

Mr. Scott Deyette New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway, 11th Floor Albany, New York 12233-7014

Date: November 1, 2021

Our Ref: 30075710

Subject: 2021 Post-Construction Monitoring Report Goshen Former Manufactured Gas Plant Site

NYSDEC Site No. 3-36-046

Arcadis of New York, Inc. One Lincoln Center 110 West Fayette Street Suite 300 Syracuse New York 13202

Phone: 315 446 9120 Fax: 315 449 0017

www.arcadis.com

Dear Mr. Devette,

On behalf of the New York State Electric & Gas Corporation (NYSEG), this letter summarizes the results of the 2021 post-construction monitoring activities for the Goshen Former Manufactured Gas Plant (MGP) site (the site). Arcadis of New York, Inc. (Arcadis) conducted the 2021 monitoring in accordance with the New York State Department of Environmental Conservation- (NYSDEC-) approved March 2021 Site Management Plan (SMP).

For reference, remedial construction was conducted from July through November 2016, and post-construction monitoring was initiated in 2018 (i.e., "Year 1"). 2021 post-construction monitoring represents "Year 4".

2021 Monitoring and Sampling

2021 post-construction monitoring, and sampling activities consisted of the following:

- Conducting semi-annual gauging to assess the presence/absence of non-aqueous phase liquid (NAPL)
- Collecting and analyzing samples to assess groundwater quality
- Conducting a site-wide inspection to assess the condition and effectiveness of the site cover system

Monitoring and sampling activity details are presented below. Well locations are shown on Figure 1.

Semi-Annual NAPL and Water Level Gauging

Arcadis conducted semi-annual NAPL and water level gauging on March 4 and September 13, 2021.

NAPL Gauging Activities and Results

Field personnel used an oil-water interface probe to check for accumulated NAPL and measure the depth of each well.

A summary of the NAPL gauging results from each of the 2021 events is presented in Table 1. NAPL gauging results from 2018 through 2020 are also included in Table 1 for reference. Notable observations from 2021 include the following:

- Consistent with observations from the previous gauging events, trace amounts of NAPL were observed (as blebs on the interface probe) at NAPL monitoring well NMW08-02 during the 2021 gauging events.
- NAPL was not observed or detected in the remaining wells during the 2021 gauging events.

Groundwater Elevation and Flow

Field personnel conducted synoptic water level measurements during the semi-annual gauging events. Depth to water was measured from surveyed marks on the top of the inner well casings and converted to elevations. Groundwater elevation data for each monitoring event are summarized in Table 1. Water table and deep overburden potentiometric maps for the September 2021 monitoring event are presented as Figures 2 and 3, respectively.

The ground surface elevation near the in-situ soil solidification (ISS) mass is approximately 430 to 431 feet above mean sea level (ft AMSL) and the top of the ISS mass elevation is approximately 425 ft AMSL. As expected, the September 2021 water table was encountered within the clean fill material immediately above the ISS mass (i.e., at approximately 426 ft AMSL), and shallow overburden groundwater likely flows above and around the ISS mass. Pre- and post-remediation shallow groundwater flow directions are similar. The September 2021 water table is generally within +/- 1 foot of the previously measured water table elevations, which is expected given historical seasonal fluctuations. In general, the groundwater elevation data indicate that the water table is 0.5 to 1 foot higher during the summer months than during the winter months.

The September 2021 deep potentiometric surface is generally within +/- 3 feet of the 2008-2009 Remedial Investigation measured potentiometric surface. As presented in the 2018 Post-Construction Monitoring Report (dated March 27, 2019), deep monitoring wells are screened at or below the bottom of the ISS mass (i.e., approximately 403 ft AMSL). Given that the permeability of the ISS mass is approximately two orders of magnitude less than that of the deep soils (i.e., fine sand/silt and till), groundwater in the deep overburden near the ISS mass is inferred to mostly flow around and beneath the ISS mass. Downgradient from the ISS mass, preand post-remediation deep groundwater flow directions are generally consistent with those observed during previous monitoring events.

Groundwater Sampling Activities and Results

Arcadis conducted the annual post-remediation groundwater sampling event on September 13, 14, and 15, 2021. Groundwater sampling activities and associated analytical results are summarized below.

Groundwater Sampling Activities

Arcadis field personal collected groundwater samples from each of the monitoring wells included in the monitoring well network (as identified in the SMP) using low-flow groundwater purging and sampling techniques. Note that monitoring well MW08-07S does not recharge adequately to conduct low-flow purging and sampling and therefore, grab samples were collected from this monitoring well. Field personnel also collected and submitted one set of quality assurance/quality control (QA/QC) samples, including a field duplicate, matrix spike, and matrix

spike duplicate for laboratory analysis. Groundwater samples were submitted to Alpha Analytical, Inc. (Alpha) for analysis of:

- Benzene, toluene, ethylbenzene, and xylenes (BTEX) using United States Environmental Protection Agency (USEPA) SW-846 Method 8260C.
- Polycyclic aromatic hydrocarbons (PAHs) using USEPA SW-846 Method 8270D. However, similar to the analyses completed in 2020, the laboratory erroneously analyzed the groundwater samples for PAHs using USEPA SW-846 Modified Method 8270D with Selected Ion Monitoring (SIM), which has a notably lower method detection limit (MDL) and reporting limit (RL) compared to the standard Method 8270D.
- Total cyanide using USEPA SW-846 method 9012B.

Groundwater sampling logs are provided as Attachment 1.

Groundwater Quality

Alpha reported analytical results using NYSDEC Analytical Service Protocol (ASP) Category B data deliverables; the laboratory report is included as Attachment 2. Arcadis validated the data; a Data Usability Summary Report (DUSR) is included as Attachment 3 and validated analytical results are summarized in Table 2.

Analytical results presented in Table 2 are compared to NYSDEC Division of Water Technical and Operational Guidance Series 1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (TOGS 1.1.1) Class GA groundwater quality standards/guidance values. Table 2 also includes analytical results for groundwater samples collected during previous groundwater sampling events (i.e., 2008) Remedial Investigation [RI] and during the January 2019, September 2019, and September 2020 annual monitoring events). Analytical results for the September 2021 groundwater monitoring are summarized below.

BTEX:

- Consistent with previous sampling events, some BTEX compounds were detected at concentrations greater than the Class GA groundwater quality standards in the groundwater sample collected from monitoring well MW08-05S. However, since April 2009, BTEX concentrations continue to show a decreasing trend. BTEX concentrations in the September 2021 samples are as much as an order of magnitude less than previously detected concentrations and only benzene exceeds the Class GA groundwater quality standard.
- At the remaining wells sampled, benzene was either not detected, or detected at a concentration less than its Class GA groundwater quality standard.

PAHs:

- PAHs were detected at concentrations exceeding the Class GA groundwater quality standards or guidance values in groundwater samples from monitoring wells MW93-1D, MW93-1S, MW93-2D, MW93-2S, MW18-04S, MW08-05D, MW08-05S, MW08-06D, MW08-06S, MW-08-07S, and MW08-08S. PAH concentrations detected in groundwater samples from these wells are generally consistent with the previously detected concentrations.
- At monitoring wells MW18-04D, MW18-04S, and MW18-08D, PAHs had not been detected previously, but were detected at low-level concentrations in groundwater samples collected in 2021. As noted above, the SIM analysis completed by the laboratory in 2021 (and in 2020) has a lower MDL and RL, resulting in "new" detections. With the exception of a slight exceedance the Class GA groundwater quality guidance

value for Ideno(1,2,3-cd)pyrene (0.002 micrograms per liter [µg/L]) in the groundwater sample collected from monitoring well MW18-04S, "new" PAHs were detected at concentrations less than Class GA groundwater quality guidance values.

Cyanide:

- Cyanide continues to be detected in site groundwater at concentrations less than the Class GA groundwater quality standard – 200 μg/L standard.
- Cyanide concentrations in groundwater samples collected from monitoring MW93-1D and MW93-1S
 (located side gradient to the ISS mass) are greater than those detected in previous sampling events.
- The remainder of the cyanide concentrations from 2021 samples are generally consistent with those from previous sampling events.

Site Inspections

Arcadis conducted a site inspection to evaluate site usage, general site conditions, and the condition and continued effectiveness of the cover system, in accordance with the SMP. No signs of intrusive site work were observed within the limits of the site cover system. The September 2021 site inspection form is included as Attachment 4.

Waste Management

Arcadis containerized and staged investigation-derived waste (IDW) generated during the groundwater sampling and NAPL gauging activities in appropriately labeled NYSDOT-approved 55-gallon drums. Drums of IDW were subsequently transported off-site for treatment/disposal by NYSEG's waste disposal vendor.

Conclusions and Recommendations

The 2021 (i.e., Year 4) post-construction monitoring results are generally consistent with 2018 post-construction baseline conditions (i.e., Year 1), except for the low-level PAH concentrations detected due to the SIM analysis performed by the laboratory. Based on the 2021 post-construction monitoring results:

- Post-remediation groundwater flow directions are generally consistent with pre-remediation conditions. Groundwater at/near the ISS mass is inferred to flow over and around the mass.
- BTEX concentrations in groundwater downgradient of the ISS mass continue to decrease or remain stable.
- PAH concentrations in groundwater remain consistent with results from previous events.
- Cyanide concentrations in groundwater are generally consistent with results from previous events.

In post-construction Year 5 (i.e., 2022), monitoring and reporting will be completed as required by the SMP. Annual groundwater sampling is tentatively scheduled for September 2022, with NAPL gauging scheduled for March and September 2022. Groundwater samples will continue to be analyzed using the methods presented in the SMP.

As you are aware, NYSDEC issued a letter of Satisfactory Completion on July 7, 2021, and the site has entered the "Site Management" phase. Based on a July 8, 2021, follow-up email from NYSDEC, NYSEG anticipates that the first periodic review report will be due in November 2022.

Please contact Tracy Blazicek of NYSEG at 607.237.5325 or tlblazicek@nyseg.com with any questions or comments.

Sincerely,

Arcadis of New York, Inc.

aren R Melull

^VJason Golubski, PE

Principal Environmental Engineer

Email: jason.golubski@arcadis.com

Direct Line: 315.671.9437 Mobile: 716.597.7620

CC. Kristin Kulow, NYSDOH

Tracy Blazicek, CHMM, NYSEG

Mark Castro, NYSEG Jason Brien, PE, Arcadis Keith White, PG, Arcadis

Enc. Table 1 – NAPL Gauging and Groundwater Elevation Summary

Table 2 – Groundwater Sample Analytical Results Summary

Figure 1 – Monitoring Well Plan

Figure 2 – Shallow Potentiometric Surface Map

Figure 3 - Deep Potentiometric Surface Map

Attachment 1 – Groundwater Sampling Logs

Attachment 2 – Groundwater Laboratory Report

Attachment 3 - Data Usability Summary Report

Attachment 4 - Site Inspection Form

Tables

Table 1
NAPL Gauging and Groundwater Elevation Summary
2021 Post-Construction Monitoring Report
Goshen Former MGP Site - Goshen, New York

			Approximate NAPL			
Well ID / Bere / TIO Floories	Double to Motor	Donth to Bottom	Thickness ⁴	Craum divistor Flavotion		
Well ID / Date / TIC Elevation	Depth to Water (ft bgs)	Depth to Bottom (ft bgs)		Groundwater Elevation (ft AMSL)		
(ft AMSL)	(it bgs)	(it bgs)	(ft)	(It AWSL)		
MW93-1S 435.49	5.05	20.00	0.00	100.01		
3/15/2018	5.25	22.30	0.00	430.24		
6/13/2018	6.32	22.59	0.00	429.17		
9/14/2018	5.25	22.60	0.00	430.24		
1/7/2019	5.36	22.22	0.00	430.13		
3/8/2019	5.91	22.21	0.00	429.58		
6/7/2019	6.08	22.00	0.00	429.41		
9/3/2019	6.30	21.90	0.00	429.19		
12/13/2019	5.09	21.88	0.00	430.40		
3/12/2020	5.30	21.90	0.00	430.19		
7/24/2020	6.15	21.80	0.00	429.34		
9/14/2020	6.53	21.98	0.00	428.96		
12/18/2020	5.90	21.74	0.00	429.59		
3/4/2021	5.29	21.70	0.00	430.20		
9/13/2021	5.53	21.64	0.00	429.96		
MW93-1D 435.80						
3/15/2018	8.53	36.70	0.00	427.27		
6/13/2018	9.91	36.70	0.00	425.89		
9/14/2018	8.50	36.65	0.00	427.30		
1/7/2019	8.33	36.79	0.00	427.47		
3/8/2019	9.79	36.80	0.00	426.01		
6/7/2019	9.68	36.65	0.00	426.12		
9/3/2019	9.72	36.86	0.00	426.08		
12/13/2019	8.24	36.50	0.00	427.56		
3/12/2020	8.93	36.50	0.00	426.87		
7/24/2020	9.62	36.45	0.00	426.18		
9/14/2020	10.08	36.62	0.00	425.72		
12/18/2020	8.90	36.28	0.00	426.90		
3/4/2021	8.75	36.38	0.00	427.05		
9/13/2021	8.77	36.36	0.00	427.03		
MW93-2S 429.53	5	25.55	0.00	427.00		
3/15/2018	NM	NM	0.00	NM		
6/13/2018	NM	NM	0.00	NM		
9/14/2018	8.38	22.00	0.00	421.15		
1/7/2019	8.36	22.20	0.00	421.17		
3/8/2019	8.42	22.15	0.00	421.11		
6/7/2019	8.77	22.00	0.00	420.76		
9/3/2019	9.18	21.91	0.00	420.35		
12/13/2019	8.23	21.90	0.00	421.30		
3/12/2020	9.65	21.99	0.00	419.88		
7/24/2020	9.42	21.99	0.00	420.11		
9/14/2020	9.34	21.92	0.00	420.19		
12/18/2020	8.70	21.72	0.00	420.83		
3/4/2021	8.21	21.85	 	421.32		
		+	0.00			
9/13/2021	8.47	20.81	0.00	421.06		
MW93-2D 429.52						
3/15/2018	NM	NM	0.00	NM		
6/13/2018	NM	NM	0.00	NM		
9/14/2018	4.11	30.90	0.00	425.41		
1/7/2019	3.82	31.89	0.00	425.70		
3/8/2019	5.55	31.15	0.00	423.97		
6/7/2019	5.51	30.52	0.00	424.01		
9/3/2019	5.12	30.86	0.00	424.40		
12/13/2019	3.75	30.85	0.00	425.77		
3/12/2020	6.28	30.83	0.00	423.24		
7/24/2020	5.28	30.80	0.00	424.24		
9/14/2020	5.64	30.84	0.00	423.88		
12/18/2020	4.46	30.79	0.00	425.06		
3/4/2021	4.35	30.90	0.00	425.17		
9/13/2021	4.37	30.79	0.00	425.15		

Table 1
NAPL Gauging and Groundwater Elevation Summary
2021 Post-Construction Monitoring Report
Goshen Former MGP Site - Goshen, New York

			Approximate NAPL	
Well ID / Date / TIC Elevation (ft AMSL)	Depth to Water (ft bgs)	Depth to Bottom (ft bgs)	Thickness ⁴ (ft)	Groundwater Elevation (ft AMSL)
MW18-04S ³ 432.74	(** "9")	(11.32)	(-)	(***********
3/15/2018	NM	NM	NM	NM
6/13/2018	NM	NM	NM	NM
9/14/2018	NM	NM	NM	NM
1/7/2019	11.40	22.52	0.00	421.34
3/8/2019	11.18	22.05	0.00	421.56
6/7/2019	11.57	21.82	0.00	421.17
9/3/2019	11.94	21.76	0.00	420.80
12/13/2019	10.66	21.80	0.00	422.08
3/12/2020	11.63	21.79	0.00	421.11
7/24/2020	NM	NM	NM	NM
9/14/2020	15.66	21.43	0.00	417.08
12/18/2020	15.50	21.15	0.00	417.24
3/4/2021	15.20	21.50	0.00	417.54
9/13/2021	15.49	21.34	0.00	
	15.49	21.34	0.00	417.25
MW18-04D ^{3,5} 432.63	N 19 -			
3/15/2018	NM	NM	NM	NM
6/13/2018	NM	NM	NM	NM
9/14/2018	NM 	NM	NM	NM
1/7/2019	7.70	42.10	0.00	424.93
3/8/2019	8.76	41.62	0.00	423.87
6/7/2019	8.77	41.12	0.00	423.86
9/3/2019	8.52	41.07	0.00	424.11
12/13/2019	7.10	41.00	0.00	425.53
3/12/2020	8.62	41.09	0.00	424.01
7/24/2020	NM	NM	NM	NM
9/14/2020	9.07	41.05	0.00	423.56
12/18/2020	7.98	40.74	0.00	424.65
3/4/2021	7.78	40.95	0.00	424.85
9/13/2021	7.80	40.85	0.00	424.83
MW08-05S 429.50				
3/15/2018	6.91	18.30	0.00	422.59
6/13/2018	7.30	18.28	0.00	422.20
9/14/2018	6.80	18.35	0.00	422.70
1/7/2019	7.10	18.40	0.00	422.40
3/8/2019	6.95	18.53	0.00	422.55
6/7/2019	7.20	18.50	0.00	422.30
9/3/2019	7.66	18.40	0.00	421.84
12/13/2019	6.85	18.40	0.00	422.65
3/12/2020	7.65	18.40	0.00	421.85
7/24/2020	7.51	18.40	0.00	421.99
9/14/2020	7.64	18.44	0.00	421.86
12/18/2020	7.40	18.23	0.00	422.10
3/4/2021	6.26	18.35	0.00	423.24
9/13/2021	6.96	18.26	0.00	422.54
MW08-05D 429.48	0.00	13.20	3.00	722.07
3/15/2018	3.88	35.70	0.00	425.60
6/13/2018	5.42		0.00	
	4.12	35.75		424.06
9/14/2018 1/7/2019	3.88	35.85 36.85	0.00	425.36
3/8/2019	5.52	36.00	0.00	425.60
6/7/2019	5.52	35.63	0.00	423.96
9/3/2019			0.00	423.97
	5.02	35.71	0.00	424.46
12/13/2019	3.74	35.62	0.00	425.74
3/12/2020	5.26	35.70	0.00	424.22
7/24/2020	5.25	35.49	0.00	424.23
9/14/2020	5.61	35.70	0.00	423.87
12/18/2020	4.38	35.44	0.00	425.10
3/4/2021	4.32	35.55	0.00	425.16
9/13/2021	4.55	35.22	0.00	424.93

Table 1
NAPL Gauging and Groundwater Elevation Summary
2021 Post-Construction Monitoring Report
Goshen Former MGP Site - Goshen, New York

			Approximate NAPL	
Well ID / Date / TIC Elevation	Depth to Water	Depth to Bottom	Thickness⁴	Groundwater Elevation
(ft AMSL)	(ft bgs)	(ft bgs)	(ft)	(ft AMSL)
MW08-06S 428.60				
3/15/2018	NM	NM	0.00	NM
6/13/2018	8.87	19.62	0.00	419.73
9/14/2018	8.32	19.70	0.00	420.28
1/7/2019	8.04	19.85	0.00	420.56
3/8/2019	8.51	19.70	0.00	420.09
6/7/2019	8.74	19.70	0.00	419.86
9/3/2019	8.76	19.75	0.00	419.84
12/13/2019	7.86	19.70	0.00	420.74
3/12/2020	8.69	19.66	0.00	419.91
7/24/2020	8.98	19.65	0.00	419.62
9/14/2020	9.18	19.70	0.00	419.42
12/18/2020	8.60	19.63	0.00	420.00
3/4/2021	7.95	12.55	0.00	420.65
9/13/2021	8.57	19.75	0.00	420.03
MW08-06D 428.61				
3/15/2018	NM	NM	0.00	NM
6/13/2018	4.44	39.52	0.00	424.17
9/14/2018	3.05	39.60	0.00	425.56
1/7/2019	2.81	40.13	0.00	425.80
3/8/2019	4.60	39.60	0.00	424.01
6/7/2019	4.52	40.61	0.00	424.09
9/3/2019	4.20	39.50	0.00	424.41
12/13/2019	2.75	39.66	0.00	425.86
3/12/2020	4.26	39.55	0.00	424.35
7/24/2020	4.20	39.55	0.00	424.41
9/14/2020	4.64	39.80	0.00	423.97
12/18/2020	3.52	39.48	0.00	425.09
3/4/2021	3.52	39.48	0.00	425.09
9/13/2021	3.43	39.51	0.00	425.18
MW08-07S 435.90	0.10	30.01	0.00	120.10
3/15/2018	3.52	15.55	0.00	432.38
6/13/2018	6.82	15.54	0.00	429.08
9/14/2018	4.32	15.58	0.00	431.58
1/7/2019	1.59	15.61	0.00	434.31
3/8/2019	4.26	15.60	0.00	431.64
6/7/2019	6.17	15.57	0.00	429.73
9/3/2019	6.90	15.50	0.00	429.00
12/13/2019	3.61	15.57	0.00	432.29
3/12/2020	6.42	15.55	0.00	429.48
7/24/2020	6.65	15.54	0.00	429.25
9/14/2020	7.08	18.55	0.00	428.82
12/18/2020	6.30	15.49	0.00	429.60
3/4/2021	3.53	15.58	0.00	432.37
9/13/2021	5.23	15.54	0.00	430.67
	J.ZJ	13.34	0.00	430.07
MW08-07D 435.77	0.07	20.05	0.00	405.00
3/15/2018	9.87	38.85	0.00	425.90
6/13/2018	11.26	38.96	0.00	424.51
9/14/2018	10.10	39.03	0.00	425.67
1/7/2019	9.65	31.15	0.00	426.12
3/8/2019	11.34	39.07	0.00	424.43
6/7/2019	11.29	38.90	0.00	424.48
9/3/2019	11.04	38.95	0.00	424.73
12/13/2019	9.53	38.90	0.00	426.24
3/12/2020	10.99	38.91	0.00	424.78
7/24/2020	11.01	38.90	0.00	424.76
9/14/2020	11.35	38.92	0.00	424.42
12/18/2020	10.20	38.55	0.00	425.57
3/4/2021	10.07	38.98	0.00	425.70
9/13/2021	10.11	38.92	0.00	425.66

Table 1
NAPL Gauging and Groundwater Elevation Summary
2021 Post-Construction Monitoring Report
Goshen Former MGP Site - Goshen, New York

			Annuaring to NADI	1
W U.B. (B.) (E10 E1)	Double to Water	Double to Dottom	Approximate NAPL Thickness ⁴	Construction Elevation
Well ID / Date / TIC Elevation (ft AMSL)	Depth to Water (ft bgs)	Depth to Bottom (ft bgs)	(ft)	Groundwater Elevation (ft AMSL)
MW08-08S 430.61	(It bys)	(it bys)	(11)	(It AWSL)
3/15/2018	5.93	12.25	0.00	424.68
6/13/2018	5.20	12.23	0.00	425.41
9/14/2018	4.15	12.32	0.00	426.46
1/7/2019	4.51	12.40	0.00	426.10
3/8/2019	4.85	12.50	0.00	425.76
6/7/2019	5.17	12.58	0.00	425.44
9/3/2019	4.88	12.55	0.00	425.73
12/13/2019	4.21	12.50	0.00	426.40
3/12/2020	5.18	12.58	0.00	425.43
7/24/2020	4.96	12.52	0.00	425.65
9/14/2020	5.01	12.54	0.00	425.60
12/18/2020	4.74	12.50	0.00	425.87
3/4/2021	4.55	12.55	0.00	426.06
9/13/2021	4.36	12.57	0.00	426.25
MW18-08D ³ 432.33				
3/15/2018	NM	NM	NM	NM
6/13/2018	NM	NM	NM	NM
9/14/2018	NM	NM	NM	NM
1/7/2019	6.82	37.19	NM	425.51
3/8/2019	8.47	37.00	0.00	423.86
6/7/2019	8.46	36.60	0.00	423.87
9/3/2019	8.00	36.67	0.00	424.33
12/13/2019	6.69	36.65	0.00	425.64
3/12/2020	8.23	36.61	0.00	424.10
7/24/2020	8.22	36.60	0.00	424.11
9/14/2020	8.54	36.62	0.00	423.79
12/18/2020	7.31	36.41	0.00	425.02
3/4/2021	7.25	36.55	0.00	425.08
9/13/2021	7.27	36.49	0.00	425.06
NMW08-02 429.99				
3/15/2018	NM	NM	0.00	NM
6/13/2018	2.49	21.53	Trace	427.50
9/14/2018	1.54	21.40	Trace	428.45
1/7/2019	1.41	19.85	0.08	428.58
3/8/2019	1.46	21.10	Trace	428.53
6/7/2019	2.01	20.79	Trace	427.98
9/3/2019	NM	NM	NM	NM
12/13/2019	1.70	20.85	Trace	428.29
12/19/2019 ⁶	6.50	21.80	0.00	423.49
3/12/2020	1.69	21.80	Trace	428.30
7/24/2020	1.87	21.75	Trace	428.12
9/14/2020	2.12	21.85	Trace	427.87
12/18/2020	2.09	21.68	Trace	427.90
3/4/2021	1.86	21.72	Trace	428.13
9/13/2021	1.67	21.59	0.00	428.32
NMW16-01 429.82				
3/15/2018	2.54	27.54	0.00	427.28
6/13/2018	3.63	27.55	0.00	426.19
9/14/2018	2.46	27.60	0.00	427.36
1/7/2019	2.55	28.46	0.00	427.27
3/8/2019	3.07	29.10	0.00	426.75
6/7/2019	3.25	27.80	0.00	426.57
9/3/2019	3.46	27.54	0.00	426.36
12/13/2019	2.34	27.60	0.00	427.48
3/12/2020	3.54	27.58	0.00	426.28
7/24/2020	3.36	27.70	0.00	426.46
9/14/2020	3.66	27.70	0.00	426.16
12/18/2020	3.22	27.48	0.00	426.60
3/4/2021	2.62	27.70	0.00	427.20
9/13/2021	2.71	27.69	0.00	427.11

Table 1
NAPL Gauging and Groundwater Elevation Summary
2021 Post-Construction Monitoring Report
Goshen Former MGP Site - Goshen, New York

			Approximate NAPL	
Well ID / Date / TIC Floreties	Depth to Water	Depth to Bottom	Thickness ⁴	Groundwater Elevation
Well ID / Date / TIC Elevation (ft AMSL)	(ft bgs)	(ft bgs)	(ft)	(ft AMSL)
NMW16-02 429.88	(it bgs)	(it bgs)	(11)	(It Allioz)
3/15/2018	3.82	40.34	0.00	426.06
6/13/2018	5.24	41.52	0.00	424.64
9/14/2018	3.89	40.43	0.00	425.99
1/7/2019	3.58	41.45	0.00	426.30
3/8/2019	5.01	42.80	0.00	424.87
6/7/2019	5.17	41.00	0.00	424.71
9/3/2019	4.86	40.41	0.00	425.02
12/13/2019	3.42	40.25	0.00	426.46
3/12/2020	5.18	40.40	0.00	424.70
7/24/2020	5.08	40.50	0.00	424.80
9/14/2020	5.52	40.44	0.00	424.36
12/18/2020	4.22	40.42	0.00	425.66
3/4/2021	4.20	40.50	0.00	425.68
9/13/2021	4.22	40.24	0.00	425.66
NMW16-03 429.95				
3/15/2018	1.84	30.85	0.00	428.11
6/13/2018	2.56	31.40	0.00	427.39
9/14/2018	1.60	30.92	0.00	428.35
1/7/2019	1.57	31.82	0.00	428.38
3/8/2019	2.21	32.64	0.00	427.74
6/7/2019	2.28	31.16	0.00	427.67
9/3/2019	2.33	30.88	0.00	427.62
12/13/2019	1.50	31.00	0.00	428.45
3/12/2020	2.49	31.00	0.00	427.46
7/24/2020	2.39	30.88	0.00	427.56
9/14/2020	2.68	31.14	0.00	427.27
12/18/2020	2.17	30.86	0.00	427.78
3/4/2021	1.72	30.98	0.00	428.23
9/13/2021	1.84	31.01	0.00	428.11
NMW16-04 430.11				
3/15/2018	2.30	32.00	0.00	427.81
6/13/2018	2.60	32.00	0.00	427.51
9/14/2018	1.55	32.05	0.00	428.56
1/7/2019	1.73	32.77	Trace	428.38
3/8/2019	2.43	34.00	0.00	427.68
6/7/2019	2.26	32.98	0.00	427.85
9/3/2019	2.32	32.00	0.00	427.79
12/13/2019	1.60	32.08	0.00	428.51
3/12/2020	2.62	32.12	0.00	427.49
7/24/2020	2.38	32.05	0.00	427.73
9/14/2020	2.75 2.21	32.07	0.00	427.36
12/18/2020 3/4/2021	1.93	32.05 32.10	0.00	427.90
			0.00	428.18
9/13/2021	1.85	32.02	0.00	428.26
NMW16-05 430.74	2.24	04.70	2.22	107.10
3/15/2018	3.31	31.79	0.00	427.43
6/13/2018	2.74	31.88	0.00	428.00
9/14/2018	1.50	31.86	0.00	429.24
1/7/2019	1.71 2.30	33.00 33.50	Trace 0.00	429.03 428.44
3/8/2019 6/7/2019	1.98	33.50	0.00	428.44
9/3/2019	1.98	32.73	0.00	428.76
12/13/2019	1.36	31.76	0.00	429.38
3/12/2020	2.38	31.88	0.00	429.36
7/24/2020	2.24	31.85	0.00	428.50
9/14/2020	2.81	32.18	0.00	427.93
12/18/2020	1.93	31.52	0.00	428.81
3/4/2021	1.65	31.55	0.00	429.09
9/13/2021	1.60	32.05	0.00	429.14
		52.00	0.00	723.17

Table 1 NAPL Gauging and Groundwater Elevation Summary 2021 Post-Construction Monitoring Report Goshen Former MGP Site - Goshen, New York

Acronyms and Abbreviations:

AMSL = above mean sea level ft = feet NAPL = Non-Aqueous Phase Liquid NM = not measured

TIC = top of inner casing

Notes:

- 1. NAPL gauging and water level data collected by Arcadis on the dates indicated.
- 2. Elevations are shown in feet above mean sea level (AMSL) relative to the North American Vertical Datum of 1988 (NAVD88).
- 3. Monitoring well installed in December 2018 to replace missing wells.
- 4. "Trace" indicates that NAPL blebs were observed on interface probe/tape.
- 5. Monitoring well resurveyed on October 30, 2020.
- 6. Approximately 4 gallons of NAPL/water/sediment mixture removed from well on date indicated. DTW recorded immediately after pumping.

Table 2
Groundwater Sample Analytical Results Summary
2021 Post-Construction Monitoring Report
Goshen Former MGP Site - Goshen, New York

Location ID:	NYSDEC TOGS Standards and	MW93-1D							MW93-1S			
Date Collected:	Guidance Values ³	Units	10/07/08	01/08/19	09/04/19	09/15/20	09/13/21	10/06/08	01/08/19	09/05/19	09/15/20	09/13/21
Volatile Organics												
Benzene	1	μg/L	1.0 U	1.0 U	0.50 U	0.50 U	0.50 U	1.0 U	1.0 U [1.0 U]	0.50 U	0.50 U	0.50 U
Ethylbenzene	5	μg/L	1.0 U	1.0 U	2.5 U	2.5 U	2.5 U	1.0 U	1.0 U [1.0 U]	2.5 U	2.5 U	2.5 U
m-Xylene & p-Xylene		μg/L	NA	2.0 U	2.5 U	2.5 U	2.5 U	NA	2.0 U [2.0 U]	2.5 U	2.5 U	2.5 U
o-Xylene		μg/L	NA	1.0 U	2.5 U	2.5 U	2.5 U	NA	1.0 U [1.0 U]	2.5 U	2.5 U	2.5 U
Toluene	5	μg/L	1.0 U	1.0 U	2.5 U	2.5 U	2.5 U	1.0 U	1.0 U [1.0 U]	2.5 U	2.5 U	2.5 U
Xylenes (total)	5	μg/L	3.0 U	2.0 U	2.5 U	2.5 U	2.5 U	3.0 U	2.0 U [2.0 U]	2.5 U	2.5 U	2.5 U
Total BTEX		μg/L	ND	ND	ND	ND	ND	ND	ND [ND]	ND	ND	ND
Semivolatile Organics												
Acenaphthene	20	μg/L	5.0 U	5.0 U	2.0 U	0.10 U	0.10 U	5.0 U	25 U [25 U]	2.0 U	0.10 U	0.10 U
Acenaphthylene		μg/L	5.0 U	5.0 U	2.0 U	0.020 J	0.090 J	5.0 U	2.4 J [25 U]	2.0 U	0.13	0.27
Anthracene	50	μg/L	5.0 U	5.0 U	2.0 U	0.10 U	0.070 J	5.0 U	1.5 J [25 U]	2.0 U	0.090 J	0.31
Benzo(a)anthracene	0.002	μg/L	5.0 U	5.0 U	2.0 U	0.060 J	0.11	0.60 J	8.3 J [4.8 J]	2.0 U	0.49	0.70
Benzo(a)pyrene	ND	μg/L	5.0 U	5.0 U	2.0 U	0.080 J	0.14	0.80 J	11 J [7.5 J]	2.0 U	0.71	0.95
Benzo(b)fluoranthene	0.002	μg/L	5.0 U	5.0 U	2.0 U	0.090 J	0.20	1.0 J	15 J [9.9 J]	2.0 U	0.87	1.4
Benzo(g,h,i)perylene		μg/L	5.0 U	5.0 U	2.0 U	0.070 J	0.13	0.70 J	8.7 J [5.6 J]	2.0 U	0.49	0.86
Benzo(k)fluoranthene	0.002	μg/L	5.0 U	5.0 U	2.0 U	0.040 J	0.070 J	0.50 J	6.4 J [3.9 J]	2.0 U	0.35	0.46
Chrysene	0.002	μg/L	5.0 U	5.0 U	2.0 U	0.040 J	0.090 J	0.50 J	8.2 J [5.4 J]	2.0 U	0.42	0.61
Dibenzo(a,h)anthracene		μg/L	5.0 U	5.0 U	2.0 U	0.10 U	0.020 J	5.0 U	2.9 J [25 U]	2.0 U	0.10	0.18
Fluoranthene	50	μg/L	5.0 U	5.0 U	2.0 U	0.060 J	0.13	0.90 J	13 J [8.3 J]	2.0 U	0.76	0.84
Fluorene	50	μg/L	5.0 U	5.0 U	2.0 U	0.10 U	0.030 J	5.0 U	25 U [25 U]	2.0 U	0.030 J	0.030 J
Indeno(1,2,3-cd)pyrene	0.002	μg/L	5.0 U	5.0 U	2.0 U	0.060 J	0.14	0.60 J	7.8 J [5.3 J]	2.0 U	0.55	0.96
2-Methylnaphthalene		μg/L	NA	NA	NA	NA	0.020 J	NA	NA	NA	NA	0.10 U
Naphthalene	10	μg/L	5.0 U	5.0 U	2.0 U	2.5 U	0.18 UB	5.0 U	25 U [25 U]	2.0 U	2.5 U	0.070 J
Phenanthrene	50	μg/L	5.0 U	5.0 U	2.0 U	0.10 U	0.080 J	5.0 U	3.2 J [25 U]	2.0 U	0.19	0.19
Pyrene	50	μg/L	5.0 U	5.0 U	2.0 U	0.070 J	0.13	0.80 J	12 J [7.3 J]	2.0 U	0.70	0.78
Total PAHs		μg/L	ND	ND	ND	0.59 J	1.63 J	6.4 J	100 J [58 J]	ND	5.88 J	8.61 J
Miscellaneous												
Cyanide	200	μg/L	10.0 U	6.2 J	5.0 UB	5.0 U	28 J	10.0 U	7.6 J [8.6 J]	5.0 U	5.0 U	31 J

Table 2
Groundwater Sample Analytical Results Summary
2021 Post-Construction Monitoring Report
Goshen Former MGP Site - Goshen, New York

Location ID:	NYSDEC TOGS Standards and				MW93-2D					MW93-2S		
Date Collected:		Units	10/08/08	01/08/19	09/04/19	09/15/20	09/13/21	10/07/08	01/08/19	09/05/19	09/15/20	09/13/21
Volatile Organics					·							
Benzene	1	μg/L	1.0 U	1.0 U	0.50 U [0.50 U]	0.18 J	0.50 U	1.0 U	1.0 U	0.50 U	0.19 J	0.50 U
Ethylbenzene	5	μg/L	1.0 U	1.0 U	2.5 U [2.5 U]	2.5 U	2.5 U	1.0 U	1.0 U	2.5 U	2.5 U	2.5 U
m-Xylene & p-Xylene		μg/L	NA	2.0 U	2.5 U [2.5 U]	2.5 U	2.5 U	NA	2.0 U	2.5 U	2.5 U	2.5 U
o-Xylene		μg/L	NA	1.0 U	2.5 U [2.5 U]	2.5 U	2.5 U	NA	1.0 U	2.5 U	2.5 U	2.5 U
Toluene	5	μg/L	1.0 U	1.0 U	2.5 U [2.5 U]	2.5 U	2.5 U	1.0 U	1.0 U	2.5 U	2.5 U	2.5 U
Xylenes (total)	5	μg/L	3.0 U	2.0 U	2.5 U [2.5 U]	2.5 U	2.5 U	3.0 U	2.0 U	2.5 U	2.5 U	2.5 U
Total BTEX		μg/L	ND	ND	ND [ND]	0.18 J	ND	ND	ND	ND	0.19 J	ND
Semivolatile Organics												
Acenaphthene	20	μg/L	5.0 U	5.0 U	2.0 U [2.0 U]	0.10 U	0.11	5.0 U	5.0 U	2.0 U	0.10 U	0.10 U
Acenaphthylene		μg/L	5.0 U	5.0 U	2.0 U [2.0 U]	0.10 U	0.14	5.0 U	5.0 U	2.0 U	0.10 U	0.020 J
Anthracene	50	μg/L	5.0 U	5.0 U	2.0 U [2.0 U]	0.10 U	0.12	5.0 U	5.0 U	2.0 U	0.10 U	0.10 U
Benzo(a)anthracene	0.002	μg/L	5.0 U	5.0 U	2.0 U [2.0 U]	0.030 J	0.13	5.0 U	5.0 U	2.0 U	0.10 U	0.10 U
Benzo(a)pyrene	ND	μg/L	5.0 U	5.0 U	2.0 U [2.0 U]	0.030 J	0.11	5.0 U	5.0 U	2.0 U	0.10 U	0.10 U
Benzo(b)fluoranthene	0.002	μg/L	5.0 U	5.0 U	2.0 U [2.0 U]	0.040 J	0.13	5.0 U	5.0 U	2.0 U	0.10 U	0.010 J
Benzo(g,h,i)perylene		μg/L	5.0 U	5.0 U	2.0 U [2.0 U]	0.030 J	0.12	5.0 U	5.0 U	2.0 U	0.10 U	0.10 U
Benzo(k)fluoranthene	0.002	μg/L	5.0 U	5.0 U	2.0 U [2.0 U]	0.020 J	0.11	5.0 U	5.0 U	2.0 U	0.10 U	0.10 U
Chrysene	0.002	μg/L	5.0 U	5.0 U	2.0 U [2.0 U]	0.020 J	0.11	5.0 U	5.0 U	2.0 U	0.10 U	0.10 U
Dibenzo(a,h)anthracene		μg/L	5.0 U	5.0 U	2.0 U [2.0 U]	0.10 U	0.12	5.0 U	5.0 U	2.0 U	0.10 U	0.10 U
Fluoranthene	50	μg/L	5.0 U	5.0 U	2.0 U [2.0 U]	0.040 J	0.13	5.0 U	5.0 U	2.0 U	0.10 U	0.020 J
Fluorene	50	μg/L	5.0 U	5.0 U	2.0 U [2.0 U]	0.10 U	0.14	5.0 U	5.0 U	2.0 U	0.030 J	0.020 J
Indeno(1,2,3-cd)pyrene	0.002	μg/L	5.0 U	5.0 U	2.0 U [2.0 U]	0.030 J	0.12	5.0 U	5.0 U	2.0 U	0.10 U	0.10 U
2-Methylnaphthalene		μg/L	NA	NA	NA [NA]	NA	0.14	NA	NA	NA	NA	0.020 J
Naphthalene	10	μg/L	5.0 U	5.0 U	2.0 U [2.0 U]	1.7 J	0.38	5.0 U	5.0 U	2.0 U	2.5 U J	0.14
Phenanthrene	50	μg/L	5.0 U	5.0 U	2.0 U [2.0 U]	0.030 J	0.17	5.0 U	5.0 U	2.0 U	0.040 J	0.10 UB
Pyrene	50	μg/L	5.0 U	5.0 U	2.0 U [2.0 U]	0.040 J	0.12	5.0 U	5.0 U	2.0 U	0.10 U	0.020 J
Total PAHs		μg/L	ND	ND	ND [ND]	2.01 J	2.40	ND	ND	ND	0.1 J	0.29 J
Miscellaneous												
Cyanide	200	μg/L	10.0 UJ	10.0 U	5.0 U [5.0 U]	5.0 U	5 UJ	67.0	9.7 J	18	4.0 J	7 J

Table 2
Groundwater Sample Analytical Results Summary
2021 Post-Construction Monitoring Report
Goshen Former MGP Site - Goshen, New York

Location ID:	NYSDEC TOGS Standards and		MW08-04D ⁵		MV	V18-04D		MW08-04S ⁵		MW18-04S			
Date Collected:	Guidance Values ³	Units	03/31/09	01/07/19	09/04/19	09/15/20	09/13/21	03/31/09	01/07/19	09/05/19	09/15/20	09/13/21	
Volatile Organics			·					<u> </u>					
Benzene	1	μg/L	1.0 U	1.0 U	0.50 U	0.50 U [0.50 U]	0.50 U	1.0 U	1.0 U	0.50 U	0.50 U	0.50 U	
Ethylbenzene	5	μg/L	1.0 U	1.0 U	2.5 U	2.5 U [2.5 U]	2.5 U	1.0 U	1.0 U	2.5 U	2.5 U	2.5 U	
m-Xylene & p-Xylene		μg/L	NA	2.0 U	2.5 U	2.5 U [2.5 U]	2.5 U	NA	2.0 U	2.5 U	2.5 U	2.5 U	
o-Xylene		μg/L	NA	1.0 U	2.5 U	2.5 U [2.5 U]	2.5 U	NA	1.0 U	2.5 U	2.5 U	2.5 U	
Toluene	5	μg/L	1.0 U	1.0 U	2.5 U	2.5 U [2.5 U]	2.5 U	1.0 U	1.0 U	2.5 U	2.5 U	2.5 U	
Xylenes (total)	5	μg/L	2.0 U	2.0 U	2.5 U	2.5 U [2.5 U]	2.5 U	2.0 U	2.0 U	2.5 U	2.5 U	2.5 U	
Total BTEX		μg/L	ND	ND	ND	ND [ND]	ND	ND	ND	ND	ND	ND	
Semivolatile Organics													
Acenaphthene	20	μg/L	4.7 U	5.0 U	2.0 U	0.10 U [0.10 U]	0.10 U	4.9 U	5.0 U	2.0 U	0.10 U	0.10 U	
Acenaphthylene		μg/L	4.7 U	5.0 U	2.0 U	0.10 U [0.10 U]	0.010 J	4.9 U	5.0 U	2.0 U	0.10 U	0.10 U	
Anthracene	50	μg/L	4.7 U	5.0 U	2.0 U	0.10 U [0.10 U]	0.10 U	4.9 U	5.0 U	2.0 U	0.10 U	0.10 U	
Benzo(a)anthracene	0.002	μg/L	4.7 U	5.0 U	2.0 U	0.10 U [0.10 U]	0.10 U	4.9 U	5.0 U	2.0 U	0.10 U	0.10 U	
Benzo(a)pyrene	ND	μg/L	4.7 U	5.0 U	2.0 U	0.10 U [0.10 U]	0.10 U	4.9 U	5.0 U	2.0 U	0.10 U	0.10 U	
Benzo(b)fluoranthene	0.002	μg/L	4.7 U	5.0 U	2.0 U	0.10 U [0.10 U]	0.10 U	4.9 U	5.0 U	2.0 U	0.10 U	0.10 U	
Benzo(g,h,i)perylene		μg/L	4.7 U	5.0 U	2.0 U	0.10 U [0.10 U]	0.10 U	4.9 U	5.0 U	2.0 U	0.10 U	0.030 J	
Benzo(k)fluoranthene	0.002	μg/L	4.7 U	5.0 U	2.0 U	0.10 U [0.10 U]	0.10 U	4.9 U	5.0 U	2.0 U	0.10 U	0.10 U	
Chrysene	0.002	μg/L	4.7 U	5.0 U	2.0 U	0.10 U [0.10 U]	0.10 U	4.9 U	5.0 U	2.0 U	0.10 U	0.10 U	
Dibenzo(a,h)anthracene		μg/L	4.7 U	5.0 U	2.0 U	0.10 U [0.10 U]	0.10 U	4.9 U	5.0 U	2.0 U	0.10 U	0.040 J	
Fluoranthene	50	μg/L	4.7 U	5.0 U	2.0 U	0.10 U [0.10 U]	0.10 U	4.9 U	5.0 U	2.0 U	0.10 U	0.10 U	
Fluorene	50	μg/L	4.7 U	5.0 U	2.0 U	0.10 U [0.10 U]	0.10 U	4.9 U	5.0 U	2.0 U	0.10 U	0.10 U	
Indeno(1,2,3-cd)pyrene	0.002	μg/L	4.7 U	5.0 U	2.0 U	0.10 U [0.10 U]	0.10 U	4.9 U	5.0 U	2.0 U	0.10 U	0.020 J	
2-Methylnaphthalene		μg/L	NA	NA	NA	NA	0.10 U	NA	NA	NA	NA	0.10 U	
Naphthalene	10	μg/L	4.7 U	5.0 U	2.0 U	2.5 U [2.5 U]	0.080 J	4.9 U	5.0 U	2.0 U	2.5 U	0.10 U	
Phenanthrene	50	μg/L	4.7 U	5.0 U	2.0 U	0.10 U [0.10 U]	0.10 UB	4.9 U	5.0 U	2.0 U	0.10 U	0.10 U	
Pyrene	50	μg/L	4.7 U	5.0 U	2.0 U	0.10 U [0.10 U]	0.10 U	4.9 U	5.0 U	2.0 U	0.10 U	0.10 U	
Total PAHs		μg/L	ND	ND	ND	ND	0.110 J	ND	ND	2.0 U	ND	0.090 J	
Miscellaneous													
Cyanide	200	μg/L	28.1	10.0 U	5.0 U	5.0 U [5.0 U]	5 UJ	10.0 U	6.5 J	5.0 U	17	8 J	

Table 2
Groundwater Sample Analytical Results Summary
2021 Post-Construction Monitoring Report
Goshen Former MGP Site - Goshen, New York

Location ID:	NYSDEC TOGS Standards and				MW08-05D					MW08-05S		
Date Collected:	Guidance Values ³	Units	03/31/09	01/08/19	09/03/19	09/14/20	09/13/21	04/01/09	01/09/19	09/03/19	09/14/20	09/13/21
Volatile Organics												
Benzene	1	μg/L	230 D [230 D]	1.0 U	0.50 U	0.59	0.50 U [0.50 U]	4,900 D	690	310	130	13
Ethylbenzene	5	μg/L	61 [74]	1.0 U	2.5 U	2.5 U	2.5 U [2.5 U]	360 J	57	33	12	2.1 J
m-Xylene & p-Xylene		μg/L	NA	2.0 U	2.5 U	2.5 U	2.5 U [2.5 U]	NA	39	24	6.0	2.5 U
o-Xylene		μg/L	NA	1.0 U	2.5 U	2.5 U	2.5 U [2.5 U]	NA	29	22	8.2	4.6
Toluene	5	μg/L	1.2 [1.2 J]	1.0 U	2.5 U	2.5 U	2.5 U [2.5 U]	950 D	19	10	3.8	1.7 J
Xylenes (total)	5	μg/L	56 [57]	2.0 U	2.5 U	2.5 U	2.5 U [2.5 U]	800 J	68	46	14.2	2.1 J
Total BTEX		μg/L	350 [360 J]	ND	ND	0.59	ND [ND]	7,000 J	830	400	160	21.4 J
Semivolatile Organics												
Acenaphthene	20	μg/L	4.8 U [4.7 U]	5.0 U	2.0 U	0.11	0.10 U [0.10 U]	21	15 J	7.8	7.2	6.5
Acenaphthylene		μg/L	4.8 U [4.7 U]	5.0 U	2.0 U	0.050 J	0.030 J [0.030 J]	38	12 J	6.5	5.1	3.6
Anthracene	50	μg/L	4.8 U [4.7 U]	5.0 U	2.0 U	0.040 J	0.020 J [0.020 J]	12	7.3 J	1.8 J	1.5	1.6
Benzo(a)anthracene	0.002	μg/L	4.8 U [0.20 J]	5.0 U	2.0 U	0.10 U	0.060 J [0.070 J]	0.59 J	25 U	1.6 J	1.0	1.2
Benzo(a)pyrene	ND	μg/L	4.8 U [4.7 U]	5.0 U	2.0 U	0.10 U	0.060 J [0.070 J]	5.0 U	25 U	0.86 J	0.52	0.62
Benzo(b)fluoranthene	0.002	μg/L	4.8 U [4.7 U]	5.0 U	2.0 U	0.020 J	0.11 [0.13]	5.0 U	25 U	1.1 J	0.54	0.83
Benzo(g,h,i)perylene		μg/L	4.8 U [4.7 U]	5.0 U	2.0 U	0.10 U	0.070 J [0.080 J]	5.0 U	25 U	0.33 J	0.20	0.24
Benzo(k)fluoranthene	0.002	μg/L	4.8 U [4.7 U]	5.0 U	2.0 U	0.010 J	0.030 J [0.040 J]	5.0 U	25 U	0.44 J	0.23	0.25
Chrysene	0.002	μg/L	4.8 U [4.7 U]	5.0 U	2.0 U	0.10 U	0.060 J [0.060 J]	0.40 J	25 U	1.2 J	0.66	0.83
Dibenzo(a,h)anthracene		μg/L	4.8 U [4.7 U]	5.0 U	2.0 U	0.10 U	0.010 J [0.020 J]	5.0 U	25 U	2.0 U	0.060 J	0.080 J
Fluoranthene	50	μg/L	4.8 U [4.7 U]	0.42 J	2.0 U	0.040 J	0.080 J [0.10 J]	8.4	12 J	9.5	8.9	6.5
Fluorene	50	μg/L	4.8 U [4.7 U]	5.0 U	2.0 U	0.33	0.10 U [0.10 U]	60	38	19	19	11
Indeno(1,2,3-cd)pyrene	0.002	μg/L	4.8 U [4.7 U]	5.0 U	2.0 U	0.010 J	0.070 J [0.080 J]	5.0 U	25 U	0.47 J	0.24	0.31
2-Methylnaphthalene		μg/L	NA	NA	NA	NA	0.10 U [0.10 U]	NA	NA	NA	NA	0.060 J
Naphthalene	10	μg/L	6.4 [5.0]	5.0 U	2.0 U	2.5 U	0.090 J [0.10 U]	1,600 D	67	12	22 J	0.26
Phenanthrene	50	μg/L	4.8 U [4.7 U]	5.0 U	2.0 U	0.30	0.10 UB [0.10 UB]	65	31	14	13	2.0
Pyrene	50	μg/L	4.8 U [4.7 U]	0.40 J	2.0 U	0.020 J	0.080 J [0.10 J]	6.3	7.8 J	6.1	5.7	4.1
Total PAHs		μg/L	6.4 [5.2 J]	0.82 J	ND	0.93 J	0.81 J [0.84 J]	2,000 J	190 J	83 J	86 J	39.98 J
Miscellaneous												
Cyanide	200	μg/L	10.0 U [10.0 U]	65	52	75	21 J [48 J]	30.6	38	34	27	29 J

Table 2
Groundwater Sample Analytical Results Summary
2021 Post-Construction Monitoring Report
Goshen Former MGP Site - Goshen, New York

Location ID:	NYSDEC TOGS Standards and				MW08-06D					MW08-06S		
Date Collected:		Units	04/01/09	01/09/19	09/03/19	09/14/20	09/13/21	04/01/09	01/09/19	09/03/19	09/14/20	09/13/21
Volatile Organics												
Benzene	1	μg/L	1.0 U	1.0 U	0.50 U	0.50 U	0.50 U	1.3	1.0 U	0.50 U	0.50 U	0.50 U
Ethylbenzene	5	μg/L	1.0 U	1.0 U	2.5 U	2.5 U	2.5 U	1.0 U	1.0 U	2.5 U	2.5 U	2.5 U
m-Xylene & p-Xylene		μg/L	NA	2.0 U	2.5 U	2.5 U	2.5 U	NA	2.0 U	2.5 U	2.5 U	2.5 U
o-Xylene		μg/L	NA	1.0 U	2.5 U	2.5 U	2.5 U	NA	1.0 U	2.5 U	2.5 U	2.5 U
Toluene	5	μg/L	1.0 U	1.0 U	2.5 U	2.5 U	2.5 U	1.0 U	1.0 U	2.5 U	2.5 U	2.5 U
Xylenes (total)	5	μg/L	2.0 U	2.0 U	2.5 U	2.5 U	2.5 U	2.0 U	2.0 U	2.5 U	2.5 U	2.5 U
Total BTEX		μg/L	ND	ND	ND	ND	ND	1.3	ND	ND	ND	ND
Semivolatile Organics												
Acenaphthene	20	μg/L	4.9 U	5.0 U	2.0 U	0.10 U	0.10 U	4.8 U	5.0 U	2.0 U	0.10 U	0.10 U
Acenaphthylene		μg/L	4.9 U	5.0 U	2.0 U	0.10 U	0.020 J	4.8 U	5.0 U	2.0 U	0.10 U	0.10 U
Anthracene	50	μg/L	4.9 U	5.0 U	2.0 U	0.10 U	0.020 J	4.8 U	5.0 U	2.0 U	0.10 U	0.10 U
Benzo(a)anthracene	0.002	μg/L	4.9 U	5.0 U	2.0 U	0.10 U	0.040 J	4.8 U	5.0 U	2.0 U	0.10 U	0.020 J
Benzo(a)pyrene	ND	μg/L	4.9 U	5.0 U	2.0 U	0.10 U	0.020 J	0.19 J	5.0 U	2.0 U	0.10 U	0.10 U
Benzo(b)fluoranthene	0.002	μg/L	4.9 U	5.0 U	2.0 U	0.10 U	0.030 J	4.8 U	5.0 U	2.0 U	0.10 U	0.10 U
Benzo(g,h,i)perylene		μg/L	4.9 U	5.0 U	2.0 U	0.10 U	0.020 J	4.8 U	5.0 U	2.0 U	0.10 U	0.10 U
Benzo(k)fluoranthene	0.002	μg/L	4.9 U	5.0 U	2.0 U	0.10 U	0.010 J	4.8 U	5.0 U	2.0 U	0.10 U	0.10 U
Chrysene	0.002	μg/L	4.9 U	5.0 U	2.0 U	0.10 U	0.020 J	4.8 U	5.0 U	2.0 U	0.10 U	0.10 U
Dibenzo(a,h)anthracene		μg/L	4.9 U	5.0 U	2.0 U	0.10 U	0.10 U	4.8 U	5.0 U	2.0 U	0.10 U	0.10 U
Fluoranthene	50	μg/L	4.9 U	5.0 U	2.0 U	0.10 U	0.040 J	4.8 U	5.0 U	2.0 U	0.10 U	0.020 J
Fluorene	50	μg/L	4.9 U	5.0 U	2.0 U	0.10 U	0.020 J	4.8 U	5.0 U	2.0 U	0.10 U	0.10 U
Indeno(1,2,3-cd)pyrene	0.002	μg/L	4.9 U	5.0 U	2.0 U	0.10 U	0.020 J	4.8 U	5.0 U	2.0 U	0.10 U	0.10 U
2-Methylnaphthalene		μg/L	NA	NA	NA	NA	0.10 U	NA	NA	NA	NA	0.10 U
Naphthalene	10	μg/L	0.31 J	5.0 U	2.0 U	2.5 U	0.10 UB	0.40 J	5.0 U	2.0 U	2.5 U	0.10 U
Phenanthrene	50	μg/L	4.9 U	5.0 U	2.0 U	0.10 U	0.050 J	4.8 U	5.0 U	2.0 U	0.10 U	0.030 J
Pyrene	50	μg/L	4.9 U	5.0 U	2.0 U	0.10 U	0.050 J	4.8 U	5.0 U	2.0 U	0.10 U	0.020 J
Total PAHs		μg/L	0.31 J	ND	ND	ND	0.440 J	0.59 J	ND	ND	ND	0.090 J
Miscellaneous												
Cyanide	200	μg/L	10.0 U	10.0 U	5.0 U	5.0 U	5 UJ	130	64	56	9	17 J

Table 2
Groundwater Sample Analytical Results Summary
2021 Post-Construction Monitoring Report
Goshen Former MGP Site - Goshen, New York

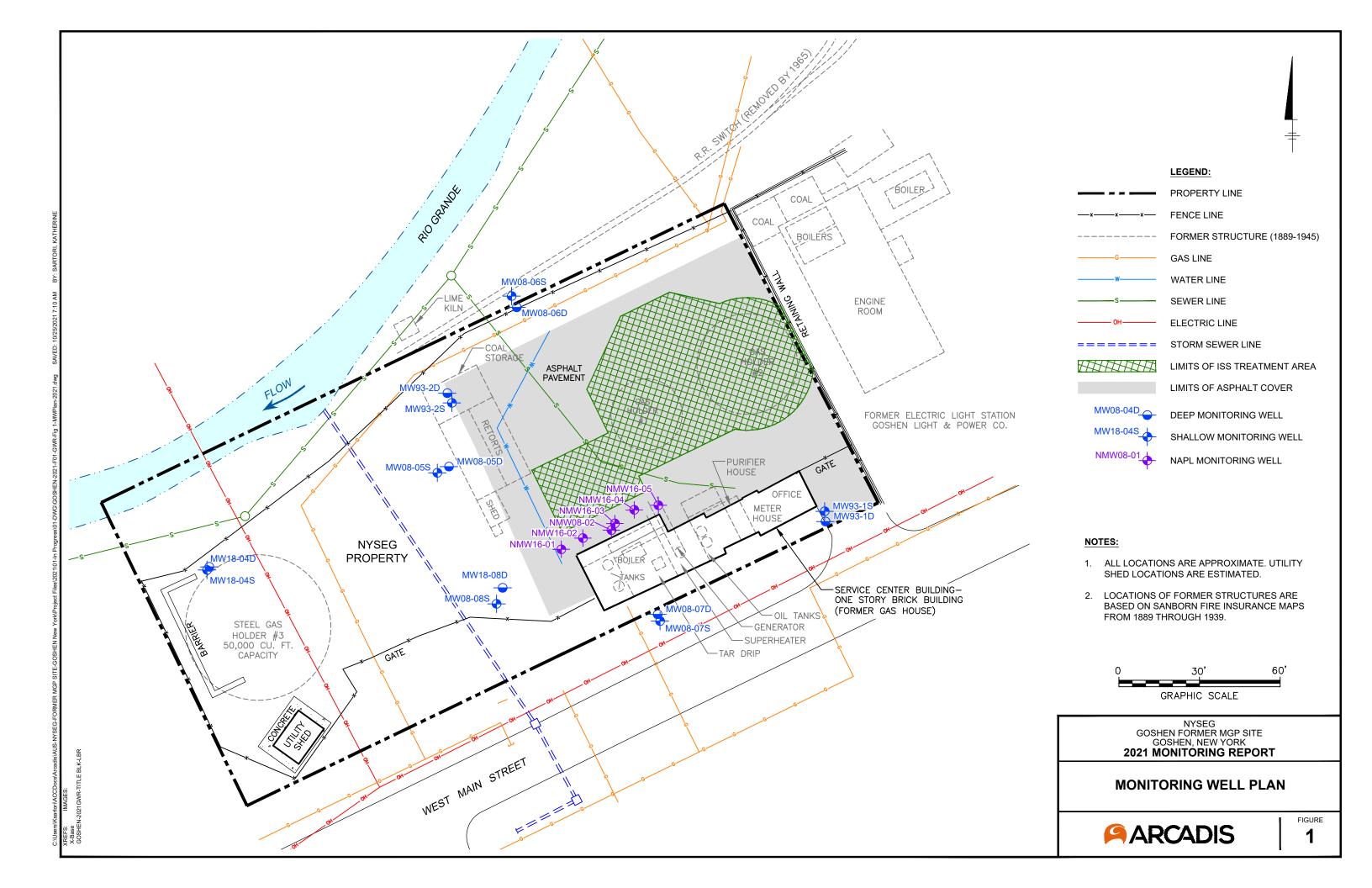
Location ID:	NYSDEC TOGS Standards and				MW08-07D					MW08-07S		
Date Collected:	Guidance Values ³	Units	03/31/09	01/09/19	09/04/19	09/15/20	09/13/21	03/31/09	01/09/19	09/05/19	09/15/20	09/13/21
Volatile Organics												
Benzene	1	μg/L	1.0 U	1.0 U	0.50 U	0.50 U	0.50 U	1.0 U	1.0 U	0.50 U	0.50 U	0.50 U
Ethylbenzene	5	μg/L	1.0 U	1.0 U	2.5 U	2.5 U	2.5 U	1.0 U	1.0 U	2.5 U	2.5 U	2.5 U
m-Xylene & p-Xylene		μg/L	NA	2.0 U	2.5 U	2.5 U	2.5 U	NA	2.0 U	2.5 U	2.5 U	2.5 U
o-Xylene		μg/L	NA	1.0 U	2.5 U	2.5 U	2.5 U	NA	1.0 U	2.5 U	2.5 U	2.5 U
Toluene	5	μg/L	1.0 U	1.0 U	2.5 U	2.5 U	2.5 U	1.0 U	1.0 U	2.5 U	2.5 U	2.5 U
Xylenes (total)	5	μg/L	2.0 U	2.0 U	2.5 U	2.5 U	2.5 U	2.0 U	2.0 U	2.5 U	2.5 U	2.5 U
Total BTEX		μg/L	ND									
Semivolatile Organics												
Acenaphthene	20	μg/L	4.7 U	5.0 U	2.0 U	0.10 U	0.10 U	4.8 U	25 U	2.0 U	0.10 U	0.10 U
Acenaphthylene		μg/L	4.7 U	5.0 U	2.0 U	0.10 U	0.10 U	4.8 U	25 U	2.0 U	0.020 J	0.030 J
Anthracene	50	μg/L	4.7 U	5.0 U	2.0 U	0.10 U	0.10 U	4.8 U	25 U	2.0 U	0.10 U	0.040 J
Benzo(a)anthracene	0.002	μg/L	4.7 U	5.0 U	2.0 U	0.10 U	0.10 U	4.8 U	25 U	2.0 U	0.080 J	0.090 J
Benzo(a)pyrene	ND	μg/L	4.7 U	5.0 U	2.0 U	0.10 U	0.10 U	4.8 U	25 U	2.0 U	0.090 J	0.080 J
Benzo(b)fluoranthene	0.002	μg/L	4.7 U	5.0 U	2.0 U	0.010 J	0.10 U	4.8 U	25 U	2.0 U	0.12	0.11
Benzo(g,h,i)perylene		μg/L	4.7 U	5.0 U	2.0 U	0.10 U	0.10 U	4.8 U	25 U	2.0 U	0.070 J	0.050 J
Benzo(k)fluoranthene	0.002	μg/L	4.7 U	5.0 U	2.0 U	0.10 U	0.10 U	4.8 U	25 U	2.0 U	0.050 J	0.040 J
Chrysene	0.002	μg/L	4.7 U	5.0 U	2.0 U	0.10 U	0.10 U	4.8 U	25 U	2.0 U	0.060 J	0.060 J
Dibenzo(a,h)anthracene		μg/L	4.7 U	5.0 U	2.0 U	0.10 U	0.10 U	4.8 U	25 U	2.0 U	0.020 J	0.10 U
Fluoranthene	50	μg/L	4.7 U	5.0 U	2.0 U	0.10 U	0.10 U	4.8 U	25 U	2.0 U	0.090 J	0.13
Fluorene	50	μg/L	4.7 U	5.0 U	2.0 U	0.10 U	0.10 U	4.8 U	25 U	2.0 U	0.10 U	0.020 J
Indeno(1,2,3-cd)pyrene	0.002	μg/L	4.7 U	5.0 U	2.0 U	0.10 U	0.10 U	4.8 U	25 U	2.0 U	0.070 J	0.060 J
2-Methylnaphthalene		μg/L	NA	NA	NA	NA	0.10 U	NA	NA	NA	NA	0.10 U
Naphthalene	10	μg/L	4.7 U	5.0 U	2.0 U	2.5 U	0.10 U	4.8 U	25 U	2.0 U	2.5 U	0.10 U
Phenanthrene	50	μg/L	4.7 U	5.0 U	2.0 U	0.10 U	0.10 U	4.8 U	25 U	2.0 U	0.030 J	0.070 J
Pyrene	50	μg/L	4.7 U	5.0 U	2.0 U	0.10 U	0.10 U	4.8 U	25 U	2.0 U	0.090 J	0.12
Total PAHs		μg/L	ND	ND	ND	0.010 J	ND	ND	ND	ND	0.80 J	0.90 J
Miscellaneous												
Cyanide	200	μg/L	10.0 U	5.9 J	5.0 U	5.0 U	5 UJ	10.0 U	12	5.0	6.0	7 J

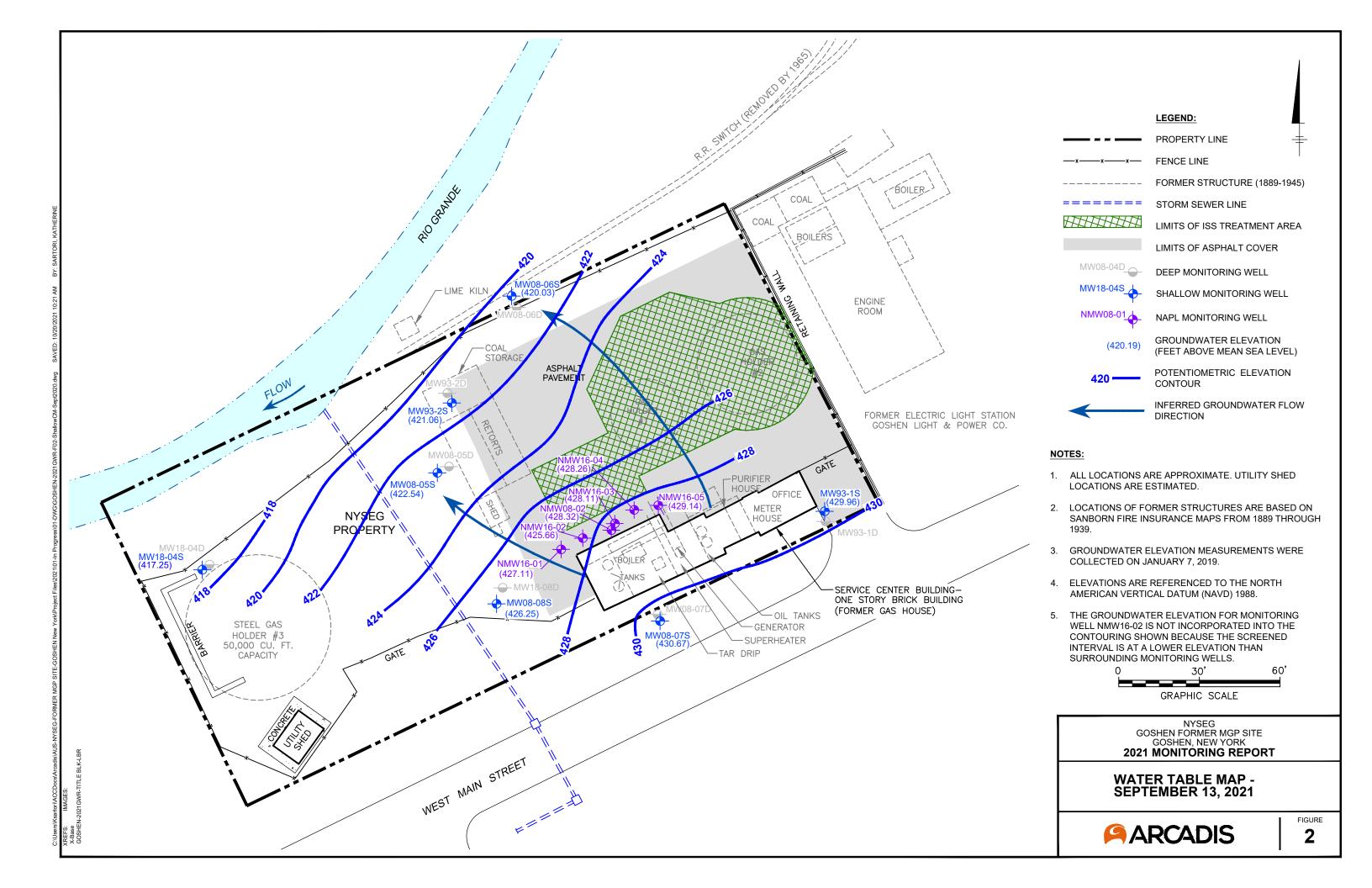
Table 2
Groundwater Sample Analytical Results Summary
2021 Post-Construction Monitoring Report
Goshen Former MGP Site - Goshen, New York

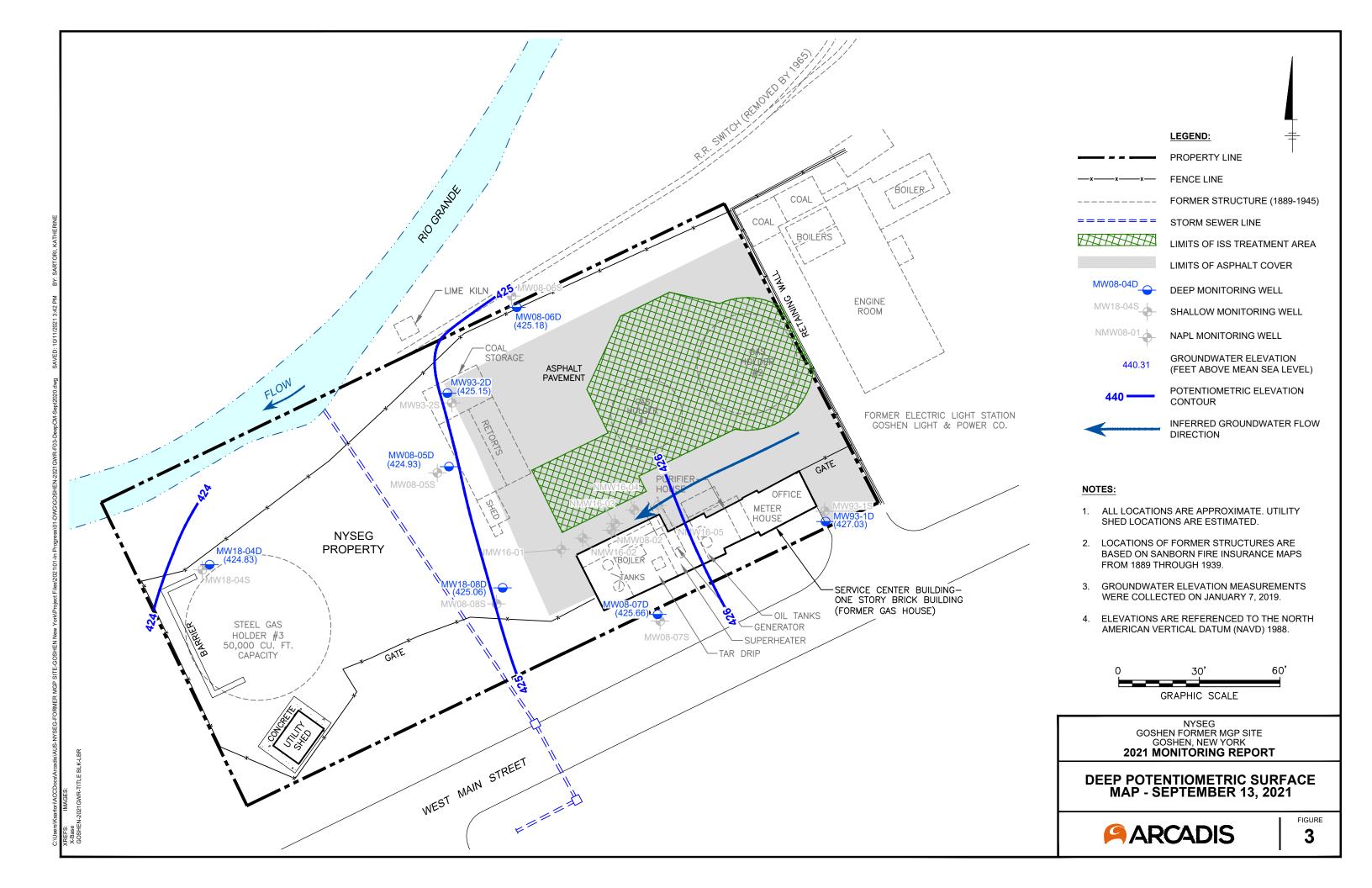
Location ID:	NYSDEC TOGS Standards and		MW08-08D ⁵		MW1	8-08D				MW08-08S		
Date Collected:		Units	03/31/09	01/07/19	09/04/19	09/15/20	09/13/21	04/01/09	01/08/19	09/04/19	09/15/20	09/13/21
Volatile Organics												
Benzene	1	μg/L	1.0 U	1.0 U	0.50 U	0.50 U	0.50 U	16	32	0.50 U	0.42 J	0.53
Ethylbenzene	5	μg/L	1.0 U	1.0 U	2.5 U	2.5 U	2.5 U	1.0 U	1.0 U	2.5 U	2.5 U	2.5 U
m-Xylene & p-Xylene		μg/L	NA	2.0 U	2.5 U	2.5 U	2.5 U	NA	2.0 U	2.5 U	2.5 U	2.5 U
o-Xylene		μg/L	NA	1.0 U	2.5 U	2.5 U	2.5 U	NA	1.0 U	2.5 U	2.5 U	2.5 U
Toluene	5	μg/L	1.0 U	1.0 U	2.5 U	2.5 U	2.5 U	1.0 U	1.0 U	2.5 U	2.5 U	2.5 U
Xylenes (total)	5	μg/L	2.0 U	2.0 U	2.5 U	2.5 U	2.5 U	2.0 U	2.0 U	2.5 U	2.5 U	2.5 U
Total BTEX		μg/L	ND	ND	ND	ND	ND	16	32	ND	ND	0.53
Semivolatile Organics												
Acenaphthene	20	μg/L	4.8 U	5.0 U	2.0 U	0.10 U	0.10 U	4.8 U	5.0 U	2.0 U	0.10 U	0.10 U
Acenaphthylene		μg/L	4.8 U	5.0 U	2.0 U	0.10 U	0.060 J	4.8 U	5.0 U	2.0 U	0.10 U	0.090 J
Anthracene	50	μg/L	4.8 U	5.0 U	2.0 U	0.10 U	0.020 J	4.8 U	5.0 U	2.0 U	0.10 U	0.080 J
Benzo(a)anthracene	0.002	μg/L	4.8 U	5.0 U	2.0 U	0.10 U	0.10 U	4.8 U	5.0 U	2.0 U	0.020 J	0.38
Benzo(a)pyrene	ND	μg/L	4.8 U	5.0 U	2.0 U	0.10 U	0.10 U	4.8 U	5.0 U	2.0 U	0.10 U	0.34
Benzo(b)fluoranthene	0.002	μg/L	4.8 U	5.0 U	2.0 U	0.10 U	0.10 U	4.8 U	5.0 U	2.0 U	0.020 J	0.45
Benzo(g,h,i)perylene		μg/L	4.8 U	5.0 U	2.0 U	0.10 U	0.10 U	4.8 U	5.0 U	2.0 U	0.10 U	0.24
Benzo(k)fluoranthene	0.002	μg/L	4.8 U	5.0 U	2.0 U	0.10 U	0.10 U	4.8 U	5.0 U	2.0 U	0.10 U	0.18
Chrysene	0.002	μg/L	4.8 U	5.0 U	2.0 U	0.10 U	0.10 U	4.8 U	5.0 U	2.0 U	0.10 U	0.30
Dibenzo(a,h)anthracene		μg/L	4.8 U	5.0 U	2.0 U	0.10 U	0.10 U	4.8 U	5.0 U	2.0 U	0.10 U	0.050 J
Fluoranthene	50	μg/L	4.8 U	5.0 U	2.0 U	0.10 U	0.020 J	4.8 U	0.40 J	2.0 U	0.030 J	0.61
Fluorene	50	μg/L	4.8 U	5.0 U	2.0 U	0.10 U	0.10 UB	4.8 U	5.0 U	2.0 U	0.10 U	0.10 UB
Indeno(1,2,3-cd)pyrene	0.002	μg/L	4.8 U	5.0 U	2.0 U	0.10 U	0.10 U	4.8 U	5.0 U	2.0 U	0.10 U	0.27
2-Methylnaphthalene		μg/L	NA	NA	NA	NA	0.050 J	NA	NA	NA	NA	0.030 J
Naphthalene	10	μg/L	4.8 U	5.0 U	2.0 U	2.5 U	0.29	4.8 U	5.0 U	2.0 U	2.5 U	0.10 J
Phenanthrene	50	μg/L	4.8 U	5.0 U	2.0 U	0.10 U	0.10 UB	4.8 U	5.0 U	2.0 U	0.10 U	0.20
Pyrene	50	μg/L	4.8 U	5.0 U	2.0 U	0.10 U	0.10 U	4.8 U	0.35 J	2.0 U	0.030 J	0.56
Total PAHs		μg/L	ND	ND	ND	ND	0.54 J	ND	0.75 J	ND	0.10 J	3.92 J
Miscellaneous												
Cyanide	200	μg/L	10.0 U	10.0 U	5.0 U	3.0 J	5 UJ	10.0 U	7.6 J	5.0 UB	5.0 U	5 UJ

Table 2

Groundwater Sample Analytical Results Summary 2021 Post-Construction Monitoring Report Goshen Former MGP Site - Goshen, New York


Acronyms and Abbreviations:


- B Indicates an estimated value between the instrument detection limit and the Reporting Limit (RL).
- D Compound quantitated using secondary dilution.
- J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
- mg/L milligrams per liter
- NA not analyzed
- ND Not Detected at the reporting limit (or MDL or EDL, if shown).
- NYSDEC New York State Department of Environmental Conservation
- U Indicates that the compound was analyzed for but not detected. The associated value is the Reporting Limit.
- ug/L micrograms per liter
- -- Indicates that no water quality standard or guidance value is available for this compound.
- [] Results shown in brackets represent field duplicates.


Notes:

- 1. Samples collected by Arcadis of New York, Inc. on the dates indicated.
- 2. Laboratory analysis was performed by TestAmerica of Amherst, NY (January 2019) and Alpha Analytical of Mansfield, MA (September 2019).
- 3. NYSDEC groundwater standards/guidance values are from the NYSDEC Division of Water, Technical and Operational Guidance Series (TOGS) document titled "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (TOGS 1.1.1) dated June 1998, revised April 2000 and June 2004.
- 4. Bold values exceed the method detection limit. Shaded results exceed the applicable screening values.
- 5. Remedial Investigation analytical results from monitoring wells prior to the installation of replacement wells in December 2018.

Figures

Attachment 1

Groundwater Sampling Logs

9	-	~~	
	$\boldsymbol{\Lambda}$		
)

ject No.	300	75710			Vell ID	MW-18-	WD_			Date	Sinny	75
lect Name/	ocation	NUSEG	Const	un Ni	1				_	Weather _	-	PVC
		O-101C	Scree			Casing	2"			Well Materia		SS
easuring Pt. Description			Setting (ft-bm)			Diameter (in.)						
Static Water				32	119	101		Gallo	ons in Well	4.67		
Level (n-bmp)	-	.7	Total Depth (ft-bm)	0) 36.	4 1 W	Vater Column (ft)	mondal.	AN COUNTY			1 11	
MP Elevation		P	ump Intake (fi-bm	p) 35		Purge Method:	Cellullugai			Sample Method	bu 16	W
Pump On/Off	1019		Volumes Purge				Submersible	e				
Sample Time:			Gallons Purge	ad 2.0)		Outer			Sampled by	55	
Pu	urge Start	1000 1110				Replicate/ Code No.				Sample		
			Depth to Water	ar Gallons	pH	Cond.	Turbidity	DO	Temp.	Redox	Apper	arance
ime	Minutes	(gpm)/(mL/mip)	(ft)	Purged		(µMhas)/(mS/cm)	The state of the s	(mg/L) ± 10%	(°C)(°F) ±3%	(mV) ± 10mV	Color	Ocor
		200mL/min +	-0.3	-	7.18	3.45/	/0./	1.71	18.45	71.5	clear	mone
1020	0	100	7.27	0.2	7.17	3.416	9.3	071	17.88	85.1	1	1
1025	5	100	8.03	0.4	7.17	3,497	8.5	0.51				
1030	10	100		0.6	1.17	3.519	8.8	0.47	17.79	-		
1035	15	100		0.7	7.17	3.531	9.7	0.45	17.70			
1040	20	100		1.0	7.17	3.530	10.5	0.46	17.45			
1045	25	100		1.2	1.17	3,57	11.2	0.45	17.10	79.4		
1050	30	100		64	7.16	3.539	10.4	0.44	16.88	80.1		
1055	75' 46	100		1.6	7.16	3.540	10.3	0.43	1674	87.3		
1100		100		1.8	1,16	3.544	10.1	0.43		p 83.8		
1105	45	100	+ 1	7.0	7.16	3.548	10.2	0.43	16,77		1	L
1110	50	100			1,	- 4,						
	+											
	1	St	tabilization Calc	ulations (±								
	-	Stabilization Cri	riteria		± 0.1 s.u	u. ±3%	± 10% or within 1	± 10%	±3%	±10 mV	A	
			TU of a previous read	fine when <10	-		NTH (f)	A Linear			1	1
1) Turbidity < 5 Constituents	Sample	10% or whulet 1 is a	U or a previous rous	any miles	Containe	er			Number	P -	Preserv	vative
BTI								3				
PAF								_	-		-	
	nide							Elo I				
Comments											-	
								1				
											-	
Well Casing Gallons/Foot	1" = 0.04		1.5" = 0.09	2.5" = 0.		3.5" = 0.50	6" = 1.47					
	1.25" = 0.0	06	2" = 0.16	3"= 0.3	7	4" = 0.65						
Well Inform	atton											100
							100					
Well Loc						2	_	Vell Locked Locked at		el:	_	I N

ARCADIS LOW-FLOW GROUNDWATER SAMPLING FORM WHID MWO8-55 30075710 9/13/21 Date Project Name/Location NYSEG Weather Sunny Gusher PVC Well Material Measuring Pt. Screen Casing 700 SS Description Setting (ff-bmp) Diameter (in.) Static Water 4.48 Total Depth (ft-bmp) Water Column (ft) Level (ft-bmp) Pump Intake (ft-bmp) 30. 22 MP Elevation Purge Method: Centrifugal Submersible Pump On/Off 1124 1205 Volumes Purged Other 1200 7000 MZ Sample Time: Label Gallons Purged Sampled by Purge Start Replicate/ Purge End Code No. ML Minutes Rate Depth to Water Cond. Time Turbidity Redox Temp. Appearance Elapsed (gpm)/(mL/min) Ludthon WinStern Purged INTUI POWE (8) (mg/L) mV) 200mL/min + = 10m/v Odor 1120 5-68 7.29 1.725 0 0 200 2566 109 19.49 8004 Cieur 200 30 1175 Ś 7.38 700 25.05 200 582 1000 190.8 0-54 4 1130 10 300 2092 re 5 FY 6.655 0-43 1135 15 200 5.86 7.31 0.42 165.0 20 39 4 1140 10 200 5.88 7.35 4000 707 0.39 2033 15 25 5 88 1145 200 7.34 707 20.35 5000 1513 0.39 30 1150 200 5 8 7.34 2037 60,00 . 708 51.0 0.40 140 - To. 0 1155 35 200 5-11 7000 7-33 151.0 708 0.40 2036 -801 Stabilization Calculations (±) Stabilization Criteria ± 0.1 s.u. ±3% ± 10% within 1 ±3% ±10 mV (1) Turbidity < 50 NTU and ±10% or within 1 NTU of a previous reading when <10 NTU Constituents Sampled Number Preservative Dove 6 this well Well Casing Volumes 1.5" = 0.09 2.5" = 0.26 3.5" = 0.50 6" = 1.47 1.25" = 0.06 2" = 0.16 3" = 0.37 4" = 0.65 Well Information

Well Locked at Arrival:

Key Number To Well:

Well Locked at Departure:

Yes

Yes

No

No

Well Location:

Condition of Well:

Well Completion:

Good

Aush Mount

Stick Up

WELOW	CPO	UNDWATE	R SAMPLII	IC EC	MOM			- 3	- 6	AR	CAL)[:
		7571		io ro		MWO8	-55			Deta	Page	13
ject No.			. /	-	Well ID			-		Date	-11	
oject Name/L	ocation _	NYSE	6, Gosh	-	N.Y -		_	-		_ Weath	er	Y
easuring Pt. Description	To	<u> </u>	Screen Setting (it-bmp			Casin Diameter (in	- /			Well M	aterial	_P\
Static Water Level (ft-bmp)	6.0	0	Total Depth (ft-bm;			Water Column (fl	1/.30	6 G	allons in V	Vell 1.8	1	
MP Elevation		P	ump Intake (ft-bm)	13	-26	Purge Method:				Sample Method	Land	EL
Pump On/Off	1245	1333	Volumes Purge	d			Centrifug Submers	ible		-		
	Label urge Start urge End	1330	Gallons Purge	80	bo mz	Replicate/ Code No.	Other	ful	mp	Sampled	by Kirki	Vary
ime	Minutes	Rate	Depth to Water	Callons	E pH	Cond.	Turbidity	DO	Temp.	Redax		
	Elapsed	(gpm)/(mL/min)	(10)	Purged	1	(µMhos)/(mS/cm)	(MTU)	(mat.)	COURT	(mV)	Appeara	21.50
1245	0	200mL/min +	7.98	0	7/8	1.067	12.7	D-32	20.60	±10mV	Color	7/0
1250	5	200	8.00	1000	1000	1.037	173	032	25.00	-633	11	11
1255	10	200	8.02	Javo	7.13	1039	19.2	0.31	24.0		12	Tr.
1300	15	340	8.02	3000	7 14	1.050	179	6.36	32.4	1-69.1	24	Cr.
1305	20	200	8.02	4000		1.020	10.5	0.22	19.71	-67.7		4
1310	35	200	8.08	5000	7.21	1:016	9.6	0.23	19.55		Au .	ty.
1315	30	202	8.08	6000	7.22	0.880	16.7	1115	19.26	-63.0	311	11
1320	35	200	8.05	700	7.23	0.982	16-1	013	19.84	-63.0	Air	11
1325	40	200	8.08	1000	7.22	0-982	16.5	0.12	19.82	-63.0	1	V
											-	
		Stab	ilization Calculat	dons (±)								
	Sta	abilization Crite	eria		± 0.1 s.u.	±3%	± 10% or within 1	± 10%	±3%	±10 mV		
Turbidity < 50 N		% or within 1 NTU o	of a previous reading w		Container		NTIL ^(t)	N	lumber		reservative	
				-			_	-		-	reservative	
				-				_		=		
				_			_	-		_		
								_		7 -		
				_						_		
mments										_		
II Casing Vol	umes = 0.04	1.5*	= 0.09 2.5	5" = 0.26	3.5" =	0.50	1.47					
	25" = 0.06	2*=		= 0.37	4" = 0	274.720	1.4/					
II Informatio	n											
Well Location	n:						Well Loc	ked at An	rival:	Yes	,	_
ondition of W						W	ell Locked			Yes	/ No	-
ell Completi	on:	Flush Mou	unt / Stick	Up				mber To V		.00	GW Samp Form	

			SAMPLING				2			RC/	age	of l
ect No.	3003	15710		W	ell ID M	W93-2	D		D	ate	9/141	ži.
ect Name/Loc	ation	NYSEG,	Goshw	, NY.					V	leather C	Loudy	
asuring Pt. Description _	Toc		Screen Setting (ft-bmp)			Casing Diameter (in.)	21			/ell Materia	1 /	PVC SS
tatic Water evel (ft-bmp)	4.5	5 T	otal Depth (fi-bmp)_	30.7	9 w	ater Column (ft)	26.24		s in Well _	4.19		
IP Elevation			mp Intake (ft-bmp)	25.7	- "	Purge Method:	202	Gallon				
ump On/Off	0900	THE PARTY OF	Volumes Purged		_		Centrifugal			Sample /	-ow fl	المتان
ample Time:			(N)_ Gallons Purged	6000	5	Replicate/	Submersible Other	fer for	-	Sampled by	Kirkl	43-
me	Minutes Elapsed	Rate	Depth to Water	M/	pH	Cond.	Turbidity	00 1	Temp.	Rerior [
	ciabsed	(gpm)/(mL/mm) 200mL/min ÷	(N) -0.3	Purged	±0.1	(µMhosy(mS/cm) ±3%	(NTU) ± 10%	(mg/L) ± 10%	("CNP)	(m/y)	1000	arance
0900	0	du	4.98	0	690	0260	1.5	0.33	177	±10mV	Clear	NEST
0505	5	200	4.98	1000	6.81	0.251	0	0.11	18-01	82.4	te	4
0910	10	200	4.98	2000	685	0.249	0	6.13	1291	76.3	6	16
0915	15	200	4.99	3000	6.88	0.247	0	017	17-93	78.0	11	11
0920	20	200	4.95	gan	6.94	0.246	0	0.12	1798	705	/h	4
0930	30	200	4.99	5000	6-99	0.244	0		1757		4	4
0 13 0	30	200	7-75	6000	6.99	0.243	0	0.12	17.95	70.0	L	t,
	_	S	abilization Calcu	lations (1							
				adona (.						-		-
	_	Transfer of					Alexander .					+
		Stabilization C			± 0.1 s.	u. ±3%	± 10% o	± 10%	±3%	±10 m	V	1
(1) Turbidity < 5 Constituents			TU of a previous readi	ng when <10	Contain	ner	NTIL	A PROPERTY OF		III DEVENO		
				_					Numbe		Prese	rvative
	-	_		-	-			_				
				_	-		_	_				
				_	-			_	_	_		
				_	_			_		_		
								_	-	-		
								_	_	_	_	
Comments												
										_		
Well Casing	Volumes											
Gallons/Foot	1" = 0.0-		1.5" = 0.09 2" = 0.16	2.5"=		3.5" = 0.50 4" = 0.65	6"=1,	47				
outlines out												
	nation											
Well Inform					_			Matticat	a a company	and the		
Well Inform Well Lo	cation:							Well Locked			Yes Yes	1

		OUNDWATE		1010		111100	20				Page /	of
	300	757 10			Well ID	MW93	-43			Date		1/21
roject No.		NYSEG	124	- NY	100000000000000000000000000000000000000					Weather	claud	y 70°
roject Name	e/Location	14 1 300				Corina	2"			Well Mater	ial	PVC
Measuring P			Setting (ft-bm)			Casing Diameter (in.)					_	SS
Description			Setting (iron)	-	A 100		12 2	L		1.97	L	
Static Water	V	45	Total Depth (fl-bm)	0)_20	81 1	Vater Column (ft)	120	Galk	ons in Well	A STATE OF STREET		
MP Elevation		P	ump Intake (fi-bm)	15.		Purge Method:	Centrifuga			Sample Method	Low	Flau
Pump On/C	ALC: UNKNOWN	0/1120	Volumes Purge	d			Submersit	ile	-			
	0.00	live	Gallens Purge	d /00	60		Other	forto	4		. Kin	Varse
Sample Tim	Purge Start	10-	Samula Cargo	14		Replicate/				Sampled b	y win	o mys
	Purge End			ML		Code No.						_
Time	Minutes		Depth to Water	Gallons	pH	Cond. (µMhos)/(mS/cm)	Turbidity (NTU)	(mark)	Temp.	Redox.	Appea	
	Elapsed	(gpm)/(mL/min) 200miL/min *	(N) -0.3	Purged	20,1	±3%	± 10%	± 10%	±3%	±10m/	Color	Ottor
1020	0	200	881	0	7.07	0-645	11-4	0.25	1202	63.6	Clear	1.
1025	5	200	9.75	1000	708	1.450	8.2	0.77	1780	18.3	4	4
1030	10	200	9.78	2000	7/2	1.451	2.5	0.63	123	- 2.9		4
1035	15	200	9 78	3000	7-11	1.468	6.3	0.48	28.02	-22.6	L	14
1040	20	200	9.78	4000	7.15	1.489	9.6	202	1755	-27-2	4	1.
1045	25	200	9.78	5000	7.16	1.438	27.5	042	1205	-30.2	1.	6
1050	30	200	9.70	7000	7.18	1.428	30.2	0.39	17.56	-30-6	No.	IJ.
1055	35	200	9.80	8000	7.19	1.430	28.2	0.32	17.45	-33-1	42	Lo
1100	40	200	9.80	9000	220	1.433	28.6	037	174	-33 F	L.	10
1105	50	200	9.80	10000	7.21	1.436	_	0.40	17.48	-33.9	14.	4
1115	1301	200	1.00	7000	1.2	1.75						
1112												
		Stabi	Ilization Calcula	tions (±)						N A		-
												-
							±10% or				-	-
	Sta	abilization Criter	ria		± 0.1 s.u.	±3%	within 1	± 10%	±3%	±10 mV		
urbidity < 50 h	NTU and ±10	% or within 1 NTU of	a previous reading t	when <10 N	TU		MILLEY					
stituents S	ampled				Container				Number		Preserva	tive
					-	-				-		
							_	-		-		_
								-	_	_		-
				-								
				-				-	-	-		_
								-		-		
								-		-		
				-								
										-		
nents _										-		
nents		,										
Casing Volu												
Casing Volu	umes = 0.04 :5" = 0.06	1.5" = 2" = 0		2.5" = 0.26		" = 0.50 = 0.65	6" = 1.47					
Casing Volu Foot 1":	= 0.04 5" = 0.06						6" = 1.47			-		
Casing Volu /Foot 1": 1.2:	= 0.04 5° = 0.06 n											
Casing Volu	= 0.04 5" = 0.06 n						Well	Locked a		Ye		No

Project No.	20	1075II			Wallin	MW.93	- 13	5	-	17-41	RCA Page	J of
rioject Name	-/Location	NYSE	G. Gus	1.1	NY	-	-	_		Date	91	14/2
Measuring P	1		Scree	1	10-7					Wea	the Cl	udy
	n_To	_	Setting (II-bm			Cas	sing -					1
Static Wat	5 6	1		10.0	-	Diameter	(h.)	_		vveii	Material _	PVC
MP Elevation		21	Total Depth (ft-bm	10 d	-64	Water	- 1)	. 2		- 2	-	ss
		F	ump Intake (n-bm	1000	64	Water Column		05	Gallons in	Well 2	56	
Pump On/o	H 130	1350	Volumes Purge		01	Purge Metho	d: Centrif	and a		Samol	е .	
Sample Tim		1345	Gallons Purge	D			Subme	ersible		Sampl Metho	1 Low	flw
	Purge Start		Gallons Purge	d 80	00		Other	fen	purp			
_	Purge End					Replicate/ Code No.			7 1	Samula	dby Kill	1
Time	Minutes	Rate	Depth to Water	BL		Code No.	-		-	Sumple	u uy Kire	المال
-	Elapsed	(gpm)/(mL/min) 200mL/min +	(ft)	Gellons Purged	s pH	Cond. (µMhes)/(mS/cm	Turbidi		Temp.	Redox		
1300	0	200	6.50	-	±0.1	2.3%	(NTU) ± 10%	(mg/L) ±10%	COUPE	(m/r)	Appe	arance
1305	5	200	718	0	7-82	0.363	14-8	0.01	207	± tilmly		Gaer
13/0	10	200	7.28	Down	7.56	0357	1.5	0.01	21.06		Circu:	Manual.
1315	15	200	7.30	3000	736	0.370	11.7	001	22.10		1	- IF
1325	20	200	7.38	You	6,99	0.547	11-8	0.01	20.45		0.	L.
13 30	30	200	7.38	5200	7.01	2.267	5.0	051	20 57	13.2	H	1-
1335	35	200	7.38	6000	7.00	2545	1.8	0.43	20.56	3.5	9.	12
1340	40	200	4.38	700		2.550	1	0.83	21.73		(a.)	16
	1	200	7-38	RADO		2.552	1.5	5.43	31.70	-2.3	d.	C.
			-				7.5	0-43	21.71	-2-5	10	te.
				-								
				-	-						-	
		Stabil	ization Calculation	ons (±)			-					
	15/1	ACT										
		ilization Criteri		1	0.1 s.u.	±3%	± 10% or					
onstituents S	TU and ±10%	or within 1 NTU of a	previous reading who	en <10 NTU	,		Within 1	± 10%	±3%	±10 mV		
	ampieu			C	ontainer				lumb			
			_	-					lumber	P	reservative	
				-						-		_
				-						-		_
							_	_				_
	_							_	_			
				_				_	_	_		
mments								_	_	-		_
				_	-							
I Casing Volu	mes						_					_
uns/Foot 1" a	0.04	1.5*=0.		0.26	3.5*= 0	50	70.7	_				_
		2 = 0.16	3*=0		4"=0.6		1.47					
Information												
Well Location Indition of We							Well Loc	ked at Arri	vie t			
FIGHTOTT OF AAS						We	ell Locked	at Departs	vai:	Yes	/ No	
ell Completion	T /	Flush Mount	>/ Stick Up				acondo	of Debata		Yes		

	2										Page	of_
oject No.	300	75710			Well ID	MW- 9	1310			Date	9/15/	
oject Name/	Location	Gosh	in, MY							Weather	Overce	ast,
easuring Pt. Description	_	2 C	Screen Setting (ft-bmp)			Casing Diameter (in.				Well Mat	erial X	PVC
Static Water Level (n-bmp)		58	Total Depth (ft-bmp)	36.	38	Water Column (ft	27.5	Gal	lons in Wel	9.40	2	
MP Elevation			ump Intake (fl-bmp)			Purge Method:				Sample Method	lan	FI
Pump On/Of	1 091		Volumes Purged				Centrifuga Submersit			Method		
Sample Time		(-00)	Gallons Purged	2	2		Other	_				
Pi	urge Start		Collons digod			Replicate/ Code No.	/			Sampled	by M	14
me	Minutes Elapsed	Rate (gpm)/(mL/min)	Depth to Water	Gallons		Cond. (µMhos)/(mS/mn)	Turbidity (NTU)	DO (mg/L)	Temp.	Redox (mV)	Арреа	rance
~0 TV	2000	200mL/min +	-0.3	1 5.011	± 0,1	± 3%	± 10%	±10%	±3%	± 10mV	Color	Odo
0915	5	200	9.88		>,40	0.679	25.9	.0.33	19.92	251.2		
925	10	200	9.55		8.17	0.673	20.3	9.81	20.41	2105		
0930	15	200	9.57		8.30	0.739	17.5	9.29	7-14	186.0		
0935	70	Lon	5,56		8.36	0.786	11.0	9.22	19.99	170.6	1.	
0740	25	200	9157	1	8.35	0.834	16.3	9.23	19.80	154.9	-1,	
0945	30	200	9157		8134	0.857	14.5	9.27	19.75	1954		
0950	35	200	915\$		8.36	0.868	14,2	9,19	19,62	1415		
0955	40	200	9.57		8.38	0.886	14.0	9,13	19,60	135.8		
000	45	200	9.56		3.41	0.881	13.5	9,06	1819.64	137.3	1	
												0
												- (
		CALL	Illiantian Calculat	lama (1)								1)
		Stat	ollization Calculat	ions (±)								
	Str	abilization Crite	ria		± 0.1 s.u.	±3%	± 10% or within 1	± 10%	±3%	±10 mV		
orbidity < 50 N		Second full Control	of a previous reading w	hen <10 N			NTU (1)			2101110		L.,
stituents S					Container				Number		Preservat	ive
				-								
									_			_
									Mark K. H.			
							-				rF.	_
ments				3	IT 10	205	>		Photo A		et.	_
ments _			(3	T 10	205	>		etc.		1F.	
	umes			3				40	-ha	TARRET .	er.	
Casing Vol	umes = 0.04 25" = 0.06			5" = 0.26 = 0.37	3.5		6" = 1.47		and the same of th		et.	
Casing Volume 1.2	= 0.04 25" = 0.06				3.5	*= 0.50	6" = 1.47		et-		vP.	
1.2 Informatio	= 0.04 25" = 0.06				3.5	*= 0.50		Ockert et		1286.		
Casing Volumes/Foot 1*	= 0.04 25" = 0.06 on				3.5	*= 0.50		ocked at De	Arrival:			No

ARCADIS

		75710		V	Vell ID _	Mwos	- 70			Date _	1 13	40
suring Pt.	ation(soshen,	Screen			Casing	r			Weather S		PVC
escription atic Water	10,	20	Setting (ft-bmp)_	36.	94	Diameter (in.)				6500	-	SS
evel (ft-bmp) _	10		otal Depth (ft-bmp)		-	/ater Column (ft)	2851	Galle	ons in Well	1119_		
P Elevation_	1 0		ump Intake (fi-bmp)	37	0	Purge Method:	Centrifugal	V-		Sample Method	lon,	Flan
ump On/Off_	1105	-	Volumes Purged				Submersibl	9	_	Mediod		
	Label_ rge Start_	(1145)	Gallons Purged		_	Replicate/	Other			Sampled by	in	n
	urge End					Code No.						
ime	Minutes Elapsed	Rate (gpm)/(mL/min) 200mL/min +	Depth to Water (ft) -0.3	Gallons Purgeri	pH ±0.1	Cond. (µMhos)/(mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp (°CV(°F)	Redox (mV)	Appea	
1105	0	1039	10.39		70	±3%	± 10%	±10%	±3%	± 10mV	Color	Odd
1110	5	200			7.06	1,938	1.1-	4.76	17.50	91.6		
1115	10	200			7.04	2027	0.0	3.43	W 17.41	18:60		
1170	15	200			204	2,010	10.3	3.21	16.67	70.5		-
1125	70	200			7105	1.997	7.4	3.09	16.52	62.6		
1136	30	200			7,06	1,986	6.0	7.96	1642	56.5		_
1140	35	200	-		7.06	1,972	5.9	7.83	1633	53.7		-
1100	1.22	20~	-		7,57	11965	5.6	279	16.76	504		_
			1						1010			
									I -			-
						-	-					
		S	tabilization Calcul	ations (±								
-								-				
(1) Turblette	50.100	Stabilization C	riteria		± 0.1 s.u	±3%	± 10% or					
Constituent	s Sample	±10% or within 1 N	ITU of a previous reading	when <10	NTU		Within 1	± 10%	±3%	±10 mV		13
					Containe	er .			Number			
							_	-			Preservat	tive
				-				-	_			
_				-				-	_			
				-				-	_			
_	_				_				_	-		
Comments					/					-		
				_(ST	1145				-		
Well Casing	- 11 -			_			-					
Gallons/Foot	1"= 0.04	1	100000									
***	1.25* = (0.06	1.5° = 0.09 2° = 0.16	2.5° = 0.3	2.26	3.5" = 0.50						
Well Infon	mation			0.2		4"=0.65	6"= 1.47					_
Conditi	ocation: n of Well:			_								
	n of Wette											

OW-FLOV	~	757 10	R SAMPLIN			Nu /	/ \		9	ARC	Page	IS,
360000000000000000000000000000000000000		NYSEG				MWO8-	5 D	-		Date	9/15/	
easuring Pt.				, 10-1	-				_	Weather	clady	
Description	10	-	Screen Setting (fi-omp)			Casing Diameter (in.				Well Male	erial _6	PVC
Static Water Level (ft-5mp)	3.5	6	otal Depth (fl-omp)	39.	51 0	Vater Column (ft	35.	95		5.75		-
AP Elevation			imp Intake (ft-bmp)	34.		Purge Method:		_/~ Gall	lons in Wel		-	
Pump On/Off	1020		Volumes Purged			r urge Metriod	Centrifuga	1		Sample Method	Low	F/W
ample Time:	Label	1100	M L Gallons Purged	-	0		Submersit	PESI	Dune			
	inge Start	1020	Canada Fulged	100	_	Replicate/		9	-	Pamata d	byKirll	6.
	urge End	1055		m		Code No.				Sampled	YEIL	riges
me	Minutes Elapsed	Rate (gpm)(mL/min)	Depth to Water	Gallons	per	Cont	Turbidity	00	Yemp.	Redox		
1-17-		200mL/min +	(ft) -0.3	Purged	104	(ublical/mSiam)	(NTU) ± 10%	(mg/L)	(CNE)	(m/r).		arance
1020	0	300	3.93	0	717	0 211	41.4	0.79	18.90	± 10mV	Color	Odo
1030	5	200	3.94	1000	6.97	0.070	12.3	092	1X.5L	-0.4	Clear	Non-
1035	15	200	3 -94	2000	694	0.060	13.8	1.00	18.35		Lr.	+
10 40	30	200	3,98	3000	6.94	0.059	12.5	0.99	18.09	-35 8	1,	100
1045	25	200	4.00	4000	6.95	0059	1511	0.95	17.91	-422	11	15
1050	30	200	4.02	Saw	6.99	0.062	14.9	0.91	17.91	-40.8	ts:	11
1055	35	200	4.02	740	7-01	0.064	15.0	0190	17.90	-41.0	10	4
			7:02	PAG	7.01	0.066	15.0	0.90	17.89	-4/10	11	1
		100										
_												
		Sta	bilization Calcula	tions (±)								
									- 4			
		Yahili-w- a	-								-	
Turbidity = 50		tabilization Crit		-11	± 0.1 s.u.	±3%	± 10% or within 1	± 10%	23%	Name of		-
onstituents	Sampled	10% or within 1 NTU	of a previous reading v	when <10 N	пи		MTILES	- 10/2	23%	±10 mW		
					Container			-	Number		Preservat	
	-										rieserva	ive
						-	-					
	_						-					
									-			
									-			
									_			
omments												
_												
ell Casing V	olumes		-								_	
ilons/Foot	1" = 0.04 1.25" = 0.06		5" = 0.09	2.5" = 0.26								
ell Informati		2*	= 0.16	3" = 0.37		5" = 0.50 = 0.65	6" = 1.47					
Well Land												
Condition of	Mail:					_						
Vell Comple	-		7				Well	Locked at	Arrival:	Yes		
- Miles	and the same	Flush M	ount / Stic	k Up			Well Loc	ked at De	parture:	Yes		No
					-		Key	Number 1	To Well:		Die	No

N-FLOW	GROU	INDWATER	SAMPLING	FOR	М				14/	ARC	Page	of
ect No.	300	75710			Vell ID	1W08-6	5			Date ,	9/15/	
ect Name/Lo		NYSEG	Goshew,	NY.						Weather	Cloudy	,75
suring Pt.	Toc		Screen Setting (ft-bmp)			Casing Diameter (in.)				Well Mater	ial V	PVC
atic Water	8.6	<		19.7	15		11.1	C-R-	ons in Well	1.77	_	
evel (ft-bmp)	8.0		tal Depth (fi-bmp)	14.	1/	ater Column (ft)		Galio	ons in vveii		. /	
Elevation			mp Intake (ff-bmp)	17.	15	Purge Method:	Centrifugal			Sample Method	Lowf	60
ump On/Off	0920	0955	Volumes Purged	,			Submersib	e full	WAR		72	1
	Label_ rge Start_ urge End_		Gellens Purged	6000		Replicate/ Code No.		1 7		Sampled b	y Kirk	Arges
				ML		Cont.	Todaday 1	DO	Temp.	Redox	Anne	arance
ne	Minutes Elapsed	Rate (gpm)/(mL/min)	Depth to Water (ft)	Gallons Purgad	PH	CANCEL PROPERTY	(WTV)	(mg/L)	(CV(F)	(mV) ± tilmV	Color	1000
0.0		200mL/min +	9.00		7.16	0.363	113.3	0.0 T	17.22	90.6	Cher	NOU
920	5	200	9.00	1000	7:11	0.349	17.0	0.20	17-21	53.5	- it	11
925	10	200	9.33	Doto	7.11	0270	15.0	0.37	17.28	529	19	116
935	15	200	9.52	340	7.07	0.290	10.1	0.36	17.13	63.0	ti	11
0940	20	Jus	9.56	4000	7.07	0.292	10.0	037	17.18	62.1	te	111
09.45	25	Da	9.56	5000	701	0.293	9.8	0.36	17.20	620	R	11
1950	30	200	9.56	6000	7.07	0-293	9.8	0.36	1721	62.0	11	11
14						1						
	heat.											
												-
										-		+
												+
			W W O look	-tl (A)								+
		Sta	bilization Calcul	ations (1)				-				
_			(April			429/	± 10% or within 1	4400	±3%	±10 mV		
		Stabilization Crit			± 0.1 s.u.	±3%	MTH (1)	±10%	13/6	TIOMY		
Turbidity < 5		10% or within 1 NTU	of a previous reading	when <10	Containe		_		Number		Preserva	tive
		-		-0.				- *				
	-	(e h		_				_		-		
						-	-	-		_		
				-				-		_		
				-				-		-	-	
-	_			-				-	_	-		
	_			-	_			-	_	-	_	
omments												
			-									
Vell Casing	Volumes 1" = 0.04		1.5" = 0.09	2.5" = 0.	26	3.5" = 0.50	6" = 1.47					
allons/Foot	1.25" = 0.04		2" = 0.16	3" = 0.37		4" = 0.65	0 = 1.47					
Vell Inform	ation											
Well Loc							We	II Locked	at Arrival:	Ye	s /	No
Condition									eparture:			No
	pletion:	Flush		tick Up					To Well:			Samp Form

LOW-FLOW GROUNDWATER SAMPLING FORM

ect No.		NYSEG	- 1	- 1		2000	MW 08-85				Date	9/13 Juny	
	ocation	N4000		Socher		14	100.00	-		_	Weather	-	PVC
asuring Pt. Description			Setting	(ft-bmp)			Casing Diameter (in.)	2"			Well Mater	al _	SS
tatic Water		- 7											
evel (ft-bmp)	_ 5.33		otal Depth	(fi-bmp)	12.1		ater Column (ft)			ons in Well	1.13		
P Elevation		Pu	ump Intake	(ft-bmp)	(1)		Purge Method:	paristal	til		Sample Method	bu P	62
ump On/Of		-8	Volumes	Purged_				Submersib	le		Metrod	-	
ample Time	: Label_	1210	Gallons	Purged_	1.6			Other				20	
	urge Start	1210					Replicate/				Sampled b	1. V	_
	Purge End_	1111					Code No.						
me	Minutes Elapsed	Rate (gpm)/(mL/min)	Depth to		Gallons Purged	pH	Cond. (µMhos)/(mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp.	Redox (mV)	Appe	arance
1122		200mL/min +	-0.		angos	±0.1	± 3%	± 10%	± 10%	±3%	± 16mV	Color	Odo
1130	0	100	5.35			7.05	4.173	29.1	1.53	17.65	-31.3	dear	none
1135	10	180	1	-	0.1	27.03	4.227	11.5	0.93	17.71	-40 L	+	1
1145	15	100	1	_	0.6	7.60	4.340	0.0	0.61	17.85	40.9		
1150	20	100	+ +		0.8	6.17	4.919	0.0	0.47	18.09	-42.4	+	++
1155	25	100			1. 0	6.99	4.481	0.0	0.46		-45.16		+
1200	38	100		_	1.2	6.99	4.523	0.0	0.45	15.37	-46.5		++
1205	3.5	10			1.4	4.98	4.545	0.0	0.45	18.60	-46.[
1210	40	100			1.6	6.99	4.527	0.0	0.45	18.63	-45.8	1	1 1
											10.4	4.0	1
					1								
	-	S1	abilization	Calculat	lone (4)								
			aomeanoi	Odiculat	JULIS (I)	1							
											-		+
	R	Stabilization C	riteria		-	± 0.1 s.u.	±3%	± 10% or within 1	± 10%	±3%	140-14		-
(1) Turbidity <	50 NTU and	±10% or within 1 NT	TU of a previo	ous reading v	when <10	NTU	200	NTH (9)	2 10 %	20,16	±10 mV	-	
Constituen	ts Sampled			-7-		Containe				Number		Preserv	ative
_	BTEX			-		_					_	Trende.	
-	Cyanid						_		-	_	_		
	Cyania		-					-	_	_	_		
			-						_		_		
				_					_	_	_		
				_					_	_	_		
						_			_		_	_	
Comments													
									_	_			
Well Casin	g Volumes									_	_		
Gallons/Foot	1"= 0.04		1.5" = 0.09		2.5" = 0.	26	3.5" = 0.50						_
	1.25" = 0	.06	2" = 0.16		3" = 0.3		4" = 0.65	6" = 1.47					
Well Infor													
18/-11 1	ocation:							100				-	_
				_				W	ell Locked	at Arrival	: Qre	s /	NI
Conditio	n of Well: mpletion:	-	h Mount		tick Up			F 10 10 10 10 10 10 10	ell Locked ocked at f	at Arrival Departure			No.

roject No.	30078	710		. 4	Well ID	MW18-0	40_			Date _	9/14/	
roject Name/	Location	NYSE	6 (20	iken						Weather	Jinny	
Measuring Pt.		10 10 0	Screen Setting (ft-bmp)			Casing Diameter (in.)	2"			Well Materi	al $\stackrel{\checkmark}{=}$	PVC SS
Static Water		67		ins	-	Vater Column (ft)		Gallo	ns in Well	5.24		
Level (ft-bmp	0-		otal Depth (ft-bmp)		v			L			1 01-	
MP Elevation			ump Intake (ft-bmp)	39	_	Purge Method:	Centrifugal			Sample Method	la 16	~
Pump On/O	# <u>084</u> .	5	Volumes Purgeo				Submersible Other	8				
Sample Time		0930	Gallons Purgeo	1.9	_	Replicate/ Code No.	MS/1	NID		Sampled by	y 55	_
Time	Minutes Etapsed	Rate (gpm)/(mL/min)	Depth to Water (ft) -0.3	Gallons Purged	pH ±0.1	Cond. (µMhas)/(mS/cm) ±3%	Turbidity (NTU) ± 10%	DO (mg/L) ± 10%	Temp: (*CX(*F) ±3%	Redox (mV) ± 10mV	Appea	Odni
0845	0	200mL/min +	8.07	-	7.19	0.676	13.9	6-11	18.70	201.6	clear	wone
1850	5	100		0.2	7.43	0.611	13. 2	4.77	15.56	157.2	1	1
0855	10	100	8.68	0.4	7.56	0.667	12.8	3.96	18.40	1783		-
0900	15	100		0.6	7.56	0.463	2.2	3.31	18.04	17112		+
0905	20	100	9,24	0.8	7.56	0.662	1.8	2.69		146.8		-
0910	25	100	1	1.6	7.57	0.661	tel	2.30	17.66		-	++
0915	30	100		1.2	7.58	0 605	0.5	1,94	18.59	152.5		++
2920	35	כפן		1.4	1.59	0.609	0.8	1.83	15.77	145.7		-
0925	40	100		1.0	7.40	0.465	1.1	1.80	18.21	135.1		++
9930	45	100	I	1.8	7.40	0,663	0,9	1.79	15.22	133.4	1	1
									-			
		Sta	bilization Calcula	ations (±)								
							- 100V			3 44		
1000		tabilization Crit			± 0.1 s.u.	±3%	± 10% or within 1 NTIL (1)	± 10%	±3%	±10 mV		
constituents BT	Sampled EX	10% or within 1 NTU	of a previous reading	when <10 t	Container				Number		Preserva	itive
	and							-		-	_	
-												-
								-		_		
				-				-		-		
omments	_											
	/olumes		5° = 0.09	2.5" = 0.2		1.5" = 0.50	6" = 1.47					
	1" = 0.04		1 10 2022			12 - 0 CK						
llons/Foot	1.25" = 0.06		= 0.16	3" = 0.37		r = 0.65						
ell Casing V illons/Foot ell Informa Well Loca	1.25" = 0.06 ation		1 10 2022	3" = 0.37		r = 0.65	Wel	I Locked	at Arrival:	- Ye		No

									91	ARC	AD	S
LOW-FLO	W GRO	UNDWATE	RSAMPLIN	IG FO	RM	1.716	~/ 100			Date	9/14	of !
	370	75710			Well ID	MW18-	040	-			Times	n
Project No.		NYSE	(2)	arke	n NI	1			_	Weather Well Mate	-	PVC
Project Name	/Location _	NAOF				Casing	78			Well Mate	nai	SS
Measuring Properties			Setting (fi-bmp)			Diameter (n.		-	ons in Well	1.06		
Static Water Level (ft-bm)	- 1	1.77	Total Depth (fl-omp	21.5	11_	Water Column (ft) Purge Method:	Centrifuga		ons in vvei	Sample Method	to Pla	,
MP Elevatio	п		ump intake (fi-bmp	10	_	Laide Werns	Centrifuga Submersit	ofe				
Pump On/O	H 102	3	Volumes Purgeo				Other		_		CF	
Sample Time		1120	Gallons Purgeo	2.0	_	Replicate/				Sampled t	y UU	_
Sample Till	urge Start					Code No.						
	Purge End	102				T Cond	Turbidity	DO	Temp.	Redox	Арреа	rance
Time	Minutes	Rate	Depth to Water	Gallons Purged	pH	(µMties)/(mS/cm)	(NTU)	(mg/L) ± 10%	(*C)(*F)	± 10mV	Color	Odor
	Elapsed	(gpm)/(mL/min) 200mL/min +	(n) -0.3	1 4 2	±0.1	±3%	±10%	3 77	19.53	162.7	clear	none
1025	0	150	14.77	-	6.80	1.488	1.8	1.19	20 05	1264		
1030	5	100		0.2	634	1.582	2.4	1.10	20.19	130.5	17	
1035	10	100	15.12	0.4	6.74	1. 631	1. 1	1.04	20.42	130.1		
1040	15	100		0.6	6.73	1.697	0.3	1.01	20.00	129.9		-
1045	20	100	15.34	0.8	6.73	1.710	0.0	1.05	20 56	125,2		
1055	25	100	2002	1.0	6,73	1.728	0.0	1.07	20.51	128.8		_
1100	30	100	15.45	1.4	673	1.743	00	1.08	20.51	127.2		
1105	35	100	1			1,759	00	1-09	20.60	177.4		
1110	40	100		1.6	673	1.760	0.0	1.09		127.3		
1115	45	100		2.0	673	1.760	0.0	1.09	20.56	127.1		
1120	Fo	100										
			ollization Calcula	tions (t)								
		Stal	bilization Calcula	UO113 (1)								
						±3%	± 10% or within 1	± 10%	±3%	±10 mV		
		tabilization Crit		ston e10 N	± 0.1 s.u.	13%	NTII (1)		-			
1) Turbidity < 50 Constituents	NTU and ±1	0% or within 1 NTU	of a previous reading	WIRELI CIO	Container				Number		Preservat	ive
BT	EX							0 3	_			
	1Hs						_	-	_		-	
	ande											
											_	
							-			1		
					_				_	-		
							_	•				
omments												
Vell Casing V	olumes 1" = 0.04 1.25" = 0.06			2.5" = 0.26 3" = 0.37		5" = 0.50 " = 0.65	6" = 1.47					
/ell Informa	tion						10000					-
Well Loca	tion:						5.71.9109-510	Locked a		Wes.		No
Condition of	Well:			-				ked at De		(Be		No mo fum
Well Compl	etion:	Flush Mo	ount / (Stic	k løp			Key	Number	To Well:			PRO FIRMS

Project No. Project Nam	ne/Location	675712 -Goden	NY	-	Well ID	MWO	8-c7	5		Date	Page of
Measuring I Description Static Wat	Pt. on	<u> </u>	Scree Setting (ft-bm)			Casin Diameter (in	-			Weather Well Mat	erial XPVC
Level (ft-bri	np)		Total Depth (n-bmg		58	Water Column (fi	0 9.74	- Gr	allons in We	0.3	
MP Elevation Pump On/O	1000		Pump Intake (n-bmp	-	3-0-15	Purge Method:	Centrifuga			Sample Method	10- FI
Sample Tim	e: Label	1215	Volumes Purgeo		-		Submers! Other	ble		Meniod	
	Purge Start Purge End					Replicate/ Code No.		_		Sampled	oy un
îme	Minutes Elapsed	Rate (gpm)/(mL/min) 200mL/min +	Depth to Water (ft)	Gallons Purged		Cond. (µMhos)/(mS/cm)	Turbidity (NTU)	DO (mg/L)	Temp.	Redox (mV)	Appearance
1030	0	X	5.84		± 0.1	2.3%	± 10%	± 10%	13%	± 10mV	Color Odo
1035	5	200			7.08	0.871	12.5	J-88	20.40	1295	
1040	0	700			7:12	01926	22.4	5.85	200	1285	
1095	15	700			7,23	0.965	49.8	7.68	20.89	728.5	
1055	25	200			7.43	0,993	2432	8,60	21.32	122.6	
1100	30	-			7.32	0.989	93.4	668	21.36	1099	
					-	_					Dry
		Stabil	zation Calculation	ons (±)							
				1							
	2,000	Ilization Criteria			0.1 s.u.	±3%	± 10% or within 1	±10%	±3%	±10 mV	
stituents Sa		or within 1 NTU of a	previous reading whe		ontainer				Number		Preservativa
*	Took	Add Hion	sal Sample	is w	ith b	west on	9/16	121 2	Per	Joe -	Bistravick.
	F	,	11 -	_							SWINNER !
	(105	6 he	H is Dr	4 -			-	-			
-		. 1	@ 17.15	1 %.	71/0	Ac out	11	-		-	
)				· —	5 VU	A) OVI	//)	9	_	-	
)	(Sa	mpled	0 1-1		/			-		-	
7	(-San	mpled	0 1-1	_			-		-		
-	f-San	ut WL	M + +	25/2	3	in well	-1/	LM	Sher	on t	45hg @ 3
sing Volum	nes	0		15/1	ž wi	in well	-1/	LM	Ster	on t	using @ a
sing Volum	nes	1.5=0.	09 25"	= 0.26	3	0.50 6"	- 1/1	LM	Ster	on t	-47g @ 3
ising Volum	nes 0.04 = 0.06	1.5" = 0.	09 25"	= 0.26	2 WL	0.50 6"	,,,,,	CM cked at A		Yes	1 No

Attachment 2

Groundwater Laboratory Report

Attachment 3

Data Usability Summary Report

NYSEG - Goshen Former MGP Site

Data Usability Summary Report

Goshen, New York

Volatile Organic Compounds (VOCs), Semi Volatile Organic Compounds (SVOCs), and Cyanide Analyses

SDG #: L2149904

Analyses Performed By: Alpha Analytical Laboratories Westborough, Massachusetts

Report #: 43119R Review Level: Tier III Project: 30075710.00020

Summary

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # L2149904 for samples collected in association with the NYSEG Goshen Site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

Commis ID	Lab ID	Matrix	Sample	Down at Commis		Analysis	
Sample ID	Lab ID	Watrix	Collection Date	Parent Sample	VOC	svoc	CN
MW08-6S	L2149904-01	Water	09/15/2021		X	Х	Χ
MW08-6D	L2149904-02	Water	09/15/2021		X	X	Х
MW08-7D	L2149904-03	Water	09/15/2021		X	Х	Х
MW93-1D	L2149904-04	Water	09/15/2021		Х	Х	Х
MW93-1S	L2149904-05	Water	09/14/2021		X	Х	Χ
MW93-2S	L2149904-06	Water	09/14/2021		X	X	Х
MW93-2D	L2149904-07	Water	09/14/2021		Х	Х	Х
MW08-05S	L2149904-08	Water	09/13/2021		Х	Х	Х
MW08-05D	L2149904-09	Water	09/13/2021		X	X	Х
MW08-08S	L2149904-10	Water	09/13/2021		X	Х	Х
MW18-04D	L2149904-11	Water	09/14/2021		Х	Х	Х
MW18-04S	L2149904-12	Water	09/14/2021		X	X	Х
MW18-08D	L2149904-13	Water	09/13/2021		X	Х	Х
BD-20210913	L2149904-14	Water	09/13/2021	MW08-05D	Х	Х	Х
FB-20210913	L2149904-15	Water	09/13/2021		X	Х	Х
FB-20210914	L2149904-16	Water	09/14/2021		Х	Х	Х
FB-20210915	L2149904-17	Water	09/15/2021		X	Х	Х
MW08-07S	L2149904-18	Water	09/15/2021		X	Х	Х
TRIP BLANK	L2149904-19	Water	09/15/2021		X		

Notes:

VOC = Volatile Organic Compounds (VOCs).

SVOC = Semi Volatile Organic Compounds (SVOCs).

CN = Cyanide analysis.

Analytical Data Package Documentation

The table below evaluates the data package completeness.

Items Reviewed		orted	Performance Acceptable		Not
	No	Yes	No	Yes	Required
Sample receipt condition		X		X	
Requested analyses and sample results		Х		Х	
Master tracking list		Х		X	
4. Methods of analysis		Х		X	
5. Reporting limits		Х		X	
6. Sample collection date		Х		X	
7. Laboratory sample received date		Х		X	
8. Sample preservation verification (as applicable)		Х		X	
Sample preparation/extraction/analysis dates		Х		X	
10. Fully executed chain-of-custody form		Х		Х	
11. Narrative summary of QA or sample problems provided		Х		Х	
12. Data package completeness and compliance		Х		Х	

Note:

QA = quality assurance

Organic Analysis Introduction

Analyses were performed according to United Stated Environmental Protection Agency (USEPA) SW-846 Methods 8260C and 8270D selective ion monitoring (SIM). Data were reviewed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-20-005, November 2020 (with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, OSWER 9240.1-05A-P, October 1999, as appropriate.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected as unusable. The compound may or may not be present in the sample.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error.

Volatile Organic Compound (VOC) analyses

1. Holding Times

Method	Matrix	Holding Time	Preservation
SW-846 8260C	Water	14 days from collection to analysis (preserved) 7 days from collection to analysis (non-preserved)	Cool to <6 °C; preserved to a pH of less than 2 s.u.

Note:

s.u. = Standard units

2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blanks, trip blanks, and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure sample storage contamination. Rinse blanks also measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Target compounds were not detected above the MDL in the associated blanks; therefore, detected sample results are not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable, and all analyses were performed within a 12-hour tune clock. System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All samples exhibited surrogate recoveries within the control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The spiked compounds used in the MS/MSD analysis must exhibit recoveries within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS and MSD results must be within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSDs performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD spiking concentration by a factor of four or greater. Sample results associated with MS/MSD exceedances where the parent samples are not site-specific are not qualified.

The MS/MSD analysis was performed on sample MW18-04D. MS/MSD analysis exhibited acceptable recoveries and RPDs.

8. Laboratory Control Sample/ Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis are used to assess the precision and accuracy of the analytical method independent of matrix interferences. The spiked compounds used in the LCS/LCSD analysis must exhibit recoveries and RPDs within the laboratory-established acceptance limits.

All compounds associated with the LCS/LCSD analysis exhibited recoveries and RPDs within the control limits.

9. Field Duplicate Sample Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result (µg/L)	Duplicate Result (μg/L)	RPD
MW08-05D / BD-20210913	All compounds	U	U	AC

Notes:

AC = Acceptable U = non detect

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra. All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

Data Validation Checklist for VOCs

VOCs: SW-846 8260C and 8270D SIM	Reported			ormance eptable	Not Required	
	No	Yes	No	Yes		
GAS CHROMATOGRAPHY/MASS SPECTROMET	RY (GC/N	NS)				
Tier II Validation						
Holding times		Х		Х		
Reporting limits (units)		Х		Х		
Blanks						
A. Method blanks		Х		Х		
B. Equipment blanks		Х		Х		
C. Trip blanks		Х		Х		
Laboratory Control Sample (LCS) %R		Х		Х		
Laboratory Control Sample Duplicate (LCSD) %R		Х		Х		
LCS/LCSD Precision (RPD)		Х		Х		
Matrix Spike (MS) %R		Х		Х		
Matrix Spike Duplicate (MSD) %R		Х		Х		
MS/MSD Precision (RPD)		Х		Х		
Field/Lab Duplicate (RPD)		Х		Х		
Surrogate Spike Recoveries (%R)		Х		Х		
Dilution Factor (%D)		Х		Х		
Moisture Content	Х				Х	
Tier III Validation			'			
System performance and column resolution		Х		Х		
Initial calibration %RSDs		Х		Х		
Continuing calibration RRFs		Х		Х		
Continuing calibration %Ds		Х		Х		
Instrument tune and performance check		Х		Х		
lon abundance criteria for each instrument used		Х		Х		
Internal standard		Х		Х		
Compound identification and quantitation						
A. Reconstructed ion chromatograms		Х		Х		
B. Quantitation Reports		Х		Х		
C. RT of sample compounds within the established RT windows		Х		Х		
D. Transcription/calculation errors present		Х		Х		
E. Reporting limits adjusted to reflect sample dilutions		Х		Х		

Notes:

%RSD =Relative standard deviation

%R = Percent recovery

RPD = Relative percent difference

%D = Percent difference

Semivolatile Organic Compound (SVOC) Analyses

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8270D SIM	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to <6 °C

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the compounds listed in the following table. Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

Sample ID	Analytes	Sample Result	Qualification		
MW08-05D	Phenanthrene (FB)	Detected sample results <rl <bal<="" and="" td=""><td>"UB" at the RL</td></rl>	"UB" at the RL		
MW08-08S	Fluorene (FB)	Detected sample results <rl <bal<="" and="" td=""><td>"UB" at the RL</td></rl>	"UB" at the RL		
MW18-08D	Fluorene (FB)	Detected sample results <rl <bal<="" and="" td=""><td>"UB" at the RL</td></rl>	"UB" at the RL		
WWW TO-OOD	Phenanthrene (FB)	Detected sample results VIC and VDAL	OD at the INC		
BD-20210913	Phenanthrene (FB)	Detected sample results <rl <bal<="" and="" td=""><td>"UB" at the RL</td></rl>	"UB" at the RL		
MW93-2S	Phenanthrene (FB and MB)	Detected sample results <rl <bal<="" and="" td=""><td>"UB" at the RL</td></rl>	"UB" at the RL		
MW18-04D	Phenanthrene (FB and MB)	Detected sample results <rl <bal<="" and="" td=""><td>"UB" at the RL</td></rl>	"UB" at the RL		
MW08-6D	Naphthalene (FB)	Detected sample results <rl <bal<="" and="" td=""><td>"UB" at the RL</td></rl>	"UB" at the RL		
MW93-1D	Naphthalene (FB)	Detected sample results >RL and <bal< td=""><td>"UB" at detected sample concentration</td></bal<>	"UB" at detected sample concentration		

Note:

RL Reporting limit

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock. System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (20%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds associated with the SVOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD analysis was performed on sample MW18-04D. MS/MSD analysis exhibited acceptable recoveries and RPDs.

8. Laboratory Control Sample/ Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS/LCSD analysis exhibited recoveries within the control limits with the exceptions noted below.

Sample ID	Compound	LCS Recovery	LCSD Recovery
FB-20210915	Acenaphthene 2-Chloronaphthalene Fluoranthene Naphthalene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene Phenanthrene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene Pyrene Methylnaphthalene	>UL	>UL

The criteria used to evaluate the LCS recoveries are presented in the following table. In the case of an LCS deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper central limit (III)	Non-detect	No Action
> the upper control limit (UL)	Detect	J
the lower central limit (LL) but > 10%	Non-detect	UJ
< the lower control limit (LL) but > 10%	Detect	J
- 100/	Non-detect	R
< 10%	Detect	J

Sample locations associated with LCS/LCSD recoveries exhibiting an RPD greater than of the control limit presented in the following table.

Sample ID	Compound			
	Acenaphthene			
FB-20210915	2-Chloronaphthalene			
	Fluoranthene			
	Naphthalene			

Sample ID	Compound
	Benzo(a)anthracene
	Benzo(a)pyrene
	Benzo(b)fluoranthene
	Benzo(k)fluoranthene
	Chrysene
	Acenaphthylene
	Anthracene
	Benzo(ghi)perylene
	Fluorene
	Phenanthrene
	Dibenzo(a,h)anthracene
	Indeno(1,2,3-cd)pyrene
	Pyrene
	Methylnaphthalene

The criteria used to evaluate the RPD between the LCS/LCSD recoveries are presented in the following table. In the case of an RPD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	UJ
> 0L	Detect	J

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result (µg/L)	Duplicate Result (µg/L)	RPD
	Fluoranthene	0.08 J	0.10 J	AC
	Naphthalene	0.09 J	0.10 U	AC
	Benzo(a)anthracene	0.06 J	0.07 J	AC
	Benzo(a)pyrene	0.06 J	0.07 J	AC
MANOR OFF / PD 20240042	Benzo(b)fluoranthene	0.11	0.13	AC
MW08-05D / BD-20210913	Benzo(k)fluoranthene	0.03 J	0.04 J	AC
	Chrysene	0.06 J	0.06 J	AC
	Acenaphthylene	0.03 J	0.03 J	AC
	Anthracene	0.02 J	0.02 J	AC
	Benzo(ghi)perylene	0.07 J	0.08 J	AC

Sample ID/Duplicate ID	Compound	Sample Result (µg/L)	Duplicate Result (µg/L)	RPD
	Phenanthrene	0.04 J	0.04 J	AC
	Dibenzo(a,h)anthracene	0.01 J	0.02 J	AC
	Indeno(1,2,3-cd)pyrene	0.07 J	0.08 J	AC
	Pyrene	0.08 J	0.10 J	AC

Notes:

AC = Acceptable U = non detect

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra. All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

Data Validation Checklist for SVOCs

SVOCs: SW-846 8270D SIM	Rep	Reported		mance ptable	Not	
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROM	ETRY (GC	/MS)				
Tier II Validation						
Holding times		Х		Х		
Reporting limits (units)		Х		Х		
Blanks		·				
A. Method blanks		Х	Х			
B. Equipment/Field blanks		Х	Х			
Laboratory Control Sample (LCS) %R		Х	Х			
Laboratory Control Sample Duplicate (LCSD) %R		Х	Х			
LCS/LCSD Precision (RPD)		Х	Х			
Matrix Spike (MS) %R		Х		Х		
Matrix Spike Duplicate (MSD) %R		Х		Х		
MS/MSD Precision (RPD)		Х		Х		
Field/Lab Duplicate (RPD)		Х		Х		
Surrogate Spike Recoveries		Х		Х		
Dilution Factor		Х		X		
Moisture Content	Х				X	
Tier III Validation						
System performance and column resolution		Х		X		
Initial calibration %RSDs		Х		X		
Continuing calibration RRFs		X		X		
Continuing calibration %Ds		X		X		
Instrument tune and performance check		X		X		
Ion abundance criteria for each instrument used		Х		X		
Internal standard		X		X		
Compound identification and quantitation						
A. Reconstructed ion chromatograms		X		X		
B. Quantitation Reports		Х		X		
C. RT of sample compounds within the established RT windows		Х		Х		
D. Quantitation transcriptions/calculations		Х		X		
Reporting limits adjusted to reflect sample dilutions Notes:		Х		X		

Notes:

%RSD = Relative standard deviation

%R = Percent recovery

RPD = Relative percent difference

%D = Percent difference

Inorganic Analysis Introduction

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 9012B. USEPA CLP National Functional Guidelines for Inorganic Superfund Methods Data Review, document number EPA 542-R-20-006, November 2020(with reference to the historical USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, OSWER 9240.1-45, October 2004, as appropriate).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
 - B The reported value was obtained from a reading less than the contract-required detection limit (RL), but greater than or equal to the instrument detection limit (IDL).
- Quantitation (Q) Qualifiers
 - E The reported value is estimated due to the presence of interference.
 - N Spiked sample recovery is not within control limits.
 - * Duplicate analysis is not within control limits.
- Validation Qualifiers
 - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

General Chemistry Analyses

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Total Cyanide by SW846 9012B	Water	14 days from collection to analysis	Cool to <6 °C; preserved to a pH of greater than 12.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were not detected above the MDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

3. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 and all initial calibration verification standard recoveries were within control limits.

All calibration standard recoveries were within the control limit.

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis / Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

4.1 MS/MSD Analysis

All analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory flag will be removed.

The MS/MSD analysis was performed on sample MW08-6S and MW18-04D. MS/MSD analysis exhibited acceptable recoveries and RPDs with the exceptions noted below.

Sample ID	Analyte	MS Recovery	MSD Recovery
MW08-6S	Cyanide Total	Acceptable	62%

The criteria used to evaluate MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified. The qualifications are applied to all sample results associated with this SDG.

Control limit	Sample Result	Qualification
MS/MSD percent recovery 30% to 74%	Non-detect	UJ
Wishwish percent recovery 30 % to 74 %	Detect	J
MS/MSD percent receivery (200/	Non-detect	R
MS/MSD percent recovery <30%	Detect	J
MS/MSD percent receivery >1259/	Non-detect	No Action
MS/MSD percent recovery >125%	Detect	J

4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL for soil matrices.

Laboratory duplicate analysis was not performed on samples from this SDG.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 30% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Analyte	Sample Result (μg/L)	Duplicate Result (µg/L)	RPD
MW08-05D / BD-20210913	Cyanide Total	0.021	0.048	NC

Notes:

NC = non-compliant

The analyte cyanide total associated with samples MW08-05D and BD-20210913 exhibited a field duplicate RPD greater than the control limit. The associated sample results from this SDG for the listed analyte were qualified as estimated.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

Data Validation Checklist for General Chemistry

General Chemistry: 9012B	Rep	orted		rmance eptable	Not
	No	Yes	No	Yes	Required
Miscellaneous Instrumentation					
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment/Field blanks		Х		Х	
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R		Х		Х	
LCS/LCSD Precision (RPD)		Х		Х	
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate (MSD) %R		Х	Х		
MS/MSD Precision (RPD)		Х	Х		
Field/Lab Duplicate (RPD)		Х	Х		
Dilution Factor		Х		Х	
Moisture Content	Х				Х
Tier III Validation					<u>'</u>
Initial calibration %RSD or correlation coefficient		Х		Х	
Continuing calibration %R		Х		Х	
Raw Data					
Transcription/calculation errors present		Х		Х	
Reporting limits adjusted to reflect sample dilutions Notes:		Х		Х	

Notes:

%R = percent recovery

RPD = relative percent difference

SAMPLE COMPLIANCE REPORT

SDG	Sampling	Drotocol	Comple ID	Motrix		Compliancy ¹		Noncompliance
SDG	Date	Protocol	Sample ID	Matrix	VOC	SVOC	MISC	Noncompliance
	09/15/2021	SW846	MW08-6S	Water	Yes	Yes	No	MISC – MSD % recovery and field duplicate RPD
	09/15/2021	SW846	MW08-6D	Water	Yes	No	No	SVOC – Blank contamination MISC – MSD % recovery and field duplicate RPD
	09/15/2021	SW846	MW08-7D	Water	Yes	No	No	SVOC – Blank contamination MISC – MSD % recovery and field duplicate RPD
	09/15/2021	SW846	MW93-1D	Water	Yes	Yes	No	MISC – MSD % recovery and field duplicate RPD
	09/14/2021	SW846	MW93-1S	Water	Yes	Yes	No	MISC – MSD % recovery and field duplicate RPD
	09/14/2021	SW846	MW93-2S	Water	Yes	No	No	SVOC – Blank contamination MISC – MSD % recovery and field duplicate RPD
	09/14/2021	SW846	MW93-2D	Water	Yes	Yes	No	MISC – MSD % recovery and field duplicate RPD
	09/13/2021	SW846	MW08-05S	Water	Yes	Yes	No	MISC – MSD % recovery and field duplicate RPD
	09/13/2021	SW846	MW08-05D	Water	Yes	No	No	SVOC – Blank contamination MISC – MSD % recovery and field duplicate RPD
L2149904	09/13/2021	SW846	MW08-08S	Water	Yes	No	No	SVOC – Blank contamination MISC – MSD % recovery and field duplicate RPD
	09/14/2021	SW846	MW18-04D	Water	Yes	No	No	SVOC – Blank contamination MISC – MSD % recovery and field duplicate RPD
	09/14/2021	SW846	MW18-04S	Water	Yes	Yes	No	MISC – MSD % recovery and field duplicate RPD
	09/13/2021	SW846	MW18-08D	Water	Yes	No	No	SVOC – Blank contamination MISC – MSD % recovery and field duplicate RPD
	09/13/2021	SW846	BD-20210913	Water	Yes	No	No	SVOC – Blank contamination MISC – MSD % recovery and field duplicate RPD
	09/13/2021	SW846	FB-20210913	Water	Yes	Yes	No	MISC – MSD % recovery and field duplicate RPD
	09/14/2021	SW846	FB-20210914	Water	Yes	Yes	No	MISC – MSD % recovery and field duplicate RPD
	09/15/2021	SW846	FB-20210915	Water	Yes	No	No	SVOC – LCS/LCSD % recovery and RPD MISC – MSD % recovery and field duplicate RPD
	09/15/2021	SW846	MW08-07S	Water	Yes	Yes	No	MISC – MSD % recovery and field duplicate RPD
	09/15/2021	SW846	TRIP BLANK	Water	Yes			

Notes:

SDG = sample delivery group

¹ Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

VALIDATION PERFORMED BY: Prashanth.K

SIGNATURE:

DATE: October 20, 2021

PEER REVIEW: Dennis Capria

DATE: October 20, 2021

CHAIN OF CUSTODY AND CORRECTED SAMPLE ANALYSIS DATA SHEETS

F-(1954)	CHAIN OF CUSTODY	Service Centers Marwell, NJ 07A50: 35 Wellin Althony, NY 12305: 74 Male Tonnesentia, NY 14150: 275 (Way	TOS.	Pag	12			Rec	n 7	1/6	1	1	ALPHA JOB #		
William On Office	Mamminia, MA corons 120 Forbes Blvd	English (MD) view vi					Die lo	e sbl	88					Both of IAMOUNT IN		
FAX: 900 8.05-8191	FAX 30,-23 09	Project Name	NYSEG - G	oshan Former	MGP Site		D	ASP	A.		Œ	ASP	3,	Same as Client Info		
(up sansortie)	(110 40 30 30	Project Location.	Goshen, NY				D	EQU	IS (1	File)	(a)	EQUIS	(4 File)	ros		
300 107		Project #	30075718				Ø	Othe	er							
lient Arradis o	NY, me	(Lise Project name as i	Project#)				Fieg	Nette-	340	466-		-		0 - 12 (20 (10) ()		
Address: 110 West	Fayette St., Suite 300	Project Manager:	Jason Belli	islat			0	NYT	ogs		П	IV Pa	1376	Please identify below location of		
Syrecuse	Syracusa, NY 13202 ALPHAQuoid 15984						AWO	Stand	andn	U	MICH	-51	applicable disposal trailines.			
Phone, 315-671-6	1697	70 untiline					☐ NY Routricted Use ☐ Other ☐ NY Constitutioned Use							Disposel Faulty		
Fax		Standa	rd 🖾	Due Date	_								I M I W			
Email: joe bistro	vich@arcadis.com	Filish (only if pre approve	d) (I)	# of Days.			III.	NYC	Sewe	Discher	gu			Omer:		
Those samples have	oean previously analyza	ed by Alpha 🖾					ANA	LYSIS	3		_	_		Sample Filtration		
Please specify Metal	s or TAL						STEX - 8260	PAH - 8270	Cyanide - 9010/9012	MSMSD				☐ Done ☐ Lab to ge Preservation ☐ Lab to do (Please Specify below)		
ALFHA Lab IC (Lab Use Only)	Sa	mplê (D	Coll	action	Sample	Sampler's	-	-	yan					Land Contract		
		Alpio III.	Date	Time	Matro	Initials			O.		1-0			Sample Specific Comments		
Programme.	MW07-65		9115/21	0952	GW	KV.	100	X	×							
-31	MW08-60		9115121	1100	GW	14	×	140	×		10					
-02	MWOE-70		9/15/21	1145	Gul	MM	1/20	1	10		11					
-0-1	MW93-1D		9/15/21	1005	Gw	MM-	×	×	8		1.7					
50.00	MW93-15		9114/21	1345	GW	KI	×	X	×				-	-		
-OLL	MW93-25		9/14/21	1115	GU	W	X	X	8							
-07	MW93-20		91/4/11	0935	an	KV	Vo.	yo.	¥							
5000	MW08-055		9/13/21	1330	6w	KV.	×	X	Ý.		Œ.					
-07	MWOYED		56314	120	00	L	X	×	4	4.7	-	-				
611	MWOY -013		9/13/21	12/0	5w	5.5	×	×	×		-					
Pesser/ative Code		Westboro: Certification No. MA935 Manefield: Certification No. MA015 Application No. MA015				tainer Type reservative	Į	in,						Please print clearly, equity and completely Samples on the logged in and turnsround time clock will n		
					Time	1	Recei	ved B	YY -	-		Dale/	Time	start until any ambiguities a		
= Na.5.C E = Zr Ac/NuOH = Othe	D = BOD Bottle DT Por TVS Lon Poul Mangela			Misir myldan	1032	Received By: The Land			eas	Walter Bood		5/19	THIS COC. THE CLIENT THAS READ AND AGREES TO BE BOUND BY ALPHA			

Alaca Alaca	NEW YORK CHAIN OF CUSTODY	Service Contain: General N. (1742) 11 W/ o / Lamy NY (2005) (4 West Toronanica NY 18150 275	y Ware	nuil-	Pag	12			Rec'	9	1/4	1/21		ALPHA JOH &
Westporough, GA 61891 2 Walkep Dr.	Managed United	The formal sur-					Zan	-10/2	55					Bolin - NC i Alem
TE. 506-898-9020 FAX: 508-898-9185	TEI. 108-822-9300	Project Name	NYSEG - G	oshen Forme	r MGP Site		П	ASP	SA.		B	ASP-B	-	Same as Client Into
AWY SORGERS A (ES)	FAX 108.825-3269	Project Location:	Goshen, NY				D		8 H	Flia)	E	EQuiS	(4 File)	POA
TENTH NIET		Project #	30075710				B	Offee	er.			3300		
Client Arcadis o	/NY, mc	(Use Project name as	Project#)				F(33)	CET WY	900	9119	-			Delise Share mester
Address: 110 West	Fayette St., Suite 300	Project Manager	Jason Gold	bskii			D	DET	DGS	_	E	WV Part	\$75	Please dentify below location of
Syracuse	NY 13202	ALPHAQuote#:	15984				0	AWG	Stand	arus		NY CR-S		applicable disposal facilities
Phone: 315-671-6	9867	in manager = #					0	NYR	estrica	ed Une		Ottref		Dispose/ Facilly
Fac		Standa	ard 🖾	Dun Date		_	1150			ited Ua				D NI D NY
Ernail: joe bistroi	ich@arradis.com	Rush (only) are sopravi	7	# of Days			100	-	-	Divente	-			E one
These samples have	been previously analyze	ed by Alpha 🖸		117799			_	LYSIS	_	- Contraction	201	_	_	Sample Filtration
	c requirements/comm					_				100			7	D Done
Please specify Metal	s or TAL						3TEX - 8260	PAH-6270	Cyanide - 9010/9012	MSMSD				☐ Lab to de Preservation ☐ Lab to do (Please Specify below)
ALPHA Lab (D.	Se	mole IEI	Coll	ection	Sample	Sampler's	"	-	yan	h				The second secon
(Lab Use Only)	Use Only) Sample ID	Data	Time	Time Matrix	atrix Inttinis			9		A A Land		50.11	Sample Specific Comments	
1901-11	MM18-HD		9/14/21	0530	6W	5s	×	20	10	X				
~ 1	MW18-045		19/14/11	1130	GW	55	×	Se.	Se	70.7		-		
-13	WM18-02D	X	9113121	11/0	GW.	55	Se	100	>	1				
- 64	BD-2021091		91/3/21	-	GW	KV	k	x	×				-	
-15	FB = 202109	13	91.3/21	1355	FB	KU	X	×	3	-	17-			
-\\E	FB-202109	14	19/1/1/21	1330	FB	W	k	8	×			-		
-11	FB-262109	15	5/13/1	1330	FB	KV	×	×	N			100		
~/5	Mydot-075		9115/21	1215	MAN	MM	X	×	x					
-/3	Trip Blank		9/15/21	-	TB	-	×			-	-		3.1	
feet territally on Paydon	Continue Co.V.					-								
Preservative Code A = Nc		Westboro: Certification No: MA935 Mansfield: Certification No: MA915				tainer Type reservative	+						Please print clearly, legibly and completely. Samples canot be logged in and	
= MaOH = MeOH	C+50be	Bullmark	Davidson I					-	_		\vdash			tumaround time clock will he start until any ambiguities an
= NuHSO ₄ = No S ₂ O ₁ /E = Zn Ao/NaO/t = Other	G = Other E = Engage D = 800 Bothe	Alaka Tes	Inguished By Date/Time 9///2/1230 French French Gright 10:30 French L Margalla C 1///2/ 77/1//		Hunda	Received St.			00.	Stickers 63			resolved BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES ATO BE BOUND BY ALPHA	

Project Name:NYSEG-GOSHEN FORMER MGP SITELab Number:L2149904Project Number:30075710Report Date:09/24/21

GLOSSARY

Acronyms

EDL.

LOD

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a

specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: NYSEG-GOSHEN FORMER MGP SITE Lab Number: L2149904
Project Number: 30075710 Report Date: 09/24/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.

Report Format: DU Report with 'J' Qualifiers

Client : Arcadis of New York, Inc.
Project Name : NYSEG-GOSHEN FORMER MGP SITE

Lab ID : L2149904-01
Client ID : MW08-6S
Sample Location : GOSHEN, NY
Sample Matrix : WATER

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V08210920A07

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2149904
Project Number : 30075710
Date Collected : 09/15/21 09:52

Date Received : 09/16/21 Date Analyzed : 09/20/21 11:22

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA108
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

CAS NO.	Parameter	Results	RL	MDL	Qualifier	
71-43-2	Benzene	ND	0.50	0.16	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	

Client : Arcadis of New York, Inc. Lab Number **Project Name** : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710

Lab ID : L2149904-02 Date Collected : 09/15/21 11:00 Client ID : MW08-6D Date Received : 09/16/21 Sample Location : GOSHEN, NY Date Analyzed : 09/20/21 11:42

Sample Matrix : WATER Dilution Factor : 1 Analytical Method : 1,8260C Analyst : MKS Lab File ID : V08210920A08 Instrument ID : VOA108 GC Column : RTX-502.2 Sample Amount : 10 ml

%Solids Level : LOW : N/A Extract Volume (MeOH): N/A Injection Volume: N/A

CAS NO.	Parameter	Results	RL	MDL	Qualifier	
71-43-2	Benzene	ND	0.50	0.16	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	

: L2149904

Client : Arcadis of New York, Inc. Lab Number **Project Name** : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710

Lab ID : L2149904-03 Date Collected : 09/15/21 11:45 Client ID : MW08-7D Date Received : 09/16/21 Sample Location : GOSHEN, NY Date Analyzed : 09/20/21 12:02

Sample Matrix : WATER Dilution Factor : 1 Analytical Method : 1,8260C Analyst : MKS Lab File ID : V08210920A09 Instrument ID : VOA108 GC Column : RTX-502.2 Sample Amount : 10 ml

%Solids Level : LOW : N/A Extract Volume (MeOH): N/A Injection Volume: N/A

Parameter	Results	RL	MDL	Qualifier
Benzene	ND	0.50	0.16	U
Toluene	ND	2.5	0.70	U
Ethylbenzene	ND	2.5	0.70	U
p/m-Xylene	ND	2.5	0.70	U
o-Xylene	ND	2.5	0.70	U
	Ethylbenzene p/m-Xylene	Toluene ND Ethylbenzene ND p/m-Xylene ND	Toluene ND 2.5 Ethylbenzene ND 2.5 p/m-Xylene ND 2.5	Toluene ND 2.5 0.70 Ethylbenzene ND 2.5 0.70 p/m-Xylene ND 2.5 0.70

: L2149904

Client : Arcadis of New York, Inc. Lab Number : L2149904
Project Name : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710
Lab ID : L2149904-04 Date Collected : 09/15/21 10

 Lab ID
 : L2149904-04
 Date Collected
 : 09/15/21 10:05

 Client ID
 : MW93-1D
 Date Received
 : 09/16/21

 Sample Location
 : GOSHEN, NY
 Date Analyzed
 : 09/20/21 12:23

Sample Matrix: WATERDilution Factor: 1Analytical Method: 1,8260CAnalyst: MKSLab File ID: V08210920A10Instrument ID: VOA108Sample Amount: 10 mlGC Column: RTX-502.2

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

		<u></u>				
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
71-43-2	Benzene	ND	0.50	0.16	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	

Client : Arcadis of New York, Inc. Lab Number : L2149904
Project Name : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710

 Lab ID
 : L2149904-05
 Date Collected
 : 09/14/21 13:45

 Client ID
 : MW93-1S
 Date Received
 : 09/16/21

 Sample Location
 : GOSHEN, NY
 Date Analyzed
 : 09/20/21 12:43

Sample Matrix: WATERDilution Factor: 1Analytical Method: 1,8260CAnalyst: MKSLab File ID: V08210920A11Instrument ID: VOA108Sample Amount: 10 mlGC Column: RTX-502.2

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

CAS NO.	Parameter	Results	RL	MDL	Qualifier	
71-43-2	Benzene	ND	0.50	0.16	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	

Client : Arcadis of New York, Inc. Lab Number : L2149904
Project Name : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710

 Lab ID
 : L2149904-06
 Date Collected
 : 09/14/21 11:15

 Client ID
 : MW93-2S
 Date Received
 : 09/16/21

 Sample Location
 : GOSHEN, NY
 Date Analyzed
 : 09/20/21 13:03

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,8260C Analyst : MKS
Lab File ID : V08210920A12 Instrument ID : V0A108
Sample Amount : 10 ml GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
71-43-2	Benzene	ND	0.50	0.16	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	

Client : Arcadis of New York, Inc. Lab Number : L2149904

Project Name : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710

Lab ID : L2149904-07 Date Collected : 09/14/21 09:35

 Lab ID
 : L2149904-07
 Date Collected
 : 09/14/21 09:35

 Client ID
 : MW93-2D
 Date Received
 : 09/16/21

 Sample Location
 : GOSHEN, NY
 Date Analyzed
 : 09/20/21 13:24

 County Making
 : WATER

Sample Matrix: WATERDilution Factor: 1Analytical Method: 1,8260CAnalyst: MKSLab File ID: V08210920A13Instrument ID: VOA108Sample Amount: 10 mlGC Column: RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
71-43-2	Benzene	ND	0.50	0.16	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	

Client : Arcadis of New York, Inc.

Project Name : NYSEG-GOSHEN FORMER MGP SITE

Lab ID : L2149904-08
Client ID : MW08-05S
Sample Location : GOSHEN, NY
Sample Matrix : WATER

Analytical Method : 1,8260C Lab File ID : V08210920A14

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2149904
Project Number : 30075710
Date Collected : 09/13/21 13:30

Date Received : 09/16/21 Date Analyzed : 09/20/21 13:44

Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA108
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	_
71-43-2	Benzene	13	0.50	0.16		
108-88-3	Toluene	1.7	2.5	0.70	J	
100-41-4	Ethylbenzene	2.1	2.5	0.70	J	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	4.6	2.5	0.70		

Client : Arcadis of New York, Inc. Lab Number : L2149904

Project Name : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710

Lab ID Date Collected : 09/13/21 12:00

Sample Matrix: WATERDilution Factor: 1Analytical Method: 1,8260CAnalyst: MKSLab File ID: V08210920A15Instrument ID: VOA108Sample Amount: 10 mlGC Column: RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
71-43-2	Benzene	ND	0.50	0.16	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	

Client : Arcadis of New York, Inc. Lab Number Project Name : NYSEG-GOSHEN FORMER MGP SITE Project Num

Lab ID : L2149904-10
Client ID : MW08-08S
Sample Location : GOSHEN, NY
Sample Matrix : WATER

Analytical Method : 1,8260C
Lab File ID : V08210920A16

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2149904
Project Number : 30075710
Date Collected : 09/13/21 12:10
Date Received : 09/16/21

Date Analyzed : 09/20/21 14:25
Dilution Factor : 1
Analyst : MKS
Instrument ID : VOA108

: RTX-502.2

%Solids : N/A Injection Volume : N/A

GC Column

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
71-43-2	Benzene	0.53	0.50	0.16		
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.7	D	0 U

Client : Arcadis of New York, Inc. Lab Number : L2149904
Project Name : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710
Lab ID : L2149904-11 Date Collected : 09/14/21 09:30

Sample Matrix: WATERDilution Factor: 1Analytical Method: 1,8260CAnalyst: MKSLab File ID: V08210920A17Instrument ID: VOA108Sample Amount: 10 mlGC Column: RTX-502.2

-			
L MD	Parameter Resul	Qualifie	er
50 0	Benzene ND	5 U	
5 0	Toluene ND) U	
5 0	Ethylbenzene ND) U	
5 0	p/m-Xylene ND) U	
5 0	o-Xylene ND) U	
_	r. , , ,		

Client : Arcadis of New York, Inc. Lab Number : L2149904

Project Name : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710

Lab ID : L2149904-12 Date Collected : 09/14/21 11:20

 Lab ID
 : L2149904-12
 Date Collected
 : 09/14/21 11:20

 Client ID
 : MW18-04S
 Date Received
 : 09/16/21

 Sample Location
 : GOSHEN, NY
 Date Analyzed
 : 09/20/21 15:05

Sample Matrix: WATERDilution Factor: 1Analytical Method: 1,8260CAnalyst: MKSLab File ID: V08210920A18Instrument ID: V0A108Sample Amount: 10 mlGC Column: RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
71-43-2	Benzene	ND	0.50	0.16	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	

Client : Arcadis of New York, Inc. Lab Number : L2149904

Project Name : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710

Lab ID : L2149904-13 Date Collected : 09/13/21 11:10

 Lab ID
 : L2149904-13
 Date Collected
 : 09/13/21 11:10

 Client ID
 : MW18-08D
 Date Received
 : 09/16/21

 Sample Location
 : GOSHEN, NY
 Date Analyzed
 : 09/20/21 15:25

Sample Matrix: WATERDilution Factor: 1Analytical Method: 1,8260CAnalyst: MKSLab File ID: V08210920A19Instrument ID: VOA108Sample Amount: 10 mlGC Column: RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
71-43-2	Benzene	ND	0.50	0.16	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	

Client : Arcadis of New York, Inc. Lab Number : L2149904
Project Name : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710
Lab ID : L2149904-14 Date Collected : 09/13/21 00:00

Sample Matrix: WATERDilution Factor: 1Analytical Method: 1,8260CAnalyst: MKSLab File ID: V08210920A20Instrument ID: VOA108Sample Amount: 10 mlGC Column: RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
71-43-2	Benzene	ND	0.50	0.16	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	

Client : Arcadis of New York, Inc. Lab Number : L2149904

Project Name : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710

Lab ID : L2149904-15 Date Collected : 09/13/21 13:55

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,8260C Analyst : MKS
Lab File ID : V08210920A21 Instrument ID : V0A108
Sample Amount : 10 ml GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
71-43-2	Benzene	ND	0.50	0.16	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	

Client : Arcadis of New York, Inc. Lab Number : L2149904
Project Name : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710
Lab ID : L2149904-16 Date Collected : 09/14/21 13:30
Client ID : FR-20210914 Date Received : 09/16/21

Client ID : FB-20210914 Date Received : 09/16/21
Sample Location : GOSHEN, NY Date Analyzed : 09/20/21 16:26

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,8260C Analyst : MKS
Lab File ID : V08210920A22 Instrument ID : V0A108
Sample Amount : 10 ml GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
71-43-2	Benzene	ND	0.50	0.16	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	

Client : Arcadis of New York, Inc. Lab Number : L2149904

Project Name : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710

Lab ID : L2149904-17 Date Collected : 09/15/21 13:30

Client ID : FB-20210915 Date Received : 09/16/21 Sample Location : GOSHEN, NY Date Analyzed : 09/20/21 16:47 Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 1,8260C Analyst : MKS
Lab File ID : V08210920A23 Instrument ID : V0A108
Sample Amount : 10 ml GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
71-43-2	Benzene	ND	0.50	0.16	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	

Client : Arcadis of New York, Inc. Lab Number : L2149904
Project Name : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710
Lab ID : L2149904-18 Date Collected : 09/15/21 12:15

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,8260C Analyst : MKS
Lab File ID : V08210920A24 Instrument ID : V0A108
Sample Amount : 10 ml GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
71-43-2	Benzene	ND	0.50	0.16	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	

Client : Arcadis of New York, Inc. Lab Number : L2149904
Project Name : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710
Lab ID : L2149904-19 Date Collected : 09/15/21 00:00
Client ID : TRIP BLANK

Client ID : TRIP BLANK Date Received : 09/16/21
Sample Location : GOSHEN, NY Date Analyzed : 09/20/21 17:27
Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 1,8260C Analyst : MKS
Lab File ID : V08210920A25 Instrument ID : VOA108
Sample Amount : 10 ml GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
71-43-2	Benzene	ND	0.50	0.16	U	
108-88-3	Toluene	ND	2.5	0.70	U	
100-41-4	Ethylbenzene	ND	2.5	0.70	U	
179601-23-1	p/m-Xylene	ND	2.5	0.70	U	
95-47-6	o-Xylene	ND	2.5	0.70	U	

Client : Arcadis of New York, Inc.

Project Name : NYSEG-GOSHEN FORMER MGP SITE

Lab ID : L2149904-01
Client ID : MW08-6S
Sample Location : GOSHEN, NY
Sample Matrix : WATER
Analytical Method : 1,8270D-SIM
Lab File ID : 49904-01
Sample Amount : 275 ml

Extraction Method : EPA 3510C

Extract Volume : 1000 uL

GPC Cleanup : N

Lab Number : L2149904
Project Number : 30075710
Date Collected : 09/15/21 09:52
Date Received : 09/16/21

Date Received : 09/16/21

Date Analyzed : 09/21/21 14:01

Date Extracted : 09/20/21

Dilution Factor : 1
Analyst : JJW
Instrument ID : SV119
GC Column : RXI-5SiIM
%Solids : N/A

	Parameter		ug/L			
CAS NO.		Results	RL	MDL	Qualifier	
83-32-9	Acenaphthene	ND	0.10	0.01	U	
91-58-7	2-Chloronaphthalene	ND	0.20	0.02	U	
206-44-0	Fluoranthene	0.02	0.10	0.02	J	
91-20-3	Naphthalene	ND	0.10	0.05	U	
56-55-3	Benzo(a)anthracene	0.02	0.10	0.02	J	
50-32-8	Benzo(a)pyrene	ND	0.10	0.02	U	
205-99-2	Benzo(b)fluoranthene	ND	0.10	0.01	U	
207-08-9	Benzo(k)fluoranthene	ND	0.10	0.01	U	
218-01-9	Chrysene	ND	0.10	0.01	U	
208-96-8	Acenaphthylene	ND	0.10	0.01	U	
120-12-7	Anthracene	ND	0.10	0.01	U	
191-24-2	Benzo(ghi)perylene	ND	0.10	0.01	U	
86-73-7	Fluorene	ND	0.10	0.01	U	
85-01-8	Phenanthrene	0.03	0.10	0.02	J	
53-70-3	Dibenzo(a,h)anthracene	ND	0.10	0.01	U	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.10	0.01	U	
129-00-0	Pyrene	0.02	0.10	0.02	J	
91-57-6	2-Methylnaphthalene	ND	0.10	0.02	U	

Client : Arcadis of New York, Inc.
Project Name : NYSEG-GOSHEN FORMER MGP SITE

Project Name : NYSEG-GOSHEN For Lab ID : L2149904-02

Client ID : MW08-6D
Sample Location : GOSHEN, NY
Sample Matrix : WATER
Analytical Method : 1.8270D-SIM

Analytical Method : 1,8270D-SIM
Lab File ID : 49904-02
Sample Amount : 275 ml
Extraction Method : EPA 3510C
Extract Volume : 1000 uL
GPC Cleanup : N

Lab Number : L2149904
Project Number : 30075710
Date Collected : 09/15/21 11:00
Date Received : 09/16/21

Date Analyzed : 09/21/21 14:20

Date Extracted : 09/20/21

Dilution Factor : 1

Analyst : JJW

Instrument ID : SV119

GC Column : RXI-5SilM

%Solids : N/A Injection Volume : 1 uL

	Parameter		ug/L				
CAS NO.			Results	RL	MDL	Qualifier	
83-32-9	Acenaphthene		ND	0.10	0.01	U	
91-58-7	2-Chloronaphthalene		ND	0.20	0.02	U	
206-44-0	Fluoranthene		0.04	0.10	0.02	J	
91-20-3	Naphthalene	0.10 UB	0.08	0.10	0.05	a.	
56-55-3	Benzo(a)anthracene		0.04	0.10	0.02	J	
50-32-8	Benzo(a)pyrene		0.02	0.10	0.02	J	
205-99-2	Benzo(b)fluoranthene		0.03	0.10	0.01	J	
207-08-9	Benzo(k)fluoranthene		0.01	0.10	0.01	J	
218-01-9	Chrysene		0.02	0.10	0.01	J	
208-96-8	Acenaphthylene		0.02	0.10	0.01	J	
120-12-7	Anthracene		0.02	0.10	0.01	J	
191-24-2	Benzo(ghi)perylene		0.02	0.10	0.01	J	
86-73-7	Fluorene		0.02	0.10	0.01	J	
85-01-8	Phenanthrene		0.05	0.10	0.02	J	
53-70-3	Dibenzo(a,h)anthracene		ND	0.10	0.01	U	
193-39-5	Indeno(1,2,3-cd)pyrene		0.02	0.10	0.01	J	
129-00-0	Pyrene		0.05	0.10	0.02	J	
91-57-6	2-Methylnaphthalene		ND	0.10	0.02	U	

Client : Arcadis of New York, Inc.
Project Name : NYSEG-GOSHEN FORMER MGP SITE

Lab ID : L2149904-03

Client ID : MW08-7D
Sample Location : GOSHEN, NY
Sample Matrix : WATER
Analytical Method : 1,8270D-SIM

Lab File ID : 49904-03
Sample Amount : 275 ml
Extraction Method : EPA 3510C
Extract Volume : 1000 uL
GPC Cleanup : N

Lab Number : L2149904
Project Number : 30075710
Date Collected : 09/15/21 11:45

Date Received : 09/16/21
Date Analyzed : 09/21/21 14:39

Date Extracted : 09/20/21

Dilution Factor : 1
Analyst : JJW
Instrument ID : SV119
GC Column : RXI-5SiIM
%Solids : N/A

%Solids : N/A Injection Volume : 1 uL

Parameter		ug/L			
raiailletei	Results	RL	MDL	Qualifier	
Acenaphthene	ND	0.10	0.01	U	
2-Chloronaphthalene	ND	0.20	0.02	U	
Fluoranthene	ND	0.10	0.02	U	
Naphthalene	ND	0.10	0.05	U	
Benzo(a)anthracene	ND	0.10	0.02	U	
Benzo(a)pyrene	ND	0.10	0.02	U	
Benzo(b)fluoranthene	ND	0.10	0.01	U	
Benzo(k)fluoranthene	ND	0.10	0.01	U	
Chrysene	ND	0.10	0.01	U	
Acenaphthylene	ND	0.10	0.01	U	
Anthracene	ND	0.10	0.01	U	
Benzo(ghi)perylene	ND	0.10	0.01	U	
Fluorene	ND	0.10	0.01	U	
Phenanthrene	ND	0.10	0.02	U	
Dibenzo(a,h)anthracene	ND	0.10	0.01	U	
Indeno(1,2,3-cd)pyrene	ND	0.10	0.01	U	
Pyrene	ND	0.10	0.02	U	
2-Methylnaphthalene	ND	0.10	0.02	U	
	2-Chloronaphthalene Fluoranthene Naphthalene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene Phenanthrene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene Pyrene	2-Chloronaphthalene ND Fluoranthene ND Naphthalene ND Benzo(a)anthracene ND Benzo(a)pyrene ND Benzo(b)fluoranthene ND Benzo(k)fluoranthene ND Chrysene ND Acenaphthylene ND Anthracene ND Benzo(ghi)perylene ND Fluorene ND Phenanthrene ND Dibenzo(a,h)anthracene ND Indeno(1,2,3-cd)pyrene ND Pyrene ND	2-Chloronaphthalene ND 0.20 Fluoranthene ND 0.10 Naphthalene ND 0.10 Benzo(a)anthracene ND 0.10 Benzo(a)pyrene ND 0.10 Benzo(b)fluoranthene ND 0.10 Benzo(k)fluoranthene ND 0.10 Chrysene ND 0.10 Acenaphthylene ND 0.10 Anthracene ND 0.10 Benzo(ghi)perylene ND 0.10 Fluorene ND 0.10 Phenanthrene ND 0.10 Dibenzo(a,h)anthracene ND 0.10 Indeno(1,2,3-cd)pyrene ND 0.10 Pyrene ND 0.10	2-Chioronaphthalene ND 0.20 0.02 Fluoranthene ND 0.10 0.02 Naphthalene ND 0.10 0.05 Benzo(a)anthracene ND 0.10 0.02 Benzo(b)fluoranthene ND 0.10 0.01 Benzo(k)fluoranthene ND 0.10 0.01 Chrysene ND 0.10 0.01 Acenaphthylene ND 0.10 0.01 Anthracene ND 0.10 0.01 Benzo(ghi)perylene ND 0.10 0.01 Fluorene ND 0.10 0.01 Phenanthrene ND 0.10 0.02 Dibenzo(a,h)anthracene ND 0.10 0.01 Indeno(1,2,3-cd)pyrene ND 0.10 0.01 Pyrene ND 0.10 0.02	

Client : Arcadis of New York, Inc.
Project Name : NYSEG-GOSHEN FORMER MGP SITE

Lab ID : L2149904-04 Client ID : MW93-1D

Sample Location : GOSHEN, NY
Sample Matrix : WATER
Analytical Method : 1,8270D-SIM
Lab File ID : 49904-04
Sample Amount : 275 ml
Extraction Method : EPA 3510C
Extract Volume : 1000 uL

GPC Cleanup : N

Lab Number : L2149904
Project Number : 30075710
Date Collected : 09/15/21 10:05
Date Received : 09/16/21

Date Analyzed : 09/21/21 14:58

Date Extracted : 09/20/21
Dilution Factor : 1
Analyst : JJW
Instrument ID : SV119
GC Column : RXI-5SiIM
%Solids : N/A

	Parameter		ug/L			
CAS NO.		Results	RL	MDL	Qualifier	
83-32-9	Acenaphthene	ND	0.10	0.01	U	
91-58-7	2-Chloronaphthalene	ND	0.20	0.02	U	
206-44-0	Fluoranthene	0.13	0.10	0.02		
91-20-3	Naphthalene	0.18 UB	0.10	0.05		
56-55-3	Benzo(a)anthracene	0.11	0.10	0.02		
50-32-8	Benzo(a)pyrene	0.14	0.10	0.02		
205-99-2	Benzo(b)fluoranthene	0.20	0.10	0.01		
207-08-9	Benzo(k)fluoranthene	0.07	0.10	0.01	J	
218-01-9	Chrysene	0.09	0.10	0.01	J	
208-96-8	Acenaphthylene	0.09	0.10	0.01	J	
120-12-7	Anthracene	0.07	0.10	0.01	J	
191-24-2	Benzo(ghi)perylene	0.13	0.10	0.01		
86-73-7	Fluorene	0.03	0.10	0.01	J	
85-01-8	Phenanthrene	0.08	0.10	0.02	J	
53-70-3	Dibenzo(a,h)anthracene	0.02	0.10	0.01	J	
193-39-5	Indeno(1,2,3-cd)pyrene	0.14	0.10	0.01		
129-00-0	Pyrene	0.13	0.10	0.02		
91-57-6	2-Methylnaphthalene	0.02	0.10	0.02	J	

Client : Arcadis of New York, Inc.
Project Name : NYSEG-GOSHEN FORMER MGP SITE

Lab ID : L2149904-05

Client ID : MW93-1S
Sample Location : GOSHEN, NY
Sample Matrix : WATER
Analytical Method : 1,8270D-SIM

Lab File ID : 49904-05
Sample Amount : 275 ml
Extraction Method : EPA 3510C
Extract Volume : 1000 uL

: N

GPC Cleanup

Lab Number : L2149904
Project Number : 30075710
Date Collected : 09/14/21 13:45
Date Received : 09/16/21
Date Analyzed : 09/20/21 16:22

Date Extracted : 09/19/21

Dilution Factor : 1
Analyst : JJW
Instrument ID : SV125
GC Column : RXI-5SiIM
%Solids : N/A

	Parameter		ug/L			
CAS NO.		Results	RL	MDL	Qualifier	
83-32-9	Acenaphthene	ND	0.10	0.01	U	
91-58-7	2-Chloronaphthalene	ND	0.20	0.02	U	
206-44-0	Fluoranthene	0.84	0.10	0.02		
91-20-3	Naphthalene	0.07	0.10	0.05	J	
56-55-3	Benzo(a)anthracene	0.70	0.10	0.02		
50-32-8	Benzo(a)pyrene	0.95	0.10	0.02		
205-99-2	Benzo(b)fluoranthene	1.4	0.10	0.01		
207-08-9	Benzo(k)fluoranthene	0.46	0.10	0.01		
218-01-9	Chrysene	0.61	0.10	0.01		
208-96-8	Acenaphthylene	0.27	0.10	0.01		
120-12-7	Anthracene	0.31	0.10	0.01		
191-24-2	Benzo(ghi)perylene	0.86	0.10	0.01		
86-73-7	Fluorene	0.03	0.10	0.01	J	
85-01-8	Phenanthrene	0.19	0.10	0.02		
53-70-3	Dibenzo(a,h)anthracene	0.18	0.10	0.01		
193-39-5	Indeno(1,2,3-cd)pyrene	0.96	0.10	0.01		
129-00-0	Pyrene	0.78	0.10	0.02		
91-57-6	2-Methylnaphthalene	ND	0.10	0.02	U	

Client : Arcadis of New York, Inc.

Project Name : NYSEG-GOSHEN FORMER MGP SITE

Lab ID : L2149904-06
Client ID : MW93-2S
Sample Location : GOSHEN, NY
Sample Matrix : WATER
Analytical Method : 1,8270D-SIM
Lab File ID : 49904-06

Extraction Method : EPA 3510C Extract Volume : 1000 uL

Sample Amount : 275 ml

GPC Cleanup : N

Lab Number : L2149904
Project Number : 30075710
Date Collected : 09/14/21 11:15

Date Received : 09/16/21

Date Analyzed : 09/20/21 16:41 Date Extracted : 09/19/21

Dilution Factor : 1
Analyst : JJW
Instrument ID : SV125
GC Column : RXI-5SilM

%Solids : N/A Injection Volume : 1 uL

		ug/L			
Parameter		Results	RL	MDL	Qualifier
Acenaphthene		ND	0.10	0.01	U
2-Chloronaphthalene		ND	0.20	0.02	U
Fluoranthene		0.02	0.10	0.02	J
Naphthalene		0.14	0.10	0.05	
Benzo(a)anthracene		ND	0.10	0.02	U
Benzo(a)pyrene		ND	0.10	0.02	U
Benzo(b)fluoranthene		0.01	0.10	0.01	J
Benzo(k)fluoranthene		ND	0.10	0.01	U
Chrysene		ND	0.10	0.01	U
Acenaphthylene		0.02	0.10	0.01	J
Anthracene		ND	0.10	0.01	U
Benzo(ghi)perylene		ND	0.10	0.01	U
Fluorene		0.02	0.10	0.01	J
Phenanthrene	0.10 UB	0.04	0.10	0.02	×
Dibenzo(a,h)anthracene		ND	0.10	0.01	U
Indeno(1,2,3-cd)pyrene		ND	0.10	0.01	U
Pyrene		0.02	0.10	0.02	J
2-Methylnaphthalene		0.02	0.10	0.02	J
	Acenaphthene 2-Chloronaphthalene Fluoranthene Naphthalene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene Phenanthrene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene Pyrene	Acenaphthene 2-Chloronaphthalene Fluoranthene Naphthalene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene Phenanthrene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene Pyrene	Acenaphthene ND 2-Chloronaphthalene ND Fluoranthene 0.02 Naphthalene 0.14 Benzo(a)anthracene ND Benzo(a)pyrene ND Benzo(b)fluoranthene 0.01 Benzo(k)fluoranthene ND Chrysene ND Acenaphthylene 0.02 Anthracene ND Benzo(ghi)perylene ND Fluorene 0.02 Phenanthrene 0.02 Phenanthrene 0.02 Phenanthrene ND Indeno(1,2,3-cd)pyrene ND Pyrene 0.02	Parameter Results RL Acenaphthene ND 0.10 2-Chloronaphthalene ND 0.20 Fluoranthene 0.02 0.10 Naphthalene 0.14 0.10 Benzo(a)anthracene ND 0.10 Benzo(b)fluoranthene ND 0.10 Benzo(b)fluoranthene ND 0.10 Chrysene ND 0.10 Acenaphthylene 0.02 0.10 Anthracene ND 0.10 Benzo(ghi)perylene ND 0.10 Fluorene 0.02 0.10 Phenanthrene 0.10 UB 0.04 0.10 Dibenzo(a,h)anthracene ND 0.10 Indeno(1,2,3-cd)pyrene ND 0.10 Pyrene 0.02 0.10	Parameter Results RL MDL Acenaphthene ND 0.10 0.01 2-Chloronaphthalene ND 0.20 0.02 Fluoranthene 0.02 0.10 0.02 Naphthalene 0.14 0.10 0.05 Benzo(a)anthracene ND 0.10 0.02 Benzo(b)fluoranthene 0.01 0.10 0.02 Benzo(b)fluoranthene ND 0.10 0.01 Chrysene ND 0.10 0.01 Acenaphthylene 0.02 0.10 0.01 Anthracene ND 0.10 0.01 Benzo(ghi)perylene ND 0.10 0.01 Fluorene 0.02 0.10 0.01 Phenanthrene 0.10 UB 0.04 0.10 0.02 Dibenzo(a,h)anthracene ND 0.10 0.01 Indeno(1,2,3-cd)pyrene ND 0.10 0.01 Pyrene 0.02 0.10 0.02

Client : Arcadis of New York, Inc.

Project Name : NYSEG-GOSHEN FORMER MGP SITE Lab ID : L2149904-07

Lab ID : L2149904-07
Client ID : MW93-2D
Sample Location : GOSHEN, NY
Sample Matrix : WATER
Analytical Method : 1,8270D-SIM
Lab File ID : 49904-07
Sample Amount : 275 ml

Extract Volume : 1000 uL

Extraction Method : EPA 3510C

GPC Cleanup : N

Lab Number : L2149904
Project Number : 30075710
Date Collected : 09/14/21 09:35
Date Received : 09/16/21
Date Analyzed : 09/20/21 17:00

Date Extracted : 09/19/21

Dilution Factor : 1
Analyst : JJW
Instrument ID : SV125
GC Column : RXI-5SiIM
%Solids : N/A

	Parameter		ug/L		
CAS NO.		Results	RL	MDL	Qualifier
83-32-9	Acenaphthene	0.11	0.10	0.01	
91-58-7	2-Chloronaphthalene	0.11	0.20	0.02	J
206-44-0	Fluoranthene	0.13	0.10	0.02	
91-20-3	Naphthalene	0.38	0.10	0.05	
56-55-3	Benzo(a)anthracene	0.13	0.10	0.02	
50-32-8	Benzo(a)pyrene	0.11	0.10	0.02	
205-99-2	Benzo(b)fluoranthene	0.13	0.10	0.01	
207-08-9	Benzo(k)fluoranthene	0.11	0.10	0.01	
218-01-9	Chrysene	0.11	0.10	0.01	
208-96-8	Acenaphthylene	0.14	0.10	0.01	
120-12-7	Anthracene	0.12	0.10	0.01	
191-24-2	Benzo(ghi)perylene	0.12	0.10	0.01	
86-73-7	Fluorene	0.14	0.10	0.01	
85-01-8	Phenanthrene	0.17	0.10	0.02	
53-70-3	Dibenzo(a,h)anthracene	0.12	0.10	0.01	
193-39-5	Indeno(1,2,3-cd)pyrene	0.12	0.10	0.01	
129-00-0	Pyrene	0.12	0.10	0.02	
91-57-6	2-Methylnaphthalene	0.14	0.10	0.02	

Client : Arcadis of New York, Inc.

Project Name : NYSEG-GOSHEN FORMER MGP SITE

Lab ID : L2149904-08
Client ID : MW08-05S
Sample Location : GOSHEN, NY
Sample Matrix : WATER
Analytical Method : 1.8270D-SIM

Analytical Method : 1,8270D-SIM
Lab File ID : 49904-08
Sample Amount : 275 ml
Extraction Method : EPA 3510C
Extract Volume : 1000 uL
GPC Cleanup : N

 Lab Number
 : L2149904

 Project Number
 : 30075710

 Date Collected
 : 09/13/21 13:30

 Date Received
 : 09/16/21

Date Analyzed : 09/19/21 13:51 Date Extracted : 09/18/21

Dilution Factor : 1
Analyst : JJW
Instrument ID : SV128
GC Column : RXI-5SiIM
%Solids : N/A

	Parameter		ug/L			
CAS NO.		Results	RL	MDL	Qualifier	
83-32-9	Acenaphthene	6.5	0.10	0.01		
91-58-7	2-Chloronaphthalene	ND	0.20	0.02	U	
206-44-0	Fluoranthene	6.5	0.10	0.02		
91-20-3	Naphthalene	0.26	0.10	0.05		
56-55-3	Benzo(a)anthracene	1.2	0.10	0.02		
50-32-8	Benzo(a)pyrene	0.62	0.10	0.02		
205-99-2	Benzo(b)fluoranthene	0.83	0.10	0.01		
207-08-9	Benzo(k)fluoranthene	0.25	0.10	0.01		
218-01-9	Chrysene	0.83	0.10	0.01		
208-96-8	Acenaphthylene	3.6	0.10	0.01		
120-12-7	Anthracene	1.6	0.10	0.01		
191-24-2	Benzo(ghi)perylene	0.24	0.10	0.01		
86-73-7	Fluorene	11	0.10	0.01		
85-01-8	Phenanthrene	2.0	0.10	0.02		
53-70-3	Dibenzo(a,h)anthracene	0.08	0.10	0.01	J	
193-39-5	Indeno(1,2,3-cd)pyrene	0.31	0.10	0.01		
129-00-0	Pyrene	4.1	0.10	0.02		
91-57-6	2-Methylnaphthalene	0.06	0.10	0.02	J	

Client : Arcadis of New York, Inc.
Project Name : NYSEG-GOSHEN FORMER MGP SITE

Project Name : NYSEG-GOSHEN Lab ID : L2149904-09

Client ID : MW08-05D
Sample Location : GOSHEN, NY
Sample Matrix : WATER

Analytical Method : 1,8270D-SIM
Lab File ID : 49904-09
Sample Amount : 275 ml
Extraction Method : EPA 3510C
Extract Volume : 1000 uL
GPC Cleanup : N

Lab Number : L2149904
Project Number : 30075710
Date Collected : 09/13/21 12:00
Date Received : 09/16/21

Date Analyzed : 09/19/21 14:11 Date Extracted : 09/18/21

Dilution Factor : 1
Analyst : JJW
Instrument ID : SV128
GC Column : RXI-5SiIM
%Solids : N/A

	Parameter		ug/L			
CAS NO.		Results	RL	MDL	Qualifier	
83-32-9	Acenaphthene	ND	0.10	0.01	U	
91-58-7	2-Chloronaphthalene	ND	0.20	0.02	U	
206-44-0	Fluoranthene	0.08	0.10	0.02	J	
91-20-3	Naphthalene	0.09	0.10	0.05	J	
56-55-3	Benzo(a)anthracene	0.06	0.10	0.02	J	
50-32-8	Benzo(a)pyrene	0.06	0.10	0.02	J	
205-99-2	Benzo(b)fluoranthene	0.11	0.10	0.01		
207-08-9	Benzo(k)fluoranthene	0.03	0.10	0.01	J	
218-01-9	Chrysene	0.06	0.10	0.01	J	
208-96-8	Acenaphthylene	0.03	0.10	0.01	J	
120-12-7	Anthracene	0.02	0.10	0.01	J	
191-24-2	Benzo(ghi)perylene	0.07	0.10	0.01	J	
86-73-7	Fluorene	ND	0.10	0.01	U	
85-01-8	Phenanthrene	0.10 UB - 0.04	0.10	0.02	Ä	
53-70-3	Dibenzo(a,h)anthracene	0.01	0.10	0.01	J	
193-39-5	Indeno(1,2,3-cd)pyrene	0.07	0.10	0.01	J	
129-00-0	Pyrene	0.08	0.10	0.02	J	
91-57-6	2-Methylnaphthalene	ND	0.10	0.02	U	

Client : Arcadis of New York, Inc.
Project Name : NYSEG-GOSHEN FORMER MGP SITE

: 1000 uL

Lab ID : L2149904-10
Client ID : MW08-08S

Sample Location : GOSHEN, NY
Sample Matrix : WATER
Analytical Method : 1,8270D-SIM
Lab File ID : 49904-10
Sample Amount : 275 ml
Extraction Method : EPA 3510C

GPC Cleanup : N

Extract Volume

Lab Number : L2149904
Project Number : 30075710
Date Collected : 09/13/21 12:10
Date Received : 09/16/21

Date Analyzed : 09/19/21 14:31 Date Extracted : 09/18/21

Dilution Factor : 1
Analyst : JJW
Instrument ID : SV128
GC Column : RXI-5SiIM
%Solids : N/A

			ug/L				
CAS NO.	Parameter		Results	RL	MDL	Qualifier	
83-32-9	Acenaphthene		ND	0.10	0.01	U	
91-58-7	2-Chloronaphthalene		ND	0.20	0.02	U	
206-44-0	Fluoranthene		0.61	0.10	0.02		
91-20-3	Naphthalene		0.10	0.10	0.05	J	
56-55-3	Benzo(a)anthracene		0.38	0.10	0.02		
50-32-8	Benzo(a)pyrene		0.34	0.10	0.02		
205-99-2	Benzo(b)fluoranthene		0.45	0.10	0.01		
207-08-9	Benzo(k)fluoranthene		0.18	0.10	0.01		
218-01-9	Chrysene		0.30	0.10	0.01		
208-96-8	Acenaphthylene		0.09	0.10	0.01	J	
120-12-7	Anthracene		0.08	0.10	0.01	J	
191-24-2	Benzo(ghi)perylene		0.24	0.10	0.01		
86-73-7	Fluorene	0.10 UB	0.04	0.10	0.01	×	
85-01-8	Phenanthrene		0.20	0.10	0.02		
53-70-3	Dibenzo(a,h)anthracene		0.05	0.10	0.01	J	
193-39-5	Indeno(1,2,3-cd)pyrene		0.27	0.10	0.01		
129-00-0	Pyrene		0.56	0.10	0.02		
91-57-6	2-Methylnaphthalene		0.03	0.10	0.02	J	

Client : Arcadis of New York, Inc.

Project Name : NYSEG-GOSHEN FORMER MGP SITE

Lab ID : L2149904-11
Client ID : MW18-04D
Sample Location : GOSHEN, NY
Sample Matrix : WATER
Analytical Method : 1,8270D-SIM
Lab File ID : 49904-11

Sample Amount : 275 ml Extraction Method : EPA 3510C Extract Volume : 1000 uL

GPC Cleanup : N

Lab Number : L2149904
Project Number : 30075710
Date Collected : 09/14/21 09:30
Date Received : 09/16/21

Date Analyzed : 09/20/21 15:25 Date Extracted : 09/19/21

Dilution Factor : 1
Analyst : JJW
Instrument ID : SV125
GC Column : RXI-5SilM

%Solids : N/A Injection Volume : 1 uL

			ug/L				
CAS NO.	Parameter		Results	RL	MDL	Qualifier	
83-32-9	Acenaphthene		ND	0.10	0.01	U	
91-58-7	2-Chloronaphthalene		ND	0.20	0.02	U	
206-44-0	Fluoranthene		ND	0.10	0.02	U	
91-20-3	Naphthalene		0.08	0.10	0.05	J	
56-55-3	Benzo(a)anthracene		ND	0.10	0.02	U	
50-32-8	Benzo(a)pyrene		ND	0.10	0.02	U	
205-99-2	Benzo(b)fluoranthene		ND	0.10	0.01	U	
207-08-9	Benzo(k)fluoranthene		ND	0.10	0.01	U	
218-01-9	Chrysene		ND	0.10	0.01	U	
208-96-8	Acenaphthylene		0.01	0.10	0.01	J	
120-12-7	Anthracene		ND	0.10	0.01	U	
191-24-2	Benzo(ghi)perylene		ND	0.10	0.01	U	
86-73-7	Fluorene		ND	0.10	0.01	U	
85-01-8	Phenanthrene	0.10 UB	0.02	0.10	0.02	×	
53-70-3	Dibenzo(a,h)anthracene		ND	0.10	0.01	U	
193-39-5	Indeno(1,2,3-cd)pyrene		ND	0.10	0.01	U	
129-00-0	Pyrene		ND	0.10	0.02	U	
91-57-6	2-Methylnaphthalene		ND	0.10	0.02	U	

Client : Arcadis of New York, Inc.

Project Name : NYSEG-GOSHEN FORMER MGP SITE Lab ID : L2149904-12

Client ID : L2149904-12
Client ID : MW18-04S
Sample Location : GOSHEN, NY
Sample Matrix : WATER

Analytical Method : 1,8270D-SIM
Lab File ID : 49904-12
Sample Amount : 275 ml
Extraction Method : EPA 3510C
Extract Volume : 1000 uL
GPC Cleanup : N

Lab Number : L2149904
Project Number : 30075710
Date Collected : 09/14/21 11:20
Date Received : 09/16/21
Date Analyzed : 09/20/21 17:19
Date Extracted : 09/19/21

Dilution Factor : 1
Analyst : JJW
Instrument ID : SV125
GC Column : RXI-5SilM

%Solids : N/A Injection Volume : 1 uL

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
83-32-9	Acenaphthene	ND	0.10	0.01	U	
91-58-7	2-Chloronaphthalene	ND	0.20	0.02	U	
206-44-0	Fluoranthene	ND	0.10	0.02	U	
91-20-3	Naphthalene	ND	0.10	0.05	U	
56-55-3	Benzo(a)anthracene	ND	0.10	0.02	U	
50-32-8	Benzo(a)pyrene	ND	0.10	0.02	U	
205-99-2	Benzo(b)fluoranthene	ND	0.10	0.01	U	
207-08-9	Benzo(k)fluoranthene	ND	0.10	0.01	U	
218-01-9	Chrysene	ND	0.10	0.01	U	
208-96-8	Acenaphthylene	ND	0.10	0.01	U	
120-12-7	Anthracene	ND	0.10	0.01	U	
191-24-2	Benzo(ghi)perylene	0.03	0.10	0.01	J	
86-73-7	Fluorene	ND	0.10	0.01	U	
85-01-8	Phenanthrene	ND	0.10	0.02	U	
53-70-3	Dibenzo(a,h)anthracene	0.04	0.10	0.01	J	
193-39-5	Indeno(1,2,3-cd)pyrene	0.02	0.10	0.01	J	
129-00-0	Pyrene	ND	0.10	0.02	U	
91-57-6	2-Methylnaphthalene	ND	0.10	0.02	U	

Client : Arcadis of New York, Inc.

Project Name : NYSEG-GOSHEN FORMER MGP SITE

Lab ID : L2149904-13
Client ID : MW18-08D
Sample Location : GOSHEN, NY
Sample Matrix : WATER
Analytical Method : 1,8270D-SIM

Analytical Method : 1,8270D-SII
Lab File ID : 49904-13
Sample Amount : 275 ml
Extraction Method : EPA 3510C
Extract Volume : 1000 uL
GPC Cleanup : N

Project Number : 30075710

Date Collected : 09/13/21 11:10

Date Received : 09/16/21

Date Analyzed : 09/19/21 14:50

Date Extracted : 09/18/21

Dilution Factor : 1

: L2149904

Dilution Factor : 1
Analyst : JJW
Instrument ID : SV128
GC Column : RXI-5SilM
%Solids : N/A

Injection Volume : 1 uL

Lab Number

	ug/L					
Parameter		Results	RL	MDL	Qualifier	
Acenaphthene		ND	0.10	0.01	U	
2-Chloronaphthalene		ND	0.20	0.02	U	
Fluoranthene		0.02	0.10	0.02	J	
Naphthalene		0.29	0.10	0.05		
Benzo(a)anthracene		ND	0.10	0.02	U	
Benzo(a)pyrene		ND	0.10	0.02	U	
Benzo(b)fluoranthene		ND	0.10	0.01	U	
Benzo(k)fluoranthene		ND	0.10	0.01	U	
Chrysene		ND	0.10	0.01	U	
Acenaphthylene		0.06	0.10	0.01	J	
Anthracene		0.02	0.10	0.01	J	
Benzo(ghi)perylene		ND	0.10	0.01	U	
Fluorene	0.10 UB -	0.04	0.10	0.01	ــــــــــــــــــــــــــــــــــــــ	
Phenanthrene	0.10 UB	0.06	0.10	0.02	J	
Dibenzo(a,h)anthracene		ND	0.10	0.01	U	
Indeno(1,2,3-cd)pyrene		ND	0.10	0.01	U	
Pyrene		ND	0.10	0.02	U	
2-Methylnaphthalene		0.05	0.10	0.02	J	
	Acenaphthene 2-Chloronaphthalene Fluoranthene Naphthalene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene Phenanthrene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene Pyrene	Acenaphthene 2-Chloronaphthalene Fluoranthene Naphthalene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene O.10 UB Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene Pyrene	Acenaphthene ND 2-Chloronaphthalene ND Fluoranthene 0.02 Naphthalene 0.29 Benzo(a)anthracene ND Benzo(b)fluoranthene ND Benzo(b)fluoranthene ND Chrysene ND Acenaphthylene 0.06 Anthracene ND Fluorene 0.10 UB Fluorene 0.10 UB Dibenzo(a,h)anthracene ND Indeno(1,2,3-cd)pyrene ND Pyrene ND	Parameter Results RL Acenaphthene ND 0.10 2-Chloronaphthalene ND 0.20 Fluoranthene 0.02 0.10 Naphthalene 0.29 0.10 Benzo(a)anthracene ND 0.10 Benzo(a)pyrene ND 0.10 Benzo(b)fluoranthene ND 0.10 Benzo(k)fluoranthene ND 0.10 Chrysene ND 0.10 Acenaphthylene 0.06 0.10 Anthracene 0.02 0.10 Benzo(ghi)perylene ND 0.10 Fluorene 0.10 UB 0.04 0.10 Phenanthrene 0.10 UB 0.06 0.10 Dibenzo(a,h)anthracene ND 0.10 Indeno(1,2,3-cd)pyrene ND 0.10 Pyrene ND 0.10	Parameter Results RL MDL Acenaphthene ND 0.10 0.01 2-Chloronaphthalene ND 0.20 0.02 Fluoranthene 0.02 0.10 0.02 Naphthalene 0.29 0.10 0.05 Benzo(a)anthracene ND 0.10 0.02 Benzo(a)pyrene ND 0.10 0.02 Benzo(b)fluoranthene ND 0.10 0.01 Benzo(k)fluoranthene ND 0.10 0.01 Chrysene ND 0.10 0.01 Acenaphthylene 0.06 0.10 0.01 Anthracene 0.02 0.10 0.01 Benzo(ghi)perylene ND 0.10 0.01 Fluorene 0.10 UB 0.04 0.10 0.01 Phenanthrene 0.10 UB 0.06 0.10 0.02 Dibenzo(a,h)anthracene ND 0.10 0.01 Indeno(1,2,3-cd)pyrene ND 0.10 0.01	Parameter Results RL MDL Qualifier Acenaphthene ND 0.10 0.01 U 2-Chloronaphthalene ND 0.20 0.02 U Fluoranthene 0.02 0.10 0.02 J Naphthalene 0.29 0.10 0.05

Client : Arcadis of New York, Inc.

Project Name : NYSEG-GOSHEN FORMER MGP SITE

Lab ID : L2149904-14
Client ID : BD-20210913
Sample Location : GOSHEN, NY
Sample Matrix : WATER
Analytical Method : 1,8270D-SIM
Lab File ID : 49904-14
Sample Amount : 275 ml

Extraction Method : EPA 3510C

Extract Volume : 1000 uL GPC Cleanup : N

Lab Number : L2149904
Project Number : 30075710
Date Collected : 09/13/21 00:00
Date Received : 09/16/21

Date Analyzed : 09/19/21 15:10 Date Extracted : 09/18/21

Dilution Factor : 1
Analyst : JJW
Instrument ID : SV128
GC Column : RXI-5SiIM
%Solids : N/A

Parameter		ug/L			
	Results	RL	MDL	Qualifier	
Assessability	ND	0.40	0.04		
Acenapntnene	νυ	0.10	0.01	U	
2-Chloronaphthalene	ND	0.20	0.02	U	
Fluoranthene	0.10	0.10	0.02	J	
Naphthalene	ND	0.10	0.05	U	
Benzo(a)anthracene	0.07	0.10	0.02	J	
Benzo(a)pyrene	0.07	0.10	0.02	J	
Benzo(b)fluoranthene	0.13	0.10	0.01		
Benzo(k)fluoranthene	0.04	0.10	0.01	J	
Chrysene	0.06	0.10	0.01	J	
Acenaphthylene	0.03	0.10	0.01	J	
Anthracene	0.02	0.10	0.01	J	
Benzo(ghi)perylene	0.08	0.10	0.01	J	
Fluorene	ND	0.10	0.01	U	
Phenanthrene	0.10 UB - 0.04	0.10	0.02	×	
Dibenzo(a,h)anthracene	0.02	0.10	0.01	J	
Indeno(1,2,3-cd)pyrene	0.08	0.10	0.01	J	
Pyrene	0.10	0.10	0.02	J	
2-Methylnaphthalene	ND	0.10	0.02	U	
	Acenaphthene 2-Chloronaphthalene Fluoranthene Naphthalene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Acenaphthylene Anthracene Benzo(ghi)perylene Fluorene Phenanthrene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene Pyrene	Acenaphthene ND 2-Chloronaphthalene ND Fluoranthene 0.10 Naphthalene ND Benzo(a)anthracene 0.07 Benzo(a)pyrene 0.07 Benzo(b)fluoranthene 0.13 Benzo(k)fluoranthene 0.04 Chrysene 0.06 Acenaphthylene 0.03 Anthracene 0.02 Benzo(ghi)perylene 0.08 Fluorene ND Phenanthrene 0.10 UB -0.94 Dibenzo(a,h)anthracene 0.02 Indeno(1,2,3-cd)pyrene 0.08 Pyrene 0.10	Acenaphthene ND 0.10 2-Chloronaphthalene ND 0.20 Fluoranthene 0.10 0.10 Naphthalene ND 0.10 Benzo(a)anthracene 0.07 0.10 Benzo(a)pyrene 0.07 0.10 Benzo(b)fluoranthene 0.13 0.10 Benzo(k)fluoranthene 0.04 0.10 Chrysene 0.06 0.10 Acenaphthylene 0.03 0.10 Anthracene 0.02 0.10 Benzo(ghi)perylene 0.08 0.10 Fluorene ND 0.10 Phenanthrene 0.10 UB -0.94 0.10 Dibenzo(a,h)anthracene 0.02 0.10 Indeno(1,2,3-cd)pyrene 0.08 0.10 Pyrene 0.10 0.10	Acenaphthene ND 0.10 0.01 2-Chloronaphthalene ND 0.20 0.02 Fluoranthene 0.10 0.10 0.02 Naphthalene ND 0.10 0.05 Benzo(a)anthracene 0.07 0.10 0.02 Benzo(a)pyrene 0.07 0.10 0.02 Benzo(b)fluoranthene 0.13 0.10 0.01 Benzo(k)fluoranthene 0.04 0.10 0.01 Chrysene 0.06 0.10 0.01 Acenaphthylene 0.03 0.10 0.01 Anthracene 0.02 0.10 0.01 Benzo(ghi)perylene 0.08 0.10 0.01 Fluorene ND 0.10 0.01 Phenanthrene 0.02 0.10 0.01 Dibenzo(a,h)anthracene 0.02 0.10 0.01 Indeno(1,2,3-cd)pyrene 0.08 0.10 0.01 Pyrene 0.10 0.10 0.10 0.02	

Client : Arcadis of New York, Inc. : NYSEG-GOSHEN FORMER MGP SITE

Project Name

Lab ID : L2149904-15 Client ID : FB-20210913 Sample Location : GOSHEN, NY Sample Matrix : WATER

Analytical Method : 1,8270D-SIM Lab File ID : 49904-15 Sample Amount : 275 ml Extraction Method : EPA 3510C **Extract Volume** : 1000 uL GPC Cleanup : N

Lab Number : L2149904 Project Number : 30075710 Date Collected : 09/13/21 13:55 Date Received : 09/16/21 : 09/19/21 15:29 Date Analyzed

Date Extracted : 09/18/21 Dilution Factor : 1 Analyst : JJW Instrument ID : SV128 GC Column : RXI-5SilM

%Solids : N/A Injection Volume : 1 uL

	Parameter		ug/L		
CAS NO.		Results	RL	MDL	Qualifier
83-32-9	Acenaphthene	ND	0.10	0.01	U
91-58-7	2-Chloronaphthalene	ND	0.20	0.02	U
206-44-0	Fluoranthene	ND	0.10	0.02	U
91-20-3	Naphthalene	ND	0.10	0.05	U
56-55-3	Benzo(a)anthracene	ND	0.10	0.02	U
50-32-8	Benzo(a)pyrene	ND	0.10	0.02	U
205-99-2	Benzo(b)fluoranthene	ND	0.10	0.01	U
207-08-9	Benzo(k)fluoranthene	ND	0.10	0.01	U
218-01-9	Chrysene	ND	0.10	0.01	U
208-96-8	Acenaphthylene	ND	0.10	0.01	U
120-12-7	Anthracene	ND	0.10	0.01	U
191-24-2	Benzo(ghi)perylene	ND	0.10	0.01	U
86-73-7	Fluorene	0.02	0.10	0.01	J
85-01-8	Phenanthrene	0.03	0.10	0.02	J
53-70-3	Dibenzo(a,h)anthracene	ND	0.10	0.01	U
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.10	0.01	U
129-00-0	Pyrene	ND	0.10	0.02	U
91-57-6	2-Methylnaphthalene	ND	0.10	0.02	U

Client : Arcadis of New York, Inc.
Project Name : NYSEG-GOSHEN FORMER MGP SITE

Lab ID : L2149904-16
Client ID : FB-20210914
Sample Location : GOSHEN, NY
Sample Matrix : WATER
Analytical Method : 1,8270D-SIM

Lab File ID : 49904-16
Sample Amount : 275 ml
Extraction Method : EPA 3510C
Extract Volume : 1000 uL
GPC Cleanup : N

Lab Number : L2149904 : 30075710 **Project Number** Date Collected : 09/14/21 13:30 Date Received : 09/16/21 : 09/20/21 17:38 Date Analyzed **Date Extracted** : 09/19/21 Dilution Factor : 1 : JJW Analyst Instrument ID : SV125

GC Column : RXI-5SilM %Solids : N/A Injection Volume : 1 uL

ug/L Results MDL Qualifier CAS NO. RL **Parameter** 83-32-9 Acenaphthene ND 0.10 0.01 U 91-58-7 2-Chloronaphthalene ND 0.20 0.02 U 206-44-0 Fluoranthene ND 0.10 0.02 U 91-20-3 Naphthalene ND 0.10 0.05 U 56-55-3 Benzo(a)anthracene ND 0.10 0.02 U 50-32-8 Benzo(a)pyrene ND 0.10 0.02 U U 205-99-2 Benzo(b)fluoranthene ND 0.10 0.01 207-08-9 Benzo(k)fluoranthene ND 0.10 0.01 U U 218-01-9 Chrysene ND 0.10 0.01 208-96-8 Acenaphthylene ND 0.10 0.01 U 0.10 U 120-12-7 Anthracene ND 0.01 191-24-2 Benzo(ghi)perylene ND 0.10 0.01 п 86-73-7 Fluorene ND 0.10 0.01 U 85-01-8 Phenanthrene 0.03 0.10 0.02 J 53-70-3 Dibenzo(a,h)anthracene ND 0.10 0.01 U 193-39-5 ND 0.10 п Indeno(1,2,3-cd)pyrene 0.01 129-00-0 Pyrene ND 0.10 0.02 U ND 0.10 0.02 U 91-57-6 2-Methylnaphthalene

Client : Arcadis of New York, Inc.
Project Name : NYSEG-GOSHEN FORMER MGP SITE

Lab ID : L2149904-17

Lab ID : L2149904-17
Client ID : FB-20210915
Sample Location : GOSHEN, NY
Sample Matrix : WATER
Analytical Method : 1,8270D-SIM

Lab File ID : 49904-17
Sample Amount : 275 ml
Extraction Method : EPA 3510C
Extract Volume : 1000 uL
GPC Cleanup : N

Lab Number : L2149904
Project Number : 30075710
Date Collected : 09/15/21 13:30
Date Received : 09/16/21
Date Analyzed : 09/22/21 17:33
Date Extracted : 09/21/21

Dilution Factor : 1
Analyst : DV
Instrument ID : SV128
GC Column : RXI-5SiIM
%Solids : N/A

			ug/L				
CAS NO.	Parameter	Results	RL	MDL	Qualifier		
83-32-9	Acenaphthene	ND	0.10	0.01	♥ UJ		
91-58-7	2-Chloronaphthalene	ND	0.20	0.02	U J		
206-44-0	Fluoranthene	ND	0.10	0.02	ψ UJ		
91-20-3	Naphthalene	0.05	0.10	0.05	J		
56-55-3	Benzo(a)anthracene	ND	0.10	0.02	ψ UJ		
50-32-8	Benzo(a)pyrene	ND	0.10	0.02	ψ UJ		
205-99-2	Benzo(b)fluoranthene	ND	0.10	0.01	ų UJ		
207-08-9	Benzo(k)fluoranthene	ND	0.10	0.01	V UJ		
218-01-9	Chrysene	ND	0.10	0.01	ų UJ		
208-96-8	Acenaphthylene	ND	0.10	0.01	U J		
120-12-7	Anthracene	ND	0.10	0.01	Ų UJ		
191-24-2	Benzo(ghi)perylene	ND	0.10	0.01	ų UJ		
86-73-7	Fluorene	ND	0.10	0.01	ų UJ		
85-01-8	Phenanthrene	ND	0.10	0.02	ų UJ		
53-70-3	Dibenzo(a,h)anthracene	ND	0.10	0.01	U J		
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.10	0.01	ų UJ		
129-00-0	Pyrene	ND	0.10	0.02	UJ UJ		
91-57-6	2-Methylnaphthalene	ND	0.10	0.02	UJ UJ		

Client : Arcadis of New York, Inc.

Project Name : NYSEG-GOSHEN FORMER MGP SITE

Lab ID : L2149904-18
Client ID : MW08-07S
Sample Location : GOSHEN, NY
Sample Matrix : WATER

Analytical Method : 1,8270D-SIM
Lab File ID : 49904-18
Sample Amount : 275 ml
Extraction Method : EPA 3510C
Extract Volume : 1000 uL

: N

GPC Cleanup

Date Extracted : 09/20/21
Dilution Factor : 1
Analyst : JJW
Instrument ID : SV119
GC Column : RXI-5SiIM
%Solids : N/A

Project Number : 30075710

Date Collected : 09/15/21 12:15

: L2149904

: 09/16/21 : 09/21/21 15:17

Injection Volume : 1 uL

Lab Number

Date Received

Date Analyzed

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
83-32-9	Acenaphthene	ND	0.10	0.01	U	
91-58-7	2-Chloronaphthalene	ND	0.20	0.02	U	
206-44-0	Fluoranthene	0.13	0.10	0.02		
91-20-3	Naphthalene	ND	0.10	0.05	U	
56-55-3	Benzo(a)anthracene	0.09	0.10	0.02	J	
50-32-8	Benzo(a)pyrene	0.08	0.10	0.02	J	
205-99-2	Benzo(b)fluoranthene	0.11	0.10	0.01		
207-08-9	Benzo(k)fluoranthene	0.04	0.10	0.01	J	
218-01-9	Chrysene	0.06	0.10	0.01	J	
208-96-8	Acenaphthylene	0.03	0.10	0.01	J	
120-12-7	Anthracene	0.04	0.10	0.01	J	
191-24-2	Benzo(ghi)perylene	0.05	0.10	0.01	J	
86-73-7	Fluorene	0.02	0.10	0.01	J	
85-01-8	Phenanthrene	0.07	0.10	0.02	J	
53-70-3	Dibenzo(a,h)anthracene	ND	0.10	0.01	U	
193-39-5	Indeno(1,2,3-cd)pyrene	0.06	0.10	0.01	J	
129-00-0	Pyrene	0.12	0.10	0.02		
91-57-6	2-Methylnaphthalene	ND	0.10	0.02	U	

Client : Arcadis of New York, Inc. Lab Number : L2149904

Project Name : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710

Lab ID : L2149904-01 Date Collected : 09/15/21 09:52

Client ID : MW08-6S Date Received : 09/16/21

Sample Location : GOSHEN, NY Date Analyzed : 09/24/21 13:02 Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 1,9010C/9012B Analyst : JO
Lab File ID : TCN092421-A Instrument ID : LACHAT
Sample Amount : %Solids : N/A
Digestion Method : Date Digested : 09/23/21

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 57-12-5
 Cyanide, Total
 0.017
 0.005
 0.001
 J

Client : Arcadis of New York, Inc. Lab Number : L2149904 : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710 **Project Name** Lab ID : L2149904-02 **Date Collected** : 09/15/21 11:00 **Client ID** : MW08-6D **Date Received** : 09/16/21 Sample Location : GOSHEN, NY **Date Analyzed** : 09/24/21 13:05

Sample Matrix **Dilution Factor** : WATER : 1 Analytical Method : 1,9010C/9012B Analyst : JO Lab File ID : TCN092421-A Instrument ID : LACHAT : N/A Sample Amount %Solids Digestion Method: **Date Digested** : 09/23/21

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 57-12-5
 Cyanide, Total
 ND
 0.005
 0.001
 ₺ ∪

Client : Arcadis of New York, Inc. Lab Number : L2149904

Project Name : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710

Lab ID : L2149904-03 Date Collected : 09/15/21 11:45

Client ID : MW08-7D Date Received : 09/16/21

Sample Location : GOSHEN, NY Date Analyzed : 09/24/21 13:06

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,9010C/9012B Analyst : JO Lab File ID : TCN092421-A Instrument ID : LACHAT : N/A Sample Amount %Solids Digestion Method: **Date Digested** : 09/23/21

		mg/l
CAS NO.	Parameter	Results RL MDL Qualifier
57-12-5	Cyanide, Total	ND 0.005 0.001 % UJ

Client : Arcadis of New York, Inc. Lab Number : L2149904

Project Name : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710

Lab ID : L2149904-04 Date Collected : 09/15/21 10:05

Client ID : MW93-1D Date Received : 09/16/21

Sample Location : GOSHEN, NY Date Analyzed : 09/24/21 13:07 Sample Matrix : WATER Dilution Factor : 1

Sample Matrix: WATERDilution Factor: 1Analytical Method: 1,9010C/9012BAnalyst: JOLab File ID: TCN092421-AInstrument ID: LACHATSample Amount: %Solids: N/ADigestion Method: 09/23/21

			mg/l		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
57-12-5	Cyanide, Total	0.028	0.005	0.001	J

Client : Arcadis of New York, Inc. Lab Number : L2149904 **Project Name** : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710 Lab ID : L2149904-05 **Date Collected** : 09/14/21 13:45 Client ID : MW93-1S **Date Received** : 09/16/21 Sample Location : GOSHEN, NY Date Analyzed : 09/24/21 13:08

		mg/l
CAS NO.	Parameter	Results RL MDL Qualifier
57-12-5	Cyanide, Total	0.031 0.005 0.001 J

Client : Arcadis of New York, Inc. Lab Number : L2149904 : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710 **Project Name** Lab ID : L2149904-06 **Date Collected** : 09/14/21 11:15 Client ID : MW93-2S **Date Received** : 09/16/21 Sample Location : GOSHEN, NY Date Analyzed : 09/24/21 13:26

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,9010C/9012B Analyst : JO
Lab File ID : TCN092421-A Instrument ID : LACHAT
Sample Amount : %Solids : N/A

Digestion Method : Date Digested : 09/23/21

			mg/l		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
57-12-5	Cyanide, Total	0.007	0.005	0.001	J

Client : Arcadis of New York, Inc. Lab Number : L2149904 **Project Name** : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710 Lab ID : L2149904-07 **Date Collected** : 09/14/21 09:35 Client ID : MW93-2D **Date Received** : 09/16/21 Sample Location : GOSHEN, NY Date Analyzed : 09/24/21 13:10

		mg/l
CAS NO.	Parameter	Results RL MDL Qualifier
57-12-5	Cyanide, Total	ND 0.005 0.001 % UJ

Client : Arcadis of New York, Inc. Lab Number : L2149904 **Project Name** : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710 Lab ID : L2149904-08 **Date Collected** : 09/13/21 13:30 Client ID : MW08-05S **Date Received** : 09/16/21 Sample Location : GOSHEN, NY Date Analyzed : 09/24/21 13:11

		mg/l		
CAS NO.	Parameter	Results RL	MDL	Qualifier
57-12-5	Cyanide, Total	0.029 0.00	5 0.001	J

Client : Arcadis of New York, Inc. Lab Number : L2149904 **Project Name** : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710 Lab ID : L2149904-09 **Date Collected** : 09/13/21 12:00 Client ID : MW08-05D **Date Received** : 09/16/21 Sample Location : GOSHEN, NY Date Analyzed : 09/24/21 13:14

			mg/l		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
57-12-5	Cyanide, Total	0.021	0.005	0.001	J

Client : Arcadis of New York, Inc. Lab Number : L2149904 **Project Name** : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710 Lab ID : L2149904-10 **Date Collected** : 09/13/21 12:10 Client ID : MW08-08S **Date Received** : 09/16/21 Sample Location : GOSHEN, NY Date Analyzed : 09/24/21 13:15

		mg/l
CAS NO.	Parameter	Results RL MDL Qualifier
57-12-5	Cyanide, Total	ND 0.005 0.001 ₺ UJ

Client : Arcadis of New York, Inc. Lab Number : L2149904 : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710 **Project Name** Lab ID : L2149904-11 **Date Collected** : 09/14/21 09:30 **Client ID** : MW18-04D **Date Received** : 09/16/21 Sample Location : GOSHEN, NY **Date Analyzed** : 09/24/21 13:16

Sample Matrix **Dilution Factor** : WATER : 1 Analytical Method : 1,9010C/9012B Analyst : JO Lab File ID : TCN092421-A Instrument ID : LACHAT : N/A Sample Amount %Solids Digestion Method: **Date Digested** : 09/23/21

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 57-12-5
 Cyanide, Total
 ND
 0.005
 0.001
 NU
 UJ

Client : Arcadis of New York, Inc. Lab Number : L2149904 **Project Name** : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710 Lab ID : L2149904-12 **Date Collected** : 09/14/21 11:20 Client ID : MW18-04S **Date Received** : 09/16/21 Sample Location : GOSHEN, NY Date Analyzed : 09/24/21 13:19

			mg/l		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
57-12-5	Cyanide, Total	0.008	0.005	0.001	J

Client : Arcadis of New York, Inc. Lab Number : L2149904 **Project Name** : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710 Lab ID : L2149904-13 **Date Collected** : 09/13/21 11:10 Client ID : MW18-08D **Date Received** : 09/16/21 Sample Location : GOSHEN, NY Date Analyzed : 09/24/21 13:20

			mg/l		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
57-12-5	Cyanide, Total	ND	0.005	0.001	Ø UJ

Client : Arcadis of New York, Inc. Lab Number : L2149904 : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710 **Project Name** Lab ID : L2149904-14 **Date Collected** : 09/13/21 00:00 Client ID : BD-20210913 **Date Received** : 09/16/21 Sample Location : GOSHEN, NY Date Analyzed : 09/24/21 13:21

		mg/l	
CAS NO.	Parameter	Results RL MDL Qualifier	
57-12-5	Cyanide, Total	0.048 0.005 0.001 J	

Client : Arcadis of New York, Inc. Lab Number : L2149904 : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710 **Project Name** Lab ID : L2149904-15 **Date Collected** : 09/13/21 13:55 Client ID : FB-20210913 **Date Received** : 09/16/21 Sample Location : GOSHEN, NY Date Analyzed : 09/24/21 13:22

			mg/l		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
57-12-5	Cyanide, Total	ND	0.005	0.001	₽ UJ

Client : Arcadis of New York, Inc. Lab Number : L2149904 **Project Name** : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710 Lab ID : L2149904-16 **Date Collected** : 09/14/21 13:30 Client ID : FB-20210914 **Date Received** : 09/16/21 Sample Location : GOSHEN, NY Date Analyzed : 09/24/21 13:23

		mg/l
CAS NO.	Parameter	Results RL MDL Qualifier
57-12-5	Cyanide, Total	ND 0.005 0.001 况 UJ

Client : Arcadis of New York, Inc. Lab Number : L2149904 : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710 **Project Name** Lab ID : L2149904-17 **Date Collected** : 09/15/21 13:30 Client ID : FB-20210915 **Date Received** : 09/16/21 Sample Location : GOSHEN, NY Date Analyzed : 09/24/21 13:27

			mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
57-12-5	Cyanide, Total	ND	0.005	0.001	M ON	

Client : Arcadis of New York, Inc. Lab Number : L2149904 **Project Name** : NYSEG-GOSHEN FORMER MGP SITE Project Number : 30075710 Lab ID : L2149904-18 **Date Collected** : 09/15/21 12:15 Client ID : MW08-07S **Date Received** : 09/16/21 Sample Location : GOSHEN, NY Date Analyzed : 09/24/21 13:28

			mg/l		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
57-12-5	Cyanide, Total	0.007	0.005	0.001	J

Attachment 4

Site Inspection Form

ate: 9/(3/2)	Weather Conditions: Sunny			
ersonnel: Kirk VArgas	Temperature: 81° F Wind Speed: WNW 9 MPH Wind Direction (from): WNW			
me of Arrival: 6 700				
ime of Departure:				
Inspection Checklist	Yes	No	Comments	
Asphalt Cover				
Intrusive Activities Being Perform	ned?			
- Trenching?		X		
- Excavation?		X		
- Tunneling?		X		
- Saw cutting?		X		
Signs of Previous Intrusive Activ	ities Perf	ormed?		
- New drainage feature?		X		
- Evidence of a new underground utility?		X		
- New grass/vegetation/asphalt?		X		
 Other (e.g., cracking, potholes, depressions) 		×		
Monitoring Well Condition				
NAPL monitoring needs to be performed this year?		>		
Covers secure?	V			
Casing in need of repair?	1	/		
Concrete surface seal intact?	/			
Settling in area around well?		1		
Well obstructed?		1		
Ponded water above well?		/		
Well screen silted in?		V		
Well in need of redevelopment?		V		