US Army Corps of Engineers Baltimore District

QUARTERLY OM&M REPORT NO. 17

July to September 2024

PFOS/PFOA Mitigation
Interim Storm Water Treatment System
Long Term Operation, Maintenance, and Monitoring Services

Stewart Air National Guard Base, New York Contract No. W912DR-21-C-0035

November 2024

Prepared by:

Bristol Environmental Solutions, LLC 720 Corporate Circle, Suite D Golden, CO 80401

TABLE OF CONTENTS

	<u>PAGE</u>
AND ABBREVIATIONS	ii
SUMMARY	ES-1
OUCTION	1
AL OPERATIONS SUMMARY	1
CONFIGURATION DURING PERFORMANCE PERIOD	2
AL FACILITY OPERATIONS SUMMARY	3
Y PERFORMANCE MONITORING	4
uent and Effluent PFOS/PFOA and Total PFAS Monitoring	4
a-Process PFOS/PFOA and Total PFAS Monitoring	5
er Water Quality Monitoring	5
oidity Monitoring	6
ouling Control	6
JLED PREVENTIVE MAINTENANCE	6
AL DISPOSAL	7
TED ACTIVITIES FOR NEXT PERFORMANCE PERIOD	7
TABLES	
PFOS and PFOA Water Quality Monitoring Results	
Other Water Quality Monitoring Results	
Preventive Maintenance Table	
FIGURES	
ISWTS Flow Diagram	
Recreation Pond Level Chart	
Influent and Effluent PFOS and PFOA Charts	
Influent and Effluent Turbidity Chart	
	SUMMARY DUCTION LA OPERATIONS SUMMARY CONFIGURATION DURING PERFORMANCE PERIOD LA FACILITY OPERATIONS SUMMARY TY PERFORMANCE MONITORING Lent and Effluent PFOS/PFOA and Total PFAS Monitoring Lent and Effluent PFOS/PFOA and Total PFAS Monitoring Lent Water Quality Monitoring Lent Water Quality Monitoring LED PREVENTIVE MAINTENANCE LAL DISPOSAL LED ACTIVITIES FOR NEXT PERFORMANCE PERIOD TABLES PFOS and PFOA Water Quality Monitoring Results Other Water Quality Monitoring Results Preventive Maintenance Table FIGURES ISWTS Flow Diagram Recreation Pond Level Chart Influent and Effluent PFOS and PFOA Charts

ACRONYMS AND ABBREVIATIONS

AFFF aqueous film-forming foam

BES Bristol Environmental Solutions, LLC
EPA U.S Environmental Protection Agency

GAC granular activated carbon

ISWTS Interim Storm Water Treatment System

IX ion exchange resin mg/L milligrams per liter

NTU nephelometric turbidity units

OM&M Operations, Maintenance, and Monitoring

PFAS per- and polyfluoroalkyl substances

PFOA perfluorooctanoic acid

PFOS perfluorooctanesulfonic acid

ppt parts per trillion

SANGB Stewart Air National Guard Base

EXECUTIVE SUMMARY

An Interim Storm Water Treatment System (ISWTS) has been operating at Stewart Air National Guard Base (SANGB) in Newburgh, New York, since July 13, 2020. The ISWTS treats stormwater in the Recreation Pond. The stormwater is contaminated with perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and other per- and polyfluoroalkyl substances (PFAS). Aqueous film-forming foam (AFFF) used at SANGB is the source of the PFAS contamination.

This report summarizes ISWTS Operations, Maintenance and Monitoring (OM&M) between July 1 and September 30, 2024. The ISWTS consists of pretreatment systems and four PFOS/PFOA treatment trains with three treatment vessels per train. Each treatment train consists of two granular activated carbon (GAC) vessels followed by one ion exchange resin (IX) vessel.

Performance monitoring PFOS/PFOA samples are normally collected weekly from the ISWTS influent, effluent, and intra-process sample ports to monitor ISWTS performance and PFOS/PFOA breakthrough. Intra-process sample ports are on the effluent from each PFOS/PFOA treatment vessel on all four trains, but only one of the four treatment trains are sampled each week.

One complete PFOS/PFOA treatment media change was performed between July 9 and July 18, 2024, because fouling of the media restricted the hydraulic capacity. The media exchange included replacement of the media in the coarse and fine sand filters along with the GAC and IX resin. Bristol Environmental Solutions, LLC (BES) also scheduled vessel replacement of Train B, which included a new IX resin vessel equipped with an intermediate sample port to increase the projects ability to monitor the IX resin performance. Following completion of the media change and Train B vessel replacement, the original Train B vessels were removed from the site for rejuvenation.

November 2024 ES-1 Final

During the performance period, a total of 35,168,275 gallons of stormwater were treated and discharged over the outfall weir by the ISWTS. There were 92 days between July 1 and September 30, 2024. The Recreation Pond was drawn down below the outfall weir for 66 of the 92 days or 72% of the quarter, which is above average. Increased drawdown below the weir during this performance period was influenced by regional drought conditions and lower stormwater inflow.

PFOS and PFOA samples were collected 13 times on the influent and effluent during the performance period. The combined PFOS and PFOA influent average concentration during the performance period was 318 parts per trillion (ppt). The highest combined PFOS and PFOA effluent detection was 1.5 ppt on August 13 and the combined PFOS and PFOA effluent average concentration was 0.25 ppt during the OM&M period between July 1 and September 30, 2024.

November 2024 ES-2 Final

1.0 INTRODUCTION

Bristol Environmental Solutions, LLC (BES), under Contract with the US Army Corps of Engineers is operating an Interim Storm Water Treatment System (ISWTS) on behalf of the Air National Guard at Stewart Air National Guard Base (SANGB) in Newburgh, New York. The stormwater is contaminated with perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and other per- and polyfluoroalkyl substances (PFAS). Aqueous film-forming foam (AFFF) used at SANGB is the source of the PFAS contamination that is present in the stormwater.

The ISWTS intercepts stormwater from the Recreation Pond and discharges treated effluent over the existing Recreation Pond outfall weir. When weather conditions allow, the ISWTS draws down the pond level below the outfall weir and treats all stormwater discharges. The Recreation Pond drawdown below the weir provides a storage reservoir to prevent discharge of untreated stormwater when precipitation occurs. When precipitation events occur that exceed the ISWTS capacity the Recreation Pond fills up and both treated effluent and untreated stormwater go over the outfall weir.

This is the 17th Quarterly Report that summarizes Operations, Maintenance, and Monitoring (OM&M) activities conducted by BES at SANGB. This report summarizes ISWTS operations between July 1 and September 30, 2024, at SANGB.

2.0 GENERAL OPERATIONS SUMMARY

The ISWTS has been operating since July 13, 2020, following installation and commissioning of pretreatment system improvements in June and early July 2020. The ISWTS consists of four treatment trains with three treatment vessels per train. This report summarizes OM&M between July 1 and September 30, 2024, or months 49, 50, and 51 post startup.

November 2024 1 Final

During the performance period the system influent, intra-process monitoring (three locations) and effluent was monitored weekly to confirm treatment system effectiveness for PFOS, PFOA, and other PFAS. Intra-process monitoring consists of three locations at the outlet of each vessel. Additional performance sampling was also performed at a new intermediate intra-process sample port to monitor IX media performance on Train B over six events during the quarter. Performance sampling was conducted for a total of 13 days during the quarterly period. Final PFAS results are provided in **Table 1**.

PFOS and PFOA mitigation is performed by granular activated carbon (GAC) and ion exchange resin (IX) media that absorb these compounds and other PFAS. One complete PFOS and PFOA media change including GAC, IX, and the coarse and fine sand media was performed between 9 and 18 July 2024. This was completed because fouling of the media restricted the hydraulic capacity. During this period the highest PFOS and PFOA detected in the effluent was 1.5 ppt and the average was 0.25 ppt.

The analytical method used for all PFAS monitoring during the performance period was U.S. Environmental Protection Agency (EPA) 537.1 M. Final PFAS results for the entire quarter are provided in **Table 1**.

3.0 ISWTS CONFIGURATION DURING PERFORMANCE PERIOD

The ISWTS maintained the following unit processes; centrifugal separator, coarse sand filtration, fine sand filtration, primary and secondary bag filtration, followed by three stages of PFOS/PFOA adsorption treatment media.

During this reporting period, four PFOS/PFOA treatment trains (Trains A, B, C, and D) comprised of Primary GAC, Secondary GAC, and IX were employed. During previous reporting periods, BES determined that this configuration outperformed one stage of GAC with two stages of IX or three stages of GAC.

November 2024 2 Final

The GAC media used during the quarter was Calgon Filtrasorb 400 and the IX resin is Purolite PFA694. During previous operating periods, peracetic acid was introduced to combat biofouling but it was determined to not be effective and was not introduced to the ISWTS influent during the reporting period. During the quarter, the ultrasonic device (Pulsar 3000) was operated to mitigate seasonal algae growth in the Recreation Pond. The ISWTS configuration is shown in **Figure 1**.

4.0 GENERAL FACILITY OPERATIONS SUMMARY

During the performance period, over 35 million gallons of stormwater were treated. Effluent is either directed over the outfall weir or recycled back to the pond. During the performance period, all effluent was discharged over the outfall weir. The table below summarizes the total volume treated (gallons), run time (% of total time), and average treatment rate (gallons per minute) during each month of system operations. The total gallons summarized below represent the total treated water discharged over the weir during the performance period. Due to drier than normal conditions and limited stormwater inflow the ISWTS and influent pump did not run all the time. It is turned off when system maintenance is being performed, during power failures, and during periods when Recreation Pond drawdown objectives were achieved. Recreation Pond drawdown is managed to reduce excessive sediment intake from the bottom of the pond that would impact ISWTS operations and maintenance.

Month	Volume Treated (Gallons)	Run Time ¹ (Percent)	Average Treatment Flow ² (GPM)
July 2024	12,146,045	99%	274
August 2024	12,515,280	99%	302
September 2024	10,506,950	88%	260
Total	35,168,275		

¹Run Time – Hours pump running divided by the total period time

There were 92 days between July 1 and September 30, 2024. The Recreation Pond was drawn down below the outfall weir for 66 of the 92 days or 72% of the quarter, which is above average. Increased drawdown below the weir during this performance period was influenced by regional drought conditions and lower stormwater inflow.

The Recreation Pond level during the performance period is shown in **Figure 2**.

5.0 FACILITY PERFORMANCE MONITORING

The analytical method used for all PFAS monitoring during the performance period was EPA 537.1 M. Final PFAS results for the entire quarter are provided in **Table 1**.

5.1 INFLUENT AND EFFLUENT PFOS/PFOA AND TOTAL PFAS MONITORING

As previously noted, samples were collected 13 times on the influent and effluent during the performance period for PFOS, PFOA, and other PFAS compounds. **Figure 3** shows the influent and effluent combined PFOS and PFOA concentrations based on the validated results. As shown in **Figure 3**, the combined PFOS and PFOA influent and effluent average detected concentrations during the performance period were 318 ppt and 0.25 ppt, respectively. The maximum combined PFOS and PFOA influent concentration was 486 ppt on August 25, 2024. The maximum detection of PFOS/PFOA in the combined effluent, was 1.5 ppt on August 13, 2024. All influent and effluent PFAS sample results are provided in **Table 1**.

November 2024 4 Final

²Average GPM – Average flow total gallons divided by operational hours

^{% =} percent

GPM = gallons per minute

5.2 Intra-Process PFOS/PFOA and Total PFAS Monitoring

During the performance period, intra-process monitoring for PFOS/PFOA and other PFAS compounds was performed after all three media stages and at one new intermediate sample port on the Train B Resin vessel. Sample results are provided in **Table 1**.

Weekly intra-process samples are collected to monitor the performance of GAC and IX treatment from each of the four treatment trains. Each week one of the four trains (A, B, C, or D) are sampled. When intra-process samples are collected, they are collected from the primary GAC effluent, secondary GAC effluent, and IX effluent. Normally the trains are sampled in order and each train is sampled every fourth event. Results from intra-process monitoring, showed incremental breakthrough of PFOS/PFOA from the primary and then secondary GAC vessels followed by excellent PFOS/PFOA removal from the IX resin in the polish position. During the performance monitoring period BES collected six additional performance samples from a new intermediate sample port installed on the new Train B IX vessel. This new sample port will allow for enhanced monitoring of the IX media performance. The highest combined PFOS/PFOA concentrations in the Primary GAC effluent, Secondary GAC effluent, intermediate IX and IX effluent were 238, 122, 18, and 1.1 ppt respectively.

5.3 OTHER WATER QUALITY MONITORING

During the performance period additional monitoring was performed for total organic carbon, and glycols on the influent, IX resin influent and final effluent on July 30, 2024. These results are shown in **Table 2**. No glycols were detected in any of the samples. Elevated TOC is known to impact treatment media life. The ion exchange resin manufacturer recommends that TOC not be more than 2 milligrams per liter (mg/L). The influent TOC was 4.40 mg/L, and the GAC-2 effluent (influent to the resin) was 1.60 mg/L indicating that the influent TOC level to the resin was below the limit recommended by the resin manufacturer. Effluent TOC concentration was 1.30 mg/L.

November 2024 5 Final

5.4 TURBIDITY MONITORING

Turbidity is a measurement that can quantify the level of solids present in the water. It is an onsite test that is helpful to measure in real time, the influent water quality and intraprocess performance to confirm the effectiveness of the pretreatment and filtration systems in removing solids. During the performance period, influent and effluent turbidity averaged 8.94 nephelometric turbidity units (NTUs) and 0.71 NTUs, respectively. A graph of the influent and effluent turbidity during the performance period is included as **Figure 4**.

5.5 BIOFOULING CONTROL

Peracetic acid was not introduced into the process influent during the performance period for biofouling mitigation. Instead, ultrasonic treatment in the pond was utilized to inhibit algae growth. See Section 8.0 for additional discussion on the observed effectiveness of the ultrasonic treatment.

6.0 SCHEDULED PREVENTIVE MAINTENANCE

During the performance period the following preventive maintenance activities were completed:

- Coarse and fine sand filter backwashes;
- Coarse and fine sand filter cleanings;
- Primary and secondary bag filter changes;
- Primary and secondary carbon backwashing;

During the performance period, the coarse and fine filters were each backwashed 652 and 654 times respectively and one cleaning event was completed. The primary and secondary bag filters were changed 30 and 57 times, respectively, during the performance period. To maintain acceptable PFAS treatment media pressure, the primary, and secondary GAC vessels were backwashed 15 and 6 times respectively during the quarter. The sand filter

November 2024 6 Final

maintenance, bag filter changes, GAC backwash events, and ion exchange resin observations are summarized in **Table 3**.

7.0 MATERIAL DISPOSAL

Waste bag filters, and spent ion exchange resin were generated during the previous quarter. On June 5, 2024, spent waste was demobilized from Stewart by the Onion Equipment Company for interim storage at the OEC facility in Indianapolis, Indiana. The spent waste bag filters, and spent ion exchange resin collected on June 5, 2024 and all waste generated through July 18, 2024 were transported from the site on July 22, 2024 for disposal shipment to US Ecology Subtitled C landfill in Michigan and included an additional eight 1.5 cubic yard Super Sacks of spent bag filters, five 1.5 cubic yard Super Sacks of spent coarse and fine sands and four Super Sacks of spent bag filters. The waste generated in June and July 2024, were combined for a single shipment to the US Ecology Subtitled C Landfill in Michigan. On Monday July 29, 2024, BES loaded sixteen 1.5 cubic yard Super Sacks of spent carbon for carbon regeneration to the Calgon Corporation in Kentucky. Material disposal documents are provided in Attachment 1.

8.0 PROJECTED ACTIVITIES FOR NEXT PERFORMANCE PERIOD

BES will continue operating the ISWTS with all four treatment trains configured as primary GAC, secondary GAC, and IX resin polish.

The low stormwater inflow to Recreation Pond did enhance pond elevation drawdown and media treatment performance for the remainder of the quarter. The lower operating times extended the media lifecycle and media performance to remove PFOS/PFOA throughout the period.

During the planned December 2024 media change, three vessels in one of the four treatment trains will be replaced as part of planned corrective maintenance.

November 2024 7 Final

The effectiveness of the Peracetic acid has been uncertain. Bristol turned off the Peracetic acid in the fourth quarter of 2022 to see if increased biofouling impacts can be detected. No increased biofouling effects were observed while peracetic acid was off, therefore, the addition of peracetic acid will remain off at this time. Instead, BES will further evaluate ultrasonic equipment to mitigate the growth of algae at the Recreation Pond.

BES will continue to operate ultrasonic algae control equipment installed directly in the Recreation pond during the 2024 warm weather season. The ultrasonic algae control equipment transforms electrical signals to multiple soundwaves of ultrasonic frequencies that breaks the outer membrane of individual algae cells and inhibits growth. The technology was deployed in April 2023, and was successful in mitigating visible seasonal algae through October 2023. BES redeployed the ultrasonic equipment in March 2024, and observed similar results this warm weather season and will plan to keep it in operation until it is removed in the fourth quarter for the winter months..

Bristol will continue to evaluate modifications that could be considered to improve the overall system performance. In this reporting period, BES did evaluate pilot testing of automated washable bag filters to improve pre-treatment operations. The results found the process too restrictive and maintenance intensive for Recreation Pond water. No capital improvements are planned at this time.

C4K1481V1 - 07/02/2024

RESULTS OF ANALYSES OF WATER VALIDATED DATA

RESOLIS OF ARREISES OF WATER						VALIDATED DATA						
	Bureau \	/eritas ID		ZPU326	ZPU327	ZPU323	ZPU325	ZPU324	ZPU322			
	Samp	oling Date	2024/07/02 10:30	2024/07/02 10:47	2024/07/02 10:47	2024/07/02 10:28	2024/07/02 10:44	2024/07/02 10:41	2024/07/02 10:33			
	S	ample ID	SANG-FB-07022024	SANG-INF-07022024	SANG-INF-07022024D	SANG-PEAR1-07022024	SANG-PEAG1-07022024	SANG-PEAG2-07022024	SANG-EFF-07022024	DL	LOD	LOQ
Perfluorinated Compounds	Method	UNITS										
Perfluorobutanoic acid (PFBA)	EPA 537.1 M	ng/L	1.4 U	17	18	15	23	23	17	0.67	1.6	2.3
Perfluoropentanoic acid (PFPeA)	EPA 537.1 M	ng/L	0.70 U	44	48	1.7 J	50	45	1.3 J	0.25	0.8	2.3
Perfluorohexanoic acid (PFHxA)	EPA 537.1 M	ng/L	0.70 U	39	41	0.80 U	38	30	0.80 U	0.23	0.8	2.3
Perfluoroheptanoic acid (PFHpA)	EPA 537.1 M	ng/L	1.0 U	22	23	1.1 U	18	12	1.1 U	0.32	1.1	2.3
Perfluorooctanoic acid (PFOA)	EPA 537.1 M	ng/L	1.0 U	19	22	1.1 U	15	9	1.1 U	0.47	1.1	2.3
Perfluorononanoic acid (PFNA)	EPA 537.1 M	ng/L	1.0 U	5.5	6.5	1.1 U	3.9	2.1 J	1.1 U	0.4	1.1	2.3
Perfluorodecanoic acid (PFDA)	EPA 537.1 M	ng/L	1.0 U	4	4.8	1.1 U	2.6	1.0 J	1.1 U	0.33	1.1	2.3
Perfluoroundecanoic acid (PFUnA)	EPA 537.1 M	ng/L	1.0 U	0.54 J	0.82 J	1.1 U	1.1 U	1.1 U	1.1 U	0.42	1.1	2.3
Perfluorododecanoic acid (PFDoA)	EPA 537.1 M	ng/L	1.0 U	1.1 U	1.0 J	1.1 U	1.1 U	1.1 U	1.1 U	0.55	1.1	2.3
Perfluorotridecanoic acid (PFTRDA)	EPA 537.1 M	ng/L	0.70 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	0.27	0.8	2.3
Perfluorotetradecanoic acid(PFTEDA)	EPA 537.1 M	ng/L	1.0 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.44	1.1	2.3
Perfluorobutanesulfonic acid (PFBS)	EPA 537.1 M	ng/L	1.0 U	9.3	9.9	1.1 U	7.9	5.8	1.1 U	0.31	1.1	2.3
Perfluoropentanesulfonic acid PFPes	EPA 537.1 M	ng/L	1.0 U	11	12	1.1 U	8.3	4.6	1.1 U	0.39	1.1	2.3
Perfluorohexanesulfonic acid(PFHxS)	EPA 537.1 M	ng/L	1.0 U	60	64	1.1 U	44	26	1.1 U	0.32	1.1	2.3
Perfluoroheptanesulfonic acid PFHpS	EPA 537.1 M	ng/L	1.0 U	3.4	3.5	1.1 U	2.2 J	1.2 J	1.1 U	0.49	1.1	2.3
Perfluorooctanesulfonic acid (PFOS)	EPA 537.1 M	ng/L	1.0 U	200 (1)	190 (1)	1.1 U	120 (1)	68	1.1 U	4.7	10	20
Perfluorononanesulfonic acid (PFNS)	EPA 537.1 M	ng/L	1.4 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	0.73	1.6	2.3
Perfluorodecanesulfonic acid (PFDS)	EPA 537.1 M	ng/L	1.4 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	0.68	1.6	2.3
Perfluorooctane Sulfonamide (PFOSA)	EPA 537.1 M	ng/L	1.4 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	0.45	1.6	4.5
MeFOSAA	EPA 537.1 M	ng/L	1.4 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	0.8	1.6	4.5
EtFOSAA	EPA 537.1 M	ng/L	1.4 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	0.61	1.6	4.5
4:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	1.6 U	0.65 J	1.6 U	1.6 U	1.6 U	1.6 U	0.53	1.6	4.5
6:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	46	49	1.7 J	28	15	1.6 U	0.72	1.6	4.5
8:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	8.7	13	1.6 U	4.5	1.8 J	1.6 U	0.6	1.6	4.5
Hexafluoropropyleneoxide dimer acid	EPA 537.1 M	ng/L	1.4 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	0.47	1.6	4.5
4,8-Dioxa-3H-perfluorononanoic acid	EPA 537.1 M	ng/L	0.40 U	0.45 U	0.45 U	0.21 J	0.45 U	0.16 J	0.45 U	0.14	0.45	4.5
9CI-PF3ONS (F-53B Major)	EPA 537.1 M	ng/L	1.0 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.48	1.1	4.5
11CI-PF3OUdS (F-53B Minor)	EPA 537.1 M	ng/L	1.0 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.36	1.1	4.5

Notes

(1) Due to high concentration of the target analyte, a reduced sample volume was extracted and analyzed. Detection limit was adjusted accordingly (10x). Some results reference different lab limits due to dilution. ng/L - nanograms per Liter or parts per trillion.

DL = Detection Limit EFF = Effluent

FB= Field Blank INF = Influent

J - Estimated result. Associated value may not be accurate or precise.

LOD = Limit of Detection LOQ = Limit of Quantitation

SANGB = Stewart Air National Guard Base

U - Undetected. Compound was analyzed for, but not detected.

Sample SANG-FB-07022024 is a field blank.

Sample SANG-INF-07022024 D is a field duplicate of SANG-INF-07022024 .

Sample ports located in each of the 4 trains; A, B, C, D. such as: PBG1= post B train GAC unit 1.

PEAG1 = post E port A GAC Unit 1 PEAG2 = post E port A train GAC Unit 2

PEAR1 = post E port A Resin 1

Effluent (EFF) = Treated water that has passed through the ISWTS
Influent (INF) = Untreated water from Recreational Pond

C4M296V1 - 07/16/2024

C411250V1 - 07/10/2024																	
RESULTS OF ANALYSES OF WATER									VALIDATED DATA								
		Veritas ID	ZRK814	ZTA422	ZUT248	ZRK816	ZTA424	ZUT253	ZUT254	ZUT250	ZUT252	ZUT251	ZRK815	ZTA423	ZUT249		
	Samp	pling Date	2024/07/09 08:30	2024/07/16 08:30	2024/07/23 07:55	2024/07/09 08:40	2024/07/16 08:40	2024/07/23 08:20	2024/07/23 08:20	2024/07/23 08:05	2024/07/23 08:15	2024/07/23 08:10	2024/07/09 08:35	2024/07/16 08:35	2024/07/23 08:00		
	9	Sample ID	SANG-FB-07092024	SANG-FB-07167024	SANG-FB-07232024	SANG-INF-07092024	SANG-INF-07167024	SANG-INF-07232024	SANG-INF-07232024D	SANG-PEAR1-07232024	SANG-PEAG1-07232024	SANG-PEAG2-07232024	SANG-EFF-07092024	SANG-EFF-07167024	SANG-EFF-07232024	DL	LOD LOQ
Perfluorinated Compounds	Method	UNITS															
Perfluorobutanoic acid (PFBA)	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.5 U	17	33	8.4	9.9	1.5 U	2.9	1.5 U	17	1.6 U	1.5 U	0.61	1.5 2.1
Perfluoropentanoic acid (PFPeA)	EPA 537.1 M	ng/L	0.70 U	0.70 U	0.73 U	52	80	47	53	0.73 U	6.5	0.73 U	1.2 J	0.39 J	0.73 U	0.23	0.73 2.1
Perfluorohexanoic acid (PFHxA)	EPA 537.1 M	ng/L	0.70 U	0.29 J	0.73 U	39	67	35	35	0.73 U	3.8	0.73 U	0.70 U	0.33 J	0.73 U	0.21	0.73 2.1
Perfluoroheptanoic acid (PFHpA)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	20	31	19	19	1.0 U	1.8 J	1.0 U	1.0 U	1.1 U	1.0 U	0.29	1 2.1
Perfluorooctanoic acid (PFOA)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	19	28	17	17	1.0 U	1.4 J	1.0 U	1.0 U	1.1 U	1.0 U	0.43	1 2.1
Perfluorononanoic acid (PFNA)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	4.6	7.5	4.7	4.6	1.0 U	0.41 J	1.0 U	1.0 U	1.1 U	1.0 U	0.36	1 2.1
Perfluorodecanoic acid (PFDA)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	4	6.5	3.2	3.3	1.0 U	1.0 U	1.0 U	1.0 U	1.1 U	1.0 U	0.3	1 2.1
Perfluoroundecanoic acid (PFUnA)	EPA 537.1 M	ng/L	1.0 U	0.54 J	1.0 U	0.46 J	1.2 J	0.50 J	0.51 J	1.0 U	1.0 U	1.0 U	1.0 U	1.1 U	1.0 U	0.39	1 2.1
Perfluorododecanoic acid (PFDoA)	EPA 537.1 M	ng/L	1.0 U	0.82 J	1.0 U	0.58 J	1.4 J	0.81 J	0.76 J	1.0 U	1.0 U	1.0 U	1.0 U	1.1 U	1.0 U	0.5	1 2.1
Perfluorotridecanoic acid (PFTRDA)	EPA 537.1 M	ng/L	0.70 U	1.1 J	0.73 U	0.70 U	0.81 J	0.73 U	0.73 U	0.41 J	0.73 U	0.73 U	0.70 U	0.63 J	0.73 U	0.25	0.73 2.1
Perfluorotetradecanoic acid (PFTEDA)	EPA 537.1 M	ng/L	1.0 U	0.83 J	1.0 U	1.0 U	1.1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.1 U	1.0 U	0.41	1 2.1
Perfluorobutanesulfonic acid (PFBS)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	9	17	7.7	7.8	1.0 U	0.50 J	1.0 U	1.0 U	1.1 U	1.0 U	0.28	1 2.1
Perfluoropentanesulfonic acid (PFPes)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	12	23	9.8	11	1.0 U	0.45 J	1.0 U	1.0 U	1.1 U	1.0 U	0.35	1 2.1
Perfluorohexanesulfonic acid (PFHxS)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	56	100	52	51	1.0 U	3	1.0 U	1.0 U	1.1 U	1.0 U	0.29	1 2.1
Perfluoroheptanesulfonic acid (PFHpS)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	3	6.3	2.9	3	1.0 U	1.0 U	1.0 U	1.0 U	1.1 U	1.0 U	0.45	1 2.1
Perfluorooctanesulfonic acid (PFOS)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	210 (1)	360 (1)	150 (1)	170 (1)	0.78 J	11	0.80 J	0.71 J	1.1 U	1.0 J	4.7	10 20
Perfluorononanesulfonic acid (PFNS)	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.5 U	1.4 U	1.6 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.4 U	1.6 U	1.5 U	0.67	1.5 2.1
Perfluorodecanesulfonic acid (PFDS)	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.5 U	1.4 U	1.6 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.4 U	1.6 U	1.5 U	0.63	1.5 2.1
Perfluorooctane Sulfonamide (PFOSA)	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.5 U	1.4 U	1.6 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.4 U	1.6 U	1.5 U	0.42	1.5 4.2
MeFOSAA	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.5 U	1.4 U	1.6 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.4 U	1.6 U	1.5 U	0.73	1.5 4.2
EtFOSAA	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.5 U	1.4 U	1.6 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.4 U	1.6 U	1.5 U	0.56	1.5 4.2
4:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.5 U	1.4 U	1.6 J	0.69 J	0.95 J	1.5 U	1.5 U	1.5 U	1.4 U	1.6 U	1.5 U	0.59	1.8 5
6:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.5 U	46	85	41	40	1.5 U	2.6 J	1.5 U	1.4 U	1.6 U	1.5 U	0.66	1.5 4.2
8:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.5 U	14	21	8.9	9.1	1.5 U	1.5 U	1.5 U	1.4 U	1.6 U	1.5 U	0.55	1.5 4.2
Hexafluoropropyleneoxide dimer acid	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.5 U	1.4 U	1.6 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.4 U	1.6 U	1.5 U	0.43	1.5 4.2
4,8-Dioxa-3H-perfluorononanoic acid	EPA 537.1 M	ng/L	0.40 U	0.40 U	0.42 U	0.40 U	0.33 J	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U	0.40 U	0.45 U	0.42 U	0.13	0.42 4.2
9CI-PF3ONS (F-53B Major)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	1.0 U	1.1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.1 U	1.0 U	0.44	1 4.2
11CI-PF3OUdS (F-53B Minor)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	1.0 U	1.1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.1 U	1.0 U	0.33	1 4.2

(1) Due to high concentration of the target analyte, a reduced sample volume was extracted and analyzed. Detection limit was adjusted accordingly (10x). Some results reference different lab limits due to dilution.

ng/L - nanograms per Liter or parts per trillion.

DL = Detection Limit

EFF = Effluent

FB= Field Blank

PEAG1 = post E portAD GAC Unit 1 PEAG2 = post E port A train GAC Unit 2 PEAR1 = post E port A Resin 1

INF = Influent 3 - Estimated result. Associated value may not be accurate or precise.

LOD = Limit of Detection LOQ = Limit of Quantitation Effluent (EFF) = Treated water that has passed through the ISWTS Influent (INF) = Untreated water from Recreational Pond ISWTS = Interim Storm Water Treatment System

Sample ports located in each of the 4 trains; A, B, C, D. such as: PBG1= post B train GAC unit 1.

LOU 2 Limit of Quantisational Guard Base
U - Undetected. Compound was analyzed for, but not detected.
Sample SANG-FB-07232024, 07092024 and 073162024 are field blanks.
Sample SANG-RP-07232024 b is a field duplicate of SANG-RP-07232024.

C4N4751V1 - 07/30/2024

RESULTS OF ANALYSES OF WATER VALIDATED DATA

RESULTS OF ANALYSES OF WATER							VALIDATED DATA						
	Bureau V	eritas ID	ZWL796	ZWL802	ZWL803	ZWL798	ZWL799	ZWL801	ZWL800	ZWL797			
	Samp	ling Date	2024/07/30 07:20	2024/07/30 07:50	2024/07/30 07:50	2024/07/30 07:30	2024/07/30 07:35	2024/07/30 07:45	2024/07/30 07:40	2024/07/30 07:25			
	S	ample ID	SANG-FB-07302024	SANG-INF-07302024	SANG-INF-07302024D	SANG-PEBR1-07302024	SANG-MIDBR1-07302024	SANG-PEBG1-07302024	SANG-PEBG2-07302024	SANG-EFF-07302024	DL	LOD	LOQ
Perfluorinated Compounds	Method	UNITS											
Perfluorobutanoic acid (PFBA)	EPA 537.1 M	ng/L	1.6 U	31	32	1.6 U	0.93 J	12	2.4	1.6 U	0.82	1.9	2.8
Perfluoropentanoic acid (PFPeA)	EPA 537.1 M	ng/L	0.80 U	89	91	0.80 U	0.46 J	26	2.7	0.80 U	0.31	0.97	2.8
Perfluorohexanoic acid (PFHxA)	EPA 537.1 M	ng/L	0.80 U	72	76	0.80 U	0.80 U	18	1.3 J	0.80 U	0.28	0.97	2.8
Perfluoroheptanoic acid (PFHpA)	EPA 537.1 M	ng/L	1.1 U	35	36	1.1 U	1.1 U	7.7	0.61 J	1.1 U	0.39	1.4	2.8
Perfluorooctanoic acid (PFOA)	EPA 537.1 M	ng/L	1.1 U	31	31	1.1 U	1.1 U	6	0.55 J	1.1 U	0.57	1.4	2.8
Perfluorononanoic acid (PFNA)	EPA 537.1 M	ng/L	1.1 U	8.3	8.4	1.1 U	1.1 U	1.3 J	1.1 U	1.1 U	0.49	1.4	2.8
Perfluorodecanoic acid (PFDA)	EPA 537.1 M	ng/L	1.1 U	5.8	5.5	1.1 U	1.1 U	0.78 J	1.1 U	1.1 U	0.4	1.4	2.8
Perfluoroundecanoic acid (PFUnA)	EPA 537.1 M	ng/L	1.1 U	1.4 U	1.4 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.51	1.4	2.8
Perfluorododecanoic acid (PFDoA)	EPA 537.1 M	ng/L	1.1 U	1.6 J	1.5 J	1.1 U	0.66 J	1.1 U	1.1 U	1.1 U	0.67	1.4	2.8
Perfluorotridecanoic acid (PFTRDA)	EPA 537.1 M	ng/L	0.80 U	0.97 U	0.97 U	0.80 U	0.48 J	0.80 U	0.80 U	0.80 U	0.33	0.97	2.8
Perfluorotetradecanoic acid (PFTEDA)	EPA 537.1 M	ng/L	1.1 U	1.4 U	1.4 U	1.1 U	0.48 J	1.1 U	1.1 U	1.1 U	0.54	1.4	2.8
Perfluorobutanesulfonic acid (PFBS)	EPA 537.1 M	ng/L	1.1 U	20	20	0.33 J	1.1 U	3.8	1.1 U	1.1 U	0.38	1.4	2.8
Perfluoropentanesulfonic acid PFPes	EPA 537.1 M	ng/L	1.1 U	21	22	1.1 U	1.1 U	3.4	1.1 U	1.1 U	0.47	1.4	2.8
Perfluorohexanesulfonic acid (PFHxS)	EPA 537.1 M	ng/L	1.1 U	110	110	1.1 U	1.1 U	17	1.1 U	1.1 U	0.39	1.4	2.8
Perfluoroheptanesulfonic acid (PFHpS)	EPA 537.1 M	ng/L	1.1 U	6.2	6.9	1.1 U	1.1 U	0.92 J	1.1 U	1.1 U	0.6	1.4	2.8
Perfluorooctanesulfonic acid (PFOS)	EPA 537.1 M	ng/L	1.1 U	330 (1)	330 (1)	0.56 J	18	51	2.0 J	1.1 U	4.7	10	20
Perfluorononanesulfonic acid (PFNS)	EPA 537.1 M	ng/L	1.6 U	1.9 U	1.9 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	0.89	1.9	2.8
Perfluorodecanesulfonic acid (PFDS)	EPA 537.1 M	ng/L	1.6 U	1.9 U	1.9 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	0.83	1.9	2.8
Perfluorooctane Sulfonamide (PFOSA)	EPA 537.1 M	ng/L	1.6 U	1.2 J (2)	1.0 J	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	0.56	1.9	5.6
MeFOSAA	EPA 537.1 M	ng/L	1.6 U	1.9 U	1.9 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	0.97	1.9	5.6
EtFOSAA	EPA 537.1 M	ng/L	1.6 U	1.9 U	1.9 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	0.75	1.9	5.6
4:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.6 U	1.5 J	1.6 J	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	0.65	1.9	5.6
6:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.6 U	80	88	1.6 U	1.6 U	13	1.6 U	1.6 U	0.88	1.9	5.6
8:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.6 U	13	14	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	0.74	1.9	5.6
Hexafluoropropyleneoxide dimer acid	EPA 537.1 M	ng/L	1.6 U	1.9 U	1.9 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	0.57	1.9	5.6
4,8-Dioxa-3H-perfluorononanoic acid	EPA 537.1 M	ng/L	0.20 J	0.24 J	0.56 U	0.18 J	0.17 J	0.45 U	0.45 U	0.18 J	0.17	0.56	5.6
9CI-PF3ONS (F-53B Major)	EPA 537.1 M	ng/L	1.1 U	1.4 U	1.4 U	1.1 U	0.63 J	1.1 U	1.1 U	1.1 U	0.58	1.4	5.6
11CI-PF3OUdS (F-53B Minor)	EPA 537.1 M	ng/L	1.1 U	1.4 U	1.4 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.44	1.4	5.6
													_

Notes

(1) Due to high concentration of the target analyte, a reduced sample volume was extracted and analyzed. Detection limit was adjusted accordingly (10x). Some results reference different lab limits due to dilution.

(2) Result is estimated as analyte confirmation criterion (ion ratio) was not met.

ng/L - nanograms per Liter or parts per trillion.

DL = Detection Limit EFF = Effluent

FB= Field Blank

INF = Influent

J - Estimated result. Associated value may not be accurate or precise.

LOD = Limit of Detection LOQ = Limit of Quantitation

SANGB = Stewart Air National Guard Base

U - Undetected. Compound was analyzed for, but not detected.

Sample SANG-FB-07302024 is field blank.

Sample SANG-INF-07302024 D is a field duplicate of SANG-INF-07302024 .

Sample ports located in each of the 4 trains; A, B, C, D. such as: PBG1= post B train GAC unit 1.

PEBG1 = post E port B GAC Unit 1
PEBG2 = post E port B train GAC Unit 2

PEBR1 = post E port B Resin 1

 $\label{eq:effluent} \textit{Effluent (EFF)} = \textit{Treated water that has passed through the ISWTS}$

Influent (INF) = Untreated water from Recreational Pond ISWTS = Interim Storm Water Treatment System

MIDBR1 = Train B Resin unit 1 middle sample port

C402049V1 - 08/06/2024

RESULTS OF ANALYSES OF WATER VALIDATED DATA

RESULTS OF ANALTSES OF WATER						VALIDATE	DURIA						
	Bureau	Veritas ID	ZXY072	ZXY089	ZXY090	ZXY078	ZXY091	ZXY082	ZXY086	ZXY073			
	Sam	pling Date	2024/08/06 08:55	2024/08/06 09:20	2024/08/06 09:20	2024/08/06 09:05	2024/08/06 09:30	2024/08/06 09:10	2024/08/06 09:15	2024/08/06 09:00		·	
	!	Sample ID	SANG-FB-08062024	SANG-INF-08062024	SANG-INF-08062024D	SANG-PECR1-08062024	SANG-MIDBRI-08062024	SANG-PECG2-08062024	SANG-PECG1-08062024	SANG-EFF-08062024	DL	LOD	LOQ
Perfluorinated Compounds	Method	UNITS											
Perfluorobutanoic acid (PFBA)	EPA 537.1 M	ng/L	1.4 U	17	16	1.6 U	2.4	8.2	15	1.6 U	0.67	1.6	2.3
Perfluoropentanoic acid (PFPeA)	EPA 537.1 M	ng/L	0.26 J	62	63	0.31 J	2.0 J	12	38	0.80 U	0.25	0.8	2.3
Perfluorohexanoic acid (PFHxA)	EPA 537.1 M	ng/L	0.70 U	45	48	0.80 U	0.79 J	5.4	24	0.80 U	0.23	8.0	2.3
Perfluoroheptanoic acid (PFHpA)	EPA 537.1 M	ng/L	1.0 U	28	29	1.1 U	0.47 J	2.1 J	13	1.1 U	0.32	1.1	2.3
Perfluorooctanoic acid (PFOA)	EPA 537.1 M	ng/L	1.0 U	22	23	1.1 U	1.1 U	1.0 J	9.7	1.1 U	0.47	1.1	2.3
Perfluorononanoic acid (PFNA)	EPA 537.1 M	ng/L	1.0 U	6.5	6.3	1.1 U	1.1 U	1.1 U	2.7	1.1 U	0.4	1.1	2.3
Perfluorodecanoic acid (PFDA)	EPA 537.1 M	ng/L	1.0 U	4.2	4.2	1.1 U	1.1 U	1.1 U	1.4 J	1.1 U	0.33	1.1	2.3
Perfluoroundecanoic acid (PFUnA)	EPA 537.1 M	ng/L	1.0 U	0.79 J	0.70 J	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.42	1.1	2.3
Perfluorododecanoic acid (PFDoA)	EPA 537.1 M	ng/L	1.0 U	1.0 J	0.97 J	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.55	1.1	2.3
Perfluorotridecanoic acid (PFTrDA)	EPA 537.1 M	ng/L	0.70 U	0.80 U	0.37 J	0.80 U	0.34 J (1)	0.80 U	0.80 U	0.80 U	0.27	8.0	2.3
Perfluorotetradecanoic acid(PFTeDA)	EPA 537.1 M	ng/L	1.0 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.44	1.1	2.3
Perfluorobutanesulfonic acid (PFBS)	EPA 537.1 M	ng/L	1.0 U	12	11	0.48 J (1)	1.1 U	0.90 J	5.3	0.38 J (1)	0.31	1.1	2.3
Perfluoropentanesulfonic acid PFPeS	EPA 537.1 M	ng/L	1.0 U	13	12	1.1 U	1.1 U	0.52 J	5.2	1.1 U	0.39	1.1	2.3
Perfluorohexanesulfonic acid(PFHxS)	EPA 537.1 M	ng/L	1.0 U	76	79	1.1 U	1.1 U	2.1 J	29	1.1 U	0.32	1.1	2.3
Perfluoroheptanesulfonic acid PFHpS	EPA 537.1 M	ng/L	1.0 U	4.2	4	1.1 U	1.1 U	1.1 U	1.9 J	1.1 U	0.49	1.1	2.3
Perfluorooctanesulfonic acid (PFOS)	EPA 537.1 M	ng/L	1.0 U	230	220 (2)	1.1 J	11	5.2	84	1.1 U	0.53	1.1	2.3
Perfluorononanesulfonic acid (PFNS)	EPA 537.1 M	ng/L	1.4 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	0.73	1.6	2.3
Perfluorodecanesulfonic acid (PFDS)	EPA 537.1 M	ng/L	1.4 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	0.68	1.6	2.3
Perfluorooctane Sulfonamide (PFOSA)	EPA 537.1 M	ng/L	1.4 U	0.76 J (1)	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	0.45	1.6	4.5
MeFOSAA	EPA 537.1 M	ng/L	1.4 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	0.8	1.6	4.5
EtFOSAA	EPA 537.1 M	ng/L	1.4 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	0.61	1.6	4.5
4:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	0.78 J (1)	0.85 J (1)	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	0.53	1.6	4.5
6:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	52	52	1.6 U	1.6 U	1.5 J	20	1.6 U	0.72	1.6	4.5
8:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	13	13	1.6 U	0.70 J	0.68 J	3.9 J	1.6 U	0.6	1.6	4.5
Hexafluoropropyleneoxide dimer acid	EPA 537.1 M	ng/L	1.4 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	0.47	1.6	4.5
4,8-Dioxa-3H-perfluorononanoic acid	EPA 537.1 M	ng/L	0.40 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.14	0.45	4.5
9CI-PF3ONS (F-53B Major)	EPA 537.1 M	ng/L	1.0 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.48	1.1	4.5
11CI-PF3OUdS (F-53B Minor)	EPA 537.1 M	ng/L	1.0 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.36	1.1	4.5

Notes:

(1) Result is estimated as analyte confirmation criterion (ion ratio) was not met.

(2) Due to high concentration of the target analyte, a reduced sample volume was extracted and analyzed. Detection limit was adjusted accordingly (10x). Some results reference different lab limits due to dilution.

ng/L - nanograms per Liter or parts per trillion.

DL = Detection Limit EFF = Effluent

FB= Field Blank

INF = Influent J - Estimated result. Associated value may not be accurate or precise.

LOD = Limit of Detection

LOQ = Limit of Quantitation SANGB = Stewart Air National Guard Base

U - Undetected. Compound was analyzed for, but not detected.

Sample SANG-FB-08062024 is field blank.

Sample SANG-INF-08062024 D is a field duplicate of SANG-INF-08062024 .

Sample ports located in each of the 4 trains; A, B, C, D. such as: PBG1= post B train GAC unit 1.

PECG1 = post E port C GAC Unit 1 PECG2 = post E port C train GAC Unit 2

PECR1 = post E port C Resin 1

Effluent (EFF) = Treated water that has passed through the ISWTS

Influent (INF) = Untreated water from Recreational Pond ISWTS = Interim Storm Water Treatment System

MIDBR1 = Train B Resin unit 1 middle sample port

C4P0566V1 - 08/13/2024

RESULTS OF ANALYSES OF WATER Validated

RESULTS OF ANALTSES OF WATER						Val	luateu						
	Bureau Ver	itas ID	ZZQ663	ZZQ668	ZZQ669	ZZQ665	ZZQ667	ZZQ666	ZZQ670	ZZQ664			
	Samplin	g Date	2024/08/13 07:55	2024/08/13 08:20	2024/08/13 08:20	2024/08/13 08:05	2024/08/13 08:15	2024/08/13 08:10	2024/08/13 08:25	2024/08/13 08:00			
	San	nple ID	SANG-FB-08132024	SANG-INF-08132024	SANG-INF-08132024D	SANG-PEDR1-08132024	SANG-PEDG1-08132024	SANG-PEDG2-08132024	SANG-MIDBR1-08132024	SANG-EFF-08132024	DL	LOD	LOQ
Perfluorinated Compounds	Method	UNITS											
Perfluorobutanoic acid (PFBA)	EPA 537.1 M	ng/L	1.5 U	22	23	1.5 U	18	12	7.1	1.5 U	0.64	1.5	2.2
Perfluoropentanoic acid (PFPeA)	EPA 537.1 M	ng/L	0.76 U	68	68	0.76 U	45	24	8.1	0.76 U	0.24	0.76	2.2
Perfluorohexanoic acid (PFHxA)	EPA 537.1 M	ng/L	0.76 U	50	54	0.76 U	31	15	3.4	0.76 U	0.22	0.76	2.2
Perfluoroheptanoic acid (PFHpA)	EPA 537.1 M	ng/L	1.1 U	30	32	1.1 U	17	7.6	1.4 J	1.1 U	0.3	1.1	2.2
Perfluorooctanoic acid (PFOA)	EPA 537.1 M	ng/L	1.1 U	25	27	1.1 U	13	5.4	1.1 J	1.1 U	0.45	1.1	2.2
Perfluorononanoic acid (PFNA)	EPA 537.1 M	ng/L	1.1 U	6.1	6.8	1.1 U	2.9	1.0 J	1.1 U	1.1 U	0.38	1.1	2.2
Perfluorodecanoic acid (PFDA)	EPA 537.1 M	ng/L	1.1 U	4.3	4.7	1.1 U	1.7 J	0.47 J	1.1 U	1.1 U	0.32	1.1	2.2
Perfluoroundecanoic acid (PFUnA)	EPA 537.1 M	ng/L	1.1 U	0.49 J	0.44 J	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.4	1.1	2.2
Perfluorododecanoic acid (PFDoA)	EPA 537.1 M	ng/L	1.1 U	0.74 J	0.65 J	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.52	1.1	2.2
Perfluorotridecanoic acid (PFTrDA)	EPA 537.1 M	ng/L	0.76 U	0.76 U	0.76 U	0.76 U	0.76 U	0.76 U	0.76 U	0.76 U	0.26	0.76	2.2
Perfluorotetradecanoic acid (PFTeDA)	EPA 537.1 M	ng/L	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.42	1.1	2.2
Perfluorobutanesulfonic acid (PFBS)	EPA 537.1 M	ng/L	1.1 U	13	14	0.49 J (1)	7.5	3	1.1 U	1.1 U	0.29	1.1	2.2
Perfluoropentanesulfonic acid (PFPeS)	EPA 537.1 M	ng/L	1.1 U	14	16	1.1 U	6.8	2.3	1.1 U	1.1 U	0.37	1.1	2.2
Perfluorohexanesulfonic acid (PFHxS)	EPA 537.1 M	ng/L	1.1 U	84	90	1.1 U	41	15	1.2 J	1.1 U	0.3	1.1	2.2
Perfluoroheptanesulfonic acid (PFHpS)	EPA 537.1 M	ng/L	1.1 U	3.8	4.2	1.1 U	1.6 J	0.60 J	1.1 U	1.1 U	0.47	1.1	2.2
Perfluorooctanesulfonic acid (PFOS)	EPA 537.1 M	ng/L	1.1 U	300 (2)	300 (2)	0.99 J	120 (2)	45	9.4	1.5 J	0.51	1.1	2.2
Perfluorononanesulfonic acid (PFNS)	EPA 537.1 M	ng/L	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.7	1.5	2.2
Perfluorodecanesulfonic acid (PFDS)	EPA 537.1 M	ng/L	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.65	1.5	2.2
Perfluorooctane Sulfonamide (PFOSA)	EPA 537.1 M	ng/L	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.43	1.5	4.3
MeFOSAA	EPA 537.1 M	ng/L	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.76	1.5	4.3
EtFOSAA	EPA 537.1 M	ng/L	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.59	1.5	4.3
4:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.51	1.5	4.3
6:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.5 U	58	64	1.5 U	29	11	3.1 J	1.5 U	0.68	1.5	4.3
8:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.5 U	16	17	1.5 U	5.3	2.0 J	1.4 J	1.5 U	0.58	1.5	4.3
Hexafluoropropyleneoxide dimer acid	EPA 537.1 M	ng/L	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.45	1.5	4.3
4,8-Dioxa-3H-perfluorononanoic acid	EPA 537.1 M	ng/L	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.43 U	0.13	0.43	4.3
9CI-PF3ONS (F-53B Major)	EPA 537.1 M	ng/L	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.46	1.1	4.3
11Cl-PF3OUdS (F-53B Minor)	EPA 537.1 M	ng/L	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.35	1.1	4.3

Notes:

(1) Result is estimated as analyte confirmation criterion (ion ratio) was not met.

(2) Due to high concentration of the target analyte, a reduced sample volume was extracted and analyzed. Detection limit was adjusted accordingly (10x). Some results reference different lab limits due to dilution.

ng/L - nanograms per Liter or parts per trillion.

DL = Detection Limit EFF = Effluent

EFF = Effluent Sample ports located in each of the 4 trains; A, B, C, D. such as: PBG1= post B train GAC unit 1.

FB= Field Blank PEDG1 = post E port D GAC Unit 1

 FB= Field Blank
 PEDG1 = post E port D GAC Unit 1

 INF = Influent
 PEDG2 = post E port D train GAC Unit 2

J - Estimated result. Associated value may not be accurate or precise. PEDR1 = post E port D Resin 1

LOD = Limit of Detection Effluent (EFF) = Treated water that has passed through the ISWTS
LOQ = Limit of Quantitation Influent (INP) = Untreated water from Recreational Pond
SANGB = Stewart Air National Guard Base
U - Undetected. Compound was analyzed for, but not detected.
MIDBR1 = Train B Resin unit 1 middle sample port

U - Undetected. Compound was analyzed for, but not detected. Sample SANG-FB-08132024 is field blank.

Sample SANG-INF-08132024 D is a field duplicate of SANG-INF-08132024 .

C4Q0108V1 - 08/20/2024

RESULTS OF ANALYSES OF WATER

VALIDATED DATA

Veritas III ppling Date Sample III	2024/08/20 08:15 SANG-FB-08202024	AAPK84 2024/08/20 08:33 SANG-INF-08202024 19 67 52 27 24	AAPK85 2024/08/20 08:33 SANG-INF-08202024D 20 61 49 27	AAPK81 2024/08/20 08:24 SANG-PEAR1-08202024 1.4 U 0.70 U 0.70 U	AAPK83 2024/08/20 08:30 SANG-PEAG1-08202024 2.3 4.8 3.2	AAPK82 2024/08/20 08:27 SANG-PEAG2-08202024 1.6 J 2.4	AAPK86 2024/08/20 08:39 SANG-MIDBR1-0820/2024 11 11	AAPK80 2024/08/20 08:18 SANG-EFF-08202024 1.4 U 0.70 U	DL 0.59 0.22	LOD 1.4	LOQ 2
Sample II UNITS ng/L ng/L	1.4 U 0.70 U 0.70 U 1.0 U 1.0 U 1.0 U	19 67 52 27 24	20 61 49 27	1.4 U 0.70 U 0.70 U	2.3 4.8	1.6 J 2.4	SANG-MIDBR1-0820/2024 11	SANG-EFF-08202024 1.4 U	0.59	1.4	
ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	1.4 U 0.70 U 0.70 U 1.0 U 1.0 U	19 67 52 27 24	20 61 49 27	1.4 U 0.70 U 0.70 U	2.3 4.8	1.6 J 2.4	11	1.4 U	0.59	1.4	
ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	1.4 U 0.70 U 0.70 U 1.0 U 1.0 U 1.0 U	67 52 27 24	61 49 27	0.70 U 0.70 U	4.8	2.4					2
ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	0.70 U 0.70 U 1.0 U 1.0 U	67 52 27 24	61 49 27	0.70 U 0.70 U	4.8	2.4					2
ng/L ng/L ng/L ng/L ng/L ng/L	0.70 U 1.0 U 1.0 U 1.0 U	52 27 24	49 27	0.70 U			11	0.70 U	0.22		
ng/L ng/L ng/L ng/L	1.0 U 1.0 U 1.0 U	27 24	27		2.7				0.22	0.7	2
ng/L ng/L ng/L	1.0 U 1.0 U	24			3.2	1.3 J	3.2	0.70 U	0.2	0.7	2
ng/L ng/L	1.0 U		**	1.0 U	1.5 J	0.58 J	1.0 J	1.0 U	0.28	1	2
ng/L			22	1.0 U	1.2 J	1.0 U	0.72 J	1.0 U	0.41	1	2
ng/L	1011	6.6	6.3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.35	1	2
	2.00	5.1	5.1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.29	1	2
ng/L	1.0 U	0.93 J	0.95 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.37	1	2
	1.0 U	1.1 J	1.2 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.48	1	2
ng/L	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.24	0.7	2
ng/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.39	1	2
ng/L	1.0 U	12	12	1.0 U	0.63 J	1.0 U	1.0 U	1.0 U	0.27	1	2
ng/L	1.0 U	13	11	1.0 U	1.1 J	1.0 U	1.0 U	1.0 U	0.34	1	2
ng/L	1.0 U	71	72	1.0 U	2.7	1.0 U	1.0 U	1.0 U	0.28	1	2
ng/L	1.0 U	3.7	3.9	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.43	1	2
ng/L	1.0 U	330 (1)	300 (1)	1.0 U	8.3	0.88 J	1.6 J	1.0 U	0.47	1	2
ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.64	1.4	2
ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.6	1.4	2
ng/L	1.4 U	1.4 U	0.58 J	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.4	1.4	4
ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.7	1.4	4
ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.54	1.4	4
ng/L	1.4 U	1.2 J	1.1 J	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.47	1.4	4
ng/L	1.4 U	59	57	1.4 U	2.0 J	1.4 U	1.6 J	1.4 U	0.63	1.4	4
ng/L	1.4 U	15	15	1.4 U	0.59 J	1.4 U	1.4 U	1.4 U	0.53	1.4	4
ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.41	1.4	4
ng/L	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.12	0.4	4
	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.42	1	4
ng/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.32	1	4
	ng/L ng/L ng/L ng/L	ng/L 1.4 U ng/L 1.4 U ng/L 1.4 U ng/L 1.4 U ng/L 1.4 U ng/L 0.40 U ng/L 1.0 U	ng/L 1.4 U 1.2 J ng/L 1.4 U 59 ng/L 1.4 U 15 ng/L 1.4 U 15 ng/L 1.4 U 15 ng/L 1.4 U 1.4 U 1.4 U ng/L 0.40 U 0.40 U ng/L 1.0 U 1.0 U	ng/L 1.4 U 1.2 J 1.1 J ng/L 1.4 U 59 57 ng/L 1.4 U 15 15 ng/L 1.4 U 1.4 U 1.4 U ng/L 0.40 U 0.40 U 0.40 U ng/L 1.0 U 1.0 U 1.0 U	ng/L 1.4 U 1.2 J 1.1 J 1.4 U ng/L 1.4 U 59 57 1.4 U ng/L 1.4 U 15 15 1.4 U ng/L 1.4 U 1.4 U 1.4 U 1.4 U ng/L 0.40 U 0.40 U 0.40 U 0.40 U ng/L 1.0 U 1.0 U 1.0 U 1.0 U	ng/L 1.4 U 1.2 J 1.1 J 1.4 U 1.4 U ng/L 1.4 U 59 57 1.4 U 2.0 J ng/L 1.4 U 15 15 1.4 U 0.59 J ng/L 1.4 U 1.4 U 1.4 U 1.4 U ng/L 0.40 U 0.40 U 0.40 U 0.40 U ng/L 1.0 U 1.0 U 1.0 U 1.0 U	ng/L 1.4 U 1.2 J 1.1 J 1.4 U 1.4 U 1.4 U ng/L 1.4 U 59 57 1.4 U 2.0 J 1.4 U ng/L 1.4 U 15 15 1.4 U 0.59 J 1.4 U ng/L 1.4 U 1.4 U 1.4 U 1.4 U 1.4 U ng/L 0.40 U 0.40 U 0.40 U 0.40 U 0.40 U ng/L 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	ng/L 1.4 U 1.2 J 1.1 J 1.4 U 1.6 J 1.6 J	ng/L 1.4 U 1.2 J 1.1 J 1.4 U 1.4 U	ng/L 1.4 U 1.2 J 1.1 J 1.4 U 1.4 U 1.4 U 1.4 U 1.4 U 0.47 ng/L 1.4 U 59 57 1.4 U 2.0 J 1.4 U 1.6 J 1.4 U 0.63 ng/L 1.4 U 15 15 1.4 U 0.59 J 1.4 U 1.4 U 1.4 U 0.53 ng/L 1.4 U 1.4 U 1.4 U 1.4 U 1.4 U 1.4 U 0.41 0.40 0.40 0.40 U 0.40 U 0.40 U 0.40 U 0.12 0.40 U 0.40 U 0.40 U 0.04 U 0.42	ng/L 1.4 U 1.2 J 1.1 J 1.4 U 1.4 U 1.4 U 1.4 U 1.4 U 0.47 I.4 U 0.47 I.4 U 0.63 I.4 U 0.64 U 0.64 U 0.64 U 0.64 U 0.64 I.4 U 0.64 II.4 U

(1) Due to high concentration of the target analyte, a reduced sample volume was extracted and analyzed. Detection limit was adjusted accordingly (10x). Some results reference different lab limits due to dilution.

ng/L - nanograms per Liter or parts per trillion.

DL = Detection Limit EFF = Effluent

FB= Field Blank

INF = Influent

J - Estimated result. Associated value may not be accurate or precise.

LOD = Limit of Detection

LOQ = Limit of Quantitation SANGB = Stewart Air National Guard Base

U - Undetected. Compound was analyzed for, but not detected.

Sample SANG-FB-08202024 is field blank.

Sample SANG-INF-08202024 D is a field duplicate of SANG-INF-08202024 .

Sample ports located in each of the 4 trains; A, B, C, D. such as: PBG1= post B train GAC unit 1.

PEAG1 = post E port A GAC Unit 1

PEAG2 = post E port A train GAC Unit 2

PEAR1 = post E port A Resin 1

Effluent (EFF) = Treated water that has passed through the ISWTS

Influent (INF) = Untreated water from Recreational Pond

ISWTS = Interim Storm Water Treatment System

MIDBR1 = Train B Resin unit 1 middle sample port

C4Q8303V1 - 08/27/2024

RESULTS OF ANALYSES OF WATER VALIDATED DATA

RESULTS OF ANALYSES OF WATER						VALIDAI	LD DATA						
	Bureau Ve	eritas ID	ABGO65	ABGO70	ABGO71	ABGO67	ABGO69	ABGO68	ABGO72	ABGO66			
	Sampli	ing Date	2024/08/27 08:25	2024/08/27 08:50	2024/08/27 08:50	2024/08/27 08:35	2024/08/27 08:45	2024/08/27 08:40	2024/08/27 08:55	2024/08/27 08:30			
	Sa	mple ID	SANG-FB-08272024	SANG-INF-08272024	SANG-INF-08272024D	SANG-PEBR1-08272024	SANG-PEBG1-08272024	SANG-PEBG2-08272024	SANG-MIDBR1-0827/2024	SANG-EFF-08272024	DL	LOD	LOQ
Perfluorinated Compounds	Method	UNITS			•	•		•	•				
Perfluorobutanoic acid (PFBA)	EPA 537.1 M	ng/L	1.4 U	34	33	1.8 U	30	23	20	1.4 U	0.67	1.6	2.3
Perfluoropentanoic acid (PFPeA)	EPA 537.1 M	ng/L	0.70 U	99	98	0.88 U	70	46	26	0.70 U	0.25	0.8	2.3
Perfluorohexanoic acid (PFHxA)	EPA 537.1 M	ng/L	0.70 U	81	82	0.88 U	54	30	8.7	0.70 U	0.23	0.8	2.3
Perfluoroheptanoic acid (PFHpA)	EPA 537.1 M	ng/L	1.0 U	40	40	1.3 U	24	12	2.3 J	1.0 U	0.32	1.1	2.3
Perfluorooctanoic acid (PFOA)	EPA 537.1 M	ng/L	1.0 U	36	36	1.3 U	18	8.7	1.4 J	1.0 U	0.47	1.1	2.3
Perfluorononanoic acid (PFNA)	EPA 537.1 M	ng/L	1.0 U	9.7	9.8	1.3 U	4.7	2.0 J	1.1 U	1.0 U	0.4	1.1	2.3
Perfluorodecanoic acid (PFDA)	EPA 537.1 M	ng/L	1.0 U	7	6.6	1.3 U	3.1	0.95 J	1.1 U	1.0 U	0.33	1.1	2.3
Perfluoroundecanoic acid (PFUnA)	EPA 537.1 M	ng/L	1.0 U	0.53 J	0.49 J	1.3 U	1.1 U	1.1 U	1.1 U	1.0 U	0.42	1.1	2.3
Perfluorododecanoic acid (PFDoA)	EPA 537.1 M	ng/L	1.0 U	0.67 J	0.59 J	1.3 U	1.1 U	1.1 U	1.1 U	1.0 U	0.55	1.1	2.3
Perfluorotridecanoic acid (PFTrDA)	EPA 537.1 M	ng/L	0.70 U	0.76 U	0.76 U	0.88 U	0.80 U	0.80 U	0.80 U	0.70 U	0.27	0.8	2.3
Perfluorotetradecanoic acid (PFTeDA)	EPA 537.1 M	ng/L	1.0 U	1.1 U	1.1 U	1.3 U	1.1 U	1.1 U	1.1 U	1.0 U	0.44	1.1	2.3
Perfluorobutanesulfonic acid (PFBS)	EPA 537.1 M	ng/L	1.0 U	20	19	1.3 U	11	5.2	1.1 U	1.0 U	0.31	1.1	2.3
Perfluoropentanesulfonic acid (PFPeS)	EPA 537.1 M	ng/L	1.0 U	30	28	1.3 U	13	5.3	1.1 U	1.0 U	0.39	1.1	2.3
Perfluorohexanesulfonic acid (PFHxS)	EPA 537.1 M	ng/L	1.0 U	120 (1)	130 (1)	1.3 U	65	29	1.7 J	1.0 U	0.32	1.1	2.3
Perfluoroheptanesulfonic acid (PFHpS)	EPA 537.1 M	ng/L	1.0 U	9.2	8	1.3 U	2.9	0.98 J	1.1 U	1.0 U	0.49	1.1	2.3
Perfluorooctanesulfonic acid (PFOS)	EPA 537.1 M	ng/L	1.0 U	450 (1)	430 (1)	1.3 U	220	96	10	1.0 U	0.53	1.1	2.3
Perfluorononanesulfonic acid (PFNS)	EPA 537.1 M	ng/L	1.4 U	1.6 U	1.6 U	1.8 U	1.6 U	1.6 U	1.6 U	1.4 U	0.73	1.6	2.3
Perfluorodecanesulfonic acid (PFDS)	EPA 537.1 M	ng/L	1.4 U	1.6 U	1.6 U	1.8 U	1.6 U	1.6 U	1.6 U	1.4 U	0.68	1.6	2.3
Perfluorooctane Sulfonamide (PFOSA)	EPA 537.1 M	ng/L	1.4 U	1.5 U	1.5 U	1.8 U	1.6 U	1.6 U	1.6 U	1.4 U	0.45	1.6	4.5
MeFOSAA	EPA 537.1 M	ng/L	1.4 U	1.5 U	1.6 U	1.8 U	1.6 U	1.6 U	1.6 U	1.4 U	0.8	1.6	4.5
EtFOSAA	EPA 537.1 M	ng/L	1.4 U	1.5 U	1.6 U	1.8 U	1.6 U	1.6 U	1.6 U	1.4 U	0.61	1.6	4.5
4:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	1.2 J	0.85 J	1.8 U	1.6 U	1.6 U	1.6 U	1.4 U	0.53	1.6	4.5
6:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	72	85	1.8 U	36	16	4.3 J	1.4 U	0.72	1.6	4.5
8:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	13	14	1.8 U	3.8 J	1.6 U	1.6 U	1.4 U	0.6	1.6	4.5
Hexafluoropropyleneoxide dimer acid	EPA 537.1 M	ng/L	1.4 U	1.6 U	1.6 U	1.8 U	1.6 U	1.6 U	1.6 U	1.4 U	0.47	1.6	4.5
4,8-Dioxa-3H-perfluorononanoic acid	EPA 537.1 M	ng/L	0.40 U	0.45 U	0.45 U	0.50 U	0.45 U	0.45 U	0.45 U	0.40 U	0.14	0.45	4.5
9CI-PF3ONS (F-53B Major)	EPA 537.1 M	ng/L	1.0 U	1.1 U	1.1 U	1.3 U	1.1 U	1.1 U	1.1 U	1.0 U	0.48	1.1	4.5
11Cl-PF3OUdS (F-53B Minor)	EPA 537.1 M	ng/L	1.0 U	1.1 U	1.1 U	1.3 U	1.1 U	1.1 U	1.1 U	1.0 U	0.36	1.1	4.5
Notes:													

(1) Due to high concentration of the target analyte, a reduced sample volume was extracted and analyzed. Detection limit was adjusted accordingly (10x). Some results reference different lab limits due to dilution.

ng/L - nanograms per Liter or parts per trillion.

DL = Detection Limit EFF = Effluent

Sample ports located in each of the 4 trains; A, B, C, D. such as: PBG1= post B train GAC unit 1.

FB= Field Blank PEBG1 = post E port B GAC Unit 1 INF = Influent PEBG2 = post E port B train GAC Unit 2

J - Estimated result. Associated value may not be accurate or precise. PEBR1 = post E port B Resin 1

LOD = Limit of Detection Effluent (EFF) = Treated water that has passed through the ISWTS LOQ = Limit of Quantitation Influent (INF) = Untreated water from Recreational Pond ISWTS = Interim Storm Water Treatment System SANGB = Stewart Air National Guard Base MIDBR1 = Train B Resin unit 1 middle sample port

U - Undetected. Compound was analyzed for, but not detected.

Sample SANG-INF-08272024 D is a field duplicate of SANG-INF-08272024 .

C4R4815V1 - 09/03/2024

RESULTS OF ANALYSES OF WATER

VALIDATED DATA

RESULTS OF ANALYSES OF WATER						VALIDATED DATA						
	Burea	ı Veritas ID	ABUL48	ABUL53	ABUL54	ABUL50	ABUL52	ABUL51	ABUL49			
	Sar	npling Date	2024/09/03 07:40	2024/09/03 08:05	2024/09/03 08:05	2024/09/03 07:50	2024/09/03 08:00	2024/09/03 07:55	2024/09/03 07:45			
		Sample ID	SANG-FB-09032024	SANG-INF-09032024	SANG-INF-09032024D	SANG-PECR1-09032024	SANG-PECG1-09032024	SANG-PECG2-09032024	SANG-EFF-09032024	DL	LOD	LOQ
Perfluorinated Compounds	Method	UNITS										
Perfluorobutanoic acid (PFBA)	EPA 537.1 M	ng/L	1.4 U	19	21	1.4 U	23	19	1.4 U	0.59	1.4	2
Perfluoropentanoic acid (PFPeA)	EPA 537.1 M	ng/L	0.70 U	49	61	0.70 U	50	36	0.70 U	0.22	0.7	2
Perfluorohexanoic acid (PFHxA)	EPA 537.1 M	ng/L	0.70 U	44	47	0.70 U	39	22	0.70 U	0.2	0.7	2
Perfluoroheptanoic acid (PFHpA)	EPA 537.1 M	ng/L	1.0 U	23	25	1.0 U	18	8.4	1.0 U	0.28	1	2
Perfluorooctanoic acid (PFOA)	EPA 537.1 M	ng/L	1.0 U	20	21	1.0 U	14	5.2	1.0 U	0.41	1	2
Perfluorononanoic acid (PFNA)	EPA 537.1 M	ng/L	1.0 U	5.5	5.8	1.0 U	3.5	1.0 J	1.0 U	0.35	1	2
Perfluorodecanoic acid (PFDA)	EPA 537.1 M	ng/L	1.0 U	3.8	4.2	1.0 U	2	0.57 J	1.0 U	0.29	1	2
Perfluoroundecanoic acid (PFUnA)	EPA 537.1 M	ng/L	1.0 U	0.52 J	0.49 J	1.0 U	1.0 U	1.0 U	1.0 U	0.37	1	2
Perfluorododecanoic acid (PFDoA)	EPA 537.1 M	ng/L	1.0 U	0.81 J	0.70 J	1.0 U	1.0 U	1.0 U	1.0 U	0.48	1	2
Perfluorotridecanoic acid (PFTrDA)	EPA 537.1 M	ng/L	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.24	0.7	2
Perfluorotetradecanoic acid (PFTeDA)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.39	1	2
Perfluorobutanesulfonic acid (PFBS)	EPA 537.1 M	ng/L	1.0 U	10	11	1.0 U	8	3.9	1.0 U	0.27	1	2
Perfluoropentanesulfonic acid (PFPeS)	EPA 537.1 M	ng/L	1.0 U	13	13	1.0 U	9.5	3.1	1.0 U	0.34	1	2
Perfluorohexanesulfonic acid (PFHxS)	EPA 537.1 M	ng/L	1.0 U	62	64	1.0 U	44	14	1.0 U	0.28	1	2
Perfluoroheptanesulfonic acid (PFHpS)	EPA 537.1 M	ng/L	1.0 U	3.4	3.7	1.0 U	2.1	0.59 J	1.0 U	0.43	1	2
Perfluorooctanesulfonic acid (PFOS)	EPA 537.1 M	ng/L	1.0 U	220 (1)	250 (1)	0.61 J	120 (1)	28	1.0 U	4.7	10	20
Perfluorononanesulfonic acid (PFNS)	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.64	1.4	2
Perfluorodecanesulfonic acid (PFDS)	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.6	1.4	2
Perfluorooctane Sulfonamide (PFOSA)	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.4	1.4	4
MeFOSAA	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.7	1.4	4
EtFOSAA	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.54	1.4	4
4:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	0.77 J	0.86 J	1.4 U	0.59 J	1.4 U	1.4 U	0.47	1.4	4
6:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	43	46	1.4 U	27	7.6	1.4 U	0.63	1.4	4
8:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	7.2	8.3	1.4 U	2.8 J	0.69 J	1.4 U	0.53	1.4	4
Hexafluoropropyleneoxide dimer acid	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.41	1.4	4
4,8-Dioxa-3H-perfluorononanoic acid	EPA 537.1 M	ng/L	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.12	0.4	4
9CI-PF3ONS (F-53B Major)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.42	1	4
11Cl-PF3OUdS (F-53B Minor)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.32	1	4

Notes

(1) Due to high concentration of the target analyte, a reduced sample volume was extracted and analyzed. Detection limit was adjusted accordingly (10x). Some results reference different lab limits due to dilution.

ng/L - nanograms per Liter or parts per trillion.

DL = Detection Limit EFF = Effluent

FB= Field Blank

INF = Influent

J - Estimated result. Associated value may not be accurate or precise.

LOD = Limit of Detection

LOQ = Limit of Quantitation

SANGB = Stewart Air National Guard Base

U - Undetected. Compound was analyzed for, but not detected.

Sample SANG-FB-09032024 is field blank.

Sample SANG-INF-09032024 D is a field duplicate of SANG-INF-09032024 .

Sample ports located in each of the 4 trains; A, B, C, D. such as: PBG1= post B train GAC unit 1.

PECG1 = post E port C GAC Unit 1
PECG2 = post E port C train GAC Unit 2

PECR1 = post E port C Resin 1

Effluent (EFF) = Treated water that has passed through the ISWTS

Influent (INF) = Untreated water from Recreational Pond

C4S3300V1 - 09/10/2024

RESULTS OF ANALYSES OF WATER						VALIDATED DATA						
	Bureau \	Veritas ID	ACMH17	ACMH22	ACMH23	ACMH19	ACMH21	ACMH20	ACMH18			
	Samp	oling Date	2024/09/10 07:55	2024/09/10 08:20	2024/09/10 08:20	2024/09/10 08:05	2024/09/10 08:15	2024/09/10 08:10	2024/09/10 08:00			
	S	Sample ID	SANG-FB-09102024	SANG-INF-09102024	SANG-INF-09102024D	SANG-PEDR1-09102024	SANG-PEDG1-09102024	SANG-PEDG2-09102024	SANG-EFF-09102024	DL	LOD	LOQ
Perfluorinated Compounds	Method	UNITS										
Perfluorobutanoic acid (PFBA)	EPA 537.1 M	ng/L	1.5 U	21	15	1.5 U	20	18	0.94 J	0.61	1.5	2.1
Perfluoropentanoic acid (PFPeA)	EPA 537.1 M	ng/L	0.73 U	81	73	0.88 U	59	38	0.88 U	0.31	0.97	2.8
Perfluorohexanoic acid (PFHxA)	EPA 537.1 M	ng/L	0.73 U	57	51	0.88 U	41	23	0.88 U	0.28	0.97	2.8
Perfluoroheptanoic acid (PFHpA)	EPA 537.1 M	ng/L	1.0 U	29	26	1.3 U	19	9.3	1.3 U	0.39	1.4	2.8
Perfluorooctanoic acid (PFOA)	EPA 537.1 M	ng/L	1.0 U	25	22	1.3 U	15	6.6	1.3 U	0.57	1.4	2.8
Perfluorononanoic acid (PFNA)	EPA 537.1 M	ng/L	1.0 U	7.1	6.7	1.3 U	3.9	2.0 J	1.3 U	0.49	1.4	2.8
Perfluorodecanoic acid (PFDA)	EPA 537.1 M	ng/L	1.0 U	5.3	4.8	1.3 U	2.4 J	1.1 J	1.3 U	0.4	1.4	2.8
Perfluoroundecanoic acid (PFUnA)	EPA 537.1 M	ng/L	1.0 U	1.0 J	0.94 J	1.3 U	0.55 J	1.3 U	1.3 U	0.51	1.4	2.8
Perfluorododecanoic acid (PFDoA)	EPA 537.1 M	ng/L	1.0 U	1.1 J	0.94 J	1.3 U	1.3 U	1.3 U	1.3 U	0.67	1.4	2.8
Perfluorotridecanoic acid (PFTrDA)	EPA 537.1 M	ng/L	0.73 U	0.97 U	0.97 U	0.88 U	0.88 U	0.88 U	0.88 U	0.33	0.97	2.8
Perfluorotetradecanoic acid (PFTeDA)	EPA 537.1 M	ng/L	1.0 U	1.4 U	1.4 U	1.3 U	1.3 U	1.3 U	1.3 U	0.54	1.4	2.8
Perfluorobutanesulfonic acid (PFBS)	EPA 537.1 M	ng/L	1.0 U	13	12	1.3 U	8.4	4.1	1.3 U	0.38	1.4	2.8
Perfluoropentanesulfonic acid (PFPeS)	EPA 537.1 M	ng/L	1.0 U	14	12	1.3 U	7.4	2.9	1.3 U	0.47	1.4	2.8
Perfluorohexanesulfonic acid (PFHxS)	EPA 537.1 M	ng/L	1.0 U	75	68	1.3 U	41	16	1.3 U	0.39	1.4	2.8
Perfluoroheptanesulfonic acid (PFHpS)	EPA 537.1 M	ng/L	1.0 U	4.6	4.1	1.3 U	2.2 J	1.0 J	1.3 U	0.6	1.4	2.8
Perfluorooctanesulfonic acid (PFOS)	EPA 537.1 M	ng/L	1.0 U	210 (1)	210 (1)	1.3 U	110 (1)	44	1.3 U	4.7	10	20
Perfluorononanesulfonic acid (PFNS)	EPA 537.1 M	ng/L	1.5 U	1.9 U	1.9 U	1.8 U	1.8 U	1.8 U	1.8 U	0.89	1.9	2.8
Perfluorodecanesulfonic acid (PFDS)	EPA 537.1 M	ng/L	1.5 U	1.9 U	1.9 U	1.8 U	1.8 U	1.8 U	1.8 U	0.83	1.9	2.8
Perfluorooctane Sulfonamide (PFOSA)	EPA 537.1 M	ng/L	1.5 U	0.62 J	1.9 U	1.8 U	1.8 U	1.8 U	1.8 U	0.56	1.9	5.6
MeFOSAA	EPA 537.1 M	ng/L	1.5 U	1.9 U	1.9 U	1.8 U	1.8 U	1.8 U	1.8 U	0.97	1.9	5.6
EtFOSAA	EPA 537.1 M	ng/L	1.5 U	1.9 U	1.9 U	1.8 U	1.8 U	1.8 U	1.8 U	0.75	1.9	5.6
4:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.5 U	1.2 J (2)	1.3 J	1.8 U	1.8 U	0.63 J	1.8 U	0.65	1.9	5.6
6:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.5 U	51	50	1.8 U	24	9.1	1.8 U	0.88	1.9	5.6
8:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.5 U	6.6	6.3	1.8 U	2.5 J	0.85 J	1.8 U	0.74	1.9	5.6
Hexafluoropropyleneoxide dimer acid	EPA 537.1 M	ng/L	1.5 U	1.9 U	1.9 U	1.8 U	1.8 U	1.8 U	1.8 U	0.57	1.9	5.6
4,8-Dioxa-3H-perfluorononanoic acid	EPA 537.1 M	ng/L	0.42 U	0.56 U	0.56 U	0.50 U	0.50 U	0.50 U	0.50 U	0.17	0.56	5.6
9CI-PF3ONS (F-53B Major)	EPA 537.1 M	ng/L	1.0 U	1.4 U	1.4 U	1.3 U	1.3 U	1.3 U	1.3 U	0.58	1.4	5.6
11CI-PF3OUdS (F-53B Minor)	EPA 537.1 M	ng/L	1.0 U	1.4 U	1.4 U	1.3 U	1.3 U	1.3 U	1.3 U	0.44	1.4	5.6

(1) Due to high concentration of the target analyte, a reduced sample volume was extracted and analyzed. Detection limit was adjusted accordingly (10x). Some results reference different lab limits due to dilution.

(2) Result is estimated as analyte confirmation criterion (ion ratio) was not met.

ng/L - nanograms per Liter or parts per trillion.

DL = Detection Limit

EFF = Effluent

FB= Field Blank

INF = Influent

 $\ensuremath{\mathtt{J}}$ - Estimated result. Associated value may not be accurate or precise.

LOD = Limit of Detection

LOQ = Limit of Quantitation SANGB = Stewart Air National Guard Base

U - Undetected. Compound was analyzed for, but not detected.

Sample SANG-FB-09102024 is field blank.

Sample SANG-INF-09102024 D is a field duplicate of SANG-INF-09102024 .

Sample ports located in each of the 4 trains; A, B, C, D. such as: PBG1= post B train GAC unit 1.

PEDG1 = post E port D GAC Unit 1

PEDG2 = post E port D train GAC Unit 2

PEDR1 = post E port D Resin 1

Effluent (EFF) = Treated water that has passed through the ISWTS Influent (INF) = Untreated water from Recreational Pond

C4T1895V1 - 09/17/2024

RESULTS OF ANALYSES OF WATER Validated

RESULTS OF ANALYSES OF WATER						Validated						
	Bureau	ı Veritas ID	ADEX48	ADEX53	ADEX54	ADEX50	ADEX52	ADEX51	ADEX49			
	San	npling Date	2024/09/17 07:25	2024/09/17 07:50	2024/09/17 07:50	2024/09/17 07:35	2024/09/17 07:45	2024/09/17 07:40	2024/09/17 07:30			
		Sample ID	SANG-FB-0917/2024	SANG-INF-09172024	SANG-INF-09172024D	SANG-PEAR1-09172024	SANG-PEAG1-09172024	SANG-PEAG2-09172024	SANG-EFF-09172024	DL	LOD	LOQ
Perfluorinated Compounds	Method	UNITS										
Perfluorobutanoic acid (PFBA)	EPA 537.1 M	ng/L	1.4 U	32	33	1.4 U	32	24	1.5 J	0.59	1.4	2
Perfluoropentanoic acid (PFPeA)	EPA 537.1 M	ng/L	0.70 U	98	94	0.70 U	78	44	0.70 U	0.22	0.7	2
Perfluorohexanoic acid (PFHxA)	EPA 537.1 M	ng/L	0.70 U	77	79	0.70 U	54	24	0.70 U	0.2	0.7	2
Perfluoroheptanoic acid (PFHpA)	EPA 537.1 M	ng/L	1.0 U	36	38	1.0 U	23	8	1.0 U	0.28	1	2
Perfluorooctanoic acid (PFOA)	EPA 537.1 M	ng/L	1.0 U	33	34	1.0 U	17	5	1.0 U	0.41	1	2
Perfluorononanoic acid (PFNA)	EPA 537.1 M	ng/L	1.0 U	8.4	8.6	1.0 U	3.8	1.2 J	1.0 U	0.35	1	2
Perfluorodecanoic acid (PFDA)	EPA 537.1 M	ng/L	1.0 U	5.6	5.7	1.0 U	2.1	0.44 J	1.0 U	0.29	1	2
Perfluoroundecanoic acid (PFUnA)	EPA 537.1 M	ng/L	1.0 U	0.52 J	0.53 J	1.0 U	1.0 U	1.0 U	1.0 U	0.37	1	2
Perfluorododecanoic acid (PFDoA)	EPA 537.1 M	ng/L	1.0 U	0.55 J	0.58 J	1.0 U	1.0 U	1.0 U	1.0 U	0.48	1	2
Perfluorotridecanoic acid (PFTrDA)	EPA 537.1 M	ng/L	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.24	0.7	2
Perfluorotetradecanoic acid (PFTeDA)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.39	1	2
Perfluorobutanesulfonic acid (PFBS)	EPA 537.1 M	ng/L	1.0 U	20	20	1.0 U	12	4.1	1.0 U	0.27	1	2
Perfluoropentanesulfonic acid (PFPeS)	EPA 537.1 M	ng/L	1.0 U	21	21	1.0 U	12	2.9	1.0 U	0.34	1	2
Perfluorohexanesulfonic acid (PFHxS)	EPA 537.1 M	ng/L	1.0 U	120 (1)	120 (1)	1.0 U	62	15	1.0 U	2.8	10	20
Perfluoroheptanesulfonic acid (PFHpS)	EPA 537.1 M	ng/L	1.0 U	5.7	5.8	1.0 U	2.7	1.0 U	1.0 U	0.43	1	2
Perfluorooctanesulfonic acid (PFOS)	EPA 537.1 M	ng/L	1.0 U	390 (1)	390 (1)	1.0 U	160 (1)	34	1.0 U	4.7	10	20
Perfluorononanesulfonic acid (PFNS)	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.64	1.4	2
Perfluorodecanesulfonic acid (PFDS)	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.6	1.4	2
Perfluorooctane Sulfonamide (PFOSA)	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.4	1.4	4
MeFOSAA	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.7	1.4	4
EtFOSAA	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.54	1.4	4
4:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	1.3 J	0.98 J	1.4 U	0.53 J (2)	1.4 U	1.4 U	0.47	1.4	4
6:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	74	76	1.4 U	29	6.3	1.4 U	0.63	1.4	4
8:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.4 U	8.5	9	1.4 U	1.6 J	1.4 U	1.4 U	0.53	1.4	4
Hexafluoropropyleneoxide dimer acid	EPA 537.1 M	ng/L	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	0.41	1.4	4
4,8-Dioxa-3H-perfluorononanoic acid	EPA 537.1 M	ng/L	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.12	0.4	4
9CI-PF3ONS (F-53B Major)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.42	1	4
11Cl-PF3OUdS (F-53B Minor)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.32	1	4

Notes

(1) Due to high concentration of the target analyte, a reduced sample volume was extracted and analyzed. Detection limit was adjusted accordingly (10x). Some results reference different lab limits due to dilution.

(2) Result is estimated as analyte confirmation criterion (ion ratio) was not met.

ng/L - nanograms per Liter or parts per trillion.

DL = Detection Limit

EFF = Effluent

FB= Field Blank

INF = Influent

J - Estimated result. Associated value may not be accurate or precise.

LOD = Limit of Detection

LOQ = Limit of Quantitation

SANGB = Stewart Air National Guard Base

U - Undetected. Compound was analyzed for, but not detected.

Sample SANG-FB-09172024 is field blank.

Sample SANG-INF-09172024 D is a field duplicate of SANG-INF-09172024 .

Sample ports located in each of the 4 trains; A, B, C, D. such as: PBG1= post B train GAC unit 1.

PEAG1 = post E portAD GAC Unit 1

PEAG2 = post E port A train GAC Unit 2

PEAR1 = post E port A Resin 1

Effluent (EFF) = Treated water that has passed through the ISWTS

Influent (INF) = Untreated water from Recreational Pond

C4U0401V1 - 09/24/2024

RESULTS OF ANALYSES OF WATER	VALIDATED DATA

SOLIS OF ANALTSES OF WATER VALIDATED DATA													
	Bureau	ı Veritas ID	ADXW79	ADXW84	ADXW85	ADXW81	ADXW83	ADXW82	ADXW86	ADXW80			
	San	npling Date	2024/09/24 10:30	2024/09/24 10:48	2024/09/24 10:48	2024/09/24 10:39	2024/09/24 10:45	2024/09/24 10:42	2024/09/24 10:54	2024/09/24 10:33			
		Sample ID	SANG-FB-0924/2024	SANG-INF-09242024	SANG-INF-09242024D	SANG-PEBR1-09242024	SANG-PEBG1-09242024	SANG-PEBG2-09242024	SANG-MIDBRI-09242024	SANG-EFF-09242024	DL	LOD	LOQ
Perfluorinated Compounds	Method	UNITS											
Perfluorobutanoic acid (PFBA)	EPA 537.1 M	ng/L	1.5 U	41	43	5.5	37	33	28	3	0.61	1.5	2.1
Perfluoropentanoic acid (PFPeA)	EPA 537.1 M	ng/L	0.73 U	120 (1)	120 (1)	0.31 J	95	71	49	0.73 U	0.23	0.73	2.1
Perfluorohexanoic acid (PFHxA)	EPA 537.1 M	ng/L	0.73 U	98	100	0.73 U	73	51	22	0.73 U	0.21	0.73	2.1
Perfluoroheptanoic acid (PFHpA)	EPA 537.1 M	ng/L	1.0 U	44	46	1.0 U	30	19	6.2	1.0 U	0.29	1	2.1
Perfluorooctanoic acid (PFOA)	EPA 537.1 M	ng/L	1.0 U	39	38	1.0 U	21	12	3.4	1.0 U	0.43	1	2.1
Perfluorononanoic acid (PFNA)	EPA 537.1 M	ng/L	1.0 U	9.2	9.5	1.0 U	4.2	2.6	0.87 J	1.0 U	0.36	1	2.1
Perfluorodecanoic acid (PFDA)	EPA 537.1 M	ng/L	1.0 U	6.2	6.1	1.0 U	2.3	1.0 J	0.50 J	1.0 U	0.3	1	2.1
Perfluoroundecanoic acid (PFUnA)	EPA 537.1 M	ng/L	1.0 U	0.80 J	0.71 J	1.0 U	0.52 J	1.0 U	0.39 J	1.0 U	0.39	1	2.1
Perfluorododecanoic acid (PFDoA)	EPA 537.1 M	ng/L	1.0 U	0.74 J	0.67 J	1.0 U	1.0 U	1.0 U	0.78 J	1.0 U	0.5	1	2.1
Perfluorotridecanoic acid (PFTrDA)	EPA 537.1 M	ng/L	0.73 U	0.73 U	0.73 U	0.73 U	0.35 J	0.73 U	0.73 U	0.73 U	0.25	0.73	2.1
Perfluorotetradecanoic acid (PFTeDA)	EPA 537.1 M	ng/L	1.0 U	0.45 J	1.0 U	1.0 U	0.45 J	1.0 U	1.0 U	1.0 U	0.41	1	2.1
Perfluorobutanesulfonic acid (PFBS)	EPA 537.1 M	ng/L	1.0 U	25	25	1.0 U	16	11	1.3 J	1.0 U	0.28	1	2.1
Perfluoropentanesulfonic acid (PFPeS)	EPA 537.1 M	ng/L	1.0 U	27	29	1.0 U	16	9.2	0.91 J	1.0 U	0.35	1	2.1
Perfluorohexanesulfonic acid (PFHxS)	EPA 537.1 M	ng/L	1.0 U	150 (1)	150 (1)	1.0 U	89	52	6.6	1.0 U	0.29	1	2.1
Perfluoroheptanesulfonic acid (PFHpS)	EPA 537.1 M	ng/L	1.0 U	7.9	8	1.0 U	3.8	2.1	1.0 U	1.0 U	0.45	1	2.1
Perfluorooctanesulfonic acid (PFOS)	EPA 537.1 M	ng/L	1.0 U	420 (1)	430 (1)	1.0 U	210 (1)	110 (1)	31	1.0 U	0.49	1	2.1
Perfluorononanesulfonic acid (PFNS)	EPA 537.1 M	ng/L	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.67	1.5	2.1
Perfluorodecanesulfonic acid (PFDS)	EPA 537.1 M	ng/L	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.63	1.5	2.1
Perfluorooctane Sulfonamide (PFOSA)	EPA 537.1 M	ng/L	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.42	1.5	4.2
MeFOSAA	EPA 537.1 M	ng/L	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.73	1.5	4.2
EtFOSAA	EPA 537.1 M	ng/L	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.56	1.5	4.2
4:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.5 U	1.4 J (2)	1.7 J	1.5 U	1.1 J	0.84 J	0.68 J (2)	1.5 U	0.49	1.5	4.2
6:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.5 U	96	94	1.5 U	40	21	8.4	1.5 U	0.66	1.5	4.2
8:2 Fluorotelomer sulfonic acid	EPA 537.1 M	ng/L	1.5 U	12	12	1.5 U	1.5 J	1.5 U	1.5 U	1.5 U	0.55	1.5	4.2
Hexafluoropropyleneoxide dimer acid	EPA 537.1 M	ng/L	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.43	1.5	4.2
4,8-Dioxa-3H-perfluorononanoic acid	EPA 537.1 M	ng/L	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U	0.13	0.42	4.2
9CI-PF3ONS (F-53B Major)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.44	1	4.2
11Cl-PF3OUdS (F-53B Minor)	EPA 537.1 M	ng/L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.33	1	4.2
Notes:													

(1) Due to high concentration of the target analyte, a reduced sample volume was extracted and analyzed. Detection limit was adjusted accordingly (10x). Some results reference different lab limits due to dilution.

(2) Result is estimated as analyte confirmation criterion (ion ratio) was not met.

ng/L - nanograms per Liter or parts per trillion.

DL = Detection Limit

EFF = Effluent Sample ports located in each of the 4 trains; A, B, C, D. such as: PBG1= post B train GAC unit 1.

FB= Field Blank PEBG1 = post E port B GAC Unit 1 INF = Influent

PEBG2 = post E port B train GAC Unit 2

J - Estimated result. Associated value may not be accurate or precise. PEBR1 = post E port B Resin 1

LOD = Limit of Detection Effluent (EFF) = Treated water that has passed through the ISWTS Influent (INF) = Untreated water from Recreational Pond LOQ = Limit of Quantitation

ISWTS = Interim Storm Water Treatment System SANGB = Stewart Air National Guard Base

U - Undetected. Compound was analyzed for, but not detected. MIDBR1 = Train B Resin unit 1 middle sample port Sample SANG-FB-09242024 is field blank.

Sample SANG-INF-09242024 D is a field duplicate of SANG-INF-09242024 .

TABLE 2 - OTHER WATER QUALITY MONITORING RESULTS

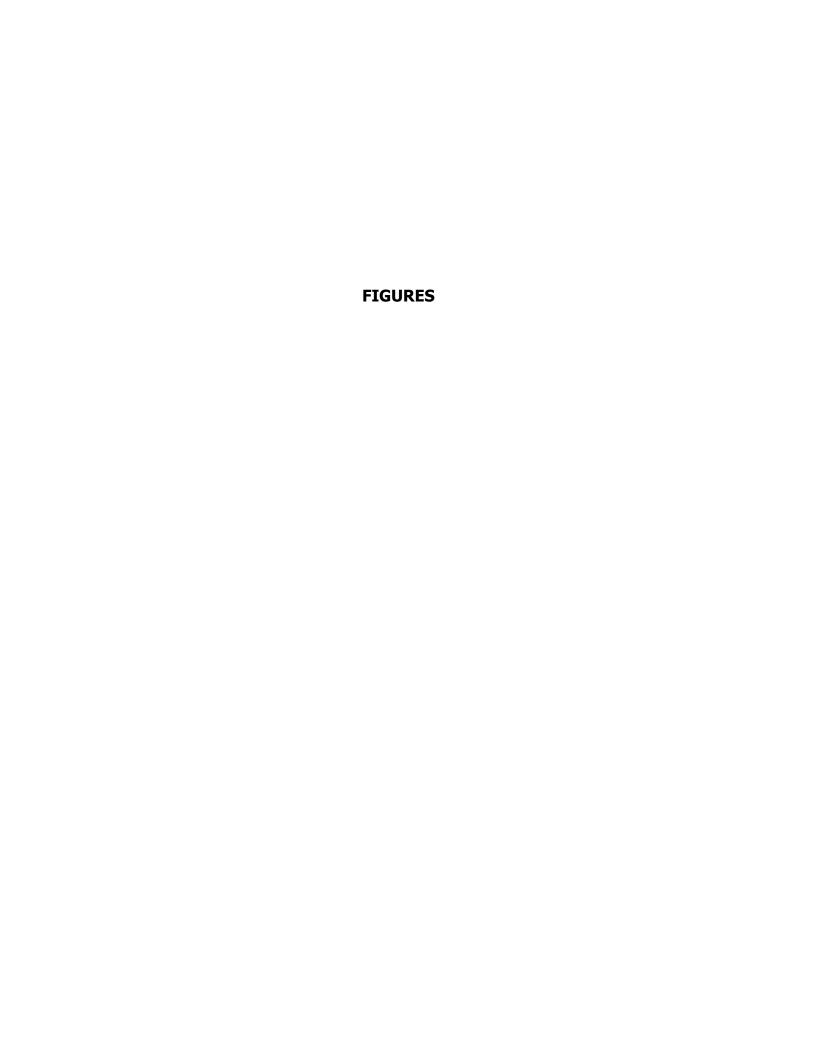
	Glycols									
Sample Parameter/Sample ID	Sampling Date	Influent (SANG-INF-07302024 mg/L)	PBG2 Effluent (SANG-PEBG2-07302024 mg/L)	Effluent (SANG-EFF-07302024 mg/L)						
Diethylene glycol	7/30/2024	<52	<52	<52						
Ethylene glycol		<13	<13	<13						
Propylene glycol		<10	<10	<10						
Triethylene Glycol	1	<54	<54	<54						

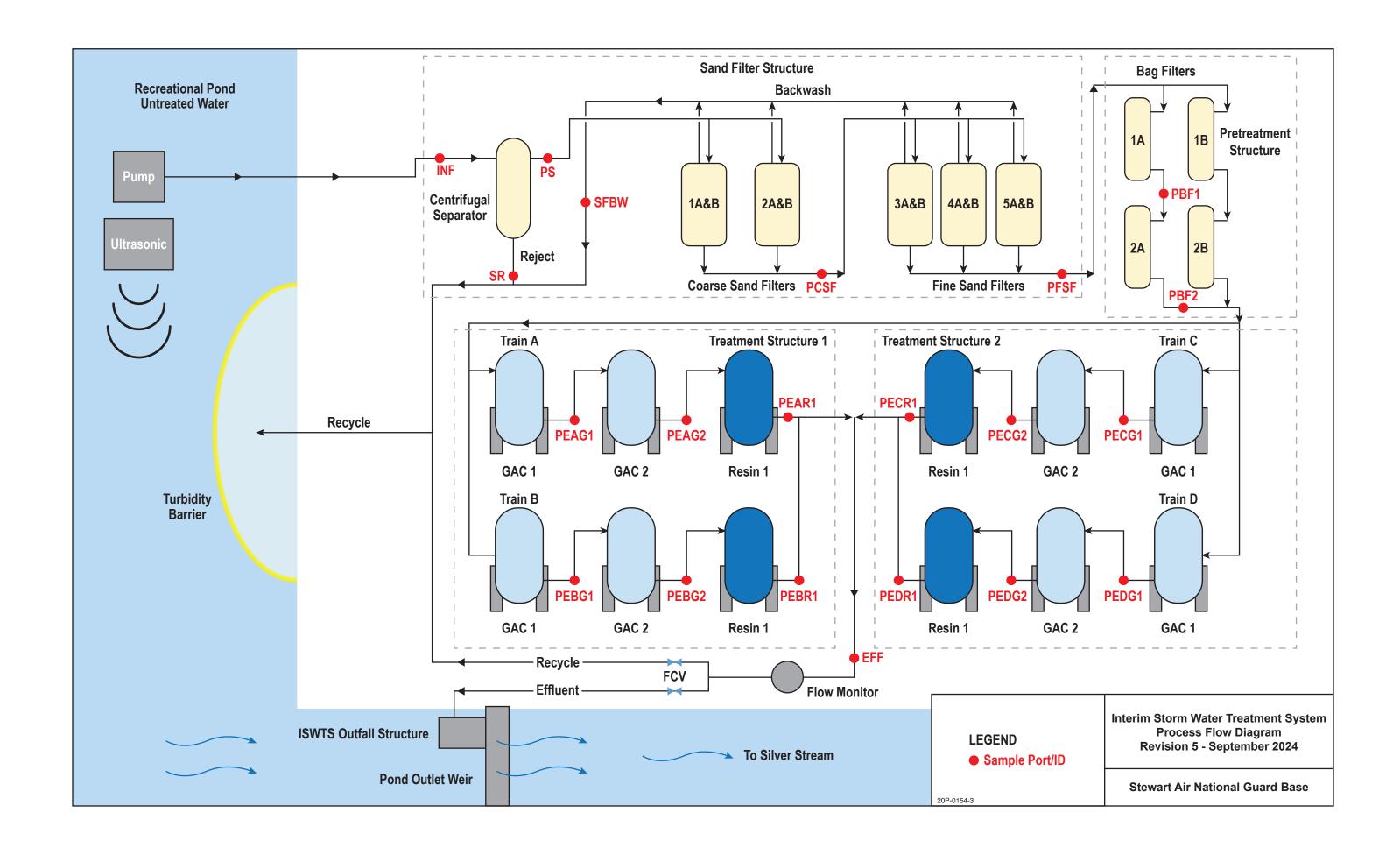
Total Organic Carbon (TOC)							
Sample Parameter	Sampling Date	Influent (mg/L)	PDG2 Effluent (mg/L)	Effluent (mg/L)			
TOC	7/30/2024	4.40	1.60	1.30			

Date	Primary Bag Filter Change and Type of	Secondary Bag Filter Change and Type of Filters Installed	Treatment Process Backwashed	Sand Filter Cleaning or Changeout	Media Change Out	Resin Vessel Skimming
7/1/2024	25 Micron Regular					
7/2/2024		10 Micron Regular				
7/3/2024			Primary Carbon vessels A1, B1, C1, & D1			
7/4/2024	25 Micron Regular	10 Micron Regular				
7/5/2024	25 Micron Pleated					
7/8/2024		10 Micron Regular				
7/9/2024	25 Micron Pleated			Replaced media in Course Sand Filters (1A/1B, 2A/2B) with 5 bags of gravel and 16 bags coarse sand/vessel		
7/10/2024		10 Micron Regular		Replaced media in Fine Sand Filters (3A/3B, 4A/4B, & 5A/5B) with 5 bags of gravel and 16 bags fine sand/vessel		

Date	Primary Bag Filter Change and Type of	Secondary Bag Filter Change and Type of Filters Installed	Treatment Process Backwashed	Sand Filter Cleaning or Changeout	Media Change Out	Resin Vessel Skimming
7/11/2024					Remove GAC/IX media from Treatment Train D. Install ≈2,500 lbs of virgin F-400 carbon in (D1 & D2), fill with water and degas overnight. Train D Resin vessel loaded with anthracite underbedding, followed by ≈63 cubic feet of Purolite PFA694 IX resin.	
7/12/2024	25 Micron Pleated	10 Micron Pleated	Backwash GAC Vessels D1 & D2 and put Treatment Train D in service		Remove GAC/IX media from Treatment Train C. Install ≈2,500 lbs of virgin F-400 carbon in (C1 & C2), fill with water and degas overnight. Train C Resin vessel loaded with anthracite underbedding, followed by ≈63 cubic feet of Purolite PFA694 IX resin.	
7/13/2024		10 Micron Regular	Backwash GAC Vessels C1 & C2 and put Treatment Train C in service			

Date	Primary Bag Filter Change and Type of	Secondary Bag Filter Change and Type of Filters Installed	Treatment Process Backwashed	Sand Filter Cleaning or Changeout	Media Change Out	Resin Vessel Skimming
7/15/2024	25 Micron Pleated	10 Micron Regular			Remove GAC/IX media from Treatment Train A. Install ≈2,500 lbs of virgin F-400 carbon in (A1 & A2), fill with water and degas overnight. Train A Resin vessel loaded with anthracite underbedding, followed by ≈63 cubic feet of Purolite PFA694 IX resin.	
7/16/2024			Backwash GAC Vessels A1 & A2 and put Treatment Train A in service		Remove GAC/IX media from Treatment Train B. Existing Train B Vessels removed from Treatment structure for scheduled replacement.	


Date	Primary Bag Filter Change and Type of	Secondary Bag Filter Change and Type of Filters Installed	Treatment Process Backwashed	Sand Filter Cleaning or Changeout	Media Change Out	Resin Vessel Skimming
7/17/2024		10 Micron Regular			Install new Treatment Vessels in Train B. Install new Itermediate sample port in Train B Resin Vessel. Reconnect all piping to Treatment Train B vessels. Install ≈2,500 Ibs of virgin F-400 carbon in (B1 & B2), fill with water and degas overnight. Train B Resin vessel loaded with anthracite underbedding, followed by ≈63 cubic feet of Purolite PFA694 IX resin.	
7/18/2024	25 Micron Regular		Backwash GAC Vessels B1 & B2 and put Treatment Train B in service with new vessels and media			
7/19/2024		10 Micron Pleated				
7/22/2024	25 Micron Pleated	10 Micron Regular				
7/23/2024			Primary Carbon vessels A1, B1, C1, & D1			
7/24/2024		10 Micron Regular				


Date	Primary Bag Filter Change and Type of	Secondary Bag Filter Change and Type of Filters Installed	Treatment Process Backwashed	Sand Filter Cleaning or Changeout	Media Change Out	Resin Vessel Skimming
7/25/2024	25 Micron Regular	10 Micron Regular				
7/26/2024	25 Micron Pleated	10 Micron Pleated				
7/27/2024	25 Micron Regular	10 Micron Regular				
7/29/2024	25 Micron Regular	10 Micron Regular				
7/30/2024		10 Micron Regular				
7/31/2024		10 Micron Regular	Primary Carbon vessels A1, B1, C1, & D1			
8/1/2024	25 Micron Regular	10 Micron Regular				
8/2/2024	25 Micron Pleated	10 Micron Pleated				
8/6/2024	25 Micron Regular	10 Micron Regular				
8/7/2024			Primary Carbon vessels A1, B1, C1, & D1			
8/8/2024		10 Micron Regular	Secondary Carbon vessels A2, B2, C2, & D2			
8/9/2024	25 Micron Pleated	10 Micron Pleated				
8/14/2024		10 Micron Regular	Primary Carbon vessels A1, B1, C1, & D1			

Date	Primary Bag Filter Change and Type of	Secondary Bag Filter Change and Type of Filters Installed	Treatment Process Backwashed	Sand Filter Cleaning or Changeout	Media Change Out	Resin Vessel Skimming
8/16/2024	25 Micron Pleated	10 Micron Pleated				
8/19/2024		10 Micron Regular				
8/20/2024	25 Micron Regular	10 Micron Regular				
8/21/2024		10 Micron Regular				
8/22/2024		10 Micron Regular	Primary Carbon vessels A1, B1, C1, & D1			
8/23/2024	25 Micron Pleated	10 Micron Pleated				
8/25/2024		10 Micron Pleated				
8/26/2024		10 Micron Pleated				
8/27/2024	25 Micron Pleated					
8/28/2024		10 Micron Regular	Primary Carbon vessels A1, B1, C1, & D1			
8/29/2024		10 Micron Regular replaced in Morning & 10 Micron Regular were replaced again later in morning for second time				

Date	Primary Bag Filter Change and Type of	Secondary Bag Filter Change and Type of Filters Installed	Treatment Process Backwashed	Sand Filter Cleaning or Changeout	Media Change Out	Resin Vessel Skimming
8/30/2024	25 Micron Pleated	10 Micron Pleated				
9/3/2024	25 Micron Pleated	10 Micron Pleated				
9/4/2024		10 Micron Pleated	Primary Carbon vessels A1, B1, C1, & D1			
9/5/2024		10 Micron Regular				
9/6/2024	25 Micron Pleated	10 Micron Pleated				
9/7/2024		10 Micron Regular				
9/8/2024		10 Micron Regular				
9/9/2024		10 Micron Pleated				
9/10/2024	25 Micron Regular	10 Micron Regular				
9/11/2024		10 Micron Regular				
9/12/2024		10 Micron Regular replaced in Morning & 10 Micron Regular were replaced again at noon for second time	Primary Carbon vessels A1, B1, C1, & D1			
9/13/2024	25 Micron Pleated	10 Micron Regular				

Date	Primary Bag Filter Change and Type of	Secondary Bag Filter Change and Type of Filters Installed	Treatment Process Backwashed	Sand Filter Cleaning or Changeout	Media Change Out	Resin Vessel Skimming
9/16/2024	25 Micron Regular	10 Micron Pleated				
9/17/2024		10 Micron Regular				
9/18/2024		10 Micron Pleated	Primary Carbon vessels A1, B1, C1, & D1			
9/19/2024			Secondary Carbon vessels A2, B2, C2, & D2			
9/20/2024	25 Micron Pleated	10 Micron Pleated				
9/23/2024		10 Micron Regular replaced in Morning & 10 Micron Pleated were replaced again in afternoon for second time				
9/24/2024	25 Micron Pleated	10 Micron Pleated				
9/25/2024		10 Micron Pleated	Primary Carbon vessels A1, B1, C1, & D1			
9/26/2024	25 Micron Regular			Coarse Sand Filters 1A/1B		
9/27/2024	25 Micron Pleated	10 Micron Regular				
9/30/2024		10 Micron Pleated				

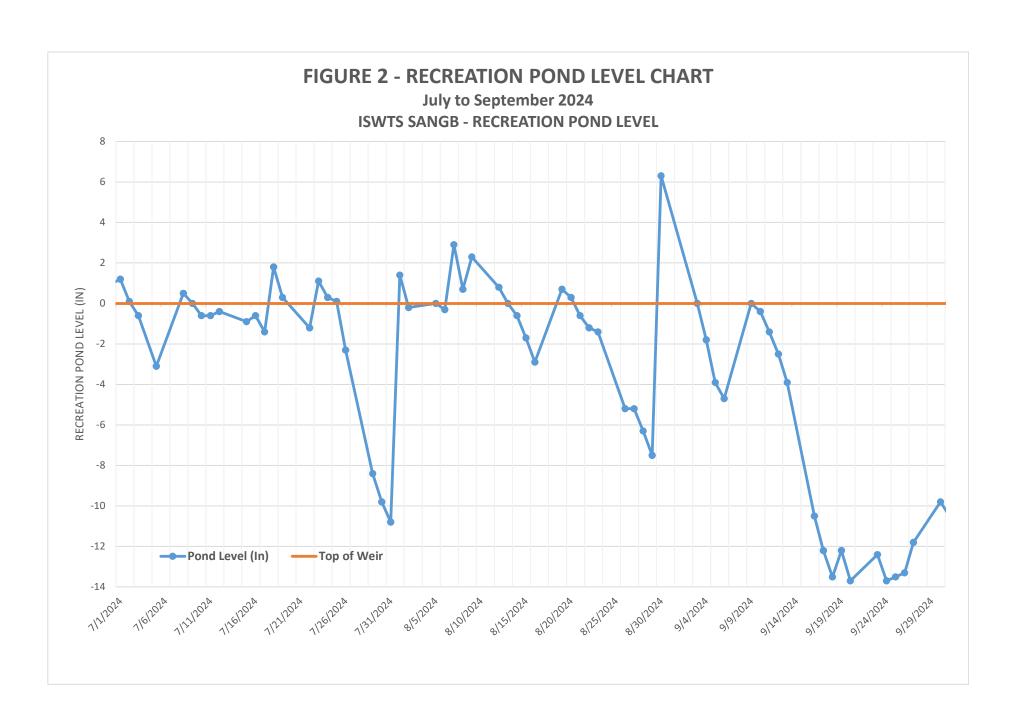
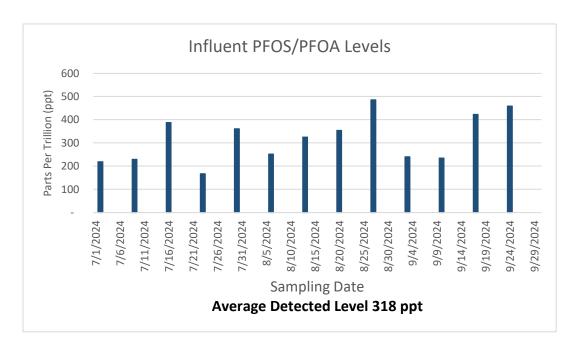
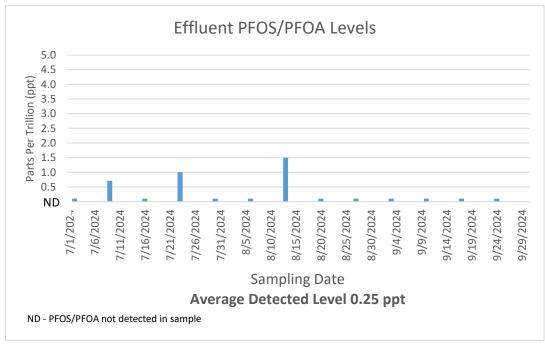
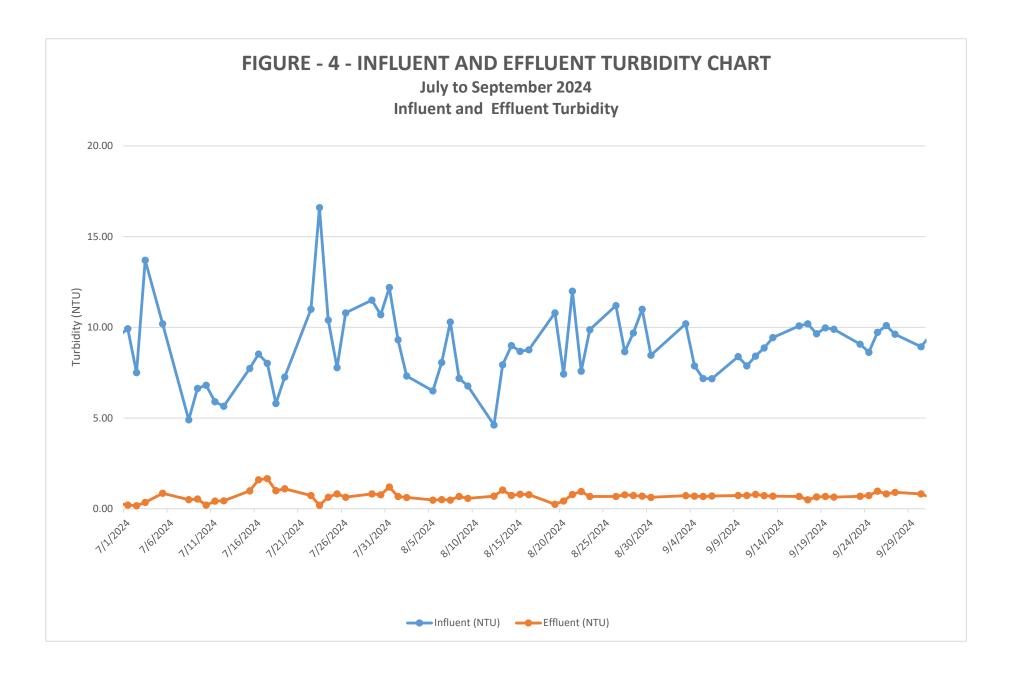





FIGURE 3 - INFLUENT AND EFFLUENT PFOS AND PFOA CHARTS

ATTACHMENT 1

Waste Disposal

November 26, 2024

Re: Stewart ANG July 2024 Media Exchange Event

To whom it may concern,

Attached are the manifests and disposal certificates for the waste generated on the service event which occurred in July of 2024.

Thank you,

Eric Patterson

CERTIFICATE OF DESTRUCTION AND ACTIVATED CARBON REACTIVATION

CAN Number: 6973N

Company: Onion Equipment Company

5705 West 73rd St.

Indianapolis, IN 46278-1741

Issue Date: November 26, 2024

Service Order # 60020584

CCC CAN Number: 6973N / 19-03N-1

Waste Classification: RCRA non-hazardous

Treatment Method: Thermal Reactivation

Calgon Carbon hereby certifies on the above date 20,000 pounds of spent carbon received under the indicated carbon profile application number and customer manifest was reactivated in accordance with the state and federal regulations by thermal processing that removes and destroys the volatile and semi-volatile contaminants adsorbed on the spent carbon.

Calgon Carbon Corporation

Robert Natili

Quality Assurance Supervisor

Calgon Carbon Corporation

200 Neville Road Pittsburgh, PA 15225

Phone 412-771-4050

Larkin Express Logistics, LLC Straight Bill of Lading

07:24 2024 1350

			Juai	ynt L	JIII OI LAUIII	y				
Order No 1180890 Ref NoShipper Onion Equipment Company 5705 W 73rd St P100			_	Order date 07/25/2024 0800 BOL 19-030-2						
				Consignee			B	Bill To		
			BELLEVILLE, MI 48111				P.O. Box 50	P.O. Box 50910		
	INDIAŅAPOLIS, IN 46 LARKIN	(716) 332-6				FIL T FRIDAY 7	//25 8AM	Knoxville, Th	√37950	
Commodi	ty	 16 Bags			iformation	Weight	34000.0	Pieces	22	
			Dis	patch	information					
Delivered	d at BELLEVILLE, MI		——— E.T.A	<u> </u>			Trailer			
Reference	numbers						, i dii di		¢	
"If the shipment ma camer by water, the state whether welg	oves between two ports by a e law requires that the bill of lading tht is "carrier's or shipper's weight"	REMIT C.O.D TO: ADDRESS			C.O.D Amt. \$	C.O.D FE PREPAID COLLECT	E: - 🛮 s	TOTAL CHARGES	: \$	
state specifically in	te is dependent on value, shippers writing the agreed or declared val- lared value of the property is heret er to be not exceeding	ue of the property.	WILL POLITICOU	ize on tile	the conditions, if this shi consignor, the consignor the delivery of this shipm	a eum 218u me to	lowing statement.	Bill to Larkin	n Unless Checked;	
s	per				\$graph Fund			□ col		
route to said destin said property, that of effect on the date hi with all the terms or agreed to by the sh	subject to the classifications and ition of contents of packages under oration in possession of the proper ation. It is mutually agreed as to e- wery service to be performed here ereof, if this is a rail or rail-water a discontillors of the said bill of lad in per and accepted for himself and	ach carrier of all or a sunder shall be subje hipment or (2) in the ng. set forth in the ci i his assigns.	iny of, said prop ect to all the ten applicable mot assification or t	perly over ms and co for carrier i tariff which	all or any portion of said inditions of the Uniform I	rout to destination Domestic Straight	and as to each par Bill of Lading set for	ise to deliver to anor ity at ony time intere th (1) in Uniform Fre	ther carrier on the sted in all or any of eight Classifications in	
misator regulators g 2000nal method for de X Federal Regulations resolution section 11	pt ate to designate Hazardous Externations of mazardous programs to Bansantation of inazardous publishing bezambous publishing bezambous publishing to Bin et A so of in its apartial hazardous muttern 12 200 a rot for the Ferderal Republishing the programs are required in the programs.	us materals. The use o Bading per 172 201 au als. the shipper's cort b	if this column is a Transport Title 25 Jahan Malement	n r Conie s opty. a	The fundar and content of the notabled company interpret of Federal Regulations 172 consists of the following per and Sections 172 202 and 1 cass, UN expendication com-	lation of rentatement Subplat C-Shipsing Sections 172,201 th 72,203: Proper Shar	s as desnicted in 40 ca Popers: Such weter po ozardous Material Tab 200 hanne: hazardous	or damage or may be app United State	lity limitation for loss in this shipment plicable. See 49 tes Code, Sections (A) and (B).	
SHIPPER (RECE	1		not			
PER /				PER	7	$\overline{\mathcal{O}}$				
This is to certify packaged, man	y that the above named materials (ked, and labeled, and are in prope	re properly classifier condition for transf	d. ortation	Camer ac	knowledges receipt of p	ackages and any	required placards. C	arrier certifies emer	gency response infor-	

packaged, marked, and gooled, and are in proper condition for transfortation according to the applicable regulations of the U.S. Department of Transportation, an area equivalent documentation in the vehicle. Property described above is received in good order, except as noted.

	1			Waste Profile Number		Waste Tracking (Manifes	st) Number	
Non-Hazordous Waste Manufest Generator ID Number NYD 981 183 338				F220121WDI-OTS		19-030-2		
ustomer Billing Name and Mailing Onion Equipment Compar 1705 W 73rd Street - India		Generator's Site Address Stewart ANG Base 1 Maquire Way, Newburgh, NY 12550						
usiomer Billing Phone: (317) (694-7576			Generator's Phone:				
ransporter I Company Name						US EPA ID Number		
Transporter 2 Company Nome						US EPA ID Number		
Designated Facility Name and Site Address WAYNE DISPOSAL, INC. SITE #2 LANDFILL 49350 N I-94 SERVICE DRIVE- BELLEVILLE, MI 48111							US EPA ID Number MID 048 090 633	
Fecility's Phone: 412-771-405	50, <u>X4116</u>				_	 -		
Waste Shipple	ng Name and Description		Containers No. Type		- Total Quentity	Unit Wt [†] Vol.	Disposal Method	
F220121WD1 / Spent F	PEAS Filtration Media			1 CYD BAG	32,500	LB	Landfill	
	TAS I MANUAL MISSION		23	-	32,500			
3						 	 	
4				 		 -	+	
Special Handling Instructions and	Additional Information					24 How Emergency R	esponse Phone	
(16) Bags Resin, (6) Bag						317-694-7576		
Delivery Appointment Fri	day 7/26 at 8AM. Conf	# 1285672				Emergency Response	Guide Number	
GENERATOR'S / OFFEROR'S CEI materials are properly classified.	RTIFICATION: I hereby certify the described, packaged, marked a	nt the above des	cribed materials are no	n-hazardous wastes as defined for transportation according to	d by 40 CFR 261 or any ap the applicable regulations	plicable state law. Further, s of the Department of Tran	that the above named apportation.	
Generator's Offeror's Printed / Ty			Signature		Month	Dny	Year	
Eric Patterson (agent for			5.11	THE WARRENESS OF STOCK OF THE S	July	22	2024	
Transporter's Acknowledgement	of Receipt of Materials							
Transported TF(ij) of Typed Name			Signature		Month July	Day 22	Year 2024	
Transporter 2 Printed Typed Name			Signature		Manth	Day	Year	
Discrepancy								
Discrepancy Indication Space	screpancy Indication Space 3 Quantity 3 Type			2 Residue	2 Partial Rejection	☐ Full Rejection		
Alternate Facility (or Generator)				•	_	US EPA ID Number		
Facility's Phone:				<u> </u>				
				, .	Month	Day	Yeer	
Signature of Attendate Facility (o	r Generalor)			,				
Signature of Attenuate Facility (of Designated Facility Owner or O		of materials cove	ned by the manifest ex	tept as noted in Discrepancy s	ection			

닠	This certificate is	to verify the wastes specified on Manifest #	19-030-2						
SA	have been properly disposed of in accordance with all local, state and federal regulation.								
OF DISPOSA	"Dispose	d of" means either: 1) Burial or 2) Processed as spe	cified in 40CFR et sea.						
	FACILITY NAME: (Please check one)	Michigan Disposal Waste Treatment Plant (EPA I.D. # MID000724831)	Wayne Disposal, Inc. (EPA I.D. # MID048090633)						
CERTIFICATE	ADDRESS:	49350 N. I-94 Service Drive Bellville, Michigan 48111							
BRTI	PHONE NUMBER:	1-800-592-5489							
Ü	FAX NUMBER:	1-800-593-5329							
PUBLIC 's Services	Authorized Signature: _	Dry							