

August 18, 2023

Susanne May EHS Specialist Danskammer Energy 994 River Road Newburgh, NY 12550

Re: Community Air Monitoring Plan Implementation and Waste Characterization Report

Danskammer Energy – Stormwater Conveyance Pipe Installation

994 River Road

Newburgh, New York 12550 Project # CZ 41440.02

Dear Ms. May,

LaBella Associates, D.P.C. ("LaBella") is pleased to submit this summary letter documenting, excavation oversight, waste characterization soil sampling, and Community Air Monitoring Program (CAMP) implementation conducted during stormwater management construction activities at the Danskammer Energy facility (Danskammer) at 994 River Road, Newburgh, Orange County, New York, hereinafter referred to as the "Site" (Figure 1).

Soil excavation oversight and sampling tasks were performed by Labella on August 1, 2023, consistent with the Site's Excavation Work Plan (EWP), 29 CFR 1910.20, and 29 CFR Subpart P. Danskammer communicated directly with New York State Department of Environmental Conservation (NYSDEC) to provide the scope and EWP. Tasks performed included:

- Implementation of a CAMP during soil disturbing activities at the Site, including excavation and stockpiling of approximately 30 cubic yards of soil material.
- Visual, olfactory, and instrument-based (e.g., photoionization detector [PID]) soil screening during excavation into potentially contaminated material.
- Collection of one (1) waste characterization soil sample for characterization analyses required by prospective disposal facility and NYSDEC for potential reuse on-Site.

LaBella's field observations, laboratory analytical results, CAMP monitoring results, conclusions, and recommendations are included in the following sections with supporting documentation attached.

Summary of Soil Excavation Activities

On August 1, 2023, a LaBella environmental professional mobilized to the Site to provide oversight during soil excavation activities performed by Danksammer Energy's construction contractor, Nova Contracting (Nova) of Newburgh, New York.

A trench was advanced to an approximate depth range of 4-feet below ground surface (ft bgs) with a final aerial extent of approximately 50-feet by 4-feet or 200-square feet. A LaBella environmental professional conducted soil screening that included visual, olfactory and instrument-based (e.g., photoionization detector [PID]) screening methods during invasive excavation work for installation of stormwater conveyance piping. No evidence of soil impacts was observed including no discernable odor or staining and PID field readings were 0.0 parts per million (ppm). Approximately 30 cubic yards of excavated soils were segregated based on the trench proximity to prior facility uses and previous environmental data in the area and stockpiled in the southeastern portion of the Site (see **Figure 1**). Soil was visibly free of regulated solid waste such as construction and demolition debris, slag, ash, and/ or cinders. Soil material was stockpiled on polyethylene sheeting surrounded by continuous berms. The stockpile was kept covered, with anchored polypropylene sheeting pending analytical results of waste characterization soil sampling.

One (1) five-point composite sample, WC-01_08012023, was obtained from the stockpile of soil and submitted to York Analytical Laboratory (York) in Stratford, Connecticut for waste characterization analyses in accordance with the NYSDEC-approved EWP. Sample analyses consisted of the following compounds:

- NYSDEC Part 375 Target Compound List (TCL) volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) using United States Environmental Protection Agency (USEPA) Methods 8260 and 8270, respectively;
- TCL Pesticides using USEPA Method 8081;
- Polychlorinated biphenyls (PCBs) using USPEA Method 8082; and,
- Resource Conservation and Recovery Act (RCRA) metals using USEPA Method 6010 and 7473.

Laboratory analytical results were compared to NYSDEC Part 375 Unrestricted Use Soil Cleanup Objectives (SCOs). Results for compounds analyzed were generally non-detect, below laboratory method detection limits (MDLs), or did not exceed their respective Unrestricted Use SCOs. Waste characterization sample results are summarized in **Table 1**. Laboratory reports are included in **Appendix A**.

CAMP Monitoring Results

A LaBella environmental profession implemented a CAMP during the soil disturbing activities on August 1, 2023, consistent the NYSDEC-approved EWP to monitor action levels listed in the CAMP for volatile organic compounds (VOCs) and particulate matter (PM). LaBella's CAMP monitoring consisted of establishing three on-site monitoring stations in the project area that were situated in the southeastern portion of the Site, west of the Hudson River: one at the upwind perimeter, one within the work zone, and one at the downwind perimeter. Each station consisted of a RAE Systems ppbRAE 3000 photo-ionization detector (PID) and a TSI Model 8530 DustTrak II particulate detector, housed in a Pelican case mounted on an aluminum tripod with the intakes positioned in the breathing zone (approximately 4 to 5 feet above grade). Each instrument was calibrated, operated continuously throughout the workday, and was programmed to log and report 15-minute time-weighted average (TWA) data. Stations were checked periodically to ensure proper operation. Refer to attached **Figure 1** for CAMP station locations.

Meteorological data during intrusive Site work was recorded and included in table below:

Temperature	Humidity	Wind	Wind Speed	Pressure	Precipitation	Condition
66 to 75 °F	40 to 82 %	E-NE	5 to 15 mph	29.53 in	0.0 in	Fair to Mostly Cloudy

Recorded data for particulates and VOCs have been summarized in the table below. Action levels were 5 parts per million (ppm) above background for 15-minute average VOC readings and 100 mcg/m3 (0.100 mg/m3) above background for 15-minute average particulate readings. Particulate and VOC concentrations were consistently less than the Action Levels throughout the duration of intrusive soil disturbance. No exceedances of the established action limits for VOCs or particulates were recorded during this CAMP monitoring period. Summarized CAMP data is summarized in the table below and the raw data are provided in **Appendix B**.

CAMP Daily Averages (Particulate and VOCs)

			0,	– 4, ,	11 0. agoo	(. a. a. a.	aco ama	,					
Station/													
Location	C	CAMP-1 (ι	ipwind)		CA	MP-2 (w	2 (workzone) CAMP-3 (d				ownwind)		
	Partio	culate	VOCs	(ppm)	Particulate VOCs (ppm)				Partio	culate	VOCs	(ppm)	
	(mg	/m³)			(mg/	/m³)			(mg/m ³)				
Date	Daily	Max	Daily	Max	Daily	Max	Daily	Max	Daily	Max	Daily	Max	
	Avg.	TWA	Avg.	TWA	Avg.	TWA	Avg.	TWA	Avg.	TWA	Avg.	TWA	
		Avg.		Avg.		Avg.		Avg.		Avg.		Avg.	
8/1/2023	0.009	0.062	0.4	0.5	0.004	0.048	0.1	0.2	0.016	0.076	0.0	0.0	
												1	

Conclusions and Recommendations

During intrusive Site work performed on August 1, 2023, LaBella conducted excavation oversight and sampling that included implementation of a CAMP during the intrusive soil activities at the Site; soil screening during excavation into potentially contaminated material; and collection of one (1) waste characterization soil sample for analyses required by prospective disposal facility and NYSDEC for on-Site reuse.

Field observations did not identify evidence of petroleum-impacted soil, CAMP readings were less than the action levels, and the laboratory analytical results for the waste characterization soil sample indicate that excavated soils meet the 6 NYCRR Part 375 Unrestricted Use Soil Cleanup Objectives. These results indicate that the stockpiled soil can be reused on-Site if acceptable to Client.

LaBella is not aware of any additional intrusive Site activities planned at the Site that could disturb the fill material and soil, however, if any additional intrusive Site activities are proposed, LaBella should be contacted immediately and any soil material shall also be properly managed in accordance with the EWP, with reporting to NYSDEC as warranted.

LaBella recommends that Danskammer submit a copy of this report to NYSDEC with a request to reuse soil on the Site.

Limitations

The information presented herein summarizes the activities in the project Site areas. The data and conclusions represent those portions of the Site analyzed as of the date of the fieldwork, and they are not relevant to any other portions of this Site or any other property. LaBella also cannot be held accountable for activities or events that may have affected the distribution of detected compounds after the date of the fieldwork.

The scope of work for this project is based on generally accepted practices and established protocols and the NYSDEC-approved Excavation Work Plan dated June 1, 2021. The findings and conclusions are, therefore, properly considered probabilities based on professional judgment and available Site data, but do not constitute absolute certainty that all possible compounds have now been identified on this Site.

We appreciate the opportunity to serve your professional environmental consulting needs. Please feel free to contact me at (518) 266-7355 or Arlette St. Romain at (518) 824-1928 if you have any questions regarding this report.

Respectfully submitted.

LaBella Associates, D.P.C.

Branson Fields - Environmental Scientist

CC: Arlette St. Romain, LaBella Associates

Attachments:

Figure 1 – Site Features

Table 1 - Waste Characterization Analytical Results Summary - Soil

Appendix A – Laboratory Analytical Report

Appendix B – Raw CAMP Data (VOC and PM)

FIGURE

CZ41440.02

Figure 1 8/18/2023 DRAWING NAME:

Site Features and **CAMP Location Map**

August 1, 2023

Danskammer Energy, LLC

994 River Road Town of Newburgh Orange County, New York

TABLE

Table 1

Waste Characterization Analytical Results Summary - Soil Danskammer Energy

994 River Road, Newburgh, New York

LaBella Project No. CZ41440.02

Sample ID York Laboratory ID	NYSDEC Part 375	WC-01_080123 23H0128-01				
Sampling Date/Time	Unrestricted Use	8/1/2023 1:30				
Client Matrix	Soil Cleanup	Soil-Waste Charac				
Compound	Objectives	Result	Q			
Volatile Organics, 8260 - Comprehensive	mg/Kg	mg/Kg				
1,1,1,2-Tetrachloroethane	~	0.0022	U			
1,1,1-Trichloroethane	0.68	0.0022	U			
1,1,2,2-Tetrachloroethane	~	0.0022	U			
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane	~	0.0022 0.0022	U			
1,1-Dichloroethane	0.27	0.0022	U			
1,1-Dichloroethylene	0.33	0.0022	U			
1,2,3-Trichlorobenzene	~	0.0022	U			
1,2,3-Trichloropropane	~	0.0022	U			
1,2,4-Trichlorobenzene	~	0.0022	U			
1,2,4-Trimethylbenzene	3.6	0.0022	U			
1,2-Dibromo-3-chloropropane	~	0.0022	U			
1,2-Dibromoethane 1,2-Dichlorobenzene	1.1	0.0022 0.0022	U			
1,2-Dichlorobenzene 1,2-Dichloroethane	0.02	0.0022	U			
1,2-Dichloropropane	~	0.0022	U			
1,3,5-Trimethylbenzene	8.4	0.0022	U			
1,3-Dichlorobenzene	2.4	0.0022	U			
1,4-Dichlorobenzene	1.8	0.0022	U			
1,4-Dioxane	0.1	0.045	U			
2-Butanone	0.12	0.0022	U			
2-Hexanone	~	0.0022	U			
4-Methyl-2-pentanone Acetone	0.05	0.0022 0.02	U			
Acrolein	0.05	0.0045	U			
Acrylonitrile	~	0.0022	U			
Benzene	0.06	0.0022	U			
Bromochloromethane	~	0.0022	U			
Bromodichloromethane	~	0.0022	U			
Bromoform	~	0.0022	U			
Bromomethane	~	0.0022	U			
Carbon disulfide Carbon tetrachloride	0.76	0.0022 0.0022	U			
Chlorobenzene	1.1	0.0022	U			
Chloroethane	~	0.0022	U			
Chloroform	0.37	0.0022	U			
Chloromethane	~	0.0022	U			
cis-1,2-Dichloroethylene	0.25	0.0022	U			
cis-1,3-Dichloropropylene	~	0.0022	U			
Cyclohexane	~	0.0022	U			
Dibromochloromethane	~	0.0022	U			
Dibromomethane Dichlorodifluoromethane	~ ~	0.0022 0.0022	U			
Ethyl Benzene	1	0.0022	U			
Hexachlorobutadiene	~	0.0022	U			
Isopropylbenzene	~	0.0022	U			
Methyl acetate	~	0.0022	U			
Methyl tert-butyl ether (MTBE)	0.93	0.0022	U			
Methylcyclohexane	~	0.0022	U			
Methylene chloride	0.05	0.0045	U			
n-Butylbenzene	12 3.9	0.0022 0.0022	U U			
n-Propylbenzene o-Xylene	3.9	0.0022	U			
p- & m- Xylenes	~	0.0022	U			
p-Isopropyltoluene	~	0.0022	U			
sec-Butylbenzene	11	0.0022	U			
Styrene	~	0.0022	U			
tert-Butyl alcohol (TBA)	~	0.0022	U			
tert-Butylbenzene	5.9	0.0022	U			
Tetrachloroethylene	1.3	0.0022	U			
Toluene	0.7	0.0022	U			
trans-1,2-Dichloroethylene trans-1,3-Dichloropropylene	0.19	0.0022 0.0022	U			
trans-1,4-dichloro-2-butene	~	0.0022	U			
Trichloroethylene	0.47	0.0022	U			
Trichlorofluoromethane	~	0.0022	U			
	0.02	0.0022	U			
Vinyl Chloride	0.02	0.0022				

Table 1

Waste Characterization Analytical Results Summary - Soil

Danskammer Energy

994 River Road, Newburgh, New York LaBella Project No. CZ41440.02

Semi-Volatiles, 8270 - Comprehensive	mg/kg	mg/Kg	
1,1-Biphenyl	mg/Kg ~	0.0446	U
1,2,4,5-Tetrachlorobenzene	~	0.0890	U
1,2,4-Trichlorobenzene	~	0.0446	U
1,2-Dichlorobenzene	1.1	0.0446	U
1,2-Diphenylhydrazine (as Azobenzene) 1,3-Dichlorobenzene	2.4	0.0446 0.0446	U
1,4-Dichlorobenzene	1.8	0.0446	U
2,3,4,6-Tetrachlorophenol	~	0.0890	U
2,4,5-Trichlorophenol	~	0.0446	U
2,4,6-Trichlorophenol	~	0.0446	U
2,4-Dichlorophenol 2,4-Dimethylphenol	~	0.0446 0.0446	U
2,4-Dinitrophenol	~	0.0890	U
2,4-Dinitrotoluene	~	0.0446	U
2,6-Dinitrotoluene	~	0.0446	U
2-Chloronaphthalene	~	0.0446	U
2-Chlorophenol 2-Methylnaphthalene	~	0.0446 0.0840	U
2-Methylphenol	0.33	0.0446	J U
2-Nitroaniline	~	0.0890	U
2-Nitrophenol	~	0.0446	U
3- & 4-Methylphenols	0.33	0.0446	U
3,3-Dichlorobenzidine	~	0.0446	U
3-Nitroaniline 4,6-Dinitro-2-methylphenol	~	0.0890 0.0890	U
4-Bromophenyl phenyl ether	~	0.0446	U
4-Chloro-3-methylphenol	~	0.0446	U
4-Chloroaniline	~	0.0446	U
4-Chlorophenyl phenyl ether	~	0.0446	U
4-Nitroaniline 4-Nitrophenol	~	0.0890 0.0890	U
Acenaphthene	20	0.0446	U
Acenaphthylene	100	0.0446	U
Acetophenone	~	0.0446	U
Aniline	~	0.178	U
Anthracene Atrazine	100	0.0446 0.0446	U
Benzaldehyde	~	0.0446	U
Benzidine	~	0.178	U
Benzo(a)anthracene	1	0.0583	J
Benzo(a)pyrene	1	0.0598	J
Benzo(b)fluoranthene Benzo(g,h,i)perylene	100	0.0527 0.0462	J
Benzo(k)fluoranthene	0.8	0.0462	J
Benzoic acid	~	0.0446	U
Benzyl alcohol	~	0.0446	U
Benzyl butyl phthalate	~	0.0446	U
Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether	~	0.0446 0.0446	U
Bis(2-chloroisopropyl)ether	~	0.0446	U
Bis(2-ethylhexyl)phthalate	~	0.0446	U
Caprolactam	~	0.0890	U
Carbazole	~	0.0446	U
Chrysene Dibonzo(a h)anthracono	0.33	0.0875 0.0446	J
Dibenzo(a,h)anthracene Dibenzofuran	0.33 7	0.0446	U
Diethyl phthalate	~	0.0446	U
Dimethyl phthalate	~	0.0446	U
Di-n-butyl phthalate	~	0.0446	U
Di-n-octyl phthalate	~	0.0446	U
Diphenylamine Fluoranthene	100	0.0890 0.117	U
Fluorene	30	0.0446	U
Hexachlorobenzene	0.33	0.0446	U
Hexachlorobutadiene	~	0.0446	U
Hexachlorocyclopentadiene	~	0.0446	U
Hexachloroethane Indeno(1,2,3-cd)pyrene	0.5	0.0446 0.0446	U
Isophorone	~	0.0446	U
Naphthalene	12	0.393	В
Nitrobenzene	~	0.0446	U
N-Nitrosodimethylamine	~	0.0446	U
N-nitroso-di-n-propylamine	~	0.0446	U
N-Nitrosodiphenylamine Pentachlorophenol	0.8	0.0446 0.0446	U
Phenanthrene	100	0.0996	U
Phenol	0.33	0.0446	U
Pyrene	100	0.170	

Table 1

Waste Characterization Analytical Results Summary - Soil

Danskammer Energy 994 River Road, Newburgh, New York

LaBella Project No. CZ41440.02

Pesticides, 8081	mg/Kg	mg/Kg	
4,4'-DDD	0.0033	0.00164	UP
4,4'-DDE	0.0033	0.00164	U
4,4'-DDT	0.0033	0.00164	U
Aldrin	0.005	0.00164	U
alpha-BHC	0.02	0.00164	U
alpha-Chlordane	0.094	0.00164	U
beta-BHC	0.036	0.00164	U
Chlordane, total	~	0.0329	U
delta-BHC	0.04	0.00164	U
Dieldrin	0.005	0.00164	U
Endosulfan I	2.4	0.00164	U
Endosulfan II	2.4	0.00164	U
Endosulfan sulfate	2.4	0.00164	U
Endrin	0.014	0.00164	U
Endrin aldehyde	~	0.00164	U
Endrin ketone	~	0.00164	U
gamma-BHC (Lindane)	0.1	0.00164	U
gamma-Chlordane	~	0.00164	U
Heptachlor	0.042	0.00164	U
Heptachlor epoxide	~	0.00164	U
Methoxychlor	~	0.00822	U
Toxaphene	~	0.0832	U
Metals, RCRA by 6010	mg/Kg	mg/Kg	
Arsenic	13	7.92	
Barium	350	43.5	
Cadmium	2.5	0.223	U
Chromium	~	8.16	
Lead	63	12.8	В
Selenium	3.9	3.8	
Silver	2	0.375	U
Mercury	0.18	0.0508	
Polychlorinated Biphenyls (PCB) by 8082	mg/Kg	mg/Kg	
Aroclor 1016	~	0.0178	U
Aroclor 1221	~	0.0178	U
Aroclor 1232	~	0.0178	U
Aroclor 1242	~	0.0178	U
Aroclor 1248	~	0.0178	U
Aroclor 1254	~	0.0178	U
Aroclor 1260	~	0.0178	U
Total PCBs	0.1	0.0178	U
Total Solids		%	
% Solids	~	93.4	

Notes

Exceedances of NYSDEC Part 375-6 soil cleanup objectives (SCOs) are formatted consistent with the SCO column headers.

mg/kg= millgrams per kilogram or parts per million (ppm)

 \sim = Indicates that no regulatory limit has been established for this analyte.

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated

B=analyte found in the analysis batch blank

E=result is estimated and cannot be accurately reported due to levels encountered or interferences P=this flag is used for pesticide and PCB (Aroclor) target compounds when there is a % difference for detected concentrations that exceed method dictated limits between the two GC columns used for analysis

APPENDIX A – Laboratory Analytical Report

Technical Report

prepared for:

LaBella Associates (Poughkeepsie)

21 Fox Street
Poughkeepsie NY, 12601
Attention: Branson Fields

Report Date: 08/10/2023

Client Project ID: CZ41440.02 Danskammer

York Project (SDG) No.: 23H0128

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

Report Date: 08/10/2023

Client Project ID: CZ41440.02 Danskammer

York Project (SDG) No.: 23H0128

LaBella Associates (Poughkeepsie)

21 Fox Street Poughkeepsie NY, 12601 Attention: Branson Fields

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on August 02, 2023 and listed below. The project was identified as your project: **CZ41440.02 Danskammer**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
23Н0128-01	WC-01_080123	Soil	08/01/2023	08/02/2023

General Notes for York Project (SDG) No.: 23H0128

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.

Ch. I mosh

- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Cassie L. Mosher Laboratory Manager

08/10/2023

Date:

<u>Client Sample ID:</u> WC-01_080123 <u>York Sample ID:</u> 23H0128-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received23H0128CZ41440.02 DanskammerSoilAugust 1, 2023 1:30 pm08/02/2023

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

ample Prepared	d by Method: EPA 5035A												
CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst	
30-20-6	1,1,1,2-Tetrachloroethane	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PI	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY1205	BMT 58,NJDEP,PA	
1-55-6	1,1,1-Trichloroethane	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PH	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY1205	BMT 58,NJDEP,PA	
9-34-5	1,1,2,2-Tetrachloroethane	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PI	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY1205	BMT 58,NJDEP,PA	
6-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PH	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY1205	BMT 58,NJDEP	
9-00-5	1,1,2-Trichloroethane	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PI	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY1205	BMT 58,NJDEP,PA	
5-34-3	1,1-Dichloroethane	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PI	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY1205	BMT 58,NJDEP,PA	
5-35-4	1,1-Dichloroethylene	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PI	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY1205	BMT 58,NJDEP,PA	
7-61-6	1,2,3-Trichlorobenzene	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	NELAC-NY	08/07/2023 09:00 Y10854,NELAC-NY12	08/07/2023 19:16 2058,NJDEP,PADEP	BMT	
6-18-4	1,2,3-Trichloropropane	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	NELAC-N	08/07/2023 09:00 Y10854,NELAC-NY12	08/07/2023 19:16 2058,NJDEP	BMT	
20-82-1	1,2,4-Trichlorobenzene	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	NELAC-NY	08/07/2023 09:00 Y10854,NELAC-NY12	08/07/2023 19:16 2058,NJDEP,PADEP	BMT	
5-63-6	1,2,4-Trimethylbenzene	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PI	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY1205	BMT 58,NJDEP,PA	
6-12-8	1,2-Dibromo-3-chloropropane	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:		08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16	BMT	
06-93-4	1,2-Dibromoethane	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PI	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY1205	BMT 58,NJDEP,PA	
5-50-1	1,2-Dichlorobenzene	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PI	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY1205	BMT 58,NJDEP,PA	
07-06-2	1,2-Dichloroethane	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PI	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY1205	BMT 58,NJDEP,PA	
8-87-5	1,2-Dichloropropane	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PI	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY1205	BMT 58,NJDEP,PA	
08-67-8	1,3,5-Trimethylbenzene	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PI	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY1205	BMT 58,NJDEP,PA	
41-73-1	1,3-Dichlorobenzene	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PI	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY1205	BMT 58,NJDEP,PA	
06-46-7	1,4-Dichlorobenzene	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PI	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY1205	BMT 58,NJDEP,PA	
23-91-1	1,4-Dioxane	ND		mg/kg dry	0.045	0.089	1	EPA 8260D Certifications:	NELAC-N	08/07/2023 09:00 Y10854,NELAC-NY12	08/07/2023 19:16 2058,NJDEP,PADEP	BMT	
8-93-3	2-Butanone	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:		08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16	BMT 58,NJDEP,PA	
91-78-6	2-Hexanone	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:		08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16	BMT	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 3 of 39

Client Sample ID: WC-01_080123 **York Sample ID:** 23H0128-01

York Project (SDG) No. 23H0128

Sample Prepared by Method: EPA 5035A

Client Project ID CZ41440.02 Danskammer Matrix Soil

Collection Date/Time August 1, 2023 1:30 pm Date Received 08/02/2023

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-10-1	4-Methyl-2-pentanone	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	СТДОН-РН	08/07/2023 09:00 I-0723.NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY120	BMT 58.NJDEP.PAL
67-64-1	Acetone	0.020		mg/kg dry	0.0045	0.0089	1	EPA 8260D		08/07/2023 09:00	08/07/2023 19:16	BMT
		***-*						Certifications:	CTDOH-PI	H-0723,NELAC-NY1	0854,NELAC-NY12)58,NJDEP,PA
107-02-8	Acrolein	ND	CCVE	mg/kg dry	0.0045	0.0089	1	EPA 8260D Certifications:	CTDOH-PH	08/07/2023 09:00 I-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY120	BMT 58,NJDEP,PAI
107-13-1	Acrylonitrile	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PH	08/07/2023 09:00 I-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY120	BMT 58,NJDEP,PAI
71-43-2	Benzene	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PH	08/07/2023 09:00 I-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY120	BMT 58,NJDEP,PAI
74-97-5	Bromochloromethane	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	NELAC-NY	08/07/2023 09:00 /10854,NELAC-NY1	08/07/2023 19:16 2058,NJDEP,PADEP	BMT
75-27-4	Bromodichloromethane	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PH	08/07/2023 09:00 I-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY120	BMT 58,NJDEP,PAI
75-25-2	Bromoform	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:		08/07/2023 09:00	08/07/2023 19:16 0854,NELAC-NY120	BMT
74-83-9	Bromomethane	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PH	08/07/2023 09:00 I-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY120	BMT 58,NJDEP,PAI
75-15-0	Carbon disulfide	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:		08/07/2023 09:00	08/07/2023 19:16 0854,NELAC-NY120	BMT
56-23-5	Carbon tetrachloride	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:		08/07/2023 09:00	08/07/2023 19:16 0854,NELAC-NY120	BMT
108-90-7	Chlorobenzene	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:		08/07/2023 09:00	08/07/2023 19:16 0854,NELAC-NY120	BMT
75-00-3	Chloroethane	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PH	08/07/2023 09:00 I-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY120	BMT 58,NJDEP,PAI
67-66-3	Chloroform	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:		08/07/2023 09:00	08/07/2023 19:16 0854,NELAC-NY120	BMT
74-87-3	Chloromethane	ND	CCVE	mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PH	08/07/2023 09:00 I-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY120	BMT 58,NJDEP,PAI
156-59-2	cis-1,2-Dichloroethylene	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PH	08/07/2023 09:00 I-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY120	BMT 58,NJDEP,PAI
10061-01-5	cis-1,3-Dichloropropylene	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PH	08/07/2023 09:00 I-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY120	BMT 58,NJDEP,PAI
110-82-7	Cyclohexane	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	NELAC-NY	08/07/2023 09:00 /10854,NELAC-NY1	08/07/2023 19:16 2058,NJDEP,PADEP	BMT
124-48-1	Dibromochloromethane	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	NELAC-NY	08/07/2023 09:00 /10854,NELAC-NY1	08/07/2023 19:16 2058,NJDEP,PADEP	BMT
74-95-3	Dibromomethane	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:		08/07/2023 09:00 /10854,NELAC-NY1	08/07/2023 19:16	BMT
75-71-8	Dichlorodifluoromethane	ND	CCVE	mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	NELAC-NY	08/07/2023 09:00 /10854,NELAC-NY1	08/07/2023 19:16 2058,NJDEP,PADEP	BMT
100-41-4	Ethyl Benzene	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:		08/07/2023 09:00	08/07/2023 19:16 0854,NELAC-NY120	BMT 58,NJDEP,PAI
87-68-3	Hexachlorobutadiene	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:		08/07/2023 09:00 /10854,NELAC-NY1	08/07/2023 19:16	BMT

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@

FAX (203) 357-0166

Page 4 of 39

Log-in Notes:

Reported to

Client Sample ID: WC-01_080123 **York Sample ID:** 23H0128-01

Date/Time

York Project (SDG) No. 23H0128

Client Project ID CZ41440.02 Danskammer Matrix Soil

Collection Date/Time August 1, 2023 1:30 pm

Date/Time

Sample Notes:

Date Received 08/02/2023

Volatile Organics, 8260 - Comprehensive

Sample Prepared by Method: EPA 5035A

110-57-6

79-01-6

75-69-4

75-01-4

1330-20-7

* trans-1,4-dichloro-2-butene

Trichloroethylene

Vinyl Chloride

Xylenes, Total

Trichlorofluoromethane

CAS No	o. Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
98-82-8	Isopropylbenzene	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PI	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY120	BMT 58,NJDEP,PAI
79-20-9	Methyl acetate	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	NELAC-N	08/07/2023 09:00 Y10854,NELAC-NY1	08/07/2023 19:16 2058,NJDEP,PADEP	BMT
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PI	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY120	BMT 58,NJDEP,PAI
108-87-2	Methylcyclohexane	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	NELAC-N	08/07/2023 09:00 Y10854,NELAC-NY1	08/07/2023 19:16 2058,NJDEP,PADEP	BMT
75-09-2	Methylene chloride	ND		mg/kg dry	0.0045	0.0089	1	EPA 8260D Certifications:	CTDOH-PI	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY120	BMT 58,NJDEP,PAI
104-51-8	n-Butylbenzene	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PI	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY120	BMT 58,NJDEP,PAI
103-65-1	n-Propylbenzene	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PI	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY120	BMT 58,NJDEP,PAI
95-47-6	o-Xylene	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PI	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY120	BMT 58,PADEP
179601-23-1	p- & m- Xylenes	ND		mg/kg dry	0.0045	0.0089	1	EPA 8260D Certifications:	CTDOH-PI	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY120	BMT 58,PADEP
99-87-6	p-Isopropyltoluene	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PI	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY120	BMT 58,NJDEP,PAI
135-98-8	sec-Butylbenzene	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PI	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY120	BMT 58,NJDEP,PAI
100-42-5	Styrene	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PI	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY120	BMT 58,NJDEP,PAI
75-65-0	tert-Butyl alcohol (TBA)	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	NELAC-N	08/07/2023 09:00 Y10854,NELAC-NY1	08/07/2023 19:16 2058,NJDEP,PADEP	BMT
98-06-6	tert-Butylbenzene	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PI	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY120	BMT 58,NJDEP,PAI
127-18-4	Tetrachloroethylene	ND	QL-02	mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PI	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY120	BMT 58,NJDEP,PAI
108-88-3	Toluene	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PI	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY120	BMT 58,NJDEP,PAI
156-60-5	trans-1,2-Dichloroethylene	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PI	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY120	BMT 58,NJDEP,PAI
10061-02-6	trans-1,3-Dichloropropylene	ND		mg/kg dry	0.0022	0.0045	1	EPA 8260D Certifications:	CTDOH-PI	08/07/2023 09:00 H-0723,NELAC-NY10	08/07/2023 19:16 0854,NELAC-NY120	BMT 58,NJDEP,PAI

Surrogate Recoveries Result Acceptance Range

ND

ND

ND

ND

ND

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE **RICHMOND HILL, NY 11418**

0.0022

0.0022

0.0022

0.0022

0.0067

mg/kg dry

mg/kg dry

mg/kg dry

mg/kg dry

CCVE mg/kg dry

0.0045

0.0045

0.0045

0.0045

0.013

EPA 8260D

Certifications:

EPA 8260D

Certifications:

EPA 8260D

Certifications:

EPA 8260D

EPA 8260D

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166

ClientServices@

08/07/2023 09:00

08/07/2023 09:00

08/07/2023 09:00

08/07/2023 09:00

CTDOH-PH-0723

Page 5 of 39

08/07/2023 19:16

08/07/2023 19:16

08/07/2023 19:16

08/07/2023 19:16

CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP,PAI

CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP,PAI

CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP,PAI

CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP

BMT

BMT

BMT

BMT

Client Sample ID: WC-01_080123

<u>York Sample ID:</u> 23H0128-01

York Project (SDG) No. 23H0128 <u>Client Project ID</u> CZ41440.02 Danskammer Matrix Soil Collection Date/Time
August 1, 2023 1:30 pm

Date Received 08/02/2023

Volatile Organics, 8260 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5035A

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	98.5 %			77-125					
2037-26-5	Surrogate: SURR: Toluene-d8	102 %			85-120					
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	98.7 %			76-130					

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
92-52-4	1,1-Biphenyl	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	NELAC-NY	08/05/2023 16:32 /10854,NJDEP,PADEP	08/08/2023 19:50	КН
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		mg/kg dry	0.0890	0.178	2	EPA 8270D Certifications:	NELAC-NY	08/05/2023 16:32 /10854,NJDEP,PADEP	08/08/2023 19:50	KH
120-82-1	1,2,4-Trichlorobenzene	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-PH	08/05/2023 16:32 I-0723,NELAC-NY108	08/08/2023 19:50 354,NJDEP,PADEP	KH
95-50-1	1,2-Dichlorobenzene	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	NELAC-NY	08/05/2023 16:32 /10854,PADEP	08/08/2023 19:50	KH
122-66-7	1,2-Diphenylhydrazine (as Azobenzene)	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	NELAC-NY	08/05/2023 16:32 710854,NJDEP,PADEP	08/08/2023 19:50	KH
541-73-1	1,3-Dichlorobenzene	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	NELAC-NY	08/05/2023 16:32 /10854,PADEP	08/08/2023 19:50	KH
106-46-7	1,4-Dichlorobenzene	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	NELAC-NY	08/05/2023 16:32 /10854,PADEP	08/08/2023 19:50	KH
58-90-2	2,3,4,6-Tetrachlorophenol	ND		mg/kg dry	0.0890	0.178	2	EPA 8270D Certifications:	NELAC-NY	08/05/2023 16:32 /10854,NJDEP,PADEP	08/08/2023 19:50	KH
95-95-4	2,4,5-Trichlorophenol	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-PH	08/05/2023 16:32 I-0723,NELAC-NY108	08/08/2023 19:50 354,NJDEP,PADEP	KH
88-06-2	2,4,6-Trichlorophenol	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-PH	08/05/2023 16:32 I-0723,NELAC-NY108	08/08/2023 19:50 854,NJDEP,PADEP	KH
120-83-2	2,4-Dichlorophenol	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-PH	08/05/2023 16:32 I-0723,NELAC-NY108	08/08/2023 19:50 354,NJDEP,PADEP	KH
105-67-9	2,4-Dimethylphenol	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-PH	08/05/2023 16:32 I-0723,NELAC-NY108	08/08/2023 19:50 854,NJDEP,PADEP	KH
51-28-5	2,4-Dinitrophenol	ND		mg/kg dry	0.0890	0.178	2	EPA 8270D Certifications:	CTDOH-PH	08/05/2023 16:32 I-0723,NELAC-NY108	08/08/2023 19:50 354,NJDEP,PADEP	KH
121-14-2	2,4-Dinitrotoluene	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-PH	08/05/2023 16:32 I-0723,NELAC-NY108	08/08/2023 19:50 354,NJDEP,PADEP	KH
606-20-2	2,6-Dinitrotoluene	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-PH	08/05/2023 16:32 I-0723,NELAC-NY108	08/08/2023 19:50 354,NJDEP,PADEP	KH
91-58-7	2-Chloronaphthalene	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-PH	08/05/2023 16:32 I-0723,NELAC-NY108	08/08/2023 19:50 354,NJDEP,PADEP	KH
95-57-8	2-Chlorophenol	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-PH	08/05/2023 16:32 I-0723,NELAC-NY108	08/08/2023 19:50 354,NJDEP,PADEP	KH
91-57-6	2-Methylnaphthalene	0.0840	J	mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-PI	08/05/2023 16:32 H-0723,NELAC-NY10	08/08/2023 19:50 854,NJDEP,PADEP	КН

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 6 of 39

Client Sample ID: WC-01_080123 **York Sample ID:** 23H0128-01

York Project (SDG) No. Client Project ID 23H0128 CZ41440.02 Danskammer Matrix Soil

Collection Date/Time August 1, 2023 1:30 pm Date Received 08/02/2023

Semi-Volatiles, 8270 - Comprehensive

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

Second S	CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
Section Sect	95-48-7	2-Methylphenol	ND		mg/kg dry	0.0446	0.0890	2		CTDOH-PH			КН
	88-74-4	2-Nitroaniline	ND		mg/kg dry	0.0890	0.178	2		CTDOH-PH			КН
Pi-94-1 3,3-Dichlorobenzidine ND	88-75-5	2-Nitrophenol	ND		mg/kg dry	0.0446	0.0890	2		CTDOH-PH			КН
99.09.2 3-Nitroaniline ND ND mg/kg dry 0.0890 0.178 2 EPA 82700 0.0005/02316.32 (000020319.59 1 101-55-3 4-Bromophenyl phenol ND ND mg/kg dry 0.046 0.0890 2 EPA 82700 0.0005/02316.32 (000020319.59 1 101-55-3 4-Bromophenyl phenol ND ND Mg/kg dry 0.046 0.0890 2 EPA 82700 0.0005/02316.32 (000020319.59 1 101-55-3 4-Bromophenyl phenol ND ND Mg/kg dry 0.046 0.0890 2 EPA 82700 0.0005/02316.32 (000020319.59 1 101-55-3 4-Bromophenyl phenol ND Mg/kg dry 0.046 0.0890 2 EPA 82700 0.0005/02316.32 (000020319.59 1 101-55-3 4-Bromophenyl phenol ND Mg/kg dry 0.046 0.0890 2 EPA 82700 0.0005/02316.32 (000020319.59 1 101-54-3 4-Chloro-3-methylphenol ND Mg/kg dry 0.046 0.0890 2 EPA 82700 0.0005/02316.32 (000020319.59 1 101-54-3 4-Chloro-3-methylphenol ND Mg/kg dry 0.046 0.0890 2 EPA 82700 0.0005/02316.32 (000020319.59 1 101-54-3 4-Chloro-3-methylphenol ND Mg/kg dry 0.046 0.0890 2 EPA 82700 0.0005/02316.32 (000020319.59 1 101-54-3 4-Chloro-phenyl phenyl ether ND Mg/kg dry 0.046 0.0890 2 EPA 82700 0.0005/02316.32 (000020319.59 1 101-54-3 4-Chloro-phenyl phenyl ether ND Mg/kg dry 0.046 0.0890 2 EPA 82700 0.0005/02316.32 (000020319.59 1 101-54-3 4-Chloro-phenyl phenyl ether ND Mg/kg dry 0.046 0.0890 2 EPA 82700 0.0005/02316.32 (000020319.59 1 101-54-3 4-Chloro-phenyl phenyl ether ND Mg/kg dry 0.046 0.0890 2 EPA 82700 0.0005/02316.32 (000020319.59 1 101-54-3 4-Chloro-phenyl phenyl ether ND Mg/kg dry 0.046 0.0890 2 EPA 82700 0.0005/02316.32 (000020319.59 1 101-54-3 4-Chloro-phenyl phenyl ether ND Mg/kg dry 0.046 0.0890 2 EPA 82700 0.0005/02316.32 (000020319.59 1 101-54-3 4-Chloro-phenyl phenyl ether ND Mg/kg dry 0.046 0.0890 2 EPA 82700 0.0005/02316.32 (000020319.59 1 101-54-3 4-Chloro-phenyl phenyl ether ND Mg/kg dry 0.046 0.0890 2 EPA 82700 0.0005/02316.32 (000020319.59 1 101-54-3 4-Chloro-phenyl phenyl ether ND Mg/kg dry 0.046 0.0890 2 EPA 82700 0.0005/02316.32 (000020319.59 1 101-54-3 4-Chloro-phenyl ether ND Mg/kg dry 0.046 0.0890 2 EPA 82700 0.0005/02316.32 (000020319.59 1 101-54-3 4-Chloro-phenyl ether ND Mg/kg dry 0.046 0.0890 2	65794-96-9	3- & 4-Methylphenols	ND		mg/kg dry	0.0446	0.0890	2		CTDOH-PH			КН
	91-94-1	3,3-Dichlorobenzidine	ND		mg/kg dry	0.0446	0.0890	2		NELAC-NY			КН
Second S	99-09-2	3-Nitroaniline	ND		mg/kg dry	0.0890	0.178	2		СТDOH-PH			КН
101-55-3 Heromophenyl phenyl ether ND mgkg dry 0.0446 0.0890 2 EPA 8270D 0.0805/2021 1632 0.0800/2021 1930 1 1 1 1 1 1 1 1 1	534-52-1	4,6-Dinitro-2-methylphenol	ND		mg/kg dry	0.0890	0.178	2	EPA 8270D		08/05/2023 16:32	08/08/2023 19:50	КН
Septembly	101-55-3	4-Bromophenyl phenyl ether	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D		08/05/2023 16:32	08/08/2023 19:50	КН
	59-50-7	4-Chloro-3-methylphenol	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D		08/05/2023 16:32	08/08/2023 19:50	КН
Property	106-47-8	4-Chloroaniline	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D		08/05/2023 16:32	08/08/2023 19:50	КН
100-01-6 1-Nitrophenol ND ND Ngk dry 0.0890 0.178 2 EPA 8270D 0.005/2023 16.32 0.008/2023 19.50 1.008/2	7005-72-3	4-Chlorophenyl phenyl ether	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D		08/05/2023 16:32	08/08/2023 19:50	КН
10-02-7	100-01-6	4-Nitroaniline	ND		mg/kg dry	0.0890	0.178	2	EPA 8270D		08/05/2023 16:32	08/08/2023 19:50	КН
R3-32-9 Acenaphthene ND mg/kg dry 0.0446 0.0890 2 EPA 8270D 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000	100-02-7	4-Nitrophenol	ND	CCVE	mg/kg dry	0.0890	0.178	2	EPA 8270D		08/05/2023 16:32	08/08/2023 19:50	КН
208-96-8 Acenaphthylene ND mg/kg dry 0.0446 0.0890 2 EPA 8270D 08/05/2023 16:32 08/08/2023 19:50 198-86-2 Acetophenone ND mg/kg dry 0.0446 0.0890 2 EPA 8270D 08/05/2023 16:32 08/08/2023 19:50 198-86-2 Acetophenone ND mg/kg dry 0.178 0.356 2 EPA 8270D 08/05/2023 16:32 08/08/2023 19:50 198-86-2 Aniline ND mg/kg dry 0.0446 0.0890 2 EPA 8270D 08/05/2023 16:32 08/08/2023 19:50 198-86-2 08/08/2023 19:50	83-32-9	Acenaphthene	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D		08/05/2023 16:32	08/08/2023 19:50	КН
ND	208-96-8	Acenaphthylene	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D		08/05/2023 16:32	08/08/2023 19:50	КН
Aniline ND mg/kg dry 0.178 0.356 2 EPA 8270D 08/05/2023 16:32 08/08/2023 19:50 10 120-12-7	98-86-2	Acetophenone	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D		08/05/2023 16:32	08/08/2023 19:50	КН
120-12-7	62-53-3	Aniline	ND		mg/kg dry	0.178	0.356	2	EPA 8270D		08/05/2023 16:32	08/08/2023 19:50	КН
1912-24-9 Atrazine ND mg/kg dry 0.0446 0.0890 2 EPA 8270D 08/05/2023 16:32 08/08/2023 19:50 In the control of t	120-12-7	Anthracene	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D		08/05/2023 16:32	08/08/2023 19:50	КН
100-52-7 Benzaldehyde	1912-24-9	Atrazine	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D		08/05/2023 16:32	08/08/2023 19:50	КН
92-87-5 Benzidine ND CCVE mg/kg dry 0.178 0.356 2 EPA 8270D 08/05/2023 16:32 08/08/2023 19:50 In Certifications: CTDOH-PH-0723,NELAC-NY10854,PADEP 56-55-3 Benzo(a)anthracene 0.0583 J mg/kg dry 0.0446 0.0890 2 EPA 8270D 08/05/2023 16:32 08/08/2023 19:50 In Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP 50-32-8 Benzo(a)pyrene 0.0598 J mg/kg dry 0.0446 0.0890 2 EPA 8270D 08/05/2023 16:32 08/08/2023 19:50 In Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	100-52-7	Benzaldehyde	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D		08/05/2023 16:32	08/08/2023 19:50	КН
Benzo(a)anthracene 0.0583 J mg/kg dry 0.0446 0.0890 2 EPA 8270D 08/05/2023 16:32 08/08/2023 19:50 I Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP 50-32-8 Benzo(a)pyrene 0.0598 J mg/kg dry 0.0446 0.0890 2 EPA 8270D 08/05/2023 16:32 08/08/2023 19:50 H	92-87-5	Benzidine	ND	CCVE	mg/kg dry	0.178	0.356	2	EPA 8270D		08/05/2023 16:32	08/08/2023 19:50	КН
Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP 50-32-8 Benzo(a)pyrene 0.0598 J mg/kg dry 0.0446 0.0890 2 EPA 8270D 08/05/2023 16:32 08/08/2023 19:50 I	56-55-3	Benzo(a)anthracene	0.0583	J	mg/kg dry	0.0446	0.0890	2		01201111			KH
1.00									Certifications:	CTDOH-PI	H-0723,NELAC-NY1	0854,NJDEP,PADEP	
Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	50-32-8	Benzo(a)pyrene	0.0598	J	mg/kg dry	0.0446	0.0890	2	EPA 8270D		08/05/2023 16:32	08/08/2023 19:50	KH
									Certifications:	CTDOH-PI	H-0723,NELAC-NY1	0854,NJDEP,PADEP	

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

(203) 325-1371 www.YORKLAB.com

ClientServices@

Page 7 of 39

Client Sample ID: WC-01_080123

York Sample ID: 23H0128-01

York Project (SDG) No. 23H0128 <u>Client Project ID</u> CZ41440.02 Danskammer Matrix Soil Collection Date/Time
August 1, 2023 1:30 pm

Date Received 08/02/2023

Semi-Volatiles, 8270 - Comprehensive

Log-in Notes:

Sample Notes:

	d by Method: EPA 3550C							<u></u> -				
CAS No.	· ·	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference 1	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
205-99-2	Benzo(b)fluoranthene	0.0527	J	mg/kg dry	0.0446	0.0890	2	EPA 8270D		08/05/2023 16:32	08/08/2023 19:50	КН
								Certifications:	CTDOH-P	PH-0723,NELAC-NY1	0854,NJDEP,PADEP	
191-24-2	Benzo(g,h,i)perylene	0.0462	J	mg/kg dry	0.0446	0.0890	2	EPA 8270D	CTP OU P	08/05/2023 16:32	08/08/2023 19:50	KH
207.00.0	Benzo(k)fluoranthene	0.0510			0.0446	0.0000	2	Certifications:	CTDOH-P	PH-0723,NELAC-NY1 08/05/2023 16:32	08/08/2023 19:50	1/11
207-08-9	Denzo(k)nuoi anthene	0.0519	J	mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-P	PH-0723,NELAC-NY1		KH
65-85-0	Benzoic acid	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D		08/05/2023 16:32 Y10854,NJDEP,PADE	08/08/2023 19:50	КН
100-51-6	Benzyl alcohol	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	NELAC-N	08/05/2023 16:32 Y10854,NJDEP,PADE	08/08/2023 19:50 P	КН
85-68-7	Benzyl butyl phthalate	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-PI	08/05/2023 16:32 H-0723,NELAC-NY10	08/08/2023 19:50 0854,NJDEP,PADEP	KH
111-91-1	Bis(2-chloroethoxy)methane	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-PI	08/05/2023 16:32 H-0723,NELAC-NY10	08/08/2023 19:50 0854,NJDEP,PADEP	KH
111-44-4	Bis(2-chloroethyl)ether	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-PI	08/05/2023 16:32 H-0723,NELAC-NY10	08/08/2023 19:50 0854,NJDEP,PADEP	KH
108-60-1	Bis(2-chloroisopropyl)ether	ND	CCVE	mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-PI	08/05/2023 16:32 H-0723,NELAC-NY10	08/08/2023 19:50 0854,NJDEP,PADEP	KH
117-81-7	Bis(2-ethylhexyl)phthalate	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-PI	08/05/2023 16:32 H-0723,NELAC-NY10	08/08/2023 19:50 0854,NJDEP,PADEP	KH
105-60-2	Caprolactam	ND		mg/kg dry	0.0890	0.178	2	EPA 8270D Certifications:	NELAC-N	08/05/2023 16:32 Y10854,NJDEP,PADE	08/08/2023 19:50 P	KH
86-74-8	Carbazole	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-PI	08/05/2023 16:32 H-0723,NELAC-NY10	08/08/2023 19:50 0854,NJDEP,PADEP	KH
218-01-9	Chrysene	0.0875	J	mg/kg dry	0.0446	0.0890	2	EPA 8270D		08/05/2023 16:32	08/08/2023 19:50	KH
								Certifications:	CTDOH-P	PH-0723,NELAC-NY1		
53-70-3	Dibenzo(a,h)anthracene	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-PI	08/05/2023 16:32 H-0723,NELAC-NY10	08/08/2023 19:50 0854,NJDEP,PADEP	KH
132-64-9	Dibenzofuran	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-PI	08/05/2023 16:32 H-0723,NELAC-NY10	08/08/2023 19:50 0854,NJDEP,PADEP	KH
84-66-2	Diethyl phthalate	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-PI	08/05/2023 16:32 H-0723,NELAC-NY10	08/08/2023 19:50 0854,NJDEP,PADEP	KH
131-11-3	Dimethyl phthalate	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-PI	08/05/2023 16:32 H-0723,NELAC-NY10	08/08/2023 19:50 0854,NJDEP,PADEP	KH
84-74-2	Di-n-butyl phthalate	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-PI	08/05/2023 16:32 H-0723,NELAC-NY10	08/08/2023 19:50 0854,NJDEP,PADEP	KH
117-84-0	Di-n-octyl phthalate	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-PI	08/05/2023 16:32 H-0723,NELAC-NY10	08/08/2023 19:50 0854,NJDEP,PADEP	KH
122-39-4	* Diphenylamine	ND		mg/kg dry	0.0890	0.178	2	EPA 8270D Certifications:		08/05/2023 16:32	08/08/2023 19:50	KH
206-44-0	Fluoranthene	0.117		mg/kg dry	0.0446	0.0890	2	EPA 8270D	CTDOU	08/05/2023 16:32	08/08/2023 19:50	KH
06.73.7	TI.	ND		4 1	0.0446	0.0000	2	Certifications:	CIDOH-P	PH-0723,NELAC-NY1		
86-73-7	Fluorene	ND		mg/kg dry	0.0446	0.0890	2		NELAC-N	08/05/2023 16:32 Y10854,NJDEP,PADE		KH
118-74-1	Hexachlorobenzene	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-PI	08/05/2023 16:32 H-0723,NELAC-NY10	08/08/2023 19:50 0854,NJDEP,PADEP	KH

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 8 of 39

Client Sample ID: WC-01_080123

York Sample ID:

23H0128-01

York Project (SDG) No. 23H0128

<u>Client Project ID</u> CZ41440.02 Danskammer Matrix Soil Collection Date/Time
August 1, 2023 1:30 pm

Date Received 08/02/2023

Semi-Volatiles, 8270 - Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3550C

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
87-68-3	Hexachlorobutadiene	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-P	08/05/2023 16:32 H-0723,NELAC-NY10	08/08/2023 19:50 854,NJDEP,PADEP	КН
77-47-4	Hexachlorocyclopentadiene	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-P	08/05/2023 16:32 H-0723,NELAC-NY10	08/08/2023 19:50 854,NJDEP,PADEP	KH
67-72-1	Hexachloroethane	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-P	08/05/2023 16:32 H-0723,NELAC-NY10	08/08/2023 19:50 854,NJDEP,PADEP	КН
193-39-5	Indeno(1,2,3-cd)pyrene	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-P	08/05/2023 16:32 H-0723,NELAC-NY10	08/08/2023 19:50 854,NJDEP,PADEP	КН
78-59-1	Isophorone	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-P	08/05/2023 16:32 H-0723,NELAC-NY10	08/08/2023 19:50 854,NJDEP,PADEP	КН
91-20-3	Naphthalene	0.393	В	mg/kg dry	0.0446	0.0890	2	EPA 8270D		08/05/2023 16:32	08/08/2023 19:50	KH
								Certifications:	CTDOH-F	PH-0723,NELAC-NY1	0854,NJDEP,PADEP	
98-95-3	Nitrobenzene	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-P	08/05/2023 16:32 H-0723,NELAC-NY10	08/08/2023 19:50 854,NJDEP,PADEP	KH
62-75-9	N-Nitrosodimethylamine	ND	CCVE	mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-P	08/05/2023 16:32 H-0723,NELAC-NY10	08/08/2023 19:50 854,NJDEP,PADEP	KH
621-64-7	N-nitroso-di-n-propylamine	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-P	08/05/2023 16:32 H-0723,NELAC-NY10	08/08/2023 19:50 854,NJDEP,PADEP	KH
86-30-6	N-Nitrosodiphenylamine	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-P	08/05/2023 16:32 H-0723,NELAC-NY10	08/08/2023 19:50 854,NJDEP,PADEP	KH
87-86-5	Pentachlorophenol	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-P	08/05/2023 16:32 H-0723,NELAC-NY10	08/08/2023 19:50 854,NJDEP,PADEP	КН
85-01-8	Phenanthrene	0.0996		mg/kg dry	0.0446	0.0890	2	EPA 8270D		08/05/2023 16:32	08/08/2023 19:50	KH
								Certifications:	CTDOH-F	PH-0723,NELAC-NY1	0854,NJDEP,PADEP	
108-95-2	Phenol	ND		mg/kg dry	0.0446	0.0890	2	EPA 8270D Certifications:	CTDOH-P	08/05/2023 16:32 H-0723,NELAC-NY10	08/08/2023 19:50 854,NJDEP,PADEP	KH
129-00-0	Pyrene	0.170		mg/kg dry	0.0446	0.0890	2	EPA 8270D		08/05/2023 16:32	08/08/2023 19:50	KH
								Certifications:	CTDOH-F	PH-0723,NELAC-NY1	0854,NJDEP,PADEP	
	Surrogate Recoveries	Result		Acce	ptance Rang	e						
367-12-4	Surrogate: SURR: 2-Fluorophenol	55.2 %			20-108							
13127-88-3	Surrogate: SURR: Phenol-d6	48.2 %			23-114							
4165-60-0	Surrogate: SURR: Nitrobenzene-d5	68.7 %			22-108							
321-60-8	Surrogate: SURR: 2-Fluorobiphenyl	58.7 %			21-113							
118-79-6	Surrogate: SURR: 2,4,6-Tribromophenol	61.9 %			19-110							
1718-51-0	Surrogate: SURR: Terphenyl-d14	70.0 %			24-116							

Pesticides, 8081 target list

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS N	0.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD		ND	P	mg/kg dry	0.00164	0.00164	5	EPA 8081B Certifications:	CTDOH-PH	08/07/2023 08:24 I-0723,NELAC-NY10	08/09/2023 00:21 854,NJDEP,PADEP	ВСЈ

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

THO THE E, THE T

ClientServices@ Page 9 of 39

Client Sample ID: WC-01_080123

York Sample ID: 23H0128-01

York Project (SDG) No. 23H0128

<u>Client Project ID</u> CZ41440.02 Danskammer Matrix Soil Collection Date/Time
August 1, 2023 1:30 pm

Date Received 08/02/2023

Pesticides, 8081 target list

Sample Prepared by Method: EPA 3550C

Sumple i totes	Log-in Notes:	<u>Sample</u>	<u>Notes</u>
----------------	---------------	---------------	--------------

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-55-9	4,4'-DDE	ND		mg/kg dry	0.00164	0.00164	5	EPA 8081B Certifications:	CTDOH-PH	08/07/2023 08:24 I-0723,NELAC-NY10	08/09/2023 00:21 0854,NJDEP,PADEP	ВСЈ
50-29-3	4,4'-DDT	ND		mg/kg dry	0.00164	0.00164	5	EPA 8081B Certifications:	CTDOH-PH	08/07/2023 08:24 I-0723,NELAC-NY10	08/09/2023 00:21 0854,NJDEP,PADEP	BCJ
309-00-2	Aldrin	ND		mg/kg dry	0.00164	0.00164	5	EPA 8081B Certifications:	CTDOH-PH	08/07/2023 08:24 I-0723,NELAC-NY10	08/09/2023 00:21 0854,NJDEP,PADEP	ВСЈ
319-84-6	alpha-BHC	ND		mg/kg dry	0.00164	0.00164	5	EPA 8081B Certifications:	CTDOH-PH	08/07/2023 08:24 I-0723,NELAC-NY10	08/09/2023 00:21 0854,NJDEP,PADEP	BCJ
5103-71-9	alpha-Chlordane	ND		mg/kg dry	0.00164	0.00164	5	EPA 8081B Certifications:	CTDOH-PH	08/07/2023 08:24 I-0723,NELAC-NY10	08/09/2023 00:21 0854,NJDEP,PADEP	ВСЈ
319-85-7	beta-BHC	ND		mg/kg dry	0.00164	0.00164	5	EPA 8081B Certifications:	CTDOH-PH	08/07/2023 08:24 I-0723,NELAC-NY10	08/09/2023 00:21 0854,NJDEP,PADEP	BCJ
57-74-9	Chlordane, total	ND		mg/kg dry	0.0329	0.0329	5	EPA 8081B Certifications:	CTDOH-PH	08/07/2023 08:24 I-0723,NELAC-NY10	08/09/2023 00:21 0854,NJDEP,PADEP	BCJ
319-86-8	delta-BHC	ND		mg/kg dry	0.00164	0.00164	5	EPA 8081B Certifications:	CTDOH-PH	08/07/2023 08:24 I-0723,NELAC-NY10	08/09/2023 00:21 0854,NJDEP,PADEP	BCJ
60-57-1	Dieldrin	ND		mg/kg dry	0.00164	0.00164	5	EPA 8081B Certifications:	CTDOH-PH	08/07/2023 08:24 I-0723,NELAC-NY10	08/09/2023 00:21 0854,NJDEP,PADEP	BCJ
959-98-8	Endosulfan I	ND		mg/kg dry	0.00164	0.00164	5	EPA 8081B Certifications:		08/07/2023 08:24 I-0723,NELAC-NY10	08/09/2023 00:21	BCJ
33213-65-9	Endosulfan II	ND		mg/kg dry	0.00164	0.00164	5	EPA 8081B Certifications:		08/07/2023 08:24 I-0723,NELAC-NY10	08/09/2023 00:21	ВСЈ
1031-07-8	Endosulfan sulfate	ND		mg/kg dry	0.00164	0.00164	5	EPA 8081B Certifications:	CTDOH-PH	08/07/2023 08:24 I-0723,NELAC-NY10	08/09/2023 00:21 0854,NJDEP,PADEP	BCJ
72-20-8	Endrin	ND		mg/kg dry	0.00164	0.00164	5	EPA 8081B Certifications:	CTDOH-PH	08/07/2023 08:24 I-0723,NELAC-NY10	08/09/2023 00:21 0854,NJDEP,PADEP	ВСЈ
7421-93-4	Endrin aldehyde	ND		mg/kg dry	0.00164	0.00164	5	EPA 8081B Certifications:	CTDOH-PH	08/07/2023 08:24 I-0723,NELAC-NY10	08/09/2023 00:21 0854,NJDEP,PADEP	ВСЈ
3494-70-5	Endrin ketone	ND		mg/kg dry	0.00164	0.00164	5	EPA 8081B Certifications:	CTDOH-PH	08/07/2023 08:24 I-0723,NELAC-NY10	08/09/2023 00:21 0854,NJDEP,PADEP	ВСЈ
8-89-9	gamma-BHC (Lindane)	ND		mg/kg dry	0.00164	0.00164	5	EPA 8081B Certifications:	CTDOH-PH	08/07/2023 08:24 I-0723,NELAC-NY10	08/09/2023 00:21 0854,NJDEP,PADEP	ВСЈ
5566-34-7	gamma-Chlordane	ND		mg/kg dry	0.00164	0.00164	5	EPA 8081B Certifications:	CTDOH-PH	08/07/2023 08:24 I-0723,NELAC-NY10	08/09/2023 00:21 0854,NJDEP,PADEP	ВСЈ
6-44-8	Heptachlor	ND		mg/kg dry	0.00164	0.00164	5	EPA 8081B Certifications:	CTDOH-PH	08/07/2023 08:24 I-0723,NELAC-NY10	08/09/2023 00:21 0854,NJDEP,PADEP	BCJ
024-57-3	Heptachlor epoxide	ND		mg/kg dry	0.00164	0.00164	5	EPA 8081B Certifications:	CTDOH-PH	08/07/2023 08:24 I-0723,NELAC-NY10	08/09/2023 00:21 0854,NJDEP,PADEP	ВСЈ
72-43-5	Methoxychlor	ND		mg/kg dry	0.00822	0.00822	5	EPA 8081B Certifications:	CTDOH-PH	08/07/2023 08:24 I-0723,NELAC-NY10	08/09/2023 00:21 0854,NJDEP,PADEP	ВСЈ
8001-35-2	Toxaphene	ND		mg/kg dry	0.0832	0.0832	5	EPA 8081B Certifications:	CTDOH-PH	08/07/2023 08:24 I-0723,NELAC-NY10	08/09/2023 00:21 0854,NJDEP,PADEP	ВСЈ
	Surrogate Recoveries	Result		Accep	otance Range							
2051-24-3	Surrogate: Decachlorobiphenyl	111 %		-	30-150							
377-09-8	Surrogate: Tetrachloro-m-xylene	78.7 %			30-150							

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 10 of 39

FAX (203) 357-0166

Client Sample ID: WC-01_080123 **York Sample ID:**

23H0128-01

York Project (SDG) No. 23H0128

Client Project ID CZ41440.02 Danskammer Matrix Soil

Collection Date/Time August 1, 2023 1:30 pm Date Received 08/02/2023

Polychlorinated Biphenyls (PCB)

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3550C

CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
12674-11-2	Aroclor 1016	ND		mg/kg dry	0.0178	1	EPA 8082A Certifications:	NELAC-N	08/07/2023 08:24 Y10854,CTDOH-PH-0	08/09/2023 04:22 723,NJDEP,PADEP	BCJ
11104-28-2	Aroclor 1221	ND		mg/kg dry	0.0178	1	EPA 8082A Certifications:	NELAC-N	08/07/2023 08:24 Y10854,CTDOH-PH-0	08/09/2023 04:22 723,NJDEP,PADEP	BCJ
11141-16-5	Aroclor 1232	ND		mg/kg dry	0.0178	1	EPA 8082A Certifications:	NELAC-N	08/07/2023 08:24 Y10854,CTDOH-PH-0	08/09/2023 04:22 723,NJDEP,PADEP	BCJ
53469-21-9	Aroclor 1242	ND		mg/kg dry	0.0178	1	EPA 8082A Certifications:	NELAC-N	08/07/2023 08:24 Y10854,CTDOH-PH-0	08/09/2023 04:22 723,NJDEP,PADEP	BCJ
12672-29-6	Aroclor 1248	ND		mg/kg dry	0.0178	1	EPA 8082A Certifications:	NELAC-N	08/07/2023 08:24 Y10854,CTDOH-PH-0	08/09/2023 04:22 723,NJDEP,PADEP	BCJ
11097-69-1	Aroclor 1254	ND		mg/kg dry	0.0178	1	EPA 8082A Certifications:	NELAC-N	08/07/2023 08:24 Y10854,CTDOH-PH-0	08/09/2023 04:22 723,NJDEP,PADEP	BCJ
11096-82-5	Aroclor 1260	ND		mg/kg dry	0.0178	1	EPA 8082A Certifications:	NELAC-N	08/07/2023 08:24 Y10854,CTDOH-PH-0	08/09/2023 04:22 723,NJDEP,PADEP	BCJ
1336-36-3	* Total PCBs	ND		mg/kg dry	0.0178	1	EPA 8082A Certifications:		08/07/2023 08:24	08/09/2023 04:22	BCJ
	Surrogate Recoveries	Result		Acceptanc	e Range						
877-09-8	Surrogate: Tetrachloro-m-xylene	92.0 %		30-1	140						
2051-24-3	Surrogate: Decachlorobiphenyl	53.5 %		30-1	140						

Metals, RCRA

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3050

CAS No	o. Parame	ter Result	Flag	Units	Reported t LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	7.92		mg/kg dry	1.12	1	EPA 6010D		08/07/2023 14:11	08/10/2023 13:41	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NJDEP,PADEP	
7440-39-3	Barium	43.5		mg/kg dry	1.86	1	EPA 6010D		08/07/2023 14:11	08/10/2023 13:41	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NJDEP,PADEP	
7440-43-9	Cadmium	ND		mg/kg dry	0.223	1	EPA 6010D		08/07/2023 14:11	08/10/2023 13:41	CEG
							Certifications:	CTDOH-PI	H-0723,NELAC-NY10	0854,NJDEP,PADEP	
7440-47-3	Chromium	8.16		mg/kg dry	0.372	1	EPA 6010D		08/07/2023 14:11	08/10/2023 13:41	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NJDEP,PADEP	
7439-92-1	Lead	12.8	В	mg/kg dry	0.372	1	EPA 6010D		08/07/2023 14:11	08/10/2023 13:41	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NJDEP,PADEP	
7782-49-2	Selenium	3.80		mg/kg dry	1.86	1	EPA 6010D		08/07/2023 14:11	08/10/2023 13:41	CEG
							Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NJDEP,PADEP	
7440-22-4	Silver	ND		mg/kg dry	0.375	1	EPA 6010D		08/07/2023 14:11	08/10/2023 13:41	CEG
							Certifications:	CTDOH-PI	H-0723,NELAC-NY10	0854,NJDEP,PADEP	

Mercury by 7473

Sample Prepared by Method: EPA 7473 soil

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed
120 RESEARCH DI	RIVE	STRATFORD, C	T 06615		132	2-02 89th AV	ENUE	RICHMOND HILI	_, NY 11418

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166

ClientServices@ Page 11 of 39

Analyst

Client Sample ID: WC-01_080123

York Sample ID: 23H0128-01

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

23H0128

CZ41440.02 Danskammer

Soil

August 1, 2023 1:30 pm

08/02/2023

Mercury by 7473

Total Solids

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 7473 soil

CAS N	0.	Parameter	Result	Flag	Units	Reported t LOQ	o Diluti o	on Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury		0.0508		mg/kg dry	0.0321	1	EPA 7473		08/09/2023 13:19	08/10/2023 09:14	AJL
								Certifications:	CTDOH-P	H-0723,NJDEP,NELA	C-NY10854,PADEP	

<u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: % Solids Prep

CAS	S No.	Parameter	Result	Flag	Units	Reported LOQ	to Dilu t	tion Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids		93.4		%	0.100		1 SM 2540G		08/06/2023 07:32	08/06/2023 13:30	sgs
								Certifications:	CTDOH-P	H-0723		

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 12 of 39

Analytical Batch Summary

Batch ID: BH30357	Preparation Method:	EPA 3550C	Prepared By:	kaz
YORK Sample ID	Client Sample ID	Preparation Date		
23H0128-01	WC-01_080123	08/05/23		
BH30357-BLK1	– Blank	08/05/23		
BH30357-BS1	LCS	08/05/23		
BH30357-MS1	Matrix Spike	08/05/23		
BH30357-MSD1	Matrix Spike Dup	08/05/23		
Batch ID: BH30360	Preparation Method:	% Solids Prep	Prepared By:	sgs
YORK Sample ID	Client Sample ID	Preparation Date		
23H0128-01	WC-01 080123	08/06/23		
BH30360-DUP1	Duplicate	08/06/23		
	1			
Batch ID: BH30372	Preparation Method:	EPA 5035A	Prepared By:	SS
YORK Sample ID	Client Sample ID	Preparation Date		
23H0128-01	WC-01_080123	08/07/23		
BH30372-BLK1	WC-01_000123 Blank	08/07/23		
BH30372-BLK1 BH30372-BLK2		08/07/23		
BH30372-BLR2 BH30372-BS1	Blank LCS	08/07/23		
BH30372-BSD1	LCS Dup	08/07/23		
Batch ID: BH30383	Preparation Method:	EPA 3550C	Prepared By:	VMM
Batch ID: BH30383 YORK Sample ID	Preparation Method: Client Sample ID	EPA 3550C Preparation Date	Prepared By:	VMM
	Client Sample ID		Prepared By:	VMM
YORK Sample ID	Client Sample ID WC-01_080123	Preparation Date	Prepared By:	VMM
YORK Sample ID 23H0128-01 23H0128-01	Client Sample ID WC-01_080123 WC-01_080123	Preparation Date 08/07/23 08/07/23	Prepared By:	VMM
YORK Sample ID 23H0128-01 23H0128-01 BH30383-BLK1	Client Sample ID WC-01_080123 WC-01_080123 Blank	Preparation Date 08/07/23 08/07/23 08/07/23	Prepared By:	VMM
YORK Sample ID 23H0128-01 23H0128-01 BH30383-BLK1 BH30383-BLK2	Client Sample ID WC-01_080123 WC-01_080123 Blank Blank	Preparation Date 08/07/23 08/07/23 08/07/23 08/07/23	Prepared By:	VMM
YORK Sample ID 23H0128-01 23H0128-01 BH30383-BLK1 BH30383-BLK2 BH30383-BS1	Client Sample ID WC-01_080123 WC-01_080123 Blank Blank LCS	Preparation Date 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23	Prepared By:	VMM
YORK Sample ID 23H0128-01 23H0128-01 BH30383-BLK1 BH30383-BLK2 BH30383-BS1 BH30383-BS2	Client Sample ID WC-01_080123 WC-01_080123 Blank Blank LCS LCS	Preparation Date 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23	Prepared By:	VMM
YORK Sample ID 23H0128-01 23H0128-01 BH30383-BLK1 BH30383-BLK2 BH30383-BS1 BH30383-BS2 BH30383-MS1	Client Sample ID WC-01_080123 WC-01_080123 Blank Blank LCS LCS Matrix Spike	Preparation Date 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23	Prepared By:	VMM
YORK Sample ID 23H0128-01 23H0128-01 BH30383-BLK1 BH30383-BLK2 BH30383-BS1 BH30383-BS2 BH30383-MS1 BH30383-MS1	Client Sample ID WC-01_080123 WC-01_080123 Blank Blank LCS LCS Matrix Spike Matrix Spike	Preparation Date 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23	Prepared By:	VMM
YORK Sample ID 23H0128-01 23H0128-01 BH30383-BLK1 BH30383-BLK2 BH30383-BS1 BH30383-BS2 BH30383-MS1	Client Sample ID WC-01_080123 WC-01_080123 Blank Blank LCS LCS Matrix Spike	Preparation Date 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23	Prepared By:	VMM
YORK Sample ID 23H0128-01 23H0128-01 BH30383-BLK1 BH30383-BLK2 BH30383-BS1 BH30383-BS2 BH30383-MS1 BH30383-MSD1 BH30383-MSD1 BH30383-MSD1	Client Sample ID WC-01_080123 WC-01_080123 Blank Blank LCS LCS Matrix Spike Matrix Spike Matrix Spike Dup Matrix Spike Dup	Preparation Date 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23		
YORK Sample ID 23H0128-01 23H0128-01 BH30383-BLK1 BH30383-BLK2 BH30383-BS1 BH30383-BS2 BH30383-MS1 BH30383-MS2 BH30383-MSD1	Client Sample ID WC-01_080123 WC-01_080123 Blank Blank LCS LCS Matrix Spike Matrix Spike Matrix Spike Dup	Preparation Date 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23	Prepared By:	VMM
YORK Sample ID 23H0128-01 23H0128-01 BH30383-BLK1 BH30383-BLK2 BH30383-BS1 BH30383-BS2 BH30383-MS1 BH30383-MSD1 BH30383-MSD1 BH30383-MSD1	Client Sample ID WC-01_080123 WC-01_080123 Blank Blank LCS LCS Matrix Spike Matrix Spike Matrix Spike Dup Matrix Spike Dup	Preparation Date 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23		
YORK Sample ID 23H0128-01 23H0128-01 BH30383-BLK1 BH30383-BLK2 BH30383-BS1 BH30383-MS1 BH30383-MS1 BH30383-MSD1 BH30383-MSD1 BH30383-MSD2 Batch ID: BH30428 YORK Sample ID 23H0128-01	Client Sample ID WC-01_080123 WC-01_080123 Blank Blank LCS LCS Matrix Spike Matrix Spike Matrix Spike Dup Matrix Spike Dup Client Sample ID WC-01_080123	Preparation Date 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 EPA 3050B Preparation Date 08/07/23		
YORK Sample ID 23H0128-01 23H0128-01 BH30383-BLK1 BH30383-BLK2 BH30383-BS1 BH30383-MS1 BH30383-MS1 BH30383-MSD1 BH30383-MSD1 BH30383-MSD1 BH30428 YORK Sample ID	Client Sample ID WC-01_080123 WC-01_080123 Blank Blank LCS LCS Matrix Spike Matrix Spike Matrix Spike Dup Matrix Spike Dup Matrix Spike Dup Client Sample ID	Preparation Date 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 EPA 3050B Preparation Date		
YORK Sample ID 23H0128-01 23H0128-01 BH30383-BLK1 BH30383-BLK2 BH30383-BS1 BH30383-MS1 BH30383-MS1 BH30383-MSD1 BH30383-MSD1 BH30383-MSD2 Batch ID: BH30428 YORK Sample ID 23H0128-01	Client Sample ID WC-01_080123 WC-01_080123 Blank Blank LCS LCS Matrix Spike Matrix Spike Matrix Spike Dup Matrix Spike Dup Client Sample ID WC-01_080123	Preparation Date 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 EPA 3050B Preparation Date 08/07/23		
YORK Sample ID 23H0128-01 23H0128-01 BH30383-BLK1 BH30383-BLK2 BH30383-BS1 BH30383-MS1 BH30383-MS2 BH30383-MSD1 BH30383-MSD1 BH30428-BLK1 BH30428-BLK1 BH30428-DUP1 BH30428-MS1	Client Sample ID WC-01_080123 WC-01_080123 Blank Blank LCS LCS Matrix Spike Matrix Spike Matrix Spike Dup Matrix Spike Dup Client Sample ID WC-01_080123 Blank	Preparation Date 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 EPA 3050B Preparation Date 08/07/23 08/07/23		
YORK Sample ID 23H0128-01 23H0128-01 BH30383-BLK1 BH30383-BLK2 BH30383-BS1 BH30383-MS1 BH30383-MS2 BH30383-MSD1 BH30383-MSD1 BH30428-BLK1 BH30428-BLK1 BH30428-DUP1	Client Sample ID WC-01_080123 WC-01_080123 Blank Blank LCS LCS Matrix Spike Matrix Spike Matrix Spike Dup Matrix Spike Dup Matrix Spike Dup Matrix Spike Dup	Preparation Date 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 EPA 3050B Preparation Date 08/07/23 08/07/23 08/07/23 08/07/23		
YORK Sample ID 23H0128-01 23H0128-01 BH30383-BLK1 BH30383-BLK2 BH30383-BS1 BH30383-MS1 BH30383-MS2 BH30383-MSD1 BH30383-MSD1 BH30428-BLK1 BH30428-BLK1 BH30428-DUP1 BH30428-MS1	Client Sample ID WC-01_080123 WC-01_080123 Blank Blank LCS LCS Matrix Spike Matrix Spike Matrix Spike Dup Matrix Spike Dup Metrix Spike Dup Matrix Spike Dup Matrix Spike Dup	Preparation Date 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 EPA 3050B Preparation Date 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23 08/07/23	Prepared By:	

BH30428-SRM1 08/07/23 Reference

Batch ID: BH30604	Preparation Method:	EPA 7473 soil	Prepared By:	AJL
YORK Sample ID	Client Sample ID	Preparation Date		
23Н0128-01	WC-01 080123	08/09/23		
BH30604-BLK1	Blank	08/09/23		
BH30604-DUP1	Duplicate	08/09/23		
BH30604-MS1	Matrix Spike	08/09/23		
BH30604-SRM1	Reference	08/09/23		

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	RH30372	- FPA	5035A

Blank (BH30372-BLK1)				Prepared & Analyzed: 08/07/2023
1,1,1,2-Tetrachloroethane	ND	0.0050	mg/kg wet	
1,1,1-Trichloroethane	ND	0.0050	"	
1,1,2,2-Tetrachloroethane	ND	0.0050	"	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.0050	"	
,1,2-Trichloroethane	ND	0.0050	"	
,1-Dichloroethane	ND	0.0050	"	
,1-Dichloroethylene	ND	0.0050	"	
,2,3-Trichlorobenzene	ND	0.0050	"	
,2,3-Trichloropropane	ND	0.0050	"	
1,2,4-Trichlorobenzene	ND	0.0050	"	
,2,4-Trimethylbenzene	ND	0.0050	"	
1,2-Dibromo-3-chloropropane	ND	0.0050	"	
,2-Dibromoethane	ND	0.0050	"	
1,2-Dichlorobenzene	ND	0.0050	"	
1,2-Dichloroethane	ND	0.0050	"	
1,2-Dichloropropane	ND	0.0050	"	
1,3,5-Trimethylbenzene	ND	0.0050	"	
,3-Dichlorobenzene	ND ND	0.0050	"	
1,4-Dichlorobenzene	ND ND	0.0050	"	
,4-Dioxane	ND ND	0.0030	"	
2-Butanone	ND ND	0.0050	,,	
2-Hexanone	ND ND		"	
Methyl-2-pentanone	ND ND	0.0050 0.0050	"	
Acetone	ND ND		"	
Acrolein		0.010	"	
	ND	0.010	,,	
Acrylonitrile	ND	0.0050	"	
Benzene Bromochloromethane	ND	0.0050	"	
Bromodichloromethane	ND	0.0050	"	
	ND	0.0050		
Bromoform	ND	0.0050	"	
Bromomethane	ND	0.0050		
Carbon disulfide	ND	0.0050	"	
Carbon tetrachloride	ND	0.0050	"	
Chlorobenzene	ND	0.0050	"	
Chloroethane	ND	0.0050	"	
Chloroform	ND	0.0050	"	
Chloromethane	ND	0.0050	"	
sis-1,2-Dichloroethylene	ND	0.0050	"	
cis-1,3-Dichloropropylene	ND	0.0050	"	
Cyclohexane	ND	0.0050	"	
Dibromochloromethane	ND	0.0050	"	
Dibromomethane	ND	0.0050	"	
Dichlorodifluoromethane	ND	0.0050	"	
Ethyl Benzene	ND	0.0050	"	
Hexachlorobutadiene	ND	0.0050	"	
sopropylbenzene	ND	0.0050	"	
Methyl acetate	ND	0.0050	"	
Methyl tert-butyl ether (MTBE)	ND	0.0050	"	
Methylcyclohexane	ND	0.0050	"	

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 15 of 39

York Analytical Laboratories, Inc. - Stratford

Units

Spike

Level

Source*

Result

%REC

Reporting

Limit

Result

Blank (BH30372-BLK1) Methylene chloride						
	ND	0.010	mg/kg wet			
-Butylbenzene	ND	0.0050	"			
-Propylbenzene	ND	0.0050	"			
-Xylene	ND	0.0050	"			
- & m- Xylenes	ND	0.010	"			
-Isopropyltoluene	ND	0.0050	"			
ec-Butylbenzene	ND	0.0050	"			
tyrene	ND	0.0050	"			
ert-Butyl alcohol (TBA)	ND	0.0050	"			
ert-Butylbenzene	ND	0.0050	"			
etrachloroethylene	ND	0.0050	"			
oluene	ND	0.0050	"			
ans-1,2-Dichloroethylene	ND	0.0050	"			
rans-1,3-Dichloropropylene	ND	0.0050	"			
rans-1,4-dichloro-2-butene	ND	0.0050	"			
richloroethylene	ND	0.0050	"			
richlorofluoromethane	ND	0.0050	"			
Vinyl Chloride	ND	0.0050	"			
Tylenes, Total	ND	0.015	"			
urrogate: SURR: 1,2-Dichloroethane-d4	49.5		ug/L	50.0	99.0	77-125
'urrogate: SURR: Toluene-d8	50.1		"	50.0	100	85-120
'urrogate: SURR: p-Bromofluorobenzene	48.8		"	50.0	97.6	76-130
Blank (BH30372-BLK2)						Prepared & Analyzed: 08/07/2023
1,1,2-Tetrachloroethane	ND	0.50	mg/kg wet			
1,1-Trichloroethane	ND	0.50	mg/kg wet			
1,2,2-Tetrachloroethane	ND	0.50	"			
1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.50	"			
3)	1.5	0.50				
1,2-Trichloroethane	ND	0.50	"			
1-Dichloroethane	ND	0.50	"			
1-Dichloroethylene	ND	0.50	"			
2,3-Trichlorobenzene	ND	0.50	"			
2,3-Trichloropropane	ND	0.50	"			
,2,4-Trichlorobenzene	ND	0.50	"			
,2,4-Trimethylbenzene	ND	0.50	"			
,2-Dibromo-3-chloropropane	ND	0.50	"			
2-Dibromoethane	ND	0.50	"			
2-Dichlorobenzene	ND	0.50	"			
2-Dichloroethane	ND	0.50	"			
,2-Dichloropropane	ND	0.50	"			
,3,5-Trimethylbenzene	ND	0.50	"			
,3-Dichlorobenzene	ND	0.50	"			
4-Dichlorobenzene	ND	0.50	"			
4-Dioxane	ND	10	"			
-Butanone	ND	0.50	"			
-Hexanone	ND	0.50	"			
-Methyl-2-pentanone	ND	0.50	"			
cetone	ND	1.0	"			
crolein	ND	1.0	"			
crylonitrile	ND	0.50	"			
er y romane						

www.YORKLAB.com

Analyte

(203) 325-1371

FAX (203) 357-0166

ClientServices@

Page 16 of 39

RPD

Limit

Flag

RPD

%REC

Limits

Flag

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	RH30	372 - 1	FPA	5035A

Blank (BH30372-BLK2)						Prepared & Analyzed: 08/07/2023
Benzene	ND	0.50	mg/kg wet			
Bromochloromethane	ND	0.50	"			
Bromodichloromethane	ND	0.50	"			
Bromoform	ND	0.50	"			
Bromomethane	ND	0.50	"			
Carbon disulfide	ND	0.50	"			
Carbon tetrachloride	ND	0.50	"			
Chlorobenzene	ND	0.50	"			
Chloroethane	ND	0.50	"			
Chloroform	ND	0.50	"			
Chloromethane	ND	0.50	"			
is-1,2-Dichloroethylene	ND	0.50	"			
eis-1,3-Dichloropropylene	ND	0.50	"			
Cyclohexane	ND	0.50	"			
Dibromochloromethane	ND	0.50	"			
Dibromomethane	ND	0.50	"			
Dichlorodifluoromethane	ND	0.50	"			
Ethyl Benzene	ND	0.50	"			
Hexachlorobutadiene	ND	0.50	"			
sopropylbenzene	ND	0.50	"			
Methyl acetate	ND	0.50	"			
Methyl tert-butyl ether (MTBE)	ND	0.50	"			
Methylcyclohexane	ND	0.50	"			
Nethylene chloride	ND	1.0	"			
-Butylbenzene	ND	0.50	,,			
-Propylbenzene	ND	0.50	"			
-Xylene	ND	0.50	,,			
- & m- Xylenes	ND	1.0	"			
-Isopropyltoluene	ND	0.50	"			
ec-Butylbenzene	ND	0.50	,,			
Styrene	ND ND	0.50	"			
ert-Butyl alcohol (TBA)	ND	0.50	,,			
ert-Butylbenzene	ND ND	0.50	,,			
Cetrachloroethylene	ND ND	0.50	,,			
Coluene	ND ND	0.50	,,			
rans-1,2-Dichloroethylene	ND ND	0.50	,,			
rans-1,3-Dichloropropylene	ND ND	0.50	,,			
rans-1,4-dichloro-2-butene	ND ND	0.50	,,			
rans-1,4-archioro-2-butene richloroethylene			,,			
richlorofluoromethane	ND	0.50	"			
	ND	0.50	"			
/inyl Chloride Kylenes, Total	ND ND	0.50 1.5				
Surrogate: SURR: 1,2-Dichloroethane-d4	49.8	1.5	ug/L	50.0	99.6	77-125
Surrogate: SURR: 1,2-Diction beinane-u4	50.3		ug/L "	50.0	99.0 101	85-120
Surrogate: SURR: 101uene-as Surrogate: SURR: p-Bromofluorobenzene	30.3 49.3		,,	50.0	98.6	76-130

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 Page 17 of 39 FAX (203) 357-0166 ClientServices@

www.YORKLAB.com (203) 325-1371

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Reporting Limit Units	Spike Level	Result	%REC	%REC Limits	Flag	RPD	Limit	Flag
-										
Batch BH30372 - EPA 5035A										
LCS (BH30372-BS1)						Prepa	ared & Analy	/zed: 08/07/	2023	
1,1,1,2-Tetrachloroethane	49	ug/L	50.0		97.6	75-129				
1,1,1-Trichloroethane	48	"	50.0		96.2	71-137				
1,1,2,2-Tetrachloroethane	49	"	50.0		98.3	79-129				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	48	"	50.0		95.7	58-146				
1,1,2-Trichloroethane	47	"	50.0		93.9	83-123				
1,1-Dichloroethane	44	"	50.0		88.5	75-130				
1,1-Dichloroethylene	44	"	50.0		89.0	64-137				
1,2,3-Trichlorobenzene	45	"	50.0		90.9	81-140				
1,2,3-Trichloropropane	48	"	50.0		96.5	81-126				
1,2,4-Trichlorobenzene	45	"	50.0		89.0	80-141				
1,2,4-Trimethylbenzene	48	"	50.0		96.4	84-125				
1,2-Dibromo-3-chloropropane	49	"	50.0		97.2	74-142				
1,2-Dibromoethane	49	"	50.0		97.1	86-123				
1,2-Dichlorobenzene	48	"	50.0		95.3	85-122				
1,2-Dichloroethane	47	"	50.0		93.4	71-133				
1,2-Dichloropropane	48	"	50.0		95.1	81-122				
1,3,5-Trimethylbenzene	48	"	50.0		95.6	82-126				
1,3-Dichlorobenzene	47	"	50.0		94.5	84-124				
1,4-Dichlorobenzene	47	"	50.0		93.2	84-124				
1,4-Dioxane	1900	"	1050		183	10-228				
2-Butanone	43	"	50.0		85.3	58-147				
2-Hexanone	45	"	50.0		90.2	70-139				
4-Methyl-2-pentanone	47	"	50.0		94.7	72-132				
Acetone	33	"	50.0		66.9	36-155				
Acrolein	29	"	125		23.6	10-238				
Acrylonitrile	47	"	50.0		93.9	66-141				
Benzene	47	"	50.0		94.9	77-127				
Bromochloromethane	45	"	50.0		90.7	74-129				
Bromodichloromethane	47	"	50.0		94.0	81-124				
Bromoform	51	"	50.0		103	80-136				
Bromomethane	46	"	50.0		91.8	32-177				
Carbon disulfide	43	"	50.0		86.9	10-136				
Carbon tetrachloride	49	"	50.0		97.7	66-143				
Chlorobenzene	50	"	50.0		100	86-120				
Chloroethane	48	"	50.0		96.3	51-142				
Chloroform	47	"	50.0		93.5	76-131				
Chloromethane	48	"	50.0		96.7	49-132				
cis-1,2-Dichloroethylene	45	"	50.0		90.8	74-132				
cis-1,3-Dichloropropylene	47	"	50.0		93.2	81-129				
Cyclohexane	47	"	50.0		93.7	70-130				
Dibromochloromethane	49	"	50.0		97.4	10-200				
Dibromomethane	47	"	50.0		93.3	83-124				
Dichlorodifluoromethane	48	"	50.0		96.0	28-158				
Ethyl Benzene	49	"	50.0		97.5	84-125				
Hexachlorobutadiene	48	"	50.0		96.0	83-133				
Isopropylbenzene	50	"	50.0		99.5	81-127				
Methyl acetate	42	"	50.0		84.6	41-143				
Methyl tert-butyl ether (MTBE)	45	"	50.0		90.5	74-131				
Methylcyclohexane										
Wetnylcyclonexane	48	"	50.0		95.8	70-130				

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

York Analytical Laboratories, Inc. - Stratford

Spike

Source*

%REC

Reporting

		Reporting	Spike	Source*	%REC		IG D	
Analyte	Result	Limit Units	Level	Result %REC	Limits	Flag RPD	Limit	Flag
Batch BH30372 - EPA 5035A								
LCS (BH30372-BS1)					Prep	ared & Analyzed: 08/	07/2023	
n-Butylbenzene	48	ug/L	50.0	95.9	80-130			
n-Propylbenzene	49	"	50.0	98.6	74-136			
o-Xylene	49	"	50.0	97.1	83-123			
p- & m- Xylenes	99	"	100	99.1	82-128			
p-Isopropyltoluene	49	· ·	50.0	97.4	85-125			
sec-Butylbenzene	50	"	50.0	100	83-125			
Styrene	49	"	50.0	97.6	86-126			
tert-Butyl alcohol (TBA)	230	"	250	93.9	70-130			
tert-Butylbenzene	50	"	50.0	99.9	80-127			
Tetrachloroethylene	41	"	50.0	82.3	80-129			
Toluene	48	"	50.0	95.9	85-121			
trans-1,2-Dichloroethylene	45	· ·	50.0	90.5	72-132			
trans-1,3-Dichloropropylene	46	"	50.0	93.0	78-132			
trans-1,4-dichloro-2-butene	49	"	50.0	98.5	75-135			
Trichloroethylene	48	"	50.0	95.1	84-123			
Trichlorofluoromethane	50	· ·	50.0	99.6	62-140			
Vinyl Chloride	47	"	50.0	93.7	52-130			
Surrogate: SURR: 1,2-Dichloroethane-d4	50.3	"	50.0	101	77-125			
Surrogate: SURR: Toluene-d8	49.8	"	50.0	99.7	85-120			
Surrogate: SURR: p-Bromofluorobenzene	49.3	"	50.0	98.6	76-130			
LCS Dup (BH30372-BSD1)					Prep	ared & Analyzed: 08/	07/2023	
1,1,1,2-Tetrachloroethane	47	ug/L	50.0	94.7	75-129	2.99	30	
1,1,1-Trichloroethane	46	"	50.0	91.9	71-137	4.57	30	
1,1,2,2-Tetrachloroethane	48	"	50.0	95.5	79-129	2.91	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	45	"	50.0	90.5	58-146	5.58	30	
1,1,2-Trichloroethane	46	"	50.0	92.2	83-123	1.89	30	
1,1-Dichloroethane	43	"	50.0	85.7	75-130	3.28	30	
1,1-Dichloroethylene	42	"	50.0	84.5	64-137	5.14	30	
1,2,3-Trichlorobenzene	45	"	50.0	90.9	81-140	0.022	0 30	
1,2,3-Trichloropropane	47	"	50.0	94.0	81-126	2.62	30	
1,2,4-Trichlorobenzene	45	"	50.0	89.7	80-141	0.783	30	
1,2,4-Trimethylbenzene	47	"	50.0	93.8	84-125	2.69	30	
1,2-Dibromo-3-chloropropane	47	"	50.0	93.7	74-142	3.71	30	
1,2-Dibromoethane	47	"	50.0	94.9	86-123	2.25	30	
1,2-Dichlorobenzene	47	"	50.0	93.8	85-122	1.50	30	
1,2-Dichloroethane	46	"	50.0	91.9	71-133	1.60	30	
1,2-Dichloropropane	47	"	50.0	93.4	81-122	1.82	30	
1,3,5-Trimethylbenzene	46	"	50.0	92.4	82-126	3.42	30	
1,3-Dichlorobenzene	47	"	50.0	93.6	84-124	0.957	30	
1,4-Dichlorobenzene	46	"	50.0	92.0	84-124	1.25	30	
1,4-Dioxane	1900	"	1050	182	10-228	0.677	30	
2-Butanone	41	"	50.0	82.9	58-147	2.81	30	
2-Hexanone	44	"	50.0	88.4	70-139	1.97	30	
4-Methyl-2-pentanone	47	"	50.0	93.1	72-132	1.68	30	
Acetone	32	"	50.0	64.3	36-155	3.99	30	
Acrolein	29	"	125	23.1	10-238	1.89		
Acrylonitrile	46	"	50.0	91.1	66-141	2.98	30	
Benzene	46	"	50.0	91.9	77-127	3.19	30	
Bromochloromethane	45	"	50.0	89.2	74-129	1.67	30	
120 RESEARCH DRIVE	STRATFORD, CT 066	15	19	32-02 89th AVENUE		RICHMOND HILL, N	IY 11 ⊿ 18	
120 NEOLANOIT DINIVE	511VIII 511D, 51 000		10	Z OZ OUTITAVETAUE		TOTAL TILL, I	. 11-710	

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

Page 19 of 39 ClientServices@

RPD

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD		Ī
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	

LCS Dup (BH30372-BSD1)	* ` '										
Bromodichloromethane	46	ug/L	50.0	92.3	81-124		1.80	30			
Bromoform	50	"	50.0	101	80-136		1.92	30			
Bromomethane	44	"	50.0	88.5	32-177		3.68	30			
Carbon disulfide	41	"	50.0	83.0	10-136		4.64	30			
Carbon tetrachloride	46	"	50.0	92.2	66-143		5.73	30			
Chlorobenzene	49	"	50.0	98.1	86-120		1.94	30			
Chloroethane	47	"	50.0	94.4	51-142		2.01	30			
Chloroform	46	"	50.0	91.1	76-131		2.58	30			
Chloromethane	47	"	50.0	93.0	49-132		3.86	30			
is-1,2-Dichloroethylene	44	"	50.0	88.5	74-132		2.54	30			
is-1,3-Dichloropropylene	46	"	50.0	91.1	81-129		2.24	30			
Cyclohexane	44	"	50.0	88.9	70-130		5.24	30			
Dibromochloromethane	48	"	50.0	95.6	10-200		1.80	30			
Dibromomethane	46	"	50.0	91.6	83-124		1.82	30			
Dichlorodifluoromethane	46	"	50.0	91.0	28-158		5.28	30			
Ethyl Benzene	47	"	50.0	94.3	84-125		3.34	30			
- Iexachlorobutadiene	45	"	50.0	90.3	83-133		6.12	30			
sopropylbenzene	48	"	50.0	95.1	81-127		4.58	30			
1ethyl acetate	42	"	50.0	85.0	41-143		0.401	30			
Methyl tert-butyl ether (MTBE)	45	"	50.0	89.1	74-131		1.63	30			
lethylcyclohexane	45	"	50.0	91.0	70-130		5.14	30			
1ethylene chloride	44	"	50.0	88.2	57-141		2.49	30			
-Butylbenzene	47	"	50.0	93.0	80-130		3.01	30			
-Propylbenzene	47	"	50.0	95.0	74-136		3.70	30			
-Xylene	47	"	50.0	94.7	83-123		2.57	30			
- & m- Xylenes	96	"	100	96.2	82-128		3.02	30			
-Isopropyltoluene	47	"	50.0	93.8	85-125		3.79	30			
ec-Butylbenzene	48	"	50.0	96.0	83-125		4.54	30			
tyrene	48	"	50.0	96.1	86-126		1.57	30			
ert-Butyl alcohol (TBA)	230	"	250	91.8	70-130		2.27	30			
ert-Butylbenzene	48	"	50.0	95.2	80-127		4.82	30			
etrachloroethylene	40	"	50.0	79.7	80-129	Low Bias	3.28	30			
oluene	46	"	50.0	93.0	85-121		3.05	30			
rans-1,2-Dichloroethylene	44	"	50.0	87.1	72-132		3.81	30			
rans-1,3-Dichloropropylene	45	"	50.0	90.9	78-132		2.26	30			
ans-1,4-dichloro-2-butene	48	"	50.0	95.7	75-135		2.86	30			
richloroethylene	46	"	50.0	91.7	84-123		3.60	30			
richlorofluoromethane	48	"	50.0	96.7	62-140		2.89	30			
/inyl Chloride	46	"	50.0	92.7	52-130		1.01	30			
urrogate: SURR: 1,2-Dichloroethane-d4	49.7	"	50.0	99.4	77-125						
urrogate: SURR: Toluene-d8	49.9	"	50.0	99.7	85-120						
arran a a a	10.2	,,	50.0	22.7	00 120 00 120						

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 Page 20 of 39

50.0

76-130

ClientServices@

98.3

FAX (203) 357-0166

www.YORKLAB.com (203) 325-1371

49.2

 $Surrogate: SURR: p\hbox{-} Bromofluor obenzene$

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Baten	BH3035/	- LPA	3330C

Blank (BH30357-BLK1)				Prepared: 08/05/2023 Analyzed: 08/07/2023
1,1-Biphenyl	ND	0.0410	mg/kg wet	
1,2,4,5-Tetrachlorobenzene	ND	0.0819	"	
1,2,4-Trichlorobenzene	ND	0.0410	"	
1,2-Dichlorobenzene	ND	0.0410	"	
1,2-Diphenylhydrazine (as Azobenzene)	ND	0.0410	"	
1,3-Dichlorobenzene	ND	0.0410	"	
1,4-Dichlorobenzene	ND	0.0410	"	
2,3,4,6-Tetrachlorophenol	ND	0.0819	"	
2,4,5-Trichlorophenol	ND	0.0410	"	
2,4,6-Trichlorophenol	ND	0.0410	"	
2,4-Dichlorophenol	ND	0.0410	"	
2,4-Dimethylphenol	ND	0.0410	"	
2,4-Dinitrophenol	ND	0.0819	"	
2,4-Dinitrotoluene	ND	0.0410	"	
2,6-Dinitrotoluene	ND	0.0410	"	
2-Chloronaphthalene	ND	0.0410	"	
2-Chlorophenol	ND	0.0410	m .	
2-Methylnaphthalene	ND	0.0410	"	
2-Methylphenol	ND	0.0410	"	
2-Nitroaniline	ND	0.0819	"	
2-Nitrophenol	ND	0.0410	"	
3- & 4-Methylphenols	ND	0.0410	"	
3,3-Dichlorobenzidine	ND	0.0410	"	
3-Nitroaniline	ND	0.0819	"	
4,6-Dinitro-2-methylphenol	ND	0.0819	"	
4-Bromophenyl phenyl ether	ND	0.0410	"	
4-Chloro-3-methylphenol	ND	0.0410	"	
4-Chloroaniline	ND	0.0410	"	
4-Chlorophenyl phenyl ether	ND	0.0410	"	
4-Nitroaniline	ND	0.0410	"	
4-Nitrophenol	ND	0.0819	"	
Acenaphthene	ND	0.0410	"	
Acenaphthylene	ND	0.0410	"	
Acetophenone	ND	0.0410	"	
Aniline	ND	0.164	"	
Anthracene	ND	0.0410	"	
Atrazine	ND	0.0410	"	
Benzaldehyde	ND	0.0410	"	
Benzidine	ND	0.0410	"	
Benzo(a)anthracene			"	
Benzo(a)pyrene	ND ND	0.0410 0.0410	"	
Benzo(b)fluoranthene	ND ND	0.0410	"	
Benzo(g,h,i)perylene	ND ND	0.0410	"	
Benzo(k)fluoranthene	ND ND	0.0410	"	
Benzoic acid	ND ND	0.0410	"	
Benzyl alcohol	ND ND	0.0410	"	
Benzyl butyl phthalate	ND ND	0.0410	"	
Bis(2-chloroethoxy)methane			"	
Bis(2-chloroethyl)ether	ND	0.0410	"	
Bis(2-chloroisopropyl)ether	ND ND	0.0410	"	
	NI)	0.0410	**	
Bis(2-ethylhexyl)phthalate	ND	0.0410	"	

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 21 of 39

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BH30357-BLK1)						Prepared: 08/05/2023 Analyzed: 08/07/202
Caprolactam	ND	0.0819	mg/kg wet			
Carbazole	ND	0.0410	"			
Chrysene	ND	0.0410	"			
Dibenzo(a,h)anthracene	ND	0.0410	"			
Dibenzofuran	ND	0.0410	"			
Diethyl phthalate	ND	0.0410	"			
Dimethyl phthalate	ND	0.0410	"			
Di-n-butyl phthalate	ND	0.0410	"			
Di-n-octyl phthalate	ND	0.0410	"			
Diphenylamine	ND	0.0819	"			
Fluoranthene	ND	0.0410	"			
Fluorene	ND	0.0410	"			
Hexachlorobenzene	ND	0.0410	"			
Hexachlorobutadiene	ND	0.0410	"			
Hexachlorocyclopentadiene	ND	0.0410	"			
Hexachloroethane	ND	0.0410	"			
Indeno(1,2,3-cd)pyrene	ND	0.0410	"			
Isophorone	ND	0.0410	"			
Naphthalene	0.0551	0.0410	"			
Nitrobenzene	ND	0.0410	"			
N-Nitrosodimethylamine	ND	0.0410	"			
N-nitroso-di-n-propylamine	ND	0.0410	"			
N-Nitrosodiphenylamine	ND	0.0410	"			
Pentachlorophenol	ND	0.0410	"			
Phenanthrene	ND	0.0410	"			
Phenol	ND	0.0410	"			
Pyrene	ND	0.0410	"			
Surrogate: SURR: 2-Fluorophenol	1.40		"	1.64	85.3	20-108
Surrogate: SURR: Phenol-d6	1.28		"	1.64	78. I	23-114
Surrogate: SURR: Nitrobenzene-d5	0.825		"	0.820	101	22-108
Surrogate: SURR: 2-Fluorobiphenyl	0.722		"	0.820	88. I	21-113
Surrogate: SURR: 2,4,6-Tribromophenol	1.44		"	1.64	88.1	19-110

0.747

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 Page 22 of 39 (203) 325-1371 FAX (203) 357-0166 ClientServices@

0.820

91.2

24-116

www.YORKLAB.com

Surrogate: SURR: Terphenyl-d14

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	BH30357	- EPA	3550C

LCS (BH30357-BS1)						Prepared: 08/05/2023 Analyzed: 08/07/20
,1-Biphenyl	0.703	0.0410	mg/kg wet	0.820	85.7	18-111
,2,4,5-Tetrachlorobenzene	0.734	0.0819	"	0.820	89.5	21-131
2,4-Trichlorobenzene	0.571	0.0410	"	0.820	69.7	10-140
2-Dichlorobenzene	0.470	0.0410	"	0.820	57.4	34-108
2-Diphenylhydrazine (as Azobenzene)	0.397	0.0410	"	0.820	48.5	17-137
3-Dichlorobenzene	0.475	0.0410	"	0.820	58.0	33-110
4-Dichlorobenzene	0.470	0.0410	"	0.820	57.4	32-104
3,4,6-Tetrachlorophenol	0.715	0.0819	"	0.820	87.2	30-130
4,5-Trichlorophenol	0.600	0.0410	"	0.820	73.2	27-118
4,6-Trichlorophenol	0.612	0.0410	"	0.820	74.6	31-120
4-Dichlorophenol	0.585	0.0410	"	0.820	71.3	20-127
4-Dimethylphenol	0.468	0.0410	"	0.820	57.1	14-132
1-Dinitrophenol	1.06	0.0819	"	0.820	130	10-171
4-Dinitrotoluene	0.767	0.0410	"	0.820	93.5	34-131
6-Dinitrotoluene	0.717	0.0410	"	0.820	87.5	31-128
Chloronaphthalene	0.522	0.0410	"	0.820	63.7	31-117
Chlorophenol	0.511	0.0410	"	0.820	62.4	33-113
Methylnaphthalene	0.502	0.0410	"	0.820	61.3	12-138
Methylphenol	0.494	0.0410	"	0.820	60.2	10-136
Nitroaniline	0.669	0.0819	"	0.820	81.6	27-132
Nitrophenol	0.681	0.0410	"	0.820	83.1	17-129
& 4-Methylphenols	0.435	0.0410	"	0.820	53.1	29-103
3-Dichlorobenzidine	0.495	0.0410	"	0.820	60.4	22-149
Nitroaniline	0.507	0.0819	"	0.820	61.8	20-133
6-Dinitro-2-methylphenol	0.991	0.0819	"	0.820	121	10-143
Bromophenyl phenyl ether	0.506	0.0410	"	0.820	61.7	29-120
Chloro-3-methylphenol	0.563	0.0410	"	0.820	68.7	24-129
Chloroaniline	0.368	0.0410	"	0.820	44.8	10-132
Chlorophenyl phenyl ether	0.572	0.0410	"	0.820	69.8	27-124
Nitroaniline	0.550	0.0819	"	0.820	67.1	16-128
Nitrophenol	0.629	0.0819	"	0.820	76.7	10-141
cenaphthene	0.504	0.0410	"	0.820	61.4	30-121
cenaphthylene	0.489	0.0410	"	0.820	59.6	30-115
cetophenone	0.585	0.0410	"	0.820	71.3	20-112
niline	0.322	0.164	"	0.820	39.2	10-119
nthracene	0.559	0.0410	"	0.820	68.2	34-118
razine	0.674	0.0410	"	0.820	82.2	26-112
enzaldehyde	0.584	0.0410	"	0.820	71.2	21-100
enzo(a)anthracene	0.598	0.0410	"	0.820	72.9	32-122
enzo(a)pyrene	0.521	0.0410	"	0.820	63.5	29-133
enzo(b)fluoranthene	0.548	0.0410	"	0.820	66.8	25-133
enzo(g,h,i)perylene	0.557	0.0410	"	0.820	68.0	10-143
enzo(k)fluoranthene	0.499	0.0410	"	0.820	60.8	25-128
nzoic acid	0.675	0.0410	"	0.820	82.3	10-140
nzyl alcohol	0.456	0.0410	"	0.820	55.6	30-115
nzyl butyl phthalate	0.745	0.0410	"	0.820	90.9	26-126
s(2-chloroethoxy)methane	0.473	0.0410	"	0.820	57.7	19-132
s(2-chloroethyl)ether	0.447	0.0410	"	0.820	54.5	19-125
s(2-chloroisopropyl)ether	0.362	0.0410	"	0.820	44.2	20-135
is(2-ethylhexyl)phthalate	0.667	0.0410	"	0.820	81.3	10-155
aprolactam	0.769	0.0819		0.820	93.8	10-127

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientServices@ Page 23 of 39

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

R	atch	RH3	0357 -	FPA	3550C

LCS (BH30357-BS1)						Prepared: 08/05/2023 Analyzed: 08/07/202
Carbazole	0.590	0.0410	mg/kg wet	0.820	72.0	35-123
Chrysene	0.551	0.0410	"	0.820	67.2	32-123
Dibenzo(a,h)anthracene	0.582	0.0410	"	0.820	71.0	10-136
Dibenzofuran	0.535	0.0410	"	0.820	65.2	29-121
Diethyl phthalate	0.581	0.0410	"	0.820	70.9	34-116
Dimethyl phthalate	0.566	0.0410	"	0.820	69.0	35-124
Di-n-butyl phthalate	0.679	0.0410	"	0.820	82.8	31-116
Di-n-octyl phthalate	0.788	0.0410	"	0.820	96.2	26-136
Diphenylamine	0.529	0.0819	"	0.820	64.6	40-140
Fluoranthene	0.573	0.0410	"	0.820	69.9	33-122
Fluorene	0.527	0.0410	"	0.820	64.2	29-123
Hexachlorobenzene	0.498	0.0410	"	0.820	60.8	21-124
Hexachlorobutadiene	0.600	0.0410	"	0.820	73.2	10-149
Hexachlorocyclopentadiene	0.168	0.0410	"	0.820	20.5	10-129
Hexachloroethane	0.491	0.0410	"	0.820	60.0	28-108
Indeno(1,2,3-cd)pyrene	0.610	0.0410	"	0.820	74.4	10-135
Isophorone	0.515	0.0410	"	0.820	62.9	20-132
Naphthalene	0.596	0.0410	"	0.820	72.7	23-124
Nitrobenzene	0.572	0.0410	"	0.820	69.8	13-132
N-Nitrosodimethylamine	0.522	0.0410	"	0.820	63.7	11-129
N-nitroso-di-n-propylamine	0.440	0.0410	"	0.820	53.7	24-119
N-Nitrosodiphenylamine	0.525	0.0410	"	0.820	64.0	22-152
Pentachlorophenol	0.485	0.0410	"	0.820	59.2	10-139
Phenanthrene	0.534	0.0410	"	0.820	65.2	33-123
Phenol	0.487	0.0410	"	0.820	59.4	23-115
Pyrene	0.621	0.0410	"	0.820	75.8	32-130
Surrogate: SURR: 2-Fluorophenol	1.38		"	1.64	84.4	20-108
Surrogate: SURR: Phenol-d6	1.24		"	1.64	75.6	23-114
Surrogate: SURR: Nitrobenzene-d5	0.768		"	0.820	93.6	22-108
Surrogate: SURR: 2-Fluorobiphenyl	0.695		"	0.820	84.8	21-113
Surrogate: SURR: 2,4,6-Tribromophenol	1.51		"	1.64	92.0	19-110
Surrogate: SURR: Terphenyl-d14	0.755		"	0.820	92.1	24-116

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 Page 24 of 39

FAX (203) 357-0166

ClientServices@

www.YORKLAB.com (203) 325-1371

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	BH30357	7 _ FPA	3550C
Daten	DHJUJJ	/ - r/ r A	

Matrix Spike (BH30357-MS1)	*Source sample: 23	H0115-04 (N	Prepared: 08/05/2023 Analyzed: 08/08/202				
1,1-Biphenyl	0.685	0.0973	mg/kg dry	0.972	ND	70.4	10-130
,2,4,5-Tetrachlorobenzene	0.702	0.194	"	0.972	ND	72.2	10-133
,2,4-Trichlorobenzene	0.528	0.0973	"	0.972	ND	54.3	10-127
,2-Dichlorobenzene	0.451	0.0973	"	0.972	ND	46.4	14-111
,2-Diphenylhydrazine (as Azobenzene)	0.558	0.0973	"	0.972	ND	57.4	10-144
,3-Dichlorobenzene	0.443	0.0973	"	0.972	ND	45.5	11-111
,4-Dichlorobenzene	0.437	0.0973	"	0.972	ND	45.0	10-106
2,3,4,6-Tetrachlorophenol	0.709	0.194	"	0.972	ND	72.9	30-130
.,4,5-Trichlorophenol	0.570	0.0973	"	0.972	ND	58.6	10-127
4,4,6-Trichlorophenol	0.557	0.0973	"	0.972	ND	57.3	10-132
,4-Dichlorophenol	0.467	0.0973	"	0.972	ND	48.1	10-128
,4-Dimethylphenol	0.441	0.0973	"	0.972	ND	45.4	10-137
,4-Dinitrophenol	0.471	0.194	"	0.972	ND	48.4	10-171
,4-Dinitrotoluene	0.537	0.0973	"	0.972	ND	55.2	16-135
,6-Dinitrotoluene	0.486	0.0973	"	0.972	ND	50.0	18-131
-Chloronaphthalene	0.520	0.0973	"	0.972	ND	53.4	10-129
-Chlorophenol	0.444	0.0973	"	0.972	ND ND	45.7	15-116
-Methylnaphthalene	0.526	0.0973	"	0.972	ND ND	54.1	10-147
-Methylphenol			"				
-Nitroaniline	0.454	0.0973	"	0.972	ND	46.7	10-136
-Nitrophenol	0.523	0.194	"	0.972	ND	53.8	10-137
•	0.467	0.0973	"	0.972	ND	48.1	10-129
- & 4-Methylphenols	0.421	0.0973		0.972	ND	43.3	10-123
3-Dichlorobenzidine	0.571	0.0973	"	0.972	ND	58.7	10-155
-Nitroaniline	0.523	0.194	"	0.972	ND	53.8	12-133
6-Dinitro-2-methylphenol	0.460	0.194	"	0.972	ND	47.3	10-155
-Bromophenyl phenyl ether	0.471	0.0973	"	0.972	ND	48.5	14-128
-Chloro-3-methylphenol	0.532	0.0973	"	0.972	ND	54.7	10-134
-Chloroaniline	0.328	0.0973	"	0.972	ND	33.8	10-145
-Chlorophenyl phenyl ether	0.531	0.0973	"	0.972	ND	54.6	14-130
-Nitroaniline	0.370	0.194	"	0.972	ND	38.1	10-147
-Nitrophenol	0.822	0.194	"	0.972	ND	84.6	10-137
cenaphthene	0.502	0.0973	"	0.972	ND	51.6	10-146
cenaphthylene	0.503	0.0973	"	0.972	ND	51.8	10-134
cetophenone	0.593	0.0973	"	0.972	ND	61.0	10-116
aniline	0.238	0.390	"	0.972	ND	24.5	10-123
inthracene	0.482	0.0973	"	0.972	ND	49.6	10-142
trazine	0.735	0.0973	"	0.972	ND	75.6	19-115
enzaldehyde	0.591	0.0973	"	0.972	ND	60.8	10-125
enzo(a)anthracene	0.552	0.0973	"	0.972	ND	56.8	10-158
enzo(a)pyrene	0.505	0.0973	"	0.972	ND	51.9	10-180
enzo(b)fluoranthene	0.523	0.0973	"	0.972	ND	53.8	10-200
enzo(g,h,i)perylene	0.528	0.0973	"	0.972	ND	54.3	10-138
enzo(k)fluoranthene	0.535	0.0973	"	0.972	ND	55.0	10-197
enzoic acid	0.621	0.0973	"	0.972	ND	63.8	10-166
enzyl alcohol	0.420	0.0973	"	0.972	ND	43.2	12-124
enzyl butyl phthalate	0.533	0.0973	"	0.972	ND	54.8	10-154
is(2-chloroethoxy)methane	0.495	0.0973	"	0.972	ND	50.9	10-132
is(2-chloroethyl)ether	0.411	0.0973	"	0.972	ND	42.2	10-119
is(2-chloroisopropyl)ether	0.442	0.0973	"	0.972	ND	45.4	10-139
is(2-ethylhexyl)phthalate	0.551	0.0973	"	0.972	ND	56.6	10-167
Caprolactam	0.581	0.0973	"	0.972	ND ND	59.8	10-132

120 RESEARCH DRIVE STRATFORD, CT 06615

132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	BH30357	- FPA	3550C

Matrix Spike (BH30357-MS1)	*Source sample: 231	H0115-04 (N	Matrix Spike)				Pre	pared: 08/05/2023 Analyzed: 08/08/2023
Carbazole	0.523	0.0973	mg/kg dry	0.972	ND	53.8	10-167	
Chrysene	0.530	0.0973	"	0.972	ND	54.5	10-156	
Dibenzo(a,h)anthracene	0.499	0.0973	"	0.972	ND	51.4	10-137	
Dibenzofuran	0.520	0.0973	"	0.972	ND	53.5	10-147	
Diethyl phthalate	0.548	0.0973	"	0.972	ND	56.4	20-120	
Dimethyl phthalate	0.520	0.0973	"	0.972	ND	53.5	18-131	
Di-n-butyl phthalate	0.584	0.0973	"	0.972	ND	60.1	10-137	
Di-n-octyl phthalate	0.495	0.0973	"	0.972	ND	51.0	10-180	
Diphenylamine	0.606	0.194	"	0.972	ND	62.3	40-140	
Fluoranthene	0.540	0.0973	"	0.972	ND	55.5	10-160	
Fluorene	0.488	0.0973	"	0.972	ND	50.2	10-157	
Hexachlorobenzene	0.555	0.0973	"	0.972	ND	57.0	10-137	
Hexachlorobutadiene	0.566	0.0973	"	0.972	ND	58.2	10-132	
Hexachlorocyclopentadiene	0.250	0.0973	"	0.972	ND	25.7	10-106	
Hexachloroethane	0.503	0.0973	"	0.972	ND	51.8	10-110	
ndeno(1,2,3-cd)pyrene	0.437	0.0973	"	0.972	ND	45.0	10-144	
sophorone	0.547	0.0973	"	0.972	ND	56.2	10-132	
Naphthalene	1.79	0.0973	"	0.972	ND	184	10-141	High Bias
Nitrobenzene	0.551	0.0973	"	0.972	ND	56.6	10-131	
N-Nitrosodimethylamine	0.348	0.0973	"	0.972	ND	35.8	10-126	
N-nitroso-di-n-propylamine	0.454	0.0973	"	0.972	ND	46.7	10-125	
N-Nitrosodiphenylamine	0.599	0.0973	"	0.972	ND	61.6	10-177	
Pentachlorophenol	0.705	0.0973	"	0.972	ND	72.5	10-153	
Phenanthrene	0.547	0.0973	"	0.972	ND	56.2	10-148	
Phenol	0.404	0.0973	"	0.972	ND	41.5	10-126	
Pyrene	0.595	0.0973	"	0.972	ND	61.2	10-165	
Gurrogate: SURR: 2-Fluorophenol	1.16		"	1.94		59.5	20-108	
Surrogate: SURR: Phenol-d6	1.16		"	1.94		59.4	23-114	
Surrogate: SURR: Nitrobenzene-d5	0.692		"	0.972		71.2	22-108	
Surrogate: SURR: 2-Fluorobiphenyl	0.675		"	0.972		69.4	21-113	
Surrogate: SURR: 2,4,6-Tribromophenol	1.32		"	1.94		68.0	19-110	
Surrogate: SURR: Terphenyl-d14	0.653		"	0.972		67.1	24-116	

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 Page 26 of 39 (203) 325-1371 FAX (203) 357-0166 ClientServices@

www.YORKLAB.com

$Semivolatile\ Organic\ Compounds\ by\ GC/MS\ -\ Quality\ Control\ Data$

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	RH30	357 -	EPA	3550C

Matrix Spike Dup (BH30357-MSD1)	*Source sample: 23	H0115-04 (N	Matrix Spike	Dup)			Prepared: 08/05/2023 Analyzed: 08/08/2023				
1,1-Biphenyl	0.637	0.0973	mg/kg dry	0.972	ND	65.5	10-130	7.18	30		
1,2,4,5-Tetrachlorobenzene	0.660	0.194	"	0.972	ND	67.9	10-133	6.16	30		
1,2,4-Trichlorobenzene	0.488	0.0973	"	0.972	ND	50.2	10-127	7.80	30		
1,2-Dichlorobenzene	0.453	0.0973	"	0.972	ND	46.6	14-111	0.516	30		
1,2-Diphenylhydrazine (as Azobenzene)	0.468	0.0973	"	0.972	ND	48.2	10-144	17.4	30		
1,3-Dichlorobenzene	0.475	0.0973	"	0.972	ND	48.9	11-111	7.12	30		
1,4-Dichlorobenzene	0.425	0.0973	"	0.972	ND	43.8	10-106	2.71	30		
2,3,4,6-Tetrachlorophenol	0.678	0.194	"	0.972	ND	69.8	30-130	4.37	30		
2,4,5-Trichlorophenol	0.541	0.0973	"	0.972	ND	55.6	10-127	5.32	30		
2,4,6-Trichlorophenol	0.527	0.0973	"	0.972	ND	54.2	10-132	5.45	30		
2,4-Dichlorophenol	0.478	0.0973	"	0.972	ND	49.2	10-128	2.30	30		
2,4-Dimethylphenol	0.395	0.0973	"	0.972	ND	40.6	10-137	11.0	30		
2,4-Dinitrophenol	0.238	0.194	"	0.972	ND	24.5	10-171	65.6	30	Non-dir.	
2,4-Dinitrotoluene	0.497	0.0973	"	0.972	ND	51.1	16-135	7.67	30		
2,6-Dinitrotoluene	0.495	0.0973	"	0.972	ND	51.0	18-131	1.90	30		
2-Chloronaphthalene	0.512	0.0973	"	0.972	ND	52.6	10-129	1.51	30		
2-Chlorophenol	0.469	0.0973	"	0.972	ND	48.2	15-116	5.45	30		
2-Methylnaphthalene	0.709	0.0973	"	0.972	ND	73.0	10-147	29.7	30		
2-Methylphenol	0.475	0.0973	"	0.972	ND	48.9	10-136	4.52	30		
2-Nitroaniline	0.516	0.194	"	0.972	ND	53.1	10-137	1.20	30		
2-Nitrophenol	0.461	0.0973	"	0.972	ND	47.4	10-129	1.34	30		
3- & 4-Methylphenols	0.429	0.0973	"	0.972	ND	44.1	10-123	1.83	30		
3,3-Dichlorobenzidine	0.621	0.0973	"	0.972	ND	63.8	10-155	8.36	30		
3-Nitroaniline	0.516	0.194	"	0.972	ND	53.1	12-133	1.20	30		
4,6-Dinitro-2-methylphenol	0.427	0.194	"	0.972	ND	43.9	10-155	7.37	30		
4-Bromophenyl phenyl ether	0.484	0.0973	"	0.972	ND	49.8	14-128	2.61	30		
4-Chloro-3-methylphenol	0.495	0.0973	"	0.972	ND	51.0	10-134	7.12	30		
4-Chloroaniline	0.411	0.0973	"	0.972	ND	42.2	10-145	22.3	30		
4-Chlorophenyl phenyl ether	0.473	0.0973	"	0.972	ND	48.6	14-130	11.6	30		
4-Nitroaniline	0.345	0.194	"	0.972	ND	35.5	10-147	6.96	30		
4-Nitrophenol	0.986	0.194	"	0.972	ND	101	10-137	18.2	30		
Acenaphthene	0.504	0.0973	"	0.972	ND	51.8	10-146	0.464	30		
Acenaphthylene	0.520	0.0973	"	0.972	ND	53.4	10-134	3.19	30		
Acetophenone	0.621	0.0973	"	0.972	ND	63.9	10-116	4.74	30		
Aniline	0.259	0.390	"	0.972	ND	26.6	10-123	8.45	30		
Anthracene	0.484	0.0973	"	0.972	ND	49.8	10-142	0.322	30		
Atrazine	0.635	0.0973	"	0.972	ND	65.4	19-115	14.5	30		
Benzaldehyde	0.621	0.0973	"	0.972	ND	63.8	10-125	4.88	30		
Benzo(a)anthracene	0.512	0.0973	"	0.972	ND	52.6	10-158	7.60	30		
Benzo(a)pyrene	0.492	0.0973	"	0.972	ND	50.6	10-180	2.50	30		
Benzo(b)fluoranthene	0.510	0.0973	"	0.972	ND	52.5	10-200	2.41	30		
Benzo(g,h,i)perylene	0.459	0.0973	"	0.972	ND	47.2	10-138	14.0	30		
Benzo(k)fluoranthene	0.513	0.0973	"	0.972	ND	52.7	10-197	4.31	30		
Benzoic acid	0.396	0.0973	"	0.972	ND	40.7	10-166	44.2	30	Non-dir.	
Benzyl alcohol	0.425	0.0973	"	0.972	ND	43.8	12-124	1.29	30		
Benzyl butyl phthalate	0.503	0.0973	"	0.972	ND	51.8	10-154	5.71	30		
Bis(2-chloroethoxy)methane	0.462	0.0973	"	0.972	ND	47.5	10-132	6.83	30		
Bis(2-chloroethyl)ether	0.441	0.0973	"	0.972	ND	45.4	10-119	7.12	30		
Bis(2-chloroisopropyl)ether	0.401	0.0973	"	0.972	ND	41.2	10-139	9.79	30		
Bis(2-ethylhexyl)phthalate	0.500	0.0973	"	0.972	ND	51.4	10-167	9.62	30		
Caprolactam	0.607	0.194	"	0.972	ND	62.5	10-132	4.45	30		

120 RESEARCH DRIVE STRATFORD, CT 06615

132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371

Semivolatile Organic Compounds by GC/MS - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	BH30357	- FPA	3550C

Matrix Spike Dup (BH30357-MSD1)	*Source sample: 23	H0115-04 (N	Matrix Spike	Dup)			Pre	pared: 08/05/20	5/2023 Analyzed: 08/08/2023				
Carbazole	0.469	0.0973	mg/kg dry	0.972	ND	48.2	10-167		11.0	30			
Chrysene	0.512	0.0973	"	0.972	ND	52.6	10-156		3.44	30			
Dibenzo(a,h)anthracene	0.484	0.0973	"	0.972	ND	49.8	10-137		3.16	30			
Dibenzofuran	0.523	0.0973	"	0.972	ND	53.8	10-147		0.447	30			
Diethyl phthalate	0.509	0.0973	"	0.972	ND	52.3	20-120		7.51	30			
Dimethyl phthalate	0.505	0.0973	"	0.972	ND	51.9	18-131		3.03	30			
Di-n-butyl phthalate	0.502	0.0973	"	0.972	ND	51.6	10-137		15.2	30			
Di-n-octyl phthalate	0.502	0.0973	"	0.972	ND	51.7	10-180		1.40	30			
Diphenylamine	0.561	0.194	"	0.972	ND	57.7	40-140		7.73	30			
Fluoranthene	0.476	0.0973	"	0.972	ND	49.0	10-160		12.6	30			
Fluorene	0.521	0.0973	"	0.972	ND	53.6	10-157		6.47	30			
Hexachlorobenzene	0.514	0.0973	"	0.972	ND	52.9	10-137		7.57	30			
Hexachlorobutadiene	0.509	0.0973	"	0.972	ND	52.4	10-132		10.6	30			
Hexachlorocyclopentadiene	0.212	0.0973	"	0.972	ND	21.8	10-106		16.2	30			
Hexachloroethane	0.442	0.0973	"	0.972	ND	45.4	10-110		13.0	30			
Indeno(1,2,3-cd)pyrene	0.394	0.0973	"	0.972	ND	40.5	10-144		10.5	30			
Isophorone	0.496	0.0973	"	0.972	ND	51.0	10-132		9.69	30			
Naphthalene	5.99	0.0973	"	0.972	ND	616	10-141	High Bias	108	30	Non-dir		
Nitrobenzene	0.541	0.0973	"	0.972	ND	55.6	10-131		1.85	30			
N-Nitrosodimethylamine	0.387	0.0973	"	0.972	ND	39.8	10-126		10.6	30			
N-nitroso-di-n-propylamine	0.405	0.0973	"	0.972	ND	41.7	10-125		11.4	30			
N-Nitrosodiphenylamine	0.551	0.0973	"	0.972	ND	56.6	10-177		8.39	30			
Pentachlorophenol	0.630	0.0973	"	0.972	ND	64.8	10-153		11.2	30			
Phenanthrene	0.499	0.0973	"	0.972	ND	51.3	10-148		9.23	30			
Phenol	0.499	0.0973	"	0.972	ND	51.3	10-126		21.0	30			
Pyrene	0.537	0.0973	"	0.972	ND	55.2	10-165		10.3	30			
Surrogate: SURR: 2-Fluorophenol	1.13		"	1.94		57.9	20-108						
Surrogate: SURR: Phenol-d6	1.15		"	1.94		59.0	23-114						
Surrogate: SURR: Nitrobenzene-d5	0.636		"	0.972		65.4	22-108						
Surrogate: SURR: 2-Fluorobiphenyl	0.647		"	0.972		66.6	21-113						
Surrogate: SURR: 2,4,6-Tribromophenol	1.28		"	1.94		65.6	19-110						
Surrogate: SURR: Terphenyl-d14	0.649		"	0.972		66.7	24-116						

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE RICHMOND HILL, NY 11418

FAX (203) 357-0166

Page 28 of 39

ClientServices@

www.YORKLAB.com (203) 325-1371

Organochlorine Pesticides by GC/ECD - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
•											

Dlamb (D1120202 D1 1/1)						Prepared: 08/07/2023 Analyzed: 08/08/202
Blank (BH30383-BLK1) ,4'-DDD	ND	0.00165	л .			Prepared: 08/0//2023 Analyzed: 08/08/202
,4'-DDE	ND		mg/kg wet			
4'-DDE 4'-DDT	ND	0.00165	"			
Idrin	ND	0.00165	"			
	ND	0.00165	"			
pha-BHC	ND	0.00165	,,			
oha-Chlordane ta-BHC	ND	0.00165	"			
nlordane, total	ND	0.00165	"			
lta-BHC	ND	0.0330	,,			
	ND	0.00165	"			
eldrin dosulfan I	ND	0.00165	,,			
idosulfan II	ND	0.00165	"			
dosulfan sulfate	ND	0.00165	"			
	ND	0.00165	,,			
ndrin ndrin aldehyde	ND	0.00165	"			
ndrin aldenyde ndrin ketone	ND ND	0.00165	"			
mma-BHC (Lindane)		0.00165	"			
mma-Chlordane	ND	0.00165	"			
	ND	0.00165	"			
eptachlor	ND	0.00165	"			
eptachlor epoxide ethoxychlor	ND	0.00165	,,			
•	ND	0.00825	"			
xaphene	ND	0.0835				
rrogate: Decachlorobiphenyl	0.0651		"	0.0667	97.7	30-150
rrogate: Tetrachloro-m-xylene	0.0408		"	0.0667	61.3	30-150
CS (BH30383-BS1)						Prepared: 08/07/2023 Analyzed: 08/08/202
I'-DDD	0.0290	0.00165	mg/kg wet	0.0333	87.0	40-140
4'-DDE	0.0289	0.00165	"	0.0333	86.8	40-140
4'-DDT	0.0297	0.00165	"	0.0333	89.2	40-140
drin	0.0281	0.00165	"	0.0333	84.4	40-140
oha-BHC	0.0288	0.00165	"	0.0333	86.5	40-140
ha-Chlordane	0.0294	0.00165	"	0.0333	88.1	40-140
ta-BHC	0.0286	0.00165	"	0.0333	85.8	40-140
lta-BHC	0.0275	0.00165	"	0.0333	82.4	40-140
ieldrin	0.0289	0.00165	"	0.0333	86.6	40-140
idosulfan I	0.0293	0.00165	"	0.0333	88.0	40-140
idosulfan II	0.0292	0.00165	"	0.0333	87.6	40-140
dosulfan sulfate	0.0290	0.00165	"	0.0333	86.9	40-140
drin	0.0286	0.00165	"	0.0333	85.9	40-140
ndrin aldehyde	0.0279	0.00165	"	0.0333	83.6	40-140
drin ketone	0.0296	0.00165	"	0.0333	88.8	40-140
mma-BHC (Lindane)	0.0291	0.00165	"	0.0333	87.2	40-140
mma-Chlordane	0.0287	0.00165	"	0.0333	86.1	40-140
ptachlor	0.0277	0.00165	"	0.0333	83.2	40-140
eptachlor epoxide	0.0293	0.00165	"	0.0333	88.0	40-140
ethoxychlor	0.0326	0.00825	"	0.0333	97.8	40-140
rrogate: Decachlorobiphenyl	0.0613		"	0.0667		30-150
rrogate: Decachlorobiphenyl rrogate: Tetrachloro-m-xylene	0.0613 0.0395		**	0.000/	92.0	30-130

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 29 of 39

Organochlorine Pesticides by GC/ECD - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

Spike

Source*

%REC

Reporting

	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
AF-DDD	Batch BH30383 - EPA 3550C											
Main	Matrix Spike (BH30383-MS1)	*Source sample: 23	H0128-01 (V	VC-01_0801	23)			Pre	pared: 08/07/20	023 Analyz	ed: 08/08/	/2023
March Marc	4,4'-DDD	0.0425	0.00161	mg/kg dry	0.0349	ND	122	30-150				
Memory M	4,4'-DDE	0.0354	0.00161	"	0.0349	ND	102	30-150				
high-BIC 0.0414	4,4'-DDT	0.0443	0.00161	"	0.0349	ND	127	30-150				
	Aldrin	0.0290	0.00161	"	0.0349	ND	83.1	30-150				
See BIFC	alpha-BHC	0.0414	0.00161	"	0.0349	ND	119	30-150				
Reference	alpha-Chlordane	0.0366	0.00161	"	0.0349	ND	105	30-150				
Deciden 0.875	beta-BHC	0.0230	0.00161	"	0.0349	ND	65.9	30-150				
Endossifien 0,0386	delta-BHC	0.0301	0.00161	"	0.0349	ND	86.3	30-150				
Indesidifinal	Dieldrin	0.0375	0.00161	"	0.0349	ND	108	30-150				
Second	Endosulfan I	0.0386	0.00161	"	0.0349	ND	111	30-150				
indrin aldehyde	Endosulfan II	0.0382	0.00161	"	0.0349	ND	109	30-150				
Endrin aldehyde	Endosulfan sulfate	0.0341	0.00161	"	0.0349	ND	97.8	30-150				
Indian ketone 0,0407 0,00161 " 0,0349 ND 117 30-150	Endrin	0.0407	0.00161	"	0.0349	ND	117	30-150				
Samma-BHC (Lindane)	Endrin aldehyde	0.0340	0.00161	"	0.0349	ND	97.4	30-150				
Samma-Chlordane 0.0373 0.00161 " 0.0349 ND 107 30-150 10-150 1	Endrin ketone	0.0407	0.00161	"	0.0349	ND	117	30-150				
Equachlor 0.0298	gamma-BHC (Lindane)	0.0319	0.00161	"	0.0349	ND	91.6	30-150				
Perpachlor epoxide	-	0.0373	0.00161	"	0.0349	ND	107	30-150				
Methoxychlor 0.0538 0.00806 " 0.0349 ND 154 30-150 High Bias	Heptachlor	0.0298	0.00161	"	0.0349	ND	85.3	30-150				
Natrix Spike Dup (BH30883-MSD1) *Source sample: 23H0128-01 (WC-01_080123) *Source sample: 23H0128-01 (WC-01_080123) *Prepared: 08/07/2023 Analyzed: 08/08/2023 Analyzed:	Heptachlor epoxide	0.0320	0.00161	"	0.0349	ND	91.9	30-150				
Matrix Spike Dup (BH30383-MSD1)	Methoxychlor	0.0538	0.00806	"	0.0349	ND	154	30-150	High Bias			
Matrix Spike Dup (BH30383-MSD1) *Source sample: 23H0128-01 (WC-01_080123)	Surrogate: Decachlorobiphenyl	0.0676		"	0.0698		97.0	30-150				
A-DDD	Surrogate: Tetrachloro-m-xylene	0.0467		"	0.0698		67.0	30-150				
1.4-DDE	Matrix Spike Dup (BH30383-MSD1)	*Source sample: 23	H0128-01 (V	VC-01_0801	23)			Pre	pared: 08/07/20	023 Analyz	ed: 08/08/	/2023
Addrin 0.0329 0.00164 " 0.0356 ND 92.6 30.150 29.5 30 Addrin 0.0318 0.00164 " 0.0356 ND 89.3 30.150 9.19 30 Addrin 0.0318 0.00164 " 0.0356 ND 152 30.150 High Bias 26.3 30 Addrin 1.00164 " 0.0356 ND 152 30.150 High Bias 26.3 30 Addrin 1.00164 " 0.0356 ND 93.7 30.150 16.7 30 Addrin 1.00164 " 0.0356 ND 93.7 30.150 16.7 30 Addrin 1.00164 " 0.0356 ND 97.1 30.150 16.7 30 Addrin 1.00164 " 0.0356 ND 97.1 30.150 16.7 30 Addrin 1.00164 " 0.0356 ND 97.1 30.150 16.7 30 Addrin 1.00164 " 0.0356 ND 97.1 30.150 17.8 30 Addrin 1.00164 " 0.0356 ND 97.1 30.150 17.8 30 Addrin 1.00164 " 0.0356 ND 97.1 30.150 17.8 30 Addrin 1.00164 " 0.0356 ND 97.1 30.150 17.8 30 Addrin 1.00164 " 0.0356 ND 97.1 30.150 17.8 30 Addrin 1.00164 " 0.0356 ND 97.1 30.150 17.8 30 Addrin 1.00164 " 0.0356 ND 97.1 30.150 17.8 30 Addrin 1.00164 " 0.0356 ND 95.8 30.150 17.8 30 Addrin 1.00164 ND 95.8 30.150 17.8 30 Addrin 1.00164 ND 95.8 30.150 17.8 30 Addr	4,4'-DDD	0.0336	0.00164	mg/kg dry	0.0356	ND	94.3	30-150		23.6	30	
Aldrin 0.0318 0.00164 " 0.0356 ND 89.3 30-150 9.19 30 Alpha-BHC 0.0539 0.00164 " 0.0356 ND 152 30-150 High Bias 26.3 30 Alpha-Chlordane 0.0333 0.00164 " 0.0356 ND 93.7 30-150 9.31 30 Alpha-Chlordane 0.0333 0.00164 " 0.0356 ND 93.7 30-150 16.7 30 Alpha-Chlordane 0.0345 0.00164 " 0.0356 ND 97.1 30-150 13.8 30 Alpha-Chlordane 0.0341 0.00164 " 0.0356 ND 96.0 30-150 13.8 30 Alpha-Chlordane 0.0341 0.00164 " 0.0356 ND 96.0 30-150 13.8 30 Alpha-Chlordane 0.0344 0.00164 " 0.0356 ND 96.0 30-150 11.7 30 Alpha-Chlordane 0.0348 0.00164 " 0.0356 ND 96.0 30-150 11.7 30 Alpha-Chlordane 0.0341 0.00164 " 0.0356 ND 95.8 30-150 15.2 30 Alpha-Chlordane 0.0341 0.00164 " 0.0356 ND 95.8 30-150 15.2 30 Alpha-Chlordane 0.0341 0.00164 " 0.0356 ND 95.8 30-150 15.2 30 Alpha-Chlordane 0.0341 0.00164 " 0.0356 ND 95.8 30-150 15.2 30 Alpha-Chlordane 0.0341 0.00164 " 0.0356 ND 95.8 30-150 17.8 30 Alpha-Chlordane 0.0358 0.00164 " 0.0356 ND 95.8 30-150 18.7 30 Alpha-Chlordane 0.0358 0.00164 " 0.0356 ND 91.9 30-150 18.7 30 Alpha-Chlordane 0.0358 0.00164 " 0.0356 ND 91.9 30-150 18.7 30 Alpha-Chlordane 0.0338 0.00164 " 0.0356 ND 91.7 30-150 19.5 30 Alpha-Chlordane 0.0338 0.00164 " 0.0356 ND 91.7 30-150 18.7 30 Alpha-Chlordane 0.0338 0.00164 " 0.0356 ND 91.7 30-150 13.3 30 Alpha-Chlordane 0.0338 0.00164 " 0.0356 ND 91.7 30-150 16.9 30 Alpha-Chlordane 0.0358 0.00164 " 0.0356 ND 91.7 30-150 16.9 30 Alpha-Chlordane 0.0358 0.00164 " 0.0356 ND 91.7 30-150 16.9 30 Alpha-Chlordane 0.0358 0.00164 " 0.0356 ND 91.7 30-150 16.9 30 Alpha-Chlordane 0.0358 0.00164 " 0.0356 ND 91.7 30-150 16.9 30 Non-di-Chlordane 0.0358 0.00164 " 0.0356 ND 91.7 30-150 16.9 30 Non-di-Chlordane 0.0358 0.00164 " 0.0356 ND 91.7 30-150 16.9 30 Non-di-Chlordane 0.0358 0.00164 " 0.0356 ND 91.7 30-150 16.9 30 Non-di-Chlordane 0.0358 0.00164 " 0.0356 ND 91.7 30-150 16.9 30 Non-di-Chlordane 0.0358 0.00164 " 0.0356 ND 91.7 30-150 16.9 30 Non-di-Chlordane 0.0358 0.00164 " 0.0356 ND 91.7 30-150 16.9 30 Non-di-Chlordane 0.0358 0.00164 " 0.0356 ND 91.7 30-150 16.9 30 Non-di-Chlordane 0.0358 0.001	4,4'-DDE	0.0330	0.00164	"	0.0356	ND	92.8	30-150		7.10	30	
Alpha-BHC 0.0539 0.00164 " 0.0356 ND 152 30-150 High Bias 26.3 30 Alpha-Chlordane 0.0333 0.00164 " 0.0356 ND 93.7 30-150 9.31 30 beta-BHC 0.0272 0.00164 " 0.0356 ND 97.1 30-150 16.7 30 beta-BHC 0.0345 0.00164 " 0.0356 ND 97.1 30-150 13.8 30 Dieldrin 0.0341 0.00164 " 0.0356 ND 96.0 30-150 9.43 30 Endosulfan I 0.0344 0.00164 " 0.0356 ND 96.6 30-150 11.7 30 Endosulfan III 0.0328 0.00164 " 0.0356 ND 92.2 30-150 15.2 30 Endrin sulfate 0.0275 0.00164 " 0.0356 ND 77.3 30-150 17.8 30 Endrin sulfat	4,4'-DDT	0.0329	0.00164	"	0.0356	ND	92.6	30-150		29.5	30	
dipha-Chlordane 0.0333 0.00164 " 0.0356 ND 93.7 30-150 9.31 30 eta-BHC 0.0272 0.00164 " 0.0356 ND 76.3 30-150 16.7 30 lelta-BHC 0.0345 0.00164 " 0.0356 ND 97.1 30-150 13.8 30 Dieldrin 0.0341 0.00164 " 0.0356 ND 96.0 30-150 9.43 30 Endosulfan I 0.0344 0.00164 " 0.0356 ND 96.6 30-150 11.7 30 Endosulfan II 0.0328 0.00164 " 0.0356 ND 92.2 30-150 15.2 30 Endosulfan sulfate 0.0275 0.00164 " 0.0356 ND 77.3 30-150 21.5 30 Endrin aldehyde 0.0256 0.00164 " 0.0356 ND 71.9 30-150 18.7 30 Endrin ketone <td< td=""><td>Aldrin</td><td>0.0318</td><td>0.00164</td><td>"</td><td>0.0356</td><td>ND</td><td>89.3</td><td>30-150</td><td></td><td>9.19</td><td>30</td><td></td></td<>	Aldrin	0.0318	0.00164	"	0.0356	ND	89.3	30-150		9.19	30	
Neta-BHC	alpha-BHC	0.0539	0.00164	"	0.0356	ND	152	30-150	High Bias	26.3	30	
Relta-BHC 0.0345 0.00164 0.0356 ND 97.1 30-150 13.8 30 10-150 10-	alpha-Chlordane	0.0333	0.00164	"	0.0356	ND	93.7	30-150		9.31	30	
Dieldrin O.0341 O.00164 O.0356 ND 96.0 30-150 9.43 30 O.056 O.0356 ND 96.6 30-150 O.0356 O.056 O.0356	beta-BHC	0.0272	0.00164	"	0.0356	ND	76.3	30-150		16.7	30	
Endosulfan I 0.0344 0.00164 " 0.0356 ND 96.6 30-150 11.7 30 Endosulfan II 0.0328 0.00164 " 0.0356 ND 92.2 30-150 15.2 30 Endosulfan sulfate 0.0275 0.00164 " 0.0356 ND 77.3 30-150 21.5 30 Endosulfan sulfate 0.0341 0.00164 " 0.0356 ND 95.8 30-150 17.8 30 Endrin aldehyde 0.0356 ND 95.8 30-150 17.8 30 Endrin aldehyde 0.0356 ND 95.8 30-150 17.8 30 Endrin ketone 0.0338 0.00164 " 0.0356 ND 94.9 30-150 18.7 30 Endrin ketone 0.0388 0.00164 " 0.0356 ND 94.9 30-150 18.7 30 Endrin ketone 0.0388 0.00164 " 0.0356 ND 94.9 30-150 19.5 30 Endrin ketone 0.0326 0.00164 " 0.0356 ND 91.7 30-150 19.5 30 Endrin ketone 0.0326 0.00164 " 0.0356 ND 91.7 30-150 19.5 30 Endrin ketone 0.0353 0.00164 " 0.0356 ND 91.7 30-150 13.3 30 Endrin ketone 0.0353 0.00164 " 0.0356 ND 91.7 30-150 16.9 30 Endrin ketone 0.0343 0.00164 " 0.0356 ND 99.1 30-150 16.9 30 Endrin ketone 0.0343 0.00164 " 0.0356 ND 96.3 30-150 6.68 30 Endrin ketone 0.0358 0.00822 " 0.0356 ND 96.3 30-150 6.68 30 Endrin ketone 0.0358 0.00822 " 0.0356 ND 96.3 30-150 40.2 30 Non-discurregate: Decachlorobiphenyl 0.0794 " 0.0711 112 30-150	delta-BHC	0.0345	0.00164	"	0.0356	ND	97.1	30-150		13.8	30	
Endosulfan II 0.0328 0.00164 " 0.0356 ND 92.2 30-150 15.2 30 Endosulfan sulfate 0.0275 0.00164 " 0.0356 ND 77.3 30-150 21.5 30 Endosulfan sulfate 0.0341 0.00164 " 0.0356 ND 95.8 30-150 17.8 30 Endrin aldehyde 0.0256 0.00164 " 0.0356 ND 71.9 30-150 28.1 30 Endrin ketone 0.0338 0.00164 " 0.0356 ND 94.9 30-150 18.7 30 Endrin ketone 0.0388 0.00164 " 0.0356 ND 109 30-150 19.5 30 Endrin End	Dieldrin	0.0341	0.00164	"	0.0356	ND	96.0	30-150		9.43	30	
Endosulfan sulfate 0.0275 0.00164 " 0.0356 ND 77.3 30-150 21.5 30 Endrin 1.00164 " 0.0356 ND 95.8 30-150 17.8 30 Endrin 1.00164 " 0.0356 ND 95.8 30-150 17.8 30 Endrin 1.00164 " 0.0356 ND 71.9 30-150 28.1 30 Endrin 1.00164 " 0.0356 ND 94.9 30-150 18.7 30 Endrin 1.00164 " 0.0356 ND 94.9 30-150 18.7 30 Endrin 1.00164 " 0.0356 ND 94.9 30-150 18.7 30 Endrin 1.00164 " 0.0356 ND 109 30-150 19.5 30 Endrin 1.00164 " 0.0356 ND 91.7 30-150 19.5 30 Endrin 1.00164 " 0.0356 ND 91.7 30-150 13.3 30 Endrin 1.00164 " 0.0356 ND 91.7 30-150 13.3 30 Endrin 1.00164 " 0.0356 ND 91.7 30-150 16.9 30 Endrin 1.00164 " 0.0356 ND 99.1 30-150 16.9 30 Endrin 1.00164 " 0.0356 ND 96.3 30-150 16.9 30 Endrin	Endosulfan I	0.0344	0.00164	"	0.0356	ND	96.6	30-150		11.7	30	
Endrin 0.0341 0.00164 " 0.0356 ND 95.8 30-150 17.8 30 Endrin aldehyde 0.0256 0.00164 " 0.0356 ND 71.9 30-150 28.1 30 Endrin ketone 0.0338 0.00164 " 0.0356 ND 94.9 30-150 18.7 30 Endrin ketone 0.0388 0.00164 " 0.0356 ND 109 30-150 19.5 30 Endrin ketone 0.0388 0.00164 " 0.0356 ND 109 30-150 19.5 30 Endrin ketone 0.0326 0.00164 " 0.0356 ND 91.7 30-150 13.3 30 Endrin ketone 0.0353 0.00164 " 0.0356 ND 91.7 30-150 13.3 30 Endrin ketone 0.0358 0.00164 " 0.0356 ND 91.7 30-150 13.3 30 Endrin ketone 0.0358 0.00164 " 0.0356 ND 91.1 30-150 16.9 30 Endrin ketone 0.0358 0.00164 " 0.0356 ND 96.3 30-150 16.9 30 Endrin ketone 0.0358 0.00164 " 0.0356 ND 96.3 30-150 16.9 30 Endrin ketone 0.0358 0.00822 " 0.0356 ND 101 30-150 40.2 30 Non-discondinates of the control	Endosulfan II	0.0328	0.00164	"	0.0356	ND	92.2	30-150		15.2	30	
Endrin aldehyde 0.0256 0.00164 " 0.0356 ND 71.9 30-150 28.1 30 Endrin ketone 0.0338 0.00164 " 0.0356 ND 94.9 30-150 18.7 30 gamma-BHC (Lindane) 0.0388 0.00164 " 0.0356 ND 109 30-150 19.5 30 gamma-Chlordane 0.0326 0.00164 " 0.0356 ND 91.7 30-150 13.3 30 Heptachlor 0.0353 0.00164 " 0.0356 ND 91.7 30-150 13.3 30 Heptachlor epoxide 0.0343 0.00164 " 0.0356 ND 99.1 30-150 16.9 30 Heptachlor epoxide 0.0358 0.00822 " 0.0356 ND 96.3 30-150 6.68 30 Methoxychlor 0.0358 0.00822 " 0.0356 ND 101 30-150 40.2 30 Non-discurregate: Decachlorobiphenyl 0.0794 " 0.0711 112 30-150	Endosulfan sulfate	0.0275	0.00164	"	0.0356	ND	77.3	30-150		21.5	30	
Endrin ketone 0.0338 0.00164 " 0.0356 ND 94.9 30-150 18.7 30 gamma-BHC (Lindane) 0.0388 0.00164 " 0.0356 ND 109 30-150 19.5 30 gamma-Chlordane 0.0326 0.00164 " 0.0356 ND 91.7 30-150 13.3 30 Heptachlor 0.0353 0.00164 " 0.0356 ND 99.1 30-150 16.9 30 Heptachlor epoxide 0.0343 0.00164 " 0.0356 ND 96.3 30-150 6.68 30 Methoxychlor 0.0358 0.00822 " 0.0356 ND 101 30-150 40.2 30 Non-distance Decachlorobiphenyl 0.0794 " 0.0711 112 30-150	Endrin						95.8	30-150				
gamma-BHC (Lindane) 0.0388 0.00164 " 0.0356 ND 109 30-150 19.5 30 gamma-Chlordane 0.0326 0.00164 " 0.0356 ND 91.7 30-150 13.3 30 Heptachlor 0.0353 0.00164 " 0.0356 ND 99.1 30-150 16.9 30 Heptachlor epoxide 0.0343 0.00164 " 0.0356 ND 96.3 30-150 6.68 30 Methoxychlor 0.0358 0.00822 " 0.0356 ND 101 30-150 40.2 30 Non-div Surrogate: Decachlorobiphenyl 0.0794 " 0.0711 112 30-150	Endrin aldehyde		0.00164		0.0356	ND	71.9					
gamma-Chlordane 0.0326 0.00164 " 0.0356 ND 91.7 30-150 13.3 30 Heptachlor 0.0353 0.00164 " 0.0356 ND 99.1 30-150 16.9 30 Heptachlor epoxide 0.0343 0.00164 " 0.0356 ND 96.3 30-150 6.68 30 Methoxychlor 0.0358 0.00822 " 0.0356 ND 101 30-150 40.2 30 Non-dispensional Non	Endrin ketone	0.0338	0.00164	"	0.0356		94.9	30-150				
Heptachlor 0.0353 0.00164 " 0.0356 ND 99.1 30-150 16.9 30 Heptachlor epoxide 0.0343 0.00164 " 0.0356 ND 96.3 30-150 6.68 30 Methoxychlor 0.0358 0.00822 " 0.0356 ND 101 30-150 40.2 30 Non-discovered Surrogate: Decachlorobiphenyl 0.0794 " 0.0711 112 30-150	gamma-BHC (Lindane)		0.00164	"	0.0356	ND	109	30-150		19.5	30	
Heptachlor epoxide 0.0343 0.00164 " 0.0356 ND 96.3 30-150 6.68 30 Methoxychlor 0.0358 0.00822 " 0.0356 ND 101 30-150 40.2 30 Non-dig Surrogate: Decachlorobiphenyl 0.0794 " 0.0711 112 30-150	gamma-Chlordane											
Methoxychlor 0.0358 0.00822 " 0.0356 ND 101 30-150 40.2 30 Non-display Surrogate: Decachlorobiphenyl 0.0794 " 0.0711 112 30-150 30-	Heptachlor		0.00164		0.0356	ND	99.1	30-150				
Surrogate: Decachlorobiphenyl 0.0794 " 0.0711 112 30-150	Heptachlor epoxide		0.00164		0.0356	ND	96.3	30-150				
112 30-130	Methoxychlor	0.0358	0.00822		0.0356	ND	101	30-150		40.2	30	Non-dir
Surrogate: Tetrachloro-m-xylene 0.0603 " 0.0711 84.8 30-150	Surrogate: Decachlorobiphenyl											
	Surrogate: Tetrachloro-m-xylene	0.0603		"	0.0711		84.8	30-150				

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166

RICHMOND HILL, NY 11418

RPD

ClientServices@ Page 30 of 39

Polychlorinated Biphenyls by GC/ECD - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

Spike

Source*

%REC

Low Bias

17.5

5.69

50

50

Reporting

0.120

0.173

0.0471

0.0328

Aroclor 1016

Aroclor 1260

Surrogate: Tetrachloro-m-xylene

Surrogate: Decachlorobiphenyl

RPD

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BH30383 - EPA 3550C											
Blank (BH30383-BLK2)							Prep	ared: 08/07/2	2023 Analyz	zed: 08/08/2	2023
Aroclor 1016	ND	0.0167	mg/kg wet								
Aroclor 1221	ND	0.0167	"								
Aroclor 1232	ND	0.0167	"								
Aroclor 1242	ND	0.0167	"								
Aroclor 1248	ND	0.0167	"								
Aroclor 1254	ND	0.0167	"								
Aroclor 1260	ND	0.0167	"								
Total PCBs	ND	0.0167	"								
Surrogate: Tetrachloro-m-xylene	0.0480		"	0.0667		72.0	30-140				
Surrogate: Decachlorobiphenyl	0.0277		"	0.0667		41.5	30-140				
LCS (BH30383-BS2)							Prep	ared: 08/07/	2023 Analyz	zed: 08/08/2	2023
Aroclor 1016	0.276	0.0167	mg/kg wet	0.333		82.7	40-130				
Aroclor 1260	0.255	0.0167	"	0.333		76.6	40-130				
Surrogate: Tetrachloro-m-xylene	0.0580		"	0.0667		87.0	30-140				
Surrogate: Decachlorobiphenyl	0.0330		"	0.0667		49.5	30-140				
Matrix Spike (BH30383-MS2)	*Source sample: 231	H0128-01 (V	WC-01_0801	23)			Prep	ared: 08/07/	2023 Analyz	zed: 08/09/2	2023
Aroclor 1016	0.143	0.0177	mg/kg dry	0.353	ND	40.4	40-140				
Aroclor 1260	0.183	0.0177	"	0.353	ND	51.8	40-140				
Surrogate: Tetrachloro-m-xylene	0.0491		"	0.0707		69.5	30-140				
Surrogate: Decachlorobiphenyl	0.0449		"	0.0707		63.5	30-140				
Matrix Spike Dup (BH30383-MSD2)	*Source sample: 231	H0128-01 (V	VC-01_0801	23)			Prep	ared: 08/07/	2023 Analyz	zed: 08/09/2	2023

0.0174 mg/kg dry

0.0174

0.349

0.349

0.0698

0.0698

ND

ND

34.4

49.6

67.5

47.0

40-140

40-140

30-140

30-140

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 31 of 39

Metals by ICP - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BH30428 - EPA 3050B											
Blank (BH30428-BLK1)							Pre	pared: 08/07/2	2023 Analyz	ed: 08/10/2	2023
Arsenic	ND	1.04	mg/kg wet								
Barium	ND	1.73	"								
Cadmium	ND	0.208	"								
Chromium	ND	0.348	"								
Lead	0.434	0.348	"								
Selenium	ND	1.74	"								
Silver	ND	0.350	"								
Duplicate (BH30428-DUP1)	*Source sample: 2	3Н0130-14 (Г	Ouplicate)				Pre	pared: 08/07/2	2023 Analyz	ed: 08/10/2	2023
Arsenic	6.17	1.25	mg/kg dry		6.35				2.89	35	
Barium	32.6	2.08	"		42.3				26.0	35	
Cadmium	ND	0.250	"		ND					35	
Chromium	12.8	0.416	"		12.7				0.457	35	
Lead	48.7	0.416	"		63.2				25.9	35	
Selenium	4.99	2.08	"		5.59				11.4	35	
Silver	ND	0.419	"		ND					35	
Matrix Spike (BH30428-MS1)	*Source sample: 2	3H0130-14 (N	Matrix Spike)				Pre	pared: 08/07/2	2023 Analyz	ed: 08/10/2	2023
Arsenic	185	1.25	mg/kg dry	200	6.35	89.7	75-125				
Barium	233	2.08	"	200	42.3	95.7	75-125				
Cadmium	4.46	0.250	"	4.99	ND	89.4	75-125				
Chromium	36.0	0.416	"	20.0	12.7	117	75-125				
Lead	99.7	0.416	"	49.9	63.2	73.2	75-125	Low Bias			
Selenium	186	2.08	"	200	5.59	90.2	75-125				
Silver	0.958	0.419	"	4.99	ND	19.2	75-125	Low Bias			
Post Spike (BH30428-PS1)	*Source sample: 2	3H0130-14 (F	ost Spike)				Pre	pared: 08/07/2	2023 Analyz	ed: 08/10/2	2023
Arsenic	1.86		mg/L	2.00	0.064	89.9	75-125				
Barium	2.27		"	2.00	0.424	92.4	75-125				
Cadmium	0.044		"	0.0500	0.0005	87.8	75-125				
Chromium	0.308		"	0.200	0.127	90.5	75-125				
Lead	1.06		"	0.500	0.633	85.6	75-125				
Selenium	1.90		"	2.00	0.056	92.0	75-125				
Silver	0.011		,,	0.0500	-0.037	21.3	75-125	Low Bias			

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 3

Page 32 of 39

Metals by ICP - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

R	atch	RH3 (1428	- FPA	3050B
D	инсн	DHA	1420	- r, r A	JUJUD

Reference (BH30428-SRM1)						Prepared: 08/07/2023 Analyzed: 08/10/2023
Arsenic	164	1.04 m	g/kg wet	183	89.8	69.9-130.1
Barium	278	1.73	"	297	93.5	75.1-125.3
Cadmium	189	0.208	"	221	85.3	75.1-124.9
hromium	183	0.348	"	200	91.4	70-130
ead	221	0.348	"	257	86.1	73.9-126.1
elenium	195	1.74	"	217	90.0	69.1-131.3
ilver	58.7	0.350	"	67.8	86.5	70.6-129.2

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 33 of 39

Mercury by EPA 7000/200 Series Methods - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BH30604 - EPA 7473 soil											
Blank (BH30604-BLK1)							Prep	ared: 08/09/	2023 Analyz	ed: 08/10/2	2023
Mercury	ND	0.0300	mg/kg wet								
Duplicate (BH30604-DUP1)	*Source sample: 23	Н0115-02 (Г	Ouplicate)				Prep	ared: 08/09/	2023 Analyz	ed: 08/10/2	2023
Mercury	0.0566	0.0366	mg/kg dry		0.0600				5.86	35	
Matrix Spike (BH30604-MS1)	*Source sample: 23	H0115-02 (N	Matrix Spike)				Prep	ared: 08/09/	2023 Analyz	ed: 08/10/2	2023
Mercury	0.550		mg/kg	0.500	0.0492	100	75-125				
Reference (BH30604-SRM1)							Prep	ared: 08/09/	2023 Analyz	ed: 08/10/2	2023
Mercury	25.154		mg/kg	27.2		92.5	59.9-140.1				

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 34 of 39

Miscellaneous Physical Parameters - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BH30360 - % Solids Prep

Duplicate (BH30360-DUP1)	*Source sample: 23H0130-13 (Duplicate)		Prepared & Analyzed: 08/06/2023
% Solids	83.4 0.100 %	83.1	0.389 20

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 35 of 39

Volatile Analysis Sample Containers

Lab ID	Client Sample ID	Volatile Sample Container
23H0128-01	WC-01 080123	40mL Vial with Stir Bar-Cool 4° C

Sample and Data Qualifiers Relating to This Work Order

QM-05	The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data are acceptable.
QL-02	This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference method has certain limitations with respect to analytes of this nature.
P	This qualifier indicates the compound detected exhibited greater than 40% between the quantitation and confirmatory columns.
J	Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC, the result is an estimated concentration.
CCVE	The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>20% Difference for average Rf or >20% Drift for quadratic fit).
В	Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants.
	Definitions and Other Explanations
*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
MDL	METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
Reported to	This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
Non-Dir.	Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.
	46 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and

cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York

reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 37 of 39

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 38 of 39

TO YORK ANALTICAL LABORATORIES INC.

Field Chain-of-Custody Record

York Analytical Laboratories, Inc. (YORK)'s Standard Terms & Conditions are listed on the back side of this document. This document serves as your written authorization for YORK to proceed with the analyses requested below. Your signature binds you to YORK's Standard Terms & Conditions.

YORK Project No.

Company: Laspellar Nesscrales Company: Laspellar Nesscrales Address: 4 Brhone: Laspellar Nesscrales Contact: Laspellar Nesscrales Contact: Contact: Contact: 1 E-mail: 1 Front: Laspellar Nesscrales Contact: Contact: 1 E-mail: 1 Front: 1 F	sepo	Company: Leffella Address: 21 GTZSK.	da	62414140.02	RUSH - Next Day
4 Brhsh Huerican Buch Address: 11 Le Waw, NY 12110 S18-266-7355 Contact: 11 E-mail: 11 Telds (2) Labelle, pe. com sprint clearly and legibly. All information must be complete. The will not be logged in and the turn-around-time clock will not until any questions by YORK are resolved. Samples collected by: (print AND sign your name)	Sapo	य कि		5	
Phone.: (1) Contact: (1) E-mail: (1) mation must be complete. unn-around-time clock will not resolved. Lod S AND sign your name)	səpo				RUSH - Two Day
Phone.: (1) Contact: (1) E-mail: (1) Imation must be complete. Irresolved. Lod S AND sign your name)	Sep		Sic NT	YOUR Project Name	RUSH - Three Day
E-mail: The solved. Lod S AND sign your name)	sepo			Donelland	RUSH - Four Day
rmation must be complete. urn-around-time clock will not resolved. AND sign your name)	səpc	HELDING POWATE	an able	Carlordolman	RUSH - Five Day
mation must be complete. urn-around-time clock will not resolved. Lol S AND sign your name)	sepo	-	ella qc.com	YOUR PO#:	Standard (6-9 Day) X
		Samples From	Report / E	Report / EDD Type (circle selections)	YORK Reg. Comp.
	vater	New York	Summary Report	CT RCP EQUIS (Standard)	Compared to the following Regulation(s): (please fill in)
3 0	_	Connecticut	СМДР	NJDEP Reduced NJDKQP	Part 375
	WW - wastewater Pe	Pennsylvania Other:	Standard Excel EDD NY ASP B Package	Deliverables NJDEP SRP HazSite Other:	
	Sample Matrix D	Date/Time Sampled	A	Analyses Requested	Container Type No.
NC-01_090133	5	\$11230 1330	TCL VOCS T	TOL SUBCA: Pesticides.	Howar Joh 8
				Hefols, (see comments	
			1		30 you
Also process approved that the second produces and the second approximation of the second process and the second s	West interest the second	Tomesmule coloration	Marin Colorado (Colorado)	a you was not a manage when the ball as well well as	24. 202 B
		87.00		Shares with the property of the standard management of the standard managem	
Comments: * HALO additional bothlewore, Pending		results of requested	Preservat	Preservation: (check all that apply)	Special Instruction
avoilyses ITCLP may be reque	d/chilled at time of lab pi	Samples (ced/chilled at time of lab pickup? circle ((es.) or No	HCI K MeOH K HNO3 ZnAc Ascorbic Acid	HNO3 H2SO4 NaOH Acid Other Tec.	Field Filtered Lab to Filter
Lasellon 8/1/23 (5:00	1. Samples Received by / Company Chick foul	L 8-2-23	Date/Time /o 3 u	any C	8-223 1435
2. Samples Received by / Company Date/Time 3. Samples	 Samples Relinquished by / Company 	any	Date/Time	 Samples Received by / Company 	Date/Time
4. Samples Relinquished by / Company Date/Time 4. Samples	4. Samples Received by / Company		Date/Time	Samples Received in LAB by Date/Time	Date/Time Temperature

APPENDIX B - Raw CAMP Data

TrakPro Version 4.70 ASCII Data File

Upwind

```
Model:, DustTrak DRX
Model Number:,8533
Serial Number:,8533192705
Test ID:,005
Test Abbreviation:, MANUAL_005
Start Date:,08/01/2023
Start Time:,09:17:39
Duration (dd:hh:mm:ss):,0:04:55:00
Log Interval (mm:ss):,01:00
Number of points:,295
Notes:,
Statistics, Channel:, PM1, PM2.5, RESP, PM10, TOTAL
,Units:,mg/m^3,mg/m^3,mg/m^3,mg/m^3
,Average:,0.006,0.006,0.007,0.008,0.009
,Minimum:,0.004,0.004,0.004,0.004,0.004
Time of Minimum: ,13:19:39,13:26:39,13:35:39,14:11:39,14:11:39
Date of Minimum:,08/01/2023,08/01/2023,08/01/2023,08/01/2023,08/01/2023,08/01/2023
,Maximum:,0.025,0.027,0.034,0.059,0.062
Time of Maximum:,09:43:39,09:43:39,09:43:39,09:43:39,09:43:39
Date of Maximum:,08/01/2023,08/01/2023,08/01/2023,08/01/2023,08/01/2023
Calibration, Sensor:, AEROSOL
,Cal. date,11/02/2022
Date, Time, PM1, PM2.5, RESP, PM10, TOTAL
MM/dd/yyyy,hh:mm:ss,mg/m^3,mg/m^3,mg/m^3,mg/m^3
08/01/2023,09:18:39,0.014,0.014,0.015,0.017,0.018
08/01/2023,09:19:39,0.014,0.014,0.015,0.018,0.018
08/01/2023,09:20:39,0.012,0.013,0.013,0.015,0.016
08/01/2023,09:21:39,0.013,0.013,0.014,0.016,0.016
08/01/2023,09:22:39,0.012,0.013,0.014,0.015,0.015
08/01/2023,09:23:39,0.012,0.012,0.013,0.015,0.015
08/01/2023,09:24:39,0.012,0.012,0.013,0.015,0.015
08/01/2023,09:25:39,0.011,0.011,0.012,0.013,0.013
08/01/2023,09:26:39,0.011,0.011,0.012,0.013,0.013
08/01/2023,09:27:39,0.010,0.011,0.011,0.013,0.013
08/01/2023,09:28:39,0.010,0.011,0.011,0.013,0.013
08/01/2023,09:29:39,0.010,0.011,0.011,0.014,0.014
08/01/2023,09:30:39,0.011,0.011,0.012,0.014,0.015
08/01/2023,09:31:39,0.010,0.010,0.011,0.013,0.013
08/01/2023,09:32:39,0.009,0.010,0.011,0.012,0.013
08/01/2023,09:33:39,0.009,0.010,0.011,0.012,0.012
08/01/2023,09:34:39,0.012,0.012,0.014,0.018,0.019
08/01/2023,09:35:39,0.010,0.010,0.011,0.013,0.013
08/01/2023,09:36:39,0.010,0.010,0.011,0.013,0.013
08/01/2023,09:37:39,0.009,0.009,0.010,0.011,0.012
```

08/01/2023,09:38:39,0.009,0.009,0.009,0.011,0.011

```
08/01/2023,09:39:39,0.009,0.010,0.011,0.013,0.013
08/01/2023,09:40:39,0.009,0.009,0.010,0.012,0.012
08/01/2023,09:41:39,0.009,0.009,0.010,0.011,0.012
08/01/2023,09:42:39,0.009,0.009,0.011,0.014,0.014
08/01/2023,09:43:39,0.025,0.027,0.034,0.059,0.062
08/01/2023,09:44:39,0.008,0.008,0.009,0.011,0.011
08/01/2023,09:45:39,0.008,0.008,0.009,0.011,0.011
08/01/2023,09:46:39,0.008,0.008,0.009,0.010,0.011
08/01/2023,09:47:39,0.007,0.007,0.007,0.008,0.009
08/01/2023,09:48:39,0.006,0.006,0.007,0.008,0.008
08/01/2023,09:49:39,0.006,0.006,0.007,0.007,0.007
08/01/2023,09:50:39,0.006,0.006,0.007,0.007,0.007
08/01/2023,09:51:39,0.006,0.007,0.007,0.008,0.008
08/01/2023,09:52:39,0.007,0.007,0.007,0.008,0.008
08/01/2023,09:53:39,0.006,0.006,0.007,0.008,0.008
08/01/2023,09:54:39,0.006,0.006,0.006,0.007,0.007
08/01/2023,09:55:39,0.005,0.005,0.006,0.006,0.008
08/01/2023,09:56:39,0.006,0.006,0.006,0.007,0.008
08/01/2023,09:57:39,0.006,0.006,0.006,0.007,0.007
08/01/2023,09:58:39,0.006,0.006,0.007,0.008,0.008
08/01/2023,09:59:39,0.006,0.006,0.007,0.007,0.007
08/01/2023,10:00:39,0.006,0.007,0.007,0.008,0.008
08/01/2023,10:01:39,0.006,0.007,0.007,0.009,0.009
08/01/2023,10:02:39,0.007,0.007,0.008,0.009,0.009
08/01/2023,10:03:39,0.009,0.009,0.011,0.014,0.014
08/01/2023,10:04:39,0.007,0.007,0.008,0.010,0.010
08/01/2023,10:05:39,0.007,0.007,0.008,0.010,0.010
08/01/2023,10:06:39,0.009,0.009,0.011,0.015,0.015
08/01/2023,10:07:39,0.007,0.007,0.008,0.009,0.009
08/01/2023,10:08:39,0.008,0.008,0.009,0.010,0.011
08/01/2023,10:09:39,0.007,0.007,0.007,0.009,0.009
08/01/2023,10:10:39,0.013,0.014,0.017,0.027,0.029
08/01/2023,10:11:39,0.007,0.007,0.008,0.011,0.011
08/01/2023,10:12:39,0.006,0.006,0.007,0.008,0.008
08/01/2023,10:13:39,0.007,0.007,0.007,0.009,0.009
08/01/2023,10:14:39,0.006,0.006,0.007,0.008,0.008
08/01/2023,10:15:39,0.006,0.006,0.006,0.007,0.007
08/01/2023,10:16:39,0.006,0.006,0.006,0.007,0.007
08/01/2023,10:17:39,0.006,0.006,0.007,0.008,0.008
08/01/2023,10:18:39,0.006,0.007,0.007,0.008,0.009
08/01/2023,10:19:39,0.006,0.006,0.006,0.007,0.008
08/01/2023,10:20:39,0.006,0.006,0.007,0.008,0.008
08/01/2023,10:21:39,0.007,0.007,0.008,0.010,0.010
08/01/2023,10:22:39,0.007,0.007,0.008,0.010,0.011
08/01/2023,10:23:39,0.008,0.008,0.009,0.011,0.011
08/01/2023,10:24:39,0.008,0.008,0.008,0.011,0.011
08/01/2023,10:25:39,0.008,0.009,0.010,0.012,0.012
08/01/2023,10:26:39,0.009,0.010,0.010,0.012,0.012
08/01/2023,10:27:39,0.010,0.010,0.011,0.013,0.014
08/01/2023,10:28:39,0.009,0.009,0.010,0.012,0.013
```

```
08/01/2023,10:29:39,0.008,0.009,0.009,0.011,0.011
08/01/2023,10:30:39,0.008,0.008,0.009,0.011,0.011
08/01/2023,10:31:39,0.009,0.009,0.010,0.012,0.012
08/01/2023,10:32:39,0.008,0.008,0.009,0.010,0.012
08/01/2023,10:33:39,0.006,0.007,0.007,0.009,0.009
08/01/2023,10:34:39,0.006,0.007,0.007,0.008,0.008
08/01/2023,10:35:39,0.006,0.006,0.007,0.008,0.008
08/01/2023,10:36:39,0.006,0.006,0.006,0.007,0.007
08/01/2023,10:37:39,0.005,0.005,0.006,0.006,0.006
08/01/2023,10:38:39,0.005,0.005,0.005,0.006,0.007
08/01/2023,10:39:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,10:40:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,10:41:39,0.005,0.005,0.006,0.008,0.008
08/01/2023,10:42:39,0.005,0.005,0.006,0.006,0.006
08/01/2023,10:43:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,10:44:39,0.005,0.006,0.006,0.007,0.007
08/01/2023,10:45:39,0.005,0.005,0.006,0.007,0.007
08/01/2023,10:46:39,0.005,0.006,0.006,0.007,0.007
08/01/2023,10:47:39,0.005,0.005,0.006,0.007,0.007
08/01/2023,10:48:39,0.005,0.006,0.006,0.007,0.007
08/01/2023,10:49:39,0.005,0.005,0.006,0.006,0.006
08/01/2023,10:50:39,0.005,0.005,0.006,0.006,0.006
08/01/2023,10:51:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,10:52:39,0.005,0.005,0.005,0.005,0.005
08/01/2023,10:53:39,0.008,0.009,0.010,0.014,0.016
08/01/2023,10:54:39,0.006,0.006,0.007,0.008,0.008
08/01/2023,10:55:39,0.006,0.006,0.007,0.008,0.008
08/01/2023,10:56:39,0.005,0.005,0.006,0.007,0.007
08/01/2023,10:57:39,0.005,0.005,0.006,0.006,0.006
08/01/2023,10:58:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,10:59:39,0.008,0.009,0.010,0.015,0.015
08/01/2023,11:00:39,0.006,0.006,0.006,0.008,0.008
08/01/2023,11:01:39,0.005,0.005,0.006,0.007,0.007
08/01/2023,11:02:39,0.005,0.005,0.006,0.007,0.007
08/01/2023,11:03:39,0.005,0.006,0.006,0.008,0.008
08/01/2023,11:04:39,0.005,0.006,0.006,0.007,0.007
08/01/2023,11:05:39,0.006,0.006,0.006,0.008,0.008
08/01/2023,11:06:39,0.006,0.006,0.006,0.007,0.007
08/01/2023,11:07:39,0.006,0.006,0.006,0.008,0.008
08/01/2023,11:08:39,0.007,0.008,0.009,0.011,0.012
08/01/2023,11:09:39,0.006,0.006,0.007,0.007,0.008
08/01/2023,11:10:39,0.006,0.006,0.007,0.008,0.008
08/01/2023,11:11:39,0.006,0.007,0.007,0.008,0.009
08/01/2023,11:12:39,0.007,0.007,0.008,0.009,0.009
08/01/2023,11:13:39,0.006,0.007,0.007,0.009,0.009
08/01/2023,11:14:39,0.006,0.006,0.007,0.008,0.008
08/01/2023,11:15:39,0.006,0.006,0.007,0.008,0.008
08/01/2023,11:16:39,0.005,0.005,0.006,0.006,0.006
08/01/2023,11:17:39,0.008,0.008,0.009,0.011,0.012
08/01/2023,11:18:39,0.005,0.006,0.006,0.007,0.007
```

```
08/01/2023,11:19:39,0.006,0.006,0.007,0.008,0.008
08/01/2023,11:20:39,0.006,0.006,0.007,0.008,0.008
08/01/2023,11:21:39,0.006,0.006,0.007,0.008,0.008
08/01/2023,11:22:39,0.006,0.006,0.007,0.008,0.008
08/01/2023,11:23:39,0.006,0.006,0.007,0.008,0.009
08/01/2023,11:24:39,0.011,0.011,0.013,0.019,0.021
08/01/2023,11:25:39,0.006,0.006,0.006,0.008,0.008
08/01/2023,11:26:39,0.006,0.006,0.007,0.010,0.013
08/01/2023,11:27:39,0.006,0.006,0.006,0.008,0.008
08/01/2023,11:28:39,0.006,0.006,0.006,0.008,0.008
08/01/2023,11:29:39,0.006,0.006,0.007,0.008,0.008
08/01/2023,11:30:39,0.007,0.007,0.008,0.010,0.010
08/01/2023,11:31:39,0.006,0.006,0.006,0.007,0.007
08/01/2023,11:32:39,0.006,0.006,0.006,0.007,0.007
08/01/2023,11:33:39,0.006,0.006,0.006,0.007,0.007
08/01/2023,11:34:39,0.006,0.006,0.006,0.008,0.008
08/01/2023,11:35:39,0.006,0.006,0.006,0.007,0.008
08/01/2023,11:36:39,0.006,0.006,0.006,0.008,0.008
08/01/2023,11:37:39,0.006,0.006,0.007,0.009,0.009
08/01/2023,11:38:39,0.007,0.007,0.008,0.010,0.010
08/01/2023,11:39:39,0.007,0.007,0.008,0.010,0.010
08/01/2023,11:40:39,0.006,0.007,0.007,0.010,0.010
08/01/2023,11:41:39,0.005,0.005,0.006,0.006,0.007
08/01/2023,11:42:39,0.005,0.006,0.006,0.007,0.007
08/01/2023,11:43:39,0.006,0.006,0.006,0.007,0.007
08/01/2023,11:44:39,0.006,0.006,0.007,0.008,0.008
08/01/2023,11:45:39,0.006,0.006,0.007,0.009,0.009
08/01/2023,11:46:39,0.006,0.007,0.007,0.010,0.010
08/01/2023,11:47:39,0.006,0.006,0.007,0.008,0.008
08/01/2023,11:48:39,0.006,0.007,0.007,0.010,0.010
08/01/2023,11:49:39,0.005,0.006,0.006,0.006,0.006
08/01/2023,11:50:39,0.005,0.006,0.006,0.007,0.007
08/01/2023,11:51:39,0.006,0.006,0.007,0.009,0.009
08/01/2023,11:52:39,0.006,0.007,0.007,0.009,0.010
08/01/2023,11:53:39,0.006,0.006,0.007,0.009,0.009
08/01/2023,11:54:39,0.005,0.006,0.006,0.007,0.007
08/01/2023,11:55:39,0.006,0.006,0.006,0.007,0.008
08/01/2023,11:56:39,0.005,0.006,0.006,0.007,0.007
08/01/2023,11:57:39,0.005,0.006,0.006,0.007,0.008
08/01/2023,11:58:39,0.005,0.005,0.006,0.006,0.007
08/01/2023,11:59:39,0.005,0.005,0.005,0.007,0.007
08/01/2023,12:00:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,12:01:39,0.006,0.006,0.007,0.009,0.009
08/01/2023,12:02:39,0.005,0.006,0.006,0.008,0.008
08/01/2023,12:03:39,0.005,0.005,0.006,0.007,0.007
08/01/2023,12:04:39,0.005,0.005,0.006,0.007,0.007
08/01/2023,12:05:39,0.006,0.006,0.006,0.008,0.008
08/01/2023,12:06:39,0.005,0.005,0.006,0.007,0.007
08/01/2023,12:07:39,0.005,0.005,0.006,0.007,0.007
08/01/2023,12:08:39,0.005,0.005,0.006,0.007,0.007
```

```
08/01/2023,12:09:39,0.005,0.006,0.006,0.007,0.007
08/01/2023,12:10:39,0.006,0.006,0.006,0.007,0.007
08/01/2023,12:11:39,0.011,0.012,0.014,0.025,0.026
08/01/2023,12:12:39,0.005,0.005,0.006,0.007,0.007
08/01/2023,12:13:39,0.005,0.006,0.006,0.007,0.007
08/01/2023,12:14:39,0.006,0.006,0.007,0.008,0.008
08/01/2023,12:15:39,0.006,0.006,0.006,0.008,0.008
08/01/2023,12:16:39,0.006,0.006,0.006,0.008,0.008
08/01/2023,12:17:39,0.006,0.006,0.007,0.008,0.008
08/01/2023,12:18:39,0.006,0.006,0.006,0.008,0.008
08/01/2023,12:19:39,0.007,0.007,0.008,0.011,0.012
08/01/2023,12:20:39,0.010,0.011,0.013,0.020,0.021
08/01/2023,12:21:39,0.005,0.005,0.006,0.006,0.006
08/01/2023,12:22:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,12:23:39,0.005,0.005,0.006,0.006,0.006
08/01/2023,12:24:39,0.006,0.006,0.006,0.007,0.008
08/01/2023,12:25:39,0.006,0.006,0.007,0.008,0.008
08/01/2023,12:26:39,0.006,0.006,0.006,0.007,0.007
08/01/2023,12:27:39,0.005,0.006,0.006,0.006,0.006
08/01/2023,12:28:39,0.006,0.006,0.006,0.007,0.007
08/01/2023,12:29:39,0.005,0.005,0.006,0.007,0.007
08/01/2023,12:30:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,12:31:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,12:32:39,0.005,0.006,0.006,0.007,0.007
08/01/2023,12:33:39,0.006,0.006,0.006,0.007,0.008
08/01/2023,12:34:39,0.005,0.005,0.006,0.006,0.006
08/01/2023,12:35:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,12:36:39,0.005,0.005,0.006,0.007,0.007
08/01/2023,12:37:39,0.005,0.005,0.006,0.006,0.006
08/01/2023,12:38:39,0.005,0.006,0.006,0.007,0.007
08/01/2023,12:39:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,12:40:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,12:41:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,12:42:39,0.005,0.006,0.006,0.007,0.007
08/01/2023,12:43:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,12:44:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,12:45:39,0.005,0.005,0.006,0.007,0.007
08/01/2023,12:46:39,0.005,0.005,0.006,0.007,0.007
08/01/2023,12:47:39,0.005,0.006,0.006,0.007,0.007
08/01/2023,12:48:39,0.005,0.006,0.006,0.007,0.007
08/01/2023,12:49:39,0.006,0.006,0.006,0.007,0.007
08/01/2023,12:50:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,12:51:39,0.005,0.005,0.006,0.006,0.006
08/01/2023,12:52:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,12:53:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,12:54:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,12:55:39,0.005,0.005,0.005,0.005,0.005
08/01/2023,12:56:39,0.005,0.005,0.005,0.005,0.005
08/01/2023,12:57:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,12:58:39,0.005,0.005,0.005,0.005,0.005
```

```
08/01/2023,12:59:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,13:00:39,0.006,0.006,0.006,0.007,0.008
08/01/2023,13:01:39,0.005,0.005,0.005,0.005,0.005
08/01/2023,13:02:39,0.005,0.005,0.005,0.005,0.006
08/01/2023,13:03:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,13:04:39,0.005,0.005,0.005,0.005,0.005
08/01/2023,13:05:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,13:06:39,0.005,0.005,0.005,0.005,0.005
08/01/2023,13:07:39,0.005,0.005,0.005,0.007,0.007
08/01/2023,13:08:39,0.009,0.010,0.012,0.019,0.020
08/01/2023,13:09:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,13:10:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,13:11:39,0.005,0.005,0.005,0.006,0.007
08/01/2023,13:12:39,0.005,0.006,0.006,0.008,0.008
08/01/2023,13:13:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,13:14:39,0.007,0.007,0.009,0.012,0.013
08/01/2023,13:15:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,13:16:39,0.005,0.005,0.005,0.007,0.007
08/01/2023,13:17:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,13:18:39,0.005,0.005,0.005,0.006,0.007
08/01/2023,13:19:39,0.004,0.005,0.005,0.006,0.006
08/01/2023,13:20:39,0.004,0.005,0.005,0.006,0.006
08/01/2023,13:21:39,0.010,0.011,0.013,0.021,0.021
08/01/2023,13:22:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,13:23:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,13:24:39,0.004,0.005,0.005,0.006,0.006
08/01/2023,13:25:39,0.004,0.005,0.005,0.006,0.006
08/01/2023,13:26:39,0.004,0.004,0.005,0.005,0.006
08/01/2023,13:27:39,0.004,0.005,0.005,0.006,0.006
08/01/2023,13:28:39,0.004,0.005,0.005,0.006,0.006
08/01/2023,13:29:39,0.004,0.004,0.005,0.006,0.006
08/01/2023,13:30:39,0.004,0.004,0.005,0.006,0.006
08/01/2023,13:31:39,0.004,0.004,0.005,0.006,0.006
08/01/2023,13:32:39,0.004,0.004,0.005,0.006,0.006
08/01/2023,13:33:39,0.004,0.004,0.005,0.006,0.006
08/01/2023,13:34:39,0.004,0.004,0.005,0.006,0.006
08/01/2023,13:35:39,0.004,0.004,0.004,0.005,0.005
08/01/2023,13:36:39,0.004,0.004,0.004,0.005,0.005
08/01/2023,13:37:39,0.004,0.004,0.005,0.005,0.006
08/01/2023,13:38:39,0.004,0.004,0.005,0.006,0.006
08/01/2023,13:39:39,0.004,0.004,0.005,0.005,0.005
08/01/2023,13:40:39,0.004,0.004,0.004,0.005,0.005
08/01/2023,13:41:39,0.004,0.004,0.004,0.005,0.005
08/01/2023,13:42:39,0.004,0.004,0.004,0.005,0.005
08/01/2023,13:43:39,0.004,0.004,0.004,0.005,0.005
08/01/2023,13:44:39,0.004,0.004,0.004,0.005,0.005
08/01/2023,13:45:39,0.004,0.005,0.005,0.005,0.005
08/01/2023,13:46:39,0.004,0.004,0.004,0.005,0.005
08/01/2023,13:47:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,13:48:39,0.005,0.005,0.006,0.007,0.007
```

```
08/01/2023,13:49:39,0.005,0.005,0.006,0.006,0.006
08/01/2023,13:50:39,0.005,0.005,0.005,0.005,0.005
08/01/2023,13:51:39,0.008,0.008,0.010,0.015,0.015
08/01/2023,13:52:39,0.004,0.004,0.004,0.005,0.005
08/01/2023,13:53:39,0.004,0.004,0.004,0.005,0.005
08/01/2023,13:54:39,0.004,0.004,0.004,0.005,0.005
08/01/2023,13:55:39,0.004,0.004,0.005,0.005,0.005
08/01/2023,13:56:39,0.004,0.004,0.004,0.005,0.005
08/01/2023,13:57:39,0.004,0.004,0.004,0.005,0.005
08/01/2023,13:58:39,0.004,0.004,0.005,0.005,0.005
08/01/2023,13:59:39,0.005,0.005,0.005,0.006,0.006
08/01/2023,14:00:39,0.004,0.005,0.005,0.006,0.006
08/01/2023,14:01:39,0.004,0.004,0.004,0.005,0.005
08/01/2023,14:02:39,0.004,0.005,0.005,0.006,0.006
08/01/2023,14:03:39,0.005,0.005,0.005,0.007,0.007
08/01/2023,14:04:39,0.004,0.004,0.005,0.006,0.006
08/01/2023,14:05:39,0.004,0.005,0.005,0.006,0.006
08/01/2023,14:06:39,0.005,0.005,0.005,0.007,0.007
08/01/2023,14:07:39,0.005,0.005,0.005,0.007,0.007
08/01/2023,14:08:39,0.004,0.004,0.004,0.005,0.005
08/01/2023,14:09:39,0.004,0.004,0.004,0.005,0.005
08/01/2023,14:10:39,0.004,0.004,0.004,0.005,0.006
08/01/2023,14:11:39,0.004,0.004,0.004,0.004,0.004
08/01/2023,14:12:39,0.004,0.004,0.005,0.006,0.006
```

Model:, DustTrak DRX Model Number:,8533 Serial Number:,8533192213 Test ID:,005 Test Abbreviation:, MANUAL_005 Start Date:,08/01/2023 Start Time:,09:20:27 Duration (dd:hh:mm:ss):,0:21:32:00 Log Interval (mm:ss):,01:00 Number of points:,135 Notes:, Statistics, Channel:, PM1, PM2.5, RESP, PM10, TOTAL ,Units:,mg/m^3,mg/m^3,mg/m^3,mg/m^3 ,Average:,0.013,0.013,0.014,0.015,0.016 ,Minimum:,0.000,0.000,0.000,0.000,0.000 Time of Minimum:,06:52:43,06:52:43,06:52:43,06:52:43,06:52:43 Date of Minimum:,08/02/2023,08/02/2023,08/02/2023,08/02/2023,08/02/2023,08/02/2023 ,Maximum:,0.034,0.034,0.037,0.051,0.076 Time of Maximum:,10:48:27,10:48:27,10:48:27,10:48:27,10:48:27 Date of Maximum:,08/01/2023,08/01/2023,08/01/2023,08/01/2023,08/01/2023 Calibration, Sensor:, AEROSOL ,Cal. date,05/30/2023 Date, Time, PM1, PM2.5, RESP, PM10, TOTAL MM/dd/yyyy,hh:mm:ss,mg/m^3,mg/m^3,mg/m^3,mg/m^3 08/01/2023,09:21:27,0.015,0.016,0.016,0.019,0.019 08/01/2023,09:22:27,0.016,0.017,0.018,0.021,0.023 08/01/2023,09:23:27,0.016,0.016,0.017,0.020,0.022 08/01/2023,09:24:27,0.015,0.015,0.016,0.017,0.017 08/01/2023,09:25:27,0.020,0.021,0.022,0.025,0.026 08/01/2023,09:26:27,0.014,0.014,0.014,0.016,0.016 08/01/2023,09:58:51,0.013,0.013,0.013,0.013,0.013 08/01/2023,09:59:27,0.012,0.012,0.013,0.014,0.018 08/01/2023,10:00:27,0.012,0.012,0.012,0.014,0.014 08/01/2023,10:01:27,0.012,0.012,0.013,0.014,0.014 08/01/2023,10:02:27,0.012,0.012,0.012,0.013,0.013 08/01/2023,10:03:27,0.012,0.012,0.013,0.014,0.014 08/01/2023,10:04:27,0.013,0.013,0.014,0.017,0.017 08/01/2023,10:05:27,0.013,0.014,0.014,0.015,0.016 08/01/2023,10:06:27,0.013,0.013,0.014,0.016,0.016 08/01/2023,10:07:27,0.012,0.012,0.013,0.014,0.014 08/01/2023,10:08:27,0.013,0.013,0.014,0.015,0.015 08/01/2023,10:09:27,0.012,0.013,0.013,0.015,0.015 08/01/2023,10:10:27,0.012,0.012,0.013,0.014,0.014 08/01/2023,10:11:27,0.012,0.012,0.013,0.015,0.015 08/01/2023,10:12:27,0.013,0.013,0.014,0.016,0.016

```
08/01/2023,10:13:27,0.013,0.013,0.014,0.016,0.016
08/01/2023,10:14:27,0.014,0.014,0.015,0.018,0.018
08/01/2023,10:15:27,0.013,0.013,0.014,0.015,0.015
08/01/2023,10:16:27,0.012,0.012,0.013,0.014,0.014
08/01/2023,10:17:27,0.012,0.012,0.013,0.014,0.014
08/01/2023,10:18:27,0.012,0.012,0.012,0.013,0.013
08/01/2023,10:19:27,0.012,0.012,0.012,0.013,0.013
08/01/2023,10:20:27,0.012,0.012,0.013,0.014,0.014
08/01/2023,10:21:27,0.012,0.012,0.013,0.013,0.013
08/01/2023,10:22:27,0.014,0.014,0.014,0.016,0.016
08/01/2023,10:23:27,0.013,0.013,0.013,0.014,0.014
08/01/2023,10:24:27,0.014,0.014,0.015,0.017,0.017
08/01/2023,10:25:27,0.014,0.015,0.015,0.016,0.017
08/01/2023,10:26:27,0.014,0.014,0.015,0.016,0.016
08/01/2023,10:27:27,0.015,0.015,0.016,0.017,0.017
08/01/2023,10:28:27,0.015,0.015,0.016,0.017,0.017
08/01/2023,10:29:27,0.015,0.015,0.015,0.016,0.016
08/01/2023,10:30:27,0.015,0.015,0.015,0.016,0.016
08/01/2023,10:31:27,0.015,0.015,0.015,0.016,0.016
08/01/2023,10:32:27,0.015,0.015,0.015,0.016,0.016
08/01/2023,10:33:27,0.015,0.015,0.015,0.017,0.017
08/01/2023,10:34:27,0.014,0.014,0.014,0.015,0.015
08/01/2023,10:35:27,0.013,0.014,0.014,0.015,0.015
08/01/2023,10:36:27,0.014,0.015,0.015,0.018,0.018
08/01/2023,10:37:27,0.013,0.013,0.013,0.014,0.014
08/01/2023,10:38:27,0.012,0.012,0.013,0.014,0.014
08/01/2023,10:39:27,0.012,0.012,0.012,0.013,0.013
08/01/2023,10:40:27,0.012,0.013,0.013,0.014,0.014
08/01/2023,10:41:27,0.012,0.012,0.012,0.013,0.013
08/01/2023,10:42:27,0.012,0.012,0.013,0.013,0.013
08/01/2023,10:43:27,0.012,0.012,0.013,0.013,0.013
08/01/2023,10:44:27,0.013,0.013,0.013,0.014,0.014
08/01/2023,10:45:27,0.013,0.013,0.013,0.014,0.014
08/01/2023,10:46:27,0.013,0.013,0.013,0.014,0.014
08/01/2023,10:47:27,0.013,0.013,0.014,0.015,0.015
08/01/2023,10:48:27,0.034,0.034,0.037,0.051,0.076
08/01/2023,10:49:27,0.013,0.013,0.014,0.015,0.015
08/01/2023,10:50:27,0.013,0.013,0.013,0.015,0.015
08/01/2023,10:51:27,0.012,0.012,0.013,0.013,0.013
08/01/2023,10:52:27,0.012,0.012,0.012,0.013,0.013
08/01/2023,10:53:27,0.012,0.012,0.012,0.013,0.013
08/01/2023,10:54:27,0.012,0.012,0.013,0.013,0.013
08/01/2023,10:55:27,0.014,0.014,0.015,0.016,0.017
08/01/2023,10:56:27,0.014,0.014,0.014,0.016,0.016
08/01/2023,10:57:27,0.013,0.013,0.013,0.014,0.014
08/01/2023,10:58:27,0.013,0.013,0.013,0.014,0.014
08/01/2023,10:59:27,0.013,0.013,0.013,0.014,0.014
08/01/2023,11:00:27,0.013,0.013,0.013,0.014,0.014
08/01/2023,11:01:27,0.015,0.015,0.016,0.018,0.018
08/01/2023,11:02:27,0.012,0.013,0.013,0.014,0.014
```

```
08/01/2023,11:03:27,0.012,0.012,0.013,0.013,0.013
08/01/2023,11:04:27,0.012,0.013,0.013,0.014,0.014
08/01/2023,11:05:27,0.015,0.015,0.016,0.020,0.020
08/01/2023,11:06:27,0.015,0.015,0.016,0.019,0.019
08/01/2023,11:07:27,0.014,0.014,0.015,0.018,0.019
08/01/2023,11:08:27,0.013,0.013,0.013,0.015,0.015
08/01/2023,11:09:27,0.014,0.014,0.014,0.016,0.016
08/01/2023,11:10:27,0.013,0.014,0.014,0.016,0.016
08/01/2023,11:11:27,0.013,0.013,0.013,0.014,0.014
08/01/2023,11:12:27,0.014,0.014,0.014,0.016,0.016
08/01/2023,11:13:27,0.014,0.014,0.014,0.016,0.016
08/01/2023,11:14:27,0.013,0.014,0.014,0.016,0.016
08/01/2023,11:15:27,0.013,0.013,0.013,0.014,0.014
08/01/2023,11:16:27,0.013,0.013,0.013,0.014,0.014
08/01/2023,11:17:27,0.013,0.013,0.013,0.014,0.014
08/01/2023,11:18:27,0.013,0.013,0.013,0.014,0.015
08/01/2023,11:19:27,0.014,0.014,0.015,0.017,0.017
08/01/2023,11:20:27,0.012,0.012,0.013,0.013,0.013
08/01/2023,11:21:27,0.013,0.013,0.013,0.015,0.015
08/01/2023,11:22:27,0.013,0.013,0.014,0.016,0.016
08/01/2023,11:23:27,0.013,0.013,0.013,0.014,0.014
08/01/2023,11:24:27,0.013,0.013,0.013,0.014,0.015
08/01/2023,11:25:27,0.013,0.013,0.013,0.015,0.015
08/01/2023,11:26:27,0.012,0.013,0.013,0.014,0.014
08/01/2023,11:27:27,0.012,0.012,0.013,0.014,0.014
08/01/2023,11:28:27,0.012,0.012,0.013,0.014,0.014
08/01/2023,11:29:27,0.012,0.012,0.012,0.013,0.013
08/01/2023,11:30:27,0.012,0.012,0.012,0.014,0.014
08/01/2023,11:31:27,0.015,0.015,0.016,0.019,0.020
08/01/2023,11:32:27,0.013,0.013,0.013,0.014,0.014
08/01/2023,11:33:27,0.012,0.013,0.013,0.014,0.014
08/01/2023,11:34:27,0.013,0.013,0.013,0.014,0.014
08/01/2023,11:35:27,0.012,0.013,0.013,0.014,0.014
08/01/2023,11:36:27,0.012,0.012,0.013,0.013,0.013
08/01/2023,11:37:27,0.013,0.013,0.014,0.015,0.015
08/01/2023,11:38:27,0.015,0.015,0.015,0.017,0.017
08/01/2023,11:39:27,0.013,0.013,0.014,0.015,0.016
08/01/2023,11:40:27,0.013,0.013,0.013,0.014,0.014
08/01/2023,11:41:27,0.012,0.012,0.013,0.014,0.014
08/01/2023,11:42:27,0.012,0.012,0.012,0.013,0.013
08/01/2023,11:43:27,0.014,0.014,0.014,0.015,0.015
08/01/2023,11:44:27,0.013,0.013,0.014,0.015,0.015
08/01/2023,11:45:27,0.019,0.020,0.020,0.021,0.021
08/01/2023,11:46:27,0.013,0.013,0.013,0.014,0.014
08/01/2023,11:47:27,0.013,0.013,0.014,0.015,0.015
08/01/2023,11:48:27,0.015,0.015,0.015,0.016,0.016
08/01/2023,11:49:27,0.013,0.013,0.014,0.015,0.015
08/01/2023,11:50:27,0.015,0.015,0.016,0.020,0.020
08/01/2023,11:51:27,0.013,0.013,0.014,0.016,0.016
08/01/2023,11:52:27,0.014,0.014,0.015,0.018,0.018
```

```
08/01/2023,11:53:27,0.013,0.013,0.014,0.015,0.015
08/01/2023,11:54:27,0.014,0.014,0.014,0.015,0.015
08/01/2023,11:55:27,0.015,0.015,0.016,0.017,0.017
08/01/2023,11:56:27,0.013,0.013,0.013,0.014,0.014
08/01/2023,11:57:27,0.012,0.012,0.013,0.014,0.014
08/01/2023,11:58:27,0.012,0.013,0.013,0.014,0.014
08/01/2023,11:59:27,0.012,0.012,0.012,0.013,0.014
08/01/2023,12:00:27,0.012,0.012,0.012,0.013,0.014
08/01/2023,12:01:27,0.012,0.012,0.012,0.012
08/01/2023,12:02:27,0.013,0.013,0.014,0.015,0.016
08/01/2023,12:03:27,0.014,0.014,0.015,0.017,0.018
08/01/2023,12:04:27,0.012,0.012,0.013,0.013,0.014
08/01/2023,12:05:27,0.012,0.013,0.013,0.014,0.014
08/02/2023,06:52:43,0.000,0.000,0.000,0.000,0.000
```

TrakPro Version 4.70 ASCII Data File

Model:, DustTrak DRX Model Number:,8533 Serial Number:,8533192301 Test ID:,005 Test Abbreviation:, MANUAL_005 Start Date:,08/01/2023 Start Time:,09:19:33 Duration (dd:hh:mm:ss):,0:05:00:00 Log Interval (mm:ss):,01:00 Number of points:,300 Notes:, Statistics, Channel:, PM1, PM2.5, RESP, PM10, TOTAL ,Units:,mg/m^3,mg/m^3,mg/m^3,mg/m^3 ,Average:,0.007,0.007,0.008,0.011,0.012 ,Minimum:,0.004,0.004,0.004,0.004,0.004 Time of Minimum: ,12:31:33,12:31:33,12:35:33,12:41:33,12:41:33 Date of Minimum:,08/01/2023,08/01/2023,08/01/2023,08/01/2023,08/01/2023,08/01/2023 ,Maximum:,0.018,0.019,0.024,0.046,0.048 Time of Maximum:,11:12:33,11:12:33,13:08:33,13:08:33,13:08:33 Date of Maximum:,08/01/2023,08/01/2023,08/01/2023,08/01/2023,08/01/2023 Calibration, Sensor:, AEROSOL ,Cal. date,11/08/2022 Date, Time, PM1, PM2.5, RESP, PM10, TOTAL MM/dd/yyyy,hh:mm:ss,mg/m^3,mg/m^3,mg/m^3,mg/m^3 08/01/2023,09:20:33,0.009,0.010,0.011,0.013,0.013 08/01/2023,09:21:33,0.016,0.017,0.021,0.035,0.037 08/01/2023,09:22:33,0.010,0.010,0.011,0.014,0.015 08/01/2023,09:23:33,0.010,0.011,0.012,0.016,0.019 08/01/2023,09:24:33,0.011,0.012,0.014,0.020,0.022 08/01/2023,09:25:33,0.012,0.012,0.014,0.019,0.021 08/01/2023,09:26:33,0.011,0.011,0.012,0.015,0.016 08/01/2023,09:27:33,0.010,0.011,0.012,0.014,0.014 08/01/2023,09:28:33,0.010,0.010,0.011,0.013,0.014 08/01/2023,09:29:33,0.009,0.010,0.010,0.012,0.013 08/01/2023,09:30:33,0.009,0.010,0.011,0.014,0.014 08/01/2023,09:31:33,0.009,0.010,0.011,0.012,0.014 08/01/2023,09:32:33,0.012,0.012,0.014,0.020,0.020 08/01/2023,09:33:33,0.010,0.010,0.011,0.013,0.013 08/01/2023,09:34:33,0.013,0.013,0.015,0.020,0.022 08/01/2023,09:35:33,0.012,0.013,0.014,0.019,0.021 08/01/2023,09:36:33,0.012,0.012,0.014,0.019,0.020 08/01/2023,09:37:33,0.011,0.011,0.012,0.017,0.019 08/01/2023,09:38:33,0.009,0.009,0.010,0.012,0.013 08/01/2023,09:39:33,0.009,0.010,0.010,0.012,0.012 08/01/2023,09:40:33,0.014,0.015,0.017,0.026,0.032

```
08/01/2023,09:41:33,0.011,0.011,0.012,0.015,0.016
08/01/2023,09:42:33,0.015,0.016,0.018,0.027,0.031
08/01/2023,09:43:33,0.012,0.013,0.015,0.020,0.021
08/01/2023,09:44:33,0.016,0.017,0.019,0.033,0.038
08/01/2023,09:45:33,0.010,0.011,0.012,0.015,0.016
08/01/2023,09:46:33,0.010,0.010,0.011,0.014,0.016
08/01/2023,09:47:33,0.009,0.009,0.010,0.013,0.013
08/01/2023,09:48:33,0.008,0.008,0.009,0.011,0.011
08/01/2023,09:49:33,0.008,0.008,0.009,0.010,0.010
08/01/2023,09:50:33,0.008,0.008,0.009,0.010,0.010
08/01/2023,09:51:33,0.009,0.009,0.009,0.010,0.011
08/01/2023,09:52:33,0.009,0.009,0.010,0.012,0.012
08/01/2023,09:53:33,0.012,0.013,0.015,0.023,0.026
08/01/2023,09:54:33,0.008,0.009,0.009,0.011,0.011
08/01/2023,09:55:33,0.008,0.008,0.008,0.009,0.010
08/01/2023,09:56:33,0.007,0.007,0.007,0.008,0.009
08/01/2023,09:57:33,0.007,0.007,0.008,0.009,0.009
08/01/2023,09:58:33,0.007,0.007,0.008,0.009,0.009
08/01/2023,09:59:33,0.007,0.007,0.008,0.010,0.010
08/01/2023,10:00:33,0.007,0.008,0.008,0.009,0.010
08/01/2023,10:01:33,0.007,0.008,0.008,0.010,0.010
08/01/2023,10:02:33,0.008,0.008,0.009,0.011,0.011
08/01/2023,10:03:33,0.009,0.009,0.010,0.012,0.013
08/01/2023,10:04:33,0.009,0.010,0.011,0.014,0.015
08/01/2023,10:05:33,0.009,0.009,0.010,0.013,0.015
08/01/2023,10:06:33,0.009,0.009,0.010,0.013,0.013
08/01/2023,10:07:33,0.011,0.012,0.013,0.021,0.022
08/01/2023,10:08:33,0.008,0.008,0.009,0.011,0.011
08/01/2023,10:09:33,0.007,0.008,0.008,0.011,0.013
08/01/2023,10:10:33,0.008,0.008,0.009,0.011,0.012
08/01/2023,10:11:33,0.007,0.007,0.008,0.010,0.011
08/01/2023,10:12:33,0.008,0.008,0.009,0.013,0.014
08/01/2023,10:13:33,0.007,0.007,0.008,0.013,0.013
08/01/2023,10:14:33,0.009,0.009,0.011,0.017,0.019
08/01/2023,10:15:33,0.006,0.006,0.007,0.010,0.011
08/01/2023,10:16:33,0.006,0.006,0.007,0.009,0.009
08/01/2023,10:17:33,0.006,0.006,0.006,0.008,0.008
08/01/2023,10:18:33,0.006,0.006,0.007,0.008,0.008
08/01/2023,10:19:33,0.006,0.007,0.007,0.009,0.010
08/01/2023,10:20:33,0.006,0.006,0.007,0.008,0.009
08/01/2023,10:21:33,0.008,0.008,0.009,0.012,0.013
08/01/2023,10:22:33,0.008,0.009,0.009,0.014,0.015
08/01/2023,10:23:33,0.009,0.009,0.010,0.014,0.018
08/01/2023,10:24:33,0.008,0.009,0.010,0.013,0.014
08/01/2023,10:25:33,0.008,0.008,0.009,0.011,0.012
08/01/2023,10:26:33,0.009,0.010,0.011,0.014,0.017
08/01/2023,10:27:33,0.009,0.010,0.011,0.014,0.017
08/01/2023,10:28:33,0.009,0.010,0.010,0.013,0.016
08/01/2023,10:29:33,0.009,0.009,0.010,0.012,0.013
08/01/2023,10:30:33,0.008,0.008,0.008,0.010,0.012
```

```
08/01/2023,10:31:33,0.008,0.008,0.009,0.012,0.016
08/01/2023,10:32:33,0.007,0.008,0.008,0.010,0.011
08/01/2023,10:33:33,0.006,0.007,0.008,0.010,0.010
08/01/2023,10:34:33,0.006,0.006,0.007,0.009,0.009
08/01/2023,10:35:33,0.006,0.007,0.007,0.010,0.010
08/01/2023,10:36:33,0.005,0.006,0.006,0.007,0.007
08/01/2023,10:37:33,0.006,0.006,0.006,0.008,0.008
08/01/2023,10:38:33,0.005,0.005,0.006,0.007,0.007
08/01/2023,10:39:33,0.005,0.006,0.006,0.008,0.008
08/01/2023,10:40:33,0.008,0.008,0.009,0.013,0.014
08/01/2023,10:41:33,0.014,0.015,0.019,0.037,0.040
08/01/2023,10:42:33,0.006,0.006,0.006,0.007,0.008
08/01/2023,10:43:33,0.006,0.006,0.007,0.008,0.008
08/01/2023,10:44:33,0.006,0.006,0.007,0.008,0.008
08/01/2023,10:45:33,0.006,0.006,0.007,0.008,0.009
08/01/2023,10:46:33,0.006,0.007,0.007,0.009,0.010
08/01/2023,10:47:33,0.006,0.007,0.007,0.009,0.009
08/01/2023,10:48:33,0.011,0.012,0.014,0.025,0.029
08/01/2023,10:49:33,0.008,0.008,0.010,0.014,0.017
08/01/2023,10:50:33,0.006,0.006,0.007,0.009,0.009
08/01/2023,10:51:33,0.005,0.005,0.006,0.007,0.008
08/01/2023,10:52:33,0.005,0.005,0.005,0.006,0.006
08/01/2023,10:53:33,0.005,0.005,0.005,0.007,0.007
08/01/2023,10:54:33,0.009,0.010,0.011,0.019,0.022
08/01/2023,10:55:33,0.009,0.010,0.012,0.022,0.025
08/01/2023,10:56:33,0.006,0.007,0.007,0.012,0.013
08/01/2023,10:57:33,0.005,0.006,0.006,0.008,0.008
08/01/2023,10:58:33,0.008,0.008,0.010,0.017,0.018
08/01/2023,10:59:33,0.005,0.005,0.005,0.007,0.007
08/01/2023,11:00:33,0.005,0.005,0.006,0.007,0.007
08/01/2023,11:01:33,0.006,0.006,0.006,0.009,0.009
08/01/2023,11:02:33,0.006,0.006,0.007,0.009,0.010
08/01/2023,11:03:33,0.005,0.006,0.006,0.007,0.008
08/01/2023,11:04:33,0.006,0.007,0.007,0.010,0.011
08/01/2023,11:05:33,0.008,0.008,0.009,0.015,0.017
08/01/2023,11:06:33,0.009,0.010,0.012,0.020,0.022
08/01/2023,11:07:33,0.007,0.007,0.008,0.009,0.010
08/01/2023,11:08:33,0.007,0.007,0.008,0.010,0.011
08/01/2023,11:09:33,0.010,0.011,0.013,0.021,0.022
08/01/2023,11:10:33,0.007,0.008,0.008,0.011,0.011
08/01/2023,11:11:33,0.007,0.008,0.008,0.010,0.012
08/01/2023,11:12:33,0.018,0.019,0.023,0.042,0.047
08/01/2023,11:13:33,0.008,0.008,0.009,0.013,0.014
08/01/2023,11:14:33,0.007,0.008,0.008,0.011,0.011
08/01/2023,11:15:33,0.007,0.007,0.008,0.010,0.010
08/01/2023,11:16:33,0.007,0.007,0.008,0.010,0.011
08/01/2023,11:17:33,0.005,0.006,0.006,0.007,0.007
08/01/2023,11:18:33,0.008,0.008,0.009,0.012,0.013
08/01/2023,11:19:33,0.005,0.005,0.006,0.007,0.008
08/01/2023,11:20:33,0.006,0.006,0.006,0.008,0.009
```

```
08/01/2023,11:21:33,0.007,0.007,0.008,0.012,0.013
08/01/2023,11:22:33,0.006,0.006,0.006,0.008,0.009
08/01/2023,11:23:33,0.006,0.006,0.006,0.008,0.009
08/01/2023,11:24:33,0.005,0.006,0.006,0.008,0.009
08/01/2023,11:25:33,0.008,0.009,0.009,0.014,0.016
08/01/2023,11:26:33,0.006,0.006,0.007,0.010,0.010
08/01/2023,11:27:33,0.008,0.009,0.010,0.018,0.020
08/01/2023,11:28:33,0.006,0.006,0.006,0.008,0.009
08/01/2023,11:29:33,0.005,0.005,0.006,0.007,0.007
08/01/2023,11:30:33,0.005,0.006,0.006,0.007,0.007
08/01/2023,11:31:33,0.011,0.012,0.015,0.026,0.031
08/01/2023,11:32:33,0.006,0.006,0.007,0.008,0.009
08/01/2023,11:33:33,0.006,0.006,0.007,0.008,0.009
08/01/2023,11:34:33,0.006,0.006,0.007,0.009,0.009
08/01/2023,11:35:33,0.006,0.006,0.006,0.007,0.007
08/01/2023,11:36:33,0.006,0.007,0.007,0.009,0.009
08/01/2023,11:37:33,0.007,0.007,0.008,0.011,0.012
08/01/2023,11:38:33,0.007,0.007,0.008,0.010,0.011
08/01/2023,11:39:33,0.007,0.007,0.007,0.011,0.011
08/01/2023,11:40:33,0.007,0.008,0.008,0.011,0.012
08/01/2023,11:41:33,0.006,0.006,0.007,0.009,0.009
08/01/2023,11:42:33,0.007,0.007,0.008,0.010,0.010
08/01/2023,11:43:33,0.006,0.006,0.006,0.008,0.008
08/01/2023,11:44:33,0.008,0.008,0.009,0.011,0.012
08/01/2023,11:45:33,0.006,0.006,0.007,0.009,0.011
08/01/2023,11:46:33,0.006,0.006,0.007,0.009,0.010
08/01/2023,11:47:33,0.006,0.006,0.007,0.009,0.009
08/01/2023,11:48:33,0.006,0.007,0.008,0.011,0.012
08/01/2023,11:49:33,0.006,0.006,0.007,0.011,0.012
08/01/2023,11:50:33,0.006,0.006,0.007,0.012,0.012
08/01/2023,11:51:33,0.006,0.007,0.007,0.012,0.016
08/01/2023,11:52:33,0.006,0.006,0.007,0.011,0.012
08/01/2023,11:53:33,0.007,0.007,0.008,0.011,0.012
08/01/2023,11:54:33,0.005,0.006,0.006,0.008,0.009
08/01/2023,11:55:33,0.005,0.005,0.006,0.008,0.009
08/01/2023,11:56:33,0.005,0.005,0.005,0.007,0.007
08/01/2023,11:57:33,0.005,0.005,0.006,0.007,0.008
08/01/2023,11:58:33,0.005,0.005,0.005,0.007,0.008
08/01/2023,11:59:33,0.005,0.005,0.006,0.008,0.011
08/01/2023,12:00:33,0.005,0.005,0.005,0.006,0.006
08/01/2023,12:01:33,0.005,0.005,0.006,0.008,0.008
08/01/2023,12:02:33,0.012,0.013,0.017,0.031,0.034
08/01/2023,12:03:33,0.005,0.005,0.005,0.006,0.007
08/01/2023,12:04:33,0.005,0.005,0.005,0.007,0.007
08/01/2023,12:05:33,0.006,0.006,0.007,0.010,0.010
08/01/2023,12:06:33,0.005,0.006,0.006,0.007,0.009
08/01/2023,12:07:33,0.005,0.005,0.006,0.008,0.008
08/01/2023,12:08:33,0.007,0.007,0.008,0.012,0.013
08/01/2023,12:09:33,0.005,0.005,0.006,0.008,0.008
08/01/2023,12:10:33,0.006,0.006,0.006,0.008,0.008
```

```
08/01/2023,12:11:33,0.008,0.008,0.009,0.016,0.017
08/01/2023,12:12:33,0.006,0.006,0.007,0.010,0.011
08/01/2023,12:13:33,0.013,0.014,0.016,0.029,0.034
08/01/2023,12:14:33,0.013,0.014,0.018,0.035,0.039
08/01/2023,12:15:33,0.006,0.006,0.007,0.009,0.010
08/01/2023,12:16:33,0.006,0.006,0.007,0.009,0.009
08/01/2023,12:17:33,0.006,0.006,0.006,0.008,0.008
08/01/2023,12:18:33,0.006,0.006,0.007,0.009,0.010
08/01/2023,12:19:33,0.006,0.007,0.007,0.010,0.012
08/01/2023,12:20:33,0.010,0.010,0.012,0.021,0.023
08/01/2023,12:21:33,0.007,0.007,0.008,0.012,0.012
08/01/2023,12:22:33,0.005,0.005,0.006,0.007,0.007
08/01/2023,12:23:33,0.005,0.005,0.006,0.006,0.007
08/01/2023,12:24:33,0.006,0.006,0.006,0.008,0.008
08/01/2023,12:25:33,0.005,0.006,0.006,0.007,0.008
08/01/2023,12:26:33,0.005,0.006,0.006,0.007,0.007
08/01/2023,12:27:33,0.006,0.006,0.006,0.009,0.012
08/01/2023,12:28:33,0.005,0.005,0.005,0.006,0.006
08/01/2023,12:29:33,0.005,0.005,0.005,0.006,0.006
08/01/2023,12:30:33,0.005,0.005,0.006,0.008,0.008
08/01/2023,12:31:33,0.004,0.004,0.005,0.005,0.005
08/01/2023,12:32:33,0.004,0.005,0.005,0.006,0.006
08/01/2023,12:33:33,0.004,0.005,0.005,0.006,0.006
08/01/2023,12:34:33,0.004,0.005,0.005,0.007,0.007
08/01/2023,12:35:33,0.004,0.004,0.004,0.005,0.006
08/01/2023,12:36:33,0.004,0.004,0.004,0.005,0.005
08/01/2023,12:37:33,0.004,0.004,0.005,0.006,0.006
08/01/2023,12:38:33,0.004,0.004,0.004,0.005,0.005
08/01/2023,12:39:33,0.004,0.004,0.004,0.005,0.006
08/01/2023,12:40:33,0.004,0.004,0.004,0.005,0.005
08/01/2023,12:41:33,0.004,0.004,0.004,0.004,0.004
08/01/2023,12:42:33,0.004,0.004,0.004,0.006,0.006
08/01/2023,12:43:33,0.004,0.004,0.004,0.005,0.005
08/01/2023,12:44:33,0.004,0.004,0.004,0.005,0.005
08/01/2023,12:45:33,0.004,0.004,0.004,0.005,0.005
08/01/2023,12:46:33,0.004,0.004,0.004,0.005,0.005
08/01/2023,12:47:33,0.004,0.004,0.005,0.006,0.006
08/01/2023,12:48:33,0.004,0.005,0.005,0.006,0.007
08/01/2023,12:49:33,0.004,0.004,0.004,0.005,0.006
08/01/2023,12:50:33,0.004,0.004,0.004,0.005,0.005
08/01/2023,12:51:33,0.004,0.004,0.004,0.005,0.005
08/01/2023,12:52:33,0.004,0.004,0.004,0.005,0.005
08/01/2023,12:53:33,0.004,0.004,0.004,0.005,0.005
08/01/2023,12:54:33,0.008,0.008,0.009,0.012,0.018
08/01/2023,12:55:33,0.005,0.005,0.005,0.007,0.007
08/01/2023,12:56:33,0.004,0.004,0.005,0.006,0.006
08/01/2023,12:57:33,0.004,0.005,0.005,0.006,0.006
08/01/2023,12:58:33,0.005,0.005,0.005,0.006,0.006
08/01/2023,12:59:33,0.013,0.014,0.017,0.029,0.031
08/01/2023,13:00:33,0.009,0.010,0.011,0.019,0.021
```

```
08/01/2023,13:01:33,0.006,0.006,0.007,0.010,0.010
08/01/2023,13:02:33,0.005,0.005,0.006,0.007,0.007
08/01/2023,13:03:33,0.013,0.014,0.017,0.027,0.029
08/01/2023,13:04:33,0.005,0.005,0.005,0.006,0.006
08/01/2023,13:05:33,0.004,0.005,0.005,0.005,0.005
08/01/2023,13:06:33,0.005,0.005,0.006,0.006,0.007
08/01/2023,13:07:33,0.005,0.005,0.005,0.006,0.006
08/01/2023,13:08:33,0.017,0.019,0.024,0.046,0.048
08/01/2023,13:09:33,0.007,0.007,0.008,0.011,0.013
08/01/2023,13:10:33,0.005,0.005,0.006,0.006,0.007
08/01/2023,13:11:33,0.005,0.005,0.006,0.006,0.007
08/01/2023,13:12:33,0.005,0.005,0.006,0.007,0.007
08/01/2023,13:13:33,0.006,0.006,0.006,0.007,0.008
08/01/2023,13:14:33,0.006,0.007,0.007,0.010,0.013
08/01/2023,13:15:33,0.008,0.009,0.010,0.017,0.017
08/01/2023,13:16:33,0.006,0.007,0.007,0.010,0.011
08/01/2023,13:17:33,0.005,0.005,0.006,0.007,0.008
08/01/2023,13:18:33,0.005,0.005,0.006,0.006,0.007
08/01/2023,13:19:33,0.005,0.006,0.006,0.007,0.007
08/01/2023,13:20:33,0.005,0.006,0.006,0.007,0.008
08/01/2023,13:21:33,0.009,0.010,0.012,0.019,0.021
08/01/2023,13:22:33,0.006,0.006,0.007,0.010,0.016
08/01/2023,13:23:33,0.006,0.006,0.006,0.007,0.008
08/01/2023,13:24:33,0.006,0.006,0.006,0.008,0.008
08/01/2023,13:25:33,0.006,0.006,0.006,0.009,0.014
08/01/2023,13:26:33,0.005,0.005,0.006,0.007,0.008
08/01/2023,13:27:33,0.005,0.005,0.005,0.006,0.006
08/01/2023,13:28:33,0.005,0.005,0.006,0.007,0.008
08/01/2023,13:29:33,0.006,0.006,0.006,0.008,0.009
08/01/2023,13:30:33,0.006,0.006,0.006,0.009,0.011
08/01/2023,13:31:33,0.008,0.009,0.010,0.017,0.020
08/01/2023,13:32:33,0.005,0.005,0.006,0.007,0.007
08/01/2023,13:33:33,0.005,0.005,0.006,0.007,0.007
08/01/2023,13:34:33,0.005,0.005,0.006,0.007,0.007
08/01/2023,13:35:33,0.005,0.006,0.006,0.007,0.007
08/01/2023,13:36:33,0.005,0.005,0.006,0.007,0.007
08/01/2023,13:37:33,0.005,0.006,0.006,0.008,0.008
08/01/2023,13:38:33,0.005,0.005,0.006,0.007,0.007
08/01/2023,13:39:33,0.005,0.005,0.006,0.007,0.008
08/01/2023,13:40:33,0.005,0.005,0.006,0.007,0.007
08/01/2023,13:41:33,0.005,0.005,0.006,0.007,0.007
08/01/2023,13:42:33,0.005,0.005,0.005,0.006,0.006
08/01/2023,13:43:33,0.014,0.015,0.018,0.033,0.038
08/01/2023,13:44:33,0.006,0.007,0.008,0.011,0.011
08/01/2023,13:45:33,0.007,0.007,0.007,0.009,0.009
08/01/2023,13:46:33,0.005,0.005,0.006,0.006,0.006
08/01/2023,13:47:33,0.008,0.008,0.008,0.010,0.010
08/01/2023,13:48:33,0.007,0.007,0.007,0.009,0.009
08/01/2023,13:49:33,0.006,0.006,0.006,0.007,0.008
08/01/2023,13:50:33,0.006,0.006,0.006,0.007,0.008
```

```
08/01/2023,13:51:33,0.006,0.006,0.006,0.008,0.010
08/01/2023,13:52:33,0.007,0.007,0.007,0.010,0.012
08/01/2023,13:53:33,0.006,0.006,0.006,0.009,0.009
08/01/2023,13:54:33,0.005,0.005,0.006,0.007,0.008
08/01/2023,13:55:33,0.005,0.005,0.006,0.006,0.006
08/01/2023,13:56:33,0.005,0.005,0.005,0.006,0.007
08/01/2023,13:57:33,0.005,0.006,0.006,0.006,0.006
08/01/2023,13:58:33,0.005,0.005,0.006,0.007,0.007
08/01/2023,13:59:33,0.005,0.006,0.006,0.007,0.007
08/01/2023,14:00:33,0.006,0.006,0.006,0.008,0.009
08/01/2023,14:01:33,0.005,0.006,0.006,0.007,0.007
08/01/2023,14:02:33,0.006,0.006,0.006,0.008,0.009
08/01/2023,14:03:33,0.006,0.006,0.006,0.008,0.008
08/01/2023,14:04:33,0.008,0.009,0.010,0.017,0.018
08/01/2023,14:05:33,0.007,0.007,0.008,0.011,0.015
08/01/2023,14:06:33,0.006,0.006,0.006,0.007,0.007
08/01/2023,14:07:33,0.005,0.006,0.006,0.008,0.008
08/01/2023,14:08:33,0.005,0.005,0.006,0.007,0.007
08/01/2023,14:09:33,0.006,0.006,0.006,0.009,0.009
08/01/2023,14:10:33,0.005,0.005,0.006,0.007,0.007
08/01/2023,14:11:33,0.006,0.006,0.006,0.008,0.009
08/01/2023,14:12:33,0.005,0.005,0.005,0.006,0.006
08/01/2023,14:13:33,0.006,0.006,0.006,0.008,0.008
08/01/2023,14:14:33,0.006,0.006,0.006,0.007,0.008
08/01/2023,14:15:33,0.006,0.006,0.006,0.008,0.008
08/01/2023,14:16:33,0.006,0.006,0.006,0.008,0.008
08/01/2023,14:17:33,0.006,0.006,0.006,0.008,0.008
08/01/2023,14:18:33,0.006,0.006,0.007,0.009,0.010
08/01/2023,14:19:33,0.006,0.006,0.007,0.009,0.011
```



```
23/08/01 10:08
***********************
Summary
Unit Name
               MiniRAE 3000(PGM-7320)
Unit SN 592-910816
Unit Firmware Ver
                      V2.22
Running Mode
               Hygiene Mode
Datalog Mode
               Auto
Diagnostic Mode No
Stop Reason
               Battery Low
Site ID 12345678
User ID 12345678
Begin
       8/1/2023 10:08:23
End
       8/1/2023 13:01:53
Sample Period(s)
                      60
Number of Records
                      173
Sensor PID(ppm)
Sensor SN
               502303019856
Measure Type
               Avg; Max; Real
Span
       100.0
Span 2 1000.0
Low Alarm
               50.0
High Alarm
               100.0
Over Alarm
               15000.0
STEL Alarm
               100.0
TWA Alarm
               50.0
Measurement Gas Isobutylene
Calibration Time
                    7/25/2023 10:21
Peak
       0.5
       0.1
Min
Average 0.4
*********************
Datalog
               PID(ppm)
                              PID(ppm)
                                             PID(ppm)
                              (Max)
                                      (Real)
Index
       Date/Time
                      (Avg)
001
       8/1/2023 10:09:23
                              0.2
                                      0.2
                                             0.2
002
       8/1/2023 10:10:23
                              0.2
                                      0.2
                                             0.2
                              0.2
003
       8/1/2023 10:11:23
                                      0.2
                                             0.1
                              0.1
                                     0.2
004
       8/1/2023 10:12:23
                                             0.1
                              0.1
                                     0.1
005
       8/1/2023 10:13:23
                                             0.1
006
       8/1/2023 10:14:23
                              0.1
                                     0.1
                                             0.1
```

0.1

0.1

0.1

0.1

0.1

0.1

007

800

8/1/2023 10:15:23

8/1/2023 10:16:23

009	8/1/2023 10:17:23	0.1	0.2	0.1
010	8/1/2023 10:18:23	0.1	0.1	0.1
011	8/1/2023 10:19:23	0.1	0.1	0.1
012	8/1/2023 10:20:23	0.1	0.2	0.2
013	8/1/2023 10:20:23	0.2	0.2	0.2
013	8/1/2023 10:21:23	0.2		0.2
			0.2	
015	8/1/2023 10:23:23	0.2	0.2	0.2
016	8/1/2023 10:24:23	0.2	0.2	0.2
017	8/1/2023 10:25:23	0.2	0.2	0.2
018	8/1/2023 10:26:23	0.2	0.2	0.2
019	8/1/2023 10:27:23	0.2	0.2	0.2
020	8/1/2023 10:28:23	0.2	0.2	0.2
021	8/1/2023 10:29:23	0.2	0.2	0.2
022	8/1/2023 10:30:23	0.2	0.2	0.2
023	8/1/2023 10:31:23	0.2	0.2	0.2
024	8/1/2023 10:32:23	0.2	0.2	0.2
025	8/1/2023 10:33:23	0.2	0.2	0.2
026	8/1/2023 10:34:23	0.2	0.2	0.2
027	8/1/2023 10:35:23	0.2	0.2	0.2
028	8/1/2023 10:36:23	0.2	0.2	0.2
029	8/1/2023 10:37:23	0.2	0.2	0.2
030	8/1/2023 10:38:23	0.2	0.2	0.2
031	8/1/2023 10:39:23	0.2	0.2	0.2
032	8/1/2023 10:40:23	0.2	0.3	0.3
033	8/1/2023 10:41:23	0.3	0.3	0.3
034	8/1/2023 10:42:23	0.3	0.3	0.3
035	8/1/2023 10:43:23	0.3	0.3	0.3
036	8/1/2023 10:44:23	0.3	0.3	0.3
037	8/1/2023 10:45:23	0.3	0.3	0.3
037 038	8/1/2023 10:46:23	0.3	0.3	0.3
039	8/1/2023 10:47:23	0.3	0.3	0.3
040	8/1/2023 10:48:23	0.3	0.3	0.3
041	8/1/2023 10:49:23	0.3	0.3	0.3
041		0.3		
	8/1/2023 10:50:23		0.3	0.3
043	8/1/2023 10:51:23	0.3	0.4	0.3
044	8/1/2023 10:52:23	0.3	0.4	0.4
045	8/1/2023 10:53:23	0.4	0.4	0.4
046	8/1/2023 10:54:23	0.4	0.4	0.4
047	8/1/2023 10:55:23	0.4	0.4	0.4
048	8/1/2023 10:56:23	0.4	0.4	0.4
049	8/1/2023 10:57:23	0.4	0.4	0.4
050	8/1/2023 10:58:23	0.4	0.4	0.4
051	8/1/2023 10:59:23	0.4	0.4	0.4
052	8/1/2023 11:00:23	0.4	0.4	0.4
053	8/1/2023 11:01:23	0.4	0.4	0.4
054	8/1/2023 11:02:23	0.4	0.4	0.4
055	8/1/2023 11:03:23	0.4	0.4	0.4
056	8/1/2023 11:04:23	0.4	0.4	0.4
057	8/1/2023 11:05:23	0.4	0.4	0.4
058	8/1/2023 11:06:23	0.4	0.4	0.4

059	8/1/2023	11:07:23	0.4	0.4	0.4
060	8/1/2023	11:08:23	0.4	0.4	0.4
061	8/1/2023	11:09:23	0.4	0.4	0.4
062	8/1/2023	11:10:23	0.4	0.4	0.4
063	8/1/2023	11:11:23	0.4	0.4	0.4
064	8/1/2023	11:12:23	0.4	0.4	0.4
065	8/1/2023	11:13:23	0.4	0.4	0.4
066	8/1/2023	11:14:23	0.4	0.4	0.4
067	8/1/2023	11:15:23	0.4	0.4	0.4
068	8/1/2023	11:16:23	0.4	0.4	0.4
069	8/1/2023	11:17:23	0.4	0.4	0.4
070	8/1/2023	11:18:23	0.4	0.4	0.4
071	8/1/2023	11:19:23	0.4	0.4	0.4
072	8/1/2023	11:20:23	0.4	0.4	0.4
073	8/1/2023	11:21:23	0.4	0.4	0.4
074	8/1/2023	11:22:23	0.4	0.4	0.4
075	8/1/2023	11:23:23	0.4	0.4	0.4
076	8/1/2023	11:24:23	0.4	0.4	0.4
077	8/1/2023	11:25:23	0.4	0.4	0.4
078	8/1/2023	11:26:23	0.4	0.4	0.4
079	8/1/2023	11:27:23	0.4	0.4	0.4
080	8/1/2023	11:28:23	0.4	0.4	0.4
081	8/1/2023	11:29:23	0.4	0.4	0.4
082	8/1/2023	11:30:23	0.4	0.4	0.4
083	8/1/2023	11:31:23	0.4	0.4	0.4
084	8/1/2023	11:32:23	0.4	0.4	0.4
085	8/1/2023	11:33:23	0.4	0.4	0.4
086	8/1/2023	11:34:23	0.4	0.4	0.4
087	8/1/2023	11:35:23	0.4	0.4	0.4
880	8/1/2023	11:36:23	0.4	0.4	0.4
089	8/1/2023	11:37:23	0.4	0.4	0.4
090	8/1/2023	11:38:23	0.4	0.4	0.4
091	8/1/2023	11:39:23	0.4	0.4	0.4
092	8/1/2023	11:40:23	0.4	0.4	0.4
093	8/1/2023	11:41:23	0.4	0.4	0.4
094	8/1/2023	11:42:23	0.4	0.4	0.4
095	8/1/2023	11:43:23	0.4	0.4	0.4
096	8/1/2023	11:44:23	0.4	0.4	0.4
097	8/1/2023	11:45:23	0.4	0.5	0.4
098	8/1/2023	11:46:23	0.4	0.4	0.4
099	8/1/2023	11:47:23	0.4	0.4	0.4
100	8/1/2023	11:48:23	0.4	0.4	0.4
101	8/1/2023	11:49:23	0.4	0.4	0.4
102	8/1/2023	11:50:23	0.4	0.4	0.4
103	8/1/2023	11:51:23	0.4	0.4	0.4
104		11:52:23	0.4	0.4	0.4
105		11:53:23	0.4	0.4	0.4
106		11:54:23	0.4	0.4	0.4
107		11:55:23	0.4	0.4	0.4
108		11:56:23	0.4	0.4	0.4

109	8/1/2023	11:57:23	0.4	0.4	0.4
110	8/1/2023	11:58:23	0.4	0.4	0.4
111	8/1/2023	11:59:23	0.4	0.4	0.4
112	8/1/2023	12:00:23	0.4	0.4	0.4
113		12:01:23	0.4	0.4	0.4
114	8/1/2023	12:02:23	0.4	0.4	0.4
115		12:03:23	0.4	0.4	0.4
116		12:04:23	0.4	0.4	0.4
117	8/1/2023	12:05:23	0.4	0.4	0.4
118		12:06:23	0.4	0.4	0.4
119		12:07:23	0.4	0.4	0.4
120		12:08:23	0.4	0.4	0.4
121		12:09:23	0.4	0.4	0.4
122		12:10:23	0.4	0.4	0.4
123		12:11:23	0.4	0.4	0.4
124		12:12:23	0.4	0.4	0.4
125		12:13:23	0.4	0.4	0.4
126		12:14:23	0.4	0.4	0.4
127		12:15:23	0.4	0.4	0.4
128		12:16:23	0.4	0.4	0.4
129		12:17:23	0.4	0.4	0.4
130		12:18:23	0.4	0.4	0.4
131		12:19:23	0.4	0.4	0.4
132		12:20:23	0.4	0.4	0.4
133		12:21:23	0.4	0.4	0.4
134		12:22:23	0.4	0.4	0.4
135		12:23:23	0.4	0.5	0.5
136		12:24:23	0.5	0.5	0.5
137		12:25:23	0.5	0.5	0.5
138		12:26:23	0.5	0.5	0.5
139		12:27:23	0.5	0.5	0.5
140		12:28:23	0.5	0.5	0.5
141		12:29:23	0.5	0.5	0.5
142		12:30:23	0.5	0.5	0.5
143		12:31:23	0.5	0.5	0.4
144		12:32:23	0.4	0.5	0.4
145		12:33:23	0.4	0.5	0.4
146		12:34:23	0.4	0.5	0.5
147		12:35:23	0.4	0.5	0.5
148		12:36:23	0.4	0.5	0.4
149		12:37:23	0.4	0.4	0.4
150		12:38:23	0.4	0.4	0.4
151		12:39:23	0.4	0.5	0.4
152		12:40:23	0.4	0.4	0.4
153		12:41:23	0.4	0.4	0.4
154		12:42:23	0.4	0.4	0.4
155		12:43:23	0.4	0.5	0.4
156		12:44:23	0.4	0.5	0.4
157		12:45:23	0.4	0.4	0.4
158	8/1/2023	12:46:23	0.4	0.4	0.4

159	8/1/2023	12:47:	23	0.4	0.4	0.4
160	8/1/2023	12:48:	23	0.4	0.4	0.4
161	8/1/2023	12:49:	23	0.4	0.4	0.4
162	8/1/2023	12:50:	23	0.4	0.4	0.4
163	8/1/2023	12:51:	23	0.4	0.4	0.4
164	8/1/2023	12:52:	23	0.4	0.4	0.4
165	8/1/2023	12:53:	23	0.4	0.4	0.4
166	8/1/2023	12:54:	23	0.4	0.5	0.4
167	8/1/2023	12:55:	23	0.4	0.5	0.5
168	8/1/2023	12:56:	23	0.5	0.5	0.5
169	8/1/2023	12:57:	23	0.5	0.5	0.5
170	8/1/2023	12:58:	23	0.4	0.5	0.4
171	8/1/2023	12:59:	23	0.4	0.5	0.4
172	8/1/2023	13:00:	23	0.4	0.5	0.4
173	8/1/2023	13:01:	23	0.4	0.4	0.4
Peak	6). 5	0.5	0.5		
Min	6	0.1	0.1	0.1		
Average	6	0.4	0.4	0.4		

TWA/STEL

IWA/ 31L				
	ſ	PID(ppm)	PID(ppm)
Index	Date/Time	e (TWA)	(STEL)	
001	8/1/2023	10:09:23	0.0	
002	8/1/2023	10:10:23	0.0	
003	8/1/2023	10:11:23	0.0	
004	8/1/2023	10:12:23	0.0	
005	8/1/2023	10:13:23	0.0	
006	8/1/2023	10:14:23	0.0	
007	8/1/2023	10:15:23	0.0	
800	8/1/2023	10:16:23	0.0	
009	8/1/2023	10:17:23	0.0	
010	8/1/2023	10:18:23	0.0	
011	8/1/2023	10:19:23	0.0	
012	8/1/2023	10:20:23	0.0	
013	8/1/2023	10:21:23	0.0	
014	8/1/2023	10:22:23	0.0	
015	8/1/2023	10:23:23	0.0	0.1
016	8/1/2023	10:24:23	0.0	0.2
017	8/1/2023	10:25:23	0.0	0.2
018	8/1/2023	10:26:23	0.0	0.2
019	8/1/2023	10:27:23	0.0	0.2
020	8/1/2023	10:28:23	0.0	0.2
021	8/1/2023	10:29:23	0.0	0.2
022	8/1/2023	10:30:23	0.0	0.2
023	8/1/2023	10:31:23	0.0	0.2
024	8/1/2023	10:32:23	0.0	0.2
025	8/1/2023	10:33:23	0.0	0.2
026	8/1/2023	10:34:23	0.0	0.2
027	8/1/2023	10:35:23	0.0	0.2

028	8/1/2023	10:36:23	0.0	0.2
029	8/1/2023	10:37:23	0.0	0.2
030	8/1/2023	10:38:23	0.0	0.2
031	8/1/2023	10:39:23	0.0	0.2
032	8/1/2023	10:40:23	0.0	0.2
033	8/1/2023	10:41:23	0.0	0.2
034	8/1/2023	10:42:23	0.0	0.2
035	8/1/2023	10:43:23	0.0	0.2
036	8/1/2023	10:44:23	0.0	0.2
037	8/1/2023	10:45:23	0.0	0.3
038	8/1/2023	10:46:23	0.0	0.3
039	8/1/2023	10:47:23	0.0	0.3
040	8/1/2023	10:48:23	0.0	0.3
041	8/1/2023	10:49:23	0.0	0.3
042	8/1/2023	10:50:23	0.0	0.3
043	8/1/2023	10:51:23	0.0	0.3
044	8/1/2023	10:52:23	0.0	0.3
045	8/1/2023	10:53:23	0.0	0.3
046	8/1/2023	10:54:23	0.0	0.3
047	8/1/2023	10:55:23	0.0	0.3
048	8/1/2023	10:56:23	0.0	0.4
049	8/1/2023	10:57:23	0.0	0.4
050	8/1/2023	10:58:23	0.0	0.4
051	8/1/2023	10:59:23	0.0	0.4
052	8/1/2023	11:00:23	0.0	0.4
053	8/1/2023	11:01:23	0.0	0.4
054	8/1/2023	11:02:23	0.0	0.4
055	8/1/2023	11:03:23	0.0	0.4
056	8/1/2023	11:04:23	0.0	0.4
057	8/1/2023	11:05:23	0.0	0.4
058	8/1/2023	11:06:23	0.0	0.4
059	8/1/2023	11:07:23	0.0	0.4
060	8/1/2023	11:08:23	0.0	0.4
061	8/1/2023	11:09:23	0.0	0.4
062	8/1/2023	11:10:23	0.0	0.4
063	8/1/2023	11:11:23	0.0	0.4
064	8/1/2023	11:12:23	0.0	0.4
065	8/1/2023	11:13:23	0.0	0.4
066	8/1/2023	11:14:23	0.0	0.4
067	8/1/2023	11:15:23	0.0	0.4
068	8/1/2023	11:16:23	0.0	0.4
069	8/1/2023	11:17:23	0.0	0.4
070	8/1/2023	11:18:23	0.0	0.4
071	8/1/2023	11:19:23	0.0	0.4
072	8/1/2023	11:20:23	0.0	0.4
073	8/1/2023	11:21:23	0.0	0.4
074	8/1/2023	11:22:23	0.0	0.4
075	8/1/2023	11:23:23	0.0	0.4
076	8/1/2023	11:24:23	0.0	0.4
077	8/1/2023	11:25:23	0.0	0.4

078	8/1/2023	11:26:23	0.0	0.4
079	8/1/2023	11:27:23	0.0	0.4
080	8/1/2023	11:28:23	0.0	0.4
081	8/1/2023	11:29:23	0.1	0.4
082	8/1/2023	11:30:23	0.1	0.4
083	8/1/2023	11:31:23	0.1	0.4
084	8/1/2023	11:32:23	0.1	0.4
085	8/1/2023	11:33:23	0.1	0.4
086	8/1/2023	11:34:23	0.1	0.4
087	8/1/2023	11:35:23	0.1	0.4
088	8/1/2023	11:36:23	0.1	0.4
089	8/1/2023	11:37:23	0.1	0.4
090	8/1/2023	11:38:23	0.1	0.4
091	8/1/2023	11:39:23	0.1	0.4
092	8/1/2023		0.1	0.4
093	8/1/2023		0.1	0.4
094	8/1/2023		0.1	0.4
095	8/1/2023	11:43:23	0.1	0.4
096	8/1/2023		0.1	0.4
097	8/1/2023	11:45:23	0.1	0.4
098	8/1/2023	11:46:23	0.1	0.4
099	8/1/2023	11:47:23	0.1	0.4
100	8/1/2023		0.1	0.4
101	8/1/2023	11:49:23	0.1	0.4
102	8/1/2023	11:50:23	0.1	0.4
103	8/1/2023	11:51:23	0.1	0.4
104	8/1/2023	11:52:23	0.1	0.4
105	8/1/2023	11:53:23	0.1	0.4
106	8/1/2023	11:54:23	0.1	0.4
107	8/1/2023		0.1	0.4
108	8/1/2023		0.1	0.4
109	8/1/2023		0.1	0.4
110	8/1/2023		0.1	0.4
111	8/1/2023	11:59:23	0.1	0.4
112		12:00:23	0.1	0.4
113		12:01:23	0.1	0.4
114		12:02:23	0.1	0.4
115	8/1/2023		0.1	0.4
116	8/1/2023		0.1	0.4
117	8/1/2023		0.1	0.4
118	8/1/2023		0.1	0.4
119	8/1/2023	12:07:23	0.1	0.4
120	8/1/2023	12:08:23	0.1	0.4
121	8/1/2023		0.1	0.4
122	8/1/2023	12:10:23	0.1	0.4
123	8/1/2023	12:11:23	0.1	0.4
124	8/1/2023		0.1	0.4
125	8/1/2023		0.1	0.4
126		12:14:23	0.1	0.4
127	8/1/2023		0.1	0.4

128	8/1/2023	12:16:23	0.1	0.4
129	8/1/2023		0.1	0.4
130	8/1/2023	12:18:23	0.1	0.4
131	8/1/2023	12:19:23	0.1	0.4
132	8/1/2023	12:20:23	0.1	0.4
133	8/1/2023		0.1	0.4
134	8/1/2023	12:22:23	0.1	0.4
135	8/1/2023	12:23:23	0.1	0.4
136	8/1/2023	12:24:23	0.1	0.4
137	8/1/2023		0.1	0.4
138	8/1/2023		0.1	0.5
139	8/1/2023	12:27:23	0.1	0.5
140	8/1/2023	12:28:23	0.1	0.5
141	8/1/2023	12:29:23	0.1	0.5
142	8/1/2023		0.1	0.5
143	8/1/2023		0.1	0.5
144	8/1/2023	12:32:23	0.1	0.5
145	8/1/2023	12:33:23	0.1	0.5
146	8/1/2023	12:34:23	0.1	0.5
147	8/1/2023		0.1	0.5
148	8/1/2023		0.1	0.5
149	8/1/2023	12:37:23	0.1	0.5
150	8/1/2023	12:38:23	0.1	0.5
151	8/1/2023	12:39:23	0.1	0.5
152	8/1/2023		0.1	0.5
153	8/1/2023		0.1	0.5
154	8/1/2023		0.1	0.5
155	8/1/2023	12:43:23	0.1	0.5
156	8/1/2023	12:44:23	0.1	0.5
157	8/1/2023	12:45:23	0.1	0.4
158	8/1/2023		0.1	0.4
				0.4
159	8/1/2023		0.1	
160	8/1/2023		0.1	0.4
161	8/1/2023	12:49:23	0.1	0.4
162	8/1/2023	12:50:23	0.1	0.4
163		12:51:23	0.1	0.4
		12:52:23	0.1	0.4
164				
165		12:53:23	0.1	0.4
166	8/1/2023	12:54:23	0.1	0.4
167	8/1/2023	12:55:23	0.1	0.4
168	8/1/2023	12:56:23	0.1	0.4
169	8/1/2023	12:57:23	0.1	0.4
170	8/1/2023	12:58:23	0.1	0.4
171	8/1/2023		0.1	0.4
172	8/1/2023	13:00:23	0.1	0.4
173	8/1/2023	13:01:23	0.1	0.4

Downwind

```
23/08/01 09:22
*********************
Summary
Unit Name MiniRAE 3000(PGM-7320)
Unit SN 592-926583
Unit Firmware Ver
                    V2.16
Running Mode
             Hygiene Mode
Datalog Mode
             Auto
Diagnostic Mode No
Stop Reason
             Power Down
Site ID RAE00000
User ID USER0000
Begin 8/1/2023 9:22
End 8/1/2023 12:06
Sample Period(s)
                    60
Number of Records
                    165
Sensor PID(ppm)
Sensor SN
             S023030275V9
Measure Type
             Avg
Span
      100
Span 2 1000
Low Alarm
             50
High Alarm
             100
Over Alarm
             15000
STEL Alarm
             25
TWA Alarm
             10
Measurement Gas Isobutylene
Calibration Time 6/27/2023 10:28
Peak
Min
Average 0
*********************
Datalog
             PID(ppm)
                           PID(ppm)
                                         PID(ppm)
Index
      Date/Time (Avg)
                           (Max) (Real)
```

1	8/1/2023	9:22	0	0	0
2	8/1/2023	9:23	0	0	0
3	8/1/2023	9:24	0	0	0
4	8/1/2023	9:25	0	0	0
5	8/1/2023	9:26	0	0	0
6	8/1/2023	9:27	0	0	0
7	8/1/2023	9:28	0	0	0
8	8/1/2023	9:29	0	0	0
9	8/1/2023	9:30	0	0	0
10	8/1/2023	9:31	0	0	0
11	8/1/2023	9:32	0	0	0
12	8/1/2023		0	0	0
13	8/1/2023		0	0	0
14	8/1/2023		0	0	0
15	8/1/2023	9:36	0	0	0
16	8/1/2023	9:37	0	0	0
17	8/1/2023	9:38	0	0	0
18	8/1/2023	9:39	0	0	0
19	8/1/2023	9:40	0	0	0
20	8/1/2023	9:41	0	0	0
21	8/1/2023	9:42	0	0	0
22	8/1/2023	9:43	0	0	0
23	8/1/2023	9:44	0	0	0
24	8/1/2023	9:45	0	0	0
25	8/1/2023	9:46	0	0	0
26	8/1/2023	9:47	0	0	0
27	8/1/2023	9:48	0	0	0
28	8/1/2023		0	0	0
29	8/1/2023	9:50	0	0	0
30	8/1/2023	9:51	0	0	0
31	8/1/2023	9:52	0	0	0
32	8/1/2023	9:53	0	0	0
33	8/1/2023	9:54	0	0	0
34	8/1/2023	9:55	0	0	0
35	8/1/2023		0	0	0
36	8/1/2023		0	0	0
37	8/1/2023	9:58	0	0	0
38	8/1/2023	9:59	0	0	0
39	8/1/2023	10:00	0	0	0
40	8/1/2023	10:01	0	0	0
41	8/1/2023	10:02	0	0	0
42	8/1/2023	10:03	0	0	0
43	8/1/2023	10:04	0	0	0
44	8/1/2023	10:05	0	0	0
45	8/1/2023	10:06	0	0	0
46	8/1/2023	10:07	0	0	0
47	8/1/2023	10:08	0	0	0
48	8/1/2023	10:09	0	0	0
49	8/1/2023		0	0	0
50	8/1/2023	10:10	0	0	0
50	0, 1, 2023	-0.11	5	J	J

51	8/1/2023	10:12	0	0	0
52	8/1/2023	10:13	0	0	0
53	8/1/2023	10:14	0	0	0
54	8/1/2023	10:15	0	0	0
55	8/1/2023	10:16	0	0	0
56	8/1/2023	10:17	0	0	0
57	8/1/2023	10:18	0	0	0
58	8/1/2023	10:19	0	0	0
59	8/1/2023	10:20	0	0	0
60	8/1/2023	10:21	0	0	0
61	8/1/2023	10:22	0	0	0
62	8/1/2023	10:23	0	0	0
63	8/1/2023	10:24	0	0	0
64	8/1/2023	10:25	0	0	0
65	8/1/2023	10:26	0	0	0
66	8/1/2023	10:27	0	0	0
67	8/1/2023	10:28	0	0	0
68	8/1/2023	10:29	0	0	0
69	8/1/2023	10:30	0	0	0
70	8/1/2023	10:31	0	0	0
71	8/1/2023	10:32	0	0	0
72	8/1/2023	10:33	0	0	0
73	8/1/2023	10:34	0	0	0
74	8/1/2023	10:35	0	0	0
75	8/1/2023	10:36	0	0	0
76	8/1/2023	10:37	0	0	0
77	8/1/2023	10:38	0	0	0
78	8/1/2023	10:39	0	0	0
79	8/1/2023	10:40	0	0	0
80	8/1/2023	10:41	0	0	0
81	8/1/2023	10:42	0	0	0
82	8/1/2023	10:43	0	0	0
83	8/1/2023	10:44	0	0	0
84	8/1/2023	10:45	0	0	0
85	8/1/2023	10:46	0	0	0
86	8/1/2023	10:47	0	0	0
87	8/1/2023	10:48	0	0	0
88	8/1/2023	10:49	0	0	0
89	8/1/2023	10:50	0	0	0
90	8/1/2023	10:51	0	0	0
91	8/1/2023	10:52	0	0	0
92	8/1/2023	10:53	0	0	0
93	8/1/2023	10:54	0	0	0
94	8/1/2023	10:55	0	0	0
95	8/1/2023	10:56	0	0	0
96	8/1/2023	10:57	0	0	0
97	8/1/2023	10:58	0	0	0
98	8/1/2023	10:59	0	0	0
99	8/1/2023		0	0	0
100	8/1/2023	11:01	0	0	0

101	8/1/2023	11:02	0	0	0
102	8/1/2023	11:03	0	0	0
103	8/1/2023	11:04	0	0	0
104	8/1/2023	11:05	0	0	0
105	8/1/2023	11:06	0	0	0
106	8/1/2023	11:07	0	0	0
107	8/1/2023	11:08	0	0	0
108	8/1/2023	11:09	0	0	0
109	8/1/2023	11:10	0	0	0
110	8/1/2023	11:11	0	0	0
111	8/1/2023	11:12	0	0	0
112	8/1/2023	11:13	0	0	0
113	8/1/2023	11:14	0	0	0
114	8/1/2023		0	0	0
115	8/1/2023		0	0	0
116	8/1/2023		0	0	0
117	8/1/2023	11:18	0	0	0
118	8/1/2023	11:19	0	0	0
119	8/1/2023	11:20	0	0	0
120	8/1/2023	11:21	0	0	0
121	8/1/2023	11:22	0	0	0
121	8/1/2023	11:23	0	0	0
123	8/1/2023		0	0	0
123			0	0	
	8/1/2023	11:25			0
125	8/1/2023	11:26	0	0	0
126	8/1/2023	11:27	0	0	0
127	8/1/2023	11:28	0	0	0
128	8/1/2023		0	0	0
129	8/1/2023		0	0	0
130	8/1/2023		0	0	0
131	8/1/2023	11:32	0	0	0
132	8/1/2023	11:33	0	0	0
133	8/1/2023	11:34	0	0	0
134	8/1/2023	11:35	0	0	0
135	8/1/2023		0	0	0
136	8/1/2023		0	0	0
137	8/1/2023		0	0	0
138	8/1/2023		0	0	0
139	8/1/2023		0	0	0
140	8/1/2023		0	0	0
141	8/1/2023	11:42	0	0	0
142	8/1/2023	11:43	0	0	0
143	8/1/2023	11:44	0	0	0
144	8/1/2023	11:45	0	0	0
145	8/1/2023	11:46	0	0	0
146	8/1/2023	11:47	0	0	0
147	8/1/2023	11:48	0	0	0
148	8/1/2023	11:49	0	0	0
149	8/1/2023		0	0	0
150	8/1/2023	11:51	0	0	0

151	8/1/2023	11:52	0	0	0
152	8/1/2023	11:53	0	0	0
153	8/1/2023	11:54	0	0	0
154	8/1/2023	11:55	0	0	0
155	8/1/2023	11:56	0	0	0
156	8/1/2023	11:57	0	0	0
157	8/1/2023	11:58	0	0	0
158	8/1/2023	11:59	0	0	0
159	8/1/2023	12:00	0	0	0
160	8/1/2023	12:01	0	0	0
161	8/1/2023	12:02	0	0	0
162	8/1/2023	12:03	0	0	0
163	8/1/2023	12:04	0	0	0
164	8/1/2023	12:05	0	0	0
165	8/1/2023	12:06	0	0	0
Peak	e)	0	0	
Min	e)	0	0	
Average	e)	0	0	

TWA/STEL

IWA/SIE	L.			
	F	PID(ppm)	PID(ppm)
Index	Date/Time		(TWA)	(STEL)
1	8/1/2023	9:22	0	
2	8/1/2023	9:23	0	
3	8/1/2023	9:24	0	
4	8/1/2023	9:25	0	
5	8/1/2023	9:26	0	
6	8/1/2023	9:27	0	
7	8/1/2023	9:28	0	
8	8/1/2023	9:29	0	
9	8/1/2023	9:30	0	
10	8/1/2023	9:31	0	
11	8/1/2023	9:32	0	
12	8/1/2023	9:33	0	
13	8/1/2023	9:34	0	
14	8/1/2023	9:35	0	
15	8/1/2023	9:36	0	0
16	8/1/2023	9:37	0	0
17	8/1/2023	9:38	0	0
18	8/1/2023	9:39	0	0
19	8/1/2023	9:40	0	0
20	8/1/2023	9:41	0	0
21	8/1/2023	9:42	0	0
22	8/1/2023	9:43	0	0
23	8/1/2023	9:44	0	0
24	8/1/2023	9:45	0	0
25	8/1/2023	9:46	0	0
26	8/1/2023	9:47	0	0

27	8/1/2023	9:48	0	0
28	8/1/2023	9:49	0	0
29	8/1/2023	9:50	0	0
30	8/1/2023	9:51	0	0
31	8/1/2023	9:52	0	0
32	8/1/2023	9:53	0	0
33	8/1/2023	9:54	0	0
34	8/1/2023	9:55	0	0
35	8/1/2023		0	0
36	8/1/2023		0	0
37	8/1/2023		0	0
38	8/1/2023		0	0
39	8/1/2023	10:00	0	0
40	8/1/2023	10:01	0	0
41	8/1/2023	10:02	0	0
42	8/1/2023	10:03	0	0
43	8/1/2023	10:04	0	0
44	8/1/2023	10:05	0	0
45	8/1/2023	10:05	0	0
46	8/1/2023	10:07	0	0
47				
	8/1/2023	10:08	0	0
48	8/1/2023	10:09	0	0
49	8/1/2023	10:10	0	0
50	8/1/2023		0	0
51	8/1/2023		0	0
52	8/1/2023	10:13	0	0
53	8/1/2023	10:14	0	0
54	8/1/2023	10:15	0	0
55	8/1/2023	10:16	0	0
56	8/1/2023	10:17	0	0
57	8/1/2023	10:18	0	0
58	8/1/2023	10:19	0	0
59	8/1/2023	10:20	0	0
60	8/1/2023	10:21	0	0
61	8/1/2023	10:22	0	0
62	8/1/2023	10:23	0	0
63	8/1/2023	10:24	0	0
64	8/1/2023	10:25	0	0
65	8/1/2023	10:26	0	0
66	8/1/2023	10:27	0	0
67	8/1/2023	10:28	0	0
68	8/1/2023	10:29	0	0
69	8/1/2023	10:30	0	0
70	8/1/2023	10:31	0	0
71	8/1/2023	10:32	0	0
72	8/1/2023	10:33	0	0
73	8/1/2023	10:34	0	0
74	8/1/2023	10:35	0	0
75	8/1/2023	10:36	0	0
76	8/1/2023	10:37	0	0
	-			

77	8/1/2023	10:38	0	0
78	8/1/2023	10:39	0	0
79	8/1/2023	10:40	0	0
80	8/1/2023	10:41	0	0
81	8/1/2023	10:42	0	0
82	8/1/2023	10:43	0	0
83	8/1/2023	10:44	0	0
84	8/1/2023	10:45	0	0
85	8/1/2023	10:46	0	0
86	8/1/2023	10:47	0	0
87	8/1/2023	10:48	0	0
88	8/1/2023	10:49	0	0
89	8/1/2023	10:50	0	0
90	8/1/2023	10:51	0	0
91	8/1/2023	10:52	0	0
92	8/1/2023	10:53	0	0
93	8/1/2023	10:54	0	0
94	8/1/2023	10:55	0	0
95	8/1/2023	10:56	0	0
96	8/1/2023	10:57	0	0
97	8/1/2023	10:58	0	0
98	8/1/2023	10:59	0	0
99	8/1/2023	11:00	0	0
100	8/1/2023	11:01	0	0
101	8/1/2023	11:02	0	0
102	8/1/2023	11:03	0	0
103	8/1/2023	11:04	0	0
104	8/1/2023	11:05	0	0
105	8/1/2023	11:06	0	0
106	8/1/2023	11:07	0	0
107	8/1/2023	11:08	0	0
108	8/1/2023	11:09	0	0
109	8/1/2023	11:10	0	0
110	8/1/2023	11:11	0	0
111	8/1/2023	11:12	0	0
112	8/1/2023		0	0
113	8/1/2023	11:14	0	0
114	8/1/2023	11:15	0	0
115	8/1/2023	11:16	0	0
116	8/1/2023	11:17	0	0
117	8/1/2023	11:18	0	0
118	8/1/2023	11:19	0	0
119	8/1/2023	11:20	0	0
120	8/1/2023	11:21	0	0
121	8/1/2023	11:22	0	0
122	8/1/2023	11:23	0	0
123	8/1/2023	11:24	0	0
124	8/1/2023	11:25	0	0
125	8/1/2023	11:26	0	0
126	8/1/2023	11:27	0	0
-	, , ====		-	-

127	8/1/2023 11:28	0	0
128	8/1/2023 11:29	0	0
129	8/1/2023 11:30	0	0
130	8/1/2023 11:31	0	0
131	8/1/2023 11:32	0	0
132	8/1/2023 11:33	0	0
133	8/1/2023 11:34	0	0
134	8/1/2023 11:35	0	0
135	8/1/2023 11:36	0	0
136	8/1/2023 11:37	0	0
137	8/1/2023 11:38	0	0
138	8/1/2023 11:39	0	0
139	8/1/2023 11:39	0	0
140	8/1/2023 11:41	0	0
141	8/1/2023 11:42	0	0
141	8/1/2023 11:42		0
		0	
143	8/1/2023 11:44	0	0
144	8/1/2023 11:45	0	0
145	8/1/2023 11:46	0	0
146	8/1/2023 11:47	0	0
147	8/1/2023 11:48	0	0
148	8/1/2023 11:49	0	0
149	8/1/2023 11:50	0	0
150	8/1/2023 11:51	0	0
151	8/1/2023 11:52	0	0
152	8/1/2023 11:53	0	0
153	8/1/2023 11:54	0	0
154	8/1/2023 11:55	0	0
155	8/1/2023 11:56	0	0
156	8/1/2023 11:57	0	0
157	8/1/2023 11:58	0	0
158	8/1/2023 11:59	0	0
159	8/1/2023 12:00	0	0
160	8/1/2023 12:01	0	0
161	8/1/2023 12:02	0	0
162	8/1/2023 12:03	0	0
163	8/1/2023 12:04	0	0
164	8/1/2023 12:05	0	0
165	8/1/2023 12:06	0	0


```
______
23/08/01 09:29
**********************
Unit Name
              MiniRAE 3000 + (PGM-7320)
Unit SN 592-603121
Unit Firmware Ver
                     V2.22A
Running Mode
              Hygiene Mode
Datalog Mode
              Auto
Diagnostic Mode No
Stop Reason
              Power Down
Site ID 12345678
User ID 12345678
       8/1/2023 09:29:19
Begin
End
       8/1/2023 14:30:49
Sample Period(s)
                     60
Number of Records
                     301
Sensor PID(ppm)
Sensor SN
              S023030119D2
Measure Type
              Avg; Max; Real
       100.0
Span
Span 2 1000.0
Low Alarm
              50.0
High Alarm
              100.0
Over Alarm
              15000.0
STEL Alarm
              100.0
TWA Alarm
              50.0
Measurement Gas Isobutylene
Calibration Time
                  7/25/2023 15:15
Peak
       0.2
Min
       0.0
Average 0.1
*********************
Datalog
              PID(ppm)
                            PID(ppm)
                                           PID(ppm)
Index
       Date/Time
                             (Max)
                                    (Real)
001
       8/1/2023 09:30:19
                            0.0
                                    0.0
                                           0.0
002
       8/1/2023 09:31:19
                            0.0
                                    0.0
                                           0.0
003
       8/1/2023 09:32:19
                            0.0
                                    0.0
                                           0.0
                                    0.0
004
       8/1/2023 09:33:19
                            0.0
                                           0.0
                            0.0
                                    0.0
005
       8/1/2023 09:34:19
                                           0.0
006
       8/1/2023 09:35:19
                            0.0
                                    0.0
                                           0.0
007
                            0.0
                                    0.0
       8/1/2023 09:36:19
                                           0.0
800
       8/1/2023 09:37:19
                            0.0
                                    0.0
                                           0.0
```

009	8/1/2023 09:38:19	0.0	0.0	0.0
010	8/1/2023 09:39:19	0.0	0.0	0.0
011	8/1/2023 09:40:19	0.0	0.0	0.0
012	8/1/2023 09:41:19	0.0	0.0	0.0
013	8/1/2023 09:42:19	0.0	0.0	0.0
014	8/1/2023 09:43:19	0.0	0.0	0.0
015	8/1/2023 09:44:19	0.0	0.0	0.0
016	8/1/2023 09:45:19	0.0	0.0	0.0
017	8/1/2023 09:46:19	0.0	0.0	0.0
018	8/1/2023 09:47:19	0.0	0.0	0.0
019	8/1/2023 09:48:19	0.0	0.0	0.0
020	8/1/2023 09:49:19	0.0	0.0	0.0
021	8/1/2023 09:50:19	0.0	0.0	0.0
022	8/1/2023 09:51:19	0.0	0.0	0.0
023	8/1/2023 09:52:19	0.0	0.0	0.0
024	8/1/2023 09:53:19	0.0	0.0	0.0
025	8/1/2023 09:54:19	0.0	0.0	0.0
025	8/1/2023 09:55:19	0.0	0.0	0.0
027	8/1/2023 09:56:19	0.0	0.0	0.0
028	8/1/2023 09:57:19	0.0	0.0	0.0
028	8/1/2023 09:58:19	0.0	0.0	0.0
030	8/1/2023 09:59:19	0.0	0.0	0.0
	• •	0.0		
031	8/1/2023 10:00:19		0.0	0.0
032	8/1/2023 10:01:19	0.0	0.0	0.0
033	8/1/2023 10:02:19	0.0	0.0	0.0
034	8/1/2023 10:03:19	0.0	0.0	0.0
035	8/1/2023 10:04:19	0.0	0.0	0.0
036	8/1/2023 10:05:19	0.0	0.0	0.0
037	8/1/2023 10:06:19	0.0	0.0	0.0
038	8/1/2023 10:07:19	0.0	0.0	0.0
039	8/1/2023 10:08:19	0.0	0.0	0.0
040	8/1/2023 10:09:19	0.0	0.1	0.0
041	8/1/2023 10:10:19	0.0	0.1	0.0
042	8/1/2023 10:11:19	0.1	0.1	0.1
043	8/1/2023 10:12:19	0.1	0.1	0.1
044	8/1/2023 10:13:19	0.1	0.1	0.1
045	8/1/2023 10:14:19	0.1	0.1	0.1
046	8/1/2023 10:15:19	0.1	0.1	0.1
047	8/1/2023 10:16:19	0.1	0.1	0.1
048	8/1/2023 10:17:19	0.1	0.1	0.1
049	8/1/2023 10:18:19	0.1	0.1	0.1
050	8/1/2023 10:19:19	0.1	0.1	0.1
051	8/1/2023 10:20:19	0.1	0.1	0.1
052	8/1/2023 10:21:19	0.1	0.1	0.1
053	8/1/2023 10:22:19	0.1	0.1	0.1
054	8/1/2023 10:23:19	0.1	0.1	0.1
055	8/1/2023 10:24:19	0.1	0.1	0.1
056	8/1/2023 10:25:19	0.1	0.1	0.1
057	8/1/2023 10:26:19	0.1	0.1	0.1
058	8/1/2023 10:27:19	0.1	0.1	0.1

059	8/1/2023	10:28:19	0.1	0.1	0.1
060	8/1/2023	10:29:19	0.1	0.2	0.1
061	8/1/2023	10:30:19	0.1	0.1	0.1
062	8/1/2023	10:31:19	0.1	0.1	0.1
063	8/1/2023	10:32:19	0.1	0.1	0.1
064	8/1/2023	10:33:19	0.1	0.1	0.1
065	8/1/2023	10:34:19	0.1	0.1	0.1
066		10:35:19	0.1	0.1	0.1
067		10:36:19	0.1	0.1	0.1
068	8/1/2023	10:37:19	0.1	0.1	0.1
069	8/1/2023	10:38:19	0.1	0.1	0.1
070	8/1/2023	10:39:19	0.1	0.2	0.2
071	8/1/2023	10:40:19	0.1	0.2	0.1
072	8/1/2023	10:41:19	0.1	0.2	0.2
073	8/1/2023	10:42:19	0.2	0.2	0.2
074	8/1/2023	10:43:19	0.2	0.2	0.2
075	8/1/2023	10:44:19	0.2	0.2	0.2
076	8/1/2023	10:45:19	0.2	0.2	0.2
077	8/1/2023	10:46:19	0.2	0.2	0.2
078	8/1/2023	10:47:19	0.2	0.2	0.2
079	8/1/2023	10:48:19	0.2	0.2	0.2
080	8/1/2023	10:49:19	0.2	0.2	0.2
081	8/1/2023	10:50:19	0.2	0.2	0.2
082	8/1/2023	10:51:19	0.2	0.2	0.2
083	8/1/2023	10:52:19	0.2	0.2	0.2
084	8/1/2023	10:53:19	0.2	0.2	0.2
085	8/1/2023	10:54:19	0.2	0.2	0.2
086	8/1/2023	10:55:19	0.2	0.2	0.2
087	8/1/2023	10:56:19	0.2	0.2	0.2
088	8/1/2023	10:57:19	0.2	0.2	0.2
089	8/1/2023	10:58:19	0.2	0.2	0.2
090	8/1/2023	10:59:19	0.2	0.2	0.2
091	8/1/2023	11:00:19	0.2	0.2	0.2
092	8/1/2023	11:01:19	0.2	0.2	0.2
093	8/1/2023	11:02:19	0.2	0.2	0.2
094	8/1/2023	11:03:19	0.2	0.2	0.2
095	8/1/2023	11:04:19	0.2	0.2	0.2
096	8/1/2023	11:05:19	0.2	0.2	0.2
097	8/1/2023	11:06:19	0.2	0.2	0.2
098	8/1/2023	11:07:19	0.2	0.2	0.2
099	8/1/2023	11:08:19	0.2	0.2	0.2
100	8/1/2023	11:09:19	0.2	0.2	0.2
101	8/1/2023	11:10:19	0.2	0.2	0.2
102	8/1/2023	11:11:19	0.2	0.2	0.2
103	8/1/2023	11:12:19	0.2	0.2	0.2
104	8/1/2023	11:13:19	0.2	0.2	0.2
105	8/1/2023	11:14:19	0.2	0.2	0.2
106	8/1/2023	11:15:19	0.2	0.2	0.2
107	8/1/2023	11:16:19	0.2	0.2	0.2
108	8/1/2023	11:17:19	0.2	0.2	0.2

109	8/1/2023	11:18:19	0.2	0.2	0.2
110	8/1/2023	11:19:19	0.2	0.2	0.2
111		11:20:19	0.2	0.2	0.2
112		11:21:19	0.2	0.2	0.2
113		11:22:19	0.2	0.2	0.2
114		11:23:19	0.2	0.2	0.2
115	8/1/2023	11:24:19	0.2	0.2	0.2
116		11:25:19	0.2	0.2	0.2
117		11:26:19	0.2	0.2	0.2
118		11:27:19	0.2	0.2	0.2
119		11:28:19	0.2	0.2	0.2
120		11:29:19	0.2	0.2	0.2
121		11:30:19	0.2	0.2	0.2
122		11:31:19	0.2	0.2	0.2
123		11:32:19	0.2	0.2	0.2
124		11:33:19	0.2	0.2	0.2
125		11:34:19	0.2	0.2	0.2
126		11:35:19	0.2	0.2	0.2
127		11:36:19	0.2	0.2	0.2
128		11:37:19	0.2	0.2	0.2
129		11:38:19	0.2	0.2	0.2
130		11:39:19	0.2	0.2	0.2
131		11:40:19	0.2	0.2	0.2
132		11:41:19	0.2	0.2	0.2
133		11:42:19	0.2	0.2	0.2
134		11:43:19	0.2	0.2	0.2
135		11:44:19	0.2	0.2	0.2
136		11:45:19	0.2	0.2	0.2
137		11:46:19	0.2	0.2	0.2
138		11:47:19	0.2	0.2	0.2
139		11:48:19	0.2	0.2	0.2
140		11:49:19	0.2	0.2	0.2
141		11:50:19	0.2	0.2	0.2
142		11:51:19	0.2	0.2	0.2
143		11:52:19	0.2	0.2	0.2
144		11:53:19	0.2	0.2	0.2
145		11:54:19	0.2	0.2	0.2
146		11:55:19	0.2	0.2	0.2
147		11:56:19	0.2	0.2	0.2
148		11:57:19	0.2	0.2	0.2
149		11:58:19	0.2	0.2	0.2
150		11:59:19	0.2	0.2	0.2
151		12:00:19	0.2	0.2	0.2
152		12:01:19	0.2	0.2	0.2
153		12:02:19	0.2	0.2	0.2
154		12:03:19	0.2	0.2	0.2
155		12:04:19	0.2	0.2	0.2
156		12:05:19	0.2	0.2	0.2
157		12:06:19	0.2	0.2	0.2
158	8/1/2023	12:07:19	0.2	0.2	0.2

159	8/1/2023	12:08:19	0.2	0.2	0.2
160	8/1/2023	12:09:19	0.2	0.2	0.2
161	8/1/2023	12:10:19	0.2	0.2	0.2
162	8/1/2023	12:11:19	0.2	0.2	0.2
163	8/1/2023	12:12:19	0.2	0.2	0.2
164	8/1/2023	12:13:19	0.2	0.2	0.2
165	8/1/2023	12:14:19	0.2	0.2	0.2
166	8/1/2023	12:15:19	0.2	0.2	0.2
167	8/1/2023	12:16:19	0.2	0.2	0.2
168	8/1/2023	12:17:19	0.2	0.2	0.2
169	8/1/2023	12:18:19	0.2	0.2	0.2
170	8/1/2023	12:19:19	0.2	0.2	0.2
171	8/1/2023	12:20:19	0.2	0.2	0.2
172	8/1/2023	12:21:19	0.2	0.2	0.2
173	8/1/2023	12:22:19	0.2	0.2	0.2
174	8/1/2023	12:23:19	0.2	0.2	0.2
175	8/1/2023	12:24:19	0.2	0.2	0.2
176	8/1/2023	12:25:19	0.2	0.2	0.2
177	8/1/2023	12:26:19	0.2	0.2	0.2
178	8/1/2023	12:27:19	0.2	0.2	0.2
179	8/1/2023	12:28:19	0.2	0.2	0.2
180	8/1/2023	12:29:19	0.2	0.2	0.2
181	8/1/2023	12:30:19	0.2	0.2	0.2
182	8/1/2023	12:31:19	0.2	0.2	0.2
183	8/1/2023	12:32:19	0.2	0.2	0.2
184	8/1/2023	12:33:19	0.2	0.2	0.2
185	8/1/2023	12:34:19	0.2	0.2	0.2
186	8/1/2023	12:35:19	0.2	0.2	0.2
187	8/1/2023	12:36:19	0.2	0.2	0.2
188	8/1/2023	12:37:19	0.2	0.2	0.2
189	8/1/2023	12:38:19	0.2	0.2	0.2
190	8/1/2023	12:39:19	0.2	0.2	0.2
191	8/1/2023	12:40:19	0.2	0.2	0.2
192	8/1/2023	12:41:19	0.2	0.2	0.2
193	8/1/2023	12:42:19	0.2	0.2	0.2
194	8/1/2023	12:43:19	0.2	0.2	0.2
195	8/1/2023	12:44:19	0.2	0.2	0.2
196	8/1/2023	12:45:19	0.2	0.2	0.2
197	8/1/2023	12:46:19	0.2	0.2	0.2
198	8/1/2023	12:47:19	0.2	0.2	0.2
199	8/1/2023	12:48:19	0.2	0.2	0.2
200		12:49:19	0.2	0.2	0.2
201	8/1/2023	12:50:19	0.2	0.2	0.2
202	8/1/2023	12:51:19	0.2	0.2	0.2
203	8/1/2023	12:52:19	0.2	0.2	0.2
204		12:53:19	0.2	0.2	0.2
205		12:54:19	0.2	0.2	0.2
206		12:55:19	0.2	0.2	0.2
207		12:56:19	0.2	0.2	0.2
208		12:57:19	0.2	0.2	0.2

209	8/1/2023	12:58:19	0.2	0.2	0.2
210	8/1/2023	12:59:19	0.2	0.2	0.2
211	8/1/2023	13:00:19	0.2	0.2	0.2
212	8/1/2023	13:01:19	0.2	0.2	0.2
213	8/1/2023	13:02:19	0.2	0.2	0.2
214	8/1/2023	13:03:19	0.2	0.2	0.2
215	8/1/2023	13:04:19	0.2	0.2	0.2
216	8/1/2023	13:05:19	0.2	0.2	0.2
217	8/1/2023	13:06:19	0.2	0.2	0.2
218	8/1/2023	13:07:19	0.2	0.2	0.2
219	8/1/2023	13:08:19	0.2	0.2	0.2
220	8/1/2023	13:09:19	0.2	0.2	0.2
221	8/1/2023	13:10:19	0.2	0.2	0.2
222	8/1/2023	13:11:19	0.2	0.2	0.2
223	8/1/2023	13:12:19	0.2	0.2	0.2
224	8/1/2023	13:13:19	0.2	0.3	0.2
225	8/1/2023	13:14:19	0.2	0.2	0.2
226	8/1/2023	13:15:19	0.2	0.2	0.2
227	8/1/2023	13:16:19	0.2	0.2	0.2
228	8/1/2023	13:17:19	0.2	0.2	0.2
229	8/1/2023	13:18:19	0.2	0.2	0.2
230	8/1/2023	13:19:19	0.2	0.2	0.2
231	8/1/2023	13:20:19	0.2	0.2	0.2
232	8/1/2023	13:21:19	0.2	0.2	0.2
233	8/1/2023	13:22:19	0.2	0.2	0.2
234	8/1/2023	13:23:19	0.2	0.2	0.2
235	8/1/2023	13:24:19	0.2	0.2	0.2
236	8/1/2023	13:25:19	0.2	0.2	0.2
237	8/1/2023	13:26:19	0.2	0.2	0.2
238	8/1/2023	13:27:19	0.2	0.2	0.2
239	8/1/2023	13:28:19	0.2	0.2	0.2
240	8/1/2023	13:29:19	0.2	0.2	0.2
241	8/1/2023	13:30:19	0.2	0.2	0.2
242	8/1/2023	13:31:19	0.2	0.2	0.2
243	8/1/2023	13:32:19	0.2	0.2	0.2
244	8/1/2023	13:33:19	0.2	0.2	0.2
245	8/1/2023	13:34:19	0.2	0.2	0.2
246	8/1/2023	13:35:19	0.2	0.2	0.2
247	8/1/2023	13:36:19	0.2	0.2	0.2
248	8/1/2023	13:37:19	0.2	0.2	0.2
249	8/1/2023	13:38:19	0.2	0.2	0.2
250		13:39:19	0.2	0.2	0.2
251	8/1/2023	13:40:19	0.2	0.2	0.2
252	8/1/2023	13:41:19	0.2	0.2	0.2
253	8/1/2023	13:42:19	0.1	0.2	0.2
254		13:43:19	0.1	0.2	0.1
255		13:44:19	0.1	0.1	0.1
256		13:45:19	0.1	0.1	0.1
257		13:46:19	0.1	0.1	0.1
258		13:47:19	0.1	0.1	0.1

259	8/1/2023	13:48:	19	0.1	0.1	0.1
260	8/1/2023	13:49:	19	0.1	0.1	0.1
261	8/1/2023			0.1	0.1	0.1
262	8/1/2023			0.1	0.1	0.1
263	8/1/2023	13:52:	19	0.1	0.1	0.1
264	8/1/2023	13:53:	19	0.1	0.1	0.1
265	8/1/2023	13:54:	19	0.1	0.1	0.1
266	8/1/2023			0.1	0.1	0.1
267	8/1/2023			0.1	0.1	0.1
268	8/1/2023	13:57:	19	0.1	0.1	0.1
269	8/1/2023	13:58:	19	0.1	0.1	0.1
270	8/1/2023	13:59:	19	0.1	0.1	0.1
271	8/1/2023			0.1	0.1	0.1
272	8/1/2023			0.1	0.1	0.1
273	8/1/2023			0.1	0.1	0.1
274	8/1/2023	14:03:	19	0.1	0.1	0.1
275	8/1/2023	14:04:	19	0.1	0.1	0.1
276	8/1/2023	14:05:	19	0.1	0.1	0.1
277	8/1/2023			0.1	0.1	0.1
278	8/1/2023			0.1	0.1	0.1
279	8/1/2023			0.1	0.1	0.1
280	8/1/2023	14:09:	19	0.1	0.1	0.1
281	8/1/2023	14:10:	19	0.1	0.1	0.1
282	8/1/2023			0.1	0.1	0.1
283	8/1/2023			0.1	0.1	0.1
284	8/1/2023			0.1	0.1	0.1
285	8/1/2023			0.1	0.2	0.1
286	8/1/2023	14:15:	19	0.1	0.2	0.1
287	8/1/2023	14:16:	19	0.1	0.1	0.1
288	8/1/2023	14:17:	19	0.1	0.1	0.1
289	8/1/2023			0.1	0.1	0.1
290	8/1/2023			0.1	0.1	0.1
291	8/1/2023			0.1	0.1	0.1
292	8/1/2023	14:21:	19	0.1	0.1	0.1
293	8/1/2023	14:22:	19	0.1	0.1	0.1
294	8/1/2023			0.1	0.1	0.1
295	8/1/2023			0.1	0.2	0.1
	8/1/2023			0.1		
296					0.1	0.1
297	8/1/2023			0.1	0.1	0.1
298	8/1/2023	14:27:	19	0.1	0.1	0.1
299	8/1/2023	14:28:	19	0.1	0.1	0.1
300	8/1/2023			0.1	0.1	0.1
301	8/1/2023			0.1	0.1	0.1
Peak		3.2		0.2	J.1	U.1
			0.3			
Min		0.0	0.0	0.0		
Average	(ð.1	0.2	0.1		

TWA/STEL

PID(ppm) PID(ppm)

Index	Date/Time	(TWA)	(STEL)	
001		09:30:19	0.0	
002	8/1/2023		0.0	
003	8/1/2023		0.0	
004	8/1/2023	09:33:19	0.0	
005	8/1/2023	09:34:19	0.0	
006	8/1/2023	09:35:19	0.0	
007	8/1/2023	09:36:19	0.0	
008	8/1/2023	09:37:19	0.0	
009	8/1/2023	09:38:19	0.0	
010	8/1/2023	09:39:19	0.0	
011	8/1/2023	09:40:19	0.0	
012	8/1/2023	09:41:19	0.0	
013	8/1/2023		0.0	
014	8/1/2023		0.0	
015	8/1/2023		0.0	0.0
016	8/1/2023	09:45:19	0.0	0.0
017	8/1/2023	09:46:19	0.0	0.0
018	8/1/2023	09:47:19	0.0	0.0
019	8/1/2023	09:48:19	0.0	0.0
020	8/1/2023	09:49:19	0.0	0.0
021	8/1/2023	09:50:19	0.0	0.0
022	8/1/2023	09:51:19	0.0	0.0
023	8/1/2023	09:52:19	0.0	0.0
024	8/1/2023	09:53:19	0.0	0.0
025	8/1/2023	09:54:19	0.0	0.0
026	8/1/2023	09:55:19	0.0	0.0
027	8/1/2023	09:56:19	0.0	0.0
028	8/1/2023	09:57:19	0.0	0.0
029	8/1/2023	09:58:19	0.0	0.0
030	8/1/2023	09:59:19	0.0	0.0
031	8/1/2023	10:00:19	0.0	0.0
032	8/1/2023	10:01:19	0.0	0.0
033	8/1/2023	10:02:19	0.0	0.0
034	8/1/2023	10:03:19	0.0	0.0
035	8/1/2023	10:04:19	0.0	0.0
036	8/1/2023	10:05:19	0.0	0.0
037	8/1/2023	10:06:19	0.0	0.0
038	8/1/2023	10:07:19	0.0	0.0
039	8/1/2023	10:08:19	0.0	0.0
040	8/1/2023	10:09:19	0.0	0.0
041	8/1/2023	10:10:19	0.0	0.0
042	8/1/2023	10:11:19	0.0	0.0
043	8/1/2023	10:12:19	0.0	0.0
044	8/1/2023	10:13:19	0.0	0.0
045	8/1/2023	10:14:19	0.0	0.0
046	8/1/2023	10:15:19	0.0	0.0
047	8/1/2023		0.0	0.0
048	8/1/2023		0.0	0.0
049	8/1/2023	10:18:19	0.0	0.1

050	8/1/2023	10:19:19	0.0	0.1
051	8/1/2023	10:20:19	0.0	0.1
052	8/1/2023	10:21:19	0.0	0.1
053	8/1/2023	10:22:19	0.0	0.1
054	8/1/2023	10:23:19	0.0	0.1
055	8/1/2023	10:24:19	0.0	0.1
056	8/1/2023	10:25:19	0.0	0.1
057	8/1/2023	10:26:19	0.0	0.1
058	8/1/2023	10:27:19	0.0	0.1
059	8/1/2023	10:28:19	0.0	0.1
060	8/1/2023	10:29:19	0.0	0.1
061	8/1/2023	10:30:19	0.0	0.1
062	8/1/2023	10:31:19	0.0	0.1
063	8/1/2023	10:32:19	0.0	0.1
064	8/1/2023	10:33:19	0.0	0.1
065	8/1/2023	10:34:19	0.0	0.1
066	8/1/2023	10:35:19	0.0	0.1
067	8/1/2023	10:36:19	0.0	0.1
068	8/1/2023	10:37:19	0.0	0.1
069	8/1/2023	10:38:19	0.0	0.1
070	8/1/2023	10:39:19	0.0	0.1
071	8/1/2023	10:40:19	0.0	0.1
072	8/1/2023	10:41:19	0.0	0.1
073	8/1/2023	10:42:19	0.0	0.1
074	8/1/2023	10:43:19	0.0	0.1
075	8/1/2023	10:44:19	0.0	0.1
076	8/1/2023	10:45:19	0.0	0.1
077	8/1/2023	10:46:19	0.0	0.2
078	8/1/2023	10:47:19	0.0	0.2
079	8/1/2023	10:48:19	0.0	0.2
080	8/1/2023	10:49:19	0.0	0.2
081	8/1/2023	10:50:19	0.0	0.2
082	8/1/2023	10:51:19	0.0	0.2
083	8/1/2023	10:52:19	0.0	0.2
084	8/1/2023	10:53:19	0.0	0.2
085	8/1/2023	10:54:19	0.0	0.2
086	8/1/2023	10:55:19	0.0	0.2
087	8/1/2023	10:56:19	0.0	0.2
880	8/1/2023	10:57:19	0.0	0.2
089	8/1/2023	10:58:19	0.0	0.2
090	8/1/2023	10:59:19	0.0	0.2
091	8/1/2023	11:00:19	0.0	0.2
092	8/1/2023	11:01:19	0.0	0.2
093	8/1/2023	11:02:19	0.0	0.2
094	8/1/2023	11:03:19	0.0	0.2
095	8/1/2023	11:04:19	0.0	0.2
096	8/1/2023	11:05:19	0.0	0.2
097	8/1/2023	11:06:19	0.0	0.2
098	8/1/2023	11:07:19	0.0	0.2
099	8/1/2023	11:08:19	0.0	0.2

100	8/1/2023	11:09:19	0.0	0.2
101	8/1/2023	11:10:19	0.0	0.2
102	8/1/2023	11:11:19	0.0	0.2
103	8/1/2023	11:12:19	0.0	0.2
104	8/1/2023	11:13:19	0.0	0.2
105	8/1/2023		0.0	0.2
106	8/1/2023		0.0	0.2
107	8/1/2023		0.0	0.2
108	8/1/2023		0.0	0.2
109	8/1/2023		0.0	0.2
110	8/1/2023		0.0	0.2
111	8/1/2023		0.0	0.2
112	8/1/2023		0.0	0.2
113	8/1/2023		0.0	0.2
114		11:23:19	0.0	0.2
115	8/1/2023		0.0	0.2
116	8/1/2023		0.0	0.2
117	8/1/2023		0.0	0.2
118	8/1/2023		0.0	0.2
119	8/1/2023		0.0	0.2
120	8/1/2023		0.0	0.2
121	8/1/2023		0.0	0.2
121	8/1/2023		0.0	0.2
123	8/1/2023		0.0	0.2
124	8/1/2023		0.0	0.2
125	8/1/2023		0.0	0.2
126	8/1/2023		0.0	0.2
127	8/1/2023		0.0	0.2
128	8/1/2023		0.0	0.2
129		11:38:19	0.0	0.2
130	8/1/2023		0.0	0.2
131	8/1/2023		0.0	0.2
132	8/1/2023		0.0	0.2
133	8/1/2023		0.0	0.2
134	8/1/2023		0.0	0.2
135	8/1/2023		0.0	0.2
136	8/1/2023		0.0	0.2
137	8/1/2023		0.0	0.2
138	8/1/2023		0.0	0.2
139	8/1/2023		0.0	0.2
140	8/1/2023		0.0	0.2
141	8/1/2023		0.0	0.2
142	8/1/2023		0.0	0.2
143	8/1/2023		0.0	0.2
144	8/1/2023		0.0	0.2
145	8/1/2023		0.0	0.2
146	8/1/2023		0.0	0.2
147	8/1/2023		0.0	0.2
148	8/1/2023		0.0	0.2
149	8/1/2023	11:58:19	0.0	0.2

150	8/1/2023	11:59:19	0.0	0.2
151	8/1/2023	12:00:19	0.0	0.2
152	8/1/2023	12:01:19	0.0	0.2
153	8/1/2023	12:02:19	0.0	0.2
154	8/1/2023	12:03:19	0.0	0.2
155	8/1/2023	12:04:19	0.0	0.2
156	8/1/2023	12:05:19	0.0	0.2
157	8/1/2023	12:06:19	0.0	0.2
158	8/1/2023	12:07:19	0.0	0.2
159	8/1/2023	12:08:19	0.0	0.2
160	8/1/2023	12:09:19	0.0	0.2
161	8/1/2023	12:10:19	0.0	0.2
162	8/1/2023	12:11:19	0.0	0.2
163	8/1/2023	12:12:19	0.0	0.2
164		12:13:19	0.0	0.2
165	8/1/2023		0.0	0.2
166	8/1/2023		0.0	0.2
167	8/1/2023		0.0	0.2
168	8/1/2023		0.0	0.2
169	8/1/2023		0.0	0.2
170	8/1/2023		0.0	0.2
171	8/1/2023		0.0	0.2
172	8/1/2023		0.0	0.2
173	8/1/2023		0.0	0.2
174	8/1/2023		0.0	0.2
175	8/1/2023		0.0	0.2
176	8/1/2023		0.1	0.2
177	8/1/2023		0.1	0.2
178	8/1/2023		0.1	0.2
179		12:28:19	0.1	0.2
180	8/1/2023		0.1	0.2
181	8/1/2023		0.1	0.2
182	8/1/2023		0.1	0.2
183	8/1/2023		0.1	0.2
184	8/1/2023		0.1	0.2
185	8/1/2023		0.1	0.2
186	8/1/2023		0.1	0.2
187	8/1/2023		0.1	0.2
188	8/1/2023		0.1	0.2
189	8/1/2023		0.1	0.2
190	8/1/2023		0.1	0.2
191	8/1/2023		0.1	0.2
192	8/1/2023		0.1	0.2
193	8/1/2023		0.1	0.2
194	8/1/2023		0.1	0.2
195	8/1/2023		0.1	0.2
196	8/1/2023		0.1	0.2
197	8/1/2023		0.1	0.2
198	8/1/2023		0.1	0.2
199	8/1/2023		0.1	0.2
	-, -, -0-3		- · -	

200	8/1/2023	12:49:19	0.1	0.2
201	8/1/2023	12:50:19	0.1	0.2
202	8/1/2023	12:51:19	0.1	0.2
203	8/1/2023	12:52:19	0.1	0.2
204	8/1/2023	12:53:19	0.1	0.2
205	8/1/2023	12:54:19	0.1	0.2
206	8/1/2023	12:55:19	0.1	0.2
207	8/1/2023	12:56:19	0.1	0.2
208	8/1/2023	12:57:19	0.1	0.2
209	8/1/2023		0.1	0.2
210	8/1/2023		0.1	0.2
211	8/1/2023		0.1	0.2
212	8/1/2023		0.1	0.2
213	8/1/2023		0.1	0.2
214		13:03:19	0.1	0.2
215		13:04:19	0.1	0.2
216	8/1/2023		0.1	0.2
217	8/1/2023		0.1	0.2
218	8/1/2023		0.1	0.2
219	8/1/2023		0.1	0.2
220	8/1/2023		0.1	0.2
221	8/1/2023		0.1	0.2
222	8/1/2023		0.1	0.2
223	8/1/2023		0.1	0.2
224	8/1/2023		0.1	0.2
225	8/1/2023		0.1	0.2
226	8/1/2023		0.1	0.2
227		13:16:19	0.1	0.2
228		13:17:19	0.1	0.2
229	8/1/2023	13:18:19	0.1	0.2
230	8/1/2023	13:19:19	0.1	0.2
231	8/1/2023	13:20:19	0.1	0.2
232	8/1/2023	13:21:19	0.1	0.2
233	8/1/2023		0.1	0.2
234	8/1/2023	13:23:19	0.1	0.2
235		13:24:19	0.1	0.2
236		13:25:19	0.1	0.2
237		13:26:19	0.1	0.2
238		13:27:19	0.1	0.2
239	8/1/2023	13:28:19	0.1	0.2
240		13:29:19	0.1	0.2
241		13:30:19	0.1	0.2
242	8/1/2023	13:31:19	0.1	0.2
243		13:32:19	0.1	0.2
244		13:33:19	0.1	0.2
245		13:34:19	0.1	0.2
246	8/1/2023		0.1	0.2
247	8/1/2023	13:36:19	0.1	0.2
248	8/1/2023	13:37:19	0.1	0.2
249	8/1/2023	13:38:19	0.1	0.2

250	8/1/2023	13:39:19	0.1	0.2
251	8/1/2023	13:40:19	0.1	0.2
252	8/1/2023	13:41:19	0.1	0.2
253	8/1/2023	13:42:19	0.1	0.2
254	8/1/2023	13:43:19	0.1	0.2
255	8/1/2023		0.1	0.2
256	8/1/2023		0.1	0.2
257	8/1/2023	13:46:19	0.1	0.2
258	8/1/2023	13:47:19	0.1	0.2
259	8/1/2023	13:48:19	0.1	0.2
260	8/1/2023	13:49:19	0.1	0.2
261	8/1/2023		0.1	0.2
262	8/1/2023		0.1	0.2
263	8/1/2023		0.1	0.1
264	8/1/2023		0.1	0.1
265		13:54:19	0.1	0.1
266	8/1/2023		0.1	0.1
267	8/1/2023		0.1	0.1
268	8/1/2023		0.1	0.1
269	8/1/2023		0.1	0.1
270	8/1/2023		0.1	0.1
271	8/1/2023		0.1	0.1
272	8/1/2023		0.1	0.1
273	8/1/2023		0.1	0.1
274	8/1/2023		0.1	0.1
275	8/1/2023		0.1	0.1
276	8/1/2023		0.1	0.1
277	8/1/2023		0.1	0.1
278	8/1/2023		0.1	0.1
279	8/1/2023	14:08:19	0.1	0.1
280	8/1/2023	14:09:19	0.1	0.1
281	8/1/2023	14:10:19	0.1	0.1
282	8/1/2023	14:11:19	0.1	0.1
283	8/1/2023	14:12:19	0.1	0.1
284	8/1/2023	14:13:19	0.1	0.1
285		14:14:19	0.1	0.1
286	8/1/2023	14:15:19	0.1	0.1
287		14:16:19	0.1	0.1
288	8/1/2023	14:17:19	0.1	0.1
289	8/1/2023		0.1	0.1
290	8/1/2023	14:19:19	0.1	0.1
291	8/1/2023		0.1	0.1
292	8/1/2023	14:21:19	0.1	0.1
293	8/1/2023	14:22:19	0.1	0.1
294	8/1/2023		0.1	0.1
295	8/1/2023		0.1	0.1
296	8/1/2023		0.1	0.1
297	8/1/2023	14:26:19	0.1	0.1
298	8/1/2023	14:27:19	0.1	0.1
299	8/1/2023	14:28:19	0.1	0.1

 300
 8/1/2023
 14:29:19
 0.1
 0.1

 301
 8/1/2023
 14:30:19
 0.1
 0.1