOC concentration.

(b) Acute sediment criteria are Ontario Ministry of Environment (OME, 1993) Severe Effect Levels. Units are in ug/g OC and are adjusted for TOC concentration.

(c) Chronic sediment criteria are Ontario Ministry of Environment (OME, 1993) Lowest Effect Levels. Units are in mg/kg and are not adjusted for TOC concentration.

(2) Criteria which are presented in ug/g OC (organic carbon) are adjusted for each sample based on sample-specific TOC concentrations. For example, for flourene (chronic value of 8 ug/g OC; acute value of 73 ug/g OC) and sample SS-1 (TOC of 3.6%, or 36 g OC/Kg), the criteria are adjusted as follows:

chronic: $(8 \text{ ug/g OC})^* (36 \text{ g OC/Kg}) = 288 \text{ ug/Kg or } 0.288 \text{ mg/Kg}$

acute: (73 ug/g OC) * (36 g OC/Kg) = 2628 ug/Kg or 2.628 mg/Kg

The fluorene concentration detected in sample SS-1 was 3.4. This concentration exceeds both the sample-specific chronic and acute values.

TOC - Total Organic Carbon.

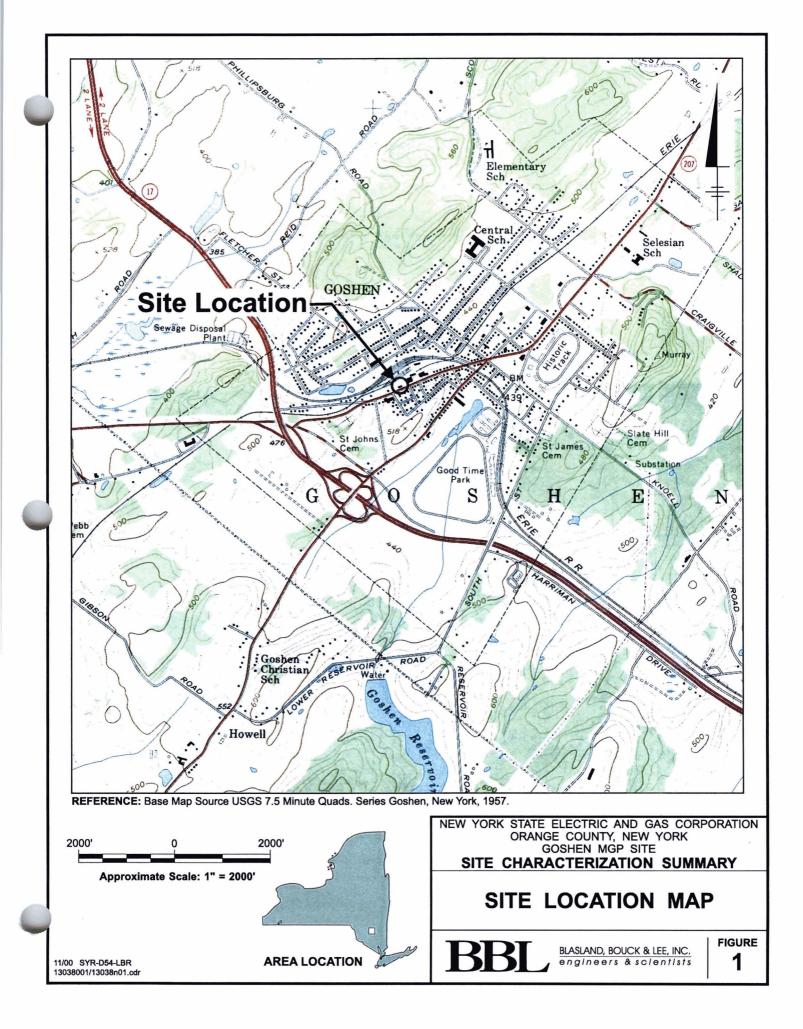
Results are reported in milligrams per kilogram (mg/Kg).

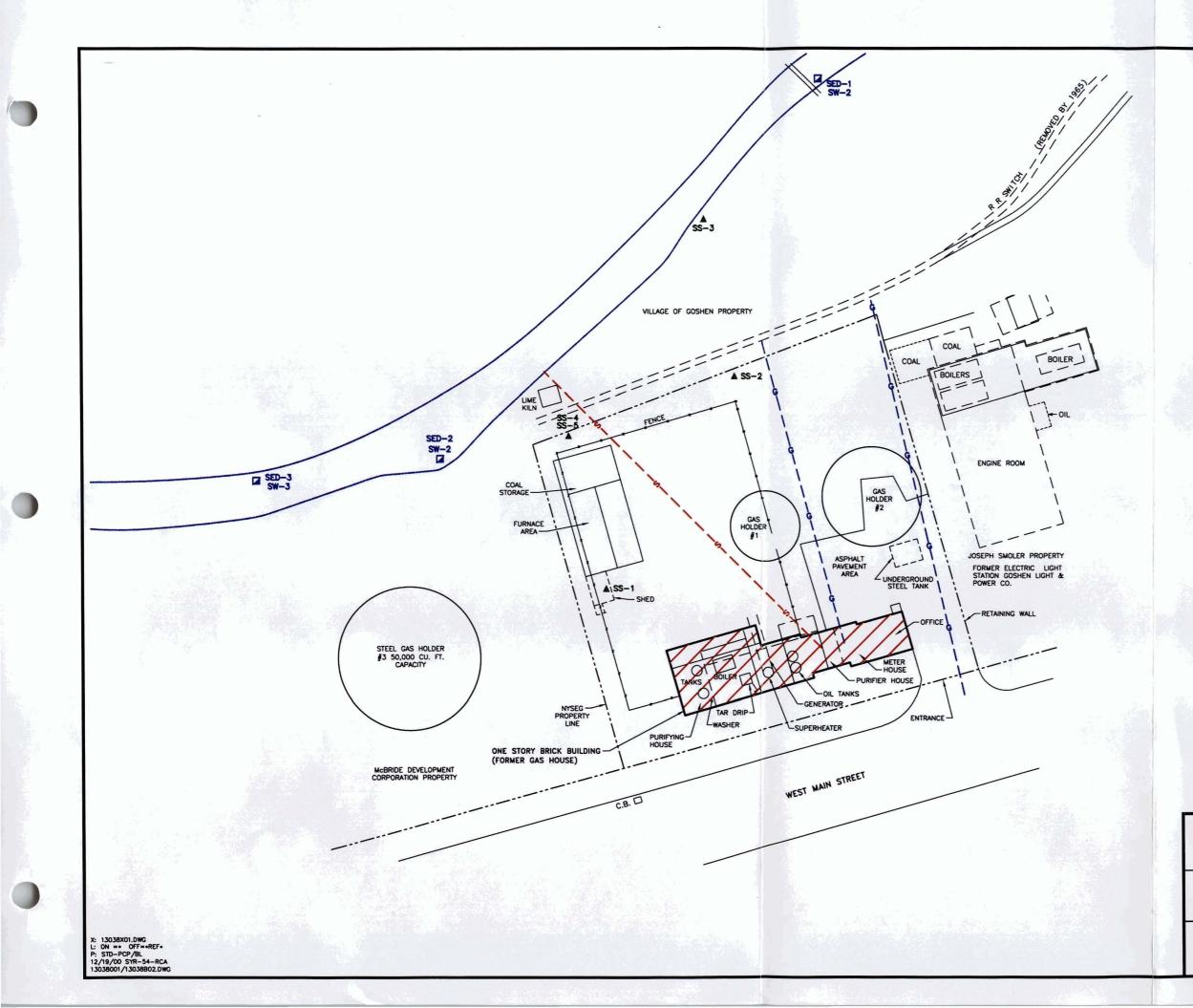
DUP = Field duplicate.

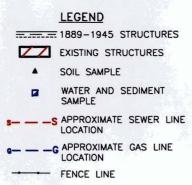
U = Compound was analyzed for but not detected.

J = Estimated value below the laboratory quantitation limit.

D = Concentration is based on a diluted sample analysis.

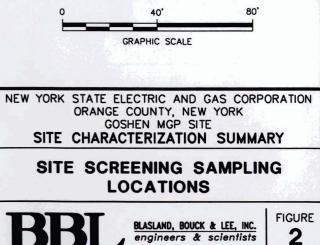

Boldface values exceed Benthic Aquatic Life Chronic Toxicity Level

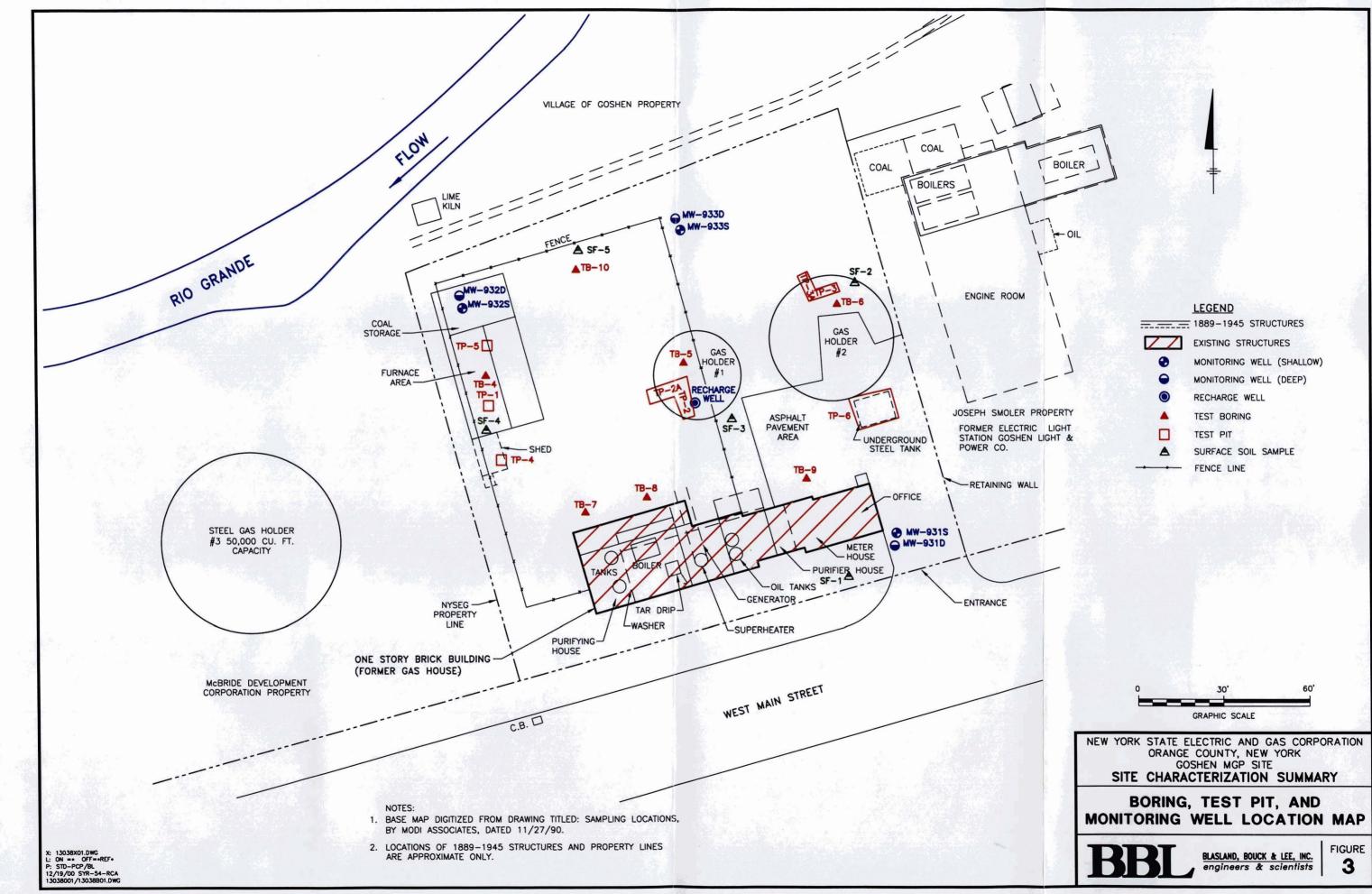

Shaded values exceed Benthic Aquatic Life Acute Toxicity Level

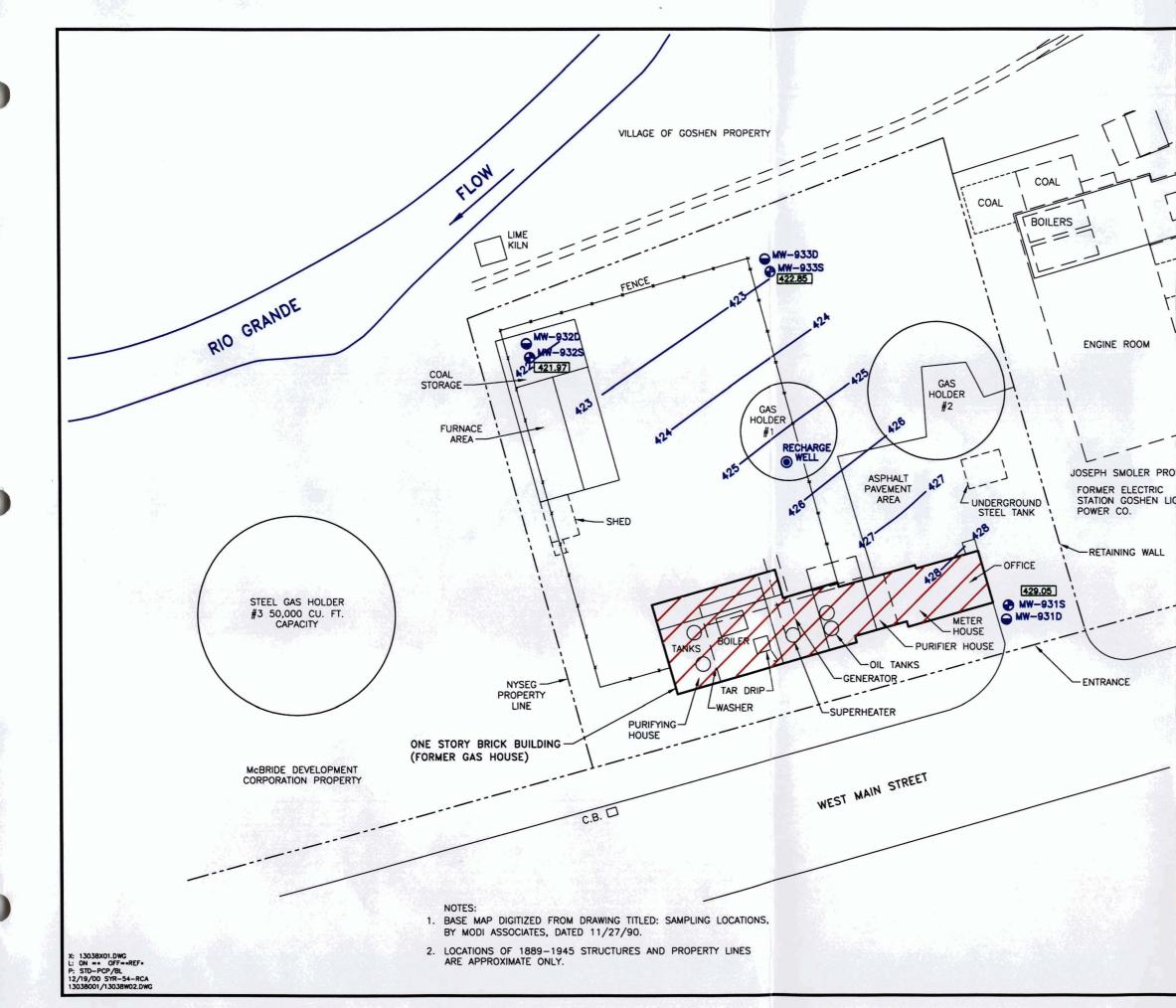

Figures

BLASLAND, BOUCK & LEE, INC.

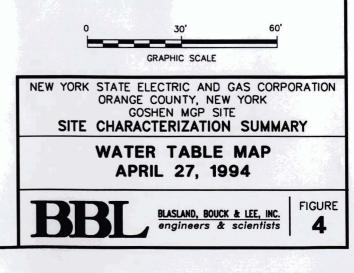
engineers & scientists

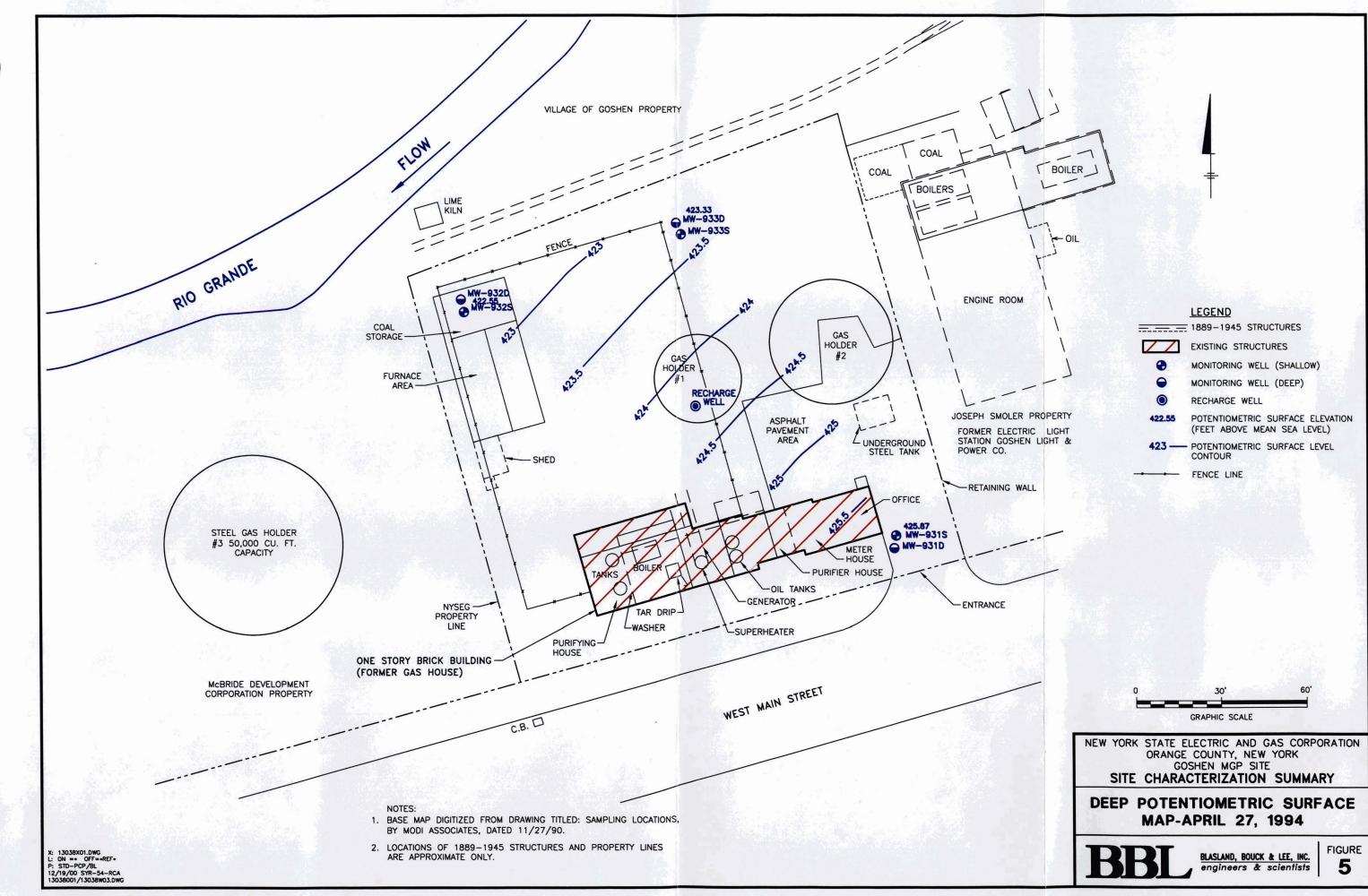




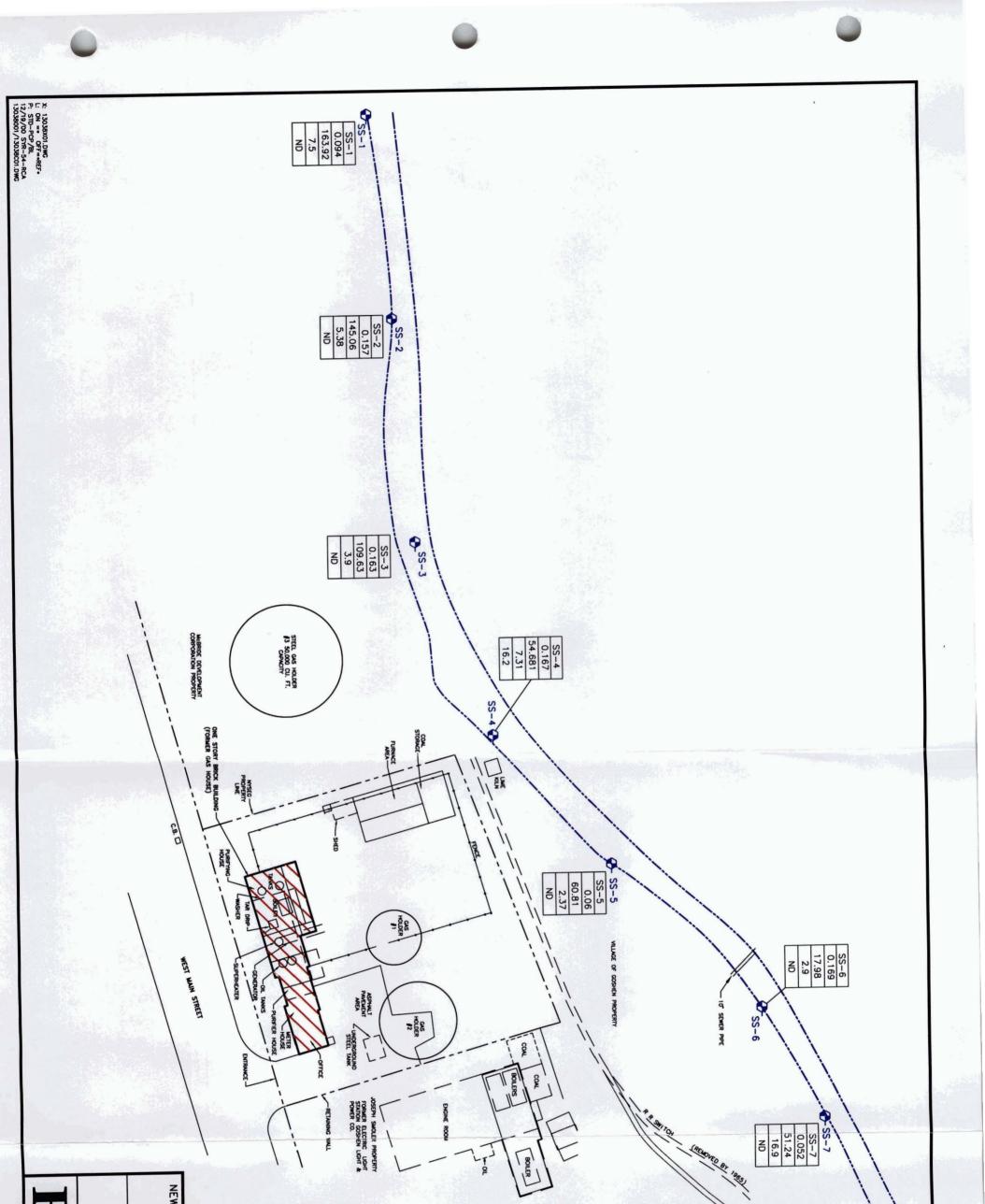


NOTES:


- 1. BASE MAP DIGITIZED FROM DRAWING TITLED: SAMPLING LOCATIONS, BY MODI ASSOCIATES, DATED 11/27/90.
- 2. LOCATIONS OF 1889-1945 STRUCTURES AND PROPERTY LINES ARE APPROXIMATE ONLY.
- 3. SEWER AND GAS LINES DIGITIZED FROM COPY OF DRAWINGS BY ASSOCIATED GAS AND ELECTRIC CO. COAL GAS PLANT DATED 1947, GOSHEN ILLUMINATING COMPANY COAL GAS PLANT (CIRCA 1923–1945), GOSHEN GAS LIGHT CO. WATER GAS WORKS (CIRCA 1905–1923), AND A. VANDERWERKEN WATER GAS WORKS (CIRCA 1889–1905).



٢		
BOILER		+
- 01		
e- OIL		
		LEGEND
1 1 2 2	=	1889-1945 STRUCTURES
1 32 3	∇	EXISTING STRUCTURES
1 and	•	MONITORING WELL (SHALLOW)
<u>_</u>	•	MONITORING WELL (DEEP)
	۲	RECHARGE WELL
CRTY	422.85	WATER TABLE ELEVATION (FEET ABOVE MEAN SEA LEVEL)
т&:	426 —	WATER TABLE ELEVATION CONTOUR
	· · · ·	FENCE LINE
- 1.13		
Starten Starten		
1.238		
5000		



OIL			
		LEGEND 1889–1945 STRUCTURES	
1	$\overline{\mathbf{Z}}$	EXISTING STRUCTURES	
	•	MONITORING WELL (SHALLOW) MONITORING WELL (DEEP)	
PERTY	422.55	RECHARGE WELL POTENTIOMETRIC SURFACE ELEVATION (FEET ABOVE MEAN SEA LEVEL)	
GHT &	423 —	- POTENTIOMETRIC SURFACE LEVEL CONTOUR	
	10	FENCE LINE	

L'		
	-	
T BOIL		
L		
-7	LEGEND	
	DIL WELL ID OCT 1993 DATE TOTAL VOCS 0.038 CONCENTRATION IN mg/L (ppm)	
Ň	TOTAL VOCS 0.03B CONCENTRATION IN mg/L (ppm) TOTAL PAHS ND ND ND OTHER SVOCS ND ND E CYANIDE ND ND B CYANIDE ND IN BLANK	
$\langle \rangle$	ANALYSIS	
Ň	EXISTING STRUCTURES	
Ì	MONITORING WELL (SHALLOW)	
-	MONITORING WELL (DEEP) RECHARGE WELL	
OPERTY		
0CF 1993 0.0288 ND ND ND	MW-931S JAN 1994 APR 1994 JULY 1994 0.006 ND 0.011 ND ND ND ND ND ND ND ND ND	
0.03B	MW-931D JAN 1994 APR 1994 JULY 1994 ND ND 0.004	
ND ND ND	ND ND ND 0.01 ND ND ND ND	
	0 30' 60' GRAPHIC SCALE	
	NEW YORK STATE ELECTRIC AND GAS CORPORATION	N
	ORANGE COUNTY, NEW YORK GOSHEN MGP SITE SITE CHARACTERIZATION SUMMARY	
	ORANGE COUNTY, NEW YORK GOSHEN MGP SITE	一般の日日
	ORANGE COUNTY, NEW YORK GOSHEN MGP SITE SITE CHARACTERIZATION SUMMARY CHEMICAL DISTRIBUTION IN	E

BLASLAND, BOUCK & LEE, INC. engineers & scientists FIGURE

CHEMICAL DISTRIBUTION IN SEDIMENTS

NEW YORK STATE ELECTRIC AND GAS CORPORATION ORANGE COUNTY, NEW YORK GOSHEN MGP SITE SITE CHARACTERIZATION SUMMARY

- 2. LOCATIONS OF 1889-1945 STRUCTURES AND PROPERTY LINES ARE APPROXIMATE ONLY.
- NOTES: 1. BASE MAP DIGITIZED FROM DRAWING TITLED: SAMPLING LOCATIONS, BY MODI ASSOCIATES, DATED 11/27/90.
- 16.2 7.638

==_== 1889-1945 STRUCTURES EXISTING STRUCTURES FENCE LINE SEDIMENT SAMPLE

LEGEND

SS-80

SS-8 0.151 92.74 2.7 ND

TOTAL VOCs (ppm) TOTAL PAHs (ppm) OTHER SVOCs (ppm) CYANIDE (ppm) SAMPLE ID

SS-4 0.167 55.588 Ŷ

Appendices

BLASLAND, BOUCK & LEE, INC.

engineers & scientists

Appendix A Site Screening Samples Laboratory Analytical Data

Report Date: 12/21/90

Work Order No.:2436

Client:

Ken Whitaker ES Syracuse New York Gas & Electric Co. 290 Elwood Davis Road Liverpool, NY 13088

Date of Sample Receipt: 11/16/90

Your samples identified as:

CGGS-SW-1 CGGS-SW-2 CGGS-SW-3

were analyzed for volatile organics by EPA Method 624, semivolatile organics by EPA Method 625 and metals. Total cyanide and cyanide amenable to chlorination results will follow on a separate work order.

In addition your samples identified as:

CGGS-SED-1 CGGS-SED-2 CGGS-SED-3 CGGS-SS-1 CGGS-SS-2 CGGS-SS-3 CGGS-SS-4 CGGS-SS-5

were analyzed for volatile organics by EPA Method 8240 semivolatile organics by EPA Method 8270, metals, total cyanide and cyanide amenable to chlorination.

Finally, your samples identified as:

CGGS-TRIP BLANK

was analyzed for volatile organics by EPA Method 624. The analytical reports for the samples listed above are attached.

90-WO2436 A PARSONS COMPANY

Biographical Data

RICHARD L. MERRELL

Lab Director

EXPERIENCE SUMMARY

Twenty-five years experience in analytical chemistry with 17 years in laboratory management. Responsible for all operations of 3 chemistry labs within a region employing over 200 people with annual sales over 12 million. Analytical laboratory experience includes combined gas chromotographymass spectrometry, gas chromotography, mass spectrometry, thermal analysis, infrared spectrometry, wet chemical analysis and physical testing.

EXPERIENCE RECORD

- 1989-Date Engineering-Science, Inc. Director Berkeley Lab. Responsible for overall management of ES lab services including overall profitability.
- 1987-1989 IT Corporation. Regional Lab Director. Responsible for overall management of the Western region including profitability.
- 1983-1987 IT Corporation. Lab Manager. Responsible for overall management of the Cerritos lab including profitability.
- 1977-1983 IT Corporation. Lab Manager. Responsible for lot production and scheduling, salary and personnel administration and policy.
- 1972-1977 IT Corporation. Group Leader Mass Spectrometry. Responsible for all aspects of the operation of the mass spectrometry groups.
- 1968-1972 IT Corporation. Chemist. Performed a variety of analyses using MS, GC, GC-MS, IR and thermal analyses.
- 1967-68 Shell Chemical Co. GC Section Supervisor. Supervised and scheduled several technicians in the GC area that were performing routine analyses.
- 1966-67 Shell Chemical Co. Chemist. Calibrated and repaired process GCs used for process control in a styrene and butadine plant.
- 1965-66 Chevron Research. Lab Technician. Performed many physical and wet chemical analyses of crude oil, core samples and soil samples.
- 1963-64 General Dynamics. Lab Technician. Performed many wet chemical analyses on electroplating solutions.

EDUCATION

B.S. in Chemistry, 1966, Brigham Young University, Provo, Utah

BART - Warm Springs Project - 1991

Mr. Merrell as Laboratory Director of the Engineering Science Berkeley Laboratory (ESBL), Mr. Merrell has had overall responsibility for ESBL's analytical portion of the project. The project technically includes various organic and inorganic analysis. He is responsible to assure that the analytical quality of the project is maintained as well as being responsible for managing the project so all the data is delivered to the client on schedule, complete and within financial budgets.

Purity/Wastech and Selma/Wastech, SITES Projects 1989-1990

Mr. Merrell has had overall responsibility for ESBL's analytical portion of these SITES projects. He is responsible to assure that the analytical quality of the project is maintained according to the project's specific QAPP. Also, he is responsible for managing the project so all the data is delivered to the client on schedule, complete, and within financial budgets.

The project technically included total analysis of the waste for organic and inorganic characterization. Also the waste was treated and analyzed by the Toxic Characteristic Leaching Procedure (TCLP) and the California Assessment Manuals (CAM) Leaching procedure to determine how effective the treating procedure was in stablizing the waste.

Moffett Naval Air Station 1987-1989

Mr. Merrell as the Western Regional Laboratory Director for International Technology Analytical Services (ITAS) was responsible for development and implementation of the sampling and analysis plan at the Moffett Naval Air Station, as part of their HAZWRAP program. His Field Analytical Service group worked with the ITAS laboratories to establish the methods, detection limits, holding times, QC criteria, sample containers, and preservatives that were specifically required for the project. The project was a multi-million dollar analytical project that involved the analysis of both soils and waters for a wider variety of parameters including volatile organic compounds (VOC), base neutral acid extractable (BNA), HSL metals, PCBs and anions.

HAZWRAP Projects 1987 to Present

Mr. Merrell as both the Western Regional Laboratory Director of ITAS and the Laboratory Director of ESBL has had overall analytical responsibilities for many HAZWRAP projects similar in scope of work to the Moffett Naval Air Station outlined above. These sites included Offutt AFB, Rickenbacker ANGB, Duluth ANGB, Castle AFB, Concord Naval Weapons Station, Mare Island, Mather AFB, McClellan AFB and San diego Naval Facilities.

Rocky Mountain Arsenal 1987-1989

Mr. Merrell as the Western Regional Laboratory Director of ITAS had overall responsibility for the analytical portion of the Rocky Mountain Arsenal F Basin clean up and the review of the QA/QC and sampling and analysis plans. The analysis included primarily air monitoring samples for many HSL volatile and base neutral/acid extractable organics and several metals. This was to ensure the safety of the workers and surrounding residents. Many rapid turn around analysis were necessary on this project.

U.S. Environmental Protection Agency Contract Laboratory Program (EPA CLP) 1980-1989

Mr. Merrell as the Laboratory Manager of IT Cerritos Laboratory and later the Western Regional Laboratory Director of ITAS had overall responsibility for the laboratory's performance in the CLP program. His IT Cerritos laboratory has been a participant in the CLP since its inception in 1980. The Cerritos laboratory has had as many as 13 bid lots at one time. They were required to perform full organic CLP analysis on as many as 390 water and soil samples per month from known or suspected hazardous waste sites. These analyses for HSL compounds includes volatile organics, base neutral/acid extractable organics, pesticides and PCBs. CLP protocols are designed to be stand alone legally defendable methodologies and are currently used when the most rigorous QA/QC requirements are needed.

I		Espires 12:61 An A _r sil 1, 1991 1830Eh September 20, 1990	Y SERVICE		Enginsering Jonence, hu. 640 Esneruto W.y. 6erkeieg CA 94210 1635 ONLY	V 1 û û 1 û û 1 û û 1 û û 1 û û 1 û û 1 û û 1 û û 1 û û 1 û û 1 û û 1 û û 1 û 1 û 1 û 1 û 1 û 1 û 1 û 1 û 1 û 1		beiou:	Acrotetin and Acrylomitate (ALD) Chlorinated Hydracations (ALD) Chlorinated Hydracations (ALD) haloethera (ALD) aetals 12 (ALD) aetals 12 (ALD) ALD Folychioninated Lipsonyls (ALD) Herbert W. Dickerman, M.D., Ph.D. Herbert W. Dickerman, M.D., Ph.D. Director Wadsworth Center for Laboratories and Research
VROPERT K STATE DEPAR	DAVID AAELKUU, M.D. COMMISSIONER		CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE	(Issued in accordance with the Laws of New York State) pursuant to Section 502 of the Fublic Realth Law	Lsboratory Name: Number & Street: City,State,Zip : VALID AT THIS ADDR	is nereny APPROVED as an Environmental Laboratory for the catagory	ENVIRONMENTAL ANALYSES/SOLID AND NAZARDOUS WASTL	All approved subcategories and/or analytes are listed below:	Miscellaneous: Cyanide, Total Kydrugen Ian (pH) Buffide (as S) Metals I (ALL) Polynuclear Aromatic Hydrocarbons (ALL) Fridrity Fullutant Phemols (ALL) Fridrity Fullutant Phemols (ALL) Furgeable Halocarbons (ALL) Purgeable Halocarbons (ALL) Mether
	Ċ.		INTERAD CERTIFIC		Laboratory 20. Number 11178 Director: Dr. Aichard Meriell	is nert		A11	Characteristic Testing : Corrosivity Ignitability Reactivity Reactivity - Metals Unly Notrosity - Metals Unly Ritrosromatics Isophorone (ALL) Furgeable Aromatics (ALL)

•

NEW YORK STATE DEPARTMENT OF HEALTH

DAVID AXELROD, M.D. COMMISSIONER

Expires 12:01 An April 1, 1091 ISSUED September 20, 1990

INTERIN CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

(Issued in accordance with the Laws of New York State)

pursuant to Section 502 of the Fublic Health Law

Laboratory ful Number 11178

Laboratory Name: Engineering Science, Inc. Number & Street: 600 Bancroft Day City,State,Zip : Berkeley CA 94710

Director: Mr. Richard E Merrell

VALID AT THIS ADDRESS ONLY

is hereby APPROVED as an Environmental Laboratory for the category

NUN-POTABLE WATER

All approved subcategories and analytes are listed on the attached addendum

Kebertu !

Herbert W. Dickerman, M.D., Ph.D. Director Wadsworth Center for Laboratories and Research

CASE NARRATIVE WORK ORDER NO. 2436 EPA METHODS 8240 AND 624

These five soil and three sediment samples were analyzed by EPA Method 8240, and these four water samples were analyzed by EPA Method 624. CLP compounds, spiking amounts, and QC acceptance criteria were used for the internal standards, surrogates, and matrix spike/spike duplicates.

All samples were analyzed within EPA Data Validation Technical Holding Times.


Three blanks were analyzed with these samples and met CLP acceptance criteria for internal standard areas, surrogates and contamination.

The continuing calibration checks (CCC) used for quantifying these samples met CLP acceptance criteria.

All internal standard areas were within CLP acceptance criteria.

All surrogate recoveries were within CLP acceptance criteria.

All matrix spike/spike duplicate recoveries and relative percent differences were within CLP acceptance criteria.

VMCN-FRM

600 Bancroft Way Berkeley, CA. 94710

GC/MS ANALYTICAL REPORT VOLATILE ORGANICS

Work Order No: 2436

Dilution Fact: 1.0

Laboratory ID: 2436-01

Matrix: WATER

Client ID: CGGS-SW-1 Level:LOW

mak High

	Analytical Results	Reporting
Compound	ug/L	Limit
Chloromethane	ND	10
Bromomethane	ND	10
Vinyl Chloride	ND	10
Chloroethane	ND	10
Methylene Chloride	ND	5
Acrolein	ND	10
Acetone	ND	100
Acrylonitrile	ND	
Carbon Disulfide	ND	10
Trichlorofluoromethane		10
	ND	10
1,1-Dichloroethene	ND	5
1,1-Dichloroethane	ND	5
trans-1,2-Dichloroethene	ND	5
Chloroform	ND	5
1,2-Dichloroethane	ND	5
2-Butanone	ND	100
1,1,1-Trichloroethane	ND	5
Carbon Tetrachloride	ND	5
Vinyl Acetate	ND	50
Bromodichloromethane	ND	5
1,2-Dichloropropane	ND	5
cis-1,3-Dichloropropene	ND	5
Trichloroethene	ND	5
Benzene	ND	5
Dibromochloromethane	ND .	- 5
1,1,2-Trichloroethane	ND	5
trans-1,3-Dichloropropene	ND	5
2-Chloroethylvinylether	ND	10
Bromoform	ND	5
2-Hexanone	ND	50
4-Methyl-2-pentanone	ND	50
Tetrachloroethene	ND	5
1,1,2,2-Tetrachloroethane	ND	5
Toluene	ND	5
Chlorobenzene	ND	5
Ethylbenzene	ND	5
Styrene	ND	5
m/p-Xylene	ND	
o-Xylene	ND	5
1,3-Dichlorobenzene		5
	ND	5
1,2/1,4-Dichlorobenzene	ND	5
Analyst:		Group Leader:
		-

Date Analyzed: 11/26/90

Ful L'ind

600 Bancroft Way Berkeley, CA. 94710

GC/MS ANALYTICAL REPORT VOLATILE ORGANICS

Work Order No: 2436

Date Analyzed: 11/26/90

Laboratory ID: 2436-02

Client ID: CGGS-SW-2 Level:LOW

Matrix: WATER

Dilution Fact: 1.0

	Analytical Results	Reporting
Compound	ug/L	Limit
Chloromethane	ND	10
Bromomethane	ND	10
Vinyl Chloride	ND	10
Chloroethane	ND	10
Methylene Chloride	ND	5
Acrolein	ND	10
Acetone	ND	100
Acrylonitrile	ND	10
Carbon Disulfide	ND	10
Trichlorofluoromethane	ND	10
1,1-Dichloroethene	ND	5
1,1-Dichloroethane	ND	5
trans-1,2-Dichloroethene	ND ND	5
Chloroform	ND	5
1,2-Dichloroethane		5
	ND	
2-Butanone	ND	100
1,1,1-Trichloroethane	ND	5
Carbon Tetrachloride	ND	5
Vinyl Acetate	ND	50
Bromodichloromethane	ND	5
1,2-Dichloropropane	ND	5
cis-1,3-Dichloropropene	ND	. 5
Trichloroethene	ND	5
Benzene	ND	5
Dibromochloromethane	ND	5
1,1,2-Trichloroethane	ND	5
trans-1,3-Dichloropropene	ND	5
2-Chloroethylvinylether	ND	10
Bromoform	ND	5
2-Hexanone	ND	50
4-Methyl-2-pentanone	ND	50
Tetrachloroethene	ND	5
1,1,2,2-Tetrachloroethane	ND	5
Toluene	ND	5
Chlorobenzene	ND	5
Ethylbenzene	ND	5
Styrene	ND	5
m/p-Xylene	ND	5
o-Xylene	ND	5
1,3-Dichlorobenzene	ND	5
1,2/1,4-Dichlorobenzene	ND	5
Analyst:	Group	> Leader:
mch Hiatt		

600 Bancroft Way Berkeley, CA. 94710

GC/MS ANALYTICAL REPORT VOLATILE ORGANICS

Work Order No: 2436

Date Analyzed: 11/26/90

Laboratory ID: 2436-03

Client ID: CGGS-SW-3 Level:LOW

Matrix: WATER

Dilution Fact: 1.0

7	Analytical Results	Reporting
Compound	ug/L	Limit
Chloromethane	ND	10
Bromomethane	ND	10
Vinyl Chloride	ND	10
Chloroethane	ND	10
Methylene Chloride	ND	5
Acrolein	ND	10
Acetone	ND	100
Acrylonitrile	ND	10
Carbon Disulfide	ND	10
Trichlorofluoromethane	ND	10
1,1-Dichloroethene	ND	
1,1-Dichloroethane	ND	- 5
trans-1,2-Dichloroethene	ND	5
Chloroform	ND	5
1,2-Dichloroethane	ND	5
2-Butanone	ND	100
1,1,1-Trichloroethane	ND	5
Carbon Tetrachloride	ND	5
Vinyl Acetate	ND	50
Bromodichloromethane	ND	5
1,2-Dichloropropane	ND	5
cis-1,3-Dichloropropene	ND	5
Trichloroethene	ND	5
Benzene	ND	5
Dibromochloromethane	ND	5
1,1,2-Trichloroethane	ND	5
trans-1,3-Dichloropropene	ND	5
2-Chloroethylvinylether	ND	10
Bromoform	ND	5
2-Hexanone	ND	50
4-Methyl-2-pentanone	ND	50
Tetrachloroethene	ND	5
1,1,2,2-Tetrachloroethane	ND	5
Toluene	ND	5
Chlorobenzene	ND	5
Ethylbenzene	ND	5
Styrene	ND	5
m/p-Xylene	ND	5
o-Xylene	ND	5
1,3-Dichlorobenzene	ND	5
i, 3-Dichlorobenzene , 2/1, 4-Dichlorobenzene	ND	5
, 27 1, 4 DICHIOIODEHZEHE		5
nalyst:	Group	Leader;
nector + 2at		1' 12 1

Analyst: nuchen + sait

600 Bancroft Way Berkeley, CA. 94710

GC/MS ANALYTICAL REPORT VOLATILE ORGANICS

Work Order No: 2436

Date Analyzed: 11/27/90

Dilution Fact: 5.0

Laboratory ID: 2436-04

Matrix: SOIL

Client ID: CGGS-SED-1 Level:LOW

Compound	Analytical Results ug/Kg	Reporting Limit
Chloromethane	ND	50
Bromomethane	ND	50
Vinyl Chloride	ND	50
Chloroethane	ND	50
Methylene Chloride	115	2 5
Acrolein	ND	50
Acetone	ND	500
Acrylonitrile	ND	50
Carbon Disulfide	ND	50
Trichlorofluoromethane	ND	50
1,1-Dichloroethene	ND	2 5
1,1-Dichloroethane	ND	25
trans-1,2-Dichloroethene	ND	25
Chloroform	ND	25
1,2-Dichloroethane	ND	25
2-Butanone	ND	500
1,1,1-Trichloroethane	ND	25
Carbon Tetrachloride	ND	25
Vinyl Acetate	ND	250
Bromodichloromethane	ND	25
1,2-Dichloropropane	ND	25
cis-1,3-Dichloropropene	ND	25
Trichloroethene	ND	25
Benzene	ND	25
Dibromochloromethane	ND	25
1,1,2-Trichloroethane	ND	25
trans-1,3-Dichloropropene	ND	25
2-Chloroethylvinylether	ND	50
Bromoform	ND ND	25
2-Hexanone		
	ND	250
4-Methyl-2-pentanone Tetrachloroethene	ND	250
1,1,2,2-Tetrachloroethane	ND	25
	ND	25
Toluene	ND	25
Chlorobenzene	ND	25
Ethylbenzene	ND	25
Styrene	ND	25
m/p-Xylene	ND	25
o-Xylene	ND	25
.,3-Dichlorobenzene	ND	25
1,2/1,4-Dichlorobenzene	ND	25
nalyst:	Group	Leader:
nalyst: nich Heath	ני	22.11
V ~ ~ · · · · · · · · · · · · · · · · ·	h.	he lipel

600 Bancroft Way Berkeley, CA. 94710

GC/MS ANALYTICAL REPORT VOLATILE ORGANICS

Work Order No: 2436

Date Analyzed: 11/27/90

Laboratory ID: 2436-05

Matrix: SOIL

Client ID: CGGS-SED-2 Level:LOW

	Analytical Results	Reporting
Compound	ug/Kg	Limit
Chloromethane	ND	10
Bromomethane	ND	10
Vinyl Chloride	ND	10
Chloroethane	ND	10
Methylene Chloride	22	5
Acrolein	ND	10
Acetone	ND	100
Acrylonitrile	ND	10
Carbon Disulfide	ND	10
Frichlorofluoromethane	ND	10
1,1-Dichloroethene	ND	5
1,1-Dichloroethane	ND	. 5
trans-1,2-Dichloroethene	ND	5
"hloroform	ND	5
∉,2-Dichloroethane	ND	5
2-Butanone	ND	100
1,1,1-Trichloroethane	ND	5
Carbon Tetrachloride	ND	5
Vinyl Acetate	ND	50
Bromodichloromethane	ND	5
1,2-Dichloropropane	ND	5
cis-1,3-Dichloropropene	ND	5
Trichloroethene	ND	5
Benzene	ND	5
Dibromochloromethane	ND	5
1,1,2-Trichloroethane	ND	5
trans-1,3-Dichloropropene	ND	5
2-Chloroethylvinylether	ND	10
Bromoform	ND	5
2-Hexanone	ND	50
4-Methyl-2-pentanone	ND	50
Tetrachloroethene	ND	5
1,1,2,2-Tetrachloroethane	ND	5
Toluene	ND	5
Chlorobenzene	ND	5
Ethylbenzene	ND	5
Styrene	ND	5
m/p-Xylene	ND	5
o-Xylene	ND	5
,3-Dichlorobenzene	ND	5
2/1,4-Dichlorobenzene	ND	5
nalyst:	Grou	p Leader:
nicke Heath	_	
mere II mov.		Reh Gird

600 Bancroft Way Berkeley, CA. 94710

GC/MS ANALYTICAL REPORT VOLATILE ORGANICS

Work Order No: 2436

Date Analyzed: 11/27/90

Laboratory ID: 2436-06

Matrix: SOIL

Client ID: CGGS-SED-3 Level:LOW

Dilution Fact: 5.0

	Analytical Results	Reporting
Compound	ug/Kg	Limit
Chloromethane	ND	50
Bromomethane	ND	50
Vinyl Chloride	ND	50
Chloroethane	ND	50
Methylene Chloride	55	25
Acrolein	ND	50
Acetone	ND	500
Acrylonitrile	ND	50
Carbon Disulfide	ND	50
Frichlorofluoromethane	ND	50
1,1-Dichloroethene	ND	25
1,1-Dichloroethane	ND	25
trans-1,2-Dichloroethene	ND	25
Chloroform	ND	25
1,2-Dichloroethane	ND	25
2-Butanone	ND	500
1,1,1-Trichloroethane	ND	25
Carbon Tetrachloride	ND	25
Vinyl Acetate	ND	250
Bromodichloromethane	ND	25
1,2-Dichloropropane	ND	25
cis-1,3-Dichloropropene	ND	25
Trichloroethene	ND	25
Benzene	ND	25
Dibromochloromethane	ND	25
1,1,2-Trichloroethane	ND	25
trans-1,3-Dichloropropene	ND	25
2-Chloroethylvinylether	ND	50
Bromoform	ND	25
2-Hexanone	ND	250
4-Methyl-2-pentanone	ND	250
Tetrachloroethene	ND	25
1,1,2,2-Tetrachloroethane	ND	25
Toluene	ND	25
Chlorobenzene	ND	25
Ethylbenzene	ND	25
Styrene	ND	25
m/p-Xylene	ND	25
o-Xylene	ND	25
1,3-Dichlorobenzene	ND	25
, 2/1, 4-Dichlorobenzene	ND	25
nalyst:	Group	Leader:
make it eath		Kulitard
The second second		Kul Writ

Kuldword

600 Bancroft Way Berkeley, CA. 94710

GC/MS ANALYTICAL REPORT VOLATILE ORGANICS

Work Order No: 2436

.

Date Analyzed: 11/29/90

Laboratory ID: 2436-07

Matrix: SOIL

Client ID: CGGS-SS-1 Level:LOW

Compound	Analytical Results ug/Kg	Reporting Limit
Chloromethane	ND	50
Bromomethane	ND	50
Vinyl Chloride	ND	50
Chloroethane	ND	50
Methylene Chloride	ND	25
Acrolein	ND	50
Acetone	ND	500
Acrylonitrile	ND	50
Carbon Disulfide	ND	50
frichlorofluoromethane	ND	50
l,1-Dichloroethene	ND	25
1,1-Dichloroethane	ND	25
trans-1,2-Dichloroethene	ND	25
Chloroform	ND	25
1,2-Dichloroethane	ND	25
2-Butanone	ND	500
1,1,1-Trichloroethane	ND	25
Carbon Tetrachloride	ND	25
Vinyl Acetate	ND	250
Bromodichloromethane	ND	25
1,2-Dichloropropane	ND	25
cis-1,3-Dichloropropene	ND	25
Trichloroethene	ND	25
Benzene	ND	25
Dibromochloromethane	ND	25
1,1,2-Trichloroethane	ND	25
trans-1,3-Dichloropropene	ND	25
2-Chloroethylvinylether	ND	50
Bromoform	ND	25
2-Hexanone	ND	250
4-Methyl-2-pentanone	ND	250
Tetrachloroethene	ND	25
1,1,2,2-Tetrachloroethane	ND	25
Foluene	ND	25
Chlorobenzene	ND	25
Ethylbenzene	ND	25
Styrene	ND	25
n/p-Xylene	ND	25
o-Xylene	ND	25
1,3-Dichlorobenzene	ND	25
1,2/1,4-Dichlorobenzene	ND ND	25
r,2/1,4-bichiofobenzene	NU	20
nalyst:	Group	Leader:
meh Hiath	- D	6. 1 Gint
	L	he cum

600 Bancroft Way Berkeley, CA. 94710

GC/MS ANALYTICAL REPORT VOLATILE ORGANICS

Work Order No: 2436

Date Analyzed: 11/29/90

Laboratory ID: 2436-08

Client ID: CGGS-SS-2 Level:LOW

Matrix: SOIL

	Analytical Results	Reporting
Compound	ug/Kg	Limit
Chloromethane	ND	50
Bromomethane	ND	50
/inyl Chloride	ND	50
Chloroethane	ND	50
fethylene Chloride	ND	25
Acrolein	ND	50
Acetone	ND	500
Crylonitrile	ND	50
Carbon Disulfide	ND	50
Trichlorofluoromethane	ND	50
,1-Dichloroethene	ND	25
,1-Dichloroethane	ND	25
crans-1,2-Dichloroethene	ND	25
Chloroform	ND	25
.,2-Dichloroethane	ND	25
2-Butanone	ND	500
l,1,1-Trichloroethane Carbon Tetrachloride	ND	25
	ND	25
Vinyl Acetate	ND	250
romodichloromethane	ND	25
,2-Dichloropropane	ND	25
is-1,3-Dichloropropene	ND	25
richloroethene	ND	25
Benzene	ND	25
bibromochloromethane	ND	25
.,1,2-Trichloroethane	ND	25
rans-1,3-Dichloropropene	ND	25
-Chloroethylvinylether	ND	50
romoform	ND	25
2-Hexanone	ND	250
-Methyl-2-pentanone	ND	250
Tetrachloroethene	ND	2 5
,1,2,2-Tetrachloroethane	ND	25
Toluene	ND	25
Chlorobenzene	ND	25
Sthylbenzene	ND	25
Styrene	ND	25
a/p-Xylene	ND	25
-Xylene	ND	25
L,3-Dichlorobenzene	ND	25
,2/1,4-Dichlorobenzene	ND	25
nalyst:	Group	Leader:
nich Heath		
		Phil Wirt

600 Bancroft Way Berkeley, CA. 94710

GC/MS ANALYTICAL REPORT VOLATILE ORGANICS

Work Order No: 2436

Date Analyzed: 11/27/90

Laboratory ID: 2436-09

Client ID: CGGS-SS-3 Level:LOW

Matrix: SOIL

	Analytical Results	Reporting
Compound	ug/Kg	Limit
Chloromethane	ND	50
Bromomethane	ND	50
Vinyl Chloride	ND	50
Chloroethane	ND	50
Methylene Chloride	115	25
Acrolein	ND	50
Acetone	ND	500
Acrylonitrile	ND	50
Carbon Disulfide	ND	50
frichlorofluoromethane	ND	50
1,1-Dichloroethene	ND	25
1,1-Dichloroethane	ND	25
trans-1,2-Dichloroethene	ND	25
Chloroform	ND	25
1,2-Dichloroethane		25
	ND	
2-Butanone	ND	500
1,1,1-Trichloroethane	ND	25
Carbon Tetrachloride	ND	25
Jinyl Acetate	ND	250
Bromodichloromethane	ND	25
1,2-Dichloropropane	ND	25
cis-1,3-Dichloropropene	ND	25
Trichloroethene	ND	25
Benzene	ND	25
Dibromochloromethane	ND	25
1,1,2-Trichloroethane	ND	25
trans-1,3-Dichloropropene	ND	25
2-Chloroethylvinylether	ND	50
Bromoform	ND	25
2-Hexanone	ND	250
4-Methyl-2-pentanone	ND	250
Tetrachloroethene	ND	25
1,1,2,2-Tetrachloroethane	ND	25
Toluene	ND	25
Chlorobenzene	ND	25
Ethylbenzene	ND	25
Styrene	ND	25
m/p-Xylene	ND	25
o-Xylene	ND	25
1,3-Dichlorobenzene	ND	25
≰,2/1,4-Dichlorobenzene	ND	25
nalyst:	Group	Leader:
hucke Heath	\sim ,	KALAPA

600 Bancroft Way Berkeley, CA. 94710

GC/MS ANALYTICAL REPORT VOLATILE ORGANICS

Work Order No: 2436

Date Analyzed: 11/27/90

Laboratory ID: 2436-10

Matrix: SOIL

Client ID: CGGS-SS-4 Level:LOW

Compound		
compound	ug/Kg	Limit
Chloromethane		50
Bromomethane	ND	50
/inyl Chloride	ND	50
Chloroethane	ND	50
fethylene Chloride	75	2 5
Acrolein	ND	50
Acetone	ND	500
Acrylonitrile	ND	50
Carbon Disulfide	ND	50
Trichlorofluoromethane	ND	50
L,1-Dichloroethene	ND	25
L,1-Dichloroethane	ND	· 25
crans-1,2-Dichloroethene	ND	25
Chloroform	ND	25
L,2-Dichloroethane	ND	25
2-Butanone	ND	500
1,1,1-Trichloroethane	ND	25
Carbon Tetrachloride	ND	25
/inyl Acetate	ND	250
Bromodichloromethane	ND	250
L,2-Dichloropropane	ND	25
cis-1,3-Dichloropropene	ND	25
Crichloroethene	ND	25
Benzene	ND	25
Dibromochloromethane	ND	25
L,1,2-Trichloroethane	ND	25
trans-1,3-Dichloropropene	ND	25
2-Chloroethylvinylether	ND	50
Bromoform	ND	25
2-Hexanone	ND	250
1-Methyl-2-pentanone	ND	250
fetrachloroethene	ND ND	250
1,1,2,2-Tetrachloroethane	ND	25
Foluene	ND	25
Chlorobenzene	ND	25
Sthylbenzene	ND ND	
Styrene	ND ND	2 5 2 5
n/p-Xylene	ND ND	25
o-Xylene (,3-Dichlorobenzene	ND	25
L,2/1,4-Dichlorobenzene	ND ND	25 25

Analyst: Group Leader: hich Heat

600 Bancroft Way Berkeley, CA. 94710

GC/MS ANALYTICAL REPORT VOLATILE ORGANICS

Work Order No: 2436

Date Analyzed: 11/27/90

Laboratory ID: 2436-11

Client ID: CGGS-SS-5 Level:LOW

Matrix: SOIL

Dilution Fact: 5.0

Compound	Analytical Results ug/Kg	Reporting Limit
Chloromethane	ND	50
Bromomethane	ND	50
/inyl Chloride	ND	50
Chloroethane	ND	50
fethylene Chloride	195	2 5
Acrolein	ND	50
Acetone	ND	500
Acrylonitrile	ND	50
Carbon Disulfide	ND	50
Frichlorofluoromethane	ND	50
L,1-Dichloroethene	ND	25
1,1-Dichloroethane	ND	25
trans-1,2-Dichloroethene	ND	25
Chloroform	ND	2 5
1,2-Dichloroethane	ND	25
2-Butanone	ND	500
1,1,1-Trichloroethane	ND	25
Carbon Tetrachloride	ND	25
/inyl Acetate	ND	250
Bromodichloromethane	ND	25
L,2-Dichloropropane	ND	25
cis-1,3-Dichloropropene	ND	25
Trichloroethene	ND	25
Benzene	ND	25
Dibromochloromethane	ND	25
L,1,2-Trichloroethane	ND	25
trans-1,3-Dichloropropene	ND	25
2-Chloroethylvinylether	ND	50
Bromoform	ND	25
2-Hexanone	ND	250
4-Methyl-2-pentanone	ND	250
Tetrachloroethene	ND	25
1,1,2,2-Tetrachloroethane	ND	25
Foluene	ND	25
Chlorobenzene	ND	25
Ethylbenzene	ND	25
Styrene	ND	25
n/p-Xylene	ND ND	25
o-Xylene	ND	25
1,3-Dichlorobenzene	ND ND	25
1,2/1,4-Dichlorobenzene	ND	25

Analyst:

hick Hcall

Group Leader:

600 Bancroft Way Berkeley, CA. 94710

GC/MS ANALYTICAL REPORT VOLATILE ORGANICS

Work Order No: 2436

Date Analyzed: 11/26/90

Laboratory ID: 2436-12

Matrix: WATER

Client ID: CGGS-TRIP_BLANK Level:LOW

Compound	Analytical Results	Reporting Limit
compound	ug/L	
Chloromethane	ND	10
Bromomethane	ND	10
Vinyl Chloride	ND	10
Chloroethane	ND	10
Methylene Chloride	ND	5
Acrolein	ND	10
Acetone	ND	100
Acrylonitrile	ND	10
Carbon Disulfide	ND	10
Trichlorofluoromethane	ND	10
1,1-Dichloroethene	ND	5
1,1-Dichloroethane	ND	5
trans-1,2-Dichloroethene		5
Chloroform	ND ND	5
	ND	
1,2-Dichloroethane	ND	5
2-Butanone	ND	100
1,1,1-Trichloroethane	ND	5
Carbon Tetrachloride	ND	5
Vinyl Acetate	ND	50
Bromodichloromethane	ИД	5
1,2-Dichloropropane	ND	5
cis-1,3-Dichloropropene	ND	5
Trichloroethene	ND	5
Benzene	ND	5
Dibromochloromethane	ND	5
1,1,2-Trichloroethane	ND	5
trans-1,3-Dichloropropene	ND	5
2-Chloroethylvinylether	ND	10
Bromoform	ND	5
2-Hexanone	ND	50
4-Methyl-2-pentanone	ND	50
Tetrachloroethene	ND	5
1,1,2,2-Tetrachloroethane	ND	5
Toluene	ND	5
Chlorobenzene	ND	5
Ethylbenzene	ND	5
Styrene	ND	- 5
m/p-Xylene	ND	5
o-Xylene	ND	5
1,3-Dichlorobenzene	ND	5
.,2/1,4-Dichlorobenzene	ND	5
, 2/1,4-Dichtotobenzene	NO	C
Analyst:	Group	Leader:
nich Hca		
	<u> </u>	he word

600 Bancroft Way Berkeley, CA. 94710

GC/MS ANALYTICAL REPORT VOLATILE ORGANICS

Work Order No: 2436

Date Analyzed: 11/26/90

Dilution Fact: 1.0

Laboratory ID: MWVM2901126

Matrix: WATER

Client ID: VBLANK Level:LOW

	alytical Results	Reporting
Compound	ug/L	Limit
Chloromethane	ND	10
Bromomethane	ND	10
Vinyl Chloride	ND	10
Chloroethane	ND	10
iethylene Chloride	ND	5
Acrolein	ND	10
Acetone	ND	100
Acrylonitrile	ND	10
Carbon Disulfide	ND	10
Frichlorofluoromethane	ND	10
l,1-Dichloroethene	ND	5
l,1-Dichloroethane	ND	5
rans-1,2-Dichloroethene	ND	5
Chloroform	ND	5
1,2-Dichloroethane	ND	5
2-Butanone	ND	100
l,1,1-Trichloroethane	ND	5
Carbon Tetrachloride	ND	5
/inyl Acetate	ND	50
Bromodichloromethane	ND	5
l,2-Dichloropropane	ND	5
cis-1,3-Dichloropropene	ND	5
Frichloroethene	ND	5
Benzene	ND	5
Dibromochloromethane	ND	5
1,1,2-Trichloroethane	ND	5
trans-1,3-Dichloropropene	ND	5
2-Chloroethylvinylether	ND	10
Bromoform	ND	5
2-Hexanone	ND	50
4-Methyl-2-pentanone	ND	50
Tetrachloroethene	ND	5
1,1,2,2-Tetrachloroethane	ND	5
Toluene	ND	5
Chlorobenzene	ND	5
Ethylbenzene	ND	5
Styrene	ND	5
m/p-Xylene	ND	5
o-Xylene	ND	5
1,3-Dichlorobenzene	ND	5
1,2/1,4-Dichlorobenzene	ND	5
nalyst:	Grou	p Leader:
men Heath		Plumb

600 Bancroft Way Berkeley, CA. 94710

GC/MS ANALYTICAL REPORT VOLATILE ORGANICS

Work Order No: 2436

Date Analyzed: 11/27/90

Laboratory ID: MSVM1901127

Matrix: SOIL

Client ID: VBLANK	Level:LOW	Dilution Fact: 1.0
	Analytical Results	Reporting
Compound	ug/Kg	Limit
Chloromethane	ND	10
Bromomethane	ND	10
Vinyl Chloride	ND	10
Chloroethane	ND	10
Methylene Chloride	ND	5
Acrolein	ND	10
Acetone	ND	100
Acrylonitrile	ND	10
Carbon Disulfide	ND	10
Trichlorofluoromethane	ND	10
1,1-Dichloroethene	ND	5
1,1-Dichloroethane	ND	5
trans-1,2-Dichloroethene	ND	5
Chloroform	ND	5
1,2-Dichloroethane	ND	5
2-Butanone	ND	100
1,1,1-Trichloroethane	ND	5
Carbon Tetrachloride	ND	5
Vinyl Acetate	ND	50
Bromodichloromethane	ND	5
1,2-Dichloropropane	ND	5
cis-1,3-Dichloropropene	ND	5
Trichloroethene	ND	. 5
Benzene	ND	
Dibromochloromethane	ND	5
1,1,2-Trichloroethane	ND	5
trans-1,3-Dichloropropene	ND	5
2-Chloroethylvinylether	ND	10
Bromoform	ND	5
2-Hexanone	ND	50
4-Methyl-2-pentanone	ND	50
Tetrachloroethene	ND	5
1,1,2,2-Tetrachloroethane	ND	5
Toluene	ND	5
Chlorobenzene	ND	5
Ethylbenzene	ND	5
Styrene	ND	
-		· 5
m/p-Xylene	ND	5
o-Xylene 1,3-Dichlorobenzene	ND ND	5
•		5
,2/1,4-Dichlorobenzene	ND	5
malyst: mek Healt		Group Leader:
men Acal		Luhlim
		tube let nil

.

600 Bancroft Way Berkeley, CA. 94710

GC/MS ANALYTICAL REPORT VOLATILE ORGANICS

Work Order No: 2436

Date Analyzed: 11/29/90

Dilution Fact: 1.0

Laboratory ID: MSVM1901129

Client ID: VBLANK Level:LOW

Matrix: SOIL

	Analytical Results	Reporting
Compound	ug/Kg	Limit
Chloromethane	ND	10
Bromomethane	ND	10
Vinyl Chloride	ND	10
Chloroethane	ND	10
Methylene Chloride	ND	5
Acrolein	ND	10
Acetone	ND	100
Acrylonitrile	ND	10
Carbon Disulfide	ND	10
Trichlorofluoromethane	ND	10
1,1-Dichloroethene	ND	5
1,1-Dichloroethane	ND	5
trans-1,2-Dichloroethene	ND	· 5
Chloroform	ND	- 5
1,2-Dichloroethane	ND	- 5
2-Butanone	ND	100
1,1,1-Trichloroethane	ND	5
Carbon Tetrachloride	ND	5
Vinyl Acetate	ND	50
Bromodichloromethane	ND	5
1,2-Dichloropropane	ND	5
cis-1,3-Dichloropropene	ND	5
Trichloroethene	ND	5
Benzene	ND	5
Dibromochloromethane	ND	5
1,1,2-Trichloroethane	ND	5
trans-1,3-Dichloropropene	ND	- 5
2-Chloroethylvinylether	ND	10
Bromoform	ND	5
2-Hexanone	ND	50
4-Methyl-2-pentanone	ND	50
Tetrachloroethene	ND	5
1,1,2,2-Tetrachloroethane	ND	5
Toluene	ND	5
Chlorobenzene	ND	. 5
Ethylbenzene	ND	5
Styrene	ND	5
m/p-Xylene	ND	5
o-Xylene	ND	5
1,3-Dichlorobenzene	ND	5
1,2/1,4-Dichlorobenzene	ND	5
nalyst:	d Grou	p Leader:
make Heat	the second second	
		Luli Lini

600 Bancroft Way Berkeley,CA 94710

SOIL VOLATILE SURROGATE RECOVERY

WORK ORDER NO: 2436

DATE ANALYZED: 11/27/90

.

LEVEL: LOW

LABORATORY ID	S1 (DCE)	S2 (TOL)	S3 (BFB)	Total Out
MSVM1901127	96	98	102	0
2436-04	105	110	106	0
2436-05	111	115	94	0
2436-06	108	117	97	0
2436-09	113	109	93	0
2436-10	108	117	97	0
2436-11	105	110	98	0
			QC LIMITS	
S1(DCE) = 1,2-D S2(TOL) = Tolue			(70-121) (81-117)	
S3(BFB) = Bromo			(74 - 121)	
D =Surrogate		it		
ANALYST:	in Neath	Q/	A APPROVAL:	
me			- Un	- il-1

600 Bancroft Way Berkeley,CA 94710

SOIL VOLATILE SURROGATE RECOVERY

WORK ORDER NO: 2436

DATE ANALYZED: 11/29/90

LEVEL: LOW

MSVM1901129 100 100 95 0 2436-07 106 107 95 0 2436-08 107 98 93 0 2436-07MS 109 112 104 0 2436-07MSD 109 105 1002 0 109 105 1002 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LABORATORY ID	S1 (DCE)	S2 (TOL)	53 (BFB)	 Total Out
S1(DCE) = 1,2-Dichloroethane(70-121)S2(TOL) = Toluene-d8(81-117)S3(BFB) = Bromofluorobenzene(74-121)D =Surrogate Diluted Out** =Surrogate Outside QC Limit	2436-07 2436-08 2436-07MS	106 107 109	107 98 112	95 93 104	0 0 0
ANALYST: QA APPROVAL:	S2(TOL) = Tolue S3(BFB) = Brome D =Surrogate	ene-d8 ofluorobenzene Diluted Out		(70-121) (81-117) (74-121)	

WATER VOLATILE SURROGATE RECOVERY

WORK ORDER NO: 2436

.

DATE ANALYZED: 11/26/90

LEVEL: LOW

LABORATORY ID	S1 (DCE)	S2 (TOL)	S3 (BFB)	Total Out		
MWVM2901126	91	95	99	0		
2436-01	100	91	101			
2436-02	103	93	107			
2436-03	98	93	1 98	0		
2436-03MS	105	98	102			
2436-03MSD	111	106	103	0		
2436-12	98	99	106	0		
S2(TOL) = Tolu	Dichloroethane- ene-d8 ofluorobenzene	d4	QC LIMITS (76-114) (88-110) (86-115)			
	D =Surrogate Diluted Out * =Surrogate Outside QC Limit					
ANALYST:		Q.	A APPROVAL:			
)	chen Heal	<u> </u>		nthis		

600 Bancroft Way Berkeley, CA. 94710

Matrix Spike/Spike Duplicate Recovery

Volatile Organics

Work Order: 2436

QC Sample : 2436-03

Instrument: VMS-2

Level: LOW

Analysis Date: 11/26/90 Matrix: WATER Units: ug/L

Cor. Fact: 1

	Conc.	Conc.	Conc.	Percent
Compound	Sample	Spiked	MS	Recovered
1,1-Dichloroethene	Ø	50	65	130
Trichloroethene	0	50	45	91
Benzene	0	50	47	94
Toluene	0	50	49	98
Chlorobenzene	0	50	56	112
	Conc.	Percent		Criteria
Compound	MSD	Recovered	RPD	RPD %REC
1,1-Dichloroethene	62	124	5	14 (61-145)
Trichloroethene	49	97	7	14 (71-120
Benzene	48	95	1	11 (76-127
Toluene	51	101	3	13 (76-125
Chlorobenzene	55	110	2	13 (75-130
ANALYST:	······································	QA APPRO	VAL;-	_1
mehn Hea	th		4163	-ii-i

* = Value Outside QC Limit

Percent Recovered = Conc. MS|MSD - Conc. Sample ---- * 100 Conc. Spiked

> RPD = Conc. MS - Conc. MSD(-----) * 100 (Conc. MS + Conc. MSD)/2

600 Bancroft Way Berkeley, CA. 94710

Matrix Spike/Spike Duplicate Recovery

Volatile Organics

Work Order: 2436

QC Sample : 2436-07

Instrument: VMS-1

Level: LOW

Analysis Date: 11/29/90

Matrix: SOIL

Units: ug/Kg

Cor. Fact: 5

% Moisture: NA

	Conc.	Conc.	Conc.	Percent
Compound	Sample	Spiked	MS	Recovered
1,1-Dichloroethene		250	300	120
Trichloroethene	0	250	226	91
Benzene	0	250	230	92
Toluene	0	250	242	97
Chlorobenzene	0	250	267	107
	Conc.	Percent		 Criteria
Compound	MSD	Recovered	RPD	RPD %REC
1,1-Dichloroethene	290		3	22 (59-172
Trichloroethene	244	98	8	24 (62-137
Benzene	239	96	4	21 (66-142
Toluene	243	97	0	21 (59-139
Chlorobenzene	271	108	2	21 (60-133
ANALYST:	!	QA APPRO	VAL:	_1
hick Heat	-h_	-	Gun	mikin

* = Value Outside QC Limit

Percent Recovery * Conc. MS|MSD - Conc. Sample Conc. Spiked

> RPD = Conc. MS - Conc. MSD (-----) * 100 (Conc. MS + Conc. MSD)/2

CASE NARRATIVE WORK ORDER NO. 2436 EPA METHOD 8270 AND 625

These five soil and three sediment samples were analyzed by EPA Method 8270 and these three water samples were analyzed by EPA Method 625. CLP compounds, spiking amounts, and QC acceptance criteria were used for the internal standards, surrogates, and matrix spike/spike duplicates.

All samples were analyzed within EPA Data Validation Technical Holding Times.

Two blanks were analyzed with these samples and met CLP acceptance criteria for internal standard areas, surrogates and contamination.

The continuing calibration checks (CCC) used for quantifying these samples met CLP acceptance criteria.

All internal standard areas were within CLP acceptance criteria.

All surrogate recoveries were within CLP acceptance criteria.

All matrix spike/spike duplicate recoveries and relative percent differences were within CLP acceptance criteria with the following exceptions:

The percent recoveries for pentachlorophenol, phenol and 4-nitrophenol in the soil MS and MSD (2436-07) were outside acceptance criteria.

All blank spike/spike duplicate recoveries and relative percent differences were within CLP acceptance criteria with the following exceptions:

The RPD for 1,4-dichlorobenzene for the soil blank spike/spike duplicate was outside acceptance criteria.

GOZMS ANALYTICAL REPORT SEMIMOLATILE OFGANICS

Worn Order N	10:	2436		Date Extracteo:	11/20/90
Laboratory (Er :	2436-01		Date Analyzed:	12/14/90
Client I	[D:	CGGS-5W-1		Moisture:	NA
Matri	. x :	WATER	Level:LOW	Dilution Fact:	2.0

Compound	Analytical ug/L	Results
N-Nitroso-Dimetnylamine	20	Ū.
Phenol	20	U
bis(2-Chloroethvl)ether	24	11
2-Chlorophenol	20	t,t
1,3-Dichlorobenzene	20	:1
1,4-Dichlerobenzene	- 20	U
Benzvl Alcohol	- 2 ·)	11
1,2-Dichlorobenzene	2.0	
2-Methylphenol	2.0	-
bis(2-chloroisopropyl)Ether	20	
4-Methylphenol	20	
N-Nitroso-Di-n-Propylamine	20	-
Hexachloroethane	20	
Nitrobenzene	—	-
	20	
Isophorone	20	-
2-Nitrophenol	20	
2,4-Dimethylphenol	2.0	
bis(2-Chloroethoxy)methane	2.0	
L,4-Dichlorophenol	2.0	
Benzoic Acid	$1 \rightarrow 0$	
1,2,4-Trichlorobenzene	50	ĒĪ
Naphthalene	2.0	ij
4-Chloroaniline	20	, i
Hexachlorobutadiene	2.0	11
4-Chloro-s-Methylphenol	2.0	f
l-Methylnaphthalene	5 () 2	i J
Hexachlorocyclopentadiene	20	11
2,4,6-Trichlorophenol	2.0	U
2,4,5-Trichlorophenol	100	ξ.F
2-Chloronaphthalene	2 (1	U.
2-Nitroaniline	100	11
Dimethylphthalate	2.0	IJ
Acenaphthylene	2.0	i,I
2,6-Dinitrotoluene	20	U
3-Nitroaniline	1 ++ ()	11
Acenaphthene	<u>2</u>)	T T
2,4-Dinitrophenol	100	τ,
Dibenzofuran	20	-
4-Nitrophenol	100	-

Page 1 of 2

_ i

600 Bancroft Way Berkeley, CA. 94710

GCZMS ANALYTICAL REPORT SEMIVOLATILE ORGANICS

Work Order No:	2436		Date Extracted:	11/20/90
Laboratory ID:	1436-01		Date Analyzeu:	12/14/90
Client ID:	QGG3-3W-1		% Moisture:	NA
Matrix:	WATER	Level:LOW	Dilution Eact:	<u>2</u> .0

Compound	Analytical ug/L	Results	
2,4-Dinitrotoluene		IJ.	
Fluorene	2.0	Ū.	
Diethylphthalate	20	1,1	
4-Chlorophenyl-phenylether	20	IJ	
(4-Nitroaniline	[() ()	IJ	
<pre>4.6-Dinitro-2-Methylphenol</pre>	100	Ū.	
N-Nitrosodiphenylamine	2.0	Ú1	
4-Eromophenyl-phenyletner	2.0	IJ	
Hexachlorobenzene	20	Ų	
Pentachlorophenol	100	U	
Phenanthrene	2 O	IJ	
Anthracene	2.0	U	
Di-n-Butylphthalate	2.0	IJ	
Fluoranthene	20	IJ	
🖊 Pyrene	2.0	Û	
Butylbenzylphthalate	2.0	U	
Benzola Anthracene	20	t,r	
3,3'-Dichlorobenzidine	<u>キ</u> リ	1, J	
- Chrysene	2.0	ŢŢ	
bis(2-Ethylhexyl)Phthalate	2.0	U	
Eli-n-octylphthalate	. ti	(J	
(Benzo(b)Fluoranthene	20	U	
Benzo(k)Fluoranthene	2:1	() ·	
Benzo(a)Pyrene	2.0	t į	
Indeno(1,2,3-cd)Pyrene	20	IJ	
Dibenz(a,h)Anthracene	20	IJ	
(Benzo(g,h,i)Perylene	20	Û	
Analyst: And Ching 12	Group Leader:	Jul	

Page 2 of 2

GC/MS ANALYTICAL REPORT SEMIVOLATILE ORGANICS

Work Order No: 2436Date Extracted: 11/20/9Laboratory IE: 2426-02Date Analyzed: 12/19/9Client ID: CGGS-5W-2% Moisture: NAMatrix: WATERLevel:LOWDilution Fact: 2.0					Analytical	Results
Laboratory IE: 2406-02		Matrix:	WATER	Level:LOW	Dilution Fact:	2.0
		Client ID:	CGGS-SW-2		% Moisture:	NA
Work Order No: 2436 Date Extracted: 11/20/9	Labo	ratory IE:	2426-02 67		Date Analyzed:	10/19/90
	Work	Order No:	2436		Date Extracted:	11/20/90

Compound	Analytical ug/L	Results
2,4-Dinitrotoluene	20	IJ
Fluorene	20	U
Diethylphthalate	2.0	Ū.
4-Chlorophenyl-phenylether	2.0	U
4-Nitroaniline	603	1,1
4,6-Dinitro-2-Methylphenol	- 100	Ū.
N-Nitrosodiphenylamine	2.0	τ,
4-Bromophenyl-phenylether	20	IJ
Hexachlorobenzene	20	(J
Pentachlorophenol	100	U
Phenanthrene	2.0	11
Anthracene	2.0	U.
Di-n-Butylphthalate	2.0	1)
Fluoranthene	2.0	U
Pyrene	20	Ų
Butylbenzylphthalate	2 ()	U
Benzo(a)Anthracene	<u> </u>	IJ
3,3'-Dichlorobenzidine	4 ù	U
Chrysene	<u>20</u>	1J
bis(2-Ethylhexyl)Phthalate	7	Л
Di-n-octvlphtnalate	2.()	U
Benzo(b)Eluorantnene	2-)	i)
Senzo(k)Fluoranthene	2.0	11
Benzo(a)Pyrene	2.0	t j
Indeno(1,2,3-cd)Pyrene	2.0	ŧĴ
Eibenz(a,h)Anthracene	• 2.0	1 }
Benzoig,h.i+Perylene	2.0	Ú.
nalyst: And A Aundin	Group Leader:	

Page 2 of 2

Work Order No: 241	10
--------------------	----

Work Order No:	24.16		Date Extracted:	11/20/90
Laboratory TEG	2430-03		Date Analyzed:	12/14/90
Client ID:	CGG5-5 W -3		% Moisture:	NA
Matrix:	WATER	Level:LOW	Dilution Fact:	2.0

Compound	Analytical	Results
	ug∕L	
N-Nitroso-Dimethylamine	20	Ú.
Fhenol	2.0	Ų
bis(2-Chloroethyl)ether	2.0	-U
1-Chlorophenol	2.0	U
1,3-Dichlorobenzene	2.0	Ú.
1,4-Dichlorobenzene	20	Ų
Benzyl Alcohol	2.9	11
1,2-Dichlorobenzene	20	Ų
2-Methylphenol	20	Ų
bis(2-chloroisopropyl)Ether	2.0	Û
4-Methylphenol	20	Ū.
N-Nitroso-Di-n-Propylamine	2.0	IJ
Hexachloroethane	2.0	U
Nitrobenzene	2.0	Ų
Isophorone	2 ()	U
2-Nitrophenol	2.0	Ū.
2,4-Dimethylphenol	2 ()	11
bis(2-Chloroethoxy)methane	20	Û
2,4-Dichlorophenol	20	Ū.
Benzoic Acid	100	
1,2,4-Trichlorobenzene		
Naphthalene	20	
4-Chloroaniline	20	
Hexachlorobutadiene	ئ ار (
4-Chloro-3-Methylphenol	20	-
2-Methylnaphthalene	2 ()	
Hexachlorocyclopentadiene	20	
2,4,6-Trichlorophenol	20	
2,4,5-Trichlorophenol	100	
2-Chloronaphthalene	20	
2-Nitroaniline	100	
Dimethylphthalate	2.0	IJ
Acenaphthylene		
2,6-Dinitrotoluene	2.0	
3-Nitroaniline	100	
Acenaphthene	20	
2,4-Dinitrophenol	100	
Dibenzofuran	20	
4-Nitrophenol	100	

600 Bancroft Way Berkeley, CA. 34710

GC/MS ANALYTICAL REPORT SEMIVOLATILE ORGANICS

Mati	c1X:	WATER	Level:LOW	Dilution Fact:	2.0
Client	ID:	CGGS-SW-3		% Moisture:	NA
Laboratory	1 E) :	2436-03		Date Analyzed:	12/14/90
Work Order	No:	2436		Date Extracted:	11/20/90

Compound	Analytical ug/L	Results
2,4-Dinitrotoluene	20	U
Fluorene	2.0	(J
Diethylphthalate	2.0	Ų.
4-Chlorophenyl-phenylether	2.0	IJ
4-Nitroaniline	100	L)
4,6-Dinitro-2-Methylphenol	100	IJ
N-Nitrosodiphenylamine	2.0	U.
4-Bromophenyl-phenylether	2.0	U
Hexachlorobenzene	20	E J
Pentachlorophenol	100	U
Phenanthrene	2.0	U
Anthracene	2.0	U
Di-n-Butylphthalate	20	Ų
Fluoranthene	2.0	IJ
Pyrene	2.0	U
Butylbenzylphthalate	2.0	U
Benzo(a)Anthracene	2.0	13
3,3'-Dichlorobenzidine	4.0	IJ
Chrysene	2.0	Ų
bis(2-Ethylhexyl)Phthalate	2.0	IJ
Di-n-octylphtnalate	2.0	Ų
Benzo(b)Fluoranthene	2.0	TJ
Benzo(k)Fluoranthene	2.0	U
BenzolaiPyrene	2 ()	IJ
Indeno(1,2,3-cd)Pyrene	20	U.
Dibenz(a,h)Anthracene	2.0	U
Benzo(g,h,i)Perylene	20	IJ
Analyst: In 262 Manufage	Group Leader:	

Page 2 of 2

Work Order No: 2436		Date Extracted:	11/20/90
Laboratory ID: MWBNA901120		Date Analyzed:	12/11/90
Client ID: SBLANK		% Moisture:	NA
Matrix: WATER	Level:LOW	Dilution Fact:	2.0
Compound		Analytical ug/L	Results
N-Nitroso-Dimethylamine		20	U
Phenol		2 0	U
bis(2-Chloroethyl)ether		20	U
2-Chlorophenol		2 0	U
1.3-Dichlorobenzene		2.0	U
1,4-Dichlorobenzene		2.0	U
Benzyl Alcohol		20	U
1,2-Dichlorobenzene		2 0	U
2-Methylphenol		20	U
bis(2-chloroisopropyl)Ether		2 0	U
4-Methylphenol		20	U
N-Nitroso-Di-n-Propylamine		20	U
Hexachloroethane		20	U
Nitrobenzene		20	IJ
Isophorone		2 0	U
2-Nitrophenol		20	U
2,4-Dimethylphenol		20	U
<pre>bis(2-Chloroethoxy)methane</pre>		20	U
2,4-Dichlorophenol		2 0	U
Benzoic Acid		100	U
1,2,4-Trichlorobenzene		2.0	U
Naphthalene		20	U
4-Chloroaniline		20	U
Hexachlorobutadiene		20	U
4-Chloro-3-Methylphenol		20	U
2-Methylnaphthalene		20	U
Hexachlorocyclopentadiene		20	U
2,4,6-Trichlorophenol			U
2,4,5-Trichlorophenol		100	
2-Chloronaphthalene			U
2-Nitroaniline		100	
Dimethylphthalate			U
Acenaphthylene			U
2,6-Dinitrotoluene			U
3-Nitroaniline		100	
Acenaphthene			U
2,4-Dinitrophenol		100	
Dibenzofuran			U
4-Nitrophenol		100	U

GC/MS ANALYTICAL REPORT SEMIVOLATILE ORGANICS

Work Order No: 2430		Date Extracted:	11/20/90
Laboratory ID: MWBNA901120		Date Analyzed:	12/11/90
Client ID: WBLANK		% Moisture:	NA
Matrix: WATER	Level:LOW	Dilution Fact:	2.0
Compound		Analytical ug/L	Results
Compound 2,4-Dinitrotoluene Fluorene Diethylphthalate 4-Chlorophenyl-phenylether		-	บ บ บ

1	4-Nitroaniline	100	U
I	4,6-Dinitro-2-Methylphenol	100	U
	N-Nitrosodiphenylamine	20	U
1	4-Bromophenyl-phenylether	20	U
1	Hexachlorobenzene	20	U
1	Pentachlorophenol	100	U
ł	Phenanthrene	20	U
1	Anthracene	20	U
1	Di-n-Butylphthalate	20	U
୍ରା	Fluoranthene	20	U
	Pyrene	20	U
1	Butylbenzylphthalate	20	
1	Benzo(a)Anthracene	20	U
1	3,3'-Dichlorobenzidine	40	
- 1	Chrysene	20	U
ł	bis(2-Ethylhexyl)Phthalate	20	
l l	Di-n-octylphthalate	20	
1	Benzo(b)Fluoranthene .	20	
1	Benzo(k)Fluoranthene	20	
I	Benzo(a)Pyrene	20	
1	Indeno(1,2,3-cd)Pyrene	20	
I	Dibenz(a,h)Anthracene	20	
1	Benzo(g,h,i)Perylene	20	U

Analyst: 2 May Lin ۱

Page 2 of 2

Group Leader:

Ruh h

Work Order No:	2436		Date Extracted:	11/20/90
Laboratory ID:	2436-04		Date Analyzed:	12/13/90
Client ID:	CGGS-SED-1		% Moisture:	51
Matrix:	SOIL	Level:MED	Dilution Fact:	1.0

	Analytical	Results
Compound	ug/Kg	
N-Nitroso-Dimethylamine	200000	U
Phenol	200000	U
bis(2-Chloroethyl)ether	200000	U
2-Chlorophenol	200000	U
1,3-Dichlorobenzene	200000	U
1,4-Dichlorobenzene	200000	ប
Benzyl Alcohol	200000	U
1,2-Dichlorobenzene	200000	U
2-Methylphenol	200000	U
bis(2-chloroisopropyl)Ether	200000	
4-Methylphenol	200000	U
N-Nitroso-Di-n-Propylamine	200000	U
Hexachloroethane	200000	U
Nitrobenzene	200000	
Isophorone	200000	
2-Nitrophenol	200000	
2,4-Dimethylphenol	200000	
bis(2-Chloroethoxy)methane	200000	
2,4-Dichlorophenol	200000	
Benzoic Acid	990000	-
1,2,4-Trichlorobenzene	200000	
Naphthalene	200000	
4-Chloroaniline	200000	
Hexachlorobutadiene	200000	
4-Chloro-3-Methylphenol	200000	
2-Methylnaphthalene	200000	
Hexachlorocyclopentadiene	200000	
2,4,6-Trichlorophenol	200000	
2,4,5-Trichlorophenol	990000	
2-Chloronaphthalene	200000	
2-Nitroaniline	200000	
Dimethylphthalate	200000	
Acenaphthylene	200000	
2,6-Dinitrotoluene	200000	
3-Nitroaniline	99000	
Acenaphthene	200000	-
2,4-Dinitrophenol	990000	
Dibenzofuran	200000	
4-Nitrophenol	990000	

600 Bancroft Way Berkeley, CA. 94710

Work Order No:	2436		Date Extracted:	11/20/90
Laboratory ID:	2436-04		Date Analyzed:	12/13/90
Client ID:	CGGS-SED-1		% Moisture:	51
Matrix:	SOIL	Level:MED	Dilution Fact:	1.0

Compound	Analytical ug/Kg	R es ults
2,4-Dinitrotoluene	200000	U
Fluorene	200000	U
Diethylphthalate	200000	U
4-Chlorophenyl-phenylether	200000	U
4-Nitroaniline	990000	U
4,6-Dinitro-2-Methylphenol	990000	U
N-Nitrosodiphenylamine	200000	U
4-Bromophenyl-phenylether	200000	U
Hexachlorobenzene	200000	U
Pentachlorophenol	990000	U
Phenanthrene	200000	U
Anthracene	200000	U
Di-n-Butylphthalate	200000	U
Fluoranthene	200000	U
Pyrene	200000	U
Butylbenzylphthalate	200000	U
Benzo(a)Anthracene	200000	U
3,3'-Dichlorobenzidine	200000	U
Chrysene	200000	U
bis(2-Ethylhexyl)Phthalate	200000	U
Di-n-octylphthalate	200000	U
Benzo(b)Fluoranthene	200000	U
Benzo(k)Fluoranthene	200000	U
Benzo(a)Pyrene	200000	U
Indeno(1,2,3-cd)Pyrene	200000	U
Dibenz(a,h)Anthracene	20000	U
Benzo(g,h,i)Perylene	200000	U
Analyst: ALA2 Mark Has	Group Leader:	Ind

Page 2 of 2

600 Bancroft Way Berkeley, CA. 94710

Work Order No: 2436	D	ate Extracted:	11/20/90
Laboratory ID: 2436-05		Date Analyzed:	12/17/90
Client ID: CGGS-SED-2		% Moisture:	16
Matrix: SOIL	Level:MED	Dilution Fact:	1.0
1		Analytical	Results
Compound		ug/Kg	
N-Nitroso-Dimethylamine		120000	U
Phenol		120000	
bis(2-Chloroethyl)ether		120000	
2-Chlorophenol		120000	
1,3-Dichlorobenzene		120000	
1,4-Dichlorobenzene		120000	U
Benzyl Alcohol		120000	
1,2-Dichlorobenzene		120000	U
2-Methylphenol		120000	U
<pre>bis(2-chloroisopropyl)Ether</pre>		120000	U
4-Methylphenol		120000	U
N-Nitroso-Di-n-Propylamine		120000	U
Hexachloroethane		120000	U
Nitrobenzene		120000	U
Isophorone		120000	U
2-Nitrophenol		120000	U
2,4-Dimethylphenol		120000	U
<pre>bis(2-Chloroethoxy)methane</pre>		120000	U
2,4-Dichlorophenol		120000	Ù
Benzoic Acid		580000	IJ
1,2,4-Trichlorobenzene		120000	U
Naphthalene		. 120000	U
4-Chloroaniline		120000	U
Hexachlorobutadiene		120000	U
4-Chloro-3-Methylphenol		120000	U
2-Methylnaphthalene		120000	
Hexachlorocyclopentadiene		120000	
2,4,6-Trichlorophenol		120000	-
2,4,5-Trichlorophenol		580000	
2-Chloronaphthalene		120000	
2-Nitroaniline		120000	
Dimethylphthalate Acenaphthylene		120000	
2,6-Dinitrotoluene		120000	
3-Nitroaniline		120000	
Acenaphthene		580000	
2,4-Dinitrophenol		120000	
Dibenzofuran		580000	
4-Nitrophenol		120000	
MICLOPHENDI		580000	0

Work Order No:	2436		Date Extracted:	11/20/90
Laboratory ID:	2 436 –05		Date Analyzed:	12/17/90
Client ID:	CGGS-SED-2		% Moisture:	16
Matrix:	SOIL	Level:MED	Dilution Fact:	1.0

Compound	ug∕Kg	
1 1 Dinitrataluana		
2,4-Dinitrotoluene	120000	U
Fluorene	120000	U
Diethylphthalate	120000	U
4-Chlorophenyl-phenylether	120000	U
4-Nitroaniline	580000	U
4,6-Dinitro-2-Methylphenol	580000	U
N-Nitrosodiphenylamine	120000	U
4-Bromophenyl-phenylether	120000	U
Hexachlorobenzene	120000	U
Pentachlorophenol	580000	ប
Phenanthrene	120000	ប
Anthracene	120000	ប
Di-n-Butylphthalate	120000	U
Fluoranthene	120000	U
Pyrene	120000	U
Butylbenzylphthalate	120000	U
Benzo(a)Anthracene	120000	U
3,3'-Dichlorobenzidine	240000	U
Chrysene	120000	U
bis(2-Ethylhexyl)Phthalate	120000	IJ
Di-n-octylphthalate	120000	U
Benzo(b)Fluoranthene	120000	U
Benzo(k)Fluoranthene	120000	U
Benzo(a)Pyrene	120000	U
Indeno(1,2,3-cd)Pyrene	120000	U
Dibenz(a,h)Anthracene	120000	
Benzo(g,h,i)Perylene	120000	U
analyst:	Group Leader:	
hup 62 Mus lla	PLIL	Junt

Page 2 of 2

GC/MS ANALYTICAL REPORT SEMIVOLATILE ORGANICS

	Wor	k (rde	r No):	24	36
--	-----	-----	-----	------	----	----	----

L

Date Extracted: 11/20/90

Date	Analyzed:	12/13/90

Client ID: CGGS-SED-3

Matrix: SOIL

Level:MED Dilution Fact: 1.

Dilution	Fact:	1.0	
Analy	tical	Results	
	υσ/Κα		

% Moisture: 49

N-Nitroso-Dimethylamine 39000 U Phenol 39000 U bis(2-Chloroethyl)ether 39000 U 2-Chlorophenol 39000 U 1,3-Dichlorobenzene 39000 U	
Phenol 39000 U bis(2-Chloroethyl)ether 39000 U 2-Chlorophenol 39000 U 1,3-Dichlorobenzene 39000 U	
bis(2-Chloroethyl)ether 39000 U 2-Chlorophenol 39000 U 1,3-Dichlorobenzene 39000 U	
2-Chlorophenol 39000 U 1,3-Dichlorobenzene 39000 U	
1,3-Dichlorobenzene 39000 U	
1,4-Dichlorobenzene 39000 U	
Benzyl Alcohol 39000 U	
1,2-Dichlorobenzene 39000 U	
2-Methylphenol 39000 U	
bis(2-chloroisopropyl)Ether 39000 U	
4-Methylphenol 39000 U	
N-Nitroso-Di-n-Propylamine 39000 U	
Hexachloroethane 39000 U	
Nitrobenzene 39000 U	
Isophorone 39000 U	
2-Nitrophenol 39000 U	
2,4-Dimethylphenol 39000 U	
bis(2-Chloroethoxy)methane 39000 U	
2,4-Dichlorophenol 39000 U	
Benzoic Acid 190000 U	
1,2,4-Trichlorobenzene 39000 U	
Naphthalene 39000 U	
4-Chloroaniline 39000 U	
Hexachlorobutadiene 39000 U	
4-Chloro-3-Methylphenol 39000 U	
2-Methylnaphthalene 39000 U	
Hexachlorocyclopentadiene 39000 U	
2,4,6-Trichlorophenol 39000 U	
2,4,5-Trichlorophenol 190000 U	
2-Chloronaphthalene 39000 U	
2-Nitroaniline 39000 U	
Dimethylphthalate 39000 U	
Acenaphthylene 39000 U	
2,6-Dinitrotoluene 39000 U	
3-Nitroaniline 190000 U	
Acenaphthene 39000 U	
2,4-Dinitrophenol 190000 U	
Dibenzofuran 39000 U	
4-Nitrophenol 190000 U	

GC/MS ANALYTICAL REPORT SEMIVOLATILE ORGANICS

Work Order No:	2436		Date Extracted:	11/20/90
Laboratory ID:	2436-06		Date Analyzed:	12/13/90
Client ID:	CGGS-SED-3		% Moisture:	49
Matrix:	SOIL	Level:MED	Dilution Fact:	1.0

	Analytical	Results
Compound	ug/Kg	
2,4-Dinitrotoluene	39000	U
Fluorene	39000	U
Diethylphthalate	39000	U
4-Chlorophenyl-phenylether	39000	U
4-Nitroaniline	190000	U
4,6-Dinitro-2-Methylphenol	190000	U
N-Nitrosodiphenylamine	39000	U
4-Bromophenyl-phenylether	39000	U
Hexachlorobenzene	39000	U
Pentachlorophenol	190000	U
Phenanthrene	39000	U
Anthracene	39000	U.
Di-n-Butylphthalate	39000	U
Fluoranthene	39000	U
Pyrene	39000	U
Butylbenzylphthalate	39000	U
Benzo(a)Anthracene	39000	U
3,3'-Dichlorobenzidine	39000	U
Chrysene	39000	U
bis(2-Ethylhexyl)Phthalate	39000	U
Di-n-octylphthalate	39000	U
Benzo(b)Fluoranthene	39000	U
Benzo(k)Fluoranthene	39000	U
Benzo(a)Pyrene	39000	U
Indeno(1,2,3-cd)Pyrene	39000	U
Dibenz(a,h)Anthracene	39000	U
Benzo(g,h,i)Perylene	39000	U

Analyst: Jung D. Manafiger

Group Leader: ן היו

Page 2 of 2

Work Order No:	2436		Date Extracted:	11/20/90
Laboratory ID:	2436-07		Date Analyzed:	12/13/90
Client ID:	CGGS-SS-1		% Moisture:	9
Matrix:	SOIL	Level:MED	Dilution Fact:	1.0

Compound	Analytical ug/Kg	Results
N-Nitroso-Dimethylamine	110000	U
Phenol	110000	U
bis(2-Chloroethyl)ether	110000	U
2-Chlorophenol	110000	U
1,3-Dichlorobenzene	110000	U
1,4-Dichlorobenzene	110000	U
Benzyl Alcohol	110000	U
1,2-Dichlorobenzene	110000	U
2-Methylphenol	110000	U
bis(2-chloroisopropyl)Ether	110000	U
4-Methylphenol	110000	U
N-Nitroso-Di-n-Propylamine	110000	U
Hexachloroethane	110000	U
Nitrobenzene	110000	
Isophorone	110000	U
2-Nitrophenol	110000	
2,4-Dimethylphenol	110000	
bis(2-Chloroethoxy)methane	110000	
2,4-Dichlorophenol	110000	
Benzoic Acid	530000	
1,2,4-Trichlorobenzene	110000	
Naphthalene	110000	
4-Chloroaniline	110000	
Hexachlorobutadiene	110000	
4-Chloro-3-Methylphenol	110000	
2-Methylnaphthalene	110000	
Hexachlorocyclopentadiene	110000	
2,4,6-Trichlorophenol	110000	
2,4,5-Trichlorophenol	530000	-
2-Chloronaphthalene	110000	
2-Nitroaniline	110000	
Dimethylphthalate	110000	
Acenaphthylene	110000	
2,6-Dinitrotoluene	110000	
3-Nitroaniline	530000	
Acenaphthene	110000	
2,4-Dinitrophenol	530000	
Dibenzofuran	110000	
4-Nitrophenol	53000	
·		0

600 Bancroft Way Berkeley, CA. 94710

GC/MS ANALYTICAL REPORT SEMIVOLATILE ORGANICS

Matr	ix:	SOIL	Level:MED	Dilutio	n Fact:	1.0
Client	ID:	CGGS-SS-1		% Mo	isture:	9
Laboratory	ID:	2436-07		Date An	alyzed:	12/13/90
Work Order	No:	2436		Date Ext	racted:	11/20/90

	Analytical	Results
Compound	ug/Kg	
2,4-Dinitrotoluene	110000	U
Fluorene	110000	U
Diethylphthalate	110000	U
4-Chlorophenyl-phenylether	110000	U
4-Nitroaniline	530000	U
4,6-Dinitro-2-Methylphenol	530000	U
N-Nitrosodiphenylamine	110000	U
4-Bromophenyl-phenylether	110000	U
Hexachlorobenzene	110000	U
Pentachlorophenol	530000	U
Phenanthrene	110000	U
Anthracene	110000	U
Di-n-Butylphthalate	110000	IJ
Fluoranthene	110000	U
Pyrene	110000	U
Butylbenzylphthalate	110000	U
Benzo(a)Anthracene	110000	U
3,3'-Dichlorobenzidine	110000	U
Chrysene	110000	U
bis(2-Ethylhexyl)Phthalate	110000	U
Di-n-octylphthalate	110000	U
Benzo(b)Fluoranthene	110000	U
Benzo(k)Fluoranthene	110000	U
Benzo(a)Pyrene	110000	U
Indeno(1,2,3-cd)Pyrene	110000	U
Dibenz(a,h)Anthracene	110000	U
Benzo(g,h,i)Perylene	110000	U
Analyst: ARAA	Group Leader:] /
mol LOC Vine TTTP	- tide he	m

Page 2 of 2

Work Order No:	2436		Date Extracted:	11/20/90
Laboratory ID:	2436-08		Date Analyzed:	12/13/90
Client ID:	CGGS-SS-2		% Moisture:	19
Matrix:	SOIL	Level:MED	Dilution Fact:	1.0

Compound	Analytical	
	ug/Kg	
N-Nitroso-Dimethylamine	120000	U
Phenol	120000	
bis(2-Chloroethyl)ether	120000	U
2-Chlorophenol	120000	
1,3-Dichlorobenzene	120000	
1,4-Dichlorobenzene	120000	
Benzyl Alcohol	120000	-
1,2-Dichlorobenzene	120000	
2-Methylphenol	120000	-
bis(2-chloroisopropyl)Ether	120000	
4-Methylphenol	120000	-
N-Nitroso-Di-n-Propylamine	120000	
Hexachloroethane	120000	•
Nitrobenzene	120000	-
Isophorone	120000	
2-Nitrophenol	120000	-
2,4-Dimethylphenol		
bis(2-Chloroethoxy)methane	120000	
2,4-Dichlorophenol		-
Benzoic Acid	120000	-
1,2,4-Trichlorobenzene	600000	
Naphthalene	120000	-
4-Chloroaniline	120000	
Hexachlorobutadiene	120000	•
4-Chloro-3-Methylphenol	120000	•
2-Methylnaphthalene	120000	
Hexachlorocyclopentadiene	120000	-
2,4,6-Trichlorophenol	120000	
2,4,5-Trichlorophenol	120000	
2-Chloronaphthalene	600000	-
2-Nitroaniline	120000	
Dimethylphthalate	120000	
Acenaphthylene	120000	
2.6-Dinitrotoluene	120000	
3-Nitroaniline	120000	-
Acenaphthene	600000	
2,4-Dinitrophenol	120000	
Dibenzofuran	600000	
4-Nitrophenol	120000	
1-MICLOPHENDI	600000	U

GC/MS ANALYTICAL REPORT SEMIVOLATILE ORGANICS

Matrix	: SOIL	Level:MED	Dilution Fact:	1.0
Client ID	: CGGS-SS-2		<pre>% Moisture:</pre>	19
Laboratory ID	: 2436-08		Date Analyzed:	12/13/90
Work Order No	: 2436		Date Extracted:	11/20/90

Compound	Analytical ug/Kg	Results
2,4-Dinitrotoluene	120000	U
Fluorene	120000	U
Diethylphthalate	120000	U
4-Chlorophenyl-phenylether	120000	U
4-Nitroaniline	600000	U
4,6-Dinitro-2-Methylphenol	600000	U
N-Nitrosodiphenylamine	120000	U
4-Bromophenyl-phenylether	120000	U
Hexachlorobenzene	120000	U
Pentachlorophenol	600000	U ~
Phenanthrene	120000	U
Anthracene	120000	U
Di-n-Butylphthalate	120000	U
Fluoranthene	120000	U
Pyrene	120000	U
Butylbenzylphthalate	120000	U
Benzo(a)Anthracene	120000	U
3,3'-Dichlorobenzidine	120000	U
Chrysene	120000	U
bis(2-Ethylhexyl)Phthalate	120000	U
Di-n-octylphthalate	120000	U
Benzo(b)Fluoranthene	120000	U
Benzo(k)Fluoranthene	120000	U
Benzo(a)Pyrene	120000	
Indeno(1,2,3-cd)Pyrene	120000	U
Dibenz(a,h)Anthracene	120000	
Benzo(g,h,i)Perylene	120000	U

Analyst: frog 2 & Man He

Group Leader:

Page 2 of 2

1

600 Bancroft Way Berkeley, CA. 94710

Analytical Results

Work Order No:	2436		Date Extracted:	11/20/90
Laboratory ID:	2436-09		Date Analyzed:	12/14/90
Client ID:	CGGS-SS-3		% Moisture:	38
Matrix:	SOIL	Level:MED	Dilution Fact:	1.0

Ì	Compound	ug/Kg	
i	N-Nitroso-Dimethylamine	160000	U
i	Phenol	160000	
Ì	bis(2-Chloroethyl)ether	160000	U
Ì	2-Chlorophenol	160000	
1	1,3-Dichlorobenzene	160000	U
1	1,4-Dichlorobenzene	160000	
1	Benzyl Alcohol	160000	U
1	1,2-Dichlorobenzene	160000	U
	2-Methylphenol	160000	U
1	bis(2-chloroisopropyl)Ether	160000	U
1	4-Methylphenol	160000	U
1	N-Nitroso-Di-n-Propylamine	160000	U -
1	Hexachloroethane	. 160000	U
	Nitrobenzene	160000	U
	Isophorone	160000	U
I	2-Nitrophenol	160000	U
ł	2,4-Dimethylphenol	160000	U
- 1	<pre>bis(2-Chloroethoxy)methane</pre>	160000	U
1	2,4-Dichlorophenol	160000	U.
1	Benzoic Acid	780000	U
- 1	1,2,4-Trichlorobenzene	160000	U
	Naphthalene	160000	U
- 1	4-Chloroaniline	160000	U
ł	Hexachlorobutadiene	160000	U
- 1	4-Chloro-3-Methylphenol	160000	U
1	2-Methylnaphthalene	160000	U
	Hexachlorocyclopentadiene	160000	U
	2,4,6-Trichlorophenol	160000	U
	2,4,5-Trichlorophenol	780000	
1	2-Chloronaphthalene	160000	
	2-Nitroaniline	160000	
1	Dimethylphthalate	160000	
I	Acenaphthylene	160000	
	2,6-Dinitrotoluene	160000	
	3-Nitroaniline	780000	
	Acenaphthene	160000	
	2,4-Dinitrophenol	780000	
ļ	Dibenzofuran	160000	
I	4-Nitrophenol	780000	U

GC/MS ANALYTICAL REPORT SEMIVOLATILE ORGANICS

Work Order No:	2436		Date Extracted:	11/20/90
Laboratory ID:	2436-09		Date Analyzed:	12/14/90
Client ID:	CGGS-SS-3		% Moisture:	38
Matrix:	SOIL	Level:MED	Dilution Fact:	1.0

Compound	Analytical ug/Kg	Results
2,4-Dinitrotoluene	160000	
Fluorene	160000	
Diethylphthalate	160000	
4-Chlorophenyl-phenylether	160000	U
4-Nitroaniline	780000	U
4,6-Dinitro-2-Methylphenol	780000	U
N-Nitrosodiphenylamine	160000	U
4-Bromophenyl-phenylether	160000	U
Hexachlorobenzene	160000	U
Pentachlorophenol	780000	U
Phenanthrene	160000	U
Anthracene	160000	U
Di-n-Butylphthalate	160000	U
Fluoranthene	120000	J
Pyrene	110000	J
Butylbenzylphthalate	160000	U
Benzo(a)Anthracene	160000	U
3,3'-Dichlorobenzidine	160000	U
Chrysene	160000	U
bis(2-Ethylhexyl)Phthalate	160000	U
Di-n-octylphthalate	160000	U
Benzo(b)Fluoranthene	160000	U
Benzo(k)Fluoranthene	160000	U
Benzo(a)Pyrene	160000	U
Indeno(1,2,3-cd)Pyrene	160000	U
Dibenz(a,h)Anthracene	160000	U
Benzo(g,h,i)Perylene	160000	U

|Analyst: 2 Q-Minfor

Group Leader:

Page 2 of 2

GC/MS ANALYTICAL REPORT SEMIVOLATILE ORGANICS

Work Order No:	2436		Date Extracted:	11/20/90
Laboratory ID:	2436-10		Date Analyzed:	12/17/90
Client ID:	CGGS-SS-4		% Moisture:	25
Matrix:	SOIL	Level:MED	Dilution Fact:	1.0

Compound	Analytical ug/Kg	Results
N-Nitroso-Dimethylamine	130000	U
Phenol	130000	U
bis(2-Chloroethyl)ether	130000	U
2-Chlorophenol	130000	U
1,3-Dichlorobenzene	130000	U
1,4-Dichlorobenzene	130000	U
Benzyl Alcohol	130000	IJ
1,2-Dichlorobenzene	130000	U
2-Methylphenol	130000	U
bis(2-chloroisopropyl)Ether	130000	U
4-Methylphenol	130000	U
N-Nitroso-Di-n-Propylamine	130000	U
Hexachloroethane	130000	U
Nitrobenzene	130000	U
Isophorone	130000	U
2-Nitrophenol	130000	U
2,4-Dimethylphenol	130000	U
bis(2-Chloroethoxy)methane	130000	U
2,4-Dichlorophenol	130000	U
Benzoic Acid	650000	U
1,2,4-Trichlorobenzene	130000	U
Naphthalene	130000	U
4-Chloroaniline	130000	
Hexachlorobutadiene	130000	U
4-Chloro-3-Methylphenol	130000	U
2-Methylnaphthalene	130000	U
Hexachlorocyclopentadiene	130000	U
2,4,6-Trichlorophenol	130000	U
2,4,5-Trichlorophenol	650000	U
2-Chloronaphthalene	130000	U
2-Nitroaniline	130000	U
Dimethylphthalate	130000	U
Acenaphthylene	130000	U
2,6-Dinitrotoluene	130000	U
3-Nitroaniline	650000	U
Acenaphthene	130000	U
2,4-Dinitrophenol	650000	U
Dibenzofuran	130000	U
4-Nitrophenol	650000	U

GC/MS ANALYTICAL REPORT SEMIVOLATILE ORGANICS

Work Order No:	2436		Date Extracted:	11/20/90
Laboratory ID:	2 4 3 6 – 1 0		Date Analyzed:	12/17/90
Client ID:	CGGS-SS-4		% Moisture:	2 5
Matrix:	SOIL	Level:MED	Dilution Fact:	1.0

Compound 2,4-Dinitrotoluene Fluorene Diethylphthalate 4-Chlorophenyl-phenylether 4.o-Dinitro-2-Methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-Butylphthalate Fluoranthene Pyrene Butylbenzylphthalate Benzo(a)Anthracene 3,3'-Dichlorobenzidine	ug/Kg 130000 130000 130000 650000 650000 130000 130000 130000 650000	บ บ บ บ บ บ บ บ
Fluorene Diethylphthalate 4-Chlorophenyl-phenylether 4-Nitroaniline 4.6-Dinitro-2-Methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-Butylphthalate Fluoranthene Pyrene Butylbenzylphthalate Benzo(a)Anthracene 3,3'-Dichlorobenzidine	130000 130000 650000 650000 130000 130000 130000 650000	บ บ บ บ บ บ บ บ
Diethylphthalate 4-Chlorophenyl-phenylether 4-Nitroaniline 4,6-Dinitro-2-Methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-Butylphthalate Fluoranthene Pyrene Butylbenzylphthalate Benzo(a)Anthracene 3,3'-Dichlorobenzidine	130000 130000 650000 650000 130000 130000 130000 650000	U U U U U U U
<pre>4-Chlorophenyl-phenylether 4-Nitroaniline 4,6-Dinitro-2-Methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-Butylphthalate Fluoranthene Pyrene Butylbenzylphthalate Benzo(a)Anthracene 3,3'-Dichlorobenzidine</pre>	130000 650000 650000 130000 130000 130000 650000	บ บ บ บ บ
<pre>4-Nitroaniline 4,6-Dinitro-2-Methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-Butylphthalate Fluoranthene Pyrene Butylbenzylphthalate Benzo(a)Anthracene 3,3'-Dichlorobenzidine</pre>	650000 650000 130000 130000 130000 650000	บ บ บ บ บ
4,6-Dinitro-2-Methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-Butylphthalate Fluoranthene Pyrene Butylbenzylphthalate Benzo(a)Anthracene 3,3'-Dichlorobenzidine	650000 130000 130000 130000 650000	บ บ บ บ
<pre>N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-Butylphthalate Fluoranthene Pyrene Butylbenzylphthalate Benzo(a)Anthracene 3,3'-Dichlorobenzidine</pre>	130000 130000 130000 650000	บ บ บ
4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-Butylphthalate Fluoranthene Pyrene Butylbenzylphthalate Benzo(a)Anthracene 3,3'-Dichlorobenzidine	130000 130000 650000	U U
Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-Butylphthalate Fluoranthene Pyrene Butylbenzylphthalate Benzo(a)Anthracene 3,3'-Dichlorobenzidine	130000 650000	U
Pentachlorophenol Phenanthrene Anthracene Di-n-Butylphthalate Fluoranthene Pyrene Butylbenzylphthalate Benzo(a)Anthracene 3,3'-Dichlorobenzidine	650000	
Phenanthrene Anthracene Di-n-Butylphthalate Fluoranthene Pyrene Butylbenzylphthalate Benzo(a)Anthracene 3,3'-Dichlorobenzidine		
Anthracene Di-n-Butylphthalate Fluoranthene Pyrene Butylbenzylphthalate Benzo(a)Anthracene 3,3'-Dichlorobenzidine	240000	U
Di-n-Butylphthalate Fluoranthene Pyrene Butylbenzylphthalate Benzo(a)Anthracene 3,3'-Dichlorobenzidine	240000	
Fluoranthene Pyrene Butylbenzylphthalate Benzo(a)Anthracene 3,3'-Dichlorobenzidine	71000	J
Fluoranthene Pyrene Butylbenzylphthalate Benzo(a)Anthracene 3,3'-Dichlorobenzidine	130000	U
Butylbenzylphthalate Benzo(a)Anthracene 3,3'-Dichlorobenzidine	710000	
Benzo(a)Anthracene 3,3'-Dichlorobenzidine	800000	
3,3'-Dichlorobenzidine	130000	U
	430000	
	130000	U
Chrysene	380000	
bis(2-Ethylhexyl)Phthalate	130000	U
Di-n-octylphthalate	130000	U
Benzo(b)Fluoranthene	370000	
Benzo(k)Fluoranthene	. 300000	
Benzo(a)Pyrene	280000	
Indeno(1,2,3-cd)Pyrene	250000	
Dibenz(a,h)Anthracene	130000	U
Benzo(g,h,i)Perylene	180000	
Analyst: A A A Malan	Group Leader:	

Page 2 of 2

GC/MS ANALYTICAL REPORT SEMIVOLATILE ORGANICS

Matrix:	SOIL	Level:MED	Dilution Fact:	1.0
Client ID:	CGGS-SS-5		% Moisture:	33
Laboratory ID:	2436-11		Date Analyzed:	12/14/90
Work Order No:	2436		Date Extracted:	11/20/90

	Analytical	Results
Compound	ug/Kg	
N-Nitroso-Dimethylamine	150000	
Phenol	150000	U
bis(2-Chloroethyl)ether	150000	U
2-Chlorophenol	150000	U
1,3-Dichlorobenzene	150000	Ų
1,4-Dichlorobenzene	150000	U
Benzyl Alcohol	150000	U
1,2-Dichlorobenzene	150000	U
2-Methylphenol	150000	U
bis(2-chloroisopropyl)Ether	150000	U
4-Methylphenol	150000	U
N-Nitroso-Di-n-Propylamine	150000	U
Hexachloroethane	150000	U
Nitrobenzene	150000	U
Isophorone	150000	
2-Nitrophenol	150000	
2,4-Dimethylphenol	150000	U
bis(2-Chloroethoxy)methane	150000	U
2,4-Dichlorophenol	150000	U
Benzoic Acid	720000	
1,2,4-Trichlorobenzene	150000	
Naphthalene	150000	
4-Chloroaniline	150000	
Hexachlorobutadiene	150000	U
4-Chloro-3-Methylphenol	150000	
2-Methylnaphthalene	150000	
Hexachlorocyclopentadiene	150000	U
2,4,6-Trichlorophenol	150000	U
2,4,5-Trichlorophenol	720000	U
2-Chloronaphthalene	150000	U
2-Nitroaniline	150000	U
Dimethylphthalate	150000	U
Acenaphthylene	150000	U
2,6-Dinitrotoluene	150000	U
3-Nitroaniline	720000	U
Acenaphthene	150000	U
2,4-Dinitrophenol	720000	U
Dibenzofuran	150000	U
4-Nitrophenol	720000	U

GC/MS ANALYTICAL REPORT SEMIVOLATILE ORGANICS

Work Order No:	2436		Date Extracted:	11/20/90
Laboratory ID:	2436-11		Date Analyzed:	12/14/90
Client ID:	CGGS-SS-5		% Moisture:	3 3
Matrix:	SOIL	Level:MED	Dilution Fact:	1.0

Compound 2,4-Dinitrotoluene Fluorene Diethylphthalate 4-Chlorophenyl-phenylether 4-Nitroaniline	ug/Kg 150000 150000 150000 150000	U
Fluorene Diethylphthalate 4-Chlorophenyl-phenylether	150000 150000 150000	U
Diethylphthalate 4-Chlorophenyl-phenylether	150000 150000	
4-Chlorophenyl-phenylether	150000	U
		-
4-Nitroaniline		U
	720000	U
4,6-Dinitro-2-Methylphenol	720000	U
N-Nitrosodiphenylamine	150000	U
4-Bromophenyl-phenylether	150000	U
Hexachlorobenzene	150000	U
Pentachlorophenol	720000	U
Phenanthrene	150000	U
Anthracene	150000	U ·
Di-n-Butylphthalate	150000	U
Fluoranthene	110000	J
Pyrene	100000	J
Butylbenzylphthalate	150000	U
Benzo(a)Anthracene	55000	J
3,3'-Dichlorobenzidine	150000	U
Chrysene	55000	J
bis(2-Ethylhexyl)Phthalate	150000	U
Di-n-octylphthalate	150000	U
Benzo(b)Fluoranthene	150000	U
Benzo(k)Fluoranthene	150000	U
Benzo(a)Pyrene	150000	U
Indeno(1,2,3-cd)Pyrene	150000	U
Dibenz(a,h)Anthracene	150000	U
Benzo(g,h,i)Perylene	150000	U
Analyst: An D Ma la	Group Leader:	2/

Page 2 of 2

600 Bancroft Way Berkeley, CA. 94710

GC/MS ANALYTICAL REPORT SEMIVOLATILE ORGANICS

Work Order No:	2436		Date Extracted:	11/20/90
Laboratory ID:	MSBNA901120A		Date Analyzed:	12/11/90
Client ID:	SBLANK		% Moisture:	NA
Matrix:	SOIL	Level:MED	Dilution Fact:	1.0

1		Analytical	Results	:
	Compound	ug/Kg		
Ì	N-Nitroso-Dimethylamine	20000	U	
1	Phenol	20000	U	
- 1	bis(2-Chloroethyl)ether	20000	ប	
1	2-Chlorophenol	20000	U	ł
	1,3-Dichlorobenzene	20000	U	
- 1	1,4-Dichlorobenzene	20000	U	
1	Benzyl Alcohol	20000	U	
1	1,2-Dichlorobenzene	20000	U	:
1	2-Methylphenol	20000	U	
	bis(2-chloroisopropyl)Ether	20000	U	
1	4-Methylphenol	20000	U	i
1	N-Nitroso-Di-n-Propylamine	20000	U	:
	Hexachloroethane	20000	U	
1	Nitrobenzene	20000	U	
	Isophorone	20000	U	!
1	2-Nitrophenol	20000	U	;
1	2,4-Dimethylphenol	20000	ប	
1	bis(2-Chloroethoxy)methane	20000	U	
1	2,4-Dichlorophenol	20000	U	
I	Benzoic Acid	97000	U	
1	1,2,4-Trichlorobenzene	20000		
1	Naphthalene	. 20000		
Í	4-Chloroaniline	20000		
1	Hexachlorobutadiene	20000		:
1	4-Chloro-3-Methylphenol	20000		
1	2-Methylnaphthalene	20000	U	
1	Hexachlorocyclopentadiene	20000	U	
1	2,4,6-Trichlorophenol	20000	U	
I	2,4,5-Trichlorophenol	97000	U	
I	2-Chloronaphthalene	20000	U	
1	2-Nitroaniline	20000	U	
I	Dimethylphthalate	20000	U	
ł	Acenaphthylene	20000	U	
	2,6-Dinitrotoluene	20000	U	
1	3-Nitroaniline	97000	U	
ł	Acenaphthene	20000	U	
	2,4-Dinitrophenol	97000	U	
1	Dibenzofuran	20000	U	
- 1	4-Nitrophenol	97000	U	

1 ·

600 Bancroft Way Berkeley, CA. 94710

Analytical Results

GC/MS ANALYTICAL REPORT SEMIVOLATILE ORGANICS

Work Order No:	2436		Date Extracted:	11/20/90
Laboratory ID:	MSBNA901120A		Date Analyzed:	12/11/90
Client ID:	SBLANK		% Moisture:	NA
Matrix:	SOIL	Level:MED	Dilution Fact:	1.0

	Compound	ug/Kg
1	2,4-Dinitrotoluene	20000 U
1	Fluorene	20000 U
	Diethylphthalate	20000 U
1	4-Chlorophenyl-phenylether	20000 U
ł	4-Nitroaniline	97000 U
	4,6-Dinitro-2-Methylphenol	97000 U
	N-Nitrosodiphenylamine	20000 U
ł	4-Bromophenyl-phenylether	20000 U
ł	Hexachlorobenzene	20000 U
ļ	Pentachlorophenol	97000 U
	Phenanthrene	20000 U
1	Anthracene	20000 U
1	Di-n-Butylphthalate	20000 U
	Fluoranthene	20000 U
	Pyrene	20000 U
ļ	Butylbenzylphthalate	20000 U
	Benzo(a)Anthracene	20000 U
1	3,3'-Dichlorobenzidine	20000 U
	Chrysene	20000 U
1	bis(2-Ethylhexyl)Phthalate	20000 U
ļ	Di-n-octylphthalate	20000 U
I	Benzo(b)Fluoranthene	20000 U
1	Benzo(k)Fluoranthene	20000 U
	Benzo(a)Pyrene	20000 U
1	Indeno(1,2,3-cd)Pyrene	20000 U

| Dibenz(a,h)Anthracene | Benzo(g,h,i)Perylene 1. |Analyst: T

Group Leader: Ω

200**0**0 U

20000 U

Page 2 of 2

600 Bancroft Way Berkeley,CA 94710

SOIL SEMIVOLATILE SURROGATE RECOVERY

WORK ORDER NO: 2436

LEVEL: MED

1 1 1 1 -1 1 S3 | S4 | S5 | S6 |TOT | TPH | PHL | 2FP | TBP |OUT | LABORATORY ID S2 | S1 | NBZ FBP ____________________________________ 77 77 73 | 96 | 74 1 53 0 MSBNA901120A 1 L 70 SSBNA901120A | 60 | 67 0 72 68 | 96 | 1 1 1 56 | 63 63 0 1 SSBNA901120B 70 63 83 | 1 QC LIMITS S1(NBZ)= Nitrobenzene-d5 (23 - 120)S2(FBP)= 2-Fluorobiphenyl (30 - 115)S3(TPH)= Terphenyl-d14 (18 - 137)S4(PHL) = Phenol-d5(24 - 113)S5(2FP)= 2-Fluorophenol (25 - 121)S6(TBP) = 2,4,6-Tribromophenol (19-122) 1 D =Surrogate Diluted Out * =Surrogate Outside QC Limit OA APPROVAL: ANALYST: Che / Manfilter Euondi

DATE ANALYZED: 12/11/90

600 Bancroft Way Berkeley,CA 94710

SOIL SEMIVOLATILE SURROGATE RECOVERY

WORK ORDER NO: 2436

DATE ANALYZED: 12/13/90

LEVEL: MED

.

2436-04 2436-06 2436-07 2436-08		50 59 88	65 71	63 74	56 63	54	22	==== 0
		90 	102 101		91 88	60 88 89 	30 28 16 * 1 1 1 1	0 0 1
S1(NBZ)= Ni S2(FBP)= 2-				QC LIMITS (23-120) (30-115)	 5	 	 	
<pre>S3(TPH) = Te S4(PHL) = Ph S5(2FP) = 2- S6(TBP) = 2, D = Surroga * = Surroga</pre>	erphen nenol- -Fluor ,4,6-T ate Di	yl-d14 d5 ophenol ribromo luted O	phenol	(18-137) (24-113) (25-121) (19-122)				

600 Bancroft Way Berkeley,CA 94710

DATE ANALYZED: 12/14/90

SOIL SEMIVOLATILE SURROGATE RECOVERY

WORK ORDER NO: 2436

LEVEL: MED

LABORATORY ID	S1 NBZ	S2 FBP	S3 1 TPH		55 2FP	I S6 I TBP	TOT OUT
2436-11 2436-09 2436-07MSD 2436-07MS 	44 42 97 88 	53 53 106 98	62 57 111 104 	51 48 100 92	4 9 4 5 9 3 8 7 1 1 1 1	25 14 * 38 39 1 1 1 1 1 1 1 1 1	= = = = 0 1 0 0 0
S1(NBZ)= Nitro S2(FBP)= 2-Flu S3(TPH)= Terpt S4(PHL)= Pheno S5(2FP)= 2-Flu S6(TBP)= 2,4,6 D =Surrogate * =Surrogate	lorobiphen lenyl-d14 ol-d5 lorophenol 5-Tribromo Diluted (ophenol Out	QC LIMIT: (23-120) (30-115) (18-137) (24-113) (25-121) (19-122)	I I S	1	1	
ANALYST:	000	1		QA APPROV	AL:		

600 Bancroft Way Berkeley,CA 94710

WATER SEMIVOLATILE SURROGATE RECOVERY

WORK ORDER NO: 2436

DATE ANALYZED: 12/14/90

LEVEL: LOW

LABORATORY ID	S1 NBZ	S2 FBP	S3 TPH		S5 2FP	S6 ITOT TBP IOUT
2436-01 2436-03 2436-03MS 2436-03MSD	74 38 68 68	71 38 * 65 65	88	38 43 34 35	52 57 49 48	66 0 72 1 67 0 69 0
 	 	 !	 	 	1 	
S2(FBP)= 2-F1 S3(TPH)= Terp S4(PHL)= Phen S5(2FP)= 2-F1	<pre>S1(NBZ)= Nitrobenzene-d5 S2(FBP)= 2-Fluorobiphenyl S3(TPH)= Terphenyl-d14 S4(PHL)= Phenol-d5 S5(2FP)= 2-Fluorophenol S6(TBP)= 2,4,6-Tribromophenol</pre>			S		
 D =Surrogate Diluted Out * =Surrogate Outside QC Limit						
ANALYST:	2 62 /mg	tim		QA APPROV	AL: Cu	mining

600 Bancroft Way Berkeley,CA 94710

DATE ANALYZED: 12/17/90

SOIL SEMIVOLATILE SURROGATE RECOVERY

WORK ORDER NO: 2436

LEVEL: MED

	LABORATORY ID	 51 NBZ	S2 FBP	S3 TPH	S4 PHL	S5 2FP	 S6 TBP		
	2436-05 2436-10	73 74	81 78	83 97	76	76	48	===== 0 0	
 				({ } f		
				 	 	 	 † 		
	S1(NBZ) = Nitro S2(FBP) = 2-F1 S3(TPH) = Terp S4(PHL) = Phen S5(2FP) = 2-F1 S6(TBP) = 2,4,5	QC LIMIT: (23-120) (30-115) (18-137) (24-113) (25-121) (19-122)	S						
	 D =Surrogate Diluted Out * =Surrogate Outside QC Limit 								
	ANALYST:	262 Min	An		QA APPROV	AL: Une	Hig		

600 Bancroft Way Berkeley,CA 94710

WATER SEMIVOLATILE SURROGATE RECOVERY

WORK ORDER NO: 2436

DATE ANALYZED: 12/19/90

LEVEL: LOW

LABORATORY ID	S1 NBZ	S2 FBP	S3 TPH	S4 PHL	S5 2FP	I S6 I TB P	I TOT
2436-02 586	62 	61	130 	27 	44 	92 	0
	 		 1	 	 { 	1 1 1	
	 		 	 	 	 1	
	 	1 1 1	 	1	, 	 	
S1(NBZ) = Nitr S2(FBP) = 2-F1 S3(TPH) = Terp S4(PHL) = Phen S5(2FP) = 2-F1 S6(TBP) = 2,4,	uorobiphe henyl-d14 ol-d5 uoropheno	nyl	QC LIMIT (35-114) (43-116) (33-141) (10-94) (21-100) (10-123)				
D =Surrogate * =Surrogate							
ANALYST:	201	1		QA APPROV	AL:		

 \checkmark

500 Bancroft Way Berkeley,CA 94710

WATER SEMIVOLATILE SURROGATE RECOVERY

DATE ANALYZED: 12/11/90

WORK ORDER NO: 2436

LEVEL: LOW

LABORATORY ID	S1 NBZ	FBP	S3 TPH		2 F P		
MWBNA901120	72 !	51	78		і б 4	54	==== u
ļ	ł	(l	I	ł	I	
	 			1	1	1	1
					1	1	1
1	1		1	i	1	1	1
	Í		•	1	1		i
1	1		l		1	I	1
 	I			4		1	
	1		1	1	1	1	
1	1		1	1	1	1	1
				1	1	1	1
1	1		1	l	L	Ì	Ì
	1		1	1	1	ł	ļ
i I	ł		1	1	1	1	
I	1		l f	1	1	1	1
S1(NBZ)= Nitro	bonzono d	=	QC LIMIT (35-114)	S			
52(FBP)= 2-Flu			(43-116)				
53(TPH) = Terph			(33 - 141)				
S4(PHL) = Pheno			(10 - 94)				
55(2FP) = 2-Flu 56(TBP) = 2,4,6			(21 - 100)				
50115P1- 2,4,0	-111DLONO	phenor	(10-123)				
l =Surrogate ★ =Surrogate							
ANALYET:	1:01	hufty		QA APPROV	AL:	Me)

500 Bancroft Way Berkeley, CA. 94710

Matrix Spike/Spike Duplicate Recovery

Semivolatile Organics

Ext. Date : 11/20/90

Work order: 2436

QC Sample : 2436-07

Instrument: EMS-2

1

Level: MED

Analysis Date: 12/13/90

Matrix: SOIL

Units: ug/Kg

Cor. Fact: 10000

% Moisture: 9

1	Conc.	Conc.	Conc.	Percent
Compound	Sample	Spiked	MS	Recovered
1,2,4-Trichloropenzene		109890	96484	88
Acenapthene	1)	109890	95604	87
2,4-Dinitrotoluene	υ.	1 109890 1	39451	36
Pyrene	0	109890	118352	108
N-Nitrosodipropylamine	0	109890	95275	87
1,4-Dichlorobenzene	0	109890	95824	87
Pentachlorophenol	0	219780	0	I 0 X
Phenol	0	219780	197912	1 90 *
2-Chlorophenol	Û	219780	193736	88
4-Chloro-m-cresol	0	219780	171758	78
4-Nitrophenol	0	219780	0	I 0×
	Conc.	Percent		Criteria
Compound	MSD	Recovered	RPD	RPD %REC
1,2,4-Trichlorobenzene	102967	1 <u> </u>	7	23 (38-107
Acenapthene	105385	1 96 1	10	19 (31-137)
2,4-Dinitrotoluene	38571	35 1	2	47 (28-89)
Pyrene	125495	114	6	36 (35-142)
N-Nitrosodipropylamine	102637	1 93 1	7	38 (41-126
1,4-Dichlorobenzene	103516	94	8	27 (28-104
Pentachlorophenol	0	0 🖌	NC	i47 (17-109
Phenol	211429	96 *	7	35 (26-90)
2-Chlorophenol	207802	95	7	50 (25-102
4-Chloro-m-cresol	182198	83	6	33 (26-103
4-Nitrophenol	0	0*	NC	50 (11-114
ANALYST: COOR		QA APPRO	DVAL:	
frehi K lingfitz	7		Un	A

* = Value Outside Q@ Limits

Percent Recovery = Conc. MSIMSD - Conc. Sample ----- * 100 Conc. Spiked

> RPD = Conc. MS - Conc. MSD (-----) ***** 100 (Conc. MS + Conc. MSD)/2

600 Bancroft Way Berkeley, CA. 94710

Matrix Spike/Spike Duplicate Eecovery

Semivolatile Organics

Ext. Date : 11/20/90

Work order: 2436

QC Sample : MSBNA901120A

Instrument: EMS-2

Level: MED

Analysis Date: 12/11/90

Matrix: SOIL

Units: ug/Kg

Cor. Fact: 2000

% Moisture: NA

	Conc.	Conc. I	Conc.	Percent
Compound	Sample	Spiked	MS	Recovered
1,2,4-Trichlorobenzene	U U	100000	69200	69
Acenapthene	i	100000	69100	69
2,4-Dinitrotoluene	0	100000	62700	63
Pyrene	ı 0	100000	88360	88
N-Nitrosodipropylamine	0	100000	63220	63
1.4-Dichlorobenzene	0	100000	52280	1 52
Pentacnlorophenol	0	200000	81880	41
Phenol	0	200000	122840	61
2-Chlorophenol	0	200000	119040	60
4-Chloro-m-cresol	0	200000	143000	72
4-Nitrophenol	1 0	200000	97000	49
	Conc.	Percent		Criteria
Compound	MSD	Recovered	RPD	RPD %REC
1,2,4-Trichlorobenzene	64260	1 <u></u>	7	23 (38-107
Acenapthene	67000	67	3	119 (31-137
2,4-Dinitrotoluene	65220	65	4	47 (28-89)
Pyrene	75960	76	15	36 (35-142
N-Nitrosodipropylamine	58560	59	8	138 (41-126
1,4-Dichlorobenzene	38280	1 38	31	27 (28-104
Pentachlorophenol	82800	41	1	47 (17-109
Phenol	106320	53	14	135 (26-90)
2-Chlorophenol	99000	1 50	18	150 (25-102
4-Chloro-m-cresol	156720	78	9	33 (26-103
4-Nitrophenol	115000	58	17	150 (11-114
ANALYST: Do Cha	·	QA APPRO	DVAL:	• ' <u> </u>
hand 62 Months	Real Providence		G	the

Percent Recovery = Conc. MSIMSD - Conc. Sample
_____ * 100
Conc. Spiked

500 Bancroft Wav Berkeley, CA. 94710

Matrix Spike/Spike Duplicate Recovery

Semivolatile Organics

Ext. Date : 11/20/90

Work order: 2436

QC Sample : 2436-03

Instrument: EMS-2

Level: LOW

Compound	Conc. Sample	Conc. Spiked	Conc. MS	Percent Recovered
1,2,4-Trichlorobenzene	0	100	55	55
Acenapthene	0	100	56	56
2,4-Dinitrotoluene	0	100	46	46
Pyrene	0	100	78	78
N-Nitrosodipropylamine	0	100	65	65
1,4-Dichlorobenzene	0	100	52	52
Pentachlorophenol	0	1 200	107	54
Phenol	0	200	65	33
2-Chlorophenol	0	200	122	61
4-Chloro-m-cresol	0	200	127	64
4-Nitrophenol	0	200	26	13
·	Conc.	Percent		 Criteria
Compound	MSD	Recovered	RPD	RPD %REC
1,2,4-Trichlorobenzene	56	 ۱ 5ó	2	28 (39-98)
Acenapthene	1 58	1 58	1 3	31 (46-118)
2,4-Dinitrotoluene	48	48	1 6	38 (24-96)
Pyrene	1 75	1 75	1 5	31 (26-127)
N-Nitrosodipropylamine	66	1 <u>66</u>	1 2	31 (20 12)
1,4-Dichlorobenzene	1 55	1 55	1 5	[28 (36-97)
Pentachlorophenol	124	1 62	14	50(9-103)
Phenol	67	1 33	2	42(12-89)
2-Chlorophenol	122	61	1 1	(40 (27 - 123))
4-Chloro-m-cresol	132	66	3	42 (23-97)
4-Nitrophenol	34	1 17	1 25	50 (10-80)
ANALYST: * = Value Outside QC IIm	1	QA APPR	oval:	Mit

Percent Recovered = Conc. MS|MSD - Conc. Sample ---- * 100 Conc. Spiked

> RPD = Conc. MS - Conc. MSD (-----) * 100 (Conc. MS + Conc. MSD)/2

Analysis Date: 12/14/90 Matrix: WATER Units: ug/L

Cor. Fact: 2

.

,

600 Bancroft Way Berkeley, CA 94710

INORGANICS ANALYTICAL REPORT

Client: Project:	ES-Syracuse NYSEG			Work Or Matrix:	der:	2436 Water	
Client's ID	: CGGS-SW-1	CGGS-SW-2	CGGS-SW-3				
	1120	1135	1200				
Sample Date		11/15/90	11/15/90				
& Moisture:		NA	NA				
Lab ID:	2436.01	2436.02	2436.03				
	F	F	v		Normal		
Parameter		Results		Method	Report	Units	Date
					Limit		Analyzed
Aluminum	0.65	1.3	2.0	ICP	.2	mg/L	12/17/90
Antimony	ND	ND	ND	ICP	.1	(PPM)	12/17/90
Cadmium	ND	ND	ND	ICP	.005	in	12/17/90
Chromium	ND	ND	ND	GF-AA	.005	Water	12/17/90
Cobalt	ND	ND	ND	ICP	.05	-	12/17/90
Copper	ND	ND	ND	ICP	.03	-	12/17/90
Iron	0.95	2.0	2.8	ICP	.05	-	12/17/90
Lead	0.035	0.028	0.035	GF-AA	.003	~	12/17/90
Manganese	0.095	0.16	0.18	ICP	.02	-	12/17/90
Nickel	ND	ND	ND	ICP	.04	-	12/17/90
Zinc	0.036	0.054	0.069	ICP	.02	-	12/17/90

ND- Not Detected

ANALYST: _____. Micheal

GROUP LEADER:

600 Bancroft Way Berkeley, CA 94710

INORGANICS ANALYTICAL REPORT

Client: Project:	ES-Syracuse NYSEG	Work O Matrix:		2436 Water	
Client's ID	e Prep Blank				
Sample Date % Moisture:	NA				
Lab ID:	Prep Blank				
Parameter	Results	- Method	Normal Report Limit	Units	Date Analyzed
Aluminum	ND	ICP	.2	mg/L	12/17/90
Antimony	ND	ICP	.1	(PPM)	12/17/90
Cadmium	ND	ICP	.005	in	12/17/90
Chromium	ND	G F -AA	.005	Water	12/17/90
Cobalt	ND	ICP	.05	-	12/17/ 90
Copper	ND	ICP	.03	-	12/17/ 90
Iron	ND	ICP	.05	-	12/17/ 90
Lead	ND	G F-AA	.003	-	12/17/90
Manganese	ND	ICP	. 02	-	12/17/90
Nickel	ND	ICP	.04	•	12/17/ 90
Zinc	ND	ICP	.02	-	12/17/90

ND- Not Detected

ANALYST:

J. Micheal

GROUP LEADER:

600 Bancroft Way Berkeley, CA 94710

INORGANICS QC SUMMARY - LAB CONTROL SAMPLE - WATER

Work Order:		2436		% Moistur	e: N/	NA	
Lab ID of LCS ICP:	:	380.01 L	C S		Matrix:	Wa	ater
GF-AA:		380.02 L			Units:		g/L ater
	Date Analyzed	LCS	Conc	1 Rec		-	imits- Rec
Parameter	LCS	Result	Added	LCS		Low	High
Aluminum ICP	12/17/90	2.087	2	104		80	120
Antimony ICP Cadmium ICP	12/17/90 12/17/90	.460 .051	.5 .05	92 102		66 80	126 120
Chromium GF	12/17/90	.019	.02	95		80	120
Cobalt ICP	12/17/90	. 497	.5	99		80	120
Copper ICP Iron ICP	12/17/90 12/17/90	. 246 . 964	.25	98 96		80 80	120 120
Lead GF	12/17/90	.021	.02	105		74	133
Manganese ICP	12/17/90	. 491	.5	98		80	120
Nickel ICP	12/17/90	. 468	.5	94		80	120
Zinc ICP	12/17/90	. 501	. 5	100		80	120

ANALYST: Juger MA Date 2/20/90 REVIEWER: Euron Del Date 2/21/90 File: MIQOLCSW

.

600 Bancroft Way Berkeley, CA 94710

INORGANIC QC SUMMARY - MS and MSD WATER - mg/L

Work Order:		2436					ł Moistu	:e:	١X	
		ICP	GT-LL				Hatrix:		Water	
Lab ID Spiked QC Batch:	11	2436.03 380.01	2436.03 380.02				U aits:		ng/L Vater	
	Date		-Results		RPD	RPD	Conc	Added		rcent
Parameter	Analyzed MS	Dospiked Sample	¥S	NS D		QC Limit	MS	KSD		overed MSD
Alamiaam	12/17/90	2.012	3.567	3.691	3	20	2.000	2.000	78	84
Antimony	12/17/90		. 468	. 467		20	. 500	. 500	94	93
Cadmium	12/17/90		.050	. 053	6	20	. 050	. 0 5 0	199	106
Chronium GF	12/17/98	. 003	. 020	. 0 2 0	3	20	. 0 2 0	. 0 2 0	85	89
Cobalt	12/17/90	. 003	.481	. 497	3	20	. 500	. 500	96	99
Copper	12/17/90	.014	. 242	. 242	9	20	. 250	. 250	91	91
Iron	12/17/90	2.811	3.736	3.819	2	20	1.000	1.000	93	101
Lead GF	12/17/90	.035	.053	.050	5	20	. 0 2 0	.020	86	73
Kanganese	12/17/90	.181	. 660	.677	3	20	. 500	. 500	96	99
Mickel	12/17/90		. 449	.461	3	20	. 500	. 500	90	92
Linc	12/17/90	. 869	. 530	. 555	5	20	. 500	. 500	92	97

ABALYST: June Month Date 2/20/90 REVIEWER, Euron Hins Date 12/21/50

•

600 Bancroft Way Berkeley, CA 94710

INORGANICS ANALYTICAL REPORT

Client: Project:	ES-Syracuse NYSEG			Work Or Matrix:		2436 Soll	
Client's ID	CGGS-SED-1	CGGS-SED-2	CGGS-SED-3				
Sample Date		1135 11/15/90	1200 11/15/90				
<pre>% Moisture: Lab ID:</pre>	50.9 2436.04	16.0 2436.05	49.1 2436.06				
	2430.04 C	2430.05 C	2430.00 C		Normal		
Parameter		Results		Hethod	Report Limit	Units	Date Analyzed
Aluminum	18,000.	8800.	11,000.	ICP	40	mg/Kg	12/14/90
Antimony	ND	ND	ND	ICP	20	(PPM)	12/17/90
Cadmium	2.5	ND	2.4	ICP	1	in Soil	12/17/90
Chromium	25.	11.	28.	G F-AA	1	Dry	12/14/90
Cobalt	11.	ND	ND	ICP	10	-	12/17/90
Copper	85.	23.	89.	ICP	6	-	12/14/90
Iron	29,000.	21,000.	25,000.	ICP	10	-	12/18/90
Lead	370.	73.	2 70.	GF-AA	.6	-	12/14/90
Manganese	410.	450.	640.	ICP	4	-	12/17/90
Nickel	30.	17.	21.	ICP	8	-	12/17/90
Zinc	480.	100.	380.	ICP	4	-	12/17/90

ND- Not Detected

ANALYST:

John Some GROUP LEADER: _

W

٠

600 Bancroft Way Berkeley, CA 94710

INORGANICS ANALYTICAL REPORT

	ES-Syracuse NYSEG			Work Or Matrix:		2 436 Soil	
Client's ID:	CGGS-SS-1	CGGS-SS-2	CGGS-SS-3				
	1350	1320	1330				
Sample Date:	11/15/90	11/15/90	11/15/90				
<pre>% Moisture:</pre>	10.8	18.6	38.0				
Lab ID:	2436.07	2436.08	2436.09				
	С	С	С		Normal		
Parameter		Results		Method	Report Limit	Units	Date Analyzed
Aluminum	14,000.	19,000.	13,000.	ICP	40	mg/Kg	12/14/90
Antimony	ND	ND	ND	ICP	20	(PPM)	12/17/ 90
Cadmium	ND	ND	1.8	ICP	1	in Soil	12/17/ 90
Chromium	17.	22.	22.	GF-AA	1	Dry	12/14/90
Cobalt	ND	ND	ND	ICP	10	-	12/17/90
Copper	28.	2 5 .	57.	ICP	6	-	12/14/90
Iron	31,000.	33,000.	31,000.	ICP	10	-	12/ 18/90
Lead	52.	33.	250.	G F-AA	.6	-	12/14/90
Manganese	780.	7 90.	910.	ICP	4	-	12/17/90
Nickel	26.	28.	26.	ICP	8	-	12/17/ 90
Zinc	100.	120.	340.	ICP	4	•	12/17/90

ANALYST: John Group LEADER:

600 Bancroft Way Berkeley, CA 94710

INORGANICS ANALYTICAL REPORT

Client: Project:	ES-Syracuse NYSEG		Work On Matrix:		2 436 Soll	
Client's ID	CGGS-SS-4	CGGS-SS-5				
	1340	1350				
Sample Date		11/15/90				
<pre>% Moisture:</pre>	24.9	33.3				
Lab ID:	2436.10	2436.11				
_	С	С		Normal		
Parameter		Results	 Method	Report Limit	Units	Date Analyzed
Aluminum	6 300.	6900.	ICP	40	mg/Kg	12/14/90
Antimony	ND	ND	ICP	20	(PPM)	12/17/90
Cadmium	ND	1.1	ICP	1	in Soil	12/17/90
Chromium	34.	21.	GF-AA	1	Dry	12/14/90
Cobalt	ND	ND	ICP	10	-	12/17/90
Copper	140.	96.	ICP	6	-	12/14/90
Iron	75,000.	63,000.	ICP	10	-	12/18/90
Lead	620.	520.	GF-AA	.6	-	12/14/90
Manganese	640.	520.	ICP	4	-	12/17/90
Nickel	25.	21.	ICP	8	-	12/17/90
Zinc	220.	160.	ICP	4	•	12/17/90

ND- Not Detected

ANALYST:

John Somy

GROUP LEADER:

Mu

600 Bancroft Way Berkeley, CA 94710

INORGANICS ANALYTICAL REPORT

Client: Project:	ES-Syracuse NYSEG	Work Or Matrix:		2 436 Soil	
Client's ID	: Prep Blank				
Sample Date % Moisture: Lab ID:	0.0 Prep Blank		Normal		
Parameter	Results	Hethod	Report Limit	Units	Date Analyzed
Aluminum	ND	ICP	40	mg/Kg	12/14/90
Antimony	ND	ICP	20	(PPM)	12/17/90
Cadmium	ND	ICP	1	in Soil	
Chromium	ND	GF-AA	1	Dry	12/14/90
Cobalt	ND	ICP	10		12/17/90
Copper	ND	ICP	6	-	12/14/90
Iron	ND	ICP	10	-	12/18/90
Lead	ND	g f -aa	.6	-	12/14/90
Manganese	ND	ICP	4	-	12/17/90
Nickel	ND	ICP	8	-	12/17/ 90
Zinc	ND	ICP	4	-	12/17/90

ND- Not Detected

ANALYST

John Loning GROUP LEADER:

W

600 Bancroft Way Berkeley, CA 94710

INORGANICS QC SUMMARY - LAB CONTROL SAMPLE - SOIL

Work Order:		2436			% Moisture	e: Ø	.0
Lab ID of LCS ICP:	1	2 70 96 10	10		Matrix:	S	oil
GE-AA:		370.96 LC 370.97 LC			Units:		g/Kg ry
	Date	1.00	Cono	1 Dec		-	imits- Rec
Parameter	Analyzed LCS	LCS Result	Conc Added	% Rec LCS		Low	High
Aluminum ICP	12/14/90	457.600	400	114		80	120
Antimony ICP	12/17/90	96.800	100	97		80	120
Cadmium ICP	12/17/90	10.600	10	106		80	120
Chromium GF	12/14/90	4.380	4	110		80	120
Cobalt ICP	12/17/90	98.600	100	99		80	120
Copper ICP	12/14/90	46.600	50	93		80	120
Iron ICP	12/18/90	219.000	200	110		80	120
Lead GF	12/14/90	4.340	4	109		74	132
Manganese ICP	12/17/90	102.400	100	102		80	120
Nickel ICP	12/17/90	104.600	100	105		67	127
Zinc ICP	12/17/90	101.800	100	102		80	120

ANALYST: ______ Date ____ REVIEWER: Curantle Date [2/21/90]

.

600 Bancroft Way Berkeley, CA 94710

)				QC SUMMARY mg/Kg Dry		and MSD		beikeiey,		1.
Work Order:		2436					% Moistui	:e:	10.8	
		ICP	GT-AA				Matriz:		Soil	
Lab ID Spiked	l i	2436.07	2436.07							
QC Batch:		370.96	370.97				Uaits :		ng/Kg Dry	
	Date		-Results		RPD	RPD	Conc	Added		rceat
•	Analyzed	Unspiked				QC				overed
Parameter	M S	Sample	KS	KSD		Limit	¥S	KSD	KS	KSD
Aluminum	12/14/90	13978.429	11954.615	10664.449	11	20	418.953	418.953	IC	I C
Antimony	12/17/90		38.963	53.626	32	20	104.738		37	51
Cadmium	12/17/90	. 640	11.102	11.312	2	20	10.474	10.474	100	102
Chronium GF	12/14/90	16.974			1	20	3.864	4.039	I C	IC.
Cobalt	12/17/90	8.325	107.671	110.185	2	20	104.738	104.738	95	97
Copper	12/14/90	28.391		79.601	1	20	52.369	52.369	96	98
Iron	12/18/90	30715.700	30005.415	27818.480	8	20	209.477	209.477	E C	I C
Lead GI	12/14/98	52.227	51.591	51.290	1	20	3.864	4.039	I C	E C
Manganese	12/17/90	782.995			10	20	104.738	104.738	IC.	IC.
lickel	12/17/90	26.043	126.943	131.761	4	20	104.738	104.738	96	101
Tinc	12/17/90	103.745	200.050	206.125	3	20	104.738	104.738	92	98

HC- Not Calculated; sample concentration is greater than four times that of spike added.

ABALIST: _____ Date ____ REVIEWER: Cummber Date 12/21/20

ES-ENGINEERING SCIENCE, INC. 600 Bancroft Way Berkeley,CA 94710

INORGANIC ANALYTICAL REPORT

Work Order NO.:2436

Parameter:Total Cyanide Matrix: Soil

Unit: mg/Kg

Sample ID:	Client ID:	Result	¥ Solids	Date Analyzed	
2436-04	CGGS-SED-1	<1.3	76	11/29/90	
2436-05	CGGS-SED-2	<1.2	85	11/29/90	
2436-06	CGGS-SED-3	<1.7	58	11/29/90	
2436-07	CGGS-SS-1	<1.2	84	11/29/90	
2436-08	CGGS-SS-2		6Ø	11/29/90	
2430-00	CGG3-35-2	<1.7	66	11/29/90	
2436-09	CGGS-SS-3	<1.6	62	11/29/90	
2436-10	CGGS-SS-4	13	74	11/29/90	
2436-11	CGGS-SS-5	6.2	73	11/29/90	

NA_ Not Available ND_ Not Detected

APPROVED BY: Euro He

ES-ENGINEERING	SCIENCE,	INC.	600 Bancroft Way
			Berkeley,CA 94710

INORGANIC ANALYTICAL REPORT

Work Order NO.:2436

Parameter:Amenable Cyanide	Matrix: Soil

Unit: mg/Kg

					-
Sample ID:	Client ID:	Result	¥ Solids	Date Analyzed	
2436-04	CGGS-SED-1	<1.3	76	11/29/90	
2436-05	CGGS-SED-2	<1.2	85	11/29/90	
2436-06	CGGS-SED-3	<1.7	58	11/29/90	
2436-07	CGGS-SS-1	<1.2	84	11/29/90	
2436-08	CGGS-SS-2	<1.7	60	11/29/90	
2436-09	CGGS-SS-3	<1.6	62	11/29/90	
2436-10	CGGS-SS-4	<1.0	74	11/29/90	
2436-11	CGGS-SS-5	<1.0	73	11/29/90	

NA_ Not Available ND_ Not Detected

ND_ Not Detected , APPROVED BY: Emothe 0

ES-ENGINEERING SCIENCE, INC. 600 Bancroft Way Berkeley. CA 94710

INORGANIC QUALITY CONTROL RESULTS SUMMARY

Work Order NO.:	2436	* Solids:	84
QC Sample NO.:	2436-7	Matrix:	Soil
Client ID:	CGGS-SS-1	Unit:	mg/Kg

Parameter PR SR SA MS PR MSD RPD Total Cyanide ND 5 4.5 969 4.8 96 6

MS-Matrix Spike MSD-Matrix Spike Duplicate SA-SPike Added SR_Sample Result NA-Not Applicable NC- Not Calculated Ha ND- Not Detected Euron

APPROVED BY:

600 Bancroft Way Berkeley. CA 94710

INORGANIC QUALITY CONTROL RESULTS SUMMARY

Work Order NO.:	2436	* Solids:	NA
QC Sample NO.:	Laboratory Control	Matrix:	Soil
Client ID:	Sample NA	Unit:	mg/Kg

Parameter BR SA BS PR Total Cyanide ND 5 4.75 95

BS-Blank Spike SA-SPike Added BR_Blank Result NA-Not Applicable NC- Not Calculated ND- Not Detected

APPROVED BY: Eugenmethen

36				REMARKS		- \$1'49C DE 122 1	- Brege	< MSD-34-X	-44-E	$- \overline{\zeta} \overline{A} - \overline{c}$	- 6N - E	M> M-A-QS M CM	64-6	-911-6	-10A-C	- 11.9 - 8	- 12 AG	Received by: <i>(Signature)</i>	(Printed)		
95 SC #0. M	PARAMETERS	1 / 1/		vy	Ler m			2 W	×	x	γ.	X V	~	×	X	×		Date / Time	-		
			120	(m) ~ / ~ / ~	1/5% (2/ 3/	X X X	×××	X X X	X X X X	XXX	XXXX	XXX	XXXX	* * * X	X X X	XXXX		y: (Signature)		re Remarks	1
CHAIN OF CUSTODY RECORD		58	3NIN.	10 20 Jul	5 20 20	Y X 8 4	× × so	× × Xm	5	S	S	8	نی ہر	S,	5	S	2 X	Relinquished by: (Signature)	(Printed)	Date / Time	
CHAIN OF CI		171 PG- GOSLEN	(Printed)	w. O. Liller	STATION LOCATION	Ricken & Upgradiet	•	Rio Guand Dias gud.	SW -1 lec - du	SW-2 leader	Slu-3 leadie	Plens Fense Mer Bride	Mong Ferisc new Pipe	Du Byyh ver tree	On Buth man sau Pig		Trip Black Fron Lab	Received by: (Signature) F. J. F. X. J.	(Printed)	Received for Laboratory by: (Signature) (DD Ach Con-	(Priphed) EGN and SI BLAN
		- [(J		8ARD	×	X X	YR	\times	×	Х	4 ×	۷ ۲	0 X	X	×		Date / Time 5 5 co	_	Date / Time	
	NAME	レイショク			COMP.	26)	y	1209	11. 20	11'35	2:00	li.Su	1 20	r 35	а <mark>н</mark> (65.1		1, Dat	Ļ	Dat	
	PROJECT NAME	2	e)		DATE	11/15 11	"/IS II	1/15 12	11 51/12	11 21/1	זן א <i>ו</i> ''	1 5 1/	<u>n/is</u>	"/1s	1 <1/1	1 5//1		ture)		iture)	
	PROJECT NO.	20.00, 00.10	SAMPLERS: (Signature)	reville		C6655W-1	C 665 - 5W - 2 1	CGCS - SW -3	C665-5ED-1	CCC5-5ED-2	CGES - SED-3	Cc6 5 55 1 1/	2-55-5977	(66-53-3)	CGG-5-55 . 4 1		Tvio Blun h	Relinquished by: (Signature)	(Printed)	Relinquished by: <i>(Signature)</i>	(Printed)

INORGANICS ANALYTICAL REPORT

Client: Project:	ES-Syracuse NYSEG			Work Or Matrix:		2546 Water	
Client's ID:	CGEW SW-3	CGEW SW-4	CGGS SW-1				
Sample Date: % Moisture: Lab ID:	0920 12/21/90 2546.07 A	0920 12/21/90 2546.08	12/21/90 2546.09 A		Normal		
Parameter	н 	-Results		Method		Units	Date Analyzed
Cyanide, Tota	1 ND*	ND*	ND*	Color	.02	mg/L	12/26/90

* Since no Total Cyanide was detected, Amenable Cyanide was not analyzed.

ND- Not Detected ANALYST: D. Bur

GROUP LEADER:

600 Bancroft Way Berkeley, CA 94710

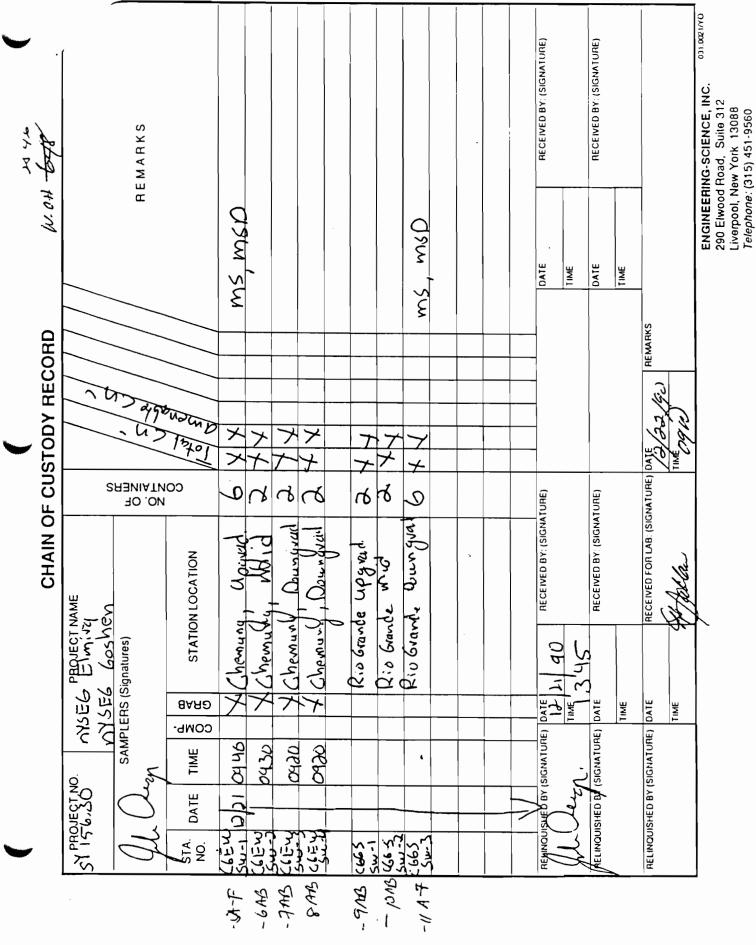
INORGANICS ANALYTICAL REPORT

Client: Project:	ES-Syracuse NYSEG		Work Order: Matrix:	2546 Water	
Client's ID:	CGGS SW-2	CGGS SW-3			
Sample Date: % Moisture:	12/21/90	12/21/90			
Lab ID:	2546.10	2546.11			
	A	A	Normal	L	
Parameter		-Results	Method Report Limit	: Units	Date Analyzed
Cyanide, Tota	L ND*	ND*	Color .02	mg/L	12/26/90

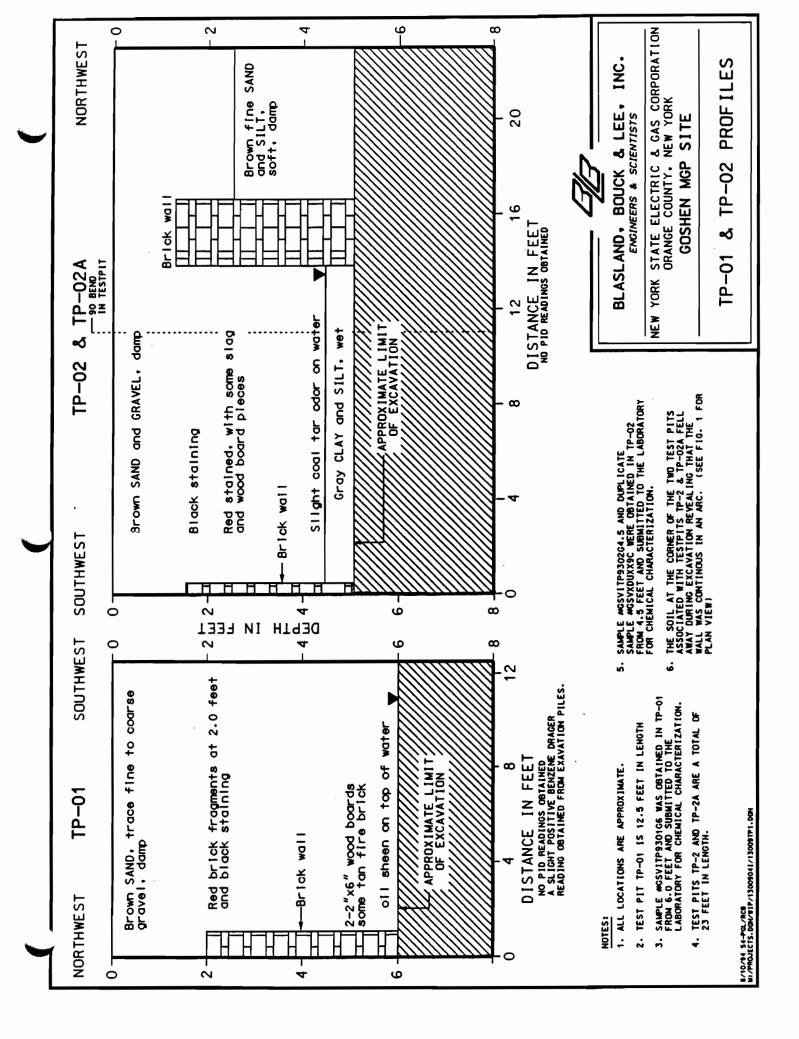
Since no Total Cyanide was detected, Amenable Cyanide was not analyzed.

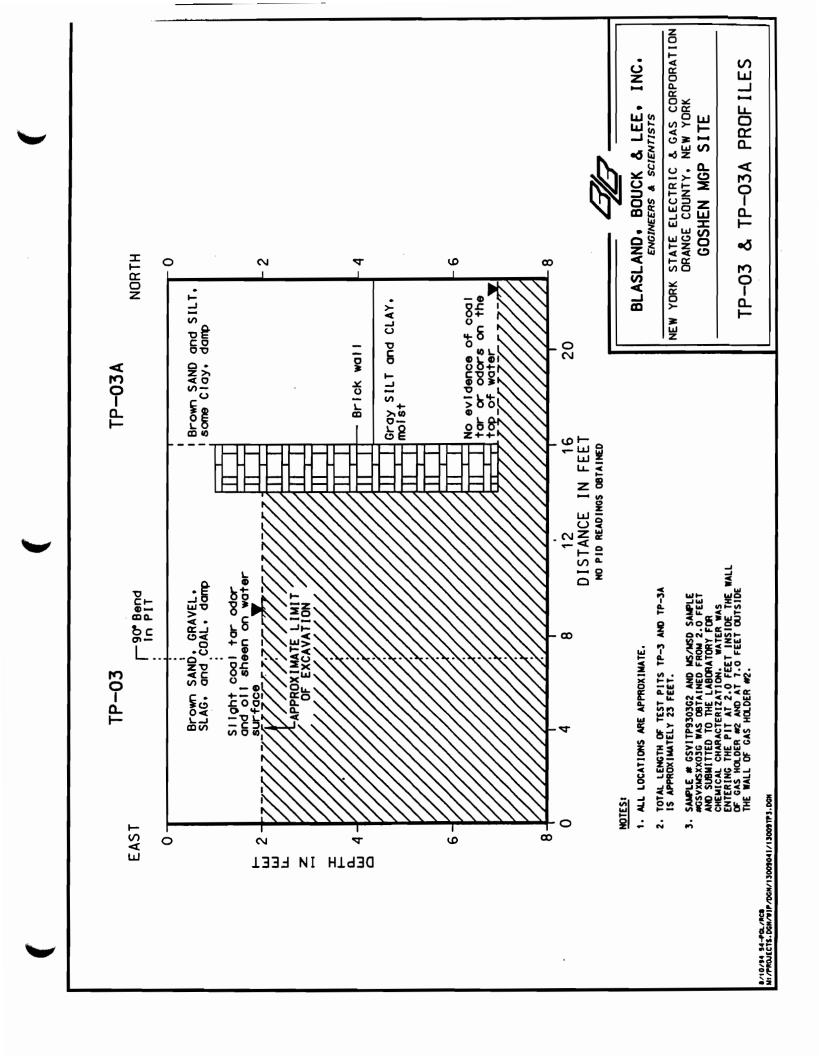
ND- Not Detected Bur L ANALYST:

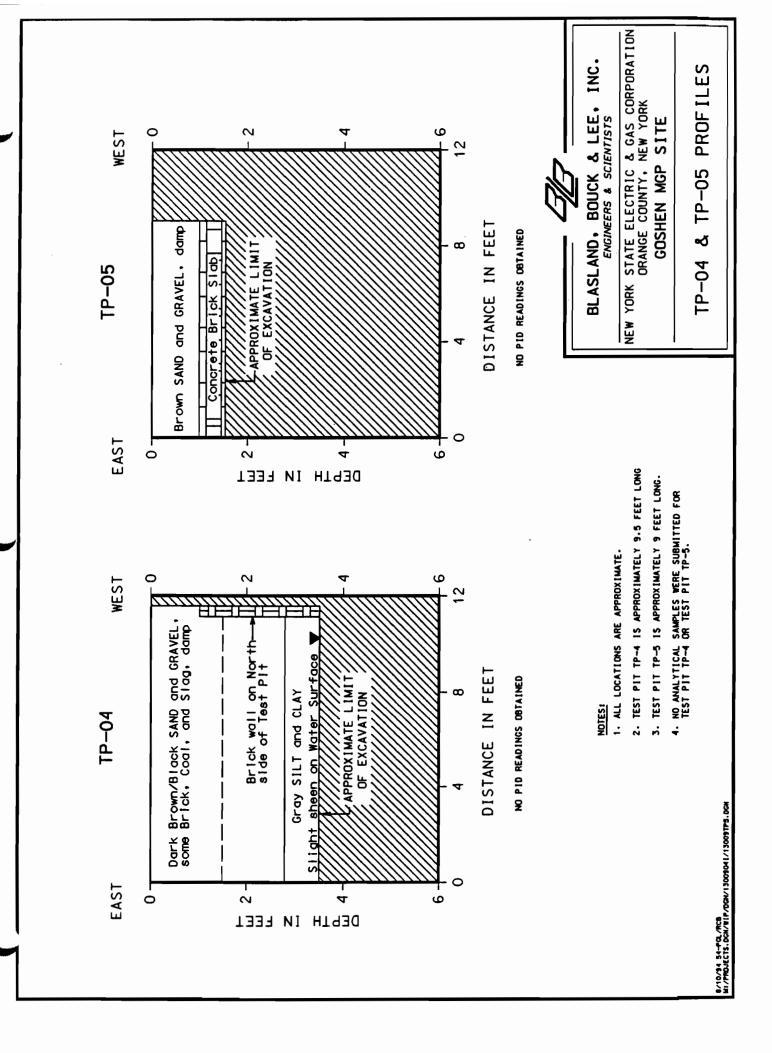
GROUP LEADER:

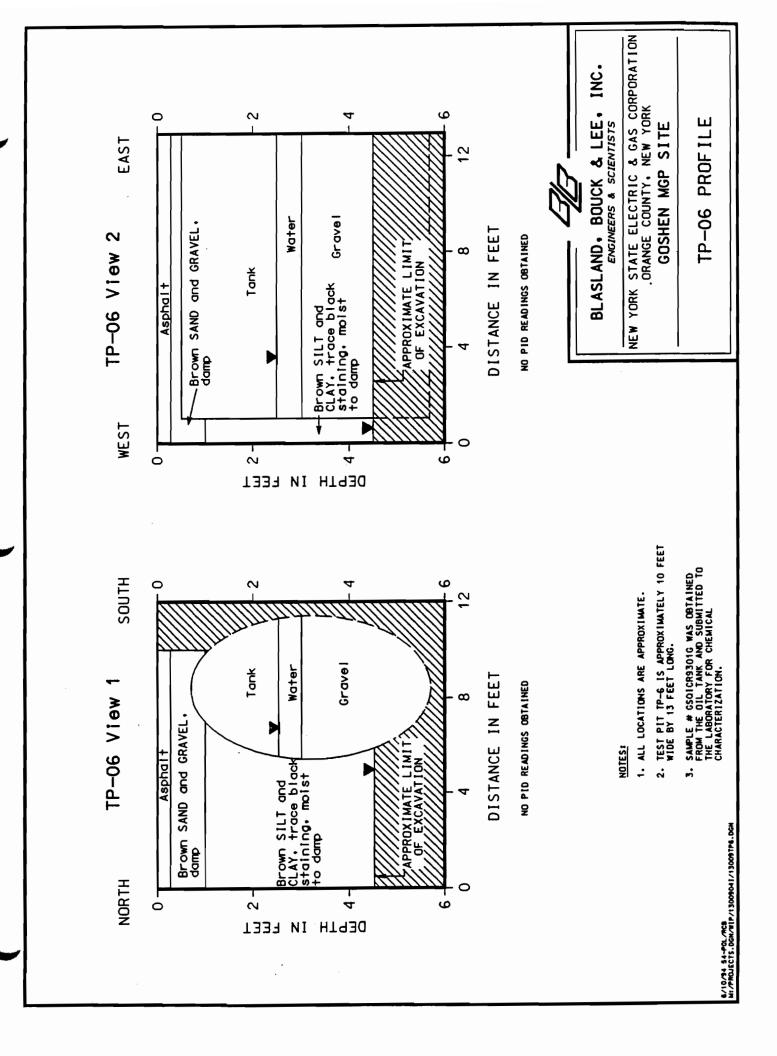

.

600 Bancroft Way Berkeley, CA 94710


INORGANIC QC SUMMARY - MS and MSD WATER - mg/L


Work Order:		2546					% Moister	e :	N A			
					Katriz:	Water						
Lab ID Spiked QC Batch:	1:	2546.11 285.81					-Units:			eg/L		
	Date		-Results		RPD		Conc	Added	-	rcent overed		
Parameter	Analyzed KS	Unspiked Sample	KS	KSD		QC Limit	K S.	MSD	KS	NSD		
Cyanide, Tota	al 12/26/90		. 155	. 153	1	20	. 172	. 172	90	89		


ABALYST: <u>Ilan &</u> Date 12/27/90 REVIEWER: <u>Unon Mind</u> Date <u>N/27</u>190 File: HIQCHSWH



Appendix B Subsurface Logs

	BL	ASLA					ERS.	P.C.				Boring No Project: N Location: G	YSE	G		Well No. MW931	D
	rilling riller g Ty poon amme eight rilling	Con s Na pe: Siz er We of Me	mpar ame: MOB e: 2 eight Fall: thod	19: P DOL ILE : 140 30- : HS	ARR IG R B-5 D -inch A	ATT ICHM 7	-WO	0/22/93 LFF		Eax Wel Cor Bor	ehol ehol		ket	ch:			
Detrui-o't.)	1 5	Sample/Int/Type	Blows/6 in.	z	Recovery (Ft).	Recovery (X)	ROD (%)	PID Field (ppm)	PID Headspace (ppm)	Drilling Water Level	Geologic Col.	Stratigraphic Description	Misc. Test	Mell	Column	Well Materials	
- 0	-0 SI 9 18 14 0.0 Blacktop. -2 S2 2 2 16 0.0 0.0 0.0 Blacktop. -2 S2 2 4 9 16 0.0 0.0 0.0 0.0 The black stained SLAG. Brown fine to coarse SAND and SILT, little fine gravel, trace clay, medium stiff, damp. grades to little clay and trace fine																
-2	S2	V 7	7 2 4	9	16			QO	0.0	little fine gravel, trace clay, medium stiff, damp.		24/24		installed to 0.25' above ground			
-4	53	7	5 4 5 8	13	16			۵٥	00			gravel.			NK NK	'Cement surface pad 1.5' - 0.0'	
-6	S4	7	9 15 20 25	45	NR			NR	NR			grades to grey fine to coarse SAND and SILT, little clay, moist to damp.			XXX XXX		
- 8	S5	7	37 6 11 18 18	29	20			۵٥	0.0			grades to fine SAND and SILT, stiff, damp.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	XXX XXX		
-10	56	7	7 12 15	27	18			۵٥	۵٥								
-13	. s7	7	17 17 22 25	47	16			0.0	00					TAKINKINKINKINKINKINKINKI	VALVAZ Z	2-inch diameter stainless steel (SS) well riser	
-14	58	/	25 5 9 14	23	16			۵٥	۵٥			grades to dark grey. Dark gray fine to coarse SAND, some silt, little fine to medium shale gravel, trace clay, medium dense, moist.		13/13/21	VKINKI	32.5' - 0.19'	
-16	59	7	20 33 5 5 60/0.3	30	10			0.0	۵٥			grades to little silt, moist to wet.			YK IYK		
-16	510		10 50/02		NR			NR	NR						NKINK		
-2	51	7	39 22 22 23	44	u			۵٥	00			Dark gray fine SAND and SILT, some fine to medium shale gravel, stiff, damp.			NE NEWE NE NE NE NE NE NE NE NE	Cement/bentonite grout 27.0' - 1.5'	
	polo	gist	Init	tials	: TF	20			Rem	ark	s:			ste		er Levels ime Elevation	
3	} eolo	gist	Sig	nat	ure:									CT93		0:12 426.47	
1	oje	et N	lo.: 1	30.0	09							·					

		BL	ASLA					RS, P TS	.C.				Boring No. Project: NY Location: GO	SEG		Weli	No. MW931D
	Dr Dr Rk SF Ha He Dr	ite S lling iler's Typ con ight ling	tart Com Nan Size Wei of F Meth	/Finis pany ne: D 10BIL	ih: 9 , PAF OUG E B- 140 0-in ISA	/22/RRAT RICH -57 ches	93 - T-W	9/2	2/83		Eas Nell Core Bore	ehok ehok		etc	r 		
	Depth (F.t.)	Sample/Run Number	Sample/Int/Type	Blows/6 in.	z	Recovery (Ft).	'Recovery (%)	ROD (X)	PID Field (ppm)	PID Headspace (ppm)	Draing Water Level	Geologic Col.	Stratigraphic Description	Misc. Test	Well		Well Materials
	-22	512	/	23 20 21	41	10			۵٥	00							
	~2 4	SB	/	20 8 9 15	24	15			۵٥	0.0			grades to trace fine to medium gravel.		<u> </u>		
	-25	S14	/	16 14 20 21	41	ъ			ഹ	۵٥			grades to moist to wet. grades to damp to moist. grades with trace fine to medium shale		K MKT		
_	-28	S15	/	23 18 19 22	41	12			۵0	œ			gravel. Grades to little fine to medium shale gravel.				ntonite seal .0' - 27.0'
	-30	516	7	20 9 13 14	27	NR			NR	NR			wet.			Sili	ade # 00 ca Sand pack .5' - 30.0'
	-32	517	/	5623	24	10			مە	۵O			Dark gray fine to coarse SAND, some fine to coarse shale gravel, medium dense, moist to damp.			Gra	ade # 0 Silica
	-34	S18	7	17 19 26 32	58	10			0.0	οo							nd pack 37.4' 30.5'
	-36	S19		52/0.3 50/0.3		0.1			0.0	00			grades with little silt, very dense, damp.			we 37	010-inch slot Il screen .05 - 32.05
	-38												Bottom of boring at 37.4 ft.				ttom of well t at 37.4'
	-40																
	-12																
-	Ĩ		viet	Initia	ale.					Rema	ark	s.					evels
		_	, .							1 icina					ct93	10:12	Elevation 426.47
	1	-	-	Sign										21		~.12	164.11
	1	oject No.: 130.09															

			BLA	SLA					RS. P	۰£.					Boring No. Project: NYS Location: GOS	EG		Well	No. MW8315
•		Date Drille Rig T Spoo Hami Heig Drillin Bit S	St ng C r's Typ on S mer ht c	art/ Comp Nam e: M Size: Weight of Fa	Finis any e: D OBIL 2 ght: alt: 3 oct H	h: 9 PAF DUG E B 140 0-in ISA	/22/ RRAT RICH -57 ches	93 - T-W	8/2	2/93		Eas Well Corr Borr	ehok ehok		Location Ske Scale:	etch	2		
		Depth (Ft.)	Sample/ Kun Number	Sample/Int/Type	Blows/8 in.	Z	Recovery (Ft).	Recovery (%)	ROD (X)	PID Field (ppm)	PID Headspace (ppm)	Driting Water Level	Geologic Col.	Stratigraphic Description		Misc. Test	Well Column		Well Materials
	- - - - -	-6 -8 -70 5 -74 -74 -5 -74	51 52 54	7	4 6 9 11 6 12 16 18 10 14 12 16 0/0.4	15 28	10 18 18			۵۵ ۵۵ ۵۵	0.0 0.0 0.0			Black top. Black stained SLAG. Brown fine to coarse SAND a little fine gravel, trace clay, i stiff, damp. grades to little clay and trac gravel. grades to grey fine to coars and SILT, little clay, moist to grades to fine SAND and SIL damp grades to fine to coarse SAN silt, little fine to medium shale trace clay, medium stiff, mois grades to little silt, moist to to Dark gray fine SAND and SIL fine to medium shale gravel, s damp.	medium e fine e SAND damp. T, stiff, T, stiff, vet. T, some			 out out flu oc ns ab flu oc ns ab ab flu oc pa ab flu oc flu flu<td>Finch diameter ter protective sh mount sking cap stalled to 0.25' ove ground rel. ment surface dd 15' $-$ 0.0' inch diameter ainless steel (S) well riser 65' $-$ 0.07' ment/bentonite out 8.0' $-$ 1.5' mtonite seal 0' $-$ 8.0' ade # 00 ica Sand pack 5' $-$ 11.0' ade # 00 ica Sand pack 5' $-$ 12.65</td>	Finch diameter ter protective sh mount sking cap stalled to 0.25' ove ground rel. ment surface dd 15' $-$ 0.0' inch diameter ainless steel (S) well riser 65' $-$ 0.07' ment/bentonite out 8.0' $-$ 1.5' mtonite seal 0' $-$ 8.0' ade # 00 ica Sand pack 5' $-$ 11.0' ade # 00 ica Sand pack 5' $-$ 12.65
	Geologist Initials: TRO Remar															Da	te	Tine	Elevation
	Geologist Signature:															210	CT93	10:10	429.09
		roj	ect	No	: 13	0.09)				1								

	BLAS	AND &	BOUG			RS, P	°.C.					Boring No. Project: NYS Location: GO	SEG		Well	No. MW8315
Drillin Driller Rig T Spoo Hamn	g Con ype: in Siz ner Wa it of g Me	ime: D MOBII e: 2 eight: Fail: 3 ihoct !	r Pai OUG LE B 140 0-in HSA	RRAT RICI -57 ches	T-W HMON	OLFF	2/93		Eas Well Corr Borr	ehol ehol		Location Ski Scale:	etch	:		
Ceptin (F1.) Samula (Bim Nimber	Sample/Int/Type	Blows/6 in.	z	Recovery (Ft).	Recovery (X)	RGD (X)	PID Field (ppm)	PID Headspace (ppm)	Drilling Water Level	Geologic Col.	Stratigraphic Description		Misc. Test	Nell Column		Well Materials
-22 S -24 -26	5	ភភភភ	30	16			0.0	00			Bottom of boring at 24.0	ft.				ottom of well t at 23.0'
-30																
-3 4 -36																
-38																
-12																
Seol	ogist	Initia Sign	atur	e:				Rem	ark:	s:	l		Da 2100	te	ater L Time 10:10	Evels Elevation 429.09

interest of	المنبقة	BL	ASLA EN		BOUR			ERS, F	э. с .				Boring No. Project: NY3 Location: GO	SEG			Well No. MW932 [
	Dr Dr Rig Sp Ha He Dr	Ning Ner's Typ xoon mme tight Ning	Comp Nam Size: M Size: r Wei of F Meth	bany ne: D 0BII 2 ght: all: 3 oct 1	: Pai OUG .E B 140 0-in ISA	RRAT RICI	T-W HMON	OLF	3/93		Eas Weil Cor Bor	eho l ehol		etch	r		
	Depth (F1)	Sample/Run Number	Sample/Int/Type	Blows/6 in.	z	Recovery (Ft).	Recovery (X)	ROD (X)	PID Field (ppm)	PID Headspace (ppm)	Driling Water Level	Geologic Col.	Stratigraphic Description	Misc. Test	Weil	Column	Well Materials
	-0	SI	7	3 5 5	n	10			0.0	0.0		0000	Brown, fine to coarse SAND and fine to medium GRAVEL, some coarse coal sand and black staining, little silt,				4-inch diameter outer protective
	~2	s2	4	4 3 2 2	4	10			0.0	مە		0 0 0 0	grades with some fine to medium coal		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AK INK	locking cap Installed to 0.25' above ground level.
	-4	53	/	2 3 4 3	7	17			0.0	00		。 。 。	gravel and trace red brick. Red fine to coarse sand lense 5' to		YK YK	VIK IVK	'Cement surface pad 1.5' - 0.0'
-	-6	S 4	/	3 7 7 10	17	15			۵٥	00		0 0 0 0	5.2' Black fine to medium coal GRAVEL, little fine to coarse sand lense, loose, damp.		N. N.	<u> XV XV XV XV XV XV X</u>	
	-8	S5	/	8 4 6 8	14	20			۵0	ഹ		0 0	Brown fine to coarse SAND and fine to medium GRAVEL, some fine to coarse coal sand and black staining, damp, loose.		14/2/47		
	-10	56	/	85666	12	16			۵٥	۵٥	¥		Grades to dark brown and with little fine coal gravel and trace clay. Brown, fine to coarse SAND and SILT, little fine gravel, medium stiff, damp.		111		
	-12	S7	7	6888	16	15			۵٥	۵٥		0000	grades to little fine to medium gravel, damp to moist Gray/green/brown fine to coarse		574574		2-inch diameter stainless steel (SS) well riser 31 - 0.21
	- 14	58	7	15 21 24 27	45	ເ5			۵٥	οo		。 。	SAND and fine GRAVEL, some silt and clay, soft, moist. Dark grey, fine to coarse SAND and SILT, some fine to medium shale			KINKI	
	- 16	59	\square	199 72 78 78 78 78	49	15			۵٥	QO			gravel, stiff, moist. grades with little clay grades to some silt, moist to wet.		12/12/	K NK	
	-18	SID	7	3 es 14 29 10	34	ов			0.0	0.0					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	AN	
	-90	St	\square	35 19 14 15	33	10			۵٥	ዉዕ			grades to fine SAND and SILT, medium stiff, wet to moist.		<u> </u>	AVE VE	Cement/bentonite grout 26.0' - 1.5'
Dark gray fine to coarse SAND. Sologist Initials: TRO Remarks:														Γ	- H	Wate	er Levels
														Da	te CT93	Tun 10:2	
	Geologist Signature:													2.00	2193	101	
	1.8.4	Jec.	I NO	- 13	0.05	,											

		rte S	tart	VID & IGINE! /Finis	sh: 9	/23/	9 3 –	9/2	3/83				F Lc F	oring No. I Project: NYS ocation: GOS	SEG SHE	N, NY	Well No. MW932D
-	i Rig Sp Ha He	j Typ Icoon Immei Isight Illing	e:⊬ Size Wei of F Meth	ne: D 10BIL : 2 ight: 3 noct H Nuger	.E B 140 0-in 15A	-57 Iches	i	1D			Cori Bori	eho l ehol	ing Elev: 430.29 ft. e Depth: N/A ft. e Depth: 36.4 ft. Surface Elev: 430.5 ft.	ica le:			
	Depin (*1.)	Sample/Run Number	Sample/Int/Type	Blows/8 in.	z	Recovery (F1).	Recovery (%)	ROD (X)	PID Fleid (ppm)	PID Headspace (ppm)	Driting Water Level	Geologic Col.	Stratigraphic Description		Misc. Test	Weli Column	Well Materials
	-22 -24	512		19 19 27 50/0.3 50/0.3	46	10 NR			۵٥	۵0			some fine to medium shale grav silt, loose, wet.	vēl, littlē		<u>KNKNKINK</u>	
	-26	514	7	19 21 27	48	0.8			۵٥	م٥			grades to medium stiff, damp.			<u>K I V I I I NKVSVSV</u>	
	-28	515	/	30 37 38 41 26	79	ов			۵٥	۵٥		0000	grades to fine to coarse SAND fine to medium shale GRAVEL, r dense, damp to moist.				Bentonite seal 29.0' - 26.0' Grade # 00 Silica Sand pack
	-30 -32	S16		18 16 20 24 50/0.4	36	0.4 0.5			0.0	0.0 Q.0		0 0 0 0 0 0 0					29.5' - 29.0'
	-34	518	Ν	£0/0£		05			۵٥	مە		0 0 0 0 0 0 0	grades to very dense, damp.				Grade # 0 Silica Sand pack 36.4' 29.5' 0.010-inch slot well screen 36' -
	-36 -38											000	Bottom of boring at 36.4 ft.				31 Bottom of well set at 36.4'
	-40																
	-42																
	je	olog	ist :	Initia Signa	atur	e:				Rema	l ark:	5:			Da 2100	te 1	Elevels Dire Elevation 0:20 424.62

Image: Section of the section of th	•	Dri Dri Rik Sp Ha He Dri	nte S Hing	tart/ Comp Nam Size: M Size: Wein of F	Finis Pany Cany Cobil Co	ERS (sh: 9 PAI 0UG .E B 140 140 HSA	/23/ RRAT RICI -57	rt-w HMON	9/2	3/93		Eas Well Cor Bor	ehol ehol		SEG	N, NY	Wel	No. MW932 5
-2 <		Depth (FL)	Sample/Run Number	Sample/Int/Type	Blows/8 in.	z		Recovery (%)	ROD (%)	PID Flekd (ppm)	PID Headspace (DDm)	Driling Water Level	Geologic Col.	Stratigraphic	Misc. Test	Kell		
Seologist Signature: 210CT93 10:18 422.08		-2 -4 -6 -8 -10 -12 -14 -18 -20	S2 S3 S4		4 3 2 6 8 9 10 8 12 15 17 22 4 14 17	17 27 38	18			0.0	۵۵ ۵٥ ۵٥			to medium GRAVEL, some coarse coal sand and black staining, little silt, loose, damp. grades to some silt and trace clay grades with some fine to medium coal gravel and trace red brick. Red fine to coarse sand lense 5' to 5.2' Black fine to medium coal GRAVEL, little fine to coarse sand lense, loose, damp 5.2' to 6'. Brown fine to coarse SAND and fine to medium GRAVEL, some fine to coarse coal sand and black staining, loose, damp. grades to dark brown and with little fine coal gravel and trace clay. Brown, fine to coarse SAND and SILT, little fine gravel, medium stiff, damp. grades to little fine to medium gravel, damp to moist Gray/green/brown fine to coarse SAND and fine GRAVEL, some silt and clay, soft, moist. Dark grey, fine to coarse SAND and SILT, some fine to medium shale gravel, stiff, moist. grades to some silt, moist to wet.				ter protective ish mount cking cap stalled to 0.25' isove ground vel. ement surface id 15' - 0.0' inch diameter ainless steel SS) well riser 5' - 0.18' ement/bentonite out 6.5' - 1.5' entonite seal 5' - 6.5' ade # 00 ica Sand pack .0' - 9.5' ade # 0 Silica and pack 22.0' 10.0' DIO-inch slot ell screen 21.6' 11.6'
		38	eolog	ist S	Sign	atur	e:				Nen	KCAL IK.	ð.					

	BL	ASLAI ENG		BOUG			ERS, F	P.C.			_			Boring No. 1 Project: NYS Location: GOS	EG		Well No. MW932S
Dri Dri Ric Sp Ha He Dri	iling (Comp Nam e: M(Size: Size: Weiş of Fa	any: e: D(0BIL 2 ght: 1 all: 3(oct H	: PAI DUG E B 140 0-in 15A	RRAT RIC -57		OLFI				E V C	Eas Vell Core Bore	ehok ehok	Location Ska ng Elev: 430.32 ft. Depth: N/A ft. Depth: 22 ft. Surface Elev: 430.5 ft. Scale:	etch		
Depth (FL)	Sample/Run Number	Sample/Int/Type	Blows/6 in.	Z	Recovery (Ft).	Recovery (%)	ROD (X)	PID Field	(mqq)	PID Headspace	(mqq)	Drilling Water Level	Geologic Col.	Stratigraphic Description	Misc. Test	Column	Well Materials
-22 -24 -26 -28 -30 -32 -30 -32 -34 -36 -38 -40 -42														Dark gray fine to coarse SAND, some fine to medium gravel, little silt, loose, wet. Bottom of boring at 22 ft.			Bottom of well set at 22.0"
50	Seologist Initials: TRO Rema Seologist Signature:														Da 2104	te 1	Elevels Ime Elevation IO:18 422.08

Dri Dri Riç Sp Ha	ite S iling iler's Typ ioon	tart Com Nar Size Size	/Fini: pany ne: D lobile : 2 ight:	sh: 9 ; PAI OUG : B-! 140	/22/ RRAT RICI 57	GINEE ENTIS 93 - T-W HMON	9/22 OLFF	2/83		Eas Well Cor Bor	ehole ehole	Boring No Project: Ni Location: Go Location S Depth: N/A ft. Depth: 36.5 ft. Surface Elev.: 430.1 ft.	(SEC)SHE) EN, N		Well No. MW8330
Dri	iling	Meth	alt: 3 Nuger Nuger	⊣SA			ROD (X)	PID Field (ppm)	PID Headspace (ppm)	Drilling Water Level	Geologic Col.	Stratigraphic Description	Misc. Test		Column	Well Materials 6-inch diameter
↓	୫ ମ ମ		5		NR			۵۵	مە		0.0	Dark brown, fine to coarse SAND and				outer protective PVC casing with locking cap installed to 2.7' above ground level.
-2	52		13 14 8 8 6	27	NR			۵٥	0.0		0 0 0 0	fine to medium GRAVEL, some coarse coal sand and black staining, loose, damp.		~ + + + + / + / + / + / + / + / + / + /	- V 1 2 1 V A	Cement surface pad 1.5' - 0.0'
-4	53	4	5 8 6 8 6	14	16			0.0	0.0		0 0 0 0 0	Brown, fine to coarse SAND and SILT,		244244	<u> </u>	
-6	S 4	7	9 8 6 7 8	រេ	15			0.0	۵٥			trace fine gravel, medium stiff, damp.		12/2/2/2/	NK NKI	
-8 -10	55 56	$\left[\right]$	10 10 15 15 15	23	18			۵۵ ۵۵	00 00			grades to brown SILT, some fine sand, stiff.				
-12	57	4	18 24 21 10 30	42 80	18			۵٥	0.0					×7.4×7.4	K NKV	2-inch diameter stainless steel
-ŀ9	58	7	9 9 21		18			۵۵	۵٥			grades to brown, fine to coarse SAND, little fine shale gravel, medium dense.		MALAKIAKIAKIAKIAKIAKIAKIAKIAKIAKIAKIAKIAKIA	AN A	(SS) well riser 31.5° - 2.47° above ground level
-16	59	/	15 9 12 16	28	14			0.0	۵٥			grades to dark grey, little silt and clay, moist to damp.			NK NK	
-18	SID	/	20 4 5 13 9	18	10			00	വ		0000	grades to fine to coarse SAND and fine to medium shale GRAVEL, trace silt, wet.		181.181	NK NK	
-20	ST	$\left[\right]$	10 10 7 9	17	10			0.0	۵٥		0 0 0				111	Cement/bentonite grout 27.0' - 1.5'
58	olog	jist :	Initia Sign	atur	e:				Rem	ark	s:			ate DCT3	T	Elevation 0:30 424.41

		BL	ASLA EN		Bour			RS, P	<i>.</i> د.	_			Boring No. Project: N Location: GC	SEC	3	Well No. MW933D
	Dri Dri Riç Sp Ha Ha JDri	lling Her's Typ oon mmei ight Illing	Com Nan Size Wei of F Meth	pany ne: D lobile : 2 ight: alt: 3 noct	: PAI OUG : B-1 140 :0-in HSA	RRAT RICI 57	83 - T-₩ HMON	OLFF			Eas Weil Cor Bor	ehol ehol		(etc	h:	
	Depth (Ft.)	Sample/Run Number	Sample/Int/Type	Blows/8 in.	z	Recovery (Ft).	Recovery (%)	ROD (%)	PID Field (ppm)	PID Headspace (ppm)	Driling Water Level	Geologic Col.	Stratigraphic Description	Misc. Test	Column	Well Materials
	-22	512	/	10 13 13	26	0.B			0.0	0.0			grades to fine to coarse SAND, little fine gravel, trace clay, medium dense, moist to damp.			
	-24	รช	/	12 6 15 1	30	11			0.0	مە			grades to some fine to medium shale gravel, moist.			
	`2 6	514	Z 7	เ 21 9 20 เม	33	10			0.0	۵٥			grades to little fine to medium shale gravel, trace silt.		<u>KIYKIYKIYKIYKI 11</u>	
	-28	S15	/	17 5 7 11	18	0.5			۵٥	۵٥		0000	grades to fine to coarse SAND and fine to medium shale GRAVEL, loose, wet.			Bentonite seal 30.0° - 27.0°
	-30	S16	/	14 7 16 13	29	10			۵٥	0.0		00000				Grade # 00 Silica Sand pack
	-32	S17	/ 7	10 19 20	43	ບ			۵٥	۵٥		0 0 0				30.5' - 30.0' Grade # 0 Silica Sand pack 36.5
	-34	S18	$\overline{/}$	23 22 21 30 50/0.3	во	12			۵٥	0.0		0	grades to fine to coarse SAND, some silt, trace clay, medium dense, moist. grades to very dense.			– 30.5 0.010-inch slot
	•36	519	7	19 30 22	52	u			0.0	م٥			grades to some fine to medium shale gravel and little silt.			well screen 36.15' - 31.15' Bottom of well set at 36.5'
	-38		<u> </u>	22									Bottom of boring at 38.0 ft.			
	-40															
	-12															
-	144	olog	ist :	Initia	als: 1	 TRO			Ļ		ater Levels					
eologist Initials: TRO Remarks														_		Time Elevation 10:30 424.41
	/ ^-	jec	t No	13	0.09	9	_							F		

		BL	ASLA EN		BOUR			ERS, P	<i>ب</i> د.				Boring No. Project: NYS Location: GOS	SEG		Wel	No. MW933S
	Drill Drill Rig Spo Han Heis Drill	ing (ers Typ on (ght (ing)	Com Nan Size Wei of F Meth	pany ne: D lobile : 2 ght: alt 3 not 1	2 PAI OUG 8 B-1 140 10-in HSA	RRAT RICI 57	T-W HMON	OLFF	4/93		Eas Weil Cor Bor	ehok ehok	Location Ski ng Elev: 432.16 ft. Depth: N/A ft. Depth: 22.5 ft. Surface Elev: 430.1 ft. Scale:	etch	5		
ſ	Depth (Ft.)	Sample/Run Number	Sample/Int/Type	Blows/6 in.	z	Recovery (Ft).	Recovery (%)	RQD (%)	PID Field (ppm)	PID Headspace (ppm)	Driling Water Level	Geologic Col.	Stratigraphic Description	Misc. Test	Well "Column	6- 01	Well Materials -inch diameter iter protective
	-12 -14 -16 -18	S1 S2 S3		6 7 8 9 14 17 20 50/0.2 29 17 9	15 31 50 26	20			00 00	00			Dark brown, fine to coarse SAND and fine to medium GRAVEL, some coarse coal sand and black staining, loose, damp. Brown, fine to coarse SAND and SILT, trace fine gravel, medium stiff, damp. grades to brown SILT, some fine sand, stiff. Brown, fine to coarse SAND, little fine gravel, medium dense, damp. grades to dark grey, little silt and clay, moist to damp. grades to fine to coarse SAND and fine to medium shale GRAVEL, trace silt, medium dense, wet.			boo ins ab c c c c c c c c c c c c c c c c c c	C casing with cking cap stalled to 2.39' pove ground vel. ement surface ad 15' - 0.0' finch diameter ainless steel SS) well riser f' - 2.06' pove ground vel ement/bentonite out 7.0' - 15' entonite seal .0' - 7.0' ade # 00 ica Sand pack .5' - 10.0' ade # 0 Silica and pack 22.5' 10.5' 010-inch slot ell screen 22.1' 12.1'
~	- Jec	olog	ist :	19 Initia Sign ().: 13	atur	e:				Rem	nark:	S:		De 210		Nater L Tine 10:40	Elevation 422.12

في الإرمانية الم		BL	ASLA EN		BOUC ERS 6			ERS, F	۰ <i>۵</i> .			-			Boring Projec Location	t: NYS	SEG		Wel	I No. MW8335
turi u	Dri Dri I Rig I Sp Ha Ha I Dri	lling (ller's Typ oon : mmer ight (lling (Comp Nam Size: M Size: Weig of Fi Meth	any obile 2 ght: alt: 3 oct 1	PAP DUG B-(140 0-in ISA	RRA1 RIC 57 ches	rt-w Hmon	IOLFF	2 4/93 F				Eas Well Cori Bori	ehoł ehol		on Sko	etch			
		Sample/Run Number	Sample/Int/Type	Blows/6 in.	Z	Recovery (Ft).	Recovery (%)	ROD (%)	PID Field	(mqq)	PID Headspace	(mqq)	Drilling Water Level	Geologic Col.	Stratigraphic Description		Misc. Test	Well Column		Weli Materials
	-22		4			_									grades to tine to coarse SAND, little fine gravel, trace clay, medium dense moist to damp.					ottom of well
	-24														Bottom of boring at 22.5 ft.					
	-26																		}	
	Ŗ																			
	-28																			
-	-30																			
	-32																			
	-31																			
	-36																			
	-38																			
	-40																			
	-42								-											
-		oloa	ist I	nitia	is: 1	RO					R	ema	r ks							evels
	ik š	eologist Initials: TRO Rem Peologist Signature:															Da 2100		17me 10:40	Elevation 422.12
	1	ject															_			

		BL	ASLA EN	ND 6				RS. P	·.C.				Boring No. Project: NYS Location: GOS	SEG		Well NO.
•	Dr Dr Ric Sp Ha He J Dr	iling iler's Typ ioon immei ight iling	Comp Nan De: M Size Size Vei of F Meth	pany ne:D CBIL 2-I ght: alt 3 not 1	PAI OUG E B NCH 140 0-in HSA	RRAT RICI -57	9 3-9 , T-W HMON	olff ID	-		Eas Weil Cor Bor	ehol ehol		etch		
		Sample/Run Number	Sample/Int/Type	Blows/8 in.	z	Recovery (F1).	Recovery (%)	ROD (%)	PID Field (ppm)	PID Headspace (ppm)	Driting Water Level	Geologic Col.	Stratigraphic Description	Misc. Test	well ^{''} Column	Well Materials
	•0	SI	7	14 42 20	62	18			19	0.1		000	Brown fine to coarse SAND and GRAVEL, loose, damp.		× >	
	-2	52	H	9 8 8	14	10			0.0	0.0			Black/brown fine SAND and SILT, some coarse sand and fine gravel, some slag, trace clay, moist.		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Cement/bentonite grout 40.9' - 0.0'
	-4	53	/	66445	9	18			مە	۵٥			grades with white flakey material grades to damp grades to some clay and trace fine gravel.		~~~~~	
-	-6	S4	7	6 6 8 9	17	18			0.0	ഫ			grades to Brown/grey with little orange oxidation, damp		<pre>^ > < ^ ></pre>	
	-8	S5	/	8 5 7 7	14	19			0.0	۵0			grades with layers of angular shale fragments.		<	
	0-	56	/	10 41 11 17	28	20			1.0	0.0			Brown fine SAND, some medium to coarse sand lenses, little grey clay lenses, medium dense, damp to moist.		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
	-12	57	/	24 44 20 20	40	0.2			0.0	0.0			', grades to grey fine to coarse shale ', SAND, moist. ''wet.		< > > < > < > < > < > < > < > < > < > <	
	-14	58	7	24 7 10 11	21	18			85.0	0.3			Dark grey fine SAND and SILT, some		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
	-16	59	/	12 13 13 9	22	16			47.1	11			medium to coarse shale sand, trace medium sand lenses and clay, stiff, wet. Dark grey fine to coarse SAND, some		< < < < < < < < < < < < < < < < < < < <	
	-18	S10	/ /	11 9 8	17	16			0.1	0.0			silt, trace clay, medium dense, wet. "grades to trace shale gravel. "grades to little fine shale gravel and		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
	-20	St		9 11 4 5 7 B	12	15			0.0	0.0			some to little silt.		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
	क्रि	olog	ist]	•	als: ⊺	rro,	VAE)		Rema	ark:	s:	1		_	ter Levels ine Elevation
	Le	olog	ist S	Signi	atur	e:								Da	le	ine Elevation
	1~-0	jec	t No	: 130	0.09)										

	BL	ASLA EN	NO 6 IGINE	BOUG		GINEE	RS, P	рс. 				Boring INO. Project: NY Location: GO	SEG SHE	N, NEV	Wen York	
	ate S illing iller's g Typ xoon amme sight illing t Size	Com Nan Size Wei of F Meth	pany ne: D 10BIL : 2-I ight: alt: 3 not h	: PAI DUG E B NCH 140 0-in ISA	RRAT RICI -57	T-W HMON	ol Ff ID	-		Eas Well Cor Bor	eho eho			r: 		
Cepan (FL,	Sample/Run Number	Sample/Int/Type	Blows/6 in.	Z	Recovery (Ft).	Recovery (%)	ROD (%)	PID Fleid (ppm)	PID Headspace (ppm)	Driting Water Level	Geologic Col.	Stratigraphic Description	Misc. Test	Well'' Column		Well Materials
-22	S12		7 9 11	20	16			0.0	0.0			grades to moist.		× × ×		
-24	SB	\square	# 8 14 4	29	17			0.0	00			grades to fine to coarse SAND and		< > >		
-20	S14	/ /	15 22 41 21 27	48	10			۵0	م٥			fine to medium shale GRAVEL, little silt, trace clay, medium dense, moist to wet. Shale fragment layers, some fine to		× × × ×		
-28	S15	\square	27 14 15 19 41	34	10			0.0	0.0		0000	Dark grey fine to coarse SAND and		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
-30	516	7	ថា ថា	30	0.6			0.0	0.0		0 0 0 0 0			~ ~ ~		
-32	517	7	19 17 27 41	68	05			۵٥	۵٥		00000			< >		
-34	S18		23 24 28	52	e .0			0.0	۵٥		0 0 0	moist		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
-36	519		39 27 41 50/0.4	91	0.B			0.0	0.0		0 0 0 0 0	damp to moist, very dense.		<		
-38	S20	н			0.3			0.0	ົໝ		0 0 0 0 0	moist to damp		< < < < < < < < < < < < < < < < < < <		
-40	521		47 50/0.4		0.5			۵٥	م٥		0 0 0 0	damp to dry		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
-42												Bottom of boring at 40.9 ft. Note: Test boring located in furnace				
		ict 1	initia	de. 1		/V & Γ	<u></u>		Rema	arkı	c.			٢	later	Levels
	-								1 Venic	-	3.		Da	te	Tine	Elevation
	olog Dolog		_										E			
	_? jec	τNO	130	0.09	,											

		В			ERS (RS, P	۰ <i>.</i> .				Boring No. Project: NY Location: GO	SEG		Well YORK	
•)ate S)riling)rilier's tig Ty Spoon lamme leight)riling Sit Siz	Com s Nar pe: M Size r We of F Meth	pany ne: D 10BII : 2-I ight: alt: 3 noct	PAI OUG E B NCH 140 0-in HSA	RRAT RICI -57	T-W HMON	OLFF	-		Eas Weil Cor Bor	ehol ehol		etcł	r.		
			Sample/Int/Type	Blows/6 in.	z	Recovery (Ft).	Recovery (%)	RGD (X)	PID Field (ppm)	PID Headspace (ppm)	Dritting Water Level	Geologic Col.	- Stratigraphic Description	Misc. Test	Weli Column		Well Materials
	-0	SI	7	8 10 9	19	16			۵٥	0.0		0	Brown fine to coarse SAND and GRAVEL, loose, dry.		~ ~ ~		
	-2	2 52	/	7 6 5 5	n	ຫ			0.0	0.0			Black/brown Fine to coarse SAND and red brick, loose, damp. grades with some grey brick, little coal fragments, moist.		<pre></pre>		ement/bentonite out 36.3' - D'
	-4	53	/	6 1 2 1	3	บ			۵٥	0.0			Grey fine SAND and SILT, little medium to coarse sand and fine gravel, trace		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
-	-6	54	7	2 3 5 7	re	18			5.3	مە			Clay, slight coal tar odor, soft, moist. Black fine to coarse SAND, some fine		<pre>>></pre>		
	-8	S5	/	14 9 13 20	33	8 .0			-	21.5			gravel, slag, and coal fragments, little red brick, trace silt and clay, very slight coal tar odor, medium dense, wet.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-	
	-1	56	7	22 4 11 13	24	NR			NR	NR			grades to brown, with little silt, moist.		<pre></pre>		
	-13	2 57	/	17 13 17 20	37	16			130	00		1	wet. Grey/brown fine SAND, SILT, and CLAY, moist.		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
	-1	1 58	7	24 9 11 14	25	10			139	6.0			grades to brown fine to coarse SAND and SILT, some fine gravel. grades to brown/grey some clay,		~~~~		
	-10	8 59	/	17 10 13 20	33	18			552	23.6			medium stiff, moist. grades with black coal tar and to wet.		× × ×		
	-11	3 510	17	24 13 16 11	27	18			-	517		6	fine gravel lense from 18.3' to 18.6'		~~~~		
	-2	0 S11	4	14 5 7 11	18				964	ព			grades to dark grey, trace clay, moist to damp. No coal tar.		~~~~~		
	, f	<u></u>	γ	14											L AN W	ater L	evels
		eolog	-				VAE			Rema	erk:	5.		Da		Time	Elevation
	1	ieolog	-	-										\vdash			
	् { <i>े</i> ,	ojec	t No	13	0.09	,											

	Dri Dri Rig Sp Ha He I Dri	ite S iling iler's Typ coon mme ight ight	itart Com Nar Size Size r We of F Met	/Fini: pany ne: D 10BII : 2-1 ight: ight: all: 3 noct !	sh: 9 C PAI IOUG LE B INCH 140 IO-in HSA	/ 18/(RRAT RICI -57 I	GINEE ENTIS 3-9 T-W HMON	/ 18/8 Olff ID	23		Eas Well Cor Bor	eholi eholi		SEG SHE	N, NE		
		Sample/Run Number	Sample/Int/Type	Blows/6 in.	z	Recovery (F1).	Recovery (%)	ROD (%)	PID Field (ppm)	PID Headspace (ppm)	Driling Water Level	Geologic Col.	Stratigraphic Description	Misc. Test	Well '		Well Materials
62	-22	512	17	10 17 20	37	0.5			1325	5.9			wet		~ ~		
	-24	513	7	21 47 37 21	58	10			407	4.6			moist		> < > < <		
	-26	S14		27 27 41	62	ι٥			501	0.6					< ^ >		
	-28	S15	/ 7	21 33 31 27 21	48	90			121	0.9			wery stiff. moist to damp		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		-
	-30	S16	/	21 30 19 22 24	46	во			244	6.3			moist		< ^ < ^ <		
	-32	517	/	27 29 34 50/0.4	84	0.8			27.5	مە			fine sand lense from 32.3' to 32.6'		<		
	-31	S18	7	47 41	83	10			26	0.1			hard, moist to damp.		< < < < < < < < < < < < < < < < < < <		
	-36	S19		42 66 50/0.3		0.3			29.8	-			Bottom of boring at 36.3 ft.		<u> </u>		
	-38												Note: Labortary sample number GSVIB-9305C17~19.5 obtained from 17 to 19.5 feet and submitted for chemical characterization. Test boring located in gas holder GH#1.				
	-40												NR – No recovery				
	-42																
										10						later L	.evels
	1	_					VAD			Rema	Brks	5.		Do		Time	Elevation
	1			Sign 13													
		.,	C 140	ы н.) 	0.08												

	Dri Dri Rig I Sp Ha He Dri	te S Iling Iler's Iler's oon mmei ight Iling	tart/ Com Nan Size Size r Wei of F Meth	/Finis pany me: D 0BIL : 2-I ght: alt: 3 noct H	ih: 9, PAF OUG E B NCH 140 0-in 15A	/15/8 RRAT RICH -57 ches	GINEE ENTIS 3-9. T-W HMON	/ 15/ 8 Olff ID				Eas Weli Core Bore	ehok ehok		SEG SHEI		WEII NO.
		Sample/Run Number	Sample/Int/Type	Blows/6 in.	Z	Recovery (Ft).	Recovery (%)	ROD (X)	PID Field		PID Headspace (ppm)	Driting Water Level	Geologic Col.	Stratigraphic Description	Misc. Test	well' Column	Well Materials
	-0	SI	7	17 17 13 1	30	17			مە		1.0		0000	Brown fine to coarse SAND and GRAVEL, loose, damp.		< >	
	-2	S2	Л	10 7 5 5 5	Ŋ	NR			-		00		0 0 0 0 0			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Cement/bentonite grout 36.4° − 0.0°
	•4 •6	53 54	\square	2 3 3 4	6	05			0.1		0.0		0 0 0 0	grades to wet with slight odor.		< ^ > ^ < > < > < > < > < > < > < > < >	
	-8	55	Ľ	2 1 2 1	3	0.B			28.3		0.0		0 0 0 0 0 0	grades to black. grades with trace wood fragments.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	-10	56	/	1 4 13 50/02		6.0			-		23.8		0 0 0 0 0 0 0	grades with coal residue tar in matrix, coal tar odor, and oil sheen.		<pre></pre>	
	-12	S7	4	7 8 9	17	20			187.	7	2 9 6.B		0 0 0 0	Brown fine SAND and SILT, some clay, no coal tar, medium stiff, moist.		< < < < < < < < < < < < < < < < < < <	
	-14	58	$\overline{\Lambda}$	10 8 8 11	19	12			22		0.3			grades to dark grey fine SAND, SILT, and CLAY, plastic, soft, wet. grades to fine SAND and SILT, some		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
	-16	59	/	21 63 13 13 13	26	10			9.9		22			clay, little fine gravel. grades to dark grey fine to coarse SAND, trace fine gravel and silt, wet.		~ ~ ~ ~ ~	
	-18	S10	/	15 17 18 18 21	36	บ			72		3.8			fine sand lense 18.5° to 18.7° grades to moist.		~ ~ ~ ~	
	-20	Sī	\square	10 14 18 16	32	14			218	3	10.1			fine sand lense, wet 20.8' to 22.0'		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
$\overline{}$	[² ,		nist 1	Initia	als: "	TRO.	/V A [')		1	Rem	ark:	s:				ter Levels
	13	-	-	Sign												nte T	ine Elevation
		-): 13											F		
					_			_									Deces 1 of 0

		BL	ASLA EN		BOUG			RS, P	۰ <i>ــــ</i>				Boring No. Project: NY Location: GC	SEG		WEII	
,		ate S riling riler's g Typ poon amme eight riling it Size	Com Nan Xe: M Size Size of F Meth	pany ne: D 10BIL : 2-I ght: alt: 3 10ct 1	: Pai OUG .E B NCH 140 0-in ISA	RRAT RICI -57	т- w -mon	olfi ID	-		Eas Well Cori Bori	ehok ehok			r:		
	Control (F1)	Sample/Run Nur	Sample/Int/Type	Blows/8 in.	z	Recovery (Ft).	Recovery (X)	ROD (X)	PID Field (ppm)	PID Headspace (ppm)	Driling Water Level	Geologic Col.	Stratigraphic Description	Misc. Test	Well Column		Well Materials
	-22	SE SE	/	14 17 22	39	10			6.0	17		0	Dark gray fine to coarse SAND and fine to medium shale GRAVEL, little silt, trace clay, medium dense, moist.		× × ×		
	-24	513	7	27 22 26	53	16			12.4	10.7			grades to damp to moist.		< ^ > <		
	-24	514	/	27 23 31 31 30	61	12			77.9	17			coarse shale gravel lense.		× × × ×		
-	-28	sta	/	30 14 28 12	40	0 <i>B</i>			52.7	02			grades to wet, loose		× × × × × ×		
	7 3	516	/	14 12 17 17	34	0.B			19	0.3			grades to some fine to coarse shale GRAVEL. Thedium SAND lense 30.2' to 30.4',		× × ×		
	-32	2 517	7	12 27 31 50/0.3	81	05			4.9	02			some medium to coarse sand lenses, grades to wet to moist.		× × × ×		
	-34	7 518	Ζ	52 50/0.3	50	0.4			19	۵٥			grades to dense, moist.		~ ~ ~ ~		
	-34	519		50/0.4		0.4			19.5	مە			grades to very dense, moist to damp. Bottom of boring at 36.4 ft.		<u>^ ></u>		
	-30	3											Note: Labortary sample number GSVIB-9306C10-12.5 obtained from 10 to 12.5 feet and submitted for chemical characterization. Test boring located in gas holder GH#2.				
	-4	D											NR - No recovery				
	-4	2															
	6	eolog	nist i	Initia	als: 1)		Rema	ark	s:				Water L	
	- E- 1	eolog	-												te	Tine	Elevation
		ojec												F			
		OJEC		1. 13	0.08			_			_			ł			

		BL		ND &	BOUG		GINEE	RS, P TS	.C.				Boring No. Project: NYS Location: GOS	SEG			
	Dri Dri I Sp Ha He I Dri	lling Her's Typ oon ight ight	Com Nan Size Wei of F Meth	pany ne: D 10BIL ; 2-I ight: alt: 3 noct	r Pai OUG E B NCH 140 0-in HSA	RRAT RICI -57	93-9. T-W HMON	ol Ff ID			Eas Nell Core Bore	ehok ehok		etch	κ.		
(Sample/Run Number	Sample/Int/Type	Blows/6 in.	z	Recovery (Ft).	Recovery (%)	ROD (%)	PID Fleld (ppm)	PID Headspace (ppm)	Driling Water Level	Geologic Col.	Stratigraphic Description	Misc. Test	Well '' Column		Well Materials
	-0	SI	7	9 6 5	π	10			۵٥	۵٥		0	Brown fine to coarse SAND and GRAVEL, loose, damp.		< > >		
	-2	52	/	5 3 3 3	6	0.8			5.9	۵0			Brown fine SAND and SILT, little clay, trace fine gravel, soft, moist.		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		ement/bentonite out 36.7° - 0'
	-4	53	/	3 8 11 13 15	24	17			۵٥	۵٥			Brown fine to coarse SAND, some silt, some red staining, little clay, medium stiff, moist.		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
-	-6	S4	/	10 7 11 19 21	30	14			0.0	۵0			Grades to grey/brown with little silt		<pre></pre>		
	-8	S5	/	1 0 2 N 10	41	บ			19	۵٥			and iron oxidation staining.		<pre>\ \ \ \ \ \ \ \ \ \</pre>		
	-10	56	/	N 88 N 19	40	18			0.0	۵0			grades to dark grey.		<		
	-12	S7	/	9 16 23 41	39	17			335	3.3			slight chemical odor.		<		
	-14	S8	/	10 15 19 24	34	NR			NR	NR					< ^ > < > < > < > < > < > < > < > < > <		
	-/6	59	7	13 19 21 27	41	10			- 15.9	3.9			grades to dark grey, little silt, stiff, moist, slight chemical odor.		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
	-18	510	/	5960	25	15			13	19			Grades with trace fine gravel and clay.		<pre></pre>		
	-20	Stl	$\left/ \right $	0 0 0 0 0 0 0	27	15			۵0	6.0					~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
	5	olog	ist I	Initia	sis: 1	rro/	VAC)		Rema	rks	5:					evels
	1	_		Signa										Da	Re	Tine	Elevation
	1	_		13											_		

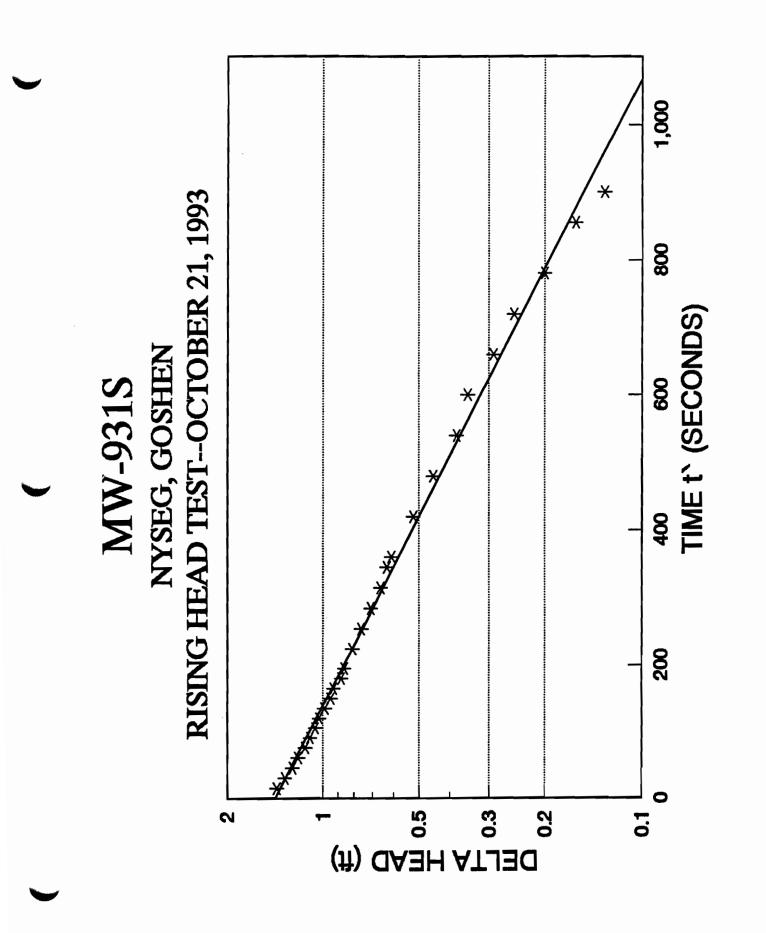
	Dri Dri (Rig Sp Ha He (Dri	ite S lling ller's Typ con mmer ight lling	tart/ Com Nan Size Wei of F Meth	/Finis pany ne: D 0BIL : 2-I ght: ght: all: 3 oct H	in: 9 PAI DUG E B NCH 140 0-in 15A	/17/8 RRAT RICH -57	GINEE ENTIS 33-9, 'T-W HMON	/17/8 OLFF	23		Eas Well Cori Bori	eholi eholi		SEG	N, NEI	Well	
المريدينية المريدينية	Depth (Ft.)	တိ	Sample/Int/Type	Blows/6 in.	z	Recovery (Ft).	Recovery (%)	ROD (%)	PID Field (ppm)	PID Headspace (ppm)	Drifing Water Level	Geologic Col.	Stratigraphic Description	Misc. Test	Well ¹		Well Materials
	-24	512 513		8 G R R 6 7	41 38	10 11			00 00	0.0 0.0			Dark grey, SILT, some clay, medium stiff, moist.		< < < < < < < < < < < < < < < < < < <		
	-26	S14	/	19 27 31 52 37	30 89	NR			NR	NR			Fine to coarse SAND, little fine to		× × × × × × × × × × × × × × × × × × ×		
-	-28	515 516		29 11 19 19 24 19	38	0.8 0.8			0.0 0.0	ഹ			medium shale gravel, trace clay, dense, moist to damp. grades with some silt. grades to no clay, and damp.		> < > < > < > < > < > < > < > < > < > <		
	-32	S17	4	19 27 37 20 20	46	11			0.0	00					~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
	-34	S18		47 32 27 50/0.3	67 50	0.8			۵٥	0.0			grades to very dense.		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
	-36 -38	S19	Z	57 50/0.2	50	0.7			0.0	0.0			Bottom of boring at 36.7 ft. Note: Test boring locàted downgradient of tanks inside building.		<u>~</u> ^`		
	-40												NR - No recovery				
	-42																
	1	olog	ist]	(nitia	ds: 1	TRO/	/VAE)		Rema	srk:	5:				later L Tine	evels Elevation
	i je	olog	ist S	Signi	atur	e:								Ē			
	10	jec	t No	: 13	0.09)											

		ite S	tart	/Fini:	sh: 9	/18/1	GINEE ENTIS	/16/1	93			thing		SHEI	N, NEW	WEII NO. YORK
•	(Dri Riç Isp Ha He Dri	ller's Typ oon mme: ight lling	Nar Size We of F Met	ne: D 10BII 10BII 1911: 3 1911: 3 1911: 3	IOUG LE B INCH 140 10-in HSA	RICI -57 I Iches	ГТ₩ НМОМ -1/2-	D			vieli Cori Bori	ehoł ehol	ing Elev: ft. e Depth: ft. e Depth: 38.4 ft. Surface Elev: 430.7 ft. Scale:			
		Sample/Run Number	Sample/Int/Type	Blows/6 in.	z	Recovery (Ft).	Recovery (%)	ROD (X)	PID Field (DDM)	PID Headspace (ppm)	Drilling Water Level	Geologic Col.	Stratigraphic Description	Misc. Test	Well ¹⁻ Column	Well Materials
	-0	SI	7	9	9	18			55.7	a 0		0			~~~	
	-2	52	7	5 9 8 9	20	19			619	4.6			Grey/brown, fine to coarse SAND, some gravel,little clay, stiff, moist.		~ ~ ~ ~	 Cement/bentonite grout 38.4' - 0.0'
	-4	53	7	11 13 13 13 13	26	u			145	3.9			Brown SILT, some fine sand, trace clay, stiff, damp. slight odor.		< > < > < > < > < > < > < > < > < > < >	0.0
-	-6	S 4	\overline{Z}	17 18 28 50/02	78	10			173	9.3			very stiff.		<	
	~8	S5	7	8 21 19	40	13			53	80			grades with some fine sand lenses.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	-10	56	7	25 30 24	50	18			92	13			grades with trace fine gravel.		~~~~	
	-12	S7	4	26 20 17 19 22	43	18			130	6 .0			Brown, fine to coarse SAND, some fine to medium gravel, trace silt, medium dense, damp. grades to dark grey, some silt, trace		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
	-14	58	/	19 9 11 7	18	10			203	25.8		0 0	Drick fragments, medium stiff, moist. grades to fine to coarse SAND and fine to medium GRAVEL, loose, moist to wet. coal tar reacture in the matrix.		<	
	-16	S9	/	9 10 25 8	33	20			1019	65.4		。 	Dark gray fine SAND and SILT, trace clay, medium stiff, wet, coal tar residue in the matrix.		~~~~	
	-18	S10	ľ /	8 4 6 8	и	10			1023	18.5			grades to SILT and CLAY, medium stiff, moist, slight naphtha odor.		< > > < > < > < > < > < > < > < > < > <	
	-20	S¶	$\overline{/}$	10 6 6 10 9	16	18			346	172			grades to fine to coarse SAND and SILT, some clay, medium stiff, moist, slight chemical odor. No coal tar in the matrix.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	- 2	olog	ist :		sis:	TRO	/VAE)		Rema	ark:	s:		Da		ter Levels
	L	olog	ist :	Sign	atur	e:									.v	
	Pre	jec	t No): 13	0.09)				_				_		

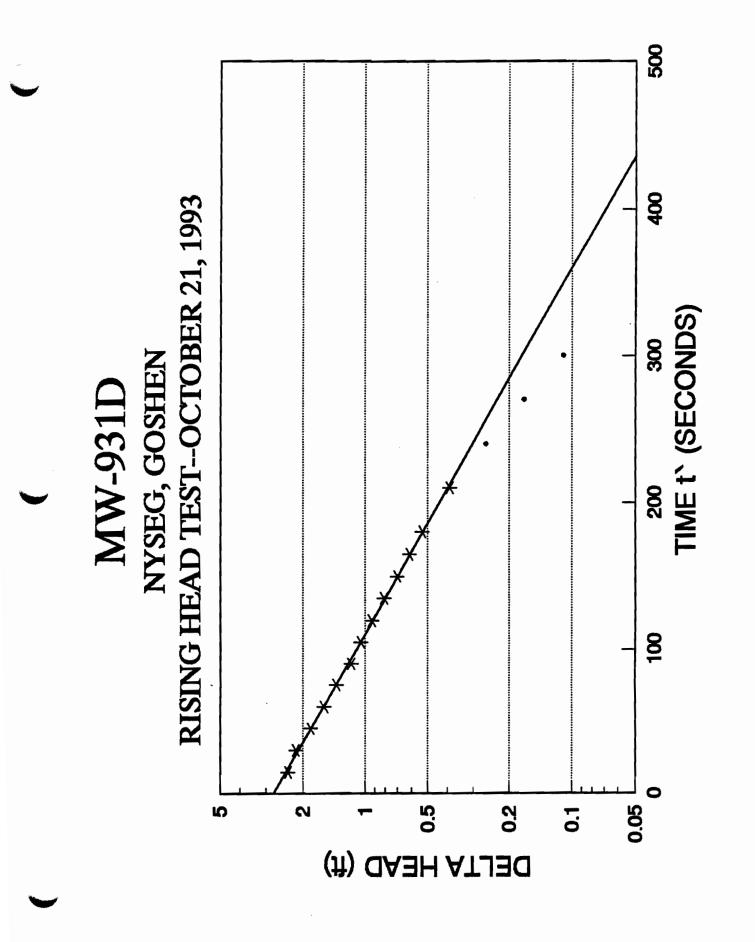
BLASLAND & BOUCK ENGINEERS, P.C. ENGINEERS & SCIENTISTS Date Start/Finish: 9/16/83-9/16/83 Driling Company: PARRATT-WOLFF Driler's Name: DOUG RICHMOND Rig Type: MOBILE B-57 Spoon Size: 2-INCH Hammer Weight: 140 Height of Fall: 30-inches Driling Method: HSA Bit Size: Auger Size : 2-1/2-INCH ID	Boring No. T Project: NYSE Location: GOSE Northing: Easting: Well Casing Elev.: ft. Corehole Depth: ft. Borehole Depth: 38.4 ft. Ground Surface Elev.: 430.7 ft. Scale:	EG HEN, NEW YORK
Cientry Cienter (F1, Cientry) Sample/Int/Type Blows/6 in. Number Recovery (F1). Recovery (F1). Recovery (X) PID Fletd (pm)	PID Headspace (ppm) (ppm) Creater Level Geologic Col. Creation	Test Test Well Materials
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B.6 grades with trace medium shale gravel. B.9 grades to no silt, some fine to medium gravel, little clay, medium stiff, moist. No odors. L3 Dark gray fine SAND, some fine to medium gravel, trace silt, dense, damp. 0.6 medium dense, moist. 0.6 grades to fine to coarse SAND and fine to medium shale GRAVEL, little silt, loose, wet. 0.0 Grades to some silt, medium dense, moist. 0.0 Grades to little fine to medium gravel, some silt lenses, trace silt, 0.0 Dark grey, fine SAND and SILT, some fine gravel, some fine to medium sand	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0 hard 0.0 Bottom of boring at 38.4 ft. Note: Labortary sample number GSVIB-9308C15-20 obtained from 15.5 to 20 feet and submitted for chemical characterization. Test boring located downgradient of tar drive.	< v < v < v < v < v < v < v < v < v < v
<pre>>ologist Initials: TRO/VAD >ologist Signature: </pre>	Remarks:	Water Levels Date Time Elevation

,	Dr	ite S Iling	tart <i>i</i> Com	/Finis pany	h: 9 ; PAI	/20/ RRAT	GINEE ENTIS 93-9	01/20, 01 FT	/93		Eas	thing		SEG	N, NEV		
•	Ric Sp Ha He Dri) Typ oon mmei ight lling	oe:M Size Wei of F Meth	iOBIL 2-I ght: alt:3 ioct:1	.E B NCH 140 0-in ISA	-57 ches	-1/2-		H ID		Cori Bori	eholi eholi	ing Elev.: ft. e Depth: ft. e Depth: 35.4 ft. Surface Elev.: 433.4 ft. Scale:				
	Debth (FL)	Sample/Run Number	Sample/Int/Type	Blows/6 in.	z	Recovery (Ft).	Recovery (%)	ROD (X)	PID Field (ppm)	PID Headspace (ppm)	Driling Water Level	Geologic Col.	Stratigraphic Description	Misc. Test	Well '		well Materials
	φ	St	7	7 5	-	0.8			۵٥	0.0		0 0	Blacktop Brown fine to coarse SAND and		< < < <		
	-2	52	/	4 3 3 6	9	ព			0.0	0.0		0 0 0 0 0	GRAVEL, some silt and coal trace clay, loose, damp, slight coal odor.		< < < < < < < < < < < < < < < < < < <		ement/bentonite out 35.4' - 0'
	-4	53	/	6 6 9 13 13	22	20			0.0	0.0		。 	Brown fine SAND and SILT, very stiff, damp.		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
-	-6	S 4	$\overline{/}$	12 16 17 18 20	35	15			0.0	0.0			grades to dry to damp.		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
	-8	55	/	6 10 15 17	25	20			0.0	0.0			Grades with grey mottling. grades with little clay.		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
	-10	56	/	11 13 15 21	28	20			0.0	0.0			grades to moist to damp.		\[\lapha \] \[\l		
	-12	S7	\square	21 27 27 19	54	20			0.0	0.0			Dark brown, fine to coarse SAND, little silt and fine to medium gravel, medium dense, moist to damp.		<pre></pre>		
	-14 -16	58 59	\square	10 14 13 13 13 13	27	02			0.0	0.0			grades to some silt, trace fine coal gravel, moist.		<		
	-18	59	\square	16 16 30 35	46	0.3			0.0	0.0		0 0 0 0	grades to dark grey, fine SAND and SILT, trace fine gravel, soft, moist.		<pre></pre>		
	-20	Sī	<u> </u>	4 13 19 22 14	32	0.8 NR			0.0 NR	0.0 NR			Dark gray fine to coarse SAND, little clay, medium dense, moist to wet. grades to wet.		<		
				15 16 17	31										<	later I	_evels
		_		Initia Sign			VAC	J		Rema	Brk	5:		De		Tine	Elevation
	-			ວາ ບ ານ 13										E			
	1	100			0.00	_											

Dri Dri Rig Spo Har Hei I Dri	te Si ling (lier's Typ oon S mmer ght (ling)	Lart/ Comp Nan Size: Wei Size: Wei	Finis 2any: 2=10 0BIL 2=10 ght: 30 all: 30 oct 1-	h: 9/ PAF DUG E B- NCH 40 D-in ISA	/20/RRAT RICH -57 ches	93-9 93-9 7-W	01 FF	/83			Eas Well Cori Bori	ehole ehole	Location: G Location: G Location S Depth: ft. Depth: 35.4 ft. Surface Elev: 433.4 ft. Scale:		_	W YORK	<u>.</u>
K Depth (FL)		Sample/Int/Type	Blows/8 in.	Z	Recovery (Ft).	Recovery (%)	ROD (X)	PID Field	(Wdd)	PID Headspace (ppm)	Driling Water Level	Geologic Col.	Stratigraphic Description	Misc. Test	Well " Column		Well Materials
-22	512	/	17 19 19	38	10			0	2	۵٥			grades to fine SAND, some silt, little clay and fine to medium gravel, moist to wet.		1 1		
-24	SB	/	24 13 12 17	29	20			0	2	۵0			grades to trace fine gravel, dense, damp.		<		
-26	S14	4	20 19 0/0.4	50	90			οι		۵٥			grades to little fine gravel.		< < < < < < < < < < < < < < < < < < <		
- 28	STS	/	19 19 20	39	11			οι	>	0.0			grades to fine to coarse SAND.		× × × × ×		
-30	S16	/	20 17 21 24	45	0 <i>B</i>			o	כ	۵0					× × × ×		
-32	S17	/	26	56	a 0			01	>	0.0		000	grades to fine to medium shale GRAVEL, some fine to coarse sand, moist.		> < < <		
-34	518	/	30 47 39 0/0.4	89	12			OX	,	0.0		, V	grades to fine to coarse SAND, some sit, little fine to medium shale gravel, very dense, damp.		× × ×		
-36													Bottom of boring at 35.4 ft. Note: Test boring located downgradient of purifer house.				
-38													NR – No recovery				
-40																	
- 12																	
	olog	ist 1	nitia	ls, 1		VAC	 1			Rema	arks					Nater I	_evels
	olog					* **								D	ste	Time	Elevation

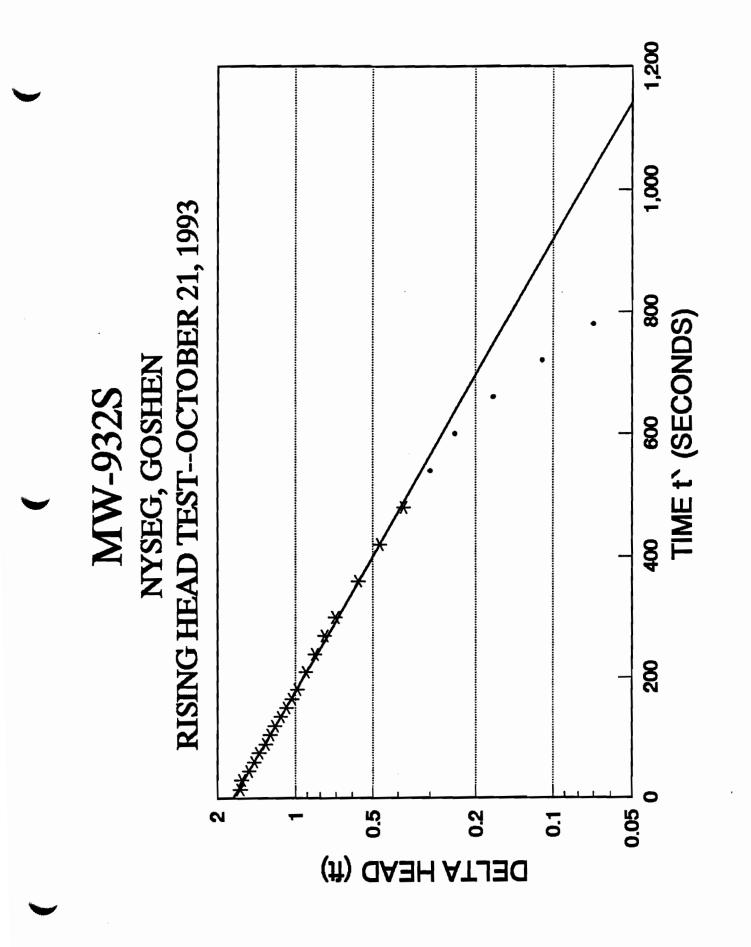

		84	ASLA	ND 6 IGINE	BOUR			RS, F	P.C.				Boring No. Project: NYS Location: GOS	SEG		Well I	
•		iling iler's Typ xoon imme ight iling	Com Nan Xe: M Size Vei of F Meth	pany ne: D 10BII : 2-I ght: all: 3 10ct 1	: Pai OUG .E B NCH 140 0-in ISA	RRAT RICI -57 I	83-8 T-W HMON	olfi	-		Eas Well Cor Bor	ehoi ehoi		etch	Ľ		
		Sample/Run Number	Sample/Int/Type	Blows/6 in.	Z	Recovery (Ft).	Recovery (%)	ROD (X)	PID Fie l d (ppm)	PID Headspace (ppm)	Drifing Water Level	Geologic Col.	Stratigraphic Description	Misc. Test	Well". Column		Well Materials
	~ 0	SI	7	7 14 25	39	12			125.9	ഹ		o 10	Brown fine to coarse SAND and fine to medium GRAVEL, loose, damp.		< < < <		
	-2	s2	4	21 6 5 8	ឋ	02			42.7	مە		> 0 0 0 0 0 0	Brown fine to coarse SAND and SILT. Black fine to coarse coal SAND and fine to medium coal GRAVEL, little clay, stiff, damp, slight creosote odor.		< < < < < < < < < < < < < < < < < < <	} ≺− c∉ gr	ement/bentonite out 24.0 ' - 0'
	- 4	53	/	12965	1	20			160,0	10.4		。 。 。	grades to fine to coarse SAND, some fine gravel, little silt, loose, damp.		< < < < < < < < < < < < < < < < < < <		
	-6	S4	7	5 6 5 4	9	15			NA	276.0			grades to dark grey, trace clay and red brick.		< < > >		
	-8	S 5	/	4 6 7 9	16	0.8			NA	1726			Brown, fine to coarse SAND and SILT, little clay, medium stiff, damp. grades to dark grey, some clay, stiff, moist to damp.		< < < < < < < < < < < < < < < < < < <	·	
	-10	56	/	12 6 6 9	15	10			585	16L1			grades to fine SAND and SILT, little clay. medium stiff. grades with trace wood pieces.		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<u> </u>	
	-12	57	7	13 X 35 X	59	20			30.5	46.1			grades to dark grey, some silt, medium stiff. Time to coarse coal sand lense 12.3' to		~ ~ ~ ~		
	-4	58	/	34 3 5 8	ឋ	ຳ			66.2	R 1			grades to fine SAND and SILT, little clay, moist.		< < < < < < < < < < < < < < < < < < <		
	- <i>1</i> 6	59	/	2000	29	រេ			20.5	5.1			grades to moist to wet. grades to wet.		< ^ > < ^ >		
	- 18	S10	/	13 6 9 9	18	15			22	6.6			grades with little fine to medium shale GRAVEL, damp.		~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	:11	
	-20	SI	/	៨ ក ជ ៨ ៨	25	20			Ø₿	۵٥		0000	Dark grey fine to coarse SAND and fine to medium GRAVEL, trace silt and clay, medium dense, moist.		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
-	Sologist Initials: TRO/VAD						l)		Rema					<u> </u>	Nater L		
	- []	olog										-		De	te	Time	Elevation
	1) jec		-													
	1500				0.08												

											Boring No. Project: NY: Location: GO: Location Sk	SEG	N, NEI		
Dri Dri Rig Spx Har Hei	te Star ling Co ler's Ni Type: bon Siz nmer W ght of ling Me Size:	mpany ame: D MOBIL te: 2-I leight: Fall: 3 thoct i	PAR DUG E B NCH 140 0-in ISA	RRAT RICI -57 ches	T-W HMON	ol FF ID	-		Eas Well Cori Bori	ehok ehok			.		
	Sample/Run Number Samole/Int/Type	Blows/6 in.	Z	Récovery (Ft).	Recovery (%)	ROD (X)	PID Field (ppm)	PID Headspace (ppm)	Drilling Water Level	Geologic Col.	Stratigraphic Description	Misc. Test	Well " Column		Well Materials
-22 -24 -25 -28 -30 -32 -34 -36 -38 -38 -40 -42	52	22 23 39 30	61	15			22	102			grades to no clay, damp. Bottom of boring at 24.0 ft. Note: Labortary sample number GSVIB-9310C7.2-10 obtained from 7.2 to 10 feet and submitted for chemical characterization. Test boring located downgradient of gas holder GH#1. NA - Not availble.				
L) je	ologist ologist oject N	Sign	atur	e:	VAE)		Rema	erk:	5:		0	-	Tine	evels Elevation


Appendix C Hydraulic Conductivity Calculations

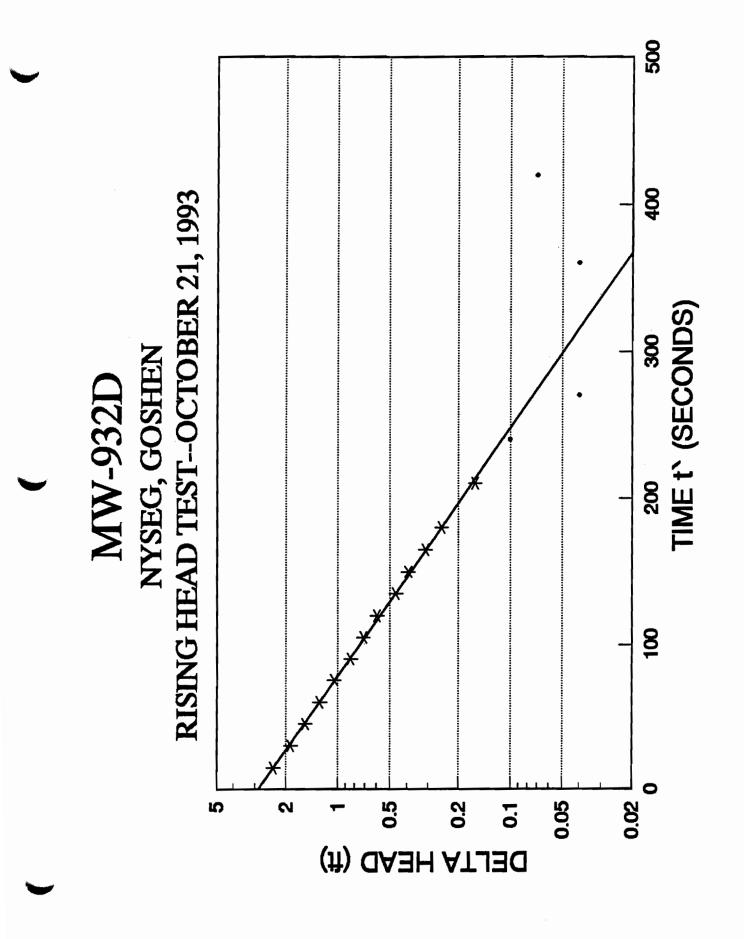
SLUGCOMP.WK1 Project: NYSEG, GO Project No.: 130.09 Well No.: Test Date: Formation Tested: Rising Head Slug Test		
	· · · · · · · · · · · · · · · · · · ·	(cm)
Stickup (ft)	-0.2	-5.79
Static Water Level (ft)	7.14	217.63
Depth to bottom of screen (ft from ground level)	22.7	690.37
Boring Diameter (in)	8.00	20.32
Casing Diameter (in)	2.0	5.08
Screen Diameter (in)	2.0	5.08
Screen Length (ft)	10.0	304.80
Depth to Boundary	37.4	1139.95
Delta H at time 0 (ft)	1.42	43.22
Delta H at Time t (ft)	0.10	3.05
Time t (seconds)	1067. 15	
Ratio Kh/Kv	1	1
Porosity of Filter Pack	0.3	
	cm/sec	gpd/ft2
K (Bouwer-Rice)	6.4E-05	1.4
K (Hvorslev Time Lag)	9.0E-05	1.9
K (Hvorslev Variable Head) 8.9E-05	1.9

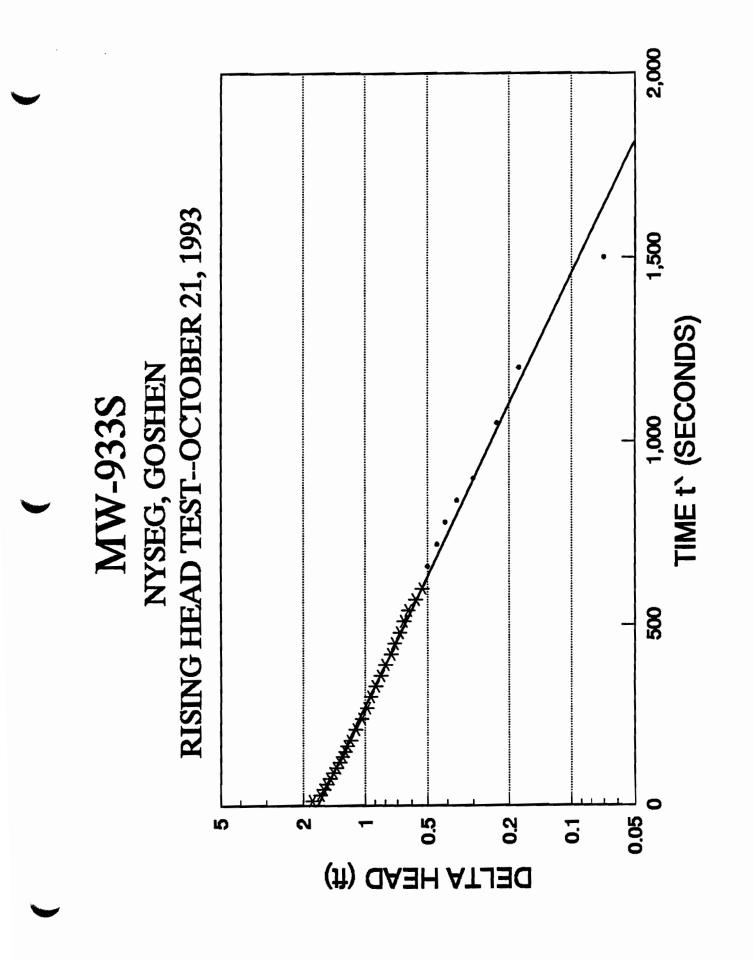
.



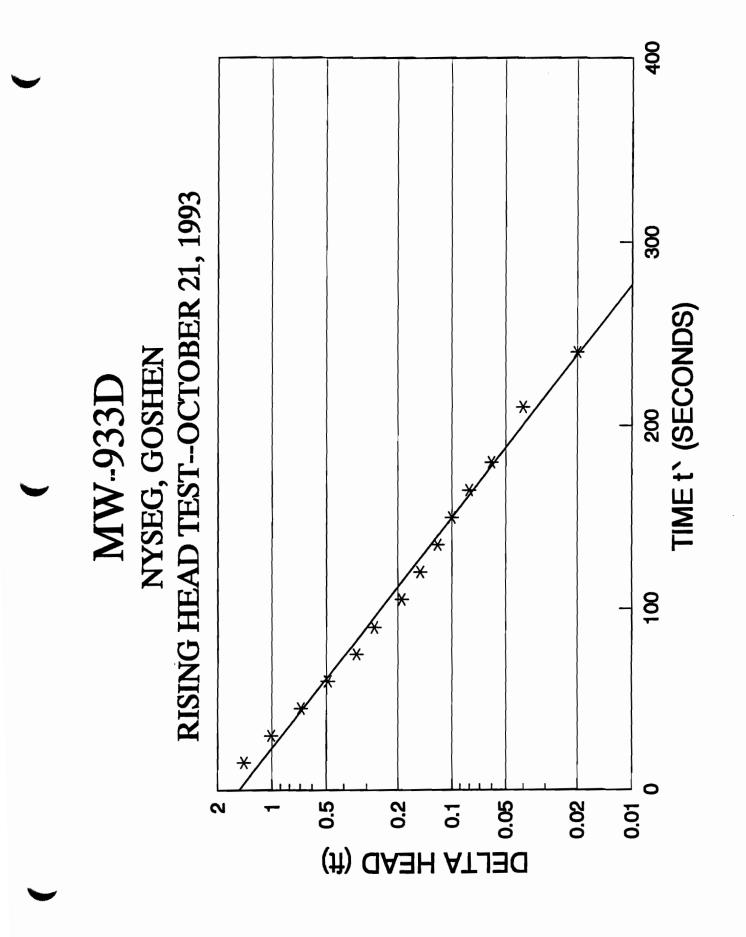
SLUGCOMP.WK1 Project: NYSEG, GO		
Project No.: 130.09 Well No.: Test Date: Formation Tested: Rising Head Slug Test	MW931D OCTOBER 21, 1993 Overburden	
		(cm)
Stickup (ft)	-0.2	-5.79
Static Water Level (ft)	10.04	306.02
Depth to bottom of screer (ft from ground level)	a 37. 1	1129.28
Boring Diameter (in)	8.00	20.32
Casing Diameter (in)	2.0	5.08
Screen Diameter (in)	2.0	5.08
Screen Length (ft)	5.0	152.40
Depth to Boundary	37.4	1139.95
Delta H at time 0 (ft)	2.77	84.28
Delta H at Time t (ft)	0.05	1.52
Time t (seconds)	435.56	
Ratio Kh/Kv	1	
Porosity of Filter Pack	0.3	
	cm/sec	gpd/ft2
K (Bouwer-Rice)	5.7E-04	12.0
K (Hvorslev Time Lag)	5.3E-04	11.3
K (Hvorslev Variable Head	i) 5.3E-04	11.2

SLUGCOMP.WK1 Project: NYSEG, GO Project No.: 130.09 Well No.: Test Date: Formation Tested: Rising Head Slug Test		
		(cm)
Stickup (ft)	-0.2	-5.49
Static Water Level (ft)	8.24	251.16
Depth to bottom of screen	21.6	658.37
(ft from ground level)		i
Boring Diameter (in)	8.00	20.32
Casing Diameter (in)	2.0	5.08
Screen Diameter (in)	2.0	5.08
Screen Length (ft)	10.0	304.80
Depth to Boundary	36.4	1109.47
Delta H at time 0 (ft)	1.74	52.97
Delta H at Time t (ft)	0.05	1.52
Time t (seconds)	1141.70	ļ
Ratio Kh/Kv	1	
Porosity of Filter Pack	0.3	1
	cm/sec	gpd/ft2
K (Bouwer-Rice)	7.8E-05	900/12 1.7
K (Hvorslev Time Lag)	1.1E-04	2.4
K (Hvorslev Variable Head		2.4
	/	2


.


c. S.J. Rossello, 5/88 Modified 12/21/89 SHEN MW932D OCTOBER 21, 1993 Overburden	
	(cm)
-0.2	-6.40
5.86	j 178.61
36.0	1097.28
	Ì
8.00	20.32
2.0	5.08
2.0	5.08
5.0	152.40
36.4	1109.47
2.88	87.78
	0.61
366.77	
1	
0.3	I
cm/sec 8.5E-04 7.8E-04 1) 7.8E-04	gpd/ft2 18.0 16.6 16.5
	Modified 12/21/89 SHEN MW932D OCTOBER 21, 1993 Overburden -0.2 5.86 36.0 8.00 2.0 2.0 2.0 2.0 5.0 36.4 2.88 0.02 366.77 1 0.3 cm/sec 8.5E-04

.


.

SLUGCOMP.WK1	c. S.J. Rossello, 5/88 Modified 12/21/89	
Project: NYSEG, GOS		
Project No.: 130.09		
Well No.:	MW933S	
Test Date:	OCTOBER 21, 1993	
Formation Tested:	Overburden	
Rising Head Slug Test		
		(cm)
Stickup (ft)	2.1	62.79
Static Water Level (ft)	10.04	306.02
Depth to bottom of screen	22.1	673.61
(ft from ground level)		
Boring Diameter (in)	8.00	20.32
Casing Diameter (in)	2.0	5.08
Screen Diameter (in)	2.0	5.08
Screen Length (ft)	10.0	304.80
Depth to Boundary	36.5	1112.52
Delta H at time 0 (ft)	1.71	52.04
Delta H at Time t (ft)	0.05	1.52
Time t (seconds) Ratio Kh/Kv	1818.09	
Porosity of Filter Pack	0.3	
· · · · · · · · · · · · · · · · · · ·	cm/sec	gpd/ft2
K (Bouwer-Rice)	4.9E-05	1.0
K (Hvorslev Time Lag)	7.0E-05	1.5
K (Hvorslev Variable Head)	7.0E-05	1.5

SLUGCOMP.WK1 Project: NYSEG, GO Project No.: 130.09 Well No.: Test Date: Formation Tested: Rising Head Slug Test			
Stickup (ft)		2.5	(cm) 75.29
Static Water Level (ft)	-	7.75	236.22
Depth to bottom of screen (ft from ground level)	-	36.2	1101.85
Boring Diameter (in)	8	3.00	20.32
Casing Diameter (in)		2.0	5.08
Screen Diameter (in)		2.0	5.08
Screen Length (ft)		5.0	152.40
Depth to Boundary	3	36.5	1112.52
Delta H at time 0 (ft)		1.52	46.33
Delta H at Time t (ft)		0.01	0.30
Time t (seconds)	276	5.66	
Ratio Kh/Kv		1	
Porosity of Filter Pack		0.3	
K (Bouwer–Rice) K (Hvorslev Time Lag) K (Hvorslev Variable Head	cm/se 1.1E- 1.0E-) 1.0E-	-03 -03	gpd/ft2 24.2 22.2 22.1

Appendix D Survey Data

SOIL BORINGS/TEST PITS

. •

PROJECT: NYSE&G – G JOB NO.: 130.09 DATE: 10/13/93	oshen, New York	
Note: Elevations based on	National Geodetic Ven	ical Datum of 1929.
	ELEVATION	
DESCRIPTION	GROUND	REMARKS
TP-1	430.3	Test Pit
TP-4	430.5	Test Pit
	430.2	Soil Boring
TB_5	430.8	Soil Boring
TB-6	430.8	Soll Boring
	430.5	Soil Boring
	430.7	Soil Boring
TB-9	433.4	Soil Boring
		•
	ļ	
		·
·		
		····

293674LOH

22-Oct-93

MONITORING WELLS

PROJECT:	New York State Electric & Gas Corp. – Goshen MGP Site
JOB NO.:	130.09.04
DATE:	10/08/93

-.

Note: Elevations based on National Geodetic Vertical Datum of 1929.

.

	ELE	ATION (feet)		
DESCRIPTION	TOP OF PROTECTIVE	TOR OF INFLU	GROUND	REMARKS
DESCRIPTION	CASING	TOP OF WELL	GROOND	HEMAVING
MW-931D	436.75	436.51	436.7	Well 2" stainless, 8" casin
MW-931S	436.38	436.23	436.3	Well 2" stainless, 8" casin
MW-932D	430.48	430.29	430.5	Well 2" stainless, 8" casir
MW-932S	430.53	430.32	430.5	Well 2" stainless, 8" casin
MW-933D	432.80	432.57	430.1	Well 2" stainless, 4" casir
MW-933S	432.49	432.16	430.1	Well 2" stainless, 4" casir
Recharge Well		432.80	431.2	6" PVC
		-		

		BENCH MARKS FOR NYSE&G GOSHEN, N.Y.	REVISED: 130.09.04 DATE: 10/6/93 FILE NO: 130.09
	Elevations t	pased on National Geodetic Vertical Datum of 1929.	
	MARIL NO.	DESCRIPTION	ELEVATION
	TBM-1	Top of concrete retaining wali (southeast corner), $30' \pm$ east of southeast corner of NYSE&G building.	439.03
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	BM-2	Chiseled square on northeast comer of easterly retaining wall for stairwell on north side of NYSE&G building, 40'± west of northeast comer of building.	433.93
			7
		·	
×		-	
			•

.

Appendix E Sediment Probing and Sampling Technical Memorandum

Sediment Investigation

The sediment investigation was conducted on the Rio Grande, adjacent to the Goshen MGP site on September 27 and 28, 1993. This appendix has been prepared to present a summary of the field data generated and the procedures used during this investigation.

Work efforts included the following:

- Sediment probing on the Rio Grande.
- Sediment sampling on the Rio Grande.

Sediment Probing on the Rio Grande

Sediment probing involved probing the stream for non-channel sediment deposits along the edge of the site. The probings were started 80 feet downstream of the former MGP western property line. The probing then proceeded upstream every 20 feet to a point 40 feet upstream of the former northeastern property line. A total of 25 probings, numbered P-1 to P-25, were completed.

The distance between each probing point was measured with a 100' tape. At each point, the water depths were measured and recorded using a 6-foot ruler. The sediment depths were probed and measured using a 5/8" metal rod, which was hand driven or pushed into the sediments until refusal. Clear Lexan[®] tubing was used to retrieve a sample of the sediments at each probing point, so that a physical description could be made. Table A-4A contains a summary of all the data generated during the sediment probing investigation.

Sediment Sampling on the Rio Grande

A total of 8 sediment samples were collected for analytical characterization from the Rio Grande. Two samples were collected downstream of the former MGP's western property line, three samples were collected upstream of the northeastern property line, and the remaining three samples were collected within the former MGP's east and west boundaries. The samples were chosen in areas where a significant depth of sediment was encountered or where visual evidence of contamination was observed during the probing investigation. The most notable type of potential contamination seen during the probing was a visible oil sheen on the water surface or the probing rod once the probing was completed. The oil sheen was noticeable in all probes along the shoreline.

Each sediment sample was obtained by pushing a Lexan[©] core tube into the sediment and then driving the tubing into the sediment with a stainless steel core driver until resistance. A vacuum was then created within the Lexan tube with a hand pump in order to keep the sediment in the tube during retrieval. Due to the relatively low sediment depth and the volume of sample required for laboratory analyses, several cores were obtained from the same location. The recovered sediments were extruded onto stainless steel trays, and were composited with stainless steel spatulas. The sediments were then distributed into appropriate sample containers, labeled, packaged, and placed into a storage cooler on ice. Table A-4B summarizes the data generated during the sediment sampling investigation.

All sediment samples were analyzed for the following parameters:

- Method 8240 for VOCs;
- Method 8270 for SVOCs;
- Method 6010/7000 Series for Selected Metals;

- Method 9010 for Cyanide; and
- ASP 91 Method for Percent Solids in Soil for Moisture Content; and
- Lloyd Kahn Method for Total Organic Carbon (TOC).

The following quality assurance/quality control (QA/QC) analyses were required for the sediment samples. A duplicate sample was collected from sample location #10 and analyzed for all parameters mentioned above. Extra volume was collected at sediment sample location #3 for the following analyses: a Matrix Spike (MS) for VOCs, SVOCs, metals, and total and amenable cyanide; a Matrix Spike Duplicate (MSD) for VOCs and SVOCs; and a Lab Duplicate for metals and total and amenable cyanide. Finally, the last QA/QC analyses for the sediment samples was an equipment rinse blank for VOCs analysis.

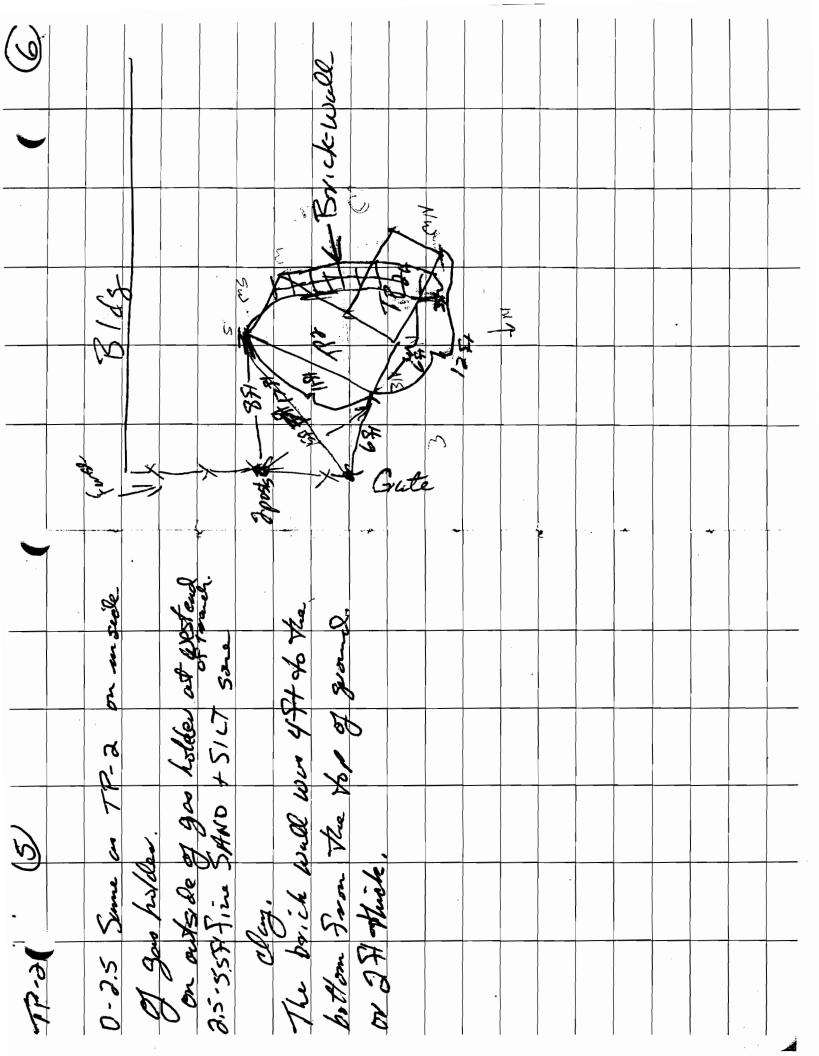
TAB A-4A NEW YORK STATE ELECTRIC & GAS CORPORATION GOSHEN, NEW YORK RIO GRANDE - SEDIMENT PROBING SUMMARY UPSTREAM AND DOWNSTREAM SEPTEMBER 8, 1993

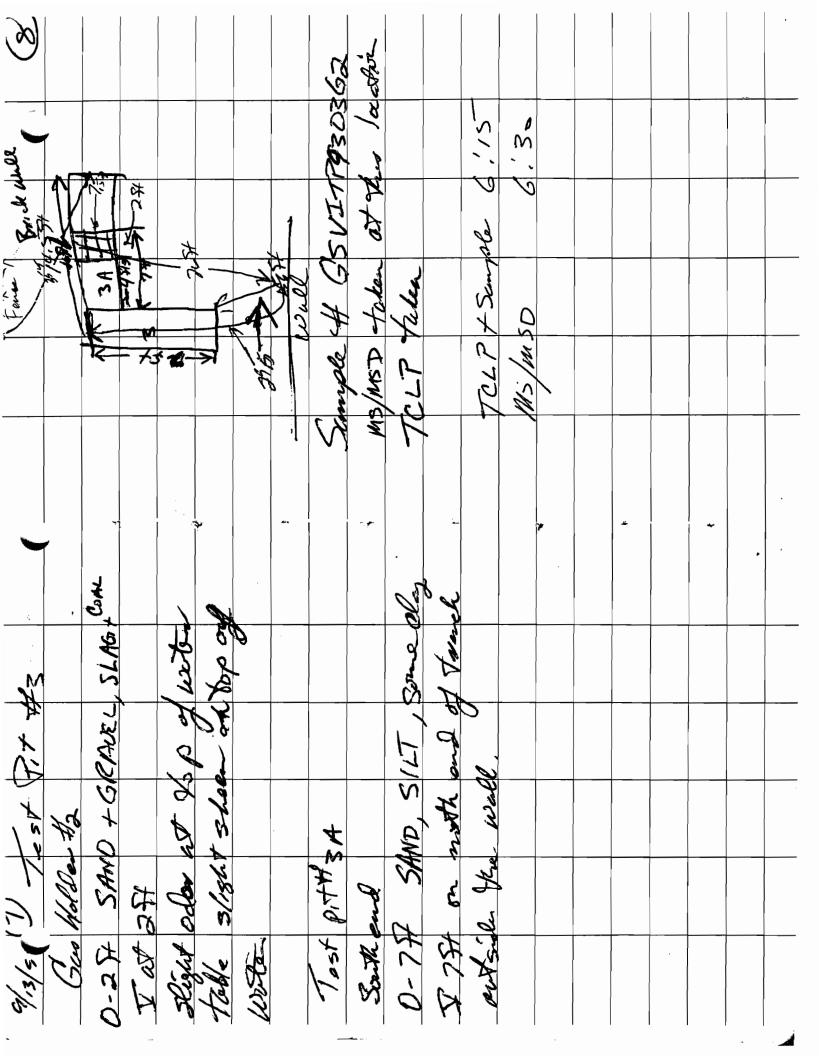
Location	River Flow	Water Depth (ft.)	Sediment Depth Penetrated (ft.)	Sediment Depth Recovered (ft.)	Description	Comments
P-1	Medium	0.8	2.8	2.8	Sand, silt	80' downstream
P-2	Medium	1.0	2.1	2.1	Sand, silt, and gravel	
P-3	Medium	1.1	2.3	2.3	Sand, silt, and gravel	
P-4	Medium	0.8	2.7	2.7	Coarse sand and gravel	
P-5	Medium	0.7	3.2	3.2	Sand and gravel	
P-6	Medium	0.6	3.1	3.1	Sand, silt, and gravel	
P-7	Medium	0.9	2.4	2.4	Sand, silt, and gravel	
P-8	Medium	1.0	3.3	3.3	Sand and silt	
P-9	Medium	0.5	0.5	0.5	Coarse sand and gravel	
P-10	Medium	2.5	0.1	0.1	Coarse sand	
P-11	Medium	1.1	2.4	2.4	Coarse sand and silt	
P-12	Medium	0.7	2.6	2.6	Silt and Sand	
P-13	Medium	1.0	3.6	3.6	Silt, sand, and gravel	
P-14	Medium	1.3	2.4	2.4	Silt, sand, gravel, pieces of brick, concrete, and rubble	
P-15	Medium	1.0	3.0	3.0	Silt, sand, and gravel	
P-26	Medium	0.7	3.0	3.0	Silt, sand, and gravel	
P-17	Medium	0.6	2.7	2.7	Silt, sand, and gravel	

12/6/0 0994840J TABLE A (Cont.) NEW YORK STATE ELECTRIC & GAS CORPORATION GOSHEN, NEW YORK RIO GRANDE - SEDIMENT PROBING SUMMARY UPSTREAM AND DOWNSTREAM SEPTEMBER 8, 1993

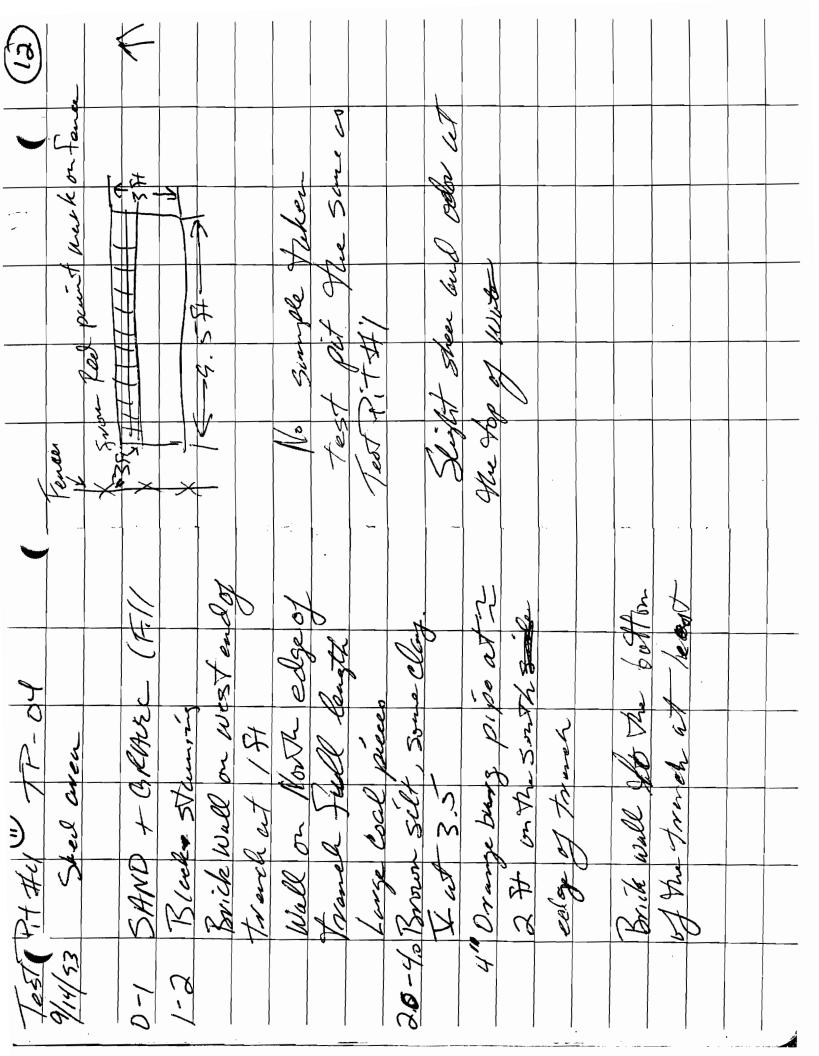
Location	River Flow	Water Depth (ft.)	Sediment Depth Penetrated (ft.)	Sediment Depth Recovered (ft.)	Description	Comments
P-18	Medium	0.3	0.4	0.4	Sand	
P-19	Medium	0.6	2.9	2.9	Sand and gravel	
P-20	Medium	0.6	0.6	9.0	Sand and gravel	
P-21	Medium	0.6	3.0	3.0	Sand, silt, and gravel	
P-22	Medium	6.0	3.5	3.5	Silt, sand, and gravel, coarse sand between large cobbles, rocks	
P-23	Medium	0.7	3.1	3.1	Silt, sand, and gravel	No penetration along river
P-24	Medium	0.7	3.3	3.3	Sand and gravel	
P-25	Medium	0.8	2.9	2.9	Silt, sand, and gravel	

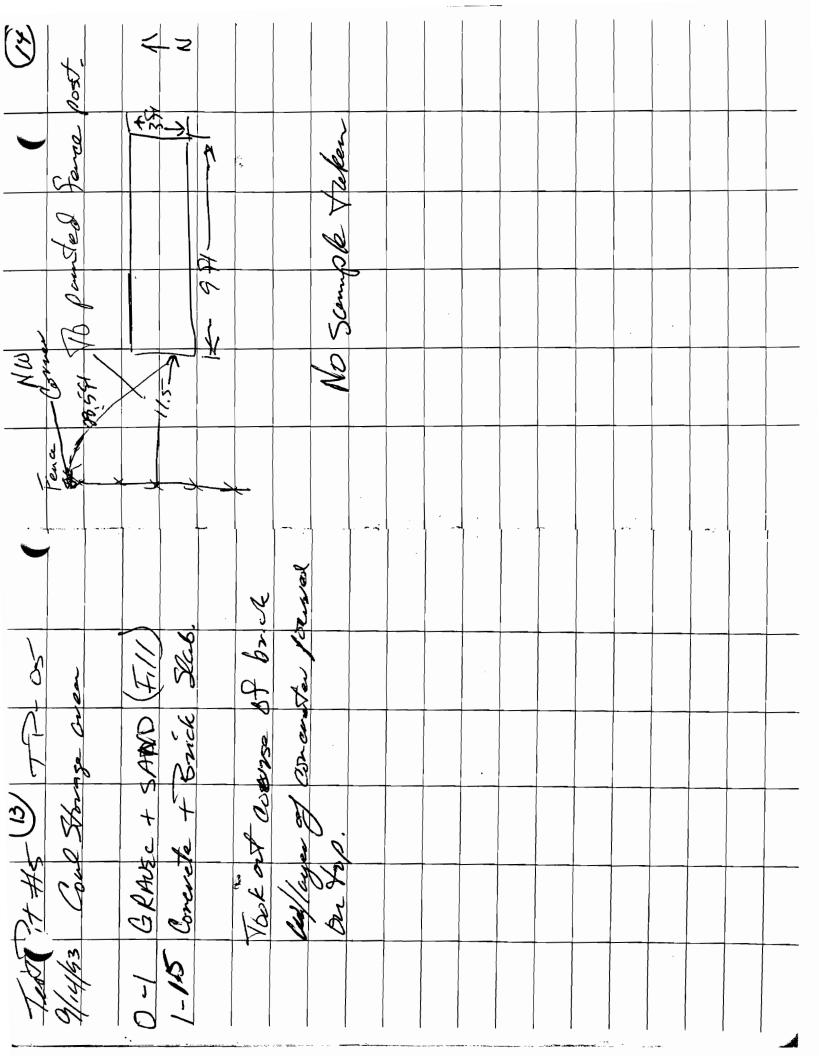
TABE A-4B NEW YORK STATE ELECTRIC & GAS CORPORATION GOSHEN, NEW YORK RIO GRANDE STREAM SEDIMENT SAMPLING SUMMARY

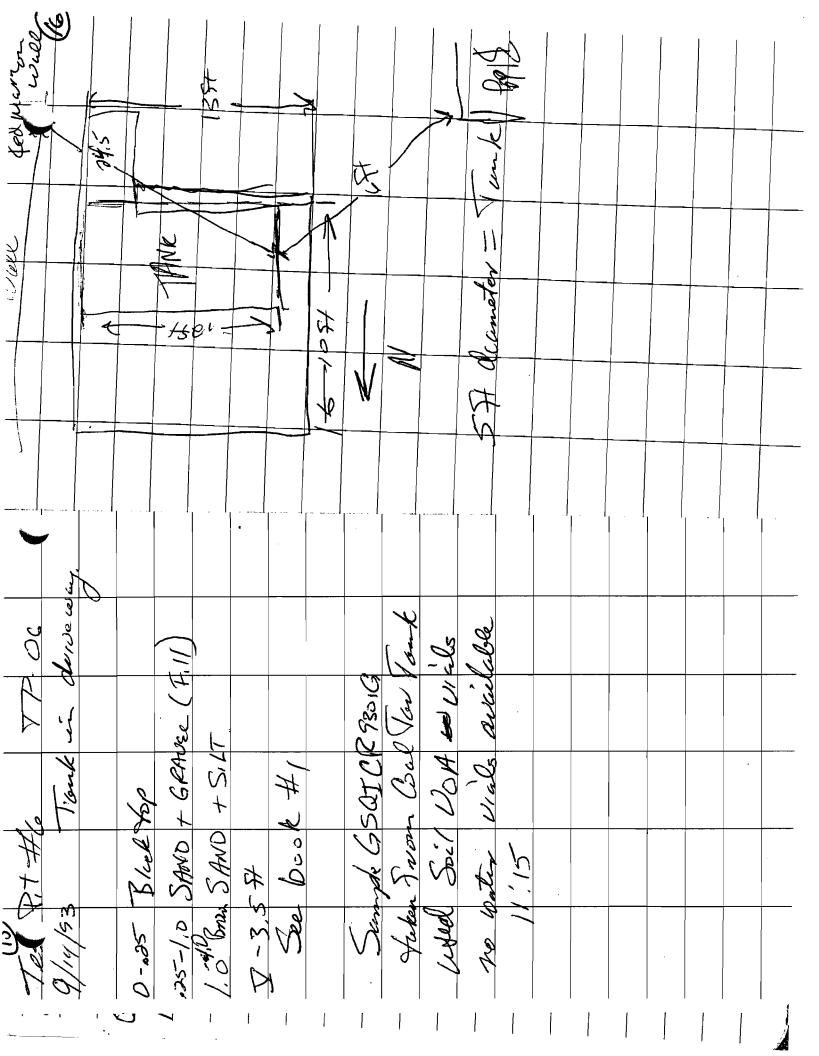

Relative Location	Sample ID	Date	Time	Water Depth (ft.)	Sediment Depth Penetrated (ft.)	Sediment Depth Recovered (ft.)	Sample Segments (ft.)	Description	Comments
Downstream	BSTDSS9301G	9/28/93	13:45	1.0	3.0	1.2	0-0.5	Dark gray to black medium to coarse sand very heavy oil sheen.	
							0.5-1.2	Dark gray-brown silt, very heavy oil sheen.	
Downstream	GSTDSS9302G	9/28/93	14:15	0.7	2.6	1.9	0-1.9	Dark gray to black fine to coarse sand, some silt, very heavy oil sheen.	
Along Site	GSTCSS9303G	9/28/93	15:35	8.0	2.1	1.7	1.7	Dark gray to black silt and sand, very heavy oil sheen.	
Along Site	BSTCSS9304G	9/28/93	16:15	9.0	2.6	1.5	0-1.5	Dark gray-brown silt, some sand, moderate oil sheen.	
Along Site	GSTCSS9305G	9/28/93	16:45	0.6	2.4	1.5	0-1.5	Gray-brown silt and fine to coarse sand, slight oil sheen.	
Upstream	GSTCSS9306G	9/28/93	17:05	0.5	1.4	1.0	0-1.0	Dark gray to black silt, brown medium sand, roots, wood, some fine to coarse sand, moderate oil sheen.	
Upstream	GSTUSS9307G	9/28/94	17:25	9.0	2.9	1.7	0-1.7	Dark gray-brown silt, some fine tomedium sand, slight oil sheen.	
Upstream	GSTUSS9308G	9/28/94	17:45	0.5	3.2	2.2	0-1.0	Gray-brown silt, some sand, slight oil sheen.	
							1.0-2.0	Dark gray-brown fine to coarse sand, slight oil sheen.	
							2.0-2.2	Gray clay.	

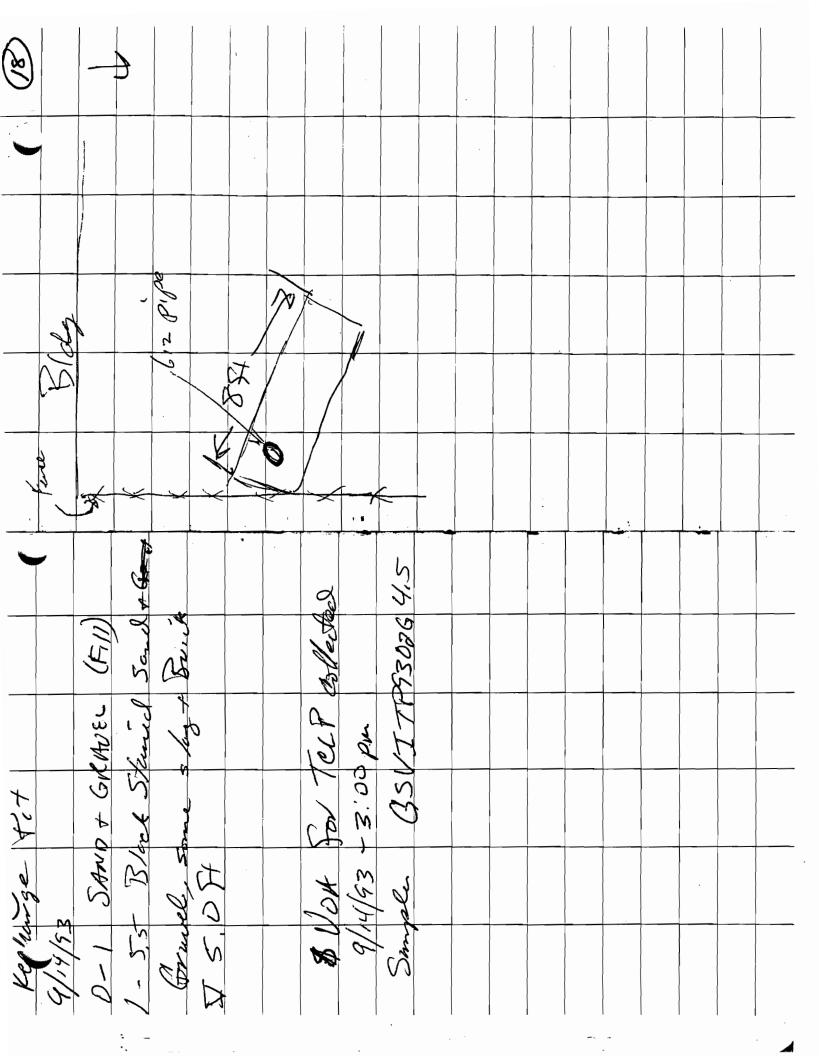

Appendix F Task II RI Field Notes

		1		\sim	I	1	4,1	اې	5	ł	I	1	J	1		1	I	J	- 1	
ive at site	Vo meet		2 4 2	D)		tot Sta	a 11 12.00	reel C	gaves 1107an											-
4D awre	Slagicek	ranio	Set hor,		•	1			Set & Yo											-
TLOF WAD	Treat	Vony Do	tol DI	en la		C le	0 04 US	an Ilies	1e#7						-					
9/9/9	with	with	Locates	well			10.20	4 60	10.45	1										
	PAGE NUMBER																			
INDEX PAGE	PROJECT																			
-	JOB NO.																			
	• •	u 1	ا ، ا 				1	•				I				X				


6 TP 2 + 3A Sumple GSUITP930166 taken Ĵ 7:00 TEG UNO Tracy B Shud of the 2 1 F At 5:25 TP 3+2A Covered 650 TP-3 apreved 4:30 Finished Regens Sin the hrs 5.30 loome 5 team 5:35 Strue 7 P - 5 Stuted aren't 1 Mark Eures o'C Shypers decon 3124 les parts - leaded the get a the annibud Struked Selling up me. They will ship & day. veady to struct test pitting P, D mut worken Called They Mark Earles From Per The + Trucy B to get a Finisiped TP-1 Strates Been pad set up and Stein Cleury Buch hoe That put see bos to 1 VAD DUVIDED ON Sete N J ney & on site Test pit #1 10'15 The arrives on 110 Kropual () EIII deen pad Supplie 10:50 . . . S.S.


Enel find 511-2 7 (and (s ACI 45.11 From Morthace I correct of FP-2A Cind exchanges of 8.5 A from Dese except a brick well is bit TP-DA is Vie Some du TP-2 24 Fell in While back fill and 23 Al The corner of test Pirt 7,0 al Ata. expred the Wull of the holder. Se Maurie mex montheast corner 5 Blas 0-1.5 Soul + Grenel (Dr. very Rd) Dup Sample # CSVITP93432 2.0-4.5 Red strugging to was guared Some Stag + Wood Dudeon ١ 3.45 9/13/ · Jest at 2 7 P.#2 Sundle # GSVITP934264.5 Shalt ador it top of with s'er Fossibly Wall on Sonth 40,4 Alten Farme 4.5 Pt. P.J.B Bluel Cool Stan 4.5 IT Comp Class + and of Trench TP-3 the softeen on with Find the last # 1 also Veken



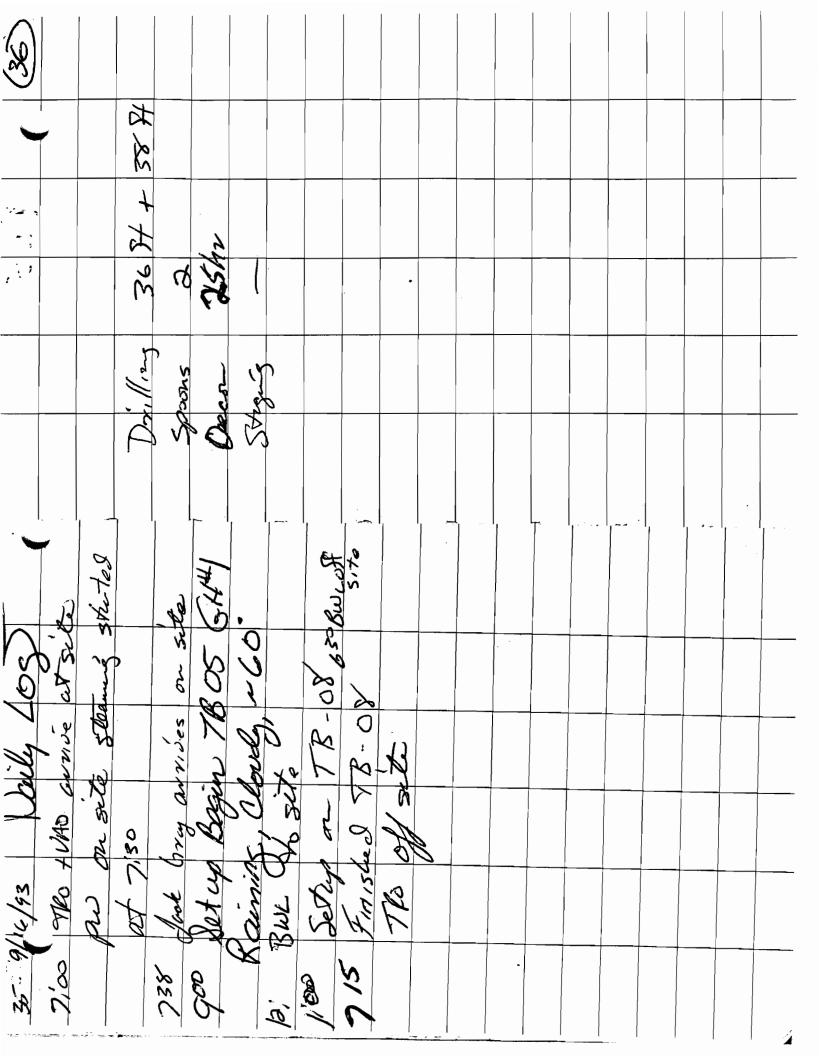


()I for Ship hend man pickelged Stevens on Site unlowed thread V Yook Sungle for TP-2 TCLP. Teckeged Samples p 1 1,10 Doug Etchnood of Buster 15T Barian Sil 12.00 Tost Pit 6 Core ded Shutled digging 3,00 Finished recharge 0,5 hrs 540 - 2 hr Start buck Fill 1:00 Buckfill None 3100 setup m TRO HURD Strand decor Yechinge Pit · aid pipo 415 Ohstographen. VAO + Tracy & decide which Typey B. + Nuck E algrady Start digging Toot P. + 415 VED + UAO LUTUR OU Set Finished TP-4 Stranked The A Ma to get in TP DS J. Mished + Testat & Skew on. × × × 202 Start Steen clean Tom ha Bulbera Strated TP-4 Sterning detre Seemen 4 Showed up. kek 7; 11 Duck Filled Shuter On Sete, 4/14 1 3 C 8.40 6,00 8.2M 7 15 asis 07 B 9.50 9.10 200 730 9:30

40H+ 3CM K 3 extru - PAA Dr. 1/1 1/2 Strack Spoons 3 9 840 - Stopped 7604 to put gavel 1)5rd gravel alleaches available ournisht ropen bit hole way delivery of new grand would 0#24 Roll Setup On 186 Begin growting hole on NYSED Moperty Sine While the start on Baring 4 2" Setup on 78-06 GH#2 5404 d at 38' 7806 9/15/= 3 WU 2:00 The + Uko on site 9the Roome May chilling into Recharge pit-Mare been as issue -Doug + Munk on site <30

Dill + Sand, Some C-Sand + F-gravel Stag SAA with with sittle sugars of angualar Shale orange treates of dution (\mathbf{n}) Brown frauel fild frade to black brown Report bread freely with woven with Servi Plastic, and ounce orige tion SAA with White Alakan materical And 4.5-6 Grudeo the Fine Same + SICT True Sine graved Some clay, warst 4 S.H. Some Chen, damp, HVcgnents, V.S. pleatic, damp resulties Shelle, daug. Free Clay, Moist, 4-45 SM Brown and Descriptim ned sy asL 26 713 Depth Blauss Rec PID" head Time 14-42 1.8 0.1 1.9 4-6 4=4 1.8 D.0 0.0 1.9 0.0 0.0 8-8 1.0 0.0 0.0 6-8 1.8 0.0 0.0 fuenace area 13.04 5-7 20-90 9-8 2,0 2-10 3-4 50 6-8 8-10

F-C Sand, little F- and 15300+8 gravel fragments few m-sand lenses, truce SAA, trave E. angular Shale gravel Dark Green 4-Sand + Silt Some mic Shele and intermixed in matrix Sand Frequence 11.7" - Gray angular Shale F- & hagner brown F- Sand, Some An- & Sand in lenses are ongular shale, little louses + Quidangulor some/ with Silt, trace clay, wet of greys clays, damp meist V.S. Plastic in letra on 9/15 wet wer , SAA 40 14.60 Naccipt. m moist 7804 TUME Oled Constil SAR 8 05 Depth Blaus Rec PID head Time 830 22 8 0.0 0.0 80 1 Ch 0.3 85.0 0.0 1.6 0.0 0.1 1.10 10-17 41-11 2.0 12-14 44-20 ,2 14-16 7-10 1.8 16-16 13-13 18-30 9-8 21-11 11-6 17-24 20-24


layers of Shale frequents it Si Je Dry YASIP Smi-little Clay Semplestic Moist 1.4 'of Spap is f-l Sand +f gravel. Shale wash in est gray F-c Sond + F-Gravel, angular () () 1 the greet f. Sand + S'H Some mic Sand DK grey f-c Sand + f- m gradiel, She Silt, lette Silt trace day most first + subangular Shale fragmants ナメセ Sove h-c Sind, moist Moist. trace Clays, wer 15-15-Philod Description eontid Sha to 2216 SAA for SAA SAA SAA - Whose Olea time 0 ah OI ah !! 10/ Depth Blows Rec PID head 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0'0 0.00.00 0.0 0.0 0.0 0.0 0.0 .6 0.0 0.0 Ó. Ü 1.0 0.0 78 09 22-24 7-9 1.6 5 \mathcal{O} 24-51 NC-16 2.2 27-27 28-30 14-15 1/20/ 1H 30-33. 19-15 54-36 23-24 18-11 25-92 11-11 32-34 Aque

Scuple to Charocterize 3) Esti 1/2 (Si * augering when they show + deflicent SAA moist/days, tight tomped hard pushing Doppunde prosule to DEUM. 7804 11 DEUM. SAA, down/maist tight had then diger Descrep 0.0 12 00 TIME Depth Blows Rec PID Read 00/00 71604 30 36-38 27-41 38-40 56/3 14-92 47-04 l'e

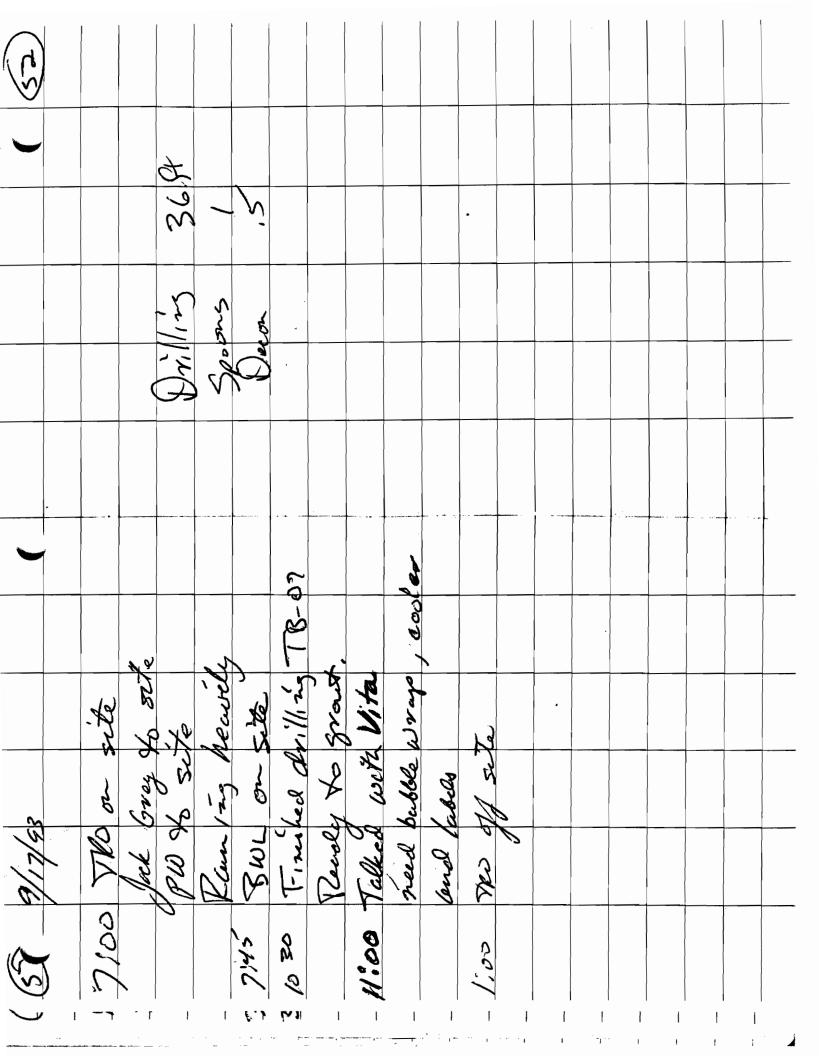
There Red Brick frogrants + Coa - * SAA but w) Black (17. Residue in Matrix little Silty V, Slight along no Sheen Brews If-C Sand + If gradel, / H/ Silt SAA, trace wood fragments Wet \mathcal{R} 5AA to . 8 - block C. Sand + f-gravel, F-C Jand & F-gravel, 1/H/2 Si/1+ SAR to 12. 6. 5 Brown F-Said + Si Ht Jone Clap, Moist, Somiplastic, NO C.T. RESIDUE OBSERVED 3" gravel fiel Cover at 20% Wet, V, Slight odbr, no sheen Brown of Some Black Stating c. I allor, dil shen, wet Lectup Tion 7/15/93 time (-5 VI R-9306C 10-125 of C y Y ᡟ 0.0 0.1 23 8 0.0 28.3 3 45 due to Limited Soundle VOR+ SVOC AN A Sample No -06 64 # 24 10-12 13-34/2, 6 23.8 - val 7-8 2.0 28.8 189.7 WR 0.0 / 0.0 1.0 1.1 1.7 0.1 0.0 10.7 OLDAN BLOUD REC 070 head a unity 0.0 2. 2 2 2 2 13-10 ie ip 8-10 1-4 5 8-0 4-6 41-61 2-4

Ditch Frien A.C. Sand, Frace f- grave f-silt, Grades at 145' to f-Sand +Sill, Savelay, (c gravel No odor 22' , Dk grey f-cSmd+ f-m Ongubar (32) Brown Frey F-Sond +Silt + Clay, Plastic, 544 the / 20 8 > f-Sand, Wet, jusci, SAA, 18. 8 910 des to 1- Sand Lance Witte &-gravel (# 15A Shale + S, A Shald grag norts little S'et, SAA, Why Lanar of Shale foogments 7/16/93 18.7+ & tighter, moist, days to Mpist that clay motist, SAAF, moist to clay Jesci ation luer, 7606 6H 3 (cond'd Wer PID head Time 320 5 10,1 21,8 350 514 1, 61 1,01 0.6 355 3,8 7,2. 33 52 4 19.77 L for Spanichish Apt 1/17 or bel Scotech AND. Mote: DID Keelingar likely ÎNVÊ 9.6 3.2 20-22 18-14 1.4 10.1 22-34 14-17 1.0 1.7 ń 1.0 2.2 Depth blows Rec 24-26 32-24 1.6 4 26-24 31-31 1.2 16-15 13-13 18:30 17 18 12-31 14-16 8-8 30-30 10-11 5

gry F- & Sond, Sone F-grauge (shale frage moist SAA, largered Shale fragments Wet * Slaw, have matrix houst most 7/4-> (34) grey f-d Shidt f-mgravel (Angular shale) Sove / little Silt little M- Sand lance at 30, 2-30. 4' Wet auger duilling pressure = 20 upper Span - gravel washin SAA, Very hight hard, Moist SAA, V. hard, moist/days Wet, Looser Contra (1)escreption Depth Blais Rec. PID head Time 28-30 64-35 , 8 0,3 52.7 445 34-36 32-27 ,4 0,0 1,9 5a0 5 0.2 4.9 Sav 19.5 530 30-32 12-17, 8 0,3 1,9 453 * note: H20 in augor hole had Slight lich from 11554 Spor Water + not CH#J The head PID nachigs and Hilm from C. 7 at 10-14 Q Mendal 7806 J. 36-38 50/4 4 32-34 27-31 Men Due 69

Saley little A-CSand + F-gravel t-clay, , SAA to 6,81' / Black A.C. Sand, Some Brick fill, dang, little coal frez, f. growel, Some 5/49 that they with trace Si It + clay U. Slight adol Wet Bile + brown + to Send / HKS:16, little Red blick Chunk in Span To SAH 40 4,416 Grey F-Sand + Silb, 7" > Block/Brun F-C Sand + Bed MDIST, NO A.Y. Stainings not really C. 7. krolue, wer Black 3AA with Oil Shen 0-7" gaudi Sand fill are moist, I's light. dor Moist, Leese Depth Blass Rec PID head Time Lesch Don GH#1 200 1,8 0.0 5.3 9:25 ¥ Swell (FSVIB-930568 for UDC + SVOC Ouly due to Sample Quantity C'O 0'0 9'1 (-5 E-a 0.0 0.0 0.0 8-10 9-13 8 21.5 7/002 4-6 1-2 7-14 2-4 6-5 3-5 10 6-8

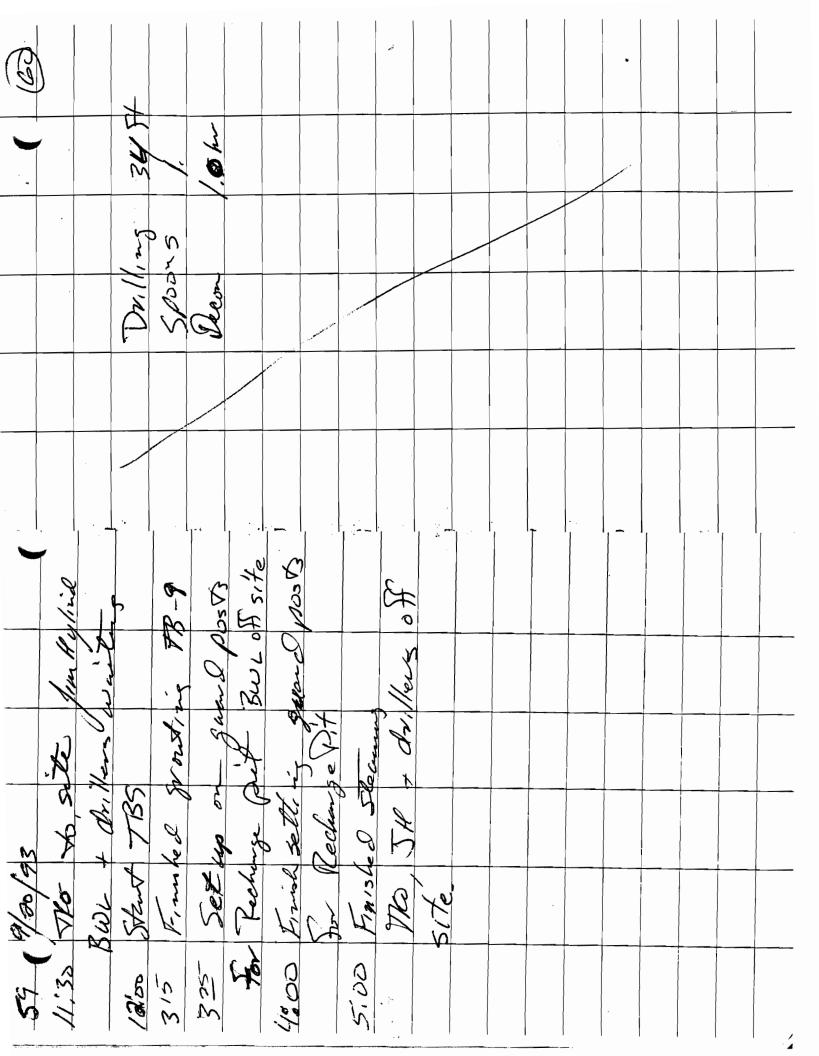
(Q3) 1/2 1/2 Sitt Some Clary tew frants Gravel - Shale) Most Watie Carl Chen / Sound + 5. 14+ SAA No 17' - Black C. T. Rosidue Clarp Little n. 5 mg Marst brows Green internised F-M Samd + Done M-C. Sand 1 + - Frauel miked in Matrix, wet wetaken The M.C Send + t-gravel at F-Sand (. V") in mathy SAA w/ C. T. Redictue, 18.3-18.6 f-growel layer w/ C.T. Reaply 12.5 Brun F.S. and + 5.14 19.5'- F-Sand + Seef, Maist 9:50 NR- all week (.Y' 6 1 # 1 V.S. P.KOSTIC. Time Description 14/21/5T 713 05 Cont'L PID Reading Samplex X Notel Store Area Mide 1 Veel Blow Prc. PTD head 20 6 14-16 9-11 1.0 16 139 10-18 20-34 1.8 23,6 552 G5VI 8-9305 C17-19.5 0 18-20 113-14 1.8 51.7 Gues the 0 13-17 13-17 20-24 1-21 11-12 4-11 (2 c) -


MOIST & augering becoming Speed SAR (Simple in Soon Nose), had tight 2 (2) + f-lower (A+ 5A miked). T-clean SAA with 1.3" lance of F-Sand \$132,3 11:17 SAA, F-M Shale in layns Im-d Size De guey F-Scond NSilly Serve M-C Sanch -5 End + 51/1, Some F-m mg /21 MDISt Hand, NED C. T. Ebsorved 0 Shale gravel, T-clay, Moist 11:45 SAA, Nord, Marst Clarp, ASNT DK grey gsand that self ro aV abserved moist & dama Moist/dlang Cord'd Monst Moi 37 Descreption (JH) Dr.greet SAA. SAA, 2 2 2 10:35 Time 6.3 a44 11:23 10:40 39.8 /32S head .1 964 s, c 27.5 0.9 131 24-26 21-27 1.0 4.6 407 26-36 27-41 1.0 0.6 501 Pt3 5.0 00 0 118/05 6 de N Rlow Rec Ś 0.1 iso. Si KAR 30-34 24-22 32-34 24-27 47-37 56-38 rv/.3 10-17 96-12 Has 34-26 42 66 28-30 Juzz 5 ct/1/6/53 least 20-22 He-er 32-31 7

9.5-10 SMA Free Syre Guine Some fire force of grand to be Se Seve 0-1 Bisen SAND+ Cance Grey bran Sitriego aus Smo Some grudel, little alsey. monst Some tree B-9.5 5 MM Some Fine leran (1) 11-12 Brunch First de cause SAND 12.1 - 14 UK gues Sme C SAND Some self and Sme guel, The brick Programsts, winst was stiff 17/S 21.515 Chillen Send demine St, B. 2.8 - 4.0 Gruy 12-12,1 SAA Compret 1 Alendo. SAA 2-281 54 1/-ci St.F SAA SAA AAS Dent & Downdiradians of Vendrig Dent & Blaus Rec PID Acud Time 8-13 7.7 3.9 145 2:35 18-28 1.0 9.3 173 2:36 3, 20 2,25 D-2 9-4 1.8 D.6 55.7 3.15 3,64 92 12-14 17-19 1.8 0.6 130 4.6 619 103 0.6 53 S' (43) Mue/53 1773-8 30-34 1.8 8-9 1:5 5- 5 1-5 4-6 8-9 eral 8-10

Dr greg fire Stor + 5167 trace cla wet here's con Yru globules i M. P. L. House 1. 1. 1. 1. M. らい gravel, maist to wet true clip SILT + PLANG Marist Stevent yrow F. En SiND + Frwed OK grey fire SHUD + S/LT Same clup, proist, need stiff. Slight Coul than photoles Sleer man Khu nex grant 5 1160 June chemical oclor, med tits DK grey N W W Y X buse SAA 15,5 Sundle CS NE 8- 53 08 C 15:5-20 1.0 18.5 1023 3:48 Evereture tiller 1023 3:48 315 325 PP Heal The 8 17.2 346 3:52 18.0 35 Composit Farment 15554 - 70 Ft 654 1019 203 L 8. C 35.3 2,00 0.2 -1- 2.0 Rea Q 32.24 15-10 0/-8 9-1 ac-21 Breading core Lente Nous 1-6 9/16/53 01-10 16-18

Slydy platic new with mail 30-31.5 1 4 Silver Sund Sittle Sec. 1 T. W SAND SUNET- Ma Sime S. 14 St. F. 1,H/4 F---3.0 4'30 SAA Some F-ned Shile grenel greed, Truce Silt demp, St.A. Sine Sine - well grawle 1 the colory Durk grow Hired acuse SHW Fic stand 124 che ST CONF Cenard 31.5 Dk 5402 F- an grund Here Bring 22 1.000 30-31.5 Some 3rd No odvor Elle speed Shure moist Tacse Mast Derth Blows Re. PID Hered Time 24-26 13-12 2.0 13.9 584 4.15 1.3 39,0 4.70 0,0 3.3 4.57 5.5 0' 73-08 10 06 Q 30-32 26 3 1. 8 36.-38 50/ 4 P.C. 4 Jr. 33 27-33 40-15 30-06 Ge 63 32 34 1/16 /


* # Fire grewel st. F. Senno Side Ok greg F SAWD + SIT 7-ned sund lender SAA compart Carples Rept Rous Rev 70 Hred Twie Dese 34-36 31-33 1.8 Die 1.9 5:21 OK 57 38-42 52/4 0.4 0.0 2.6 5:45 SAA 30-38 50/3 0.3 0.0 7.2 5:28 78-08

1. The day noist stiff some keasthering givende to some clay Shish dama H : ./ Stit Express J-c SAND, 1,11% silt 0-.5 SAND + GRADEL (FILL) D-.5 SAND + GRADEL (FILL) 15-20 712 SAND + SIGT, SARCA 7.5-5.0 BREY-BROWN Fre SMD true fine growed soft pudst J. I. NR Mad Grave/ piece in 2000 1. Hle dilt, moist need stiff Delin Brann J-C Sand , Some Silt force of gravel nuclest 54. FF S/Abt Ohomen 1901 6 5 poor worst go Dhe Sound 5/312 SAA 6-75 11/11 DXI distrim Ceso vebo SAA Downfrident of Tan Tanks Dente Ree P.D. Hend Time 0.2 9-6 1,0 0,0 0.0 7:55 13-7 9/17/53 (80:8 0'0 0'0 8'1 10-21 -01 cp 2 8.00 7.52 4-6 8-11 1,7 0.0 0.0 7.44 3.3 335 8:11 0,0 0,8 0.0 59 0.0 1.9 1.4 0.0 N/R 9-16 M W W 21-15 1-1 15-21 0e.- 6 51- 0) 5.5 8-9 53 12-6 M- el 14-16 A A 2/2

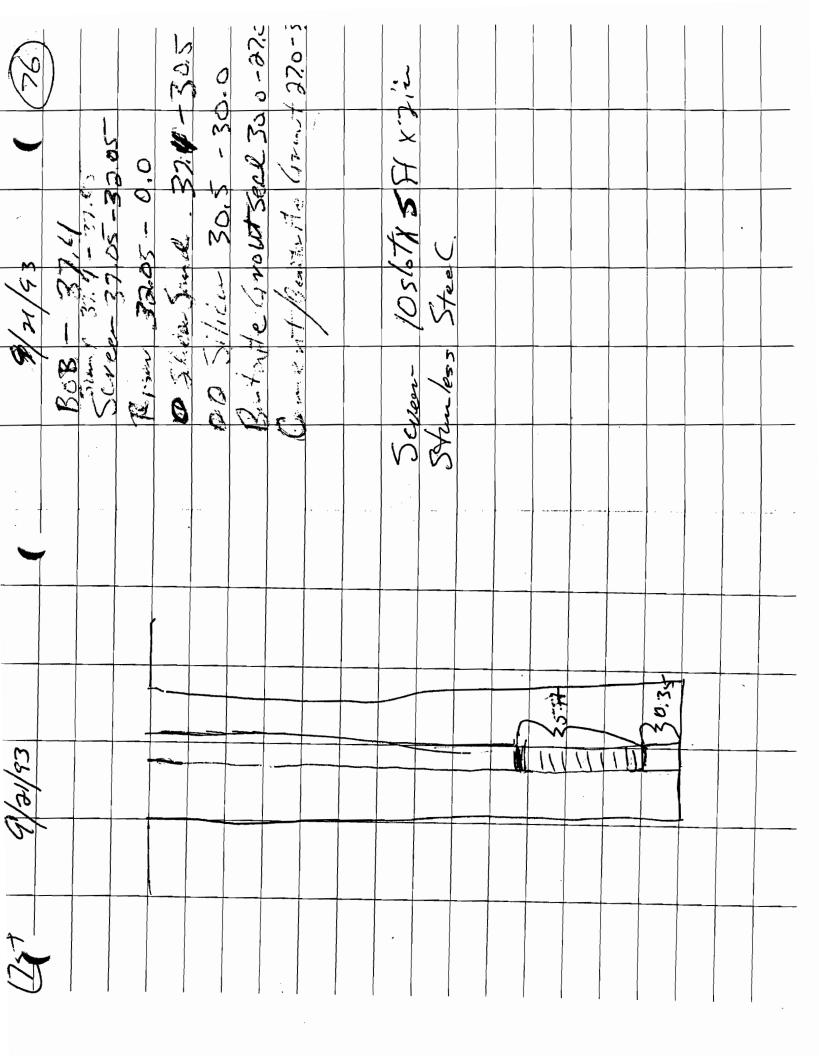
1/ 1/2 1, +/10 Se Dark grey F-W Sund 11the SIH Former 5 grund truce clast Stiff S/1547 new As 1 B slight chemical dow Soft Shale F.m. gravel, touce play sitt Il grey J. & Sund, Sund Such 27 - 28 DK grey F-C Strop Ule great F. In Sand, States! nech St SF, marst to dump C (de y treve 5147, Some F- In Shale Sawel no popo 16-27 SAA Musist - Clump Weis 7 Ul gree N/R SAA 080 rsion rapo Hall Bloubs Ree PID Head Time 8.6 0,0 0,0 0,0 0,0 0,0 3.9 15.9 3 00 0,0 0,0 ĺ 1,5 1,9 10,0 16-18 13-15 1,0 NR 1,0 5 28 32 11-11 08 20-24 12-15 21-51 12-19 31-53 18-20 5-9 e1-01 th-00 19-34 24-36 15-27 52)

5 Privales Ko no oly Stiff damp. Dk Spec F. a. SMVD, 1, H/e & Shele. SHA green to vary stiff No Simple The Pere SAA 30-32 18-5 0.8 0.0 0.0 9.35 33-34 20-30 1/1 0.0 0,0 9.43 Bert Blace Ree PID Hend Vine 10.15 0'0 000 0.0 0 0 130 34-36 27-5% 0.8 36-38 57/20/2010 (22) ·

(e))		hall the Burneiding	CT	True clay some coal		Trace ale	Marel Siz	l' FF damps	t, moist	Braw Fire SAND + SICT N		James A		(32 in Aloc	61	2	
v. F.e.	V) une	13.10 0-0,3 R		some silt	12'1) P. C. Slight	true					CT.	12 NN AHS Seiel		19,27 8-9 544	Ì	in	
8-5 - 5 and and the	Ree PID Hevel	0,8 0,0			111 010				2,0 0,0			1.5 0,0		2.0 0.5			
J L 2 2 (19)	Ocyeth Stories	6-3-7	51.2		2.4 3.3	6-6			4-6 6-9	13-13		6-8 16-17	18-30	8-10 6-10	(1-51		

1, H/2 Si'ld rith Fire Proved St. F. 17412 Clary mois t-wer light by 13.5-14 Duck Blan F. & SMND, (63) the F SANO + SILT, Thurse 12:48 Frank J-C SMAD, Some Still F-d SAND, Sun cling, Stiff, nus stopland fire guard Soft musist Brawh Fine SAWD + SILT true f grue size Bul Ø Det MOIST to diang 5274 132 12-12 5 54K He 13: a ! Dk gray Ok Sving NR INET Nuois7 pluto 5011 rs'el Head Thus 13'. 11 12. SS. El 3.3 TB-5 9/20/93 NR NIR 0.0 0,2 0,0 *(*), *(*) Po 0 () 0,0 0.6 71-78 0,0 16-18 30-35 0.3 10-13 11-13 2,0 Depth Block Ree 10-17 14-16 10-14 51-11/22-00 4-13 20-51 16-16 1-61 cre· 8/ 63

F-m shale quevel dling I gravel damy, ned stift 1, The J. m gravel proist SUT Nump, Veny 166 J- in the grow Some Y × 1, × 11/12 Forenel, 5%, FT Cours F SAND Some St F- a. \$4ND No Schupple Vake 'n S F-EMD / Sure tittle f - m shile gourd, ned 5t. H. murst Sora - gruned SAND FI SAWD, r I Shele @ Grey - Ersur grades No. Ø Dark Spara ree to well Soft 1 Car Ok may Ok Svey J. m. Sme BK grey 7, 7/.5 54.75 54.55 Trues Geoc 1 d, the 1, 11/2 it it 13:18 13:50 B:36 Three 14,03 Der Depth Bisus Ree P.D. Heed 0,0 illove. 0 0 26-28 15-52/4 0,9 0,0 0,0 The Hylind 0,6 0,0 *0* 0 00 01 7B+9 8'0 5-he - a/ 6 1 edmented 24-26 13-12 7,0 32-34 43-30 22-34 17-19 20,00 34-36 47-35 17-20 26-33 50/4 he - 41 19 - 15 (6) allo 53 30-32 28-30


4

1) 6 the the 542 Drilling Spoors Decon greed 2:00 700 Dr. site No Better read to set 11.30 Finester & B 21 11 43 MILOI 13:30, TONA Sem yale war (2) um 15:45 Finished granting MUN BUNK 7:50 Set on an Mul 10 and C. F. Crut Mars A.D. the string.

11the day must to damp, suger stiff tree and suit. With I guinely tories B dung 5.8-4 Gray 5-6 SMO + 51-5 OS + 2 Bruth File SAND 0.2 - D.3 \$ hel shind 3 high 010 SHA greater & little clay -13.5-14.0 Grudea 4 2/k grey Eller Meny ned Stiff. 8.35 Brown of SAND and SILT 1.5 D.0 1.4 8:10 Blue 6400 drive Wing 8,18 4-5.8 SM 8:55 12 - 13. - 5AA f gravel 57:SP Dear 8'50 SAA Cell Depth Blais Ree PO Hourd Time 41.8 00 28 0,0 (69. (4)43 MUU-1) 8-10 6-11 2. 0,0 0,0 0,0 *0*,0 1,6 0.0 10-12 7-12 1.8 8.1 12-22 1.61 13-14 25-22 1.6 ンン 15-20 NR ی بر 0-2 8-11 \$-8 7-ht 2-6 2-9 2-9

10:15 74- 25.5 JAP great & True Sviend Ut Sver F SAND + 51LT, Clarge to little Fe Shele grund, wwith the wet C)D OK Grey F SAMD + SILT, Some DKguegg J. a SUND / the silt 7. In Shale grund, damp, 3V.A. DR Sung & SANO + SILT, moust & det , med still 11 the F- in shile grave FI-C \$HWD|, Some 27.3-38 Ogresles with Aner 12:10 26-26 Ft. 75 26-27.2 Time Komed Sheld grack ## 35.5-36 9/21/52 OL frey ned stift Kear Nurst 9:58 SAA M 9:00 Time G. 42 9.33 70, 25 PID Herel MU-1D 0,0 0,0 0.0 0, C *С* С 0,0 Centre Rows Rec 1, 6 0 30.32 39- 22 1,1 *C* 7 XN/e/25. 0 ac - SV 26-16 Be-24 0/21/53 8-3 14-70 1-54 37-34 B1-30 51- 55. 8-26 91-51 24-26-18-9 14.16 16 - 18

10:38 SAA Si'rdles & / #1/e Shalle grainel 10'sy Spoor with lange gravel prese must to the F. c 5HWD Sand 120005 517. 3-c Shale grend med still damae en en l of Rang M co. 11 35.8-36 W.M. 8-52 - 75 - 25.8 Detter Rivers Rev P.O Have Time Res 38-30 33-301.2 010 10:38 5AA 30-33 9-13 WE 010 10:38 5AA 1.28, SAA (73) (Var/53 MW-1D 0'0 22 0,0 0 36-38 52/3 01 34-36 19-26 1.0 32-34 15-13 or - hi

23436 Spoors 2 Vecon 21-5 Dr.//m Stem & Tready to Stand huse 11.15 Finshed growting Mul 15 Stuted Filmins operation PW durines to set up m Film avew From NYSEG of the avvices at site. Finshald der // in MW 15 PW set up on new 15 Well sett. Strute & Sto. Stated setting byell JA Evenjes at site Plu + The of site Shuted setting well wind at site 87 9/30×30 \$10nm 2,8 GH5. 715 0.61 9.00 10"15 81.0 16,00 - POG 00,8/

Prey ligners throughout that the care for the boson 5 - c 5 MND some 51/2 trace tree - In Shile grinel ned stiff down 7:57 Brann 7 3AND + 5127 there 15.8-16 Brown FSAND + SILT Marst Surce 8:44 Oak Grag J-m GRAVEL + JC SAND, Sme sitt 1, the olun Brown F-C SAND and SII 5 - C SAND /1/1/ 51/4 + clay med stiff /16.0-17.00 gray 11the cluy down stift, elley Dung very STIF mest to wet 50H 3 yey wottled Alere 9/22/93 02.6 Depth Blaus Pac PID Hend Time he: 8 0.0 1,0 0,0 20-22 50/45 D.4 D.0 1.8 0,0 SI MM 1.8 16-18 15-17 12-16 1-6 10-12 6 12 134

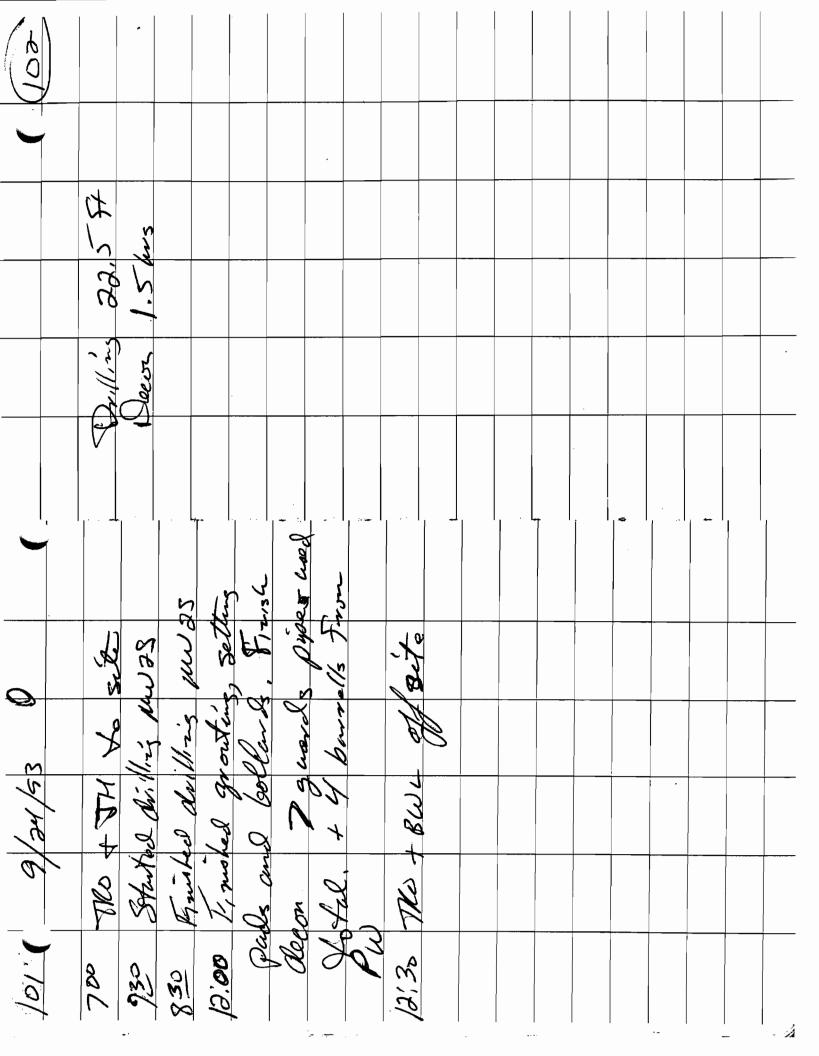
lunist and I pr shale gravel, some \$1 17 Jours OK grey F-C SAND Sump 0155 33.0' - 22.65 23.0 - 11.5 10% 332- 23.6 FSHUD + 5127 little clay woist ned \$1.B. #00 Silica Sand 11.5 - 11.0 Bendon : to Seel 11,0 - 8.0 Seven 22.65' - 12.65 Soft to hed st. F (Lans) Rosen 12,65- 0.0 Cenat/Berson te good t B.B 33.0A #0 51her Jand Dear 1 25/42/6 8' 5-9 1/100)erth Blows Red PID Hend 0,0 NW IS 23-24 15 15 1,6 517 (81)

need 50. A. 7- E Stud + 5127 save F 5 MMO BUR SILT 80 Attle 21+ 135 5-C SAND, # 1/H/2 5 WR Duk Fran J-C SAND + - R SAND F- & Grunel, some call preser Some bluek st Deverybed From duge cuttings · Gravel : Ocurp ned 57. F mi clay more the dump 0 strace & grand, Saury some f- ashered 0.0 0.0 13:14 : SAA Avera Vo 57 0 Ph men SAA 12-135 Brown 14-15.8 5AA daup 4-4.8 Sept Deutagricoling of Var PA+ Bus Holdon-ANS MS 4.8-6 15.8-16 Clere SAA 0.0 13.04 13.58 sh.'el 0.0 13:39 13.45 Blows Red Pro Hous Time 0.0 0.0 12.46 Eytell QE-MW 159 0. 0 0.0 0.0 0.0 0,0000 WR 0,0 0.0 0,0 1,5 0,0 2 8 0 1,3 10-10 5-13 14-8 5-8 2-8 12-14 10-30 10-12 24-21 8-9 6-5 8-6 21-10 14-16 9-9 Depth 9-6 8-10 8-7 5-0 J. 7-9

21.5-D2 DR grey F-C SAND, 11th AS 1,0 0,0 0,0 14:12 DK gray J-c STND and J-h. grave F 3 yourel true day mout boland - no thale Stulle Some I for Shale J-C Samel For Wet , wed donce to ace \$27 A gravel well loose the silt 0.0 14:15 20-21.5 5MA 14:49 SAA greeke Were 9/23/53 14:40 SAA Stude to an wel moist Ok grey med 57. A a avel. S44 stal 0.0 14'27 SAA Leal Brees Ree RD Head Theo I head Theo I head Theo I have the Point 1, 4 0,0 0.0 13:54 0.0 15'03 0 0 1,0 0.0 0.0 0.0 01 0,0 0'0 40.5 0.0 MU - 30 0.8 24-26 15-21 1. 23-24 10-13 13-12 0/-01 20-02 He-28 4-20 18,30 4-5 5-7 33.30 8

-c SAMO and F- a Shelle 33.5- 34.0 DK gray J-C SAND, Some ∞ Edthe S. - C SAND and SHND, Son 1535 SAA grade as wey dame Self to case cly, mist, dance Jor - 150. fac. Send 30.0 - 27.0 36,5-1 31.15 365-36 - 14 Shule grundly 010 - 010 base 5-0 3Ksty oose with 31.15 Bengmite UK grey t Bar goler grey where clay Sim DK Strey Nere Growt #0 S 400 4 Nun Shale 15:50 DK 1 1515 Hered Vine 12,21 9/22/93 Ó 0,000 Q Q 0,0 0,0 0,0 0 ų as - cun Kee 1.0 50/03 31-30 Clerke Blows 32-32 7-16 32-34 33-32 02 - 60 24-36 36-38

90 36 4 + 22 Dr. M. w Spons Deco Fridel Setting MW. 20 Virishad dulling Hew 25 やくして well 24 No + IH al ste Started MW. 25 Frunked setting well Sturked setting Finished grouting X set ouds ? Well completed Striked setting 10; 30 Finish WW 2D Pw bir xis Finish dear the off 24/ Se/ r) (P8 1300 1730 13 20 1430 00:2 CS # 15 20 6:20 1600


coch pieces, some block staning damp 1-2 Brown F-c SAND and governe Sares It true clup doug lass 3- Even F-C SAND + 5- 14 Svard Braw J'C SAND + J' w GRAVEL 60 twee yed by it some F-m Some Brown F-c SAVD + F-m gravel Oump 1005e Some bleck stamins Call Truce Oly 8,8-10 - Brown F-C Sand and SILT, Oung, nex stell. Sme F. C SMD Size Carl preser 11 H/c 51 H Sure C 5 and 5/20 8-8.8 DR Rymen F.C Spe and 5.2 - 6 5- h Bally with 2 5- C F grand, Spee little & gleve / sys SMA Just Red F-c Sound Sand, damp, loase Sifed preces bould Elage D-1 4-5.0 ン、ヘ 8,03 Depth Blows Ree PID Hend Vina 0-2 3-4 1.0 0.0 0.0 0.0 7:36 7:56 7.5 0.0 0.0 3-2 1,0 0,0 0.0 3-4 1,7 0,0 0.0 6-8 7-7 15 0.0 0.0 1 1 1/2 2/53 MW 20 1 8-10 4-6 2,0 2.0 ターム 2.4 1

17.5.18 grudled with F-w Shall graved Grey, speel, brown F.C SHND + Fgrear wet to well grended, ned st. F. Sundo see 14.5-16 64 4 Brown Fic SANDA SILT - MALLEF Some St/+ + aliey plustic, moist DK grang J-e SAND fond Silt Dk grun F.C SHND + SILT Som F. m. Shele grand moist Stiff 8:45 DE grey J-X 2015 2115 and SI Serlittle elay, moist pred of B 5 med 507H moist to wet ONE- 32 M. Brey D- C \$ MUD lited to prost 51 Ht / 14 5 5 11 leas silt triam at New ist Seve Hend Thie 8.07 85:38 0 0 0 00 0.0 0 0 1,5 0,0 0.0 Ì 0,0 N.8 0.0 0,0 0,0 0 0 ac-mi 10.12 5-6 1.6 Weith Black Rea 20-22 35-19 1.D 15 80-8C 8-2 1/-61 40-40 9/-b1 61-8 30-15 14-15 He-s/ 9/23/93 16 -18 18-20 3

DE gray F- a Supp, Sure Fra stud "DR grey F. c Schol, some F-m She gravel, 11the silt, damp, new stiff Ul grey J-C SANOA+ J-M Shee 60 Grund, Some Silt, dampe, Stiff Center Bushite growt 200-0.0 10.18 DK grey J. c SAND + F. M gravel, little silt, Soft, wet, grencel, Camp well St. Fr Hoo Silica Sand 29.5 - 84.0 Seven 36.4 -36 Seven 36 - 31 Riser 31 - 0.0 Renton the seal 29.0 -26.0 36.4 2 S S S S S S Klege. 0.0 9'52 SAA SAA 80.6 0,5 0.0 0.0 9:58 23-34 19-15 1.0 0.0 0.0 8:49 9:37 Deph Rhus Rec PD Hend Vine 9.11 34-36 64.5 0.5 0.0 0.0 00 00 0,9 0,0 00 00 144 + 2D 34-36 50/03 N/R 26-28 19-34 0.8 PS. 30 41-22 D.8 37-38 9/23/53 32-34 30-32 /1

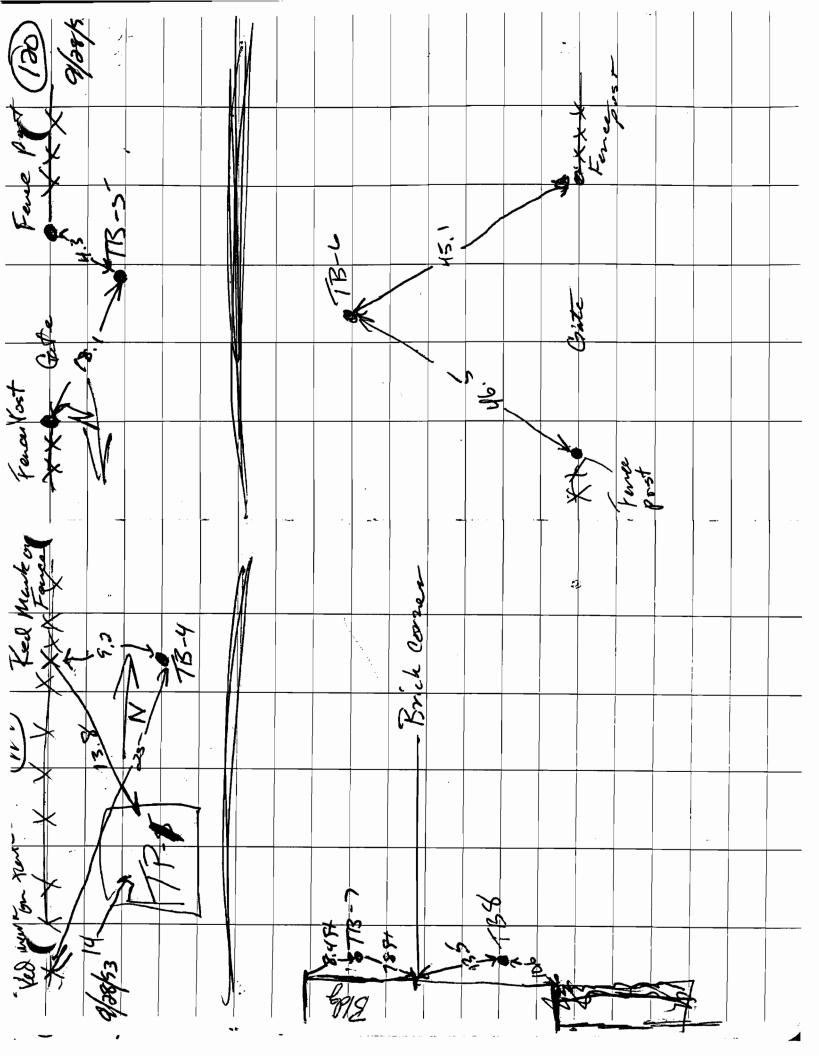
DS-13. Brank J. SMAD + SILF Some Staining Throughout damp hearst 6.5-7 Black P- M. gravel Size and Piers with 13:45 Provent F. C Star and F-m 6RAUEL (3 2) Some 2114 true Ped brick demp Ņ Fle tre Bhu Some for Stro. demp 12050 F SAND + \$1.67 74,38 DK grey F-C Smot SILV gruel noist mad with 15-15.8 544 15.8 - 10,8 7-54WD + SI LT F Sound, red donce, damp Fold - 22.0 14:00 0-10.5 SAA 16.8 - 12.2 ned den se a bac PID place Time 0,0 0.0 30-22 32-34 1,5 0,0 0.0 0 00 00 0.0 NW- DS 3 Depth Brus Ra 15-17 8 13-1,8 5.7 6-4 10-12 8-8 01-4 L1 - M 9/33/53 6 A

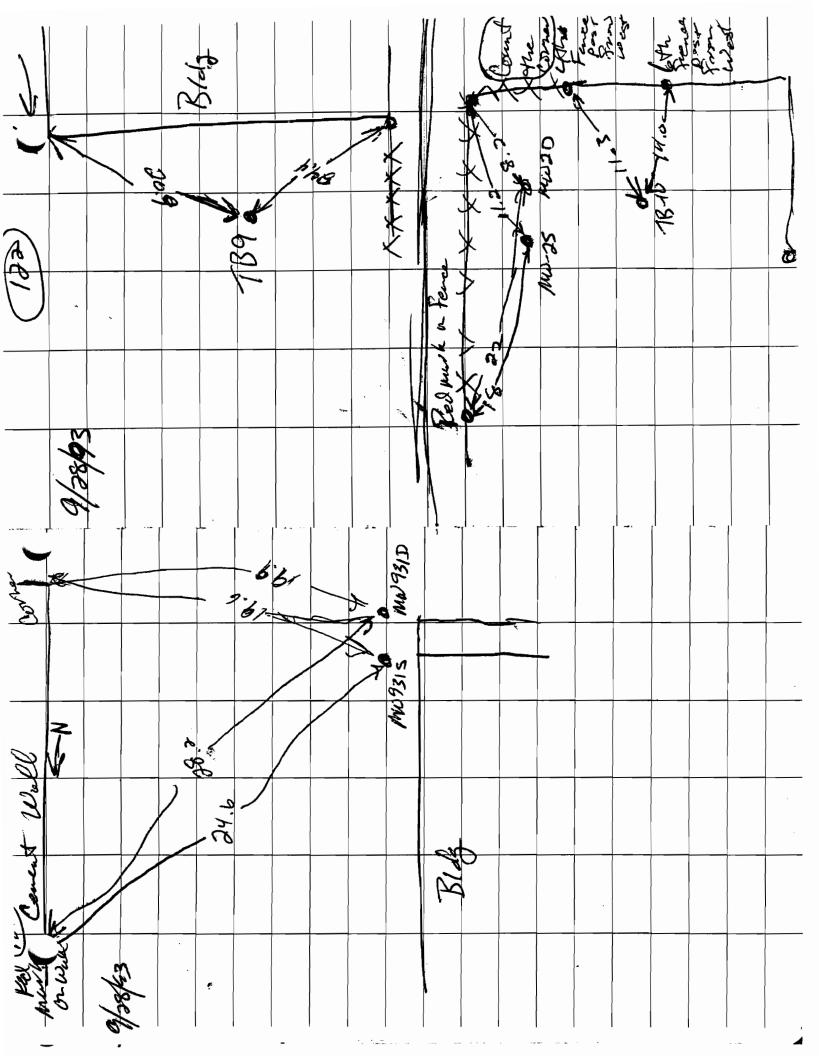
(8)					-											
						,										in Maryana adat i
								-0,0								
S					23-10.0	10.0 - 5.5	- و.ح	6.51								
26-cun		- 21.6		0,0		le 10.	0 . 2.	SN OUZ					 			
	9/23/53	22-	31.C	1.6 -	Sere	ie. Sun	eseal	Coment Condents								
(ge)) -	Sump	Seven	Riser	to Silver Sand	Hoo Selii	1 Bentonite seal	Cenut								
	/	⊢ ¶	 				え	ا سر کر	I	-	l	1	 × U	 1	1	 1

locse Clery Some arey mothing, now stiff dance, damp (Possi bly on a buller Si as De quar F.c Spurg F.n. She 8.12 Brown J-c SHMD, 11/1/2 \$117 have 104 gravel truce sift moust to wet 9:57 Brown & SAND and SILT Frue clay 54.55 damp. 7:41 5-6 DR Brown F.e Samed B0B = 325 Misist Crosske aller med dance damp. Depth Blaus Rec 170 Hend Time Race (1/53 MW- 35 Ļ 0,0 0.0 20 0,0 0.0 1.7 15-17 12-3422 0.3 N, 30-32 39-17 5-7 6-7 10-12 4-14 (103)

106 Zuno 22:5 - 22:1 Streen 22:1 - 12:1 Ko Eleci Sand 22:5 10.5 Kon Eleci Sand 23:5 - 10.5 Bentaite Sud 10.0 - 7.0 Coned Bentants growt 7,0 - 0.0 MW. 35 (105)

108 Ju F 3 Dr. Miris Spores Surple # GSSIBTSIR Simpled Water pit in ile Dies It day X 1.3 feet A ree Speednes \$732200/cm 11:30 Shaled TB-10 100 Frinked TB-10 330 Menned Ten Ohip 247 11:00 type & exte 11'15 PW & 0H= 8.55 W cometer (10) 9/an/53 Wrutting 20

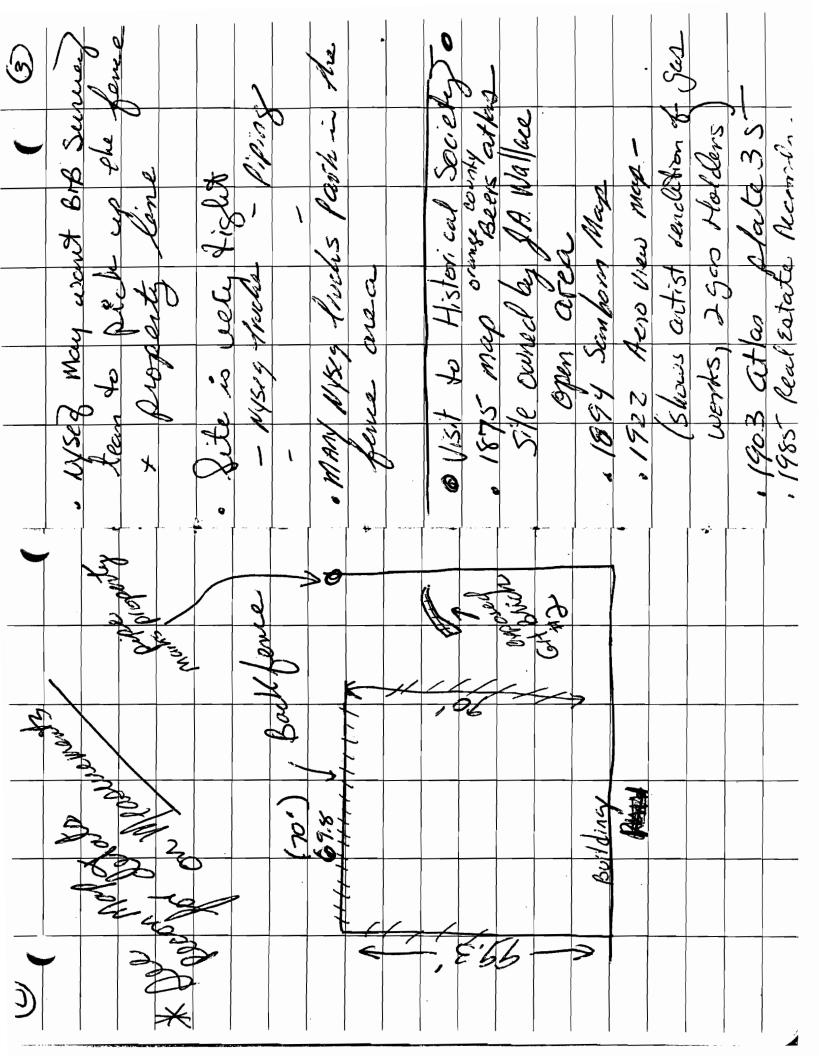

54,FF 7.2-8.0 OR yrey } 2 SAND + Sict By and Fic SAND + F-M GRAD Slight Dular Brave J-C SAND + Silf little dy and 1.0-2.0 Bluel F.C SAND, + F.M. 1,0 Bran 5 + 0 5HAD + 5/27 F grund, Star 5, 14, 1000, lano Some Clang Morst to Campo Saft 5.5-6 > Grudes to de grey Alleas grundsizedone, Atte cluy 4.8-55 Blude F-4 Study, Som lang slight weasite abou brich ned stiff, daup. Arace alley force Runp had 5t. St 2.2 10.4 160.0 11.46 4.48 SAA 0-015 8x 6-5 0,3 0,2 42.7 11.43 5AA 0.5-Depth Black Rec PID Herl Min 0.0 125.9 11:37 11:53 01-84 25/10-10 J 276.3 NA 7-14 1.2 35-31 1.2 3 - 6 6-5 109 1 0.2 1.8 9.6 6,8


1,tt/2 6-6 1,0 161,1 575 13:05 5/14 Free Wood Dieced Reda 23.5-24. Die gren J- c SAND + 2.0 0.0 M8 12:46 DR AVEN F-C SAND+ 7-10 dump med 5/17, Seuse of Fre 11H/c diey dung men ned 51.50 1.5 6.6 2.2 12:35 5AA grude & damp till, for gravel, truce silt damp OL grey F SAND + SICT Truce SI / + + alight 13.5 14 grey + 9 AND + 5127 66.2 10:21 SAA, grude to nor's the wet Sand size coul 12.3-12.4 See My Male planed 5,1 20.5 12:25 SAA greader & wet Marst med St. R 2.2 12:50 SAA 22-2355 med stilt gravel Near 12,00 D. Rept. Klows Var. PID Hend Time 0. BSVI8-9310022-1050, ble Sample ||.| 1.5 10.4 I d 1/8 7 B 10 (A) 19-ic 13'iu 10'' 8-10 28-54 5 1 1 20.34 14-16 30 . 05 28.81 16-18 e1.a/ 1- el 6,8

4.2 2.7 N N 4. S 7,32 15,69 2.6 28,65 4.7 Nol 11.14 DSG1 5,03 16,72 10, VI 24. 33 15.71 06.01 X C/ 7.30 Well departs 36.75 23,01 35:95 Mr. J - 3 - 36.74 34.51 31.75 First of 7006 MW-ID E5/8e/2 NW 35 SEMM 9006 re un </m Surg 16.9 ~ \$ Q V 7.44 1187 12.7 7.34 1194 13.4 7,5- 1188 13.2 Spec Temp 7,5 958 14.8 7.5+ 1193 13.5 2.4 1206 13.7 7.48 12, 12.4 (1/3) arto Jone Con 0 13575 1570 15/8 1578 pro (Hd 5 g/20 453 MW - 30 9H 36 MW 1 S 8.07 8.94 6 orde 7002 St T Jou of Buel duel 40e Shur 8.0

MW-25 PH Spec Tump Selic 7.51 [Di2] 14.6 3 with 3.52 [Di2] 14.6 5 with 3.52 [Di2] 14.6 14.4 5 with 3.5 PH 2.52 [4.4 3 with 3.52 [14.4] 1747 [4.4] 14.4 2.52 PH 2.53 [4.4] 175 [4.4] 14.4 2.52 [175] 17.3 2.52 [17] 17.5 2.50 [384] 13.9 2.50 [384] 13.9	MW-1D Start 1D 3006 3006 NW-20 NW-20	9.5 2.5 8.15	2000 Vany 2000 Vany 681 133 667 133	
PH Spee 2.51 1062 7.51 1062 7.38 1181 7.33 1181 7.33 1176 7.53 175 7.53 1975 7.53 1813 7.53 1813 7.53 1813 7.53 1813 7.53 1813		24 2.4 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	2000 1751 667 667	
+ 7.51 1062 - 7.58 181 7.38 181 7.38 181 7.38 181 7.38 181 7.38 176 7.38 176 7.33 1975 1 7.33 1 7.33 1 7.33 1 7.33 1 7.33 1 7.33 1 7.33 1 7.33 1 1975 1 7.33 1 1975 1 7.33 1 1975	544 5106 3106 2006 MW-20	24 24 24 24 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2000 2018 681 667 667	
+ 7.51 1062 7.38 1181 7.38 1181 7.38 1181 7.38 176 7.38 176 7.38 176 7.35 176 7.35 176 7.33 1975 1 7.33 1 7.33 1 1975 1 7.33 1 1975 1 7.33 1 1984 1 7.33 1 1984 1 2006	5tat 3 we 5006 Mw-20	2.5 2.5 7.5 7.5	1751 681 667	
7.38 1181 7.39 1176 7.39 1176 35 PH End 7.47 1975 7.47 1975 7.47 1975 7.32 1868 7.32 1868	3 Wel 5006 MW-20	8.52	681 667	
7, 24 1176 35 PH 2me 7, 47 1975 7, 58 1913 7, 32 1868 7, 32 1868	57.26 2006 MW-20	51.8	667	
35 PH 2000 7.47 1975 7.58 1913 7.32 1868 7.32 1868	7 Jol 7 MW-20	8.15		
35 PH Sand 7,47 1975 7.58 1913 7.32 1868 7.32 1868	MW-20	,		
35 PH 2000 7,47 1975 7.58 1913 7.32 1868 7.32 1868	MW-20			
 7,47 1975 7,58 1913 7,32 1868 7,30 1884 7,30 1884 	MW-20			
2 7. 58 1913 2 7. 32 1868 1 7. 30 1884 1 2. 30 1884				
2 7.32 1868 1 7.30 1884 1 Dore		ΗØ	Spec lond	9
7.30 1884 Dore	Start	ñ		
Dore	3 val	7.37		2
	1 buc	7.35	1212	و .
	10/11	7.41	1326 13.6	
	13 Vol	7.43	s.cl Soci	
		J.		

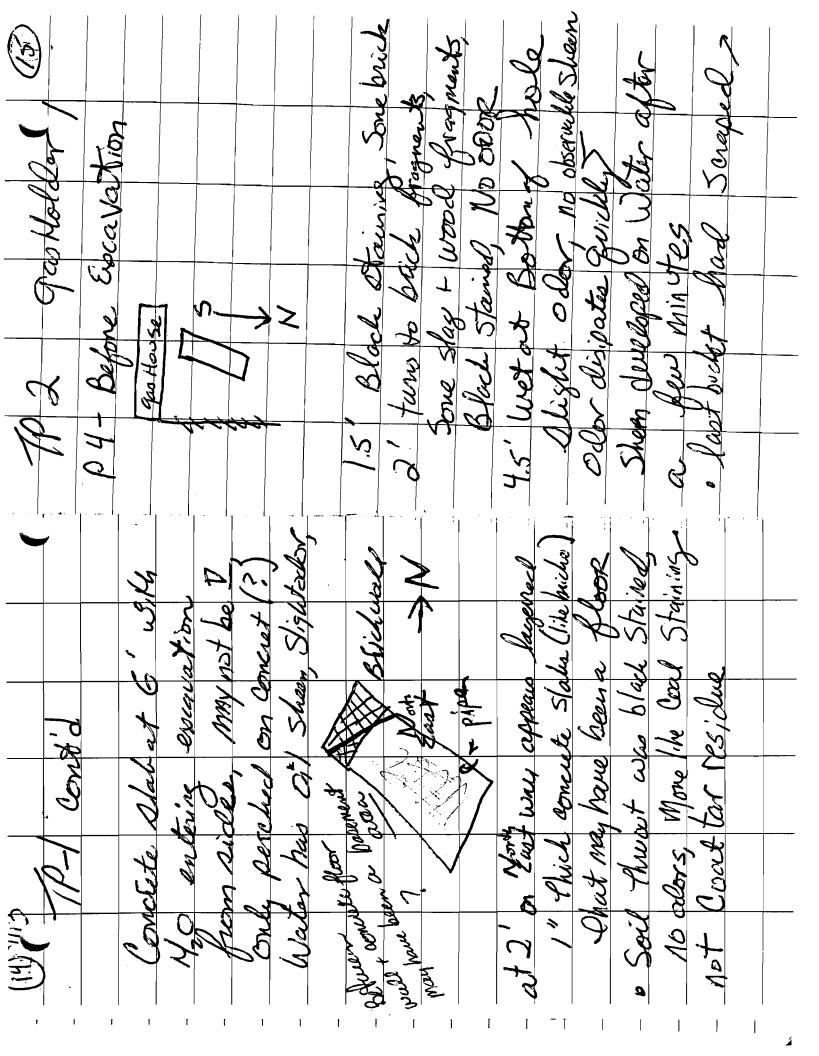
8/1 all well Loceled Supplie From The Facilie 652 The melting on site The Shurt Strong burels We Strong developing Med 10 1530 marined all test buriss EWCN IS Fruided Cevelop 1683 716 + Bul of site weller to 10 outed UN St Seelb 320

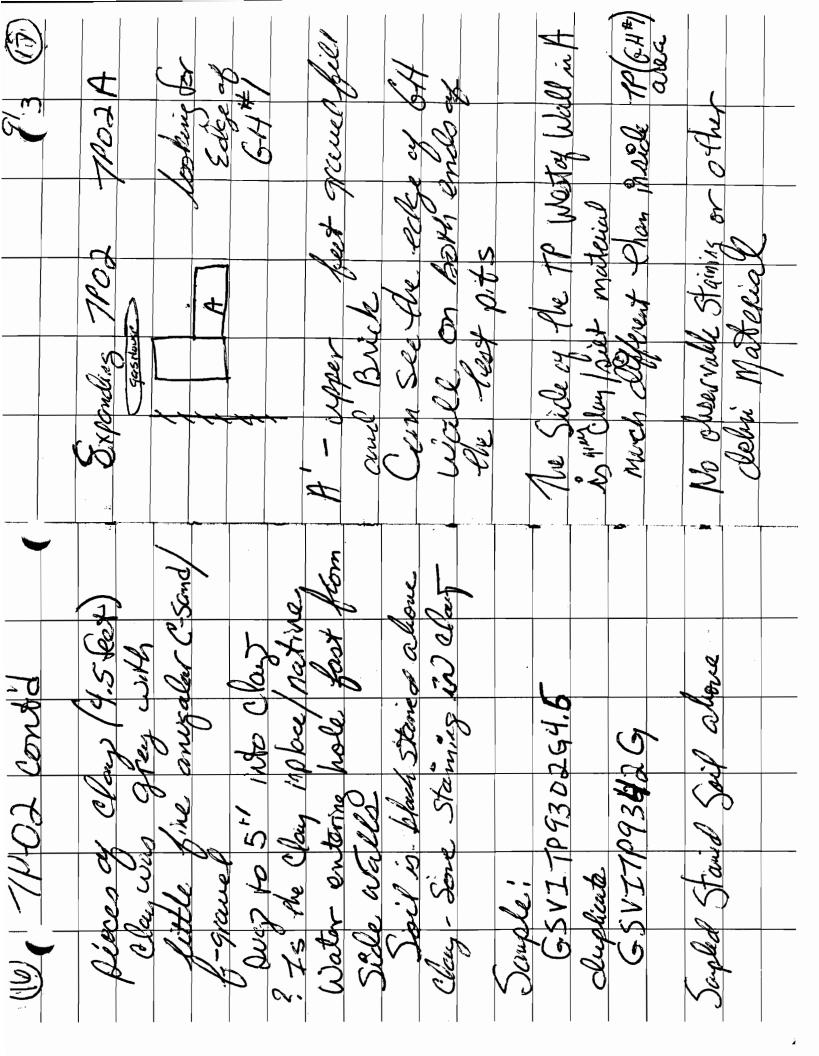


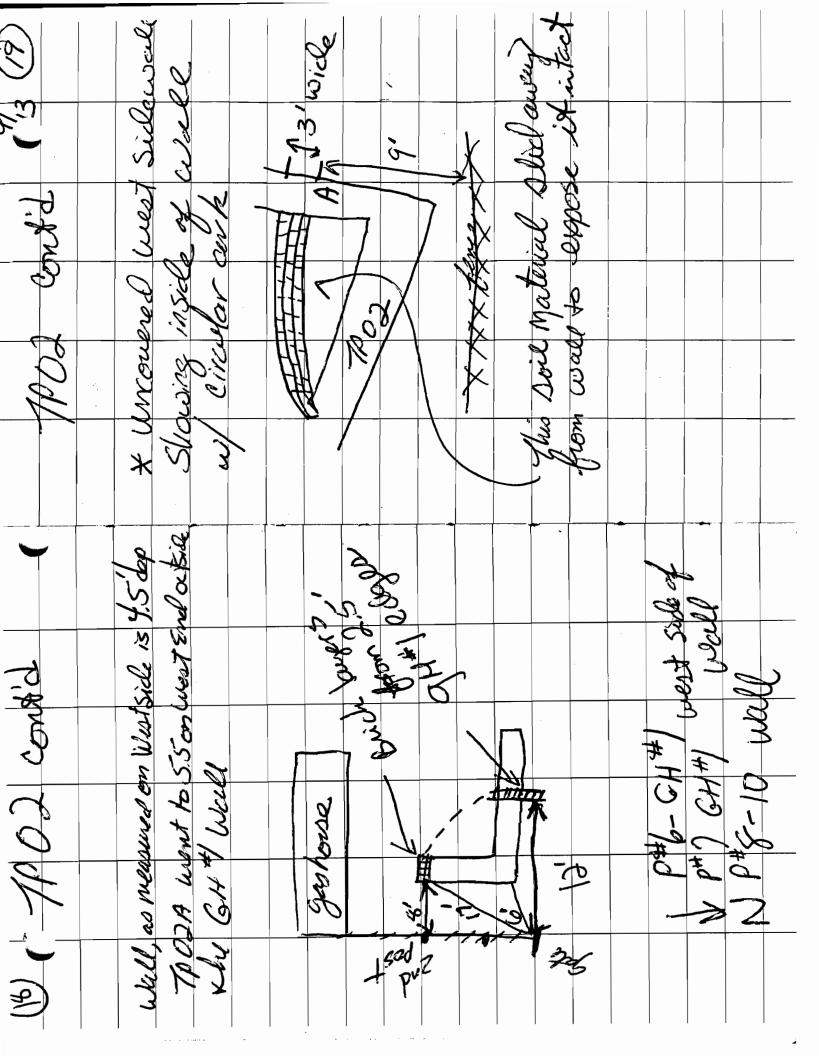
0950 Time Sampled Characteristics: Tuihid-bony in color		1010 BWW-1D Start Point Water Edvin = 31.63. 0.1633 = Utino 0.12 valume = 3.53 yel	i hree Wumes= 10.69x1 Water Removed = 11gal 1030 Time Sumpled	characteristics in dyoy in color Tempe 12.4° Turb dyoy in color Speccind: 63 chims/cm pH= 5.45
	nd rousin	Mw# 21 01	35 10.10 21.75 0900 30 13.11 35.95 0703 35 11.43 34.51 0716 30 14.31 36.74 0913	0915 MW-15 54xt 13.71 v C.1632 x Vclingal Mater Gelvern = 13.71 v C.1632 x Vclingal One Velsme = 2, 34 gel Three Velsmes = 6, 71 gal Wter Velvere comoved = 7gallers

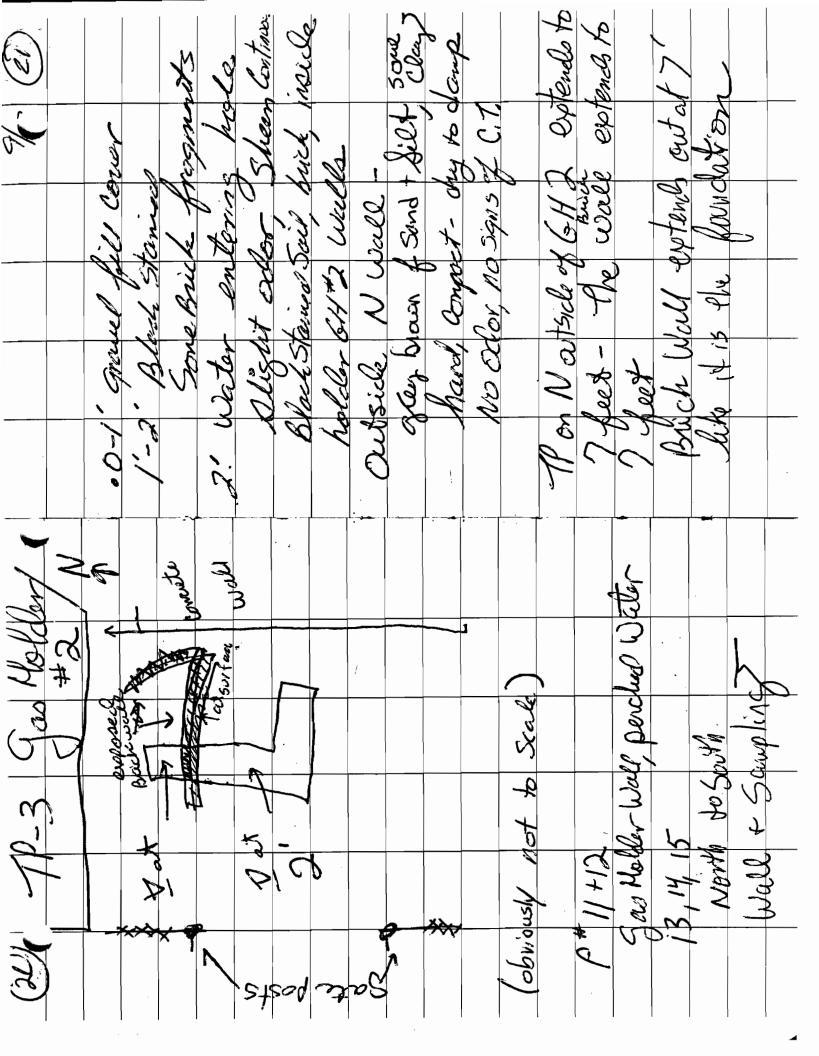
													-	
	ns alkas	5012	1 he trd the	/ in car	-					•	_	-		
(CC)	One well volvine = 3.68 gallons Three well velvines > 11.03 gallon	Amount removed = 11 5 jallows	Time Semoled - #23, olicyte collected the	Chinater stics. Turbid - BraunGraf in	Temp= 11,4°C	ot/ = 5.05-	* Diolitate despectited here		B. Levrin allsite					
		Å	1445		1 3	2	- *	-	1515 3					

719.193 do bave p.B. Stales and sitting Sie at abitant are not accurated represented Marle Mascienerts 2 Sunuer mapa one has The Myself property boundary Ses meetul/ Toni Darge is 8 VAD, Tec, 7B the fence + back p. Boundary 5100 However, the Copresentation 1:20-Cel Juneal beations 1969 Date Sauce us 12 en Lite Placon. he had to avaid But cue Rover 21hur 8° onvite તુ 3 . 0 2

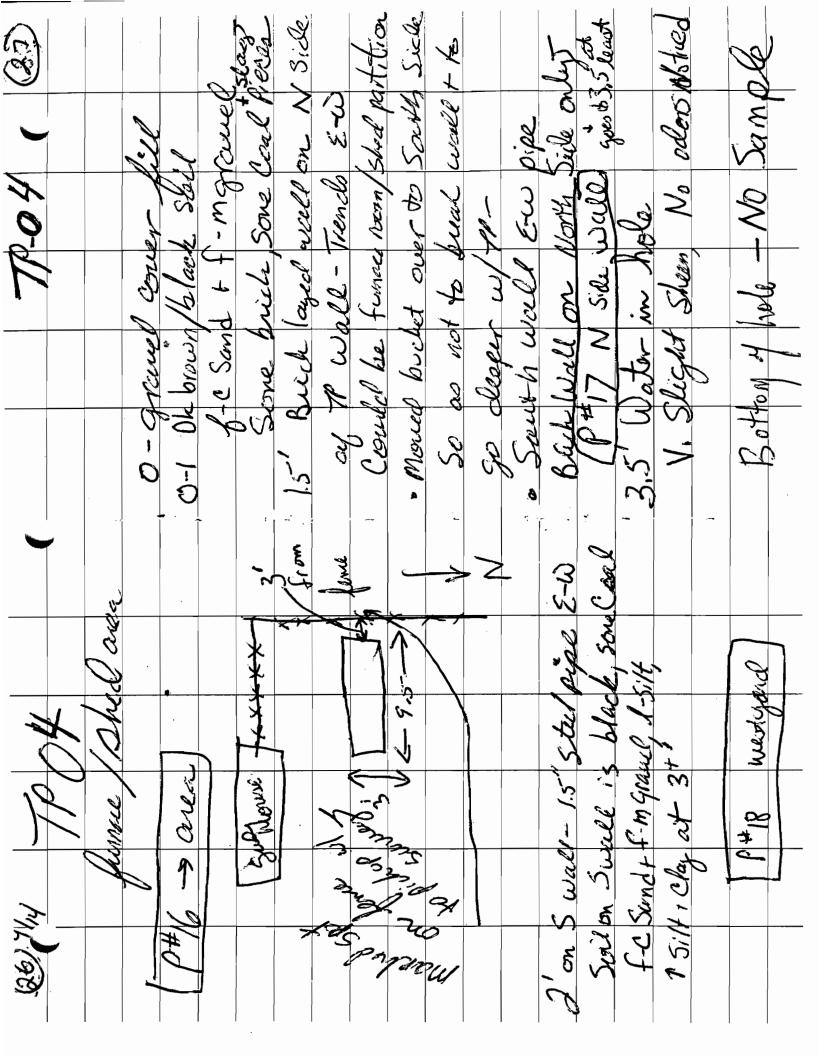

8/2009/ <12.94 (U) 4048 1 hoto No 29-160,16 Sation No 111 Survey May Scies 129.5 668 NO U PG 0062 105501 NJ 07055 ý at No 10 HL & FH Reach Corp. 60. 152 Boultvard digo ar Mar Charge (3-1-93 b to Shar t 1874 an USSNSS 287 West EUIA Reality 5 LOUZEd Deed Book MLISHONS Size BREE ↑ ? 0 no pedinent 600 0 **LECALM** an Sale DQD/ Scriety Meyow P EÌ a lorg SMall mag Mornation 2 to vicle .v Я У Cernal photo der Charles 1 Pucheler where is m Dares Sler SUS shows a Deuchure 0 alpian N Ereinal buck istorical in leversting River Mein 6 Mart neer 1973 SHJ. R R -193J-· HSZ 12 24

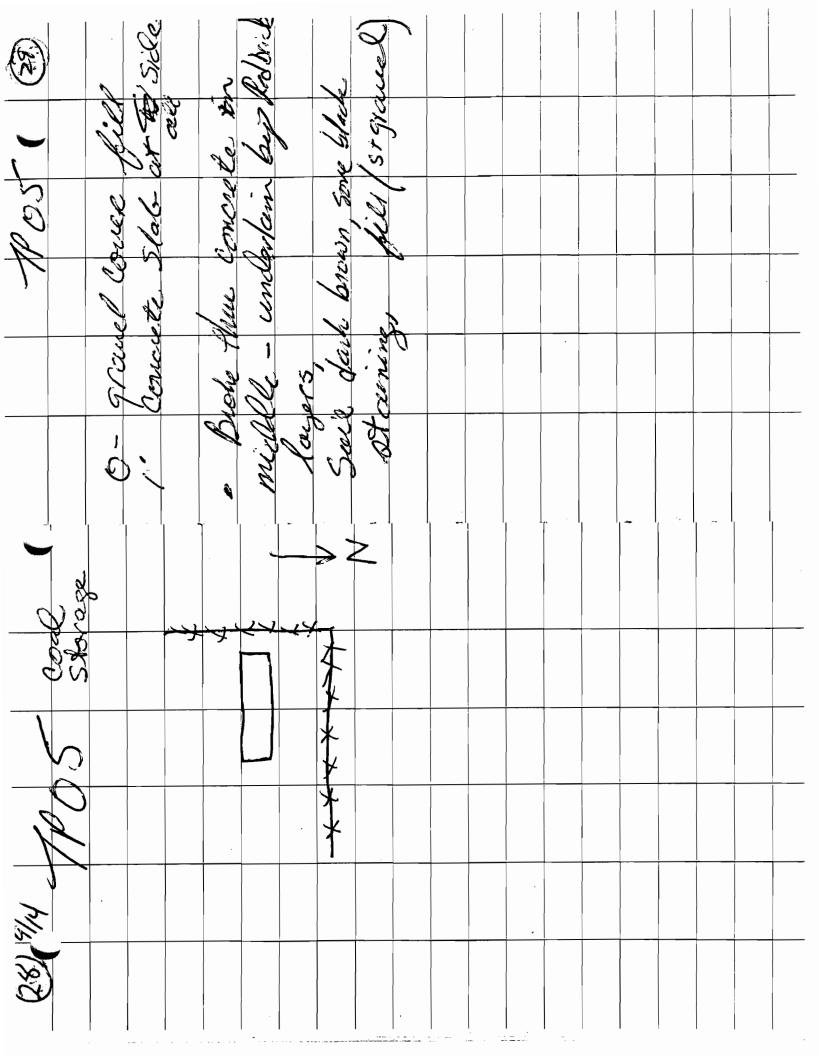

(h)(1' peat 'Sh to continue measurements Utel Sale tee all ledeline in 125 6112 andbrim ine to be Buildry area 1295. ন্তু led v Phe 6/ 1932 100 april 11, 4913 3/19 refer 08 20 500 z fel 8, 1878 BORN 283 AG 549 ڊ ځ م C. C. R. of deecla -Sciper Lumber CO H. Fin d lay Curil 04 426 John H. Murray William M. Sayer 150 x 125 × Our Duilling 100 lot described Broch 541 lectlo 7297 Slated Seyo Oche book 76200 C)

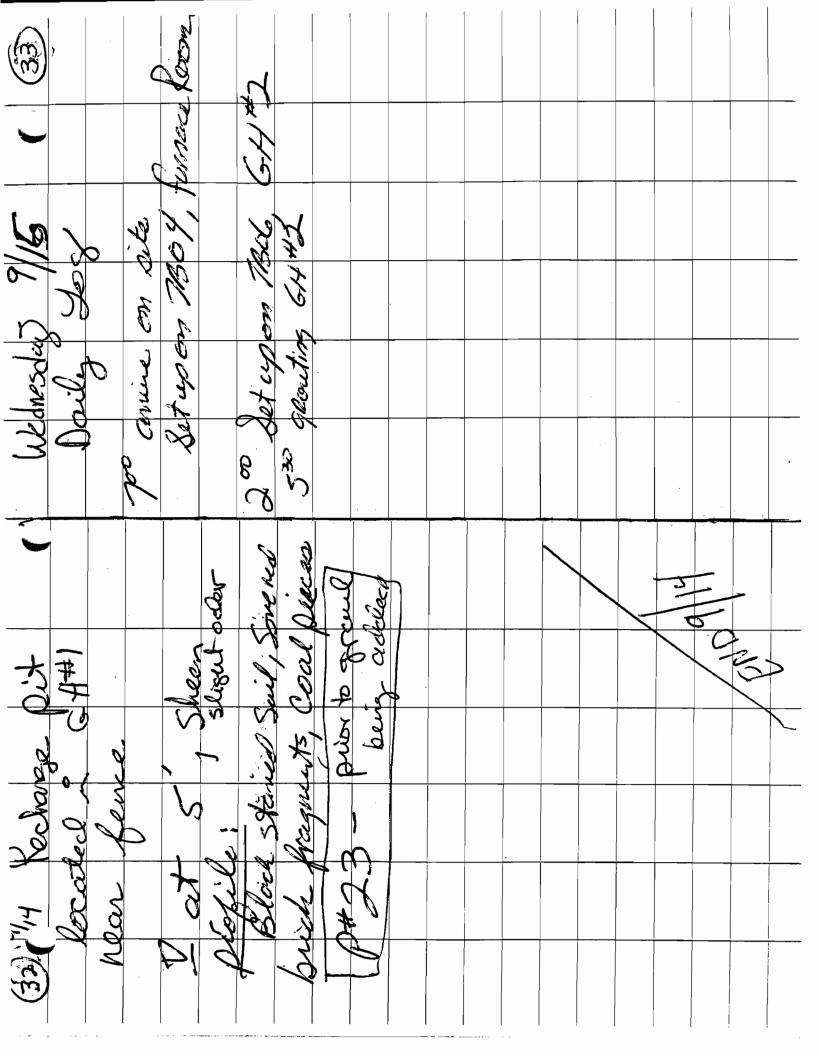

aug C the fur area Sists Okd Z inhere 6 Quet Houle Ser Toni did not mark ou needs to J. XXX V le did took at will be recled to N'W dother marked and Q Lenes pipe is stored. Upgherdrang Well clare to Side the with MW Cluster The seal of these Then. Cure the ł 12 big clear - NVSP9 and fixit a Swier ound by NJES NW Comarch dite -Hobeleps Cond Mark Dout excepted Says if we het it - this 10 gas Main YUNS Phrallel to LULA 15 de g ling for the Blg-. Nead to keep within force No Way to Mark. I court And And gas live Non Blag parting ofer ou Setween the two 42 Pho NE River R. Wall brezio 21 Jalk af Ton to the " Je α × 9

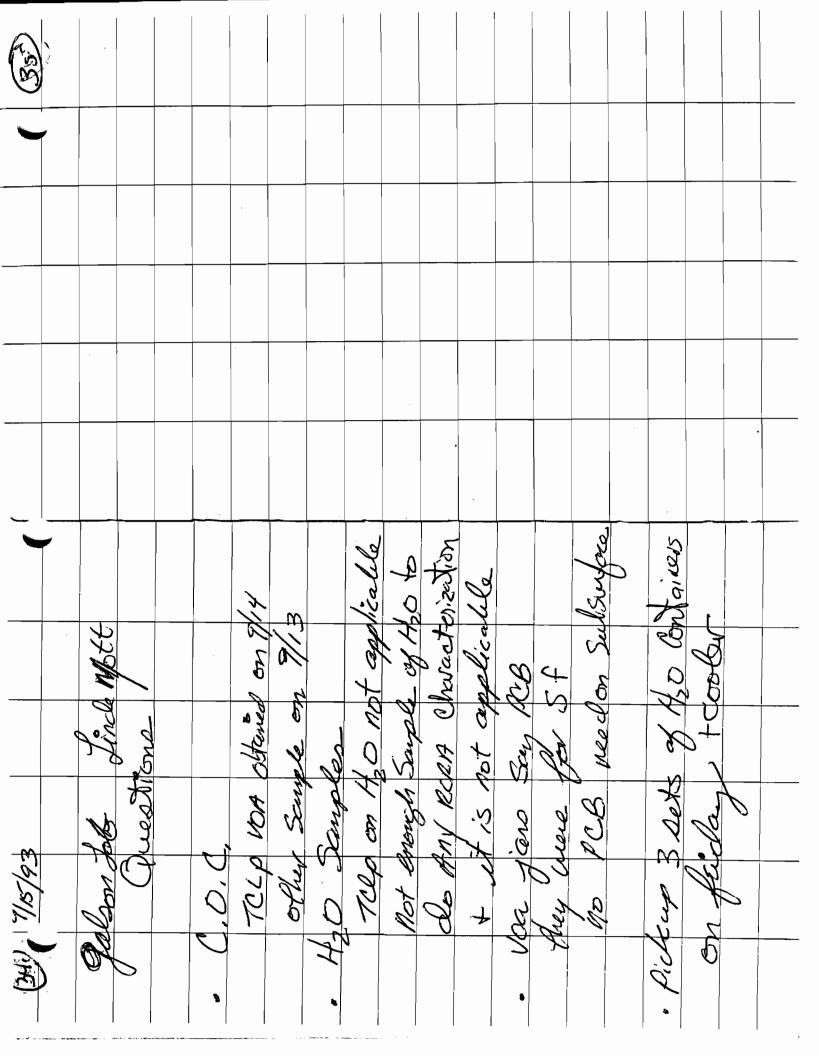

1 Deuty, Los al 1)UM march 1103 , 5 hrs Backhoe - 10 hrs lite. Conered DRilling ' Jeane Uecon 19 2. Moreel twick bygin deempod Satur Mackto get wood for bankal have to wait to have & Moved Called RL Send on Emora Detty Equipment PID Calib TRD, UPD, TB, Made Laves (PW) I ID is not appreclule TPO2 + TPO2 A Backbill 10 1 PUNEWER 13" Actor Clark 30- Steam Cleaning 70-01 lecon 1003 Daily Log 1040 arie on Site State Trova More and TPI 5-45 25 001 $\mathcal{U}_{\mathbb{R}}$

hie prechs - 301 Black String HO at bettom of Excertion oil Sheer on \$, Show Ho Service. (\mathfrak{C}) 35 aucle of 12 - meter Sheets wy Some of the priche are tan aled un tornely backs (red + file Dragger benzere = Slight positive Trace wood + Sheet metal (Hoor?) were will - 3' netal pile far adhered alight alor Such 6' - GSVI 79930/66 oler at I primaily North flacing Drichs Contine 5.5'- & wood 2x6 0 ٹ j \geq 6 Concrete foundrition when Bouch with Black Stained Some Boal Stand mone the May be a Undell - Stediel Blicks not tap before dis - lesking North Black Staining In thrun Brick Brown f.C Sand, they graved Emore. alpa focus NW Side of M condrete "churcho" Piedes h'deep Buich Adundation NO DOORS Nothed Red brich frequents 12.5 peurch SAA I-dl-介 D-2 To the \$19 25

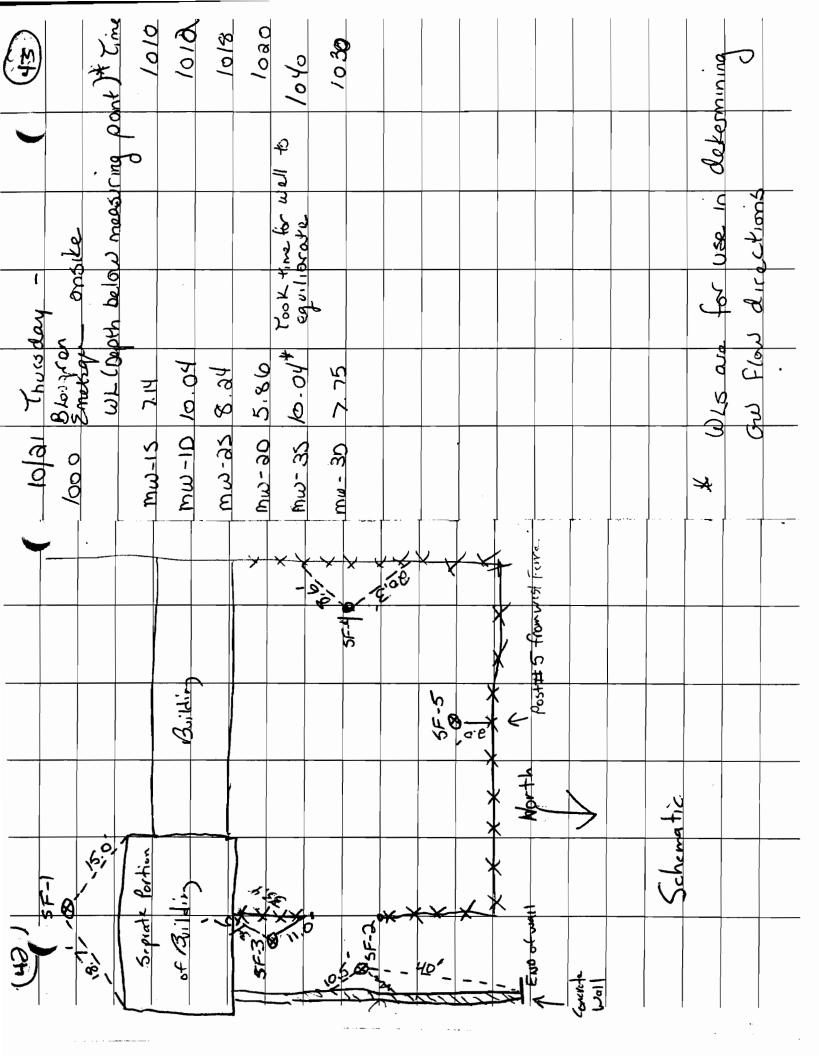





Mest prendent time at wall Weiter Seeps Souly into hole dicla -- No obsidente Shaen (m) grades to Sitt , clay at ut's' is fine Sand 1 Silly Sone Clary 6 Partenal autorile 64 C 2 1 denel for hull waster Christer and Sterrind bild, bich they I entering outside N end of slight odor at 7 feet other Centeret ation on NO OUROUCE of C. T. Dr 13 13 -11 03 Cond is Sample mirede 6'42 at outside of CHZ MOZ Cat 7 feet GSVI7930362 \$\$VI MS9303G MS/MSD


is Richmond + Butter Steven Kence (5) Been Recharge DUT Had NU -, Near MARTUN 9 64#1 Kill Kich aniver 100 7996 v and 502 Wigging losed Stad 10001 10 m <u>C.22</u> 110 10 + NYSEG DEVERE EGALYONN D:105 and way t Will were they pit 1 to amus & do -inshed Pl Jay 9 9 lack the merie Some pipe with Parket dear due to pipilig aleci Roy Bad to be moned i Jul start of Tank they nintodrapher anives the TANK Uncounty Set ab block h buchlor to acced Etert 7054 Cleans up 1004 avine on alte Richael up ICE and gur gur rpbs-1 14/53 IUSday Dailer Ftari E 96 B] 124 630

Dauple Ha for Tuen Wing to full trace block Starning + buick 3 graved fold & Blech top Characterize 17 for petersia 4.5' brewn Sill Clark V at 4.5 No Sheen Sealed up 2 hole with black Cloud Vape + Tracter 10001 1'- 2' Brown Sitt + Olary Maist to daug future disposa p# 19+2021 7112 Shows Seel Doil Drolike 0 # つ J Ŋ Vary alight weller Veryslight film Doil Durocencling the tank NO cuidence of lecks in the Water autside then it 45 Vcellye Dichen apen 2" NO Sheen, V. Slight Odd - under water of -gravel Weiter - clear wy Some ↓ S.Q mide - used Bailon sterk Ohrres Rust when Avidhues = 3/8" 2.7' to grewel SI to Water + holdas at 10/11 -11/0 C 1 mb 7002 0-1 ravenen 12 Cons Tanh



(DC)	(36) 1 Manday 1	October 18, 199							33)
	Geshin MG-P	0	-	1330	Finished	collectin	Somo	4	
	B. Levgren .	on 5th @ 1130		# M4		PH 50	<u>N</u>		
				MW9315	<u>م</u> ا		1600		
1900	Opened welle	e and the following	2	Charae				2	
	water depths	observed.	a"= 0.1666.93/64	Š				•	
	MW# DTW	or 6	1 ,	<u> </u>		- - (9		
	MW 93	tect heet	GALLONS	1335	MWTSID Star	054	irt Rusi	27	
Soli	15 7.23 Muga	a. 15 15.72	2 8 gallons	1415	Finisha 6	Cva i	, M	sallon S	2
1207	10 11.40	37.25 35.85		CEHI	Callet .		\		l
515	25 8.49	31.15 1346			ļ				
1	r		- MO: 1 K	_			Prelat		
101	MW93 11 77	7 56.33 24.36	13gallen)	al c L mW	14,000 6	6.57	703		
1001	35 9.46	24.55 15.09	9 8 gallous	Cha.	Characteris hics = .	1	TTHEN - 3 Kg	.5	to lor
1995	30 12.03	3 38.70 36.67			La ada				
5									
0461	Mw9315	Atre Darie			(-		
140						λ γ	2 L L C	Leine .	
62C	Linished Turgine	in 8 gallens		1455	Finished 1	Pairs	854	ا مرح	
				0051	Collect 5	Sam ple	>		
1310	Collee ted Sample	De	a 2.	Mwt	Temp	H <	Del Cond.	vd.	
			Σ	Mw93 25	-	694	1307		
		15							
,	_	_		_	_		_	_	

3 Here MW-9D Ogint off Silv * Matrix Spitty + MS/D taken -1620 Start to purge MW-9325 1640 Der purging 8 7allous TJulia-Grey in Celon MWH Irmp pH Specond Sachend * apidat - aker MW9335 13.0 6.19 1939 MW9330 13.26 6.38 1205 1700 Collected Sample 1739 Dove Sampling 1900 B. Lovenne 27 Ha dur this well MW# Tim Odier on site and Started to Characteristics : Turbil and Gray Chandter's Lips: Grey 51, 3444 July 1600 Finished Rogin 13 gallens ١ 240/120 Characteristics : Slightly Tubid 1530 MU9320 Start Kining purge MW-933D 1H Pare collection Sample in Color No Odor. Spect 6.40 1238 1665 Collected Sample Grey in color Temp poly 1645 Done Argin HW9320 13.30 AWA (38) 1600 2151 1

1035 Collected Soil Sample SF-OH adjacat Collected Soil sample \$F-03 adjament adjucent to the month fence within decided that the Ship test will be to the west site fince Callected Matrix Spike Duplicale faken here. avea for cars. Matrix Spile and an the east sidened the parking 1040 Collected Soil Sample SF-DS vot working proporty. I + has the applicate sample designated to the Ruce Br the sporge yard taken on I hursday 10-31-93. the storage varch. SF-14. 000 0840 Collected Soil Sample SF-01 in Front of the one story birth building. to water level indicator (5 lope Indicator Compan / M5-936) is MW 93 15 for the Sly figt. The will 0350 Collected Soil sumple SF-02 in the dirt area located on the South side of the storage triacted the It was determined that the depth 0833 Took a water measurment on Tuesday October 19. 1993 Gas Holder # 7 area 8. Lovyren on site 0745 7. 05 V on site is stablizing. 0400 (m) 0 2050

(ASF)					1	-												ية - 1 د	-	
																		- -		
												•.								
)8.	7.77	7.75	7.66	69.7	23	7.49	7,43	7,39	34	7.30	767	al o to)						
	5.35% 7.8(5,75 7	6 MIN 7.				10 min 7.													
			1000													 				
		لم. ر	test											~						
		(2)	ot Omins into	8 .54	8.46	8 9 3 4	8, 34	%	15 = 8 . 34	. 75: 8.20	8, 17	8.13	- 8, 09	0.01	8.03	8.00	7.95	7.90	7.85	
4 v ,		Static	1070	1) 20): ()	11	Imit	1.25=	15 =	1.75:	3.0= 8.17	8.35= 8.13	2.50-8.09	3.75	3,0	3.25	3.75	4.25	Ц. ХS	
6- Tests:																				
S	,	Mw-15	1050							· ·										

(91)											(F)
() - (nu		10.04	10.04 Static		,	26-Cini	Static	\$.0f	F	7. Air	8.71
	D mins	9.60	9. We wat take to tast	tost			0 ΜιΛJ	J.(0	80	8 Min	8.62
	51 8	04.61						- 6 × 9	6	7 Mih	8.54
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	06.67					3 o	9.85	ģ		8.48
	× 45	11.87				, , , , , , , , , , , , , , , , , , ,	45	9.75	11		8.41
8	3	K (2) // (2)					مأمدا	9.68	(م	·	835
×ð	26.12	6h . 11					26./	9.63	/3	~	8.31
	60 ( M.M.	16.11					1.5	9.54			
-+	1.75						1.75	9.49			
3		10.97					~ ~	9.44			
	9. as	10.85			•		a. a.	9.38			
C	ର ଅ.ଅ	μC.01					ي. د	9.32			
	ù.75	10.65			•		27. C	9.27			
(î)	~	ko.57				1	8 M	9.22			
	3.5	Ìo.43					3.5	9.15			
Ý		05.0/					<del>ر</del> 0	9.08			
Z	Ŋ	10.01					4.5	9.01			
S	10	10.15					5.0	8,94			
	9	10.04					e o	8.81			
	end o	end of test									

183										(b)
mus-an		5.86	Static		Jmm-35	i Static	10.04	<u></u> Зф	fo Je	9.99
1150	0 min	5.71			1325 MS	S OMIDS	8.73	و	9. S	9.95
	1525	66.8	<u>H</u>	d of Test		13	10.95	2	7.0	9.90
	R	HE HE		-		30	/0.80	7	7.5	9.87
	45	7.40			~	Ş	10.74	00	~~~	9.83
		7,13				(1)00)	10.69	8	8.5	9.80
	1.25	16.01	5			1.25	10.63	0		9.77
	1.5	6.70				/.5	10.58	6	9.5	9.72
	1.75	6.57				1.75	10.53	/	/0	9.68
	-	6.45			· ·	ي	10.48	/	11	9.65
	2.25	C.32				2.25	10.44	~	د/	9.60
	2.5	(e. 35			-	5.C	10.40	/3	n	9.56
	22.Q	لان.ما				3.75	/0.37	14		9.51
		6.11				m	/0.33	15		9.45
	n n n	<i>لوه . م</i> ک				3.5	10.26	17	7.5	9, 38
	2	5.96		•		4.0	10.19	20		9.33
	<u>т</u> . Л	5.90				4.5	10.13	22	S	9. 22
, C	<u>5</u> ,0	5,86				Ś	10.09	30		9.15
A / D		5.8a				5.3	10.01		End of Ts1	Tst tst
	7.0	5.79			~					

(23)								(i)
GP M		7.7	Static	04.1-1	440 B. Lougger	and Eller	Act 3	
Julao	גטיש O	7.60			oft Site	C'il		
	15 200	0						
	30 Sec 8.69	8.69		-				
	45	8.37						
·	(1)09)	8.17						
	کھ .ا	40.8						
,	.5	29.7						
1	1.75	1.87						
1	0.6	7.83						
1	2.95	7.80						
1	д. <i>5</i>	7.78						
1	2.75	,						
1	Э	7.7						
•	ы У	7.72						
1	Ъ	7.70						
1	SA	7.68						
	e	7.69						
		o long	Cleat					

	()																			
~	Net 2	N.																		
	2 Ellen	(h																		
	gra and	54																		
	O B. Lovepren	off																		
	0440			-													ana ana ang ang ang ang ang ang ang ang			
																-				
	í.																		st	
	Static			~	14		<u> </u>	10	4	ŝ	0	20	0		a a	0	ŝ	B	30	•
	1.15	7.60	9.11	e° 60	8.37	8.17	60.8	7.95	18: L		7.80		,		T.Ta	7.70	7.68	T. LA	end of E	
		Cond Cond	15 sec 9.11	30 Sec 8.69	45	(1)00)	<u>کد</u> .ا	5.1	1.75	9.0	2.25	ي ر	2.75	З	У	Ъ	SA A	9)		
	M.30	1400						T	9	1	1		1		· ]	1				