CROSS COUNTY SANITATION/KESSMAN LANDFILL OPERATION, MAINTENANCE AND MONITORING

OM&M REPORT

Site No. 3-40-011

Prepared for:

DIVISION OF ENVIRONMENTAL REMEDIATION NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 625 BROADWAY, ALBANY, NY 12233-7012

Prepared by:

Iver Environmental Group, PLLC 44 Roliing Hills Drive Orchard Park, NY 14127

Submitted by:

O'Brien & Gere Engineers, Inc 5000 Brittonfield Parkway, East Syracuse, NY 13057

March 2005

CROSS COUNTY SANITATION/KESSMAN LANDFILL O&M OPERATIONS, MAINTENANCE AND MONITORING OM&M REPORT – TABLE OF CONTENTS

1.	Landfill Background	1
2.	OM&M Data	
3.	Results	2
4.	Site Topographic Map Update	3
5.	Groundwater Modeling	
6.	Sediment Sampling	
7.	Leachate Management	
8.	Leachate Tracer Study	
9.	Maintenance	
10.	Anticipated Activities	5
11.	Recommendations	5

FIGURES

- 1. Site Location Map
- 2. VOCs in Groundwater/Surface Water/Leachate
- 3. Leachate Collection System Profile
- 4A. Sediment Sampling Locations (Topographic Map)
- 4B. Sediment Sampling Locations (GPS Coordinates)
- 5. On-Site Leachate Treatment
- 6. Dye Injection Locations

DRAWING

Site Topographic Map (updated)

TABLES

- 1. Analytical Schedule
- 2. Summary of VOCs in Groundwater/Surface Water/Leachate
- 3. Leachate Analytical Results
- 4. Sediment Sampling results
- 5. GPS Coordinates of Monitoring Wells
- 6. Leachate Pumping/On-site Treatment Field Measurements
- 7. Tracer Study/Leachate Treatment On-site Analytical Results
- 8. Tracer Study Field Measurements/Dye Analysis

ATTACHMENTS

- A. Background Information and Site Photos
- B. Data Forms
 - OM&M Field Reports (8/25/03 to 1/25/05)
 - Form 1 OM&M Field Measurements (2/27/02 1/25/05)
 - Form 2 Groundwater Monitoring Well Purging/Sampling
 - Form 3 Groundwater/Surface Water/Leachate Elevations
 - Form 4 Detected Groundwater/Surface Water/Leachate Analytical Results
 - Form 5 Survey Data for Water Level Measurements
 - Form 6 Checklist for Field Equipment Supplies
 - Form 7 Leachate Pumping/Off-site Disposal
- C. Previous Analytical Results
 - C-1 Groundwater/Surface Water
 - C-2 Sediment
- D. Groundwater Contour Plots
- E. Survey Report (August 2002)
- F. Groundwater Modeling Results
- G. Sediment Sampling Report
- H. Tracer Study Report (Syracuse University)

CROSS COUNTY SANITATION/KESSMAN LANDFILL O&M OPERATIONS, MAINTENANCE AND MONITORING OM&M REPORT

O'Brien & Gere Engineers, Inc. (O'Brien & Gere), with Iyer Environmental Group, PLLC (IEG) as a subconsultant, initiated routine operation, maintenance and monitoring(OM&M) of the Cross County Sanitation (a.k.a. Kessman) Landfill located on Cornwall Hill Road in the Town of Patterson in Putnam County, New York (see Figure 1) in February 2002 under a Standby Contract Work Assignment. An initial site visit was made to assess site conditions. This was followed by monthly inspections and field measurements, and sampling and analysis of site groundwater, surface water and leachate seeps. The field work also included a site topographic survey, sediment sampling program, and leachate management with off-site disposal as well as on-site treatment. A tracer study of landfill leachate was also performed to locate seeps, and a groundwater modeling effort was completed to assess groundwater flow through the landfill.

This report presents the field and laboratory data collected from the OM&M work completed to date by OBG/IEG, and also incorporates information from previous monitoring events performed by the New York State Department of Environmental Conservation (Department).

1. LANDFILL BACKGROUND

The 10-acre Kessman Landfill had accepted solid and industrial wastes of unknown types and quantities. This landfill was capped in 1995 following the removal of approximately sixty industrial waste drums and contaminated soils, and restoration of the affected wetlands. The town landfill is located to the west of the Kessman Landfill. The Kessman Landfill is now fenced and has a locked gate at the site entrance to restrict vehicles.

Landfill features are shown on an updated as-built drawing. The passive vents are clearly marked and the landfill has moderate methane generation. During previous NYSDEC monitoring, no H_2S was detected, and oxygen was around 8 ppm in the landfill gas. The leachate collection system needed proper evaluation, including contaminant migration off-site. The leachate collection tank is 12 feet deep and 6 feet in diameter with water at a depth of approximately 6 feet. The laterals have overflow provisions every 100 feet. The site required active leachate pumping due to seepage from the landfill to the adjacent wetland. The swamp was sampled previously by the Department and showed low level PCB contamination. Site photos and additional background information are included in Attachment A.

2. <u>OM&M DATA</u>

Activities during this reporting period included monthly field inspections, well repair, topographic survey update, and sampling and analysis of groundwater, surface water, sediment and leachate at the landfill. To date, OBG/IEG has completed seven rounds of groundwater monitoring, and one separate round of surface water/leachate sampling. In addition, the landfill leachate in the collection sump was sampled during the course of the leachate pumping and analyzed for site specific parameters. A staff gauge was installed in the wetland near MW-20 series wells to monitor the surface water level. The staff gauge was not under water during the second half of this OM&M period due to high water levels in the wetland. The railroad was contacted in 2003/2004 to remove the beaver dam under the railroad bridge northeast of the landfill.

Field data from this reporting period are included as standard forms in Attachment B. Daily field

measurements are transcribed into Form 1s for each inspection and/or monitoring event. Field activities are also summarized as part of the Form 1s. Form 2 tabulates groundwater purging/sampling data, while groundwater elevation data are included in Form 3 along with data from a historical set for comparison. Detected analytical results are tabulated in Form 4s for the seven groundwater and surface water sampling events, and one surface water only sampling event completed by OBG/IEG this year. Previous analytical data from groundwater, surface water and sediment sampling performed by the Department are included in Attachment C. Groundwater contour plots prepared using SURFER software are presented in Attachment D.

In July/August 2002, well MW-3A was repaired to remove a kink in the well by sawing the riser and shortening it. The site was resurveyed in August 2002 to update the topographic map and well details. The revised and updated survey information for the wells is included in Form 5, and the Surveyor's report is included as Attachment E. A checklist of field equipment and supplies used for every OM&M event is provided in Form 6.

Table 1 lists the scheduled analytical parameters for groundwater, surface water and leachate monitoring. Total volatile organic compounds (VOCs) concentrations in the groundwater and surface water/leachate seeps around the site are summarized in Table 2 for the last five years. The trends in the VOC data for selected wells and surface water/leachate seep locations with elevated concentrations are also graphically illustrated on Figures 2A, 2B, and 2C.

3. <u>RESULTS</u>

Water Levels

The two upgradient wells (MW-1A and MW-1B) by the resident house on Cornwall Road show the most variation in groundwater levels, changing by as much as 12.4 feet in MW-1A and 9.9 feet in MW-1B. The groundwater levels in the other wells, which are located along the downgradient side of the landfill, vary between 0.6 and 8.5 feet, paralleling the change in the wetland surface water levels. The wetland water level was high for most of 2003 and early 2004 as a result of busy beavers damming up the drainage under the railroad track to the northeast of the landfill. For the later part of 2004, the wetland water had submerged the staff gauge until the railroad company removed the beaver damn under the bridge.

Groundwater flow appears to be from the west (landfill entrance) to the east, towards the wetland. Groundwater contour plots using SURFER (see Attachment D) show a relatively steady gradient of around 0.03 ft/ft across the landfill in both the shallow and deep aquifers. Well couplets MW-3A/B (southeast boundary) and MW-5A/B (northeast boundary) have nearly the same shallow and deep groundwater elevations. The area around MW-20A/B and the leachate sump show higher localized gradients due to a combination of leachate pumping and changes in the wetland water level.

The water levels around the leachate tank are profiled in Figure 3. The water level within the leachate sump appears to be mostly influenced by the fluctuations in the wetland water level. Without the effect of the wetland, leachate collection in the sump could be relatively small. The presence of leachate seeps is confirmed by the results of the tracer study (see section 8 and Attachment H). The leachate collection rate was evaluated using the water level data and available information about site geology (see Section 5 and Attachment F).

Contaminant Concentrations

Groundwater: Wells MW-1A, MW-1B, MW-3A and MW-3B (see Figure 2A) have shown trace levels of contaminants that are common to laboratories and are not indicative of the presence of any

site related contaminants. In the last four rounds of monitoring from December 2002 to May 2004, a variety of chlorinated and petroleum-based volatile organics compounds (see Form 4As in Attachment B) were detected at trace levels (less than 5 ppb) in the other four wells (MW-5A/B and MW-20A/B). Except for an unusual spike in wells MW-5A and 5B in September 2002, total VOCs have been within the same order of magnitude (less than 18 ppb) in these four wells (MW-5A/B and MW-20A/B) as in previous events. The VOC spikes in MW-A/B is the result of a one time detection of 2-butanone, possibly attributable to laboratory contamination.

In the last few rounds of sampling, only iron, manganese, magnesium, sodium and zinc show exceedances of the groundwater standards in one or more wells. No semivolatile organic compounds (SVOCs) or PCBs were detected in the monitoring wells.

Surface Water: Surface water has been sampled at four locations (see as-built drawing) during the course of this OM&M work assignment. The surface water at the south railroad bridge has been relatively free of VOCs, with only negligible detections (total less than 7 ppb). The wetland water at SW-2 (between MW-5A/B and MW-20A/B) had the highest levels of VOCs, with two consecutive spikes of 1200 and 120 ppm of 1,2-dichloroethene in March and November, 2003 respectively. The levels were back to normal (10 ppb total VOC) in May 2004, with no detection of 1,2-dichloroethene. The 1,2-dichloroethene spike can be attributed to a possible leachate seep in the vicinity of SW-2 as confirmed by the tracer study. Only two SVOCs (naphthalene and caprolactum) were detected at trace levels (less than 2 ppb) in surface water samples.

Leachate: Leachate samples from the collection sump near the MW-20 series wells have shown total VOCs ranging from 12 to 30 ppb, with the same trace to low levels of chlorinated and petroleum VOCs seen in wells MW-5A/B and MW-20A/B. The highest level observed in November 2003 can be attributed to the extensive pumping of leachate (see Form 7 in Attachment B). Based on the level of the VOCs and other contaminants detected in the leachate sump, the leachate was initially disposed in a POTW, and subsequently treated on-site and discharged into the wetland as a pilot study.

4. <u>SITE TOPOGRAPHIC MAP UPDATE</u>

The site was resurveyed in August 2002 to update the as-built drawing (included after the figures) and reestablish monitoring well details. The survey report is included in Attachment E.

5. GROUNDWATER MODELING

A groundwater modeling exercise was completed to assess and estimate ground flow through the site. The results are presented in Attachment F. The model calculations were initially performed with hydrogeological information from the adjacent Town of Patterson landfill, and subsequently updated after copies of previous reports (e.g. RI/FS) were made available by a local citizen. Groundwater extraction rate was estimated by the modeling exercise to be in the range of 1 to 17 gpm. Actual rates will be influenced by wetland water levels and the presence of leachate seeps.

6. SEDIMENT SAMPLING

The wetland sediment was sampled in September/October 2003 for PCB analysis. During the sediment sampling, sample locations were identified with a field GPS unit. Table 4 includes a listing of the samples with the GPS coordinates and PCB results. The site monitoring wells were also identified with the GPS unit and the readings are tabulated on Table 5. A detailed description of the

procedures is provided in Attachment G. Sample locations are shown on the site topographic map in Figure 4A, as well as on Figure 4B using the GPS coordinates.

Trace to low levels of PCBs (less than 2.3 ppm) were found in thirteen of the thirty three locations sampled in the wetlands with only Aroclor 1242 being detected. One location (No. 7 on Figure 4A) had 50 and 57 ppm PCBs at the two depths sampled. This location is near the leachate sump, and is within the area identified as a possible leachate seep during the tracer study. Another location (No. 18) in the same area had 10 ppb PCB. The PCB levels observed in this wetland sediment appears to be residual from past remediation activities and there is no evidence of off-site migration of the PCBs.

At the request of the local Friends of the Frogs (FROGS) organization, sediment samples were collected from an area downstream from the landfill and no PCBs were found. The sampling area is shown on a map included in Attachment G.

7. LEACHATE MANAGEMENT

A leachate management program was initiated in October 2003 with the pumping and off-site disposal of leachate from the landfill. Over a four month period, 127,500 gallons of landfill leachate was removed from the site and hauled to the Town of Kingston Wastewater Treatment plant. Field measurements including daily leachate pumping and water levels in the sump are included on Form 7 in Attachment B.

Subsequently, an on-site leachate treatment program was initiated in May 2004 as a pilot test along with a tracer study of the landfill leachate. The treatment system (see Figure 5) consisted of a submersible pump, a bag filter and two activated carbon drums in parallel. The treated leachate was discharged on site into the adjacent wetland. The treatment system influent and effluent were sampled during each event and analyzed for VOCs and metals. A total of 219,470 gallons of leachate (for a grand total of 346,970 gallons including the off-site disposal) was pumped out of the landfill using the on-site treatment system. Field measurements are shown in Tables 6 and 7, while analytical results are presented in Table 8.

8. LEACHATE TRACER STUDY

A leachate tracer study was completed with assistance from Prof. Donald Siegel of Syracuse University to identify possible locations where landfill leachate might seep into the wetland and vice versa. Five locations (3 in the wetland along the landfill shoreline and two monitoring wells) as shown on Figure 6 and appropriate dyes were selected for the study. A tracer study report prepared by Prof. Siegel is included in Attachment H. The tracer study indicated a possible connection between the landfill and the wetland at two locations, both along the north shoreline - points 2 (near SW-2) and 4 (near leachate sump; see Figure 6). Field observations during the December 2004 OM&M showed warm water in an otherwise frozen landfill at these two locations, confirming the leachate seep.

9. MAINTENANCE

This site did not require extensive maintenance. The cap and gas vents are in good condition. Locks were replaced in some wells, and well MW-3A was repaired.

10. ANTICIPATED ACTIVITIES

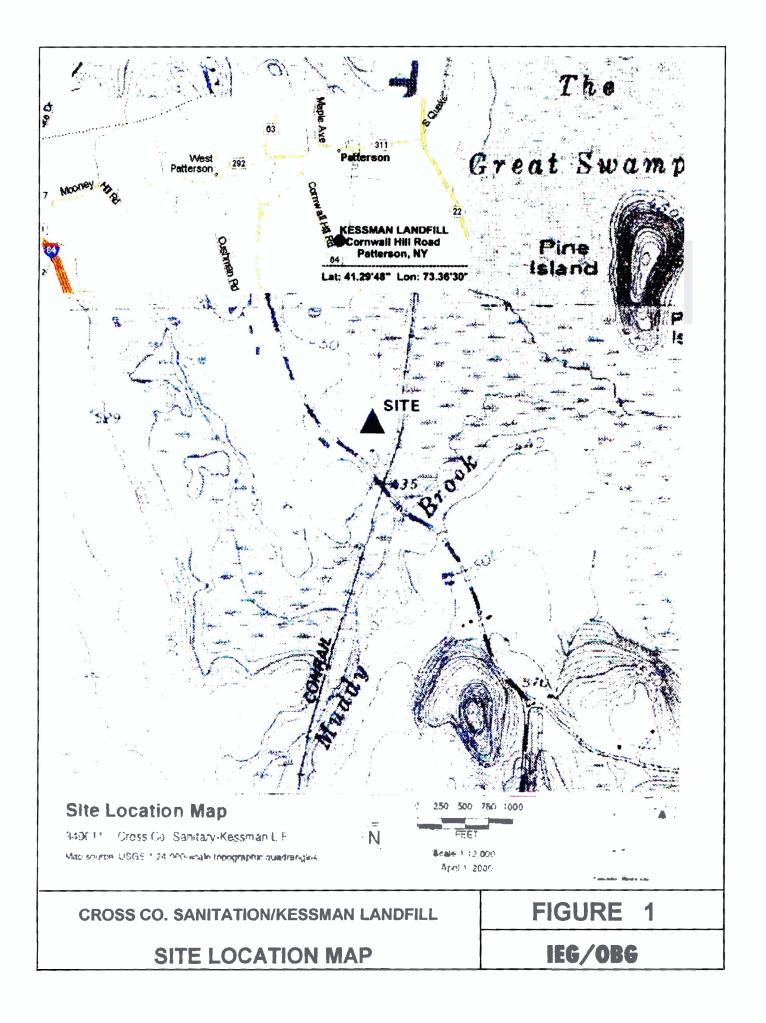
Activities in the near future for the Kessman Landfill will include the following:

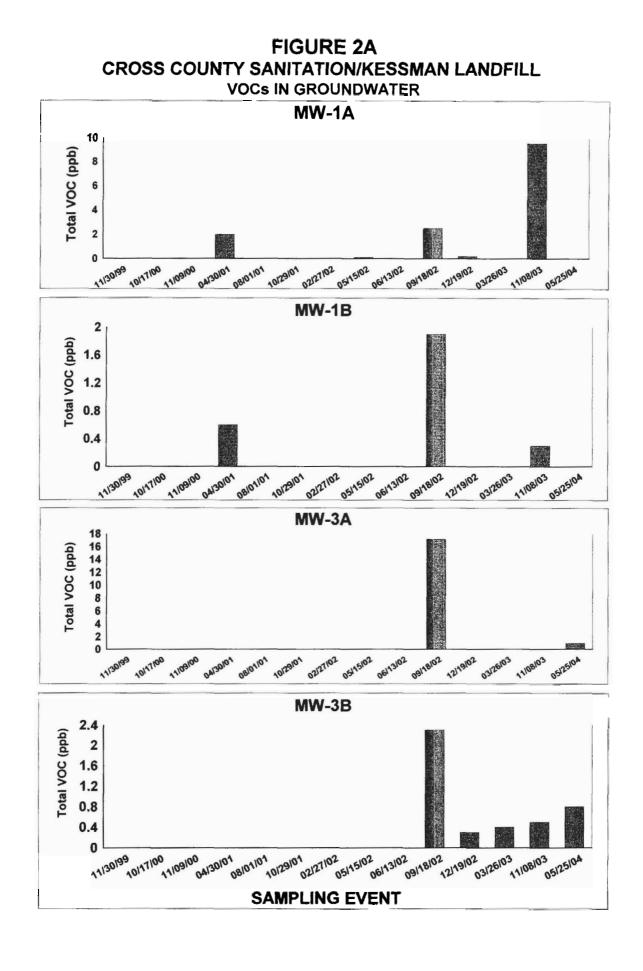
- Routine inspections
- Environmental sampling as and when requested by the Department
- Continuation of leachate management
- OM&M Manual

11. RECOMMENDATIONS

MONITORING/INSPECTION: Quarterly monitoring over the last three years has shown individual VOCs at low ppb levels in groundwater at the wells. VOC contamination still persists in wetland water, particularly at one location near MW-20A/B. However, there is no evidence of off-site contaminant migration. Therefore it is recommended that only surface water quality be monitored for a year. The need for and frequency of future groundwater sampling should be re-evaluated over the next year.

Site inspection should continue but at a reduced frequency. Instead of monthly inspections, the landfill can be inspected once every two months. During these inspections, surface water should be sampled in the wetland next to the landfill and analyzed for VOCs. The VOC results can be compared with historical data from the last few years to determine the need for further action.


FISH SAMPLING: Sediment sampling in October 2003 showed trace to low level PCBs in the wetland sediments except for two locations (50 ppm) where the tracer study indicated the possible presence of leachate seeps from the landfill. The wetland sediments were remediated as part of the landfill capping in 1995, and at the levels detected, the PCBs should not have any impact. However, to alleviate any concerns, the fish in the wetland water should be sampled for PCBs.


LEACHATE PUMPING: Contaminant levels have been relatively low in landfill leachate. The frequency and rate of Leachate pumping should be established after monitoring of the surface water quality and wetland water levels over the next year.

CROSS COUNTY SANITATION/KESSMAN LANDFILL O&M OPERATION, MAINTENANCE AND MONITORING

OM&M REPORT

FIGURES

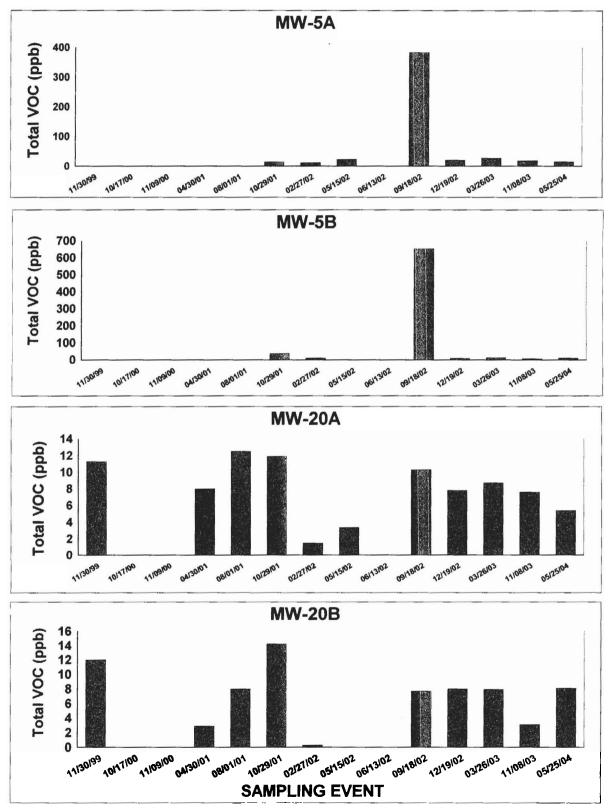
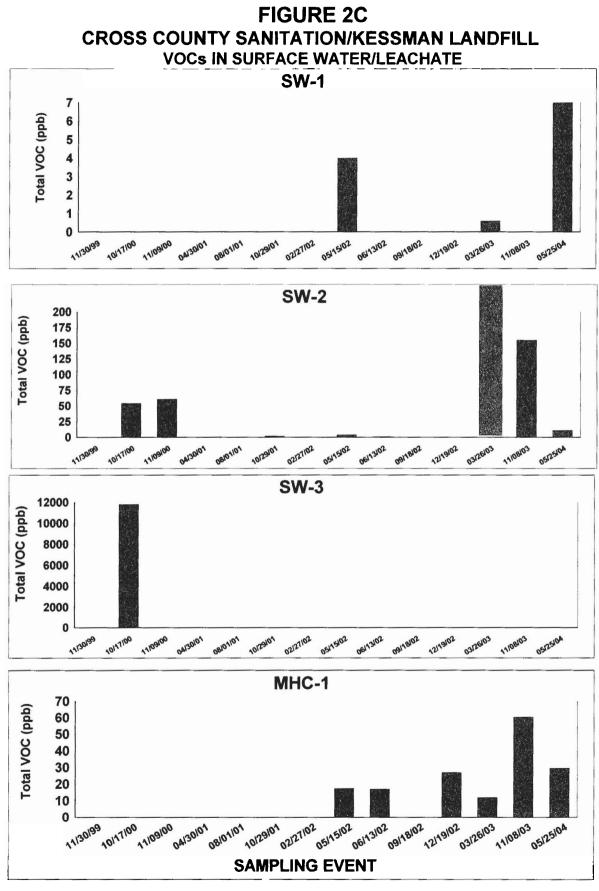
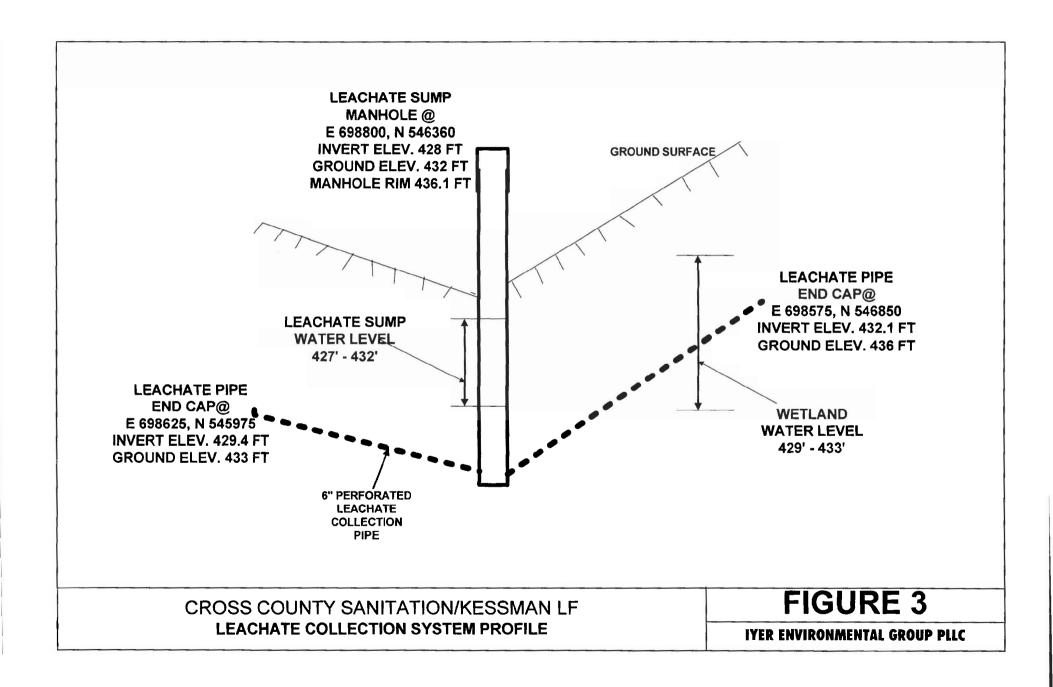
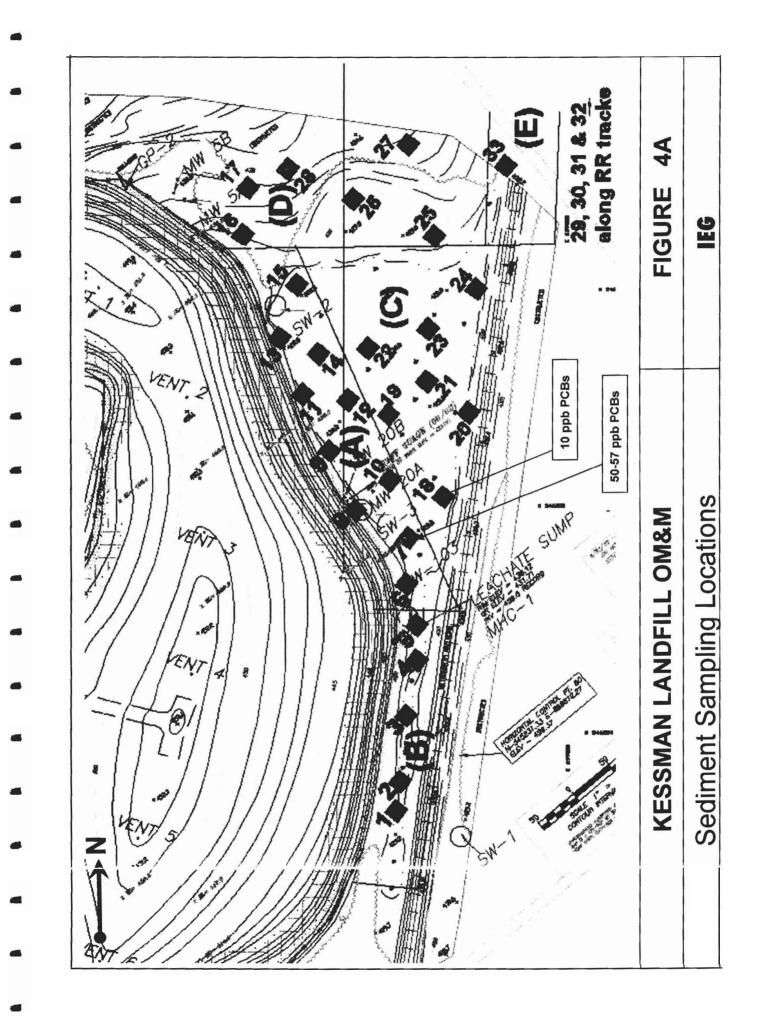
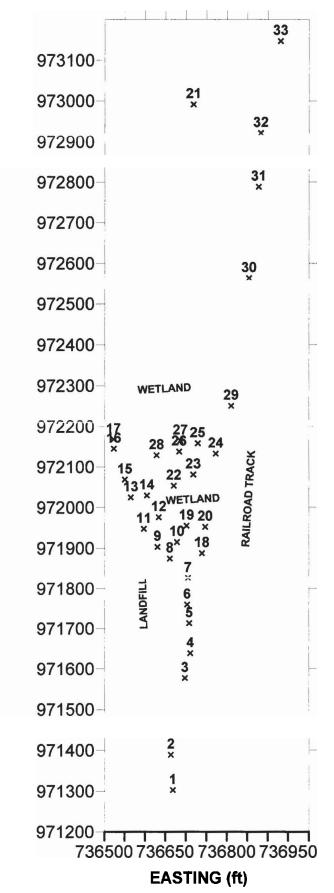





FIGURE 2B CROSS COUNTY SANITATION/KESSMAN LANDFILL VOCs IN GROUNDWATER


-

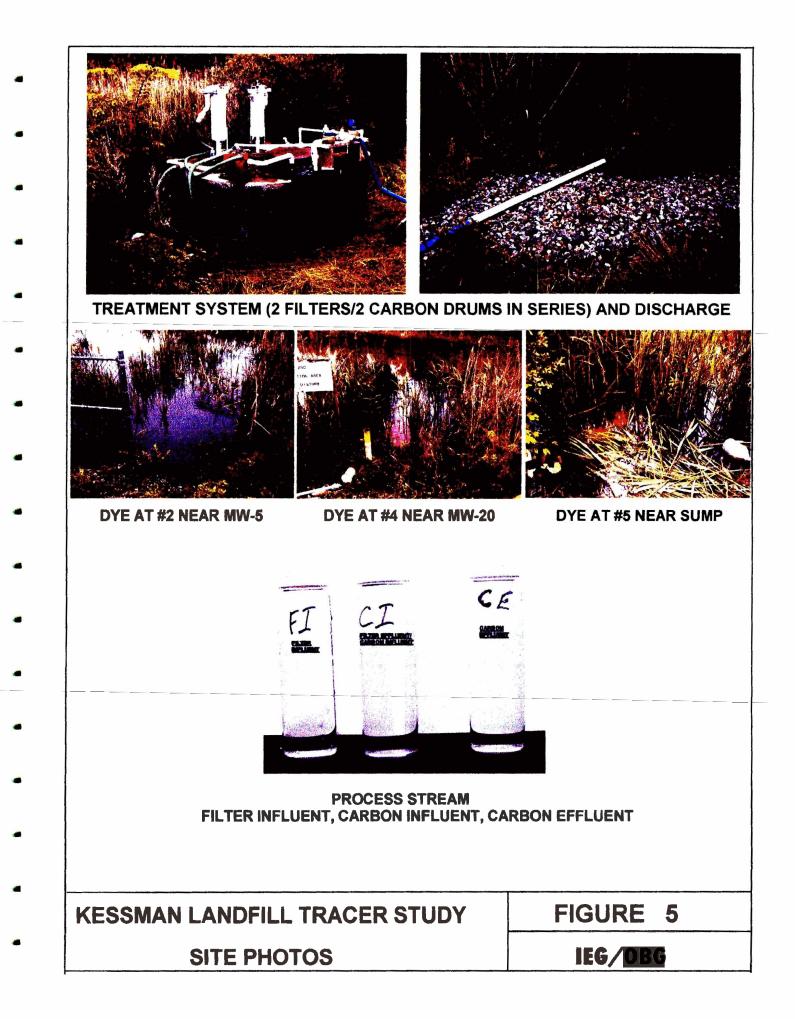
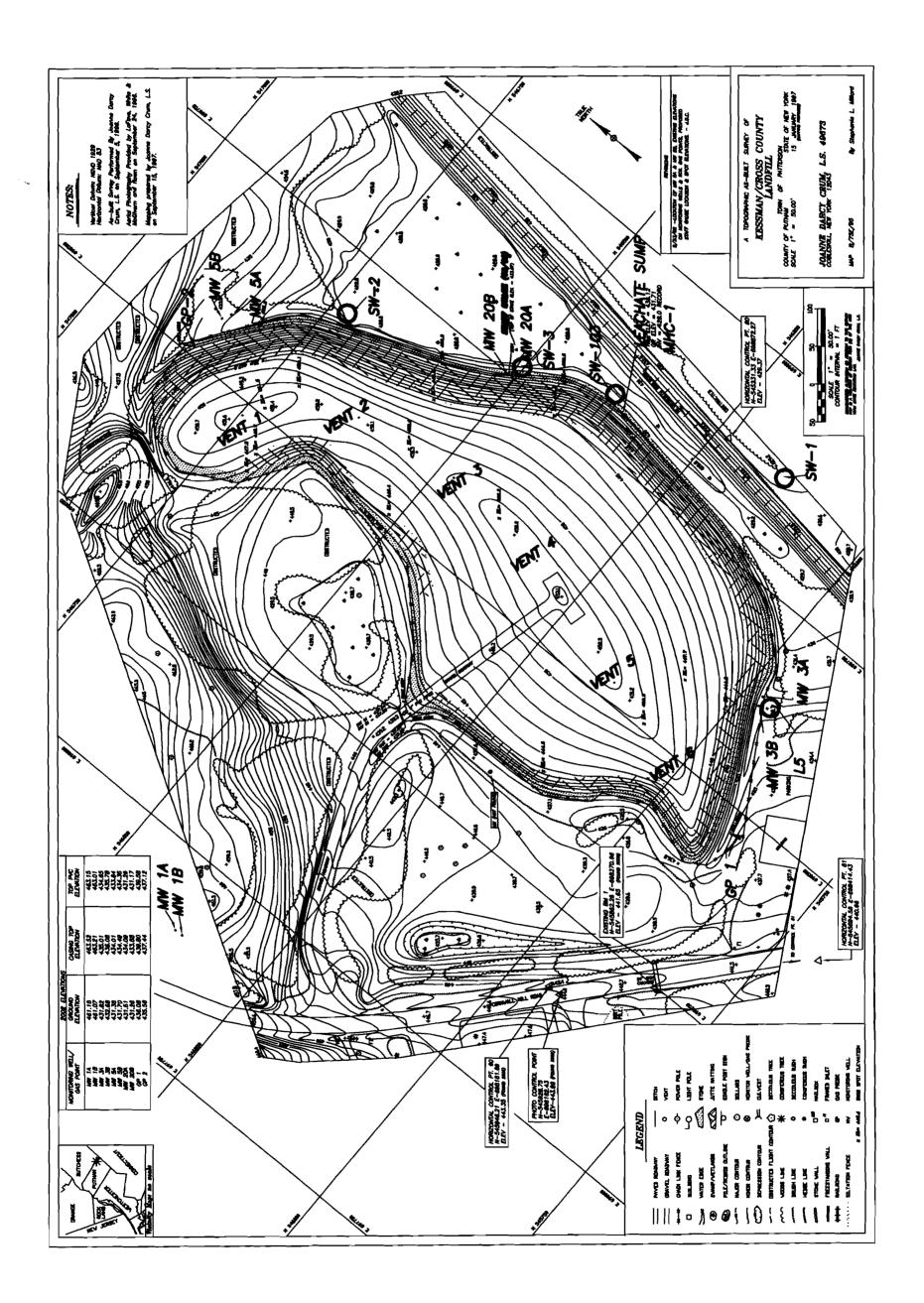


FIGURE 4B KESSMAN LANDFILL OM&M SEDIMENT SAMPLING LOCATIONS

NORTHING (ft)


20			an a	
		MW-2014		
	Ø.	a an		
		5, LS		

ID	DESCRIPTION	DYE	Iron Staining
1	MW-5B	200 g sulforhodamine G extra	
2	Wetland near MW-5B	2.5 kg Na-Naphtionate	
3	MW-20A	200 g eosine	
4	Wetland next to MW-20A	200 g sulforhodamine B	
5	Wetland near leachate sump	1 kg lissamine FF	
LS	Leachate sump	N/A	
RN	North culvert under railroad	N/A	
RS	South culvert under railroad	N/A	
SW	Surface water monitoring locations	N/A	
D	Treated leachate discharge	N/A	

KESSMAN LANDFILL TRACER STUDY DYE INJECTION LOCATIONS

FIGURE 6

IEG/OBG

TABLE 1 CROSS COUNTY SANITATION/KESSMAN LANDFILL OM&M ANALYTICAL SCHEDULE

PARAMETERS	Sample	ANALYTICAL METHOD
TCL Volatile organics	Groundwater Surface Water Leachate	524.2 (low level) ASP 2000
TCL Semivolatiles	Leachate	ASP 2000
TCL PCBs (low detection limit)	Groundwater Surface water	ASP 2000
TCL Pesticides/PCBs	Leachate	ASP 2000
TAL Metals	Groundwater Surface water Leachate	ASP 2000 (ICP 200.7 CLP-M)
Mercury	Groundwater Surface water Leachate	ASP 2000 (ICP 245.1 CLP-M)
Chlorides	Groundwater	325.2
Total Suspended Solids (TSS)	Groundwater Surface water Leachate	160.2
Total Organic Carbon (TOC)	Groundwater Surface water Leachate	415.1
Biological Oxygen Demand (BOD)	Surface water Leachate	405.1
Chemical Oxygen Demand (COD)	Surface water Leachate	410.4

SUMMARY OF VOCS IN GROUNDWATER/SURFACE WATER/LEACHATE CROSS COUNTY SANITATION/KESSMAN LANDFILL OM&M **TABLE 2**

		-			-	-	SAMPLE	SAMPLE LOCATION				-	-	
DATE	MW-1A	MW-1B	MW-3A	MW-3B	MW-5A	MW-6B	MW-20A	MW-20B	SW-1	SW-2	SW-3	SW-103	r-5	MHC-1
11/30/99	SU	۶	SU	0.0	su	รม	11.3	12.0	รม	SU	SU	su	su	SU
10/17/00	0.0	0.0	SL	0.0	SL	SU	Ъđ	'n	SL	54.4	11815	0.0	40.0	SU
11/09/00	su	su	SU	61.0	su	su	su	SU						
04/30/01	2.0	0.6	0.0	0.0	su	su	8.0	2.9	å	0.0	0.0	0.0	SI	SU
08/01/01	0.0	0.0	0.0	0.0	su	su	12.5	8.0	0.0	0.0	0.0	0.0	SL	SU
10/29/01	0.0	0.0	0.0	0.0	14.2	37.3	11.9	14.2	0.0	2.0	0.0	0.0	SU	SU
02/27/02	0.0	0.0	0.0	0.0	11.6	11.4	1.5	0.3	SU	0.0	0.0	4.0	0.0	SU
05/15/02	0.1	0.0	0.0	0.0	23.0	0.0	3.4	0.0	4.0	4.0	4.0	10.0	SU	17.4
06/13/02	su	SU	SU	SU	SN	SU	SU	SU	0.0	1.0	14.0	0.0	SU	17.0
09/18/02	2.5	1.9	17.2	2.3	382.3	653.3	10.3	7.7	0.0	0.0	0.0	0.0	su	0.0
12/19/02	0.2	0.0	0.0	0.3	20.6	9.8	7.8	8.0	SU	มร	SU	su	SU	27.0
03/26/03	0.0	0.0	0.0	0.4	26.7	14.2	8.7	7.9	0.6	1559.8	3.3	2.7	SU	12.0
11/08/03	9.5	0.3	0.0	0.5	18.0	7.5	7.6	3.1	0.0	154.9	8.5	1.0	SU	60.4
05/25/04	0.0	0.0	1.0	0.8	14.7	11.7	5.4	8.1	7.0	11.0	10.0	8.0	SU	29.5

NOTE: 1. Surface water samples previously labeled as follows: SW-2 as SW-10, SW-3 as SW-12, and SW-103 as SW-13 2. Only detected values are reported; ns = not sampled 3. MW-5A and MW-5B includes Butanone at 360 and 640 ppb respectively; Total VOCs excluding butanone are 22.3 and 13.3 respectively.

TABLE 3A CROSS COUNTY SANITATION/KESSMAN LANDFILL OM&M LEACHATE ANALYTICAL RESULTS - ORGANICS

PARAMETER	UNITS	GROUND WATER	SURFACE WATER	05/16/02	06/14/02	SAMI 09/19/02	PLE DATE 12/19/02		11/06/03	12/02/0
		STANDARD	STANDARD							
Vinyl Chloride	ppb	2		ND	ND	ND	ND	ND	3 J	2.4
Methylene chloride	ppb			1J	ND	ND	1J	ND	ND	ND
Acetone	ppb			4J	ND	3J	4J	ND	ND	ND
Chloroethane	ррь	5		ND	ND	ND	ND	ND	1 J	1.4
trans 1,2-Dichloroethene (DCE)	ppb	5	5	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ppb	5	5	ND	ND	ND	ND	ND	ND	ND
cis 1,2-Dichloroethene (DCE)	ppb	5	5	ND	ND	ND	ND	ND	9 J	11
1,2-Dichloroethane	ppb	0.6	0.6	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	ppb			ND	ND	ND	ND	ND	0.6 J	ND
Methylcyclohexane	ppb			ND	ND	ND	ND	ND	1 J	ND
Benzene	ppb	1	1	2J	2J	4J	3J	3J	6 J	5
1,2-Dichloropropane	ppb			ND	ND	ND	ND	ND	ND	ND
Toluene	ppb	5	5	ND	ND	ND	ND	2J	2 J	2.5
Ethylbenzene	ppb			ND	ND	ND	ND	1J	0.6 J	0.54
Chlorobenzene	ppb	5	5	5J	9J	8J	9J	10J	10	10
Xylene	ррь			ND	2J	2J	2J	1J	10 J	8.1
2-Hexanone	ppb			ND	ND	ND	ND	ND	ND	ND
sopropylbenzene	ppb	5		0.7J	1J	1J	1J	1J	2 J	1.90
n-propylbenzene	ppb			ND	ND	ND	ND	ND	ND	0.74
1,3-Dichlorobenzene	ppb	_		ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	ppb	3	3	0.7J	2J	1J	2J	2J	1 J	1.700
1,2-Dichlorobenzene	ppb			ND	ND	ND	ND	ND	ND	ND
11,2,4-trimethylbenzene	ppb			ND	ND	ND	ND	ND	ND	2.800
1,1,1-Trichloroethane (TCA)	ppb			ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	ppb			ND	ND	ND	ND	ND	ND	ND
Mrthylcyclohexane	ppb		·	ND	ND	2J	ND	ND	ND	ND
							<u> </u>	<u> </u>		
bis(2-Ethylhexyl)phthalate	ppb			1J	1J	ND	ND	ND	ND	<u> </u>
Napthalene	ppb			2J	ND	5J	4J	ND	3 J	3.5
Caprolactum	ppb			2J	ND	2J	1J	ND	2 J	
Cyclohexane	ppb			ND	ND	ND	ND	ND	ND	
Methylcyclohexane	ppb			ND	ND	ND	ND	ND	ND	
Methyl tert-butyl ether	ppb			ND	ND	ND	ND	ND	ND	
PCBs/ PESTICIDES						<u> </u>				
Arochlor -1242	ppb			ND	ND	ND	ND	0.76J	ND	
Arochlor -1232	ppb		_	ND	ND	ND	ND	ND	14	
Alpha - BHC	ppb			0.0044J	ND	ND	0.0041J	0.0054J	0.016 BJ	
beta-BHC	ppb			ND	ND	0.022J	ND	0.0055J	0.022 BJ	
gamma - BHC	ppb	-		ND	ND	0.020J	0.0015J	0.0038J	0.095	
\$,4' - DDD	ppb			ND	ND	0.033J	0.0038J	ND	0.0047J	
4,4' - DDT	ppb			ND	ND	0.0032J	ND	ND	ND	
Heptachlor	ppb			ND	ND	0.017J	ND	ND	ND	
Heptachlor Expoxide	ppb			ND	ND	0.027J	0.0049J		0.006 J	
Endrin aldehyde	ppb			0.0068J	ND	0.0273	ND	0.012J	0.018 BJ	
gamma-Chlordane	ppb			ND	ND	ND	ND	ND	ND	

NOTES: 1. Only detected values are reported 2. NS = Not Sampled; ND = non-detect; Inst.Er. = Instrument Error

TABLE 3B **KESSMAN LANDFILL OM&M** LEACHATE ANALYSIS - METALS/INDICATORS

	UNITS	GROUND	SURFACE			SAM	PLE DATES			
PARAMETER (in ppb)		WATER STANDARD	WATER STANDARD	03/27/02	05/16/02	06/14/02	09/19/02	12/19/02	03/27/03	11/06/03
pH (field; s.u.)	s.u.									
Temperature (field)	<u>^</u>			ł						
Specific Conductivity	umhos			<u> </u>						
TSS	ppm			84	52	69	110	NS	84	98
тос	ppm			<2.0	2	<5	NS	<5.0	2	6.1
BOD	ppm			32	27	28	16	NS	32	25
COD	ppm			27	<10	40	50	33	27	29
Chlorides	ppm			NA	NA	NA	NA	NA	770	NA
Aluminum	ppb		100	ND	ND	ND	ND	ND	45.3 J	ND
Antimony	ppb	30	30	ND	ND	ND	ND	ND	ND	ND
Arsenic	ppb	25	50	ND	ND	ND	ND	ND	2 J	ND
Barium	ppb	1000	1000	ND	ND	373	612	ND	348	495 B
Beryllium	ppb			ND	ND	ND	ND	ND	ND	ND
Cadmium	ppb			ND	ND	ND	ND	ND	ND	ND
Calcium	ppb			121000	137000	117000	130000	121000	121000	13000
Chromium	ppb	50	50	ND	ND	ND	ND	ND	3.8 J	2.1 B
Cobalt	ppb			ND	ND	ND	ND	ND	ND	ND
Copper	ppb			ND	ND	ND	ND	ND	ND	ND
Iron	ppb	300	300	61400	41800	48000	78200	60400	61400	51200
Lead	ppb	25	50	ND	ND	ND	ND	ND	1.1 J	ND
Magnesium	ppb	35000		34500	30000	37400	5250	36700	989	33200
Manganese	ppb	300	300	989	140	816	319	983	34.5	1260
Nickel	ppb	100	100	ND	ND	ND	ND	ND	2.3 J	ND
Potassium	ppb			8890	7230	10300	16600	9420	8890	7920
Selenium	ррь			ND	ND	ND	ND	ND	ND	ND
Silver	ppb			ND	ND	ND	ND	ND	ND	ND
Sodium	ppb	20000		92700	54900	90500	164000	89600	92700	60600
Thallium	ppb			ND	ND	ND	ND	ND	4.9 J	ND
Vanadium	ppb			ND	ND	ND	ND	ND	2.5 J	ND
Zinc	ppb	20		ND	ND	ND	ND	ND	2.6 J	3.6 B
Mercury	ppb			ND	ND	ND	ND	ND	ND	ND

NOTES: 1. Only detected values are reported 2. NS = Not Sampled; Inst.Er. = Instrument Error

TABLE 4 KESSMAN LANDFILL OM&M SEDIMENT SAMPLING RESULTS

.

•

.

Ĩ

.

l

.

LOCATION NUMBER	LAB SAMPLE NO.	SAMPLE DESCRIPTION	GPS COO Northing	RDINATES Easting	PCB-1242 (mg/Kg)	PERCENT SOLIDS	VISUAL OBSERVATIONS
1	B1258	01-0-6-092923	971302.99	73668.22	<1.0	28	0-6" drk brn/blk sand and silt. Very moist. Some organic matter
2	B1261	02-0-6-092903	971389.19	73663.20	<1.1	45	0-6" drk brn silt w/fine roots, slight gravel,moist. 1" brn/gray clay layer @3-4"
3	B1259	03-0-6-092903	971577.31	736697.88	<0.72	69	0-4" moist, It to med brn silt with some roots rock frags.,4-6" slight moisture, med to drk brown silty clay w/rock frags,roots
4	B1260	04-0-6-092903	971638.72	736710.96	<0.71	1 711	0-2" very moist,It to med brn. Silt,some roots,rock frags. 2-4"slight moist med to drk brn silty clay w/trace roots
5	B1262	05-0-6-093003	971713.75	736708.60	0.22 J	1 n/	0-3" saturated, med.grown silt w/trace clay/rock, 3-6" increase clay w/depth.med brn. Silty clay w/10-20% rock frags; 10% organic matter
5	B1263	05-6-18-093903	971713.15	736708.60	0.16 J	73	6-18" gray/brown clay and clayey silt w/trace sand. 20 % rock frags and 20 % roots
6	B1264	06 -0 -6-093003	971760.34	736703.35	0.35 J	71	0-2" very saturated gray brown silt w/tr sand, 10% rock frags, 20% roots. 2-6" brn silty clay with increasing clay with depth, 10% rock frags, 20% organic
7	B1265	07-0-6-093003	971826.98	736705.31	50 J		0-2" very saturated drk gray/brown silt w/tr sand & sm rocks, 5% organic. 2-4" drker gray/brn clay silt w/tr sand. 10% rocks, 5-10% organic
	B1266	07-06-18-093003	971826.98	736705.31	57 J	64	6-16" drk brn/gray silty clay w/tr sand,10% rocks. 16-18" varigated clay, tan, med. gray & drk brown, <5% organic, 10% rock frags.
8	B1267	08-0-6-0930-03	971875.25	736660.56	0.69	74	0-1" organic. 1-4" very sat. med brown siltw/tr sand. 20% rocks, and 10% organic. 4- 6" same w/ inclreas in clay Note lab results does not show J or U
9	B1268	09-0-6-0930-03	971903.60	736630.41	1.7	60	0-2 very sat. gray brn silt w/ tr sand, 10 % rocks; 2-6" drk gray brown clay silt w/tr sand. Clay increases w/ depth, 10-20%% organic, 10-20% rocks
10	B1269	10-0-6-093003	971915.25	736678.05	0.45 J	71	0-2" very sat dr. gray brn silt,20% organic, 5-10% rocks. 2-6" drk gry brn clay silt w/ tr sand, 10% organic, 10-20% rocks. Increasing clay w/ depth
11	B1270	11-0-6-093003	971947.45	736596.90	0.13 J	75	0-2" saturated drk gry brn silt w/tr sand, 50% organic,. 10% rocks. 2-6" clay silt w/ incresing clay w/ depth/ Tr sand, 5%rocks, 10% organic
12	B1272	12-0-6-093003	971976.07	736633.51	<0.66	76	0-3" moist drk brn clay silt, some rocks and trace roots. 3-6" moist, drk brn clay silt w/ some rocks, no organic matter
12	B1352	12-6-18-100203	971976.07	736633.51	<0.63	79	6-14" moist med to drk brn silty clay w/ some rocks and organic roots. Sm wood pieces.

TABLE 4 KESSMAN LANDFILL OM&M SEDIMENT SAMPLING RESULTS

8

ŝ

.

È

Ê

Ĩ

.

LOCATION NUMBER	LAB SAMPLE NO.	SAMPLE DESCRIPTION	GPS COO Northing	RDINATES Easting	PCB-1242 (mg/Kg)	PERCENT SOLIDS	VISUAL OBSERVATIONS
13	B1273	13-0-6-093003	972024.89	736564.47	<0.83	60	0-3' very sat. drk brn silt w/ some organic leaves/roots/woody material. 3-6" saturated med-drk brown silt w/tr sand, roots and rocks
	B1274	13-6-18-093003	972024.89	736564.47	<0.70	71	6-12" drk brown clay silt w/rocks and fine roots
14	B1275	14-0-6-093003	972029.66	736604.15	0.19 J	67	0-2" sat. med t- drk brn silt w/ tr sand, some organic roots. 2-6" sat brown clay sitl w/ small amount oF roots/rocks
15	B1276	15-0-6-093003	972069.21	736549.93	0.23 J P	72	0-3" sat. med to drk brn silt w/ tr sand, some organic roots. 3-6" sat brown clay silt w/ small amount or roots/rocks
16	B1277	16-0-6-093003	972145.53	736522.78	<1.6	31	0-2" sat. drk brn silt, fine roots. 2-6" moist drk brn clay silt w/ fine roots.
17	B1278	17-0-6-093003	972168.82	736521.87	<1.5	34	0-2" very sat. med to drk brn silt w/ tr sand, some organic roots. 2-6" very sat brown clay sitl w/ small amount or roots and rocks. Tr gray clay @6"
18	B1300	18-0-6-100103	971888.04	736738.76	10	58	0-0.5 vry sat. blk silt and organic material5-6" sat. Drk brn clay silt. W/some rocks.
19	B1301	19-0-6 -100103	971955.09	736701.91	2.3	62	0-2" sat. drk brn/tan mottled silty clay w/tr sand, 10-155 rocks, 5% organic. 2-6" drk gry/brn mottled w/ med brn & Tan silty clay, 10-155 rocks, 20 % organic.
19	B1302	19-6-180100103	971955.09	736701.91	<0.64	78	6-18" med. Tan brown silty clay w/ 20% rocks and 15-20% organic
20	B1303	20-0-6-100103	971952.26	736746.73	0.73 J	73	0-5" sat. drk brn silt w/some sand/rocks/organic material. 5-6" sat. drk brn clay silt w/ rocks roots/woody material
21	B1304	21-0-6-100103	972991.63	736717.99	0.67 J P	70	0-1 " sat. drk brn silt w/some sand/rocks/organic material. 1-6" sat. drk brn clay silt w/ rocks roots/woody material
22	B1305	22-0-6-100103	972053.90	736670.20	<0.71	70	0-2" very sat. grey brn, silt w/ 20-30% organic, w/ 5% rock. 2-6" dk gry, brn mottled w/ med brn silty clay, 5% rocks, w/ 20% organic
22	B1306	22-6-18-100103	972053.90	736670.20	<0.78	64	6-18" moist mostly med tan brn silty clay w/ rocks, 20% organic material. Mottled w/ grey clay @ 14-18"
23	B1307	23-0-6-100103	972081.32	736717.76	0.33 J	61	0-1" very sat. drk brn silt w/ oprganic matter. 1-6" drk brn silty clay w/ some rocks and tr organic
24	B1308	24-0-6-100103	972133.18	736772.44	1.8	57	0-3" very sat. drk brn silt w/ tr organic and rocks 3-6" moist brn clay silt w/ some rocks and fine roots.

SEDIMENT SAMPLING RESULTS TABLE 4 KESSMAN LANDFILL OM&M

LOCATION	OCATION LAB	SAMPLE DESCRIPTION	GPS COOI Northing	GPS COORDINATES	PCB-1242 (mg/Kg)	PERCENT	VISUAL OBSERVATIONS
L	B1309	25-0-6-100103	972158.58	736728.36	<3.3	15	6-18" moist brn clay silt w/ some rocks and fine roots. Some woody material
G7	B1310	25-6-18-100103	972158.58	736728.36	<2.4	21	0-6" very sat. drk brk silt w/ some fine roots trace woody matter. Moisture content decreases w/ depth
26	B1311	26-0-6-100103	972138.01	736683.43	<2.5	20	0-6" very sat. drk brk silt, some fine roots trace woody matter. Moisture content decreases w/ depth
27	B1312	27-0-6-100103	972165.54	736686.38	<2.6	19	0-4" very sat. drk brn silt w/ organic matter. 4-6" less saturated drk brn silt.
C	B1313	28-0-6-100103	972128.98	736627.91	<3.3	15	0-6" very sat. drk brn/black silt w/ 20% organic material of roots and twigs
Q7	B1314	28-6-18-100103	972128.98	736627.91	<2.6	19	6-18" moist drk brn silty clay w/ 10-29% organic material
29	B1357	29-0-6-100203	972250.60	736810.04	<2.2	23	0-2" Sat. drk brn clay, silt w/trace sand, 10% organic roots and twigs. 2-6 drk brn silty clay w/trace sand 10% organic
30	B1356	30-0-6-100203	972563.37	736854.14	<2.4	21	0-4"drk. Brn. Silt w/20-25% organic. 4-6" silty drk. Brn clay w/10-20%organic roots and twigs.
31	B1355	31-0-6-100203	972788.46	736877.74	<2.3	22	0-3" very sat. drk brn clay silt w/ 20% organic roots. 3-6" drk brn silty clay w/10% roots
32	B1354	32-0-6-100203	972921.47	736882.77	<2.4	21	0-2" very sat. drk brn wit w/sulfur odor & 10-20% roots/leaves. 2-6" drk. Brn silty clay w/trace sand, 10% sm roots
33	B1353	33-0-6-100203	973147.38	736931.06	<1.4	36	0-2" sat.drk brn silt w/some clay, tr. Rx frags, 5-10% organic.2-6" drk drn silty clay tr.sand

 Only PCB Aroclor 1242 was detected; all others (1016, 1221, 1232, 1248, 1254 and 1260) are non-detects
 < or U = lab result indicates undetected at the reported level.
 J = Reported value is an estimated; P = RPD>40% between primary and confirmation. Notes:

TABLE 5 KESSMAN LANDFILL OM&M GPS COORDINATES OF MONITORING WELLS

WELLS	NORTHING	EASTING	# of Satellites	PDOP
3B	97,341.35	736,506.84	6	3.96
3A	971,345.19	736,519.57	6	3.95
20 A	971,876.94	736,636.91	6	3.90
5A	972,200.90	736,464.02	4	4.57
5B	972,206.58	736,451.85	4	4.52
1A	971,728.83	735,780.94	6	2.22
1B	971,720.11	735,782.02	5	3.15

NOTES: # of satelites and PDOP (preferably > 3) indicates accuracy of coordinates

TABLE 6 KESSMAN LANDFILL OM&M LEACHATE PUMPING/ON-SITE TREATMENT FOR TRACER STUDY (May 2004)

	_	LINE P	RESSURE	FLOW R4	ATE (gpm)	CUN	I. VOLUME	(gal)	DEPTH TO	
DATE	TIME	FILTER INLET	CARBON	LEFT METER	RIGHT METER	LEFT METER	RIGHT METER	TOTAL	LEACHATE	COMMENTS
5/26/2004	12:00	13	2	0	0	0	0	0		Sample L-0 taken
	13:00			18.0	18.5	1,050	1,080	2,130		Injected dye
	14:03	13	3	17.5	17.5	1,830	1,960	3,790		Sample L-4 taken
	15:21	11	0	17.5	18.5	3,050	3,200	6,250		Sample L-6 taken
	16:00	11	3	18.5	18.5	3,760	3,900	7,660	4.62'	
	17:05	13	3	18.0	18.0	4,640	4,790	9,430		
	18:00	14	3	18.5	18.5	5,670	5,760	11,430	4.74'	
	19:00	13	3	18.5	18.5	6,660	6,860	13,520	4.74'	
	20:05	13	3	18.0	18.0	7,370	7,520	14,890		Filled gas
	allowed to rui	overnig	ht until gene	erator ran	out of gas	3;	14,890	gallons pu	imped today	
5/27/2004	8:40			18.0	18.0	7,980	8,140	16,120	4.57'	Samples RN-16 & RS-16 tak
	10:00	13	3	18.0	18.0	9,210	9,370	18,580		Wetland samples taken
	11:00	13	3	17.5	18.0	9,850	10,050	19,900		Changed bag filters
	12:05	13	2			10,930	11,130	22,060		Samples taken
	14:30					13,330	13,550	26,880	4.73'	
	15:00	12	2			13,370	13,990	27,360		
	16:00	13	3	18.0	18.5	14,630	14,870	29,500	4.81'	Sample L-30 taken
	17:00	13	3	18.0	18.5	15,760	15,990	31,750	4.85'	
	18:00	14	3	18.0	18.5	16,690	16,930	33,620		Sample L-36 taken
	19:00	14	3			17,760	18,030	35,790		
	20:00	14	3			18,690	18,960	37,650		Filled gas
	allowed to run	n overnigi	ht until gene	erator ran	out of gas		22,760	gallons pu	imped today	
5/28/2004	7:40	14	3	18.0	18.0	21,700	22,270	43,970	4.72'	Sample L-44 taken
	9:10	14	3	18.0	19.0	23,060	23,380	46,440	4.83'	
	10:08	14	3	18.0	19.0	24,100	24,430	48,530		
	11:10	14	3	18.0	19.0	25,160	25,506	50,666		
	12:10	14	3	17.5	19.0	26,070	26,420	52,490		
	13:00	14	3	17.5	19.0	26,980	27,340	54,320		Sample L-50 taken
	14:00	14	3	18.0	19.0	28,110	28,480	56,590	4.92'	
	15:05	14	3	19.0	19.0	29,180	29,550	58,730		Sample L-60 taken
	16:00	14	3	19.0	19.0	30,090	30,480	60,570	4.97'	Samples RN-60 & RS-60 take
	7:45			19.0	19.0	33,370	33,800	67,170	4.98'	Pump ran out of gas, filled ga
	allowed to rur	n overnigi	nt until gene	erator ran	out of gas	; 	29,520	gallons pu	imped today	
5/29/2004	7:40			20.0	20.5	35,540	35,980	71,520		
	8:40	stopp	ed pump	20.0	20.5	36,690	37,140	73,830	4.98'	avg. 46.2 gpm
	demobilized e	quipmen	t from site;				6.660	gallons pu	mped today;	sample L-64 taken

TABLE 7 KESSMAN LANDFILL OM&M LEACHATE PUMPING/ON-SITE TREATMENT (August/September 2004)

1

Î.

ŝ.

Ĩ

Ĩ

Ì.

ħ

Ê.

k

ł

			_	FLOW	RATE	CL		VE			F	E ⁺² (ferrous	3)		FE TOTAL						
			JRE (psi)		pm)		(gal)		AIR	DEPTH TO		(ppm)	,		(ppm)			(5.u.)		(ppm)	COMMENTS
DATE	TIME	FILTER	CARBON INLET	LEFT METER	RIGHT METER	LEFT	RIGHT METER	TOTAL	(cfm)	LEACHATE IN SUMP	FILTER INF.	CARBON	CARBON EFF.	FILTER INF.	CARBON	CARBON EFF.	FILTER INF.	CARBON EFF.	FILTER	CARBON EFF.	COMMETTO
8/4/2004	14:15	12.0	11.0	18.0	17.0	36,930	37,380	74,310	22	3.9	60	70	60	10	60	55	6.4	6.4	684	805	Sampled L-1
	15:35	15.0	0.0	10.0	10.0	38,103		76,696	-												
	16:00	10.0	10.0	18.0	19.0	38,570	39,080	77,650										_			
[16:30	11.0	8.0	15.5	17.5	39,090	39,610	78,700	22	4.2'	50	30	30	5	4	4	6.4	6.4	730	734	Sampled L-2
	17:00	13.0	5.8	14.0	14.0	39,560	40,090	79,650					_							_	
	17:30	14.0	4.8	20.0	20.0	39,860															Changed bags
	18:30	10.0	10.0 10.2	<u>21.</u> 5	20.0	40,890	41,460	82,350	45	4.2	7	35	50	60	65	55	6.4	6.4	800	880	Sampled L-3
	19:30	10.0		no left run	nina till ac	enerator r	42,540 an out of g	04,470 Ias	L		10 160	gallons p	umped tod	av.							l
8/5/2004	8:00	11.0	10.5				43,180		37	4.2'	10,100	50	61	80	75	55	6.5	6.5	850	851	
	9:30	12.0	11.0				44,530				5	10	4	55	55	40		0.0		001	Changed bags
	10:30	10.5	10.0			44,930	45,590	90,520	44	4.2'	30	35	30	45	55	50					
	11:30	10.5	10.0			46,010		93,010													
	12:30	10.1	10.0				47,830	94,950		4.2'											
	1:30	10.0	10.0				48,940										L				
	2:30	9.8	10.5				50,460		50	4.3'	25	4	35	50	60	60	L				
//1/2004	10:00	10.0	p	19.0	19.0		obilization				15,680	galions p	umped too	lay;	<u>25,840</u>	galions pu	imped th	is event			
//1/2004	11:00	9.5	9.5	19.0	19.0	49,690	50,460	100,150		6.3'					<u> </u>		<u> </u>				Changed hoop
	12:05	10.0	9.5	19.5	19.5	51,970		102,313		6.5					<u> </u>				 		Changed bags
ł	13:05	9.5	9.5	13.9	10.0	53,090		107 120		6.5	55	55	35	70	60	55					Lowered sparger
	14:00	9.5	9.0			54,070		109,120		6.7'		<u> </u>					1	1			control optingol
	15:00	10.0	9.5			55,150				6.7'											
	16:00	9.5	9.0			57,300		115,740	175	6.6'	30	60	30	60	70	65					
	18:00	10.0	10.0			58,550			L	6.9'							L	<u> </u>			
	19:00	9.5	9.5				60,640		<u> </u>	7.0'											Changed filter bag
	21:00	9.5	9.0) Do left run	ning till ge		61,670 an out of g			6.8'	24 900	gallons p									Filled gas
9/2/2004	10:00	10.0	9.0	17.5	17.5		71,880		145	7.1	21,090	40		55	60	40					Changed filter bags
<i>1212</i> 00 4	11:10	10.0	9.0	17.5	17.5		73,210			7.3	<u> </u>		<u> </u>				┣──				Changed lines bags
	13:00	10.0		<u> </u>			74,490			1.0		<u> </u>					<u> </u>	<u> </u>			
			p	ump left i	running di	uring dem	obilization				26,430	gallons p	umped too	lay	48,320	gallons pu	mped th	is event			
//28/2004	12:30	5.0	3.0			73,790				6.0'									Γ		
	13:30	6.0	5.0	17.5	22.5	74,370	76,170			6.0											
	14:30	6.0	5.0			75,260		152,406		6.2'						_					
	15:30	9.0	3.0				77,818			6.2'	14		8	18		16					Changed bags
	16:30	6.0	5.0	L	<u> </u>	76,590		155,453		6.3'											
	17:30	7.0	5.0			77,520	79,640	157,160		6.3'							6.2	6.2	594	450	Odor at manhole
	16:30	7.0	5.0		<u> </u>	78,210				6.4'		<u> </u>					<u> </u>	<u> </u>			Odor at manhole
	19:00					78,521		158,880		L		L		<u> </u>				L			Filled gas
/29/2004	0.00	10.0		10 left run 20.0			an out of g			0.01	9,536	galions p	umped too	lay	r	<u> </u>	<u> </u>				
129/2004	9:00	10.0	8.0 5.0	20.0	22.0	86,600 88,460				6.2		<u> </u>	14	- ,		14	6.7	62	504	657	Changed filter bags
	11:00	<u>6.5</u> 9.0	7.0	┣───		89,380		179,130 181,020		<u>6.3'</u> 6.3'			- 14	<u> </u>		14	6.2	6.2	594	557	
	12:00	9.0	7.5	┨───			91,640			6.3	<u> </u>			 -				├ ───-	 +		├ ─────
	13:00	9.0	7.5	I	<u> </u>	90,300				0.3	ł	1		┣──							l
ł	14:00	9.0	8.0	18.5	24.5	91,930				6.5'	<u> </u>		-	<u> </u>					┨───┤		ł
- 1	15:10	9.0	7.5	10.0		92,980			-	6.5		<u>+</u>					┣───	 -			
	16:00	9.0	7.5	<u> </u>		93.890			I	6.5'	5	t	5	30		50	1	-			
	17:00	9.0	7.0	t		94,610				6.5'	<u> </u>			– ‴–			1	<u>├</u> -		<u> </u>	Sharp, crisp smell in sump
	18:00	8.5	7.0	I			98,110			6.5	<u> </u>		<u> </u>	t —			- 1	<u> </u>		L	Filled gas
				np left run	ning till ge		an out of g			•	34,540	gallons p	umped too	tay				<u> </u>	·	L	
100/0004	8:00	10.0	9.5	17.5	17.5		106,710		145	6.2'	10	ſ	8	22		16	6.2	6.2	667	594	Changed filter bags
/30/20041		15.0	14.0	20.0	22.0		108,700			6.3'							i – –	-			†*
/30/2004	10:00	15.0																			
/30/2004	10:00	10.0	9.0				111,780 obilization			6.5'	8		10	20		16	7.4	6.2	622	612	

TABLE 8 KESSMAN LANDFILL OM&M TRACER STUDY/LEACHATE TREATMENT ON-SITE - ANALYTICAL RESULTS

	UNITS	GROUND	SURFACE		ampled 5/26			ed 8/5/04		Sampled 9/2			ed 9/2/04
PARAMETER (in ppb)		WATER STANDARD	WATER STANDARD	MHC-1	TREATED	MW-20A	MHC-1	TREATED	MHC-1	TREATED	WETLAND	MHC-1	TREATE
pH (field; s.u.)	s.u.	<u> </u>		5.8	6.1	6.42							
Temperature (field)	٩F			66.3	-	68							
Specific Conductivity	umhos			1.36	-	0.75							
TSS	ppm			100	61	220							
тос	ppm			5.3	1	4.5							
	nom			20	17								
COD	ppm			30	14	_							
Ammonia Nitrogen	ppm								17	17	13		
Total KjeldahlNitrogen	ppm								21	21	16		
Chloride	ppm			-	-	45							
Aluminum	ppb		100			3740				·····		32.6 B	1550
Antimony	ppb	30	30										
Arsenic	ppb	25	50			6.6 J							
Barium	ppb	1000	1000	393.0	572	123 J				_		745	420
Calcium	ppb			122000	133000	69600		<u> </u>				119000	9440
Chromium	ppb	50	50	1.5 J	2.3 J				ļ			1.0000	17
						4.7 J		├───					38
Copper	ppb pob	300	300	59700	60600	7150	——					48700	3900
lron	ppb	25	50	1J	1.6 J	1.00		┞────┤					27
Lead	ppb			36500	39100	69300						38000	
Magnesium	ppb	35000				182							2930 5020
Manganese	ppb	300	300	788	869							649	5020
Nickel	ppb	100	100	1.8 J	6	6.7 J							
Potassium	ppb			10100	11400	15400				 		11000	6130
Sodium	ppb	20000		105000	80600	28800					<u> </u>	56600	9200
Vanadium	ррь					6.5 J							
Zinc	ppb	20		28.6	9 J	15.6 J							
Vinyl Chloride	ppb	2											
Methylene chloride	ppb			2 J	2 J							3 J	<u>3</u> J
Acetone	ppb			4 J	8 J								
Methyl acetate	ppb				1 J								
Chloroethane	ppb	5					2.1	1.2	2.1	1.9		2 J	6 J
trans 1,2-Dichloroethene	ppb	5	5										
1,1-Dichloroethane	ppb	5	5			2							
cis 1,2-Dichloroethene	ppb	5	5									1 J	
1,2-Dichloroethane	ppb	0.6	0.6			1							
Benzene	ppb	1	1	3 J		0.4 J	6.0	0.85	4.2	2.20		6 J	
Toluene	ppb	5	5		1 J		3.7	0.55	3.5	1.70		2 J	3 J
Xylene	ppb	5	5	0.8 J	3 J		15,0		3.7	2.1		7 J	
Ethylbenzene		-					0.9						4 J
Chlorobenzene	ppb	5	5	10 J			11.0	1.1	5.1	2.6		7 J	
sopropyibenzene	ppb	5		0.7 J		2.000	1.5	1.9	1.5	0.9		1 J	
1,4-Dichlorobenzene	ppb	3	3	1 J			1.8		0.9			0.8 J	
1,2-Dichlorobenzene	ppb												
2-Butanone	ppb				13.000		······	2 J					
Methylcyciohexane	ppb											0.7 j	
Napthalene	ppb			5 J	1J								
4-Nitrophenol	ppb			1 J									
Caprolactum	ррб			3 J						├───┤			
Aroclor-1016	ppb			<u> </u>									3.1
	440					_		 		L			0,1

Note: 1. Only detected compounds are listed (Metals not detected: Be, Cd, Se, Ag, Th and Hg)

-

6

×۵

.

.

TABLE 9 KESSMAN LANDFILL OM&M TRACER STUDY - FIELD MEASUREMENTS/DYE ANALYSIS

	·			CUM. VOL.	_	FIELD		RESULTS					
ID	CONTAINER	DATE	TIME	TREATED	pН	TDS	ORP	Dye 1	Dye 2	Dye 3	Dye 4	Dye 5	
				(gal)	(s.u.)	(ppm)	(mv)	SRG	NAP	EOS	SRB	LIS	
L-0	6 plastic	5/26/2004	11:50	0					b	ackgrour	nd _		
W-0	2 plastic	5/20/2004	11.50	0	6.5	384	215	background					
1-0	2 vials - 40ml												
2-0	2 vials - 40ml					[
3-0	2 vials – 40ml	5/26/2004	12:00	0									
4-0	2 vials - 40ml												
5-0	2 vials – 40ml												
2-20	2 vials - 40ml				6.5	298	205		1266.9				
4-20	2 vials - 40ml	5/27/2004	11:00	20000							9.66		
5-20	2 vials - 40ml											1.45	
2-35	2 vials - 40ml		_						146.57		0.05		
4-35	2 vials - 40ml	5/27/2004	18:45	35000		Ì					212.43		
5-35	2 vials - 40ml	1			6.5	336	210				13.78		
2-45	2 vials - 40ml								78.59		0.41		
4-45	2 vials - 40ml	5/28/2004	8:00	45000					73.19		32.71		
5-45	2 vials - 40ml										21.24	3.81	
RN-5	2 vials - 40ml							ND	188.61	ND	1.39	ND	
RS-5	2 vials - 40ml	5/26/2004	17:30	5,000				ND	37.53	ND	63.26	ND	
	2 vials - 40ml				7	185	200	ND	28.33	ND	23.39	9.15	
	2 vials – 40ml	5/26/2004	20:20	15,000	7	659	195	ND	ND	ND	ND	ND	
	2 vials - 40ml				<u> </u>			ND	ND	ND	ND	ND	
RS-27	2 vials - 40ml	5/27/2004	14:50	27,000				ND	ND	ND	ND	0.01	
	2 vials - 40ml		40.00	26.000				ND	ND	ND	ND	ND	
	2 vials - 40ml	5/27/2004	19:20	36,000			-	ND	ND	ND	ND	0.02	
	2 vials - 40ml							ND	ND	ND	ND		
	2 vials - 40ml	5/28/2004	8:45	46,000				ND	ND	ND	ND	0.06	
	2 vials - 40ml							ND	ND	ND	ND	0.00	
RS-60	2 vials – 40ml	5/28/2004	15:30	60,000				ND	ND	ND	ND	0.10	
F-I	Filter influent				7	735	235						
 C-I	Carbon influent	5/27/2004	20:20	15000	6.6	729	235						
<u>С-е</u>	Carbon effluent	0.21.2001	20.20	10000	6.5	746	270						
<u>L-0</u>	2 vials - 40ml	5/26/2004	12:30	0	6.3	590	215			ECTED I			
L-4	2 vials - 40ml	5/26/2004	14:00	4000	0.0	000	210	ND	ND	ND		ND	
L-4 L-6	2 vials - 40ml	5/26/2004	15:21	6000				ND	ND	ND	ND	ND	
<u>L-0</u> L-17	2 vials - 40mi	5/27/2004	9:30	17000				ND	ND		ND	ND	
L-30	2 vials – 40ml	5/27/2004	16:30	30000				ND	17.36	ND	ND	ND	
L-36	2 vials - 40ml	5/27/2004	19:15	36000				ND	17.22	ND	0.06	ND	
L-45	2 vials – 40ml	5/28/2004	8:30	45000				ND	7.82	ND	5.26	ND	
L-50	2 vials – 40ml	5/28/2004	10:30	50000				ND	13.38	ND	0.79	ND	
L-55	2 vials - 40ml	5/28/2004	13:30	55000				ND	10.64	ND	0.42	ND	
L-60	2 vials – 40ml	5/28/2004	15:30	60000			1	ND	12.10	ND	0.49	ND	
L-74	2 vials – 40ml	5/29/2004	8:40	74000	6.6	434	205	ND	6.45	ND	0.58	ND	
	1 vial 40ml	8/4/2004	15:05	1000				ND	13.70	ND	0.21	ND	
<u> </u>	1 vial – 40ml	8/5/2004	16:30	2000				ND	16.81	ND	0.15	ND	
L-3	1 vial - 40ml	8/6/2004	18:30	3000				ND	17.15	ND	0.17	ND	
L-5	1 vial – 40ml	8/7/2004	12:00	5000	· · · · · ·			ND	26.62	ND	0.30	ND	
W-1	1 vial - 40ml	8/8/2004	15:00	0				ND	ND	ND	0.20	ND	

Not sampled Not detected ND

CROSS COUNTY SANITATION/KESSMAN LANDFILL O&M OPERATION, MAINTENANCE AND MONITORING

OM&M REPORT

ATTACHMENT A

BACKGROUND INFORMATION AND SITE PHOTOS

inactive Hazardous Waste Disposal Report		April 1, 2000
Site Name: Cross Co. Sanitary-Kessman L.F. Class Code: 4 Region: 3 County: Putnam Address: Cornwall Hill Road City: Patterson Latitude: 41 29' 48" Longitude: 74 36' 50" Site Type: Landim Estimated Size: 10 Address	Site Code: EPA ld: Zip;	340011 NYD920528491 12563
Site Owner / Operator Information:		
Current Owner(s) Name: Albert, Martin and Bernard Kessman Current Owner(s) Address: Cornwall Hill Road Patterson Owner(s) during disposal: Kessman Brothers & Cross Co. Conitacies		NY 12563
a mental analysis in the second and the second		

Site Description:

This site is a landfill which addepted solid and industrial wester of unknown types and quantities. A field investigation revealed the presence of numerous leadflate seeps and approximately 40 to 60 partially exposed 55-gallon drums, some of which were leaking and had a strong chemical odor. HNu readings revealed 5.0 to 13.5 ppm total organic vapors in the vicinity of the drums. Phase 1 and had a strong completed. During the Phase II Investigation in 1985, a matal detector survey identified a few locations which may contain buried drums or other metallic objects. Leachate seeps were evident and the vegetation was severally stressed. One well downgradient of the site and adjacent to the area where drums were observed indicated votatile organics totalling 209 nph, acid extractables at 39 pob and base neutral extractables at 21 ppb. Two Stifler wells downgradient of the site but upgradient of the drum area were clean. Sediment samples from a downstream location indicated contamination with volatile organics. The site was ordered closed and covered; however, cover was incomplete and wetland restoration. An IRM started in 1993 to remove drums and contaminated solid, was earneled in Morenber 1994 as was a ROD. The ROD called for capping and wetland restoration. An IRM started in 1993 to remove drums and contaminated solid, was earneled in Morenber 1995. The site is under post-closure OBM. Recent sampling activities reported leachate seeps with prganic contamination. The effectiveness of the sachate collection system is being evaluated thru periodic sampling activities.

Confirmed Hiszardous Waste Disposal: Senzeas (FOD5) Barrels containing VOCs, PCBs, Pesticides Quantity: Unknown Approx. 250

Analytical Dala Available for:	Alt Groundwater	Eurface Water	Soil Sediment	
Applicable Standards Exceeded in	Groundwater Su	face Water		9 1 1 1
Geotechnical Information:		Dec	ti 10	
Soil/Rock Type: Sand-rich sitt ov	er maibie betweek.		undwater: Range	e: 5 to 1°5 feet.
Legal Action: Type:		Ŝ	atus'	
Remedial Action: Complete	Nature (of ections Pert #80	cap and monitori	ing

Assessment of Environmental Problems:

Remedial activities have minigated all tangible environmental problems at this site. Monitoring is underway.

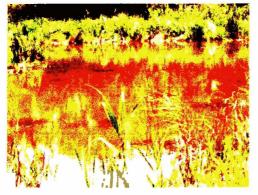
Assessment of Health Problems:

Ę,

Four upgradiant physical dilinking water wells sampled from 1988 to 1987 did not reveal the presence of any site related contaminants. These wells are to be included in the New Yark State Department of Environmental Conservation's (NYSDEC) long term inofiniting program as part of site remember of included in the New Yark State Department of Environmental Conservation's (NYSDEC) long term inofiniting program as part of site remember of interval of site remember of site contentions. These wells are to be included in the New Yark State Department of Environmental Conservation's (NYSDEC) long term inofinitiating program as part of site remembers. The landfill cap will reduce the possibility for off-site migration of site contaminants. Long-term monitoring has been recommended at the site. The monitoring will determine the effectiveness of remedial measures. The former landfill area is fended and o locked gate at the site of the path for site restricts vabilate. Hazardous waste warning signs are posted at the site perimeter.

そういいたいろう やい しゅんそうひょうしん パート・シート

CROSS COUNTY SANITATION/KESSMAN LANDFILL O&M OPERATION, MAINTENANCE AND MONITORING SITE PHOTOS (May 2002)



MW-20A & B

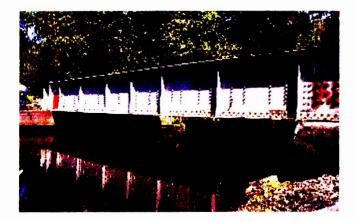
SITE PHOTOS - June 30, 2004

Overall coloration of wetland

30 Ft. south of MW-20 A & B

Clean area north of MW 20

Leachate discharge area



Water/beaverdam under west and east side of railroad bridge

KESSMAN LANDFILL OM&M SITE PHOTOS - August 23, 2004

Looking east under railroad bridge. Note that beaver dam is starting to be rebuilt.

Looking north from east side of railroad bridge.

Area to the east of railroad bridge. Note "secondary dam" being built in center of photo.

KESSMAN LANDFILL OM&M - LEACHATE TREATMENT SITE PHOTOS – 9/2 & 9/3/2004

Leachate Pumping & Treatment System

Discharge Pipe

Generator

Cleared Around Wells with Weed Whacker

North Gate Being Installed

KESSMAN LANDFILL OM&M SITE PHOTOS – November 23, 2004

Landfill is Mowed and Well Kept

Treatment System Drums & Piping



Discharge Location

Wetland

Gate Installed near MW-5A/B

KESSMAN LANDFILL OM&M SITE PHOTOS – December 28, 2004

Landfill is Trimmed and Covered with Snow

Leachate Sump/Treatment System Drums

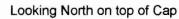
Monitoring Wells MW-20A and MW-20B

Gas Point GP-2

Gates (Inner and at MW-5A/B)

Wetland (Frozen/Covered with Snow

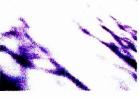
Monitoring Well MW-1A


Gas Vent V-3

KESSMAN LANDFILL OM&M SITE PHOTOS – JANUARY 25, 2004

East slope and wetland

Leachate sump and carbon drums



Warm spot in wetland just north of MW 20 A/B

Measuring level of ice at RR Bridge

There were snow drifts over a yard deep

MW 5B

View West from RR Bridge

CROSS COUNTY SANITATION/KESSMAN LANDFILL O&M OPERATION, MAINTENANCE AND MONITORING

OM&M REPORT

ATTACHMENT B DATA FORMS

FORM 1 CROSS COUNTY SANITATION/KESSMAN LANDFILL SUMMARY OF SITE OM&M ACTIVITIES

1

â

-

Ċ

-

DATE	DESCRIPTION
2/27/02	Routine inspection; Well MW 3B has kink in PVC riser, could not use bailer in the well;
	purged wells, sampled (Round 1) groundwater, surface water and leachate; made field measurements
3/28/02	Routine inspection; measured water levels and gas vents
4/25/02	Routine inspection; measured water levels and gas vents
5/15/02	Routine inspection; Well MW 3A has kink in PVC riser, could not use bailer in the well;
	purged wells, sampled (Round 2) groundwater, surface water and leachate; made field measurements
06/13/02	Field measurements, inspections; sampled surface water and leachate; installed 2x4 for staff gauge
07/25/02	Field measurements, inspections; repaired well MW-3A and gas points GP-1 and GP-2
08/22/02	Field measurements, inspections; completed topographic survey update
09/18/02	Field measurements, inspections; purged wells; sampled (Round 3) groundwater, surface water and leachate
10/24/02	Field measurements, inspections
11/19/02	Field measurements, inspections
12/17/02	Field measurements, inspections; purged wells; sampled (Round 4) groundwater, surface water and leachate
03/26/03	Field measurements, inspections; purged wells; sampled (Round 5) groundwater, surface water and leachate
04/24/03	Field measurements, inspections
05/29/03	Field measurements, inspections
07/29/03	Field measurements, inspections
08/19/03	Field measurements, inspections
10/01/03	Field measurements, inspections; leachate pumping; sediment sampling
11/26/03	Field measurements, inspections; leachate pumping, sampled (Round 6) groundwater and surface water
12/23/03	Field measurements, inspections; leachate pumping
01/29/04	Field measurements, inspections; leachate pumping
02/27/04	Field measurements, inspections
04/30/04	Field measurements, inspections
05/25/04	Field measurements, inspections; sampled (Round 7) groundwater, leachate and surface water
	dye tracer study
06/30/04	Field measurements, inspections
07/26/04	Field measurements, inspections
08/04/04	Leachate pumping; sampled influent for tracer study
08/23/04	Field measurements, inspections
09/02/04	Leachate pumping; ground water, leachate and sediment sampling
09/22/04	Field measurements, inspections
09/28/04	Leachate pumping
10/30/04	Field measurements, inspections
11/23/04	Field measurements, inspections
12/28/04	Field measurements, inspections; lubricated all locks
01/25/05	Field measurements, inspections

- TO: Carl Hoffman (NYSDEC), Paul Curran (OBG), Jennifer Warner (IEG)
- FROM: Dharma lyer (IEG)
 - DATE: August 25, 2003

DATE ON SITE	August 19 and July 29
ACTIVITIES	Monthly OM&M
FIELD MEASUREMENTS	Field Form 1s are attached
	Observations: The water in the wetlands area is higher than usual. The drainage to the northeast under the railroad bridge appears to be completely blocked by beaver dams. While the dam under the rail bridge appears to be abandoned, other dams have been built further down stream and apparently are causing the stagnant water conditions. It should also be noted that the extremely thick vegetation to the northwest of the site will impede sediment sampling that is scheduled for September.
	Recommendations: The dams should be removed prior to the sediment sampling effort and, if possible, the heavy vegetation be taken down. IEG/OBG can send a crew to remove the dams prior to sampling. We should discuss the possibility of having DEC operations group remove the heavy vegetation.
PLANNED ACTIVITIES	Ground Water and Sediment sampling (September 3 rd week)

- TO: Carl Hoffman (NYSDEC), Paul Curran (OBG), Jennifer Warner (IEG)
- FROM: Dharma lyer (IEG)
 - **DATE:** October 15, 2003

DATE ON SITE	October 1, 2003
ACTIVITIES	Monthly OM&M
FIELD MEASUREMENTS	Ground Water Levels and Gas Vents / Initiation of leachate pumping Field Form 1 is attached
	 Observations: East side of landfill cap has tire ruts on the surface that are 8-12" deep in the dirt/mud. These ruts were made by the leachate hauler's vehicles during pipe installation and should be regraded. Collection of leachate from the manhole started on October 1, 2003 Three 4000-gal loads of leachate were removed for a total of 12,000 gallons. See attached Table with data on the leachate removal. Recommendations: A new access gate should be installed by NYSDEC at MW-5 wells
PLANNED	 Ground water sampling scheduled for October 28-29 Continued leachate pumping on a weekly basis

-

-

MEMORANDUM

то:	Carl Hoffman (NYSDEC), Paul Curran (OBG)	
FROM:	Dharma lyer and Jennifer Warner (IEG)	
DATE:	January 15, 2004	
RE:	RE: OM&M FIELD REPORT – Kessman Landfill	
DATE ON SITE November 26 and December 23, 2003		

ACTIVITIES	Monthly OM&M	
FIELD MEASUREMENTS	Ground Water Levels and Gas Vents / Water levels during leachate pumping Field Form 6 and Field Form1 is attached	
	 Observations: Leachate collection continued on a weekly basis through November; and changed to monthly from December 2003; 105,500 pumped through 12/5/03 (see attached Table). The drainage flow under the railroad bridge appears to be flowing with no blockage. Met with Ms. Edie Keasby of FROGS (Friends of the Great Swamp). Borrowed RI reports and other site related documents from NYSDEC investigations in the 1990s. Copies of the documentation have been made for NYSDEC, O'Brien and Gere and IEG. Reviewed possible locations for dye injection as part of a leachate tracer study to be implemented next spring. Ground water sampling took place on 11/6 and 11/7. Latch and lock on outside access gate needs repairs. It is almost impossible to open. Inner gate is still broken. Recommendations: Latch on outer gate needs to be removed and repositioned. IEG will bring tools and attempt repair on next trip to site. Install a new access gate at MW-5 wells. Regrade tire ruts from leachate pipe installation. 	
PLANNED ACTIVITIES	Continued leachate pumping on a monthly basis	

TO: Carl Hoffman (NYSDEC), Paul Curran (OBG)

- **FROM:** Dharma lyer and Jennifer Warner (IEG)
- DATE: February 9, 2004

DATE ON SITE	January 29, 2004	
ACTIVITIES	Monthly OM&M	
FIELD MEASUREMENTS	Ground Water Levels and Gas Vents / Water Levels during Leachate Pumping Field Form 6 and Field Form1 is attached	
	 Observations: Site is snow covered. Access in the MW-5 series is very difficult. PVC pipe in several wells is blocked by ice. Leachate collection continues on a monthly basis (see attached Table). Latch and lock on outside access gate was repaired in early January. Inner gate is still broken. Recommendations: Repair inner access gate. Install a new access gate at MW-5 wells. Regrade tire ruts from leachate pipe installation. 	
PLANNED ACTIVITIES (Spring 2004)	 Continued leachate pumping on a monthly basis. Access road will be plowed prior to leachate collection on February 12. Leachate tracer study is planned for April 2004 Request Region 3 to install gate at MW-5 series 	

- TO: Carl Hoffman (NYSDEC), Paul Curran (OBG)
- **FROM:** Dharma lyer and Jennifer Warner (IEG)
- DATE: March 12, 2004

DATE ON SITE	February 27, 2004
ACTIVITIES	Monthly OM&M
FIELD MEASUREMENTS	Inspection, water level measurements Field Form 1 for both sites is attached
	 Observations: Site is partly snow covered. Access into the MW-5 series is very difficult. PVC pipe in several wells is blocked by ice. No leachate pumped this month; 127,500 gallons pumped as of Jan. '04; Leachate collection will start back up in March.
	Recommendations: 1) Repair inner access gate. 2) Install a new access gate at MW-5 wells. 3) Regrade tire ruts from leachate pipe installation.
PLANNED ACTIVITIES (Spring 2004)	 Leachate pumping will be scheduled for late March. If necessary access road will be plowed prior to leachate collection. Leachate tracer study is planned for April 2004 Request Region 3 to install gate at MW-5 series wells

- TO: Carl Hoffman (NYSDEC), Paul Curran (OBG)
- FROM: Dharma lyer and Jennifer W. Carter (IEG)
- DATE: May 20, 2004

DATE ON SITE	April 30, 2004
ACTIVITIES	Monthly OM&M
FIELD MEASUREMENTS	Ground Water Levels and Gas Vents Field Form 1 is attached
	 Observations: Water levels are very high. Water is over the top of staff gage in the wetland pond. Dams have been rebuilt by beavers under the railroad bridge to the northeast of the site. Water west of bridge measured at 5.05 feet from top of bridge girder; and 7.05 feet east of bridge. Dam allows very little clearance beneath bridge for water to flow. High water levels have started to compromise the railroad bed from the bridge south to Cornwall Hill Road. Evidence of erosion of bed in several places. Met with Jim from D-Fence Company. He will supply estimate to: 1) install access gate from site to the MW-5 well pair, 2) repair inner access (replace yoke) and 3) repair outer access gate (hinges are bent out and gate is hanging away from fence pole. Rotating latch pole is bent and needs repair). Met with Cathy Bookless, assistant to Supervisor Mike Griffin. Gave her a copy of proposed tracer study.
	 Recommendations: 1) Repair inner and outer access gates and install a new access gate to the MW-5 wells. Will review estimate from D-Fence company and submit for approval. 2) Metro North should be contacted regarding dam beneath railroad bridge and condition of railroad bed. 3) Follow up letter will be sent to Supervisor Mike Griffin regarding tracer study.
PLANNED ACTIVITIES	Tracer study and GW sampling are scheduled for the last week in May.

- TO: Carl Hoffman (NYSDEC), Paul Curran (OBG)
- **FROM:** Dharma lyer and Jennifer Warner-Carter (IEG)
- **DATE:** June 8, 2004

DATE ON SITE	May 25 &26, 2004
ACTIVITIES	Monthly OM&M
FIELD MEASUREMENTS	Leachate sampling and dye tracer study Field Form 1 and Field Parameter forms are attached
	 Observations: Water levels continue to be very high. Wetland water is over the top of staff gage Beaver dams are still under the rail road bridge. Evidence of erosion along rail bed in several places. Erosion appears to be caused by animals burrowing beneath rail bed as well as the high water. Monitoring well and leachate sampling was completed. Dye Tracer study was conducted with the introduction of five dyes (2 in wells and three along shoreline of wetland; 73,830 gallons of leachate was pumped from the sump, sampled, treated on-site (bag filter/carbon) and discharged on-site Town of Patterson had the landfill cap mowed during the dye testing. Recommendations: Seek additional bids for repair of inner and outer access gates and to install a new access gate to the MW-5 wells. D-fence company was not responsive after several attempts to obtain a quote.
PLANNED ACTIVITIES	Follow up of tracer study results and well sample results; Continue with monthly OM&M and leachate pumping

-

1

MEMORANDUM

- TO: Carl Hoffman (NYSDEC), Paul Curran (OBG)
- **FROM:** Dharma lyer and Jennifer W. Carter (IEG)
- **DATE:** July 7, 2004
- RE: OM&M FIELD REPORT –Kessman Landfill, Patterson, NY

DATE ON SITE	June 30, 2004
ACTIVITIES	Monthly OM&M
FIELD MEASUREMENTS	Ground Water Levels and Gas Vents Field Form 1 is attached
KESSMAN:	 Observations: Water levels continue to be very high. Water is over the top o staff gage in the wetland pond on site. Beaver dams are still under the rail road bridge. Water is within one inch of bridge. We met a Metro North representative at the rail road bridge and we were informed that the dams would be destroyed by July 6th. Evidence of iron staining at point where leachate discharged during last month's pumping. Iron staining also evident a southern most drainage point and near MW 20 pair. See attached photos and figure. Recommendations: Follow up with Metro North to make sure that dam beneath railroad bridge has been removed. Continue to actively seek qualified fence repair contractor.
PLANNED ACTIVITIES	 Continue monthly OM&M activities at both sites Complete compilation of monitoring data Complete evaluation of tracer study results Complete Sediment Sampling Report Continue with leachate removal

- TO: Carl Hoffman (NYSDEC), Paul Curran (OBG)
- **FROM:** Dharma lyer and Jennifer W. Carter (IEG)
- **DATE:** August 12, 2004

RE: OM&M FIELD REPORT –Kessman Landfill, Patterson, NY

DATE ON SITE	July 26, 2004
ACTIVITIES	Monthly OM&M
FIELD MEASUREMENTS	Ground Water Levels and Gas Vents Field Form 1 is attached
KESSMAN:	 Observations: Water levels continue to be very high. Water is over the top of staff gage in the wetland pond on site. Beaver dams are still under the rail road bridge. Water has reached the bottom of the bridge crossing. (note that since site visit, dam was removed during the first week of August by Metro North) Monitoring wells 3A and 3B are completely overgrown. Recommendations: Have DEC look into permanently removing beavers that are located near the railroad bridge. Weed whack vegetation near monitoring well 3A and 3B. Locks on monitoring wells and gate will be oiled next site visit.
PLANNED ACTIVITIES	 Continue monthly OM&M activities at both sites Complete compilation of monitoring data Complete evaluation of tracer study results Complete Sediment Sampling Report Continue with leachate removal

- **TO:** Carl Hoffman (NYSDEC), Paul Curran (OBG)
- **FROM:** Dharma lyer and Jennifer W. Carter (IEG)
- DATE: September 17, 2004
- RE: OM&M FIELD REPORT Kessman Landfill, Patterson, NY

DATES ON SITE	Aug.4,5 and 23, 2004 and Sep. 1 - 3, 2004
ACTIVITIES	Monthly OM&M
FIELD MEASUREMENTS	Leachate Pumping/Water Level Field Form 1 and site photos are attached
	 Observations: Water levels have dropped. Dam beneath Railroad Bridge was removed this past month. (See attached photos) Water in wetlands is several feet shallower. Staff gauge longer exists, so cannot get exact reading. Monitoring wells 5A, 5B, 3A and 3B are completely overgrown Area around wells cleared with weed-whacker during leachate pumping (see attached photos) All locks were checked and lubed. Collected water samples at MW 20, leachate tank and nea leachate discharge point and field tested for total Iron and Ferrous. Leachate: Pumped 25,740 gallons of leachate on 8/4 and 8/5 Pumped 48,320 gallons of leachate on 9/2 & 9/3, treated and discharged (total 275,870 gallons pumped to date) Gate: Installed gate at MW-5A,B and repaired inner gate (see photos) Recommendations: DEC to look at permanently relocating beavers from railroad bridge Replace staff gauge
PLANNED ACTIVITIES	 Continue monthly OM&M activities Complete compilation of monitoring data Complete evaluation of tracer study results Complete Sediment Sampling Report Continue with leachate removal Complete installation of gate at MW-5A,B

- TO: Carl Hoffman (NYSDEC), Paul Curran (OBG)
- **FROM:** Dharma lyer and Jennifer W. Carter (IEG)
- DATE: October 25, 2004
- RE: OM&M FIELD REPORT Kessman Landfill, Patterson, NY

DATE ON SITE	September 22, 2004
ACTIVITIES	Monthly OM&M
FIELD MEASUREMENTS	Leachate Pumping Field Form 1 is attached
	 Observations: Inner gate at MW-5 A and B has been installed. This saves considerable time for field personnel when taking water levels at MW- 5 A and B. Water level at RR Bridge is at 6.58" below top railing of bridge. Beavers have started to rebuild dams beneath bridge. Staff gauge is still buried in wetland muck. We have been unable to locate it. Leachate Removal: 70,129 gallons of leachate removed from 9/28 to 9/30 345,999 gallons of leachate removed to date Recommendations: Have DEC look into permanently relocating beavers from the railroad bridge. Weed whack vegetation near monitoring well 5A, 5B, 3A and 3B. Replace staff gauge
PLANNED ACTIVITIES	 Continue monthly OM&M activities Review and comment on draft tracer study report Repair inner access gate.

- TO: Carl Hoffman (NYSDEC), Paul Curran (OBG)
- FROM: Dharma lyer and Jennifer W. Carter (IEG)
- DATE: November 5, 2004

RE: OM&M FIELD REPORT – Kessman Landfill, Patterson, NY

DATE ON SITE	October 30, 2004
ACTIVITIES	Monthly OM&M
FIELD MEASUREMENTS	Ground Water Levels and Gas Vents Field Form 1 is attached
	 Observations: Inner access gate still broken. Water in wetland area appears to be at the same level as last month. Vent stack on vent # 4 is twisted, but still secure in the ground. Recommendations: Replace staff gauge. Replace staff gauge. Purchase lock and heavy chain to secure new gate near Monitoring Well 5 pair. Leachate Treatment No leachate treatment this month; reviewing treatment plan and possible alternate treatment for iron
PLANNED ACTIVITIES	 Continue monthly OM&M activities Repair inner access gate. Continue with leachate treatment plan Prepare SPDES discharge application to Divn. of Water

- TO: Carl Hoffman (NYSDEC), Paul Curran (OBG)
- FROM: Dharma Iyer and Jennifer W. Carter (IEG)
- DATE: December 3, 2004

RE: OM&M FIELD REPORT – Kessman Landfill, Patterson, NY

DATE ON SITE	November 23, 2004						
ACTIVITIES	Monthly OM&M						
FIELD MEASUREMENTS	Ground Water Levels and Gas Vents Field Form 1 and site photos are attached						
	 Observations: Outer gate is secure and locked; inner access gate is not locked. Water in wetland area appears to have receded back. Vent stack on vent # 4 is twisted, but still secure in the ground. Screen on Vent #1 had fallen off; was placed back. Recommendations: Replace staff gauge. Repair inner access gate. New gate at Monitoring Well 5A/B is secure; could be locked next time Leachate Treatment No leachate treatment this month; reviewing treatment plan and possible alternate treatment for iron 						
PLANNED ACTIVITIES	 Continue monthly OM&M activities Repair inner access gate. Continue with leachate treatment plan Prepare SPDES discharge application to Divn. of Water 						

- TO: Carl Hoffman (NYSDEC), Paul Curran (OBG)
- FROM: Dharma Iyer and Dan Tagliento (IEG)
- DATE: January 10, 2005

RE: OM&M FIELD REPORT – Kessman Landfill, Patterson, NY

DATE ON SITE	December 28, 2004
ACTIVITIES	Monthly OM&M
FIELD MEASUREMENTS	Ground Water Levels and Gas Vents Field Form 1 and site photos are attached
	 Observations: Outer gate is secure and locked; inner access gate is not locked. Locks were frozen; had to use blow torch; lubricated all locks with graphite Water in wetland frozen 30" from leachate sump. Carbon drums are frozen to the ground. PVC caps are broken at wells MW-1A and MW-5B. Recommendations: Replace staff gauge. Add spacer and latch to North access gate. New gate at Monitoring Well 5A/B is secure Leachate Treatment No leachate treatment this month; reviewing treatment plan and possible alternate treatment for iron
PLANNED ACTIVITIES	 Continue monthly OM&M activities Repair inner access gate. Continue with leachate treatment plan Prepare SPDES discharge application to Divn. of Water

- TO: Carl Hoffman (NYSDEC), Paul Curran (OBG)
- **FROM:** Dharma lyer and Dan Tagliento (IEG)
- DATE: February 8, 2005
- RE: OM&M FIELD REPORT Kessman Landfill, Patterson, NY

DATE ON SITE	January 25, 2005
ACTIVITIES	Monthly OM&M
FIELD MEASUREMENTS	Ground Water Levels and Gas Vents Field Form 1 and site photos are attached
	 Observations: Outer gate is secure and locked; inner access gate is locked. Locks were easier to open because they were lubricated the previous visit; lubricated inner and outer gate padlocks with graphite Water in wetland frozen 35' from leachate sump. Carbon drums are frozen to the ground. PVC caps are broken at wells MW-1A and MW-5B. Two warm spots were observed in the wetland near the northern shoreline (see Figure 1): near MW-20AB (see photo) and further north by end of fence. The leachate tracer study indicated possible seepage/infiltration from the same two areas.
	 Recommendations: 1) Replace staff gauge. 2) Add spacer/latch to new gate at Monitoring Well 5A/B Leachate Treatment No leachate treatment this month; reviewing treatment plan and possible alternate treatment for iron
PLANNED ACTIVITIES	 Continue monthly OM&M activities Finish North gate near MW-5A/B (spacer/latch) Continue with leachate treatment plan Prepare SPDES discharge application to Divn. of Water

DATE: February 27, 2002	ACTIVITIES: Mon	thly OM&M
OUTSIDE TEMP (°F): 36	WEATHER: Cloudy, ra	ain showers, flurries
PERSONS AT SITE: KLW, JBW, DRI	EQUIPMENT ON SITE:	VRAE, water level meter, generator, pH and conductivity meters
SITE OBSERVATIONS: Weather conditions have been very we	et lately; lots of surface	e water present; pond level high
ACCESS GATE: both locked and secure	VEGETATION: mow	ved

FLARE SYSTEM: N/A

GAS VENTS/PIPING: OK

CAP:

			MONIT	ORING WE	ELLS				
WELL ID	GROUND ELEV.	TOR ELEV.	TOTAL WELL DEPTH	BOTTOM ELEV.	10/29 (basel (ft)	ine)	TODAY'S READINGS (ft)		REMARKS
	(ft)	(ft)	(ft)	(ft)	Depth to Water	Elev.	Depth	Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	15.35	447.80	
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	17.84	445.17	
MW-3A	432.59	436.07	67.36	368.71	4.80	431.27	4.14	431.93	
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	3.81	431.97	
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34	2.13	431.71	
MW-5B	431.70	434.35	30.38	403.97	3.30	431.05	2.51	431.84	
MW-20A	431.51	431.29	21.61	409.68	3.10	428.19	2.57	428.72	
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57	1.97	429.20	
Leachate Tank									
Staff Gauge									

	G	AS VENTS			MAINTENANCE
VENT	H2S	METHANE	O2	CO2	
	(ppm)	(% LEL)	(%)	(%)	
V-1					No gas readings taken
V-2					
V-3		_			
V-4					
V-5					
V-6					

DATE: March 28, 2002

OUTSIDE TEMP (°F): low 50s

PERSONS AT SITE: KLW, JBW

SITE OBSERVATIONS: Weather conditions have been very wet lately; lots of surface water present; pond level high

ACCESS GATE: both locked and secure

FLARE SYSTEM: N/A

VEGETATION:

ACTIVITIES:

GAS VENTS/PIPING: V-1 not screened; all others screened

Monthly OM&M

EQUIPMENT ON SITE: VRAE meter, water level meter

WEATHER: Sunny, clear, windy

CAP: Soft in areas (did not drive on cap); many animal burrows in vicinity of MW-3 series

			MONIT	ORING W	ELLS				
WELL ID	GROUND ELEV.	TOR ELEV.	TOTAL WELL	BOTTOM ELEV.	(basel	10/29/01 (baseline) (ft)		DAY'S DINGS	REMARKS
	(ft)	(ft)	DEPTH (ft)	(ft)	Depth to Water	Elev.	Depth	ft) Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	14.66	448.49	Lock difficult to open;
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	11.02	451.99	needs WD-40
MW-3A	432.59	436.07	67.36	368.71	4.80	431.27	3.81	432.26	No key; had to cut lock;
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	3.50	432.28	replaced with keyed alike locks
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34	1.79	432.05	Well submerged in surface water
MW-5B	431.70	434.35	30.38	403.97	3.30	431.05	2.10	432.25	
MW-20A	431.51	431.29	21.61	409.68	3.10	428.19	2.20	429.09	Surrounded by surface water
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57	1.65	429.52	
Leachate Tank Staff Gauge									

	G	AS VENTS			MAINTENANCE
VENT	H2S	METHANE	O2	CO2	
	(ppm)	(% LE L)	(%)	(%)	
V-1	0	0	20.8		V-1 near MW-5 not screened
V-2	0	92	19.9		
V-3	0	78	20.0		
V-4	0	>100	18.0		
V-5	0	29	20.4		
V-6	0	29	20.3		

DATE: April 25, 2002	ACTIVITIES: Monthly OM&M
OUTSIDE TEMP (°F): High 40s	WEATHER: Sunny, overcast, windy
PERSONS AT SITE: KLW, JBW	EQUIPMENT ON SITE: VRAE meter, water level meter
SITE OBSERVATIONS: Weather conditions have been very w	et lately; lots of surface water present; pond level high
ACCESS GATE: both locked and secure	VEGETATION:
FLARE SYSTEM: N/A	GAS VENTS/PIPING: no new drainage/changes

CAP: Animal burrows, small drainage ruts between MW-3 and MW-20 series

			MONIT	ORING WE	ELLS				
WELL ID	GROUND ELEV.	TOR ELEV.	TOTAL WELL DEPTH	BOTTOM ELEV.	(base	10/29/01 (baseline) (ft)		DAY'S DINGS ft)	REMARKS
	(ft)	(ft)	(ft)	(ft)	Depth to Water	Elev.	Depth	Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	14.26	448.89	Needs a new lock
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	10.25	452.76	
MW-3A	432.59	436.07	67.36	368.71	4.80	431.27	3.82	432.25	Animal burrows nearby;
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	3.49	432.29	surface water present
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34	1.62	432.22	Surface water nearby
MW-5B	431.70	434.35	30.38	403.97	3.30	431.05	1.96	432.39	with an oily sheen
MW-20A	431.51	431.29	21.61	409.68	3.10	428.19	1.99	429.30	Surrounded by surface water
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57	1.40	429.77	
Leachate Tank		436.12					4.09	432.03	Measured from lock side,
Staff Gauge									inside of lip

	G	AS VENTS			MAINTENANCE
VENT	H2S	METHANE	O2	CO2	
	(ppm)	(% LEL)	(%)	(%)	
V-1		33	19.8		
V-2		20	20.0		
V-3		23	19.9		
V-4		>100	17.2		
V-5		0	0.3		
V-6		>100	18.0		

DATE: May 15, 2002, and May 16, 2002

OUTSIDE TEMP (°F): 60s

PERSONS AT SITE: KLW, JBW

WEATHER: Sunny, partly cloudy, windy EQUIPMENT ON SITE: generator, VRAE meter, water level meter, conductivity/pH meter

Monthly OM&M

SITE OBSERVATIONS: Weather conditions have been very wet lately; lots of surface water present; pond level high

ACCESS GATE: both locked and secure

VEGETATION:

ACTIVITIES:

FLARE SYSTEM: N/A

GAS VENTS/PIPING: good

CAP: Several areas where geomembrane fabric is exposed

			MONIT	ORING WE	LLS				
WELL ID	GROUND ELEV.	TOR ELEV.	TOTAL WELL DEPTH	BOTTOM ELEV.		10/29/01 (baseline)		DAY'S DINGS ft)	REMARKS
	(ft)	<u>(ft)</u>	(ft)	_(ft)_	Depth to Water	Elev.	Depth	Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	13.33	449.82	pumped 2.5gpm x 5 min
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	9.15	453.86	Hand bailed
MW-3A	432.59	436.07	67.36	368.71	4.80	431.27	3.24	432.83	Pump will not fit; Hand bailed
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	2.89	432.89	Pumped 2.5 gpm x 7 min
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34	1.20	432.64	Pumped 2.5 gpm x 6 min
MW-5B	431.70	434.35	30.38	403.97	3.30	431.05	1.54	432.81	Pumped 2.5 gpm until dry
MW-20A	431.51	431.29	21.61	409.68	3.10	428.19	1.58	429.71	Pumped 2.5 gpm x 8 min
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57	1.04	430.13	Pumped 2.5 gpm x 10 min
Leachate Tank		436.12					6.70	429.42	Neenah Foundry
Staff Gauge		433.06					0.76	430.49	in inches

	G	AS VENTS			MAINTENANCE
VENT	H2S	METHANE	O2	CO2	
	(ppm)	(% LEL)	(%)	(%)	
V-1	ND	0	19.8	0.0	A. No specific maintenance required
V-2	ND	7	19.6	0.0	B. Well MW-3A has a kink in PVC riser above ground level; needs repair
V-3	ND	0	19.9	0.0	C. Wells, staff guage and leachate tank need to be surveyed
V-4	ND	14	18.8	0.0	D. pH meter did not seem to work correctly for wells MW-5A, 5B and 201A
V-5	ND	30	17.8	0.0	
V-6	ND	97	17.1	2.0	

DATE: June 13, 2002	ACTIVITIES:	Monthly OM&M
OUTSIDE TEMP (°F): 60s	WEATHER: EQUIPMENT ON	Cloudy, humid
PERSONS AT SITE: KLW, JBW, DRI, GM	SITE:	Water level meter, fence post
SITE OBSERVATIONS:		driver, hammer
ACCESS GATE: Both locked and secure	VEGETATION:	overgrown, needs mowing
LEACHATE:	GAS VENTS/PIPING:	ок

CAP: Good

			MONIT	ORING WE					
WELL ID	GROUND ELEV.	TOR ELEV.	TOTAL WELL	BOTTOM ELEV.	(base	10/29/01 TODAY'S baseline) READINGS		DINGS	REMARKS
	(ft)	(ft)	DEPTH	(ft)	(ft Depth to Water) Elev.	(Depth	ft) Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	12.17	450.98	
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	7.91	455.10	Ants in well, need to spray
MW-3A	432.59	436.07	67.36	368.71	4.80	431.27	3.98	432.09	Repaired in July
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	3.64	432.14	
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34	1.99	431.85	
MW-5B	431.70	434.35	30.38	403.97	3.30	431.05	2.31	432.04	
MW-20A	431.51	431.29	21.61	409.68	3.10	428.19	2.88	428.41	
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57	2.15	429.02	
Leachate Tank	-	436.12	-	-	-	-	6.13	429.99	
Staff Gauge	-	433.06	-	-	-	-	-	-	

	G	AS VENTS			MAINTENANCE
VENT	H2S	METHANE	Oz	CO2	
	(ppm)	(% LEL)	(%)	(%)	Collected surface water & leachate samples
V-1	-	-	-	-	Samples SW-1, SW-2, SW-3 and SW-103
V-2	-	-	-	-	Installed 2x4 for staff gauge
V-3	-	-	-	-	No maintenance work required
V-4	-	-	-	-	No readings from gas vents
V-5	-	-	-	-	
V-6	-	-	-	-	

DATE:	JULY 25, 20	002	ACTIVITIES:	Monthly	OM&M
	TEMP (°F):	low 70's	WEATHER:	Breezy,	cool, slightly overcast
PERSONS	AT SITE: KL	W. JBW	EQUIPMENT ON SITE:		VRAE Meter, Water level
		-			
SITE OBSE	ERVATIONS:	Site in good condition, no cha	nges to note exc	ept overg	rown vegetation
ACCESS G	GATE: B	oth locked and secure	VEGETATION:	In need	of mowing
LEACHATE	E:		GAS VENTS/PIPI	NG:	No changes to note

CAP: No changes to note

			MONIT	ORING WE	ELLS				
WELL ID	GROUND ELEV.	TOR ELEV.	TOTAL WELL DEPTH	BOTTOM ELEV.	10/29/01 (baseline) (ft)		TODAY'S READINGS (ft)		REMARKS
	(ft)	(ft)	(ft)	(ft)	Depth to Water	Elev.	Depth	Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	14.58	448.57	Very overgrown
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	11.22	451.79	
MW-3A	432.59	436.07	67.36	368.71	4.80	431.27	5.04	431.03	Kink in pipe
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	4.60	431.18	
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34	2.96	430.88	Very overgrown
MW-5B	431.70	434.35	30.38	403.97	3.30	431.05	3.64	430.71	
MW-20A	431.51	431.29	21.61	409.68	3.10	428.19	4.09	427.20	Monitoring well area overgrown
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57	2.90	428.27	
Leachate Tank	-	436.12	-	-	-	-	6.40	429.72	
Staff Gauge	-	433.06	-	-	-	-	-	-	

	G	AS VENTS			MAINTENANCE
VENT	H2S	METHANE	O2	CO2	
	(ppm)	(% LEL)	(%)	(%)	
V-1	0.00	0	21.1	-	Entire site very overgrown
V-2	0.00	2	21.3	-	Gas point V-1 : No. 4 lock; cannot open, needs to be cut off
V-3	0.00	2	21.3	-	
V-4	0.00	2	21.3	-	
V-5	0.00	3	19.9	-	
V-6	0.00	1	20.8	-	

August 22,2002 DATE: ACTIVITIES: Monthly OM&M 81 WEATHER: OUTSIDE TEMP (°F): Cloudy, overcast EQUIPMENT ON PERSONS AT SITE: KLW, JBW GA-94, VRAE, Water level meter SITE: SITE OBSERVATIONS: 2 soil/gas points repaired/updated ACCESS GATE: Locked and secure; VEGETATION: Mowed Recently

left side of gate needs minor repair

Other: Metal staff gauge installed

GAS VENTS/PIPING: Wasp nest in vent V-1, blocking vent

LEACHATE:

CAP:

			MONIT	ORING WI	ELLS				
WELL ID	GROUND ELEV.	TOR ELEV.	TOTAL WELL DEPTH	BOTTOM ELEV.	10/29/01 (baseline) (ft)		TODAY'S READINGS (ft)		REMARKS
	(ft)	(ft)	(ft)	(ft)	Depth to Water	Elev.	Depth	Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	16.22	446.93	Very overgrown in vicinity
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	12.53	450.48	
MW-3A	431.82	435.01	66.30	368.71	4.80	431.27	4.36	430.65	
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	5.51	430.27	Very overgrown
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34	3.97	429.87	
MW-5B	431.70	434.35	30.38	403.97	3.30	431.05	4.50	429.85	
MW-20A	431.51	431.29	21.61	409.68	3.10	428.19	4.42	426.87	
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57	3.69	427.48	
Leachate Tank	-	436.12	-	-	-	-	6.61	429.51	
Staff gauge	-	433.06	-	-	-	-	0.96	430.69	

	G	AS VENTS			MAINTENANCE
VENT	H2S	METHANE	O2	CO2	
	(ppm)	(% LEL)	(%)	(%)	
V-1	-	-	-	-	No screen - vent completely blocked by a hornet's nest
V-2	0.00	1	20.9	0.9	
V-3	0.00	0	21.2	0.0	
V-4	0.00	0	21.2	0.0	
V-5	0.00	1	7.9	2.3	
V-6	0.00	2	20.5	1.0	Wetland restoration area: water looks rust colored
SG-1	0.00	0	20.1	-	
SG-2	0.00	0	21.1	-	

ACTIVITIES: Monthly OM&M Sep.18, '02, and Sep. 19, '02 DATE: WEATHER: Clear, sunny OUTSIDE TEMP (°F): 78 EQUIPMENT ON PERSONS AT SITE: KLW, JBW/GM(9/19) SITE: Water level meter, VRAE Sampling equipment SITE OBSERVATIONS: Right side still in need of repair VEGETATION: Good ACCESS GATE: GAS VENTS/PIPING: Many Wasps present near vents LEACHATE:

CAP: Good

MONITORING WELLS 10/29/01 TODAY'S REMARKS TOR TOTAL BOTTOM WELL GROUND READINGS WELL ELEV. (baseline) ID ELEV. ELEV. DEPTH (ft) (ft) Depth to (ft) (ft) Water Elev. Depth Elev. pН Temp (oC) Sp. Cond. (us/cm) (ft) (ft) 403.75 447.05 16.40 446.75 6.06 24.3 0.76 463.15 59.40 16.10 MW-1A 461.15 439.91 13.00 450.01 13.26 449.75 7.31 28.4 0.76 MW-1B 461.07 463.01 23.10 431.82 435.01 66.30 368.71 4.80 431.27 4.04 430.97 6.77 27.0 0.77 MW-3A 4.47 431.31 5.18 430.60 6.53 27.1 0.76 MW-3B 432.68 435.78 34.20 401.58 72.18 361.66 2.50 431.34 3.92 429.92 6.87 19.6 0.76 433.84 MW-5A 431.38 429.94 30.38 403.97 3.30 431.05 4.41 6.85 28.0 0.75 MW-5B 431.70 434.35 MW-20A 409.68 3.10 428.19 4.24 427.05 7.25 24.7 0.76 431.51 431.29 21.61 431.17 42.53 388.64 2.60 428.57 3.49 427.68 7.48 26.4 0.76 MW-20B 430.92 Leachate 6.38 429.74 436.12 -----Tank Staff 1.18 430.91 433.06 _ ----Gauge

	G	AS VENTS			MAINTENANCE
VENT	H2S	METHANE	O₂ (%)	CO2 (%)	
<u> </u>	(ppm)		(%)	(70)	
V-1	0.00	2	20.9	-	Several wasps nests in and around vents V-1 through V-6
V-2	0.00	2	20.7	-	
V-3	0.00	12	17.2	-	
V-4	v	Vasp nest		-	Most nests sprayed with wasp killer
V-5	0.00	4	20.0	-	
V-6	0.00	8	18.8	-	

DATE: October	24, 2002	ACTIVITIES:	Monthly OM&M
OUTSIDE TEMP (°F): 32	WEATHER:	Clear
PERSONS AT SITE:	JBW, ELF	EQUIPMENT ON SITE:	Water level meter, VRAE
SITE OBSERVATIO	NS: East side of wetlands has cor	nsiderable water	Sampling equipment
ACCESS GATE:	Secure, front gates need work	VEGETATION:	mowed
LEACHATE:		GAS VENTS/PIP	ING: No changes

CAP: Looks good

			MONIT	ORING WE	ELLS				
WELL ID	GROUND ELEV.	TOR ELEV.	TOTAL WELL DEPTH	BOTTOM ELEV.	(basel	10/29/01 (baseline) (ft)		AY'S DINGS ft)	REMARKS
	(ft)	(ft)	(ft)	(ft)	Depth to Water	Elev.	Depth	Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	15.80	447.35	
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	12.28	450.73	
MW-3A	431.82	435.01	66.30	368.71	4.80	431.27	2.90	432.11	
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	4.02	431.76	
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34	2.36	431.48	Area under water
MW-5B	431.70	434.35	30.38	403.97	3.30	431.05	2.71	431.64	
MW-20A	431.51	431.29	21.61	409.68	3.10	428.19	2.66	428.63	Area under water
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57	2.12	429.05	
Leachate Tank	-	436.12	Baseline	from 08/02	6.60	429.52	4.70	431.42	
Staff Gauge	-	433.06			0.96	432.10	3.20	432.93	

	G	AS VENTS			MAINTENANCE
VENT	H2S	METHANE	O2	CO2	
	(ppm)	(% Vol)	(%)	(%)	
V-1	0	10	19.6	0	
V-2	0	12	20.2	0	
V-3	0	100	17.6	0	
V-4	0	12	20.3	0	
V-5	0	100	13.1	0	
V-6	0	100	4.4	0	

DATE: Noven	ıber 19, 2002	ACTIVITIES:	Monthly OM&M
OUTSIDE TEMP (PF): 32	WEATHER: EQUIPMENT	Overcast, no wind
PERSONS AT SIT	E: JBW, ELF	ON SITE:	Water level meter, VRAE
SITE OBSERVATI	ONS: Ground saturated throughout		Sampling equipment
ACCESS GATE:	Inside gate locking mechanism broke	VEGETATION:	Good
	needs chain	GAS VENTS/PIF	PING: No changes

CAP: Looks good

100

-

1

LEACHATE:

			MONIT	ORING WE	ELLS				
WELL ID	GROUND ELEV.	TOR ELEV.	TOTAL WELL	BOTTOM ELEV.	10/29 (basel			DAY'S DINGS	REMARKS
			DEPTH		(ft))	(ft)		
	(ft)	(ft)	(ft)	(ft)	Depth to Water	Elev.	Depth	Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	14.20	448.95	
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	10.24	452.77	
MW-3A	431.82	435.01	66.30	368.71	4.80	431.27	2.44	432.57	Area under water
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	3.58	432.20	
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34	2.43	431.41	
MW-5B	431.70	434.35	30.38	403.97	3.30	431.05	2.54	431.81	
MW-20A	431.51	431.29	21.61	409.68	3.10	428.19	2.90	428.39	
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57	2.28	428.89	
Leachate Tank	-	436.12	Baseline	from 08/02	6.60	429.52	4.70	431.42	
Staff Gauge	-	433.06			0.96	432.10	1.55	431.28	

	G	AS VENTS		
VENT	H2S	METHANE	O2	CO2
	(ppm)	(% Vol)	(%)	(%)
V-1	0	13	21.0	0
V-2	0	14	21.0	0
V-3	0	13	20.7	0
V-4	0	14	21.0	0
V-5	0	15	19.6	0
V-6	0	13	15. 4	0

DATE:	Decembe	er 17/18, 2002	ACTIVITIES:	Monthly OM&M
OUTSIDE	TEMP (°F)	: Tues. 26/ Wed 46	WEATHER: EQUIPMENT	Clear, sunny, cold
PERSONS	S AT SITE:	JW, KW, EF	ON SITE:	Water level meter, VRAE,Hydac,bailers
SITE OBS	ERVATION	IS: Pond frozen over,leachate collected	only at MH1	
ACCESS	GATE:	Inside gate locking mechanism broke	VEGETATION:	
		needs chain	GAS VENTS/PIP	ING:

CAP: Looks good

LEACHATE:

			MONIT	ORING WE	ELLS				
WELL ID	GROUND ELEV.	TOR ELEV.	TOTAL WELL DEPTH	BOTTOM ELEV.	(basel	10/29/01 (baseline) (ft)		DAY'S DINGS ft)	REMARKS
	(ft)	(ft)	(ft)	(ft)	Depth to Water	Elev.	Depth	Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	15.35	447.80	ph 6.64, cond 1.08, temp 3.0
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	17.84	445.17	ph 7.25, cond 1.08, temp 3.1
MW-3A	431.82	435.01	66.30	368.71	4.80	431.27	4.14	430.87	ph 6.57, cond, temp 3.3
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	3.81	431.97	ph 6.58, cond1.37, temp3.2
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34	2.13	431.71	ph 6.79, cond1.07, temp 4.5
MW-5B	431.70	434.35	30.38	403.97	3.30	431.05	2.51	431.84	ph 6.73, cond 1.07, temp 4.2
MW-20A	431.51	431.29	21.61	409.68	3.10	428.19	2.57	428.72	ph 7.25, cond 2.51, temp 4.4
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57	1.97	429.20	ph 7.60, cond 2.54, temp 8.4
Leachate Tank	-	436.12	Baseline	from 08/02	6.60	429.52	5.70	430.42	ph 6.25, cond1.06, temp 1.7
Staff Gauge	-	433.06			0.96	432.10	1.75	431.48	

	G	AS VENTS			MAINTENANCE
VENT	H2S	METHANE	O2	CO2	
	(ppm)	(% Vol)	(%)	(%)	
V-1	0	0	19.6	0	V-1 screen cover off; was repaired
V-2	0	0	19.7	0	
V-3	0	0	19.8	0	
V-4	0	0	19.9	0	
V-5	0	0	19.6	0	
V-6	0	23	19.9	0	

DATE:	March 26,2003	ACTIVITIES:	Monthly OM&M
	MP (°F): 60	WEATHER:	Partly cloudy
PERSONS AT	SITE: KW,EF,JM	V EQUIPMENT O	ON SITE: Waterlevel, VRAE, Hydac
SITE OBSER	ATIONS:		
ACCESS GAT	E: Outer good; inn	er no lock-open VEGETA	TATION: good
FLARE SYST	E M: N/A	GAS VENTS/PI	PIPING: Screen on two vents torn; we replaced
CAP:	Soft in areas, animal	burrows	

			MONI	TORING V	VELLS				
WELL ID	GROUND ELEV.	TOR ELEV.	TOTAL WELL DEPTH	BOTTOM ELEV.	(base (1	10/29/01 (baseline) (ft)		AY'S DINGS ft)	REMARKS
	(ft)	(ft)	(ft)	(ft)	Depth to Water	Elev.	Depth	Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	10.22	452.93	ph 716, cond 1.49, temp 48.4c
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	5.14	457.87	ph 7.7, cond 1.51 temp 49c
MW-3A	432.59	436.07	67.36	368.71	4.80	431.27	2.15	433.92	ph 7.25, cond1.53 temp 55.6
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	3.16	432.62	ph 7.04 cond1.53, temp 54.2
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34	1.60	432.24	ph 7.06, cond1.52, temp 51
MW-5B	431.70	434.35	30.38	403.97	3.30	431.05	1.95	432.40	ph 7.16cond 1.52, temp 52
MW-20A	431.51	431.29	21.61	409.68	3.10	428.19	2.90	428.39	ph 7.76 cond 1.52 temp *
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57	1.79	429.38	ph 7.74 cond 1.52 temp *
Leachate Tank	-	436.12	Baseline f	rom 08/02	6.60	429.52	5.70	430.42	
Staff Gauge	-	433.06			0.96	432.10	1.75	431.31	

	(GAS VENT	S		MAINTENANCE							
VENT	H2S (ppm)	METHANE (% LEL)	O₂ (%)	CO2 (%)								
V-1	0	0	20.8		One screen missing from vent, one other was damaged.							
V-2	0	0	20.2		Screen replaced on missing vents							
V-3	0	0	20.4									
V-4	0	0	20.1									
V-5	0	0	20.2									
V-6	0	0	20.1									
Note:		•		•	iows evidence of many beaver dams in place and influencing outlet in this area. ay soon be affecting water levels of surface pond on site.							

Monthly OM&M ACTIVITIES: DATE: April 24,2003 45 WEATHER: Partly sunny, windy OUTSIDE TEMP (°F): EQUIPMENT ON SITE: Waterlevel, VRAE KW,JW PERSONS AT SITE: SITE OBSERVATIONS: mesh fabric visible in areas VEGETATION: ACCESS GATE: Outer good; inner no lock-open good FLARE SYSTEM: N/A GAS VENTS/PIPING: Screen on two vents torn; we replaced Quite soft in areas CAP:

WELL	GROUND	TOR	TOTAL	воттом	10/2	9/01	TOD	AY'S	REMARKS
ID	ELEV.	ELEV.	WELL	ELEV.	(base	eline)	READINGS		
			DEPTH		(f	t)	(1	it)	
	(ft)	(ft)	(ft)	(ft)	Depth to Water	Elev.	Depth	Elêv.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	10.88	452.27	water in drainage ditch has a sheen,
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	6.48	456.53	irridescent
MW-3A	432.59	436.07	67.36	368.71	4.80	431.27	2.51	433.56	mostly on east side of site near
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	4.65	431.13	MW-3A & 3B
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34	2.02	431.82	
MW-5B	431.70	434.35	30.38	403.97	3.30	431.05	2.41	431.94	Tall grasses in all wetlands appear to
MW-20A	431.51	431.29	21.61	409.68	3.10	428.19	3.38	427.91	have been knocked down
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57	2.22	428.95	
Leachate Tank	-	436.12	Baseline f	rom 08/02	6.60	429.52	6.00	430.12	
Staff Gauge	-	433.06			0.96	432.10	1.30	431.76	Cannot get accurate reading due to rust staining on gauge

	G	AS VENTS			MAINTENANCE
VENT	H2S	METHANE	Oz	CO2	
	(ppm)	(% LEL)	(%)	(%)	
V-1	0	0	20.8	0	Evident at vents 2 - 5 are dirt mounds at the base more significant in appearance than
V-2	0	0	20.2	0	noted before. Appears as though vents may have been pushed up due to frost
∨-3	0	0	20.4	0	heaving
V-4	0	0	20.1	0	
V-5	0	0	20.2	0	
V-6	0	0	20.1	0	

ACTIVITIES: Monthly OM&M DATE: May 29, 2003 WEATHER: Overcast 60 OUTSIDE TEMP (°F): PERSONS AT SITE: KW,JW EQUIPMENT ON SITE: Waterlevel Meter Water level in pond is higher, 2.5, has several muskrat at homes SITE OBSERVATIONS: VEGETATION: High; needs mowing Outer good; inner no lock-open ACCESS GATE: GAS VENTS/PIPING: Screen on two vents torn; we replaced N/A FLARE SYSTEM: Vegetation is high hard to assess cap LEACHATE: Orange discoloration at south half CAP:

			MONIT	oring w	ELLS				
WELL	GROUND	TOR	TOTAL	воттом	10/2	10/29/01		AY'S	REMARKS
ID	ELEV.	ELEV.	WELL	ELEV.	(base	eline)	READ	DINGS	
			DEPTH		(f	t)	(1	ft)	
	(ft)	(ft)	(ft)	(ft)	Depth to W	Elev.	Depth	Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	12.05	451.10	At Railroad Bridge N/E of landfill
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	7.73	455.28	water is higher. Water to the east of brid
MW-3A	432.59	436.07	67.36	368.71	4.80	431.27	2.60	433.47	is still blocked up. Waterlevel SW
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	3.75	432.03	side of overpass is 7' deep
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34	2.22	431.62	
MW-5B	431.70	434.35	30.38	403.97	3.30	431.05	2.64	431.71	
MW-20A	431.51	431.29	21.61	409.68	3.10	428.19	3.47	427.82	
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57	2.26	428.91	
Leachate Tank	-	436.12	Baseline	rom 08/02	6.60	429.52	6.14	429.98	
Staff Gauge	-	433.06			0.96	432.10	1.30	431.76	

	G	AS VENTS			MAINTENANCE
VENT	H2S	METHANE	Oz	CO2	
	(ppm)	(% LEL)	(%)	(%)	
V-1	NA	NA	NA	NA	Screens are all secure on vents
V-2	NA	NA	NA	NA	
V-3	NA	NA	NA	NA	
V-4	NA	NA	NA	NA	
V-5	NA	NA	NA	NA	
V-6	NA	NA	NA	NA	

DATE: Jun OUTSIDE TEMP (°		ACTIVITIES: WEATHER:	Monthly O Hot, clear	M&M
PERSONS AT SITI	E: DI/CH/JW/RC	EQUIPMENT ON SIT	E:	Waterlevel Meter
SITE OBSERVATIO	ONS: Overgrown, cannot see cap			
ACCESS GATE:	Outside gate locked; inside gate still broken	VEGETATION	N:	Overgrown
FLARE SYSTEM:	N/A	GAS VENTS/PIPING	:	ОК
CAP:	OK; cannot observe surface of cap	LEACHATE:		OK

			MONI	TORING V	VELLS				
WELL ID	GROUND ELEV.	TOR ELEV.	TOTAL WELL DEPTH	BOTTOM ELEV.	(base	:9/01 eline) ft)	TODAY'S READINGS (ft)		REMARKS
	(ft)	(ft)	(ft)	(ft)	Depth to Water	Elev.	Depth	Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	11.38	451.77	
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	6.78	456.23	
MW-3A	432.59	436.07	67.36	368.71	4.80	431.27	2.44	433.63	
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	3.56	432.22	
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34	2.07	431.77	
MW-5B	431.70	434.35	30.38	403.97	3.30	431.05	2.36	431.99	
MW-20A	431.51	431.29	21.61	409.68	3.10	428.19	3.32	427.97	
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57	2.07	429.10	
Leachate Tank	-	436.12	Baseline	from 08/02	6.60	429.52	6.14	429.98	Key size - 1/2 + 8/10; 1/2 + depth
Staff Gauge	-	433.06			0.96	432.10	1.38	431.68	

		GAS VENT	8	1
VENT	H2S	METHANE	O2	CO2
	(ppm)	(% LEL)	(%)	(%)
V-1	0	0	21	0
V-2	0	0	21	0
V-3	0	1	20	0
V-4	0	3	20	0
V-5	0	1	21	0
V-6	0	7	17.8	0

DATE:	July 29	9,2003	ACTIVITIES:	Monthly	OM&M	
	/IP (°F):	77	WEATHER:		Hot ,clear	
PERSONS AT	SITE:	JW, EF	EQUIPMENT ON	SITE:	Water level meter, VI	RAE
SITE OBSERV	ATIONS	Mowed				
ACCESS GAT	E:	Outer good; inner no lock - open	VEGETAT	FION:	overgrown	
FLARE SYSTI	EM:	N/A	GAS VENTS/PIP	ING:	Good	
CAP:	Ň	legetation is high; hard to assess cap	LEACHATE:	Orange	discoloration at south ha	ılf

			MONI	FORING W	/ELLS				
WELL	GROUND	TOR	TOTAL	BOTTOM	10/2			AY'S	REMARKS
ID	ELEV.	ELEV.	WELL	ELEV.	,	eline)	READINGS		
			DEPTH		(f	t)	(1	ft)	
	(ft)	(ft)	(ft)	(ft)	Depth to Water	Elev.	Depth	Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	12.73	450.42	
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	8.37	454.64	
MW-3A	432.59	436.07	67.36	368.71	4.80	431.27	2.99	433.08	
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	4.13	431.65	
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34	2.62	431.22	
MW-5B	431.70	434.35	30.38	403.97	3.30	431.05	3.06	431.29	
MW-20A	431.51	431.29	21.61	409.68	3.10	428.19	7.01	424.28	
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57	5.06	426.11	
Leachate Tank		436.12	Baseline	from 08/02	6.60	429.52	6.21	429.91	
Staff Gauge		433.06			0.96	432.10	1.36	431.70	Numbers are very hard to read

	G	AS VENTS			MAINTENANCE
VENT	H2S	METHANE		CO2	
	(ppm)	(% VOL)	(%)	(%)	
V-1	0	2	21	0	Screens are all secure on vents
V-2	Û	24	2û	Û	
V-3	0	0	21	0	
V-4	0	19	20	0	
V-5	0	0	0	0	
V-ô	0	5	20.9	0	

DATE: Aug	ust 19, 2003	ACTIVITIES:	Monthly C	DM&M
OUTSIDE TEMP (°F	F): 80	WEATHER:	Hot ,clear	
PERSONS AT SITE	: JW, EF	EQUIPMENT ON S	SITE:	Water level meter, VRAE
SITE OBSERVATIO	NS: Mowed			
ACCESS GATES:	Outer gate good; inner has no lock - open	VEGETATIO	ON:	Thick at well #5
FLARE SYSTEM:	N/A	GAS VENTS/PIPIN	IG:	Good
CAP:	Mowed	LEACHATE:	Present	

			MONIT	oring w	ELLS				
WELL	GROUND	TOR	TOTAL	BOTTOM		9/01		AY'S	REMARKS
ID	ELEV.	ELEV.	WELL	ELEV.	`	eline)			4
			DEPTH			it)	(1	it)	
	(ft)	(ft)	(ft)	(ft)	Depth to Water	Elev.	Depth	Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	12.87	450.28	
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	8.56	454.45	
MW-3A	432.59	436.07	67.36	368.71	4.80	431.27	3.01	433.06	6" of standing water
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	4.14	431.64	
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34	2.64	431.20	
MW-5B	431.70	434.35	30.38	403.97	3.30	431.05	3.03	431.32	
MW-20A	431.51	431.29	21.61	409.68	3.10	428.19	3.92	427.37	
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57	2.52	428.65	
Leachate Tank		436.12	Baseline f	rom 08/02	6.60	429.52	6.30	429.82	
Staff Gauge		433.06			0.96	432.10	1.35	431.71	Staff gauge rusted; needs to be replaced

	G	AS VENTS			MAINTENANCE						
VENT	H2S	METHANE	Oz	CO2							
	(ppm)	(% VOL)	(%)	(%)							
V-1	0	>100	12	0	Screens are all secure on vents						
V-2	0	6	17	0							
V-3	0	3	17	0							
V-4	0	10	15	0							
V-5	0	7	17	0							
V-6	0	3	17.5	0							

Notes: Background VRAE readings were 3% LEL and 17.2 % oxygen taken at inner gate; Low Oxygen around perimeter of site Beaver dam appears the same - water not flowing to east; Must be blocked by another dam further down stream; Walked railroad track from S-N; Observed a lot of algae in wetlands drainage area along east boundary of landfill Water stagnant at railbridge in NE drainage from site

48

48

لانه

42

DATE:		October 1, 2003	ACTIVITIES:	Monthly OM&M
OUTSI	DE TEMP (°F):	58	WEATHER:	Hazy
PERSO	INS AT SITE:	EF, JW, and JD	EQUIPMENT ON SITE:	Water Level Meter and VRAE
SITE O	BSERVATIONS:	See cap below		
ACCES	S GATE:	secure	VEGETATION:	Mowed
FLARE	SYSTEM:	NA	GAS VENTS/PIPING:	ОК
CAP:	Rutted with ti	re tracks in places on the east side of Landfill	LEACHATE:	leachate removal initiated

NYSDEC to install new access gate by MW-5 series

WELL	GROUND	TOR	TOTAL	BOTTOM	10/2	10/29/01		Y'S	REMARKS
ID	ELEV.	ELEV.	WELL	ELEV.	(base	(baseline)		NGS	
			DEPTH		(f	t)	(ft))	
	(ft)	(ft)	(ft)	(ft)	Depth to water	Elev.	Depth to water	Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	11.90	451.25	
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	7.19	455.82	
MW-3A	432.59	436.07	67.36	368.71	4.80	431.27	2.42	433.65	
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	3.54	432.24	
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34	1.96	431.88	
MW-5B	431.70	434.35	30.38	403.97	3.30	431.05	2.32	432.03	
MW-20A	431.51	431.29	21.61	409.68	3.10	428.19	3.19	428.10	
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57	3.27	427.90	
Leachate Tank		436.12	Baseline f	rom 08/02	6.60	429.52	5.98	430.14	
Staff Gauge		433.06			0.96	432.10	1.68	431.38	

		GAS VENTS		
VENT	H2S	METHANE	Oz	CO2
	(ppm)	(% LEL)	(%)	(%)
V-1	0	98	21	0
V-2	0	off scale	21	0
V-3	0	100	21	0
V-4	n	32	19	0
V-5	0	0	20	0
V-6	0	52	19.7	0

Notes:

Beaver dam appears to be partly removed; water level sufficiently low to perform sediment sampling. Sediment: OBG/IEG completed a sediment sampling program in the adjacent wetland area during this week. Leachate: 12,000 gallons of leachate was pumped from the sump and disposed at the Beacon WWTP; will contune weekly

DATE:	November 26, 2003	ACTIVITIES:	Monthly OM&M leachate pumping
OUTSIDE TEMP (°F):	40	WEATHER:	partly cloudy
PERSONS AT SITE:	JBW	EQUIPMENT ON SITE:	Water Level Meter and VRAE
SITE OBSERVATIONS:	animal holes in cap		
ACCESS GATE:	Second gate still broken	VEGETATION:	Mowed
FLARE SYSTEM:	NA	GAS VENTS/PIPING:	Screen repaired at Vent #6
CAP:	Holes/burrows (8-10" deep) near MW-3 pair	LEACHATE:	leachate pumped out weekly

_									
WELL	GROUND	TOR	TOTAL	BOTTOM	10/2	9/01	TODAY'S		REMARKS
ID	ELEV.	ELEV.	WELL	ELEV.	(base	eline)	READ	NGS	
			DEPTH		(f	t)	(ft)	
	(ft)	(ft)	(ft)	(ft)	Depth to water	Elev.	Depth to water	Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	10.98	452.17	
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	6.42	456.59	
MW-3A	432.59	436.07	67.36	368.71	4.80	431.27	2.23	433.84	
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	3.34	432.44	
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34	1.78	432.06	
MW-5B	4 31.70	434.35	30.38	403.97	3.30	431.05	2.18	432.17	
MW-20A	431.51	431.29	21.61	409.68	3.10	428.19	2.89	428.40	
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57	1.81	429.36	
Leachate Tank		436.12	Baseline	from 08/02	6.60	429.52	5.21	430.91	
Staff Gauge		433.06			0.96	432.10	2.20	430.86	

	G	AS VENTS			MAINTENANCE
VENT	H2S	METHANE	O2	CO2	
	(ppm)	(% VOL)	(%)	(%)	
V-1	0	4	20.9	0	Inner gate needs to be repaired
V-2	0	15	20.4	0	
V-3	0	0	21.0	0	
V-4	0	0	21.0	0	
V-5	0	0	19.8	0	
V-6	0	0	20.8	0	

-

DATE	December 23 2003	ACTIVITIES:	Monthly OM&M leachate numping
OUTSIDE TEMP (°F):	40	WEATHER:	overcast
PERSONS AT SITE:	JBW, JD	EQUIPMENT ON SITE:	Water Level Meter and VRAE
SITE OBSERVATIONS:	ОК		
ACCESS GATE:	Latch/lock needs repair; difficult to open	VEGETATION:	snow cover
FLARE SYSTEM:	NA	GAS VENTS/PIPING:	ОК
CAP:	Some snow cover	LEACHATE:	leachate pumped

WELL	GROUND	TOR	TOTAL	воттом	10/2	9/01	TODA	Y'S	REMARKS
ID	ELEV.	ELEV.	WELL	ELEV.	(base	eline)	READINGS		
			DEPTH		(f	t)	(ft)	
	(ft)	(ft)	(ft)	(ft)	Depth to water	Elev.	Depth to water	Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	10.08	453.07	
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	5.54	457.47	
MW-3A	432.59	436.07	67.36	368.71	4.80	431.27	2.08	433.99	
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	3.22	432.56	
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34	1.69	432.15	ice blockage
MW-5B	431.70	434.35	30.38	403.97	3.30	431.05	2.04	432.31	blocked by ice
MW-20A	431.51	431.29	21.61	409.68	3.10	428.19	2.85	428.44	
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57	1.74	429.43	some ice blockage
Leachste Tank		436.12	Baseline	from 08/02	6.60	429.52	5.27	430.85	
Staff Gauge		433.06			0.96	432.10	2.20	430.86	

	G	AS VENTS	_		MAINTENANCE/REMARKS
VENT	H2S	METHANE	Oz	CO2	
	(ppm)	<u>(% LEL)</u>	(%)	(%)	
V-1	0	4	20.9	0	inner gate still broken
V-2	0	15	20.4	0	
V-3	0	0	21.0	0	
V-4	0	0	21.0	0	
V-5	0	0	19.8	0	2
V-6	0	0	20.8	0	

DATE:	January 29, 2004	ACTIVITIES:	Monthly OM&M leachate pumping
OUTSIDE TEMP (°F):	20	WEATHER:	sun, wind
PERSONS AT SITE:	JBW, JD	EQUIPMENT ON SITE:	Water Level Meter and VRAE
SITE OBSERVATIONS	âooq		
ACCESS GATE:	repaired	VEGETATION:	snow cover
FLARE SYSTEM:	NA	GAS VENTS/PIPING:	ОК
CAP:	Snow cover	LEACHATE:	measured in tank; leachate hauling rescheduled

WELL	GROUND	TOR	TOTAL	BOTTOM	10/2	9/01	TODAY'S		REMARKS
ID	ELEV.	ELEV.	WELL	ELEV.	(base	(baseline)		NGS	
			DEPTH		(f	(ft))	
	(ft)	(ft)	(ft)	(ft)	Depth to water	Elev.	Depth to water	Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	11.50	451.65	
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	7.46	455.55	
MW-3A	432.59	436.07	67.36	368.71	4.80	431.27	2.56	433.51	
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	3.38	432.40	
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34			frozen
MW-5B	431.70	434.35	30.38	403.97	3.30	431.05			frozen
MW-20A	431.51	431.29	21.61	409.68	3.10	428.19			frozen
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57			frozen
Leachate Tank		436.12	Baseline	from 08/02	6.60	429.52	8.82	427.30	
Staff Gauge		433.06			0.96	432.10	2.20	430.86	wetlands frozen

	G	AS VENTS			MAINTENANCE/REMARKS
VENT	H2S	METHANE	Oz	CO2	
	(ppm)	<u>(% VOL)</u>	(%)	(%)	
V-1	0	21	20.8	0	Repair inner gate
V-2	0	14	20.9	0	
V-3	0	22	20.4	0	
V-4	0	4	20.4	0	
V-5	0	4	20.4	0	
V-6	0	4	20.4	0	

-

-

DATE:	February 27, 2004
OUTSIDE TEMP (°F):	35
PERSONS AT SITE:	JBW, DT
SITE OBSERVATIONS:	dood
ACCESS GATE:	Clear, able to open
FLARE SYSTEM:	NA
CAP:	ОК

ACTIVITIES: Monthly OM&M WEATHER: Sunny; constant breeze EQUIPMENT ON SITE: Water Level Meter and VRAE VEGETATION: Frozen GAS VENTS/PIPING: OK

Stable

LEACHATE:

MONITORING WELLS 10/29/01 TODAY'S REMARKS WELL GROUND TOR TOTAL BOTTOM READINGS ID ELEV. ELEV. WELL ELEV. (baseline) DEPTH (ft) (ft) Depth to Depth to (ft) (ft) (ft) Elev. Elev. (ft) water water MW-1A 461.15 463.15 59.40 403.75 16.10 447.05 11.66 451.49 461.07 463.01 23.10 439.91 13.00 450.01 3.48 459.53 MW-1B 432.59 436.07 67.36 368.71 4.80 431.27 2.62 433.45 MW-3A 401.58 4.47 431.31 3.73 432.05 MW-3B 432.68 435.78 34.20 frozen MW-5A 431.38 433.84 72.18 361.66 2.50 431.34 MW-5B 431.70 434.35 30.38 403.97 3.30 431.05 frozen MW-20A 431.51 431.29 21.61 409.68 3.10 428.19 3.44 427.85 388.64 2.60 428.57 42.53 MW-20B 430.92 431.17 frozen Leachate 429.52 5.92 430.20 436.12 Baseline from 08/02 6.60 Tenk Staff 432.10 433.06 0.96 1.75 431.31 wetland is mostly frozen Gauge

-	G	AS VENTS		
VENT	H2S	METHANE	O ₂	CO2
	(ppm)	(% VOL)	(%)	(%)
V-1	0	0	20.6	0
V-2	0	0	20.5	0
V-3	0	4	17.6	0
V-4	0	0	20.6	0
V-5	0	3	17.6	0
V-6	0	1	20.6	0

DATE:	April 30, 2004	ACTIVITIES:	Monthly OM&M
OUTSIDE TEMP (°F):	78	WEATHER:	sunny, steady breeze, then hazy
PERSONS AT SITE:	JBW, DT	EQUIPMENT ON SITE:	Water Level Meter and VRAE
SITE OBSERVATIONS:	spring growth		
ACCESS GATE:	2nd gate needs locking yoke	VEGETATION:	green
FLARE SYSTEM:	NA	GAS VENTS/PIPING:	ОК
CAP:	good	LEACHATE:	Stable

WELL	GROUND	TOR	TOTAL	BOTTOM	10/2	9/01	TODA	Y'S	REMARKS
ID	ELEV.	ELEV.	WELL	ELEV.	(base	eline)	READ	NGS	
			DEPTH		(f	t)	(ft)	
	(ft)	(ft)	<u>(ft)</u>	(ft)	Depth to water	Elev.	Depth to water	Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	6.95	456.20	
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	11.22	451.79	
MW-3A	432.59	436.07	67.36	368.71	4.80	431.27	2.14	433.93	
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	3.26	432.52	
MW-5A	431 38	433.84	72.18	361.66	2.50	431.34	1.65	432.19	
MW-5B	431.70	434.35	30.38	403.97	3.30	431.05	2.40	431.95	
MW-20A	431.51	431.29	21.61	409.68	3.10	428.19	2.47	428.82	
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57	1.55	429.62	
Leachate Tank		436.12	Baseline	from 08/02	6.60	429.52	4.66	431.46	
Staff Gauge		433.06			0.96	432.10	**		** water level just over top of gauge

	G	AS VENTS			MAINTENANCE/REMARKS				
VENT	H2S	METHANE	Oz	CO2					
	(ppm)	(% VOL)	(%)	(%)	At Metro North bridge (59.5 milepost):				
V-1	0	7	19.9	0	> Beaver dam holding back 24" of water west of bridge				
V-2	0	1	19.3	0	> Water level measured from top of bridge girder: 5.05' on west and 7.05' on east				
V-3	0	0	21.1	0	> Metro North work equipment (compressor, welder, tool boxes and acetylene cutting				
V-4	0	0	21.3	0	tanks) at northeast bank of outflow				
V-5	0	0	21.3	0					
V-6	0	0	21.2	0					

DATE:	May 25, 2004	ACTIVITIES:	Monthly OM&M GW & leachate sampling
OUTSIDE TEMP (°F):	70	WEATHER:	partly sunny
PERSONS AT SITE:	J. Domery, J. Carter	EQUIPMENT ON SITE:	Water Level Meter; VRAE; triple meter
SITE OBSERVATIONS:	Needed mowing; done by Town of Patterson		
ACCESS GATE:	2nd gate needs locking yoke	VEGETATION:	overgrown; mowed
FLARE SYSTEM:	NA	GAS VENTS/PIPING:	ОК
CAP:	aood	LEACHATE:	Conducted dve tracer test

WELL	GROUND	TOR	TOTAL	BOTTOM	10/2	10/29/01 TODAY'S		REMARKS	
ID	ELEV.	ELEV.	WELL	ELEV.	(base	eline)	READINGS		
			DEPTH		(f	(ft))	
	(ft)	(ft)	(ft)	(ft)	Depth to water	Elev.	Depth to water	Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	12.69	450.46	3 well vols = 23 gal
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	8.95	454.06	3 well vols = 7 gal
MW-3A	432.59	436.07	67.36	368.71	4.80	431.27	2.52	433.55	3 well vols = 32 gal
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	3.66	432.12	3 well vols = 15 gai
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34	1.90	431.94	3 well vols = 33 gal
MW-5B	4 31.70	434.35	30.38	403.97	3.30	431.05	2.26	432.09	3 well vols = 14 gal
MW-20A	431.51	431.29	21.61	409.68	3.10	428.19	2.41	428.88	3 well vols = 9.4 gal
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57	1.92	429.25	3 well vols = 20 gal
Leachate Tank		436.12	Baseline	from 08/02	6.60	429.52	4.48	431.64	
Staff Gauge		433.06			0.96	432.10	**		** water level over top of gauge

	G/	AS VENTS			MAINTENANCE/REMARKS
VENT	H2S	METHANE	O ₂	CO2	
	(ppm)	(% VOL)	(%)	(%)	At Metro North bridge (59.5 milepost):
V-1	0	30	20.6	0	> Beaver dam still holding back water west of bridge
V-2	0	3	20.6	0	
V-3	0	59	19.4	0	
V-4	0	3	20.6	0	
V-5	0	3	20.4	0	
V-6	0	4	20.5	0	

-

•

.

ACTIVITIES: June 30, 2004 Monthly OM&M DATE: WEATHER: sunny with few clouds OUTSIDE TEMP (°F): 75 EQUIPMENT ON SITE: Water Level Meter; VRAE PERSONS AT SITE: J. Domery, J. Carter SITE OBSERVATIONS: none VEGETATION: ΟK ACCESS GATE: needs repair GAS VENTS/PIPING: OK N/A FLARE SYSTEM: LEACHATE: showing along shoreline @ 30° N from MW-20 CAP:

a

WELL	GROUND	TOR	TOTAL	BOTTOM	10/29	9/01	TODA	Y'S	REMARKS
ID	ELEV.	ELEV.	WELL	ELEV.	(base	(baseline)		NGS	
			DEPTH		(ft	i)	(ft)		
	(ft)	(ft)	(ft)	(ft)	Depth to water	Elev.	Depth to water	Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	14.39	448.76	
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	10.85	452.16	
MW-3A	432.59	436.07	67.36	368.71	4.80	431.27	2.91	433.16	
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	4.03	431.75	
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34	2.14	431.70	
MW-5B	431.70	434.35	30.38	403.97	3.30	431.05	2.50	431.85	
MW-20A	431.51	431.29	21.61	409.68	3.10	428.19	2.41	428.88	
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57	1.87	429.30	
Leachate Tank		436.12	Baseline	from 08/02	6.60	429.52	4.23	431.89	
Staff Gauge		433.06			0.96	432.10	**		** water level over top of guage

	(SAS VENTS			MAINTENANCE/REMARKS
VENT	H2S	METHANE	Oz	CO2	
	(ppm)	(% VOL/ppm)	(%)	(%)	> Area near MW-1 A/B very overgrown
V-1	1	54	15.9	0	> West side of fence near Vent #5 has an animal hole under fence
V-2	0	5	20.9	3	> Water under RR bridge is 1" from top on west side;
V-3	0	4	0.8	0	Met with Metro staff who said dam is coming down this week
V-4	0	2	21.0	0	
V-5	0	12	21.0	0	
V-6	0	28	20.1	0	

ACTIVITIES: Monthly OM&M WEATHER: partly cloudy EQUIPMENT ON SITE: Water Level Meter; VRAE

VEGETATION: OK GAS VENTS/PIPING: OK LEACHATE:

			MONI	'ORING W	ELLS			_	
WELL	GROUND	TOR	TOTAL	воттом	10/29	9/01	TODA	Y'S	REMARKS
۱D	ELEV.	ELEV.	WELL	ELEV.	(base	(baseline)		NGS	
			DEPTH		(fi)	(ft)	
	(ft)	(ft)	(ft)	(ft)	Depth to water	Elev.	Depth to water	Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	15.07	448.08	
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	1.78	461.23	concrete pad cracked
MW-3A	432.59	436.07	67.36	368.71	4.80	431.27	2.74	433.33	
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	3.88	431.90	
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34	2.12	431.72	Under 18" of water
MW-5B	431.70	434.35	30.38	403.97	3.30	431.05	2.46	431.89	
MW-20A	431.51	431.29	21.61	409.68	3.10	428.19	2.31	428.98	under 8" water; still has pink dye
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57	1.78	429.39	
Leachate Tank		436.12	Baseline f	from 08/02	6.60	429.52	4.09	432.03	
Staff Gauge		433.06			0.96	432.10	**		** water level over top of gauge

	G	SAS VENTS			MAINTENANCE/REMARKS
VENT	H2\$	METHANE	Oz	CO2	
	(ppm)	(% VOL/ppm)	(%)	(%)	> Wells 3A and 3B overgrown - need weed wacking
V-1	0	100	17.2	0	> Background levels are at 100% volume methane
V-2	0	100	20.7	0	> Cleaned and recalibrated PID per instructions; readings still high
V-3	0	100	14.3	0	> Pumped leachate (25,740 gallons) on 8/4 and 8/5, treated and discharged on site
V-4	0	100	20.7	0	
∨-5	0	100	18.4	0	
∨-6	0	100	20.7	0	

DATE: OUTSIDE TEMP (°F): 75 PERSONS AT SITE: SITE OBSERVATIONS: Water level much lower ACCESS GATE: FLARE SYSTEM: CAP:

August 23, 2004 J. Domery, J. Carter needs repair N/A Good

ACTIVITIES:	Monthly OM&M
WEATHER:	partly cloudy
EQUIPMENT ON SITE:	Water Level Meter; VRAE
VEGETATION:	Mowed except around wells
GAS VENTS/PIPING:	Good

LEACHATE: Monitored

			MONI	ORING W	ELLS				
WELL	GROUND	TOR	TOTAL	BOTTOM	10/29	9/01	TODA	Y'S	REMARKS
ID	ELEV.	ELEV.	WELL	ELEV.	(base	line)	READINGS		
			DEPTH		(fi	:)	(ft))	
	(ft)	(ft)	(ft)	(ft)	Depth to water	Elev.	Depth to water	Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	13.68	449.47	
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	9.61	453.40	
MW-3A	432.59	436.07	67.36	368.71	4.80	431.27	2.54	433.53	
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	3.65	432.13	red dye still present
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34	2.22	431.62	
MW-5B	431.70	434.35	30.38	403.97	3.30	431.05	2.54	431.81	
MW-20A	431.51	431.29	21.61	409.68	3.10	428.19	3.04	428.25	
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57	2.20	428.97	
Leachate Tank		436.12	Baseline f	rom 08/02	6.60	429.52	6.00	430.12	
Staff Gauge		433.06			0.96	432.10	**		gone

	G	AS VENTS			MAINTENANCE/REMARKS
VENT	H2\$	METHANE	O₂	CO2	
	(ppm)	(% LEL)	(%)	(%)	> Wells MW-3A/B and MW-5A/B overgrown - need weed wacking
V-1	0	100	17.2	0	> Also overgrown getting to MW-1A/B
V-2	0	100	20.7	3	> Pumped leachate (48,320 gallons) on 9/2 and 9/3,
V-3	0	100	14.3	0	and treated and discharged on site
V-4	0	100	20.7	0	
∨-5	0	100	18.4	0	
V-6	0	100	20.7	0	

DATE:September 22, 2004OUTSIDE TEMP (°F):75PERSONS AT SITE:J. Domery, J. Carter, D. TaglientoSITE OBSERVATIONS:nonoACCESS GATE:OKFLARE SYSTEM:N/ACAP:Good

ACTIVITIES:	Monthly OM&M
WEATHER:	sunny
EQUIPMENT ON SITE:	Water Level Meter; VRAE
VEGETATION:	Overgrown near wells; otherwise mowed
GAS VENTS/PIPING:	ОК

LEACHATE: Monitored

			MONI	ORING W	ELLS				
WELL	GROUND	TOR	TOTAL	BOTTOM	10/2	9/01	TODA	Y'S	REMARKS
ID	ELEV.	ELEV.	WELL	ELEV.	(base	eline)	READ	NGS	
ļ			DEPTH		(f	n	(ft)	
	(ft)	(ft)	(ft)	(ft)	Depth to water	Elev.	Depth to water	Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	12.20	450.95	
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	7.46	455.55	
MW-3A	432.59	436.07	67.36	368.71	4.80	431.27	2.42	433.65	
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	3.51	432.27	some dye
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34	2.05	431.79	red dye
MW-5B	431.70	434.35	30.38	403.97	3.30	431.05	2.44	431.91	
MW-20A	431.51	431.29	21.61	409.68	3.10	428.19	2.06	429.23	
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57	5.91	425.26	
Leachate Tank		436.12	Baseline f	rom 08/02	6.60	429.52	6.00	430.12	
Staff Gauge		433.06			0.96	432.10	**		gone

	G	SAS VENTS			MAINTENANCE/REMARKS
VENT	H2S	METHANE	O ₂	CO2	
	(ppm)	(% VOL/ppm)	(%)	(%)	> find and straighten staff guage
V-1	1	13	17.1	0	> Water level at RR Bridge is 6.58" below railing
V-2	2	39	11.2	3	
V-3	0	1	21.0	0	
V-4	0	1	21.0	0	
V-5	0	1	21.0	0	
V-6	0	1	20.9	0	

DATE:	October 30, 2004	ACTIVITIES:	Monthly OM&M
OUTSIDE TEMP (°F):	55	WEATHER:	overcast & heavy fog - misty
PERSONS AT SITE:	J. Domery and J. Carter	EQUIPMENT ON SITE:	Water Level Meter; VRAE
SITE OBSERVATIONS:			
ACCESS GATE:	outer gate good, inner gate open	VEGETATION:	ОК
FLARE SYSTEM:	N/A	GAS VENTS/PIPING:	good except #4 is twisted
CAP:	Good	LEACHATE:	Monitored

			MONIT	ORING W	ELLS				
WELL	GROUND	TOR	TOTAL	BOTTOM	10/29	9/01	TODA	YS	REMARKS
ID	ELEV.	ELEV.	WELL	ELEV.	(base	(baseline)		NGS	
			DEPTH		(f1)	(ft)		
	(ft)	(ft)	(ft)	(ft)	Depth to water	Elev.	Depth to water	Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	11.98	451.17	
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	7.44	455.57	
MW-3A	432.59	436.07	67.36	368.71	4.80	431.27	2.58	433.49	sheen on water in drainage
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	2.14	433.64	ditch - dark brown; iridescent
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34	2.00	431.84	
MW-5B	4 31.70	434.35	30.38	403.97	3.30	431.05	5.80	428.55	red dye present
MW-20A	431.51	431.29	21.61	409.68	3.10	428.19	3.00	428.29	red dye present
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57	2.16	429.01	
Leschate Tank		436.12	Baseline	from 08/02	6.60	429.52	5.84	430.28	
Staff Gauge		433.06]		0.96	432.10	**		not found

		GAS VENTS			MAINTENANCE/REMARKS
VENT	H2S	METHANE	Oz (V)	CO2	
	(ppm)	(% VOL/ppm)	(%)	(%)	Find and straighten staff guage
V-1	1	32	3.2	2	> Water level at RR Bridge is 6.58" below railing - no change
V-2	2	20	10.4	0	> Vent #4 twisted 45°, but still secured to the ground
V-3	0	0	21.2	0	
V-4	0	4 ppm	18.4	0	
V-5	0	2 ppm	20.8	0	
V-6	0	0	21.2	0	

 DATE:
 November 23, 2004

 OUTSIDE TEMP (°F):
 33

 PERSONS AT SITE:
 D. Iyer, D. Tagliento

 SITE OBSERVATIONS:
 OK

 ACCESS GATE:
 Outer locked, inner gate open

 FLARE SYSTEM:
 N/A

 CAP:
 OK

ACTIVITIES: Monthly OM&M WEATHER: partly cloudy, calm EQUIPMENT ON SITE: Water Level Meter; VRAE

 VEGETATION:
 Mowed, good condition

 GAS VENTS/PIPING:
 OK

 LEACHATE:
 Monitored

			MONIT	foring w	ELLS				
WELL	GROUND	TOR	TOTAL	BOTTOM	10/2	9/01	TOD	AY'S	REMARKS
ID	ELEV.	ELEV.	WELL	ELEV.	(base	eline)	READ	INGS	
			DEPTH		(f	t)	(ft	t)	
	(ft)	(ft)	(ft)	(ft)	Depth to water	Elev.	Depth to water	Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	12.43	450.72	
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	8.02	454.99	
MW-3A	432.59	436.07	67.36	368.71	4.80	431.27	2.61	433.46	sheen on water in drainage
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	3.73	432.05	ditch - dark brown; iridescent
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34	2.22	431.62	
MW-5B	431.70	434.35	30.38	403.97	3.30	431.05	2.64	431.71	red dye present
WW-20A	431.51	431.29	21.61	409.68	3.10	428.19	3.34	427.95	red dye present
WW-20B	430.92	431.17	42.53	388.64	2.60	428.57	2.21	428.96	
eechate Tank		436.12	Baseline	from 08/02	6.60	429.52	8.95	427.17	
Staff Gauge		433.06	1		0.96	432.10	**		missing

	G	AS VENTS			MAINTENANCE/REMARKS
VENT	H2S	METHANE	Oz	CO2	
	(ppm)	(% VOL/ppm)	(%)	(%)	> Find and straighten staff guage
V-1	0	24	14.5	2	> shoreline receded 20 feet at leachate sump; 10' at MW-20A/B
V-2	0	14	15.8	0	> Vent #4 twisted 45°, but still secured to the ground
V-3	0	1	18.5	0	
V-4	0	9	14.3	0	
V-5	0	1	13.8	0	
V-6	0	6	17.3	0	
GP-1	0	0	19.1	0	
GP-2	0	80	13.2	0	

 DATE:
 December 28, 2004

 OUTSIDE TEMP (°F):
 5

 PERSONS AT SITE:
 R. Allen, D. Tagliento

 SITE OBSERVATIONS:
 OK

 ACCESS GATE:
 Outer locked, inner locked

 FLARE SYSTEM:
 N/A

 CAP:
 OK

ACTIVITIES: WEATHER: Monthly OM&M cloudy, calm

EQUIPMENT ON SITE: Water Level Meter; VRAE, propane torch

VEGETATION: Mowed, weeds out GAS VENTS/PIPING: OK LEACHATE: Monitored

			MONI	ORING W	ELLS				
WELL	GROUND	TOR	TOTAL	BOTTOM	10/29	9/01	TODA	Y'S	REMARKS
10	ELEV.	ELEV.	WELL	ELEV.	(base	line)	READ	NGS	
			DEPTH		(ft)	(ft)	
	(1)	(7)	(0)	(0)	Depth to		Depth to	_	
······	(ft)	(ft)	(ft)	(ft)	water	Elev.	water	Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	11.19	451.96	2" PVC cap broken
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	6.38	456.63	
MW-3A	432.59	436.07	67.36	368.71	4.80	431.27	2.36	433.71	
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	3.45	432.33	
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34	1.93	431.91	
MW-5B	431.70	434.35	30.38	403.97	3.30	431.05	2.36	431.99	Pink tint present; PVC cap broken
MW-20A	431.51	431.29	21.61	409.68	3.10	428.19	2.90	428.39	
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57	1.72	429.45	Frozen at 6" above ground level; measured outside of pipe
Leachate Tenk		436.12	Baseline	from 08/02	6.60	429.52	5.66	430.46	not frozen, light orange, brown skim coat
Staff Gauge		433.06			0.96	432.10	**		Lost below water

	G	AS VENTS			MAINTENANCE/REMARKS
VENT	H2S	METHANE	Oz	CO2	
	(ppm)	(% LEL)	(%)	(%)	> Gas readings taken 12" inside of pipes
V-1	2	>100	13.0	0	> Leachate tank - marsh ice 30' out from tank; carbon barrels frozen to the ground
V-2	2	>100	20.4	0	> Vent V-1 has no lock
V-3	2	2	19.8	0	> Lubricated all locks with graphite
V-4	2	0	20.3	0	Recommend replacing staff gage and adding spacer/latch to North access gate
∨-5	2	0	20.3	0	
V-6	2	>100	17.3	0	
GP-1	2	>100	20.6	0	
GP-2	2	0	20.5	0	

-

-

DATE:	January 25, 2005
OUTSIDE TEMP (°F):	20
PERSONS AT SITE:	R. Allen, D. Tagliento
SITE OBSERVATIONS:	Snow cover, up to 4' drifts
ACCESS GATE:	Outer locked, inner locked
FLARE SYSTEM:	N/A
CAP:	OK, 6" of snow cover (average)

ACTIVITIES:

Monthly OM&M

 WEATHER:
 Sunny, light breeze, cold

 EQUIPMENT ON SITE:
 Water Level Meter; VRAE, propane torch

VEGETATION: Mowed, weeds trimmed GAS VENTS/PIPING: OK LEACHATE: Monitored

			MONIT	ORING W	ELLS	_			
WELL	GROUND	TOR	TOTAL	BOTTOM	10/29	9/01	TODA	Y'S	REMARKS
ID	ELEV.	ELEV.	WELL	ELEV.	(base	line)	READI	NGS	
			DEPTH		(ft)	(ft)		
	(ft)	(ft)	(ft)	(ft)	Depth to water	Elev.	Depth to water	Elev.	
MW-1A	461.15	463.15	59.40	403.75	16.10	447.05	2.63	460.52	2" PVC cap broken, ice
MW-1B	461.07	463.01	23.10	439.91	13.00	450.01	6.38	456.63	15' out to solid ice
MW-3A	432.59	436.07	67.36	368.71	4.80	431.27	2.20	433.87	Well is frozen (south of MW-3B)
MW-3B	432.68	435.78	34.20	401.58	4.47	431.31	3.37	432.41	
MW-5A	431.38	433.84	72.18	361.66	2.50	431.34	1.85	431.99	Both wells frozen (north of MW-5B)
MW-5B	431.70	434.35	30.38	403.97	3.30	431.05	2.27	432.08	PVC cap broken
M W-20A	431.51	431.29	21.61	409.68	3.10	428.19	10.58	420.71	
MW-20B	430.92	431.17	42.53	388.64	2.60	428.57	6.20	424.97	Frozen at 6" above ground level; measured outside of pipe
Leachate Tank		436.12	Baseline	from 08/02	6.60	429.52	5.65	430.47	
Staff Gauge		433.06			0.96	432.10	**		Lost below water

	G	AS VENTS			MAINTENANCE/REMARKS
VENT	H2S	METHANE	Oz	CO2	
	(ppm)	(% LEL)	(%)	. (%)	> Gas readings taken 12" inside of pipes
V-1	0	4	17.8	0	> Leachate tank - marsh ice 35' out from tank; carbon barrels frozen to the ground
V-2	0	0	20.4	0	> Vents GP-1 and GP-2 have no locks
V-3	0	1	20.0	0	> Lubricated inner and outer gate locks with graphite
V-4	0	0	20.3	0	> Recommend replacing staff gage and adding spacer/latch to North access gate
V-5	0	0	20.3	0	> Two warm spots in water - one near wetland sign at MW-20AB, other at end of fence
V-6	0	4	17.9	0	> Top of Rail Road Bridge Truss to ice is 6.45'
GP-1	0	1	20.7	0	> Railroad tool chest by Bridge is gone
GP-2	0	1	20.2	0	
Gate	0	1	21.2	0	

1

CROSS COUNTY SANITATION/KESSMAN LANDFILL OM&M Groundwater Monitoring/Well Purging/Sampling Date Sampled: 2/27/02 FORM 2 -

	DEPTH	DEPTH	HEIGHT	MIN.		Water Quality Parameters	r Parameters		
Sample	TO	TO	OF	PURGE	Hq	Sp. Cond.	Temp.	Turbidity	NOTES
I.D.	BOTTOM	WATER	WC	VOLUME	(s.u.)	((soymu))	(°F)	(ntu)	
	(ft)	(ft)	(ft)	(gal)					
MW-1A	59.40	15.35	44.05	7.2	7.4	0.190	50.7	clear	
MW-1B	23.10	17.85	5.25	6.0	7.7	0.180	50.4	cloudy	
MW-3A	67.36	4.14	63.22	10.3	7.9	0.220	46.7	clear	Kink in well
MW-3B	34.20	3.81	30.39	5.0	7.4	0.210	47.2	clear	
MW-5A	72.18	2.13	70.05	11.4	7.3	0.184	48.0	cloudy	
MW-5B	30.38	2.51	27.87	4.5	7.4	0.184	46.7	clear	
MW-20A	21.61	2.57	19.04	3.1	7.5	0.230	49.0	clear	
MW-20B	42.53	1.97	40.56	6.6	7.9	0.240	50.1	cloudy	

D:\ Ks_FieldDdata0202-0306.qpw

CROSS COUNTY SANITATION/KESSMAN LANDFILL OM&M Groundwater Monitoring Well Purging/Sampling Date Sampled: May 15 & 16, 2002 FORM 2

	DEPTH	DEPTH	HEIGHT	MIN		Water Qualit	Water Quality Parameters		
Sample	ТО	10	OF	PURGE	Hq	Sp. Cond.	Temp.	Turbidity	NOTES
I.D.	BOTTOM	WATER	WC	VOLUME	(s.u.)	((hmhos))	(°F)	(ntu)	
	(t)	(f t)	(ft)	(gal)					
MW-1A	59.40	15.35	44.05	7.2	*	0.010	I	I	
MW-1B	23.10	17.85	5.25	0.0	*	0.010	I	ł	
MW-3A	67.36	4.14	63.22	10.3	6.8	0.010	17.6	I	
MW-3B	34.20	3.81	30.39	5.0	6.4	0.010	19.8	I	
MW-5A	72.18	2.13	70.05	11.4	¥	0.010	24.4	I	
MW-5B	30.38	2.51	27.87	4.5	*	0.010	14.4	I	
MW-20A	21.61	2.57	19.04	3.1	*	0.010	23.1	I	
MW-20B	42.53	1.97	40.56	6.6	6.7	0.010	16.6	I	

NOTE: * pH meter did not work correctly for these wells

	DEPTH	DEPTH	HEIGHT	MIN.		Water Qualit	Water Quality Parameters		
Sample	то	то	OF	PURGE	Н	Sp. Cond.	Temp.	Turbidity	NOTES
.D.	BOTTOM	WATER	wc	VOLUME	(s.u.)	((soymu))	(°F)	(ntu)	
	(ft)	(ft)	(ft)	(gal)					
MW-1A	59.40	15.35	44.05	7.2	6.06	0.76	24.3	clear	
MW-1B	23.10	17.85	5.25	0.9	7.31	0.76	28.4	cloudy	
MW-3A	67.36	4.14	63.22	10.3	6.77	0.77	27.0	clear	
MW-3B	34.20	3.81	30.39	5.0	6.53	0.76	27.1	clear	
MW-5A	72.18	2.13	70.05	11.4	6.87	0.76	19.6	cloudy	
MW-5B	30.38	2.51	27.87	4.5	6.85	0.75	28.0	clear	
MW-20A	21.61	2.57	19.04	3.1	7.25	0.76	24.7	clear	
MW-20B	42.53	1.97	40.56	6.6	7.48	0.76	26.4	clear	

GROUNDWATER/SURFACE WATER/LEACHATE ELEVATIONS CROSS COUNTY SANITATION/KESSMAN LANDFILL FORM 3

(f) (f) (f) 10/29/0 MW-1A 461.15 463.15 59.40 403.75 447.05 MW-1B 461.07 463.01 23.10 439.91 450.01 MW-1B 461.07 463.01 23.10 439.91 450.01 MW-3A 431.82 434.65 67.36 367.29 431.27 MW-3B 431.82 434.65 67.36 367.29 431.31 MW-3B 431.82 434.65 67.36 367.29 431.37 MW-3B 431.82 433.84 72.18 431.34 431.34 MW-5A 431.38 72.18 361.66 431.34 MW-5B 431.36 72.18 361.66 431.34 MW-5D 431.51 433.84 72.18 403.97 431.05 MW-20A 431.51 431.32 30.386.4 403.97 431.05 MW-20B 430.92 431.17 42.53 388.64 428.57					h2							MAXIMUM FI EVATION	VARIATION
461.15 463.15 59.40 403.75 461.07 463.01 23.10 439.91 431.82 434.65 67.36 367.29 432.68 435.78 34.20 401.58 431.33 433.84 72.18 361.66 431.38 433.84 72.18 361.66 431.51 431.53 30.38 403.97 431.51 431.29 21.61 409.68 430.92 431.17 42.53 388.64	10/29/01 2/27/02 03/28/02 Baseline	8/02 4/25/02	5/15/02	6/13/02 0	7/25/02	6/13/02 07/25/02 08/22/02 09/18/02 10/24/02 11/17/02 12/19/02	09/18/02	10/24/02	11/17/02	12/19/02	(tt)	(t)	(#)
461.07 463.01 23.10 439.91 431.82 434.65 67.36 367.29 432.68 435.78 34.20 401.58 431.38 433.84 72.18 361.66 431.30 433.84 72.18 361.66 431.51 431.35 30.38 403.97 431.51 431.29 21.61 409.68 430.92 431.17 42.53 388.64	447.05 447.80 44	448.49 448.89	449.82	450.98	448.57	446.93	446.75	447.35	448.95	447.80	446.8	451.0	-4.2
431.82 434.65 67.36 367.29 432.68 435.78 34.20 401.58 431.38 433.84 72.18 361.66 431.70 434.35 30.38 403.97 431.51 431.29 21.61 409.68 430.92 431.17 42.53 388.64	450.01 445.17 45	451.99 452.76	453.86	455.10	451.79	450.48	449.75	450.73	452.77	445.17	445.2	455.1	-9.9
432.68 435.78 34.20 401.58 431.38 433.84 72.18 361.66 431.70 434.35 30.38 403.97 431.51 431.29 21.61 409.68 430.92 431.17 42.53 388.64	431.27 431.93 43;	432.26 432.25	432.83	432.09	431.03	430.65	430.97	432.11	432.57	430.87	430.7	432.8	-2.2
431.38 433.84 72.18 361.66 431.70 434.35 30.38 403.97 431.51 431.29 21.61 409.68 430.92 431.17 42.53 388.64	431.31 431.97 43:	432.28 432.29	432.89	432.14	431.18	430.27	430.60	431.76	432.20	431.97	430.3	432.9	-2.6
431.70 434.35 30.38 403.97 431.51 431.29 21.61 409.68 430.92 431.17 42.53 388.64	431.34 431.71 43:	432.05 432.22	432.64	431.85	430.88	429.87	429.92	431.48	431.41	431.71	429.9	432.6	-2.8
431.51 431.29 21.61 409.68 430.92 431.17 42.53 388.64	431.05 431.84 43	432.25 432.39	432.81	432.04	430.71	429.85	429.94	431.64	431.81	431.84	429.9	432.8	-3.0
431.17 42.53 388.64	428.19 428.72 42	429.09 429.30	429.71	428.41	427.20	426.87	427.05	428.63	428.39	428.72	426.9	429.7	-2.8
	428.57 429.20 42	429.52 429.77	430.13	429.02	428.27	427.48	427.68	429.05	428.89	429.20	427.5	430.1	-2.6
Leachate 436.12 429.52 Tank	429.52 -	- 432.03	429.42	429.99	429.72	429.51	429.74	431.42	431.42	430.42	429.4	432.0	-2.6
Staff 433.06 432.10 432.10	432.10 -	•	430.49		,	430.69	430.91	432.93	431.28	431.48	430.5	432.9	-2.4

Note: 1. All wells and soil gas points were resurveyed in August 2002 after repair work at MW-3A, GP-1 and GP-2 2. Previous elevations at MW-3A were: Ground elev. = 432.59 and Top of Riser elev. = 436.07.

GROUNDWATER/SURFACE WATER/LEACHATE ELEVATIONS CROSS COUNTY SANITATION/KESSMAN LANDFILL FORM 3

WELL	GROUND	TOR	TOTAL	BOTTOM		WATER		ELS (Elev	LEVELS (Elevation in feet)	set)					MINIMUM	MAXIMUM	VARIATION
Q	ELEV.	ELEV.	WELL DEPTH	ELEV.	10/29/01 03/26/03 4/24/03	03/26/03		5/29/03	6/26/03	07/29/03	6/26/03 07/29/03 08/19/03	10/1/03	10/1/03 11/26/03	12/23/03	ELEVATION (ft)	ELEVATION (ft)	(#)
MW-1A	461.15	463.15	59.40	403.75	447.05	452.93	452.27	451.10	451.77	450.42	450.28	451.25	452.17	453.07	450.3	453.1	-2.8
MW-1B	461.07	463.01	23.10	439.91	450.01	457.87	456.53	455.28	456.23	454.64	454.45	455.82	456.59	457.47	454.5	457.9	-3.4
MW-3A	431.82	434.65	67.36	367.29	431.27	433.92	433.56	433.47	433.63	433.08	433.06	433.65	433.84	433.99	433.1	434.0	6.0-
MW-3B	432.68	435.78	34.20	401.58	431.31	432.62	431.13	432.03	432.22	431.65	431.64	432.24	432.44	432.56	431.1	432.6	-1.5
MW-5A	431.38	433.84	72.18	361.66	431.34	432.24	431.82	431.62	431.77	431.22	431.20	431.88	432.06	432.15	431.2	432.2	-1.0
MW-5B	431.70	434.35	30.38	403.97	431.05	432.40	431.94	431.71	431.99	431.29	431.32	432.03	432.17	432.31	431.3	432.4	-1.1
MW-20A	431.51	431.29	21.61	409.68	428.19	428.39	427.91	427.82	427.97	424.28	427.37	428.10	428.40	428.44	424.3	428.4	-4.2
MW-20B	430.92	431.17	42.53	388.64	428.57	429.38	428.95	428.91	429.10	426.11	428.65	427.90	429.36	429.43	426.1	429.4	-3.3
Leachate Tank		436.12			429.52	430.42	430.12	429.98	429.98	429.91	429.82	430.14	430.91	430.85	429.8	430.9	-1.1
Staff Gauge		433.06			432.10	431.31	431.76	431.76	431.68	431.70	431.71	431.38	430.86	430.86	430.9	431.8	6.0-

Note: 1. All wells and soil gas points were resurveyed in August 2002 after repair work at MW-3A, GP-1 and GP-2 2. Previous elevations at MW-3A were: Ground elev. = 432.59 and Top of Riser elev. = 436.07.

CROSS COUNTY SANITATION/KESSMAN LANDFILL GROUNDWATER/SURFACE WATER/LEACHATE ELEVATIONS FORM 3

יוט אפרר	GROUND ELEV	TOR	TOTAL	BOTTOM EI EV			WATER LEVE	LEVELS (LS (Elevation in feet)	in feet)									MINIMUM MAXIMUM	MAXIMUM VARIATION
5	(ŧ	(#)	DEPTH (ft)	(¥)	10/29/01 Baseline	01/29/04	02/27/04	04/30/04	05/25/04	06/30/04	10/29/01 01/29/04 02/27/04 04/30/04 05/25/04 05/30/04 07/25/04 08/23/04 09/22/04 09/22/04 10/30/04 11/23/04 12/28/04 01/25/05 Baseline	08/23/04	09/22/04	10/30/04	11/23/04	12/28/04	01/25/05	(#)	(#)	(#)
MW-1A	461.15	463.15	59.40	403.75	447.05	451.65	451.49	456.20	450.46	448.76	448.08	449.47	450.95	451.17	450.72	451.96	460.52	448.1	460.5	-12.4
MW-1B	461.07	463.01	23.10	439.91	450.01	455.55	459.53	451.79	454.06	452.16	461.23	453.40	455.55	455.57	454.99	456.63	456.63	451.8	461.2	-9.4
MW-3A	431.82	434.65	67.36	367.29	431.27	433.51	433.45	433.93	433.55	433.16	433.33	433.53	433.65	433.49	433.46	433.71	433.87	433.2	433.9	-0.8
MW-3B	432.68	435.78	34.20	401.58	431.31	432.40	432.05	432.52	432.12	431.75	431.90	432.13	432.27	433.64	432.05	432.33	432.41	431.8	433.6	-1.9
MW-5A	431.38	431.38 433.84	72.18	361.66	431.34			432.19	431.94	431.70	431.72	431.62	431.79	431.84	431.62	431.91	431.99	431.6	432.2	-0.6
MW-5B	431.70	431.70 434.35	30.38	403.97	431.05			431.95	432.09	431.85	431.89	431.81	431.91	428.55	431.71	431.99	432.08	428.6	432.1	-3.5
MW-20A	431.51	431.29	21.61	409.68	428.19		427.85	428.82	428.88	428.88	428.98	428.25	429.23	428.29	427.95	428.39	420.71	420.7	429.2	-8.5
MW-20B	430.92	431.17	42.53	388.64	428.57			429.62	429.25	429.30	429.39	428.97	425.26	429.01	428.96	429.45	424.97	425.0	429.6	-4.6
Leachate Tank		436.12			429.52	427.30	430.20	431.46	431.64	431.89	432.03	430.12	430.12	430.28	427.17	430.46	430.47	427.2	432.0	-4.9
Staff Gauge		433.06			432.10	430.86	431.31											430.9	431.3	-0.4

Note: 1. All wells and soil gas points were resurveyed in August 2002 after repair work at MW-3A, GP-1 and GP-2 2. Previous elevations at MW-3A were: Ground elev. = 432.59 and Top of Riser elev. = 436.07.

CROSS COUNTY SANITATION/KESSMAN LANDFILL OM&M DETECTED GROUNDWATER, SURFACE WATER AND LEACHATE ANALYTICAL RESULTS ORGANICS ROUND: 1 by O'BRIEN & GERE/IEG (First Quarter, 2002) FORM 4A

DATE: February 27, 2002

	UNITS		SURFACE						SAMPLE LOCATION	OCATION					
PARAMETER		WATER STANDARD S	WATER	Al-WM	MW-1B	MW-3A	86-WM	MW-5A	85-WM	MW-20A	B02-WW	2-MS	SW-3	SW-103	L-9
Vinyl Chloride	qdd	2						0.2 J	0.3 J						
Chloroethane	qdd	5						0.4 J	+	0.2 J					
trans 1,2-Dichloroethene (DCE)	qdd	2	ŝ						0.1 J						
1,1-Dichloroethane	dqq	5	5					0.2 J	0.4 J	2	0.8				
cis 1,2-Dichloroethene (DCE)	qdd	5	5					0.2 J	0.4 J					4 J	
1,2-Dichloroethane	dqq	9.0	0.6						0.1 J	2	0.8				
Benzene	qdd	-	-					-	2	0.5 J	0.1 J				
1,2-Dichloropropane	qdd							0.1 J							
Toluene	qdd	5	5					0.3 J	0.3 J						
Chlorobenzene	qdd	5	5					7	9						
isopropylbenzene	qdd	5						0.2 J	0.2 J	1.0	0.2 J				
1, 3-Dichlorobenzene	qdd							1							
1,4-Dichlorobenzene	qdd	3	3			0.1 J		1	1						
1,2-Dichlorobenzene	qdd								+						
1,1,1-Trichloroethane (TCA)	qdd														
Cyclohexane	dqq							9.0	0.5						
Methylcyclohexane	qdd							0.4 J	0.4 J						
Methyl tert-butyl ether	dqq						0.2 J								
beta-BHC	qdd			NA	NA	AN	AN	NA	NA	NA	NA		0.0074 J		
gamma-BHC	dqq			NA	NA	AN	NA	NA	NA	NA	NA	0.0064 J	0.0050 J		0.0074 J
Eldrin aldehyde	dqq			NA	AN	AN	AN	AN	AN	NA	AN	0.0081 J	0.013 J	0.0096 J	0.010 J
gamma-Chlordane	ppb			NA	NA	NA	NA	NA	NA	NA	NA				0.0037 J

NOTES:

Only detected values are reported
 NS = Not Sampled; ND = non-detect; Inst.Er. = Instrument Error
 Surface water samples labeled previously as follows: SW-2 as SW-10, SW-3 as SW-12, and SW-103 as SW-13
 GW & SW Standards based on NYSDEC TAGMs

DETECTED GROUNDWATER, SURFACE WATER AND LEACHATE ANALYTICAL RESULTS FIELD PARAMETERS, INDICATOR PARAMETERS AND METALS ROUND: 1 by O'BRIEN & GERE/IEG (First Quarter, 2002) **CROSS COUNTY SANITATION/KESSMAN LANDFILL OM&M** FORM 4B

9

DATE: February 27, 2002

	1111														
PARAMETER (in ppb)		GROUND WATER STANDARD	SURFACE WATER STANDARD	MW-1A	MW-1B	MW-3A	MW-3B	MW-5A	MW-5B MW-2	MW-20A	MW-20B	SW-2	SW-3	SW-103	L-5
pH (field; s.u.)	s.u.			7.37	7.7	7.87	7.42	7.29	7.42	7.5	7.9	7.7	7.7	7.8	7.7
Temperature (field)	٩F			50.7	50.4	46.7	47.2	48	46.7	49	50.1	49	49	49	49
Specific Conductivity	umhos			0.19	0.18	0.22	0.21	0.184	0.184	0.23	0.23	0.24	0.23	0.24	0.25
TSS	mqq			12	130	9	100	10	1300	1300	25				
TOC	ррт							7	12	32	4	12	9	9	10
BOD	mqq			NA	AN	NA	NA	AN	AN	AN	AN	10	6		13
coD	mqq			NA	NA	NA	NA	AN	NA	NA	NA	40	30	20	40
Chlorides	mqq			520	960	840	2200	42	37	15	12	٩N	A	٩N	AN
Aluminum	dqq		100		2440		2180		20200	146000		658		12	
Antimony	dqq	8	30												
Arsenic	ppb	25	50							671					
Barium	qdd	1000	1000												
Beryllium	dqq														
Cadmium	bpb														
Calcium	qdd			195000	117000	210000	398000	93100	183000	326000	34000	62700	58400	51300	60900
Chromium	dqq	50	50	18					40	196					
Cobalt	ppb									93					
Copper	qdd								30	217					
Iron	dqq	300	300	189	2600	3060	7700	7260	39600	273000	7510	8480	805	669	1160
Lead	ppb	25	50						11	82		3.2			
Magnesium	dqq	35000		84100	82100	114000	236000	86200	92300	241000	53400	21300	17300	18500	19400
Manganese	dqq	300	300		65	273	707	91	2020	5170	114	289	109	81	
Nickel	ppb	100	100						42	214	184000				
Potassium	qdd			10600	9020	28700	30900	11600	15600	53800		6660	23200		6060
Selenium	dqq									10					
Silver	dqq														
Sodium	dqq	20000		98900	427000	224000	649000	37400	68300	36800	39300	78300	23200	18900	29600
Thallium	dqq														
Vanadium	qdd									224					
Zinc	dqq	20							17	612					
Mercury	dqq														

NOTES: 1. Only detected values are reported
2. NS = Not Sampled; Inst.Er. = Instrument Error
3. Surface water samples labeled previously as follows: SW-2 as SW-10, SW-3 as SW-12, and SW-103 as SW-13
4. GW & SW Standards based on NYSDEC TAGMS

FORM 4A CROSS COUNTY SANITATION/KESSMAN LANDFILL OM&M DETECTED GROUNDWATER, SURFACE WATER AND LEACHATE ANALYTICAL RESULTS ORGANICS ROUND: 2 by O'BRIEN & GERE/IEG (Second Quarter, 2002)

DATE: May 16, 2002

	STINI	GBOI IND	SUDEACE						SAM		NOL					
PARAMETER		WATER	WATER WATER	MW-1A	MW-1B	MW-3A	MW-3B	MW-5A	MW-6B	5B MW-20A M	MW-20B	SW-1	SW-2	SW-3	SW-103	MHC-1
Viny! Chloride	qdd	2						0.2								
Methylene chloride	dqq							0.1								
Acetone	qdd							-		+		4 J	4 J	4 J	6 J	4 J
Chloroethane	dqq	2						0.6		0.1						
trans 1,2-Dichloroethene (DCE)	qdd	5	5													
1,1-Dichloroethane	dqq	5	5					0.1		0.9						
cis 1,2-Dichloroethene (DCE)	qdd	ŝ	2					0.3								
1,2-Dichloroethane	dqq	0.6	0.6							0.8						
Benzene	qdd	+	+					-		0.3						2 J
1,2-Dichloropropane	dqq							0.2								
Toluene	qdd	5	5	0.1												
Chlorobenzene	dqq	5	5					14								5 J
2-Hexanone	ppb														2.0	
Isopropylbenzene	qdd	2								1.0						0.7 J
1,3-Dichlorobenzene	ppb															
1,4-Dichlorobenzene	qdd	3	3					3								0.7 J
1,2-Dichlorobenzene	dqq							2								
1,1,1-Trichloroethane (TCA)	ppb															
bis(2-Ethylhexyl)phthalate	ppb															1J
Napthalene	dqq															2 J
Caprolactum	dqq														2 J	1 J
Cyclohexane	dqq							0.2								
Methylcyclohexane	qdd							0.2								
Methyl tert-butyl ether	qdd							0.1								
beta-BHC	qdd															
gamma-BHC	qdd															
Eldrin aldehyde	qdd															
gamma-Chlordane	qdd															

NOTES:

Only detected values are reported
 NS = Not Sampled; ND = non-detect; Inst. Er. = Instrument Error
 Surface water samples labeled previously as follows: SW-2 as SW-10, SW-3 as SW-12, and SW-103 as SW-13
 GW & SW Standards based on NYSDEC TAGMs

D \ Kessman_LabOeta0202_0303F gpw

DETECTED GROUNDWATER, SURFACE WATER AND LEACHATE ANALYTICAL RESULTS FIELD PARAMETERS, INDICATOR PARAMETERS AND METALS ROUND: 2 by OBRIEN& GERE/IEG (Second Quarter, 2002) CROSS COUNTY SANITATION/KESSMAN LANDFILL OM&M FORM 4B

DATE: May 16, 2002

	NITS	GROUND	SURFACE						SAMP	SAMPLE LOCATION	_					
PARAMETER (in ppb)		WATER	WATER STANDARD	MW-1A	MW-1B	MW-3A	MW-3B	MW-5A	MW-5B	MW-20A	MW-20B	SW-1	SW-2	SW-3	SW-103	MHC-1
pH (field; s.u.)	s.u.															
Temperature (field)	٩															
Specific Conductivity	umhos															
TSS	mdd			110	24		38	20		1200			24	20		52
100	mdd							9		5		10	6	10	9	2
BOD	mqq												9			27
cob	mdd															
Chlorides	mdd			600	550	1000	2400	33		19	21					
Aluminum	qdd		100	11100.0	730.0	644.0		14.4 J	1280.0	35200.0		62.8 J	24.1 J	66.3 J		
Antimony	qdd	30	30													
Arsenic	qdd	25	50	2.4 J				11.8		9.6 J	5.2 J					
Barium	qdd	1000	1000	148.0	132.0	482.0	652.0	166.0	82.1	196.0	62.8	62.6	48.1	67.1	89.7	243.0
Beryllium	qdd			0.4 J						L L						
Cadmium	qdd															
Calcium	qdd			336000.0	72200.0	214000.0	408000.0	101000.0	125000.0	102000.0	56500.0	53300.0	41900.0	44900.0	54200.0	137000.0
Chromium	qdd	50	50	45.4	5.0	2.4 J	4.2 J	5.9 J	6.1 J	49.5	10.1		0.91 J	1.7 J		0.94 J
Cobalt	qdd			8.1						22.4						
Copper	qdd			27.6	1.6 J		3.8 J		4.1 J	48.5		1.1 J	0.98 J			1.5
Iron	qdd	300	300	22000.0	1000.0	2180.0	598.0	14200.0	2460.0	66300.0	2430.0	983.0	1930.0	1700.0	1750.0	41800.0
Lead	dqq	25	50	7.9				0.81 J	1.4 J	24.3	12.4					
Magnesium	qdd	35000		163000.0	49400.0	117000.0	240000.0	112000.0	68900.0	96.0	54400.0	17100.0	15500.0	15800.0	17400.0	30000.0
Manganese	qdd	300	300	332.0	28.8	180.0	334.0	198.0	971.0	1220.0		201.0	233.0	85.2	2020.0	1840.0
Nickel	dqq	100	100	22.7					3.2 J	47.3						
Potassium	qdd			16500.0	6430.0	28100.0	28600.0	11000.0	10700.0	22900.0	13400.0	5810.0	5320.0	5250.0	5220.0	7230.0
Selenium	dqq			3.3 J				2.1 J		2.5 J			2.3 J			2.2 J
Silver	dqq			1.2 J												
Sodium	ppb	2000		92700.0	300000.0	240000.0	612000.0	34900.0	66500.0	34600.0	32700.0	264000.0	22000.0	31400.0	127000.0	54900.0
Thallium	dqq															
Vanadium	dqq			20.4	2.6 J		1.3 J		2 J							52.9
Zinc	dqq	20		129.0	60.7		0.53 J	10.0	78.6	164.0	1.1 J	0.58 J	21.6	16.8	1.8 J	4.5 J
Mercury	dqq					0.4										

NOTES: 1. Only detected values are reported
2. NS = Not Sampled; Inst.Er. = Instrument Error
3. Surface water samples labeled previously as follows: SW-2 as SW-10, SW-3 as SW-12, and SW-103 as SW-13
4. GW & SW Standards based on NYSDEC TAGMs

FORM 4A CROSS COUNTY SANITATION/KESSMAN LANDFILL OM&M DETECTED SURFACE WATER/LEACHATE ANALYTICAL RESULTS ORGANICS ROUND: Special Sampling by O'BRIEN & GERE/IEG (Second Quarter, 2002)

DATE: June 13, 2002

	UNITS	GROUND	SURFACE					
PARAMETER		WATER	WATER	MHC-1	SW-1	SW-103	SW-2	SW-3
		STANDARD	STANDARD					
Vinyl Chloride	qdd	2						
Chloroethane	dqq	5						
trans 1,2-Dichloroethene (DCE)	qdd	5	5					
1,1-Dichloroethane	dqq	5	5					
cis 1,2-Dichloroethene (DCE)	qdd	5	5					
1,2-Dichloroethane	qdd	0.6	0.6					
Benzene	qdd	1	٢	2 J				4 J
1,2-Dichloropropane	dqq							
Toluene	qdd	5	5					
Chlorobenzene	qdd	5	5					
Isopropylbenzene	qdd	5		1.0				2.0
1,3-Dichlorobenzene	qdd							
1,4-Dichlorobenzene	qdd	3	3					
1,2-Dichlorobenzene	dqq							
1,1,1-Trichloroethane (TCA)	dqq							
Cyclohexane	dqq							
bis(2-Ethylhexyl)phthalate	dqq						1 J	
Napthalene	dqq			5.0				2.0
Caprolactum	dqq			9.0				6.0
Methylcyclohexane	qdd							
Methyl tert-butyl ether	dqq							
PCBs	qdd							
beta-BHC	qdd							
gamma-BHC	dqq							
Eldrin aldehyde	qdd							
gamma-Chlordane	dqq							

NOTES: 1. Only detected values are reported

- NS = Not Sampled; ND = non-detect; Inst.Er. = Instrument Error
- 3. Surface water samples labeled previously as follows: SW-2 as SW-10, SW-3 as SW-12, and SW-103 as SW-13
 - 4. No PCBs were detected in the leachate samples

ROUND: Special Sampling Surface Water/Leachate by O'BRIEN & GERE/IEG (Second Quarter, 2002) DETECTED SURFACE WATER/LEACHATE ANALYTICAL RESULTS CROSS COUNTY SANITATION/KESSMAN LANDFILL OM&M FORM 4B

DATE: June 13, 2002

TER (in plab) Maximum constraints sulf, sulf, marking submit static periodicity period		INITS							
s.u. s.u. <t< th=""><th>PARAMETER (in ppb)</th><th></th><th>WATER</th><th>WATER</th><th>MHC-1</th><th>SW-1</th><th>SW-103</th><th>SW-2</th><th>SW-3</th></t<>	PARAMETER (in ppb)		WATER	WATER	MHC-1	SW-1	SW-103	SW-2	SW-3
: s.u. $s.u.$ $s.u$			STANDARD	STANDARD					
ture (field) e <	pH (field; s.u.)	s.u.							
Conductivity unitos <	Temperature (field)	٩							
ppm ppm c 69 69 740 160 ppm ppm 28 74 13 13 ppm ppm 40 40 80 70 s ppm 100 11.1 918.0 554.0 358.0 m ppm 100 11.1 918.0 554.0 358.0 m ppb 25 50 373.0 237.0 554.0 358.0 m ppb 25 50 373.0 237.0 554.0 358.0 m ppb 25 50 373.0 237.0 266.0 256.0 m ppb 1000 10000 125000 12500.0 6800.0 0.2 m ppb 50 50 33.2 237.00 137.00 137.00 m ppb 50 50 52 8.4 10.7 10.7 m <	Specific Conductivity	umhos							
ppm ppm <th>TSS</th> <th>mdd</th> <th></th> <th></th> <th>69</th> <th>86</th> <th>240</th> <th>160</th> <th>110</th>	TSS	mdd			69	86	240	160	110
ppm ppm 28 28 10 10 ppm ppm r 40 40 80 70 ppm ppm r r r r r r ppm ppm r r r r r r ppm ppm r r r r r r r ppm r r r r r r r r ppm r r r r r r r r r ppm r r r r r r r r r ppm r	TOC	mqq			5	5	14	13	14
ppm ppm 40 40 40 80 70 x ppm 10 11.1 918.0 5540.0 3580.0 y ppb 30 30 11.1 918.0 5540.0 3580.0 y ppb 25 50 30 373.0 5570.0 5540.0 3580.0 y ppb 1000 1000 373.0 237.0 206.0 33 y ppb 100 1000 373.0 237.0 206.0 33 y ppb 100 1000 373.0 237.0 206.0 3580.0 y ppb 100 1000 373.0 237.00 8080.0 10.2 y ppb 100 1000 373.0 256.00 85700.0 8080.0 10.2 y	BOD	шdd			28		80	10	33
se ppn r	COD	шdd			40	40	80	20	50
m ppb 100 11.1 918.0 554.0.0 3580.0 y ppb 30 30 10 37.3.0 256.0 256.0 256.0 m ppb 100 100 373.0 237.0 256.0 256.0 256.0 n ppb 100 100 373.0 237.0 256.0 256.0 256.0 n ppb 10 373.0 237.00 85700.0 85900.0 256.0 n ppb 50 373.0 12500.0 85700.0 8000.0 10.7 n ppb 50 373.0 12500.0 85700.0 8000.0 10.7 m ppb 50 337400.0 12500.0 2250.0 10.7 10.7 m ppb 550 300.0 337400.0 12300.0 2350.0 10.7 m ppb 300 300.0 10.7 10.7	Chlorides	bpm							
γ pp 30 30 30 6 4.6 5.9 50 50 50 50 55.0 70 25.0 70 25.0 70 25.0 70 25.0 70 25.0 25.0 70 25.0 70 25.0 70 25.0 25.0 25.0 25.0 70 25.0 70 25.0 70 25.0 70 25.0 70 25.0 70 25.0 70 25.0 70	Aluminum	dqq		100	11 J	918.0	5540.0	3580.0	279.0
ppb pc sc s	Antimony	dqq	30	30					
ppb 1000 1000 373.0 237.0 206.0 256.0 256.0 n ppb r 117000.0 125000.0 85700.0 86800.0 256.0 n ppb r 117000.0 12500.0 85700.0 86800.0 10.7 0.1 m ppb s0 s0 3.0 8.8 9.4 19.6 0.1 0.1 m ppb s00 s00 300 13.0 12500.0 85700.0 80800.0 10.7 0.2 m ppb s0 s00 300 300 300 300 300 300 300 300.0 12700.0 12700.0 12700.0 12700.0 12700.0 10.7 <td>Arsenic</td> <th>dqq</th> <td>25</td> <td>50</td> <td></td> <td>6.6</td> <td>4.6</td> <td>3.9</td> <td>2.0</td>	Arsenic	dqq	25	50		6.6	4.6	3.9	2.0
n ppb r 1 0.1 0.1 0.2 1 n ppb r i <t< td=""><td>Barium</td><th>qdd</th><td>1000</td><td>1000</td><td>373.0</td><td>237.0</td><td>206.0</td><td>256.0</td><td>839.0</td></t<>	Barium	qdd	1000	1000	373.0	237.0	206.0	256.0	839.0
n ppb r 117000.0 125000.0 85700.0 80800.0 r m ppb s0 s0 s0 3.0 125000.0 85700.0 80800.0 80800.0 r m ppb s0 s0 s0 3.0 12500.0 6.2 6.0 19.6 m ppb s00 300 48000.0 12300.0 81.7 10.7	Beryllium	qdd					0.1	0.2	
m ppb so s17000.0 12500.0 85700.0 80800.0 6.0 m ppb so s0 s	Cadmium	qdd							
m ppb 50 50 3.0 6.2 6.0 6.0 ppb ppb r r r 9.4 19.6 r r ppb r r r r 8.8 9.4 19.6 r ppb r r r r 8.8 9.4 19.6 r ppb r r r r 8.6 12700.0 12700.0 12700.0 r r ppb r r 37400.0 12300.0 12700.0 12700.0 12700.0 12700.0 12700.0 12700.0 12700.0 12700.0 12700.0 17200.0 1700.0 100.0 100.0 $0.760.0$ $0.760.0$ $0.760.0$ $0.760.0$ $0.760.0$ $0.760.0$ $0.760.0$ $0.760.0$ $0.760.0$ $0.760.0$ $0.760.0$ $0.760.0$ $0.760.0$ $0.760.0$ $0.760.0$ $0.760.0$ $0.760.0$ $0.760.0$ $0.760.0$	Calcium	dqq			117000.0	125000.0	85700.0	80800.0	121000.0
ppb ppb see 9.4 19.6 19.6 ppb 300 300 48000.0 12300.0 22700.0 12700.0 ppb 25 50 30 48000.0 12300.0 22700.0 12700.0 mm ppb 25 50 0 3.7400.0 3.02 8.4 10.7 mm ppb 300 300 816.0 1640.0 1760.0 28500.0 28900.0 see ppb 300 300 300 100 100 100 28600.0 216	Chromium	qdd	50	50	3.0		6.2	6.0	4.7
ppb ppb 300 300 4800.0 12300.0 2.4 19.6 m ppb 25 50 32 8.4 10.7 m ppb 25 50 37400.0 12300.0 22700.0 12700.0 m ppb 25 50 37400.0 40700.0 28500.0 28900.0 m ppb 300 300 816.0 1640.0 1760.0 28900.0 m ppb 300 300 816.0 1640.0 1760.0 2160.0 m ppb 100 100 100 100 100 2160.0 m ppb 200 9.4 100.0 1640.0 7780.0 2160.0 m ppb 200 100 100.0 1640.0 1760.0 2160.0 m ppb 200 200.0 1640.0 1760.0 2160.0 2160.0 m ppb 200 100 100.0	Cobalt	dqq							
ppb 300 300 4800.0 12300.0 22700.0 12700.0 12700.0 12700.0 12700.0 12700.0 12700.0 12700.0 12700.0 12700.0 12700.0 12700.0 12700.0 12700.0 12700.0 10.7	Copper	qdd				8.8	9.4	19.6	
ppb 25 50 37400.0 32.0 8.4 10.7 um ppb 35000 37400.0 37400.0 28500.0 28900.0 28900.0 see ppb 300 300 816.0 1640.0 1760.0 28900.0 28900.0 see ppb 100 100 100 100 100 216.0 2160.0 28900.0 m ppb 100 100 100 100 100 216.0 216.0 216.0 n ppb 100 100 100 100 100 216.0	Iron	bpb	300	300	48000.0	12300.0	22700.0	12700.0	53600.0
um ppb 35000 37400.0 40700.0 28500.0 28900.0 28900.0 see ppb 300 300 300 300 316.0 1640.0 1760.0 28900.0 28900.0 see ppb 100 100 100 100 100 100 2160.0	Lead	dqq	25	50		3.2	8.4	10.7	1.4
see ppb 300 300 816.0 1640.0 1760.0 2160.0 2160.0 100 100 100 100 100 100 100 100 100 100 100 100 100 2160.0 2160.0 2160.0 6.7 6	Magnesium	qdd	35000		37400.0	40700.0	28500.0	28900.0	44800.0
ppb 100 100 100 00 00 00 00 00 00 0.7	Manganese	dqq	300	300	816.0	1640.0	1760.0	2160.0	580.0
Im ppb 10300.0 7780.0 4540.0 10200.0 n ppb pp 2.6 2.7 <t< th=""><th>Nickel</th><th>dqq</th><th>100</th><th>100</th><th></th><th></th><th>3.6</th><th>6.7</th><th>2.9</th></t<>	Nickel	dqq	100	100			3.6	6.7	2.9
n ppb 2.6 ppb ppb 20000 90500.0 1270000.0 136000.0 136000.0 ppb 20000 90500.0 1270000.0 613000.0 136000.0 136000.0 ppb ppb 2000 90500.0 125 7.6 5.7 m ppb 20 1.9 18.6 57.0 52.9 1	Potassium	qdd			10300.0	7780.0	4540.0	10200.0	14000.0
ppb ppb 20000 90500.0 1270000.0 613000.0 136000.0 n ppb 20000 90500.0 1270000.0 613000.0 136000.0 m ppb 20 13600.0 613000.0 13600.0 13600.0 m ppb 20 136 57.0 57.0 57.0	Selenium	qdd						2.6	
ppb 2000 90500.0 1270000.0 613000.0 136000.0 m ppb r 2.5 7.6 5.7 m ppb 20 1.9 18.6 57.0 52.9	Silver	qdd							
m ppb 5.7 5.7 m ppb 20 1.9 18.6 57.0 52.9 ppb ppb 20 1.9 18.6 57.0 52.9	Sodium	dqq	20000		90500.0	1270000.0	613000.0	136000.0	72800.0
m ppb 2.5 7.6 5.7 ppb 20 1.9 18.6 57.0 52.9 ppb 20 1.9 18.6 57.0 52.9	Thallium	qdd							
ppb 20 1.9 18.6 57.0 52.9 ppb 52.9	Vanadium	qdd				2.5	7.6	5.7	1.0
	Zinc	dqq	20		1.9	18.6	57.0	52.9	91.4
	Mercury	qdd							

NOTES:

Only detected values are reported
 NS = Not Sampled; Inst.Er. = Instrument Error
 Surface water samples labeled previosly as follows: SW-2 as SW-10, SW-3 as SW-12, and SW-103 as SW-13
 GW & SW Standards based on NYSDEC TAGMs

EG

CROSS COUNTY SANITATION/KESSMAN LANDFILL OM&M DETECTED GROUNDWATER, SURFACE WATER AND LEACHATE ANALYTICAL RESULTS ORGANICS ROUND: 3 by O'BRIEN & GERE/IEG (Third Quarter, 2002) FORM 4A

DATE: September 18, 2002

PARAMETER	SLIND	GROUND SURFACE WATER WATER STANDARD STANDARD	SURFACE WATER STANDARD	MW-1A	MW-1B	MW-3A	MW-3B	MW-5A	MW-6B	SAMPLE LOCATION MW-20A MW-20E	OCATION MW-20B	1-WS	SW-2	SW-3	SW-103	SW-Bridge	MHC-1
Vinyl Chloride	dqq	2											4				
Methylene chloride	qdd			0.5 J	0.9	2		0.2 J	0.1 J	0.3 J	0.1 J	L Z					
Acetone	dqq			2	-	15	2	3	9	3	3		в J	4 J		6 J	3 J
Chloroethane	ppb	5						0.5	-	0.4 J							
trans 1,2-Dichloroethene (DCE)	ppb	5	5														
1,1-Dichloroethane	dqq	5	5					0.1 J	0.5 J	2	-						
cis 1,2-Dichloroethene (DCE)	qdd	5	5					0.2 J	0.5 J	0.1 J			٩J				
1,2-Dichloroethane	dqq	9.6	9.6					0.2 J	0.1 J	2	-						
Benzene	dqq	-	-					-	-	0.5 J	0.4.J						4 ر
1,2-Dichloropropane	qdd																
Toluene	dqq	5	5					0.2 J					C 9.0				
Chlorobenzene	ppb	5	5					12	2								۲8
2-Hexanone	ppb																
Isopropylbenzene	ppb	5						0.3 J	0.2 J	2.0	2.0						
1,3-Dichlorobenzene	ppb							0.4 J									
1,4-Dichlorobenzene	qdd	3	3					2	0.5								F
1,2-Dichlorobenzene	ppb							2	0.3 J								
1,1,1-Trichloroethane (TCA)	qdd																
Carbon disulfide	ppb					0.2 J					0.2 J						
2-Butanone	ppb							360	640								
bis(2-Ethylhexyl)phthalate	dqq																
Napthalene	ppb																5.0
Caprolactum	dqq																2.0
Cyclohexane	ppb																
Methylcyclohexane	dqq							0.2 J									L L
4-Methylphenol	dqq												7.0				
Di-n-butyl phthalate	dq 4						-		-				3.0	2.0			
Metrryl tert-butyl eurer	odd 1						U.3.J		r r.o								
PCBe	add quu												F				
beta-BHC	qaa																
gamma-BHC	dqq																
Eldrin aldehyde	dqq																
damma_Chlordane	quu																

1. Only detected values are reported NOTES:

NS = Not Sampled; ND = non-detect; Inst.Er. = Instrument Error
 Surface water samples labeled previously as follows: SW-2 as SW-10, SW-3 as SW-12, and SW-103 as SW-13
 GW & SW Standards based on NYSDEC TAGMs

202-0303F gpw Keesmar IEG

CROSS COUNTY SANITATION/KESSMAN LANDFILL OM&M DETECTED GROUNDWATER, SURFACE WATER AND LEACHATE ANALYTICAL RESULTS FIELD PARAMETERS, INDICATOR PARAMETERS AND METALS ROUND: 3 by O'BRIEN & GERE/IEG (Third Quarter, 2002) FORM 4B

DATE: September 18, 2002

PARAMETER (in ppb)	UNITS	GROUND WATER STANDARD	SURFACE WATER STANDARD	MW-1A	MW-1B	MW-3A	MW-3B	MW-5A	MW-5B	MW-20A	MW-20B	SW-1	SW-2	SW-3	SW-103	SW-Bridge	MHC-1
pH (field; s.u.)	s.u.																
Temperature (field)	٩F																
Specific Conductivity	umhos																
TSS	mqq			39	150	26	57	73	220	160	62	200	740	520		12	110
TOC	mqq							2			2	6	55	120			
BOD	mqq											17	19	21		30	16
coD	mqq											60	170	250		7	50
Chlorides	mqq			630	190	950	2600	33	44	26	30						
Aluminum	qdd		100	820.0	8710	243	1570	1290	6920	1490	726	510	3690	2910		87.6 J	188 J
Antimony	qdd	30	30	Q	<u>ل</u>	Q	Q	g	Q	1.9 J	Q	0.88 J	1.6 J	QN		0.93 J	QN
Arsenic	qdd	25	50	Q	3.9 J	Q	QN	11	3.8 J	3.8 J	2.2 J	3.7 J	4.3 J	4.8 J		2.4 J	ND
Barium	qdd	1000	1000	110 J	125 J	491	659	152 J	130 J	103 J	34 J	298	223	464		52.3 J	612
Beryllium	qdd			Q	0.33 J	Q	Q	Q	0.14 J	QN	QN	QN	0.31 J	L 70.0		ND	ND
Cadmium	qdd			Q	0.53 J	Q	Q	Q	QN	Q	QN	QN	0.26 J	QN		QN	QN
Calcium	qdd			215000	36900	213000	403000	107000	155000	50500	37700	176000	58600	95000		47900	130000
Chromium	qdd	50	50	12	17.2	1.9 J	3.1 J	10.9	17.1	5.3 J	4.7 J	QN	6.1 J	4.8 J		1.5 J	2.3 J
Cobalt	qdd			Q	9.8 J	Q	Q	QN	2.8 J	QN	DN	QN	ND	ND		ND	ND
Copper	qdd			35	30	3.5 J	8.3 J	17.3 J	12.7 J	3.6 J	3.7 J	9.5 J	21.7 J	10.6 J		۱J	1.3 J
Iron	qdd	300	300	992	14900	6820	8690	14000	14300	2500	1700	12300	16400	16700		1590	78200
Lead	qdd	25	50	1.7 J	6.2	DN	DN	ND	2.6 J	ND	DN	2.4 J	11	5		QN	ND
Magnesium	qdd	35000		95000	26800	119000	243000	110000	77400	56000	59500	56000	29100	45800		15700	52500
Manganese	qdd	300	300	27	344	358	560	228	1050	56	67	2210	617	526		655	319
Mercury	qdd			Q	QN	QN	QN	QN	QN	DN	QN	ND	QN	QN		QN	QN
Nickel	qdd	100	100	2.3 J	20.1 J	ND	ND	11.3 J	18.9 J	1.3 J	1.5 J	DN	L 7	4.8 J		QN	2.1 J
Potassium	qdd			12500	6650	28000	28100	15200	14000	14500	32000	4490 J	7940	15700		4630 J	16600
Selenium	qdd			QN	ND	QN	Q	Q	QN	QN	Q	Q	Q	Q		Q	Q
Silver	qdd			Q	Q	QN	QN	QN	ND	QN	QN	QN	QN	QN		QN	Q
Sodium	qdd	20000		105000	214000	243000	641000	33900	47100	31900	35800	1650000	109000	135000		51800	164000
Thallium	qdd			QN	3.6 J	QN	QN	QN	QN	QN	QN	4.9 J	Q	Q		QN	QN
Vanadium	qdd			-	18.6 J	Q	2.4 J	2.9 J	10.3 J	3.1 J	1.4 J	2 J	6.7 J	4.7 J		1.1 J	1.5 J
Zinc	qdd	5		31	46	12.6 J	16.8 J	17.2 J	47.2	10.3 J	23	40	56	19.2 J		1.6 J	8.3 J

NOTES: 1. Only detected values are reported 2. NS = Not Sampled; Inst.Er. = Instrument Error 3. Surface water samples labeled previously as follows: SW-2 as SW-10, SW-3 as SW-12, and SW-103 as SW-13 4. GW & SW Standards based on NYSDEC TAGMs

M D:\ Kessn Đ Đ

FORM 4A CROSS COUNTY SANITATION/KESSMAN LANDFILL OM&M DETECTED GROUNDWATER, SURFACE WATER AND LEACHATE ANALYTICAL RESULTS ORGANICS ROUND: 4 by O'BRIEN & GERE/IEG (Fourth Quarter, 2002)

DATE: December 19, 2002

DADAMETED	UNITS	GROUND	SURFACE	MW 10	41 MW	AM 2A	12 MM			SAMPLE LOCATION	CATION	CW 4	C M S	C M 2	CM 103	ew 103 ew Bridge	
		Ó	STANDARD													-	
Vinyl Chloride	qdd	2							0.2 J								
Methylene chloride	qdd								0.2 J	0.1 J							-
Acetone	dqq																۲۹
Chloroethane	dqq	5						0.3 J	-		0.1 J						
trans 1,2-Dichloroethene (DCE)	dqq	5	5														
1,1-Dichloroethane	dqq	5	5					0.1 J	0.5	2	2						
cis 1,2-Dichloroethene (DCE)	qdd	5	5					0.3 J	9.0	0.1 J	0.2 J						
1,2-Dichloroethane	qdd	9.0	9.6							2	2						
1,2-Dichloropropane	qdd																
Benzene	qdd	-	-					۲	÷	0.6	0.6						3 J
Toluene	dqq	5	5	0.2 J				0.2 J									
Xylene	dqq																2 J
Chlorobenzene	qdd	5	5					13	4								ſ6
2-Hexanone	dqq																
Isopropylbenzene	qdd	5						0.4 J	0.3 J	3.0	3.0						۲,
1, 3-Dichlorobenzene	dqq							0.5 J									
1,4-Dichlorobenzene	qdd	3	3					2	2.0								2 J
1,2-Dichlorobenzene	dqq							2	0.5 J								
1,1,1-Trichloroethane (TCA)	dqq																
Carbon disulfide	dqq																
Butanone	ppb																
bis(2-Ethylhexyl)phthalate	qdd																
Napthalene	dqq								0.8								4 J
Dichlorodifluoromethane	qdd							0.4.J			0.1 J						
Caprolactum	qdd																Ļ
Methylcyclohexane	qdd			Ī				0.2 J									
Cyclohexane	dqq							0.2 J									
Methylcyclohexane	dqq																
Methyl tert-butyl ether	dqq						0.3 J										
PCBs	dqq																
beta-BHC	qdd																
gamma-BHC	dqq																
Eldrin aldehyde	dqq																
camma_Chlordane	qoo																

1. Only detected values are reported NOTES

NS = Not Sampled; ND = non-detect; Inst.Er. = Instrument Error
 Surface water samples labeled previously as follows: SW-2 as SW-10, SW-3 as SW-12, and SW-103 as SW-13
 GW & SW Standards based on NYSDEC TAGMs

CROSS COUNTY SANITATION/KESSMAN LANDFILL OM&M DETECTED GROUNDWATER, SURFACE WATER AND LEACHATE ANALYTICAL RESULTS FIELD PARAMETERS, INDICATOR PARAMETERS AND METALS ROUND: 4 by O'BRIEN & GERE/IEG (Fourth Quarter, 2002) FORM 4B

DATE: December 19, 2002

	UNITS	ON DOD	SURFACE							SAMPLE LOCATION	VIION						
PARAMETER (in ppb)		WATER	WATER	MW-1A	MW-1B	MW-3A	MW-3B	MW-5A	MW-5B	MW-20A	MW-20B	1-WS	SW-2	SW-3	SW-103	SW-Bridge	MHC-1
pH (fleld; s.u.)	B,U.																
Temperature (field)	Å																
Specific Conductivity	umhos																
TSS	mdd			5	260	31	110	32	3300	4100	14						67
TOC	mqq			4.1	QN	0.7	Q	Q	QN	9.2	3.6						g
BOD	mdd																28
COD	шdd																33
Chlorides	mdd			650	540	980	2500	28	43	26	32						180
Aluminum	qdd		100	22 J	8260	442	1260	122 J	28200	119000	156						150 J
Antimony	qdd	30	30	Q	2.2 J	4.4 J	Q	Q	QN	1.8 J	Q						2
Arsenic	qdd	25	20	QN	4.8 J	1.8 J	QN	10.8	8.3 J	23.4	4.2 J						8
Barium	qdd	1000	1000	113 J	171 J	486	666	152 J	206	527	58.8 J						414
Beryllium	ppb			QN	0.26 J	ND	QN	QN	0.84 J	3.5 J	QN						g
Cadmium	qdd			QN	QN	Q	Q	Q	QN	2.6 J	g						g
Calcium	qdd			215000	68600	212000	392000	94600	233000	281000	57100						121000
Chromium	dqq	50	50	3 J	14.1	3.4 J	2 J	5 J	38.4	153	4 .8 J						2
Cobalt	ppb			ND	7.4 J	DN	ND	DN	18.7 J	82	QN						g
Copper	qdd			۲8	24.8 J	4.1 J	4 .3 J	0.89 J	44.5	169	0.92 J						g
Iron	dqq	300	300	179	13300	5100	7870	12900	48700	216000	28600						60400
Lead	ppb	25	50	DN	5.8	ND	ND	ND	14.2	65	QN						QN
Magnesium	qdd	35000		00856	49100	121000	247000	106000	123000	224000	63100						36700
Manganese	qdd	300	300	25	300	325	455	199	1990	3940	57						983
Mercury	dqq			QN	Q	QN	QN	QN	QN	QN	QN						Q
Nickel	bpb	100	100	DN	13.2 J	QN	ND	2.7 J	43.2	167	QN						2 J
Potassium	qdd			13400	8680	29200	29600	12700	19300	45500	15900						9420
Selenium	qdd			2	QN	Q	QN	QN	Q	QN	Q						QN
Silver	qdd			١J	1.3 J	1.3 J	QN	QN	1.4 J	QN	QN						QN
Sodium	dqq	20000		106000	318000	250000	678000	34200	53400	33700	33600						89600
Thallium	qdd			2	2.2 J	QN	QN	QN	DN	2.1 J	QN						Q
Vanadium	qdd			QN	18 J	QN	2 J	1.1 J	45.6 J	192	QN						2 J
Zinc	qdd	20		6 J	35	13.5 J	10.6 J	Q	104	462	0.98.1						-

NOTES: 1. Only detected values are reported 2. NS = Not Sampled: Inst.Er. = Instrument Error 3. Surface water samples labeled previously as follows: SW-2 as SW-10, SW-3 as SW-12, and SW-103 as SW-13 4. GW & SW Standards based on NYSDEC TAGMs

000F qpw

CROSS COUNTY SANITATION/KESSMAN LANDFILL OM&M DETECTED GROUNDWATER, SURFACE WATER AND LEACHATE ANALYTICAL RESULTS ORGANICS ROUND: 5 by O'BRIEN & GERE/IEG (First Quarter, 2003) FORM 4A

DATE: March 26, 2003

	UNITS	GROUND	SURFACE	-	-	-	-			SAMPLE LOCATION	CATION	-	-				
PARAMETER		WATER STANDARD	WATER STANDARD	MW-1A	MW-1B	MW-3A	MW-3B	MW-5A	MW-5B	MW-20A	MW-20B	SW-1	SW-2	SW-3	SW-103	SW-103 SW-Bridge	MHC-1
Vinyl Chloride	qdd	2											330				
Methylene chloride	bpb								0.2 J			0.6 J					
Acetone	dqq							۲	4						2 J		
Chloroethane	ppb	5							-		0.3 J						
trans 1,2-Dichloroethene (DCE)	ppb	5	5														
1,1-Dichloroethane	dqq	5	5						0.5	m	7		2 J				
cis 1,2-Dichloroethene (DCE)	qdd	5	5					0.3 J	0.5	0.1 J			1200	2 J			
trans-1,2-Dichloroethene	dqq												4 J				
1,2-Dichloroethane	ppb	0.6	0.6						0.2 J	3	2						
1,2-Dichloropropane	ppb																
Benzene	qdd	+	۲					٢	2	9.0	0.6		۰ ۲				3 J
Toluene	qdd	5	5					0.1 J					19.0	0.8 J	L 7.0		2 J
Ethylbenzene	dqq	5	2														۲ ا
Chlorobenzene	dqq	2	2					13	4				0.8 J	0.5 J			
Xylene	dqq												3 J				۱J
2-Hexanone	qdd																
Isopropylbenzene	ppb	5						0.4 J	0.4 J	2.0	3.0						11
1,3-Dichlorobenzene	ppb							0.5 J									
1,4-Dichlorobenzene	qdd	3	3					2	0.9								2 J
1,2-Dichlorobenzene	ppb							2	0.5								
Trichloroethene	qdd																
1,1,1-Trichloroethane (TCA)	ppb																
Carbon disulfide	ppb																
Butanone	qdd																
bis(2-Ethylhexyl)phthalate	qdd																
Napthalene	dqq																3.1
Dichlorodifluoromethane	дdд																
Caprolactum	qdd																
Methylcyclohexane	dqq							0.2 J									
Cyclohexane	ррb							0.2 J									
Methylcyclohexane	dqq																
Methyl tert-butyl ether	qdd						0.4 J										
PCBs	dqq																
beta-BHC	qdd																
gamma-BHC	qdd																
Eldrin aldehyde	qdd																
gamma-Chlordane	qaa														-		

NOTES: 1. Only detected values are reported 2. NS = Not Sampled; ND = non-detect; Inst.Er. = Instrument Error

Surface water samples labeled previously as follows: SW-2 as SW-10, SW-3 as SW-12, and SW-103 as SW-13
 GW & SW Standards based on NYSDEC TAGMs

D

B G

CROSS COUNTY SANITATION/KESSMAN LANDFILL OM&M DETECTED GROUNDWATER, SURFACE WATER AND LEACHATE ANALYTICAL RESULTS FIELD PARAMETERS, INDICATOR PARAMETERS AND METALS ROUND: 5 by O'BRIEN & GERE/IEG (First Quarter, 2003) FORM 4B

DATE: March 26, 2003

PARAMETER (in ppb)	UNITS	GROUND WATER STANDARD	SURFACE WATER STANDARD	MW-1A	MW-1B	MW-3A	MW-3B	MW-5A	MW-5B	SAMPLE LOCATION MW-20A MW-2	MW-20B	SW-1	SW-2	SW-3	SW-103	SW-Bridge	MHC-1
pH (field; s.u.)	S.U.																
Temperature (field)	٩																
Specific Conductivity	umhos																
TSS	mqq			22	130	38	31	30	1900	3300	8.5	QN	13	42	710	лs	5
TOC	mqq			130	77	QN	5.8	34	24	35	2.6	QN	1.2 J	2	14		Q
BOD5	bpm											QN	8.7	8.9	14		32
COD	шdd											17	25	17	29		29
Chlorides	mqq			770	720	1200	2700	37	50	41	47						
Aluminum	qdd		100	165 J	4150	363	89.3 J	71.3 J	13700	35800	60.1 J	29.3 J	52.5 J	186 J	2430		45.3 J
Antimony	qdd	8	30	QN	Q	Q	Q	Q	Q	Q	g	Q	Q	QN	Q		QN
Arsenic	qdd	25	50	QN	Q	QN	Q	12.4	5 J	12.2	5.1 J	QN	Q	Q	Q		2 J
Barium	qdd	1000	1000	115 J	162 J	522	692	152 J	146 J	215	f 69	93.2 J	168 J	214	94.6 J		348
Beryllium	qdd			QN	0.19 J	Q	Q	0.06 J	0.46 J	1.2 J	L 60.0	0.08 J	0.05 J	0.08 J	0.16 J		0.07 J
Cadmium	qdd			Q	0.92 J	Q	Q	Q	0.58 J	L 79.0	QN	Q	QN	Q	Q		Q
Calcium	qdd			249000	78300	232000	419000	98500	178000	112000	63100	88400	77400	77100	00069		121000
Chromium	qdd	50	50	4.1 J	10.8	4 .6 J	2.7 J	6.1 J	21	53	6.2 J	QN	2.6 J	2.4 J	4.8 J		3.8 J
Cobalt	dqq			DN	4 J	DN	DN	QN	9.2 J	25.4 J	DN	QN	DN	ND	2.2 J		QN
Copper	qdd			L.3 J	14.4 J	QN	QN	QN	23.5 J	50	QN	QN	QN	DN	3.6 J		QN
Iron	qdd	300	300	309	6390	4870	8530	13800	25800	66800	2680	466	8230	8320	9540		61400
Lead	dqq	25	50	1.6 J	3.2	1.1 J	1.4 J	ΠN	8	21	ND	QN	1.1 J	1.4 J	5		1.1 J
Magnesium	qdd	35000		114000	61600	133000	261000	111000	93100	105000	64200	31400	23800	17900	22300		34500
Manganese	qdd	300	300	42	160	385	411	210	1330	1250	20	226	809	1100	2600		686
Mercury	qdd			QN	QN	QN	QN	QN	Q	QN	Q	Q	QN	QN	QN		Q
Nickel	qdd	100	100	QN	6.7 J	DN	ND	3.4 J	22.9 J	53	ND	DN	DN	ND	3.2 J		2.3 J
Potassium	qdd			72500	38100	32700	37200	20200	33500	33500	15400	6800	6240	4870 J	5030		8890
Selenium	qdd			2.5 J	QN	QN	QN	QN	QN	QN	QN	QN	QN	DN	QN		QN
Silver	qdd			QN	QN	QN	QN	QN	QN	Q	QN	QN	QN	QN	Q		Q
Sodium	dqq	20000		102000	351000	298000	781000	34200	56500	34100	31700	597000	149000	101000	203000		92700
Thailium	qdd			QN	5.1 J	ΩN	QN	3.2 J	3.4 J	14	3.4 J	QN	QN	5.3 J	5.8 J		4 .9 J
Vanadium	dqq			QN	8.9 J	QN	1 J	0.98 J	21.8 J	56	ND	QN	QN	1 J	3.2 J		2.5 J
Zinc	qdd	20		28	29	3.7 J	3.2 J	3.6 J	58.7	146	1.6 J	8.6 J	12.8 J	3.5 J	17 G J		26.1

NOTES: 1. Only detected values are reported 2. NS = Not Sampled; Inst.Er. = Instrument Error 3. Surface water samples labeled previously as follows: SW-2 as SW-10, SW-3 as SW-12, and SW-103 as SW-13 4. GW & SW Standards based on NYSDEC TAGMs

D \ Kessman_LabData0202-0303F qpw

CROSS COUNTY SANITATIONIKESSMAN LANDFILL OM&M DETECTED GROUNDWATER, SURFACE WATER AND LEACHATE ANALYTICAL RESULTS ORGANICS ROUND: 6 by O'BRIEN & GERE/IEG (Fourth Quarter, 2003) FORM 4A

DATE: November 7, 2003

WATCHE MARTINE		INITS		CIDEACE							SAMPLE LOCATION	CATION						
ppb 2 0.1 0.1 0.2	PARAMETER		WATER	WATER	MW-1A	MW-1B	MW-3A	MW-3B	MW-5A		MW-20A	MW-20B	SW-1	SW-2	SW-3	SW-103	SW-103 SW-Bridge	MHC-1
pp pp<	Vinyl Chloride	dqq	2		0.1 J				0.2 J	0.2.J				34				3.1
ppb 5 5 5 6 1 <th1< th=""> 1 1 1</th1<>	Methylene chloride	dqq								0.2 J	0.5 J							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Acetone	ррb			4				-	٢	1							
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	Chloroethane	ppb	5						0.4 J	0.8	0.5.J				3J			5
990 6 6 0	trans 1,2-Dichloroethene (DCE)	dqq	5	5														
ppb 5 5 0.41 0.23 0.41 0.23 0.41 0.24 1 ppb 0.6 0.6 1 1 0.23 0.23 0.23 0.23 0.23 0.24 1 1 ppb 1 1 1 0.1 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.24 1	1,1-Dichloroethane	ppb	5	5						0.4 J	2	-						
	cis 1,2-Dichloroethene (DCE)	dqq	5	5					0.3 J	0.4 J	0.2.J			120				۲6
Name PP0 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.1 0.2 0 0.2 0 0.2 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2	trans-1,2-Dichloroethene	ppb																
opene pp p <td>1,2-Dichloroethane</td> <td>ppb</td> <td>0.6</td> <td>9.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1,2-Dichloroethane	ppb	0.6	9.0							7	-						
	1,2-Dichloropropane	dqq																
pic 5 0.1 0.21 0.21 0.21 0.21 0.21 0.11 1 e pip 5 6 0.1	Benzene	qdd	ŀ	•					-	0.8	0.3 J	0.2 J						6.1
ppb 5 5 0 0 2 0 0 2 0 1 0 2 1 0 2 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 <	Toluene	dqq	5	5	0.1 J	0.2 J		0.2 J	0.2 J	0.2 J	0.1 J			L 0.0	3J			2 J
encane pp 5 5 0 0.1 0.1 2 2 2 one pp f 1 0.1 0.1 0.1 1 1 1 one pp f 1 0.1 0.1 0.1 1 1 one pp f 1 0 1 1 1 1 one pp f 1 0 1 1 1 1 1 one pp f 1 1 1 1 1 1 1 one pp f pp f pp	Ethylbenzene	dqq	5	5														0.6 J
one pp p	Chlorobenzene	ppb	5	5					10	2								10.0
ppb 6 ppb 6 0.1 1.0 1.0 ppb 5 0 0.4 0.4 0.1 1.0 ppb 3 3 3 0 0.4 0.4 0.4 ppb 1 0 0.4 0.4 0.4 0.1 1.0 ppb 1 0 0 1 0 2 0.1 1.0 ppb 1 0 0 1 1 1 2 0.1 1.0 ppb 1 0 0.1 1 1 1 1 1 1 ppb 1 0 0.1 1 <td>Xylene</td> <td>ppb</td> <td></td> <td></td> <td>0.1 J</td> <td>0.1 J</td> <td></td> <td>10 J</td>	Xylene	ppb			0.1 J	0.1 J												10 J
ppb 6 0.3 0.1 1.0 ppb 1 0.4 0.4 1.0 1.0 ppb 3 3 3 0.1 1.0 1.0 ppb 3 3 3 0.1 1.0 2 0.1 1.0 ppb pp pp pp 1 0 2 0.1 1.0 ppb pp pp 1 0 1 1 2 0.1 1.0 ppb pp 1 0 0.1 1 1 2 0.1 1 1 pp pp 1 0 0.1 1	2-Hexanone	qdd																
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Isopropylbenzene	ppb	5						0.3 J	0.1 J	1.0	0.9						2 J
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,3-Dichlorobenzene	ppb							0.4 J									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,4-Dichlorobenzene	dqq	3	3					7	0.4 J								÷
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,2-Dichlorobenzene	ppb							7	0.2 J								
01 ppb 0.2.3 ppb ppb 0.3.3 ppb ppb 0.3.1 ppb ppb 0.3.1 ppb ppb 0.3.1 ppb ppb 0.3.1 ppb ppb ppb ppb ppb	Trichloroethene	dqq																
ppb ppb 0.3 ppb ppb ppb ppb ppb p	1,1,1-Trichloroethane (TCA)	dqq																
bb constraints constrai	Carbon disulfide	ppb			0.2 J													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2-Butanone	ppb			5													
99 999 919 913 999 999 913 0.1 1 999 999 93 0.1 1 1 999 999 999 999 1 1 1 999 999 999 999 93 1 1 1 1 999 999 999 999 999 999 999 1 <	bis(2-Ethylhexyl)phthalate	dqq																
ppb 0.1 0	Napthalene	qdd																3.1
P0b 0.1 0.1 0.1 0 0.1 0 <td< td=""><td>4-Nitrophenol</td><td>dqq</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	4-Nitrophenol	dqq																
actum ppb actum cyclohexane ppb cyclohexane pyb cyclohexane py	Dichlorodifluoromethane	dqq								0.8								
cyclohexane ppb cyclohexane pyb cyclohexane py	Caprolactum	qdd													5	-		2 J
texane ppb (cyclohexane	Methylcyclohexane	qdd							0.1 J									
cyclohexane ppb terter ppb terter terter ppb terter terter ppb terter terter ppb terter ppb terter terter ppb terter terter ppb terter terter ppb terter terte	Cyclohexane	qdd							.1.									0.6 J
Itert-buryl etter ppb	Methylcyclohexane	qdd																
HC a-BHC hlor aldehyde a-Chtordane	Methyl tert-butyl ether	dqq						0.3 J										
	PCBs	qdd													2.5			14.0
	beta-BHC	dqq																
	gamma-BHC	qdd																0.10
_	Heptachlor	qdd																0.07
	Eldrin aldehyde	qdd																
	gamma-Chlordane	qdd																

NOTES: 1. Only detected values are reported
2. NS = Not Sampled; ND = non-detect; Inst.E.r. = Instrument Error
3. Surface water samples labeled previously as follows: SW-2 as SW-10, SW-3 as SW-12, and SW-103 as SW-13
4. GW & SW Standards based on NYSDEC TAGMs

CROSS COUNTY SANITATION/KESSMAN LANDFILL OM&M DETECTED GROUNDWATER, SURFACE WATER AND LEACHATE ANALYTICAL RESULTS FIELD PARAMETERS, INDICATOR PARAMETERS AND METALS ROUND: 6 by O'BRIEN & GERE/IEG (Fourth Quarter, 2003) FORM 4B

DATE: November 7, 2003

	PARAMETER (in ppb)	UNITS	GROUND WATER STANDARD	SURFACE WATER STANDAPD	MW-1A	MW-1B	AE-WM	MW-3B	MW-5A	WW-5B	SAMPLE LOCATION MW-20A WW-2	ATION MW-20B	sw-1	SW-2	SW-3	SW-103	SW-Bridge	MHC-1
were (field) F I </th <td>pH (field; s.u.)</td> <td>S.U.</td> <td></td>	pH (field; s.u.)	S.U.																
Contronting mines (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Temperature (field)	۴																
perm image	Specific Conductivity	umhos																
ppm i=1 i=1 <th>TSS</th> <th>mdq</th> <th></th> <th></th> <th>QN</th> <th>6</th> <th>QN</th> <th>16</th> <th>24</th> <th>16</th> <th>950</th> <th>12</th> <th>14</th> <th>16</th> <th>280</th> <th>180</th> <th></th> <th>98</th>	TSS	mdq			QN	6	QN	16	24	16	950	12	14	16	280	180		98
ppm ppm <td>TOC</td> <td>шdd</td> <td></td> <td></td> <td>4.1</td> <td>5.7</td> <td>Q</td> <td>3.8</td> <td>11</td> <td>80</td> <td>6.2</td> <td>5.5</td> <td>7.3</td> <td>7.2</td> <td>7.3</td> <td>9.5</td> <td></td> <td>6.1</td>	TOC	шdd			4.1	5.7	Q	3.8	11	80	6.2	5.5	7.3	7.2	7.3	9.5		6.1
ppm ppm <td>BOD5</td> <td>шdd</td> <td></td> <td>10</td> <td>9.9</td> <td>19</td> <td>15</td> <td></td> <td>25</td>	BOD5	шdd											10	9.9	19	15		25
• ppm i 7:0 6:00 1(100 3300 2:3 4:6 4:2 4:6 1:7 <td>cod</td> <td>mqq</td> <td></td> <td>32</td> <td>25</td> <td>27</td> <td>52</td> <td></td> <td>29</td>	cod	mqq											32	25	27	52		29
m ppp m top ND ND<	Chlorides	mqq			740	690	1100	3300	23	46	42	46						
(1) (1) <td>Aluminum</td> <td>qdd</td> <td></td> <td>100</td> <td>Q</td> <td>264</td> <td>41.7 B</td> <td>QN</td> <td>QN</td> <td>241</td> <td>36000</td> <td>Q</td> <td>99.1 B</td> <td>42.8 B</td> <td>854</td> <td>8640</td> <td></td> <td>Q</td>	Aluminum	qdd		100	Q	264	41.7 B	QN	QN	241	36000	Q	99.1 B	42.8 B	854	8640		Q
ppp 25 80 ND ND ND 115 ND N	Antimony	qdd	30	30	Ð	g	g	g	g	Ð	Q	Q	Ð	Q	Q	Q		Q
(m) (m) <td>Arsenic</td> <td>qdd</td> <td>25</td> <td>50</td> <td>Q</td> <td>Q</td> <td>Q</td> <td>Q</td> <td>11.6</td> <td>Ð</td> <td>10.2</td> <td>Q</td> <td>Ð</td> <td>Q</td> <td>Q</td> <td>Q</td> <td></td> <td>Q</td>	Arsenic	qdd	25	50	Q	Q	Q	Q	11.6	Ð	10.2	Q	Ð	Q	Q	Q		Q
pp pp<	Barium	qdd	1000	1000	121 B	194 B	487 B	654 B	154 B	100 B	276 B	67.1 B	84.9 B	117 B	148 B	198 B		495
pp n	Beryllium	qdd			Ð	Q	Ð	Q	g	Ð	Q	Q	Q	Q	Q	Q		Q
opb i 248000 88000 23100 4000 147000 147000 14700 6110 82500 65600 6400 pib iso	Cadmium	qdd			z	QN	Q	QN	Q	Q	QN	QN	QN	Q	QN	QN		Q
1 10 50 50 41 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 6.6 ND	Calcium	qdd			248000	88000	231000	400000	100000	147000	131000	61100	82200	62500	65400	72600		130000
ppb N	Chromium	qdd	50	50	4 B	4.2 B	4.2 B	2.6 B	5.2 B	4.1 B	49.7	5.6 B	Q	g	Q	Ð		2.1 B
ppb ND	Cobalt	qdd			Q	Q	g	QN	Q	Q	18.9 B	g	QN	QN	Q	QN		g
pp 300 300 224 574 132 8780 12700 5190 5300 3550 4590 7560 4590 7560 4590 7560 4590 7560<	Copper	qdd			QN	QN	Q	Q	QN	QN	47.7	QN	Q	QN	QN	ΩN		Q
pp 25 50 ND ND<	Iron	qdd	300	300	224	574	132	8780	12700	3100	61900	2320	2930	3550	4690	25100		512000
m pp 3600 105000 612000 228000 112000 67200 28700 16900 67200 187	Lead	qdd	25	50	QN	QN	QN	QN	QN	QN	18.4	QN	QN	QN	Q	14		Q
e pp 300 300 63 22.8 53 375 207 774 1270 40.5 60.4 1460 ppb pp pp ro ND	Magnesium	qdd	35000		105000	612000	128000	222000	112000	71000	109000	67200	28700	16900	18500	23200		33200
ppb pp ND	Manganese	qdd	300	300	63	22.8	53	375	207	774	1270	40.5	504.0	908	1460	3900		1260
pp pp 100 ND 1.8 B ND 5.5 B 5 B 5 O ND	Mercury	qdd			QN	QN	Q	QN	Q	Q	Q	Q	QN	Q	QN	QN		QN
ppb ppb 29200 7540 30000 27500 11400 23500 14000 8200 7490 7600	Nickel	qdd	100	100	DN	QN	1.8 B	Q	5.5 B	5 B	50	QN	QN	Q	QN	QN		QN
ppb ppb ND N	Potassium	qdd			29200	7540	30000	27500	11400	12800	23500	140000	8200	7490	7680	8050		7920
ppb ppb ND N	Selenium	qdd			QN	QN	QN	QN	QN	Q	3.4 B	Q	DN	QN	Q	QN		Q
ppb 2000 110000 393000 273000 31900 50800 30100 28400 39600 123000 138000	Silver	qdd			Q	QN	QN	QN	Q	QN	QN	QN	Q	QN	QN	QN		Q
Lim ppb ND N	Sodium	qdd	20000		110000	393000	290000	573000	31900	50800	30100	28400	396000	123000	138000	354000	_	60600
dium ppb ND ND <thn< th=""><td>Thallium</td><td>þþþ</td><td></td><td></td><td>QN</td><td>QN</td><td>QN</td><td>QN</td><td>QN</td><td>QN</td><td>QN</td><td>QN</td><td>QN</td><td>QN</td><td>QN</td><td>QN</td><td></td><td>QN</td></thn<>	Thallium	þþþ			QN	QN	QN	QN	QN	QN		QN						
ppb 20 ND ND ND 10B ND 141 ND 10.3B 7B 5.9B	Vanadium	qdd			Q	Q	Q	₽	Q	Q	54	Q	Q	Q	Q	Q		Q
	Zinc	qdd	20		Ð	QN	QN	10 B	QN	QN	141	Q	10.3 B	7 B	5.9 B	53		3.6 B

NOTES: 1. Only detected values are reported 2. NS = Not Sampled; Inst.Er. = Instrument Error 3. Surface water samples labeled previously as follows: SW-2 as SW-10, SW-3 as SW-12, and SW-103 as SW-13 4. GW & SW Standards based on NYSDEC TAGMs

FORM 4A CROSS COUNTY SANITATION/KESSMAN LANDFILL OM&M DETECTED GROUNDWATER, SURFACE WATER AND LEACHATE ANALYTICAL RESULTS ORGANICS ROUND: 7 by O'BRIEN & GERE/IEG (Second Quarter, 2004)

DATE: May 25, 2004

		UNITS	GROUND	SURFACE							SAMPLE LOCATION	CATION						
Olds Diple 2 I 1 0.1 1 2 2 2 etholode PP 5	PARAMETER		WATER	WATER	MW-1A	MW-1B	MW-3A	MW-3B	MW-5A		MW-20A	MW-20B	SW-1	SW-2	SW-3	SW-103	SW-103 SW-Bridge	MHC-1
collode pp p<	Vinyl Chloride	qdd	2						0.1 J									
method pp i </td <td>Methylene chloride</td> <td>qdd</td> <td></td> <td>2 J</td> <td>2 J</td> <td>2 J</td> <td>۲J</td> <td></td> <td>2 J</td>	Methylene chloride	qdd											2 J	2 J	2 J	۲J		2 J
thum pp 5 1 0.03 1 0 0 2 2 thum pp 5 5 0 1 1 0 1 0 1 0 thum pp 5 5 5 1 1 0 1 1 0 1 <th1< th=""> <th1< th=""> <th1< th=""> <</th1<></th1<></th1<>	Acetone	qdd					-		2			2	5 J	ſЭ	ſЭ	۲۹		4 J
Oblicentification pp 5	Chloroethane	qdd	5						0.3 J	-								
	trans 1,2-Dichloroethene (DCE)	qdd	5	5								0.5						
Dellocatione Dello	1,1-Dichloroethane	qdd	5	5							2	2						
Difficienting pp 0.6	cis 1,2-Dichloroethene (DCE)	qdd	2	2					0.2 J	0.4 J		0.2 J						
Incontenta pp 0.6 0.6 0.6 0.6 0.6 0.6 1 <th1< th=""> 1 <th1< th=""> <th1< th=""></th1<></th1<></th1<>	trans-1,2-Dichloroethene	bpb																
Interproteme ppb 1	1,2-Dichloroethane	qdd	0.6	9.0							-	-						
a 1 1 1 1 0.41 0.41 0.41 1 2010 20 2 5	1,2-Dichloropropane	dqq																
0 <td>Benzene</td> <td>qdd</td> <td>-</td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>٢</td> <td>0.4 J</td> <td>0.4 J</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2 J</td>	Benzene	qdd	-	+					-	٢	0.4 J	0.4 J						2 J
Instant pp 5<	Toluene	qdd	5	5					0.3 J									
nerceda pp 5 5 1 7 5 1 1 010 pp p <t< td=""><td>Ethylbenzene</td><td>dqq</td><td>5</td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Ethylbenzene	dqq	5	5														
pp	Chlorobenzene	qdd	5	2					7	5								10 J
Table pp pp <th< td=""><td>Xylene</td><td>dqq</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.8 J</td></th<>	Xylene	dqq																0.8 J
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2-Hexanone	qdd																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Isopropylbenzene	qdd	5						0.5 J	2 J	2.0	2.0						L 7.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,3-Dichlorobenzene	dqq							0.3 J									
909 909 1 0.1 919 1 1 0.1 909 <td>1,4-Dichlorobenzene</td> <td>qdd</td> <td>3</td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td>٦</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>L L</td>	1,4-Dichlorobenzene	qdd	3	3					2	٦								L L
	1,2-Dichlorobenzene	dqq							-	0.7								
	Trichloroethene	dqq																
Ifide pp	1,1,1-Trichloroethane (TCA)	qdd																
pp	Carbon disulfide	ppb																
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2-Butanone	dqq												L1	L1			
	bis(2-Ethylhexyl)phthalate	qdd														_		
Difficiol ppb 0.6 0.6 0.6 0.6 odiffuormethane ppb 0.6 0.6 0.6 0.6 0.5 actum ppb ppb 0.6 0.6 0.6 0.6 0.5 cyclohexane ppb ppb 0.6 0.6 0.6 0.6 0.5 exane ppb pp 0.6 0.6 0.6 0.6 0.6 0.6 exane ppb pp 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7	Napthalene	qdd																5.1
odifunctomethane ppb 0.6 0.5 0.5 actum ppb methane ppb methane 2.1 cyclohexane ppb methane ppb methane 2.1 cyclohexane ppb methane ppb methane 2.1 exane ppb methane ppb methane 2.1 exane ppb methane ppb methane 2.1 exane ppb methane 0.8 methane 2.1 exane ppb methane 0.8 methane 2.1 etcl-butylether ppb methane 0.8 methane 2.1 etcl-butylether ppb methane 0.8 methane 1.1 1.1 etcl-butylether ppb methane 0.8 methane 1.1 1.1 1.1 fieldehyde ppb methane methane 1.1 1.1 1.1 1.1 1.1 etclohyd	4-Nitrophenol	dqq								1								5
actum ppb 2J vyclohexane ppb 2/ vyclohexane ppb 2/ exame ppb 2/ exame ppb 2/ exame ppb 2/ exame ppb 2/ exame ppb 2/ exame ppb	Dichlorodifluoromethane	qdd								0.6								
yciolhexane ppb exame exame exame ppb extended the ppb explohexane ppb explohexane ppb explohexane ppb extended the ppb exten	Caprolactum	qdd												2.7	LL	27		3.1
exame ppb events ppb e	Methylcyclohexane	qdd																
yclohexane ppb (art-butyl ether ppb (art-butyl ethe	Cyclohexane	qdd																
tert-butyl ether ppb the tert-butyl ether ppb	Methylcyclohexane	qdd																
HC a-BHC aldehyde a-Chlordane	Methyl tert-butyl ether	dqq						0.8										
	PCBs	qdd																
	beta-BHC	qdd																
	gamma-BHC	qdd																
	Eldrin aldehyde	qdd															_	
	gamma-Chlordane	qdd																

NOTES: 1. Only detected values are reported

NS = Not Sampled: ND = non-detect; inst.Er. = Instrument Error
 Surface water samples labeled previously as follows: SW-2 as SW-10, SW-3 as SW-12, and SW-103 as SW-13
 GW & SW Standards based on NYSDEC TAGMs

CROSS COUNTY SANITATION/KESSMAN LANDFILL OM&M DETECTED GROUNDWATER, SURFACE WATER AND LEACHATE ANALYTICAL RESULTS FIELD PARAMETERS, INDICATOR PARAMETERS AND METALS ROUND: 7 by O'BRIEN & GERE/IEG (Second Quarter, 2004) FORM 4B

DATE: May 25, 2004

	UNITS	GROUND	SURFACE :							SAMPLE LOCATION	ATION						
PARAMETER (in ppb)		WATER STANDARD	WATER STANDARD	MW-1A	MW-1B	MW-3A	MW-3B	MW-5A	MW-5B	MW-20A	MW-20B	SW-1	SW-2	SW-3	SW-103	SW-Bridge	MHC-1
pH (field; s.u.)	s.u.			6.35	6.41	6.32	6.33	6.04	6.36	6.42	6.43	6.3	6.9	6.85	6.7		5.8
Temperature (field)	卡			56	53	61	56	57	63	89	57	17	82	82	74.8		66.3
Specific Conductivity	umhos			2.15	3.28	4.02	6.28	1.13	1.17	0.75	0.78	0.96	0.56	0.59	0.63		1.36
TSS	mqq			12	110	12	26	51	2300	220	7.5	11	16	42	21		100
TOC	bpm			1.4	0.88 J	0.4 J	1.1	6.8	6.8	4.5	4.6	7.1	8	7.6	7.8		5.6
BOD5	mqq											Q	Q	Q	7.9		20
cod	mqq											30	32	30	32		30
Chlorides	mqq			720	1100	1500	2600	20	49	45	47						
Aluminum	qdd		100	QN	967	16.8 J	QN	107 J	9820	3740	Q	355	48.8 J	648	57.1 J		g
Antimony	dqq	30	30	2.4 J	2 J	QN	QN	QN	Q	QN	g	g	g	g	Q		Q
Arsenic	ppb	25	50	QN	QN	QN	DN	13.1	6 J	6.6 J	6 J	3.2 J	Q	2.5 J	Q		g
Barium	qdd	1000	1000	121 J	304	635	656	168 J	146 J	123 J	73.4 J	186 J	117 J	143 J	159 J		393
Beryllium	dqq			QN	Q	Q	Q	Q	0.19 J	QN	QN	QN	Q	Q	Q		Ð
Cadmium	dqq			QN	Q	QN	Q	QN	QN	ND	QN	QN	Q	QN	Q		Q
Calcium	dqq			237000	141000	285000	405000	100000	173000	00969	64400	64700	54700	59400	58000		122000
Chromium	dqq	50	50	2.4 J	4 .3 J	Q	QN	6 J	14.7	8.8 J	4.4 J	1.8 J	1.6 J	1.7 J	Q		g
Cobałt	dqq			QN	QN	QN	QN	QN	2.9 J	ND	QN	ND	DN	QN	ND		Q
Copper	qdd			QN	2.9 J	QN	DN	QN	13.7 J	4.7 J	QN	1.9.1	Q	2.5 J	QN		QN
Iron	qdd	300	300	100	1570	3560	8.03	15400	19300	7150	2750	5640	4810	4710	2370		59700
Lead	dqq	25	50	QN	1.6 J	1.1 J	2.1 J	QN	5.5	2.3 J	Q	2.9 J	QN	1.2 J	QN		L L
Magnesium	qdd	35000		101000	110000	162000	246000	110000	85900	69300	69600	24200	20800	22600	21800		36500
Manganese	qdd	300	300	1.4 J	30.2	667	377	228	1330	182	15.4	1610	387	548	719		788
Mercury	qdd			QN	g	g	Q	QN	0.059 J	QN	Q	DN	Q	Q	QN		g
Nickel	dqq	100	100	1.7 J	2.5 J	Q	L L	7.8 J	18.7 J	6.7 J	QN	1.2 J	0.92 J	1.8 J	ΩN		1.8 J
Potassium	qdd			11900	9210	37700	32600	10800	14800	15400	13900	6300	5710	6130	5860		10100
Selenium	qdd			QN	g	g	Q	Q	QN	QN	Q	QN	QN	DN	ΩN		Q
Silver	dqq			Q	Q	Q	Q	Q	DN	ND	Q	ND	QN	QN	QN		Q
Sodium	qdd	20000		120	538000	442000	846000	32000	64700	28800	27500	124000	43000	47700	53000		105000
Thallium	qdd			QN	QN	QN	QN	QN	ΠN	QN	QN	ΠN	QN	QN	QN		QN
Vanadium	qdd			9	3.3 J	Q	Q	1.3 J	15.3 J	6.5 J	QN	1.5 J	L 0.0	1.4 J	QN		Q
Zinc	ppb	20		15	5.3 J	3 J	QN	1.2 J	40.1	15.6 J	0.51 J	11.1 J	11.1 J	13.8 J	9.3 J		28.6
ADTEC: 4 OFFICIA	less bester	Action of the second se	Post														

NOTES: 1. Only detected values are reported
2. NS = Not Sampled; Inst.Er. = Instrument Error
3. Surface water samples labeled previously as follows: SW-2 as SW-10, SW-3 as SW-12, and SW-103 as SW-13
4. GW & SW Standards based on NYSDEC TAGMs

FORM 5 CROSS COUNTY SANITATION/KESSMAN LANDFILL OM&M SURVEY DATA FOR WATER LEVEL MEASUREMENTS

(August	2002)
---------	-------

WELL	Surveyed (Coordinates	GROUND ELEV.	TOP OF CASING	TOP OF RISER	TOTAL WELL	BOTTOM ELEV.
	Easting	Northing		ELEV.	ELEV.	DEPTH	
	(X)	<u>(Y)</u>	<u>(ft)</u>	(ft)	(ft)	(ft)	(ft)
MW-1A	697901.7	546375.5	461.15	463.52	463.15	59.40	403.75
MW-1B	697902.4	546364.2	461.07	463.21	463.01	23.10	439.91
MW-3A	698636.5	545975.9	431.82	435.01	434.65	67.36	367.29
MW-3B	698623.9	545972.5	432.68	436.08	435.78	34.20	401.58
MW-5A	698576.7	546842.9	431.38	434.01	433.84	72.18	361.66
MW-5B	698563.9	546849.8	431.70	434.49	434.35	30.38	403.97
MW-20A	698754.7	546507.8	431.51	434.09	431.29	21.61	409.68
MW-20B	698751.1	546516.5	430.92	433.68	431.17	42.53	388.64
GP-1	698349.6	546585.4	436.08	439.80	439.58		-
GP-2	699010.2	547304.6	435.56	437.44	437.12	-	-
LEACHATE TANK	698803.6	546357.3	436.12	TOP OF MAN	HOLE RIM		
STAFF GAUGE	698781.5	546523.1	433.06	TOP OF STAF	FF GAUGE		

Note: 1. All wells and soil gas points were resurveyed in August 2002 after repair work at MW-3A, GP-1 and GP-2 2. Previous elevations at MW-3A were: Ground elev. = 432.59 and Top of Riser elev. = 436.07.

FORM 6 FICA/DUTCHESS SANITATION OM&M CHECKLIST FOR FIELD EQUIPMENT/SUPPLIES

Multigas meter	
Well and leachate tank key	vs, spare locks
Spec. Cond., pH, Temp. m	eter
Water level meter	
Tool box including crowbar	
Distilled water	
Container for purge water	
Field Data forms	
As-built drawing	
lce	
Tape Measure/stick	
Disposable bailers, ropes	
Generator	
Well pump	
Tubing	
Gloves, paper towel, flashli	ight, extension cord
Sample containers/preserv	atives from lab
Labels, clear tape, markers	3
Sample coolers from lab	

KESSMAN LANDFILL OM&M LEACHATE PUMPING/OFF-SITE DISPOSAL (page 1 of 4)

DATE	TIME ELAPSED (minutes)	DEPTH TO WATER (feet)	AMOUNT OF LEACHATE REMOVED (gallons)	REMARKS
10/01/03	0 (START)	5.96	0	1 ST LOAD
10/01/05	20 (END)	6.28	4000	Filled
	<u> </u>	6.12	4000	Filled
	100	6.08		
	160	6.04		
	0 (START)	6.04	0	2 ND LOAD
	20	6.28		Filling
	30 (END)	6.43	4000	Filled
	120	6.11		
	0 (START)	6.04	0	3 RD LOAD
	15	6.43		Filling
	20	6.48		Filling
	23 (END)	6.52	4000	Filled
	43	6.43		
	VOLUME PUM	IPED TODAY	12,000	
10/07/02	Contractor used 8 HP ge Water level constant at 1 0 (START)	.68' (SG) in wetland	and at 2.70' (DTW) at	MW-20A
10/07/03	0 (START)	5.71	0	1 st Truck
	45 (END)	6.59	8000	Filled
	0 (START)	6.31	0	
	25 (END)	6.66	4000	2 nd truck filled
	VOLUME PUM (CUMULATI		12,000 (24,000)	
NOTES:	Surface water and groun Truck should hold vacuu Contractor used 8 HP ge Water level constant at 1	um to drain pipes so n merator/pump located	o spillage occurs near the leachate sum	
10/16/03	0 (START)	5.49	0	1 st Truck
10/10/03	33		8000	Filled - Vol = 8,000
	76 (END)	6.14 6.20	8000 4000	2^{nd} truck filled - 12,000 gal
•			+000	
	101	5.95		Post fill water level reading
	111	5.92		
	135	5.81		
	185	5.70		
	VOLUME PUM (CUMULATIV		12,000 (36,000)	
NOTES:	Levels at well MW-20A	before pumping=3.08 ping: MW-20A= 3.12 maintaining prime in o 65 feet from the MH	:MW-20B=2.07 and 1 pump. It took two ho was used by contract	No Change for Staff Gauge urs to start pumping.

KESSMAN LANDFILL OM&M LEACHATE PUMPING/OFF-SITE DISPOSAL (page 2 of 4)

DATE	TIME ELAPSED (minutes)	DEPTH TO WATER (feet)	AMOUNT OF LEACHATE REMOVED (gallons)	REMARKS
10/23/03	START - 0	5.50	0	1 st Truck
	END - 25	5.75	4000	Filled: vol = 4000 gal
	START - 30	5.70		2 nd truck
	47	5.96		Filled: 4000 gal; Total = 8000 ga
	END - 54	5.99	8000	
	63	5.86		Post-fill water level readings
	67	5.75		
	74	5.68		
	VOLUME PUM (CUMULATI)		12,000 (48,000)	
NOTES:	Levels before pumping: Levels after pumping: N			f Gauge.
10/30/03	0 (START)	5.08	0	1 st Truck
	32	5.51		
	42 (END)	5.49	8000	1^{st} truck filled – Vol = 8,000
	47(START)	5.49		Begin filling 2 nd truck
	92 (END)	5.50	4000	2 nd truck filled - 12,000 gal
	107	5.38		Post-fill water level readings
	127	5.35		
	147	5.30		
	VOLUME PUM (CUMULATIV		12,000 (60,000)	
NOTES:		pumping: MW-20A	= 2.76 ; MW-20B = 1	1.65 and Staff gauge = 2.5 1.66 and Staff Gauge = 2.5
11/6/03	START-0	5.64	0	1 st T ruck
	END - 40	5.75	6500	Filled: vol = 6500 gal
	START - 45			Begin filling 2 nd truck
	END- 66	5.86	4000	2 nd truck filled for a total of 10,500 gallons removed
	90	5.63		Post-fill water level readings
	115	5.50		
	155	5.49		
	VOLUME PUM		10,500	
	(CUMULATIV		(70,500)	
NOTES:	Levels before pumping Levels after pumping An 8-HP generator/pu No spillage was noted	MW-20A = 2.71 ft imp 65 feet from the	and no change for St MH was used by co	aff Gauge.

KESSMAN LANDFILL OM&M LEACHATE PUMPING/OFF-SITE DISPOSAL (page 3 of 4)

DATE	TIME ELAPSED (minutes)	DEPTH TO WATER (feet)	AMOUNT OF LEACHATE REMOVED (gallons)	REMARKS
11/13/03	START -0	5.34	0	Start filling 1 st truck
	END -30	5.85	4500	1 st truck filled
	START -38	5.81		Start filling 2 nd truck
	61	6.06		
	END - 65	5.90	8000	2 nd truck filled - 12,500 gallon
	75	5.83		Post-fill water level readings
	93	5.71		
	106	5.66		
	130	5.61		
	VOLUME PUM	PED TODAY	12,500	
NOTES:	(CUMULATI) Levels before pumpin		(83,000)	
11/20/02	Levels after pumping An 8-HP generator/pu No spillage was noted fi	imp 65 feet from the rom hoses at comple	MH was used by cor tion of pumping.	ntractor.
11/20/03	START-0	5.52	0	1 st truck
	<u>END-41</u>	5.75	6500	Filled 6500 gallons
	START-56	5.75		Begin Filling 2 nd truck
	END-78	5.8	4000	2 nd truck filled - 10,500 gallon
	86	5.71		Post-fill water level readings
	101	5.44		
	116	5.46		
	131	5.39		
	VOLUME PUM (CUMULATIV	VE TOTAL)	10,500 (93,500)	
NOTES:	Levels before pumping Levels after pumping An 8-HP generator/pu No spillage was noted	MW-20A = 2.70 ft mp 65 feet from the 1 from hoses at comp	and no change for Sta MH was used by cor	aff Gauge. htractor.
11/26/03	START -0	5.21	0	Start filling 1 st truck
	25	5.95		
·	END- 41	5.75	8000	First truck filled
	START - 88	5.72		Start filling 2 nd truck
	END - 100	6.10	4000	2 nd truck filled - 12,000 gallon
	125	5.59		Post-fill water level readings
	145	5.56		
	VOLUME PUM		12,000 (105,500)	
NOTES:	(CUMULATIV Levels before pumpin After pumping there w An 8-HP generator/pu No spillage was noted fr	g: MW-20A =2.89 f were no changes in N ump 65 feet from the	t and Staff gauge = 2. 1W- 20A or the staff MH was used by con	Gauge.

KESSMAN LANDFILL OM&M LEACHATE PUMPING/OFF-SITE DISPOSAL (page 4 of 4)

DATE	TIME ELAPSED (minutes)	DEPTH TO WATER (feet)	AMOUNT OF LEACHATE REMOVED (gallons)	REMARKS
12/02/03	START -0	5.42	0	Start filling 1 st truck
	38		6500	First truck filled
	49	5.32		Start filling 2 nd truck
	67	5.26	3500	2 nd truck filled - 10,000
	100	5.56		Post-fill water level reading
	VOLUME PUM (CUMULATIV		10,000 (115,500)	
NOTES:	After pumping there w An 8-HP generator/pu No spillage was noted fr	mp 65 feet from the	MH was used by con	
01/08/04	START-0	5.32	0	Start filling 1st truck
	23	5.52	4000	First truck filled
	53	5.42		Waiting on 2 nd truck
	68	5.57		Start pumping 2 nd truck
	108	5.80	8000	2 nd truck filled for a total or 12,000 gallons removed
	123	5.60		Post-fill water level reading
	163	5.50		
	VOLUME PUMI (CUMULATIV	E TOTAL)	12,000 (127,500)	
NOTES:	Unable to take reading Level before pumping After pumping there w An 8-HP generator/pu No spillage was noted Note that reading at 68	: Staff Gauge = 2.2 vere no changes in the mp 65 feet from the from hoses at comp	0 ft he Staff Gauge. MH was used by con pletion of pumping.	tractor.

CROSS COUNTY SANITATION/KESSMAN LANDFILL O&M OPERATION, MAINTENANCE AND MONITORING

1

ő

1

OM&M REPORT

ATTACHMENT C PREVIOUS ANALYTICAL RESULTS

CROSS COUNTY SANITATION/KESSMAN LANDFILL OM&M PREVIOUS ANALYTICAL RESULTS - GROUNDWATER/SURFACE WATER **TABLE C-1**

		GROUND	SURFACE	11/30/99	11/30/99	11/30/99
	CRQL	WATER	WATER	MW-3B	MW-20A	MW-20B
		STANDARD	STANDARD			
depth to bottom (ft)				34.2	22	42.5
depth to GW (ft)				3.8	e	2.1
РН				7.3	7.9	7.8
cond (umhos)						
temp oC (oC)				11.8	11.9	12.3
VOA						
vinyl chloride	-	2	su			
chloroethane	١	5	su		1.1	0.8
1,1-dichloroethane	1	5	5		4.1	4.1
benzene	1	-	1		0.5	0.6
1,2-dichloroethane	-	0.6	0.6		2.6	2.6
isopropylbenzene	-	5	su		3.0	3.9
Total VOCs					11.3	12
BNA						
PCBs						
TAL						
AI	62	us	100	330	1500	250
Sb	37	3	e	63		
As	8	25	50			
Ba	160	1000	1000	580	560	510
Ca		none	none	320000	700000	52000
cr	9	50	50			
Fe		300*	300 (A(c))	4000	39000	2600
Pb	3	25	50		5.8	
БМ		35000	su	180000	140000	46000
Mn		300*	300	320	0062	25
Ni	40	100	100		46	
×		none	none	25000	17000	12000
Na		20000	ns	350000	36000	35000
7n	10	SU	f hardness	140	17	

number in bold italics is from POC stds ns = no std nor guidance value; CRQL = Contract required detection limit SW STDs for H(WS) human water source * = total of iron and manganese ** std for total of all phenols Only detected values are reported

TABLE C-1 CROSS COUNTY SANITATION/KESSMAN LANDFILL OM&M PREVIOUS ANALYTICAL RESULTS - GROUNDWATER/SURFACE WATER

-

-

đ

¢.

1

8

4

1

-

depth to bottom (ft) depth to GW (ft)	CROI	GROUND	SURFACE	10/17/00 MM/-1A	10/17/00 MM/-1B	10/17/00 MWA-34	10/17/00 MMA-3B	10/17/00 MIN-204	10/17/00	10/17/00	10/17/00	10/17/00	10/11/00
depth to bottom (ft) depth to GW (ft)		STANDARD	STANDARDSTANDARD			damaged		_		(sw-3)	19		11
depth to GW (ft)				60.6	23	57	27.7	22	42.6				
:				13.2	10.6	4.8	4.3	4	2.5				
DH					8.1		74	83	00	12	R 7	Å Å	99
cond (umhos)				1960	225		490	520	740	!	5	1510	1640
temp oC (oC)				14	12.5		12.7	13.1	12.7	10.7	13.2	14.2	14.1
VUV													
vinut abladda	-	¢	•										
chloroethese	-	4	2							3500	0.5		
Critoroetmane	-		2 4	T							9	2	-
disting ather	- -		0				,	,		8100	0.6		
dietnyl etner		2	2					~		2	16	13	9
1, 1-dichloroethene	-	•	2							e 1			
-1,2-dichloroethene	- .	•	0							12			
metnyr-t-butyl etner	-	2	ŝ								9 .4	0.4	
actytonitrile	-	•	SL4				4	0.1		,			
1,1-dicritoroetnane	- -	•	n •				,			0.7	0.6		
Januariana 1.2-dichlomathana	-	- 4	30				5°.	0.0		~	-	4	~
	-	3	3.4					,					
chlorohenzene	-	, . .									¢. 6	4	
athyhonzona	-	, v	, u							°.,		Ø	Ď
m n-wiene	-	5	2							~	4	c	
o-xviene	-	2	5							• •	0	7	7
sopropvibenzene	-	2	SU				-	6		0.2	•		-
n-propylbenzene	-	S	SU							;	06	0.6	05
2-chlorotoluene	-	5	5										6
,2,4-trimethytbenzene	-	5	2							0.6	3	4	
,4-dichlorobenzene	-	e	e							0.3	6.0		-
naphthalene	-	su	10							0.3	3	5	4
Fotal VOCs										11814.9	54.4	4	42.6
PHA				T									
namut alcohol	4									,			
2-methylnhand	s ur	ŧ	*										
4-methylohenol	2	ŧ		÷									
naphthalene		SU	10	:							2	2	
PCB	_												
arochlor 1232	0.05	60 ^{.0}	800								13	.	0.22
TAL													
AI	62	su	8	2100	1100		330	1800	12	170	130		
Sb	37	e	e										
As	ω	25	50					13					
Ba	160	1000	1000				510	720		170	920	420	440
Ca		none	none	220000	84000		340000	160000	53000	120000	120000	120000	120000
ö	9		20	13									
Fe		8	300 (A(c))	3100	1400		4400	34000	2200	50000	58000	61000	64000
æ	•		20					9					
6M			82	120000	29000		210000	16000	47000	51000	48000	42000	45000
UW 1	Q.	ŝ	s e	2002	140		370	14000	14	1400	480	066	840
	2		anon	11000	8400		3000	00000	12000	14000	14000	12000	14000
Na		20000	SU	130000	380000		570000	38000	34000	18000	67000	BROOM	08000
Zu	9		hardness	72			2	13					

number in bold Italics is from POC stde ns = no std nor guidance velve; CRQL = Contract required detection limit Surface Water (SW) Sandards for H(WS) human water source = tolal of iron and mangares ** std for rotal of all phenois Only detected values are reported

TABLE C-1 CROSS COUNTY SANITATION/KESSMAN LANDFILL OM&M PREVIOUS , NALYTICAL RESULTS - GROUNDWATER/SURFACE WATER

		10/17/00	CIAL DO	10/17/00	11/09/00	10/11/00	10/17/00	
	CLAR	01-00	CU-VU-OU	21-10	20-700			oump-reach.
			same location		same location	T		
			as SW-13		as SW-12			
H		7.2		6.7		6.6	6.6	
cond						1510	1640	
temp		10.7		13.2		14.2	14.1	
VOA								
vinyl chloride	-	3500		0.5				AN
chloroethane	-			9	9	2	-	
C-1,2-dichloroethene	+	8100		0.6				
diethyl ether	-	2		16	21	13	19	
methyl-t-butyl ether	-			0.4		0.4		
1,1-dichloroethane	-	0.7		0.6	0.6			
benzene	1	3		7	7	4	e	
toluene	-	180		0.4	0.5			
chlorobenzene	+	0.8		8	10	8	80	
ethylbenzene	-	2		0.4	0.5			
m.p-xylene	-	8		5	9	2	2	
isopropylbenzene	-	0.2		2	2	-	÷	
n-propylbenzene	-			0.6	0.6	0.6	0.5	
2-chlorotoluene	-						0.1	
1,2,4-trimethylbenzene	-	0.6		3	3	4	3	
1,4-dichlorobenzene	-	0.3		0.9	0.8		-	
naphthalene	-	0.3		3	e	5	4	
Total VOCs				54.4	61	40	42.6	
BNA								
naphthalene	5			2		7	с	
PCBS								
arochlor 1232	0.05			13			0.22	1.7
Metals								
A	62	170		130				AN
Ba	160	170		920		420	440	
Ca		120000		120000		120000	120000	
cr	10							
Fe		50000		58000		61000	64000	
Pa	e							
Mg		51000		48000		42000	45000	
Mn		1400		480		066	840	
¥		14000		14000		12000	14000	
Na		18000		67000		86000	98000	
Zn	10							

Only detected values are reported ns = no std nor guidance value; CRC L = Contract required detection limit(

CRQL depth to bottom (ft) depth to GW (ft)		GROUND	SURFACE	04/30/01	04/30/01	04/30/01	04/30/01	04/30/01	04/30/01	04/30/01	04/30/01	04/30/01	04/30/(1
pth to bottom (ft) pth to GW (ft)	-	WATER	WATER	MW-1A	MW-1B	MW-3A	MW-3B	MW-20A	MW-20B	SW-01	S-02	SW-03	SW-1(3
pth to bottom (ft) pth to GW (ft)	STAN	IDARD S	STANDARD STANDARD										
oth to bottom (ft) oth to GW (ft)					:								
oth to GW (ft)				59.00	23.50	cant read	34.20	42.60	21.00				
				52.00	7.05	well bent	3.70	1.80	3.50				
		-											
На				9.95	7.4	9.11	7.49	6.7	8.66				
cond (umhos)				2020	1950	2350	530	690	560				
temp oC (oC)				15.7	9.6	13.6	10.5	13.1	11.5				
voc						P	pu			na			na
chloroethane	-	5	su						6.0				
C-1,2-dichloroethene	-	5	5								-	8	
diethyl ether	-	ns	su					4	5				
1,1-dichtoroethane	-	5	5					e	4				
benzene	-	-	-	7	0.6			2	6.0				
1.2-dichloroethane	-	0.6	0.6					2	2				
isopropylbenzene	-	2	su					4.0					
Total VOCs		-		2	0.6	0	0	æ	2.9	0	0	0	0
BNA				p	pu	p	pu	pu	pu	na	na	na	ВП
PCB													
arochlor 1232 0	0.05 0.	0.09	0.09	pu	pq	p	pu	P	p	P	0.85	pu	pu
										0	6	6	
IAL	+	+	001		000	0.0	000	620		<u>e</u>	<u>0</u>	5	
	-	ST ST	00	0/9	320	310	230	0/0					
		с С	e										
	8	25	50										
Ba	-	1000	1000			340	450						
Ca		none	none	260000	83000	210000	350000	66000	60000				
	10 5	50	50	25									
Fe	Ř	300* 3	300 (A(c))	2300	370	5000	4500	1800	2400				
Pb	3		50					5.8					
Mg	35	35000	SU	120000	61000	110000	210000	52000	62000				
Mn	R	300*	300	180	35	340	440	140	22				
	40	18	100					46					
	č	none	none	12000	2900	25000	29000	14000	14000				
Na	20	20000	SU	110000	350000	160000	580000	35000	36000				
	10	ns f	f hardness	71			12	17					

number in bold Italics is from POC stds ns = no std nor guidance value SW STDs for H(WS) human water source * = total of iron and manganese * std for total of all phenols Only detected values are reported

		GROUND	SURFACE	08/01/01	08/01/01	08/01/01	08/01/01	08/01/01	08/01/01	08/)1/01	08/01/01	08/01/01	08/01/01
	CROL	WATER STANDARD	WATER WATER STANDARDISTANDARD	MW-1A	MW-1B	MW-3A	MW-3B	MW-20A	MW-20B	SV /-01	SW-02	SW-03	SW-103
depth to bottom (ft)				59.00	23.50	57.00	34.20	42.60	21.00				
depth to GW (ft)				14.50	10.66	4.70	4.50	1.80	2.08				
H				8.43	8.8	8.6			7.9				
cond (umhos)				800	810	1370	1750		520				
temp oC (oC)				13	13.9	11.9	15.9		18.3				
VOC				pu	pu	pu	pu			pu	pu	pu	pu
chloroethane	-	S	su						0.8				
diethyl ether	-	SU	su					3	3				
1,1-dichloroethane	۴-	5	5					3	e				
benzene	-	1	-					0.5	0.3				
1,2-dichloroethane	۰-	<u>9.0</u>	0.6					2	-				
isopropylbenzene	-	5	su					4.0	0.7				
Total VOCs				0	0	0	0	12.5	80	0	0	0	0
BNA				NA	NA	AN	AN	NA	AN	NA	AN	AA	AN
BCB													
arochlor 1232	0.05	0.09	60.0	pu	pu	P	pd	nd	pu	P	0.23	0.17	0.6
TAL													na
A	62	us	100	250	750		200		2900				
Sb	37	3	Э										
As	8	25	50										
Ba	160	1000	1000			330	460						
Са		none	none	200000	45000	190000	34000	56000	88000	48000	45000	43000	46000
c	10	20	50										
Fe		300*	300 (A(c))	600	1200	4000	6800	2300	7900	2400	2100	2200	2000
Pb	e	25	50						8.8				
Mg		35000	us	88000	31000	100000	200000	58000	69000	15000	15000	14000	15000
Mn		300*	300	150	100	230	520	11	400	320	160	250	
ĨŽ	40	10	100										
×		none	none	11000	5200	26000	27000	13000	16000				
Na		20000	S	87000	240000	170000	600000	32000	34000	17000	29000	28000	32000
, L	9	us	f hardness	23					12				

number in bold Italics is from POC stds ns = no std nor guidance value SW STDs for H(WS) human water source * = total of iron and manganese ** std for total of all phenols Only detected values are reported

ی ا

ø

-

		GROUND	SURFACE	10/29/01	10/29/01	10/29/01	10/29/01	10/29/01	10/29/01	10/29/01	10/29/01	10/29/01	10/29/01	10/29/01	10/29/01
	CRQL	WATER	WATER	MW-1A	MW-1B	MW-3A	MW-3B	MW-5A	MW-5B	MW-20A	MW-20B	SW-01	SW-02	SW-03	SW-103
		STANDARD	STANDARD STANDARD												
				20.00	00 60	57.00	00 10	10.00	20.00	24.00	9.07				
				00.80	23.30	00.10	34.20	12.00	20.00	2 10	442.0				
				10.10	0.0	4.00	17:4	00.7	0.0	2.0	2.90				
Ha				8.9	8.5	8.5	8.2	7.9	7.5	8.3	9.3				
cond (umhos)				1380	1800	1620	2990	830	800	580	390				
temp oC (oC)				12.1	13	11.7	12.1	11.8	13.5	14.4	12.3				
VOC				p	pu	p	ри					þ		P	þ
vinyl chloride	-	2	SU						0.4						
chloroethane	1	5	SU						2		0.8				
C-1,2-dichloroethene	+	5	5						0.3						
diethyl ether	-	ns	SU					7	31	7	6		2		
1.1-dichloroethene		5	su						0.4						
1,1-dichloroethane		5	5							2	2				
benzene	-	-	-							0.3	0.4				
1.2-dichloroethane	-	0.6	0.0							2	2				
chlorobenzene	-	5	5					9	4						
isopropylbenzene	-	5	us							0.6	0.8				
1.4-dichlorabenzene	-	3	0					0.5	0.4						
1,2-dichlorobenzene								0.7	0.5						
Total VOCs				0	0	0	•	14.2	37.3	11.9	14.2	•	2	0	0
BNA				AN	NA	AN	AN	AN	AN	AN	AA	AA	AN	AA	AA
phenol	ъ	;	1**												
benzyl alcohol	5		ļ												
2-methylphenol	، ام														
4-methylphenol	0														
naprinaiene		SL	2												
ava															
arochlor 1232	0.05	0.09	0.09	pu	P	pu	pu	P	р	pu	pu	0.2	0.98	0.3/(0.17)	0.66
TAL															ца
A	62	S	100	610	2300		280		170	1600	2900		62	350	
Sb	3/	~ ~	С												
20	160	1000				300	520							0000	
Ca	201	none	none	220000	80000	200000	400000	92000	150000	56000	60000	53000	57000	68000	53000
50	6	50	50												
Fe		300*	300 (A(c))	1200	2800	3700	3400	7400	2100	3800	2100	5400	5000	8200	8800
Pa	e	25	50												
Mg		35000	SU	00068	66000	100000	220000	8300	66000	50000	49000	17000	19000	20000	17000
Mn		300*	300	41	130	200	340	91	1100	88	1	980	730	2600	1300
ïŻ	40	100	100												
×		none	none	11000	9100	27000	31000	11000	11000	14000	13000	7400	7800	12000	6800
Na		20000	SU	00006	370000	190000	620000	38000	58000	34000	34000	69000	39000	45000	38000
Zu	9	SL	f hardness											530	

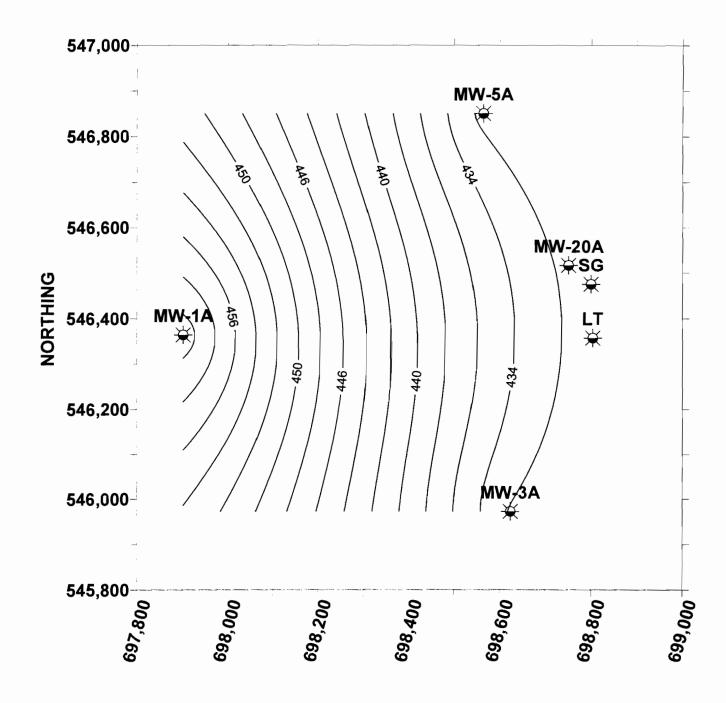
number in bold italics is from POC stds ns = no std nor guidance value SW STDs for H(WS) human water source * = total of ion and manganese ** std for total of all phenols Only detected values are reported

T/ABLE C-2 CROSS COUNTY SANITA'FION/KESSMAN LANI)FILL OM&M PREVIOUS ANAL'TICAL RESULTS - SEDIMENT

	SD-01	SD-02	SD-03	SD-04	SD-04 SD-05	SD-06	SD-07	SD-08	SD-09	SD-103
Vov. 2000										
arochlor 1232 (ug/kg) NA/> 70 4000 2400	NA/> 70	.1000 2400	5300/1600	NA/2100	1200	7700	210/280	25000	3500	3500
arochlor 1254 (ug/kg)	(
Aug. 2001										
arochlor 1232 (ug/kg)	pu (pu
arochlor 1254. (ug/kg)	pu (pu
Oct. 2001										
arochlor 1232 (ug/kg)	98	6(30	AN	NA	NA	AN	NA	NA	NA	390
arochlor 1254 (uq/kg)										

duplicate Aroch or results separated by / ars splifs between DEC LAB//3TL NA = not analyzed

File: KessmanSedmonitorE.qpw

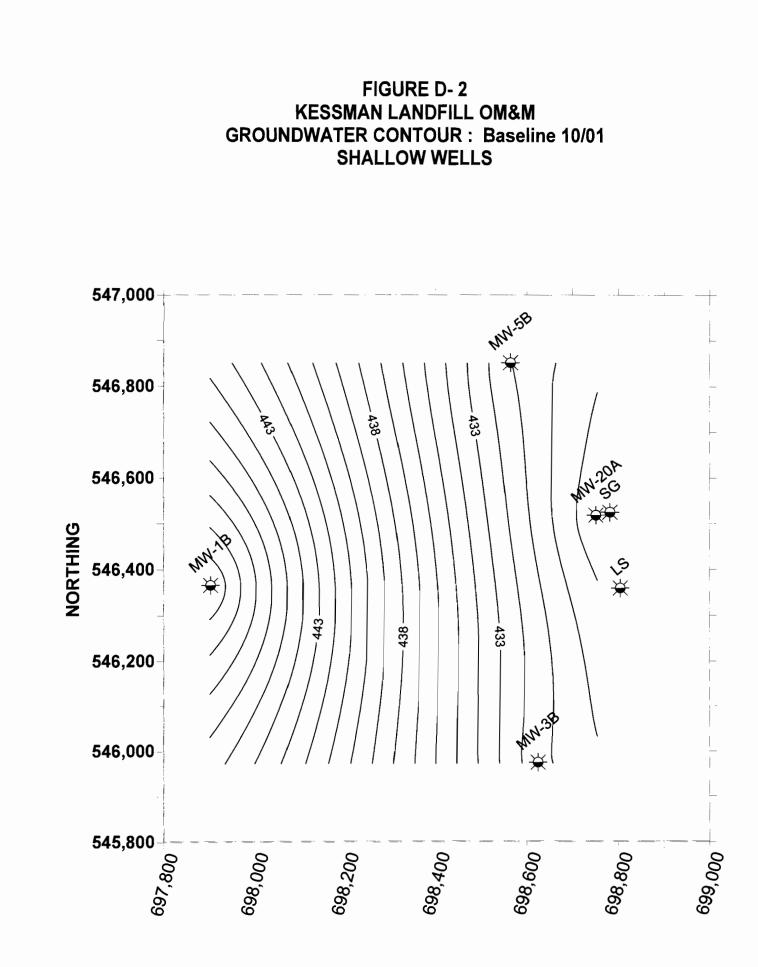
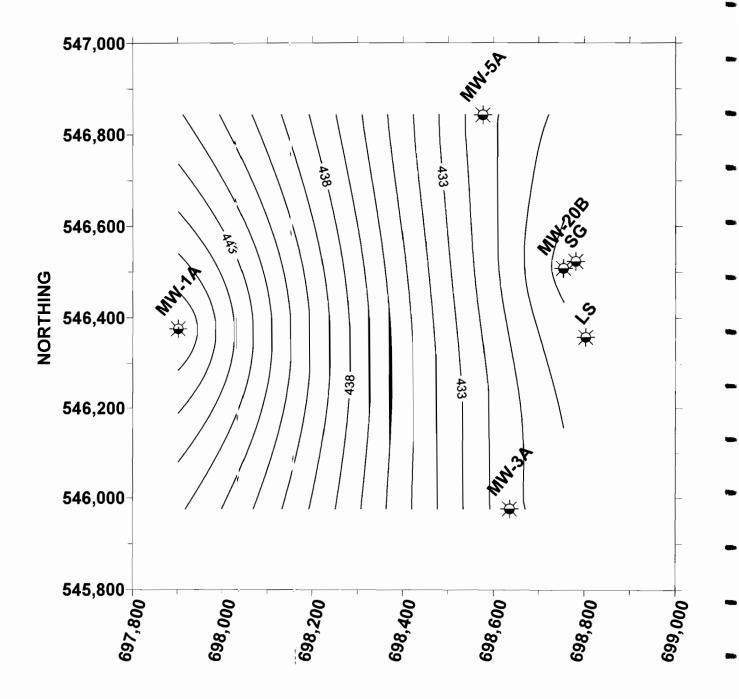

CROSS COUNTY SANITATION/KESSMAN LANDFILL O&M OPERATION, MAINTENANCE AND MONITORING

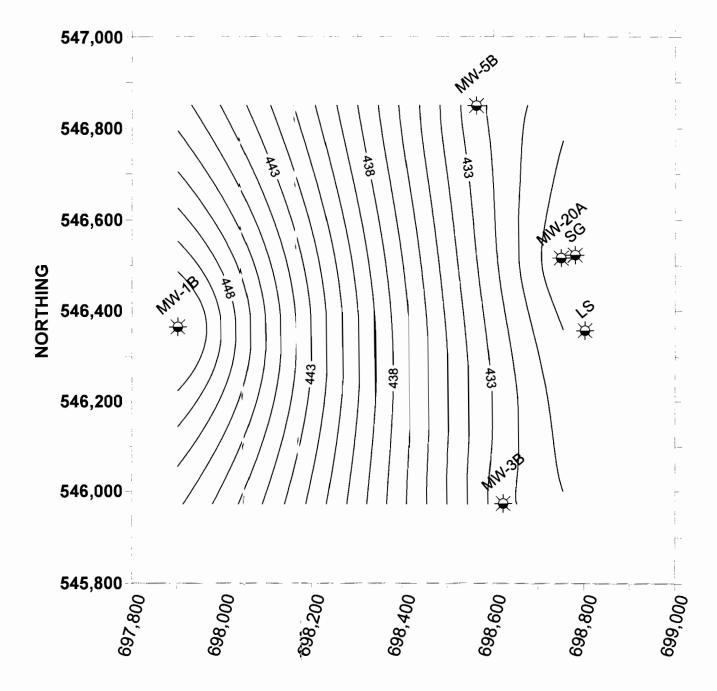
OM&M REPORT

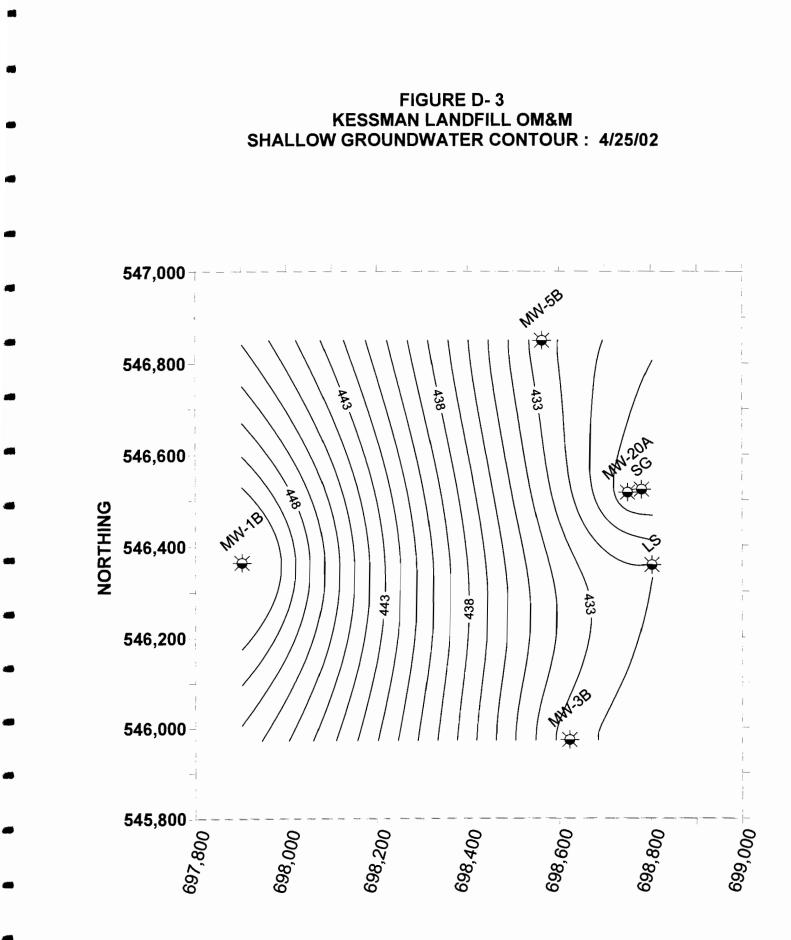
ATTACHMENT D GROUNDWATER CONTOUR PLOTS

1

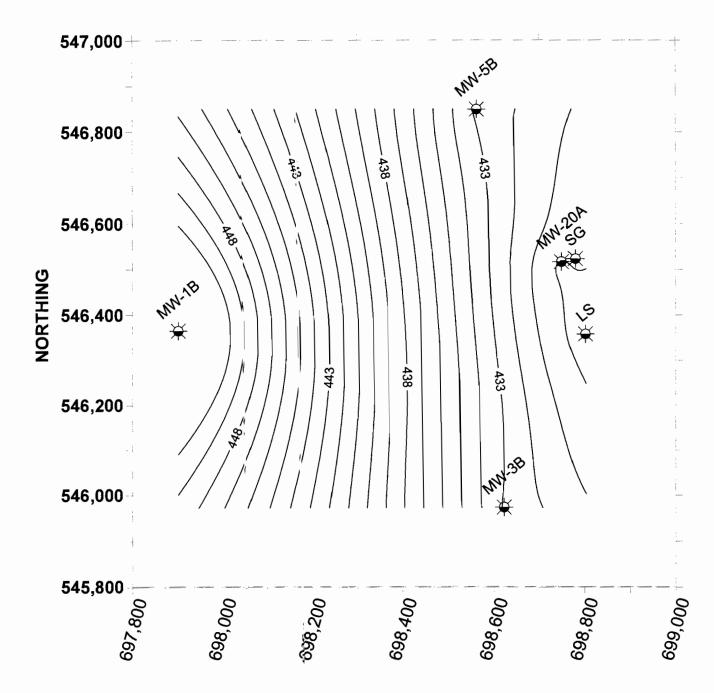
FIGURE D- 1 KESSMAN LANDFILL OM&M GROUND SURFACE CONTOUR (8/2002 Survey)


FIGURE D-2 KESSMAN LANDFILL OM&M GROUNDWATER CONTOUR : Baseline 10/01 DEEP WELLS


FIGURE D-3 KESSMAN LANDFILL OM&M SHALLOW GROUNDWATER CONTOUR: 2/27/02 547,000 MNV-5B 546,800 433 A38 NNN-20P 546,600 NORTHING MN. ৢ ¥ 546,400 ¥ 443 438-433 546,200 -NN 38 546,000 545,800 698,200 698,000 698,400 697,800 698,800 699,000 698,600

_


-

-

-

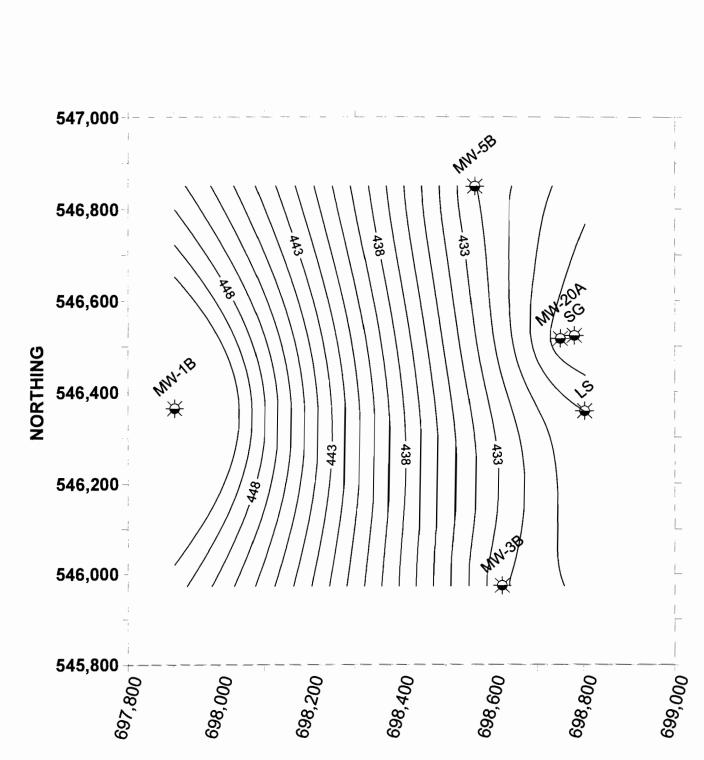
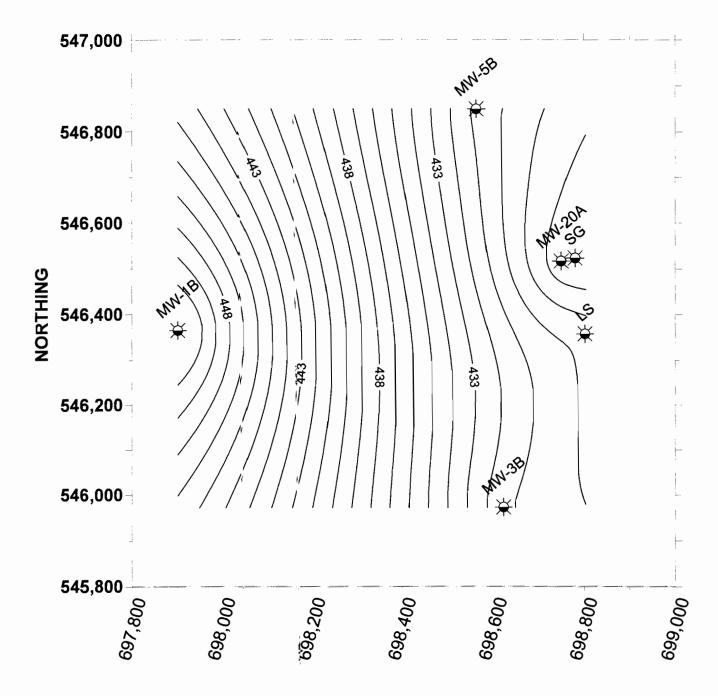
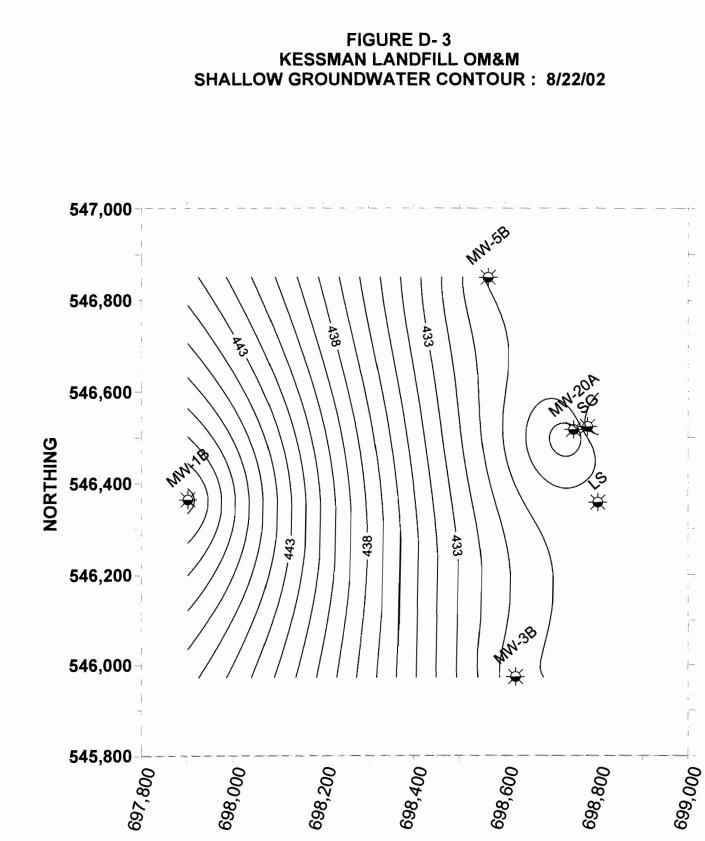
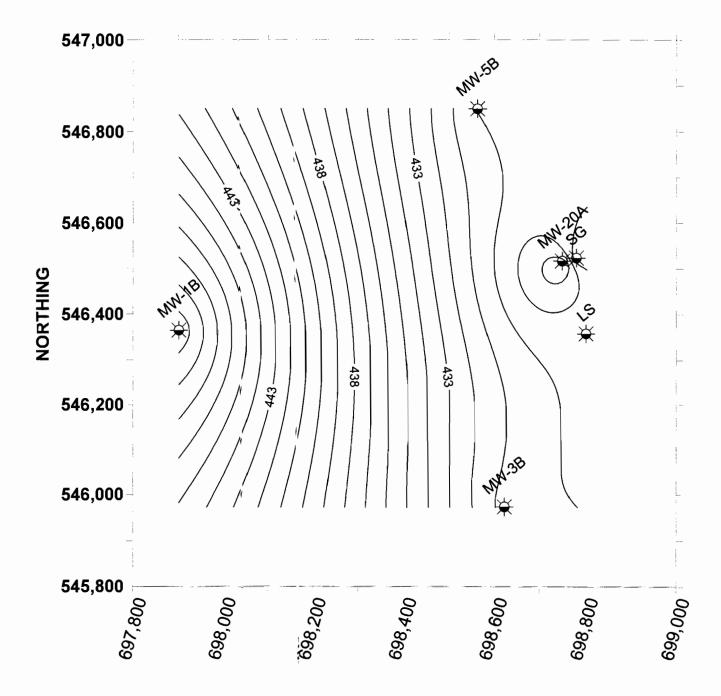
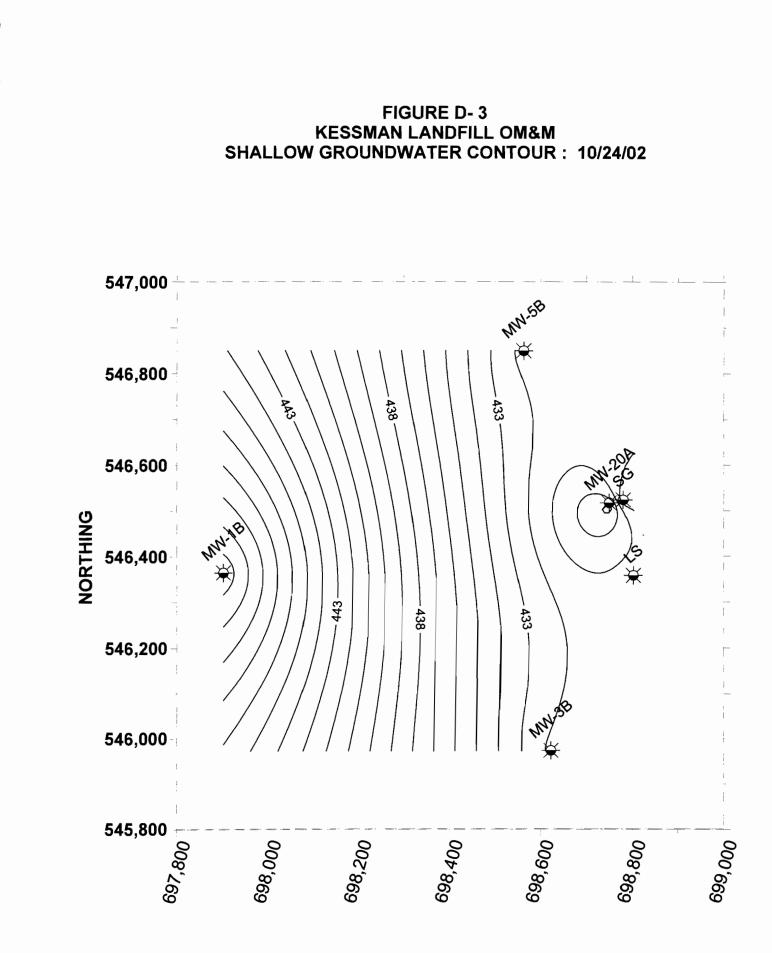
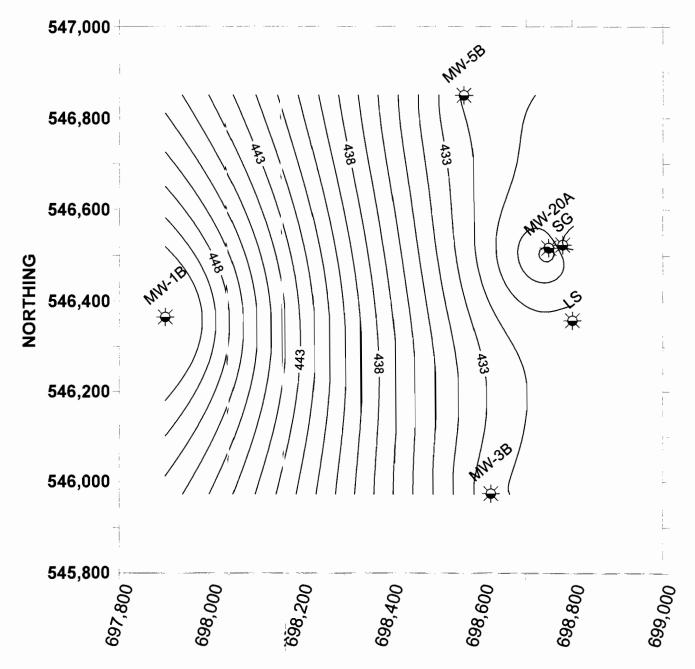
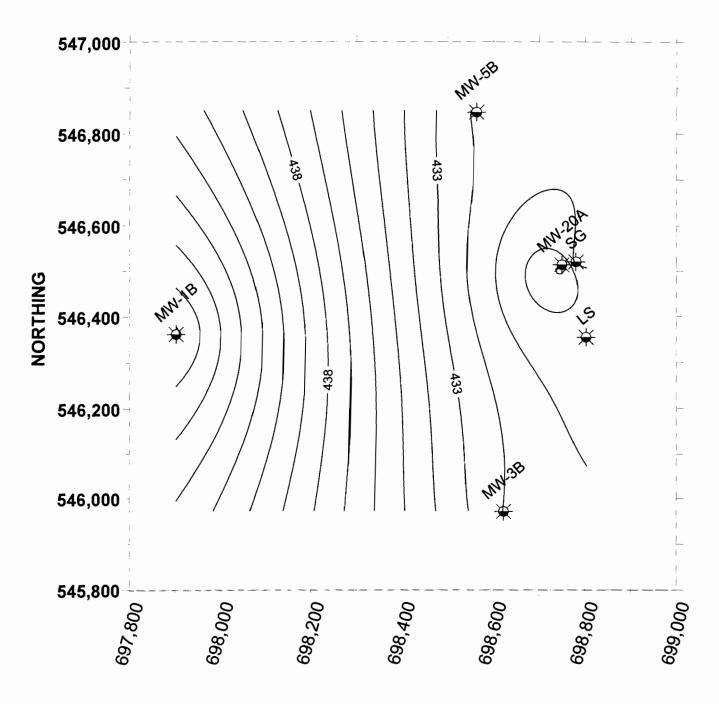




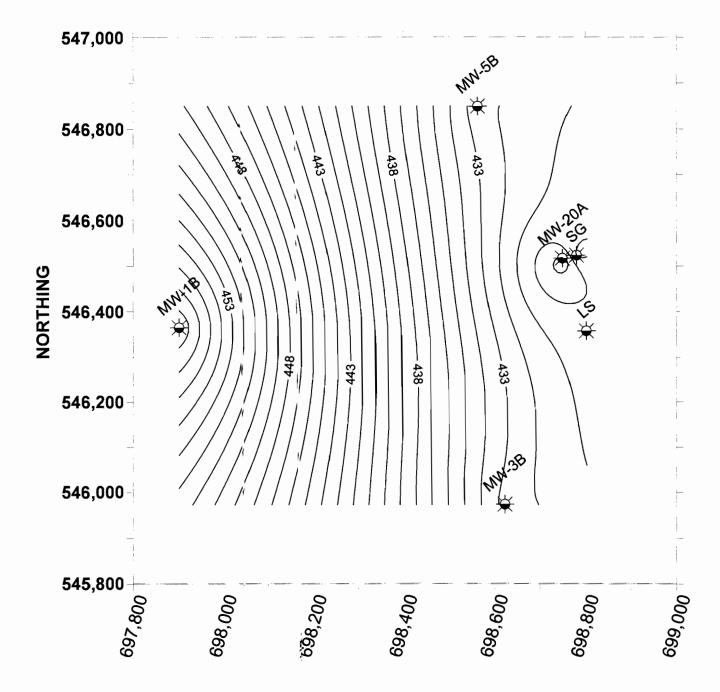
FIGURE D- 3 KESSMAN LANDFILL OM&M SHALLOW GROUNDWATER CONTOUR : 6/13/02

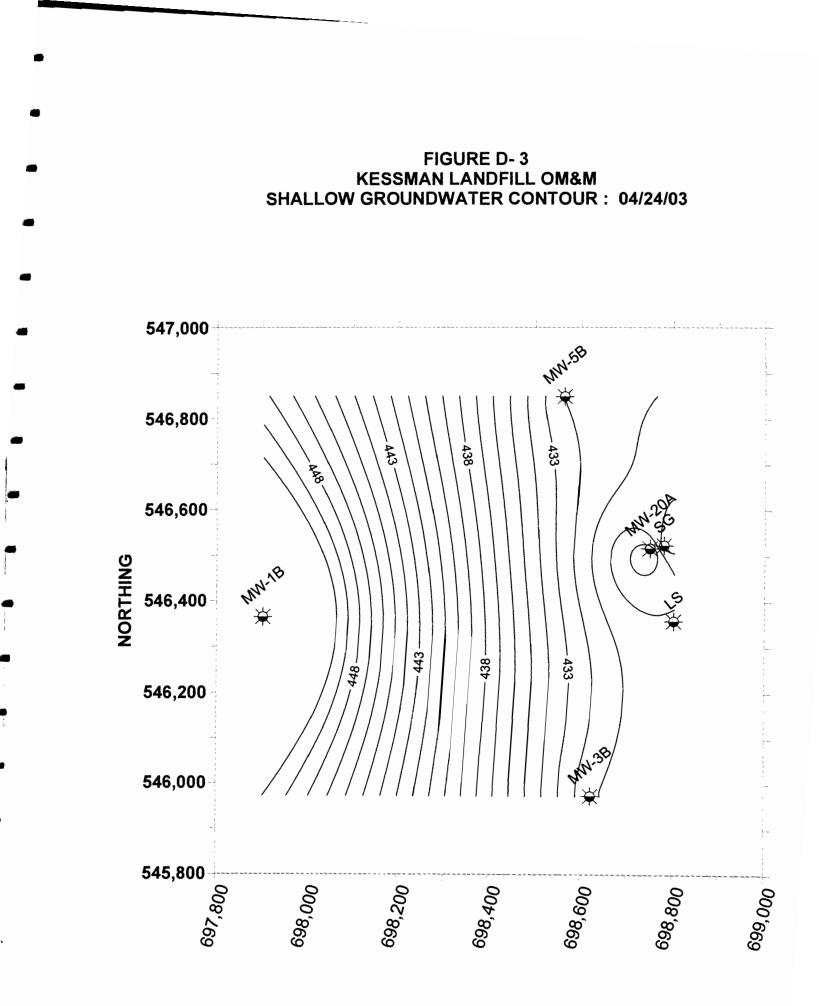


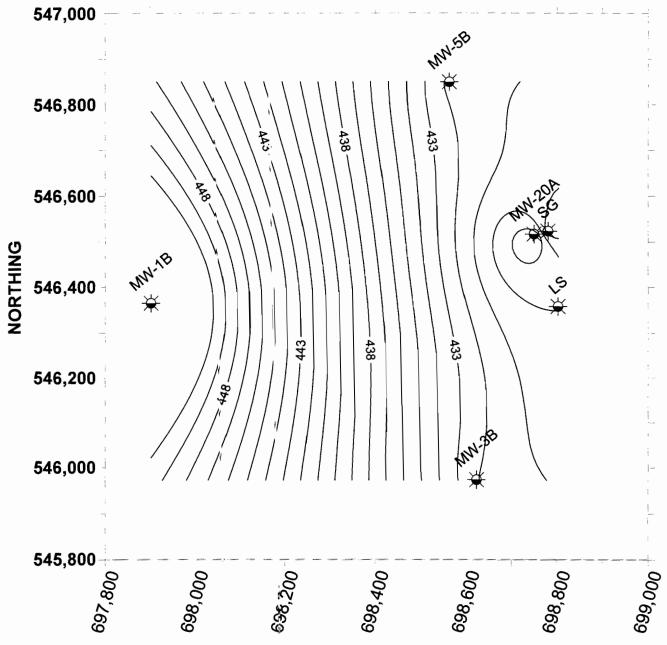


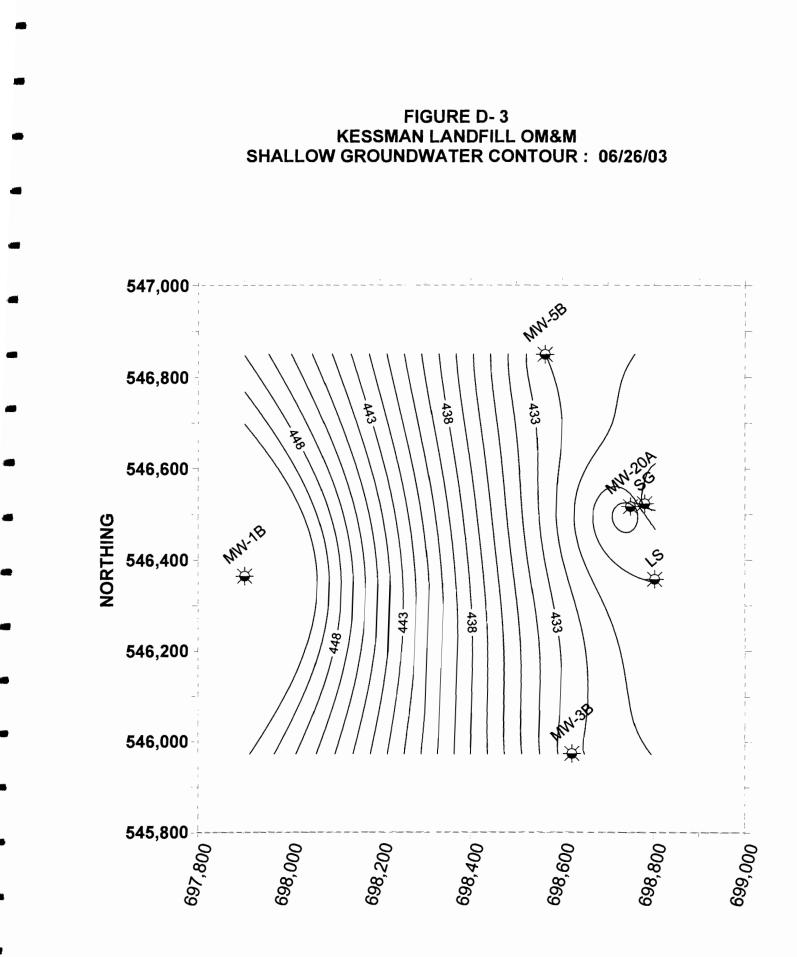

Q

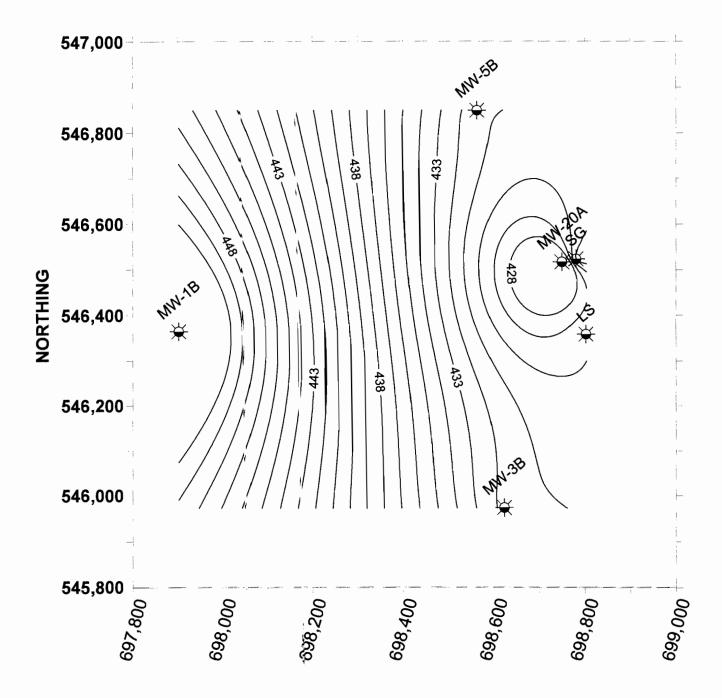


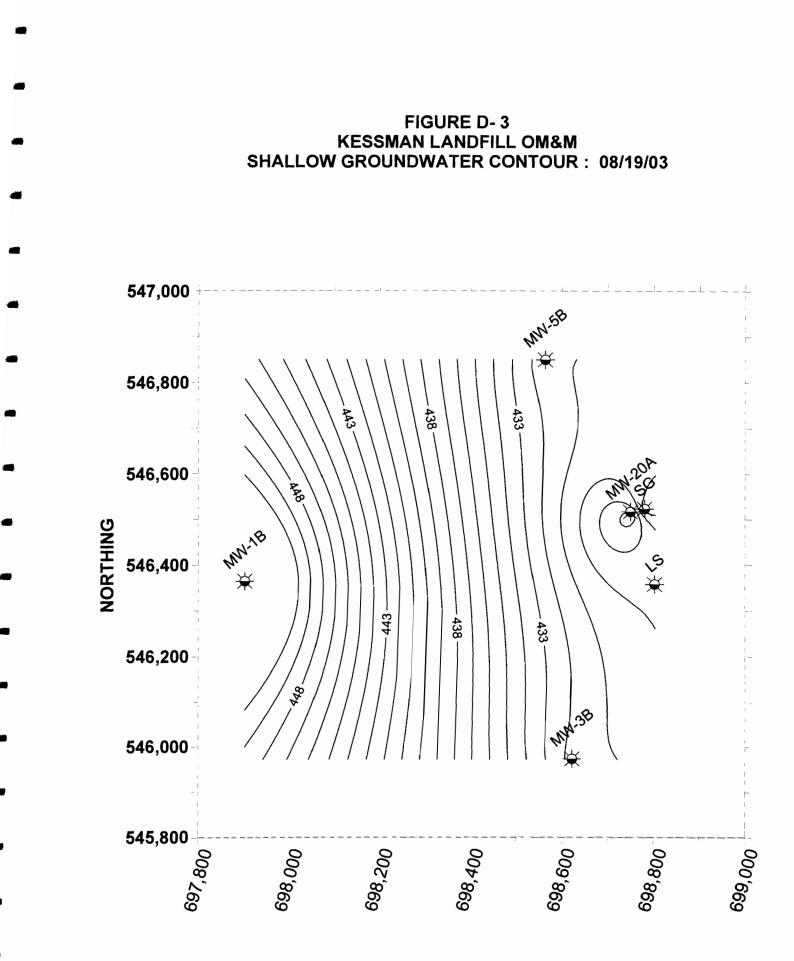

•

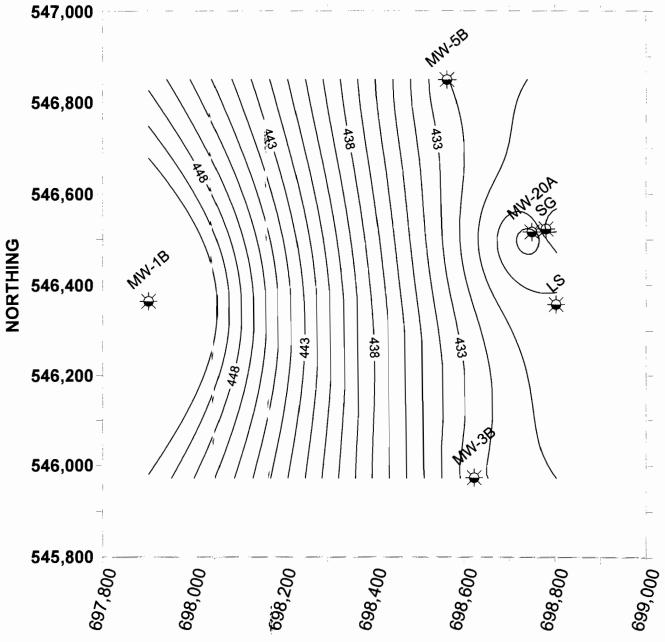

FIGURE D- 3 KESSMAN LANDFILL OM&M SHALLOW GROUNDWATER CONTOUR : 12/19/02

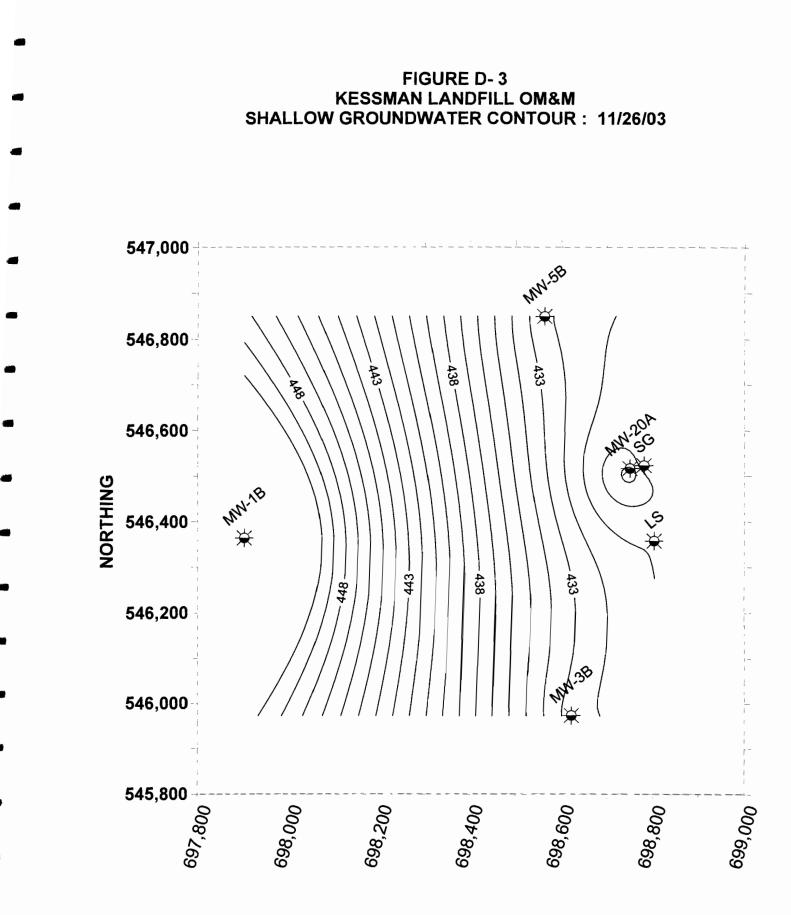

-

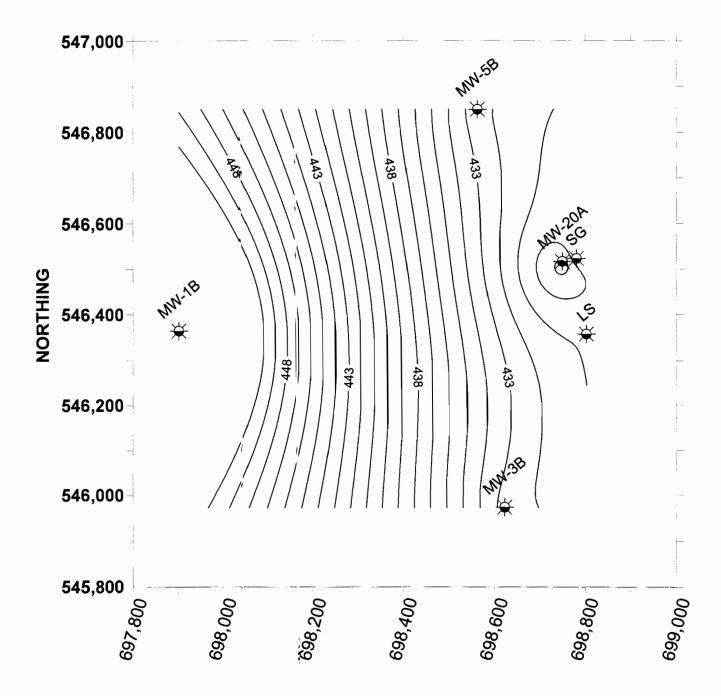


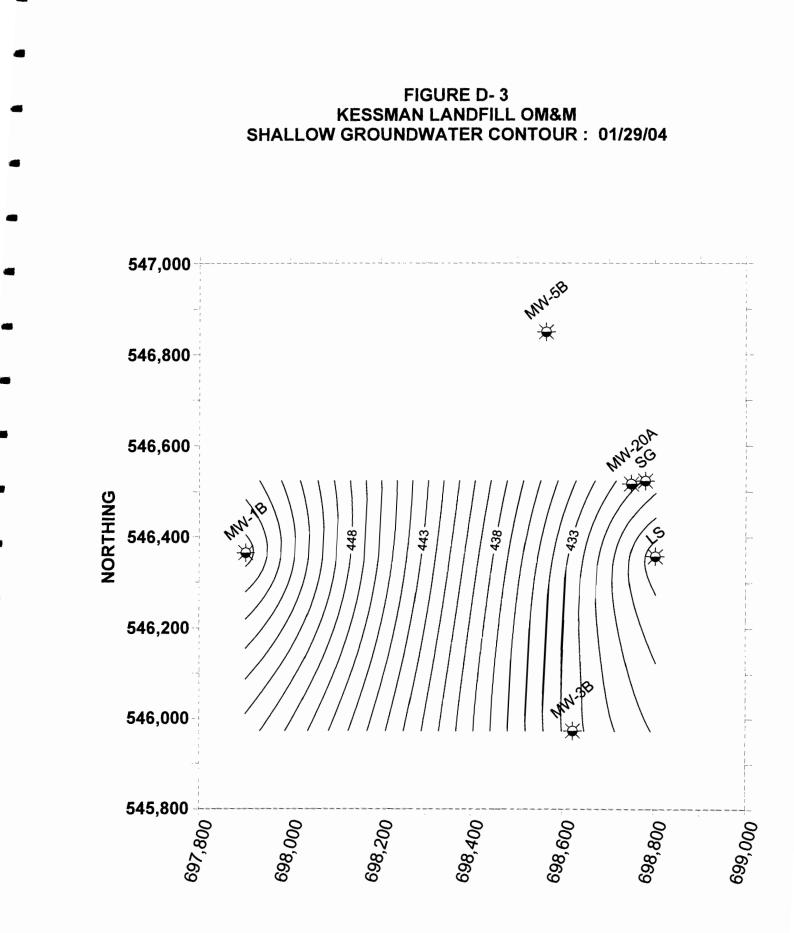


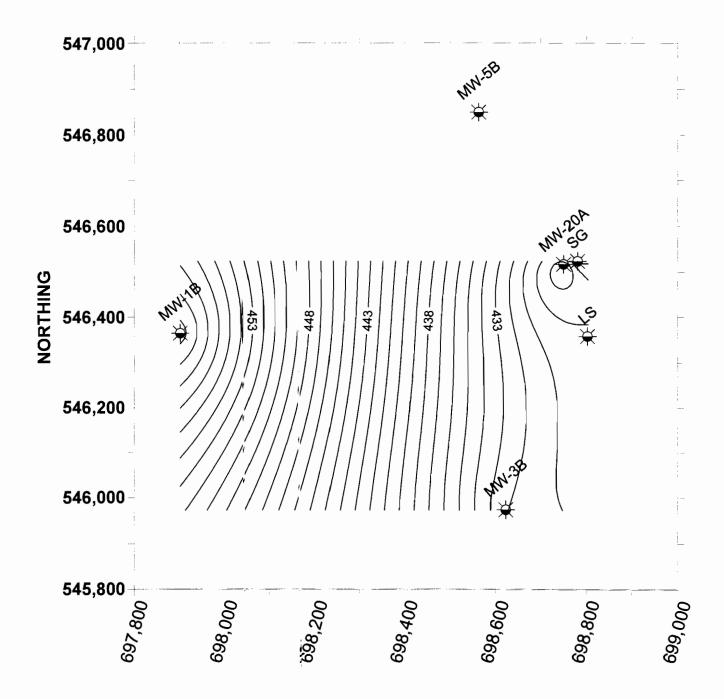


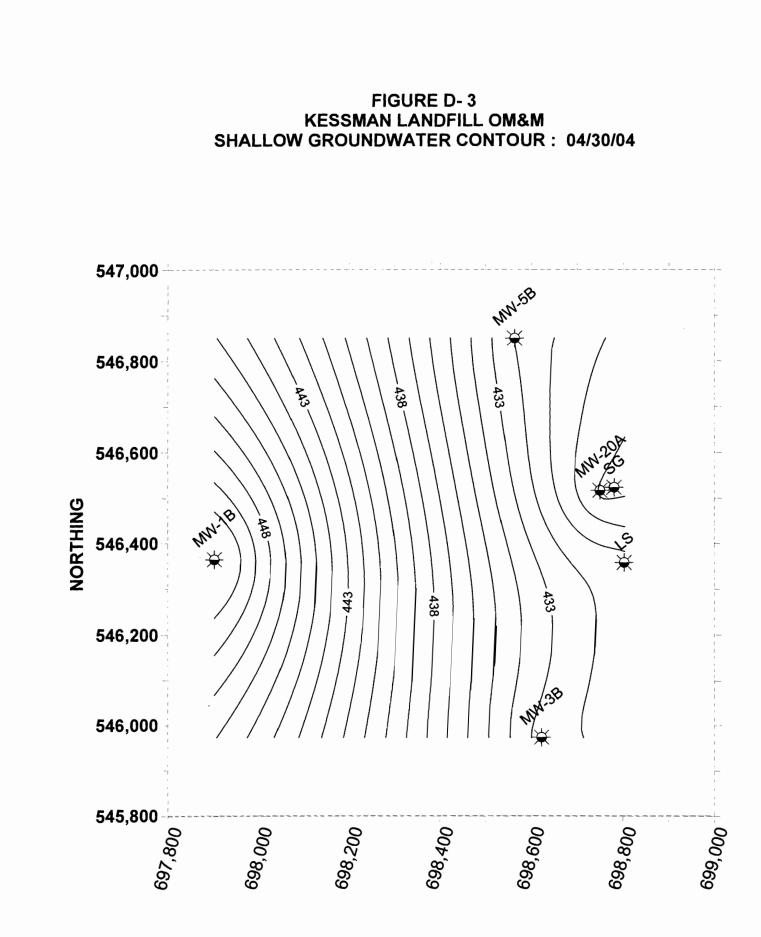


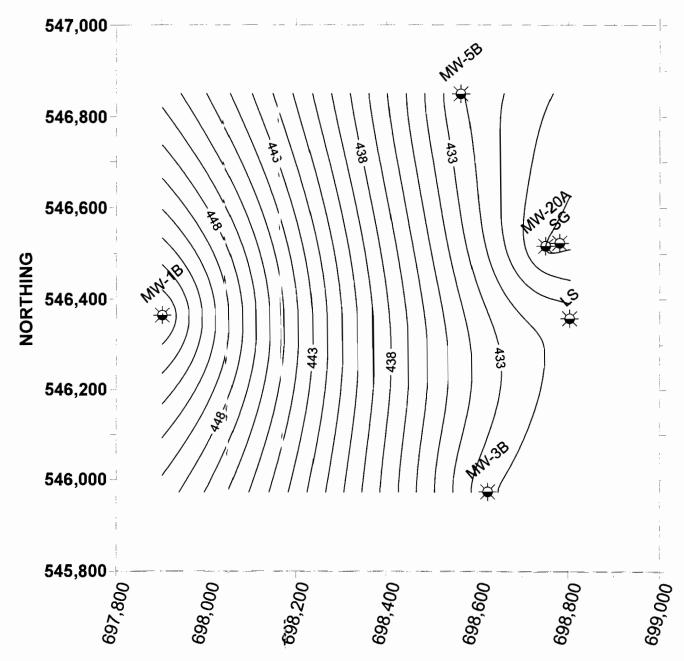


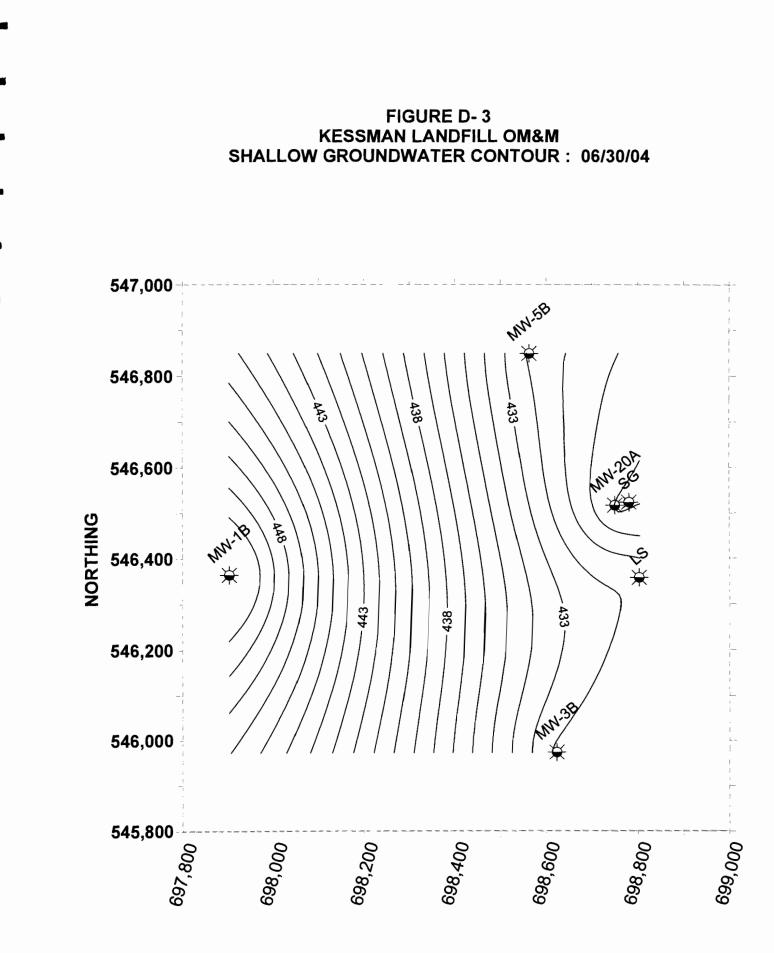


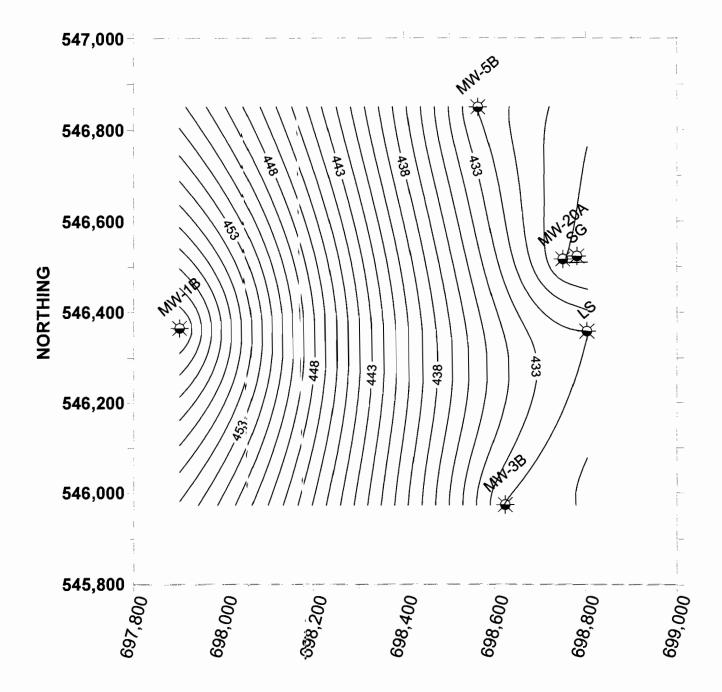


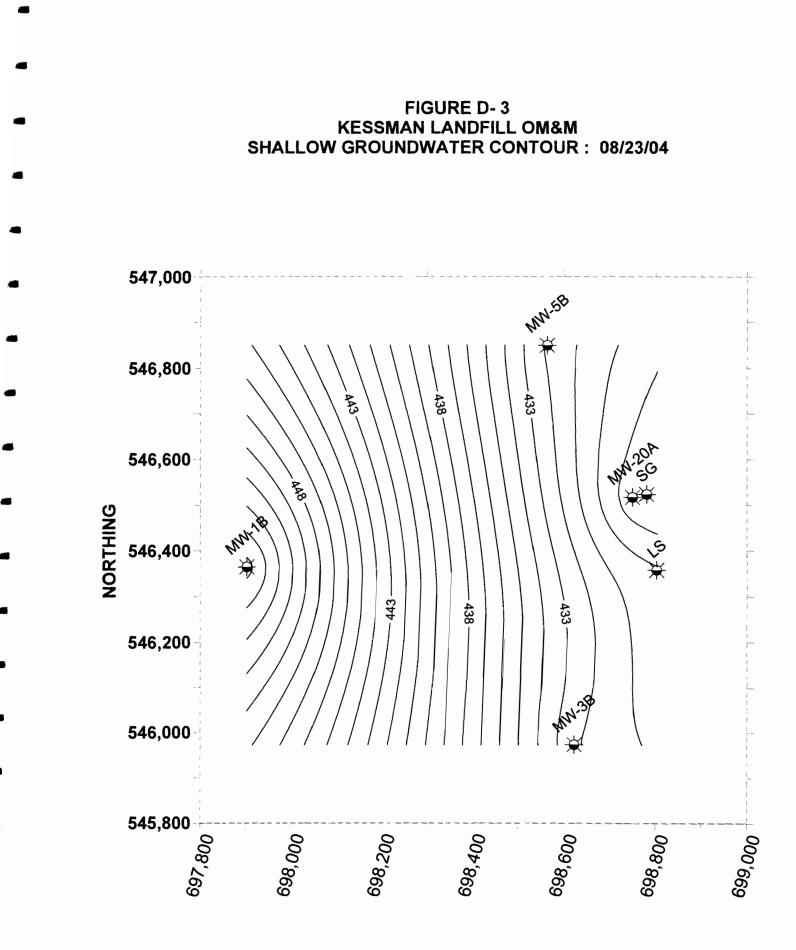


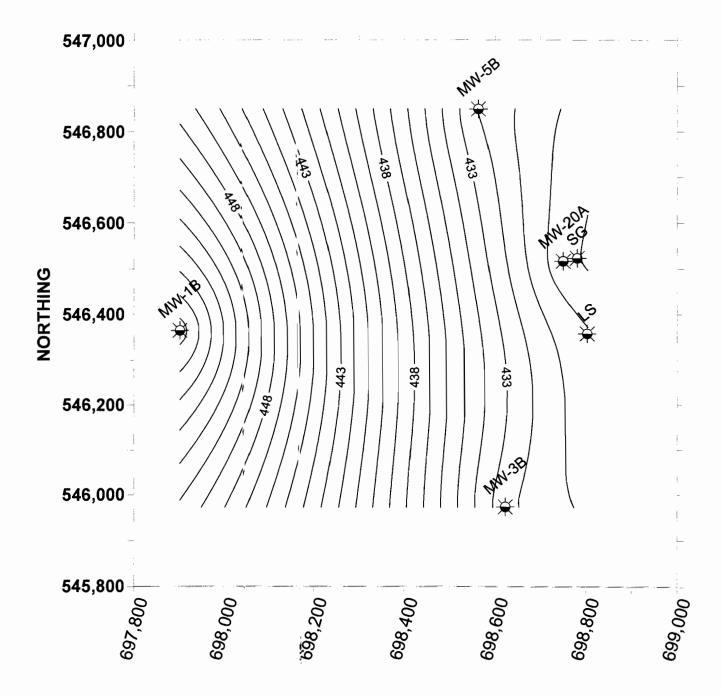


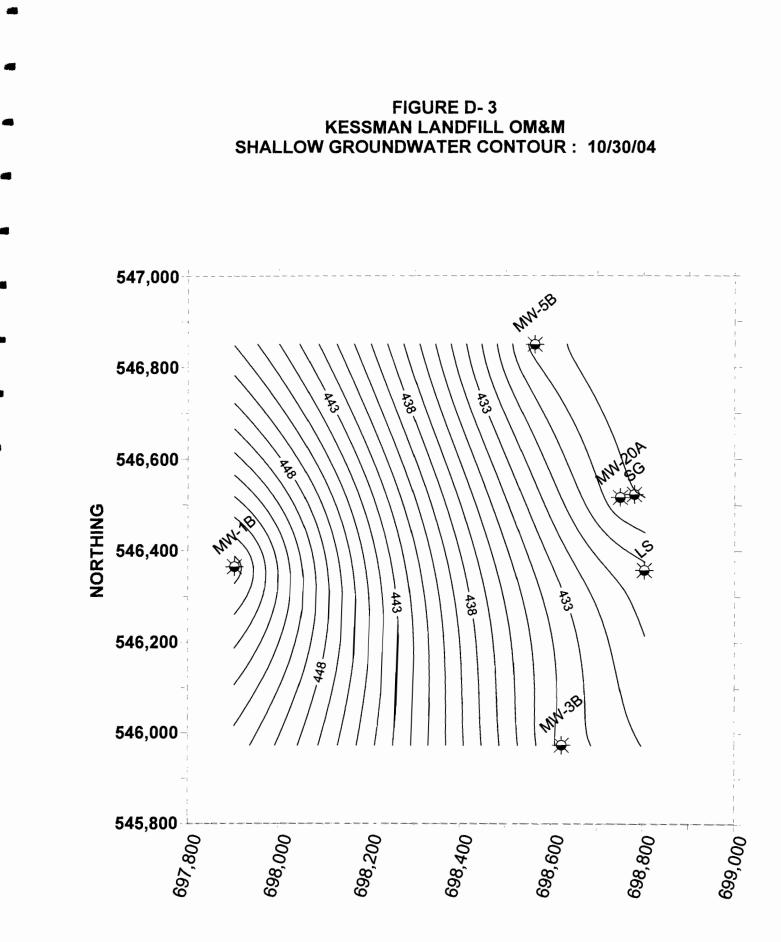


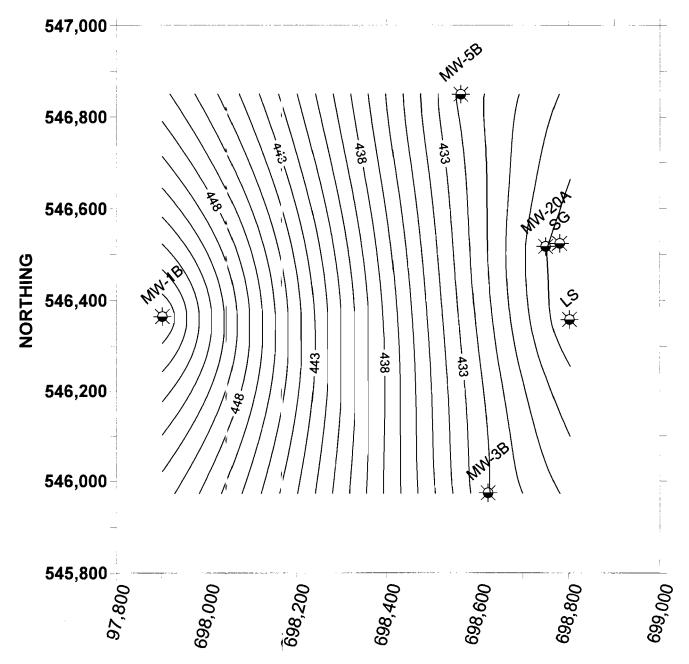


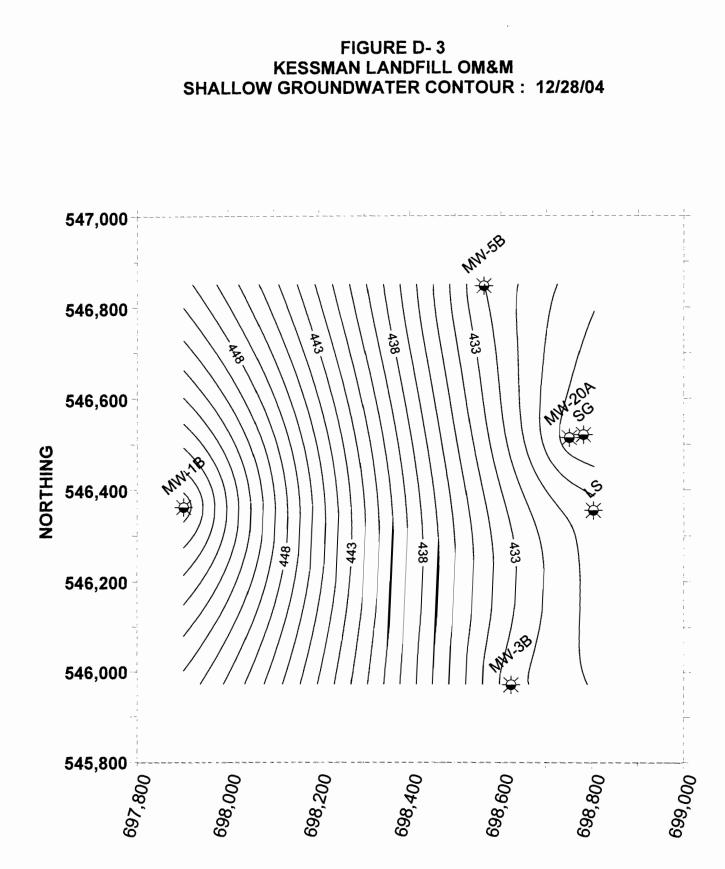







•




-

-

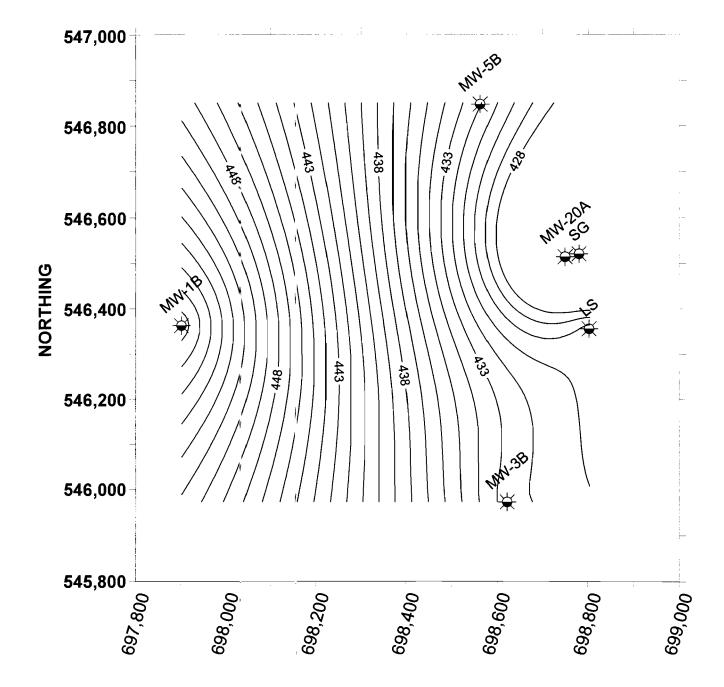


FIGURE D- 4 KESSMAN LANDFILL OM&M DEEP GROUNDWATER CONTOUR: 02/27/02

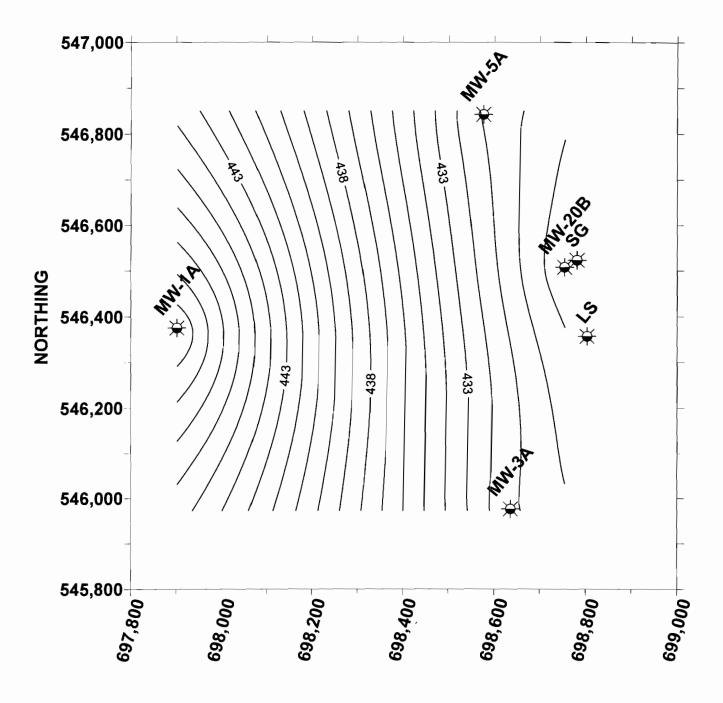
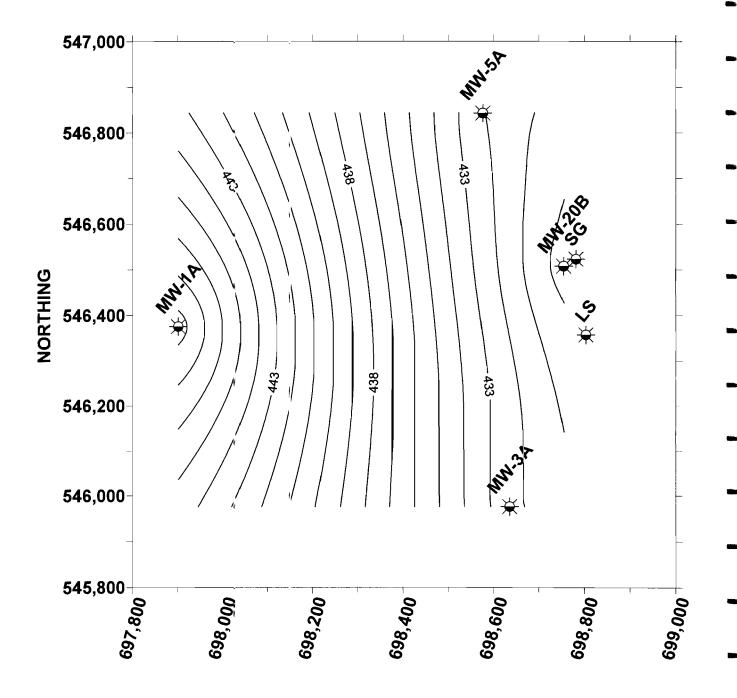



FIGURE D- 4 KESSMAN LANDFILL OM&M DEEP GROUNDWATER CONTOUR: 03/28/02

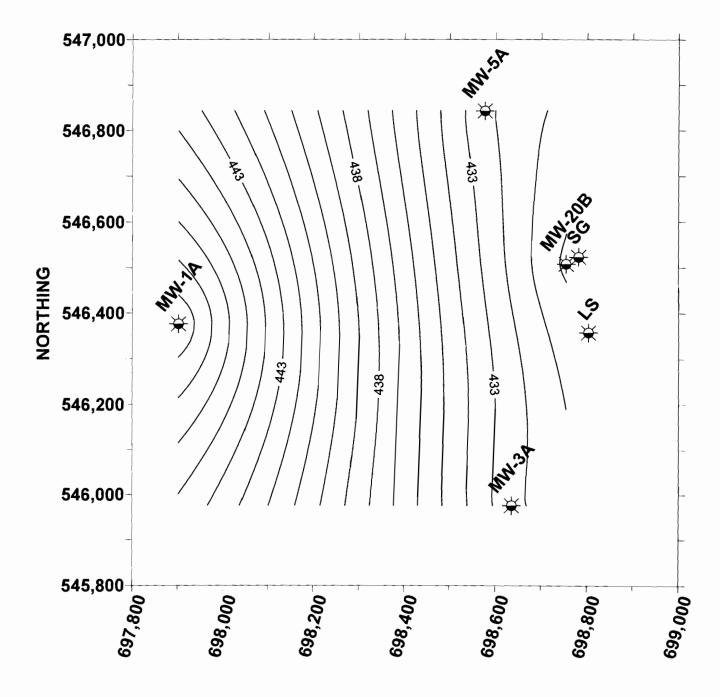


FIGURE D- 4 KESSMAN LANDFILL OM&M DEEP GROUNDWATER CONTOUR: 05/15/02

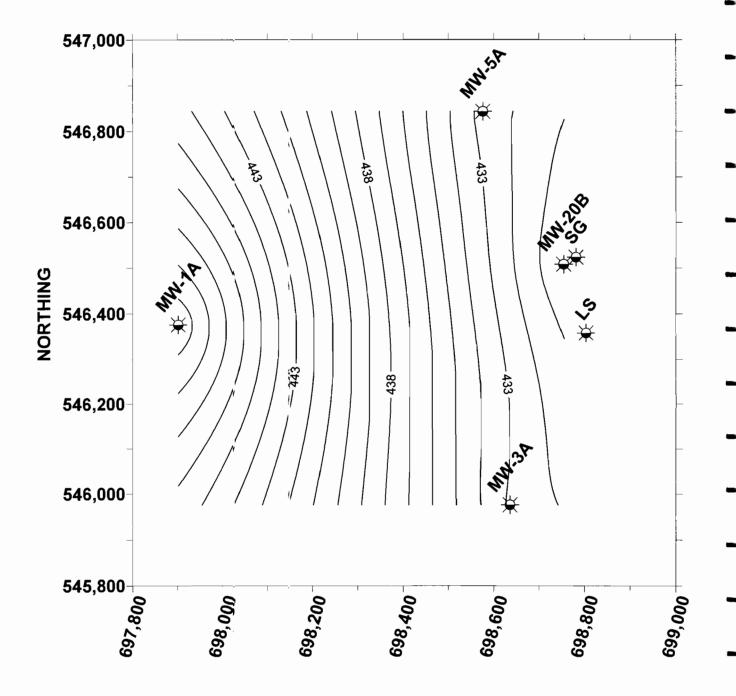


FIGURE D- 4 KESSMAN LANDFILL OM&M DEEP GROUNDWATER CONTOUR: 06/13/02

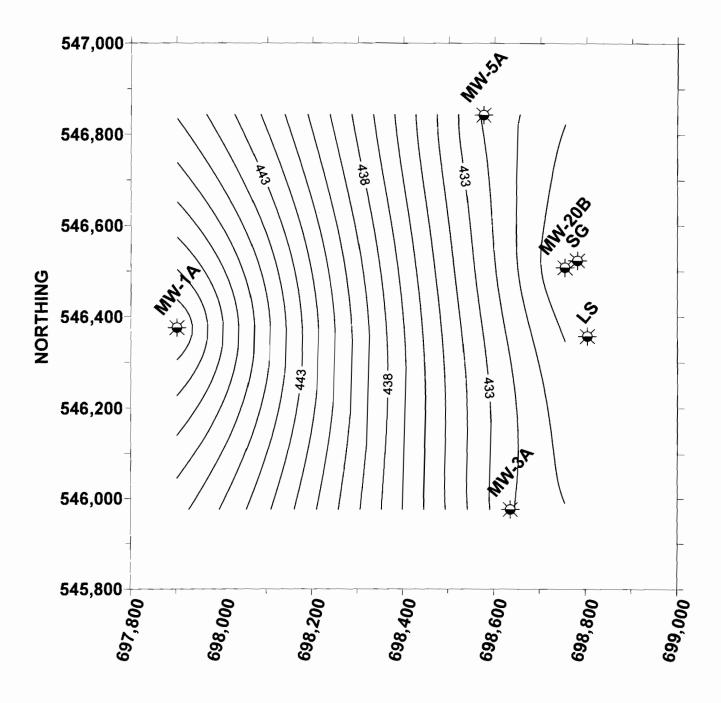


FIGURE D- 4 KE\$SMAN LANDFILL OM&M DEEP GROUNDWATER CONTOUR: 07/25/02

1

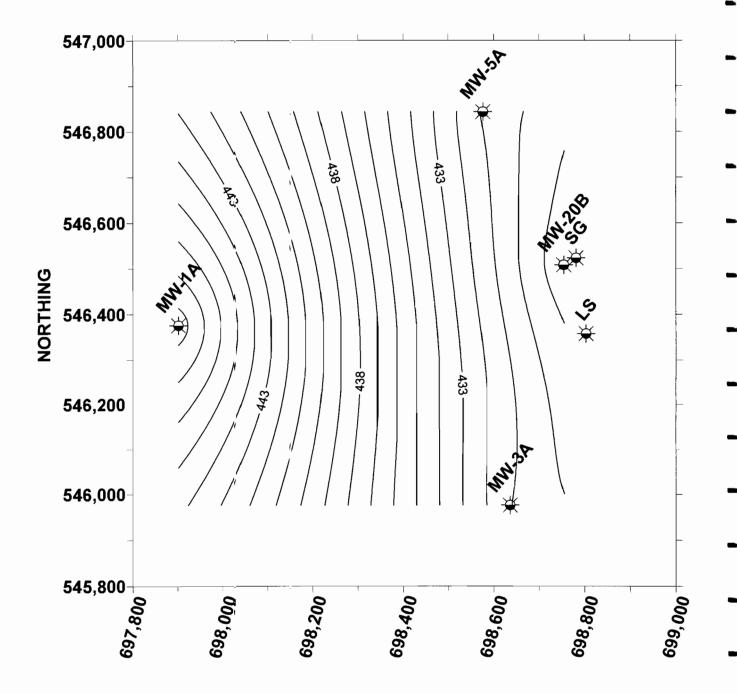


FIGURE D- 4 KESSMAN LANDFILL OM&M DEEP GROUNDWATER CONTOUR: 08/22/02

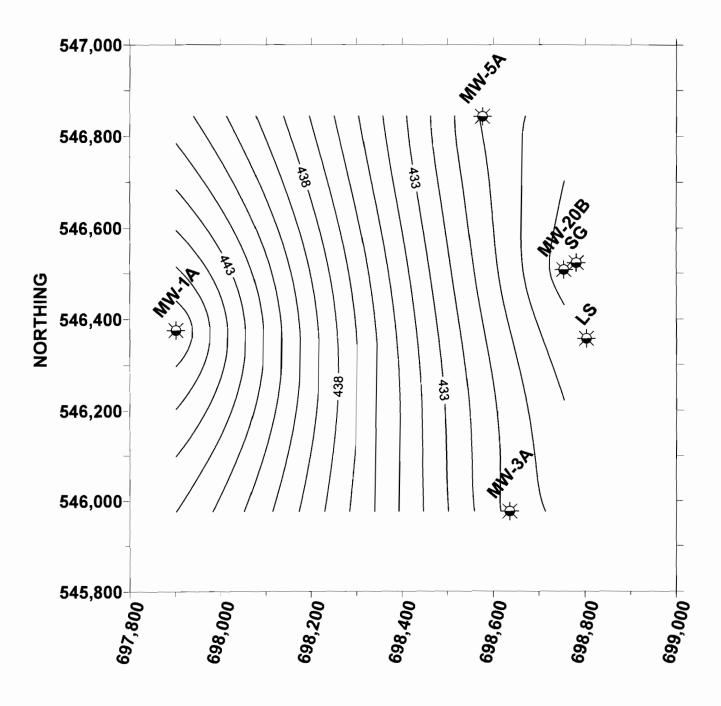


FIGURE D- 4 KE\$SMAN LANDFILL OM&M DEEP GROUNDWATER CONTOUR: 09/18/02

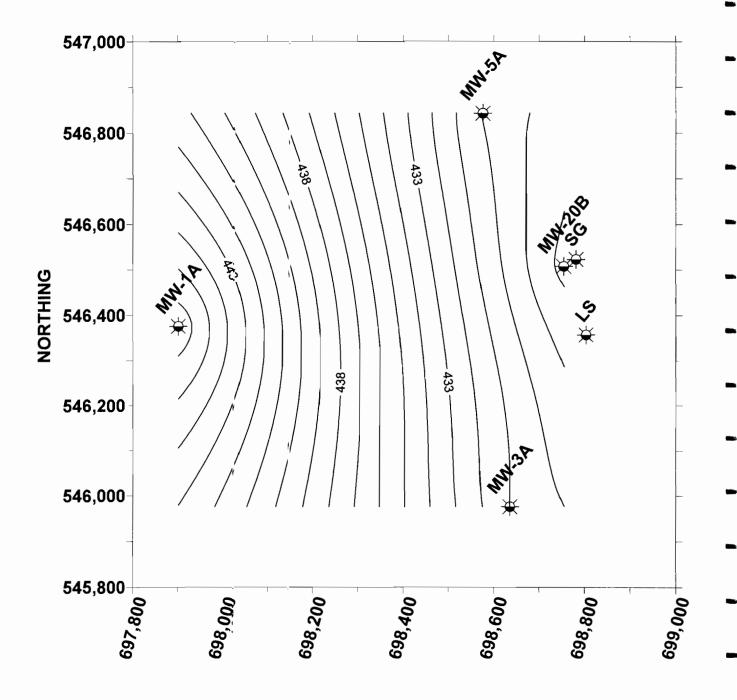


FIGURE D- 4 KESSMAN LANDFILL OM&M DEEP GROUNDWATER CONTOUR: 10/24/02

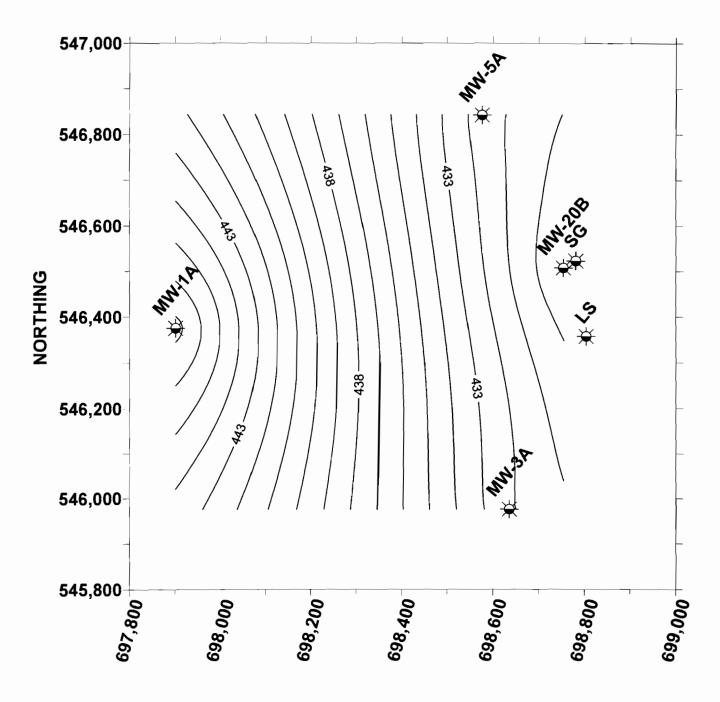


FIGURE D- 4 KESSMAN LANDFILL OM&M DEEP GROUNDWATER CONTOUR: 11/17/02

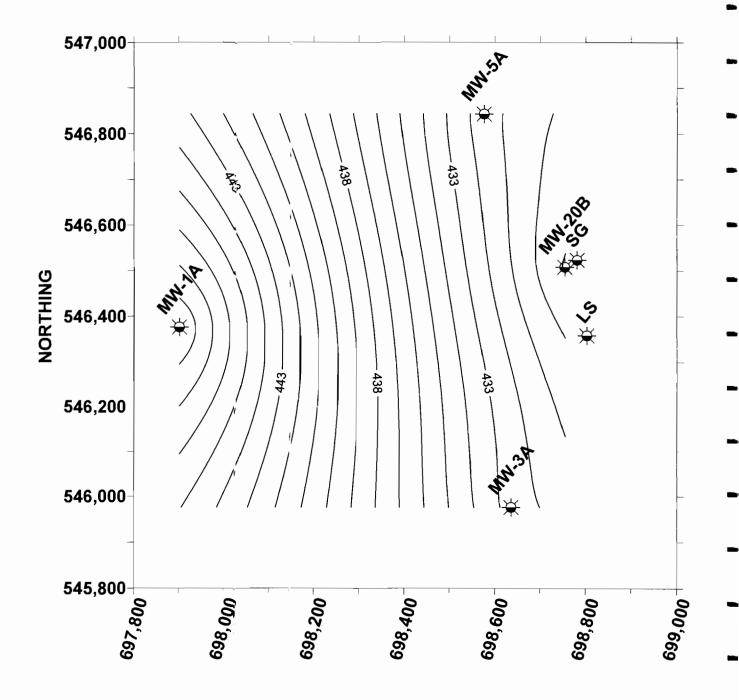


FIGURE D- 4 KESSMAN LANDFILL OM&M DEEP GROUNDWATER CONTOUR: 12/19/02

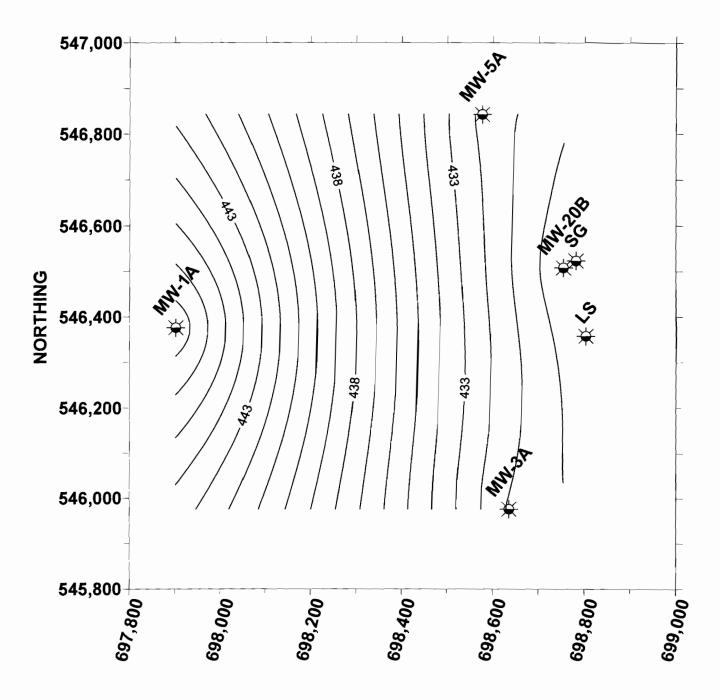


FIGURE D- 4 KE\$SMAN LANDFILL OM&M DEEP GROUNDWATER CONTOUR: 03/26/03

1

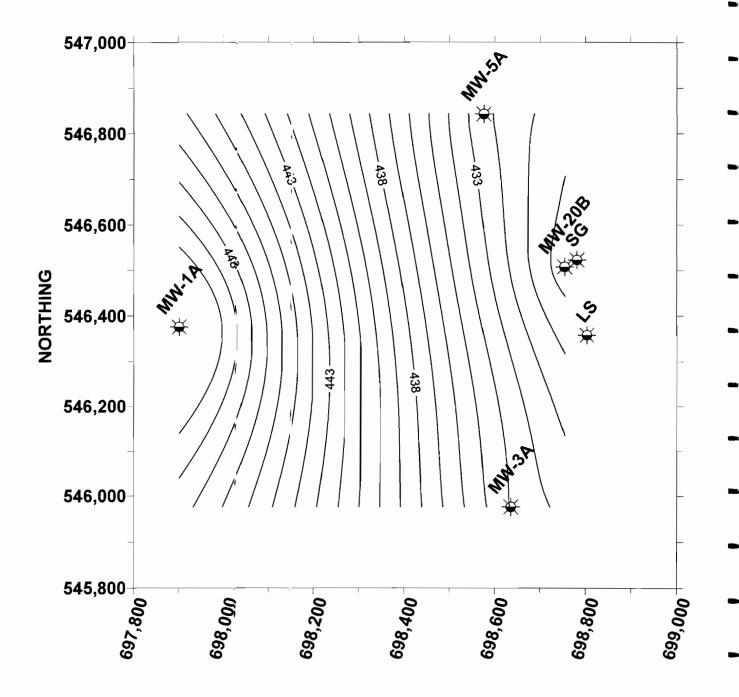


FIGURE D- 4 KESSMAN LANDFILL OM&M DEEP GROUNDWATER CONTOUR: 04/24/03

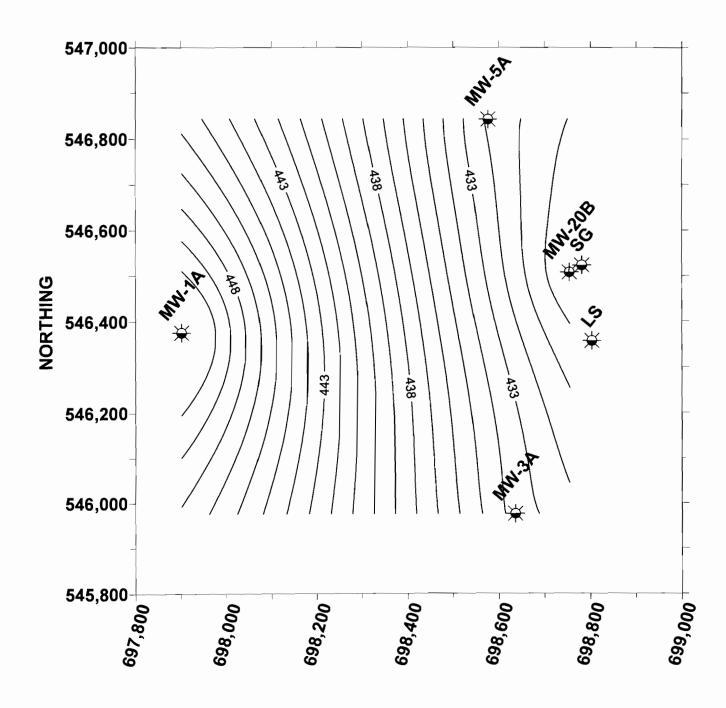


FIGURE D- 4 KE\$SMAN LANDFILL OM&M DEEP GROUNDWATER CONTOUR: 05/29/03

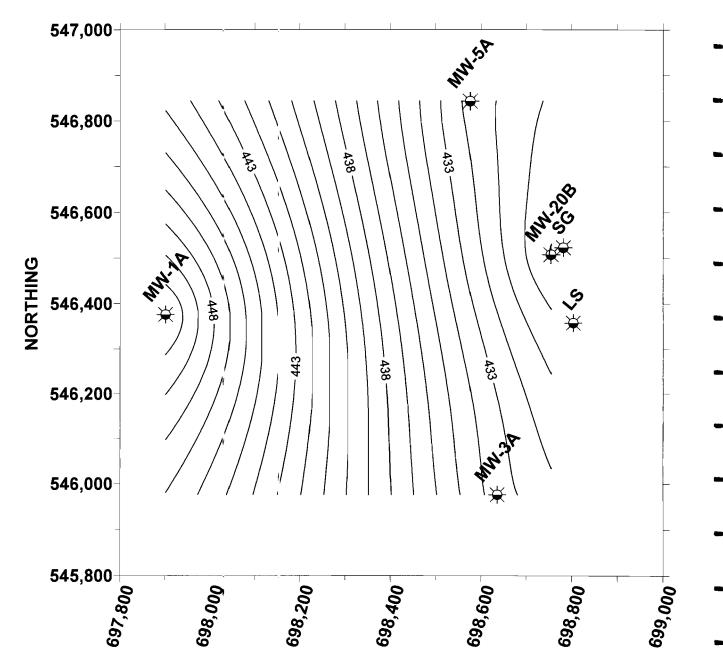


FIGURE D- 4 KESSMAN LANDFILL OM&M DEEP GROUNDWATER CONTOUR: 06/26/03

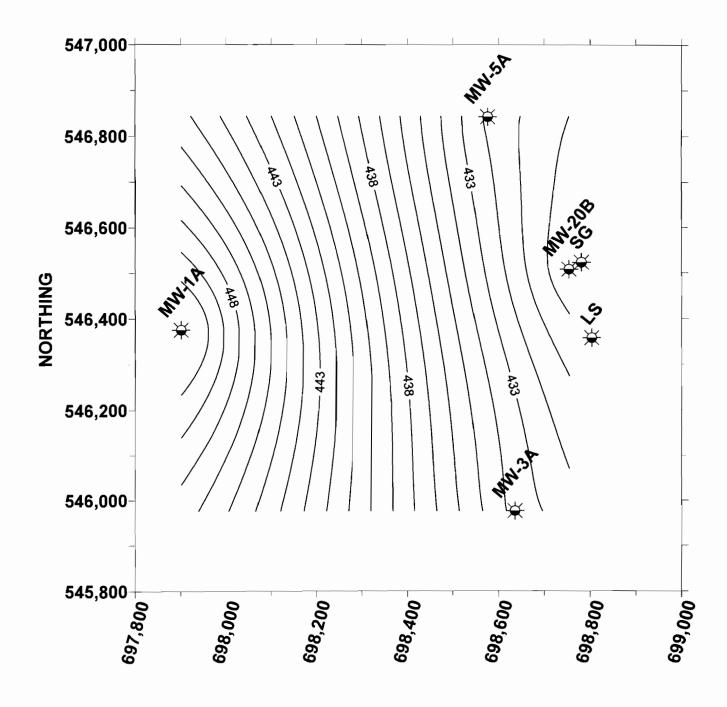
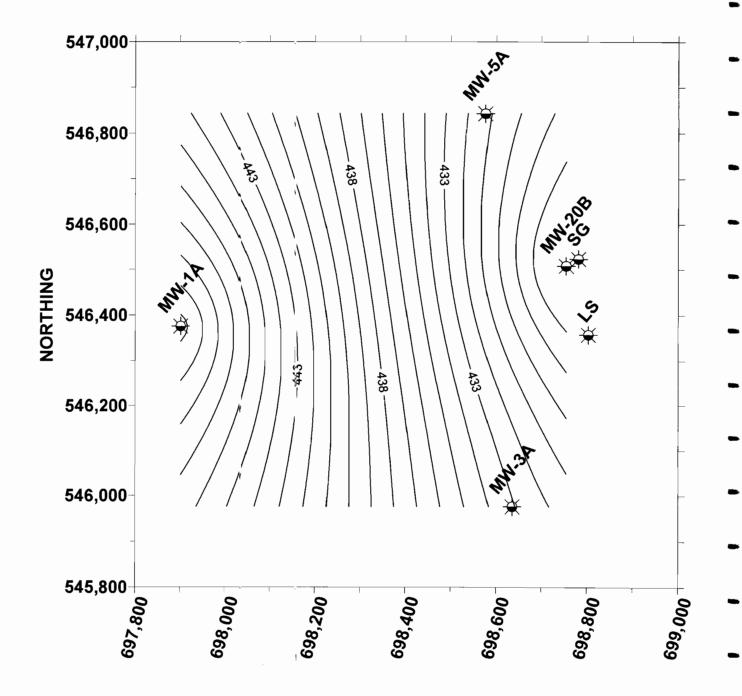
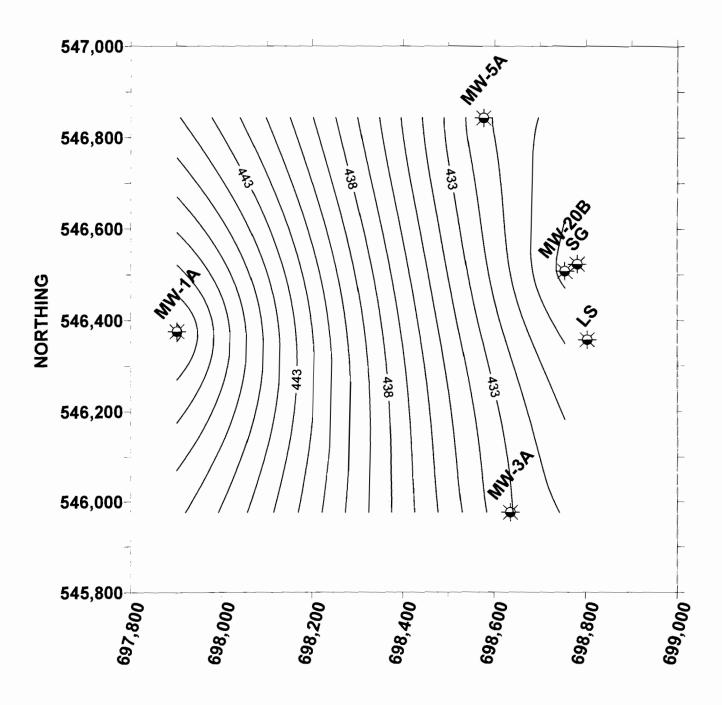




FIGURE D- 4 KE\$SMAN LANDFILL OM&M DEEP GROUNDWATER CONTOUR: 07/29/03

.

FIGURE D- 4 KESSMAN LANDFILL OM&M DEEP GROUNDWATER CONTOUR: 08/19/03

-

FIGURE D- 4 KE\$SMAN LANDFILL OM&M DEEP GROUNDWATER CONTOUR: 10/01/03

1

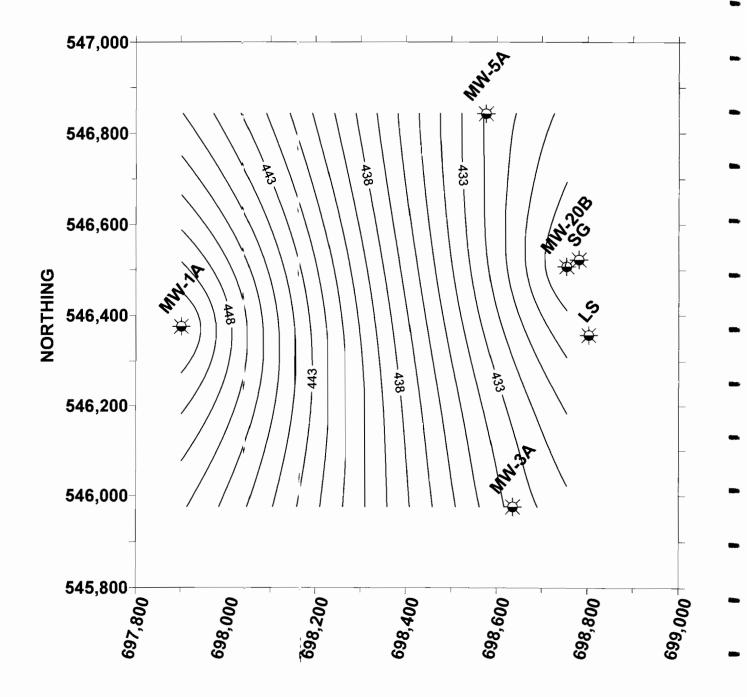


FIGURE D- 4 KESSMAN LANDFILL OM&M DEEP GROUNDWATER CONTOUR: 11/26/03

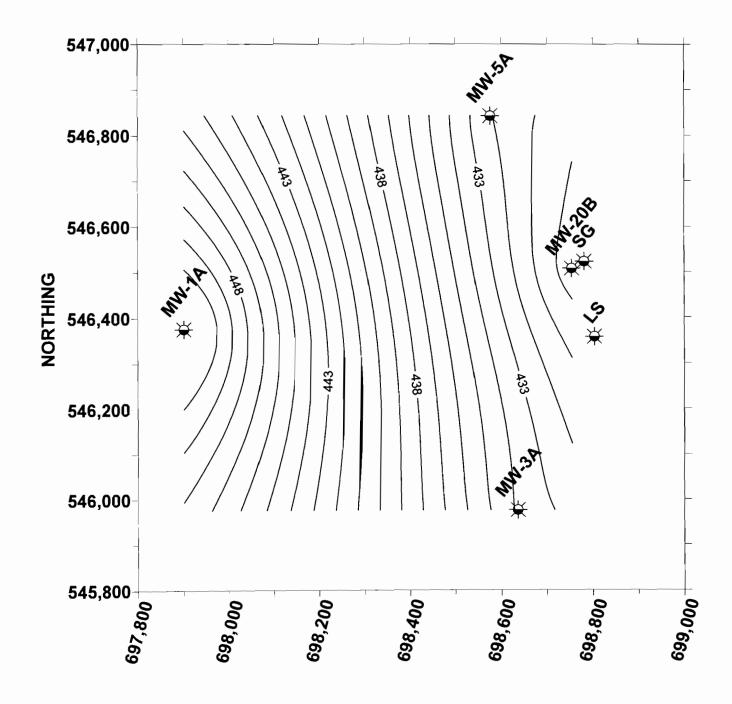


FIGURE D- 4 KE\$SMAN LANDFILL OM&M DEEP GROUNDWATER CONTOUR: 12/23/03

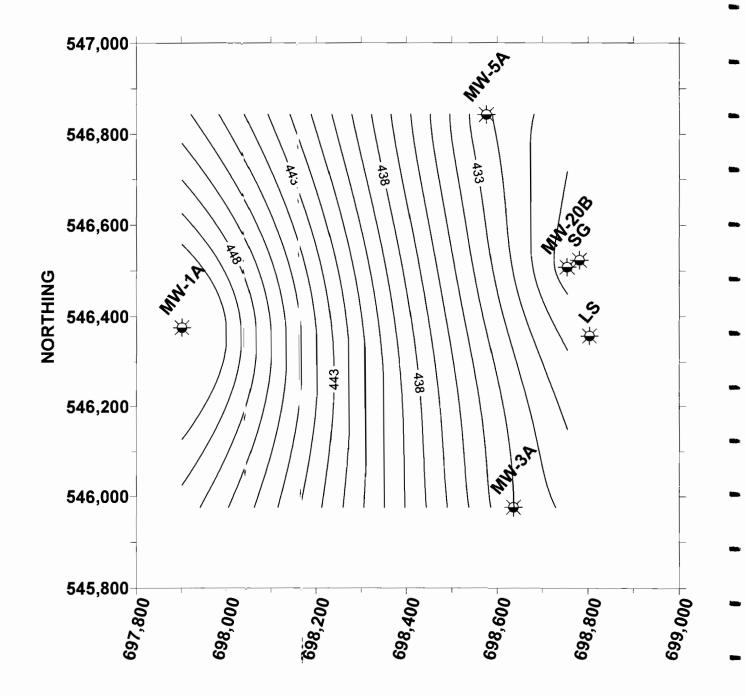
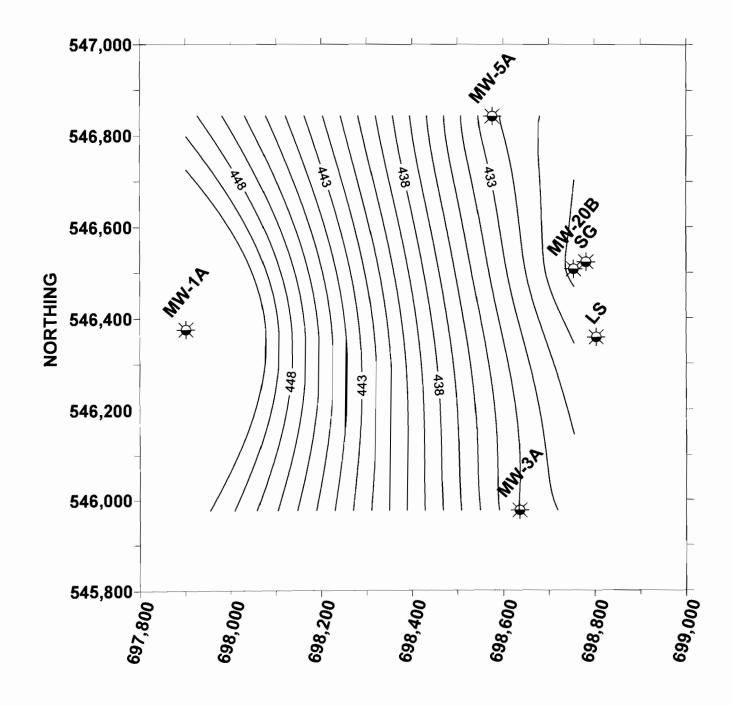



FIGURE D- 4 KESSMAN LANDFILL OM&M DEEP GROUNDWATER CONTOUR: 04/30/04

_

FIGURE D- 4 KE\$SMAN LANDFILL OM&M DEEP GROUNDWATER CONTOUR: 05/25/04

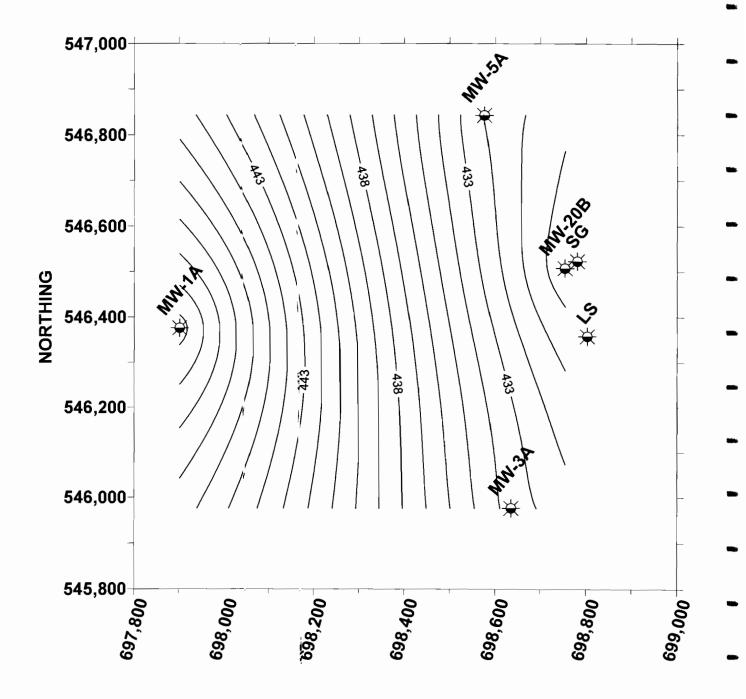
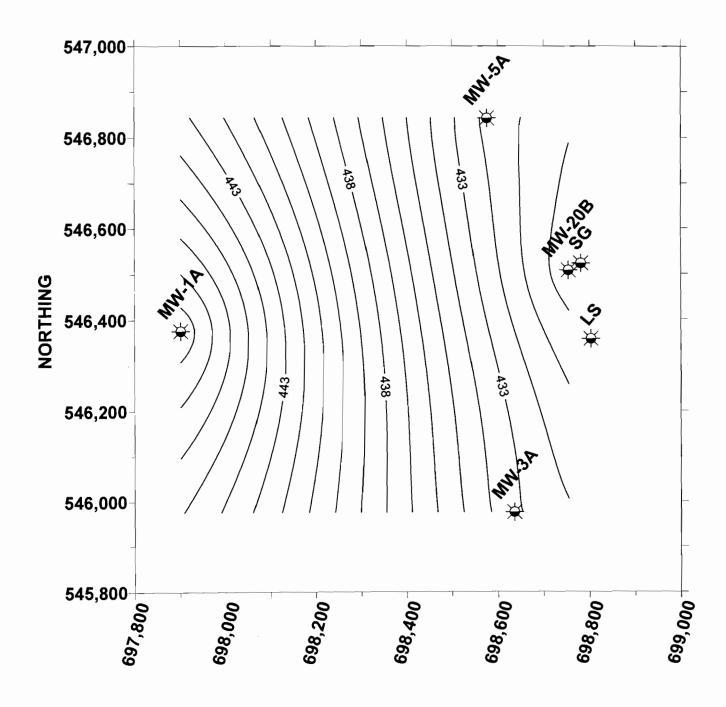



FIGURE D- 4 KESSMAN LANDFILL OM&M DEEP GROUNDWATER CONTOUR: 06/30/04

_

FIGURE D- 4 KE\$SMAN LANDFILL OM&M DEEP GROUNDWATER CONTOUR: 07/26/04

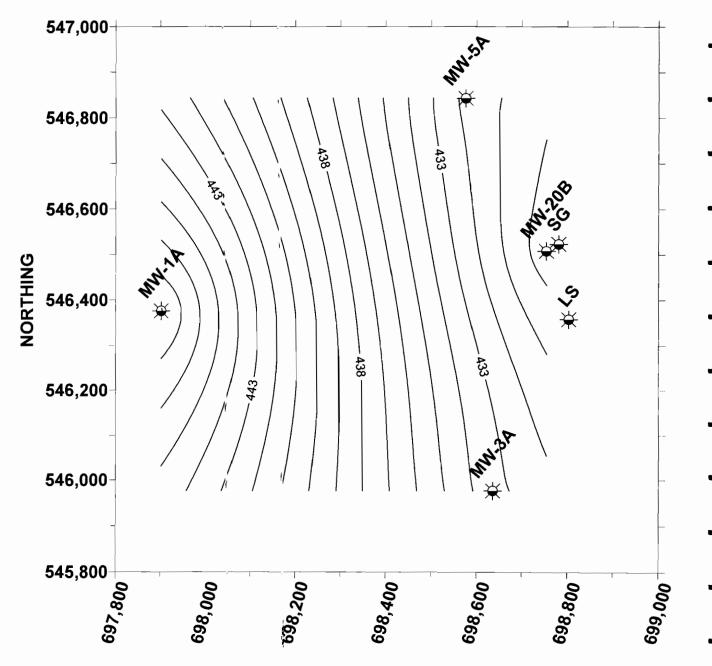


FIGURE D- 4 KESSMAN LANDFILL OM&M DEEP GROUNDWATER CONTOUR: 08/23/04

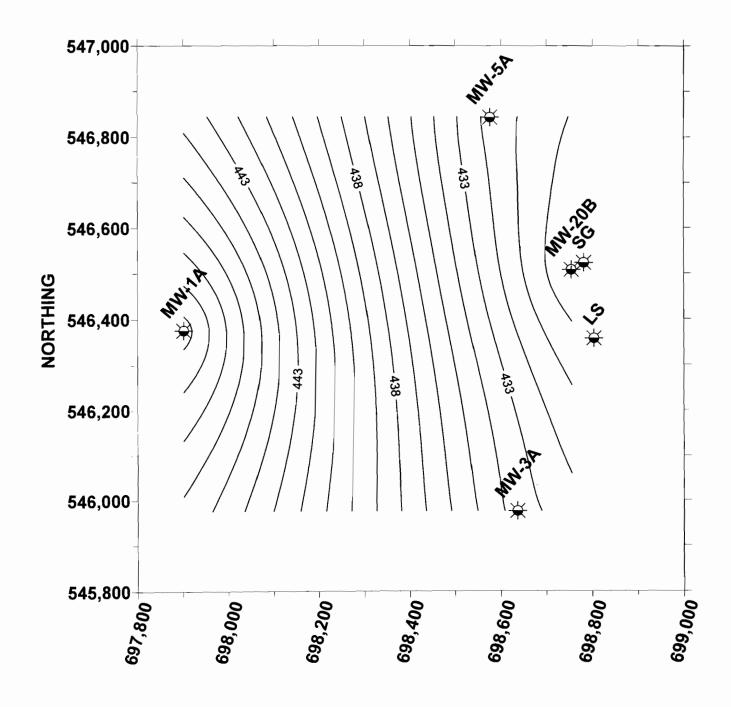
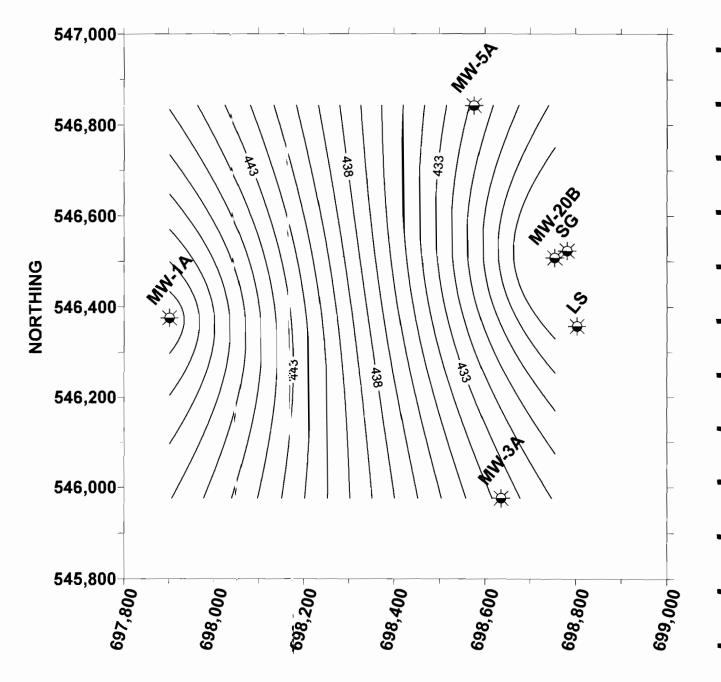



FIGURE D- 4 KE\$SMAN LANDFILL OM&M DEEP GRO,UNDWATER CONTOUR: 09/22/04

-

FIGURE D- 4 KESSMAN LANDFILL OM&M DEEP GROUNDWATER CONTOUR: 10/30/04

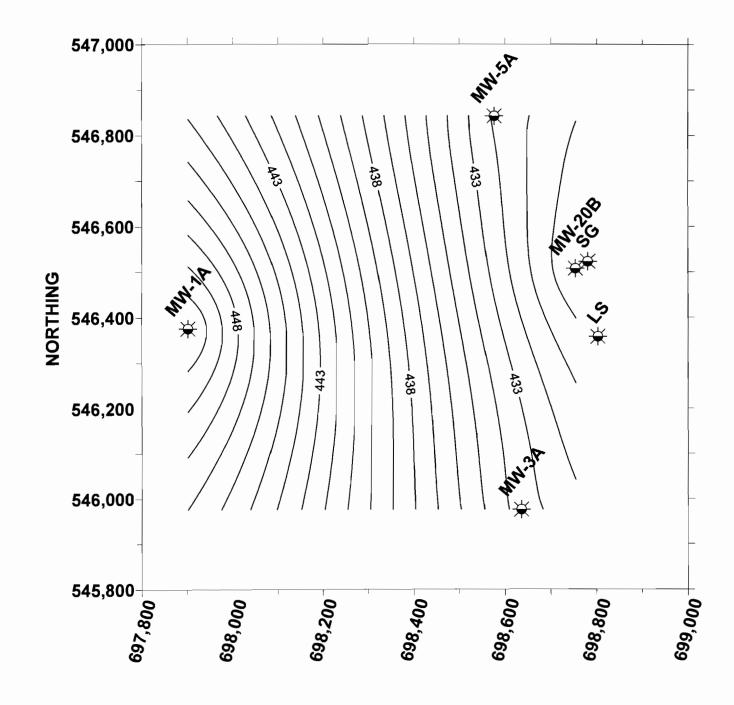
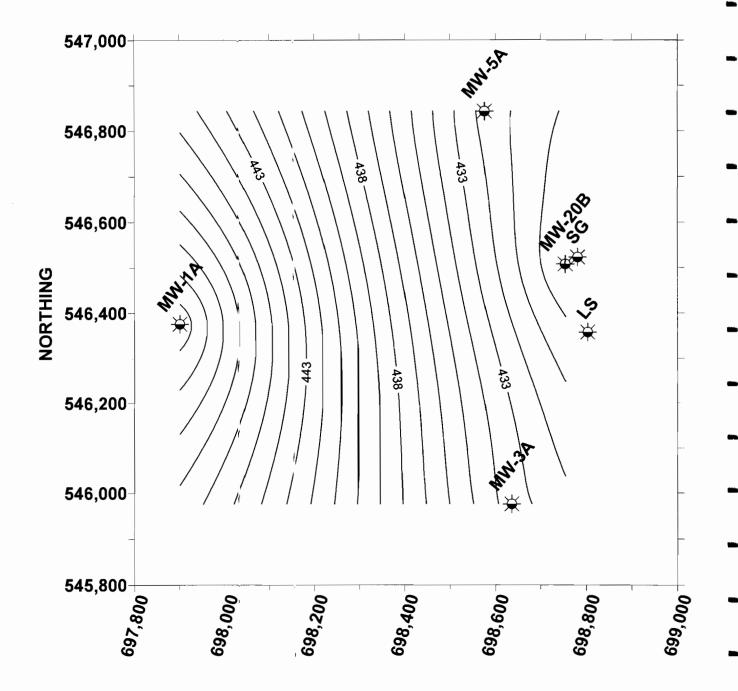



FIGURE D- 4 KE\$SMAN LANDFILL OM&M DEEP GROUNDWATER CONTOUR: 11/23/04

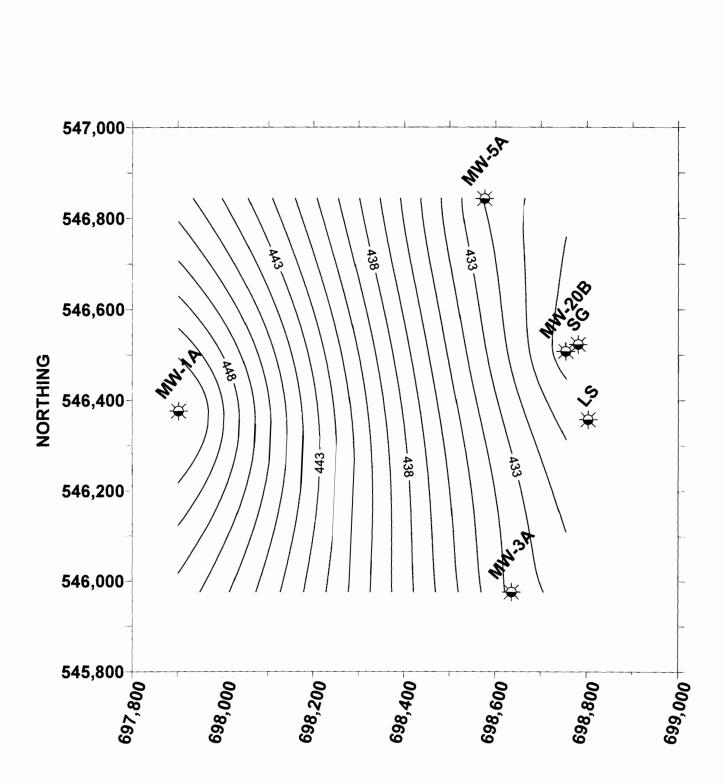
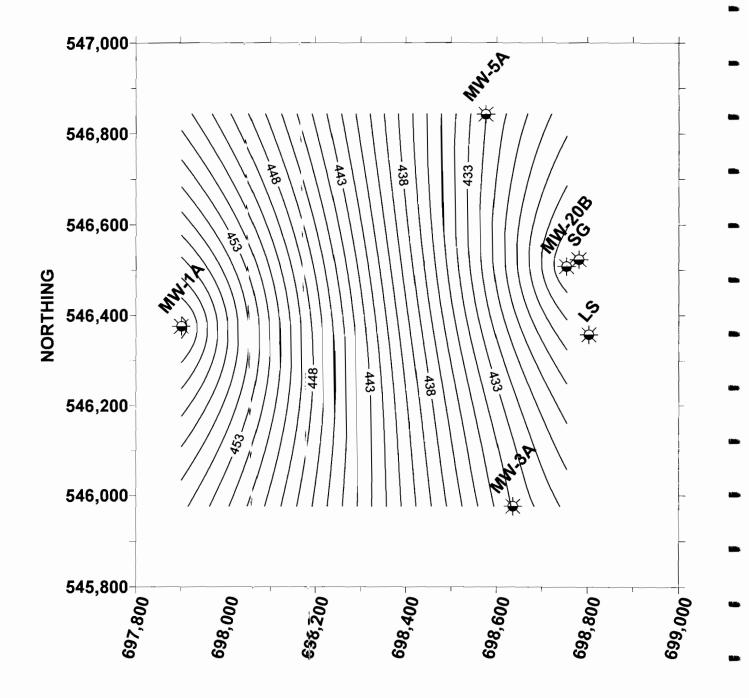



FIGURE D- 4 KESSMAN LANDFILL OM&M DEEP GROUNDWATER CONTOUR: 12/28/04 FIGURE D- 4 KE\$SMAN LANDFILL OM&M DEEP GROUNDWATER CONTOUR: 01/25/05

-

CROSS COUNTY SANITATION/KESSMAN LANDFILL O&M OPERATION, MAINTENANCE AND MONITORING

OM&M REPORT

ATTACHMENT E SURVEY REPORT (August 2002)

JOANNE DARCY CRUM, L.S. PROFESSIONAL LAND SURVEYOR

CROSS COUNTY SANITATION/KESSMAN LANDFILL FOR IYER ENVIRONMENTAL GROUP, PLLC

Description Elevati	on
(FT.)	
MW1-1A GROUND 461.15	;
MW-1A CAP 463.52	2
MW-1A RISER 463.15	ć
MW-1B GROUND 461.07	7
MW-1B CAP 463.21	-
MW-1B RISER 463.01	
MW-201B GROUND 431.20	5
MW-201B CAP 433.68	}
MW-201B RISER 431.17	1
MW-201A GROUND 431.51	•
MW-201A CAP 434.09)
MW-201A RISE 431.29	}
MW-3A GROUND 431.82	2
MW-3A RISER 434.65	5
MW-3A CAP 435.01	
MW-3B GROUND 432.68	3
MW-3B CAP 436.08	1
MW-3B RISER 435.78	
MW-5A GROUND 431.38	3
MW-5A CAP 434.01	
MW-5A RISER 433.84	
MW-5B GROUND 431.70)
MW-5B CAP 434.49	
MW-5B RISER 434.35	
LEACH. MH RIM 436.12	
APPROX LOC STAFF 433.06	5
GUAGE	

45 WEST MAIN STREET ♦ COBLESKILL, NEW YORK 12043 TEL (518) 234-4650 ♦ FAX (518) 234-7405 JDCRUM@MIDTEL.NET

JOANNE DARCY CRUM, L.S. PROFESSIONAL LAND SURVEYOR

CROSS COUNTY SANITATION/KESSMAN LANDFILL FOR IYER ENVIRONMENTAL GROUP, PLLC

SOIL GAS	5 POINTS ELEVAT	10NS 8/2002
Descript	ion	Elevation
SG-1 GR	OUND	436.08
SG-1 CA	P	439.80
SC-1 PT	CFD	130 58

SG-1	RISER	439.58
SG-2	GROUND	435.56
SG-2	CAP	437.44
SG-2	RISER	437.12

45 WEST MAIN STREET • COBLESKILL, NEW YORK 12043 TEL (518) 234-4650 • FAX (518) 234-7405 JDCRUM@MIDTEL.NET

JOANNE DARCY CRUM, L.S. PROFESSIONAL LAND SURVEYOR

User Name: Computer1 Project: KESSMAN 2002 Report MONITORING WELL Nodes Date: 08-26-02 Time: 17:11:28 Page: 1

TEREFERENCE				
Node ID	Northing	Easting	Elevation	Description
2051	546375.53	697901.69	461.15	MW1-1A GROUND
2052	546375.18	697901.64	463.52	MW-1A CAP
2053	546375.26	697901.66	463.15	MW-1A RISER
2054	546364.64	697902.59	461.07	MW-1B GROUND
2055	546364.26	697902,32	463.21	MW-1B CAP
2056	546364.20	697902.39	463.01	MW-1B RISER
2019	546516.51	698750.66	431.26	MW-201B GROUNI
2020	546516.47	698751.16	433.68	MW-201B CAP
2021	546516.50	698751.10	431.17	MW-201B RISER
2022	546507.42	698754.62	431.51	MW-201A GROUND
2023	546507.73	698754.70	434.09	MW-201A CAP
2024	546507.83	698754.66	431.29	MW-201A RISE
2031	545976.19	698636.81	431.82	MW-3A GROUND
2033	545975.87	698636.45	434.65	MW-3A RISER
2034	545975.92	698636.44	435.01	MW-3A CAP
2035	545972.48	698624.34	432.68	MW-3B GROUND
2036	545972.54	698623.90	436.08	MW-3B CAP
2037	_545972.48	698623.85	435.78	MW-3B RISER
2003	546842.98	698576.43	431.38	MW-5A GROUND
2004	546842.72	698576.66	434.01	MW-5A CAP
2005	546842.87	698576.73	433.84	MW-5A RISER
2006	546849.57	698564.15	431.70	MW-5B GROUND
2007	546849.79	698563.87	434.49	MW-58 CAP
2008	546849.79	698563.92	434.35	MW-5B RISER
2028	546357.32	698803.61	436.12	LEACH. MH RIM
2025	546523.12	698781.53	433.06	APPROX LOC STA

Note: MW-201 A = MW-20A MW-201 B = MW-20B

45 WEST MAIN STREET ♦ COBLESKILL, NEW YORK 12043 TEL (518) 234-4650 ♦ FAX (518) 234-7405 JDCRUM@MIDTEL.NET CROSS COUNTY SANITATION/KESSMAN LANDFILL O&M OPERATION, MAINTENANCE AND MONITORING

OM&M REPORT

ATTACHMENT F GROUNDWATER MODELING RESULTS

BACKGROUND HYDROGEOLOGY

(page 1 of 2)

1.0 Site Hydrogeology

The Kessman site is within the New England Upland physiographic province which is characterized by northwest-southeast trending valley and ridge topography with moderate relief. The site itself consists of a broad, low mound on the west side of a north-south trending valley. The present surface of the landfill ranges from approximately 440 feet above mean sea level (MSL) to just over 470 feet above MSL. The Great Swamp of Patterson, which lies to the east and north of the landfill, is at a lower elevation of approximately 435 ft above MSL.

1.1 Surface Conditions

Aside from the landfill itself, the near surface soils consist of a thin layer of recent marsh deposits. These marsh deposits consist of black organic clay, silt and peat and vary in thickness throughout the site from 2-4 feet in depth. The remediated areas, directly adjacent to the landfill, to the north and east of the site have been covered with similar types of silty soils that were excavated from an on-site borrow pit, and have a depth of at least 2 feet. Landfilled material, 12 to 20 feet thick, consists of mixed refuse and layers of fill. The refuse is overlain by a thin landfill cap made up of approximately one foot of soil and vegetation.

1.2 Subsurface Conditions

The site subsurface consists of three primary geohydrologic units. In descending order they are a kame aquifer, a confining glacial till unit and a carbonate bedrock aquifer which acts as a confined (artesian) aquifer.

The kame aquifer is comprised of permeable unconsolidated loose to moderately dense ablation till and kame deposits composed of mostly sand and silt with some gravel. The kame aquifer is generally 10 to 30 feet thick throughout the site. The water table is within this unit and rises and falls depending on groundwater recharge and discharge. The kame unit is not saturated throughout the site and therefore forms a discontinuous aquifer across the site.

Beneath the kame aquifer, the glacial till unit consist of dense basal till composed of sand, silt and a high percentage of cobbles and boulders which is overlain by an ablation till. The ablation till is less dense and forms a transition zone between the dense basal till and the overlying kame aquifer. The glacial till unit acts as a confining layer.

The carbonate bedrock aquifer varies from a limestone to a metamorphosed marble which regionally contains numerous thrust faults and shear zones. Rock cores taken during the Remedial Investigation shows the upper bedrock contact is highly fractured. Groundwater exists within the fractures of the bedrock and is controlled by the bedrock.

2.0 Surface and Groundwater Flow

2.1 Surface Drainage

Regionally surface water drainage is controlled by bedrock structure, primarily the north-south trending faults. On-site surface drainage is modified by the makeup of the near surface glacial deposits and the capped landfill. Drainage from the site flows radially towards the east and north into the Great Swamp, a regulated wetland. The Great Swamp, in turn, drains both south into the Croton River Reservoir System and north into the Housatonic Basin. Surface flow and water saturation in the Great Swamp is affected by seasonal weather conditions.

BACKGROUND HYDROGEOLOGY

(page 2 of 2)

2.2 Groundwater Flow

Groundwater flow within the overburden aquifer is variable due to the make up of the kame deposits. By definition, kame deposits can exhibit considerable lateral variability in texture, degree of sorting, sedimentary structure, and thickness. Soil samples collecting during the installation of the on-site wells proves the nonhomogeneous and anisotropic nature of the kame unit. In spite of the geologic differences within the kame unit, the hydraulic conductivity values show a fairly narrow range, from 1.7×10^{-5} to 1.1×10^{-4} centimeters per second (cm/s).

Bedrock hydraulic values range from 1.8×10^{-5} to 3.1×10^{-4} cm/s. These values show the bedrock to be roughly one order of magnitude more permeable than the kame aquifer. This would prove that flow is faster in the more permeable bedrock than in the overburden.

2.3 Groundwater Flow Conditions

Vertical hydraulic gradients, calculated based on water levels over the past several years, vary from well to well. It can be assumed that groundwater flows from west to east in both the overburden and bedrock aquifer systems beneath the site. Data has not been collected on how water flows through the landfilled material itself, but it is assumed that flow would also be from west to east. Data collected during the RI investigation shows that there is an upward hydraulic gradient beneath the landfill and generally a downward gradient in wells that are located upgradient and crossgradient of the site. The calculated hydraulic gradients would show that groundwater recharge occurs in the higher ground upgradient and crossgradient of the site and that discharge occurs to the east of the landfill into the adjacent wetland (The Great Swamp)

MADE BY: MO	DATE: 3/26/2004
CHKD BY:	DATE:

PROJECT: Kessman/Cross County Landfill

SUBJECT: Estimate of the Ground Water Extraction Rate in the Leachate Collection System

1. PURPOSE

The purpose of this calculation is to estimate the ground water collection rate of the leachate collection system located along the eastern limit of the landfill.

2. PROBLEM STATEMENT

The leachate collection system is located along the eastern boundary of the landfill (see page 7 of this package). It consists of approximately 1,000 feet of 6-inch diameter perforated pipe, draining to a centrally located sump. Schematic of the system is shown on Figure 3 of reference 1 (attached). Based on the elevations of pipe inverts and ground surface, the collection pipe is buried approximately 4 feet below ground.

Three ground water monitoring well clusters are located in the immediate vicinity of the drain: MW-3 near the southern end, MW-20 near the center and MW-5 at the northern end of the drain. Based on total well depths from Form 3 of reference 1 (attached), the shallow wells are MW-3B, MW-5B and MW-20A. These wells indicate the potentiometric surface in the upper portion of the water-bearing zone, where the drain is located. The summary of the water levels as compared to the ground surface elevation is provided below:

Well	Ground Surface [ft]	Maximum/Minimum Water Level [ft]
MW-3B	432.68	432.9 / 430.3
MW-5B	431.70	432.8 / 429.9
MW-20A	431.51	429.7 / 426.9

Maximum hydraulic heads are within a foot of the ground surface. The collection drain is installed approximately 4 feet below ground surface. Therefore, during periods of high water level, the drain is likely to experience approximately 4 feet of hydraulic head.

Minimum heads are approximately 2 to 5 feet below ground surface. During periods of low water, portions of the drain would be above water table, while the remainder would be approximately 2 feet submerged.

For the upper bound of the estimate, use the entire length of the drain and the submergence of 4 feet. For the lower bound, use ³/₄ of the length of the drain and the submergence of 2 feet.

Figures 3-5, 4-1 and 4-2 of reference 2 indicate that the saturated thickness of the overburden deposits at the location of the leachate collection pipe is significant, approximately 50 feet. Moreover, as stated in Section 4.2.1 of reference 2, the hydraulic conductivity of the overburden materials is relatively uniform. Therefore, it is assumed that the drain is installed within a thick, uniform aquifer.

The hydraulic conductivity of the aquifer has been investigated by performing slug tests. Section 4.2.1 of reference 2 indicates that values of $1.7*10^{-5}$ to $1.1*10^{-4}$ cm/s were obtained for the overburden deposits. Typically, large-scale average values of hydraulic conductivity are somewhat higher than results of slug tests. For the purpose of this estimate, use $5*10^{-5}$ cm/s as the lower bound and $5*10^{-4}$ cm/s as the upper bound of the estimate (or 0.14 and 1.4 ft/d).

MADE BY: MO	DATE: 3/26/2004
CHKD BY:	DATE:

PROJECT: Kessman/Cross County Landfill

SUBJECT: Estimate of the Ground Water Extraction Rate in the Leachate Collection System

3. METHOD

The expected ground water extraction rate is estimated by approximating the system as a horizontal drain located in an infinitely thick aquifer. Based on equation 11 of reference 3, the drawdown and extraction rate of a partially penetrating drain are related as follows:

$$s = Ix \cos\theta + Iy \sin\theta + \frac{Q}{4\pi KL\sqrt{A}}.$$

$$\sum_{n=-\infty}^{\infty} \left[\ln \frac{\sqrt{x^2 + \left(y + \frac{L}{2}\right)^2 + \frac{\left(z - 2nb - d\right)^2}{A}} + y + \frac{L}{2}}{\sqrt{x^2 + \left(y - \frac{L}{2}\right)^2 + \frac{\left(z - 2nb - d\right)^2}{A}} + y - \frac{L}{2}} + \frac{1}{2} + \frac{1}{2}$$

Terms are defined as follows:

- A Anisotropy factor (A=K_{vertical}/K_{horizntal}), [-]
- b Thickness of aquifer, [L]
- d Depth from water table to axis of drain, [L]
- I Hydraulic gradient, [-]
- K Horizontal hydraulic conductivity, [L/T]
- L Length of drain, [L]

s - Vertical distance from zero reference level to potentiometric surface (zero reference level is the potentiometric surface at location of drain), [L]

- S Drawdown induced by drain (independent of hydraulic gradient), [L]
- Q Extraction rate, $[L^3/T]$
- θ Angle between x axis and flow direction, [-]

This equation is simplified as follows:

- Use n=0, corresponding to an infinitely thick aquifer (page 631 of reference 1). This is a conservative assumption, increasing the extraction rate (an infinite aquifer can provide more water than the aquifer of finite thickness).
- To estimate drawdown, use point in the center of the drain x=0, y=0. This is where the maximum drawdown will occur. Calculate drawdown at the surface of the aquifer z=0.
- Use the isotropic case A=1. This is a conservative assumption, increasing the extraction rate (vertical anisotropy increases the resistance to flow of water from depth towards the drain).

.

MADE BY: MO DATE: 3/26/2004 CHKD BY: DATE:

PROJECT: Kessman/Cross County Landfill

SUBJECT: Estimate of the Ground Water Extraction Rate in the Leachate Collection System

The equation simplifies to:

$$S = \frac{Q}{4\pi KL} \cdot \ln\left[\frac{\sqrt{\left(\frac{L}{2}\right)^{2} + \left(-d\right)^{2}} + \frac{L}{2}}{\sqrt{\left(-\frac{L}{2}\right)^{2} + \left(-d\right)^{2}} - \frac{L}{2}} \cdot \frac{\sqrt{\left(\frac{L}{2}\right)^{2} + d^{2}} + \frac{L}{2}}{\sqrt{\left(-\frac{L}{2}\right)^{2} + d^{2}} - \frac{L}{2}}\right]$$

$$S = \frac{Q}{4\pi KL} \cdot \ln\left[\frac{\sqrt{\left(\frac{L}{2}\right)^2 + d^2} + \frac{L}{2}}{\sqrt{\left(\frac{L}{2}\right)^2 + d^2} - \frac{L}{2}} \cdot \frac{\sqrt{\left(\frac{L}{2}\right)^2 + d^2} + \frac{L}{2}}{\sqrt{\left(\frac{L}{2}\right)^2 + d^2} - \frac{L}{2}}\right]$$

$$S = \frac{Q}{4\pi KL} \cdot \ln \left[\frac{\sqrt{\left(\frac{L}{2}\right)^{2} + d^{2}} + \frac{L}{2}}{\sqrt{\left(\frac{L}{2}\right)^{2} + d^{2}} - \frac{L}{2}} \right]^{2}$$

$$S = \frac{Q}{2\pi KL} \cdot \ln \frac{\sqrt{\left(\frac{L}{2}\right)^{2} + d^{2}} + \frac{L}{2}}{\sqrt{\left(\frac{L}{2}\right)^{2} + d^{2}} - \frac{L}{2}}$$

The extraction rate is:

$$Q = \frac{2\pi KLS}{\ln \frac{\sqrt{\left(\frac{L}{2}\right)^{2} + d^{2}} + \frac{L}{2}}{\sqrt{\left(\frac{L}{2}\right)^{2} + d^{2}} - \frac{L}{2}}}$$

A:\Kessman_GWModel_2.doc 3/26/04 7:13 AM

MADE BY: MO DATE: 3/26/2004 CHKD BY: DATE:

PROJECT: Kessman/Cross County Landfill

SUBJECT: Estimate of the Ground Water Extraction Rate in the Leachate Collection System

4. CALCULATIONS

Summary of parameters

Hydraulic conductivity:	K = 0.14 to 1.4 ft/d (based on slug tests)
Length of drain:	L = 750 to 1,000 ft (at low water and high water)
Drain penetration depth:	d = 2 to 4 ft (at low water and high water)
Drawdown at drain:	S = 2 to 4 ft (use maximum possible drawdown, equal to penetration
depth)	

Formula

$$Q = \frac{2\pi KLS}{\ln \frac{\sqrt{\left(\frac{L}{2}\right)^{2} + d^{2}} + \frac{L}{2}}{\sqrt{\left(\frac{L}{2}\right)^{2} + d^{2}} - \frac{L}{2}}}$$

Estimate extraction rate for K = 1.4 ft/d

A) During high water conditions, L = 1,000 ft, S = d = 4 ft

$$Q = \frac{2\pi \cdot 1.4 \cdot 1,000 \cdot 4}{\ln \frac{\sqrt{\left(\frac{1,000}{2}\right)^2 + 4^2} + \frac{1,000}{2}}{\sqrt{\left(\frac{1,000}{2}\right)^2 + 4^2} - \frac{1,000}{2}}} = \frac{35,186}{\ln \frac{1,000.016}{0.016}} = 35,186$$

$$=\frac{35,180}{\ln(62,501)}=3,186\,ft^3\,/\,day=17\,gpm$$

B) During low water conditions L = 750 ft, S = d = 2 ft

$$Q = \frac{2\pi \cdot 1.4 \cdot 750 \cdot 2}{\ln \frac{\sqrt{\left(\frac{750}{2}\right)^2 + 2^2} + \frac{750}{2}}{\sqrt{\left(\frac{750}{2}\right)^2 + 2^2} - \frac{750}{2}}} = \frac{13,195}{\ln \frac{750,0053}{0.0053}} = \frac{13,195}{13,195}$$

$$=\frac{13,195}{\ln(140,627)}=1,113\,ft^3\,/\,day=6gpm$$

A:\Kessman_GWModel_2.doc 3/26/04 7:13 AM

MADE BY: MO DATE: 6/15/2005 CHKD BY: DATE:

PROJECT: Kessman/Cross County Landfill

SUBJECT: Estimate of the Ground Water Extraction Rate in the Leachate Collection System

Estimate extraction rate for K = 0.14 ft/d

A) During high water conditions, L = 1,000 ft, S = d = 4 ft

$$Q = \frac{2\pi \cdot 0.14 \cdot 1,000 \cdot 4}{\ln \frac{\sqrt{\left(\frac{1,000}{2}\right)^2 + 4^2} + \frac{1,000}{2}}{\sqrt{\left(\frac{1,000}{2}\right)^2 + 4^2} - \frac{1,000}{2}}} = \frac{3,519}{\ln \frac{1,000.016}{0.016}} =$$

$$=\frac{3,519}{\ln(62,501)}=319\,ft^3/day=1.7\,gpm$$

B) During low water conditions L = 750 ft, S = d = 2 ft

$$Q = \frac{2\pi \cdot 0.14 \cdot 750 \cdot 2}{\ln \frac{\sqrt{\left(\frac{750}{2}\right)^2 + 2^2} + \frac{750}{2}}{\sqrt{\left(\frac{750}{2}\right)^2 + 2^2} - \frac{750}{2}}} = \frac{1,320}{\ln \frac{750.0053}{0.0053}} =$$

$$=\frac{1,320}{\ln(140,627)}=111ft^3/day=0.6gpm$$

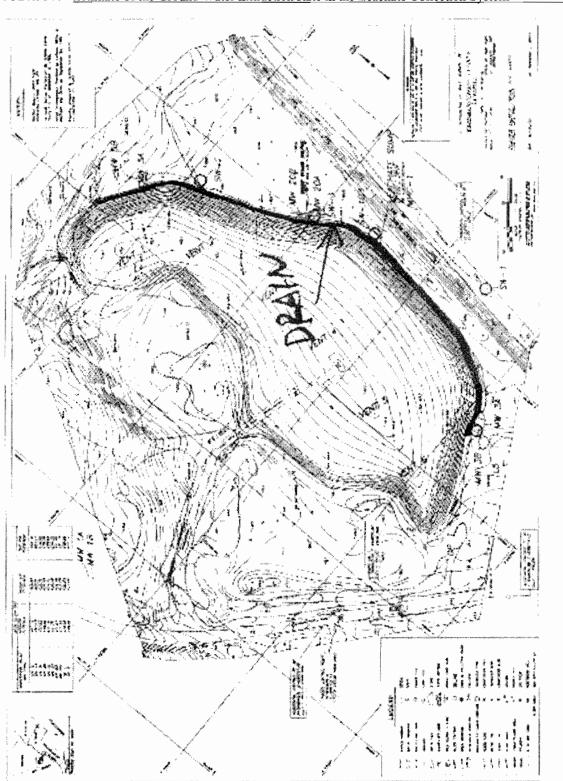
5. CONCLUSIONS

The ground water extraction rate that may be expected from the leachate collection drain along the eastern limit of the landfill has been estimated to be on the order of 1 to 17 gpm. Actual collection rates will be influenced by water levels in the adjacent wetland and the possible hydraulic contact between the landfill leachate and the wetland.

.

MADE BY: MO DATE: 3/26/2004 CHKD BY: DATE:

PROJECT: Kessman/Cross County Landfill


SUBJECT: Estimate of the Ground Water Extraction Rate in the Leachate Collection System

6. **REFERENCES**

- 1 Cross County Sanitation/Kessman Landfill OM&M Report February to November, 2002 Iyer Environmental Group, Dec 12, 2002
- 2 Kessman/Cross County Sanitation Landfill Site Remedial Investigation Report ABB Environmental Services, September 1994
- Determining 3D Capture Zones in Homogeneous Anisotropic Aquifers
 D. Schafer
 Ground Water, July-August 1996

A:\Kessman_GWModel_2.doc 3/26/04 7:13 AM

A:\Kessman_GWModel_2.doc 3/26/04 7:13 AM

CROSS COUNTY SANITATION/KESSMAN LANDFILL OPERATION, MAINTENANCE AND MONITORING

OM&M REPORT

(February to November, 2002)

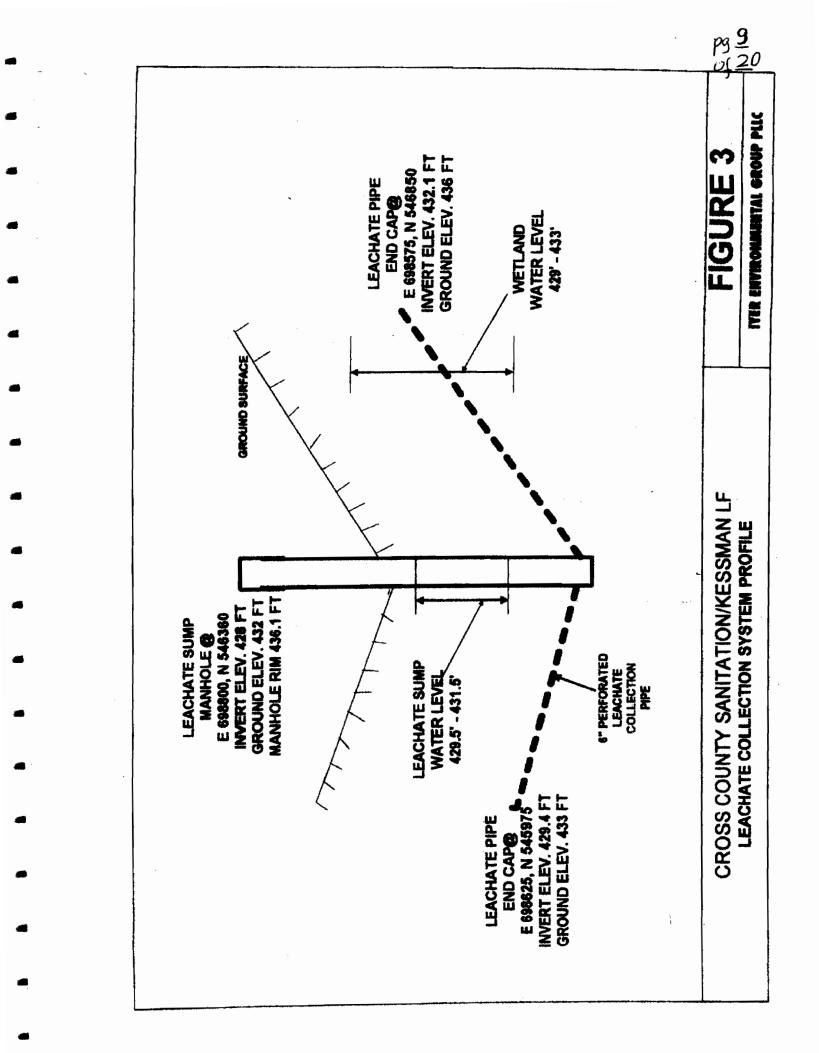
Site No. 3-40-011

Reference 1

pg <u>8</u> of <u>20</u>

Prepared for:

DIVISION OF ENVIRONMENTAL REMEDIATION NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 625 BROADWAY, ALBANY, NY 12233-7012


Prepared by:

lyer Environmental Group, PLLC 44 Rolling Hills Drive Orchard Park, NY 14127

Submitted by:

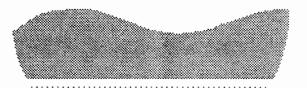
O'Brien & Gere Engineers, Inc 5000 Brittonfield Parkway, East Syracuse, NY 13057

December 12, 2002

FORM 3 CROSS COUNTY SANITATION/KESSMAN LANDFILL OM&M GROUNDWATER/SURFACE WATER/LEACHATE ELEVATIONS

ID MEILL	GROUND FI EV	TOR	TOTAL	BOTTOM			WAT	TER LEVE	LS (Elevi	WATER LEVELS (Elevation in feet)	set)				WIWINIW	MAXIMUM VARIATION	VARIATION
2	. (t)	(H)	DEPTH (ft)	(t)	10/29/01 Baseline	2/27/02	2/27/02 03/28/02 4/25/02	4/25/02	5/15/02	6/13/02	5/15/02 6/13/02 07/25/02 08/22/02 09/18/02 10/24/02	08/22/02	09/18/02	10/24/02	ELEVATION (ft)	ELEVATION ELEVATION (ft) (ft)	(H)
MW-1A	461.15	463.15	59.40	403.75	447.05	447.80	448.49	448.89	449.82	450.98	448.57	446.93	446.75	447.35	446.8	451.0	4.2
MW-1B	461.07	463.01	23.10	439.91	450.01	445.17	451.99	452.76	453.86	455.10	451.79	450.48	449.75	450.73	445.2	455.1	-6.6-
MW-3A	431.82	434.65	67.36	367.29	431.27	431.93	432.26	432.25	432.83	432.09	431.03	430.65	430.97	432.11	430.7	432.8	-2.2
MW-3B	432.68	435.78	34.20	401.58	431.31	431.97	432.28	432.29	432.89	432.14	431.18	430.27	430.60	431.76	430.3	432.9	-2.6
MW-5A	431.38	433.84	72.18	361.66	431.34	431.71	432.05	432.22	432.64	431.85	430.88	429.87	429.92	431.48	429.9	432.6	-2.8
MW-5B	431.70	434.35	30.38	403.97	431.05	431.84	432.25	432.39	432.81	432.04	430.71	429.85	429.94	431.64	429.9	432.8	-3.0
MW-20A	431.51	431.29	21.61	409.68	428.19	428.72	429.09	429.30	429.71	428.41	427.20	426.87	427.05	428.63	426.9	429.7	-2.8
MW-20B	430.92	431.17	42.53	388.64	428.57	429.20	429.52	429.77	430.13	429.02	428.27	427.48	427.68	429.05	427.5	430.1	-2.6
Leachate Tank		436.12			•	,	•	432.03	429.42	429.99	429.72	429.51	429.74	431.42	429.4	432.0	-2.6
Staff Gauge		433.06				•	•	. 1	430.49	-	ı	430.69	430.91	432.93	430.5	432.9	-2.4

Note: 1. All wells and soil gas points were resurveyed in August 2002 after repair work at MW-3A, GP-1 and GP-2 2. Previous elevations at MW-3A were: Ground elev. = 432.59 and Top of Riser elev. = 436.07.


pg 10 of 20

р<u>9 11</u> of <u>20</u>

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SUPERFUND STANDBY CONTRACT

KESSMAN/CROSS COUNTY SANITATION LANDFILL SITE Patterson, New York WORK ASSIGNMENT NO. D002472-9

REMEDIAL INVESTIGATION REPORT VOLUME I

SEPTEMBER 1994

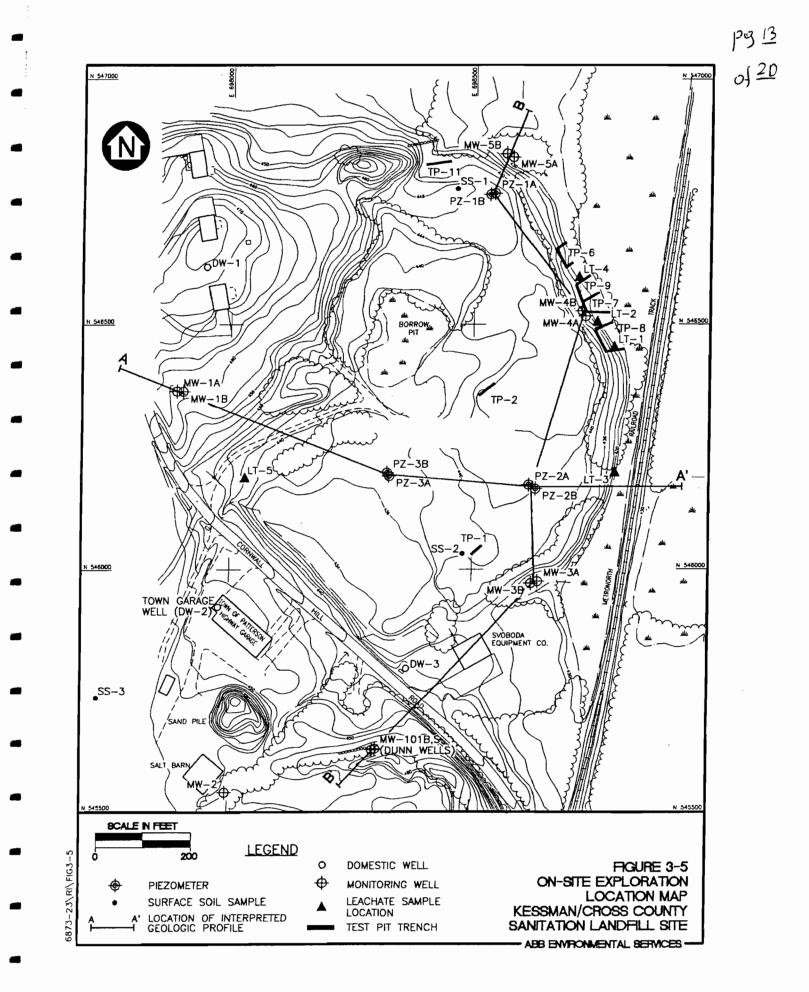
ABB Environmental Services

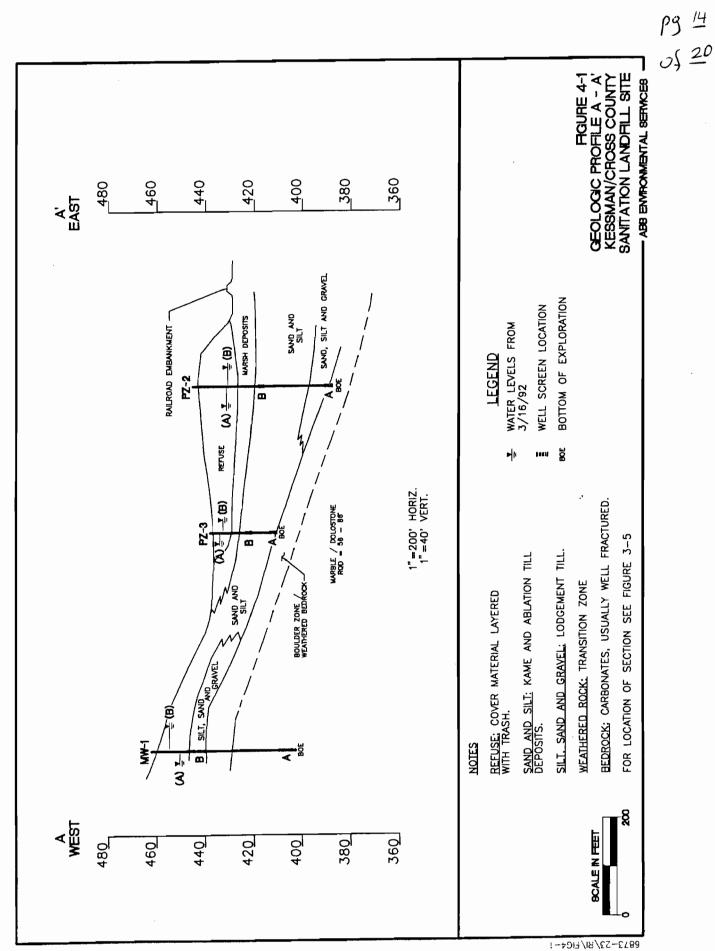
SECTION 4

4.2.1 Hydraulic Conductivity Testing Results

Rising-head and falling-head slug tests were performed in the nine RI wells and two existing wells, MW-101B and MW-101S, installed by Dunn in 1990. Data was collected using a 10 psi pressure transducer and Hermit[™] data logger (see Section 3.1) and analyzed using Aqtesolv[™] software and the Bouwer and Rice slug test solution for unconfined aquifers (Bouwer and Rice, 1976). Test data and Aqtesolv[™] plots are presented in Table 4-1 and Appendix A-8.

Hydraulic conductivities are not reported for MW-1A (Rising Head Test) and MW-2 due to uncertainty in the validity of the slug test data collected for these wells. It is also important to note that in not all cases do the initial displacement values presented in Table 4-1 match the initial displacement (Y_o) values shown on the hydraulic conductivity graphs included in Appendix A-8. In the case of the analysis of the falling head test data for well MW-1A and the rising head test data for well MW-1B, the initial displacement values (Y_o) have been adjusted downward in an attempt to match the slope with the valid portion of the curve.


Bedrock hydraulic conductivity (K_P) values ranged from $1.8x10^{-5}$ to $3.1x10^{-4}$ centimeters per second (cm/sec) with an arithmetic average of $2.2x10^{-4}$ cm/sec. The average K_P value of $2.2x10^{-4}$ cm/sec lies at the high end of the range of hydraulic conductivities for limestone and dolostone tabulated by Freeze and Cherry (1979).


Overburden K_p values were measured in five wells, one screened entirely in the basal till, two screened across the contact of the basal till and the ablation till/kame deposits, and two screened entirely in the ablation till/kame deposits. Despite the inherent differences in these geologic deposits, the range of K_p in the overburden wells was small, 1.7×10^{-5} to 1.1×10^{-4} cm/sec, with an arithmetic average of 6.1×10^{-5} cm/sec. These test results imply that the loose, fine-grained ablation till and kame deposits have water transmitting properties similar to the dense, well-graded basal till.

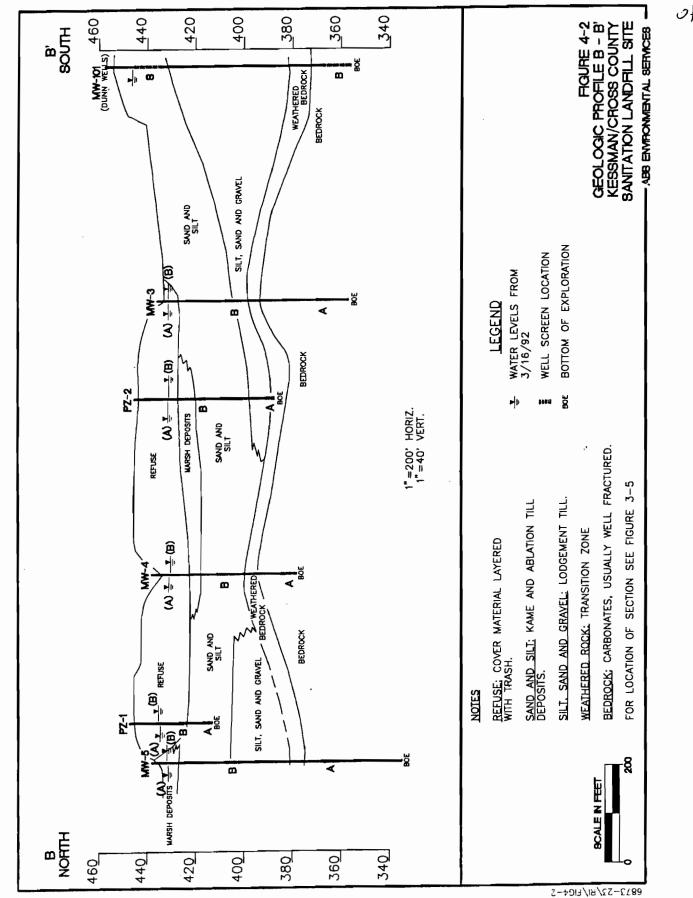

Results of the hydraulic conductivity testing show that bedrock is roughly one order of magnitude more permeable than the overburden deposits. The Bouwer and Rice solution for unconfined aquifers is believed to be appropriate for the bedrock aquifer because artesian conditions were not encountered, and four of

ABB Environmental Services

W0059431.M80

р<u>9 15</u> 01 <u>20</u>

.

-

ي ا

1

commung Jes Capture Lones in Homogeneous, **Anisotropic Aquifers**

by David C. Schafer

Sta Decime

New States

录:14支,**并**和常调群的词 1. when when the state of the s

、24.8 年2187届19月2日第1日4月2月1日日

Abstract

A method is presented for determining steady-state capture zones in three dimensions around horizontal drains and vertical wells in homogeneous, anisotropic aquifers in a uniform flow field. Equations are presented for determining drawdown and velocity vector components in three dimensions around drains and wells. Using these equations, a second-order Runge-Kutta particle tracking algorithm is applied to trace streamlines in three dimensions. By tracking a large number of particles, it is possible to determine areas where capture occurs and areas where particles escape capture. The resulting 3D capture zones are diagrammed as both 2D (section view) plots and 3D plots.

Reference

Introduction

In designing remediation systems for contamination plumes, hydraulic analysis is required to determine appropriate flow rates and locations of extraction wells or trenches to achieve hydraulic containment of the contaminants. Determining capture zones in two dimensions is well understood and relatively straightforward (Javandel and Tsang, 1986). Simple, analytical equations can be used, for instance, to calculate discharge rates necessary to achieve hydraulic containment. Alternatively, several easy-to-use, analytical flow models are readily available to calculate and diagram capture zones for proposed recovery Stalling Hawilds Just systems.

A limitation of 2D solutions, however, is the assumption that the capture zone fully penetrates the aquifer. Although this assumption might be valid for relatively thin aquifers, it could be inappropriate for thick aquifers in which the contaminant plume penetrates just a fraction of the aquifer thickness. In such systems, treating the problem as two-dimensional leads to unnecessarily high extraction rates, as well as expensive remediation system treatment and operating costs.

When a thick aquifer becomes contaminated, dissolved contaminants often exist only in the upper portions of the aquifer. Under these circumstances, the most economical hydraulic containment system is often one that captures only the shallow (contaminated) ground water, allowing deeper, clean water to pass beneath the extraction system. For these installations, a existing 2D equations and flow models are not adequate for accurately describing capture zones and required flow rates and a 3D approach is required.

and the second states and the second states time cand estemant of tru-

Methods 3D capture zone analysis is accomplished by tracing streamlines in three dimensions. Streamlines are traced from a large number of different starting points and a determination is made for each starting point as to whether or not the streamline reaches the extraction system or passes on downgradient. By tracking a sufficient number of particles, it is possible to deter-

reparentien probleme faithin the special entry for the second i -i on wate a cu Sec. 1

^aGeraghty & Miller, Inc., 105 Fifth Avenue South, Suite 350, Minneapolis, Minnesota 55401. and model and the second sec Received December 1994, revised June 1995, accepted June 1995. mine those areas where capture is occurring and those areas where particles are escaping capture.

and an annual service

3

01 20

Before particle tracking can be accomplished, it is first necessary to determine hydraulic head (or drawdown) in three dimensions around the extraction system. After the drawdown in three dimensions is known, it is possible to determine the extraction-induced gradients in three dimensions by differentiating the drawdown with respect to x, y, and z. Finally, velocities in the x, y, and z directions can be computed from these gradients. After this three-dimensional velocity field has been determined, a standard numerical integration technique is used to calculate the paths that particles would take moving through that field. If a particle path leads to the extraction system, the particle is assumed to have been captured, whereas a particle that bypasses the extraction system by a sufficient distance is assumed to have escaped.

In performing the analysis, it is most convenient to examine the capture zone "one slice at a time." The typical procedure is to fix a specific x coordinate and determine in section view the profile of the capture zone in a plane passing through that x coordinate and oriented perpendicular to the x axis. By repeating this process for a number of x coordinates, it is possible to gain an understanding of what the capture zone looks like in three dimensions.

At each x location, the calculated capture zone profile can be compared with the known position of the contaminant plume to judge whether complete plume capture will occur.

Theory

Drawdown Around a Point Sink

Drawdown around a line sink feature such as a horizontal drain or vertical well can be determined by representing the feature as an infinite number of point sinks, each with an infinitesimal discharge such that their combined discharge equals that of the drain or well. The drawdown for each point sink is determined and the cumulative drawdown is obtained by integrating along the length of the line sink. The first step is to determine the steady-state drawdown around a point sink in a homogeneous, anisotropic, infinitely thick aquifer. In this analysis, anisotropy is considered in the vertical direction because the horizontal deposition of most sediments tends to produce greater hydraulic conductivity in the horizontal direction (paral-

Vol. 34 No 4-GROUND WATED

lel to the bedding planes) and lower hydraulic conductivity in the vertical direction (perpendicular to the bedding planes).

Consider an anisotropic aquifer having horizontal hydraulic conductivity, K, and vertical hydraulic conductivity, K_z , with the anisotropy ratio, A, defined as K_z/K . According to Harr (1962) and Strack (1989), the anisotropic system can be transformed to an equivalent isotropic one by stretching the vertical z axis by the square root of the anisotropy ratio and assigning an isotropic hydraulic conductivity equal to $K(A)^{1/2}$. Thus, in the transformed system, indicated by the asterisk,

$$z^* = \frac{z}{(A)^{1/2}}$$
 (1a)

$$K^* = K(A)^{1/2}$$
 (1b)

In the isotropic aquifer, the point sink drawdown equation for steady-state conditions can be obtained from Darcy's law. Assuming an infinitely thick aquifer, flow toward point (x_p, y_p, z_p^*) through a spherical shell of radius r_D and thickness -dr (dr is taken to be negative, i.e., r_D is decreasing from infinity to zero) is, according to Darcy's law

$$Q = K^* \left(\frac{-ds}{dr_D}\right) 4\pi r_D^2$$
 (2)

In this equation, Q is flow rate, and s represents drawdown. Rearranging terms gives

$$-ds = \frac{Q}{4\pi K^*} \frac{dr_D}{r_D^2}$$
(3)

Integrating from infinity to r yields

1

$$-[\mathbf{s}(\mathbf{r}) - \mathbf{s}(\infty)] = \frac{Q}{4\pi K^*} \left[-\left(\frac{1}{\mathbf{r}} - \frac{1}{\infty}\right) \right]$$
(4)

and, because the drawdown at infinity is zero,

$$s = \frac{Q}{4\pi K^* r} \tag{5}$$

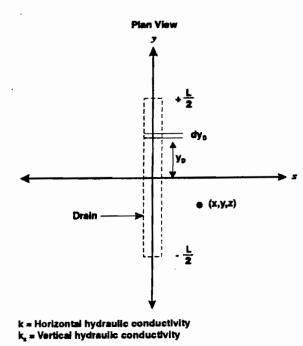


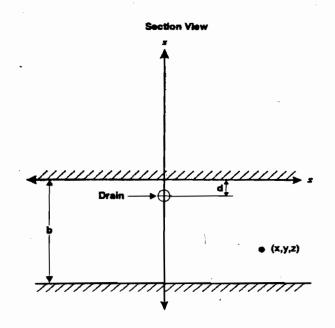
Fig. 1. Plan and section views of horizontal drain.

At a point (x, y, z^*) located a distance r from (x_p, y_p, z_p) have

$$s = \frac{Q}{4\pi K^*} \frac{1}{\left[(x - x_p)^2 + (y - y_p)^2 + (z^* - z_p^*)^2\right]^{1/2}}$$

Finally, in terms of the anisotropic aquifer,

$$s = \frac{Q}{4\pi K(A)^{1/2}} \frac{1}{\left[(x - x_p)^2 + (y - y_p)^2 + ((z - z_p)^2/A)\right]}$$


Horizontal Drain

Ground-water extraction is frequently accomplishe pumping from shallow, horizontal trenches or drains structed across the front of contaminant plumes. In add horizontal wells are becoming popular for capturing comnants because they can be used effectively to "skim" bishallow plumes at the tops of thick aquifers. Special equa are required to calculate capture zones around these horizo pumping features.

Figure 1 shows a horizontal drain of length L located depth d below the top of an aquifer of thickness b, centers x = y = 0 and oriented parallel to the y axis. Because the aquis bounded at the top and bottom, the theory of images is use transform it to an infinitely thick aquifer. Figure 2 shows im obtained by repeatedly reflecting the actual drain and su quent image drains across the upper and lower aquifer bou aries. The resulting pattern of image drains is symmetric at both the upper and lower boundaries, thus assuring a no-i condition at each boundary.

The drawdown around a drain is calculated by integra the point sink equation. For a drain such as that shown in Fig 1 but at an arbitrary elevation, Z, the infinitesimal flow t segment of length dy_D at position y_D is

$$dq = (Q/L) dy_D$$

 ρ_{P} , ρ

$$ds = \frac{(Q/L) dy_{D}}{4\pi K(A)^{1/2}} \frac{1}{\left[x^{2} + (y - y_{D})^{2} + \frac{(z - Z)^{2}}{A}\right]^{1/2}} Of \underline{2D}(9)$$

Integrating with respect to y_D over the length of the drain from -L/2 to L/2 yields

$$s = \frac{Q}{4\pi K L (A)^{1/2}} \int_{-L/2}^{L/2} \frac{dy_{D}}{\left[x^{2} + (y - y_{D})^{2} + \frac{(z - Z)^{2}}{A}\right]^{1/2}}$$
$$= \frac{Q}{4\pi K L (A)^{1/2}} \ln \frac{\left[x^{2} + \left(y + \frac{L}{2}\right)^{2} + \frac{(z - Z)^{2}}{A}\right]^{1/2} + y + \frac{L}{2}}{\left[x^{2} + \left(y - \frac{L}{2}\right)^{2} + \frac{(z - Z)^{2}}{A}\right]^{1/2} + y - \frac{L}{2}}$$
(10)

The principle of superposition is used to determine the total drawdown by adding the drawdowns caused by the actual drain and all of the image drains. The z coordinate locations of the actual drain and image drains in Figure 2 are -d, d, -2b + d, -2b - d, 2b - d, 2b - d, 2b + d, -4b + d, -4b - d, 4b - d, 4b + d, etc. These values are substituted into equation (10) and in addition, a gradient term is added to account for a prepumping gradient of magnitude I in a direction θ with respect to the x axis. The term s thus becomes a measure of the distance of the water level below the nonpumped level at the origin of the coordinate system and is expressed as follows:

$$s = Ix\cos\theta + Iy\sin\theta + \frac{Q}{4\pi KL(A)^{1/2}} \sum_{n=-\infty}^{\infty} \left[\ln \frac{\left[x^2 + \left(y + \frac{L}{2}\right)^2 + \frac{(z - 2nb - d)^2}{A}\right]^{1/2} + y + \frac{L}{2}}{\left[x^2 + \left(y - \frac{L}{2}\right)^2 + \frac{(z - 2nb - d)^2}{A}\right]^{1/2} + y - \frac{L}{2}} \right] + \ln \frac{\left[x^2 + \left(y + \frac{L}{2}\right)^2 + \frac{(z - 2nb + d)^2}{A}\right]^{1/2} + y + \frac{L}{2}}{\left[x^2 + \left(y - \frac{L}{2}\right)^2 + \frac{(z - 2nb + d)^2}{A}\right]^{1/2} + y - \frac{L}{2}} \right]$$
(11)

Head or drawdown must be referenced to common datum. The choice of the static head at the origin of the coordinate system was arbitrary and solely for convenience.

Summarizing the terms in equation (11), s = distance of the water level at (x, y, z) below the static water level measured at the origin of the coordinate system; I = regional gradient; θ = gradient direction, measured from the positive x axis; Q = flow rate; K = horizontal hydraulic conductivity; A = anisotropy ratio = K_z/K (K_z = vertical hydraulic conductivity); L = length of drain; x, y, z = coordinates of point where s is computed; b = aquifer thickness; and d = depth of drain below top of aquifer.

Key assumptions made in developing this equation are the following: (1) The aquifer is homogeneous and anisotropic. (2) The aquifer is confined or it is unconfined and s is small in relation to aquifer thickness ($s \ll b$). (3) The flow is constant per unit length of drain.

In equation (11), the terms corresponding to n = 0 represent the drain and one image reflected across the top of the aquifer. Terms corresponding to negative n represent image pairs below the aquifer, whereas terms corresponding to positive n represent image pairs above the aquifer, as illustrated in Figure 2.

Having obtained an expression for s, particle velocity components may be computed as follows:

$$v_{x} = \frac{K}{\eta} \frac{\partial s}{\partial x}$$
(12a)

$$v_{y} = \frac{K}{\eta} \frac{\partial s}{\partial y}$$
(12b)

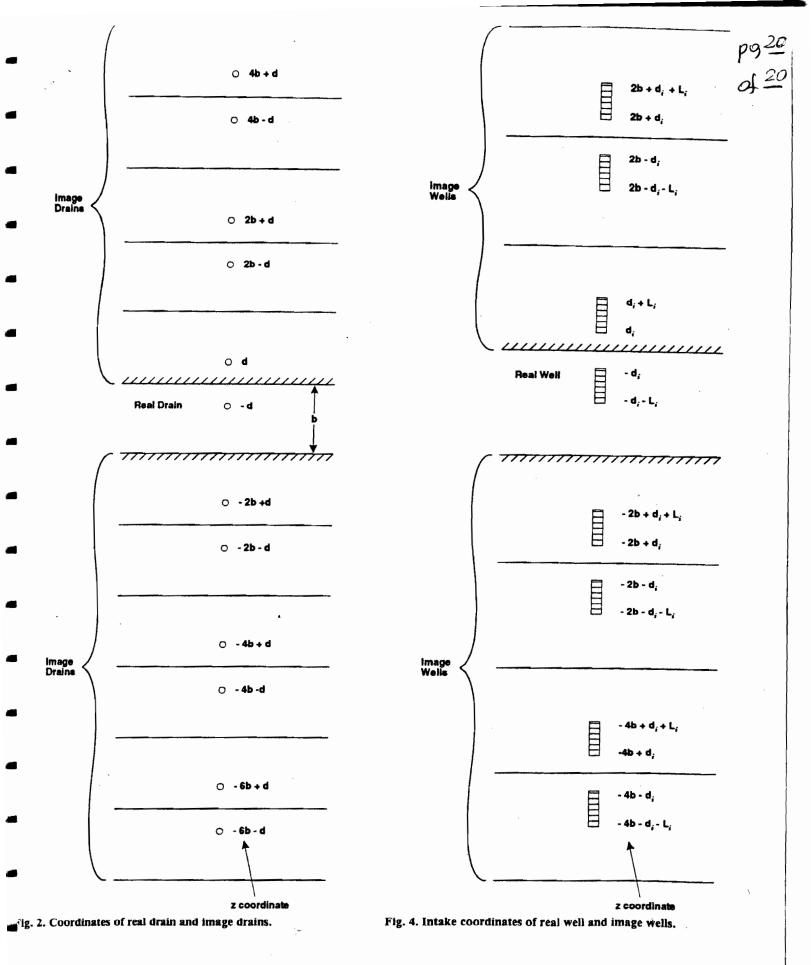
$$v_z = \frac{KA}{\eta} \frac{\partial s}{\partial z}$$
(12c)

where v_x = velocity vector component in the x direction; v_y = velocity vector component in the y direction; v_z = velocity vector component in the z direction; n_z = effective porosity.

Differentiating s with respect to x, y, and z and substituting into equations (12a) through (12c) yields the following:

530

$$\begin{aligned} v_{x} &= \frac{\kappa I}{\eta} \cos\theta + \frac{Qx}{4\pi L\eta(A)^{1/2}} \cdot \sum_{n=-\infty}^{\infty} pg \frac{jg}{2} \\ &= \int \frac{20}{z^{2} + (y - \frac{L}{2})^{2} + \frac{(z - 2nb - d)^{2}}{A}} \int^{1/2} \left(\left[x^{2} + (y + \frac{L}{2})^{2} + \frac{(z - 2nb - d)^{2}}{A} \right]^{1/2} + y + \frac{L}{2} \right) \\ &- \frac{1}{\left[x^{2} + (y - \frac{L}{2})^{2} + \frac{(z - 2nb + d)^{2}}{A} \right]^{1/2}} \left(\left[x^{2} + (y - \frac{L}{2})^{2} + \frac{(z - 2nb - d)^{2}}{A} \right]^{1/2} + y - \frac{L}{2} \right) \\ &+ \frac{1}{\left[x^{2} + (y - \frac{L}{2})^{2} + \frac{(z - 2nb + d)^{2}}{A} \right]^{1/2}} \left(\left[x^{2} + (y + \frac{L}{2})^{2} + \frac{(z - 2nb + d)^{2}}{A} \right]^{1/2} + y - \frac{L}{2} \right) \\ &- \frac{1}{\left[x^{2} + (y - \frac{L}{2})^{2} + \frac{(z - 2nb + d)^{2}}{A} \right]^{1/2}} - \frac{1}{\left[x^{2} + (y - \frac{L}{2})^{2} + \frac{(z - 2nb + d)^{2}}{A} \right]^{1/2}} + \frac{1}{\left[x^{2} + (y - \frac{L}{2})^{2} + \frac{(z - 2nb + d)^{2}}{A} \right]^{1/2}} \right] \\ v_{y} &= \frac{\kappa I}{\eta} \sin\theta + \frac{Q}{4\pi L\eta(A)^{1/2}} \cdot \sum_{n=-\infty}^{\infty} \\ \left[\frac{1}{\left[x^{2} + (y + \frac{L}{2})^{2} + \frac{(z - 2nb - d)^{2}}{A} \right]^{1/2}} - \frac{1}{\left[x^{2} + (y - \frac{L}{2})^{2} + \frac{(z - 2nb - d)^{2}}{A} \right]^{1/2}} \right] \\ v_{z} &= \frac{Q}{4\pi L\eta(A)^{1/2}} \cdot \sum_{n=-\infty}^{\infty} \\ \left\{ (z - 2nb - d) \left[\frac{1}{\left[x^{2} + (y + \frac{L}{2})^{2} + \frac{(z - 2nb - d)^{2}}{A} \right]^{1/2}} \left[\frac{1}{(x^{2} + (y - \frac{L}{2})^{2} + \frac{(z - 2nb - d)^{2}}{A} \right]^{1/2}} \right] \\ &- \frac{1}{\left[x^{2} + (y - \frac{L}{2})^{2} + \frac{(z - 2nb - d)^{2}}{A} \right]^{1/2}} \left[\frac{1}{(x^{2} + (y - \frac{L}{2})^{2} + \frac{(z - 2nb - d)^{2}}{A} \right]^{1/2}} \right] \\ &+ \frac{1}{\left[x^{2} + (y - \frac{L}{2})^{2} + \frac{(z - 2nb - d)^{2}}{A} \right]^{1/2}} \left[\frac{1}{(x^{2} + (y - \frac{L}{2})^{2} + \frac{(z - 2nb - d)^{2}}{A} \right]^{1/2}} \right] \\ &+ \frac{1}{\left[x^{2} + (y - \frac{L}{2})^{2} + \frac{(z - 2nb - d)^{2}}{A} \right]^{1/2}} \left[\frac{1}{(x^{2} + (y - \frac{L}{2})^{2} + \frac{(z - 2nb - d)^{2}}{A} \right]^{1/2}} \right] \\ &+ (z - 2nb - d) \left[\frac{1}{\left[x^{2} + (y + \frac{L}{2})^{2} + \frac{(z - 2nb - d)^{2}}{A} \right]^{1/2}} \left[\frac{1}{(x^{2} + (y - \frac{L}{2})^{2} + \frac{(z - 2nb - d)^{2}}{A} \right]^{1/2}} + \frac{1}{(z - 2nb - d)^{2}} \right] \\ &+ (z - 2nb + d) \left[\frac{1}{\left[x^{2} + (y + \frac{L}{2})^{2} + \frac{(z - 2nb - d)^{2}}{A} \right]^{1/2}} \right] \\ \end{array}$$


9)

٠

$$-\frac{1}{\left[x^{2}+\left(y-\frac{L}{2}\right)^{2}+\frac{(z-2nb+d)^{2}}{A}\right]^{1/2}\left(\left[x^{2}+\left(y-\frac{L}{2}\right)^{2}+\frac{(z-2nb+d)^{2}}{A}\right]^{1/2}+y-\frac{L}{2}\right)}\right]\right\}$$
(1)

These equations permit particle tracking using numerical integration techniques. In practice, the infinite series is truncated 1 summing over n from -N to N where N is chosen to provide the accuracy required. While the expression for s [equation (11)] goes 1 infinity as N increases, the expressions for v_x , v_y , v_z converge for large values of N.

Computing time increases as N increases, so problem solving is speeded up by restricting N to relatively small values. Experience has shown that small values of N usually provide adequate results. In fact, if the capture zone penetrates just a fraction of the aquife thickness (for example, less than half), setting N = 0 provides good results. This is equivalent to assuming the aquifer is infinitely thickness.

Vertical Wells

The equation for drawdown around a system of partially penetrating extraction wells can be derived in the same manner as the one for the horizontal drain. Analysis of flow to vertical, partially penetrating wells has been treated by others for both water flow Philip and Walter, 1992) and air flow in the vadose zone (Shan, Falta, and Javandel, 1992).

_____ ____ CROSS COUNTY SANITATION/KESSMAN LANDFILL O&M OPERATION, MAINTENANCE AND MONITORING

OM&M REPORT

ATTACHMENT G SEDIMENT SAMPLING REPORT

SEDIMENT SAMPLING

1.0 INTRODUCTION

1.1 Objective

Sediment sampling was conducted at Kessman September 29 through October 2, 2003. The purpose of the sediment sampling activities was to evaluate whether a previously remediated wetlands area adjacent to the landfill had become contaminated by the hazardous materials that are contained in the landfill, and if so the extent of that contamination.

2.0 Scope of Work

2.1 Sampling

O'Brien and Gere and IEG personnel arrived on site on September 29 and began gridding and staking the areas that were to be sampled. Five distinct areas, A through E, were selected for discrete sampling as shown on Figure 4A of this Report. Area A consisted of the previously remediated wetlands area that would be most impacted by leachate seeps. Area B also represented an area that would be impacted by leachate seeps as well as serving as a drainage pathway from the landfill to the east. Area C represented the previously remediated wetlands. Area D covered an area of the wetlands that had not been remediated and Area E represented a drainage pathway to the northeast. Figure 2 shows the five Areas that were sampled along with the sample location numbers as designated in the field.

Sediment samples were taken by using both a hand auger and by pushing Lexicon tubing into the subsurface. The specific subsurface conditions determined which method was used. A total of 34 near surface samples were collected from a depth of 0 to 6 inches. An additional eight samples were taken from the 6 to 12 inch interval at select locations from which the shallower samples had also been collected. Additional QA/QC samples were also collected.

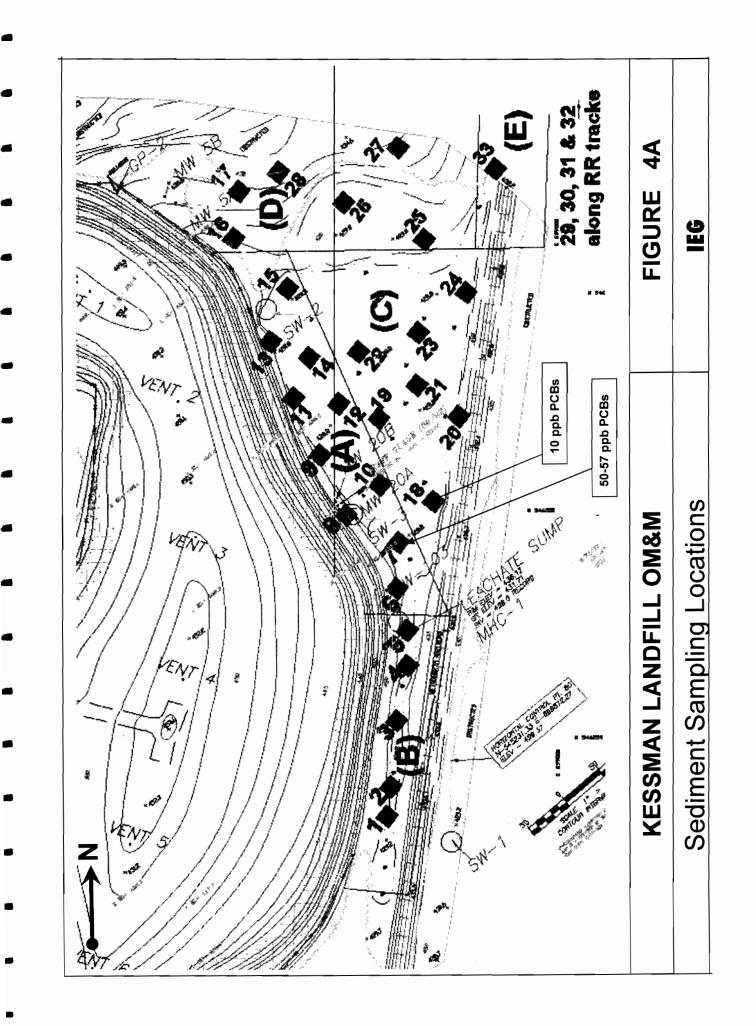
Most of the areas sampled were covered with surface water ranging from 0.5 feet to 3 feet in depth. In addition heavy vegetation was encountered in many areas.

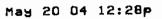
As sediment samples were collected, the samples were logged and described in the field. Each sample was composited prior to being placed into clean bottleware to be shipped overnight to the O' Brien and Gere laboratory. Proper decontamination procedures were followed on the sampling equipment.

After each sample was collected GPS coordinates were recorded for each location. The coordinates were recorded in the field log book as well as on the GPS's internal data logger. After sampling was completed GPS coordinates were also recorded for the eight monitoring well locations.

2.2 Description of Sediments

Generally speaking there was a distinct difference between the soil encountered in the remediated areas and the areas that have remained undisturbed. The soils in the unremediated areas (Areas D and E) were siltier in the near surface and contained less clay. The soils in the remediated areas (Areas A to C) contained more clay and more near surface organic material. Table 4 of this Report provides a visual description of the sediment samples that were taken.

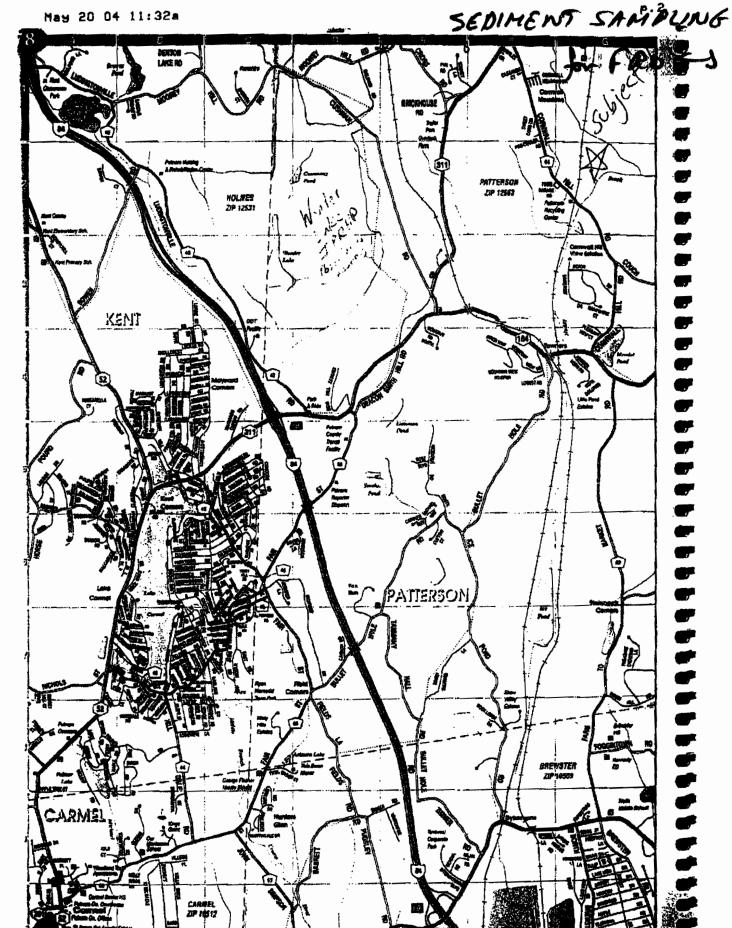

2.3 Analytical Results

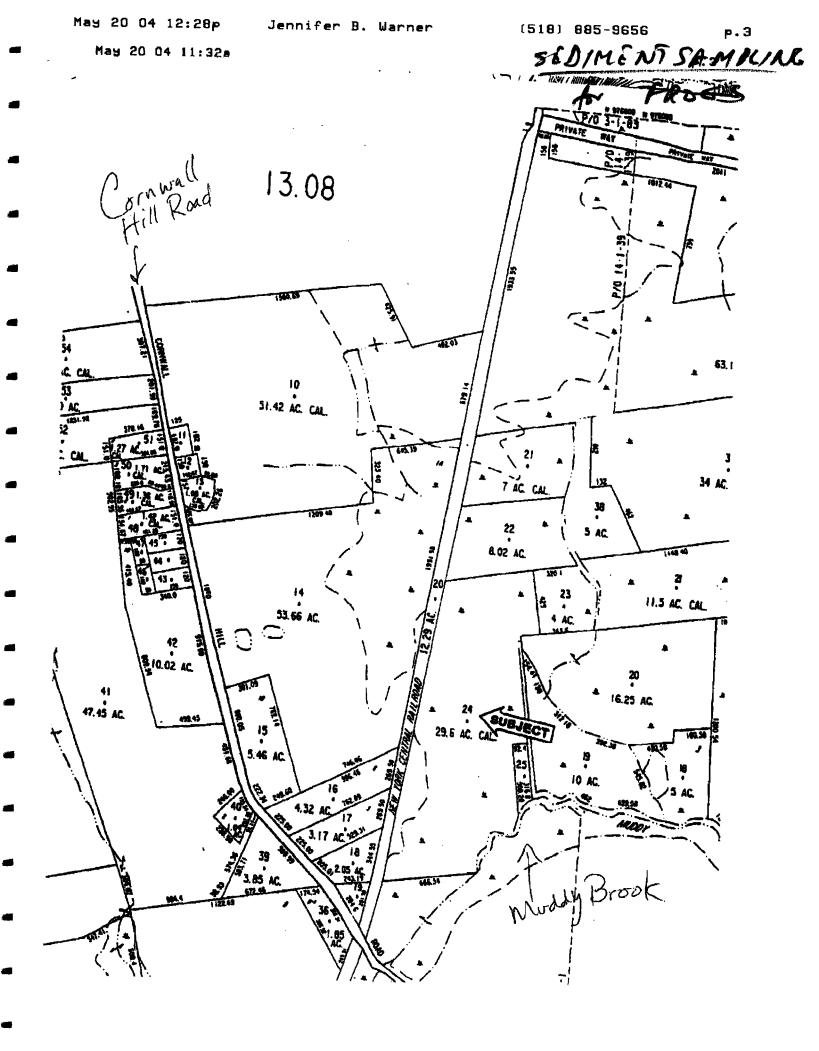

Samples were analyzed for PCB's using Method SWA 8082. Table 4 of this Report shows the analytical results for each sample taken. Only two of the samples showed the presence of PCBs at a total concentration greater than 50 ppm. These samples were further tested for dioxins with the results being negative for the presence of dioxins. The two samples that contained PCB's greater than 50 ppm were both from location Number 7 in Area A. Figure 4B of this Report shows the GPS location of each sample and is numbered to correspond with the analytical lab results.

The samples that had the PCB hits were located near the edge of the landfill at a location that has been suspected of being a leachate seep location. This location is located near the leachate sump and was confirmed by the tracer study to be hydraulically connected. We have collected surface water from this location in the past with results for PCB's always coming up negative.

3.0 RECOMMENDATIONS

The areas that were sampled covered any suspected contaminate pathways that would be leading from the site. The only area that contained any noteworthy PCB contamination was on the ENE edge of the landfill. Since there is no evidence that PCB contamination has spread beyond this location, we recommend that no further action be taken at this time. The site should continue to be monitored on a regular basis.





(518) 885-9656

p.2

May 20 04 11:32a

CROSS COUNTY SANITATION/KESSMAN LANDFILL O&M OPERATION, MAINTENANCE AND MONITORING

1

OM&M REPORT

ATTACHMENT H TRACER STUDY REPORT (SU)

224 Stolp Avenue Syracuse, NY 13207 November 24, 2004

Iyer Environmental Group, PLLC 44 Rolling Hills Drive Orchard Park, NY 14127

Dear Mr. lyer:

This is a final letter report presenting our findings with respect to a dye tracing experiment done at the Kessman Landfill in Patterson, New York. This work was done from May 2004 to August 2004.

Introduction

The dye tracing experiment described herein, done at the request of Iyer Environmental Group (IEG), tested whether water from a wetland adjacent to the Kessman Landfill (Patterson, New York; Fig. 1), drains into a drainage trench constructed to remove landfill leachate. Pumps remove leachate from the trench and the leachate is placed in tanker trucks and treated offsite. IEG believes that the amount of leachate generated by the drainage trench from the landfill is larger than anticipated from the landfill. Consequently, it costs more to remove the leachate than anticipated.

Methods

Field Studies

Briefly, IEG injected five dyes as liquid on May 26, 2004 at noon, into monitoring wells and into standing surface water in the wetland closest to the wetland edge (Table 1). These dyes were: Na-naphtionate, eosine, sulforhodamine B, sulforhodamine G, and lissamine FF. Subsequently, IEG sampled surface water and leachate collected at the leachate collection points when leachate was pumped from the system at variable time intervals.

Analytical

These samples were sent to Syracuse University's fluorescence laboratory for analysis by synchronous spectrofluorometry. In this approach, known wavelengths of radiation are passed through a sample. Dissolved fluorescent dyes in the water then will emit unique radiation, fluorescence, depending on their organic molecular compositions (Table 2). We added 200 grams of all dyes except for Na-Naphtionate, which fluorescens with approximately a 10 fold less intensity. Therefore, we added about ten times as much of NAP than the other dyes for consistency in relative intensity response.

We quantified the amount of the other dyes in the samples by linear regression of relative peak intensities in standard solutions prepared from background leachate and wetland waters. In all cases, the regression coefficients between relative intensity of the dyes and dye concentrations in background water were very good, and exceeded 0.88 and most were near 1.0 (Fig. 2). These regressions included the range of dye emissions found at the site.

Results and Interpretation

The locations, times, and concentrations of detected dye are shown in Table 3. Figure 3 shows a plot of dyes identified in the leachate reservoir. Of the five injected dyes, Nanaphtionate, sulforhodamine B, and lissamine FF were found in the wetland surface waters. Although they were diluted over time, these dyes persisted at the wetland injection points,. Lissamine FF also appeared at sampling site RS, southeast of the wetland and away from the leachate collection system. EOS and SRG were not found anywhere, suggesting that they degraded or their fluorescence was masked by the intrinsic fluorescence of the dissolved organic carbon. Much larger amounts of these dyes would have had to be introduced to make them possibly effective. Alternatively, perhaps the low hydraulic gradient from the injection point for these dyes precluded their arriving to the leachate collection system. Without more sampling points, it is impossible to clarify why EOS and SRG were not found in the leachate reservoir.

In contrast, Na-naphtionate and sulforhodamine B appeared in leachate at the reservoir (Fig. 3). The breakthrough of these dyes show that the integrity of the drainage trench is compromised and wetland water is entering the drainage trench when the trench is pumped.

The mixing of wetland water with the leachate may have inhibited possible biodegradation of the Na-naphtionate and sulforhodamine B. Without introducing them into the landfill environment directly, it is impossible to determine whether they would biochemically degrade there. In general, LIS, NAP, and EOS biochemically degrade or have their fluorescence quenched more rapidly than do SRG and SRB. However, the degree to which this happens depends upon the specific microbial populations present, pH and redox state, and trace metals in solution. This biodegradation and quenching has to be evaluated by in-situ experiments. This kind of experimentation was not the focus of this study. Rather, the study was designed to qualitatively identify if wetland water is leaking into the leachate recovery system and contributing more water than is anticipated from the landfill proper.

Two dyes introduced into the wetland did arrive into the leachate collection reservoir; Nanaphtionate and sulforhodamine B. Na-naphtionate first arrived at the leachate reservoir on May 27, 2004, after 30,000 gallons of leachate were pumped from the system. Subsequently, sulforhodamine B appeared in the leachate after 36,000 gallons were removed.

Concentrations of Na-naphtionate decreased as concentrations of sulforhodamine B increased, and then NAP increased again. The decrease in Na-naphtionate and then subsequent increase could have occurred because the most mobile portion of the dye near its injection point was extracted quickly with pumping. The remainder of the dye could have moved in more diffuse pore space later to where sulforhodamine B was injected. Then, both dyes together would have leaked into the leachate drainage trench, which probably is breached near both dye injection locations.

In the landfill leachate reservoir, the two dyes appeared within 6000 gallons of each other. Interestingly, SRB appeared later than NAP, even though the SRB injection point was closer to the sump. However, in wetland settings, hydraulic pathways are complex and local heterogeneities in the hummock and hollow topography lead to a macro-pore flow system that is complex. These hydraulic pathways can have variable water residence times unrelated to direct linear distances along general hydraulic gradients.

Summary and Conclusions

The dye tracing experiment shows that the leachate recovery trench is compromised near the dye injection points 2 and 4. A portion of the "leachate" being collected consists of wetland water. The dyes that were introduced into the landfill-monitoring wells did not enter the leachate reservoir, probably because they were biodegraded in the landfill leachate geochemical environment. Another possibility is that the fluorescence of these dyes was masked by the fluorescence of the leachate dissolved organic carbon or quenched by trace metals.

To now quantitatively determine how much wetland water is entering the leachate drainage trench, mixing models should be done using relatively non-reactive inorganic constituents common to both the leachate and wetland waters, such as dissolved carbon, sodium, alkalinity, calcium and chloride.

Sincerely yours,

Donald I. Siegel, PhD. Hydrogeologist

ID	DESCRIPTION	DYE	
1	MW-5B	200 g sulforhodamine G extra	
2	Wetland near MW-5B	2.5 kg Na-Naphtionate	
3	MW-20A	200 g eosine	
4	Wetland next to MW-20A	200 g sulforhodamine B	
5	Wetland near leachate sump	1 kg lissamine FF	

Table 1

Dye injection points and the amount of dye injected as solution

Dye	λex	λem	$\Delta\lambda$
NAP	320 nm	420 nm	100 nm
LIS	469 nm	490 nm	21 nm
EOS	516 nm	538 nm	22 nm
SRG	532 nm	552 nm	20 nm
SRB	564 nm	583 nm	19 nm

Table 2

Excitation, Emission and DELTA wavelengths used in the synchroscans

FIGURE 1

The Kessman Landfill, aerial view, with locations of dye injection sites in wetland surface water (sites 2,4, & 5; as pentagons) and monitoring wells 1 and 3 (as stars). W is the wetland sampling point; L is the leachate collection point, RN and RS are the upgradient and down gradient surface water sampling locations in the wetland in a creek crossing the railway, indicated as the straight lineation on the figure. Line for scale is 50 m long.

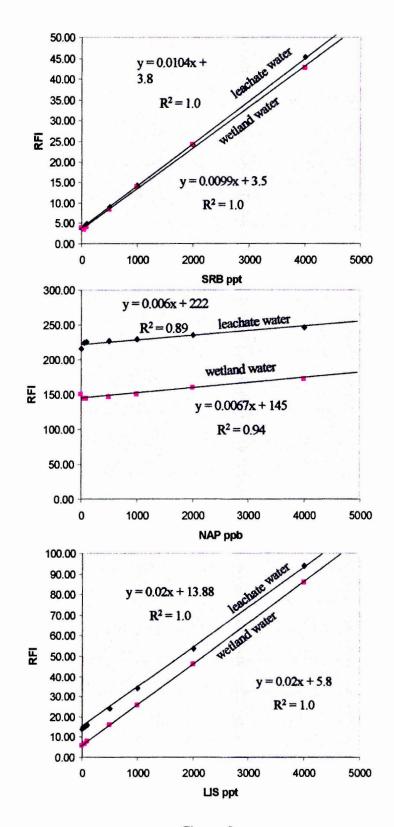


Figure 2 Regressions of Relative Fluorescent Intensity in Leachate and Wetland Water Against Concentration

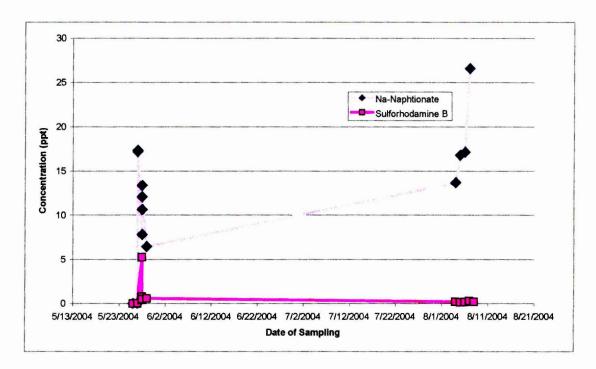


Figure 3 Plot of Concentrations of Dye Detected in Leachate Reservoir With Time