SUBMITTAL FOR:

ORANGE AND ROCKLAND UTILITIES, INC.

PROJECT NO. B0043021 PORT JERVIS FORMER MGP SITE SOURCE AREA EXCAVATION PORT JERVIS, NY

EXCAVATION PROTECTION AND SUPPORT WORK <u>PLAN</u> D-02205-002-B

SUBMITTED TO: Tom Shock GEI Consultants, Inc. 455 Winding Brook Drive, Suite 201 Glastonbury, CT 06033

SUBMITTED BY:

D.A. COLLINS ENVIRONMENTAL SERVICES

269 Ballard Road Wilton, NY 12831 Ph. 518-664-9855 / Fax 518-664-0925

A Proud Member of the D.A. Collins Companies

AUGUST 15, 2012

Table of Contents

1.0	Overview	2
2.0	Equipment & Materials Mobilization	2
3.0	Surveying and Monitoring	3
4.0	Pre-Trenching/Pre-Spudding	3
	Contingency Measures Prior to Sheetpile Installation	
6.0	Sheeting Installation	4
7.0	Contingency Measures During Sheetpile Installation	5
8.0	Excavation and Backfill Sequence	6
9.0	Sheetpile Extraction & Decontamination	7
Appendix	x A – Equipment Cut Sheets	8
Appendix	x B – Materials Specification Cut Sheets	9
Appendix	x C – Sheeting Plan and Section Details	10

1.0 Overview

This submittal is intended to provide general information on the means, methods, and sequence of operations to be completed for the proper installation of the Excavation Protection System (EPS). This work plan is intended to supplement the *Excavation Support & Protection Re-design* (Re-Submittal D-02205-001-A dated August 3, 2012). The EPS task sequence includes but is not limited to the following:

- Delivery / Handling and Storage of Piling Equipment and Materials
- Pre-trenching/Pre-Spudding
- Management of Obstructions (removed by pre-drilling)
- Install Wale system.
- Install PZ-sheeting Sheeting
- Sheeting Installation Contingency Measures (as necessary)

2.0 Equipment & Materials Mobilization

DAC will establish primary access for the crane, as well as a staging area for sheeting pairs prior to driving operations. DAC will mobilize the following materials and equipment in order to properly execute pile driving operations:

Equipment (Reference Appendix A for Specification Sheets):

- 60-ton American crawler crane
- ICE 612 Vibratory Hammer
- ICE I-19 Diesel Impact Hammer

Materials (Reference Appendix B for Specification Sheets):

- (22) PZ-18 40' L sheets (new)
- (75) PZ-18 40' L sheets (stock)
- Corner connectors: New (2) PZ-90; PZT-S; (2) PZ-Tee; (2) COLT
- Wales Section Templates Cell # 1 and #2 will be delivered pre-fabricated.
- Associated stiffeners and accessories as detailed on Excavation Support Plan (Attachment A).

DAC will utilize a combination of new (22 pair) and stock (75) PZC-18 sheeting pairs (Cell # 1 - 70 pairs; Cell #2 – 27 pair). DAC stock sheets will be subject to inspection and acceptance by the Ryan Biggs Associates, P.C. such that the interlocks are in suitable condition, without discontinuities that may affect water tightness or the ability to drive vertical / plumb.

D.A. COLLINS ENVIRONMENTAL SERVICES

Watertight sealant: DAC will accept delivery of 40-foot long PZC-18 sheeting pairs (97 pairs). All PZC-18 sheets will be delivered during transit as seal-welded (common interlock) pairs with pre-applied DeNeef Swellseal. The sheeting pairs will be off-loaded with a rough terrain fork lift or adequately-sized loader with fork attachment and blocked up on dunnage. Pre-sealed sheeting pairs will be securely covered with tarpaulins/polyethylene in order to remain dry until installation. DAC will store all piling onsite in accordance with manufacturer's recommendations.

3.0 Surveying and Monitoring

A New York State licensed surveyor (Thew Associates) will perform the initial layout of the proposed wall alignment and control points provided in the contract drawings. The total scope includes:

- Initial and Progress Support Layout.
- Site Monitoring Plan Aspects(submitted under separate cover):
 - Vibration monitoring Transmitted under separate submittal P-02205-002-A (July 25, 2012)
 - Deflection Monitoring DAC will install tiltmeters on the sheetpile wall after the bracing has been installed, and prior to any excavation below elevation 429.5'. This will protect the tiltmeters from any potential damage that may be caused by bracing installation and welding. DAC will perform the routine monitoring and reporting of the tiltmeter data as specified.

4.0 Pre-Trenching/Pre-Spudding

Prior to installation of any sheeting, DAC will pre-trench the entire wall perimeter alignment to a depth of approximately five (5)-feet below ground surface (bgs) or elevation of 436'. DAC will follow with pre-spudding along the alignment to a minimal depth of elevation 396-feet. Pre-trenching/driving will be performed with the vibratory hammer only, using a suitably sized pile or beam from DAC stock. Pre-trenching/spudding will be performed to achieve either of two objectives:

- A. Evaluate the expected driving conditions and clear the alignment of the sheetpile by driving through, dislodging, or breaking any obstructions encountered.
- B. Create a record map of refusal areas and depths that will require the implementation of additional contingency measures.

5.0 Contingency Measures Prior to Sheetpile Installation

Upon completion of the pre-spudding effort, DAC will attempt to address the remaining refusal areas with the following measures.

- 1. Excavation / Removal: Where obstructions are identified at depths of 5'-8' below grade, DAC may attempt to excavate and remove the obstruction. Any excavation, breaking, removal or other measures would be performed in consultation with the Engineer. Excavation beyond the 8' depth can also be considered depending on the site conditions and Engineer approval.
- 2. Pre-Drilling: Where refusal areas are identified at depths >8', DAC may attempt to pre-drill the location in order to loosen, dislodge, break, or otherwise assess the cause of refusal. Pre-drilling (if necessary), will be performed by a subcontracted geotechnical driller. Due to the unknown demand for this service, DAC's proposal assumes all pre-drilling will be performed in one mobilization and includes a maximum of five (5) days of drilling services. DAC's subcontractor Hayward Baker will be mobilized to perform this task.

6.0 Sheeting Installation

The excavation support system will be installed in conformance with the *Excavation Support & Protection Re-design, Drawings provided in Appendix C*, subject to Engineer Review.

The following driving sequence is planned, Reference Figure 1:

- 1. Pre-Trench and Pre-Spudding (as necessary) will be completed along the proposed Cell 1 and 2 alignments as discussed in Section 4.0. The wale template section placed in the pre-trench will serve as a guide for installation PZ-18 sheeting. Cell #1 and Cell #2 wale frames will be pre-fabricated in the DAC shop and delivered to the site.
- 2. Install Cell # 2 main wale template.
- Install sheeting pairs to form Cell # 2 (from survey Point E working counterclockwise to Point B). Excavate localized deeper pits to install the wale to sheet bracing on 10' centers.
- 4. Install remaining Cell # 1 Wale Template.
- 5. Install sheeting to form Cell # 1. Excavate localized deeper pits to install the wale to sheet bracing on 10' centers.
- 6. Begin the excavation sequence in Cell # 2 to target elevation. The excavation and backfill sequence is described in Section 8.0.

Contingency measures during Sheeting Installation (Section 7.0) will be employed should obstructions be encountered. Excavation support drawings are included in Appendix C for reference.

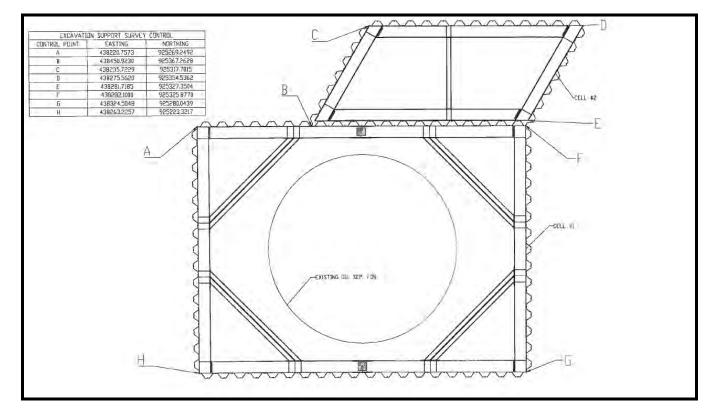


Figure 1 – Excavation Support Plan View

7.0 Contingency Measures During Sheetpile Installation

Sheetpile will be installed primarily with the vibratory hammer. The impact hammer will be used as a contingency measure only. Where refusal is encountered, DAC may attempt one or more of the following contingency measures. Selection of the actual measure(s) attempted will depend on the site conditions and presumed cause for refusal.

- 1. Partial extraction and re-driving.
- 2. Complete extraction, following by additional pre-spudding.
- 3. Utilization of cutting shoes to protect the pile tips and/or improve penetration.
- 4. Realignment of the sheeting (as authorized by the Engineer).
- 5. Impact driving with the diesel hammer (ICE I-19). Note that this contingency should be used as a last resort on a temporary wall. Sheets driven in this manner are prone to damage and can also become permanently 'wedged' such that the sheet cannot be extracted by conventional means.

5

8.0 Excavation and Backfill Sequence

The excavation of the Holder A area will occur in two phases as detailed in the Holder A construction sequence on Drawing 7. The first phase will be the removal of the overlying soil and structure (if any) to elevation 430 'to facilitate the installation of the excavation support system. The following excavation backfill sequence is proposed:

- Excavate Cell # 2 to target elevation (~416.5') with EPS fully installed (struts, bracing etc.)
- Backfill Cell # 2 to El. 430,
- Excavate Cell # 1 to target elevation (~ 416.5')
- Backfill Cell #1 to El.430
- Remove TFS structure
- Remove EPS struts, corner and sheeting bracing, extract sheets
- Backfill to final grade

The deeper excavation phase will occur once the sheetpile and bracing systems have been fully installed and the TFS is erected and operational. The same earthwork equipment will be utilized to perform the soil and structure removal during this phase, but the excavation approach will be more methodical due to the presence of the internal bracing system. The excavator will typically be located inside the sheetpile perimeter, excavating and feeding a support excavator that will be located on the 5-feet from top of the excavation 5' loading trucks. DAC will excavate Cell No. 2 to target elevation, backfill cell # 2 to elevation 430' and then move to the excavation of Cell No. 1.

Full depth excavation across a working face will also allow for an opportunity to blend wet and dry soils from various depths. If excavation dewatering and soil blending are not sufficient to achieve the requisite moisture content, DAC will amend the material with Lime Kiln Dust (LKD). LKD will be stored in DAC's on-site silo and can be conveyed to the work area by the loader or discharge auger.

The additional length of the TFS and the dual overhead doors will allow transport vehicles to enter the TFS along the King Street side of the work area, for loading while inside the TFS. Where excavation equipment must cross over bracing struts or sheetpile, a series of crane mats and earthen ramps will be used to eliminate the pressure on the excavation support system.

In all cases, clean backfill will be placed in the excavations using both the excavator and/or a loader. Since the excavations are relatively small and crowded, the excavator or loader will be used to spread backfill (imported or reusable) in stipulated lifts. Compaction will be performed using either a remote controlled trench roller, or a walk behind dual drum roller.

9.0 Sheetpile Extraction & Decontamination

Sheetpile (and bracing) decontamination will be performed to the extent feasible once the excavation is fully completed, and prior to the placement of any backfill. This will allow for access to most of the bracing and a portion of the sheeting while still in place. All decon water generated during this effort will be collected and managed within the excavation in the same manner as that of impacted groundwater. Any remaining decontamination work will be performed after sheetpile extraction on a temporary staging pad.

Sheetpile extraction will be performed with the 60-ton crane and ICE 612 vibratory hammer. Extracted sheets will be fully decontaminated and then released from the site.

Upon completion of the sheetpile extraction, the vibration monitoring program will be discontinued.

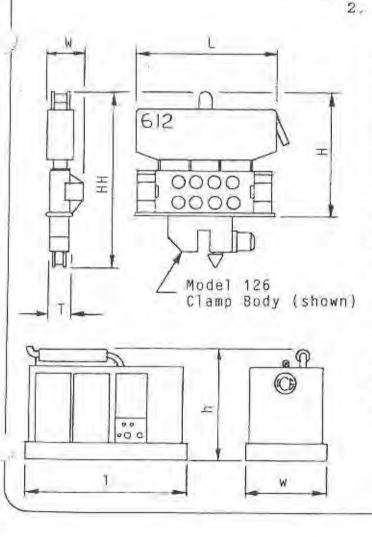
Appendix A – Equipment Cut Sheets

 $= -\gamma$

Ι.

MODEL 612 VIBRATORY DRIVER/EXTRACTOR

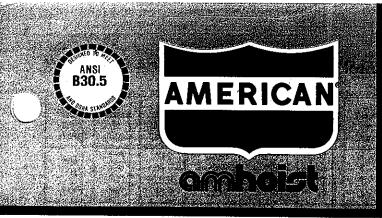
OPERATING INSTRUCTIONS


GENERAL DESCRIPTION

E. REMOTE-CONTROL PENDANT

The vibrator is operated by a hand-held remote control pendant. The pendant has two, two-way switches and an indicator light. One switch (VIBRATOR SWITCH) starts and stops vibration. The other switch (CLAMP SWITCH) closes and opens the hydraulic clamp. The light indicates that adequate clamping pressure exists for vibration to begin. Note: Controls are duplicated on the control panel in case the pendant is damaged. (See pg.III-5, Section E-e)

F. SPECIFICATIONS


 Constant improvement and engineering progress make it necessary that we reserve the right to make specification changes without notice.

MODEL 612 VIBRATOR
(with hydraulic clamp)
TypeHydraulic
Eccentric Moment4000 In-1bs.
Frequency 600-1200 VPM
Amplitude1/2"-1"
Pile Clamping Force120 Tons
Max. Line Pull for
Extraction
Suspended Weight with 126
Clamp
Length [L]
Width [W]
Throat Width [T]14 in.
Height with Clamp [HH] 113 in.
Height without clamp [H]84 in.

3. MODEL 300 POWER UNIT

		Diesel
	Contraction of the second	RPM)
		and the second se
		10,800 lbs.
Width [w]		
Height [h].		75 in.

LIFT RATINGS

700 SERIES MODEL 7250

CRAWLER CRANE WITH 46HR BOOM

1162 + 1168 60 TON CRAWLER

60 Ton

With 46HR Angle Chord Boom and "P-P" Counterweight (33,900 Lbs.) (15377 Kgs.)

Boom Length (Feet)	Radius In Feet	Boom Angle Degrees	Side Frames Retracted (Lbs.)	Side Frames Extended (Lbs.)	Ft. From Boom Point	Min. Load Line
40 feet	11 12 15 20 25 30 35 40	80.1 78.6 74.2 66.6 58.5 49.7 39.5 26.2		20000 20000 107080 68040 49530 38780 31720 26740	45 45 44 42 39 36 31 23	6 6 1 3 3 2 2 2 2
 50 feet	12 15 20 25 30 35 40 50	80.9 77.4 71.5 65.3 58.8 51.9 44.2 23.4		107020 67940 49400 38650 31570 26570 20010	55 54 53 51 48 45 40 25	6 5 3 2 2 2 1
60 feet	14 15 20 25 30 35 40 50 60	80.5 79.6 74.7 69.6 64.5 59.0 53.3 40.1 21.4	 12430	120000 106940 67830 49270 38510 31420 26420 19880 15720	65 64 63 62 59 57 53 44 27	6 5 3 2 2 2 1 1
70 feet	16 20 25 30 35 40 50 60 70	80.2 76.9 72.6 68.3 63.8 59.2 49.1 37.0 19.8		95780 67660 49080 38320 31230 26220 19690 15520 12670	74 74 72 70 68 65 58 47 29	5 3 3 2 2 2 1 1
80 feet	17 20 25 30 35 40 50 60 70 80	80.7 78.6 74.9 71.1 67.3 63.4 55.0 45.7 34.6 18.5		86750 67550 48950 38200 31100 26090 19570 15570 15400 12540 10450	84 84 83 81 79 77 71 63 51 31	4 3 2 2 2 1 1 1 1
90 feet	19 20 25 30	80.5 79.8 76.6 73.3	- 	72700 67370 48740 38000	94 94 93 92	4 3 3 2

METR	RIC	• •		<i>,</i> ,		<i></i>)
Boom Length (Meters)	Radius In Meters	Boom Angle Degrees	Side Frames Retracted (Kgs.)	Side Frames Extended (Kgs.)	M From Boom Point	Loađ Line
12.2 meters	3.4 3.7 4.6 6.1 7.6 9.1 10.7 12.2	80.1 78.6 74.2 66.6 58.5 49.7 39.5 26.2		54430 54430 48570 30860 22470 17590 14390 12130	13.7 13.7 13.4 12.8 11.9 11.0 9.4 7.0	6 6 1 3 2 2 2
15.2 meters	3.7 4.6 6.1 7.6 9.1 10.7 12.2 15.2	80.9 77.4 71.5 65.3 58.8 51.9 44.2 23.4		54430 48540 30820 22410 17530 14320 12050 9080	16.8 16.5 16.2 15.5 14.6 13.7 12.2 7.6	6 5 3 3 2 2 2 1
18.3 meters	4.3 4.6 6.1 7.6 9.1 10.7 12.2 15.2 18.3	80.5 79.6 74.7 69.6 64.5 59.0 53.3 40.1 21.4		54430 48510 30770 22350 17470 14250 1980 9020 7130	19.8 19.5 19.2 18.9 18.0 17.4 16.2 13.4 8.2	6 5 3 2 2 2 1 1
21.3 meters	4.9 6.1 7.6 9.1 10.7 12.2 15.2 18.3 21.3	80.2 76.9 72.6 68.3 63.8 59.2 49.1 37.0 19.8	 7040 5550 4510	43450 30690 22260 17380 14170 11890 8930 7040 5750	22.6 22.6 21.9 21.3 20.7 19.8 17.7 14.3 8.8	5 3 2 2 2 1 1 1
24.4 meters	5.2 6.1 7.6 9.1 10.7 12.2 15.2 18.3 21.3 24.4	80.7 78.6 74.9 71.1 67.3 63.4 55.0 45.7 34.6 18.5	 6980 5490 4450 3690	39350 30640 22200 17330 14110 11830 8880 6990 5690 4740	25.6 25.6 25.3 24.7 24.1 23.5 21.6 19.2 15.5 9.4	4 3 2 2 1 1 1
27.4 meters	5.8 6.1 7.6 9.1	80.5 79.8 76.6 73.3		32980 30560 22110 17240	28.7 28.7 28.3 28.0	4 3 . 3 2

(Continued)

FORM NO. 7250-CR-4

LIFT RATINGS (cont.) With 46HR Angle Chord Boom and "P-P" Counterweight (33,900 Lbs.) 15377 Kgs.)

METRIC

Boom Length (Feet)	Radius In Feet	Boom Angle Degrees	Side Frames Retracted (Lbs.)	Side Frames Extended (Lbs.)	Ft. From Boom Point	Min. Load Line
90 feet (cont.)	35 40 50 60 70 80 90	69.9 66.5 59.4 51.6 43.0 32.5 17.4		30890 25870 19360 15190 12320 10230 8650	90 88 83 76 67 54 32	2 2 1 1 1 1 1
100 feet	20 25 30 35 40 50 60 70 80 90 100	80.9 78.0 75.0 69.0 62.7 56.0 48.8 40.6 30.8 16.5		67190 48550 37810 30700 25670 19180 15000 12130 10050 8450 7200	104 103 102 99 94 88 81 70 57 34	33222 2111 111 1
110 feet	22 25 30 35 40 50 60 70 80 90 100 110	80.6 79.1 76.4 73.7 71.0 65.4 59.5 53.2 46.4 38.7 29.4 15.7		58130 48330 37600 30480 25450 18960 14790 11920 9830 8230 6980 5980	114 113 112 109 105 100 93 85 74 59 35	3 3 2 2 2 1 1 1 1 1 1
120 feet	23 25 30 35 40 50 60 70 80 90 100 110 120	81.0 80.0 77.5 75.1 72.6 67.5 62.2 56.7 50.8 44.3 37.0 28.1 15.1		54310 48160 37440 30310 25270 18790 14620 11750 9650 8050 6800 5790 4970	124 124 123 121 120 116 112 106 89 89 77 62 37	3 3 2 2 2 1 1 1 1 1 1 1 1
130 feet	25 30 35 40 50 60 70 80 90 100 110 120 130	80.8 78.5 76.3 74.0 69.3 64.5 59.6 54.3 48.7 42.5 35.5 27.0 14.5	28490 23160 19330 14360 11060 8770 7080 5790 4770 3940 3270 2710	47950 37230 30090 25050 18580 14400 11530 9430 7830 6580 5560 4740 4060	134 133 132 130 127 123 117 111 103 93 81 64 38	3 2 2 1 1 1 1 1 1 1 1
140 feet	27 30 35 40 50 60 70 80 90 100	80.6 79.3 77.3 75.2 70.9 66.5 61.9 57.2 52.2 46.8	32600 28270 22940 19110 14140 10850 8560 6860 5570 4560	42950 37030 29880 24840 18380 14200 11320 9220 7620 6370	143 143 142 141 138 134 129 123 116 107	2 2 2 1 1 1 1 1 1

Boom Length (Meters)	Radius In Meters	Boom Angle Degrees	Side Frames Retracted (Kgs.)	Side Frames Extended (Kgs.)	M From Boom Point	Load Line	
27.4 meters (cont.)	10.7 12.2 15.2 18.3 21.3 24.4 27.4	69.9 66.5 59.4 51.6 43.0 32.5 17.4	9160 6880 5390 4350 3590 3000	14010 11730 8780 6890 5590 4640 3920	27.4 26.8 25.3 23.2 20.4 16.5 9.8	2 2 1 1 1 1	
30.5 meters	6.1 7.6 9.1 10.7 12:2 15.2 18.3 21.3 24.4 27.4 30.5	80.9 78.0 75.0 72.0 69.0 62.7 56.0 48.8 40.6 30.8 16.5		30480 22020 17150 13930 11640 8700 6800 5500 4560 3830 3270	31.7 31.4 31.1 30.5 30.2 28.7 26.8 24.7 21.3 17.4 10.4	3322211111	
33.5 meters	6.7 7.6 9.1 10.7 12.2 15.2 18.3 21.3 24.4 27.4 30.5 33.5	80.6 79.1 76.4 73.7 71.0 65.4 59.5 53.2 46.4 38.7 29.4 15.7		26370 21920 17060 13830 11540 8600 6710 5410 4460 3730 3170 2710	34.7 34.4 34.1 33.8 33.2 32.0 30.5 28.3 25.9 22.6 18.0 10.7	3 3 2 2 2 1 1 1 1)
36.6 meters	7.0 7.6 9.1 10.7 12.2 15.2 18.3 21.3 24.4 27.4 30.5 33.5 36.6	81.0 80.0 77.5 75.1 72.6 67.5 62.2 56.7 50.8 44.3 37.0 28.1 15.1		24640 21850 16980 13750 11460 8520 6630 5330 4380 3650 3080 2630 2250	37.8 37.8 37.5 36.9 36.6 35.4 34.1 32.3 29.9 27.1 23.5 18.9 11.3	33 33 22 22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
39.6 meters	7.6 9.1 10.7 12.2 15.2 18.3 21.3 24.4 27.4 30.5 33.5 36.6 39.6	80.8 78.5 76.3 74.0 69.3 64.5 59.6 54.3 48.7 42.5 35.5 27.0 14.5	12920 10510 8770 6510 5020 3980 3210 2630 2160 1790 1480 1230	21750 16890 13650 11360 8430 6530 5230 4280 3550 2980 2520 2150 1840	40.8 40.5 39.6 38.7 37.5 35.7 33.8 31.4 28.3 24.7 19.5 11.6	3 2 2 2 1 1 1 1 1 1 1 1 1 1	
42.7 meters	8.2 9.1 10.7 12.2 15.2 18.3 21.3 24.4 27.4 30.5	80.6 79.3 77.3 75.2 70.9 66.5 61.9 57.2 52.2 46.8	14790 12820 10410 8670 6410 4920 3880 3110 2530 2070	19480 16800 13550 11270 8340 6440 5130 4180 3460 2890	43.6 43.6 43.3 43.0 42.1 40.8 39.3 37.5 35.4 32.6	222211111	

Page 2

(Continued)

LIFT RATINGS (cont.) With 46HR Angle Chord Boom and "P-P" Counterweight (33,900 Lbs.) 15377 Kgs.)

METRIC

Boom Length (Feet)	Radius In Feet	Boom Angle Degrees	Side Frames Retracled (Lbs.)	Side Frames Extended (Lbs.)	Ft. From Boom Point	Min. Load Line
140 feet (cont.)	110 120 130 140	40.9 34.1 26.0 13.9	3730 3050 2480 2010	5350 4520 3830 3160	97 84 67 39	1 1 1 1
15D feet	28 30 35 40 50 60 70 80 90 100 110 120 130 140 150	80.8 80.1 78.1 76.2 72.2 68.1 63.9 59.6 55.1 50.3 45.1 39.4 32.9 25.1 13.5	30800 28040 22700 18870 13920 10620 8330 6640 5350 4330 3500 2820 2250 1770 1360	40590 36810 29660 24610 18170 13970 11100 9000 7400 6140 5130 4300 3540 2860 2280	153 153 152 151 148 145 140 135 128 121 112 101 87 69 40	2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
160 feet	30 35 40 50 60 70 80 90 100 110 120 130 140 150 160	80.7 78.9 77.0 73.3 69.6 65.7 61.7 57.5 53.2 48.6 43.6 38.1 31.9 24.3 13.0	27840 22500 18670 13730 10430 8130 6440 5150 4130 3300 2610 2050 1560 1160	36630 29470 24430 17980 13790 10900 8810 7210 5950 4930 4080 3290 2610 2030 1530	163 162 161 159 155 151 146 140 133 125 116 104 90 71 41	2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

Boom Length (Meters)	Radius In Meters	Boom Angle Degrees	Side Frames Retracted (Kgs.)	Side Frames Extended (Kgs.)	. M From Boom Point	Load Line
42.7 meters (cont.)	33.5 36.6 39.6 42.7	40.9 34.1 26.0 13.9	1690 1380 1120 910	2430 2050 1740	29.6 25.6 20.4 11.9	1 1
45.7 meters	8.5 9.1 10.7 12.2 15.2 18.3 21.3 24.4 27.4 30.5 33.5 36.6 39.6 42.7 45.7	80.8 80.1 78.1 76.2 72.2 68.1 63.9 59.6 55.1 50.3 45.1 39.4 32.9 25.1 13.5	13970 12720 10300 8560 6310 4820 3780 3010 2430 1960 1590 1280 1020 800 620	18410 16700 13450 11160 8240 6340 5030 4080 3360 2790 2330 1950 1610 1300 (030)	46.6 46.6 46.3 46.0 45.1 44.2 42.7 41.1 39.0 36.9 34.1 30.8 26.5 21.0 12.2	2 2 2 2 1 1 1 1 1 1 1 1 1
48.8 meters	9.1 10.7 12.2 15.2 18.3 21.3 24.4 27.4 30.5 33.5 36.6 39.6 42.7 45.7 48.8	80.7 78.9 77.0 73.3 69.6 65.7 61.7 57.5 53.2 48.6 43.6 38.1 31.9 24.3 13.0	12630 10210 8470 6230 4730 3690 2920 2340 1870 1500 1180 930 710 530	16620 13370 11080 8160 6260 4940 4000 3270 2700 2240 1850 1490 1180 920 690	49.7 49.4 49.1 48.5 47.2 46.0 44.5 42.7 40.5 38.1 35.4 31.7 27.4 21.6 12.5	2 2 2 1 1 1 1 1 1 1 1 1 1 1

7250.44

DUTY CYCLE RATINGS With 46HB Apple Chard Boom and "K K

With 46HR Angle Chord Boom and "K-K-K" Counterweight (25,000 Lbs.) (11340 Kgs.)

M	ŕ	۲I	IC

Boom Length	Radius In	Boom Angle	Side Frames	Side Frames	Daty	Duly Cycle Ratings		
(Feet)	Feet	Degrees	Retracted	Extended	Clamshell	Dragline	Magnet	Boom Point
	11	80.1		120000	20700	17750	20700	45
	12	78.6		120000	20700	17750	20700	45
	15	74.2		93760	20700	17750	20700	44
40	20	66.6	—	59490	20700	17750	20700	42
feet	25	58.5	_	43270	20700	17750	20700	39
	30	49.7	—	33800	20700	17750	20700	36
	35	39.5	—	27600	20700	17750	20700	31
	40	26.2	18080	23220	20690	17750	20690	23
-	12	80.9		120000	20700	17750	20700	55
	15	77.4	—	93700	20700	17750	20700	54
	20	71.5	_	59380	20700	17750	20700	53
50	25	65.3		43160	20700	17750	20700	51
feet	30	58.8		33660	20700	17750	20700	48
	35	51.9	21210	27440	20700	17750	20700	45
	40	44.2	17890	23050	20550	17750	20550	40
	50	23.4	13480	17290	15390	17290	15390	25
	14	80.5		105710	20700	17750	20700	65
	15	79.6		93620	20700	17750	20700	64
60	20	74.7		59280	20700	17750	20700	63
feet	25	69.6	_	43040	20700	17750	20700	62
	30	64.5	25650	33520	20700	17750	20700	59
	35	59.0	21050	27300	20700	17750	20700	57
	40	53.3	17730	22900	20440	17750	20440	53

Beom Length	Radius In	Boom Angle	Side Frames	Side Frames	Duty	Cycle Rati	ngs	M From Boom
(Meters)	Meters	Degrees	Retracted	Extended	Clamshell	Dragline	Magnet	Point
	3.4	80.1	_	54430	9390	8050	20700	13.7
	3.7	78.6	-	.54430	9390	8050	20700	13.7
	4.6	74.2		42530	9390	8050	20700	13.4
12.2	6.1	66.6	—	26980	9390	8050	20700	12.8
meters	7.6	58.5	—	19630	9390	8050	20700	11.9
	9.1	49.7	—	15330	9390	8050	20700	11.0
	10.7	39.5		12520	9390	805 0	20700	9.4
	12.2	26.2	8200	10530	9380	8050	20690	7.0
	3.7	80.9		54430	9390	8050	20700	16.8
	4.6	77.4	_	42500	9390	8050	20700	16.5
1	6.1	71.5	_	26930	9390	8050	20700	16.2
15.2	7.6	65.3	_	19580	9390	8050	20700	15.5
meters	9.1	58.8	· _	15270	9390	8050	20700	14.6
	10.7	51.9	9620	12450	9390	805 0	20700	13.7
	12.2	44.2	8110	10460	9320	8050	20550	12.2
	15.2	23.4	6110	7840	6980	7840	15390	7.6
	4.3	80.5	_	47950	9390	8050	20700	19.8
	4.6	79.6	_	42470	9390	8050	20700	19.5
100	6.1	74.7		26890	9390	8050	20700	19.2
18.3	7.6	69.6		19520	9390	805 0	20700	18.9
meters	9.1	64.5	11630	15200	9390	805 0	20700	18.0
	10.7	59.0	9 5 50	12380	9390	8050	20700	17.4
	12.2	53.3	8040	10390	9270	8050	20440	16.2

(Continued)

DUTY CYCLE RATINGS (cont.) With 46HR Angle Chord Boom and "K-K-K" Counterweight (25,000 Lbs.) (11340 Kgs.)

Boom Length (Feel)	Radius In Feet	Boom Angle Degrees	Side Frames Retracted	Side Frames Extended	Outy Clamshell	Cycle Rati Dragline		Ft. From Boom Point
60 feet	50 60	40.1 21.4	13340 10480	17160 13500	15280 12020	17160 13500	15280 12020	44 27
70 feet	16 20 25 30 35 40 50 60 70	80.2 76.9 72.6 68.3 63.8 59.2 49.1 37.0 19.8		83880 59110 42870 33340 27110 22710 16980 13310 10800	20700 20700 20700 20700 20700 20280 15110 11850 9610	17750 17750 17750 17750 17750 17750 17750 16980 13310 10800	20700 20700 20700 20700 20700 20280 15110 11850 9610	74 74 72 70 68 65 58 47 29
80 feet	17 20 25 30 35 40 50 60 70 80	80.7 78.6 74.9 71.1 67.3 63.4 55.0 45.7 34.6 18.5		75850 59000 42750 33210 26970 22570 16850 13190 10670 8840	20700 20700 20700 20700 20700 20170 14990 11730 9500 7870	17750 17750 17750 17750 17750 17750 16850 13190 10670 8840	20700 20700 20700 20700 20700 20170 14990 11730 9500 7870	84 84 83 81 79 77 71 63 51 31
90 feet	19 20 25 30 35 40 50 60 70 80 90	80.5 79.8 76.6 73.3 69.9 66.5 59.4 51.6 43.0 32.5 17.4	31940 25080 20470 17250 12790 9930 7930 6470 5350	63610 58820 42560 33010 26770 22460 16640 12980 10460 8620 7220	20700 20700 20700 20700 20700 19990 14810 11550 9300 7670 —		20700 20700 20700 20700 20700 19990 14810 11550 9300 7670 —	94 94 93 92 90 88 83 76 67 54 32
100 feet	20 25 30 35 40 50 60 70 80 90 100	80.9 78.0 75.0 72.0 69.0 62.7 56.0 48.8 40.6 30.8 16.5	42850 31740 24880 20270 17070 12600 9730 7740 6280 5160 4270	58640 42380 32820 26570 22280 16460 12790 10260 8430 7030 5930	20700 20700 20700 19830 14650 11370 9130 7500 6250 5280		20700 20700 20700 19830 14650 11370 9130 7500 6250 5280	104 103 102 100 99 94 88 81 70 57 34
110 feet	22 25 30 35 40 50 60 70 80 90 100 110	80.6 79.1 76.4 73.7 71.0 65.4 59.5 53.2 46.4 38.7 29.4 15.7	37350 31520 24650 20030 16840 12370 9510 7520 6050 4920 4050 3330	50650 42180 32610 26360 22070 16250 12580 10050 8210 6800 5710 4830	20700 20700 20700 20700 19640 14450 11190 8940 7300 6050 5080 4290		20700 20700 20700 20700 19640 14450 11190 8940 7300 6050 5080 4290	114 113 112 111 109 105 100 93 85 74 59 35
120 feet ge 4	23 25 30 35 40 50 60 70 80 90 100 110 120	81.0 80.0 77.5 75.1 72.6 67.5 62.2 56.7 50.8 44.3 37.0 28.1 15.1	34960 31340 24480 19850 16670 12200 9330 7340 5870 4750 3860 3150 2570	47270 42020 32450 21910 16070 12400 9880 8040 6630 5530 4640 3930 50.45	20700 20700 20700 19490 14300 11030 8780 7140 5890 4910 4130 3490 7250.46		20700 20700 20700 20700 19490 14300 8780 7140 5890 4910 4130 3490 7 7250	124 124 123 121 120 116 112 106 98 89 77 62 37

Boom Length	Radius In	Boom Angle	Side Frames	Side Frames	Duty	Cycle Rati	ngs	M From
(Melers)	Meters	Degrees	Retracted	Extended	Clamshell	Dragline	Magnet	Boom Point
18.3 meters	15.2 18.3	40.1 21.4	6050 4750	7780 6120	6930 5450	7780 6120	15280 12020	13.4 8.2
21.3 meters	4.9 6.1 7.6 9.1 10.7 12.2 15.2 18.3 21.3	80.2 76.9 72.6 68.3 63.8 59.2 49.1 37.0 19.8	 11540 9450 7950 5960 4660 3760	38050 26810 19450 15120 12300 10300 7700 6040 4900	9390 9390 9390 9390 9390 9390 9200 6850 5380 4360	8050 8050 8050 8050 8050 8050 7700 6040 4900	20700 20700 20700 20700 20700 20280 15110 11850 9610	22.6 22.6 21.9 21.3 20.7 19.8 17.7 14.3 8.8
24.4 meters	5.2 6.1 7.6 9.1 10.7 12.2 15.2 18.3 21.3 24.4	80.7 78.6 74.9 71.1 67.3 63.4 55.0 45.7 34.6 18.5		34410 26760 19390 15060 12230 10240 7640 5980 4840 4010	9390 9390 9390 9390 9390 9150 6800 5320 4310 3570	8050 8050 8050 8050 8050 8050 7640 5980 4840 4010	20700 20700 20700 20700 20700 20170 14990 11730 9500 7870	25.6 25.6 25.3 24.7 24.1 23.5 21.6 19.2 15.5 9.4
27.4 meters	5.8 6.1 7.6 9.1 10.7 12.2 15.2 18.3 21.3 24.4 27.4	80.5 79.8 76.6 73.3 69.9 66.5 59.4 51.6 43.0 32.5 17.4		28850 26680 19310 14970 12140 10190 7550 5890 4740 3910 3270	9390 9390 9390 9390 9390 9070 6720 5240 4220 3480 —		20700 20700 20700 20700 20700 19990 14810 11550 9300 7670 —	28.7 28.7 28.3 28.0 27.4 26.8 25.3 23.2 20.4 16.5 9.8
30.5 meters	6.1 7.6 9.1 10.7 12.2 15.2 18.3 21.3 24.4 27.4 30.5	80.9 78.0 75.0 72.0 69.0 62.7 56.0 48.8 40.6 30.8 16.5	19440 14400 11290 9190 7740 5720 4410 3510 2850 2340 1940	26600 19220 14890 12050 10110 7470 5800 4650 3820 3190 2690	9390 9390 9390 9390 8990 6650 5160 4140 3400 2840 2400		20700 20700 20700 19830 14650 11370 9130 7500 6250 5280	31.7 31.4 31.1 30.5 30.2 28.7 26.8 24.7 21.3 17.4 10.4
33.5 meters	6.7 7.6 9.1 10.7 12.2 15.2 18.3 21.3 24.4 27.4 30.5 33.5	80.6 79.1 76.4 73.7 71.0 65.4 59.5 53.2 46.4 38.7 29.4 15.7	16940 14300 11180 9090 7640 5610 4310 3410 2740 2230 1840 1510	22970 19130 14790 11960 10010 7370 5710 4560 3720 3080 2590 2190	9390 9390 9390 9390 8910 6550 5080 4060 3310 2740 2300 1950		20700 20700 20700 19640 14450 11190 8940 7300 6050 5080 4290	34.7 34.4 33.8 33.2 32.0 30.5 28.3 25.9 22.6 18.0 10.7
36.6 meters	7.0 7.6 9.1 10.7 12.2 15.2 18.3 21.3 24.4 27.4 30.5 33.5 36.6	81.0 80.0 77.5 75.1 72.6 67.5 62.2 56.7 50.8 44.3 37.0 28.1 15.1	15860 14220 11100 9000 7560 5530 4230 3330 2660 2150 1750 1430 1170	21440 19060 14720 11880 9940 7290 5620 4480 3650 3010 2510 2100 1780	9390 9390 9390 8840 6490 5000 3980 3240 2670 2230 1870 1580		20700 20700 20700 19490 14300 11030 8780 7140 5890 4910 4130 3490	37.8 37.8 37.5 36.9 36.6 35.4 32.3 29.9 27.1 23.5 18.9 11.3

Page 4

CRANE RATING DATA

Load ratings are in pounds (kilograms) and do not exceed 75% of tipping with crane standing level on firm uniformly supporting surface. Clamshell, dragline, and magnet ratings are in accordance with recommended industry standards and should not exceed the rating shown. Safe loads depend on ground conditions, boom length, radius of operation, and proper handling, all of which must be taken into consideration by user. Retractable A-frame must be in fully raised position for all ratings.

Blocks, slings, buckets, and other load carrying devices are considered part of the load.

Lifting is approved only in those areas for which ratings are shown in the rating chart. Ratings in shaded areas are based on structural limitations rather than stability.

"Radius in feet (meters)" is the horizontal distance at crane base level from center pin to a vertical line through the center of gravity of the suspended load.

Main load line is 7/8 inch (2.2 cm) diameter with minimum breaking strength of 79,600 pounds (36106 kilograms).

Boom suspension line is 3/4 inch (1.9 cm) diameter with minimum breaking strength of 58,800 pounds (26671 kilograms). Boom suspension pendants are 1-1/4 inch (3.2 cm) diameter with minimum breaking strength of 172,800 pounds (78382 kilograms).

Maximum boom length is 160 feet (48.8 meters) for lift service, 120 feet (36.6 meters) for clamshell, and 80 feet (24.4 meters) for dragline or magnet. Boom lengths and ratings available in 5 foot (1.5 meter) increments.

Designed and rated to comply with ANSI Code B30.5.

NOTE: Maximum dragline ratings are increased to 19,500 pounds (8845 kilograms) and maximum clamshell and magnet ratings are increased to 22,750 pounds (10319 kilograms) with the following optional engines and converters:

GM-8V-71-N engine with three stage torque converter, Cummins NT-855-C250 engine with three stage torque converter, Caterpillar 3306(T) engine with three stage torque converter.

E	om 1gth	20 Ft. (6.1 M)	10 Ft. (3.0 M)	20 Ft. (6.1 M)	40 Ft. (12.2 M)	20 Ft. (6.1 M)
Ft.	W	46SHR Inner	46HR Center	46HR Center	46HR Center	46HR Outer
40 50 60 70 80 90 100 110 120 130 140 150 160	12.2 15.2 18.3 21.3 24.4 27.4 30.5 33.5 36.6 39.6 42.7 45.7 48.8		 			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

46HR BOOM COMPOSITION

BOOM AND JIB ERECTION*

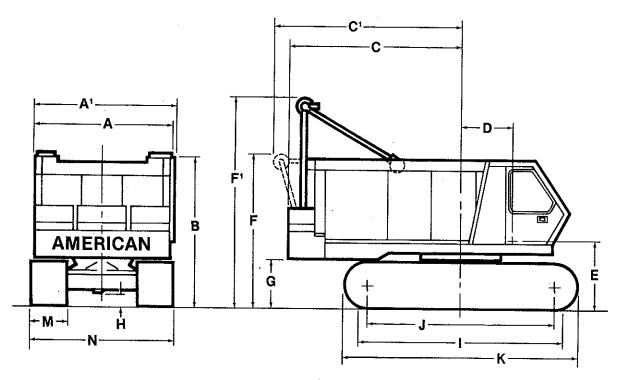
Boom Length Ft.	Jib Length
160	30' of No. 9 Jib
155	40' of No. 9 Jib
150	50' of No. 9 Jib

*self-erecting over the rear with "P-P" Counterweight

METRIC

Boom Length M	Jib Length
48.8	9.1 m of No. 9 Jib
47.2	12.2 m of No. 9 Jib
45.7	15.2 m of No. 9 Jib

LOAD HOISTING DATA*


			Maximum Hoisting Distance					
Li Caj	kimum fting pacity Pounds	Minimum Parts of Load Line	RH Drum Controlled Load Lowering Ft.	LH Orum Controlled Load Lowering Ft.	LH Drum Controlled Load Lowering Ft.			
120	0,000	6	133	84	102			
11	3,700	5	160	101	122			
90	0,970	. 4	200	126	153			
1	8,230	3	267	168	204			
	5,480	2	401	252	- 306			
22	2,740	1	803	505	612			

*Based on 7/8" EIPS rope.

		Maximum Hoisting Distance					
Maximum Lifting Capacity In Pounds	Minimum Parts of Load Line	RH Drum Controlled Load Lowering M	LH Drum Controlled Load Lowering M	LH Drum Controlled Load Lowering M			
36576 -	6	40	26	31			
34659	5	49	31	37			
27727	4	61	38	47			
20796	3	81	51	62			
13862	2	122	77	93			
6931	· 1	245	154	186			

*Based on 2.2 cm EIPS rope.

MODEL 7250 GENERAL DIMENSIONS

DIMENSIONS

	Ft.	М
А	Width of cab 10'6"	3.19
Α ¹ `\	Width of machinery cab plus operator's	
	\ cab 10'11"	3.31
в	Height over cab 11'7-3/8"	3.54
Ç	Tailswing 13'11"	4.22
C1	Tailswing with A-frame retracted 16'9-1/2"	5.11
D	Center of pivot to center of crane boom	
	foot 4'1-1/2"	1.25
Ē	Ground to center of crane boom foot 5'4-3/8"	1.63
F	Height over A-frame, retracted 12'0"	3.65
F ¹	Height over A-frame, raised 20'5"	6.21
G	Ground to bottom of counterweight	1.14
Н	Minimum ground clearance under	2
	crawler base 13"	.33
I –	Crawler bearing length 15'2"	4.62

PERFORMANCE

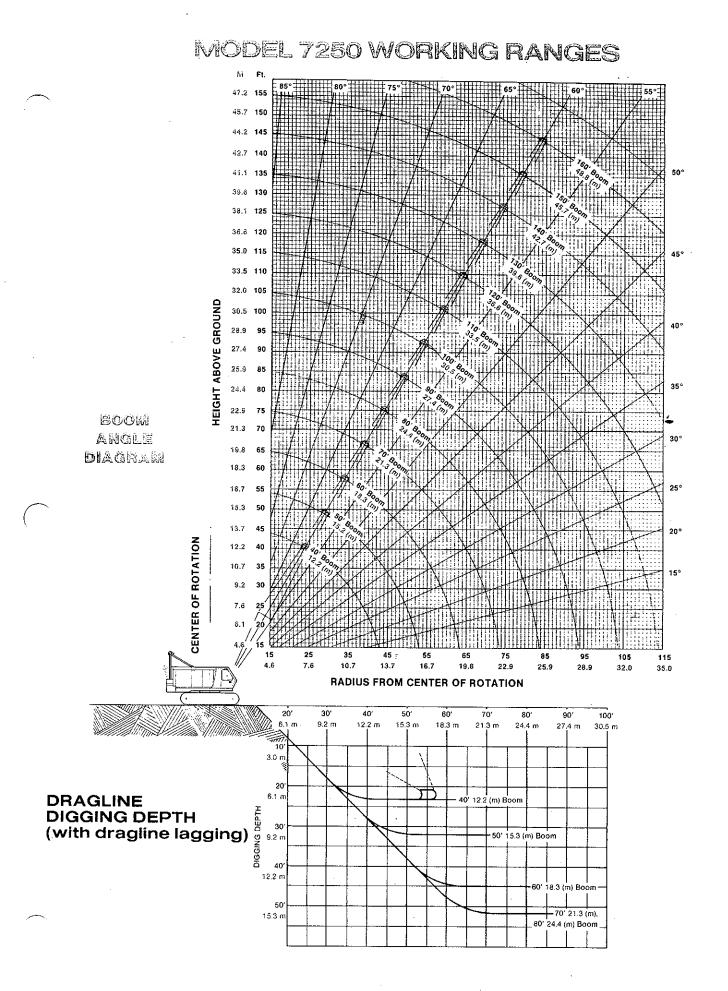
TRAVEL SPEED	1.45 KmPH 0-3.25 RPM 3 RPM
Crane Hoist 165 FPM	50.3 MPM
Dragline 157 FPM	47.8 MPM
Magnet 198 FPM	60.3 MPM
Third Drum (Standard Travel) 185 FPM	56.4 MPM
Third Drum (Independent Travel) 115 FPM	35.0 MPM
SINGLE LINE PULL:	
Crane Hoist 29,600 lbs. SLP	13426 kgs.
Dragline 31,400 lbs. SLP	14243 k <u>ğ</u> s.
Magnet	11249 kgs.
Third Drum (Standard	0
Travel) 10,000 lbs. SLP	4536 kgs.
Third Drum (Independent	Ũ
Travel) 16,000 lbs. SLP	7258 kgs.
	Ŷ

Performance figures are based on machine equipped with standard engine.

NOTE: In accordance with varying material situations and the Company's policy of constant product improvement these specifications are subject to change without notice and without incurring responsibility to units previously sold.

	Ft.	B/I	
J	Center to center crawler tumblers 14'0'	4.26	
К	Overall length of crawlers 17'6'		
М	Width of tread shoes (Standard) 33'	,03	1
М¹	Width of tread shoes		\smile
	(Optional)	96 or 1.12	
N	Overall width over crawlers 33" (.8 m)		
	shoes (Extended) 14'4'	4.36	
N	Overall width over crawlers 33" (.8 m)		
	shoes (Retracted) 11'0'	' 3.35	
N٢	Overall width over crawlers 38" (.9 m)	0.00	
	shoes (Extended) 14'9'	4.49	
N1	Overall width over crawlers 38" (.9 m)		
	shoes (Retracted) 11'5'	3.48	
N ²	Overall width over crawlers 44" (1.1 m)	0.15	
	shoes (Extended) 15'3'	4.65	

-


WEIGHTS

7250 lifting crane with "P-P" counterweight and basic 40 ft. (12.2 m) 46HR boom:

33" shoes	38" shoes	44″ sho	es	
(83.82 cm)	(96.5 cm)	(111.7 ci	m)	
131,490 lbs.	133,405 lbs.	135,7151	bs.	
(59644 kgs.)	(60512 kgs.)	(61560 kg	js.)	
<u></u>		Lbs.	Kgs.	
"P-P" counterweight		33,900	15377	
Crane boom outer		2,210	1002	۱
Crane boom inner	• • • • • • • • • • • • • • • • • • • •	1,750	794]
Telescopic boom stop	D\$	350	159	(3)
Axle extensions (4)		1,200	544	5 J W
Torque tubes (2)		800	363	l . r
Crawler side frame w	733″ (83.82 cm)			153.1dl
shoes (2)		32,000	14515	リバン
Crawler axles (2)		5,800	2631	
Crawler carbody	• • • • • • • • • • • • • • • • • • • •	9,500	4309	,
				ŀ

GROUND PRESSURES:

Lift crane with	40	ft.	(12.2)	m)	basic	boom	and	"P-P"
counterweight.				ŕ				
33" shoes			38" sl	hoes		44"	shoe	s
(83.82 cm)		•	(96.5	cm)		(11)	1.7 on	n)
10.7 PSI			9.5	PSIÉ			3 PSI	

Service is his middle name. He knows AMERICAN equipment inside and out...what it will do...the options available. This can help you match your equipment to your needs, and that's important.

After the purchase, he has a strong stake in keeping your AMERICAN on the job. So he maintains an inventory of genuine AMERICAN replacement parts... plus the right shop facilities and trained mechanics for speedy maintenance or repair.

Closely supporting him is the AMERICAN district representative in your area, plus a team of home-office specialists...in application engineering, sales, and service. All are deeply committed to one goal — serving you.

That's the AMERICAN way.

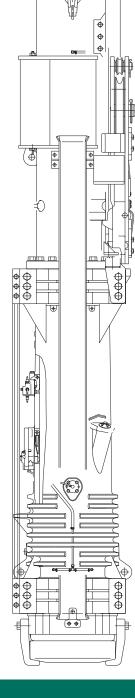
CONSTRUCTION EQUIPMENT GROUP

AN EQUAL OPPORTUNITY EMPLOYER

OHDE WASTER

MERICAN

Model I–19 Impact-Atomization Diesel Pile Hammers


Simple • Reliable • Low Cost

- Time-proven design
- Impact-atomization fuel system
- Remote variable fuel pump
- Automatic lubrication to upper and lower cylinders
- Equipped with USA box lead guides
- Uses standard ICE drive caps
- Optional hydraulic tripping device
- Alcohol additive tank for winter operation
- Swinging, fixed and sliding lead set-ups available in 16 and 8 ft. sections
- Four models of light to heavy-duty lead spotters for precise pile positioning

Centerline to front

Working Specifications	
Ram weight	4,015 lbs (1820 kg)
Rated energy	43,225 ft-lbs (58,605 Nm)
Minimum energy	21,510 ft-lbs (29,164 Nm)
Maximum stroke	12.14 ft (3.70 m)
Stroke at rated energy	10.77 ft (3.28m)
Speed (blows per minute)	35-53
Weights	
Hammer with USA lead guides	9,800 lbs (4445 kg)
Drive cap base (DCB-1)	1,095 lbs (497 kg)
Striker plate	450 lbs (204 kg)
Cushion material	51 lbs (23 kg)
Typical pile insert (DCH-1)	690 lbs (313 kg)
Typical operating weight	12,086 lbs (5482 kg)
Capacities (adequate for normal day)	
Capacities (adequate for normal day) Diesel fuel tank	9.9 gal (37.5 l)
• • •	9.9 gal (37.5 l) 2.6 gal (10.0 l)
Diesel fuel tank	0
Diesel fuel tank Lube oil tank	2.6 gal (10.0 l)
Diesel fuel tank Lube oil tank Ether tank	2.6 gal (10.0 l)
Diesel fuel tank Lube oil tank Ether tank Dimensions of hammer	2.6 gal (10.0 l) 0.3 gal (1.2 l)
Diesel fuel tank Lube oil tank Ether tank Dimensions of hammer Length	2.6 gal (10.0 l) 0.3 gal (1.2 l) 15.4 ft (4700 mm)
Diesel fuel tank Lube oil tank Ether tank Dimensions of hammer Length Length with trip guides	2.6 gal (10.0 l) 0.3 gal (1.2 l) 15.4 ft (4700 mm) 19.4 ft (5930 mm)
Diesel fuel tank Lube oil tank Ether tank Dimensions of hammer Length Length with trip guides Length with extension	2.6 gal (10.0 l) 0.3 gal (1.2 l) 15.4 ft (4700 mm) 19.4 ft (5930 mm) 17.4 ft (5300 mm)
Diesel fuel tank Lube oil tank Ether tank Dimensions of hammer Length Length with trip guides Length with extension Diameter of anvil	2.6 gal (10.0 l) 0.3 gal (1.2 l) 15.4 ft (4700 mm) 19.4 ft (5930 mm) 17.4 ft (5300 mm) 17.3 in (440 mm)
Diesel fuel tank Lube oil tank Ether tank Dimensions of hammer Length Length with trip guides Length with extension Diameter of anvil Overall width	2.6 gal (10.0 l) 0.3 gal (1.2 l) 15.4 ft (4700 mm) 19.4 ft (5930 mm) 17.4 ft (5300 mm) 17.3 in (440 mm) 19.1 in (710 mm)

INTERNATIONAL CONSTRUCTION EQUIPMENT, INC.

14.6 in (370 mm)

Model I–19 Impact-Atomization Diesel Pile Hammers

ICE I-19 DIESEL PILE HAMMER BEARING CHART

This chart is based on the Gates formula given below and is provided as a convenience only for those applications where this formula is specified. The Gates formula has been recommended for use by the U.S. DOT Federal Highway Administration. The formula calculates ultimate pile capacity. The FHWA recommends using a factor of safety of 3.5 with the Gates formula. ICE has no preference for this formula over any other.

Ultimate pile bearing (tons) = $1/2(1.75*(E)^{1/2}\log(10N)-100)$ where E=Hammer energy (ft-lbs) and N=Hammer blows per inch at final penetration.

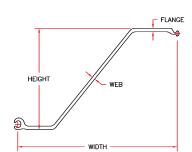
Blows per Min.	Ram Stroke (feet)	Hammer Energy (ft-lbs)	2	3	4	5	6	7	8	Pil 9	le Set (Blo 10	ws per in 11	ch) 12	13	14	15	16	17	18	19	20
35	11.5	46,128	194	228	251	269	284	297	308	317	326	334	341	347	353	359	364	369	374	378	382
36	10.8	43,536	188	220	242	260	275	287	297	307	315	323	330	336	342	347	352	357	362	366	370
37	10.2	41,151	181	212	234	252	266	278	288	297	305	312	319	325	331	336	341	346	350	354	358
38	9.7	38,952	175	205	227	243	257	269	279	287	295	303	309	315	321	326	331	335	339	344	347
39	9.2	36,920	169	198	219	236	249	260	270	279	286	293	300	305	311	316	321	325	329	333	337
40	8.7	35,039	163	192	212	228	241	252	262	270	278	284	291	296	302	306	311	315	319	323	327
41	8.3	33,293	158	186	206	221	234	245	254	262	269	276	282	288	293	297	302	306	310	314	317
42	7.9	31,671	153	180	199	215	227	237	246	254	261	268	274	279	284	289	293	297	301	305	308
43	7.5	30,160	148	174	193	208	220	230	239	247	254	260	266	271	276	281	285	289	293	296	300
44	7.2	28,752	143	169	188	202	214	224	232	240	247	253	258	264	268	273	277	281	285	288	291
45	6.8	27,436	139	164	182	196	208	217	226	233	240	246	251	256	261	265	269	273	277	280	283
46	6.5	26,205	134	159	177	191	202	211	220	227	233	239	245	249	254	258	262	266	269	273	276
47	6.2	25,052	130	155	172	185	196	206	214	221	227	233	238	243	247	251	255	259	262	266	269
48	6.0	23,970	126	150	167	180	191	200	208	215	221	227	232	236	241	245	249	252	256	259	262
49	5.7	22,954	122	146	162	175	186	195	202	209	215	221	226	230	235	238	242	246	249	252	255
50	5.5	21,998	119	142	158	170	181	189	197	204	210	215	220	224	229	232	236	239	243	246	249
51	5.3	21,098	115	138	154	166	176	185	192	198	204	209	214	219	223	227	230	233	237	240	242
52	5.0	20,249	112	134	149	162	171	180	187	193	199	204	209	213	217	221	224	228	231	234	237
53	4.8	19,448	109	130	145	157	167	175	182	188	194	199	204	208	212	216	219	222	225	228	231

CAUTION: Driving at ten blows per inch is considered practical refusal. Driving in excess of ten blows per inch for more than six inches of driving or driving in excess of 20 blows per inch at all is considered improper use and will void the hammer warranty.

LEADS/SPOTTERS

ICE manufactures leads with 20", 26" 32" and 36" guide rails for all ICE and other pile hammers. Standard components are available in 8' increments for swinging, fixed and sliding lead setups. Two designs are available to provide the most costeffective configuration for every job. Four models of spotters and three spotter power unit sizes are available.

DRIVE CAPS


ICE offers a drive cap base/insert system for all ICE lead sizes as well as for pipe leads. Drive cap inserts are available for practically any pile type and size. The ICE drive cap system: maintains pile top position under the hammer, protects the hammer from peak stresses, minimizes pile top deformation, and transmits maximum force to pile.

INTERNATIONAL CONSTRUCTION EQUIPMENT. INC.

Corporate offices: 301 Warehouse Drive, Matthews NC 28104 Phones: 704 821-8200, 888 ICEUSA1 (423-8721) Fax: 704 821-8201 www.iceusa.com e-mail: sales@iceusa.com

Appendix B – Materials Specification Cut Sheets

Z Pile Profile

COVER PLATE (SEE CHART) -Typical Pzc39 Sheet Pile Section

HEIGHT

Cover Plated Z Profiles

								WIDTH			
Section	Width+	Height+	Web Thick- ness+	Flange Thick- ness+	We	ight	Moment	t of Inertia	Sectio	n Modulus	Nominal Coating Area*
	in.	in.	in.	in.	lb / lft	lb / ft²	in4	in⁴ / wft	in³	in³ / wft	ft² / lft
	mm	mm	mm	mm	kg / lm	kg / m²	cm⁴	cm⁴ / wm	cm ³	cm³ / wm	m² / lm
PZC 13	27.88	12.56	0.375	0.375	50.4	21.7	353.0	152.0	56.2	24.2	5.60
PZC 13	708	319	9.5	9.5	75.1	106.0	14,690	20,760	920	1,300	1.71
PZC 14	27.88	12.60	0.420	0.420	55.0	23.7	381.6	164.3	60.5	26.0	5.60
FZC 14	708	320	10.7	10.7	81.8	115.5	15,890	22,440	990	1,400	1.71
PZC 18	25.00	15.25	0.375	0.375	50.4	24.2	532.2	255.5	69.8	33.5	5.60
F2C 10	635	387	9.5	9.5	75.1	118.2	22,150	34,890	1,145	1,800	1.71
PZC 19	25.00	15.30	0.420	0.420	55.0	26.4	576.3	276.6	75.3	36.1	5.60
FZC 19	635	388	10.7	10.7	81.8	128.8	23,990	37,780	1,235	1,945	1.71
PZC 25	27.88	17.66	0.485	0.560	69.4	29.9	938.7	404.1	106.3	45.7	6.15
12025	708	449	12.3	14.2	103.3	145.9	39,070	55,190	1,740	2,455	1.87
PZC 26	27.88	17.70	0.525	0.600	73.9	31.8	994.3	428.1	112.4	48.4	6.15
F 2C 20	708	450	13.3	15.2	110.0	155.4	41,390	58,460	1,840	2,600	1.87
PZC 28	27.88	17.75	0.570	0.645	79.0	34.0	1,057	455.1	119.1	51.3	6.15
F ZC 20	708	451	14.5	16.4	117.6	166.1	44,000	62,150	1,950	2,755	1.87
PZC 37	22.50	21.02	0.488	0.563	69.6	37.1	1,349	719.6	128.4	68.5	6.15
120 37	572	534	12.4	14.3	103.6	181.2	56,160	98,270	2,100	3,680	1.87
PZC 39	22.50	21.05	0.525	0.600	74.0	39.5	1,429	762.1	135.6	72.3	6.15
12039	572	535	13.3	15.2	110.2	192.8	59,480	104,100	2,220	3,890	1.87
PZC 41	22.50	21.09	0.561	0.636	78.4	41.8	1,507	803.6	142.7	76.1	6.15
120 71	572	536	14.2	16.2	116.6	204.1	62,720	109,700	2,340	4,090	1.87

Available Grades: ASTM A572 Gr. 50 and 60, A588 and A690 +Values stated are nominal *Both sides of sheet: excludes socket interior and ball interlock

PZC[™] is a trademark of Gerdau

				Per Sing	gle Section		Per Unit of Wall					
					Total	Nominal	Wei	ght	Moment of Inertia			
Section	Normal Width	Plate Size	Area	Weight	Surface Area	Coating Area*	Full Length Plates	Half Length Plates		Section Modulus		
	in.	in.	in²	lb / ft	ft² / lin ft	ft² / lin ft	lb / ft²	lb / ft²	in⁴ / ft	in³ / ft		
	mm	mm	mm²	kg / m	m² / m	m² / m	kg / m²	kg / m²	cm⁴ / m	cm³ / m		
PZC 46-CP	22.5	3 x 0.500	24.76	84.2	6.82	6.32	44.9	42.1	947.8	86.0		
(PZC39)	572	76 x 13	159.8	125.2	2.08	1.93	219.3	205.6	129,400	4,630		
PZC 48-CP	22.5	3 x 0.625	25.51	86.7	6.86	6.36	46.3	42.9	997.0	89.4		
(PZC39)	572	76 x 16	164.6	129	2.09	1.94	226.1	209.5	136,100	4,810		
PZC 50-CP	22.5	3 x 0.8125	26.64	90.6	6.92	6.42	48.3	43.9	1,073.0	94.6		
(PZC39)	572	76 x 21	171.9	134.8	2.11	1.96	235.9	214.4	146,400	5,090		

Available Grades: ASTM A572 Gr. 50

*Excludes socket interior and ball interlock Filet weld should be sized to adequately resist design loads and should be continuous and all around. Cover plate length depends upon moment curve. Best economy is obtained when plate length is limited to area of high moment.

Piling

Rent PZC[™] Sheet Pile

- Low initial cost
- Stocking locations throughout the US
- Interlocks warranted to be continuous and reasonably free-sliding when threaded
- Contractor preferred ball & socket interlocks
- Wider, lighter, stronger PZC sheet pile maximizes job site efficiency
- Why buy when you can **RENT**?

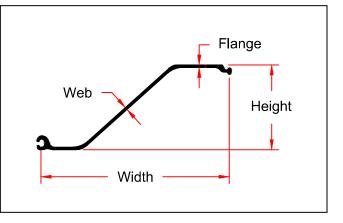
PZC[™] is a trademark of Gerdau.

"...we elected to rent the required 800 tons in lieu of bu ing due to availability within the project time frame as well as a much smaller initial investment."

"...the quality of piling supplied as well as the delivery coordination was outstanding as we are accustomed to receiving from L.B. Foster."

"...we found the sheet pile reconditioning process to be fair and within project budget."

"When temporary sheets are required Kissick Construction will look to L.B. Foster as our supplier of choice."



Bill Berry Jr. Director of Deep Foundations Kissick Construction

WIDER - LIGHTER - STRONGER

Hot Rolled **Domestically Produced Ball & Socket Sheet Pile**

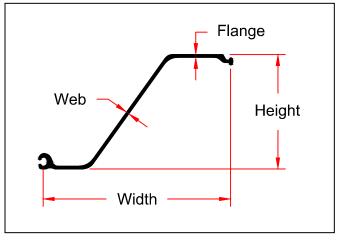
Available Grades: ASTM A572 Gr. 50 and 60, A588 and A690

The innovative PZC series of steel sheet piling is manufactured to be wider, lighter and stronger than the traditional PZ piling.

PZC sheet piling is made wider than PZ sections to maximize jobsite production in setting and driving. They are lighter than PZ piling to minimize the required amount of steel needed for project installation. And PZC sections are stronger per pound than PZ sections in both section modulus and moment of inertia.

PZC 13 compared to the currently produced PZ 22:

- 27% wider laying dimension
- 36% stronger per pound


Section	Width	Height	Web Thickness	Flange Thickness	Weight		Moment of Inertia		Section	Nominal Coating Area	
	in.	in.	in.	in.	lb / lft	lb / ft ²	in ⁴	in⁴ / wft	in³	in ³ / wft	ft² / lft
	mm	mm	mm	mm	kg / lm	kg / m ²	cm⁴	cm⁴ / wm	cm ³	cm ³ / wm	m² / lm
PZC 13	27.88	12.56	0.375	0.375	50.4	21.7	353.0	152.0	56.2	24.2	5.60
PZC 13	708	319	9.5	9.5	75.1	106.0	14,690	20,760	920	1,300	1.71
PZC 14	27.88	12.60	0.420	0.420	55.0	23.7	381.6	164.3	60.5	26.0	5.60
PZC 14	708	320	10.7	10.7	81.8	115.5	15,890	20,440	990	1,400	1.71

Dimensions and Properties

WIDER - LIGHTER - STRONGER

Hot Rolled Domestically Produced Ball & Socket Sheet Pile

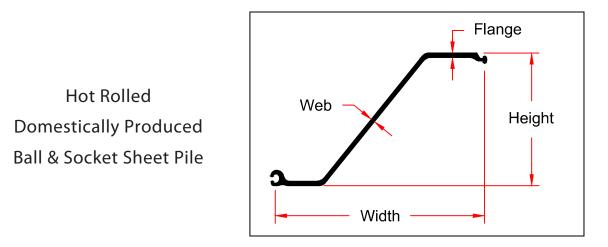
Available Grades: ASTM A572 Gr. 50 and 60, A588 and A690

The innovative PZC series of steel sheet piling is manufactured to be wider, lighter and stronger than the traditional PZ piling.

PZC sheet piling is made wider than PZ sections to maximize jobsite production in setting and driving. They are lighter than PZ piling to minimize the required amount of steel needed for project installation. And PZC sections are stronger per pound than PZ sections in both section modulus and moment of inertia.

PZC 18 compared to the currently produced PZ 27:

- 39% wider laying dimension
- 24% stronger per pound


Section	Width	Height	Web Thickness	Flange Thickness	Wei	ght		ent of ertia	Section	Nominal Coating Area	
	in.	in.	in.	in.	lb / lft	lb / ft ²	in⁴	in⁴ / wft	in³	in³ / wft	ft² / lft
	mm	mm	mm	mm	kg / lm	kg / m ²	cm ⁴	cm ⁴ / wm	cm ³	cm ³ / wm	m² / Im
PZC 18	25.00	15.25	0.375	0.375	50.4	24.2	532.2	255.5	69.8	33.5	5.60
PZC 10	635	387	9.5	9.5	75.1	118.2	22,150	34,890	1,145	1,800	1.71
PZC 19	25.00	15.30	0.420	0.420	55.0	26.4	576.3	276.6	75.3	36.1	5.60
PZC 19	635	388	10.7	10.7	81.8	128.8	23,990	37,780	1,235	1,945	1.71

Dimensions and Properties

PZC[™] 26

WIDER - LIGHTER - STRONGER

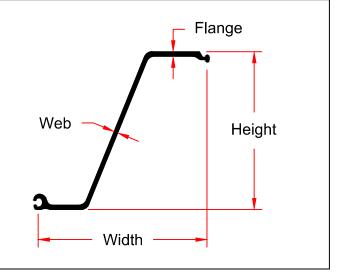
Available Grades: ASTM A572 Gr. 50 and 60, A588 and A690

The innovative PZC series of steel sheet piling is manufactured to be wider, lighter and stronger than the traditional PZ piling.

PZC sheet piling is made wider than PZ sections to maximize jobsite production in setting and driving. They are lighter than PZ piling to minimize the required amount of steel needed for project installation. And PZC sections are stronger per pound than PZ sections in both section modulus and moment of inertia.

PZC 26 compared to the currently produced PZ 35:

- 23% wider laying dimension
- 11% stronger per pound


Section	Width	Height	Web Thickness	Flange Thickness	Wei	ght	Moment of Inertia		Section Modulus		Nominal Coating Area
	in.	in.	in.	in.	lb / lft	lb / ft ²	in⁴	in ⁴ / wft	in³	in ³ / wft	ft² / lft
	mm	mm	mm	mm	kg / lm	kg / m ²	cm⁴	cm⁴ / wm	cm ³	cm ³ / wm	m² / lm
PZC 25	27.88	17.66	0.485	0.560	69.4	29.9	938.7	404.1	106.3	45.7	6.15
PZC 25	708	449	12.3	14.2	103.3	145.9	39,070	55,190	1,740	2,455	1.87
PZC 26	27.88	17.70	0.525	0.600	73.9	31.8	994.3	428.1	112.4	48.4	6.15
PZC 20	708	450	13.3	15.2	110.0	155.4	41,390	58,460	1,840	2,600	1.87
PZC 28	27.88	17.75	0.570	0.645	79.0	34.0	1,057	455.1	119.1	51.3	6.15
	708	451	14.5	16.4	117.6	166.1	44,000	62,150	1,950	2,755	1.87

Dimensions and Properties

WIDER - LIGHTER - STRONGER

Hot Rolled **Domestically Produced Ball & Socket Sheet Pile**

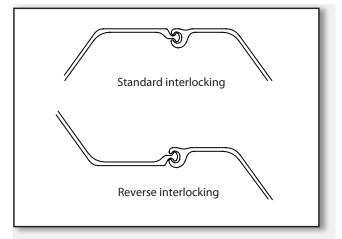
Available Grades: ASTM A572 Gr. 50 and 60, A588 and A690

The innovative PZC series of steel sheet piling is manufactured to be wider, lighter and stronger than the traditional PZ piling.

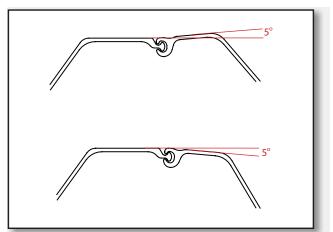
PZC sheet piling is made wider than PZ sections to maximize jobsite production in setting and driving. They are lighter than PZ piling to minimize the required amount of steel needed for project installation. And PZC sections are stronger per pound than PZ sections in both section modulus and moment of inertia.

PZC 39 compared to the currently produced PZ 40:

- 13% wider laying dimension
- 19% stronger per pound

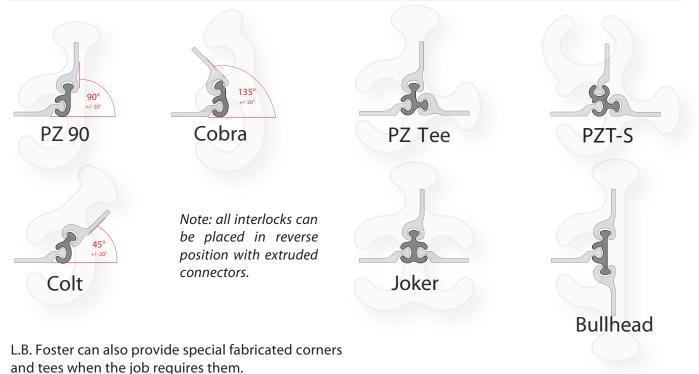

Section	Width	Height	Web Thickness	Flange Thickness	Weight Moment of Inertia			Sectio	n Modulus	Nominal Coating Area	
	in.	in.	in.	in.	lb / lft	lb / ft²	in4	in⁴ / wft	in³	in³ / wft	ft² / lft
	mm	mm	mm	mm	kg / lm	kg / m²	cm⁴	cm⁴ / wm	cm ³	cm³ / wm	m² / lm
PZC 37	22.50	21.02	0.488	0.563	69.6	37.1	1,349	719.6	128.4	68.5	6.15
PZC 37	572	534	12.4	14.3	103.6	181.2	56,160	98,270	2,100	3,680	1.87
PZC 39	22.50	21.05	0.525	0.600	74.0	39.5	1,429	762.1	135.6	72.3	6.15
P2C 39	572	535	13.3	15.2	110.2	192.8	59,480	104,100	2,220	3,890	1.87
PZC 41	22.50	21.09	0.561	0.636	78.4	41.8	1,507	803.6	142.7	76.1	6.15
FZC 41	572	536	14.2	16.2	116.6	204.1	62,720	109,700	2,340	4,090	1.87

Dimensions and Properties


(800) 848-6249 www.lbfoster.com

Z-Profile Interlock

All Gerdau Z-pile sections can be interlocked with each other. As such, the ball and socket interlocks can be installed with using either the standard or reverse position. This adds to greater ease of use and flexibility at the job site. Normal setting width of pairs can be altered to accommodate job site conditions through increasing or decreasing the laying width at the interlocks.



*Z-pile: Gerdau does not publish a swing value for Z-sections. As a "rule of thumb" it might be assumed that a 40 foot length would obtain a swing of up to 5 degrees.

*From Gerdau's Sheet Piling Handbook 2006

Extruded Z-Profile Connectors

(800) 848-6249 www.lbfoster.com

Colt S

DPilePro for Ball & Socket (PZ / PZC)

₩

Colt

For 45° Corners (+/- 40°) with PZ/PZC (ball & socket) sheet piles

Installation

- 1. Please review the proper interlocking examples that are listed.
- 2. Thread the connector into the interlock while the sheet pile is out of the ground.
- 3. Adjust the connector to the appropriate position.
- 4. Tack or spot-weld the connector in place. Typically, a ~250mm (~10") weld attaching the connector to the sheet pile to the top is sufficient.
- 5. Drive/extract the sheet pile (with the connector attached) as you would normally.

Colt

45° Eckverbindung

Für PZ und PZC (Ball and Socket)

Einsatzgebiet 45° Eckverbindungen

Properties St

Colt

Raccord à 45°

Domaines d'emploi

Domaines d'emploi

Raccords à 45°

Pour PZ- et PZC (Ball + Socket)

Steel grade:	S355GP, S430GP
	ASTM A572 Gr. 50/60
	ASTM A690 MARINER™ Steel
Weight:	~ 6.84 lb / ft

Eigenschaften

	Stahlgüten:	S355GP, S430GP
		ASTM A572 Gr. 50/60
		ASTM A690 MARINER™ Steel
Ì	Gewicht:	~10,2 kg/m

Colt

Connessione per angolo a 45 ° Per PZ e PZC (maschio e femmina)

Campo di applicazione Connessioni per angolo a 45°

ð 🗧 Colt

Unión angular de 45º Para PZ y PZC (Ball and Socket)

Ámbito de aplicaciones Uniones angulares de 45°

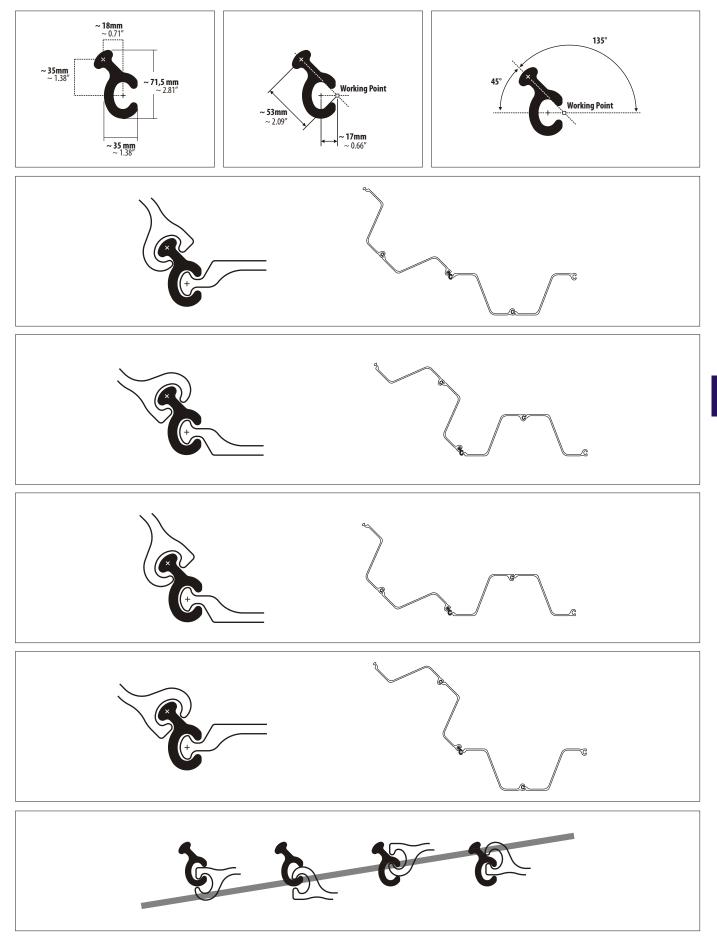
Propiedades	
Calidades de acero:	S355GP, S430GP
	ASTM A572 Gr. 50/60
	ASTM A690 MARINER™ Steel
Peso:	~10,2 kg/m

Colt

Угловой соединительный элемент 45° Для РZ и РZC (шар и гнездо)

Область применения Угловые соединительные элементы 45°

Caractéristiques


Nuances d'acier:	S355GP, S430GP
	ASTM A572 Gr. 50/60
	ASTM A690 MARINER™ Steel
Poids:	~10,2 kg/m

Caratteristiche	
Qualità dell'acciaio:	S355GP, S430GP
	ASTM A572 Gr. 50/60
	ASTM A690 MARINER™ Steel
Peso:	~10,2 kg/m

Параметры	
Качество стали:	S355GP, S430GP
	ASTM A572 Gr. 50/60
	ASTM A690 MARINER™ Steel
Bec:	~10,2 кг/м

Colt

for Ball & Socket (PZ / PZC)

36

A PZ 90

for Ball & Socket (PZ / PZC)

PZ 90

For 90° Corners (+/- 40°) with PZ/PZC (ball & socket) sheet piles

Installation

- 1. Please review the proper interlocking examples that are listed.
- 2. Thread the connector into the interlock while the sheet pile is out of the ground.
- 3. Adjust the connector to the appropriate position.
- Tack or spot-weld the connector in place. Typically, a ~250mm (~10") weld attaching the connector to the sheet pile to the top is sufficient.
- 5. Drive/extract the sheet pile (with the connector attached) as you would normally.

D7

PZ 90

90° Eckverbindung Für PZ und PZC (Ball and Socket)

Einsatzgebiet 90° Eckverbindungen

Eigenschaften Stahlgüten:

Properties	
Steel grade:	S355GP, S430GP
	ASTM A572 Gr. 50/60
	ASTM A690 MARINER™ Steel
Weight:	~ 7.21 / ~ 7.51 lb / ft

PZ 90

Raccord d'angle (90°) Pour PZ- et PZC (Ball + Socket)

Domaines d'emploi Raccordement permettant un angle de 90° (variation possible de +/- 20°)

PZ 90

Gewicht:

Connessione per angolo a 90 °

Per PZ e PZC (maschio e femmina)

S355GP, S430GP

ASTM A572 Gr. 50/60

~10,9 / ~11,2 kg/m

ASTM A690 MARINER[™] Steel

Campo di applicazione Connessioni per angolo a 90°

PZ 90

Unión angular de 90° Para PZ y PZC (Ball and Socket)

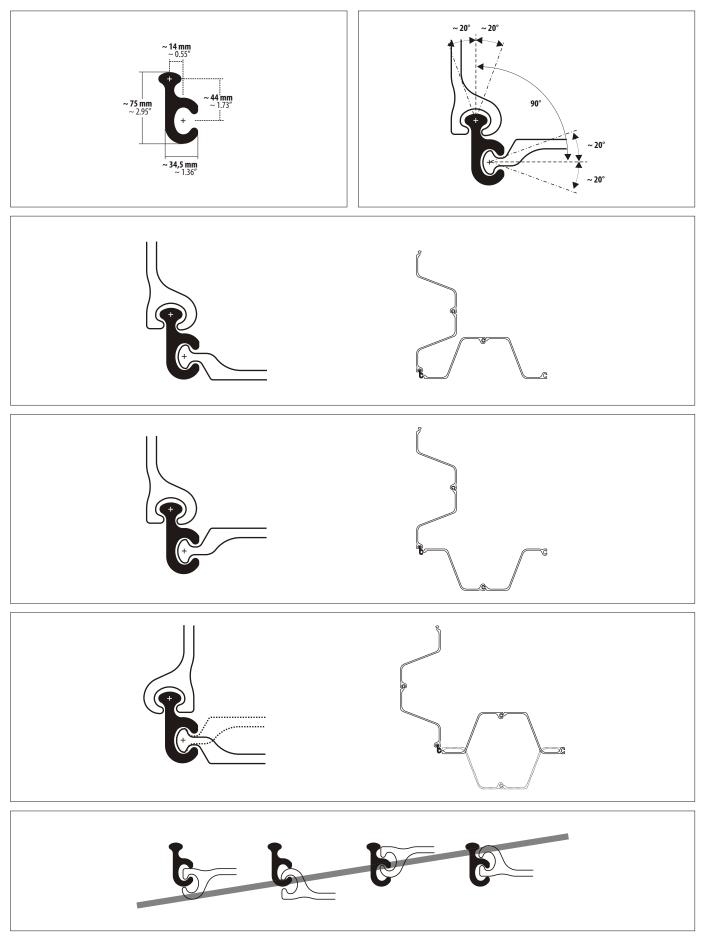
Ámbito de aplicaciones Uniones angulares de 90°

Propiedades	
Calidades de acero:	S355GP, S430GP
	ASTM A572 Gr. 50/60
	ASTM A690 MARINER™ Steel
Peso:	~10,9 / ~11,2 kg/m

PZ 90

90° угловой соединительный элемент Для РZ и РZC (шар и гнездо)

Область применения Уловые соединительные элементы 90°


Caractéristiques		
Nuances d'acier:	S355GP, S430GP	
	ASTM A572 Gr. 50/60	
	ASTM A690 MARINER™ Steel	
Poids:	~10,9 / ~11,2 kg/m	

Caratteristiche	
Qualità dell'acciaio:	S355GP, S430GP
	ASTM A572 Gr. 50/60
	ASTM A690 MARINER™ Steel
Peso:	~10,9 / ~11,2 kg/m

Параметры	
Качество стали:	S355GP, S430GP
	ASTM A572 Gr. 50/60
	ASTM A690 MARINER™ Steel
Bec:	~10,9 / ~11,2 кг/м

pilepro.com/pz90

for Ball & Socket (PZ / PZC)

38

PZ 90

PZT-S (CBF)

for Ball & Socket (PZ / PZC)

PZT-S (CBF)

For T-corners, 90° corners (+/- 40°) with PZ/PZC (ball & socket) sheet piles

Installation

- 1. Please review the proper interlocking examples that are listed.
- 2. Thread the connector into the interlock while the sheet pile is out of the ground.
- 3. Adjust the connector to the appropriate position.
- 4. Tack or spot-weld the connector in place. Typically, a $\sim\!250mm~(\sim\!10'')$ weld attaching the connector to the sheet pile to the top is sufficient.
- 5. Drive/extract the sheet pile (with the connector attached) as you would normally.

PZT-S (CBF)

T-Verbindung, 90° Eckverbindung Für PZ und PZC (Ball and Socket)

Einsatzgebiet

Verbinden von drei Spundwänden

Properties

 Steel grade:
 S355GP, S430GP

 ASTM A572 Gr. 50/60

 ASTM A690 MARINER™ Steel

 Weight:
 ~ 9.66 lb / ft

Eigenschaften

Stahlgüten:	S355GP, S430GP
	ASTM A572 Gr. 50/60
	ASTM A690 MARINER™ Steel
Gewicht:	~14,4 kg/m

PZT-S (CBF)

Raccord en T, raccord d'angle (90°) Pour PZ et PZC (Ball + Socket)

Domaines d'emploi Raccordement de trois palplanches

PZT-S (CBF)

Connessione a T, connessione per angolo a 90° Per PZ e PZC (maschio e femmina)

Campo di applicazione Connessione di tre palancole

PZT-S (CBF)

Unión en T, unión angular de 90° Para PZ y PZC (Ball and Socket)

Ámbito de aplicaciones Unión de tres tablestacas

Propiedades	
Calidades de acero:	S355GP, S430GP
	ASTM A572 Gr. 50/60
	ASTM A690 MARINER™ Steel
Peso:	~14,4 kg/m

PZT-S (CBF)

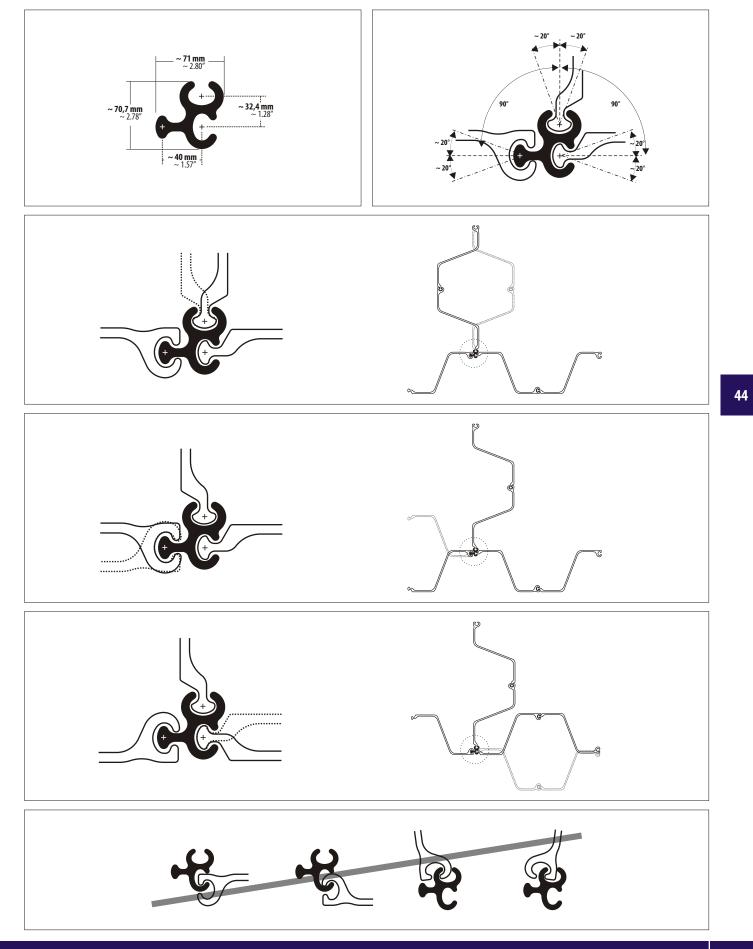
Т-образное соединение, угловой соединительный элемент 90° Для РZ и РZC (шар и гнездо)

Область применения Соединение трех шпунтовых стенок

Caractéristiques	
Nuances d'acier:	S355GP, S430GP
	ASTM A572 Gr. 50/60
	ASTM A690 MARINER™ Steel

~14,4 kg/m

Caratteristiche	
Qualità dell'acciaio:	S355GP, S430GP
	ASTM A572 Gr. 50/60
	ASTM A690 MARINER™ Steel
Peso:	~14,4 kg/m


Параметры	
Кацество стали:	\$355

Качество стали:	S355GP, S430GP
	ASTM A572 Gr. 50/60
	ASTM A690 MARINER™ Steel
Bec:	~14,4 кг/м

Poids:

for Ball & Socket (PZ / PZC)

PZT-S (CBF)

A PZ Tee

for Ball & Socket (PZ / PZC)

🔛 🔀 PZ Tee

For T-corners,

90° corners (+/- 40°) with PZ/PZC (ball & socket) sheet piles

Installation

- 1. Please review the proper interlocking examples that are listed.
- 2. Thread the connector into the interlock while the sheet pile is out of the ground.
- 3. Adjust the connector to the appropriate position.
- 4. Tack or spot-weld the connector in place. Typically, a $\sim\!250mm~(\sim\!10'')$ weld attaching the connector to the sheet pile to the top is sufficient.
- 5. Drive/extract the sheet pile (with the connector attached) as you would normally.

PZ Tee

T-Verbindung, 90° Eckverbindung Für PZ und PZC (Ball and Socket)

Einsatzgebiet

Verbinden von drei Spundwänden

Properties

PZ Tee

Raccord en T,

raccord d'angle (90°)

Domaines d'emploi

Pour PZ et PZC (Ball + Socket)

Raccordement de trois palplanches

 Steel grade:
 S355GP, S430GP

 ASTM A572 Gr. 50/60

 ASTM A690 MARINER™ Steel

 Weight:
 ~ 8.99 lb / ft

Eigenschaften

Stahlgüten:	S355GP, S430GP
	ASTM A572 Gr. 50/60
	ASTM A690 MARINER™ Steel
Gewicht:	~13,4 kg/m

PZ Tee

Connessione a T, connessione per angolo a 90° Per PZ e PZC (maschio e femmina)

Campo di applicazione Connessione di tre palancole

PZ Tee

Unión en T, unión angular de 90° Para PZ y PZC (Ball and Socket)

Ámbito de aplicaciones Unión de tres tablestacas

Propiedades	
Calidades de acero:	S355GP, S430GP
	ASTM A572 Gr. 50/60
	ASTM A690 MARINER™ Steel
Peso:	~13,4 kg/m

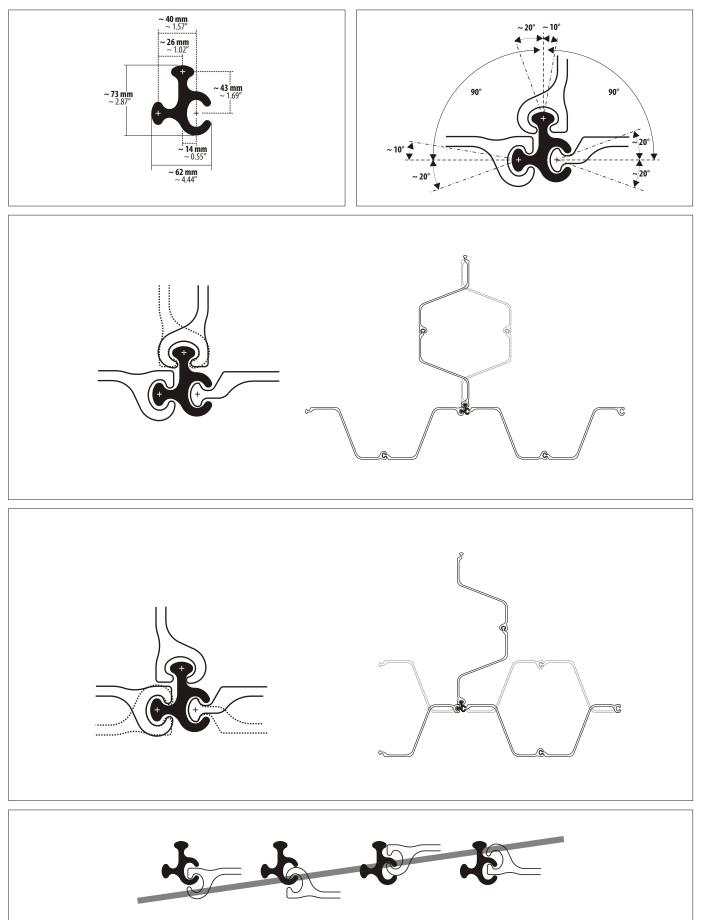
PZ Tee

Т-образное соединение, угловой соединительный элемент 90° Для РZ и РZC (шар и гнездо)

Область применения Соединение трех шпунтовых стенок

Cara	ctéri	stiq	ues

Nuances d'acier:	S355GP, S430GP
	ASTM A572 Gr. 50/60
	ASTM A690 MARINER™ Steel
Poids:	~13,4 kg/m


Caratteristiche	
Qualità dell'acciaio:	S355GP, S430GP
	ASTM A572 Gr. 50/60
	ASTM A690 MARINER™ Steel
Peso:	~13,4 kg/m

Параметры	
Качество стали:	S355GP, S430GP
	ASTM A572 Gr. 50/60
	ASTM A690 MARINER™ Steel
Bec:	~13,4 кг/м

pilepro.com/pztee

for Ball & Socket (PZ / PZC)

PZ Tee

42

TECHNICAL INFORMATION WATERSTOPS

PRODUCT NAME SWELLSEAL[®] WA

Gungrade Polyurethane Waterstop

MANUFACTURER

De Neef Construction Chemicals, Inc. 5610 Brystone Drive Houston, TX 77041 1(800) 732-0166

PRODUCT DESCRIPTION

SWELLSEAL[®] **WA** is a single component hydrophilic mastic, designed for sealing smooth to very irregular construction joints and pipe penetrations. **SWELLSEAL**[®] **WA** is supplied in cartridge or sausage. Material cures and swells in the presence of moisture or water. Curing time is dependent on temperature and humidity, i.e. curing time will decrease if temperature and RH are higher. **SWELLSEAL**[®] **WA** will become firm in 24-36 hours. Performance is not affected by the curing time.

APPROPRIATE APPLICATIONS

- Sealing of rough and smooth construction joints of cast in-place or precast concrete in wet and underwater applications.
- Sealing joints between pre-cast segments in wet or underwater applications (e.g. manholes, box culverts, cable ducts and pipes)
- Sealing of the joints between sheet piles.
- Used to secure Deneef Hydrophilic
 Waterstops to rough surfaces.

ADVANTAGES

- Solvent free
- Due to its special formulation, SWELLSEAL[®] WA can be applied to wet surfaces or in underwater applications.

TYPICAL PROPERTIES

100%	
Uncured	
Paste	
Approx. 90	ASTM
lbs/cu.ft.	D 3574 95
1/8 inch	
10 hr	1
> 266 °F	ASTM D 93
at 25°C (77°F) 1cm	i thick)
Approx. 625%	ASTM
	D 3574 95
Approx. 312 psi	ASTM
	D-412
>330 feet of	DNCC
head	
200%	DNCC
Curad: rubbany: C	olor: Grov
	Approx. 90 Ibs/cu.ft. 1/8 inch 10 hr > 266 °F at 25°C (77°F) 1cm Approx. 625% Approx. 312 psi > 330 feet of head


- SWELLSEAL[®] WA adheres to concrete, PVC, HDPE, steel, and fibreglass
- In contact with water SWELLSEAL[®]
 WA will expand to more than 200% of its original cured volume.
- Flexible system, which adapts to the irregular surfaces
- Easy application with standard caulking guns
- Durable cured material will exceed the life of the structure.
- Good chemical resistance (*).
- Resistant to petroleum products, greases, mineral and vegetable oils

(*) For Chemical resistance contact the Technical Service Department @ 800-732-0166

Consumption

The consumption of **SWELLSEAL**^{®®} **WA** per linear foot depends on the quality of the surface of the concrete.

	Width (of the joint)	Consumption
Cartridges 10.5 oz.	1/4 inch	25 – 35 ft.
	5/16 inch	12 – 15 ft.
	3/8 inch	approx. 10 ft.
Sausages 20 oz.	1/4 inch	50 – 70 ft.
	5/16 inch	24 – 30 ft.
	3/8 inch	approx. 20 ft.

SWELLSEAL[®] WA 200% Expansion

PACKAGING

10.5 oz. cartridge	20 oz. sausage
12 per carton	12 per carton
6 lbs. net	24 lbs. net
1 pallet = 105 cartons	1 pallet = 60 cartons
630 lbs.	1500 lbs.
Weight per cartridge:	Weight per sausage:
1.2 lbs. gross	2.2 lbs. gross
1.1 lbs. net	2.0 lbs. net

LIMITATIONS

- SWELLSEAL[®] WA must be fully confined to perform properly. When used in precast or joints, minimum concrete cover is 3" on all sides.
- SWELLSEAL[®] WA is not suitable for surface applications.
- Uncured material may expand much greater than 200% if unconfined, and will expand preferentially in the direction of least resistance.
- Applied at temperatures below 40°F, the material will take approximately 10 to 15 days to cure.

SURFACE PREPARATION

Refer to DeNeef Surface Preparation Guidelines for more details.

INSTALLATION PROCEDURES

SWELLSEAL[®] WA should be applied onto a dust-free concrete surface. The surface can be rough or smooth, moist or dry.

Application Method for 10.5 oz. Cartridges: Break the moisture proofing aluminum foil on the top of the cartridge and remove the plug from the bottom. Screw on the nozzle and cut diagonally at the appropriate position. Place the cartridge into the caulking gun.

For 20oz. Sausages: Put the sausage in the empty tube of the bulk caulking gun and cut 1/8 inch off the top of the sausage. Close the tube and install the nozzle. Nozzles are supplied with the appropriate opening. SWELLSEAL® WA must be applied in an uninterrupted band (minimum 3/8 inch wide and thick), gunned in the middle of the joint or precast element. Concrete cover should be at least 3 inches on all sides, in order to avoid cracks from the pressure of material swelling. If SWELLSEAL[®] WA is to be installed under water or during heavy rain the concrete operation should begin within 2 hours of application to provide confinement for the material or premature swelling may result lowering the effectiveness of the material.

STORAGE & HANDLING

Store in dry area for up to 12 months from date of production at temperatures between 40°F and 85°F for best performance. See shelf life details on the material packaging.

PRECAUTIONS

Always use protective clothing, gloves and goggles consistent with OSHA regulations during use. Avoid eye and skin contact. Do not ingest. Refer to Material Safety Data Sheet for detailed safety precautions.

SAFETY INFORMATION

In the event of an EMERGENCY call: CHEM-TREC 800-424-9300.

WARRANTY INFORMATION

De Neef Construction Chemicals, Inc. products are warranted under the policy set forth under the WARRANTY section of the DeNeef Construction Chemicals Inc., product catalog. Warranty information can also be obtained via the DeNeef Construction Chemicals Inc. website at www.deneef.com, or by calling 713-896-0123 or toll free at 1-800-732-0166.

Rev. 09/2009

Appendix C – Sheeting Plan and Section Details

(Notes, Drawings, Sheeting and Wale Calculations)

DESIGN NOTES, SKETCHES, & CALCULATIONS

PORT JERVIS FORMER MGP SITE EPS

TABLE OF CONTENTS:	
Notes	NT1 - NT3
Drawings	
Sheeting Calculations	<u></u>
Wales Calculations	

Submitted to: D.A. Collins Construction 269 Ballard Road Wilton, NY 12831 518-664-9855 Submitted by: **Ryan-Biggs Associates, P.C.** 257 Ushers Road Clifton Park, New York 12065 518-406-5506

RYAN-BIGGS Project 10259

Submitted: July 12, 2012

ADDITIONAL DESIGN NOTES & CALCULATIONS

PORT JERVIS FORMER MGP SITE EPS

TABLE OF CONTENTS:

Notes	NT1 – NT3
Drawings	1 of 8 to 8 of 8
Sheeting Calculation	
Wales Calculations	

Submitted to: D.A. Collins Construction 269 Ballard Road Wilton, NY 12831 518-664-9855 Submitted by:

Ryan-Biggs Associates, P.C. 257 Ushers Road Clifton Park, New York 12065 518-406-5506

RYAN-BIGGS Project 10259

Submitted: August 2, 2012

Ryan-Biggs Associates, P.C.	JOB NO: 10259 DATE: 08/02/12	2 PAGE : NT1
257 Ushers Road	PROJECT: Port Jervis EPS	BY: MGY
Clifton Park, New York 12065 518) 406-5506		
FAX (518) 406-5514	SUBJECT: Notes	

GENERAL NOTES:

- 1. All dimensions to, of, and in proposed structures shall be verified by D.A. Collins (Contractor).
- 2. Do not change size nor spacing of structural elements.
- 3. Details shown are typical; similar details apply to similar conditions unless otherwise indicated.
- 4. These Sketches do not include necessary components for construction safety. Contractor shall be solely responsible for construction safety.
- 5. Contractor shall determine exact location of existing utilities before commencing work. Contractor agrees to be fully responsible for any and all damages which might be occasioned by failure to exactly locate and preserve existing utilities.
- 6. Contractor shall notify Ryan-Biggs Associates, P.C. (Ryan-Biggs) in writing of all proposed deviations or substitutions from dimensions, materials, or equipment shown on Sketches and make only those deviations or substitutions accepted by Ryan-Biggs.
- 7. Do not scale Sketches. Contractor shall notify Ryan-Biggs of any discrepancies in dimensions between these Sketches and the Contract Documents.
- 8. These sketches have been prepared in U.S. customary units.
- 9. Datum for elevations shown on these Sketches is the same as on the Contract Documents.

PRESUMPTIVE DESIGN PARAMETER NOTES:

- 1. Design soil weights and pressures are based on Coulomb earth pressure theory derived from geotechnical information on the Contract Drawings and geotechnical information in Project Manual.
- 2. Design surcharge loads and hydrostatic loads are based on applicable notes herein.
- 3. Do not excavate or dewater below Elevation 416.5 feet under any circumstances.

EPS NOTES:

- 1. Do not hang, support, or attach any equipment or other loads from/to sheet piles, wales, brackets, or struts.
- 2. Contractor is responsible for coordinating exact wale lengths with actual sheet pile widths and corner sheet details, and for coordinating exact excavation dimensions with proposed pit dimensions. Deviations of plus or minus 6 inches in overall clear distances between inside faces of sheeting from dimensions shown on these Sketches are acceptable.
- 3 Ryan-Biggs is not responsible for dewatering of EPS and for avoiding water-induced problems.

OUTBOARD SOIL ELEVATION CONTROL NOTES:

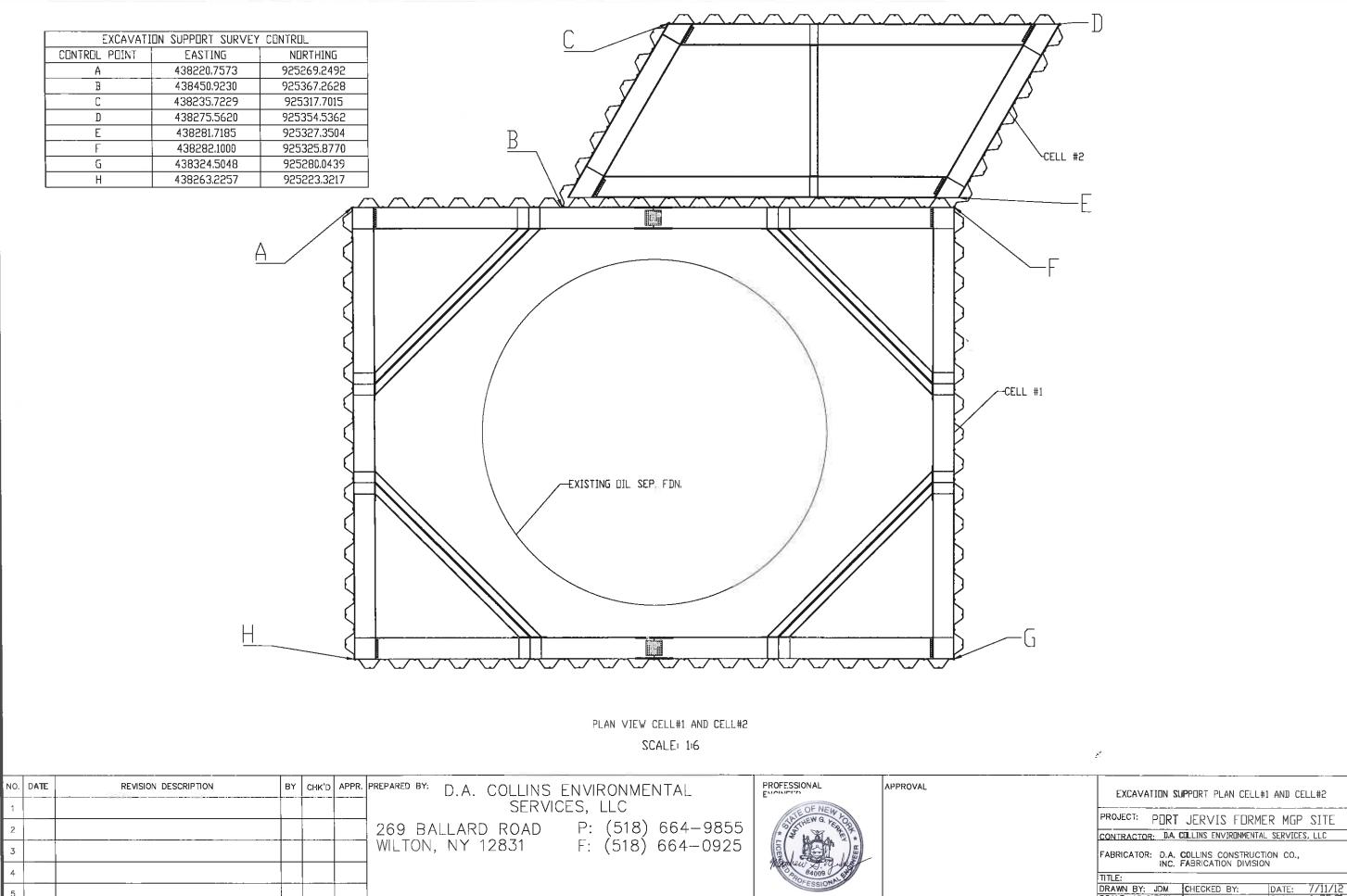
1. During all phases of EPS work, the top-of-soil elevation within a 20-foot offset distance from the back face of main and side wale sheet piles, shall be maintained at or below elevation 436 feet.

SHEET PILE (SHEETING) NOTES:

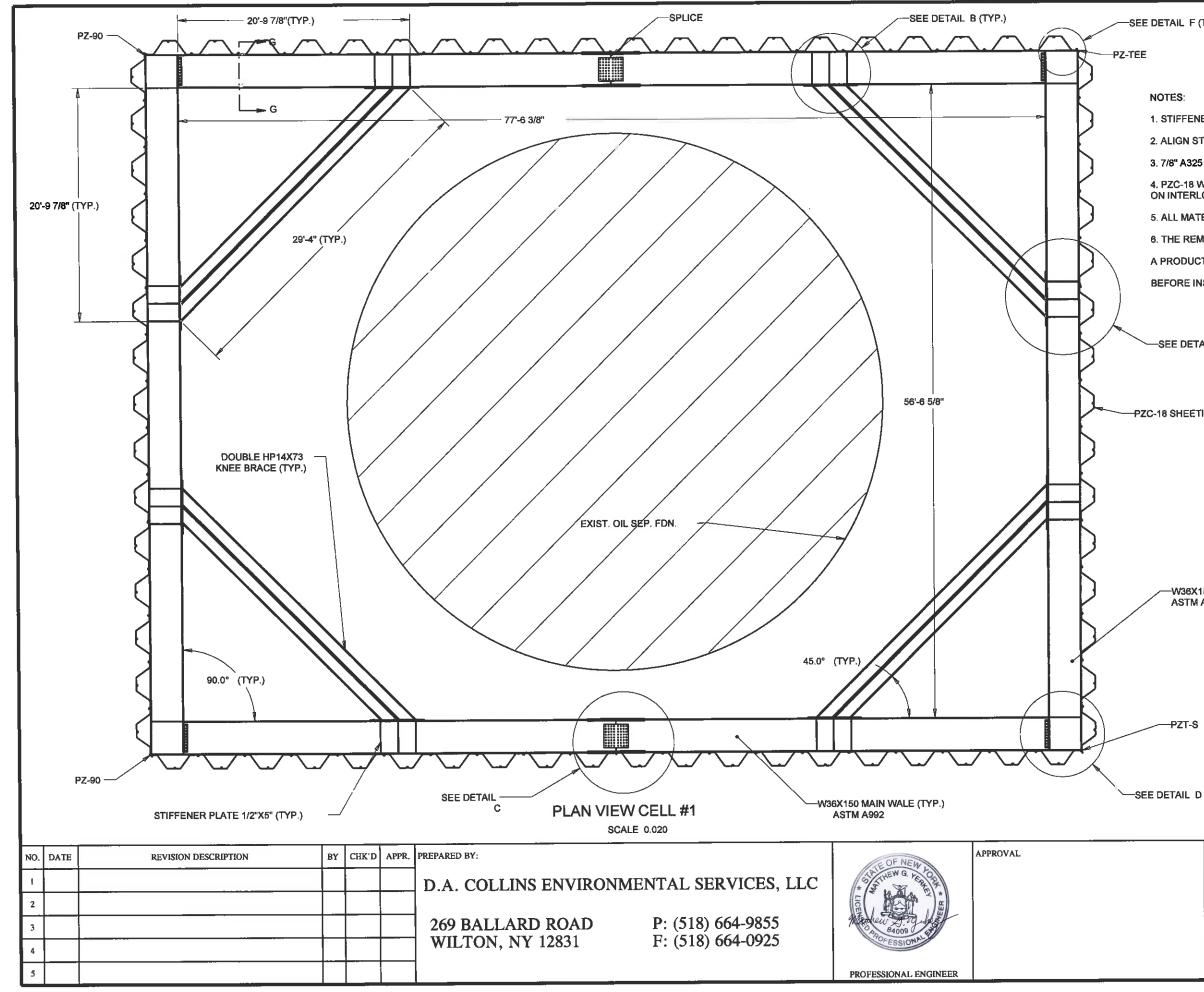
- 1. Sheet piles shall be PZC-18, ASTM A 572, Grade 50.
- 2. Sheet piles shall be in new or like new condition subject to review by Ryan-Biggs.
- 3. Sheets shall be interlocked with adjacent sheets in accordance with the sheeting manufacturer's standard details and procedures.
- 4. Sheeting at each excavation corner shall use fully-interlocking corner piles or joker sheets.
- 5. Top of sheeting elevations shall be kept as low as practical.
- 6. Sheeting shall be driven to the toe elevation indicated on the drawings. Consult with and inform Ryan-Biggs of the final sheeting embedment elevations if refusal of sheeting is achieved before reaching toe elevation.
- 7. The Contract Documents seem to indicate the existing soil could be dense and may contain cobbles and boulders. Contractor should anticipate difficult driving conditions. Ryan-Biggs is not responsible for difficult driving conditions which may be encountered.

STRUCTURAL STEEL NOTES:

- 1. Welds shall be made using E 70 electrodes and comply with the American Welding Society, AWS D1.1. "Structural Welding Code Steel". Welds shall be full length unless noted otherwise. Each welds may be field welds (field weld symbols not all shown for clarity).
- 2. All structural steel shall be in new or satisfactory condition, subject to acceptance by Ryan-Biggs.
- 3. W shapes shall be ASTM A992.
- 4. Wale components may contain one bolted splice as detailed herein. Wale splice plates (webs and flanges) shall be ASTM A572, Grade 50.
- 5. Rolled steel plates and angles shall be ASTM A 36 unless specifically noted otherwise.
- 6. Main component sizes are shown on Sketches. Alternate component sizes may be used based on written acceptance by Ryan-Biggs.
- 7. Each individual HP strut and corner brace shall be a single piece without splices.


Ryan-Biggs Associates, P.C.	JOB NO: 10259 DATE: 08/02/1	2 PAGE: NT3
257 Ushers Road	PROJECT: Port Jervis EPS	BY : <u>MGY</u>
Clifton Park, New York 12065 518) 406-5506		
FAX (518) 406-5514	SUBJECT: Notes	

MAIN WALE SURCHARGE CONTROL NOTES:


- 1. Do not stockpile soil around the perimeter of the EPS as indicated in OUTBOARD SOIL ELEVATION CONTROL NOTES, unless accepted in writing by Ryan-Biggs.
- 2. Use of construction equipment (for the purposes of these notes, normal construction equipment shall mean excavators, dump trucks, etc., with the gross vehicle weight of any single piece limited to approximately 40 tons) around perimeter of the EPS shall be limited as follows:
 - a. Crane outriggers or crane crawlers are not permitted within 20 feet of any section of the sheeting during any stage of excavation or work.
 - b. Other construction equipment is not recommended within 5 feet of any section of the sheeting during the bulk excavation. During the final wedge of soil excavation adjacent to the sheeting, a single piece of equipment is permitted to be adjacent to the sheets provided crane mats are used to distribute crawler or axle loads.

EPS CONSTRUCTION SEQUENCE:

- 1. Excavate soil within EPS to Elevation 430.00 feet.
- 2. Place fabricated wale frame in excavated area and use as template to drive sheeting to toe elevation.
- 3. Excavate localized "pits" as needed to fully install sheeting brackets.
- 4. Excavate remaining soil to target removal elevation.
- 5. Complete Contract Work.
- 6. Backfill EPS up to Elevation 430.00 feet. Remove internal bracing components.
- 7. Backfill the remainder of the EPS.
- 8. Repeat Steps 1 through 7 for other Cell.

FABRICATOR: D.A. INC.	COLLINS CONSTRUCTION	ON CO.,	
TITLE:			
DRAWN BY: JDM	CHECKED BY:	DATE:	7711/12
SCALE: AS SHOWN	DRG. NO.	SHEET	1 UF 8

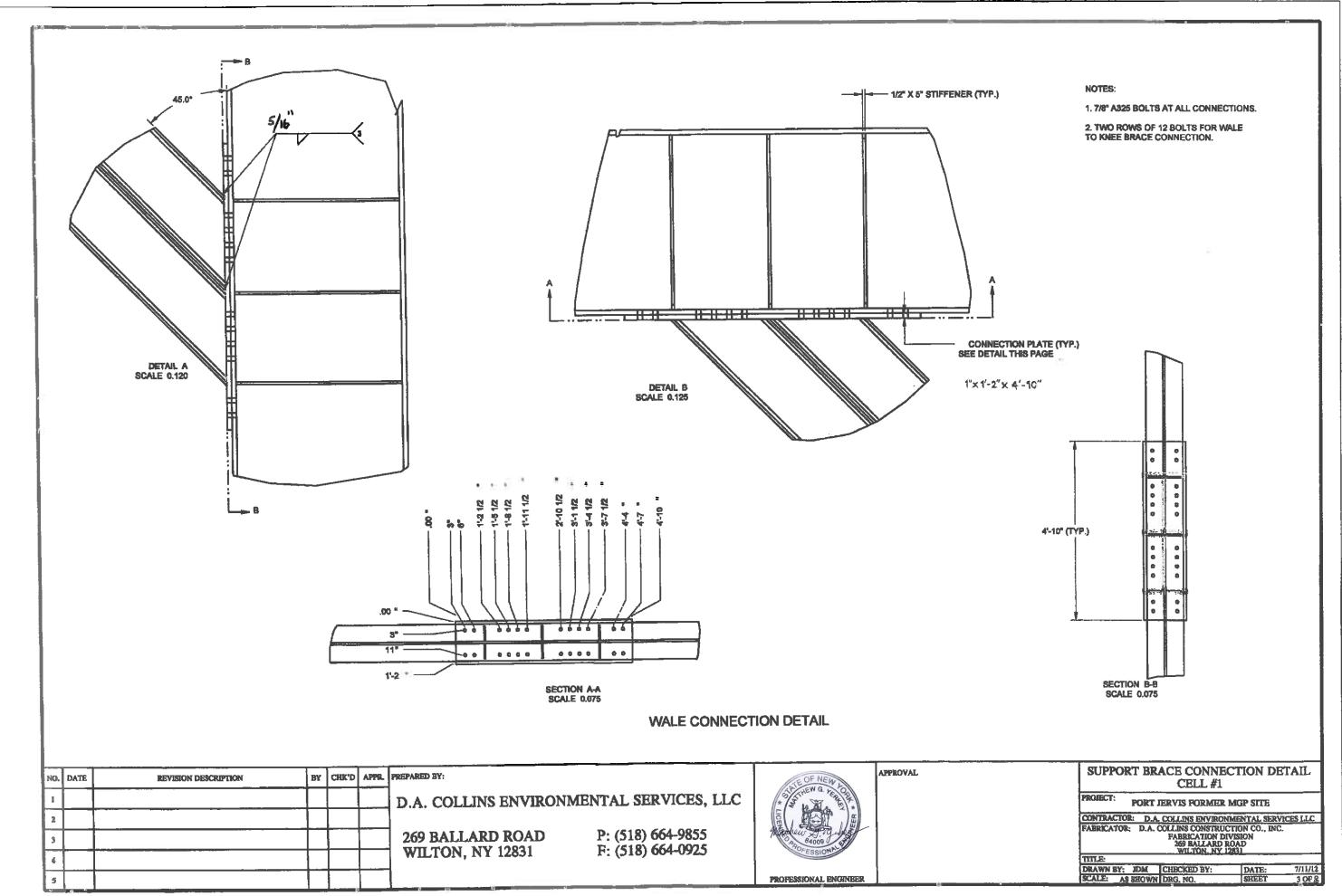
-SEE	DETAIL	F	(TYP	'.)
------	--------	---	------	-----

- 1. STIFFENER PLATES FULL DEPTH TYPE OF WEB.
- 2. ALIGN STIFFENERS WITH STRUT FLANGES (TYP.).
- 3. 7/8" A325 BOLTS TO BE USED.

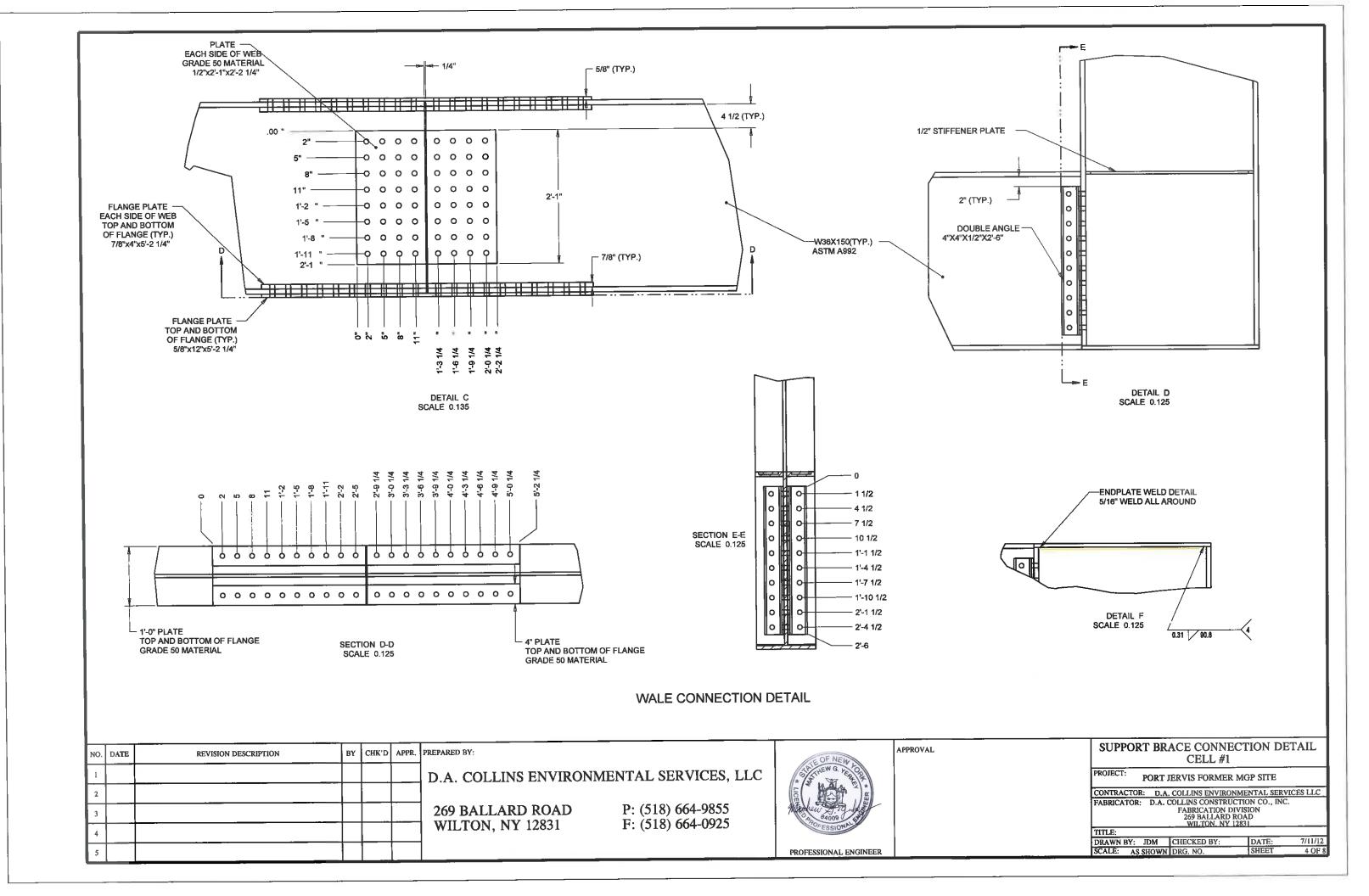
4. PZC-18 WILL BE SUPPLIED IN PAIRS WITH A SEAL WELD ON INTERLOCK.

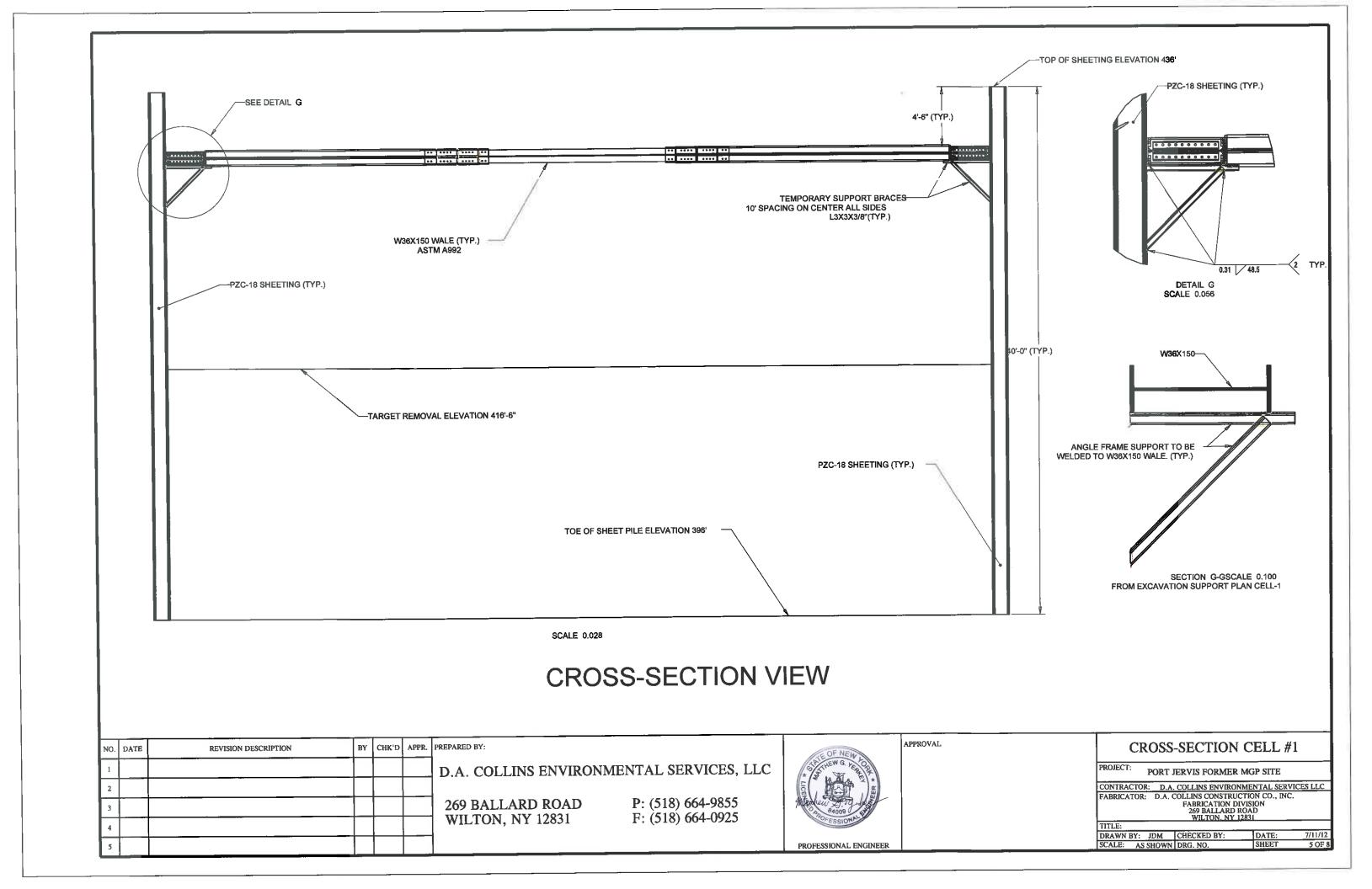
- 5. ALL MATERIAL GRADE 36 U.N.O.
- 6. THE REMAINING FEMALE INTERLOCKS WILL HAVE

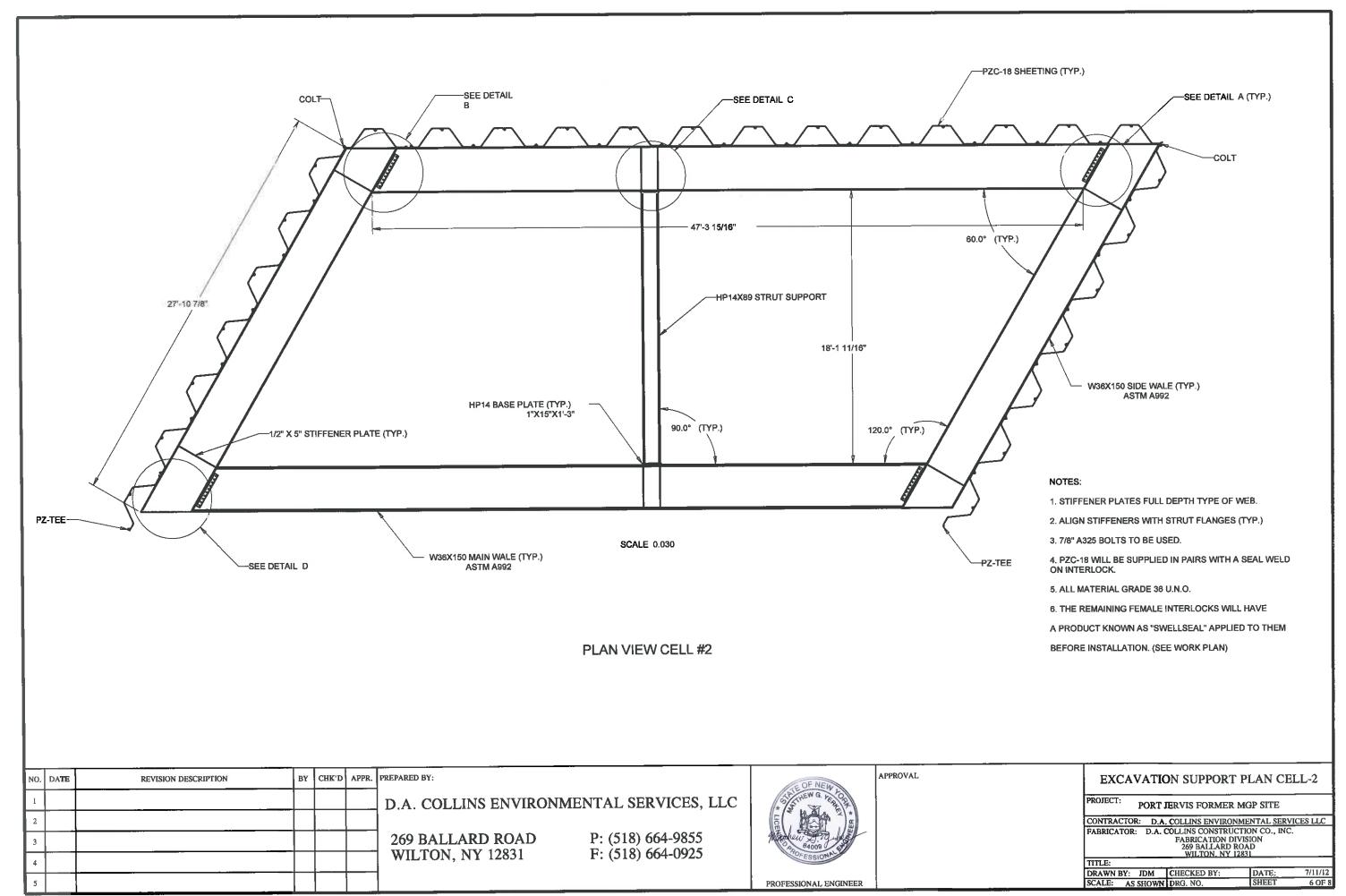
A PRODUCT KNOWN AS "SWELLSEAL" APPLIED TO THEM

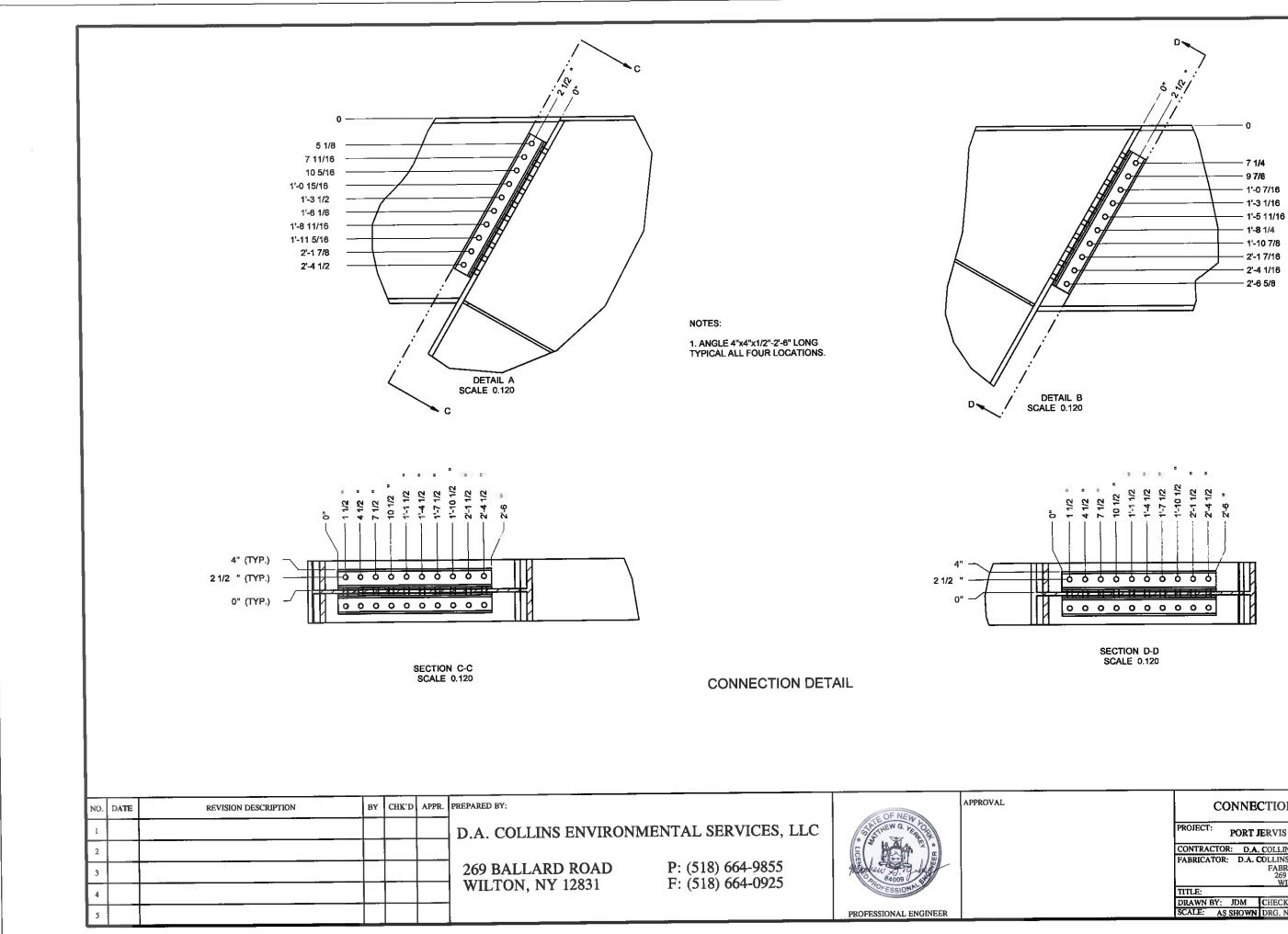

BEFORE INSTALLATION. (SEE WORK PLAN)

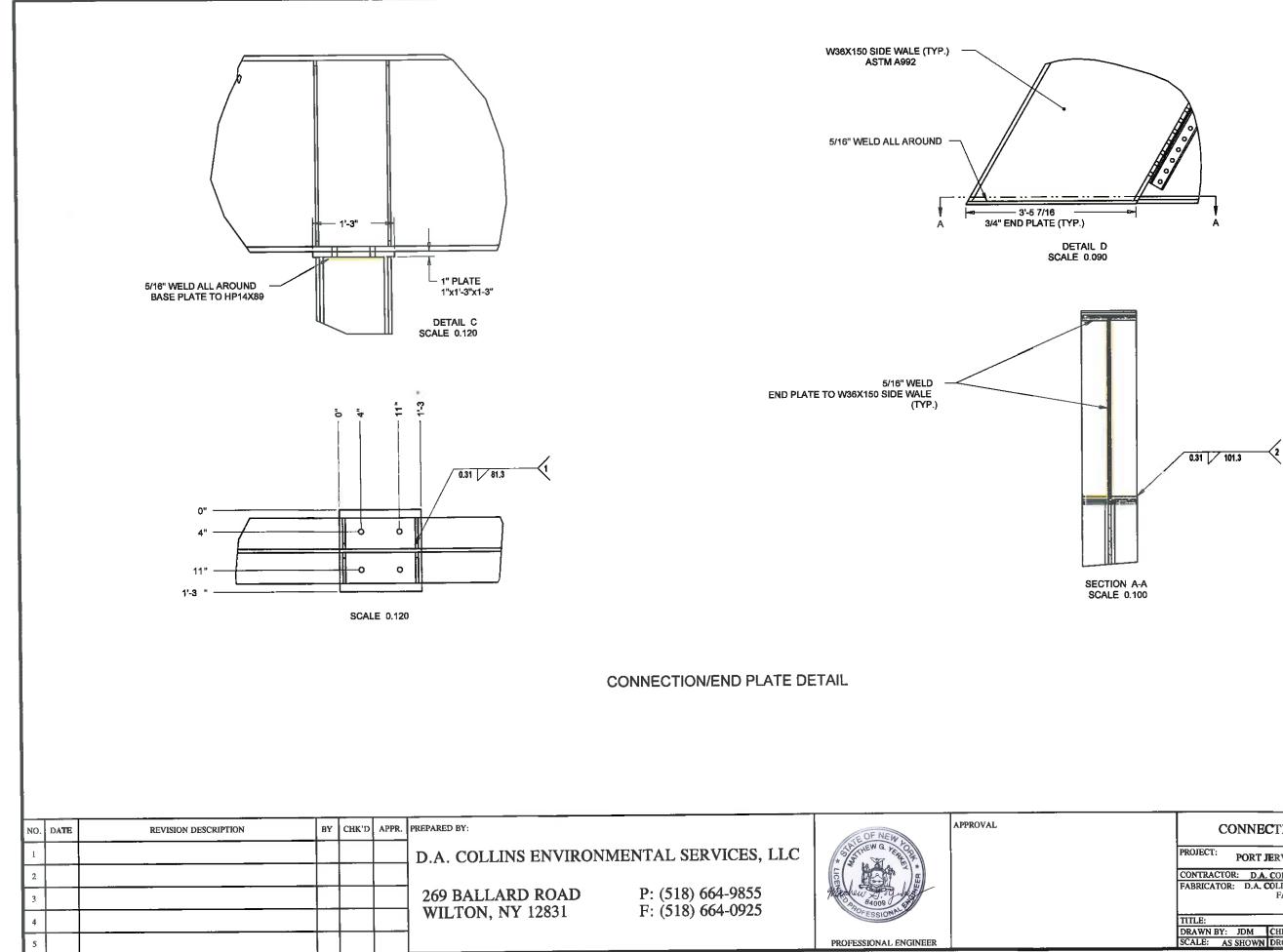
-SEE DETAIL A


-PZC-18 SHEETING

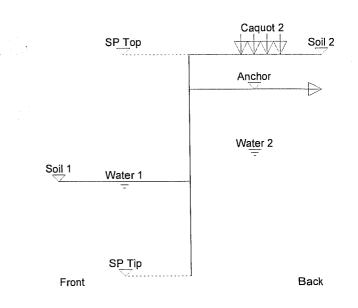

-W36X150 SIDE WALE (TYP.) ASTM A992


EXCA	VATIO	ON SUPPOR	Г PLAN CE	ELL-1
PROJECT:	PORT J	ERVIS FORMER	MGP SITE	_
CONTRACTO	R: D.A.	COLLINS ENVIRO	NMENTAL SERV	ICES LLC
FABRICATOR	: D.A. (COLLINS CONSTRU FABRICATION I 269 BALLARD WILTON, NY	NVISION ROAD	
TITLE:				
DRAWN BY:	JDM	CHECKED BY:	DATE:	7/11/1
SCALE: AS	SHOWN	DRG. NO.	SHEET	2 OF





	FABRICATION DIV 269 BALLARD R WILTON, NY 12	OAD	
TITLE:			
DRAWN BY: JDM	CHECKED BY:	DATE:	7/11/12
SCALE: AS SHOWN	DRG, NO.	SHEET	6 OF 8


		-	AIL CELL-
PROJECT:	PORT	JERVIS FORMER	MGP SITE
CONTRACT	OR: D.A	COLLINS ENVIRO	NMENTAL SER
FABRICATO	R: D.A.	COLLINS CONSTRU	
		FABRICATION D 269 BALLARD	
		WILTON, NY	12831
TITLE:		T	
DRAWN BY		CHECKED BY:	DATE:
SCALE: A	C CUOWN	DRG, NO.	SHEET

ļ	CC	INNE	CTION DETA	AIL CELL-	2
PROJECT	:	PORT J	ERVIS FORMER	MGP SITE	
CONTRA	CTO	R: D.A.	COLLINS ENVIRO	NMENTAL SERV	VICES LLC
FABRICA	TOR	: D.A. C	OLLINS CONSTRU	CTION CO., INC	2.
			FABRICATION D		
			269 BALLARD WILTON, NY		
TITLE:			WILLION, NT		
DRAWN	BY:	JDM	CHECKED BY:	DATE:	08/02/12
SCALE:	24	SHOWN	DRG. NO.	SHEET	8 OF 8

Geodata

	Unit
Sheet Pile Top Level [ft]	0.000
Sheet Pile Tip Level [ft]	34.915
Soil Level in Front [ft]	20.000
Soil Level behind [ft]	0.000
Anchorlevel [ft]	5.500
Water Level in Front [ft]	20.000
Water Level behind [ft]	15.000
Soil Surface Inclination in Front [Deg]	0.000
Soil Surface Inclination behind [Deg]	0.000
Caquot Surcharge in Front [kip/ft2]	0.000
Caquot Surcharge behind [kip/ft2]	0.500
Anchor Inclination [Deg]	0.000
Earth Support	Free

.

Soil Layers

Layers in Front

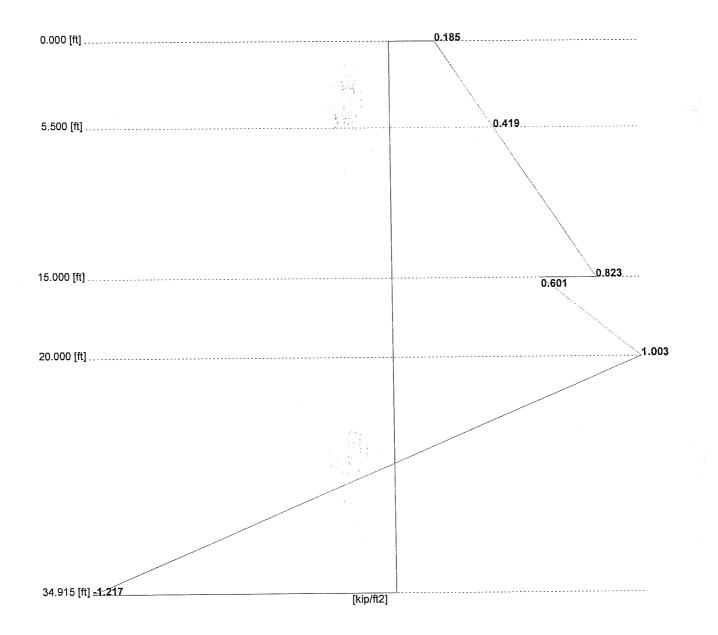
	Layer Tip [ft]	Density Moist [kip/ft3]	Density Submerged [kip/ft3]	Kph	Phi [Deg]	Delta [Deg]	Cohesion [kip/ft2]
Layer 1	35.000	0.125	0.062	2.670	0.000	0.000	0.000
Layer 2	100.000	0.120	0.057	2.400	0.000	0.000	0.000

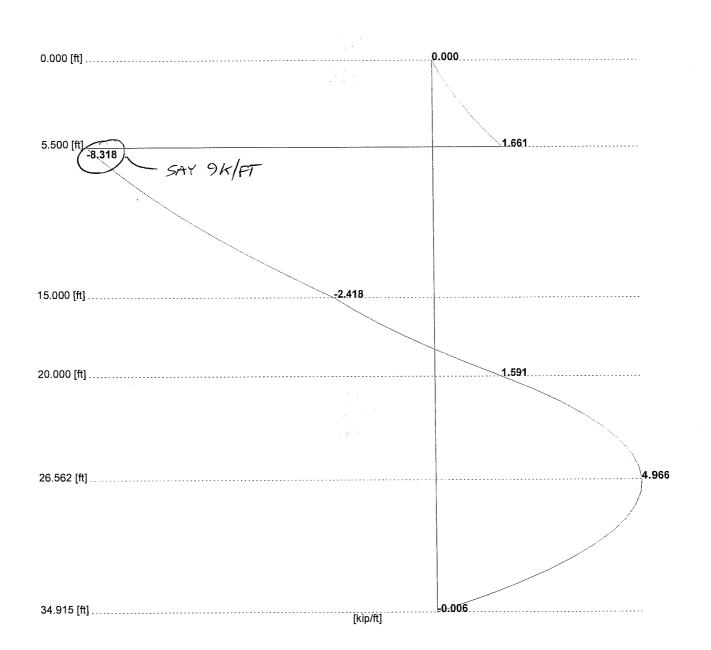
Layers behind

	Layer Tip [ft]	Density Moist [kip/ft3]	Density Submerged [kip/ft3]	Kph	Phi [Deg]	Delta [Deg]	Cohesion [kip/ft2]
Layer 1	15.000	0.115	0.052	0.370	0.000	0.000	0.000
Layer 2	35.000	0.125	0.062	0.270	0.000	0.000	0.000
Layer 3	100.000	0.120	0.057	0.330	0.000	0.000	0.000

All Values

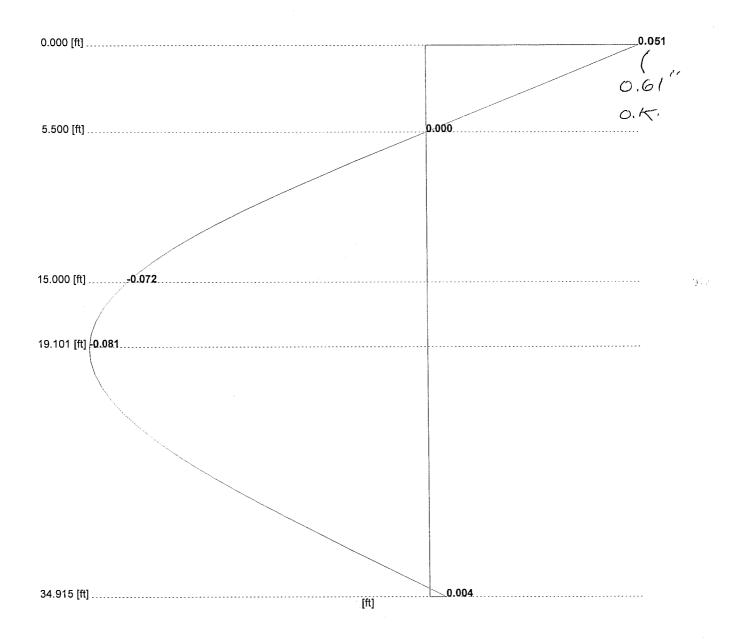
epth [ft]	Deflection [ft]	Rotation [Rad]	Cross Force [kip/ft]	Moment [kipft/ft]	Total Pressure [kip/ft2]	Earth Pressure in Front [kip/ft2]	behind [kip/ft2]	Water Pressure [kip/ft2]	Userdefined Pressure [kip/ft2]
0.000	0.051	-0.009	0.000	0.000	0.185	0.000	0.185	0.000	0.000
0.820	0.043	-0.009	0.166	0.066	0.220	0.000	0.220	0.000	0.000
0.820	0.043	-0.009	0.166	0.066	0.220	0.000	0.220	0.000	0.000
1.640	0.036	-0.009	0.361	0.280	0.255	0.000	0.255	0.000	0.000
1.640	0.036	-0.009	0.361	0.280	0.255	0.000	0.255	0.000	0.000
2.461	0.028	-0.009	0.584	0.666	0.290	0.000	0.290	0.000	0.000
2.461	0.028	-0.009	0.584	0.666	0.290	0.000	0.290	0.000	0.000
3.281	0.020	-0.009	0.836	1.246	0.325	0.000	0.325	0.000	0.000
3.281	0.020	-0.009	0.836	1.246	0.325	0.000	0.325	0.000	0.000
4.101	0.013	-0.009	1.117	2.045	0.359	0.000	0.359	0.000	0.000
4.101	0.013	-0.009	1.117	2.045	0.359	0.000	0.359	0.000	0.000
4.921	0.005	-0.009	1.426	3.085	0.394	0.000	0.394	0.000	0.000
4.921	0.005	-0.009	1.426	3.085	0.394	0.000	0.394	0.000	0.000
5.500	0.000	-0.009	1.661	3.978	0.419	0.000	0.419	0.000	0.000
5,500	0.000	-0.009	-8.318	3.978	0.419	0.000	0.419	0.000	0.000
6.320	-0.008	-0.009	-7.960	-2.700	0.454	0.000	0.454	0.000	0.000
6.320	-0.008	-0.009	-7.960	-2.700	0.454	0.000	0.454	0.000	0.000
7.140	-0.015	-0.009	-7.574	-9.073	0.489	0.000	0.489	0.000	0.000
7.140	-0.015	-0.009	-7.574	-9.073	0.489	0.000	0.489	0.000	0.000
7.961	-0.023	-0.009	-7.158	-15.116	0.524	0.000	0.524	0.000	0.000
7.961	-0.023	-0.009	-7.158	-15.116	0.524	0.000	0.524	0.000	0.000
8.781	-0.030	-0.009	-6.715	-20.808	0.559	0.000	0.559	0.000	0.000
8.781	-0.030	-0.009	-6.715	-20.808	0.559	0.000	0.559	0.000	0.000
9.601	-0.037	-0.008	-6.242	-26.123	0.594	0.000	0.594	0.000	0.000
9.601	-0.037	-0.008	-6.242	-26.123	0.594	0.000	0.594	0.000	0.000
10.421	-0.043	-0.008	-5.741	-31.040	0.628	0.000	0.628	0.000	0.000
10.421	-0.043	-0.008	-5.741	-31,040	0.628	0.000	0.628	0.000	0.000
11.242	-0.050	-0.007	-5.211	-35.533	0.663	0.000	0.663	0.000	0.000
11.242	-0.050	-0.007	-5.211	-35.533	0.663	0.000	0,663	0.000	0.000
12.062	-0.055	-0.007	-4.653	-39.581	0.698	0.000	0.698	0,000	0.000
12.062	-0.055	-0.007	-4.653	-39.581	0.698	0.000	0.698	0.000	0.000
12.882	-0.061	-0.006	-4.066	-43.158	0.733	0.000	0.733	0.000	0.000
12.882	-0.061	-0.006	-4.066	-43.158	0.733	0.000	0.733	0.000	0.000
13.702	-0.065	-0.005	-3.450	-46.242	0.768	0.000	0.768	0.000	0.000
13.702	-0.065	-0.005	-3.450	-46.242	0.768	0.000	0.768	0.000	0.000
14.522	-0.070	-0.005	-2.806	-48.810	0.803	0.000	0,803	0.000	0.00
14.522	-0.070	-0.005	-2.806	-48.810	0.803	0.000	0.803	0.000	0.00
15.000	-0.072	-0.004	-2.418	-50.058	0.823	0.000	0.823	0.000	0.00
15.000	-0.072	-0.004	-2.418	3 -50.058	0.601	0.000	0.601	0.000	0.00
15.820	-0.075	-0.003	-1.898	3 -51.831	0.667	0.000	0.614	0.052	2 0.00
15.820	-0.075	-0.00	-1.898	3 -51.831	0.667	0.000	0.614	0.052	2 0,00
16.640	-0.077	-0.00	-1.324	4 -53.156	0.733	0.000	0.628	3 0,104	1 0.00
16.640	-0.077	-0.00	-1.324	4 -53.156	0.733	0.000	0.628	0.104	4 0.00
17.461	-0.079	-0.00	-0.69	5 -53.989	0.799	0.000	0.642	0.15	7 0.00
17.461	-	-0.00	-0.69	6 -53.989	0.799	0.000	0.642		
18.281		-0.00	1 -0.01	4 -54.284	1 0.864	0.000	0.656	6 0.20	9 0.00
18.281		-0.00	1 -0.01	4 -54.284	1 0.864	0.000	0.650	6 0.20	9 0.00
19.10		0.00	0.72	2 -53.997	7 0.930	0.000	0.669	9 0.26	1 0.00
19.101	I -0.081	0.00	0.72	2 -53.99	7 0.930	0.00	0,669	9 0.26	1 0.00
19.92			1 1.51	2 -53.084	4 0.996	3 0.000	0.68	3 0.31	3 0.00
19.92		0.00	1 1.51	2 -53.084	4 0.996	3 0.00	0.68	3 0.31	3 0.00
20.000	0.080	0.00	1 1.59	1 -52.96	2 1.00	3 0.00	0.68	4 0.31	8 0.00
20.00	0.080-0	0.00	1 1.59	1 -52.96	2 1.00	3 0.00	0.68	4 0.31	8 0.00
20.82		9 0.00	2 2.36	3 -51.33	4 0.88	1 -0.13	3 0.69	8 0.31	8 0.00
20.82					4 0.88	1 -0.13	3 0.69	8 0.31	8 0.00
21.64					3 0.75	9 -0.27	2 0.71	2 0,31	8 0.00
21.64					3 0.75	9 -0.27	2 0.71	2 0.31	8 0.00
22.46					2 0.63	6 -0.40	7 0.72	6 0.31	8 0.00
22.46					2 0.63	6 -0.40	7 0.72	6 0.31	8 0.0
23.28						4 -0.54	3 0.73	9 0.31	8 0.0
23,28								9 0.31	8 0.00
24.10								3 0.31	8 0.0
24,10								3 0.31	8 0.0
24.92							5 0.76	7 0.31	8 0.00


Depth [ft]	Deflection [ft]	Rotation [Rad]	Cross Force [kip/ft]	Moment [kipft/ft]	Total Pressure [kip/ft2]	Earth Pressure in Front [kip/ft2]	behind [kip/ft2]	Water Pressure [kip/ft2]	Userdefined Pressure [kip/ft2]
24.921	-0.066	0.005	4.723	-35.948	0.270	-0.815	0.767	0.318	0.000
25.742	-0.061	0.006	4.895	-31.997	0.148	-0.950	0.781	0.318	0.000
25.742	-0.061	0.006	4.895	-31.997	0.148	-0.950	0.781	0.318	0.000
26.562	-0.056	0.006	4.966	-27.946	0.026	-1.086	0.794	0.318	0.000
26.562	-0.056	0.006	4.966	-27.946	0.026	-1.086	0.794	0.318	0.000
27,382	-0.051	0.006	4.938	-23.878	-0.096	-1.222	0.808	0.318	0.000
27.382	-0.051	0.006	4.938	-23.878	-0.096	-1.222	0.808	0.318	0.000
28.202	-0.046	0.007	4.809	-19.873	-0.218	-1.358	0.822	0.318	0.000
28,202	-0.046	0.007	4.809	-19.873	-0.218	-1.358	0.822	0.318	0.000
29.022	-0.040	0.007	4.580	-16.016	-0.340	-1.494	0.835	0.318	0.000
29.022	-0.040	0.007	4.580	-16.016	-0.340	-1.494	0.835	0.318	0.000
29.843	-0.034	0.007	4.252	-12.387	-0.462	-1.629	0.849	0.318	0.000
29.843	-0.034	0.007	4.252	-12.387	-0.462	-1.629	0.849	0.318	0.000
30.663	-0.028	0.007	3.823	-9.069	-0.584	-1.765	0.863	0.318	0.000
30,663	-0.028	0.007	3.823	-9.069	-0.584	-1.765	0.863	0.318	0.000
31.483	-0.022	0.008	3.294	-6.143	-0.706	-1.901	0.877	0.318	0,000
31.483	-0.022	0.008	3.294	-6.143	-0.706	-1.901	0.877	0.318	0.000
32.303	-0.016	0.008	2.664	-3.693	-0.828	-2.037	0.890	0.318	0.000
32.303	-0.016	0.008	2.664	-3.693	-0.828	-2.037	0.890	0.318	0.000
33.123	-0.010	0.008	1.935	-1.800	-0.950	-2.172	0.904	0,318	0,000
33.123	-0.010	0.008	1.935	-1.800	-0.950	-2.172	0.904	0.318	0.000
33.944	-0.003	0.008	1.106	-0.546	-1.072	-2.308	0.918	0.318	0.000
33.944	-0.003	0.008	1.106	-0.546	-1.072	-2.308	0.918	0.318	0.000
34.764	0.003	0.008	0.176	-0.013	-1.194	-2.444	0.932	0.318	0.000
34.764	0.003	0.008	0.176	-0.013	-1.194	-2.444	0.932	0.318	0.000
34.915	0.004	0.008	-0.006	0.000	-1.217	-2.469	0.934	0.318	0.000


-Έ,

Total Pressure Diagram

Cross Force Diagram



Moment Diagram

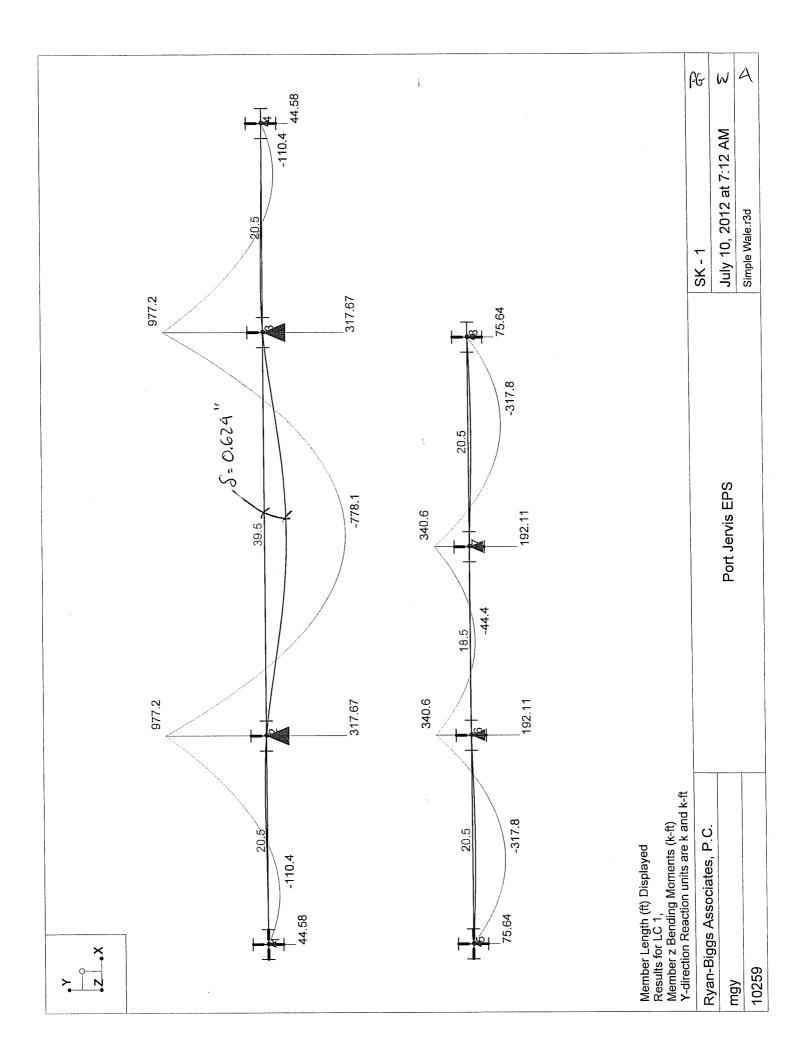
Deflection Diagram

Pile Check

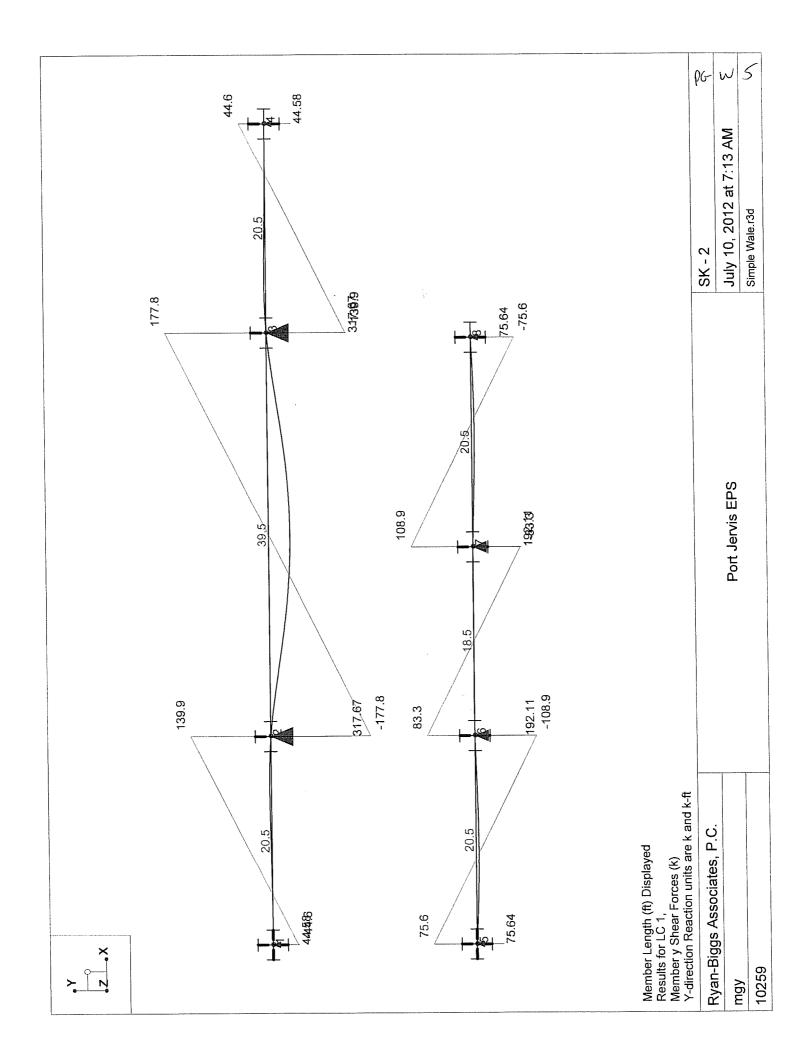
		Depth [ft]		
Name	AZ18 -	1	0-0	is
Inertia [in4/ft]	250.439		2 PZCI	(
Modulus [in3/ft]	33.480			
Area [in2/ft]	7.087			
Mass [lbs/ft2]	24.189			
Steel Grade [lb/in2]	50000.000			
Minimal Moment [kipft/ft]	-54.284	18.281		
Maxmimal Moment [kipft/ft]	3.978	5.500		
Normal Forces at Max. Moment [kip/ft]	0.000	18.281		
Normal Forces at Min. Moment [kip/ft]	0.000	5.500		
Deflection at Min. Moment [ft]	-0.080	18.281	n.	
Deflection at Max. Moment [ft]	0.000	5.500		
Min. Stress at Min. Moment [lb/in2] (-19455.725	18.281		
Max. Stress at Min. Moment [lb/in2]	19455.725	18.281		
Min. Stress at Max. Moment [lb/in2]	-1425.733	5.500		
Max. Stress at Max. Moment [lb/in2]	1425.733	5.500		
Safety > Req. Safety = 1.500	2.570			
Sheet Pile Top Level [ft]	0.000			
Sheet Pile Tip Level [ft]	34.915		~ =	
Sheet Pile Length [ft]	34.915	1		
Included OverLength [ft]	0.000	1		
Vertical Equilibrium [kip/ft]	0.000			

PG-75 HANDCHECK= 19.5KS1

.


JOB NO.: 10259 BY: MGY DATE: JUNE 2012 PAGE: W/1
PROJECT: DORT JERVIS EPS
SUBJECT: MAIN WALE
CONSIDER DESIGN OF TOP THER, MAIN WALE
RECALL FROM PGGS,
$$W = .9 \text{ KIPS/FT}$$

LET SPAN = $\frac{1}{2}$ to $\frac{1}{2}$ of Singe wale = 80.5'
USE W36× 150 ASTM A992, $A = .44.2 \text{ IN}^2$
Sx = 504 IN³ Ix = 9040 IN⁴. (x = 14.3 IN
Sy = 45.1 IN³ Iy = 270 IN⁴ Iy = 2.47 IN
WALE HAS COMBINED STRESSES FROM HORIZONTAL
EARTH PRESSURE, VERTICAL SELF WT $\frac{1}{2}$ AXIAL COMPRESSION
FROM WALE REACTION!
SHEAR
VMAX = 178 KIPS (RS WS)
 $f_V = V/A = (\frac{1}{2}) \div (35.91 \times (0.625') = .7.9 \text{ KSI}$
 $FV = 0.4 \text{ fy} = 0.4 \cdot 50 \text{ KSI} = 20 \text{ KSI} = \frac{1}{20} \text{ KSI} = 0.6 \text{ K}.$


$$Mx = 977. FT-KIPS (PG-W4)$$

$$Fbx = M/Sx = (12''/FT)^{-1}, 504 IN^{3} = 23.3 KSI$$

,

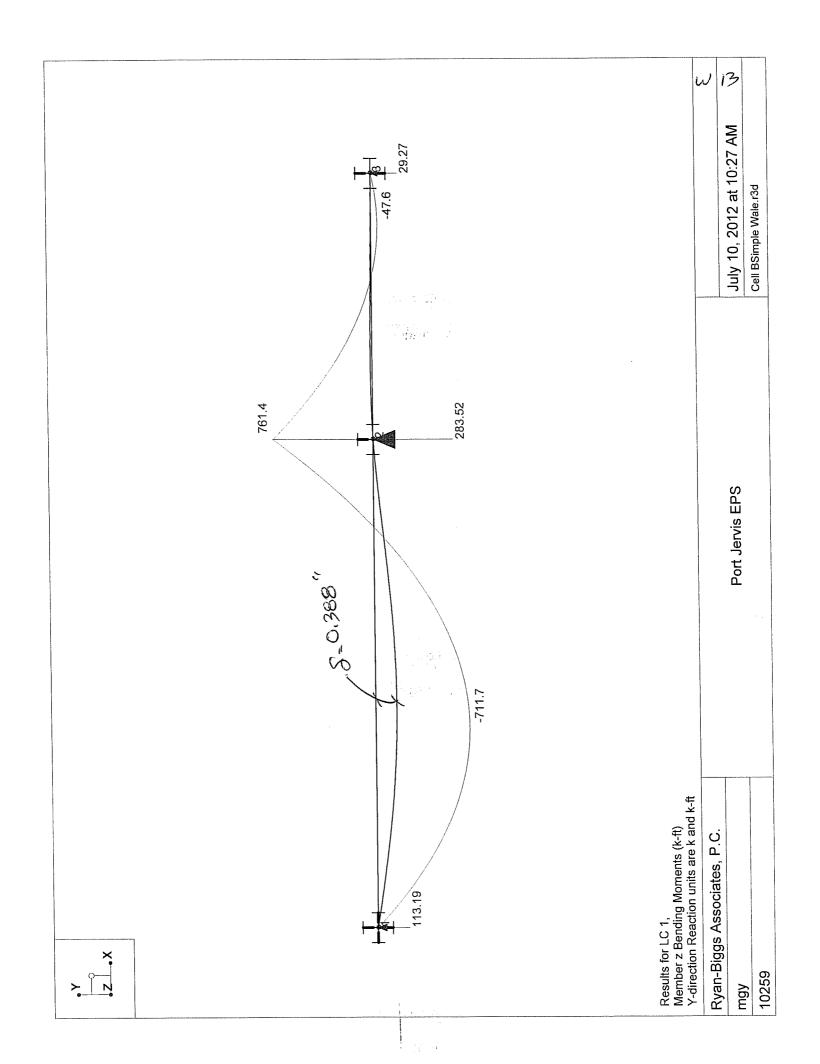
JOB NO.:
$$10259$$
 BY: MGY DATE: JUNE 2012 PAGE: $\sqrt{2}$
PROJECT: PORT JERVIS EPS
SUBJECT: TOP TIER MAINWALE
BRACKETS TO SUPPORT SELF WT & BRACE FLANGE
WILL BE POSITIONED @ 10 FT O.C.,
FROM AISC 9TH PG 2-95 LC = $105' > (2)$
 $i FB_X = 0.66 fy = 0.65 \cdot 50 KSI = 33'KSI$
VERTICAL BENDING
WSELF = $(150 \text{ M/RT}) + (50 \text{ M/R}) = SAY 0.2 \text{ K/FT}$
 $My = 10 \text{ W}^2 = 10 \text{ (f)}(10)^2 = 2 \text{ FT-KIPS}$
 $fb_y = My/Sy = (12"/FT)(1)^2 + 45.11 \text{ IN}^3 + 0.5 \text{ KSI}$
ROR WEAK AXIS BENDING FBy = $0.75 \text{ fy} = 37.5 \text{ KSI}$
COMPRESSION FROM STRUT REACTION
 $P = 318 \text{ K}$ $\frac{100}{325'}(12"/FT) + (14.3 \text{ IN}) = 373$
 $K2/T = (10)(325')(12"/FT) + (14.3 \text{ IN}) = 49$
FA = 25.1 KOI AISC 13" REACTION

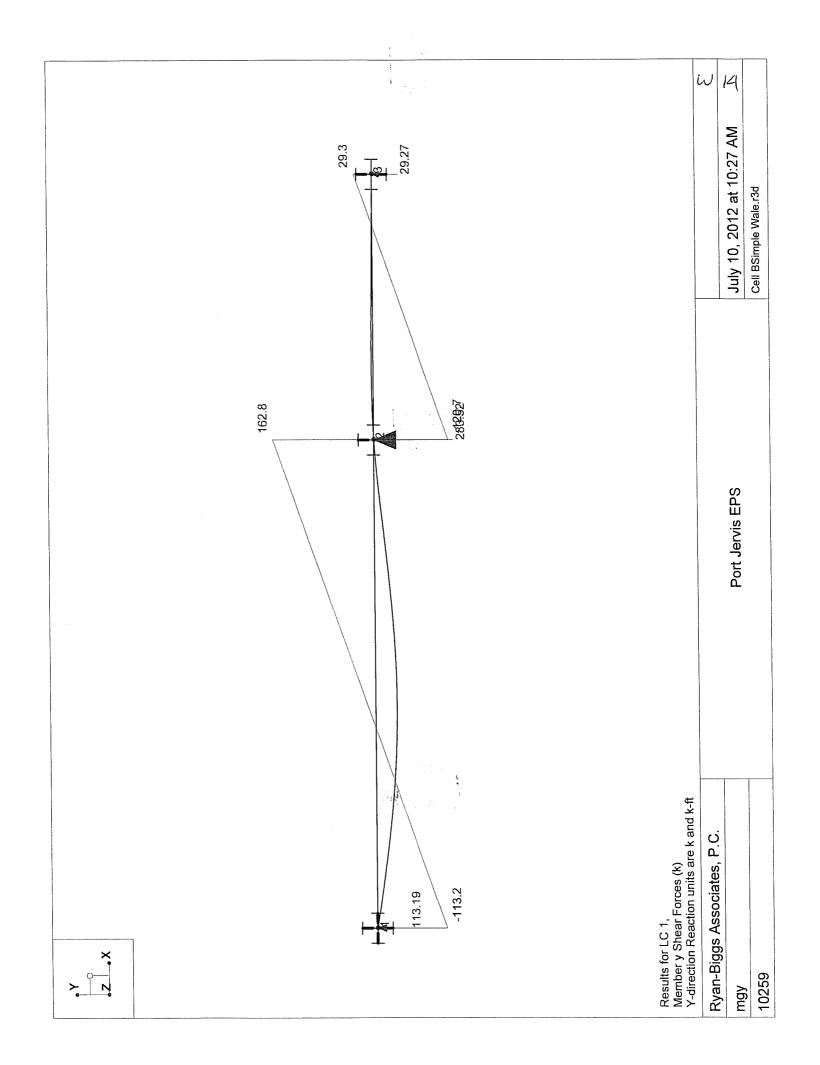
PROJECT: PORT JERVIS EPS SUBJECT: SIDE WALE RYAN-BIGGS PGS WI-W3 CHECKED MAIN WALE SIDE WALE HAS SMALLER LUB, LESS MOMENT & SHEAR BUT THE SAME SECTION DESIGNATION : W36 × 150 FOR SIDE WALE O.K. BY INSPECTION CONNECT SIDE WALE TO MAIN WALE W/ BOLTS 18" A325 10 Rows JL 4×4×1/2 PALLOW = 325K (AISC 14th PE10-26) O.K. BY INSPECTION CONNECT STRUT TO WALE W/ BOLTS 2 ROWS OF 12 = 24 BOLTS $\frac{318}{16.2k} = 13.3k/BOLT < 14.4 k (AISC 137)$ 16.2k (HT)OK

JOB NO .: 10259 BY: MGY DATE: JUNE ZOIZ PAGE: W6

JOB NO .: 10259 BY: MGY DATE: JUNE 2012 PAGE: W7 PROJECT: PORT JERVIS EPS SUBJECT: STRUT RYAN-BIGGS PROVIDE STRUTS TO REDUCE SPAN OF MAIN WALES USE HP14×89 A572 GR 50 FROM PG-WZMAX P= SAY 450 KIPS - 2 STRUTS = 225k CLEAR DISTANCE BETWEEN MAIN WALES = 27. FT <u>KR</u> = (1.0)(12"/FT)(4) - 3,53" = 92 < Ce (BY INSP.) FA= 16,1 KS1 ta = P/A = 225 K- 26,1 IN2 = 8,6 KS1 STRUT MUST SUPPORT IT'S OWN SELF WEIGHT AS IT SPANS ACCROSS EXC. M= 1/8 wl = 1/8 (0.089 K/FT + 0.041 K/FT) (27') (12"/FT) = 143 W-K CONSIDER DEFLECTION $S = \frac{5 \text{ wl}^{4}}{384 \text{ eI}} = \frac{5 \left(\frac{0.13 \text{ K/FT}}{12'' \text{ JFT}}\right) \left(27. \times 12'' \text{ FT}\right)^{4}}{384 \cdot 29.000 \text{ KSI} \cdot 326 \text{ IN}^{4}}$ = 0,16 MPINCHING = P.S = (225 K) = 37 IN-K

JOB NO .: 10259 BY: MGY DATE: JUNE 2012 PAGE: WO PROJECT: PORT JERVIS EPS SUBJECT: STRUT **RYAN-BIGGS** SELF PINCH SELF PINCH SELF PINCH SELF PINCH 143 IN-K + 37 IN-K = 180 IN-K fb= m/sy = (1) = 44.3 in 3 = 4.1 K51 FB = 0,75.fy = 0,75.50KS1 = 37.5KS1 (WEAKAXIS) Fe = 1272 / 23. Ke = 1272 29,000 KS1 / (23)(92) = 17,6 KS1 USE INTERACTION EQUATIONS $\frac{f_a}{F_A} + \frac{C_m f_b}{(1 - f_F'e)(F_b)} < 1.0$ $\frac{8.6 \text{ ksl}}{16.1 \text{ ksl}} + \frac{(10)(4.1 \text{ ksl})}{(1 - 8.6 \text{ ksl}/17.6 \text{ ksl})^{37.5 \text{ ksl}}} = 0.75 < 1.0 \text{ i. 04.}$ $\frac{f_a}{0.6 f_y} + \frac{f_b}{FB}$ $\frac{B_1 (6 \, k_{51})}{(0.6 \, (50 \, \kappa_{51}))} + \frac{A_1 (1 \, \kappa_{51})}{37.5 \, \kappa_{51}} = 0.40 < 1.0$ O.K.


²⁵⁷ Ushers Road, Clifton Park, NY 12065 518.406.5506 Fax 518.406.5514 4592 Jordan Road, PO 8ox 217, Skaneateles Falls, NY 13153 315.685.4732 Fax 315.685.4753


JUB NO: 10259 BY: MGY DATE: JUNE 2012 PAGE: WID
PROJECT: DORT JERVIS EPS
SUBJECT: MAIN WALE AUXILIARY CELL
CONSIDER DESIGN OF TOP THER, MAINWALE AUXILIARY
CELL
RECALL FROM REGS, W= 9 KIPS/PT
LET SPAN =
$$T_{23,7}T_{16,7}T_{1$$

,

JOB NO.:
$$102.59$$
 BY: MGY DATE: JUNE 2012 PAGE: WILL
PROJECT: DERVISE EPS
SUBJECT: TIER MAIN WALE AUXILIARY CELL
BRACKETS TO SUPPORT SELF WT & BRACE FLANGE
WILL BE POSITIONED & 2-95 FT O.C.,
FROM AISC 9TH PG LC = 10.5' > (2)
A FBX = 0.66 Fy = 0.55. 50K51 = .33K51
VERTICAL BENDING
WSCIF = $(150 \text{ B/PT}) + (50 \text{ B/P}) = 5AY 0.20 \text{ K/FT}$
My = $\chi_0 \text{ WL}^2 = \chi_0 (\sqrt{5}(10)^2 = 2 \text{ FT-K/PS}$
fby = $My/Sy = (2^{2}/\text{FT})^{(5)} + 45.11 \text{ m}^3 = 0.55 \text{ KS1}$
ROR WEAK AXIS BEINDING FBy = 0.75 Fy = 37.5 KS1
COMAPRESSION FROM SIDE WALE REACTION
P= $\chi_2 \text{ WL} = \chi_2(9 \text{ K/FT}) = 2.9 \text{ KS1}$
KL/F = $(1.0)(24^{1})(2^{2}/\text{FT}) + (14.31\text{ M}) = 20$
KL/F = $(1.0)(10^{1})(2^{1}/\text{FT}) + (2471\text{ M}) = 49$
FA = 25.1 KS1

JOB NO.:
$$10259$$
 BY: $M(5Y)$ DATE: JUNE 2012 PAGE $M/12$
PROJECT: PORT JERVIS EPS
SUBJECT: MAIN WALE AUXILIARY CELL
FEX = $\frac{11^{2}E}{FS(KL/r)^{2}} = \frac{11^{2}29000KS1}{1.91(20)^{2}} = 373 KS1$
FEY = $\frac{11^{2}E}{FS(KL/r)^{2}} = \frac{11^{2}29000KS1}{1.91(20)^{2}} = 62.2 KS1$
INTERACTION
1) $\frac{Fa}{FA} + \frac{Cmx}{1-Fa} + \frac{Cmy}{1-Fa} = 62.2 KS1$
10) $\frac{Fa}{FA} + \frac{Cmx}{1-Fa}FBx} + \frac{Cmy}{1-Fa}FEy)$
2.9 KS1 + (1.0) (18.2 KS1)
2.9 KS1 + (1.0) (18.2 KS1)
2.5.1 KS1 (1 - 2.9KS1/373 KS1) 33KS1 + (1.0) (0.5 KS1)
2.5.1 KS1 (1 - 2.9KS1/373 KS1) 33KS1 + (1.0) (0.5 KS1)
2.9 C + R + fbx + fby = 2.9 KS1 + 18.2 KS1 + 37.5 KS1
= 0.66 < 1.0 .1 0.K.
2) $\frac{Fa}{FBx} + \frac{Fbx}{FBY} = \frac{2.9 KS1}{6(6(50KS))} + \frac{18.2 KS1}{33 KS1} + \frac{0.5 KS1}{37.5 KS1}$
= 0.66 < 1.0 .1 0.K.
2) $\frac{Fa}{S} = \frac{5(12^{2}/12^{$

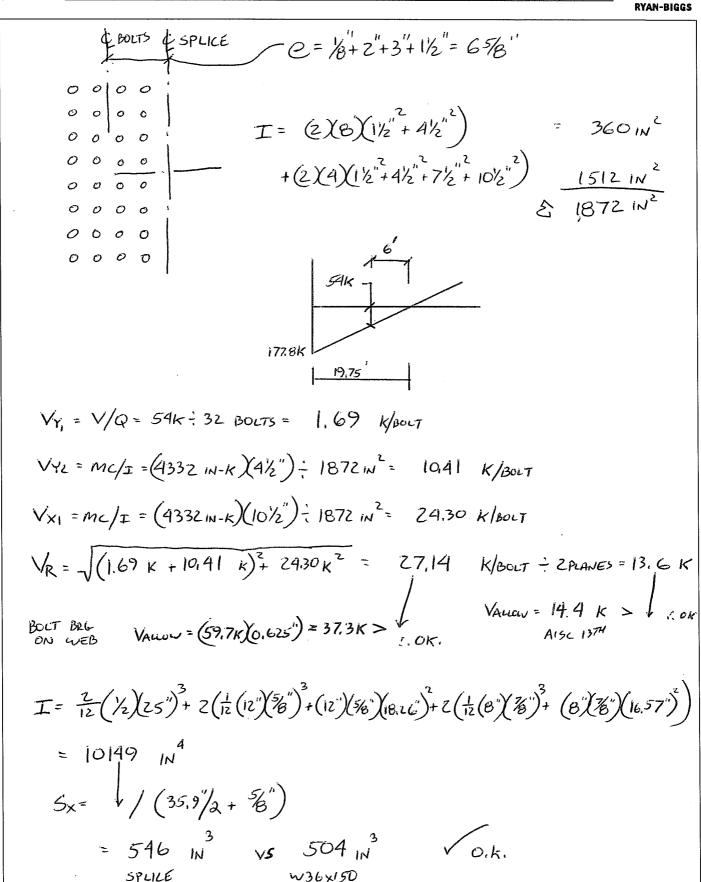
.

JOB NO.:
$$10259$$
 BY: MGY DATE: JUNE 2012, PAGE: $M16$
PROJECT: PORT JERVIS EPS
SUBJECT: TIER SIDE WALE AUXILIARY CELL
BRACKETS TO SUPPORT SELF WT & BRACE RANGE
WILL BE POSITIONED @ 10 FT Q.C.
FROM AISC. 9TH RG 2-95 $L_c = 10.5' > (2)$
 $I \cdot FB_x = 0.66 \cdot fy = 0.66 \cdot 50 \cdot KSI = 3.3 \cdot KSI$
VERTICAL BENDING
 $W_{SELF} = (150 \cdot 16)/FT) + (50 \cdot 16)/T) = 5AY Q.A. K/FT$
 $My = 10 \cdot 16^2 = 1/0 \cdot (5)(10)^2 = 2 \cdot FT - KIPS$
 $fb_y = My/Sy = (12'/FT)(5) + 45 \cdot 11N^3 = 0.5 \cdot KSI$
ROM RESSION FROM MAIN WALE REACTION
 $P = 114K$ RE-W1³
 $Fa = P/A = (5) + 44.2 \cdot N^2 = 2.6 \cdot KSI$
 $KL/r = (1.0)(28'(12'/FT) + (14.4 \cdot N)) = 24$
 $KL/r = (1.0)(10'(12'/FT) + (2.47 \cdot N)) = 49$
 $Fa = 25 \cdot 1 \cdot KSI$

JOB NO.:
$$10259$$
 BY: M(SY DATE: JUNE 2012, PAGE: M/ LULT
PROJECT: PORT JERVIS EPS
SUBJECT: SIPE WALE AUXILIARY CELL
FEX = $\frac{11^{2}E}{5(RL/r)^{2}} = \frac{11^{2}29000Ks1}{1.91(24)^{2}} = 259$ KS1
FEY = $\frac{11^{2}29000Ks1}{1.91(24)^{2}} = 62.2$ KS1
INTERACTION
1) $\frac{Fa}{Fa} + \frac{Cmx Fbx}{(1 - Fa/Fex)Fbx} + \frac{Cmy Fbx}{(1 - Fa/Fex)(Fby)} \stackrel{?}{\leq} 1.0$
 $\frac{100}{Fa} + \frac{Cmx Fbx}{(1 - Fa/Fex)Fbx} + \frac{Cmy Fbx}{(1 - Fa/Fex)(Fby)}$
2.6 KS1 + (10) 2.1 KS1
 $\frac{2.6 KS1}{(1 - 2.6KS1/62.2KS1)(37.5KS1)} = 0.76 < 100$ A O.K.
2) $\frac{Fa}{a} + \frac{Fbx}{FBx} + \frac{Fby}{FBx} = \frac{2.6 KS1}{2.6 (SS1 + 21 Ka)} + \frac{0.5 KS1}{37.5 KS1}$
 $= 0.74 < 1.0 : 0.K.$
DEFLECTION
 $S = Sull^{4} = \frac{5(\frac{9 K/FT}{12^{2}FT}(28)(12^{2}/FT))}{384 \cdot 29,000KS1 \cdot 9040}$ IN $\frac{1}{200}$ O.47.5 INCLUES

JOB NO .: 10259 BY: MGY DATE: JUNE 2012 PAGE: W18 PROJECT: PORT JERVIS EPS SUBJECT: STRUT AUXILIARY CELL RYAN-RIGGS PROVIDE STRUTS TO REDUCE SPAN OF MAIN WALES USE HP14×89 A572 GR 50 FROM PG-W13 MAX P= SAY 289 KIPS CLEAR DISTANCE BETWEEN MAIN WALES = 19=FT <u>KL</u> = (1.0)(12"/FT)(4) - 3,53" = 65 < (Ce (BY INSP.) FA= 22.0 KS1 fa = P/A = 284 K- 26,1 IN2 = 10,9 KSI MUST SUPPORT ITS OWN SELF WEIGHT AS IT SPANS ACCROSS EXC. M= Kwl²= K (0.089 K/FT + 0.041 K/FT)(19')(12"/FT) = 71 W-K CONSIDER DEFLECTION $S = \frac{5 \times l^{4}}{384 \text{ EI}} = \frac{5 \left(\frac{0.13 \text{ K/FT}}{12'' \text{ JFT}}\right) \left(\frac{19. \times 12'' \text{ JFT}}{384 \text{ EI}}\right)^{4}}{384 \text{ C}}$ = 0.040M. P.S = (289K) = 12 IN-K

JOB NO .: 10259 BY: MGY DATE: JUNE 2012 PAGE: W19 PROJECT: PORT, JERVIS EPS SUBJECT: STRUT AUXILIARY CELL **RYAN-BIGGS** E MOMENT = 71 INK+12 INK = 83 INK fb= m/sy = (1) = 44.3 in 3 = 1.9 K31 FB = 0,75.fy = 0,75.50KS1 = 37.5KS1 (WEAKAXIS) Fe = 1212 E/23. Ke = 1212 29000KS1/(23)(65) = 36 KSI USE INTERACTION EQUATIONS $\frac{f_a}{F_A} + \frac{C_n f_b}{(1 - \frac{f_{H^2}}{F_e})(F_b)} < 1.0$ $\frac{|0.9 k51|}{22 k51} + \frac{(1.0)(1.9 k51)}{(1 - |0.9 k51|/36 k51)(37.5 k51)} = 0.57 < 1.0 i.0k,$ $\frac{fa}{0.6}f_{y} + \frac{fb}{FB}$ $\frac{10.9 \text{ ksl}}{(0.6 \text{ (50 ksl)})} + \frac{1.9 \text{ ksl}}{37.5 \text{ ksl}} = 0.41 \text{ (0.6 (1.0 - 0.k))}$


JOB NO .: ______ BY: MGY DATE: _____ PAGE: W20 PROJECT: ____ SUBJECT: TRANSFER BEAM STIFFENERS **RYAN-BIGGS** CONSIDER DESIGN OF TRANSFER BEAM STIFFENERS REF AASHTO & 10,34.6,1 USE 1/2" × 5" STIFFENER ON EACH SIDE OF WEB $t_{MIN} = \frac{b'}{12} \sqrt{\frac{f_{\chi}}{33,000}} = \frac{1}{12} \sqrt{\frac{36,000}{33,000}} = 0.435'' < \frac{1}{2} IN. PROVIDED$ tw=0,625 $A = (25'')(0.625'') = 15.6 \text{ in}^2 + 4(1/2'')(5'') = 10 \text{ in}^2$ 9tw 14", 9tw $I = \frac{1}{12} \left(24 \right) \left(0.625 \right)^3 + 2 \left(\frac{1}{12} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)^3 \right) = 100.4 \text{ in}^4$ $\Gamma = \sqrt{I/A} = \sqrt{100.4 \text{ in}^4/25.6 \text{ in}^2} = 1.98 \text{ inches}$ FULLY WELDED/STIFFENER $KL/\Gamma = (0.85)(35'') \div (4) = 15$ FA = 21 KS/_____ TREAT ALL AS GR36 FOR SIMPLICITY ALTHOUGH GR 50 WEB WILL INCREASE CAPACITY SLIGHTLY, $f_a = P/A = 284 \ \kappa = 25.6 \ \ln^2 = 11.1 \ \kappa s < (b) \ \ln 0.k,$ WELD 0,928K/m/16 × (2XAX 5 X33) = 1225K >V

JOB NO.:
$$10259$$
 BY: MGY DATE JULY ZO12 PAGE W21
PROJECT: RORT JERVIS EPS
SUBJECT: WALE SPLICE
CONSIDER FULL MOMENT SPLICE OF W36×150 ASTM A992
DEVELOP FLANCE $\Rightarrow 12^{\circ} \times 0.94^{\circ\circ} \rightarrow A = 1128_{10}^{\circ}$
 $USE \frac{96^{\circ} \times 12^{\circ}}{7.5_{10}^{\circ}} + \frac{7}{7_{10}^{\circ}} = \frac{14.5_{10}^{\circ}}{14.5_{10}^{\circ}} \rightarrow K. O.K.$
 $77 DIFF < 107 : OK.$
FLANGE FORCE = $(1.28_{10})^{\circ} (0.66)(50K_SI) = 372 KIPS$
BOLTS = $(4) \div (2 ROUS (2003) E SHEAK (14.4 K/BOLT))$
 $AISC 1377$
 $AISC 1377$
 $AISC 1377$
 $AISC 1377$
 $AISC 1377$
 $USE B ROUS OF BOLTS MINIMUM
 $USEB = (35.9^{\circ} \times 0.625^{\circ}) = 22.44_{10}^{\circ}$
 $OSE (125^{\circ} \times 2) = 2.5_{10}^{\circ} > V = 1.0K.$
 $MOMENT FROM WER
 $MOMENT FROM E \rightarrow (676^{\circ} \times 5.4 K) = 358_{10-K}$
 $\frac{1}{KWDV}$
 $E 4332_{1N-K}$$$

JOB NO.: _	10259	BY:BY
00D NO		

PROJECT: PORT JERVIS EPS

SUBJECT: WALE SPLICE

257 Ushers Road, Clifton Park, NY 12065 518.406.5506 Fax 518.406.5514 4592 Jordan Road, PO Box 217, Skaneateles Falls, NY 13153 315.685.4732 Fax 315.685.4753