Periodic Review Report

Former Consolidated Iron and Metal

EPA Site Number: NY0002455756 NYSDEC Site Number: 336055

Washington Avenue
City of Newburgh
Orange County, New York

Engineers Land Surveyors Planners Environmental & Safety Professionals Landscape Architects

Prepared for:

City of Newburgh 83 Broadway Newburgh, NY 12550

December 2021

Periodic Review Report

Former Consolidated Iron and Metal

EPA Site Number: NY0002455756 NYSDEC Site Number: 336055

Washington Avenue
City of Newburgh
Orange County, New York

December 2021

Proud to be Employee Owned

Engineers Land Surveyors Planners

Environmental & Safety Professionals Landscape Architects

Prepared by:

Chazen Engineering, Land Surveying, Landscape Architecture and Geology Co., D.P.C.
21 Fox Street
Poughkeepsie, New York 12601
(845) 454-3980

Capital District Office (518) 273-0055

North Country Office (518) 812-0513

Table of Contents

1.0		INTRODUCTION	1
	1.1	SITE HISTORY	1
	1.2	SITE MANAGEMENT	2
2.0		ENGINEERING AND INSTITUTIONAL CONTROLS	3
	2.1	SITE INSPECTION	3
	2.2	SITE MONITORING	4
3.0		MONITORING RESULTS	6
	3.1	WATER TABLE	6
	3.2	WATER QUALITY PARAMETERS	7
	3.3	VOLATILE ORGANIC COMPOUNDS – October 11, 2021 Data	7
	3.4	SEMI-VOLATILE ORGANIC COMPOUNDS – October 11, 2021 Data	8
	3.5	LEAD AND ARSENIC	8
	3.6	PCBS & PESTICIDES	9
	3.7	QA/QC Sampling Results	9
4.0		DATA REVEIW10	0
	4.1	VOCS10	0
	4.2	SVOCS	1
	4.3	Lead and Arsenic	1
5.0		SITE EVALUATION	3
	5 1	CONCLUSIONS	2

LIST OF FIGURES

Figure 1: Site Location Map Figure 2: Site Topography Map

Figure 3: Groundwater Elevation Map

LIST OF TABLES

TABLE 1: Laboratory Analytical Results for VOCs TABLE 2: Laboratory Analytical Results for SVOCs TABLE 3: Laboratory Analytical Results for Lead

APPENDICIES

Appendix A: EC/C Certification Form Appendix B: Visual Inspection Logs Appendix C: Site Sampling Logs

Appendix D: October 2021 Laboratory Reports

1.0 INTRODUCTION

At the request of the City of Newburgh, Chazen Engineering, Land Surveying, Landscape Architecture & Geology Co., D.P.C. (Chazen), now a LaBella Associates company, has prepared this Periodic Review Report (PRR) for submission to the United States Environmental Protection Agency (EPA) and the New York State Department of Environmental Conservation (NYSDEC). The report was prepared for the Former Consolidated Iron and Metal Property (the "Site"), located at 1 Washington Street, City of Newburgh, Orange County, New York. A Site Location Map is included as Figure 1.

The PRR was prepared in compliance with NYSDEC DER-10 and the general requirements of the Site Management Plan (SMP) prepared by CT Male, Inc. as approved by the EPA on June 27, 2014. This is the sixth PRR prepared for the Site since completion of the Remedial Action Program.

The annual 2021 sampling event was conducted on the typical schedule, in the 4th quarter of the year. The PRR is submitted before the end of the year although not due until June 15, 2021 to accommodate the City's fiscal year for project budgeting.

The Site is an approximately 8.3-acre parcel of vacant land abutting the western shore of the Hudson River. It is bounded by an active marina to the north, CSX railway and Water Street to the west, and the City Sewer Treatment plant to the south. The site is relatively flat with a slight gentle slope from west to east and an 8-foot high steep embankment at the river's edge. During 2021, the site has continued to be used passively as a mowed public access area and provides a location for a fenced sanitary sewer pumping station at the southwest corner.

1.1 SITE HISTORY

An extensive history of Site operations, investigations, and remedial actions performed to date is included in the approved Site Management Plan. A brief summary is included below:

The Site was historically used as a shipyard from the early 1900s through the 1940s and then for scrap metal collection and reclamation until 1999. The scrap metal operation resulted in the on-site accumulation of hazardous compounds that included volatile and semi-volatile organic compounds, polychlorinated biphenyls, and EPA Priority Pollutant metals.

A number of investigations and removal actions were performed by EPA and NYSDEC between 1998 and 2013 resulting in the removal of above-grade waste and debris, and targeted excavation and off-site disposal of impacted soils from grade to six feet below grade or the water table.

A demarcation barrier-layer and protective clean soil cover system was placed across the site to restrict potential human contact with residually-impacted soils. Original soils remaining on site in areas where excavation was not required meets or is less than Restricted-Residential Use Soil Clean-up Objectives pf 6 NYCRR 375-6.8(b).

Residual groundwater impacts have remained at the Site that exceed ambient water quality standards. Groundwater in the area is not used for potable drinking water and there are no significant downgradient ecological resources.

Potential Soil Vapor Intrusion (SVI) was evaluated during the remedial investigations. There are no onsite buildings at this time. The potential for SVI to adversely impact off-site buildings was determined to be insignificant.

Based on the remedial work completed, the Site was reclassified in August 2014 from Class 2 to Class 4 in the New York State Registry of Inactive Hazardous Waste Sites. This indicates that remediation has been completed to the point where the site no longer poses an immediate threat to human health or the environment. Continued site management is required until all on-site media achieve the Remedial Action Objectives established in the ROD.

1.2 SITE MANAGEMENT

The detailed requirements for Site Management are specified in the SMP and summarized as follows:

- Periodic visual inspection of approved Engineering Controls and appropriate maintenance as warranted;
- Compliance with the approved Institutional Controls with appropriate notification and implementation of protective measures if site uses are altered;
- Periodic monitoring of environmental media to evaluate the continued effectiveness of the remedy; and,
- Periodic reporting

Based on the currently approved schedule included in the SMP, each of the above tasks is completed once annually.

2.0 ENGINEERING AND INSTITUTIONAL CONTROLS

A detailed description of the Engineering and Institutional Controls (EC/ICs) for the Site is included in the SMP and summarized below.

The ECs include:

- A soil cover system (including the shoreline erosion control blanket and drainage); and,
- A site perimeter fence to restrict site access.

The ICs include:

- An environmental easement that requires;
 - o Periodic inspection and maintenance (as required) of the ECs,
 - Periodic monitoring of on-site media;
 - o Restrictions on future Site development and uses;
 - Requirements for modifications to future site uses;
 - Requirements for notification and approval of modifications/disturbance to the ECs;
 - Requirements for evaluation of potential vapor impacts associated with future redevelopment of the Site; and,
- Periodic evaluation of the effectiveness of the remedy.

A visual assessment of ECs for the site was conducted by Chazen personnel on October 11, 2021 and is described in Section 2.1. Periodic sampling of groundwater also occurred on October 11, 2021. The sampling methods and procedures are described in Section 2.2. Laboratory analysis was provided by York Environmental Laboratories. The laboratory results are discussed in Section 3.

The required EC/IC certification is attached in **Appendix A**.

2.1 SITE INSPECTION

The site is rectangular vacant parcel approximately 450 feet wide (east to west) and 800 feet long (north to south) abutting the western shore of the Hudson River. It is a relatively planar site with a gentle dip from west to east. The site is mowed and has pedestrian trails allowing the property to be used as a low-impact public access area. There is a standard 96"-high perimeter security fence on the upland northern, western, and southern property boundary with access gates near the northwest and southwest corners. The shoreline along the river is open but not readily accessible (no landing, with a steep rip-rap embankment). A public access gate is located along the northern security fence.

Visual inspection of the site was performed by Chazen personnel on October 11, 2021. Commencing at the northwest corner of the site, the site perimeter was followed in a counter-clockwise direction to observe the condition of the perimeter fence and erosion control blanket along the river front.

Interior areas were inspected while traversing the site to access the monitoring wells for sampling. A site map with approximate locations of the traverses and photos are included in **Appendix B**.

The following observations were noted during the site walk:

- The perimeter fence appeared to be intact with no evidence of tampering or damage. Vegetation
 in some areas could damage the fence if allowed to continue to grow but has not yet caused an
 issue.
- The eastern boundary abutting the Hudson is steeply sloped with a heavy rip-rap erosion blanket approximately 25 feet wide. Based on the topographic survey, the rip-rap extends from an elevation 8 feet AMSL to approximately 0 feet AMSL. Accumulated driftwood parallel to the shoreline is present up to about 9 feet AMSL. No evidence was observed of any significant scouring or sloughing of the soils from surface drainage or development of surface drainage channels.
- The perimeter of the site is vegetated with small trees and shrubs along the fence line and top of bank along the riverfront. The interior is predominantly an open field with wild grass, flowers, and weeds with a few small scrub bushes. No heavy growth or deep rooting brush, thickets, or trees were observed in the field.
- A gravel walking path installed in 2017 extends from the northern fence line to the shore. Several picnic tables with grills and bleacher seats are located within open mowed areas. The footpaths show no adverse impact of the underlying soil cover system.
- There is a fenced sanitary sewer pumping station on the site near the southwest corner within the perimeter. Chazen understands this station was installed as part a municipal sewer system upgrade completed by the City of Newburgh in 2017.

No evidence of vermin, burrows, or warrens that could potentially damage the protective cover were observed on-site.

2.2 SITE MONITORING

One full round of groundwater samples was collected from eight existing on-site groundwater monitoring wells, consistent with the SMP on October 11, 2021. Two other wells, MW-05 and MW-10, were removed from the annual sampling program in September 2019 with the consent of NYSDEC.

Prior to the sampling event, wells were visually inspected for evidence of damage and/or tampering. They appeared to be intact with no evidence of damage and were secured with locks, locking caps, and friction caps in-place. The depths to water and depths to bottom were then measured with an electronic interface probe to the nearest 0.01 feet and recorded on the field sampling logs.

The depth to bottom measurements were compared to the 2010 construction logs prepared by Geologic. The data indicate no significant siltation in the wells.

Monitoring wells were sampled using low-flow methods using a peristaltic pump at pumping rates ranging from 0.05 to 0.08 gallons per minute, limiting drawdown and allowing sample collection upon documentation of stabilized field parameters. Dedicated sample tubing was used for purging and sample collection at each well.

During the low-flow sampling, the depths to water in the well and Water Quality Parameters (WQPs) were measured and recorded every five-minutes. The WQPs (temperature, pH, specific conductance, oxidation-reduction potential, and dissolved oxygen) were measured with an YSI Professional Plus multi-parameter water quality meter. Pumping continued until drawdown and the WQPs stabilized. The data were recorded on the sampling logs attached in **Appendix C**.

Groundwater samples were collected from the wells into laboratory supplied sample containers, recorded on the chain-of-custody, and placed in ice filled coolers, then transferred to a secure sample refrigerator. Samples were transported directly to the laboratory by courier service. The lab reported that all samples arrived at the lab within the specified holding time and at appropriate temperature.

The groundwater samples were submitted for laboratory analysis in compliance with the sampling and analysis plan included in the SMP. With the approval of NYSDEC effective September 2019 (and modified in 2020), the sampling parameters and methods required for monitoring were changed to include:

CP-51 list of VOCs by Method 8260C CP-51 list of SVOCs by Method 8270D Total lead Total Arsenic (at MW-02 only)

Samples were analyzed using ASP methods with standard Class A deliverable data deliverables.

Quality Control/Quality Assurance samples were collected to evaluate data quality. One Trip Blank, a field duplicate, and a Matrix Spike and Matrix Spike Duplicate were collected during the sampling event.

A Trip Blank was included in each shipment of samples for VOC analysis.

A Field Duplicate and the MS/MSD samples for all analyses were collected from MW-01.

3.0 MONITORING RESULTS

3.1 WATER TABLE

The depths to water from the surveyed measuring point elevations for each well on October 11, 2021, were used to determine the water table elevation in each well. The results are included in the table below.

		Wate	r Table		
		31-Ma	rch-21		
Well	Measuring Point (ft AMSL)	Ground (Surface (ft AMSL)	Stick-Up (feet)	Depth To Water (ft)	Water Table Elevation
MW-01	18.01	15.00	3.01	13.75	4.26
MW-02	13.99	11.17	2.82	11.86	2.13
MW-03	13.26	10.15	3.10	11.48	1.78
MW-04	11.74	8.77	2.98	9.77	1.97
MW-05	11.52	8.45	3.07	9.48	2.04
MW-06	10.50	7.84	2.66	9.10	1.40
MW-07	10.76	7.99	2.77	8.94	1.82
MW-08	10.85	8.14	2.71	9.10	1.75
MW-09	15.69	12.35	3.34	12.61	3.08
MW-10	11.13	8.47	2.66	9.32	1.82
Elevation	in NAVD 88				
AMSL = A	bove Mean Sea	Level			

The data (shaded yellow) were plotted on the site survey map to show the distribution of water elevations across the site. A site survey is included as **Figure 2**.

Based on available Hudson River tidal data for Newburgh, NY the tidal range for October 11, 2021 was:

high tide:4:10 am 2.9 ftlow tide:10:35 am 0.2 fthigh tide:4:37 pm 3.4 ftlow tide:11:34 pm 0.2 ft

Tidal influences on water levels have not been evaluated. However, all groundwater elevations fall within the tidal range except for the upland-most well MW-01. This suggests net groundwater flow is consistently from west to east through the site towards the Hudson River. Figure 3 shows a site water table interpretation, confirming net groundwater gradients toward the tidal Hudson River.

3.2 WATER QUALITY PARAMETERS

Water quality parameters were collected multiple times at each sample location during the sampling event using a hand-held YSI multi-parameter water quality meter. The results are included on the sampling data sheets included in Appendix C.

The final WQPs collected at each well just prior to sampling are included in the table below.

		October 11,	2021 Samp	ling Event							
Well	Temp	рН	SC	ORP	DO	Site					
ID	(°C)		(μS/cm)	(mV)	(mg/l)	Area					
MW-01	16.7	6.70	1880	-139.5	0.24						
MW-02	16.8	6.37	1720	-106.0	0.19	North					
MW-05	Exempt from Monitoring										
MW-06	19.0	7.08	731	-37.6	3.36	Area					
MW-10		Exempt	from Mon	itoring							
MW-03	18.6	6.58	718	-219.4	0.12						
MW-04	17.6	6.74	1127	-117.2	0.13	South					
MW-07	17.3	6.68	1054	-116.2	0.19	Site					
MW-08	18.8	6.65	630	-86.0	0.18	Area					
MW-09	15.7	6.97	1315	-153.8	0.29						

The groundwater chemistry has previously been noted to differentiate geographically into two areas, with five monitoring wells in each area and separated by the deep soil excavation area running east-west across the middle of the Site. Wells in the northern area include MW-1, MW-2, MW-5, MW-6 and MW-10 and wells in the southern area are MW-3, MW-4, MW-7, MW-8 and MW-9. In the October 2021 sampling event, the average WQPs in the north and south groups were very similar with the exception of the DO which was higher than during prior sampling years in the northern group, primarily in MW-6. This parameter can be observed further in future sampling events.

3.3 VOLATILE ORGANIC COMPOUNDS – October 11, 2021 Data

A "hit" summary table for VOCs is included below.

Sample ID	AVMOS	MW-1		MW-2	2	MW-3		MW-4		MW-7		MW-	3	MW-9	
Compound	AWQS	Result	Q	Result	Q	Result	Q	Result	Q	Result Q		Result Q		Result	Q
CP-51 VOCs	CP-51 VOCs ug/L ug/L ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		
1,2,4- Trimethylbenzene	5	0.46	J	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U
1,3,5- Trimethylbenzene	5	1.4		0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U
Benzene	1	14		0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	4.7	
Ethyl Benzene	5	100		0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U
Isopropylbenzene	5	47		0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U
MTBE	10	3.0		0.69		1.0		2.7		2.2		0.41	J	0.20	U
Naphthalene	10	37		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U

Sample ID	AVACC	MW-1		MW-2	2	MW-	3	MW-	4	MW-	7	MW-	8	MW-	9
Compound	AWQS	Result	Q												
CP-51 VOCs	L VOCs ug/L ug/L ug/L			ug/L											
n-Butylbenzene	5	7.1		0.20	U										
n-Propylbenzene	5	98		0.20	U										
o-Xylene	5	0.25	J	0.20	U										
p- and m-Xylenes	5	4.0		0.50	U										
p-Isoppropyltoluene	5	0.60		0.20	U										
Sec-Butylbenzene	5	7.2		0.20	U										
Tert-Butylbenzene	5	0.39		0.20	U										
Toluene	5	3.4		0.20	U										

The table includes any VOC compound detected at any concentration that exceeded the method detection limits, including estimated concentrations.

The laboratory results for all VOCs and qualifier descriptions are included in Table 1.

3.4 SEMI-VOLATILE ORGANIC COMPOUNDS – October 11, 2021 Data

A "hit" summary table for SVOCs is included below.

Sample ID		MW-1	L	MW-	8			
Date	AWQS	10/11/2	021	10/11/2021				
Compound		Result	α	Result	Q			
CP-51 SVOCs	ug/L	ug/L		ug/L				
Benzo(a)anthrancene	0.002	0.0513	U	0.389				
Benzo(a)pyrene	0.002	0.0513	U	0.400				
Benzo(b)fluoranthene	0.002	0.0513	U	0.316				
Benzo(k)fluoranthene	0.002	0.0513	U	0.347				
Chrysene	0.002	0.0513	U	0.368				
Indeno(1,2,3-cd)pyrene	0.002	0.0513	U	0.116				
Naphthalene	10	19.2		0.0526	J			

The table includes any SVOC compound detected at any concentration that exceeded the applicable ambient water quality standard (AWQS). Each of the eight samples collected during this event were non-detectable for the six polyaromatic hydrocarbons (PAHs) shown above, however, the laboratory method detection limit (MDL) was greater than the applicable AWQS of 0.002 μ g/l for these compounds.

The laboratory results for all SVOCs and qualifier descriptions are included in Table 2.

3.5 LEAD AND ARSENIC

The laboratory results for metals and qualifier descriptions are included in **Table 3**.

Total Lead was detected in seven of the eight samples at concentrations exceeding the quantification limit of 1.11 μ g/l. The results for six of those samples were less than the applicable standard but the samples collected from MW-07 was slightly over the standard of 25 μ g/L.

Arsenic was detected in well MW-02 at a concentration of 89.6 ug/L, over the standard of 25 ug/L.

3.6 PCBS & PESTICIDES

Sample analysis for PCBS and/or pesticides was not performed nor required. These parameters were removed from the monitoring program in September 2019 with NYSDEC's approval.

3.7 QA/QC Sampling Results

No VOCs were reported in the Trip Blank,

The results for the field duplicate (CIM-MW-FD) and the parent sample (CIM-MW-01) were very similar, generally within approximately 10% of one another. The only exception was for Naphthalene, which exhibited a difference of 40%.

Analysis of MS/MSD samples indicated good recoveries and comparable results.

The data appears to be representative of actual groundwater conditions on the date of the sampling event. The data have not been independently validated by a third-party chemist, nor is it required.

4.0 DATA REVEIW

The site compounds of concern specified in the SMP include BTEX and MTBE, SVOCs, PCBs, lead and cadmium. The three prior annual sampling events therefore included analyses for TCL-VOCs, TCL-SVOCs, and TAL-Metals, and PCBs. On the basis of monitoring relief approved following the 2019 PRR submittal, the well network of 8 specified monitoring wells was analyzed for the 2021 PRR for the CP-51 lists of VOCs and SVOCs, and Lead. Arsenic was also included in the analysis in well MW-02.

Results for the last four sampling events (October 2018, May 2020, March/April 2021 and October 2021) are compared in the following sections.

4.1 VOCS

Site monitoring well MW-01 is the only well exhibiting a consistent VOC presence over many years. The analyte detections in October of 2021 were below levels detected in 2018 although over those of 2020 and March 2021, and generally consistent with or modestly declining relative to data collected since 2015.

Monitoring Well ID					MW	/-01				
Sampling Date	AWQS (μg/L)	10/2/201	L8	5/12/202	20	3/31/202	21	10/11/2021		
Compound	(P6/ -/	Result Q		Result	Q	Result Q		Result	Q	
Benzene	1	26		2.1		2.0		14		
Ethyl Benzene	5	400	D	23		32		100		
Isopropylbenzene	5	110		5.8		6.9		47		
p- & m- Xylenes	5	9.2		0.60	U	0.50	U	4.0		
Toluene	5	6.2		0.42	J	0.49	J	3.4		

The MTBE historically detected in wells MW-03 and MW-07 at concentrations greater than the applicable standard 10 μ g/l have been less the AWQS standard since 2015 as summarized below. The MTBE concentrations in these two locations continue to decrease.

Date		MW-03	MW-07
Summary of MTBE detections	AWQS (μg/L)	(µg/L)	(μg/L)
10/2/2018		1.7	5.9
5/12/2020	10	1.1	3.9
3/31/2021	10	< 0.20	2.5
10/11/2021		1.0	2.2

Benzene was detected in MW-09 during the October 2021 sampling eventat a concentration of $4.7 \mu g/L$. Benzene has only periodically been detected in this well.

4.2 SVOCS

PAHs were reported at trace (< 1 ug/L) to ultra-trace (< $0.1 \,\mu g/L$) concentrations in samples collected from MW-01, MW-07 and MW-08 and at concentrations greater than their applicable standards (MW-08 only) during the October 2021 sampling event. Wells MW-03 and MW-07, which exhibited somewhat elevated PAH concentrations in March 2021, returned to non-detectable in October 2021. The results from MW-08 remained somewhat elevated and continue to be higher than previous highest results in 2017. These results for MW-08 are unexpected and further observation of this locations in subsequent PRR reviews is recommended since there have been no changes in site activities of condition of the engineered controls.

Naphthalene, a gasoline-range SVOC, was reported at 19.2 μ g/L in 2021 in the sample collected from MW-01. This result is within the same order of magnitude as the historical record. Naphthalene, along with associated BTEX (benzene, toluene, ethyl benzene, xylenes) compounds, have consistently remained below standards in on-site wells located downgradient from MW-01, suggesting controlled natural attenuation of organic compounds.

4.3 Lead and Arsenic

The concentrations of lead from the last five consecutive sampling events are included below. The lead is compared to the AWQS of 25 μ g/L with concentrations in excess of the standard highlighted. Concentrations marked with a "B" flag were identified at trace concentrations in the analytical method blank.

			LEAD: A	WQ	S = 25 μg/	/L						
Monitoring Well	Ju 201		Oct 2018 May 2020 March 2021				April 20)21	Oct 2021			
MW-01	3	U	2.380		1.11	С	1.11	C	NS		1.50	
MW-02	3	U	1.11	U	1.11	U	1.11	U	NS		1.11	U
MW-03	9	В	23.8		4.51		50.9		57.6 52.7	Di	3.94	
MW-04	W-05 3 U 1.49 NS		53.3		5.37		1.11	U	NS		2.43	
MW-05			NS		NS		NS		NS			
MW-06				3.07		NS		7.39				
MW-07	3	U	13.3		4.75		17.2		NS		45.4	
MW-08	43	В	32.1		54.0	54.0 742			45.1 39.5	Di	8.78 6.19	Di
MW-09	3	U	1.11	U	1.45		1.11	U	NS		7.72	
MW-10	3	U	1.11	U	NS		NS		NS		NS	
Hits	2		3		1		2		2		1	
Total	86	5	226		73		815		102.7	7	76	
Average	22	2	32		12		136		51.35	5	13	

The 2021 results for lead are below concentrations previously recorded in most locations with the exception of well MW-07which may be anomalous and should be assessed again in future PRR periods.

Arsenic analysis was resumed at MW-02 during the March 2021 sampling event and again the the October 2021 sample. Arsenic was detected at 89.6 ug/L in October 2021, similar to the 2018 result of 86.0 ug/L, and higher than the 2015 and 2017 results. Data suggest that slightly elevated Arsenic is present in the location of MW-02, and ongoing monitoring is warranted.

Other metals that are not site contaminants of concern that had consistently been reported at levels exceeding AWQSs include magnesium, manganese, and sodium. The source of these metals has not been confirmed; however, they were generally considered benign and have been removed from the monitoring requirements for the Site.

5.0 SITE EVALUATION

5.1 CONCLUSIONS

The Remedial Action Objective for the site is to reduce or eliminate the potential threat to human health and the environment from direct contact with impacted soils and to protect groundwater and surface water from the migration of dissolved site related COCs.

The ECs/ICs implemented appear to be functioning as anticipated.

The soil cover system remains in-place with no evidence of excess erosion, the erosion blanket along the river is intact with no observable evidence of failure or excess erosion. Since the last PRR was completed in 2020, no evidence of soil disturbance was observed within a fenced-in area.

Overall groundwater quality with respect to site related compounds of concern has remained generally stable since the remedy was completed.

There are no active remediation units or systems on site that require evaluation, modification, or maintenance.

The lack of detection of BTEX compounds downgradient from upgradient perimeter wells MW-01 and MW-09 suggests that the standards will be achieved site-wide for BTEX once they are achieved at these wells.

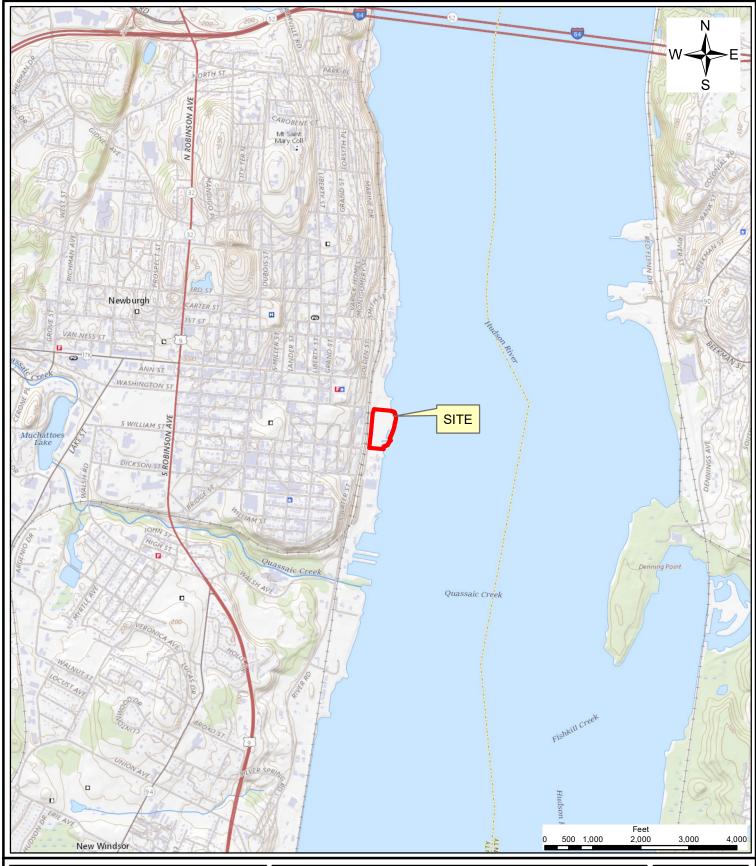
MTBE has not been detected or has remained below the groundwater standard in all site wells since 2015, suggesting that natural attenuation of MTBE is occurring at the.

SVOCs (specifically PAHs) persist in MW-8 near the shoreline and in upgradient well MW-1 and are otherwise below standards across the site.

Elevated lead was noted in one (MW-07) of the eight on-site wells in October of 2021 and arsenic persists in MW-02.

The existing ICs for the site prohibit the use of on-site groundwater as potable water. Additionally, the immediately downgradient receptor of groundwater discharge is the Hudson River. Consequently, sitewide groundwater impacts that exceed applicable AWQSs do not pose a potential threat to human health from potential contact or consumption.

There are no known/previously identified sensitive ecological resources downgradient of the site that could be impacted by the migration of the groundwater. Consequently, site-wide groundwater impacts that exceed applicable AWQSs do not pose a potential threat to the environment.


Based on the data and known site conditions, the EC/ICs for the site are protective and effective at meeting the Remedial Action Goals for the Site. Continued monitoring to document stable or improving conditions is warranted and sufficient.

5.2 RECOMMENDATIONS

Significant modifications to the SMP were recommended in the 2018 PRR and approved in September 2019. Resumed analysis of arsenic at MW-02 was proposed in May 2020 and approved later in 2020.

Chazen recommends continuing the analytical program, as modified, and also continuing annual site inspections. Samples intended for metals analysis where field turbidity readings exceed 50 NTU will continue to be field filtered.

FIGURES

Hudson Valley Office: 21 Fox Street, Poughkeepsie, NY 12601

Capital District Office:

4 British American Boulevard, Latham, NY 12110

North Country Office: 20 Elm Street, Suite 110, Glens Falls, NY 12801

Westchester County Office:

www.chazencompanies.com Phone: (888) 539-9073

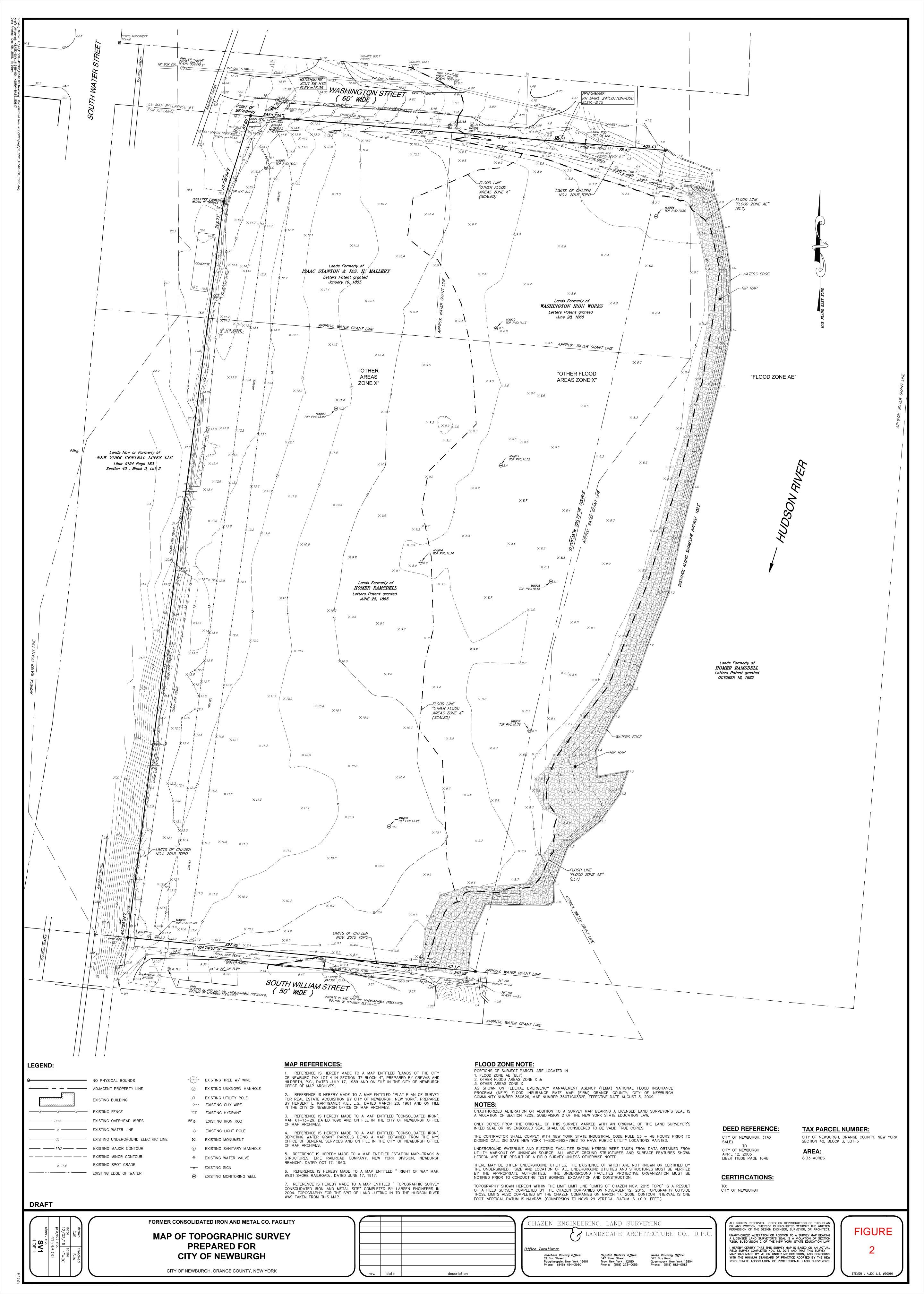

Consolidated Iron and Metal Site

Figure 1: Site Location Map

Washington Avenue City of Newburgh, Orange County, New York

Source: USGS The National Map topographic and political data (server based), accessed 11/18/2021; Orange County Office of Real Property Services 2016 tax parcel data.

rawn:	EJO
ate:	11/18/2021
cale:	1:24,000
roject:	41548.21
igure:	01

Hudson Valley Office: 21 Fox Street, Poughkeepsie, NY 12601

Capital District Office:

4 British American Boulevard, Latham, NY 12110

North Country Office:

20 Elm Street, Suite 110, Glens Falls, NY 12801

Westchester County Office:

1 North Broadway, Suite 803, White Plains, NY 1060

www.chazencompanies.com Phone: (888) 539-9073

Consolidated Iron and Metal Site

Figure 3: Groundwater Elevation Contour Map

Washington Avenue City of Newburgh, Orange County, New York

Source: i-Cubed Nationwide Prime orthoimagery data (server based), accessed 11/18/2021; Orange County Office of Real Property Services 2016 tax parcel data; other site features drawn by Chazen based on field research conducted 2015-2021.

Drawn:	EJO
Date:	11/18/2021
Scale:	1:1,200
Project:	41548.21
Figure:	03

TABLES

TABLE 1 CP-51 VOC RESULTS

Sample ID			MW-0	1	MW-0	2	MW-0	3	MW-0	4	MW-0	6	MW-0	7	MW-0	8	MW-0	9	FD-01 (D	UP)	Trip Bla	ınk
York ID		AWQS	21J0506	-01	21J0506	-02	21J0506	-03	21J0506	-04	21J0506	-05	21J0506	-06	21J0506	-07	21J0506	-08	21J0506	-09	21J0506	-10
Sampling Date		*	11-Oct-	21	11-Oct-	21	8-Oct-2	21														
Client Matrix			Wate	r	Water	r	Water		Water		Water											
Compound	AS Numbe		Result	Q	Result	Q	Result	α	Result	Q	Result	Q	Result	Q								
CP-51 VOCS		ug/L	ug/L		ug/L		ug/L															
Dilution Factor			1		1		1		1		1		1		1		1		1		1	
1,2,4-Trimethylbenzene	95-63-6	5	0.46	J	0.20	U	0.45	J	0.20	U												
1,3,5-Trimethylbenzene	108-67-8	5	1.4		0.20	U	1.3		0.20	U												
Benzene	71-43-2	1	14		0.20	U	4.7		13		0.20	U										
Ethyl Benzene	100-41-4	5	100		0.20	U	93		0.20	U												
Isopropylbenzene	98-82-8	5	47		0.20	U	46		0.20	U												
MTBE	1634-04-4	10	3.0		0.69		1.0		2.7		0.20	U	2.2		0.41	J	0.20	U	3.0		0.20	U
Naphthalene	91-20-3	10	37		1.0	U	37		1.0	U												
n-Butylbenzene	104-51-8	5	7.1		0.20	U	5.4		0.20	U												
n-Propylbenzene	103-65-1	5	98		0.20	U	86		0.20	U												
o-Xylene	95-47-6	5	0.25	J	0.20	U	0.23	J	0.20	U												
p- & m- Xylenes	.79601-23-	5	4.0		0.50	U	3.8		0.50	U												
p-Isopropyltoluene	99-87-6	5	0.60		0.20	U	0.57		0.20	U												
sec-Butylbenzene	135-98-8	5	7.2		0.20	U	7.0		0.20	U												
tert-Butylbenzene	98-06-6	5	0.39	J	0.20	U	0.38	J	0.20	U												
Toluene	108-88-3	5	3.4		0.20	U	3.4		0.20	U												
Xylenes, Total	1330-20-7	5	4.3		0.60	U	4.1		0.60	U												

NOTES:

Any Regulatory Exceedences are color coded by Regulation

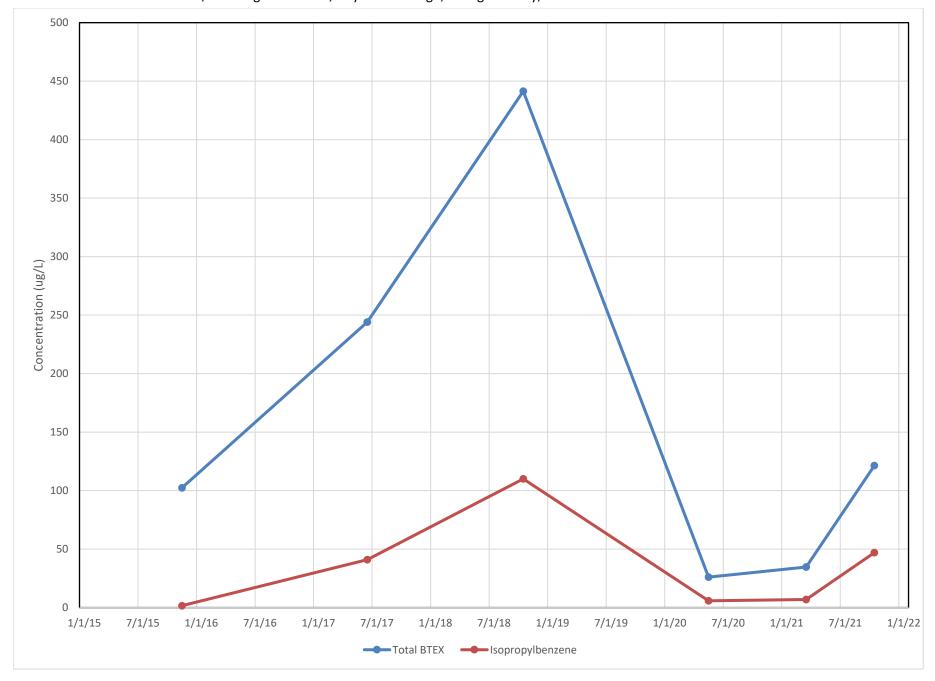
AWQS* = ambient Water Quality standards, Togs v 1.1.1

Q is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated


B=analyte found in the analysis batch blank

E=result is estimated and cannot be accurately reported due to levels encountered or interferences

NT=this indicates the analyte was not a target for this sample

~=this indicates that no regulatory limit has been established for this analyte

Table 1, Graph 1: Select VOC Concentrations in Well MW-01 Consolidate Iron and Metal Site, Washington Avenue, City of Newburgh, Orange County, New York

TABLE 2 CP-51 SVOC Results

Sample ID			MW-0	1	DUP (MW	/-01)	MW-0	2	MW-0	3	MW-0	4	MW-0	6	MW-0	7	MW-0	8	MW-0	9
York ID		*****	21J0506-01 10/11/2021		21J0506-09 10/11/2021		21J0506-02 10/11/2021				21J0506-04 10/11/2021		21J0506-05 10/11/2021		21J0506-06 10/11/2021		21J0506-07 10/11/2021		21J0506-08 10/11/2021	
Sampling Date		AWQS																		
Compound	CAS		Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
CP-51 SVOCs		ug/L	ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L	
Acenaphthene	83-32-9	20	0.185		0.195		0.0513	U	0.0541	U	0.0541	U	0.0513	U	1.02		0.147		0.0541	U
Acenaphthylene	208-96-8	~	0.0513	U	0.0541	U	0.0513	U	0.0541	U	0.0541	U	0.0513	U	0.0526	U	0.0526	J	0.0541	U
Anthracene	120-12-7	50	0.0513	U	0.0541	J	0.0513	U	0.0541	U	0.0541	U	0.0513	U	0.200		0.147		0.0541	U
Benzo(a)anthracene	56-55-3	0.002	0.0513	U	0.0541	U	0.0513	U	0.0541	U	0.0541	U	0.0513	U	0.0526	U	0.389		0.0541	U
Benzo(a)pyrene	50-32-8	0.002	0.0513	U	0.0541	U	0.0513	U	0.0541	U	0.0541	U	0.0513	U	0.0526	U	0.400		0.0541	U
Benzo(b)fluoranthene	205-99-2	0.002	0.0513	U	0.0541	U	0.0513	U	0.0541	U	0.0541	U	0.0513	U	0.0526	U	0.316		0.0541	U
Benzo(g,h,i)perylene	191-24-2	~	0.0513	U	0.0541	U	0.0513	U	0.0541	U	0.0541	U	0.0513	U	0.0526	U	0.0947		0.0541	U
Benzo(k)fluoranthene	207-08-9	0.002	0.0513	U	0.0541	U	0.0513	U	0.0541	U	0.0541	U	0.0513	U	0.0526	U	0.347		0.0541	U
Chrysene	218-01-9	0.002	0.0513	U	0.0541	U	0.0513	U	0.0541	U	0.0541	U	0.0513	U	0.0526	U	0.368		0.0541	U
Dibenzo(a,h)anthracene	53-70-3	~	0.0513	U	0.0541	U	0.0513	U	0.0541	U	0.0541	U	0.0513	U	0.0526	U	0.0526	J	0.0541	U
Fluoranthene	206-44-0	50	0.0513	J	0.0649		0.0513	U	0.0541	U	0.0541	U	0.0513	U	0.558		0.937		0.0541	U
Fluorene	86-73-7	50	0.103		0.119		0.0513	U	0.0541	U	0.0541	U	0.0513	U	0.537		0.105		0.0541	U
Indeno(1,2,3-cd)pyrene	193-39-5	0.002	0.0513	U	0.0541	U	0.0513	U	0.0541	U	0.0541	U	0.0513	U	0.0526	U	0.116		0.0541	U
Naphthalene	91-20-3	10	19.2		17.8		0.0513	U	0.0541	U	0.0541	U	0.0513	U	0.0526	J	0.0526	J	0.0541	U
Phenanthrene	85-01-8	50	0.123		0.151		0.0513	U	0.0541	U	0.0541	U	0.0513	U	1.48		0.526		0.0541	U
Pyrene	129-00-0	50	0.0513	U	0.0541	J	0.0513	U	0.0541	U	0.0541	U	0.0513	U	0.453		0.726		0.0541	U

NOTES:

Any Regulatory Exceedences are color coded by Regulation

Q is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated

~=this indicates that no regulatory limit has been established for this analyte

TABLE 3 Results for Metals

Sample Date 11-Oct-21 Lead by EPA 6020

AWQS 25 $\mu g/L$

Well ID	R	Q
MW-01	1.50	
Dup (MW-01)	1.39	
MW-02	1.11	U
MW-03	3.94	
MW-04	2.43	
MW-05	NS	
MW-06	7.39	
MW-07	45.4	
MW-08	8.78 (6.19 dissolved)	
MW-09	7.72	
MW-10	NS	

Sample Date 31-Mar-21 Arsenic by EPA 6020

AWQS 25 $\mu g/L$

Well ID	R	Q
MW-02	89.6	

NOTES:

Regulatory Exceedences bold and shaded NS = No sample

Q is the Qualifier Column with definitions as follows:

U=analyte not detected at or above the level indicated

APPENDICES

Appendix A

EC/IC Certification Letter

21 Fox Street Poughkeepsie, NY 12601 P: 845.454.3980 or 888.539.9073 www.chazencompanies.com

December 3, 2021

Jason C. Morris, PE City Engineer 83 Broadway Newburgh, New York 12550

Re: Former Consolidated Iron & Metal Site EPA Site Number: NY0002455756 NYSDEC Site Number: 336055

EC/IC Certification – December 2021

Chazen Project No. 41548.21

Dear Mr. Morris;

The following certification is required by NYSDEC for the EC/ICs for the above referenced site. As there are no active remedial systems requiring engineering oversight or review, certification is provided by me, as a Qualified Environmental Professional and NYS Professional Geologist.

For each institutional or engineering control identified for the site, I certify that all of the following statements are true:

- The inspection of the site and sampling data appears to confirm the effectiveness of the institutional and engineering controls required by the remedial program. The inspections conducted during the recent sampling events were performed under my direction;
- The institutional control and/or engineering control employed at this site appear unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has otherwise occurred that would have the obvious potential to impair the ability of the engineering control to protect the public health and environment;
- Nothing has occurred to my knowledge that would constitute a violation or failure to comply with any site management plan for this control;
- The City has indicated that access to the site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- Use of the site appears compliant with the environmental easement;
- The sampling data suggest the engineering control systems are performing as designed and are effective;

Mr. Morris, City Engineer December 3, 2021 Page 2

- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program; and,
- The information presented in this report is accurate and complete.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Russell Urban-Mead of The Chazen Companies, am certifying as Remedial Party's Designated Site Representative. I have been authorized and designated by all site owners/remedial parties to sign this certification for the site.

Sincerely,

Russell Urban-Mead, NYS Professional Geologist No. 412 Senior Hydrogeologist and VP Chazen Environmental Services

cc: Kevin P. McGrath, PG, Chazen

hell Very

Appendix B

Visual Inspection Logs

Page 1 of 4

	Date: 10/11/	/2021
Inspection Personnel: Eric J. Orlowski, PG		
Weather Conditions: Mostly sunny, low to mid 70s, breezy (5 to 10 mph	from the NE)	
Subsurface soils are contaminated by cadmium, lead, total POMTBE) at levels exceeding restricted residential Soil Clean Currently, protection of public health and the environment to provided by an engineered cover system consisting of betweer feet of clean fill underlain by a demarcation barrier. The location depicted on Figure 1 of the Site Management Plan (SMP). measures have been employed to limit the potential for erosion.	up Objective contaminated a 3.5 and mon	es (SCOs). I media is re than 10 r system is
Cover System Inspection		
Has the overall condition of the cover system changed from the previous inspection (if first inspection, respond with N/A)?	Yes	No_X_
If Yes, provide detail and identify on Site Plan		
Is soil cover system adequately vegetated to prevent erosion?	Yes_X_	No
If No, identify locations and provide detail on attached Site Plan		

Page 2 of 4

Is there evidence that the soil cover system has been eroded Yes No_X by wind, water and/or planned or unplanned construction activities? If Yes, identify locations and provide detail on attached Site Plan	_
Is there evidence that the soil cover system has been breached Yes No_X (i.e., areas where surface appears patched, signs of excavation) If Yes, identify locations and provide detail on attached Site Plan	_
Is there evidence that the soil cover system has been breached intentionally by planned site activities? Yes No_X (i.e., areas where surface appears patched, signs of excavation) If Yes, identify locations and provide detail on attached Site Plan	
Is there evidence that the shoreline stabilization measures have been Yes No_X breached (i.e., areas where shoreline appears to be eroded our unstabile)? If Yes, identify locations and provide detail on attached Site Plan	· ·

Page 3 of 4

Have photographs been taken of the cover system and shoreline for inclusion in the site inspection report. If No, give reason	Yes_X_	No
Are the existing groundwater monitoring wells intact and accessible? If No, please describe the condition	Yes_X_	No
Were the groundwater monitoring wells sampled during this inspection? If No, why and when is the next scheduled monitoring well sampling even		No
Are there any violations of the use restrictions observed (e.g., non-community vegetable gardens)? Are the remedy components poinstitutional controls, and that shall also	Yes st-construction,	No_X such as
Has there been any change in the use restrictions on the site or the necessary provisions for ensuring that the easement covenant remains effective? If Yes, list and/or identify	Yes in place and is	No_X_

		Page 4 of 4
Are there any changes to site operations and maintenance requirements for the components of the remedy? If Yes, please describe	Yes	. No <u>x</u>

Hudson Valley Office: 21 Fox Street, Poughkeepsie, NY 12601

Capital District Office:

4 British American Boulevard, Latham, NY 12110

North Country Office: 20 Elm Street, Suite 110, Glens Falls, NY 12801

Westchester County Office: 1 North Broadway, Suite 803, White Plains, NY 1060

Consolidated Iron and Metal Site

Figure B-1: Site Photo Location Map

Washington Avenue City of Newburgh, Orange County, New York

Source: i-Cubed Nationwide Prime orthoimagery program data, server-based, accessed 11/29/2021; Orange County Office of Real Property Services 2016 tax parcel data.

rawn:	EJO
ate:	11/29/2021
cale:	1:1,200
roject:	41548.21
igure:	B-1

Photo #1 Description: View of northern field area of Site, facing east from NW entrance.

Photo #2
Description: View of gravel walking path, western Site area and monitoring well MW-1, facing south.

Photo #3
Description: View of monitoring well MW-09 in sewer pumping station, facing south.

Photo #4
Description: View of site field area, facing southeast toward southern end of site.

Photo #5
Description: View of well MW-06 at northeast corner of site, with groundwater sampling apparatus in place.

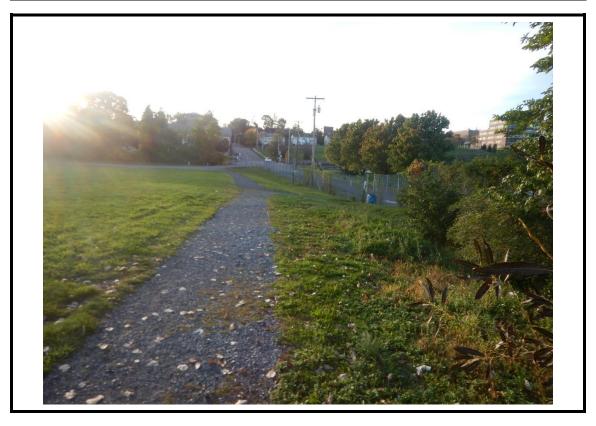


Photo #6
Description: View of northern site area, facing west-northwest.

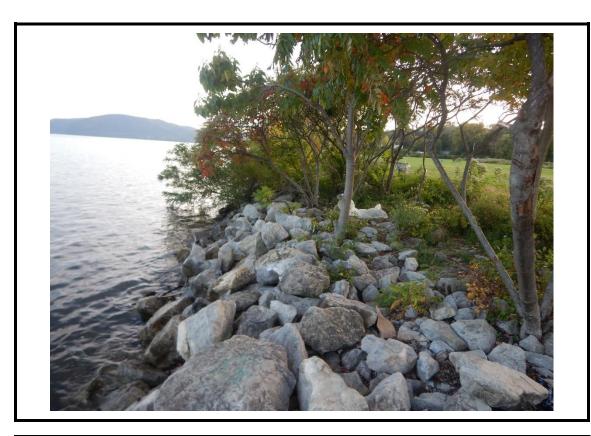


Photo #7
Description: View of eastern Site area, facing southeast, and rip-rap erosion blanket installed along Hudson River frontage.

Photo #8
Description: View of northwestern Site area and secured site access gate.

Appendix C

Site Sampling Logs

SAMPLE I	NFORMAT	TION:										
Sample ID):	ATION: CIM-MW-01 1021 MW-01 Consolidated Iror Newburgh, NY			Sample Ti	me:	11	:42	_	Sample Mati	ix (circle):	
Well ID:		M\	W-01	1	Sample Da	ate:	10/11	L/2021		Groundwater		Soil
Project Na	ame:	Consolid	dated Iron		Sample Te	ch(s):	Orlo	wski	-	Surface Water		Air
Sample Lo	ocation:	Newb	urgh, NY		Project an	d Task #:	4154	48.00		Drinking Water		Other:
					Project Ma	anager:	KM/	'RUM	_			
WELL INF	ORMATIO	N:										
Well Cond	_	Good										
Lock Type	2:	Master					Key #:	3303				
PURGE D	ATA:											
Measurin	g Point:	TO	C-PVC		(B)		Purge Meth	nod:		Low Flow - Perist	altic	
Depth to	Bottom:	22	2.46	Pipe Width	Gal/Foot		Start Date:		•	10/11/2021		
Depth to	Water:	13	3.76	1.0"	0.041		Start Time:		•			
Water Co	lumn Heigl	ht: <i>(A)</i>	8.70	1.5"	0.092		Stop Time:		•			
(depth to bo	ttom - depth	to water)		2.0"	0.163		Purge Rate	(gpm):	11:41 0.075			
				2.5"	0.255		Elapsed Time (min):		•	25		
# of Volur	nes to be F	Purged: (C)		3.0"	0.367		Well Vol. Purged (#):		•	0.33		
			NA	4.0"	0.653		Purge Vol.	(gal):	•	1.88		
				6.0"	1.469		Well went dry?		No	Yes		
Gal. to be	Purged: ('AxBxC)		8.0"	2.611		Conditions		No Odor		Odor	
			NA			ļ			Clear	Slightly-Turbid		Turbid
FIELD RES	:IIITS:			•								
Gal	Date &	Depth to	Temp	SpCond	Cond.	Turbidity	TDS	Odor	DO	рН	ORP	
purged	Time	Water	Water ft deg C							.		
gal		ft	deg C	uS/cm ^c	uS/cm	NTU	g/L		mg/L		mV	
0	11:16	13.76	16.9	2030	1715	4.16	1.3260	None	3.13	6.90	-123.0	
0.38	11:21	13.82	16.3	2049	1708	3.31	1.3325	None	0.70	6.84	-118.2	
0.75	11:26	13.82	16.5	2032	1702	4.42	1.3195	Slight Petroleum	0.37	6.79	-120.0	
1.13	11:31	13.82	16.5	1999	1674	1.94	1.3000	Slight Petroleum	0.27	6.76	-125.0	
1.50	11:36	13.82	16.6	1936	1626	1.62	1.2545	Slight Petroleum	0.25	6.72	-132.4	
1.88	11:41	13.82	16.7	1880	1583	2.30	1.2222	Slight Petroleum	0.24	6.70	-139.5	
SAMPLE I	NFORMAT	TION:		•				•				
Sample M	lethod:	Peri	staltic	(Peristaltic, S	Submersible, D	Dedicated or Dis	p. Bailer, Wate	rra, Dir. Instrui	ment Reading	ı, etc.)		
Sample Ty	ype:	Grab	Composite		Sample De	epth(ft):						
Weather:		Partly Suni	ny		Barometri	c Pres.:		-	Wind:	Breezy (5-10 mg	oh from N	E)
		•	,	•	Air Temp.	(°F):	mid 70s	-	•	,,		·
Notes:	NAC/NACD	set also coll	acted here	•	, cp.,	/.		•				
	ועוט/ ועוטע	set also coll	ected here.									
LAB REQU					A	A-4b- 1				T A 1.T'		
Laborator					Analysis/N		_			Turn Around Time:		
Y	ork Analyti	ical				CP-51 VOC			-	Standa	ırd	
						CP-51 SVOC			-			
						Total Lead		<u> </u>	-			
QA/QC:	Duplicate	t <mark>e</mark> Equip. Blan				Field Blank			Trip Blan	k		

SAMPLE I	NFORMAT	ION:										
Sample ID):	CIM-MW-02 1021 MW-02 Consolidated Iron Newburgh, NY			Sample Ti	me:	12	2:46	_	Sample Mati	ix (circle):	
Well ID:		M	W-02		Sample Da	ate:	10/11	L/2021		Groundwater	1	Soil
Project Na	ame:	Consoli	dated Iron	•	Sample Te	ech(s):	Orlo	owski		Surface Water	4	Air
Sample Lo	ocation:	Newb	urgh, NY	ı	Project an	d Task #:	415	48.00	•	Drinking Water		Other:
					Project M	anager:	KM/	'RUM				
WELL INF	ORMATIO	N:										
Well Cond	_	Good										
Lock Type	2:	Master				•	Key #:	3303				
PURGE D	ATA:											
Measurin	g Point:	TO	C-PVC		(B)		Purge Metl	hod:		Low Flow - Perist	altic	
Depth to	Bottom:	19	9.63	Pipe Width	Gal/Foot		Start Date:		10/11/2021 12:25			
Depth to	Water:	1:	1.99	1.0"	0.041		Start Time:		'			
Water Co	lumn Heigl	nt: <i>(A)</i>	7.64	1.5"	0.092		Stop Time:		·			
(depth to bo	ttom - depth	to water)		2.0"	0.163		Purge Rate	(gpm):	•			
				2.5"	0.255		Elapsed Tir	ne (min):	0.077 20			
# of Volur	nes to be F	Purged: (C)		3.0"	0.367		Well Vol. P	urged (#):	'	0.31		
			NA	4.0"	0.653		Purge Vol.	(gal):	•	1.55		
				6.0"	1.469		Well went dry?		No	Yes		
Gal. to be	Purged: (AxBxC)		8.0"	2.611		Conditions		No Odor		Odor	
			NA						Clear	Slightly-Turbid		Turbid
FIELD RES	IIITC.			•								
Gal	Date &	Depth to	Temp	SpCond	Cond.	Turbidity	TDS	Odor	DO	рН	ORP	
purged	Time		remp	эрсопи	Cona.	Turbluity	103	Outi	ЪО	рп	UNF	
gal		ft deg C		uS/cm ^c	uS/cm	NTU	g/L		mg/L		mV	
0	12:25	11.99	16.8	1729	1457	Moderate	1.1245	Sulfur	1.34	6.36	-99.6	
0.39	12:30	12.18	16.7	1722	1449	6.42	1.1180	Sulfur	0.31	6.37	-104.7	
0.77	12:35	12.18	16.8	1721	1453	0.41	1.1180	Sulfur	0.21	6.37	-105.5	
1.16	12:40	12.18	16.8	1719	1451	0.02	1.1180	Slight Sulfur	0.19	6.37	-105.6	
1.55	12:45	12.18	16.8	1720	1452	0.02	1.1180	Slight Sulfur	0.19	6.37	-106.0	
	NFORMAT	ION:										
Sample M	lethod:		staltic	(Peristaltic, S	Submersible, L	Dedicated or Dis	p. Bailer, Wate	rra, Dir. Instrur	nent Reading	g, etc.)		
Sample Ty	ype:	Grab	Composite		Sample De	epth(ft):		_				
Weather:		Partly Sun	ny		Barometri	c Pres.:		_	Wind:	Breezy (5-10 m	oh from N	E)
					Air Temp.	(°F):	mid 70s	_	'			
Notes:				•	•	, ,	-	-				
LAB REQU	B REQUESTS:											
Laborator	oratory Name:			Analysis/N	Лethod:				Turn Around Time:			
Y	York Analytical				CP-51 VOC		•		Standa	ırd		
						CP-51 SVOC		•				
					Total	Lead, Total	Arsenic	_	•			
QA/QC:	Duplicate	ete Equip. Blank				Field Blank		Trip Blank				

SAMPLE I	NICODRAAT	ION.										
Sample ID			N-03 1021		Sample Ti	ma·	1/1	:15		Sample Matr	ix (circle)	
Well ID:		CIM-MW-03 1021 MW-03 Consolidated Iron Newburgh, NY		-	Sample Da			1/2021	- 1	Groundwater	IX (circic) .	Soil
Project Na	ame:	Consolidated Iron Newburgh, NY		-	Sample Te			wski	_	Surface Water	1	Air
Sample Lo		Newburgh, NY I: Good		-	Project an			48.00	_	Drinking Water		Other:
				=	Project Ma	anager:	KM/	'RUM	_			
WELL INF	ORMATIO	N:										
Well Cond	lition:	Good										
Lock Type	:	Master				-	Key #:	3303	}			
PURGE DA	ATA:											
Measuring	g Point:		C-PVC		(B)	.	Purge Meth	hod:		Low Flow - Perista	altic	
Depth to I			9.50	Pipe Width	Gal/Foot		Start Date:			10/11/2021		
Depth to	Water: lumn Heigl		1.66 7.84	1.0" · 1.5"	0.041		Start Time: Stop Time:			13:39 14:14		
	ttom - depth :	-	7.04	2.0"	0.092 0.163		Purge Rate			0.082		
(acpin to bo	.com acptin	to water,		2.5"	0.255		Elapsed Tin			35		
# of Volun	nes to be F	Purged: (C)		3.0"	0.367		Well Vol. P	urged (#):		0.56		
			NA	4.0"	0.653		Purge Vol.			2.88		1
C-1 +- h-	Division de 1	(APC)		6.0"	1.469		Well went	•	No	Yes		
Gal. to be	Purged: (-	NA	8.0"	2.611		Conditions	:	No Odor Clear	Slightly-Turbid	Odor	Turbid
5151 B B50									0.00.	3g, . a. a.a.		
FIELD RES Gal	Date &	Depth to	Temp	SpCond	Cond.	Turbidity	TDS	Odor	DO	рН	ORP	
purged	Time	Water	Temp	эрсопи	Conu.	Turbluity	103	Odoi		ρπ	OKF	
gal		ft	deg C	uS/cm ^c	uS/cm	NTU	g/L		mg/L		mV	
0	13:39	11.66	18.2	963	838	6.52	0.6240	None	1.71	6.61	-114.3	
0.41	13:44	11.92	17.9	958	827	2.47	0.6240	None	0.39	6.43	-121.2	
0.82	13:49	11.90	18.0	925	800	2.35	0.5980	None	0.22	6.48	-139.7	
1.23	13:54	11.90	18.1	860	744	2.41	0.5590	None	0.16	6.56	-164.7	
1.65	13:59	11.90	18.0	787	682	2.39	0.5135	None	0.14	6.60	-186.9	
2.06	14:04	11.90	18.4	746	652	2.42	0.4810	None	0.13	6.59	-201.6	
2.47	14:09	11.89	18.5	722	632	2.39	0.4680	None	0.12	6.58	-211.2	
2.88	14:14	11.89	18.6	718	631	3.08	0.4680	None	0.12	6.58	-219.4	
SAMPLE II												
Sample M Sample Ty			staltic	(Peristaltic, S			sp. Bailer, Wate	rra, Dir. Instru	ment Reading,	. etc.)		
Weather:	•	Partly Sunr	Composite		Sample De Barometri			-	Wind:	Breezy (5-10 mg	h from N	F)
Weather.		· areiy sain	· 1	=	Air Temp.		mid 70s	•	· · · · · · · · · · · · · · · · · · ·			
Notes:		Partiy Sunny			7 Tempi	(. /.		•				
LAB REQU	JESTS:											
Laborator	-				Analysis/N					Turn Around Time:		
Yo	York Analytical					CP-51 VOC				Standa	rd	
						CP-51 SVOC		-				
04/00	Duplicate Equip. Blank							•	Tuin Din			
QA/QC:	Dublicate		equip. Blank			Field Blank			Trip Blanl	S		

SAMPLE II	NFORMAT	ION:										
Sample ID			V-04 1021		Sample Ti	me:	16	:44		Sample Matr	ix (circle):	
Well ID:				-	Sample Da			/2021	_	Groundwater		Soil
Project Na				=	Sample Te	ech(s):	Orlo	wski	_	Surface Water		Air
Sample Lo	cation:	Newbu	urgh, NY	_	Project an	nd Task #:	4154	48.00	_	Drinking Water		Other:
					Project M	anager:	KM/	RUM	_			
WELL INFO	ORMATIO	N:										
Well Cond	lition:	Good										
Lock Type	:	Master				<u> </u>	Key #:	3303	3			
PURGE DA	ATA:											
Measuring	g Point:	TOO	C-PVC		(B)	_	Purge Meth	nod:		Low Flow - Perista	altic	
Depth to E			3.45	Pipe Width	Gal/Foot		Start Date:			10/11/2021		
Depth to \			.83	1.0"	0.041		Start Time:			16:18		
Water Col		_	8.62	1.5"	0.092		Stop Time:			16:43 0.076		
(depth to bot	ttom - aeptn	to water)		2.0" 2.5"	0.163 0.255		Purge Rate Elapsed Tin			25		
# of Volun	nes to be F	Purged: (C)		3.0"	0.255		Well Vol. P			0.34		
			NA	4.0"	0.653		Purge Vol.			1.90		
				6.0"	1.469		Well went		No	Yes		•
Gal. to be	Purged: (AxBxC)		8.0"	2.611		Conditions		No Odor		Odor	
			NA	_	•	•			Clear	Slightly-Turbid		Turbid
FIELD RES	ULTS:											
Gal	Date &	Depth to	Temp	SpCond	Cond.	Turbidity	TDS	Odor	DO	рН	ORP	
purged gal	Time	Water ft	deg C	uS/cm ^c	uS/cm	NTU	g/L		mg/L		mV	
0	16:18	9.83	18.0	1191	1029	Moderate	0.7735	None	2.55	6.63	-129.6	
0.38	16:23	10.05	17.9	1143	990	49.26	0.7475	None	0.39	6.62	-127.7	
0.76	16:28	10.05	17.8	1133	977	21.17	0.7345	None	0.20	6.65	-116.7	
1.14	16:33	10.05	17.7	1144	984	9.12	0.7410	None	0.15	6.66	-115.6	
1.52	16:38	10.04	17.6	1136	975	4.06	0.7345	None	0.14	6.70	-116.2	
1.90		10.04			967	2.78				6.74		
1.90	16:43	10.04	17.6	1127	907	2.76	0.7345	None	0.13	6.74	-117.1	
									1			
SAMPLE II	NFORMAT	ION:							<u> </u>			
Sample M	ethod:	Peri	staltic	(Peristaltic, S	Submersible, L	Dedicated or Dis	p. Bailer, Wate	rra, Dir. Instru	ment Reading,	etc.)		
Sample Ty	pe:	Grab	Composite		Sample De	epth(ft):		-				
Weather:		Partly Sunr	าง	_	Barometri	ic Pres.:		•	Wind:	Breezy (5-10 mp	h from N	E)
				_	Air Temp.	(°F):	mid 70s	•				
Notes:	otes:											
LAB REQU	JESTS:											
Laborator	y Name:				Analysis/N	Method:				Turn Around Time:		
Yo	ork Analyti	cal				CP-51 VOC		•		Standa	rd	
					CP-51 SVOC		•					
						Total Lead	<u> </u>	·				
QA/QC:	Duplicate		Equip. Blank			Field Blank			Trip Blank	<u> </u>		

CAMDIEII	NFORMAT	ION:										
Sample ID			M-UE 1U51		Sample Tir	me	17	:35		Sample Matri	ix (circle):	
Well ID:		CIM-MW-06 1021 MW-06 Consolidated Iron Newburgh, NY		-	Sample Da			./2021	- [Groundwater		Soil
Project Na	ame:			_	Sample Te			wski		Surface Water	i	Air
Sample Lo				•	Project an			18.00	_	Drinking Water		Other:
i				•	Project Ma	anager:	KM/	RUM	- -			
WELL INFO	ORMATIO	N:		•		•						
Well Cond	lition:	Good										
		24 100					· · · · · · · · · · · · · · · · · · ·	2202				
Lock Type:	:	Master				<u></u>	Key #:	3303				
PURGE DA												
Measuring	_		C-PVC	T	(B)	1	Purge Meth	iod:	-	Low Flow - Perista	ıltic	
Depth to E Depth to V			6.90 7.41	Pipe Width 1.0"	Gal/Foot 0.041	1	Start Date: Start Time:		-	10/11/2021 17:19		
•	water. Iumn Heigh		9.49		0.041	1	Stop Time:		-	17:34		
	ttom - depth t			2.0"	0.163		Purge Rate	(gpm):	-	0.050		
				2.5"	0.255		Elapsed Tim			15		
# of Volum	nes to be P	Purged: (C)		3.0"	0.367	1	Well Vol. Pu		-	0.12		
			NA	4.0"	0.653	4	Purge Vol. (No	0.75		
Gal to be	Purged: (AvRvC)		6.0" 8.0"	1.469 2.611		Well went of Conditions:	•	No No Odor	Yes	Odor	.
001. 10 22	1 61 50 61 1	· -	NA	0.0	2.011	i	Conditions.		Clear	Slightly-Turbid	Outi	Turbid
TITLD DEC				<u>. </u>						- 5 .		-
FIELD RES Gal	Date &	Depth to	Temp	SpCond	Cond.	Turbidity	TDS	Odor	DO	рН	ORP	
purged		1 .	Tellib	эрсона	Cona.	Turbiuity	103	Ouoi		ριι	UNF	
gal	I ft deg C			uS/cm ^c	uS/cm	NTU	g/L		mg/L		mV	
0	17:19	7.41	20.1	661	597	3.44	0.4355	Sulfur	7.25	7.15	34.2	
0.25	17:24	7.56	19.3	727	648	0.02	0.4745	Sulfur	3.53	7.11	31.0	
0.50	17:29	7.63	19.2	731	649	0.02	0.4745	Sulfur	3.30	7.08	36.0	
0.75	17:34	7.73	19.0	731	647	0.02	0.4745	Sulfur	3.36	7.08	37.6	
0.75	17.54	7.73		/51	047	0.02	0.47.43	Juliui	3.30	7.00	37.0	
	 	 		 								
		 		 	\vdash	 			 			
	 	 		 	\vdash	 	1		+ +			
	<u> </u>	 		 	 	 	-		-			
		\vdash			 	 			-			
	NFORMAT			/a				5				
Sample M Sample Ty			istaltic Composite		Submersible, D Sample De	Dedicated or Dis enth(ft):	p. Bailer, Water	ra, Dir. Instrui	nent Reaaing,	etc.)		
Weather:		Partly Sunr	•		Barometri			i	Wind:	Breezy (5-10 mp	h from N	E)
			·1	•	Air Temp.(mid 70s		•			_,
Notes:				•		1 - 7						
ĺ	tes:											
,												
LAB REQU												
	•				Analysis/N		'a			Turn Around Time:	~A	
10	York Analytical					CP-51 VOC		i	-	Standa	ra	
						Total Lead		ı	-			
QA/QC:	Duplicate Equip. Blank					Field Blank			Trip Blank			
QA/QC.	Duplicate	'	Lquip. Dialik			i ieiu bialik			TTIP DIATIK			

SAMPLE I	NFORMAT	ION:										
Sample ID):	CIM-MV	V-07 1021	_	Sample Ti	me:	14	1:53	_	Sample Mat	rix (circle):	
Well ID:				-	Sample Da	ate:	10/13	1/2021	•	Groundwater]	Soil
Project Na	ame:	Consoli	dated Iron	_	Sample Te	ech(s):		owski	-	Surface Water	_	Air
Sample Lo	ocation:	Newb	urgh, NY		Project an			48.00	•	Drinking Water		Other:
					Project M	anager:	KM,	/RUM	•			
WELL INF	ORMATIO	N:										
Well Cond	dition:	Good										
Lock Type	: :	Master				•	Key #:	3303				
PURGE DA	ATA:											
Measurin	g Point:	TO	C-PVC		(B)	•	Purge Met	hod:		Low Flow - Perist		
Depth to			3.52	Pipe Width	Gal/Foot		Start Date:			10/11/2021		
Depth to			.89	1.0"	0.041		Start Time			14:27		
	lumn Heigl		9.63	1.5"	0.092		Stop Time:			14:52		
(depth to bo	ttom - depth	to water)		2.0"	0.163		Purge Rate Elapsed Tir			0.064		
# of Volur	nes to he F	Purged: (C)		2.5" 3.0"	0.255 0.367		Well Vol. P			0.25		
n or voidi	1103 to 50 1		NA	4.0"	0.653		Purge Vol.			1.60		
				6.0"	1.469		Well went	-	No	Yes		
Gal. to be	Purged: (AxBxC)		8.0"	2.611		Conditions	-	No Odor		Odor	
			NA						Clear	Slightly-Turbio		Turbid
FIELD RES	THE.			•						•		
Gal	Date &	Depth to	Temp	SpCond	Cond.	Turbidity	TDS	Odor	DO	рН	ORP	
purged	Time	Water	Temp	эрсона	cona.	Turblatty	103	Odoi	ВО	ρπ	OIII	
gal	11110	ft	deg C	uS/cm ^c	uS/cm	NTU	g/L		mg/L		mV	
0	14:27	8.89	17.8	1088	936	104.9	0.7085	Slight Sulfur	1.65	6.87	-124.4	
0.32	14:32	9.21	17.2	1089	928	23.38	0.7085	Slight Sulfur	0.51	6.73	-117.6	
0.64	14:37	9.25	17.2	1083	921	14.6	0.7020	Slight Sulfur	0.30	6.68	-115.9	
0.96	14:42	9.21	17.3	1073	914	16.98	0.6955	Slight Sulfur	0.23	6.68	-114.8	
1.28	14:47	9.20	17.3	1066	909	9.08	0.6890	Slight Sulfur	0.21	6.67	-115.8	
1.60	14:52	9.19	17.3	1054	898	11.32	0.6825	Slight Sulfur	0.19	6.68	-116.2	
_	NFORMAT	_										
Sample M			staltic	(Peristaltic, S		Dedicated or Dis	p. Bailer, Wate	erra, Dir. Instrun	nent Reading	ı, etc.)		
Sample Ty			Composite		Sample De			_		- /		_,
Weather:		Partiy Suni	ny	-	Barometri			_	Wind:	Breezy (5-10 m	pn from N	E)
Natas		Partly Sunny			Air Temp.	(°F):	mid 70s	_				
Notes:												
	AB REQUESTS:											
-	ory Name:				Amalusia/A	4.46.4				Turn Areund Times		
	oratory Name: York Analytical				Analysis/N	vietnoa: CP-51 VOC:	s			Turn Around Time: Standa	ard	
<u>'</u>	York Analytical					CP-51 SVOC		-		Statius	2. U	
						Total Lead		-				
QA/QC:	Duplicate	e Equip. Blank				Field Blank		_	Trip Blan	<u> </u>		
,, ,,	2 aprilate		-40.b. piailk			c.a Diam			p Diam	•		

SAMPLE I		ION.										
Sample ID			N-08 1021		Sample Ti	ma·	15	5:55		Sample Matri	X (circle)	
Well ID:	·•	CIM-MW-08 1021 MW-08 Consolidated Iron Newburgh, NY			Sample Da			1/2021	-	Groundwater Sumple Water	x (circle).	Soil
Project Na	ame.	in the second se	MW-08 Consolidated Iron Newburgh, NY		Sample Te			owski	-	Surface Water		Air
Sample Lo			Newburgh, NY		Project an	. ,		48.00	•	Drinking Water		Other:
			- 0 /	•	Project M			/RUM	_			
WELL INF	ORMATIO	N:										
Well Cond		Good										
Lock Type	:	Master					Key #:	3303				
PURGE DA						•	,					
Measuring		TOO	C-PVC		(B)		Purge Met	hod:		Low Flow - Perista	ltic	
Depth to I	_		7.60	Pipe Width	Gal/Foot	1	Start Date:			10/11/2021		
Depth to \	Water:	8	3.87	1.0"	0.041		Start Time:	:		15:29		
Water Col	lumn Heigl	nt: <i>(A)</i>	8.73	1.5"	0.092		Stop Time:			15:54		
(depth to bo	ttom - depth	to water)		2.0"	0.163		Purge Rate			0.076		
				2.5"	0.255		Elapsed Tir	, ,		25		
# of Volun	nes to be F	Purged: <i>(C)</i>		3.0"	0.367		Well Vol. P	. ,		0.33		
			NA	4.0"	0.653		Purge Vol.			1.90		ı
Cal ta ba	Durgodi /	AvPvC)		6.0"	1.469		Well went	•	No No Color	Yes	Oden	Ī
Gal. to be	Purgea: (-	NA	8.0"	2.611		Conditions	:	No Odor Clear	Slightly-Turbid	Odor	Turbid
			IVA .	•					Cicai	Slightly-Turbiu		Turbiu
FIELD RES		Donth to	Tomn	CnCond	Cond	Turbidity	TDC	Odor	D0		OPP	
Gal purged	Date & Time	Depth to Water	Temp	SpCond	Cond.	Turbidity	TDS	Odor	DO	pН	ORP	
gal		ft	deg C	uS/cm ^c	uS/cm	NTU	g/L		mg/L		mV	
0	15:29	8.87	19.0	634	560	Moderate	0.4095	Slight Sulfur	2.56	6.88	-72.4	
0.38	15:34	9.13	18.8	631	557	94.26	0.4095	Slight Sulfur	0.51	6.56	-73.4	
0.76	15:39	9.12	18.8	630	556	72.61	0.4095	Slight Sulfur	0.28	6.59	-78.8	
1.14	15:44	9.09	18.8	630	555	64.69	0.4095	Slight Sulfur	0.21	6.61	-82.9	
1.52	15:49	9.06	18.8	630	555	62.11	0.4095	Slight Sulfur	0.20	6.62	-85.1	
1.90	15:54	9.05	18.8	630	556	58.09	0.4095	Slight Sulfur	0.18	6.65	-86.0	
SAMPLE I												
Sample M			staltic	(Peristaltic, S		Dedicated or Dis	p. Bailer, Wate	erra, Dir. Instrui	nent Reading	g, etc.)		
Sample Ty	•		Composite		Sample De			=	\	D	l- 6 N	- \
Weather:		Partiy Suni	Ту	•	Barometri Air Temp.			=	Wind:	Breezy (5-10 mp	n from N	E)
Natas			Partly Sunny			(°F):	mid 70s	-				
Notes:												
LAB REQU	JESTS:											
Laborator	Name:				Analysis/N	Method:				Turn Around Time:		
Yo	ork Analyti	cal				CP-51 VOC	S	_		Standar	·d	
	Total water					CP-51 SVOC		_				
	Dualicata Equip Blank					Total Lead		-				
QA/QC:	Duplicate		Equip. Blank			Field Blank			Trip Blan	k		

SAMPLE II	NFORMAT	ION:										
Sample ID			V-09 1021		Sample Ti	me:	10):18		Sample Matr	ix (circle):	
Well ID:				-	Sample Da			1/2021	•	Groundwater		Soil
Project Na	ct Name: Consolidated Iron ble Location: Newburgh, NY INFORMATION: Condition: Good			=	Sample Te	ech(s):	Orlo	owski	- !	Surface Water	i	Air
Sample Lo	cation:	Newbu	ırgh, NY	_	Project an	nd Task #:	415	48.00	-	Drinking Water		Other:
					Project M	anager:	KM	/RUM				
WELL INFO	ORMATIO	N:										
Well Cond	lition:	Good										
Lock Type	:	Master				<u>.</u>	Key #:	3303				
PURGE DA	ATA:											
Measuring	g Point:		C-PVC		(B)	•	Purge Met	hod:		Low Flow - Perista	ltic	
Depth to E).88	Pipe Width	Gal/Foot		Start Date:			10/11/2021		
Depth to \			2.65 8.23	1.0"	0.041		Start Time:			9:52 10:17		
Water Col		_	8.23	1.5" 2.0"	0.092 0.163		Stop Time: Purge Rate			0.068		
(depth to bot	itom - depth	io water)		2.5"	0.103		Elapsed Tir			25		
# of Volun	nes to be F	Purged: (C)		3.0"	0.367		Well Vol. P			0.32		
		1	NA	4.0"	0.653		Purge Vol.			1.70		
				6.0"	1.469	1	Well went	dry?	No	Yes		
Gal. to be	Purged: (AxBxC)		8.0"	2.611		Conditions	:	No Odor		Odor	
			NA	_					Clear	Slightly-Turbid		Turbid
FIELD RES	ULTS:											
Gal purged	Date & Time	Depth to Water	Temp	SpCond	Cond.	Turbidity	TDS	Odor	DO	рН	ORP	
gal	Tillle	ft	deg C	uS/cm ^c	uS/cm	NTU	g/L		mg/L		mV	
0	9:52	12.65	15.7	1917	1577	23.36	1.2415	Sulfur/ Decay	4.88	6.32	-185.1	
0.34	9:57	12.81	15.6	1451	1190	1.98	0.9425	Sulfur/ Decay	2.13	6.76	-189.5	
0.68	10:02	12.81	15.6	1348	1107	4.13	0.8775	Slight Sulfur	0.58	6.89	-168.2	
1.02	10:07	12.81	15.6	1324	1087	3.22	0.8580	Slight Sulfur	0.33	6.94	-160.2	
1.36	10:12	12.81	15.6	1320	1083	3.41	0.8580	Slight Sulfur	0.31	6.95	-157.0	
1.70	10:17	12.81	15.7	1315	1080	1.09	0.8515	Slight Sulfur	0.29	6.97	-153.8	
-												
SAMPLE II Sample M			staltic	/Paristaltic 9	Submarcible I	Dedicated or Dis	n Pailor Wate	orra Dir Instrur	nant Paadina	atc.l		
Sample Ty			Composite	(FEIISTUILIC, 3	Sample De		p. bullet, wate	iru, Dir. ilistrul	nent nedding,	, ειι.,		
Weather:	•	Partly Sunr	•		Barometri			_	Wind:	Breezy (5-10 mp	h from N	E)
		,	,	•	Air Temp.		mid 70s	-				
Notes:				•	7 Cp.	(. /.		-				
LAB REQU	IFSTS:											
Laborator					Analysis/N	Method:				Turn Around Time:		
	, ork Analyti	cal			, ,	CP-51 VOC	S			Standa	rd	
						CP-51 SVO		- -			_	
						Total Lead		-				
QA/QC:	A/QC: Duplicate Equip. Blank					Field Blank			Trip Blank	ζ		

Appendix D

October 2021 Laboratory Report

Technical Report

prepared for:

Chazen Environmental Services (Poughkeepsie)

21 Fox Street
Poughkeepsie NY, 12601
Attention: Eric Orlowski

Report Date: 10/20/2021

Client Project ID: 41548.21 CONSOLIDATED IRON

York Project (SDG) No.: 21J0506

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418
ClientServices@yorklab.com

Report Date: 10/20/2021

Client Project ID: 41548.21 CONSOLIDATED IRON

York Project (SDG) No.: 21J0506

Chazen Environmental Services (Poughkeepsie)

21 Fox Street Poughkeepsie NY, 12601 Attention: Eric Orlowski

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on October 12, 2021 and listed below. The project was identified as your project: 41548.21 CONSOLIDATED IRON.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
21J0506-01	CIM-MW-01 1021	Water	10/11/2021	10/12/2021
21J0506-02	CIM-MW-02 1021	Water	10/11/2021	10/12/2021
21J0506-03	CIM-MW-03 1021	Water	10/11/2021	10/12/2021
21J0506-04	CIM-MW-04 1021	Water	10/11/2021	10/12/2021
21J0506-05	CIM-MW-06 1021	Water	10/11/2021	10/12/2021
21J0506-06	CIM-MW-07 1021	Water	10/11/2021	10/12/2021
21J0506-07	CIM-MW-08 1021	Water	10/11/2021	10/12/2021
21J0506-08	CIM-MW-09 1021	Water	10/11/2021	10/12/2021
21J0506-09	CIM-FD-001 1021	Water	10/11/2021	10/12/2021
21J0506-10	TRIP BLANK 1021	Water	10/11/2021	10/12/2021

General Notes for York Project (SDG) No.: 21J0506

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Cassie L. Mosher Laboratory Manager

Och I most

Date: 10/20/2021

<u>Client Sample ID:</u> <u>CIM-MW-01 1021</u> <u>York Sample ID:</u> 21J0506-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received21J050641548.21 CONSOLIDATED IRONWaterOctober 11, 2021 11:42 am10/12/2021

Volatile Organics, CP-51 (STARS) Low level

Log-in Notes:

Sample Notes:

Sample Prepare	d by Method: EPA 5030B										
CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Met	Date/Time hod Prepared	Date/Time Analyzed	Analyst
95-63-6	1,2,4-Trimethylbenzene	0.46	J	ug/L	0.20	0.50	1	EPA 8260C	10/13/2021 09:00	10/13/2021 13:56	PD
								Certifications: CTI	DOH,NELAC-NY10854,NE	LAC-NY12058,NJDE	P,PADEP
108-67-8	1,3,5-Trimethylbenzene	1.4		ug/L	0.20	0.50	1	EPA 8260C	10/13/2021 09:00	10/13/2021 13:56	PD
								Certifications: CTI	DOH,NELAC-NY10854,NE	LAC-NY12058,NJDE	P,PADEP
71-43-2	Benzene	14		ug/L	0.20	0.50	1	EPA 8260C	10/13/2021 09:00	10/13/2021 13:56	PD
								Certifications: CTI	DOH,NELAC-NY10854,NE	LAC-NY12058,NJDE	P,PADEP
100-41-4	Ethyl Benzene	100		ug/L	2.0	5.0	10	EPA 8260C	10/13/2021 09:00	10/13/2021 17:43	PD
								Certifications: CTI	DOH,NELAC-NY10854,NE	LAC-NY12058,NJDE	P,PADEP
98-82-8	Isopropylbenzene	47		ug/L	0.20	0.50	1	EPA 8260C	10/13/2021 09:00	10/13/2021 13:56	PD
								Certifications: CTI	DOH,NELAC-NY10854,NE	LAC-NY12058,NJDE	P,PADEP
1634-04-4	Methyl tert-butyl ether (MTBE)	3.0		ug/L	0.20	0.50	1	EPA 8260C	10/13/2021 09:00	10/13/2021 13:56	PD
								Certifications: CTI	DOH,NELAC-NY10854,NE	LAC-NY12058,NJDE	P,PADEP
91-20-3	Naphthalene	37		ug/L	1.0	2.0	1	EPA 8260C	10/13/2021 09:00	10/13/2021 13:56	PD
								Certifications: NE	LAC-NY10854,NELAC-NY	12058,NJDEP,PADEP	•
104-51-8	n-Butylbenzene	7.1		ug/L	0.20	0.50	1	EPA 8260C	10/13/2021 09:00	10/13/2021 13:56	PD
								Certifications: CTI	DOH,NELAC-NY10854,NE	LAC-NY12058,NJDE	P,PADEP
103-65-1	n-Propylbenzene	98		ug/L	2.0	5.0	10	EPA 8260C	10/13/2021 09:00	10/13/2021 17:43	PD
								Certifications: CTI	DOH,NELAC-NY10854,NE	LAC-NY12058,NJDE	P,PADEP
95-47-6	o-Xylene	0.25	J	ug/L	0.20	0.50	1	EPA 8260C	10/13/2021 09:00	10/13/2021 13:56	PD
								Certifications: CTI	DOH,NELAC-NY10854,NE	LAC-NY12058,PADE	P
179601-23-1	p- & m- Xylenes	4.0		ug/L	0.50	1.0	1	EPA 8260C	10/13/2021 09:00	10/13/2021 13:56	PD
								Certifications: CTI	DOH,NELAC-NY10854,NE	LAC-NY12058,PADE	EP.
99-87-6	p-Isopropyltoluene	0.60		ug/L	0.20	0.50	1	EPA 8260C	10/13/2021 09:00	10/13/2021 13:56	PD
								Certifications: CTI	DOH,NELAC-NY10854,NE	LAC-NY12058,NJDE	P,PADEP
135-98-8	sec-Butylbenzene	7.2		ug/L	0.20	0.50	1	EPA 8260C	10/13/2021 09:00	10/13/2021 13:56	PD
								Certifications: CTI	DOH,NELAC-NY10854,NE	LAC-NY12058,NJDE	P,PADEP
98-06-6	tert-Butylbenzene	0.39	J	ug/L	0.20	0.50	1	EPA 8260C	10/13/2021 09:00	10/13/2021 13:56	PD
								Certifications: CTI	DOH,NELAC-NY10854,NE	LAC-NY12058,NJDE	P,PADEP
108-88-3	Toluene	3.4		ug/L	0.20	0.50	1	EPA 8260C	10/13/2021 09:00	10/13/2021 13:56	PD
								Certifications: CTI	DOH,NELAC-NY10854,NE	LAC-NY12058,NJDE	P,PADEP
1330-20-7	Xylenes, Total	4.3		ug/L	0.60	1.5	1	EPA 8260C	10/13/2021 09:00	10/13/2021 13:56	PD
								Certifications: CTI	DOH,NELAC-NY10854,NE	LAC-NY12058,NJDE	P
	Surrogate Recoveries	Result		Acc	eptance Rang	e					
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	83.4 %			69-130						
2037-26-5	Surrogate: SURR: Toluene-d8	90.7 %			81-117						
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	97.9 %			79-122						

Semi-Volatiles, CP-51 (formerly STARS)-Low Level

Log-in Notes:

Sample Notes:

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 4 of 42

Client Sample ID: CIM-MW-01 1021 **York Sample ID:** 21J0506-01

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

21J0506

41548.21 CONSOLIDATED IRON

Water

October 11, 2021 11:42 am

10/12/2021

Sample Prepared by Method: EPA 3510C

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Date/Time ethod Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	0.185		ug/L	0.0513	0.0513	1	EPA 8270D	10/15/2021 13:06	10/19/2021 11:12	KH
								Certifications: C	CTDOH,NELAC-NY10854,NJD	EP,PADEP	
208-96-8	Acenaphthylene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications: C	10/15/2021 13:06 TDOH,NELAC-NY10854,NJDI	10/19/2021 11:12 EP,PADEP	KH
120-12-7	Anthracene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications: C	10/15/2021 13:06 TDOH,NELAC-NY10854,NJDI	10/19/2021 11:12 EP,PADEP	KH
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications: C	10/15/2021 13:06 TDOH,NELAC-NY10854,NJDI	10/19/2021 11:12 EP,PADEP	KH
50-32-8	Benzo(a)pyrene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications: C	10/15/2021 13:06 TDOH,NELAC-NY10854,NJDI	10/19/2021 11:12 EP,PADEP	KH
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications: C	10/15/2021 13:06 TDOH,NELAC-NY10854,NJDI	10/19/2021 11:12 EP,PADEP	KH
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications: C	10/15/2021 13:06 TDOH,NELAC-NY10854,NJDI	10/19/2021 11:12 EP,PADEP	KH
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications: C	10/15/2021 13:06 TDOH,NELAC-NY10854,NJDI	10/19/2021 11:12 EP,PADEP	KH
218-01-9	Chrysene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications: C	10/15/2021 13:06 TDOH,NELAC-NY10854,NJDI	10/19/2021 11:12 EP,PADEP	KH
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications: C	10/15/2021 13:06 TDOH,NELAC-NY10854,NJDI	10/19/2021 11:12 EP,PADEP	KH
206-44-0	Fluoranthene	0.0513	J	ug/L	0.0513	0.0513	1	EPA 8270D	10/15/2021 13:06	10/19/2021 11:12	KH
								Certifications: C	CTDOH,NELAC-NY10854,NJD	EP,PADEP	
86-73-7	Fluorene	0.103		ug/L	0.0513	0.0513	1	EPA 8270D	10/15/2021 13:06	10/19/2021 11:12	KH
								Certifications: C	CTDOH,NELAC-NY10854,NJD	EP,PADEP	
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications: C	10/15/2021 13:06 TDOH,NELAC-NY10854,NJDI	10/19/2021 11:12 EP,PADEP	KH
91-20-3	Naphthalene	19.2		ug/L	0.0513	0.0513	1	EPA 8270D	10/15/2021 13:06	10/19/2021 11:56	KH
	N								CTDOH,NELAC-NY10854,NJD		
85-01-8	Phenanthrene	0.123		ug/L	0.0513	0.0513	1	EPA 8270D	10/15/2021 13:06	10/19/2021 11:12	KH
129-00-0	Pyrene	ND		ug/L	0.0513	0.0513	1	EPA 8270D	TDOH,NELAC-NY10854,NJD 10/15/2021 13:06 TDOH,NELAC-NY10854,NJDI	10/19/2021 11:12	КН
	Surrogate Recoveries	Result		Acc	eptance Rang	e					
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	93.8 %			50.2-113						
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	86.5 %			39.9-105						
1718-51-0	Surrogate: SURR: Terphenyl-d14	77.2 %			30.7-106						
	Sm. 108arc. Soldt. Terpnenyi uli	//.2/0			50.7 100						

Lead by EPA 6020

Sample Prepared by Method: EPA 3015A

Log-in Notes:

Sample Notes:

CAS N	0.	Parameter	Result	Flag	Units	Reported LOQ	Dilution	Reference M	lethod	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		1.50		ug/L	1.11	1	EPA 6020B		10/19/2021 09:56	10/19/2021 18:35	BML
								Certifications:	CTDOH.N	ELAC-NY10854.NJD	EP.PADEP	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

Page 5 of 42

Client Sample ID: CIM-MW-02 1021

York Sample ID: 21J0506-02

<u>York Project (SDG) No.</u> <u>Client Project ID</u> 21J0506 41548.21 CONSOLIDATED IRON Matrix Collection Date/Time
Water October 11, 2021 12:46 r

Date Received

October 11, 2021 12:46 pm 10/12/2021

Volatile Organics, CP-51 (STARS) Low level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 12:12 AC-NY12058,NJDEP	PD PADEP
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 12:12 AC-NY12058,NJDEP	PD PADEP
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 12:12 AC-NY12058,NJDEP	PD PADEP,
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 12:12 AC-NY12058,NJDEP	PD PADEP,
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 12:12 AC-NY12058,NJDEP	PD PADEP
1634-04-4	Methyl tert-butyl ether (MTBE)	0.69		ug/L	0.20	0.50	1	EPA 8260C		10/14/2021 09:00	10/14/2021 12:12	PD
								Certifications:	CTDOH,N	IELAC-NY10854,NEL	AC-NY12058,NJDE	P,PADEP
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	NELAC-N	10/14/2021 09:00 Y10854,NELAC-NY12	10/14/2021 12:12 2058,NJDEP,PADEP	PD
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 12:12 AC-NY12058,NJDEP	PD PADEP
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 12:12 AC-NY12058,NJDEP	PD PADEP
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 12:12 AC-NY12058,PADEF	PD
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 12:12 AC-NY12058,PADEF	PD
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 12:12 AC-NY12058,NJDEP	PD PADEP
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 12:12 AC-NY12058,NJDEP	PD PADEP
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 12:12 AC-NY12058,NJDEP	PD PADEP
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 12:12 AC-NY12058,NJDEP	PD PADEP
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 12:12 AC-NY12058,NJDEP	PD
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	107 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	89.8 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	97.9 %			79-122							

Semi-Volatiles, CP-51 (formerly STARS)-Low Level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3510C

					Reported to			Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	LOD/MDL LOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientServices@

Client Sample ID: CIM-MW-02 1021 **York Sample ID:** 21J0506-02

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 41548.21 CONSOLIDATED IRON October 11, 2021 12:46 pm 21J0506 Water 10/12/2021

Semi-Volatiles, CP-51 (formerly STARS)-Low Level

Log-in Notes: Sample Notes:

Sample Prepared by Method: EPA 3510	510C
-------------------------------------	------

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 21:34 EP,PADEP	KH
208-96-8	Acenaphthylene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 21:34 EP,PADEP	KH
120-12-7	Anthracene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 21:34 EP,PADEP	KH
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 21:34 EP,PADEP	KH
50-32-8	Benzo(a)pyrene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 21:34 EP,PADEP	KH
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 21:34 EP,PADEP	KH
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 21:34 EP,PADEP	KH
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 21:34 EP,PADEP	KH
218-01-9	Chrysene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 21:34 EP,PADEP	KH
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 21:34 EP,PADEP	KH
206-44-0	Fluoranthene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 21:34 EP,PADEP	KH
86-73-7	Fluorene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 21:34 EP,PADEP	KH
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 21:34 EP,PADEP	KH
91-20-3	Naphthalene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 21:34 EP,PADEP	KH
85-01-8	Phenanthrene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 21:34 EP,PADEP	KH
129-00-0	Pyrene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 21:34 EP,PADEP	KH
	Surrogate Recoveries	Result		Acce	eptance Rang	e						
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	110 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	74.9 %			39.9-105							
1718-51-0	Surrogate: SURR: Terphenyl-d14	55.0 %			30.7-106							

Arsenic by EPA 6020

Log-in Notes: Sample Prepared by Method: EPA 3015A

Sample Notes:

CAS N	о.	Parameter	Result	Flag	Units	Reported LOQ	to Dilutio i	1 Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic		89.6		ug/L	1.11	1	EPA 6020B		10/18/2021 09:13	10/18/2021 18:36	BML
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE **RICHMOND HILL, NY 11418** www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 7 of 42

Client Sample ID: CIM-MW-02 1021 **York Sample ID:** 21J0506-02

York Project (SDG) No. 21J0506

Client Project ID 41548.21 CONSOLIDATED IRON Matrix Water

Collection Date/Time October 11, 2021 12:46 pm Date Received

Lead by EPA 6020

10/12/2021

7439-92-1

Log-in Notes:

Sample Notes:

Reference Method

Date/Time Analyzed

Sample Prepared by Method: EPA 3015A

CAS No. Parameter

Lead

Reported to Flag Units 1.11 ug/L

EPA 6020B

Date/Time Prepared 10/18/2021 09:13

Analyst BML

10/18/2021 18:36

Dilution

Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP

Sample Information

Client Sample ID: CIM-MW-03 1021

York Sample ID:

21J0506-03

York Project (SDG) No.

Client Project ID

Result

ND

Matrix

Collection Date/Time

Date Received

21J0506

Sample Prepared by Method: EPA 5030B

41548.21 CONSOLIDATED IRON

Water

October 11, 2021 2:15 pm

10/12/2021

Volatile Organics, CP-51 (STARS) Low level

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Date/Time ethod Prepared	Date/Time Analyzed	Analyst
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: C	10/14/2021 09:00 FDOH,NELAC-NY10854,NEL	10/14/2021 12:40 AC-NY12058,NJDEP	PD PADEP
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: C	10/14/2021 09:00 ГDOH,NELAC-NY10854,NEL	10/14/2021 12:40 AC-NY12058,NJDEP	PD PADEP
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: C	10/14/2021 09:00 ГDOH,NELAC-NY10854,NEL	10/14/2021 12:40 AC-NY12058,NJDEP	PD PADEP
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: C	10/14/2021 09:00 ГDOH,NELAC-NY10854,NEL	10/14/2021 12:40 AC-NY12058,NJDEP	PD PADEP
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: C	10/14/2021 09:00 ГDOH,NELAC-NY10854,NEL	10/14/2021 12:40 AC-NY12058,NJDEP	PD PADEP
1634-04-4	Methyl tert-butyl ether (MTBE)	1.0		ug/L	0.20	0.50	1	EPA 8260C Certifications: C	10/14/2021 09:00 TDOH,NELAC-NY10854,NEI	10/14/2021 12:40 LAC-NY12058,NJDE	PD P,PADEP
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications: N	10/14/2021 09:00 ELAC-NY10854,NELAC-NY1	10/14/2021 12:40 2058,NJDEP,PADEP	PD
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: C	10/14/2021 09:00 FDOH,NELAC-NY10854,NEL	10/14/2021 12:40 AC-NY12058,NJDEP	PD PADEP
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: C	10/14/2021 09:00 ГDOH,NELAC-NY10854,NEL	10/14/2021 12:40 AC-NY12058,NJDEP	PD PADEP
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: C	10/14/2021 09:00 ГDOH,NELAC-NY10854,NEL	10/14/2021 12:40 AC-NY12058,PADEF	PD
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C Certifications: C	10/14/2021 09:00 ГDOH,NELAC-NY10854,NEL	10/14/2021 12:40 AC-NY12058,PADEF	PD
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: C	10/14/2021 09:00 ГDOH,NELAC-NY10854,NEL	10/14/2021 12:40 AC-NY12058,NJDEP	PD PADEP
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: C	10/14/2021 09:00 ГDOH,NELAC-NY10854,NEL	10/14/2021 12:40 AC-NY12058,NJDEP	PD PADEP
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: C	10/14/2021 09:00 ГDOH,NELAC-NY10854,NEL	10/14/2021 12:40 AC-NY12058,NJDEP	PD PADEP
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications: C	10/14/2021 09:00 ГDOH,NELAC-NY10854,NEL	10/14/2021 12:40 AC-NY12058,NJDEP	PD PADEP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 8 of 42

Client Sample ID: CIM-MW-03 1021

York Sample ID: 21J0506-03

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

21J0506

41548.21 CONSOLIDATED IRON

Water

October 11, 2021 2:15 pm

10/12/2021

Volatile Organics, CP-51 (STARS) Low level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Meth	Date/Time nod Prepared	Date/Time Analyzed	Analyst
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications: CTDC	10/14/2021 09:00 DH,NELAC-NY10854,NEL	10/14/2021 12:40 AC-NY12058,NJDEP	PD
	Surrogate Recoveries	Result		Acce	ptance Rang	e					
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	105 %			69-130						
2037-26-5	Surrogate: SURR: Toluene-d8	89.6 %			81-117						
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	98.7 %			79-122						

Semi-Volatiles, CP-51 (formerly STARS)-Low Level

Log-in Notes:

Sample Notes: EXT-EM

Sample Prepared by Method: EPA 3510C

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 22:06 P,PADEP	КН
208-96-8	Acenaphthylene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 22:06 P,PADEP	КН
120-12-7	Anthracene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 22:06 P,PADEP	КН
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 22:06 P,PADEP	КН
50-32-8	Benzo(a)pyrene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 22:06 P,PADEP	KH
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 22:06 P,PADEP	KH
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 22:06 P,PADEP	KH
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 22:06 P,PADEP	KH
218-01-9	Chrysene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 22:06 P,PADEP	KH
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 22:06 P,PADEP	KH
206-44-0	Fluoranthene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 22:06 P,PADEP	KH
86-73-7	Fluorene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 22:06 P,PADEP	KH
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 22:06 P,PADEP	KH
91-20-3	Naphthalene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 22:06 P,PADEP	KH
85-01-8	Phenanthrene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 22:06 P,PADEP	КН
129-00-0	Pyrene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 22:06 P,PADEP	КН

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientServices@

Page 9 of 42

Client Sample ID: CIM-MW-03 1021

York Sample ID: 21J0506-03

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

21J0506

41548.21 CONSOLIDATED IRON

Water

October 11, 2021 2:15 pm

10/12/2021

Semi-Volatiles, CP-51 (formerly STARS)-Low Level

Log-in Notes:

Sample Notes: EXT-EM

Sample Prepared by Method: EPA 3510C

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
	Surrogate Recoveries	Result		Acc	eptance Range	:					
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	103 %	50.2-113								
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	71.4 %	39.9-105								
1718-51-0	Surrogate: SURR: Terphenyl-d14	55.8 %			30.7-106						

Lead by EPA 6020

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3015A

CAS N	0.	Parameter	Result	Flag	Units	Reported LOQ	to Dilution	Reference M	1ethod	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		3.94		ug/L	1.11	1	EPA 6020B		10/18/2021 09:13	10/18/2021 18:47	BML
								Certifications:	CTDOH N	ELAC-NY10854 NID	EP PADEP	

Sample Information

Client Sample ID: CIM-MW-04 1021 **York Sample ID:**

21J0506-04

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

21J0506

41548.21 CONSOLIDATED IRON

Water

October 11, 2021 4:44 pm

Date Received 10/12/2021

Volatile Organics, CP-51 (STARS) Low level

Log-in Notes:

Sample Notes:

Sample Prepar	red by Method: EPA 5030B											
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 15:21 AC-NY12058,NJDEF	PD P,PADEP
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 15:21 AC-NY12058,NJDEF	PD P,PADEP
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 15:21 AC-NY12058,NJDEF	PD P,PADEP
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 15:21 AC-NY12058,NJDEF	PD P,PADEP
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 15:21 AC-NY12058,NJDEF	PD P,PADEP
1634-04-4	Methyl tert-butyl ether (MTBE)	2.7		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	10/13/2021 09:00 ELAC-NY10854,NEI	10/13/2021 15:21 LAC-NY12058,NJDE	PD P,PADEP
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	NELAC-NY	10/13/2021 09:00 Y10854,NELAC-NY1	10/13/2021 15:21 2058,NJDEP,PADEP	PD
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 15:21 AC-NY12058,NJDEF	PD P,PADEP
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 15:21 AC-NY12058,NJDEF	PD P,PADEP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 10 of 42

Client Sample ID: CIM-MW-04 1021 **York Sample ID:** 21J0506-04

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 21J0506 41548.21 CONSOLIDATED IRON Water October 11, 2021 4:44 pm

10/12/2021

Log-in Notes:

Volatile Organics, CP-51 (STARS) Low level

Sample Prepared by Method: EPA 5030B

Sample Frepare	ed by Method. EFA 3030B											
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NELA	10/13/2021 15:21 AC-NY12058,PADEP	PD
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NELA	10/13/2021 15:21 AC-NY12058,PADEP	PD
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NELA	10/13/2021 15:21 AC-NY12058,NJDEP,	PD PADEP
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NELA	10/13/2021 15:21 AC-NY12058,NJDEP,	PD PADEP
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	10/13/2021 09:00 ELAC-NY10854,NELA	10/13/2021 15:21 AC-NY12058,NJDEP,	PD PADEP
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NELA	10/13/2021 15:21 AC-NY12058,NJDEP,	PD PADEP
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NELA	10/13/2021 15:21 AC-NY12058,NJDEP	PD
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	105 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	90.0 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	97.7 %			79-122							

Semi-Volatiles, CP-51 (formerly STARS)-Low Level

Log-in Notes:

Sample Notes: EXT-EM

Sample Notes:

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference I	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
3-32-9	Acenaphthene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/18/2021 22:39 P,PADEP	КН
08-96-8	Acenaphthylene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/18/2021 22:39 P,PADEP	KH
20-12-7	Anthracene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/18/2021 22:39 P,PADEP	КН
6-55-3	Benzo(a)anthracene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/18/2021 22:39 P,PADEP	KH
0-32-8	Benzo(a)pyrene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/18/2021 22:39 P,PADEP	KH
05-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/18/2021 22:39 P,PADEP	KH
91-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/18/2021 22:39 P,PADEP	КН
07-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/18/2021 22:39 P,PADEP	KH
18-01-9	Chrysene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/18/2021 22:39 P,PADEP	KH
3-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/18/2021 22:39 P,PADEP	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 11 of 42

Client Sample ID: CIM-MW-04 1021

York Sample ID: 21J0506-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received21J050641548.21 CONSOLIDATED IRONWaterOctober 11, 2021 4:44 pm10/12/2021

Semi-Volatiles, CP-51 (formerly STARS)-Low Level

Log-in Notes:

Sample Notes: EXT-EM

Sample Prepared by Method: EPA 3510C

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
206-44-0	Fluoranthene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 22:39 EP,PADEP	КН
86-73-7	Fluorene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 22:39 EP,PADEP	KH
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 22:39 EP,PADEP	KH
91-20-3	Naphthalene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 22:39 EP,PADEP	KH
85-01-8	Phenanthrene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 22:39 EP,PADEP	KH
129-00-0	Pyrene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 22:39 EP,PADEP	KH
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	91.2 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	65.5 %			39.9-105							
1718-51-0	Surrogate: SURR: Terphenyl-d14	47.6 %			30.7-106							

Lead by EPA 6020

Sample Prepared by Method: EPA 3015A

Log-in Notes:	
---------------	--

Sample Notes:

CAS N	No.	Parameter	Result	Flag	Units	Reported t	Dilutior	n Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		2.43		ug/L	1.11	1	EPA 6020B		10/18/2021 09:13	10/18/2021 18:50	BML
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	

Sample Information

Client Sample ID: CIM-MW-06 1021

York Sample ID:

21J0506-05

York Project (SDG) No. 21J0506 <u>Client Project ID</u> 41548.21 CONSOLIDATED IRON Matrix Water Collection Date/Time
October 11, 2021 5:35 pm

Date Received 10/12/2021

Volatile Organics, CP-51 (STARS) Low level

Sample Prepared by Method: EPA 5030B

Log-in Notes: Sa	imple Notes:
------------------	--------------

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 15:49 AC-NY12058,NJDEF	PD P,PADEP
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 15:49 AC-NY12058,NJDEF	PD P,PADEP
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 15:49 AC-NY12058,NJDEF	PD P,PADEP

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 12 of 42

Client Sample ID: CIM-MW-06 1021

York Sample ID: 21J0506-05

<u>York Project (SDG) No.</u> <u>Client Project ID</u> 21J0506 41548.21 CONSOLIDATED IRON MatrixCollection Date/TimeWaterOctober 11, 2021 5:35 pm

<u>Date Received</u> 10/12/2021

Volatile Organics, CP-51 (STARS) Low level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 15:49 AC-NY12058,NJDEP	PD PADEP
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 15:49 AC-NY12058,NJDEP	PD PADEP
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 15:49 AC-NY12058,NJDEP	PD PADEP
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	NELAC-N	10/13/2021 09:00 Y10854,NELAC-NY12	10/13/2021 15:49 2058,NJDEP,PADEP	PD
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 15:49 AC-NY12058,NJDEP	PD PADEP
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 15:49 AC-NY12058,NJDEP	PD PADEP
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 15:49 AC-NY12058,PADEP	PD
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 15:49 AC-NY12058,PADEP	PD
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 15:49 AC-NY12058,NJDEP	PD PADEP
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 15:49 AC-NY12058,NJDEP	PD PADEP
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 15:49 AC-NY12058,NJDEP	PD PADEP
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 15:49 AC-NY12058,NJDEP	PD PADEP
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 15:49 AC-NY12058,NJDEP	PD
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	106 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	89.9 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	98.3 %			79-122							

Semi-Volatiles, CP-51 (formerly STARS)-Low Level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3510C

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/18/2021 23:11 EP,PADEP	КН
208-96-8	Acenaphthylene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/18/2021 23:11 EP,PADEP	КН
120-12-7	Anthracene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/18/2021 23:11 EP,PADEP	КН
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/18/2021 23:11 EP,PADEP	KH

120 RESEARCH DRIVE STRATFORD, CT 06615

132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 13 of 42

Client Sample ID: CIM-MW-06 1021

York Sample ID: 21J0506-05

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

21J0506 41548.21 CONSOLIDATED IRON

Water

October 11, 2021 5:35 pm

10/12/2021

Semi-Volatiles, CP-51 (formerly STARS)-Low Level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3510C

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
50-32-8	Benzo(a)pyrene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDI	10/18/2021 23:11 EP,PADEP	KH
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDI	10/18/2021 23:11 EP,PADEP	KH
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDI	10/18/2021 23:11 EP,PADEP	KH
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDI	10/18/2021 23:11 EP,PADEP	KH
218-01-9	Chrysene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDI	10/18/2021 23:11 EP,PADEP	KH
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDI	10/18/2021 23:11 EP,PADEP	KH
206-44-0	Fluoranthene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDI	10/18/2021 23:11 EP,PADEP	KH
86-73-7	Fluorene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDI	10/18/2021 23:11 EP,PADEP	KH
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDI	10/18/2021 23:11 EP,PADEP	KH
91-20-3	Naphthalene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDI	10/18/2021 23:11 EP,PADEP	KH
85-01-8	Phenanthrene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDI	10/18/2021 23:11 EP,PADEP	KH
129-00-0	Pyrene	ND		ug/L	0.0513	0.0513	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDI	10/18/2021 23:11 EP,PADEP	KH
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	86.2 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	63.8 %			39.9-105							
1718-51-0	Surrogate: SURR: Terphenyl-d14	49.9 %			30.7-106							

Lead by EPA 6020

Sample Prepared by Method: EPA 3015A

Log-in Notes:

Sample Notes:

CAS N	0.	Parameter	Result	Flag	Units	Reported t	o Dilution	Reference N	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		7.39		ug/L	1.11	1	EPA 6020B		10/18/2021 09:13	10/18/2021 18:54	BML
								Certifications:	CTDOH.N	ELAC-NY10854,NJD	EP.PADEP	

Sample Information

<u>Client Sample ID:</u> <u>CIM-MW-07 1021</u> <u>York Sample ID:</u> 21J0506-06

York Project (SDG) No.	Client Project ID	<u>Matrix</u>	Collection Date/Time	Date Received
21J0506	41548.21 CONSOLIDATED IRON	Water	October 11, 2021 2:53 pm	10/12/2021

120 RESEARCH DRIVE STRATFORD, CT 06615

132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 14 of 42

Client Sample ID: CIM-MW-07 1021

York Sample ID:

21J0506-06

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

21J0506

41548.21 CONSOLIDATED IRON

Water

October 11, 2021 2:53 pm

10/12/2021

Volatile Organics, CP-51 (STARS) Low level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	10/13/2021 09:00 LAC-NY10854,NEL	10/13/2021 16:18 AC-NY12058,NJDEF	PD P,PADEP
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NEI	10/13/2021 09:00 LAC-NY10854,NEL	10/13/2021 16:18 AC-NY12058,NJDEF	PD P,PADEP
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NEI	10/13/2021 09:00 LAC-NY10854,NEL	10/13/2021 16:18 AC-NY12058,NJDEF	PD P,PADEP
00-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NEI	10/13/2021 09:00 LAC-NY10854,NEL	10/13/2021 16:18 AC-NY12058,NJDEF	PD P,PADEP
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NEI	10/13/2021 09:00 LAC-NY10854,NEL	10/13/2021 16:18 AC-NY12058,NJDEF	PD P,PADEP
634-04-4	Methyl tert-butyl ether (MTBE)	2.2		ug/L	0.20	0.50	1	EPA 8260C		10/13/2021 09:00	10/13/2021 16:18	PD
								Certifications:	CTDOH,NE	ELAC-NY10854,NEI	AC-NY12058,NJDE	P,PADEP
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	NELAC-NY	10/13/2021 09:00 10854,NELAC-NY1	10/13/2021 16:18 2058,NJDEP,PADEP	PD
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NEI	10/13/2021 09:00 LAC-NY10854,NEL	10/13/2021 16:18 AC-NY12058,NJDEF	PD P,PADEP
03-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NEI	10/13/2021 09:00 LAC-NY10854,NEL	10/13/2021 16:18 AC-NY12058,NJDEF	PD P,PADEP
5-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NEI	10/13/2021 09:00 LAC-NY10854,NEL	10/13/2021 16:18 AC-NY12058,PADEI	PD
79601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C Certifications:	CTDOH,NEI	10/13/2021 09:00 LAC-NY10854,NEL	10/13/2021 16:18 AC-NY12058,PADEI	PD
9-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NEI	10/13/2021 09:00 LAC-NY10854,NEL	10/13/2021 16:18 AC-NY12058,NJDEF	PD P,PADEP
35-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NEI	10/13/2021 09:00 LAC-NY10854,NEL	10/13/2021 16:18 AC-NY12058,NJDEF	PD P,PADEP
8-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NEI	10/13/2021 09:00 LAC-NY10854,NEL	10/13/2021 16:18 AC-NY12058,NJDEF	PD P,PADEP
08-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NEI	10/13/2021 09:00 LAC-NY10854,NEL	10/13/2021 16:18 AC-NY12058,NJDEF	PD P,PADEP
330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:	CTDOH,NEI	10/13/2021 09:00 LAC-NY10854,NEL	10/13/2021 16:18 AC-NY12058,NJDEF	PD
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
7060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	106 %			69-130							
037-26-5	Surrogate: SURR: Toluene-d8	89.4 %			81-117							
60-00-4	Surrogate: SURR:	98.1 %			79-122							

Semi-Volatiles, CP-51 (formerly STARS)-Low Level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3510C

 $p\hbox{-}Bromofluor obenzene$

					Reported to			Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	LOD/MDL LOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst

Client Sample ID: CIM-MW-07 1021

York Sample ID:

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

21J0506-06

21J0506

41548.21 CONSOLIDATED IRON

Water

October 11, 2021 2:53 pm

10/12/2021

Semi-Volatiles, CP-51 (formerly STARS)-Low Level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3510C

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	1.02		ug/L	0.0526	0.0526	1	EPA 8270D		10/15/2021 07:39	10/18/2021 23:44	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
208-96-8	Acenaphthylene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 23:44 EP,PADEP	KH
120-12-7	Anthracene	0.200		ug/L	0.0526	0.0526	1	EPA 8270D		10/15/2021 07:39	10/18/2021 23:44	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 23:44 EP,PADEP	KH
50-32-8	Benzo(a)pyrene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 23:44 EP,PADEP	KH
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 23:44 EP,PADEP	КН
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 23:44 EP,PADEP	KH
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 23:44 EP,PADEP	KH
218-01-9	Chrysene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 23:44 EP,PADEP	KH
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 23:44 EP,PADEP	KH
206-44-0	Fluoranthene	0.558		ug/L	0.0526	0.0526	1	EPA 8270D		10/15/2021 07:39	10/18/2021 23:44	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
86-73-7	Fluorene	0.537		ug/L	0.0526	0.0526	1	EPA 8270D		10/15/2021 07:39	10/18/2021 23:44	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0526	0.0526	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/18/2021 23:44 EP,PADEP	KH
91-20-3	Naphthalene	0.0526	J	ug/L	0.0526	0.0526	1	EPA 8270D		10/15/2021 07:39	10/18/2021 23:44	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
85-01-8	Phenanthrene	1.48		ug/L	0.0526	0.0526	1	EPA 8270D		10/15/2021 07:39	10/18/2021 23:44	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD		
129-00-0	Pyrene	0.453		ug/L	0.0526	0.0526	1	EPA 8270D		10/15/2021 07:39	10/18/2021 23:44	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	89.9 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	64.2 %			39.9-105							
1718-51-0	Surrogate: SURR: Terphenyl-d14	41.6 %			30.7-106							

Lead by EPA 6020

Sample Prepared by Method: EPA 3015A

Log-in Notes:

Sample Notes:

	CAS N	0.	Parameter	Result	Flag	Units	Reported to	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
74	39-92-1	Lead		45.4		ug/L	1.11	1	EPA 6020B		10/19/2021 09:56	10/19/2021 18:53	BML
									Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
	120 RES	SEARCH DRIVE		STRATFORD, CT	06615		132	2-02 89th A	VENUE	-	RICHMOND HIL	L, NY 11418	

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166

ClientServices@ Page 16 of 42

Client Sample ID: CIM-MW-07 1021

Client Project ID Collection Date/Time Date Received York Project (SDG) No. Matrix 10/12/2021

41548.21 CONSOLIDATED IRON 21J0506 Water October 11, 2021 2:53 pm

Sample Information

CIM-MW-08 1021 **Client Sample ID: York Sample ID:** 21J0506-07

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 21J0506 41548.21 CONSOLIDATED IRON October 11, 2021 3:55 pm Water 10/12/2021

Volatile Organics, CP-51 (STARS) Low level

www.YORKLAB.com

Log-in Notes:

Sample Notes:

York Sample ID:

21J0506-06

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 16:46 AC-NY12058,NJDEP	PD PADEP,
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 16:46 AC-NY12058,NJDEP	PD PADEP,
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 16:46 AC-NY12058,NJDEP	PD PADEP
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 16:46 AC-NY12058,NJDEP	PD PADEP
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 16:46 AC-NY12058,NJDEP	PD PADEP
1634-04-4	Methyl tert-butyl ether (MTBE)	0.41	J	ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	10/13/2021 09:00 ELAC-NY10854,NEI	10/13/2021 16:46 AC-NY12058,NJDE	PD P,PADEP
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	NELAC-NY	10/13/2021 09:00 Y10854,NELAC-NY12	10/13/2021 16:46 2058,NJDEP,PADEP	PD
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 16:46 AC-NY12058,NJDEP	PD PADEP
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 16:46 AC-NY12058,NJDEP	PD PADEP
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 16:46 AC-NY12058,PADEF	PD
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 16:46 AC-NY12058,PADEF	PD
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 16:46 AC-NY12058,NJDEP	PD PADEP
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 16:46 AC-NY12058,NJDEP	PD PADEP
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 16:46 AC-NY12058,NJDEP	PD PADEP,
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 16:46 AC-NY12058,NJDEP	PD PADEP,
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:	CTDOH,NI	10/13/2021 09:00 ELAC-NY10854,NEL	10/13/2021 16:46 AC-NY12058,NJDEP	PD
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	106 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	89.8 %			81-117							

FAX (203) 357-0166

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE

(203) 325-1371

RICHMOND HILL, NY 11418

ClientServices@ Page 17 of 42

Client Sample ID: CIM-MW-08 1021

York Sample ID:

21J0506-07

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

21J0506

41548.21 CONSOLIDATED IRON

Water

October 11, 2021 3:55 pm

10/12/2021

Volatile Organics, CP-51 (STARS) Low level

Log-in Notes:

LOQ

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS No. Parameter

Result Flag

97.9 %

Reported to LOD/MDL

Dilution R

Reference Method

Date/Time I Prepared

Date/Time Analyzed Analyst

460-00-4

Surrogate: SURR: p-Bromofluorobenzene

79-122

Units

Semi-Volatiles, CP-51 (formerly STARS)-Low Level

Log-in Notes:

Sample Notes: EXT-EM

Sample Prepared by Method: EPA 3510C

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	lethod	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	0.147		ug/L	0.0526	0.0526	1	EPA 8270D		10/15/2021 07:39	10/19/2021 00:16	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
208-96-8	Acenaphthylene	0.0526	J	ug/L	0.0526	0.0526	1	EPA 8270D		10/15/2021 07:39	10/19/2021 00:16	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
120-12-7	Anthracene	0.147		ug/L	0.0526	0.0526	1	EPA 8270D		10/15/2021 07:39	10/19/2021 00:16	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
56-55-3	Benzo(a)anthracene	0.389		ug/L	0.0526	0.0526	1	EPA 8270D		10/15/2021 07:39	10/19/2021 00:16	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
50-32-8	Benzo(a)pyrene	0.400		ug/L	0.0526	0.0526	1	EPA 8270D		10/15/2021 07:39	10/19/2021 00:16	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
205-99-2	Benzo(b)fluoranthene	0.316		ug/L	0.0526	0.0526	1	EPA 8270D		10/15/2021 07:39	10/19/2021 00:16	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
191-24-2	Benzo(g,h,i)perylene	0.0947		ug/L	0.0526	0.0526	1	EPA 8270D		10/15/2021 07:39	10/19/2021 00:16	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
207-08-9	Benzo(k)fluoranthene	0.347		ug/L	0.0526	0.0526	1	EPA 8270D		10/15/2021 07:39	10/19/2021 00:16	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
218-01-9	Chrysene	0.368		ug/L	0.0526	0.0526	1	EPA 8270D		10/15/2021 07:39	10/19/2021 00:16	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
53-70-3	Dibenzo(a,h)anthracene	0.0526	J	ug/L	0.0526	0.0526	1	EPA 8270D		10/15/2021 07:39	10/19/2021 00:16	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
206-44-0	Fluoranthene	0.937		ug/L	0.0526	0.0526	1	EPA 8270D		10/15/2021 07:39	10/19/2021 00:16	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
86-73-7	Fluorene	0.105		ug/L	0.0526	0.0526	1	EPA 8270D		10/15/2021 07:39	10/19/2021 00:16	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
193-39-5	Indeno(1,2,3-cd)pyrene	0.116		ug/L	0.0526	0.0526	1	EPA 8270D		10/15/2021 07:39	10/19/2021 00:16	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
91-20-3	Naphthalene	0.0526	J	ug/L	0.0526	0.0526	1	EPA 8270D		10/15/2021 07:39	10/19/2021 00:16	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
85-01-8	Phenanthrene	0.526		ug/L	0.0526	0.0526	1	EPA 8270D		10/15/2021 07:39	10/19/2021 00:16	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
129-00-0	Pyrene	0.726		ug/L	0.0526	0.0526	1	EPA 8270D		10/15/2021 07:39	10/19/2021 00:16	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJD	EP,PADEP	
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	80.5 %			50.2-113							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	62.2 %			39.9-105							
1718-51-0	Surrogate: SURR: Terphenyl-d14	40.0 %			30.7-106							

120 RESEARCH DRIVE STRATFORD, CT 06615

(203) 325-1371

www.YORKLAB.com

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

Page 18 of 42

Client Sample ID: CIM-MW-08 1021

York Sample ID: 21J0506-07

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

21J0506

41548.21 CONSOLIDATED IRON

Water

October 11, 2021 3:55 pm

10/12/2021

Lead by EPA 6020

Sample Prepared by Method: EPA 3015A

Log-in Notes:

Log-in Notes:

Sample Notes:

Sample Notes:

CAS N	No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		8.78		ug/L	1.11	1	EPA 6020B	10/19/2021 09:56	10/19/2021 18:56	BML

Certifications:

CTDOH,NELAC-NY10854,NJDEP,PADEP

Lead, Dissolved by EPA 6020

Sample Prepared by Method: EPA 3015A

CAS	No.	Parameter	Result	Flag Units	Reported to LOQ	Dilution	Reference Met	Date/Time thod Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		6.19	ug/L	1.11	1	EPA 6020B	10/18/2021 09:06	10/18/2021 17:14	BML
							Cartifications: CT	DOLLNEL AC NV10954 NID	EDDADED	

Sample Information

Client Sample ID: CIM-MW-09 1021 **York Sample ID:**

21J0506-08

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

21J0506

41548.21 CONSOLIDATED IRON

Water

October 11, 2021 10:18 am

10/12/2021

Volatile Organics, CP-51 (STARS) Low level

Log-in Notes:

Sample Notes:

CAS	No.
95-63-6	1,2,4
108-67-8	1,3,5
71-43-2	Benz
100-41-4	Ethy
98-82-8	Isop
1634-04-4	Meth

voiatiic C	Jigames, CI-31 (STARS) LOW	IC V CI				10000		Sum	010 1 1000	.54		
Sample Prepare	red by Method: EPA 5030B											
CAS No	To. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 13:09 AC-NY12058,NJDEI	PD P,PADEP
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 13:09 AC-NY12058,NJDEI	PD P,PADEP
71-43-2	Benzene	4.7		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	10/14/2021 09:00 IELAC-NY10854,NEL	10/14/2021 13:09 AC-NY12058,NJDE	PD P,PADEP
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 13:09 AC-NY12058,NJDEI	PD P,PADEP
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 13:09 AC-NY12058,NJDEI	PD P,PADEP
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 13:09 AC-NY12058,NJDEI	PD P,PADEP
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	NELAC-N	10/14/2021 09:00 Y10854,NELAC-NY12	10/14/2021 13:09 2058,NJDEP,PADEP	PD
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 13:09 AC-NY12058,NJDEI	PD P,PADEP
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 13:09 AC-NY12058,NJDEI	PD P,PADEP
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 13:09 AC-NY12058,PADE	PD P

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 19 of 42

Log-in Notes:

Client Sample ID: CIM-MW-09 1021 **York Sample ID:**

21J0506-08

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

21J0506

41548.21 CONSOLIDATED IRON

Water

October 11, 2021 10:18 am

Sample Notes:

10/12/2021

Volatile Organics, CP-51 (STARS) Low level

Sample Prepared by Method: EPA 5030B

Sample Prepare	ed by Method: EPA 5030B											
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C Certifications:	CTDOH,NE	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 13:09 AC-NY12058,PADEP	PD
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 13:09 AC-NY12058,NJDEP,	PD PADEP
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 13:09 AC-NY12058,NJDEP,	PD PADEP
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 13:09 AC-NY12058,NJDEP,	PD PADEP
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NE	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 13:09 AC-NY12058,NJDEP,	PD PADEP
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:	CTDOH,NE	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 13:09 AC-NY12058,NJDEP	PD
	Surrogate Recoveries	Result		Accep	otance Range	•						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	109 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	89.6 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	98.4 %			79-122							

Semi-Volatiles, CP-51 (formerly STARS)-Low Level

Log-in Notes:

Sample Notes: EXT-EM

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/19/2021 00:49 EP,PADEP	КН
208-96-8	Acenaphthylene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/19/2021 00:49 EP,PADEP	KH
120-12-7	Anthracene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/19/2021 00:49 EP,PADEP	КН
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/19/2021 00:49 EP,PADEP	КН
50-32-8	Benzo(a)pyrene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/19/2021 00:49 EP,PADEP	КН
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/19/2021 00:49 EP,PADEP	KH
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/19/2021 00:49 EP,PADEP	KH
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/19/2021 00:49 EP,PADEP	KH
218-01-9	Chrysene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/19/2021 00:49 EP,PADEP	KH
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/19/2021 00:49 EP,PADEP	KH
206-44-0	Fluoranthene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/19/2021 00:49 EP,PADEP	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 20 of 42

Client Sample ID: CIM-MW-09 1021 **York Sample ID:** 21J0506-08

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

21J0506

41548.21 CONSOLIDATED IRON

Water

October 11, 2021 10:18 am

10/12/2021

Semi-Volatiles, CP-51 (formerly STARS)-Low Level

Log-in Notes:

Sample Notes: EXT-EM

Sample Prepared by Method: EPA 3510C

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
86-73-7	Fluorene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/19/2021 00:49 EP,PADEP	КН
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/19/2021 00:49 EP,PADEP	КН
91-20-3	Naphthalene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/19/2021 00:49 EP,PADEP	КН
85-01-8	Phenanthrene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/19/2021 00:49 EP,PADEP	КН
129-00-0	Pyrene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 LAC-NY10854,NJDE	10/19/2021 00:49 EP,PADEP	KH
	Surrogate Recoveries	Result		Acceptance Range								
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	82.4 %		50.2-113								
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	60.2 %			39.9-105							
1718-51-0	Surrogate: SURR: Terphenyl-d14	42.2 %			30.7-106							

Lead by EPA 6020

Log-in Notes:

Sample Notes:

d by Method: EPA 3015A

CAS No.		Parameter	Result	Flag	Units	Reported LOQ	o Dilution	Reference I	Date/Time e Method Prepared		Date/Time Analyzed	Analyst
7439-92-1	Lead		7.72		ug/L	1.11	1	EPA 6020B		10/19/2021 09:56	10/19/2021 19:00	BML
								Certifications:	CTDOH,NELAC-NY10854,NJDEP,PADEP			

Sample Information

Client Sample ID: CIM-FD-001 1021 **York Sample ID:**

York Project (SDG) No. 21J0506

Client Project ID 41548.21 CONSOLIDATED IRON Matrix Water

Collection Date/Time October 11, 2021 3:00 pm Date Received 10/12/2021

21J0506-09

Volatile Organics, CP-51 (STARS) Low level

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	Date/Time Method Prepared	Date/Time Analyzed	Analyst
95-63-6	1,2,4-Trimethylbenzene	0.45	J	ug/L	0.20	0.50	1	EPA 8260C	10/13/2021 09:00	10/13/2021 12:59	PD
								Certifications:	CTDOH,NELAC-NY10854,NE	LAC-NY12058,NJDE	P,PADEP
108-67-8	1,3,5-Trimethylbenzene	1.3		ug/L	0.20	0.50	1	EPA 8260C	10/13/2021 09:00	10/13/2021 12:59	PD
								Certifications:	CTDOH,NELAC-NY10854,NE	LAC-NY12058,NJDE	P,PADEP
71-43-2	Benzene	13		ug/L	0.20	0.50	1	EPA 8260C	10/13/2021 09:00	10/13/2021 12:59	PD
								Certifications:	CTDOH,NELAC-NY10854,NE	LAC-NY12058,NJDE	P,PADEP
100-41-4	Ethyl Benzene	93		ug/L	2.0	5.0	10	EPA 8260C	10/13/2021 09:00	10/13/2021 18:11	PD
								Certifications:	CTDOH,NELAC-NY10854,NE	LAC-NY12058,NJDE	P,PADEP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

Page 21 of 42

Sample Information

Client Sample ID: CIM-FD-001 1021 **York Sample ID:**

21J0506-09

York Project (SDG) No. 21J0506

Client Project ID 41548.21 CONSOLIDATED IRON Matrix Water

Collection Date/Time October 11, 2021 3:00 pm Date Received 10/12/2021

Volatile Organics, CP-51 (STARS) Low level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference I	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
98-82-8	Isopropylbenzene	46		ug/L	0.20	0.50	1	EPA 8260C		10/13/2021 09:00	10/13/2021 12:59	PD
								Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,NJDEI	P,PADEP
1634-04-4	Methyl tert-butyl ether (MTBE)	3.0		ug/L	0.20	0.50	1	EPA 8260C		10/13/2021 09:00	10/13/2021 12:59	PD
								Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,NJDEI	P,PADEP
91-20-3	Naphthalene	37		ug/L	1.0	2.0	1	EPA 8260C		10/13/2021 09:00	10/13/2021 12:59	PD
								Certifications:	NELAC-N	Y10854,NELAC-NY1	2058,NJDEP,PADEP	
104-51-8	n-Butylbenzene	5.4		ug/L	0.20	0.50	1	EPA 8260C		10/13/2021 09:00	10/13/2021 12:59	PD
								Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,NJDEI	P,PADEP
103-65-1	n-Propylbenzene	86		ug/L	2.0	5.0	10	EPA 8260C		10/13/2021 09:00	10/13/2021 18:11	PD
								Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,NJDEI	P,PADEP
95-47-6	o-Xylene	0.23	J	ug/L	0.20	0.50	1	EPA 8260C		10/13/2021 09:00	10/13/2021 12:59	PD
								Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,PADEI	P
179601-23-1	p- & m- Xylenes	3.8		ug/L	0.50	1.0	1	EPA 8260C		10/13/2021 09:00	10/13/2021 12:59	PD
								Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,PADEI	P
99-87-6	p-Isopropyltoluene	0.57		ug/L	0.20	0.50	1	EPA 8260C		10/13/2021 09:00	10/13/2021 12:59	PD
								Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,NJDEI	P,PADEP
135-98-8	sec-Butylbenzene	7.0		ug/L	0.20	0.50	1	EPA 8260C		10/13/2021 09:00	10/13/2021 12:59	PD
								Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,NJDEI	P,PADEP
98-06-6	tert-Butylbenzene	0.38	J	ug/L	0.20	0.50	1	EPA 8260C		10/13/2021 09:00	10/13/2021 12:59	PD
								Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,NJDEI	P,PADEP
108-88-3	Toluene	3.4		ug/L	0.20	0.50	1	EPA 8260C		10/13/2021 09:00	10/13/2021 12:59	PD
								Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,NJDEI	P,PADEP
1330-20-7	Xylenes, Total	4.1		ug/L	0.60	1.5	1	EPA 8260C		10/13/2021 09:00	10/13/2021 12:59	PD
								Certifications:	CTDOH,N	ELAC-NY10854,NEL	AC-NY12058,NJDEI	Р
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	80.7 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	91.2 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	98.6 %			79-122							

Semi-Volatiles, CP-51 (formerly STARS)-Low Level

Log-in Notes:

Reported to

0.0541

Sample Notes:

	CAS No.		Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
	83-32-9	Acenaphthene		0.195		ug/L	0.0541	0.0541	1	EPA 8270D		10/15/2021 07:39	10/19/2021 01:21	KH
							Certificat		Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP		
	208-96-8	Acenaphthylene	enaphthylene			ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 ELAC-NY10854,NJDE	10/19/2021 01:21 P,PADEP	KH
	120-12-7	12-7 Anthracene		0.0541	J	ug/L	0.0541	0.0541	1	EPA 8270D		10/15/2021 07:39	10/19/2021 01:21	KH
										Certifications:	CTDOH N	FL AC-NV10854 NIDI	EDDADED	

ug/L

120 RESEARCH DRIVE www.YORKLAB.com

Benzo(a)anthracene

56-55-3

Sample Prepared by Method: EPA 3510C

STRATFORD, CT 06615

ND

(203) 325-1371

132-02 89th AVENUE

0.0541

RICHMOND HILL, NY 11418

10/15/2021 07:39 10/19/2021 01:21

EPA 8270D

Certifications:

Date/Time

CTDOH,NELAC-NY10854,NJDEP,PADEP

Date/Time

KH

Page 22 of 42 FAX (203) 357-0166 ClientServices@

Sample Information

Client Sample ID: CIM-FD-001 1021

York Sample ID:

21J0506-09

York Project (SDG) No. 21J0506

Client Project ID
41548.21 CONSOLIDATED IRON

Matrix Water Collection Date/Time
October 11, 2021 3:00 pm

Date Received

Log-in Notes:

Sample Notes:

10/12/2021

Semi-Volatiles, CP-51 (formerly STARS)-Low Level

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
0-32-8	Benzo(a)pyrene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/19/2021 01:21 EP,PADEP	КН
05-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 ELAC-NY10854,NJDE	10/19/2021 01:21 EP,PADEP	KH
91-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 ELAC-NY10854,NJDE	10/19/2021 01:21 EP,PADEP	KH
07-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NI	10/15/2021 07:39 ELAC-NY10854,NJDE	10/19/2021 01:21 EP,PADEP	KH
18-01-9	Chrysene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 ELAC-NY10854,NJDE	10/19/2021 01:21 EP,PADEP	KH
3-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 ELAC-NY10854,NJDE	10/19/2021 01:21 EP,PADEP	KH
06-44-0	Fluoranthene	0.0649		ug/L	0.0541	0.0541	1	EPA 8270D		10/15/2021 07:39	10/19/2021 01:21	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
5-73-7	Fluorene	0.119		ug/L	0.0541	0.0541	1	EPA 8270D		10/15/2021 07:39	10/19/2021 01:21	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
93-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0541	0.0541	1	EPA 8270D Certifications:	CTDOH,NE	10/15/2021 07:39 ELAC-NY10854,NJDE	10/19/2021 01:21 EP,PADEP	KH
1-20-3	Naphthalene	17.8		ug/L	0.0541	0.0541	1	EPA 8270D		10/15/2021 07:39	10/19/2021 01:21	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
5-01-8	Phenanthrene	0.151		ug/L	0.0541	0.0541	1	EPA 8270D		10/15/2021 07:39	10/19/2021 01:21	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI		
29-00-0	Pyrene	0.0541	J	ug/L	0.0541	0.0541	1	EPA 8270D		10/15/2021 07:39	10/19/2021 01:21	KH
								Certifications:	CTDOH,N	ELAC-NY10854,NJDI	EP,PADEP	
	Surrogate Recoveries	Result		Acce	eptance Rang	e						
165-60-0	Surrogate: SURR: Nitrobenzene-d5	93.6 %			50.2-113							
21-60-8	Surrogate: SURR: 2-Fluorobiphenyl	67.7 %			39.9-105							
718-51-0	Surrogate: SURR: Terphenyl-d14	53.4 %			30.7-106							

Lead by EPA 6020

Sample Prepared by Method: EPA 3015A

Log	-in	Notes:	

Sample Notes:

CAS	No.	Parameter	Result	Flag Units	Reported to LOQ	Dilution	Reference Meth	Date/Time od Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		1.39	ug/L	1.11	1	EPA 6020B	10/19/2021 09:56	10/19/2021 19:03	BML
							Certifications: CTDC	OH NELAC-NY10854 NIC	EPPADEP	

Sample Information

Client Sample ID:	TRIP BL	ANK 1021
-------------------	---------	----------

York Sample ID: 21J0506-10

York Project (SDG) No.	Client Project ID	<u>Matrix</u>	Collection Date/Time	Date Received
21J0506	41548.21 CONSOLIDATED IRON	Water	October 11, 2021 10:00 am	10/12/2021

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 23 of 42

Sample Information

Client Sample ID: TRIP BLANK 1021

York Sample ID: 2

21J0506-10

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

21J0506

41548.21 CONSOLIDATED IRON

Water

October 11, 2021 10:00 am

10/12/2021

Volatile Organics, CP-51 (STARS) Low level

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 11:43 AC-NY12058,NJDEI	PD P,PADEP
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 11:43 AC-NY12058,NJDEI	PD P,PADEP
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 11:43 AC-NY12058,NJDEI	PD P,PADEP
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 11:43 AC-NY12058,NJDEI	PD P,PADEP
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 11:43 AC-NY12058,NJDEI	PD P,PADEP
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 11:43 AC-NY12058,NJDEI	PD P,PADEP
91-20-3	Naphthalene	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	NELAC-N	10/14/2021 09:00 Y10854,NELAC-NY1	10/14/2021 11:43 2058,NJDEP,PADEP	PD
104-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 11:43 AC-NY12058,NJDEI	PD P,PADEP
103-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 11:43 AC-NY12058,NJDEI	PD P,PADEP
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 11:43 AC-NY12058,PADE	PD P
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 11:43 AC-NY12058,PADE	PD P
99-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 11:43 AC-NY12058,NJDEI	PD P,PADEP
135-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 11:43 AC-NY12058,NJDEI	PD P,PADEP
98-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 11:43 AC-NY12058,NJDEI	PD P,PADEP
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 11:43 AC-NY12058,NJDEI	PD P,PADEP
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:	CTDOH,NI	10/14/2021 09:00 ELAC-NY10854,NEL	10/14/2021 11:43 AC-NY12058,NJDEI	PD
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	108 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	89.3 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	98.5 %			79-122							

Analytical Batch Summary

Batch ID: BJ10729	Preparation Method:	EPA 5030B	Prepared By:	PD
YORK Sample ID	Client Sample ID	Preparation Date		
21J0506-01	CIM-MW-01 1021	10/13/21		
21J0506-01RE1	CIM-MW-01 1021	10/13/21		
21J0506-04	CIM-MW-04 1021	10/13/21		
21J0506-05	CIM-MW-06 1021	10/13/21		
21J0506-06	CIM-MW-07 1021	10/13/21		
21J0506-07	CIM-MW-08 1021	10/13/21		
21J0506-09	CIM-FD-001 1021	10/13/21		
21J0506-09RE1	CIM-FD-001 1021	10/13/21		
BJ10729-BLK1	Blank	10/13/21		
BJ10729-BS1	LCS	10/13/21		
BJ10729-BSD1	LCS Dup	10/13/21		
BJ10729-MS1	Matrix Spike	10/13/21		
BJ10729-MSD1	Matrix Spike Dup	10/13/21		
Batch ID: BJ10817	Preparation Method:	EPA 5030B	Prepared By:	PD
YORK Sample ID	Client Sample ID	Preparation Date		
21J0506-02	CIM-MW-02 1021	10/14/21		
21J0506-03	CIM-MW-03 1021	10/14/21		
21J0506-08	CIM-MW-09 1021	10/14/21		
21J0506-10	TRIP BLANK 1021	10/14/21		
BJ10817-BLK1	Blank	10/14/21		
BJ10817-BS1	LCS	10/14/21		
BJ10817-BSD1	LCS Dup	10/14/21		
Batch ID: BJ10876	Preparation Method:	EPA 3510C	Prepared By:	MC
YORK Sample ID	Client Sample ID	Preparation Date		
21J0506-02	CIM-MW-02 1021	10/15/21		
21J0506-03	CIM-MW-03 1021	10/15/21		
21J0506-04	CIM-MW-04 1021	10/15/21		
21J0506-05	CIM-MW-06 1021	10/15/21		
21J0506-06	CIM-MW-07 1021	10/15/21		
21J0506-07	CIM-MW-08 1021	10/15/21		
21J0506-08	CIM-MW-09 1021	10/15/21		
21J0506-09	CIM-FD-001 1021	10/15/21		
BJ10876-BLK1	Blank	10/15/21		
BJ10876-BLK2	Blank	10/15/21		
BJ10876-BS1	LCS	10/15/21		
BJ10876-BS2	LCS	10/15/21		
BJ10876-MS1	Matrix Spike	10/15/21		
BJ10876-MSD1	Matrix Spike Dup	10/15/21		

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 25 of 42

Batch ID: BJ10918	Preparation Method:	EPA 3510C	Prepared By:	BMT
YORK Sample ID	Client Sample ID	Preparation Date		
21J0506-01	CIM-MW-01 1021	10/15/21		
BJ10918-BLK1	Blank	10/15/21		
BJ10918-BLK2	Blank	10/15/21		
BJ10918-BS1	LCS	10/15/21		
BJ10918-BS2	LCS	10/15/21		
Batch ID: BJ10979	Preparation Method:	EPA 3015A	Prepared By:	BR
YORK Sample ID	Client Sample ID	Preparation Date		
21J0506-07	CIM-MW-08 1021	10/18/21		
BJ10979-BLK1	Blank	10/18/21		
BJ10979-BS1	LCS	10/18/21		
BJ10979-DUP1	Duplicate	10/18/21		
BJ10979-MS1	Matrix Spike	10/18/21		
Batch ID: BJ10981	Preparation Method:	EPA 3015A	Prepared By:	BR
YORK Sample ID	Client Sample ID	Preparation Date		
21J0506-02	CIM-MW-02 1021	10/18/21		
21J0506-03	CIM-MW-03 1021	10/18/21		
21J0506-04	CIM-MW-04 1021	10/18/21		
21J0506-05	CIM-MW-06 1021	10/18/21		
BJ10981-BLK1	Blank	10/18/21		
BJ10981-BS1	LCS	10/18/21		
BJ10981-DUP1	Duplicate	10/18/21		
BJ10981-MS1	Matrix Spike	10/18/21		
Batch ID: BJ11072	Preparation Method:	EPA 3015A	Prepared By:	BR
YORK Sample ID	Client Sample ID	Preparation Date		
21J0506-01	CIM-MW-01 1021	10/19/21		
21J0506-06	CIM-MW-07 1021	10/19/21		
21J0506-07	CIM-MW-08 1021	10/19/21		
21J0506-08	CIM-MW-09 1021	10/19/21		
21J0506-09	CIM-FD-001 1021	10/19/21		
BJ11072-BLK1	Blank	10/19/21		
BJ11072-BS1	LCS	10/19/21		
BJ11072-DUP1	Duplicate	10/19/21		
BJ11072-DUP2	Duplicate	10/19/21		
BJ11072-MS1	Matrix Spike	10/19/21		
BJ11072-MS2	Matrix Spike	10/19/21		

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 26 of 42

Volatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD		l
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	l

Blank (BJ10729-BLK1)						Prepared & Analyzed: 10/13/2021
,2,4-Trimethylbenzene	ND	0.50	ug/L			
,3,5-Trimethylbenzene	ND	0.50	"			
Benzene	ND	0.50	"			
Ethyl Benzene	ND	0.50	"			
sopropylbenzene	ND	0.50	"			
Methyl tert-butyl ether (MTBE)	ND	0.50	"			
Japhthalene	ND	2.0	"			
-Butylbenzene	ND	0.50	"			
-Propylbenzene	ND	0.50	"			
-Xylene	ND	0.50	"			
o- & m- Xylenes	ND	1.0	"			
p-Isopropyltoluene	ND	0.50	"			
ec-Butylbenzene	ND	0.50	"			
ert-Butylbenzene	ND	0.50	"			
Coluene	ND	0.50	"			
Tylenes, Total	ND	1.5	"			
urrogate: SURR: 1,2-Dichloroethane-d4	10.7		"	10.0	107	69-130
urrogate: SURR: Toluene-d8	9.09		"	10.0	90.9	81-117
urrogate: SURR: p-Bromofluorobenzene	9.97		"	10.0	99.7	79-122
.CS (BJ10729-BS1)						Prepared & Analyzed: 10/13/2021
2,4-Trimethylbenzene	9.1		ug/L	10.0	90.6	82-132
3,5-Trimethylbenzene	8.9		"	10.0	88.8	80-131
enzene	11		"	10.0	114	85-126
thyl Benzene	9.5		"	10.0	95.3	80-131
sopropylbenzene	9.2		"	10.0	92.1	76-140
Methyl tert-butyl ether (MTBE)	11		"	10.0	110	76-135
Naphthalene	9.1		"	10.0	90.9	70-147
-Butylbenzene	8.9		"	10.0	89.1	79-132
-Propylbenzene	9.0		"	10.0	90.4	78-133
-Xylene	9.7		"	10.0	97.2	78-130
- & m- Xylenes	19		"	20.0	96.3	77-133
-Isopropyltoluene	9.0		"	10.0	89.5	81-136
ec-Butylbenzene	8.9		"	10.0	89.2	79-137
ert-Butylbenzene	9.0		"	10.0	89.9	77-138
Toluene	9.5		"	10.0	95.3	80-127
urrogate: SURR: 1,2-Dichloroethane-d4	10.3		"	10.0	103	69-130
urrogate: SURR: Toluene-d8	9.10		"	10.0	91.0	81-117
urrogate: SURR: p-Bromofluorobenzene	9.88		"	10.0	98.8	79-122

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 27 of 42

Volatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result		Jnits	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Dotah D 110720 EDA 5020D											
Batch BJ10729 - EPA 5030B											
LCS Dup (BJ10729-BSD1)							Prepa	ared & Anal	yzed: 10/13/		
1,2,4-Trimethylbenzene	9.2	ı	ıg/L	10.0		92.0	82-132		1.53	30	
1,3,5-Trimethylbenzene	8.9		"	10.0		89.3	80-131		0.561	30	
Benzene	11		"	10.0		115	85-126		0.964	30	
Ethyl Benzene	9.6		"	10.0		95.8	80-131		0.523	30	
Isopropylbenzene	9.3		"	10.0		92.6	76-140		0.541	30	
Methyl tert-butyl ether (MTBE)	11		"	10.0		112	76-135		1.89	30	
Naphthalene	9.3		"	10.0		93.3	70-147		2.61	30	
n-Butylbenzene	9.1		"	10.0		91.2	79-132		2.33	30	
n-Propylbenzene	9.0		"	10.0		90.3	78-133		0.111	30	
o-Xylene	9.8		"	10.0		97.6	78-130		0.411	30	
p- & m- Xylenes	19		"	20.0		96.2	77-133		0.156	30	
p-Isopropyltoluene	9.1		"	10.0		91.2	81-136		1.88	30	
sec-Butylbenzene	9.0		"	10.0		90.1	79-137		1.00	30	
tert-Butylbenzene	9.1		"	10.0		90.9	77-138		1.11	30	
Toluene	9.5		"	10.0		95.0	80-127		0.315	30	
Surrogate: SURR: 1,2-Dichloroethane-d4	10.5		"	10.0		105	69-130				
Surrogate: SURR: Toluene-d8	9.17		"	10.0		91.7	81-117				
Surrogate: SURR: p-Bromofluorobenzene	9.89		"	10.0		98.9	79-122				
Matrix Spike (BJ10729-MS1)	*Source sample: 2	1J0506-01 (CIM-N	MW-01	1021)			Prepa	ared & Anal	yzed: 10/13/2	2021	
1,2,4-Trimethylbenzene	12	1	ıg/L	10.0	0.46	111	72-129				
1,3,5-Trimethylbenzene	12		"	10.0	1.4	108	69-126				
Benzene	26		"	10.0	14	125	38-155				
Ethyl Benzene	110		"	10.0	100	88.8	72-128				
Isopropylbenzene	58		"	10.0	47	108	66-139				
Methyl tert-butyl ether (MTBE)	14		"	10.0	3.0	111	75-128				
Naphthalene	49		"	10.0	37	117	39-158				
n-Butylbenzene	16		"	10.0	7.1	88.9	61-138				
n-Propylbenzene	110		"	10.0	99	94.7	66-134				
o-Xylene	10		"	10.0	0.25	119	69-126				
	12						67.120				
p- & m- Xylenes	28		"	20.0	4.0	120	67-130				
			"	20.0 10.0	4.0 0.60	120 111	64-137				
p-Isopropyltoluene	28										
p- & m- Xylenes p-Isopropyltoluene sec-Butylbenzene tert-Butylbenzene	28 12		"	10.0	0.60	111	64-137				
p-Isopropyltoluene sec-Butylbenzene tert-Butylbenzene	28 12 18		"	10.0 10.0	0.60 7.2	111 110	64-137 53-155				
p-Isopropyltoluene sec-Butylbenzene	28 12 18 12		"	10.0 10.0 10.0	0.60 7.2 0.39	111 110 113	64-137 53-155 65-139				
p-Isopropyltoluene sec-Butylbenzene tert-Butylbenzene Toluene	28 12 18 12 15		" " "	10.0 10.0 10.0 10.0	0.60 7.2 0.39	111 110 113 116	64-137 53-155 65-139 76-123				

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 Page 28 of 42 (203) 325-1371 FAX (203) 357-0166 ClientServices@

www.YORKLAB.com

Volatile Organic Compounds by GC/MS - Quality Control Data

Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag
·											- 3
Batch BJ10729 - EPA 5030B Matrix Spike Dup (BJ10729-MSD1)	*Source sample: 2	1 10506 01 (CI)	M MW/ 01	1021)			Pren	ared & Analy	vzed: 10/13	/2021	
1,2,4-Trimethylbenzene	11	130300-01 (CII	ug/L	10.0	0.46	108	72-129	area ce mai	2.56	30	
1,3,5-Trimethylbenzene	12		ug/L	10.0	1.4	106	69-126		2.05	30	
Benzene	26		"	10.0	14	124	38-155		0.642	30	
Ethyl Benzene	110		"	10.0	100	88.7	72-128		0.113	30	
Isopropylbenzene	57		"	10.0	47	105	66-139		2.35	30	
Methyl tert-butyl ether (MTBE)	14		"	10.0	3.0	110	75-128		0.817	30	
Naphthalene	50		"	10.0	37	124	39-158		6.39	30	
n-Butylbenzene	16		"	10.0	7.1	86.1	61-138		3.20	30	
n-Propylbenzene	110		"	10.0	99	89.0	66-134		6.21	30	
o-Xylene	12		"	10.0	0.25	116	69-126		2.98	30	
p- & m- Xylenes	27		"	20.0	4.0	117	67-130		2.58	30	
p-Isopropyltoluene	11		"	10.0	0.60	108	64-137		2.93	30	
sec-Butylbenzene	18		"	10.0	7.2	107	53-155		3.04	30	
tert-Butylbenzene	11		"	10.0	0.39	110	65-139		2.88	30	
Toluene	15		"	10.0	3.4	116	76-123		0.00	30	
Surrogate: SURR: 1,2-Dichloroethane-d4	9.23		"	10.0		92.3	69-130				
Surrogate: SURR: Toluene-d8	9.07		,,	10.0		90.7	81-117				
Surrogate: SURR: p-Bromofluorobenzene	9.81		,,	10.0		98.1	79-122				
Batch BJ10817 - EPA 5030B											
Batch BJ10817 - EPA 5030B Blank (BJ10817-BLK1)							Prep	ared & Analy	yzed: 10/14/	/2021	
Blank (BJ10817-BLK1) 1,2,4-Trimethylbenzene	ND	0.50	ug/L				Prep	ared & Analy	yzed: 10/14/	/2021	
Blank (BJ10817-BLK1) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	ND	0.50	"				Prep	ared & Analy	yzed: 10/14/	/2021	
Blank (BJ10817-BLK1) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene	ND ND	0.50 0.50	"				Prep	ared & Analy	yzed: 10/14/	/2021	
Blank (BJ10817-BLK1) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Ethyl Benzene	ND ND ND	0.50 0.50 0.50	"				Prep	ared & Analy	yzed: 10/14/	/2021	
Blank (BJ10817-BLK1) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Ethyl Benzene Isopropylbenzene	ND ND ND ND	0.50 0.50 0.50 0.50	" "				Prep	ared & Analy	yzed: 10/14/	/2021	
Blank (BJ10817-BLK1) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Ethyl Benzene Isopropylbenzene Methyl tert-butyl ether (MTBE)	ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50	" " " "				Prep	ared & Analy	yzed: 10/14/	/2021	
Blank (BJ10817-BLK1) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Ethyl Benzene Isopropylbenzene Methyl tert-butyl ether (MTBE) Naphthalene	ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 2.0	" " " " " " " " " " " " " " " " " " " "				Prep	ared & Analy	yzed: 10/14/	/2021	
Blank (BJ10817-BLK1) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Ethyl Benzene Isopropylbenzene Methyl tert-butyl ether (MTBE) Naphthalene n-Butylbenzene	ND ND ND ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 2.0 0.50	" " " " " " " " " " " " " " " " " " " "				Prep	ared & Analy	yzed: 10/14/	/2021	
Blank (BJ10817-BLK1) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Ethyl Benzene Isopropylbenzene Methyl tert-butyl ether (MTBE) Naphthalene n-Butylbenzene n-Propylbenzene	ND	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	" " " " " " " " " " " " " " " " " " " "				Prep	ared & Analy	yzed: 10/14/	/2021	
Blank (BJ10817-BLK1) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Ethyl Benzene Isopropylbenzene Methyl tert-butyl ether (MTBE) Naphthalene n-Butylbenzene n-Propylbenzene o-Xylene	ND	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	" " " " " " " " " " " " " " " " " " " "				Prep	ared & Analy	yzed: 10/14/	/2021	
Blank (BJ10817-BLK1) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Ethyl Benzene Isopropylbenzene Methyl tert-butyl ether (MTBE) Naphthalene n-Butylbenzene n-Propylbenzene o-Xylene p- & m- Xylenes	ND N	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 1.0	" " " " " " " " " " " " " " " " " " " "				Prep	ared & Analy	yzed: 10/14/	/2021	
Blank (BJ10817-BLK1) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Ethyl Benzene Isopropylbenzene Methyl tert-butyl ether (MTBE) Naphthalene n-Butylbenzene n-Propylbenzene o-Xylene p- & m- Xylenes p-Isopropyltoluene	ND N	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	" " " " " " " " " " " " " " " " " " " "				Prep	ared & Analy	yzed: 10/14/	/2021	
Blank (BJ10817-BLK1) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Ethyl Benzene Isopropylbenzene Methyl tert-butyl ether (MTBE) Naphthalene n-Butylbenzene n-Propylbenzene o-Xylene p- & m- Xylenes p-Isopropyltoluene sec-Butylbenzene	ND N	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	" " " " " " " " " " " " " " " " " " " "				Prep	ared & Analy	yzed: 10/14/	/2021	
Blank (BJ10817-BLK1) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Ethyl Benzene Isopropylbenzene Methyl tert-butyl ether (MTBE) Naphthalene n-Butylbenzene n-Propylbenzene o-Xylene p- & m- Xylenes p-Isopropyltoluene sec-Butylbenzene tert-Butylbenzene	ND N	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	"" "" "" "" "" "" "" "" "" "" "" "" ""				Prep	ared & Analy	yzed: 10/14/	/2021	
Blank (BJ10817-BLK1) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Ethyl Benzene Isopropylbenzene Methyl tert-butyl ether (MTBE) Naphthalene n-Butylbenzene n-Propylbenzene o-Xylene p- & m- Xylenes p-Isopropyltoluene sec-Butylbenzene	ND N	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50					Prep	ared & Analy	yzed: 10/14/	/2021	
Blank (BJ10817-BLK1) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Ethyl Benzene Isopropylbenzene Methyl tert-butyl ether (MTBE) Naphthalene n-Butylbenzene n-Propylbenzene o-Xylene p- & m- Xylenes p-Isopropyltoluene sec-Butylbenzene tert-Butylbenzene Toluene	ND N	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50		10.0		105	Prep	ared & Analy	yzed: 10/14/	/2021	
Blank (BJ10817-BLK1) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Benzene Ethyl Benzene Isopropylbenzene Methyl tert-butyl ether (MTBE) Naphthalene n-Butylbenzene n-Propylbenzene o-Xylene p- & m- Xylenes p-Isopropyltoluene sec-Butylbenzene tert-Butylbenzene Toluene Xylenes, Total	ND N	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50		10.0		105 89.2		ared & Analy	yzed: 10/14/	/2021	

RICHMOND HILL, NY 11418 120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE Page 29 of 42 (203) 325-1371 FAX (203) 357-0166 ClientServices@

www.YORKLAB.com

Volatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	KPD	Limit	Flag
Batch BJ10817 - EPA 5030B										·	
LCS (BJ10817-BS1)							Prepa	ared & Analyzed	d: 10/14/2	2021	
1,2,4-Trimethylbenzene	9.4		ug/L	10.0		94.4	82-132				
1,3,5-Trimethylbenzene	9.3		"	10.0		92.9	80-131				
Benzene	12		"	10.0		123	85-126				
Ethyl Benzene	10		"	10.0		101	80-131				
Isopropylbenzene	9.7		"	10.0		97.1	76-140				
Methyl tert-butyl ether (MTBE)	12		"	10.0		119	76-135				
Naphthalene	9.5		"	10.0		95.3	70-147				
n-Butylbenzene	9.0		"	10.0		89.7	79-132				
n-Propylbenzene	9.5		"	10.0		94.7	78-133				
o-Xylene	10		"	10.0		103	78-130				
o- & m- Xylenes	20		"	20.0		102	77-133				
p-Isopropyltoluene	9.3		"	10.0		92.7	81-136				
sec-Butylbenzene	9.2		"	10.0		92.2	79-137				
ert-Butylbenzene	9.4		"	10.0		93.7	77-138				
Toluene	10		"	10.0		101	80-127				
Surrogate: SURR: 1,2-Dichloroethane-d4	10.5		"	10.0		105	69-130				
Surrogate: SURR: Toluene-d8	9.06		"	10.0		90.6	81-117				
Surrogate: SURR: p-Bromofluorobenzene	9.96		"	10.0		99.6	79-122				
LCS Dup (BJ10817-BSD1)							Prepa	ared & Analyzed	d: 10/14/2	2021	
1,2,4-Trimethylbenzene	9.5		ug/L	10.0		95.4	82-132		1.05	30	
1,3,5-Trimethylbenzene	9.4		"	10.0		94.0	80-131		1.18	30	
Benzene	12		"	10.0		122	85-126		0.572	30	
Ethyl Benzene	10		"	10.0		100	80-131		0.497	30	
Isopropylbenzene	9.8		"	10.0		97.5	76-140		0.411	30	
Methyl tert-butyl ether (MTBE)	12		"	10.0		121	76-135		1.67	30	
Naphthalene	9.6		"	10.0		96.3	70-147		1.04	30	
n-Butylbenzene	9.5		"	10.0		95.4	79-132		6.16	30	
n-Propylbenzene	9.5		"	10.0		95.4	78-133		0.736	30	
o-Xylene	10		"	10.0		103	78-130	(0.0974	30	
o- & m- Xylenes	20		"	20.0		102	77-133		0.686	30	
p-Isopropyltoluene	9.5		"	10.0		95.2	81-136		2.66	30	
ec-Butylbenzene	9.5		"	10.0		95.3	79-137		3.31	30	
ert-Butylbenzene	9.6		"	10.0		96.2	77-138		2.63	30	
Гoluene	9.9		"	10.0		99.1	80-127		2.00	30	
Surrogate: SURR: 1,2-Dichloroethane-d4	10.5		"	10.0		105	69-130				
Surrogate: SURR: Toluene-d8	8.96		"	10.0		89.6	81-117				
Surrogate: SURR: p-Bromofluorobenzene	9.82		"	10.0		98.2	79-122				

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 30 of 42

Semivolatile Organic Compounds by GC/MS - Quality Control Data

York Analytical Laboratories, Inc.

Spike

Source*

%REC

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BJ10876 - EPA 3510C											
Blank (BJ10876-BLK1)							Prep	ared: 10/15/2	2021 Analyz	red: 10/18/2	2021
Acenaphthene	ND	0.0500	ug/L								
Acenaphthylene	ND	0.0500	"								
Anthracene	ND	0.0500	"								
Benzo(a)anthracene	ND	0.0500	"								
Benzo(a)pyrene	ND	0.0500	"								
Benzo(b)fluoranthene	ND	0.0500	"								
Benzo(g,h,i)perylene	ND	0.0500	"								
Benzo(k)fluoranthene	ND	0.0500	"								
Chrysene	ND	0.0500	"								
Dibenzo(a,h)anthracene	ND	0.0500	"								
Fluoranthene	ND	0.0500	"								
Fluorene	ND	0.0500	"								
Indeno(1,2,3-cd)pyrene	ND	0.0500	"								
Naphthalene	ND	0.0500	"								
Phenanthrene	ND	0.0500	"								
Pyrene	ND	0.0500	"								
Surrogate: SURR: Nitrobenzene-d5	19.8		"	25.0		79.2	50.2-113				
Surrogate: SURR: 2-Fluorobiphenyl	18.0		"	25.0		71.9	39.9-105				
Surrogate: SURR: Terphenyl-d14	28.4		"	25.0		113	30.7-106				
Blank (BJ10876-BLK2)							Prep	ared: 10/15/2	2021 Analyz	ed: 10/18/2	2021
Acenaphthene	ND	0.0500	ug/L								
Acenaphthylene	ND	0.0500	"								
Anthracene	ND	0.0500	"								
Benzo(a)anthracene	ND	0.0500	"								
Benzo(a)pyrene	ND	0.0500	"								
Benzo(b)fluoranthene	ND	0.0500	"								
Benzo(g,h,i)perylene	ND	0.0500	"								
Benzo(k)fluoranthene	ND	0.0500	"								
Chrysene	ND	0.0500	"								
Dibenzo(a,h)anthracene	ND	0.0500	"								
Fluoranthene	ND	0.0500	"								
Fluorene	ND	0.0500	"								
Indeno(1,2,3-cd)pyrene	ND	0.0500	"								
Naphthalene	ND	0.0500	"								
Phenanthrene	ND	0.0500	"								
Pyrene	ND	0.0500	"								
Surrogate: SURR: Nitrobenzene-d5	0.00		"	25.0			50.2-113				
Surrogate: SURR: 2-Fluorobiphenyl	0.00		"	25.0			39.9-105				
Surrogate: SURR: Terphenyl-d14	0.00		"	25.0			30.7-106				

120 RESEARCH DRIVE ST www.YORKLAB.com (20

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 31 of 42

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BJ10876 - EPA 3510C											
LCS (BJ10876-BS1)							Prepa	ared: 10/15/2	2021 Analyz	ed: 10/18/2	2021
Acenaphthene	18.5	0.0500	ug/L	25.0		74.1	24-114				
Acenaphthylene	18.8	0.0500	"	25.0		75.4	26-112				
Anthracene	20.5	0.0500	"	25.0		82.1	35-114				
Benzo(a)anthracene	20.5	0.0500	"	25.0		82.0	38-127				
Benzo(a)pyrene	18.6	0.0500	"	25.0		74.4	30-146				
Benzo(b)fluoranthene	18.5	0.0500	"	25.0		74.2	36-145				
Benzo(g,h,i)perylene	20.0	0.0500	"	25.0		80.0	10-163				
Benzo(k)fluoranthene	18.1	0.0500	"	25.0		72.6	16-149				
Chrysene	19.8	0.0500	"	25.0		79.2	33-120				
Dibenzo(a,h)anthracene	21.8	0.0500	"	25.0		87.3	10-149				
Fluoranthene	21.2	0.0500	"	25.0		85.0	33-126				
Fluorene	19.8	0.0500	"	25.0		79.2	28-117				
Indeno(1,2,3-cd)pyrene	19.9	0.0500	"	25.0		79.8	10-150				
Naphthalene	18.1	0.0500	"	25.0		72.3	30-99				
Phenanthrene	19.2	0.0500	"	25.0		77.0	31-112				
Pyrene	20.4	0.0500	"	25.0		81.8	42-125				
Surrogate: SURR: Nitrobenzene-d5	19.6		"	25.0		78.5	50.2-113				
Surrogate: SURR: 2-Fluorobiphenyl	18.3		"	25.0		73.2	39.9-105				
Surrogate: SURR: Terphenyl-d14	24.0		"	25.0		95.8	30.7-106				
LCS (BJ10876-BS2)							Prepa	ared: 10/15/2	2021 Analyz	ed: 10/18/2	2021
Acenaphthene	0.770	0.0500	ug/L				24-114				
Acenaphthylene	0.830	0.0500	"				26-112				
Anthracene	0.580	0.0500	"				35-114				
Benzo(a)anthracene	0.910	0.0500	"				38-127				
Benzo(a)pyrene	0.660	0.0500	"				30-146				
Benzo(b)fluoranthene	0.940	0.0500	"				36-145				
Benzo(g,h,i)perylene	1.05	0.0500	"				10-163				
Benzo(k)fluoranthene	0.880	0.0500	"				16-149				
Chrysene	0.950	0.0500	"				33-120				
Dibenzo(a,h)anthracene	1.05	0.0500	"				10-149				
Fluoranthene	0.950	0.0500	"				33-126				
Fluorene	0.840	0.0500	"				28-117				
Indeno(1,2,3-cd)pyrene	1.04	0.0500	"				10-150				
Naphthalene	0.850	0.0500	"				30-99				
Phenanthrene	0.880	0.0500	"				31-112				
Pyrene	0.900	0.0500	"				42-125				
Surrogate: SURR: Nitrobenzene-d5	0.00		"	25.0			50.2-113				
Surrogate: SURR: 2-Fluorobiphenyl	0.00		"	25.0			39.9-105				
Surrogate: SURR: Terphenyl-d14	0.00		"	25.0			30.7-106				

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

Semivolatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

Spike

Source*

Reporting

RPD

%REC

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BJ10876 - EPA 3510C											
Matrix Spike (BJ10876-MS1)	*Source sample: 2	1J0487-01 (Ma	ıtrix Spike)				Prepa	ared: 10/15/2	2021 Analyz	ed: 10/18/2	2021
Acenaphthene	10.6	0.0500	ug/L	25.0	0.278	41.2	17-132				
Acenaphthylene	10.0	0.0500	"	25.0	ND	40.0	13-124				
Anthracene	10.8	0.0500	"	25.0	ND	43.3	40-105				
Benzo(a)anthracene	11.6	0.0500	"	25.0	ND	46.4	23-141				
Benzo(a)pyrene	12.0	0.0500	"	25.0	ND	47.9	46-118				
Benzo(b)fluoranthene	11.5	0.0500	"	25.0	ND	46.0	22-133				
Benzo(g,h,i)perylene	12.0	0.0500	"	25.0	ND	48.0	10-126				
Benzo(k)fluoranthene	12.1	0.0500	"	25.0	ND	48.4	18-152				
Chrysene	10.9	0.0500	"	25.0	ND	43.6	30-127				
Dibenzo(a,h)anthracene	12.5	0.0500	"	25.0	ND	49.8	10-131				
Fluoranthene	11.6	0.0500	"	25.0	ND	46.6	29-123				
Fluorene	10.8	0.0500	"	25.0	ND	43.0	20-133				
Indeno(1,2,3-cd)pyrene	11.5	0.0500	"	25.0	ND	46.0	10-130				
Naphthalene	10.7	0.0500	"	25.0	1.91	35.2	26-104				
Phenanthrene	11.2	0.0500	,,	25.0	0.278	43.6	29-121				
Pyrene	11.3	0.0500	"	25.0	ND	45.0	34-129				
Surrogate: SURR: Nitrobenzene-d5	11.2	0.0200	"	25.0			50.2-113				
			,,			44.8					
Surrogate: SURR: 2-Fluorobiphenyl	9.36		,,	25.0		37.4	39.9-105				
Surrogate: SURR: Terphenyl-d14	10.2		"	25.0		40.6	30.7-106				
Matrix Spike Dup (BJ10876-MSD1)	*Source sample: 2	1J0487-01 (Ma	trix Spike	Dup)			Prepa	ared: 10/15/2			2021
Acenaphthene	11.3	0.0526	ug/L	26.3	0.278	41.9	17-132		6.44	20	
Acenaphthylene	10.7	0.0526	"	26.3	ND	40.6	13-124		6.52	20	
Anthracene	12.1	0.0526	"	26.3	ND	46.1	40-105		11.4	20	
Benzo(a)anthracene	12.1	0.0526	"	26.3	ND	46.1	23-141		4.52	20	
Benzo(a)pyrene	13.1	0.0526	"	26.3	ND	49.6	46-118		8.57	20	
Benzo(b)fluoranthene	12.7	0.0526	"	26.3	ND	48.3	22-133		10.0	20	
Benzo(g,h,i)perylene	12.7	0.0526	"	26.3	ND	48.1	10-126		5.46	20	
Benzo(k)fluoranthene	12.3	0.0526	"	26.3	ND	46.6	18-152		1.34	20	
Chrysene	11.6	0.0526	"	26.3	ND	44.1	30-127		6.31	20	
Dibenzo(a,h)anthracene	13.1	0.0526	"	26.3	ND	49.7	10-131		4.89	20	
Fluoranthene	12.7	0.0526	"	26.3	ND	48.2	29-123		8.59	20	
Fluorene	11.5	0.0526	"	26.3	ND	43.8	20-133		6.97	20	
Indeno(1,2,3-cd)pyrene	12.5	0.0526	"	26.3	ND	47.6	10-130		8.71	20	
Naphthalene	12.0	0.0526	"	26.3	1.91	38.2	26-104		11.1	20	
Phenanthrene	11.9	0.0526	"	26.3	0.278	44.2	29-121		6.37	20	
Pyrene	12.2	0.0526	"	26.3	ND	46.2	34-129		7.75	20	
Surrogate: SURR: Nitrobenzene-d5	12.4		"	26.3		47.0	50.2-113				
Surrogate: SURR: 2-Fluorobiphenyl	10.2		"	26.3		38.9	39.9-105				
Surrogate: SURR: Terphenyl-d14	11.8		"	26.3		44.8	30.7-106				

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 33 of 42

$Semivolatile\ Organic\ Compounds\ by\ GC/MS\ -\ Quality\ Control\ Data$

York Analytical Laboratories, Inc.

Spike

Source*

%REC

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BJ10918 - EPA 3510C											
Blank (BJ10918-BLK1)							Prep	ared: 10/15/2	2021 Analyz	ed: 10/19/2	021
Acenaphthene	ND	0.0500	ug/L								
Acenaphthylene	ND	0.0500	"								
Anthracene	ND	0.0500	"								
Benzo(a)anthracene	ND	0.0500	"								
Benzo(a)pyrene	ND	0.0500	"								
Benzo(b)fluoranthene	ND	0.0500	"								
Benzo(g,h,i)perylene	ND	0.0500	"								
Benzo(k)fluoranthene	ND	0.0500	"								
Chrysene	ND	0.0500	"								
Dibenzo(a,h)anthracene	ND	0.0500	"								
Fluoranthene	ND	0.0500	"								
Fluorene	ND	0.0500	"								
Indeno(1,2,3-cd)pyrene	ND	0.0500	"								
Naphthalene	ND	0.0500	"								
Phenanthrene	ND	0.0500	"								
Pyrene	ND	0.0500	"								
Surrogate: SURR: Nitrobenzene-d5	22.4		"	25.0		89.6	50.2-113				
Surrogate: SURR: 2-Fluorobiphenyl	21.2		"	25.0		85.0	39.9-105				
Surrogate: SURR: Terphenyl-d14	23.7		"	25.0		94.8	30.7-106				
Blank (BJ10918-BLK2)							Prep	ared: 10/15/2	2021 Analyz	ed: 10/19/2	021
Acenaphthene	ND	0.0500	ug/L								
Acenaphthylene	ND	0.0500	"								
Anthracene	ND	0.0500	"								
Benzo(a)anthracene	ND	0.0500	"								
Benzo(a)pyrene	ND	0.0500	"								
Benzo(b)fluoranthene	ND	0.0500	"								
Benzo(g,h,i)perylene	ND	0.0500	"								
Benzo(k)fluoranthene	ND	0.0500	"								
Chrysene	ND	0.0500	"								
Dibenzo(a,h)anthracene	ND	0.0500	"								
Fluoranthene	ND	0.0500	"								
Fluorene	ND	0.0500	"								
Indeno(1,2,3-cd)pyrene	ND	0.0500	"								
Naphthalene	ND	0.0500	"								
Phenanthrene	ND	0.0500	"								
Pyrene	ND	0.0500	"								
Surrogate: SURR: Nitrobenzene-d5	0.00		"	25.0			50.2-113				
Surrogate: SURR: 2-Fluorobiphenyl	0.00		"	25.0			39.9-105				
Surrogate: SURR: Terphenyl-d14	0.00		"	25.0			30.7-106				

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control Data York Analytical Laboratories, Inc.

Spike

Source*

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BJ10918 - EPA 3510C											
LCS (BJ10918-BS1)							Prepa	ared: 10/15/2	2021 Analyz	ed: 10/19/2	2021
Acenaphthene	18.7	0.0500	ug/L	25.0		74.8	24-114				
Acenaphthylene	18.5	0.0500	"	25.0		73.9	26-112				
Anthracene	22.3	0.0500	"	25.0		89.4	35-114				
Benzo(a)anthracene	23.8	0.0500	"	25.0		95.2	38-127				
Benzo(a)pyrene	24.6	0.0500	"	25.0		98.5	30-146				
Benzo(b)fluoranthene	24.4	0.0500	"	25.0		97.5	36-145				
Benzo(g,h,i)perylene	23.6	0.0500	"	25.0		94.3	10-163				
Benzo(k)fluoranthene	23.4	0.0500	"	25.0		93.6	16-149				
Chrysene	22.8	0.0500	"	25.0		91.3	33-120				
Dibenzo(a,h)anthracene	27.3	0.0500	"	25.0		109	10-149				
Fluoranthene	23.5	0.0500	"	25.0		94.2	33-126				
Fluorene	20.5	0.0500	"	25.0		82.1	28-117				
Indeno(1,2,3-cd)pyrene	25.9	0.0500	"	25.0		103	10-150				
Naphthalene	17.7	0.0500	"	25.0		70.8	30-99				
Phenanthrene	21.2	0.0500	"	25.0		84.8	31-112				
Pyrene	23.6	0.0500	"	25.0		94.5	42-125				
Surrogate: SURR: Nitrobenzene-d5	20.4		"	25.0		81.4	50.2-113				
Surrogate: SURR: 2-Fluorobiphenyl	19.2		"	25.0		76.7	39.9-105				
Surrogate: SURR: Terphenyl-d14	25.6		"	25.0		102	30.7-106				
LCS (BJ10918-BS2)							Prena	ared: 10/15/2	2021 Analyz	ed: 10/19/2	2021
Acenaphthene	0.760	0.0500	ug/L	1.00		76.0	24-114				
Acenaphthylene	0.830	0.0500	"	1.00		83.0	26-112				
Anthracene	0.560	0.0500	"	1.00		56.0	35-114				
Benzo(a)anthracene	0.840	0.0500	"	1.00		84.0	38-127				
Benzo(a)pyrene	0.620	0.0500	"	1.00		62.0	30-146				
Benzo(b)fluoranthene	1.00	0.0500	"	1.00		100	36-145				
Benzo(g,h,i)perylene	0.400	0.0500	"	1.00		40.0	10-163				
Benzo(k)fluoranthene	0.930	0.0500	"	1.00		93.0	16-149				
Chrysene	0.870	0.0500	"	1.00		87.0	33-120				
Dibenzo(a,h)anthracene	0.510	0.0500	"	1.00		51.0	10-149				
Fluoranthene	0.920	0.0500	"	1.00		92.0	33-126				
Fluorene	0.840	0.0500	"	1.00		84.0	28-117				
Indeno(1,2,3-cd)pyrene	0.490	0.0500	"	1.00		49.0	10-150				
Naphthalene	0.840	0.0500	,,	1.00		84.0	30-99				
Phenanthrene	0.830	0.0500	,,	1.00		83.0	31-112				
Pyrene	0.880	0.0500	"	1.00		88.0	42-125				
Surrogate: SURR: Nitrobenzene-d5	0.00	3.0200	"	25.0			50.2-113				
o .			,,								
Surrogate: SURR: 2-Fluorobiphenyl	0.00		,,	25.0			39.9-105 20.7.106				
Surrogate: SURR: Terphenyl-d14	0.00		**	25.0			30.7-106				

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 35 of 42

RPD

%REC

Metals by ICP/MS - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting	·	Spike	Source*		%REC	·		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BJ10979 - EPA 3015A											
Blank (BJ10979-BLK1)							Prep	ared & Anal	yzed: 10/18/	2021	
Lead - Dissolved	ND	1.11	ug/L								
LCS (BJ10979-BS1)							Prep	ared & Anal	yzed: 10/18/	2021	
Lead - Dissolved	51.4		ug/L	50.0		103	80-120				
Duplicate (BJ10979-DUP1)	*Source sample: 2	1J0487-01 (Du	plicate)				Prep	ared & Anal	yzed: 10/18/	2021	
Lead - Dissolved	31.4	1.11	ug/L		2.29				173	20	Non-dir.
Matrix Spike (BJ10979-MS1)	*Source sample: 2	1J0487-01 (Ma	ıtrix Spike)				Prep	ared & Anal	yzed: 10/18/	2021	
Lead - Dissolved	58.1		ug/L	50.0	2.06	112	75-125				
Batch BJ10981 - EPA 3015A											
Blank (BJ10981-BLK1)							Prep	ared & Anal	yzed: 10/18/	2021	
Arsenic	ND	1.11	ug/L								
Lead	ND	1.11	"								
LCS (BJ10981-BS1)							Prep	ared & Anal	yzed: 10/18/	2021	
Arsenic	50.3		ug/L	50.0		101	80-120				
Lead	49.6		"	50.0		99.3	80-120				
Duplicate (BJ10981-DUP1)	*Source sample: 2	1J0487-01 (Du	plicate)				Prep	ared & Anal	yzed: 10/18/	2021	
Arsenic	7.32	1.11	ug/L		7.13				2.71	20	
Lead	ND	1.11	"		ND					20	
Matrix Spike (BJ10981-MS1)	*Source sample: 2	1J0487-01 (Ma	trix Spike)				Prep	ared & Anal	yzed: 10/18/	2021	
Arsenic	59.6		ug/L	50.0	6.42	106	75-125				_
Lead	49.2		"	50.0	0.183	98.0	75-125				

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 36 of 42

Metals by ICP/MS - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*	·	%REC		·	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BJ11072 - EPA 3015A											
Blank (BJ11072-BLK1)							Prepa	ared & Analy	yzed: 10/19/	2021	
Lead	ND	1.11	ug/L	·	·		·	·			
LCS (BJ11072-BS1)							Prepa	ared & Analy	yzed: 10/19/	2021	
Lead	51.8		ug/L	50.0		104	80-120				
Duplicate (BJ11072-DUP1)	*Source sample: 21J0501-01 (Duplicate)						Prepared & Analyzed: 10/19/2021				
Lead	ND	1.11	ug/L		ND					20	
Duplicate (BJ11072-DUP2)	*Source sample: 21J0506-01 (CIM-MW-01 1021)						Prepared & Analyzed: 10/19/2021				
Lead	1.38	1.00	ug/L		1.50				8.67	20	
Matrix Spike (BJ11072-MS1)	*Source sample: 21J0501-01 (Matrix Spike)						Prepared & Analyzed: 10/19/2021				
Lead	50.8		ug/L	50.0	0.045	101	75-125				
Matrix Spike (BJ11072-MS2)	*Source sample: 21J0506-01 (CIM-MW-01 1021)						Prepared & Analyzed: 10/19/2021				
Lead	52.7		ug/L	50.0	1.50	102	75-125				

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 37 of 42

Volatile Analysis Sample Containers

Lab ID Client Sample ID		Volatile Sample Container				
21J0506-01	CIM-MW-01 1021	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C				
21J0506-02	CIM-MW-02 1021	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C				
21J0506-03	CIM-MW-03 1021	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C				
21J0506-04	CIM-MW-04 1021	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C				
21J0506-05	CIM-MW-06 1021	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C				
21J0506-06	CIM-MW-07 1021	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C				
21J0506-07	CIM-MW-08 1021	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C				
21J0506-08	CIM-MW-09 1021	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C				
21J0506-09	CIM-FD-001 1021	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C				
21J0506-10	TRIP BLANK 1021	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C				

Sample and Data Qualifiers Relating to This Work Order

S-09 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect confirmed by

re-extraction and re-analysis of the sample.

S-08 The recovery of this surrogate was outside of QC limits.

M-DUPS The RPD between the native sample and the duplicate is outside of limits due to sample non-homogeneity

M-CRL The RL check for this element recovered outside of control limits.

Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC,

the result is an estimated concentration.

EXT-EM The sample exhibited emulsion formation during the extraction process. This may affect surrogate recoveries.

CCV-E The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>20%

Difference for average Rf or >20% Drift for quadratic fit).

Definitions and Other Explanations

Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.

ND NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)

RL REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.

LOQ LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest

point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.

LOD LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect.

This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.

METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% MDI

confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200

This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the Reported to

LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile

target compounds only.

NR Not reported

RPD Relative Percent Difference

Wet The data has been reported on an as-received (wet weight) basis

Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note

that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias

conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take

note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias

conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to

either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

120 RESEARCH DRIVE STRATFORD, CT 06615 **RICHMOND HILL, NY 11418** 132-02 89th AVENUE

FAX (203) 357-0166

Page 39 of 42

ClientServices@

www YORKI AB com (203) 325-1371

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 40 of 42

York Analytical Laboratories, Inc.

132-02 89th Ave Queens, NY 11418

clientservices@yorklab.com 120 Research Drive Stratford, CT 06615

Field Chain-of-Custody Record

NOTE: YORK's Standard Terms & Conditions are listed on the back side of this document. This document serves as your written authorization for YORK to proceed with the analyses requested below. Your signature binds you to YORK's Standard Terms & Conditions.

250506 **YORK Project No.**

1x16, 1x250, LL, 3x40, W Container Description **Turn-Around Time** YORK Reg. Comp. Compared to the following Regulation(s): (please fill in) Special Instruction Standard (5-7 Day) RUSH - Three Day 1065 1.1. RUSH - Four Day 1x250xL RUSH - Next Day Field Filtered RUSH - Two Day 2x282ml ab to Filter 10) Dissolved Ro Standard Excel EDD NJDEP SRP HazSite Ictal AS EQuIS (Standard) NYSDEC EQuIS ZnAc CONSOLIDATED (ROW YOUR Project Number YOUR Project Name Report / EDD Type (circle selections) Preservation: (check all that apply) HNO3 / H2SO4 NaOH CA-51 VOG, CA-51 SVOG, TOEL PL **Analysis Requested** 41548,21 YOUR PO#: 0928-1 CT RCP DQA/DUE NJDEP Reduced Deliverables NJDKOP CT RCP NY ASP A Package NY ASP B Package HCI / MeOH Summary Report 6-(2-2) 3 PAREIL Ascorbic Acid Invoice To: CEL REEN A acounts Date/Time Sampled कि/एकिय ११५८ 1246 THE 1735 1018 1415 态 Samples From 0001 55 Secure Frings Courses Pennsylvania Connecticut New Jersey **New York** Contact: Other DW - drinking water GW - groundwater Matrix Codes Sample Matrix WW - wastewater O-Oil Other S - soil / solid contact CRIC OPLOWSYI Report To: SEED SEED Please print clearly and legibly. All information must be complete. Samples will not be logged in and the turn-around-time clock will not begin until any questions by YORK are resolved. 000Z 120Z/11/01 (print your name above and sign below) www.yorklab.com CLM-MM-01-MSD 107 Sample Identification 1201 1201 LRIC OPPOUSE CH-MW-01-MS CIM - MW-03 1021 CIM-MM-02 1021 10- 64-MJ SEE SEE CIM-MM-07 YOUR Information CUM-MW-DG CIM - MW-OH CM-MM-08 てめーなが -09 EPIC OPLOWSE CHASEN Comments: Page 41 of 42

Temp. Received at Lab

Mand 10/12/21/21 15:46

Samples Received by / Company

10-12-2

York Analytical Laboratories, Inc.

132-02 89th Ave Queens, NY 11418

clientservices@yorklab.com www.yorklab.com 120 Research Drive Stratford, CT 06615

Field Chain-of-Custody Record

NOTE: YORK's Standard Terms & Conditions are listed on the back side of this document. This document serves as your written authorization for YORK to proceed with the analyses requested below. Your signature binds you to YORK's Standard Terms & Conditions.

2150506 ORK Project No.

IXIL, IX23and, 3xto. Container Description Page 2 of 2 **Turn-Around Time** Compared to the following Regulation(s): (please fill in) YORK Reg. Comp. Special Instruction Standard (5-7 Day) RUSH - Three Day Toes 1.1.1 RUSH - Next Day RUSH - Four Day RUSH - Two Day Field Filtered Lab to Filter 10-11-01 3x uarl Standard Excel EDD NJDEP SRP HazSite EQuIS (Standard) NYSDEC EQuIS ZnAc YOUR Project Number YOUR Project Name CONSOLL DATED I ROA Report / EDD Type (circle selections) G-51 VOCS, G-51 SVCCS, TOPA PA NaOH Preservation: (check all that apply) YOUR PO#: 09207 Analysis Requested CT RCP DQA/DUE 41548,21 NJDEP Reduced Deliverables H2SO4 NJDKQP CT RCP HNO3 / Other: NY ASP B Package NY ASP A Package МеОН Summary Report 10/8/2021 1000 | CP-57 VOCS Ascorbic Acid ACCOUNTS PAYABLE Invoice To: K E いる形が D/11/2021 XX:XX Date/Time Sampled Samples From Searce Frage Cayases Pennsylvania Connecticut New Jersey New York DW - drinking water GW - groundwater Sample Matrix Matrix Codes WW - wastewater O-Oil Other S - soil / solid 6W Report To: **定じのを必然** CHASES Please print clearly and legibly. All information must be complete. Samples will not be logged in and the turn-around-time clock will not begin until any questions by YORK are resolved. 10/14/2011 ne above and sign below) Sample Identification LPRIC URLDINSKI 1051 CIM-FD-001 1021 YOUR Information TRIP BLANK Contact Glic O Repussi CHARTY Comments: Page 42 of 42

emp. Received at Lab

4 1 10/12/21 15:46

10-12-2 3: