US Army Corps of Engineers Baltimore District

QUARTERLY OM&M REPORT NO. 12

April to June 2023

PFOS/PFOA Mitigation Interim Storm Water Treatment System Long Term Operation, Maintenance, and Monitoring Services

> Stewart Air National Guard Base, New York Contract No. W912DR-21-C-0035

> > October 2023

Prepared by:

Bristol Environmental Solutions, LLC 720 Corporate Circle, Suite D Golden, CO 80401

TABLE OF CONTENTS

SECTION	<u>PAGE</u>
ACRONYMS AND ABBREVIATIONS	ii
EXECUTIVE SUMMARY	1
1.0 INTRODUCTION	1
2.0 GENERAL COMPLIANCE SUMMARY	1
3.0 ISWTS CONFIGURATION DURING PERFORMANCE PERIOD	3
4.0 GENERAL FACILITY OPERATIONS SUMMARY	4
5.0 FACILITY PERFORMANCE MONITORING	5
5.1 Influent and Effluent PFOS and PFOA Monitoring	5
5.2 Intra-Process PFOS/PFOA and Total PFAS Monitoring	6
5.3 Other Water Quality Monitoring	6
5.4 Turbidity Monitoring	7
5.5 Peracetic Acid Addition	7
6.0 SCHEDULED PREVENTIVE MAINTANANCE	7
7.0 MATERIAL DISPOSAL	8
8.0 PROJECTED ACTIVITIES FOR NEXT PERFORMANCE PERIOD	8

TABLES

- Table 1
 PFOS and PFOA Water Quality Monitoring Results
- Table 2Other Water Quality Monitoring Results
- Table 3Preventive Maintenance Table

FIGURES

- Figure 1 ISWTS Flow Diagram
- Figure 2 Recreation Pond Level Chart
- Figure 3 Influent and Effluent PFOS and PFOA Chart
- Figure 4 Influent and Effluent Turbidity Chart

ATTACHMENT

Attachment 1 Material Disposal Documents

i

ACRONYMS AND ABBREVIATIONS

AFFF	aqueous film forming foam
ANG	Air National Guard
BES	Bristol Environmental Solutions, LLC
EPA	U.S Environmental Protection Agency
F400	Calgon Filtrasorb 400
GAC	granular activated carbon
GPM	gallons per minute
HA	Health Advisory
ISWTS	Interim Storm Water Treatment System
mg/L	milligrams per liter
NTU	nephelometric turbidity units
OEC	Onion Equipment Company
OM&M	Operations, Maintenance, and Monitoring
PE	Process Effluent
PFAS	per- and polyfluoroalkyl substances
PFOA	perfluorooctanoic acid
PFOS	perfluorooctanesulfonic acid
ppt	parts per trillion
SANGB	Stewart Air National Guard Base
TOC	total organic carbon
USACE	US Army Corps of Engineers

EXECUTIVE SUMMARY

An Interim Storm Water Treatment System (ISWTS) is operating at Stewart Air National Guard Base (SANGB) in Newburgh, New York. The stormwater is contaminated with perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). PFOS and PFOA are two constituents of aqueous film-forming foam (AFFF), that have been detected above the 2016 U.S. Environmental Protection Agency (EPA) drinking water lifetime Health Advisory (HA) standard of 70 parts per trillion (ppt) (individually or combined).

The ISWTS has been operating consistently since July 13, 2020. The ISWTS consists of four treatment trains with three treatment vessels per train. This report summarizes OM&M between April 1 and June 30, 2023. During the reporting period, two different three vessel regimes were operated. One regime consisted of two granular activated carbon (GAC) vessels followed by a resin (IX) vessel. The other operating regime consisted of three GAC vessels. Both regimes were operated and sampled to compare the performance of all GAC treatment against GAC and IX treatment. BES also installed twelve (12) new intra-process sample ports directly on the outlet of each treatment vessel, to compare the results to the existing intra-process sample ports on the bottom drain valves.

During weekly sampling activities differences were observed between the newly installed sample port locations and the original locations. The new intra-process ports detected breakthrough of PFAS compounds while the original sample ports were significantly less. It was determined that the new sample ports were more representative of process conditions and BES has standardized on using the new sample locations for breakthrough monitoring at the intra-process locations.

Based on elevated PFOS/PFOA breakthrough detections from the new intra-process effluent locations combined with findings from ongoing treatment comparison sampling, evaluating the performance of all-GAC treatment against GAC-IX treatment, BES

ES-1

determined that all GAC treatment was not as effective. At the end of the quarter during the media change all trains were configured back to two stage GAC (primary and secondary) treatment followed by IX resin.

During the performance period, a total of 34,921,460 gallons of stormwater were treated and discharged over the outfall weir by the ISWTS. There were 91 days of operation between April 1 and June 30, 2023. During this period of performance, the Recreation Pond was drawn down for 61 of the 91 days or 67% of the time.

PFOS and PFOA samples were collected 12 times on the influent and effluent during the performance period. The combined PFOS and PFOA influent and effluent average concentrations during the performance period were 375 ppt and 1.4 ppt respectively. The highest effluent PFOS and PFOA concentration detected in the ISWTS effluent was 4.8 ppt for the OM&M period between April 1 and June 30, 2023.

1.0 INTRODUCTION

Bristol Environmental Solutions, LLC (BES), under Contract with the US Army Corps of Engineers (USACE) is operating an Interim Storm Water Treatment System (ISWTS) on behalf of the Air National Guard (ANG) at Stewart Air National Guard Base (SANGB) in Newburgh, New York. The stormwater is contaminated with perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). PFOS and PFOA are two constituents of aqueous film-forming foam (AFFF), that have been detected above the 2016 U.S. Environmental Protection Agency (EPA) drinking water lifetime Health Advisory (HA) standard of 70 parts per trillion (ppt) (individually or combined).

The ISWTS intercepts stormwater from a Recreation Pond and discharges treated effluent over the existing Recreation Pond outfall weir. When weather conditions allow, the ISWTS draws down the pond level and treats all stormwater discharges. The Recreation Pond drawdown provides a storage reservoir to prevent discharge of PFOS/PFOA when precipitation occurs. When precipitation events occur that exceed the ISWTS capacity the Recreation Pond fills up and both treated effluent and untreated stormwater go over the outfall weir.

This is the 12th quarterly report that summarizes Operations, Maintenance, and Monitoring (OM&M) activities conducted by BES at SANGB. This report summarizes ISWTS operations between April 1 and June 30, 2023, at SANGB and includes the contract award of Option Year 1 extending OM&M activities under modification 0001 and 0002 through the period of performance of September 13, 2023.

2.0 GENERAL OPERATIONAL SUMMARY

The ISWTS has been operating consistently since July 13, 2020, following installation and commissioning of pretreatment system improvements in June and early July 2020. The ISWTS consists of four treatment trains with three treatment vessels per train. This report

summarizes OM&M between April 1 and June 30, 2023, or months 34, 35, and 36 post start-up. During the performance period two (2) all-carbon treatment configurations from trains A and C were compared against two (2) carbon and ion exchange resin (IX) configurations from trains B and D. During the previous reporting period, BES determined that the existing intra-process sample ports may not be accurately detecting PFOS/PFOA breakthrough. To improve sample port accuracy and improve media configuration comparison of all GAC treatment against GAC and IX treatment, BES installed twelve (12) additional sample ports, directly on the outlet of each treatment vessel, to compare the new locations against the existing intra-process location results. Sixteen (16) additional comparison performance samples were collected in April and May 2023. In addition, eleven (11) samples were collected from the original intra-process sample locations on the vessel drain line concurrently with new sample locations on the outlets from each vessel. The intra-process sample port comparison sampling has determined the new intra-process sample locations should be used for all future intra-process breakthrough monitoring.

The performance comparison sampling of all GAC treatment versus GAC and IX Resin determined that two stages of GAC followed by IX Resin outperformed three stages of GAC for PFOS and PFOA mitigation as well as other per- and polyfluoroalkyl substances (PFAS).

Media performance monitoring results received on May 24, 2023, for samples collected on May 16, 2023, indicated diminishing PFOS/PFOA mitigation. This data combined with increased media fouling that was restricting ISWTS throughput above 250 gallons per minute (GPM) caused BES to schedule a complete media exchange event for June 2023. Analytical results from the Train D intra-process sampling and the overall effluent collected on May 16, 2023, are summarized as follows:

Final

Treatment Train D	Treatment Train Effluent PFOS/PFOA (ppt)
Primary Carbon (GAC1)	200
Secondary Carbon (GAC 2)	79
IX Resin (R1)	1.7
Combined Effluent (Trains A, B, C, and D)	4.8

Following briefs to project stakeholders, BES reduced the risk of elevated effluent PFOS/PFOA by taking the two all-GAC trains A and C offline on Friday, May 26, 2023. BES expedited the mobilization for the next media change with Onion Equipment Company (OEC) to perform comprehensive media changeout and system improvements between June 5 and 12, 2023.

Due to increasing back pressure from the loading of solids and the inability of the ISWTS to process treatment flow rates above 250 GPM with only IX resin trains B and D operating, BES restarted all carbon trains A and C on Thursday, June 1, 2023, to maintain ISWTS drawdown of REC Pond water below the weir elevation and to provide adequate operating flows for daily maintenance activities including automated sand filter and manual media backwashing activities up to and during the media change.

The media change was completed between June 5 and 12, 2023. The final performance sample collected for Quarter 2 was collected on June 27, 2023.

The analytical method used was EPA 537.1 M. Final PFAS results for the entire quarter are provided in **Table 1**.

3.0 ISWTS CONFIGURATION DURING PERFORMANCE PERIOD

The ISWTS maintained the following unit processes; centrifugal separator, coarse sand filtration, fine sand filtration, primary and secondary bag filtration followed by three stages of PFOS/PFOA adsorption treatment media.

To improve media configuration comparison of all GAC treatment against GAC and IX treatment, BES installed twelve (12) additional sample ports, one from each treatment vessel, to evaluate new process flow locations against the existing intra-process location results.

As described in Quarterly Report No. 11 (January to March 2023), a comparison of the performance of the GAC-GAC-IX regime against an all GAC treatment regime was extended, to directly compare performance of each regime. In addition to the comparison of regime performance, the samples from the (12) new intra-process sample ports would be compared to the existing intra-process location results. The GAC media during the quarter was Calgon Filtrasorb 400 (F400) and the IX resin is Purolite PFA694. Peracetic acid was available but not introduced this quarter to see if any increased biofouling was observed as a result of not introducing it to the ISWTS influent. During the quarter, an ultrasonic device (Pulsar 3000) was installed in the pond to reduce seasonal algae growth and evaluate if it would reduce biofouling on the system and extend media life. The system configuration is shown in **Figure 1**.

4.0 GENERAL FACILITY OPERATIONS SUMMARY

During the performance period, a total of 34,921,460 gallons of stormwater were treated and discharged over the outfall weir by the ISWTS. All treated effluent was discharged over the outfall weir and no effluent was recirculated to the Recreation Pond during the performance period. The table below summarizes the total volume treated (gallons), operational time (hours), run time (% of total time), and average treatment rate (gallons per minute) during each month of system operations. The total gallons summarized below represent the total water discharged over the weir. The ISWTS and influent pump does not run all the time. It is turned off when system maintenance is being performed, during power failures, and during periods when Recreation Pond drawdown objectives were achieved. Recreation Pond drawdown is managed to reduce excessive sediment intake

Final

4

from the bottom of the pond that would impact ISWTS operations and maintenance. Lower run times and volume treated were observed in June because recommended drawdown elevations were maintained for the majority of the month and the ISWTS pump cycled on and off to maintain maximum drawdown. These are the primary reasons why reduced run times can occur.

Month	Volume Treated (Gallons)	Operational Time ¹ (Hours)	Run Time ² (Percent)	Average Treatment Flow ³ (GPM)
April 2023	13,275,680	667	99%	332
May 2023	13,552,586	778	98%	290
June 2023	8,093,194	573	80%	235
Total	34,921,460	2,018		

¹Operation Time – Hours influent pump in operation during month

²Run Time – Hours pump running divided by the total period time

³Average GPM – Average flow total gallons divided by operational hours

There were 91 days of operation between April 1 and June 30, 2023. During this period of performance, the Recreation Pond was drawn down for 61 of the 91 days or 67% of the time. The Recreation Pond level during the performance period is shown on **Figure 2**.

5.0 FACILITY PERFORMANCE MONITORING

5.1 INFLUENT AND EFFLUENT PFOS AND PFOA MONITORING

As previously noted, PFOS and PFOA samples were collected 12 times on the influent and effluent during the performance period. **Figure 3** shows the influent and effluent combined PFOS and PFOA concentrations based on the validated results. As shown in **Figure 3**, the combined PFOS and PFOA influent and effluent average concentrations during the performance period were 375 ppt and 1.4 ppt, respectively. The maximum combined PFOS and PFOA influent concentration was 627 ppt on June 13, 2023. The maximum detection of PFOS/PFOA in the combined effluent, before the June 5, 2023, media exchange of all four treatment trains was 4.8 ppt on May 16, 2023. The maximum

effluent detection of PFOS/PFOA after media exchange was 1.4 ppt on June 13, 2023. The May 23, 2023, performance monitoring weekly samples were lost in transit by the shipper. As a result, there were no results for that weekly period.

5.2 INTRA-PROCESS PFOS/PFOA AND TOTAL PFAS MONITORING

During the performance period, intra-process monitoring for PFOS/PFOA and Total PFAS was performed after all three media stages. Sample results are provided in **Table 1**.

Intra-process samples were collected to compare the performance of GAC and IX treatment against all GAC treatment. The all GAC treatment was initially believed to be equally effective in PFOS, PFOA, and Total PFAS mitigation when compared to trains configured with GAC and IX. However, following installation of new intra-process sample ports in early April 2023, supplemental sampling discussed in Section 2.0 confirmed that PFOS/PFOA and total PFAS breakthrough for all GAC trains (trains A and C) occurred faster than the GAC and IX trains (trains B and D). As a result of the intra-process monitoring, all four trains were returned to two stages of GAC (primary and secondary) and the third vessel with IX resin during the media change performed during the quarter between June 5 and June 12, 2023.

5.3 OTHER WATER QUALITY MONITORING

During the performance period additional monitoring was performed for total organic carbon (TOC), and glycols on the influent, secondary GAC effluent, and final effluent on May 09, 2023. These results are shown in **Table 2**. No glycols were detected in any of the samples. Elevated TOC is known to impact treatment media life. The ion exchange resin manufacturer recommends that TOC not be more than 2 milligrams per liter (mg/L). The influent TOC was 3.90 mg/L, and the GAC-2 effluent (influent to the resin) was 1.90 mg/L indicating that the influent TOC level was close but not over the threshold. Effluent TOC

Final

concentration was 1.20 mg/L. These results are within the manufacture's recommend values and likely did not negatively impact the ISWTS performance.

5.4 **TURBIDITY MONITORING**

Turbidity is a measurement that can quantify the level of solids present in the water. It is an onsite test that is helpful to measure in real time, the influent water quality and intraprocess performance to confirm the effectiveness of the pretreatment and filtration systems in removing solids. During the performance period, influent and effluent turbidity averaged 7.30 nephelometric turbidity units (NTUs) and 0.79 NTU, respectively. A graph of the influent and effluent turbidity during the performance period is included as **Figure 4**.

5.5 PERACETIC ACID ADDITION

As discussed, peracetic acid was not introduced into the process influent during the performance period to evaluate if increased biofouling could be detected and evaluate if ultrasonic treatment in the pond could independently reduce biofouling and ISWTS maintenance.

6.0 SCHEDULED PREVENTIVE MAINTANANCE

During the performance period the following preventive maintenance activities were completed:

- Coarse and fine sand filter backwashes;
- Coarse and fine sand filter cleanings;
- Primary and secondary bag filter changes;
- Primary, secondary, and tertiary carbon backwashing;
- Isolated system flushes and system inspections and checks;
- Ion exchange resin skimmings and inspections and;
- Replaced sample ports and sample tubing.

Prior to the start of this quarterly reporting period the sand filtration media was replaced in March. The coarse and fine sand filters were each backwashed 624 and 629 times, respectively and a total of four (4) cleaning events were completed. The primary and secondary bag filters were changed 16 and 45 times, respectively, during the performance period. To maintain acceptable PFAS treatment media pressure, the primary, secondary, and tertiary GAC vessels were backwashed 22 times, during the quarter. The resin was inspected and skimmed once during the quarter on May 10, 2023. The sand filter maintenance, bag filter changes, GAC backwash events, and ion exchange resin observations are summarized in **Table 3**.

7.0 MATERIAL DISPOSAL

Waste bag filters, as well as spent GAC and ion exchange resin wastes were generated during the quarter. Spent GAC materials were shipped to Calgon Corporation facility in Catlettsburg, Kentucky, for thermal reactivation on June 28, 2023. Waste bag filters, and spent resin waste were shipped to US Ecology for disposal in a Subtitle C Landfill in Belleville, Michigan, on June 27, 2023. Spent media disposal activities are scheduled immediately following each media changeout to eliminate any onsite storage of solid wastes at SANGB. Material disposal documents are provided in Attachment 1.

8.0 PROJECTED ACTIVITIES FOR NEXT PERFORMANCE PERIOD

BES will continue operating the ISWTS with all four treatment trains using GAC, GAC, IX media and configured as primary GAC, secondary GAC, and IX resin polish.

The effectiveness of the Peracetic acid has been uncertain. Bristol turned off the Peracetic acid for the fourth quarter 2022 and quarters 1 and 2 of 2023, to see if increased biofouling impacts can be detected. No increased biofouling effects were observed during the first quarter and remained off to test Ultrasonic Algae Control System in the Recreation Pond to reduce algae growth. The ultrasonic equipment transforms electrical signals to multiple

soundwaves of ultrasonic frequencies that breaks the outer membrane of individual algae cells and inhibits growth. The new technology was deployed in April 2023 and was successful in mitigating visible seasonal algae and monitored through the end of June 2023. BES will evaluate over the summer season if any reduction in maintenance can be observed through the use of the ultrasonic treatment.

Bristol will continue to evaluate new technologies/materials to reduce biofouling impacts. No capital improvements are planned at this time.

(Intentionally blank)

TABLES

C396889V1_C396898V1 - 04/05/2023

Bureau Filter WH646 WH651 WH652 WH6460 WH6460 WH648 WKJ559 WH6470 O C Sample Sample 2023/04/05 08:40 2023/04/05 08:35 2023/04/05 08:55 2023/04/05 08:55 2023/04/05 08:15 2023/04/05 08:40 2023/04/05 08:35 2023/04/05 08:55 2023/04/05 08:15 2023/04/05 08:05	1.5 0.7	2.2	
Sample Sample 2023/04/05 08:00 2023/04/05 08:40 2023/04/05 08:35 2023/04/05 08:25 2023/04/05 08:25 2023/04/05 08:25 2023/04/05 08:25 2023/04/05 08:25 2023/04/05 08:25 2023/04/05 08:25 2023/04/05 08:25 2023/04/05 08:25 2023/04/05 08:25 2023/04/05 08:25 2023/04/05 08:25 2023/04/05 08:25 2023/04/05 08:25 2023/04/05 08:25 SAMG-PEGG-04052023 SAMG-PEGG-04052033 SAMG-PEGG-04053333 SAMG-PEGG-04053333	1.5 0.7	2.2	
SANG-FBC-04052023 SANG-FBC-04052023 SANG-FBC-04052023 SANG-PECG-04052023 SANG-PECG-0405203 SANG-PECG-0405203 SANG-PECG-0405203 SANG-PECG-0405203 SANG-PECG-0405203 SANG-PECG-0405203 SANG-PECG-040520	1.5 0.7	2.2	
Perfluorinated Compounds Method UNITS Perfluoributanoic acid (PFBA) EPA 537.1 M ng/L 1.4 U 27 20 8.4 1.2 J 3.8 0.88 J 0.65	1.5 0.73	2.2	DQ
Perfluorobutanoic acid (PFBA) EPA 537.1 M ng/L 1.4 U 27 20 8.4 1.2 J 3.8 0.88 J 0.65	1.5 0.7 0.7	2.2	
	0.7		.2
Perfluoropentanoic acid (PFPeA) EPA 537.1 M ng/L 0.70 U 79 80 55 16 0.77 J 7.6 0.52 J 0.24	0.77	2.2	.2
Perfluorohexanoic acid (PFHxA) EPA 537.1 M ng/L 0.20 J (1) 67 69 42 9.5 0.33 J 5.4 0.29 J 0.22		2.2	.2
Perfluoroheptanoic acid (PFHpA) EPA 537.1 M ng/L 1.0 U 32 34 19 3.8 0.28 J 2.3 0.28 J 0.31	1.1	2.2	.2
Perfluorooctanoic acid (PFOA) EPA 537.1 M ng/L 1.0 U 35 34 18 2.9 1.0 U 2.2 J 1.0 U 0.45	1.1	2.2	.2
Perfluoronanoic acid (PFNA) EPA 537.1 M ng/L 1.0 U 9.1 9.3 4.9 0.80 J 1.0 U 0.57 J 1.0 U 0.39	1.1	2.2	.2
Perfluorodecanoic acid (PFDA) EPA 537.1 M ng/L 1.0 U 7.2 6.9 3.4 0.50 J 1.0 U 0.60 J 1.0 U 0.32	1.1	2.2	.2
Perfluoroundecanoic acid (PFUnA) EPA 537.1 M ng/L 1.0 U 0.69 J 0.57 J 1.1 U 1.0 U 1.0 U 1.1 U 0.41	1.1	2.2	.2
Perfluorododecanoic acid (PFDoA) EPA 537.1 M ng/L 1.0 U 0.58 J 0.59 J 1.1 U 1.0 U 1.0 U 1.1 U 1.0 U 0.53	1.1	2.2	.2
Perfluorotridecanoic acid (PFTRDA) EPA 537.1 M ng/L 0.70 U 0.77 U 0.77 U 0.77 U 0.70 U 0.70 U	0.77	2.2	.2
Perfluorotetradecanoic acid (PFTEDA) EPA 537.1 M ng/L 1.0 U 1.1 U 1.1 U 1.0 U 1.0 U 1.1 U 0.43	1.1	2.2	.2
Perfluorobutanesulfonic acid (PFBS) EPA 537.1 M ng/L 1.0 U 13 13 7.3 1.1 J 1.0 U 0.75 J 1.0 U 0.3	1.1	2.2	.2
Perfluoropentanesulfonic acid PFPes EPA 537.1 M ng/L 1.0 U 13 15 6.7 0.91 J 1.0 U 1.1 U 1.0 U 0.37	1.1	2.2	.2
Perfluorohexanesulfonic acid (PFHxS) EPA 537.1 M ng/L 1.0 U 95 95 46 5.9 1.0 U 3.7 1.0 U 0.31	1.1	2.2	.2
Perfluoroheptanesulfonic acid PFHpS EPA 537.1 M ng/L 1.0 U 4.7 4.5 2.1 J 1.0 U 1.0 U 1.1 U 1.0 U 0.47	1.1	2.2	.2
Perfluorooctanesulfonic acid (PFOS) EPA 537.1 M ng/L 1.0 U 290 (2) 260 (2) 120 (2) 14 1.0 U 9.9 1.0 U 4.7	10	20	20
Perfluorononanesulfonic acid (PFNS) EPA 537.1 M ng/L 1.4 U 1.5 U 1.5 U 1.4 U 1.4 U 1.4 U 0.7	1.5	2.2	.2
Perfluorodecanesulfonic acid (PFDS) EPA 537.1 M ng/L 1.4 U 1.5 U 1.5 U 1.5 U 1.5 U 1.4 U 1.4 U 1.4 U 1.6 U 1.4 U 0.66	1.5	2.2	.2
Perfluorooctane Sulfonamide (PFOSA) EPA 537.1 M ng/L 1.4 U 1.5 U 1.5 U 1.4 U 1.4 U 1.4 U 0.44	1.5	4.4	.4
MeFOSAA EPA 537.1 M ng/L 1.4 U 1.5 U 1.5 U 1.5 U 1.5 U 1.4 U 1.4 U 1.5 U 1.4 U 1.4 U 1.5 U 1.4 U 0.77	1.5	4.4	.4
EFOSAA EPA 537.1 M ng/L 1.4 U 1.5 U 1.5 U 1.5 U 1.4 U 1.4 U 1.4 U 1.5 U 1.4 U 0.59	1.5	4.4	.4
4:2 Fluorotelomer sulfonic acid EPA 537.1 M ng/L 1.4 U 0.92 J 0.97 J (1) 0.60 J (1) 1.4 U 1.4 U 1.5 U 1.4 U 0.52	1.5	4.4	.4
6:2 Fluorotelomer sulfonic acid EPA 537.1 M ng/L 1.4 U 85 86 42 5.2 1.4 U 3.4 J 1.4 U 0.69	1.5	4.4	.4
8:2 Fluorotelomer sulfonic acid EPA 537.1 M ng/L 1.4 U 17 18 8.4 1.8 J 0.60 J 1.1 J 1.4 U 0.58	1.5	4.4	.4
Hexafluoropropyleneoxide dimer acid EPA 537.1 M ng/L 1.4 U 1.5 U 1.5 U 1.4 U 1.4 U 1.4 U 0.45	1.5	4.4	.4
4,8-Dioxa-3H-perfluorononanoic acid EPA 537.1 M ng/L 0.40 U 0.44 U 0.44 U 0.44 U 0.44 U 0.40 U	0.44	4.4	.4
9CI-PF30NS (F-53B Major) EPA 537.1 M ng/L 1.0 U 1.1 U 1.1 U 1.1 U 1.0 U 1.0 U 1.1 U 0.46	1.1	4.4	.4
11Cl-PF30UdS (F-53B Minor) EPA 537.1 M ng/L 1.0 U 1.1 U 1.1 U 1.1 U 1.0 U 1.0 U 1.1 U 0.35	1.1	4.4	.4

Notes:

(1) Result is estimated as analyte confirmation criterion (ion ratio) was not met. There is no direct correlation to the bias regardless of whether the ratio is above or below established limits. Sample results fall below the method LOD. Sample results were usable as flagged.

(2) Due to high concentration of the target analyte, a reduced sample volume was extracted and analyzed. Detection limit was adjusted accordingly (10x). Some results reference different lab limits due to dilution.

DL = Detection Limit

EFF = Effluent

FB= Field Blank

INF = Influent

J - Estimated result. Associated value may not be accurate or precise.

LOD = Limit of Detection

LOQ = Limit of Quantitation

ng/L - nanograms per Liter or parts per trillion.

SANGB = Stewart Air National Guard Base

U - Undetected. Compound was analyzed for, but not detected.

Sample SANG-FB-04052023 is a field blank.

Sample SANG-INF-04052023D is a field duplicate of SANG-INF-04052023.

Sample ports located in each of the 4 trains; A, B, C, D. such as: PBG1= post B train GAC unit 1.

PECG1 = post E port C train GAC Unit 1

PECG2 = post E port C train GAC Unit 2

PECG3 = post E port C train Resin 1

PBG1 = post B train GAC Unit 1

Effluent (EFF) = Treated water that has passed through the ISWTS

Influent (INF) = Untreated water from Recreational Pond

ISWTS = Interim Storm Water Treatment System

C3A1480V1_C3A1471V1 - 04/11/2023

ESULTS OF ANALYSES OF WATER						VALIDATE	D DATA						
	Bureau Ve	ritas ID	VNH509	VNH514	VNH515	VNH511	VNH513	VNH512	VNH450	VNH510			
	Sampli	ng Date	2023/04/11 08:00	2023/04/11 08:40	2023/04/11 08:40	2023/04/11 08:10	2023/04/11 08:30	2023/04/11 08:18	2023/04/11 08:32	2023/04/11 08:05			
	Sa	mple ID	SANG-FB-04112023	SANG-INF-04112023	SANG-INF-04112023D	SANG-PEDR1-04112023	SANG-PEDG1-04112023	SANG-PEDG2-04112023	SANG-PDG1-04112023	SANG-EFF-04112023	DL	LOD	LOQ
Perfluorinated Compounds	Method	UNITS											
Perfluorobutanoic acid (PFBA)	EPA 537.1 M	ng/L	1.4 U	28	29	1.5 U	20	10	2.0 J	1.4 J	0.65	1.5	2.2
Perfluoropentanoic acid (PFPeA)	EPA 537.1 M	ng/L	0.70 U	88	86	0.77 U	51	20	2.5	0.75 J	0.24	0.77	2.2
Perfluorohexanoic acid (PFHxA)	EPA 537.1 M	ng/L	0.70 U	73	72	0.24 J	39	13	1.7 J	0.45 J	0.22	0.77	2.2
Perfluoroheptanoic acid (PFHpA)	EPA 537.1 M	ng/L	1.0 U	36	35	0.51 J	17	5	1.1 J	1.1 U	0.31	1.1	2.2
Perfluorooctanoic acid (PFOA)	EPA 537.1 M	ng/L	1.0 U	37	37	1.1 U	17	4.4	0.78 J	1.1 U	0.45	1.1	2.2
Perfluorononanoic acid (PFNA)	EPA 537.1 M	ng/L	1.0 U	9.3	9.3	1.1 U	4.1	0.98 J	1.1 U	1.1 U	0.39	1.1	2.2
Perfluorodecanoic acid (PFDA)	EPA 537.1 M	ng/L	1.0 U	6.7	6.9	1.1 U	2.6	0.52 J	1.1 U	1.1 U	0.32	1.1	2.2
Perfluoroundecanoic acid (PFUnA)	EPA 537.1 M	ng/L	1.0 U	0.65 J	0.57 J	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.41	1.1	2.2
Perfluorododecanoic acid (PFDoA)	EPA 537.1 M	ng/L	1.0 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.53	1.1	2.2
Perfluorotridecanoic acid (PFTRDA)	EPA 537.1 M	ng/L	0.70 U	0.77 U	0.77 U	0.77 U	0.77 U	0.77 U	0.77 U	0.77 U	0.26	0.77	2.2
Perfluorotetradecanoic acid (PFTEDA)	EPA 537.1 M	ng/L	1.0 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.43	1.1	2.2
Perfluorobutanesulfonic acid (PFBS)	EPA 537.1 M	ng/L	1.0 U	16	16	1.1 U	7.4	1.6 J	0.31 J	1.1 U	0.3	1.1	2.2
Perfluoropentanesulfonic acid PFPes	EPA 537.1 M	ng/L	1.0 U	17	15	1.1 U	6.5	1.4 J	0.45 J	1.1 U	0.37	1.1	2.2
Perfluorohexanesulfonic acid (PFHxS)	EPA 537.1 M	ng/L	1.0 U	110 (1)	110 (1)	1.1 U	46	8.3	1.6 J	1.1 U	2.8	10	20
Perfluoroheptanesulfonic acid PFHpS	EPA 537.1 M	ng/L	1.0 U	5.4	5.3	1.1 U	2.4	0.57 J	1.1 U	1.1 U	0.47	1.1	2.2
Perfluorooctanesulfonic acid (PFOS)	EPA 537.1 M	ng/L	1.0 U	330 (1)	330 (1)	1.1 U	130 (1)	21	4.8	1.1 U	4.7	10	20
Perfluorononanesulfonic acid (PFNS)	EPA 537.1 M	ng/L	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.7	1.5	2.2
Perfluorodecanesulfonic acid (PFDS)	EPA 537.1 M	ng/L	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.66	1.5	2.2
Perfluorooctane Sulfonamide (PFOSA)	EPA 537.1 M	ng/L	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.44	1.5	4.4
MeFOSAA	EPA 537.1 M	ng/L	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.77	1.5	4.4
EtFOSAA	EPA 537.1 M	ng/L	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.59	1.5	4.4
4:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	1.3 J	1.1 J	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.52	1.5	4.4
6:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	90	85	1.5 U	35	6.7	1.1 J	1.5 U	0.69	1.5	4.4
8:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	18	18	1.5 U	6.4	1.3 J	1.5 U	1.5 U	0.58	1.5	4.4
Hexafluoropropyleneoxide dimer acid	EPA 537.1 M	ng/L	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.45	1.5	4.4
4,8-Dioxa-3H-perfluorononanoic acid	EPA 537.1 M	ng/L	0.40 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.13	0.44	4.4
9CI-PF3ONS (F-53B Major)	EPA 537.1 M	ng/L	1.0 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.46	1.1	4.4
11CI-PF3OUdS (F-53B Minor)	EPA 537.1 M	ng/L	1.0 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.35	1.1	4.4
Notes:													

(1) Due to high concentration of the target analyte, a reduced sample volume was extracted and analyzed. Detection limit was adjusted accordingly (10x). Some results reference different lab limits due to dilution.

DL = Detection Limit

EFF = Effluent

FB= Field Blank

INF = Influent

J - Estimated result. Associated value may not be accurate or precise.

LOD = Limit of Detection

LOQ = Limit of Quantitation ng/L - nanograms per Liter or parts per trillion.

SANGB = Stewart Air National Guard Base

U - Undetected. Compound was analyzed for, but not detected. Sample SANG-FB-04112023 is a field blank.

Sample SANG-INF-04112023D is a field duplicate of SANG-INF-04112023.

Sample ports located in each of the 4 trains; A, B, C, D. such as: PBG1= post B train GAC unit 1. PEDG1 = post E port D train GAC Unit 1

PEDG2 = post E port D train GAC Unit 2

PEDR1 = post E port D train Resin 1

Effluent (EFF) = Treated water that has passed through the ISWTS Influent (INF) = Untreated water from Recreational Pond

ISWTS = Interim Storm Water Treatment System

C3A7955V1_C3A7977V1 - 04/17/2023

RESULTS OF ANALYSES OF WATER															
	Bureau \	/eritas ID	VOQ063	VOQ068	VOQ069	VOQ067	VOQ066	VOQ065	VOQ164	VOQ165	V0Q166	VOQ064			
	Samp	ling Date	2023/04/17 08:55	2023/04/17 09:33	2023/04/17 09:33	2023/04/17 09:25	2023/04/17 09:17	2023/04/17 09:08	2023/04/17 09:10	2023/04/17 09:20	2023/04/17 09:27	2023/04/17 09:00			
	S	ample ID	SANG-FB-04172023	SANG-INF-04172023	SANG-INF-04172023D	SANG-PEAG1-04172023	SANG-PEAG2-04172023	SANG-PEAG3-04172023	SANG-PEBR1-04172023	SANG-PEBG2-04172023	SANG-PEBG1-04172023	SANG-EFF-04172023	DL	LOD	LOQ
Perfluorinated Compounds	Method	UNITS													
Perfluorobutanoic acid (PFBA)	EPA 537.1 M	ng/L	1.4 U	18	18	15	7.9	1.9 J	1.4 U	7.9	15	0.74 J	0.59	1.4	2
Perfluoropentanoic acid (PFPeA)	EPA 537.1 M	I ng/L	0.70 U	59	60	34	13	1.5 J	0.70 U	12	35	0.48 J	0.22	0.7	2
Perfluorohexanoic acid (PFHxA)	EPA 537.1 M	I ng/L	0.70 U	51	51	26	7.2	0.70 U	0.70 U	6.5	27	0.70 U	0.2	0.7	2
Perfluoroheptanoic acid (PFHpA)	EPA 537.1 M	l ng/L	1.0 U	24	25	11	2.2	1.0 U	1.0 U	1.9 J	12	1.0 U	0.28	1	2
Perfluorooctanoic acid (PFOA)	EPA 537.1 M	I ng/L	1.0 U	27	26	9.8	1.6 J	1.0 U	1.0 U	1.4 J	11	1.0 U	0.41	1	2
Perfluorononanoic acid (PFNA)	EPA 537.1 M	l ng/L	1.0 U	7.3	7.6	2.6	1.0 U	1.0 U	1.0 U	1.0 U	2.8	1.0 U	0.35	1	2
Perfluorodecanoic acid (PFDA)	EPA 537.1 M	l ng/L	1.0 U	6.5	6.7	2	1.0 U	1.0 U	1.0 U	1.0 U	2.2	1.0 U	0.29	1	2
Perfluoroundecanoic acid (PFUnA)	EPA 537.1 M	I ng/L	1.0 U	0.73 J	0.74 J	1.0 U	1.0 U	0.37	1	2					
Perfluorododecanoic acid (PFDoA)	EPA 537.1 M	l ng/L	1.0 U	0.58 J (1)	0.52 J	1.0 U	1.0 U	0.48	1	2					
Perfluorotridecanoic acid (PFTRDA)	EPA 537.1 M	l ng/L	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.24	0.7	2
Perfluorotetradecanoic acid (PFTEDA)	EPA 537.1 M	I ng/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.39	1	2
Perfluorobutanesulfonic acid (PFBS)	EPA 537.1 M	l ng/L	1.0 U	8.9	9	3.6	0.94 J	1.0 U	1.0 U	0.61 J	4.1	1.0 U	0.27	1	2
Perfluoropentanesulfonic acid PFPes	EPA 537.1 M	I ng/L	1.0 U	9.2	8.8	3.1	1.0 U	1.0 U	1.0 U	1.0 U	2.8	1.0 U	0.34	1	2
Perfluorohexanesulfonic acid (PFHxS)	EPA 537.1 M	I ng/L	1.0 U	67	64	22	2.5	1.0 U	1.0 U	2	24	1.0 U	0.28	1	2
Perfluoroheptanesulfonic acid PFHpS	EPA 537.1 M	l ng/L	1.0 U	2.8	3	0.78 J	1.0 U	1.0 U	1.0 U	1.0 U	0.78 J	1.0 U	0.43	1	2
Perfluorooctanesulfonic acid (PFOS)	EPA 537.1 M	I ng/L	1.0 U	250 (2)	250 (2)	61	6.2	1.0 U	1.0 U	4.9	65	1.0 U	4.7	10	20
Perfluorononanesulfonic acid (PFNS)	EPA 537.1 M	I ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.64	1.4	2
Perfluorodecanesulfonic acid (PFDS)	EPA 537.1 M	l ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.6	1.4	2
Perfluorooctane Sulfonamide (PFOSA)	EPA 537.1 M	I ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.4	1.4	4
MeFOSAA	EPA 537.1 M	l ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.7	1.4	4
EtFOSAA	EPA 537.1 M	l ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.54	1.4	4
4:2 Fluorotelomer sulfonic acid	EPA 537.1 M	I ng/L	1.4 U	0.77 J	0.63 J	1.4 U	1.4 U	0.47	1.4	4					
6:2 Fluorotelomer sulfonic acid	EPA 537.1 M	l ng/L	1.4 U	58	57	19	2.6 J	1.4 U	1.4 U	2.1 J	21	1.4 U	0.63	1.4	4
8:2 Fluorotelomer sulfonic acid	EPA 537.1 M	l ng/L	1.4 U	18	18	4.3	1.4 U	1.4 U	1.4 U	1.4 U	5.2	1.4 U	0.53	1.4	4
Hexafluoropropyleneoxide dimer acid	EPA 537.1 M	I ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.41	1.4	4
4,8-Dioxa-3H-perfluorononanoic acid	EPA 537.1 M	l ng/L	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.12	0.4	4
9CI-PF3ONS (F-53B Major)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.42	1	4
11CI-PF3OUdS (F-53B Minor)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.32	1	4

 Intersection
 Intersection<

EFF = Effuent FB= Field Bink INF = Influent J - Stimated result. Associated value may not be accurate or precise. LO0 = Limit of Detection IO0 = Limit of Detection IO0 = Limit of Detection IO0 = Limit of Detection IO1 = Influence of Detection SANGB = Steward K Antalonal Gaussian U - Undetected. Compound was analyzed for Just not detected. Sample SANG-FIO172023 is a field duplicate of SANG-INF-04172023.

d. Detection limit was adjusted accordingly (100,) Some results reference different liab limits due to dilution Sample ports boardel in each of the 4 trains: A, B, C, D, such as: PBG1= post B train GAC unit 1. PEAG1 = post E port A train GAC Unit 3 PEAG2 = post E port A train GAC Unit 3 PEGG1 = Post E port B train GAC Unit 3 PEGB1 = Post E port B train GAC Unit 1. PERB2 = Post E port B train GAC Unit 1. PERB2 = Post E port B train GAC Unit 1. PERB1 = Post E port B train GAC Unit 1. PERB1 = Post E port B train GAC Unit 1. PERB1 = Post E port B train GAC Unit 1. PERB1 = Post E port B train GAC Unit 2. PERB1 = Post E port B train GAC Unit 2. PERB1 = Post E port B train GAC Unit 2. PERB1 = Post E port B train GAC Unit 2. PERB1 = Post E port B train GAC Unit 3. PERB1 = Post E port B train GAC Unit 3. PERB1 = Post E port B train GAC Unit 3. PERB1 = Post E port B train GAC Unit 3. PERB1 = Post E post E post B train GAC Unit 3. PERB1 = Post E post B trai

C3B7040V1_C3B7049V1 - 04/25/2023

ESULTS OF ANALYSES OF WATER VALIDATED DATA															
	Bureau V	eritas ID	VQN684	VQN689	VQN690	VQN686	VQN688	VQN687	VQN709	VQN708	VQN707	VQN706	VQN685		
	Samp	ing Date	2023/04/25 07:55	2023/04/25 08:30	2023/04/25 08:30	2023/04/25 08:08	2023/04/25 08:23	2023/04/25 08:15	2023/04/25 08:26	2023/04/25 08:25	2023/04/25 08:17	2023/04/25 08:10	2023/04/25 08:00		
	Si	ample ID	SANG-FB-04252023	SANG-INF-04252023	SANG-INF-04252023D	SANG-PEDR1-04252023	SANG-PEDG1-04252023	SANG-PEDG2-04252023	SANG- PCG1- 04252023	SANG- PECG1- 04252023	SANG- PECG2- 04252023	SANG- PECG3- 04252023	SANG-EFF-04252023	DL LOD	LOQ
Perfluorinated Compounds	Method	UNITS													1
Perfluorobutanoic acid (PFBA)	EPA 537.1 M	ng/L	1.4 U	12	12	1.4 U	10	6.8	0.86 J	10	6.8	3.4	2.2	0.59 1.4	2
Perfluoropentanoic acid (PFPeA)	EPA 537.1 M	ng/L	0.70 U	35	37	0.30 J	26	14	1.1 J	27	12	3.4	2.6	0.22 0.7	2
Perfluorohexanoic acid (PFHxA)	EPA 537.1 M	ng/L	0.70 U	29	30	0.70 U	20	8.8	0.68 J	20	7	1.3 J	1.3 J	0.2 0.7	2
Perfluoroheptanoic acid (PFHpA)	EPA 537.1 M	ng/L	1.0 U	20	22	1.0 U	12	4.2	0.51 J	12	3.2	0.55 J	0.60 J	0.28 1	2
Perfluorooctanoic acid (PFOA)	EPA 537.1 M	ng/L	1.0 U	23	24	1.0 U	12	4	1.0 U	12	2.8	1.0 U	1.0 U	0.41 1	2
Perfluorononanoic acid (PFNA)	EPA 537.1 M	ng/L	1.0 U	7.9	8.5	1.0 U	3.6	1.2 J	1.0 U	3.7	0.86 J	1.0 U	1.0 U	0.35 1	2
Perfluorodecanoic acid (PFDA)	EPA 537.1 M	ng/L	1.0 U	2.5	2.5	1.0 U	1.3 J	0.49 J	1.0 U	1.3 J	0.38 J	1.0 U	1.0 U	0.29 1	2
Perfluoroundecanoic acid (PFUnA)	EPA 537.1 M	ng/L	1.0 U	0.53 J	0.51 J	1.0 U	0.38 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.37 1	2
Perfluorododecanoic acid (PFDoA)	EPA 537.1 M	ng/L	1.0 U	0.49 J	0.51 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.48 1	2
Perfluorotridecanoic acid (PFTRDA)	EPA 537.1 M	ng/L	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.24 0.7	2
Perfluorotetradecanoic acid(PFTEDA)	EPA 537.1 M	na/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.39 1	2
Perfluorobutanesulfonic acid (PFBS)	EPA 537.1 M	ng/L	1.0 U	6.1	6.5	1.0 U	3.6	1.3 J	1.0 U	3.6	1.1 J	0.33 J	0.29 J	0.27 1	2
Perfluoropentanesulfonic acid PFPes	EPA 537.1 M	na/L	1.0 U	6.5	6.7	1.0 U	3.2	0.95 J	1.0 U	3.3	0.65 J	1.0 U	1.0 U	0.34 1	2
Perfluorohexanesulfonic acid(PFHxS)	EPA 537.1 M	na/L	1.0 U	52	55	1.0 U	25	6	0.49 J	26	4	1.0 U	0.37 J	0.28 1	2
Perfluoroheptanesulfonic acid PFHpS	EPA 537.1 M	ng/L	1.0 U	2.6	2.7	1.0 U	1.5 J	0.68 J	1.0 U	1.4 J	1.0 U	1.0 U	1.0 U	0.43 1	2
Perfluorooctanesulfonic acid (PFOS)	EPA 537.1 M	ng/L	1.0 U	220 (2)	220 (2)	1.0 U	80	18	1.8 J	81	11	0.83 J	1.3 J	4.7 10	20
Perfluorononanesulfonic acid (PFNS)	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.64 1.4	2
Perfluorodecanesulfonic acid (PFDS)	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.6 1.4	2
Perfluorooctane Sulfonamide (PFOSA)	EPA 537.1 M	ng/L	1.4 U	0.46 J (1)	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.4 1.4	4
MeFOSAA	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.7 1.4	4
EtFOSAA	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.54 1.4	4
4:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	0.66 J (1)	0.67 J	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.47 1.4	4
6:2 Fluorotelomer sulfonic acid	EPA 537.1 M	na/L	1.4 U	43	44	1.4 U	17	5.1	1.4 U	18	3.5 J	1.4 U	1.4 U	0.63 1.4	4
8:2 Fluorotelomer sulfonic acid	EPA 537.1 M	na/L	1.4 U	9.9	9.8	1.4 U	2.8 J	0.84 J	1.4 U	2.9 J	0.61 J	1.4 U	1.4 U	0.53 1.4	4
Hexafluoropropyleneoxide dimer acid	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.41 1.4	4
4.8-Dioxa-3H-perfluorononanoic acid	EPA 537.1 M	na/L	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.12 0.4	4
9CI-PF3ONS (F-53B Major)	EPA 537.1 M	na/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.42 1	4
11CI-PF3OUdS (F-53B Minor)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.32 1	4
Notes:															
(1) Result is estimated as analyte confirmation	n criteria (ion ratio) w	as not met.													
(2) Due to high concentration of the target and	alyte, a reduced sam	ole volume wa	as extracted and analyzed. Detec	tion limit was adjusted accordingly (10x). Some results reference differ	ent lab limits due to dilution.									
DL = Detection Limit					Sample ports located in each of th	e 4 trains; A, B, C, D. such as: PBG	1 = post B train GAC unit 1.								
EFF = EINUERI ER_ Eield Blank					PEDG1 = post E port D train GAC	Unit 1									
INE - Influent					PEDB2 = post E port D train Brc	0111 2									
Inter = Initiation I Estimated result Associated value may be	t he accurate or presi				PEDRI = post E port D train Resi DECC1 = post E port C train CAC	n I Doit 1									
OD - Limit of Detection	t be accurate or preu	se.			PECC1 - post E port C train GAC	Unit 1									
OD - Limit of Ocentitation					PECG2 = post E port C train GAC	Unit 2									
cog = cinit of quantitation					Fecus = post e port e train GAS (ann a									
ngr nanograms per Liter or parts per trillion. SANCE – Stowart Air National Guard Para					Englished (INE) - Hetroated water th	ac nas passed inrough the ISWIS									
Junear and Annual Annual Company and the second sec	but not dotosto."				ISWTS - Interim Storm Mater Ter	atmant System									
Samnla SANG-ER-04252023 is a field blank	our not detected.				154415 - Michael Stolini Water The	ament system									
Sample SANG-INE-04252023 IS a field blank. Sample SANG-INE-04252023D is a field during	te of SANG-INE-0425	2023													
and a second sec															

LOD – Limit of Quantitation ngt. - nanograms per Liter or parts per trillion. SMKGB – Stewart Air National Guard Base U - Undetected. Compound was analyzed for, but not detected. Sample SANG-FR04252023 is a field duplicate of SANG-INF-04252023.

C3C4556V1_C3C4568V1 - 05/02/2023

RESULTS OF ANALYSES OF WATER								VALIDATED DATA								
	Bureau V	eritas ID	VSB457	VSB462	VSB463	VSB459	VSB461	VSB460	VSB523	VSB522	VSB521	VSB520	VSB458			
	Sampl	ing Date	2023/05/02 07:55	2023/05/02 08:30	2023/05/02 08:30	2023/05/02 08:07	2023/05/02 08:22	2023/05/02 08:15	2023/05/03 08:26	2023/05/03 08:24	2023/05/03 08:17	2023/05/03 08:09	2023/05/02 08:00			
	Sa	mple ID	SANG-FB-05022023	SANG-INF-05022023	SANG-INF-05022023D	SANG-PEBR1-05022023	SANG-PEBG1-05022023	SANG-PEBG2-05022023	SANG-PAG1-05022023	SANG-PEAG1-05022023	SANG-PEAG2-05022023	SANG-PEAG3-05022023	SANG-EFF-05022023	DL I	LOD	LOQ
Perfluorinated Compounds	Method	UNITS														
Perfluorobutanoic acid (PFBA)	EPA 537.1 M	ng/L	1.4 U	16	16	1.4 U	12	8.5	12	14	8.5	4.3	1.9 J	0.59	1.4	2
Perfluoropentanoic acid (PFPeA)	EPA 537.1 M	ng/L	0.70 U	42	42	0.70 U	32	17	31	35	17	6.2	2.7	0.22	0.7	2
Perfluorohexanoic acid (PFHxA)	EPA 537.1 M	ng/L	0.70 U	35	36	0.70 U	25	12	26	28	13	3.2	1.3 J	0.2	0.7	2
Perfluoroheptanoic acid (PFHpA)	EPA 537.1 M	ng/L	1.0 U	26	27	1.0 U	16	6.4	16	18	6.6	1.5 J	0.55 J	0.28	1	2
Perfluorooctanoic acid (PFOA)	EPA 537.1 M	ng/L	1.0 U	29	29	1.0 U	16	5.5	17	18	5.9	1.1 J	0.44 J	0.41	1	2
Perfluorononanoic acid (PFNA)	EPA 537.1 M	ng/L	1.0 U	11	11	1.0 U	5.3	1.4 J	5.2	5.5	1.6 J	1.0 U	1.0 U	0.35	1	2
Perfluorodecanoic acid (PFDA)	EPA 537.1 M	ng/L	1.0 U	3.8	3.8	1.0 U	1.2 J	0.47 J	1.2 J	1.3 J	0.40 J	1.0 U	1.0 U	0.29	1	2
Perfluoroundecanoic acid (PFUnA)	EPA 537.1 M	ng/L	1.0 U	0.48 J	0.39 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.37	1	2
Perfluorododecanoic acid (PFDoA)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.48	1	2
Perfluorotridecanoic acid (PFTRDA)	EPA 537.1 M	ng/L	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.24	0.7	2
Perfluorotetradecanoic acid (PFTEDA)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.39	1	2
Perfluorobutanesulfonic acid (PFBS)	EPA 537.1 M	ng/L	1.0 U	7.2	7.1	1.0 U	4.3	1.7 J	4.3	4.7	1.7 J	0.37 J	1.0 U	0.27	1	2
Perfluoropentanesulfonic acid PFPes	EPA 537.1 M	ng/L	1.0 U	8.9	8.3	1.0 U	4.4	1.1.1	4.5	4.5	1.2 J	1.0 U	1.0 U	0.34	1	2
Perfluorohexanesulfonic acid (PFHxS)	EPA 537.1 M	ng/L	1.0 U	70	71	1.0 U	37	10	38	40	11	1.4 J	0.34 J	0.28	1	2
Perfluoroheptanesulfonic acid PFHpS	EPA 537.1 M	ng/L	1.0 U	3.1	2.9	1.0 U	1.4 J	1.0 U	1.5 J	1.6 J	0.44 J	1.0 U	1.0 U	0.43	1	2
Perfluorooctanesulfonic acid (PFOS)	EPA 537.1 M	ng/L	1.0 U	270 (1)	250 (1)	1.0 U	110 (1)	25	99 (1)	120 (1)	28 (1)	2.9	0.71 J	4.7	10	20
Perfluorononanesulfonic acid (PFNS)	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.64	1.4	2
Perfluorodecanesulfonic acid (PFDS)	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.6	1.4	2
Perfluorooctane Sulfonamide (PFOSA)	EPA 537.1 M	ng/L	1.4 U	0.61 J	0.50 J	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.4	1.4	4
MeFOSAA	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.7	1.4	4
EtFOSAA	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.54	1.4	4
4:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.47	1.4	4
6:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	49	51	1.4 U	19	6	20	21	6	1.4 U	1.4 U	0.63	1.4	4
8:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	18	19	1.4 U	3.3 J	0.86 J	3.3 J	4.3	0.91 J	1.4 U	1.4 U	0.53	1.4	4
Hexafluoropropyleneoxide dimer acid	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.41	1.4	4
4,8-Dioxa-3H-perfluorononanoic acid	EPA 537.1 M	ng/L	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.12	0.4	4
9CI-PF3ONS (F-53B Major)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.42	1	4
11CI-PF3OUdS (F-53B Minor)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.32	1	4

 Int.PF30UbS (F-S38 Minor)
 EPA 537.1 M
 ng/L
 1.0 U
 <

C3D2485V1 - 05/09/2023

RESULTS OF ANALYSES OF WATER						VALIDATED DATA						
	Bureau V	eritas ID	VTR634	VTR639	VTR640	VTR638	VTR637	VTR636	VTR635			
	Sampl	ing Date	2023/05/09 08:00	2023/05/09 08:30	2023/05/09 08:30	2023/05/09 08:22	2023/05/09 08:16	2023/05/09 08:10	2023/05/09 08:05			
	Sa	ample ID	SANG-FB-05092023	SANG-INF-05092023	SANG-INF-05092023D	SANG-PEAG1-05092023	SANG-PEAG2-05092023	SANG-PEAG3-05092023	SANG-EFF-05092023	DL	LOD	LOQ
Perfluorinated Compounds	Method	UNITS										
Perfluorobutanoic acid (PFBA)	EPA 537.1 M	ng/L	1.4 U	17	17	17	12	7.1	3.6	0.59	1.4	2
Perfluoropentanoic acid (PFPeA)	EPA 537.1 M	ng/L	0.70 U	59	58	47	27	11	4.5	0.22	0.7	2
Perfluorohexanoic acid (PFHxA)	EPA 537.1 M	ng/L	0.23 J (1)	48	48	36	18	5.6	2.2	0.2	0.7	2
Perfluoroheptanoic acid (PFHpA)	EPA 537.1 M	ng/L	1.0 U	26	27	17	7.4	1.9 J	0.79 J	0.28	1	2
Perfluorooctanoic acid (PFOA)	EPA 537.1 M	ng/L	1.0 U	28	29	16	6.3	1.3 J	0.51 J	0.41	1	2
Perfluorononanoic acid (PFNA)	EPA 537.1 M	ng/L	1.0 U	9.1	8.8	4.6	1.6 J	0.37 J	1.0 U	0.35	1	2
Perfluorodecanoic acid (PFDA)	EPA 537.1 M	ng/L	1.0 U	4.7	4.8	2.2	0.88 J	0.36 J	1.0 U	0.29	1	2
Perfluoroundecanoic acid (PFUnA)	EPA 537.1 M	ng/L	1.0 U	0.63 J	0.57 J	1.0 U	1.0 U	1.0 U	1.0 U	0.37	1	2
Perfluorododecanoic acid (PFDoA)	EPA 537.1 M	ng/L	1.0 U	0.69 J	0.53 J	1.0 U	1.0 U	1.0 U	1.0 U	0.48	1	2
Perfluorotridecanoic acid (PFTRDA)	EPA 537.1 M	ng/L	0.70 U	0.34 J	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.24	0.7	2
Perfluorotetradecanoic acid(PFTEDA)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.39	1	2
Perfluorobutanesulfonic acid (PFBS)	EPA 537.1 M	ng/L	1.0 U	10	10	6.7	2.8	0.68 J	0.37 J	0.27	1	2
Perfluoropentanesulfonic acid PFPes	EPA 537.1 M	ng/L	1.0 U	14	15	7.3	2.3	1.0 U	1.0 U	0.34	1	2
Perfluorohexanesulfonic acid(PFHxS)	EPA 537.1 M	ng/L	1.0 U	83	80	42	13	1.9 J	0.65 J	0.28	1	2
Perfluoroheptanesulfonic acid PFHpS	EPA 537.1 M	ng/L	1.0 U	4.4	4.5	2.1	0.85 J	1.0 U	1.0 U	0.43	1	2
Perfluorooctanesulfonic acid (PFOS)	EPA 537.1 M	ng/L	1.0 U	340 (2)	310 (2)	140 (2)	36	4.4	1.5 J	4.7	10	20
Perfluorononanesulfonic acid (PFNS)	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.64	1.4	2
Perfluorodecanesulfonic acid (PFDS)	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.6	1.4	2
Perfluorooctane Sulfonamide (PFOSA)	EPA 537.1 M	ng/L	1.4 U	1.4 U	0.46 J (1)	1.4 U	1.4 U	1.4 U	1.4 U	0.4	1.4	4
MeFOSAA	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.7	1.4	4
EtFOSAA	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.54	1.4	4
4:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	0.93 J	0.96 J	1.4 U	1.4 U	1.4 U	1.4 U	0.47	1.4	4
6:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	62	61	24	8.4	1.4 U	1.4 U	0.63	1.4	4
8:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	23	23	8.1	2.2 J	1.4 U	1.4 U	0.53	1.4	4
Hexafluoropropyleneoxide dimer acid	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.41	1.4	4
4,8-Dioxa-3H-perfluorononanoic acid	EPA 537.1 M	ng/L	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.12	0.4	4
9CI-PF3ONS (F-53B Major)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.42	1	4
11CI-PF3OUdS (F-53B Minor)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.32	1	4

Notes:

(1) Result is estimated as analyte confirmation criteria (ion ratio) was not met.

(2) Due to high concentration of the target analyte, a reduced sample volume was extracted and analyzed. Detection limit was adjusted accordingly (10x). Some results reference different lab limits due to dilution.

DL = Detection Limit Sample ports located in each of the 4 trains; A, B, C, D. such as: PBG1= post B train GAC unit 1.

EFF = Effluent

FB= Field Blank

INF = Influent

J - Estimated result. Associated value may not be accurate or precise.

LOD = Limit of Detection

LOQ = Limit of Quantitation

ng/L - nanograms per Liter or parts per trillion.

SANGB = Stewart Air National Guard Base

U - Undetected. Compound was analyzed for, but not detected.

Sample SANG-FB-05092023 is a field blank.

Sample SANG-INF-05092023D is a field duplicate of SANG-INF-05092023.

Sample ports located in each of the 4 frams; A, B, C, D, such as: PBI PEAG1 = post E port A train GAC Unit 1 PEAG2 = post E port A train GAC Unit 2 PEAG3 = post E port A train GAC Unit 3 Effluent (INF) = Treated water that has passed through the ISWTS Influent (INF) = Untreated water from Recreational Pond ISWTS = Interim Storm Water Treatment System

C3E0518V1 - 05/16/2023

RESULTS OF ANALYSES OF WATER						VALIDATED DATA						
	Bureau V	eritas ID	VVJ420	VVJ425	VVJ426	VVJ422	VVJ424	VVJ423	VVJ421			
	Samp	ling Date	2023/05/16 09:55	2023/05/16 10:30	2023/05/16 10:30	2023/05/16 10:08	2023/05/16 10:24	2023/05/16 10:16	2023/05/16 10:00			
	S	ample ID	SANG-FB-05162023	SANG-INF-05162023	SANG-INF-05162023D	SANG-PEDR1-05162023	SANG-PEDG1-05162023	SANG-PEDG2-05162023	SANG-EFF-05162023	DL	LOD	LOQ
Perfluorinated Compounds	Method	UNITS										
Perfluorobutanoic acid (PFBA)	EPA 537.1 M	ng/L	1.5 U	30	28	1.5 U	24	22	6.8	0.65	1.5	2.2
Perfluoropentanoic acid (PFPeA)	EPA 537.1 M	ng/L	0.77 U	100	95	0.77 U	68	54	11	0.24	0.77	2.2
Perfluorohexanoic acid (PFHxA)	EPA 537.1 M	ng/L	0.77 U	83	77	0.77 U	50	34	4.1	0.22	0.77	2.2
Perfluoroheptanoic acid (PFHpA)	EPA 537.1 M	ng/L	1.1 U	39	37	1.1 U	21	12	0.56 J	0.31	1.1	2.2
Perfluorooctanoic acid (PFOA)	EPA 537.1 M	ng/L	1.1 U	42	40	1.1 U	20	12	1.1 U	0.45	1.1	2.2
Perfluorononanoic acid (PFNA)	EPA 537.1 M	ng/L	1.1 U	11	10	1.1 U	5.1	2.4	1.1 U	0.39	1.1	2.2
Perfluorodecanoic acid (PFDA)	EPA 537.1 M	ng/L	1.1 U	7.4	6.6	1.1 U	3.3	1.2 J	1.1 U	0.32	1.1	2.2
Perfluoroundecanoic acid (PFUnA)	EPA 537.1 M	ng/L	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.41	1.1	2.2
Perfluorododecanoic acid (PFDoA)	EPA 537.1 M	ng/L	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.53	1.1	2.2
Perfluorotridecanoic acid (PFTRDA)	EPA 537.1 M	ng/L	0.77 U	0.77 U	0.77 U	0.77 U	0.77 U	0.77 U	0.77 U	0.26	0.77	2.2
Perfluorotetradecanoic acid (PFTEDA)	EPA 537.1 M	ng/L	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.43	1.1	2.2
Perfluorobutanesulfonic acid (PFBS)	EPA 537.1 M	ng/L	1.1 U	16	15	1.1 U	9.2	4	1.1 U	0.3	1.1	2.2
Perfluoropentanesulfonic acid PFPes	EPA 537.1 M	ng/L	1.1 U	20	20	1.1 U	10	3.5	1.1 U	0.37	1.1	2.2
Perfluorohexanesulfonic acid (PFHxS)	EPA 537.1 M	ng/L	1.1 U	120 (1)	120 (1)	1.1 U	61	22	0.69 J	2.8	10	20
Perfluoroheptanesulfonic acid PFHpS	EPA 537.1 M	ng/L	1.1 U	6.8	6.5	1.1 U	2.6	0.85 J	1.1 U	0.47	1.1	2.2
Perfluorooctanesulfonic acid (PFOS)	EPA 537.1 M	ng/L	1.1 U	430 (1)	420 (1)	1.7 J	180 (1)	67	4.8	4.7	10	20
Perfluorononanesulfonic acid (PFNS)	EPA 537.1 M	ng/L	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.7	1.5	2.2
Perfluorodecanesulfonic acid (PFDS)	EPA 537.1 M	ng/L	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.66	1.5	2.2
Perfluorooctane Sulfonamide (PFOSA)	EPA 537.1 M	ng/L	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.44	1.5	4.4
MeFOSAA	EPA 537.1 M	ng/L	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.77	1.5	4.4
EtFOSAA	EPA 537.1 M	ng/L	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.59	1.5	4.4
4:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.52	1.5	4.4
6:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.5 U	87	85	1.5 U	38	19	1.5 U	0.69	1.5	4.4
8:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.5 U	23	20	1.0 J	12	5.8	1.3 J	0.58	1.5	4.4
Hexafluoropropyleneoxide dimer acid	EPA 537.1 M	ng/L	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.45	1.5	4.4
4,8-Dioxa-3H-perfluorononanoic acid	EPA 537.1 M	ng/L	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.13	0.44	4.4
9CI-PF3ONS (F-53B Major)	EPA 537.1 M	ng/L	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.46	1.1	4.4
11CI-PF3OUdS (F-53B Minor)	EPA 537.1 M	ng/L	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.35	1.1	4.4

Notes:

(1) Due to high concentration of the target analyte, a reduced sample volume was extracted and analyzed. Detection limit was adjusted accordingly (10x). Some results reference different lab limits due to dilution.

DL = Detection Limit Sample ports located in each of the 4 trains; A, B, C, D. such as: PBG1 = post B train GAC unit 1.

EFF = Effluent

FB= Field Blank

INF = Influent

J - Estimated result. Associated value may not be accurate or precise.

LOD = Limit of Detection

LOQ = Limit of Quantitation

ng/L - nanograms per Liter or parts per trillion.

SANGB = Stewart Air National Guard Base

U - Undetected. Compound was analyzed for, but not detected.

Sample SANG-FB-05162023 is a field blank.

Sample SANG-INF-05162023D is a field duplicate of SANG-INF-05162023.

PEDG1 = post E port D train GAC Unit 1 PEDG2 = post E port D train GAC Unit 2 PEDR1 = post E port D train Resin 1 Effluent (EFF) = Treated water that has passed through the ISWTS Influent (INF) = Untreated water from Recreational Pond ISWTS = Interim Storm Water Treatment System

C3F6852V1 - 05/31/2023

RESULTS OF ANALYSES OF WATER					VALIDA	TED DATA						
	Burea	u Veritas ID	VYY134	VYY139	VYY140	VYY136	VYY138	VYY137	VYY135			
	Sa	mpling Date	2023/05/31 08:55	2023/05/31 09:35	2023/05/31 09:35	2023/05/31 09:10	2023/05/31 09:25	2023/05/31 09:18	2023/05/31 09:00			
		Sample ID	SANG-FB-05312023	SANG-INF-05312023	SANG-INF-05312023D	SANG-PEBR1-05312023	SANG-PEBG1-05312023	SANG-PEBG2-05312023	SANG-EFF-05312023	DL	LOD	LOQ
Perfluorinated Compounds	Method	UNITS										
Perfluorobutanoic acid (PFBA)	EPA 537.1 M	ng/L	1.4 U	38	39	1.5 U	37	32	0.87 J	0.65	1.5	2.2
Perfluoropentanoic acid (PFPeA)	EPA 537.1 M	ng/L	0.70 U	110	110	0.77 U	100	77	0.77 U	2.2	7	20
Perfluorohexanoic acid (PFHxA)	EPA 537.1 M	ng/L	0.70 U	99	100	0.77 U	78	51	0.77 U	0.22	0.77	2.2
Perfluoroheptanoic acid (PFHpA)	EPA 537.1 M	ng/L	1.0 U	44	44	1.1 U	31	18	1.1 U	0.31	1.1	2.2
Perfluorooctanoic acid (PFOA)	EPA 537.1 M	ng/L	1.0 U	44	45	1.1 U	28	13	1.1 U	0.45	1.1	2.2
Perfluorononanoic acid (PFNA)	EPA 537.1 M	ng/L	1.0 U	11	11	1.1 U	5.8	2.6	1.1 U	0.39	1.1	2.2
Perfluorodecanoic acid (PFDA)	EPA 537.1 M	ng/L	1.0 U	7.4	7.8	1.1 U	3.3	1.1 J	1.1 U	0.32	1.1	2.2
Perfluoroundecanoic acid (PFUnA)	EPA 537.1 M	ng/L	1.0 U	0.57 J	0.61 J	1.1 U	1.1 U	1.1 U	1.1 U	0.41	1.1	2.2
Perfluorododecanoic acid (PFDoA)	EPA 537.1 M	ng/L	1.0 U	0.69 J	0.69 J	1.1 U	1.1 U	1.1 U	1.1 U	0.53	1.1	2.2
Perfluorotridecanoic acid (PFTRDA)	EPA 537.1 M	ng/L	0.70 U	0.77 U	0.77 U	0.77 U	0.77 U	0.77 U	0.77 U	0.26	0.77	2.2
Perfluorotetradecanoic acid (PFTEDA)	EPA 537.1 M	ng/L	1.0 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.43	1.1	2.2
Perfluorobutanesulfonic acid (PFBS)	EPA 537.1 M	ng/L	1.0 U	22	23	1.1 U	15	8.9	1.1 U	0.3	1.1	2.2
Perfluoropentanesulfonic acid PFPes	EPA 537.1 M	ng/L	1.0 U	26	26	1.1 U	16	7.5	1.1 U	0.37	1.1	2.2
Perfluorohexanesulfonic acid (PFHxS)	EPA 537.1 M	ng/L	1.0 U	150	140	1.1 U	90	42	1.1 U	2.8	10	20
Perfluoroheptanesulfonic acid PFHpS	EPA 537.1 M	ng/L	1.0 U	8.3	7.9	1.1 U	4.2	1.6 J	1.1 U	0.47	1.1	2.2
Perfluorooctanesulfonic acid (PFOS)	EPA 537.1 M	ng/L	1.0 U	430	460	0.59 J	220	99	0.75 J	4.7	10	20
Perfluorononanesulfonic acid (PFNS)	EPA 537.1 M	ng/L	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.7	1.5	2.2
Perfluorodecanesulfonic acid (PFDS)	EPA 537.1 M	ng/L	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.66	1.5	2.2
Perfluorooctane Sulfonamide (PFOSA)	EPA 537.1 M	ng/L	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.44	1.5	4.4
MeFOSAA	EPA 537.1 M	ng/L	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.77	1.5	4.4
EtFOSAA	EPA 537.1 M	ng/L	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.59	1.5	4.4
4:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	1.5 J	2.1 J	1.5 U	0.74 J	1.5 U	1.5 U	0.47	1.4	4
6:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	110	100	1.5 U	54	25	1.5 U	6.3	14	40
8:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	21	21	1.5 U	5.2	1.7 J	1.5 U	0.58	1.5	4.4
Hexafluoropropyleneoxide dimer acid	EPA 537.1 M	ng/L	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.45	1.5	4.4
4,8-Dioxa-3H-perfluorononanoic acid	EPA 537.1 M	ng/L	0.40 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.13	0.44	4.4
9CI-PF3ONS (F-53B Major)	EPA 537.1 M	ng/L	1.0 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.46	1.1	4.4
11CI-PF3OUdS (F-53B Minor)	EPA 537.1 M	ng/L	1.0 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.35	1.1	4.4

Notes: DL = Detection Limit EFF = Effluent

FB= Field Blank

INF = Influent

J - Estimated result. Associated value may not be accurate or precise.

LOD = Limit of Detection LOQ = Limit of Quantitation

ng/L - nanograms per Liter or parts per trillion.

SANGB = Stewart Air National Guard Base

U - Undetected. Compound was analyzed for, but not detected.

Sample SANG-FB-05312023 is a field blank.

Sample SANG-INF-05312023D is a field duplicate of SANG-INF-05312023.

Sample ports located in each of the 4 trains; A, B, C, D. such as: PBG1= post B train GAC unit 1. PEBG1 = post E port B train GAC Unit 1

PEBG2 = post E port B train GAC Unit 2

PEBR1 = post E port B train Resin 1

Effluent (EFF) = Treated water that has passed through the ISWTS Influent (INF) = Untreated water from Recreational Pond

ISWTS = Interim Storm Water Treatment System

C3H2393V1 - 06/13/2023

RESULTS OF ANALYSES OF WATER						VALIDATED DATA						
	Bureau V	/eritas ID	WCE994	WCE999	WCF000	WCE996	WCE998	WCE997	WCE995			
	Samp	ling Date	2023/06/13 08:30	2023/06/13 09:10	2023/06/13 09:10	2023/06/13 08:45	2023/06/13 09:00	2023/06/13 08:52	2023/06/13 08:38			ł
	S	ample ID	SANG-FB-06132023	SANG-INF-06132023	SANG-INF-06132023D	SANG-PEAR1-06132023	SANG-PEAG1-06132023	SANG-PEAG2-06132023	SANG-EFF-06132023	DL	LOD	LOQ
Perfluorinated Compounds	Method	UNITS			·							
Perfluorobutanoic acid (PFBA)	EPA 537.1 M	ng/L	0.67 J	41	44	1.4 U	0.73 J	1.4 U	1.4 U	0.59	1.4	2
Perfluoropentanoic acid (PFPeA)	EPA 537.1 M	ng/L	0.70 U	150 (1)	150 (1)	0.70 U	1.4 J	0.70 U	0.70 U	2.2	7	20
Perfluorohexanoic acid (PFHxA)	EPA 537.1 M	ng/L	0.70 U	130 (1)	130 (1)	0.70 U	1.0 J	0.70 U	0.70 U	2	7	20
Perfluoroheptanoic acid (PFHpA)	EPA 537.1 M	ng/L	1.0 U	53	53	1.0 U	0.50 J	1.0 U	1.0 U	0.28	1	2
Perfluorooctanoic acid (PFOA)	EPA 537.1 M	ng/L	1.0 U	57	58	1.0 U	0.49 J	1.0 U	1.0 U	0.41	1	2
Perfluorononanoic acid (PFNA)	EPA 537.1 M	ng/L	1.0 U	13	13	1.0 U	1.0 U	1.0 U	1.0 U	0.35	1	2
Perfluorodecanoic acid (PFDA)	EPA 537.1 M	ng/L	1.0 U	9.4	9.8	1.0 U	1.0 U	1.0 U	1.0 U	0.29	1	2
Perfluoroundecanoic acid (PFUnA)	EPA 537.1 M	ng/L	1.0 U	1.1 J	1.1 J	1.0 U	1.0 U	1.0 U	1.0 U	0.37	1	2
Perfluorododecanoic acid (PFDoA)	EPA 537.1 M	ng/L	1.0 U	1.4 J	1.5 J	1.0 U	1.0 U	1.0 U	1.0 U	0.48	1	2
Perfluorotridecanoic acid (PFTRDA)	EPA 537.1 M	ng/L	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.24	0.7	2
Perfluorotetradecanoic acid (PFTEDA)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.39	1	2
Perfluorobutanesulfonic acid (PFBS)	EPA 537.1 M	ng/L	1.0 U	31	32	1.0 U	1.0 U	1.0 U	1.0 U	0.27	1	2
Perfluoropentanesulfonic acid PFPes	EPA 537.1 M	ng/L	1.0 U	37	36	1.0 U	1.0 U	1.0 U	1.0 U	0.34	1	2
Perfluorohexanesulfonic acid (PFHxS)	EPA 537.1 M	ng/L	1.0 U	190 (1)	190 (1)	1.0 U	0.52 J	1.0 U	1.0 U	2.8	10	20
Perfluoroheptanesulfonic acid PFHpS	EPA 537.1 M	ng/L	1.0 U	9.4	9.8	1.0 U	1.0 U	1.0 U	1.0 U	0.43	1	2
Perfluorooctanesulfonic acid (PFOS)	EPA 537.1 M	ng/L	1.0 U	570 (1)	550 (1)	1.1 J	3.9	1.3 J	1.4 J	4.7	10	20
Perfluorononanesulfonic acid (PFNS)	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.64	1.4	2
Perfluorodecanesulfonic acid (PFDS)	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.6	1.4	2
Perfluorooctane Sulfonamide (PFOSA)	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.4	1.4	4
MeFOSAA	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.7	1.4	4
EtFOSAA	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.54	1.4	4
4:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	1.5 J	1.4 J	1.4 U	1.4 U	1.4 U	1.4 U	0.47	1.4	4
6:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	140 (1)	140 (1)	1.4 U	0.70 J	1.4 U	1.4 U	6.3	14	40
8:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	26	24	1.2 J	2.1 J	1.5 J	1.5 J	0.53	1.4	4
Hexafluoropropyleneoxide dimer acid	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.41	1.4	4
4,8-Dioxa-3H-perfluorononanoic acid	EPA 537.1 M	ng/L	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.12	0.4	4
9CI-PF3ONS (F-53B Major)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.42	1	4
11CI-PF3OUdS (F-53B Minor)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.32	1	4
Notes:												

(1) Due to high concentration of the target analyte, a reduced sample volume was extracted and analyzed. Detection limit was adjusted accordingly (10x). Some results reference different lab limits due to dilution.

ng/L - nanograms per Liter or parts per trillion. Sample ports located in each of the 4 trains; A, B, C, D. such as: PBG1= post B train GAC unit 1.

U - Undetected. Compound was analyzed for, but not detected.

J - Estimated result. Associated value may not be accurate or precise.

DL = Detection Limit

EFF = Effluent

FB= Field Blank

INF = Influent

LOD = Limit of Detection

LOQ = Limit of Quantitation

SANGB = Stewart Air National Guard Base Sample SANG-FB-06132023 is a field blank.

Sample SANG-INF-06132023D is a field duplicate of SANG-INF-06132023.

PEAG1 = post E port A train GAC Unit 1 PEAG2 = post E port A train GAC Unit 2 PEAR1 = post E port A train Resin 1 Effluent (EFF) = Treated water that has passed through the ISWTS Influent (INF) = Untreated water from Recreational Pond ISWTS = Interim Storm Water Treatment System

C3I1076V1 - 06/20/2023 DESULTS OF ANIAL VEES OF WATER

RESULTS OF ANALYSES OF WATER						VALIDATED DATA						
	Bureau Ve	eritas ID	WDZ353	WDZ358	WDZ359	WDZ355	WDZ357	WDZ356	WDZ354			
	Sampl	ing Date	2023/06/20 11:00	2023/06/20 11:40	2023/06/20 11:40	2023/06/20 11:17	2023/06/20 11:32	2023/06/20 11:25	2023/06/20 11:10			
	Sa	mple ID	SANG-FB-06202023	SANG-INF-06202023	SANG-INF-06202023D	SANG-PEBR1-06202023	SANG-PEBG1-062012023	SANG-PEBG2-06202023	SANG-EFF-06202023	DL	LOD	LOQ
Perfluorinated Compounds	Method	UNITS										
Perfluorobutanoic acid (PFBA)	EPA 537.1 M	ng/L	1.4 U	26	26	1.5 U	4.7	1.5 U	1.5 U	0.65	1.5	2.2
Perfluoropentanoic acid (PFPeA)	EPA 537.1 M	ng/L	0.70 U	87	86	0.77 U	11	0.77 U	0.77 U	0.24	0.77	2.2
Perfluorohexanoic acid (PFHxA)	EPA 537.1 M	ng/L	0.70 U	71	73	0.77 U	8.3	0.77 U	0.77 U	0.22	0.77	2.2
Perfluoroheptanoic acid (PFHpA)	EPA 537.1 M	ng/L	1.0 U	32	32	1.1 U	3.1	1.1 U	1.1 U	0.31	1.1	2.2
Perfluorooctanoic acid (PFOA)	EPA 537.1 M	ng/L	1.0 U	33	32	1.1 U	2.9	1.1 U	1.1 U	0.45	1.1	2.2
Perfluorononanoic acid (PFNA)	EPA 537.1 M	ng/L	1.0 U	8.1	7.9	1.1 U	0.45 J	1.1 U	1.1 U	0.39	1.1	2.2
Perfluorodecanoic acid (PFDA)	EPA 537.1 M	ng/L	1.0 U	5.9	5.8	1.1 U	1.1 U	1.1 U	1.1 U	0.32	1.1	2.2
Perfluoroundecanoic acid (PFUnA)	EPA 537.1 M	ng/L	1.0 U	0.46 J	0.43 J	1.1 U	1.1 U	1.1 U	1.1 U	0.41	1.1	2.2
Perfluorododecanoic acid (PFDoA)	EPA 537.1 M	ng/L	1.0 U	0.72 J	0.73 J	1.1 U	1.1 U	1.1 U	1.1 U	0.53	1.1	2.2
Perfluorotridecanoic acid (PFTRDA)	EPA 537.1 M	ng/L	0.70 U	0.77 U	0.77 U	0.77 U	0.77 U	0.77 U	0.77 U	0.26	0.77	2.2
Perfluorotetradecanoic acid (PFTEDA)	EPA 537.1 M	ng/L	1.0 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.43	1.1	2.2
Perfluorobutanesulfonic acid (PFBS)	EPA 537.1 M	ng/L	1.0 U	17	16	1.1 U	0.85 J	1.1 U	1.1 U	0.3	1.1	2.2
Perfluoropentanesulfonic acid PFPes	EPA 537.1 M	ng/L	1.0 U	27	27	1.1 U	0.68 J	1.1 U	1.1 U	0.37	1.1	2.2
Perfluorohexanesulfonic acid (PFHxS)	EPA 537.1 M	ng/L	1.0 U	110	110	1.1 U	7.6	1.1 U	1.1 U	0.31	1.1	2.2
Perfluoroheptanesulfonic acid PFHpS	EPA 537.1 M	ng/L	1.0 U	6	6	1.1 U	0.62 J	1.1 U	1.1 U	0.47	1.1	2.2
Perfluorooctanesulfonic acid (PFOS)	EPA 537.1 M	ng/L	1.0 U	370 (1)	350 (1)	1.1 U	25	1.1 U	1.1 U	4.7	10	20
Perfluorononanesulfonic acid (PFNS)	EPA 537.1 M	ng/L	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.7	1.5	2.2
Perfluorodecanesulfonic acid (PFDS)	EPA 537.1 M	ng/L	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.66	1.5	2.2
Perfluorooctane Sulfonamide (PFOSA)	EPA 537.1 M	ng/L	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.44	1.5	4.4
MeFOSAA	EPA 537.1 M	ng/L	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.77	1.5	4.4
EtFOSAA	EPA 537.1 M	ng/L	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.59	1.5	4.4
4:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	1.1 J	1.2 J	1.5 U	1.4 U	1.5 U	1.5 U	0.47	1.4	4
6:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	70	73	1.5 U	5.3	1.5 U	1.5 U	0.63	1.4	4
8:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	12	14	1.5 U	1.4 J	1.5 U	1.5 U	0.53	1.4	4
Hexafluoropropyleneoxide dimer acid	EPA 537.1 M	ng/L	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.45	1.5	4.4
4,8-Dioxa-3H-perfluorononanoic acid	EPA 537.1 M	ng/L	0.40 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.13	0.44	4.4
9CI-PF3ONS (F-53B Major)	EPA 537.1 M	ng/L	1.0 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.46	1.1	4.4
11CI-PF3OUdS (F-53B Minor)	EPA 537.1 M	ng/L	1.0 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.35	1.1	4.4

(1) Due to high concentration of the target analyte, a reduced sample volume was extracted and analyzed. Detection limit was adjusted accordingly (10x). Some results reference different lab limits due to dilution. Sample ports located in each of the 4 trains; A, B, C, D. such as: PBG1= post B train GAC unit 1.

PEBG1 = post E port B train GAC Unit 1

PEBG2 = post E port B train GAC Unit 2

ISWTS = Interim Storm Water Treatment System

PEBR1 = post E port B train Resin 1 Effluent (EFF) = Treated water that has passed through the ISWTS Influent (INF) = Untreated water from Recreational Pond

DL = Detection Limit

EFF = Effluent

FB= Field Blank INF = Influent

J - Estimated result. Associated value may not be accurate or precise.
 LOD = Limit of Detection

LOQ = Limit of Quantitation

ng/L - nanograms per Liter or parts per trillion. SANGB = Stewart Air National Guard Base

U - Undetected. Compound was analyzed for, but not detected. Sample SANG-FB-06202023 is a field blank.

Sample SANG-INF-06202023D is a field duplicate of SANG-INF-06202023.

C3J1468V1 - 06/27/2023

RESULTS OF ANALYSES OF WATER						VALIDATED DATA						
	Bureau V	eritas ID	WGD490	WGD495	WGD496	WGD492	WGD494	WGD493	WGD491			
	Samp	ling Date	2023/06/27 07:25	2023/06/27 07:58	2023/06/27 07:58	2023/06/27 07:38	2023/06/27 07:52	2023/06/27 07:45	2023/06/27 07:30			
	S	ample ID	SANG-FB-06272023	SANG-INF-06272023	SANG-INF-06272023D	SANG-PECR1-06272023	SANG-PECG1-062712023	SANG-PECG2-06272023	SANG-EFF-06272023	DL	LOD	LOQ
Perfluorinated Compounds	Method	UNITS										
Perfluorobutanoic acid (PFBA)	EPA 537.1 M	ng/L	1.5 U	7	7.3	1.4 U	4.8	1.5 U	1.5 U	0.65	1.5	2.2
Perfluoropentanoic acid (PFPeA)	EPA 537.1 M	ng/L	0.77 U	23	23	0.70 U	12	0.71 J	0.77 U	0.24	0.77	2.2
Perfluorohexanoic acid (PFHxA)	EPA 537.1 M	ng/L	0.77 U	16	17	0.70 U	7.8	0.36 J	0.77 U	0.22	0.77	2.2
Perfluoroheptanoic acid (PFHpA)	EPA 537.1 M	ng/L	1.1 U	10	10	1.0 U	4.1	1.1 U	1.1 U	0.31	1.1	2.2
Perfluorooctanoic acid (PFOA)	EPA 537.1 M	ng/L	1.1 U	10	9.8	1.0 U	3.3	1.1 U	1.1 U	0.45	1.1	2.2
Perfluorononanoic acid (PFNA)	EPA 537.1 M	ng/L	1.1 U	3.3	3.3	1.0 U	0.92 J	1.1 U	1.1 U	0.39	1.1	2.2
Perfluorodecanoic acid (PFDA)	EPA 537.1 M	ng/L	1.1 U	2.3	2.3	1.0 U	0.74 J	1.1 U	1.1 U	0.32	1.1	2.2
Perfluoroundecanoic acid (PFUnA)	EPA 537.1 M	ng/L	1.1 U	0.43 J	0.42 J	1.0 U	1.0 U	1.1 U	1.1 U	0.41	1.1	2.2
Perfluorododecanoic acid (PFDoA)	EPA 537.1 M	ng/L	1.1 U	0.61 J	0.62 J	1.0 U	1.0 U	1.1 U	1.1 U	0.53	1.1	2.2
Perfluorotridecanoic acid (PFTRDA)	EPA 537.1 M	ng/L	0.70 U	0.26 J (1)	0.27 J	0.70 U	0.70 U	0.70 U	0.70 U	0.24	0.7	2
Perfluorotetradecanoic acid (PFTEDA)	EPA 537.1 M	ng/L	1.0 U	0.48 J (1)	0.45 J (1)	1.0 U	1.0 U	1.0 U	1.0 U	0.39	1	2
Perfluorobutanesulfonic acid (PFBS)	EPA 537.1 M	ng/L	1.1 U	3.1	3.2	1.0 U	1.2 J	1.1 U	1.1 U	0.3	1.1	2.2
Perfluoropentanesulfonic acid PFPes	EPA 537.1 M	ng/L	1.1 U	3.1	3.1	1.0 U	1.0 J	1.1 U	1.1 U	0.37	1.1	2.2
Perfluorohexanesulfonic acid (PFHxS)	EPA 537.1 M	ng/L	1.1 U	23	22	1.0 U	7	1.1 U	1.1 U	0.31	1.1	2.2
Perfluoroheptanesulfonic acid PFHpS	EPA 537.1 M	ng/L	1.1 U	1.2 J	1.2 J	1.0 U	0.58 J	1.1 U	1.1 U	0.47	1.1	2.2
Perfluorooctanesulfonic acid (PFOS)	EPA 537.1 M	ng/L	1.1 U	87	86	1.0 U	21	0.54 J	1.1 U	0.52	1.1	2.2
Perfluorononanesulfonic acid (PFNS)	EPA 537.1 M	ng/L	1.5 U	1.5 U	1.5 U	1.4 U	1.4 U	1.5 U	1.5 U	0.7	1.5	2.2
Perfluorodecanesulfonic acid (PFDS)	EPA 537.1 M	ng/L	1.5 U	1.5 U	1.5 U	1.4 U	1.4 U	1.5 U	1.5 U	0.66	1.5	2.2
Perfluorooctane Sulfonamide (PFOSA)	EPA 537.1 M	ng/L	1.4 U	1.4 U	0.59 J (1)	1.4 U	1.4 U	1.4 U	1.4 U	0.4	1.4	4
MeFOSAA	EPA 537.1 M	ng/L	1.5 U	1.5 U	1.5 U	1.4 U	1.4 U	1.5 U	1.5 U	0.77	1.5	4.4
EtFOSAA	EPA 537.1 M	ng/L	1.5 U	1.5 U	1.5 U	1.4 U	1.4 U	1.5 U	1.5 U	0.59	1.5	4.4
4:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.5 U	1.4 U	1.4 U	1.4 U	1.4 U	1.5 U	1.5 U	0.47	1.4	4
6:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.5 U	15	16	1.4 U	5.1	1.5 U	1.5 U	0.63	1.4	4
8:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.5 U	6.3	6	1.4 U	1.9 J	1.5 U	1.5 U	0.58	1.5	4.4
Hexafluoropropyleneoxide dimer acid	EPA 537.1 M	ng/L	1.5 U	1.5 U	1.5 U	1.4 U	1.4 U	1.5 U	1.5 U	0.45	1.5	4.4
4,8-Dioxa-3H-perfluorononanoic acid	EPA 537.1 M	ng/L	0.44 U	0.44 U	0.44 U	0.40 U	0.40 U	0.44 U	0.44 U	0.13	0.44	4.4
9CI-PF3ONS (F-53B Major)	EPA 537.1 M	ng/L	1.1 U	1.1 U	1.1 U	1.0 U	1.0 U	1.1 U	1.1 U	0.46	1.1	4.4
11CI-PF3OUdS (F-53B Minor)	EPA 537.1 M	ng/L	1.1 U	1.1 U	1.1 U	1.0 U	1.0 U	1.1 U	1.1 U	0.35	1.1	4.4
Notes:												

(1) Due to high concentration of the target analyte, a reduced sample volume was extracted and analyzed. Detection limit was adjusted accordingly (10x). Some results reference different lab limits due to dilution.

DL = Detection Limit

EFF = Effluent

FB= Field Blank

INF = Influent

J - Estimated result. Associated value may not be accurate or precise.

LOD = Limit of Detection

LOQ = Limit of Quantitation

ng/L - nanograms per Liter or parts per trillion. SANGB = Stewart Air National Guard Base

U - Undetected. Compound was analyzed for, but not detected.

Sample SANG-FB-06202023 is a field blank.

Sample SANG-INF-06202023D is a field duplicate of SANG-INF-06202023.

Sample ports located in each of the 4 trains; A, B, C, D. such as: PBG1= post B train GAC unit 1.

PECG1 = post E port C train GAC Unit 1

PECG2 = post E port C train GAC Unit 2

PECR1 = post E port C train Resin 1

Effluent (EFF) = Treated water that has passed through the ISWTS

Influent (INF) = Untreated water from Recreational Pond

ISWTS = Interim Storm Water Treatment System

TABLE 2 - OTHER WATER QUALITY MONITORING RESULTS

		Glyc	cols	
Sample Parameter/Sample ID	Sampling Date	Influent (SANG-INF-05092023 mg/L)	PBG2 Effluent (SANG-PAG2-05092023 mg/L)	Effluent (SANG-EFF-05092023 mg/L)
Diethylene glycol	5/9/2023	<52	<52	<52
Ethylene glycol		<10	<10	<10
Propylene glycol		<10	<10	<10
Triethylene Glycol		<54	<54	<54

	Total Organic Carbon (TOC)								
Sample Parameter	Sampling Date	Influent (mg/L)	PDG2 Effluent (mg/L)	Effluent (mg/L)					
ТОС	5/9/2023	3.90	1.90	1.20					

Date	Primary Bag Filter Change and Type of Filters Installed	Secondary Bag Filter Change and Type of Filters Installed	Treatment Process Backwashed	Sand Filter Cleaning or Changeout	Media Change Out	Resin Vessel Skimming
4/3/2023						
4/4/2023		10 Micron Regular	Primary Carbon vessels A1, B1, C1, & D1			
4/5/2023		10 Micron Regular				
4/6/2023		10 Micron Regular				
4/7/2023	25 Micron Pleated	10 Micron Pleated				
4/10/2023		10 Micron Regular				
4/11/2023		10 Micron Regular				
4/12/2023		10 Micron Regular	Primary Carbon vessels A1, B1, C1, & D1			
4/13/2023		10 Micron Regular		Coarse Sand Filters (1A/1B)		
4/14/2023	25 Micron Pleated	10 Micron Pleated				
4/16/2023		10 Micron Pleated				
4/17/2023						
4/18/2023				Coarse Sand Filters (2A/2B)		
4/19/2023	25 Micron Regular	10 Micron Regular				
4/20/2023		10 Micron Regular	Primary Carbon vessels A1, B1, C1, & D1 Tertiary A3 & C3			
4/21/2023	25 Micron Pleated	10 Micron Pleated				

Date	Primary Bag Filter Change and Type of Filters Installed	Secondary Bag Filter Change and Type of Filters Installed	Treatment Process Backwashed	Sand Filter Cleaning or Changeout	Media Change Out	Resin Vessel Skimming
4/24/2023						
4/25/2023		10 Micron Pleated	Primary Carbon vessels A1, B1, C1, & D1			
4/26/2023						
4/27/2023				Fine Sand Filters (3A/3B)		
4/28/2023	25 Micron Pleated	10 Micron Pleated				
5/1/2023						
5/2/2023			Primary Carbon vessels A1, B1, C1, & D1			
5/3/2023			Secondary Carbon vessels A2, B2, C2, & D2			
5/4/2023				Fine Sand Filters (4A/4B)		
5/5/2023	25 Micron Pleated	10 Micron Pleated				
5/8/2023		10 Micron Regular				
5/9/2023		10 Micron Regular	Primary Carbon vessels A1, B1, C1, & D1			
5/10/2023	25 Micron Regular	10 Micron Regular				Trains D&B Resin was skimmed ≈55 gal/6.5 cu.ft.

Date	Primary Bag Filter Change and Type of Filters Installed	Secondary Bag Filter Change and Type of Filters Installed	Treatment Process Backwashed	Sand Filter Cleaning or Changeout	Media Change Out	Resin Vessel Skimming
5/11/2023		10 Micron Pleated		Fine Sand Filters (5A/5B)		
5/12/2023		10 Micron Pleated				
5/15/2023		10 Micron Regular	Primary Carbon vessels A1, B1, C1, & D1			
5/16/2023		10 Micron Regular				
5/17/2023	25 Micron Regular	10 Micron Regular	Primary Carbon vessels A1, B1, C1, & D1			
5/18/2023		10 Micron Regular	Secondary Carbon vessels A2, B2, C2, & D2			
5/19/2023	25 Micron Pleated	10 Micron Pleated	Primary Carbon vessels A1, B1, C1, & D1			
5/22/2023	25 Micron Regular	10 Micron Regular				
5/23/2023		10 Micron Regular	Primary Carbon vessels A1, B1, C1, & D1			
5/24/2023		10 Micron Regular				
5/25/2023		10 Micron Regular		Coarse Sand Filters (1A/1B)		
5/30/2023	25 Micron Regular	10 Micron Regular	Primary Carbon vessels A1, B1, C1, & D1			
5/31/2023		10 Micron Regular				
6/1/2023		10 Micron Regular	Primary Carbon vessels A1, B1, C1, & D1			
6/2/2023	25 Micron Pleated					

Date	Primary Bag Filter Change and Type of Filters Installed	Secondary Bag Filter Change and Type of Filters Installed	Treatment Process Backwashed	Sand Filter Cleaning or Changeout	Media Change Out	Resin Vessel Skimming
6/5/2023		10 Micron Regular	Primary Carbon vessels A1, B1, C1, & D1			
6/6/2023					Both Train C1 & C2 GAC vessels loaded with (≈2,500 lbs.) of new F-400 carbon, each. Train C Resin loaded with (17 ft ³) of new anthracite and (63 ft ³) of new resin	
6/7/2023		10 Micron Regular			Both Train A1 & A2 GAC vessels loaded with (≈2,500 lbs.) of new F-400 carbon, each. Train A Resin loaded with (17 ft ³) of new anthracite and (63 ft ³) of new resin	
6/8/2023			Primary Carbon vessel A1 Secondary Carbon vessel A2		Both Train B1 & B2 GAC vessels loaded with (≈2,500 lbs.) of new F-400 carbon, each. Train B Resin loaded with (17 ft ³) of new anthracite and (63 ft ³) of new resin	
6/9/2023			Primary Carbon vessel B1 Secondary Carbon vessel B2		Both Train D1 & D2 GAC vessels loaded with (≈2,500 lbs.) of new F-400 carbon, each. Train D Resin loaded with (17 ft ³) of new anthracite and (63 ft ³) of new resin	
6/12/2023			Primary Carbon vessels A1, B1, C1, & D1			
6/13/2023		10 Micron Regular				

Date	Primary Bag Filter Change and Type of Filters Installed	Secondary Bag Filter Change and Type of Filters Installed	Treatment Process Backwashed	Sand Filter Cleaning or Changeout	Media Change Out	Resin Vessel Skimming
6/14/2023			Secondary Carbon vessels A2, B2, C2, & D2	Coarse Sand Filters (2A/2B)		
6/15/2023		10 Micron Regular				
6/16/2023	25 Micron Pleated	10 Micron Pleated				
6/19/2023		10 Micron Regular				
6/20/2023	25 Micron Regular	10 Micron Regular	Primary Carbon vessels A1, B1, C1, & D1			
6/21/2023		10 Micron Regular		Fine Sand Filters (3A/3B)		
6/22/2023		10 Micron Regular				
6/23/2023	25 Micron Pleated	10 Micron Pleated				
6/26/2023	25 Micron Regular	10 Micron Regular	Primary Carbon vessels A1, B1, C1, & D1			
6/27/2023		10 Micron Regular				
6/28/2023						
6/29/2023			Primary Carbon vessels A1, B1, C1, & D1			
6/30/2023			Lost power	to ISWTS site.		

FIGURES

FIGURE 1

FIGURE 3 - INFLUENT AND EFFLUENT PFOS AND PFOA CHARTS

ATTACHMENT 1

Material Disposal Documents

5705 W 73rd Street Indianapolis, IN 46278 Phone: (317) 762-6007

April 24, 2023

Re: Stewart ANG June 2023 Media Exchange Event

To whom it may concern,

Attached are the manifests and disposal certificates for the waste generated on the service event which occurred on and after June 8, 2023

Thank you,

Eric Patterson

CalgonCarbon A Kuraray Company	CERTIFICATE OF DESTRUCTION AND ACTIVATED CARBON REACTIVATION	· .
	CAN Number: 6973N	
Company:	Onion Equipment Company	i
	5705 West 73 rd St.	
	Indianapolis, IN 46278-1741	
Issue Date:	October 4, 2023	
Service Order #	60016870	
CCC CAN Number:	6973N	
Waste Classification:	RCRA non-hazardous	
Waste Classification: Treatment Method: Calgon Carbon h received under th accordance with t	RCRA non-hazardous Thermal Reactivation nereby certifies on the above date 20,000 pounds of spent he indicated carbon profile application number was reactive the state and federal regulations by thermal processing that re	carbon ated in emoves
Waste Classification: Treatment Method: Calgon Carbon h received under th accordance with t and destroys the v	RCRA non-hazardous Thermal Reactivation nereby certifies on the above date 20,000 pounds of spent he indicated carbon profile application number was reactiv the state and federal regulations by thermal processing that re volatile and semi-volatile contaminants adsorbed on the spent	carbor ated ir emoves carbon
Waste Classification: Treatment Method: Calgon Carbon h received under th accordance with t and destroys the v	RCRA non-hazardous Thermal Reactivation nereby certifies on the above date 20,000 pounds of spent he indicated carbon profile application number was reactive the state and federal regulations by thermal processing that re- volatile and semi-volatile contaminants adsorbed on the spent of ation	carbon ated in emoves carbon
Waste Classification: Treatment Method: Calgon Carbon h received under th accordance with t and destroys the v Calgon Carbon Corpora <i>Robert Natili</i>	RCRA non-hazardous Thermal Reactivation nereby certifies on the above date 20,000 pounds of spent he indicated carbon profile application number was reactive the state and federal regulations by thermal processing that re- volatile and semi-volatile contaminants adsorbed on the spent of ation	carbon ated ir emoves carbon
Waste Classification: Treatment Method: Calgon Carbon h received under th accordance with t and destroys the v Calgon Carbon Corpora <i>Robert Natili</i>	RCRA non-hazardous Thermal Reactivation hereby certifies on the above date 20,000 pounds of spent he indicated carbon profile application number was reactive the state and federal regulations by thermal processing that re- volatile and semi-volatile contaminants adsorbed on the spent of ation	carbon ated in emoves carbon
Waste Classification: Treatment Method: Calgon Carbon h received under th accordance with t and destroys the v Calgon Carbon Corpora <i>Robert Natili</i>	RCRA non-hazardous Thermal Reactivation hereby certifies on the above date 20,000 pounds of spent he indicated carbon profile application number was reactive the state and federal regulations by thermal processing that re- volatile and semi-volatile contaminants adsorbed on the spent ation M/4/23	carbon ated in emoves carbon
Waste Classification: Treatment Method: Calgon Carbon h received under th accordance with t and destroys the v Calgon Carbon Corpora Robert Natili Quality Assurance Supe	RCRA non-hazardous Thermal Reactivation hereby certifies on the above date 20,000 pounds of spent he indicated carbon profile application number was reactive the state and federal regulations by thermal processing that re- volatile and semi-volatile contaminants adsorbed on the spent of ation $\frac{10}{4}\frac{23}{23}$	carbor ated ir emoves carbon
Waste Classification: Treatment Method: Calgon Carbon h received under th accordance with f and destroys the v Calgon Carbon Corpora Robert Natili Quality Assurance Supe	RCRA non-hazardous Thermal Reactivation hereby certifies on the above date 20,000 pounds of spent he indicated carbon profile application number was reactive the state and federal regulations by thermal processing that re- volatile and semi-volatile contaminants adsorbed on the spent ation ation $\Delta = \frac{10}{4} \frac{1}{23}$ arvisor Calgon Carbon Corporation	carbor ated ir emoves carbon

Non-Hazardous Waste Manifest

			GENEPATO	RESECTION -		T Providence	
on-Hiszardous Waste Manifest	Generator ID Number NYD981183338			Waste Profile Number 6973N		Waste Tracking (Monif 19-03K-1	est) tember
Instance Billing Name and Mailing Inion Equipment Compan 705 W 73rd Street - India Instance Billing Phone: (2017) -	y napolis, IN 46278			Generator's Sae Address Stewart ANG Base 1 Maquire Way, Ne Generator's	wburgh, NY 12550		
ransporter 1 Company Name	94-15/6			L		USEPA ID Number	
art Trucking						US COL O Nomber	
renstonet 2 Company rams			20			(JEAC WORA	
Designated Facility Name and Site . Calgon Carbon Corporatio C/O Dart Trucking, 11017	Aodress n, 15024 US 23, Cattlesburg Market St, North Lima, OH 0, X4116	gh, KY 417; 44452	29			US EPA ID Number PAD000736942	
			Cort	lärtera			
Weste Shippin	g Name and Description		Na	Туре	Yotal Quantity	Usit Wit / Vol.	Disposal Method
non RCRA Spent Activa	ated Carbon; Non DOT Reg	ulated	20	1 CYD BAG	-25.000-	LB	Reactivation
2					20,000		
3					G		and the second
4							
Special Handing Instructions and i Profile 6973N Note Dem 1 weight is dry y	Additional Information			-		24 Hour Emergency Re (317) 694-7576	sponse Proné
						Energency Response	9:15e Number
GENERATOR'S / OFFEROR'S CEP materials are properly classified, d	NRICATION: I hereby certify that the s escribed, packaged, marked and lebs	ioox-described skid, and are io ;	manarials are non-b resper concilier for	zanious vasies as de hed bangoriaien octording to t	by 40 CFR 261 or any appl the applicable regulators o	cable state law. Further, . I the Department of Trans	hat the above named participan
Generator's Offeror's Printed / Typ	acd Name	Sign	usure		March	Day	Yezi
Eric D Palterson					June	15	2023
			ARANSPOR.	ER SECHOL			
Transporter's Acknowledgement of	of Receipt of Materials	. 17	- 9	1611	4		
Transporter Birtys Type Man	7. 5 HANK	DAV ST	sture	XH.SI	anti 6	Day 28	Year 2423
Transporter 2 Printed / Typed Nam	99	Sig	Elure	rac	ללתםאז	Day	Year
			NGSKANATED F	EUTA TENON			
Discrepancy Indication Space	0.0	ontity Di	í)pe	D Restoue	Q Partial Relection	D Ball Robertion	
Alternate Facility (or Generator)			1.1			US EPA ID Namber	
Facility's Phono:							
Signature of Alternate Facility (or G	immetor)				Month	Day	Year
Designated Facility Oviner or Oper	nton: Certification of Receipt of mater	ials covered by	the monifest except	as noted in Discrepator see	nion		1
Printed / Typed Name	GD.B	Sgr	THAN 1	Λ	Month June	Dzy 29	Year 2023

AN MATCHINES WAS IN DOUBLESS	Generator ID Number			Waste Profile Number		Waste Tracking (Monife	st) Number	
	NYD 981 183 338	NYD 981 183 338			F220121WDI-OTS		19-03K-2	
ustomer Billing Name and Mailing Inion Equipment Company 705 W 73rd Street - Indianapolis, IN 46278				Generator's Site Address Stewart ANG Base 1 Maquire Way, Newburgh, NY 12550				
tomer Billing Phone: (317)	694-7576			Generator	s Phone:			
Pansporter & Company Name						US EPA ID Number		
ansporter 2 Company Name							US EPA ID Number	
ignated Facility Name and Site YNE DISPOSAL, INC. 350 N I-94 SERVICE D cility's Phone: 412-771-40	Address SITE #2 LANDFILL RIVE- BELLEVILLE, 50, X4116	MI 48111				US EPA ID Number MID 048 090 633		
Words Skinsles Name and Same da		Containers			11.514.1141	Dispersitute		
waste subb	ing Name and Description	1	No.	Туре	- Total Quantity	Unit Wt / Vol.	Disposal Metho	
F220121WDI / Spent PFAS Filtration Media			19	1 CYD BAG	9,440	LB	Landfill	
			Salating a sinte					
							J.a. all	
					• •			
Bags Resin, (4) Bag	is Filter Bags		a dan sa a si			317-694-7576 Emergency Response Ge	ulce Number	
SENERATOR'S / OFFEROR'S (ERTIFICATION: I hereby cert	fy that the above-de	scribed materials are non-	nazardous wastes as defined	d by 40 CFR 261 or any app	icable state law. Further, th	at the above named	
GENERATOR'S / OFFEROR'S (materials are property classifie Generator's Offeror's Printed /	CERTIFICATION: I hereby cert d. described, packaged, mari	ify that the above-de ted and labeled, and	scribed materials are non- are in proper condition for Signature	hazardous wastes as defined transportation according to	the applicable regulations	Scable state law. Further, th of the Department of Transp	at the above named ortation.	
GENERATOR'S / OFFEROR'S O materials are properly classifie Generator's Offeror's Printed / Eric Patterson (agent fo	CERTIFICATION: I hereby cert d. described, packaged, mark Typed Name or SANG)	ify that the above-de ted and labeled, and	scribed materials are non-l are in proper condition for Signature Gum	During spectra biogenetics as defined transportation according to During spectra biomea Did or fice Paternas arOCC Process, or the spectra biomeasure and the Data 2021 (17) 1927-42 (1997)	d by 40 CFR 261 or any app the applicable regulations Month June	ficable state law. Further, th of the Department of Transp Day 14	at the above named ortation. Year 2023	
SENERATOR'S / OFFEROR'S O naterials are properly classifie Senerator's Offeror's Printed / Cric Patterson (agent fo	CERTIFICATION: I hereby cert d, described, packaged, mark Typed Name or SANG)	fy that the above-de red and labeled, and	scribed materials are non-l are in proper condition for Signature Gum TRANSPOR	District of the second	d by 40 CFR 261 or any app the applicable regulations Month June	Grable state law. Further, th of the Department of Transp Day 14	at the above named ortation. Year 2023	
SENERATOR'S / OFFEROR'S O naterials are properly classifie Senerator's Offeror's Printed / cric Patterson (agent fo	CERTIFICATION: I hereby cert d, described, packaged, mark Typed Name or SANG) ent of Receipt of Materials	fy that the above-de ked and labeled, and	scribed materials are non-fare in proper condition for Signature Gumm TRANSPOR	Difference of the second secon	d by 40 CFR 261 or any app the applicable regulations Month June	Ecable state law. Further, th of the Department of Transp Day 14	at the above named ortation. Year 2023	
SENERATOR'S / OFFEROR'S C naterials are properly classifie Generator's Offeror's Printed / Cric Patterson (agent fo Transporter's Acknowledgeme Transporter 1 Printed / Typed I	ERTIFICATION: I hereby cert d, described, packaged, mark Typed Name or SANG) ent of Receipt of Materials Name	fy that the above-de ted and labeled, and	scribed materials are non- are in proper condition for Signature TRANSPOR Signature	Azardous vastes as define transportation according to Diptily specify tick house Dir or fice houses and CC fraces, as the article house and CC fraces, as the second second second second second Saw 223 (1) 19 387444539	d by 40 CFR 261 or any app the applicable regulations Month June Month	Icable state law. Further, th of the Department of Transp Day 14 Day	at the above named ortation. Year 2023 Year	
SENERATOR'S / OFFEROR'S C materials are properly classifie Generator's Offeror's Printed / Tric Patterson (agent for Transporter's Acknowledgeme Transporter 1 Printed / Typed 1 Transporter 2 Printed / Typed	ERTIFICATION: I hereby cert d, described, packaged, mark Typed Name or SANG) ent of Receipt of Materials Name	fy that the above-de ked and labeled, and	scribed materials are non- are in proper condition for Signature TRANSPOR Signature Signature	Difference of the second secon	d by 40 CFR 261 or any app the applicable regulations Month Month Month	Grable state law. Further, th of the Department of Transp Day 14 Day Day Day	et the above named ortation. Year 2023 Year Year	
GENERATOR'S / OFFEROR'S C materials are properly classifie Generator's Offeror's Printed / Eric Patterson (agent fo Transporter's Acknowledgeme Transporter 1 Printed / Typed I Transporter 2 Printed / Typed	ERTIFICATION: I hereby cert d, described, packaged, mark Typed Name or SANG) ent of Receipt of Materials Name	fy that the above-de red and labeled, and	scribed materials are non- are in proper condition for Signature TRANSPOR Signature Signature DESIGNATED F	Azardous wastes as define transportation according to Dighty specify tick Paters Did of the Paters and OCC Process as the and the Paters and OCC Process as the analysis of the Paters Sam 2021 (17) 188744539 TER SECTION	d by 40 CFR 261 or any app the applicable regulations Month Month Month	Ecable state law. Further, th of the Department of Transp Day 14 Day Day Day	at the above named ortation. Year 2023 Year Year	
GENERATOR'S / OFFEROR'S C materials are properly classifie Generator's Offeror's Printed / Eric Patterson (agent fo Transporter's Acknowledgeme Transporter 1 Printed / Typed I Transporter 2 Printed / Typed	ERTIFICATION: I hereby cert d. described, packaged, mark Typed Name or SANG) ent of Receipt of Materials Name	fy that the above-de red and labeled, and	scribed materials are non- are in proper condition for Signature TRANSPOR Signature Signature DESIGNATEDI	Azardous vastes as define transportation according to Digitaly specify Elic Patersa Di ordina teams and Concerns an state and an and a second patersa Saa 2021 (17) abbrackets Saa 2021 (17) abbrackets ACILITY SECTION	d by 40 CFR 261 or any app the applicable regulations Month Month Month	Geoble state law. Further, the of the Department of Transport 14	at the above named ortation. Year 2023 Year Year	
SENERATOR'S / OFFEROR'S C materials are properly classifie Generator's Offeror's Printed / Tric Patterson (agent fo Transporter's Acknowledgeme Transporter 1 Printed / Typed I Transporter 2 Printed / Typed Discrepancy	ERTIFICATION: I hereby cert d. described, packaged, mark Typed Name or SANG) ent of Receipt of Materials Name	fy that the above-de red and labeled, and	Scribed materials are non- are in proper condition for Signature TRANSPOR Signature Signature DESIGNATED F	Acitumy Section	d by 40 CFR 261 or any app the applicable regulations Month Month Month Month	Grable state law. Further, the of the Department of Transport 14	at the above named ortation. Year 2023 Year Year	
Generator's Offeror's Printed / Eric Patterson (agent for Transporter's Acknowledgeme Transporter 1 Printed / Typed 1 Transporter 2 Printed / Typed 1 Discrepancy	ERTIFICATION: I hereby cert d, described, packaged, mark Typed Name or SANG) ent of Receipt of Materials Name	fy that the above-de ted and labeled, and	Scribed materials are non- are in proper condition for Signature TRANSPOR Signature Signature DESIGNATED F	Acillin's Section	d by 40 CFR 261 or any app the applicable regulations Month Month Month Month	Ecable state law. Further, th of the Department of Transp Day 14 Day Day Day Day Day U Full Rejection US EPA ID Number	at the above named ortation. Year 2023 Year Year	
SENERATOR'S / OFFEROR'S C materials are properly classifie Generator's Offeror's Printed / Eric Patterson (agent fo Transporter's Acknowledgeme Transporter's Acknowledgeme Transporter 1 Printed / Typed I Transporter 2 Printed / Typed Discrepancy Discrepancy Discrepancy Indication Space Iternate Facility (or Generator)	ERTIFICATION: I hereby cert d, described, packaged, mark Typed Name or SANG) ent of Receipt of Materials Name	fy that the above-de ted and labeled, and	Scribed materials are non- are in proper condition for Signature TRANSPOR Signature Signature DESIGNATED :	Acillin's Section	d by 40 CFR 261 or any app the applicable regulations Month Month Month Month	Cable state law. Further, th of the Department of Transp Day 14 Day Day Day Day Day Us EPA ID Number	at the above named ortation. Year 2023 Year Year	
SENERATOR'S / OFFEROR'S C naterials are properly classifie Senerator's Offeror's Printed / tric Patterson (agent fo Fransporter's Acknowledgeme Fransporter's Acknowledgeme Fransporter 1 Printed / Typed I Transporter 1 Printed / Typed I Screpancy	ERTIFICATION: I hereby cert d. described, packaged, mark Typed Name or SANG) ent of Receipt of Materials Name Name	fy that the above-de red and labeled, and	Scribed materials are non- are in proper condition for Signature CRANSPOR Signature DESIGNATED F	Acultiny Section	A by 40 CFR 261 or any app the applicable regulations Month Month Month Q Partial Rejection Month	Grable state law. Further, the of the Department of Transport Day 14 Day Day	Year Year Year Year Year	
SENERATOR'S / OFFEROR'S C naterials are properly classifie 3enerator's Offeror's Printed / iric Patterson (agent fo Pransporter's Acknowledgerm Transporter 1 Printed / Typed I Transporter 1 Printed / Typed I Screpancy Screpancy Screpancy Screpancy Iscrepancy Iscrepancy Iscrepancy Signated Facility (or Generator) cility's Phone: Inature of Alternate Facility (or Signated Facility Owner, or D)	ERTIFICATION: I hereby cert d. described, packaged, mark Typed Name or SANG) ent of Receipt of Materials Name Name	fy that the above-de red and labeled, and	Scribed materials are non- are in proper condition for Signature CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	ACILITY SECTION	d by 40 CFR 261 or any app the applicable regulations Month Month Month Month Month Month Month Month	Geodele state law. Further, the of the Department of Transport Day 14 Day	Year Year 2023 Year Year Year	

This certificate is to verify the wastes specified on Manifest # <u>19-63K-2</u> have been properly disposed of in accordance with all local, state and federal regulation. "Disposed of" means either: 1) Burial or 2) Processed as specified in 40CFR et sea.

FACILITY NAME: (Please check one) Michigan Disposal Waste Treatment Plant (EPA I.D. # MID000724831)

> 49350 N. I-94 Service Drive Bellville, Michigan 48111

ADDRESS:

PHONE NUMBER:

FAX NUMBER:

1-800-593-5329

1-800-592-5489

Authorized Signature:

Brinon

PRM #REC-FM-029-BEL

Wayne Disposal, Inc. (EPA I.D. # MID048090633)