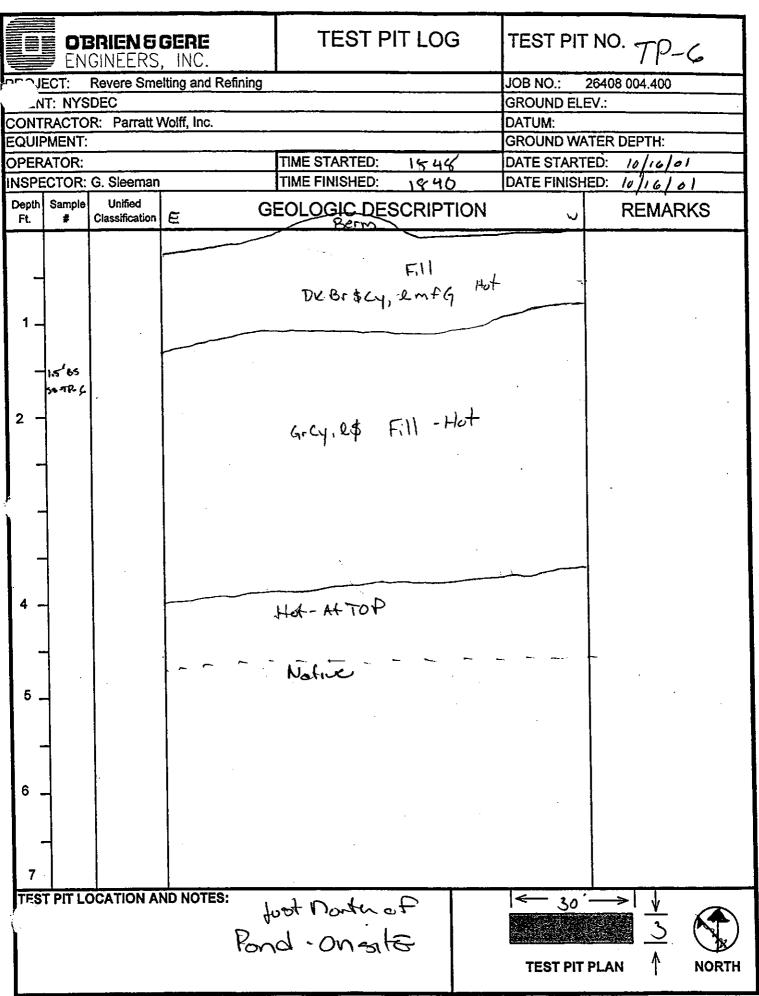
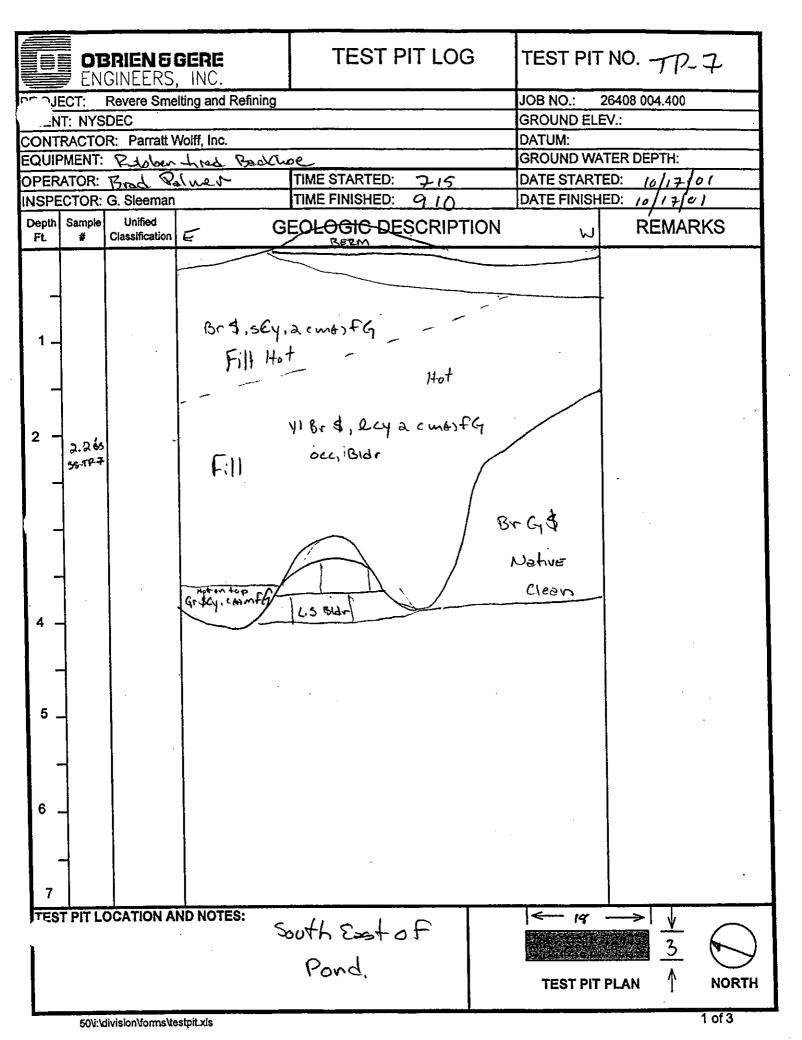
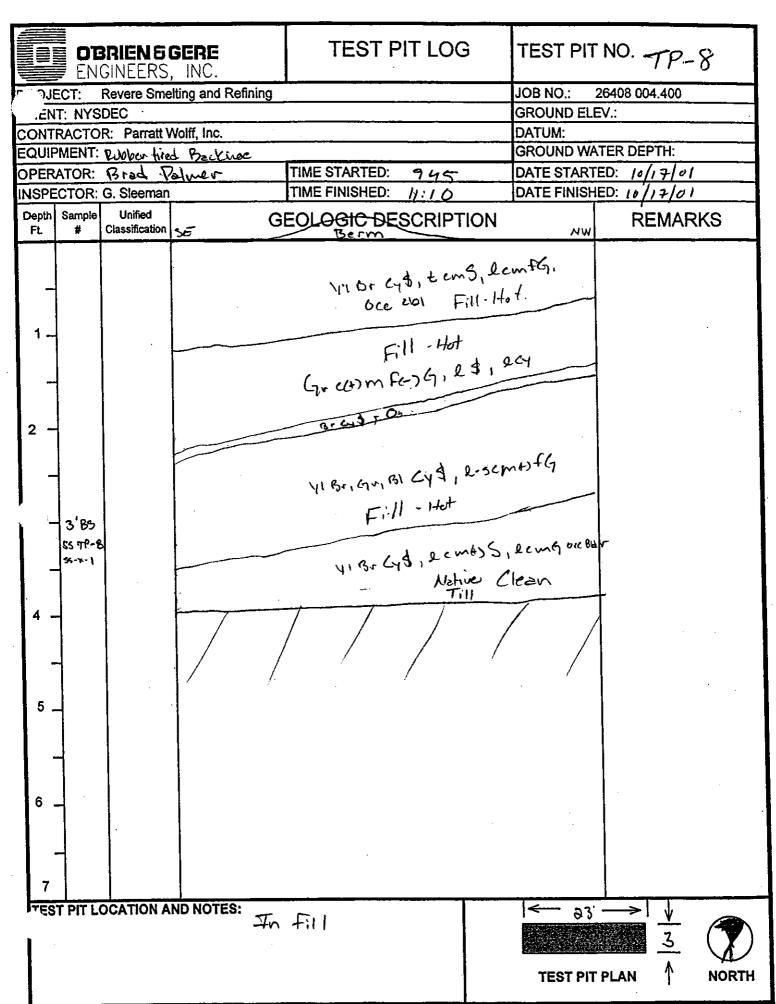
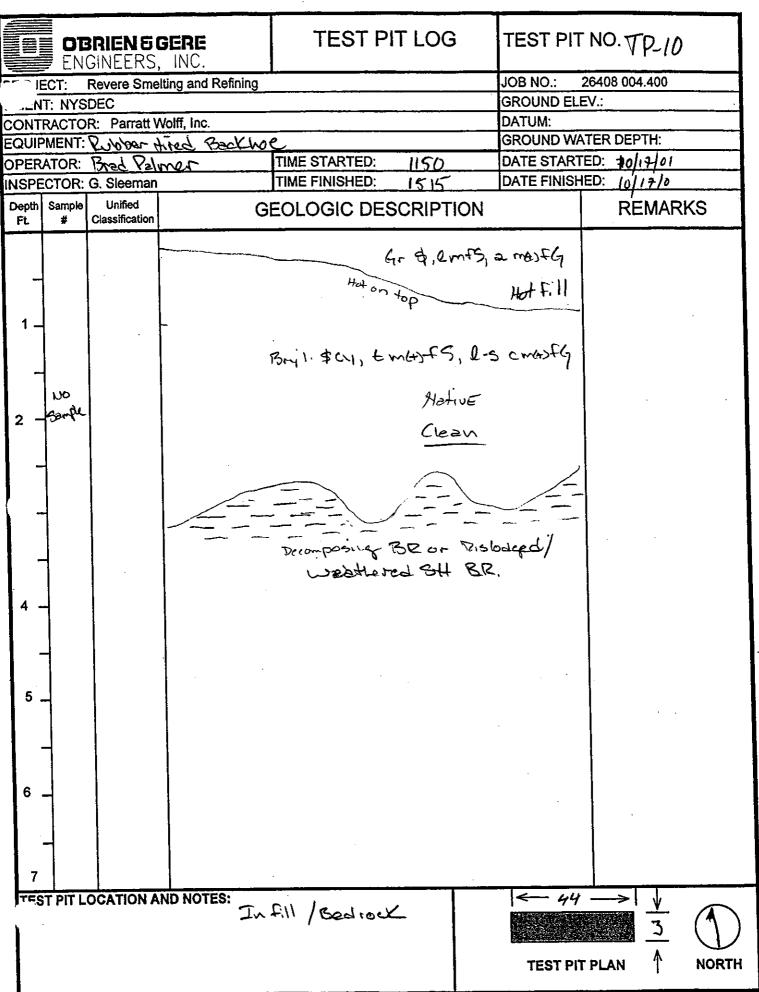

Appendix C

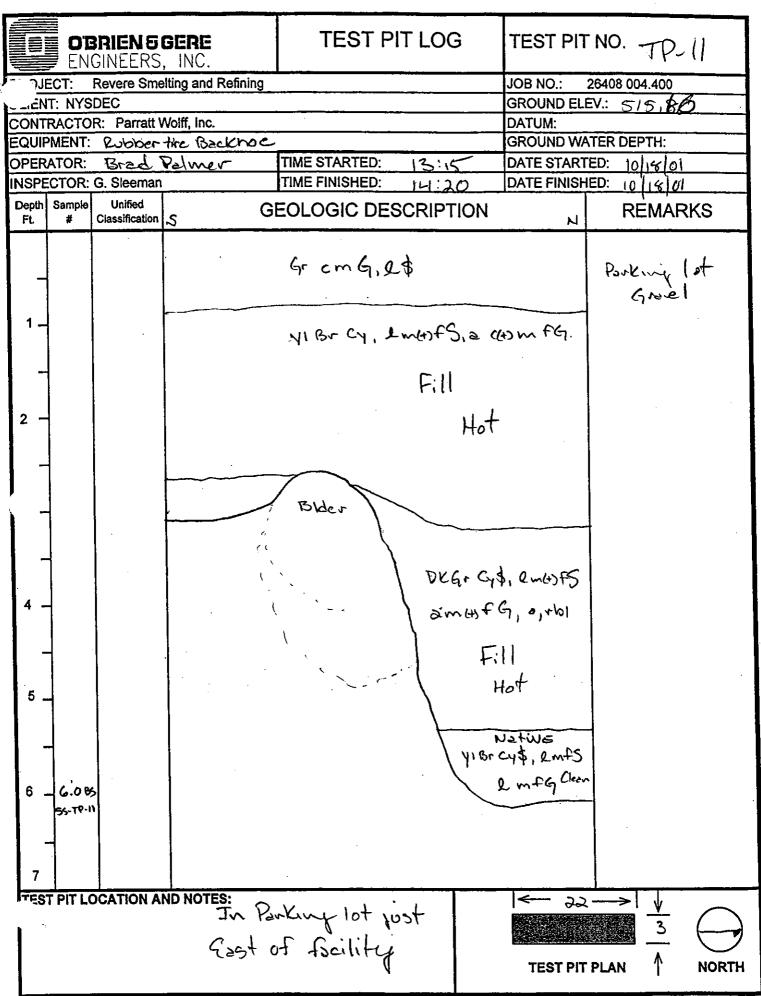
Test pit logs

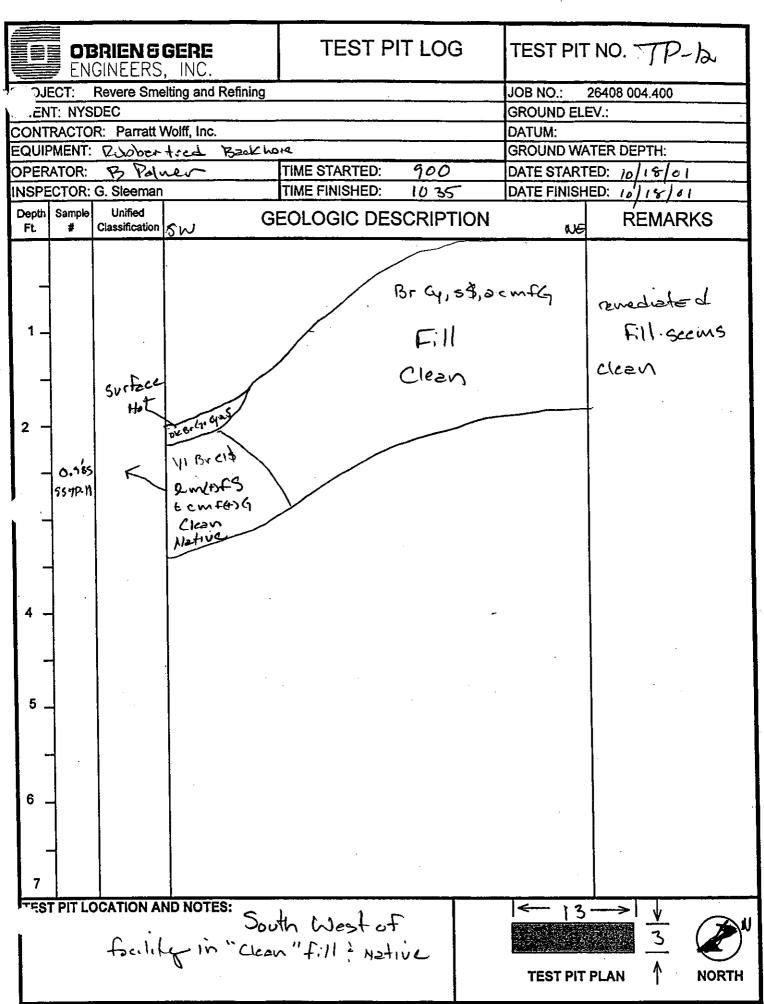


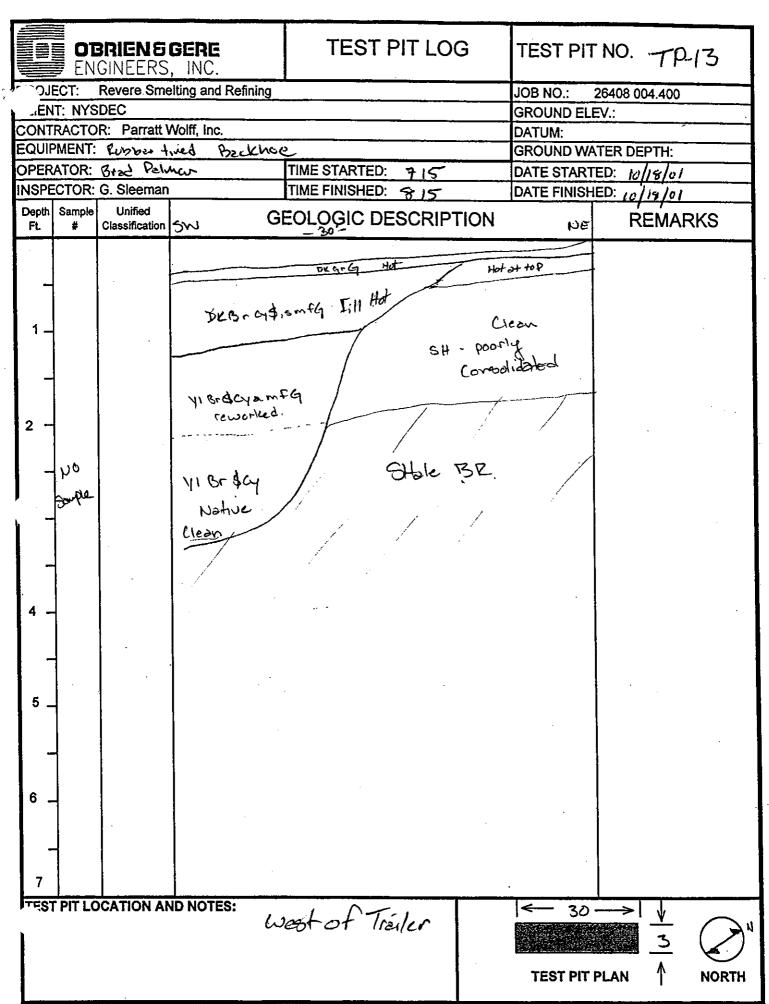


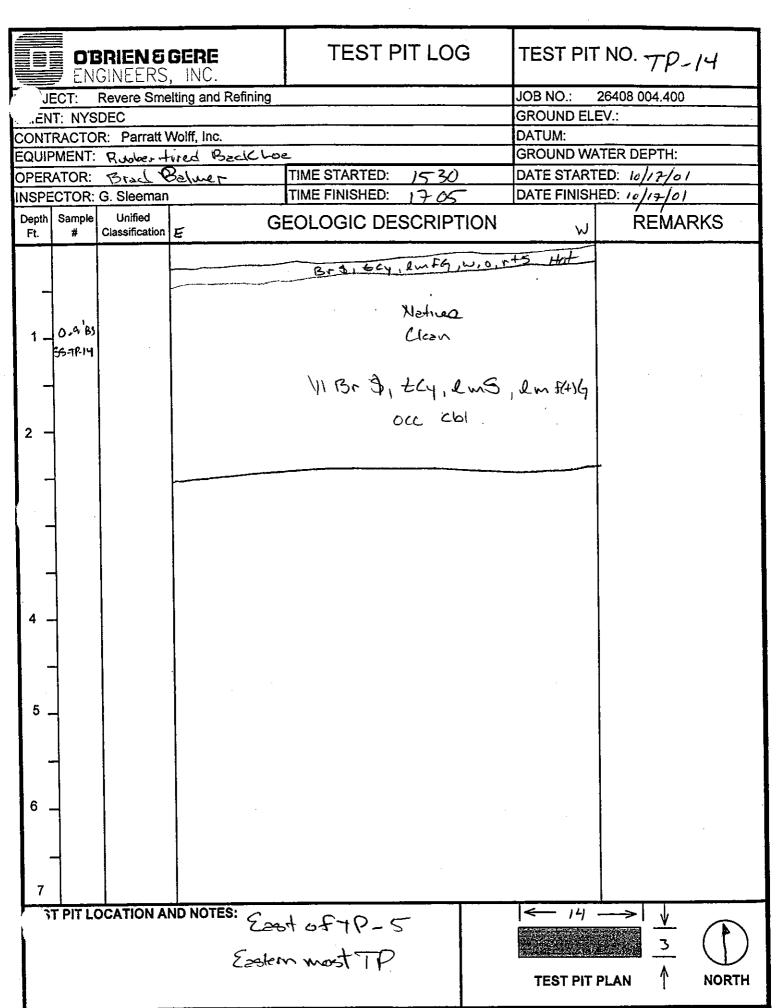


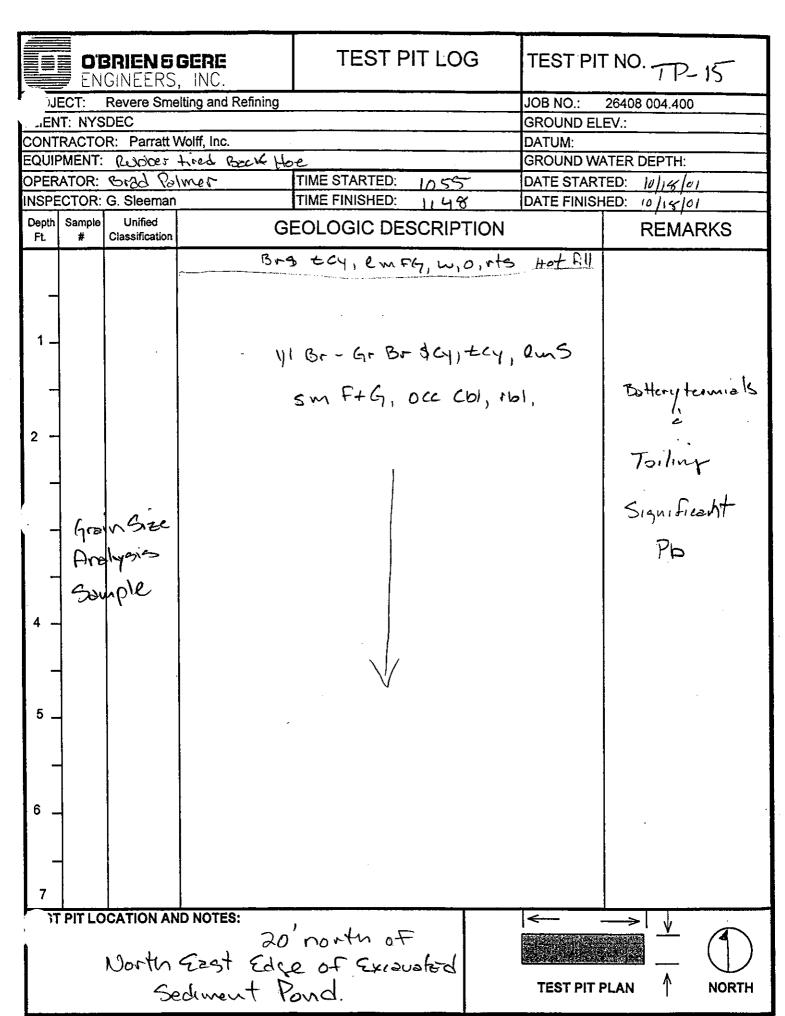


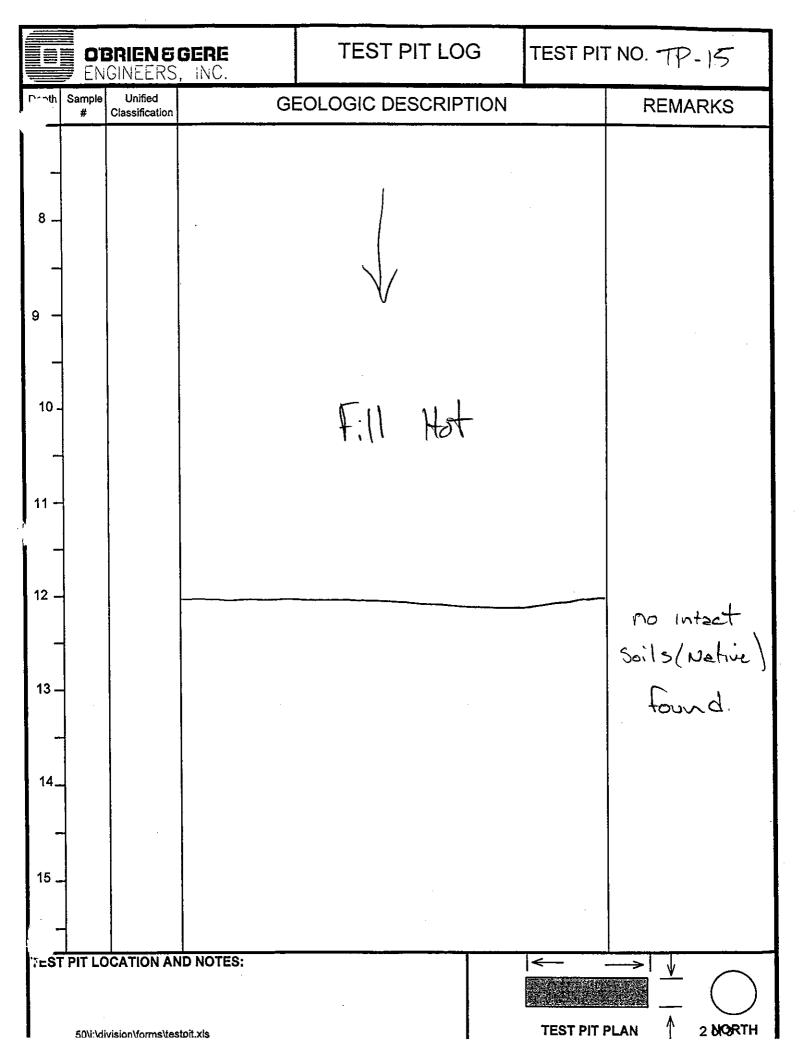


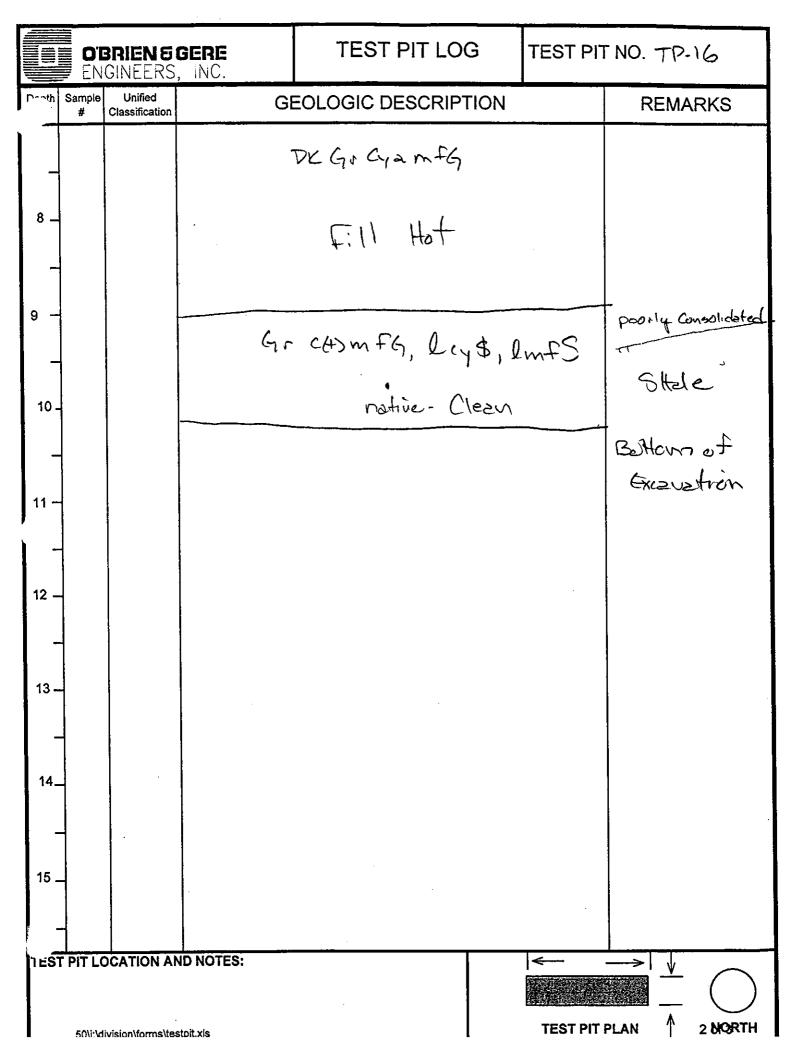





		RIEN 5		TEST P	IT LOG	TEST PIT	NO. TP-9
ر ا			lting and Refining			JOB NO.:	26408 004.400
_ Nء.	T: NYS					GROUND ELE	€V.:
		R: Parratt V				DATUM:	
EQUIF	MENT:		fixed backhoe			GROUND WA	
	ATOR:		Pelmer	TIME STARTED:	7150 1245	DATE START	
		G. Sleeman		TIME FINISHED:	1355	DATE FINISH	IED: 10/17/01
Depth Ft.	Sample #	Unified Classification	e G	EOLOGIC DES	SCRIPTION	W	REMARKS
			Gr4,3cm	14549	EII	Hot	
1	:		Br mest	5,3\$	Fill	140+	
	64188 55789 ms/md	·	G: \$CY,:	sch)mfG, oc	e cols Fill	Hot	
2 -			in Br \$C	Fill Cla	·		
5 -							
6.			·		·		
-= 8	T PIT LO	DCATION A	ND NOTES:	ts Fill-		TEST PIT	$\frac{1}{3} \frac{1}{4} \frac{1}{1} \frac{1}$







OBRIENS GERE ENGINEERS, INC.	TEST PIT LOG	TEST PII	NOTP-16		
JECT: Revere Smelting and Refining			26408 004.400		
ENT: NYSDEC		GROUND EL	LEV.: 513,31		
CONTRACTOR: Parratt Wolff, Inc.		DATUM:			
EQUIPMENT: Purporting Backs		GROUND WA			
OPERATOR: Brad Palmer	TIME STARTED: 1205	DATE START			
INSPECTOR: G. Sieeman	TIME FINISHED: 1250	DATE FINISH	ED: 10/18/01		
Depth Sample Unified G	EOLOGIC DESCRIPTION	ON	REMARKS		
	Bu inf5\$, lcmE	Fill 7 Hot			
G	1- TKGr Cy, 29,	leannfg Fill-Hot			
2 -	VIBr Cy, Rmert occ cbl. Fill	S, ochomfg - Hot	Bettery Plates: + 50" Pb nodules		
4 -	DICGr. Cy a com	G	Significant Plo Contamination		
	Fill Hot				
6 - Grain Size 7 Anshisis 7 Sample	·				
Site-near	est Edge of funce.	TEST PIT F	PLAN NORTH		

Appendix D

XRF screening data

Sample No.	<u>Location</u>	O&G Sample No.	<u>Depth</u>	Source Seconds	Date/Time	Resolution	Resolutin Error	Pb Concentration	Pb Error
16	Energy Calibration			60.1	10/15/2001 13:19	582.4	0	NA	
17	NIST High			122.9	10/15/2001 13:19	NA		5619.2	220
18	NIST Medium			126.5	10/15/2001 13:25	NA		1209.6	83.8
19	NIST Low			117.2	10/15/2001 13:32	NA		<lod< td=""><td>58.95</td></lod<>	58.95
20	NIST Blank			121.9	10/15/2001 13:37	NA		<lod< td=""><td>34.65</td></lod<>	34.65
21	Test Pit #1		NW End, 2' BS	30.5	10/15/2001 14:25	NA		1939.2	240
22	Test Pit #1		NW End, 1.4' BS	30.5	10/15/2001 14:27	NA		834.4	140
23	Test Pit #1		Above Geofabric @ 1' BS	30.5	10/15/2001 14:38	NA		2708.8	270
24	Test Pit #1		Below Geofabric 2' BS	28.2	10/15/2001 14:40	NA		178.5	95.9
25	Test Pit #1		Below Geofabric 1.5' BS	30.8	10/15/2001 14:43	NA		203.6	110
26	Test Pit #1		Below Geofabric 2.5' BS	28.1	10/15/2001 14:46	NA		225.8	90.4
27	Test Pit #1		Base of Excavation, 3.5' BS	21.1	10/15/2001 15:00	NA		525.6	160
28	Test Pit #1		Above Geofabric	30.5	10/15/2001 15:02	NA		1560	180
29	Test Pit #1		NW End Wall/Escarpment	11.8	10/15/2001 15:11	NA		<lod< td=""><td>255</td></lod<>	255
30	Test Pit #1		NW End Wall/Escarpment	21.2	10/15/2001 15:12	NA		<lod< td=""><td>180</td></lod<>	180
31	Test Pit #2		Above Plastic Lining- Upper Fill	30.6	10/15/2001 16:02	NA		759.2	150
32	Test Pit #2		Below Plasic Lining- Lower Fill	30.4	10/15/2001 16:04	NA		3478.4	290
33	Test Pit #2		Native (just below lower fill) 1.6' BS	21.1	10/15/2001 16:06	NA		836	170
34	Test Pit #2		Lower Fill 0.5-1.6' BS	28.2	10/15/2001 16:26	NA		2188.8	260
35	Test Pit #2		Native 1.6-3.5' BS	21.1	10/15/2001 16:28	NA		1109.6	220
36	Test Pit #2		NE End, Lower Fill 1.3' BS	30.5	10/15/2001 17:08	NA		518.4	120
37	Test Pit #2		NE End Native 2.5' BS	30.6	10/15/2001 17:10	NA		245	110
38	Test Pit #2		NE End, Lower Fill	30.5	10/15/2001 17:26	NA		668	130
39	Test Pit #2		Ground Surface	32.5	10/15/2001 17:28	NA		14796.8	969.6
40	Test Pit #1	SS-TP-2	1.3'-1.5' BS	187.7	10/15/2001 17:37	NA		10400	270
41	NIST High			60.3	10/15/2001 17:48	NA		5788.8	320
42	NIST Low			63.3	10/15/2001 17:51	NA		<lod< td=""><td>78.6</td></lod<>	78.6
43	Energy Calibration			60.1	10/16/2001 7:27	574	0	NA	
44	NIST High			120.7	10/16/2001 7:29	NA		5548.8	220
45	NIST Medium			166.5	10/16/2001 7:35	NA		1180	72.9
46	NIST Low			122	10/16/2001 7:43	NA		<lod< td=""><td>60.75</td></lod<>	60.75
47	Test Pit #3		Ground Surface	30.3	10/16/2001 8:00	NA		8876.8	630
48	Test Pit #3		Base of Excavation, 3.5' BS	30.6	10/16/2001 8:02	NA		2099.2	240
49	Test Pit #3		Native, Base and Sidewall	25.8	10/16/2001 8:03	NA		452.8	130
50	Test Pit #3		Native, Sidewall @ 3'	25.8	10/16/2001 8:05	NA		<lod< td=""><td>133.8</td></lod<>	133.8
51	Test Pit #3		Above Plastic Lining- Upper Fill	30.5	10/16/2001 8:06	NA		1868.8	210
52	Test Pit #3		Base/Sidewall(1' Below Fill) @ 5' BS	30.5	10/16/2001 8:24	NA		1220	170
53	Test Pit #3		Base/Sidewall(Buried A) @ 4.5' BS	23.5	10/16/2001 8:26	NA		594.8	140
54	Test Pit #3		Below Lining, Lower Fill 2.8' BS	30.5	10/16/2001 8:28	NA		590.4	120
55	Test Pit #3		Above Lining Upper Fill @ Berm	30.6	10/16/2001 8:30	NA		239.2	99.6
56	Test Pit #3		Native, @ 4' BS, West of Berm	32.8	10/16/2001 8:45	NA		<lod< td=""><td>110.25</td></lod<>	110.25
57	Test Pit #3		Fill, 2.5' BS	30.4	10/16/2001 8:47	NA		1569.6	180
58	Test Pit #3		Fill, 0.8' BS	30.6	10/16/2001 8:49	NA		153.9	88.3
59	Test Pit #3		Ground Surface	35.1	10/16/2001 8:52	NA		11097.6	780
60	Test Pit #4		Native, NE End, @4' BS	30.6	10/16/2001 11:12	NA		<lod< td=""><td>117.6</td></lod<>	117.6
61	Test Pit #4		Native, NE End, @3' BS	30.5	10/16/2001 11:14	NA		<lod< td=""><td>116.25</td></lod<>	116.25
62	Test Pit #4		Native, NE End @1' BS	30.4	10/16/2001 11:16	NA		342.8	88.6

Sample No.	<u>Location</u>	O&G Sample No.	<u>Depth</u>	Source Seconds	<u>Date/Time</u>	Resolution	Resolutin Error	Pb Concentration	Pb Error
63	Test Pit #4		Reworked Native, Berm, @2.5' BS	30.5	10/16/2001 11:18	NA		444.4	120
64	Test Pit #4		Top of Native At Berm, 1.5' BS	30.4	10/16/2001 11:20	NA		1788.8	190
65	Test Pit #4		Ground Surface SW of Berm	30.1	10/16/2001 11:40	NA		18995.2	1200
66	Test Pit #4		Base of Excavation At Berm, 5' BS	30.5	10/16/2001 11:45	NA		<lod< td=""><td>119.85</td></lod<>	119.85
67	Test Pit #4		Base of Excavation At Berm, 2.5' BS	30.5	10/16/2001 11:46	NA		<lod< td=""><td>115.8</td></lod<>	115.8
68	Test Pit #4		At Berm, 0.7' BS	37.5	10/16/2001 11:49	NA		899.2	130
69	Test Pit #4		At Berm, 0.2' BS	30.6	10/16/2001 11:52	NA		214.4	100
70	Test Pit #4		Reworked native,SW of Berm @2.5' BS	30.5	10/16/2001 12:09	NA		887.2	150
71	Test Pit #4		Fill, SW of Berm @ 0.2' BS	30.3	10/16/2001 12:12	NA		9337.6	610
72	Test Pit #4		Fill, SW of Berm @ 0.6' BS	30.2	10/16/2001 12:15	NA		13196.8	869.6
73	Prepared Blank			244.1	10/16/2001 12:24	NA		27	16.8
74	NIST High			315.8	10/16/2001 12:36	NA		5788.8	140
75	NIST Low			185.4	10/16/2001 12:52	NA		56.7	32.7
76	Tets Pit #3	SS-TP-3	2.5' BS west of berm above liner	147.6	10/16/2001 13:21	NA		1089.6	71.2
77	Tets Pit #3		1.8' BS middle of berm above liner	126.6	10/16/2001 13:28	NA		121.3	45.1
78	Tets Pit #3		2.5' BS east of berm above liner	121.7	10/16/2001 13:34	NA		1739.2	99.7
79	Tets Pit #3		3' BS east of berm below liner	121.5	10/16/2001 13:40	NA		2619.2	120
80	Tets Pit #3		4.5' BS native soil	128.8	10/16/2001 13:46	NA		<lod< td=""><td>46.05</td></lod<>	46.05
81	Test Pit #5		Ground Surface	131.1	10/16/2001 13:53	NA		21593.6	640
82	Test Pit #5		Base of Excavation, West of Berm, @ 4' BS	30.5	10/16/2001 14:16	NA		406.8	110
83	Test Pit #5		West of Berm, 3.5' BS	23.5	10/16/2001 14:17	NA		417.6	110
84	Test Pit #5		Below Lining, Lower Fill 0.6' BS	30.4	10/16/2001 14:19	NA		3798.4	300
85	Test Pit #5		Top of Lining, 0.2' BS	35.3	10/16/2001 14:21	NA		198.9	88.9
86	Test Pit #5		Base of Excavation, West of Berm @ 3.5' BS	30.6	10/16/2001 14:24	NA		416.8	110
87	Test Pit #5		West of Berm, Buried A @ 3' BS	25.8	10/16/2001 14:26	NA		392.8	110
88	Test Pit #5		West of Berm, Gray Fill, @ 1.3' BS	30.6	10/16/2001 14:28	NA		271.8	94
89	Test Pit #5		West of Berm, @ 0.3' BS	30.5	10/16/2001 14:30	NA		472.8	120
90	Test Pit #5		Base of Excavation, West of Berm @3' BS	30.7	10/16/2001 15:05	NA		317.2	110
91	Test Pit #5		East of Berm, 0.5' BS	14.2	10/16/2001 15:06	NA		<lod< td=""><td>240</td></lod<>	240
92	Test Pit #5		East of Berm, Buried A, @ 0.5' BS	21	10/16/2001 15:07	NA		6854.4	580
93	Test Pit #5		East of Berm, Sandy Layer@ 1' BS	30.5	10/16/2001 15:09	NA		292	91.8
94	Test Pit #5		East End, Base of Excavation @ 3' BS	30.6	10/16/2001 15:11	NA		1089.6	160
95	Test Pit #5		East End, @ 2.5' BS	14.1	10/16/2001 15:13	NA		207.8	120
96	Test Pit #5		East End, Sandy Layer, @ 0.7' BS	32.6	10/16/2001 15:14	NA		8684.8	540
97	Test Pit #6		West End Fill, @ 1.5' BS	30.2	10/16/2001 16:12	NA		41984	3699.2
98	Test Pit #6		West End Fill, @ 2' BS	30.4	10/16/2001 16:14	NA		4489.6	340
99	Test Pit #6		West End Fill, @ 3' BS	30.5	10/16/2001 16:16	NA		682	120
100	Test Pit #6		TP-6 Middle Fill, @ 0.5' BS	32	10/16/2001 16:18	NA		48896	3497.6
101	Test Pit #6		TP-6 Middle Fill, @ 2.5' BS	30.4	10/16/2001 16:20	NA		1329.6	160
102	Test Pit #6		TP-6 Middle Fill, @ 3.5' BS	21.1	10/16/2001 16:21	NA		1920	240
103	Test Pit #6		TP-6 Middle Fill, @ 1' BS	30.4	10/16/2001 16:23	NA		3009.6	250
104	Test Pit #6		TP-6 Middle, Base, Histic Soils @ 3.5' BS	7	10/16/2001 16:26	NA		394.2	220
105	Test Pit #6		TP-6 Middle, Base, Histic Soils @ 3.5' BS	18.8	10/16/2001 16:26	NA		329.6	120
106	Test Pit #6		East End, Fill @ 0.5' BS	30.4	10/16/2001 17:38	NA		4988.8	360
107	Test Pit #6		East End, Fill @ 1.5' BS	35.2	10/16/2001 17:40	NA		357.2	85.7
108	Test Pit #6		East End, Fill @ 0.5' BS	30.5	10/16/2001 17:42	NA		1180	140
109	Test Pit #6		East End, Fill @ 2.5' BS	30.4	10/16/2001 17:45	NA		1329.6	160

Sample No.	Location	O&G Sample No.	<u>Depth</u>	Source Seconds	Date/Time	Resolution	Resolutin Error	Pb Concentration	Pb Error
110	Test Pit #6		Ground Surface	30.5	10/16/2001 17:54	NA		1680	180
111	Test Pit #6		East End, Fill (10' West of Pond) @ 0.5' BS	30.4	10/16/2001 18:09	NA		1988.8	200
112	Test Pit #6		East End, Fill @ 2.5' BS	30.3	10/16/2001 18:10	NA		3347.2	270
113	Test Pit #6		East End, Fill @ 3' BS	30.3	10/16/2001 18:13	NA		3219.2	280
114	Test Pit #6		East End, Native @ 3.5' BS	30.4	10/16/2001 18:16	NA		520.8	110
115	NIST High			160.3	10/16/2001 18:27	NA		5907.2	200
116	NIST Low			122	10/16/2001 18:35	NA		<lod< td=""><td>60.9</td></lod<>	60.9
117	NIST Blank			129.1	10/16/2001 18:41	NA		<lod< td=""><td>33.9</td></lod<>	33.9
118	Energy Calibration			60.2	10/17/2001 7:41	NA		NA	
119	NIST High			122.9	10/17/2001 7:54	NA		5840	230
120	NIST Low			121.8	10/17/2001 8:00	NA		<lod< td=""><td>60.6</td></lod<>	60.6
121	Test Pit #7		Ground Surface	30.2	10/17/2001 8:09	NA		4108.8	290
122	Test Pit #7		East of Berm, Fill @ 0.7' BS	30.5	10/17/2001 8:10	NA		1109.6	160
123	Test Pit #7		East of Berm, Fill @ 3.5' BS	30.2	10/17/2001 8:12	NA		833.6	130
124	Test Pit #7		East of Berm, Fill @ 1' BS	30.5	10/17/2001 8:14	NA		391.8	110
125	Test Pit #7		East of Berm, Fill @ 3.5' BS	30.4	10/17/2001 8:16	NA		647.6	120
126	Test Pit #7		East of Berm, Fill @ 4' BS	30.5	10/17/2001 8:18	NA		1720	200
127	Energy Calibration			60.1	10/17/2001 8:33	610.4	0	NA	
128	Test Pit #7		Aborted	2.3	10/17/2001 8:53	NA		<lod< td=""><td>735</td></lod<>	735
129	Test Pit #7		East of Berm, Base of Excavation @ 3.8' BS	21.1	10/17/2001 8:54	NA		782.8	160
130	Test Pit #7		East of Berm, @ 2.8' BS	30.5	10/17/2001 8:55	NA		<lod< td=""><td>100.5</td></lod<>	100.5
131	Test Pit #7		At Berm, Fill @ 1.5' BS	30.5	10/17/2001 8:59	NA		1180	170
132	Test Pit #7		At Berm, Fill, @ 1' BS	30.6	10/17/2001 9:00	NA		589.6	130
133	Test Pit #7		At Berm, Fill, @ 2.3' BS	30.4	10/17/2001 9:02	NA		606.4	110
134	Test Pit #7		West of Berm, Native, @ 3' BS	21	10/17/2001 9:06	NA		297.2	110
135	Test Pit #8		Ground Surface	30.3	10/17/2001 10:32	NA		2468.8	220
136	Test Pit #8		SE Half 4' BS	30.4	10/17/2001 10:34	NA		458.4	100
137	Test Pit #8		SE Half 0.9' BS	32.6	10/17/2001 10:37	NA		689.2	100
138	Test Pit #8		SE Half 1.4' BS	30.4	10/17/2001 10:39	NA		745.6	130
139	Test Pit #8	00.75.5	SE Half 2.8' BS	30.4	10/17/2001 10:41	NA		423.6	96.5
140	Test Pit #5	SS-TP-5	1.2' BS	161.5	10/17/2001 10:48	NA		13798.4	350
141	Test Pit #6	SS-TP-6	1.5' BS	120	10/17/2001 10:56	NA		246988.8	16998.4
142	Test Pit #8		NW Half Native, Base of Excavation, @ 4' BS	30.5	10/17/2001 11:05	NA		170.1	88.7
143	Test Pit #8		NW Half Native, @ 3.1' BS	21.1	10/17/2001 11:07	NA		<lod< td=""><td>128.55</td></lod<>	128.55
144	Test Pit #8		NW Half, Fill, @ 2.8' BS	30.4	10/17/2001 11:08	NA		2929.6	270
145	Test Pit #8		NW Half, Fill, @ 0.7' BS	32.4	10/17/2001 11:10	NA		12294.4	720
146	Energy Calibration		0 10 (60.3	10/17/2001 13:22	NA		NA 2050 0	040
147	Test Pit #9		Ground Surface	30.3	10/17/2001 13:34	NA		2859.2	240
148	Test Pit #9		East End, Base of Excavation @4.5' BS	30.4	10/17/2001 13:38	NA		225.4	79.1
149	Test Pit #9		East End, Native @ 2.5' BS	21	10/17/2001 13:40	NA		<lod< td=""><td>113.1</td></lod<>	113.1
150	Test Pit #9		East End, (a Rock) @ 1.5' BS	30.5	10/17/2001 13:41	NA		<lod< td=""><td>126</td></lod<>	126
151	Test Pit #9		East End, Gray Fill @ 1.4' BS	32.2	10/17/2001 13:44	NA		16793.6	949.6
152	Test Pit #9		East End, Sandy Fill @ 0.8' BS	18.7	10/17/2001 13:46	NA NA		146.4 <lod< td=""><td>89.8</td></lod<>	89.8
153	Test Pit #9		East End, Native @ 2.5' BS	21.1	10/17/2001 13:49				123.15
154	Test Pit #9		West End, Fill, @ 1.5' BS	18.8	10/17/2001 13:50	NA		965.6	190
155	Test Pit #9		West End, Fill, @ 1.5' BS	21.1	10/17/2001 13:52	NA NA		<lod< td=""><td>114.6</td></lod<>	114.6
156	Test Pit #9		Aborted	2.3	10/17/2001 13:54	NA		<lod< td=""><td>330</td></lod<>	330

Sample No.	<u>Location</u>	O&G Sample No.	<u>Depth</u>	Source Seconds	Date/Time	Resolution	Resolutin Error	Pb Concentration	Pb Error
157	Test Pit #9		West End, Sandy Fill @ 0.8' BS	32.7	10/17/2001 13:55	NA		1229.6	150
158	Test Pit #10		East End, Top of Native @2.3' BS	30.6	10/17/2001 14:10	NA		475.2	120
159	Test Pit #10		East End, Native @ 2.8' BS	16.4	10/17/2001 14:12	NA		<lod< td=""><td>210</td></lod<>	210
160	Test Pit #10		East End, Fill @ 0.5' BS	31.8	10/17/2001 14:14	NA		44595.2	2899.2
161	Test Pit #10		Middle of Excavation Fill @ 0.9' BS	30.1	10/17/2001 14:17	NA		18099.2	1200
162	Test Pit #10		Middle Fill @ 1.4' BS	30.4	10/17/2001 14:19	NA		707.6	130
163	Test Pit #10		Middle of Excavation Native @ 1.7' BS	16.4	10/17/2001 14:21	NA		<lod< td=""><td>129.3</td></lod<>	129.3
164	Test Pit #10		Middle Fill @ 0.4' BS	30.1	10/17/2001 14:23	NA		18188.8	1200
165	NIST High			122.7	10/17/2001 15:04	NA		5808	230
166	NIST Low			124.1	10/17/2001 15:10	NA		66.1	40.2
167	Prepared Blank			140.5	10/17/2001 15:28	NA		<lod< td=""><td>30.75</td></lod<>	30.75
168	Test Pit #7	SS-TP-7	2.2' BS	156.5	10/17/2001 15:35	NA		1100	65.9
169	Test Pit #8	SS-TP-8	2' BS	128.6	10/17/2001 15:43	NA		642.8	59.5
170	Test Pit #9	SS-TP-9	1.4'BS	128.1	10/17/2001 15:49	NA		2779.2	120
171	Test Pit #14		Ground Surface	32.2	10/17/2001 16:04	NA		9587.2	500
172	Test Pit #14		Ground Surface	32.3	10/17/2001 16:08	NA		5728	300
173	Test Pit #14		East End, Native @ 0.1' BS	14	10/17/2001 16:10	NA		<lod< td=""><td>128.1</td></lod<>	128.1
174	Test Pit #14		East End, Native @ 1.2' BS	25.9	10/17/2001 16:12	NA		131.6	83.5
175	Test Pit #14		East End, Native @ 0.1' BS	30.3	10/17/2001 16:14	NA		567.2	100
176	Test Pit #14		East End, Native @ 0.2' BS	30.4	10/17/2001 16:16	NA		355.8	89.9
177	Test Pit #14		East End, Native @ 0.3' BS	30.6	10/17/2001 16:18	NA		551.6	120
178	Test Pit #14		East End, Native @ 0.3' BS	21.1	10/17/2001 16:23	NA		430	120
179	Test Pit #14		East End, Native @ 0.9' BS	30.6	10/17/2001 17:04	NA		<lod< td=""><td>119.1</td></lod<>	119.1
180	Test Pit #14		Middle of TP 14, Native @ 0.2' BS	30.5	10/17/2001 17:06	NA		<lod< td=""><td>111</td></lod<>	111
181	Test Pit #14		Middle of TP 14, Native @ 3' BS	25.8	10/17/2001 17:08	NA		<lod< td=""><td>113.1</td></lod<>	113.1
182	Test Pit #14		West End, Native @ 0.2' BS	30.4	10/17/2001 17:11	NA		227.2	79.4
183	NIST High			141.4	10/17/2001 17:18	NA		5827.2	210
184	NIST Low			121.8	10/17/2001 17:25	NA		<lod< td=""><td>58.2</td></lod<>	58.2
185	NIST Blank			58.6	10/17/2001 17:31	NA		<lod< td=""><td>47.7</td></lod<>	47.7
186	Energy Calibration			60.2	10/18/2001 7:28	NA		NA	
187	NIST High			150.9	10/18/2001 7:28	NA		5929.6	210
188	NIST Low			122	10/18/2001 7:36	NA		<lod< td=""><td>60.75</td></lod<>	60.75
189	Test Pit #13		NE End, Fill, @ 0.2' BS	30.2	10/18/2001 7:53	NA		5417.6	380
190	Test Pit #13		NE End, Fill, @ 0.5' BS	30.5	10/18/2001 7:55	NA		292.6	90
191	Test Pit #13		Middle of TP 13 @ 0.5' BS	30.4	10/18/2001 7:58	NA		3160	270
192	Test Pit #13		Middle of TP 13 @ 0.8' BS	30.5	10/18/2001 8:00	NA		787.6	130
193	Test Pit #13		Middle of TP 13 @ 4.5' BS	21.1	10/18/2001 8:02	NA		<lod< td=""><td>117.15</td></lod<>	117.15
194	Test Pit #13		SW End Fill, @ 1.8' BS	11.7	10/18/2001 8:04	NA		<lod< td=""><td>180</td></lod<>	180
195	Test Pit #13		SW End Fill, @ 1' BS	18.6	10/18/2001 8:05	NA		648.4	160
196	Test Pit #13		SW End Fill, @ 1' BS	30.2	10/18/2001 8:06	NA		6198.4	400
197	Test Pit #14	SS-TP-14	0.9' BS	145.2	10/18/2001 8:23	NA		<lod< td=""><td>43.05</td></lod<>	43.05
198	Energy Calibration			60.2	10/18/2001 9:21	NA		NA	
199	Test Pit #12		SW End Fill, @ 0.2' BS	30.1	10/18/2001 9:25	NA		1040	110
200	Test Pit #12		SW End Fill, @ 0.9' BS	30.4	10/18/2001 9:32	NA		<lod< td=""><td>88.2</td></lod<>	88.2
201	Test Pit #12		SW End Fill, @ 0.6' BS	21.1	10/18/2001 9:39	NA		<lod< td=""><td>115.8</td></lod<>	115.8
202	Test Pit #12		NE End Fill, @ 0.9' BS	28	10/18/2001 9:41	NA	·	<lod< td=""><td>109.5</td></lod<>	109.5
203	Test Pit #12		NE End Fill, @ 0.5' BS	21.1	10/18/2001 10:25	NA		<lod< td=""><td>118.05</td></lod<>	118.05

Sample No.	Location	O&G Sample No.	<u>Depth</u>	Source Seconds	Date/Time	Resolution	Resolutin Error	Pb Concentration	Pb Error
204	Test Pit #12		NE End Fill, @ 0.7' BS	30.6	10/18/2001 10:30	NA		<lod< td=""><td>119.4</td></lod<>	119.4
205	Test Pit #12		NE End Fill, @ 1.5' BS	30.6	10/18/2001 10:32	NA		<lod< td=""><td>125.25</td></lod<>	125.25
206	Energy Calibration			60.2	10/18/2001 11:15	NA		NA	
207	Test Pit #15		3.5' BS	30.4	10/18/2001 11:22	NA		793.2	130
208	Test Pit #15		3' BS	21.1	10/18/2001 11:24	NA		3209.6	330
209	Test Pit #15		1' BS	30.7	10/18/2001 11:26	NA		413900.81	80998.4
210	Test Pit #15		10' BS	30.8	10/18/2001 11:37	NA		193945.59	21990.4
211	Test Pit #15		12' BS	30.4	10/18/2001 11:46	NA		696.4	120
212	Test Pit #16		0.2' BS	30.2	10/18/2001 12:25	NA		9728	620
213	Test Pit #16		1.2' BS	30.3	10/18/2001 12:27	NA		1520	160
214	Test Pit #16		3.5' BS	28.2	10/18/2001 12:29	NA		514.8	130
215	Test Pit #16		8' BS	30.5	10/18/2001 12:39	NA		1209.6	170
216	Test Pit #16		10' BS	30.6	10/18/2001 12:48	NA		<lod< td=""><td>127.2</td></lod<>	127.2
217	Energy Calibration			60.2	10/18/2001 13:31	NA		NA	
218	Test Pit #11		South Half, Fill @ 1.5' BS	30.3	10/18/2001 13:40	NA		2148.8	200
219	Test Pit #11		South Half, Fill @ 2.9' BS	20.9	10/18/2001 13:43	NA		6988.8	570
220	Test Pit #11		North Half, Fill @ 2' BS	16.4	10/18/2001 14:00	NA		275.6	130
221	Test Pit #11		North Half, Fill @ 3.2' BS	23.4	10/18/2001 14:01	NA		1069.6	180
222	Test Pit #11		North Half, Fill @ 2.5' BS	25.9	10/18/2001 14:05	NA		407.8	120
223	Test Pit #11		North Half, Fill @ 5' BS	30.1	10/18/2001 14:08	NA		12396.8	750
224	Test Pit #11		North Half, Native @ 6' BS	30.5	10/18/2001 14:15	NA		<lod< td=""><td>114.9</td></lod<>	114.9
225	NIST High			122.8	10/18/2001 14:37	NA		5907.2	230
226	NIST Low			121.9	10/18/2001 14:43	NA		<lod< td=""><td>60</td></lod<>	60
227	Energy Calibration			60.1	10/18/2001 21:32	550.8	0	NA	
228	Test Pit #12	SS-TP-12	1.2' BS	124.2	10/18/2001 21:35	NA		<lod< td=""><td>49.35</td></lod<>	49.35
229	Test Pit #11	SS-TP-11	6' BS	126.4	10/18/2001 21:41	NA		<lod< td=""><td>55.8</td></lod<>	55.8
230	NIST Blank			124.2	10/18/2001 21:47	NA		35.5	23.6
231	Prepared Blank			126.6	10/18/2001 21:53	NA		38.2	23.1

Soil boring logs

								
O'BRIEN & GERE ENGINEERS, INC.	TES	ST BOI	RINGL	.OG	BORING I	NO. SB-OBG-1		
PROJECT: Revere Smelting and Re	ning				SHEET 1 OF 1			
CLIENT: NYSDEC	JOB NO. 26408.004.400							
DRILLING CONTRACTOR: Parratt W	olff Inc.				MEAS. PT.			
PURPOSE: Confirm 3500 ppm Pb		0.5'-1' BS			GROUND E			
DRILLING METHOD: 4.5 Split Barrel		SAMPLE	CORE	CASING				
DRILL RIG TYPE: Hand Auger	TYPE		-		DATE STAR	RTED 10/24/2001		
GROUND WATER DEPTH:	DIA.			_	DATE FINIS	HED 10/24/2001		
MEASURING POINT:	WEIGHT				DRILLER	G. Sleeman		
DATE OF MEASUREMENT:	FALL	<u> </u>			INSPECTOR	R G. Sleeman		
Depth Ft. Sample Number Blows on Sample Spoon per 6" Penetration Unified Classi-	fication G	SEOLOG	SIC DE	SCRIPT	ION	REMARKS		
1 -	0-0.3' Brov	wn CLAY, 0, yish Brown trace medi	to Yellowish		AY,	SB-1&2 not staked out Measured from SS-OBG-23 SB-OBG-1 (0.5'-1' BS) 805		

		O'B							TES	ST BO	RING L	.OG	BORING I	NO. SE	3-OBG-2	
PRO.									ina		•		SHEET 1 OF	T 1		
	PROJECT: Revere Smelting and Refining SHEET 1 O CLIENT: NYSDEC JOB NO.											26408.004.400				
_					TOR	· Da	rra	tt Mo	Iff Inc.							
PUR									W of SS-9	0 51 41 00			MEAS, PT. I			
									W 01 33-9				GROUND E	LEV.		
DRIL						•			F. (5.8	SAMPLE	CORE	CASING				
DRIL					land		ger		TYPE				DATE STAR		10/24/2001	
GRO					PIH	:			DIA.			<u> </u>	DATE FINIS	HED	10/24/2001	
MEAS DATE					#ENI	т.			WEIGHT FALL	 			DRILLER		G. Sleeman	
DATE							т		PALL	l			INSPECTOR	<u> </u>	G. Sleeman	
Depth Ft.	Sample	Blows on	Sample	Spoon	per 6" Penetration	Recovery	Unified	Classi- fication	G	EOLOC	SIC DE	SCRIPT	ION	R	EMARKS	
							Г		0'-0.4' Brov	wn CLAY, 0	rts			SS-OB	G-2 (0.5'-1' BS)	
		<u></u>			_				0.3'-0.9' - E	Brown to Gre		n CLAY, trad	e medium	82	5	
									0.01.41.3/-11	fine SAND,			.,			
1 -					\dashv		1		Jo.er-Tr Yell	ow to Browr fine SAND	iisn Grey C	LAY - trace	medium			
										IIIIE SAND						
					-											
		1														
2 -					٦.											
1					7											
3 —																
]					1											
					_											
					-									[
4 -		-														
		-			-											
5 —					\dashv											
۵_																
6 -							ŀ									
					4											
							ľ									
7 —		-			4											
		-			-											
8 -					\dashv											
					٦]				
9 _												1				
					7											
					_				1							
10 —		<u> </u>			4											
		1			_1				1					1		

		NODIENI (DE	TEC	ET POE		00	DODINO	10. 0D. 0D. 0			
		D'BRIEN (INGINEER			123	ST BOF	TING L	.OG	BORING	NO. SB-OBG-3			
PRO		: Revere Sm			ng				SHEET 1 OF	1			
CLIE	NT: N	IYSDEC			_				JOB NO.	26408.004.400			
DRIL	LING	CONTRACT							MEAS. PT. ELEV.				
A	POSE		•		pm PB Sa	mples SW			GROUND ELEV.				
		METHOD: 4.				SAMPLE	CORE	CASING		DATUM			
			' Auger	•	TYPE				DATE STAR				
		WATER DEP NG POINT:	' I M;		DIA. WEIGHT		·		DATE FINIS				
		MEASUREM	ENT:		FALL				DRILLER INSPECTOR	J. Percy & J. Wheeler G. Sleeman			
Depth Ft.			Penetration/ Recovery	Unified Classi- fication	G	EOLOG	SIC DES	SCRIPT		REMARKS			
			0-1.3			own CLAY, I	little mediur	n fine Sand	, little	0.7 fill			
		6	4		medium fin		OII T /		0.7'	0.7.4.0 N15			
1		6			0.7-1.3 Ye	llowish Brov	vn SIL1, tra	ice Clay		0.7-1.3 Native Till SB-OBG-3 (0-1.3' BS)			
1 -		<u> </u>	1							13:40, VOC's Metals			
		4	$\overline{\mathcal{N}}$	1									
		44		1									
2 -		11	2.0-	1	2 0-2 7' Ye	llowish Brov	vn SILT tra	re Clav					
		14	3.3			llowish Brov			coarse(+)	SB-OBG-3 (2-3.3' BS)			
			1			and, some c				13:55			
3 —		20	1										
		20		-									
4 -		15]									
7		12	4.0- 4.9'			llowish Brov				SB-OBG-3 (4-4.9' BS)			
•		12	4.9		imedium Sa	and, some c	oarse medi	um(+) tine (31 a vei	14:00			
_		21											
5 –	1			1									
		21	1//	1									
1		20	///	1	1								
6 -			6.0-	1	6.0-7.3' Ye	llowish Brov	vn SILT, littl	le Clay, little	coarse(+)				
		24	7.3'			and, some m			•				
		14								SB-OBG-3 (6.7.3' BS)			
7 -		14	-						7.3'	14:05			
ĺ		16		1					,.0	Gravel is shale.			
1		40	1										
8 -	1	16	┼	-									
1		1											
			1										
9 _			4										
1													
			1										
10 -			_										
10 -													

									<u> </u>			
		BRIEN (NGINEER:	SGEI	RE 10.	TES	ST BOF	RING L	.OG	BORING I	NO. SB-OBG-4		
PRO		Revere Sme			ng				SHEET 1 OF	= 1		
		YSDEC							JOB NO.	26408.004.400		
DRIL	LING	CONTRACTO	OR: Pa	arratt Wolf	f Inc.				MEAS. PT. ELEV.			
	POSE:				action leve			GROUND ELEV.				
DRIL	LING	METHOD: 4.	5 Split	Barrel		SAMPLE	CORE	CASING				
DRIL	L RIG	TYPE: 3"	Auger		TYPE				DATE STAR	TED 10/24/200		
		WATER DEP	TH:		DIA.				DATE FINIS			
		IG POINT:	- A 150-		WEIGHT				DRILLER	J. Percy & J. Wheeler		
DATE	= OF 1	//EASUREME		r	FALL				INSPECTOR	R G. Sleeman		
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetration/ Recovery	Unified Classi- fication	G	EOLOG	SIC DES	SCRIPT	ION	REMARKS		
		_	0-1.0'			own SILT, li		me coarse		0.7 - Fill		
		8	4		medium(+)	fine Gravel			0.7			
		 18			0.7-1.0' Ye	llowish Brov	wn SIL1, tra	ice Clay		0.7-1.0' Possible intact/ Native Till		
1 –	1		//	1						medium firm		
		23]						compaction		
										SB-OBG-4 (0-1.0' BS		
2 -		35	77	ł	0.0.51	Manufak Dani	011 7 . 0			Dry 12:15		
		18			2.0-2.5 Ye	llowish Brov	vn Sili - S	HALE		Mostly Shale		
										No Sample		
3 –		25]								
		25										
		20		1								
.		30]								
4 -			4.0-			llowish Brov			e medium	Very firmly Compact		
		20	5.7'		fine Sand,	some mediu	ım(+) fine (Gravel				
		23								SB-OBG-4 (4.0-5.7' BS) 12:40		
5			1							12.70		
		23]									
6 -		34	177		6 0.7 7' Da	rk Yellowish	Brown Cl	∆V little ===	adium fino	Vory Eismly Compact		
		40				medium(+)		nue me	salam Mit	Very Firmly Compact SB-OBG-4 (6.0-7.7' BS)		
			1							12:45		
7 -		34	4									
		24										
	7.7											
		34	ZZ									
8 -												
			-									
۸												
9 _			1					-				
10 —			†									

					r							
		D'BRIEN E NGINEER			TES	ST BOF	RING L	.OG	BORING N	NO. SB-OBG-5		
PRO		Revere Sm			ng	·			SHEET 1 OF	= 1		
		YSDEC			<u> </u>				JOB NO. 26408.004.400			
DRIL	LING	CONTRACT	OR: Pa	arratt Wolf	f Inc.				MEAS. PT. ELEV.			
PUR	POSE:	: Determir	ne if fill	is above	action leve	l (500 ppn	1).	GROUND ELEV.				
		METHOD: 4.	5 Split	Barrel		SAMPLE	CORE	CASING	DATUM			
		TYPE:			TYPE				DATE STAR	TED 10/23/2001		
		WATER DEP			DIA.				DATE FINIS			
		IG POINT: (MEASUREMI		Surface	WEIGHT FALL				DRILLER	J. Percy & J. Wheeler		
DATE	Z OF K			<u> </u>	FALL				INSPECTOR	G. Sleeman		
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetration/ Recovery			EOLOG				REMARKS		
		_	0-0.9			own CLAY,		um fine San	d, some	Mottled, Dry Fill		
		5	4			dium(+) fine Ilowish Brov		lla Clave trae	no mandicum	SB-OBG-5 (0-0.9' BS)		
١,		12				little mediur				7:45 Inhomogeneous - Dry		
1 –	1			1						Native		
		13										
		7		1	 							
2 -	ĺ	<u>'</u>	2.0-	1	2.0-3.3' Ye	llowish Brov	vn SII T litt	tle Clay, trad	e Sand and	Homogenous Dry		
		13	3.3'		Gravel		,	iic Olay, iiai	c dang ang	Higher Silt content than		
			1							to the south.		
3 —		22	┧	ļ						SB-OBG-5 (2.0-3.3' BS)		
		20	K	-						7:50		
		20		1								
1 _		20]								
4 -		40	4.0~		4.0-5.7' Yel	llowish Brov	vn SILT, litt	ile Clay, trac	e medium	Homogeneous Dry		
		13	5.7'		fine Sand					SB-OBG-5 (4.0-5.7 BS)		
_		20								8:00		
5 -			1									
		17		1								
		17										
6 -		17	6.0-		6.0-7.1' Yel	llowish Brow	vn SII T li#	le Clay troc	e medium	Homogenous Dry		
		10	7.1'		fine Sand		m vier, ill	ao olay, tidt		SB-OBG-5 (6.0-7.1 BS)		
										8:05		
7 -		10	-						7.1'	·		
		14										
		, ,										
		16										
8 –												
			-									
9 _												
⁹			1		•							
10 —												

					,						
		BRIENE NGINEERS			TES	ST BOF	RING L	.OG	BORING N	IO. SB-OBG-6	
PROJECT: Revere Smelting and Refining SHEET 1 OF										- 1	
									JOB NO.		
										MEAS. PT. ELEV.	
PURPO						·			GROUND ELEV. 525.57		
		ETHOD: 3.5			iriui y	SAMPLE	CORE	CASING	DATUM	LLV. 323.37	
DRILL			Spiit	Darrei	TYPE					TED 10/22/2004	
		/ATER DEPT	Γ ⊢ ·		DIA.						
		G POINT:	111.		WEIGHT				DRILLER	J. Percy & J. Wheeler	
		EASUREME	NT:		FALL				INSPECTOR		
ند	Sample		Penetration/ Recovery	Unified Classi-		GEOLOGIC DESCRIPTION			REMARKS		
			0-1.4'			e coarse(+)				Diorite Gravel	
	}	20				Brown CLA\ se medium(Sand,	Dry loosely Compact Possible rewarded till	
1 -	ŀ	20					SB-OBG-6 (0-1.4') No Recovery				
	-	34								,	
₂		34									
		50-0.4	NC								
3 -											
4											
		14	4.0- 5.7'		Sand, som	ellowish Brov ne coarse me	edium(+) fin	e Gravel	4.7'	1	
5 —		30				ellowish Brov fine Gravel		ome coarse		Oxidized Firmly Compact SB-OBG-6 (4.0-5.7')	
		24									
		20	<u> </u>		5.4-5.7 Gra	ay SHALE				Native Possible Bedrock	
6		50-0.4'	6.0- 6.4'							Grey Shale Greywacke Homogeneous	
7 —										Stuff - Poor Recovery	
'											
]								
8 +			8.0- 8.3'			ellowish Brov fine Gravel		ome coarse		Dry - Firm Compact SB-OBG-6 (8-8.3')	
			8.4' Refus	 al		· · · · · · · · · · · · · · · · · · ·				Grey Shale/ Greywacke	
9 _											
10 —			-								

					TEST DODING LOG			00			
		D'BRIEN E INGINEEP			TEST BORING LOG			_OG	BORING NO. SB-OBG-7		
PRO	JECT:	Revere Sme	elting a	ınd Refinii	ng				SHEET 1 OF 2		
CLIENT: NYSDEC JOB NO.									JOB NO.	26408.004.400	
DRILLING CONTRACTOR: Parratt Wolff Inc. MEAS. PT. E									LEV.		
PURPOSE: Boundary of "Clean" Soil vs Fill based on XCF GROUND EL									_EV.		
DRIL	LING	METHOD: 4.	5 Split	Barrel		SAMPLE CORE CASING			DATUM		
DRIL	L RIG	TYPE:			TYPE				DATE STAR	TED 10/23/2001	
		WATER DEP	TH:					DATE FINIS			
		NG POINT:			WEIGHT				DRILLER	J. Percy & J. Wheeler	
DATE	OF 1	MEASUREME			FALL				INSPECTOR	G. Sleeman	
Depth Ft.	Sample	Blows on Sample Spoon per 6"	Penetration Recovery	Unified Classi- fication	GEOLOGIC DESCRIPTION				REMARKS		
			0-1.2			own CLAY S		nedium fine		Subangular Gravel	
		3				se medium		B		Fill/A Horizon	
		2				llowish Brov some medit			le medium	Homogenous - Dry SB-OBG-7 (0-12 BS)	
1 -	1	<u> </u>	1		inio Gario,	come medit	ani mie Gia	¥ G I		8:35	
		3		1							
]							
2 -		6	7	1	2.0-3.2' Yellowish Brown CLAY, some Silt, little medium fine Sand, some medium fine Gravel						
_		10	2.0- 3.2'							Oxidation and reduction	
		10	J3.2		line Sand,	some meall	ım tine Gra	vei		Mottling Gravel - Broken Shale	
	2 14						Shale at Base				
3 —	3 -									SB-OBG-7 (2.0-3.2 BS)	
		17		1						8:40	
				1							
4 -		20		4	404711		01.414	O'' P''			
•		18	4.0- 5.3'		4.0-4.7' Yellowish Brown CLAY, some Silt, little medium fine Sand, some medium fine Gravel 4.7-5.3' Dark Yellowish Brown SILT, some Clay, little						
1		10	10.0							Shaley Dry	
_	•	23		ļ			ne medium fine Gravel			SB-OBG-7 (4.0-5.3')	
5 —	1		1							8:50	
	1	23	abla]							
				1							
6 -	ł	25	6.0-	1	60650-	ek Vallandet	. Cana Ole	- ا الم	andium fin -	Chalau Dai	
		35	6.5'		Gravel	rk Yellowish	i Gray, Clay	y Siit, and n	ieaium tine	Shaley - Dry SB-OBG-7 (6.0-6.5' BS)	
			۲۳	1	OI EL VOI					8:55	
,		50-0.3']						-	
7 –	1]							
1			\mathcal{N}	1							
l				1							
8 -	-		177	4	8 0 0 0' B-	wan CLAV	000F00 maa	dium Cand	somo	R 2! Majot to \A/at	
		9			1	own CLAY, nedium fine		num Sana,	some	8.3' Moist to Wet Gravel - Shale	
		<u> </u>	1			nodium imb	Jiurui			Gravor - Origio	
9 _		18	<u></u>]							
1 ¯				1						SB-OBG-7 (8.0-9.0' BS)	
		21	1//	1						9:07	
1		26		1							
10 -	1		///	1							

										
		BRIENE NGINEERS	GEI S. IN	?E ∤∁.	TEST BORING LO	G BORIN	NG N	IO. SB-OBG-7		
PRO.		Revere Sme			g SHEET			T 2 OF 2		
	NT: N	YSDEC				JOB NO.				
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetration Recovery	Unified Classi-	GEOLOGIC DESC	RIPTION		REMARKS		
_		25			10.0-10.9' Dark Yellowish Brown coar SAND, some Clay, some coarse(+) m Gravel			Moist		
11 —		35 45			10.9-11.2' Gray to Dark Yellowish Bro coarse medium(+) SAND, and coarse GRAVEL			SB-OBG-7 (10.0-11.2) 9:15		
12 -		25 43			12.0-12.9' Dark Yellowish Brown CLA fine SAND, and coarse(+) medium Gr			Saturated Mostly Shale SB-OBG-7 (12.0-12.9 BS) 9:25		
13 —		22 23						5.20		
14 —		25 50-0.1'			14.0 Gray SHALE			Possible Bedrock Contact Refusal Drilling Completed		
13 –								9:35		
16 -										
17 -										
18 -										
19 —				1						
20 -										
21 -										
22 -	1		1							

		BRIEN E NGMEEPS	GEI	RE 10.	TES	ST BOF	RING L	.OG	BORING N	IO. SB-OBG-8
PROJECT: Revere Smelting and Refining SHEET 1 OF									2	
CLIENT: NYSDEC JOB NO.									26408.004.400	
	DRILLING CONTRACTOR: Parratt Wolff Inc. MEAS. PT. 6									
PURPOSE: Find and Confirm "Clean" Soil Boundry GROUND E										
									LCV.	
		TYPE:	o opiit i	Darrei	TYPE	SAMPLE	CORE	CASING		TED 40/00/2004
		NATER DEP	ru.					DATE STAR		
		IG POINT:	111.		WEIGHT DRILLER			J. Percy & J. Wheeler		
		MEASUREME	NT:		FALL				INSPECTOR	
57112				· ·	17122				11101 20101	C O, Olcoman
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetration/ Recovery	Unified Classi- fication	G	EOLOG	SIC DES	SCRIPT	TON	REMARKS
			0-1.5			wn CLAY, lit			ne coarse	Loosely Compact
		16			medium(+)	fine Gravel	, organic ro	ots, pH?		Dry Fill
		12							,	A Ol plant Park
1 –		13		ŀ	1 0-1 5' Va	llowish Brov	un CLAV III	tle fine Gre	1.0	1.0' plastic lining (Native) Dry, Firmly
		21		 -	1.0-1.5	IIIOWISH DIOV	WII OLAT, III	ille illle Gra	vei	Compact
		-		1				Homogeneous		
_		13	$\backslash\!\!\!\backslash\!\!\!\!\backslash$	1						
2 -			2.0-		2.0-2.6' Ye	llowish Brov	vn CLAY, tr	ace mediur	n fine	Dry
		21	2.6'		SAND, little	e medium fir	ne Gravel			
				į						
з —		27								
		20								
		30								
		45		İ						
4 -			4.0-	1	4.0-4.5' Ye	llowish Brov	vn CLAY, tr	ace mediur	n fine	Same, reduced soils
		17	5.5'			medium fin				
			j		4.5-5.0' Ye	llowish Brov	Dry Firmly Compact			
5 -		19				medium fin				
ľ						own CLAY,	Oxidized - More Sub-			
		21		-	medium fine Gravel					Angular - Rounded
		30	///	1						Gravel - Semi-Moist
6 -		30	6.0-		6 0-6 2 Bro	own CLAY, t	race mediu	m fine SAN	D little	Moist
		32	6.2'		medium fir		WOIST			
			1			/ = - = -				
7 –		22	j							
, –]]						
		40		1						
		145		1						
8 -	1	45	8.0-	1	8 0 0 0 D-	own CLAV	como madi	ım fina(I) f	and	Moint
		14	9.4			own CLAY, : im fine(+) Gi		ли ши с (+) 3	pariu,	Moist
					Indio medic		avoi			
9 _		33								
1 " -	8.9-9.4' Reddish Brown CLAY, some medium fine(+)						Increase in gravel under-			
1	}	25]	1	ne coarse me				lying Bedrock
1										Observed Clasts
10 -		50-0.2'	1							
	<u>L.</u>	I	<u> </u>		<u> </u>					<u> </u>

			<u></u>	
	OBRIEN & GERE ENGINEERS, INC.	TEST BORING LOG	BORING N	IO. SB-OBG-8
PRO	JECT: Revere Smelting and Refini	SHEET 2 OF	2	
	NT: NYSDEC	JOB NO.	26408.004.400	
Depth Ft.	Sample Number Blows on Sample Spoon per 6" Penetration Recovery Unified Classi-	GEOLOGIC DESCRIPT	ΓΙΟΝ	REMARKS
11 —	50-0.2' NR			No Recovery No Sample
12 —	50-0.4'	12.0-12.4' Grey SHALEY LIMESTONE		Poor Recovery No Sample
13 -				
15 —	100-0.2'	14.0-14.2' Grey LIMESTONE		Poor Recovery No Sample
16 —		Grey LIMESTONE	15.5'	15.5' Refusal Probably a large limestone boulder - as seen inTP-7
17 —				
18 -				
19				:
21 -				
22 -				

	O'BRIEN 8 Engineer	GEI S. IN	RE IC.	TEST BORING LOG				BORING NO. SB-OBG-9		
PROJE	ECT: Revere Sme	SHEET 1 OF	1							
	T: NYSDEC	JOB NO.	26408.004.400							
	ING CONTRACTO	OR: Pa	rratt Wolf	f inc				MEAS. PT. E		
PURPO			nt of "Clea					GROUND EL		
	ING METHOD: 4.			311 00113	SAMPLE	CORE	CASING	4	-L V.	
				TYPE	SAMPLE	CORE	CASING	L	TED 40/05/0004	
	ND WATER DEP	and Au	gei	DIA.				DATE STAR		
	URING POINT:	IR.		WEIGHT			L			
	OF MEASUREME	ENIT:		FALL				DRILLER INSPECTOR	J. Percy & J. Wheeler G. Sleeman	
DATE			l	FALL				INSPECTOR	G. Sleeman	
Depth Ft.	Sample Number Blows on Sample Spoon per 6"	Penetration Recovery	Unified Classi- fication	G	EOLOG	SIC DES	SCRIPT	TION	REMARKS	
				0-0.2' Dark	Brown CL/	Y SILT me	dium Sand			
				0.2-0.5' Gr		e Clay, little	e coarse(+)			
1 -								0.5' coarse Sand,	SB-OBG-9 (0-2.0' BS) VOC's 13:00	
				Some coan	se(+) medic	iiii iiiie Ola	Vei		Metals Native	
2 -					llowish Bro		ome Clay, s		SB-OBG-9 (2.0-2.3' BS)	
				coarse me	dium fine G	ravel		2.3'	13:15 Refusal	
3 -										
		1								
]								
4 -										
]										
5 —		-								
			i I					,		
		1								
6		1								
	<u></u>									
1]								
7 –		-								
'	Į	1							•	
		-								
	1]							
8 -		1		[
]							,	
9 _]								
		1								
		-								
	1									
10 —		1	1							

		D'BRIEN (INGINEER			TEST BORING LOG				BORING NO. SB-OBG-10		
PRO		Revere Sm			na .				SHEET 1 OF 2		
		YSDEC	<i>-</i>		'9				JOB NO. 26408.004.400		
		CONTRACT	OR: Pa	rratt \Molf	ff Inc				MEAS, PT. ELEV.		
PURF			OIV. I a	ITALL VVOII	i iiio.				GROUND EL		
			5 O-14	Danas I		CAMPLE	CODE	CACINO		-L V .	
		METHOD: 4.	o Spiit	Barrei	TVDC	SAMPLE	CORE	CASING	DATUM DATE STAR	TED 40/02/2004	
		TYPE:	TI 1.		TYPE			 			
		WATER DEP	TH:		DIA. WEIGHT				DATE FINISI	HED 10/23/2001 J. Percy & J. Wheeler	
		NG POINT: MEASUREMI	ENIT:		FALL	 			DRILLER INSPECTOR		
DATE				1	FALL		_		INSPECTOR	G. Sieeman	
Depth Ft.	Sample	Blows on Sample Spoon	Penetration Recovery	Unified Classi- fication	G	EOLOG	SIC DE	SCRIPT	ΓΙΟΝ	REMARKS	
			0-0.7			wish Brown	ı CLAY, sor	ne Silt, little	coarse(+)	Probably - Reworked	
		5	_		medium fin	e Gravel				SB-OBG-10 (0-0.7' BS)	
]					0.7'	10:00	
1 –		14	1//	1							
		14		1							
		1-7	+//	1							
		18		1							
2 -			2.0-	1	2.0-2.9' Gr	ey SHALE				No Sample	
		21	2.9'		Ì	-					
3 –	Į	22	<u> </u>	<u> </u>							
		50.04		1							
		50-0.1'	+//	1							
				1			1				
4 -			4.0-	1	4.0-4.8' Ye	llowish Bro	wn CLAY ai	nd coarse n	nedium	SB-OBG-10 (4.0-4.8' BS)	
		20	4.8'	ļ	fine Grave						
			T]							
5 —]	30]							
ا "				1							
		35	1//	1							
		35	11	1							
6 -	1	100	+->-	ď	6.0-6.4' Ye	llowish Bro	wn CLAY a	n d coarse r	nedium	Poor Recovery	
I		27			fine Grave		•			No Sample	
1			//]							
7 -		50-0.4'	//	1	1						
' -				1							
1			///	1							
	1			4							
8 -	-	 -	+	4	8 0-8 4' 0	ark Yellowie	h Brown Cl	AY and co	arse Gravel	Poor Recovery	
1		50			3.3-3.7 0		,, D. OHIII OL	, und ou		No Sample	
			┪							·	
9 _]	50-0.4	_]								
1	1		7								
			_								
		1									
10 -	4		-								
1 .	1	1	i	<u> </u>	1					I	

		BRIENE	GEI	3Œ		TEST BORING LOG	BORING	NO. SB-OBG-10		
<u>=</u>		NGINEERS Revere Sme			finin		CHEETAO	F 0		
		YSDEC	siling a	na Ne	ши	9	SHEET 2 O JOB NO.			
OLILI	VI. IV		Ę				TJOB NO.	20408.004.400		
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetration Recovery	Unified Classi-	fication	GEOLOGIC DESCRIPT	TION	REMARKS		
		21	10.0- 11.4'			10.0-10.8 Dark Yellowish Brown CLAY and (GRAVEL	SB-OBG-10 (10.0-11.4 BS) 11:30		
11		24	-			10.8-11.4' Dark Brown CLAY and GRAVEL				
12 -		17 27								
12 -		30	12.0- 12.7'			12.0-17.7' Dark Brown Gray GRAVEL, some	Clay	Mostly Shale No Sample		
13 —		17								
14 —		23 45	14.0- 15.4'			14.0-15.1' Grey SHALE		Saturated - 14.0'		
, o –		50 54				15.1-15.4 Grey SHALE, some Brown Clay		SB-OBG-10 (15.1-15.4' BS) 11:50		
16 -		27	16.0- 16.9'			16.0-16.9' Grey SHALE, some Brown Clay, li coarse Sand	ittle	Mostly Shale Some Clay SB-OBG-10 (16.0-16.9' BS)		
17 —		17 16						11:55		
18 -		30 50-0.4'				18.0-18.4' Gray Shale	18.0 18.4	Poor Recovery		
19 —										
20 -										
21 -			_							
22 -			-							

		BRIEN & NGINEERS			TES	ST BOF	RING L	.OG	BORING NO. SB-OBG-11		
PRO		Revere Sme			na				SHEET 1 OF 2		
		YSDEC			mg				JOB NO. 26408.004.400		
		CONTRACTO	ر Po	rratt Wol	lff Inc				MEAS. PT. ELEV.		
	POSE:		711. I a	ITALL VVOI	n nic.				GROUND E		
		METHOD: 4.5	Split !	Rarrel		SAMPLE	CORE	CASING		20.04	
		TYPE:	Split		TYPE	OMIVIF LL	COIL	CASING	DATUM DATE STARTED 10/24/2001		
		VATER DEPT	TH [.]		DIA.				DATE FINIS		
		G POINT:	, , ,,		WEIGHT				DRILLER	J. Percy & J. Wheeler	
		MEASUREME	NT:		FALL				INSPECTO		
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetration/ Recovery	Unified Classi- fication	G	EOLOG	SIC DE	SCRIPT	ION	REMARKS	
1 -	0, 2	22 38 38	0-0.5			wn CLAY a	nd SILT, so	me medium	n fine Gravel	SB-OBG-11 (0-0.5 BS) 10:25 Fill	
2 -		36 36	2.0- 2.9'			own SILT a some coars	Loosely Compact SB-OBG-11 (2.0-2.9 BS) 10:30 Fill				
3 -		39 45									
4 -		20 11				own CLAY, medium fir		tle coarse n	nedium fine	Loose SB-OBG-11 (4.0-4.9' BS) 10:35 Fill	
6 -		29 11			600415	oue OLAY	little accord	n ma divers C	and some	Poor Paceyon	
		100-0.5'			4	own CLAY, dium fine G		s meaium S	ariu, Sume	Poor Recovery No Sample Fill	
7 -											
8 -		8	8.0- 9.6'		8.0-8.3' Grayish Brown CLAY, some medium(+) fine Sand 8.3-9.6' Dark Yellowish Brown SILT, little Clay, trace Sand, little medium fine(+) Gravel 504.74' 8.3' Native at 8.3' Medium Firm SB-OBG-11 (8						
9 _		36			Janu, intre	, modium ili	(·) Olave	•		SB-OBG-11 (8.3-9.6' BS) SB-X-4 10:45	
10 -	-	38	<u> </u>	1							

		BRIEN 5 NGINEERS	GEI	? Ε ਿ.		TEST BORING LOG	BORING NO. SB-OBG-11					
		Revere Sme	Iting a	nd F	Refinir	ng	SHEET 2 OF					
CLIEN	NT: N	YSDEC		r			JOB NO.	26408.004.400				
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetration Recovery	Unified	Classi- fication	GEOLOGIC DESCRIPT		REMARKS				
11 -			10.0- 11.5'			10.0-10.3 Dark Yellowish Brown SiLT, little Comedium fine(+) Gravel 10.3-11.5 Dark Yellowish Brown SILT, and comedium SAND, little Clay, some coarse med fine Gravel	oarse	SB-OBG-11 (10.0-11.5' BS) 11:00 Firmly Compact				
12 -		35 60-0.5'	12.0- 12.5'			12.0-12.5' Dark Yellowish Brown coarse(+) n SAND, little Silt, trace Clay, some fine Grave		Firmly Compact SB-OBG-11 (12.0-12.5 BS) 11:05				
13 —												
14 -		8	14.0- 15.6'				14.0-15.6 Dark Yellowish Brown SILT CLAY, little medium Sand, some coarse medium fine(+) Gravel					
ان -		50-0.4'					16.0'					
16 -		75-0.2'	16-16.2'			16.0-16.2' Grey SHALE	17.0'	Appears Either Bedrock of a layer Boulder - Line of Shale				
17 -						17.0' Refusal		Refusal 17.0'				
18 -												
19 –			1	į								
20 -			-									
21 -												
22 -	-		-									

	_							
OBRIEN & GERE ENGINEERS. INC.	TES	ST BOF	RING L	.OG	BORING NO. SB-OBG-12			
PROJECT: Revere Smelting and Refining	ng				SHEET 1 OF 2			
CLIENT: NYSDEC					JOB NO.	26408.004.400		
DRILLING CONTRACTOR: Parratt Wolff	Inc.				MEAS. PT. E	LEV.		
PURPOSE: Find Vertical Extent of Fil					GROUND EL	.EV. 512.37		
DRILLING METHOD: 4.5 Split Barrel		SAMPLE	CORE	CASING	DATUM			
DRILL RIG TYPE:	TYPE DATE STAR							
GROUND WATER DEPTH:	DIA.	1½	31/4		DATE FINISI			
MEASURING POINT: DATE OF MEASUREMENT:	WEIGHT				DRILLER INSPECTOR	J. Percy & J. Wheeler G. Sleeman		
	FALL				INSPECTOR	G. Sleeman		
Depth Ft. Sample Number Blows on Sample Spoon per 6" Penetration Recovery Unified Classi- fication		EOLOG			TON	REMARKS		
	ii	vn CLAY an						
		ey coarse(+		ne SAND, t	race Silt,			
1 - 18		ium(+) fine (own medium		ND, trace S	Gilt	SB-OBG-12 (0-1.6' BS) 16:20		
20						Fill		
2 - 2.0-		own medium						
		ownish Gray ium(+) fine (SB-OBG-12 (2.0-3.0' BS) 16:25					
3 - 8						Fill		
50-0.4'								
4 — 4.0- 5 4.9'	4.0-4.9' Bro Gravel	ownish Gray	CLAY, sor	ne medium	(+) fine	SB-OBG-12 (4.0-4.9' BS) 16:35		
5 - 8						Loosely Compact Fill		
12								
	i e	ownish Gray	CLAY, sor	ne medium	(+) fine	SB-OBG-12 (6.0-7.4 BS)		
_ 8 7.4'	Gravel 6.8-7.4' Bro	ownish Gray	CLAY sor	ne medium	(+) fine	16:40 Fill		
6	Gravel	Jimon Ora)	. 0211,601	modium	(·) ·····•			
8 5								
8 - 8.0- 9.6'	8.0-9.3' Br Gravel	ownish Gray	SB-OBG-12(8.0-9.6' BS) SB X-3					
95	9.3' Native							
	9.3-9.6' Yellowish Brown CLAY, some medium(+) fine Gravel							
10 - 6								

							 				
		BRIEN 8 NGINEER	GEI S. IN	?E ∤∁.		TEST BORING LOG	BORING N	IO. SB-OBG-12			
PRO.		Revere Sme			finir	ng	SHEET 2 OF	2			
		YSDEC		_				JOB NO. 26408.004.400			
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetration Recovery	Unified	fication	GEOLOGIC DESCRIPT	TION	REMARKS			
11 -		10 12 10	10.0- 11.9'			10.0-10.3' Yellowish Brown CLAY, little medi SAND, little Silt, some medium fine Gravel 10.3-11.9' Dark Yellowish Brown CLAY, little fine Sand, little Silt, some medium fine Grave	medium	SB-OBG-12 (10.0-11.0' BS) MS & MSD 17:00 502.37			
12 -		10	12.0- 12.6'			12.0-12.6' Dark Yellowish Brown coarse(+) rr SAND, little CLAY SILT, some medium(+) fin		SB-OBG-12 (12.0-12.6 BS) Compact			
13 —		15 50-0.4'									
14 —		12 24 19	14.0- 15.2'			14.0-15.2' Dark Yellowish Brown coarse(+) m SAND, little CLAY SILT, some medium fine C	Firmly Compact SB-OBG-12 (14.0-15.2' BS) 17:35				
ان -		10									
16 -		36 50-0.4'	16.0- 16.9'			16.0-16.9' Dark Yellowish Brown coarse(+) n SAND, little Clay Silt, some medium fine Gra		Firmly Compact - Saturated SB-OBG-12 (16.0-16.9' BS) 17:40			
17 -							18.0'				
18 -		42 22	18.0- 20.0'			Gray LIMESTONE and SHALE		Poor Recovery Limestone in Tip			
19 —		16	1								
20 -		28	_				20.0'				
21 -			_ _ _								
22 -			-								

O'BRIEN & GERE ENGINEERS, INC.	TEST BORING LOG	BORING NO. SB-OBG-13		
PROJECT: Revere Smelting and Refining	0	SHEET 1 OF 1		
CLIENT: NYSDEC	JOB NO. 26408.004.400			
DRILLING CONTRACTOR: Parratt Wolff	Inc	MEAS. PT. ELEV.		
PURPOSE: Presence of Processed V		· · · · · · · · · · · · · · · · · · ·		
DRILLING METHOD: 4.5 Split Barrel	SAMPLE CORE CASING	GROUND ELEV. DATUM		
DRILL RIG TYPE:	TYPE CORE CASING	DATE STARTED 10/25/2001		
GROUND WATER DEPTH:	DIA.	DATE STARTED 10/25/2001		
MEASURING POINT:	WEIGHT	DRILLER J. Percy & J. Wheeler		
DATE OF MEASUREMENT:	FALL	INSPECTOR G. Sleeman		
Depth Ft. Sample Number Blows on Sample Spoon per 6" Penetration/ Recovery Unified Classi-	GEOLOGIC DESCRIPT	ION REMARKS		
0.4-	0-0.4' Asphalt	0.41		
	0.4-1.8' Brown SILT, some coarse medium(+) little medium fine(+) Gravel	fine Sand, SB-OBG-13 (0.4-1.8' BS) 9:00 Fill		
18				
	2.0-3.4' Yellowish Brown coarse(+) medium fir little Silt, some medium fine(+) Gravel	ne SAND, Loosely Compact SB-OBG-13 (2.0-3.4' BS)		
3 - 14		9:05 (X-5) and VOC's Metals Fill		
13 16	A O A 711 intervention Days a OU T	(1)		
5.3'	4.0-4.7' Light Yellowish Brown SILT, some commedium fine Sand, some medium fine(+) Grav	vel 9:10 Fill		
	4.7-5.3' Dark Yellowish Brown SILT, coarse m fine Sand, trace Clay, some medium fine Grav	4		
	6.0-7.2' Dark Yellowish Brown SILT, and coar medium fine SAND, trace Clay, some medium	, , ,		
7 _ 15	Gravel	Moderately Firmly Compact 7.2' Possible Native		
8 - 20				
9 _				
10 -				

					GEI S. H			TES	ST BOF	RING L	OG.	BORING N	IO. SB-OBG-14		
PRO.		_			elting a		finir	ing SHEET 1				SHEET 1 OF	1 OF 1		
			SDEC									JOB NO. 26408.004.400			
DRIL	LING	3 C	ONTR	ACT	OR: Pa	rratt V	Volf	f Inc.				MEAS. PT. E	LEV.		
PUR	POS	E:	Pre	senc	e of Pro	ocesse	ed \	Vaste/Fill i	n Drive Wa	ay		GROUND E	_EV.		
DRIL	LING	3 M	ETHO	D: 4.	5 Split	Barrel			SAMPLE	CORE	CASING	DATUM			
DRIL								TYPE				DATE STAR			
	ROUND WATER DEPTH:							DIA.				DATE FINIS			
			POIN		TAIT.			WEIGHT			;	DRILLER	J. Percy & J. Wheeler		
DATE	<u> </u>	IVIE	ASU			[FALL				INSPECTOR	R G. Sleeman		
Depth Ft.	Sample Number Blows on Sample Spoon per 6" Penetration/ Recovery Unified							G	EOLOC	SIC DE	SCRIPT	ION	REMARKS		
ļ		\neg			0-0.4		•	0.0-0.4' As	phalt			0.4'	Collected from cutting		
		L			0.4-					ome mediu	ım fine San	d, little	Rock in Drill Path		
	1				1.0'			medium fir	ne Gravel				SB-OBG-14 (0.4-1.0' BS) 9:45		
1	1	 -			$\overline{}$	ł		1.0-4.0' C∈	ement				1.0-4.0' Cement		
	ĺ]							Fill		
]									
2 -	-	-				·									
			.0			1									
		۲	<u> </u>]									
3 -]	5	0-0.3		//]									
ľ						1									
		┝			///	1									
Ι.]									
4 -	1	Γ]		4.0-4.2' B							
		7			4	Ì					edium SANI	D, trace	SB-OBG-14 (4.2-5.0' BS) 10:00		
		4	12		1			Siit, some	coarse med	num ime(+)	Glavei		Fill		
5 -	1	-	-		$\overline{}$	j							,		
		[1	10			1									
			10			1									
6 -	1	<u> </u> -			+	1		6.0-6.5 Da	rk Brown co	parse(+) me	edium SANI), trace Silt,	SB-OBG-14 (6.0-6.5' BS)		
		1	10		_				se medium				10:05		
7 -	4	Ľ	10		-										
1		[9												
1		f			1										
8 -	_	Ľ	10		1	1							·		
ľ															
1		H			┨										
9 _			=												
~ ~	1	Ţ			1								1		
		-			-										
10 -	1	ŀ			1										

		D'BRIEN E	GER	 3E	TES	RING L	.OG	BORING N	IO. SB-OBG-15		
		ENGINEERS									
PRO	JECT	: Revere Sme	lting a	nd Refini	ng			SHEET 1 OF 1			
CLIE	NT: I	VYSDEC							JOB NO. 26408.004.400		
		CONTRACTO							MEAS. PT. E		
PUR					long Balar			GROUND EI	LEV.		
		METHOD: 4.5	Split I	Barrel		SAMPLE	CORE	CASING			
		TYPE: WATER DEP	TI I.		TYPE				DATE STAR DATE FINIS		
1		NG POINT:	ΙП.		DIA. WEIGHT				DRILLER	HED 10/25/2001 J. Percy & J. Wheeler	
		MEASUREME	NT:		FALL				INSPECTOR		
Depth Ft.	Sample	Blows on Sample Spoon per 6"	Penetration/ Recovery	Unified Classi- fication	G	EOLOG	SIC DE	SCRIPT	ΓΙΟΝ	REMARKS	
			0-0.9			n SILT and		dium(+) fine	SAND,	SB-OBG-15 (0.9' BS)	
		8			little mediu	m(+) fine G	ravel			8:30 Fill	
1 -	ļ	14		-							
		20									
2 -		20						0.4415 11111	074 1747		
		16	2.0- 2.7'			own coarse ne(+) Gravel		SAND, little	e Silt, little	SB-OBG-15 (2.0-2.7' BS) 8:35 Fill	
3 –		10								FIII	
		8									
4 -	-	15	4.0-		4.0.4.6! D-			CAND	- Cill	SB-OBG-15 (4.0-4.6' BS)	
		10	4.6'			own coarse m(+) fine G		SAND, SUI		8:40 Fill	
5 —		13									
6 -											
7 -											
'											
8 -											
9 _											
] " -	1		1								
			1								
10 -	\dashv		1								

		<u> </u>		,				
O'BRIEN I ENGINEER		TES	ST BOF	RING L	.OG	BORING NO. SB-OBG-16		
PROJECT: Revere Sm		ning			SHEET 1 OF	- 1		
CLIENT: NYSDEC	<u> </u>		JOB NO.	26408.004.400				
DRILLING CONTRACT	OR: Parratt W	olff Inc.				MEAS, PT. E	LEV.	
	Presence of Fil		rd Road			GROUND E		
DRILLING METHOD: 4.	5 Split Barrel		SAMPLE	CORE	CASING	DATUM		
DRILL RIG TYPE:		TYPE				DATE STAR	TED 10/25/2001	
GROUND WATER DEF	PTH:	DiA.				DATE FINIS		
MEASURING POINT:		WEIGHT				DRILLER	J. Percy & J. Wheeler	
DATE OF MEASUREM		FALL				INSPECTOR	R G. Sleeman	
Depth Ft. Sample Number Blows on Sample Sample	Penetration Recovery Unified Classi-	fication	SEOLOG	SIC DE	SCRIPT	TON	REMARKS	
6	0-1.3'		owish Brow), trace med			dium(+)	Loosely Compact SB-OBG-16 (0-1.3' BS) 8:00	
1 - 4 6	-		ellowish Bro some medi			r) medium 1.3'	Road Fill	
2 - 11	2.0- 3.7'		ellowish Bro medium fin			ND, little	SB-OBG-16 (2.0-3.7' BS) 8:05 VOC's, Metals	
3 - 9							Native Till	
10	4.0- 4.3'		ellowish Bro ome mediu				Loosely Compact SB-OBG-16 (4.0-4.3' BS)	
5 — 12							8:10	
6 -								
7 -								
8 -								
9 _								
10 -	-							

	OBRIENS GERE TEST BORING LOG BORING ENGINEERS, INC.								BORING N	IO. SB-OBG-17		
PRO.	JEC		Revere Sme			ng SHEET 1 OF						
			SDEC	Atting Ca	110 11011111	.9				JOB NO. 26408.004.400		
			ONTRACTO)R· Pa	rratt Wolf	Iff Inc				MEAS. PT. ELEV.		
PURI							d Road			GROUND EI		
			IETHOD: 4.5			Along Balard Road SAMPLE CORE CASING						
			YPE:	Opiiti	Darrei	TYPE	SAMI LL	CONE	CASING	DATE STAR	TED 10/25/2001	
			ATER DEP	TH [.]		DIA.				DATE FINIS		
			3 POINT:			WEIGHT				DRILLER	J. Percy & J. Wheeler	
			EASUREME	NT:		FALL				INSPECTOR		
Depth Ft.	Sample	Number	Blows on Sample Spoon per 6"	Penetration/ Recovery	Unified Classi- fication		EOLOG		SCRIPT		REMARKS	
			_	0-1.6'			n SILT, roo				SB-OBG-17 (0-1.6' BS)	
		<u> </u>	8				llowish Brov		le medium t	ine SAND,	7:30	
			10			little mediu	m fine Grav	el				
1 -	1	-	12									
			16									
		ŀ										
		:	30									
2 -	1	ſ		2.0-			ay CLAY SI	LT, trace m	edium fine	Sand, trace	SB-OBG-17 (2.0-2.5' BS)	
		[28	2.5'		fine Gravel					7:35	
			4.4									
3 -	ł	-	11									
1			10									
		ŀ										
			6									
4 -	1	Ī		4.0-		4.0-4.6' Gr	ay SILT, so	ne Clay, tra	ice medium	fine Sand,	SB-OBG-17 (4.0-4.6' BS)	
			3	4.6'		little mediu	m(+) fine G	ravel		4.6'	7:40	
5 —	ł	ļ	3	77								
1												
		}		1								
1												
6 -	1	f	-	1								
1]								
1		ſ										
7 –	1			}								
1				1								
		}		1	[
		1									·	
8 -	1	<u> </u>		1								
	İ	ľ										
9 _	1	Ĺ				-						
	1											
	-	}		-								
10 -	1	ŀ		1							1	

· ·			_		 .				
	OBRIENEGERE TEST BORING LOG BORING N								
PROJECT: Reve	ere Smelting a	and Refinir	ng		-		SHEET 1 OF	1	
CLIENT: NYSDE							JOB NO.	26408.004.400	
DRILLING CONT	RACTOR: Pa	arratt Wolf	f Inc.		.,		MEAS, PT. E		
PURPOSE: 10	lentify if Fill is	Present	-				GROUND E		
DRILLING METH	IOD: 4.5 Split	Barrel		SAMPLE	CORE	CASING	DATUM		
DRILL RIG TYPE			TYPE		·		DATE STAR	TED 10/24/2001	
GROUND WATE			DIA.				DATE FINIS		
MEASURING PO			WEIGHT				DRILLER	J. Percy & J. Wheeler	
DATE OF MEAS		1	FALL				INSPECTOR	G. Sleeman	
Depth Ft. Sample Number Blows on			G	EOLOG	SIC DES	SCRIPT	TON	REMARKS	
5 5	0-1.9		0-1.9' Yello little mediu			ne(+) SAND	, little Silt,	Loose SB-OBG-18 (0-1.9' BS) 14:55 Fill	
6									
2 - 6 6	2.0- 2.6'		2.2-6.4' Bro little mediu			ND, little Si	lt, little Clay,	 SB-OBG-18 (2.0-2.6' BS) 15:10 Fill	
3 - 6 5									
4 - 7 6	4.0- 4.5'		4.0-4.3' Brown medium fine(+) SAND, little Silt, little Clay, little medium(+) fine Gravel 4.5 4.3-4.5' Dark Brown coarse medium(+) SAND, trace Silt,				SB-OBG-18 (4.0-4.5' BS) 15:15		
5 — 9			4.3-4.5' Da little fine(+)		arse mediu	ım(+) SANE), trace Silt,	Fill	
6									
7 -									
8 -		:							
9									
10 -									

O'BRIEN 5 GERE ENGINEERS, INC.	TEST BORING LOG	BORING NO. SB-OBG-19		
PROJECT: Revere Smelting and Refining	9	SHEET 1 OF 1		
CLIENT: NYSDEC		JOB NO. 26408.004.400		
DRILLING CONTRACTOR: Parratt Wolff	Inc.	MEAS. PT. ELEV.		
PURPOSE: Piece of Fill	lover theory lover	GROUND ELEV.		
DRILLING METHOD: 4.5 Split Barrel	SAMPLE CORE CASING	DATUM DATE STARTED 10/24/2001		
DRILL RIG TYPE: GROUND WATER DEPTH:	TYPE DIA.	DATE STARTED 10/24/2001 DATE FINISHED 10/24/2001		
	WEIGHT	DRILLER J. Percy & J. Wheeler		
DATE OF MEASUREMENT:	FALL	INSPECTOR G. Sleeman		
Sample Number Blows on Sample Spoon per 6" Penetration/ Recovery Unified Classi-	GEOLOGIC DESCRIPT	ION REMARKS		
0-0.6'	0-0.6' Brown to Yellowish Brown coarse medi SAND, little Silt, little medium fine(+) Gravel	15:30		
1 – 22		Fill		
22				
	2.0-2.3' Brown to Yellowish Brown coarse me			
	fine(+) Gravel 2.3-3.3' Yellowish Brown SILT, trace Clay, litt	2.3' 15:35 MS-MSD lle coarse Native Till		
3 - 6	medium fine Sand, little medium fine Gravel			
30				
	4.0-4.6' Yellowish Brown medium(+) fine SAN Silt	ND, little SB-OBG-17 (4.0-4.6' BS) 4.6' 15:40		
5 12				
6 -				
7 -				
8				
9				
10				

					TEC	T DOI						
		BRIENE NGINEER:			153	ST BOF	KING L	.06	BORING N	IO. SB-OBG-20		
PRO		Revere Sme		-	ng				SHEET 1 OF	SHEET 1 OF 1		
		YSDEC				<u>.</u>			JOB NO.	26408.004.400		
		CONTRACTO							MEAS. PT. E	·		
	POSE:				alard Road				GROUND EL	.EV.		
		METHOD: 4.8	5 Split	Barrel	- TV6-	SAMPLE	CORE	CASING	DATUM			
		TYPE: VATER DEP	TU		TYPE DIA.		· · - ·		DATE STAR			
		IG POINT:	ın.	·	WEIGHT			l	DRILLER	J. Percy & J. Wheeler		
		/EASUREME	NT:		FALL				INSPECTOR			
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetration/ Recovery	Unified Classi- fication	G	EOLOG	SIC DE	SCRIPT	ION	REMARKS		
			0-1.5'			n SILT, little						
l		5	1			llowish Brov little mediur			medium(+)	Compact - moderately SB-OBG-20 (0-1.5' BS)		
		8			line Cand,	iittie mediai	ii(+) iiile Oi	avci		16:00		
1 -	1		1							Native Till		
		9	4									
		10	< <									
2 -	1		2.0-		2.0-2.6' Ye	llowish Brov	vn SILT, so	me coarse	medium(+)	SB-OBG-20 (2.0-3.3' BS)		
		5	3.3'			little mediur				16:05		
		6				llowish Brov parse mediu			ND, little			
3 -	ļ		1		John, mile of	Jaise Illeuit	ini ilile Gra	V C1		·		
	1	7		1								
				1								
4 -	ł	8			4.0-4.9' Yellowish Brown medium(+) fine SAND, som				ID. some	SB-OBG-20 (4.0-4.9' BS)		
		18				edium fine		() ,	,	16:10		
5 -	}	18							· 4.9'			
										·		
1		-	1									
6 -	1		4									
1												
			1									
7 -		<u> </u>	1	1								
									-			
			1									
8 -					1							
			1		1							
9 _												
" -	1		1									
			4									
10 -	1		1		<u> </u>							

O'BRIEN 5 GERE ENGINEERS, INC.	TEST BORING LOG	BORING NO. SB-OBG-21		
PROJECT: Revere Smelting and Refinir CLIENT: NYSDEC DRILLING CONTRACTOR: Parratt Wolff	Inc.	SHEET 1 OF 1 JOB NO. 26408.004.400 MEAS. PT. ELEV.		
DRILLING METHOD: 3.5 Split Barrel		DATUM		
DRILL RIG TYPE: 850 Track GROUND WATER DEPTH: MEASURING POINT:	TYPE DIA. 1½ 3¼ WEIGHT	DATE STARTED 11/6/2001 DATE FINISHED 11/6/2001 DRILLER J. Percy & J. Wheeler		
DATE OF MEASUREMENT:	FALL	INSPECTOR G. Sleeman		
Depth Ft. Sample Number Blows on Sample Spoon per 6" Penetration/ Recovery Unified Classi-	GEOLOGIC DESCRIPT	ION REMARKS		
0-1.5'	0-1.2' Brown SILT, little medium fine Sand, so coarse medium fine(+) Gravel	ome Fill - Dry SB-OBG-21 (0-1.5' BS) 9:35		
1 - 14	1.2-1.5' Yellowish Brown SILT, little Clay, sor	Gravel, Shale and Marble 1.2' Dry - Loosely Compact		
9	fine(+) Gravel 2.0-3.0' Yellowish Brown SILT, ittle Clay, so			
	medium(+) fine Gravel	SB-OBG-21 (2.0-3.1' BS) Dry, Moderately Firm 9:45		
3 - 30		5.40		
	4.0-5.1' Yellowish Brown SILT, trace Clay, so medium(+) fine Gravel, Plastic	ome coarse Fill Dry - Loss-Moderately		
5 — 36		Compact SB-OBG-21 (4.0-5.1' BS) 9:55		
34				
6 6.0- 28 6.5'	6.0-6.5' Yellowish Brown SILT, trace Clay, so medium(+) fine Gravel	ome coarse Gravel - Subangular Shale Graywacke SB-OBG-21 (6.0-6.5' BS)		
7 - 46 55-0.5'		10:00 Refusal @ 7.0' BS moved 4.0' east		
8 - 8.0-				
9	8.5' Refusal	8.5' Refusal at 8.5'		
10 -				

DIA 11/3 31/4 DATE FINISHED 11/6			D'BRIEN NGINEEF			TES	TEST BORING LOG				BORING NO. SB-OBG-22		
CLIENT: NYSDEC DRILLING CONTRACTOR: Parrait Wolff Inc. DRILLING CONTRACTOR: Parrait Wolff Inc. Purpose: Determine Vertical & Horizontal Extent of "Clean" Fill SW Facility GROUND ELEV.	PRO	IECT:	Revere Sr	nelting a	nd Refini	ng			···	SHEET 1 OF	- 1		
DRILLING CONTRACTOR: Parratt Wolff Inc. PURPOSE: Determine Vertical & Horizontal Extent of "Clean" Fill SW Facility GROUND ELEV.	CLIE	NT: N	YSDEC		•					JOB NO.	26408.004.400		
PURPOSE Determine Vertical & Horizontal Extent of "Clean" Fill SW Facility GROUND ELEV.	DRIL	ING	CONTRAC	TOR: Pa	rratt Wol	ff Inc.				MEAS, PT.	LEV.		
DRILLING METHOD: 3.5 Split Barrel SAMPLE CORE CASING DATUM Ground Surface DRILL RIG TYPE DATE STARTED 11/6 GROUND WATER DEPTH: DIA. 11/4 31/4 DATE STARTED 11/6 DATE STARTED DATE STARTED 11/6 DATE STARTED DATE STAR	PURF	OSE	Determ	nine Vert	ical & Ho	rizontal Ext	ent of "Cle	an" Fill SV	V Facility				
DRILLERG TYPE: TYPE DATE STARTED 11/6	DRILI	ING											
Comparison				<u> </u>		TYPE				_			
DATE OF MEASUREMENT: FALL INSPECTOR G. Sisemi	GRO	י סמר	NATER DE	PTH:			11/2	31/4					
Color Colo											J. Percy & J. Wheeler		
1	DATE	OF N				FALL				INSPECTOR	R G. Sleeman		
1	Depth Ft.	Sample	Blows on Sample Spoon	per 6" Penetration/ Recovery	Unified Classi- fication	G	EOLOG	SIC DE	SCRIPT	TION	REMARKS		
1 - 5 1.55 1				0-1.0'		0-0.5' Brow	n SILT, trac	e medium	fine Sand		Dry - Loose Compacted		
1			1	_		1					SB-OBG-22 (0-1.0' BS)		
2 - 20			E							le medium	11:55		
2.0-3.1' Yellowish Brown SILT, trace Clay, some medium fine(+) Sand, little medium(+) fine Gravel 30 50-0.5' 4.0-7 5.3' 21 20 6.0-7.0' Yellowish Brown SILT, little Clay, some medium fine(+) Sand, little medium fine Gravel, Mottles Gray Clay 6.0-7.0' Yellowish Brown SILT, little Clay, little medium fine(+) SB-OBG-22 (4.0-5.3' 12:10 6.0-7.0' Yellowish Brown SILT, little Clay, little medium fine(+) SB-OBG-22 (6.0-7.8' SB-OBG-22 (6.0-7.8	1 –		3	$\overline{}$		Illie(+) San	id, fillie coar	se medium	Gravei		,		
2.0-3.1' Yellowish Brown SILT, trace Clay, some medium fine(+) Sand, little medium(+) fine Gravel 30 50-0.5' 4.0-7 5.3' 21 20 6.0-7.0' Yellowish Brown SILT, little Clay, some medium fine(+) Sand, little medium fine Gravel, Mottles Gray Clay 6.0-7.0' Yellowish Brown SILT, little Clay, little medium fine(+) SB-OBG-22 (4.0-5.3' 12:10 6.0-7.0' Yellowish Brown SILT, little Clay, little medium fine(+) SB-OBG-22 (6.0-7.8' SB-OBG-22 (6.0-7.8			7		1								
2.0-3.1' Yellowish Brown SILT, trace Clay, some medium fine(+) Sand, little medium(+) fine Gravel 30 50-0.5' 4.0-7 5.3' 21 20 6.0-7.0' Yellowish Brown SILT, little Clay, some medium fine(+) Sand, little medium fine Gravel, Mottles Gray Clay 6.0-7.0' Yellowish Brown SILT, little Clay, little medium fine(+) SB-OBG-22 (4.0-5.3' 12:10 6.0-7.0' Yellowish Brown SILT, little Clay, little medium fine(+) SB-OBG-22 (6.0-7.8' SB-OBG-22 (6.0-7.8			-]								
15 3.1' 30 SB-OBG-22 (2.0-3.1' 12:00 SB-OBG-22 (2.0-3.	2		9										
30 50-0.5' 4.0-5.3' Yellowish Brown SILT, little Clay, some medium fine(+) Sand, little medium fine Gravel, Mottles Gray Clay 5 - 21 20 6.0-7.0' Yellowish Brown SILT, little Clay, little medium fine(+) Sand, little medium fine Gravel, Mottles Gray Clay 7 - 10 7 - 7 - 10 8 - 10 8 - 10 8 - 10 8 - 10 9 - Firm Compaction Reduced Mottles Perched Water Table SB-OBG-22 (4.0-5.3' 12:10 Moist SB-OBG-22 (6.0-7.8' SB-OBG			4.5								Dry - Firm Compaction		
30 50-0.5' 4.0-5.3' Yellowish Brown SILT, little Clay, some medium fine(+) Sand, little medium fine Gravel, Mottles Gray Clay 21 20 6.0-7.0' Yellowish Brown SILT, little Clay, little medium fine(+) Sand, little medium fine Gravel, Mottles Gray Clay 6.0-7.0' Yellowish Brown SILT, little Clay, little medium fine(+) Sand, little medium fine Gravel, Mottles Gray Clay 7.5 - Saturated 12:20 8.0-8.3' Gray SHALE 8.0-10.0' Gray SHALE; layered Limestone Gray Shale/Greywac Possible Bedrock			15	$ ^{3.1'}$		medium fin	e(+) Sand, I	little mediur	n(+) fine Gr	ravel	SB-OBG-22 (2.0-3.1' BS)		
4.0-5.3' Yellowish Brown SILT, little Clay, some medium fine(+) Sand, little medium fine Gravel, Mottles Gray Clay 5 - 21			30								12:00		
4.0-5.3' Yellowish Brown SILT, little Clay, some medium fine(+) Sand, little medium fine Gravel, Mottles Gray Clay Reduced Mottles Perched Water Table SB-OBG-22 (4.0-5.3' 12:10 6	3 —		30	$\overline{}$									
5 - 21			50-0.5'										
5 - 21													
5 - 21	4 -			\angle									
Perched Water Table SB-OBG-22 (4.0-5.3' 12:10 6	-		7								Dry - Firm Compaction		
SB-OBG-22 (4.0-5.3' 12:10 SB-OBG-22 (4.0-5.3' 12:10 6.0-7.0' Yellowish Brown SILT, little Clay, little medium fine(+) Sand, little medium fine Gravel, Mottles Gray Clay 7 - 10 7.0-7.8' Gray CLAY SILT, trace medium Sand, little medium fine Gravel 8 - 10 8.0-8.3' Gray SHALE 8.0-10.0' Gray SHALE; layered Limestone 6.0-7.0' Yellowish Brown SILT, little Clay, little medium fine Gravel, Mottles Gray Clay 8.0-8.3' Gray SHALE 8.0-10.0' Gray SHALE; layered Limestone 6.0-7.0' Yellowish Brown SILT, little Clay, little medium fine Gravel, Mottles Gray Clay 8.0-8.3' Gray SHALE; layered Limestone			1	- ^{5.3}		fine(+) San	id, little med	ium fine Gr	avel, Mottle	s Gray Clay			
5 21 22 12:10 6 - 20 6.0-7.0' Yellowish Brown SILT, little Clay, little medium fine(+) Sand, little medium fine Gravel, Mottles Gray Clay 7 - 10 7.0-7.8' Gray CLAY SILT, trace medium Sand, little medium fine Gravel 8 - 10 8.0-8.3' Gray SHALE 8.0-8.3' Gray SHALE 8.0-10.0' Gray SHALE; layered Limestone 8 - 10 8.0-8.3' Gray SHALE; layered Limestone			21										
6 - 20	5 —		<u>- · · · · · · · · · · · · · · · · · · ·</u>	\dashv									
6.0-7.0' Yellowish Brown SILT, little Clay, little medium fine(+) Sand, little medium fine Gravel, Mottles Gray Clay 7 - 10			21										
6.0-7.0' Yellowish Brown SILT, little Clay, little medium fine Gravel, Mottles Gray Clay 7 - 10													
7.8' 10 7.0-7.8' Gray CLAY SILT, trace medium Sand, little medium fine Gravel, Mottles Gray Clay 7.0-7.8' Gray CLAY SILT, trace medium Sand, little medium fine Gravel 8.0-8.3' Gray SHALE 8.0-10.0' Gray SHALE; layered Limestone 8.0-8.3' Gray SHALE; layered Limestone 8.0-8.3' Gray SHALE; layered Limestone	6 -		20	 		0.0701	Handa II B	On ~					
7.0-7.8' Gray CLAY SILT, trace medium Sand, little medium fine Gravel 10 10 8.0-8.3' Gray SHALE 8.0-10.0' Gray SHALE; layered Limestone 7.5 - Saturated 12:20 Gray Shale/Greywad Possible Bedrock			16										
7.0-7.8' Gray CLAY SILT, trace medium Sand, little medium fine Gravel 10 8.0-8.3' Gray SHALE 8.0-10.0' Gray SHALE; layered Limestone 7.5 - Saturated 12:20 Gray Shale/Greywad Possible Bedrock			10	⊣'.՝՝		mile(*) San	u, nul e med	ium iine Gr	avei, iviottle	s Gray Clay	SB-UBG-22 (6.0-7.8° BS)		
7.0-7.8' Gray CLAY SILT, trace medium Sand, little medium fine Gravel 10 8.0-8.3' Gray SHALE 8.0-10.0' Gray SHALE; layered Limestone 7.5 - Saturated 12:20 Gray Shale/Greywad Possible Bedrock			10										
8 10 medium fine Gravel 12:20 8.0-8.3' Gray SHALE 8.0-10.0' Gray SHALE; layered Limestone Possible Bedrock	/ -			7				_T, trace m	edium Sand	d, little	7.5 - Saturated		
8.0-8.3' Gray SHALE 21 Snow Shale/Greywad 8.0-10.0' Gray SHALE; layered Limestone Gray Shale/Greywad Possible Bedrock			10								12:20		
8.0-8.3' Gray SHALE 8.0-10.0' Gray SHALE; layered Limestone Gray Shale/Greywad Possible Bedrock			10										
21 8.0-10.0' Gray SHALE; layered Limestone Possible Bedrock	8 -	•	10	+>>		0.0.01.0-	my 01141 F				O 0h110 1		
50.04			21					lavered Lie	maetona				
Gray Shale, layered Limestone Discontinued at Bedi				┪		3.0-10.0	iay orince,	. iayereu Eli	NESCONE		L ASSIDIE DEGLOCK		
	9 _		50-0.1'			Gray Shale	, layered Li	mestone			Discontinued at Bedrock		
	\parallel \Box			7			-						
				_									
										40.0	Defined		
10.0' Refusal	10 -		 	\dashv						10.0'	retusal		

		D'BRIEN (Ingineer			TES	ST BOI	RINGL	BORING NO. SB-OBG-23				
PRO.		: Revere Sm			nina				SHEET 1 OF	2		
		YSDEC	<u></u>		9	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.		JOB NO.	26408.004.400		
		CONTRACT	OR: Pa	arratt Wo	olff Inc				MEAS. PT. I			
PUR					Verticle Ex	tent of "Cle	an" fill		GROUND E			
		METHOD: 3.			VOITIOIC EX	SAMPLE		CASING		LLV.		
		TYPE:	o opat	Darrer	TYPE	OAWII EL	CONL	CASING	DATE STAR	TED 11/5/2001		
		WATER DEP	TH:		DIA.	-		 	DATE FINIS			
		NG POINT:			WEIGHT	 		<u> </u>	DRILLER	J. Percy & J. Wheeler		
DATE	OF	MEASUREME	ENT:		FALL				INSPECTOR			
Depth Ft.	Sample	Blows on Sample Spoon			G	SEOLOG	SIC DE	SCRIPT	ΓΙΟΝ	REMARKS		
			0-1.0'			vn SILT, littl		ine Sand, s	ome coarse	Dry - Fill		
		5	1			ne(+) Grave				SB-OBG-23 (0-1.0' BS) 15:45		
1 -		5	\ \ \	-								
		3	11	1								
		-	///	1								
		2]								
2 -			2.0-			own SILT, li			fine Sand,	Moist - Fill		
		9	3.0'		some coar	se medium	fine(+) Grav	vel		SB-OBG-23 (2.0-3.0' BS)		
		 								15:50		
3 —		4		1								
		3	11	1						ł l		
			///]								
4 -		4		1								
]]			4.0-			own SILT, li		tle medium	fine(+)	SB-OBG-23 (6.0-7.1' BS)		
		6	4.8'		Sand, trac	e coarse fin	e Gravel.			Saturated Possible		
		5		1						Native 16:45		
5 —		<u> </u>	///	1						10.40		
		20]								
			\mathbb{N}]								
6 -		50-0.2'		<u> </u>								
		_	6.0-			own SILT, li		tle medium	fine(+)			
		5	7.1'	1	I	e coarse fin		raval	6.01			
		7		1		arse mediur own CLAY S			fine Sand			
7 —		<u> </u>	17	1		ım fine Grav		modium (r)	inic Gano,			
		5	$\mathcal{N}_{\mathcal{I}}$]								
				1								
8 -		7	177		00000							
		7				own CLAY S		medium(+)	tine Sand,	Native		
			\dashv		Some med	ium fine(+)	JIAV61			SS-OBG-23 (8.0-9.3' BS) 16:50		
9 _		7								10.00		
" -	1]								
		7]								
				1								
10 -	ļ	8	$\langle // \rangle$	1								
L	<u>!</u>	10	エンフ	1								

						_ -	
		BRIENE NGINEER:			TEST BORING LOG	BORING I	NO. SB-OBG-23
PRO.		Revere Sme			ina	F 2	
		YSDEC				SHEET 2 OF JOB NO.	26408.004.400
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetration Recovery	Unified Classi-	GEOLOGIC DESCRIP		REMARKS
			10.0-		10.0-11.3' Brown CLAY SILT, little coarse n	nedium(+)	SB-OBG-23 (10.0-11.3' BS)
	ĺ	12	11.3		fine Sand, some coarse medium(+) fine Gra	avel	17:00
11 -		14					
12 -		20	12.0-		12.0-13.1' Brown SILT, little Clay, little med	ium fino	SB OBC 22 (42 O 42 4) BS
		20	13.1		Sand, some medium fine Gravel	ium ane	SB-OBG-23 (12.0-13.1' BS) 17:10
13 -		28					·
14 -		50-0.2' 6	14.0- 15.1'		14.0-15.1' Brown CLAY SILT, little medium some medium fine(+) Gravel	fine Sand,	SB-OBG-23 (14.0-15.1' BS) 17:20
- در		22 40					
16		50 28	16.0- 17.1'		ż		
17 —		32					
18 —		37 6	18.0- 18.8'		18.0-18.8' Brown SILT CLAY, trace medium some medium fine(+) Gravel		SB-OBG-23 (18.0-18.8' BS) Gravel Shale
19 —		50-0.2'				18.8'	17:35
20 —							
21 —							
22 -							

								·				
		O'BRIENE Engineer:			TES	TEST BORING LOG				BORING NO. SB-OBG-24		
PRO.	JECT	: Revere Sme	elting a	nd Refin	ing				SHEET 1 OF	2		
		NYSDEC			<u> </u>				JOB NO.	26408.004.400		
DRIL	LING	CONTRACTO	DR: Pa	rratt Wo	iff Inc.				MEAS, PT, E	LEV.		
PURI	POSE	: Vertical 8	& Horiz	ontal Ex	tent of "Clea	an" Fill, So	uth of Faci	lity	GROUND EL	_EV. 505.31		
DRIL	LING	METHOD: 4.6	5 Split I	Barrel		SAMPLE	CORE	CASING	DATUM			
DRIL	L RIC	TYPE:			TYPE			-	DATE STAR			
		WATER DEP	TH:		DIA.				DATE FINIS			
		NG POINT:			WEIGHT				DRILLER	J. Percy & J. Wheeler		
DATE	OF	MEASUREME			FALL				INSPECTOR	G. Sleeman		
Depth Ft.	Sample	Blows on Sample Spoon per 6"	Penetration/ Recovery	Unified Classi-	G	EOLOC	SIC DE	SCRIPT	TON	REMARKS		
			0-0.4'			wn coarse(+	,	SAND, little	Clay, little	Dry - Top Fill		
ĺ		15	///	1	Silt, some	medium fine	Gravel			SB-OBG-24 (0-0.4' BS)		
		50		1						13:00		
1 -	1			1								
			\mathbb{N}]								
2 -	4		2.0-	-	2026 0	auun ta Drau	miah Crave	Clay same		Majat Cili		
		4	2.6'			own to Brow little mediur			meaium	Moist, Fill Heterogeneous		
		•	17					o., o.goo		SB-OBG-24 (2.0-2.6' BS)		
3		9	\mathbb{N}							13:05		
					1					Fill		
		9										
		10		1						i		
4 -	1		4.0-	1	4.0-4.3' Gr	ayish Browr	CLAY, soi	me medium	fine Sand,	Saturated @ 4.0'		
		2	4.7'			m fine Grav				SB-OBG-24 (4.0-4.7' BS)		
			<u></u>			llowish Brov			SAND, and	13:15		
5 -	-	4		}	CLAY, son	ne medium(+) fine Grav	/el		Native Till		
		9	///	1								
			//]								
6 -	1	10		1					=			
		1,,	6.0- 6.8'			rk Brown co				Firmly Compact - Till		
		11	-l ^{o.o}		some Clay	, some coar	se mealum	iine Gravel		SB-OBG-10 - Above Dry SB-OBG-24 (6.0-6.7' BS)		
_		21		1						13:20		
7 -	1]								
		18		1								
		1.0		1								
8 -	-	18	8.0-	1	8 0-8 4' Gr	ev SHALE I	aver			Firmly Compact		
1		26	9.2	-		8.4-9.2' Yellowish Brown CLAY, and medium fine SAND, Poorly Sorted - Till						
	1		1			some coarse medium fine Gravel SB-OBG-24 (8.4-9.2' BS						
9 _	1	38	1		13:30							
		23		1	1							
		23	///	1	1							
1,0		28]	1							
10 -	1]	_1							

	O'BRIEN 5 GERE Engineers, inc.	TEST BORING LOG	IO. SB-OBG-24	
PRO	JECT: Revere Smelting and Refining		2	
	NT: NYSDEC	<u> </u>		26408.004.400
Depth Ft.	Sample Number Blows on Sample Spoon per 6" Penetration Recovery Unified Classi-	GEOLOGIC DESCRIPT		REMARKS
11 -	10.0-	10.0-11.0' Dark Yellowish Brown coarse med SAND and CLAY, some coarse medium(+) fir	ne Gravel	SB-OBG-24 (10.0-11.0' BS) 13:35 Firmly Compact
12 -		12.0-12.3' Dark Yellowish Brown coarse med	` '	Poor Recovery
13 —	10 45 50-0.2'	SAND and CLAY, some coarse medium(+) fi	ne Gravel	No Sample Till
14 —	41	No Recovery		No Recovery
15 -	44 45			
16 -		16.0-16.4' Brown coarse medium(+) fine SAN Clay, some coarse medium(+) fine Gravel	ID, little	Firmly Compact Till SB-OBG-24 (16.0-16.4' BS)
17 —				14:00
18 -	40	18.0-18.2' Brownish Gray coarse(+) medium little Clay, some coarse medium fine(+) Grav		Gravel subangular to rounded
19	50-0.2'			Refusal
20 -				
21 -				
22 -				

	=		·	····	γ				<u></u>			
		BRIENE			TES	ST BOF	RING L	_OG	BORING NO. MW-23S			
PROJ	ENGINEERS, INC. PROJECT: Revere Smelting and Refining									SHEET 1 OF 2		
		YSDEC	iting a	ila (Comm	19	_			JOB NO.	26408.004.400		
		CONTRACTO)R· Pa	rratt Wolf	finc				MEAS. PT. I			
	OSE:				Vell South	of Sedimer	at Dond		GROUND E			
		METHOD: 4.5			ven oouth	SAMPLE		CASING				
			0 Trac		TYPE	SAMPLE	CORE	CASING	DATE STAR	Ground Surface TED 11/7/2001		
		VATER DEPT		<u> </u>	DIA.			 	DATE STAR			
		G POINT:	1111		WEIGHT			<u> </u>	DRILLER	J. Percy & J. Wheeler		
		IEASUREME	NT:		FALL				INSPECTOR			
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"		Unified Classi- fication	G	EOLOG	SIC DE	SCRIPT		REMARKS		
		Weight of	0-1.3'			vn SILT CLA		edium fine(+) Sand,	"Clean" Fill		
		Hammer			trace medi	um(+) fine C	Bravel			Moist		
					!					MW-23S (0-1.3' BS) 11:40		
1 -	1				:					11.40		
			\angle									
		—										
2 -		V			l							
		Weight of	2.0-			own SILT CI		medium fin	e(+) Sand,	"Clean" Fill		
		Hammer	2.4'		trace medi	um fine Gra	vel			Very Moist		
										MW-23S (2.0-2.4' BS) 11:45		
3 -	2									11.40		
		—										
4 -		, , , , ,							_			
			4-4.2'		4.0-4.2' Bro	own SILTY (CLAY, and	medium fine	e(+) SAND	Saturated		
		Hammer								"Clean" Fill		
										MW-23S (4.0-4.2' BS) "Clean" Fill		
5 -	3	· · · · · ·								11:50		
		$\overline{}$										
6 -		TAGET OF COLUMN			,				6.0'	-1		
			6.0- 7.3'			own SILT Ci		medium fin	e(+) Sand,	MW-23S (6.0-7.3' BS)		
		Hammer	ا (۰.۵		meaiu	m(+) fine Gi	avel			12:05 Native Till		
1 _	_									IACHAC FIII		
7 -	4											
			$\overline{}$									
		+										
8 -		'			L					l <u>_</u>		
ľ					NR					No Recovery		
	_											
9 _	5		i									
]									
										[
10 -												
			!	L	1					j		

OBRIEN & GERE ENGINEERS, INC.						TEST BORING LOG			O. MW-23S	
	PROJECT: Revere Smelting and Refinir					9		SHEET 2 OF 2		
CLIE	NT: N	YSDEC		:			JOB NO.		26408.004.400	
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetration Recovery	Unified	Classi- fication				REMARKS	
			10.0- 10.5'			10.0-10.5' Brown CLAY, some medium fine(- trace medium fine Gravel		0.5'	MW-23S (10.0-10.5' BS)	
11 -	6					Brown CLAY, some medium, fine(+) sand, transfer medium fine gravel.			Completed MW-23S	
12 -							12		Drilling	
13 -										
14 -										
10 -										
16 -										
17 -										
18 -	-		-							
19 -			1	:						
20 -			<u> </u> -							
21 -	-			Marie Control						
22 -	-		}							

O'BRIEN & GERE ENGINEERS. INC.	BORING NO. MW-23D			
PROJECT: Revere Smelting and Refining	a a	SHEET 1 OF 2		
CLIENT: NYSDEC	<u> </u>	JOB NO. 26408.004.400		
DRILLING CONTRACTOR: Parratt Wolff	· Inc.	MEAS. PT. ELEV.		
	/ell South of Sediment Pond	GROUND ELEV. 498.50		
DRILLING METHOD: 4.5 Split Barrel	SAMPLE CORE CASING			
DRILL RIG TYPE: 850 Track	TYPE	DATE STARTED 11/7/2001		
GROUND WATER DEPTH:	DIA.	DATE FINISHED 11/7/2001		
MEASURING POINT:	WEIGHT	DRILLER J. Percy & J. Wheeler		
DATE OF MEASUREMENT:	FALL	INSPECTOR G. Sleeman		
Depth Ft. Sample Number Blows on Sample Spoon per 6" Penetration/ Recovery Unified Classi-	GEOLOGIC DESCRIPT	TON REMARKS		
Weight of 0-1.3'	0-1.3' Brown SILT CLAY, some medium fine(-			
Hammer	trace medium(+) fine Gravel	Moist		
1 - 1				
2 Weight of 2.0-	0.0.41.0	(1) O		
	2.0-2.4' Brown SILT CLAY, some medium fine trace medium fine Gravel	e(+) Sand, "Clean" Fill Very Moist		
Transition 2.4	trace medican line Graver	Very Moist		
3 - 2				
3 - 2				
4 Weight of 4-4.2	4.0-4.2' Brown SILTY CLAY, and medium fine	e(+) SAND Saturated		
Hammer		"Clean" Fill		
5 - 3				
		1		
		6.0'		
	6.0-7.3' Brown SILT CLAY, some medium fine	e(+) Sand,		
Hammer 7.3'	little medium(+) fine Gravel	,		
		Native Till		
7 - 4				
		ļ		
8	.	<u> </u>		
	NR	No Recovery		
9 5				
9 - 5		[
10				

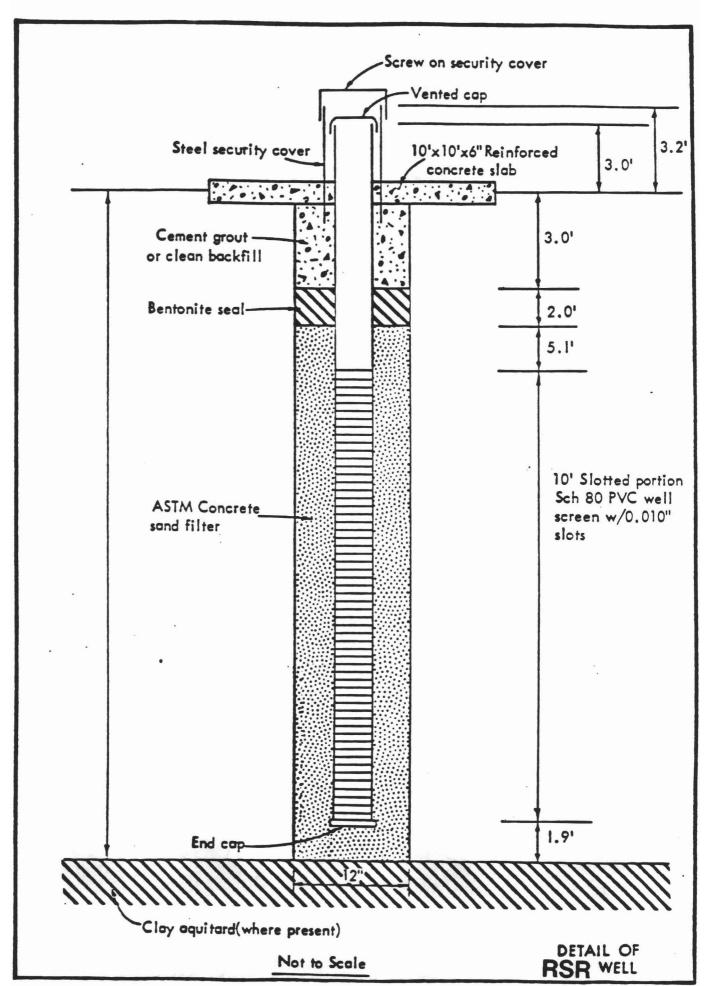
					<u></u>		
		RDIENS	- GEI	DI:	TEST BORING LOG	BORING N	10. MW-23D
		BRIEN E NGINEER	S. IN	10.			
PRO		Revere Sme			ng	SHEET 2 OF	2
		YSDEC					26408.004.400
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetration Recovery	Unified Classi- fication	GEOLOGIC DESCRIP	REMARKS	
			10.0-	-	10.0-10.5' Brown CLAY, some medium fine(+) Sand,	
			10.5		trace medium fine Gravel	10.5'	
11 —	6				Brown CLAY, some medium, fine(+) sand, tr medium fine gravel.	ace	
40_	_]		12.0'	
12 -					See Core Log for MW-23D Coring completed at 27 ft.		
13 -			1		Note: Soil descriptions taken from MW-23S I	oa.	
						-	
14 —						•	
	-						
ıš –							
13	-						
16 -							
17 —			1				
			-				
18 —			1				
19 —			-				
			_	1			
20 —				1			
21 -			4				
j							
ĭ		· · · · · · · · · · · · · · · · · · ·					
22 —							

<u></u>						_									
		DBRIEN 8 INGINEER				TEST BORING LOG				BORING NO. MW-24					
PRO.	JECT:	Revere Sm	elting a	nd Re	finii	na				SHEET 1 O	F 2				
		IYSDEC				-				JOB NO.	26408.004.400				
_		CONTRACT	OR: Pa	rratt V	Volf	finc.				MEAS. PT. ELEV.					
PUR						on South o	f Railroad	Tracks		GROUND ELEV.					
		METHOD: 4.				011 000111 0	SAMPLE	CORE	DATUM Ground Surface						
			50 Trac			TYPE	Or arm EL	OOKE	CASING	DATE STAR					
		WATER DEP				DIA.	1.5"	2.0" OD	41/4"	DATE FINIS					
MEAS	SURIN	NG POINT:				WEIGHT	-			DRILLER	J. Percy & J. Wheeler				
DATE	OF N	MEASUREM	ENT:			FALL				INSPECTOR					
Depth Ft.	Sample		Penetration/ Recovery	Unified Classi-	fication				SCRIPT						
		Weight of	cs	A _o Horizon											
		Hammer	Gravel,	Moist											
		1	oravei,	Moderately Compact Histic B _{to} Horizon											
1 -	1]				MW-24 (0-0.8' BS)							
]	4						14:10							
		_													
2 -		5	2.0-	ł		200617									
		5	3.9'			little Silt	llowish Brov	Saturated B _{tq} (Histic Soils)							
			1				llowish Brov	MW-24 (2.0-3.9' BS)							
3 -		5				medium fin	e Gravel, lit	tle medium	fine Sand		14:15				
'			1			Į									
		13	4	i		ļ									
		13				-									
4 -		10	4.0-			4 0-4 9' Gr	avish Brown	SUTCLA	Y, little medi	ium fine	Dry Perched/Water Table				
		9	4.9'				e coarse me			Idili inic	Confining Clay Layer				
											Poorly Sorted				
5 –		13									MW-24 (4.0-4.9' BS)				
]		14		{							14:45				
		14	\langle / \rangle	ł											
		11													
6 -			6.0-						AY, little coa		MW-24 (6.0-7.2' B\$)				
		13	7.2'			medium Sa			irse medium		14:40				
		20				Gravel					Firmly Compact				
7 –		20	-												
		20													
8 -		15									,				
 		22	8.0-			•			AY, little coa	• •	MW-24 (8.0-9.5' BS)				
		22	-			medium Sa Gravel	ına, little Sili	i, some coa	rse medium	ı tine(+)	14:50				
9 _		17				J. G. Y. C.I									
			1												
		10													
1		7													
10 —			1												

		<u>. </u>					
		D'BRIENE NGINEERS	GEI S. IN	RE VC.	TEST BORING LOG	BORING I	NO. MW-24
PRO		Revere Sme			ng	SHEET 2 OF	2
		YSDEC				JOB NO.	26408.004.400
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetration Recovery	Unified Classi- fication	GEOLOGIC DESCRIP	TION	REMARKS
11 — 12 — 13 — 16 —	San	6 20 37 37	10.0- 11.5'	Unifi	10.0-11.5' Dark Yellowish Brown CLAY, little medium Sand, some coarse(-) medium fine(coarse(+)	MW-24 (20.0-11.5' BS) 15:05 Base of 12.0' Tip of Spoon Shale - Possible Bedrock End of Drilling
17							
18 —							
19 —							
20 —							
21 -							
22 –							

			RIENI			I IES	ST BO	RING L	.OG	BORING N	NO. MW-26		
PRO	JECT	Re	vere Sm	elting a	ınd Refini	ng				SHEET 1 OF 2			
CLIE	NT: N	IYSE	DEC							JOB NO. 26408.004.400			
DRIL	LING	CON	NTRACT	OR: Pa	arratt Wol					MEAS, PT. E	ELEV.		
PURI	POSE	:	Monitori	ng Wel	l Installati	on, Just Ea	st of Pond		GROUND E				
			THOD: 4	.5 Split	Barrel		SAMPLE	CORE	CASING	DATUM	Ground Surface		
	L RIG					TYPE				DATE STAR			
			ER DEF	PTH:		DIA.		·· .		DATE FINIS			
			POINT:	ENIT:		WEIGHT FALL	 			DRILLER	J. Percy & J. Wheeler		
DATE OF MEASUREMENT:						FALL				INSPECTOR	G. Sleeman		
Depth Ft.	Sample	Blows on	Sample Spoon	Penetration Recovery	Unified Classi- fication	G	EOLOC	REMARKS					
				0-0.7		0-0.7' Brow	n SILT, little	Fill, Dry, Loose					
		3_				medium fin	e Gravel	MW-26 (0-0.7' BS) 8:05					
1 —		8											
		6	-										
2 -		6		2.0- 2.7'		2.0-2.7' Bro	own SILT, tr	ace fine Sa	nd, little me	edium(+)	Fill, Dry, Loose MW-26 (2.0-2.7' BS)		
		8									8:10		
3 -		7											
4 -		4											
-		2		4.0- 5.5'		medium(+)	own SILT, tr fine Gravel	Moist Fill Possible Native					
5 -		4				4.1-5.4' Gra Gravel	ay CLAY, tra	MW-26 (4.0-5.5' BS) 8:20					
		7_					llowish Brov e(+) Gravel		SILT CLAY,	5.4' some	·		
6 -		6											
		4		6.0- 6.6'		6.0-6.6' Ye fine(+) Gra	llowish Brov vel	vn to Gray (CLAY, some	e medium	Moist MW-26 (6.0-6.6' BS)		
7		5		_							8:30		
		8_											
8 —		9		8.0-		8.0-8.7' Bro	ownish Gray	· CLAY, trad	ce medium i	fine Sand.	Moist		
		5		8.7'			m fine(+) Gi			·	MW-26 (8.0-8.7' BS) 8:35		
9 _		10	- ···										
		10		1//									
10 —		12											

	■ OBRIEN 5 GERE	TEST BORING LOG	PODING A	IO 8418/ OC
	ENGINEERS, INC.	ILOI DOMING EOG	BORING N	IO. IVIVV-26
	JECT: Revere Smelting and Refining	9	SHEET 2 OF	2
CLIE	NT: NYSDEC		26408.004.400	
Depth Ft.	Sample Number Blows on Sample Spoon per 6" Penetration Recovery Unified Classi-	GEOLOGIC DESCRIPT	ION	REMARKS
		No Recovery		Saturated
11 -	8 16 8			No Recovery
12 —		12.0-13.0' Yellowish Brown CLAY SILT, little omedium Sand, some coarse medium fine(+) C		MW-26 (12.0-13.0' BS) 8:50
13 -	11 12			
14 —	5 15.0'	14.0-14.5' Yellowish Brown CLAY SILT, some fine(+) Gravel 14.5-15.0' Gray Shale	14.5'	MW-26 (14.0-15.5' BS) 9:15 Bedrock at 15.0'
- د،	24		15.0'	
16	30			
17 —				
18 —			·	
19 —				
20 –				
21 –				~
22 —		,		

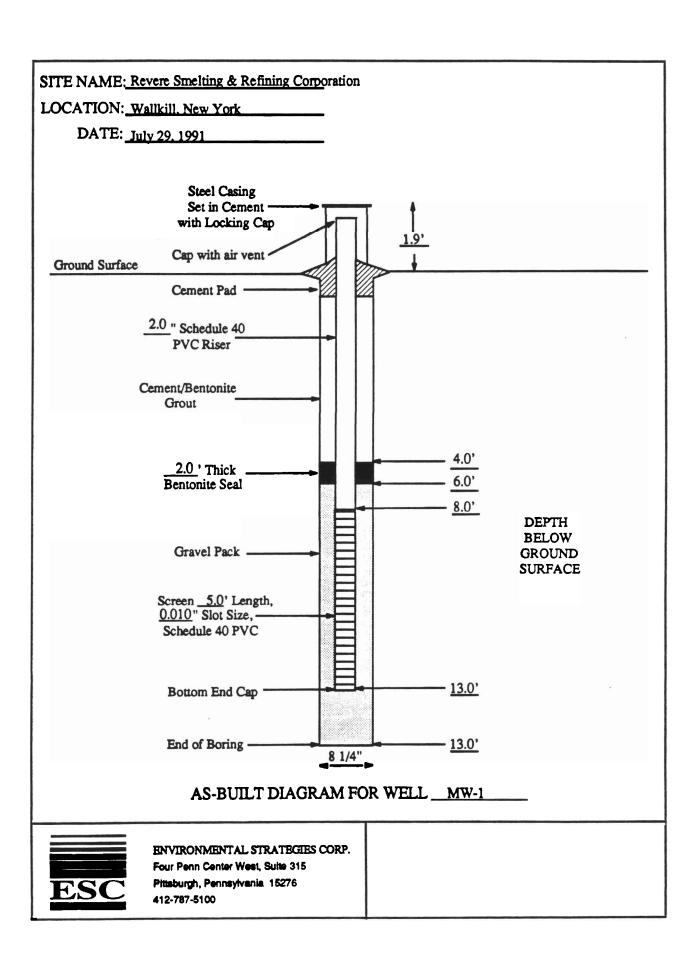

		BRIE	NS	GEI	3E	TES	ST BOF	RING I	OG	BORING N	NO. MW-25				
		NGINE	-			'-'		10							
PRO	JECT:	Revere	Smelt	ting a	nd Refinir	ng				SHEET 1 OF 2					
CLIE	NT: N	YSDEC								JOB NO. 26408.004.400					
DRIL	LING (CONTRA	CTO	R: Pa	rratt Wolf	f Inc.			MEAS. PT. ELEV.						
	POSE:					on South o	f Railroad	Tracks	GROUND E	LEV.					
		METHO	D: 4.5	Split I	Barrel		SAMPLE	CORE	CASING	DATUM	Ground Surface				
<u> </u>		TYPE:	SEST			TYPE				DATE STAR					
		VATER I G POIN		H:		DIA. WEIGHT				DATE FINIS					
		IEASUR		NT:		FALL				DRILLER INSPECTOR	J. Percy & J. Wheeler R G. Sleeman				
Depth Ft.	1	Blows on Sample	spoon per 6"	Penetration/ Recovery	Unified Classi- fication		EOLOG	OE:	SCRIPT	CRIPTION REMARKS					
				0-0.9			Brown CLA								
1 -		2					llowish Brov and, some n	' - '	-	e coarse	0.5' BS - Saturated MW-25 (0-0.9' BS) 12:25 Native Subangular Gravel				
2 -		12		2.0- 3.0'			llowish Brov ne medium	Firmly Compact Till MW-25 (2.0-3.0' BS)							
3 -		17						12:35 Angular-Subangular Gravel							
4 -		5		4.0- 5.1'			llowish Brov ne medium	MW-25 (4.0-5.1' BS) 12:45 Firmly Compact							
5		7				4.8-5.1' Ye SAND, son	llowish Brov ne CLAY	vn SILT and	d medium fi	ne(+)	Till				
6 -		5		3.0- 7.0'			ayish Browr medium fin			dium fine	MW-25 (6.0-7.0' BS) 12:50				
7 –]	11													
8 -		12		3.0- 9.6'		coarse(+)	llowish Brov nedium SAt ernating Cla	ND, some c	oarse medi		Very firmly Compact MW-25 (8.0-9.6' BS) 12:55				
9 _		13						, - · · · · · · · · · · · · · · · ·	u -						
10 –		11													

	<u> </u>								
		O'BRIEN E Engineer	GEI S. IN	RE NC.	TEST BORING LOG	NO. MW-25			
PRO	JECT	: Revere Sme	elting a	nd Refini	ng	SHEET 2 OF	F 2		
		NYSDEC				26408.004.400			
Depth Ft.	Sample	Number Blows on Sample Spoon per 6"	Penetration Recovery	Unified Classi- fication	GEOLOGIC DESCRIP	JOB NO.	REMARKS		
			10.0-		10.0-10.6' Yellowish Brown coarse medium f	ine(+)	MW-25 (10.0-10.6 BS)		
11 -		13	10.6'		Gravel, little Silt Clay, some coarse(+) mediu	m Sand 10.6'	13:00 Very Compact Till Gravel Angular Subrounded Completed MW-25 Drilling		
12 -		10					20 31111119		
13 -									
14 -									
15									
16									
17 —									
18 —			:						
19 —									
20 -									
21 -						77) AT			

O'BRIEN & GE	O'BRIEN & GFRE ENGINEERS, INC.	INC.		SOI _ AUS	Hole No∴ MW-23D		Job No.: 26408.004.40∩	8.004.400		
Albany New York 12205	/e, west irk 12205				Sheet 1 of 1]	Date Started:	6-Nov-6	-	
Project: Rever	Revere Smelting and Refining	efining		Drilling Contractor. Parratt Wolff, Inc	JU.		Date Finished: 11/7/01	11/7/01		
Client: NYDEC	2			Driller: J. Percy, J Wheeler			Total Depth:10' (27' bgs))' (27' bgs)		
Purpose: Obser	Observe Shallow Bedrock Infillration	ck Infillration		Geologist: Garrett Steeman		0	Ground Elev.: 496.72	496.72		
Location: South	South of RSR Facility			Length of Casing: 10 ft		65	S.W.L.: N	NA		
Hole Location: 1	In Culvert, North o	In Culvert, North of Rail Road Tracks		Casing Size: 2" PVC	Core Size: 2.5" 18.5-27'		Inclination/Bearing:	aring:	¥	
Formation Member Unit	Pen. Rate Run No. (min. per Depth foot)	Depth Scale	nclude in ord	Lithologic Description (include in order: ROCK TYPE, color, grain size, texture, bedding, fracture & minerals.)	ription . texture, bedding. fractu	re & min	erals.)	Core Recovery	Core scovery h Percent	ROD
	├	Bedro	د (Limestone	Bedrock (Limestone) at 17', set BIP at 18.0 Began coring at 18.5	ing at 18.5					
		1					1			
		1 1					ĬI.			
	18 7	19 Dup #1	l impetone: f	Dun #1 Limestone: Dark arau, fine arained shaley limestone to Limey shale with horizontal	in oloto your Lot onotag	ith horiz		į	/00/00	/800
	23.2 3.4 (avg.)	bedding argillace	dipping apl eous carbon	bedding dipping approximately 45 degrees to the east. Occasional fractures infilled with argillaceous carbonate stringers, mostly massive.	colore to Liftey strate w	nfilled w		1 1	80.0% 80.0%	% 60
		7								
		1 1								
1	2	23 _] [
	23.2-	Run #2 I	Limestone: I	Run #2 Limestone: Dark gray, fine grained, massive Limestone to muddy Limestone with fewrer jointings and fracture than the overlying material	imestone to muddy Lime al	stone w	- 	დ ო	100%	100%
	(avg.)	25					11			
		1 1					11			
		-					1			
		27					1			
		1					1			
		T			=			-		

Appendix F

Well completion logs


LOG OF BORING NO. GW-I

RSR CORPORATION - PROJECT 82-21 MIDDLETOWN, NEW YORK

			MIDDLETOWN, P								
TY	PE	BO	RING: Wash LOCA						inas, Plat	e	1
DEPTH. FT.	SYMBOL	SAMPLES	SOIL DESCRIPTION	BLOWS PER FT.	% PASSING NO. 200 SIEVE	LIQUID	PLASTIC LIMIT	MOISTURE CONTENT, %	IN TONS	5/SQ FT.	UNIT DRY WT
- 5 -			Brownish-gray sandy clay, w/occasional light tan clay and numerous angular rock fragments -boulder from 8.0-8.5' -boulder from 9.5-10.0'								
-15- -20- -25- -30-			Note: 4" monitor well installed in this boring location								
	COI	MPL	ETION DEPTH: 15.0' DE	PTH	TO	WAT	ER:	6.5	5' - Cave	d at 10.91	

DATE: 8/10/82

DATE: 8/11/82

PROJECT: Revere Smelting & Refining Corporation

Wallkill, New York

PA641-02

Environmental Strategies Corporation Four Penn Center West, Suite 315 Pittsburgh, PA 15276

Boring No.: MW-1 Date Drilled: July 26, 1991

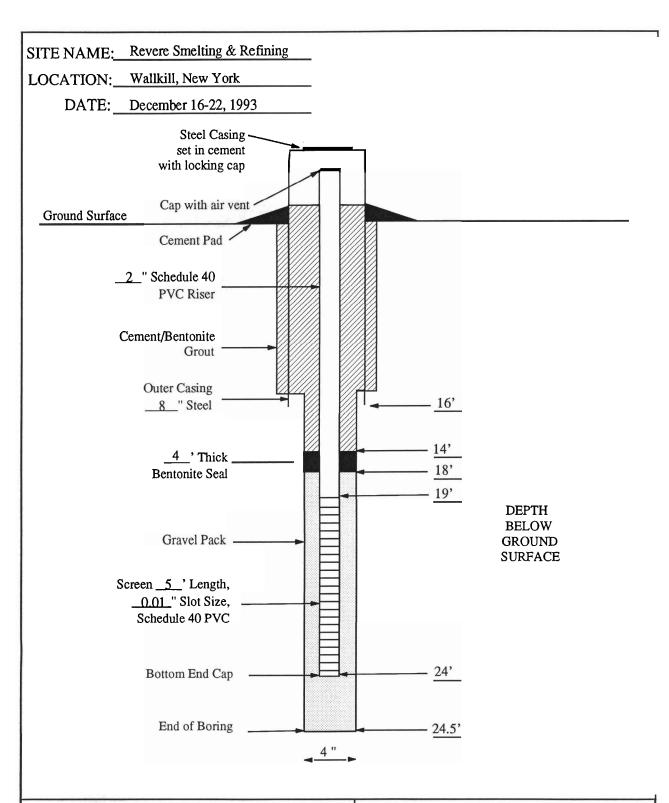
Drilling Co.: Environmental Drilling, Inc.

Driller: Greg Pijak ESC Geologist:

E. Michael Riggins

Boring Location: West of battery storage area

Ground Elevation: TOC Elevation:


Boring	Sampler
Boring	Sampler

Method: H.S.A. Method: Split-spoon Hole Diameter: 8.25" Length Ft.: 2.0 Inside Diameter: 4.25" Hammer lbs.: 140 Total Depth: 13.0' Fall ins.: 30

Depth (ft)	PID (ppm)	Percent Rec.	Sample Depth (ft)	Blows/6"	Sample Description
0.0-0.4		90	MW1-1 0.0-1.5	10/21/23/21	TOPSOIL-SILT-dark brown, some clay & angular rock fragments
0.4-2.0					SILT-yellowish brown to brown, little clay, trace rock fragments, FILL
2.0-4.0		60	MW1-2 2.0-4.0	15/16/17/22	SILT-grayish brown, little sand & clay, some rock fragments, calcite crystal, plastic, wood, & plastic sheeting material, FILL, damp
.0-4.5		60	MW1-3 4.0-5.0	42/ 33/47/45	SILT-same as above to 4.5*
.5-6.0					SILT-greenish gray, some clay, trace angular rock fragments, native soil (?)
5.0-7.0		40	MW1-4 6.0-7.0	15/50 over 4"	CLAY-grayish brown, orange mottles, little sand & silt, trace rock fragments, rock fragment in spoon tip
3.0-9.0		80	MW1-5 8.0-9.0	7/25/22/ 13	CLAY-same as above to 9.0'

9.0-10.0		SILT & SAND-bluish gray, little rock fragments, trace clay, saturated
10.0-12.0	16/12/12/12	SAND & GRAVEL & ROCK FRAGMENTS-dark bluish gray, trace silt & clay, saturated
12.0-13.0		SAND & GRAVEL & ROCK FRAGMENTS- same as above, augers advanced to 13.0'

NOTE: Groundwater encountered at 9.0'.

ENVIRONMENTAL STRATEGIES CORPORATION

Four Penn Center West • Suite 315 Pittsburgh, Pennsylvania 15276 (412) 787-5100

AS-BUILT DIAGRAM FOR WELL MW-1A

BORING LOG

Environmental Strategies Corporation

PROJECT Revere Smelting & Refining Wallkill, New York PA1217-02

	Boring	No.	_MW-1A	<u> </u>	_
	Sheet	1	_ of _	1	_
١	Date D	rille	d <u>12/1</u>	6-22/9	93

Four Penn Center West, Ste. 315 Pittsburgh, Pennsylvania 15276

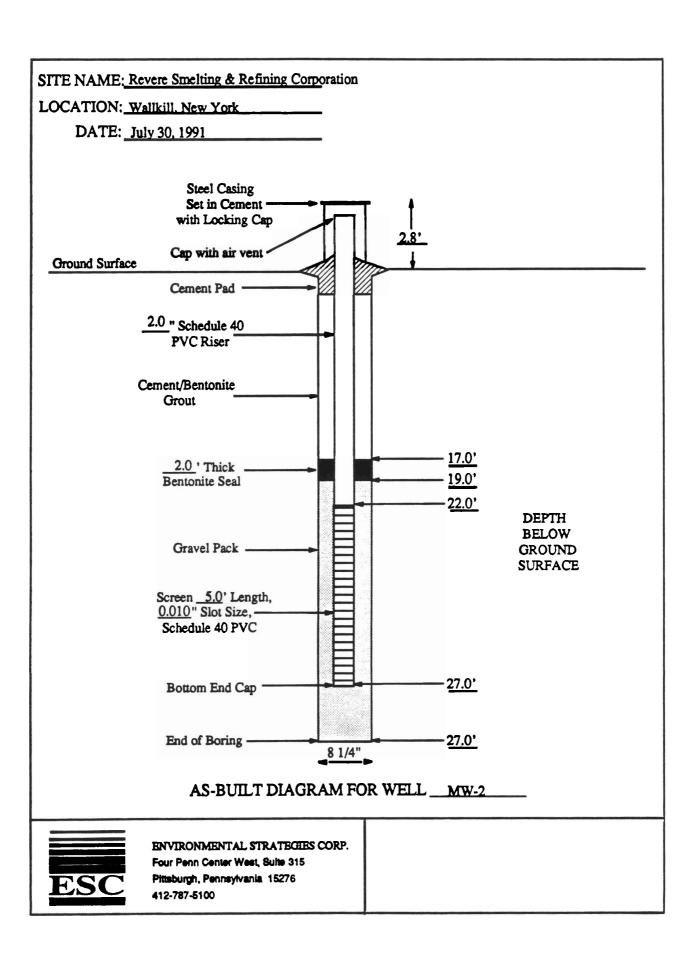
Driller

ESC Geologist

Drilling Co. Empire Soil and Investigations

E. Michael Riggins

Scott Bray


Boring Location South of MW-1 Ground Elevation TOC Elevation NA

Boring Method Hollow Stem Augers Hole Diameter 18"-8"-4" Inside Diameter 12.25"-4.25" 24.5 feet Total Depth _

Casing/Screen Type PVC Diameter inch Screen Length 5 feet Screen Slot Size 0.01 inch

Sampler Split-spoon Method Length (ft) 2-foot 140 Hammer (1b) Fall (in) 30

Depth (ft)	P.I.D. (ppm)		Sample Depth (ft)	Blows/6"	Sample Number	Sample Description
0	NA	30	0-2	10-11-10-9	MW1A-1	SILT FILL, some clay and roots,
						trace anthropogenic material, dark
						brown, moist.
2	NA	40	2-3.5	21-23-	MW1A-2	SILT FILL, trace clay and rock
				100/6"		fragments, some calcite fragments,
1						yellowish brown, moist; large
						gravel and anthropogenic material
						below 3 feet.
4	NA	100	4-6	12-21-30-30	MW1A-3	Note: Color change to greenish
					MW1A-4	brown from 4 to 4.5 feet.
7				y .		
4.5						Note: color change to yellowish
	NA	50	6-8	21-50-65-33	MW1A-5	brown, trace bluish gray clay and
	NA	45	8-9.5	10-13-13-7	MW1A-6	rock fragments, orange mottling.
10	NA	40	10-12	6-7-8-10		SILT FILL and shale fragments,
						bluish gray, little fine grain
	NA	60	12-14	7-15-23-18		sand, saturated; dark greenish
			• •			gray and moist below 12 feet.
15.5	NA	50	14-16	10-23-30-19		SILT, trace fine sand, clay, and
	NA	40	16-18	20-27-65-60		rock fragments, yellowish brown,
						dry, native soil; set
						8 inch steel casing at 16 feet.
18	NA	50	18-20	23-28-32-67		SILT TILL with shale fragments,
						bluish gray, moist.
20	NA	30	20-24.5	Cored	RUN 1	SHALE, dark gray, horizontal
						fracturing at 30° angles, wet,
						competent.
						7

PROJECT: Revere Smelting & Refining Corporation

Wallkill, New York

PA641-02

Environmental Strategies Corporation Four Penn Center West, Suite 315

Pittsburgh, PA 15276

Drilling Co.:

Environmental Drilling, Inc.

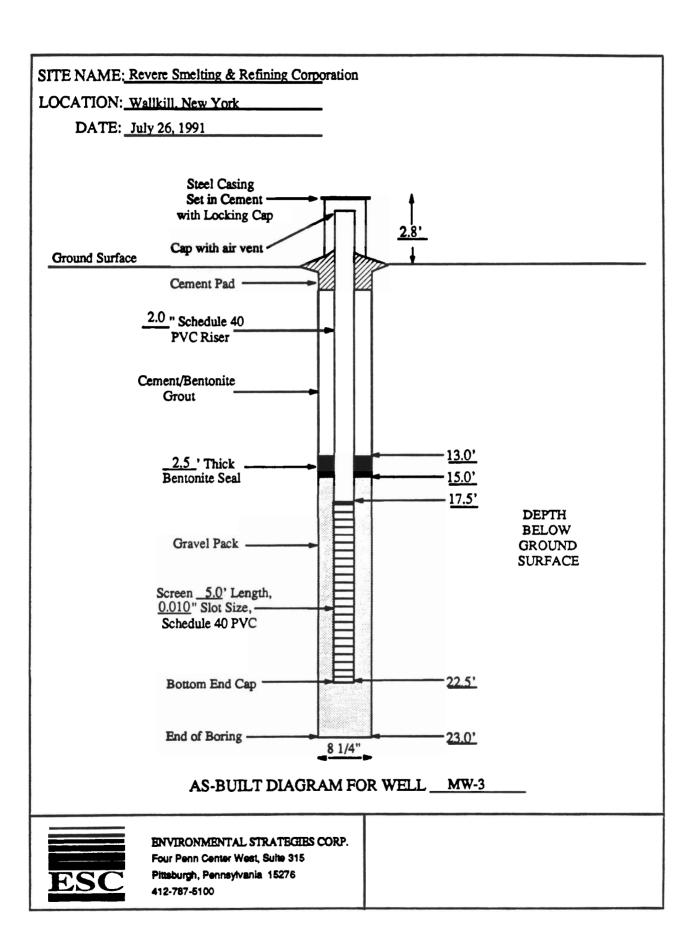
Driller: Greg Pijak

ESC Geologist: E. Michael Riggins

Boring No.: MW-2 Date Drilled: July 30, 1991

Boring Location: South of facility

Ground Elevation:
TOC Elevation:


Boring Sampler

Method: H.S.A. Method: Split-spoon Hole Diameter: 8.25" 2.0 Length Ft.: Inside Diameter: 4.25" Hammer lbs.: 140 Total Depth: 27.0' Fall ins.: 30

PID Percent Sample Depth Depth (ft) Blows/6" Sample Description Rec. (ft) (ppm) MW2-1 SILT FILL-medium brown, little clay & 0 25 9/26/42/43 0.0-2.0 0.0-0.5 angular & rounded rock fragments 50 over 5" 2.0-2.5 5 No recovery-calcite crystal in spoon tip, augered to 4.0' 14/50/ SILT FILL-same as above to 5.0' 4.0-5.0 300 90 MW2-2 4.0-5.5 50 over 5" 5.0-5.5 SAND-yellowish brown, fine grained, trace silt & rock fragments MW2-3 11/50 over 4" SAND-same as above to 6.5' 6.0-6.5 320 90 6.0-7.0 SILT FILL-grayish brown, little clay, 6.5-7.0 trace sand & rock fragments 8.0-9.0 50 MW2-4 5/14/8/9 SILT FILL-same as above to 9.0' 30 8.0-9.0

9.0-10.0	3				SILT FILL-dark gray to bluish gray, some clay, little rock fragments, trace sand, poorly sorted, damp
10.0-10.5	3	70	MW2-5 10.0-12.0 MW2-6 10.0-12.0 (dup)	8/9/4/7	SILT-black, organic material, woody material, roots, some clay, trace rock fragments, native soils
10.5-11.2					CLAY-dark gray, some silt, trace rock fragments, organic & root material
11.2-12.0					SILT-yellowish brown, little clay, trace fine sand & rock fragments, TILL
12.0-13.0	3	90	MW2-7 12.0-13.0	9/20/32/42	SILT TILL-yellowish brown, little clay & fine sand, trace rock fragments
13.0-14.0					SILT TILL-yellowish brown, dark orange mottles, little clay & rock fragments
14.0-14.6	3	90	MW2-8 14.0-14.6	29/50 over 2"	SILT TILL-same as above to 14.3', weathered shale fragment in spoon tip
16.0-17.3	4	100	MW2-9 16.0-17.0	48/50/ 50 over 4"	SILT TILL-dark yellowish brown, little clay & rounded rock fragments, poorly sorted
18.0-18.5		5		72	SILT TILL-same as above, very poor recovery
20.0-21.2		30	MW2-10 20.0-21.2	16/19/ 50 over 3"	SILT TILL-yellowish brown, little clay & rock fragments, trace sand, poorly sorted, damp, boulder at 21.0'
22.0-23.2		90	MW2-11 22.0-23.0	27/30/ 50 over 3"	SILT TILL-same as above, sandstone fragments, saturated at 23.0'
23.2-27.0					SILT TILL- same as above, augered to 27.0'

NOTE: Groundwater encountered at 23.0'.

PROJECT: Revere Smelting & Refining Corporation

Boring No.: MW-3

Date Drilled: July 24 & 25, 1991

Boring Location: Southeast of facility

Wallkill, New York

PA641-02

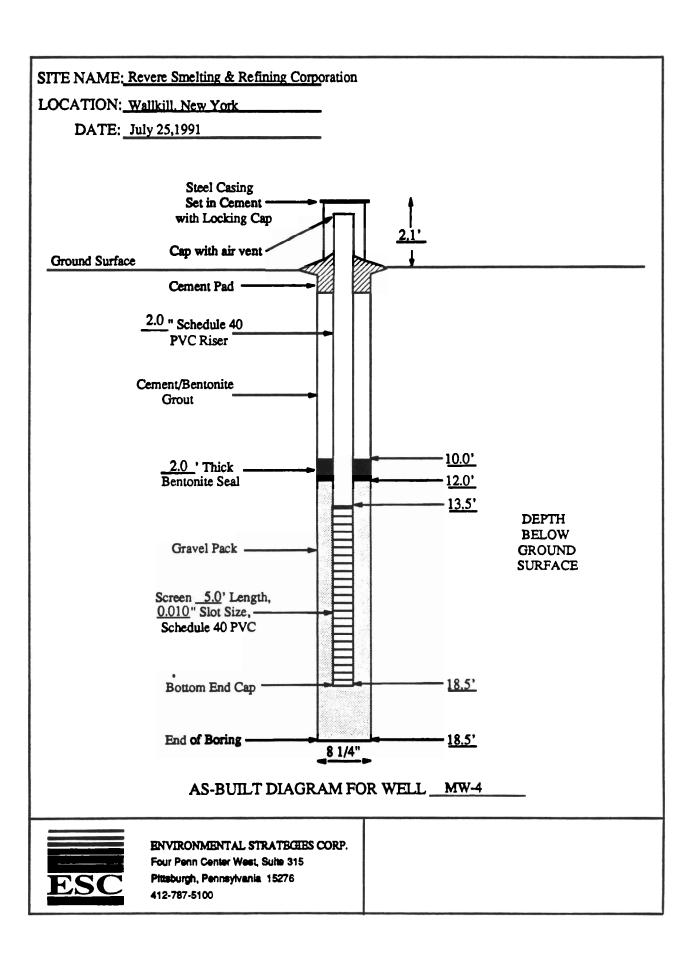
Environmental Strategies Corporation

Four Penn Center West, Suite 315

Pittsburgh, PA 15276

Drilling Co.: Environmental Drilling, Inc.
Driller: Greg Pijak

Driller: Greg Pijak Ground Elevation:
ESC Geologist: E. Michael Riggins TOC Elevation:


Boring Sampler

H.S.A. Method: Method: Split-spoon Hole Diameter: 8.25" Length Ft.: 2.0 Inside Diameter: 4.25" Hammer lbs.: 140 Total Depth: 22.0' Fall ins.: 30

PID Percent Sample Depth Rec. Depth (ft) Blows/6" Sample Description (ft) (ppm) 0 MW3-1 3/12/30/ 0.0-1.0 65 SAND-brown, fine grained, trace silt 0.0-0.5 50 over 5" & clay, organics & roots, FILL SILT FILL-grayish brown, little clay & 1.0-2.0 0 rock fragments, trace fine sand, trace lead, slag, concrete, & plastic material 50 MW3-2 5/14/8/21 SILT FILL-yellowish brown, little 2.0-4.0 0 2.0-2.5 clay & rock fragments, poorly sorted 75 ° MW3-3 4.0-6.0 0 4.0-4.5 17/10/12/44 SILT TILL-yellowish brown, little clay & rock fragments, rootlets & organics, damp at 4.0', native soils 100 MW3-4 33/50/33/34 SILT TILL-same as above, rock fragments 6.0-8.0 0 6.0-6.5 smaller in size 8.0-10.0 0 100 MW3-5 50/21/35/22 SILT TILL-same as above 8.0-8.5 80 MW3-6 50 over 5" SILT TILL-grayish brown, little clay, 10.0-10.5 0 10.0-10.5 trace rock fragments, poorly sorted, dry

12.0-12.7	40	5/50 over 3"	SILT TILL-same as above
15.0-16.9	20	51/100 over 5"	SILT TILL-same as above, gravel sized fraction has increased

NOTE: Groundwater encountered at 7.0'.

PROJECT: Revere Smelting & Refining Corporation

Wallkill, New York

PA641-02

Environmental Strategies Corporation Four Penn Center West, Suite 315

Pittsburgh, PA 15276

Boring No.: MW-4
Date Drilled: July 24, 1991

Environmental Drilling, Inc.

Driller:

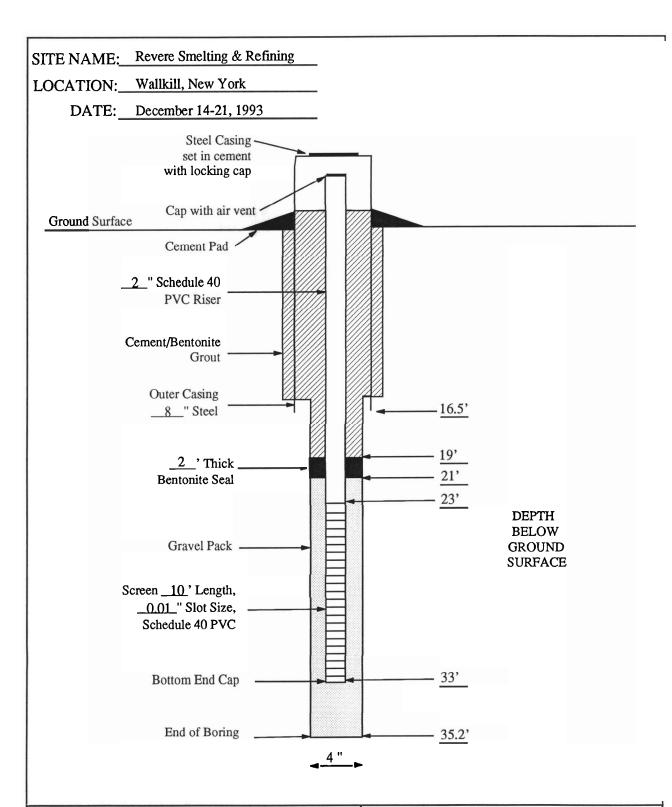
Drilling Co.:

Greg Pijak

ESC Geologist: E. Michael Riggins

Boring Location: East of facility

Ground Elevation: TOC Elevation:


Boring Sampler

Method: H.S.A. Method: Split-spoon Hole Diameter: 8.25" Length Ft.: 2.0 Hammer Ibs.: Inside Diameter: 4.25" 140 Total Depth: 20.0' Fall ins.: 30

Depth (ft)	PID (ppm)	Percent Rec.	Sample Depth (ft)	Blows/6"	Sample Description
0.0-0.5	0	90	MW4-1 0.0-0.5	1/8/27/24	SAND-fine grained, root zone, trace silt & rock fragments, FILL
0.5-2.0					SILT FILL-some clay, little rock fragments, plastic & lead material
2.0-4.0	3-4	100	MW4-2 2.0-2.5	17/48/18/41	SILT FILL-same as above, concrete fragment in spoon tip
4.0-6.0	6-8	90 .	MW4-3 4.0-6.0 MW4-4 4.0-6.0 (dup)	40/38/27/ 50 over 4"	SILT FILL-same as above, lead, wood & concrete material
6.0-7.0	0	80		50/50 over 4"	FILL-wood & slag material in spoon tip, no sample collected
B. 0-10.0		5		29/8/14/13	FILL-wood material in spoon tip, no recovery, pushing woody material downward through the FILL
10.0-12.0				2/16/29/30	FILL-same as above, no recovery

12.0-14.0	0	5	MW4-5 12.0-14.0	4/25/9/34	FILL-slag material, no recovery
14.0-16.0	0	5		25/14/5/7	FILL-SLAG & GRAVEL-dark gray to black, saturated
16.0-16.5	0	90	MW4-6 16.0-17.0	6/3/5/8	SLAG & GRAVEL-same as above to 16.5'
16.5-17.3					SILT-dark gray, little clay, trace fragments, root structures, saturated
17.3-18.0					SILT-yellowish gray to brown, little clay, trace rock fragments, mottled
18.0-20.0	0	90		8/14/18/ 50 over 5"	SILT TILL-light yellowish brown, little clay, trace angular rock fragments, tight formation

NOTE: Groundwater encountered at 16.0'.

ENVIRONMENTAL STRATEGIES CORPORATION
Four Penn Center West • Suite 315
Pittsburgh, Pennsylvania 15276
(412) 787-5100

AS-BUILT DIAGRAM FOR WELL MW-4A

BORING LOG

Environmental Strategies Corporation Four Penn Center West, Ste. 315 Pittsburgh, Pennsylvania 15276

PROJECT Revere Smelting & Refining Wallkill, New York PA1217-02

	Boring No	_ <u>M</u>	₩-4A	
	Sheet	<u> </u>	of	2
٠	Date Dril	led	12/08	/93

	Empire Soil and Investigations	Borin
Driller	Scott Bray/Craig Conner	Groun
ESC Geologist	E Michael Ricgins	TOC E

Boring Location South of MW4
Ground Elevation NA
TOC Elevation NA

Boring							
Method	Hollow	Stem	Augers				
Hole Di	ameter	18"-8	"-4"				
Inside	Diameter	13.2	5"-4.25"				
Total D	epth	35.2	feet				

Casing/Screen Sampler Split-spoon Method Type PVC Length (ft) Diameter_ inch 2-foot Hammer (1b) 140 Screen Length 10 foot Fall (in) Screen Slot Size 0.01 inch 30

ÿ	Depth (ft)	P.I.D. (ppm)		Sample Depth (ft)	Blows/6"	Sample Number	Sample Description
	0	NA	75	0-2	3-12-15-27	MW4A-1	SILT, little sand, trace
							rock fragments, and roots, brown,
							moist.
					6		
	0.5						SILT FILL, little sand and clay,
							trace rock fragments anthropogenic
							materials, yellowish brown, moist.
	2	NA	80	2-4	12-12-17-13	MW4A-2	SILT FILL, trace sand,
		NA	00	2 1	12 12 17 15	111111111111111111111111111111111111111	anthropogenic material, wood,
1						-	brownish gray.
							brownish gray.
	5	NA	60	4-6	6-10-17-	MW4A-3	Note: Large gravel to cobble
_					70/4"		size rocks at 5 feet.
	6	NA	30	6-8	21-11-9-20	MW4A-4	SILT FILL, some gravel, trace
							rock fragments, dark gray to
							black.
Ī		-					
	8	NA	40	8-10	8-10-7-8	MW4A-5	GRAVELLY SILT FILL, trace sand,
		NA	30	10-12	6-4-6-4	MW4A-6	medium to large size gravel, some
		NA	0	12-14	11-8-21-19		wood, slag, and rock fragments,
	LES						dark gray, dry; saturated at 14 to
							15 feet.
	15	NA	30	14-16	3-6-3-3		SILT, trace clay and rock
7							fragments, greenish gray,
						-	dry, slightly plastic, virgin soil
	17	NA	50	16-18	1-6-9-13	MW4A-7	GRAVELLY SAND, little silt,
		IVII	30	10 10	2 0 3 10		yellowish brown, moist,
							set 8 inch steel casing to
							16.5 feet on 12/14/93.
							2010 2000 011 22/21/301
	18	NA	40	18-20	4-10-4-5	MW4A-8	CLAY, some silt, trace rock
							fragments, reddish brown, plastic,

BORING LOG

Environmental Strategies Corporation Four Penn Center West, Ste. 315

Pittsburgh, Pennsylvania 15276

PROJECT

Revere Smelting & Refining

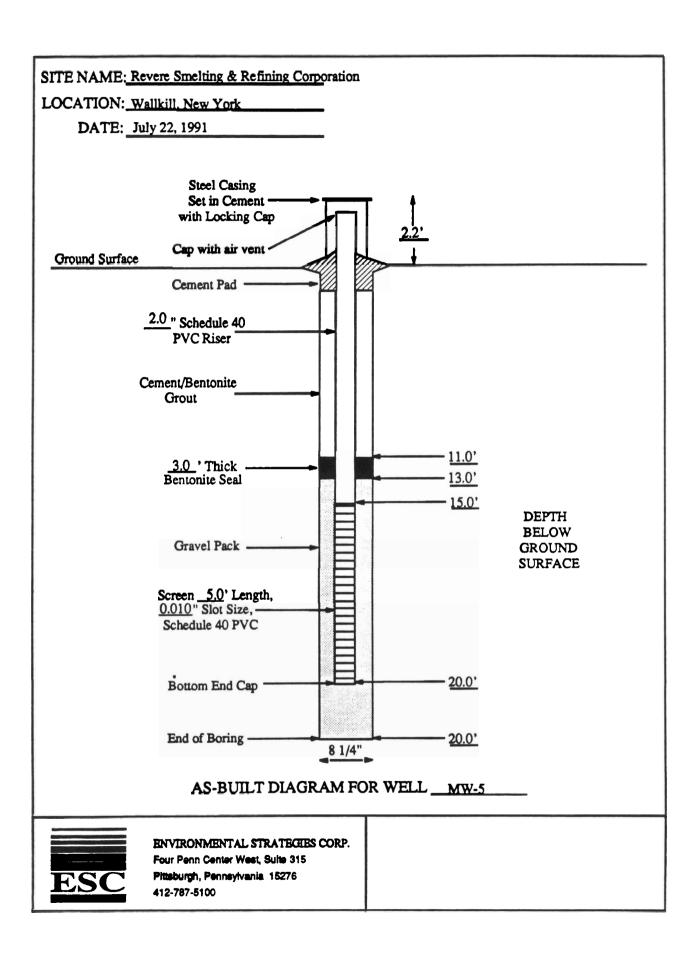
Wallkill, New York

PA1217-02

Boring No. <u>MW-4A</u>
Sheet <u>2</u> of <u>2</u>

Date Drilled <u>12/21/93</u>

Drilling Co.	Empire Soil and Investigations
Driller	Scott Bray/Craig Conner
ESC Geologist	E. Michael Riggins


Boring Location South of MW-4
Ground Elevation NA
TOC Elevation NA

Boring
Method Hollow Stem Augers
Hole Diameter 18"-8"-4"
Inside Diameter 12.25"-4.25"
Total Depth 35.2 feet

Type PVC
Diameter 2 inch
Screen Length 10 foot
Screen Slot Size 0.01 inch

Method Split-spoon
Length (ft) 2-foot
Hammer (lb) 140
Fall (in) 30

Depth (ft)	P.I.D. (ppm)	Percent Recovery	Sample Depth (ft)	Blows/6"	Sample Number	Sample Description
18	NA		18-20			CLAY, dry.
20	NA	30	20-22	9-6-9-14		Note: Some rounded gravel, trace
						calcite in tip of sampler, stiff.
22	NA	30	22-24	11-15-15-17	MW4A-8	SILT, some clay, little shale
						fragments, trace fine sand, brown,
						hard, dry.
24	NA	40	24-26	27-36-22-28	MW4A-9	SILT TILL with rock fragments,
						little clay, moist, rock
	NA	70	26-28	21-30-33-60		fragments increase with depth,
	NA	50	28-29	23-100/5"		brown, moist.
29	NA	0 -	29	100/0"		SHALE, competent, horizontal
	NA		31-35.2		RUN 1	fractures, dark gray, RQD=0.
					,	
			. 37			
						-
	-		i i		-	
	1					
	-				-	
	-					
	-		7			
	†					
		and the same of				

PROJECT:

Revere Smelting & Refining Corporation

Wallkill, New York

PA641-02

Environmental Strategies Corporation Four Penn Center West, Suite 315

Pittsburgh, PA 15276

Boring No.: MW-5

Date Drilled: July 22, 1991

Drilling Co.:

Environmental Drilling, Inc.

Driller:

Greg Pijak

ESC Geologist:

E. Michael Riggins

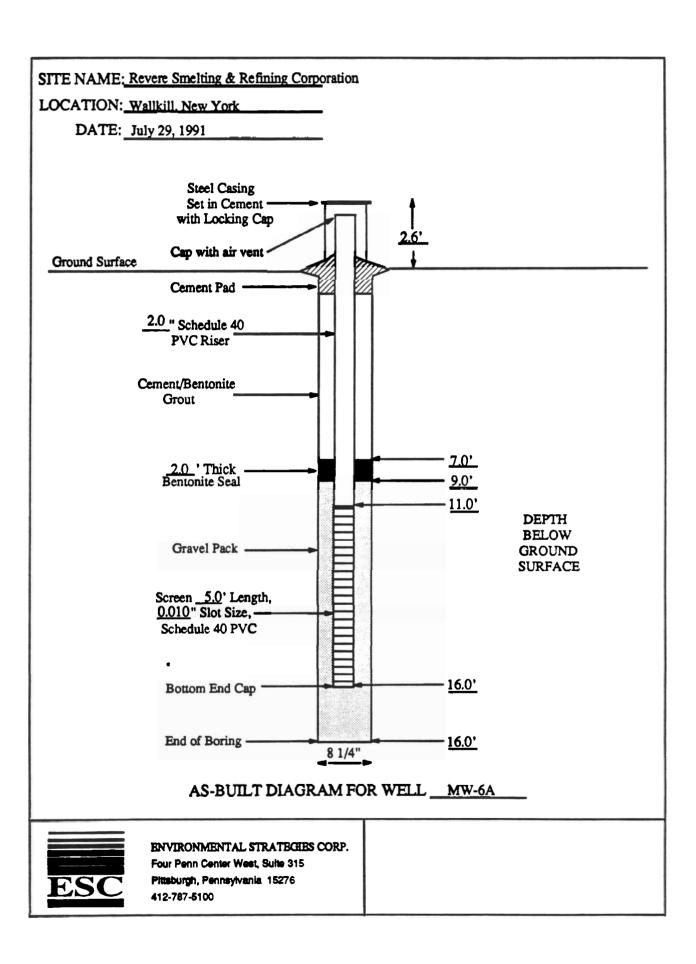
Boring Location: East of facility

Ground Elevation:

TOC Elevation:

Boring

Method: H.S.A. Hole Diameter: 8.25" Inside Diameter: 4.25" Total Depth: 20.0'


Sampler

Method:	Split-spoon
Length Ft.:	2.0
Hammer lbs.:	140
Fall ins.:	30

Depth (ft)	PID (ppm)	Percent Rec.	Sample Depth (ft)	Blows/6"	Sample Description
0.0-2.0	0	20	MW5-1 0.0-0.5	5/7/6/7	TOPSOIL-SILT-medium to dark brown, little clay, trace rock fragments, FILL
2.0-4.0	0	50	MW5-2 2.0-3.0	50 over 3" 12/16/26	SILT FILL-medium gray, some clay, trace rock & plastic fragments
4.0-4.5	0	80	MW5-3 4.0-4.5	27/42/45/30	SILT FILL-same as above to 4.5'
4.5-6.0					SILT-medium brown to reddish brown, some orange staining, some clay, trace shale & rock fragments, poorly sorted, native soils or TILL (?)
6.0-8.0	0	90	MW5-4 6.0-6.5	20/27/40/43	SILT-same as above, TILL (?)
8.0-10.0	50 at 8.8'	80	MW5-5 8.0-8.5	33/34/34/38	SILT-same as above, increasing shale fragments, micaceous siltstone fragment in spoon tip

10.0-12.0	30	70	MW5-6 10.0-10.5	19/18/16/16	SILT-same as above, changing color to dark brown
12.0-14.0	0	80	MW5-7 12.0-12.5	33/18/18/29	SILT-same as above, dark brown color, two nails in split-spoon tip
14.0-16.0	0	80	MW5-8 14.0-14.5	8/41/19/25	SILT-same as above, damp at 15,0'
16.0-17.3	0	85	MW5-9 16.0-16.5	60/67/ 50 over 3"	SILT-same as above, shale fragment in spoon tip, saturated at 16.0'
18.0-20.0	0	80		14/33/31/42	Weathered shale fragment to 18.3', SILT TILL-same as above, dry

NOTE: Groundwater encountered at 16.0'

PROJECT: Revere Smelting & Refining Corporation

Wallkill, New York

PA641-02

Environmental Strategies Corporation Four Penn Center West, Suite 315 Boring No.: MW-6A
Date Drilled: July 29, 1991

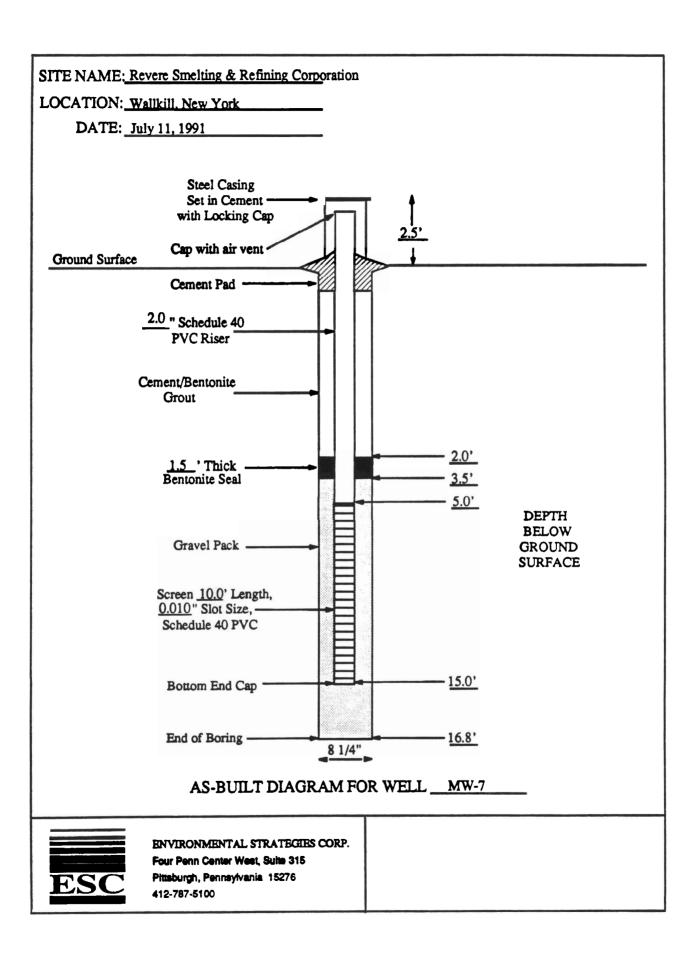
Pittsburgh, PA 15276

Drilling Co.: Environmental Drilling, Inc.

Driller: Greg Pijak
ESC Geologist: E. Michael Riggins

Boring Location: East of facility

Ground Elevation: TOC Elevation:


Boring Sampler

Method: H.S.A. Method: Split-spoon Hole Diameter: 8.25" Length Ft.: 2.0 4.25" Inside Diameter: Hammer lbs.: 140 Total Depth: 16.0" Fall ins.: 30

PID Percent Depth Sample Depth (ft) Sample Description (ft) (ppm) Rec. Blows/6" 0 MW6A-1 0.0-2.0 60 10/20/22/20 SILT FILL-light brown, little clay & 0.0-1.0 rock fragments, trace sand & slag 2.0-3.5 0 100 MW6A-2 9/12/25/28 CLAY-bluish to greenish gray, little silt, trace rock fragments, black 2.0-3.0 organic (peat) material SILT-yellowish brown, little clay, 3.5-4.0 trace sand & rock fragments, poorly sorted, TILL 80 SILT TILL-same as above to 5.5' 4.0-5.5 0 MW6A-3 26/26/30/40 4.0-5.0 5.5-6.0 SILT TILL-medium brown, little clay, trace sand & rock fragments 6.0-6.5 10 50 over 5" SANDSTONE FRAGMENT in spoon tip 8.0-9.0 0 25/50 over 5" No recovery-pushing cobble 50 over 3" 10.0-10.2 5 Dark gray SILTSTONE fragment in spoon tip

12.0-12.1	10	50 over 1"	SAND & GRAVEL-poor recovery, split- spoon wet, saturated material
12.1-16.0			Material augered, saturated

NOTE: Groundwater encountered at 12.0'.

PROJECT: Revere Smelting & Refining Corporation

Wallkill, New York

PA641-02

Environmental Strategies Corporation Four Penn Center West, Suite 315 Pittsburgh, PA 15276 Boring No.: MW-7

Date Drilled: July 10, 1991

Drilling Co.:

Environmental Drilling, Inc.

Boring Location: North of facility

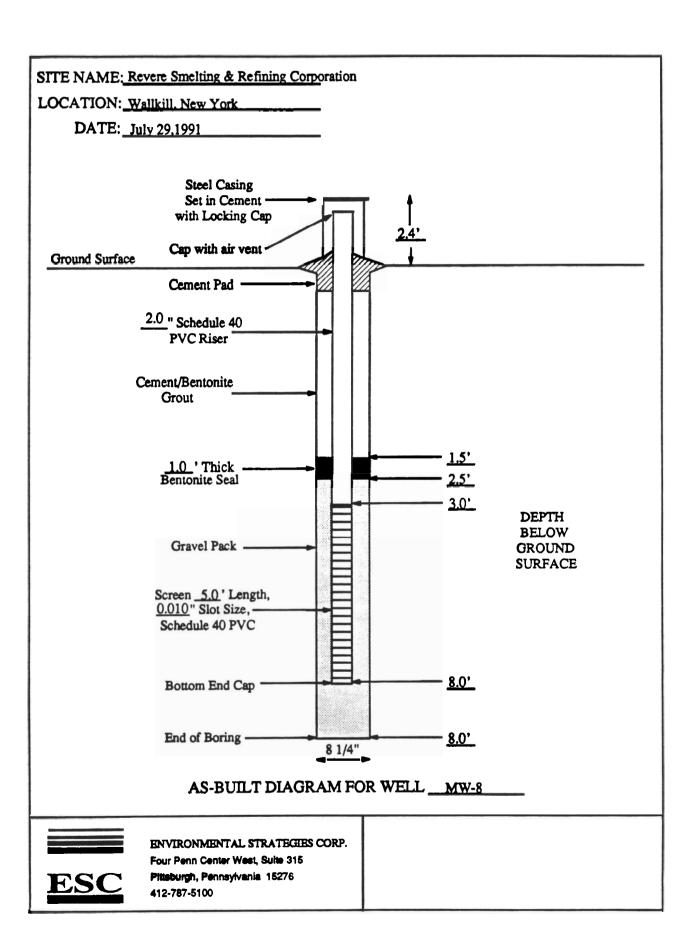
Driller: ESC Geologist: Greg Pijak

E. Michael Riggins

Ground Elevation: TOC Elevation:

Boring

Method: H.S.A. Hole Diameter: 8.25" Inside Diameter: 4.25" Total Depth: 16.9'


Sampler

Method:	Split-spoon
Length Ft.:	2.0
Hammer lbs.:	140
Fall ins.:	30

Depth (ft)	PID (ppm)	Percent Rec.	Sample Depth (ft)	Blows/6"	Sample Description
0.0-1.5	0	50	MW7-1 0.0-0.5	4/8/5	TOPSOIL-SILT-medium grayish brown, organic material, trace sand & clay, yellowish brown mottles, wet
1.5-2.5	0	85	MW7-2 2.0-2.5	5/8/12/23	CLAY-yellowish brown, some silt, root structures, mottled
2.5-3.5					SILT-bluish gray, some clay, little sand, trace rock fragments, yellowish brown mottles in upper 0.5'
3.5-5.5	0	85	MW7-3 4.0-4.5	20/23/28/40	SILT TILL-medium grayish brown, some clay, little sand & rock fragments, trace rounded gravel
5.5-7.5	0	60	MW7-4 6.0-6.5	23/17/18/24	SILT TILL-dark bluish gray, trace clay & rock fragments, saturated at 7.0'
8.0-10.0	0	70	MW7-5 8.0-8.5	6/35/23/25	SILT TILL-dark bluish gray, little sand & rock fragments, saturated
10.0-12.0		40		5/13/17/16	SILT TILL-same as above, gravel sized rock fragments

12.0-12.7	40	5/50 over 3"	SILT TILL-same as above
15.0-16.9	20	51/100 over 5"	SILT TILL-same as above, gravel sized fraction has increased

NOTE: Groundwater encountered at 7.0'.

PROJECT:

Revere Smelting & Refining Corporation

Wallkill, New York

PA641-02

Environmental Strategies Corporation Four Penn Center West, Suite 315

Pittsburgh, PA 15276

Boring No.: MW-8

Date Drilled: July 29, 1991

Drilling Co.:

Environmental Drilling, Inc.

Driller:

Greg Pijak

ESC Geologist:

E. Michael Riggins

Boring Location: North of facility

Ground Elevation:

TOC Elevation:

-		
RO	mno	

Sampler Method: Method: H.S.A. Split-spoon 8.25" 2.0 Hole Diameter: Length Ft.: Inside Diameter: 4.25" Hammer lbs.: 140 8.0' Fall ins.: 30 Total Depth:

Depth (ft)	PID (ppm)	Percent Rec.	Sample Depth (ft)	Blows/6"	Sample Description
0.0-0.5	0	50	MW8-1 0.0-0.5	2/6/8/14	TOPSOIL-SILT-dark brown, little sand, trace clay, root zone
0.5-2.0					SILT-yellowish brown, some fine sand, trace clay & rock fragments, mottled
2.0-4.0	0	100	MW8-2 2.0-3.0	13/14/11/12	SILT-yellowish brown, little fine grained, gray sand, little clay, trace rock fragments, saturated at 3.5'
4.0-5.0	0	80	MW8-3 4.0-5.0	10/14/18/16	SAND-yellowish brown, some silt, trace rock fragments, grading into gray SAND
5.0-6.0					SAND-dark gray to gray, fine to medium grained, little rock fragments, trace silt, saturated
6.0-7.5	0	100		20/19/15/15	SAND-same as above to 7.5'
7.5-8. 0					SAND & GRAVEL & ROCK FRAGMENTS-saturated material

NOTE: Groundwater encountered at 3.5'

SITE NAME: Revere Smelting & Refining LOCATION: Wallkill, New York DATE: December 20, 1993 **Steel Casing** Set in Cement with Locking Cap Cap with air vent · **Ground Surface** Cement Pad 2_" Schedule 40 **PVC** Riser Cement/Bentonite Grout 2 'Thick Bentonite Seal **DEPTH BELOW** Gravel Pack -**GROUND** SURFACE Screen __5_' Length, 0.01 " Slot Size, Schedule 40 PVC 10' Bottom End Cap 16.2' End of Boring -8" **ENVIRONMENTAL STRATEGIES CORPORATION**

ENVIRONMENTAL STRATEGIES CORPORATION
Four Penn Center West • Suite 315
Pittsburgh, Pennsylvania 15276
(412) 787-5100

AS-BUILT DIAGRAM FOR WELL MW-9

BORING LOG

Environmental Strategies
Corporation

Four Penn Center West, Ste. 315 Pittsburgh, Pennsylvania 15276

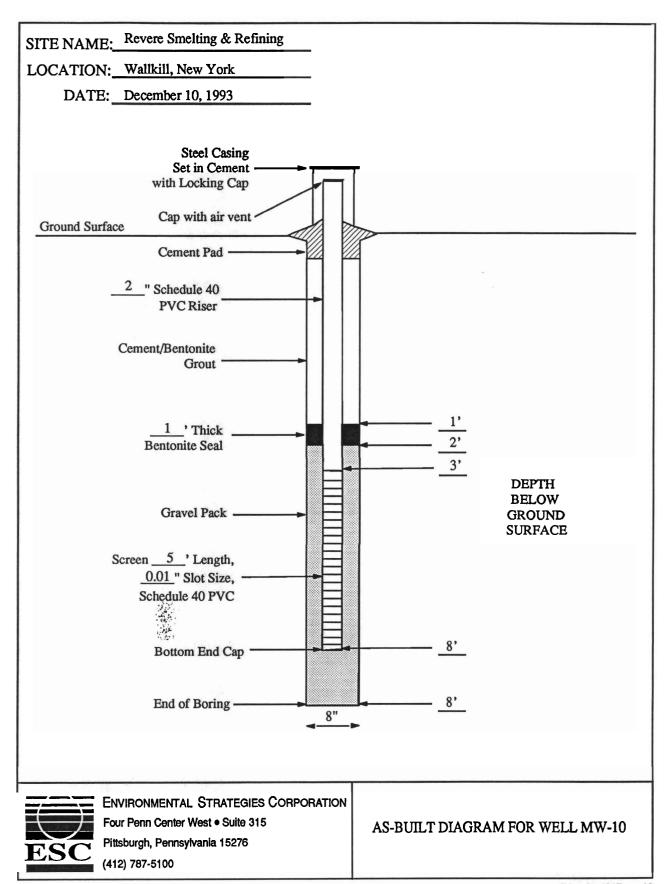
ESC Geologist Patrick Peterson

PROJECT

Revere Smelting & Refining Wallkill, New York

PA1217-02

Boring No. MW-9


Sheet ___1 of __1__

Date Drilled <u>12/13/93</u>

Drilling Co	. Empire Soil and Investigations	Bori
Driller	Glen Stevens	Grou

Boring Location Near wastewater treatment
Ground Elevation plant
TOC Elevation

Boring Casing/Screen Sampler Method _ Method Hollow Stem Augers Type PVC Split-spoon Length (ft) Hole Diameter 8-inch Diameter 2-inch 2-foot Inside Diameter 4.25-inch Hammer (1b) 140 Screen Length 5-foot Screen Slot Size Total Depth 16.2 feet 0.01-inch Fall (in) Depth P.I.D. Sample Sample Percent Recovery Depth (ft) Blows/6" Number Sample Description (ft) (ppm) N/A l٥ N/A N/A N/A N/A Concrete with re-bar, 1.8' N/A 75 2-4 5-14-12-13 MW9-1 GRAVEL, some sand and silt, 1.8 Fill. 75 4-6 12-24-24-26 MW9-2 SILT, some clay, yellowish 3.5 N/A some mottling, non-plastic, moist. 6-8 MW9-3 GRAVELLY SILT, some clay and 6 N/A 75 14-14-15-13 sand, some mottling, rounded medium gravel, non-plastic, natural soil. N/A 75 8-10 12-18-14-14 MW9-4 Same as above, wet SILT, some fine sand and fine 10 N/A 100 10-12 17-28-30-24 MW9-5 round gravel, non-plastic, yellowish brown, moist, natural soil. MW9-6 SILTY FINE SAND, some round fine 12 N/A 75 12-14 13-21-22-27 gravel, trace clay, yellowish brown, dense, moist. 75 14-16 MW9-7 Same as above, with cobble size N/A 26-33-50shale fragments, moist. 100/3" SHALE, dark gray, competent, 16-16.2 100/2" N/A 16 auger refusal at 16.2 feet.

BORING LOG Boring No. MW-10 PROJECT Environmental Strategies Revere Smelting & Refining Sheet ___1 of __1 Corporation Wallkill, New York PA1217-02 Four Penn Center West, Ste. 315 Date Drilled <u>12/10/93</u> Pittsburgh, Pennsylvania 15276 Drilling Co. Empire Soil and Investigations Boring Location Near culvert by R.R. tracks Ground Elevation _ Glen Stevens Driller , ESC Geologist Patrick Peterson TOC Elevation Boring Casing/Screen Sampler Method Hollow Stem Augers Type PVC Method Split-spoon Hole Diameter 8-inch Inside Diameter 4.25-inch Diameter 2-inch Length (ft) 2-foot 5-foot Screen Length Hammer (1b) 140 8-feet Total Depth Screen Slot Size 0.01-inch Fall (in) P.I.D Percent Depth Sample Sample (ft) Recovery Depth (ft) Blows/6" Number Sample Description (ppm) N/A 75 0-2 3-4-5-7 MW10-1 TOPSOIL, brown, fine sand, trace silt and gravel, moist, Fill. SILT, some sand and fine to medium 1 gravel, trace clay, non-plastic, brown, moist, Fill. 7-5-6-4 N/A 30 2-4 GRAVELLY SILT, some fine to coarse sand, saturated, Fill. 3.8 N/A 50 4-6 21-51-49-15 GRAVELLY SAND, dark gray, some anthropogenic material, little fines, saturated, Fill, CLAY, some roots, black, trace silt 50 6-8 53-7-9-8 7.5 N/A slightly fat, organic rich odor, natural topsoil. Note: Water measured at 2 feet. i. ..

SITE NAME: Revere Smelting & Refining LOCATION: Wallkill, New York DATE: December 15, 1993 Steel Casing Set in Cement with Locking Cap Cap with air vent **Ground Surface** Cement Pad 2 " Schedule 40 **PVC** Riser Cement/Bentonite Grout 2 'Thick Bentonite Seal 7.1' **DEPTH BELOW** Gravel Pack -**GROUND SURFACE** Screen 2.3' Length, 0.01 " Slot Size, Schedule 40 PVC 9.4' Bottom End Cap End of Boring -9.4'

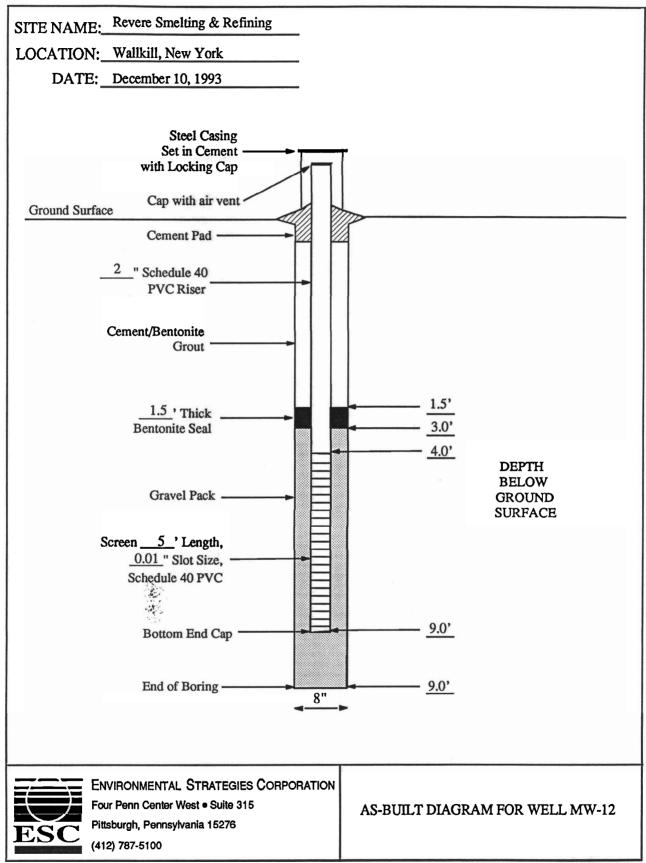
8"

ENVIRONMENTAL STRATEGIES CORPORATION
Four Penn Center West • Sulte 315
Pittsburgh, Pennsylvania 15276
(412) 787-5100

AS-BUILT DIAGRAM FOR WELL MW-11

BORING LOG

Environmental Strategies
Corporation
Four Penn Center West, Ste. 315
Pittsburgh, Pennsylvania 15276


PROJECT Revere Smelting & Refining Wallkill, New York

Boring No. MW-11
Sheet _ 1 _ of _ 1
Date Drilled 12/15/93

Drilling Co.	Empire Soil and Investigation
Driller	Glen Stevens
ESC Geologist	Patrick T. Peterson

Boring Location Near-Ballard Road
Ground Elevation NA
TOC Elevation NA

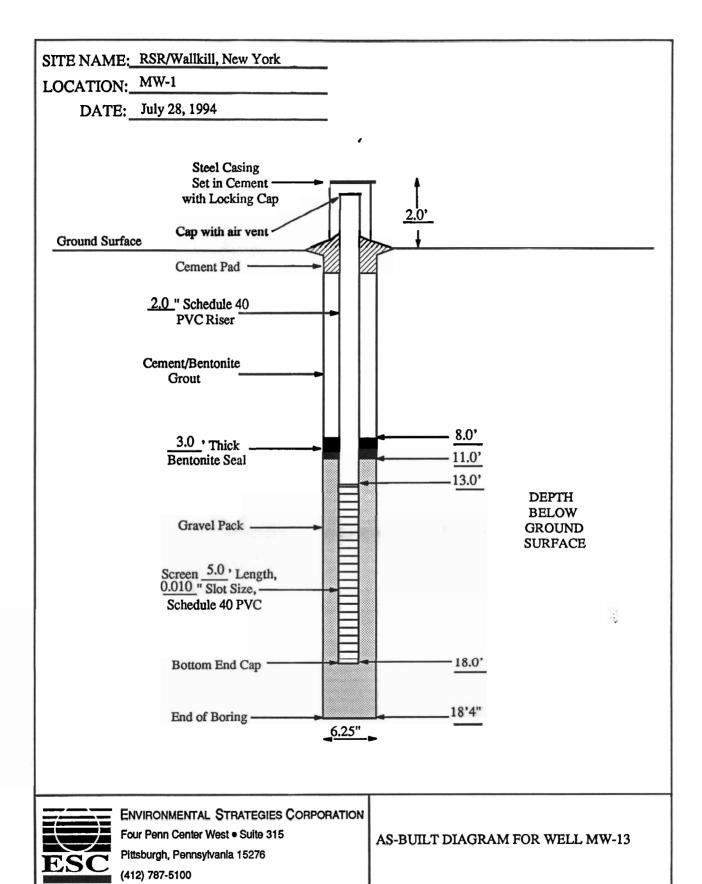
Boring Method Hollow-Stem Auger Hole Diameter 8.00" Inside Diameter 4.25" Total Depth 9.2 feet			Diam Scre	Casing/Screen PVC Leter 2-inch Length 2.3 fee Len Slot Size 0.010	Method Split-spoon Length (ft) 2.0' Hammer (lb) 140
Depth	P.I.D. (ppm)	% Recov	Sample Depth	Blows/6"	Sample Description
0	NA	75	0-2	3-12-12-9	TOPSOIL, silt, some clay and
,			MW11-1		gravel, trace sand, slightly
					plastic, brown, moist
2	NA	100	2-4	9-15-22-48	SILT, weathered shale fragments,
			MW11-2		trace clay, brown and gray, dry,
					natural soil, non-plastic
4	NA NA	100	4-5.5	18-59-104	WEATHERED SHALE, gray and brown,
	+		MW11-3		some red oxidized iron staining
		75		20.05.10.10	
16	NA NA	75	6-8 MW11-4	30-26-18-18	Same as above, wet at 8 feet
	 		MWII-4		
8	NA NA	75	8-9.2	21-50-100/2"	SHALE, dark gray, competent, some
	+	"	0 3.2	22 00 20072	fracturing, saturated.
	1				
			estimate and a		Auger refusal at 9.2 feet
					W A
				,	√ *
					x**
-					
	-				
		-			
		E			

BORING LOG Environmental Strategies Corporation Four Penn Center West, Ste. 315 Pittsburgh, Pennsylvania 15276

PROJECT Revere Smelting & Refining

Wallkill, New York PA1217-02

Boring	No.	MW-12	2
Sheet _	1	_ of _	1


Date Drilled <u>12/10/93</u>

Drilling Co. Empire Soil and Investigations
Driller Glen Stevens
ESC Geologist Patrick Peterson

Boring Location __ Ground Elevation _ Near pond and R.R. tracks TOC Elevation

Boring Method Hollow Stem Augers	Casing/Screen Type PVC	Sampler Method Split-spoon
Hole Diameter 8-inch	Diameter 2-inch	Length (ft) 2-foot
Inside Diameter 4.25-inch	Screen Length 5-foot	Hammer (lb) 140
Total Depth 9.7-feet	Screen Slot Size <u>0.01-inch</u>	Fall (in)30

		9.7-feet		creen Slot S		-inch Fall (in) 30
Depth (ft)	(ppm)	Percent Recovery	Sample Depth (ft)	Blows/6"	Sample Number	Sample Description
0	N/A	75	0-2	1-3-6-10	MW12-1	TOPSOIL, silt, brown, trace sand
						and gravel, moist.
						, · · · ·
0.4		7				CLAY, some silt, little subangular
						gravel and sand, moderately
						plastic, brown, gray mottling, no
						bedding structure, Fill.
2	N/A	60	2-4	3-6-7-12	MW12-2	FINE GRAVELLY CLAY, some silt,
						low to high plasticity, brown,
						some roots and asphalt, bluish gray
						mottling, stiff, moist, Fill.
3.8	N/A	80	4-6	5-4-5-5	MW12-3	CLAY, some silt and organics, dark
						gray, little sand and fine to
						medium round gravel, slight to
					141	moderate plasticity, moist, natural
						soil.
6.2	N/A	100	6-8	4-6-8-12	MW12-4	CLAY, light brown, fat clay, little
1			·# .			sand, some round fine gravel, moist
			15			to well, stiff, natural soil.
						Increase in silt with depth and
						little reddish brown mottling.
9.7	N/A	100	8-10	4-2-12-28		GRAVELLY SILT, some sand and fine
						to medium round gravel, slightly
						oxidized, dark brown, stiff, wet,
						Till at 9.7 feet.
						Note: Water measured at 4.2 feet.

BORING LOG Environmental Strategies

Corporation Four Penn Center West, Ste. 315 Pittsburgh, Pennsylvania 15276

PROJECT

Revere Smelting & Refining Wallkill, New York

Boring No. ___ MW-13

Sheet __1__ of __2_

Date Drilled _7/27-8/94

Drilling Co. Parrat Wolff, Inc.
Driller Glen Lansing\ Arnold Chapel
ESC Geologist E. Michael Riggins

Boring Location East of unnamed tributary Ground Elevation TOC Elevation _

Boring	<u>Casing/Screen</u>	Sampler
Method Hollow-Stem Auger	Type Polyvinyl Chloride	Method Split-spoon
Hole Diameter 6.25"	Diameter 2.0"	Length (ft) 2.0
Inside Diameter 4.25"	Screen Length 5.0'	Hammer (1b) 140
Total Depth 18.4'	Screen Slot Size0.010"	Fall (in)30

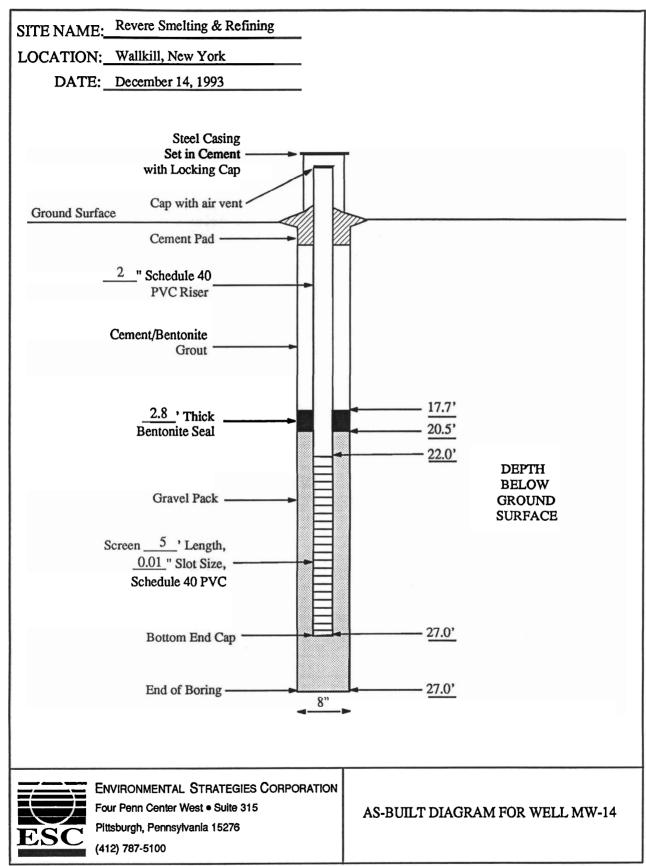
Total Depth	10.4		Screen	1 510t 512e0.01	10 Fall (111)
Depth	P.I.D. (ppm)	Recov	Sample Depth	Blows/6"	Sample Description
0.0 - 2.0'	NS	60	0.3 - 2.0'	5/7/6/25	0.0 - 0.3' - Organics decaying
			MW13-1		leaves, and roots
					0.3 - 2.0'- SILT - light yellowish
					brown, little gravel, trace clay,
					dry, non-plastic
			Material and the second section of the section of the second section of the secti		
2.0 - 4.0'	NS	80	3.0 - 4.0'	12/32/27/35	Same as above to 2.5', little to
			MW13-2		some sandstone rock fragments from
					2.5 - 3.0', then SILT - yellowish
					gray with orange mottling, little
					clay, trace rock fragments, non-
					plastic, dry
4.0 -6.0'	NS	0		50/4"	No recovery- sandstone fragment in
					spoon tip
6.0 - 8.0'	NS	75	7.0 - 8.0'	25/14/11/13	SILT TILL - yellowish brown, trace
			MW13-3		clay and sand, some rock
					fragments, damp at 7.5'
8.0 - 10.0'	NS	90	9.0 -10.0'	16/33/22/46	SILT TILL - and rock fragments, *
			MW13-4		trace clay and sand, dry
10.0 -11.0'	NS	100	10.0 - 11.0'	27/70	Rock fragment & SILT TILL - trace
			MW13-5		clay and sand, weathered and
					fresh, gray shale fragments,
					dry
12.0 -14.0'	NS	60	12.0 - 14.0'	20/19/18/18	SILT TILL - dark yellowish brown
	00000		MW13-6		some gray shale fragments, trace
					clay and sand, damp at 13.5'

Environmental Strategies

PROJECT Revere Smelting & Refining Wallkill, New York

Boring No.	MW-13	
Sheet 2	of 2	

Corporation
Four Penn Center West, Ste. 315
Pittsburgh, Pennsylvania 15276


Date Drilled _7/27-28/94

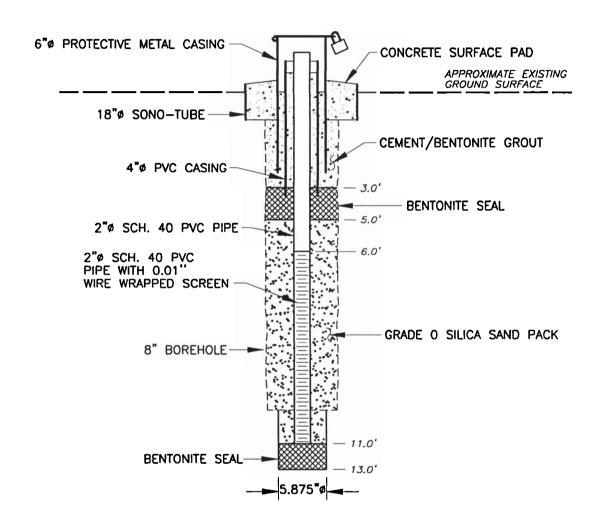
Drilling Co	Parrat Wolff, Inc.	E
Driller	Glen Lansing\ Arnold Chapel	
ESC Geologist	E. Michael Riggins]]

Boring Location <u>East.of unnamed tributary</u>
Ground Elevation _____ TOC Elevation _

Boring Method Hollow-Stem Auger	<u>Casing/Screen</u> Type Polyvinyl Chloride	<u>Sampler</u> Method Split-spoon
Hole Diameter 6.25"	Diameter 2.0"	Length (ft) 2.0
Inside Diameter 4.25"	Screen Length 5.0'	Hammer (1b) <u>140</u>
Total Depth 18.4'	Screen Slot Size0.010"	Fall (in)30

Depth	P.I.D. (ppm)	% Recov	Sample Depth	Blows/6"	Sample Description
14.0 -16.0'	NS	75	14.0 -16.0'	7/29/46/36	SILT TILL - dark yellowish gray,
			MW13-7		sandstone fragment in spoon tip,
					trace gray shale fragments, little
				,	sand and clay, damp
16 0 10 01	1.72		16.0.10.01	00/40/50/50/48	
16.0-18.0'	NS	80	16.0-18.0'	30/42/50/50/4"	SILT TILL - dark bluish gray,
			MW13-8		dense, little clay, trace rock
					fragments and sand, damp to wet
18.0-20.0'	NS	60	18.0-20.0'	27/33/36/38	SILT TILL - dark bluish gray to
20.0 20.0	110	"	10.0 20.0	21/00/00/00	yellowish gray, little sand, trace
			2.1		clay and gray shale fragments,
					damp
					`
					1
20			3.5		

Environmental Strategies Corporation Four Penn Center West, Ste. 315 Pittsburgh, Pennsylvania 15276


PROJECT Revere Smelting & Refining Wallkill, New York PA1217-02

Boring	No	<u>MW-14</u>	
Sheet _	1	of _	2
Date Dr	illed	12/1	3-14/93

Drilling Co. Empire Soil and Investigations
Driller Glen Stevens

Boring Location South property line
Ground Elevation ________
TOC Elevation _______

ESC G	eologist _	Patrick 1	Peterson		TOC Elevat	cion
Hole I	Boring Method Hollow Stem Augers Hole Diameter 8-inch Inside Diameter 4.25-inch Total Depth 27-feet			Type PVC	inch 5-foot	Sampler Split-spoon Length (ft) 2-foot Hammer (lb) 140 Fall (in) 30
Depti (ft)	h P.I.D		Sample Depth	Blows/6"	Sample Number	Sample Description
0	(ppm) N/A	50	(ft) 0-2	7-7-12-14	MW14-1	TOPSOIL, silt with clay, some sand
	N/A	30	0-2	1-1-12-14	MMT4-T	and fine gravel, brown, stiff,
						moderately plastic, moist.
				-		moderatery prastity moist.
1.5						CLAYEY SILT, some sand and shale
1					 	fragments, slight to moderate
						plasticity, brown, moist.
						F===01011, 220mm, mo200.
3.7	N/A	75	2-4	5-10-10-11	MW14-2	GRAVELLY SILT, with sand and clay,
	N/A	75	4-6	12-14-17-21	MW14-3	some shale fragments, brown, non-
					MW14-4	plastic, moist, Till.
	N/A	75	6-8	24-36-34-26	MW14-5	i i
	N/A	75	8-10	24-26-21-17	MW14-6	Note: Color change to gray.
	N/A	75	10-12	16-18-17-13	MW14-7	Note: Some orange brown mottling.
-						
12	N/A	75	12-14	30-26-24-22	MW14-8	GRAVELLY SILT, some sand and clay,
						little shale fragments, non-plastic
						slight mottling, moist, wet zone
						13.8 feet, hard Till.
14	N/A	<u>75</u>	14-16	12-24-26-26	MW14-9	GRAVELLY CLAY, some silt and sand,
	N/A	75	16-18	18-22-24-21	MW14-10	brown/gray, moist, moderately
						plastic, hard, Till.
18	N/A	100	18-20	12-20-18-19	MW14-11	CLAYEY SILT, some round gravel and
1						sand, trace shale fragments, moist,
	N/A	90	20-22	16-21-19-18	MW14-12	brown, hard, Till, color change to
						gray at 19.5 feet.
22.5	N/A	80	22-24	17-50-67-97	MW14-13	SILT, with shale fragments, dry,
	N/A	75	24-26	37-60-33-32	MW14-14	hard, little clay, gray.
26	N/A	75	26-27.5	37-58-100/4"		SILT with shale fragments,
					-	saturated at 26 feet. Auger to 27
						feet.

MW-15A NOT TO SCALE

Environmental Strategies Corporation

Four Penn Center West, Suite 315 Pittsburgh, Pennsylvania 15276 (412) 787-5100

Figure

"AS-BUILT" MONITORING WELL DIAGRAM FOR MW-15A

REVERE SMELTING & REFINING CORPORATION MIDDLETOWN, NEW YORK

PREPARED FOR
RSR CORPORATION
DALLAS, TEXAS

Environmental Strategies Corporation Campbells Run Road Four Penn Center West, Suite 315 Pittsburgh, PA 15276

PROJECT 213471-02 REVERE SMELTING AND

REFINING 65 BALLARD RD. MIDDLETOWN, NEW YORK Boring Number: MW-15A

Sheet 1 of 1

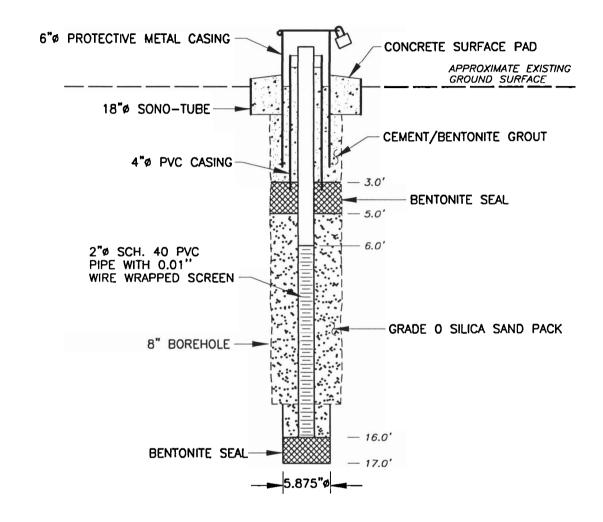
Date Drilled: 6/10/97

Drilling Company:PARRATT WOLFF, INC.Boring Location:North of Wakefern, South of Rail LineDriller:JIM HAMMOND and KEVIN WHITEGround Elevation:484.17'

ESC Geologist: E. MICHAEL RIGGINS TOC Elevation: 486.46'

BORING

Method: HOLLOW STEM AUGERS/AIR ROTARY


Hole Diameter: 8" / 6"
Inside Diameter: 4.25" /6"
Total Depth: 13'

SAMPLER

Method: SPLIT SPOON SAMPLER/BEDROCK CORE

Length (ft): 2 FEET Hammer (lb): 140 LBS Fall (in): 30 INCHES

MW15A-1 (0'-0.5') MW15A-2 (0.5'-1') MW15A-3 (1'-1.5') MW15A-4 (1.5'-2') MW15A-5 (2'-4')	Percent Recovery 100	Sample Depth 0' - 2' 2' - 4'	Blows/6" 2/2/2/1 2/3/5/5	Wet Wet Saturated to 3.5'	Sample Description SILT, dark brown, loamy, trace clay, plastic, root zone. SAND and GRAVEL, medium gray, little silt, plastic. SAND and GRAVEL, gray, medium to coarse sand and gravel, trace silt and clay, sticky, to 3.5'
MW15A-2 (0.5'-1') MW15A-3 (1'-1.5') MW15A-4 (1.5'-2') MW15A-5 (2'-4')	100			Wet	clay, plastic, root zone. SAND and GRAVEL, medium gray, little silt, plastic. SAND and GRAVEL, gray, medium to coarse sand and gravel,
MW15A-3 (1'-1.5') MW15A-4 (1.5'-2') MW15A-5 (2'-4')		2' - 4'	2/3/5/5	Saturated	gray, little silt, plastic. SAND and GRAVEL, gray, medium to coarse sand and gravel,
, ,		2'-4'	2/3/5/5		medium to coarse sand and gravel,
MW15A-6 (4' - 6')	100				then SAND, yellowish brown, little silt, trace clay, slightly plastic, fine-grained.
		4' - 6'	14/20/18/13	Saturated	SAND, same as above to 4.5' then, SAND and GRAVEL, gray, medium to coarse, trace silt, plastic to slightly plastic.
MW15A-7 (6'-8')	70	6' - 7.4'	12/22/50 for 4"	Wet	SAND and GRAVEL, same as above to 7.5', then, SILT TILL, bluish gray to light. yellowish brown, little sand, trace gravel and clay, slightly plastic.
MW15A-8 (8'-10')	70	8' - 9.5'	37/37/74		SILT TILL, same as above to 10', then weathered shale.
					SHALE, gray to dark gray, weathered on top to competent at bottom.
					Bottom of Borehole
					G:\wp\files\bcd\midtown\rsrmidt. 15
	MW15A-7 (6'-8') MW15A-8 (8'-10')			for 4"	for 4"

MW-16

ENVIRONMENTAL STRATEGIES CORPORATION

Four Penn Center West, Suite 315 Pittsburgh, Pennsylvania 15276 (412) 787-5100

Figure

"AS-BUILT" MONITORING WELL DIAGRAM FOR MW-16

REVERE SMELTING & REFINING CORPORATION MIDDLETOWN, NEW YORK

PREPARED FOR
RSR CORPORATION
DALLAS, TEXAS

Environmental Strategies Corporation Campbells Run Road Four Penn Center West, Suite 315 Pittsburgh, PA 15276

PROJECT

213471-02 REVERE SMELTING AND REFINING 65 BALLARD RD.

MIDDLETOWN, NEW YORK

Boring Number: MW-16

Sheet 1 of 1

Date Drilled: 6/03/97 to

6/04/97

Drilling Company: PARRATT WOLFF, INC. **Driller**: JIM HAMMOND and KEVIN WHITE

ESC Geologist: E. MICHAEL RIGGINS

Boring Location: North of Wakefern, South of Rail Line

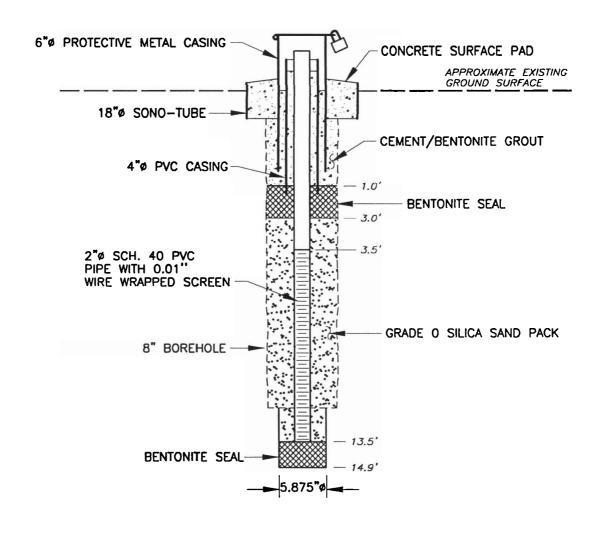
Ground Elevation: 493.12' **TOC Elevation**: 495.22'

BORING

Method: HOLLOW STEM AUGERS/AIR ROTARY

Hole Diameter: 8" / 6" Inside Diameter: 4.25" /6"

"


Total Depth: 17'

SAMPLER

Method: SPLIT SPOON SAMPLER/BEDROCK CORE

Length (ft): 2 FEET Hammer (lb): 140 LBS Fall (in): 30 INCHES

Total Depti	n: 1/			Fall (in): 30 INCHES			
Depth Below Grade (ft)	Samples Collected	Percent Recovery	Sample Depth	Blows/6"	Moisture	Sample Description	
0' - 0.6'	MW16A-1 (0'-0.5')	100	0' - 2'	1/3/4/3	Dry	SILT, root zone, trace clay and rock fragments, medium brown.	
0.6' - 2'	MW16A-2 (0.5'-1') MW16A-3 (1'-1.5') MW16A-4 (1.5'-2')				Dry	SILT, trace clay and rock frags, non-plastic, tannish brown.	
2' - 4'	MW16A-5 (2'-4')	100	2' - 4'	18/22/27/32	Dry	SILT, trace clay and rock frags., faint mottling, light yellowish to yellowish brown, non-plastic, brittle.	
4' - 6'	MW16A-6 (4'-6')	100	4' - 6'	27/17/28/18	Dry	SILT same as above to 5.0', then shale fragments to 5.1', then SILT, dark brown to dark. Bluish gray, trace clay and dark gray shale fragments, non-plastic.	
6' - 7.5'	MW16A-7 (6'-8')	100	6' - 8'	13/16/17/21	Moist at 7'	SILT, trace clay and rock fragments, light brown, brittle.	
7.5' - 8'					Moist to wet	SILT, olive gray to gray, trace sand, clay, little rock fragments, slightly plastic.	
8' - 9.5'	MW16A-8 (8'-10')	100	8' - 10'	3/106/7	Wet	SILT and Rock Fragments, dark brown to gray, non-plastic.	
9.5' - 10'					Dry	CLAY, med. gray to yellowish brown, little silt.	
10' - 12'	MW16A-9 (10'-12')	100	10' - 12'	10/14/13/15	Saturated	ROCK FRAGMENTS, shale, dark gray, some silt, trace clay.	
12' – 13.6'	MW16A-10	70	12'-13.6'	20/30/34/50 for 1"	Wet to Saturated	ROCK FRAGMENTS, and SILT, dark brown with dark gray shale fragments, trace clay, slightly plastic.	
13.6'- 17'						SHALE, black to dark gray.	
						Bottom of borehole.	
						G:\wp\files\bcd\midtown\rsrmidt. 16	

NOT TO SCALE

Figure

PREPARED FOR RSR CORPORATION DALLAS, TEXAS

Environmental Strategies Corporation Campbells Run Road Four Penn Center West, Suite 315 Pittsburgh, PA 15276

PROJECT 213471-02 REVERE SMELTING AND REFINING

65 BALLARD RD. MIDDLETOWN, NEW YORK Boring Number: MW-17

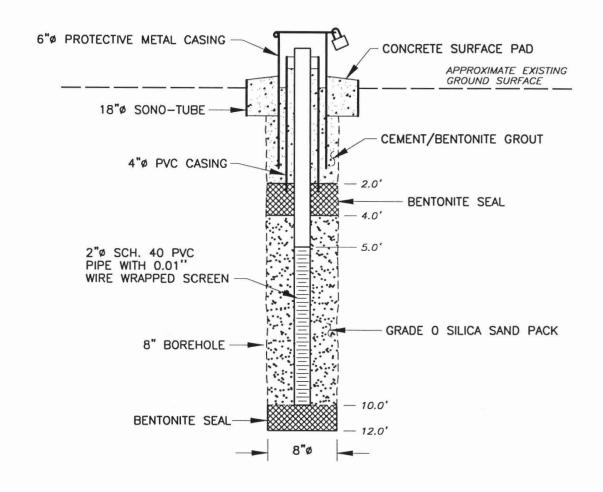
Sheet 1 of 1

Date Drilled: 6/05/97, 6/06/97

Drilling Company: PARRATT WOLFF, INC.
Driller: JIM HAMMOND and KEVIN WHITE
ESC Geologist: E. MICHAEL RIGGINS

Boring Location: North of Wakefern, South of Rail Line Ground Elevation: 488.87'
TOC Elevation: 491.46'

BORING


Method: HOLLOW STEM AUGERS/AIRROTARY

Hole Diameter: 8" / 6" Inside Diameter: 4.25" /6" SAMPLER

Method: SPLIT SPOON SAMPLER/BEDROCK CORE

Length (ft): 2 FEET Hammer (lb): 140 LBS Fall (in): 30 INCHES

Total Depth: 14.9'				Fall (in): 30 INCHES			
Depth Below Grade (ft)	Samples Collected	Percent Recovery	Sample Depth	Blows/6"	Moisture	Sample Description	
0'- 0.5'	MW17A-1	100	0' - 2'	4/5/8/7	Moist	SILT, loam, black, roots, some clay, slightly plastic.	
0.5' - 1'	MW17A-2				Wet	CLAY, black, plastic to sticky, little silt, trace rock frags., and roots.	
1' - 2'	MW17A-3				Wet	ROCK FRAGMENTS, dark gray, some silt, trace clay.	
2' - 4'	MW17A-4	100	2' - 4'	46/32/28/26	Moist to wet	CLAY, gray with some rock fragments, trace silt, yellowish brown mottles, plastic and sticky.	
4' - 6'	MW17A-5	100	4' - 6'	4/7/6/8	Moist	SILT TILL, gray, some clay, trace rock fragments, plastic, mottled.	
6' - 8'	MW17A-6	100	6' - 8'	7/8/11/13	Moist	SILT TILL, gray, mottled, trace clay, fine sand, and rock fragments, slightly plastic, shale fragment in tip.	
8' - 10'		0	8' - 10'	23/24/23/20		No recovery, siltstone fragment in tip, dark gray.	
10' - 10.9'	MW17A-7	30	10' - 10.9'	18/50 for 4"		SHALE, dark gray, weathered, bedrock.	
10.9' - 14.9'			10.9' - 14.9'			SHALE, dark gray, weathered top 4", weathered zone at @ 12.5' for 2", calcite streaks in competent shale in core bottom.	
						Bottom of borehole.	
						G:\wp\files\bcd\midtown\rsrmidt. 17	

MW-18

ENVIRONMENTAL STRATEGIES CORPORATION

Four Penn Center West, Suite 315 Pittsburgh, Pennsylvania 15276 (412) 787-5100

Figure

'AS-BUILT' MONITORING WELL DIAGRAM FOR MW-18

REVERE SMELTING & REFINING CORPORATION MIDDLETOWN, NEW YORK

PREPARED FOR RSR CORPORATION DALLAS, TEXAS

Environmental Strategies Corporation Campbells Run Road Four Penn Center West, Suite 315 Pittsburgh, PA 15276

PROJECT

213471-02 REVERE SMELTING AND REFINING 65 BALLARD RD.

MIDDLETOWN, NEW YORK

Boring Number: MW-18

Sheet 1 of 1

Date Drilled: 6/13/97

Drilling Company: PARRATT WOLFF,INC. **Driller**: JIM HAMMOND and KEVIN WHITE

Ground Elevation: 530.92'
TOC Elevation: 533.28'

Boring Location: Upgradient Well, North of Revere Facility **Ground Elevation**: 530.92'

ESC Geologist: E. MICHAEL RIGGINS TOC Elevation: 533.28'

BORING Method: HOLLOW STEM AUGERS

SAMPLER
Method: SPLIT SPOON SAMPLER

Hole Diameter: 8"
Inside Diameter: 4.25"

Length (ft): 2 FEET Hammer (lb): 140 LBS Fall (in): 30 INCHES

Total Depth: 12'

Total Depth: 12				rall (III): 30 INCHES			
Depth Below Grade (ft)	Samples Collected	Percent Recovery	Sample Depth	Blows/6"	Moisture	Sample Description	
0' - 1'	MW18-1 (0'-0.5') MW18-2 (0.5'-1')	100	0' - 2'	5/6/5/5	Dry	SILT, brown, loamy, trace rock fragments and clay, slightly plastic.	
1' - 2'	MW18-3 (1'-1.5') MW18-4 (1.5'-2')				Dry	SILT, faint yellowish brown, trace silt, mottled, slightly plastic.	
2' - 3.8'	MW18-5 (2'-4')	100	2' - 4'	3/5/12/12	Moist	CLAY, bluish gray to yellowish brown, trace silt, plastic.	
3.8' - 4'					Wet	SAND and GRAVEL, medium to coarse sand, fine to coarse gravel, trace silt and clay.	
4' - 6'	MW18-6 (4'-6')	30	4' - 6'	13/20/17/16	Moist	SILT, medium brown, trace clay and rock fragments, plastic, sticky.	
6' - 8'	MW18-7 (6' - 8')	100	6' - 8'	11/12/10/12	Saturated	SAND and GRAVEL, medium to coarse sand, fine gravel, trace silt and clay, dark brown.	
8' - 10'	MW18-8 (8'-10')	100	8' - 10'	7/13/11/12	Saturated	SAND and GRAVEL, same as above.	
10' - 12'	MW18-8 (10'-12')	100	10' - 12'	6/8/21/34	Saturated	SAND and GRAVEL, medium to coarse sand, fine to coarse gravel, trace silt and clay, shale fragments in spoon tip, dark brown.	
						Bottom of borehole.	
						G:\wp\files\bcd\midtown\rsrmidt. 18	

Well ID:

MW-23S

Project:

Revere Smelting & Refining

Location: Middletown, New York

Project No.: 26408.004.400

 Client:
 NYSDEC

 Date Drilled:
 11/7/2001

 Date Developed:
 11/9/2001

ſ					
	M.P. EL. 496.68 GR. EL.	5	WELL	DN DET	AIL 1.82' Above Ground - 0.0
	CEMENT— BENTONITE SEAL				
	RISER PIPE ———				
	BENTONITE SEAL				0.5' 1.5' 2.0'
	FILTER PACK				
	SCREEN:	NOT			<u>12.0</u> '
í		NOT	TO S	CALE	

		Inspe	ction Note	s:								
Inspector:		Garrett	Garrett Sleeman									
Drilling Co	ntractor	Parratt	Parratt Wolff, Inc.									
			Environmental Monitoring Well									
Static Wat Measuring Total Dept	Point:	Top of I	PVC	Date: 11/09/01								
rotal Bop	01 110	(It bilip). <u>10.02</u>									
Drilling Method - Overburden:												
_			Diameter:	4 1/4 " ID								
Casing:			_									
Samplin	ig Metl	hod - C	verburde	n:								
Type:	Split-Sp	oon	Diameter:	2" OD								
Weight:			— Fall:	30"								
Interval:												
Riser Pi	•			2" ID								
			Diameter:									
Length:	2.0		_Joint Type	: Flush Thread								
Screen:												
Material:	Sch 40	PVC	_ Diameter:									
Slot Size	:		Joint Type	: Flush Thread								
Filter Pa	ack:											
Type:	Sand		_Grade:									
Interval:	2.0'-12.	0' BS										
Seal(s):												
Type:	Cement	-Bentonite	e_Interval:	0.0'-0.5' BS								
Type:	Bentonit	te Pellets	interval:	0.5'-1.5' BS								
Type:			Interval:									
Locking C	asing:	X]	Yes	No No								

Weight of Hammer 1 - 1 Weight of Hammer 1 - 1	
CLIENT: NYSDEC DRILLING CONTRACTOR: Parratt Wolff Inc. PURPOSE: Overburden Monitoring Well South of Second Purpose: Overburden Monitoring Well South of Second Purpose: Samuel	JOB NO. 26408.004.400 MEAS. PT. ELEV. diment Pond GROUND ELEV. 498.50
DRILLING CONTRACTOR: Parratt Wolff Inc. PURPOSE: Overburden Monitoring Well South of Set DRILLING METHOD: 4.5 Split Barrel DRILLING METHOD: 4.5 Split Barrel DRILL RIG TYPE: 850 Track GROUND WATER DEPTH: DIA. MEASURING POINT: WEIGHT DATE OF MEASUREMENT: FALL Weight of Hammer 1 - 1 Weight of 1 - 1.3' Brown SIL trace medium(+)	MEAS. PT. ELEV. diment Pond GROUND ELEV. 498.50
PURPOSE: Overburden Monitoring Well South of Set DRILLING METHOD: 4.5 Split Barrel DRILL RIG TYPE: 850 Track GROUND WATER DEPTH: MEASURING POINT: DATE OF MEASUREMENT: THE DATE OF MEASUREMENT: Weight of Hammer Weight of 1 - 1 Weight of 2.0- Weight of 2.0- Weight of 2.0- 2.0-2.4' Brown SIL	diment Pond GROUND ELEV. 498.50
DRILLING METHOD: 4.5 Split Barrel DRILL RIG TYPE: 850 Track GROUND WATER DEPTH: MEASURING POINT: DATE OF MEASUREMENT: THE GROUND WATER DEPTH: DIA. WEIGHT FALL Weight of Hammer Weight of 1 - 1 Weight of 2.0- Weight of 2.0- 2.0-2.4' Brown SIL	
DRILL RIG TYPE: 850 Track GROUND WATER DEPTH: MEASURING POINT: DATE OF MEASUREMENT: THE GROUND WATER DEPTH: DIA. WEIGHT DATE OF MEASUREMENT: FALL Weight of Hammer Weight of Lo-1.3' 1 - 1	IPLE CORE CASING DATUM Ground Surface
GROUND WATER DEPTH: MEASURING POINT: DATE OF MEASUREMENT: The poly of the p	DATE STARTED 11/7/2001
MEASURING POINT: DATE OF MEASUREMENT: THAT I WEIGHT WEIGHT FALL GEOI Weight of Hammer 1 — 1 Weight of 2.0- Weight of 2.0- 2.0-2.4' Brown SIL	DATE FINISHED 11/7/2001
GEOI Weight of Hammer Weight of 2.0- Location Management of 2.0- Weight of 2.0- 2.0-2.4' Brown S	DRILLER J. Percy & J. Wheeler
Weight of Hammer 0-1.3' 0-1.3' Brown SIL trace medium(+)	INSPECTOR G. Sleeman
Weight of Hammer 0-1.3' 0-1.3' Brown SIL trace medium(+)	LOGIC DESCRIPTION REMARKS
1 — 1	T CLAY, some medium fine(+) Sand, "Clean" Fill
2 Weight of 2.0- 2.0-2.4' Brown S	Moist MW-23S (0-1.3' BS) 11:40
Veight of 2.0- 2.0-2.4 Blown S	
	ILT CLAY, some medium fine(+) Sand, "Clean" Fill Very Moist MW-23S (2.0-2.4' BS)
3 - 2	11:45
Weight of 4-4.2' 4.0-4.2' Brown S	ILTY CLAY, and medium fine(+) SAND Saturated "Clean" Fill MW-23S (4.0-4.2' BS)
5 - 3	"Clean" Fill 11:50
6 NA/sight of 16.0	6.0'
Weight of Hammer 7.3' 6.0-7.3' Brown S	ILT CLAY, some medium fine(+) Sand, MW-23S (6.0-7.3' BS) 12:05 Native Till
7 - 4	
8 VID	
NR NR	No Recovery
9 — 5	
10	

		BRIENE	GEI	RE		TEST BORING LOG	BORING	RING NO. MW-23S			
	F E	NGINEERS	5, 11	IC.							
		Revere Sme	elting a	nd R	efinin	g	SHEET 2				
CLIE	NT: N	YSDEC	-				JOB NO.	26408.004.400			
Depth Ft.	Sample	Blows on Sample Spoon per 6"	Penetration Recovery	Unified	Classi- fication	GEOLOGIC DESCRIPT	TION	REMARKS			
			10.0- 10.5'			10.0-10.5' Brown CLAY, some medium fine(-trace medium fine Gravel	+) Sand, 10	MW-23S (10.0-10.5' BS)			
11 -	6					Brown CLAY, some medium, fine(+) sand, tra medium fine gravel.		Completed MW-23S			
12 -							12	.0' Drilling			
13 -											
14 -											
r5 -											
16 -											
17 –											
18											
19 –											
20 –											
21 –											
22 -	-		-								

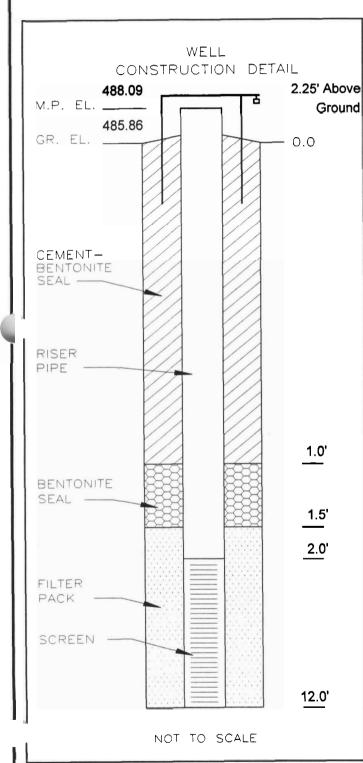
Well ID:

MW-24

Project:

Revere Smelting & Refining

Location:


Middletown, New York

Project No.:

26408.004.400

Client: Date Drilled: **Date Developed:** **NYSDEC** 11/8/2001

11/9/2001

Inspection Notes:												
Inspector:		Garrett S	leeman_									
Drilling Co	ntractor:	Parratt W	olff, Inc.									
Type of W	ell:	Environm	ental Monit	oring V	/ell							
Static Wat	er Level	(ft bmp):	3.28	Date:	11/09/01							
Measuring	Point:	Top of P\	/C									
Total Dept	h of Wel	(ft bmp):	14.25									
Drilling Method - Overburden:												
•			Diameter:	4 1/4 "	'ID							
Casing:												
Sampling Method - Overburden:												
•	•											
			Diameter:									
				30"								
Interval:	2.0' Cor	ntinuous S	sampling									
Riser Pi	Riser Pipe Left in Place:											
Material:	Sch 40	PVC	Diameter:	2" ID								
Length:			Joint Type		Thread							
Screen:												
		DVC	Diameter	חו "כ								
			Diameter:		Throad							
Siot Size			_Joint Type	. Flusii	meau							
Filter Pa	ack:											
Type:	Sand		Grade:									
Interval:	15.0-12	2' BS										
Seal(s):												
Type:	Cement	-Bentonite	Interval:	0-1.0	BS							
Type:		e Pellets	Interval:	1.0-1.								
• .	Bentonii	e reliets	Interval:	1.0-1.	0 00							
Туре:			interval.									
Locking C	asing:	X	Yes		No							

OBRIEN 5 GERE ENGINEERS, INC.

		BRIENE	GEI	3E		TEST BORING LOG				BORING NO. MW-24		
	_	VGHVEER.	_									
		Revere Sme	elting a	nd Refi	ining					SHEET 1 OF		
		YSDEC								JOB NO.	26408.004.400	
		CONTRACTO								MEAS. PT. E		
	POSE:				ation	South o	f Railroad			GROUND E		
Committee of the Commit		METHOD: 4.5			_	T)/DE	SAMPLE	CORE	CASING	DATUM	Ground Surface	
		TYPE: 85 VATER DEP	0 Trac	K	-	TYPE DIA.	1.5"	2.0" OD	41/4"	DATE STAR		
		G POINT:	111.		\dashv_{∇}	VEIGHT	1.0	2.0 00	4/4	DRILLER	J. Percy & J. Wheeler	
		EASUREME	NT:			FALL				INSPECTOR		
Depth Ft.	Sample Number	Blows on Sample Spoon per 6"	Penetration/ Recovery	Unified Classi-	ficati on	GEOLOGIC DESCRIPT					REMARKS	
1 -	0, 2	Weight of Hammer 1 4 5	0.0- 0.8'		0- wi 0. litt	ith roots 4-0.8' Ye tle Silt	rish Brown S Ilowish Gray Ilowish Brow	y CLAY, trad	ce coarse (Gravel,	A _o Horizon Moist Moderately Compact Histic B _{tg} Horizon MW-24 (0-0.8' BS) 14:10 Saturated B _{tg} (Histic Soils)	
3 —		13					llowish Brov le Gravel, lit			ne Silt, little coarse MW-24 (2.0-3.9' BS 14:15		
4 -		9	4.0- 4.9'				ayish Browr e coarse mo			ium fine	Dry Perched/Water Table Confining Clay Layer Poorly Sorted	
5 —		14									MW-24 (4.0-4.9' BS) 14:45	
6 -		13	6.0- 7.2'		m		rk Yellowish and, little Sil				MW-24 (6.0-7.2' BS) 14:40 Firmly Compact	
7 –		20										
8 –		15 22	8.0-		m		rk Yellowish and, little Sil				MW-24 (8.0-9.5' BS) 14:50	
9 – 10 –		17 10 7										

		BRIENE	GEI	RE		TEST BORING LOG	BORING N	IO. MW-24
		NUMBERS	S. i	ر ا				
		Revere Sme	elting a	nd F	Refinir	g	SHEET 2 OF	
CLIE	NT: N	YSDEC					JOB NO.	26408.004.400
Depth	Sam ple Number	Blows on Sample Spoon per 6"	Penetration Recovery	Unified	Classi- fication	GEOLOGIC DESCRIPT	REMARKS	
11 -		6 20 37 37	10.0-			10.0-11.5' Dark Yellowish Brown CLAY, little medium Sand, some coarse(-) medium fine(+	-) Gravel	MW-24 (20.0-11.5' BS) 15:05 Base of 12.0' Tip of Spoon Shale - Possible Bedrock End of Drilling
13 –								
14 — 13 —								
16 -								
17 -								
19								
20 –								
21 -								

Well ID:

MW-25

Project:

Revere Smelting & Refining

Location:

Middletown, New York

Project No.:

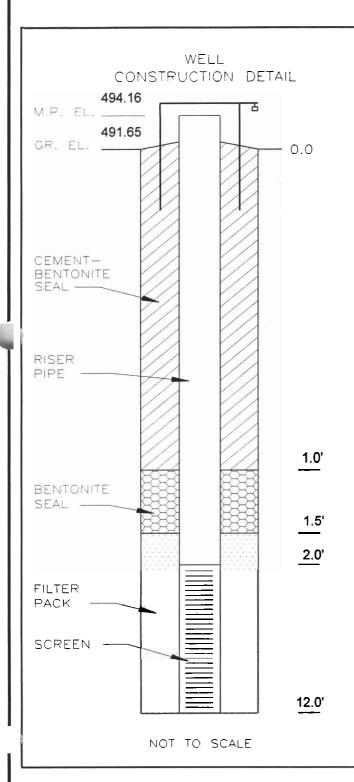
26408.004.400

Client:
Date Drilled:

Type:

Type:

Locking Casing:


Bentonite Pellets

X

NYSDEC

11/8/2001

Date Developed: 11/9/2001

mopection notes.	ins	pection	Notes:
------------------	-----	---------	--------

Inspector:	Garrett S	Garrett Sleeman						
	ntractor: Parratt V							
_		Environmental Monitoring Well						
Static Wat	er Level (ft bmp):	4.26	Date: <u>11/09/01</u>					
	Point: Top of P							
_	h of Well (ft bmp):							
Drilling	Method - Ove	rhurdon:						
•			4.4/4.11.15					
	HSA	_Diameter:	4 1/4 " ID					
Casing:	NA	·						
Samalia	g Method - Ov	orburdo:	n:					
•	•							
Type:	Split-Spoon	_ Diameter:	2" OD					
	140 #		30"					
Interval:	2.0' Continuous S	Sampling						
Risar Pi	pe Left in Plac	`a'						
	•		2" ID					
	Sch 40 PVC							
Length:		_Joint Type	: Flush Inread					
Screen:								
	Sch 40 PVC	Diameter:	2" ID					
	:							
0101 0120		_001111 1990	. Trush Thread					
Filter Pa	ıck:							
Type:	Sand	_Grade:						
Interval:	15.0-12.0' BS							
Seal(s):								
Type:	Cement-Bentonite	Intervai:	•					

1.0-1.5' BS

No

Interval:

Interval:

Yes

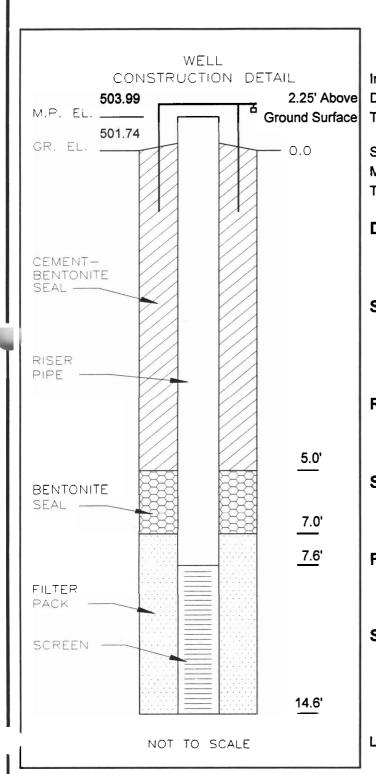
									TEST PODING LOC				DODING NO MAY OF			
						GEI S. il			IES	TEST BORING LOG				BORING NO. MW-25		
-	PRO.	JECT:	Re	vere S	Sme	Iting a	nd Re	finir	ng				SHEET 1 OF	SHEET 1 OF 2		
PROJECT: Revere Smelting and Refining CLIENT: NYSDEC												JOB NO. 26408.004.400				
ı	DRIL	LING (CON	ITRA	СТС	R: Pa	rratt V	Volf	f Inc.				MEAS. PT. E	LEV.		
ı		POSE:								f Railroad	Tracks		GROUND E	LEV.		
ı			_			Split I		_		SAMPLE		CASING	DATUM	Ground Surface		
ľ		L RIG							TYPE				DATE STAR	TED 11/8/2001		
I	GRO	UND V	VAT	ER D	EP1	ГН:			DIA.				DATE FINIS			
		SURIN							WEIGHT				DRILLER	J. Percy & J. Wheeler		
	DATE	OF N	1EA	SURE	EME	NT:			FALL				INSPECTOR	R G. Sleeman		
	Depth	Sample Number	Blows on	Sample Spoon	per 6"		Unified Classi-			EOLOG				REMARKS		
						0-0.9'				Brown CLA						
		0.2-0.9' Yellowish Brown CLAY, trace Silt, medium Sand, some medium fine(+) Grav											e coarse	0.5' BS - Saturated		
ı			2						meaium Sa	ana, some n	MW-25 (0-0.9' BS) 12:25					
	1 -	1	F											Native		
			3								Subangular Gravel					
	2 - 6									2.0-3.0' Yellowish Brown CLAY, and coarse medium				F: 10		
I	~		12			2.0- 3.0'				ne medium 1			neaium	Firmly Compact		
			12			3.0			SAND, SUI	ne mediam	illie(+) Glai	/CI		MW-25 (2.0-3.0' BS)		
			21											12:35		
٩	3 —	1										Angular-Subangular				
			17						4.0-4.8' Yellowish Brown CLAY and coarse medium					Gravel		
			40													
ı	4 -	1	19			4.0-								MW-25 (4.0-5.1' BS)		
			5			5.1'				ne medium i			ledidili	12:45		
			_								()			Firmly Compact		
	5 —		8											Till		
	5 —		_			//				llowish Brov	vn SILT and	d medium fi	ne(+)			
			/			11			SAND, sor	ne CLAY						
			5			11)										
	6 -	1	Ť			6.0-			6.0-7.0' Gr	ayish Brown	SILT CLA	Y, some me	dium fine	MW-25 (6.0-7.0' BS)		
			5			7.0'				medium fin				12:50		
	7 —	1	11													
			11			11)										
			<u> </u>	2.5		11										
	0 -		12			11										
	8 -		_			8.0-				llowish Brov				Very firmly Compact		
			上			9.6'				medium SAI			um tine(+)	MW-25 (8.0-9.6' BS)		
	^		3						Gravel, alternating Clay Silt partings 12:55							
	9 _	1	ř													
			13						1							
	10 -	1	11			//										
							ı									

r				- 3-3							
		BRI	EN8	5 G	ER	RE		TEST BORING LOG	BORING N	IO. MW-25	
PRO.	JECT:	Rever	e Sm	eltino	g an	nd F	Refinir	na	SHEET 2 OF	2	
		YSDE						9	26408.004.400		
Depth Ft.	ا او او ا							GEOLOGIC DESCRIPT	REMARKS		
11 - 12 - 13 - 14 - 15 - 19 - 20 - 21 - 21 - 15 - 15 - 15 - 15 - 15 - 15	Sample Number	ejdtus 8	Spoon	0.01 O.01 O.01 O.02 O.03 O.03 O.04 O.04 O.05 O.04 O.05 O.	0-	Unified	Classi- fication	GEOLOGIC DESCRIPT 10.0-10.6' Yellowish Brown coarse medium fi Gravel, little Silt Clay, some coarse(+) mediu	ine(+)	MW-25 (10.0-10.6 BS)	

Well ID: MW-26

Project:

Revere Smelting & Refining


Location:

Middletown, New York

Project No.: 26408.004.400 Client: **NYSDEC** Date Drilled: 11/8/2001

Date Developed:

11/9/2001

Inspection Notes:

Inspector:	Garrett Sleeman							
Drilling Contractor:	Parratt Wolff, Inc.							
Type of Well:	Environmental Monitoring Well							
Static Water Level	(ft bmp):	9.07	Date:	11/09/01				
Measuring Point:			•					

Drilling Method - Overburden:

Total Depth of Well (ft bmp): 16.85

Type:	HSA	Diameter:	4 1/4 " ID
Casing:	NA	_	

Sampling Method - Overburden:

Type:	Split-Spoon .	Diameter:	2" OD
Weight:	140#	Fall:	30"
Interval:	2.0' Continuous S	Sampling	

Riser Pipe Left in Place:

Material:	Sch 40 PVC	_Diameter: <u>2" ID</u>
Length:	10.0'	Joint Type: Flush Thread

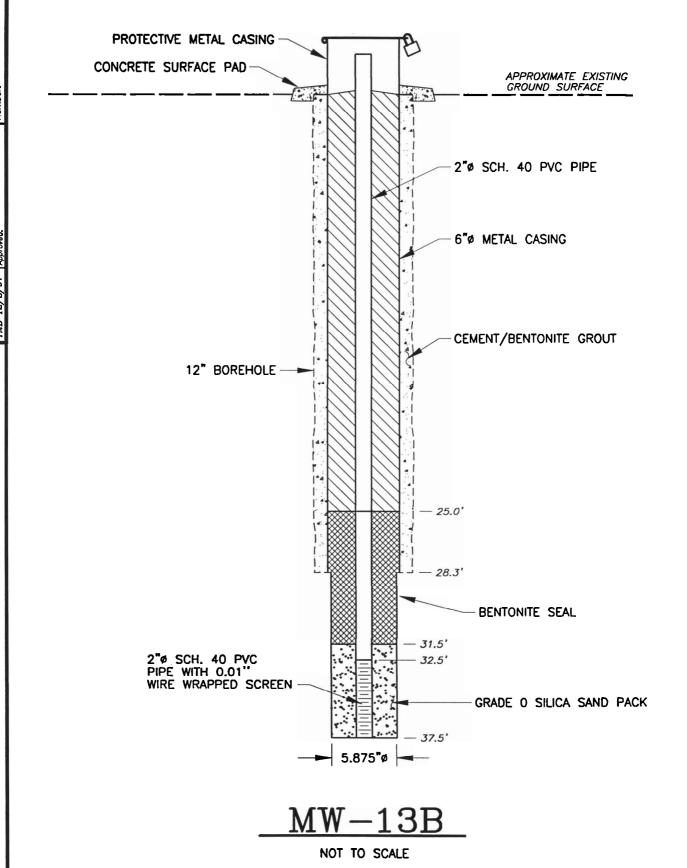
Screen:

Material: Sch 40 PVC	Diameter: 2" ID
Slot Size:	Joint Type: Flush Thread

Filter Pack:

Type:	Sand	Grade:	
Interval:	7.0-15.0' BS		

Seal(s):


Type:	Cement-Bentonite	Interval:	0-5.0' BS
Type:	Bentonite Pellets	Interval:	5.0-7.0' BS
Type:		Interval:	
	-	-	

Locking Casing: No Yes

100	OBRIEN 5 GERE								TEST BORING LOG			.OG	BORING NO. MW-26		
	PDC	FCT: Povers Smolting and Refining												. 0	
8.	PROJECT: Revere Smelting and Refining SHEET 1 OF CLIENT: NYSDEC JOB NO.											26408.004.400			
				NTRAC	TO	D. Da	rro#\	\/olf	fine				JOB NO. MEAS. PT. E		
		OSE:	_		_					st of Pond			GROUND EL		
				THOD:					511, O UOL EC	SAMPLE		CASING		Ground Surface	
	and the same of th	L RIG			1.0	Орис	300		TYPE	G/ IIII 22	00.12	0, 1010	DATE STAR		
				ΓER D	EPT	TH:			DIA.				DATE FINISI	HED 11/8/2001	
1				POINT					WEIGHT					J. Percy & J. Wheeler	
	DATE	OF N	1EA	SURE					FALL				INSPECTOR	G. Sleeman	
	Depth	Sample Number	Blows on	Samp le Spoon			Unified Classi-	fication		EOLOG				REMARKS	
			3			0-0.7'			0-0.7' Brow medium fin	vn SILT, little ie Gravel	e medium fi	ne Sand, tra	ace	Fill, Dry, Loose MW-26 (0-0.7' BS) 8:05	
	_1 -		8		\dashv										
			7 6												
	2 -		6			2.0- 2.7'			2.0-2.7' Bro	own SILT, tr	ace fine Sa	nd, little me	edium(+)	Fill, Dry, Loose MW-26 (2.0-2.7' BS)	
	3 —		8											8:10	
			7												
	4 -		4			4.0-			4.0-4.1' Bro	own SILT, tr	ace fine Sa	nd, little coa	arse	Moist Fill	
			2		_	5.5'				fine Gravel				Possible Native	
	5 —		4						Gravel		ace fine Sai	nd, little me	dium fine(+) 5.4'	MW-26 (4.0-5.5' BS) 8:20	
			7							llowish Brov e(+) Gravel	vn to Gray	SILT CLAY,			
	6 -		6			6.0- 6.6'			6.0-6.6' Ye fine(+) Gra	llowish Brov	vn to Gray (CLAY, some	e medium	Moist MW-26 (6.0-6.6' BS)	
	7 —		5			0.0			inic(*) Gla	•01				8:30	
	'		8												
	8 -		9			8.0-			8.0-8.7' Bro	ownish Gray	Moist				
			5			8.7'				m fine(+) Gi	MW-26 (8.0-8.7' BS) 8:35				
	9 _		10	ola mi K											
1	10		10 12											,	
	10 —	1.0												School Comment	

him	DBRIEN 8	SGEI S.	3E	TEST BORING LOG	IO. MW-26	
PRO.	: Revere Sm			ng	SHEET 2 OF	2
	YSDEC				JOB NO.	26408.004.400
Depth Ft.	Blows on Sample Spoon	Penetration Recovery	Unified Classi- fication	GEOLOGIC DESCRIPT	ΓΙΟΝ	REMARKS
				No Recovery		Saturated
11 —	16 8					No Recovery
12 -	12	12.0- 13.0'		12.0-13.0' Yellowish Brown CLAY SILT, little medium Sand, some coarse medium fine(+)		MW-26 (12.0-13.0' BS) 8:50
13 —	11					
14 -	10 5	14.0- 15.0'		14.0-14.5' Yellowish Brown CLAY SILT, somfine(+) Gravel 14.5-15.0' Gray Shale	e medium 14.5'	MW-26 (14.0-15.5' BS) 9:15 Bedrock at 15.0'
- د	9	-			15.0'	
16 -	30	-				
17 —						
18 —		-				
19 —		-				
20 —		-				
21 –		-				
22 -		+				

ENVIRONMENTAL STRATEGIES CORPORATION

Four Penn Center West, Suite 315
Pittsburgh, Pennsylvania 15276
(412) 787-5100

Figure

"AS-BUILT" MONITORING WELL DIAGRAM FOR MW-13B REVERE SMELTING & REFINING CORPORATION MIDDLETOWN, NEW YORK

PREPARED FOR RSR CORPORATION DALLAS, TEXAS

Environmental Strategies Corporation Campbells Run Road Four Penn Center West, Suite 315 Pittsburgh, PA 15276

PROJECT

213471-02 **REVERE SMELTING AND REFINING** 65 BALLARD RD.

MIDDLETOWN, NEW YORK

Boring Number: MW-13B

Sheet 1 of 2

Date Drilled: 6/09/97 to

6/12/97

Drilling Company: PARRATT WOLFF, INC. Driller: JIM HAMMOND and KEVIN WHITE

ESC Geologist: E. MICHAEL RIGGINS

Ground Elevation: 482.21'

Boring Location: North of Wakefern, South of Rail Line

TOC Elevation: 483.82'

BORING

SAMPLER

Method: HOLLOW STEM AUGERS/AIR ROTARY

Hole Diameter: 12" / 6" Inside Diameter: 6" Total Denth: 37.5'

Method: SPLIT SPOON SAMPLER/BEDROCK CORE

Length (ft): 2 FEET Hammer (lb): 140 LBS Fall (in): 30 INCHES

Total Dept	h: 37.5'			Fall (in): 30 INCHES			
Depth Below Grade (ft)	Samples Collected	Percent Recovery	Sample Depth	Blows/6"	Moisture	Sample Description	
0' - 0.4'	MW13B-1 (0'-0.5')	100	0' - 2'	3/5/6/7	Dry	SILT, medium. brown, loamy, non-plastic, trace clay, rock frags., and roots.	
0.4' - 2'	MW13B-2 (0.5'-1') MW13B-3 (1'-1.5') MW13B-4 (1.5'-2')					SILT TILL, yellowish brown, non- plastic, trace clay, rock frags., organics to 1.0'.	
2' - 4'	MW13B-5 (2'-4')	100	2' - 4'	13/16/19/22	Dry	SILT TILL, light yellowish brown to gray, trace to little clay, rock frags., non-plastic, faint mottling.	
4' - 6'	MW13B-6 (4' -6')	100	4' - 6'	14/15/20/27	Damp at 5'	SILT TILL, yellowish to reddish brown to gray, trace sand and clay, little rock frags., slightly plastic.	
6' - 8'	MW13B-7 (6'-8')	100	6' - 8'	21/31/25/26	Moist	SILT TILL, same as above, increasing sand content with depth	
8' – 10'	MW13B-8 (8'-10)	100	8' - 10'	8/54/26/15	Moist to wet	SILT TILL, same as above to 8.5' then gray shale boulder, Silt Till yellowish to grayish brown, trace sand, clay, little rock frags., slightly plastic.	
10' - 12'	MW13B-9 (10'-12')	100	10' - 12'	9/24/26/50	Moist to wet	Same as above, SILT TILL and Rock fragments.	
12'-12.6'	MW13B-10 (12'-12.6')	30	12'-12.6'	44/ 50 for 1"		SILT TILL, gray, trace clay, some rock fragments., weathered shale fragments.	
12.6' -14'						Augered out to 14.0'.	
14' – 16'	MW13B-11 (14'-16')	100	14' - 16'	8/6/14/54	Saturated	SILT TILL, gray, trace clay, little rock fragments., plastic, sticky.	
16'- 16.2'		0	16'-16.2'	50 for 3"		No recovery	
16.3'- 18.5'						Augered out, weathered shale boulder.	
18.5'- 20'	MW13B-12 (18.5'-20')	70	18.5'-20'	26/53/74	Wet	SILT TILL, dark bluish gray, trace clay, little shale fragments., dark gray shale, hard, plastic.	
20' – 22'	MW13B-13 (20'-22')	100	20' - 22'	23/31/44/48		SILT TILL, dark bluish gray to faint yellowish brown, trace sand, clay, and rock frags., plastic, hard, dense.	
22' – 24'	MW13B-14 (22'-24')	100	22' - 24'	22/27/30/25		SILT TILL, Same as above, with sand trace to little.	
24'- 24.6'		20	24'-24.6'	11/60 for 2"		SHALE, dark gray, weathered.	

24.6' – 26'	SHALE, gray to dark gray, weathered.
26' – 28'	SHALE, gray to dark gray, more competent.
28' – 37.5'	SHALE, gray to dark gray
	Bottom of borehole
	G:\wp\files\bcd\midtown\rsrmidt.

Well ID:

MW-23D

Project:

Revere Smelting & Refining

Location:

Middleton, New York

Project No.:

26408.004.400

 Client:
 NYSDEC

 Date Drilled:
 11/6/01 - 11/7/01

 Date Developed:
 11/09/01

WELL CONSTRUCTION DETAIL 496.72 1.34 Above GL M.P. EL. 498.06
CEMENT- BENTONITE SEAL #1 STEEL CASING
CEMENT- BENTONITE SEAL #2 OVERBURDEN 17.0'
BEDROCK 18.5' BENTONITE SEAL
RISER PIPE 20.0'
FILTER PACK SCREEN 22.0'
26.82' 27.0'
NOT TO SCALE

Inspection Notes:								
Inspector: Drilling Cor Type of We								
Static Wate Measuring Total Depth	Point:	Top of PV	7.04 /C 28.34	_Date:	11/7/2001			
Drilling N Type: Casing:	HSA		urden: Diameter:					
Sampling Type: Weight: Interval:			rburden: Diameter: Fall:					
Drilling I Type: Casing:			ck: Diameter:	<u>4"</u>				
Sampling Type: Interval:	_		rock: Diameter:	25"				
Length:	Sch 40		: _Diameter: _Joint Type:	2" ID Flush 1	hread			
Screen: Material: Slot Size:		PVC	_Diameter: _Joint Type:		hread			
Filter Pa Type: Interval:		0.0'	_Grade:	Grade: 0				
Seal(s): Type: Type: Type:	Benton Cemen	t-Bentonite ite t-Bentonite		_ Interva	l: 0-18.5' l: 16.5-20.0' l: 0.16-5.0'			
LOCKING CS	Locking Casing: X Yes No							

				BRIENE NGANEER:				TEST BORING LOG				BORING NO. MW-23D				
	PR		ASSESSMENT OF REAL PROPERTY.	Revere Sme			finir	10				SHEET 1 OF	- 2			
ŀ	_			YSDEC	anny a	na rte	111111	<u> </u>				JOB NO.	26408.004.400			
ŀ			LING	MEAS. PT. E												
- 10-		_	OSE:						of Sedimer	nt Pond		GROUND EI				
ŀ		_		METHOD: 4.5			_	von Codan	SAMPLE	The second second second	CASING		Ground Surface			
ŀ	_				0 Trac			TYPE	O/ WIII ZE	CORL	0/10/110	DATE STAR				
ı				VATER DEP				DIA.				DATE FINIS				
				G POINT:				WEIGHT				DRILLER	J. Percy & J. Wheeler			
	DΑ	TE		IEASUREME				FALL				INSPECTOR	R G. Sleeman			
	Depth		Sample Number	Blows on Sample Spoon per 6"	Penetration/ Recovery	Unified Classi-	fication	G	EOLOG	SIC DES	SCRIPT	TON	REMARKS			
ľ				Weight of	0-1.3				n SILT CLA		edium fine(+) Sand,	"Clean" Fill			
				Hammer				trace medi	um(+) fine G	Bravel			Moist			
	1	-	1	•												
1	2	\exists		Weight of	2.0-	1		2.0-2.4' Bro	own SILT C	LAY, some	medium fin	e(+) Sand,	"Clean" Fill			
1				Hammer	2.4'			trace medi	um fine Gra	vel			Very Moist			
1	3		2	•												
1	4	+		Weight of	4-4.2'	1		4 0-4 2' Br	own SILTY (CLAY and	medium fina	e(+) SAND	Saturated			
	_		2	Hammer	4-4.2			4.0-4.2 Bit	JWII SILI F	JLAT, and	medium im	e(T) SAND	"Clean" Fill			
	5		3	+								6.0'				
	6	\dashv		Weight of	6.0-			6.0-7.3' Bro	own SILT Ci	LAY, some	medium fin		1			
	7		4	Hammer	7.3'			little mediu	m(+) fine Gi	ravel			Native Till			
	•		•	—												
	8							NR					No Recovery			
	9	+	5													
	4.5															
	10	\dashv											l			

		BRIEN E				TEST BORING LOG	IO. MW-23D		
	JECT:	Revere Sme			Refini	ng	SHEET 2 OF		
CLIE	NT: N	YSDEC	-	_		-	JOB NO.	26408.004.400	
Depth	Sample Number	Blows on Sample Spoon per 6"	Penetration Recovery		Classi- fication			REMARKS	
			10.0- 10.5'			10.0-10.5' Brown CLAY, some medium fine trace medium fine Gravel	(+) Sand, 10.5'		
11 —	6					Brown CLAY, some medium, fine(+) sand, t medium fine gravel.	race		
12 —							12.0'		
			-			See Core Log for MW-23D Coring completed at 27 ft.			
13 –			1			Note: Soil descriptions taken from MW-23S	log.		
14 —									
;5 –									
16 -									
17 —									
18 -									
19 —									
20 –									
21 –									
22 -			-						

O'BRIEN & 22 Compu		RE ENGI e, West	•	NC.		COR/ LO)G	Hole No.: MW-23D	Job No.: 2640	08.004.400						
Albany Ne						JOIY EX		Sheet 1 of 1	Date Started:	6-Nov-0.	4(3)					
Project: I						Drilling Contractor: Parratt \	Drilling Contractor: Parratt Wolff, Inc					Date Finished: 11/7/01				
Client: I						Driller: J. Percy, J Wheeler			Total Depth:1	0' (27' bgs)					
Purpose: (urpose: Observe Shallow Bedrock Infillration				on	Geologist: Garrett Sleeman			Ground Elev.	: 496.72						
Location:	South	of RSR I	Facility			Length of Casing: 10 ft			S.W.L.: 1	NA.						
Hole Locati	ion:	In Culver	t, North of	Rail Road	d Tracks	Casing Size: 2" PVC	Core Size	e: 2.5" 18.5-27'	Inclination/Be	aring:	NA					
Formation Membe	er Unit		Pen. Rate (min. per foot)	Depth Scale	(include in o	Lithologi rder: ROCK TYPE, color, gra	c Description	e, bedding, fracture & ı	minerals.)	Rec	ore overy Percent	RQD				
		1 18.5- 23.2 2 23.2- 27	`3-4 (avg.) 5 (avg.)	21	bedding dipping a argillaceous carbo	: Dark gray, fine grained, sha pproximately 45 degrees to the conate stringers, mostly massing construction and the coverlying	ne east. Occa	asional fractures infilled	J with	3.8'	93.6%	100%				

Pro	ject:			Monitorir	ng Well in	stallatio	n		·		Baring Ma	100.40
Clie							own, New Yo	ork			Boring No.: Sheet No.:	MW-19 1 of 1
		onte	actor:		Drilling, I		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		 -		Project No.:	272-01-01
				nformatio			P	oring/Sampling	Mathadalagu			
1			Water	Water			Cas.	Samp.	Core	Tuka	G.S. Elevation:	521.99
l	Date		Depth	Elev.	Intake	Туре	F.J.	S.S.	CORB	Tube	W.L. Ref. Elev.:	523.96
25	5-Jun-(01	8.13	515.83	5-15'	Diam.	5"	2"		 	Date Started:	14-Jun-01
			3.10	0.0.00	-0 10	Wt.	300#	140#		 	Date Finished:	14-Jun-01
						Fall	30"	30"	 -		Driller:	T. Kendrick
_			Depth		San	nples	30	30	<u> </u>	<u> </u>	Inspector:	M. Colantuono
	Well		-		PID	Rec.	Blows					
Con	Well (feet) nstruction 0 No.		No	(ppm)	(in.)	Per 6"		0115 11		_	_	
	0000	T	· ·	S-1	0.0	6			Classification	s	Rema	arks
Δ				3.1	0.0	ľ	2	}	F11.1			
		١. ا					2	ł	<u>FILL</u>		Drive & wash 5" c	-
Δ		4		i '			3	0 5 5	OLDinancia at mine	180.4. 2.1	0 to 5.5 feet below	v grade.
				S-2	0.0	6	2	0 - 5,5	"Historical Fill"	Material		
				~~	0.0	ľ	2	vollous broug	n fmc SAND, lit	de Claver Cill	Advanced borehol	
				1			4	little for	ກ ແກ່ເວຣິຊເຄມ, ແຕ Gravel, damp, ຄູ	ire Clayey Silt,	rotary drilling to 10	Jeel U.c
╟┤		\vdash		1			3		grayish brown C		below grade.	
				S-3	0.0	18	3	little(-)fm s	and, little(-) fm	Gravel moiet		
			5	1 :		'	3	ii.lio(·)iiii o	and, mac(-) iiii	Stavel, Hiotst		
. 1	•	1		i '			8			5.5'		
l •		1∙ '		1	•	i	35				1	
ا. ۱		•		1		l i		ICEC	ONTACT DEF	POSITS	1	
i .		1'.		1				l —		i		
I • I	-	1.						1				
l`.∤		ا. ا		1			-	1				
[•]		•		1				1			i	
I . ']		1.]								
l 'Ì				S-4	0.0	12	24	Yellow Brown to dk. brown cmf SAND, little to some fmc Gravet, little Clayey Silt				
l	-	┧.	10				58				1	
.		l٠.,				,	41	i	moist to wet			
.]. •					43	moist to tret				
l •• l] . []		ĺi		Grades	to brownish Gra	ay to Gray	Angular Gravels	
۱٠۱	_	۱۰.۱						finer s	and to clayey si	1		
l· • [1.]				
l . l		۱,۱	-		\ 	\ '						
ŀ		1 •									l	
•		1. 1			۱			Gray Br. Clayey	/ SILT, some to	little fmc Sand,	Subangular Grave	el with
l'. l		J	15	S-5	0.0	12	20	little cm	f Gravel (shale	ragments)	shale fragments	
].]١		١. ا	15]			28	į	saturated			
١.٠				1			24				Washed-out to 16	6.0' bgs.
┝╌	•	•	·	!			24	E	nd of Boring @	16.0	4	
i				1				4			1	
				1	-	[-				
1				1		1		1			Well Installation:	
[1	1	} ,		1				
				1				4			Sandpack 4.0' - 1	
				1				1			Screen 5.0' - 15.0	
			20	1	İ			· ·			Bentonite Sturry	
Ī								-			Concrete Seal 0	-∠,∪ pgs
								1			Section 5	55 7.400
				1			· · · · · · · · · · · · · · · · · · ·	-			Stick-Up Protecti	
				†				ł				C Screen & Riser
1				1				1			2" ID Sched, 40 I	PVC Screen
				1	1		 -	ł			1	
1			 	1			 -	ł				
				1				ł			1	
				1			···	1				
1			25	1				1			1	
Marie .		~				<u> </u>	·	<u> </u>			<u> </u>	

Ground Water Investigations, Inc. Pine Bush, New York (845) 744 - 6191

Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	MW-20 1 of 2 272-01-01
Groundwater Information	
Date Date Depth Elev. Intake Type F.J. S.S. Date Started: Date Started: Date Started: Date Finished Date Started: Date Finished Date Finished: Dritler: Inspector: Inspector: Inspector: Inspector: Rec. Blows Classifications Rec. Drive & wash & Oto 7.5 feet by A	
Date Depth Elev. Intake Type F.J. S.S. Date Started:	n: 512.32
Date Date Date Intake Type F.J. S.S. Date Started:	
Well Depth Samples Inspector: Insp	
Well Samples Samples Samples Classifications Rough Construction O No. (ppm) (in.) Per 6" Classifications Rough Classifications Classifications	
Depth (feet) Samples Rec. Blows Classifications Rec. A	T. Kendrick
Well (feet) PID Rec. Blows Classifications Ri	M. Colantuono
Construction 0 No. (ppm) (in.) Per 6" Classifications Ri A A A S-1 0.0 6 20 26 FILL/REWORKED GLACIAL TILL 32 Tan Brown Clayey SILT, little (+) f Gravel, little(-) f Sand, dry, dense 5 S-2 0.0 12 20 Brown f Sand and Clayey Silt, little fmc Gravel, damp, dense 5 S-3 0.0 14.5 23 Brown fm Sand and Clayey Silt, some (-) fmc Gravel, damp, dense	
A A A A A A A A A A A A A A A A A A A	
S-1 0.0 6 20 26 FILL/REWORKED GLACIAL TILL 32 Tan Brown Clayey SILT, little (+) f Gravel, little(-) f Sand, dry, dense 5 S-2 0.0 12 20 Brown f Sand and Clayey Silt, little fmc Gravel, damp, dense S-3 0.0 14.5 23 Brown fm Sand and Clayey Silt, some (-) fmc Gravel, damp, dense	emarks
Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	
Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	5" casing
Tan Brown Clayey SILT, little (+) f Gravel, little(-) f Sand, dry, dense S-2 0.0 12 20 Brown f Sand and Clayey Silt, little fmc Gravel, damp, dense 17 Brown fm Sand and Clayey Silt, some (-) fmc Gravel, damp, dense	
S-2 0.0 12 20 Brown f Sand and Clayey Silt, little fmc Gravel, damp, dense S-3 0.0 14.5 23 Brown fm Sand and Clayey Silt, some (-) fmc Gravel, damp, dense	
S-2 0.0 12 20 Brown f Sand and Clayey Silt, little fmc Gravel, damp, dense 10 S-3 0.0 14.5 23 Brown fm Sand and Clayey Silt, some (-) fmc Gravel, damp, dense	hole by
S-2 0.0 12 20 Brown f Sand and Clayey Silt, little fmc Gravel, damp, dense S-3 0.0 14.5 23 Brown fm Sand and Clayey Silt, some (-) fmc Gravel, damp, dense	
S-2 0.0 12 20 Brown f Sand and Clayey Silt, little fmc Gravel, damp, dense 12 17 S-3 0.0 14.5 23 Brown fm Sand and Clayey Silt, some (-) fmc Gravel, damp, dense	
S-2 0.0 12 20 Brown f Sand and Clayey Silt, little fmc Gravel, damp, dense 12 17 Brown fm Sand and Clayey Silt, some (-) fmc Gravel, damp, dense 30 34 Some (-) fmc Gravel, damp, dense	
S-2 0.0 12 20 Brown f Sand and Clayey Silt, little fmc Gravel, damp, dense 12 17 Brown fm Sand and Clayey Silt, some (-) fmc Gravel, damp, dense 30 34 Some (-) fmc Gravel, damp, dense	
S-3 0.0 14.5 23 Brown fm Sand and Clayey Silt, some (-) fmc Gravel, damp, dense	
S-3 0.0 14.5 23 Brown fm Sand and Clayey Silt, some (-) fmc Gravel, damp, dense	
S-3 0.0 14.5 23 Brown fm Sand and Clayey Silt, some (-) fmc Gravel, damp, dense	
S-3 0.0 14.5 23 Brown fm Sand and Clayey Silt, some (-) fmc Gravel, damp, dense	
10 30 some (-) fmc Gravel, damp, dense	
10 30 some (-) fmc Gravel, damp, dense	
10 30 some (-) fmc Gravel, damp, dense	
10 30 some (-) fmc Gravel, damp, dense	
10 30 some (-) fmc Gravel, damp, dense	
34	
53	
GLACIAL TILL	
S-4 0.0 14.5 65 Brown fmc SAND, little to some Clayey Silt,	
itte (1) ittle Graver, wet, v. derise	
55	
S-5 0.0 12 45 Gray Brown Clayey SILT, little f Sand,	
the same of the sa) lb. Hammer
35° saturated, very dense	· ie. riuritijisi
35*	
	•
S-6 0.0 12 18* Gray Brown Clayey SILT, little to some f Sand,	
20* little fmc Gravel, trace shale fragments	
27* saturated, very dense	
. 25 40*	

Project:	•.	Monitorin	a Well In	stallatio	n				Boring No.:	MW-20	
Client:					own, New Yo	rk			Sheet No.:	2 of 2	
Drilling Contr	actor:	Kendrick							Project No.:	272-01-01	
		formatio			Вс	ring/Sampling	Methodology	· · · · · · · · · · · · · · · · · · ·	G.S. Elevation:	512.32	
	Water	Water			Cas.	Samp. Core Tube		W.L. Ref. Elev.:	511.94		
Date	Depth	Elev.	Intake	Туре	F.J.	S.S.		1000	Date Started:	14-Jun-01	
25-Jun-01	11.26	500.68	19-29'	Diam.	5"	2"]	Date Started:	14-Jun-01	
				Wt.	300#	140#		 	Driller:	T. Kendrick	
				Fall	30"	30"		 	Inspector:	M. Colantuono	
	Depth	-	San	nples				ــــــــــــــــــــــــــــــــــــــ	inopeotor:	III. Colandono	
Well	(feet)		PID	Rec.	Blows				1		
Construction	25	No.	(ppm)	(in.)	Per 6"		Classifications	•	Rem	arks	
									1		
• - •				. :			GLACIAL TILI	<u>_</u>			
l'. L								~			
. .			<u> </u>	!					Advanced boreho	le by	
			ł						rotary drilling to 2	9.0 feet	
		1	1						below grade.		
 						End of Boring @ 29.0'			_		
	30		[
									Well Installation:		
		-	į	}					0 1 1:400		
Į.		1	•	1	····				Sandpack 16.0' -		
									Screen 19.0' - 29		
1	_ ·	İ				1			Bentonite Slurry 2.0' - 16.0' bgs Concrete Seal 0 - 2.0' bgs		
•		1							Concrete Sear o	- 2.0 Ligs	
		1							Flush Mount Mar	hole Cover	
]		1		ļ						C Screen & Riser	
1	35		}	ľ		1			2" ID Sched. 40 PVC Screen		
1]									
		[
		ļ									
				1							
	 	1	ł	1	!				į		
		4	ĺ								
		-		ł			,		1		
1	40	4	ł	1	ļ				1		
1		┫	ļ	1							
	-	1	1						1		
1	 	1	[1		
1		1									
i .		1	!	1							
		1	1								
		1	1	1							
		1	1	1		i			ŀ		
]				1					
1	45]		ļ		[
				1		Ì		•			
1		_	i			i			1		
		1		1		I			1		
1		1		1		I			1		
		-				I					
1	ļ	4		1		ŀ					
i	<u> </u>	4	}			1					
1		4				1					
		-									
	50		<u> </u>		1	L	·				

Ground Water Investigations, Inc. Pine Bush, New York (845) 744 - 6191

I Proi	ect:			Monitorir	a Well In	ctaliatio						
Clie							own, New Yo	nete			Boring No.:	MW-218
1	ling Co	ntra		Kendrick			om, new to	<u> </u>			Sheet No.:	1 of 1
<u> </u>		_		formatio			Ð	oring/Semalia	Mothadala		Project No.:	272-01-01
 	Motor Meta-		G.S. Elevation:	515.81								
l	Date	1	Depth	Elev.	Intake	Туре	F.J.	Samp. S.S.		Tube	W.L. Ref. Elev.:	515.48
25	Jun-01		4.21	511.27	19-29'	Diam.	5"	2"	NX 2"	 	Date Started:	15-Jun-01
		\neg				Wt.	300#	140#		<u> </u>	Date Finished: 15-Jun-01	
		7			-	Fall	30"	30"		 	Driller:	T. Kendrick
		17	Depth		San	nples	- 00	30		<u>.l</u>	Inspector:	L. Coddington
	Well		(feet)	·	PID	Rec.	Blows					
Con	structie		o ´	No.	(ppm)	(in.)	Per 6"		Classifications	_	_	
	7/				177.17	(21.7)	1 0, 0		Ciassincations	\$	Rema	rks
Δ	۴	,_					-	FILL/REW	ORKED ICE	CONTACT	0.40	
	į,							FILLTREAM	ONNED ICE	CONTACT	Cut Concrete 2.0' b	y 2.0' Area
الم	ľ	<u>'</u> Δ[Drive & wash 5" ca	olo a
\Box	Į	7_									0 to 4.0 feet below	
	Ļ	↲						Yellow Brown	cmf SAND, littl	e fm Gravel to	0 10 4.0 1001 001017	graue.
	L	↲						Gray cmf	SAND and on	nf Gravel.	Advanced borehole	bv
		\bot							ayey Silt, damp		rotary drilling to 19.	
	Ī	_		S-1	0.0	2	100/4.5	<u> </u>		4.5'	below grade.	- 1001
	Ī	\perp	5			ļ					1	
	r	<u>_</u>				ļ			BEDROCK		Split Spoon Refusa	l at 4.5 feet.
\vdash	F	-										
ŀ.]	-	:\-						_			Hard uniform rotary	
	- 1					}		Dark	Gray to Black	Shale	from 4.5 to 9.0 feet	
١, ١	- 1	• ├-										
	ļ	٠ -									Fine shale rock cut	
	1	·.'├-									Trace gray silty clay	/ (from fractures)
		<u>.</u>		S-2	n/a	0	100/0	•			Ĺ	
I` T		· -	10	~ _	110	ľ	10070				Split Spoon Refus	sal at 9.0 feet.
.	- 1	· -									(Spoon Bouncing)	
• •	-	.:├				 						
l . t											Dallarbit to 14 O' ha	
',		· -									Rollerbit to 14.0' bo	S.
		· [Hard uniform drillin	4
•	-									,	fine shale rock cutt	
1		١ _									mio dilalo rock cult	nigo III Wasii.
	1		[
•:	.	1		Core	n/a	60	NX	Dark	Gray Shale Bed	drock,	NX Rock Core 14.0)' to 19.0' bas.
		: -	15				14.0'	ho	rizontal fracture	es,	RQD = 0.69	
'.		: -					to	trace silt	y clay filling in f	ractures.		
•	一	: -					19.0'					-
		`⊢									Borehole reamed to	19.0' bgs.
		•					· · · · · · · · · · · · · · · · · · ·	•			į.	
• †	<u> </u>	∵⊢									l	
, °		•		Į							j	
•	}.	\cdot \vdash				ł		E	f Roder C 40	N 5		
 • • • • • • • • • • • • • • • • • • •							End C	f Boring @ 19.	u ogs.			
20						1					Molt te -t-li-ti	
		-									Well Installation:	
											Condessi: 0.01 40	0' 5
									Sandpack 6.0' - 19 Screen 9.0' - 19.0 '	•		
				ŀ				ľ			Bentonite Slurry 2.	
						Ì					Concrete Seal 0 - 2	
											Concrete Sear 0 - 2	Dgs
						1					Flush Mount Manh	ole Cover
				}		Ì			•		2" Sched. 40 PVC	
						İ					2" ID Sched, 40 P\	
i		1	25			Ì					- 10 001100, 70 F1	

Monitoring well development logs

Revere Smelting and Refining

<u>General</u>	
Well No.: MW - 23 - 5	3
Field Personnel: Gerneth Ster	
Weather Conditions: Pauly Cloudy,	
Physical Condition of Well: Swelland	Installed 11/7/01
Air Monitoring Results:	
Pre-Development Information	
Date: 11 /0/0/	Well Diameter: 3 in.
Development Time: Start: 915	Total Depth of Well Installed: 14.5 ft.
Stop: 17-20	Total Depth of Well Measured: 44.20 ft.
Specific Conductivity: 3 3/2-	Depth to Water: 4.30 ft.
Turbidity: 7999 NTU	1 Well Volume: 10,17 1.4 gal.
pH: 9.64 7.08	Development Method: Balca
Temperature: 1100 (T)	
Color: Water Characteristics Color: W. Br. Odor: N. D. Turbidity: S. Lowely High	Presence of NAPL: Other.
Post-Development Information	
 .	Total Depth of Well Installed: /4,5 ft.
Volume Purged: 10.00 gal.	Total Depth of Well Installed: 14,5 ft. Total Depth of Well Measured: 14,42 ft.
Specific Conductivity: 2.67	Development Water Disposal Method:
Turblandy.	Containenzodin 55 collon Diver on Bite
	Coursince 30 do to Comment of the co
Temperature:	· · · · · · · · · · · · · · · · · · ·
Notes End TD measurment.	Had Battom

Revere Smelting and Refining

mw-235.

	Time	Volume	pH	Temp (°C) or (°F)	Cond (UMHO/cm)	Turbidity (NTU)
Initial T(O)	9 25-	Initial_	8.64	11.00	1,12	60.0
During					· 	
During	430		8.16	13.53	1.40	7999
During						7999
During	940	34	7 99	12.48	1.47	1977
During					1	7999
During	1000	_5.1_	<u> </u>	13.47	1.48	
During				13,48	1.97	7999
During	1015	65	7.90	17,43		
During			7.06	13.36	1,94	7999
During	13-00	9,5	<u> </u>			
During		40.00	7.08	12,41	2.18	7,949
During	1720	<u> (600) </u>	-7,00			
During						
During						
During						
During		_				
During		 		·		
During			<u> </u>			
During						
During						
During						
Final						
<u>Notes</u>	1030 0	urge well	- Drep. 16	"clean" Fil	I Composed	of Clay-
		50 /m 10 F 101	211 tru to	redevolop	brv	
		.d @ 12-00) to complet	re developme	nt	<u></u>
	· COTUM	· On - 9 ~	ded Din	lopmai		
	- 17 70	7.0		<u>. </u>	74	

Revere Smelting and Refining

General	
Well No.: MW = 23 V Field Personnel: Govern Glesma Weather Conditions:	N
Physical Condition of Well: Sychort . Air Monitoring Results:	Installed 11/7/01
Pre-Development Information	
Date: 11/9/01 Development Time: Start: 945 Stop: 1745 Specific Conductivity: 3.61 Turbidity: >1000 pH: 12.17 Temperature: 1.95°°C	Well Diameter: Total Depth of Well Installed: Total Depth of Well Measured: Depth to Water: 1 Well Volume: 2001 342 gal. Development Method: \$\frac{300}{342}\$ \$\frac{342}{9al.}\$
Development Water Characteristics Color: Cicar / Mant Gray Odor: ND Turbidity: 14.44 Decreased of Development	Presence of NAPL: UV
Post-Development Information	
Volume Purged: 5.6 gal. Specific Conductivity: 1,80 5/cm Turbidity: C66 NTO pH: 11.66 Temperature: 11.56 °C	Total Depth of Well Installed: Total Depth of Well Measured: Development Water Disposal Method: Containing in 5% Gallon Dium Gu Gills
Notes	

Revere Smelting and Refining

mw-23P

				Temp	Cond	Turbidity
	Time	Volume	рН	(°F)	Cond ms/cw (UMHO/cm)	(NTU)
Initial T(O)	845	Intial	12.17	11,95 +	2.61	
During						
During	950	3.5	12.24	13.200	7.38	825.0
During				1-72		107.0
During	17:30	4,2	11,31	10.72	<u> 7.38</u>	101.0
During	1735	5.1_	11,76	11.30	193	7994
During During	17 39					
During	1745	5.6	11.66	11.50	1,80	Colobo
During						
During						
During	·		···		·	
During		· — ·				
During		. <u></u> -				
During			. 			
During						
During						
During						
During						
During						
During		-				
During						
Final				<u></u>		
Notes	- 11.00	W SHalan	ted to dalli	y water.		
112.22	@ 910:	inell was	dry buts	till turbid !	7 Pkr 4129	allows removed
	- decid	ed to wai	tilet wel	1 recover	· redevelope	
	17-30-	recovered	- W/4'	notes Coli	man +7ge	1/ Volume
	1745-	Dewater	ed - Ender	Developi	unt.	
1						
1						

Revere Smelting and Refining

all Diameter: 2 al Depth of Well Installed: 14,9 al Depth of Well Measured: 14.	15
al Depth of Well Installed: 14.5 al Depth of Well Measured: 14.	15
al Depth of Well Installed: 14.5 al Depth of Well Measured: 14.	15
al Depth of Well Measured:	, ,
	10
pth to Water: 3 3	
Vell Volume:	
velopment Method: Baler	
tal Depth of Well Installed:	4,45
· · · · · · · · · · · · · · · · · · ·	4,2
evelopment Water Disposal Method:	Conto
in 55 collar From on	silo
<u> </u>	
TIME TO MEOSULE WOUT	
	esence of NAPL: her: otal Depth of Well Installed:

Revere Smelting and Refining

MW-24

				Temp (°C) or	Cond (UMHO/cm)	Turbidity
	Time	Volume	pН	(°F)		(NTU)
Initial T(O)	1405	- Initial "	<u> </u>	10.96	2,52	550.0
During	1410	<u> </u>	<u> </u>	11.67	3.87	7999
During	1412	4	6.71	12.02	4,10	7999
During	1422		<u>C152</u>	11,00	413	7999
During	1477	8	<u> 6,51</u>	12.10	419	7999
During	1432	10	6.50	_12.30_	4,28	7589
During	1435	_12	6.50	12,03	4,25	7999
During	14490		6.43	12.13	4,29	7999
During	144	16_	6.46	12.06	4.35	7.499
During					<u> </u>	
During			.			<u> </u>
During						
During		. *				
During			•		<i>- 2</i> 3	
During			·			
During						
During				·		
During *						
During	·					
During	Y					
During						
During	*					
Final						
<u>Notes</u>						
	1.	<u> </u>	-:		<i>)</i> .	
_	J.	- 12°			1	·-·
	. S				 -	
\	<u></u>			1.	·	
				<u></u>		
],		 -				

Revere Smelting and Refining

General			
Well No.:			
Field Personnel: GAZRETT SLEEM	war		
Weather Conditions: Clear Sonny	cool High 403, Winds		
Physical Condition of Well: Excellent	Tratalled 11/01		
Air Monitoring Results:			
Pre-Development Information			
Date: 11/9/01	Well Diameter:	2	in.
Development Time: Start: 1250	Total Depth of Well Installed:	14,912	ft
, Stop:	Total Depth of Well Measured:	14.88	ft
Specific Conductivity: 🔘 등동나	Depth to Water:	426	ft
Turbidity: 7999	1 Well Volume: 1.8	1468	gá
pH: 7.2	Development Method: Bailin		
Temperature: 11.0%			<u></u>
		•	
Odor: Yellowon Brown Odor: Turbidity: Tytrevely High	Other:		
Post-Development Information	•		
Volume Purged: 18 gal.	Total Depth of Well installed:	14.91	1 1
Specific Conductivity: 0.528	Total Depth of Well Measured:	14.88	
Turbidity: >999	Development Water Disposal Metho		
pH: 6-77	~		w
Temperature: (1.36	Drom on site		_
Notes			
	4 - 1. · · · · · · · · · · · · · · · · · ·		

Revere Smelting and Refining

WW-25

Initial T(O) During	Time 1300 1305 1312 1312 13130 1335 1340 1345 1350 1355	Volume iwhal 1.8 3.6 5.4 7.2 9.0 10.8 12.6 14.4 16.2 18.0 18.0	pH 7.21 C.95 G.90 G.90 G.74 G.74 G.77 G.77	Temp (°C) or (°F) 11.0% 12.02 11.92 11.30 11.34 11.39 11.52 11.48 11.36	Cond (UMHO/cm) 0.584 0.584 0.555 0.545 0.535 0.530 0.530 0.530 0.530 0.530	Turbidity (NTU) > 999 ? 999 > 999 > 999 > 999 > 999 > 999 > 999 > 999 > 999 > 999 999
1						
_		·	<u> </u>	·		
During		·				
During			<u> </u>			
During Final			<u> </u>			
inia	<u> </u>			<u></u>		
Notes		<u> </u>				
			 _			
						-
		<u> </u>	<u>.</u>		<u>.</u>	
	<u></u>					
\rangle						
		<u> </u>				

Revere Smelting and Refining

<u>General</u>	
Well No.: MW-26	
	*SMON)
Weather Conditions: Excellant	
Physical Condition of Well: (oo) . V H. s.	, 40°5 Char Winds
Air Monitoring Results:	
	•
Pre-Development Information	
Date: 1\/9/01	Well Diameter:
Development Time: Start: 11:00	Total Depth of Well installed: 16.6 ft.
Stop: 12, 50	Total Depth of Well Measured: 16, 45 ft.
Specific Conductivity:	Depth to Water: 9,07 ft.
Turbidity: >999	1 Well Volume: /, p gal.
pH: 8.3	Development Method: Baiter
Temperature: 13.64	
Color: Vellewish Brewn Odor: 120 Turbidity: Tolymbia High	Presence of NAPL:
Post-Development Information	
Volume Purged: /[gal	Total Depth of Well Installed: 16.8 ft
Specific Conductivity: 1.15 5 /-	Total Depth of Well Measured: 16, 25 f
Turbidity: 2555	Development Water Disposal Method:
pH: 6.59	Continenced in 55 sallon
Temperature: 12.5 5	Drum on site
•	
Notes	

Revere Smelting and Refining

MW-26

			•	Temp	•	
				(°C) or	Cond	Turbidity
	Time	Volume	pH <	(°F)	(UMHO/cm)	(NTU) フタタケ
Initial T(O)	1130	Intial	8.31	1304	<u></u>	
During	1135		7.65	13.94	0.91	7999
During	1140		<u> 30.F</u>	13.94	1,15	<u>'} </u>
During	1145	<u>3.3</u>	<u>C.9g</u>	13.69	1,19	7949
During	1150	4,4	6.98	12.79	1.23	7999
During	1155	_5.5_	<u> </u>	12-19	1,22	799
During	1205	6.6	6.80	12.95	123	<u> </u>
During	<u> 1370</u>	3.3	6.70	12,59	1.20	>999
During	1215_	-8.8-V	0.66	12.47	1.20	7999
During	1330	9.9	6.62	12,42	1,20	7994
During 9	1230	10.0	6.59	12.53	1,19	7999
During			<u> </u>	·		
During			·			
During		-				
During						
During						
During						
During						
During						
During				· · · · · · · · · · · · · · · · · · ·		
During						
During						
Final						
Notes	Turked	Her Capid	not be	improved.	- too mar	ry fines
	1230- 12	<u>u</u> . –	1			
	Que	اد مالت	1 Oerameit	cra stabille	except-	Fox
ł	forbie		, , , , , , , , , , , , , , , , , , ,			
	304 MG					
1					· · · · · · · · · · · · · · · · · · ·	
i		<u>.</u>				
	<u> </u>	<u></u>				

Appendix H

Monitoring well purge logs

Revere Smelting and Refining

MW-13

During During	1 1142	Volume 1 w/ 5 / 46 % C 5 / 50 % 5 / 50 % 5 / 60 % C	pH 6.93 6.67 6.64 6.62 6.62 C.61	Temp (°C) or (°F) 14.6°1 13.13 12.41 12.43 12.63	Cond (UMHO/cm) 3.94 3.97 3.48 3.97 3.97	Turbidity (NTU) 31.4 33.1 25.2 24.7 23.7 23.9
Final	<u> </u>		<u> </u>			
Notes	1,5	persueto gollons i	emoved w	1178d. Be	gen Soup w down	2h 6 -

Monitoring well purge and sampling logs

Revere Smelting and Refining

MW- 2:35

			Temp		•	
1 late			(°C) or	Cond	Turbidity	
11/15/0/ Tim	•	pH	(°F)	(UMHO/cm)	(NTU)	
Initial T(O)		_(~63_	<u> 14.55</u>	<u>3.85</u>	337.0	
During 1357	, , ,		14 89	2,94	330.0	
During 135		6.90	18.24	2.86	316.0	
During 135		6.87	14.61	2.96	305.0	
During 140		6,78	14.85	2.69	296.0	
During 140	- 1 . 1		14.88	3.36	385.0	
	17	· ———		a	<u>- (AUS -)</u>	
During 11/16/0						
W - 02	y electe	6.72	14,21	3.37	G\$ 30.1	
During 13.82 <u>92</u>		6.40	14.41	3.41	931	
During 14.05 A 3	4	6.75	14,45	3.64	44.0	
During 14.5 93	1	6.70	14,50	4,20	44.0	
During During	<u> </u>	0.70				
During				<u> </u>		
During						
During				<u> </u>		
During						
During		······································		·		
During						
During					-	
During		·				
Final		· · · · · · · · · · · · · · · · · · ·				
310400						
Notes 1410 Tor	biddy SAIHigh	1915-1-+	recover	1	1.) 4	
1545	- recovered to	1555 -	Dample +1	ou top ot	<u>w</u>	
9:40 - dry - come Sompled: - metals, 75-2:95.3. couldn't						
			webs, 35	<u>-2.75.3</u>	- COULD 4 E	
	11 oll the hay					
	·····					
			· · · · · · · · · · · · · · · · · ·			
					· · · · · · · · · · · · · · · · · · ·	

Revere Smelting and Refining

MW- 23D

ر ا			Temp		
11/15/01			(°C) or	Cond	Turbidity
Tim	• .	рН	(°F)	(UMHO/cm)	(NTU)
Initial T(0) ¿.գյ <u>144</u>		7.77	14,78	3.42	648.0
During 16.23 1450		8.00	14,29	2.87	<u>628</u>
During 23K 145		8.87	14.51	2,45	36.3
During 23,50 150		9.66	<u> </u>	2,63	50.1
During 35.61 153		<u> </u>	_14. 44	2,72	50.1
During 26.78 15 3		9.22	14.41	2.66	63,8
During 37.80 15	4.6	9,54	_14.05	<u> </u>	
During 11/16/01					
During WL				`	
During 15.84 950	1 Inhal	<u>7,26</u>	1423	<u> 3.73</u>	15.9
During 16.28 45	2 15/7554	1,25	1437	3.67	15.4
During (4.61 95		7,25	14.39	3.66	15.1
During 14,89 95	6 .5/75.5a	7.24	14,44	3.67	14.0
During	<u>·</u>				
During					
During					
During		•			
During			*		
During					
Final					
Fillal		<u></u>			
Notes とふ	1000 - 81261		1	-5-	مآه.
		1.6	Asm derry	milet same	<u> </u>
- TE 14	mely Cless.	 			
		<u>-</u>			
<u> </u>				<u></u> .	
		 			
		·····			
				-	

Revere Smelting and Refining

MW- 24

			J	•		1	1
				Temp			
				(°C) or	Cond (UMHO/cm)	Turbidity	D 0
	Time	Volume	pH	(°F)		(NTU)	4,07
Initial T(O)	1045	Intial (Spal	6.54	12.72	<u>5.09</u> 4.78	7999 461	1,21
During During	1100	17(1)	6.05	12.01	4,73	164	0.80
_	1103	1.3	5,93	12.02	4,79	1050	I -
During		2.7(3)	5.87	12.07	4,86	104.0	0.57
During	1116				4,84	105.0	6,34 6,42
During	<u> 115 </u>	3,2	5.89	13.20		96,4	0.20
During	11 20	4.2	5,94	12.2	4,87	94,2	రి.ఇం
During	<u> 1122 </u>	49 (3)	5,89	12.33	4.88		
During	1123	1.04	5.52	12.74	4.83	57,0	0.33
During	1225	1.0L	\$.50	<u> 12.75</u>	4.82		0.29
During	1127	1.6	5.48	<u>)2.70</u>	4,82	<u>30.2</u>	0.29
During	1129	100	8,47	12.67	4.83	34,2	0,35
During	11.31	1.04	5,47	12.65	4.83	<u>29.2</u>	いまを
During _.							,
During							. [
During							
During			···				.]
During							.}
During							.
During							_
During							_[
During							
Final							1
1 11.000							1
Notes	11-31-	Timada	Farrage ad	600 (25	50) San.	nlad	1
HAMA	11.31	Ci sara af	1 PW COLOR	d m/1 10 %	20 41 15 (2)	4 C	-
		mersed	205 Winsu	d w/1 10 00	D4- I PEIN CEI	<u> </u>	-
ł		museo	super &				••
1						<u> </u>	-]
1							-
							-1
\ \					 		-
			.,				-∤
1			<u>.</u>				_

MONITORING WELL PURGING Revere Smelting and Refining

MW-25

				Temp			
				(°C) or	Çend (UMHÖ/cm)	Turbidity	Do
TATE ALL MONTH I SHIELD	Time	Volume	рН	(°F)		(NTU)	
Initial T(O) ฯ.ว๘ During	755	Justial D. 3721	<u> 5.86</u> _6.20	<u></u>	0.534	807.0	3.33
During	312	10 46	<u>6.80</u>	10.84	0.539	37,3	0.30
During	816	2.70	6.24	10.85	0,530	32.6	0.16
During	820	3.6	6.27	16.83	0,533		0,00
During	832	256	C.29	16,78	0,542		0,00
During 4.44	840	3.0	6.28	10.78	0.543	33.0	0.00
During 4.50		3.4(2)	6.29	10,86	0,844	34,2	0.00
During	855	<u> </u>	C,a9	10,88	0.532		0.00
During	9:00	3 4,9	6,29	10.82	0,538	30.0	0.00
During 4,45	9:05	.54/min	(4.3)	10.86	0,533	33,9	0.00
During	908	.54/min	6.31	10.86	0,540	32.5	
During	9070	5 min	6.31	10.91	0.542	34,4	_
During				<u> </u>			1.00
During							
During			200				
During			The state of the s	<u> </u>			
During							
During							
During					:		
During				÷.,			1
During				1.			
Final	× .		· ·				
							
Notes	9.00 - L	Jell Dura	ad - abu	udown tof	·	s .	
_				soilized - 9	; -		
		ubiditer co					
_		1	0				
			•				/
							1 / 1
							1/
							1/
]						<u>-</u>	- J [*]

Revere Smelting and Refining

			Temp			
			(°C) or	Cond	Turbidity	DO
wh Time	Volume	pН	(°F)	(UMHO/cm)	(NTU)	
Initial T(0) 9483 650	Inihal	7.17	12.91	1,31	7449	J.45
During 9,28 655	- 15 - 1744CC	6,65	12,98	1,32	<u> 969.0</u>	1,44
During 9.32 659	15-1645ec	6.61	12.74	1.32	913,0	7,46
During 9.35 7:02	_ 15 × / 60 1 ×	6.56	13.18	1,31	8890	1.44
During 9.37 7.06	-5 565K	6.45	13.41	1,32	604.0	1.14
During 9.40 709	<u>.5/462</u>	6.39	13.63	1.32	391.0	0.97
During 940 411	15/5654	6.36	13.72	1.32	310.0	0.85
During 9.37 <u>715</u>	.5/56"	6.34	13.76	1.32	215.0	0.32
During 9,37 718	.5/56,4	6.32	13,78	1.32	1720	0.72
During ና.ጐኤ <u>구</u> 구ን	15/04 sed	6.31	<u>\ },75</u>	1.32	144.0	۵،۵٦
During a.32 <u> </u>	.5/425ec	6.31	13.66	1.31	1420	0.64
During 4 31 <u>구33</u>	15 K8652E	6.30	13.56	1.31	100.0	رے ہو
During 9.31 <u>735</u>	·5/76ac	6,30	13.54	1.31	<u>P1.0</u>	0,64
During 9,31 137		6.29	13.52	1,30	<u> </u>	0.63
During 9.31 <u>구석 0</u>	15/C4.5ct	6.29	13,53	1.30	<u>50.0</u>	0.63
During 역.31 <u>구석고</u>	-5/courses	<u>6.28</u>	1352	1.31	480	0.43
During	<u> </u>					. [
During						.
During						. [
During					·	- [
During						- [
During	<u> </u>				· ————	- [
Final						-
					_	1
Notes Towl	orditer meto	ov on flou	thro unit	not accurat	le	-
· · · · · · · · · · · · · · · · · · ·	···-				 	- 1
				·	·····	-
						_
						_
						_
ĺ						_
						_

Well No.: MW- 13		
Field Personnel: GES		<u> </u>
Weather Conditions:		
Physical Condition of Well:	Good.	
Equipment used: Horiba U-22, F	наппа ніяго, Сеоритр II	
Purging Information		
Date: 11 /16 /01	Measuring Point Elevation:	ft. amsl
	Well Diam eter:	2 in.
Purging Time: Start: Stop:	Total Depth of Well Installed:	ft.
Volume to be Purged (3 Vol)	gal. Total Depth of Well Measured:	ao ft
Volume Purged:	1,5 gal. Depth to Water:	5.93 ft
	***************************************	gal
Purging Method: penstaltic puri	,p	
•	Containerized in 55 gallon drum	
	Containerized in 55 gallon drum	
Purge Water Disposal Method: _ Purge Water Characteristics Color: Slanty Vellous	Containerized in 55 gallon drum Presence of NAPL:	
Purge Water Disposal Method: _ Purge Water Characteristics Color: Slanty Yellows Odor:	Containerized in 55 gallon drum Presence of NAPL:	
Purge Water Disposal Method: Purge Water Characteristics Color: Color: Color: Turbidity: but	Containerized in 55 gallon drum Presence of NAPL:	
Purge Water Disposal Method: Purge Water Characteristics Color:	Containerized in 55 gallon drum Presence of NAPL:	
Purge Water Disposal Method: Purge Water Characteristics Color: Sharty Yellows Odor: Turbidity: week low Sampling Information Date of Sample Collected:	Containerized in 55 gallon drum Presence of NAPL:	
Purge Water Disposal Method:	Containerized in 55 gallon drum Presence of NAPL: Other: 11/16/01 11570 MW-13 19W FRW South	
Purge Water Disposal Method: Purge Water Characteristics Color: Sharty Yellows Odor: Turbidity: Yest Low Sampling Information Date of Sample Collected: Time of Sample Collected: Sample Indentification: Method of Sample Collection: Sample Description:	Containerized in 55 gallon drum Presence of NAPL: Other: II/16/01 II 570 WW-13	
Purge Water Disposal Method: Purge Water Characteristics Color: Slanty Yellows Odor: Turbidity: were low Sampling Information Date of Sample Collected: Time of Sample Collected: Sample Indentification: Method of Sample Collection: Sample Description: Filter Method:	Containerized in 55 gallon drum Presence of NAPL: Other: 11/16/01 1157 MW-13 10W Flow Souther Ground Waster	
Purge Water Disposal Method: Purge Water Characteristics Color: Sharty Yellows Odor: Turbidity: Yest Low Sampling Information Date of Sample Collected: Time of Sample Collected: Sample Indentification: Method of Sample Collection: Sample Description:	Presence of NAPL: Other: 11/16/01 1150 MW-13 1000 Fow Southing Ground Water	U03 Metal3

<u>General</u>				
Well No.:	MW-235			
Field Per	· · · · · · · · · · · · · · · · · · ·			
• • • • • •	Conditions: Boutle	Cloud	4 60.3	
	Condition of Well:	5 x10.11	alt	
Equipme	nt used: Horiba U-22, Hanna H	Hi925, Ge		
_q-,p		•		
Purging Inf	<u>ormation</u>			
Date:	11/15/01		Measuring Point Elevation:	ft. amsl
Purging		35	Well Diam eter:	2 in.
ruigilig	Stop:	<u> </u>	Total Depth of Well Installed:	14.5 ft.
Volume	to be Purged (3 Vol) 33	gal.	Total Depth of Well Measured:	14,5 ft
	Purged:	gal.	Depth to Water:	8.21 ft
	Method: peristaltic pump		1 Well Volume:	t. gal.
		ontaineriz	ed in 55 gallon drum	
Color: _ Odor: _ Turbidi	y:		Presence of NAPL: Other:	
•	Information	ر أيغا.		
	f Sample Collected: f Sample Collected:	100	0	· · · · · · · · · · · · · · · · · · ·
		M-9;		
		of the	w Sanin - Had to beil	VOZS: TAIK
		mund	3	•
•	Method:			
		35-HC	. (N-About metals	HNUS
	ical Method Requested: 95-			
,,			, , , , , ,	
	Pour Recovery	Well	- Couldn't fill all both	<u>le full</u>
Notes	except. TAK	(Busky	stourd and was to	r tear of
	to for junio	F HOO	<u>) </u>	
	Had to Bail 100	و ک ک	<u> </u>	

General

Well No.: Field Personnel: Weather Condition		C)-	60,2		
Physical Condition		Greelzert	_ 60-		
•	-	Hanna Hi925, Geo	onumn II		
Equipment useu	. Horiba 0-22,	nailla niezo, Geo	opump ii		
uraina Informat	ion				
urging Informat	IOII	,			
Date:	ulveto1 -	11/16/01	Measuring Point Elevation:	ft	am
Purging Time:	Start:	1430	Well Diam eter:	2	i
r arguing runno.	Stop:	10:00	Total Depth of Well Installed:	27.8	
Volume to be Pu		11,5 gal.	Total Depth of Well Measured:	27.5	
Volume Purged:		5 gal.	Depth to Water:	6.83	
Purging Method			1 Well Volume:	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	g
Purge Water Dis			ed in 55 gallon drum	<u></u>	3
r digo viator bit	sposai iliculou.	CONTRACTOR	ed in 05 gailen drain		
Color: Inhi		Clear	Presence of NAPL:		
_		Clear	Presence of NAPL: Other:		
_		clear			
Color: Color: Odor: Turbidity:		Clear		<u>.</u>	
_		Clear			
_	Chadalony -	clear		<u>.</u>	
Color: Odor: Turbidity:	Chadalony -	clear			
Color: Odor: Turbidity:	Chile Gray -	(lear			
Color: Odor: Turbidity: Sampling inform	e Collected:	11/15/0			
Color: The Color: Odor: Turbidity: Color: Turbidity: Color: Turbidity: Color: Turbidity: Color: Colo	ation Collected:	11 /15/0 100	Other:		
Color: The Color: Odor: Turbidity: Color: Turbid	e Collected: Collected: Collected: Collected:	11/15/0 100 mw-	Other:		
Color:Codor:	Code Gray - ou - tun of ation Collected: Collected: fication:	11/15/0 100 mw-	Other:		
Color:Odor:	Code Gray - ou - tun of ation Collected: Collected: fication:	11/15/0 100 mw-	Other:		
Color: Odor: Turbidity: Sampling inform Date of Sample Time of Sample Sample Indentify Method of Sample Sample Descrip Filter Method:	ation Collected: Collected: Collected: fication: ple Collection: ption:	11/15/0 100 MW- 10W- Grown	Other:	We tal S	
Color: Odor: Turbidity: Last of Sampling Inform Date of Sample Time of Sample Sample Indentifue Method of Sample Descrip Filter Method: Type of Perser	Conde Gray - con - the condense Collected: Collected: Collected: Collected: Collection: Collection: Collection: Collection: Collection: Collection: Collection: Collection: Collection: Collection: Collection: Collection:	11/15/0 100 mw-	Other:	. Metal S	
Color: Odor: Turbidity: Sampling inform Date of Sample Time of Sample Sample Indentify Method of Sample Sample Descrip Filter Method:	Conde Gray - con - the condense Collected: Collected: Collected: Collected: Collection: Collection: Collection: Collection: Collection: Collection: Collection: Collection: Collection: Collection: Collection: Collection:	11/15/0 100 MW- 10W- Grown HC) · Va	Other: 1 0 330 Flow Shaping. 2 Water 225 - Naull CN, HNO,		
Color: Odor: Turbidity: Last of Sampling Inform Date of Sample Time of Sample Sample Indentifue Method of Sample Descrip Filter Method: Type of Perser	Conde Gray - con - the condense Collected: Collected: Collected: Collected: Collection: Collection: Collection: Collection: Collection: Collection: Collection: Collection: Collection: Collection: Collection: Collection:	11/15/0 100 MW- 10W- Grown HC) · Va	Other: 1 0 330 Flow Shaping. 2 Water 225 - Naull CN, HNO,	, Metal S	\(\k\)
Color: Odor: Turbidity: Last Sampling Inform Date of Sample Time of Sample Sample Indentifue Method of Sample Descrip Filter Method: Type of Perser Analytical Method	Conde Gray - con - the condense Collected: Collected: Collected: Collected: Collection: Collection: Collection: Collection: Collection: Collection: Collection: Collection: Collection: Collection: Collection: Collection:	11/15/0 100 MW- 10W- Grown HC) · Va	Other: 1 0 330 Flow Shaping. 2 Water 225 - Naull CN, HNO,		\(\lambda\)
Color: Odor: Turbidity: Last of Sampling Inform Date of Sample Time of Sample Sample Indentifue Method of Sample Descrip Filter Method: Type of Perser	Conde Gray - con - the condense Collected: Collected: Collected: Collected: Collection: Collection: Collection: Collection: Collection: Collection: Collection: Collection: Collection: Collection: Collection: Collection:	11/15/0 100 MW- 10W- Grown HC) · Va	Other: 1 0 330 Flow Shaping. 2 Water 225 - Naull CN, HNO,		\(\lambda\)

G	е	n	е	ra	ı

<u>Aen</u>	<u>iei ár</u>			
	Well No.: MW- 24			
	Field Personnel: GES			
	Weather Conditions: Sung Co	5 - Lovely		
	- · · · · · · · · · · · · · · · · · · ·	seelland.		
	Equipment used: Horiba U-22, Hanna Hi925, G	eopump II		
<u>Pur</u>	ging Information			
	Date: 1115 01	Measuring Point Elevation:	e e	amsi
	Purging Time: Start: 1045	Well Diam eter:	2	in.
	Stop: 1115	Total Depth of Well Installed:		ft.
	Volume to be Purged (3 Vol) 4,1 gal.	Total Depth of Well Measured:	13.10	ft.
	Volume Purged: 5.5 gal		<u> </u>	ft.
	Purging Method: peristaltic pump	1 Well Volume:	1,7	gal.
	~ ~ <u></u>	ized in 55 gallon drum		
	Odor: W. Br Cloudy - then clear Odor: Turbidity: High in Beginning - Clear up	Other:		
Sa	mpling Information			
	Date of Sample Collected: 11/15	7)01		<u></u>
	Time of Sample Collected: 1125	<i>f</i>		
	Sample Indentification: MW-3			
		42 Samphy	 	
	Sample Description: Ground	nster		
	Filter Method:	A that will a		
	Type of Perservation if any: Hc(-1/0a	3, - NOH CH, NHOZ	· metals	
	Analytical Method Requested: 95-1 7	15-2,95-3,504,EN,		
			 . 	
No	otes After Direson: Onless to	using to middle of Water	Cal	
177	Mes After paramy pulled +	Sound to made of water	Colomo	
	TWO army decorses the	Dufta		
				·

Wallkill, New York

Wallkill, New 1	OIK	
General		
Well No.: MW- 25		
Field Personnel: GES		•
Weather Conditions: Cloudy Cool-	10W 50°4	
Physical Condition of Well: Swell Court		
Equipment used: Horiba U-22, Hanna Hi925, Geo	opump II	
· · · · · · · · · · · · · · · · · · ·		
Purging Information		
1 1		
Date: 11 /15 /0 /	Measuring Point Elevation:	ft. amsl
Purging Time: Start: +30	Well Diam eter:	2 in.
Stop:	Total Depth of Well Installed:	ft.
Volume to be Purged (3 Vol) 4,9 gal.	Total Depth of Well Measured:	14,78 ft.
Volume Purged: 5.5 gal.	Depth to Water:	4,26 ft.
Purging Method: peristaltic pump	1 Well Volume:	<i>1,71</i> gal.
Purge Water Disposal Method: Containerize	ed in 55 gallon drum	
Purge Water Characteristics Color: This (lody Brown -> Cleaved -> P Odor: Name Turbidity: Very laws	Presence of NAPL: NOTE Other:	
Sampling Information	·	
Date of Sample Collected: 1) 15/0	1	
Time of Sample Collected:	•	
Sample Indentification: mw - 25	mw-25.ms, mw-2	25-MSD
Method of Sample Collection: [ow Fig	w Samoline	
Sample Description:	aler	
Filter Method:		
Type of Perservation if any: #LL · Voc	NSOH HNOZ	
Analytical Method Requested: 55-1 95-	2 95-3 Melais Sulph	ates CN
		<u></u>

Notes

Tulial TD of well. Soft Bottom

Wallkill, New York

General			
Well No.: MW- 26			
Field Personnel: GES			
Weather Conditions: Clear : md 50°			
Physical Condition of Well: <u>Excella</u>			
Equipment used: Horiba U-22, Hanna Hi925, Ger	opump li		
Purging Information			
Purging Information			
Date: 11 /14 /0 /	Measuring Point Elevation:	ft.	amsl
Purging Time: Start: 645	Well Diam eter:	2	in.
Stop:	Total Depth of Well Installed:	16.8	ft.
Volume to be Purged (3 Vol) gal.	Total Depth of Well Measured:	16,10	ft.
Volume Purged: 2.5 gal.	Depth to Water:	४,३।	ft.
Purging Method: peristaltic pump	1 Well Volume:	1.57	gal.
Purge Water Disposal Method: Containeriz	ed in 55 gallon drum		
Purge Water Characteristics			
COLORET LES AUGUS ALONG	Presence of NAPL:		
Color: Turkid / YI BI - Cless Odor: Turbidity: decresse u fow flow	Other:		
Turbidity: decrease w/ tow flow			
Section 1	·		
		4	
Sampling Information			
Date of Sample Collected:	101	-	

Sediment sampling logs

New York State Department of Environmental Conservation Revere Smelting & Refinishing Corporation Site

Wallkill, New York

Sampling Program	Sample ID Number	Date/Time	Weather Conditions	
NYSDEC RSR SITE	SED-P2	11/0/2001		
Water Depth	Core Type	Core to be Composited?		
18"	SOIL AUGER (HAND)	Yes	⊠ No	
Penetration Depth	Length Recovered	GPS Cod	ordinates	
1211	12"	Nothing/Lat. = Easting/Long. =		
Core Section Interval	Visual Description	Grain Size	Comments	
6-12"	BLACK SILTY CLAY W/SOME GRAVEL AND DELANIC MATTER GRAY CLAY W/LITLE GRAVEL OLUSTED - BUND MS/M ** LOCATION STA	30	Collected for TCL/TAL Analysis LEAD ONLY ETAL 25FT. FROM SMAKE	
	<u></u>			

New York State Department of Environmental Conservation Revere Smelting & Refinishing Corporation Site

Wallkill, New York

Sampling Program	Sample ID Number	Date/Time	Weather Conditions
NYSDEC		11/8/01	Partly sunny
RSR SITE	SED-PI	\ '	•
11-		11:50	50° F
Water Depth	Core Type	Core to be C	omposited?
- 111	SOIL		<u> </u>
24"	AUGER	∐ Yes	L≯N₀
	(HAND)		
Penetration Depth	Length Recovered	GPS Coo	ordinates
1.2"	12"	Nothing/Lat. =	
12	12	 Easting/Long. =	
O O	Viewal Description	Grain Size	Comments
Core Section Interval	Visual Description	Glatii Size	Commones
	Gray silly clay		
	W little gravel		LOND
0-6"	Thin layer of organic	ļ	only
	Matter on top		′ .
11:50	Matter or tops		}
11.50		1	
	The alay		
6-12"	Brown silty clay with some gravel		CAD
11:55	with some gravel	1	ONLY
1 11.22	,	,	'
			}
		1	
	1	h Chillis (0) 1/2	an Allerinasou
	X LOCATION STATE	0) - SAMPLE COLLER	app mich
		9 F France	TAKE, INTO THE PIND
		(11) (port)	1,20

New York State Department of Environmental Conservation Revere Smelting & Refinishing Corporation Site

Wallkill, New York

Sampling Program	Sample ID Number	Date/Time	Weather Conditions			
NYSDEC	F., 1	11/08/01	Partly Sarry 50°F			
RSR SITE	EX-1	12/10	50°F			
<u>'</u>		12:40				
Water Depth	Core Type	Core to be C	composited?			
36"	Soil	Yes	⊠ No			
1 26	A AUGER		المر			
Penetration Depth	Length Recovered	GPS Cod	ordinates			
1011	101	Nothing/Lat. =	·			
12"	12"	Footing/Long =				
One Continuintend	Vious Description	Easting/Long. =	Comments			
Core Section Interval	Visual Description	Grain Size				
	Gray silty clay with little gravel Some organic Matter		COLLECTED FOR			
0-6"	little gravel		TCL/TML			
	Commo Matter		HNA14945			
12:40	Some organic marks		TCL/TML HWATYSUS COLLETED MS/MSD			
	· ·		arce to 7100			
	Gray silty clay w/ little gravel					
6-12"	Change and a		IEAN ONEU			
6-12"	WHLE STATE		LEAD ONLY			
			ļ			
			lam builden			
	- RoHam of exca	Wahion pit Consists (The white			
	1 Put sediment se	select in between.	algae present			
	* Bottom of exca with sediment se throughout the b	Noter Column				
	Throughout The V	WILL COMME	, in the same of t			
	La Cample lambon	Marked with a bu				
	TACKING TACKING		4			
Sampler Initials:			<u> </u>			

New York State Department of Environmental Conservation Revere Smelting & Refinishing Corporation Site Wallkill, New York

Sampling Program	Sample ID Number	Date/Time	Weather Conditions				
	Sample is Hamber	11/08/01	Partly Sunny				
NYSDEC	EX-2	11100101	Tack flag start of				
RSR SITE	七人 人	1320	50°F				
Water Depth	Core Type	Core to be C	omposited?				
,	SOIL						
36"	AUGER	☐Yes	[∑No				
	(HAND)	d GPS Coordinates					
Penetration Depth	Length Recovered						
1011	12 //	Nothing/Lat. =					
12"	/2"	Easting/Long. =					
	N/ 15 - 14 - 1		Comments				
Core Section Interval	Visual Description	Grain Size	Comments				
	Really Cooks		1 500				
13:20	Brown Coarse		LEMD ONLY				
1320	sand WPTh	<u> </u>	ONLY				
	some gravel						
	18the brown						
	silly clay	·					
1 1 10 11	Brown silty						
6-12"	Ola Come		1000				
1375	clay some		LEAD ONLY				
	gravel		ONLY				
	enterval gray						
	rnierval gray		1				
	silry clay						
			And the second s				
		·					
	_ , /	ation Marked Wi	th a buoy				
	* Sample 100	arion marces on					
		ceavalion pêt censi. ment ên between. ater Column	lara				
	12 Bothon of U	chavourion per consi.	sp of unique				
	4 500000	Just Po hoping	A lage present				
	paulders with sell	י איזאטואנו וזון וזואאן	did h				
	throughout the lil	ater Column					
	Manage 1						

New York State Department of Environmental Conservation Revere Smelting & Refinishing Corporation Site

Wallkill, New York

Sediment Sampling Field Log

Sampling Program	Sample ID Number	Date/Time	Weather Conditions					
NYSDEC	SED-SI	11/08/01	PARRY SURNY					
RSR SITE			50°/-					
Water Depth	Core Type	Core to be Composited?						
DRY	SOIL AUGER (HAND)	☐ Yes						
Penetration Depth	Length Recovered	GPS Cod	ordinates					
24"	24"	Nothing/Lat. = Easting/Long. =						
Core Section Interval	Visual Description	Grain Size	Comments					
0-6"	Brownish Black Coarse sand with Some gravel 14:55 Circul, Med fine Silt, fine sand Some grovel 15:20		COLLOTAL AWAYSIS LOAD ONLY					
	* Sample 1	cation staked						

Sampler Initials:

New York State Department of Environmental Conservation Revere Smelting & Refinishing Corporation Site

Wallkill, New York

Sediment Sampling Field Log

Sampling Program	Sample ID Number	Date/Time	Weather Conditions					
NVSDEZ	SED-52	11/08/01	Partly Surry					
RSR SITE		15:45	60°F					
Water Depth	Core Type	Core to be 0	Composited?					
2"	HAND SOIL AUGER	☐ Yes No						
Penetration Depth	Length Recovered	GPS Co	ordinates					
24"	24"	Nothing/Lat. = Easting/Long. =						
Core Section Interval	Visual Description	Grain Size	Comments					
0-6" 15:45 12-24" 1550	Dark gray Coarse sitt with lot of organic Matter, Some Coarse sand: Some gravel Brown to gray Silty clay with Some gravel	on staked	Total Pb					

Sampler Initials:

New York State Department of Environmental Conservation Revere Smelting & Refinishing Corporation Site

Wallkill, New York

Sediment Sampling Field Log

Sampling Program	Sample ID Number	, Date/Time	Weather Conditions
NYSDEZ	SED-S3	11/08/01	Partly Surry
RSR SITE		1625	60'F
Water Depth	Core Type	Core to be C	Composited?
18"	HAND SOIL AUCIER	Yes	⊠ No
Penetration Depth	Length Recovered	GPS Cod	ordinates
24"	24"	Nothing/Lat. = Easting/Long. =	
Core Section Interval	Visual Description	Grain Size	Comments
	Park gray Coarse Sand and gravel Some organic Matter Carayish brown Coarse silt to Mid-fine Dand John of March Some Gray silty clay * Sample locati	on warked by a	Total Pb

Sampler Initials:

Appendix J

Data summary tables

Appendix J – List of Tables

- J-1 Surface soil inorganic results
- J-2 Surface soil TCLP inorganic results
- J-3 Surface soil volatile organic compounds
- J-4 Surface soil semi-volatile organic compounds
- J-5 Surface soil pesticide results
- J-6 Surface soil polychlorinated biphenyl results
- J-7 Subsurface soil inorganic results
- J-8 Subsurface soil TCLP inorganic results
- J-9 Subsurface soil volatile organic compounds
- J-10 Subsurface soil semi-volatile organic compounds
- J-11 Subsurface soil pesticide results
- J-12 Subsurface soil polychlorinated biphenyl results
- J-13 Sediment inorganic results
- J-14 Sediment TCLP lead results
- J-15 Sediment volatile organic compounds
- J-16 Sediment semi-volatile organic compounds
- J-17 Sediment pesticide results
- J-18 Sediment polychlorinated biphenyl results
- J-19 Ground water inorganic results
- J-20 Ground water volatile organic compounds
- J-21 Ground water semi-volatile organic compounds
- J-22 Ground water pesticide results
- J-23 Ground water polychlorinated biphenyl results
- J-24 Ground water total alkalinity results
- J-25 Sieve analysis inorganic results
- J-26 Excavation Area inorganic results
- J-27 Excavation Area TCLP inorganic results
- J-28 Excavation Area volatile organic compounds
- J-29 Excavation Area semi-volatile organic compounds
- J-30 Excavation Area pesticide results
- J-31 Excavation Area polychlorinated biphenyl results

Table J-1
Revere Smelting and Refining
Wallkill, New York
Surface Soil - Inorganics Results

		Location ID	MW-13B	MW-15A	MW-16	MW-17A	MW-18	MW-2	MW-3	MW-4	MW-5	OFA-1	OFA-2	OFA-3
		Depth Interval (ft)	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
		Sample Date	6/9/1997	6/10/1997	6/3/1997	6/5/1997	6/10/1997	7/10/1991	7/10/1991	7/10/1991	7/10/1991	9/12/1994	9/12/1994	9/12/1994
Chemical Name	Unit	Action Level												
Aluminum	mg/Kg	SB	14500											
Antimony	mg/Kg	SB	23	< 7 U	37	11	< 6 U	170	79	170	780			
Arsenic	mg/Kg	7.5 or SB	21	10	29	12	19	61	42	72	97			
Barium	mg/Kg	300 or SB	53											
Beryllium	mg/Kg	0.16 (HEAST) or SB	< 1 U											
Cadmium	mg/kg	1 or SB	< 1 U	< 1 U	< 1 U	< 1 U	2	2.8	11	5.9	17			
Calcium Metal	mg/kg	SB	965											
Chromium	mg/kg	10 or SB	18	25	22	26	28	24	17	17	20			
Cobalt	mg/kg	30 or SB	7											
Copper	mg/kg	25 or SB	29											
Cyanide	mg/Kg													
Iron	mg/Kg	2 or SB	21800											
Lead	mg/kg	SB	1580	121	2590	268	251	12000	7100	12000	26000	207	116.1	30
Magnesium	mg/Kg	SB	3330											
Manganese	mg/Kg	SB	1140											
Mercury	mg/Kg	.1	0.112											
Nickel	mg/Kg	13 or SB	15											
Potassium	mg/kg	SB	893											
Selenium	mg/Kg	2 or SB	2											
Silver	mg/Kg	SB	< 1 U											
Sodium	mg/Kg	SB	< 60 U											
Thallium	mg/Kg	SB	< 1 U											
Vanadium	mg/Kg	150 or SB	27											
Zinc	mg/Kg	20 or SB	82											

Notes: Bold values indicate exceedances

U - not detected, J - estimated,

E - recovery greater than 10% for serial dilution.

--- no action level.

^{* -} RPD greater than 20%, R - rejected,

Table J-1
Revere Smelting and Refining
Wallkill, New York
Surface Soil - Inorganics Results

		Location ID	OFA-4	OFA-5	OFA-6	OFA-7	OFA-7	OFB-1	OFB-2	OFB-4	OFB-5	OFB-6	OFB-7	OFC-3
		Depth Interval (ft)	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
		Sample Date	9/12/1994	9/12/1994	9/12/1994	9/12/1994	9/12/1994	9/12/1994	9/12/1994	9/12/1994	9/12/1994	9/12/1994	9/12/1994	9/12/1994
Chemical Name	Unit	Action Level												
Aluminum	mg/Kg	SB												
Antimony	mg/Kg	SB												
Arsenic	mg/Kg	7.5 or SB												
Barium	mg/Kg	300 or SB												
Beryllium	mg/Kg	0.16 (HEAST) or SB												
Cadmium	mg/kg	1 or SB												
Calcium Metal	mg/kg	SB												
Chromium	mg/kg	10 or SB												
Cobalt	mg/kg	30 or SB												
Copper	mg/kg	25 or SB												
Cyanide	mg/Kg													
Iron	mg/Kg	2 or SB												
Lead	mg/kg	SB	46.5	69.1	32.9	43.2	48.4	121.9	42.4	15.94	57.53	51	29.14	120
Magnesium	mg/Kg	SB												
Manganese	mg/Kg	SB												
Mercury	mg/Kg	.1												
Nickel	mg/Kg	13 or SB												
Potassium	mg/kg	SB												
Selenium	mg/Kg	2 or SB												
Silver	mg/Kg	SB												
Sodium	mg/Kg	SB												
Thallium	mg/Kg	SB												
Vanadium	mg/Kg	150 or SB												
Zinc	mg/Kg	20 or SB												

Notes: Bold values indicate exceedances

U - not detected, J - estimated,

E - recovery greater than 10% for serial dilution.

--- no action level.

^{* -} RPD greater than 20%, R - rejected,

Table J-1
Revere Smelting and Refining
Wallkill, New York
Surface Soil - Inorganics Results

		Location ID	OFC-4	OFC-5	OFC-6	OFC-7	OS-1	OS-10	OS-11	OS-12	OS-13	OS-14	OS-15
		Depth Interval (ft)	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
		Sample Date	9/12/1994	9/12/1994	9/12/1994	9/12/1994	12/13/1993	12/13/1993	12/13/1993	12/13/1993	12/13/1993	12/13/1993	12/13/1993
Chemical Name	Unit	Action Level											
Aluminum	mg/Kg	SB											
Antimony	mg/Kg	SB										< 5.3 U	
Arsenic	mg/Kg	7.5 or SB										9.6	
Barium	mg/Kg	300 or SB											
Beryllium	mg/Kg	0.16 (HEAST) or SB											
Cadmium	mg/kg	1 or SB										< 0.79 U	
Calcium Metal	mg/kg	SB											
Chromium	mg/kg	10 or SB											
Cobalt	mg/kg	30 or SB											
Copper	mg/kg	25 or SB											
Cyanide	mg/Kg												
Iron	mg/Kg	2 or SB											
Lead	mg/kg	SB	158	80.04	35.08	64.87	46	52.5	297	387	59.7	441.6	98.5
Magnesium	mg/Kg	SB											
Manganese	mg/Kg	SB											
Mercury	mg/Kg	.1											
Nickel	mg/Kg	13 or SB											
Potassium	mg/kg	SB											
Selenium	mg/Kg	2 or SB											
Silver	mg/Kg	SB											
Sodium	mg/Kg	SB											
Thallium	mg/Kg	SB											
Vanadium	mg/Kg	150 or SB											
Zinc	mg/Kg	20 or SB											

U - not detected, J - estimated,

E - recovery greater than 10% for serial dilution.

^{* -} RPD greater than 20%, R - rejected,

Table J-1
Revere Smelting and Refining
Wallkill, New York
Surface Soil - Inorganics Results

		Location ID	OS-16	OS-17	OS-18	OS-19	OS-2	OS-20	OS-21	OS-22	OS-23	OS-24	OS-25
		Depth Interval (ft)	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
		Sample Date	12/13/1993	12/13/1993	12/13/1993	12/13/1993	12/13/1993	12/13/1993	12/13/1993	12/13/1993	12/13/1993	12/13/1993	12/13/1993
Chemical Name	Unit	Action Level											
Aluminum	mg/Kg	SB											
Antimony	mg/Kg	SB								13.1			
Arsenic	mg/Kg	7.5 or SB								25.3			
Barium	mg/Kg	300 or SB											
Beryllium	mg/Kg	0.16 (HEAST) or SB											
Cadmium	mg/kg	1 or SB								< 0.85 U			
Calcium Metal	mg/kg	SB											
Chromium	mg/kg	10 or SB											
Cobalt	mg/kg	30 or SB											
Copper	mg/kg	25 or SB											
Cyanide	mg/Kg												
Iron	mg/Kg	2 or SB											
Lead	mg/kg	SB	85.8	40.1	40.9	123.5	66.8	106.5	7.4	1320	449.8	40.8	491.7
Magnesium	mg/Kg	SB											
Manganese	mg/Kg	SB											
Mercury	mg/Kg	.1											
Nickel	mg/Kg	13 or SB											
Potassium	mg/kg	SB											
Selenium	mg/Kg	2 or SB											
Silver	mg/Kg	SB											
Sodium	mg/Kg	SB											
Thallium	mg/Kg	SB											
Vanadium	mg/Kg	150 or SB											
Zinc	mg/Kg	20 or SB											

U - not detected, J - estimated,

^{* -} RPD greater than 20%, R - rejected,

E - recovery greater than 10% for serial dilution.

Table J-1
Revere Smelting and Refining
Wallkill, New York
Surface Soil - Inorganics Results

		Location ID	OS-26	OS-27	OS-27	OS-28	OS-29	OS-3	OS-30	OS-31	OS-32	OS-33	OS-34
		Depth Interval (ft)	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
		Sample Date	12/13/1993	12/13/1993	12/13/1993	12/13/1993	12/13/1993	12/13/1993	12/13/1993	12/13/1993	12/13/1993	12/13/1993	12/13/1993
Chemical Name	Unit	Action Level											
Aluminum	mg/Kg	SB											
Antimony	mg/Kg	SB											
Arsenic	mg/Kg	7.5 or SB											
Barium	mg/Kg	300 or SB											
Beryllium	mg/Kg	0.16 (HEAST) or SB											
Cadmium	mg/kg	1 or SB											
Calcium Metal	mg/kg	SB											
Chromium	mg/kg	10 or SB											
Cobalt	mg/kg	30 or SB											
Copper	mg/kg	25 or SB											
Cyanide	mg/Kg												
Iron	mg/Kg	2 or SB											
Lead	mg/kg	SB	327	285.2	411.7	44.9	104.3	72.8	72.3	60	398	208.9	343.9
Magnesium	mg/Kg	SB											
Manganese	mg/Kg	SB											
Mercury	mg/Kg	.1											
Nickel	mg/Kg	13 or SB											
Potassium	mg/kg	SB											
Selenium	mg/Kg	2 or SB											
Silver	mg/Kg	SB											
Sodium	mg/Kg	SB											
Thallium	mg/Kg	SB											
Vanadium	mg/Kg	150 or SB											
Zinc	mg/Kg	20 or SB											

U - not detected, J - estimated,

E - recovery greater than 10% for serial dilution.

^{* -} RPD greater than 20%, R - rejected,

Table J-1
Revere Smelting and Refining
Wallkill, New York
Surface Soil - Inorganics Results

		Location ID	OS-35	OS-36	OS-37	OS-38	OS-39	OS-39	OS-4	OS-40	OS-41	OS-42	OS-43
		Depth Interval (ft)	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
		Sample Date	12/13/1993	12/13/1993	12/13/1993	12/13/1993	12/13/1993	12/13/1993	12/13/1993	12/13/1993	12/13/1993	12/13/1993	12/13/1993
Chemical Name	Unit	Action Level											
Aluminum	mg/Kg	SB											
Antimony	mg/Kg	SB											
Arsenic	mg/Kg	7.5 or SB											
Barium	mg/Kg	300 or SB											
Beryllium	mg/Kg	0.16 (HEAST) or SB											
Cadmium	mg/kg	1 or SB											
Calcium Metal	mg/kg	SB											
Chromium	mg/kg	10 or SB											
Cobalt	mg/kg	30 or SB											
Copper	mg/kg	25 or SB											
Cyanide	mg/Kg												
Iron	mg/Kg	2 or SB											
Lead	mg/kg	SB	346.5	325	187.6	232.7	204.9	123.5	47	129.7	177	144.8	113.4
Magnesium	mg/Kg	SB											
Manganese	mg/Kg	SB											
Mercury	mg/Kg	.1											
Nickel	mg/Kg	13 or SB											
Potassium	mg/kg	SB											
Selenium	mg/Kg	2 or SB											
Silver	mg/Kg	SB											
Sodium	mg/Kg	SB											
Thallium	mg/Kg	SB											
Vanadium	mg/Kg	150 or SB											
Zinc	mg/Kg	20 or SB											

U - not detected, J - estimated,

^{* -} RPD greater than 20%, R - rejected,

E - recovery greater than 10% for serial dilution.

Table J-1
Revere Smelting and Refining
Wallkill, New York
Surface Soil - Inorganics Results

		Location ID	OS-44	OS-45	OS-5	OS-6	OS-7	OS-7	OS-8	OS-9	SB-1	SB-1-A	SB-1-B
		Depth Interval (ft)	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
		Sample Date	12/13/1993	12/13/1993	12/13/1993	12/13/1993	12/13/1993	12/13/1993	12/13/1993	12/13/1993	7/15/1991	6/21/1993	6/21/1993
Chemical Name	Unit	Action Level											
Aluminum	mg/Kg	SB											
Antimony	mg/Kg	SB	< 8.0 U								15		
Arsenic	mg/Kg	7.5 or SB	9.6										
Barium	mg/Kg	300 or SB											
Beryllium	mg/Kg	0.16 (HEAST) or SB											
Cadmium	mg/kg	1 or SB	< 1.2 U										
Calcium Metal	mg/kg	SB											
Chromium	mg/kg	10 or SB											
Cobalt	mg/kg	30 or SB											
Copper	mg/kg	25 or SB											
Cyanide	mg/Kg												
Iron	mg/Kg	2 or SB											
Lead	mg/kg	SB	392.5	6.2	103	369	101	115	57.3	165	2100	2500	180,(140)
Magnesium	mg/Kg	SB											
Manganese	mg/Kg	SB											
Mercury	mg/Kg	.1											
Nickel	mg/Kg	13 or SB											
Potassium	mg/kg	SB											
Selenium	mg/Kg	2 or SB											
Silver	mg/Kg	SB											
Sodium	mg/Kg	SB											
Thallium	mg/Kg	SB											
Vanadium	mg/Kg	150 or SB											
Zinc	mg/Kg	20 or SB											

U - not detected, J - estimated,

E - recovery greater than 10% for serial dilution.

^{* -} RPD greater than 20%, R - rejected,

Table J-1
Revere Smelting and Refining
Wallkill, New York
Surface Soil - Inorganics Results

		Location ID	SB-1-C	SB-2	SB-3	SB-4	SB-5	SB-5	SS-1	SS-1	SS-10	SS-10	SS-11	SS-1-1C
		Depth Interval (ft)	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0.16 - 0.5	0 - 0.16	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
		Sample Date	6/21/1993	7/15/1991	7/15/1991	7/15/1991	7/15/1991	7/15/1991	7/10/1991	7/10/1991	7/10/1991	7/10/1991	7/10/1991	6/21/1993
Chemical Name	Unit	Action Level												
Aluminum	mg/Kg	SB												
Antimony	mg/Kg	SB		77	4.5	3.4	0.84 J	1.4 J	2.8	25	1 J	0.6 J	4.6	
Arsenic	mg/Kg	7.5 or SB												
Barium	mg/Kg	300 or SB												
Beryllium	mg/Kg	0.16 (HEAST) or SB												
Cadmium	mg/kg	1 or SB												
Calcium Metal	mg/kg	SB												
Chromium	mg/kg	10 or SB												
Cobalt	mg/kg	30 or SB												
Copper	mg/kg	25 or SB												
Cyanide	mg/Kg													
Iron	mg/Kg	2 or SB												
Lead	mg/kg	SB	4500	7100	720	310	62 B	88 B	110	1200	93	100	400	73
Magnesium	mg/Kg	SB												
Manganese	mg/Kg	SB												
Mercury	mg/Kg	.1												
Nickel	mg/Kg	13 or SB												
Potassium	mg/kg	SB												
Selenium	mg/Kg	2 or SB												
Silver	mg/Kg	SB												
Sodium	mg/Kg	SB												
Thallium	mg/Kg	SB												
Vanadium	mg/Kg	150 or SB												
Zinc	mg/Kg	20 or SB												

U - not detected, J - estimated,

E - recovery greater than 10% for serial dilution.

^{* -} RPD greater than 20%, R - rejected,

Table J-1
Revere Smelting and Refining
Wallkill, New York
Surface Soil - Inorganics Results

		Location ID	SS-12	SS-1-2C	SS-13	SS-1-3C	SS-14	SS-15	SS-16	SS-17	SS-18	SS-19	SS-2	SS-2
		Depth Interval (ft)	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.16	0.16 - 0.5
		Sample Date	6/21/1993	6/21/1993	6/21/1993	6/21/1993	6/21/1993	6/21/1993	6/21/1993	6/21/1993	6/21/1993	6/21/1993	7/10/1991	7/10/1991
Chemical Name	Unit	Action Level												
Aluminum	mg/Kg	SB												
Antimony	mg/Kg	SB											73	4.3
Arsenic	mg/Kg	7.5 or SB												
Barium	mg/Kg	300 or SB												
Beryllium	mg/Kg	0.16 (HEAST) or SB												
Cadmium	mg/kg	1 or SB												
Calcium Metal	mg/kg	SB												
Chromium	mg/kg	10 or SB												
Cobalt	mg/kg	30 or SB												
Copper	mg/kg	25 or SB												
Cyanide	mg/Kg													
Iron	mg/Kg	2 or SB												
Lead	mg/kg	SB	100	500	150	760	130	140	480	3700	1900	430	4800	1100
Magnesium	mg/Kg	SB												
Manganese	mg/Kg	SB												
Mercury	mg/Kg	.1												
Nickel	mg/Kg	13 or SB												
Potassium	mg/kg	SB												
Selenium	mg/Kg	2 or SB												
Silver	mg/Kg	SB												
Sodium	mg/Kg	SB												
Thallium	mg/Kg	SB												
Vanadium	mg/Kg	150 or SB												
Zinc	mg/Kg	20 or SB												

U - not detected, J - estimated,

E - recovery greater than 10% for serial dilution.

^{* -} RPD greater than 20%, R - rejected,

Table J-1
Revere Smelting and Refining
Wallkill, New York
Surface Soil - Inorganics Results

		Location ID	SS-20	SS-21	SS-2-1C	SS-22	SS-2-2C	SS-23	SS-23	SS-2-3C	SS-24	SS-25	SS-26	SS-27
		Depth Interval (ft)	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
		Sample Date	6/21/1993	6/21/1993	6/21/1993	6/21/1993	6/21/1993	6/21/1993	6/21/1993	6/21/1993	6/21/1993	6/21/1993	6/21/1993	6/21/1993
Chemical Name	Unit	Action Level												
Aluminum	mg/Kg	SB												
Antimony	mg/Kg	SB												
Arsenic	mg/Kg	7.5 or SB												
Barium	mg/Kg	300 or SB												
Beryllium	mg/Kg	0.16 (HEAST) or SB												
Cadmium	mg/kg	1 or SB												
Calcium Metal	mg/kg	SB												
Chromium	mg/kg	10 or SB												
Cobalt	mg/kg	30 or SB												
Copper	mg/kg	25 or SB												
Cyanide	mg/Kg													
Iron	mg/Kg	2 or SB												
Lead	mg/kg	SB	150	140	220	74	730	51	46	550	250	280	86	150
Magnesium	mg/Kg	SB												
Manganese	mg/Kg	SB												
Mercury	mg/Kg	.1												
Nickel	mg/Kg	13 or SB												
Potassium	mg/kg	SB												
Selenium	mg/Kg	2 or SB												
Silver	mg/Kg	SB												
Sodium	mg/Kg	SB												
Thallium	mg/Kg	SB												
Vanadium	mg/Kg	150 or SB												
Zinc	mg/Kg	20 or SB												

U - not detected, J - estimated,

E - recovery greater than 10% for serial dilution.

^{* -} RPD greater than 20%, R - rejected,

Table J-1
Revere Smelting and Refining
Wallkill, New York
Surface Soil - Inorganics Results

		Location ID	SS-28	SS-28	SS-29	SS-3	SS-3	SS-30	SS-31	SS-32	SS-33	SS-34	SS-35	SS-36
		Depth Interval (ft)	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.16	0.16 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
		Sample Date	6/21/1993	6/21/1993	6/21/1993	7/10/1991	7/10/1991	6/21/1993	6/21/1993	6/21/1993	6/21/1993	6/21/1993	6/21/1993	6/21/1993
Chemical Name	Unit	Action Level												
Aluminum	mg/Kg	SB												
Antimony	mg/Kg	SB				210	8.9							
Arsenic	mg/Kg	7.5 or SB												
Barium	mg/Kg	300 or SB												
Beryllium	mg/Kg	0.16 (HEAST) or SB												
Cadmium	mg/kg	1 or SB												
Calcium Metal	mg/kg	SB												
Chromium	mg/kg	10 or SB												
Cobalt	mg/kg	30 or SB												
Copper	mg/kg	25 or SB												
Cyanide	mg/Kg													
Iron	mg/Kg	2 or SB												
Lead	mg/kg	SB	1100	760	92	9000	960	890	790	140	43	48	100	320
Magnesium	mg/Kg	SB												
Manganese	mg/Kg	SB												
Mercury	mg/Kg	.1												
Nickel	mg/Kg	13 or SB												
Potassium	mg/kg	SB												
Selenium	mg/Kg	2 or SB												
Silver	mg/Kg	SB												
Sodium	mg/Kg	SB												
Thallium	mg/Kg	SB												
Vanadium	mg/Kg	150 or SB												
Zinc	mg/Kg	20 or SB												

U - not detected, J - estimated,

E - recovery greater than 10% for serial dilution.

^{* -} RPD greater than 20%, R - rejected,

Table J-1
Revere Smelting and Refining
Wallkill, New York
Surface Soil - Inorganics Results

		Location ID	SS-37	SS-4	SS-5	SS-6	SS-7	SS-8	SS-9	SS-9-1C	SS-9-2C	SS-9-3C	SSBA-01	SSBA-02
		Depth Interval (ft)	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0	0 - 0
		Sample Date	6/21/1993	7/10/1991	7/10/1991	7/10/1991	7/10/1991	7/10/1991	7/10/1991	6/21/1993	6/21/1993	6/21/1993	8/7/2003	8/7/2003
Chemical Name	Unit	Action Level												
Aluminum	mg/Kg	SB												
Antimony	mg/Kg	SB		5.6	3.7	2.7	1.3 J	3.8	< 2.6 U					
Arsenic	mg/Kg	7.5 or SB												
Barium	mg/Kg	300 or SB												
Beryllium	mg/Kg	0.16 (HEAST) or SB												
Cadmium	mg/kg	1 or SB												
Calcium Metal	mg/kg	SB												
Chromium	mg/kg	10 or SB												
Cobalt	mg/kg	30 or SB												
Copper	mg/kg	25 or SB												
Cyanide	mg/Kg													
Iron	mg/Kg	2 or SB												
Lead	mg/kg	SB	12000	480	540	420	180	420	110	40,(48)	180	130	92.2	196
Magnesium	mg/Kg	SB												
Manganese	mg/Kg	SB												
Mercury	mg/Kg	.1												
Nickel	mg/Kg	13 or SB												
Potassium	mg/kg	SB												
Selenium	mg/Kg	2 or SB												
Silver	mg/Kg	SB												
Sodium	mg/Kg	SB												
Thallium	mg/Kg	SB												
Vanadium	mg/Kg	150 or SB												
Zinc	mg/Kg	20 or SB												

U - not detected, J - estimated,

E - recovery greater than 10% for serial dilution.

^{* -} RPD greater than 20%, R - rejected,

Table J-1
Revere Smelting and Refining
Wallkill, New York
Surface Soil - Inorganics Results

		Location ID	SSBA-03	SSBA-04	SS-BG-OBG-41	SS-BG-OBG-42	SS-BG-OBG-43	SS-BG-OBG-44	SS-BG-OBG-45	SS-BG-OBG-46	SSFW-01
		Depth Interval (ft)	0 - 0	0 - 0	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0
		Sample Date	8/7/2003	8/7/2003	11/5/2001	11/5/2001	11/5/2001	11/5/2001	11/5/2001	11/5/2001	8/6/2003
Chemical Name	Unit	Action Level									
Aluminum	mg/Kg	SB									
Antimony	mg/Kg	SB									
Arsenic	mg/Kg	7.5 or SB									
Barium	mg/Kg	300 or SB									
Beryllium	mg/Kg	0.16 (HEAST) or SB									
Cadmium	mg/kg	1 or SB									
Calcium Metal	mg/kg	SB									
Chromium	mg/kg	10 or SB									
Cobalt	mg/kg	30 or SB									
Copper	mg/kg	25 or SB									
Cyanide	mg/Kg										
Iron	mg/Kg	2 or SB									
Lead	mg/kg	SB	82.2	198	110	4740	7320	250	1340	339	519 J
Magnesium	mg/Kg	SB									
Manganese	mg/Kg	SB									
Mercury	mg/Kg	.1									
Nickel	mg/Kg	13 or SB									
Potassium	mg/kg	SB									
Selenium	mg/Kg	2 or SB									
Silver	mg/Kg	SB									
Sodium	mg/Kg	SB									
Thallium	mg/Kg	SB									
Vanadium	mg/Kg	150 or SB									
Zinc	mg/Kg	20 or SB									

U - not detected, J - estimated,

E - recovery greater than 10% for serial dilution.

^{* -} RPD greater than 20%, R - rejected,

Table J-1
Revere Smelting and Refining
Wallkill, New York
Surface Soil - Inorganics Results

		Location ID	SSFW-02	SSFW-03	SSFW-04	SSFW-05	SSMLA-01	SSMLA-02	SSMLA-03	SSMLA-04	SS-OBG-01	SS-OBG-02	SS-OBG-03
		Depth Interval (ft)	0 - 0	0 - 0	0 - 0	0 - 0	0 - 0	0 - 0	0 - 0	0 - 0	0 - 0.2	0 - 0.2	0 - 0.2
		Sample Date	8/6/2003	8/6/2003	8/6/2003	8/6/2003	8/6/2003	8/6/2003	8/6/2003	8/6/2003	10/26/2001	10/26/2001	10/26/2001
Chemical Name	Unit	Action Level											
Aluminum	mg/Kg	SB										15200 J*	
Antimony	mg/Kg	SB										4.8 JN	
Arsenic	mg/Kg	7.5 or SB										14.3 J*	
Barium	mg/Kg	300 or SB										122 J*	
Beryllium	mg/Kg	0.16 (HEAST) or SB										0.85 J	
Cadmium	mg/kg	1 or SB										0.36 J	
Calcium Metal	mg/kg	SB										1680 J*	
Chromium	mg/kg	10 or SB										16.5 J*	
Cobalt	mg/kg	30 or SB										8.5 J	
Copper	mg/kg	25 or SB										22.4 J*	
Cyanide	mg/Kg											< .6 U	
Iron	mg/Kg	2 or SB										22500 J*	
Lead	mg/kg	SB	258 J	574 J	1500 J	1920 J	1200	3660	734	1090 J	1260	505	863
Magnesium	mg/Kg	SB										3600 J*	
Manganese	mg/Kg	SB										1680 J*	
Mercury	mg/Kg	.1										0.12 J	
Nickel	mg/Kg	13 or SB										18.5 J*	
Potassium	mg/kg	SB										1290 JE	
Selenium	mg/Kg	2 or SB										2.1 J*	
Silver	mg/Kg	SB										< .25 U	
Sodium	mg/Kg	SB										27.5 J	
Thallium	mg/Kg	SB										< 1.2 U	
Vanadium	mg/Kg	150 or SB										22.2 J*	
Zinc	mg/Kg	20 or SB										105 J*	

U - not detected, J - estimated,

^{* -} RPD greater than 20%, R - rejected,

E - recovery greater than 10% for serial dilution.

⁻⁻⁻ no action level.

Table J-1
Revere Smelting and Refining
Wallkill, New York
Surface Soil - Inorganics Results

		Location ID	SS-OBG-04	SS-OBG-05	SS-OBG-06	SS-OBG-07	SS-OBG-08	SS-OBG-09	SS-OBG-10	SS-OBG-11	SS-OBG-12	SS-OBG-13
		Depth Interval (ft)	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2
		Sample Date	10/26/2001	10/26/2001	10/26/2001	10/26/2001	10/19/2001	10/19/2001	10/19/2001	10/26/2001	10/26/2001	10/26/2001
Chemical Name	Unit	Action Level										
Aluminum	mg/Kg	SB										
Antimony	mg/Kg	SB										
Arsenic	mg/Kg	7.5 or SB										
Barium	mg/Kg	300 or SB										
Beryllium	mg/Kg	0.16 (HEAST) or SB										
Cadmium	mg/kg	1 or SB										
Calcium Metal	mg/kg	SB										
Chromium	mg/kg	10 or SB										
Cobalt	mg/kg	30 or SB										
Copper	mg/kg	25 or SB										
Cyanide	mg/Kg											
Iron	mg/Kg	2 or SB										
Lead	mg/kg	SB	1270	1140	7550	52.0	< .414 R	< .383 R	< .336 R	7160	1090	1180
Magnesium	mg/Kg	SB										
Manganese	mg/Kg	SB										
Mercury	mg/Kg	.1										
Nickel	mg/Kg	13 or SB										
Potassium	mg/kg	SB										
Selenium	mg/Kg	2 or SB										
Silver	mg/Kg	SB										
Sodium	mg/Kg	SB										
Thallium	mg/Kg	SB										
Vanadium	mg/Kg	150 or SB										
Zinc	mg/Kg	20 or SB										

U - not detected, J - estimated,

E - recovery greater than 10% for serial dilution.

^{* -} RPD greater than 20%, R - rejected,

Table J-1
Revere Smelting and Refining
Wallkill, New York
Surface Soil - Inorganics Results

		Location ID	SS-OBG-14	SS-OBG-15	SS-OBG-16	SS-OBG-17	SS-OBG-18	SS-OBG-19	SS-OBG-20	SS-OBG-21	SS-OBG-22	SS-OBG-23
		Depth Interval (ft)	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2
		Sample Date	10/26/2001	10/26/2001	10/26/2001	10/25/2001	10/25/2001	10/25/2001	10/25/2001	10/25/2001	10/19/2001	10/19/2001
Chemical Name	Unit	Action Level										
Aluminum	mg/Kg	SB								9710 J*		
Antimony	mg/Kg	SB								120 JN		
Arsenic	mg/Kg	7.5 or SB								143 J*		
Barium	mg/Kg	300 or SB								56.2 J*		
Beryllium	mg/Kg	0.16 (HEAST) or SB								0.45 J		
Cadmium	mg/kg	1 or SB								3.5		
Calcium Metal	mg/kg	SB								1930 J*		
Chromium	mg/kg	10 or SB								19.8 J*		
Cobalt	mg/kg	30 or SB								6.3 J		
Copper	mg/kg	25 or SB								110 J*		
Cyanide	mg/Kg									< .7 U		
Iron	mg/Kg	2 or SB								24200 J*		
Lead	mg/kg	SB	1240	77.8	438	2170	2770	464	7030	5610	< .353 R	< .633 R
Magnesium	mg/Kg	SB								4010 J*		
Manganese	mg/Kg	SB								304 J*		
Mercury	mg/Kg	.1								0.43		
Nickel	mg/Kg	13 or SB								26.9 J*		
Potassium	mg/kg	SB								1380 JE		
Selenium	mg/Kg	2 or SB								18.1 J*		
Silver	mg/Kg	SB								< .27 U		
Sodium	mg/Kg	SB								77.0 J		
Thallium	mg/Kg	SB								< 1.4 U		
Vanadium	mg/Kg	150 or SB								17.2 J*		
Zinc	mg/Kg	20 or SB								140 J*		

U - not detected, J - estimated,

^{* -} RPD greater than 20%, R - rejected,

E - recovery greater than 10% for serial dilution.

⁻⁻⁻ no action level.

Table J-1
Revere Smelting and Refining
Wallkill, New York
Surface Soil - Inorganics Results

		Location ID	SS-OBG-24	SS-OBG-25	SS-OBG-26	SS-OBG-27	SS-OBG-28	SS-OBG-29	SS-OBG-30	SS-OBG-31	SS-OBG-32	SS-OBG-34
		Depth Interval (ft)	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2
		Sample Date	10/19/2001	10/19/2001	10/19/2001	10/19/2001	10/25/2001	10/25/2001	10/25/2001	10/25/2001	10/25/2001	10/19/2001
Chemical Name	Unit	Action Level										
Aluminum	mg/Kg	SB								13700 J*	15600 J*	
Antimony	mg/Kg	SB								14.0 JN	< .45 UJN	
Arsenic	mg/Kg	7.5 or SB								22.2 J*	10.8 J*	
Barium	mg/Kg	300 or SB								60.6 J*	45.6 J*	
Beryllium	mg/Kg	0.16 (HEAST) or SB								0.67 J	0.79 J	
Cadmium	mg/kg	1 or SB								0.66 J	0.23 J	
Calcium Metal	mg/kg	SB								995 J*	7010 J*	
Chromium	mg/kg	10 or SB								15.5 J*	23.9 J*	
Cobalt	mg/kg	30 or SB								8.0 J	16.1	
Copper	mg/kg	25 or SB								24.4 J*	41.1 J*	
Cyanide	mg/Kg									< .6 U	< .5 U	
Iron	mg/Kg	2 or SB								23000 J*	38600 J*	
Lead	mg/kg	SB	< .358 R	< .368 R	< .320 R	< .328 R	320	1240	13700	1100	108	< .369 R
Magnesium	mg/Kg	SB								3250 J*	8000 J*	
Manganese	mg/Kg	SB								738 J*	1030 J*	
Mercury	mg/Kg	.1								0.11 J	< .08 U	
Nickel	mg/Kg	13 or SB								18.7 J*	33.5 J*	
Potassium	mg/kg	SB								789 JE	1520 JE	
Selenium	mg/Kg	2 or SB								2.0 J*	1.6 J*	
Silver	mg/Kg	SB								< .23 U	< .22 U	
Sodium	mg/Kg	SB								25.3 J	31.2 J	
Thallium	mg/Kg	SB								< 1.2 U	< 1.1 U	
Vanadium	mg/Kg	150 or SB								21.7 J*	22.0 J*	
Zinc	mg/Kg	20 or SB								65.5 J*	100 J*	

U - not detected, J - estimated,

^{* -} RPD greater than 20%, R - rejected,

E - recovery greater than 10% for serial dilution.

⁻⁻⁻ no action level.

Table J-1
Revere Smelting and Refining
Wallkill, New York
Surface Soil - Inorganics Results

		Location ID	SS-OBG-35	SS-OBG-36	SS-OBG-37	SS-OBG-38	SS-OBG-39	SS-OBG-40	SSRA-01	SSRA-02	SSRA-04	SSRA-05	SSSSA-01
		Depth Interval (ft)	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0	0 - 0	0 - 0	0 - 0	0 - 0
		Sample Date	10/19/2001	10/26/2001	10/26/2001	10/25/2001	10/26/2001	10/26/2001	8/6/2003	8/6/2003	8/6/2003	8/7/2003	8/7/2003
Chemical Name	Unit	Action Level											
Aluminum	mg/Kg	SB		14500 J*									
Antimony	mg/Kg	SB		31.4 JN									
Arsenic	mg/Kg	7.5 or SB		20.1 J*									
Barium	mg/Kg	300 or SB		68.7 J*									
Beryllium	mg/Kg	0.16 (HEAST) or SB		0.72 J									
Cadmium	mg/kg	1 or SB		0.89 J									
Calcium Metal	mg/kg	SB		5040 J*									
Chromium	mg/kg	10 or SB		24.0 J*									
Cobalt	mg/kg	30 or SB		13.1									
Copper	mg/kg	25 or SB		49.8 J*									
Cyanide	mg/Kg			< .5 U									
Iron	mg/Kg	2 or SB		32100 J*									
Lead	mg/kg	SB	< .320 R	2830	1370	3370	61.8	47.9	196	34.1	42.2	50.4	155
Magnesium	mg/Kg	SB		7240 J*									
Manganese	mg/Kg	SB		834 J*									
Mercury	mg/Kg	.1		< .08 U									
Nickel	mg/Kg	13 or SB		30.7 J*									
Potassium	mg/kg	SB		1270 JE									
Selenium	mg/Kg	2 or SB		1.7 J*									
Silver	mg/Kg	SB		< .21 U									
Sodium	mg/Kg	SB		243 J									
Thallium	mg/Kg	SB		< 1.1 U									
Vanadium	mg/Kg	150 or SB		22.3 J*									
Zinc	mg/Kg	20 or SB		113 J*									

U - not detected, J - estimated,

E - recovery greater than 10% for serial dilution.

^{* -} RPD greater than 20%, R - rejected,

Table J-1
Revere Smelting and Refining
Wallkill, New York
Surface Soil - Inorganics Results

		Location ID	SSSSA-02	SSSSA-03	SSSSA-04	SSSSA-05	SY-1	SY-3
		Depth Interval (ft)	0 - 0	0 - 0	0 - 0	0 - 0	0 - 0.5	0 - 0.5
		Sample Date	8/7/2003	8/7/2003	8/7/2003	8/7/2003	7/10/1991	7/10/1991
Chemical Name	Unit	Action Level						
Aluminum	mg/Kg	SB						
Antimony	mg/Kg	SB						
Arsenic	mg/Kg	7.5 or SB					46	9.2
Barium	mg/Kg	300 or SB						
Beryllium	mg/Kg	0.16 (HEAST) or SB						
Cadmium	mg/kg	1 or SB					2	< 1.0 U
Calcium Metal	mg/kg	SB						
Chromium	mg/kg	10 or SB						
Cobalt	mg/kg	30 or SB						
Copper	mg/kg	25 or SB						
Cyanide	mg/Kg							
Iron	mg/Kg	2 or SB						
Lead	mg/kg	SB	257	159	127	333	9300	2000
Magnesium	mg/Kg	SB						
Manganese	mg/Kg	SB						
Mercury	mg/Kg	.1						
Nickel	mg/Kg	13 or SB						
Potassium	mg/kg	SB						
Selenium	mg/Kg	2 or SB						
Silver	mg/Kg	SB						
Sodium	mg/Kg	SB						
Thallium	mg/Kg	SB						
Vanadium	mg/Kg	150 or SB						
Zinc	mg/Kg	20 or SB						

U - not detected, J - estimated,

^{* -} RPD greater than 20%, R - rejected,

E - recovery greater than 10% for serial dilution.

⁻⁻⁻ no action level.

Table J-2
Revere Smelting and Refining
Wallkill, New York
Surface Soil - TCLP Inorganic Results

_						_	
Location ID	Depth Interval	Sample Date	Lead	Lead	Antimony		Cadmium
	(feet)		mg/L	mg/L	mg/L	mg/L	mg/L
OS-14	0 - 0.5	12/13/1993		0.366			
OS-22	0 - 0.5	12/13/1993		1.33			
OS-44	0 - 0.5	12/13/1993		0.166			
SB-1	0 - 0.5	7/15/1991	0.28 J	0.82 B			
SB-2	0 - 0.5	7/15/1991	5.4	70			
SB-3	0 - 0.5	7/15/1991	< 0.50 U	1.7			
SB-4	0 - 0.5	7/15/1991	< 0.50 U	0.75			
SB-5	0 - 0.5	7/15/1991	< 0.50 U	0.3 J			
SB-5	0 - 0.5	7/15/1991	< 0.50 U	0.52 B			
SS-1	0.16 - 0.5	7/10/1991	< 0.5 U	< 0.57 U			
SS-1	0 - 0.16	7/10/1991	< 0.5 U	1.3			
SS-10	0 - 0.5	7/10/1991	< 0.5 U	< 0.55 U			
SS-10	0 - 0.5	7/10/1991	< 0.5 U	< 0.45 U			
SS-11	0 - 0.5	7/10/1991	2.8	1.2			
SS-2	0 - 0.16	7/10/1991	< 0.5 U	2.1			
SS-2	0.16 - 0.5	7/10/1991	< 0.5 U	2.1			
SS-3	0 - 0.16	7/10/1991	< 0.5 U	1.1			
SS-3	0.16 - 0.5	7/10/1991	< 0.5 U	< 0.57 U			
SS-4	0 - 0.5	7/10/1991	< 0.5 U	0.31 J			
SS-5	0 - 0.5	7/10/1991	3.4	0.99			
SS-6	0 - 0.5	7/10/1991	< 0.5 U	0.37 J			
SS-7	0 - 0.5	7/10/1991	< 0.5 U	< 0.60 U			
SS-8	0 - 0.5	7/10/1991	< 0.5 U	< 0.60 U			
SS-9	0 - 0.5	7/10/1991	< 0.5 U	0.36 J			
SS-OBG-10	0 - 0.2	10/19/2001		0.964			
SY-1	0 - 0.5	7/10/1991		700	2.7	0.83	0.1 J
SY-3	0 - 0.5	7/10/1991		170	< 0.59 U	0.92	0.077 J

Notes: U - not detected, J - estimated, B - associated blank contamination, --- not analyzed.

Table J-3
Revere Smelting and Refining
Wallkill, New York
Surface Soil - Volatile Organic Compounds Results

	De	epth Interval (ft)	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2
		Location ID	SS-OBG-02	SS-OBG-21	SS-OBG-31	SS-OBG-32	SS-OBG-36
		Sample Date	10/26/2001	10/25/2001	10/25/2001	10/25/2001	10/26/2001
		Sample ID	SS-OBG-02_10262001N-1	SS-OBG-21_10252001N-1	SS-OBG-31_10252001N-1	SS-OBG-32_10252001N-1	SS-OBG-36_10262001N-1
Chemical Name	Unit	Action Level					
1,1,1-Trichloroethane	ug/Kg	800	< 12 U	< 13 U	< 12 U	< 11 U	< 11 U
1,1,2,2-Tetrachloroethane	ug/Kg	600	< 12 UJ	< 13 U	< 12 U	< 11 U	< 11 U
1,1,2-Trichloroethane	ug/Kg		< 12 U	< 13 U	< 12 U	< 11 U	< 11 U
1,1-Dichloroethane	ug/Kg	200	< 12 U	< 13 U	< 12 U	< 11 U	< 11 U
1,1-Dichloroethene	ug/Kg	400	< 12 U	< 13 U	< 12 U	< 11 U	< 11 U
1,2-Dichloroethane	ug/Kg	100	< 12 U	< 13 U	< 12 U	< 11 U	< 11 U
1,2-Dichloropropane	ug/Kg		< 12 U	< 13 U	< 12 U	< 11 U	< 11 U
2-Hexanone	ug/Kg		< 12 UJ	< 13 U	< 12 U	< 11 U	< 11 U
4-Methyl-2-pentanone	ug/Kg	1000	< 12 UJ	< 13 U	< 12 U	< 11 U	< 11 U
Acetone	ug/Kg	200	< 12 U	< 13 U	< 12 U	< 11 U	< 11 U
Benzene	ug/Kg	60	< 12 U	< 13 U	< 12 U	< 11 U	< 11 U
Bromodichloromethane	ug/Kg		< 12 U	< 13 U	< 12 U	< 11 U	< 11 U
Bromoform	ug/Kg		< 12 U	< 13 U	< 12 U	< 11 U	< 11 U
Bromomethane	ug/Kg		< 12 U	< 13 U	< 12 U	< 11 U	< 11 U
Carbon disulfide	ug/Kg	2700	< 12 U	< 13 U	< 12 U	< 11 U	< 11 U
Carbon tetrachloride	ug/Kg	600	< 12 U	< 13 U	< 12 U	< 11 U	< 11 U
Chlorobenzene	ug/Kg	1700	< 12 UJ	< 13 U	< 12 U	< 11 U	< 11 U
Chloroethane	ug/Kg	1900	< 12 U	< 13 U	< 12 U	< 11 U	< 11 U
Chloroform	ug/Kg	300	< 12 U	< 13 U	< 12 U	< 11 U	< 11 U
cis-1,2-Dichloroethene	ug/Kg		< 12 U	< 13 U	< 12 U	< 11 U	< 11 U
cis-1,3-Dichloropropene	ug/Kg		< 12 U	< 13 U	< 12 U	< 11 U	< 11 U
Dibromochloromethane	ug/Kg		< 12 U	< 13 U	< 12 U	< 11 U	< 11 U
Ethylbenzene	ug/Kg	5500	< 12 UJ	< 13 U	< 12 U	< 11 U	< 11 U
Methyl chloride	ug/Kg		< 12 U	< 13 U	< 12 U	< 11 U	< 11 U
Methyl ethyl ketone	ug/Kg	300	< 12 U	< 13 U	< 12 U	< 11 U	< 11 U
Methylene chloride	ug/Kg	100	< 12.2 U	< 13.3 U	< 11.6 U	< 10.8 U	< 10.6 U
Styrene	ug/Kg		< 12 UJ	< 13 U	< 12 U	< 11 U	< 11 U
Tetrachloroethene	ug/Kg	1400	< 12 UJ	< 13 U	< 12 U	< 11 U	< 11 U
Toluene	ug/Kg	1500	< 12 UJ	< 13 U	< 12 U	< 11 U	< 11 U
trans-1,2-Dichloroethene	ug/Kg	300	< 12 U	< 13 U	< 12 U	< 11 U	< 11 U
trans-1,3-Dichloropropene	ug/Kg		< 12 U	< 13 U	< 12 U	< 11 U	< 11 U
Trichloroethene	ug/Kg	700	< 12 U	< 13 U	< 12 U	< 11 U	< 11 U
Vinyl chloride	ug/Kg	200	< 12 U	< 13 U	< 12 U	< 11 U	< 11 U
Xylenes, Total	ug/Kg	1200	< 12 UJ	< 13 U	< 12 U	< 11 U	< 11 U

Notes: U - not detected, J - estimated, --- no action level.

Table J-4
Revere Smelting and Refining
Wallkill, New York
Surface Soil - Semi-volatile Organic Compounds Results

	De	epth Interval (ft)	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2
		Location ID	SS-OBG-02	SS-OBG-21	SS-OBG-31	SS-OBG-32	SS-OBG-36
		Sample Date	10/26/2001	10/25/2001	10/25/2001	10/25/2001	10/26/2001
		Sample ID	SS-OBG-02_10262001N-	1 SS-OBG-21_10252001N-1	SS-OBG-31_10252001N-1	SS-OBG-32_10252001N-1	1 SS-OBG-36_10262001N-1
Chemical Name	Unit	Action Level					
2,4,5-Trichlorophenol	ug/Kg	100	< 1000 U	< 1100 U	< 970 U	< 900 U	< 890 U
2,4,6-Trichlorophenol	ug/Kg		< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
2,4-Dichlorophenol	ug/Kg	400	< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
2,4-Dimethylphenol	ug/Kg		< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
2,4-Dinitrophenol	ug/Kg	200	< 1000 U	< 1100 U	< 970 U	< 900 U	< 890 U
2,4-Dinitrotoluene	ug/Kg		< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
2,6-Dinitrotoluene	ug/Kg	1000	< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
2-Chloronaphthalene	ug/Kg		< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
2-Chlorophenol	ug/Kg	800	< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
2-Methylnaphthalene	ug/Kg	36400	< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
2-Methylphenol	ug/Kg	100 or MDL	< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
2-Nitroaniline	ug/Kg	430 or MDL	< 1000 U	< 1100 U	< 970 U	< 900 U	< 890 U
2-Nitrophenol	ug/Kg	330 or MDL	< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
3,3'-Dichlorobenzidine	ug/Kg		< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
3-Nitroaniline	ug/Kg	500 or MDL	< 1000 U	< 1100 U	< 970 U	< 900 U	< 890 U
4,6-Dinitro-2-Methylphenol	ug/Kg		< 1000 U	< 1100 U	< 970 U	< 900 U	< 890 U
4-Bromophenylphenylether	ug/Kg		< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
4-chloro-3-Methylphenol	ug/Kg	240 or MDL	< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
4-Chloroaniline	ug/Kg	220 or MDL	< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
4-Chlorophenyl phenyl ether	ug/Kg		< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
4-Methylphenol	ug/Kg	900	< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
4-Nitroaniline	ug/Kg		< 1000 U	< 1100 U	< 970 U	< 900 U	< 890 U
4-Nitrophenol	ug/Kg	100 or MDL	< 1000 U	< 1100 U	< 970 U	< 900 U	< 890 U
Acenaphthene	ug/Kg	50000	< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
Acenaphthylene	ug/Kg	41000	< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
Anthracene	ug/Kg	50000	< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
Benz(a)anthracene	ug/Kg	224 or MDL	77 J	72 J	< 390 U	< 360 U	260 J
Benzo(a)pyrene	ug/Kg	61 or MDL	96 J	80 J	< 390 U	< 360 U	300 J
Benzo(b)fluoranthene	ug/Kg	1100	190 J	350 J	40 J	< 360 U	640 J
Benzo(g,h,i)perylene	ug/Kg	50000	< 410 UJ	< 440 U	< 390 U	< 360 U	110 J
Benzo(k)fluoranthene	ug/Kg	1100	49 J	66 J	< 390 U	< 360 U	190 J
Bis(2-chloro-1-methylethyl)ether	ug/Kg		< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
Bis(2-chloroethoxy)methane	ug/Kg		< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
Bis(2-chloroethyl)ether	ug/Kg		< 410 U	< 440 U	< 390 U	< 360 U	< 350 U

U - not detected, J - estimated, --- no action level.

Table J-4
Revere Smelting and Refining
Wallkill, New York
Surface Soil - Semi-volatile Organic Compounds Results

	De	epth Interval (ft)	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2
		Location ID	SS-OBG-02	SS-OBG-21	SS-OBG-31	SS-OBG-32	SS-OBG-36
		Sample Date	10/26/2001	10/25/2001	10/25/2001	10/25/2001	10/26/2001
		Sample ID	SS-OBG-02_10262001	N-1 SS-OBG-21_10252001N-1	1 SS-OBG-31_10252001N-1	SS-OBG-32_10252001N-1	SS-OBG-36_10262001N-1
Chemical Name	Unit	Action Level					
Bis(2-ethylhexyl)phthalate	ug/Kg	50000	47 J	130 J	66 J	< 360 U	240 J
Butyl benzyl phthalate	ug/Kg	50000	< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
Carbazole	ug/Kg		< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
Chrysene	ug/Kg	400	110 J	160 J	< 390 U	< 360 U	340 J
Dibenz(a,h)anthracene	ug/Kg	14 or MDL	< 410 UJ	< 440 U	< 390 U	< 360 U	38 J
Dibenzofuran	ug/Kg	6200	< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
Dichlorobenzenes (1,2-)	ug/Kg	7900	< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
Dichlorobenzenes (1,3-)	ug/Kg	1600	< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
Dichlorobenzenes (1,4-)	ug/Kg	8500	< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
Diethyl phthalate	ug/Kg	7100	< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
Dimethyl phthalate	ug/Kg	2000	< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
Di-n-butylphthalate	ug/Kg	8100	< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
Di-n-octyl phthalate	ug/Kg	50000	< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
Fluoranthene	ug/Kg	50000	170 J	160 J	41 J	< 360 U	490
Fluorene	ug/Kg	50000	< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
Hexachlorobenzene	ug/Kg	410	< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
Hexachlorobutadiene	ug/Kg		< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
Hexachlorocyclopentadiene	ug/Kg		< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
Hexachloroethane	ug/Kg		< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
Indeno (1,2,3-cd)pyrene	ug/Kg	3200	< 410 UJ	< 440 U	< 390 U	< 360 U	120 J
Isophorone	ug/Kg	4400	< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
Naphthalene	ug/Kg	13000	< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
Nitrobenzene	ug/Kg	200 or MDL	< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
N-Nitrosodiphenylamine	ug/Kg		< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
N-Nitrosodipropylamine	ug/Kg		< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
Pentachlorophenol	ug/Kg	1000 or MDL	< 1000 U	< 1100 U	< 970 U	< 900 U	< 890 U
Phenanthrene	ug/Kg	50000	76 J	72 J	< 390 U	< 360 U	190 J
Phenol	ug/Kg	30 or MDL	< 410 U	< 440 U	< 390 U	< 360 U	< 350 U
Pyrene	ug/Kg	50000	220 J	150 J	< 390 U	< 360 U	560
Trichlorobenzenes (1,2,4-)	ug/Kg	3400	< 410 U	< 440 U	< 390 U	< 360 U	< 350 U

U - not detected, J - estimated, --- no action level.

Table J-5
Revere Smelting and Refining
Wallkill, New York
Surface Soil - Pesticides Results

	De	pth Interval (ft)	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2
		Location ID	SS-OBG-02	SS-OBG-21	SS-OBG-31	SS-OBG-32	SS-OBG-36
		Sample Date	10/26/2001	10/25/2001	10/25/2001	10/25/2001	10/26/2001
		Sample ID	SS-OBG-02_10262001N-1	SS-OBG-21_10252001N-1	SS-OBG-31_10252001N-1	SS-OBG-32_10252001N-1	SS-OBG-36_10262001N-1
Chemical Name	Unit	Action Level					
a-Chlordane	ug/Kg		< 2 U	< 2.2 U	< 1.9 U	< 1.8 U	< 1.8 U
Aldrin	ug/Kg	41	< 2 U	< 2.2 U	< 1.9 U	< 1.8 U	< 1.8 U
alpha-Hexachlorocyclohexane	ug/Kg	110	< 2 U	< 2.2 U	< 1.9 U	< 1.8 U	< 1.8 U
beta-Hexachlorocyclohexane	ug/Kg		< 2 U	< 2.2 U	< 1.9 U	< 1.8 U	< 1.8 U
delta-Hexachlorocyclohexane	ug/Kg	300	< 2 U	< 2.2 U	< 1.9 U	< 1.8 U	< 1.8 U
Dieldrin	ug/Kg	44	< 4.1 U	< 4.5 U	< 3.9 U	< 3.6 U	< 3.5 U
Endosulfan I	ug/Kg	900	< 2 U	< 2.2 U	< 1.9 U	< 1.8 U	< 1.8 U
Endosulfan II	ug/Kg	900	< 4.1 U	< 4.5 U	< 3.9 U	< 3.6 U	< 3.5 U
Endosulfan sulfate	ug/Kg	1000	< 4.1 U	< 4.5 U	< 3.9 U	< 3.6 U	< 3.5 U
Endrin	ug/Kg	100	< 4.1 U	< 4.5 U	< 3.9 U	< 3.6 U	< 3.5 U
Endrin aldehyde	ug/Kg		< 4.1 R	< 4.5 U	< 3.3 R	< 3.6 U	< 3.5 U
Endrin ketone	ug/Kg		< 4.1 U	< 4.5 U	< 3.9 U	< 3.6 U	< 3.5 U
Gamma-Chlordane	ug/Kg		< 2 U	< 2.2 U	< 1.9 U	< 1.8 U	< 1.8 U
gamma-Hexachlorocyclohexane	ug/Kg	60	< 2 U	< 2.2 U	< 1.9 U	< 1.8 U	< 1.8 U
Heptachlor	ug/Kg	100	< 2 U	< 2.2 U	< 1.9 U	< 1.8 U	< 1.8 U
Heptachlor epoxide	ug/Kg	20	< 2 U	< 2.2 U	1.1 J	< 1.8 U	< 1.8 U
Methoxychlor	ug/Kg		< 20 U	< 22 U	< 19 U	< 18 U	< 18 U
p,p'-DDD	ug/Kg	2900	< 4.1 U	< 4.5 U	1.4 J	< 3.6 U	< 3.5 U
p,p'-DDE	ug/Kg	2100	3 J	< 4.5 U	4	< 3.6 U	< 3.5 U
p,p'-DDT	ug/Kg	2100	2.8 JPN	4.4 J	5.1	< 3.6 U	2.2 JP
Toxaphene	ug/Kg		< 200 U	< 220 U	< 190 U	< 180 U	< 180 U

Notes: U - not detected, J - estimated, R - rejected, --- no action level,

N - matrix spike outside 75-125% limit, P - greater than 25% difference on two GC columns.

Table J-6
Revere Smelting and Refining
Wallkill, New York
Surface Soil - PCBs Results

		Depth Interval (ft)	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2	0 - 0.2
		Location ID	SS-OBG-02	SS-OBG-21	SS-OBG-31	SS-OBG-32	SS-OBG-36
		Sample Date	10/26/2001	10/25/2001	10/25/2001	10/25/2001	10/26/2001
		Sample ID	SS-OBG-02_10262001N-1	SS-OBG-21_10252001N-1	SS-OBG-31_10252001N-1	SS-OBG-32_10252001N-1	SS-OBG-36_10262001N-1
Chemical Name	Unit	Action Level					
Aroclor-1016	ug/Kg	1000	< 41 U	< 45 U	< 39 U	< 36 U	< 35 U
Aroclor-1221	ug/Kg	1000	< 81 U	< 89 U	< 77 U	< 72 U	< 71 U
Aroclor-1232	ug/Kg	1000	< 41 U	< 45 U	< 39 U	< 36 U	< 35 U
Aroclor-1242	ug/Kg	1000	< 41 U	< 45 U	< 39 U	< 36 U	< 35 U
Aroclor-1248	ug/Kg	1000	< 41 U	< 45 U	< 39 U	< 36 U	< 35 U
Aroclor-1254	ug/Kg	1000	< 41 U	< 45 U	< 39 U	< 36 U	< 35 U
Aroclor-1260	ug/Kg	1000	< 41 U	< 45 U	< 39 U	< 36 U	< 35 U

Notes: U - not detected, action level for total PCBs.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium Metal	Cobalt	Copper	Chromium	Cyanide	Iron
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval (feet)	Criteria Date	SB	SB	7.5 or SB	300 or SB	0.16 or SB	1 or SB	SB	30 or SB	25 or SB	10 or SB		2000 or SB
SB-OBG-19	0 - 0.6	10/24/2001												
SY-2	0 - 0.6	7/10/1991		3.7	7.4			< 1.0 U						
SB-OBG-10	0 - 0.7	10/23/2001												
SS-OBG-16	0 - 0.7	10/26/2001												
SS-OBG-16	0 - 0.7	10/26/2001												
SB-OBG-05	0 - 0.9	10/23/2001												
SB-OBG-15	0 - 0.9	10/25/2001												
BC-1	0 - 1	11/30/1993												
BC-2	0 - 1	11/30/1993												
BC-3	0 - 1	11/30/1993												
BC-5	0 - 1	11/30/1993												
BC-6	0 - 1	11/30/1993												
BS-1	0 - 1	11/30/1993												
BS-3	0 - 1	11/30/1993												
BS-5	0 - 1	11/30/1993												
FB-1	0 - 1	12/15/1993												
FB-2	0 - 1	12/15/1993												
FB-3	0 - 1	12/15/1993												
LB-12	0 - 1	9/1/1992												
LB-7	0 - 1	9/1/1992												
LB-9	0 - 1	9/1/1992												
SB-OBG-02	0 - 1	10/24/2001												
SB-OBG-04	0 - 1	10/24/2001												
SB-OBG-23	0 - 1	11/5/2001												
SS-OBG-15	0 - 1	10/26/2001												
SS-OBG-28	0 - 1	10/25/2001												
SS-OBG-28	0 - 1	10/25/2001												
SS-OBG-30	0 - 1	10/25/2001												
SS-OBG-39	0 - 1	10/26/2001												
SB-OBG-07	0 - 1.2	10/23/2001												
SS-OBG-36	0 - 1.2	10/26/2001												
SB-OBG-03	0 - 1.3	10/24/2001	15200 J*	0.51 JN	6.9 J*	43.3 J*	0.60 J	< .086 U	261 J*	9.6 J	23.0 J*	18.1 J*	< .6 U	28000 J*
SB-OBG-16	0 - 1.3	10/25/2001												
SB-OBG-06	0 - 1.4	10/22/2001												

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval (feet)	Criteria Date	SB	SB	SB	0.1	13 or SB	SB	2 or SB	SB	SB	SB	150 or SB	20 or SB
SB-OBG-19	0 - 0.6	10/24/2001	23.3											
SY-2	0 - 0.6	7/10/1991	570											
SB-OBG-10	0 - 0.7	10/23/2001	332											
SS-OBG-16	0 - 0.7	10/26/2001	426											
SS-OBG-16	0 - 0.7	10/26/2001	438											
SB-OBG-05	0 - 0.9	10/23/2001	34.5											
SB-OBG-15	0 - 0.9	10/25/2001	69200											
BC-1	0 - 1	11/30/1993	1900											
BC-2	0 - 1	11/30/1993	750											
BC-3	0 - 1	11/30/1993	610											
BC-5	0 - 1	11/30/1993	1000											
BC-6	0 - 1	11/30/1993	210											
BS-1	0 - 1	11/30/1993	260											
BS-3	0 - 1	11/30/1993	76											
BS-5	0 - 1	11/30/1993	170											
FB-1	0 - 1	12/15/1993	83600											
FB-2	0 - 1	12/15/1993	1870											
FB-3	0 - 1	12/15/1993	631											
LB-12	0 - 1	9/1/1992	200											
LB-7	0 - 1	9/1/1992	350000											
LB-9	0 - 1	9/1/1992	330000											
SB-OBG-02	0 - 1	10/24/2001	38.2											
SB-OBG-04	0 - 1	10/24/2001	39.7											
SB-OBG-23	0 - 1	11/5/2001	38.2											
SS-OBG-15	0 - 1	10/26/2001	187											
SS-OBG-28	0 - 1	10/25/2001	219											
SS-OBG-28	0 - 1	10/25/2001	273											
SS-OBG-30	0 - 1	10/25/2001	23900											
SS-OBG-39	0 - 1	10/26/2001	769											
SB-OBG-07	0 - 1.2	10/23/2001	16.0											
SS-OBG-36	0 - 1.2	10/26/2001	331											
SB-OBG-03	0 - 1.3	10/24/2001	30.7	4310 J*	313 J*	< .064 U	20.1 J*	728 JE	1.4 J*	< .23 U	24.4 J	< 1.2 U	20.4 J*	60.1 J*
SB-OBG-16	0 - 1.3	10/25/2001	55.9											
SB-OBG-06	0 - 1.4	10/22/2001	21.5											

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium Metal	Cobalt	Copper	Chromium	Cyanide	Iron
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval (feet)	Criteria Date	SB	SB	7.5 or SB	300 or SB	0.16 or SB	1 or SB	SB	30 or SB	25 or SB	10 or SB		2000 or SB
MW-1	0 - 1.5	7/10/1991		170	150			< ND U				24		
SB-OBG-08	0 - 1.5	10/22/2001												
SB-OBG-20	0 - 1.5	10/24/2001												
SB-OBG-21	0 - 1.5	11/6/2001												
SS-OBG-07	0 - 1.5	10/26/2001												
SS-OBG-14	0 - 1.5	10/26/2001	14800 J*	7.1 JN	10.1 J*	83.2 J*	0.69 J	0.37 J	911 J*	7.8 J	22.5 J*	15.8 J*	< .6 U	22300 J*
SS-OBG-31	0 - 1.5	10/25/2001												
SB-OBG-12	0 - 1.6	10/23/2001											< .5 U	
SB-OBG-12	0 - 1.6	10/25/2001	8280 J*	21.1 JN	14.2 J*	70.3 J*	0.38 J	0.65 J	5190 J*	6.3 J	31.3 J*	13.3 J*	< .5 U	17700 J*
SB-OBG-17	0 - 1.6	10/25/2001												
SS-OBG-11	0 - 1.8	10/26/2001												
SB-OBG-18	0 - 1.9	10/24/2001	12600 J*	0.53 JN	6.1 J*	56.0 J*	0.65 J	0.1 J	1680 J*	8.7 J	23.3 J*	17.0 J*	< .6 U	27000 J*
FB-4	0 - 2	12/15/1993												
FB-5	0 - 2	12/15/1993												
LB-10	0 - 2	9/1/1992												
LB-11	0 - 2	9/1/1992												
LB-4	0 - 2	9/1/1992												
LB-6	0 - 2	9/1/1992												
LB-8	0 - 2	9/1/1992												
SB-OBG-09	0 - 2	10/25/2001	17200 J*	4.5 JN	8.9 J*	52.2 J*	0.66 J	0.27 J	351 J*	7.8 J	15.6 J*	18.3 J*	< .5 U	26400 J*
SB-OBG-25	0 - 2	11/28/2005												
SB-OBG-26	0 - 2	11/28/2005												
SB-OBG-26	0 - 2	11/28/2005												
SB-OBG-27	0 - 2	12/12/2005	15800	4.2	9.6	35.9	0.7	0.3 B	2110	10.7	37.6	27.7		33800
SB-OBG-28	0 - 2	12/12/2005												
SB-OBG-28A	0 - 2	12/12/2005												
SB-OBG-29	0 - 2	11/28/2005												
SB-OBG-30	0 - 2	11/28/2005	11000 EJ	189 NJ	155 *EJ	231	0.6 EJ	3.6 *J	14400 *EJ	8.5 *EJ	180 EJ	13.9 EJ		30000
SB-OBG-31	0 - 2	12/13/2005	17600	9.9	13.5	58.3	0.73	0.6	2020	14	35	22.1		31100
SB-OBG-32	0 - 2	11/29/2005	11200 EJ	232 NJ	88.8 *EJ	99.7	0.72 EJ	3 *	5640 *EJ	12.1 *EJ	110 EJ	13.8 EJ		29100
SB-OBG-33	0 - 2	11/29/2005												
SB-OBG-34	0 - 2	11/29/2005												
SB-OBG-35	0 - 2	11/29/2005												
SB-OBG-36	0 - 2	11/29/2005	11400 EJ	9.6 NJ	15.6 *EJ	43.1	0.55 EJ	0.034 *BJ	2950 *EJ	11.4 *EJ	40.8 EJ	16.7 EJ		28800

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval (feet)	Criteria Date	SB	SB	SB	0.1	13 or SB	SB	2 or SB	SB	SB	SB	150 or SB	20 or SB
MW-1	0 - 1.5	7/10/1991	33000											
SB-OBG-08	0 - 1.5	10/22/2001	8990											
SB-OBG-20	0 - 1.5	10/24/2001	125											
SB-OBG-21	0 - 1.5	11/6/2001	39300											
SS-OBG-07	0 - 1.5	10/26/2001	154											
SS-OBG-14	0 - 1.5	10/26/2001	427	3780 J*	628 J*	< .09 U	18.9 J*	937 JE	1.2 J*	< .23 U	39.5 J	< 1.2 U	19.7 J*	66.6 J*
SS-OBG-31	0 - 1.5	10/25/2001	170											
SB-OBG-12	0 - 1.6	10/23/2001												
SB-OBG-12	0 - 1.6	10/25/2001	1190	4880 J*	454 J*	< .08 U	13.9 J*	2680 JE	1.7 J*	< .21 U	127 J	< 1.1 U	16.0 J*	47.7 J*
SB-OBG-17	0 - 1.6	10/25/2001	33.3											
SS-OBG-11	0 - 1.8	10/26/2001	1980											
SB-OBG-18	0 - 1.9	10/24/2001	30.5	4530 J*	703 J*	< .062 U	21.3 J*	895 JE	1.9 J*	< .23 U	269 J	< 1.2 U	19.3 J*	71.1 J*
FB-4	0 - 2	12/15/1993	13400											
FB-5	0 - 2	12/15/1993	86											
LB-10	0 - 2	9/1/1992	210000											
LB-11	0 - 2	9/1/1992	380000											
LB-4	0 - 2	9/1/1992	3500											
LB-6	0 - 2	9/1/1992	1500											
LB-8	0 - 2	9/1/1992	5100											
SB-OBG-09	0 - 2	10/25/2001	349	3660 J*	320 J*	< .08 U	20.0 J*	639 JE	1.4 J*	< .21 U	32.7 J	< 1.1 U	25.0 J*	67.8 J*
SB-OBG-25	0 - 2	11/28/2005	594 EJ											
SB-OBG-26	0 - 2	11/28/2005												
SB-OBG-26	0 - 2	11/28/2005												
SB-OBG-27	0 - 2	12/12/2005	380 N*EJ	8080	567	0.074	30.6	1330	< 0.077 U	< 0.022 U	174	< 0.091 U	19.1	73.5
SB-OBG-28	0 - 2	12/12/2005												
SB-OBG-28A	0 - 2	12/12/2005												
SB-OBG-29	0 - 2	11/28/2005	24.1 EJ											
SB-OBG-30	0 - 2	11/28/2005	13300 *EJ	4910 EJ	549 *ER	0.1	37.5 EJ	854 EJ	3.4	0.14 B	1040 *J	2.4	14.6 EJ	154 EJ
SB-OBG-31	0 - 2	12/13/2005	666 N*EJ	6890	688	0.068	29.2	1400	< 0.07 U	< 0.02 U	61.6	0.44 B	21.8	80.6
SB-OBG-32	0 - 2	11/29/2005	12600 *EJ	4690 EJ	1160 *ER	0.079	30.8 EJ	892 EJ	2.3	0.19 B	74.6 *J	5.8	13.9 EJ	74.5 EJ
SB-OBG-33	0 - 2	11/29/2005	99.9 EJ											
SB-OBG-34	0 - 2	11/29/2005	24.8 EJ											
SB-OBG-35	0 - 2	11/29/2005												
SB-OBG-36	0 - 2	11/29/2005	848 *EJ	5720 EJ	721 *ER	0.064	25.3 EJ	800 EJ	2.6	< 0.02 U	82.1 *J	2.9	16.8 EJ	84.2 EJ

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium Metal	Cobalt	Copper	Chromium	Cyanide	Iron
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval	Criteria	SB	SB	7.5 or SB	300 or SB	0.16 or SB	1 or SB	SB	30 or SB	25 or SB	10 or SB		2000 or SB
Location ID	(feet)	Date												
SB-OBG-37	0 - 2	12/13/2005	14300	7.4	15.8	33.9	0.71	0.53	2680	13.5	41.3	20.5		30000
SB-OBG-37A	0 - 2	12/13/2005	14500	5.5	14	35.9	0.68	0.45	2430	12.7	38.1	19.2		29800
SB-OBG-38	0 - 2	11/29/2005	12300 EJ	416 NJ	317 *EJ	135	0.62 EJ	13.7 *J	7360 *EJ	12 *EJ	380 EJ	19.6 EJ		33600
SS-OBG-06	0 - 2	10/26/2001												
SS-OBG-12	0 - 2	10/26/2001												
SS-OBG-13	0 - 2	10/26/2001												
SS-OBG-27	0 - 2	10/19/2001												
SS-OBG-29	0 - 2	10/25/2001												
SS-OBG-32	0 - 2	10/25/2001												
SS-OBG-37	0 - 2	10/26/2001												
SS-OBG-40	0 - 2	10/26/2001												
SS-OBG-41	0 - 2	12/1/2005												
SS-OBG-42	0 - 2	12/1/2005												
SS-OBG-43	0 - 2	11/30/2005	8110 *EJ	3.9 NJ	16.2 *EJ	42.8 *EJ	0.29 BEJ	< 0.0066 U	< 516 *EJU	2.9 BEJ	15.7	8.9 *EJ		11800 *EJ
SS-OBG-44	0 - 2	11/30/2005	8040 *EJ	9.7 NJ	15.4 *EJ	50.2 *EJ	0.26 BEJ	0.34 B	< 1360 *EJU	4 EJ	26	12 *EJ		14600 *EJ
SS-OBG-45	0 - 2	11/30/2005												
SS-OBG-46	0 - 2	11/27/2005												
SS-OBG-47	0 - 2	11/30/2005												
SS-OBG-47	0 - 2	11/30/2005												
SS-OBG-47	0 - 2	11/30/2005												
SS-OBG-48	0 - 2	11/30/2005	9560 *EJ	0.59 BNJ	7.8 *EJ	59 *EJ	0.41 EJ	< 0.0056 U	1440 *EJ	4.2 EJ	11.3	< 8.9 *EJU		12900 *EJ
SS-OBG-48	0 - 2	11/30/2005	8940 *EJ	0.69 BNJ	7.2 *EJ	59.2 *EJ	0.37 EJ	< 0.006 U	< 1650 *EJU	3.9 EJ	11	8.1 *EJ		11000 *EJ
SS-OBG-48	0 - 2	11/30/2005	10000 *EJ	0.44 BNJ	8.5 *EJ	68.1 *EJ	0.43 EJ	< 0.0067 U	< 1880 *EJU	4.4 EJ	11.8	9.1 *EJ		12300 *EJ
SS-OBG-49	0 - 2	11/30/2005												
SS-OBG-50	0 - 2	11/30/2005												
SS-OBG-51	0 - 2	11/27/2005	12800	1.8	11	40.3	0.59	< 0.0051 U	2850	14.3	40.2	18.5		35600
SS-OBG-52	0 - 2	11/30/2005	9870	35.5	79.1	46.2	0.36 B	0.21 B	990	3.9 B	46.2	13		13200
SS-OBG-53	0 - 2	11/30/2005	11300	10.1	17.3	111	0.95	0.13 B	2490	6.6	20.9	13.8		16100
SS-OBG-54	0 - 2	11/30/2005												
SS-OBG-54	0 - 2	11/30/2005												
SS-OBG-54	0 - 2	11/30/2005												
SS-OBG-55	0 - 2	11/30/2005	13200	1.8	12.4	17.2	0.57	< 0.0052 U	148	10.4	37.1	18.4		31500
SS-OBG-56	0 - 2	12/1/2005	6330	113	39.8	38.4	0.23 B	1.7	2060	2.3 B	66.9	10		9330
SS-OBG-57	0 - 2	12/1/2005	14900	5.2	17.6	174	0.83	0.19 B	2280	7.3	20.6	14		17000

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
	Depth Interval	Criteria	SB	SB	SB	0.1	13 or SB	SB	2 or SB	SB	SB	SB	150 or SB	20 or SB
Location ID	(feet)	Date												
SB-OBG-37	0 - 2	12/13/2005	451 N*EJ	7140	685	0.061	31	1250	< 0.063 U	< 0.018 U	60.6	0.36 B	19.1	82.1
SB-OBG-37A	0 - 2	12/13/2005	368 N*EJ	6370	656	0.063	27.3	1170	< 0.069 U	< 0.019 U	101	0.31 B	19.4	77.9
SB-OBG-38	0 - 2	11/29/2005	37500 *EJ	5140 EJ	591 *ER	0.13	58.9 EJ	947 EJ	3.4	0.59 B	251 *J	2.7	18.7 EJ	126 EJ
SS-OBG-06	0 - 2	10/26/2001	17400											
SS-OBG-12	0 - 2	10/26/2001	411											
SS-OBG-13	0 - 2	10/26/2001	486											
SS-OBG-27	0 - 2	10/19/2001	< .326 R											
SS-OBG-29	0 - 2	10/25/2001	143											
SS-OBG-32	0 - 2	10/25/2001	45.3											
SS-OBG-37	0 - 2	10/26/2001	626											
SS-OBG-40	0 - 2	10/26/2001	435											
SS-OBG-41	0 - 2	12/1/2005	117 EJ											
SS-OBG-42	0 - 2	12/1/2005	335 EJ											
SS-OBG-43	0 - 2	11/30/2005	996 *EJ	1900 *EJ	238 EJ	0.1 J	9.8 EJ	326 EJ	2.4	< 0.023 U	< 17.3 UB	0.89 B	15.4 *EJ	44.3 EJ
SS-OBG-44	0 - 2	11/30/2005	1550 *EJ	2830 *EJ	378 EJ	0.16 J	13.8 EJ	626 EJ	3	< 0.03 U	< 17.4 UB	1.3 B	16.9 *EJ	52.2 EJ
SS-OBG-45	0 - 2	11/30/2005	302 *EJ											
SS-OBG-46	0 - 2	11/27/2005	236 EJ											
SS-OBG-47	0 - 2	11/30/2005	260 EJ											
SS-OBG-47	0 - 2	11/30/2005	236 *EJ											
SS-OBG-47	0 - 2	11/30/2005	244 *EJ											
SS-OBG-48	0 - 2	11/30/2005	195 *EJ	1870 *EJ	408 EJ	0.062 J	10.4 EJ	449 EJ	1.8	< 0.02 U	< 13.8 UB	1.8	12.5 *EJ	58.9 EJ
SS-OBG-48	0 - 2	11/30/2005	209 *EJ	1630 *EJ	362 EJ	0.056 J	9.6 EJ	473 EJ	1.8	< 0.021 U	< 13 UB	1.7	11.3 *EJ	56.8 EJ
SS-OBG-48	0 - 2	11/30/2005	241 *EJ	1790 *EJ	399 EJ	0.068 J	10.8 EJ	491 EJ	2	< 0.023 U	< 15.7 UB	1.8	12.6 *EJ	65.9 EJ
SS-OBG-49	0 - 2	11/30/2005	21 EJ											
SS-OBG-50	0 - 2	11/30/2005	124 EJ											
SS-OBG-51	0 - 2	11/27/2005	204 EJ	6420	635	0.036	27.7	744	2.4	< 0.018 U	31.9 B	2.2	18.2	79.7
SS-OBG-52	0 - 2	11/30/2005	4560 EJ	2110	99.6	0.27	14.2	455	3.6	< 0.03 U	38.5 B	0.33 B	20.3	47.6
SS-OBG-53	0 - 2	11/30/2005	1410 EJ	2030	1260	0.2	17.9	572	4	< 0.038 U	52.8 B	6.4	21.3	64.5
SS-OBG-54	0 - 2	11/30/2005	342 EJ											
SS-OBG-54	0 - 2	11/30/2005	324 EJ											
SS-OBG-54	0 - 2	11/30/2005	326 EJ											
SS-OBG-55	0 - 2	11/30/2005	198 EJ	5830	445	0.069	24.4	651	2.7	< 0.018 U	14.6 B	1.1	19	70.7
SS-OBG-56	0 - 2	12/1/2005	10300 EJ	1300	86.4	0.36	15.7	420	4	0.45 B	77.7	0.27 B	16	37.9
SS-OBG-57	0 - 2	12/1/2005	467 EJ	2680	1620	0.21	17	1070	3.9	0.27 B	17.8 B	8.5	20.3	84.7

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium Metal	Cobalt	Copper	Chromium	Cyanide	Iron
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval (feet)	Criteria Date	SB	SB	7.5 or SB	300 or SB	0.16 or SB	1 or SB	SB	30 or SB	25 or SB	10 or SB		2000 or SB
SB-OBG-14	0.4 - 1	10/25/2001												
SB-OBG-13	0.4 - 1.8	10/25/2001												
MW-13B	0.5 - 1	6/9/1997	17100	< 5 U	6.41	48	< 1 U	< 1 U	167	9.2	20.2	19.2		27800
MW-13B	0.5 - 1	6/9/1997	16500	< 5 U	5.4	48	< 1 U	< 1 U	160	9.2	20.7	19		27300
MW-15A	0.5 - 1	6/10/1997		< 6 U	4			< 1 U				16		
MW-16	0.5 - 1	6/3/1997		< 6 U	5			< 1 U				15		
MW-16	0.5 - 1	6/3/1997		< 6 U	5			< 1 U				14		
MW-17A	0.5 - 1	6/5/1997		< 7 U	9			< 1 U				32		
MW-18	0.5 - 1	6/10/1997		< 6 U	7			< 1 U				14		
SB-OBG-01	0.5 - 1	10/24/2001												
SS-1	0.5 - 1	7/10/1991		0.8 J										
SS-1-1C	0.5 - 1	6/21/1993												
SS-12	0.5 - 1	6/21/1993												
SS-1-2C	0.5 - 1	6/21/1993												
SS-13	0.5 - 1	6/21/1993												
SS-1-3C	0.5 - 1	6/21/1993												
SS-14	0.5 - 1	6/21/1993												
SS-15	0.5 - 1	6/21/1993												
SS-15	0.5 - 1	6/21/1993												
SS-16	0.5 - 1	6/21/1993												
SS-17	0.5 - 1	6/21/1993												
SS-18	0.5 - 1	6/21/1993												
SS-19	0.5 - 1	6/21/1993												
SS-2	0.5 - 1	7/10/1991		< 3.7 U										
SS-20	0.5 - 1	6/21/1993												
SS-21	0.5 - 1	6/21/1993												
SS-2-1C	0.5 - 1	6/21/1993												
SS-22	0.5 - 1	6/21/1993												
SS-2-2C	0.5 - 1	6/21/1993												
SS-23	0.5 - 1	6/21/1993												
SS-2-3C	0.5 - 1	6/21/1993												
SS-24	0.5 - 1	6/21/1993												
SS-25	0.5 - 1	6/21/1993												
SS-26	0.5 - 1	6/21/1993												

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval (feet)	Criteria Date	SB	SB	SB	0.1	13 or SB	SB	2 or SB	SB	SB	SB	150 or SB	20 or SB
SB-OBG-14	0.4 - 1	10/25/2001	304											
SB-OBG-13	0.4 - 1.8	10/25/2001	53.1											
MW-13B	0.5 - 1	6/9/1997	28	4380	782	0.0491	14.5	749	< 1 U	< 1 U	< 50 U	< 1 U	23.2	64.8
MW-13B	0.5 - 1	6/9/1997	25.2	4440	681	0.059	16	724	< 1 U	< 1 U	< 50 U	< 1 U	22	59
MW-15A	0.5 - 1	6/10/1997	14.5											
MW-16	0.5 - 1	6/3/1997	179											
MW-16	0.5 - 1	6/3/1997	159											
MW-17A	0.5 - 1	6/5/1997	382											
MW-18	0.5 - 1	6/10/1997	191											
SB-OBG-01	0.5 - 1	10/24/2001	36.0											
SS-1	0.5 - 1	7/10/1991	22											
SS-1-1C	0.5 - 1	6/21/1993	14											
SS-12	0.5 - 1	6/21/1993	36											
SS-1-2C	0.5 - 1	6/21/1993	46											
SS-13	0.5 - 1	6/21/1993	33											
SS-1-3C	0.5 - 1	6/21/1993	29											
SS-14	0.5 - 1	6/21/1993	57											
SS-15	0.5 - 1	6/21/1993	16											
SS-15	0.5 - 1	6/21/1993	16											
SS-16	0.5 - 1	6/21/1993	91, (88)											
SS-17	0.5 - 1	6/21/1993	530											
SS-18	0.5 - 1	6/21/1993	31											
SS-19	0.5 - 1	6/21/1993	230											
SS-2	0.5 - 1	7/10/1991	43											
SS-20	0.5 - 1	6/21/1993	30											
SS-21	0.5 - 1	6/21/1993	15											
SS-2-1C	0.5 - 1	6/21/1993	59											
SS-22	0.5 - 1	6/21/1993	33											
SS-2-2C	0.5 - 1	6/21/1993	28											
SS-23	0.5 - 1	6/21/1993	21											
SS-2-3C	0.5 - 1	6/21/1993	49											
SS-24	0.5 - 1	6/21/1993	55											
SS-25	0.5 - 1	6/21/1993	16 J											
SS-26	0.5 - 1	6/21/1993	54											

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium Metal	Cobalt	Copper	Chromium	Cyanide	Iron
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval	Criteria	SB	SB	7.5 or SB	300 or SB	0.16 or SB	1 or SB	SB	30 or SB	25 or SB	10 or SB		2000 or SB
Location iD	(feet)	Date												
SS-27	0.5 - 1	6/21/1993												
SS-28	0.5 - 1	6/21/1993												
SS-29	0.5 - 1	6/21/1993												
SS-3	0.5 - 1	7/10/1991		< 2.8 U										
SS-30	0.5 - 1	6/21/1993												
SS-31	0.5 - 1	6/21/1993												
SS-32	0.5 - 1	6/21/1993												
SS-33	0.5 - 1	6/21/1993												
SS-34	0.5 - 1	6/21/1993												
SS-35	0.5 - 1	6/21/1993												
SS-36	0.5 - 1	6/21/1993												
SS-37	0.5 - 1	6/21/1993												
SS-7	0.5 - 1	7/10/1991		0.17 J										
SS-7	0.5 - 1	7/10/1991		0.23 J										
SS-9	0.5 - 1	7/10/1991		28										
SS-9-1C	0.5 - 1	6/21/1993												
SY-19	0.5 - 1.5	1/27/1992												
SY-21	0.5 - 2	1/27/1992												
SY-21	0.5 - 2	1/27/1992												
SY-2	0.6 - 1.1	7/10/1991		29	16			< 1.0 U						
SY-22	0.7 - 2.7	1/27/1992												
MW-13B	1 - 1.5	6/9/1997	20100	< 6 U	22	59	< 1 U	< 1 U	185	10	33	25		35000
MW-15A	1 - 1.5	6/10/1997		< 6 U	6			< 1 U				18		
MW-16	1 - 1.5	6/3/1997		< 5 U	3.4			< 0.9 U				17		
MW-18	1 - 1.5	6/10/1997		< 6 U	5			< 1 U				14		
SS-1	1 - 1.5	7/10/1991		< 2.4 U										
SS-2	1 - 1.5	7/10/1991		< 2.7 U										
SS-3	1 - 1.5	7/10/1991		< 2.5 U										
SS-4	1 - 1.5	7/10/1991		0.6 J										
SS-5	1 - 1.5	7/10/1991		< 2.2 U										
SS-7	1 - 1.5	7/10/1991		0.42 J										
SS-9	1 - 1.5	7/10/1991		< 2.5 U										
SS-OBG-14	1 - 1.5	10/26/2001	21900 J*	9.2 JN	16.1 J*	121 J*	1.0 J	0.90 J	1320 J*	12.5	35.7 J*	24.3 J*	< .6 U	35900 J*
BC-1	1 - 2	11/30/1993												

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval	Criteria	SB	SB	SB	0.1	13 or SB	SB	2 or SB	SB	SB	SB	150 or SB	20 or SB
Location iD	(feet)	Date												
SS-27	0.5 - 1	6/21/1993	50											
SS-28	0.5 - 1	6/21/1993	210											
SS-29	0.5 - 1	6/21/1993	37											
SS-3	0.5 - 1	7/10/1991	22											
SS-30	0.5 - 1	6/21/1993	82											
SS-31	0.5 - 1	6/21/1993	250											
SS-32	0.5 - 1	6/21/1993	29											
SS-33	0.5 - 1	6/21/1993	17											
SS-34	0.5 - 1	6/21/1993	12											
SS-35	0.5 - 1	6/21/1993	14											
SS-36	0.5 - 1	6/21/1993	110											
SS-37	0.5 - 1	6/21/1993	1200											
SS-7	0.5 - 1	7/10/1991	11											
SS-7	0.5 - 1	7/10/1991	41											
SS-9	0.5 - 1	7/10/1991	3500											
SS-9-1C	0.5 - 1	6/21/1993	31											
SY-19	0.5 - 1.5	1/27/1992	25000											
SY-21	0.5 - 2	1/27/1992	38000											
SY-21	0.5 - 2	1/27/1992	480											
SY-2	0.6 - 1.1	7/10/1991	1700											
SY-22	0.7 - 2.7	1/27/1992	600											
MW-13B	1 - 1.5	6/9/1997	132	6350	525	0.047	21	1340	< 1 U	< 1 U	< 60 U	< 1 U	27	76
MW-15A	1 - 1.5	6/10/1997	13.1											
MW-16	1 - 1.5	6/3/1997	12.7											
MW-18	1 - 1.5	6/10/1997	74											
SS-1	1 - 1.5	7/10/1991	20											
SS-2	1 - 1.5	7/10/1991	25											
SS-3	1 - 1.5	7/10/1991	11											
SS-4	1 - 1.5	7/10/1991	46											
SS-5	1 - 1.5	7/10/1991	62											
SS-7	1 - 1.5	7/10/1991	28											
SS-9	1 - 1.5	7/10/1991	8.4											
SS-OBG-14	1 - 1.5	10/26/2001	667	5810 J*	943 J*	< .08 U	29.9 J*	1360 JE	2.4 J*	< .23 U	44.9 J	< 1.1 U	29.8 J*	102 J*
BC-1	1 - 2	11/30/1993	21											

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium Metal	Cobalt	Copper	Chromium	Cyanide	Iron
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval	Criteria	SB	SB	7.5 or SB	300 or SB	0.16 or SB	1 or SB	SB	30 or SB	25 or SB	10 or SB		2000 or SB
Location iD	(feet)	Date												
BC-2	1 - 2	11/30/1993												
BC-3	1 - 2	11/30/1993												
BC-5	1 - 2	11/30/1993												
BC-6	1 - 2	11/30/1993												
BS-1	1 - 2	11/30/1993												
BS-3	1 - 2	11/30/1993												
BS-5	1 - 2	11/30/1993												
LB-12	1 - 2	9/1/1992												
LB-7	1 - 2	9/1/1992												
LB-9	1 - 2	9/1/1992												
MW-17A	1 - 2	6/5/1997		< 7 U	15			3				21		
SB-1-A	1 - 2	6/21/1993												
SB-1-B	1 - 2	6/21/1993												
SB-1-B	1 - 2	6/21/1993												
SB-1-C	1 - 2	6/21/1993												
SY-2	1.1 - 1.5	7/10/1991		5700	770			< 1.0 U						
TP-02	1.3 - 1.5	10/15/2001												
TP-02	1.3 - 1.5	12/15/2001												
MW-13B	1.5 - 2	6/9/1997	16100	< 5 U	20	61	< 1 U	< 1 U	203	9	35	22		34500
MW-15A	1.5 - 2	6/10/1997		< 5 U	5.7			< 0.9 U				20		
MW-16	1.5 - 2	6/3/1997		< 5 U	5			< 1 U				22		
MW-18	1.5 - 2	6/10/1997		< 6 U	3			< 1 U				16		
SB-1	1.5 - 2	7/15/1991		2.2										
SB-2	1.5 - 2	7/15/1991		0.28 J										
SB-3	1.5 - 2	7/15/1991		1.4 J										
SB-4	1.5 - 2	7/15/1991		1.3 J										
SB-5	1.5 - 2	7/15/1991		0.84 J										
SS-1	1.5 - 2	7/10/1991		0.7 J										
SS-10	1.5 - 2	7/10/1991		< 2.1 U										
SS-11	1.5 - 2	7/10/1991		1.4 J										
SS-2	1.5 - 2	7/10/1991		< 2.6 U										
SS-3	1.5 - 2	7/10/1991		< 2.4 U										
SS-6	1.5 - 2	7/10/1991		< 2.2 U										
SS-7	1.5 - 2	7/10/1991		0.41 J										

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval	Criteria	SB	SB	SB	0.1	13 or SB	SB	2 or SB	SB	SB	SB	150 or SB	20 or SB
Location ib	(feet)	Date												
BC-2	1 - 2	11/30/1993	47											
BC-3	1 - 2	11/30/1993	740											
BC-5	1 - 2	11/30/1993	16											
BC-6	1 - 2	11/30/1993	17											
BS-1	1 - 2	11/30/1993	8.3 J											
BS-3	1 - 2	11/30/1993	25											
BS-5	1 - 2	11/30/1993	18											
LB-12	1 - 2	9/1/1992	350000											
LB-7	1 - 2	9/1/1992	180000											
LB-9	1 - 2	9/1/1992	280000											
MW-17A	1 - 2	6/5/1997	62.4											
SB-1-A	1 - 2	6/21/1993	1800											
SB-1-B	1 - 2	6/21/1993	61											
SB-1-B	1 - 2	6/21/1993	60											
SB-1-C	1 - 2	6/21/1993	330											
SY-2	1.1 - 1.5	7/10/1991	160000											
TP-02	1.3 - 1.5	10/15/2001	< .317 R											
TP-02	1.3 - 1.5	12/15/2001												
MW-13B	1.5 - 2	6/9/1997	232	5950	523	0.056	20	1150	< 1 U	< 1 U	61	< 1 U	24	61
MW-15A	1.5 - 2	6/10/1997	12.7											
MW-16	1.5 - 2	6/3/1997	12.3											
MW-18	1.5 - 2	6/10/1997	13.1											
SB-1	1.5 - 2	7/15/1991	160											
SB-2	1.5 - 2	7/15/1991	24											
SB-3	1.5 - 2	7/15/1991	88											
SB-4	1.5 - 2	7/15/1991	32											
SB-5	1.5 - 2	7/15/1991	170											
SS-1	1.5 - 2	7/10/1991	28											
SS-10	1.5 - 2	7/10/1991	7											
SS-11	1.5 - 2	7/10/1991	100											
SS-2	1.5 - 2	7/10/1991	19											
SS-3	1.5 - 2	7/10/1991	13											
SS-6	1.5 - 2	7/10/1991	61											
SS-7	1.5 - 2	7/10/1991	14											

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium Metal	Cobalt	Copper	Chromium	Cyanide	Iron
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval (feet)	Criteria Date	SB	SB	7.5 or SB	300 or SB	0.16 or SB	1 or SB	SB	30 or SB	25 or SB	10 or SB		2000 or SB
SS-8	1.5 - 2	7/10/1991		0.026 J										
SS-9	1.5 - 2	7/10/1991		< 2.3 U										
SY-1	1.5 - 2	7/10/1991		3.9	9.6			< 1.0 U						
SY-2	1.5 - 2	7/10/1991		5.8	97			< 1.0 U						
SY-3	1.5 - 2	7/10/1991		88	55			< 1.0 U						
SY-19	1.5 - 2.5	1/27/1992												
MW-3	10 - 10.5	7/10/1991		450	150			< ND U				59		
MW-5	10 - 10.5	7/10/1991		8	51			< ND U				23		
SB-1	10 - 10.5	7/15/1991		1.6 J										
SB-2	10 - 10.5	7/15/1991		0.4 J										
LB-7	10 - 10.7	9/1/1992												
MW-17A	10 - 11	6/5/1997		< 6 U	6			< 1 U				23		
SB-OBG-36	10 - 11	11/29/2005												
SB-OBG-12	10 - 11.9	10/23/2001												
SB-OBG-12	10 - 11.9	10/23/2001												
BS-1	10 - 12	11/30/1993												
LB-10	10 - 12	9/1/1992												
LB-11	10 - 12	9/1/1992												
LB-11	10 - 12	9/1/1992												
LB-4	10 - 12	9/1/1992												
LB-6	10 - 12	9/1/1992												
LB-8	10 - 12	9/1/1992												
LB-9	10 - 12	9/1/1992												
MW-13B	10 - 12	6/9/1997	16300	< 5 U	7	46	< 1 U	< 1 U	2050	20	41	24		36100
MW-16	10 - 12	6/3/1997		< 4 U	5			< 0.7 U				21		
MW-2	10 - 12	7/10/1991		0.86 J	5.3			< ND U				17		
MW-2	10 - 12	7/10/1991		0.09 J	3.7			< ND U				15		
SB-OBG-26	10 - 12	11/28/2005	13700 EJ	1.8 NJ	8 *EJ	37.6	0.6 EJ	< 0.0058 U*J	1910 *EJ	11 *EJ	40.5 EJ	19.7 EJ		61000
SB-OBG-27	10 - 12	12/12/2005												
SB-OBG-28A	10 - 12	12/12/2005	14800	784	320	122	0.69	16.9	4710	10.9	84.2	21.4		25100
SB-OBG-29	10 - 12	11/28/2005												
SB-OBG-30	10 - 12	11/28/2005												
SB-OBG-31	10 - 12	12/13/2005												
SB-OBG-32	10 - 12	11/29/2005												

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval (feet)	Criteria Date	SB	SB	SB	0.1	13 or SB	SB	2 or SB	SB	SB	SB	150 or SB	20 or SB
SS-8	1.5 - 2	7/10/1991	19											
SS-9	1.5 - 2	7/10/1991	8.1											
SY-1	1.5 - 2	7/10/1991	310											
SY-2	1.5 - 2	7/10/1991	200											
SY-3	1.5 - 2	7/10/1991	12000											
SY-19	1.5 - 2.5	1/27/1992	5300											
MW-3	10 - 10.5	7/10/1991	17000											
MW-5	10 - 10.5	7/10/1991	300											
SB-1	10 - 10.5	7/15/1991	160											
SB-2	10 - 10.5	7/15/1991	54 B											
LB-7	10 - 10.7	9/1/1992	13000											
MW-17A	10 - 11	6/5/1997	17.2											
SB-OBG-36	10 - 11	11/29/2005												
SB-OBG-12	10 - 11.9	10/23/2001	10000											
SB-OBG-12	10 - 11.9	10/23/2001	106											
BS-1	10 - 12	11/30/1993	26											
LB-10	10 - 12	9/1/1992	64											
LB-11	10 - 12	9/1/1992	88											
LB-11	10 - 12	9/1/1992	29											
LB-4	10 - 12	9/1/1992	120											
LB-6	10 - 12	9/1/1992	23											
LB-8	10 - 12	9/1/1992	43											
LB-9	10 - 12	9/1/1992	360											
MW-13B	10 - 12	6/9/1997	18.4	9040	592	0.047	34	1760	< 1 U	< 1 U	134	< 1 U	21	86
MW-16	10 - 12	6/3/1997	15.2											
MW-2	10 - 12	7/10/1991	24 B											
MW-2	10 - 12	7/10/1991	27 B											
SB-OBG-26	10 - 12	11/28/2005	193 *EJ	7320 EJ	597 *ER	0.011 B	26.3 EJ	813 EJ	2.2	< 0.02 U	86 *J	2	17 EJ	74.6 EJ
SB-OBG-27	10 - 12	12/12/2005												
SB-OBG-28A	10 - 12	12/12/2005	33100 N*EJ	4810	576	0.08	27.7	1190	< 0.075 U		215	1 B	20.6	93.4
SB-OBG-29	10 - 12	11/28/2005												
SB-OBG-30	10 - 12	11/28/2005												
SB-OBG-31	10 - 12	12/13/2005	55.1 N*ER											
SB-OBG-32	10 - 12	11/29/2005												

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium Metal	Cobalt	Copper	Chromium	Cyanide	Iron
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval (feet)	Criteria Date	SB	SB	7.5 or SB	300 or SB	0.16 or SB	1 or SB	SB	30 or SB	25 or SB	10 or SB		2000 or SB
SB-OBG-34	10 - 12	11/29/2005												
SY-21	10 - 12	1/27/1992												
SY-23	10 - 12	1/27/1992												
SY-23	10 - 12	1/27/1992												
MW-13B	10 - 12.6	6/10/1997	14800	< 5 U	7.7	38.9	< 0.9 U	< 0.9 U	6850	17	39	23		35800
SY-19	10.5 - 12.5	1/27/1992												
SB-2	11.5 - 12	7/15/1991		0.53 J										
MW-3	12 - 12.3	7/10/1991		340	120			< ND U				44		
MW-5	12 - 12.5	7/10/1991		560	100			7.4				22		
MW-2	12 - 13	7/10/1991		1.2 J	7.2			< ND U				20		
SB-OBG-29	12 - 13	11/28/2005												
SB-OBG-30	12 - 13	11/28/2005												
SB-OBG-33	12 - 13	11/29/2005												
SB-OBG-34	12 - 13	11/29/2005												
BS-1	12 - 13.1	11/30/1993												
MW-16	12 - 13.5	6/3/1997		< 4 U	4.9			< 0.9 U				20		
LB-10	12 - 14	9/1/1992												
LB-11	12 - 14	9/1/1992												
LB-12	12 - 14	9/1/1992												
LB-12	12 - 14	9/1/1992												
LB-4	12 - 14	9/1/1992												
LB-6	12 - 14	9/1/1992												
LB-7	12 - 14	9/1/1992												
LB-8	12 - 14	9/1/1992												
LB-9	12 - 14	9/1/1992												
MW-4	12 - 14	7/10/1991		3200	6700			< ND U				< ND U		
SB-OBG-26	12 - 14	11/28/2005												
SB-OBG-27	12 - 14	12/12/2005												
SB-OBG-28A	12 - 14	12/12/2005												
SB-OBG-31	12 - 14	12/13/2005												
SB-OBG-31	12 - 14	12/13/2005												
SB-OBG-32	12 - 14	11/29/2005												
SB-OBG-33	12 - 14	11/29/2005												
SY-21	12 - 14	1/27/1992												

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
	Depth Interval	Criteria	SB	SB	SB	0.1	13 or SB	SB	2 or SB	SB	SB	SB	150 or SB	
Location ID	(feet)	Date												
SB-OBG-34	10 - 12	11/29/2005												
SY-21	10 - 12	1/27/1992	13											
SY-23	10 - 12	1/27/1992	13											
SY-23	10 - 12	1/27/1992	840											
MW-13B	10 - 12.6	6/10/1997	20.8	10100	751	0.058	34	1660	< 0.9 U	< 0.9 U	124	< 0.9 U	20	62
SY-19	10.5 - 12.5	1/27/1992	14											
SB-2	11.5 - 12	7/15/1991	41 B											
MW-3	12 - 12.3	7/10/1991	15000											
MW-5	12 - 12.5	7/10/1991	9800											
MW-2	12 - 13	7/10/1991	66 B											
SB-OBG-29	12 - 13	11/28/2005												
SB-OBG-30	12 - 13	11/28/2005												
SB-OBG-33	12 - 13	11/29/2005												
SB-OBG-34	12 - 13	11/29/2005												
BS-1	12 - 13.1	11/30/1993	46											
MW-16	12 - 13.5	6/3/1997	15.6											
LB-10	12 - 14	9/1/1992	49											
LB-11	12 - 14	9/1/1992	13000											
LB-12	12 - 14	9/1/1992	39 J											
LB-12	12 - 14	9/1/1992	400 J											
LB-4	12 - 14	9/1/1992	44											
LB-6	12 - 14	9/1/1992	20											
LB-7	12 - 14	9/1/1992	110											
LB-8	12 - 14	9/1/1992	180											
LB-9	12 - 14	9/1/1992	280											
MW-4	12 - 14	7/10/1991	91000											
SB-OBG-26	12 - 14	11/28/2005												
SB-OBG-27	12 - 14	12/12/2005												
SB-OBG-28A	12 - 14	12/12/2005												
SB-OBG-31	12 - 14	12/13/2005												
SB-OBG-31	12 - 14	12/13/2005												
SB-OBG-32	12 - 14	11/29/2005												
SB-OBG-33	12 - 14	11/29/2005												
SY-21	12 - 14	1/27/1992	15											

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium Metal	Cobalt	Copper	Chromium	Cyanide	Iron
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval (feet)	Criteria Date	SB	SB	7.5 or SB	300 or SB	0.16 or SB	1 or SB	SB	30 or SB	25 or SB	10 or SB		2000 or SB
SY-19	12.5 - 14.5	1/27/1992												
MW-5	14 - 14.5	7/10/1991		2.4	0.42 J			< ND U				29		
MW-2	14 - 14.6	7/10/1991		0.31 J	8.6			< ND U				23		
LB-10	14 - 16	9/1/1992												
LB-11	14 - 16	9/1/1992												
LB-12	14 - 16	9/1/1992												
LB-6	14 - 16	9/1/1992												
LB-7	14 - 16	9/1/1992												
LB-8	14 - 16	9/1/1992												
LB-9	14 - 16	9/1/1992												
MW-13B	14 - 16	6/10/1997	14700	< 4 U	9.3	54.8	< 0.9 U	< 0.9 U	5590	18	38	22		35200
SB-OBG-28A	14 - 16	12/12/2005												
SB-OBG-31	14 - 16	12/13/2005												
SY-21	14 - 16	1/27/1992												
LB-11	16 - 16.3	9/1/1992												
MW-5	16 - 16.5	7/10/1991		0.5 J	6.4			< ND U				24		
LB-9	16 - 16.7	9/1/1992												
MW-2	16 - 17	7/10/1991		0.31 J	6.4			< ND U				21		
MW-4	16 - 17	7/10/1991		640	130			21				32		
SB-OBG-31	16 - 17	12/13/2005												
LB-6	16 - 17.3	9/1/1992												
LB-10	16 - 18	9/1/1992												
LB-12	16 - 18	9/1/1992												
LB-7	16 - 18	9/1/1992												
LB-8	16 - 18	9/1/1992												
SB-OBG-28A	16 - 18	12/12/2005												
LB-12	18 - 20	9/1/1992												
LB-8	18 - 20	9/1/1992												
SB-OBG-28A	18 - 20	12/12/2005												
MW-13B	19 - 20.5	6/10/1997	15500	< 5 U	6	54.1	< 0.9 U	< 0.9 U	9230	15	39	27		33300
SB-OBG-07	2 - 2.3	10/23/2001												
SB-OBG-09	2 - 2.3	10/25/2001												
MW-3	2 - 2.5	7/10/1991		25	95			< ND U				24		
MW-4	2 - 2.5	7/10/1991		340	220			14				24		

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval (feet)	Criteria Date	SB	SB	SB	0.1	13 or SB	SB	2 or SB	SB	SB	SB	150 or SB	20 or SB
SY-19	12.5 - 14.5	1/27/1992	42											
MW-5	14 - 14.5	7/10/1991	54											
MW-2	14 - 14.6	7/10/1991	28 B											
LB-10	14 - 16	9/1/1992	21											
LB-11	14 - 16	9/1/1992	97											
LB-12	14 - 16	9/1/1992	26 B											
LB-6	14 - 16	9/1/1992	170											
LB-7	14 - 16	9/1/1992	140											
LB-8	14 - 16	9/1/1992	100											
LB-9	14 - 16	9/1/1992	39											
MW-13B	14 - 16	6/10/1997	16.7	9010	463	< 0.033 U	34	1400	< 0.9 U	< 0.9 U	90	< 0.9 U	19	85
SB-OBG-28A	14 - 16	12/12/2005												
SB-OBG-31	14 - 16	12/13/2005	41.7 N*ER											
SY-21	14 - 16	1/27/1992	28											
LB-11	16 - 16.3	9/1/1992	570											
MW-5	16 - 16.5	7/10/1991	26											
LB-9	16 - 16.7	9/1/1992	45											
MW-2	16 - 17	7/10/1991	17 B											
MW-4	16 - 17	7/10/1991	39000											
SB-OBG-31	16 - 17	12/13/2005												
LB-6	16 - 17.3	9/1/1992	16											
LB-10	16 - 18	9/1/1992	860											
LB-12	16 - 18	9/1/1992	38 B											
LB-7	16 - 18	9/1/1992	24											
LB-8	16 - 18	9/1/1992	12											
SB-OBG-28A	16 - 18	12/12/2005												
LB-12	18 - 20	9/1/1992	120											
LB-8	18 - 20	9/1/1992	12											
SB-OBG-28A	18 - 20	12/12/2005	1280 N*EJ											
MW-13B	19 - 20.5	6/10/1997	14.4	9570	478	< 0.033 U	30	1940	< 0.9 U	< 0.9 U	95	< 0.9 U	22	69
SB-OBG-07	2 - 2.3	10/23/2001	20.3											
SB-OBG-09	2 - 2.3	10/25/2001	480											
MW-3	2 - 2.5	7/10/1991	1500											
MW-4	2 - 2.5	7/10/1991	43000											

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium Metal	Cobalt	Copper	Chromium	Cyanide	Iron
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval (feet)	Criteria Date	SB	SB	7.5 or SB	300 or SB	0.16 or SB	1 or SB	SB	30 or SB	25 or SB	10 or SB		2000 or SB
SY-2	2 - 2.5	7/10/1991		1.8 J	27			< 1.0 U						
BC-3	2 - 2.6	11/30/1993												
SB-4	2 - 2.6	7/15/1991		0.93 J										
SB-OBG-08	2 - 2.6	10/22/2001												
SB-OBG-18	2 - 2.6	10/24/2001												
SB-OBG-24	2 - 2.6	10/23/2001												
SB-OBG-11	2 - 2.9	10/24/2001	19100 J*	20.3 JN	22.9 J*	78.0 J*	0.90 J	1.1 J	453 J*	12.1	38.2 J*	25.8 J*	< .6 U	40700 J*
A1-CSWN	2 - 3	unknown												
A1-CSWW	2 - 3	unknown												
A2-CSWE	2 - 3	unknown												
A2-CSWN	2 - 3	unknown												
B1-CSWW	2 - 3	unknown												
B2-CSWE	2 - 3	unknown												
C1-CSWW	2 - 3	unknown												
C2-CSWE	2 - 3	unknown												
D1-CSWW	2 - 3	unknown												
D2-CSWE	2 - 3	unknown												
E1-CSWW	2 - 3	unknown												
E2-CSWE	2 - 3	unknown												
F1-CSWW	2 - 3	unknown												
F3-CSWE	2 - 3	unknown												
G1-CSWW	2 - 3	unknown												
G3-CSWE	2 - 3	unknown												
H1-CSWW	2 - 3	unknown												
H3-CSWE	2 - 3	unknown												
I1-CSWW	2 - 3	unknown												
I3-CSWE	2 - 3	unknown												
J1-CSWW	2 - 3	unknown												
J3-CSWE	2 - 3	unknown												
K1-CSWW	2 - 3	unknown												
K4-CSWN	2 - 3	unknown												
K5-CSWE	2 - 3	unknown												
L1-CSWW	2 - 3	unknown												
L5-CSWE	2 - 3	unknown												

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval	Criteria	SB	SB	SB	0.1	13 or SB	SB	2 or SB	SB	SB	SB	150 or SB	20 or SB
Location ID	(feet)	Date												
SY-2	2 - 2.5	7/10/1991	73											
BC-3	2 - 2.6	11/30/1993	180											
SB-4	2 - 2.6	7/15/1991	41											
SB-OBG-08	2 - 2.6	10/22/2001	3690											
SB-OBG-18	2 - 2.6	10/24/2001	37.7											
SB-OBG-24	2 - 2.6	10/23/2001	19800											
SB-OBG-11	2 - 2.9	10/24/2001	1620	7880 J*	919 J*	< .0620 U	31.0 J*	1000 JE	2.3 J*	< .23 U	56.7 J	< 1.1 U	24.8 J*	79.0 J*
A1-CSWN	2 - 3	unknown	3240											
A1-CSWW	2 - 3	unknown	10128											
A2-CSWE	2 - 3	unknown	58.9											
A2-CSWN	2 - 3	unknown	272											
B1-CSWW	2 - 3	unknown	8648											
B2-CSWE	2 - 3	unknown	42.8											
C1-CSWW	2 - 3	unknown	1375											
C2-CSWE	2 - 3	unknown	88.7											
D1-CSWW	2 - 3	unknown	2456											
D2-CSWE	2 - 3	unknown	47.4											
E1-CSWW	2 - 3	unknown	4403											
E2-CSWE	2 - 3	unknown	49.5											
F1-CSWW	2 - 3	unknown	32256											
F3-CSWE	2 - 3	unknown	40.2											
G1-CSWW	2 - 3	unknown	21831											
G3-CSWE	2 - 3	unknown	96.7											
H1-CSWW	2 - 3	unknown	3285											
H3-CSWE	2 - 3	unknown	84.7											
I1-CSWW	2 - 3	unknown	1894											
I3-CSWE	2 - 3	unknown	69.1											
J1-CSWW	2 - 3	unknown	3821											
J3-CSWE	2 - 3	unknown	44.2											
K1-CSWW	2 - 3	unknown	6734											
K4-CSWN	2 - 3	unknown	139											
K5-CSWE	2 - 3	unknown	280											
L1-CSWW	2 - 3	unknown	1231											
L5-CSWE	2 - 3	unknown	147											

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium Metal	Cobalt	Copper	Chromium	Cyanide	Iron
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval (feet)	Criteria Date	SB	SB	7.5 or SB	300 or SB	0.16 or SB	1 or SB	SB	30 or SB	25 or SB	10 or SB		2000 or SB
LB-10	2 - 3	9/1/1992												
M1-CSWS	2 - 3	unknown												
M1-CSWW	2 - 3	unknown												
M2-CSWS	2 - 3	unknown												
M3-CSWS	2 - 3	unknown												
M4-CSWS	2 - 3	unknown												
M5-CSWE	2 - 3	unknown												
M5-CSWS	2 - 3	unknown												
MS1-CSWN	2 - 3	unknown												
MS1-CSWW	2 - 3	unknown												
MS2-CSWN	2 - 3	unknown												
MS3-CSWN	2 - 3	unknown												
MS4-CSWE	2 - 3	unknown												
MS4-CSWN	2 - 3	unknown												
MW-5	2 - 3	7/10/1991		9400	2600			140				39		
N1-CSWW	2 - 3	unknown												
N4-CSWE	2 - 3	unknown												
O1-CSWW	2 - 3	unknown												
O5-CSWE	2 - 3	unknown												
P1-CSWW	2 - 3	unknown												
P5-CSWE	2 - 3	unknown												
Q1-CSWW	2 - 3	unknown												
Q5-CSWE	2 - 3	unknown												
R1-CSWW	2 - 3	unknown												
R5-CSWE	2 - 3	unknown												
S1-CSWW	2 - 3	unknown												
S5-CSWE	2 - 3	unknown												
T1-CSWW	2 - 3	unknown												
T4-CSWE	2 - 3	unknown												
T4-CSWS	2 - 3	unknown												
U1-CSWS	2 - 3	unknown												
U1-CSWW	2 - 3	unknown												
U2-CSWS	2 - 3	unknown												
U3-CSWS	2 - 3	unknown												

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval (feet)	Criteria Date	SB	SB	SB	0.1	13 or SB	SB	2 or SB	SB	SB	SB	150 or SB	20 or SB
LB-10	2 - 3	9/1/1992	83000											
M1-CSWS	2 - 3	unknown	805											
M1-CSWW	2 - 3	unknown	136											
M2-CSWS	2 - 3	unknown	641											
M3-CSWS	2 - 3	unknown	3400											
M4-CSWS	2 - 3	unknown	1770											
M5-CSWE	2 - 3	unknown	883											
M5-CSWS	2 - 3	unknown	803											
MS1-CSWN	2 - 3	unknown	5420											
MS1-CSWW	2 - 3	unknown	2000											
MS2-CSWN	2 - 3	unknown	770											
MS3-CSWN	2 - 3	unknown	3100											
MS4-CSWE	2 - 3	unknown	624											
MS4-CSWN	2 - 3	unknown	22400											
MW-5	2 - 3	7/10/1991	170000											
N1-CSWW	2 - 3	unknown	111											
N4-CSWE	2 - 3	unknown	448											
O1-CSWW	2 - 3	unknown	7340											
O5-CSWE	2 - 3	unknown	634											
P1-CSWW	2 - 3	unknown	115											
P5-CSWE	2 - 3	unknown	152											
Q1-CSWW	2 - 3	unknown	108											
Q5-CSWE	2 - 3	unknown	369											
R1-CSWW	2 - 3	unknown	2900											
R5-CSWE	2 - 3	unknown	31											
S1-CSWW	2 - 3	unknown	1180											
S5-CSWE	2 - 3	unknown	371											
T1-CSWW	2 - 3	unknown	214											
T4-CSWE	2 - 3	unknown	177											
T4-CSWS	2 - 3	unknown	936											
U1-CSWS	2 - 3	unknown	821											
U1-CSWW	2 - 3	unknown	926											
U2-CSWS	2 - 3	unknown	294											
U3-CSWS	2 - 3	unknown	225											

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium Metal	Cobalt	Copper	Chromium	Cyanide	Iron
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval (feet)	Criteria Date	SB	SB	7.5 or SB	300 or SB	0.16 or SB	1 or SB	SB	30 or SB	25 or SB	10 or SB		2000 or SB
U5-CSWE	2 - 3	unknown												
U5-CSWS	2 - 3	unknown												
SB-OBG-22	2 - 3.1	11/6/2001												
SB-OBG-03	2 - 3.3	10/24/2001												
SB-OBG-05	2 - 3.3	10/23/2001												
SB-OBG-19	2 - 3.3	10/24/2001												
SB-OBG-13	2 - 3.4	10/25/2001	18400 J*	0.66 JN	11.7 J*	52.4 J*	0.89 J	0.08 J	754 J*	21.9	47.2 J*	25.1 J*	< .6 U	45100 J*
SB-OBG-13	2 - 3.4	10/25/2001	19600 J*	0.63 JN	12.4 J*	50.9 J*	0.97 J	0.13 J	24700 J*	17.9	53.9 J*	28.0 J*	< .5 U	45900 J*
BS-1	2 - 3.5	11/30/1993												
SB-OBG-16	2 - 3.7	10/25/2001	17400 J*	0.56 JN	12.0 J*	45.9 J*	0.96 J	0.22 J	1030 J*	18.5	49.5 J*	26.5 J*	< .5 U	44700 J*
MW-24	2 - 3.9	11/8/2001												
BC-1	2 - 4	11/30/1993												
BC-2	2 - 4	11/30/1993												
BC-5	2 - 4	11/30/1993												
BC-6	2 - 4	11/30/1993												
BS-3	2 - 4	11/30/1993												
BS-5	2 - 4	11/30/1993												
FB-1	2 - 4	12/15/1993												
FB-2	2 - 4	12/15/1993												
FB-4	2 - 4	12/15/1993												
FB-5	2 - 4	12/15/1993												
LB-11	2 - 4	9/1/1992												
LB-4	2 - 4	9/1/1992												
LB-6	2 - 4	9/1/1992												
LB-7	2 - 4	9/1/1992												
LB-9	2 - 4	9/1/1992												
MW-1	2 - 4	7/10/1991		600	540			7.2				15		
MW-13B	2 - 4	6/9/1997	15400	< 4 U	5.3	48.5	0.8	< 0.8 U	982	13	43	21		32200
MW-15A	2 - 4	6/10/1997		< 4 U	3			< 0.9 U				19		
MW-16	2 - 4	6/3/1997		< 4 U	5.4			< 0.8 U				21		
MW-17A	2 - 4	6/5/1997		< 5 U	2			<1U				21		
SB-OBG-25	2 - 4	11/25/2005												
SB-OBG-26	2 - 4	11/28/2005												
SB-OBG-27	2 - 4	12/12/2005												

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval (feet)	Criteria Date	SB	SB	SB	0.1	13 or SB	SB	2 or SB	SB	SB	SB	150 or SB	20 or SB
U5-CSWE	2 - 3	unknown	1201											
U5-CSWS	2 - 3	unknown	643											
SB-OBG-22	2 - 3.1	11/6/2001	23.1											
SB-OBG-03	2 - 3.3	10/24/2001	23.9											
SB-OBG-05	2 - 3.3	10/23/2001	14.3											
SB-OBG-19	2 - 3.3	10/24/2001	21.4											
SB-OBG-13	2 - 3.4	10/25/2001	24.5	9370 J*	1080 J*	< .08 U	33.2 J*	1500 JE	1.6 J*	< .22 U	341 J	< 1.1 U	23.8 J*	111 J*
SB-OBG-13	2 - 3.4	10/25/2001	36.5	22200 J*	788 J*	< .08 U	36.1 J*	1730 JE	1.8 J*	< .22 U	467 J	< 1.1 U	26.8 J*	119 J*
BS-1	2 - 3.5	11/30/1993	11											
SB-OBG-16	2 - 3.7	10/25/2001	26.0	8760 J*	917 J*	< .08 U	37.0 J*	1710 JE	1.9 J*	< .22 U	71.8 J	< 1.1 U	24.7 J*	118 J*
MW-24	2 - 3.9	11/8/2001	23.7 J*											
BC-1	2 - 4	11/30/1993	19											
BC-2	2 - 4	11/30/1993	51											
BC-5	2 - 4	11/30/1993	16											
BC-6	2 - 4	11/30/1993	560											
BS-3	2 - 4	11/30/1993	6.6 J											
BS-5	2 - 4	11/30/1993	11											
FB-1	2 - 4	12/15/1993	124000											
FB-2	2 - 4	12/15/1993	80000											
FB-4	2 - 4	12/15/1993	181000											
FB-5	2 - 4	12/15/1993	1780											
LB-11	2 - 4	9/1/1992	1300											
LB-4	2 - 4	9/1/1992	9300											
LB-6	2 - 4	9/1/1992	270											
LB-7	2 - 4	9/1/1992	62000											
LB-9	2 - 4	9/1/1992	1500											
MW-1	2 - 4	7/10/1991	87000											
MW-13B	2 - 4	6/9/1997	19.7	7230	344	0.04	29	1520	< 0.8 U	< 0.8 U	87	< 0.8 U	20	89
MW-15A	2 - 4	6/10/1997	9.1											
MW-16	2 - 4	6/3/1997	15.9											
MW-17A	2 - 4	6/5/1997	7.4											
SB-OBG-25	2 - 4	11/25/2005												
SB-OBG-26	2 - 4	11/28/2005												
SB-OBG-27	2 - 4	12/12/2005												

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium Metal	Cobalt	Copper	Chromium	Cyanide	Iron
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval	Criteria	SB	SB	7.5 or SB	300 or SB	0.16 or SB	1 or SB	SB	30 or SB	25 or SB	10 or SB		2000 or SB
Location ID	(feet)	Date												
SB-OBG-28	2 - 4	12/12/2005	13500	445	288	91.4	0.85	6.3	13500	12.8	69.6	24.1		49000
SB-OBG-28A	2 - 4	12/12/2005												
SB-OBG-29	2 - 4	11/28/2005												
SB-OBG-30	2 - 4	11/28/2005												
SB-OBG-31	2 - 4	12/13/2005												
SB-OBG-31	2 - 4	12/13/2005												
SB-OBG-32	2 - 4	11/29/2005												
SB-OBG-33	2 - 4	11/29/2005												
SB-OBG-34	2 - 4	11/29/2005												
SB-OBG-35	2 - 4	11/29/2005												
SB-OBG-36	2 - 4	11/29/2005												
SB-OBG-37	2 - 4	12/13/2005												
SB-OBG-37A	2 - 4	12/13/2005												
SB-OBG-38	2 - 4	11/29/2005												
SS-OBG-41	2 - 4	12/1/2005												
SS-OBG-42	2 - 4	12/1/2005	13600	2.9	7.5	97.1	0.62	< 0.007 U	1040	5.1	17.6	15.4		16200
SS-OBG-43	2 - 4	11/30/2005												
SS-OBG-44	2 - 4	11/30/2005												
SS-OBG-45	2 - 4	11/30/2005												
SS-OBG-46	2 - 4	11/28/2005												
SS-OBG-47	2 - 4	11/30/2005												
SS-OBG-48	2 - 4	11/30/2005												
SS-OBG-50	2 - 4	11/30/2005												
SS-OBG-51	2 - 4	11/28/2005												
SS-OBG-52	2 - 4	11/30/2005	9820	5.1	22.2	41.9	0.33 B	< 0.007 U	519	3.4	17.5	11.1		10500
SS-OBG-53	2 - 4	11/30/2005												
SS-OBG-54	2 - 4	11/30/2005												
SS-OBG-55	2 - 4	11/30/2005												
SS-OBG-56	2 - 4	12/1/2005												
SS-OBG-57	2 - 4	12/1/2005												
SB-1	2.5 - 3	7/15/1991		2 J										
SB-2	2.5 - 3	7/15/1991		0.39 J										
SB-3	2.5 - 3	7/15/1991		0.65 J										
SY-1	2.5 - 3	7/10/1991		6.6	44			< 1.0 U						

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval (feet)	Criteria Date	SB	SB	SB	0.1	13 or SB	SB	2 or SB	SB	SB	SB	150 or SB	20 or SB
SB-OBG-28	2 - 4	12/12/2005	49900 N*EJ	5580	609	0.16	35.8	1110	< 0.064 U	< 0.018 U	86.2	2.6	19.6	88.1
SB-OBG-28A	2 - 4	12/12/2005												
SB-OBG-29	2 - 4	11/28/2005												
SB-OBG-30	2 - 4	11/28/2005												
SB-OBG-31	2 - 4	12/13/2005												
SB-OBG-31	2 - 4	12/13/2005												
SB-OBG-32	2 - 4	11/29/2005												
SB-OBG-33	2 - 4	11/29/2005												
SB-OBG-34	2 - 4	11/29/2005	73.3 EJ											
SB-OBG-35	2 - 4	11/29/2005	128 EJ											
SB-OBG-36	2 - 4	11/29/2005												
SB-OBG-37	2 - 4	12/13/2005												
SB-OBG-37A	2 - 4	12/13/2005												
SB-OBG-38	2 - 4	11/29/2005												
SS-OBG-41	2 - 4	12/1/2005	326 EJ											
SS-OBG-42	2 - 4	12/1/2005	340 EJ	2720	360	0.11	13.3	680	2.2	< 0.024 U	25.5 B	1.4	21.8	80.1
SS-OBG-43	2 - 4	11/30/2005	145 *EJ											
SS-OBG-44	2 - 4	11/30/2005	78.5 *EJ											
SS-OBG-45	2 - 4	11/30/2005	179 *EJ											
SS-OBG-46	2 - 4	11/28/2005	2520 EJ											
SS-OBG-47	2 - 4	11/30/2005	157 *EJ											
SS-OBG-48	2 - 4	11/30/2005	200 *EJ											
SS-OBG-50	2 - 4	11/30/2005	19.2 EJ											
SS-OBG-51	2 - 4	11/28/2005	39.2 EJ											
SS-OBG-52	2 - 4	11/30/2005	993 EJ	2000	67.8	0.1	10.9	382	1.7 B	< 0.024 U	31.7 B	< 0.1 U	15.5	40.4
SS-OBG-53	2 - 4	11/30/2005	453 EJ											
SS-OBG-54	2 - 4	11/30/2005	133 EJ											
SS-OBG-55	2 - 4	11/30/2005	56.3 EJ											
SS-OBG-56	2 - 4	12/1/2005	770 EJ											
SS-OBG-57	2 - 4	12/1/2005	193 EJ											
SB-1	2.5 - 3	7/15/1991	200											
SB-2	2.5 - 3	7/15/1991	32											
SB-3	2.5 - 3	7/15/1991	66 B											
SY-1	2.5 - 3	7/10/1991	570											

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium Metal	Cobalt	Copper	Chromium	Cyanide	Iron
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval (feet)	Criteria Date	SB	SB	7.5 or SB	300 or SB	0.16 or SB	1 or SB	SB	30 or SB	25 or SB	10 or SB		2000 or SB
SY-2	2.5 - 3	7/10/1991		0.9 J	33			< 1.0 U						
SY-3	2.5 - 3	7/10/1991		0.7 J	6.7			< 1.0 U						
SY-19	2.5 - 3.5	1/27/1992												
SY-21	2.5 - 4	1/27/1992												
SY-22	2.7 - 3.5	1/27/1992												
SY-21	20 - 20.4	1/27/1992												
LB-7	20 - 20.9	9/1/1992												
MW-2	20 - 21.2	7/10/1991		0.36 J	5.1			< ND U				19		
LB-8	20 - 22	9/1/1992												
MW-13A	20 - 22	6/4/1997		< 6 U	3			< 1 U				22		
MW-13B	20 - 22	6/10/1997	10900	< 4 U	4.1	32.6	< 0.9 U	< 0.9 U	11700	10	27	16		25700
SB-OBG-28A	20 - 22	12/12/2005												
SB-OBG-28A	20 - 22	12/12/2005												
SY-21	22 - 22.9	1/27/1992												
LB-8	22 - 23	9/1/1992												
MW-2	22 - 23	7/10/1991		0.46 J	6.7			< ND U				25		
MW-13A	22 - 23.4	6/4/1997		< 5 U	1			< 1 U				14		
MW-13B	22 - 24	6/10/1997	11400	< 5 U	4.2	40.3	< 0.9 U	< 0.9 U	13300	11	27	19		26200
SB-OBG-28A	22 - 24	12/12/2005												
SS-9-2C	3 - 4	6/21/1993												
SS-9-3C	3 - 4	6/21/1993												
SY-23	3 - 4	1/27/1992												
SY-19	3.5 - 4.5	1/27/1992												
SY-22	3.5 - 4.7	1/27/1992												
MW-3	4 - 4.5	7/10/1991		2.8	120			< ND U				25		
MW-5	4 - 4.5	7/10/1991		240	99			6.3				24		
SB-1	4 - 4.5	7/15/1991		1.8 J										
SB-2	4 - 4.5	7/15/1991		< 2.4 U										
SB-3	4 - 4.5	7/15/1991		0.94 J										
SB-5	4 - 4.5	7/15/1991		1500										
SB-OBG-15	4 - 4.6	10/25/2001												
SB-OBG-17	4 - 4.6	10/25/2001												
SB-OBG-10	4 - 4.8	10/23/2001												
SB-OBG-11	4 - 4.9	10/24/2001												

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval (feet)	Criteria Date	SB	SB	SB	0.1	13 or SB	SB	2 or SB	SB	SB	SB	150 or SB	20 or SB
SY-2	2.5 - 3	7/10/1991	28 B											
SY-3	2.5 - 3	7/10/1991	66 B											
SY-19	2.5 - 3.5	1/27/1992	880											
SY-21	2.5 - 4	1/27/1992	77											
SY-22	2.7 - 3.5	1/27/1992	45											
SY-21	20 - 20.4	1/27/1992	8.8											
LB-7	20 - 20.9	9/1/1992	62											
MW-2	20 - 21.2	7/10/1991	23 B											
LB-8	20 - 22	9/1/1992	20											
MW-13A	20 - 22	6/4/1997	20.9											
MW-13B	20 - 22	6/10/1997	12.2	7110	321	< 0.033 U	21	1050	< 0.9 U	< 0.9 U	48	< 0.9 U	15	58
SB-OBG-28A	20 - 22	12/12/2005												
SB-OBG-28A	20 - 22	12/12/2005												
SY-21	22 - 22.9	1/27/1992	9.5											
LB-8	22 - 23	9/1/1992	16											
MW-2	22 - 23	7/10/1991	28 B											
MW-13A	22 - 23.4	6/4/1997	14.4											
MW-13B	22 - 24	6/10/1997	12.1	7640	492	< 0.033 U	22	1240	< 0.9 U	< 0.9 U	64	< 0.9 U	16	56
SB-OBG-28A	22 - 24	12/12/2005	2780 N*EJ											
SS-9-2C	3 - 4	6/21/1993	23											
SS-9-3C	3 - 4	6/21/1993	11											
SY-23	3 - 4	1/27/1992	18											
SY-19	3.5 - 4.5	1/27/1992	3200											
SY-22	3.5 - 4.7	1/27/1992	36											
MW-3	4 - 4.5	7/10/1991	53											
MW-5	4 - 4.5	7/10/1991	9000											
SB-1	4 - 4.5	7/15/1991	360											
SB-2	4 - 4.5	7/15/1991	13											
SB-3	4 - 4.5	7/15/1991	130											
SB-5	4 - 4.5	7/15/1991	770000											
SB-OBG-15	4 - 4.6	10/25/2001	204											
SB-OBG-17	4 - 4.6	10/25/2001	29.7											
SB-OBG-10	4 - 4.8	10/23/2001	26.3											
SB-OBG-11	4 - 4.9	10/24/2001	14600											

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium Metal	Cobalt	Copper	Chromium	Cyanide	Iron
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval (feet)	Criteria Date	SB	SB	7.5 or SB	300 or SB	0.16 or SB	1 or SB	SB	30 or SB	25 or SB	10 or SB		2000 or SB
SB-OBG-20	4 - 4.9	10/24/2001												
BS-3	4 - 5	11/30/1993												
MW-1	4 - 5	7/10/1991		0.62 J	2.2			< ND U				23		
SB-4	4 - 5	7/15/1991		0.02 3										
SB-4	4 - 5	7/15/1991		0.7 J										
SB-OBG-37	4 - 5	12/13/2005		U.O J										
SY-21	4 - 5	1/27/1992												
SY-23	4 - 5	1/27/1992												
SY-26	4 - 5	1/27/1992												
MW-25	4 - 5.1	1/27/1992												
SB-OBG-21	4 - 5.1	11/6/2001												
SB-OBG-21														
SB-OBG-22 MW-2	4 - 5.3 4 - 5.5	11/6/2001 7/10/1991						< ND U				40		
				60	26			-				10		
SB-OBG-04	4 - 5.7	10/24/2001												
SB-OBG-06	4 - 5.7	10/22/2001												
BC-1	4 - 6	11/30/1993												
BC-1	4 - 6	11/30/1993												
BC-2	4 - 6	11/30/1993												
BC-5	4 - 6	11/30/1993												
BC-6	4 - 6	11/30/1993												
BS-1	4 - 6	11/30/1993												
BS-5	4 - 6	11/30/1993												
FB-1	4 - 6	12/15/1993												
FB-2	4 - 6	12/15/1993												
FB-4	4 - 6	12/15/1993												
FB-5	4 - 6	12/15/1993												
LB-10	4 - 6	9/1/1992												
LB-11	4 - 6	9/1/1992												
LB-12	4 - 6	9/1/1992												
LB-4	4 - 6	9/1/1992												
LB-6	4 - 6	9/1/1992												
LB-7	4 - 6	9/1/1992												
LB-8	4 - 6	9/1/1992												
LB-8	4 - 6	9/1/1992												

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval (feet)	Criteria Date	SB	SB	SB	0.1	13 or SB	SB	2 or SB	SB	SB	SB	150 or SB	20 or SB
SB-OBG-20	4 - 4.9	10/24/2001	22.8											
BS-3	4 - 5	11/30/1993	76											
MW-1	4 - 5	7/10/1991	44 B											
SB-4	4 - 5	7/15/1991	34											
SB-4	4 - 5	7/15/1991	28											
SB-OBG-37	4 - 5	12/13/2005												
SY-21	4 - 5	1/27/1992	24											
SY-23	4 - 5	1/27/1992	42											
SY-26	4 - 5	1/27/1992	22											
MW-25	4 - 5.1	11/8/2001	32.0 J*											
SB-OBG-21	4 - 5.1	11/6/2001	568											
SB-OBG-22	4 - 5.3	11/6/2001	12.0											
MW-2	4 - 5.5	7/10/1991	3300											
SB-OBG-04	4 - 5.7	10/24/2001	35.5											
SB-OBG-06	4 - 5.7	10/22/2001	21.3											
BC-1	4 - 6	11/30/1993	23											
BC-1	4 - 6	11/30/1993	12											
BC-2	4 - 6	11/30/1993	35											
BC-5	4 - 6	11/30/1993	7.4 J											
BC-6	4 - 6	11/30/1993	29											
BS-1	4 - 6	11/30/1993	22											
BS-5	4 - 6	11/30/1993	21											
FB-1	4 - 6	12/15/1993	107000											
FB-2	4 - 6	12/15/1993	3440											
FB-4	4 - 6	12/15/1993	54.4											
FB-5	4 - 6	12/15/1993	40.6											
LB-10	4 - 6	9/1/1992	100											
LB-11	4 - 6	9/1/1992	2000											
LB-12	4 - 6	9/1/1992	200											
LB-4	4 - 6	9/1/1992	310											
LB-6	4 - 6	9/1/1992	210											
LB-7	4 - 6	9/1/1992	16000											
LB-8	4 - 6	9/1/1992	5000											
LB-8	4 - 6	9/1/1992	12000											

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium Metal	Cobalt	Copper	Chromium	Cyanide	Iron
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval (feet)	Criteria Date	SB	SB	7.5 or SB	300 or SB	0.16 or SB	1 or SB	SB	30 or SB	25 or SB	10 or SB		2000 or SB
LB-9	4 - 6	9/1/1992												
MW-13B	4 - 6	6/9/1997	15200	< 5 U	12	43	< 1 U	< 1 U	1270	18	42	21		34600
MW-15A	4 - 6	6/10/1997		< 4 U	5.1			< 0.9 U				22		
MW-16	4 - 6	6/3/1997		< 4 U	5.4			< 0.8 U				30		
MW-17A	4 - 6	6/5/1997		< 5 U	1.1			< 0.9 U				17		
MW-4	4 - 6	7/10/1991		8300	2300			160				32		
MW-4	4 - 6	7/10/1991		8900	2300			190				46		
SB-OBG-25	4 - 6	11/28/2005												
SB-OBG-26	4 - 6	11/28/2005	16300 EJ	1.9 NJ	10.7 *EJ	91.1	0.88 EJ	0.72 *J	2440 *EJ	13.5 *EJ	29.2 EJ	18.4 EJ		51400
SB-OBG-26	4 - 6	11/28/2005	13600 EJ	2.7 NJ	9.2 *EJ	78.6	0.74 EJ	< 0.0064 U*J	1400 *EJ	11.9 *EJ	28.9 EJ	16.7 EJ		29000
SB-OBG-27	4 - 6	12/12/2005												
SB-OBG-28A	4 - 6	12/12/2005												
SB-OBG-29	4 - 6	11/28/2005												
SB-OBG-30	4 - 6	11/28/2005												
SB-OBG-31	4 - 6	12/13/2005												
SB-OBG-32	4 - 6	11/29/2005												
SB-OBG-34	4 - 6	11/29/2005												
SB-OBG-35	4 - 6	11/29/2005												
SB-OBG-36	4 - 6	11/29/2005												
SB-OBG-38	4 - 6	11/29/2005												
SS-OBG-41	4 - 6	12/1/2005												
SS-OBG-42	4 - 6	12/1/2005												
SS-OBG-43	4 - 6	11/30/2005												
SS-OBG-44	4 - 6	11/30/2005												
SS-OBG-45	4 - 6	11/30/2005												
SS-OBG-46	4 - 6	11/28/2005												
SS-OBG-47	4 - 6	11/30/2005												
SS-OBG-51	4 - 6	11/28/2005												
SS-OBG-52	4 - 6	11/30/2005												
SS-OBG-53	4 - 6	11/30/2005												
SS-OBG-54	4 - 6	11/30/2005												
SS-OBG-56	4 - 6	12/1/2005												
SS-OBG-57	4 - 6	12/1/2005												
SY-24	4 - 6	1/27/1992												

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval (feet)	Criteria Date	SB	SB	SB	0.1	13 or SB	SB	2 or SB	SB	SB	SB	150 or SB	20 or SB
LB-9	4 - 6	9/1/1992	16000											
MW-13B	4 - 6	6/9/1997	19.5	7730	700	0.039	30	1320	< 1 U	< 1 U	100	< 1 U	20	99
MW-15A	4 - 6	6/10/1997	11.9											
MW-16	4 - 6	6/3/1997	36.3											
MW-17A	4 - 6	6/5/1997	12.5											
MW-4	4 - 6	7/10/1991	170000											
MW-4	4 - 6	7/10/1991	170000											
SB-OBG-25	4 - 6	11/28/2005												
SB-OBG-26	4 - 6	11/28/2005	571 *EJ	5220 EJ	602 *ER	0.048	24.9 EJ	735 EJ	2.1	< 0.019 U	140 *J	2.3	21.4 EJ	69.1 EJ
SB-OBG-26	4 - 6	11/28/2005	468 *EJ	4940 EJ	568 *ER	0.059	24.6 EJ	757 EJ	2.9	< 0.022 U	129 *J	2.3	17.8 EJ	68.7 EJ
SB-OBG-27	4 - 6	12/12/2005												
SB-OBG-28A	4 - 6	12/12/2005												
SB-OBG-29	4 - 6	11/28/2005												
SB-OBG-30	4 - 6	11/28/2005												
SB-OBG-31	4 - 6	12/13/2005												
SB-OBG-32	4 - 6	11/29/2005												
SB-OBG-34	4 - 6	11/29/2005												
SB-OBG-35	4 - 6	11/29/2005	191 EJ											
SB-OBG-36	4 - 6	11/29/2005												
SB-OBG-38	4 - 6	11/29/2005												
SS-OBG-41	4 - 6	12/1/2005	407 *EJ											
SS-OBG-42	4 - 6	12/1/2005	223 EJ											
SS-OBG-43	4 - 6	11/30/2005	68.6 *EJ											
SS-OBG-44	4 - 6	11/30/2005	22.1 *EJ											
SS-OBG-45	4 - 6	11/30/2005	60.1 *EJ											
SS-OBG-46	4 - 6	11/28/2005	81.5 EJ											
SS-OBG-47	4 - 6	11/30/2005	97.9 *EJ											
SS-OBG-51	4 - 6	11/28/2005	426 EJ											
SS-OBG-52	4 - 6	11/30/2005	284 EJ											
SS-OBG-53	4 - 6	11/30/2005	118 EJ											
SS-OBG-54	4 - 6	11/30/2005	54.3 EJ											
SS-OBG-56	4 - 6	12/1/2005	74.6 EJ											
SS-OBG-57	4 - 6	12/1/2005	118 EJ											
SY-24	4 - 6	1/27/1992	5300											

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium Metal	Cobalt	Copper	Chromium	Cyanide	Iron
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval	Criteria	SB	SB	7.5 or SB	300 or SB	0.16 or SB	1 or SB	SB	30 or SB	25 or SB	10 or SB		2000 or SB
Location iD	(feet)	Date												
SS-OBG-48	4 - 8	11/30/2005												
SY-19	4.5 - 5	1/27/1992												
SY-22	4.7 - 5.7	1/27/1992												
SY-21	5 - 6	1/27/1992												
SY-23	5 - 6	1/27/1992												
SY-19	5 - 6.5	1/27/1992												
SY-27	5 - 7	1/27/1992												
SY-27	5 - 7	1/27/1992												
SB-1	5.5 - 6	7/15/1991		0.56 J										
SB-2	5.5 - 6	7/15/1991		< 2.3 U										
SB-3	5.5 - 6	7/15/1991		0.6 J										
SY-22	5.7 - 6.7	1/27/1992												
SS-OBG-42	6 - 12	12/1/2005												
SS-OBG-49	6 - 12	11/30/2005												
SS-OBG-50	6 - 12	11/30/2005												
SS-OBG-57	6 - 12	12/1/2005												
LB-8	6 - 6.3	9/1/1992												
MW-3	6 - 6.5	7/10/1991		780	140			< ND U				27		
MW-5	6 - 6.5	7/10/1991		17	19			1.3				32		
SB-5	6 - 6.5	7/15/1991		3800										
SB-OBG-14	6 - 6.5	10/25/2001												
SB-OBG-21	6 - 6.5	11/6/2001												
SB-OBG-24	6 - 6.7	10/23/2001												
LB-6	6 - 7	9/1/1992												
MW-1	6 - 7	7/10/1991		17								21		
MW-14	6 - 7	7/10/1991			4.2			< ND U						
MW-2	6 - 7	7/10/1991		220	84			< ND U				19		
SY-20	6 - 7	1/27/1992												
SY-23	6 - 7	1/27/1992												
SB-OBG-23	6 - 7.1	11/5/2001												
SB-OBG-13	6 - 7.2	10/25/2001												
MW-23S	6 - 7.3	11/8/2001												
SB-OBG-22	6 - 7.8	11/6/2001												
BC-1	6 - 8	11/30/1993												

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval (feet)	Criteria Date	SB	SB	SB	0.1	13 or SB	SB	2 or SB	SB	SB	SB	150 or SB	20 or SB
SS-OBG-48	4 - 8	11/30/2005	35.9 *EJ											
SY-19	4.5 - 5	1/27/1992	400											
SY-22	4.7 - 5.7	1/27/1992	610											
SY-21	5 - 6	1/27/1992	12											
SY-23	5 - 6	1/27/1992	68											
SY-19	5 - 6.5	1/27/1992	150											
SY-27	5 - 7	1/27/1992	37											
SY-27	5 - 7	1/27/1992	350											
SB-1	5.5 - 6	7/15/1991	43 B											
SB-2	5.5 - 6	7/15/1991	32 B											
SB-3	5.5 - 6	7/15/1991	74 B											
SY-22	5.7 - 6.7	1/27/1992	43											
SS-OBG-42	6 - 12	12/1/2005	246 EJ											
SS-OBG-49	6 - 12	11/30/2005	42.6 EJ											
SS-OBG-50	6 - 12	11/30/2005	112 EJ											
SS-OBG-57	6 - 12	12/1/2005	79.8 EJ											
LB-8	6 - 6.3	9/1/1992	29000											
MW-3	6 - 6.5	7/10/1991	5900											
MW-5	6 - 6.5	7/10/1991	460											
SB-5	6 - 6.5	7/15/1991	340											
SB-OBG-14	6 - 6.5	10/25/2001	18.8											
SB-OBG-21	6 - 6.5	11/6/2001	8410											
SB-OBG-24	6 - 6.7	10/23/2001	49.1											
LB-6	6 - 7	9/1/1992	88											
MW-1	6 - 7	7/10/1991	2400											
MW-14	6 - 7	7/10/1991												
MW-2	6 - 7	7/10/1991	27000											
SY-20	6 - 7	1/27/1992	11											
SY-23	6 - 7	1/27/1992	180											
SB-OBG-23	6 - 7.1	11/5/2001	475											
SB-OBG-13	6 - 7.2	10/25/2001	21.0											
MW-23S	6 - 7.3	11/8/2001	14.5 J*											
SB-OBG-22	6 - 7.8	11/6/2001	12.2											
BC-1	6 - 8	11/30/1993	12											

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium Metal	Cobalt	Copper	Chromium	Cyanide	Iron
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval (feet)	Criteria Date	SB	SB	7.5 or SB	300 or SB	0.16 or SB	1 or SB	SB	30 or SB	25 or SB	10 or SB		2000 or SB
BC-2	6 - 8	11/30/1993												
BC-5	6 - 8	11/30/1993												
BC-6	6 - 8	11/30/1993												
BS-1	6 - 8	11/30/1993												
BS-3	6 - 8	11/30/1993												
BS-5	6 - 8	11/30/1993												
FB-1	6 - 8	12/15/1993												
FB-2	6 - 8	12/15/1993												
FB-4	6 - 8	12/15/1993												
FB-5	6 - 8	12/15/1993												
LB-10	6 - 8	9/1/1992												
LB-12	6 - 8	9/1/1992												
LB-4	6 - 8	9/1/1992												
LB-7	6 - 8	9/1/1992												
LB-9	6 - 8	9/1/1992												
MW-13B	6 - 8	6/9/1997	14900	< 5 U	8.2	52.8	< 0.9 U	< 0.9 U	1080	14	39	24		31700
MW-15A	6 - 8	6/10/1997		< 5 U	7			< 1 U				21		
MW-16	6 - 8	6/3/1997		< 5 U	6			< 1 U				24		
MW-17A	6 - 8	6/5/1997		< 5 U	4			< 0.9 U				20		
SB-OBG-25	6 - 8	11/25/2005												
SB-OBG-26	6 - 8	11/28/2005												
SB-OBG-27	6 - 8	12/12/2005												
SB-OBG-27	6 - 8	12/12/2005												
SB-OBG-28A	6 - 8	12/12/2005	15100	851	298	167	0.71	9.6	7510	13.9	142	26.4		39400
SB-OBG-29	6 - 8	11/28/2005												
SB-OBG-30	6 - 8	11/28/2005												
SB-OBG-31	6 - 8	12/13/2005												
SB-OBG-32	6 - 8	11/29/2005												
SB-OBG-35	6 - 8	11/29/2005												
SB-OBG-36	6 - 8	11/29/2005												
SB-OBG-38	6 - 8	11/29/2005												
SY-21	6 - 8	1/27/1992												
SY-26	6 - 8	1/27/1992												
SB-3	6.5 - 7	7/15/1991		1 J										

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval (feet)	Criteria Date	SB	SB	SB	0.1	13 or SB	SB	2 or SB	SB	SB	SB	150 or SB	20 or SB
BC-2	6 - 8	11/30/1993	33											
BC-5	6 - 8	11/30/1993	11											
BC-6	6 - 8	11/30/1993	13											
BS-1	6 - 8	11/30/1993	58											
BS-3	6 - 8	11/30/1993	16											
BS-5	6 - 8	11/30/1993	9.9 J											
FB-1	6 - 8	12/15/1993	28.4											
FB-2	6 - 8	12/15/1993	263											
FB-4	6 - 8	12/15/1993	976											
FB-5	6 - 8	12/15/1993	924											
LB-10	6 - 8	9/1/1992	1300											
LB-12	6 - 8	9/1/1992	2900											
LB-4	6 - 8	9/1/1992	62000											
LB-7	6 - 8	9/1/1992	710											
LB-9	6 - 8	9/1/1992	6400											
MW-13B	6 - 8	6/9/1997	30.8	7310	623	< 0.033 U	28	1690	< 0.9 U	< 0.9 U	109	< 0.9 U	21	86
MW-15A	6 - 8	6/10/1997	17.8											
MW-16	6 - 8	6/3/1997	48.1											
MW-17A	6 - 8	6/5/1997	13.3											
SB-OBG-25	6 - 8	11/25/2005												
SB-OBG-26	6 - 8	11/28/2005												
SB-OBG-27	6 - 8	12/12/2005												
SB-OBG-27	6 - 8	12/12/2005												
SB-OBG-28A	6 - 8	12/12/2005	39500 N*EJ	5770	671	0.19	35.8	1740	< 0.065 U	< 0.018 U	276	1.2	21.6	115
SB-OBG-29	6 - 8	11/28/2005												
SB-OBG-30	6 - 8	11/28/2005												
SB-OBG-31	6 - 8	12/13/2005												
SB-OBG-32	6 - 8	11/29/2005	993 EJ											
SB-OBG-35	6 - 8	11/29/2005												
SB-OBG-36	6 - 8	11/29/2005	60.2 EJ											
SB-OBG-38	6 - 8	11/29/2005												
SY-21	6 - 8	1/27/1992	38											
SY-26	6 - 8	1/27/1992	100											
SB-3	6.5 - 7	7/15/1991	120											

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium Metal	Cobalt	Copper	Chromium	Cyanide	Iron
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval	Criteria	SB	SB	7.5 or SB	300 or SB	0.16 or SB	1 or SB	SB	30 or SB	25 or SB	10 or SB		2000 or SB
Location ib	(feet)	Date												
SY-19	6.5 - 7.5	1/27/1992												
SY-22	6.7 - 8.7	1/27/1992												
SB-1	7 - 7.5	7/15/1991		3.5										
SB-2	7 - 7.5	7/15/1991		0.46 J										
SY-19	7.5 - 8.5	1/27/1992												
BC-1	8 - 10	11/30/1993												
BC-6	8 - 10	11/30/1993												
BS-1	8 - 10	11/30/1993												
FB-1	8 - 10	12/15/1993												
FB-2	8 - 10	12/15/1993												
FB-2	8 - 10	12/15/1993												
FB-3	8 - 10	12/15/1993												
FB-4	8 - 10	12/15/1993												
FB-5	8 - 10	12/15/1993												
LB-11	8 - 10	9/1/1992												
LB-12	8 - 10	9/1/1992												
LB-4	8 - 10	9/1/1992												
LB-4	8 - 10	9/1/1992												
LB-7	8 - 10	9/1/1992												
LB-8	8 - 10	9/1/1992												
LB-9	8 - 10	9/1/1992												
MW-13B	8 - 10	6/9/1997	12500	< 4 U	6.5	31.7	< 0.7 U	< 0.7 U	1300	14	35	18		28800
MW-15A	8 - 10	6/10/1997		< 4 U	7			< 0.7 U				25		
MW-16	8 - 10	6/3/1997		< 5 U	7			< 1 U				23		
SB-OBG-25	8 - 10	11/25/2005												
SB-OBG-26	8 - 10	11/28/2005												
SB-OBG-27	8 - 10	12/12/2005												
SB-OBG-28A	8 - 10	12/12/2005	15700	1800	358	129	0.73	11.4	5970	14	244	26.6		32300
SB-OBG-29	8 - 10	11/28/2005												
SB-OBG-30	8 - 10	11/28/2005												
SB-OBG-31	8 - 10	12/13/2005												
SB-OBG-33	8 - 10	11/29/2005												
SB-OBG-34	8 - 10	11/29/2005												
SB-OBG-36	8 - 10	11/29/2005												

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval (feet)	Criteria Date	SB	SB	SB	0.1	13 or SB	SB	2 or SB	SB	SB	SB	150 or SB	20 or SB
SY-19	6.5 - 7.5	1/27/1992	34											
SY-22	6.7 - 8.7	1/27/1992	16											
SB-1	7 - 7.5	7/15/1991	310											
SB-2	7 - 7.5	7/15/1991	12 B											
SY-19	7.5 - 8.5	1/27/1992	120											
BC-1	8 - 10	11/30/1993	24											
BC-6	8 - 10	11/30/1993	19											
BS-1	8 - 10	11/30/1993	17											
FB-1	8 - 10	12/15/1993	37											
FB-2	8 - 10	12/15/1993	6090											
FB-2	8 - 10	12/15/1993	4590											
FB-3	8 - 10	12/15/1993	146											
FB-4	8 - 10	12/15/1993	745											
FB-5	8 - 10	12/15/1993	602											
LB-11	8 - 10	9/1/1992	55											
LB-12	8 - 10	9/1/1992	8700											
LB-4	8 - 10	9/1/1992	29 J											
LB-4	8 - 10	9/1/1992	54 J											
LB-7	8 - 10	9/1/1992	1100											
LB-8	8 - 10	9/1/1992	520											
LB-9	8 - 10	9/1/1992	4600											
MW-13B	8 - 10	6/9/1997	16	6690	613	< 0.033 U	26	1140	< 0.7 U	< 0.7 U	121	< 0.7 U	17	76
MW-15A	8 - 10	6/10/1997	17.9											
MW-16	8 - 10	6/3/1997	15											
SB-OBG-25	8 - 10	11/25/2005	228 EJ											
SB-OBG-26	8 - 10	11/28/2005												
SB-OBG-27	8 - 10	12/12/2005	555 N*EJ											
SB-OBG-28A	8 - 10	12/12/2005	62600 N*EJ	6470	659	0.31	41.4	1110	< 0.065 U	< 0.018 U	199	1.8	20.8	99.1
SB-OBG-29	8 - 10	11/28/2005												
SB-OBG-30	8 - 10	11/28/2005												
SB-OBG-31	8 - 10	12/13/2005	135 N*ER											
SB-OBG-33	8 - 10	11/29/2005												
SB-OBG-34	8 - 10	11/29/2005												
SB-OBG-36	8 - 10	11/29/2005	2250 EJ											

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium Metal	Cobalt	Copper	Chromium	Cyanide	Iron
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval	Criteria	SB	SB	7.5 or SB	300 or SB	0.16 or SB	1 or SB	SB	30 or SB	25 or SB	10 or SB		2000 or SB
Location ID	(feet)	Date												
SB-OBG-38	8 - 10	11/29/2005												
SB-OBG-38	8 - 10	11/29/2005												
SY-20	8 - 10	1/27/1992												
SY-20	8 - 10	1/27/1992												
MW-3	8 - 8.5	7/10/1991		20	58			< ND U				25		
MW-5	8 - 8.5	7/10/1991		35	4.6			< ND U				28		
MW-26	8 - 8.7	11/8/2001												
BS-3	8 - 9	11/30/1993												
LB-6	8 - 9	9/1/1992												
MW-1	8 - 9	7/10/1991		290	49			< ND U				28		
MW-2	8 - 9	7/10/1991		1.8 J	5.2			< ND U				19		
SY-21	8 - 9	1/27/1992												
SB-OBG-23	8 - 9.3	11/5/2001												
BS-5	8 - 9.5	11/30/1993												
BS-5	8 - 9.5	11/30/1993												
SB-OBG-12	8 - 9.6	10/23/2001												
SB-OBG-11	8.3 - 9.6	10/24/2001												
SB-OBG-11	8.3 - 9.6	10/24/2001												
SY-19	8.5 - 10.5	1/27/1992												
SB-1	8.5 - 9	7/15/1991		0.84 J										
SB-2	8.5 - 9	7/15/1991		0.8 J										
SY-22	8.7 - 10	1/27/1992												
SY-21	9 - 10	1/27/1992												

B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-7
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Inorganic Results

			Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Location ID	Depth Interval	Criteria	SB	SB	SB	0.1	13 or SB	SB	2 or SB	SB	SB	SB	150 or SB	20 or SB
Location ID	(feet)	Date												
SB-OBG-38	8 - 10	11/29/2005												
SB-OBG-38	8 - 10	11/29/2005												
SY-20	8 - 10	1/27/1992	10											
SY-20	8 - 10	1/27/1992	13											
MW-3	8 - 8.5	7/10/1991	210											
MW-5	8 - 8.5	7/10/1991	1000											
MW-26	8 - 8.7	11/8/2001	189 J*											
BS-3	8 - 9	11/30/1993	42											
LB-6	8 - 9	9/1/1992	50											
MW-1	8 - 9	7/10/1991	17000											
MW-2	8 - 9	7/10/1991	62 B											
SY-21	8 - 9	1/27/1992	9.5											
SB-OBG-23	8 - 9.3	11/5/2001	44.2											
BS-5	8 - 9.5	11/30/1993	17											
BS-5	8 - 9.5	11/30/1993	28											
SB-OBG-12	8 - 9.6	10/23/2001	873											
SB-OBG-11	8.3 - 9.6	10/24/2001	20.2											
SB-OBG-11	8.3 - 9.6	10/24/2001	38.3											
SY-19	8.5 - 10.5	1/27/1992	22											
SB-1	8.5 - 9	7/15/1991	35 B											
SB-2	8.5 - 9	7/15/1991	20 B											
SY-22	8.7 - 10	1/27/1992	11											
SY-21	9 - 10	1/27/1992	11											

Notes: U - not detected, J - estimated, D - result from dilution B - assciated blank contamination, * - RPD greater than 20%.

E - recovery greater than 10% for serial dilution, --- not analyzed.

Table J-8
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - TCLP Inorganic Results

		Chemical Name	Antimony	Arsenic	Barium	Cadmium	Chromium	Lead	Lead	Mercury	Selenium	Silver
Location ID	Depth Interval	Unit	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
	(feet)	Sample Date										
BC-1	0 - 1	11/30/1993						28000				
BC-2	0 - 1	11/30/1993						16000				
BC-3	1 - 2	11/30/1993						1200				
BC-3	2 - 2.6	11/30/1993						1600				
BC-3	0 - 1	11/30/1993						7100				
BC-5	0 - 1	11/30/1993						21000				
BC-6	2 - 4	11/30/1993						2600				
BC-6	0 - 1	11/30/1993						5900 D				
BS-1	0 - 1	11/30/1993						1500				
BS-5	0 - 1	11/30/1993						600				
FB-1	0 - 1	12/15/1993						276000				
FB-1	2 - 4	12/15/1993						121000				
FB-1	8 - 10	12/15/1993						< ND U				
FB-1	4 - 6	12/15/1993						395000				
FB-1	6 - 8	12/15/1993						< ND U				
FB-2	6 - 8	12/15/1993						2100				
FB-2	4 - 6	12/15/1993						192000				
FB-2	0 - 1	12/15/1993						134000				
FB-2	8 - 10	12/15/1993						25700				
FB-2	2 - 4	12/15/1993						398000				
FB-2	8 - 10	12/15/1993						67200				
FB-3	8 - 10	12/15/1993						1200				
FB-3	0 - 1	12/15/1993						4400				
FB-4	4 - 6	12/15/1993						2100				
FB-4	8 - 10	12/15/1993						300				
FB-4	2 - 4	12/15/1993						355000				
FB-4	6 - 8	12/15/1993						2100				
FB-4	0 - 2	12/15/1993						228000				
FB-5	2 - 4	12/15/1993						18600				
FB-5	4 - 6	12/15/1993						300				
FB-5	8 - 10	12/15/1993						1900				

B - assciated blank contamination,

E - recovery greater than 10% for serial dilution.

Table J-8
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - TCLP Inorganic Results

		Chemical Name	Antimony	Arsenic	Barium	Cadmium	Chromium	Lead	Lead	Mercury	Selenium	Silver
Location ID	Depth Interval	Unit	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
Location ID	(feet)	Sample Date										
FB-5	6 - 8	12/15/1993						11900				
FB-5	0 - 2	12/15/1993						300				
LB-10	16 - 18	9/1/1992						34000	13			
LB-10	2 - 3	9/1/1992						410000	54000			
LB-10	0 - 2	9/1/1992						200000	3000			
LB-10	6 - 8	9/1/1992						47000	72			
LB-12	1 - 2	9/1/1992						180000	440			
LB-12	12 - 14	9/1/1992						4100	63			
LB-12	8 - 10	9/1/1992						630000	870			
LB-12	6 - 8	9/1/1992						14000	1600			
LB-4	6 - 8	9/1/1992						250000	3100			
LB-4	2 - 4	9/1/1992						130000	220			
LB-4	0 - 2	9/1/1992						79000	480			
LB-4	4 - 6	9/1/1992						36000	40			
LB-6	0 - 2	9/1/1992						570000	100000			
LB-6	2 - 4	9/1/1992						7800	1600			
LB-8	4 - 6	9/1/1992						59000 J	4300			
LB-8	8 - 10	9/1/1992						48000	1000			
LB-8	6 - 6.3	9/1/1992						24000	1000			
LB-8	4 - 6	9/1/1992						4400 J	3600			
LB-8	0 - 2	9/1/1992						270000	3500			
SB-1	10 - 10.5	7/15/1991						1300	< 500 U			
SB-1	4 - 4.5	7/15/1991						400 J	190 J			
SB-1	1.5 - 2	7/15/1991						< 530 U	< 500 U			
SB-1	8.5 - 9	7/15/1991						260 J	< 500 U			
SB-1	5.5 - 6	7/15/1991						< 530 U	< 500 U			
SB-1	2.5 - 3	7/15/1991						< 530 U	< 500 U			
SB-1	7 - 7.5	7/15/1991						1200	< 500 U			
SB-2	8.5 - 9	7/15/1991						< 530 U	< 500 U			
SB-2	7 - 7.5	7/15/1991						< 530 U	< 500 U			
SB-2	4 - 4.5	7/15/1991						< 530 U	< 500 U			

B - assciated blank contamination,

E - recovery greater than 10% for serial dilution.

Table J-8
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - TCLP Inorganic Results

		Chemical Name	Antimony	Arsenic	Barium	Cadmium	Chromium	Lead	Lead	Mercury	Selenium	Silver
Location ID	Depth Interval (feet)	Unit	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
	, ,	Sample Date										
SB-2	11.5 - 12	7/15/1991						27000 J	< 500 U			
SB-2	5.5 - 6	7/15/1991						330 J	< 500 U			
SB-2	1.5 - 2	7/15/1991						750 B	< 500 U			
SB-2	2.5 - 3	7/15/1991						< 530 U	< 500 U			
SB-2	10 - 10.5	7/15/1991						< 530 U	< 500 U			
SB-3	2.5 - 3	7/15/1991						< 520 U	< 500 U			
SB-3	6.5 - 7	7/15/1991						< 520 U	< 500 U			
SB-3	1.5 - 2	7/15/1991						< 530 U	< 500 U			
SB-3	4 - 4.5	7/15/1991						< 520 U	< 500 U			
SB-3	5.5 - 6	7/15/1991						< 520 U	< 500 U			
SB-4	4 - 5	7/15/1991						910	< 500 U			
SB-4	1.5 - 2	7/15/1991						6500	< 500 U			
SB-4	2 - 2.6	7/15/1991						920	< 500 U			
SB-4	4 - 5	7/15/1991						870	< 500 U			
SB-5	1.5 - 2	7/15/1991						1600	< 500 U			
SB-5	4 - 4.5	7/15/1991						240000	63000			
SB-5	6 - 6.5	7/15/1991						7400	610 B			
SB-OBG-11	2 - 2.9	10/24/2001							2020			
SB-OBG-12	8 - 9.6	10/23/2001							103000			
SB-OBG-12	0 - 1.6	10/25/2001							246			
SB-OBG-21	4 - 5.1	11/6/2001							3490			
SB-OBG-25	6 - 8	11/25/2005							1130 EJ			
SB-OBG-25	2 - 4	11/25/2005							381 EJ			
SB-OBG-25	8 - 10	11/25/2005							1660 EJ			
SB-OBG-25	0 - 2	11/28/2005							2270 EJ			
SB-OBG-25	4 - 6	11/28/2005							352 EJ			
SB-OBG-26	6 - 8	11/28/2005							1140 EJ			
SB-OBG-26	2 - 4	11/28/2005							< 58.2 UJE			
SB-OBG-26	8 - 10	11/28/2005							< 104 EJU			
SB-OBG-26	10 - 12	11/28/2005							3470 EJ			
SB-OBG-26	4 - 6	11/28/2005							16700 EJ			

B - assciated blank contamination,

E - recovery greater than 10% for serial dilution.

Table J-8
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - TCLP Inorganic Results

		Chemical Name	Antimony	Arsenic	Barium	Cadmium	Chromium	Lead	Lead	Mercury	Selenium	Silver
	Depth Interval	Unit	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
Location ID	(feet)	Sample Date	00,1	0 0/ =	0 0, =	00/2	00/2	0 0, =	00/2	0 0/ 2	00,2	0 0, 1
SB-OBG-26	4 - 6	11/28/2005							12700 EJ			
SB-OBG-26	12 - 14	11/28/2005							19600 EJ			
SB-OBG-26	0 - 2	11/28/2005		329	240	61.4 EJ	9.4 B		260000 EJ	< 0.064 U	6.5 B	2.3 B
SB-OBG-26	0 - 2	11/28/2005		50.4	210	41.4 EJ	2.1 B		92100 EJ	< 0.068 U	10.7 B	1.1 B
SB-OBG-27	10 - 12	12/12/2005		21.3	504	19 EJ	< 0.38 U		7680	< 0.047 U	9.9 B	< 0.91 U
SB-OBG-27	6 - 8	12/12/2005							55300			
SB-OBG-27	8 - 10	12/12/2005							10100			
SB-OBG-27	2 - 4	12/12/2005							662			
SB-OBG-27	0 - 2	12/12/2005							2460			
SB-OBG-27	4 - 6	12/12/2005		35.4	512	19.9 EJ	< 0.38 U		10300	< 0.047 U	8.7 B	< 0.91 U
SB-OBG-27	12 - 14	12/12/2005							1800			
SB-OBG-27	6 - 8	12/12/2005							136000			
SB-OBG-28	0 - 2	12/12/2005		12500	19.4 B	700 EJ	2.1 B		121000	< 0.047 U	16.5 B	< 0.91 U
SB-OBG-28	2 - 4	12/12/2005							210000			
SB-OBG-28A	8 - 10	12/12/2005							300000			
SB-OBG-28A	18 - 20	12/12/2005							6100 EJ			
SB-OBG-28A	16 - 18	12/12/2005							371			
SB-OBG-28A	12 - 14	12/12/2005		21.2	620	39.3 EJ	2.7 B		6310	< 0.047 U	13.2 B	< 0.91 U
SB-OBG-28A	10 - 12	12/12/2005							167000			
SB-OBG-28A	0 - 2	12/12/2005		2510	14 B	395 EJ	1.3 B		316000	< 0.047 U	12.7 B	< 0.91 U
SB-OBG-28A	14 - 16	12/12/2005							3590 EJ			
SB-OBG-28A	4 - 6	12/12/2005		4380	40.2 B	465 EJ	1.9 B		1010000	< 0.047 U	16.4 B	< 0.91 U
SB-OBG-28A	2 - 4	12/12/2005		9.3 B	131 B	11.6 EJ	< 0.38 U		78700	< 0.47 U	8.3 B	< 0.91 U
SB-OBG-28A	6 - 8	12/12/2005							82900			
SB-OBG-28A	22 - 24	12/12/2005							11300 EJ			
SB-OBG-28A	20 - 22	12/12/2005							10000 EJ			
SB-OBG-28A	20 - 22	12/12/2005							39700 EJ			
SB-OBG-29	6 - 8	11/28/2005							< 110 UEJ			
SB-OBG-29	4 - 6	11/28/2005							< 159 UEJ			
SB-OBG-29	0 - 2	11/28/2005							48300 EJ			
SB-OBG-29	8 - 10	11/28/2005							< 48.9 UEJ			

B - assciated blank contamination,

E - recovery greater than 10% for serial dilution.

Table J-8
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - TCLP Inorganic Results

		Chemical Name	Antimony	Arsenic	Barium	Cadmium	Chromium	Lead	Lead	Mercury	Selenium	Silver
Location ID	Depth Interval	Unit	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
Location ID	(feet)	Sample Date										
SB-OBG-29	10 - 12	11/28/2005							898 EJ			
SB-OBG-29	12 - 13	11/28/2005		145	439	11.6 EJ	3.3 B		38200 EJ	< 0.066 U	4.8 B	1.2 B
SB-OBG-29	2 - 4	11/28/2005							446 EJ			
SB-OBG-30	10 - 12	11/28/2005							3820 EJ			
SB-OBG-30	8 - 10	11/28/2005							18000 EJ			
SB-OBG-30	0 - 2	11/28/2005							4540 EJ			
SB-OBG-30	2 - 4	11/28/2005							24700 EJ			
SB-OBG-30	4 - 6	11/28/2005							6020 EJ			
SB-OBG-30	12 - 13	11/28/2005							18100 EJ			
SB-OBG-30	6 - 8	11/28/2005							10800 EJ			
SB-OBG-31	2 - 4	12/13/2005							4520 EJ			
SB-OBG-31	6 - 8	12/13/2005		25.7	480	18.2	4.1 B		28000	< 0.047 U	8.8 B	< 0.91 U
SB-OBG-31	14 - 16	12/13/2005							93.3 EJ			
SB-OBG-31	16 - 17	12/13/2005							1090 EJ			
SB-OBG-31	8 - 10	12/13/2005							3120 EJ			
SB-OBG-31	10 - 12	12/13/2005							385 EJ			
SB-OBG-31	4 - 6	12/13/2005		32.9	549	19.9	< 0.38 U		57600	< 0.047 U	8.9 B	< 0.91 U
SB-OBG-31	12 - 14	12/13/2005							35.4 EJ			
SB-OBG-31	2 - 4	12/13/2005							139 EJ			
SB-OBG-31	0 - 2	12/13/2005							6110 EJ			
SB-OBG-31	12 - 14	12/13/2005							30 EJ			
SB-OBG-32	6 - 8	11/29/2005							39900			
SB-OBG-32	2 - 4	11/29/2005							7290			
SB-OBG-32	4 - 6	11/29/2005							30800			
SB-OBG-32	0 - 2	11/29/2005							188000			
SB-OBG-32	12 - 14	11/29/2005							6460			
SB-OBG-32	10 - 12	11/29/2005							243			
SB-OBG-33	2 - 4	11/29/2005							266			
SB-OBG-33	0 - 2	11/29/2005							213			
SB-OBG-33	12 - 13	11/29/2005							822			
SB-OBG-33	12 - 14	11/29/2005							76.5			

B - assciated blank contamination,

E - recovery greater than 10% for serial dilution.

Table J-8
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - TCLP Inorganic Results

		Chemical Name	Antimony	Arsenic	Barium	Cadmium	Chromium	Lead	Lead	Mercury	Selenium	Silver
	Depth Interval	Unit	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
Location ID	(feet)	Sample Date										
SB-OBG-33	8 - 10	11/29/2005							11.6			
SB-OBG-34	8 - 10	11/29/2005							3860			
SB-OBG-34	2 - 4	11/29/2005							1670			
SB-OBG-34	0 - 2	11/29/2005							742			
SB-OBG-34	12 - 13	11/29/2005							7.9 B			
SB-OBG-34	10 - 12	11/29/2005							158			
SB-OBG-34	4 - 6	11/29/2005							20.2			
SB-OBG-35	0 - 2	11/29/2005							1160			
SB-OBG-35	2 - 4	11/29/2005							660			
SB-OBG-35	4 - 6	11/29/2005							701			
SB-OBG-35	6 - 8	11/29/2005							191			
SB-OBG-36	2 - 4	11/29/2005							68.7			
SB-OBG-36	0 - 2	11/29/2005							13000			
SB-OBG-36	10 - 11	11/29/2005							8.4 B			
SB-OBG-36	6 - 8	11/29/2005							760			
SB-OBG-36	4 - 6	11/29/2005							153			
SB-OBG-36	8 - 10	11/29/2005							1290			
SB-OBG-37	2 - 4	12/13/2005		56.4	350	20.8	< 0.38 U		109000	< 0.047 U	8.6 B	< 0.91 U
SB-OBG-37	0 - 2	12/13/2005							5780 EJ			
SB-OBG-37	4 - 5	12/13/2005							11700 EJ			
SB-OBG-37A	2 - 4	12/13/2005		62	242	16.3	< 0.38 U		111000	< 0.047 U	17.4 B	< 0.91 U
SB-OBG-37A	0 - 2	12/13/2005							12800 EJ			
SB-OBG-38	0 - 2	11/29/2005							194000			
SB-OBG-38	8 - 10	11/29/2005							56700			
SB-OBG-38	8 - 10	11/29/2005							78200			
SB-OBG-38	6 - 8	11/29/2005							30400			
SB-OBG-38	4 - 6	11/29/2005							365000			
SB-OBG-38	2 - 4	11/29/2005		374	8.8 B	88.9	< 0.38 U		404000	< 0.071 U	16.9 B	< 0.91 U
SS-1	0.5 - 1	7/10/1991							< 500 U			
SS-1	1 - 1.5	7/10/1991							< 500 U			
SS-1	1.5 - 2	7/10/1991							< 500 U			

B - assciated blank contamination,

E - recovery greater than 10% for serial dilution.

Table J-8
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - TCLP Inorganic Results

		Chemical Name	Antimony	Arsenic	Barium	Cadmium	Chromium	Lead	Lead	Mercury	Selenium	Silver
	Depth Interval	Unit	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
Location ID	(feet)	Sample Date										
SS-10	1.5 - 2	7/10/1991							< 500 U			
SS-11	1.5 - 2	7/10/1991							210 J			
SS-2	1.5 - 2	7/10/1991							< 500 U			
SS-2	1 - 1.5	7/10/1991							< 500 U			
SS-2	0.5 - 1	7/10/1991							< 500 U			
SS-3	0.5 - 1	7/10/1991							< 500 U			
SS-3	1 - 1.5	7/10/1991							< 500 U			
SS-3	1.5 - 2	7/10/1991							170 J			
SS-4	1 - 1.5	7/10/1991							< 500 U			
SS-5	1 - 1.5	7/10/1991							410 J			
SS-6	1.5 - 2	7/10/1991							< 500 U			
SS-7	0.5 - 1	7/10/1991							< 500 U			
SS-7	0.5 - 1	7/10/1991							< 500 U			
SS-7	1 - 1.5	7/10/1991							< 500 U			
SS-7	1.5 - 2	7/10/1991							< 500 U			
SS-8	1.5 - 2	7/10/1991							< 500 U			
SS-9	0.5 - 1	7/10/1991							< 500 U			
SS-9	1.5 - 2	7/10/1991							< 500 U			
SS-9	1 - 1.5	7/10/1991							< 500 U			
SY-1	1.5 - 2	7/10/1991	< 590 U	< 510 U		< 110 U						
SY-1	2.5 - 3	7/10/1991	< 590 U	< 510 U		< 110 U						
SY-2	2.5 - 3	7/10/1991	< 590 U	< 510 U		< 110 U						
SY-2	0 - 0.6	7/10/1991	< 590 U	< 510 U		< 110 U						
SY-2	1.1 - 1.5	7/10/1991	7900	1300		100 J						
SY-2	0.6 - 1.1	7/10/1991	220 J	< 510 U		26 J						
SY-2	1.5 - 2	7/10/1991	380 J	< 510 U		< 110 U						
SY-2	2 - 2.5	7/10/1991	< 590 U	< 0.51 U		< 110 U						
SY-3	1.5 - 2	7/10/1991	1400	370 J		25 J						
SY-3	2.5 - 3	7/10/1991	< 590 U	< 0.51 U		< 110 U						
TP-02	1.3 - 1.5	12/15/2001							60000			

B - assciated blank contamination,

E - recovery greater than 10% for serial dilution.

Table J-9
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Volatile Organic Compounds Results

	De	epth Interval (ft)	0 - 1.3	0 - 2	2 - 2.9	0 - 1.6
		Location ID	SB-OBG-03	SB-OBG-09	SB-OBG-11	SB-OBG-12
		Sample Date	10/24/2001	10/25/2001	10/24/2001	10/23/2001
		Sample ID	SB-OBG-03_10242001N-1	SB-OBG-09_10252001N-1	SB-OBG-11_10242001N-1	SB-OBG-12_10232001N-1
Chemical Name	Unit	Action Level				
1,1,1-Trichloroethane	ug/Kg	800	< 11 U	< 11 U	< 11 U	< 11 U
1,1,2,2-Tetrachloroethane	ug/Kg	600	< 11 U	< 11 U	< 11 U	< 11 U
1,1,2-Trichloroethane	ug/Kg		< 11 U	< 11 U	< 11 U	< 11 U
1,1-Dichloroethane	ug/Kg	200	< 11 U	< 11 U	< 11 U	< 11 U
1,1-Dichloroethene	ug/Kg	400	< 11 U	< 11 U	< 11 U	< 11 U
1,2-Dichloroethane	ug/Kg	100	< 11 U	< 11 U	< 11 U	< 11 U
1,2-Dichloropropane	ug/Kg		< 11 U	< 11 U	< 11 U	< 11 U
2-Hexanone	ug/Kg		< 11 U	< 11 U	< 11 U	< 11 U
4-Methyl-2-pentanone	ug/Kg	1000	< 11 U	< 11 U	< 11 U	< 11 U
Acetone	ug/Kg	200	< 11 U	8 J	8 J	< 11 U
Benzene	ug/Kg	60	< 11 U	< 11 U	< 11 U	< 11 U
Bromodichloromethane	ug/Kg		< 11 U	< 11 U	< 11 U	< 11 U
Bromoform	ug/Kg		< 11 U	< 11 U	< 11 U	< 11 U
Bromomethane	ug/Kg		< 11 U	< 11 U	< 11 U	< 11 U
Carbon disulfide	ug/Kg	2700	< 11 U	< 11 U	< 11 U	< 11 U
Carbon tetrachloride	ug/Kg	600	< 11 U	< 11 U	< 11 U	< 11 U
Chlorobenzene	ug/Kg	1700	< 11 U	< 11 U	< 11 U	< 11 U
Chloroethane	ug/Kg	1900	< 11 U	< 11 U	< 11 U	< 11 U
Chloroform	ug/Kg	300	< 11 U	< 11 U	< 11 U	< 11 U
cis-1,2-Dichloroethene	ug/Kg		< 11 U	< 11 U	< 11 U	< 11 U
cis-1,3-Dichloropropene	ug/Kg		< 11 U	< 11 U	< 11 U	< 11 U
Dibromochloromethane	ug/Kg		< 11 U	< 11 U	< 11 U	< 11 U
Ethylbenzene	ug/Kg	5500	< 11 U	< 11 U	< 11 U	< 11 U
Methyl chloride	ug/Kg		< 11 U	< 11 U	< 11 U	< 11 U
Methyl ethyl ketone	ug/Kg	300	< 11 U	< 11 U	< 11 U	< 11 U
Methylene chloride	ug/Kg	100	< 11.5 U	< 10.8 U	< 11.2 U	< 10.8 U
Styrene	ug/Kg		< 11 U	< 11 U	< 11 U	< 11 U
Tetrachloroethene	ug/Kg	1400	< 11 U	< 11 U	< 11 U	< 11 U
Toluene	ug/Kg	1500	< 11 U	< 11 U	< 11 U	< 11 U
trans-1,2-Dichloroethene	ug/Kg	300	< 11 U	< 11 U	< 11 U	< 11 U
trans-1,3-Dichloropropene	ug/Kg		< 11 U	< 11 U	< 11 U	< 11 U
Trichloroethene	ug/Kg	700	< 11 U	< 11 U	< 11 U	< 11 U
Vinyl chloride	ug/Kg	200	< 11 U	< 11 U	< 11 U	< 11 U
Xylenes, Total	ug/Kg	1200	< 11 U	< 11 U	< 11 U	< 11 U

Table J-9
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Volatile Organic Compounds Results

	De	epth Interval (ft)	2 - 3.4	2 - 3.4	2 - 3.7	0 - 1.9
		Location ID	SB-OBG-13	SB-OBG-13	SB-OBG-16	SB-OBG-18
		Sample Date	10/25/2001	10/25/2001	10/25/2001	10/24/2001
		Sample ID	SB-OBG-13_10252001N-2	SB-OBG-13_10252001FD-2	SB-OBG-16_10252001N-2	SB-OBG-18_10242001N-1
Chemical Name	Unit	Action Level				
1,1,1-Trichloroethane	ug/Kg	800	< 11 U	< 11 U	< 11 U	< 11 U
1,1,2,2-Tetrachloroethane	ug/Kg	600	< 11 U	< 11 U	< 11 U	< 11 U
1,1,2-Trichloroethane	ug/Kg		< 11 U	< 11 U	< 11 U	< 11 U
1,1-Dichloroethane	ug/Kg	200	< 11 U	< 11 U	< 11 U	< 11 U
1,1-Dichloroethene	ug/Kg	400	< 11 U	< 11 U	< 11 U	< 11 U
1,2-Dichloroethane	ug/Kg	100	< 11 U	< 11 U	< 11 U	< 11 U
1,2-Dichloropropane	ug/Kg		< 11 U	< 11 U	< 11 U	< 11 U
2-Hexanone	ug/Kg		< 11 U	< 11 U	< 11 U	< 11 U
4-Methyl-2-pentanone	ug/Kg	1000	< 11 U	< 11 U	< 11 U	< 11 U
Acetone	ug/Kg	200	< 11 U	13	< 11 U	< 11 U
Benzene	ug/Kg	60	< 11 U	< 11 U	< 11 U	< 11 U
Bromodichloromethane	ug/Kg		< 11 U	< 11 U	< 11 U	< 11 U
Bromoform	ug/Kg		< 11 U	< 11 U	< 11 U	< 11 U
Bromomethane	ug/Kg		< 11 U	< 11 U	< 11 U	< 11 U
Carbon disulfide	ug/Kg	2700	< 11 U	< 11 U	< 11 U	< 11 U
Carbon tetrachloride	ug/Kg	600	< 11 U	< 11 U	< 11 U	< 11 U
Chlorobenzene	ug/Kg	1700	< 11 U	< 11 U	< 11 U	< 11 U
Chloroethane	ug/Kg	1900	< 11 U	< 11 U	< 11 U	< 11 U
Chloroform	ug/Kg	300	< 11 U	< 11 U	< 11 U	< 11 U
cis-1,2-Dichloroethene	ug/Kg		< 11 U	< 11 U	< 11 U	< 11 U
cis-1,3-Dichloropropene	ug/Kg		< 11 U	< 11 U	< 11 U	< 11 U
Dibromochloromethane	ug/Kg		< 11 U	< 11 U	< 11 U	< 11 U
Ethylbenzene	ug/Kg	5500	< 11 U	< 11 U	< 11 U	< 11 U
Methyl chloride	ug/Kg		< 11 U	< 11 U	< 11 U	< 11 U
Methyl ethyl ketone	ug/Kg	300	< 11 U	< 11 U	< 11 U	< 11 U
Methylene chloride	ug/Kg	100	< 10.8 U	< 11.0 U	< 10.9 U	< 11 U
Styrene	ug/Kg		< 11 U	< 11 U	< 11 U	< 11 U
Tetrachloroethene	ug/Kg	1400	< 11 U	< 11 U	< 11 U	< 11 U
Toluene	ug/Kg	1500	< 11 U	< 11 U	< 11 U	< 11 U
trans-1,2-Dichloroethene	ug/Kg	300	< 11 U	< 11 U	< 11 U	< 11 U
trans-1,3-Dichloropropene	ug/Kg		< 11 U	< 11 U	< 11 U	< 11 U
Trichloroethene	ug/Kg	700	< 11 U	< 11 U	< 11 U	< 11 U
Vinyl chloride	ug/Kg	200	< 11 U	< 11 U	< 11 U	< 11 U
Xylenes, Total	ug/Kg	1200	< 11 U	< 11 U	< 11 U	< 11 U

Table J-9
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Volatile Organic Compounds Results

	De	epth Interval (ft)	1 - 1.5	0 - 1.5	
	D(Location ID	SS-OBG-14	SS-OBG-14	
		Sample Date	10/26/2001	10/26/2001	
		Sample ID	SS-OBG-14_10262001FD-2		
Chemical Name	Unit	Action Level	00 000 14_102020011 0 2	00 0D0 14_102020011V 2	
1,1,1-Trichloroethane	ug/Kg	800	< 11 U	< 11 U	
1,1,2,2-Tetrachloroethane	ug/Kg	600	< 11 U	< 11 U	
1.1.2-Trichloroethane	ug/Kg		< 11 U	< 11 U	
1.1-Dichloroethane	ug/Kg	200	< 11 U	< 11 U	
1,1-Dichloroethene	ug/Kg	400	< 11 U	< 11 U	
1,2-Dichloroethane	ug/Kg	100	< 11 U	< 11 U	
1,2-Dichloropropane	ug/Kg		< 11 U	< 11 U	
2-Hexanone	ug/Kg		< 11 U	< 11 U	
4-Methyl-2-pentanone	ug/Kg	1000	< 11 U	< 11 U	
Acetone	ug/Kg	200	< 11 U	< 11 U	
Benzene	ug/Kg	60	< 11 U	< 11 U	
Bromodichloromethane	ug/Kg		< 11 U	< 11 U	
Bromoform	ug/Kg		< 11 U	< 11 U	
Bromomethane	ug/Kg		< 11 U	< 11 U	
Carbon disulfide	ug/Kg	2700	< 11 U	< 11 U	
Carbon tetrachloride	ug/Kg	600	< 11 U	< 11 U	
Chlorobenzene	ug/Kg	1700	< 11 U	< 11 U	
Chloroethane	ug/Kg	1900	< 11 U	< 11 U	
Chloroform	ug/Kg	300	< 11 U	< 11 U	
cis-1,2-Dichloroethene	ug/Kg		< 11 U	< 11 U	
cis-1,3-Dichloropropene	ug/Kg		< 11 U	< 11 U	
Dibromochloromethane	ug/Kg		< 11 U	< 11 U	
Ethylbenzene	ug/Kg	5500	< 11 U	< 11 U	
Methyl chloride	ug/Kg		< 11 U	< 11 U	
Methyl ethyl ketone	ug/Kg	300	< 11 U	< 11 U	
Methylene chloride	ug/Kg	100	< 11.2 U	< 11.4 U	
Styrene	ug/Kg		< 11 U	< 11 U	
Tetrachloroethene	ug/Kg	1400	< 11 U	< 11 U	
Toluene	ug/Kg	1500	< 11 U	< 11 U	
trans-1,2-Dichloroethene	ug/Kg	300	< 11 U	< 11 U	
trans-1,3-Dichloropropene	ug/Kg		< 11 U	< 11 U	
Trichloroethene	ug/Kg	700	< 11 U	< 11 U	
Vinyl chloride	ug/Kg	200	< 11 U	< 11 U	
Xylenes, Total	ug/Kg	1200	< 11 U	< 11 U	

Table J-10
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Semi-volatile Organic Compounds Results

		Depth Interval (ft)	0 - 1.3	0 - 2	2 - 2.9	0 - 1.6
		Location ID	SB-OBG-03	SB-OBG-09	SB-OBG-11	SB-OBG-12
		Sample Date	10/24/2001	10/25/2001	10/24/2001	10/25/2001
		Sample ID	SB-OBG-03_10242001N-1	SB-OBG-09_10252001N-1	SB-OBG-11_10242001N-1	SB-OBG-12_10252001N-1
Chemical Name	Unit	Action Level				
2,4,5-Trichlorophenol	ug/Kg	100	< 960 U	< 900 U	< 940 U	< 880 U
2,4,6-Trichlorophenol	ug/Kg		< 380 U	< 360 U	< 370 U	< 350 U
2,4-Dichlorophenol	ug/Kg	400	< 380 U	< 360 U	< 370 U	< 350 U
2,4-Dimethylphenol	ug/Kg		< 380 U	< 360 U	< 370 U	< 350 U
2,4-Dinitrophenol	ug/Kg	200 or MDL	< 960 U	< 900 U	< 940 U	< 880 U
2,4-Dinitrotoluene	ug/Kg		< 380 U	< 360 U	< 370 U	< 350 U
2,6-Dinitrotoluene	ug/Kg	1000	< 380 U	< 360 U	< 370 U	< 350 U
2-Chloronaphthalene	ug/Kg		< 380 U	< 360 U	< 370 U	< 350 U
2-Chlorophenol	ug/Kg	800	< 380 U	< 360 U	< 370 U	< 350 U
2-Methylnaphthalene	ug/Kg	36400	< 380 U	< 360 U	< 370 U	< 350 U
2-Methylphenol	ug/Kg	100 or MDL	< 380 U	< 360 U	< 370 U	< 350 U
2-Nitroaniline	ug/Kg	430 or MDL	< 960 U	< 900 U	< 940 U	< 880 U
2-Nitrophenol	ug/Kg	330 or MDL	< 380 U	< 360 U	< 370 U	< 350 U
3,3'-Dichlorobenzidine	ug/Kg		< 380 U	< 360 U	< 370 U	< 350 U
3-Nitroaniline	ug/Kg	500 or MDL	< 960 U	< 900 U	< 940 U	< 880 U
4,6-Dinitro-2-Methylphenol	ug/Kg		< 960 U	< 900 U	< 940 U	< 880 U
4-Bromophenylphenylether	ug/Kg		< 380 U	< 360 U	< 370 U	< 350 U
4-chloro-3-Methylphenol	ug/Kg	240 or MDL	< 380 U	< 360 U	< 370 U	< 350 U
4-Chloroaniline	ug/Kg	220 or MDL	< 380 U	< 360 U	< 370 U	< 350 U
4-Chlorophenyl phenyl ether	ug/Kg		< 380 U	< 360 U	< 370 U	< 350 U
4-Methylphenol	ug/Kg	900	< 380 U	< 360 U	< 370 U	< 350 U
4-Nitroaniline	ug/Kg		< 960 U	< 900 U	< 940 U	< 880 U
4-Nitrophenol	ug/Kg	100 or MDL	< 960 U	< 900 U	< 940 U	< 880 U
Acenaphthene	ug/Kg	50000	< 380 U	< 360 U	< 370 U	< 350 U
Acenaphthylene	ug/Kg	41000	< 380 U	< 360 U	< 370 U	< 350 U
Anthracene	ug/Kg	50000	< 380 U	< 360 U	< 370 U	< 350 U
Benz(a)anthracene	ug/Kg	224 or MDL	< 380 U	< 360 U	< 370 U	< 350 U
Benzo(a)pyrene	ug/Kg	61 or MDL	< 380 U	< 360 U	< 370 UJ	81 J
Benzo(b)fluoranthene	ug/Kg	1100	< 380 U	< 360 U	< 370 UJ	< 350 U
Benzo(g,h,i)perylene	ug/Kg	50000	< 380 U	< 360 U	< 370 UJ	< 350 U
Benzo(k)fluoranthene	ug/Kg	1100	< 380 U	< 360 U	< 370 UJ	< 350 U
Bis(2-chloro-1-methylethyl)ether	ug/Kg		< 380 U	< 360 U	< 370 U	< 350 U
Bis(2-chloroethoxy)methane	ug/Kg		< 380 U	< 360 U	< 370 U	< 350 U
Bis(2-chloroethyl)ether	ug/Kg		< 380 U	< 360 U	< 370 U	< 350 U

Table J-10
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Semi-volatile Organic Compounds Results

		Depth Interval (ft)	0 - 1.3	0 - 2	2 - 2.9	0 - 1.6
		Location ID	SB-OBG-03	SB-OBG-09	SB-OBG-11	SB-OBG-12
		Sample Date	10/24/2001	10/25/2001	10/24/2001	10/25/2001
		Sample ID	SB-OBG-03_10242001N-1	SB-OBG-09_10252001N-1	SB-OBG-11_10242001N-1	SB-OBG-12_10252001N-1
Chemical Name	Unit	Action Level				
Bis(2-ethylhexyl)phthalate	ug/Kg	50000	540	< 360 U	720	110 J
Butyl benzyl phthalate	ug/Kg	50000	< 380 U	< 360 U	< 370 U	< 350 U
Carbazole	ug/Kg		< 380 U	< 360 U	< 370 U	< 350 U
Chrysene	ug/Kg	400	< 380 U	< 360 U	39 J	< 350 U
Dibenz(a,h)anthracene	ug/Kg	14 or MDL	< 380 U	< 360 U	< 370 UJ	< 350 U
Dibenzofuran	ug/Kg	6200	< 380 U	< 360 U	< 370 U	< 350 U
Dichlorobenzenes (1,2-)	ug/Kg	7900	< 380 U	< 360 U	< 370 U	< 350 U
Dichlorobenzenes (1,3-)	ug/Kg	1600	< 380 U	< 360 U	< 370 U	< 350 U
Dichlorobenzenes (1,4-)	ug/Kg	8500	< 380 U	< 360 U	< 370 U	< 350 U
Diethyl phthalate	ug/Kg	7100	< 380 U	< 360 U	< 370 U	< 350 U
Dimethyl phthalate	ug/Kg	2000	< 380 U	< 360 U	< 370 U	< 350 U
Di-n-butylphthalate	ug/Kg	8100	< 380 U	< 360 U	< 370 U	< 350 U
Di-n-octyl phthalate	ug/Kg	50000	< 380 U	< 360 U	< 370 U	< 350 U
Fluoranthene	ug/Kg	50000	< 380 U	< 360 U	< 370 U	< 350 U
Fluorene	ug/Kg	50000	< 380 U	< 360 U	< 370 U	< 350 U
Hexachlorobenzene	ug/Kg	410	< 380 U	< 360 U	< 370 U	< 350 U
Hexachlorobutadiene	ug/Kg		< 380 U	< 360 U	< 370 U	< 350 U
Hexachlorocyclopentadiene	ug/Kg		< 380 U	< 360 U	< 370 U	< 350 U
Hexachloroethane	ug/Kg		< 380 U	< 360 U	< 370 U	< 350 U
Indeno (1,2,3-cd)pyrene	ug/Kg	3200	< 380 U	< 360 U	< 370 UJ	< 350 U
Isophorone	ug/Kg	4400	< 380 U	< 360 U	< 370 U	< 350 U
Naphthalene	ug/Kg	13000	< 380 U	< 360 U	< 370 U	< 350 U
Nitrobenzene	ug/Kg	200 or MDL	< 380 U	< 360 U	< 370 U	< 350 U
N-Nitrosodiphenylamine	ug/Kg		< 380 U	< 360 U	< 370 U	< 350 U
N-Nitrosodipropylamine	ug/Kg		< 380 U	< 360 U	< 370 U	< 350 U
Pentachlorophenol	ug/Kg	1000 or MDL	< 960 U	< 900 U	< 940 U	< 880 U
Phenanthrene	ug/Kg	50001	< 380 U	< 360 U	< 370 U	< 350 U
Phenol	ug/Kg	30 or MDL	< 380 U	< 360 U	< 374 U	< 350 U
Pyrene	ug/Kg	50000	< 380 U	< 360 U	< 370 U	< 350 U
Trichlorobenzenes (1,2,4-)	ug/Kg	3400	< 380 U	< 360 U	< 370 U	< 350 U

Table J-10
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Semi-volatile Organic Compounds Results

		Depth Interval (ft)	2 - 3.4	2 - 3.4	2 - 3.7
		Location ID	SB-OBG-13	SB-OBG-13	SB-OBG-16
		Sample Date	10/25/2001	10/25/2001	10/25/2001
		Sample ID	SB-OBG-13_10252001N-2	SB-OBG-13_10252001FD-2	SB-OBG-16_10252001N-2
Chemical Name	Unit	Action Level			
2,4,5-Trichlorophenol	ug/Kg	100	< 900 U	< 880 U	< 910 U
2,4,6-Trichlorophenol	ug/Kg		< 360 U	< 370 U	< 360 U
2,4-Dichlorophenol	ug/Kg	400	< 360 U	< 370 U	< 360 U
2,4-Dimethylphenol	ug/Kg		< 360 U	< 370 U	< 360 U
2,4-Dinitrophenol	ug/Kg	200 or MDL	< 900 U	< 880 U	< 910 U
2,4-Dinitrotoluene	ug/Kg		< 360 U	< 370 U	< 360 U
2,6-Dinitrotoluene	ug/Kg	1000	< 360 U	< 370 U	< 360 U
2-Chloronaphthalene	ug/Kg		< 360 U	< 370 U	< 360 U
2-Chlorophenol	ug/Kg	800	< 360 U	< 370 U	< 360 U
2-Methylnaphthalene	ug/Kg	36400	< 360 U	< 370 U	< 360 U
2-Methylphenol	ug/Kg	100 or MDL	< 360 U	< 370 U	< 360 U
2-Nitroaniline	ug/Kg	430 or MDL	< 900 U	< 880 U	< 910 U
2-Nitrophenol	ug/Kg	330 or MDL	< 360 U	< 370 U	< 360 U
3,3'-Dichlorobenzidine	ug/Kg		< 360 U	< 370 U	< 360 U
3-Nitroaniline	ug/Kg	500 or MDL	< 900 U	< 880 U	< 910 U
4,6-Dinitro-2-Methylphenol	ug/Kg		< 900 U	< 880 U	< 910 U
4-Bromophenylphenylether	ug/Kg		< 360 U	< 370 U	< 360 U
4-chloro-3-Methylphenol	ug/Kg	240 or MDL	< 360 U	< 370 U	< 360 U
4-Chloroaniline	ug/Kg	220 or MDL	< 360 U	< 370 U	< 360 U
4-Chlorophenyl phenyl ether	ug/Kg		< 360 U	< 370 U	< 360 U
4-Methylphenol	ug/Kg	900	< 360 U	< 370 U	< 360 U
4-Nitroaniline	ug/Kg		< 900 U	< 880 U	< 910 U
4-Nitrophenol	ug/Kg	100 or MDL	< 900 U	< 880 U	< 910 U
Acenaphthene	ug/Kg	50000	< 360 U	< 370 U	< 360 U
Acenaphthylene	ug/Kg	41000	< 360 U	< 370 U	< 360 U
Anthracene	ug/Kg	50000	< 360 U	< 370 U	< 360 U
Benz(a)anthracene	ug/Kg	224 or MDL	< 360 U	< 370 U	< 360 U
Benzo(a)pyrene	ug/Kg	61 or MDL	< 360 UJ	< 370 U	< 360 U
Benzo(b)fluoranthene	ug/Kg	1100	< 360 UJ	< 370 U	< 360 U
Benzo(g,h,i)perylene	ug/Kg	50000	< 360 UJ	< 370 U	< 360 U
Benzo(k)fluoranthene	ug/Kg	1100	< 360 UJ	< 370 U	< 360 U
Bis(2-chloro-1-methylethyl)ether	ug/Kg		< 360 U	< 370 U	< 360 U
Bis(2-chloroethoxy)methane	ug/Kg		< 360 U	< 370 U	< 360 U
Bis(2-chloroethyl)ether	ug/Kg		< 360 U	< 370 U	< 360 U

Table J-10
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Semi-volatile Organic Compounds Results

		Depth Interval (ft)	2 - 3.4	2 - 3.4	2 - 3.7
		Location ID	SB-OBG-13	SB-OBG-13	SB-OBG-16
		Sample Date	10/25/2001	10/25/2001	10/25/2001
		Sample ID	SB-OBG-13_10252001N-2	SB-OBG-13_10252001FD-2	SB-OBG-16_10252001N-2
Chemical Name	Unit	Action Level			
Bis(2-ethylhexyl)phthalate	ug/Kg	50000	470	90 J	210 J
Butyl benzyl phthalate	ug/Kg	50000	< 360 U	< 370 U	< 360 U
Carbazole	ug/Kg		< 360 U	< 370 U	< 360 U
Chrysene	ug/Kg	400	< 360 U	< 370 U	< 360 U
Dibenz(a,h)anthracene	ug/Kg	14 or MDL	< 360 UJ	< 370 U	< 360 U
Dibenzofuran	ug/Kg	6200	< 360 U	< 370 U	< 360 U
Dichlorobenzenes (1,2-)	ug/Kg	7900	< 360 U	< 370 U	< 360 U
Dichlorobenzenes (1,3-)	ug/Kg	1600	< 360 U	< 370 U	< 360 U
Dichlorobenzenes (1,4-)	ug/Kg	8500	< 360 U	< 370 U	< 360 U
Diethyl phthalate	ug/Kg	7100	< 360 U	< 370 U	< 360 U
Dimethyl phthalate	ug/Kg	2000	< 360 U	< 370 U	< 360 U
Di-n-butylphthalate	ug/Kg	8100	< 360 U	< 370 U	< 360 U
Di-n-octyl phthalate	ug/Kg	50000	< 360 U	< 370 U	< 360 U
Fluoranthene	ug/Kg	50000	< 360 U	< 370 U	< 360 U
Fluorene	ug/Kg	50000	< 360 U	< 370 U	< 360 U
Hexachlorobenzene	ug/Kg	410	< 360 U	< 370 U	< 360 U
Hexachlorobutadiene	ug/Kg		< 360 U	< 370 U	< 360 U
Hexachlorocyclopentadiene	ug/Kg		< 360 U	< 370 U	< 360 U
Hexachloroethane	ug/Kg		< 360 U	< 370 U	< 360 U
Indeno (1,2,3-cd)pyrene	ug/Kg	3200	< 360 UJ	< 370 U	< 360 U
Isophorone	ug/Kg	4400	< 360 U	< 370 U	< 360 U
Naphthalene	ug/Kg	13000	< 360 U	< 370 U	< 360 U
Nitrobenzene	ug/Kg	200 or MDL	< 360 U	< 370 U	< 360 U
N-Nitrosodiphenylamine	ug/Kg		< 360 U	< 370 U	< 360 U
N-Nitrosodipropylamine	ug/Kg		< 360 U	< 370 U	< 360 U
Pentachlorophenol	ug/Kg	1000 or MDL	< 900 U	< 880 U	< 910 U
Phenanthrene	ug/Kg	50001	< 360 U	< 370 U	< 360 U
Phenol	ug/Kg	30 or MDL	< 360 U	< 370 U	< 362 U
Pyrene	ug/Kg	50000	< 360 U	< 370 U	< 360 U
Trichlorobenzenes (1,2,4-)	ug/Kg	3400	< 360 U	< 370 U	< 360 U

Table J-10
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Semi-volatile Organic Compounds Results

		Depth Interval (ft)	0 - 1.9	1 - 1.5	0 - 1.5
		Location ID	SB-OBG-18	SS-OBG-14	SS-OBG-14
		Sample Date	10/24/2001	10/26/2001	10/26/2001
		Sample ID	SB-OBG-18_10242001N-1	SS-OBG-14_10262001FD-2	SS-OBG-14_10262001N-2
Chemical Name	Unit	Action Level			
2,4,5-Trichlorophenol	ug/Kg	100	< 950 U	< 940 U	< 950 U
2,4,6-Trichlorophenol	ug/Kg		< 380 U	< 370 U	< 380 U
2,4-Dichlorophenol	ug/Kg	400	< 380 U	< 370 U	< 380 U
2,4-Dimethylphenol	ug/Kg		< 380 U	< 370 U	< 380 U
2,4-Dinitrophenol	ug/Kg	200 or MDL	< 950 U	< 940 U	< 950 U
2,4-Dinitrotoluene	ug/Kg		< 380 U	< 370 U	< 380 U
2,6-Dinitrotoluene	ug/Kg	1000	< 380 U	< 370 U	< 380 U
2-Chloronaphthalene	ug/Kg		< 380 U	< 370 U	< 380 U
2-Chlorophenol	ug/Kg	800	< 380 U	< 370 U	< 380 U
2-Methylnaphthalene	ug/Kg	36400	< 380 U	< 370 U	< 380 U
2-Methylphenol	ug/Kg	100 or MDL	< 380 U	< 370 U	< 380 U
2-Nitroaniline	ug/Kg	430 or MDL	< 950 U	< 940 U	< 950 U
2-Nitrophenol	ug/Kg	330 or MDL	< 380 U	< 370 U	< 380 U
3,3'-Dichlorobenzidine	ug/Kg		< 380 U	< 370 U	< 380 U
3-Nitroaniline	ug/Kg	500 or MDL	< 950 U	< 940 U	< 950 U
4,6-Dinitro-2-Methylphenol	ug/Kg		< 950 U	< 940 U	< 950 U
4-Bromophenylphenylether	ug/Kg		< 380 U	< 370 U	< 380 U
4-chloro-3-Methylphenol	ug/Kg	240 or MDL	< 380 U	< 370 U	< 380 U
4-Chloroaniline	ug/Kg	220 or MDL	< 380 U	< 370 U	< 380 U
4-Chlorophenyl phenyl ether	ug/Kg		< 380 U	< 370 U	< 380 U
4-Methylphenol	ug/Kg	900	< 380 U	< 370 U	< 380 U
4-Nitroaniline	ug/Kg		< 950 U	< 940 U	< 950 U
4-Nitrophenol	ug/Kg	100 or MDL	< 950 U	< 940 U	< 950 U
Acenaphthene	ug/Kg	50000	< 380 U	< 370 U	< 380 U
Acenaphthylene	ug/Kg	41000	< 380 U	< 370 U	< 380 U
Anthracene	ug/Kg	50000	< 380 U	< 370 U	< 380 U
Benz(a)anthracene	ug/Kg	224 or MDL	44 J	< 370 U	< 380 U
Benzo(a)pyrene	ug/Kg	61 or MDL	52 J	< 370 U	< 380 U
Benzo(b)fluoranthene	ug/Kg	1100	110 J	< 370 U	< 380 U
Benzo(g,h,i)perylene	ug/Kg	50000	< 380 U	< 370 U	< 380 U
Benzo(k)fluoranthene	ug/Kg	1100	< 380 U	< 370 U	< 380 U
Bis(2-chloro-1-methylethyl)ether	ug/Kg		< 380 U	< 370 U	< 380 U
Bis(2-chloroethoxy)methane	ug/Kg		< 380 U	< 370 U	< 380 U
Bis(2-chloroethyl)ether	ug/Kg		< 380 U	< 370 U	< 380 U

Table J-10
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Semi-volatile Organic Compounds Results

		Depth Interval (ft)	0 - 1.9	1 - 1.5	0 - 1.5
		Location ID	SB-OBG-18	SS-OBG-14	SS-OBG-14
		Sample Date	10/24/2001	10/26/2001	10/26/2001
		Sample ID	SB-OBG-18_10242001N-1	SS-OBG-14_10262001FD-2	SS-OBG-14_10262001N-2
Chemical Name	Unit	Action Level			
Bis(2-ethylhexyl)phthalate	ug/Kg	50000	620	< 370 U	< 380 U
Butyl benzyl phthalate	ug/Kg	50000	< 380 U	< 370 U	< 380 U
Carbazole	ug/Kg		< 380 U	< 370 U	< 380 U
Chrysene	ug/Kg	400	60 J	< 370 U	< 380 U
Dibenz(a,h)anthracene	ug/Kg	14 or MDL	< 380 U	< 370 U	< 380 U
Dibenzofuran	ug/Kg	6200	< 380 U	< 370 U	< 380 U
Dichlorobenzenes (1,2-)	ug/Kg	7900	< 380 U	< 370 U	< 380 U
Dichlorobenzenes (1,3-)	ug/Kg	1600	< 380 U	< 370 U	< 380 U
Dichlorobenzenes (1,4-)	ug/Kg	8500	< 380 U	< 370 U	< 380 U
Diethyl phthalate	ug/Kg	7100	< 380 U	< 370 U	< 380 U
Dimethyl phthalate	ug/Kg	2000	< 380 U	< 370 U	< 380 U
Di-n-butylphthalate	ug/Kg	8100	< 380 U	< 370 U	< 380 U
Di-n-octyl phthalate	ug/Kg	50000	< 380 U	< 370 U	< 380 U
Fluoranthene	ug/Kg	50000	91 J	41 J	< 380 U
Fluorene	ug/Kg	50000	< 380 U	< 370 U	< 380 U
Hexachlorobenzene	ug/Kg	410	< 380 U	< 370 U	< 380 U
Hexachlorobutadiene	ug/Kg		< 380 U	< 370 U	< 380 U
Hexachlorocyclopentadiene	ug/Kg		< 380 U	< 370 U	< 380 U
Hexachloroethane	ug/Kg		< 380 U	< 370 U	< 380 U
Indeno (1,2,3-cd)pyrene	ug/Kg	3200	< 380 U	< 370 U	< 380 U
Isophorone	ug/Kg	4400	< 380 U	< 370 U	< 380 U
Naphthalene	ug/Kg	13000	< 380 U	< 370 U	< 380 U
Nitrobenzene	ug/Kg	200 or MDL	< 380 U	< 370 U	< 380 U
N-Nitrosodiphenylamine	ug/Kg		< 380 U	< 370 U	< 380 U
N-Nitrosodipropylamine	ug/Kg		< 380 U	< 370 U	< 380 U
Pentachlorophenol	ug/Kg	1000 or MDL	< 950 U	< 940 U	< 950 U
Phenanthrene	ug/Kg	50001	< 380 U	< 370 U	< 380 U
Phenol	ug/Kg	30 or MDL	< 380 U	< 374 U	< 378 U
Pyrene	ug/Kg	50000	76 J	< 370 U	< 380 U
Trichlorobenzenes (1,2,4-)	ug/Kg	3400	< 380 U	< 370 U	< 380 U

Table J-11
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Pesticide Results

	De	epth Interval (ft)	0 - 1.3	0 - 2	2 - 2.9	0 - 1.6
		Location ID	SB-OBG-03	SB-OBG-09	SB-OBG-11	SB-OBG-12
		Sample Date	10/24/2001	10/25/2001	10/24/2001	10/23/2001
		Sample ID	SB-OBG-03_10242001N-1	SB-OBG-09_10252001N-1	SB-OBG-11_10242001N-1	SB-OBG-12_10232001N-1
Chemical Name	Unit	Action Level				
4,4'-DDD	ug/Kg	2900	< 3.9 U	< 3.6 U	< 3.8 U	< 1.8 U
4,4'-DDE	ug/Kg	2100	< 3.9 U	3.7	< 3.8 U	< 1.8 U
4,4'-DDT	ug/Kg	2100	< 3.9 U	2.8 JP	< 20 JP	< 1.8 U
a-Chlordane	ug/Kg		< 1.9 U	< 1.8 U	< 1.9 U	< 1.8 U
Aldrin	ug/Kg	41	< 1.9 U	< 1.8 U	< 1.9 U	< 1.8 U
alpha-Hexachlorocyclohexane	ug/Kg	110	< 1.9 U	< 1.8 U	< 1.9 U	< 1.8 U
beta-Hexachlorocyclohexane	ug/Kg		< 1.9 U	< 1.8 U	< 1.9 U	< 1.8 U
delta-Hexachlorocyclohexane	ug/Kg	300	< 1.9 U	< 1.8 U	< 1.9 U	< 1.8 U
Dieldrin	ug/Kg	44	< 3.9 U	< 3.6 U	< 3.8 U	< 3.5 U
Endosulfan I	ug/Kg	900	< 1.9 U	< 1.8 U	< 1.9 U	< 1.8 U
Endosulfan II	ug/Kg	900	< 3.9 U	< 3.6 U	< 6.7	< 3.5 U
Endosulfan sulfate	ug/Kg	1000	< 3.9 U	< 3.6 U	< 8.4 UJ	< 3.5 U
Endrin	ug/Kg	100	< 3.9 U	< 3.6 U	< 4.9 R	< 3.5 U
Endrin aldehyde	ug/Kg		< 3.9 U	< 3.6 U	< 3.8 U	< 3.5 U
Endrin ketone	ug/Kg		< 3.9 U	< 3.6 U	< 3.8 U	< 3.5 U
Gamma-Chlordane	ug/Kg		< 1.9 U	< 1.8 U	2 JBP	< 1.8 U
gamma-Hexachlorocyclohexane	ug/Kg	60	< 1.9 U	< 1.8 U	< 1.9 U	< 1.8 U
Heptachlor	ug/Kg	100	< 1.9 U	< 1.8 U	< 1.9 U	< 1.8 U
Heptachlor epoxide	ug/Kg	20	< 1.9 U	< 1.8 U	< 1.9 U	< 1.8 U
Methoxychlor	ug/Kg		< 19 U	< 18 U	< 1 U	< 18 U
Toxaphene	ug/Kg		< 190 U	< 180 U	< 19 U	< 180 U

Notes: U - not detected, J - estimated,

B - detected in assoicated blank, --- no action level,

P - greater than 25% difference on two GC columns.

Table J-11
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Pesticide Results

	De	epth Interval (ft)	2 - 3.4	2 - 3.4	1 - 1.5
		Location ID	SB-OBG-13	SB-OBG-13	SB-OBG-14
		Sample Date	10/25/2001	10/25/2001	10/26/2001
		Sample ID	SB-OBG-13_10252001N-2	SB-OBG-13_10252001FD-2	SB-OBG-14_10262001FD-2
Chemical Name	Unit	Action Level			
4,4'-DDD	ug/Kg	2900	< 3.6 U	2 JP	< 3.8 U
4,4'-DDE	ug/Kg	2100	< 3.6 U	< 3.7 U	4.1 JP
4,4'-DDT	ug/Kg	2100	< 3.6 U	1.9 JNP	3.6 J
a-Chlordane	ug/Kg		< 1.8 U	< 1.8 U	< 1.9 U
Aldrin	ug/Kg	41	< 1.8 U	< 1.8 U	< 1.9 U
alpha-Hexachlorocyclohexane	ug/Kg	110	< 1.8 U	< 1.8 U	< 1.9 U
beta-Hexachlorocyclohexane	ug/Kg		< 1.8 U	< 1.8 U	< 1.9 U
delta-Hexachlorocyclohexane	ug/Kg	300	< 1.8 U	< 1.8 U	< 1.9 U
Dieldrin	ug/Kg	44	< 3.6 U	< 3.7 U	< 3.8 U
Endosulfan I	ug/Kg	900	< 1.8 U	< 1.8 U	< 1.9 U
Endosulfan II	ug/Kg	900	< 3.6 U	< 3.7 U	< 3.8 U
Endosulfan sulfate	ug/Kg	1000	< 3.6 U	< 3.7 U	< 3.8 U
Endrin	ug/Kg	100	< 3.6 U	< 3.7 U	< 3.8 U
Endrin aldehyde	ug/Kg		< 3.6 U	< 3.7 U	< 3.8 U
Endrin ketone	ug/Kg		< 3.6 U	< 3.7 U	< 3.8 U
Gamma-Chlordane	ug/Kg		< 1.8 U	< 1.8 U	< 1.9 U
gamma-Hexachlorocyclohexane	ug/Kg	60	< 1.8 U	< 1.8 U	< 1.9 U
Heptachlor	ug/Kg	100	< 1.8 U	< 1.8 U	< 1.9 U
Heptachlor epoxide	ug/Kg	20	< 1.8 U	< 1.8 U	< 1.9 U
Methoxychlor	ug/Kg		< 18 U	< 18 U	< 19 U
Toxaphene	ug/Kg		< 180 U	< 180 U	< 190 U

Notes: U - not detected, J - estimated,

B - detected in assoicated blank, --- no action level,

P - greater than 25% difference on two GC columns.

Table J-11
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - Pesticide Results

	De	epth Interval (ft)	2 - 3.7	0 - 1.9	0 - 1.5
		Location ID	SB-OBG-16	SB-OBG-18	SS-OBG-14
		Sample Date	10/25/2001	10/24/2001	10/26/2001
		Sample ID	SB-OBG-16_10252001N-2	SB-OBG-18_10242001N-1	SS-OBG-14_10262001N-2
Chemical Name	Unit	Action Level			
4,4'-DDD	ug/Kg	2900	< 3.6 U	< 3.8 U	< 3.8 U
4,4'-DDE	ug/Kg	2100	< 3.6 U	< 3.8 U	4.7
4,4'-DDT	ug/Kg	2100	< 3.6 U	< 3.8 U	< 3.8 R
a-Chlordane	ug/Kg		< 1.8 U	< 1.9 U	< 1.9 U
Aldrin	ug/Kg	41	< 1.8 U	< 1.9 U	< 1.9 U
alpha-Hexachlorocyclohexane	ug/Kg	110	< 1.8 U	< 1.9 U	< 1.9 U
beta-Hexachlorocyclohexane	ug/Kg		< 1.8 U	< 1.9 U	< 1.9 U
delta-Hexachlorocyclohexane	ug/Kg	300	< 1.8 U	< 1.9 U	< 1.9 U
Dieldrin	ug/Kg	44	< 3.6 U	< 3.8 U	< 3.8 U
Endosulfan I	ug/Kg	900	< 1.8 U	< 1.9 U	< 1.9 U
Endosulfan II	ug/Kg	900	< 3.6 U	< 3.8 U	< 3.8 U
Endosulfan sulfate	ug/Kg	1000	< 3.6 U	< 3.8 U	< 3.8 U
Endrin	ug/Kg	100	< 3.6 U	< 3.8 U	< 3.8 U
Endrin aldehyde	ug/Kg		< 3.6 U	< 3.8 U	< 3.8 R
Endrin ketone	ug/Kg		< 3.6 U	< 3.8 U	< 3.8 U
Gamma-Chlordane	ug/Kg		< 1.8 U	< 1.9 U	< 1.9 U
gamma-Hexachlorocyclohexane	ug/Kg	60	< 1.8 U	< 1.9 U	< 1.9 U
Heptachlor	ug/Kg	100	< 1.8 U	< 1.9 U	< 1.9 U
Heptachlor epoxide	ug/Kg	20	< 1.8 U	< 1.9 U	< 1.9 U
Methoxychlor	ug/Kg		< 18 U	< 19 U	< 19 U
Toxaphene	ug/Kg		< 180 U	< 190 U	< 190 U

Notes: U - not detected, J - estimated,

B - detected in assoicated blank, --- no action level,

P - greater than 25% difference on two GC columns.

Table J-12
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - PCBs Results

	D	epth Interval (ft)	0 - 1.3	0 - 2	2 - 2.9	0 - 1.6	2 - 3.4
		Location ID	SB-OBG-03	SB-OBG-09	SB-OBG-11	SB-OBG-12	SB-OBG-13
		Sample Date	10/24/2001	10/25/2001	10/24/2001	10/23/2001	10/25/2001
		Sample ID	SB-OBG-03_10242001N-1	SB-OBG-09_10252001N-1	SB-OBG-11_10242001N-	1 SB-OBG-12_10232001N-1	SB-OBG-13_10252001N-2
Chemical Name	Action Level	Unit					
Aroclor-1016	10000	ug/Kg	< 39 U	< 36 U	< 38 U	< 35 U	< 36 U
Aroclor-1221	10000	ug/Kg	< 77 U	< 72 U	< 75 U	< 71 U	< 72 U
Aroclor-1232	10000	ug/Kg	< 39 U	< 36 U	< 38 U	< 35 U	< 36 U
Aroclor-1242	10000	ug/Kg	< 39 U	< 36 U	< 38 U	< 35 U	< 36 U
Aroclor-1248	10000	ug/Kg	< 39 U	< 36 U	< 38 U	< 35 U	< 36 U
Aroclor-1254	10000	ug/Kg	< 39 U	< 36 U	< 38 U	< 35 U	< 36 U
Aroclor-1260	10000	ug/Kg	< 39 U	< 36 U	< 38 U	< 35 U	< 36 U

U - not detected

Table J-12
Revere Smelting and Refining
Wallkill, New York
Subsurface Soil - PCBs Results

	D	epth Interval (ft)	2 - 3.4	1 - 1.5	2 - 3.7	0 - 1.9	0 - 1.5
		Location ID	SB-OBG-13	SB-OBG-14	SB-OBG-16	SB-OBG-18	SS-OBG-14
		Sample Date	10/25/2001	10/26/2001	10/25/2001	10/24/2001	10/26/2001
		Sample ID	SB-OBG-13_10252001FD-2	SB-OBG-14_10262001FD-2	SB-OBG-16_10252001N-	2 SB-OBG-18_10242001N-1	SS-OBG-14_10262001N-2
Chemical Name	Action Level	Unit					
Aroclor-1016	10000	ug/Kg	< 37 U	< 38 U	< 36 U	< 38 U	< 38 U
Aroclor-1221	10000	ug/Kg	< 73 U	< 75 U	< 72 U	< 76 U	< 76 U
Aroclor-1232	10000	ug/Kg	< 37 U	< 38 U	< 36 U	< 38 U	< 38 U
Aroclor-1242	10000	ug/Kg	< 37 U	< 38 U	< 36 U	< 38 U	< 38 U
Aroclor-1248	10000	ug/Kg	< 37 U	< 38 U	< 36 U	< 38 U	< 38 U
Aroclor-1254	10000	ug/Kg	< 37 U	< 38 U	< 36 U	< 38 U	< 38 U
Aroclor-1260	10000	ug/Kg	< 37 U	< 38 U	< 36 U	< 38 U	< 38 U

U - not detected

Table J-13
Revere Smelting and Refining
Wallkill, New York
Sediment - Inorganic Results

		Depth Interval (ft) Location ID Sample Date Sample ID	SED-1 7/12/1991 SED-1_07121991N	SED-2 7/12/1991 SED-2_07121991N	SED-3 7/12/1991 SED-3_07121991N	SED-4 7/12/1991 SED-4_07121991N	SED-5 7/12/1991 SED-5_07121991N	SED-6 7/12/1991 SED-6_07121991N
Chemical Name	Unit	Action Level						_
Aluminum	mg/Kg	SB						
Antimony	mg/Kg	SB	44	23	7.9	0.82 J	25	2.7
Arsenic	mg/Kg	7.5 or SB						
Barium	mg/Kg	300 or SB						
Beryllium	mg/Kg	0.16 (HEAST) or SB						
Cadmium	mg/kg	1 or SB						
Calcium Metal	mg/kg	SB						
Chromium	mg/kg	10 or SB						
Cobalt	mg/kg	30 or SB						
Copper	mg/kg	25 or SB						
Cyanide	mg/Kg							
Iron	mg/Kg	2,000 or SB						
Lead	mg/kg	SB	1100	460	1800	92	840	180
Magnesium	mg/Kg	SB						
Manganese	mg/Kg	SB						
Mercury	mg/Kg	0.1						
Nickel	mg/Kg	13 or SB						
Potassium	mg/kg	SB						
Selenium	mg/Kg	2 or SB						
Silver	mg/Kg	SB						
Sodium	mg/Kg	SB						
Thallium	mg/Kg	SB						
Vanadium	mg/Kg	150 or SB						
Zinc	mg/Kg	20 or SB						
рН	su							
Total Organic Carbon, Filtered	mg/Kg							

U - not detected, J - estiamted, N - matrix spike outside 75-125% limit,

E - recovery greater than 10% for serial dilution, * - RPD greater than 20%.

Table J-13
Revere Smelting and Refining
Wallkill, New York
Sediment - Inorganic Results

		Depth Interval (ft)					0.5 - 1
		Location ID	SED-7	SED-7 (DUP)	SED-8	SED-9	SED-P1
		Sample Date	7/12/1991	7/12/1991	7/12/1991	7/12/1991	11/8/2001
		Sample ID	SED-7_07121991N	SED-7_07121991FD	SED-8_07121991N	SED-9_07121991N	SED-P1_11082001N-2
Chemical Name	Unit	Action Level					
Aluminum	mg/Kg	SB					
Antimony	mg/Kg	SB	80	63	57	16	
Arsenic	mg/Kg	7.5 or SB					
Barium	mg/Kg	300 or SB					
Beryllium	mg/Kg	0.16 (HEAST) or SB					
Cadmium	mg/kg	1 or SB					
Calcium Metal	mg/kg	SB					
Chromium	mg/kg	10 or SB					
Cobalt	mg/kg	30 or SB					
Copper	mg/kg	25 or SB					
Cyanide	mg/Kg						
Iron	mg/Kg	2,000 or SB					
Lead	mg/kg	SB	3300	3000	1900	1000	39.4 J*
Magnesium	mg/Kg	SB					
Manganese	mg/Kg	SB					
Mercury	mg/Kg	0.1					
Nickel	mg/Kg	13 or SB					
Potassium	mg/kg	SB					
Selenium	mg/Kg	2 or SB					
Silver	mg/Kg	SB					
Sodium	mg/Kg	SB					
Thallium	mg/Kg	SB					
Vanadium	mg/Kg	150 or SB					
Zinc	mg/Kg	20 or SB					
рН	su						
Total Organic Carbon, Filtered	mg/Kg						

U - not detected, J - estiamted, N - matrix spike outside 75-125% limit,

E - recovery greater than 10% for serial dilution, * - RPD greater than 20%.

Table J-13
Revere Smelting and Refining
Wallkill, New York
Sediment - Inorganic Results

		Depth Interval (ft)	0 - 0.5	0 - 0.5	0 - 0.5	0.5 - 1	
		Location ID	SED-P1	SED-P2	SED-P2	SED-P2	SEDRP-01
		Sample Date	11/8/2001	11/8/2001	11/8/2001	11/8/2001	8/4/2003
		Sample ID	SED-P1_11082001N-1	SED-P2_11082001N-1	SED-P2_11082001FD-1	SED-P2_11082001N-2	SEDRP-01_08042003N
Chemical Name	Unit	Action Level					
Aluminum	mg/Kg	SB		15300	13900		
Antimony	mg/Kg	SB		22.9 JN	27.8 JN		
Arsenic	mg/Kg	7.5 or SB		24.8	25.9		
Barium	mg/Kg	300 or SB		60.6	67		
Beryllium	mg/Kg	0.16 (HEAST) or SB		0.80 J	0.80 J		
Cadmium	mg/kg	1 or SB		1.7 J*	2.1 J*		
Calcium Metal	mg/kg	SB		3900 J*	1830 J*		
Chromium	mg/kg	10 or SB		22.2 JE	21.3 JE		
Cobalt	mg/kg	30 or SB		14.2 JE	13.6 JE		
Copper	mg/kg	25 or SB		36.0 JN*	39.0 JN*		
Cyanide	mg/Kg			< .7 U	< .8 U		
Iron	mg/Kg	2,000 or SB		33000	26000		
Lead	mg/kg	SB	62.6 J*	1410 J*	1630 J*	1000 J*	1620
Magnesium	mg/Kg	SB		5880	4780		
Manganese	mg/Kg	SB		408 JN	402 JN		
Mercury	mg/Kg	0.1		< .11 U	< .12 U		
Nickel	mg/Kg	13 or SB		32.3	28		
Potassium	mg/kg	SB		1120 JE	1220 JE		
Selenium	mg/Kg	2 or SB		3.9 JN	3.3 JN		
Silver	mg/Kg	SB		< .29 U	< .31 U		
Sodium	mg/Kg	SB		97.5 J	93.7 J		
Thallium	mg/Kg	SB		< 1.5 U	2.0 J		
Vanadium	mg/Kg	150 or SB		22.4	20		
Zinc	mg/Kg	20 or SB		88.5	78.3		
pH	su						
Total Organic Carbon, Filtered	mg/Kg						

U - not detected, J - estiamted, N - matrix spike outside 75-125% limit,

E - recovery greater than 10% for serial dilution, * - RPD greater than 20%.

Table J-13
Revere Smelting and Refining
Wallkill, New York
Sediment - Inorganic Results

		Depth Interval (ft)					=
		Location ID	SEDRP-02	SEDRP-03	SEDRP-04	SEDRP-05	SEDRP-05
		Sample Date	8/4/2003	8/4/2003	8/4/2003	8/4/2003	8/4/2003
		Sample ID	SEDRP-02 08042003N	SEDRP-03 08042003N	SEDRP-04 08042003N	SEDRP-05 08042003N	SEDRP-05 08042003FD
Chemical Name	Unit	Action Level	_	_	_	_	_
Aluminum	mg/Kg	SB					
Antimony	mg/Kg	SB					
Arsenic	mg/Kg	7.5 or SB					
Barium	mg/Kg	300 or SB					
Beryllium	mg/Kg	0.16 (HEAST) or SB					
Cadmium	mg/kg	1 or SB					
Calcium Metal	mg/kg	SB					
Chromium	mg/kg	10 or SB					
Cobalt	mg/kg	30 or SB					
Copper	mg/kg	25 or SB					
Cyanide	mg/Kg						
Iron	mg/Kg	2,000 or SB					
Lead	mg/kg	SB	1770	621	2180	2240	2340
Magnesium	mg/Kg	SB					
Manganese	mg/Kg	SB					
Mercury	mg/Kg	0.1					
Nickel	mg/Kg	13 or SB					
Potassium	mg/kg	SB					
Selenium	mg/Kg	2 or SB					
Silver	mg/Kg	SB					
Sodium	mg/Kg	SB					
Thallium	mg/Kg	SB					
Vanadium	mg/Kg	150 or SB					
Zinc	mg/Kg	20 or SB					
рН	su						
Total Organic Carbon, Filtered	mg/Kg						

U - not detected, J - estiamted, N - matrix spike outside 75-125% limit,

E - recovery greater than 10% for serial dilution, * - RPD greater than 20%.

Table J-13
Revere Smelting and Refining
Wallkill, New York
Sediment - Inorganic Results

		Depth Interval (ft)		0 - 0.5	1 - 2	0 - 0.5	1 - 2
		Location ID	SEDRP-06	SED-S1	SED-S1	SED-S2	SED-S2
		Sample Date	8/4/2003	11/8/2001	11/8/2001	11/8/2001	11/8/2001
		Sample ID	SEDRP-06_08042003N	SED-S1_11082001N-1	SED-S1_11082001N-2	SED-S2_11082001N-1	SED-S2_11082001N-2
Chemical Name	Unit	Action Level					
Aluminum	mg/Kg	SB		16300			
Antimony	mg/Kg	SB		40.8 JN			
Arsenic	mg/Kg	7.5 or SB		54.5			
Barium	mg/Kg	300 or SB		57.7			
Beryllium	mg/Kg	0.16 (HEAST) or SB		1.3			
Cadmium	mg/kg	1 or SB		11.2 J*			
Calcium Metal	mg/kg	SB		1940 J*			
Chromium	mg/kg	10 or SB		20.3 JE			
Cobalt	mg/kg	30 or SB		53.2 JE			
Copper	mg/kg	25 or SB		108 JN*			
Cyanide	mg/Kg			< .6 U			
Iron	mg/Kg	2,000 or SB		36000			
Lead	mg/kg	SB	1740	2510 J*	12000 J*	1490 J*	421 J*
Magnesium	mg/Kg	SB		6580			
Manganese	mg/Kg	SB		6290 JN			
Mercury	mg/Kg	0.1		< .09 U			
Nickel	mg/Kg	13 or SB		59.8			
Potassium	mg/kg	SB		897 JE			
Selenium	mg/Kg	2 or SB		5.6 JN			
Silver	mg/Kg	SB		< .24 U			
Sodium	mg/Kg	SB		210 J			
Thallium	mg/Kg	SB		< 1.2 U			
Vanadium	mg/Kg	150 or SB		19.3			
Zinc	mg/Kg	20 or SB		157			
рН	su						
Total Organic Carbon, Filtered	mg/Kg						

U - not detected, J - estiamted, N - matrix spike outside 75-125% limit,

E - recovery greater than 10% for serial dilution, * - RPD greater than 20%.

Table J-13
Revere Smelting and Refining
Wallkill, New York
Sediment - Inorganic Results

		Depth Interval (ft)	1 - 2	0 - 0.5			
		Location ID	SED-S3	SED-S3	SEDUS-01	SEDUS-02	SEDUS-03
		Sample Date	11/8/2001	11/8/2001	8/5/2003	8/5/2003	8/5/2003
		Sample ID	SED-S3_11082001N-2	SED-S3_11082001N-1	SEDUS-01_08052003N	SEDUS-02_08052003N	SEDUS-03_08052003N
Chemical Name	Unit	Action Level					
Aluminum	mg/Kg	SB					
Antimony	mg/Kg	SB					
Arsenic	mg/Kg	7.5 or SB					
Barium	mg/Kg	300 or SB					
Beryllium	mg/Kg	0.16 (HEAST) or SB					
Cadmium	mg/kg	1 or SB					
Calcium Metal	mg/kg	SB					
Chromium	mg/kg	10 or SB					
Cobalt	mg/kg	30 or SB					
Copper	mg/kg	25 or SB					
Cyanide	mg/Kg						
Iron	mg/Kg	2,000 or SB					
Lead	mg/kg	SB	77.0 J*	245 J*	981	1140	1110
Magnesium	mg/Kg	SB					
Manganese	mg/Kg	SB					
Mercury	mg/Kg	0.1					
Nickel	mg/Kg	13 or SB					
Potassium	mg/kg	SB					
Selenium	mg/Kg	2 or SB					
Silver	mg/Kg	SB					
Sodium	mg/Kg	SB					
Thallium	mg/Kg	SB					
Vanadium	mg/Kg	150 or SB					
Zinc	mg/Kg	20 or SB					
pH	su						
Total Organic Carbon, Filtered	mg/Kg						

U - not detected, J - estiamted, N - matrix spike outside 75-125% limit,

E - recovery greater than 10% for serial dilution, * - RPD greater than 20%.

Table J-13
Revere Smelting and Refining
Wallkill, New York
Sediment - Inorganic Results

		Depth Interval (ft)			0 - 0		
		Location ID	SEDUS-04	SEDUS-05	SEDUS-06	SEDUS-07	SEDUS-08
		Sample Date	8/5/2003	8/5/2003	8/5/2003	8/5/2003	8/5/2003
		Sample ID	SEDUS-04_08052003N	SEDUS-05_08052003N	SEDUS-06_08052003N	SEDUS-07_08052003N	SEDUS-08_08052003N
Chemical Name	Unit	Action Level					
Aluminum	mg/Kg	SB					
Antimony	mg/Kg	SB					
Arsenic	mg/Kg	7.5 or SB					
Barium	mg/Kg	300 or SB					
Beryllium	mg/Kg	0.16 (HEAST) or SB					
Cadmium	mg/kg	1 or SB					
Calcium Metal	mg/kg	SB					
Chromium	mg/kg	10 or SB					
Cobalt	mg/kg	30 or SB					
Copper	mg/kg	25 or SB					
Cyanide	mg/Kg						
Iron	mg/Kg	2,000 or SB					
Lead	mg/kg	SB	597	1150	860	198	94.9
Magnesium	mg/Kg	SB					
Manganese	mg/Kg	SB					
Mercury	mg/Kg	0.1					
Nickel	mg/Kg	13 or SB					
Potassium	mg/kg	SB					
Selenium	mg/Kg	2 or SB					
Silver	mg/Kg	SB					
Sodium	mg/Kg	SB					
Thallium	mg/Kg	SB					
Vanadium	mg/Kg	150 or SB					
Zinc	mg/Kg	20 or SB					
pH	su				6.8		
Total Organic Carbon, Filtered	mg/Kg				42000		

U - not detected, J - estiamted, N - matrix spike outside 75-125% limit,

E - recovery greater than 10% for serial dilution, * - RPD greater than 20%.

Table J-13
Revere Smelting and Refining
Wallkill, New York
Sediment - Inorganic Results

		Depth Interval (ft)				0 - 0
		Location ID	SEDUS-09	SEDUS-10	SEDUS-11	SEDUS-12
		Sample Date	8/5/2003	8/5/2003	8/5/2003	8/5/2003
		Sample ID	SEDUS-09_08052003N	SEDUS-10_08052003N	SEDUS-11_08052003N	SEDUS-12_08052003N
Chemical Name	Unit	Action Level				
Aluminum	mg/Kg	SB				
Antimony	mg/Kg	SB				
Arsenic	mg/Kg	7.5 or SB				
Barium	mg/Kg	300 or SB				
Beryllium	mg/Kg	0.16 (HEAST) or SB				
Cadmium	mg/kg	1 or SB				
Calcium Metal	mg/kg	SB				
Chromium	mg/kg	10 or SB				
Cobalt	mg/kg	30 or SB				
Copper	mg/kg	25 or SB				
Cyanide	mg/Kg					
Iron	mg/Kg	2,000 or SB				
Lead	mg/kg	SB	80	41.9	46.9	26.9
Magnesium	mg/Kg	SB				
Manganese	mg/Kg	SB				
Mercury	mg/Kg	0.1				
Nickel	mg/Kg	13 or SB				
Potassium	mg/kg	SB				
Selenium	mg/Kg	2 or SB				
Silver	mg/Kg	SB				
Sodium	mg/Kg	SB				
Thallium	mg/Kg	SB				
Vanadium	mg/Kg	150 or SB				
Zinc	mg/Kg	20 or SB				
рН	su					7.1
Total Organic Carbon, Filtered	mg/Kg					31900

U - not detected, J - estiamted, N - matrix spike outside 75-125% limit,

E - recovery greater than 10% for serial dilution, * - RPD greater than 20%.

Table J-14
Revere Smelting and Refining
Wallkill, New York
Sediment - TCLP Lead Results

	Chemical Name	Lead	Lead
	Unit	mg/L	mg/L
Location ID	Sample Date		
SED-1	7/12/1991	0.65	< 0.5 U
SED-2	7/12/1991	0.43 J	< 0.5 U
SED-3	7/12/1991	9.1	0.93
SED-4	7/12/1991	< 0.48 U	1.7
SED-5	7/12/1991	12	3.5
SED-6	7/12/1991	2.7	< 0.5 U
SED-7	7/12/1991	5.3	< 0.5 U
SED-7 (DUP)	7/12/1991	5.2	< 0.5 U
SED-8	7/12/1991	3.8	< 0.5 U
SED-9	7/12/1991	2.3	< 0.5 U

Notes: U - not detected, J - estimated.

Table J-15 Revere Smelting and Refining Wallkill, New York Sediment - Volatile Organic Compounds Results

Don	th Interval (ft)	0 - 0.5	0 - 0.5	0 - 0.5
Dep	Location ID	SED-P2	SED-P2	0 - 0.5 SED-S1
	Sample Date	11/8/2001	11/8/2001	11/8/2001
	Sample ID		SED-P2_11082001FD-1	
Chemical Name	Unit	3ED-F2_11002001N-1	3ED-F2_11002001FD-1	3ED-31_11002001N-1
1.1.1-Trichloroethane	ug/Kg	< 14 U	< 15 U	< 12 UJ
1,1,2,2-Tetrachloroethane	ug/Kg ug/Kg	< 14 U	< 15 U	< 12 UJ
1,1,2-Trichloroethane	ug/Kg ug/Kg	< 14 U	< 15 U	< 12 UJ
1,1,2-Thichloroethane	0 0	< 14 U	< 15 U	< 12 UJ
1,1-Dichloroethane	ug/Kg	< 14 U	< 15 U	< 12 UJ
*	ug/Kg			
1,2-Dichloroethane	ug/Kg	< 14 U	< 15 U	< 12 UJ
1,2-Dichloropropane	ug/Kg	< 14 U	< 15 U	< 12 UJ
2-Hexanone	ug/Kg	< 14 U	< 15 U	< 12 UJ
4-Methyl-2-pentanone	ug/Kg	< 14 U	< 15 U	< 12 UJ
Acetone	ug/Kg	18 J	34 J	< 12 UJ
Benzene	ug/Kg	< 14 U	< 15 U	< 12 UJ
Bromodichloromethane	ug/Kg	< 14 U	< 15 U	< 12 UJ
Bromoform	ug/Kg	< 14 U	< 15 U	< 12 UJ
Bromomethane	ug/Kg	< 14 U	< 15 U	< 12 UJ
Carbon disulfide	ug/Kg	< 14 U	< 15.4 U	< 12 UJ
Carbon tetrachloride	ug/Kg	< 14 U	< 15 U	< 12 UJ
Chlorobenzene	ug/Kg	< 14 U	< 15 U	< 12 UJ
Chloroethane	ug/Kg	< 14 U	< 15 U	< 12 UJ
Chloroform	ug/Kg	< 14 U	< 15 U	< 12 UJ
cis-1,2-Dichloroethene	ug/Kg	< 14 U	< 15 U	< 12 UJ
cis-1,3-Dichloropropene	ug/Kg	< 14 U	< 15 U	< 12 UJ
Dibromochloromethane	ug/Kg	< 14 U	< 15 U	< 12 UJ
Ethylbenzene	ug/Kg	< 14 U	< 15 U	< 12 UJ
Methyl chloride	ug/Kg	< 14 U	< 15 U	< 12 UJ
Methyl ethyl ketone	ug/Kg	< 14 U	< 15 U	< 12 UJ
Methylene chloride	ug/Kg	< 14 U	< 15.4 U	< 12.0 UJ
Styrene	ug/Kg	< 14 U	< 15 U	< 12 UJ
Tetrachloroethene	ug/Kg	< 14 U	< 15 U	< 12 UJ
Toluene	ug/Kg	< 14 U	< 15 U	< 12 UJ
trans-1,2-Dichloroethene	ug/Kg	< 14 U	< 15 U	< 12 UJ
trans-1,3-Dichloropropene	ug/Kg	< 14 U	< 15 U	< 12 UJ
Trichloroethene	ug/Kg	< 14 U	< 15 U	< 12 UJ
Vinyl chloride	ug/Kg	< 14 U	< 15 U	< 12 UJ
Xylenes, Total	ug/Kg	< 14 U	< 15 U	< 12 UJ
,,	טיייםי			

Notes: U - not detected, J - estimated.

Table J-16
Revere Smelting and Refining
Wallkill, New York
Sediment - Semi-volatile Organic Compounds Results

	Depth Interval (ft)	0 - 0.5	0 - 0.5	0 - 0.5
	Location ID	SED-P2	SED-P2	SED-S1
	Sample Date	11/8/2001	11/8/2001	11/8/2001
	Sample ID	SED-P2_11082001N-1	SED-P2_11082001FD-1	SED-S1_11082001N-1
Chemical Name	Unit			
2,4,5-Trichlorophenol	ug/Kg	< 1200 U	< 1300 U	< 1000 U
2,4,6-Trichlorophenol	ug/Kg	< 480 U	< 510 U	< 400 U
2,4-Dichlorophenol	ug/Kg	< 480 U	< 510 U	< 400 U
2,4-Dimethylphenol	ug/Kg	< 480 U	< 510 U	< 400 U
2,4-Dinitrophenol	ug/Kg	< 1200 U	< 1300 U	< 1000 U
2,4-Dinitrotoluene	ug/Kg	< 480 U	< 510 U	< 400 U
2,6-Dinitrotoluene	ug/Kg	< 480 U	< 510 U	< 400 U
2-Chloronaphthalene	ug/Kg	< 480 U	< 510 U	< 400 U
2-Chlorophenol	ug/Kg	< 480 U	< 510 U	< 400 U
2-Methylnaphthalene	ug/Kg	< 480 U	< 510 U	< 400 U
2-Methylphenol	ug/Kg	< 480 U	< 510 U	< 400 U
2-Nitroaniline	ug/Kg	< 1200 U	< 1300 U	< 1000 U
2-Nitrophenol	ug/Kg	< 480 U	< 510 U	< 400 U
3,3'-Dichlorobenzidine	ug/Kg	< 480 U	< 510 U	< 400 U
3-Nitroaniline	ug/Kg	< 1200 U	< 1300 U	< 1000 U
4,6-Dinitro-2-Methylphenol	ug/Kg	< 1200 U	< 1300 U	< 1000 U
4-Bromophenylphenylether	ug/Kg	< 480 U	< 510 U	< 400 U
4-chloro-3-Methylphenol	ug/Kg	< 480 U	< 510 U	< 400 U
4-Chloroaniline	ug/Kg	< 480 U	< 510 U	< 400 U
4-Chlorophenyl phenyl ether	ug/Kg	< 480 U	< 510 U	< 400 U
4-Methylphenol	ug/Kg	< 480 U	< 510 U	< 400 U
4-Nitroaniline	ug/Kg	< 1200 U	< 1300 U	< 1000 U
4-Nitrophenol	ug/Kg	< 1200 U	< 1300 U	< 1000 U
Acenaphthene	ug/Kg	< 480 U	< 510 U	< 400 U
Acenaphthylene	ug/Kg	< 480 U	< 510 U	< 400 U
Anthracene	ug/Kg	< 480 U	< 510 U	< 400 U
Benz(a)anthracene	ug/Kg	< 480 U	68 J	150 J
Benzo(a)pyrene	ug/Kg	< 480 U	< 510 U	120 J
Benzo(b)fluoranthene	ug/Kg	< 480 U	75 J	290 J
Benzo(g,h,i)perylene	ug/Kg	< 480 U	< 510 U	45 J
Benzo(k)fluoranthene	ug/Kg	< 480 U	< 510 U	95 J
Bis(2-chloro-1-methylethyl)ether	0 0	< 480 U	< 510 U	< 400 U
Bis(2-chloroethoxy)methane	ug/Kg	< 480 U	< 510 U	< 400 U
Bis(2-chloroethyl)ether	ug/Kg	< 480 U	< 510 U	< 400 U

Table J-16
Revere Smelting and Refining
Wallkill, New York
Sediment - Semi-volatile Organic Compounds Results

	Depth Interval (ft)	0 - 0.5	0 - 0.5	0 - 0.5
	Location ID	SED-P2	SED-P2	SED-S1
	Sample Date	11/8/2001	11/8/2001	11/8/2001
	Sample ID	SED-P2_11082001N-1	SED-P2_11082001FD-1	SED-S1_11082001N-1
Chemical Name	Unit			
Bis(2-ethylhexyl)phthalate	ug/Kg	< 480 U	65 J	69 J
Butyl benzyl phthalate	ug/Kg	< 480 U	< 510 U	< 400 U
Carbazole	ug/Kg	< 480 U	< 510 U	< 400 U
Chrysene	ug/Kg	< 480 U	73 J	190 J
Dibenz(a,h)anthracene	ug/Kg	< 480 U	< 510 U	< 400 U
Dibenzofuran	ug/Kg	< 480 U	< 510 U	< 400 U
Dichlorobenzenes (1,2-)	ug/Kg	< 480 U	< 510 U	< 400 U
Dichlorobenzenes (1,3-)	ug/Kg	< 480 U	< 510 U	< 400 U
Dichlorobenzenes (1,4-)	ug/Kg	< 480 U	< 510 U	< 400 U
Diethyl phthalate	ug/Kg	< 480 U	< 510 U	< 400 U
Dimethyl phthalate	ug/Kg	< 480 U	< 510 U	< 400 U
Di-n-butylphthalate	ug/Kg	< 480 U	< 510 U	< 400 U
Di-n-octyl phthalate	ug/Kg	< 480 U	< 510 U	< 400 U
Fluoranthene	ug/Kg	56 J	140 J	320 J
Fluorene	ug/Kg	< 480 U	< 510 U	< 400 U
Hexachlorobenzene	ug/Kg	< 480 U	< 510 U	< 400 U
Hexachlorobutadiene	ug/Kg	< 480 U	< 510 U	< 400 U
Hexachlorocyclopentadiene	ug/Kg	< 480 U	< 510 U	< 400 U
Hexachloroethane	ug/Kg	< 480 U	< 510 U	< 400 U
Indeno (1,2,3-cd)pyrene	ug/Kg	< 480 U	< 510 U	49 J
Isophorone	ug/Kg	< 480 U	< 510 U	< 400 U
Naphthalene	ug/Kg	< 480 U	< 510 U	< 400 U
Nitrobenzene	ug/Kg	< 480 U	< 510 U	< 400 U
N-Nitrosodiphenylamine	ug/Kg	< 480 U	< 510 U	< 400 U
N-Nitrosodipropylamine	ug/Kg	< 480 U	< 510 U	< 400 U
Pentachlorophenol	ug/Kg	< 1200 U	< 1300 U	< 1000 U
Phenanthrene	ug/Kg	< 480 U	92 J	130 J
Phenol	ug/Kg	< 483 U	< 512 U	< 400 U
Pyrene	ug/Kg	51 J	140 J	270 J
Trichlorobenzenes (1,2,4-)	ug/Kg	< 480 U	< 510 U	< 400 U

Table J-17
Revere Smelting and Refining
Wallkill, New York
Sediment - Pesticide Results

	Depth Interval (ft)	0 - 0.5	0 - 0.5	0 - 0.5
	Location ID	SED-P2	SED-P2	SED-S1
	Sample Date	11/8/2001	11/8/2001	11/8/2001
	Sample ID	SED-P2_11082001N-1	SED-P2_11082001FD-1	SED-S1_11082001N-1
Chemical Name	Unit			
a-Chlordane	ug/Kg	< 2.4 U	< 2.6 U	< 2 U
Aldrin	ug/Kg	< 2.4 U	< 2.6 U	< 2 U
alpha-Hexachlorocyclohexane	ug/Kg	< 2.4 U	< 2.6 U	< 2 U
beta-Hexachlorocyclohexane	ug/Kg	< 2.4 U	< 2.6 U	< 2 U
delta-Hexachlorocyclohexane	ug/Kg	< 2.4 U	< 2.6 U	< 2 U
Dieldrin	ug/Kg	< 4.8 U	< 5.1 U	< 4 U
Endosulfan I	ug/Kg	< 2.4 U	< 2.6 U	< 2 U
Endosulfan II	ug/Kg	< 4.8 U	< 5.1 U	< 4 U
Endosulfan sulfate	ug/Kg	< 4.8 U	< 5.1 U	< 4 U
Endrin	ug/Kg	< 4.8 U	< 5.1 U	< 4 U
Endrin aldehyde	ug/Kg	< 4.8 U	< 5.1 U	< 4 U
Endrin ketone	ug/Kg	< 4.8 U	< 5.1 U	< 4 U
Gamma-Chlordane	ug/Kg	< 2.4 U	< 2.6 U	< 2 U
gamma-Hexachlorocyclohexane	ug/Kg	< 2.4 U	< 2.6 U	< 2 U
Heptachlor	ug/Kg	< 2.4 U	< 2.6 U	< 2 U
Heptachlor epoxide	ug/Kg	< 2.4 U	< 2.6 U	< 2 U
Methoxychlor	ug/Kg	< 24 U	< 26 U	< 20 U
p,p'-DDD	ug/Kg	< 4.8 U	< 5.1 U	< 4 U
p,p'-DDE	ug/Kg	< 4.8 U	< 5.1 U	< 4 U
p,p'-DDT	ug/Kg	< 4.8 U	< 5.1 U	< 4 U
Toxaphene	ug/Kg	< 240 U	< 260 U	< 200 U

Notes: U - not detected.

Table J-18
Revere Smelting and Refining
Wallkill, New York
Sediment - PCBs Results

	Depth Interval (ft)	0 - 0.5	0 - 0.5	0 - 0.5
	Location ID	SED-P2	SED-P2 (DUP)	SED-S1
	Sample Date	11/8/2001	11/8/2001	11/8/2001
	Sample ID	SED-P2_11082001N-1	SED-P2_11082001FD-1	SED-S1_11082001N-1
Chemical Name	Unit			
Aroclor-1016	ug/Kg	< 48 U	< 51 U	< 40 U
Aroclor-1221	ug/Kg	< 97 U	< 100 U	< 81 U
Aroclor-1232	ug/Kg	< 48 U	< 51 U	< 40 U
Aroclor-1242	ug/Kg	< 48 U	< 51 U	< 40 U
Aroclor-1248	ug/Kg	< 48 U	< 51 U	< 40 U
Aroclor-1254	ug/Kg	< 48 U	< 51 U	< 40 U
Aroclor-1260	ug/Kg	< 48 U	< 51 U	< 40 U

Table J-19
Revere Smelting and Refining
Wallkill, New York
Ground Water - Inorganic Results

		Location ID	MW-13	MW-23D	MW-23S	MW-24	MW-25	MW-26	MW-26 (DUP)
		Sample Date	11/16/2001	11/16/2001	11/16/2001	11/15/2001	11/15/2001	11/16/2001	11/16/2001
		Sample ID	MW-13_11162001N	MW-23D_11162001N	N MW-23S_11162001N	I MW-24_11152001N	N MW-25_11152001N	NMW-26_11162001N	N MW-26_11162001FD
Chemical Name	Unit	Criteria							
Aluminum	ug/L		207	85.8 J	906	5120	194 J	537	611
Antimony	ug/L	3	< .0021 U	< .0021 U	2.9 J	< .0021 U	< .0021 U	< .0021 U	< .0021 U
Arsenic	ug/L	25	3.1 J	2.6 J	3.3 J	2.9 J	4 J	3.1 J	3.6 J
Barium	ug/L	1000	15.3 JE	87.1 JE	72.4 JE	21.4 JE	44.4 JE	40.8 JE	40.1 JE
Beryllium	ug/L	3	0.24 J	0.15 J	0.22 J	2.2 J	0.21 J	0.25 J	0.23 J
Cadmium	ug/L	5	2.4 J	< .00037 U	0.46 J	92.8	1.4 J	0.94 J	0.51 J
Calcium Metal	ug/L		683000	584000	525000	396000	49200	107000	103000
Chromium	ug/L	50	2 J	6.7 J	5.1 J	6.3 J	2.6 J	4.7 J	3.1 J
Cobalt	ug/L		134	< .00072 U	7.6 J	169	6.2 J	50	46.7 J
Copper	ug/L	200	< .00046 U	3.1 J	6.6 J	87	1.4 J	2 J	1.5 J
Iron	ug/L	300	14500	247	1110	764	683	1590	1650
Lead	ug/L	25	3.1 J	< .0015 U	24.8	2.8 J	< .0015 U	3.3 J	4.2
Magnesium	ug/L	35000	153000	105000	92400	118000	9520	19300	18600 J
Manganese	ug/L	300	39300 D	1680	14300	31500 D	5800	21600 D	21000 D
Nickel	ug/L	100	252	3.4 J	10.6 J	308	10.4 J	20.4 J	19.7 J
Potassium	ug/L		3230 J	4020 J	5720	10000	2110 J	7960	7660
Selenium	ug/L	10	18.2 J	< .0022 U	6.6 J	19.3 J	3.7 J	10.4 J	10.4 J
Silver	ug/L	50	< .0010 U	< .0010 U	< .0010 U	< .0010 U	< .0010 U	< .0010 U	< .0010 U
Sodium	ug/L	20000	224000	105000	323000	705000	48400	142000	136000
Thallium	ug/L	0.5	5.2 J	< .0051 U	< .0051 U	12.2	< .0051 U	11.8	8.5 J
Vanadium	ug/L		< .00069 U	1.4 J	1.9 J	0.69 J	0.69 J	< .00069 U	1 J
Zinc	ug/L	2000	26.6	< .0014 U	10.7 J	496	10.8 J	6.9 J	6.2 J
Mercury	ug/L	0.7	< .00015 U	< .00015 U	< .00015 U	< .00015 U	< .00015 U	< .00015 U	< .00015 U
Cyanide	ug/L	200	< .01 U	< .01 U	< .01 U	< .01 U	< .01 U	< .01 U	< .01 U

Notes: U - not detected, J - estimated, D - Concentration from diluted sample, E - recovery greater than 10% for serial dilution

Table J-20
Revere Smelting and Refining
Wallkill, New York
Ground Water - Volatile Organic Compounds Results

		Location ID	MW-13	MW-23D	MW-23S	MW-24	MW-25	MW-26	MW-26 (DUP)
		Sample Date	11/16/2001	11/16/2001	11/16/2001	11/15/2001	11/15/2001	11/16/2001	11/16/2001
		Sample ID	MW-13_11162001N	MW-23D_11162001N	MW-23S_11162001N	MW-24_11152001N	MW-25_11152001N	MW-26_11162001N	MW-26_11162001FD
Chemical Name	Unit	Action Level							
1,1,1-Trichloroethane	ug/L	5	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
1,1,2,2-Tetrachloroethane	ug/L	5	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
1,1,2-Trichloroethane	ug/L	1	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
1,1-Dichloroethane	ug/L	5	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
1,1-Dichloroethene	ug/L	5	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
1,2-Dichloroethane	ug/L	0.6	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
1,2-Dichloropropane	ug/L	1	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
2-Hexanone	ug/L	50	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
4-Methyl-2-pentanone	ug/L		< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
Acetone	ug/L	50	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
Benzene	ug/L	1	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
Bromodichloromethane	ug/L	50	< 10 U	< 10 U	0.8 J	< 10 U	< 10 U	< 10 U	< 10 U
Bromoform	ug/L	50	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
Bromomethane	ug/L	5	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
Carbon disulfide	ug/L	60	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
Carbon tetrachloride	ug/L	5	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
Chlorobenzene	ug/L	5	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
Chloroethane	ug/L	5	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
Chloroform	ug/L	7	< 10 U	< 10 U	3 J	1 J	< 10 U	< 10 U	< 10 U
cis-1,2-Dichloroethene	ug/L	5	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
cis-1,3-Dichloropropene	ug/L	0.4	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
Dibromochloromethane	ug/L	50	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
Ethylbenzene	ug/L	5	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
Methyl chloride	ug/L	5	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
Methyl ethyl ketone	ug/L	50	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
Methylene chloride	ug/L	5	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
Styrene	ug/L	5	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
Tetrachloroethene	ug/L	5	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
Toluene	ug/L	5	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
trans-1,2-Dichloroethene	ug/L	5	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
trans-1,3-Dichloropropene	ug/L	0.4	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
Trichloroethene	ug/L	5	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
Vinyl chloride	ug/L	2	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U
Xylenes, Total	ug/L	5	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U

Notes: U - not detected, J - estimated

Table J-21
Revere Smelting and Refining
Wallkill, New York
Ground Water - Semi-volatile Organic Compounds Results

		Location ID	MW-13	MW-23D	MW-23S	MW-24	MW-25	MW-26	MW-26 (DUP)
		Sample Date	11/16/2001	11/16/2001	11/16/2001	11/15/2001	11/15/2001	11/16/2001	11/16/2001
		Sample ID	MW-13_11162001N	MW-23D_11162001N	MW-23S_11162001N	MW-24_11152001N	MW-25_11152001N	MW-26_11162001N	MW-26_11162001FD
Chemical Name	Unit	Action Level							
2,4,5-Trichlorophenol	ug/L	1 (sum of Phenols)	< 25 U	< 25 U	< 27 U	< 25 U	< 26 U	< 25 U	< 25 U
2,4,6-Trichlorophenol	ug/L	1 (sum of Phenols)	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
2,4-Dichlorophenol	ug/L	5	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
2,4-Dimethylphenol	ug/L	50	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
2,4-Dinitrophenol	ug/L	10	< 25 U	< 25 U	< 27 U	< 25 U	< 26 U	< 25 U	< 25 U
2,4-Dinitrotoluene	ug/L	5	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
2,6-Dinitrotoluene	ug/L	5	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
2-Chloronaphthalene	ug/L	10	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
2-Chlorophenol	ug/L	1 (sum of Phenols)	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
2-Methylnaphthalene	ug/L		< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
2-Methylphenol	ug/L	1 (sum of Phenols)	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
2-Nitroaniline	ug/L	5	< 25 U	< 25 U	< 27 U	< 25 U	< 26 U	< 25 U	< 25 U
2-Nitrophenol	ug/L	1 (sum of Phenols)	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
3,3'-Dichlorobenzidine	ug/L	5	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
3-Nitroaniline	ug/L	5	< 25 U	< 25 U	< 27 U	< 25 U	< 26 U	< 25 U	< 25 U
4,6-Dinitro-2-Methylphenol	ug/L	1 (sum of Phenols)	< 25 U	< 25 U	< 27 U	< 25 U	< 26 U	< 25 U	< 25 U
4-Bromophenylphenylether	ug/L	Unregulated POC	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
4-chloro-3-Methylphenol	ug/L	1 (sum of Phenols)	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
4-Chloroaniline	ug/L	5	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
4-Chlorophenyl phenyl ether	ug/L	1 (sum of Phenols)	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
4-Methylphenol		1 (sum of Phenols)	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
4-Nitroaniline	ug/L	5	< 25 U	< 25 U	< 27 U	< 25 U	< 26 U	< 25 U	< 25 U
4-Nitrophenol	ug/L	1 (sum of Phenols)	< 25 U	< 25 U	< 27 U	< 25 U	< 26 U	< 25 U	< 25 U
Acenaphthene	ug/L	20	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Acenaphthylene	ug/L		< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Anthracene	ug/L	50	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Benz(a)anthracene	ug/L	0.002	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Benzo(a)pyrene	ug/L	ND	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Benzo(b)fluoranthene	ug/L	0.002	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Benzo(g,h,i)perylene	ug/L		< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Benzo(k)fluoranthene	ug/L	0.002	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Bis(2-chloro-1-methylethyl)ether	ug/L	5	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Bis(2-chloroethoxy)methane	ug/L	5	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Bis(2-chloroethyl)ether	ug/L	1	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Bis(2-ethylhexyl)phthalate	ug/L	5	< 10 U	< 10 U	1 J	< 10 U	< 10 U	< 10 U	< 10 U

Table J-21
Revere Smelting and Refining
Wallkill, New York
Ground Water - Semi-volatile Organic Compounds Results

		Location ID	MW-13	MW-23D	MW-23S	MW-24	MW-25	MW-26	MW-26 (DUP)
		Sample Date	11/16/2001	11/16/2001	11/16/2001	11/15/2001	11/15/2001	11/16/2001	11/16/2001
		Sample ID	MW-13_11162001N	MW-23D_11162001N	MW-23S_11162001N	MW-24_11152001N	MW-25_11152001N	MW-26_11162001N	MW-26_11162001FD
Chemical Name	Unit	Action Level							
Butyl benzyl phthalate	ug/L	50	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Carbazole	ug/L		< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Chrysene	ug/L	0.002	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Dibenz(a,h)anthracene	ug/L		< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Dibenzofuran	ug/L		< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Dichlorobenzenes (1,2-)	ug/L	3	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Dichlorobenzenes (1,3-)	ug/L	3	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Dichlorobenzenes (1,4-)	ug/L	3	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Diethyl phthalate	ug/L	50	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Dimethyl phthalate	ug/L	50	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Di-n-butylphthalate	ug/L	50	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Di-n-octyl phthalate	ug/L	50	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Fluoranthene	ug/L	50	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Fluorene	ug/L	50	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Hexachlorobenzene	ug/L	0.04	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Hexachlorobutadiene	ug/L	0.5	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Hexachlorocyclopentadiene	ug/L	5	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Hexachloroethane	ug/L	5	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Indeno (1,2,3-cd)pyrene	ug/L	0.002	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Isophorone	ug/L	50	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Naphthalene	ug/L	10	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Nitrobenzene	ug/L	0.4	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
N-Nitrosodiphenylamine	ug/L	50	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
N-Nitrosodipropylamine	ug/L		< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Pentachlorophenol	ug/L	1 (sum of Phenols)	< 25 U	< 25 U	< 27 U	< 25 U	< 26 U	< 25 U	< 25 U
Phenanthrene	ug/L	50	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Phenol	ug/L	1 (sum of Phenols)	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Pyrene	ug/L	50	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U
Trichlorobenzenes (1,2,4-)	ug/L	5	< 10 U	< 10 U	< 11 U	< 10 U	< 10 U	< 10 U	< 10 U

Table J-22
Revere Smelting and Refining
Wallkill, New York
Ground Water - Pesticide Results

		Location ID	MW-13	MW-23D	MW-23S	MW-24	MW-25	MW-26	MW-26 (DUP)
		Sample Date	11/16/2001	11/16/2001	11/16/2001	11/15/2001	11/15/2001	11/16/2001	11/16/2001
		Sample ID	MW-13_11162001N	MW-23D_11162001N	MW-23S_11162001N	MW-24_11152001N	MW-25_11152001N	MW-26_11162001N	MW-26_11162001FD
Chemical Name	Unit	Action Level							
a-Chlordane	ug/L	0.05	< 0.05 U	< 0.051 U	< 0.052 U	< 0.05 U	< 0.051 U	< 0.051 U	< 0.051 U
Aldrin	ug/L	ND	< 0.05 U	< 0.051 U	< 0.052 U	< 0.05 U	< 0.051 U	< 0.051 U	< 0.051 U
alpha-Hexachlorocyclohexane	ug/L	0.01	< 0.05 U	< 0.051 U	< 0.052 U	< 0.05 U	< 0.051 U	< 0.051 U	< 0.051 U
beta-Hexachlorocyclohexane	ug/L	0.04	< 0.05 U	< 0.051 U	< 0.052 U	< 0.05 U	< 0.051 U	< 0.051 U	< 0.051 U
delta-Hexachlorocyclohexane	ug/L	0.04	< 0.05 U	< 0.051 U	< 0.052 U	< 0.05 U	< 0.051 U	< 0.051 U	< 0.051 U
Dieldrin	ug/L	0.004	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U
Endosulfan I	ug/L		< 0.05 U	< 0.051 U	< 0.052 U	< 0.05 U	< 0.051 U	< 0.051 U	< 0.051 U
Endosulfan II	ug/L		< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U
Endosulfan sulfate	ug/L		< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U
Endrin	ug/L	ND	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U
Endrin aldehyde	ug/L	0.5	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U
Endrin ketone	ug/L	5	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U
Gamma-Chlordane	ug/L	0.05	< 0.05 U	< 0.051 U	< 0.052 U	< 0.05 U	< 0.051 U	< 0.051 U	< 0.051 U
gamma-Hexachlorocyclohexane	ug/L	0.05	< 0.05 U	< 0.051 U	< 0.052 U	< 0.05 U	< 0.051 U	< 0.051 U	< 0.051 U
Heptachlor	ug/L	0.04	< 0.05 U	< 0.051 U	0.033 BJ	< 0.05 U	< 0.051 U	< 0.051 U	< 0.051 U
Heptachlor epoxide	ug/L	0.03	< 0.05 U	< 0.051 U	< 0.052 U	< 0.05 U	< 0.051 U	< 0.051 U	< 0.051 U
Methoxychlor	ug/L	35	< 0.5 U	< 0.51 U	< 0.52 U	< 0.5 U	< 0.51 U	< 0.51 U	< 0.51 U
p,p'-DDD	ug/L	0.3	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U
p,p'-DDE	ug/L	0.2	< 0.1 U	< 0.1 U	< 0.01 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U
p,p'-DDT	ug/L	0.2	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U
Toxaphene	ug/L	0.09	< 5 U	< 5.1 U	< 5.2 U	< 5 U	< 5.1 U	< 5.1 U	< 5.1 U

Notes: U - not detected, B - detected in associated blank.

Table J-23
Revere Smelting and Refining
Wallkill, New York
Ground Water - PCBs Results

		Location ID	MW-13	MW-23D	MW-23S	MW-24	MW-25	MW-26	MW-26 (DUP)
		Sample Date	11/16/2001	11/16/2001	11/16/2001	11/15/2001	11/15/2001	11/16/2001	11/16/2001
		Sample ID	MW-13_11162001N	MW-23D_11162001N	MW-23S_11162001N	MW-24_11152001N	MW-25_11152001N	MW-26_11162001N	MW-26_11162001FD
Chemical Name	Unit	Action Level							
Aroclor-1016	ug/L	0.09	< 1 U	< 1 U	<1U	< 1 U	< 1 U	< 1 U	< 1 U
Aroclor-1221	ug/L	0.09	< 2 U	< 2 U	< 2.1 U	< 2 U	< 2 U	< 2 U	< 2 U
Aroclor-1232	ug/L	0.09	< 1 U	< 1 U	<1U	< 1 U	< 1 U	< 1 U	< 1 U
Aroclor-1242	ug/L	0.09	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
Aroclor-1248	ug/L	0.09	< 1 U	< 1 U	<1U	< 1 U	< 1 U	< 1 U	< 1 U
Aroclor-1254	ug/L	0.09	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
Aroclor-1260	ug/L	0.09	<1U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U

U - not detected.

Table J-24
Revere Smelting and Refining
Wallkill, New York
Ground Water - Alkalinity Results

	Chemical Name	Alkalinity (As CaCO3)
Location ID	Sample Date	mg/L
MW-13	11/16/2001	290
MW-23D	11/16/2001	210
MW-23S	11/16/2001	460
MW-24	11/15/2001	26
MW-25	11/15/2001	60
MW-26	11/16/2001	150
MW-26 (DUP)	11/16/2001	150

Table J-25
Revere Smelting and Refining
Wallkill, New York
Sieve Analysis - Inorganic Results

Location	ID Eastern	NYS TAGM	Sieve#1 - #60	Sieve#1 + #60	Sieve#2 - #60	Sieve#2 + #60	Sieve#2 + #60 DUP
Sample	ID USA	Recommended	Sieve1_11162001N-2	Sieve1_11162001N-1	Sieve2_11162001N-2	Sieve2_11162001N-1	Sieve2_11162001FD-1
Sample Da	ite Background	Criteria	11/16/2001	11/16/2001	11/16/2001	11/16/2001	11/16/2001
U	nit mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Chemical Name							
Aluminum (Fume Or Dust)	33,000	SB	14400	15100	12200	14400	14200
Antimony	N/A	SB	13.3	30.3	< 0.42 U	0.72 J	6.3 J
Arsenic	3 - 12 **	7.5 or SB	20.2	20.7	7.3	8.4	9.9
Barium	15 - 600	300 or SB	74.2	94.0	42.0	39.2 J	38.5 J
Beryllium	0 - 1.75	0.16 or SB	0.83 J	1.1	0.66 J	0.75 J	0.73 J
Cadmium	0.1 - 1	1 or SB	0.78 J	[1.8]	0.093 J	0.080 J	0.11 J
Calcium Metal	130 - 35,000	SB	3510	7970	1170	1270	1320
Chromium	1.5 - 40 **	10 or SB	20.1	22.0	15.3	19.2	18.8
Cobalt	2.5 - 60 **	30 or SB	14.2	13.9	9.5 J	11.4	12.1
Copper	1 - 50	25 or SB	[159]	42.0	[66.8]	43.9	42.1
Iron	2,000 - 550,000	2000 or SB	29700	32800	24900	30500	29800
Lead	***	SB ****	< 0.304 R	< 0.304 R	< 0.303 R	< 0.303 R	< 0.303 R
Magnesium	100 - 5,000	SB	[5080]	[6510]	4520	[6060]	[5950]
Manganese	50 - 5,000	SB	658	673	700	756	778
Nickel	0.2 - 25	13 or SB	[26.1]	[27.4]	19.9	24.4	23.5
Potassium	8,500 - 43,000 **	SB	1080	1140	992 J	1140	1030
Selenium	0.1 - 3.9	2 or SB	0.96 J	1.3	0.58 J	0.66 J	< 0.44 U
Silver	N/A	SB	< 0.20 U				
Sodium	6,000 - 8,000	SB	84.8 J	89.6 J	218 J	198 J	183 J
Thallium	N/A	SB	< 1.0 U	1.4 J	< 1.0 U	< 1.0 U	1.2 J
Vanadium (Fume Or Dust)	1 - 300	150 or SB	20.7	21.8	17.3	20.7	20.7
Zinc	9 - 50	20 or SB	[101]	[94.3]	[73.5]	[75.4]	[72.8]

Notes:

- Bold values exceed NYS TAGM Recommended Soil Cleanup Criteria.
- Values in brackets [##] exceed Eastern USA Background
- ** New York State Background
- **** Background level for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.
- U not detected, J estimated, R rejected.

Table J-25
Revere Smelting and Refining
Wallkill, New York
Sieve Analysis - Inorganic Results

Location ID	Eastern	NYS TAGM	Sieve#3 - #60	Sieve#3 + #60	Sieve#4 - #60	Sieve#4 + #60
Sample ID	USA	Recommended	Sieve3_11162001N-2	Sieve3_11162001N-1	Sieve4_11162001N-2	Sieve4_11162001N-1
Depth Interval	Background	Soil Cleanup				
Sample Date	-	Criteria	11/16/2001	11/16/2001	11/16/2001	11/16/2001
Unit	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Chemical Name						
Aluminum (Fume Or Dust)	33000	SB	8770	11400	8870	9520
Antimony	N/A	SB	42.7	1490	791	1880
Arsenic	3 - 12 **	7.5 or SB	31.8	140	313	361
Barium	15 - 600	300 or SB	44.1	68.5	163	96.0
Beryllium	0 - 1.75	0.16 or SB	0.50 J	0.68 J	0.54 J	0.54 J
Cadmium	0.1 - 1	1 or SB	[1.7]	[2.4]	[10.4]	[16.9]
Calcium Metal	130 - 35,000	SB	1510	1910	25000	8980
Chromium	1.5 - 40 **	10 or SB	13.2	16.9	14.9	16.7
Cobalt	2.5 - 60 **	30 or SB	6.7 J	8.1 J	9.9 J	9.3 J
Copper	1 - 50	25 or SB	[65.1]	[74.4]	[191]	[114]
Iron	2,000 - 550,000	2000 or SB	20100	25900	22500	25600
Lead	***	SB ****	< .302 R	< .305 R	< .307 R	< .303 R
Magnesium	100 - 5,000	SB	3440	4260	3910	4840
Manganese	50 - 5,000	SB	360	428	706	648
Nickel	0.2 - 25	13 or SB	18.1	21.6	[29.3]	[38.3]
Potassium	8,500 - 43,000 **	SB	771 J	852 J	937 J	944 J
Selenium	0.1 - 3.9	2 or SB	0.91 J	0.96 J	0.99 J	0.99 J
Silver	N/A	SB	< .20 U	0.80 J	0.68 J	0.38 J
Sodium	6,000 - 8,000	SB	27.6 J	40.1 J	59.2 J	86.0 J
Thallium	N/A	SB	< 1.0 U	1.4 J	< 1.0 U	< 1.0 U
Vanadium (Fume Or Dust)	1 - 300	150 or SB	13.4	16.8	14.4	15.4
Zinc	9 - 50	20 or SB	[64.0]	[67.3]	[98.8]	[86.9]

Notes:

- Bold values exceed NYS TAGM Recommended Soil Cleanup Criteria.
- Values in brackets [##] exceed Eastern USA Background
- ** New York State Background
- **** Background level for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.
- U not detected, J estimated, R rejected.

Table J-26 Revere Smelting and Refining Wallkill, New York Excavation Area - Inorganic Results

		Location ID	EX-1	EX-1	EX-2	EX-2	SED-2	SED-2
		Sample Date	11/8/2001	11/8/2001	11/8/2001	11/8/2001	11/29/2005	11/29/2005
		· ·	EX-1 11082001N-2	EX-1 11082001N-1	EX-2 11082001N-2	EX-2 11082001N-1	SEDOBG2D L	SEDOBG2 L
		Depth Interval (ft)	0.5 - 1.0	0.0 - 0.5	0.5 - 1.0	0.0 - 0.5	02000025_2	0200002_2
Chemical Name	Unit	Action Level	0.0	0.0 0.0	0.00	0.0 0.0		
Aluminum (Fume Or Dust)	mg/Kg	SB	-	17200	-	-	12800 EJ	13100 EJ
Antimony	mg/Kg	SB	-	20.6 JN	-	-	746 NJ	370 NJ
Arsenic	mg/Kg	7.5 or SB	-	69.1	-	-	465 *EJ	332 *EJ
Barium	mg/Kg	300 or SB	-	85.6	-	-	147	149
Beryllium	mg/Kg	0.16 (HEAST) or SB	-	0.93 J	-	-	0.74 EJ	0.73 EJ
Cadmium	mg/Kg	1 or SB	-	6.0 J*	-	-	19.5 *J	17.2 *J
Calcium Metal	mg/Kg	SB	-	1530 J*	-	-	30600 *EJ	28700 EJ
Chromium	mg/Kg	10 or SB	-	22.6 JE	-	-	28 EJ	25.3 EJ
Cobalt	mg/Kg	30 or SB	-	13.4 JE	-	-	10.9 *EJ	10.3 *EJ
Copper	mg/Kg	25 or SB	-	156 JN*	-	-	449 EJ	399 EJ
Cyanide	mg/Kg		-	< .6 U	-	-	-	-
Iron	mg/Kg	2,000 or SB	-	25600	-	-	28600	31500
Lead	mg/Kg	SB ****	607 J*	1300 J*	306 J*	2130 J*	42300 *EJ	32800 *EJ
Magnesium	mg/Kg	SB	-	4610	-	-	3970 EJ	4200 EJ
Manganese	mg/Kg	SB	-	298 JN	-	-	463 *EJ	437 *ER
Mercury	mg/Kg	0.1	-	< .09 U	-	-	0.38	0.17
Nickel	mg/Kg	13 or SB	-	33	-	-	65 EJ	65.6 EJ
Potassium	mg/Kg	SB	-	1380 JE	-	-	954 EJ	959 EJ
Selenium	mg/Kg	2 or SB	-	2.0 JN	-	-	4.4	4.1
Silver	mg/Kg	SB	-	< .25 U	-	-	0.72 B	0.65 B
Sodium	mg/Kg	SB	-	389 J	-	-	292 *J	266 *J
Thallium	mg/Kg	SB	-	< 1.3 U	-	-	2.2	2.2
Vanadium (Fume Or Dust)	mg/Kg	150 or SB	-	25	-	-	28 EJ	25.9 EJ
Zinc	mg/Kg	20 or SB	-	102	-	-	130 EJ	111 EJ

Notes:

- Bold values exceed NYS TAGM Recommended Soil Cleanup Criteria.
- **** Background level for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.
- U not detected, J estimated, R rejected, N matrix spike outside of 75-125% limit,
- E recovery greater than 10% for serial dilution, * RPD greater than 20%.

Table J-27 Revere Smelting and Refining Wallkill, New York Excavation Area - TLCP Inorganic Results

	Location ID	SED-1	SED-1	SED-2	SED-3	SED-4
	Sample Date	11/29/2005	11/29/2005	11/29/2005	11/29/2005	11/29/2005
	Sample ID	SEDOBG1D_L	SEDOBG1_L	SEDOBG2_L	SEDOBG3_L	SEDOBG4_L
Chemical Name	Unit					
Arsenic	ug/L	149	267	-	-	-
Barium	ug/L	867	809	-	-	-
Cadmium	ug/L	98.3	124	-	-	-
Chromium	ug/L	2.1 B	2.2 B	-	-	-
Lead	ug/L	377000	399000	6080	8720	6100
Mercury	ug/L	< 0.071 U	< 0.068 U	-	-	-
Selenium	ug/L	19.3 B	16.9 B	-	-	-
Silver	ug/L	< 0.91 U	< 0.91 U	-	-	-

Table J-28 Revere Smelting and Refining Wallkill, New York Excavation Area - Volatile Organic Compounds Results

		Location ID	EX-1
		Sample Date	11/8/2001
		Sample ID	EX-1_11082001N-1
		Depth Interval (ft)	0.0 - 0.5
Chemical Name	Unit	Action Level	
1,1,1-Trichloroethane	ug/Kg	800	< 13 U
1,1,2,2-Tetrachloroethane	ug/Kg	600	< 13 UJ
1,1,2-Trichloroethane	ug/Kg	NA	< 13 U
1,1-Dichloroethane	ug/Kg	200	< 13 U
1,1-Dichloroethylene	ug/Kg	400	< 13 U
1,2-Dichloroethane	ug/Kg	100	< 13 U
1,2-Dichloropropane	ug/Kg	NA	< 13 U
2-Butanone (MEK)	ug/Kg	300	12 J
4-Methyl-2-Pentanone (MIBK)	ug/Kg	1000	< 13 UJ
Acetone	ug/Kg	200	37 J
Benzene	ug/Kg	60	< 13 U
Bromodichloromethane	ug/Kg	NA	< 13 U
Bromomethane	ug/Kg	NA	< 13 U
Carbon Disulfide	ug/Kg	2700	< 12.7 U
Carbon Tetrachloride	ug/Kg	600	< 13 U
Chlorobenzene	ug/Kg	1700	< 13 UJ
Chlorodibromomethane	ug/Kg	NA	< 13 U
Chloroethane	ug/Kg	1900	< 13 U
Chloroform	ug/Kg	300	< 13 U
Chloromethane	ug/Kg	NA	< 13 U
Cis-1,2-Dichloroethene	ug/Kg	NA	< 13 U
Cis-1,3-Dichloropropylene	ug/Kg	NA	< 13 U
Dichloromethane	ug/Kg	100	< 12.7 U
Ethylbenzene	ug/Kg	5500	< 13 UJ
Methyl N-Butyl Ketone	ug/Kg	NA	< 13 UJ
Methylbenzene	ug/Kg	1500	2 J
Styrene (Monomer)	ug/Kg	NA	< 13 UJ
Tetrachloroethene	ug/Kg	1400	< 13 UJ
Trans-1,2-Dichloroethene	ug/Kg	300	< 13 U
Trans-1,3-Dichloropropene	ug/Kg	NA	< 13 U
Tribomomethane	ug/Kg	NA	< 13 U
Trichloroethylene	ug/Kg	700	< 13 U
Vinyl Chloride	ug/Kg	200	< 13 U
Xylene (Total)	ug/Kg	1200	< 13 UJ

Notes: U - not detected, J - estimated.

Table J-29 Revere Smelting and Refining Wallkill, New York

Excavation Area - Semi-Volatile Organic Compounds Results

				F.V. 4
			Location ID	EX-1
			Sample Date	11/8/2001
			Sample ID	EX-1_11082001N-1
			Depth Interval (ft)	0.0 - 0.5
Chemical Name	Unit	Action Level	Unit	100.11
1,2,4-Trichlorobenzene	ug/Kg	3400	ug/Kg	< 420 U
1,2-Benzphenanthracene	ug/Kg	400	ug/Kg	< 420 U
1,2-Dichlorobenzene	ug/Kg	7900	ug/Kg	< 420 U
1,4-Dichlorobenzene	ug/Kg	8500	ug/Kg	< 420 U
2,4,5-Trichlorophenol	ug/Kg	100	ug/Kg	< 1100 U
2,4,6-Trichlorophenol	ug/Kg	NA	-	< 420 U
2,4-Dichlorophenol	ug/Kg	400	ug/Kg	< 420 U
2,4-Dimethylphenol	ug/Kg	NA	-	< 420 U
2,4-Dinitrophenol	ug/Kg	200 or MDL	ug/Kg	< 1100 U
2,4-Dinitrotoluene	ug/Kg	NA	-	< 420 U
2,6-Dinitrotoluene	ug/Kg	1000	ug/Kg	< 420 U
2-Chloronaphthalene	ug/Kg	NA	-	< 420 U
2-Chlorophenol	ug/Kg	800	ug/Kg	< 420 U
2-Methylnaphthalene	ug/Kg	36400	ug/Kg	< 420 U
2-Methylphenol	ug/Kg	100 or MDL	ug/Kg	< 420 U
2-Nitroaniline	ug/Kg	430 or MDL	ug/Kg	< 1100 U
2-Nitrophenol	ug/Kg	330 or MDL	ug/Kg	< 420 U
3,3'-Dichlorobenzidine	ug/Kg	NA	ug/Kg	< 420 U
3,5,5-Trimethyl-2-Cyclohexene-1-One	ug/Kg	4400	ug/Kg	< 420 U
3-Nitroaniline	ug/Kg	500 or MDL	ug/Kg	< 1100 U
4,6-Dinitro-2-Methylphenol	ug/Kg	NA	-	< 1100 U
4-Bromophenyl Phenyl Ether	ug/Kg	NA	-	< 420 U
4-Chloro-3-Methylphenol	ug/Kg	240 or MDL	ug/Kg	< 420 U
4-Chlorophenyl Phenyl Ether	ug/Kg	NA	-	< 420 U
4-Methylphenol	ug/Kg	900	ug/Kg	< 420 U
4-Nitrophenol	ug/Kg	100 or MDL	ug/Kg	< 1100 U
Acenaphthene	ug/Kg	50000 ***	ug/Kg	< 420 U
Acenaphthylene	ug/Kg	41000	ug/Kg	< 420 U
Anthracene	ug/Kg	50000 ***	ug/Kg	< 420 U
Benzo(a)Anthracene	ug/Kg	224 or MDL	ug/Kg	< 420 U
Benzo(b)Fluoranthene	ug/Kg	1100	ug/Kg	< 420 U
Benzo(ghi)Perylene	ug/Kg	50000 ***	ug/Kg	< 420 U
Benzo(k)Fluoranthene	ug/Kg	1100	ug/Kg	< 420 U
Benzo[a]Pyrene	ug/Kg	61 or MDL	ug/Kg	< 420 U
Benzyl Butyl Phthalate	ug/Kg	50000 ***	ug/Kg	< 420 U
Bis(2-Chloroethoxy)Methane	ug/Kg	NA	-	< 420 U
Bis(2-Chloroethyl)Ether	ug/Kg	NA	-	< 420 U
Bis(2-Chloroisopropyl) Ether	ug/Kg	NA	-	< 420 U
Bis(2-Ethylhexyl)Phthalate (BEHP)	ug/Kg	50000 ***	ug/Kg	49 J
Carbazole	ug/Kg	NA	-	< 420 U
Dibenzo(a,h)Anthracene	ug/Kg	14 or MDL	ug/Kg	< 420 U
Dibenzofuran	ug/Kg	6200	ug/Kg	< 420 U
Diethyl Phthalate	ug/Kg	7100	ug/Kg	< 420 U
Dimethyl Phthalate	ug/Kg	2000	ug/Kg	< 420 U
Di-N-Butyl Phthalate	ug/Kg	8100	ug/Kg	< 420 U
Di-N-Octyl Phthalate	ug/Kg	50000 ***	ug/Kg	< 420 U
Fluoranthene	ug/Kg	50000 ***	ug/Kg	< 420 U
Fluorene	ug/Kg	50000 ***	ug/Kg	< 420 U
Hexachloro-1,3-Butadiene	ug/Kg	NA		< 420 U
Hexachlorobenzene	ug/Kg	410	ug/Kg	< 420 U

Notes: U - not detected, J - estimated.

Table J-29 Revere Smelting and Refining Wallkill, New York Excavation Area - Semi-Volatile Organic Compounds Results

			Location ID	EX-1
			Sample Date	11/8/2001
			Sample ID	EX-1_11082001N-1
			Depth Interval (ft)	0.0 - 0.5
Chemical Name	Unit	Action Level	Unit	
Hexachlorocyclopentadiene	ug/Kg	NA	-	< 420 U
Hexachloroethane	ug/Kg	NA	-	< 420 U
Indeno(1,2,3-cd)Pyrene	ug/Kg	3200	ug/Kg	< 420 U
M-Dichlorobenzene	ug/Kg	1600	ug/Kg	< 420 U
Naphthalene	ug/Kg	13000	ug/Kg	< 420 U
Nitrobenzene	ug/Kg	200 or MDL	ug/Kg	< 420 U
N-Nitrosodiphenylamine	ug/Kg	NA	-	< 420 U
N-Nitrosodipropylamine	ug/Kg	NA	-	< 420 U
P-Chloroaniline	ug/Kg	220 or MDL	ug/Kg	< 420 U
Pentachlorophenol	ug/Kg	1000 or MDL	ug/Kg	< 1100 U
Phenanthrene	ug/Kg	50000 ***	ug/Kg	< 420 U
Phenol	ug/Kg	30 or MDL	ug/Kg	< 422 U
P-Nitroaniline	ug/Kg	NA	-	< 1100 U
Pyrene	ug/Kg	50000 ***	ug/Kg	< 420 U

Table J-30 Revere Smelting and Refining Wallkill, New York Excavation Area - Pesticide Results

		EX-1
	Sample Date	11/8/2001
	Sample ID	EX-1_11082001N-1
	Depth Interval (ft)	0.0 - 0.5
Unit	Action Level Text	
ug/Kg	***	< 21 U
ug/Kg	2.9	3.8 J
ug/Kg	2.1	19
ug/Kg	2.1	< 4.2 U
ug/Kg	NA	< 2.1 U
ug/Kg	0.041	< 2.1 U
ug/Kg	0.11	< 2.1 U
ug/Kg	NA	< 2.1 U
ug/Kg	NA	< 210 U
ug/Kg	0.3	< 2.1 U
ug/Kg	0.044	< 4.2 U
ug/Kg	0.9	< 2.1 U
ug/Kg	0.9	< 4.2 U
ug/Kg	1	< 4.2 U
ug/Kg	0.1	< 4.2 U
ug/Kg	NA	< 4.2 U
ug/Kg	NA	< 4.2 U
ug/Kg	0.06	< 2.1 U
ug/Kg	NA	< 2.1 U
ug/Kg	0.1	< 2.1 U
ug/Kg	0.02	< 2.1 U
	ug/Kg ug/Kg	Depth Interval (ft) Unit Action Level Text ug/Kg ug/Kg 2.9 ug/Kg 2.1 ug/Kg 2.1 ug/Kg NA ug/Kg 0.041 ug/Kg NA ug/Kg NA ug/Kg 0.3 ug/Kg 0.3 ug/Kg 0.9 ug/Kg 0.9 ug/Kg NA ug/Kg 0.9 ug/Kg 0.9 ug/Kg 0.1

Values in bold are exceedances U - not detected, J - estimated.

Table J-31 Revere Smelting and Refining Wallkill, New York Excavation Area - PCBs Results

		Location ID	EX-1
		Sample Date	11/8/2001
		Sample ID	EX-1 11082001N-1
		Depth Interval (ft)	0.0 - 0.5
Chemical Name	Unit	Action Level	
Aroclor 1016	ug/Kg	10,000	< 42 U
Aroclor 1221	ug/Kg	10,000	< 84 U
Aroclor 1232	ug/Kg	10,000	< 42 U
Aroclor 1242	ug/Kg	10,000	< 42 U
Aroclor 1248	ug/Kg	10,000	< 42 U
Aroclor 1254	ug/Kg	10,000	< 42 U
Aroclor 1260	ug/Kg	10,000	< 42 U

U - not detected

Appendix K

Data validation Report

SUMMARY OF THE ANALYTICAL DATA USABILITY For Revere Smelting Site Wallkill, NY

Soil Lead Analyses Samples Received October 17th through 20th, 2001 Sample Delivery Group: 0244 Laboratory Reference Numbers:

Received	10/	17
----------	-----	----

SS-TP-2(1.3'-1.5'BS)	T3656
SS-TP-3(2.5'BS)	T3657
SS-TP-5(1.2'BS)	T3658
SS-TP-6(1.5'BS)	T3659

Received 10/19

T3835
T3836
T3837
T3837MS
T3837D
T3838
T3839
T3840
T3841

Received 10/20

SS-OBG-35(0-2"BS)	T3935
SS-OBG-34(0-2"BS)	T3936
SS-OBG-34(0-2"BS)	T3936MS
SS-OBG-34(0-2"BS)	T3936D
SS-OBG-26(0-2"BS)	T3937
SS-OBG-27(0-2"BS)	T3938
SS-OBG-24(0-2"BS)	T3939
SS-OBG-25(0-2"BS)	T3940
SS-OBG-22(0-2"BS)	T3941
SS-OBG-23(0-2"BS)	T3942
SS-OBG-9(0-2"BS)	T3943
SS-OBG-8(0-2"BS)	T3944
SS-OBG-10(0-2"BS)	T3945
SS-X-2	T3946

Soil samples were received for total lead analyses by NYS DEC ASP protocols. A data usability was performed based upon the following parameters:

- * Data Completeness
- * Holding Times
- * Calibration Verification
- * CRDL Standard
- * Laboratory Control Sample
- * Serial Dilutions
- * Laboratory Blanks
- * Field Blanks
- * Equipment Blanks
- * Preparation Blanks
- * Matrix Spike
 - Duplicate Analyses
- * ICP Interference Check Sample
- * Detection Limit Results
- * Linear Range
- * Sample Results
- * Indicates that all criteria were met for this parameter.

Data Validation Summary

Severe problems were found with the precision data:

Samples SS-TP-9(1.4'BS) (Lab. #:T3837) and SS-OBG-34(0-2"BS) (Lab. #: T3936) were used as the two matrix duplicates. In both these cases, the RPDs were greater than 20% (190% and 60%.

The replicate values for sample SS-TP-9(1.4'BS) (Lab. #:T3837) were 2,600 mg/kg and 1,400 mg/kg.

The accuracy of these values is very questionable when the spiked sample result is examined (10,800 mg/kg). Since such a low matrix spike was added (4 mg/kg) the value for the spiked sample result should be considered to be another duplicate value. A range of concentrations from 1,400 mg/kg to 10,800 mg/kg results in the data being very questionable.

The replicate values for sample SS-OBG-34(0-2"BS) (Lab. #: T3936) were 1,400 mg/kg and 29 mg/kg.

The accuracy of these values is very questionable. The spiked sample result of 1,400 mg/kg supported the accuracy of the higher duplicate value. A range of concentration from 29 mg/kg to 1400 mg/kg results in the data being very questionable.

All of the lead data was flagged with the "R" qualifier and footnoted with #43 in the data validation summary table. These values should be examined in terms of the data quality objectives to determine the effect of the poor precision data.

No other problems were found which would affect the end use of the data.

Holding Times

All samples were analyzed within the required holding times.

CRDL Standards

The recoveries of all CRDL standards were within the 80% to 120% quality assurance limits.

Initial and Continuing Calibrations

No problems were detected with any of the calibrations associated with this sample delivery group.

Preparation Blank

Lead was not detected in the preparation blanks at concentrations above the IDL (1.5 ug/l).

Calibration Blanks

Lead was not detected in the calibration blanks at concentrations above the IDL (1.5 ug/l).

Field Blank

A field blank was not analyzed with this sample delivery group.

Equipment Blank

An equipment blank was not analyzed with this sample delivery group.

ICP Interference Check Sample

No problems were detected with the reported ICP Interference Check Sample recoveries.

Matrix Spike Recovery

Two matrix spikes were analyzed with this sample delivery group.

Samples SS-TP-9(1.4'BS) (Lab. #:T3837) and SS-OBG-34(0-2"BS) (Lab. #: T3936) were used as the two matrix spikes.

In both these cases, the concentration of the lead spike added (4 mg/kg) was too low in relation to the sample lead concentrations (1370 mg/kg and 2590 mg/kg) to determine a meaningful recovery.

The problem with the recovery of sample SS-TP-9(1.4'BS) (Lab. #:T3837) should be noted. The sample concentration was reported as 2,600 mg/kg, but the spiked sample concentration was 10,800 mg/kg.

Duplicate Analysis

Two matrix duplicates were analyzed with this sample delivery group.

Samples SS-TP-9(1.4'BS) (Lab. #:T3837) and SS-OBG-34(0-2"BS) (Lab. #: T3936) were used as the two matrix duplicates.

In both these cases, the RPDs were greater than 20% (190% and 60%.

The replicate values for sample SS-TP-9(1.4'BS) (Lab. #:T3837) were 2,600 mg/kg and 1,400 mg/kg.

The accuracy of these values is very questionable when the spiked sample result is examined (10,800 mg/kg). Since such a low matrix spike was added (4 mg/kg) the value for the spiked sample result should be considered to be another duplicate value. Having a range of concentrations for this sample from 1400 mg/kg to 10,800 mg/kg results in the data being very questionable.

The replicate values for sample SS-OBG-34(0-2"BS) (Lab. #: T3936) were 1,400 mg/kg and 29 mg/kg.

The accuracy of these values is very questionable. The spiked sample result of 1,400 mg/kg supported the accuracy of the higher duplicate value.

Having a range of concentrations for this sample from 29 mg/kg to 1400 mg/kg results in the data being very questionable.

All of the lead data was flagged with the "R" qualifier and footnoted with #43 in the data validation summary table. These values should be examined in terms of the data quality objectives to determine the effect of the poor precision data.

Laboratory Control Sample

No problems were detected with the recoveries of the three LCS standards.

Serial Dilutions

Samples SB-OBG-17(0'-1.6'BS) (Lab. #: T4418), SB-OBG-28(0'-2'BS) (Lab. #: T4437) and SB-OBG-37(0'-0.2') (Lab. #: T4457) were also used for the serial dilutions. All % differences were less than 10% (2%, 3%)

Instrument Detection Limit

No problems were found with the instrument detection limits.

ICP Linear Range

No problems were detected with the linear ranges. The reported concentrations of all samples in this delivery group were within their linear range for each analyte.

Sample Results

No other problems were detected with the samples.

SUMMARY OF THE ANALYTICAL DATA USABILITY For Revere Smelting Site Wallkill, NY

Soil Lead Analyses Samples Received October 24th through 25th, 2001 Sample Delivery Group: 0301 **Laboratory Reference Numbers:**

Received 10/24	
SB-OBG-6(0'-1.4'BS)	T4145
SB-OBG-6(4.0'-5.7'BS)	T4146
SB-OBG-8(0'-1.5'BS)	T4147
SB-OBG-8(2.0'-2.6'BS)	T4148
SB-OBG-5(0'-0.9'BS)	T4149
SB-OBG-5(2-3.3BS)	T4150
SB-OBG-7(0'-1.2'BS)	T4151
SB-OBG-7(2-2.3'BS)	T4152
SB-OBG-10(0'-0.7'BS)	T4153
SB-OBG-10(4-4.8'BS)	T4154
SB-OBG-24(2'-2.6'BS)	T4155
SB-OBG-24(6-6.7'BS)	T4156
SB-OBG-12(8-9.6'BS)	T4157
SB-OBG-12(10-11.9'BS)	T4158
SB-OBG-12(10-11.9'BS)	T4158MS
SB-OBG-12(10-11.9 BS)	T4158D
SB-X-3	T4159

Received 10/25

. —	
SB-OBG-11(4'-4.9'BS)	T4265
SB-OBG-11(8.3-9.6'BS)	T4266
SB-OBG-4(0'-1.0'BS)	T4267
SB-OBG-4(4'-5.7'BS)	T4268
SB-OBG-3(0'-1.3'BS)	T4269
SB-OBG-3(2'-3.3'BS)	T4270
SB-OBG-18(0-1.9'BS)	T4271
SB-OBG-18(2-2.6'BS)	T4272
SB-OBG-19(0'-0.6'BS)	T4273
SB-OBG-19(2'-3.3'BS)	T4274
SB-OBG-19(2'-3.3'BS)	T4274MS
SB-OBG-19(2'-3.3'BS)	T4274D
SB-OBG-20(0'-1.5'BS)	T4275
SB-OBG-20(4.0-4.9'BS)	T4276
SB-OBG-1(0.5'-1'BS)	T4277
SB-OBG-2(0.5'-1'BS)	T4278
SB-X-4	T4279

Received 10/24

Soil samples were received for total lead analyses by NYS DEC ASP protocols. A data usability was performed based upon the following parameters:

- * Data Completeness
- * Holding Times
- * Calibration Verification
- * CRDL Standard
- * Laboratory Control Sample
- * Serial Dilutions
- * Laboratory Blanks
 - Field Blanks
 - Equipment Blanks
- * Preparation Blanks
- * Matrix Spike
- * Duplicate Analyses
- * ICP Interference Check Sample
 - Detection Limit Results
- * Linear Range
- * Sample Results
- * Indicates that all criteria were met for this parameter.

Data Validation Summary

No problems were found which would affect the end use of the data.

Holding Times

All samples were analyzed within the required holding times.

CRDL Standards

The recoveries of all CRDL standards were within the 80% to 120% quality assurance limits.

Initial and Continuing Calibrations

No problems were detected with any of the calibrations associated with this sample delivery group.

Preparation Blank

Lead was not detected in the preparation blanks at concentrations above the IDL (1.5 ug/l).

Calibration Blanks

Lead was not detected in the calibration blanks at concentrations above the IDL (1.5 ug/l).

Field Blank

A field blank was not analyzed with this sample delivery group.

Equipment Blank

An equipment blank was not analyzed with this sample delivery group.

ICP Interference Check Sample

No problems were detected with the reported ICP Interference Check Sample recoveries.

Matrix Spike Recovery

Samples SB-OBG-12(10-11.9'BS) (Lab. #: T4158) and SB-OBG-19(2'-3.3'BS) (Lab. #: T4274) were used as the two matrix spikes.

In both these cases, the concentration of the lead spike added (4 mg/kg) was too low in relation to the sample lead concentrations (104 mg/kg and 21 mg/kg) to determine a meaningful recovery.

Duplicate Analysis

Samples SB-OBG-12(10-11.9'BS) (Lab. #: T4158) and SB-OBG-19(2'-3.3'BS) (Lab. #: T4274) were used as the two matrix duplicates.

Both RPDs were less than the 20% quality assurance limit (12% and 8%).

Laboratory Control Sample

No problems were detected with the recoveries of the three LCS standards.

Serial Dilutions

Samples SB-OBG-12(10-11.9'BS) (Lab. #: T4158) and SB-OBG-19(2'-3.3'BS) (Lab. #: T4274) were also used for the serial dilutions. All % differences were less than 10% (1% & 2%)

Instrument Detection Limit

Instrument detection limits were not included with this sample delivery group. These have not been requested from the laboratory.

ICP Linear Range

No problems were detected with the linear ranges. The reported concentrations of all samples in this delivery group were within their linear range for each analyte.

Sample Results

No problems were detected with the samples.

SUMMARY OF THE ANALYTICAL DATA USABILITY For Revere Smelting Site Wallkill, NY

Soil Lead Analyses

Samples Received October 25th & 27th 2001

Sample Delivery Group: 0314 Laboratory Reference Numbers:

Received	10/25
----------	-------

T4282
T4283
T4284

Received 10/27

= -	
SB-OBG-16(2-3.7'BS)	T4399
SB-OBG-13(2-3.4'BS)	T4400
SB-OBG-9(0-2.0'BS)	T4401
SB-OBG-12(0-1.6'BS)	T4402
SS-OBG-31(0-0.2'BS)	T4403
SS-OBG-32(0-0.2'BS)	T4404
SS-OBG-21(0-0.2'BS)	T4405
SS-OBG-2(0-0.2'BS)	T4406
SS-OBG-36(0-0.2'BS)	T4407
SS-OBG-36(0-0.2'BS)	T4407MS
SS-OBG-36(0-0.2'BS)	T4407D
SS-OBG-14(0-1.5'BS)	T4408
SSX-9	T4409
SB-X-5	T4410

Soil samples were received for total lead analyses by NYS DEC ASP protocols. A data usability was performed based upon the following parameters:

- * Data Completeness
- * Holding Times
- * Calibration Verification
- * CRDL Standard
- * Laboratory Control Sample
 - Serial Dilutions
- * Laboratory Blanks
- * Field Blanks
- * Equipment Blanks
- * Preparation Blanks
 - Matrix Spike
 - Duplicate Analyses
- * ICP Interference Check Sample
- * Detection Limit Results
- * Linear Range
- * Sample Results

^{* -} Indicates that all criteria were met for this parameter.

Data Validation Summary

Several problems were found with the quality assurance data:

Sample SS-OBG-36(0-0.2'BS) (Lab. #: T4407) was used as the matrix spike, matrix duplicate and serial dilution.

All matrix spike recoveries were within the required quality assurance limits with the one exception of antimony (42%). The antimony data may have been underestimated and low concentrations may have been overlooked. All of the antimony data were flagged with the "J" qualifier and footnoted with #35 in the data usability summary table.

Thirteen analytes had RPD's greater than 20%: The data for these analytes were flagged with the "J" qualifier and footnoted with #45 in the data usability table. The concentrations reported for these analytes should be considered to be estimated values.

The ICP serial dilution analysis did not recover within acceptance range for potassium (25%). The potassium data was flagged with the "J" qualifier in the data usability summary table and footnoted with #51. The potassium data should be considered to be estimated values.

The sample, matrix spike, matrix duplicate and serial dilution were all redigested and reanalyzed. The sample data were qualified on the basis of the original recoveries.

If the problems with the original quality assurance data affect the usability of the data, all of the samples should be redigested and reanalyzed.

No other problems were found which would affect the end use of the data.

Holding Times

All samples were analyzed within the required holding times.

CRDL Standards

Three ICP runs were used for these analyses. The recoveries of all CRDL standards were within the 80% to 120% quality assurance limits with the following exceptions in the third ICP run:

Analyte	Initial % R	Final %R
Lead	(ok)	125%
Manganese	67%	(ok)
Selenium	122%	(ok)

The third ICP run was only associated with the reanalysis of sample SS-OBG-36(0-0.2'BS) (Lab. #:T4407), its matrix spike, matrix spike duplicate and serial dilution. The problems with the CRDL standard recoveries do not affect the end use of the data and none of the sample data was qualified.

Initial and Continuing Calibrations

No problems were detected with any of the calibrations associated with this sample delivery group.

Preparation Blank

No compounds were detected in the preparation blanks at concentrations above the CRDL. Several analytes were at concentrations between the CRDL and instrument detection limit. These very low concentrations are not qualified in the data validation summary table.

Calibration Blanks

Several analytes were found in the continuing calibration blanks at concentrations between the CRDL and instrument detection limit. These very low concentrations are not qualified in the data validation summary table.

Field Blank

A field blank was not analyzed with this sample delivery group.

Equipment Blank

An equipment blank was not analyzed with this sample delivery group.

ICP Interference Check Sample

No problems were detected with the reported ICP Interference Check Sample recoveries.

Matrix Spike Recovery

Sample SS-OBG-36(0-0.2'BS) (Lab. #: T4407) was used as the matrix spike.

All recoveries were within the required quality assurance limits with the one exception of antimony (42%). The antimony data may have been underestimated and low concentrations may have been overlooked. All of the antimony data were flagged with the "J" qualifier and footnoted with #35 in the data usability summary table.

This matrix spike was reanalyzed and the recovery of antimony (74%) and arsenic (140%). The data remained qualified based upon the first matrix spike analysis.

Duplicate Analysis

Sample SS-OBG-36(0-0.2'BS) (Lab. #: T4407) was also used as the matrix duplicate. Thirteen analytes had RPD's greater than 20%:

Analyte	RPD
Aluminum	41%
Arsenic	30%
Barium	48%
Calcium	28%
Chromium	33%
Copper	34%
Iron	47%
Magnesium	34%
Manganese	56%
Nickel	29%
Selenium	64%
Vanadium	45%
Zinc	32%

The data for these analytes were flagged with the "J" qualifier and footnoted with #45 in the data usability table. The concentrations reported for these analytes should be considered to be estimated values.

The sample and matrix duplicate were redigested and reanalyzed. All of the RPDs were within the required limits in the reanalysis. The data remained qualified based upon the first precision analysis. If the high RPDs present a problem with the usability of the data, all of the samples of this delivery group should be redigested and reanalyzed.

Laboratory Control Sample

No problems were detected with the recoveries of the LCS standards.

Serial Dilutions

The ICP serial dilution analysis of sample SS-OBG-36(0-0.2'BS) (Lab. #: T4407) did not recover within acceptance range for potassium (25%).

The potassium data was flagged with the "J" qualifier in the data usability summary table and footnoted with #51. The potassium data should be considered to be estimated values.

The sample was redigested and reanalyzed with the serial dilution. All of the %Ds were within the required limits in the reanalysis. The data remained qualified based upon the first serial dilution analysis.

Instrument Detection Limit

No problems were found with the instrument detection limits.

ICP Linear Range

No problems were detected with the linear ranges. The reported concentrations of all samples in this delivery group were within their linear range for each analyte.

Sample Results

No other problems were detected with the samples.

SUMMARY OF THE ANALYTICAL DATA USABILITY For Revere Smelting Site Wallkill, NY

Soil Lead Analyses Samples Received October 27, 2001 Sample Delivery Group: 0339 Laboratory Reference Numbers:

SB-OBG-17(0'-1.6'BS) SB-OBG-17(0'-1.6'BS)	T4418 T4418MS
SB-OBG-17(0'-1.6'BS)	T4418D
SB-OBG-17(4.0'-4.6'BS)	T4419
SB-OBG-16(0'-1.3'BS)	T4420
SB-OBG-16(2'-3.7'BS)	T4421
SB-OBG-16(0'-0.9'BS)	T4422
SB-OBG-15(4'-4.6BS)	T4423
SB-OBG-13(0.4'-1.8'BS)	T4424
SB-OBG-13(6'-7.2'BS)	T4425
SB-OBG-14(0.4'-1.0'BS)	T4426
SB-OBG-14(6.0'-6.5'BS)	T4427
SB-OBG-9(0'-2.0'BS)	T4428
SB-OBG-9(2'-2.3'BS)	T4429
SB-OBG-31(0'-2'BS)	T4430
SB-OBG-31(0'-1.5'BS)	T4431
SB-OBG-30(0-0.2'BS)	T4432
SB-OBG-30(0'-1'BS)	T4433
SB-OBG-32(0'2'BS)	T4434
SB-OBG-32(0'-2.0BS)	T4435
SB-OBG-28(0'-1.0'BS)	T4436
SB-OBG-28(0'-2'BS)	T4437
SB-OBG-28(0'-2'BS)	T4437MS
SB-OBG-28(0'-2'BS)	T4437D
SB-OBG-29(0'2'BS)	T4438
SB-OBG-29-(0'-2.0BS)	T4439
SB-OBG-20(0'-0.2'BS)	T4440
SB-OBG-21(0'-0.2'BS)	T4441
SB-OBG-19(0'-0.2'BS)	T4442
SB-OBG-18(0'-0.2BS)	T4443
SB-OBG-17(0'-0.2'BS)	T4444
SB-OBG-38(0'-0.2'BS)	T4445
SB-OBG-1(0'-0.2'BS)	T4446
SB-OBG-2(0'-0.2'BS)	T4447 T4448
SB-OBG-3(0'-0.2'BS)	T4446 T4449
SB-OBG-4(0'-0.2'BS) SB-OBG-5(0'-0.2'BS)	T4449
SB-OBG-36(0'-0.2'BS)	T4450
SB-OBG-36(0'-1.2'BS)	T4451
SB-OBG-7(0'-0.2'BS)	T4453
SB-OBG-7(0'-1.5'BS)	T4454
SB-OBG-6(0'-0.2'BS)	T4455
SB-OBG-6(0'-2.0'BS)	T4456
SB-OBG-37(0'-0.2')	T4457
00 000 01 (0 0.2)	1 1701

SB-OBG-37(0'-0.2')MS	T4457MS
SB-OBG-37(0'-0.2')D	T4457D
SB-OBG-37(0'-2.0BS)	T4458
SB-OBG-39(0'-0.2'BS)	T4459
SB-OBG-39(0'-1.0'BS)	T4460
SB-OBG-40(0'-0.2'BS)	T4461
SB-OBG-40(0'-2.0'BS)	T4462
SB-OBG-16(0'-0.2'BS)	T4463
SB-OBG-16(0'-0.7'BS)	T4464
SB-OBG-16(0'-0.2'BS)	T4465
SB-OBG-15(0'-1.0'BS)	T4466
SB-OBG-14(0'-0.2'BS)	T4467
SB-OBG-14(0'-1.5'BS)	T4468
SB-OBG-13(0'-0.2'BS)	T4469
SB-OBG-13(0'-2.0'BS)	T4470
SB-OBG-12(0'-0.2'BS)	T4471
SB-OBG-12(0'-2.0'BS)	T4472
SB-OBG-11(0'-0.2'BS)	T4473
SB-OBG-11(0'-1.8'BS)	T4474
SS-X-6	T4475
SS-X-7	T4476

Soil samples were received for total lead analyses by NYS DEC ASP protocols. A data usability was performed based upon the following parameters:

- * Data Completeness
- * Holding Times
- * Calibration Verification
- * CRDL Standard
- * Laboratory Control Sample
- * Serial Dilutions
- * Laboratory Blanks
- * Field Blanks
- * Equipment Blanks
- * Preparation Blanks
- * Matrix Spike
- * Duplicate Analyses
- * ICP Interference Check Sample
- * Detection Limit Results
- * Linear Range
- * Sample Results
- * Indicates that all criteria were met for this parameter.

Data Validation Summary

No problems were found which would affect the end use of the data.

Holding Times

All samples were analyzed within the required holding times.

CRDL Standards

The recoveries of all CRDL standards were within the 80% to 120% quality assurance limits.

Initial and Continuing Calibrations

No problems were detected with any of the calibrations associated with this sample delivery group.

Preparation Blank

Lead was not detected in the preparation blanks at concentrations above the IDL (1.5 ug/l).

Calibration Blanks

Lead was not detected in the calibration blanks at concentrations above the IDL (1.5 ug/l).

Field Blank

A field blank was not analyzed with this sample delivery group.

Equipment Blank

An equipment blank was not analyzed with this sample delivery group.

ICP Interference Check Sample

No problems were detected with the reported ICP Interference Check Sample recoveries.

Matrix Spike Recovery

Three matrix spikes were analyzed with this sample delivery group.

Sample SB-OBG-17(0'-1.6'BS) (Lab. #: T4418) was used as the first matrix spike. The lead recovery (89%) was within the 75% to 125% quality assurance limits.

Samples SB-OBG-28(0'-2'BS) (Lab. #: T4437) and SB-OBG-37(0'-0.2') (Lab. #: T4457) were also used for matrix spikes. In both cases, the concentration of the spike added (4 mg/kg) was too low in relation to the sample lead concentrations (320 mg/kg and 1360 mg/kg) to determine a meaningful recovery.

Duplicate Analysis

Three matrix duplicates were analyzed with this sample delivery group.

Samples SB-OBG-17(0'-1.6'BS) (Lab. #: T4418), SB-OBG-28(0'-2'BS) (Lab. #: T4437) and SB-OBG-37(0'-0.2') (Lab. #: T4457) were also used for matrix duplicates. All RPDs were less than 20% (12%, 10% and 0.2%).

Laboratory Control Sample

No problems were detected with the recoveries of the three LCS standards.

Serial Dilutions

Samples SB-OBG-17(0'-1.6'BS) (Lab. #: T4418), SB-OBG-28(0'-2'BS) (Lab. #: T4437) and SB-OBG-37(0'-0.2') (Lab. #: T4457) were also used for the serial dilutions. All % differences were less than 10% (2%, 3%)

Instrument Detection Limit

No problems were found with the instrument detection limits.

ICP Linear Range

No problems were detected with the linear ranges. The reported concentrations of all samples in this delivery group were within their linear range for each analyte.

Sample Results

No other problems were detected with the samples.

SUMMARY OF THE ANALYTICAL DATA USABILITY For Revere Smelting Site Wallkill, NY

Soil TAL & Lead Analyses Samples Received November 7th & 8th 2001 Sample Delivery Group: 0415 Laboratory Reference Numbers:

Received 11/7 – Lead Only SS-BG-OBG-41(0'-0.2'BS)	T4826
SS-BG-OBG-41(0'-0.2'BS) SS-BG-OBG-41(0'-0.2'BS) SS-BG-OBG-42(0'-0.2'BS)	T4826MS T4826D T4827
SS-BG-OBG-43(0'-0.2'BS) SS-BG-OBG-44(0'-0.2'BS) SS-BG-OBG-45(0'-0.2'BS) SS-BG-OBG-46(0'-0.2'BS) SB-OBG-23(0'-1'BS) SB-OBG-23(6'-7.1'BS) SB-OBG-23(8'-9.3'BS) SB-OBG-21(0'-1.5'BS) SB-OBG-21(4'-5.1'BS) SB-OBG-21(6'-6.5'BS) SB-OBG-22(2'-3.1'BS) SB-OBG-22(4'-5.3'BS) SB-OBG-22(6'-7.8'BS)	T4828 T4829 T4830 T4831 T4832 T4833 T4834 T4835 T4836 T4837 T4838 T4839 T4840
Received 11/8 - TAL SED-P2 (0-6") SED-P2 (0-6") SED-P2 (0-6") Blind Duplicate EX-1 (0-6") EX-1 (0-6") EX-1 (0-6") SED-S1(0-6') SED-S1(0-6')DL Equipment Blank	T5004 T5004MS T5004D T5005 T5006 T5006MS T5006D T5007 T5007DL T5023
Received 11/8 – Lead Only SED-P2 (6-12") SED-P1 (0-6") SED-P1(6"-12") EX-1 (6-12") EX-2 (0-6") EX-2 (6-12") SED-S1 (12-24") SED-S2 (0-6") SED-S2 (12-24") SED-S3 (12-24") MW-25 (4'-5.1') MW-26 (8-8.7') MW-23S (6-7.3')	T5008 T5009 T5010 T5011 T5012 T5013 T5014 T5015 T5016 T5017 T5018 T5019 T5020 T5021 T5022

Soil samples were received for total lead and TAL analyses by NYS DEC ASP protocols. A data usability was performed based upon the following parameters:

- * Data Completeness
- * Holding Times
 - Calibration Verification
 - CRDL Standard
- * Laboratory Control Sample
 - Serial Dilutions
- * Laboratory Blanks
 - Field Blanks
- * Equipment Blanks
- * Preparation Blanks
 - Matrix Spike
 - Duplicate Analyses
- * ICP Interference Check Sample
- * Detection Limit Results
- * Linear Range
- * Sample Results
- * Indicates that all criteria were met for this parameter.

Data Validation Summary

The problems with the matrix spike, duplicate, serial dilution should be noted. These are noted in detail below. Antimony, cadmium, calcium, chromium, cobalt, copper, manganese, potassium, selenium and some of the lead data should be considered to be estimated values.

The specific quality assurance problems are noted in detail below.

Holding Times

All samples were analyzed within the required holding times.

CRDL Standards

Three ICP CRDL standards were analyzed with one ICP run. The recoveries of all CRDL standards were within the 80% to 120% quality assurance limits with the following exceptions in the third ICP run:

Analyte	Initial % R	Final %R
Manganese	67%	(ok)
Selenium	122%	(ok)
Lead		(132%)

The concentrations of these three analytes were too high in all of the soil samples to be affected by the poor CRDL recoveries.

Manganese was not detected in the equipment blank and it is possible that low concentrations of this analyte were overlooked. The manganese data was flagged with the "J" qualifier and footnoted with #21 in the data validation summary table.

Selenium and lead were not detected in the equipment blank and the high recoveries of the CRDL standards do not affect the end use of the data.

Initial and Continuing Calibrations

The percent recoveries of antimony (113%), arsenic (114), selenium (112%) and silver (114%) were above the 110% quality assurance limit in the final two continuing calibration standards.

All of the samples were analyzed before these continuing calibration standards. The problems with the CRDL standard recoveries do not affect the end use of the data and none of the sample data was qualified.

No other problems were detected with any of the calibrations associated with this sample delivery group.

Preparation Blank

No compounds were detected in the preparation blanks at concentrations above the CRDL. Several analytes were at concentrations between the CRDL and instrument

detection limit. These very low concentrations are not qualified in the data validation summary table.

Calibration Blanks

Several analytes were found in the continuing calibration blanks at concentrations between the CRDL and instrument detection limit. These very low concentrations are not qualified in the data validation summary table.

Field Blank

A field blank was not analyzed with this sample delivery group.

Equipment Blank

No compounds were detected in the equipment blank at concentrations above the CRDL. Several analytes were at concentrations between the CRDL and instrument detection limit. These very low concentrations are not qualified in the data validation summary table.

ICP Interference Check Sample

No problems were detected with the reported ICP Interference Check Sample recoveries.

Matrix Spike Recovery

Samples SED-P2 (0-6") (Lab. #: T5004) and EX-1 (0-6") (Lab. #: T5006) were used as the matrix spike for the full TAL list.

The recoveries of antimony (47%), manganese (162%) and selenium (71%) were outside of the 75% - 125% quality assurance limits in sample SED-P2 (0-6") (Lab. #: T5004),

The recoveries of antimony (41%) and copper (13%) were outside of the 75% - 125% quality assurance limits in sample EX-1 (0-6") (Lab. #: T5006).

Antimony, selenium and copper data were flagged with the "J" qualifier and footnoted with #35. The data for these analytes may have been underestimated and low concentrations may have been overlooked.

The manganese data were flagged with the "J" qualifier and footnoted with #37. The magnesium data may have been overestimated.

All of the post digestion spike recoveries were within the required limits.

Sample SS-BG-OBG-41(0'-0.2'BS) (Lab. #: T4826) was used for the lead matrix spike. The concentration of spike added (5 mg/kg) was too low in relation to the sample concentration (110 mg/kg) to provide meaning data on the sample matrix.

Duplicate Analysis

Samples SED-P2 (0-6") (Lab. #: T5004) and EX-1 (0-6") (Lab. #: T5006) were used as the matrix duplicate for the full TAL list.

The RPD of calcium (77%) was above the 20% quality assurance limit in sample SED-P2 (0-6") (Lab. #: T5004).

The RPDs of cadmium (51%), copper (28%) and lead (60%) were above the 20% quality assurance limit in sample EX-1 (0-6") (Lab. #: T5006).

Cadmium, calcium, copper and lead data were flagged with the "J" qualifier and footnoted with #45. The data for these analytes should be considered to be estimated values.

Sample SS-BG-OBG-41(0'-0.2'BS) (Lab. #: T4826) was used for the lead matrix duplicate for the samples received on 11/7. The RPD (1%) was within the quality assurance limit.

The laboratory qualified the lead data for all of the samples received on 11/8 on the basis of the poor precision data for sample EX-1 (0-6") (Lab. #: T5006).

Laboratory Control Sample

No problems were detected with the recoveries of the LCS standards.

Serial Dilutions

Sample SED-P2 (0-6") (Lab. #: T5004) was used as the serial dilution for the lead analyses as well as the full TAL list.

The %D of chromium (21%), cobalt (20%) and potassium (13%) were above the 10% quality assurance limit in sample SED-P2 (0-6") (Lab. #: T5004).

The chromium, cobalt and potassium data were flagged with the "J" qualifier and footnoted with #51. The data for these analytes should be considered to be estimated values.

Instrument Detection Limit

No problems were found with the instrument detection limits.

ICP Linear Range

No problems were detected with the linear ranges. The reported concentrations of all samples in this delivery group were within their linear range for each analyte.

Sample Results

No other problems were detected with the samples.

SUMMARY OF THE ANALYTICAL DATA USABILITY For Revere Smelting Site Wallkill, NY

Water Metals Analyses
Samples Received November 17, 2001
Sample Delivery Group: 0517
Laboratory Reference Numbers:

MW-23D	T5537
MW-13	T5538
MW-23S	T5539
MW-25	T5540
MW-25	T5540MS
MW-25	T5540D
MW-24	T5541
MW-26	T5542
X-1-GW	T5543

Water samples were received for total lead and TAL analyses by NYS DEC ASP protocols. A data usability was performed based upon the following parameters:

- * Data Completeness
- * Holding Times
- * Calibration Verification
 - CRDL Standard
- * Laboratory Control Sample
 - Serial Dilutions
- * Laboratory Blanks
 - Field Blanks
 - Equipment Blanks
- * Preparation Blanks
- * Matrix Spike
- * Duplicate Analyses
- * ICP Interference Check Sample
- * Detection Limit Results
- * Linear Range
- * Sample Results
- * Indicates that all criteria were met for this parameter.

Data Validation Summary

Most of these samples were reanalyzed at a 5X dilution due to manganese concentrations above the linear range of the analyses (10,000 mg/l). Values reported from the dilutions are noted in the data usability table.

The problem with the barium serial dilution should be noted. The barium data should be considered to be estimated values.

No other problems were detected with this sample delivery group.

Holding Times

All samples were analyzed within the required holding times.

CRDL Standards

The recoveries of all CRDL standards were within the 80% to 120% quality assurance limits with the following exceptions:

Analyte	Initial % R	Final %R
Manganese	67%	(ok)
Selenium	122%	(ok)
Lead		(132%)

Low concentration of selenium (<20 ug/l) and lead (<12 ug/l) were flagged with the "J" qualifier and footnoted with #21 in the data usability summary table. These low concentrations may have been overestimated.

These compounds were not qualified if they were not detected in a sample.

All of the manganese concentrations were too high to be affected by the low manganese CRDL standard recovery.

Initial and Continuing Calibrations

No problems were detected with any of the calibrations associated with this sample delivery group.

Preparation Blank

No compounds were detected in the preparation blanks at concentrations above the CRDL. Several analytes were at concentrations between the CRDL and instrument detection limit. These very low concentrations are not qualified in the data validation summary table.

Calibration Blanks

Several analytes were found in the continuing calibration blanks at concentrations between the CRDL and instrument detection limit. These very low concentrations are not qualified in the data validation summary table.

Field Blank

A field blank was not analyzed with this sample delivery group.

Equipment Blank

An equipment blank was not analyzed with this sample delivery group.

ICP Interference Check Sample

No problems were detected with the reported ICP Interference Check Sample recoveries.

Matrix Spike Recovery

Sample MW-25 (Lab. #: T5540) was used as the matrix spike for the full TAL list. All of the spike recoveries were within the required limits.

Duplicate Analysis

Sample MW-25 (Lab. #: T5540) was used as the matrix spike for the full TAL list. All of the % Differences were within the required limits.

Laboratory Control Sample

No problems were detected with the recoveries of the LCS standards.

Serial Dilutions

Sample MW-25 (Lab. #: T5540) was used as the serial dilution for the full TAL list.

The %D of barium (16%) was above the 10% quality assurance limit. The barium data were flagged with the "J" qualifier and footnoted with #51. The data for this analytes should be considered to be estimated values.

Instrument Detection Limit

No problems were found with the instrument detection limits.

ICP Linear Range

No problems were detected with the linear ranges. The reported concentrations of all samples in this delivery group were within their linear range for each analyte.

Sample Results

No other problems were detected with the samples.

For Revere Smelting Site Wallkill, NY

Sulfate and Total Alkalinity

Samples Collected November 15th & 16th 2001

Samples Received November 17, 2001

Sample Delivery Group: 0518 Laboratory Reference Numbers:

MW-23	T5545
MW-13	T5546
MW-23	T5547
MW-25	T5548
MW-25MD	T5548MD
MW-25MS	T5548MS
MW-24	T5549
MW-26	T5550`
X-1-GW	T5551

Data were reviewed for usability according to the following criteria:

- * Data Completeness
- * Holding Times
- * Calibrations
- * Laboratory Blanks
 - Field Blank
 - Storage Blank
- * Matrix
- * Matrix Duplicate
- * Laboratory Control Sample
- * Compound Quantitation

DATA USABILITY SUMMARY

No significant problems were detected with this data package that would affect the end use of the data.

Holding Times

All samples were analyzed within the required holding time.

Calibrations

No problems were detected with the calibrations

^{* -} Indicates that all criteria were met for this parameter.

Matrix Spike

Sample MW-25 (Lab. #: T5548) was used as the matrix spike. Both recoveries were within the required limits.

Matrix Duplicate

Sample MW-25 (Lab. #: T5548) was used as the matrix duplicate. All RPDs were within the required limits.

Laboratory Control Sample

All recoveries were within the required quality assurance limits

Method Blanks

No compounds were detected in the method blanks.

Equipment Blank

An equipment blank was not analyzed.

Field Blank

A field blank was not analyzed with this sample delivery group.

Sample Results

No problems were found with the reported results of any of the samples of this delivery group.

SUMMARY OF THE ANALYTICAL DATA USABILITY Revere Smelting Site Wallkill, NY

Soil Semivolatile Organic Analyses – Method 95-2 Samples Collected October 23rd & 24th 2001 Samples Received October 25, 2001 Sample Delivery Group: 0314 Laboratory Reference Numbers:

SB-OBG-11(2-2.9'BS)	T4282	Collected 10/24
SB-OBG-11(2-2.9'BS)RE	T4282RE	Collected 10/24
SB-OBG-3(0-1.3'BS)	T4283	Collected 10/24
SB-OBG-18(0-1.9'BS)	T4284	Collected 10/24

Data were reviewed for usability according to the following criteria:

- * Data Completeness
- * GC/MS Tuning
- * Holding Times
- * Calibrations
- Laboratory Blanks
- * Field Blank
- * Equipment Blank
- * Surrogate Compound Recoveries
- * Internal Standard Recoveries
- * Matrix Spike / Matrix Spike Duplicate
- * Blank Spike
- Laboratory Control Sample
- * Instrument Detection Limits
- * Compound Identification
- * Compound Quantitation

DATA USABILITY SUMMARY

The problems with the internal standard recoveries in sample SB-OBG-11(2-2.9'BS)(Lab. #: T4282) should be noted. These are described in detail below.

No other significant problems were found which would affect the usability of the data. Minor issues that could affect the use of the data are discussed in detail below.

Holding Times

All samples were extracted and analyzed within the required holding time.

^{* -} Indicates that all criteria were met for this parameter.

Tunes

EPA DFTPP criteria were reported on the tune summary form (FORM V) as opposed to those of the NYS DEC ASP program. All of the more stringent NYS DEC ASP requirements were met for all of the tunes of this sample delivery group.

Surrogate Compound Recoveries

All surrogate recoveries were within the required quality control limits.

Calibrations

No problems were detected with the initial or continuing calibrations.

Matrix Spike / Matrix Spike Duplicate

A matrix spike was not analyzed with this sample delivery group.

Blank Spike

A blank spike was not analyzed with this sample delivery group.

Laboratory Control Sample

All recoveries were within the 50% - 150% quality assurance limits in the 11/6 laboratory control sample with the exception of 4-chloroaniline (46%).

This LCS was reanalyzed and all recoveries were within the 50% - 150% quality assurance limits in the 11/7 laboratory control sample with the following exceptions:

4-Chloroanaline (36%) and hexachlorocyclopentadiene (44%) were less than the quality assurance limit.

The low recoveries of these compounds would not significantly affect the end use of the data. Neither of these compounds was detected in any of the samples. If these compounds were present, they would be detected at a concentration significantly below the CRDL. It may be possible that very low concentrations were overlooked, but these would not be expected to affect the data usability.

Method Blanks

Phenol (150J ug/kg), di-n-butyl phthalate (1,100 ug/kg) and six non-target compounds were detected in the one method blank associated with all of the samples of this delivery group.

Low concentrations of phenol, below the CRDL were detected in a few of the samples of this delivery group. These were reported at the CRDL and with the "U" qualifier according to EPA data validation protocols. The data for this compound were footnoted with #32.

Several of the non-target compounds were also detected in the samples, but the laboratory did not flag the data with the "B" qualifier as required in the NYS DEC

ASP protocols. This was added in the data usability summary table. These non-target data were rejected and footnoted with #35 in the data usability summary table.

Field Blank

A field blank was not analyzed with this sample delivery group.

Equipment Blank

An Equipment Blank was not analyzed with this sample delivery group.

Internal Standard Areas and Retention Times

The recovery of the perylene-d12 internal standard (42%) was less than the 50% quality assurance limit in the original analysis of sample SB-OBG-11(2-2.9'BS) (Lab. #: T4282). This was reanalyzed according to the NYS DEC ASP protocols and the recovery of this internal standard was 22%.

The compounds that were quantitated against this internal standard in the above samples were flagged with the "J" qualifier and footnoted with #70 in the data validation summary table.

No other problems were found with the internal standard recoveries.

Instrument Detection Limits

No problems were found with the reporting of the instrument detection limits. They were analyzed slightly beyond the 6-month time limit.

Sample Results

Sample SB-OBG-11(2-2.9'BS) (Lab. #: T4282)

The recovery of the perylene-d12 internal standard (42%) was less than the 50% quality assurance limit in the original analysis of sample SB-OBG-11(2-2.9'BS) (Lab. #: T4282). This was reanalyzed according to the NYS DEC ASP protocols and the recovery of this internal standard was 22%.

The compounds that were quantitated against this internal standard in the initial analysis were flagged with the "J" qualifier and footnoted with #70 in the data validation summary table.

The compounds that were quantitated against this internal standard in the initial analysis were flagged with the "R" qualifier and footnoted with #71 in the data validation summary table. The data would be technically rejected since the internal standard recovery was less than 25%.

No other problems were found that would affect the end use of the data.

SUMMARY OF THE ANALYTICAL DATA USABILITY Revere Smelting Site Wallkill, NY

Soil Semivolatile Organic Analyses – Method 95-2 Samples Collected October 25th and 26th, 2001 Samples Received October 27th 2001 Sample Delivery Group: 0337 Laboratory Reference Numbers:

SB-OBG-16(2-3.7'BS)	T4399
SB-OBG-13(2-3.4'BS)	T4400
SB-OBG-13(2-3.4'BS)RE	T4400RE
SB-OBG-9(0-2.0'BS)	T4401
SB-OBG-12(0-1.6'BS)	T4402
SS-OBG-31(0-0.2'BS)	T4403
SS-OBG-32(0-0.2'BS)	T4404
SS-OBG-21(0-0.2'BS)	T4405
SS-OBG-2(0-0.2'BS)	T4406
SS-OBG-2(0-0.2'BS)RE	T4406RE
SS-OBG-36(0-0.2'BS)	T44 07
SS-OBG-36(0-0.2'BS)MS	T4407MS
SS-OBG-36(0-0.2'BS)MSD	T4407MSD
SS-OBG-14(0-1.5'BS)	T4408
SSX-9	T4409
SB-X-5	T4410

Data were reviewed for usability according to the following criteria:

- * Data Completeness
 - GC/MS Tuning
- * Holding Times
- * Calibrations
 - Laboratory Blanks
 - Field Blank
 - Equipment Blank
- * Surrogate Compound Recoveries
 - Internal Standard Recoveries
- * Matrix Spike / Matrix Spike Duplicate
- * Blank Spike
 - Laboratory Control Sample
- * Instrument Detection Limits
 - Compound Identification
 - Compound Quantitation
- * Indicates that all criteria were met for this parameter.

DATA USABILITY SUMMARY

The problems with the internal standard recoveries in samples SB-OBG-13(2-3.4'BS) (Lab. #: T4400), SS-OBG-2(0-0.2'BS) (Lab. #: T4406) and SS-OBG-36(0-0.2'BS) (Lab. #: T4407) should be noted. These are described in detail below.

No other significant problems were found which would affect the usability of the data. Minor issues that could affect the use of the data are discussed in detail below.

Holding Times

All samples were extracted and analyzed within the required holding time.

Tunes

EPA DFTPP criteria were reported on the tune summary form (FORM V) as opposed to those of the NYS DEC ASP program. All of the more stringent NYS DEC ASP requirements were met for all of the tunes of this sample delivery group.

Surrogate Compound Recoveries

All surrogate recoveries were within the required quality control limits.

Calibrations

No problems were detected with the initial or continuing calibrations.

Matrix Spike / Matrix Spike Duplicate

Sample SS-OBG-36(0-0.2'BS) (Lab. #:T4407) of this sample delivery group was used as the matrix spike and matrix spike duplicate. All recoveries and RPDs were within the required quality assurance limits.

Blank Spike

All blank spike recoveries were within the required quality assurance limits.

Laboratory Control Sample

All recoveries were within the 50% - 150% quality assurance limits in the 11/6 laboratory control sample with the following exception:

The recovery of 4-chloroaniline was 46%.

This LCS was reanalyzed and all recoveries were within the 50% - 150% quality assurance limits in the 11/7 laboratory control sample with the following exceptions:

4-Chloroanaline (36%) and hexachlorocyclopentadiene (44%) were less than the quality assurance limit.

The low recoveries of these compounds would not significantly affect the end use of the data. Neither of these compounds was detected in any of the samples. If these compounds were present, they would be detected at a concentration significantly below the CRDL. It may be possible that very low concentrations were overlooked, but these would not be expected to affect the data usability.

Method Blanks

Phenol (150J ug/kg), di-n-butyl phthalate (1,100 ug/kg) and six non-target compounds were detected in the one method blank associated with all of the samples of this delivery group.

Low concentrations of phenol, below the CRDL were detected in a few of the samples of this delivery group. These were reported at the CRDL and with the "U" qualifier according to EPA data validation protocols. The data for this compound were footnoted with #32.

Several of the non-target compounds were also detected in the samples, but the laboratory did not flag the data with the "B" qualifier as required in the NYS DEC ASP protocols. This was added in the data usability summary table. These non-target data were rejected and footnoted with #35 in the data usability summary table.

Field Blank

A field blank was not analyzed with this sample delivery group.

Equipment Blank

An Equipment Blank was not analyzed with this sample delivery group.

Internal Standard Areas and Retention Times

The recovery of the perylene-d12 internal standard (41%) was less than the 50% quality assurance limit in the original analysis of sample SB-OBG-13(2-3.4'BS)(Lab. #:T4400). This was reanalyzed according to the NYS DEC ASP protocols and the recovery of this internal standard was 42%.

The recovery of the perylene-d12 internal standard (36%) was less than the 50% quality assurance limit in the analysis of sample SS-OBG-2(0-0.2'BS) (Lab. #: T4406). This was reanalyzed according to the NYS DEC ASP protocols and the recovery of this internal standard was again 36%.

The recovery of the perylene-d12 internal standard (32%) was less than the 50% quality assurance limit in the analysis of sample SS-OBG-36(0-0.2'BS) (Lab. #: T4407). The recovery of this internal standard in its matrix spike (29%) and matrix spike duplicate (27%).

The compounds that were quantitated against this internal standard in the above samples were flagged with the "J" qualifier and footnoted with #70 in the data validation summary table.

No other problems were found with the internal standard recoveries.

Instrument Detection Limits

No problems were found with the reporting of the instrument detection limits. They were analyzed slightly beyond the 6-month time limit.

Sample Results

Sample SB-OBG-13(2-3.4'BS) (Lab. #: T4400)

The recovery of the perylene-d12 internal standard (41%) was less than the 50% quality assurance limit in the original analysis of sample SB-OBG-13(2-3.4'BS) (Lab. #:T4400). This was reanalyzed according to the NYS DEC ASP protocols and the recovery of this internal standard was 42%.

The compounds that were quantitated against this internal standard in the reanalysis were flagged with the "J" qualifier and footnoted with #70 in the data validation summary table.

It is recommended that the data from the initial analysis be used for the final reporting. There were no significant differences in the data between the first and reanalysis.

Sample SS-OBG-2(0-0.2'BS) (Lab. #: T4406)

The recovery of the perylene-d12 internal standard (36%) was less than the 50% quality assurance limit in the analysis of sample SS-OBG-2(0-0.2'BS) (Lab. #: T4406). This was reanalyzed according to the NYS DEC ASP protocols and the recovery of this internal standard was again 36%.

The compounds that were quantitated against this internal standard in the reanalysis were flagged with the "J" qualifier and footnoted with #70 in the data validation summary table.

It is recommended that the data from the initial analysis be used for the final reporting. There were no significant differences in the data between the first and reanalysis.

Sample SS-OBG-36(0-0.2'BS) (Lab. #: T4407)

The recovery of the perylene-d12 internal standard (32%) was less than the 50% quality assurance limit in the analysis of sample SS-OBG-36(0-0.2'BS) (Lab. #: T4407). The recovery of this internal standard in its matrix spike (29%) and matrix spike duplicate (27%).

The compounds that were quantitated against this internal standard in the above samples were flagged with the "J" qualifier and footnoted with #70 in the data validation summary table.

No other problems were found that would affect the end use of the data.

SUMMARY OF THE ANALYTICAL DATA USABILITY Revere Smelting Site Wallkill, NY

Soil Semivolatile Organic Analyses – Method 95-2 Samples Collected November 8, 2001 Samples Received November 8, 2001 Sample Delivery Group: 0442 Laboratory Reference Numbers:

T5023
T5004
T5004MS
T5004MSD
T5005
T5006
T5006MS
T5006MSD
T5007

Data were reviewed for usability according to the following criteria:

- * Data Completeness
- * GC/MS Tuning
- * Holding Times
- * Calibrations
 - Laboratory Blanks
 - Field Blank
 - Equipment Blank
- * Surrogate Compound Recoveries
- * Internal Standard Recoveries
- * Matrix Spike / Matrix Spike Duplicate
 - Blank Spike
- * Laboratory Control Sample
- * Instrument Detection Limits
- * Compound Identification
- * Compound Quantitation
- * Indicates that all criteria were met for this parameter.

DATA USABILITY SUMMARY

No significant problems were found which would affect the usability of the data. Minor issues that could affect the use of the data are discussed in detail below.

Holding Times

All samples were extracted and analyzed within the required holding time.

Tunes

EPA DFTPP criteria were reported on the tune summary form (FORM V) as opposed to those of the NYS DEC ASP program. All of the more stringent NYS DEC ASP requirements were met for all of the tunes of this sample delivery group.

Surrogate Compound Recoveries

All surrogate recoveries were within the required quality control limits.

Calibrations

No problems were detected with the initial or continuing calibrations.

Matrix Spike / Matrix Spike Duplicate

Samples SED-P2 (0-6") (Lab. #: T5004) and EX-1 (0-6") (Lab. #: T5006) of this sample delivery group was used as the matrix spike and matrix spike duplicate. All recoveries and RPDs were within the required quality assurance limits.

Blank Spike

All blank spike recoveries were within the required limits with the one exception of 2,4-dinitrotoluene (94%). This was above the 89% quality assurance limit.

The high recovery is most likely due to increased extraction efficiency. The high recovery does not affect the end use of the data.

Laboratory Control Sample

Two soil and two water laboratory control samples were analyzed with this sample delivery group.

All recoveries were within the 50% - 150% quality assurance limits.

Method Blanks

A soil and water blank were analyzed with this sample delivery group:

Phenol (45J ug/kg) and four non-target compounds were detected in the one method blank associated with all of the samples of this delivery group.

Low concentrations of phenol, below the CRDL were detected in a few of the samples of this delivery group. These were reported at the CRDL and with the "U" qualifier according to EPA data validation protocols. The data for this compound were footnoted with #32.

Several of the non-target compounds were also detected in the samples, but the laboratory did not flag the data with the "B" qualifier as required in the NYS DEC ASP protocols. This was added in the data usability summary table. These non-target data were rejected and footnoted with #35 in the data usability summary table.

No compounds were detected in the water method blank.

Field Blank

A field blank was not analyzed with this sample delivery group.

Equipment Blank

Seven non-target compounds were detected in the equipment blank. None of these were detected in any of the samples.

Internal Standard Areas and Retention Times

No problems were found with the internal standard recoveries.

Instrument Detection Limits

No problems were found with the reporting of the instrument detection limits. They were analyzed slightly beyond the 6-month time limit.

Sample Results

No problems were found that would affect the end use of the data.

SUMMARY OF THE ANALYTICAL DATA USABILITY Revere Smelting Site Wallkill, NY

Water Semivolatile Organic Analyses – Method 95-2 Samples Collected November 15th and 16th, 2001 Samples Received November 17, 2001 Sample Delivery Group: 0517 Laboratory Reference Numbers:

MW-23D	T5537
MW-13	T5538
MW-23S	T5539
MW-25	T5540
MW-25MS	T5540MS
MW-25MSD	T5540MSD
MW-24	T5541
MW-26	T5542
X-1-GW	T5543

Data were reviewed for usability according to the following criteria:

- * Data Completeness
- GC/MS Tuning
- * Holding Times
- **- Calibrations
- * Laboratory Blanks
- * Field Blank
- * Equipment Blank
- * Surrogate Compound Recoveries
- * Internal Standard Recoveries
 - Matrix Spike / Matrix Spike Duplicate
 - Blank Spike
- * Laboratory Control Sample
- * Instrument Detection Limits
- * Compound Identification
- * Compound Quantitation
- * Indicates that all criteria were met for this parameter.

DATA USABILITY SUMMARY

No significant problems were found which would affect the usability of the data. Minor issues that could affect the use of the data are discussed in detail below.

Holding Times

All samples were extracted and analyzed within the required holding time.

Tunes

EPA DFTPP criteria were reported on the tune summary form (FORM V) as opposed to those of the NYS DEC ASP program. All of the more stringent NYS DEC ASP requirements were met for all of the tunes of this sample delivery group.

Surrogate Compound Recoveries

All surrogate recoveries were within the required quality control limits.

Calibrations

No problems were detected with the initial calibration.

The percent differences of 2,2'-oxybis(1-chloropropane) (38%), 2-methylphenol (37%), N-nitroso-di-n-propylamine (28%), and the 2,4,6-tribromophenol (40%) had percent differences greater than 25%.

None of these compounds were detected in any of the samples and the data were not qualified since all of the percent differences were less than 50%. The high percent differences do not affect the end use of the data.

Matrix Spike / Matrix Spike Duplicate

Sample MW-25 (Lab. #: T5540) of this s ample delivery group was used for the matrix spike and matrix spike duplicate. All recoveries and RPDs were within the required limits with the following exceptions:

Compound	MS %Rec	MSD %Rec	QC Limits	RPD Limits
Phenol			12 - 110	42
2-Chlorophenol			27 - 123	40
1,4-Dichlorobenzene			37 - 97	28
N-Nitroso-di-n-prop.			41 - 116	38
1,2,4-Trichlorobenzene			39 - 98	28
4-Chloro-3-methylphenol			23 - 97	42
Acenaphthene			46 - 118	31
4-Nitrophenol	94%	91%	10 - 80	50
2.4-Dinitrotoluene			24 - 96	38
Pentachlorophenol	106%	104%	9 - 103	50
Pyrene			26 - 127	31

The high recoveries are most likely due to increased extraction efficiency and do not affect the end use of the data.

Blank Spike

All blank spike recoveries were within the required limits with the following exceptions:

Compound	MS %Rec	QC Limits
Phenol		12 - 110
2-Chlorophenol		27 - 123
1,4-Dichlorobenzene		37 - 97
N-Nitroso-di-n-prop.		41 - 116
1,2,4-Trichlorobenzene		39 - 98
4-Chloro-3-methylphenol		23 - 97
Acenaphthene		46 - 118
4-Nitrophenol	99%	10 - 80
2.4-Dinitrotoluene	98%	24 - 96
Pentachlorophenol		9 - 103
Pyrene		26 - 127

The high recoveries are most likely due to increased extraction efficiency and do not affect the end use of the data.

Laboratory Control Sample

All recoveries were within the 50% - 150% quality assurance limits.

Method Blanks

No compounds were detected in the method blank.

Field Blank

A field blank was not analyzed with this sample delivery group.

Equipment Blank

An Equipment Blank was not analyzed with this sample delivery group.

Internal Standard Areas and Retention Times

No problems were found with the internal standard recoveries.

Instrument Detection Limits

No problems were found with the reporting of the instrument detection limits. They were analyzed slightly beyond the 6-month time limit.

Sample Results

No problems were found that would affect the end use of the data.

SUMMARY OF THE ANALYTICAL DATA USABILITY For Revere Smelting Site Wallkill, NY

Water Lead Analyses Samples Received October 19, 2001 Sample Delivery Group: 1054 Laboratory Reference Numbers:

SS-TP-7 (2.2'BS)	T9184
SS-TP-8 (3'BS)	T9185
SS-TP-9 (1.4'BS)	T9186
SS-TP-9 (1.4'BS)MS	T9186MS
SS-TP-9 (1.4'BS)D	T9186D
SS-TP-2 (1.3'-1.5'BS)	T9189
SS-TP-5 (1.2'BS)	T9190

Water samples were received for total lead analyses by NYS DEC ASP protocols. A data usability was performed based upon the following parameters:

- * Data Completeness
- * Holding Times
- * Calibration Verification
- * CRDL Standard
- * Laboratory Control Sample
- * Serial Dilutions
- * Laboratory Blanks
- * Field Blanks
- * Equipment Blanks
- * Preparation Blanks
- * Matrix Spike
- * Duplicate Analyses
- * ICP Interference Check Sample
- * Detection Limit Results
- * Linear Range
- * Sample Results
- * Indicates that all criteria were met for this parameter.

Data Validation Summary

No problems were found which would affect the end use of the data.

Holding Times

All samples were analyzed within the required holding times.

CRDL Standards

The recoveries of all CRDL standards were within the 80% to 120% quality assurance limits.

Initial and Continuing Calibrations

No problems were detected with any of the calibrations associated with this sample delivery group.

Preparation Blank

Lead was not detected in the preparation blanks at concentrations above the CRDL.

Calibration Blanks

Lead was not detected in the calibration blanks at concentrations above the CRDL.

Field Blank

A field blank was not analyzed with this sample delivery group.

Equipment Blank

An equipment blank was not analyzed with this sample delivery group.

ICP Interference Check Sample

No problems were detected with the reported ICP Interference Check Sample recoveries.

Matrix Spike Recovery

Sample SS-TP-9 (1.4'BS) (Lab. #: T9186) was used as the matrix spike.

The lead spike recovery was within the required limits.

Duplicate Analysis

Sample SS-TP-9 (1.4'BS) (Lab. #: T9186) was used as the matrix duplicate.

The RPD (1%) was less than the required limit.

Laboratory Control Sample

No problems were detected with the recoveries of the three LCS standards.

Serial Dilutions

Sample SS-TP-9 (1.4'BS) (Lab. #: T9186) was used for the serial dilution.

The % difference was less than 10% (3%).

Instrument Detection Limit

No problems were found with the instrument detection limits.

ICP Linear Range

No problems were detected with the linear ranges. The reported concentrations of all samples in this delivery group were within their linear range for each analyte.

Sample Results

No problems were detected with the samples.

SUMMARY OF THE ANALYTICAL DATA USABILITY For Revere Smelting Site Wallkill, NY

Water Lead Analyses
Samples Received March 4, 2002
Sample Delivery Group: 1418
Laboratory Reference Numbers:

SS-OBG-10 (0-2"BS)	U1356
SS-OBG-12 (8-9.6'BS)	U1357
SS-OBG-11 (2-2.9'BS)	U1359
SS-OBG-12 (0-1.6'BS)	U1360
SS-OBG-12 (0-1.6'BS)MS	U1360MS
SS-OBG-12 (0-1.6'BS)D	U1360D
SS-OBG-21 (4'-5.1'BS)	U1361

Water samples were received for total lead analyses by NYS DEC ASP protocols. A data usability was performed based upon the following parameters:

- * Data Completeness
- * Holding Times
- * Calibration Verification
- * CRDL Standard
- * Laboratory Control Sample
- * Serial Dilutions
- * Laboratory Blanks
- * Field Blanks
- * Equipment Blanks
- * Preparation Blanks
- * Matrix Spike
- * Duplicate Analyses
- * ICP Interference Check Sample
- * Detection Limit Results
- * Linear Range
- * Sample Results

^{* -} Indicates that all criteria were met for this parameter.

Data Validation Summary

No problems were found which would affect the end use of the data.

Holding Times

All samples were analyzed within the required holding times.

CRDL Standards

The recoveries of all CRDL standards were within the 80% to 120% quality assurance limits.

Initial and Continuing Calibrations

No problems were detected with any of the calibrations associated with this sample delivery group.

Preparation Blank

Lead was not detected in the preparation blanks at concentrations above the CRDL.

Calibration Blanks

Lead was not detected in the calibration blanks at concentrations above the CRDL.

Field Blank

A field blank was not analyzed with this sample delivery group.

Equipment Blank

An equipment blank was not analyzed with this sample delivery group.

ICP Interference Check Sample

No problems were detected with the reported ICP Interference Check Sample recoveries.

Matrix Spike Recovery

Sample SS-OBG-12 (0-1.6'BS) (Lab. #: U1360) was used as the matrix spike.

The lead spike recovery was within the required limits.

Duplicate Analysis

Sample SS-OBG-12 (0-1.6'BS) (Lab. #: U1360) was used as the matrix duplicate.

The RPD (2%) was less than the required limit.

Laboratory Control Sample

No problems were detected with the recoveries of the three LCS standards.

Serial Dilutions

Sample SS-OBG-12 (0-1.6'BS) (Lab. #: U1360) was used for the serial dilution.

The % difference was less than 10% (2%).

Instrument Detection Limit

No problems were found with the instrument detection limits.

ICP Linear Range

No problems were detected with the linear ranges. The reported concentrations of all samples in this delivery group were within their linear range for each analyte.

Sample Results

No problems were detected with the samples.

SUMMARY OF THE ANALYTICAL DATA VALIDATION Revere Smelting Site Wallkill, NY

Soil Pesticide and PCB Analyses – Method 95-3 Samples Collected October 24, 2001 Samples Received October 25, 2001 Sample Delivery Group: 0314 Laboratory Reference Numbers:

SB-OBG-11(2-2.9'BS)	T4282
SB-OBG-3(0-1.3'BS)	T4283
SB-OBG-18(0-1.9'BS)	T4284

Soil samples were received for analyses of the pesticide and PCB TCL analyte list by US EPA Region II protocols. A complete analytical validation was performed based upon the following parameters:

- * Data Completeness
- * Holding Times
 - Laboratory Blanks
 - Field Blanks
 - Equipment Blanks
- * Surrogate Recoveries and Retention Times
 - Matrix Spike / Matrix Spike Duplicate
- * Blank Spike
- * Calibrations
- * Method Blanks
- * Analyte Resolutions
- * Performance Evaluation Mixtures
- * IND A and IND B Standards
- * Florisil Cartridge Check
 - GPC Calibration
- * Compound Identification
- * Method Detection Limit Sample Results

DATA VALIDATION SUMMARY

The retention times in the raw data only include those compounds identified by the laboratory as positive hits. Raw data for all of the peaks should be included.

The laboratory reported pesticides to concentrations near 1/100 of the CRDL. Such low concentrations may easily be false positives. Data was reported in the data usability summary table at concentrations greater than ½ of the CRDL.

^{* -} Indicates that all criteria were met for this parameter.

The chromatograms of sample SB-OBG-11(2-2.9'BS) (Lab. #: T4282) contained many peaks and were not easy to review for interferences. These should be resubmitted in a more readable form.

Minor problems with method blank and GPC are noted below.

Holding Times

All extractions and analyses were performed within the required holding times.

Surrogate Recoveries

All surrogate recoveries were within the required quality assurance limits.

Matrix Spike

A matrix spike was not analyzed with this sample delivery group.

Blank Spike

All blank spike recoveries were within the required quality assurance limits.

Initial Calibration

No problems were detected with the initial calibration.

Analyte Resolution

All percent resolutions were greater than 60% on both the RT-CLP and RTX-35 columns for both calibrations.

Continuing Calibrations

All percent resolutions were greater than 90%.

No problems were detected with any of the PEM or INDA and INDB standards that affected the end use of the data.

Florisil Cartridge Check

All recoveries were within the 80% - 120% quality assurance limits.

GPC Calibration

The laboratory's case narrative notes:

"The percent recovery for Endrin exceeded the upper control limit for the GPC check from the GPC calibration performed on 10/31/01/ The matrix spike solution used for the GPC check was checked and met the criteria for matrix

spike recovery, but was higher than the tighter GPC check criteria, (80-110%.) A new matrix spike solution was prepared for future samples. No further corrective action was taken."

This did not affect the end use of the data.

No other problems were detected with the GPC cleanup.

Method Blanks

A low concentration of gamma-chlordane (0.026JP ug/l) was detected in the method blank PBKL01. This concentration was less then one half of the CRDL and does not affect the end use of the data.

The laboratory flagged the compound found in the blank with the "B" qualifier. The compounds detected in a method blank should never be flagged with this notation. The reason for this was not clear.

Calibration Blanks

No problems were detected with the calibration blanks associated with this sample delivery group.

Field Blanks

A field blank was not analyzed with this sample delivery group.

Sample Results

The laboratory reported pesticides to concentrations near 1/100 of the CRDL. Such low concentrations may easily be false positives. Data was only reported in the data usability summary table to concentrations greater than ½ of the CRDL. These compounds were reported at the CRDL and footnoted with #90.

Many of the percent differences of identified compounds were greater than 25%. The pesticide data were qualified in the data usability summary table as follows:

% Difference	Qualifier	Footnote
25 - 70%	"J"	91
70 - 100%	"JN"	92
> 100%	"R"	93
100 - 200% (Interference detected)	"JN"	94
> 50% (< CRDL, but > 1/2 CRDL)	"U"	95

Sample SB-OBG-11(2-2.9'BS) (Lab. #: T4282)

The chromatograms of this sample contained many peaks and were not easy to review for interferences. These should be resubmitted in a more readable form.

SUMMARY OF THE ANALYTICAL DATA VALIDATION Revere Smelting Site Wallkill, NY

Soil Pesticide and PCB Analyses Samples Collected October 25th and 26th, 2001 Samples Received October 27th 2001 Sample Delivery Group: 0337 Laboratory Reference Numbers:

SB-OBG-16(2-3.7'BS)	T4399
SB-OBG-13(2-3.4'BS)	T4400
SB-OBG-9(0-2.0'BS)	T4401
SB-OBG-12(0-1.6'BS)	T4402
SS-OBG-31(0-0.2'BS)	T4403
SS-OBG-32(0-0.2'BS)	T4404
SS-OBG-21(0-0.2'BS)	T4405
SS-OBG-2(0-0.2'BS)	T4406
SS-OBG-36(0-0.2'BS)	T4407
SS-OBG-36(0-0.2'BS)MS	T4407MS
SS-OBG-36(0-0.2'BS)MSD	T4407MSD
SS-OBG-14(0-1.5'BS)	T4408
SSX-9	T4409
SB-X-5	T4410

Soil samples were received for analyses of the pesticide and PCB TCL analyte list by US EPA Region II protocols. A complete analytical validation was performed based upon the following parameters:

- * Data Completeness
- * Holding Times
 - Laboratory Blanks
 - Field Blanks
 - Equipment Blanks
 - Surrogate Recoveries and Retention Times
 - Matrix Spike / Matrix Spike Duplicate
- * Blank Spike
 - Calibrations
- * Method Blanks
- * Analyte Resolutions
- * Performance Evaluation Mixtures
- * IND A and IND B Standards
- * Florisil Cartridge Check
 - GPC Calibration
- * Compound Identification
- * Method Detection Limit
 - Sample Results

^{* -} Indicates that all criteria were met for this parameter.

Revere: Pesticides and PCBs SDG: 0337

DATA VALIDATION SUMMARY

The laboratory's case narrative states:

The initial calibration for the DB1701 column performed on 11/29/01 exceeded the 30% RSD criteria for alpha-BHC. The %RSD for alpha-BHC was 30.3%. The instrument conditions were optimized to provide the maximum linearity for alpha-BHC. Alpha-BHC was not detected above the CRQL in any samples. No further corrective action was taken."

"The surrogates were not added to the AR1660 standard used for the initial calibration performed on 11/06/01 when it was prepared. This will not affect quantitation since the surrogates are calibrated from the mid point INDA standard. No further corrective action was taken."

The percent recovery for Endrin exceeded the upper control limit for the GPC check from the GPC calibration performed on 10/31/01. The matrix spike solution used for the GPC check was checked and met the criteria for matrix spike recovery, but was higher than the tighter GPC check criteria, (80-110%). A new matrix spike solution was prepared for future samples. No further corrective action was taken."

The retention time for DCBP in the resolution check analyzed on the DB608 column for the initial calibration performed on 11/29/01 was outside the retention time window. All subsequent surrogate and standard compounds were within the established retention time windows. No further corrective action was taken."

The laboratory reports two separate method blank summaries. Both of these are labeled PBLK01, but the extraction dates are not filled in. The laboratory should complete the missing data.

The retention time windows of both TCX and DCB were outside of the quality control limits in the analysis of PBLK01. There should be no reason for problems with surrogate recoveries in a method blank.

The retention times in the raw data only include those compounds identified by the laboratory as positive hits. Raw data for all of the peaks should be included.

The laboratory reported pesticides to concentrations near 1/100 of the CRDL. Such low concentrations may easily be false positives. Data was only reported in the data usability summary table at concentrations greater than ½ of the CRDL.

Minor problems with surrogate, spikes and sample data are noted below.

Revere: Pesticides and PCBs SDG: 0337 Page 3

Holding Times

All extractions and analyses were performed within the required holding times.

Surrogate Recoveries

All surrogate recoveries were within the required quality assurance limits with the following exceptions:

	TCX 1	TCX 2	DCB 1	DCB 2	#
SB-OBG-13(2-3.4'BS)				155%	
SS-OBG-36(0-0.2'BS)MS				151%	
SS-OBG-36(0-0.2'BS)MSD				192%	

All of the surrogate recoveries of sample SB-OBG-13(2-3.4'BS) were within the required limits. The high surrogate recoveries for the matrix spike and matrix spike duplicate do not affect the end use of the data.

The sample data were not qualified since the recovery of only one surrogate was above the quality assurance limit.

The laboratory's case narrative states:

"The surrogates were not added to the AR1660 standard used for the initial calibration performed on 11/06/01 when it was prepared. This will not affect quantitation since the surrogates are calibrated from the mid point INDA standard. No further corrective action was taken."

Surrogate Retention Times

The laboratory's case narrative states:

The retention time for DCBP in the resolution check analyzed on the DB608 column for the initial calibration performed on 11/29/01 was outside the retention time window. All subsequent surrogate and standard compounds were within the established retention time windows. No further corrective action was taken."

The retention time windows of both TCX and DCB were outside of the quality control limits in the analysis of PBLK01. There should be no reason for problems with surrogate recoveries in a method blank.

Matrix Spike

Sample SS-OBG-36(0-0.2'BS) (Lab. #: T4407) was used as first matrix spike and matrix spike duplicate. All recoveries and RPDs were within the required quality assurance limits.

Blank Spike

All blank spike recoveries were within the required quality assurance limits.

Revere: Pesticides and PCBs SDG: 0337

Initial Calibrations

The laboratory's case narrative states:

The initial calibration for the DB1701 column performed on 11/29/01 exceeded the 30% RSD criteria for alpha-BHC. The %RSD for alpha-BHC was 30.3%. The instrument conditions were optimized to provide the maximum linearity for alpha-BHC. Alpha-BHC was not detected above the CRQL in any samples. No further corrective action was taken."

This did not affect the end use of the data and the data were not qualified for the problems with the calibrations.

No other problems were detected with any of the initial calibrations.

Analyte Resolution

All percent resolutions were greater than 60% on both the RT-CLP and RTX-35 columns for both calibrations.

Continuing Calibrations

All percent resolutions were greater than 90%.

No problems were detected with any of the PEM or INDA and INDB standards that affected the end use of the data.

Florisil Cartridge Check

All recoveries were within the 80% - 120% quality assurance limits.

GPC Calibration

The percent recovery for Endrin exceeded the upper control limit for the GPC check from the GPC calibration performed on 10/31/01. The matrix spike solution used for the GPC check was checked and met the criteria for matrix spike recovery, but was higher than the tighter GPC check criteria, (80-110%). A new matrix spike solution was prepared for future samples. No further corrective action was taken."

No other problems were detected with any of the GPC calibrations.

Method Blanks

The retention time windows of both TCX and DCB were outside of the quality control limits in the analysis of PBLK01. There should be no reason for problems with surrogate recoveries in a method blank.

A low concentration of gamma-chlordane (0.026JP ug/l) was detected in the method blank PBKL01. This concentration was less then one half of the CRDL and does not affect the end use of the data.

The laboratory flagged the compound found in the blank with the "B" qualifier. The compounds detected in a method blank should never be flagged with this notation. The reason for this was not clear.

The laboratory reports two separate method blank summaries. Both of these are labeled PBLK01, but the extraction dates are not filled in. The laboratory should complete the missing data.

No other compounds were detected in the method blank.

Calibration Blanks

No problems were detected with the calibration blanks associated with this sample delivery group.

Field Blanks

A field blank was not analyzed with this sample delivery group.

Sample Results

The laboratory reported pesticides to concentrations near 1/100 of the CRDL. Such low concentrations may easily be false positives. Data was only reported in the data usability summary table to concentrations greater than ½ of the CRDL. These compounds were reported at the CRDL and footnoted with #90.

Many of the percent differences of identified compounds were greater than 25%. The pesticide data were qualified in the data usability summary table as follows:

% Difference	Qualifier	Footnote
25 - 70%	"J"	91
70 - 100%	"JN"	92
> 100%	"R"	93
100 - 200% (Interference detected)	"JN"	94
> 50% (< CRDL, but > 1/2 CRDL)	" U "	95

SUMMARY OF THE ANALYTICAL DATA VALIDATION Revere Smelting Site Wallkill, NY

Soil Pesticide and PCB Analyses Samples Collected November 8, 2001 Samples Received November 8, 2001 Sample Delivery Group: 0442 Laboratory Reference Numbers:

Equipment Blank	T5023
SED-P2 (0-6")	T5004
SED-P2 (0-6")MS	T5004MS
SED-P2 (0-6")MSD	T5004MSD
Blind Duplicate	T5005
EX-1 (0-6")	T5006
EX-1 (0-6")MS	T5006MS
EX-1 (0-6")MSD	T5006MSD
SED-S1(0-6')	T5007

Revere: Pesticides and PCBs SDG: 0517

Soil samples were received for analyses of the pesticide and PCB TCL analyte list by US EPA Region II protocols. A complete analytical validation was performed based upon the following parameters:

- * Data Completeness
- * Holding Times
- * Laboratory Blanks
 - Field Blanks
 - Equipment Blanks
 - Surrogate Recoveries and Retention Times
 - Matrix Spike / Matrix Spike Duplicate
- * Blank Spike
- * Calibrations
- * Method Blanks
- * Analyte Resolutions
- * Performance Evaluation Mixtures
- * IND A and IND B Standards
- * Florisil Cartridge Check
- * GPC Calibration
- * Compound Identification
- * Method Detection Limit Sample Results
- * Indicates that all criteria were met for this parameter.

DATA VALIDATION SUMMARY

The retention times in the raw data only include those compounds identified by the laboratory as positive hits. Raw data for all of the peaks should be included.

The laboratory reported pesticides to concentrations near 1/100 of the CRDL. Such low concentrations may easily be false positives. Data was only reported in the data usability summary table at concentrations greater than ½ of the CRDL.

Minor problems with surrogate, spikes and sample data are noted below.

Holding Times

All extractions and analyses were performed within the required holding times.

Surrogate Recoveries

All surrogate recoveries were within the required quality assurance limits with the following exception:

	TCX 1	TCX 2	DCB 1	DCB 2	#
Equipment Blank			20%	22%	26

The equipment blank data were flagged with the "J" qualifier and footnoted with #26 in the data validation summary table. There should not be a problem with recovery of surrogates from an equipment blank.

All of the soil surrogate recoveries were within the required limits.

Matrix Spike

Two matrix spikes were analyzed with this sample delivery group.

Sample SED-P2 (0-6") (Lab. #: T5004) was used as the first matrix spike and matrix spike duplicate. All recoveries and RPDs were within the required quality assurance limits with the following exceptions:

Compound	MS %Rec	MSD %Rec	QC Limits	RPD	Limits
gamma-BHC			46 - 127		50
heptachlor	32%		35 - 130	44%	31
aldrin			34 - 132		43
dieldrin			31 - 134		38
endrin			42 - 139		45
DDT			23 - 134		50

The matrix spike recovery of heptachlor was just below the 35% quality assurance limit. It is possible that very low concentrations of some early eluting pesticides were overlooked.

Sample EX-1 (0-6") (Lab. #: T5006) was used as the second matrix spike and matrix spike duplicate. All recoveries and RPDs were within the required quality assurance limits.

Blank Spike

Two blank spikes were analyzed with this sample delivery group. All blank spike recoveries were within the required quality assurance limits.

Initial Calibrations

No problems were detected with any of the initial calibrations.

Analyte Resolution

All percent resolutions were greater than 60% on both the RT-CLP and RTX-35 columns for both calibrations.

Continuing Calibrations

All percent resolutions were greater than 90%.

No problems were detected with any of the PEM or INDA and INDB standards that affected the end use of the data.

Florisil Cartridge Check

Revere: Pesticides and PCBs SDG: 0517

Page 4

All recoveries were within the 80% - 120% quality assurance limits.

GPC Calibration

No problems were detected with any of the GPC calibrations.

Method Blanks

No compounds were detected in either the soil or aqueous method blanks

Calibration Blanks

No problems were detected with the calibration blanks associated with this sample delivery group.

Field Blanks

A field blank was not analyzed with this sample delivery group.

Sample Results

The laboratory reported pesticides to concentrations near 1/100 of the CRDL. Such low concentrations may easily be false positives. Data was only reported in the data usability summary table to concentrations greater than ½ of the CRDL. These compounds were reported at the CRDL and footnoted with #90.

SUMMARY OF THE ANALYTICAL DATA VALIDATION Revere Smelting Site Wallkill, NY

Water Pesticides and PCB Organic Analyses – Method 95-3 Samples Collected November 15th and 16th, 2001 Samples Received November 17, 2001 Sample Delivery Group: 0517 Laboratory Reference Numbers:

MW-23D	T5537
MW-13	T5538
MW-23S	T5539
MW-25	T5540
MW-25MS	T5540MS
MW-25MSD	T5540MSD
MW-24	T5541
MVV-26	T5542
X-1-GW	T5543

Water samples were received for analyses of the pesticide and PCB TCL analyte list by US EPA Region II protocols. A complete analytical validation was performed based upon the following parameters:

- Data Completeness
- * Holding Times
 - Laboratory Blanks
 - Field Blanks
 - Equipment Blanks
 - Surrogate Recoveries and Retention Times
- * Matrix Spike / Matrix Spike Duplicate
- * Blank Spike
 - Calibrations
- * Method Blanks
- * Analyte Resolutions
- * Performance Evaluation Mixtures
- * IND A and IND B Standards
- * Florisil Cartridge Check
- * GPC Calibration
- * Compound Identification
- * Method Detection Limit Sample Results

^{* -} Indicates that all criteria were met for this parameter.

Revere: Pesticides and PCBs SDG: 0517 Page 2

DATA VALIDATION SUMMARY

Data for sample MW-25 (Lab. #: T5540) was not found in the copy of the analytical report submitted for validation.

Pages 492 to 515 were found out of order in the copy of the analytical report submitted for validation.

The retention times in the raw data only include those compounds identified by the laboratory as positive hits. Raw data for all of the peaks should be included.

The laboratory reported pesticides to concentrations near 1/100 of the CRDL. Such low concentrations may easily be false positives. Data was reported in the data usability summary table at concentrations greater than ½ of the CRDL.

Minor problems with surrogates, blanks and retention times are noted below.

Holding Times

All extractions and analyses were performed within the required holding times.

Surrogate Recoveries

All surrogate recoveries were within the required quality assurance limits with the following exception:

	TCX 1	TCX 2	DCB 1	DCB 2
PBLK01	15%	18%	11%	12%

The laboratory's case narrative noted" the extract for this blank was spilled during concentration. Another prep blank was prepared on 11/21/01 and met criteria. No further corrective action was taken."

All of the other sample and blank surrogate recoveries were within the required limits.

Matrix Spike

Sample MW-25 (Lab. #: T5540) was used as the matrix spike and matrix spike duplicate. All recoveries and RPDs were within the required quality assurance limits.

Blank Spike

All blank spike recoveries were within the required quality assurance limits.

Initial Calibrations

The laboratory's case narrative states:

"The initial calibration for the DB1701 column performed on 11/29/01 exceeded the 30% RSD criteria for alpha-BHC. The % RSD for alpha-BHC was 30.3%. Alpha-BHC was not detected above the CRQL in any samples. No further corrective action was taken."

The minor problem with the initial calibration did not affect the end use of the data.

Analyte Resolution

All percent resolutions were greater than 60% on both the RT-CLP and RTX-35 columns for both calibrations.

Continuing Calibrations

All percent resolutions were greater than 90%.

The retention times of the early PEM standards were at their lower retention time limit in PEM01 and close to their lower retention time limit in the other PEM continuing calibration standards. This standard was analyzed on 11/29 and the samples were analyzed on 12/06. The problems with the retention times did not directly affect the analyses of the samples.

The laboratory's case narrative states:

"The retention time for DCB in the resolution check analyzed on the DB608 column for the initial calibration was performed on 11/29/01 and PIBLK02 analyzed on 12/06/01 was outside the retention time window, as was TCMX in the PIBLK02 analyzed on 12/06/01 on the DB1701 column. All subsequent surrogate and standard compounds were within the established retention time windows. No other corrective action was taken."

This did not directly affect the usability of the sample data and the data were not qualified.

No other problems were detected with any of the PEM or INDA and INDB standards that affected the end use of the data.

Florisil Cartridge Check

All recoveries were within the 80% - 120% quality assurance limits.

GPC Calibration

A GPC cleanup was not done.

Method Blanks

An additional method blank was analyzed after the first one was spilled. Low concentrations of heptachlor (0.0037JP ug/l), DDD (0.013 JP ug/l) and endosulfan sulfate (0.0033 JP ug/l) were detected in the original method blank PBKL01. A low concentration of heptachlor (0.0041JP ug/l) was detected in the second method blank, PBLK02.

Revere: Pesticides and PCBs SDG: 0517

All of these concentrations are less then one half of the CRDL and did not affect the end use of the data.

The laboratory flagged all of the compounds found in the blank with the "B" qualifier. The compounds detected in a method blank should never be flagged with this notation. The reason for this was not clear.

Calibration Blanks

No problems were detected with the calibration blanks associated with this sample delivery group.

Field Blanks

A field blank was not analyzed with this sample delivery group.

Sample Results

Sample MW-25 (Lab. #: T5540)

The sample data for this sample was not found in the Pesticide and PCB section of this report. A copy of the FORM I for this sample was found in the sample summary package and a FORM 10A for this sample was found in the section on pesticides and PCBs.

The laboratory should submit the missing data.

The laboratory reported pesticides to concentrations near 1/100 of the CRDL. Such low concentrations may easily be false positives. Data was only reported in the data usability summary table to concentrations greater than ½ of the CRDL. These compounds were reported at the CRDL and footnoted with #90.

SUMMARY OF THE ANALYTICAL DATA USABILITY For Revere Smelting Site Wallkill, NY

Soil Lead Analyses Samples Received December 10, 2001 Sample Delivery Group: 0700

Laboratory Reference Numbers:

Sieve #1 + #60	T6682
Sieve #1 - #60	T6683
Sieve #2 + #60	T6684
Sieve #2 + #60RE	T6684RE
Sieve #2 - #60	T6685
Sieve #2 - #60MS	T6685MS
Sieve #2 - #60D	T6685D
Sieve #3 + #60	T6686
Sieve #3 - #60	T6687
Sieve #4 + #60	T6688
Sieve #4 - #60	T6689
Sieve #2 + #60 Blind Duplicate	T6695
Sieve #2 + #60 Blind Duplicate RE	T6695RE

Soil samples were received for total lead analyses by NYS DEC ASP protocols. A data usability was performed based upon the following parameters:

- * Data Completeness
- * Holding Times
- * Calibration Verification
- * CRDL Standard
- * Laboratory Control Sample
- * Serial Dilutions
- * Laboratory Blanks
- * Field Blanks
- * Equipment Blanks
- * Preparation Blanks
- * Matrix Spike
- Duplicate Analyses
- * ICP Interference Check Sample
- * Detection Limit Results
- * Linear Range
 - Sample Results
- * Indicates that all criteria were met for this parameter.

Data Validation Summary

Samples Sieve #2 + #60 (Lab. #: T6684) and Sieve #2 + #60 Blind Duplicate (Lab. #: T6695) were both reanalyzed, but the reason for the reanalysis was not noted.

The two values for sample Sieve #2 + #60 (Lab. #: T6684) were 51.5 mg/kg and 78.6 mg/kg. This resulted in an RPD of 42%.

The two values for sample Sieve #2 + #60 Blind Duplicate (Lab. #: T6695) were 625 mg/kg and 68.1 mg/kg. This resulted in an RPD of 160%.

All of the data are rejected until the laboratory details the reasons for the reanalysis and discrepancies.

It is recommended that all of the samples of this delivery group be redigested and reanalyzed.

No other problems were found which would affect the end use of the data.

Holding Times

All samples were analyzed within the required holding times.

CRDL Standards

The recoveries of all CRDL standards were within the 80% to 120% quality assurance limits.

Initial and Continuing Calibrations

No problems were detected with any of the calibrations associated with this sample delivery group.

Preparation Blank

Lead was not detected in the preparation blanks at concentrations above the IDL (0.3 ug/kg).

Calibration Blanks

Lead was not detected in the calibration blanks at concentrations above the IDL (1.5 ug/l).

Field Blank

A field blank was not analyzed with this sample delivery group.

Equipment Blank

An equipment blank was not analyzed with this sample delivery group.

ICP Interference Check Sample

No problems were detected with the reported ICP Interference Check Sample recoveries.

Matrix Spike Recovery

Sample Sieve #2 - #60 (Lab. #: T6685) was used as the matrix spike.

The concentration of spike added was too low (4 mg/kg) in relation to the concentration of the sample (66 mg/kg) for an accurate recovery.

Duplicate Analysis

Sample Sieve #2 - #60 (Lab. #: T6685) was used as the matrix duplicate.

The RPD (9%) was less than the required limit.

Laboratory Control Sample

No problems were detected with the recoveries of the three LCS standards.

Serial Dilutions

Sample Sieve #2 - #60 (Lab. #: T6685) was used for the serial dilution.

The % difference was less than 10% (1%).

Instrument Detection Limit

No problems were found with the instrument detection limits.

ICP Linear Range

No problems were detected with the linear ranges. The reported concentrations of all samples in this delivery group were within their linear range for each analyte.

Sample Results

Samples Sieve #2 + #60 (Lab. #: T6684) and Sieve #2 + #60 Blind Duplicate (Lab. #: T6695) were both reanalyzed, but the reason for the reanalysis was not noted.

The two values for sample Sieve #2 + #60 (Lab. #: T6684) were 51.5 mg/kg and 78.6 mg/kg. This resulted in an RPD of 42%.

The two values for sample Sieve #2 + #60 Blind Duplicate (Lab. #: T6695) were 625 mg/kg and 68.1 mg/kg. This resulted in an RPD of 160%.

All of the data are rejected until the laboratory details the reasons for the reanalysis and discrepancies.

No other problems were detected with the samples.

For Revere Smelting Site Wallkill, NY

Soil Volatile Organic Analyses – Method 95-1 Samples Collected October 23rd & 24th 2001 Samples Received October 25, 2001 Sample Delivery Group: 0314 Laboratory Reference Numbers:

Received 10/25

QC Trip Blank	T4285	Collected 10/24
Storage Blank	T4298	
SB-OBG-12(0-1.6'BS)	T4281	Collected 10/23
SB-OBG-11(2-2.9'BS)	T4282	Collected 10/24
SB-OBG-3(0-1.3'BS)	T4283	Collected 10/24
SB-OBG-18(0-1.9'BS)	T4284	Collected 10/24

Data were reviewed for usability according to the following criteria:

- * Data Completeness
- * GC/MS Tuning
- * Holding Times
 - Calibrations
 - Laboratory Blanks
 - Field Blank
- Trip Blanks
- * Storage Blank
- * System Monitoring Compound Recoveries
- * Internal Standard Recoveries
- * Matrix Spike / Matrix Spike Duplicate
- * Blank Spike
- * Laboratory Control Sample
- * Instrument Detection Limits
- * Compound Identification
- * Compound Quantitation

DATA USABILITY SUMMARY

The problems with methylene chloride contamination all blanks should be noted. Only low concentrations of methylene chloride were detected in the samples. Methylene chloride was detected in the samples at concentrations less than the CRDL. These were reported at the CRDL in the data usability summary table.

No significant problems were detected with this data package that would affect the end use of the data.

^{* -} Indicates that all criteria were met for this parameter.

Holding Times

All samples were initially analyzed within the required holding time.

Tunes

EPA bromofluorobenzene criteria were reported on the tune summary form (FORM V) as opposed to those of the NYS DEC ASP program. The more stringent NYS DEC ASP requirements were met for all of the tunes of this sample delivery group.

System Monitoring Compound Recoveries

All system monitoring compound recoveries were within the required quality assurance limits.

Calibrations

No problems were detected with the one initial calibration. All percent differences were less than 30 %.

The percent difference of chloromethane (35%) was above the 25% quality assurance limit. This compound was not detected in any of the samples and the data were not qualified since the %D was less than 50%.

Matrix Spike / Matrix Spike Duplicate

A matrix spike was not analyzed with this sample delivery group.

Blank Spike

All blank spike recoveries were within the required quality assurance limits.

Laboratory Control Sample

Two solid laboratory control samples were analyzed with this sample delivery group. All recoveries were within the required quality assurance limits

Method Blanks

Low concentrations of bromomethane (1J ug/kg) and methylene chloride (4J ug/kg) were detected in the one method blank.

Bromomethane was not detected in any of the samples.

Methylene chloride was detected in all of the samples at concentrations less than the CRDL. These were reported as 11U in the data usability summary table and footnoted with #32.

Trip Blanks

A low concentration of methylene chloride (3JB ug/l) and an unknown non-target compound eluting at 6.57 minutes were detected in the trip blank.

Methylene chloride was also detected in the method blank.

Methylene chloride was detected in all of the samples at concentrations less than the CRDL. These were reported as 11U in the data usability summary table and footnoted with #38.

Equipment Blank

No compounds were detected in the equipment blank.

Field Blank

A field blank was not analyzed with this sample delivery group.

Storage Blank

A low concentration of methylene chloride (6JB ug/l) was detected in the storage blank.

Methylene chloride was also detected in the method blank and trip blank.

Methylene chloride was detected in all of the samples at concentrations less than the CRDL. These were reported as 11U in the data usability summary table and footnoted with #38.

Internal Standard Areas and Retention Times

All internal standard recoveries and retention times were within the required quality assurance limits.

Instrument Detection Limits

No problems were found with the instrument detection limits.

Sample Results

No problems were found with the reported results of any of the samples of this delivery group.

For Revere Smelting Site Wallkill, NY

Soil Volatile Organic Analyses – Method 95-1 Samples Collected October 25th and 26th, 2001 Samples Received October 27th 2001 Sample Delivery Group: 0337 Laboratory Reference Numbers:

QC Trip Blank	T4411
Storage Blank	T4479
SB-OBG-16(2-3.7'BS)	T4399
SB-OBG-13(2-3.4'BS)	T4400
SB-OBG-9(0-2.0'BS)	T4401
SS-OBG-31(0-0.2'BS)	T4403
SS-OBG-32(0-0.2'BS)	T4404
SS-OBG-21(0-0.2'BS)	T4405
SS-OBG-2(0-0.2'BS)	T4406
SS-OBG-36(0-0.2'BS)	T4407
SS-OBG-36(0-0.2'BS)MS	T4407MS
SS-OBG-36(0-0.2'BS)MSD	T4407MSD
SS-OBG-14(0-1.5'BS)	T4408
SSX-9	T4409
SB-X-5	T4410

Data were reviewed for usability according to the following criteria:

- * Data Completeness
- * GC/MS Tuning
- * Holding Times
- * Calibrations
 - Laboratory Blanks
 - Field Blank
- * Trip Blanks
- * Storage Blank
- * System Monitoring Compound Recoveries
 - Internal Standard Recoveries
- * Matrix Spike / Matrix Spike Duplicate
- * Blank Spike
- * Laboratory Control Sample
- * Instrument Detection Limits
- * Compound Identification
- * Compound Quantitation
- * Indicates that all criteria were met for this parameter.

DATA USABILITY SUMMARY

No significant problems were detected with this data package that would affect the end use of the data.

Holding Times

All samples were initially analyzed within the required holding time.

Tunes

EPA bromofluorobenzene criteria were reported on the tune summary form (FORM V) as opposed to those of the NYS DEC ASP program. The more stringent NYS DEC ASP requirements were met for all of the tunes of this sample delivery group.

System Monitoring Compound Recoveries

All system monitoring compound recoveries were within the required quality assurance limits.

Calibrations

No problems were detected with the one initial calibration. All percent differences were less than 30 %.

The percent difference of chloromethane (35%) was above the 25% quality assurance limit in the continuing calibration associated with the initial analyses of all soil samples of this delivery group (M5640.D, analyzed 10/29). This compound was not detected in any of the samples and the data were not qualified since the %D was less than 50%.

No problems were detected with the second continuing calibration (M5658.D, analyzed 10/30) associated with the analyses of all of the Trip Blank, Storage Blank and the reanalysis of sample T4406.

Matrix Spike / Matrix Spike Duplicate

Sample SS-OBG-36(0-0.2'BS) (Lab. #: T4407) of this sample delivery group was used as the matrix spike and matrix spike duplicate. All recoveries and RPDs were within the required quality control limits.

Blank Spike

All blank spike recoveries were within the required quality assurance limits.

Laboratory Control Sample

Three solid laboratory control samples were analyzed with this sample delivery group. All recoveries were within the required quality assurance limits

Method Blanks

Low concentrations of bromomethane (1J ug/kg) methylene chloride (4J ug/kg) and an unknown non-target compound eluting at 6.96 were detected in the first of the two method blanks, VBLK01, analyzed on 10/29.

This method blank was associated with the initial analyses of all of the solid samples.

Bromomethane was not detected in any of the samples.

When the non-target compound was detected in a sample it were rejected and flagged with the "R" qualifier and footnoted with #35 in the data usability summary table.

A low concentration of methylene chloride (1J ug/kg) was detected in the second method blank, VBLK02, analyzed on 10/30.

This method blank was associated with the analyses of all of the Trip Blank, Storage Blank and the reanalysis of sample T4406.

Bromomethane was not detected in any of the samples.

Methylene chloride was detected in all of the samples. These were reported at the CRDL with the "U" in the data usability summary table and footnoted with #32 when it was present at concentrations less than the CRDL.

If the sample concentration is greater than the CRDL but less than 10 times the method blank value, the sample data was flagged with a "U" qualifier and footnoted with #30.

Trip Blanks

No compounds were detected in the trip blank.

Equipment Blank

An equipment blank was not analyzed with this sample delivery group.

Field Blank

A field blank was not analyzed with this sample delivery group.

Storage Blank

No compounds were detected in the storage blank.

Internal Standard Areas and Retention Times

All internal standard recoveries and retention times were within the required quality assurance limits with the one exception of sample SS-OBG-2(0-0.2'BS) (Lab. #:T4406).

The chlorobenzene-d5 internal standard recovery (48%) was less than the 50% quality assurance limit in the analysis of this sample.

The sample was reanalyzed and the recovery of the chlorobenzene-d5 internal standard (36%) was again less than the 50% quality assurance limit.

There were no significant differences between the results of the two analyses of this sample. It is recommended that the data from the first analysis be used for the final reporting since the recoveries of the internal standards were slightly higher.

The data for the compounds affected by the low internal standard recoveries were flagged with the "J" qualifier and footnoted with #70 in the data validation summary table.

Instrument Detection Limits

No problems were found with the instrument detection limits.

Sample Results

No problems were found with the reported results of any of the samples of this delivery group.

For Revere Smelting Site Wallkill, NY

Soil Volatile Organic Analyses – Method 95-1 Samples Collected November 8, 2001 Samples Received November 8, 2001

Sample Delivery Group: 0442 Laboratory Reference Numbers:

Storage Blank	T5023
Equipment Blank	T5024
Trip Blank	T5025
SED-P2 (0-6")	T5004
SED-P2 (0-6")MS	T5004MS
SED-P2 (0-6")MSD	T5004MSD
Blind Duplicate	T5005
EX-1 (0-6")	T5006
EX-1 (0-6")MS	T5006MS
EX-1 (0-6")MSD	T5006MSD
SED-S1(0-6')	T5007
SED-S1(0-6')RE	T5007RE

Data were reviewed for usability according to the following criteria:

- * Data Completeness
- * GC/MS Tuning
- * Holding Times
 - Calibrations
 - Laboratory Blanks
 - Field Blank
 - Trip Blanks
 - Storage Blank
- * System Monitoring Compound Recoveries
- * Internal Standard Recoveries
 - Matrix Spike / Matrix Spike Duplicate
- * Blank Spike
- * Laboratory Control Sample
- * Instrument Detection Limits
 - Compound Identification
 - Compound Quantitation

^{* -} Indicates that all criteria were met for this parameter.

DATA USABILITY SUMMARY

The problems with methylene chloride contamination of the blanks should be noted. Only low concentrations of methylene chloride were detected in the samples. . Methylene chloride was detected in the samples at concentrations less than the CRDL. These were reported at the CRDL in the data usability summary table.

The problems with the internal standard recoveries in samples EX-1 (0-6") (Lab. #: T5006) and SED-S1(0-6') (Lab. #: T5007) should be noted.

A low concentration of xylene (1J ug/l) was found in the raw data for sample EX-1 (0-6") (Lab. #: T5006), but this was not included in the laboratory's summary form. This was added in the data usability summary table.

Additional minor problems with blank contamination, matrix spike recoveries and the continuing calibration should be noted.

These are all described in detail below.

Holding Times

All samples were analyzed within the required holding time.

Tunes

No problems were detected with the tunes.

System Monitoring Compound Recoveries

All system monitoring compound recoveries were within the required quality assurance limits.

Calibrations

No problems were detected with the one initial calibration. All percent differences were less than 30 %.

The percent difference of acetone (30%) and 2-butanone (33%) were above the 25% quality assurance limit.

If these compounds were detected in a sample the data was flagged with a "J" qualifier and footnoted with #41 in the data usability summary table.

If this compound were not detected in a samples and the data were not qualified since the %D was less than 50%.

Matrix Spike / Matrix Spike Duplicate

Samples SED-P2 (0-6") (Lab. #: T5004) and EX-1 (0-6") (Lab. #: T5006) from this sample delivery group were used for the two matrix spike and matrix spike duplicates.

All recoveries and RPDs of sample SED-P2 (0-6") (Lab. #: T5004) were within the required limits.

All recoveries and RPDs of sample EX-1 (0-6") (Lab. #: T5006) were within the required limits with the exceptions of the recovery of the toluene matrix spike duplicate (141)%. This was just above the quality assurance limit of 139%. The RPD of this compound (21%) was at the 21% quality assurance limit.

The data were not qualified for the high toluene recovery and RPD since it did not significantly affect the end use of the data.

Blank Spike

All blank spike recoveries were within the required quality assurance limits.

Laboratory Control Sample

All recoveries were within the required quality assurance limits

Method Blanks

A low concentration of methylene chloride (1J ug/kg) was detected in the one method blank.

Methylene chloride was detected in many of the samples at concentrations less than the CRDL. These were reported at the CRDL in the data usability summary table and footnoted with #32.

Trip Blanks

A low concentration of methylene chloride (1JB ug/kg) was detected in the trip blank.

Methylene chloride was also detected in the method blank and storage blank.

Methylene chloride was detected in most of the samples at concentrations less than the CRDL. These were reported at the CRDL in the data usability summary table and footnoted with #38.

Equipment Blank

A low concentration of carbon disulfide (7J ug/l) and two non-target compounds were detected in the equipment blank.

When carbon disulfide was detected a sample at a concentration less than the CRDL, the data was reported at the CRDL in the data usability summary table and footnoted with #38.

When either of the non-target compounds was detected in a sample they were rejected and flagged with the "R" qualifier and footnoted with #35 in the data usability summary table.

Field Blank

A field blank was not analyzed with this sample delivery group.

Storage Blank

A low concentration of methylene chloride (2JB ug/l) and two non-target compounds were detected in the storage blank.

Methylene chloride was also detected in the method blank and trip blank.

Methylene chloride was detected in many of the samples at concentrations less than the CRDL. These were reported at the CRDL in the data usability summary table and footnoted with #38.

When either of the non-target compounds was detected in a sample they were rejected and flagged with the "R" qualifier and footnoted with #35 in the data usability summary table.

Internal Standard Areas and Retention Times

All internal standard recoveries and retention times were within the required quality assurance limits with the following exceptions:

The chlorobenzene-d5 internal standard recovery (45%) was less than the 50% quality assurance limit in the analysis of sample EX-1 (0-6") (Lab. #: T5006).

This sample was used as a matrix spike and matrix spike duplicate. All of the internal standard recoveries were within the required limits in the matrix spike analysis, but the recovery of the chlorobenzene-d5 internal standard in the matrix spike duplicate (42%) was also less then the QC limit.

The recoveries of the 1,4-difluorobenzene (47%) and chlorobenzene-d5 (34%) internal standards were less than the 50% quality assurance limits in the analysis of sample SED-S1(0-6') (Lab. #: T5007).

The sample was reanalyzed and only the recovery of the chlorobenzene-d5 internal standard (47%) was less than the 50% quality assurance limit.

There were no significant differences between the results of the two analyses of this sample. It is recommended that the data from the first analysis be used for the final reporting since the recoveries of the internal standards were slightly higher.

The data for the compounds affected by the low internal standard recoveries were flagged with the "J" qualifier and footnoted with #70 in the data validation summary table.

Instrument Detection Limits

No problems were found with the instrument detection limits.

Sample Results

Sample EX-1 (0-6") (Lab. #: T5006)

A low concentration of xylene (1J ug/l) was found in the raw data, but was not included on the laboratory's summary form. This was added in the data usability summary table.

Sample SED-S1(0-6') (Lab. #: T5007)

The recoveries of the 1,4-difluorobenzene (47%) and chlorobenzene-d5 (34%) internal standards were less than the 50% quality assurance limits in the analysis of sample SED-S1(0-6') (Lab. #: T5007).

The sample was reanalyzed and only the recovery of the chlorobenzene-d5 internal standard (47%) was less than the 50% quality assurance limit.

There were no significant differences between the results of the two analyses. It is recommended that the data from the first analysis be used for the final reporting since the recoveries of the internal standards were slightly higher.

The data for the compounds affected by the low internal standard recoveries were flagged with the "J" qualifier and footnoted with #70 in the data validation summary table.

No other problems were found with the reported results of any of the samples of this delivery group.

For Revere Smelting Site Wallkill, NY

Water Volatile Organic Analyses – Method 95-1 Samples Collected November 15th and 16th, 2001 Samples Received November 17, 2001

Sample Delivery Group: 0517 Laboratory Reference Numbers:

T## 4.4
T5544
T5564
T5537
T5538
T5539
T5540
T5540MS
T5540MSD
T5541
T5542
T5543

Data were reviewed for usability according to the following criteria:

- * Data Completeness
- * GC/MS Tuning
- * Holding Times
 - Calibrations
 - Laboratory Blanks
 - Field Blank
 - Trip Blanks
 - Storage Blank
- * System Monitoring Compound Recoveries
- * Internal Standard Recoveries
- * Matrix Spike / Matrix Spike Duplicate
- * Blank Spike
- * Laboratory Control Sample
- * Instrument Detection Limits
- * Compound Identification
- * Compound Quantitation
- * Indicates that all criteria were met for this parameter.

DATA USABILITY SUMMARY

The minor problem with the omission of continuing calibration data should be noted.

The problems with methylene chloride contamination of the blanks should be noted. Only low concentrations of methylene chloride were detected in the samples. Methylene chloride was detected at concentrations less than the CRDL. These were reported at the CRDL in the data usability summary table.

Holding Times

All samples were analyzed within the required holding time.

Tunes

No problems were detected with the tunes.

System Monitoring Compound Recoveries

All system monitoring compound recoveries were within the required quality assurance limits.

Calibrations

No problems were detected with the one initial calibration. All percent differences were less than 30 %.

All of the samples were analyzed directly after the analyses of the initial calibration. When this is done, a continuing calibration form is also included that compared the RFs of the 50 PPB standard with the mean RF of the initial calibration. This was not done.

This omission does not significantly affect the data usability.

Matrix Spike / Matrix Spike Duplicate

Sample MW-25 (Lab. #: T5540) from this sample delivery group was used for the matrix spike and matrix spike duplicate. All recoveries and RPDs were within the required limits.

Blank Spike

All blank spike recoveries were within the required quality assurance limits.

Laboratory Control Sample

All recoveries were within the required quality assurance limits

Method Blanks

A low concentration of methylene chloride (1J ug/kg) was detected in the one method blank.

Methylene chloride was detected in many of the samples at concentrations less than the CRDL. These were reported at the CRDL in the data usability summary table and footnoted with #32.

Trip Blanks

A low concentration of methylene chloride (1JB ug/kg) was detected in the trip blank.

Methylene chloride was also detected in the method blank and storage blank.

Methylene chloride was detected in most of the samples at concentrations less than the CRDL. These were reported at the CRDL in the data usability summary table and footnoted with #38.

Equipment Blank

An equipment blank was not analyzed with this sample delivery group.

Field Blank

A field blank was not analyzed with this sample delivery group.

Storage Blank

A low concentration of methylene chloride (1JB ug/l) was detected in the storage blank.

Methylene chloride was also detected in the method blank and trip blank.

Methylene chloride was detected in many of the samples at concentrations less than the CRDL. These were reported at the CRDL in the data usability summary table and footnoted with #38.

Internal Standard Areas and Retention Times

All internal standard recoveries and retention times were within the required quality assurance limits.

Instrument Detection Limits

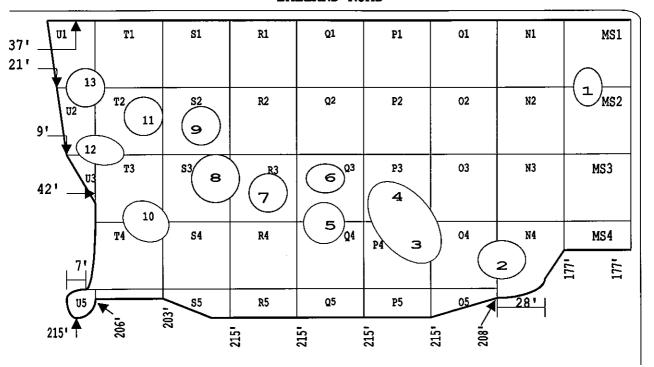
No problems were found with the instrument detection limits.

Sample Results

No problems were found with the reported results of any of the samples of this delivery group.

Front Lawn Excavation Information

9
ď
O.
æ
_
\circ
$\overline{\mathbf{z}}$
4
4
닉
н
Æ
Д


METLANDS

H H H H H H H H H H H H H H H H H H H			00			
HE HE HE HE HE HE HE HE HE HE HE HE HE H	A1	A2				:
HE IS NOTHERMATION SAMPLE RESULTS	B1	B2				
HE III HI GI FII BI DI ANTIN SAMPLE RESULTS	C1	ខ				
H3 H3 H3 H3 H3 H3 H3 H3 H3 H3 H3 H3 H3 H	10	720		↑ N	ect 941 n Leavan	
258	E3	. B2		+ V		LTS
258	F.	22	E)			PLE RESU
258	61	62	8	T.	AAFT	TION SAM
258	H1	H2	₽ \			CONFIRMA
15.052 15.052	II .	12	\	\		
2581 2581 2581 2581 2581 2581 2581 2581	Ľ	22	E.		, 202	2581
H H H H H H H H H H H H H H H H H H H	K1	K2	SI	K4		7 721.
EN EN EN EN	13	17	ដ	1.4	.077	;
_ 1 1636	뒾	EF.	瓷	H4	£ .	sz]

DKINEMAY

Γ	9	4 2 6)n: 0
	A1 CSF-176 CSWN-3,240 CSWW- 10,128	A2 CSF-68.4 CSWN-272 CSWE-58.9			point). Revision: 01
	B1 CSF-172 CSWW- 8,648	B2 CSF-81.8 CSWE-42.6		ž :	otes cardinal
	CSF-31.3 CSWW- 1,375	C2 CSF-25.6 CSWE-66.7		alytical repoi	er CSW denc er depths.
	D1 CSF-379 CSWW- 2,351/2456	D2 CSF-26.6 CSWE-47.4		aboratory an	the letter aftu It. ents at great
	E1 CSF-437 CSWW- 4,403	E2 CSF-73.4 CSWE-49.5 /32.5		* For detailed data refer to ESC field notes dated 10/07/98–11/17/98 and laboratory analytical reports.	* CSF = Confirmation Sample Floor, CSW = Confirmation Sample Wall (the letter after CSW denotes cardinal point). * All soil results are in mg/kg total lead; "/" denotes duplicate sample result. * Numbers preceding grid units (i.e. 2M4) denote additional excavation events at greater depths. Revi
	F1 CSF-176 CSWW- 32,256	F2 CSF-55.9	F3 CSF-23.4 CSWE-40.2	10/07/9811	nfirmation Sates duplicate
į	G1 CSF-300 CSWW- 21,331	G2 CSF-147	G3 CSF-74.8 CSWE-89.2 196.7	* For detailed data refer to ESC field notes dated	c., CSW = Colead; "/" dence 2M4) denote
	H1 CSF-51.2 CSWW- 3,289	H2 CSF-22.3	H3 CSF-159 CSWE-64.7	to ESC field	sample Floor ng/kg total le rid units (i.e.
	11 CSF-50.9 CSWW- 1,894	12 CSF-64.9	13 CSF-93.7 CSWE-69.1	led data refer	onfirmation Solution Sesults are in I
	J1 CSF-65.0 CSWW- 3.821	J2 CSF-179	J3 CSF-28.1 CSWE-44.2	* For detail	* CSF = Cc * All soil re * Numbers
	K1 CSF-23.3 CSWW- 5,734	K2 CSF-110	K3 CSF-54.6	K4 CSF-41.7 /50.3 CSWN-139	K5 CSF-116 CSWE-260
7	L1 CSF-819 2U CSF-1.090 3U CSF-21.7 CSWW-1231	L2 CSF-183	L3 CSF-85.8	L4 CSF-68.3	L5 CSF-176 CSWE-147
•	M1 CSF-151 CSWS-905 CSWW-136	M2 CSF-56.9 CSWS-641	M3 CSF-278 CSWS-3,400 2M4 CSF-1,020 1576 3M4 CSF-110.2	M4 CSF-1.390 CSWS-	M5 CSF-92 CSWS-603 CSWE-883

BALLARD ROAD

DR '

DRIVEWAY

CONFIRMATION SAMPLE RESULTS

U1 CSF-111 CSWW-926 CSWS-821	T1 CSF-268 CSWW-214	\$1 CSF-47.3 CSWW- 1,180	R1 CSF-35.0 CSWW- 2,900	01 CSF-40.1 CSWW-108	P1 CSF-104 CSWW-115	01 CSF-233 CSWW- 7,340	N1 CSF-26.2 CSWW-111	MS1 CSF-30.9 CSWN-5420 CSWW- 2,000
U2 CSF-75.8 CSWS-294	T2 CSF-32.6	\$2 CSF-43.3	R2 CSF-35.5	02 CSF-37.4	P2 CSF-169	02 CSF-161 /128	N2 CSF-91.5	MS2 CSF-38.0 CSWN-770
U3 CSF-34.5 CSWS-225	T3 CSF-63.1	S3 CSF-2,460 2S3 CSF-49.4	R3 CSF-17,300 2R3 CSF-26.2 /26.5	03 CSF-80.6	P3 CSF-220	03 CSF-33.0	N3 CSF-42.1	MS3 CSF-48.3 CSWN- 3,100
	T4 CSF-109 CSWE-177 CSWS-936	S4 CSF-2,380 2S4 CSF-24.6	R4 CSF-61.1 /39.3	04 CSF-52.0	P4 CSF-36.4	04 CSF-28.9	N4 CSF-81.1 CSWE-448	MS4 CSF-15.2 CSWN- 22,400 CSWE-624
U5 CSF-101 CSWE- 1,201 CSWS-G43		S5 CSF-194 CSWE-371	R5 CSF-26.2 CSWE-30.8	05 CSF-30.7 CSWE-369	P5 CSF-19.5 CSWE-152	05 CSF-89.3 CSWE-G34		

- * FOR GRAPHIC PURPOSES ONLY. For detailed data refer to ESC field notes dated 11/18/98-12/10/98 and laboratory analytical reports.
- * Grid units are 50' x 50' unless otherwise noted; circles within grid units represent "tree islands" islands 1, 5, 7, 8, 9, & 10 were removed.
- * CSF = Confirmation Sample Floor, CSW = Confirmation Sample Wall (the letter after CSW denotes cardinal point).
- * All soil results are in mg/kg total lead unless otherwise noted; "/" denotes duplicate sample result.
- * Numbers preceding grid units (i.e. 2M4) denote additional excavation events at greater depths.

Revision: 01/10/0

"Tree Island" Sample Results (TRS = Tree, South lawn)

TRS1 - 728\, 3.51\, 19.3\, 3 TRS8 - 5,750\, 52.7\, 73.0\, 3 TRS9 - 1.570\, 7.85\, 22.0\, 3 TRS3 - 62.7\, TRS1 - 3.430\, 23.1\, 53.6\, 3 TRS1 - 282/246\, TRS5 - 1.790\, 9.95\, 36.4\, 3 TRS12 - 716\, 0.919\, 278\, 3 - 44.60\, 270\, 50.1\, 3 TRS13 - 261\, 3 TRS13 -TRS1 - 282/246°
TRS5 - 1,790¹, 9,95², 36.4³
TRS12 - 716¹, 0.919²
TRS6 - 191¹
TRS7 - 11,600¹, 279², 50,1³
¹ Total Pb, mg/kg, 5 point composite around tree island/drip line
¹ TCLP Pb, mg/l, 5 point composite around tree island/drip line
³ Total Pb, mg/kg, 5 point composite of footprint after tree removal

	0730 - BLAIME DAG	MRRIVES ON SITE	WINDLESON IN	Cotto Ceases	CHECK SUPPLIES IN	MEED - HAIM	1 400	7.0 - 0.7	٠.	UBOO - MEET WAYNE	n 013cvs5 n	SAMPLE	1 July -	, - TRUNCS	CESO - DETONIMINATE	M. Mourezs ys.	Elpwing procedur	1- WAY + 30	Kan in pil	2- B. E. A	3-10%	4-0.te	5-14.4	1 3	11. 1 has
		DATE																		T					
	CONTENTS	BEFERENCE													•										
L		PAGE			\perp													_		-					

Sp 100 01	MERINES ON SITE AF KSIZ	CHECK SUPPLIES IN SHED NEED - HAND TROUMES	· ·	- MEET WAYNE CRAN - DISCUSS WORK AREA SAMPLE WOOTH WOLLD	10	1- WEN + Serve with liguinex 2- B. I. Rinse	3- 10% withing 410 4-0. t RINSE 5-A. a. Day	Columbo in Arininin
	0738 - 192R; 141.	CHECK	· ·) 800 ·	- 0821 6/18			

SME.

0900 - MEET WAINE AND MICK DRESER IN LEVEL C. - FULL PACE ALSP. 86/10/01 TYWEIL

RUBBOR BOUTES

- 62 dec

- HARD LANT + STEEL POUS. ANO ROCEDURE IN ITH LAYINE 910 - Discuss SAMPE AREMS

CAST PALMED RD. 118/18/ 182 162

SHAPLE GRID IS LAIN OUT WITH

THE ABOVE DESCENATIONS.

THE FIRST NUMBER WHICH IS
A I (CNE) IS USED TO DESCENATE

THIS EXCAVATION TO BUT THE MAST OR UPBA HOST LAYER

10 lot 198

BI, BZ, CI, AND CZ, THE',
DIMEMENSIONS OF THE SECTIONS and FOR DEEP AREA OF COIL
ACHOUED FROM SECTIONS AI, AZ, ARE PLOTTED BELOW, AND ARE EXCAUATED WAS GENOVALLY A By oNE, THE FLAST LAYER SUCKLIEF LAYER WIT INCREASE EXCANATED. EACH CONSTUTIVE

CONCRALLY TO BE 50'~50' SETIONS 50' SO' SO' C2 35 182 35 172 25 C1 50 B1

50'x 35' WITH AN UNDUE KAIR OF PRINTS 50'x50 50×35 50x 50

1) SD x SO

50 × 35.

THE UGH (XCON THY IN MATER HEAT 1132 - CSF - 100795 HUNG TIS /MSD 950 POLICET Comp. SAND (500 4D) 5 130 · coulest comp. Samp (500 + De. COLUCT Comp SAMP (SOUAD) 120 - COLLIET CONP. SAMP (5" M D.E) 7915 - COLLECT COMP., SAMP - (50N a DIE 1702 1B2+CSF-160798 Fr OFF 125. CSW = CONFIRMATION SAUPLE WALL OSF = COMFINATION SAMPLE FLOOR - THE WALL OF THE SECT. 1S CLOTH. WAL SAYPLES WILL BE FOLIOWED (THE SECOND A DENOTES A DUPLICHE BY A DIRECTIONAL LETTER (N,S,E, or W) SO THAT ALL SAMPLES GOLLBORD WILL BE TE - MS/NSO ESTRA TRACTOR 1A1A-CSF - 100798 COMPOSITE SAMPLES 161 - CSF - 100798 COLCET Con Some 1A2 - CSF-100798 16.2 - CSF 100748 AND DUPLICATE SAYPLE 85/10/01 1A1-CSF-100798

	RAMORAL .	子とな	JEANATION.	PLES FROM	198	36 1N	A2	60	dimt	4		798	. R2	1	98	rupi	M. 42		38.	
07/98	NORTH OF THI ROUGH	LUSSE SOIL TO EXPOSY THE	c" of the e		A1-CSWN-100798	ON COMP SA	WALL NOWTH OF AZ	142 - CSWN - 100799	TO Comp S	IN WALL TO EAST OF C.	From TRUE WAY	15W (100	to Etter of 182	From "TRUE was	182 - CSWE - 106798	COLLECTED Some Some	WALL to ENST ON AZ	This was	-CSINE-100798	NATUR ACCA
10/01/98	220 Cower	03 2507]	TRUENCE	THE WAY	1A1-65	280 Coulderers	LAND TO THE	5 2	DYO COLLETT	-2 52K	772017 TK) 11771 107 1050	IN WALL to	thory "	<u>-</u> 四	On Courters	NAT.	٧	1 A2 - CS	S LONG EXCENTION ACCT

ASSURED THE THAT THES April - Using WAMY EXPLICATIVES of Boarow These wheth THE SAME ALE PREMIOUSLY ESC HAS PREVIOUSLY 1330 | ARRIVE AT SAM FORD 1345/ LOCATE ART WESTON Histor SAND + GRAND 86/4/01 ובהים היתי Stanbles . いならな CANNET PLYES MARKING SO INTERNAL - IALTIAZ FACING WEST TO BALLIARE 00) COULDT EQUITABLE W/ DIST. WATER. 240 MOB TO EXCAUPTION AND 1140 DISCUSS WORK M. KISSIMS Erstern WALL OF 162+ 182 RO. 1AZ 15 CLOSON - NOTICO 2201/ Pict up track cours 20 OPPSITE WITH ML SAMPLES OF PIECE - AND WAYNER NOW WALL OF I AI + I AZ 1 C1 +1C2 Aprime WOST. NOSTON (914) 692-2558 181+162- "ACENG WEST MOB TO STOWN FORD SAND AND CRANE. MOET WITH ART M. RSP OFFICE THOR to sites. 10/01/08 DOMESTICA SHOOT For PHOTOS. PRING TO THE MOST - UNPRIX GOAP THEING SOUTH HOTOS

CHECK TOP SOIL PILE. However DOES NOT SUMEWITES
THAT THOSE PILES WILL DECRIBED BY JIM SUBS BUT DIRT CHEMP - NOT SCREENED BUT THAT MS BEEN USON THE TOP SOM SHOWN BE 115/1800 LEMES STANT FORD STG. BUT NUMBROUS COBLOS MIE PLIES ARE NOT NEWLY PETERITED AND SERY 70 THENE IS VED ETHTON AND WISHER THE - ON 4 ROCENT STATE JOBS AND TOUKNOW WITH THEY SAY god enough for the i 10/07/88 FIL DUT 6.0,C PHK COOLD (0)

COOLOR OF EXCHATION CONF. SAMP, C.O.C. SENG ANALYZED FOR 1530/ MEET FOR & WITH SAMPLES TAKEN ARE 10Th LERO - 6010 10/01/48

10/15/98	FIRST PILLING HZO SAMPLE		15C	1220 STW - (STORM TONE WEST)	SAMPLE COLLECTET FROM WESDIN	WAVE LAT COTABA COST PLOUD	MINUTE TO PLUSH OUT	} -	SCELLE FOR CARRY TANK TRUCK TO	12301 CHANGE INTO LEVER C PPE	OIL PILE PRO-	5-14-8-0X	SO TSU TSU TSU TSU	Challen EAST	Piec 12 Afracx ISousy pos.		((contract)		UNIDE INTO 3 SOOR YO BY 9/2 For SAMPLING
2p/21/01	AT RSR - HE INFORMED ME	NEBDED TO BE DONE AT RSP.	1050 SIGN AT RSR GATY	MOET W/ WAYNE CRAN	- CONTROS COMPOSITE SPANPLINS	PILE WITHER WITS KICHOVERS	FROW SECTIONS ALLCO LING	NEO A THE GOALS HAIS PLEA THE STATE OF THE THE STATE OF THE THE STATE OF THE STAT	POTENTIAL LOND CONTAININATION.	- WAVNE AND IT DECITATE ON	S composite sam pless.	THING ANELY	(thro) recuss	EAVIDED CONTAINERS.	NCE AXE SHOW	Men to where	215) Courter WT-1 SIMPLE	WAREA TRAIK SPRYPLE	

DOSIGNATION STUSIES PAST

SILTY WITH SOME CRAUCE + THREE CLAY + VEZ. MATCH AL

- Deconos Stavosos - SCRUB - Nimie Ringe

Distilled Ringe

1330 J. CELLEZTED UTS - CENTRAL FROM FIVE SPOTS : COM FOSITE VINEYING DEPTH - RAWRON LUCHTTONS - TO BE

HNACYZET) HOR TOTAL + TELP Pb, As, Sb, Cn, Cd, & Ni.

335 \ Décom stour

NITON AND DISK

1 DIT RING

1340 COULCIT UTS - WCSI 1340 COULCIT UTS A-WEST NOTE - DUPLIEME THE FORE C.O.C. 15 1355 FORE C.O.C. 15 1355 FORE C.O.C. 15 1355 FORE C.O.C. 15 1355 FORE C.O.C. 15 1355 FORE C.O.C. 15 1355 FORE C.O.C. 15 1355 FORE ALMED CURT + VEST MOST POTAL + TELD - PD/A; SA, CO, C, N.: 1- UTS WEST LOCKNERN

2- UTS CONTRAC LOCATION
3- UTS CAST LOCATION
ALL PHOTES ARE OF NORTHSIDE
OF PILE - (TOUR FALING SOUNT).

FOR PILE - (TOUR FALING SOUNT).

- LIQUINDX + HLO - SCROPE
- NITRIE RINSE
- DIT - RINSE
- DIT - RINSE

1400 GOLLECT Ea BL- 10.15 98 FROM SHOWER D.T. HO USED, HAMMYZE GOV (CLP-TOTH PO, AS SEDC, CL)/1.

THE SUBE OF THE TRUCK.
PRIOR TO SAMPLE COLLECTION ADITATOR. - AFTER AgitATION SDRAGE CAPACITY. TO RINSC A HOR TO WATER TRUCK GALLONS OF POTHBUE WATTH Lething Exclusion Zone TAKEN AFTER THE 2ND RINSING SOSIMONT USITE THE TAPA! REMOVED BEFORE COLLECTING SAMPLE. HS PROCODURE WAS USED FIRE WT.1 THE THUK ENTIRET IS FILLING 1400 | SCRUB PPE - BOOR - TWORL The sample is courting AND DRON SOLF BEFERE VALUE MAS OPENED TO BLEED DOT THE THINK WITH 300 to 100 THUR - TO STIR UP THE WI-2 15 AN ARUADIS SAMPLE the TRUCK it AS A 2,000 cm PNO WILL BE USED For OTHER AND THEN ASITATING THE THROSELL A UPCOLO AT THE LING - ARRUPY 2 OMS WERE OF THE WATCH TRUCK. COLLECTED MT-2 10/15/18 1410

1425 COLLECTED WT-3
WITH & SOC EMS- RETER PLEEDNO
WAVE SOC EMS- SAVIPLE
WAS COLLORED - TO BE
MOTE - WATER FOL WT-3OF AFTER THE ROLLECTED

NOTICEBLE FLORE CLERA
THAN WT-1 AND WT-2.
WATER WATER
THAN WT-1 AND WT-2.
WATER WATER.

HSO COLLECTED WT-4 AND
DURLICATE WTA-4- (1455 WA

WES FOR A TIME ON WTA-4-TO
TRUE A BLIND OUPLICATE.
WT-4 IS THE 4th RINSE AND
WAS THREN THIS TIME AT
FULL THNK- 2000 GARS.
AFTED POIEBINS LINE.

Phore #4 - Valve witch which which which which which will caucated for WI

Photo # 5 - SAMPLE LOCATION +004 STW- (STORM THINK WEST) 530 BUD OFFERTE

COCO SAMPLES PREKOD FON

FEND EX

TRUM TOP OF THINK BY TRIPLE RIMLE - LINST SAUPLES SUBMORSING STOR (LE PLYSTIC) SCO MI BOTTLE AND TRANSFOLLY to flaspena struct Bather WT1-4 ware HOT- BELIEVED 1515 CALL EN RISIDES
1530 HOMO FOR KEYS
1600 BUD ON SITE to SAMPLE WINTER TRUCK CONSTINCT ST. KSR NOODS 1630 SAMPLES WATER THINK BY - MOB CORP. FROM SITED PORT BEING CLOGGOD WITH SED MONTS NEED to BE DUE TO SAMPLE WATER FORIN - FOR 1500 CALL FROM WAYNE AT 1620 - HOOT WITH WAYNE COLUCTOS WTS 10 119 98 ー しとして くなぞう

WILL SAMPLE FLOOR BY COMPSITE 0930 CONTRE M. Riggins of ESC 0945 Med w WARM DECON- HAND TROUBLY THE TENTONISM TO Symmes me 50 x 50 EX CHARTION of THOSE LANGER 1020 (GLICATOR ID)-CSE-102098 TON CONFIRMATION CF FIVE ON A DIC FROOL STARTING IN D-1 GRID. A NUMBER | CXC I FORT OF 10 DENOTE THE FIRST 100 - 12 - 100 D SAMPLES O.S. S. SEIDS 1830 Ben ONSIR HOB GODE 10/20/98 いれているいろ 1900) TANK WITS MIKED FOR APPROX. 10 MILL - MINERALIZED SUECESTED THAT THE!

USE THE PREITHER AND

WE COLLET A SEON!

SAMPLE APPER HEIMFION. 635+ TACK TO WAYING ASK HOW 1080 / ROTON TO STILL STILL STILL IS STILL MIXING vorient of Agitation of WAINE WAS 175K 1640/LONUE SATE TON ICE 600 est 100 es Gers off surs HTS BOOM SOTTING HUTE UNSURE LONG WATER IN 10/19/98 ANTRE 715/

10 70 98	1012 64
Statuer 102-194-102098 201 Febr Torne Pb - 6610 HOTHOD	115 COURTED 1F1-USF-102098
2-1-COLUCT 102-CSWE-102099	
Caimeosite of the EASTM	1120 COLLCETT 1F2 -CSF-102098 FOR TOTAL PD (6010) FROM
245 lower 161-25F - 1020.00	1130 COURTON 1F3-CSF-107098
February Pro (6010) From	F3 Fron Po (6010) Fron
50 (outer 162-051 - 1020-98	DIE COMP. 20
FUDIX OF EZ 50'X 50' GXID - 17204	1140 COURTE 1F3 CSWE - 102095
00 Course 167 - Ocivité mande	FS DYST WIRK - <
FX TOTAL PID (6010) FRLM EAST	CARC MAS HAKON TO SCHRION.
WHIL NFORW 1 (177) - CASS	1200 Dage Eq (Temes) AT 550 SHO
Ö	1215/ Caulphilly Home Hican
PUSINED, PROTETINE ACOUNT	Cleaned
CAIN MECOS 10 " TRUE WALL	1223 KOD 8PRITE
Note Durucate Then It	
162 - CSWE - 10 2098 LABUED	1000 Set 1000
15 CK-CSWE- 16 2099 WITH A TIME OF 1165.	
	A Section of the sect

DIE_PROT_61 600 SO'XSO' (12T EXC.) FOR TOTAL PL FROM COMP. SOWN DIE AND 161-CSF-102298 MS/HSD AND DUPLICATE 163A-6SWE- 102298 -FOR TOTAL PB FROM COMP - SOWA NOTE THIS ON DUPLICATE IS 1220 TO DISQUIS JAKEN TO COLLECT A 1/2 TRUE WAL 1) 150 court 161-CSF-102298 5 COLECT 163 - CSWE - 102298 FOR TOTA PO FROM COMP. SE 145 | Coura 161 - CSF - 102298 PROOF COMP. SON A DIE FROM - (MATICIA SPIKE) FOR TOTAL PL 1140 AT EXERENTION - WILL STRAFT SAMPLE.) BOTH SAMPLES TOULECTIED FROM THE EASTERN WALL OF THE 62 6RID SO'X50' (IST EXE.) 00 COLUCT 163-CSF - 1022 98 MOS OF EXCAURTION 1120 DRESS IN LEVEL C 10/22/98 AT 61 OPEID 63 641B 47 IST EKCANATION

1220 COLLECT 141-CSF-102298
FOR TOWN PLO FROM COMP SONA DIL
1225 COLLECT 142-CSF-102298
FOR TOWN PONT COMP SONA DIL
1230 COLLECT 142-CSF-102298
FOR TOWN PONT COMP SONA DIC
1230 COLLECT 143-CSF-102298
FOR TOWN PONT COMP SONA DIC
1230 COLLECT 143-CSF-102298
FOR TOWN PONT COMP. SONA DIC
1230 COLLECT 143-CSF-157 EXCAN

| 235 | COLLOCT | H3 - CSWE - 102298

Per Torm Pb From Come. SAMP S

Proy WAL (EASTELL) OF H3 6K1D.

(TRUE WITH. SAMP. OBTRINGO.

1240 | COLLOCT | II | - CSF - 102298

For Torm Pb From Comp of Sounding

1245 | COLLOCT | II 2 - CSF - 102298

For Torm Pb From Corre of Sounding

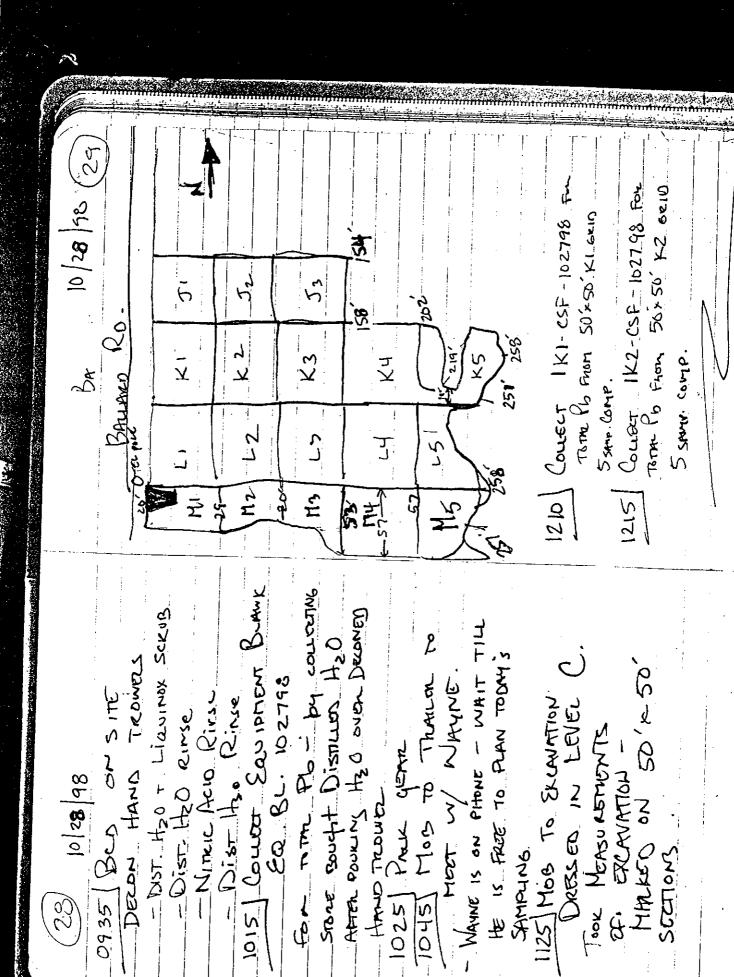
1250 | COLLOCT | II 2 - CSF - 102298

For Torm Pb From Corre of Sounding

1250 | COLLOCT | II 3 - CSF - 102298

For Torm Pb From Corre of Sounding

05 II 8 6K1D | From Comp of Sounding


(26) 10/22/98 1400 | 1255 | COULCUT IT3-CSWE-102298 1400 | FOR TOTH PO (6010) PROOF COPIO OF ESTON WILL COLLORD | 1405 | 205 | COLLOR 131 - CSF - 102298 | 1400 | 1405 | 205 | COLLOR 131 - CSF - 102298 | 1405 | 205 | COLLOR 132 - CSF - 102298 | 1405 | 1405 | 1500 | 1405 | 1500 | 150

20 COULCET 173-CSWE-102296 FOR TOTAL PLO (4010) FROM COMP

OF THE EASTON WHIL OF GRID J3 - "TRUG WALL"

CLANIEL OB THINES

(27)	ACED - AND	Gan	25			B. 102298 Distincts	A CLOMED		00		
_	DECONING POET AND	MORING LEYER COOM	DERUN HAMB TRIMAS	D.I. KINSE NITRIC RIPSE	D.I RINSC D.I Spean.	Court Ea. B. 102298	HAND TROVER AND	THE WARD.		David	
-	1400 LEME AFTER S	1405 HOS MOR	2007			1415 dou	4~	1445/SHY1	15/5/	老生	

1325 | Cauaras 115-CSME - 102798 For Torn Ph From LS EASTEN WALL - TRUE WALL 5 SMMP. COMP. FOR TOTAL PLA FROM 50 x50' K3.0K10 NOTE: DUPLICATE 1K4A - CSF - 102798 Course 1K4- CSF - 102798 mg for total Pb From Ky 6K10 235 | Coucet 1K5-CSF -102798 40 | Coucar |K4-CSNN-102798 For 18th Plo Fron EASTEN 1220 | Court 1K3-CSF-102798 50 COLLECT 1K5-CSWE - 102798 5 Louceres 121-CSF-102798 For rom Po From 50'x50' LI For Tom Ple FRON Normans So'x So' washe S'sAMI' conp. S Smyle comp POST WALL OF KS - 5 SAMP GOMP OF TRUE WALL For Torse PLS FROM (5.2) 110 while of Ky Ars sine of Ks 85/ BZ/01 GRID SSAMPCOND. Samp, comp. 5 SAMINO COMP. KS 6810 -

MARKEX Spiker + Durucume For tom tom Po From LH 50'x50'ce10 AND 1 L4 - CSF - 102758 MS/MSD For Torn Pb From LS OKID. 1310 COLLCETED 1LY - CSF -102798 Couldren 115-25F-102798 (300) COLLECTED 112 (SF-102798 1305 COLLOTON 12 - CSF-102798 Por Tooke to From 50'x 50' For rome Po Prom Su'x 50 -3 GRID SSAME. COMP. L2 GORIO 5-SAMP. COMP. 10 28 98 S SAMP. comp.

1345 COLLERTO 1 H4-CSF-102798 For Torm Pls From My every 1-537 1-55mm. Com		(350) Couraros 145-CSF-102798 For Torre Pb From 5 smy		1355 (ourcerto IM). CSWS-102798	S. T.	WALL OF M2 5 SKUPLE COMP. OF
1330 COUCETED IMI - CSF - 102798 FOR TOTAL PO FROM. MI GRID FEOT SAMP. COMP.	50' N	1335 COLLCIDO 1M2-CSF-102798 M2 OR10 A SSAMIN COMP.	240 (See 5-26'->	For Torn Plo From	23,25	

OF UNTRENTED SOIL PILE
BETHIND RSR FRILITY ONT. SOIL.
FILE HAS BOON SAMPLED PROJUENT
EVER SOIL 1745 BOON ADOOD.
Approx 250 LUSIC YARLOS 1774 Approx 250 CUSIC YMMUS 111100 BORN DEPOS 19F10 ON WESTON 510E OF PLC WHICH CONSISTION of The2/750 C:y. 1450 LCAVE EXCAVATION HIGH OF SOOCY. PREVIOUSLY AND A SOPOLITE PLE TO THE LO SISISMO? 10 28 68

each 2 2000-4. For 2 Piles Sections

COMPOSITE

1515 | courage UTS-2000-102798 FOR TOTAL (D) As, Sb, Cd, Cu, Ni-CA-Ph) A-TOTAL OF I SAMPLE FOR 500 C.Y. OF UNTIONER SOIL.

DISTILLOD WATER NOR HAND TRIMO HAS DEDV THACK IN THESE 1300 NCLINE CITY DOM WAYNE (37) DED TO SAMPLE IN GRIDS
LI AND MY - PREVIOUS
SAMPLES WORE "HET" CON IN TRUE POST PINA 2ND LAYER OF EXCAMPTION DISTILLED WATER RINGE SPARM KINSE 1415] LOWE FOR FIRM GOOD 50.64-110398- 1203 - DISTILLO WATER - SMALL COOLD 1530) ARRIVE AT RSR DECEN HAND TRO WELLS WARMART TOR DISTILLOS WATOL PNO SUPPLIES NITRIE KINSE TUPS TO SHED 11/03/16 AREAS. ACC/ UTS -SAMPLE - 72 INFORMED 10/28 - The connect park The OF Phoes - SAUTEN WAYNE THAT WE SHOULD USE SIMILIAR ANALYSIS AS NOTE - DATES OF STAMPLES DISCUSS PARAMETERS OF 720/ Cooler Oropper An For TRE TO PRUK EQUIPHONT PACKED 1530 Meet with WANNE - DAMES ON TOP OF PANCES 了 5~5 CONNECTION DIGIT WS/Bers OPP-SITE Rock てそろも

Sant Die Coutectun Sant Die Composite Sande 2Ll-CSF-110398 THIS IS THE 200 EXCAURTION 1005 (CONFIRM WITH LYAME DRESSED IN LOVE C MOB TO SKEMMTHOU SITE 1630 AFTER MONSURING OUT A TRAILER - THE SAWPLE LOCATIONS 11/03/96 トナスナーフ

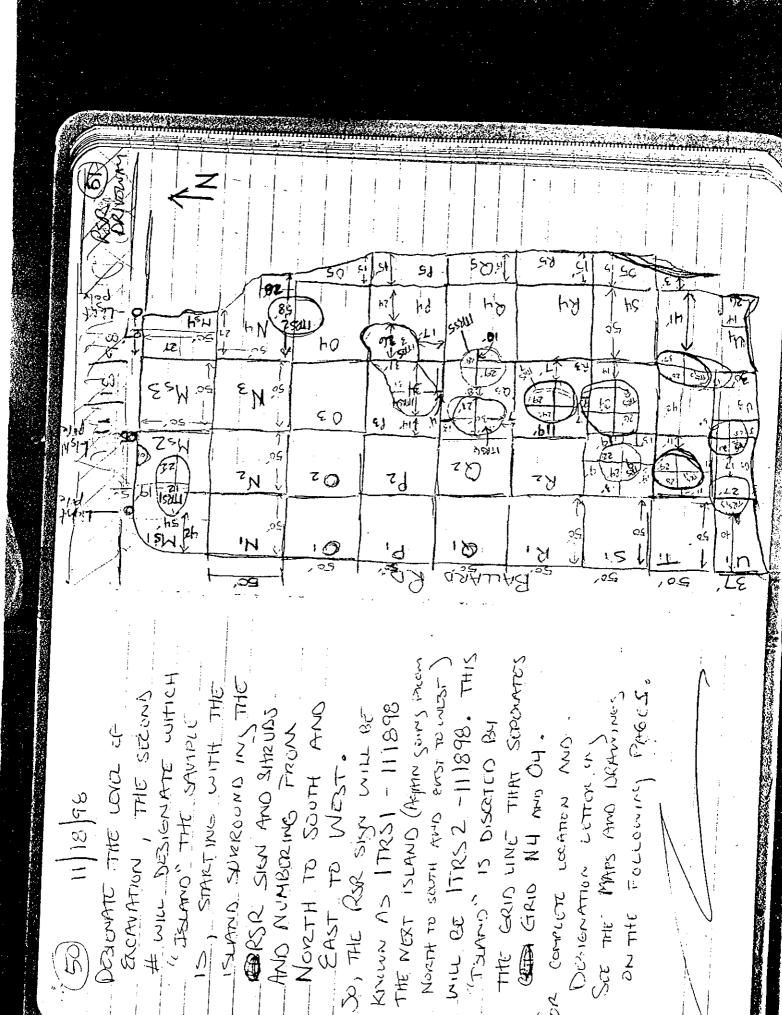
LOUPL LEXEN IN CI HOS SAMPLE TO PER PARTYZETS TORY
TOTAL PO (6010). SAMPLE LOCKTION I'LL'S

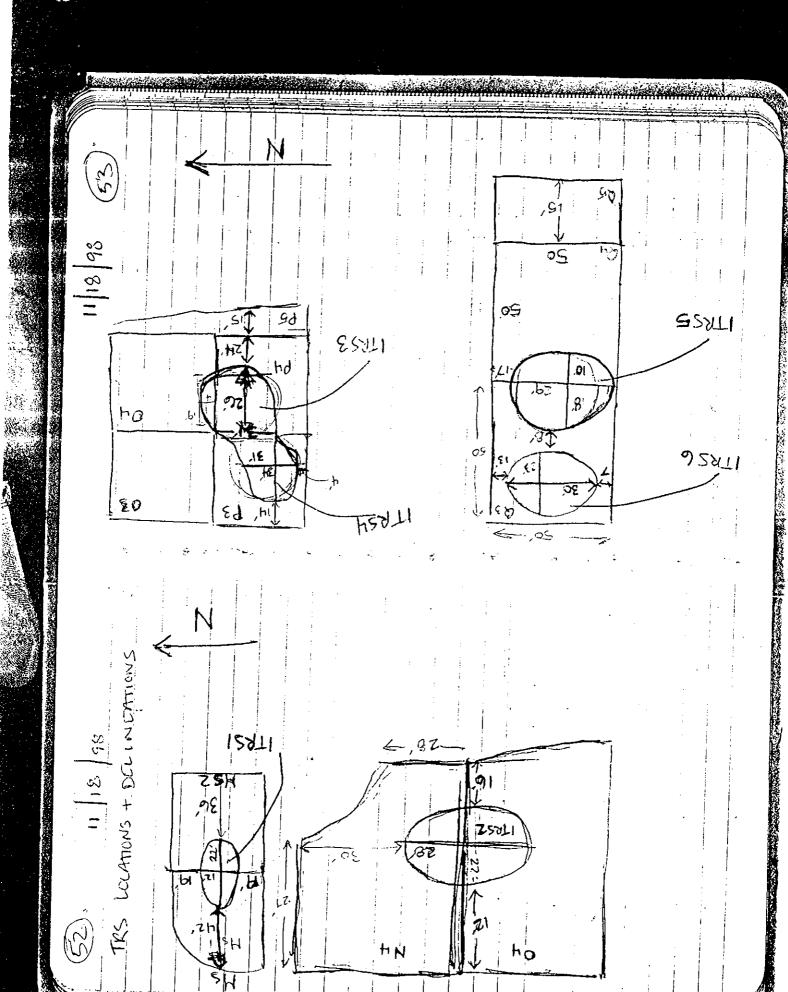
4 somores

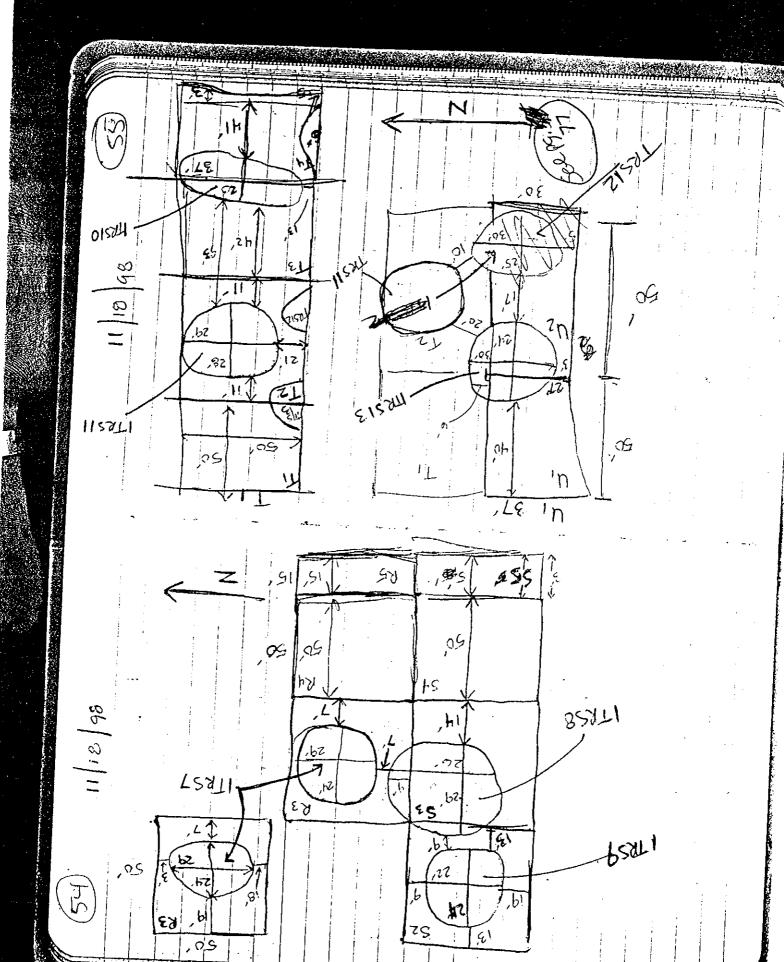
11/03/58 (34) 11045 Soutet 2M4-65F-110398 A DIE THIS IS THE ZOON TO EXCHOLO SON THE THE CONTROL LEVEL DUPLICATE SMAPLE WAS MARKED CONUTY - DROP FIELD, GOUTPHENT 700 / ROHUNG LOVER C GUSTRA COLTH A TIME OF 1650. 24 Has TURNINGOND FOR 1730/Per et Cosen to so soften のからいっく

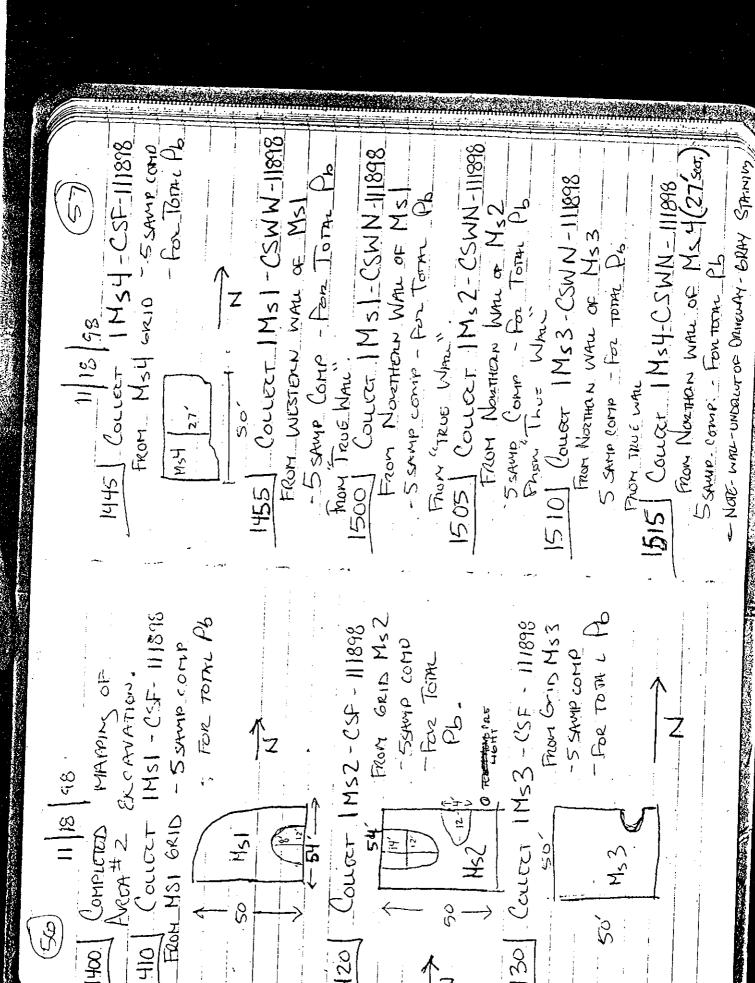
DRIVE

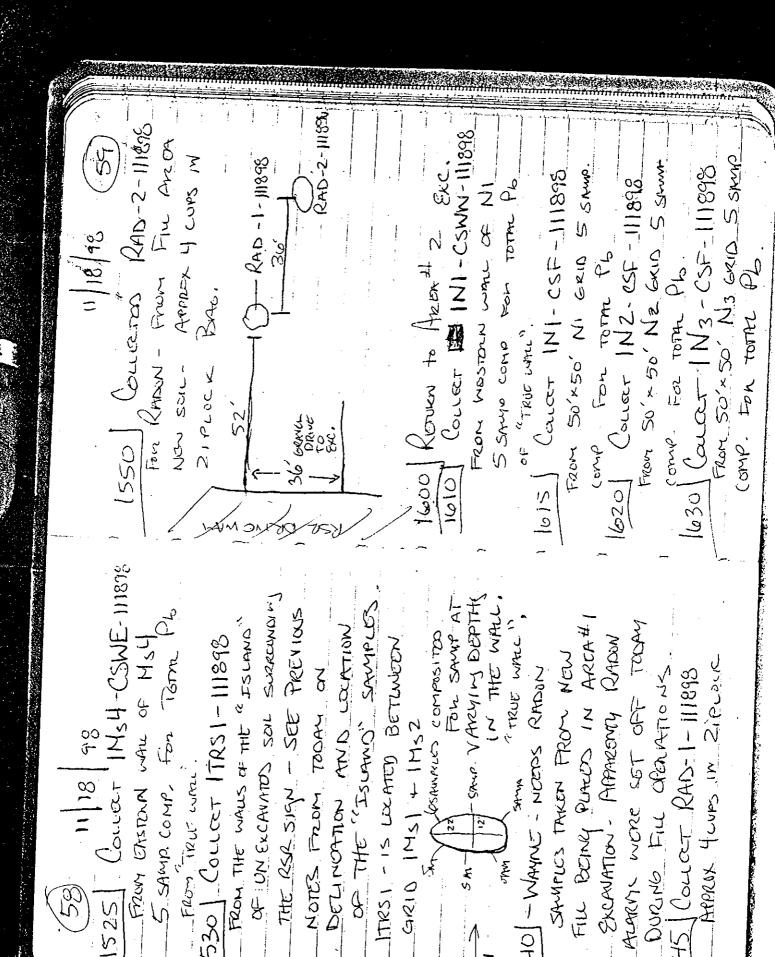
	Strie. W WAINE	LANCK R	A Pepro	IN THESE ANOTE. 10" UPS	1610 Darsen in 1800 0	AND MORS TO	1645 OUT LITHINGS.	FROW 50'+	1055 COMP. SAMP. 5 ON A DIE	—\ L	, AS	50r A DIE	My 50	DAIN	27,	1705 JOFF SITE to FLED EX.	
(40) 11/11/98 1110/10000 For Rep.	- FOR CONFIRM, SAMP. IN GRID	1130 PRRIVE OF SITE - Hy is CORROSILY STILL	BCING EXCAUMTED) - STEDY (NAME) (RIMA)	TO SEE WHAT TIMETHER OUT	1200 LOCATE WANTE IN EPITACY STATES	\$	230 / City of Will Return		530 BCD ARIVES ON SITE	- AREARE SAMPLING GOM	- DECON HAND TROWERS	- D.T. +LIQUINOX SORON	MITRIC RIMA	10. I. RING	10 - Cowect Ra. Re. 11/11/98	Dr towary Dist. HEO out	HAND TROMB.

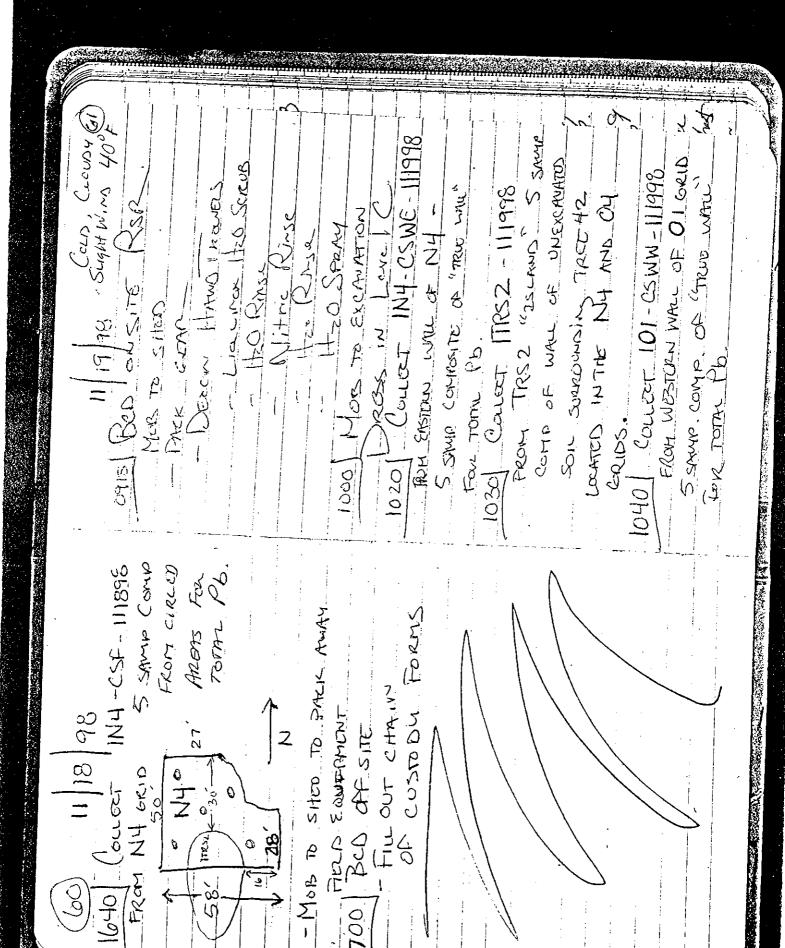

(42) II] T J G COLD-RAY ALL COLD RAYNY OTZZI EUS LEWE OFFICE TO GET SUFFICE LOCATIONS SUFFICE TO GET OFFICE LOCATIONS OFFICE LOCATIONS OFFICE LOCATIONS OFFICE LOCATIONS OFFICE LOCATIONS OFFICE LOCATIONS OFFICE RAYNELING OFFICE RAYNEL OFFICE RAYNELING OFFICE RAYNELING OFFICE RAYNELING OFFICE RAYNELING OFFICE RAYNELING OFFICE RAYNELING OFFICE RAYNELING OFFICE RAYNELING OFFICE RAYNELING OFFICE RAYNELING OFFICE RAYNELING OFFICE RAYNELING OFFICE RAYNELING OFFICE RAYNELING
Calo-Pan-Au Cond-457-Au Cond-457-Au Cond-457-Au Cond-667 Be 11179E Bergint Colombia Solves Colombia Solves File our File our File our 1015
Calo-Pan-Au Control 45% - Au Control 45% - Au Control 5% - Au
COLD-RAM-ALL CONY-457-ALL CONY-457-ALL COLD SITE RSP. SITE RSP.
SITE STEEN S
HITT AB WATER OFFICE PE PANS WATER TAME TAM
E Se Far Short Sho
WARRING TROUGHTS OBZO BEST LEND OBZO SISN IND TAND TAND OBZO SISN IND TAND TAND TAND OPERATOR OP

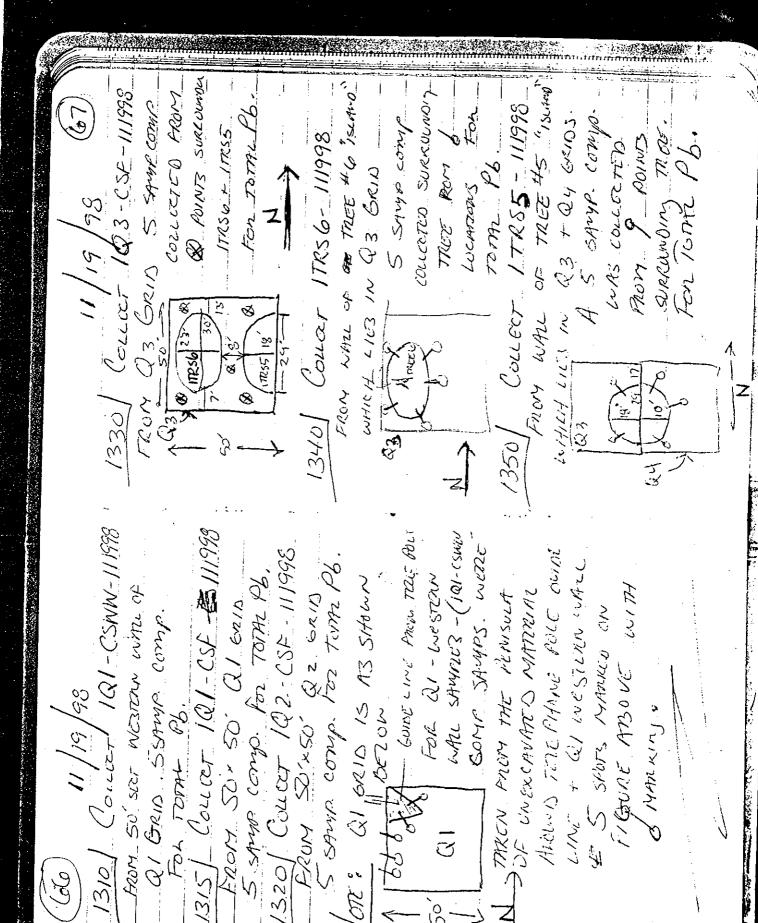

1105 (COLUCETED 1111 - CSIVIN-11178) Nestern With + Far Tomelle HAND L AME SESPENTION JOT A STATESHT WHELL SAMELE FRS Athress 6 1 - SCOT OF UNEXCAMATED AND 1 MI - CENT - 111798 HS/MSD O'WALL SELTIONS - L ALE APPROX (WESTON WITH OF GUIDE WIRE OF Note: M western when Su NUE 70. THIS WAY OF THIS BY A RIVINSULA EKCANATION) Kerl TRUEWMA DE 1 ことのなど からいろう

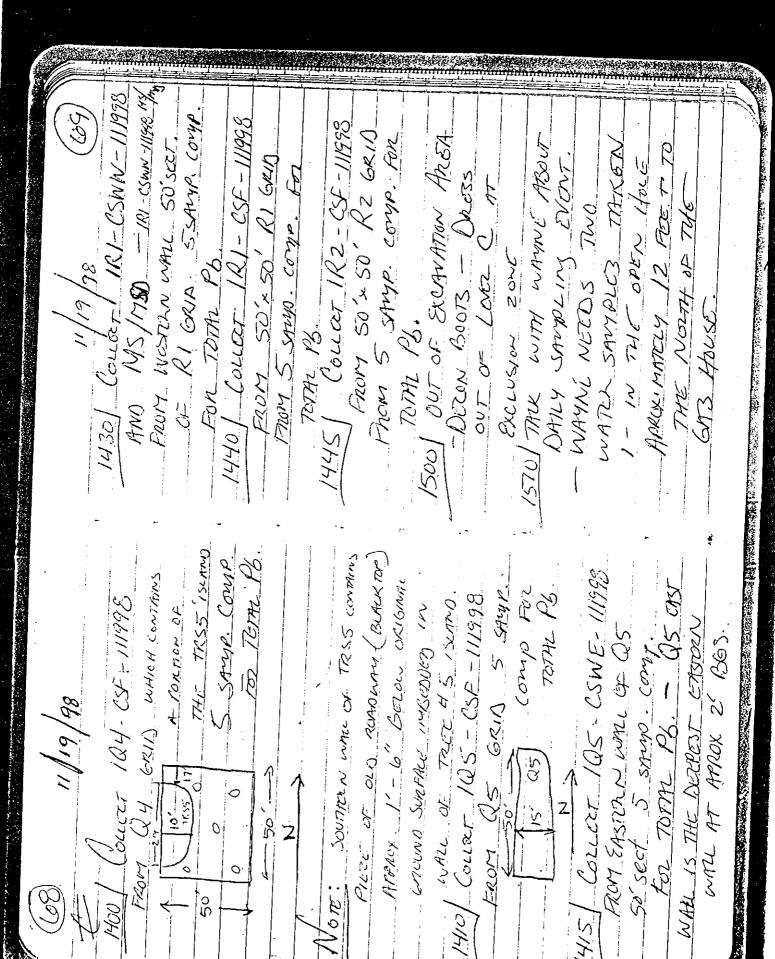

ROLPHONT POLE


with DEPTH AND CLOSER 1250 / MOB TO FIND WAYNE TO DISCUSS SAWFLEND PLANT - 200 SOM ATION 11/17/98 KSP. Driveway 1x ExcAV, To Phex concer 13348CD OPEN COMPOSITES WERE SHAPLE STUTTE WEST C COLLECTED SHOOY SILT - W/ SOM GUME When SANGED FORM OF 1965 HT A1 'TO HONOX 2 BES HT M - TO HONOX 2 BES BOTS - REMOVE LEVEL ACTUALL COMPLETION TIME OF SAMPLENCY CLAN GENEZ - PERSOLE'Z A-1 WESTERN WALL!
THROUGH MI WESTEN present uner comp MORE SUTY AND SAND Note Again SATION BETHINE CHSINS "WERE PLATE MONT & THI DRIENT SUL WAS FOUND IN BI 100 501 12001


BEORE SAMPLING AKER NUBER DESIGNATIONS IN THESE ROBURIUS ELIBET AN CEPTURE TO SAVE MIN FOR SAMPLES WILL BY ASSLEVED 1/3 POLOUS. DAIVOURA VILL BO MS IN ASWARME IS ON PROCH I EAST 1040 COHPLETE PREAVATION M Sterior South of RSR SURROUNDING TREES) WILL
BE LALETS AS TRS -THE TO DO A FIEZES WALK OF TRE FOR TRUE THE S. 15 DSCUSS .. ITEMS ON PREV -"ISLANDS SURROUNDING THE PIEST # BIN THE PLOOR FOR SOUTH OF DRIVENMEN TRUMPTIONS WILL BE. USED TO NOW BY CRUBTION TO 11/18/93 0930 DRESS IN LOVER C FUTURE EXPRINT IDNS. SNOISING SAEE. - How to SAMORE " ESIH NUSS DEFORENT NOMONCHAINED ? 0840 - Cources 2 & B. 111898 48) 11/18/98 Light Wino 45% PACK EQ FOR DRY IN TRUCK A STATE OF THE PERSON NAMED IN Colo - Clena - 13 FRAG FOUND YCHERAY 1 The so was a ABLI EL UNEXCANATOS MATORIAL - WALL SAWALES OF NEW AREN (MER 42 Sount OF RSD ENTINANCE SURCONDITY MEES. -- M NOMENCLATURE to siter DECON HAND TRUME S THIS RIST - 1-20 SPRMY HE O River - H20 Rirse Lia Scrius Brivenay. LONI J 00/00







		1								asis trass Transmitta		11111111111111111111111111111111111111
(63)	1130 - Courat 105- 0st-111998	1000 US 50,00,10 5 SAMP.	10 / 10 FOU	1140/ (OLLEST 105- (SME-111993	1150 Course 171-06111	FROM SU' WALL SECT - WESTOWN	1200/ COLLET 1P1- PCF- 11990	H	1210/ COLLUIT 112-CSF-111998 FRUM 50×50 12 GRIN	NOTE: CONCRETE WALL SLIGHTLY PROGRAMS	12 CRIS DI LOWIN'S NAMOS	150-PI Westware 13 HOMOX. 3- Higher
11 19 98	FOR TOTAL P. PROM SO' × 50'	160 Courses 102 - CSF-1/1998	1024 - CSP - 111998 - FOX	A SAMP. THE OF 1105 WILL A SAMP. THE OF 1105 WILL BY UKIN EN THE OF		× 50 6RIA -	- J N	SAMP. C.	104 CAID TOTA THE		2	

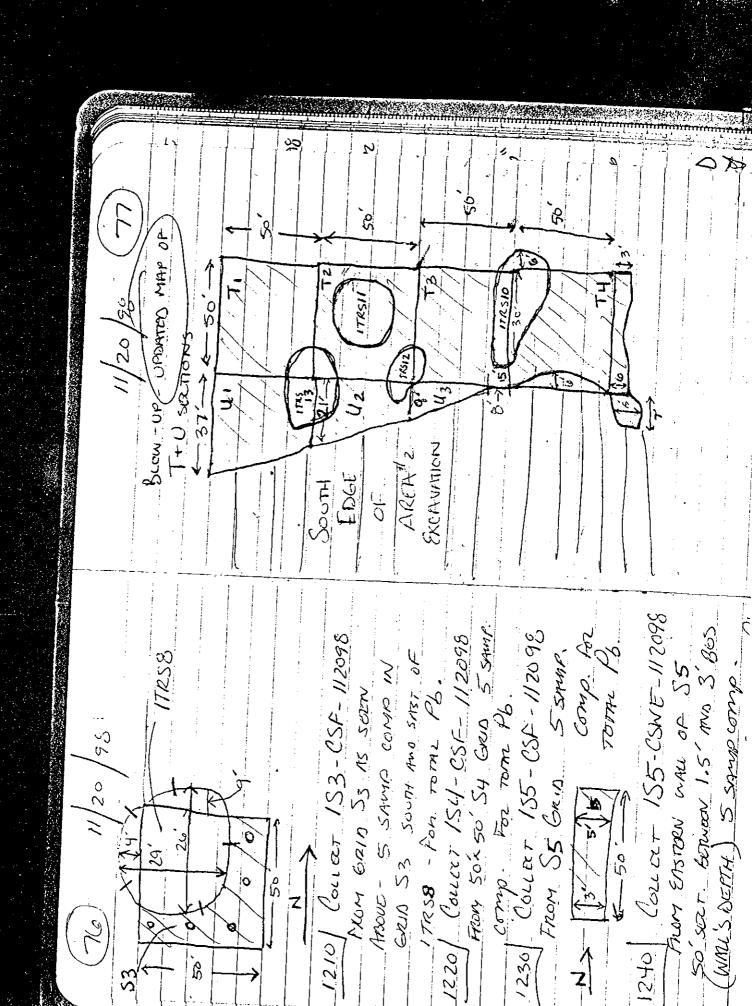
With IN EXCHYPAION

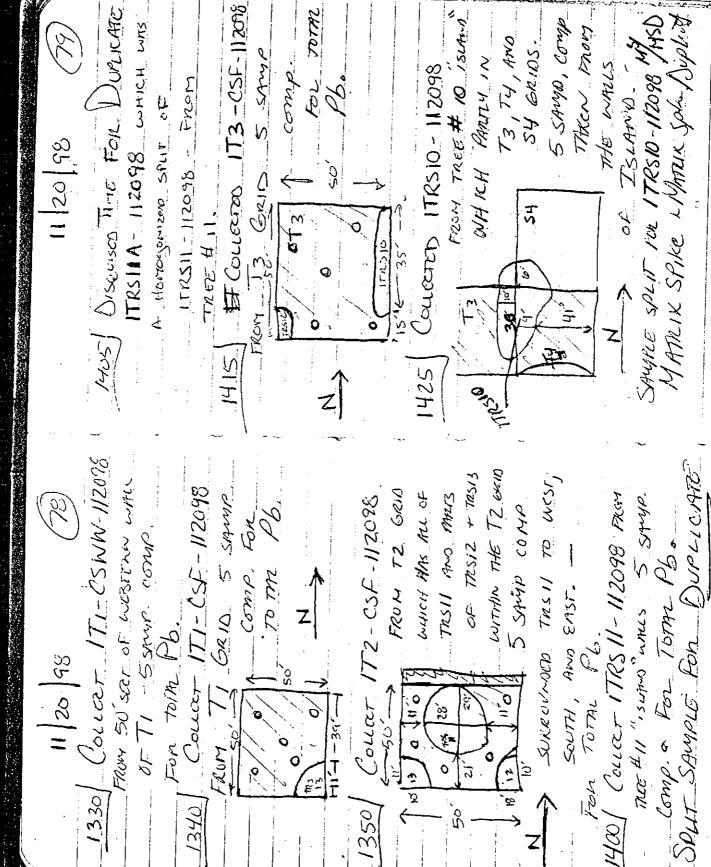
SINCE TREEHY ISAMO IS CONNECTED For 10m 16. FROM PS GKID S sprip. Com SAMO " KNOWN 115 ITAS 3. Pul GRID - 5 SAWIP COMP 1240 | Coucat 1P4-05F-111998 1300/ COLLCET 115-CSINE-111998 Per Ensions who of PS-D 5 soms comp. For Tom 16 (ouce 185-05F-111998 WESTERN WALL OF TREE #3 JO THE NOWTH, EAST AMOS SWITH OF TREE #3 -TO THE WEST OF THEE 3 Ling TAKEN FROM THE WALLS FOR TOTAL 66, DC COLLECTED PROM THE LATIND - NO SAWRLE CHN 95/61/11 240 17R53 COMP SUPKOUNDING BUT SOME IN THE A Signing, COMP. WHICH LIES MOSTING 230/ COLLECTITESS TO THE EAST. IN THE PY GRID WEST, AND SOUTH OF TREE#4-FROM THE WALLS TO THE NORTH, WHICH INCLUDES TRSY B. THE MRSY TREE. FROM S SAWID coup at courtered Fax. COLLOR 17RS4-111998 GAID SCPLINATES THE ISLAND (Court 1/2 - cst - 111998 FROM 13 GRID FOR TOTA (16 KOUNDARY LINE OF THE P3 NO ENSTRA WALL SAMPLE TRS4 TO THE EMST Tast. THE EASTER 35/0 1-14-0 Jus 0 34 2201 1215/ T Q

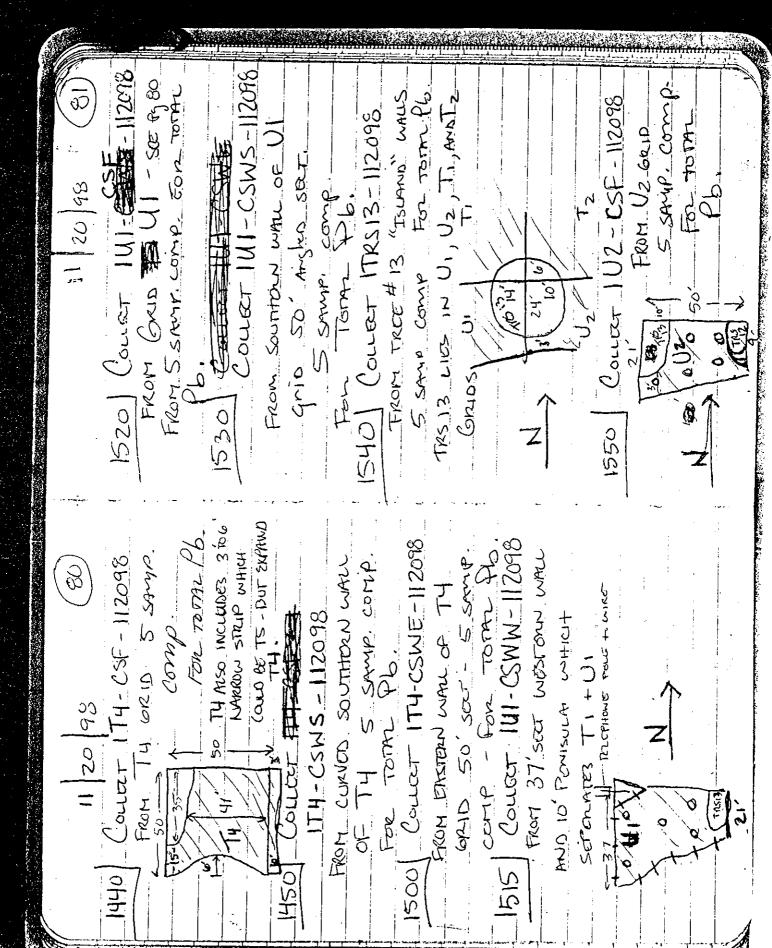
From THE EXCAMPTION. Som in war Scar ATION. 1520 / Ceuco BW-1-11998 11 Kilmen Am Sc 1600/-COLLET 8Q. BL. 111998 1530) Coured PT-1-11798 100 10111 PJ From 18 conoming Hell more the TRUNKL WING STEND BRIGH STAKER WILL EXCITATION AND ENS HOUSE. - PHOTO. CHEN HELE - POLY THINK then PAING SOUTH. TRUT DESCRIED HAND 1545/ 1703 to SHED. 35/61/1 -UNPACK GOTAL 02 21/630 OS 1059/ TAKE PHOTO #1 FOR TOTAL Di, WEST LEAVE SHELL THE BARRION WALL EXCHAINED 9.1, 1942 31 112 5463 11.6 2 Tochalls APRCX. 12, 46 I BLY THINK THAT CONTINES THE MAK IS A SCOGAL 4177 Tit LUMPER IN THE COURT H20 PUMPER ES FROM Arso NEED TO COLLECT A 1-A722 SHY12E 172017 54/61/1 CALL BW-1-111998 Titis Hace his The property seems 1/35051117205 15 21 1121 15 = 1/01E 1 s ~ 2 ' Deer 13 11.EM (1770)

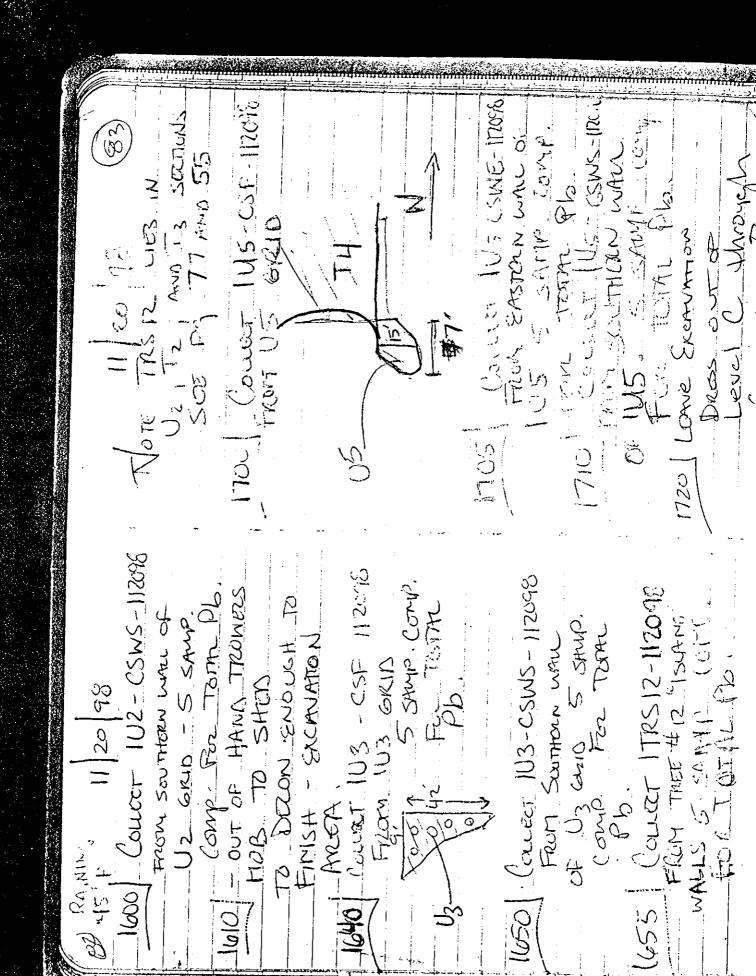
TILL OUT CHAIN OF CUSTON

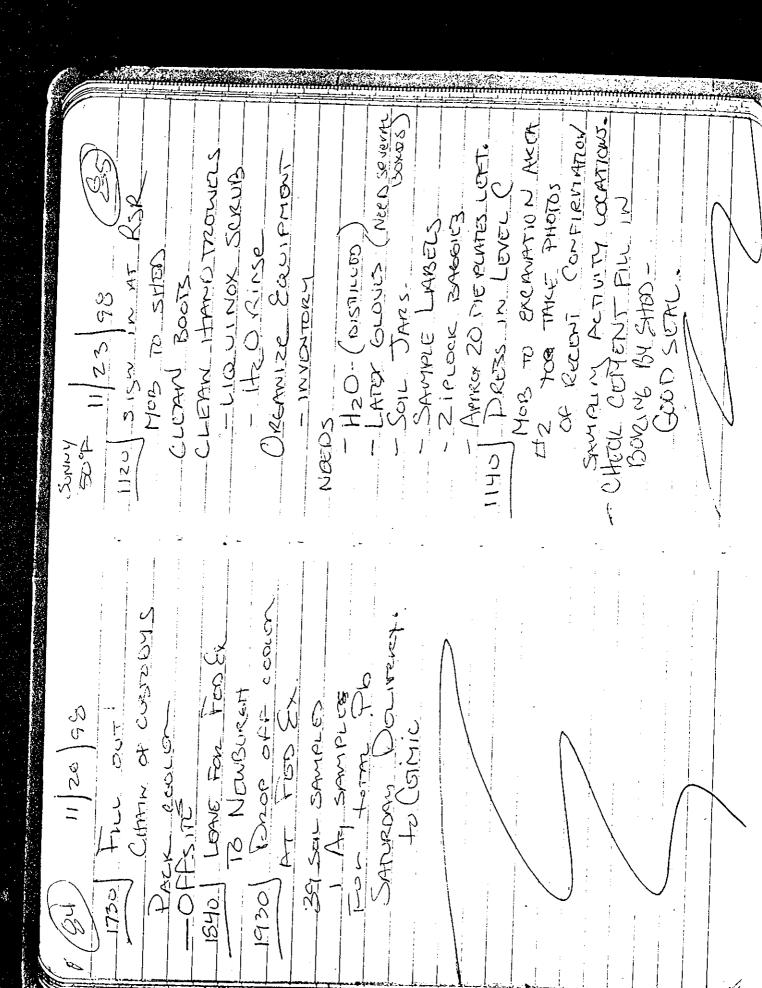
PACK COULDS


POUR MINE AND CONTAINS


(1) (1) (1) (1) (1)(1) (1) (1) (1)(1) (1) (1)(1) (1) (1)(1) (1) (1)(1)


											minn	in in the	THE PERSON NAMED IN	A TOP OF	
i. i	6930/ Fuich CENONT MILTIME	- Liaunt HO Series	NITHER RIVER	1000 / Carot Ec. B. 112098	-Chi Ec. o + Com For Ele	1) RESS IN LOVE (- MOB SAMPLING GERR INTO	1830 (COLLER 183-CSF-112098	MONI R3 CRIIS - (SUKNOUNDED	24 7	0	1040 (cureer 17857-1170198	FLUXT LUTLS OF THEE #7 ISAMIN	3	Some Conso. For total Ph.
(72) 11/20/98 ONERUTSF-DEIZZU 0745 / 1000 / 100	() ~~	1020	- SAM -	- RICC CHORPER.	WATER (Bistilled)	SIC/SISWIN AT RSI	- Mix Criterate SAFED	TO FILL IN OPEN BUREHOLE	BD - per NAMES REQUEST	SOUTH LEST ADORDX 10 FRANCE	HOLE 158		7		


SE DIAMINS ON NORT PARE. 20,2 1120/ Courar 151-05WW- 112098 1150 98 1150 AND DUPLICATE 184A - 85F. 112098 Later 185-CSF-112098 FROM R5 ERID 5 SAMP. COMP. FROM 50'x50' 6nd 5 SAMP FOR TOTAL PD SLCOT 184-85F-112098 FROW ETTSERNINGER OF RECEID
50 sect - SSAMPS. COMP. 5 comp by 50x50 ears. - (burgar 1RS-CSWE-112098 TILL HY USLAWO AT THE TOTAL May 50, SET. WEXEN NAL OF 151 - NOTE - BLACKTOP RONDENTY FRANK MOKES - S SAMP. COND. Howogencers AND SUT - 1055/LAN TING FOUND IN NORTH + WEST WHIS Comp. For ToTHE DE Spert-For tom Pb. 11/20/93 1-1.5' 665. 1050


151-(SF-112098 50' 51 6210. 50' FOL TOMLPG. 152-(SF-112098	1729) (5000 49) 5 SAWAP. COMP. FOR TOTAL Pb.	9 " SUAMO" 1017 Pb. 1010 114 59 ISLAND.	120 88 48 "sump"	3 18c. 14. 15 50	To THE
The same of the sa	19 1 14 0 17259) (race 17859 - 112098	FIRENT WITHES OF TREE #9 1 SUAMO" STANGE COMP. FOR TOTHE PL. BUTHELY JO ROHTS DOBLES FOUND IN SHSTON WITHES OF TREST ISSUED O -1 1365- TRST US IN STAIN	LOULEST ITRS8-1120 98 FROM WALLS OF THEE 48 "12 MM" 5 SAVYP, COMP. FOR TOTAL P.	ENSIN WALLS OF MEE #8 186. AT 1-2 Ses TRSS 14. 15 JOSNY IN GRID S3 BUT ASS	ENST AND TO THE NOTTH, NOSO
11/20 11/30 COURT 11/20 SAMP. CON 140 COLLET -	10 (cutes	1000 with 1000 1000 1000 1000 1000 1000 1000 10	COLLECT FROM WALL SALUPO,	ENSIN WALLS AT 1-2 BES TH IN GRID	tho to

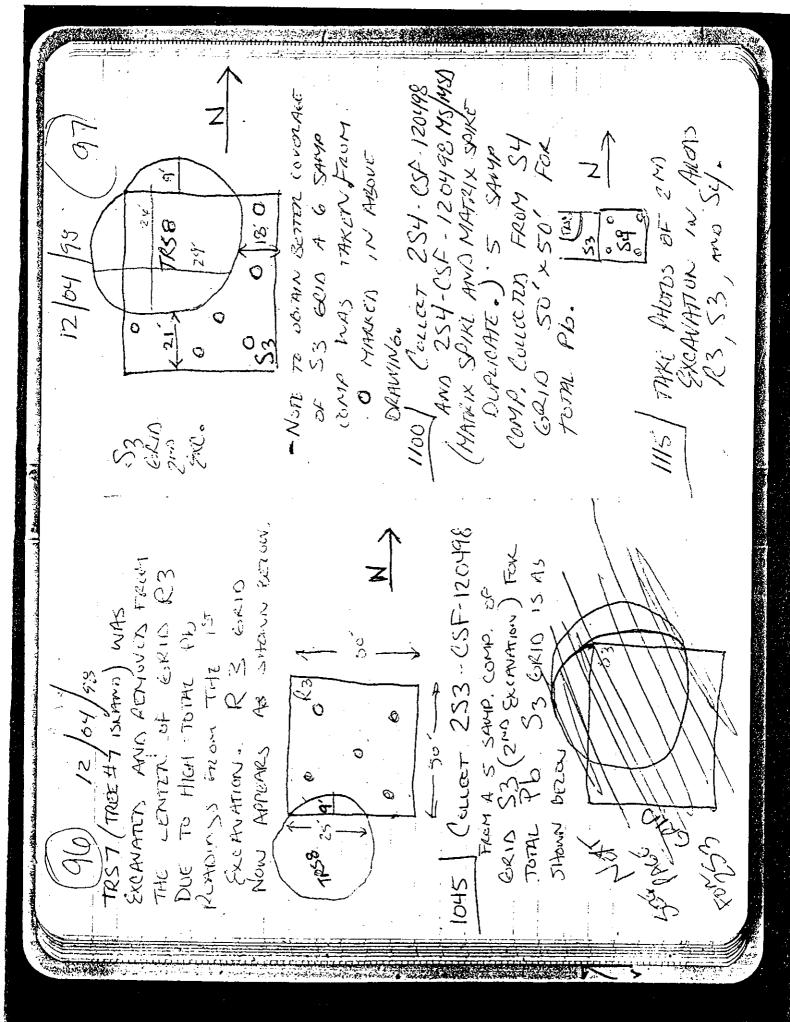
#4- They with of Msy- Ny) EASTWILL DALVEWARE - CARACEL - 1:5 Compa 43 MSY ETST WAL 22' CAMOL El NI WALL (WISTERN) FIRIS 12-Right CARKYOUNDOF PHOTO LUCST. Z'OP EXCAMPIENT I' OF PUSHEN CACHUMFIEN DISITAL SHOT, FACILLY SCHIENST FROM MINSHORING - 71852 NI - NZ NJ GRIDS LONG SHOT OPEN GAR. NI WEST HODS: ERGANATION HEGG # 2 7 / 2 / 3 SILT + CLAY IACINSERS #1 TRSI - MS GRID - FACING 42 MSH NOOTH WALL - RSR Win AN AFROMER FALIX NOWTH

Revisore AT 40 FACINGE CLUSE UP QI WESTON WAL AT NOWTHAN END PROTRUBES 154 is closer, 241 preconnection SE GNIBS ORGINAR CROWNS 1.5'-2' IN OBIT - MUNS MCSTORIN WHILE IN PRINTSULA = SATESIES ON WALL IN PLOKED SURPINE - WITH ARROX 1.5-2' JUST WEST BY < 100 WAR LITRUE HOLE IN PRODUCE WHICH SE PRIATES PAN QUELDY. " PI CKID 225" DEEP WITH TRS 3 HELLIN BAGGERMA Mounty Fourth + SOUTH 15 AT SOUTHERN END. CLUSE UT SOUTHORN END OF Little Hat In Plean Fort Phone Pore CABLE WALL SURFACE FLUSH UNIL IN PI GKID #7 FACING SCUTT O AND B SEE Py. 63

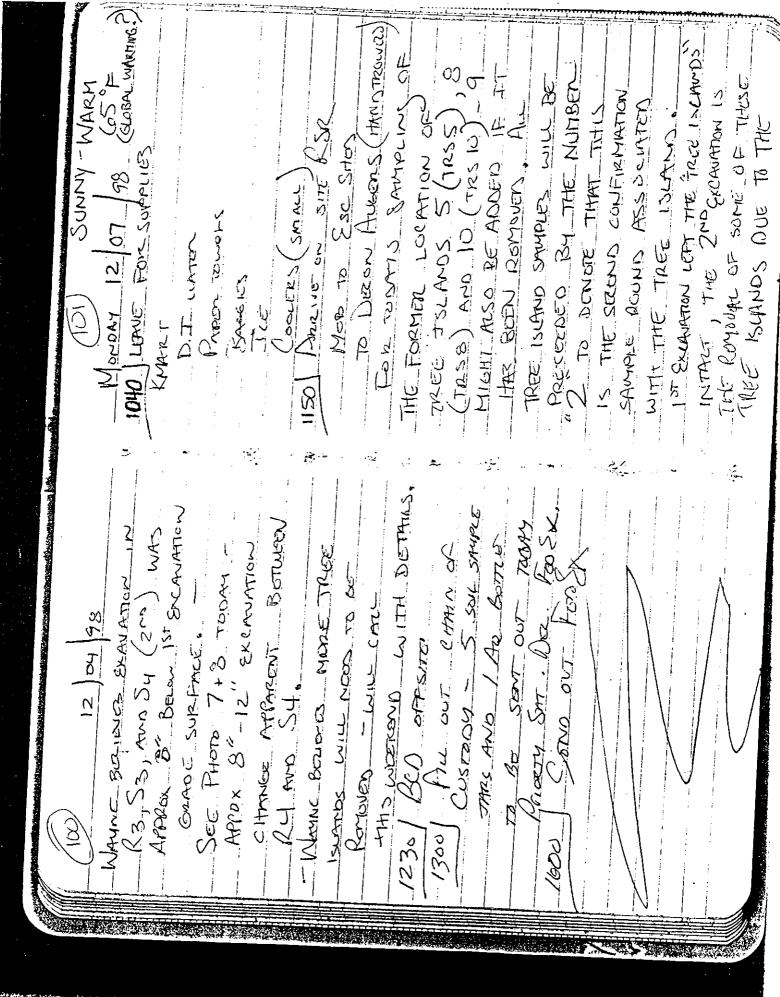
6" AFROW OKIG- CROUND SUKPARE,

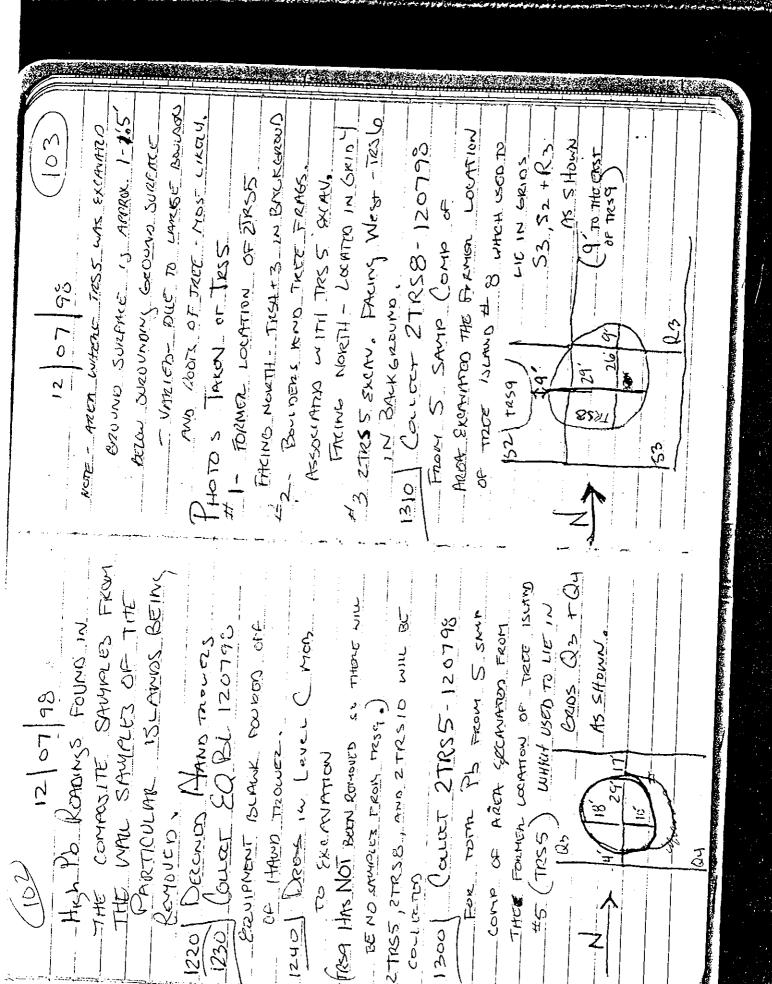
NOTICE - YMMER ROAD INCLUSION

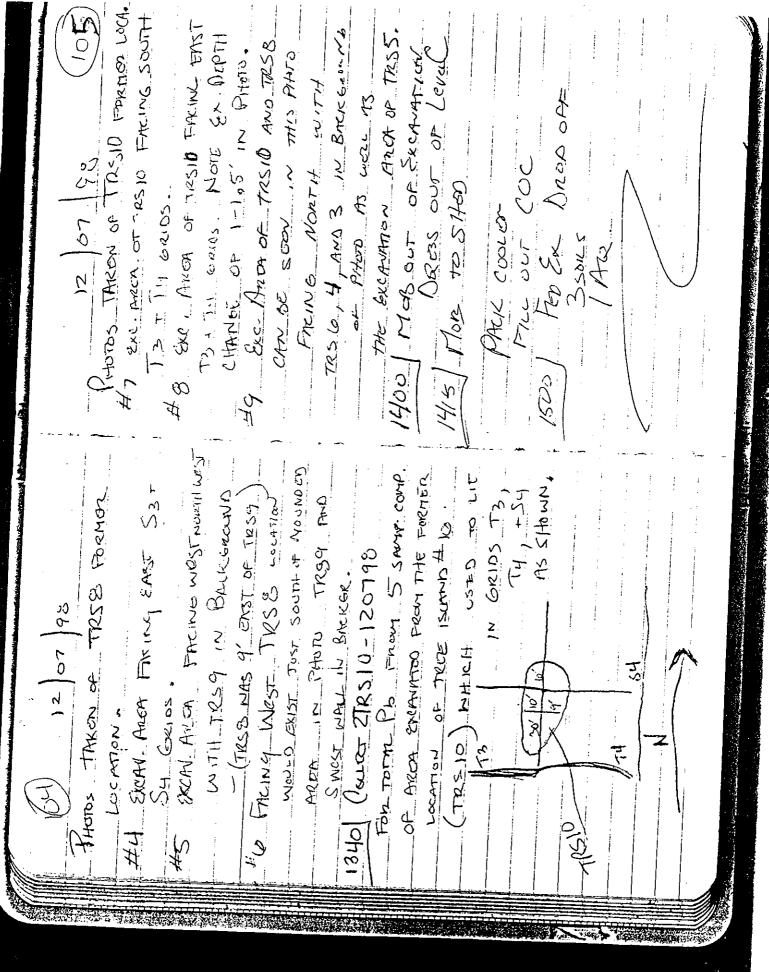
AMROX. 31, 12 yeight.


			ن ب		L	ر حالم و حدد الم	L		Li				14111111111	mmm.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
(58) 82/11	PHSTISIN NATU OF O	120 DEDTJ OF EXCRIVATION CHANGE	BUTCH SILT FETTOR CAPA	THE CHANGE IN DEPTH OF	421 183+4 FACING WEST	472 Trock FAIN LOST TROM QU	:		1RS7 TREE ISLAM #17		MAIN WAST TREET OF THE TREET OF THE PRINT OF		# TRSB- PRING LIEST - OTHER	1 2 whis		2-3 WMW (SM31) SL
(23)	5~/	#14 - 04056 UP OF TRSY "131110" (TREE #4) 105 HOGH WALS.	4 2	CT CITON	1.15 - 1.115" - 4.175	OF TREE 44 AND 13	LONNECTED TO FORM	, u	touch	31	#18 12CE #5 12 FORE GROUND	The # to The Right AND	TRCE 47 ISIANO WITH TOO THEES	P19 PQ DEVIDINER GROUND. Exchention	gots much DOPPIN OR	

1		11111111111111111111111111111111111111	*****	11111	moji	mini		717					和金	ng, 🎉	13.5		4		N. SOURCE	W. Service	17-10	可能	學言	San Plan	n _i
			13								<u></u>		- 1	<u></u>	1				71111111111111111111111111111111111111	7117111	lian	1/11/1/1 25	iiiiiiii	1111	
\int_{C}			7	3				5.	,]	\ ''	١		8			ζ,	SVI			İ				A	
	5		17F	12	3	25		7	0	174/1			رار	2	, 	20	Ž.	ا.				. M		14/12	
		177	3	077	7 7		17	2	+				ران این	2	ج ک	35 E	2	2. {)	<u>. </u>		ر ا		75/	
	:	174		50.	1 3		1	7	-	,) ا ار	/		7,5	+ 5	3 8	2) .	- P	,	1	12	2	
	β	3	61.	1	n k	200	20	3		767)	ر د ک		1	· · · · ·	9 3)	ن د		40	277	75	
	1/23/58 (91	ν. L	WILL OF UCKINS WITHER	While Indiana	A 1000 THYON FM. 12 CM	& TECEPHONE POL CHAIN	REMISSIEN DIMINGES TI	AND (1, WESTER WALLS.	OPEN GK, 105 - 11 to	175/ - LCMS SIADT	2		$\frac{1}{2}$.	SCOPER CARA	12 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	7 18 6 1 10 Dt 2 0		. / ! !	PANT.	1758+9 FACIN	•	SWITHERT WAL OF TRSS	FOR MEADUMY IN CLUSION	MONIMO IN SEVERA TACK I SUMMOS	
`.	₩	×0 ~	\mathcal{I}_{β}^{c}		۲ رو کارو	ar	0	3	\$01) ()	- +thu co	2		₩ 		3 -	i	7	^ 7	$C_{\mathcal{L}}$		The	7	3	
/ /	2	17 1966 D	1	\ \	77.	111	7		,0 (V	7 0		\ \b	, Q)	W.)	, <u>v</u>		7	Drid	SEV	
•	` :	1 6: 6	Ĉ) \ \		22	SC.	\mathcal{C}	2	113))			0	, e) '~ } }	, 1°	((\{-\}	7	55JTF.	EA17	25	⇒	
	7	i I	177		1070	30	74.	ć. 	PC	5		:	, ,	, M		~	125,	- h	£ ;	6	FO	HIM	70	<u></u>	
		,	Ź ż	\$ \$	d		Z,	Ź.		1.7	V	0 1/	j	•	X	مار	1	4	27	Po	5.	R	2	200	
	,		γ,) <u> </u>	. -	اما		i	•	İ			!		1	``	. :			\ . [<: 1	Z Z	3	
	11/1		:	:		12			ار ر	;	- Hi-	:1./ :TT	7		-91-	417			,	32	****	719	•	3	
			÷	:		4					11	F			1/	1						If.			
	•					~	-	· ~ .		<u>~</u>		٠.		_			_							i	
	:	;	:			!	-	2	١:				:								,	_		•	
	CATIONS	,	AN		4		2		5'	:		163	ز	1-21	> >	ر در		Μ			121	٦	\sim		THE RESERVE OF THE PARTY OF THE
	T. T.	,	Top of)	Sug		7. (3 /) [\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- ,05	`	1	1 SCAPO 13	+	I		ς π,	7) -2	7,	1.M.103		1. A 1. S. S. S. S. S. S. S. S. S. S. S. S. S.
ئة تات	5/0/		11	ÿ	Nouth to south		STRS STATION	SINIE CONTRACTOR	PHOTO THEN FIRM	SOUTH ENST	57	FSKAND - FINES		7.	12-1 Isan	`	41714	TRUE HIB	9	THEE #13 NOT WISHBLE	C 15 BERCHING THE VIEW	Control of Chest which	,	· .	
_	1:27		بر		TIL		\supset)	6-1	FL	MRING WEST	2		FTRING LURST	ž	7	3	E Z	BAKE-ROGNUS	3,	ا ! اي	-5/)	: !	というでは、これのことのでは、 中央のでは、 できないのできない。
11/23	\ \	SOUTHERE	EMEL WALL	to .5	ζ°.	4 5	12/2/2 T	· د ۱	اد .	0,0):	£	i Mi	2 <		TREE 42 12			302	To	Ç. ()	3	2 5	i i	1880
	, ,	シナ	7	ွ	,	1/5 / 0015	15/1/2	EXCANATION		ν)	NE	N.	1,7	3	FALIN	17	MINSONEST	7	ij.	5	й У.О. ~	٠,	Krk Galowy D T.	! 	1
``	4 GK10	Ĺ	131	7	7		3 7	4	1	SO UTH			7.4	71	TXX	Th	ĩ	SLAW OF	シンシ	30	70,	؛ ر	<u>0</u>	i	
	· · ·	Sde	w	N	inter	3/	:	A	0	S	, (23%	<i>)</i>	-	1	1.	\sim	T	Ø =	ή, ή,	v i	1. 1. T. J.	Y S		10.00
	1	,	4	, /	.7	777	SOUTH	XC	14/	V	Ó.	F .	12 C	Ġ.	//	77	ζ.	75/	~ (7 <i>57</i> 7	٠, ١	7 4	3 /		
					1			<i>W</i>	1		7/8/0.	TWO TREE	SHAUST WALLS	1259	1221	TKS 12	1/1		,	(/ \) 	7.プラン		
	M		3			11/			;	:	L. 1	1	1	ンド	F-	\						્રે ડે	7		A Comme
9	#		1			#		Ì	ļ		0				į		_	i	(1				1
<u> </u>						14				17			1	1	$G \subseteq G$;	÷		!		\ \			200
														4 7	,	\	!			İ	ili	j		1	
							, h	, '		- 1	, l ,	1	11	1	1	.i . a.a	,;	·:	<u> </u>	1	1.,		1 , 1		


日本日子指挥的地方,1915年,1915年,1918年,


-KUAN WAY INCLUS KUMBUMU MUCCUST RUND FRIG. - to when with of HOEN- BETE GIN THE 9 AND TRSII - FARING CLASS This 11 Anch AS PHOD DAKEN IS BECOURE WISE. PACING ENST # 20 - STSTSIN WALL OF FACIN SOUTH IN NORTHER WATE LONG SHOT EX. LACING OPICSITE DIRECTION SOUTH - TIEVES / 4- 13 120-05-65-1 - SXC. FARLY C/11166 1-3-52527 11/23/98 600002 DEEN CNO, - 3501 2' 1365, #26- PMOTRUCK SOUTH -SAME 7 2 H 1 5750 2 #27


NARM-SUNNY- 60"F FRIDAY, DECOMBER 4 1998 (95 0856 LOAVE GEFICT FOR ROR C9251 Sign in AT ROZ Mos 12 SHED - ORGANIZE SUPPLICS - DECON - HAMD TROULES ON TOINTS SAMPLING LIVERT (R3, S3, AND S4) 200 EXCAVATION DUE TO ABOVE STATT LIMIT FORM PB LOVERS IN THESE GRIDS IN ISTENC. 1000- Couver Ea Br 120498 BY ROKING STORE BOLEHT DISTILLOS HEO OVOR HAND TROWER - FOR TOTAL Pb 1005/ Dress in Lever E Mas to Exertita Ahra # Z (SOUTH OF RSR DRIVEWAY) 1030/Cours 2R3-CSF-120498 AND DUPLICATE SAMPLE ZR3A- OSF-120495 (WITH A DISQUISE SHIPLE TIME OF 10350) FROM A 5 SALGINE COMINESITE FROM THE R3 GRID SEEMS SMALATION

A.		
	(90) 12 or 96	12/04/98 (99)
		73
2192	-CI - IKELS FROM TRS 7 ISLAWD	55 - 15 THIN SETTION DOWNER
	\simeq	SU ARD WALL (SSERSBANNAN)
	IN ROSCION TOUR TANKS	06- K3 CRID FACING WeST
	TRING WOST.	07- CPM CHANGE BERNESON
	02- K3 GRID FACING EAST	CONTRACTOR OF CASAMICS OF CONTRACTOR
	WAL OF TRSS ISCHUS IS ON	CHASSING OF OF WAR SHOOL
	MARKINS - MARKINS	195 (15 6x) (15 6x)
	THE SOUTHERN DEUMORY	TACINI North
	62 ST 6810 K3	Venec Cotton Cotton Cotton
-a 2 2	- CO - GRID - TACING EAST	Rich of Orch
	WALL OF TRSS ISLAND ON	51 50 50 51 5 50 50 50 50 50 50 50 50 50 50 50 50 5
	TO I OF CHOID MAKE DOKUTERS	OSO TO TO DISTO OF TO OTHER TO TO
	BOUNDARY OF SECTION INCO	SAVIPLES TO BE VINIT
	CONTRACT (ORNER OF)	10 10 10 10 10 10 10 10 10 10 10 10 10 1
	04-53 600 50.01	TUSED TO MACIC DIACE IN
	John Mari	MOST OF TICK
	THE STATE OF THE S	
	CPUD SURPLINANT TOCO TO SURPLINANT TOCO TO TO TO TO TO TO TO TO TO TO TO TO TO	HZER DRES S OST
	TO SHEAT AND THE SOUTH	
	10:	Care com to strac
*****	MINDER LANGE ENST	1210 TAIK TO WANNE
	10 NO NO NO NO NO NO NO NO NO NO NO NO NO	CAR ABUT TOORY
		Sprangering

RCRA ground water quality data

Revere Smelting & Refining Summary - Total Lead In Groundwater (ppb)

Well	M-98	J-98	S-98	D-98	M-99	J-99	S-99	D-99	M-00	J-00	S-00	D-00	M-01	J-01	S-01	N-01	D-01	M-02	J-02	S-02	D-02	M-03	J-03	S-03	D-03	M-04	J-04	0-04	D-04	M-05	J-05	S-05	D-05	M-06	J-06
RSR Well	5	5	18.5	5	17.5	X	X	Χ	Χ	X	X	Χ	X	X	Χ	X	X	Χ	Χ	X	Χ	Χ	X	X	Χ	X	Χ	Χ	Χ	Χ	X	X	Χ	Χ	X
MW-07	5	5	6	5	7	5	5	5	7.3	3.9	5	1.7	5.0	5.0	10.0	X	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-08	5	5	36	30	8	X	X	Χ	Χ	X	Χ	Χ	X	X	Χ	X	X	Χ	Χ	X	Χ	Χ	X	X	Χ	X	X	Χ	Χ	Χ	X	X	Χ	Χ	X
MW-08R	Х	X	Х	Χ	Χ	5	5	5	2.1	1.7	1.75	1.7	5.0	5.0	5.0	X	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-09	5	5	93	8	5	5	5	5	5.2	8.4	8.4	10.8	19.2	5.0	5.0	X	8.5	5.0	6.7	5.7	11.9	5.0	5.0	10.5	5.3	5.0	5.0	11.2	5.0	5.0	5.0	5.0	5.1	5.0	23.5
MW-13(A)	5	5	5	6	5	5	5	5	14.2	6.0	5.1	12.0	5.0	5.0	5.2	3.1	5.0	7.7	8.9	5.0	8.8	6.4	7.6	20.0	7.7	5.0	5.0	5.0	6.2	5.3	0.0	5.0	5.0	6.5	5.0
MW-14	5	5	7	8	5	5	5	5	2	3.9	1.7	1.7	5.0	5.0	5.9	X	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-15(A)	5	5	5	5	5	5	5	5	3.8	1.6	1.7	1.7	5.0	5.0	87.6	X	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-16	5	5	10	5	5	5	5	5	4.1	1.5	2.2	1.7	5.0	5.0	5.0	X	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-17(A)	5	5	5	5	5	5	5	5	4.9	1.8	2.9	1.7	5.0	5.0	5.0	X	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-18	5	5	5	23	5	5	5	5	1.9	1.5	1.7	1.7	5.0	5.0	27.1	X	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-19	Х	X	Χ	X	Χ	Χ	Χ	Χ	X	X	X	Χ	X	5.0	5.0	X	5.0	5.0	5.0	5.0	9.7	16.6	10.7	5.4	5.0	6.3	5.4	5.5	5.0	5.5	5.0	5.0	5.0	5.0	5.0
MW-20	Х	X	Χ	X	Χ	Χ	Χ	Χ	X	X	Χ	Χ	X	17.1	20.1	X	19.9	22.1	20.0	19.6	31.7	24.4	17.4	16.9	22.6	14.1	13.9	17.7	18.9	20.7	20.4	13.2	26.0	16.5	12.2
PZ-13	Х	X	Χ	X	Χ	Χ	Χ	Χ	X	X	Χ	Χ	X	5.0	5.0	X	5.0	20.7	171.0	5.0	5.8	5.0	5.0	5.0	5.2	5.5	31.2	6.1	5.0	5.0	5.0	5.0	7.4	5.0	5.0
MW-23(S)	Х	Χ	Χ	X	X	Χ	Χ	Χ	Χ	X	X	Χ	X	Χ	Χ	24.8	X	Χ	Х	Х	X	Χ	X	Χ	X	X	Х	Χ	Χ	Χ	Χ	Χ	X	5.0	X
MW-24	Χ	Χ	Χ	X	X	Χ	Χ	Χ	Χ	X	X	Χ	X	Χ	Χ	2.8	X	Χ	Χ	X	X	Χ	X	Χ	X	X	X	X	Χ	Χ	Χ	Χ	X	5.0	X
MW-25	Χ	Χ	Χ	Χ	Χ	X	Х	Χ	Χ	X	X	Χ	X	X	Χ	1.5	X	Χ	Χ	Χ	X	Χ	X	X	Χ	X	X	Χ	Χ	Χ	X	X	Χ	5.0	X
MW-26	Χ	Χ	X	Χ	Χ	Χ	Χ	X	Χ	Χ	Χ	X	Χ	Χ	X	3.8	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Х	Χ	Χ	Х	Χ	Χ	Χ	Χ	X	14.9	Χ
MW-13B	5	5	5	5	6	5	5	5	6	5.0	7.8	6.8	5.0	5.0	10.1	X	5.0	6.2	6.2	5.0	5.0	5.0	5.0	6.7	9.2	5.0	5.0	8.3	5.0	8.9	8.5	8.5	5.5	7.8	5.0
MW-14B	X	X	X	X	X	X	5	5	3.2	1.5	1.7	1.7	5.0	5.0	5.0	X	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	8.3	5.0	5.0	5.0	5.0	5.0
MW-15B	X	X	X	X	X	X	5	5	2.2	1.8	1.7	1.7	5.0	5.0	5.0	X	5.0	5.0	5.5	5.0	5.0	5.2	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	17.5	5.0	5.0
MW-18B	X	X	X	X	X	X	15	7	7.8	5.6	3.1	2.4	5.0	5.0	5.0	X	5.0	10.5	5.0	5.0	8.2	5.0	5.0	5.1	6.4	5.0	10.1	5.0	5.0	5.0	5.0	5.0	10.9	5.0	5.0
MW-21B	Х	Х	Х	X	Х	Х	X	Х	X	X	Χ	Χ	Х	12.1	28.1	Х	36.0	22.7	26.8	5.4	18.4	9.6	5.0	16.7	14.2	17.0	35.1	5.0	5.3	13.4	6.6	5.0	22.5	16.5	5.0
MW-23(D)	Х	Χ	X	X	X	Χ	Χ	X	X	X	X	X	Χ	Χ	Х	1.5	Χ	X	Х	Х	X	Χ	Χ	Χ	Χ	Χ	Х	Х	X	X	Χ	Χ	X	5.0	X
0)4/ 4	40	00	•	00	00	-	00	45	40	450	44.0	45.4		45.0		V	00.7	00.5	440	00.0		0.0	45.0	40.7	0.4	7.0	E4 0	7.4	00.7	0.0		05.7	0.00	40.0	05.0
SW-1	10	22	9	39	20	/	23	45	13	153	11.6	15.4	5.0	15.8	5.0	X	22.7	26.5	14.6	30.0	11.4	9.0	15.8	10.7	8.1	7.8	51.0	7.1	36.7	6.3	5.0	35.7	8.92	12.0	25.9
SW-5	16	63	45	59	83	18	78	79	36	9.8	28.5	8.1	29.6	5.0	97.0	Х	5.0	10.0	18.5	40.7	15.0	159.0	8.2	5.0	8.6	15.6	6.6	24.0	14.9	17.4	10.2	10.2	19.0	6.9	16.5
Sed-1	1340	18	936	611	921	587	634	1110	707	824	946	1570.0	2490.0	758.0	1150.0	Х	717.0	716.0	1030.0	1270.0	815.0	3060.0	820.0	912.0	599.0	977.0	1230.0	1200.0	1210.0	477.0	924	924	8730.0	8700.0	1050.0

NYS Class GA Standard for Lead = 25 ppb NYS Class A Standard for Lead = 50 ppb X = No Data

Bold = Non-Detect

Italic = Estimated Exceeds TOGS Standard

Revere Smelting & Refining Summary - Total Antimony In Groundwater (ppb)

Well	M-98	J-98	S-98	D-98	M-99	J-99	S-99	D-99	M-00	J-00	S-00	D-00	M-01	J-01	S-01	N-01	D-01	M-02	J-02	S-02	D-02	M-03	J-03	S-03	D-03	M-04	J-04	O-04	D-04	M-05	J-05	S-05	D-05	M-06	J-06
RSR Well	50	50	50	50	50	X	X	Χ	Χ	Χ	Χ	Χ	X	X	X	Χ	Χ	Χ	X	X	Χ	Χ	X	Χ	Χ	Χ	X	Χ	Χ	Χ	Χ	Χ	X	Χ	Χ
MW-07	50	50	50	50	50	50	50	50	3.4	3.4	5.5	5.5	10.0	60.0	60.0	Χ	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	20.0	7.6	9.3
MW-08	50	50	50	50	50	X	X	Χ	Χ	Χ	Χ	Χ	X	X	X	Χ	Χ	Χ	X	X	Χ	Χ	X	Χ	Χ	Χ	X	Χ	Χ	Χ	X	Χ	X	Χ	Χ
MW-08R	X	X	X	Χ	X	50	50	50	3.4	3.4	5.5	5.5	10.0	60.0	60.0	Χ	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	20.0	7.6	9.3
MW-09	50	50	50	50	50	50	50	50	6.8	10.0	11.0	8.0	10.0	60.0	60.0	Χ	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	13.2	10.0	17.8	51.9	10.0	13.6	35	10.0	15.4	15.3	47.3
MW-13(A)	50	50	50	50	50	50	50	50	10.2	10.2	16.5	11.0	10.0	60.0	60.0	2.1	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	В	60.0	7.6	9.3
MW-14	50	50	50	50	50	50	50	50	3.4	3.4	5.5	5.5	10.0	60.0	60.0	Χ	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	60.0	7.6	9.3
MW-15(A)	50	50	50	50	50	50	50	50	3.4	3.4	5.5	5.5	10.0	60.0	60.0	X	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	7.67	7.6	9.3
MW-16	50	50	50	50	50	50	50	50	3.4	3.4	5.5	5.5	10.0	60.0	60.0	Χ	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	4.67	7.6	9.3
MW-17(A)	50	50	50	50	50	50	50	50	3.4	3.4	5.5	5.5	10.0	60.0	60.0	Χ	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	8.6	7.6	9.3
MW-18	50	50	50	50	50	50	50	50	3.4	3.4	5.5	5.5	10.0	60.0	60.0	X	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	13.2	7.6	9.3
MW-19	Х	X	X	Χ	X	Χ	Χ	Χ	Χ	Χ	Χ	X	X	60.0	60.0	X	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	10.0	10.0	10.0	12.1	10.0	10.0	10.0	В	12.9	7.6	9.3
MW-20	Х	X	X	Χ	X	Χ	Χ	Χ	Χ	Χ	Χ	X	X	60.0	60.0	X	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	20.0	7.6	9.3
PZ-13	Х	X	X	Χ	X	Χ	Χ	Χ	Χ	Χ	Χ	X	X	60.0	60.0	X	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	4.73	7.6	9.3
MW-23(S)	Х	X	X	Χ	Χ	Χ	Χ	X	Χ	Χ	Χ	X	Χ	Χ	Χ	2.9	Х	X	Χ	X	X	Χ	X	X	X	X	Χ	X	X	Χ	X	X	Х	7.6	Χ
MW-24	Х	X	X	Χ	Χ	Χ	Χ	X	Χ	Χ	Χ	X	Χ	Χ	Χ	2.1	Х	X	Χ	X	X	Χ	X	X	X	X	Χ	X	X	Χ	X	X	Χ	7.6	Χ
MW-25	X	X	X	Χ	X	Χ	Χ	X	Χ	Χ	Χ	Х	Χ	Χ	Χ	2.1	X	X	Χ	X	X	Χ	X	X	X	X	Χ	Х	X	Χ	X	X	Χ	7.6	Χ
MW-26	X	X	X	Χ	X	Χ	Χ	X	Χ	Χ	Χ	Х	Χ	Χ	Χ	2.1	X	X	Χ	X	X	Χ	X	X	X	X	Χ	Х	X	Χ	X	X	Χ	7.6	Χ
MW-13B	50	50	50	50	50	50	50	50	6.8	7.2	11.0	5.5	10.0	60.0	60.0	Χ	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	В	20.0	7.6	9.3
MW-14B	Χ	X	X	Χ	Χ	Χ	50	50	3.4	3.4	5.5	5.5	10.0	60.0	60.0	Χ	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	В	20.0	7.6	9.3
MW-15B	Χ	X	X	Χ	Χ	Χ	50	50	3.4	3.4	5.5	5.5	10.0	60.0	60.0	Χ	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	4.69	7.6	9.3
MW-18B	Χ	X	X	X	X	Χ	50	50	3.4	3.4	5.5	5.5	10.0	60.0	60.0	Χ	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	3.72	7.6	9.3
MW-21B	Χ	X	X	X	X	Χ	Χ	X	Χ	Х	Χ	X	Χ	60.0	60.0	Χ	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.2	7.6	9.3
MW-23(D)	X	X	Χ	X	Χ	X	X	Χ	X	X	X	Χ	X	X	X	2.1	Χ	Χ	X	X	Χ	X	X	X	X	Χ	X	Χ	Χ	Χ	X	X	Χ	7.6	Χ
0111										0.7						.,									40.0					40.0					
SW-1	50	50	50	50	50	50	50	50	3.4	6.7	5.5	5.5	10.0	60.0	60.0	Х	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10	20.0	7.6	9.3
SW-5	50	50	50	50	50	50	50	50	4.1	5.8	5.5	5.5	10.0	60.0	60.0	Х	60.0	60.0	60.0	60.0	60.0	60.0	60.0	60.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	В	9.74	7.6	9.3
Sed-1																																			

NYS Class GA Standard for Antimony = 3 ppb NYS Class A Standard for Antimony = 3 ppb
X = No Data

Bold = Non-Detect Italic = Estimated

Exceeds TOGS Standard

Revere Smelting & Refining Summary - Total Cadmium In Groundwater

Well	M-98	J-98	S-98	D-98	M-99	J-99	S-99	D-99	M-00	J-00	S-00	D-00	M-01	J-01	S-01	N-01	D-01	M-02	J-02	S-02	D-02	M-03	J-03	S-03	D-03	M-04	J-04	O-04	D-04	M-05	J-05	S-05	D-05	M-06	J-06
RSR Well	10	10	10	10	10	X	Χ	Χ	Χ	Χ	Χ	X	X	X	X	Χ	Χ	Χ	X	Χ	X	Χ	X	X	Χ	Χ	Χ	X	Χ	Χ	Χ	X	X	Χ	X
MW-07	10	10	10	10	10	10	10	10	0.6	0.4	3.1	3.1	5.0	5.0	5.0	Χ	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-08	10	10	10	10	10	Χ	Χ	Χ	X	Χ	X	X	Χ	Χ	Χ	X	Χ	Χ	Χ	X	X	X	Χ	Χ	Χ	X	Χ	X	Χ	Χ	Χ	Χ	X	Χ	X
MW-08R	Χ	Χ	Χ	Χ	Χ	10	10	10	0.4	0.45	3.1	3.1	5.0	5.0	5.0	Х	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-09	134.5	107.5	101	188	77	70	60	78	151	109	49.2	76.8	132.0	75.6	71.4	Х	90.6	56.2	48.6	73.5	66.0	45.0	75.4	50.0	31.5	35.5	33.0	39.0	18.7	27.8	30.9	43.7	46.5	38.2	35.3
MW-13	10	10	10	10	10	10	10	10	1.2	1.2	9.3	6.2	5.0	5.0	5.0	2.4	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-14	10	10	10	10	10	10	10	10	0.4	0.4	3.1	3.1	5.0	5.0	5.0	X	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-15	10	10	10	10	10	10	10	10	1.5	0.4	3.1	3.1	5.0	5.0	5.0	Χ	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-16	10	10	10	10	10	10	10	10	1.2	0.4	3.1	3.1	5.0	5.0	5.0	X	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-17	10	10	10	10	10	10	10	10	5.4	0.4	3.1	3.1	5.0	5.0	5.0	X	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-18	10	10	10	10	10	10	10	10	0.4	0.4	3.1	3.1	5.0	5.0	5.0	X	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-19	Χ	X	X	X	X	Χ	Χ	Χ	Χ	X	Х	X	Χ	5.0	5.0	Х	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-20	Х	X	X	X	X	Χ	Χ	Χ	Χ	X	Х	X	Χ	91.7	90.9	Х	90.2	95.9	83.2	77.8	75.4	72.9	72.3	66.0	67.5	66.1	63.9	63.0	63.6	60.2	57.4	59.6	57.2	54.2	51.8
PZ-13	X	X	X	X	X	Χ	Χ	Χ	Χ	X	Х	X	Χ	5.0	5.0	X	5.0	5.0	13.6	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-23(S)	Х	Х	Х	Χ	Χ	X	Х	Х	Χ	X	Х	Χ	Х	Х	Х	0.46	Х	Χ	Х	X	X	Х	Х	Х	Χ	Х	X	X	Χ	Χ	X	X	Χ	5.0	X
MW-24	Х	Х	Х	Χ	Χ	X	Х	Х	Χ	Χ	Х	Χ	Х	Х	Х	92.8	Х	Χ	Х	X	X	Χ	Х	Х	Χ	Х	X	X	Χ	Χ	X	X	Χ	37.1	X
MW-25	Χ	Х	Х	Χ	Χ	X	Х	Χ	Х	Χ	Х	Χ	Х	Х	Х	1.4	Χ	Χ	Х	X	X	Χ	Х	Х	Χ	Х	X	Χ	Χ	Χ	X	X	Χ	5.0	X
MW-26	X	X	X	X	X	Χ	Χ	Χ	Χ	X	Х	X	Χ	Χ	X	0.94	X	Χ	Χ	X	X	X	Χ	Χ	X	Х	Χ	Χ	X	X	Χ	Χ	Χ	5.0	X
MW-13B	10	10	10	10	10	10	10	10	0.9	8.0	6.2	3.1	5.0	5.0	5.0	Х	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-14B	Х	Х	Х	Х	Х	Х	10	10	0.4	0.4	3.1	3.1	5.0	5.0	5.0	Х	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-15B	Х	X	Х	Х	Х	Х	10	10	0.4	0.4	3.1	3.1	5.0	5.0	5.0	Х	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-18B	Х	X	Х	Х	Х	Х	10	10	0.5	0.4	3.1	3.1	5.0	5.0	5.0	X	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-21B	Х	Х	Х	Х	Х	Х	Х	Х	X	X	Х	Х	X	5.0	5.0	X	5.0	5.0	5.0	5.0	5.0	10.3	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-23(D)	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0.37	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	5.0	X
																.,																			
SW-1	10	10	10	10	10	10	10	10	0.8	1.4	3.1	3.1	5.0	5.0	5.0	X	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
SW-5	10	10	10	10	10	10	10	10	2.0	0.4	3.1	3.1	5.0	5.0	5.0	X	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	6.3	5.0	5.0	5.0	5.0	5.0	5.0
0-44	•	0.0	4.0	4.0	0.0	0.0	0.0	0.0	0.7		7.0	10.0	0.5	0.4			- 4	0.7	0.0	40.0	4.0	4 7	0.4	7.4	4.0	4.0	0.0	0.00	0.40	0.00	4 7		4.00	0.70	0.40
Sed-1	6	6.0	1.0	1.0	2.0	2.8	3.0	6.0	6.7	4.1	7.6	10.6	2.5	2.4	3.1	Χ	5.4	6.7	2.6	10.6	1.3	1.7	2.1	7.1	1.0	1.9	2.9	0.83	3.10	0.82	1.7	5.5	4.63	6.70	2.40

NYS Class GA Standard for Cadmium = 5 ppb NYS Class A Standard for Lead = 5 ppb
X = No Data

Bold = Non-Detect

Italic = Estimated

Exceeds TOGS Standard

Revere Smelting & Refining Summary - Total Chromium In Groundwater (ppb)

Well	M-98	J-98	S-98	D-98	M-99	J-99	S-99	D-99	M-00	J-00	S-00	D-00	M-01	J-01	S-01	N-01	D-01	M-02	J-02	S-02	D-02	M-03	J-03	S-03	D-03	M-04	J-04	0-04	D-04	M-05	J-05	S-05	D-05	M-06	J-06
RSR Well	10	10	10	20	10	X	X	X	Χ	X	Х	Χ	X	Χ	Χ	Χ	Χ	X	Χ	X	Χ	Χ	Х	X	Χ	Χ	X	Χ	Χ	Χ	Χ	X	Χ	Χ	Χ
MW-07	10	10	10	20	10	10	10	10	0.5	0.5	0.9	0.9	10.0	10.0	10.0	Χ	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
MW-08	10	10	14	20	10	X	X	X	X	Χ	Х	Х	X	X	X	X	X	X	X	X	X	Χ	X	X	X	Χ	X	X	X	X	X	X	Χ	Χ	Χ
MW-08R	Х	Χ	X	Χ	Х	10	10	10	0.5	0.5	0.9	1.1	10.0	10.0	10.0	Х	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
MW-09	10	10	39	21	10	10	10	10	3.0	2.8	1.8	0.9	10.0	10.0	10.0	Х	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	14.3	10.0	10.0	10.0	10.0	10.0	10.0	10.0
MW-13(A)	21	10	14	20	10	10	10	10	1.5	1.5	2.7	1.8	10.0	10.0	10.0	Х	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
MW-14	10	10	10	20	10	10	10	10	0.5	0.5	0.9	0.9	10.0	10.0	10.0	Х	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
MW-15(A)	10	10	10	20	10	10	10	10	1.1	0.5	0.9	0.9	10.0	10.0	133.0	Х	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
MW-16	10	10	15	20	10	10	10	10	1.3	0.5	0.9	0.9	10.0	10.0	10.0	Х	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
MW-17(A)	10	10	10	20	10	10	10	10	0.5	0.5	0.9	0.9	10.0	10.0	10.0	Х	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
MW-18 ′	10	10	10	20	10	10	10	10	0.5	0.5	0.9	0.9	10.0	10.0	18.8	Х	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
MW-19	Χ	Χ	X	Χ	Х	X	X	X	Χ	Χ	X	Х	X	10.0	10.0	Х	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
MW-20	Χ	Χ	X	Χ	Х	X	X	X	Χ	Χ	X	Х	X	10.0	10.0	Х	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
PZ-13	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	10.0	10.0	Х	10.0	14.7	182.0	10.0	10.0	10.0	10.0	10.0	10.0	11.8	42.2	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
MW-23(S)	Х	Χ	X	Χ	X	X	X	X	X	Χ	Х	Х	X	X	X	X	X	X	Х	Х	X	Χ	X	X	X	Χ	Χ	X	X	X	X	X	Χ	10.0	Χ
MW-24	X	Χ	X	Χ	X	X	X	X	X	Χ	Х	Х	X	X	X	X	X	X	X	X	X	Χ	X	X	X	Χ	Χ	X	X	X	X	X	Χ	10.0	Χ
MW-25	X	Χ	X	Χ	X	X	X	X	X	Χ	Х	Х	X	X	X	X	X	X	X	X	X	Χ	X	X	X	X	Χ	X	X	X	X	X	Χ	10.0	Χ
MW-26	X	Χ	X	Χ	X	X	X	X	X	Χ	Х	Х	X	X	X	X	X	X	X	X	X	Χ	X	X	X	X	Χ	Χ	X	X	X	X	Χ	10.0	Χ
MW-13B	10	10	10	20	10	10	10	10	1.0	1.0	1.8	1.8	10.0	10.0	14.5	Χ	10.0	10.0	10.0	10.0	20.2	10.4	10.0	10.0	11.6	11.8	10.0	15.3	10.0	10.0	19.1	19.1	19.1	11.8	15.7
MW-14B	X	Χ	Χ	Χ	X	Χ	10	10	0.5	0.5	0.9	0.9	10.0	10.0	10.0	Χ	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	19.3	10.0
MW-15B	X	Χ	Χ	Χ	X	Χ	10	10	0.5	0.5	0.9	0.9	10.0	10.0	10.0	Χ	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	11.2	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
MW-18B	Χ	Χ	X	Χ	X	X	10	10	0.5	0.5	0.9	0.9	10.0	10.0	10.0	X	10.0	19.7	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	20.7	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
MW-21B	Χ	Χ	X	Χ	X	X	X	X	X	Χ	X	Χ	X	10.0	10.0	X	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	12.9	10.0	10.0	10.0	10.0	10.0
MW-23(D)	Χ	Χ	X	Χ	X	X	X	X	X	Χ	X	Χ	X	X	X	X	X	X	X	X	X	Χ	X	X	X	Χ	Χ	Χ	X	X	X	X	Χ	10.0	Χ
SW-1	10	10	10	10	10	10	10	10	0.5	8.3	0.9	0.9	10.0	10.0	10.0	Х	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
SW-5	10	10	10	10	10	10	10	10	0.5	0.5	0.9	0.9	10.0	10.0	10.0	X	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Sed-1	17	27	20	17	16	18	19	16	17.8	21	13.1	23.7	22.0	13.1	18.3	Χ	17.2	11.8	17.4	17.2	19.6	12.5	19.2	20.2	20.1	20.5	25.8	21.7	18.2	20.6	19.0	24.9	22.7	24.6	22.1

NYS Class GA Standard for Chromium = 50 ppb NYS Class A Standard for Chromium = 50 ppb X = No Data

Bold = Non-Detect

Italic = Estimated

Exceeds TOGS Standard

Revere Smelting & Refining Summary - Total Arsenic In Groundwater(ppb)

Well	M-98	J-98	S-98	D-98	M-99	J-99	S-99	D-99	M-00	J-00	S-00	D-00	M-01	J-01	S-01	N-01	D-01	M-02	J-02	S-02	D-02	M-03	J-03	S-03	D-03	M-04	J-04	0-04	D-04	M-05	J-05	S-05	D-05	M-06	J-06
RSR Well	10	10	10	10	10	Χ	Х	X	Х	Χ	Χ	X	X	X	Χ	X	Χ	Χ	X	X	Х	Χ	X	X	X	X	Х	Χ	Χ	Χ	Χ	Χ	X	Χ	Χ
MW-07	10	10	10	10	10	10	10	10	2.6	2.6	5.3	1.8	10.0	10.0	10.0	X	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
MW-08	10	10	11	10	10	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Х	X
MW-08R	X	X	Х	X	Χ	10	10	10	2.6	2.6	1.8	1.8	10.0	10.0	10.0	Х	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
MW-09	10	10	210	10	10	10	10	10	5.2	5.2	3.6	1.9	10.0	10.1	10.0	X	10.0	10.0	10.0	10.0	11.1	10.0	10.0	11.5	10.0	10.0	10.0	68.1	10.0	10.0	10.2	22.1	10.0	10.0	10.0
MW-13(A)	10	10	10	10	10	10	10	10	7.8	7.8	5.4	3.6	10.0	20.0	10.0	3.1	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	11.4	10.0	10.0	10.0	10.0	10.0
MW-14	10	10	10	10	10	10	10	10	2.6	2.6	1.8	1.8	10.0	10.0	10.0	X	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
MW-15(A)	10	10	10	10	10	10	10	10	2.6	2.6	1.8	1.8	10.0	10.0	37.5	Х	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
MW-16	10	10	10	10	10	10	10	10	2.6	2.6	1.8	1.8	10.0	10.0	10.0	X	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
MW-17(A)	10	10	10	10	10	10	10	10	2.6	2.6	1.8	1.8	10.0	10.0	10.0	X	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
MW-18 ´	10	10	10	10	10	10	10	10	2.6	2.4	1.8	1.8	10.0	10.0	10.0	X	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
MW-19	X	X	X	X	Χ	Χ	X	X	Χ	Х	X	Χ	X	10.0	10.0	Х	10.0	10.0	10.0	10.0	14.5	20.1	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
MW-20	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	10.0	10.0	Х	14.1	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
PZ-13	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	10.0	10.0	Х	10.0	10.0	158.0	10.0	10.0	10.0	21.3	10.0	10.0	10.0	29.7	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
MW-23(S)	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	X	3.3	X	Χ	Х	X	Χ	X	Χ	Χ	Χ	Χ	X	Χ	X	X	Χ	X	X	10.0	X
MW-24	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	2.9	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Χ	10.0	X
MW-25	X	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	4.0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	X	Х	X	X	Х	Х	10.0	X
MW-26	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	3.4	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	10.0	X
MW-13B	10	10	10	10	10	10	10	10	5.2	5.2	3.8	1.8	10.0	10.0	10.0	X	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	16.2	10.0	10.0	10.0	10.0	10.0
MW-14B	Χ	Χ	X	X	X	Χ	10	10	2.6	2.6	1.8	1.8	10.0	10.0	10.0	X	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.3	10.0	10.0	10.0	10.0	10.0
MW-15B	X	Χ	X	X	X	Χ	10	10	2.6	2.6	1.8	1.8	10.0	10.0	10.0	X	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	12.8	10.0	10.0	10.0	10.0	10.0
MW-18B	X	X	Χ	X	X	X	10	10	2.6	2.6	1.8	1.8	10.0	10.0	10.0	Χ	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
MW-21B	X	Χ	X	X	X	Χ	X	X	Χ	X	X	X	X	10.0	17.9	X	19.9	12.1	21.9	21.9	15.1	17.0	10.0	18.8	22.1	15.3	10.7	19.0	17.5	10.0	28.1	50.8	46.8	21.3	14.5
MW-23(D)	X	Χ	X	X	X	Χ	X	X	Χ	X	X	X	X	X	Χ	2.6	X	Χ	X	Χ	X	X	X	X	Х	Χ	X	Χ	X	X	Х	Х	Х	10.0	Х
SW-1	10	10	10	10	10	10	10	10	2.6	6.3	2.6	1.8	10.0	10.0	10.0	Χ	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
SW-5	10	10	10	10	10	10	10	10	2.6	4.0	5.5	2.2	10.0	10.0	10.0	X	13.1	10.0	10.0	10.1	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Sed-1	25	20	45	38	27	30.3	31	41	27.4	35.6	31.3	55.5	81.9	26.9	28.6	X	34.1	11.8	27.2	44.7	33.4	151.0	30.9	20.8	34.8	26.8	44.9	19.1	28.9	20.5	25.5	79.7	49.4	54.9	30.2

NYS Class GA Standard for Arsenic = 25 ppb NYS Class A Standard for Arsenic = 50 ppb X = No Data

Bold = Non-Detect

Italic = Estimated

Exceeds TOGS Standard

Revere Smelting & Refining Summary - Dissolved Lead In Groundwater(ppb)

Well	M-98	M-98	J-98	J-98	S-98	S-98	D-98	D-98	M-99	M-99	J-99	S-99	D-99	M-00	J-00	S-00	D-00	M-01	J-01	S-01	D-01	M-02	J-02	S-02	D-02	M-03	J-03
RSR Well	5	8	5	5	5	5	5	5	5	5	Χ	Χ	X	Χ	Χ	Χ	Χ	Χ	Χ	Χ	X	Χ	X	Χ	Χ	Χ	Χ
MW-07	5	5	5	5	5	5	5	5	5	7	5	5	5	1.7	1.5	1.7	2.2	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-08	5	8	5	5	5	22	5	8	5	7	Χ	Χ	Χ	Χ	Χ	X	Х	Χ	X	Χ	Χ	X	Χ	Χ	Χ	Χ	X
MW-08R	Χ	Χ	X	X	Χ	Χ	X	Χ	Χ	Χ	5	5	5	2.3	1.5	2.5	1.7	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-09	5	6	5	5	18	20	7	7	6	5	5	5	5	26.7	7.8	11.3	6.6	5.0	5.0	5.0	5.0	5.0	10.9	5.0	5.0	5.0	5.0
MW-13(A) 5	5	5	5	5	5	5	5	5	5	5	5	5	8.6	10.5	7.5	8.2	5.0	5.0	5.0	5.0	5.6	8.7	5.0	6.6	8.7	5.5
MW-14	5	5	5	5	5	5	5	5	5	5	5	5	5	1.5	1.5	1.7	1.7	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-15(A) 5	5	5	5	5	5	5	5	5	5	5	5	5	1.5	1.5	1.7	1.7	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-16	5	5	5	5	5	5	5	5	5	5	5	5	5	28.1	1.5	2.1	1.7	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-17(A) 5	5	5	5	5	5	5	5	5	5	5	5	5	1.5	1.6	4.2	1.7	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-18	5	5	5	5	5	5	5	5	5	5	5	5	5	1.5	1.5	1.7	1.7	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-19	Х	Χ	Χ	Х	Χ	Χ	X	Χ	Χ	X	X	Χ	Х	X	Χ	Χ	Χ	Χ	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	6.7
MW-20	X	Χ	Χ	Х	Χ	Χ	X	Χ	Χ	X	X	Χ	Х	X	Χ	Χ	Χ	Χ	12.7	29.5	20.8	20.2	18.7	18.6	21.3	21.1	11.0
PZ-13	Χ	Χ	X	Χ	Χ	Χ	Х	Х	Χ	Х	Χ	Χ	Χ	Х	Χ	Χ	Х	Χ	5.0	5.0	5.0	5.0	8.1	5.0	5.0	5.0	5.0
MW-13B	5	5	5	5	5	5	5	5	5	5	5	5	5	3	5.6	4.1	6.6	5.0	5.0	5.0	5.0	5.0	5.0	16.6	5.0	5.0	5.0
MW-14B	X	Х	X	X	Х	X	Х	X	X	Х	Х	5	5	2.3	1.5	1.7	1.7	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-15B	X	Х	X	X	Х	X	Х	X	X	Х	Х	5	5	1.5	1.8	2.4	1.7	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-18B	Х	Х	Х	Χ	Х	X	Х	Χ	X	Χ	X	5	5	7.5	3.8	2.3	3.4	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
MW-21B	X	Х	Х	Χ	X	Χ	Х	Χ	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	5.0	5.0	5.0	36.2	5.0	5.0	32.7	5.0	16.5
CW 1	•	0	-	0	-	0	00	00	10	co	7	1.1	00	7.0	4.0	F 0	0.0	5 0	F 0	F 0	00.7	10.0	F 4	10.0	0.4	5 0	7.0
SW-1	6	8	5	9 39	5	8	20	28 47	12 27	63 42	, 5	14	22 5	7.0	4.8	5.2	6.9	5.0	5.0	5.0	20.7	12.9	5.1	16.0	9.4	5.0	7.0
SW-5	8	14	33	39	11	14	46	47	21	42	э	41	5	4.5	1.5	1.7	2.9	25.7	5.0	5.0	5.0	5.0	5.0	5.0	5.4	61.6	5.0
Sed-1	Х	Х	Х	Х	Χ	Х	Χ	Х	Х	Х	Х	Χ	Х	Х	Χ	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ
000 1	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^
Filter	0.45 m	10 m	0.45 m	10 m	0.45 m	10 m	0.45 m	10 m	0.45 m	10 m	0.45 m	0.45 m	0.45 m	Χ	Χ	X	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ

NYS Class GA Standard for Lead = 25 ppb NYS Class A Standard for Lead = 50 ppb

X = No Data

Bold = Non-Detect

Italic = Estimated

Exceeds TOGS Standard

Revere Smelting & Refining Summary - Alkalinity In Groundwater (ppm)

Well	M-98	J-98	S-98	D-98	M-99	J-99	S-99	D-99	M-00	J-00	S-00	D-00	M-01	J-01	S-01	N-01	D-01	M-02	J-02	S-02	D-02	M-03	J-03	S-03	D-03	M-04	J-04	O-04	D-04	M-05	J-05	S-05	D-05	M-06	J-06
RSR Well	191.0	216.0	197.0	215.0	219.5	Χ	Χ	X	Χ	Χ	Χ	Χ	Χ	Χ	Х	X	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	X
MW-07	80.7	119.0	199.0	228.0	36.6	179.0	208.0	96.5	37.5	214.0	151.0	190.0	77.3	218.0	220.0	X	201.0	167.0	154.0	231.0	129.0	39.8	90.7	165.0	132.0	86.0	210.0	200.0	82.0	48.4	232.0	235.0	650.0	48.0	128.0
MW-08	80.5	81.9	97.5	111.0	123.0	Х	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Х	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	X
MW-08R	Χ	Х	Х	Χ	Х	110.5	157.0	129.5	134.0	122.5	168.0	140.0	139.0	203.0	221.0	Х	144.0	153.5	174.0	230.0	179.0	113.0	146.0	130.0	114.0	172.0	175.0	188.0	178.0	110.0	128.0	195.0	112.0	109.0	176.0
MW-09	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	5.0	5.0	5.0	5.0	2.0	2.0	2.0	X	2.0	2.0	2.0	2.0	2.0	2.3	2.0	2.0	2.0	2.0	2.0	49.0	2.0	2.0	2.0	83.7	5.0	6.0	75.2
MW-13(A)	122.0	132.0	191.0	220.0	156.0	229.0	212.0	207.0	175.0	236.0	236.0	208.0	163.0	273.0	307.0	290.0	310.0	225.0	202.0	288.0	203.0	187.0	202.0	230.0	196.0	179.0	260.0	220.0	132.0	188.0	294.0	300.0	208.0	118.0	172.0
MW-14	183.0	173.0	186.0	208.0	202.0	178.0	206.0	194.0	163.0	204.0	204.0	180.0	200.0	193.0	194.0	X	184.0	200.0	205.0	200.0	210.0	207.0	195.0	190.0	188.0	189.0	192.0	190.0	192.0	190.0	184.0	192.0	180.0	183.0	180.0
MW-15(A)	65.1	52.0	52.7	74.1	46.2	30.5	61.5	60.9	65.0	89.9	89.9	72.5	73.3	74.3	61.4	Х	52.4	50.6	74.1	61.0	64.3	69.7	86.7	93.3	87.2	88.0	90.0	86.7	116.0	94.3	78.0	63.2	70.0	69.7	75.0
MW-16 Ú	22.7	36.0	82.9	42.5	23.5	25.5	25.5	28.1	22.5	34.0	34.0	31.4	28.0	32.2	26.9	Х	29.3	32.6	33.0	29.7	36.4	41.2	49.6	50.2	42.4	47.0	46.0	58.8	47.1	40.0	50.0	46.2	46.8	36.0	44.2
MW-17(A)	94.0	144.0	218.0	119.0	33.8	186.0	109.0	164.0	158.0	177.0	177.0	147.0	173.0	182.0	241.0	X	153.0	171.0	157.0	141.0	166.0	184.0	173.0	193.0	172.0	175.0	235.0	251.0	190.0	168.0	240.0	256.0	130.0	129.0	151.0
MW-18	8.7	6.2	6.3	12.3	6.1	5.5	25.0	11.0	10.0	5.0	5.0	7.8	14.0	4.5	3.9	X	36.7	17.2	4.6	53.0	10.8	5.5	4.7	4.7	6.0	7.0	4.0	6.0	7.3	6.6	4.2	5.9	7.8	7.7	4.8
MW-19	Χ	X	X	Χ	Χ	X	Χ	Χ	X	Х	X	Χ	Χ	179.0	195.0	X	187.0	175.0	154.0	176.0	189.0	160.0	166.0	197.5	188.0	192.0	180.0	225.0	192.0	177.5	148.0	153.0	191.5	146.0	162.0
MW-20	Χ	X	X	Χ	Χ	X	Χ	Χ	X	Х	X	Χ	Χ	21.9	6.4	X	5.4	2.0	2.2	5.8	12.0	8.0	9.6	8.8	11.0	20.0	10.5	17.0	16.1	21.0	11.0	10.3	21.1	11.3	23.1
PZ-13	Χ	Χ	Х	Χ	Χ	Х	Χ	Х	Χ	Χ	Χ	Χ	Χ	299.0	290.0	Х	288.0	288.0	290.0	294.0	300.0	300.0	232.0	295.0	300.0	313.0	310.0	310.0	320.0	330.0	312.0	300.0	270.0	316.0	296.0
MW-23(S)	Χ	X	X	Χ	Χ	X	Χ	Χ	X	Х	X	Χ	Χ	Χ	Х	460.0	Χ	Χ	Χ	Χ	X	Χ	Χ	Х	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	271.0	Χ
MW-24	Χ	X	X	Χ	Χ	X	Χ	Χ	X	Х	X	Χ	Х	Χ	Х	26.0	Χ	Χ	Χ	Χ	X	Χ	Χ	Х	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	55.8	Χ
MW-25	Χ	X	X	Χ	Χ	X	Χ	Χ	X	Х	X	Χ	Х	Χ	Х	60.0	Χ	Χ	Χ	Χ	X	Χ	Χ	Х	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Х	30.1	Χ
MW-26	Χ	X	X	Χ	Χ	X	Χ	Χ	X	Х	X	Χ	Х	Χ	Х	150.0	Χ	Χ	Χ	Χ	X	Χ	Χ	Х	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Х	150.0	Χ
MW-13B	225.0	207.0	229.0	232.0	232.0	217.0	246.0	250.0	248.0	296.0	296.0	245.0	257.0	262.0	211.0	X	256.0	277.0	274.0	279.0	252.0	265.0	272.0	265.0	268.0	263.0	260.0	260.0	218.0	260.0	244.0	250.0	260.0	300.0	343.0
MW-14B	Χ	Χ	X	Χ	Χ	X	131.0	136.0	103.0	136.0	136.0	137.0	6.3	158.0	154.0	X	179.0	160.0	125.0	167.0	141.0	102.0	112.0	128.0	108.0	117.0	152.0	140.0	128.0	120.0	138.0	171.0	112.0	120.0	121.0
MW-15B	Χ	Χ	X	Χ	Χ	Χ	208.0	210.0	198.0	231.0	231.0	192.0	210.0	209.0	202.0	Х	195.0	209.0	210.0	206.0	203.0	202.0	220.0	220.0	212.0	204.0	220.0	210.0	394.0	210.0	210.0	209.0	200.0	197.0	187.0
MW-18B	Χ	Χ	X	Χ	Χ	Χ	85.0	102.0	103.0	165.0	165.0	167.0	190.0	186.0	180.0	X	162.0	154.0	153.0	164.0	160.0	164.0	180.0	173.0	172.0	135.0	165.0	170.0	170.0	170.0	168.0	162.0	162.0	169.0	161.0
MW-21B	Χ	Χ	X	Χ	Χ	Χ	X	Χ	X	Χ	Χ	Χ	X	270.0	250.0	X	282.0	281.0	230.0	242.0	266.0	237.5	307.0	270.0	276.0	275.0	270.0	270.0	266.0	270.0	270.0	250.0	270.0	274.0	257.0
MW-23(D)	Χ	X	Χ	Χ	Χ	X	Χ	Χ	Χ	X	Χ	Χ	Χ	Χ	Χ	210.0	Χ	Χ	Χ	Χ	X	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	X	168.0	Χ
SW-1	66.3	64.6	104.0	102.0	38.7	73.0	80.8	71.2	55.0	51.0	138.0	99.9	64.0	100.0	102.0	X	104.0	83.2	100.0	97.0	88.0	43.0	92.0	106.0	88.0	76.7	105.0	118.0	51.3	85.0	104.0	114.0	72.4	68.5	103.0
SW-5	26.2	29.7	57.2	55.4	32.5	27.0	69.0	48.8	52.5	53.5	77.0	74.5	38.0	71.7	120.0	Χ	110.0	101.0	54.0	95.7	76.0	12.3	52.8	68.6	56.0	65.7	71.7	80.0	60.6	30.3	64.0	93.3	41.8	54.3	61.6
Sed-1	973.0	1420.0	191.0	Χ	112.0	Χ	270.0	256.0	2000.0	656.0	18000.0	16000.0	855.0	253.0	550.0	X	270.0	241.0	258.0	444.0	367.0	316.0	271.0	626.0	258.0	506.0	1880.0	310.0	885.0	252.0	599.0	256.0	316.0	746.0	902.0

X = No Data **Bold = Non-Detect** *Italic = Estimated*

Revere Smelting & Refining Summary - pH In Groundwater

Well	M-98	J-98	S-98	D-98	M-99	J-99	S-99	D-99	M-00	J-00	S-00	D-00	M-01	J-01	S-01	N-01	D-01	M-02	J-02	S-02	D-02	M-03	J-03	S-03	D-03	M-04	J-04	O-04	D-04	M-05	J-05	S-05	D-05	M-06	J-06	Average
RSR Well	6.53	6.55	6.56	6.41	6.47	Х	X	X	Χ	Х	X	Х	X	X	X	X	X	X	X	X	X	Χ	Х	Х	X	Х	Х	X	Χ	Χ	Χ	X	Χ	Х	Χ	6.50
MW-07	6.19	6.51	6.90	6.98	6.14	7.22	6.88	6.56	5.80	7.0	7.0	7.2	6.57	7.09	7.27	X	7.05	7.05	6.68	7.00	6.57	6.28	6.41	6.75	6.63	6.46	6.92	6.91	6.32	6.13	6.85	7.01	6.16	6.00	6.42	6.67
MW-08	5.99	6.17	6.20	6.48	6.50	Χ	X	X	Х	Χ	X	X	X	X	X	X	X	X	X	X	X	X	Х	Χ	X	X	Χ	X	Х	Χ	Χ	X	Χ	Х	Х	6.27
MW-08R	Х	Х	Х	Χ	Х	6.87	6.83	6.72	6.20	6.6	6.5	6.8	6.31	6.42	6.55	X	6.84	6.81	6.67	6.59	6.35	6.68	6.42	6.15	6.31	6.37	6.34	6.39	6.37	6.32	6.07	6.28	6.19	6.24	6.48	6.47
MW-09	3.90	3.89	3.84	3.97	4.15	4.03	3.79	4.48	4.20	4.0	4.2	5.0	4.05	4.50	4.62	Х	4.55	4.34	4.13	4.30	4.06	4.69	4.14	4.09	4.30	4.36	4.59	5.14	4.38	4.58	6.40	6.91	4.66	4.81	5.95	4.50
MW-13(A)	6.17	6.26	6.34	6.25	6.11	6.59	6.61	6.45	6.40	6.6	6.6	6.4	6.37	6.37	6.58	6.61	6.50	6.27	6.34	6.49	6.55	6.13	6.43	6.29	6.08	6.34	7.55	6.39	6.50	6.37	6.33	6.40	6.32	6.23	6.22	6.41
MW-14	6.98	7.35	7.32	7.25	7.18	7.55	7.81	7.44	6.90	7.5	7.5	7.6	7.40	7.46	7.55	X	7.55	7.44	7.47	7.44	7.40	7.44	7.38	7.45	7.23	7.52	7.52	7.55	7.66	7.55	7.52	7.31	7.44	7.44	7.46	7.43
MW-15(A)	6.35	6.34	6.17	5.83	6.11	6.43	6.08	6.17	6.30	6.7	6.7	6.5	6.39	6.67	6.38	Х	6.17	6.21	6.67	6.26	6.29	6.43	6.80	6.42	6.40	6.07	6.52	6.48	6.58	6.45	6.32	6.23	6.29	6.48	6.44	6.37
MW-16	5.96	5.95	5.98	5.45	5.70	5.83	5.72	5.88	6.10	6.2	6.2	6.1	6.00	6.00	5.71	Х	5.73	5.87	6.18	5.59	5.81	6.27	6.41	6.03	6.15	6.36	6.33	6.15	6.35	6.26	6.14	5.89	6.10	6.24	6.14	6.02
MW-17(A)	6.84	6.90	6.88	6.74	6.79	7.11	6.72	7.21	6.80	7.0	7.0	7.0	7.04	6.95	7.09	Х	6.98	7.14	7.12	6.85	6.85	6.94	7.05	6.80	6.82	7.02	6.90	6.82	6.98	6.98	6.66	6.99	6.86	6.89	7.14	6.94
MW-18	5.35	5.08	5.28	5.31	4.99	5.45	5.77	5.35	5.00	5.5	5.5	5.3	5.43	5.32	5.23	Х	5.76	5.74	5.40	5.78	5.03	5.50	5.42	5.48	5.39	5.64	5.53	5.24	5.28	5.43	5.24	5.20	5.48	5.38	5.40	5.39
MW-19	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	6.78	6.90	Х	6.80	6.64	6.60	6.66	6.70	6.78	6.85	6.83	6.90	6.82	6.76	6.84	6.98	6.92	6.66	6.62	6.84	6.83	7.13	6.80
MW-20	Х	X	Х	X	Х	X	X	X	Х	X	X	Х	Χ	4.79	4.90	Х	4.88	4.77	4.93	4.86	4.88	4.91	4.63	4.86	5.05	5.06	4.98	5.22	4.98	4.94	4.97	4.98	4.87	4.98	4.98	4.92
PZ-13	Х	X	X	X	X	X	X	X	X	X	X	X	Χ	6.66	6.70	Х	6.64	6.52	6.74	6.47	6.47	6.52	7.00	6.55	6.71	6.62	6.63	6.58	6.57	6.51	6.61	6.55	6.53	7.46	6.69	6.65
MW-23(S)	Х	X	X	X	X	X	X	X	X	X	X	X	Χ	Χ	X	6.70	X	Х	Χ	Х	Х	Х	Χ	X	X	X	X	X	X	Χ	X	X	X	6.79	X	6.75
MW-24	Х	X	X	X	X	X	X	X	X	X	X	X	Χ	Χ	X	5.47	Х	Х	Χ	X	X	X	Х	X	X	X	X	X	X	Χ	X	X	X	5.71	Х	5.59
MW-25	Х	X	X	X	X	X	X	X	X	X	X	Х	X	X	X	6.31	Х	Х	X	X	Х	X	X	X	X	Х	X	X	X	X	X	X	X	6.11	Х	6.21
MW-26	X	X	X	X	X	X	X	X	X	X	X	Х	X	X	X	6.28	Х	Х	X	X	Х	X	X	X	Х	Х	X	X	X	X	X	X	X	6.03	Х	6.16
MW-13B	7.04	7.35	7.13	7.14	7.21	7.31	7.64	7.30	6.90	7.3	7.3	7.4	7.22	7.27	7.31	X	7.28	7.09	7.23	7.27	7.15	7.16	7.27	7.16	7.32	7.47	7.24	7.28	7.46	7.31	7.25	7.27	7.22	7.27	7.36	7.26
MW-14B	Х	X	X	X	X	X	6.44	6.47	6.10	6.7	6.7	6.8	6.28	6.78	6.70	X	6.92	6.57	6.42	6.79	6.33	6.30	6.44	6.74	6.37	6.41	6.70	6.50	6.36	6.42	6.34	6.67	6.41	6.37	6.48	6.52
MW-15B	Х	X	X	X	X	X	7.19	7.15	7.30	7.4	7.4	7.3	7.23	7.31	7.57	X	7.18	7.20	7.42	7.35	7.19	7.17	7.26	7.22	7.36	7.08	7.15	7.24	7.54	7.07	7.11	7.26	7.09	7.21	7.22	7.26
MW-18B	Χ	X	X	X	X	X	8.08	7.58	7.10	7.4	7.4	7.4	7.32	7.39	7.32	X	7.38	7.21	7.37	7.42	7.16	7.27	7.31	7.50	7.34	7.35	7.36	7.46	7.40	7.30	7.32	7.31	7.34	7.33	7.40	7.38
MW-21B	X	X	X	Χ	X	X	X	Χ	X	X	Χ	X	X	7.36	7.33	X	7.41	7.25	7.40	7.12	7.16	7.16	6.36	7.27	7.21	7.36	7.31	7.16	7.28	7.20	7.11	7.09	7.11	7.22	7.22	7.19
MW-23(D)	X	X	X	X	X	X	X	X	X	X	X	X	Χ	Χ	X	7.24	X	Х	Χ	X	X	X	Χ	X	X	X	X	X	X	Χ	X	X	X	7.67	Χ	7.46
SW-1	7.78	7.64	7.87	7.87	7.12	7.81	7.36	7.67	7.10	7.2	7.9	8.1	7.77	7.63	7.85	X	7.83	7.71	7.90	7.79	7.61	7.43	7.69	7.99	7.74	7.92	7.84	7.94	7.51	7.90	7.78	7.84	7.78	7.66	7.89	7.72
SW-5	6.98	6.57	6.98	7.16	6.68	7.08	7.04	7.42	6.50	7.1	6.8	7.4	6.79	7.12	7.00	X	7.54	7.61	9.56	6.91	7.01	6.20	7.51	6.68	7.05	6.92	7.14	6.62	7.02	6.39	7.08	6.77	6.81	7.13	7.06	7.05
Sed-1	7.38	7.10	7.95	X	6.91	X	7.56	7.40	7.10	7.4	7.4	7.8	7.21	7.45	7.03	X	7.81	7.93	7.46	7.53	7.10	5.69	7.56	7.41	7.94	7.47	7.52	7.58	7.28	7.35	7.50	7.85	7.02	7.09	7.65	7.39

NYS Class GA Standard for pH = 6.5 to 8.5 NYS Class A Standard for pH = 6.5 to 8.5 X = No Data Exceeds TOGS Standard

Revere Smelting & Refining Summary - Sulfate In Groundwater (ppm)

Well	M-98	J-98	S-98	D-98	M-99	J-99	S-99	D-99	M-00	J-00	S-00	D-00	M-01	J-01	S-01	N-01	D-01	M-02	J-02	S-02	D-02	M-03	J-03	S-03	D-03	M-04	J-04	O-04	D-04	M-05	J-05	S-05	D-05	M-06	J-06
RSR Well	255.0	278.0	193.0	151.0	178.5	X	X	X	Χ	X	X	X	X	Х	X	X	X	X	X	Х	X	X	X	X	X	X	X	X	Χ	X	X	Х	X	X	X
MW-07	17.5	33.8	41.7	73.8	22.8	76.5	67.2	36.8	17.5	84.0	68.0	88.0	22.2	83.8	78.4	X	78.3	76.9	46.3	52.5	43.1	13.2	17.6	70.5	45.7	23.4	76.5	72.2	20.8	13.3	66.5	43.5	13.8	12.1	29.8
MW-08	38.4	60.4	53.8	38.2	42.8	X	X	X	Χ	X	X	X	X	Х	X	X	X	X	X	Х	X	X	X	X	X	X	X	X	Χ	X	X	Х	X	X	X
MW-08R	Χ	X	Х	Х	X	51.4	65.6	37.6	40.7	49.0	47.0	32.0	53.1	63.1	62.8	X	39.0	41.0	54.8	55.2	58.6	56.2	57.1	52.3	53.5	56.6	51.3	56.7	52.0	29.3	44.2	56.6	42.1	38.4	46.7
MW-09	2635.0	4260.0	3580.0	2730.0	2670.0	3540.0	3220.0	1840.0	3470.0	3300.0	2500.0	1480.0	3070.0	3700.0	2070.0	Х	1450.0	2460.0	4420.0	1710.0	3600.0	3320.0	2890.0	3100.0	2730.0	2950.0	2500.0	2570.0	2660.0	2660.0	2380.0	1580.0	2940.0	2600.0	2820.0
MW-13(A)	1640.0	1850.0	2170.0	1920.0	1890.0	1890.0	1900.0	1830.0	1750.0	1900.0	1900.0	1200.0	1770.0	2050.0	2110.0	2300.0	1930.0	2240.0	2100.0	2100.0	2160.0	1920.0	1880.0	1920.0	1810.0	1700.0	1890.0	1910.0	1870.0	1630.0	1940.0	2110.0	2040.0	1690.0	1480.0
MW-14	55.9	56.0	60.3	56.6	66.9	178.0	58.6	45.2	45.6	46.0	46.0	40.0	50.7	51.5	46.1	X	43.2	51.0	50.8	50.6	49.2	51.4	49.9	47.8	48.1	48.4	46.4	49.8	49.9	47.6	48.3	49.1	51.0	48.9	47.4
MW-15(A)	90.8	91.1	151.0	150.0	117.0	30.5	178.0	134.0	108.0	100.0	100.0	76.0	84.6	131.0	144.0	X	172.0	121.0	99.8	162.0	125.0	102.0	104.0	108.0	99.7	94.7	106.0	126.0	84.6	94.1	98.2	114.0	104.0	82.3	104.0
MW-16	72.1	156.0	439.0	297.0	130.0	25.5	477.0	170.0	98.0	96.0	96.0	72.0	85.2	124.0	366.0	Х	438.0	239.0	123.0	402.0	170.0	99.2	113.0	99.3	80.3	76.0	91.4	106.0	71.5	66.4	85.3	170.0	101.0	117.0	143.0
MW-17(A)	32.2	57.3	76.5	68.4	15.4	186.0	74.7	62.3	48.0	49.0	49.0	32.0	50.0	67.0	70.9	X	70.8	67.0	50.6	113.0	59.8	63.0	50.8	53.3	42.6	42.7	62.2	48.5	37.7	32.6	54.1	74.8	34.3	34.6	37.5
MW-18	27.1	25.0	29.6	27.4	31.3	5.5	26.9	31.0	33.2	15.0	15.0	16.0	31.4	22.2	32.6	X	38.4	38.6	30.9	39.0	77.0	30.2	20.4	22.9	24.6	25.5	21.0	20.2	24.2	25.4	22.4	26.4	27.7	21.5	21.9
MW-19	X	X	X	Χ	X	X	X	X	Χ	X	X	Χ	X	112.0	293.0	Х	354.0	359.0	178.0	180.0	123.0	96.2	93.4	84.9	85.2	102.0	99.6	94.1	82.6	80.0	92.2	142.0	80.0	75.7	72.6
MW-20	Х	X	Х	Х	X	X	X	X	Х	X	X	Χ	Χ	3240.0	3400.0	Х	3290.0	3500.0	3360.0	3320.0	3050.0	3040.0	2925.0	2970.0	2820.0	2990.0	2745.0	2645.0	2615.0	2670.0	2650.0	2800.0	2820.0	2660.0	2770.0
PZ-13	Х	X	X	Χ	X	X	X	X	Χ	X	X	Χ	X	866.0	880.0	Х	839.0	894.0	831.0	869.0	855.0	843.0	2540.0	856.0	850.0	901.0	842.0	852.0	817.0	797.0	828.0	784.0	845.0	854.0	832.0
MW-23(S)	Х	X	X	Χ	X	X	X	X	Χ	X	X	Χ	X	Х	X	1500.0	Х	X	X	Х	X	X	Х	X	X	X	X	X	Χ	X	Х	Х	X	515.0	X
MW-24	Х	X	Х	Х	X	X	X	X	X	X	X	Χ	Χ	Х	Χ	2500.0	Х	X	X	Х	X	X	X	X	X	X	X	X	X	X	X	X	X	1790.0	X
MW-25	Χ	X	X	Χ	X	X	X	X	X	Χ	X	Χ	X	Х	X	50.0	Х	X	X	Х	X	X	Х	X	X	X	X	X	Χ	X	Х	Х	X	48.6	X
MW-26	Х	X	X	Χ	X	X	X	X	X	Χ	X	Χ	X	Х	X	330.0	Х	X	X	Х	X	X	Х	X	X	X	X	X	Χ	X	Х	Х	X	307.0	X
MW-13B	1120.0	1510.0	1420.0	1290.0	1240.0	1140.0	25.5	966.0	930.0	900.0	900.0	920.0	959.0	995.0	1160.0	X	983.0	967.0	918.0	928.0	731.0	834.0	774.0	800.0	747.0	634.0	579.0	617.0	547.0	532.0	524.0	593.0	580.0	849.0	1210.0
MW-14B	Х	Х	Х	Х	Х	Х	57.1	53.0	39.4	38.0	38.0	42.0	41.7	50.3	47.8	Х	51.2	53.0	46.7	52.2	46.3	40.8	42.1	42.6	40.0	42.2	43.8	44.7	41.5	40.8	44.4	49.2	43.7	42.7	44.0
MW-15B	X	X	X	X	X	X	154.0	137.0	140.0	130.0	130.0	84.0	120.0	129.0	130.0	X	170.0	144.0	137.0	170.0	162.0	161.0	149.0	152.0	146.0	144.0	142.0	152.0	145.0	125.0	131.0	141.0	146.0	121.0	132.0
MW-18B	Х	Х	Х	Х	Х	Х	82.3	63.7	55.2	52.0	52.0	46.0	67.9	84.7	85.3	X	88.4	87.3	79.5	75.6	40.1	78.9	77.0	73.9	77.1	77.0	74.5	76.8	73.9	74.1	75.6	76.8	76.4	72.7	65.0
MW-21B	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	1590.0	3410.0	Х	1080.0	966.0	1640.0	4140.0	1320.0	1315.0	855.0	919.0	1040.0	958.5	676.0	1140.0	779.0	596.0	5100.0	5990.0	7350.0		
MW-23(D)	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	1300.0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	501.0	X
SW-1	36.4	26.0	45.5	64.5	31.1	28.9	88.6	66.3	29.1	28.0	9.0	36.0	29.1	40.6	33.1	X	61.3	67.0	34.2	73.8	55.3	20.8	25.2	26.4	29.8	27.4	28.4	30.6	24.4	29.9	28.7	29.4	33.7	37.8	29.0
SW-5	56.2	30.4	20.8	49.4	57.3	53.7	95.7	104.0	86.5	78.0	88.0	56.0	66.2	90.9	78.0	Х	93.1	111.0	94.1	90.9	102.0	25.0	78.6	61.9	66.3	86.2	70.1	59.3	63.4	58.2	77.4	79.0	94.1	156.0	121.0
Sed-1	199.0	253.0	135.0	Х	171.0	Х	126.0	118.0	121.0	154.0	3498.0	28000.0	42.7	38.0	41.3	Х	82.0	36.1	38.7	49.4	44.0	169.0	40.6	46.9	38.8	37.0	80.4	80.8	4210.0	3780.0	571.0	25.6	412.0	71.8	368.0

NYS Class GA Standard for Sulfate = 250 ppm NYS Class A Standard for Sulfate = 250 ppm X = No Data

Relation Non-Detect

Italic = Estimated

Exceeds TOGS Standard

Constituent of concern at this location

Revere Smelting & Refining Summary - Total Appendix 33 Inorganics ppm) in MW-13

Constituent	GW Standard	Dec-98	Dec-99	Dec-00	Nov-01	Dec-01	Dec-02	Dec-03	Dec-04	Dec-05
Aluminum	.1 (S)	Χ	Χ	ND	0.207	0.137	4.54	0.100	0.001	0.100
Barium	1	0.028	0.012	0.0132	0.0153	0.020	0.0686	0.02	0.02	0.0204
Berylliem	.003 (G)	Χ	Χ	0.0004	0.00024	0.005	0.005	0.005	0.005	0.005
Boron	1	Χ	Χ	ND	Χ	0.282	0.281	0.259	0.268	0.229
Calcium		Χ	Χ	ND	683.0	625.0	551.0	487.0	455.0	536.0
Cobalt	.005 (S)	0.053	0.047	0.068	0.134	0.104	0.077	0.072	0.0576	0.0619
Copper	0.2	Χ	Χ	0.0042	0.00046	0.020	0.020	0.020	0.020	0.020
Iron	0.3	Χ	Χ	ND	14.5	8.72	32.6	6.42	4.96	5.12
Magnesium	35	Χ	Χ	ND	153.0	139	130.0	116.0	112.0	120.0
Manganese	0.3	Χ	Χ	ND	39.3	35.4	30.1	29.0	29.5	31.0
Mercury	0.0007	Χ	Χ	ND	0.00015	0.0002	0.0002	0.0002	0.0002	0.0002
Nickel	0.1	0.064	0.051	0.0819	0.252	0.177	0.102	0.096	0.0657	0.0913
Potassium		Χ	Χ	ND	3.23	4.0	0.478	3.49	0.0186	3.50
Selenium	0.01	0.019	0.016	ND	0.0182	0.0161	0.005	0.015	0.015	0.0138
Silver	0.05	Χ	Χ	0.0103	0.0001	0.010	0.050	0.010	0.010	0.010
Sodium	20	Χ	Χ	ND	224.0	245.0	314.0	284.0	296.0	315.0
Thallium	0.0005	Χ	Χ	ND	0.0052	0.010	0.010	0.010	0.010	0.010
Tin		Χ	0.200	ND	Χ	0.939	0.500	0.500	0.500	0.670
Vanadium	.014 (S)	Χ	Χ	ND	0.00069	0.050	0.050	0.050	0.050	0.050
Zinc	2	0.02	Χ	0.0204	0.0266	0.0235	0.0289	0.020	0.021	0.0215
Acetone	0.05	0.061	0.010	Х	Х	Х	Х	X	Х	Х

X = No Data

Bold = Non-Detect

Italic = Estimated

Exceeds TOGS Standard

Revere Smelting & Refining Summary - Total Appendix 33 Inorganics (ppm) in MW-14

Constituent	GW Standard	Dec-98	Dec-99	Dec-00	Dec-01	Dec-02	Dec-03	Dec-04	Dec-05
Aluminum	.1 (S)	Χ	Χ	ND	0.100	0.100	0.100	0.100	0.100
Barium	1	0.012	0.082	0.0867	0.0846	0.0834	0.101	0.091	0.0872
Berylliem	.003 (G)	Χ	Χ	0.00043	0.005	0.005	0.005	0.005	0.005
Boron	1	Χ	Χ	ND	0.200	0.200	0.200	0.200	0.200
Calcium		Χ	Χ	ND	91.2	104.0	88.9	92.8	86.2
Cobalt	.005 (S)	0.02	1.02	0.00019	0.050	0.050	0.050	0.050	0.050
Copper	0.2	Χ	Χ	0.0052	0.020	0.020	0.020	0.020	0.020
Iron	0.3	Χ	Χ	ND	0.100	0.100	0.13	0.100	0.100
Magnesium	35	Χ	Χ	ND	10.8	13.4	11.3	11.2	11.2
Manganese	0.3	Χ	Χ	ND	0.321	0.345	0.827	0.337	0.297
Mercury	0.0007	Χ	Χ	ND	0.0002	0.0002	0.0002	0.0002	0.0002
Nickel	0.1	0.04	1.04	0.0021	0.040	0.040	0.040	0.040	0.040
Potassium		Χ	Χ	ND	1.12	2.00	2.00	2.00	2.00
Selenium	0.01	0.01	1.01	ND	0.005	0.005	0.005	0.005	0.010
Silver	0.05	Χ	Χ	0.003	0.010	0.010	0.010	0.010	0.010
Sodium	20	Χ	Χ	ND	12.1	14.6	13.3	14.3	12.8
Thallium	0.0005	Χ	Χ	ND	0.010	0.010	0.010	0.010	0.020
Tin		Χ	0.01	ND	0.500	0.500	0.500	0.500	0.500
Vanadium	.014 (S)	Χ	Χ	ND	0.050	0.050	0.050	0.050	0.050
Zinc	2	0.02	X	0.0061	0.020	0.020	0.020	0.020	0.020
Acetone	0.05	0.024	0.0155	X	Х	Х	X	X	X

X = No Data

Bold = Non-Detect

Italic = Estimated

Exceeds TOGS Standard