

PERIODIC REVIEW REPORT OCTOBER 2019 – OCTOBER 2020

CROSS-COUNTY SANITARY - KESSMAN LANDFILL SITE TOWN OF PATTERSON, NEW YORK 12563

NYSDEC Site No. 340011 Work Assignment No. D009812-07

Prepared for:

NEW YORK STATE OF OPPORTUNITY. Environmental Conservation

Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12233

Prepared by:

TRC Engineers, Inc. 10 Maxwell Drive Clifton Park, New York 12065

OCTOBER 2020

TRC Project No. 387570

TABLE OF CONTENTS

SECTION		PAGE
Executiv	e Summary	iv
1.0	Introduction	1
1.1	Site Location, Ownership, and Description	1
1.2	Investigation/Remedial History	2
1.3	Remaining Contamination	
1.4	Regulatory Requirements/Cleanup Goals	
2.0	Institutional and Engineering Controls Compliance	5
2.1	Institutional Controls	5
2.2	Engineering Controls	5
3.0	Monitoring and Sampling Plan Compliance	6
3.1	Site Inspection	7
3.2	Groundwater Monitoring Summary	9
3.2.	1 Groundwater Gauging	9
3.2.	2 Groundwater Sampling	9
3.2.	3 Groundwater Analytical Results	
4.0	Cost Summary	14
5.0	Conclusions and Recommendations	
5.1	Conclusions	
5.2	Recommendations	
6.0	Certification of Engineering and Institutional Controls	
7.0	Future Site Activities	

TABLE OF CONTENTS (CONT.) LIST OF FIGURES

Figure 1 – Site Location Map

Figure 2 – Site Layout

LIST OF TABLES

- **Table 1** Summary of Results of Analysis for Volatile Organic Compounds in Groundwater (2018 and 2020)
- Table 2 Summary of Results of Analysis for Semi-Volatile Organic Compounds in Groundwater (2018 and 2020)
- Table 3 Summary of Results of Analysis for Polychlorinated Biphenyls in Groundwater (2018 and 2020)
- **Table 4** Summary of Results of Analysis for Per- and Polyfluoroalkyl Substances in Groundwater (2018 and 2020)
- Table 5 Summary of Results of Analysis for Metals in Groundwater (2018 and 2020)
- Table 6 Summary of Results of Analysis for General Chemistry Parameters in Groundwater (2018 and 2020)

LIST OF APPENDICES

- Appendix A Site History, Custodial Record, and Well Summary
- Appendix B Site Inspection Form and Photographic Log June 2020
- Appendix C Groundwater Sampling Logs June 15th through 17th, 2020
- Appendix D Data Usability Summary Reports Groundwater, June 2020

LIST OF ACRONYMS AND ABBREVIATIONS

AMSL	above mean sea level
COCs	Contaminants of Concern
DER	Division of Environmental Remediation
DTW	Depth to Water
DUSR	Data Usability Summary Report
EC	Engineering Control
EDD	Electronic Data Deliverable
EE	Environmental Easement
FS	Feasibility Study
ft. bgs	feet below ground surface
IC	Institutional Control
ND	Not detected
ng/L	nanograms per liter
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
PCBs	Polychlorinated Biphenyls
PFAS	Per- and Polyfluoroalkyl Substances
PFOA	Perfluorooctanoic acid
PFOS	Perfluorooctanesulfonic acid
PRR	Periodic Review Report
QAPP	Quality Assurance Project Plan
QA/QC	Quality Assurance/Quality Control
RA	Remedial Action
RI	Remedial Investigation
ROD	Record of Decision
SCG	Standard, Criteria, and Guidance
SCO	Soil Cleanup Objective
SIM	Selective Ion Monitoring
SMP	Site Management Plan
SVOCs	Semi-volatile Organic Compounds
TAL	Target Analyte List
TCL	Target Compound List
TOC	Total Organic Carbon
TOGS	Technical and Operational Guidance Series
TSS	Total Suspended Solids
USEPA	United States Environmental Protection Agency
VOCs	Volatile Organic Compounds
WA	Work Assignment
μg/L	micrograms per liter

Executive Summary

Category	Summary/Results					
Engineering Controls	 Cover System Leachate Collection System (Inactive) Fencing/Access Control Monitoring Wells 					
Institutional Controls	 Environmental Easement (EE) Groundwater Use Restriction Land-Use Restriction Site Management Plan (SMP) with annual monitoring and reporting requirements					
Site Classification	Class 4 Inactive Hazardous Waste Disposal Site					
Site Management Plan	SMP Rev. No. 0 – June 2011 SMP Rev. No. 1 – January 2014					
Certification/Reporting Period	This PRR has been prepared to cover the period of time that TRC has been involved in the Site (October 2019 through October 2020).					
Inspection	Frequency					
Site Inspection	Annual, as requested by NYSDEC					
Monitoring	Frequency					
Groundwater	Annual, as requested by NYSDEC.					
Water, and Prior PRR Recommendations	An investigation into residual sediment and surface water contamination in the adjacent wetland area has recently been completed and a Remedial System Optimization (RSO) Report has been prepared outlining the preferred remedy. The remedy is currently in the design and permitting stage. Since this residual contamination is being adequately addressed under the RSO program, this PRR will be limited to evaluation of the cover system, fencing/access controls, and groundwater conditions.					
Site Management Activities	 Two groundwater sampling events were conducted (in addition to the ongoing sediment and surface water investigation) in support of this PRR: September 27-28, 2018: Groundwater samples were collected from 8 monitoring wells in the monitoring well network. Monitoring wells were gauged and inspected for the presence of non-aqueous phase liquids. Samples were submitted for laboratory analysis of TCL VOCs and SVOCs, PCBs, 1,4-Dioxane, and PFAS. June 15-17, 2020: Detailed site inspection was conducted and groundwater samples were collected from 8 monitoring wells in the monitoring wells were gauged and inspected for the presence of non-aqueous phase liquids. Samples were submitted for laboratory analysis of TCL VOCs and SVOCs, PCBs, 1,4-Dioxane, and PFAS. June 15-17, 2020: Detailed site inspection was conducted and groundwater samples were collected from 8 monitoring wells in the monitoring well network. Monitoring wells were gauged and inspected for the presence of non-aqueous phase liquids. Samples were submitted for laboratory analysis of TCL VOCs and SVOCs, PCBs, PFAS, TAL Metals, and General Chemistry Parameters (TOC, Cyanide, and TSS). October 2016 – Ongoing: Investigations related to sediment contamination adjacent to the northeast corner of the landfill are ongoing. Activities, findings, recommendations, conclusions, and remedial design related to this issue are reported under surface. 					
Significant Findings or Concerns	 under separate cover. <u>September 27-28, 2018</u> VOCs, SVOCs, and PCBs were not detected above the respective SGVs. 1,4-Dioxane (no SGV) was detected at concentrations ranging from 0.22 micrograms per liter (ug/L) to 1 ug/L in five of the eight samples collected (CCSK-MW-03A, CCSK-MW-05A/B, CCSK-MW-20A/B). PFAS were detected above the Screening Levels (SLs) in "Guidelines for Sampling and Analysis of PFAS Under NYSDEC's Part 375 Remedial Programs", January 2020, in four of the eight groundwater samples collected. Perfluorooctanesulfonic 					

Recommendations	1. The SMP should undergo a full review and revision once the RSO sediment remediation project is completed. The revised SMP should include continued groundwater, sediment, and surface water sample collection and analysis, in addition to the site wide inspections currently included in the program.
Category	Summary/Results
	 Concentrations of perfluorooctanoic acid (PFOA) was also detected above the SL of 10 ng/L in samples from CCSK-MW-05A/B (36 ng/L and 64 ng/L) and CCSK-MW-20A/B (28 ng/L and 26 ng/L). There was no evidence of non-aqueous phase liquid (NAPL) in any of the site monitoring wells. June 15-17, 2020 SVOCs and PCBs were not detected above the respective SGVs. 1,2-Dichloroethane was detected slightly above the SGV of 0.6 ug/L in two of the eight samples collected (CCSK-MW-20A/B: 1.2 ug/L and 1.1 ug/L, respectively). Benzene was detected slightly above the SGV of 5 ug/L in one of the eight samples collected (CCSK-MW-05A: 6.6 ug/L). Chlorobenzene (no SGV) was detected at concentrations ranging from 0.14 ug/L to 0.88 ug/L in six of the eight samples collected (CCSK-MW-05A: 6.6 ug/L). 1,4-Dioxane (no SGV) was detected above the SL of 10 ng/L in samples from CCSK-MW-05A/B. PFAS were detected above the NYSDEC SLs in five of the eight groundwater samples collected. PFOS was detected above the SL of 10 ng/L in samples from CCSK-MW-05A/B. PFAS were detected above the NYSDEC SLs in five of the 2014 ng/L). The total PFAS concentration for the sample from CCSK-MW-04/B (45 ng/L and 54 ng/L) and CCSK-MW-01A was 577 ng/L, above the SL of 100 ng/L in samples from CCSK-MW-05A/B (46 ng/L and 54 ng/L) and CCSK-MW-01A/B (27 ng/L ad 24 ng/L). The total PFAS concentration for the sample from CCSK-MW-01A was 577 ng/L, above the SGV (300 ug/L). In samples from six of the eight monitoring wells (CCSK-MW-03A/B, CCSK-MW-03A/B, CCSK-MW-0
	acid (PFOS) was detected above the SL of 10 ng/L in samples from CCSK-MW-05A/B (87 ng/L and 100 ng/L) and CCSK-MW-20A/B (35 ng/L and 36 ng/L).

NEW YORK STATE OF OPPORTUNITY. Environmental Conservation

	 Annual site inspection (concurrent with groundwater sampling events, when possible), including water level measurements and additional inspections, as necessary, following severe weather events should continue through the sediment remediation project. Contaminant trends should be evaluated once sufficient data is available. SVOCs and PCBs should be considered for removal from the analytical list following another complete round of sampling after the sediment removal project is completed.
Cost Evaluation	The total cost of site management activities this reporting period was approximately \$62,190.00. This cost includes engineering (e.g., labor and expense) and subcontractor costs (e.g., laboratory, equipment, rentals, etc.) for collection and analysis of two rounds of groundwater samples, site wide inspection, and preparation of this PRR. It should be noted that this total does not include any direct costs incurred by the NYSDEC.

1.0 Introduction

This PRR has been prepared for the Cross-County Sanitary - Kessman Landfill Site (referred to as "the Site") and covers the period, October 2019 through October 2020. This PRR was prepared in accordance with NYSDEC WA No. D009812-07, Title 6 of New York Code, Rules, and Regulations (6 NYCRR) Part 375, and NYSDEC DER-10, Technical Guidance for Site Investigation and Remediation. A Site summary and applicable remedial program information are presented below.

Site Information							
Site Name: Cross-County Sanitary - Kessman Landfill Site		NYSDEC Site No:	340011				
Site Location:	286 Cornwall Hill Road, Patterson, Putnam County, New York	Remedial Program:	State Superfund Program				
Site Type:	Landfill	Classification:	04				
Parcel Identification(s):	13-3-14, 16, & 17, Town of Patterson Tax Mapping	Parcel Acreage / EE Acreage:	10				
Selected Remedy:	Excavation, Cover System, Long- term Monitoring with Routine Operation and Maintenance	Site COCs:	 VOCs SVOCs PCBs in Sediment (refer to Remedial System Optimization) 				
Current Remedial Program Phase:	Site Management of the landfill capping system. Optimization of remedy related to the impacted sediment and surface water is also underway in the adjacent wetland area.	Institutional Controls:	 ROD (1994) SMP (Rev. 1 2014) Environmental Easements (2014) 				
Post-Remediation Monitoring and Sampling Frequency:	Monitoring and inspection as determined by Controls:		Cover System, Restricted Site Access (e.g., fenced in area), and Passive Landfill Gas Vents				
Monitoring Locations:	Overburden monitoring wells (8)	Required Reporting:	Annual, per the SMP				

1.1 Site Location, Ownership, and Description

The Site is located on the east side of Cornwall Hill Road, approximately 1 mile south of the Village of Patterson, Putnam County, New York. Currently, the Site, which occupies two parcels (Tax Map Nos. 13-3-16 and 13-3-17) and a portion of a third parcel (Tax Map No. 13-3-14), is zoned as R4 – Residential according to the Putnam County eParcel GIS viewer. Lot 14 is presently owned by the Kessman Brothers, Jeffrey and Marvin, whereas Lots 16 and 17 are currently owned by the County of Putnam. The Site is an approximately ten-acre area bounded by undeveloped land to the north, a commercial property to the south, residential properties and Cornwall Hill Road to the west, and the Metropolitan Transportation Authority (MTA) Metro North Railroad and the Great Swamp of Patterson, a protected wetland (NYSDEC Classification DP-22) to the east. There are several single-family residences located northwest of the Site, along Cornwall Hill Road. The Patterson Municipal Landfill and the Patterson Town Garage are located southwest of the Site, and a maintenance and repair facility for heavy excavation equipment is adjacent to the southern site boundary. The Site consists of approximately 7.2 acres of landfill and 2.8 acres of low-lying wetland area (residual contamination in this wetland area is being addressed under a Remedial System Optimization (RSO) and, aside from such reference, is not discussed in this PRR).

The surface elevation of the landfill is approximately 440 feet above mean sea level (AMSL), 10 to 12 feet above the surrounding ground and the original elevation of the Great Swamp. The landfill and the adjacent wetland area are relatively flat, in contrast to hills and ridges west and south of the Site, which rise to more than 550 feet AMSL. Site location and layout maps are provided on Figure 1 and Figure 2, respectively.

1.2 Investigation/Remedial History

NEW YORK

STATE OF OPPORTUNITY.

The Site was operated as a municipal landfill by the Town of Patterson on the Kessman family property from approximately 1963 to 1972. In 1972, the landfill was sold to Cross-County Sanitation, Inc. (CCS), a private carting company which operated at the Site until 1974. Historic information provided by NYSDEC indicated unknown types and quantities of industrial and hazardous wastes were disposed at the Site between 1972 and 1974. NYSDEC forced the closure of the landfill and the property was repossessed by the Kessman family. Clean soil obtained from nearby locations was used to cover the refuse after landfill operations ceased. The Site was inactive for nearly 10 years after placement of the cover.

In 1983, a Phase I Environmental Site Assessment (Phase I ESA) was performed by Camp, Dresser, and McKee, Inc. Based on the Phase I ESA findings, a Phase II Environmental Site Investigation (Phase II ESI) was performed by Wehran Engineering, P.C. in 1985. The Phase II ESI included a magnetometer survey; collection and analysis of surface water, groundwater, sediment, and leachate samples; excavation of test pits and collection of soil samples; and collection of a groundwater sample from a nearby domestic water well and installed wells. The analytical results from the samples collected during the Phase II ESI recorded several detections of VOCs and SVOCs. Based on the results of the Phase II ESI, the Site was reclassified to Class 2. By May 1991, the NYSDEC, under the State Superfund Program, initiated a Remedial Investigation/Feasibility Study (RI/FS) to address the contamination.

From December 1991 to May 1992, ABB Environmental Services (ABB) conducted the RI for the Site. During the RI, site-specific data was obtained from: aerial photographs and historical records; ecological inventories; geophysical surveys; samples of cover soil, landfill refuse, and overburden soil collected from beneath the fill areas via test pits and soil borings; groundwater samples collected from existing and newly installed monitoring wells and nearby private potable wells; shallow groundwater via leachate seeps, wetland surface water and sediment; hydrogeologic testing; and, photogrammetric survey maps. The objective of the RI was to measure the nature and extent of contamination in soil, sediment, surface water, and groundwater at the site and evaluate the risk for migration from the site to sensitive receptors. Various samples came back with traces of VOCs, SVOCs, pesticides, PCBs, and inorganics.

The RI concluded that site-related organic compounds and inorganic constituents were detected in surface soil, refuse, marsh deposits beneath the refuse, glacial overburden underlying the marsh deposits, and bedrock. The site-related organic compounds (PCBs and VOCs) originated from four drum nests identified along the eastern boundary of the landfill adjacent to the wetland. In addition, the RI identified the landfill refuse as the source of the SVOCs, pesticides, and inorganic constituents. Combinations of these constituents were detected in the leachate, groundwater, sediment and surface water. Based on these findings, the RI was completed in 1994 and concluded that site-related compounds were migrating off-site. ABB used the data collected during the RI to prepare a Feasibility Study later in 1994 to evaluate potential remedial strategies for the site.

While the RI/FS was underway, NYSDEC undertook an Interim Remedial Measure (IRM) beginning in the fall of 1993. More than 115 drums were removed and surrounding contaminated soil was excavated from the northern

toe of the landfill (adjacent to the wetland). Drum removal continued through June 1994. In total, 157 drums and 100 cubic yards of contaminated soil were reportedly removed/excavated. In December 1994 the disposal of all staged drums and soil were completed

Subsequent to the IRM, RI/FS, and publication of the Record of Decision (ROD) in November 1994, remediation activities at the site were initiated in August 1995 and completed in August 1996. The remediation consisted of: excavation of PCB-impacted sediment from the wetland immediately adjacent to the landfill; restoration of the remediated wetland area; and, capping the landfill in accordance with Title 6 of New York Codes, Rules, and Regulations (6 NYCRR) Part 360 and installing landfill gas ventilation and leachate collection systems. Once these remedial activities were completed, routine operation, maintenance, and monitoring activities were performed by O'Brien & Gere Engineers, Inc. (OBG) and Iyer Environmental Group, PLLC (IEG) from February 2002 through November 2007. Site monitoring and maintenance activities were conducted by various engineering firms through 2012. In October 2016, TRC Engineers, Inc. began work on the Site and in 2018 conducted the first of two groundwater monitoring events discussed in this PRR.

A detailed Site history, including the dates and descriptions of significant events, and a Custodial Record detailing known and available Site reports, are included in **Appendix A**.

1.3 Remaining Contamination

The remaining contamination consists of the landfilled contents, as well as any indications of contamination detected in the ongoing environmental monitoring program. Two groundwater monitoring events were conducted in support of this PRR: September 2018 and June 2020. Although the results of both events are provided in the analytical summary tables, only the most recent results (June 2020) are discussed in detail in Section 3.0. It should be noted that there was no physical/visual/olfactory evidence of contamination observed in any of the groundwater samples collected from the 2018 or 2020 field activities.

As discussed previously, residual contamination has been detected in the adjacent wetland area (sediment and surface water), which is being addressed under a RSO program. This contamination is believed to have been left in place following the 1995 and 1996 Remedial Action, and is not believed to be related to landfill cap failure or leakage/leaching. A remedy has been selected to address the residual contamination and the design is currently underway. For further details related to the RSO, refer to the RSO Report prepared under separate cover.

1.4 Regulatory Requirements/Cleanup Goals

Remedial Action Objectives (RAOs) are developed in order to set objectives for protecting public health and the environment. RAOs developed in the ROD stated that at a minimum, the remedy selected should eliminate or mitigate all significant threats to public health and the environment presented by the hazardous waste disposed at the Site, through the proper application of scientific and engineering principles.

The RAOs for the project, as presented in the ROD, are listed below. Several of the RAOs are applicable to sediment and surface water, and the RSO program being implemented in parallel with the SMP, is designed to ensure that these RAOs are achieved. The remaining RAOs (highlighted in bold text below) are being used to measure the success of the remedy relative to the landfill, leachate, and groundwater:

- 1. Reduce, control, or eliminate the impact of the contamination present within the soils/waste on Site (generation of leachate within the fill mass) this RAO has been addressed through consolidation and closure of the landfill (capping);
- 2. Eliminate the threat to surface waters by eliminating any future contaminated surface run-off from the contaminated soils on site this RAO is being addressed in the RSO Program;
- 3. Eliminate the potential for direct human or animal contact with the contaminated soils and sediments on site this RAO is being addressed in the RSO Program;
- 4. Mitigate the impacts of contaminated groundwater to the environment this RAO has been addressed through landfill capping and mitigating leachate generation, and continued monitoring through implementation of SMP;
- 5. Prevent, to the extent possible, migration of contaminants in the landfill to groundwater this RAO has been addressed through landfill capping, mitigating leachate generation and migration, as well as through implementation of the SMP; and
- 6. Provide for attainment of SCGs for groundwater quality at the limits of the area of concern (AOC) this RAO is continuing to be addressed through SMP.

With respect to those RAOs that are being addressed through implementation of the SMP and this PRR, the remedy appears to be: effectively reducing the generation of leachate (RAO 1); mitigating impacts to groundwater (RAO 4); preventing migration of contaminants to groundwater (RAO 5); and providing for attainment of groundwater quality standards (RAO 6).

Evidence of these findings is presented in the following sections. Groundwater monitoring results for organics and inorganics are evaluated against the Class GA Groundwater Standards and Guidance Values (SGVs) contained in NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 – "Ambient Water Quality Standards and Groundwater Effluent Guidance Values". Analytical results for PFAS are evaluated against the Screening Levels (SLs) presented in NYSDEC "Guidelines for Sampling and Analysis of PFAS Under NYSDEC's Part 375 Remedial Program", January 2020.

2.0 Institutional and Engineering Controls Compliance

2.1 Institutional Controls

NEW YORK

The Site is managed under the New York State Superfund Program. The Site's inclusion on the Registry of Inactive Hazardous Waste Disposal Sites, the ROD, Environmental Easements, land use restrictions, and the SMP act as the ICs for the Site.

The 2014 Environmental Easements specify the following for the Controlled Property:

- Requires compliance with the approved SMP;
- Limits the property use and development to commercial or industrial activities;
- Requires that all Engineering Controls must be operated, maintained, and inspected as specified in the SMP;
- Restricts the use of groundwater as a source of potable or process water without necessary water quality treatment as determined by the NYSDOH;
- Requires that groundwater and other environmental or public health monitoring must be performed as defined in the SMP;
- Requires that data and information pertinent to the Site Management of the Controlled Property must be reported as defined in the SMP;
- Requires that all future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- Requires that monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;
- Specifies that operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP; and,
- Requires that access to the Site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owners to assure compliance with the restrictions identified in the Environmental Easements.

2.2 Engineering Controls

The Site ECs include a locked entrance gate, gravel access road, engineered landfill cap with landfill gas ventilation and vegetative surface cover, a leachate collection system (inactive), access limitations (perimeter fencing) where needed, and a network of groundwater monitoring wells for periodic groundwater monitoring.

3.0 Monitoring and Sampling Plan Compliance

The January 2014 SMP was prepared to manage contamination remaining on the Site and ensure that the remedy remains effective by restricting site use and future site development. Based on the January 2014 SMP and NYSDEC requests, the following summary of the Site monitoring and sampling activities has been prepared:

	Summary of SMP Site Monitoring and Sampling Plan							
Site Management Activity	Frequency*	Location	Laboratory Analysis					
Site Inspection	With each groundwater sampling event at the discretion of NYSDEC	Site property, perimeter areas, site access/entrance	Not Applicable					
Groundwater Monitoring	Annual	 MW-01A MW-01B MW-03A MW-03B MW-05A MW-05B MW-20A MW-20B 	 TCL VOCs by USEPA Method 8260 – Low Level TCL SVOCs by USEPA Method 8270 TCL PCBs by USEPA Method 8082 TAL Metals by USEPA Methods 6010 and 7470 Cyanide by USEPA Method 9010 TSS by USEPA Method 160.2 TOC by USEPA Method 415.1 1,4-Dioxane by USEPA Method 8270 with Selected Ion Monitoring (SIM) PFAS Analyte List by Modified USEPA Method 537 					
Landfill Gas Monitoring	Annual (Inspection and/or Sampling)	Landfill Gas Vents	Samples collected at the discretion of NYSDEC. No samples were ordered/collected in 2020					
Surface Water Monitoring	being managed under Not Applicable		Surface Water is being addressed through the RSO Program and numerous samples have been collected under that program. Samples will be collected at the discretion of NYSDEC. No PRR-specific samples were collected in 2020					
Sediment Monitoring	Annual – Currently being managed under the RSO Program	Wetland Area northeast of the capped landfill	Sediment is being addressed through the RSO Program and numerous samples have been collected under that program. Samples will be collected at the discretion of NYSDEC. No PRR-specific sediment samples were collected in 2020					
Periodic Review Report Preparation	Annual, or at the discretion of NYSDEC	Not Applicable	Not Applicable					

*: The frequency of events will be conducted as specified until otherwise approved by NYSDEC.

3.1 Site Inspection

In June 2020, TRC performed a Site visit to conduct groundwater monitoring and inspection activities in accordance with the January 2014 SMP. The site inspection included an evaluation of the current site use, condition of the engineered landfill cap, site access roads, vegetative cover, monitoring wells, landfill gas vents, and partial perimeter fence and security gate.

A summary of the Site visit is as follows:

	Summary of Site Inspection June 2020							
Site Management Activity	Summary of Results	Maintenance/Corrective Measure						
Landfill Cap Inspection	The landfill inspection included walking the perimeter of the landfill, random areas of the landfill slope and the top of the landfill. The landfill cap was dry and the soil stable, meaning no visible erosion, cracks, settlement or seeps were observed. The landfill cap is intact and the vegetation appeared in good condition. No animals or animal burrows were observed at the time of the inspection.	No routine maintenance or corrective measures needed at this time.						
Vegetation/Cover System	Vegetation on the cap is well-established and appears to be healthy. No woody-stemmed plants or other vegetation that could puncture the landfill cap were observed. The cap appeared to have been mowed recently.	No routine maintenance or corrective measures needed at this time.						
Landfill Gas Venting System	The landfill gas venting system (above ground portion) was inspected for signs of damage during the site inspection. The inspection was limited to visible portions of the system and the ground surface above the gas collection system to check for evidence of settlement that could affect the gas collection piping. No gas odors or problems related to the gas venting system were observed during the site inspection.	No routine maintenance or corrective measures needed at this time.						
Site Access Roads and Gates	Site access road leading from the front gate to the landfill cap was wet and muddy, with ruts beginning to form after vehicles were driven on to the Site. While this did not cause any issues accessing the site at the time, some work on the road may be necessary in the future to ensure site access is not impeded. No signs of erosion were observed along the road in this area. The exterior fence is in good condition and the gate was secure upon arrival to the Site. The interior fence is also in good condition, except for one broken section on the north end of the Site (see Photolog). The condition of the exterior fence will continue to be monitored and repairs will be made to the fence as needed.	Since the wetland sediment project is being planned for 2021, this roadway is expected to be enhanced as a result. No routine maintenance or corrective measures are needed at this time. The interior fence gate at the landfill toe of slope will require a new lock for security. The gate will be locked at the next site visit.						

	Summary of Site Inspection June 2020							
Site Management Activity	Summary of Results	Maintenance/Corrective Measure						
Monitoring Well Network	In general, groundwater monitoring wells at the Site were in good condition, with locks and caps in place. Each monitoring well inspection was documented on a well inspection form (Appendix B). The only exception was MW-20A/B, which had no well plug and a very short well casing riser. Since these two wells will be removed and replaced during the RSO, no corrective action is recommended at this time.	The obstruction of bushes, seen at various wells, should be trimmed before next inspection. Water was above top of the casing of MW-20A/B and no well plug was present. Riser should be added to reach top of casing and have plugs installed.						
Groundwater Gauging and Sampling	All eight wells were gauged. Groundwater samples were collected from each well utilizing standard low-flow sampling techniques.	No routine maintenance or corrective measures needed at this time.						

Field activity reports and photographic log from the June 2020 inspection activities can be found in Appendix B.

3.2 Groundwater Monitoring Summary

3.2.1 Groundwater Gauging

Groundwater gauging and sampling activities discussed in this PRR were conducted during two events: September 2018 and June 2020. Data from the 2018 groundwater monitoring event is included in the analytical summary tables (**Tables 1** through **6**). However, detailed evaluations of the results from the June 2020 event only, are discussed in detail in the sections below.

All wells were gauged for depth to groundwater to evaluate potential groundwater flow direction. The groundwater gauging and elevation measurements can be found in the groundwater sampling logs, as well as, in the monitoring well construction summary included at the end of Appendix A. A summary of the Site hydrogeologic information is presented below:

Site Hydrogeologic Summary June 2020								
Number of Wells Gauged Hydrogeologic Units Hydrogeologic Strata Monitoring Wells per Units								
8	Overburden	Overburden	8					
	Overburden Ground	water Elevation Range						
	Lowest groundwater elevation: 426.83 feet AMSL (MW-20B) Highest groundwater elevation: 453.22 feet AMSL (MW-01B)							
Inferred Overburden Groundwater Flow Direction Inferred Bedrock Groundwater Flow Direction								
Groundwater Flow Direction is from west to east, from MW-01A/B toward MW-20A/B, across the Site								

3.2.2 Groundwater Sampling

TRC collected groundwater samples from all eight monitoring wells in the monitoring well network utilizing standard low-flow sampling techniques. Groundwater sampling logs are included in **Appendix C**. All eight groundwater samples, in addition to standard QA/QC samples collected at the frequencies specified in TRC's Generic Quality Assurance Project Plan (QAPP), were submitted to ALS Environmental for analysis of the following:

- TCL VOCs by USEPA Method 8260 Low Level
- TCL SVOCs by USEPA Method 8270
- TCL PCBs by USEPA Method 8082
- TAL Metals by USEPA Methods 6010 and 7470
- Cyanide by USEPA Method 9010
- TSS by USEPA Method 160.2
- TOC by USEPA Method 415.1
- 1,4-Dioxane by USEPA Method 8270 with Selected Ion Monitoring (SIM)
- PFAS Analyte List by Modified USEPA Method 537

A summary of the groundwater sampling information and pertinent well details for each well is presented in Appendix A and summarized below:

	Summary of Groundwater Monitoring Well Details and Sampling Activities June 2020								
June 2020 Monitoring Well Details 2020 Groundwater Monitoring Event									
Well ID	Northing	Easting	Screen Zone (ft. bgs)	Material Screened	Depth to Water (ft. bgs)	Groundwater Elevation (ft. AMSL)	Analyses Performed		
MW-01A	971,712.7	735,779.7	53.4 - 60.9	Overburden	13.60	448.97	· · · · · · · · · · · · · · · · · · ·		
MW-01B	971,723.3	735,778.6	15.1 - 23.6	Overburden	9.06	453.22			
MW-03A	971,325.3	736,514.0	25.7 - 41.2	Overburden	2.83	430.87	All samples analyzed for		
MW-03B	971,321.5	736,501.7	23.8 - 31.3	Overburden	3.69	431.43	TCL VOCs, SVOCs, and PCBs, TAL Metals, TSS,		
MW-05A	972,198.8	736,440.2	62.8 - 70.8	Overburden	3.10	429.78	TOC, 1.4-Dioxane, and		
MW-05B	972,192.0	736,453.1	21.3 - 30.3	Overburden	2.63	430.77	PFAS		
MW-20A	971,857.3	736,631.5	31.0 - 40.0	Overburden	2.17	428.20]		
MW-20B	971,866.0	736,627.9	10.8 - 19.8	Overburden	3.39	426.83			

Additional construction details are included the Well Summary (Appendix A) and Well Inspection Forms (Appendix B).

3.2.3 Groundwater Analytical Results

The complete groundwater analytical results are included in Appendix D. There were no detections of SVOCs or PCBs at concentrations above Class GA Standards/Guidance Values (SGVs) in any of the eight groundwater samples during either of the groundwater monitoring events (2018 and 2020).

There were three VOCs detected above the respective SGVs, all during the 2020 groundwater monitoring event:

- 1,2-Dichloroethane was detected slightly above the SGV of 0.6 ug/L in two of the eight samples collected (CCSK-MW-20A/B: 1.2 ug/L and 1.1 ug/L, respectively).
- Benzene was detected slightly above the SGV of 1 ug/L in one of the eight samples collected (CCSK-MW-05A: 1.7 ug/L).
- Chlorobenzene was detected slightly above the SGV of 5 ug/L in one of the eight samples collected (CCSK-MW-05A: 6.6 ug/L).
- There were no VOCs detected above the SGVs during the 2018 groundwater monitoring event.
- **Table 1** presents a summary of the results of analyses for VOCs in groundwater for the 2018 and 2020 groundwater monitoring events.

1,4-Dioxane (no SGV) was detected at concentrations ranging from 0.14 ug/L to 0.88 ug/L in six of the eight samples collected (CCSK-MW-03A/B, CCSK-MW-05A/B, CCSK-MW-20A/B). 1,4-Dioxane was detected during both groundwater monitoring events, and the concentrations are comparable between the two events. **Table 2** presents a summary of the results of analyses for SVOCs (including 1,4-Dioxane) in groundwater for the 2018 and 2020 groundwater monitoring events.

Table 3 presents a summary of the results of analyses for PCBs in groundwater for the 2018 and 2020 groundwater

 monitoring events (no PCBs detected above the SGVs during either event).

PFAS were detected above the Screening Levels (SLs) in "Guidelines for Sampling and Analysis of PFAS Under NYSDEC's Part 375 Remedial Programs", January 2020, in four of the eight samples collected in 2018, and five of the eight samples collected in 2020. Perfluorooctanesulfonic acid (PFOS) was detected in 2018 and 2020, at concentrations above the SL of 10 ng/L. In 2018, these samples included: CCSK-MW-05A/B (87 ng/L and 100 ng/L) and CCSK-MW-20A/B (35 ng/L and 36 ng/L). In 2020, these samples again included CCSK-MW-05A/B (96 ng/L and 120 ng/L) and CCSK-MW-20A/B (45 ng/L and 54 ng/L). Overall, there was a slight increase in the PFOS concentration in each well between 2018 and 2020.

Concentrations of perfluorooctanoic acid (PFOA) were also detected above the SL of 10 ng/L in these same 4 locations. In 2018, the concentrations of PFOA in these samples was: CCSK-MW-05A/B (36 ng/L and 64 ng/L) and CCSK-MW-20A/B (28 ng/L and 26 ng/L). In 2020, these samples again included CCSK-MW-05A/B (46 ng/L and 54 ng/L) and CCSK-MW-20A/B (27 ng/L and 24 ng/L). Overall, the concentrations of PFOA remained relatively consistent between 2018 and 2020.

During the 2020 groundwater monitoring event, Total PFAS was measured at 577 ng/L in CCSK-MW-01A (above the SL of 500 ng/L for that group of compounds), largely due to the detected concentration of 6:2 Perfluorooctane Sulfonate (570 ng/L versus the SL of 100 ng/L for that compound). **Table 4** presents a summary of the results of analyses for PFAS in groundwater for the 2018 and 2020 groundwater monitoring events.

Several TAL metals were detected at concentrations above the respective SGVs in the 2020 groundwater monitoring event:

- Iron (SGV = 300 ug/L) was detected at concentrations ranging from 2,830 ug/L to 12,000 ug/L in six of the eight samples collected (CCSK-MW-03A/B, CCSK-MW-05A/B, CCSK-MW-20A/B).
- Magnesium (SGV = 35,000 ug/L) was detected at concentrations ranging from 62,300 ug/L to 291,000 ug/L in seven of the eight samples collected (CCSK-MW-01A, CCSK-MW-03A/B, CCSK-MW-05A/B, CCSK-MW-20A/B).
- Manganese (SGV = 300 ug/L) was detected in CCSK-MW-05B at a concentration of 674 ug/L.
- Sodium was detected above the SGV (20,000 ug/L) in five of the eight samples collected (CCSK-MW-01A/B, CCSK-MW-03A/B, CCSK-MW-05B). Concentrations of sodium ranged from 43,900 ug/L to 1,950,000 ug/L in these samples.
- Thallium (SGV = 0.5 ug/L) was detected at concentrations ranging from 8.4 ug/L to 15.9 ug/L in two of the eight samples collected (CCSK-MW-01A, CCSK-MW-03A).
- Other metals detected with no SGV include:
 - Aluminum (four wells ranging from 68.7 to 1,550 ug/L),
 - Calcium (all eight wells ranged from 21,800 to 382,000 ug/L), and
 - Potassium (all eight wells ranged from 3,400 to 62,600 ug/L).
- Metals were not evaluated in the 2018 groundwater monitoring event.
- **Table 5** presents a summary of the results of analyses for metals in groundwater for the 2018 and 2020 groundwater monitoring events.

General chemistry parameters that have no SGV but which were detected in more than one sample were: TOC (all eight wells ranged from 800 to 6,300 ug/L), and TSS (all eight wells ranged from 1,700 to 83,700 ug/L). **Table 6** presents a summary of the results of analyses for the general chemistry parameters (including TOC and TSS) in groundwater for the 2018 and 2020 groundwater monitoring events.

NEW YORK

The completed results of the groundwater sample analyses for 2018 and 2020 are presented in **Table 1** through **Table 6**. All of the analytical data has been validated and complete Data Usability and Summary Reports are included in **Appendix D**. Detected compounds exceeding their respective NYSDEC Class GA Values for each well are highlighted and bolded within the tables. A tabular summary of the June 2020 groundwater analytical results is provided below:

Summary of Groundw	vater An	alytical Res June	0	and TAL Inorgan	nics
Constituent	Units SCG Concentration R (µg/L)		Concentration Range (µg/L)	Location with Highest Concentration	Frequency Exceeding SCG
		VO	Cs		
1,2-Dichloroethane	ug/L	0.6*	1.1 – 1.2	MW-20A	2/8
Benzene	ug/L	1*	1.7	MW-05A	1/8
Chlorobenzene	ug/L	5*	6.6	MW-05A	1/8
		SVO	Cs		
	No Resul	ts above NYSI	DEC Class GA Values		
1,4-Dioxane	ug/L	1	ND - 0.88	MW-05B	0/8
		PCBs Ai	coclors		
	No Resul	ts above NYSI	DEC Class GA Values		
		Met	als		
Iron	ug/L	300*	2,830 - 12,000	MW-03B/05A	6/8
Magnesium	ug/L	35,000*	62,300 - 291,000	MW-03A	7/8
Manganese	ug/L	300*	674	MW-05B	1/8
Sodium	ug/L	20,000*	43,900 - 1,950,000	MW-03A	5/8
Thallium	ug/L	0.5*	8.4 - 15.9	MW-03A	2/8
		PFA	\S		
Perfluorooctanesulfonic acid (PFOS)	ng/L	10**	45 - 120	MW-05B	4/8
Perfluorooctanoic acid (PFOA)	ng/L	10**	24 - 54	MW-05B	4/8
6:2 Perfluorooctane Sulfonate (6:2 FTS)	ng/L	100**	570	MW-01A	1/8
Total PFAS	ng/L	500**	577	MW-01A	1/8
		General C	hemistry		
Total Organic Carbon (TOC)	ug/L	NC	800-6,300	MW-05A	N/A
Total Suspended Solids (TSS)	ug/L	NC	1,700 - 83,700	MW-05B	N/A

Notes:

NC – No SGVs available for this analyte.

* - Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitation, Technical and Operational Guidance Series (TOGS) 1.1.1, New York State Department of Environmental Conservation, Division of Water, June 1998.

** - Recommended Guidance Values from the Guidelines for Sampling and Analysis of PFAS Under NYSDEC's Part 375 Remedial Programs, January 2020.

Groundwater contaminant concentration trend graphs were not prepared for the Site since a sufficient number of post-remedial action groundwater sampling events has not been completed.

4.0 Cost Summary

The total estimated cost of the site management activities conducted between October 2019 and October 2020 was approximately \$62,190. Site management activities included project management/administration, site inspections, performance of two groundwater monitoring events including analysis for the parameters listed in Section 3.0, and preparation of a PRR. The total estimated cost includes engineering and subcontractor costs, as well as expenses associated with the project. It should be noted that the total does not include direct costs incurred by NYSDEC in support of the project. A summary of the current site management costs is presented below:

Summary of Site Management Costs October 2019 through October 2020												
Cost Item	Estimated Amount Expended	Percent of Total Cost										
Engineering Support												
TRC	\$48,990	79%										
Subcontractors												
Laboratory	\$12,000	19%										
Expenses												
TRC	\$1200	2%										
Total Cost	\$62,190											

The following provides a review of each cost item:

- Engineering support includes labor costs associated with project management (e.g., WA Package preparation, monthly invoicing, project scheduling and coordination, etc.), site inspections, performing 2 groundwater sampling events, data validation, and reporting (i.e., DUSR and PRR).
- Subcontractors include analytical laboratory costs associated with the 2 groundwater sampling events.
- Expense costs include travel, equipment, and supplies in support of the site inspection, groundwater sampling event, and routine site maintenance activities.

5.0 Conclusions and Recommendations

5.1 Conclusions

- The Engineering Controls in place at the site did not appear to require any substantial repair, modification, or corrective action. Minor observations included:
 - o the entrance roadway was muddy and rutted,
 - the inner fence gate at the toe of the landfill was unlocked (the main, outer gate was locked, however),
 - the groundwater monitoring wells were not labeled,
 - the vegetation around some monitoring wells, specifically those locate in or near wetland locations (MW-20A/B) was overgrown and had not been maintained; and,
 - \circ there was a small section of fence near the north end of the Site that was damaged.
- Based on the groundwater elevations measured during the 2020 groundwater monitoring event, groundwater flow in the overburden appears to be from west to east across the site, as expected. This observation is consistent with the regional groundwater flow, suggesting that the bordering wetland is a key receiving surface water body for the majority of the shallow groundwater in the area.
- Low levels of VOCs were detected above their respective SGVs in several monitoring wells. Benzene and Chlorobenzene were detected in MW-05A (north of the capped landfill, cross gradient from the primary groundwater flow direction). 1,2-Dichloroethane was detected in MW-20A and MW-20B (downgradient of the landfill), only slightly above the Class GA groundwater standard. Due to the limited concentrations detected in the down gradient well cluster, off-site migration of VOCs appears to be insignificant.
- Metals including iron, magnesium, manganese, sodium, and thallium were detected at concentrations above their respective SGVs in several monitoring wells. It should be noted that none of the exceedances occurred in the upgradient monitoring well cluster MW-01A/B, or in the down gradient well cluster MW-20A/B. While these metals are likely not indicative of Site contaminant migration and are typically regulated for aesthetic purposes such as odor, taste, and clarity in drinking water, they may be indicative of the overall geochemical quality of the groundwater at the Site.
- PFAS compounds were detected at concentrations exceeding their respective SLs in five monitoring
 wells. PFOS and PFOA exceedances were detected in MW-05A and MW-05B, cross-gradient from the
 groundwater flow direction beneath the landfill. Similar concentrations of PFOS and PFOA were also
 detected in the downgradient well pair MW-20A/B. One PFAS compound, 6:2 Perfluorooctane Sulfonate,
 was detected in upgradient monitoring well MW-01A. It is unlikely that these PFAS detections are related
 to the Site, but continued monitoring of PFAS is recommended to establish concentration trends. It is
 possible that the upgradient PFAS detection is related to the Town Landfill located across Cornwall Hill
 Road. This potential connection will continue to be evaluated in subsequent PRRs.
- Site and groundwater use were consistent with the restrictions set forth in the Environmental Easements and the SMP. Groundwater monitoring activities were completed in September 2018 and June 2020 for the certification period. A site inspection and an inspection report were also completed. The Institutional Controls appear to be performing as intended during this reporting period.
- The remedy continued to be protective of human health and the environment during this reporting period.

• Residual contamination has been detected in sediment and surface water in the wetland to the north and east of the capped landfill. This contamination has been delineated and is being addressed under the RSO. Therefore, this PRR does not address residual contamination in sediment and surface water, and the evaluation of protectiveness is limited to the capped landfill.

5.2 Recommendations

- The Site inspection and groundwater monitoring events should continue on an annual basis to certify that the ICs and ECs are functioning as intended. These annual programs should continue until groundwater contaminant trends are established and the sediment and surface water residual contamination is addressed under the RSO Program.
- Since extensive site work is expected to be undertaken as part of the RSO, the minor site improvements and corrective action that were identified in this PRR will be addressed as part of that program.
- A PRR should continue to be prepared on an annual basis until NYSDEC establishes an alternate frequency.
- Based on the emerging contaminant groundwater sampling results, PFAS should be included as an analyte for all monitoring wells for at least one future round of groundwater sampling events to evaluate PFAS impacts to groundwater at the Site.
- Contaminant trends for Site-related COCs should be established once sufficient data has been generated (at least three consecutive groundwater monitoring events). Once these trends are established, conclusions can be made related to contaminant migration, and evaluations can be performed to potentially reduce the analytical list for groundwater going forward.
- The 2014 SMP should be revised to reflect the above changes/modifications, as well as the monitoring activities recommended following completion of the RSO.

6.0 Certification of Engineering and Institutional Controls

Excepting the ongoing sediment investigation and proposed sediment/wetland area remediation, for each institutional or engineering control identified for the Site, I certify that all of the following statements are true:

- The institutional controls and/or engineering controls employed at this Site are unchanged from the date the respective controls were put in place, or last approved by NYSDEC DER;
- Nothing has occurred that would impair the ability of such controls to protect public health and the environment;
- Nothing has occurred that would constitute a violation or failure to comply with any Site Management Plan for these controls; and
- Access to the Site will continued to be provided to NYSDEC DER to evaluate the remedy, including access to evaluate the continued maintenance of these controls.

Jæger

TRC Engineers, Inc.

Prepared By:

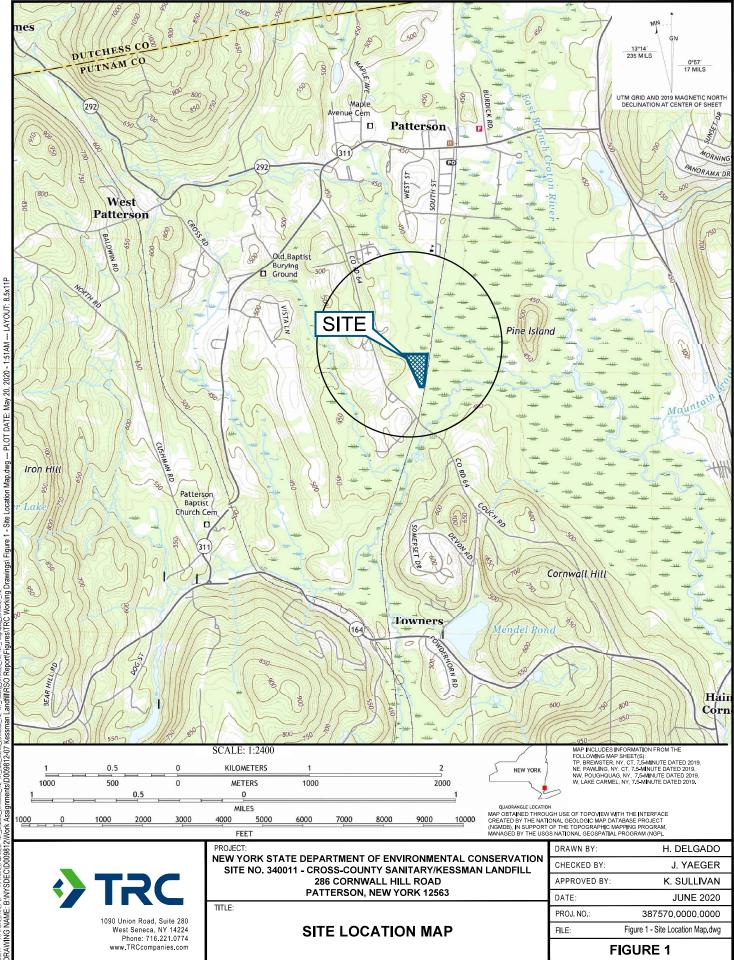
Joshua J. Yaeger, E.I.T Environmental Engineer I

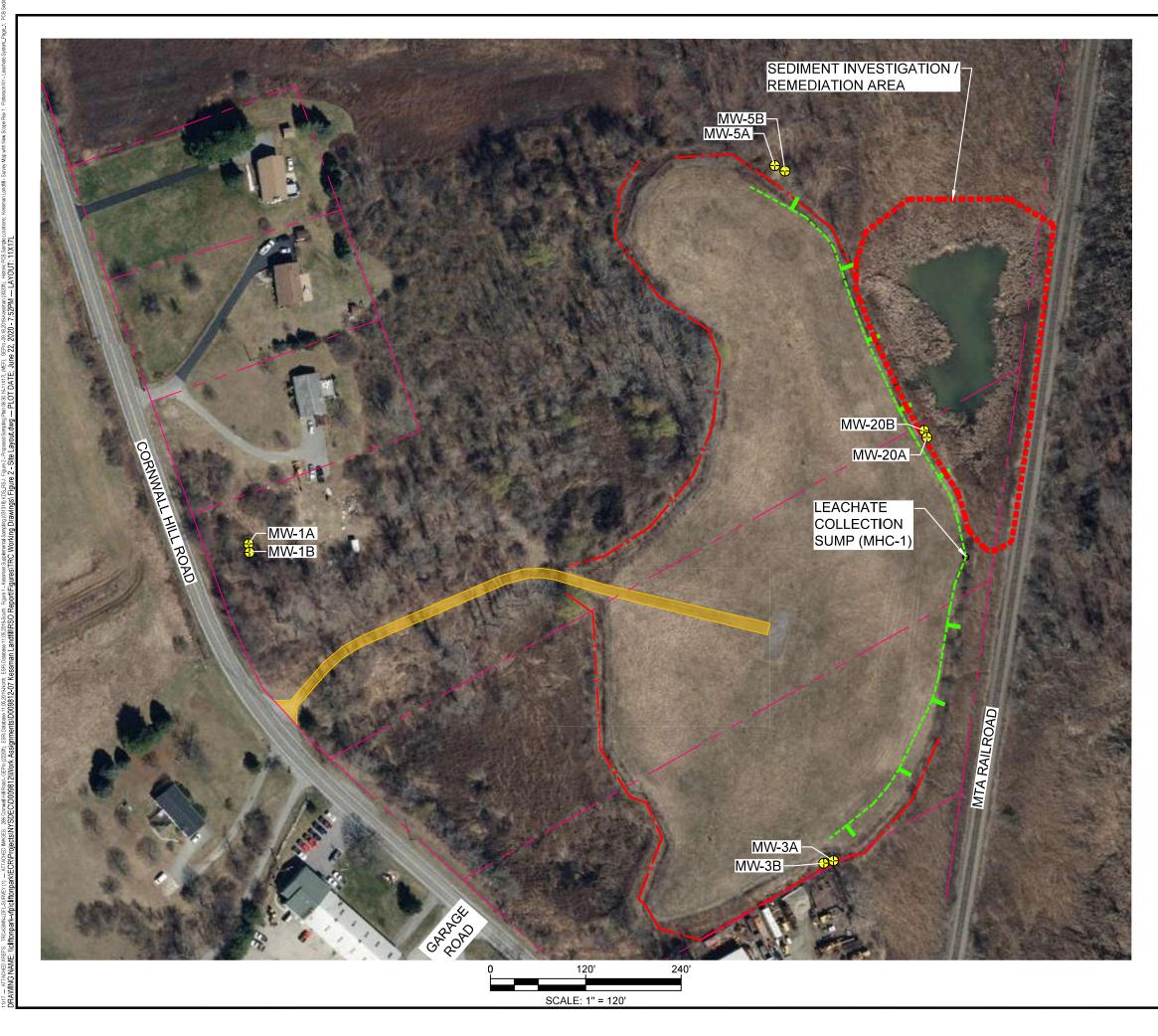
Reviewed By

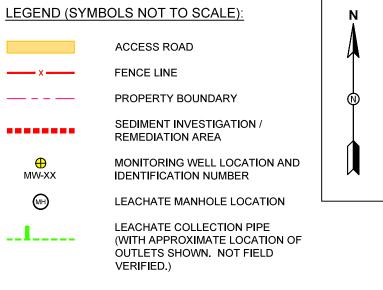
ra

Kevin D. Sullivan, P.E. Project Manager

7.0 Future Site Activities


Future groundwater monitoring and site inspection activities are planned per the SMP and at the discretion of NYSDEC. Based on the recommendations in **Section 5.0**, the next groundwater monitoring event and site inspection should be conducted in Q2 2021 and the next Periodic Review Report prepared by November 2021.




FIGURES

--- PLOT DATE: May 20, 2020 - 1:51AM ings\ Figure 1 - Site Location Map.dwg 90225_TM, NY_Poughquag_20190927_TM, Report/Figures/TRC Working Drawi andfill\RSO R 190930_TM essman 3.64.1 – ATTACHED XREFS – ATTACHED IMAGES. NY BIOWSIEL 20190300 TM. INV LIAKe. Comm DRAWING NAME: B:INYSDECID009812/Work Assignments/D009812-07

NOTES:

- 1. BASEMAP IMAGERY SOURCED FROM ESRI DATABASE DATED NOVEMBER 5, 2019.
- 2. LOCATIONS AND DIMENSIONS OF PHYSICAL FEATURES AND BOUNDARIES ARE APPROXIMATE.

	SHEET S	ZE: 11" B	Y 17"
	40011 - CROSS-CO 286 CORI		
TITLE:			
	SIT	ELAYOL	IT
DRAWN BY:	H. DELGADO	PROJ NO.:	387570.0000.0000
CHECKED BY:	J. YAEGER		
APPROVED BY:	K. SULLIVAN		FIGURE 2
DATE:	JUNE 2020		
?	TRC	_) Union Road, Suite 280 West Seneca, NY 14224 Phone: 716.221.0774 ww.TRCcompanies.com
FILE NO.:			Figure 2 - Site Layout dwg

TABLES

Table 1 New York State Department of Environmental Conservation Cross-County Sanitary - Kessman Landfill, Site No. 340011 Summary of Results of Analysis for Volatile Organic Compounds in Groundwater (2018 and 2020)

	Sample Location: CCSK-MW-01A			CCSK-M	W-01B	CCSK-M	1W-03A	CCSK-	4W-03B	CCSK-M	4W-05A	CCSK-M	MW-05B	CCSK-MW-20A		CCSK-MW-20B	
	Sample Date:	09/28/2018	06/16/2020	09/28/2018	06/16/2020	09/27/2018	06/16/2020	09/27/2018	06/15/2020	09/28/2018	06/17/2020	09/28/2018	06/17/2020	09/28/2018	06/17/2020	09/28/2018	06/16/2020
Analyte	Unit SGV*																
VOCs	I	I	I	I		I											
1.1.1-Trichloroethane	ug/L 5	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ
1.1.2.2-Tetrachloroethane	ug/L 5	0.5 U	1.0 UJ	0.5 U	1.0 UJ	0.5 U	1.0 UJ	0.5 U	1.0 UJ	0.5 U	1.0 UJ	0.5 U	1.0 UJ	0.5 U	1.0 UJ	0.5 U	1.0 UJ
1.1.2-Trichloroethane	ug/L 1	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L 5	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ
1.1-Dichloroethane	ug/L 5	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ	1 U	1.0 U	1 U	0.20 J	0.86 J	0.82 J	1 U	0.28 J
1,1-Dichloroethene	ug/L 5	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ
1,2,3-Trichlorobenzene	ug/L 5	5 U	1.0 UJ	5 U	1.0 U	5 U	1.0 U	5 U	1.0 UJ	5 U	1.0 U	5 U	1.0 U	5 U	1.0 U	5 U	1.0 UJ
1,2,4-Trichlorobenzene	ug/L 5	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ
1,2-Dibromo-3-chloropropane	ug/L 0.04	5 U	2.0 UJ	5 U	2.0 U	5 U	2.0 U	5 U	2.0 UJ	5 U	2.0 U	5 U	2.0 U	5 U	2.0 U	5 U	2.0 UJ
1,2-Dibromoethane	ug/L 0.0006	0.5 U	1.0 UJ	0.5 U	1.0 U	0.5 U	1.0 U	0.5 U	1.0 UJ	0.5 U	1.0 U	0.5 U	1.0 U	0.5 U	1.0 U	0.5 U	1.0 UJ
1,2-Dichlorobenzene	ug/L 3	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ	1 U	1.3	0.69 J	0.57 J	1 U	1.0 U	1 U	1.0 UJ
1,2-Dichloroethane	ug/L 0.6	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.2	1 U	1.1 J-
1,2-Dichloropropane	ug/L 1	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ
1,3-Dichlorobenzene	ug/L 3	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ	1 U	0.48 J	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ
1,4-Dichlorobenzene	ug/L 3	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ	1 U	2.4	1.1	0.99 J	1 U	1.0 U	1 U	1.0 UJ
2-Butanone (MEK)	ug/L 50	20 U	5.0 UJ	20 U	5.0 U	20 U	5.0 U	20 U	5.0 UJ	20 U	5.0 U	20 U	5.0 U	20 U	5.0 U	20 U	5.0 UJ
2-Hexanone	ug/L 50	10 U	5.0 UJ	10 U	5.0 U	10 U	5.0 U	10 U	5.0 UJ	10 U	5.0 U	10 U	5.0 U	10 U	5.0 U	10 U	5.0 UJ
4-Methyl-2-pentanone	ug/L NC	10 U	5.0 UJ	10 U	5.0 U	10 U	5.0 U	10 U	5.0 UJ	10 U	5.0 U	10 U	5.0 U	10 U	5.0 U	10 U	5.0 UJ
Acetone	ug/L 50	50 UJ	5.0 UJ	50 UJ	5.0 U	50 UJ	5.0 U	50 UJ	5.0 UJ	50 UJ	5.0 U	50 UJ	5.0 U	50 UJ	5.0 U	50 UJ	5.0 UJ
Benzene	ug/L 1	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ	1 U	1.7	0.91 J	0.87 J	0.4 J	0.46 J	1 U	0.37 J
Bromochloromethane	ug/L 5	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ
Bromodichloromethane	ug/L 50	0.5 U	1.0 UJ	0.5 U	1.0 U	0.5 U	1.0 U	0.5 U	1.0 UJ	0.5 U	1.0 U	0.5 U	1.0 U	0.5 U	1.0 U	0.5 U	1.0 UJ
Bromoform	ug/L 50	2 U	1.0 UJ	2 U	1.0 U	2 U	1.0 U	2 U	1.0 UJ	2 U	1.0 U	2 U	1.0 U	2 U	1.0 U	2 U	1.0 UJ
Bromomethane	ug/L 5	2 U	1.0 UJ	2 U	1.0 UJ	2 U	1.0 UJ	2 U	1.0 UJ	2 U	1.0 UJ	2 U	1.0 UJ	2 U	1.0 UJ	2 U	1.0 UJ
Carbon disulfide	ug/L 60	4 U	1.0 UJ	4 U	1.0 U	4 U	1.0 U	4 U	1.0 UJ	4 U	1.0 U	4 U	1.0 U	4 U	1.0 U	4 U	1.0 UJ
Carbon tetrachloride	ug/L 5	5 UJ	1.0 UJ	5 UJ	1.0 U	5 UJ	1.0 U	5 UJ	1.0 UJ	5 UJ	1.0 U	5 UJ	1.0 U	5 UJ	1.0 U	5 UJ	1.0 UJ
Chlorobenzene	ug/L 5	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ	0.45 J	6.6	3.8	2.8	1 U	1.0 U	1 U	1.0 UJ
Chloroethane	ug/L 5	2 U	1.0 UJ	2 U	1.0 U	2 U	1.0 U	2 U	1.0 UJ	2 U	1.0 U	2 U	1.0 U	2 U	1.0 U	2 U	1.0 UJ
Chloroform	ug/L 7	2 U	1.0 UJ	2 U	1.0 U	2 U	1.0 U	2 U	1.0 UJ	2 U	1.0 U	2 U	1.0 U	2 U	1.0 U	2 U	1.0 UJ
Chloromethane	ug/L 5	2 U	1.0 UJ	2 U	1.0 U	2 U	1.0 U	2 U	1.0 UJ	2 U	1.0 U	2 U	1.0 U	2 U	1.0 U	2 U	1.0 UJ
Cyclohexane	ug/L NC	5 U	1.0 UJ	5 U	1.0 U	5 U	1.0 U	5 U	1.0 UJ	5 U	1.0 U	5 U	1.0 U	5 U	1.0 U	5 U	1.0 UJ
Dibromochloromethane	ug/L 50	0.5 U	1.0 UJ	0.5 U	1.0 U	0.5 U	1.0 U	0.5 U	1.0 UJ	0.5 U	1.0 U	0.5 U	1.0 U	0.5 U	1.0 U	0.5 U	1.0 UJ
Dichlorodifluoromethane	ug/L 5	2 UJ 5 U	1.0 UJ 1.0 UJ	2 UJ 5 U	1.0 U 1.0 U	2 UJ 5 U	1.0 U 1.0 U	2 UJ 5 U	1.0 UJ 1.0 UJ	2 UJ 5 U	1.0 U 1.0 U	2 UJ 5 U	0.42 J 1.0 U	2 UJ 5 U	1.0 U 1.0 U	2 UJ 5 U	1.0 UJ 1.0 UJ
Methylene chloride Ethylbenzene	ug/L 5 ug/L 5	5 U 1 U	1.0 UJ 1.0 UJ	5 U	1.0 U 1.0 U	5 U 1 U	1.0 U 1.0 U	5 U 1 U	1.0 UJ 1.0 UJ	5 U 1 U	1.0 U 1.0 U	5 U 1 U	1.0 U 1.0 U	5 U 1 U	1.0 U 1.0 U	5 U 1 U	1.0 UJ 1.0 UJ
	ug/L 5 ug/L 5	1 U	1.0 UJ	1 U	1.0 U 1.0 U	1 U	1.0 U	1 U	1.0 UJ	1 U 1 U	1.0 U	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ 1.0 UJ
Isopropylbenzene Methyl acetate	ug/L 5 ug/L NC	1 U	2.0 UJ	1 U	2.0 U	1 U	2.0 U	1 U	2.0 UJ	1 UJ	2.0 U	1 UJ	2.0 U	1 U	2.0 U	1 U	2.0 UJ
Methyl tert-butyl ether	ug/L NC ug/L 10	1 U	1.0 UJ	1 U	2.0 U 1.0 U	0.72 J	0.69 J	0.57 J	0.47 J	1 U	2.0 U	0.12 J	1.0 U	1 U	2.0 U	1 U	2.0 UJ 1.0 UJ
Methyl tert-butyl ether	ug/L 10 ug/L NC	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ
Styrene	ug/L NC	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ
Tetrachloroethene	ug/L 5	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ
Toluene	ug/L 5	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ
Trichloroethene	ug/L 5	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ
Trichlorofluoromethane	ug/L 5	2 UJ	1.0 UJ	2 UJ	1.0 U	2 UJ	1.0 U	2 UJ	1.0 UJ	2 UJ	1.0 U	2 UJ	1.0 U	2 UJ	1.0 U	2 UJ	1.0 UJ
Vinyl chloride	ug/L 2	2 U	1.0 UJ	2 U	1.0 U	2 U	1.0 U	2 U	1.0 UJ	2 U	1.0 U	2 U	1.0 U	2 U	0.50 J	2 U	0.40 J
cis-1,2-Dichloroethene	ug/L 5	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ	1 U	1.0 U	0.36 J	0.39 J	0.69 J	1.3	0.51 J	0.68 J
cis-1,3-Dichloropropene	ug/L 0.4(b)	0.5 U	1.0 UJ	0.5 U	1.0 U	0.5 U	1.0 U	0.5 U	1.0 UJ	0.5 U	1.0 U	0.5 U	1.0 U	0.5 U	1.0 U	0.5 U	1.0 UJ
m,p-Xylene	ug/L 5(a)	2 U	2.0 UJ	2 U	2.0 U	2 U	2.0 U	2 U	2.0 UJ	2 U	2.0 U	2 U	2.0 U	2 U	2.0 U	2 U	2.0 UJ
o-Xylene	ug/L 5(a)	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ
trans-1,2-Dichloroethene	ug/L 5	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ	1 U	1.0 U	1 U	1.0 U	1 U	1.0 U	1 U	1.0 UJ
trans-1,3-Dichloropropene	ug/L 0.4(b)	0.5 U	1.0 UJ	0.5 U	1.0 U	0.5 U	1.0 U	0.5 U	1.0 UJ	0.5 U	1.0 U	0.5 U	1.0 U	0.5 U	1.0 U	0.5 U	1.0 UJ

Notes:

ug/L - micrograms per liter. J - Estimated value.

U - Analyte was not detected at specified quantitation limit.

UJ - Estimated non-detect.

SGV - Standard or Guidance Value

Values in **bold** indicate the analyte was detected. Values shown in bold and shaded type exceed the listed criteria.

VOCs - Volatile Organic Compounds.

* - NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water, June 1998 with the April 2000 Addendum.

(a) - criteria applicable to xylene (total), the sum of the xylene isomers.

(b) - criteria applicable to the sum of the cis and trans isomers.

Table 2 New York State Department of Environmental Conservation Cross-County Sanitary - Kessman Landfill, Site No. 340011 Summary of Results of Analysis for Semi-Volatile Organic Compounds in Groundwater (2018 and 2020)

	Sam	ple Location:	CCSK	-MW-01A		CCSK-	MW-01B	CCS	K-MW-03A	CCSK	MW-03B	CCSK-	MW-05A	CCSK-M	4W-05B	CCSK-	MW-20A	CCSK-	MW-20B
		Sample Date:	09/28/2018	06/16/	2020	09/28/2018	06/16/2020	09/27/2018	06/16/2020	09/27/2018	06/15/2020	09/28/2018	06/17/2020	09/28/2018	06/17/2020	09/28/2018	06/17/2020	09/28/2018	06/16/2020
Analyte	Unit	SGV*																	
SVOCs																			
1,2,4,5-Tetrachlorobenzene	ug/L	5	10 U	9.		10 U	9.1 U	10 U	9.1 U	10 U	9.1 U	10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
2,3,4,6-Tetrachlorophenol	ug/L	1(c)	NA		.1 U	NA	9.1 U	NA	9.1 U	NA	9.1 U	NA	10 U	NA	10 U	NA	9.1 U	NA	9.1 U
2,4,5-Trichlorophenol	ug/L	1(c)	10 U			10 U	9.1 U	10 U	9.1 U	10 U	9.1 U	10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
2,4,6-Trichlorophenol	ug/L	1(c)	10 U		_	10 U	9.1 U	10 U		10 U	9.1 U	10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
2,4-Dichlorophenol	ug/L	5	10 U		.1 U	10 U	9.1 U	10 U	, <u> </u>	10 U	9.1 U	10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
2,4-Dimethylphenol	ug/L	50	10 U		.1 U	10 U	9.1 U	10 U		10 U	9.1 U	10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
2,4-Dinitrophenol	ug/L	10	10 U		5 U	10 U	45 U	10 U		10 U	45 U	10 U	50 U	10 U	50 U	10 U	45 U	10 U	45 U
2,4-Dinitrotoluene	ug/L	5	10 UJ	-	.1 U	10 UJ	9.1 U	10 U		10 UJ		10 UJ	10 U	10 UJ	10 U	10 UJ	9.1 U	10 UJ	9.1 U
2,6-Dinitrotoluene	ug/L	5	10 U		.1 U .1 U	10 U 10 U	9.1 U 9.1 U	10 U		10 U 10 U	9.1 U 9.1 U	10 U	10 U 10 U	10 U	10 U 10 U	10 U	9.1 U 9.1 U	10 U	9.1 U
2-Chloronaphthalene	ug/L	10	10 U 10 U		.1 U .1 U	10 U	9.1 U 9.1 U	10 U 10 U		10 U 10 U	9.1 U 9.1 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	9.1 U 9.1 U	10 U 10 U	9.1 U 9.1 U
2-Chlorophenol	ug/L	1(c) NC	10 U		_	10 U	9.1 U 9.1 U	5 0		10 U	9.1 U 9.1 U	10 U 5 U	10 U	10 U	10 U	10 U	9.1 U 9.1 U	10 U	9.1 U 9.1 U
2-Methylnaphthalene 2-Methylphenol	ug/L ug/L	1(c)	10 U		1 U	10 U	9.1 U	10 U		10 U	9.1 U 9.1 U	10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U 9.1 U
2-Nitroaniline	ug/L ug/L	5	10 U	_	1 U	10 U	9.1 U	10 0		10 U	9.1 U	10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
2-Nitrophenol	ug/L ug/L	1(c)	10 U		1 U	10 U	9.1 U	10 0		10 U	9.1 U	10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
3,3'-Dichlorobenzidine	ug/L ug/L	5	10 UJ		1 U	10 UJ	9.1 U	10 U	, <u> </u>	10 UJ	9.1 U	10 UJ	10 U	10 UJ	10 U	10 UJ	9.1 U	10 UJ	9.1 U
3,4-Methylphenol	ug/L ug/L	1(c)	10 U		1 U	10 U	9.1 U	10 U		10 U	9.1 U	10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
3-Nitroaniline	ug/L ug/L	5	10 U		1 U	10 U	9.1 U	10 0		10 U	9.1 U	10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
4,6-Dinitro-2-methylphenol	ug/L ug/L	1(c)	10 U	_	15 U	10 U	45 U	10 U		10 U	45 U	10 U	50 U	10 U	50 U	10 U	45 U	10 U	45 U
4-Bromophenyl-phenylether	ug/L ug/L	NC	10 U		1 U	10 U	9.1 U	10 U		10 U	9.1 U	10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
4-Chloro-3-methylphenol	ug/L	1(c)	10 U		.1 U	10 U	9.1 U	10 U		10 U	9.1 U	10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
4-Chloroaniline	ug/L	5	10 U		.1 U	10 U	9.1 U	10 U		10 U	9.1 U	10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
4-Chlorophenyl-phenyl ether	ug/L	NC	10 U		.1 U	10 U	9.1 U	10 U		10 U	9.1 U	10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
4-Nitroaniline	ug/L	5	10 U	9.	.1 U	10 U	9.1 U	10 U	9.1 U	10 U	9.1 U	10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
4-Nitrophenol	ug/L	1(c)	10 U	4	45 U	10 U	45 U	10 U	45 U	10 U	45 U	10 U	50 U	10 U	50 U	10 U	45 U	10 U	45 U
Acenaphthene	ug/L	20	5 U	9.	.1 U	5 U	9.1 U	5 U	9.1 U	5 U	9.1 U	5 U	10 U	5 U	10 U	5 U	9.1 U	5 U	9.1 U
Acenaphthylene	ug/L	NC	5 U	9.	.1 U	5 U	9.1 U	5 U	9.1 U	5 U	9.1 U	5 U	10 U	5 U	10 U	5 U	9.1 U	5 U	9.1 U
Acetophenone	ug/L	NC	10 U		.1 U	10 U	9.1 U	10 U		10 U	9.1 U	10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
Anthracene	ug/L	50	5 U		.1 U	5 U	9.1 U	5 U		5 U	9.1 U	5 U	10 U	5 U	10 U	5 U	9.1 U	5 U	9.1 U
Atrazine	ug/L	7.5	20 U		.1 U	20 U	9.1 U	20 U			9.1 U	20 U	10 U	20 U	10 U	20 U	9.1 U	20 U	9.1 U
Benzo(a)anthracene	ug/L	0.002	5 U		.1 U	5 U	9.1 U	5 U		5 U	9.1 U	5 U	10 U	5 U	10 U	5 U	9.1 U	5 U	9.1 U
Benzaldehyde	ug/L	NC	10 U		.1 U	10 U	9.1 U	10 U		10 U	9.1 U	10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
Benzo(a)pyrene	ug/L	ND	5 U		.1 U	5 U	9.1 U	5 U		5 U	9.1 U	5 U	10 U	5 U	10 U	5 U	9.1 U	5 U	9.1 U
Benzo(b)fluoranthene	ug/L	0.002	5 U	-	1 U	5 U	9.1 U	5 U			9.1 U	5 U	10 U	5 U	10 U	5 U	9.1 U	5 U	9.1 U
Benzo(g,h,i)perylene	ug/L	NC 0.002	5 U 5 U		.1 U .1 U	5 U	9.1 U 9.1 U	5 U 5 U		5 U 5 U	9.1 U	5 U 5 U	10 U 10 U	5 U 5 U	10 U 10 U	5 U 5 U	9.1 U 9.1 U	5 U	9.1 U 9.1 U
Benzo(k)fluoranthene 1,1'-Biphenyl	ug/L ug/L	5	20 U		_	20 U	9.1 U 9.1 U	20 U		20 U	9.1 U 9.1 U	20 U	10 U	20 U	10 U	20 U	9.1 U 9.1 U	20 U	9.1 U 9.1 U
2,2'-Oxybis(1-chloropropane)	ug/L ug/L	5	10 UJ		1 U	10 UJ	9.1 U	10 U				10 UJ	10 U	10 UJ	10 U	10 UJ	9.1 U	10 UJ	9.1 U
Bis(2-chloroethoxy)methane	ug/L ug/L	5	10 U		1 U	10 U	9.1 U	10 U		10 U	9.1 U	10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
Bis(2-chloroethyl) ether	ug/L ug/L	1	10 U		1 U	10 U	9.1 U	10 U			9.1 U	10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
Bis(2-ethylhexyl)phthalate	ug/L	5	10 U		1 U	10 U	9.1 U	10 U		10 U	9.1 U	10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
Butylbenzylphthalate	ug/L	50	10 U		.1 U	10 U	9.1 U	10 U		10 U	9.1 U	10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
Caprolactam	ug/L	NC	10 UJ		1 U	10 UJ	9.1 U	10 U		10 UJ	9.1 U	10 UJ	10 U	10 UJ	10 U	10 UJ	9.1 U	10 UJ	9.1 U
Carbazole	ug/L	NC	10 U	9.	.1 U	10 U	9.1 U	10 U	9.1 U	10 U	9.1 U	10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
Chrysene	ug/L	0.002	5 U	9.	.1 U	5 U	9.1 U	5 U	9.1 U	5 U	9.1 U	5 U	10 U	5 U	10 U	5 U	9.1 U	5 U	9.1 U
Di-n-butylphthalate	ug/L	50	10 U	9.	.1 U	10 U	9.1 U	10 U	9.1 U	10 U	9.1 U	10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
Di-n-octylphthalate	ug/L	NC	10 U		.1 U	10 U	9.1 U	10 U		10 U	9.1 U	10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
Dibenz(a,h)anthracene	ug/L	NC	5 U		.1 U	5 U	9.1 U	5 U		5 U	9.1 U	5 U	10 U	5 U	10 U	5 U	9.1 U	5 U	9.1 U
Dibenzofuran	ug/L	NC	5 U		.1 U	5 U	9.1 U	5 U		5 U	9.1 U	5 U	10 U	5 U	10 U	5 U	9.1 U	5 U	9.1 U
Diethyl phthalate	ug/L	50	10 U		.1 U	10 U	9.1 U	10 U	,	10 U	9.1 U	10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
Dimethylphthalate	ug/L	50	10 U		_	10 U	9.1 U	10 U	9.1 U	10 U	9.1 U	10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
Fluoranthene	ug/L	50	5 U		_	5 U	9.1 U	5 U		5 U	9.1 U	5 U	10 U	5 U	10 U	5 U	9.1 U	5 U	9.1 U
Fluorene	ug/L	50	5 U		1 U	5 U	9.1 U	5 U			9.1 U	5 U	10 U	5 U	10 U	5 U	9.1 U	5 U	9.1 U
Hexachlorobenzene	ug/L	0.04	10 U		1 U	10 U	9.1 U	10 U				10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
Hexachlorobutadiene	ug/L	0.5	10 UJ 10 U		.1 U .1 U	10 UJ 10 U	9.1 U 9.1 U	10 U				10 UJ 10 U	10 U 10 U	10 UJ	10 U	10 UJ 10 U		10 UJ	9.1 U 9.1 U
Hexachlorocyclopentadiene Hexachloroethane	ug/L ug/L	5 5	10 U		.1 U	10 U	9.1 U 9.1 U	10 U 10 U		10 U 10 U		10 U	10 U	10 U 10 U	10 U 10 U	10 U	9.1 U 9.1 U	10 U 10 U	9.1 U 9.1 U
Indeno(1,2,3-cd)pyrene	ug/L ug/L	0.002	10 U		.1 U	10 U	9.1 U 9.1 U	5 0				10 U	10 U	10 U	10 U	10 U	9.1 U 9.1 U	10 U	9.1 U 9.1 U
Isophorone	ug/L ug/L	50	10 U		1 U	10 U	9.1 U 9.1 U	10 U				10 U	10 U	10 U	10 U	10 U	9.1 U 9.1 U	10 U	9.1 U 9.1 U
n-Nitroso-di-n-propylamine	ug/L ug/L	NC	10 U		1 U	10 U	9.1 U	10 0				10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
N-Nitrosodiphenylamine	ug/L ug/L	50	10 U		1 U	10 11	9.1 U	10 U			9.1 U	10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
Naphthalene	ug/L ug/L	10	5 U		1 U	5 U	9.1 U	5 U				5 U	10 U	5 U	10 U	5 U	9.1 U	5 U	9.1 U
Nitrobenzene	ug/L	0.4	10 U		1 U	10 U	9.1 U	10 U				10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
Pentachlorophenol	ug/L	1(c)	10 U		5 U	10 U	45 U	10 U				10 U	50 U	10 U	50 U	10 U	45 U	10 U	45 U
Phenanthrene	ug/L	50	5 U		.1 U	5 U	9.1 U	5 U		5 U		5 U	10 U	5 U	10 U	5 U	9.1 U	5 U	9.1 U
Phenol	ug/L	1(c)	10 U		.1 U	10 U	9.1 U	10 U		10 UJ		10 U	10 U	10 U	10 U	10 U	9.1 U	10 U	9.1 U
		50	5 U		.1 U	5 U	9.1 U	5 U				5 U	10 U	5 U	10 U	5 U	9.1 U	5 U	
Pyrene	ug/L	50	5 0							5 0									

Notes:

votes: ug/L - micrograms per liter. J - Estimated value. NA - Sample not analyzed for the listed analyte. NC - No NYSDEC standard exists for this analyte.

U - Analyte was not detected at specified quantitation limit. UJ - Estimated non-detect.

SGV - Standard or Guidance Value

Values in **bold** indicate the analyte was detected. Values shown in bold and shaded type exceed the listed criteria. SVOCs - Semivolatile Organic Compounds.

* - NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water, June 1998 with the April 2000 Addendum. (c) - criteria applicable to total phenolics.

Table 3 New York State Department of Environmental Conservation Cross-County Sanitary - Kessman Landfill, Site No. 340011 Summary of Results of Analysis for Polychlorinated Biphenyls in Groundwater (2018 and 2020)

	Sai	mple Location:	CCSK-N	MW-01A	CCSK-M	AW-01B	CCSK-	MW-03A	CCSK-	MW-03B	CCSK-	MW-05A	CCSK-	MW-05B	CCSK-N	MW-20A	CCSK-M	AW-20B
		Sample Date:	09/28/2018	06/16/2020	09/28/2018	06/16/2020	09/27/2018	06/16/2020	09/27/2018	06/15/2020	09/28/2018	06/17/2020	09/28/2018	06/17/2020	09/28/2018	06/17/2020	09/28/2018	06/16/2020
Analyte	Unit	SGV*																
PCB Aroclors													•		•			
Aroclor-1016	ug/L	NC	0.2 U	0.047 U	0.2 U	0.047 U	0.19 U	0.047 U	0.2 U	0.047 U	0.2 U	0.047 U	0.2 U	0.051 U	0.2 U	0.047 U	0.2 U	0.047
Aroclor-1221	ug/L	NC	0.2 U	0.047 U	0.2 U	0.047 U	0.19 U	0.047 U	0.2 U	0.047 U	0.2 U	0.047 U	0.2 U	0.051 U	0.2 U	0.047 U	0.2 U	0.047
Aroclor-1232	ug/L	NC	0.2 U	0.047 U	0.2 U	0.047 U	0.19 U	0.047 U	0.2 U	0.047 U	0.2 U	0.047 U	0.2 U	0.051 U	0.2 U	0.047 U	0.2 U	0.047
Aroclor-1242	ug/L	NC	0.2 U	0.047 U	0.2 U	0.047 U	0.19 U	0.047 U	0.2 U	0.047 U	0.2 U	0.047 U	0.2 U	0.051 U	0.2 U	0.047 U	0.2 U	0.047
Aroclor-1248	ug/L	NC	0.2 U	0.047 U	0.2 U	0.047 U	0.19 U	0.047 U	0.2 U	0.047 U	0.2 U	0.047 U	0.2 U	0.051 U	0.2 U	0.047 U	0.2 U	0.047
Aroclor-1254	ug/L	NC	0.2 U	0.047 U	0.2 U	0.047 U	0.19 U	0.047 U	0.2 U	0.047 U	0.2 U	0.047 U	0.2 U	0.051 U	0.2 U	0.047 U	0.2 U	0.047
Aroclor-1260	ug/L	NC	0.2 U	0.047 U	0.2 U	0.047 U	0.19 U	0.047 U	0.2 U	0.047 U	0.2 U	0.047 U	0.2 U	0.051 U	0.2 U	0.047 U	0.2 U	0.047 U
Aroclor-1262	ug/L	NC	0.2 U	NA	0.2 U	NA	0.19 U	NA	0.2 U	NA	0.2 U	NA	0.2 U	NA	0.2 U	NA	0.2 U	NA
Aroclor-1268	ug/L	NC	0.2 U	NA	0.2 U	NA	0.19 U	NA	0.2 U	NA	0.2 U	NA	0.2 U	NA	0.2 U	NA	0.2 U	NA
PCBs, Total	ug/L	0.09	0.2 U	0.047 U	0.2 U	0.047 U	0.19 U	0.047 U	0.2 U	0.047 U	0.2 U	0.047 U	0.2 U	0.051 U	0.2 U	0.047 U	0.2 U	0.047

Notes:

ug/L - micrograms per liter.

J - Estimated value.

J- - Estimated value; biased low.

J+ - Estimated value; biased high.

NA - Sample not analyzed for the listed analyte.

NC - No NYSDEC standard exists for this analyte.

U - Analyte was not detected at specified quantitation limit.

UJ - Estimated non-detect.

SGV - Standard or Guidance Value

Values in **bold** indicate the analyte was detected.

Values shown in bold and shaded type exceed the listed criteria.

PCBs - Polychlorinated Biphenyls.

* - NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water, June 1998 with the April 2000 Addendum.

Table 4 New York State Department of Environmental Conservation Cross-County Sanitary - Kessman Landfill, Site No. 340011 Summary of Results of Analysis for Per- and Polyfluoroalkyl Substances in Groundwater (2018 and 2020)

	Sa	mple Location:	CCSK-M	4W-01A	CCSK-M	IW-01B	CCSK-	MW-03A	CCSK-M	AW-03B	CCSK-	MW-05A	CCSK-	4W-05B	CCSK-1	MW-20A	CCSK-M	IW-20B
		Sample Date:	09/28/2018	06/16/2020	09/28/2018	06/16/2020	09/27/2018	06/16/2020	09/27/2018	06/15/2020	09/28/2018	06/17/2020	09/28/2018	06/17/2020	09/28/2018	06/17/2020	09/28/2018	06/16/2020
Analysis	Unit	SL**																
PFAS		• • •									•				•			
Perfluorobutanesulfonic acid (PFBS)	ng/L	100**	2 U	4.4 U	2 U	4.4 U	2 U	0.62 J	2 U	0.79 J	5.1	2.5 J	3.9	1.9 J	2.8	1.6 J	2	1.6 J
Perfluorohexanesulfonic acid (PFHxS)	ng/L	100**	2 U	4.4 U	2 U	4.4 U	2 U	4.3 U	3	4.2 U	6.4	7.8	7.8	6.9	7.9	7.1	4.6	5.8
Perfluoroheptanesulfonic acid (PFHpS)	ng/L	100**	2 U	4.4 U	2 U	4.4 U	2 U	4.3 U	2 U	4.2 U	2	1.8 J	3.2	2.6 J	2 U	0.77 J	2 U	0.74 J
Perfluorooctanesulfonic acid (PFOS)	ng/L	10**	2 U	0.83 J	2.6	1.6 J	2 U	1.7 U	2.6	3.9	87	96	100	120	35	45	36	54
Perfluorodecanesulfonic acid (PFDS)	ng/L	100**	2 U	4.4 U	2 U	4.4 U	2 U	4.3 U	2 U	4.2 U	2 U	4.4 U	2 U	4.4 U	2 U	4.3 U	2 U	4.4 U
Perfluorobutanoic acid (PFBA)	ng/L	100**	2 UJ	4.4 U	2 UJ	4.4 U	2 UJ	8.6	2 UJ	5.3 J+	· 2 UJ	4.4 U	2.3 J-	12	2 UJ	8.2	2.1 J-	6.6
Perfluoropentanoic acid (PFPeA)	ng/L	100**	3	1.2 J	2.3	4.4 U	4.9	3.9 J	7.5	2.5 J	6.1	5.4	13	5.6	4.7	4.3	4.6	4.3 J
Perfluorohexanoic acid (PFHxA)	ng/L	100**	2 U	1.3 J	2 U	4.4 U	5.7	5.3	4.3	3.6 J	7	11	11	12	8.9	7.8	7.7	6.2
Perfluoroheptanoic acid (PFHpA)	ng/L	100**	2 U	0.60 J	2 U	0.71 J	2.1	1.6 J	2.2	2.1 J	5.6	8.4	10	9.6	5.7	4.8	4.7	4.4 J
Perfluorooctanoic acid (PFOA)	ng/L	10**	2 U	1.8 J	2.5	2.2	2 U	1.8	5.9	5.3	36	46	64	54	28	27	26	24
Perfluorononanoic acid (PFNA)	ng/L	100**	2 U	4.4 U	2 U	4.4 U	2 U	4.3 U	2 U	4.2 U	6.7	9.4	20	21	2.2	2.4 J	2 U	2.0 J
Perfluorodecanoic acid (PFDA)	ng/L	100**	2 U	4.4 U	2 U	4.4 U	2 U	4.3 U	2 U	4.2 U	2 U	4.4 U	2 U	4.4 U	2 U	4.3 U	2 U	4.4 U
Perfluoroundecanoic acid (PFUnA)	ng/L	100**	2 U	4.4 U	2 U	4.4 U	2 U	4.3 U	2 U	4.2 U	2 U	4.4 U	2 U	4.4 U	2 U	4.3 U	2 U	4.4 U
Perfluorododecanoic acid (PFDoA)	ng/L	100**	2 U	4.4 U	2 U	4.4 U	2 U	4.3 U	2 U	4.2 U	2 U	4.4 U	2 U	4.4 U	2 U	4.3 U	2 U	4.4 U
Perfluorotridecanoic acid (PFTriA)	ng/L	100**	2 U	4.4 U	2 U	4.4 U	2 U	4.3 U	2 UJ	4.2 U	2 U	4.4 U	2 U	4.4 U	2 U	4.3 UJ	2 U	4.4 U
Perfluorotetradecanoic acid (PFTeA)	ng/L	100**	2 U	4.4 U	2 U	4.4 U	2 U	4.3 U	2 UJ	4.2 U	2 U	4.4 U	2 U	4.4 U	2 U	4.3 UJ	2 U	4.4 U
Perfluorooctane Sulfonamide (PFOSA)	ng/L	100**	2 UJ	4.4 U	2 UJ	4.4 U	2 UJ	4.3 U	2 UJ	4.2 U	2 UJ	4.4 U	2 UJ	4.4 U	2 UJ	4.3 U	2 UJ	4.4 U
2-(N-methyl perfluorooctanesulfonamido) acetic acid (N-MeFOSAA)	ng/L	100**	2 U	4.4 U	2 U	4.4 U	2 U	4.3 U	2 U	4.2 U	2 U	4.4 U	2 U	4.4 U	2 U	4.3 U	2 U	4.4 U
N-Ethyl-N-((heptadecafluorooctyl) sulphonyl) glycine (N-EtFOSAA)	ng/L	100**	2 U	4.4 U	2 U	4.4 U	2 U	4.3 U	2 U	2.1 J	2 U	4.4 U	2 U	4.4 U	2 U	4.3 U	2 U	4.4 U
6:2 Perfluorooctane Sulfonate (6:2 FTS)	ng/L	100**	2 UJ	570 J	2 UJ	10	2 UJ	0.64 J	2 UJ	13	2 UJ	0.63 J	2 UJ	1.6 J	2 U	0.61 J	2 U	1.7 J
8:2 Perfluorodecane Sulfonate (8:2 FTS)	ng/L	100**	2 UJ	1.5 J	2 UJ	4.4 U	2 UJ	4.3 U	2 UJ	4.2 U	2 UJ	4.4 U	2 UJ	4.4 U	2 U	4.3 U	2 U	4.4 U
Total PFAS	ng/L	500**	3.0	577 J	7.40	14.5 J	12.7	22.5 J	25.5	38.6 J	162	189 J	235 J	247 J	95.2	110 J	87.7 J	111 J

Notes:

ng/L - nanograms per liter

J - Estimated value.

J- - Estimated value; biased low.

J+ - Estimated value; biased high.

NC - No NYSDEC standard exists for this analyte.

U - Analyte was not detected at specified quantitation limit.

UJ - Estimated non-detect.

SL - Screening Level

Values in **bold** indicate the analyte was detected. Values shown in **bold** and shaded type exceed the listed criteria.

PFAS - Per- and Polyfluoroalkyl Substances.

** - Guidelines for Sampling and Analysis of PFAS, NYSDEC Part 375 Remedial Programs, January 2020.

Table 5 New York State Department of Environmental Conservation Cross-County Sanitary - Kessman Landfill, Site No. 340011 Summary of Results of Analysis for Metals in Groundwater (2018 and 2020)

	Sam	ple Location:	CCSK-M	4W-01A	CCSK-M	4W-01B	CCSK-	MW-03A	CCSK-	-MW-03B	CCSK-M	4W-05A	CCSK-	MW-05B	CCSK-M	4W-20A	CCSK-MW-20B	
	5	Sample Date:	09/28/2018	06/16/2020	09/28/2018	06/16/2020	09/27/2018	06/16/2020	09/27/2018	06/15/2020	09/28/2018	06/17/2020	09/28/2018	06/17/2020	09/28/2018	06/17/2020	09/28/2018	06/16/2020
Analysis	Unit	SGV*																
Metals, total	-																	
Aluminum	ug/L	NC	NA	68.7 J	NA	126	NA	100 U	NA	100 U	NA	100 U	NA	755	NA	100 U	NA	1,550
Antimony	ug/L	3	NA	60 UJ	NA	60 U	NA	60 UJ	NA	60 UJ	NA	60 U	NA	60 UJ	NA	60 U	NA	60 U
Arsenic	ug/L	25	NA	10 U	NA	13.6	NA	10 U	NA	10 U	NA	10 U						
Barium	ug/L	1,000	NA	117	NA	42.9	NA	574	NA	658	NA	155	NA	114	NA	89.6	NA	87.8
Beryllium	ug/L	3	NA	3 U	NA	3 U												
Cadmium	ug/L	5	NA	5 UJ	NA	5 U	NA	5 UJ	NA	5 UJ	NA	5 U	NA	5 UJ	NA	5 U	NA	5 U
Calcium	ug/L	NC	NA	172,000 J	NA	21,800 J	NA	382,000 J	NA	205,000 J	NA	97,100 J	NA	139,000 J	NA	76,100 J	NA	71,200 J
Chromium	ug/L	50	NA	10 U	NA	0.7 J	NA	10 U	NA	1.9 J								
Cobalt	ug/L	NC	NA	50 U	NA	50 U	NA	50 UJ	NA	50 UJ	NA	7 J	NA	2.3 J	NA	50 U	NA	1.1 J
Copper	ug/L	200	NA	20 U	NA	20 U												
Iron	ug/L	300	NA	100 U	NA	253	NA	10,900	NA	12,000	NA	12,000	NA	3,630	NA	2,830	NA	6,690
Lead	ug/L	25	NA	5 U	NA	5 U												
Magnesium	ug/L	35,000	NA	85,300	NA	17,100	NA	291,000	NA	189,000	NA	76,000	NA	78,400	NA	62,300	NA	63,500
Manganese	ug/L	300	NA	10 U	NA	7.2 J	NA	256	NA	90.5	NA	124	NA	674	NA	14.7	NA	63.8
Mercury	ug/L	0.7	NA	0.2 U	NA	0.2 U												
Nickel	ug/L	100	NA	40 U	NA	40 U												
Potassium	ug/L	NC	NA	11,400 J	NA	3,400 J	NA	62,600 J	NA	43,600 J	NA	11,100 J	NA	12,700 J	NA	13,200 J	NA	13,400 J
Selenium	ug/L	10	NA	10 UJ	NA	10 U	NA	10 UJ	NA	10 UJ	NA	10 U	NA	10 UJ	NA	10 U	NA	10 U
Silver	ug/L	50	NA	0.6 J	NA	10 U	NA	10 U										
Sodium	ug/L	20,000	NA	171,000	NA	159,000	NA	1,950,000	NA	1,870,000	NA	10,200	NA	43,900	NA	17,700	NA	16,700
Thallium	ug/L	0.5	NA	8.4 J	NA	10 U	NA	15.9	NA	100 U	NA	10 U	NA	10 U	NA	10 U	NA	10 U
Vanadium	ug/L	NC	NA	50 U	NA	1.1 J	NA	50 U	NA	2.2 J								
Zinc	ug/L	2,000	NA	20 U	NA	20 U												

Notes:

ug/L - micrograms per liter.

J - Estimated value.

J- - Estimated value; biased low.

J+ - Estimated value; biased high.

NA - Sample not analyzed for the listed analyte.

NC - No NYSDEC standard exists for this analyte.

U - Analyte was not detected at specified quantitation limit.

UJ - Estimated non-detect.

SGV - Standard or Guidance Value

Values in **bold** indicate the analyte was detected. Values shown in **bold and sh**

* - NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water, June 1998 with the April 2000 Addendum.

Table 6 New York State Department of Environmental Conservation Cross-County Sanitary - Kessman Landfill, Site No. 340011 Summary of Results of Analysis for General Chemistry Parameters in Groundwater (2018 and 2020)

	Sa	mple Location:	CCSK-1	AW-01A	CCSK-I	MW-01B	CCSK-MW-03A		CCSK-MW-03B		CCSK-MW-05A		CCSK-MW-05B		CCSK-MW-20A		CCSK-	MW-20B
		Sample Date:	09/28/2018	06/16/2020	09/28/2018	06/16/2020	09/27/2018	06/16/2020	09/27/2018	06/15/2020	09/28/2018	06/17/2020	09/28/2018	06/17/2020	09/28/2018	06/17/2020	09/28/2018	06/16/2020
Analyte	Unit	SGV*																
General Chemistry											•		-					
Total Organic Carbon (TOC)	ug/L	NC	NA	1,600	NA	1,100	NA	800 J	NA	2,000	NA	6,300	NA	5,400	NA	2,800	NA	2,400
Cyanide	ug/L	200	NA	5.4	NA	5 U	NA	5 U	NA	5 U	NA	5 U	NA	10 U	NA	5 U	NA	5 U
Total Suspended Solids (TSS)	ug/L	NC	NA	1,700	NA	2,700	NA	23,000	NA	25,600	NA	NA	NA	44,000	NA	6,200	NA	83,700

Notes:

ug/L - micrograms per liter.

J - Estimated value.

NA - Sample not analyzed for the listed analyte.

NC - No NYSDEC standard exists for this analyte.

U - Analyte was not detected at specified quantitation limit.

UJ - Estimated non-detect.

SGV - Standard or Guidance Value

Values in **bold** indicate the analyte was detected.

Values shown in **bold** and shaded type exceed the listed criteria.

TOC - Total Organic Carbon

TSS - Total Suspended Solids

* - NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water, June 1998 with the April 2000 Addendum.

Appendix A

Site History, Custodial Record, and Well Summary

SITE HISTORY New York State Department of Environmental Conservation Cross-County Sanitary – Kessman Landfill, Site No. 340011 Patterson, New York

Date	Description
1963 - 1972	The Site was operated as a municipal landfill by the Town of Patterson on property owned by the Kessman family.
1972	The landfill was purchased by Cross County Sanitation, Inc., a private carting company.
1972 - 1974	Historical information provided by the NYSDEC indicates that unknown types and quantities of industrial and hazardous wastes were disposed at the Site.
1974	NYSDEC forced the landfill to close and the Kessman family repossessed the property. The landfill was covered with clean soil at that time in order to support a thin layer of vegetation.
1983	A Phase I Site Assessment (Phase I) was prepared for the Site by Camp, Dresser, and McKee, Inc. (CDM). During the Phase I, field personnel observed several leachate seeps on the north and east sides of the landfill that had discolored the wetland vegetation located between the toe of the landfill and the railroad embankment. The Phase I assessment also documented observations from site workers in which an estimated 40 to 60 partially exposed 55-gallon drums were seen in the landfill toe adjacent to the wetland.
1985	Wehran Engineering, P.C. (Wehran) conducted a Phase II Site Investigation (Phase II) at the site that included a subsurface investigation; a metal detection survey; sampling of surface water, sediments, and leachate; advancing two test pits and collecting composite soil samples; installing four (4) groundwater monitoring wells; and collecting a groundwater sample from a nearby domestic water well. The analytical results from the samples collected during the Phase II recorded several detections of volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs). Based on the results of the Phase II investigation, the site was reclassified to a Class 2 inactive hazardous waste site under the NYSDECs Registry of Inactive Hazardous Waste Sites in New York State.
May 1991	The NYSDEC, under the State Superfund Program, initiated a Remedial Investigation/Feasibility Study (RI/FS) to address the contamination.
December 1991 - May 1992	ABB Environmental Services (ABB-ES) conducted a Remedial Investigation (RI) of the site. During the RI, site-specific data was obtained from: (1) aerial photographs and historical records; (2) ecological inventories; (3) geophysical surveys; (4) samples of cover soil, landfill refuse, and overburden soil collected from beneath the fill areas via test pits and soil borings; (5) groundwater samples collected from existing and newly installed monitoring wells and nearby private potable wells; (6) shallow groundwater via leachate seeps, wetland surface water and sediment; (7) hydrogeologic testing; and, (8) photogrammetric survey maps.
October 1993 – December 1994	An interim remedial measure (IRM) was conducted at the Site beginning in the fall of 1993. The drum removal project extended through June 1994. In total, 157 drums and 100 cubic yards of contaminated soil were reportedly removed/excavated from the northern toe of the landfill (adjacent to the wetland). In December 1994 the disposal of all staged drums and soil were completed
1994	ABB-ES used the data collected during the RI to prepare a Feasibility Study to evaluate potential remedial strategies for the site.
November 1994	A Record of Decision (ROD) was prepared by the New York State Department of Environmental Conservation.

TRC

August 1995 - August 1996	Remediation activities at the site were initiated in 1995 and completed in 1996. The remediation consisted of: (1) excavation of PCB-impacted sediment from the wetland immediately adjacent to the east of the landfill; (2) restoration of the remediated wetland area; and, (3) capping the landfill in accordance with New York Codes, Rules, and Regulations (NYCRR) Part 360 and (4) installing landfill gas ventilation and leachate collection systems.
1996	A Construction Certification Report was prepared by ABB Environmental Services, to document the remedial activities undertaken.
February 2002 - November 2007	Once the remedial activities were completed, routine operation, maintenance, and monitoring (OM&M) activities were performed by O'Brien & Gere Engineers, Inc. (OBG) and Iyer Environmental Group, PLLC (IEG).
November 2007	An OM&M Report was prepared by Iyer Environmental Group, PLLC, and submitted by O'Brien & Gere Engineers, Inc, to NYSDEC.
June 2011	A Site Management Plan (SMP) was prepared by Aztec Technologies, Inc., summarizing remedial investigation findings, remedial actions, and contingency plan with ongoing site monitoring.
2007 - 2012	Ongoing Site monitoring and maintenance activities were conducted by various engineering firms.
Early 2012 - January 2013	Aztec Technologies, Inc. (Aztec) became involved in the Site management program beginning in 2012, and undertook a sediment delineation activity. The results of this study are presented in the report titled, "PCB Sediment Delineation Report, Cross County/Kessman Landfill", dated January 29, 2013.
January 2014	Aztec Technologies, Inc. prepared an update to the SMP to correct tax parcel numbers for the Site (current SMP).
October 2016	TRC undertook an investigation focusing on further delineation of the areas of impacted soil, sediment, and surface water identified in the Aztec report.
November 2017	During the November 2017 investigation, attempts were made to locate the leachate collection system discharge points, along the northern and eastern landfill perimeter, to determine if a correlation exists between these locations and observed concentrations of PCBs in sediment. A combination of methods/techniques were used including visual inspection, GPS equipment, and field measurements. TRC was unable to locate any of the leachate collection system discharge points.
September 2018 - November 2018	TRC performed supplemental sediment and groundwater sampling, a geotechnical investigation, and a geophysical investigation centered on the leachate collection system.
February 2019	Detailed descriptions of the activities and findings were presented in a memorandum to NYSDEC.
December 2019	A Fish and Wildlife Resource Impact Analysis (FWRIA) was conducted in accordance with the guidance provided in the document "Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites".
June 2020	TRC performed additional groundwater sampling along with a Phase 1 Bog Turtle Habitat Survey. The habitat survey was performed to determine whether or not the wetland is a potential bog turtle habitat, and to understand what (i.e., Phase 2, education, etc.), if anything, will need to be considered as part of the remedial plan for the wetland.
June 2020 - Present	TRC prepared a Remedial System Optimization (RSO) Report, summarizing the investigations performed to date, documenting the nature and extent of contamination in the wetland area north and east of the capped landfill, and evaluating remedial options for consideration in addressing the issues. TRC also began preparation of a Remedial Design package for the selected remedy (excavation and offsite disposal).

CUSTODIAL RECORD/PERTINENT SITE DOCUMENTS New York State Department of Environmental Conservation Cross-County Sanitary – Kessman Landfill, Site No. 340011 Patterson, New York

Camp, Dresser, and McKee, Inc., *Phase I Environmental Site Assessment (Phase 1 ESA)*, Cross County Sanitary - Kessman Landfill Site, 1983

Wehran Engineering, P.C., *Phase II Environmental Site Investigation (Phase II ESI)*, Cross County Sanitary - Kessman Landfill Site, 1985

EC Jordan Co., Remedial Investigation / Feasibility Study Health and Safety Plan, Part II, Kessman Landfill Site, August 1991

EC Jordan Co., Final Remedial Investigation / Feasibility Study Quality Assurance Project Plan, Kessman Landfill Site, November 1991

ABB Environmental Services, *Final Remedial Investigation / Feasibility Study Work Plan*, Kessman / Cross County Sanitation Landfill Site, November 1991

ABB Environmental Services, *Remedial Investigation Report – Volume I and II*, Kessman / Cross County Sanitation Landfill Site, November 1992

ABB Environmental Services, *Phase I Feasibility Study Report*, Kessman / Cross County Sanitation Landfill Site, December 1992

ABB Environmental Services, *Phase II Feasibility Study Report*, Kessman / Cross County Sanitation Landfill Site, January 1993

ABB Environmental Services, *Phase II RI Sediment / Surface Water Sampling Data Summary Report*, Kessman / Cross County Sanitation Landfill Site, September 1993

ABB Environmental Services, *Drum Removal IRM Work Plan*, Kessman / Cross County Sanitation Landfill Site, September 1993

NYSDEC, Proposed Remedial Action Plan, Kessman / Cross County Sanitation Landfill Site, July 1994

ABB Environmental Services, *Remedial Investigation Report, Volumes I and II*, Kessman / Cross County Sanitation Landfill Site, September 1994

ABB Environmental Services, *Feasibility Study Report*, Kessman / Cross County Sanitation Landfill Site, September 1994

NYSDEC, *Record of Decision (ROD)*, Kessman / Cross County Sanitation Landfill Inactive Hazardous Waste Site, November 1994

ABB Environmental Services, *Final Remedial Design Work Plan*, Kessman / Cross County Sanitation Landfill Site, December 1994

ABB Environmental Services, *Construction Management Work Plan*, Kessman / Cross County Sanitation Landfill Site, August 1995

ABB Environmental Services, *Final Remediation Report, Volumes I and II*, Kessman / Cross County Sanitation Landfill Site, July 1997

Iyer Environmental Group, PLLC, *Operation, Maintenance and Monitoring (OM&M) Report*, Cross County Sanitation / Kessman Landfill, Site No. 340011, March 2005

Iyer Environmental Group, PLLC, *OM&M Report (2005 – 2007)*, Cross County Sanitation / Kessman Landfill, Site No. 340011, November 2007

NYSDEC, Site Management Plan (SMP), Cross County Sanitation - Kessman Landfill, June 2011

Aztech Technologies, Inc., *PCB Delineation Sampling Report*, Cross County / Kessman Landfill, Site No. 340011, January 2013

Aztech Technologies, Inc., Site Management Plan (Rev. 1), Cross County Sanitary – Kessman Landfill, NYSDEC Site Number: 3-40-011, January 2014

NYSDEC, Environmental Easement, Site No. 340011(e), May 2014

NYSDEC, Environmental Easement, Site No. 340011(e1), August 2014

	Well					Screen				Ele	evation (feet AMS	SL)		Loca	tion ¹
	Diameter	Well	Well Depth	Screened	Тор	Bottom	Length	DTW	Top of	Ground	Groundwater	Sci	reen	Northing	Easting
Well ID	(inches) ³	Material ³	(ft btoc) ²	Formation	(ft btoc) ⁵	(ft btoc) ²	$(ft)^4$	(ft btoc) ²	Casing ¹	Surface1	Elevation ¹	Тор	Bottom	(feet)	(feet)
MW-01A	2	PVC	60.90	Overburden	53.40	60.90	7.50	13.60	462.57	460.20	448.97	409.17	401.67	971,712.7	735,779.7
MW-01B	2	PVC	23.62	Overburden	15.12	23.62	8.50	9.06	462.28	460.00	453.22	447.16	438.66	971,723.3	735,778.6
MW-03A	2	PVC	41.15	Overburden	25.65	41.15	15.50	2.83	433.70	431.20	430.87	408.05	392.55	971,325.3	736,514.0
MW-03B	4	PVC	31.28	Overburden	23.78	31.28	7.50	3.69	435.12	431.50	431.43	411.34	403.84	971,321.5	736,501.7
MW-05A	2	PVC	70.80	Overburden	62.80	70.80	8.00	3.10	432.88	430.60	429.78	370.08	362.08	972,198.8	736,440.2
MW-05B	2	PVC	30.25	Overburden	21.25	30.25	9.00	2.63	433.40	430.30	430.77	412.15	403.15	972,192.0	736,453.1
MW-20A	4	PVC	39.95	Overburden	30.95	39.95	9.00	2.17	430.37	430.50	428.20	399.42	390.42	971,857.3	736,631.5
MW-20B	2	PVC	19.75	Overburden	10.75	19.75	9.00	3.39	430.22	430.20	426.83	419.47	410.47	971,866.0	736,627.9

Notes

AMSL : above mean sea level

ft btoc : feet below Top of Casing

DTW : Depth to Water

PVC : polyvinyl chloride

1 : based on July 2020 Survey Data

2 : based on June 15-17, 2020 Groundwater Sampling Forms

3 : based on June 1, 2020 Well Inspection Form Data

4 : based on 2014 SMP

5 : calculated value (Well Depth - Screen Length)

Appendix **B**

Site Inspection Form and Photographic Log – June 2020

DATE: Monday, June 1, 2020

REPORT NO.: 060120

PAGE NO.: 1 of 2

PROJECT NO.: 387570.0000.0000

LOGBOOK NO.: -- PAGES: -- to --

DAILY FIELD ACTIVITY REPORT

PROJECT Cr	coss County Sa	nitary-Kes	sman Landfill	WEATHER	TIME	TEMP.	PRECIP.	WIND (MPH)	WIND (DIR)
LOCATION	Patterson, Ne	w York		Cloudy	1030	57°F	None	0-10	WNW
ATTACHMENTS	Photo Log, V	Vell Inspe	ction Forms	Partly Cloudy	1400	63°F	None	0-10	W
SITE CONDITION	S: Mostly Dry					·			<u>.</u>
WORK GOAL FO	R DAY: Site Ir	spection							
			PERSO	NNEL ON SIT	'E:				
N	AME			AFFILIATION		ARRI	VAL TIME	DEPAR	RT TIME
Nathaniel Peterson			TRC Engineer	rs, Inc.		900		1430	
			EQUIPM	IENT ON SIT	'E:				
ТҮРЕ			MODEL		ТҮРЕ			MODEL	1
Not Applicable		Not Appl	icable	Not Applic	cable		Not App	olicable	
			ПЕ ЛІ Т	TH & SAFETY	7.				
	N					7			
PPE REQUIRED:		EVEL D	LEVEL C		ELB L	LEVEL A		HASP? YE	S
SITE SAFETY OFFI	CER: Steve Joh	ansson							
H & S NOTES: Site v	work performed i	n Level D l	PPE						

DATE: Monday, June 1, 2019

REPORT NO.: 060120

PAGE NO.: 2 of 2

PROJECT NO.: 387570.0000.0000

LOGBOOK NO .: -- PAGES: -- to --

DAILY FIELD ACTIVITY REPORT

DESCRIPTION OF WORK PERFORMED AND OBSERVED

TRC Engineers, Inc. (TRC) conducted a semiannual inspection of Cross County Sanitary Kessman Landfill (Site) located along Cornwall Hill Road, in Patterson, NY on Monday, June 1, 2019. The objective of the site inspection was to document conditions of the landfill cap, drainage swales, monitoring wells, gas vents, constructed wetland area, access roads, and fence lines.

The landfill inspection included walking the perimeter of the landfill, random areas of the landfill slope and the top of the landfill. The landfill cap was dry and the soil stable, meaning no visible erosion, cracks, settlement or seeps were observed. The landfill cap is intact and in good condition. No animals or animal burrows were observed at the time of the inspection.

Vegetation on the cap is well-established and appears to be healthy. No woody-stemmed plants or other vegetation that could puncture the landfill cap were observed. The cap appears to have been mowed recently.

The landfill gas venting system was inspected for signs of damage during the site inspection. The inspection was limited to visible portions of the system and the ground surface above the gas collection system to check for evidence of settlement that could affect the gas collection piping. No gas odors or problems related to the gas venting system were observed during the site inspection.

Site access road leading from the front gate to the landfill cap was wet and muddy, with ruts beginning to form after vehicles were driven on to the Site. While this did not cause any issues accessing the site at the time, some work on the road may be necessary in the future to ensure site access is not impeded. No signs of erosion were observed along the road in this area.

Groundwater monitoring wells at the Site are in good condition. Each monitoring well's condition was inspected (refer to Well Inspection Form). Wells were all in good condition with locks and caps in place.

The exterior fence is in good condition and the gate was secure upon arrival at the Site. The interior fence is also in good condition, except for one broken section on the north end of the Site (see Photolog). The condition of the exterior fence will continue to be monitored and repairs will be made to the fence as needed.

The mitigated wetland appears to be functioning well, as designed and, at this point, does not require any spraying to address invasive species.

PREPARED BY (OBSERVER): What Pater	REVIEWED BY: S. S.M.
PRINT NAME: Nathaniel Peterson	PRINT NAME: Kevin Sullivan

NYSDEC Cross-County Sanitary – Kessman Landfill Photograph Log Date: June 1, 2020

Photo 1: View of the entrance to the site, the gate was locked and secure upon arrival at the Site

Photo 2: View of the Leachate Collection System Sump Manhole

Photo 3: View of the southern wetland area

Photo 4: View of the location of the location of CCSK-MW-3A and 3B

Photo 5: View of the southeastern portion of the landfill cap.

Photo 6: View of the southwestern portion of the landfill cap

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	
387570.0000	Nathaniel Peterson	1 of 2	NYSDEC	Cross-County Sanitary – Kessman Landfill Site, Patterson, NY	

NYSDEC Cross-County Sanitary – Kessman Landfill Photograph Log Date: June 1, 2020

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	
387570.0000	Nathaniel Peterson	2 of 2	NYSDEC	Cross-County Sanitary – Kessman Landfill Site, Patterson, NY	

INSPECTOR: N. Peterson DATE: 6/15/2020 WELL ID: CCSK-MW-01A

	YES	NO
WELL VISIBLE? (If not, provided directions below)	Х	
WELL I.D. APPEARS ON PROTECTIVE CASING OR WELL:		Х
WELL LOCATTIONS MATCH SITE MAP? (If not, sketch actual location on back)	Х	
	8	
	YES	NO
SURFACE SEAL PRESENT?	Х	
SURFACE SEAL COMPETENT? (if cracked, heaved, etc., describe below)	Х	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	Х	
	0.0	PPM
HEADSPACE READING (ppm) AND INSTRUMENT USED		
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		ıp / 2.0
PROTECTIVE CASING MATERIAL TYPE:		eel
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	6 - Ir	nches
	¥50	
	YES	NO
LOCK PRESENT?	X	
LOCK FUNCTIONAL?	Х	
DID YOU REPLACE THE LOCK?		Х
IS THERE EVIDENCE THAT THE WELL IS DOUBLE-CASED? (If yes, describe below)		Х
WELL MEASURING POINT VISIBLE?	Х	
WELL DEPTH FROM MEASURING POINT (Feet):	60).9
DEPTH OF WATER FROM MEASURING POINT (Feet):	12	.85
WELL DIAMETER (Inches):	2 - ir	nches
WELL CASING MATERIAL:	P١	VC
PHYSICAL CONDITION OF VISIBLE WELL CASING:	Go	od
	Will place I	D tags next
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	inspe	ection
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		ection IA

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. The well is located down the path to the left of the main enterence to the Site. It is partially obscured by bushes to on the right side of the path as you walk towards the houses north of the Site enterence.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in some brush and bushes in a partially wooded area.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): Near a residential house.

REMARKS:

Bushes should be trimmed before next inspection.

INSPECTOR: N. Peterson DATE: 6/15/2020 WELL ID: CCSK-MW-01B

	YES	NO
WELL VISIBLE? (If not, provided directions below)	Х	
WELL I.D. APPEARS ON PROTECTIVE CASING OR WELL:		Х
WELL LOCATTIONS MATCH SITE MAP? (If not, sketch actual location on back)	Х	
	YES	NO
SURFACE SEAL PRESENT?	Х	
SURFACE SEAL COMPETENT? (if cracked, heaved, etc., describe below)	Х	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	Х	
HEADSPACE READING (ppm) AND INSTRUMENT USED	0.0	PPM
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	Stick-u	p / 1.94
PROTECTIVE CASING MATERIAL TYPE:	St	eel
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	6 - ir	nches
	YES	NO
LOCK PRESENT?	Х	
LOCK FUNCTIONAL?	Х	
DID YOU REPLACE THE LOCK?		Х
IS THERE EVIDENCE THAT THE WELL IS DOUBLE-CASED? (If yes, describe below)		Х
WELL MEASURING POINT VISIBLE?	Х	
WELL DEPTH FROM MEASURING POINT (Feet):	23	.62
DEPTH OF WATER FROM MEASURING POINT (Feet):	8.	88
WELL DIAMETER (Inches):	2 - ir	nches
WELL CASING MATERIAL:	P	VC
PHYSICAL CONDITION OF VISIBLE WELL CASING:	Go	bod
	Will place	D tags next
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	inspe	ection
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	Ν	IA

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. The well is located down the path to the left of the main enterence to the Site. It is partially obscured by bushes to on the right side of the path as you walk towards the houses north of the Site enterence.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in some brush and bushes in a partially wooded area.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): Near a residential house.

REMARKS:

Bushes should be trimmed before next inspection.

INSPECTOR:N. PetersonDATE:6/15/2020WELL ID:CCSK-MW-03A

	YES	NO
WELL VISIBLE? (If not, provided directions below)	Х	
WELL I.D. APPEARS ON PROTECTIVE CASING OR WELL:		Х
WELL LOCATTIONS MATCH SITE MAP? (If not, sketch actual location on back)	Х	
	YES	NO
SURFACE SEAL PRESENT?	Х	
SURFACE SEAL COMPETENT? (if cracked, heaved, etc., describe below)	Х	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	Х	
HEADSPACE READING (ppm) AND INSTRUMENT USED		PPM
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		p / 2.83
PROTECTIVE CASING MATERIAL TYPE:		eel
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	6 - ir	nches
	VEC	
	YES	NO
LOCK PRESENT?	X	
	Х	
DID YOU REPLACE THE LOCK?		X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE-CASED? (If yes, describe below)	<u> </u>	Х
WELL MEASURING POINT VISIBLE?	Х	
WELL DEPTH FROM MEASURING POINT (Feet):	41	.15
	3.	65
DEPTH OF WATER FROM MEASURING POINT (Feet):		
DEPTH OF WATER FROM MEASURING POINT (Feet): WELL DIAMETER (Inches):	2 - ir	nches
		nches VC
WELL DIAMETER (Inches):	P	
WELL DIAMETER (Inches):	P' Gc	VC
WELL DIAMETER (Inches):	רץ Gc Will place ו	VC bod

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Well is located along the southern perimeter fence.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in brush.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): Business with equipment located to the south.

REMARKS:

INSPECTOR:N. PetersonDATE:6/15/2020WELL ID:CCSK-MW-03B

	YES	NO
WELL VISIBLE? (If not, provided directions below)	Х	
WELL I.D. APPEARS ON PROTECTIVE CASING OR WELL:		Х
WELL LOCATTIONS MATCH SITE MAP? (If not, sketch actual location on back)	Х	
	YES	NO
SURFACE SEAL PRESENT?	Х	
SURFACE SEAL COMPETENT? (if cracked, heaved, etc., describe below)	Х	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	Х	
HEADSPACE READING (ppm) AND INSTRUMENT USED	0.0	PPM
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	Stick-u	p/3.1
PROTECTIVE CASING MATERIAL TYPE:	Ste	eel
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	6 - in	iches
	YES	NO
LOCK PRESENT?	Х	
LOCK FUNCTIONAL?	Х	
DID YOU REPLACE THE LOCK?		Х
IS THERE EVIDENCE THAT THE WELL IS DOUBLE-CASED? (If yes, describe below)		Х
WELL MEASURING POINT VISIBLE?	Х	
WELL DEPTH FROM MEASURING POINT (Feet):	31	.28
DEPTH OF WATER FROM MEASURING POINT (Feet):	3.	69
WELL DIAMETER (Inches):	4 - in	iches
WELL CASING MATERIAL:	P\	/C
PHYSICAL CONDITION OF VISIBLE WELL CASING:	Go	od
	Will place I	D tags next
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	inspe	ction
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	N	А

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Well is located along the southern perimeter fence.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in brush.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): Business with equipment located to the south.

REMARKS:

INSPECTOR:N. PetersonDATE:6/15/2020WELL ID:CCSK-MW-05A

	YES	NO
WELL VISIBLE? (If not, provided directions below)	Х	
WELL I.D. APPEARS ON PROTECTIVE CASING OR WELL:		Х
WELL LOCATTIONS MATCH SITE MAP? (If not, sketch actual location on back)	х	
	_	
	YES	NO
SURFACE SEAL PRESENT?	Х	
SURFACE SEAL COMPETENT? (if cracked, heaved, etc., describe below)	х	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	Х	
	0.01	DD14
HEADSPACE READING (ppm) AND INSTRUMENT USED		PPM
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		p / 2.46
PROTECTIVE CASING MATERIAL TYPE:		eel
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	6 - in	nches
	YES	NO
LOCK PRESENT?	YES X	NO
LOCK PRESENT?	_	NO
	X	NO X
LOCK FUNCTIONAL?	X	
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK?	X	x
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE-CASED? (If yes, describe below) WELL MEASURING POINT VISIBLE?	X X X	x
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE-CASED? (If yes, describe below)	x x x 70	X X
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE-CASED? (If yes, describe below) WELL MEASURING POINT VISIBLE? WELL DEPTH FROM MEASURING POINT (Feet):	x x x 70 2.4	X X 0.8
LOCK FUNCTIONAL?	X X X 70 2 2 - in	X X 0.8 49
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE-CASED? (If yes, describe below) WELL MEASURING POINT VISIBLE? WELL DEPTH FROM MEASURING POINT (Feet): DEPTH OF WATER FROM MEASURING POINT (Feet): WELL DIAMETER (Inches):	X X X 70 2.in P\	X X X 0.8 49 nches
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE-CASED? (If yes, describe below) WELL MEASURING POINT VISIBLE? WELL DEPTH FROM MEASURING POINT (Feet): DEPTH OF WATER FROM MEASURING POINT (Feet): WELL DIAMETER (Inches): WELL CASING MATERIAL:	X X X 70 2. 2 - in PV Go	X X X 0.8 49 nches VC
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE-CASED? (If yes, describe below) WELL MEASURING POINT VISIBLE? WELL DEPTH FROM MEASURING POINT (Feet): DEPTH OF WATER FROM MEASURING POINT (Feet): WELL DIAMETER (Inches): WELL CASING MATERIAL:	X X X 70 2 2 - in PV Go Will place I	X X X 2.8 49 aches VC bod

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Well is located outside the perimeter fence, throuh a small gate on the northern edge of the site.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in brush

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None

REMARKS:

INSPECTOR:N. PetersonDATE:6/15/2020WELL ID:CCSK-MW-05B

	YES	NO
WELL VISIBLE? (If not, provided directions below)	Х	
WELL I.D. APPEARS ON PROTECTIVE CASING OR WELL:		Х
WELL LOCATTIONS MATCH SITE MAP? (If not, sketch actual location on back)	Х	
	-	
	YES	NO
SURFACE SEAL PRESENT?	Х	
SURFACE SEAL COMPETENT? (if cracked, heaved, etc., describe below)	Х	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	Х	
HEADSPACE READING (ppm) AND INSTRUMENT USED	0.1	PPM
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	_	p / 2.60
PROTECTIVE CASING AND HEIGHT OF SHEKOF IN TEET (IT applicable)		eel
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		nches
		lenes
	YES	NO
LOCK PRESENT?	Х	
LOCK FUNCTIONAL?	Х	
DID YOU REPLACE THE LOCK?		Х
IS THERE EVIDENCE THAT THE WELL IS DOUBLE-CASED? (If yes, describe below)		Х
WELL MEASURING POINT VISIBLE?	Х	
WELL DEPTH FROM MEASURING POINT (Feet):	30	.25
DEPTH OF WATER FROM MEASURING POINT (Feet):		35
WELL DIAMETER (Inches):	2 - ir	nches
WELL CASING MATERIAL:	P	VC
PHYSICAL CONDITION OF VISIBLE WELL CASING:	Gc	bod
	Will place I	D tags next
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	inspe	ection
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	N	IA

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Well is located outside the perimeter fence, throuh a small gate on the northern edge of the site.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in brush

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None

REMARKS:

INSPECTOR: N. Peterson DATE: 6/15/2020 WELL ID: CCSK-MW-20A

	YES	NO
WELL VISIBLE? (If not, provided directions below)	Х	
WELL I.D. APPEARS ON PROTECTIVE CASING OR WELL:		Х
WELL LOCATTIONS MATCH SITE MAP? (If not, sketch actual location on back)	Х	
	YES	NO
SURFACE SEAL PRESENT?	Х	
SURFACE SEAL COMPETENT? (if cracked, heaved, etc., describe below)	Х	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	Х	
HEADSPACE READING (ppm) AND INSTRUMENT USED	0.3	PPM
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	Stick-u	o / 3.45
PROTECTIVE CASING MATERIAL TYPE:		eel
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	6 - ir	iches
	YES	NO
LOCK PRESENT?	Х	
LOCK FUNCTIONAL?	Х	
DID YOU REPLACE THE LOCK?		Х
IS THERE EVIDENCE THAT THE WELL IS DOUBLE-CASED? (If yes, describe below)		Х
WELL MEASURING POINT VISIBLE?	Х	
WELL DEPTH FROM MEASURING POINT (Feet):	39	.95
DEPTH OF WATER FROM MEASURING POINT (Feet):	2.	07
WELL DIAMETER (Inches):	4 - ir	iches
WELL CASING MATERIAL:	P۱	/C
PHYSICAL CONDITION OF VISIBLE WELL CASING:	Gc	od
	Will place I	D tags next
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	inspe	ction
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	N	A

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Well is located on the eastern edge of the landfill, between the landfill cap and the wetland.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in brush.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None

REMARKS:

Water was above top of casing and no well plug is present. Riser should be added to reach top of casing.

INSPECTOR:N. PetersonDATE:6/15/2020WELL ID:CCSK-MW-20B

	YES	NO
WELL VISIBLE? (If not, provided directions below)	Х	
WELL I.D. APPEARS ON PROTECTIVE CASING OR WELL:		Х
WELL LOCATTIONS MATCH SITE MAP? (If not, sketch actual location on back)	Х	
	YES	NO
SURFACE SEAL PRESENT?	Х	
SURFACE SEAL COMPETENT? (if cracked, heaved, etc., describe below)	Х	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	Х	
HEADSPACE READING (ppm) AND INSTRUMENT USED	0.0 F	
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	Stick-up	
PROTECTIVE CASING MATERIAL TYPE:	Steck up	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	6 - in	-
	YES	NO
LOCK PRESENT?	Х	
LOCK FUNCTIONAL?	Х	
DID YOU REPLACE THE LOCK?		Х
IS THER EVIDENCE THAT THE WELL IS DOUBLE-CASED? (If yes, describe below)		Х
WELL MEASURING POINT VISIBLE?	Х	
WELL DEPTH FROM MEASURING POINT (Feet):	19.	75
DEPTH OF WATER FROM MEASURING POINT (Feet):	3.3	35
WELL DIAMETER (Inches):	2 - in	ches
WELL CASING MATERIAL:	P۱	/C
PHYSICAL CONDITION OF VISIBLE WELL CASING:	Go	od
	Will place I	D tags next
	will place if	b tugs next
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	inspe	-

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Well is located on the eastern edge of the landfill, between the landfill cap and the wetland.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in brush

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None

REMARKS:

Water was above top of casing and no well plug is present. Riser should be added to reach top of casing.

Appendix C

Groundwater Sampling Logs – June 15^{th} through 17^{th} , 2020

			LOW	FLOW GRO	UNDWA	TER SAMP	LING REC	ORD		
	PROJECT NAME		unty Sanitary - Kessm	an Landfill	LC	$\frac{1}{5} \frac{1}{5} \frac{1}{5}$	1.1 7 B D/	ATE	15/727]
-	PROJECT NUME		387570.0000.000		(ST	$\frac{1}{3.5}$		ND TIME	15/202 (:30	þ
	SAMPLE ID CCSK - A	1W-03B		PLE TIME 435	SIT	FE NAME/NUMBE 340011		GE OF		1
WELL DIAN	METER (INCHES)]2 _ 4	6		OTHER	ž			J WELL INTEGRITY YES NO N/A
TUBING ID	(INCHES)	1/8	1/4 3/8	1/2	5/8	OTHER			CAP CASING	
MEASUREN	MENT POINT (MP)	TOP O	F RISER (TOR)	TOP OF CASINO	G (TOC)	OTHER			LOCKED COLLAR	
INITIAL (BMP)	дтw З, (9 _{FT}	FINAL DTW (BMP)			OT. CASING ICKUP (AGS)		FT	TOC/TOR DIFFERENCI	E FT
WELL D (BMP)	ертн <u>31</u> ,	29 FT	SCREEN LENGTH		FT AN) IBIENT AIR		PPM	REFILL TIM SETTING	ER
WATER COLUMI	N	FT	DRAWDOWN VOLUME		GAL MC	O WELL DUTH		PPM	DISCHARGE TIMER SETT	
CALCUL GAL/VO		GAL	(final DTW - initial DT TOTAL VOL. PURGED	IW X well diam. square	DR	AWDOWN/ TAL PURGED			PRESSURE	
(column X	well diameter square	d X 0.041)		l minutes X 0.00026 gal	/mL)	TAL PURGED			TO PUMP	PSI
TIME 3-5 Minutes	DTW (FT) 0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	SP. CONDUCTANCE (mS/cm)	pH (units) (+/- 0.1 units)	DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (ntu (+/- 10% <10 ntu		INTAKE	COMMENTS
358	BEGIN PUR	GING	, , ,	(+/- 3%)	<u>[`</u>	(1, 10,0)	(1) 10/0 10/0	(17-10 mv)	DEPTH (ft)	
1400	5.63	300	12.56	12.0	6.99	2.34	12,3	-88	25	clear, no ocor
1407	6.40	300	12,15	11.9	6.93	1.65	11,9	-99	25	SAA
1410	6.55	300	12,11	11,8	6.94	1,52	13.8	-101	25	SAA
1415	6.78	300	12.02	and III	4	1.42	14,0	-102	25	SAA
1425	6.80	300	12.14	11.8	6:92	1,30	12.6	-103	25	SAA
1925	6.80	300	12,13	11.8	6.94	121	6.9	-106	25	SAA
	1									,
									-	
	5.0000.0000 N		2							
	FI	NAL STABILIZ	ZED FIELD PARA	A 2003	opriate sign	ificant figures[S]	F])		COND.: 3 SF max (pH: nearest tenth (e	
FOUIDMENT	DOCUMENTATIO	AT	12.13	11.8	6.94	1.21	6.9	-106	DO: nearest tenth (e TURB: 3 SF max, n ORP: 2 SF (44.1 =	nearest tenth (6.19 = 6.2, 101 = 101)
_/	TYPE OF PUMP STALTIC	<u>D</u>	ECON FLUIDS USED			UMP/BLADDER MAT				EQUIPMENT USED
	IERSIBLE		LIQUINOX DEIONIZED WATER POTABLE WATER	SILICON T TEFLON T TEFLON L		PVC F	EEL PUMP MATERIA PUMP MATERIAL PROBE SCREEN	AL.	WL ME PID WO ME	
WAT			NITRIC ACID HEXANE	HDPE TUE LDPE TUB	BING	TEFLO	ON BLADDER	R.J.	TURB. 1 PUMP	METER
OTHE			METHANOL DTHER	OTHER OTHER		OTHE			OTHER FILTER	
	PARAME	-	METHOD NUMBER	FIELD FILTERED				SAMPLE	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
x	See Chain of Custod	у	-		<u> </u>					
					-					
								80		and the second second
	F				-					
	SEDVATIONS					_				
PURGE WA		NO	NUMBER OF GALLO	ONS		SKETCH/NOTES				8
CONTAINE NO-PURGE UTILIZED		NO	GENERATED If yes, purged approximat to sampling or	ely 1 standing volume pric _mL for this sample local						
	y . h	XIM	and the second							
	nature: WH	/~~ `	7.1.	exit Lill						
Checked By:	-26		Date: 6/1	5/20						<i>*</i> .
	RC							LOW FI		NDWATER SAMPLING RECORD rell Drive, Suite 200, Clifton Park, NY 12065

			LOV	V FLOW GRO	DUNDWA	TER SAMP	LING REC	ORD		
	PROJECT NAM	E Cross C			-	DCATION ID		DATE ,		
	PROJECT NUM		287570.0000.000			LESK - INW -	ALAB	6/16/2 END TIME		
	SAMPLE ID		SAM	APLE TIME	SIT	TE NAME/NUMBE		10:44	Sam	
		W-0181	5	020	L	340011		0		
	METER (INCHES)		2 4	6	8	OTHER	-		САР	WELL INTEGRITY YES NO N/A
TUBING ID	(INCHES) MENT POINT (MP)		1/4 3/8	1/2	5/8	OTHER			CASING LOCKED	= $=$ $=$
INITIAL	DTW 0		F RISER (TOR) FINAL DTW	TOP OF CASIN		OTHER			COLLAR	
(BMP) WELL D	L	6 FT	(BMP) SCREEN			ICKUP (AGS)		FT	TOC/TOR DIFFERENCE	
(BMP)	23	.62 FT	LENGTH			IBIENT AIR		РРМ	REFILL TIME SETTING	SEC SEC
WATER COLUM		FT	DRAWDOWN VOLUME	79117 X 11 11	GAL MC	O WELL OUTH		PPM	DISCHARGE TIMER SETTI	ING SEC
CALCUL GAL/VO	L	GAL	TOTAL VOL. PURGED	TW X well diam. square	DR	AWDOWN/ TAL PURGED			PRESSURE	
	well diameter square		(mL per minute X tota	al minutes X 0.00026 ga	l/mL)	TALIURGED	L]	TO PUMP	PSI
TIME 3-5 Minutes	0.0-0.33 ft	PURGE RATE (mL/min)	TEMP. (°C)	SP. CONDUCTANCE (mS/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (nt		PUMP	
9.43	Drawdown BEGIN PUR		(+/- 3 degrees)	(+/- 3%)	(+/- 0.1 units)	(+/- 10%)	(+/- 10% <10 nt	u) (+/- 10 mv)	DEPTH (ft)	COMMENTS
9:55	10.09	250	12.04	1,17	7.73	3,56	0.0	144	17	
1000	10.42	250	11.88	1.08	7.66	3.05	0.0	ISZ	17	star, no ola
1005	10.44	250	11.87	1.07	7.71	2.99	0.0	150	17	SAA
1010	10.47	250	11.91	1.06	7,74	2,95	0.0	152	()	544
								-		
	FI	NAL STABILIZ	LED FIELD PARA	METERS (to appr	onriate signi	ficant figures [SE	 7)		TEMP.: nearest degre	re (ex. 10.1 = 10)
		40 · · · · · · · · · · · · · · · · · · ·	11,91	1:06	774	2.95	0.0	1150	pH: nearest tenth (ex. DO: nearest tenth (ex.	. 3.51 = 3.5)
	DOCUMENTATIO			1100	///	LIJ	0.0	122	ORP: 2 SF (44.1 = 44	arest tenth (6.19 = 6.2, 101 = 101) 4, 191 = 190)
- PERIS	<u>TYPE OF PUMP</u> TALTIC IERSIBLE	I	ECON FLUIDS USED JQUINOX DEIONIZED WATER	SILICON T TEFLON T	UBING		EL PUMP MATERIA	AL	WL METH	QUIPMENT USED ER
BLAD	DER	F	OTABLE WATER		INED TUBING	GEOPF	JMP MATERIAL ROBE SCREEN IN BLADDER		PID WQ METI	
WATT OTHE OTHE	R	N	EXANE ÆTHANOL	LDPE TUB OTHER	ING	OTHER OTHER	2		TURB. MI PUMP OTHER	51ER
	CAL PARAMETER	S	METHOD	OTHER		OTHER			FILTERS	NO TYPE
x	PARAME [*] See Chain of Custod		NUMBER	FIELD FILTERED	PRESER			SAMPLE OLLECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
									12	
			100-000			· · ·				
	SERVATIONS				SI	KETCH/NOTES				
PURGE WA			NUMBER OF GALLO GENERATED	INS						
NO-PURGE UTILIZED	METHOD YES		If yes, purged approximate to sampling or	ely 1 standing volume prior _mL for this sample locati	on.					
Sampler Sign	ature: Kyli	Yú	Print Name U	exie Lill						
Checked By:			Date: 6/11	120						
•) T	RC		10/10	1				LOW FL	OW GROUND	WATER SAMPLING RECORD
										Drive, Suite 200, Clifton Park, NY 12065

		LOW F	LOW GROUNI	WATER SAMI	PLING RE	CORD		
PROJE	CT NAME	County Sanitary - Kessman I		LOCATION ID		DATE		
PROJE	CT NUMBER	387570.0000.0000		CLSK-MW START TIME	<i>p</i> /+ •	6/16/21 END TIME	0	
SAMPI Č(EID SK-MW-C	SAMPL	E TIME	SITE NAME/NUMB 34001		PAGE	2	
WELL DIAMETER		2 4	6 8	OTHER		U		VELL INTEGRITY YES NO N/A
TUBING ID (INCHE	s) 1/8	1/4 3/8	1/2 5/8	OTHER			CAP CASING	
MEASUREMENT PO	DINT (MP) TOP	OF RISER (TOR)	TOP OF CASING (TOC	OTHER			LOCKED COLLAR	
INITIAL DTW (BMP)	13.60 FT	FINAL DTW (BMP)	FT	PROT. CASING STICKUP (AGS)		FT	TOC/TOR DIFFERENCE	FT
WELL DEPTH (BMP)	60.90 FT	SCREEN LENGTH	FT	PID AMBIENT AIR		PPM	REFILL TIMES SETTING	R SEC
WATER COLUMN	FT	DRAWDOWN VOLUME	GAL	PID WELL			DISCHARGE	
CALCULATED			X well diam. squared X 0.0	MOUTH 41) DRAWDOWN/	L	PPM	TIMER SETTIN	NG SEC
A State Stat	GAL GAL	PURGED (mL per minute X total mi		TOTAL PURGED			TO PUMP	PSI
TIME DT 3-5 Minutes 0.0-	-0.33 ft PURGE RAT	ABILIZATION CRITERIA E TEMP. (°C) (+/- 3 degrees)	. CONDUCTANCE pH (mS/cm) (+/-0	(units) DISS. O2 (mg/L		(ntu) REDOX (mv)	PUMP INTAKE	COMMENTS
Dra Dra	GIN PURGING	(17-3 degrees)	(+/- 3%)	.1 units) (+/- 10%)	(+/- 10% <10	ntu) (+/- 10 mv)	DEPTH (ft)	
1100 14	40 300	12.52	2.11 7	24 3.45	0.0	184	55	(l
1105 15.	10 300	12.14		06 3.02	0.0	190	SS	Clear, No odor
110 15	90 300	12.08		03 2.83	0.0	193	55	SAL
Pump di	ed restur	led purging	on pube 2					
		100						
		-						
				4				
	EINAL STADU						TEMP.: ncarest degree	e (ex. 10.1 = 10)
	FINAL STABIL	IZED FIELD PARAM	ETERS (to appropria	te significant figures[SF])		COND.: 3 SF max (ex. pH: nearest tenth (ex. DO: nearest tenth (ex. TURB: 3 SF max, near	. 3333 = 3330, 0.696 = 0.696) 5.53 = 5.51 3.51 = 3.51 rest tenth (6.19 = 6.2, 101 = 101)
EQUIPMENT DOCUM		DECON FLUIDS USED	I TI	BING/PUMP/BLADDER MA			ORP: 2 SF (44.1 = 44,	191 = 190) DUIPMENT USED
PERISTALTIC SUBMERSIBLE		LIQUINOX DEIONIZED WATER	SILICON TUBING TEFLON TUBING	S. S' PVC	TEEL PUMP MATE		WL METE PID	
BLADDER	 	POTABLE WATER NITRIC ACID HEXANE	TEFLON LINED T HDPE TUBING LDPE TUBING	TEF	PROBE SCREEN		WQ METE TURB. ME	
OTHER OTHER		METHANOL OTHER	OTHER OTHER	OTH OTH OTH	IER		PUMP OTHER FILTERS	NO. TYPE
ANALYTICAL PAR	PARAMETERS	METHOD			VOLUME	SAMPLE	 QC	SAMPLE BOTTLE ID
X See Chai	n of Custody	NUMBER	FILTERED	METHOD R	EQUIRED	COLLECTED	COLLECTED	NUMBERS
								1.4
			<u>.</u>					
			·			0.00		
					,			
PURGE OBSERVATED				SKETCH/NOTES				
PURGE WATER CONTAINERIZED	YES NO	NUMBER OF GALLONS GENERATED						
NO-PURGE METHO UTILIZED	D YES NO	If yes, purged approximately i to sampling orm	l standing volume prior L for this sample location.					
Sampler Signature:	light this	Print Name Le X	kie Lill					
Checked By:		Date: $\left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$	2.0					
TR	C					LOW FL		WATER SAMPLING RECORD
		and the second	Building and the second se			TOTAL COLORIDANIA COMPLEX	10 Maxwell	Drive, Suite 200, Clifton Park, NY 12065

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
SAMPLE ID SAMPLE D SAMPLE D SAMPLE D SAMPLE D SAMPLE D SAMPLE D SAMPLE D SITE NAME/NUMBER 340011 A OF A WELL IN WELL IN WELL IN WELL IN SAMPLE D SAMPLE D SITE NAME/NUMBER SAMPLE D SAMPLE D SITE NAME/NUMBER SAMPLE D SITE NAME/NUMBER SAMPLE D SITE NAME/NUMBER SAMPLE D SITE NAME/NUMBER SAMPLE D SITE NAME/NUMBER SAMPLE D SITE NAME/NUMBER SAMPLE D SAMPLE D SITE NAME/NUMBER SAMPLE D SITE NAME/NUMBER SAMPLE D SITE NAME/NUMBER SAMPLE D SITE NAME/NUMBER SITE NAME/NUMBER SAMPLE D SITE NAME/NUMBER SITE NAME/NUM SITE NAM	
	NTEGRITY 5 NO N/A
TUBING ID (INCHES) 1/4 3/8 1/2 5/8 OTHER CAP CASING	
MEASUREMENT POINT (MP)	= =
INITIAL DTW (BMP) FT STICKUP (AGS) FT DIFFERENCE	FT
WELL DEPTH (BMP) SCREEN LENGTH PID FT REFILL TIMER AMBIENT AIR REFILL TIMER SETTING	SEC
WATER DRAWDOWN PID WELL DISCHARGE COLUMN FT VOLUME GAL MOUTH PPM TIMER SETTING	
CALCULATED TOTAL VOL. DRAWDOWN/ PRESSURE	SEC
GAL/VOL GAL PURGED GAL TOTAL PURGED TO PUMP (column X well diameter squared X 0.041) (mL per minute X total minutes X 0.00026 gal/mL) TO PUMP TO PUMP	PSI
FIELD PARAMETERS WITH PROGRAM STABILIZATION CRITERIA (AS LISTED IN THE QAPP) TIME DTW (FT) PURGE RATE TEMP. (°C) SP. CONDUCTANCE (mS(cm)) pH (units) DISS. 0 ₂ (mg/L) TURBIDITY (ntu) PUMP 2.5 Micro 0.0-0.33 ft PURGE RATE TEMP. (°C) (mS(cm)) pH (units) DISS. 0 ₂ (mg/L) TURBIDITY (ntu) REDOX (mv) PUMP	
$\frac{3-5 \text{ Minutes}}{\text{Drawdown}} \frac{(\text{mL/min})}{(\text{mL/min})} \frac{(+/-3 \text{ degrees})}{(+/-3\%)} \frac{(\text{mS/cm})}{(+/-0.1 \text{ units})} \frac{(+/-10\%)}{(+/-10\%)} \frac{(+/-10\%)}{(+/-10\%)}$	COMMENTS
1225 BEGIN PURGING 1230 17.22 300 13.72 2.46 7.22 4.20 0.0 182 55 11-	
1020 14 00 2 m 12 2 m 12 4 m 12 10 10 10 10 10 10 10 10 10 10 10 10 10	arino odor
	AA
1011 19 19 10 10 10 10 10 10 10 10 10	A A
1244 19.13 300 12.82 2.44 7.03 2.02 0.0 185 55 SA	4.1
1247 19,19 300 12.85 2.44 7.03 2.00 0.0 185 SS 54	AR
	17
FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures[SF]) TEMP: a server degree (ex. 10.1 = COND: 3 to Final Conduct And Advector (ex. 5.3 = 5.5) PH: nearest tenth (ex. 5.3 = 5.5)	330, 0.696 - 0.696)
Image:	(6.19 = 6.2, 101 - 101)
TYPE OF PUMP DECONFLUIDS USED TUBING/PUMP/BLADDER MATERIALS EQUIPMENT	NT USED
V PERISTALTIC LIQUINOX SILCON TUBING S. STEEL PUMP MATERIAL WL METER SUBMERSIBLE DEIONIZED WATER TEFLON TUBING PVC PUMP MATERIAL PID BLADDER POTABLE WATER TEFLON LINED TUBING GEOPROBE SCREEN WQ METER	
WATTERA HITRIC ACID HDPE TUBING TEFLON BLADDER TURB. METER WATTERA HEXANE LDPE TUBING OTHER PUMP	
OTHER METHANOL OTHER OTHER OTHER OTHER OTHER OTHER OTHER OTHER ANALYTICAL PARAMETERS	ТҮРЕ
	SAMPLE BOTTLE ID
X See Chain of Custody METHOD METHOD COLLECTED COLLECTED	NUMBERS
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS	-
CONTAINERIZED GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior	
UTILIZED in yes, purged approximately 1 standing volume pror to sampling ormL for this sample location.	
Sampler Signature: Just MM Print Name Lexie Lill	
1	
Checked By: Date: $\int_{\Omega} \int \int_{\Omega} \int_$	

	LOW FLOW GRO	UNDW.	ATER SAMP	LING RECO	ORD		
PROJECT NAME Cross Count	y Sanitary - Kessman Landfill		OCATION ID	IDA	FF	C 120	b o
PROJECT NUMBER	387570.0000.0000	s	CCSK-N		D TIME	6/202	20
SAMPLE ID CCSK-M	SAMPLE TIME	s	13',50 SITE NAME/NUMBEI	R PA	14: Z	10	
	W WA 14.0	L	340011		OF		WELL INTEGRITY
WELL DIAMETER (INCHES) 1 2 TUBING ID (INCHES) V 1/8 1.]8 [OTHER	7		CAP	YES NO N/A
TUBING ID (INCHES) 1/8 1. MEASUREMENT POINT (MP) TOP OF RI		5/8 G(TDC)	OTHER			CASING LOCKED COLLAR	$\equiv \equiv \equiv$
INITIAL DTW	INAL DTW	P	ROT. CASING			TOC/TOR	
44 41.15	3MP) CREEN		TICKUP (AGS)		FT	DIFFERENCE	
(BMP) (BMP)	ENGTH		ID MBIENT AIR	0.0	PPM	REFILL TIME SETTING	SEC
COLUMN FT V	RAWDOWN OLUME inal DTW - initial DTW X well diam. square	GAL N	ID WELL 10UTH	0.0	PPM	DISCHARGE TIMER SETTI	ING SEC
CALCULATED TO GAL/VOL GAL PU	OTAL VOL. URGED	GAL T	ORAWDOWN/ OTAL PURGED			PRESSURE TO PUMP	PSI
FIELD PARAMETERS WITH PROGRAM STABIL	nL per minute X total minutes X 0.00026 gal	l/mL)					131
TIME DTW (FT) 3-5 Minutes 0.0-0.33 ft (mL/min)	TEMP. (°C) (+/- 3 degrees) SP. CONDUCTANCE (mS/cm)) DISS. O ₂ (mg/L)	TURBIDITY (ntu) (+/- 10% <10 ntu)	REDOX (mv (+/- 10 mv)	INTAKE	COMMENTS
BEGIN PURGING	(+/- 3%)				1 (** 10 m)	DEPTH (ft)	
1350 3.18 350	17.57 13.5	6.97	2.08	4.6	-88	35	Clear no ndor
1355 2.90 350	16.00 13.5	6.93	1.24	0.2	-95	35	SAA
1400 2.57 350	16,45 13,4	6.90	1.02	0.0	-98	35	SAA
1405 2.73 350	16.09 13.5	6.90	0.94	0.0	-100	35	SAA
			-				
					5.1 T		X
						TEMP.: nearest degr	ree (ex. 10.1 = 10)
FINAL STABILIZE	D FIELD PARAMETERS (to appr	1	-	1	1	COND.: 3 SF max (c pH: nearest tenth (ex DO: nearest tenth (ex	ex. 3333 - 3330, 0.696 = 0.696) x. 5.53 - 5.5)
EQUIPMENT DOCUMENTATION	16 13.5	6.9	0.9	0.0	-100	TURB: 3 SF max, ne ORP: 2 SF (44.1 = 4	earest tenth (6.19 = 6.2, 101 = 101)
PERISTALTIC LIQU	DN FLUIDS USED UINOX SILICON T		/PUMP/BLADDER MATI	<u>ERIALS</u> EL PUMP MATERIAI		WL MET	EQUIPMENT USED
BLADDER POT	ONIZED WATER TEFLON T ABLE WATER TEFLON LI RIC ACID HDPE TUB	INED TUBING	G GEOPH	UMP MATERIAL ROBE SCREEN		PID WQ MET	TER
WATTERA HEX OTHER MET	CANE LDPE TUB CHANOL OTHER		OTHER			TURB. M PUMP OTHER	4ETER
ANALYTICAL PARAMETERS			OTHEI			FILTERS	5 NO TYPE
PARAMETER X See Chain of Custody	METHOD FIELD NUMBER FILTERED				MPLE LECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
				· · · ·			
и		-					
PURGE OBSERVATIONS		- <u> </u>	SKETCH/NOTES				
CONTAINERIZED GE	UMBER OF GALLONS ENERATED						
	ves, purged approximately 1 standing volume prior sampling ormL for this sample locat						
Sampler Signature:	Print Name Lexie Lill						
Checked By:	Date: 6 116 20						100 K
		L			LOW FL		DWATER SAMPLING RECORD Ill Drive, Suite 200, Clifton Park, NY 12065

- All PL All All

	的法律的		LOW	FLOW GRO	DUNDWA	TER SAMP	LING REC	ORD		
	PROJECT NAMI	E Cross Cou	unty Sanitary - Kessn	ıan Landfill	LO				106]
	PROJECT NUMI	BER	387570.0000.000	00	ST	CCSK-M ART TIME			1	
	SAMPLE ID	NW-20.	A 12	APLE TIME	SIT	ISID TE NAME/NUMBE	R P	AGE 1601	í	
WELL DIA	METER (INCHES)					340011		OF		WELL INTEGRITY
TUBING ID	a 1.8		2 4 1/4 3/8		8 5/8	OTHER			CAP	YES NO N/A
MEASURE	MENT POINT (MP) TOP OF	F RISER (TOR)	TOP OF CASIN		OTHER			LOCKED	
INITIAL (BMP)	DTW 3.	39 FT	FINAL DTW (BMP)			OT. CASING			TOC/TOR	
WELL D	ертн	10	SCREEN			ICKUP (AGS) D		FT	DIFFERENCI REFILL TIM	
(BMP) WATER	11	J) FT	LENGTH DRAWDOWN			IBIENT AIR		PPM	SETTING	SEC
COLUM	N	FT	VOLUME	TW X well diam. squar	GAL MC	D WELL DUTH		РРМ	DISCHARGE TIMER SETT	ING SEC
CALCUI GAL/VO (column X		GAL	TOTAL VOL. PURGED		GAL TO	AWDOWN/ TAL PURGED			PRESSURE TO PUMP	PSI
FIELD PA				al minutes X 0.00026 g ERIA (AS LISTED IN	THE QAPP)			-		
TIME 3-5 Minutes	0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	SP. CONDUCTANC (mS/cm) (+/- 3%)	E pH (units) (+/- 0.1 units)	DISS. O ₂ (mg/L) (+/- 10%)		tu) REDOX (mv u) (+/- 10 mv)) PUMP INTAKE DEPTH (ft)	COMMENTS
\$1500	BEGIN PUR	GING							DEPTH (ft)	
1510	5.08	400	14.35	1.03	7.31	1.00	33.6	-153	15	CLEWF, DE FOLCOM
1515	5.12	400	14.20	0.881	7.30	Him ons	41.6	-163	15	SAA
1520	5.18	400	14.01	0.853	7.26	0.70	57.6	-162	15	SAA
1520	5.18	400	3.89	0.842	1.15	0.65	57.9	-159	15	SAA
1500	210	100	15.01	0.837	1.1.1	0.64	563	-158	15	SAA andreas
	- ABOLO	4200							NØ2	Brouge
										2
						×.				
	IFI	NAL CTADILIZ							TEMP.: nearest deg	ree (ex. 10.1 = 10)
	FI	NAL STABILIZ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	METERS (to app	oropriate sign			1001	COND.: 3 SF max (pH: nearest tenth (e DO: nearest tenth (e	ex. 3333 = 3330, 0.696 = 0.696) x. 5.53 = 5.5) x. 3.51 = 3.5)
EQUIPMENT	DOCUMENTATIO	DN	13.84	0.851	17,17	0.64	56.3	- 158	TURB: 3 SF max, n ORP: 2 SF (44.1 = 4	carest tenth (6.19 = 6.2, 101 = 101) 14, 191 = 190)
PERIS	<u>TYPE OF PUMP</u> STALTIC MERSIBLE		ECON FLUIDS USED LIQUINOX	SILICON	TUBING		EL PUMP MATERI	AL	WL ME	EQUIPMENT USED TER
BLAD		P	DEIONIZED WATER POTABLE WATER VITRIC ACID	TEFLON TEFLON HDPE TU	LINED TUBING	GEOPI	UMP MATERIAL ROBE SCREEN IN BLADDER		PID WQ ME TURB. N	
WAT OTHE OTHE		N	IEXANE METHANOL	LDPE TU OTHER		OTHE	2		PUMP OTHER	
	CAL PARAMETER	s	METHOD	OTHERFIELD	DDECED	OTHER			<u>FILTER</u>	
x	PARAME See Chain of Custor		NUMBER	FILTERED				SAMPLE OLLECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
	5 	61010 Lt.								
	BSERVATIONS				s	SKETCH/NOTES				
PURGE WA	ERIZED		NUMBER OF GALL GENERATED							
NO-PURGE UTILIZED	E METHOD YES			tely 1 standing volume pri mL for this sample loce						
Sampler Sig	nature: YAKA	Ym	Print Name	exie Lill						
1 June 1	10 07 0	New of the	Date: 0// (.	124						
Checked By										

ALCONT OF STREET, STRE

		LOW FLOW (GROUNDWA	TER SAMP	LING RECO	ORD		
PROJECT NAME	Cross County Sanit	ary - Kessman Landfill		OCATION ID	DA	TE 6/11/	72	
PROJECT NUMBER	3875	70.0000.0000	ST	ART TIME 9.44		D TIME	26	
SAMPLE ID	MW-2081	SAMPLE TIME	SIT	FE NAME/NUMBE	R PA	GE (35	2
	700-200			340011			F	WELL INTEGRITY
WELL DIAMETER (INCHES)		4 6 3/8 1/2	5/8	OTHER			CAP	YES NO N/A
MEASUREMENT POINT (MP)	TOP OF RISER (1		CASING (TOC)	OTHER			CASING LOCKED COLLAR	
INITIAL DTW (BMP)	T FINAL I FT (BMP)	отw		OT. CASING			TOC/TOR	
WELL DEPTH	- SCREEN			ICKUP (AGS) D		FT	DIFFERENCI	
(BMP)	<u> </u>			IBIENT AIR		РРМ	SETTING	SEC
COLUMN	FT VOLUM (final DT	E W - initial DTW X well diam	GAL MO	D WELL DUTH		РРМ	DISCHARGE TIMER SETT	
CALCULATED GAL/VOL (column X well diameter squared X	GAL TOTAL GAL PURGE)	GAL TO	AWDOWN/ TAL PURGED			PRESSURE TO PUMP	PSI
FIELD PARAMETERS WITH PF	ROGRAM STABILIZAT		ED IN THE QAPP)	1	1			
TIME D1W (P1) 3-5 Minutes Drawdown		(P. (°C) degrees) SP. CONDUCT (mS/cm) (+/- 3%)	$(\pm/-0.1 \text{ units})$	DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (ntu) (+/- 10% <10 ntu)			COMMENTS
944 BEGIN PURGI								
	400 14.1	V	1.12	0.47	0.6	- 147	35	Cleur slight retroleun 0.
955 2.17	400 13.	82 0.85	6 7.38	0.24	0.0	-151	35	SAA
1000 2.17	400 13.7	50 0.85	3 7.35	0.28	0.6	-151	35	SAA
	14 14	0/100		Undo	0.0		23	JA()
		0.0	1					
	N							
								¥
FINA	L STABILIZED FIE	LD PARAMETERS (to	appropriate sign	ificant figures[SI	[[])	-	TEMP.: nearest deg COND.: 3 SF max (ex. 3333 - 3330, 0.696 = 0.696)
	12.	56 0.851	1.33	0.28	0.0	-151	pH: nearest tenth (e DO: nearest tenth (e TURB: 3 SF max, n	ex. 3.51 - 3.5) carest tenth (6.19 = 6.2, 101 = 101)
EQUIPMENT DOCUMENTATION	DECON FLU			UMP/BLADDER MAT		1 13/	ORP: 2 SF (44.1 = 4	44, 191 - 190) EQUIPMENT USED
PERISTALTIC SUBMERSIBLE BLADDER	LIQUINOX DEIONIZED	WATER TE	ICON TUBING FLON TUBING	S. STE PVC P	EL PUMP MATERIA UMP MATERIAL	L	WL ME PID	
WATTERA	POTABLE V NITRIC AC HEXANE	D V HD	FLON LINED TUBING PE TUBING PE TUBING		COBE SCREEN IN BLADDER		WQ ME TURB. N PUMP	
OTHER OTHER	METHANOI OTHER	ОТ	HER	OTHE	2	4	OTHER FILTER	
ANALYTICAL PARAMETERS PARAMETER						AMPLE LECTED	QC	SAMPLE BOTTLE ID
X See Chain of Custody	2.					LECTED	COLLECTED	NUMBERS
PURGE OBSERVATIONS				KETCH/NOTES				
PURGE WATER YES CONTAINERIZED	NO NUMBER GENERA	COF GALLONS			chour for	o at	Cher	g at start
NO-PURGE METHOD YES UTILIZED	110	ed approximately 1 standing volu		v vzv	10	A 21	04210	0
Yahin Y	ñ	Name Lexit Li	()	8 I				
Sampler Signature: WM M	Print	I. s. and a second	1					
	Date	6/17/20						
V IKC			5			LOW FI		DWATER SAMPLING RECORD ell Drive, Suite 200, Clifton Park, NY 12065

			LOW	FLOW GRC	UNDWA	TER SAMP	LING REC	ORD		
	PROJECT NAME	Cross Cc	ounty Sanitary - Kessma	an Landfill	LO	CATION ID	D.	ATE	12.]
	PROJECT NUME		387570.0000.0000			ART TIME 11 C		6/1/2 ND TIME	0	-
	SAMPLE ID	-MW-05	B	PLE TIME 1200	SIT	TE NAME/NUMBE 340011		1230 IGE OF	ß	
WELL DIAN	METER (INCHES)		2 4		 ∃8	OTHER	I	1	9	WELL INTEGRITY
TUBING ID			1/4 3/8	· 1/2		OTHER			CAP CASING	YES NO N/A
MEASUREN	MENT POINT (MP)) П ТОР О	F RISER (TOR)	TOP OF CASIN	G (ТОС)	OTHER			LOCKED	
INITIAL (BMP)	DTW 3:1	ΰ ft	FINAL DTW (BMP)			OT. CASING CKUP (AGS)		FT	TOC/TOR DIFFERENCE	
WELL DI (BMP)	ертн 70	, 8 FT	SCREEN LENGTH		PIE			РРМ	REFILL TIMI SETTING	
WATER	N	FT	DRAWDOWN VOLUME			WELL OUTH			DISCHARGE	
CALCUL GAL/VOI	ATED	GAL	(final DTW - initial DT TOTAL VOL.	W X well diam. square	ed X 0.041) DR	AWDOWN/		PPM	TIMER SETT PRESSURE	
(column X	well diameter square	ed X 0.041)	PURGED (mL per minute X total		l/mL)	TAL PURGED			TO PUMP	PSI
TIME 3-5 Minutes	DTW (FT) 0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	RIA (AS LISTED IN SP. CONDUCTANCE (mS/cm) (+/- 3%)	THE QAPP) pH (units) (+/- 0.1 units)	DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (ntr (+/- 10% <10 ntr		INTAKE	COMMENTS
1108	BEGIN PUR	GING		(+/- 3 %)				, , , ,	DEPTH (ft)	
1115	4.65	300	12.34	1.25	6.73	.14	18:9	-49	25	clear, no ocor
1120	4.86	300	12.12	1.24	6.75	1.32	17,1	-56	25	SAA
1125	5.25	300	11.92	1.23	6:66	1.02	21.6	-58	25	SAA
1135	5.45	300	11 92	1,23	6:17	0.86	15.9	-66	25	SAH
1140	5,50	306	12:05	1.74	6.81	1047	14,9	-71	25	SAA
1145	Siso	300	12,19	1.24	6.83	0.34	13.4	-73	25	SAA
1150	5.50	300	12,46	1.25	6.94	0.37	13.3	-74	25	SAA
1155	5.50	300	230	1.25	6184	0.30	14.3	-74	ZS	SAL
						-			TEMP	(101 10)
	FI		ZED FIELD PARA	METERS (to app					COND.: 3 SF max (pH: nearest tenth (e: DO: nearest tenth (e:	
EQUIPMENT	DOCUMENTATIO	yy N	12	1.25	6.8	0.3	14.3	~74	TURB: 3 SF max, n ORP: 2 SF (44.1 = 4	carest tenth (6.19 = 6.2, 101 = 101)
_ 1	TYPE OF PUMP STALTIC	<u>D</u>	<u>ECON FLUIDS USED</u> LIQUINOX	SILICON		JMP/BLADDER MAT	<u>ERIALS</u> EL PUMP MATERIA	AT.	WL ME	EQUIPMENT USED
BLAD	IERSIBLE DER		DEIONIZED WATER POTABLE WATER	TEFLON 1 TEFLON 1	UBING INED TUBING	PVC P	UMP MATERIAL ROBE SCREEN	E	PID WQ ME	
WATT OTHE			NITRIC ACID HEXANE METHANOL	HDPE TUE LDPE TUE OTHER		TEFLC OTHEI OTHEI			TURB. N PUMP	METER
OTHE			OTHER	OTHER		OTHE			OTHER FILTER	<u>S</u> NO TYPE
	PARAME		METHOD NUMBER	FIELD FILTERED				AMPLE LLECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
x	See Chain of Custod	<u>y</u>								х П алан а
			3		-					
PURGE OB	SERVATIONS					KETCH/NOTES				
PURGE WA	TER YES		NUMBER OF GALLO GENERATED	INS		Natar ha	s a ligh	tpink	Color 1	'n sample bottles
NO-PURGE UTILIZED	METHOD YES	NO	If yes, purged approximate to sampling or	ely 1 standing volume pric _mL for this sample loca	r		,	1		in pointies
Sampler Sign	nature: Xui	Lui	Print Name Le	kir Lill						
Checked By:			Date: 6/17	120						
🤣 T	RC							LOW FL		DWATER SAMPLING RECORD

			LOW	FLOW GRO	OUNDWA	TER SAMP	LING REC	ORD		
	PROJECT NAME		ounty Sanitary - Kessn			CATION ID	Ir		ac 1	Vinine
	PROJECT NUME		387570.0000.000		ST	$\frac{CCSK - 1}{RTTIME}$		CND TIME	55 6,	117/20
	SAMPLE ID	5K - M	w-OSA SAN	PLE TIME	SIT	TE NAME/NUMBE 340011	R P	AGE 1 O	F)	-
WELL DIA!	METER (INCHES)		2 4	6	8	OTHER			- 1999	WELL INTEGRITY YES NO N/A
TUBING ID	(INCHES)	1/8	1/4 3/8	1/2	5/8	OTHER			CAP CASING	
MEASUREN	MENT POINT (MP)	ТОР О	F RISER (TOR)	TOP OF CASIN	IG (TOC)	OTHER			LOCKED COLLAR	
INITIAL (BMP)	DTW	63 FT	FINAL DTW (BMP)			OT. CASING ICKUP (AGS)		FT	TOC/TOR DIFFERENC	E FT
WELL DI (BMP)	ертн 30.	2ς _{ετ}	SCREEN LENGTH		FT AM) IBIENT AIR		РРМ	REFILL TIM SETTING	ER
WATER COLUM	N	FT	DRAWDOWN VOLUME		GAL MC) WELL DUTH		РРМ	DISCHARGE TIMER SETT	
CALCUL GAL/VOI		GAL	(final DTW - initial D TOTAL VOL. PURGED	TW X well diam. squa	DR	AWDOWN/			PRESSURE	
(column X	well diameter square	d X 0.041)		al minutes X 0.00026 g	al/mL)	TAL PURGED			TOPUMP	PSI
TIME 3-5 Minutes	DTW (FT) 0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	SP. CONDUCTANC (mS/cm) (+/- 3%)	E pH (units) (+/- 0.1 units)	DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (nt (+/- 10% <10 nt			COMMENTS
1225	BEGIN PUR	GING		(1, 3,0)	Y	wip			DEPTH (ft)	
1230	3.30	300	16.16	1.02	6.90	2++1,3	11.0	-81	55	Clear, no over
12.55	3.39	200	13:07	1.04	6.74	0.90	0:0	-94	55	SAL
1245	3,43	300	12.95	1:02	6.65	0.64	0.0	-83	55	SAA
1250	3.43	300	12:46	1.01	6:57	0.55	0.0	-79	55 55	514 4
	7:45	50	12.16	110 1	01.70	0.71	0.0	19	55)1+1+
										,
									TEMP.: nearest de	sree (ex. 10.1 = 10)
	FL	NAL STABILL	ZED FIELD PARA		1		1	-0	COND.: 3 SF max pH: nearest tenth (e DO: nearest tenth (e	$\begin{array}{l} (\text{ex. } 3333 = 3330, 0.696 = 0.696) \\ \text{ex. } 5.53 = 5.5) \\ \text{ex. } 3.51 = 3.5) \end{array}$
EQUIPMENT	DOCUMENTATIC	DN .	12	1.01	6.6	0.5	0,0	-79	TURB: 3 SF max, r ORP: 2 SF (44.1 -	nearest tenth (6.19 = 6.2, 101 = 101) 44, 191 = 190)
PERIS	TYPE OF PUMP TALTIC		<u>ECON FLUIDS USED</u> LIQUINOX	SILICON	TUBING	JMP/BLADDER MAT	<u>ERIALS</u> EL PUMP MATERI	AL	WL ME	EQUIPMENT USED TER
BLAD	ERSIBLE DER		DEIONIZED WATER POTABLE WATER NITRIC ACID	TEFLON TEFLON HDPE TU	LINED TUBING	GEOP	UMP MATERIAL ROBE SCREEN ON BLADDER		PID WQ ME	
WATT OTHE	R		HEXANE METHANOL	LDPE TU OTHER		OTHE	R		TURB. I PUMP OTHER	
ANALYTIC	CAL PARAMETER	s	OTHER	OTHER		OTHE			FILTER	
x	PARAME See Chain of Custod		NUMBER	FIELD FILTERED				SAMPLE DLLECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
	-									
PURGE OB	SERVATIONS	210				KETCH/NOTES				
CONTAINE NO-PURGE	RIZED		NUMBER OF GALL							
UTILIZED			If yes, purged approxima to sampling or	ely l standing volume pri mL for this sample loc						
Sampler Sign	ature: Yhk	Kul	Print Name L	exire Lill						
Checked By:			Date: 61171	10		out of the second s				
🤣 T	RC		1.1					LOW FI		DWATER SAMPLING RECORD
Construction of the owner of the owner						1. March 1.			10 Maxw	ell Drive, Suite 200, Clifton Park, NY 12065

 $= \left[\left(-\frac{1}{2} \right) \int_{\mathbb{T}} \int_{\mathbb{T}}$

Appendix D

Data Usability Summary Reports - Groundwater, June 2020

Data Usability Summary Report

Site:	Cross County Sanitary – Kessman Landfill
Laboratory:	ALS Environmental – Rochester, NY and Holland, MI
SDG:	R2005213
Parameters:	Volatile Organic Compounds (VOCs), Semivolatile Organic Compounds (SVOCs), and Polychlorinated Biphenyl (PCB) Aroclors
Data Reviewer:	Kristen Morin/TRC
Peer Reviewer:	Elizabeth Denly/TRC
Date:	September 9, 2020

Samples Reviewed and Evaluation Summary

8 Groundwater Samples:	CCSK-MW-01A, CCSK-MW-01B, CCSK-MW-03A,
	CCSK-MW-03B, CCSK-MW-05A, CCSK-MW-05B,
	CCSK-MW-20A, CCSK-MW-20B

The above-listed samples were collected on June 15-17, 2020 and were analyzed for the following parameters:

- VOCs by SW-846 Method 8260C
- SVOCs by SW-846 Method 8270D
- PCB Aroclors by SW-846 Method 8082A

The data validation was performed in accordance with USEPA National Functional Guidelines for Organic Superfund Methods Data Review (EPA-540-R-2017-002), January 2017, modified for the SW-846 methodologies utilized.

The data were evaluated based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness
- Holding Times and Sample Preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
- Initial and Continuing Calibrations
 - Blanks
- Surrogate Recoveries
 - Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Results
 - Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- * Internal Standards
- NA Field Duplicate Results
- Sample Results and Reported Quantitation Limits (QLs)
- * Target Compound Identification
- * All criteria were met.
- NA A field duplicate pair was not associated with this sample set.

Overall Evaluation of Data and Potential Usability Issues

All results are usable for project objectives with the exception of the nondetect results for 1,4-dioxane analyzed by method SW-846 Method 8260C in all samples in this data set. Since these samples were

also analyzed for 1,4-dioxane by SW-846 Method 8270D with selective ion monitoring (SIM) with acceptable results, there was no adverse effect on the achievement of project objectives due to this issue. Qualifications applied to the data as a result of sampling error are discussed below.

 The positive and nondetect results for all VOCs in samples CCSK-MW-01A, CCSK-MW-03B, and CCSK-MW-20B were qualified as estimated (J-/UJ) with a potential low bias due to the presence of headspace in the sample vials. However, select positive results in samples CCSK-MW-03B and CCSK-MW-20B were also qualified as estimated (J) by the laboratory due to detection below the lowest calibration stand and QL; thus, the overall qualification was J for these compounds. These results can be used for project objectives as estimated values and as nondetects with estimated QLs, which may have a minor impact on the data usability.

Qualifications applied to the data as a result of analytical error are discussed below.

- Potential uncertainty exists for select VOCs results that were below the lowest calibration standard and QL. These results were qualified as estimated (J) in the associated samples. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.
- The nondetect results for 1,4-dioxane analyzed by method SW-846 Method 8260C in all samples in this data set were rejected (R) due to low relative response factors (RRFs) in initial and continuing calibrations. These results are not usable for project objectives which may have a major impact on the data usability.
- The positive results for chloromethane in all samples in this data set except CCSK MW-03B were qualified as nondetect (U) at the QL due to method blank contamination. These results can be used for project objectives as nondetects, which may have a minor impact on the data usability.
- The nondetect results for 1,1,2,2-tetrachloroethane and bromomethane in all samples in this data set except CCSK MW-03B were qualified as estimated (UJ) due to continuing calibration nonconformances. These results can be used for project objectives as nondetects with estimated QLs, which may have a minor impact on the data usability.

Data Completeness

The data package was a complete Level IV data deliverable package with one exception. A discrepancy was noted with the relative and raw abundances for the VOC GC/MS tune analyzed on 6/25/20. The laboratory was contacted during validation and provided a response to this issue. Due to laboratory error, the raw data associated with this tune file was lost but the correct values were reported in the laboratory's computer system and on the summary form. Since the relative and raw abundances reported on both the raw data and summary form were within acceptance criteria, no validation actions were taken on this basis.

The following issues were noted regarding sample receipt:

- Pesticides and GC VOCs were requested on the chain-of-custody (COC) but were not reported by the laboratory. The project manager was contacted during validation and verified that the laboratory was instructed not to analyze these parameters.
- 1,4-Dioxane analyses were requested via method 8270D using SIM on the COC. However,

the 1,4-dioxane analyses were performed using method 8260C and 8270D SIM. The project manager was contacted during validation and verified that the laboratory was instructed to also analyze 1,4-dioxane via method 8260C.

Holding Times and Sample Preservation

All holding time and sample preservation method criteria were met for the VOC, SVOC, and PCB analyses with the following exceptions.

The laboratory noted that all three vials for samples CCSK-MW-01A, CCSK-MW-03B, and CCSK-MW-20B were received with headspace. Therefore, the positive and nondetect results for all VOCs in these samples were qualified as estimated (J-/UJ) with a potential low bias. However, select positive results in samples CCSK-MW-03B and CCSK-MW-20B were also qualified as estimated (J) by the laboratory due to detection below the lowest calibration stand and QL; thus, the overall qualification was J for these compounds.

The laboratory noted that one of the three vials for sample CCSK-MW-01B was received with headspace. No validation actions were taken on the basis of this issue since the analysis of this sample was performed from an acceptable vial without headspace.

GC/MS Tunes

All criteria were met in the VOC and SVOC analyses.

Initial and Continuing Calibrations

VOCs

All percent relative standard deviations (%RSDs) and coefficients of determination (COD) were within the acceptance criteria in the initial calibrations (ICs) associated with the samples in this data set.

The following table summarizes the RRFs that did not meet the method acceptance criteria in the ICs associated with the samples in this data set.

IC	Compound	RRF	Validation Actions				
R-MS-10 6/17/20	1,4-Dioxane	0.007376 The nondetect result for 1,4-dioxane was rejected (R) in the associated sample.					
Associated sa	Associated sample: CCSK-MW-03B						
R-MS-14 6/12/201,4-Dioxane0.006913The nondetect results for 1,4-dioxane were rejected (R) in the associated samples.							
Associated samples: CCSK-MW-01A, CCSK-MW-01B, CCSK-MW-03A, CCSK-MW-05A, CCSK-MW-05B, CCSK-MW-20A, CCSK-MW-20B							

The following table summarizes the percent differences (%Ds) or drifts and RRFs that did not meet the method acceptance criteria in the continuing calibration (CC) standards associated with the samples in this data set.

CC	Compound	RRF	%D	Validation Actions			
R-MS-14	1,4-Dioxane		-	The nondetect results were for 1,4-dioxane was rejected (R) in the associated samples.			
6/23/20	1,1,2,2-Tetrachloroethane	-	20.6	The nondetect results for 1,1,2,2-tetrachloroethane			
	Bromomethane	-	-34.3	and bromomethane were qualified as estimated (UJ) in the associated samples.			
	Associated samples: CCSK-MW-01A, CCSK-MW-01B, CCSK-MW-03A, CCSK-MW-05A, CCSK-MW-05B, CCSK-MW-20A, CCSK-MW-20B						
R-MS-10 6/25/20	$14-1)_{0}$						
Associated sample: CCSK-MW-03B							
-: Met criteria							

SVOCs

All %RSDs, CODs, and RRFs were within the method acceptance criteria in the IC associated with the samples in this data set. The %Ds were within the method acceptance criteria in the CC standard associated with the samples in this data set.

PCBs

All %RSDs were within the method acceptance criteria for the target analytes in the PCB ICs associated with the samples in this data set. The %Ds of all PCB Aroclors were within the acceptance criteria in the CC standards associated with the samples in this data set.

<u>Blanks</u>

There were no target compounds detected in the method blanks associated with this sample set for SVOC and PCB analyses.

The following table summarizes the VOCs detected in the laboratory method blanks, the associated samples, and the validation actions.

Blank ID	Compound	Blank concentration (μg/L)	QL (µg/L)	Validation Action		
	Chloroethane	0.34 J	1.0	Qualification was not required since chloroethane was not detected in the associated samples.		
RQ2006641- 04	Chloromethane	0.31 J	1.0	The positive results for chloromethane in the associated samples were qualified as nondetect (U) at the QL since results were < the QL. The results for chloromethane in samples CCSK-MW-01A and CCSK MW-20B were further qualified as estimated (UJ) due to the presence of headspace in the sample vials.		
Associated Samples: CCSK-MW-01A, CCSK-MW-01B, CCSK-MW-03A, CCSK-MW-05A, CCSK-MW-05B, CCSK-MW-20A, CCSK-MW-20B						

Surrogate Recoveries

The surrogate percent recoveries (%Rs) met the laboratory acceptance criteria in the VOC, SVOC, and PCB analyses.

LCS/LCSD Results

The LCS/LCSD %Rs and relative percent differences (RPDs) were within the laboratory acceptance criteria in the PCB analyses.

The table below summarizes the VOC and/or SVOC LCS/LCSD %Rs and/or RPDs that did not meet the laboratory acceptance criteria and the validation actions.

Parameter	LCS/LCSD ID	Compound	LCS %R	LCSD %R	RPD (%)	%R/RPD QC Limits	Validation Action
VOCs	RQ2006641-03/ N/A	1,1,2,2- Tetrachloroethane	141	N/A	N/A	78-126/ N/A	Qualification was not required since 1,1,2,2- tetrachloroethane was not detected in the associated samples.
	Associated Samples: CCSK-MW-01A, CCSK-MW-01B, CCSK-MW-03A, CCSK-MW-05A, CCSK-MW-05B, CCSK-MW-20A, CCSK-MW-20B						
SVOCs	SVOCs RQ2006527-05 ciopentadiene ne was not detected i						
Associated Samples: CCSK-MW-03A, CCSK-MW-03B, CCSK-MW-05A, CCSK-MW-05B, CCSK-MW-20A, CCSK-MW-20B							
-: Met criteria N/A: Not applicable; and LCSD was not analyzed.							

The laboratory indicated in the case narrative that due to limitations of the laboratory's software, %Rs for 4,6-dinitro-2-methylphenol were reported as 0%R on the LCS/LCSD summary forms even though the %Rs were within the laboratory's acceptance criteria; this was confirmed during validation after review of the raw data for the LCS/LCSD analyses. Since the %Rs were within the laboratory's acceptance limits, no validation actions were required on this basis.

MS/MSD Results

MS/MSD analyses were performed on sample CCSK-MW-03B for VOCs, SVOCs, and PCBs. The table below summarizes the MS/MSD %Rs and/or RPDs that did not meet the laboratory acceptance criteria and the validation actions.

MS/MSD Sample ID	Compound	MS %R	MSD %R	RPD (%)	MS/MSD %R/RPD QC Limits	Validation Action	
	1,1,2,2-Tetrachloroethane	126	131	-	72-122/-	Qualification was not required	
CCSK-MW-	Hexachlorobutadiene	-	-	31	-/30	since these compounds were not detected in sample CCSK-MW-	
03B	Hexachloroethane	-	-	38	-/30		
	Phenol	-	-	31	-/30	- 03B.	
-: Met criteria							

Internal Standards

All criteria were met in the VOC and SVOC analyses.

Field Duplicate Results

No field duplicate pairs were submitted with this sample set.

Sample Results and Reported Quantitation Limits

Sample calculations were spot-checked; there were no errors noted. There were no dilutions performed on samples in this data set.

The method detection limit and QL were reported as the same value for acetone. No validation actions were required on this basis.

Select VOC results were reported below the lowest calibration standard level and QL. These results were qualified as estimated (J) in the associated samples by the laboratory.

Target Compound Identification

All criteria were met for the VOC, SVOC, and PCB analyses.

QUALIFIED FORM 1s

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER Page 45 of 2542

Analytical Report

Client:	TRC Companies	Service Request:	06/15/20 14:35
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected:	
Sample Matrix:	Water	Date Received:	
Sample Name:	CCSK - MW-03B	Units:	0
Lab Code:	R2005213-001	Basis:	

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	1.0 U J	1.0	0.20	1	06/25/20 16:14	
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.20	1	06/25/20 16:14	
1,1,2-Trichloroethane	1.0 U	1.0	0.20	1	06/25/20 16:14	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0 U	1.0	0.20	1	06/25/20 16:14	
1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	0.20	1	06/25/20 16:14	
1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.20	1	06/25/20 16:14	
1,2,3-Trichlorobenzene	1.0 U	1.0	0.25	1	06/25/20 16:14	
1,2,4-Trichlorobenzene	1.0 U	1.0	0.34	1	06/25/20 16:14	
1,2-Dibromo-3-chloropropane (DBCP)	2.0 U	2.0	0.45	1	06/25/20 16:14	
1,2-Dibromoethane	1.0 U	1.0	0.20	1	06/25/20 16:14	
1,2-Dichlorobenzene	1.0 U	1.0	0.20	1	06/25/20 16:14	
1,2-Dichloroethane	1.0 U	1.0	0.20	1	06/25/20 16:14	
1,2-Dichloropropane	1.0 U	1.0	0.20	1	06/25/20 16:14	
1,3-Dichlorobenzene	1.0 U♥	1.0	0.20	1	06/25/20 16:14	
1,4-Dichlorobenzene	1.0 U J	1.0	0.20	1	06/25/20 16:14	
1,4-Dioxane R	40 U	40	13	1	06/25/20 16:14	_
2-Butanone (MEK)	5.0 U J	5.0	0.78	1	06/25/20 16:14	
2-Hexanone	5.0 U	5.0	0.20	1	06/25/20 16:14	
4-Methyl-2-pentanone	5.0 U	5.0	0.20	1	06/25/20 16:14	
Acetone	5.0 U	5.0	5.0	1	06/25/20 16:14	
Benzene	1.0 U	1.0	0.20	1	06/25/20 16:14	
Bromochloromethane	1.0 U	1.0	0.20	1	06/25/20 16:14	
Bromodichloromethane	1.0 U	1.0	0.20	1	06/25/20 16:14	
Bromoform	1.0 U	1.0	0.25	1	06/25/20 16:14	
Bromomethane	1.0 U	1.0	0.70	1	06/25/20 16:14	
Carbon Disulfide	1.0 U	1.0	0.42	1	06/25/20 16:14	
Carbon Tetrachloride	1.0 U	1.0	0.34	1	06/25/20 16:14	
Chlorobenzene	1.0 U	1.0	0.20	1	06/25/20 16:14	
Chloroethane	1.0 U	1.0	0.23	1	06/25/20 16:14	
Chloroform	1.0 U	1.0	0.24	1	06/25/20 16:14	
Chloromethane	1.0 U	1.0	0.28	1	06/25/20 16:14	
Cyclohexane	1.0 U	1.0	0.26	1	06/25/20 16:14	
Dibromochloromethane	1.0 U	1.0	0.20	1	06/25/20 16:14	
Dichlorodifluoromethane (CFC 12)	1.0 U	1.0	0.21	1	06/25/20 16:14	
Dichloromethane	1.0 U	1.0	0.65	1	06/25/20 16:14	
Ethylbenzene	1.0 U	1.0	0.20	1	06/25/20 16:14	
Isopropylbenzene (Cumene)	1.0 UV	1.0	0.20	1	06/25/20 16:14	
Methyl Acetate	2.0 U J	2.0	0.33	1	06/25/20 16:14	
Methyl tert-Butyl Ether	0.47 J	1.0	0.20	1	06/25/20 16:14	
Methylcyclohexane	1.0 U <mark>J</mark>	1.0	0.20	1	06/25/20 16:14	
Styrene	1.0 U	1.0	0.20	1	06/25/20 16:14	
Tetrachloroethene (PCE)	1.0 U♥	1.0	0.21	1	06/25/20 16:14	
Toluene	1.0 U J	1.0	0.20	1	06/25/20 16:14	
	-					

Analytical Report

Client:	TRC Companies	Service Request: R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected: 06/15/20 14:35
Sample Matrix:	Water	Date Received: 06/18/20 09:20
Sample Name:	CCSK - MW-03B	Units: ug/L
Lab Code:	R2005213-001	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	1.0 U J	1.0	0.20	1	06/25/20 16:14	
Trichlorofluoromethane (CFC 11)	1.0 U	1.0	0.24	1	06/25/20 16:14	
Vinyl Chloride	1.0 U	1.0	0.20	1	06/25/20 16:14	
cis-1,2-Dichloroethene	1.0 U	1.0	0.23	1	06/25/20 16:14	
cis-1,3-Dichloropropene	1.0 U	1.0	0.20	1	06/25/20 16:14	
m,p-Xylenes	2.0 U	2.0	0.20	1	06/25/20 16:14	
o-Xylene	1.0 U	1.0	0.20	1	06/25/20 16:14	
trans-1,2-Dichloroethene	1.0 UV	1.0	0.20	1	06/25/20 16:14	
trans-1,3-Dichloropropene	1.0 U <mark>J</mark>	1.0	0.23	1	06/25/20 16:14	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	98	85 - 122	06/25/20 16:14	
Dibromofluoromethane	103	89 - 119	06/25/20 16:14	
Toluene-d8	106	87 - 121	06/25/20 16:14	

Analytical Report

Client:	TRC Companies	Service Request:	06/16/20 10:20
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected:	
Sample Matrix:	Water	Date Received:	
Sample Name:	CCSK - MW-01B	Units:	0
Lab Code:	R2005213-002	Basis:	

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	1.0 U	1.0	0.20	1	06/23/20 21:32	
1,1,2,2-Tetrachloroethane	1.0 U J	1.0	0.20	1	06/23/20 21:32	
1,1,2-Trichloroethane	1.0 U	1.0	0.20	1	06/23/20 21:32	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0 U	1.0	0.20	1	06/23/20 21:32	
1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	0.20	1	06/23/20 21:32	
1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.20	1	06/23/20 21:32	
1,2,3-Trichlorobenzene	1.0 U	1.0	0.25	1	06/23/20 21:32	
1,2,4-Trichlorobenzene	1.0 U	1.0	0.34	1	06/23/20 21:32	
1,2-Dibromo-3-chloropropane (DBCP)	2.0 U	2.0	0.45	1	06/23/20 21:32	
1,2-Dibromoethane	1.0 U	1.0	0.20	1	06/23/20 21:32	
1,2-Dichlorobenzene	1.0 U	1.0	0.20	1	06/23/20 21:32	
1,2-Dichloroethane	1.0 U	1.0	0.20	1	06/23/20 21:32	
1,2-Dichloropropane	1.0 U	1.0	0.20	1	06/23/20 21:32	
1,3-Dichlorobenzene	1.0 U	1.0	0.20	1	06/23/20 21:32	
1,4-Dichlorobenzene	1.0 U	1.0	0.20	1	06/23/20 21:32	
1,4-Dioxane	R	40	13	1	06/23/20 21:32	
2-Butanone (MEK)	5.0 U	5.0	0.78	1	06/23/20 21:32	
2-Hexanone	5.0 U	5.0	0.20	1	06/23/20 21:32	
4-Methyl-2-pentanone	5.0 U	5.0	0.20	1	06/23/20 21:32	
Acetone	5.0 U	5.0	5.0	1	06/23/20 21:32	
Benzene	1.0 U	1.0	0.20	1	06/23/20 21:32	
Bromochloromethane	1.0 U	1.0	0.20	1	06/23/20 21:32	
Bromodichloromethane	1.0 U	1.0	0.20	1	06/23/20 21:32	
Bromoform	1.0 U	1.0	0.25	1	06/23/20 21:32	
Bromomethane	1.0 U J	1.0	0.70	1	06/23/20 21:32	
Carbon Disulfide	1.0 U	1.0	0.42	1	06/23/20 21:32	
Carbon Tetrachloride	1.0 U	1.0	0.34	1	06/23/20 21:32	
Chlorobenzene	1.0 U	1.0	0.20	1	06/23/20 21:32	
Chloroethane	1.0 U	1.0	0.23	1	06/23/20 21:32	
Chloroform	1.0 U	1.0	0.24	1	06/23/20 21:32	
Chloromethane	ND/1.0 U 0.32BJ	1.0	0.28	1	06/23/20 21:32	
Cyclohexane	1.0 U	1.0	0.26	1	06/23/20 21:32	
Dibromochloromethane	1.0 U	1.0	0.20	1	06/23/20 21:32	
Dichlorodifluoromethane (CFC 12)	1.0 U	1.0	0.21	1	06/23/20 21:32	
Dichloromethane	1.0 U	1.0	0.65	1	06/23/20 21:32	
Ethylbenzene	1.0 U	1.0	0.20	1	06/23/20 21:32	
Isopropylbenzene (Cumene)	1.0 U	1.0	0.20	1	06/23/20 21:32	
Methyl Acetate	2.0 U	2.0	0.33	1	06/23/20 21:32	
Methyl tert-Butyl Ether	1.0 U	1.0	0.20	1	06/23/20 21:32	
Methylcyclohexane	1.0 U	1.0	0.20	1	06/23/20 21:32	
Styrene	1.0 U	1.0	0.20	1	06/23/20 21:32	
Tetrachloroethene (PCE)	1.0 U	1.0	0.21	1	06/23/20 21:32	
Toluene	1.0 U	1.0	0.20	1	06/23/20 21:32	
		-				

Analytical Report

Client:	TRC Companies	Service Request: R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected: 06/16/20 10:20
Sample Matrix:	Water	Date Received: 06/18/20 09:20
Sample Name:	CCSK - MW-01B	Units: ug/L
Lab Code:	R2005213-002	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	1.0 U	1.0	0.20	1	06/23/20 21:32	
Trichlorofluoromethane (CFC 11)	1.0 U	1.0	0.24	1	06/23/20 21:32	
Vinyl Chloride	1.0 U	1.0	0.20	1	06/23/20 21:32	
cis-1,2-Dichloroethene	1.0 U	1.0	0.23	1	06/23/20 21:32	
cis-1,3-Dichloropropene	1.0 U	1.0	0.20	1	06/23/20 21:32	
m,p-Xylenes	2.0 U	2.0	0.20	1	06/23/20 21:32	
o-Xylene	1.0 U	1.0	0.20	1	06/23/20 21:32	
trans-1,2-Dichloroethene	1.0 U	1.0	0.20	1	06/23/20 21:32	
trans-1,3-Dichloropropene	1.0 U	1.0	0.23	1	06/23/20 21:32	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	91	85 - 122	06/23/20 21:32	
Dibromofluoromethane	92	89 - 119	06/23/20 21:32	
Toluene-d8	95	87 - 121	06/23/20 21:32	

Analytical Report

Client:	TRC Companies	Service Request:	06/16/20 12:50
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected:	
Sample Matrix:	Water	Date Received:	
Sample Name:	CCSK - MW-01A	Units:	0
Lab Code:	R2005213-003	Basis:	

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	1.0 U <mark>J</mark>	1.0	0.20	1	06/23/20 21:54	
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.20	1	06/23/20 21:54	
1,1,2-Trichloroethane	1.0 U	1.0	0.20	1	06/23/20 21:54	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0 U	1.0	0.20	1	06/23/20 21:54	
1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	0.20	1	06/23/20 21:54	
1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.20	1	06/23/20 21:54	
1,2,3-Trichlorobenzene	1.0 U	1.0	0.25	1	06/23/20 21:54	
1,2,4-Trichlorobenzene	1.0 U	1.0	0.34	1	06/23/20 21:54	
1,2-Dibromo-3-chloropropane (DBCP)	2.0 U	2.0	0.45	1	06/23/20 21:54	
1,2-Dibromoethane	1.0 U	1.0	0.20	1	06/23/20 21:54	
1,2-Dichlorobenzene	1.0 U	1.0	0.20	1	06/23/20 21:54	
1,2-Dichloroethane	1.0 U	1.0	0.20	1	06/23/20 21:54	
1,2-Dichloropropane	1.0 U	1.0	0.20	1	06/23/20 21:54	
1,3-Dichlorobenzene	1.0 U♥	1.0	0.20	1	06/23/20 21:54	
1,4-Dichlorobenzene	1.0 U J	1.0	0.20	1	06/23/20 21:54	
1,4-Dioxane	R	40	13	1	06/23/20 21:54	
2-Butanone (MEK)	5.0 U <mark>J</mark>	5.0	0.78	1	06/23/20 21:54	
2-Hexanone	5.0 U	5.0	0.20	1	06/23/20 21:54	
4-Methyl-2-pentanone	5.0 U	5.0	0.20	1	06/23/20 21:54	
Acetone	5.0 U	5.0	5.0	1	06/23/20 21:54	
Benzene	1.0 U	1.0	0.20	1	06/23/20 21:54	
Bromochloromethane	1.0 U	1.0	0.20	1	06/23/20 21:54	
Bromodichloromethane	1.0 U	1.0	0.20	1	06/23/20 21:54	
Bromoform	1.0 U	1.0	0.25	1	06/23/20 21:54	
Bromomethane	1.0 U	1.0	0.70	1	06/23/20 21:54	
Carbon Disulfide	1.0 U	1.0	0.42	1	06/23/20 21:54	
Carbon Tetrachloride	1.0 U	1.0	0.34	1	06/23/20 21:54	
Chlorobenzene	1.0 U	1.0	0.20	1	06/23/20 21:54	
Chloroethane	1.0 U	1.0	0.23	1	06/23/20 21:54	
Chloroform	1.0 U	1.0	0.24	1	06/23/20 21:54	
Chloromethane	ND/1.0 U - 0.38 -BJ	1.0	0.28	1	06/23/20 21:54	
Cyclohexane	1.0 U	1.0	0.26	1	06/23/20 21:54	
Dibromochloromethane	1.0 U	1.0	0.20	1	06/23/20 21:54	
Dichlorodifluoromethane (CFC 12)	1.0 U	1.0	0.21	1	06/23/20 21:54	
Dichloromethane	1.0 U	1.0	0.65	1	06/23/20 21:54	
Ethylbenzene	1.0 U	1.0	0.20	1	06/23/20 21:54	
Isopropylbenzene (Cumene)	1.0 U	1.0	0.20	1	06/23/20 21:54	
Methyl Acetate	2.0 U	2.0	0.33	1	06/23/20 21:54	
Methyl tert-Butyl Ether	1.0 U	1.0	0.20	1	06/23/20 21:54	
Methylcyclohexane	1.0 U	1.0	0.20	1	06/23/20 21:54	
Styrene	1.0 U	1.0	0.20	1	06/23/20 21:54	
Tetrachloroethene (PCE)	1.0 U V	1.0	0.21	1	06/23/20 21:54	
Toluene	1.0 U J	1.0	0.20	1	06/23/20 21:54	
				-		

Analytical Report

C Companies	Service Request:	R2005213
oss County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected:	06/16/20 12:50
ater	Date Received:	06/18/20 09:20
CSK - MW-01A	Units:	ug/L
005213-003	Basis:	NA
	oss County Sanitary - Kessman Landfill/387570.0000.0000 ater CSK - MW-01A	Date Collected: Date Received: CSK - MW-01A Units:

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	1.0 U J	1.0	0.20	1	06/23/20 21:54	
Trichlorofluoromethane (CFC 11)	1.0 U	1.0	0.24	1	06/23/20 21:54	
Vinyl Chloride	1.0 U	1.0	0.20	1	06/23/20 21:54	
cis-1,2-Dichloroethene	1.0 U	1.0	0.23	1	06/23/20 21:54	
cis-1,3-Dichloropropene	1.0 U	1.0	0.20	1	06/23/20 21:54	
m,p-Xylenes	2.0 U	2.0	0.20	1	06/23/20 21:54	
o-Xylene	1.0 U	1.0	0.20	1	06/23/20 21:54	
trans-1,2-Dichloroethene	1.0 U V	1.0	0.20	1	06/23/20 21:54	
trans-1,3-Dichloropropene	1.0 U J	1.0	0.23	1	06/23/20 21:54	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	92	85 - 122	06/23/20 21:54	
Dibromofluoromethane	93	89 - 119	06/23/20 21:54	
Toluene-d8	95	87 - 121	06/23/20 21:54	

Analytical Report

Client:	TRC Companies	Service Request:	06/16/20 13:50
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected:	
Sample Matrix:	Water	Date Received:	
Sample Name:	CCSK - MW-03A	Units:	0
Lab Code:	R2005213-004	Basis:	

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	1.0 U	1.0	0.20	1	06/23/20 22:16	
1,1,2,2-Tetrachloroethane	1.0 U J	1.0	0.20	1	06/23/20 22:16	
1,1,2-Trichloroethane	1.0 U	1.0	0.20	1	06/23/20 22:16	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0 U	1.0	0.20	1	06/23/20 22:16	
1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	0.20	1	06/23/20 22:16	
1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.20	1	06/23/20 22:16	
1,2,3-Trichlorobenzene	1.0 U	1.0	0.25	1	06/23/20 22:16	
1,2,4-Trichlorobenzene	1.0 U	1.0	0.34	1	06/23/20 22:16	
1,2-Dibromo-3-chloropropane (DBCP)	2.0 U	2.0	0.45	1	06/23/20 22:16	
1,2-Dibromoethane	1.0 U	1.0	0.20	1	06/23/20 22:16	
1,2-Dichlorobenzene	1.0 U	1.0	0.20	1	06/23/20 22:16	
1,2-Dichloroethane	1.0 U	1.0	0.20	1	06/23/20 22:16	
1,2-Dichloropropane	1.0 U	1.0	0.20	1	06/23/20 22:16	
1,3-Dichlorobenzene	1.0 U	1.0	0.20	1	06/23/20 22:16	
1,4-Dichlorobenzene	1.0 U	1.0	0.20	1	06/23/20 22:16	
1,4-Dioxane	R <u>40 U</u>	40	13	1	06/23/20 22:16	-
2-Butanone (MEK)	5.0 U	5.0	0.78	1	06/23/20 22:16	
2-Hexanone	5.0 U	5.0	0.20	1	06/23/20 22:16	
4-Methyl-2-pentanone	5.0 U	5.0	0.20	1	06/23/20 22:16	
Acetone	5.0 U	5.0	5.0	1	06/23/20 22:16	
Benzene	1.0 U	1.0	0.20	1	06/23/20 22:16	
Bromochloromethane	1.0 U	1.0	0.20	1	06/23/20 22:16	
Bromodichloromethane	1.0 U	1.0	0.20	1	06/23/20 22:16	
Bromoform	1.0 U	1.0	0.25	1	06/23/20 22:16	
Bromomethane	1.0 U J	1.0	0.70	1	06/23/20 22:16	
Carbon Disulfide	1.0 U	1.0	0.42	1	06/23/20 22:16	
Carbon Tetrachloride	1.0 U	1.0	0.34	1	06/23/20 22:16	
Chlorobenzene	1.0 U	1.0	0.20	1	06/23/20 22:16	
Chloroethane	1.0 U	1.0	0.23	1	06/23/20 22:16	
Chloroform	1.0 U	1.0	0.24	1	06/23/20 22:16	
Chloromethane	ND/1.0 U 0.35 - BJ	1.0	0.28	1	06/23/20 22:16	
Cyclohexane	1.0 U	1.0	0.26	1	06/23/20 22:16	
Dibromochloromethane	1.0 U	1.0	0.20	1	06/23/20 22:16	
Dichlorodifluoromethane (CFC 12)	1.0 U	1.0	0.21	1	06/23/20 22:16	
Dichloromethane	1.0 U	1.0	0.65	1	06/23/20 22:16	
Ethylbenzene	1.0 U	1.0	0.20	1	06/23/20 22:16	
Isopropylbenzene (Cumene)	1.0 U	1.0	0.20	1	06/23/20 22:16	
Methyl Acetate	2.0 U	2.0	0.33	1	06/23/20 22:16	
Methyl tert-Butyl Ether	0.69 J	1.0	0.20	1	06/23/20 22:16	
Methylcyclohexane	1.0 U	1.0	0.20	1	06/23/20 22:16	
Styrene	1.0 U	1.0	0.20	1	06/23/20 22:16	
Tetrachloroethene (PCE)	1.0 U	1.0	0.21	1	06/23/20 22:16	
Toluene	1.0 U	1.0	0.20	1	06/23/20 22:16	
			0.20	-		

Analytical Report

Client:	TRC Companies	Service Request: R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected: 06/16/20 13:50
Sample Matrix:	Water	Date Received: 06/18/20 09:20
Sample Name:	CCSK - MW-03A	Units: ug/L
Lab Code:	R2005213-004	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	1.0 U	1.0	0.20	1	06/23/20 22:16	
Trichlorofluoromethane (CFC 11)	1.0 U	1.0	0.24	1	06/23/20 22:16	
Vinyl Chloride	1.0 U	1.0	0.20	1	06/23/20 22:16	
cis-1,2-Dichloroethene	1.0 U	1.0	0.23	1	06/23/20 22:16	
cis-1,3-Dichloropropene	1.0 U	1.0	0.20	1	06/23/20 22:16	
m,p-Xylenes	2.0 U	2.0	0.20	1	06/23/20 22:16	
o-Xylene	1.0 U	1.0	0.20	1	06/23/20 22:16	
trans-1,2-Dichloroethene	1.0 U	1.0	0.20	1	06/23/20 22:16	
trans-1,3-Dichloropropene	1.0 U	1.0	0.23	1	06/23/20 22:16	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	90	85 - 122	06/23/20 22:16	
Dibromofluoromethane	93	89 - 119	06/23/20 22:16	
Toluene-d8	95	87 - 121	06/23/20 22:16	

Analytical Report

Client:	TRC Companies	Service Request:	06/16/20 15:35
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected:	
Sample Matrix:	Water	Date Received:	
I I	CCSK - MW-20B R2005213-005	Units: Basis:	0

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	1.0 U J	1.0	0.20	1	06/23/20 22:38	
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.20	1	06/23/20 22:38	
1,1,2-Trichloroethane	1.0 UV	1.0	0.20	1	06/23/20 22:38	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0 U <mark>J</mark>	1.0	0.20	1	06/23/20 22:38	
1,1-Dichloroethane (1,1-DCA)	0.28 J	1.0	0.20	1	06/23/20 22:38	
1,1-Dichloroethene (1,1-DCE)	1.0 U J	1.0	0.20	1	06/23/20 22:38	
1,2,3-Trichlorobenzene	1.0 U	1.0	0.25	1	06/23/20 22:38	
1,2,4-Trichlorobenzene	1.0 U	1.0	0.34	1	06/23/20 22:38	
1,2-Dibromo-3-chloropropane (DBCP)	2.0 U	2.0	0.45	1	06/23/20 22:38	
1,2-Dibromoethane	1.0 U♥	1.0	0.20	1	06/23/20 22:38	
1,2-Dichlorobenzene	1.0 U <mark>J</mark>	1.0	0.20	1	06/23/20 22:38	
1,2-Dichloroethane	1.1 J-	1.0	0.20	1	06/23/20 22:38	
1,2-Dichloropropane	1.0 U J	1.0	0.20	1	06/23/20 22:38	
1,3-Dichlorobenzene	1.0 U	1.0	0.20	1	06/23/20 22:38	
1,4-Dichlorobenzene	1.0 U J	1.0	0.20	1	06/23/20 22:38	
1,4-Dioxane	R <u>40 U</u>	40	13	1	06/23/20 22:38	_
2-Butanone (MEK)	5.0 U J	5.0	0.78	1	06/23/20 22:38	
2-Hexanone	5.0 U	5.0	0.20	1	06/23/20 22:38	
4-Methyl-2-pentanone	5.0 UV	5.0	0.20	1	06/23/20 22:38	
Acetone	5.0 U J	5.0	5.0	1	06/23/20 22:38	
Benzene	0.37 J	1.0	0.20	1	06/23/20 22:38	
Bromochloromethane	1.0 U J	1.0	0.20	1	06/23/20 22:38	
Bromodichloromethane	1.0 U	1.0	0.20	1	06/23/20 22:38	
Bromoform	1.0 U	1.0	0.25	1	06/23/20 22:38	
Bromomethane	1.0 U	1.0	0.70	1	06/23/20 22:38	
Carbon Disulfide	1.0 U	1.0	0.42	1	06/23/20 22:38	
Carbon Tetrachloride	1.0 U	1.0	0.34	1	06/23/20 22:38	
Chlorobenzene	1.0 U	1.0	0.20	1	06/23/20 22:38	
Chloroethane	1.0 U	1.0	0.23	1	06/23/20 22:38	
Chloroform	1.0 U	1.0	0.24	1	06/23/20 22:38	
Chloromethane	ND/1.0 U 0.3 4- BJ	1.0	0.28	1	06/23/20 22:38	
Cyclohexane	1.0 U	1.0	0.26	1	06/23/20 22:38	
Dibromochloromethane	1.0 U	1.0	0.20	1	06/23/20 22:38	
Dichlorodifluoromethane (CFC 12)	1.0 U	1.0	0.21	1	06/23/20 22:38	
Dichloromethane	1.0 U	1.0	0.65	1	06/23/20 22:38	
Ethylbenzene	1.0 U	1.0	0.20	1	06/23/20 22:38	
Isopropylbenzene (Cumene)	1.0 U	1.0	0.20	1	06/23/20 22:38	
Methyl Acetate	2.0 U	2.0	0.33	1	06/23/20 22:38	
Methyl tert-Butyl Ether	1.0 U	1.0	0.20	1	06/23/20 22:38	
Methylcyclohexane	1.0 U	1.0	0.20	1	06/23/20 22:38	
Styrene	1.0 U	1.0	0.20	1	06/23/20 22:38	
Tetrachloroethene (PCE)	$1.0 U \checkmark$	1.0	0.21	1	06/23/20 22:38	
Toluene	1.0 U J	1.0	0.20	1	06/23/20 22:38	
			0.20	-		

Analytical Report

Client:	TRC Companies	Service Request: R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected: 06/16/20 15:35
Sample Matrix:	Water	Date Received: 06/18/20 09:20
Sample Name:	CCSK - MW-20B	Units: ug/L
Lab Code:	R2005213-005	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	1.0 U J	1.0	0.20	1	06/23/20 22:38	
Trichlorofluoromethane (CFC 11)	1.0 U J	1.0	0.24	1	06/23/20 22:38	
Vinyl Chloride	0.40 J	1.0	0.20	1	06/23/20 22:38	
cis-1,2-Dichloroethene	0.68 J	1.0	0.23	1	06/23/20 22:38	
cis-1,3-Dichloropropene	1.0 U J	1.0	0.20	1	06/23/20 22:38	
m,p-Xylenes	2.0 U	2.0	0.20	1	06/23/20 22:38	
o-Xylene	1.0 U	1.0	0.20	1	06/23/20 22:38	
trans-1,2-Dichloroethene	1.0 UV	1.0	0.20	1	06/23/20 22:38	
trans-1,3-Dichloropropene	1.0 U J	1.0	0.23	1	06/23/20 22:38	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	06/23/20 22:38	
Dibromofluoromethane	93	89 - 119	06/23/20 22:38	
Toluene-d8	94	87 - 121	06/23/20 22:38	

Analytical Report

Client:	TRC Companies	Service Request:	06/17/20 10:15
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected:	
Sample Matrix:	Water	Date Received:	
Sample Name:	CCSK - MW-20A	Units:	0
Lab Code:	R2005213-006	Basis:	

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	1.0 U	1.0	0.20	1	06/23/20 23:00	
1,1,2,2-Tetrachloroethane	1.0 U J	1.0	0.20	1	06/23/20 23:00	
1,1,2-Trichloroethane	1.0 U	1.0	0.20	1	06/23/20 23:00	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0 U	1.0	0.20	1	06/23/20 23:00	
1,1-Dichloroethane (1,1-DCA)	0.82 J	1.0	0.20	1	06/23/20 23:00	
1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.20	1	06/23/20 23:00	
1,2,3-Trichlorobenzene	1.0 U	1.0	0.25	1	06/23/20 23:00	
1,2,4-Trichlorobenzene	1.0 U	1.0	0.34	1	06/23/20 23:00	
1,2-Dibromo-3-chloropropane (DBCP)	2.0 U	2.0	0.45	1	06/23/20 23:00	
1,2-Dibromoethane	1.0 U	1.0	0.20	1	06/23/20 23:00	
1,2-Dichlorobenzene	1.0 U	1.0	0.20	1	06/23/20 23:00	
1,2-Dichloroethane	1.2	1.0	0.20	1	06/23/20 23:00	
1,2-Dichloropropane	1.0 U	1.0	0.20	1	06/23/20 23:00	
1,3-Dichlorobenzene	1.0 U	1.0	0.20	1	06/23/20 23:00	
1,4-Dichlorobenzene	1.0 U	1.0	0.20	1	06/23/20 23:00	
1,4-Dioxane	R40_U	40	13	1	06/23/20 23:00	_
2-Butanone (MEK)	5.0 U	5.0	0.78	1	06/23/20 23:00	
2-Hexanone	5.0 U	5.0	0.20	1	06/23/20 23:00	
4-Methyl-2-pentanone	5.0 U	5.0	0.20	1	06/23/20 23:00	
Acetone	5.0 U	5.0	5.0	1	06/23/20 23:00	
Benzene	0.46 J	1.0	0.20	1	06/23/20 23:00	
Bromochloromethane	1.0 U	1.0	0.20	1	06/23/20 23:00	
Bromodichloromethane	1.0 U	1.0	0.20	1	06/23/20 23:00	
Bromoform	1.0 U	1.0	0.25	1	06/23/20 23:00	
Bromomethane	1.0 U J	1.0	0.70	1	06/23/20 23:00	
Carbon Disulfide	1.0 U	1.0	0.42	1	06/23/20 23:00	
Carbon Tetrachloride	1.0 U	1.0	0.34	1	06/23/20 23:00	
Chlorobenzene	1.0 U	1.0	0.20	1	06/23/20 23:00	
Chloroethane	1.0 U	1.0	0.23	1	06/23/20 23:00	
Chloroform	1.0 U	1.0	0.24	1	06/23/20 23:00	
Chloromethane	ND/1.0 U 0.32 -BJ-	1.0	0.28	1	06/23/20 23:00	
Cyclohexane	1.0 U	1.0	0.26	1	06/23/20 23:00	
Dibromochloromethane	1.0 U	1.0	0.20	1	06/23/20 23:00	
Dichlorodifluoromethane (CFC 12)	1.0 U	1.0	0.21	1	06/23/20 23:00	
Dichloromethane	1.0 U	1.0	0.65	1	06/23/20 23:00	
Ethylbenzene	1.0 U	1.0	0.20	1	06/23/20 23:00	
Isopropylbenzene (Cumene)	1.0 U	1.0	0.20	1	06/23/20 23:00	
Methyl Acetate	2.0 U	2.0	0.33	1	06/23/20 23:00	
Methyl tert-Butyl Ether	1.0 U	1.0	0.20	1	06/23/20 23:00	
Methylcyclohexane	1.0 U	1.0	0.20	1	06/23/20 23:00	
Styrene	1.0 U	1.0	0.20	1	06/23/20 23:00	
Tetrachloroethene (PCE)	1.0 U	1.0	0.20	1	06/23/20 23:00	
Toluene	1.0 U	1.0	0.20	1	06/23/20 23:00	
Toruche	1.0 0	1.0	0.20	T	00/25/20 25:00	

Analytical Report

Client:	TRC Companies	Service Request: R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected: 06/17/20 10:15
Sample Matrix:	Water	Date Received: 06/18/20 09:20
Sample Name:	CCSK - MW-20A	Units: ug/L
Lab Code:	R2005213-006	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	1.0 U	1.0	0.20	1	06/23/20 23:00	
Trichlorofluoromethane (CFC 11)	1.0 U	1.0	0.24	1	06/23/20 23:00	
Vinyl Chloride	0.50 J	1.0	0.20	1	06/23/20 23:00	
cis-1,2-Dichloroethene	1.3	1.0	0.23	1	06/23/20 23:00	
cis-1,3-Dichloropropene	1.0 U	1.0	0.20	1	06/23/20 23:00	
m,p-Xylenes	2.0 U	2.0	0.20	1	06/23/20 23:00	
o-Xylene	1.0 U	1.0	0.20	1	06/23/20 23:00	
trans-1,2-Dichloroethene	1.0 U	1.0	0.20	1	06/23/20 23:00	
trans-1,3-Dichloropropene	1.0 U	1.0	0.23	1	06/23/20 23:00	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	91	85 - 122	06/23/20 23:00	
Dibromofluoromethane	92	89 - 119	06/23/20 23:00	
Toluene-d8	93	87 - 121	06/23/20 23:00	

Analytical Report

Client:	TRC Companies	Service Request:	06/17/20 12:00
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected:	
Sample Matrix:	Water	Date Received:	
Sample Name:	CCSK - MW-05B	Units:	0
Lab Code:	R2005213-007	Basis:	

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	1.0 U	1.0	0.20	1	06/23/20 23:23	
1,1,2,2-Tetrachloroethane	1.0 U J	1.0	0.20	1	06/23/20 23:23	
1,1,2-Trichloroethane	1.0 U	1.0	0.20	1	06/23/20 23:23	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0 U	1.0	0.20	1	06/23/20 23:23	
1,1-Dichloroethane (1,1-DCA)	0.20 J	1.0	0.20	1	06/23/20 23:23	
1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.20	1	06/23/20 23:23	
1,2,3-Trichlorobenzene	1.0 U	1.0	0.25	1	06/23/20 23:23	
1,2,4-Trichlorobenzene	1.0 U	1.0	0.34	1	06/23/20 23:23	
1,2-Dibromo-3-chloropropane (DBCP)	2.0 U	2.0	0.45	1	06/23/20 23:23	
1,2-Dibromoethane	1.0 U	1.0	0.20	1	06/23/20 23:23	
1,2-Dichlorobenzene	0.57 J	1.0	0.20	1	06/23/20 23:23	
1,2-Dichloroethane	1.0 U	1.0	0.20	1	06/23/20 23:23	
1,2-Dichloropropane	1.0 U	1.0	0.20	1	06/23/20 23:23	
1,3-Dichlorobenzene	1.0 U	1.0	0.20	1	06/23/20 23:23	
1,4-Dichlorobenzene	0.99 J	1.0	0.20	1	06/23/20 23:23	
1,4-Dioxane	R <u>40 U</u>	40	13	1	06/23/20 23:23	
2-Butanone (MEK)	5.0 U	5.0	0.78	1	06/23/20 23:23	
2-Hexanone	5.0 U	5.0	0.20	1	06/23/20 23:23	
4-Methyl-2-pentanone	5.0 U	5.0	0.20	1	06/23/20 23:23	
Acetone	5.0 U	5.0	5.0	1	06/23/20 23:23	
Benzene	0.87 J	1.0	0.20	1	06/23/20 23:23	
Bromochloromethane	1.0 U	1.0	0.20	1	06/23/20 23:23	
Bromodichloromethane	1.0 U	1.0	0.20	1	06/23/20 23:23	
Bromoform	1.0 U	1.0	0.25	1	06/23/20 23:23	
Bromomethane	1.0 U J	1.0	0.70	1	06/23/20 23:23	
Carbon Disulfide	1.0 U	1.0	0.42	1	06/23/20 23:23	
Carbon Tetrachloride	1.0 U	1.0	0.34	1	06/23/20 23:23	
Chlorobenzene	2.8	1.0	0.20	1	06/23/20 23:23	
Chloroethane	1.0 U	1.0	0.23	1	06/23/20 23:23	
Chloroform	1.0 U	1.0	0.24	1	06/23/20 23:23	
Chloromethane	ND/1.0 U 0.32BJ -	1.0	0.28	1	06/23/20 23:23	
Cyclohexane	1.0 U	1.0	0.26	1	06/23/20 23:23	
Dibromochloromethane	1.0 U	1.0	0.20	1	06/23/20 23:23	
Dichlorodifluoromethane (CFC 12)	0.42 J	1.0	0.21	1	06/23/20 23:23	
Dichloromethane	1.0 U	1.0	0.65	1	06/23/20 23:23	
Ethylbenzene	1.0 U	1.0	0.20	1	06/23/20 23:23	
Isopropylbenzene (Cumene)	1.0 U	1.0	0.20	1	06/23/20 23:23	
Methyl Acetate	2.0 U	2.0	0.33	1	06/23/20 23:23	
Methyl tert-Butyl Ether	1.0 U	1.0	0.20	1	06/23/20 23:23	
Methylcyclohexane	1.0 U	1.0	0.20	1	06/23/20 23:23	
Styrene	1.0 U	1.0	0.20	1	06/23/20 23:23	
Tetrachloroethene (PCE)	1.0 U	1.0	0.21	1	06/23/20 23:23	
Toluene	1.0 U	1.0	0.20	1	06/23/20 23:23	
				-		

Analytical Report

Client:	TRC Companies	Service Request: R2005213	
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected: 06/17/20 1	2:00
Sample Matrix:	Water	Date Received: 06/18/20 0	9:20
Sample Name:	CCSK - MW-05B	Units: ug/L	
Lab Code:	R2005213-007	Basis: NA	

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	1.0 U	1.0	0.20	1	06/23/20 23:23	
Trichlorofluoromethane (CFC 11)	1.0 U	1.0	0.24	1	06/23/20 23:23	
Vinyl Chloride	1.0 U	1.0	0.20	1	06/23/20 23:23	
cis-1,2-Dichloroethene	0.39 J	1.0	0.23	1	06/23/20 23:23	
cis-1,3-Dichloropropene	1.0 U	1.0	0.20	1	06/23/20 23:23	
m,p-Xylenes	2.0 U	2.0	0.20	1	06/23/20 23:23	
o-Xylene	1.0 U	1.0	0.20	1	06/23/20 23:23	
trans-1,2-Dichloroethene	1.0 U	1.0	0.20	1	06/23/20 23:23	
trans-1,3-Dichloropropene	1.0 U	1.0	0.23	1	06/23/20 23:23	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	90	85 - 122	06/23/20 23:23	
Dibromofluoromethane	91	89 - 119	06/23/20 23:23	
Toluene-d8	93	87 - 121	06/23/20 23:23	

Analytical Report

Client:	TRC Companies	Service Request:	06/17/20 12:55
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected:	
Sample Matrix:	Water	Date Received:	
Sample Name:	CCSK - MW-05A	Units:	0
Lab Code:	R2005213-008	Basis:	

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	1.0 U	1.0	0.20	1	06/23/20 23:45	
1,1,2,2-Tetrachloroethane	1.0 U J	1.0	0.20	1	06/23/20 23:45	
1,1,2-Trichloroethane	1.0 U	1.0	0.20	1	06/23/20 23:45	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0 U	1.0	0.20	1	06/23/20 23:45	
1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	0.20	1	06/23/20 23:45	
1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.20	1	06/23/20 23:45	
1,2,3-Trichlorobenzene	1.0 U	1.0	0.25	1	06/23/20 23:45	
1,2,4-Trichlorobenzene	1.0 U	1.0	0.34	1	06/23/20 23:45	
1,2-Dibromo-3-chloropropane (DBCP)	2.0 U	2.0	0.45	1	06/23/20 23:45	
1,2-Dibromoethane	1.0 U	1.0	0.20	1	06/23/20 23:45	
1,2-Dichlorobenzene	1.3	1.0	0.20	1	06/23/20 23:45	
1,2-Dichloroethane	1.0 U	1.0	0.20	1	06/23/20 23:45	
1,2-Dichloropropane	1.0 U	1.0	0.20	1	06/23/20 23:45	
1,3-Dichlorobenzene	0.48 J	1.0	0.20	1	06/23/20 23:45	
1,4-Dichlorobenzene	2.4	1.0	0.20	1	06/23/20 23:45	
1,4-Dioxane	R40 U	40	13	1	06/23/20 23:45	_
2-Butanone (MEK)	5.0 U	5.0	0.78	1	06/23/20 23:45	
2-Hexanone	5.0 U	5.0	0.20	1	06/23/20 23:45	
4-Methyl-2-pentanone	5.0 U	5.0	0.20	1	06/23/20 23:45	
Acetone	5.0 U	5.0	5.0	1	06/23/20 23:45	
Benzene	1.7	1.0	0.20	1	06/23/20 23:45	
Bromochloromethane	1.0 U	1.0	0.20	1	06/23/20 23:45	
Bromodichloromethane	1.0 U	1.0	0.20	1	06/23/20 23:45	
Bromoform	1.0 U	1.0	0.25	1	06/23/20 23:45	
Bromomethane	1.0 UJ	1.0	0.70	1	06/23/20 23:45	
Carbon Disulfide	1.0 U	1.0	0.42	1	06/23/20 23:45	
Carbon Tetrachloride	1.0 U	1.0	0.34	1	06/23/20 23:45	
Chlorobenzene	6.6	1.0	0.20	1	06/23/20 23:45	
Chloroethane	1.0 U	1.0	0.23	1	06/23/20 23:45	
Chloroform	1.0 U	1.0	0.24	1	06/23/20 23:45	
Chloromethane	ND/1.0 U 0.31BJ-	1.0	0.28	1	06/23/20 23:45	
Cyclohexane	1.0 U	1.0	0.26	1	06/23/20 23:45	
Dibromochloromethane	1.0 U	1.0	0.20	1	06/23/20 23:45	
Dichlorodifluoromethane (CFC 12)	1.0 U	1.0	0.21	1	06/23/20 23:45	
Dichloromethane	1.0 U	1.0	0.65	1	06/23/20 23:45	
Ethylbenzene	1.0 U	1.0	0.20	1	06/23/20 23:45	
Isopropylbenzene (Cumene)	1.0 U	1.0	0.20	1	06/23/20 23:45	
Methyl Acetate	2.0 U	2.0	0.33	1	06/23/20 23:45	
Methyl tert-Butyl Ether	1.0 U	1.0	0.20	1	06/23/20 23:45	
Methylcyclohexane	1.0 U	1.0	0.20	1	06/23/20 23:45	
Styrene	1.0 U	1.0	0.20	1	06/23/20 23:45	
Tetrachloroethene (PCE)	1.0 U	1.0	0.21	1	06/23/20 23:45	
Toluene	1.0 U	1.0	0.20	1	06/23/20 23:45	
				-		

Analytical Report

Date Collected: 06/17/20 12:55
Date Received: 06/18/20 09:20
Units: ug/L
Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
Trichloroethene (TCE)	1.0 U	1.0	0.20	1	06/23/20 23:45	
Trichlorofluoromethane (CFC 11)	1.0 U	1.0	0.24	1	06/23/20 23:45	
Vinyl Chloride	1.0 U	1.0	0.20	1	06/23/20 23:45	
cis-1,2-Dichloroethene	1.0 U	1.0	0.23	1	06/23/20 23:45	
cis-1,3-Dichloropropene	1.0 U	1.0	0.20	1	06/23/20 23:45	
m,p-Xylenes	2.0 U	2.0	0.20	1	06/23/20 23:45	
o-Xylene	1.0 U	1.0	0.20	1	06/23/20 23:45	
trans-1,2-Dichloroethene	1.0 U	1.0	0.20	1	06/23/20 23:45	
trans-1,3-Dichloropropene	1.0 U	1.0	0.23	1	06/23/20 23:45	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	92	85 - 122	06/23/20 23:45	
Dibromofluoromethane	91	89 - 119	06/23/20 23:45	
Toluene-d8	93	87 - 121	06/23/20 23:45	

Semivolatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER Page 62 of 2542

Analytical Report

Client:	TRC Companies	Service Request:	R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected:	06/15/20 14:35
Sample Matrix:	Water	Date Received:	06/18/20 09:20
Sample Name: Lab Code:	CCSK - MW-03B R2005213-001	Units: Basis:	0

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
1,2,4,5-Tetrachlorobenzene	9.1 U	9.1	1.1	1	06/23/20 17:28	6/22/20	
2,3,4,6-Tetrachlorophenol	9.1 U	9.1	1.1	1	06/23/20 17:28	6/22/20	
2,4,5-Trichlorophenol	9.1 U	9.1	0.99	1	06/23/20 17:28	6/22/20	
2,4,6-Trichlorophenol	9.1 U	9.1	1.3	1	06/23/20 17:28	6/22/20	
2,4-Dichlorophenol	9.1 U	9.1	1.2	1	06/23/20 17:28	6/22/20	
2,4-Dimethylphenol	9.1 U	9.1	1.3	1	06/23/20 17:28	6/22/20	
2,4-Dinitrophenol	45 U	45	19	1	06/23/20 17:28	6/22/20	
2,4-Dinitrotoluene	9.1 U	9.1	2.2	1	06/23/20 17:28	6/22/20	
2,6-Dinitrotoluene	9.1 U	9.1	1.2	1	06/23/20 17:28	6/22/20	
2-Chloronaphthalene	9.1 U	9.1	1.3	1	06/23/20 17:28	6/22/20	
2-Chlorophenol	9.1 U	9.1	0.97	1	06/23/20 17:28	6/22/20	
2-Methylnaphthalene	9.1 U	9.1	1.2	1	06/23/20 17:28	6/22/20	
2-Methylphenol	9.1 U	9.1	0.91	1	06/23/20 17:28	6/22/20	
2-Nitroaniline	9.1 U	9.1	1.3	1	06/23/20 17:28	6/22/20	
2-Nitrophenol	9.1 U	9.1	1.4	1	06/23/20 17:28	6/22/20	
3,3'-Dichlorobenzidine	9.1 U	9.1	1.1	1	06/23/20 17:28	6/22/20	
3- and 4-Methylphenol Coelution	9.1 U	9.1	1.1	1	06/23/20 17:28	6/22/20	
3-Nitroaniline	9.1 U	9.1	2.3	1	06/23/20 17:28	6/22/20	
4,6-Dinitro-2-methylphenol	45 U	45	18	1	06/23/20 17:28	6/22/20	
4-Bromophenyl Phenyl Ether	9.1 U	9.1	1.5	1	06/23/20 17:28	6/22/20	
4-Chloro-3-methylphenol	9.1 U	9.1	0.98	1	06/23/20 17:28	6/22/20	
4-Chloroaniline	9.1 U	9.1	0.90	1	06/23/20 17:28	6/22/20	
4-Chlorophenyl Phenyl Ether	9.1 U	9.1	1.4	1	06/23/20 17:28	6/22/20	
4-Nitroaniline	9.1 U	9.1	2.5	1	06/23/20 17:28	6/22/20	
4-Nitrophenol	45 U	45	5.8	1	06/23/20 17:28	6/22/20	
Acenaphthene	9.1 U	9.1	1.3	1	06/23/20 17:28	6/22/20	
Acenaphthylene	9.1 U	9.1	1.3	1	06/23/20 17:28	6/22/20	
Acetophenone	9.1 U	9.1	1.2	1	06/23/20 17:28	6/22/20	
Anthracene	9.1 U	9.1	1.2	1	06/23/20 17:28	6/22/20	
Atrazine	9.1 U	9.1	1.2	1	06/23/20 17:28	6/22/20	
Benz(a)anthracene	9.1 U	9.1	1.5	1	06/23/20 17:28	6/22/20	
Benzaldehyde	9.1 U	9.1	3.4	1	06/23/20 17:28	6/22/20	
Benzo(a)pyrene	9.1 U 9.1 U	9.1	1.1	1	06/23/20 17:28	6/22/20	
Benzo(a)pyrene Benzo(b)fluoranthene	9.1 U 9.1 U	9.1 9.1	1.1	1	06/23/20 17:28	6/22/20	
Benzo(o)Iluorantinene	9.1 U 9.1 U	9.1 9.1	0.91	1		6/22/20	
Benzo(g,h,i)perylene Benzo(k)fluoranthene	9.1 U	9.1	1.1	1	06/23/20 17:28	6/22/20	
	9.1 U 9.1 U	9.1 9.1		1	06/23/20 17:28 06/23/20 17:28		
Biphenyl			1.3	1		6/22/20	
2,2'-Oxybis(1-chloropropane)	9.1 U	9.1	1.3	1	06/23/20 17:28	6/22/20	
Bis(2-chloroethoxy)methane	9.1 U	9.1	1.8	1	06/23/20 17:28	6/22/20	
Bis(2-chloroethyl) Ether	9.1 U	9.1	1.2	1	06/23/20 17:28	6/22/20	
Bis(2-ethylhexyl) Phthalate	9.1 U	9.1	0.91	1	06/23/20 17:28	6/22/20	
Butyl Benzyl Phthalate	9.1 U	9.1	1.3	1	06/23/20 17:28	6/22/20	
Caprolactam	9.1 U	9.1	0.91	1	06/23/20 17:28	6/22/20	

Analytical Report

Client:	TRC Companies	Service Request:	R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected:	06/15/20 14:35
Sample Matrix:	Water	Date Received:	06/18/20 09:20
Sample Name:	CCSK - MW-03B	Units:	ug/L
Lab Code:	R2005213-001	Basis:	NA

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Carbazole	9.1 U	9.1	1.4	1	06/23/20 17:28	6/22/20	
Chrysene	9.1 U	9.1	1.1	1	06/23/20 17:28	6/22/20	
Di-n-butyl Phthalate	9.1 U	9.1	1.5	1	06/23/20 17:28	6/22/20	
Di-n-octyl Phthalate	9.1 U	9.1	3.0	1	06/23/20 17:28	6/22/20	
Dibenz(a,h)anthracene	9.1 U	9.1	0.93	1	06/23/20 17:28	6/22/20	
Dibenzofuran	9.1 U	9.1	1.3	1	06/23/20 17:28	6/22/20	
Diethyl Phthalate	9.1 U	9.1	0.98	1	06/23/20 17:28	6/22/20	
Dimethyl Phthalate	9.1 U	9.1	1.2	1	06/23/20 17:28	6/22/20	
Fluoranthene	9.1 U	9.1	1.4	1	06/23/20 17:28	6/22/20	
Fluorene	9.1 U	9.1	1.2	1	06/23/20 17:28	6/22/20	
Hexachlorobenzene	9.1 U	9.1	1.4	1	06/23/20 17:28	6/22/20	
Hexachlorobutadiene	9.1 U	9.1	0.91	1	06/23/20 17:28	6/22/20	
Hexachlorocyclopentadiene	9.1 U	9.1	2.0	1	06/23/20 17:28	6/22/20	
Hexachloroethane	9.1 U	9.1	0.96	1	06/23/20 17:28	6/22/20	
Indeno(1,2,3-cd)pyrene	9.1 U	9.1	1.6	1	06/23/20 17:28	6/22/20	
Isophorone	9.1 U	9.1	1.3	1	06/23/20 17:28	6/22/20	
N-Nitrosodi-n-propylamine	9.1 U	9.1	1.1	1	06/23/20 17:28	6/22/20	
N-Nitrosodiphenylamine	9.1 U	9.1	2.4	1	06/23/20 17:28	6/22/20	
Naphthalene	9.1 U	9.1	1.1	1	06/23/20 17:28	6/22/20	
Nitrobenzene	9.1 U	9.1	1.4	1	06/23/20 17:28	6/22/20	
Pentachlorophenol (PCP)	45 U	45	8.9	1	06/23/20 17:28	6/22/20	
Phenanthrene	9.1 U	9.1	1.3	1	06/23/20 17:28	6/22/20	
Phenol	9.1 U	9.1	0.91	1	06/23/20 17:28	6/22/20	
Pyrene	9.1 U	9.1	1.3	1	06/23/20 17:28	6/22/20	

Surrogate Name	% Rec	Control Limits	Date Analyzed Q	
2,4,6-Tribromophenol	69	35 - 141	06/23/20 17:28	
2-Fluorobiphenyl	59	31 - 118	06/23/20 17:28	
2-Fluorophenol	41	10 - 105	06/23/20 17:28	
Nitrobenzene-d5	63	31 - 110	06/23/20 17:28	
Phenol-d6	30	10 - 107	06/23/20 17:28	
Terphenyl-d14	82	10 - 165	06/23/20 17:28	

Analytical Report

Client:	TRC Companies	Service Request:	R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected:	06/16/20 10:20
Sample Matrix:	Water	Date Received:	06/18/20 09:20
Sample Name: Lab Code:	CCSK - MW-01B R2005213-002	Units: Basis:	0

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
1,2,4,5-Tetrachlorobenzene	9.1 U	9.1	1.1	1	06/23/20 14:03	6/19/20	
2,3,4,6-Tetrachlorophenol	9.1 U	9.1	1.1	1	06/23/20 14:03	6/19/20	
2,4,5-Trichlorophenol	9.1 U	9.1	0.99	1	06/23/20 14:03	6/19/20	
2,4,6-Trichlorophenol	9.1 U	9.1	1.3	1	06/23/20 14:03	6/19/20	
2,4-Dichlorophenol	9.1 U	9.1	1.2	1	06/23/20 14:03	6/19/20	
2,4-Dimethylphenol	9.1 U	9.1	1.3	1	06/23/20 14:03	6/19/20	
2,4-Dinitrophenol	45 U	45	19	1	06/23/20 14:03	6/19/20	
2,4-Dinitrotoluene	9.1 U	9.1	2.2	1	06/23/20 14:03	6/19/20	
2,6-Dinitrotoluene	9.1 U	9.1	1.2	1	06/23/20 14:03	6/19/20	
2-Chloronaphthalene	9.1 U	9.1	1.3	1	06/23/20 14:03	6/19/20	
2-Chlorophenol	9.1 U	9.1	0.97	1	06/23/20 14:03	6/19/20	
2-Methylnaphthalene	9.1 U	9.1	1.2	1	06/23/20 14:03	6/19/20	
2-Methylphenol	9.1 U	9.1	0.91	1	06/23/20 14:03	6/19/20	
2-Nitroaniline	9.1 U	9.1	1.3	1	06/23/20 14:03	6/19/20	
2-Nitrophenol	9.1 U	9.1	1.4	1	06/23/20 14:03	6/19/20	
3,3'-Dichlorobenzidine	9.1 U	9.1	1.1	1	06/23/20 14:03	6/19/20	
3- and 4-Methylphenol Coelution	9.1 U	9.1	1.1	1	06/23/20 14:03	6/19/20	
3-Nitroaniline	9.1 U	9.1	2.3	1	06/23/20 14:03	6/19/20	
4,6-Dinitro-2-methylphenol	45 U	45	18	1	06/23/20 14:03	6/19/20	
4-Bromophenyl Phenyl Ether	9.1 U	9.1	1.5	1	06/23/20 14:03	6/19/20	
4-Chloro-3-methylphenol	9.1 U	9.1	0.98	1	06/23/20 14:03	6/19/20	
4-Chloroaniline	9.1 U	9.1	0.91	1	06/23/20 14:03	6/19/20	
4-Chlorophenyl Phenyl Ether	9.1 U	9.1	1.4	1	06/23/20 14:03	6/19/20	
4-Nitroaniline	9.1 U	9.1	2.5	1	06/23/20 14:03	6/19/20	
4-Nitrophenol	45 U	45	5.8	1	06/23/20 14:03	6/19/20	
Acenaphthene	9.1 U	9.1	1.3	1	06/23/20 14:03	6/19/20	
Acenaphthylene	9.1 U	9.1	1.3	1	06/23/20 14:03	6/19/20	
Acetophenone	9.1 U	9.1	1.2	1	06/23/20 14:03	6/19/20	
Anthracene	9.1 U	9.1	1.2	1	06/23/20 14:03	6/19/20	
Atrazine	9.1 U	9.1	1.9	1	06/23/20 14:03	6/19/20	
Benz(a)anthracene	9.1 U	9.1	1.5	1	06/23/20 14:03	6/19/20	
Benzaldehyde	9.1 U	9.1	3.4	1	06/23/20 14:03	6/19/20	
Benzo(a)pyrene	9.1 U	9.1	1.1	1	06/23/20 14:03	6/19/20	
Benzo(b)fluoranthene	9.1 U	9.1	1.1	1	06/23/20 14:03	6/19/20	
Benzo(g,h,i)perylene	9.1 U	9.1	0.91	1	06/23/20 14:03	6/19/20	
Benzo(k)fluoranthene	9.1 U	9.1	1.1	1	06/23/20 14:03	6/19/20	
Biphenyl	9.1 U	9.1	1.1	1	06/23/20 14:03	6/19/20	
2,2'-Oxybis(1-chloropropane)	9.1 U	9.1	1.3	1	06/23/20 14:03	6/19/20	
Bis(2-chloroethoxy)methane	9.1 U 9.1 U	9.1	1.3	1	06/23/20 14:03	6/19/20	
	9.1 U 9.1 U	9.1 9.1		1			
Bis(2-chloroethyl) Ether Bis(2-ethylhexyl) Phthalate	9.1 U 9.1 U	9.1	<u>1.2</u> 0.91	1	06/23/20 14:03 06/23/20 14:03	6/19/20 6/19/20	
				1			
Butyl Benzyl Phthalate	9.1 U	9.1	1.3	1	06/23/20 14:03	6/19/20	
Caprolactam	9.1 U	9.1	0.91	1	06/23/20 14:03	6/19/20	

Analytical Report

Client:	TRC Companies	Service Request: R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected: 06/16/20 10:20
Sample Matrix:	Water	Date Received: 06/18/20 09:20
Sample Name:	CCSK - MW-01B	Units: ug/L
Lab Code:	R2005213-002	Basis: NA

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Carbazole	9.1 U	9.1	1.4	1	06/23/20 14:03	6/19/20	
Chrysene	9.1 U	9.1	1.1	1	06/23/20 14:03	6/19/20	
Di-n-butyl Phthalate	9.1 U	9.1	1.5	1	06/23/20 14:03	6/19/20	
Di-n-octyl Phthalate	9.1 U	9.1	3.0	1	06/23/20 14:03	6/19/20	
Dibenz(a,h)anthracene	9.1 U	9.1	0.93	1	06/23/20 14:03	6/19/20	
Dibenzofuran	9.1 U	9.1	1.3	1	06/23/20 14:03	6/19/20	
Diethyl Phthalate	9.1 U	9.1	0.98	1	06/23/20 14:03	6/19/20	
Dimethyl Phthalate	9.1 U	9.1	1.2	1	06/23/20 14:03	6/19/20	
Fluoranthene	9.1 U	9.1	1.4	1	06/23/20 14:03	6/19/20	
Fluorene	9.1 U	9.1	1.2	1	06/23/20 14:03	6/19/20	
Hexachlorobenzene	9.1 U	9.1	1.4	1	06/23/20 14:03	6/19/20	
Hexachlorobutadiene	9.1 U	9.1	0.91	1	06/23/20 14:03	6/19/20	
Hexachlorocyclopentadiene	9.1 U	9.1	2.0	1	06/23/20 14:03	6/19/20	
Hexachloroethane	9.1 U	9.1	0.96	1	06/23/20 14:03	6/19/20	
Indeno(1,2,3-cd)pyrene	9.1 U	9.1	1.6	1	06/23/20 14:03	6/19/20	
Isophorone	9.1 U	9.1	1.3	1	06/23/20 14:03	6/19/20	
N-Nitrosodi-n-propylamine	9.1 U	9.1	1.1	1	06/23/20 14:03	6/19/20	
N-Nitrosodiphenylamine	9.1 U	9.1	2.4	1	06/23/20 14:03	6/19/20	
Naphthalene	9.1 U	9.1	1.1	1	06/23/20 14:03	6/19/20	
Nitrobenzene	9.1 U	9.1	1.4	1	06/23/20 14:03	6/19/20	
Pentachlorophenol (PCP)	45 U	45	8.9	1	06/23/20 14:03	6/19/20	
Phenanthrene	9.1 U	9.1	1.3	1	06/23/20 14:03	6/19/20	
Phenol	9.1 U	9.1	0.91	1	06/23/20 14:03	6/19/20	
Pyrene	9.1 U	9.1	1.3	1	06/23/20 14:03	6/19/20	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	86	35 - 141	06/23/20 14:03	
2-Fluorobiphenyl	66	31 - 118	06/23/20 14:03	
2-Fluorophenol	38	10 - 105	06/23/20 14:03	
Nitrobenzene-d5	59	31 - 110	06/23/20 14:03	
Phenol-d6	27	10 - 107	06/23/20 14:03	
Terphenyl-d14	92	10 - 165	06/23/20 14:03	

Analytical Report

Client:	TRC Companies	Service Request:	R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected:	06/16/20 12:50
Sample Matrix:	Water	Date Received:	06/18/20 09:20
Sample Name:	CCSK - MW-01A	Units:	ug/L
Lab Code:	R2005213-003	Basis:	NA

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
1,2,4,5-Tetrachlorobenzene	9.1 U	9.1	1.1	1	06/23/20 14:33	6/19/20	
2,3,4,6-Tetrachlorophenol	9.1 U	9.1	1.1	1	06/23/20 14:33	6/19/20	
2,4,5-Trichlorophenol	9.1 U	9.1	0.99	1	06/23/20 14:33	6/19/20	
2,4,6-Trichlorophenol	9.1 U	9.1	1.3	1	06/23/20 14:33	6/19/20	
2,4-Dichlorophenol	9.1 U	9.1	1.2	1	06/23/20 14:33	6/19/20	
2,4-Dimethylphenol	9.1 U	9.1	1.3	1	06/23/20 14:33	6/19/20	
2,4-Dinitrophenol	45 U	45	19	1	06/23/20 14:33	6/19/20	
2,4-Dinitrotoluene	9.1 U	9.1	2.2	1	06/23/20 14:33	6/19/20	
2,6-Dinitrotoluene	9.1 U	9.1	1.2	1	06/23/20 14:33	6/19/20	
2-Chloronaphthalene	9.1 U	9.1	1.3	1	06/23/20 14:33	6/19/20	
2-Chlorophenol	9.1 U	9.1	0.97	1	06/23/20 14:33	6/19/20	
2-Methylnaphthalene	9.1 U	9.1	1.2	1	06/23/20 14:33	6/19/20	
2-Methylphenol	9.1 U	9.1	0.91	1	06/23/20 14:33	6/19/20	
2-Nitroaniline	9.1 U	9.1	1.3	1	06/23/20 14:33	6/19/20	
2-Nitrophenol	9.1 U	9.1	1.4	1	06/23/20 14:33	6/19/20	
3,3'-Dichlorobenzidine	9.1 U	9.1	1.1	1	06/23/20 14:33	6/19/20	
3- and 4-Methylphenol Coelution	9.1 U	9.1	1.1	1	06/23/20 14:33	6/19/20	
3-Nitroaniline	9.1 U	9.1	2.3	1	06/23/20 14:33	6/19/20	
4,6-Dinitro-2-methylphenol	45 U	45	18	1	06/23/20 14:33	6/19/20	
4-Bromophenyl Phenyl Ether	9.1 U	9.1	1.5	1	06/23/20 14:33	6/19/20	
4-Chloro-3-methylphenol	9.1 U	9.1	0.98	1	06/23/20 14:33	6/19/20	
4-Chloroaniline	9.1 U	9.1	0.91	1	06/23/20 14:33	6/19/20	
4-Chlorophenyl Phenyl Ether	9.1 U	9.1	1.4	1	06/23/20 14:33	6/19/20	
4-Nitroaniline	9.1 U	9.1	2.5	1	06/23/20 14:33	6/19/20	
4-Nitrophenol	45 U	45	5.8	1	06/23/20 14:33	6/19/20	
Acenaphthene	9.1 U	9.1	1.3	1	06/23/20 14:33	6/19/20	
Acenaphthylene	9.1 U	9.1	1.3	1	06/23/20 14:33	6/19/20	
Acetophenone	9.1 U	9.1	1.2	1	06/23/20 14:33	6/19/20	
Anthracene	9.1 U	9.1	1.2	1	06/23/20 14:33	6/19/20	
Atrazine	9.1 U	9.1	1.2	1	06/23/20 14:33	6/19/20	
Benz(a)anthracene	9.1 U	9.1	1.5	1	06/23/20 14:33	6/19/20	
Benzaldehyde	9.1 U	9.1	3.4	1	06/23/20 14:33	6/19/20	
Benzo(a)pyrene	9.1 U	9.1	1.1	1	06/23/20 14:33	6/19/20	
Benzo(b)fluoranthene	9.1 U 9.1 U	9.1	1.1	1	06/23/20 14:33	6/19/20	
Benzo(g,h,i)perylene	9.1 U 9.1 U	9.1	0.91	1	06/23/20 14:33	6/19/20	
Benzo(k)fluoranthene	9.1 U 9.1 U	9.1	1.1	1	06/23/20 14:33	6/19/20	
	9.1 U	9.1 9.1	1.1	1		6/19/20	
Biphenyl				1	06/23/20 14:33 06/23/20 14:33		
2,2'-Oxybis(1-chloropropane)	9.1 U	9.1	1.3	1		6/19/20	
Bis(2-chloroethoxy)methane	9.1 U	9.1	1.8	1	06/23/20 14:33	6/19/20	
Bis(2-chloroethyl) Ether	9.1 U	9.1	1.2	1	06/23/20 14:33	6/19/20	
Bis(2-ethylhexyl) Phthalate	9.1 U	9.1	0.91	1	06/23/20 14:33	6/19/20	
Butyl Benzyl Phthalate	9.1 U	9.1	1.3	1	06/23/20 14:33	6/19/20	
Caprolactam	9.1 U	9.1	0.91	1	06/23/20 14:33	6/19/20	

Analytical Report

Client:	TRC Companies	Service Request: R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected: 06/16/20 12:50
Sample Matrix:	Water	Date Received: 06/18/20 09:20
Sample Name:	CCSK - MW-01A	Units: ug/L
Lab Code:	R2005213-003	Basis: NA

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Carbazole	9.1 U	9.1	1.4	1	06/23/20 14:33	6/19/20	
Chrysene	9.1 U	9.1	1.1	1	06/23/20 14:33	6/19/20	
Di-n-butyl Phthalate	9.1 U	9.1	1.5	1	06/23/20 14:33	6/19/20	
Di-n-octyl Phthalate	9.1 U	9.1	3.0	1	06/23/20 14:33	6/19/20	
Dibenz(a,h)anthracene	9.1 U	9.1	0.93	1	06/23/20 14:33	6/19/20	
Dibenzofuran	9.1 U	9.1	1.3	1	06/23/20 14:33	6/19/20	
Diethyl Phthalate	9.1 U	9.1	0.98	1	06/23/20 14:33	6/19/20	
Dimethyl Phthalate	9.1 U	9.1	1.2	1	06/23/20 14:33	6/19/20	
Fluoranthene	9.1 U	9.1	1.4	1	06/23/20 14:33	6/19/20	
Fluorene	9.1 U	9.1	1.2	1	06/23/20 14:33	6/19/20	
Hexachlorobenzene	9.1 U	9.1	1.4	1	06/23/20 14:33	6/19/20	
Hexachlorobutadiene	9.1 U	9.1	0.91	1	06/23/20 14:33	6/19/20	
Hexachlorocyclopentadiene	9.1 U	9.1	2.0	1	06/23/20 14:33	6/19/20	
Hexachloroethane	9.1 U	9.1	0.96	1	06/23/20 14:33	6/19/20	
Indeno(1,2,3-cd)pyrene	9.1 U	9.1	1.6	1	06/23/20 14:33	6/19/20	
Isophorone	9.1 U	9.1	1.3	1	06/23/20 14:33	6/19/20	
N-Nitrosodi-n-propylamine	9.1 U	9.1	1.1	1	06/23/20 14:33	6/19/20	
N-Nitrosodiphenylamine	9.1 U	9.1	2.4	1	06/23/20 14:33	6/19/20	
Naphthalene	9.1 U	9.1	1.1	1	06/23/20 14:33	6/19/20	
Nitrobenzene	9.1 U	9.1	1.4	1	06/23/20 14:33	6/19/20	
Pentachlorophenol (PCP)	45 U	45	8.9	1	06/23/20 14:33	6/19/20	
Phenanthrene	9.1 U	9.1	1.3	1	06/23/20 14:33	6/19/20	
Phenol	9.1 U	9.1	0.91	1	06/23/20 14:33	6/19/20	
Pyrene	9.1 U	9.1	1.3	1	06/23/20 14:33	6/19/20	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	70	35 - 141	06/23/20 14:33	
2-Fluorobiphenyl	65	31 - 118	06/23/20 14:33	
2-Fluorophenol	36	10 - 105	06/23/20 14:33	
Nitrobenzene-d5	59	31 - 110	06/23/20 14:33	
Phenol-d6	27	10 - 107	06/23/20 14:33	
Terphenyl-d14	81	10 - 165	06/23/20 14:33	

Analytical Report

Client:	TRC Companies	Service Request:	R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected:	06/16/20 13:50
Sample Matrix:	Water	Date Received:	06/18/20 09:20
Sample Name: Lab Code:	CCSK - MW-03A R2005213-004	Units: Basis:	e

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
1,2,4,5-Tetrachlorobenzene	9.1 U	9.1	1.1	1	06/23/20 18:54	6/22/20	
2,3,4,6-Tetrachlorophenol	9.1 U	9.1	1.1	1	06/23/20 18:54	6/22/20	
2,4,5-Trichlorophenol	9.1 U	9.1	0.99	1	06/23/20 18:54	6/22/20	
2,4,6-Trichlorophenol	9.1 U	9.1	1.3	1	06/23/20 18:54	6/22/20	
2,4-Dichlorophenol	9.1 U	9.1	1.2	1	06/23/20 18:54	6/22/20	
2,4-Dimethylphenol	9.1 U	9.1	1.3	1	06/23/20 18:54	6/22/20	
2,4-Dinitrophenol	45 U	45	19	1	06/23/20 18:54	6/22/20	
2,4-Dinitrotoluene	9.1 U	9.1	2.2	1	06/23/20 18:54	6/22/20	
2,6-Dinitrotoluene	9.1 U	9.1	1.2	1	06/23/20 18:54	6/22/20	
2-Chloronaphthalene	9.1 U	9.1	1.3	1	06/23/20 18:54	6/22/20	
2-Chlorophenol	9.1 U	9.1	0.97	1	06/23/20 18:54	6/22/20	
2-Methylnaphthalene	9.1 U	9.1	1.2	1	06/23/20 18:54	6/22/20	
2-Methylphenol	9.1 U	9.1	0.91	1	06/23/20 18:54	6/22/20	
2-Nitroaniline	9.1 U	9.1	1.3	1	06/23/20 18:54	6/22/20	
2-Nitrophenol	9.1 U	9.1	1.4	1	06/23/20 18:54	6/22/20	
3,3'-Dichlorobenzidine	9.1 U	9.1	1.1	1	06/23/20 18:54	6/22/20	
3- and 4-Methylphenol Coelution	9.1 U	9.1	1.1	1	06/23/20 18:54	6/22/20	
3-Nitroaniline	9.1 U	9.1	2.3	1	06/23/20 18:54	6/22/20	
4,6-Dinitro-2-methylphenol	45 U	45	18	1	06/23/20 18:54	6/22/20	
4-Bromophenyl Phenyl Ether	9.1 U	9.1	1.5	1	06/23/20 18:54	6/22/20	
4-Chloro-3-methylphenol	9.1 U	9.1	0.98	1	06/23/20 18:54	6/22/20	
4-Chloroaniline	9.1 U	9.1	0.90	1	06/23/20 18:54	6/22/20	
4-Chlorophenyl Phenyl Ether	9.1 U	9.1	1.4	1	06/23/20 18:54	6/22/20	
4-Nitroaniline	9.1 U	9.1	2.5	1	06/23/20 18:54	6/22/20	
4-Nitrophenol	45 U	45	5.8	1	06/23/20 18:54	6/22/20	
Acenaphthene	9.1 U	9.1	1.3	1	06/23/20 18:54	6/22/20	
Acenaphthylene	9.1 U	9.1	1.3	1	06/23/20 18:54	6/22/20	
Acetophenone	9.1 U	9.1	1.2	1	06/23/20 18:54	6/22/20	
Anthracene	9.1 U 9.1 U	9.1	1.2	1	06/23/20 18:54	6/22/20	
Atrazine	9.1 U	9.1	1.2	1	06/23/20 18:54	6/22/20	
Benz(a)anthracene	9.1 U	9.1	1.5	1	06/23/20 18:54	6/22/20	
Benzaldehyde	9.1 U 9.1 U	9.1	3.4	1	06/23/20 18:54	6/22/20	
	9.1 U 9.1 U	9.1	5.4 1.1	1		6/22/20	
Benzo(a)pyrene				1	06/23/20 18:54		
Benzo(b)fluoranthene	9.1 U	9.1	1.1	1	06/23/20 18:54	6/22/20	
Benzo(g,h,i)perylene	9.1 U	9.1	0.91	1	06/23/20 18:54	6/22/20	
Benzo(k)fluoranthene	9.1 U	9.1	1.1	1	06/23/20 18:54	6/22/20	
Biphenyl	9.1 U	9.1	1.3	1	06/23/20 18:54	6/22/20	
2,2'-Oxybis(1-chloropropane)	9.1 U	9.1	1.3	l	06/23/20 18:54	6/22/20	
Bis(2-chloroethoxy)methane	9.1 U	9.1	1.8	1	06/23/20 18:54	6/22/20	
Bis(2-chloroethyl) Ether	9.1 U	9.1	1.2	1	06/23/20 18:54	6/22/20	
Bis(2-ethylhexyl) Phthalate	9.1 U	9.1	0.91	1	06/23/20 18:54	6/22/20	
Butyl Benzyl Phthalate	9.1 U	9.1	1.3	1	06/23/20 18:54	6/22/20	
Caprolactam	9.1 U	9.1	0.91	1	06/23/20 18:54	6/22/20	

Analytical Report

Client:	TRC Companies	Service Request:	R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected:	06/16/20 13:50
Sample Matrix:	Water	Date Received:	06/18/20 09:20
Sample Name:	CCSK - MW-03A	Units:	ug/L
Lab Code:	R2005213-004	Basis:	NA

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Carbazole	9.1 U	9.1	1.4	1	06/23/20 18:54	6/22/20	
Chrysene	9.1 U	9.1	1.1	1	06/23/20 18:54	6/22/20	
Di-n-butyl Phthalate	9.1 U	9.1	1.5	1	06/23/20 18:54	6/22/20	
Di-n-octyl Phthalate	9.1 U	9.1	3.0	1	06/23/20 18:54	6/22/20	
Dibenz(a,h)anthracene	9.1 U	9.1	0.93	1	06/23/20 18:54	6/22/20	
Dibenzofuran	9.1 U	9.1	1.3	1	06/23/20 18:54	6/22/20	
Diethyl Phthalate	9.1 U	9.1	0.98	1	06/23/20 18:54	6/22/20	
Dimethyl Phthalate	9.1 U	9.1	1.2	1	06/23/20 18:54	6/22/20	
Fluoranthene	9.1 U	9.1	1.4	1	06/23/20 18:54	6/22/20	
Fluorene	9.1 U	9.1	1.2	1	06/23/20 18:54	6/22/20	
Hexachlorobenzene	9.1 U	9.1	1.4	1	06/23/20 18:54	6/22/20	
Hexachlorobutadiene	9.1 U	9.1	0.91	1	06/23/20 18:54	6/22/20	
Hexachlorocyclopentadiene	9.1 U	9.1	2.0	1	06/23/20 18:54	6/22/20	
Hexachloroethane	9.1 U	9.1	0.96	1	06/23/20 18:54	6/22/20	
Indeno(1,2,3-cd)pyrene	9.1 U	9.1	1.6	1	06/23/20 18:54	6/22/20	
Isophorone	9.1 U	9.1	1.3	1	06/23/20 18:54	6/22/20	
N-Nitrosodi-n-propylamine	9.1 U	9.1	1.1	1	06/23/20 18:54	6/22/20	
N-Nitrosodiphenylamine	9.1 U	9.1	2.4	1	06/23/20 18:54	6/22/20	
Naphthalene	9.1 U	9.1	1.1	1	06/23/20 18:54	6/22/20	
Nitrobenzene	9.1 U	9.1	1.4	1	06/23/20 18:54	6/22/20	
Pentachlorophenol (PCP)	45 U	45	8.9	1	06/23/20 18:54	6/22/20	
Phenanthrene	9.1 U	9.1	1.3	1	06/23/20 18:54	6/22/20	
Phenol	9.1 U	9.1	0.91	1	06/23/20 18:54	6/22/20	
Pyrene	9.1 U	9.1	1.3	1	06/23/20 18:54	6/22/20	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	70	35 - 141	06/23/20 18:54	
2-Fluorobiphenyl	60	31 - 118	06/23/20 18:54	
2-Fluorophenol	47	10 - 105	06/23/20 18:54	
Nitrobenzene-d5	62	31 - 110	06/23/20 18:54	
Phenol-d6	34	10 - 107	06/23/20 18:54	
Terphenyl-d14	104	10 - 165	06/23/20 18:54	

Analytical Report

Client:	TRC Companies	Service Request:	R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected:	06/16/20 15:35
Sample Matrix:	Water	Date Received:	06/18/20 09:20
Sample Name:	CCSK - MW-20B	Units:	ug/L
Lab Code:	R2005213-005	Basis:	NA

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
1,2,4,5-Tetrachlorobenzene	9.1 U	9.1	1.1	1	06/23/20 19:23	6/22/20	
2,3,4,6-Tetrachlorophenol	9.1 U	9.1	1.1	1	06/23/20 19:23	6/22/20	
2,4,5-Trichlorophenol	9.1 U	9.1	0.99	1	06/23/20 19:23	6/22/20	
2,4,6-Trichlorophenol	9.1 U	9.1	1.3	1	06/23/20 19:23	6/22/20	
2,4-Dichlorophenol	9.1 U	9.1	1.2	1	06/23/20 19:23	6/22/20	
2,4-Dimethylphenol	9.1 U	9.1	1.3	1	06/23/20 19:23	6/22/20	
2,4-Dinitrophenol	45 U	45	19	1	06/23/20 19:23	6/22/20	
2,4-Dinitrotoluene	9.1 U	9.1	2.2	1	06/23/20 19:23	6/22/20	
2,6-Dinitrotoluene	9.1 U	9.1	1.2	1	06/23/20 19:23	6/22/20	
2-Chloronaphthalene	9.1 U	9.1	1.3	1	06/23/20 19:23	6/22/20	
2-Chlorophenol	9.1 U	9.1	0.97	1	06/23/20 19:23	6/22/20	
2-Methylnaphthalene	9.1 U	9.1	1.2	1	06/23/20 19:23	6/22/20	
2-Methylphenol	9.1 U	9.1	0.91	1	06/23/20 19:23	6/22/20	
2-Nitroaniline	9.1 U	9.1	1.3	1	06/23/20 19:23	6/22/20	
2-Nitrophenol	9.1 U	9.1	1.4	1	06/23/20 19:23	6/22/20	
3,3'-Dichlorobenzidine	9.1 U	9.1	1.1	1	06/23/20 19:23	6/22/20	
3- and 4-Methylphenol Coelution	9.1 U	9.1	1.1	1	06/23/20 19:23	6/22/20	
3-Nitroaniline	9.1 U	9.1	2.3	1	06/23/20 19:23	6/22/20	
4,6-Dinitro-2-methylphenol	45 U	45	18	1	06/23/20 19:23	6/22/20	
4-Bromophenyl Phenyl Ether	9.1 U	9.1	1.5	1	06/23/20 19:23	6/22/20	
4-Chloro-3-methylphenol	9.1 U	9.1	0.98	1	06/23/20 19:23	6/22/20	
4-Chloroaniline	9.1 U	9.1	0.90	1	06/23/20 19:23	6/22/20	
4-Chlorophenyl Phenyl Ether	9.1 U	9.1	1.4	1	06/23/20 19:23	6/22/20	
4-Nitroaniline	9.1 U	9.1	2.5	1	06/23/20 19:23	6/22/20	
4-Nitrophenol	45 U	45	5.8	1	06/23/20 19:23	6/22/20	
Acenaphthene	9.1 U	9.1	1.3	1	06/23/20 19:23	6/22/20	
Acenaphthylene	9.1 U	9.1	1.3	1	06/23/20 19:23	6/22/20	
Acetophenone	9.1 U	9.1	1.2	1	06/23/20 19:23	6/22/20	
Anthracene	9.1 U	9.1	1.2	1	06/23/20 19:23	6/22/20	
Atrazine	9.1 U	9.1	1.2	1	06/23/20 19:23	6/22/20	
Benz(a)anthracene	9.1 U	9.1	1.5	1	06/23/20 19:23	6/22/20	
Benzaldehyde	9.1 U	9.1	3.4	1	06/23/20 19:23	6/22/20	
Benzo(a)pyrene	9.1 U	9.1	1.1	1	06/23/20 19:23	6/22/20	
Benzo(b)fluoranthene	9.1 U 9.1 U	9.1	1.1	1	06/23/20 19:23	6/22/20	
Benzo(g,h,i)perylene	9.1 U 9.1 U	9.1	0.91	1	06/23/20 19:23	6/22/20	
Benzo(k)fluoranthene	9.1 U	9.1	1.1	1	06/23/20 19:23	6/22/20	
	9.1 U 9.1 U	9.1	1.1	1	06/23/20 19:23	6/22/20	
Biphenyl				1			
2,2'-Oxybis(1-chloropropane)	9.1 U	9.1	1.3	1	06/23/20 19:23	6/22/20	
Bis(2-chloroethoxy)methane	9.1 U	9.1	1.8	1	06/23/20 19:23	6/22/20	
Bis(2-chloroethyl) Ether	9.1 U	9.1	1.2	1	06/23/20 19:23	6/22/20	
Bis(2-ethylhexyl) Phthalate	9.1 U	9.1	0.91	1	06/23/20 19:23	6/22/20	
Butyl Benzyl Phthalate	9.1 U	9.1	1.3	1	06/23/20 19:23	6/22/20	
Caprolactam	9.1 U	9.1	0.91	1	06/23/20 19:23	6/22/20	

Analytical Report

Client:	TRC Companies	Service Request: R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected: 06/16/20 15:35
Sample Matrix:	Water	Date Received: 06/18/20 09:20
Sample Name:	CCSK - MW-20B	Units: ug/L
Lab Code:	R2005213-005	Basis: NA

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Carbazole	9.1 U	9.1	1.4	1	06/23/20 19:23	6/22/20	
Chrysene	9.1 U	9.1	1.1	1	06/23/20 19:23	6/22/20	
Di-n-butyl Phthalate	9.1 U	9.1	1.5	1	06/23/20 19:23	6/22/20	
Di-n-octyl Phthalate	9.1 U	9.1	3.0	1	06/23/20 19:23	6/22/20	
Dibenz(a,h)anthracene	9.1 U	9.1	0.93	1	06/23/20 19:23	6/22/20	
Dibenzofuran	9.1 U	9.1	1.3	1	06/23/20 19:23	6/22/20	
Diethyl Phthalate	9.1 U	9.1	0.98	1	06/23/20 19:23	6/22/20	
Dimethyl Phthalate	9.1 U	9.1	1.2	1	06/23/20 19:23	6/22/20	
Fluoranthene	9.1 U	9.1	1.4	1	06/23/20 19:23	6/22/20	
Fluorene	9.1 U	9.1	1.2	1	06/23/20 19:23	6/22/20	
Hexachlorobenzene	9.1 U	9.1	1.4	1	06/23/20 19:23	6/22/20	
Hexachlorobutadiene	9.1 U	9.1	0.91	1	06/23/20 19:23	6/22/20	
Hexachlorocyclopentadiene	9.1 U	9.1	2.0	1	06/23/20 19:23	6/22/20	
Hexachloroethane	9.1 U	9.1	0.96	1	06/23/20 19:23	6/22/20	
Indeno(1,2,3-cd)pyrene	9.1 U	9.1	1.6	1	06/23/20 19:23	6/22/20	
Isophorone	9.1 U	9.1	1.3	1	06/23/20 19:23	6/22/20	
N-Nitrosodi-n-propylamine	9.1 U	9.1	1.1	1	06/23/20 19:23	6/22/20	
N-Nitrosodiphenylamine	9.1 U	9.1	2.4	1	06/23/20 19:23	6/22/20	
Naphthalene	9.1 U	9.1	1.1	1	06/23/20 19:23	6/22/20	
Nitrobenzene	9.1 U	9.1	1.4	1	06/23/20 19:23	6/22/20	
Pentachlorophenol (PCP)	45 U	45	8.9	1	06/23/20 19:23	6/22/20	
Phenanthrene	9.1 U	9.1	1.3	1	06/23/20 19:23	6/22/20	
Phenol	9.1 U	9.1	0.91	1	06/23/20 19:23	6/22/20	
Pyrene	9.1 U	9.1	1.3	1	06/23/20 19:23	6/22/20	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	50	35 - 141	06/23/20 19:23	
2-Fluorobiphenyl	43	31 - 118	06/23/20 19:23	
2-Fluorophenol	34	10 - 105	06/23/20 19:23	
Nitrobenzene-d5	41	31 - 110	06/23/20 19:23	
Phenol-d6	23	10 - 107	06/23/20 19:23	
Terphenyl-d14	86	10 - 165	06/23/20 19:23	

Analytical Report

Client:	TRC Companies	Service Request:	R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected:	06/17/20 10:15
Sample Matrix:	Water	Date Received:	06/18/20 09:20
Sample Name: Lab Code:	CCSK - MW-20A R2005213-006	Units: Basis:	e

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
1,2,4,5-Tetrachlorobenzene	9.1 U	9.1	1.1	1	06/23/20 19:51	6/22/20	
2,3,4,6-Tetrachlorophenol	9.1 U	9.1	1.1	1	06/23/20 19:51	6/22/20	
2,4,5-Trichlorophenol	9.1 U	9.1	0.99	1	06/23/20 19:51	6/22/20	
2,4,6-Trichlorophenol	9.1 U	9.1	1.3	1	06/23/20 19:51	6/22/20	
2,4-Dichlorophenol	9.1 U	9.1	1.2	1	06/23/20 19:51	6/22/20	
2,4-Dimethylphenol	9.1 U	9.1	1.3	1	06/23/20 19:51	6/22/20	
2,4-Dinitrophenol	45 U	45	19	1	06/23/20 19:51	6/22/20	
2,4-Dinitrotoluene	9.1 U	9.1	2.2	1	06/23/20 19:51	6/22/20	
2,6-Dinitrotoluene	9.1 U	9.1	1.2	1	06/23/20 19:51	6/22/20	
2-Chloronaphthalene	9.1 U	9.1	1.3	1	06/23/20 19:51	6/22/20	
2-Chlorophenol	9.1 U	9.1	0.97	1	06/23/20 19:51	6/22/20	
2-Methylnaphthalene	9.1 U	9.1	1.2	1	06/23/20 19:51	6/22/20	
2-Methylphenol	9.1 U	9.1	0.91	1	06/23/20 19:51	6/22/20	
2-Nitroaniline	9.1 U	9.1	1.3	1	06/23/20 19:51	6/22/20	
2-Nitrophenol	9.1 U	9.1	1.4	1	06/23/20 19:51	6/22/20	
3,3'-Dichlorobenzidine	9.1 U	9.1	1.1	1	06/23/20 19:51	6/22/20	
3- and 4-Methylphenol Coelution	9.1 U	9.1	1.1	1	06/23/20 19:51	6/22/20	
3-Nitroaniline	9.1 U	9.1	2.3	1	06/23/20 19:51	6/22/20	
4,6-Dinitro-2-methylphenol	45 U	45	18	1	06/23/20 19:51	6/22/20	
4-Bromophenyl Phenyl Ether	9.1 U	9.1	1.5	1	06/23/20 19:51	6/22/20	
4-Chloro-3-methylphenol	9.1 U	9.1	0.98	1	06/23/20 19:51	6/22/20	
4-Chloroaniline	9.1 U	9.1	0.90	1	06/23/20 19:51	6/22/20	
4-Chlorophenyl Phenyl Ether	9.1 U	9.1	1.4	1	06/23/20 19:51	6/22/20	
4-Nitroaniline	9.1 U	9.1	2.5	1	06/23/20 19:51	6/22/20	
4-Nitrophenol	45 U	45	5.8	1	06/23/20 19:51	6/22/20	
Acenaphthene	9.1 U	9.1	1.3	1	06/23/20 19:51	6/22/20	
Acenaphthylene	9.1 U	9.1	1.3	1	06/23/20 19:51	6/22/20	
Acetophenone	9.1 U	9.1	1.2	1	06/23/20 19:51	6/22/20	
Anthracene	9.1 U	9.1	1.2	1	06/23/20 19:51	6/22/20	
Atrazine	9.1 U	9.1	1.2	1	06/23/20 19:51	6/22/20	
Benz(a)anthracene	9.1 U	9.1	1.5	1	06/23/20 19:51	6/22/20	
Benzaldehyde	9.1 U	9.1	3.4	1	06/23/20 19:51	6/22/20	
Benzo(a)pyrene	9.1 U	9.1	1.1	1	06/23/20 19:51	6/22/20	
Benzo(b)fluoranthene	9.1 U	9.1	1.1	1	06/23/20 19:51	6/22/20	
Benzo(g,h,i)perylene	9.1 U 9.1 U	9.1	0.91	1	06/23/20 19:51	6/22/20	
Benzo(k)fluoranthene	9.1 U	9.1	1.1	1	06/23/20 19:51	6/22/20	
	9.1 U 9.1 U	9.1	1.1	1	06/23/20 19:51	6/22/20	
Biphenyl 2,2'-Oxybis(1-chloropropane)	9.1 U 9.1 U			1			
Bis(2-chloroethoxy)methane		9.1 9.1	1.3	1	06/23/20 19:51	6/22/20	
	9.1 U		1.8	1	06/23/20 19:51	6/22/20	
Bis(2-chloroethyl) Ether	9.1 U	9.1	1.2	1	06/23/20 19:51	6/22/20	
Bis(2-ethylhexyl) Phthalate	9.1 U	9.1	0.91	1	06/23/20 19:51	6/22/20	
Butyl Benzyl Phthalate	9.1 U	9.1	1.3	1	06/23/20 19:51	6/22/20	
Caprolactam	9.1 U	9.1	0.91	1	06/23/20 19:51	6/22/20	

Analytical Report

Client:	TRC Companies	Service Request: R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected: 06/17/20 10:15
Sample Matrix:	Water	Date Received: 06/18/20 09:20
Sample Name:	CCSK - MW-20A	Units: ug/L
Lab Code:	R2005213-006	Basis: NA

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Carbazole	9.1 U	9.1	1.4	1	06/23/20 19:51	6/22/20	
Chrysene	9.1 U	9.1	1.1	1	06/23/20 19:51	6/22/20	
Di-n-butyl Phthalate	9.1 U	9.1	1.5	1	06/23/20 19:51	6/22/20	
Di-n-octyl Phthalate	9.1 U	9.1	3.0	1	06/23/20 19:51	6/22/20	
Dibenz(a,h)anthracene	9.1 U	9.1	0.93	1	06/23/20 19:51	6/22/20	
Dibenzofuran	9.1 U	9.1	1.3	1	06/23/20 19:51	6/22/20	
Diethyl Phthalate	9.1 U	9.1	0.98	1	06/23/20 19:51	6/22/20	
Dimethyl Phthalate	9.1 U	9.1	1.2	1	06/23/20 19:51	6/22/20	
Fluoranthene	9.1 U	9.1	1.4	1	06/23/20 19:51	6/22/20	
Fluorene	9.1 U	9.1	1.2	1	06/23/20 19:51	6/22/20	
Hexachlorobenzene	9.1 U	9.1	1.4	1	06/23/20 19:51	6/22/20	
Hexachlorobutadiene	9.1 U	9.1	0.91	1	06/23/20 19:51	6/22/20	
Hexachlorocyclopentadiene	9.1 U	9.1	2.0	1	06/23/20 19:51	6/22/20	
Hexachloroethane	9.1 U	9.1	0.96	1	06/23/20 19:51	6/22/20	
Indeno(1,2,3-cd)pyrene	9.1 U	9.1	1.6	1	06/23/20 19:51	6/22/20	
Isophorone	9.1 U	9.1	1.3	1	06/23/20 19:51	6/22/20	
N-Nitrosodi-n-propylamine	9.1 U	9.1	1.1	1	06/23/20 19:51	6/22/20	
N-Nitrosodiphenylamine	9.1 U	9.1	2.4	1	06/23/20 19:51	6/22/20	
Naphthalene	9.1 U	9.1	1.1	1	06/23/20 19:51	6/22/20	
Nitrobenzene	9.1 U	9.1	1.4	1	06/23/20 19:51	6/22/20	
Pentachlorophenol (PCP)	45 U	45	8.9	1	06/23/20 19:51	6/22/20	
Phenanthrene	9.1 U	9.1	1.3	1	06/23/20 19:51	6/22/20	
Phenol	9.1 U	9.1	0.91	1	06/23/20 19:51	6/22/20	
Pyrene	9.1 U	9.1	1.3	1	06/23/20 19:51	6/22/20	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	80	35 - 141	06/23/20 19:51	
2-Fluorobiphenyl	62	31 - 118	06/23/20 19:51	
2-Fluorophenol	42	10 - 105	06/23/20 19:51	
Nitrobenzene-d5	62	31 - 110	06/23/20 19:51	
Phenol-d6	31	10 - 107	06/23/20 19:51	
Terphenyl-d14	108	10 - 165	06/23/20 19:51	

Analytical Report

Client:	TRC Companies	Service Request:	R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected:	06/17/20 12:00
Sample Matrix:	Water	Date Received:	06/18/20 09:20
Sample Name:	CCSK - MW-05B	Units:	ug/L
Lab Code:	R2005213-007	Basis:	NA

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
1,2,4,5-Tetrachlorobenzene	10 U	10	1.2	1	06/23/20 20:20	6/22/20	
2,3,4,6-Tetrachlorophenol	10 U	10	1.2	1	06/23/20 20:20	6/22/20	
2,4,5-Trichlorophenol	10 U	10	1.1	1	06/23/20 20:20	6/22/20	
2,4,6-Trichlorophenol	10 U	10	1.4	1	06/23/20 20:20	6/22/20	
2,4-Dichlorophenol	10 U	10	1.3	1	06/23/20 20:20	6/22/20	
2,4-Dimethylphenol	10 U	10	1.4	1	06/23/20 20:20	6/22/20	
2,4-Dinitrophenol	50 U	50	20	1	06/23/20 20:20	6/22/20	
2,4-Dinitrotoluene	10 U	10	2.4	1	06/23/20 20:20	6/22/20	
2,6-Dinitrotoluene	10 U	10	1.4	1	06/23/20 20:20	6/22/20	
2-Chloronaphthalene	10 U	10	1.4	1	06/23/20 20:20	6/22/20	
2-Chlorophenol	10 U	10	1.1	1	06/23/20 20:20	6/22/20	
2-Methylnaphthalene	10 U	10	1.3	1	06/23/20 20:20	6/22/20	
2-Methylphenol	10 U	10	1.0	1	06/23/20 20:20	6/22/20	
2-Nitroaniline	10 U	10	1.4	1	06/23/20 20:20	6/22/20	
2-Nitrophenol	10 U	10	1.5	1	06/23/20 20:20	6/22/20	
3,3'-Dichlorobenzidine	10 U	10	1.2	1	06/23/20 20:20	6/22/20	
3- and 4-Methylphenol Coelution	10 U	10	1.2	1	06/23/20 20:20	6/22/20	
3-Nitroaniline	10 U	10	2.5	1	06/23/20 20:20	6/22/20	
4,6-Dinitro-2-methylphenol	50 U	50	20	1	06/23/20 20:20	6/22/20	
4-Bromophenyl Phenyl Ether	10 U	10	1.7	1	06/23/20 20:20	6/22/20	
4-Chloro-3-methylphenol	10 U	10	1.1	1	06/23/20 20:20	6/22/20	
4-Chloroaniline	10 U	10	1.0	1	06/23/20 20:20	6/22/20	
4-Chlorophenyl Phenyl Ether	10 U	10	1.5	1	06/23/20 20:20	6/22/20	
4-Nitroaniline	10 U	10	2.7	1	06/23/20 20:20	6/22/20	
4-Nitrophenol	50 U	50	6.4	1	06/23/20 20:20	6/22/20	
Acenaphthene	10 U	10	1.4	1	06/23/20 20:20	6/22/20	
Acenaphthylene	10 U	10	1.4	1	06/23/20 20:20	6/22/20	
Acetophenone	10 U	10	1.3	1	06/23/20 20:20	6/22/20	
Anthracene	10 U	10	1.3	1	06/23/20 20:20	6/22/20	
Atrazine	10 U	10	2.1	1	06/23/20 20:20	6/22/20	
Benz(a)anthracene	10 U	10	1.6	1	06/23/20 20:20	6/22/20	
Benzaldehyde	10 U	10	3.7	1	06/23/20 20:20	6/22/20	
Benzo(a)pyrene	10 U	10	1.2	1	06/23/20 20:20	6/22/20	
Benzo(b)fluoranthene	10 U	10	1.2	1	06/23/20 20:20	6/22/20	
Benzo(g,h,i)perylene	10 U	10	1.2	1	06/23/20 20:20	6/22/20	
Benzo(k)fluoranthene	10 U	10	1.0	1	06/23/20 20:20	6/22/20	
	10 U	10	1.5	1	06/23/20 20:20	6/22/20	
Biphenyl 2,2'-Oxybis(1-chloropropane)	10 U	10	1.4	1	06/23/20 20:20	6/22/20	
				1			
Bis(2-chloroethoxy)methane	10 U	10	1.9	1	06/23/20 20:20	6/22/20	
Bis(2-chloroethyl) Ether	10 U	10	1.3	1	06/23/20 20:20	6/22/20	
Bis(2-ethylhexyl) Phthalate	10 U	10	1.0	1	06/23/20 20:20	6/22/20	
Butyl Benzyl Phthalate	10 U	10	1.4	1	06/23/20 20:20	6/22/20	
Caprolactam	10 U	10	1.0	1	06/23/20 20:20	6/22/20	

Analytical Report

Client:	TRC Companies	Service Request: R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected: 06/17/20 12:00
Sample Matrix:	Water	Date Received: 06/18/20 09:20
Sample Name:	CCSK - MW-05B	Units: ug/L
Lab Code:	R2005213-007	Basis: NA

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Carbazole	10 U	10	1.6	1	06/23/20 20:20	6/22/20	
Chrysene	10 U	10	1.2	1	06/23/20 20:20	6/22/20	
Di-n-butyl Phthalate	10 U	10	1.7	1	06/23/20 20:20	6/22/20	
Di-n-octyl Phthalate	10 U	10	3.3	1	06/23/20 20:20	6/22/20	
Dibenz(a,h)anthracene	10 U	10	1.1	1	06/23/20 20:20	6/22/20	
Dibenzofuran	10 U	10	1.4	1	06/23/20 20:20	6/22/20	
Diethyl Phthalate	10 U	10	1.1	1	06/23/20 20:20	6/22/20	
Dimethyl Phthalate	10 U	10	1.3	1	06/23/20 20:20	6/22/20	
Fluoranthene	10 U	10	1.5	1	06/23/20 20:20	6/22/20	
Fluorene	10 U	10	1.3	1	06/23/20 20:20	6/22/20	
Hexachlorobenzene	10 U	10	1.6	1	06/23/20 20:20	6/22/20	
Hexachlorobutadiene	10 U	10	1.0	1	06/23/20 20:20	6/22/20	
Hexachlorocyclopentadiene	10 U	10	2.2	1	06/23/20 20:20	6/22/20	
Hexachloroethane	10 U	10	1.1	1	06/23/20 20:20	6/22/20	
Indeno(1,2,3-cd)pyrene	10 U	10	1.8	1	06/23/20 20:20	6/22/20	
Isophorone	10 U	10	1.4	1	06/23/20 20:20	6/22/20	
N-Nitrosodi-n-propylamine	10 U	10	1.2	1	06/23/20 20:20	6/22/20	
N-Nitrosodiphenylamine	10 U	10	2.7	1	06/23/20 20:20	6/22/20	
Naphthalene	10 U	10	1.2	1	06/23/20 20:20	6/22/20	
Nitrobenzene	10 U	10	1.5	1	06/23/20 20:20	6/22/20	
Pentachlorophenol (PCP)	50 U	50	9.8	1	06/23/20 20:20	6/22/20	
Phenanthrene	10 U	10	1.4	1	06/23/20 20:20	6/22/20	
Phenol	10 U	10	1.0	1	06/23/20 20:20	6/22/20	
Pyrene	10 U	10	1.5	1	06/23/20 20:20	6/22/20	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	73	35 - 141	06/23/20 20:20	
2-Fluorobiphenyl	53	31 - 118	06/23/20 20:20	
2-Fluorophenol	36	10 - 105	06/23/20 20:20	
Nitrobenzene-d5	45	31 - 110	06/23/20 20:20	
Phenol-d6	25	10 - 107	06/23/20 20:20	
Terphenyl-d14	91	10 - 165	06/23/20 20:20	

Analytical Report

Client:	TRC Companies	Service Request:	R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected:	06/17/20 12:55
Sample Matrix:	Water	Date Received:	06/18/20 09:20
Sample Name:	CCSK - MW-05A	Units:	ug/L
Lab Code:	R2005213-008	Basis:	NA

Analysis Method:	8270D
Prep Method:	EPA 3510C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
1,2,4,5-Tetrachlorobenzene	10 U	10	1.2	1	06/23/20 20:48	6/22/20	
2,3,4,6-Tetrachlorophenol	10 U	10	1.2	1	06/23/20 20:48	6/22/20	
2,4,5-Trichlorophenol	10 U	10	1.1	1	06/23/20 20:48	6/22/20	
2,4,6-Trichlorophenol	10 U	10	1.4	1	06/23/20 20:48	6/22/20	
2,4-Dichlorophenol	10 U	10	1.3	1	06/23/20 20:48	6/22/20	
2,4-Dimethylphenol	10 U	10	1.4	1	06/23/20 20:48	6/22/20	
2,4-Dinitrophenol	50 U	50	20	1	06/23/20 20:48	6/22/20	
2,4-Dinitrotoluene	10 U	10	2.4	1	06/23/20 20:48	6/22/20	
2,6-Dinitrotoluene	10 U	10	1.4	1	06/23/20 20:48	6/22/20	
2-Chloronaphthalene	10 U	10	1.4	1	06/23/20 20:48	6/22/20	
2-Chlorophenol	10 U	10	1.1	1	06/23/20 20:48	6/22/20	
2-Methylnaphthalene	10 U	10	1.3	1	06/23/20 20:48	6/22/20	
2-Methylphenol	10 U	10	1.0	1	06/23/20 20:48	6/22/20	
2-Nitroaniline	10 U	10	1.4	1	06/23/20 20:48	6/22/20	
2-Nitrophenol	10 U	10	1.5	1	06/23/20 20:48	6/22/20	
3,3'-Dichlorobenzidine	10 U	10	1.2	1	06/23/20 20:48	6/22/20	
3- and 4-Methylphenol Coelution	10 U	10	1.2	1	06/23/20 20:48	6/22/20	
3-Nitroaniline	10 U	10	2.5	1	06/23/20 20:48	6/22/20	
4,6-Dinitro-2-methylphenol	50 U	50	20	1	06/23/20 20:48	6/22/20	
4-Bromophenyl Phenyl Ether	10 U	10	1.7	1	06/23/20 20:48	6/22/20	
4-Chloro-3-methylphenol	10 U	10	1.1	1	06/23/20 20:48	6/22/20	
4-Chloroaniline	10 U	10	1.0	1	06/23/20 20:48	6/22/20	
4-Chlorophenyl Phenyl Ether	10 U	10	1.5	1	06/23/20 20:48	6/22/20	
4-Nitroaniline	10 U	10	2.7	1	06/23/20 20:48	6/22/20	
4-Nitrophenol	50 U	50	6.4	1	06/23/20 20:48	6/22/20	
Acenaphthene	10 U	10	1.4	1	06/23/20 20:48	6/22/20	
Acenaphthylene	10 U	10	1.4	1	06/23/20 20:48	6/22/20	
Acetophenone	10 U	10	1.4	1	06/23/20 20:48	6/22/20	
Anthracene	10 U	10	1.3	1	06/23/20 20:48	6/22/20	
Atrazine	10 U	10	2.1	1	06/23/20 20:48	6/22/20	
Benz(a)anthracene	10 U	10	1.6	1	06/23/20 20:48	6/22/20	
Benzaldehyde	10 U	10	3.7	1	06/23/20 20:48	6/22/20	
	10 U	10	1.2	1		6/22/20	
Benzo(a)pyrene		10		1	06/23/20 20:48		
Benzo(b)fluoranthene	10 U		1.2	1	06/23/20 20:48	6/22/20	
Benzo(g,h,i)perylene	10 U	10	1.0	1	06/23/20 20:48	6/22/20	
Benzo(k)fluoranthene	10 U	10	1.3	1	06/23/20 20:48	6/22/20	
Biphenyl	10 U	10	1.4	1	06/23/20 20:48	6/22/20	
2,2'-Oxybis(1-chloropropane)	10 U	10	1.4	1	06/23/20 20:48	6/22/20	
Bis(2-chloroethoxy)methane	10 U	10	1.9	1	06/23/20 20:48	6/22/20	
Bis(2-chloroethyl) Ether	10 U	10	1.3	1	06/23/20 20:48	6/22/20	
Bis(2-ethylhexyl) Phthalate	10 U	10	1.0	1	06/23/20 20:48	6/22/20	
Butyl Benzyl Phthalate	10 U	10	1.4	1	06/23/20 20:48	6/22/20	
Caprolactam	10 U	10	1.0	1	06/23/20 20:48	6/22/20	
*							

Analytical Report

Client:	TRC Companies	Service Request: R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected: 06/17/20 12:55
Sample Matrix:	Water	Date Received: 06/18/20 09:20
Sample Name:	CCSK - MW-05A	Units: ug/L
Lab Code:	R2005213-008	Basis: NA

Analysis Method:	8270D		
Prep Method:	EPA 3510C		

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Carbazole	10 U	10	1.6	1	06/23/20 20:48	6/22/20	
Chrysene	10 U	10	1.2	1	06/23/20 20:48	6/22/20	
Di-n-butyl Phthalate	10 U	10	1.7	1	06/23/20 20:48	6/22/20	
Di-n-octyl Phthalate	10 U	10	3.3	1	06/23/20 20:48	6/22/20	
Dibenz(a,h)anthracene	10 U	10	1.1	1	06/23/20 20:48	6/22/20	
Dibenzofuran	10 U	10	1.4	1	06/23/20 20:48	6/22/20	
Diethyl Phthalate	10 U	10	1.1	1	06/23/20 20:48	6/22/20	
Dimethyl Phthalate	10 U	10	1.3	1	06/23/20 20:48	6/22/20	
Fluoranthene	10 U	10	1.5	1	06/23/20 20:48	6/22/20	
Fluorene	10 U	10	1.3	1	06/23/20 20:48	6/22/20	
Hexachlorobenzene	10 U	10	1.6	1	06/23/20 20:48	6/22/20	
Hexachlorobutadiene	10 U	10	1.0	1	06/23/20 20:48	6/22/20	
Hexachlorocyclopentadiene	10 U	10	2.2	1	06/23/20 20:48	6/22/20	
Hexachloroethane	10 U	10	1.1	1	06/23/20 20:48	6/22/20	
Indeno(1,2,3-cd)pyrene	10 U	10	1.8	1	06/23/20 20:48	6/22/20	
Isophorone	10 U	10	1.4	1	06/23/20 20:48	6/22/20	
N-Nitrosodi-n-propylamine	10 U	10	1.2	1	06/23/20 20:48	6/22/20	
N-Nitrosodiphenylamine	10 U	10	2.7	1	06/23/20 20:48	6/22/20	
Naphthalene	10 U	10	1.2	1	06/23/20 20:48	6/22/20	
Nitrobenzene	10 U	10	1.5	1	06/23/20 20:48	6/22/20	
Pentachlorophenol (PCP)	50 U	50	9.8	1	06/23/20 20:48	6/22/20	
Phenanthrene	10 U	10	1.4	1	06/23/20 20:48	6/22/20	
Phenol	10 U	10	1.0	1	06/23/20 20:48	6/22/20	
Pyrene	10 U	10	1.5	1	06/23/20 20:48	6/22/20	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	84	35 - 141	06/23/20 20:48	
2-Fluorobiphenyl	60	31 - 118	06/23/20 20:48	
2-Fluorophenol	40	10 - 105	06/23/20 20:48	
Nitrobenzene-d5	58	31 - 110	06/23/20 20:48	
Phenol-d6	29	10 - 107	06/23/20 20:48	
Terphenyl-d14	98	10 - 165	06/23/20 20:48	

Semivolatile Organic Compounds by GC

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER Page 87 of 2542

Analytical Report Service Request: R2005213 **Client: TRC** Companies **Date Collected:** 06/15/20 14:35 **Project:** Cross County Sanitary - Kessman Landfill/387570.0000.0000 Sample Matrix: Water Date Received: 06/18/20 09:20 Sample Name: CCSK - MW-03B Units: ug/L Lab Code: R2005213-001 Basis: NA

Low Level Polychlorinated Biphenyls (PCBs) by GC

Analysis Method: 8082A Prep Method: EPA 3510C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Aroclor 1016	0.047 U	0.047	0.037	1	06/23/20 21:43	6/22/20	
Aroclor 1221	0.047 U	0.047	0.035	1	06/23/20 21:43	6/22/20	
Aroclor 1232	0.047 U	0.047	0.025	1	06/23/20 21:43	6/22/20	
Aroclor 1242	0.047 U	0.047	0.025	1	06/23/20 21:43	6/22/20	
Aroclor 1248	0.047 U	0.047	0.027	1	06/23/20 21:43	6/22/20	
Aroclor 1254	0.047 U	0.047	0.025	1	06/23/20 21:43	6/22/20	
Aroclor 1260	0.047 U	0.047	0.025	1	06/23/20 21:43	6/22/20	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	38	10 - 125	06/23/20 21:43	
Tetrachloro-m-xylene	57	18 - 126	06/23/20 21:43	

Analytical Report

Client:TRC CompaniesService Request:R2005213Project:Cross County Sanitary - Kessman Landfill/387570.0000.0000Date Collected:06/16/20 10:20Sample Matrix:WaterDate Received:06/18/20 09:20Sample Name:CCSK - MW-01BUnits:ug/LR2005213-002Basis:NA

Low Level Polychlorinated Biphenyls (PCBs) by GC

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Aroclor 1016	0.047 U	0.047	0.037	1	06/23/20 22:42	6/22/20	
Aroclor 1221	0.047 U	0.047	0.035	1	06/23/20 22:42	6/22/20	
Aroclor 1232	0.047 U	0.047	0.025	1	06/23/20 22:42	6/22/20	
Aroclor 1242	0.047 U	0.047	0.025	1	06/23/20 22:42	6/22/20	
Aroclor 1248	0.047 U	0.047	0.027	1	06/23/20 22:42	6/22/20	
Aroclor 1254	0.047 U	0.047	0.025	1	06/23/20 22:42	6/22/20	
Aroclor 1260	0.047 U	0.047	0.025	1	06/23/20 22:42	6/22/20	
		0 /					

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	38	10 - 125	06/23/20 22:42	
Tetrachloro-m-xylene	54	18 - 126	06/23/20 22:42	

Analytical Report

Client:TRC CompaniesService Request:R2005213Project:Cross County Sanitary - Kessman Landfill/387570.0000.0000Date Collected:06/16/20 12:50Sample Matrix:WaterDate Received:06/18/20 09:20Sample Name:CCSK - MW-01AUnits:ug/LR2005213-003Basis:NA

Low Level Polychlorinated Biphenyls (PCBs) by GC

			Dil.	Date Analyzed	Date Extracted	Q
0.047 U	0.047	0.037	1	06/23/20 23:02	6/22/20	
0.047 U	0.047	0.035	1	06/23/20 23:02	6/22/20	
0.047 U	0.047	0.025	1	06/23/20 23:02	6/22/20	
0.047 U	0.047	0.025	1	06/23/20 23:02	6/22/20	
0.047 U	0.047	0.027	1	06/23/20 23:02	6/22/20	
0.047 U	0.047	0.025	1	06/23/20 23:02	6/22/20	
0.047 U	0.047	0.025	1	06/23/20 23:02	6/22/20	
	0.047 U 0.047 U 0.047 U 0.047 U 0.047 U 0.047 U	0.047 U 0.047 0.047 U 0.047	0.047 U 0.047 0.035 0.047 U 0.047 0.025 0.047 U 0.047 0.025 0.047 U 0.047 0.025 0.047 U 0.047 0.027 0.047 U 0.047 0.025	0.047 U 0.047 0.035 1 0.047 U 0.047 0.025 1 0.047 U 0.047 0.027 1 0.047 U 0.047 0.025 1	0.047 U 0.047 0.035 1 06/23/20 23:02 0.047 U 0.047 0.025 1 06/23/20 23:02 0.047 U 0.047 0.025 1 06/23/20 23:02 0.047 U 0.047 0.025 1 06/23/20 23:02 0.047 U 0.047 0.027 1 06/23/20 23:02 0.047 U 0.047 0.025 1 06/23/20 23:02 0.047 U 0.047 0.025 1 06/23/20 23:02	0.047 U 0.047 0.035 1 06/23/20 23:02 6/22/20 0.047 U 0.047 0.025 1 06/23/20 23:02 6/22/20 0.047 U 0.047 0.025 1 06/23/20 23:02 6/22/20 0.047 U 0.047 0.025 1 06/23/20 23:02 6/22/20 0.047 U 0.047 0.027 1 06/23/20 23:02 6/22/20 0.047 U 0.047 0.025 1 06/23/20 23:02 6/22/20 0.047 U 0.047 0.025 1 06/23/20 23:02 6/22/20

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
Decachlorobiphenyl	40	10 - 125	06/23/20 23:02		
Tetrachloro-m-xylene	56	18 - 126	06/23/20 23:02		

Analytical Report

Client:TRC CompaniesService Request:R2005213Project:Cross County Sanitary - Kessman Landfill/387570.0000.0000Date Collected:06/16/20 13:50Sample Matrix:WaterDate Received:06/18/20 09:20Sample Name:CCSK - MW-03AUnits:ug/LR2005213-004Basis:NA

Low Level Polychlorinated Biphenyls (PCBs) by GC

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Aroclor 1016	0.047 U	0.047	0.037	1	06/23/20 23:42	6/22/20	
Aroclor 1221	0.047 U	0.047	0.035	1	06/23/20 23:42	6/22/20	
Aroclor 1232	0.047 U	0.047	0.025	1	06/23/20 23:42	6/22/20	
Aroclor 1242	0.047 U	0.047	0.025	1	06/23/20 23:42	6/22/20	
Aroclor 1248	0.047 U	0.047	0.027	1	06/23/20 23:42	6/22/20	
Aroclor 1254	0.047 U	0.047	0.025	1	06/23/20 23:42	6/22/20	
Aroclor 1260	0.047 U	0.047	0.025	1	06/23/20 23:42	6/22/20	
Same and a Name		0.4	Dec				

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	48	10 - 125	06/23/20 23:42	
Tetrachloro-m-xylene	54	18 - 126	06/23/20 23:42	

Analytical Report

Client:TRC CompaniesService Request:R2005213Project:Cross County Sanitary - Kessman Landfill/387570.0000.0000Date Collected:06/16/20 15:35Sample Matrix:WaterDate Received:06/18/20 09:20Sample Name:CCSK - MW-20BUnits:ug/LR2005213-005Basis:NA

Low Level Polychlorinated Biphenyls (PCBs) by GC

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Aroclor 1016	0.047 U	0.047	0.037	1	06/24/20 00:03	6/22/20	
Aroclor 1221	0.047 U	0.047	0.035	1	06/24/20 00:03	6/22/20	
Aroclor 1232	0.047 U	0.047	0.025	1	06/24/20 00:03	6/22/20	
Aroclor 1242	0.047 U	0.047	0.025	1	06/24/20 00:03	6/22/20	
Aroclor 1248	0.047 U	0.047	0.027	1	06/24/20 00:03	6/22/20	
Aroclor 1254	0.047 U	0.047	0.025	1	06/24/20 00:03	6/22/20	
Aroclor 1260	0.047 U	0.047	0.025	1	06/24/20 00:03	6/22/20	
Sumagata Nama		0 /	Daa G				

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
Decachlorobiphenyl	49	10 - 125	06/24/20 00:03		_
Tetrachloro-m-xylene	58	18 - 126	06/24/20 00:03		

Analytical Report

Client:TRC CompaniesService Request:R2005213Project:Cross County Sanitary - Kessman Landfill/387570.0000.0000Date Collected:06/17/20 10:15Sample Matrix:WaterDate Received:06/18/20 09:20Sample Name:CCSK - MW-20AUnits:ug/LR2005213-006Basis:NA

Low Level Polychlorinated Biphenyls (PCBs) by GC

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Aroclor 1016	0.047 U	0.047	0.037	1	06/24/20 00:23	6/22/20	
Aroclor 1221	0.047 U	0.047	0.035	1	06/24/20 00:23	6/22/20	
Aroclor 1232	0.047 U	0.047	0.025	1	06/24/20 00:23	6/22/20	
Aroclor 1242	0.047 U	0.047	0.025	1	06/24/20 00:23	6/22/20	
Aroclor 1248	0.047 U	0.047	0.027	1	06/24/20 00:23	6/22/20	
Aroclor 1254	0.047 U	0.047	0.025	1	06/24/20 00:23	6/22/20	
Aroclor 1260	0.047 U	0.047	0.025	1	06/24/20 00:23	6/22/20	
Surrogate Name		0/	Rec Co	ntual I imit	Doto Ano	lurad 0	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
Decachlorobiphenyl	62	10 - 125	06/24/20 00:23		
Tetrachloro-m-xylene	61	18 - 126	06/24/20 00:23		

Analytical Report

Client:TRC CompaniesService Request:R2005213Project:Cross County Sanitary - Kessman Landfill/387570.0000.0000Date Collected:06/17/20 12:00Sample Matrix:WaterDate Received:06/18/20 09:20Sample Name:CCSK - MW-05BUnits:ug/LR2005213-007Basis:NA

Low Level Polychlorinated Biphenyls (PCBs) by GC

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Aroclor 1016	0.051 U	0.051	0.038	1	06/24/20 00:43	6/22/20	
Aroclor 1221	0.051 U	0.051	0.036	1	06/24/20 00:43	6/22/20	
Aroclor 1232	0.051 U	0.051	0.026	1	06/24/20 00:43	6/22/20	
Aroclor 1242	0.051 U	0.051	0.026	1	06/24/20 00:43	6/22/20	
Aroclor 1248	0.051 U	0.051	0.028	1	06/24/20 00:43	6/22/20	
Aroclor 1254	0.051 U	0.051	0.026	1	06/24/20 00:43	6/22/20	
Aroclor 1260	0.051 U	0.051	0.026	1	06/24/20 00:43	6/22/20	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Decachlorobiphenyl	56	10 - 125	06/24/20 00:43	
Tetrachloro-m-xylene	54	18 - 126	06/24/20 00:43	

Analytical Report

Client:TRC CompaniesService Request:R2005213Project:Cross County Sanitary - Kessman Landfill/387570.0000.0000Date Collected:06/17/20 12:55Sample Matrix:WaterDate Received:06/18/20 09:20Sample Name:CCSK - MW-05AUnits:ug/LR2005213-008Basis:NA

Low Level Polychlorinated Biphenyls (PCBs) by GC

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Aroclor 1016	0.047 U	0.047	0.037	1	06/24/20 01:03	6/22/20	
Aroclor 1221	0.047 U	0.047	0.035	1	06/24/20 01:03	6/22/20	
Aroclor 1232	0.047 U	0.047	0.025	1	06/24/20 01:03	6/22/20	
Aroclor 1242	0.047 U	0.047	0.025	1	06/24/20 01:03	6/22/20	
Aroclor 1248	0.047 U	0.047	0.027	1	06/24/20 01:03	6/22/20	
Aroclor 1254	0.047 U	0.047	0.025	1	06/24/20 01:03	6/22/20	
Aroclor 1260	0.047 U	0.047	0.025	1	06/24/20 01:03	6/22/20	
Surragata Nama		0 /	Dec C				

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
Decachlorobiphenyl	52	10 - 125	06/24/20 01:03		_
Tetrachloro-m-xylene	54	18 - 126	06/24/20 01:03		

QC NONCONFORMANCE DOCUMENTATION

AL	s)	Cooler]	Recei	pt a	and Preservatio	n Cheo	ck Form		C Environmenta	213	
ject/Cli	ent)			Folder Number			_ \			nan Landfill
ler receiv	red on	\$/2020_	by:_	O/A	COURIER:	ALS	UPS (FEDE	X) VELO	CITY CLI	ENT	
Were Cu	ustody seals on	outside of coole	Ξ π?	7 (N 5a Perc	ilorate sa	mples have re	quired head	ispace?	Y N	
Custody	papers proper	rly completed (in	k, signe	d)? (N 5b Did	OA vials	Alk,or Sulfid	e have sig	* bubbles?	(V) N	I NA
Did all b	ottles arrive in	good condition ((unbrok	en)?(YN 6 When	e did the b	oottles originat	te?	ALS/ROO	CLIE	NT
Circle:	Wet Ice Dry	Ice Gel packs	pres	ent?	YN 7 Soil	VOA recei	ved as: B	ulk Enc	core 503	5set (VA)
emperatu	re Readings	Date: 6/18/	בדער	Time:		IR#7 d	R#10	From:	Temp Blan	k Sam	ple Bot
served T	emp (°C)	2.2		27	1 29	2.3	2	2	28		
ithin 0-6°	°C?	(Y) N	(Ś,	N ØN		N (Y)	N	(Y) N	Y	Ν
<0°C, we	re samples froz	en? Y N		Y	N Y N	Y	N Y	N	Y N	Y	N
samples	s held in storag		Record	- t	ding Approval Clien	/	1010		ed by: f sampling?	Y	N
l samples 35 sampl Cooler Br	s held in storag les placed in st reakdown/Press Were all bottle	ge location: orage location: ervation Check** labels complete (<i>R.co2</i> : Date (<i>i.e.</i> ana	t t t :	$\frac{\partial y}{\partial y} \underbrace{ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	No at	/0/() 			Y	N
l samples 35 sampl Cooler Br 9.	s held in storag les placed in st reakdown/Press Were all bottle Did all bottle la	ge location: orage location: ervation Check** labels complete (ubels and tags agr	<u><i>R</i></u> .co2 : Date (<i>i.e.</i> ana ree with	z t t t :t iysis, custo	by <u>D</u> on <u>6/4</u> on <u>6/4</u> on <u>6/4</u> on <u>6/4</u> Time: preservation, etc.)? dy papers?	at	/0/() 	8 hours of		Y	N
I samples 35 sampl Cooler Br 2. 10.	s held in storag les placed in st reakdown/Press Were all bottle Did all bottle la Were correct co	ge location: orage location: ervation Check** labels complete (ubels and tags agr ontainers used for	<i>R</i> :cD2 : Date (<i>i.e.</i> ana ree with r the tes	t t t t t t t t t t t t t t	by <u>m</u> on	at	within 4	8 hours of NO NO NO		Y	N
l samples 35 sampl Cooler Br 9. 10. 11. 12.	s held in storag les placed in st reakdown/Press Were all bottle Did all bottle la Were correct co Were 5035 vial	ge location: orage location: ervation Check** labels complete (ubels and tags agr	<i>R</i> :co2 : Date (<i>i.e.</i> ana : ee with r the tes extra la	t t t t t t t t t t t t t t	by <u>m</u> on	2010	/0/0 within 4	8 hours of NO NO NO NO NO	sampling?	Y	N
I samples 35 sampl Cooler Br 0. 10. 11. 12. 13.	s held in storag les placed in st reakdown/Press Were all bottle Did all bottle la Were correct co Were 5035 vial	ge location: orage location: ervation Check** labels complete (ubels and tags agr ontainers used for ls acceptable (no	<i>R</i> :co2 : Date (<i>i.e.</i> ana : ee with r the tes extra la	t z t z t t z t t t t t t t t t t t t t t	by <u>O</u> on <u>O</u> on <u>O</u> on <u>O</u> on <u>O</u> on <u>O</u> Time: preservation, etc.)? dy papers? icated? not leaking)? <u>AS? Canisters Pressy</u> Lot Received	at	/0/0 within 4	8 hours of NO NO NO	sampling?	¶ ₩A	
I samples 35 sampl 2000ler Br 0. 10. 11. 12. 13. 0H ≥12	s held in storag les placed in st reakdown/Press Were all bottle Did all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test	ervation Check** labels complete (bels and tags agr ontainers used for s acceptable (no Cassettes / Tubes	E Date (<i>i.e.</i> ana ee with r the tes extra la Intact w Yes	t z t t lysis, custo ts indi bels, r with N ved?	by <u>a</u> on <u>a</u> by <u>on</u> on <u>a</u> <u>on</u> <u>on</u> <u>on</u> <u>on</u> <u>on</u> <u>on</u> <u>on</u> <u>on</u> <u>on</u> <u>on</u> <u>on</u> <u>on</u> <u>on</u> <u>on</u> <u>on</u> <u>on</u> <u>on</u> <u>on</u> <u>on</u> <u>on</u> <u>on</u> <u>on</u> <u>on</u> <u>on</u>	at	within 4 within 4 within 4 within 4 by ves ves ves ves ves ves ves ves sample ID	8 hours of NO NO NO NO Bags Infla	sampling?	¶ ₩A	Final
I sample: 35 sampl 35 sampl 20. 10. 11. 12. 13. 0H ≥12 ≤2	s held in storag les placed in st reakdown/Press Were all bottle Did all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test paper	ge location: orage location: ervation Check** labels complete (ubels and tags agr ontainers used for s acceptable (no Cassettes / Tubes Reagent NaOH HNO ₃	E Date (<i>i.e.</i> ana ree with r the tes extra la Intact w Yes	t z t t lysis, custo ts indi bels, r with N ved?	by <u>O</u> on <u>O</u> on <u>O</u> on <u>O</u> on <u>O</u> on <u>O</u> Time: preservation, etc.)? dy papers? icated? not leaking)? <u>AS? Canisters Pressy</u> Lot Received	at	within 4 within 4 within 4 within 4 by ves ves ves ves ves ves ves ves sample ID	8 hours of NO NO NO NO Bags Infla	sampling?	¶ ₩A	Final
l sample: 35 sample: 35 sample: 35 sample: 10. 1 11. 1 12. 1 13. 1 0H ≥12 ≤2 ≤2	s held in storag les placed in st reakdown/Press Were all bottle Did all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test paper	ervation Check** labels complete (ubels and tags agr ontainers used for s acceptable (no cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄	E Date (<i>i.e.</i> ana ee with r the tes extra la Intact w Yes	t z t t lysis, custo ts indi bels, r with N ved?	by <u>O</u> on <u>O</u> on <u>O</u> on <u>O</u> on <u>O</u> on <u>O</u> Time: preservation, etc.)? dy papers? icated? not leaking)? <u>AS? Canisters Pressy</u> Lot Received	at	within 4 within 4 within 4 within 4 by ves ves ves ves ves ves ves ves sample ID	8 hours of NO NO NO NO Bags Infla	sampling?	¶ ₩A	Final
l sample: 35 sample: 35 sample: 35 sample: 10. 1 11. 1 12. 1 13. 1 0H ≥12 ≤2 ≤2 <4	s held in storag les placed in st reakdown/Press Were all bottle Did all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test paper	ervation Check** labels complete (ubels and tags agr ontainers used for s acceptable (no cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄	E Date (<i>i.e.</i> ana ee with r the tes extra la Intact w Yes	t z t t lysis, custo ts indi bels, r with N ved?	by <u>D</u> on <u>6/4</u> on <u>6/4</u> on <u>6/4</u> on <u>6/4</u> Time: preservation, etc.)? dy papers? icated? not leaking)? MS? Canisters Pressu Lot Received <u>Clicated 501</u>	at	within 4 within 4 within 4 within 4 by ves ves ves ves ves ves ves ves sample ID	8 hours of NO NO NO NO Bags Infla	sampling?	¶ ₩A	Final
I samples 35 sampl 35 sampl Cooler Br 0. 10. 11. 12. 12. 13. 20H ≥12 ≤2 ≤2 <4 5-9	s held in storag les placed in storag les placed in storag were all bottle Did all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test paper 273419	e location: orage location: ervation Check** labels complete (ubels and tags agr ontainers used for s acceptable (no cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest	E Date (<i>i.e.</i> ana ee with r the tes extra la Intact w Yes	t z t t lysis, custo ts indi bels, r with N ved?	by \textcircled{O} on O on \textcircled{O} on O on \textcircled{O} on O on \bigcirc on \textcircled{O} on \textcircled{O} on O on \textcircled{O} on \bigcirc on \textcircled{O} on \bigcirc	at	within 4 within 4 within 4 within 4 by ves ves ves ves ves ves ves ves sample ID	8 hours of NO NO NO NO Bags Infla	sampling?	¶ ₩A	Final
l samples 35 sampl 35 sampl 10. 11. 12. 13. 12. 13. 13. 14. 12. 13. 14. 12. 13. 14. 14. 15. 14. 15. 14. 14. 15. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14	s held in storage les placed in storage were all bottle Did all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test paper 273419	ervation Check** labels complete (ubels and tags agr ontainers used for s acceptable (no cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄	E Date (<i>i.e.</i> ana ee with r the tes extra la Intact w Yes	t z t t lysis, custo ts indi bels, r with N ved?	by <u>D</u> on <u>6/4</u> on <u>6/4</u> on <u>6/4</u> on <u>6/4</u> Time: preservation, etc.)? dy papers? icated? not leaking)? MS? Canisters Pressu Lot Received <u>Clicated 501</u>	at	within 4 within 4 within 4 within 4 by ves ves ves ves ves ves ves ves sample ID	8 hours of NO NO NO NO Bags Infla	sampling?	¶ ₩A	Final
I samples 35 sampl 35 sampl 0. 0. 10. 11. 12. 13. 12. 13. 12. 13. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12	s held in storage les placed in storage were all bottle Did all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test paper 273419	ge location: orage location: ervation Check** labels complete (ubels and tags agr ontainers used for s acceptable (no Cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625,	R.col *: Date (i.e. ana ee with r the tes extra la Intact v Yes	t z t t lysis, custo ts indi bels, r with N ved?	by \bigcirc on \bigcirc o	Image: Automatic and the second secon	within 4 within 4 within 4 within 4 by ves ves ves ves ves ves ves ves sample ID	8 hours of NO NO NO NO Bags Infla Vol. Added	sampling?	MA led	Final

Explain all Discrepancies/ Other Comments:

headapuer: 3 viet - TB-- N/A 3 viets 20-B (524) [wind _ MSD - (504) - 3 viets - N/A 3 viets 01A OIR 03B I vidy

HPROD	BULK
HTR	FLDT
- 80 2	HGFB
ALS	LL3541

.

Labels secondary reviewed by	·:	
PC Secondary Review:	M	le,

P:\INTRANET\OAOC\Forms Controlled\Cooler Receipt r17.doc

*significant air bubbles: VOA > 5-6 mm : WC >1 in. diameter Page 17 of 2542

1/16/2020---

QA/QC Report

Client: TRC Companies Project: Cross County Sanitary - Kessman Landfill Initial Ca Service Request: R2005213 Calibration Date: 6/17/2020

Initial Calibration Summary Volatile Organic Compounds by GC/MS

Calibration ID: RC2000086 Instrument ID: R-MS-10 Signal ID: 1

			Calibration F	Evaluation		Calibration	Evaluation
Analyte Name	Compound Type	Fit Type	Eval	Eval Result	Control Criteria	Average RRF	Minimum RRF
1,1,1-Trichloroethane (TCA)	TRG	Average RF	% RSD	4.7	20	0.7932	0.100
1,1,2,2-Tetrachloroethane	TRG	Average RF	% RSD	3.9	20	1.047	0.300
1,1,2-Trichloro-1,2,2-trifluoroethane	TRG	Average RF	% RSD	4.8	20	0.4824	0.100
1,1,2-Trichloroethane	TRG	Average RF	% RSD	3.3	20	0.3336	0.100
1,1-Dichloroethane (1,1-DCA)	TRG	Average RF	% RSD	2.8	20	1.102	0.200
1,1-Dichloroethene (1,1-DCE)	TRG	Average RF	% RSD	5.4	20	0.482	0.100
1,2,3-Trichlorobenzene	TRG	Average RF	% RSD	4.1	20	1.064	
1,2,4-Trichlorobenzene	TRG	Average RF	% RSD	2.7	20	1.045	0.200
1,2-Dibromo-3-chloropropane (DBCP)	TRG	Quadratic	COD	0.9933	0.99	0.1845	0.050
1,2-Dibromoethane	TRG	Average RF	% RSD	8.1	20	0.3522	0.100
1,2-Dichlorobenzene	TRG	Average RF	% RSD	4.6	20	1.499	0.400
1,2-Dichloroethane	TRG	Average RF	% RSD	7.0	20	0.5801	0.100
1,2-Dichloropropane	TRG	Average RF	% RSD	4.0	20	0.3852	0.100
1,3-Dichlorobenzene	TRG	Average RF	% RSD	4.2	20	1.503	0.600
1,4-Dichlorobenzene	TRG	Average RF	% RSD	7.0	20	1.583	0.500
1,4-Dioxane	TRG	Average RF	% RSD	5.9	20	0.007376	
2-Butanone (MEK)	TRG	Average RF	% RSD	5.3	20	0.4902	0.05
2-Hexanone	TRG	Average RF	% RSD	10.7	20	0.4099	0.05
4-Bromofluorobenzene	SURR	Average RF	% RSD	4.8	20	0.5041	
4-Methyl-2-pentanone	TRG	Average RF	% RSD	11.4	20	0.4974	0.05
Acetone	TRG	Average RF	% RSD	6.3	20	0.324	0.05
Benzene	TRG	Average RF	% RSD	2.9	20	1.427	0.500
Bromochloromethane	TRG	Average RF	% RSD	5.4	20	0.3479	
Bromodichloromethane	TRG	Average RF	% RSD	10.7	20	0.4133	0.200
Bromoform	TRG	Quadratic	COD	0.9981	0.99	0.1903	0.100
Bromomethane	TRG	Quadratic	COD	0.9993	0.99	0.5307	0.100
Carbon Disulfide	TRG	Average RF	% RSD	10.6	20	1.365	0.100
Carbon Tetrachloride	TRG	Average RF	% RSD	6.6	20	0.3749	0.05
Chlorobenzene	TRG	Average RF	% RSD	4.2	20	0.9784	0.500
Chloroethane	TRG	Average RF	% RSD	8.4	20	0.544	0.100
Chloroform	TRG	Average RF	% RSD	4.7	20	1.031	0.200
Chloromethane	TRG	Average RF	% RSD	11.2	20	0.9068	0.100
Cyclohexane	TRG	Average RF	% RSD	4.4	20	0.3947	0.100
Dibromochloromethane	TRG	Average RF	% RSD	13.3	20	0.3129	0.100

QA/QC Report

Client: **TRC** Companies Project: Cross County Sanitary - Kessman Landfill

Service Request: R2005213 Calibration Date: 6/12/2020

Signal ID:

1

Initial Calibration Summary Volatile Organic Compounds by GC/MS

Calibration Evaluation Calibration Evaluation Compound Minimum Control Average Analyte Name Fit Type Eval **Eval Result** Type Criteria RRF RRF 1,1,1-Trichloroethane (TCA) TRG Average RF % RSD 6.9 20 0.6007 0.100 1,1,2,2-Tetrachloroethane TRG Quadratic COD 0.9938 0.99 0.8344 0.300 1,1,2-Trichloro-1,2,2-trifluoroethane TRG Average RF % RSD 9.4 20 0.4314 0.100 0.3311 0.100 1,1,2-Trichloroethane TRG Average RF % RSD 6.2 20 1,1-Dichloroethane (1,1-DCA) TRG Average RF % RSD 5.1 20 0.8391 0.200 TRG % RSD 0.4455 0.100 1,1-Dichloroethene (1,1-DCE) Average RF 8.2 20 1,2,3-Trichlorobenzene TRG Average RF % RSD 8.9 20 1.096 TRG % RSD 20 1.1 0.200 1,2,4-Trichlorobenzene Average RF 7.0 1,2-Dibromo-3-chloropropane TRG Quadratic COD 0.9944 0.99 0.1928 0.050 (DBCP) 1.2-Dibromoethane TRG Average RF % RSD 9.1 20 0.366 0.100 1,2-Dichlorobenzene TRG Average RF % RSD 5.1 20 1.625 0.400 1,2-Dichloroethane TRG Average RF % RSD 4.2 20 0.4321 0.100 1,2-Dichloropropane TRG Average RF % RSD 4.7 20 0.3363 0.100 TRG 1.582 0.600 1,3-Dichlorobenzene Average RF % RSD 6.1 20 1,4-Dichlorobenzene TRG 1.644 0.500 Average RF % RSD 6.4 20 1.4-Dioxane TRG Average RF % RSD 12.1 20 0.006913 2-Butanone (MEK) TRG % RSD 4.6 20 0.3343 0.05 Average RF 0.2994 0.05 2-Hexanone TRG Average RF % RSD 9.5 20 SURR 0.5014 4-Bromofluorobenzene Average RF % RSD 8.5 20 TRG 8.9 0.3641 0.05 4-Methyl-2-pentanone Average RF % RSD 20 TRG % RSD 13.5 0.2265 0.05 Acetone Average RF 20 TRG % RSD 1.298 0.500 Benzene Average RF 5.0 20 TRG Bromochloromethane Average RF % RSD 4.7 20 0.3543 Bromodichloromethane TRG % RSD 0.358 0.200 Average RF 8.5 20 Bromoform TRG Quadratic COD 0.9941 0.99 0.199 0.100 Bromomethane TRG Quadratic COD 0.9976 0.99 0.517 0.100 **Carbon Disulfide** 0.100 TRG Average RF % RSD 7.4 20 1.199 **Carbon Tetrachloride** TRG 0.05 Average RF % RSD 7.8 20 0.3157 Chlorobenzene TRG 1.031 0.500 Average RF % RSD 5.5 20 Chloroethane TRG COD 0.9970 0.99 0.459 0.100 **Ouadratic** TRG Chloroform % RSD 4.9 0.8183 0.200 Average RF 20 Chloromethane TRG Average RF % RSD 12.8 20 0.719 0.100 Cyclohexane TRG Average RF % RSD 12.2 20 0.2459 0.100 Dibromochloromethane TRG Quadratic COD 0.9976 0.3141 0.100 0.99

Calibration ID: RC200082 Instrument ID: **R-MS-14**

QA/QC Report

Client:TRC CompaniesServiceProject:Cross County Sanitary - Kessman Landfill/387570.0000.0000Date 4

 Service Request:
 R2005213

 Date Analyzed:
 06/23/20
 14:00

Continuing Calibration Verification (CCV) Summary Volatile Organic Compounds by GC/MS

Analysis Method:	8260C	Calibration Date:	6/12/2020
File ID:	I:\ACQUDATA\MSVOA14\Data\062320\N6700.D\	Calibration ID:	RC2000082
Signal ID:	1	Analysis Lot:	684706
		Units:	ug/L

			Average	CCV				
Analyte Name	Expected	Result	RF	RF	% D	% Drift	Criteria	Curve Fit
1,1,1-Trichloroethane (TCA)	50.0	53.4	0.6007	0.6419	6.9	NA	±20	Average RF
1,1,2,2-Tetrachloroethane	50.0	60.3	0.8344	1.0872	NA	20.6*	±20	Quadratic
1,1,2-Trichloroethane	50.0	52.0	0.3311	0.3441	3.9	NA	±20	Average RF
1,1,2-Trichloro-1,2,2-trifluoroethane	50.0	53.7	0.4314	0.4635	7.4	NA	±20	Average RF
1,1-Dichloroethane (1,1-DCA)	50.0	52.9	0.8391	0.8877	5.8	NA	±20	Average RF
1,1-Dichloroethene (1,1-DCE)	50.0	51.8	0.4455	0.4614	3.6	NA	±20	Average RF
1,2,3-Trichlorobenzene	50.0	53.5	1.0965	1.1741	7.1	NA	±20	Average RF
1,2,4-Trichlorobenzene	50.0	53.9	1.1	1.1847	7.7	NA	±20	Average RF
1,2-Dibromo-3-chloropropane (DBCP)	50.0	58.4	0.1928	0.2409	NA	16.7	±20	Quadratic
1,2-Dibromoethane	50.0	52.2	0.366	0.3824	4.5	NA	±20	Average RF
1,2-Dichlorobenzene	50.0	49.9	1.6246	1.622	-0.2	NA	±20	Average RF
1,2-Dichloroethane	50.0	48.5	0.4321	0.4188	-3.1	NA	±20	Average RF
1,2-Dichloropropane	50.0	52.3	0.3363	0.3518	4.6	NA	±20	Average RF
1,3-Dichlorobenzene	50.0	51.8	1.5821	1.639	3.6	NA	±20	Average RF
1,4-Dichlorobenzene	50.0	50.6	1.6439	1.6651	1.3	NA	±20	Average RF
1,4-Dioxane	1000	1050	0.0069	0.0072	4.5	NA	±20	Average RF
2-Butanone (MEK)	50.0	48.0	0.3343	0.3207	-4.1	NA	±20	Average RF
2-Hexanone	50.0	49.1	0.2994	0.2937	-1.9	NA	±20	Average RF
4-Methyl-2-pentanone	50.0	50.1	0.3641	0.3645	0.1	NA	±20	Average RF
Acetone	50.0	43.1	0.2265	0.1953	-13.8	NA	±20	Average RF
Benzene	50.0	51.7	1.2981	1.3422	3.4	NA	±20	Average RF
Bromochloromethane	50.0	50.3	0.3543	0.3566	0.7	NA	±20	Average RF
Bromodichloromethane	50.0	53.0	0.358	0.3798	6.1	NA	±20	Average RF
Bromoform	50.0	54.6	0.199	0.2332	NA	9.1	±20	Quadratic
Bromomethane	50.0	32.8	0.517	0.308	NA	- <mark>34.3*</mark>	±20	Quadratic
Carbon Disulfide	50.0	50.1	1.1994	1.2023	0.2	NA	±20	Average RF
Carbon Tetrachloride	50.0	55.1	0.3157	0.3476	10.1	NA	±20	Average RF
Chlorobenzene	50.0	51.2	1.0307	1.0552	2.4	NA	±20	Average RF
Chloroethane	50.0	51.4	0.459	0.4024	NA	2.7	±20	Quadratic
Chloroform	50.0	50.7	0.8183	0.8296	1.4	NA	±20	Average RF
Chloromethane	50.0	45.1	0.719	0.649	-9.7	NA	±20	Average RF
Cyclohexane	50.0	50.7	0.2459	0.2495	1.5	NA	±20	Average RF
Dibromochloromethane	50.0	54.4	0.3141	0.3571	NA	8.7	±20	Quadratic
Dichlorodifluoromethane (CFC 12)	50.0	53.4	0.5759	0.6154	6.9	NA	±20	Average RF
Dichloromethane	50.0	49.8	0.5416	0.5398	-0.3	NA	±20	Average RF
Ethylbenzene	50.0	53.6	0.5123	0.5492	7.2	NA	±20	Average RF
Isopropylbenzene (Cumene)	50.0	55.3	1.5636	1.7286	10.6	NA	±20	Average RF
Methyl Acetate	50.0	48.5	0.484	0.4694	-3.0	NA	±20	Average RF
Methyl tert-Butyl Ether	50.0	52.5	1.4028	1.4733	5.0	NA	±20	Average RF

Printed 7/29/2020 1:22:45 PM

Superset Reference:20-0000553413 rev 00

QA/QC Report

Client: Project:

Cross County Sanitary - Kessman Landfill/387570.0000.0000

TRC Companies

 Service Request:
 R2005213

 Date Analyzed:
 06/25/20
 10:40

Continuing Calibration Verification (CCV) Summary Volatile Organic Compounds by GC/MS

Analysis Method:	8260C	Calibration Date:	6/17/2020
File ID:	I:\ACQUDATA\msvoa10\data\062520\T0604.D\	Calibration ID:	RC2000086
Signal ID:	1	Analysis Lot:	684980
		Units:	ug/L

			Average	CCV				
Analyte Name	Expected	Result	RF	RF	% D	% Drift	Criteria	Curve Fit
1,1,1-Trichloroethane (TCA)	50.0	46.7	0.7932	0.7412	-6.6	NA	±20	Average RF
1,1,2,2-Tetrachloroethane	50.0	49.3	1.0469	1.033	-1.3	NA	±20	Average RF
1,1,2-Trichloroethane	50.0	47.6	0.3336	0.3179	-4.7	NA	±20	Average RF
1,1,2-Trichloro-1,2,2-trifluoroethane	50.0	50.4	0.4824	0.4865	0.9	NA	±20	Average RF
1,1-Dichloroethane (1,1-DCA)	50.0	47.4	1.1022	1.044	-5.3	NA	±20	Average RF
1,1-Dichloroethene (1,1-DCE)	50.0	46.8	0.482	0.4513	-6.4	NA	±20	Average RF
1,2,3-Trichlorobenzene	50.0	45.4	1.0638	0.9659	-9.2	NA	±20	Average RF
1,2,4-Trichlorobenzene	50.0	46.3	1.0453	0.9671	-7.5	NA	±20	Average RF
1,2-Dibromo-3-chloropropane (DBCP)	50.0	50.3	0.1845	0.1856	NA	0.6	±20	Quadratic
1,2-Dibromoethane	50.0	47.5	0.3522	0.3347	-5.0	NA	±20	Average RF
1,2-Dichlorobenzene	50.0	45.9	1.4987	1.3762	-8.2	NA	±20	Average RF
1,2-Dichloroethane	50.0	49.1	0.5801	0.5699	-1.8	NA	±20	Average RF
1,2-Dichloropropane	50.0	48.6	0.3852	0.3746	-2.8	NA	±20	Average RF
1,3-Dichlorobenzene	50.0	44.8	1.5029	1.3474	-10.3	NA	±20	Average RF
1,4-Dichlorobenzene	50.0	43.3	1.5825	1.3713	-13.3	NA	±20	Average RF
1,4-Dioxane	1000	967	0.0074	0.0071	-3.3	NA	±20	Average RF
2-Butanone (MEK)	50.0	44.9	0.4902	0.4403	-10.2	NA	±20	Average RF
2-Hexanone	50.0	46.5	0.4099	0.381	-7.1	NA	±20	Average RF
4-Methyl-2-pentanone	50.0	49.4	0.4974	0.4918	-1.1	NA	±20	Average RF
Acetone	50.0	44.5	0.324	0.2884	-11.0	NA	±20	Average RF
Benzene	50.0	48.0	1.4275	1.371	-4.0	NA	±20	Average RF
Bromochloromethane	50.0	49.1	0.3479	0.3418	-1.8	NA	±20	Average RF
Bromodichloromethane	50.0	49.4	0.4133	0.4086	-1.1	NA	±20	Average RF
Bromoform	50.0	46.6	0.1903	0.1818	NA	-6.8	±20	Quadratic
Bromomethane	50.0	51.1	0.5307	0.4209	NA	2.2	±20	Quadratic
Carbon Disulfide	50.0	52.6	1.3652	1.4363	5.2	NA	± 20	Average RF
Carbon Tetrachloride	50.0	47.4	0.3749	0.3551	-5.3	NA	± 20	Average RF
Chlorobenzene	50.0	45.8	0.9784	0.8965	-8.4	NA	±20	Average RF
Chloroethane	50.0	49.3	0.544	0.5359	-1.5	NA	±20	Average RF
Chloroform	50.0	46.2	1.0314	0.954	-7.5	NA	±20	Average RF
Chloromethane	50.0	45.4	0.9068	0.823	-9.2	NA	±20	Average RF
Cyclohexane	50.0	49.2	0.3947	0.3887	-1.5	NA	±20	Average RF
Dibromochloromethane	50.0	49.2	0.3129	0.3077	-1.7	NA	±20	Average RF
Dichlorodifluoromethane (CFC 12)	50.0	48.5	0.642	0.6223	-3.1	NA	±20	Average RF
Dichloromethane	50.0	46.0	0.6086	0.56	-8.0	NA	±20	Average RF
Ethylbenzene	50.0	47.3	0.5152	0.4876	-5.3	NA	±20	Average RF
Isopropylbenzene (Cumene)	50.0	46.8	1.6491	1.5421	-6.5	NA	±20	Average RF
Methyl Acetate	50.0	47.4	0.6942	0.6587	-5.1	NA	±20	Average RF
Methyl tert-Butyl Ether	50.0	48.5	1.9238	1.8668	-3.0	NA	±20	Average RF

Printed 7/29/2020 1:22:46 PM

Superset Reference:20-0000553413 rev 00

Analytical Report **Client:** Service Request: R2005213 **TRC** Companies **Project:** Cross County Sanitary - Kessman Landfill/387570.0000.0000 Date Collected: NA Sample Matrix: Water Date Received: NA Method Blank Sample Name: Units: ug/L RQ2006641-04 Lab Code: Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Q
1,1,1-Trichloroethane (TCA)	1.0 U	1.0	0.20	1	06/23/20 15:51	
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.20	1	06/23/20 15:51	
1,1,2-Trichloroethane	1.0 U	1.0	0.20	1	06/23/20 15:51	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0 U	1.0	0.20	1	06/23/20 15:51	
1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	0.20	1	06/23/20 15:51	
1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	0.20	1	06/23/20 15:51	
1,2,3-Trichlorobenzene	1.0 U	1.0	0.25	1	06/23/20 15:51	
1,2,4-Trichlorobenzene	1.0 U	1.0	0.34	1	06/23/20 15:51	
1,2-Dibromo-3-chloropropane (DBCP)	2.0 U	2.0	0.45	1	06/23/20 15:51	
1,2-Dibromoethane	1.0 U	1.0	0.20	1	06/23/20 15:51	
1,2-Dichlorobenzene	1.0 U	1.0	0.20	1	06/23/20 15:51	
1,2-Dichloroethane	1.0 U	1.0	0.20	1	06/23/20 15:51	
1,2-Dichloropropane	1.0 U	1.0	0.20	1	06/23/20 15:51	
1,3-Dichlorobenzene	1.0 U	1.0	0.20	1	06/23/20 15:51	
1,4-Dichlorobenzene	1.0 U	1.0	0.20	1	06/23/20 15:51	
1,4-Dioxane	40 U	40	13	1	06/23/20 15:51	
2-Butanone (MEK)	5.0 U	5.0	0.78	1	06/23/20 15:51	
2-Hexanone	5.0 U	5.0	0.20	1	06/23/20 15:51	
4-Methyl-2-pentanone	5.0 U	5.0	0.20	1	06/23/20 15:51	
Acetone	5.0 U	5.0	5.0	1	06/23/20 15:51	
Benzene	1.0 U	1.0	0.20	1	06/23/20 15:51	
Bromochloromethane	1.0 U	1.0	0.20	1	06/23/20 15:51	
Bromodichloromethane	1.0 U	1.0	0.20	1	06/23/20 15:51	
Bromoform	1.0 U	1.0	0.25	1	06/23/20 15:51	
Bromomethane	1.0 U	1.0	0.70	1	06/23/20 15:51	
Carbon Disulfide	1.0 U	1.0	0.42	1	06/23/20 15:51	
Carbon Tetrachloride	1.0 U	1.0	0.34	1	06/23/20 15:51	
Chlorobenzene	1.0 U	1.0	0.20	1	06/23/20 15:51	
Chloroethane	0.34 J	1.0	0.23	1	06/23/20 15:51	
Chloroform	1.0 U	1.0	0.24	1	06/23/20 15:51	
Chloromethane	0.31 J	1.0	0.28	1	06/23/20 15:51	
Cyclohexane	1.0 U	1.0	0.26	1	06/23/20 15:51	
Dibromochloromethane	1.0 U	1.0	0.20	1	06/23/20 15:51	
Dichlorodifluoromethane (CFC 12)	1.0 U	1.0	0.20	1	06/23/20 15:51	
Dichloromethane	1.0 U	1.0	0.65	1	06/23/20 15:51	
Ethylbenzene	1.0 U	1.0	0.20	1	06/23/20 15:51	
Isopropylbenzene (Cumene)	1.0 U	1.0	0.20	1	06/23/20 15:51	
Methyl Acetate	2.0 U	2.0	0.33	1	06/23/20 15:51	
Methyl tert-Butyl Ether	1.0 U	1.0	0.20	1	06/23/20 15:51	
Methylcyclohexane	1.0 U	1.0	0.20	1	06/23/20 15:51	
Styrene	1.0 U	1.0	0.20	1	06/23/20 15:51	
Tetrachloroethene (PCE)	1.0 U	1.0	0.20	1	06/23/20 15:51	
Toluene	1.0 U	1.0	0.21	1	06/23/20 15:51	
I UIUCIIC	1.0 U	1.0	0.20	1	00/25/20 15.51	

QA/QC Report

Client:TRC CompaniesProject:Cross County Sanitary - Kessman Landfill/387570.0000.0000Sample Matrix:Water

Service Request: R2005213 **Date Analyzed:** 06/23/20

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

> Units:ug/L Basis:NA

Lab Control Sample RQ2006641-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
1,1,1-Trichloroethane (TCA)	8260C	23.4	20.0	117	75-125
1,1,2,2-Tetrachloroethane	8260C	28.1	20.0	141 *	78-126
1,1,2-Trichloroethane	8260C	22.6	20.0	113	82-121
1,1,2-Trichloro-1,2,2-trifluoroethane	8260C	23.6	20.0	118	67-124
1,1-Dichloroethane (1,1-DCA)	8260C	22.6	20.0	113	80-124
1,1-Dichloroethene (1,1-DCE)	8260C	22.2	20.0	111	71-118
1,2,3-Trichlorobenzene	8260C	23.1	20.0	116	67-136
1,2,4-Trichlorobenzene	8260C	23.3	20.0	116	75-132
1,2-Dibromo-3-chloropropane (DBCP)	8260C	24.8	20.0	124	55-136
1,2-Dibromoethane	8260C	22.0	20.0	110	82-127
1,2-Dichlorobenzene	8260C	21.6	20.0	108	80-119
1,2-Dichloroethane	8260C	20.2	20.0	101	71-127
1,2-Dichloropropane	8260C	22.9	20.0	115	80-119
1,3-Dichlorobenzene	8260C	23.0	20.0	115	83-121
1,4-Dichlorobenzene	8260C	22.3	20.0	112	79-119
1,4-Dioxane	8260C	413	400	103	44-154
2-Butanone (MEK)	8260C	19.2	20.0	96	61-137
2-Hexanone	8260C	19.2	20.0	96	63-124
4-Methyl-2-pentanone	8260C	19.9	20.0	100	66-124
Acetone	8260C	18.8	20.0	94	40-161
Benzene	8260C	22.4	20.0	112	79-119
Bromochloromethane	8260C	21.9	20.0	109	81-126
Bromodichloromethane	8260C	22.7	20.0	114	81-123
Bromoform	8260C	23.7	20.0	119	65-146
Bromomethane	8260C	13.4	20.0	67	42-166
Carbon Disulfide	8260C	20.9	20.0	104	66-128
Carbon Tetrachloride	8260C	22.9	20.0	114	70-127
Chlorobenzene	8260C	22.6	20.0	113	80-121
Chloroethane	8260C	21.1	20.0	106	62-131
Chloroform	8260C	22.0	20.0	110	79-120
Chloromethane	8260C	19.6	20.0	98	65-135
Cyclohexane	8260C	20.8	20.0	104	69-120
Dibromochloromethane	8260C	23.9	20.0	119	72-128
Printed 7/29/2020 1:22:45 PM			Superset 2	Reference:20-0000)553413 rev 00

QA/QC Report

Client:TRC CompaniesProject:Cross County Sanitary - Kessman Landfill/387570.0000.0000Sample Matrix:Water

Service Request: R2005213 **Date Analyzed:** 06/23/20

Duplicate Lab Control Sample Summary Semivolatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

			Lab Control S RQ200652	_	Duplie	cate Lab Cor RQ2006527		ple		
Analyte Name	Analytica l Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Benzo(b)fluoranthene	8270D	34.7	40.0	87	36.4	40.0	91	62-115	4	30
Benzo(g,h,i)perylene	8270D	42.6	40.0	106	43.1	40.0	108	63-136	2	30
Benzo(k)fluoranthene	8270D	40.6	40.0	102	38.5	40.0	96	49-133	6	30
Biphenyl	8270D	25.0	40.0	62	29.8	40.0	75	39-106	19	30
2,2'-Oxybis(1-chloropropane)	8270D	20.0	40.0	50	25.7	40.0	64	32-122	25	30
Bis(2-chloroethoxy)methane	8270D	24.9	40.0	62	28.1	40.0	70	55-110	12	30
Bis(2-chloroethyl) Ether	8270D	21.6	40.0	54	26.4	40.0	66	46-102	20	30
Bis(2-ethylhexyl) Phthalate	8270D	38.1	40.0	95	38.5	40.0	96	51-132	1	30
Butyl Benzyl Phthalate	8270D	37.9	40.0	95	35.0	40.0	88	41-148	8	30
Caprolactam	8270D	13.7	40.0	34	14.8	40.0	37	10-41	8	30
Carbazole	8270D	42.1	40.0	105	40.4	40.0	101	56-139	4	30
Chrysene	8270D	38.4	40.0	96	37.3	40.0	93	57-118	3	30
Di-n-butyl Phthalate	8270D	41.5	40.0	104	39.8	40.0	100	57-128	4	30
Di-n-octyl Phthalate	8270D	39.4	40.0	98	39.7	40.0	99	62-124	1	30
Dibenz(a,h)anthracene	8270D	43.5	40.0	109	42.4	40.0	106	54-135	3	30
Dibenzofuran	8270D	30.5	40.0	76	33.5	40.0	84	55-110	10	30
Diethyl Phthalate	8270D	36.6	40.0	91	35.4	40.0	89	53-113	2	30
Dimethyl Phthalate	8270D	37.5	40.0	94	36.5	40.0	91	51-112	3	30
Fluoranthene	8270D	40.4	40.0	101	37.9	40.0	95	66-127	6	30
Fluorene	8270D	32.9	40.0	82	34.3	40.0	86	54-106	5	30
Hexachlorobenzene	8270D	37.2	40.0	93	37.7	40.0	94	53-123	1	30
Hexachlorobutadiene	8270D	24.6	40.0	61	28.5	40.0	71	16-95	15	30
Hexachlorocyclopentadiene	8270D	10.4	40.0	26	15.8	40.0	39	10-99	<mark>40*</mark>	30
Hexachloroethane	8270D	20.6	40.0	51	23.6	40.0	59	15-92	15	30
Indeno(1,2,3-cd)pyrene	8270D	40.2	40.0	101	40.3	40.0	101	62-137	<1	30
Isophorone	8270D	21.8	40.0	55	24.3	40.0	61	50-116	10	30
N-Nitrosodi-n-propylamine	8270D	25.9	40.0	65	31.6	40.0	79	49-115	19	30
N-Nitrosodiphenylamine	8270D	42.2	40.0	106	41.4	40.0	103	45-123	3	30
Naphthalene	8270D	24.6	40.0	61	30.2	40.0	75	38-99	21	30
Nitrobenzene	8270D	22.2	40.0	55	28.5	40.0	71	46-108	25	30
Pentachlorophenol (PCP)	8270D	24.5 J	40.0	61	22.9 J	40.0	57	29-164	7	30
Phenanthrene	8270D	35.5	40.0	89	35.7	40.0	89	58-118	<1	30
Phenol	8270D	14.6	40.0	37	17.1	40.0	43	10-113	15	30
Printed 7/29/2020 1:23:12 PM						Supe	erset Referer	nce:20-00005	53413 rev (00

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Project: Sample Matrix:	TRC Companies Cross County Sar Water	Service Re Date Colle Date Rece Date Anal Date Extra	cted: ived: yzed:	R2005 06/15/2 06/18/2 06/24/2 NA	20 20						
		V	-	e Matrix Sp ganic Comp		-					
Sample Name:	CCSK - MW-03			, r			ī	Units:	ug/L		
Lab Code:	R2005213-001]	Basis:	NA		
Analysis Method:	8260C										
Prep Method:	EPA 5030C										
			Motri	x Spike		Dunling	te Matrix S	niko			
				6641-05		_	2006641-06	-			
		a I	KQ200			κų	-	•	0/ D		DDD
Analyte Name		Sample Result	Docult	Spike	% Rec	Result	Spike Amount	% Rec	% Rec	RPD	RPD Limit
1,1,1-Trichloroethane	(TCA)	1.0 U	Result 54.6	Amount 50.0	109	57.6	50.0	115	74-127	5 KPD	30
1,1,2,2-Tetrachloroetl		1.0 U 1.0 U	62.8	50.0	126*	65.6	50.0	131*	72-122	4	30
1,1,2-Trichloroethane		1.0 U	52.2	50.0	104	54.3	50.0	109	82-121	4	30
1,1,2-Trichloro-1,2,2-		1.0 U	49.5	50.0	99	53.1	50.0	106	50-147	7	30
1,1-Dichloroethane (1		1.0 U	53.5	50.0	107	55.6	50.0	111	74-132	4	30
1,1-Dichloroethene (1	I,1-DCE)	1.0 U	52.2	50.0	104	54.4	50.0	109	71-118	4	30
1,2,3-Trichlorobenzer	ne	1.0 U	51.5	50.0	103	53.9	50.0	108	59-129	5	30
1,2,4-Trichlorobenzer		1.0 U	51.3	50.0	103	55.3	50.0	111	69-122	7	30
1,2-Dibromo-3-chloro	opropane (DBCP)	2.0 U	56.4	50.0	113	60.9	50.0	122	37-150	8	30
1,2-Dibromoethane		1.0 U	51.0	50.0	102	53.5	50.0	107	67-127	5	30
1,2-Dichlorobenzene		1.0 U	49.4	50.0	99	51.8	50.0	104	77-120	5	30
1,2-Dichloroethane		1.0 U	47.1	50.0	94	48.3	50.0	97 100	68-130	3	30
1,2-Dichloropropane		1.0 U	51.8	50.0	104	54.7	50.0	109	79-124	5	30
1,3-Dichlorobenzene 1,4-Dichlorobenzene		1.0 U 1.0 U	51.3 49.7	50.0 50.0	103 99	54.2 52.6	50.0 50.0	108 105	83-121 82-120	5 6	30 30
1,4-Dioxane		40 U	1040	1000	104	1100	1000	110	44-154	6	30
2-Butanone (MEK)		5.0 U	45.7	50.0	91	47.4	50.0	95	61-137	3	30
2-Hexanone		5.0 U	51.9	50.0	104	54.2	50.0	108	56-132	4	30
4-Methyl-2-pentanon	e	5.0 U	52.0	50.0	104	54.4	50.0	109	60-141	4	30
Acetone		5.0 U	44.6	50.0	89	47.0	50.0	94	35-183	5	30
Benzene		1.0 U	52.7	50.0	105	54.6	50.0	109	76-129	4	30
Bromochloromethane		1.0 U	52.0	50.0	104	54.0	50.0	108	80-122	4	30
Bromodichlorometha	ne	1.0 U	52.7	50.0	105	55.1	50.0	110	78-133	5	30
Bromoform		1.0 U	52.7	50.0	105	56.1	50.0	112	58-133	6	30
Bromomethane		1.0 U	33.4	50.0	67	32.2	50.0	64	10-184	4	30
Carbon Disulfide		1.0 U	49.5	50.0	99	51.8	50.0	104	59-140	5	30
Carbon Tetrachloride		1.0 U	53.4	50.0	107	57.3	50.0	115	65-135	7	30
Chlorobenzene		1.0 U	52.2	50.0	104	54.1	50.0	108	76-125	4	30
Chloroethane		1.0 U	49.3	50.0	99 104	52.3	50.0	105	48-146	6	30 20
Chloroform Chloromethane		1.0 U 1.0 U	52.2 50.5	50.0	104 101	54.5 52.7	50.0 50.0	109 105	75-130 55-160	4 4	<u>30</u> <u>30</u>
Cyclohexane		1.0 U 1.0 U	50.5 46.0	50.0 50.0	92	52.7 45.0	50.0 50.0	105 90	53-160 52-145	4	30 30
Dibromochlorometha	ne	1.0 U 1.0 U	40.0 53.9	50.0	92 108	43.0 56.4	50.0	113	52-145 72-128	5	30 30
		1.0 0	55.9	50.0	100	50.4	50.0	115	12-120	5	50

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Project: Sample Matrix:	TRC Compan Cross County Water		- Kessman Landfill/387570.0000.0000				Service I Date Col Date Rec Date Ana	lected: ceived: alyzed:	R2003 06/15 06/18 06/23	/20 /20 /20	
							Date Ext	racted:	06/22	/20	
			_	cate Matrix	-	-					
			Semivolatil	e Organic C	ompound	is by GC/I	MS				
Sample Name:	CCSK - MW-	-03B						Units:	ug/L		
Lab Code:	R2005213-00	1						Basis:	NA		
Analysis Method:	8270D										
Prep Method:	EPA 3510C										
	211100100					.		a u			
				trix Spike		-	cate Matrix	-			
			RQ2	006527-01		R	Q2006527-0)2			
		Sample		Spike			Spike		% Rec		RPD
Analyte Name		Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Benzo(b)fluoranthene	;	9.1 U	24.3	36.4	67	23.8	36.4	65	41-127	3	30
Benzo(g,h,i)perylene		9.1 U	28.3	36.4	78	27.7	36.4	76	50-143	3	30
Benzo(k)fluoranthene	;	9.1 U	27.0	36.4	74 76	25.6	36.4	70	46-139	6	30
Biphenyl		9.1 U	27.8	36.4	76	22.1	36.4	61	10-126	22	30
2,2'-Oxybis(1-chlorop	- ·	9.1 U	21.8	36.4 36.4	60 72	16.9	36.4	47	21-126 41-118	24 20	30 30
Bis(2-chloroethoxy)m		9.1 U	26.5 22.1		73 61	21.9 18.6	36.4 36.4	60 51	41-118 33-108		30 30
Bis(2-chloroethyl) Eth Bis(2-ethylhexyl) Pht		9.1 U 9.1 U	22.1	36.4	74	25.4	36.4	70	41-132	<u>18</u> 6	30
Butyl Benzyl Phthalat		9.1 U 9.1 U	20.8 32.9	36.4 36.4	90	23.4 30.2	36.4 36.4	83	41-132	8	30 30
Caprolactam		9.1 U 9.1 U	11.9	36.4	33	9.91	36.4 36.4	83 27	10-48	20	30
Carbazole		9.1 U 9.1 U	40.4	36.4	111	34.3	36.4	27 94	39-144	20 17	30
Chrysene		9.1 U 9.1 U	28.8	36.4	79	27.8	36.4	76	47-126	4	30
Di-n-butyl Phthalate		9.1 U	36.4	36.4	100	32.9	36.4	90	43-130	11	30
Di-n-octyl Phthalate		9.1 U	25.5	36.4	70	24.9	36.4	69	40-139	1	30
Dibenz(a,h)anthracen	e	9.1 U	28.9	36.4	79	27.3	36.4	75	43-136	5	30
Dibenzofuran		9.1 U	32.1	36.4	88	27.1	36.4	75	46-119	16	30
Diethyl Phthalate		9.1 U	34.0	36.4	94	29.4	36.4	81	36-122	15	30
Dimethyl Phthalate		9.1 U	35.7	36.4	98	32.1	36.4	88	33-123	11	30
Fluoranthene		9.1 U	35.2	36.4	97	32.4	36.4	89	43-135	9	30
Fluorene		9.1 U	32.7	36.4	90	28.1	36.4	77	43-113	16	30
Hexachlorobenzene		9.1 U	35.2	36.4	97	31.0	36.4	85	42-125	13	30
Hexachlorobutadiene		9.1 U	24.8	36.4	68	18.1	36.4	50	10-111	<mark>31*</mark>	30
Hexachlorocyclopenta	adiene	9.1 U	14.1	36.4	39	10.7	36.4	29	10-103	29	30
Hexachloroethane		9.1 U	21.5	36.4	59	14.5	36.4	40	12-101	38*	30
Indeno(1,2,3-cd)pyrei	ne	9.1 U	26.1	36.4	72	25.4	36.4	70	49-140	3	30
Isophorone		9.1 U	22.7	36.4	62	20.1	36.4	55	40-111	12	30
N-Nitrosodi-n-propyl		9.1 U	27.3	36.4	75	24.1	36.4	66	35-108	13	30
N-Nitrosodiphenylam	ine	9.1 U	38.8	36.4	107	35.0	36.4	96 56	43-127	11	30
Naphthalene		9.1 U	26.1	36.4	72	20.2	36.4	56	37-108	25	30 20
Nitrobenzene Dentechlorenhanel (D		9.1 U	23.6	36.4	65 57	19.6	36.4	54 50	35-112	18	30 20
Pentachlorophenol (P	CP)	45 U	20.9 J	36.4	57 89	21.5 J	36.4	59 81	29-164	3	30 30
Phenanthrene Phenol		9.1 U 9.1 U	<u>32.5</u> 13.2	36.4	36	29.5 17.7	36.4	<u>81</u> 49	46-123 10-113	9 <u>31*</u>	$\frac{30}{30}$
THEHOL		9.1 U	13.2	30.4	30	1/./	30.4	49	10-115	51*	50

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Data Usability Summary Report

Site:Cross County Sanitary – Kessman LandfillLaboratory:ALS Environmental – Rochester, NYSDG No.:R2005213Parameter:Metals, Cyanide, Total Organic Carbon (TOC), Total Suspended Solids (TSS)Data Reviewer:Kristen Morin/TRCPeer Reviewer:Elizabeth Denly/TRCDate:September 10, 2020

Samples Reviewed and Evaluation Summary

8 Groundwater Samples: CCSK-MW-01A, CCSK-MW-01B, CCSK-MW-03A, CCSK-MW-03B, CCSK-MW-05A, CCSK-MW-05B, CCSK-MW-20A, CCSK-MW-20B

The above-listed samples were collected on June 15-17, 2020 and were analyzed for one or more of the following parameters:

- Metals by SW-846 Methods 6010C/7471B
- Cyanide by EPA-821-B-01-009: Method Kelada-01
- TOC by Standard Method (SM) 5310 C-2000(2011)
- TSS by SM 2540 D-1997(2011)

The data validation was performed in accordance with USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review (EPA-540-R-017-001), January 2017, modified for the methodologies utilized.

The data were evaluated based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- * Data Completeness
- * Holding Times and Sample Preservation
 - Initial and Continuing Calibrations (Metals, Cyanide, and TOC Only)
 - Interference Check Sample (ICS) Results (Metals Only)
 - Blanks
 - Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results (Metals, Cyanide, and TOC Only)
 - Laboratory Duplicate Results
 - ICP Serial Dilution Results (Metals Only)
- Laboratory Control Sample (LCS) Results
- NA Field Duplicate Results
- Sample Results and Reported Quantitation Limits (QLs)
- * All criteria were met.
- NA A field duplicate pair was not submitted with this sample set.

Overall Evaluation of Data and Potential Usability Issues

All results are usable for project objectives. Qualification of the data due to sampling error was not required. Qualifications applied to the data as a result of analytical error are discussed below.

- Potential uncertainty exists for select metals and TOC results that were detected between the method detection limit (MDL) and QL. These results were qualified as estimated (J) in the associated samples. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.
- The positive results for mercury in samples CCSK-MW-01A, CCSK-MW-01B, CCSK-MW-03B, CCSK-MW-05A, CCSK-MW-05B, CCSK-MW-20A, and CCSK-MW-20B were qualified as nondetect (U) at the QL due to preparation blank contamination. These results can be used for project objectives as nondetects, which may have a minor impact on the data usability.
- The nondetect results for antimony, cadmium, selenium, and/or cobalt in select samples were qualified as estimated (UJ) due to negative interference in the ICS analysis. These results can be used for project objectives as nondetects with estimated QLs, which may have a minor impact on the data usability.
- The positive result for cobalt in sample CCSK-MW-05B was qualified as estimated (J) due to negative interference in the ICS analysis and detection between the MDL the QL. This result can be used for project objectives as an estimated value, which may have a minor impact on the data usability.
- The positive results for zinc in sample CCSK-MW-01A, and chromium and vanadium in sample CCSK-MW-05B were qualified as nondetect (U) at the QL due to positive interference in the ICS analysis. These results can be used for project objectives as nondetects, which may have a minor impact on the data usability.
- The positive results for potassium in all samples were qualified as estimated (J) due to high recoveries in the MS/MSD analyses and serial dilution variability. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.
- The positive results for calcium in all samples were qualified as estimated (J) due to serial dilution variability. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.

Data Completeness

The data package was a complete Level IV data deliverable package.

Holding Times and Sample Preservation

All holding time and sample preservation method criteria were met for the metals, cyanide, TOC, and TSS analyses.

Initial and Continuing Calibrations (Metals, Cyanide, and TOC Only)

The initial calibration verification and/or continuing calibration verification percent recoveries (%Rs) met the acceptance limits for the metals, TOC, and cyanide analyses. All initial calibration coefficients were >0.995. The low-level check standard, as applicable, %Rs met the QC acceptance limits of 70-130%.

Interference Check Sample (ICS) Results (Metals Only)

All spiked analytes in the ICSAB recovered within the acceptance limits. Note that potassium and and sodium were not spiked into the ICSAB analyses; therefore, %Rs could not be evaluated in the ICSAB analyses for these analytes.

Interferents (aluminum, calcium, iron, and magnesium) were detected in samples CCSK-MW-01B, CCSK-MW-05A, CCSK-MW-20A, and CCSK-MW-20B at concentrations less than 50% of the concentrations spiked into ICSA; thus, ICS interferences were not evaluated in these samples.

The following table lists the maximum concentration of analytes that were impacted by the calcium and/or magnesium interferents, the associated samples, and the validation actions based on the positive and/or negative interference detected. Only sample results that were qualified due to ICSA interferences are discussed under the validation actions.

ICSA Date	Analyte	Maximum ICSA Concentration	Validation Actions					
	Antimony	-5.8 µg/L	The neededact requite for entire any codesium, and colonium in the					
	Cadmium	-1.3 µg/L	The nondetect results for antimony, cadmium, and selenium in the associated samples were qualified as estimated (UJ).					
	Selenium	-7.9 μg/L						
6/26/20	Cobalt	-2.8 µg/L	The nondetect results for cobalt in samples CCSK-MW-01A, CCSK- MW-03A, and CCSK-MW-03B were qualified as estimated (UJ). The positive result for cobalt in sample CCSK-MW-05B would have been qualified as estimated (J-) with a potential low bias; however, this results was also qualified as estimated (J) by the laboratory since the result was < the QL. Thus, the overall qualification was J.					
	Chromium	0.9 µg/L	The positive results for chromium and vanadium in sample CCSK-MW- 05B were qualified as nondetects (U) at the QL since the results were ≤					
	Vanadium	2.9 µg/L	QL and the estimates of interference were >10% of the detected sample results.					
	Zinc	10.3 µg/L	The positive result for zinc in sample CCSK-MW-01A was qualified as nondetect (U) at the QL since the result was \leq QL and the estimate of interference was >10% of the detected sample result.					
Associate	Associated samples: CCSK-MW-01A, CCSK-MW-03A, CCSK-MW-03B, CCSK-MW-05B							

No qualifications were required if results were nondetect with positive interference, results were greater than 10x the negative ICSA intereference, and/or if results were detected at concentrations greater than 90% of the estimated ICSA interference. Thus, these results were not summarized above.

<u>Blanks</u>

Cyanide, TOC

There were no target analytes detected in the preparation and calibration blanks.

TSS

There were no target analytes detected in the preparation blank.

Metals

The following table lists the metal that was detected in one of the preparation blanks.

Analyte	Blank Result	Validation Actions			
Mercury	0.114 J μg/L	The positive results for mercury in samples CCSK-MW-01A, CCSK-MW-01B, CCSK-MW-03B, CCSK-MW-05A, CCSK-MW-05B, CCSK-MW-20A, and CCSK-MW-20B were qualified as nondetect (U) at the QL since results were < the QL.			
		Qualification was not required in the remaining associated sample since mercury was not detected.			
Associated samples: All groundwater samples in this data set					

Initial calibration blanks were not used to qualify sample results since they did not bracket any sample analyses. The following table lists the analytes that were detected in the continuing calibration blanks (CCBs) that were not already gualified based on the preparation blank.

Blank ID	Analyte	Blank Result	Validation Actions				
CCB2	Antimony	5.60 J µg/L	Qualification was not required since antimony was not detected in the associated samples.				
Associated san	nples: CCSK-MW	-01A, CCSK-MW-01	1B, CCSK-MW-03A, CCSK-MW-03B				
CCB6	Thallium	8.10 J µg/L	Qualification was not required since thallium was not detected in the associated sample.				
Associated san	Associated sample: CCSK-MW-03B						

MS/MSD Results (Metals, Cyanide, and TOC Only)

Cyanide, TOC

MS/MSD analyses for cyanide and TOC were performed on sample CCSK-MW-03B. The %Rs and relative percent differences (RPDs) were within the laboratory acceptance limits.

Metals

MS/MSD analyses were performed on sample CCSK-MW-03B for all metals. A post-digestion spike (PDS) was also performed on sample CCSK-MW-03B for all metals except mercury. All RPDs were within the laboratory acceptance limits. The following table summarizes the %Rs that were outside of the acceptance criteria, the associated samples, and the validation actions. Evaluation of sample results was not required in cases of nonconformances where the sample concentration was greater than four times the spike concentration. Therefore, these results were not summarized below.

Parent Sample ID	Analyte	MS %R	MSD %R	PDS %R	QC Limits %R	Validation Actions	
CCSK-MW-03B	Potassium	130	136	Met criteria	75-125	The positive results for potassium in the associated samples were qualified as estimated (J).	
Associated samples: All groundwater samples in this data set							

Laboratory Duplicate Results

Metals, Cyanide, TOC

Laboratory duplicate analyses were not performed on a sample from this data set.

TSS

Laboratory duplicate analysis was performed on sample CCSK-MW-03B. The RPD was within the laboratory acceptance limits.

ICP Serial Dilution Results (Metals Only)

An ICP serial dilution analysis was performed on sample CCSK-MW-03B for all metals except mercury. The following table summarizes the percent differences (%Ds) that were outside of the acceptance criteria, the associated samples, and the validation actions.

Parent Sample ID	Analyte	%D	Validation Actions				
CCSK-MW-03B	Calcium	13	The positive results for calcium and potassium in the				
CCSK-IVIV-03B	Potassium	18	associated samples were qualified as estimated (J).				
Associated sample	Associated samples: All groundwater samples in this data set						
Criteria: <10 %D when parent sample results are >50x the MDL and serial dilution results are > the QL							

LCS Results

The %Rs for all metals, cyanide, TOC, and TSS met the laboratory acceptance criteria in the LCS analyses.

Field Duplicate Results

No field duplicate pairs were submitted with this sample set.

Sample Results and Reported Quantitation Limits

Select metal and TOC results were reported between the MDL and QL. These results were qualified as estimated (J) in the associated samples by the laboratory. Sample calculations were spotchecked; there were no errors noted.

The following table summarizes the dilutions performed on samples in this data set; the QLs were elevated accordingly.

Analyte	Sample ID	Dilution	Reason for Dilution			
Calcium	CCSK-MW-03A	10-fold	A 10-fold dilution was performed due to the concentrations of calcium and sodium that exceeded the linear range in the			
Sodium	CCSK-NW-05A	10-1010	undiluted analysis.			
Sodium	CCSK-MW-03B	10-fold	A 10-fold dilution was performed due to the concentration of sodium that exceeded the linear range in the undiluted analysis.			
Thallium			A 10-fold dilution was likely performed due to the elevated concentration of an interfering analyte (i.e., sodium).			

Analyte	Sample ID	Dilution	Reason for Dilution
	CCSK-MW-20A		
тос	CCSK-MW-20B	-20B 2-fold	2-fold dilutions were performed in order to prevent instrument
100	CCSK-MW-05A	2-1010	carryover. Since TOC was detected above the QL in these samples, a lesser dilution was not performed by the laboratory.
	CCSK-MW-05B		
Cyanide	CCSK-MW-05B	2-fold	A 2-fold dilution was performed due to the color and salinity of the sample.

QUALIFIED FORM 1s

Metals

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Client:	TRC Companies	Service Request:	CCSK - MW-03B
Project No.:	R2005213	Date Collected:	6/15/2020
Project Name:		Date Received:	6/18/2020
Matrix:	WATER	Units:	ug/L
		Basis:	
Sample Name:	CCSK - MW-03B	Lab Code: R20052	213-001

	Analysis			Dil.			
Analyte	Method	PQL	MDL	Factor	Result	С	Q
Aluminum	6010C	100	23.0	1.0	100	U	
Antimony	6010C	60.0	4.7	1.0	60.0	Մ <mark>၂</mark>	
Arsenic	6010C	10.0	5.5	1.0	10.0	U	
Barium	6010C	20.0	3.0	1.0	658		
Beryllium	6010C	3.0	0.130	1.0	3.0	U	
Cadmium	6010C	5.0	0.350	1.0	5.0	U J	
Mercury	7470A	0.200	0.077	1.0	0 -089 -	J-	0.2 U
Calcium	6010C	1000	220	1.0	205000	J-	E
Chromium	6010C	10.0	0.590	1.0	10.0	U	
Cobalt	6010C	50.0	0.890	1.0	50.0	UJ	
Copper	6010C	20.0	3.9	1.0	20.0	U	
Iron	6010C	100	61.0	1.0	12000		
Lead	6010C	5.0	2.1	1.0	5.0	U	
Magnesium	6010C	1000	29.0	1.0	189000		
Manganese	6010C	10.0	3.7	1.0	90.5		
Nickel	6010C	40.0	2.6	1.0	40.0	U	
Potassium	6010C	2000	200	1.0	43600	J ·	NE
Selenium	6010C	10.0	6.4	1.0	10.0	U J	
Silver	6010C	10.0	0.570	1.0	10.0	U	
Sodium	6010C	10000	1300	10.0	1870000		
Thallium	6010C	100	66.0	10.0	100	U	
Vanadium	6010C	50.0	0.670	1.0	50.0	U	
Zinc	6010C	20.0	9.4	1.0	20.0	U	

% Solids: 0.0

Client:	TRC Companies	Service Request:	CCSK - MW-03B
Project No.:	R2005213	Date Collected:	6/16/2020
Project Name:		Date Received:	6/18/2020
Matrix:	WATER	Units:	ug/L
		Basis:	
Sample Name:	CCSK - MW-01B	Lab Code: R20052	213-002

	1	1	1				
Analyte	Analysis Method	PQL	MDL	Dil. Factor	Result	с	Q
Aluminum	6010C	100	23.0	1.0	126	ĺ	ĺ
Antimony	6010C	60.0	4.7	1.0	60.0	U	
Arsenic	6010C	10.0	5.5	1.0	10.0	U	
Barium	6010C	20.0	3.0	1.0	42.9		
Beryllium	6010C	3.0	0.130	1.0	3.0	U	ĺ
Cadmium	6010C	5.0	0.350	1.0	5.0	U	ĺ
Mercury	7470A	0.200	0.077	1.0	0-097	- J-	0.2 U
Calcium	6010C	1000	220	1.0	21800	J	E
Chromium	6010C	10.0	0.590	1.0	0.700	J	ĺ
Cobalt	6010C	50.0	0.890	1.0	50.0	U	
Copper	6010C	20.0	3.9	1.0	20.0	U	ĺ
Iron	6010C	100	61.0	1.0	253	ĺ	ĺ
Lead	6010C	5.0	2.1	1.0	5.0	U	
Magnesium	6010C	1000	29.0	1.0	17100		
Manganese	6010C	10.0	3.7	1.0	7.2	J	ĺ
Nickel	6010C	40.0	2.6	1.0	40.0	U	
Potassium	6010C	2000	200	1.0	3400	J -	NE -
Selenium	6010C	10.0	6.4	1.0	10.0	U	
Silver	6010C	10.0	0.570	1.0	10.0	U	
Sodium	6010C	1000	130	1.0	159000		
Thallium	6010C	10.0	6.6	1.0	10.0	U	
Vanadium	6010C	50.0	0.670	1.0	1.1	J	
Zinc	6010C	20.0	9.4	1.0	20.0	U	

% Solids: 0.0

Client:	TRC Companies	Service Request:	CCSK - MW-03B
Project No.:	R2005213	Date Collected:	6/16/2020
Project Name:		Date Received:	6/18/2020
Matrix:	WATER	Units:	ug/L
		Basis:	
Sample Name:	CCSK - MW-01A	Lab Code: R20052	213-003

Analyte	Analysis Method	PQL	MDL	Dil. Factor	Result	с	Q
Aluminum	6010C	100	23.0	1.0	68.7	J	
Antimony	6010C	60.0	4.7	1.0	60.0	U <mark>J</mark>	
Arsenic	6010C	10.0	5.5	1.0	10.0	U	
Barium	6010C	20.0	3.0	1.0	117		
Beryllium	6010C	3.0	0.130	1.0	3.0	U	
Cadmium	6010C	5.0	0.350	1.0	5.0	UJ	
Mercury	7470A	0.200	0.077	1.0	0-108-	- J-	0.2 U
Calcium	6010C	1000	220	1.0	172000	J -	E
Chromium	6010C	10.0	0.590	1.0	10.0	U	
Cobalt	6010C	50.0	0.890	1.0	50.0	UJ	
Copper	6010C	20.0	3.9	1.0	20.0	U	
Iron	6010C	100	61.0	1.0	100	U	
Lead	6010C	5.0	2.1	1.0	5.0	U	
Magnesium	6010C	1000	29.0	1.0	85300		
Manganese	6010C	10.0	3.7	1.0	10.0	U	
Nickel	6010C	40.0	2.6	1.0	40.0	U	
Potassium	6010C	2000	200	1.0	11400	J	NE
Selenium	6010C	10.0	6.4	1.0	10.0	UJ	
Silver	6010C	10.0	0.570	1.0	0.600	J	
Sodium	6010C	1000	130	1.0	171000		
Thallium	6010C	10.0	6.6	1.0	8.4	J	
Vanadium	6010C	50.0	0.670	1.0	50.0	U	
Zinc	6010C	20.0	9.4	1.0	9 . 8	J -	20 U

% Solids: 0.0

Client:	TRC Companies	Service Request:	CCSK - MW-03B
Project No.:	R2005213	Date Collected:	6/16/2020
Project Name:		Date Received:	6/18/2020
Matrix:	WATER	Units:	ug/L
		Basis:	
Sample Name:	CCSK - MW-03A	Lab Code: R20052	213-004

Analyte	Analysis Method	PQL	MDL	Dil. Factor	Result	с	Q
Aluminum	6010C	100	23.0	1.0	100	U	
Antimony	6010C	60.0	4.7	1.0	60.0	U J	
Arsenic	6010C	10.0	5.5	1.0	10.0	U	
Barium	6010C	20.0	3.0	1.0	574		
Beryllium	6010C	3.0	0.130	1.0	3.0	U	
Cadmium	6010C	5.0	0.350	1.0	5.0	U J	
Mercury	7470A	0.200	0.077	1.0	0.200	U	
Calcium	6010C	10000	2200	10.0	382000	J -	E
Chromium	6010C	10.0	0.590	1.0	10.0	U	
Cobalt	6010C	50.0	0.890	1.0	50.0	U <mark>J</mark>	
Copper	6010C	20.0	3.9	1.0	20.0	U	
Iron	6010C	100	61.0	1.0	10900		
Lead	6010C	5.0	2.1	1.0	5.0	U	
Magnesium	6010C	1000	29.0	1.0	291000		
Manganese	6010C	10.0	3.7	1.0	256		
Nickel	6010C	40.0	2.6	1.0	40.0	U	
Potassium	6010C	2000	200	1.0	62600	J·	NE
Selenium	6010C	10.0	6.4	1.0	10.0	UJ	
Silver	6010C	10.0	0.570	1.0	10.0	U	
Sodium	6010C	10000	1300	10.0	1950000		
Thallium	6010C	10.0	6.6	1.0	15.9		
Vanadium	6010C	50.0	0.670	1.0	50.0	U	
Zinc	6010C	20.0	9.4	1.0	20.0	U	

% Solids: 0.0

Client:	TRC Companies	Service Request:	CCSK - MW-03B
Project No.:	R2005213	Date Collected:	6/16/2020
Project Name:		Date Received:	6/18/2020
Matrix:	WATER	Units:	ug/L
		Basis:	
Sample Name:	CCSK - MW-20B	Lab Code: R20052	213-005

Analyte	Analysis Method	PQL	MDL	Dil. Factor	Result	с	Q
Aluminum	6010C	100	23.0	1.0	1550		
Antimony	6010C	60.0	4.7	1.0	60.0	U	
Arsenic	6010C	10.0	5.5	1.0	10.0	U	
Barium	6010C	20.0	3.0	1.0	87.8		
Beryllium	6010C	3.0	0.130	1.0	3.0	U	
Cadmium	6010C	5.0	0.350	1.0	5.0	U	
Mercury	7470A	0.200	0.077	1.0	0-123-	- J-	0.2 U
Calcium	6010C	1000	220	1.0	71200	J	<u>-</u> E
Chromium	6010C	10.0	0.590	1.0	1.9	J	
Cobalt	6010C	50.0	0.890	1.0	1.1	J	
Copper	6010C	20.0	3.9	1.0	20.0	U	
Iron	6010C	100	61.0	1.0	6690		
Lead	6010C	5.0	2.1	1.0	5.0	U	
Magnesium	6010C	1000	29.0	1.0	63500		
Manganese	6010C	10.0	3.7	1.0	63.8	ĺ	
Nickel	6010C	40.0	2.6	1.0	40.0	U	
Potassium	6010C	2000	200	1.0	13400	J	- NE -
Selenium	6010C	10.0	6.4	1.0	10.0	U	
Silver	6010C	10.0	0.570	1.0	10.0	U	
Sodium	6010C	1000	130	1.0	16700		
Thallium	6010C	10.0	6.6	1.0	10.0	U	
Vanadium	6010C	50.0	0.670	1.0	2.2	J	
Zinc	6010C	20.0	9.4	1.0	20.0	U	

% Solids: 0.0

Client:	TRC Companies	Service Request:	CCSK - MW-03B
Project No.:	R2005213	Date Collected:	6/17/2020
Project Name:		Date Received:	6/18/2020
Matrix:	WATER	Units:	ug/L
		Basis:	
Sample Name:	CCSK - MW-20A	Lab Code: R20052	213-006

Analyte	Analysis Method	PQL	MDL	Dil. Factor	Result	с	Q
Aluminum	6010C	100	23.0	1.0	100	U	
Antimony	6010C	60.0	4.7	1.0	60.0	U	
Arsenic	6010C	10.0	5.5	1.0	10.0	U	
Barium	6010C	20.0	3.0	1.0	89.6		
Beryllium	6010C	3.0	0.130	1.0	3.0	U	
Cadmium	6010C	5.0	0.350	1.0	5.0	U	
Mercury	7470A	0.200	0.077	1.0	0 -098 -	J-	0.2 U
Calcium	6010C	1000	220	1.0	76100	J	E
Chromium	6010C	10.0	0.590	1.0	10.0	U	
Cobalt	6010C	50.0	0.890	1.0	50.0	U	
Copper	6010C	20.0	3.9	1.0	20.0	U	
Iron	6010C	100	61.0	1.0	2830		
Lead	6010C	5.0	2.1	1.0	5.0	U	
Magnesium	6010C	1000	29.0	1.0	62300		
Manganese	6010C	10.0	3.7	1.0	14.7		
Nickel	6010C	40.0	2.6	1.0	40.0	U	
Potassium	6010C	2000	200	1.0	13200	J	NE _
Selenium	6010C	10.0	6.4	1.0	10.0	U	
Silver	6010C	10.0	0.570	1.0	10.0	U	
Sodium	6010C	1000	130	1.0	17700		
Thallium	6010C	10.0	6.6	1.0	10.0	U	
Vanadium	6010C	50.0	0.670	1.0	50.0	U	
Zinc	6010C	20.0	9.4	1.0	20.0	U	

% Solids: 0.0

Client:	TRC Companies	Service Request:	CCSK - MW-03B
Project No.:	R2005213	Date Collected:	6/17/2020
Project Name:		Date Received:	6/18/2020
Matrix:	WATER	Units:	ug/L
		Basis:	
Sample Name:	CCSK - MW-05B	Lab Code: R20052	213-007

Analyte	Analysis Method	PQL	MDL	Dil. Factor	Result	с	Q
Aluminum	6010C	100	23.0	1.0	755		
Antimony	6010C	60.0	4.7	1.0	60.0	ŪJ	
Arsenic	6010C	10.0	5.5	1.0	10.0	U	
Barium	6010C	20.0	3.0	1.0	114		
Beryllium	6010C	3.0	0.130	1.0	3.0	U	
Cadmium	6010C	5.0	0.350	1.0	5.0	U J	
Mercury	7470A	0.200	0.077	1.0	0 -077 -	J -	0.2 U
Calcium	6010C	1000	220	1.0	139000	J	<u>-</u> E
Chromium	6010C	10.0	0.590	1.0	15	J -	10 U
Cobalt	6010C	50.0	0.890	1.0	2.3	J	
Copper	6010C	20.0	3.9	1.0	20.0	U	
Iron	6010C	100	61.0	1.0	3630		
Lead	6010C	5.0	2.1	1.0	5.0	U	
Magnesium	6010C	1000	29.0	1.0	78400		
Manganese	6010C	10.0	3.7	1.0	674		
Nickel	6010C	40.0	2.6	1.0	40.0	U	
Potassium	6010C	2000	200	1.0	12700	J	NE
Selenium	6010C	10.0	6.4	1.0	10.0	UJ	
Silver	6010C	10.0	0.570	1.0	10.0	U	
Sodium	6010C	1000	130	1.0	43900		
Thallium	6010C	10.0	6.6	1.0	10.0	U	
Vanadium	6010C	50.0	0.670	1.0	10	J	50 U
Zinc	6010C	20.0	9.4	1.0	20.0	U	

% Solids: 0.0

Client:	TRC Companies	Service Request:	CCSK - MW-03B
Project No.:	R2005213	Date Collected:	6/17/2020
Project Name:		Date Received:	6/18/2020
Matrix:	WATER	Units:	ug/L
		Basis:	
Sample Name:	CCSK - MW-05A	Lab Code: R20052	13-008

Analyte	Analysis Method	PQL	MDL	Dil. Factor	Result	с	Q
Aluminum	6010C	100	23.0	1.0	100	U	
Antimony	6010C	60.0	4.7	1.0	60.0	U	
Arsenic	6010C	10.0	5.5	1.0	13.6		
Barium	6010C	20.0	3.0	1.0	155		
Beryllium	6010C	3.0	0.130	1.0	3.0	U	
Cadmium	6010C	5.0	0.350	1.0	5.0	U	
Mercury	7470A	0.200	0.077	1.0	0-117-	- J-	0.2 U
Calcium	6010C	1000	220	1.0	97100	J	E
Chromium	6010C	10.0	0.590	1.0	10.0	U	
Cobalt	6010C	50.0	0.890	1.0	7.0	J	
Copper	6010C	20.0	3.9	1.0	20.0	U	
Iron	6010C	100	61.0	1.0	12000		
Lead	6010C	5.0	2.1	1.0	5.0	U	
Magnesium	6010C	1000	29.0	1.0	76000		
Manganese	6010C	10.0	3.7	1.0	124		
Nickel	6010C	40.0	2.6	1.0	40.0	U	
Potassium	6010C	2000	200	1.0	11100	J	NE
Selenium	6010C	10.0	6.4	1.0	10.0	U	
Silver	6010C	10.0	0.570	1.0	10.0	U	
Sodium	6010C	1000	130	1.0	10200		
Thallium	6010C	10.0	6.6	1.0	10.0	U	
Vanadium	6010C	50.0	0.670	1.0	50.0	U	
Zinc	6010C	20.0	9.4	1.0	20.0	U	

% Solids: 0.0

General Chemistry

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER Page 105 of 2542

Analytical Report

Client:	TRC Companies	Service Request:	R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected:	06/15/20 14:35
Sample Matrix:	Water	Date Received:	06/18/20 09:20
Sample Name:	CCSK - MW-03B	Basis:	NA
Lab Code:	R2005213-001		

Inorganic Parameters

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed Q	
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	2.0	mg/L	1.0	0.5	1	06/25/20 14:35	_
Cyanide, Total	Kelada-01	0.0050 U	mg/L	0.0050	0.0040	1	06/24/20 12:29	
Solids, Total Suspended (TSS)	SM 2540 D-1997(2011)	25.6	mg/L	1.0	-	1	06/22/20 08:40	

Analytical Report

Client:	TRC Companies	Service Request:	R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected:	06/16/20 10:20
Sample Matrix:	Water	Date Received:	06/18/20 09:20
Sample Name:	CCSK - MW-01B	Basis:	NA
Lab Code:	R2005213-002		

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed Q
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	1.1	mg/L	1.0	0.5	1	06/25/20 15:38
Cyanide, Total	Kelada-01	0.0050 U	mg/L	0.0050	0.0040	1	06/24/20 12:41
Solids, Total Suspended (TSS)	SM 2540 D-1997(2011)	2.7	mg/L	1.0	-	1	06/22/20 08:40

Analytical Report

Client:	TRC Companies	Service Request:	R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected:	06/16/20 12:50
Sample Matrix:	Water	Date Received:	06/18/20 09:20
Sample Name:	CCSK - MW-01A	Basis:	NA
Lab Code:	R2005213-003		

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed Q
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	1.6	mg/L	1.0	0.5	1	06/25/20 15:59
Cyanide, Total	Kelada-01	0.0054	mg/L	0.0050	0.0040	1	06/24/20 12:45
Solids, Total Suspended (TSS)	SM 2540 D-1997(2011)	1.7	mg/L	1.0	-	1	06/22/20 08:40

Analytical Report

Client:	TRC Companies	Service Request:	R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected:	06/16/20 13:50
Sample Matrix:	Water	Date Received:	06/18/20 09:20
Sample Name:	CCSK - MW-03A	Basis:	NA
Lab Code:	R2005213-004		

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed Q	_
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	0.8 J	mg/L	1.0	0.5	1	06/25/20 16:20	
Cyanide, Total	Kelada-01	0.0050 U	mg/L	0.0050	0.0040	1	06/24/20 12:49	
Solids, Total Suspended (TSS)	SM 2540 D-1997(2011)	23.0	mg/L	1.0	-	1	06/22/20 08:40	

Analytical Report

Client:	TRC Companies	Service Request:	R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected:	06/16/20 15:35
Sample Matrix:	Water	Date Received:	06/18/20 09:20
Sample Name:	CCSK - MW-20B	Basis:	NA
Lab Code:	R2005213-005		

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	2.4	mg/L	2.0	0.9	2	06/24/20 02:43	
Cyanide, Total	Kelada-01	0.0050 U	mg/L	0.0050	0.0040	1	06/24/20 12:53	
Solids, Total Suspended (TSS)	SM 2540 D-1997(2011)	83.7	mg/L	1.0	-	1	06/22/20 08:40	

Analytical Report

Client:	TRC Companies	Service Request:	R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected:	06/17/20 10:15
Sample Matrix:	Water	Date Received:	06/18/20 09:20
Sample Name:	CCSK - MW-20A	Basis:	NA
Lab Code:	R2005213-006		

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed Q	
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	2.8	mg/L	2.0	0.9	2	06/24/20 03:04	_
Cyanide, Total	Kelada-01	0.0050 U	mg/L	0.0050	0.0040	1	06/24/20 12:57	
Solids, Total Suspended (TSS)	SM 2540 D-1997(2011)	6.2	mg/L	1.0	-	1	06/22/20 08:40	

Analytical Report

Client:	TRC Companies	Service Request:	R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected:	06/17/20 12:00
Sample Matrix:	Water	Date Received:	06/18/20 09:20
Sample Name:	CCSK - MW-05B	Basis:	NA
Lab Code:	R2005213-007		

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed Q	_
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	5.4	mg/L	2.0	0.9	2	06/24/20 03:24	-
Cyanide, Total	Kelada-01	0.010 U	mg/L	0.010	0.008	2	06/24/20 14:13	
Solids, Total Suspended (TSS)	SM 2540 D-1997(2011)	44.0	mg/L	1.0	-	1	06/22/20 08:40	

Analytical Report

Client:	TRC Companies	Service Request: R2005213
Project:	Cross County Sanitary - Kessman Landfill/387570.0000.0000	Date Collected: 06/17/20 12:55
Sample Matrix:	Water	Date Received: 06/18/20 09:20
Sample Name: Lab Code:	CCSK - MW-05A R2005213-008	Basis: NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Carbon, Total Organic (TOC)	SM 5310 C-2000(2011)	6.3	mg/L	2.0	0.9	2	06/24/20 03:45	
Cyanide, Total	Kelada-01	0.0050 U	mg/L	0.0050	0.0040	1	06/24/20 13:17	

QC NONCONFORMANCE DOCUMENTATION

-4-

ICP INTERFERENCE CHECK SAMPLE

Contract:	R2005213		
Lab Code:	Case No.:	SAS No.:	SDG NO.: CCSK - MW-03
ICP ID Numb	er: Agilent ICP	ICS Source	e: PERKIN ELMER

ug/L

Concentration Units):

	True	ı	Initia	al Found	Final			
Analyte	Sol.A	Sol.AB	Sol.A Sol.AB %		۶R	Sol.A	Sol.AB	۶R
Aluminum	250000	250000	249000.0	248000	99	251000.0	251000	100
Antimony		600	-4.3	615	102	- <mark>5.8</mark>	618	10:
Arsenic		100	-0.4	95	95	-2.0	103	10:
Barium		500	0.2	521	104	0.2	530	10
Beryllium		500	0.0	489	98	-0.1	498	10
Cadmium		1000	- <mark>1.3</mark>	945	94	- <mark>1.2</mark>	968	9
Calcium	250000	250000	234000.0	231000	92	236000.0	236000	9
Chromium		500	<mark>0.9</mark>	496	99	0.8	505	10
Cobalt		500	- <mark>2.8</mark>	487	97	- <mark>2.7</mark>	497	9
Copper		500	-0.2	520	104	-0.2	531	10
Iron	100000	100000	89700.0	88900	89	90600.0	90500	9
Lead		50	-1.8	50	100	-1.8	49	9
Magnesium	250000	250000	262000.0	260000	104	265000.0	265000	10
Manganese		500	1.4	491	98	1.5	499	10
Nickel		1000	-0.7	945	94	-1.5	958	9
Potassium			-1.2	-3		-4.2	-7	
Selenium		50	-2.1	49	98	- <mark>7.9</mark>	49	9
Silver		200	0.2	213	106	0.4	215	10
Sodium			7.6	-2		5.9	1	
Thallium		100	2.5	115	115	3.7	115	11
Vanadium		500	<mark>2.5</mark>	500	100	<mark>2.9</mark>	509	10
Zinc		1000	10.3	994	99	<mark>9.8</mark>	1000	10

-3-

BLANKS

Contract:	R2005213				
Lab Code:		Case No.:	SAS No.:	 SDG NO.:	CCSK - MW-03
Preparation	Blank Matrix	(soil/water):	WATER		

Preparation Blank Concentration Units (ug/L, ppt, or mg/kg): UG/L

Analyte	Initial Calib. not Blank used ug/L C	Continu not used 1 C	ning Calibrati	ion C	Blank ug/L 3	с	Preparation Blank	с	м
Aluminum	23.00 y	23.00 p	-	-	23.00	U	23.000	U	P
Antimony	9.60 J	4.80 J	5.60	J	4.70	U	4.700	U	P
Arsenic	5.50 U	5.50 U	5.50	U	5.50	U	5.500	U	Р
Barium	3.00 U	3.00 U	3.00	U	3.00	U	3.000	U	Р
Beryllium	0.1 3 U	0.13 U	0.13	U	0.13	U	0.130	U	Р
Cadmium	0.3 <mark>5</mark> U	0.35 U	0.35	U	0.35	U	0.350	U	Р
Mercury	0.1 0 5 J	0.12 <mark>8</mark> J	0.136	J	0.137	J	0.114	J	CV
Calcium	220.00 U	220.00 U	220.00	υ	220.00	U	220.000	U	Р
Chromium	0 59 U	0.59 U	0.59	υ	0.59	U	0.590	U	Р
Cobalt	0.89 U	0. <mark>89</mark> U	0.89	U	0.89	U	0.890	U	Р
Copper	∫ \$.90 ບ	3.90 U	3.90	υ	3.90	U	3.900	U	Р
Iron	ຸ 1.00 ບ	61 <mark>.00 U</mark>	61.00	υ	61.00	U	61.000	U	Р
Lead	2.10 U	2 10 U	2.10	υ	2.10	U	2.100	U	Р
Magnesium	2 9 .00 ບ	2 <mark>9.00 U</mark>	29.00	U	29.00	U	29.000	U	Р
Manganese	3.70 U	3.70 U	3.70	U	3.70	U	3.700	U	Р
Nickel	2.60 U	2.60 U	2.60	U	2.60	U	2.600	U	Р
Potassium	200. 0 0 U	200.00 U	200.00	U	200.00	U	200.000	U	Р
Selenium	6.40 U	6.70 Ј	6.40	U	6.40	U	6.400	U	Р
Silver	0.57 U	0.57 U	0.57	υ	0.57	U	0.570	U	Р
Sodium	130.00 U	130.00 U	130.00	U	130.00	U	130.000	U	Р
Thallium	6.60 U	6.60 U	6.60	U	6.60	U	6.600	U	Р
Vanadium	0.67 u	0.67 U	0.67	U	0.67	U	0.670	U	P
Zinc	9.40 0	9.40	9.40	U	9.40	U	9.400	U	Р

-3-

BLANKS

Contract:	R2005213				
Lab Code:		Case No.:	SAS No.:	 SDG NO.:	CCSK - MW-03
Preparation	Blank Matrix	(soil/water):	WATER		

Preparation Blank Concentration Units (ug/L, ppt, or mg/kg): UG/L

Analyte	Initial Calib. Blank ug/L	с	Conti CCB 4 1	Lnu: C	ing Calibrati CCB 5 2	.on C	Blank ug/L	С	Preparation Blank	с		м
Aluminum			23.00	ט ע	2 23.00	-	23.00	U U				P
Antimony			4.70	U	N/A 480 -	J	N/A5.10_	_J_			_	P
Arsenic		Ť	5.50	υ	5.50	U	5.50	υ				P
Barium	i i	T	3.00	υ	3.00	U	3.00	υ			1	P
Beryllium	i i		0.13	U	0.13	U	0.13	υ				Р
Cadmium		Ť	0.35	U	0.35	U	0.35	υ		ii	1	Р
Mercury		i	0.077	υ						ii	-	cv
Calcium		İ	220.00	υ	220.00	U	220.00	U		ii	1	P
Chromium		İ	0.59	υ	0.59	U	0.59	υ		ii	1	P
Cobalt		i	0.89	U	0.89	U	0.89	υ		İİ	li	P
Copper		İ	3.90	υ	3.90	U	3.90	υ		İİ	1	Р
Iron		İ	61.00	U	61.00	U	61.00	υ		İİ	1	P
Lead		İ	2.10	U	2.10	U	2.10	υ		İİ	1	P
Magnesium		İ	29.00	υ	29.00	U	29.00	U		İİ	1	P
Manganese		Ī	3.70	υ	3.70	υ	3.70	υ			1	Р
Nickel	1	Ī	2.60	υ	2.60	υ	2.60	υ			1	Р
Potassium		İ	200.00	U	200.00	U	200.00	υ		İİ	1	P
Selenium		İ	6.40	υ	6.40	U	6.40	U		İİ	1	P
Silver		T	0.57	υ	0.57	U	0.57	υ			1	Р
Sodium		T	130.00	υ	130.00	U	130.00	υ			1	Р
Thallium			6.60	υ	6.60	U	8.10	J			1	Р
Vanadium			0.67	υ	0.67	U	0.67	υ			1	Р
Zinc		Ī	9.40	υ	9.40	υ	9.40	U			1	Р

-5A-

SPIKE SAMPLE RECOVERY

				SAMPLE NO	
				CCSK - MW-	03BS
Contract: R2005213					
Lab Code:	Case No.:	SAS No.:		SDG NO.:	CCSK - MW-03
Matrix (soil/water):	WATER	_	Level	(low/med):	LOW
<pre>% Solids for Sample:</pre>	0.0				

		entration Units (up	y/ 1		- yı	ht): UG/L				т
Analyte	Control Limit %R	Spiked Sample Result (SSR)	с	Sample Result (SR)	с	Spike Added (SA)	۶R	Q	м	
Aluminum	75 - 125	2210.00		23.00	U	2000.0	110		Ρ	
Antimony	75 - 125	515.00		4.70	U	500.0	103		Ρ	
Arsenic	75 - 125	39.00		5.50	U	40.0	98		Ρ	Ī
Barium	75 - 125	2660.00		658.00	ĺ	2000.0	100		Ρ	
Beryllium	75 - 125	46.80		0.13	U	50.0	94		Р	
Cadmium	75 - 125	45.10		0.35	U	50.0	90		Ρ	Ī
Mercury	75 - 125	0.955		0.089	J	1.00	87		cv	
Calcium		217000.00		205000.00		2000.0	600		Ρ	N/2
Chromium	75 - 125	194.00		0.59	U	200.0	97		Ρ	Ī
Cobalt	75 - 125	482.00		0.89	U	500.0	96		Ρ	
Copper	75 - 125	290.00		3.90	U	250.0	116		Ρ	
Iron		13500.00		12000.00		1000.0	150		Ρ	N/Z
Lead	75 - 125	500.00		2.10	U	500.0	100		Ρ	
Magnesium		199000.00		189000.00		2000.0	500		Ρ	N/A
Manganese	75 - 125	565.00		90.50		500.0	95		Ρ	
Nickel	75 - 125	464.00		2.60	U	500.0	93		Р	
Potassium	75 - 125	69700.00		43600.00		20000.0	<mark>130</mark>	N	Ρ	
Selenium	75 - 125	1060.00		6.40	U	1010.0	105		Р	Ī
Silver	75 - 125	59.30		0.57	U	50.0	119		Р	
Sodium		1880000.00		1870000.00		20000.0	50		Р	N/
Thallium	75 - 125	2050.00		66.00	U	2000.0	102		Р	
Vanadium	75 - 125	495.00		0.67	U	500.0	99		Р	
Zinc	75 - 125	522.00		9.40	U	500.0	104		Ρ	

Concentration Units (ug/L or mg/kg dry weight): UG/L

Comments:

-5A-

SPIKE SAMPLE RECOVERY

				SAMPLE NO	
				CCSK - MW-	03BSD
Contract: R2005213					
Lab Code:	Case No.:	SAS No.:		SDG NO.:	CCSK - MW-03
Matrix (soil/water):	WATER	_	Level	(low/med):	LOW
<pre>% Solids for Sample:</pre>	0.0				

		entration Units (u	.g/1	<u> </u>	. ± 91	ht): UG/L				т
Analyte	Control Limit %R	Spiked Sample Result (SSR)	с	Sample Result (SR)	с	Spike Added (SA)	%R	Q	м	
Aluminum	75 - 125	2220.00		23.00	U	2000.0	111		Ρ	
Antimony	75 - 125	518.00		4.70	U	500.0	104		Ρ	
Arsenic	75 - 125	40.90		5.50	U	40.0	102		Р	
Barium	75 - 125	2670.00		658.00		2000.0	101		Ρ	
Beryllium	75 - 125	46.80		0.13	U	50.0	94	ĺ	Р	1
Cadmium	75 - 125	45.50		0.35	U	50.0	91		Ρ	
Mercury	75 - 125	0.937		0.089	J	1.00	85		cv]
Calcium		218000.00		205000.00		2000.0	650	ĺ	Р	N/2
Chromium	75 - 125	194.00		0.59	U	200.0	97		Р	Ī
Cobalt	75 - 125	482.00		0.89	U	500.0	96	ĺ	Р	
Copper	75 - 125	290.00		3.90	U	250.0	116		Р	
Iron		13500.00		12000.00		1000.0	150		Ρ	N/
Lead	75 - 125	499.00		2.10	U	500.0	100		Р	
Magnesium		200000.00		189000.00		2000.0	550		Ρ	N/2
Manganese	75 - 125	566.00		90.50		500.0	95		Ρ	
Nickel	75 - 125	464.00		2.60	U	500.0	93		Ρ]
Potassium	75 - 125	70800.00		43600.00		20000.0	<mark>136</mark>	N	Р	
Selenium	75 - 125	1060.00		6.40	U	1010.0	105		Ρ]
Silver	75 - 125	59.30		0.57	U	50.0	119	ĺ	Р	
Sodium		1870000.00		1870000.00		20000.0	0		Р	N/A
Thallium	75 - 125	2020.00		66.00	U	2000.0	101		Р]
Vanadium	75 - 125	495.00		0.67	υ	500.0	99		Р	1
Zinc	75 - 125	522.00		9.40	U	500.0	104		Р	1

Concentration Units (ug/L or mg/kg dry weight): UG/L

Comments:

-9-

ICP SERIAL DILUTIONS

					SAMPLE NO.	,
					CCSK - MW	-03BL
Contract:	R2005213					
Lab Code:		Case No.:	SAS No.:		SDG NO.:	CCSK - MW-03
Matrix (soi	l/water):	WATER		Level	(low/med):	LOW

Analyte	Initial Sample Result (I)	с	Serial Dilution Result (S)	с	% Differ- ence	Q	м
Aluminum	23.00	U	115.00	U			Р
Antimony	4.70	U	23.50	U			Р
Arsenic	5.50	U	27.50	U			Р
Barium	658.00		706.00		7		Р
Beryllium	0.13	U	0.65	υ			Р
Cadmium	0.35	U	1.75	U			Р
Calcium	205000.00		232000.00		<mark>13</mark>	E	Р
Chromium	0.59	U	2.95	U			Р
Cobalt	0.89	U	4.45	U			Р
Copper	3.90	U	19.50	U			Р
Iron	12000.00		13100.00		9		Р
Lead	2.10	U	10.50	U			Р
Magnesium	189000.00		187000.00		1		Р
Manganese	90.50		97.50		8		Р
Nickel	2.60	U	13.00	U			Р
Potassium	43600.00		35800.00		<mark>18</mark>	Е	Р
Selenium	6.40	U	32.00	U			Р
Silver	0.57	U	2.85	U			Р
Sodium	187000.00		201000.00		7		Р
Thallium	6.60	U	33.00	U			Р
Vanadium	0.67	U	3.35	U			Р
Zinc	9.40	U	47.00	U			Р

Concentration Units: ug/L

Data Usability Summary Report

Site:	Cross County Sanitary – Kessman Landfill
Laboratory:	ALS Environmental – Rochester, NY and Holland, MI
SDG:	R2005213
Parameter:	Per- and Poly-fluoroalkyl Substances (PFAS), 1,4-Dioxane
Data Reviewer:	Kristen Morin/TRC
Peer Reviewer:	Elizabeth Denly/TRC
Date:	September 2, 2020

Samples Reviewed and Evaluation Summary

CCSK-	MW-01A, CCSK-MW-01B, CCSK-MW-03A, MW-03B, CCSK-MW-05A, CCSK-MW-05B, MW-20A, CCSK-MW-20B
-------	---

1 Equipment Blank*: CCSK-Equip Blank

* analyzed for PFAS only

The above-listed samples were collected on June 15-17, 2020 and were analyzed for the following parameters:

- 1,4-Dioxane by SW-846 8270D with Selective Ion Monitoring (SIM)
- Per- and Poly-fluoroalkyl substances (PFAS) (21 target analytes) based on USEPA Method 537.1 (modified) using ALS Environmental – Holland, MI standard operating procedure (SOP) HN-LCMS-001-R00, Revision 0.0, effective date 10/07/19.

The samples were analyzed for 1,4-dioxane by ALS Environmental – Rochester, NY and for PFAS by ALS Environmental – Holland, MI. The data validation was performed in accordance with the following guidance, modified for the methodologies utilized:

- USEPA National Functional Guidelines for Organic Superfund Methods Data Review (EPA-540-R-2017-002), January 2017
- USEPA National Functional Guidelines for High Resolution Superfund Methods Data Review (EPA-542-B-16-001), April 2016
- USEPA Data Review and Validation Guidelines for Perfluoroalkyl Substances (PFASs) Analyzed Using EPA Method 537 (EPA 910-R-18-001), November 2018
- New York State Department of Environmental Conservation Data Review Guidelines for Analysis of PFAS in Non-Potable Water and Solids, January 2020

The data were evaluated based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness
- Holding Times and Sample Preservation
- GC/MS Tunes (1,4-Dioxane only)
- Initial and Continuing Calibrations
 - Blanks
 - Surrogate Recoveries (1,4-Dioxane only)
 - Isotopically Labeled Surrogate Results (PFAS only)

- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
 - Laboratory Control Sample (LCS)/LCS Duplicate (LCSD) Results
- * Internal Standards
- NA Field Duplicate Results
 - Sample Results and Reported Quantitation Limits (QLs)
- * Target Compound Identification
- * All criteria were met.
- NA Field duplicates were not associated with this sample set.

Overall Evaluation of Data and Potential Usability Issues

All results are usable for project objectives. There were no qualifications applied to the data as a result of sampling error. Qualifications applied to the data as a result of analytical error are discussed below.

- Potential uncertainty exists for select PFAS results that were between the method detection limit (MDL) and QL. These results were qualified as estimated (J) in the associated samples. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.
- The positive results for PFHxS in samples CCSK-MW-01A, CCSK-MW-01B, CCSK-MW-03A, CCSK-MW-03B, and CCSK-Equip Blank was qualified as nondetect (U) at the QL due to method blank contamination. These results can be used for project objectives as nondetects, which may have a minor impact on the data usability.
- The positive results for 6:2 FTS in samples CCSK-MW-05B and CCSK-MW-05A were qualified as estimated (J) due to detection below the lowest calibration standard and QL and high isotopically labeled surrogate recoveries. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.
- The nondetect results for PFTeA and PFTriA in sample CCSK-MW-20A, and PFOSA in sample CCSK-Equip Blank were qualified as estimated (UJ) due to low isotopically labeled surrogate recoveries. These results can be used for project objectives as nondetects with estimated QLs, which may have a minor impact on the data usability.
- The positive result for PFBA in sample CCSK-MW-03B was qualified as estimated (J+) with a potential high bias due to high recovery in the LCS. This result can be used for project objectives as an estimated value, which may have a minor impact on the data usability.
- The positive result for 6:2 FTS in sample CCSK-MW-01A was qualified as estimated (J) due to a calibration exceedance. This result can be used for project objectives as an estimated value, which may have a minor impact on the data usability.

Data Completeness

The data package was a complete Level IV data deliverable with the following exceptions.

- Several discrepancies were noted with the calibration summaries provided for select PFAS.
- A discrepancy was noted with the raw data file numbers provided for select calibration standards and quality control samples.

The laboratory was contacted during validation and provided a revised package to address these issues.

Holding Times and Sample Preservation

All holding time and sample preservation criteria were met for the 1,4-dioxane and PFAS analyses.

GC/MS Tunes (1,4-Dioxane only)

All criteria were met in the 1,4-dioxane analyses.

Initial and Continuing Calibrations

1,4-Dioxane

The coefficient of determination was within the method acceptance criteria in the initial calibration (IC). All percent drifts (%Ds) met the method acceptance criteria in the continuing calibration (CC) standards associated with the samples in this data set.

PFAS

All percent relative standard deviations (%RSDs) and correlation coefficients in the ICs were within the method acceptance criteria. All %Ds or percent differences were within the acceptance criteria in the CC standards associated with the samples in this data set.

<u>Blanks</u>

1,4-Dioxane

1,4-Dioxane was not detected in the method blank associated with the samples in this data set.

PFAS

The following table summarizes the contaminant detected in the method blanks, the concentrations detected, and the resulting validation actions. Note that the concentration of PFHxS in the equipment blank (CCSK-Equip Blank) was due to method blank contamination as summarized in the table below and therefore did not further impact the samples in this data set.

Blank ID	Compound	Blank Concentration (ng/L)	Validation Action			
MBLK-158242	PFHxS	0.4768 J	The positive results for PFHxS in samples CCSK-MW- 01A, CCSK-MW-01B, CCSK-MW-03A, and CCSK-Equip Blank were qualified as nondetect (U) at the QL. No qualification was required for samples CCSK-MW- 05A, CCSK-MW-05B, CSK-MW-20A and CCSK-MW- 20B since the results for PFHxS were >10x the blank concentration.			
Associated samples: CCSK-MW-01A, CCSK-MW-01B, CCSK-MW-03A, CCSK-MW-05A, CCSK-MW-05B, CSK- MW-20A, CCSK-MW-20B, CCSK-Equip Blank						

Blank ID	Compound	Blank Concentration (ng/L)	Validation Action			
MBLK-158324	PFHxS	0.5504 J	The positive result for PFHxS in sample CCSK-MW-03B was qualified as nondetect (U) at the QL.			
Associated sam	ple: CCSK-MW-03I	3				
Criteria: • If concentration in sample <ql, "u"<br="" flagged="" ql="" replace="" result="" with="">• If concentration in sample ≥QL and <10x blank concentration, qualify result as estimated, biased high (J+)</ql,>						

• If concentration in sample ≥QL and ≥10x blank concentration, no qualification

Surrogate Recoveries (1,4-Dioxane only)

The surrogate percent recoveries (%Rs) were within the laboratory acceptance limits in the 1,4dioxane analyses.

Isotopically Labeled Surrogate Results (PFAS only)

Twenty isotopically labeled surrogates were spiked into the samples prior to extraction. The %Rs were within the laboratory acceptance limits (50-150%) for all PFAS analyses with the following exceptions.

Sample ID	Surrogate	Surrogate %R	Validation Action		
CCSK-MW-05B	13C2-FTS 6:2	212	The positive results for 6:2FTS would have been qualified as estimated (J+) with a potential high bias; however, these results were also qualified as estimated (J) by the laboratory		
CCSK-MW-05A	10021100.2	199	since results were below the lowest calibration standard and QL. Thus, the overall qualification was J in samples CCSK-MW-05B and CCSK-MW-05A.		
CCSK-MW-20A	13C2-PFTeA	49.7	The nondetect results for PFTeA and PFTriA were qualified as estimated (UJ) in sample CCSK-MW-20A.		
CCSK-Equip Blank	13C8-FOSA	49.9	The nondetect result for PFOSA was qualified as estimated (UJ) in sample CCSK-Equip Blank.		

MS/MSD Results

MS/MSDs were performed on samples CCSK-MW-03B and CCSK-MW-05A for 1,4-dioxane analyses, and sample CCSK-MW-03B for PFAS analyses. All %Rs and relative percent differences (RPDs) were within the laboratory acceptance limits.

LCS/LCSD Results

1,4-Dioxane

The LCS and LCSD %Rs and RPD were within the laboratory acceptance criteria for the 1,4-dioxane analyses.

PFAS

The following table summarizes the LCS %R that did not meet the laboratory acceptance limits for the PFAS analyses.

LCS ID	Analyte	LCS %R	QC Limits %R	Validation Action			
LCS-158324	PFBA	134	73-129	The positive result for PFBA in sample CCSK- MW-03B was qualified as estimated (J+) with a potential high bias.			
Associated sample: CCSK-MW-03B							

Internal Standards

1,4-Dioxane

All criteria were met in the 1,4-dioxane analyses.

PFAS

The isotopically labeled internal standard 13C7-PFUnDA was added to each sample prior to injection to monitor for ion suppression/enhancement at the instrument level. The %Rs met the laboratory limits of 50-200% in the PFAS analyses.

Field Duplicate Results

There were no field duplicates associated with this data set.

Sample Results and Reported Quantitation Limits

Sample calculations were spot-checked; there were no errors noted. Select PFAS results were between the MDL and QL. These results were qualified as estimated (J) by the laboratory.

There were no dilutions performed on the samples in this data set for PFAS or 1,4-dioxane analyses.

The response for 6:2 FTS in sample CCSK-MW-01A was above the calibration range but the sample was not re-analyzed on a dilution for this analyte due to laboratory oversight. Thus, the positive result for 6:2 FTS in this sample was qualified as estimated (J). It should be noted that the positive result for 6:2 FTS in sample CCSK-MW-03A could have been impacted by the elevated concentration of 6:2 FTS in sample CCSK-MW-01A which was analyzed immediately before sample CCSK-MW-03A. Since the result for 6:2 FTS in sample CCSK-MW-03A was already qualified as estimated by the laboratory due to detection between the MDL and QL, no further action was taken on this basis.

The laboratory noted on the preparation batch worksheet that sample CCSK-MW-05B had a fluorescent pink color in the original sample and in the extract. No qualification was required.

Target Compound Identification

1,4-Dioxane

All criteria were met for 1,4-dioxane.

PFAS

Extracted ion chromatograms were reviewed to verify the target compound identifications. The laboratory manually integrated several peaks to ensure the inclusion of linear and branched isomers for PFOA, PFOS, NEtFOSAA, NMeFOSAA, and/or PFHxS and/or to ensure proper integration.

The laboratory indicated in the SOP that they use second precursor/product ion transitions for identification confirmation for all reported PFAS except PFBA and PFPeA; however, the laboratory does not evaluate ion ratios.

QUALIFIED FORM 1s

	Analytical Report							
Client:	TRC Companies				Service Requ	est: R2005213		
Project:	Cross County Sanitary -	Kessman Landfil	1/387570.0000	0.0000	Date Collect	ted: 06/15/20 14:35		
Sample Matrix:	Water				Date Receiv	ved: 06/18/20 09:20)	
Sample Name:	CCSK - MW-03B				Un	its: ug/L		
Lab Code:	R2005213-001				Ba	sis: NA		
		1,4-D	ioxane by GC	C/MS				
Analysis Method:	8270D SIM							
Prep Method:	EPA 3535A							
Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q	
1,4-Dioxane	0.14	0.040	0.027	1	06/22/20 21:47	6/22/20		
Surrogate Name			% Rec	Control Limits		*		
1,4-Dioxane-d8			95	64 - 124	06/22/20	21:47		

Analytical Report								
Client:	TRC Companies				Service Requ	est: R2005213		
Project:	Cross County Sanitary - Ke	ssman Landfil	1/387570.0000	0.0000	Date Collec	ted: 06/16/20 10:20)	
Sample Matrix:	Water				Date Receiv	ved: 06/18/20 09:20)	
Sample Name:	CCSK - MW-01B				Ur	nits: ug/L		
Lab Code:	R2005213-002				Ba	isis: NA		
		1,4-D	oioxane by GC	C/MS				
Analysis Method:	8270D SIM							
Prep Method:	EPA 3535A							
Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q	
1,4-Dioxane	0.040 U	0.040	0.027	1	06/23/20 14:19	6/22/20		
Surrogate Name			% Rec	Control Limits		v.		
1,4-Dioxane-d8			84	64 - 124	06/23/20	14:19		

Analytical Report								
Client:	TRC Companies				Service Requ	est: R2005213		
Project:	Cross County Sanitary - Ke	essman Landfil	1/387570.0000	0.0000	Date Collec	ted: 06/16/20 12:50)	
Sample Matrix:	Water				Date Receiv	ved: 06/18/20 09:20)	
Sample Name:	CCSK - MW-01A				Ur	nits: ug/L		
Lab Code:	R2005213-003				Ba	isis: NA		
		1,4-D	oioxane by GC	C/MS				
Analysis Method:	8270D SIM							
Prep Method:	EPA 3535A							
Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q	
1,4-Dioxane	0.040 U	0.040	0.027	1	06/23/20 14:38	6/22/20		
Surrogate Name			% Rec	Control Limits		v.		
1,4-Dioxane-d8			90	64 - 124	06/23/20	14:38		

		А	nalytical Repor	rt			
Client:	TRC Companies				Service Requ	est: R2005213	
Project:	Cross County Sanitary - Kessi	nan Landfil	1/387570.0000	0.0000	Date Collect	ted: 06/16/20 13:50	
Sample Matrix:	Water				Date Receiv	ved: 06/18/20 09:20	
Sample Name:	CCSK - MW-03A				Un	nits: ug/L	
Lab Code:	R2005213-004				Ba	isis: NA	
		1,4-D	ioxane by GC	C/MS			
Analysis Method:	8270D SIM						
Prep Method:	EPA 3535A						
Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
1,4-Dioxane	0.21	0.040	0.027	1	06/23/20 14:57	6/22/20	
Surrogate Name			% Rec	Control Limits	Date Ana	lyzed Q	
1,4-Dioxane-d8			89	64 - 124	06/23/20	14:57	

		А	nalytical Repor	t						
Client:	TRC Companies				Service Requ	est: R2005213				
Project:	Cross County Sanitary -	Kessman Landfil	1/387570.0000	.0000	Date Collect	ted: 06/16/20 15:35				
Sample Matrix:	Water				Date Receiv	ved: 06/18/20 09:20)			
Sample Name:	CCSK - MW-20B				Ur	nits: ug/L				
Lab Code:	R2005213-005				Ba	isis: NA				
1,4-Dioxane by GC/MS										
Analysis Method:	8270D SIM									
Prep Method:	EPA 3535A									
Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q			
1,4-Dioxane	0.30	0.040	0.027	1	06/23/20 15:15	6/22/20				
Surrogate Name			% Rec	Control Limits		v v				
1,4-Dioxane-d8			84	64 - 124	06/23/20	15:15				

		A	analytical Repor	rt						
Client:	TRC Companies				Service Requ	est: R2005213				
Project:	Cross County Sanitary - Kess	man Landfil	1/387570.0000	0.0000	0 Date Collected: 06/17/20 10:15					
Sample Matrix:	Water				Date Receiv	ved: 06/18/20 09:20)			
Sample Name:	CCSK - MW-20A				Ur	nits: ug/L				
Lab Code:	R2005213-006				Ba	isis: NA				
1,4-Dioxane by GC/MS										
Analysis Method:	8270D SIM									
Prep Method:	EPA 3535A									
Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q			
1,4-Dioxane	0.40	0.040	0.027	1	06/23/20 15:34	6/22/20				
Surrogate Name			% Rec	Control Limits		v v				
1,4-Dioxane-d8			87	64 - 124	06/23/20	15:34				

		А	nalytical Repor	t						
Client:	TRC Companies				Service Requ	est: R2005213				
Project:	Cross County Sanitary -	Kessman Landfil	1/387570.0000	.0000	Date Collect	ted: 06/17/20 12:00				
Sample Matrix:	Water				Date Receiv	ved: 06/18/20 09:20				
Sample Name:	CCSK - MW-05B				Ur	its: ug/L				
Lab Code:	R2005213-007				Ba	sis: NA				
1,4-Dioxane by GC/MS										
Analysis Method:	8270D SIM									
Prep Method:	EPA 3535A									
Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q			
1,4-Dioxane	0.88	0.040	0.027	1	06/23/20 15:52	6/22/20				
Surrogate Name			% Rec	Control Limits	Date Ana	lvzed Q				
1,4-Dioxane-d8			88	64 - 124	06/23/20					

		A	analytical Repor	rt						
Client:	TRC Companies				Service Requ	est: R2005213				
Project:	Cross County Sanitary - Kess	sman Landfil	1/387570.0000	0.0000	D Date Collected: 06/17/20 12:55					
Sample Matrix:	Water				Date Receiv	ved: 06/18/20 09:20				
Sample Name:	CCSK - MW-05A				Un	iits: ug/L				
Lab Code:	R2005213-008				Ba	sis: NA				
1,4-Dioxane by GC/MS										
Analysis Method:	8270D SIM									
Prep Method:	EPA 3535A									
Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q			
1,4-Dioxane	0.42	0.040	0.027	1	06/23/20 16:10	6/22/20				
Surrogate Name			% Rec	Control Limits	Date Ana	lyzed Q				
1,4-Dioxane-d8			88	64 - 124	06/23/20	16:10				

Analytical ReportClient:ALS - ROCHESTERService IProject:R2005213Date CSample Matrix:WaterDate RSample Name:CCSK-MW-03BLab Code:20061912-01

Service Request: 20061912 Date Collected: 06/15/20 14:35 Date Received: 06/23/20 10:00

Organic LC

Analysis Method:	E537 Mod
Prep Method:	E537 Mod

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Fluorotelomer Sulphonic Acid 6:2 (FtS 6:2)	13	4.2	1	07/06/20 17:37	06/30/20 18:56	
Fluorotelomer Sulphonic	ND U	4.2	1	07/06/20 17:37	06/30/20 18:56	
Acid 8:2 (FtS 8:2) Perfluorobutanesulfonic	0.79 J	4.2	1	07/06/20 17:37	06/30/20 18:56	
Acid (PFBS) Perfluorobutanoic Acid	5.3 J+	4.2	1	07/06/20 17:37	06/30/20 18:56	
(PFBA) Perfluorodecanesulfonic	ND U	4.2	1	07/06/20 17:37	06/30/20 18:56	
Acid (PFDS) Perfluorodecanoic Acid	ND U	4.2	1	07/06/20 17:37	06/30/20 18:56	
(PFDA) Perfluorododecanoic Acid	ND U	4.2	1	07/06/20 17:37	06/30/20 18:56	
(PFDoA) Perfluoroheptanesulfonic	ND U	4.2	1	07/06/20 17:37	06/30/20 18:56	
Acid (PFHpS) Perfluoroheptanoic Acid	2.1 J	4.2	1	07/06/20 17:37	06/30/20 18:56	
(PFHpA) Perfluorohexanesulfonic Acid (PFHxS)	-3.1 J - ND/4.2 U	4.2	1	07/06/20 17:37	06/30/20 18:56	
Perfluorohexanoic Acid	3.6 J	4.2	1	07/06/20 17:37	06/30/20 18:56	
(PFHxA)	5.0 0	7.2	1	07/00/20 17:57	00/50/20 10:50	
Perfluorononanoic Acid (PFNA)	ND U	4.2	1	07/06/20 17:37	06/30/20 18:56	
Perfluorooctanesulfonamide (PFOSA)	ND U	4.2	1	07/06/20 17:37	06/30/20 18:56	
Perfluorooctanesulfonic Acid (PFOS)	3.9	1.7	1	07/06/20 17:37	06/30/20 18:56	
Perfluorooctanoic Acid (PFOA)	5.3	1.7	1	07/06/20 17:37	06/30/20 18:56	
Perfluoropentanoic Acid (PFPeA)	2.5 J	4.2	1	07/06/20 17:37	06/30/20 18:56	
Perfluorotetradecanoic Acid (PFTeA)	ND U	4.2	1	07/06/20 17:37	06/30/20 18:56	
Perfluorotridecanoic Acid (PFTriA)	ND U	4.2	1	07/06/20 17:37	06/30/20 18:56	
Perfluoroundecanoic Acid (PFUnA)	ND U	4.2	1	07/06/20 17:37	06/30/20 18:56	
(PFUNA) N- Ethylperfluorooctanesulfon	2.1 J	4.2	1	07/06/20 17:37	06/30/20 18:56	
amidoacetic Acid						

			Analytical Report	rt					
Client:	ALS - ROCHESTER				Se	ervice Req	uest: 2	0061912	
Project:	R2005213				1	Date Colle	cted: 0	6/15/20 14:3	35
Sample Matrix:	Water				1	Date Rece	ived 0	6/23/20 10:0)()
Sample Matrix.	Water						iveu. 0	0/25/20 10.0	
Sample Name:	CCSK-MW-03B					U	nits: n	g/L	
Lab Code:	20061912-01					В	Basis: V	Vet	
			Organic LC						
Analysis Method:	E537 Mod								
Prep Method:	E537 Mod								
I									
Analyte Name	Resul	t	MRL	Dil.	Date Ana	lyzed	Date E	xtracted	Q
N-	NI) U	4.2	1	07/06/20	17:37	06/30/2	20 18:56	
Methylperfluorooctan									
namidoacetic Acid									
Surrogate Name			% Rec	Con	trol Limits	Date An	alvzed	Q	
13C2-FtS 6:2			129		50 - 150	07/06/20		C	
13C2-FtS 8:2			110		50 - 150	07/06/20			
13C2-PFDA			90.5	:	50 - 150	07/06/20			
13C2-PFDoA			92.0	:	50 - 150	07/06/20) 17:37		
13C2-PFHxA			97.7		50 - 150	07/06/20) 17:37		
13C2-PFHxDA			104	:	50 - 150	07/06/20) 17:37		
13C2-PFTeA			85.7		50 - 150	07/06/20			
13C2-PFUnA			99.1		50 - 150	07/06/20			
13C3-HFPO-DA			85.9		50 - 150	07/06/20			
13C3-PFBS			109		50 - 150	07/06/20			
13C4-PFBA			86.4		50 - 150	07/06/20) 17:37		
13C4-PFHpA			109		50 - 150	07/06/20			
13C4-PFOA			106		50 - 150	07/06/20			
13C4-PFOS			87.4		50 - 150	07/06/20			
13C5-PFNA			95.6		50 - 150	07/06/20			
13C5-PFPeA			94.9		50 - 150	07/06/20			
13C8-FOSA			86.6		50 - 150	07/06/20			
18O2-PFHxS			92.2		50 - 150	07/06/20			
d5-N-EtFOSAA			93.3		50 - 150	07/06/20			
d3-N-MeFOSAA			88.8		50 - 150	07/06/20) 17:37		

Analytical Report

Client:	ALS - ROCHESTER	Service Request:	20061912
Project:	R2005213	Date Collected:	06/16/20 10:20
Sample Matrix:	Water	Date Received:	06/23/20 10:00
Sample Name:	CCSK-MW-01B	Units:	ng/L
Lab Code:	20061912-02	Basis:	Wet
		Organic LC	

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	0
				•		Q
Fluorotelomer Sulphonic	10	4.4	1	07/06/20 15:42	06/29/20 19:30	
Acid 6:2 (FtS 6:2) Fluorotelomer Sulphonic	ND U	4.4	1	07/06/20 15:42	06/29/20 19:30	
Acid 8:2 (FtS 8:2)	ND U	4.4	1	07/00/20 15:42	00/29/20 19:30	
Perfluorobutanesulfonic	ND U	4.4	1	07/06/20 15:42	06/29/20 19:30	
Acid (PFBS)	ND 0	4.4	1	07/00/20 13.42	00/29/20 19.30	
Perfluorobutanoic Acid	ND U	4.4	1	07/06/20 15:42	06/29/20 19:30	
(PFBA)	ND 0	4.4	1	07/00/20 13.42	00/29/20 19.30	
Perfluorodecanesulfonic	ND U	4.4	1	07/06/20 15:42	06/29/20 19:30	
Acid (PFDS)	ND 0	7.7	1	07/00/20 13.42	00/2//20 17.50	
Perfluorodecanoic Acid	ND U	4.4	1	07/06/20 15:42	06/29/20 19:30	
(PFDA)			Ĩ	07/00/20 13:12	00/29/20 19:50	
Perfluorododecanoic Acid	ND U	4.4	1	07/06/20 15:42	06/29/20 19:30	
(PFDoA)			Ŧ	07/00/20 10:12	00/29/20 19:50	
Perfluoroheptanesulfonic	ND U	4.4	1	07/06/20 15:42	06/29/20 19:30	
Acid (PFHpS)			_			
Perfluoroheptanoic Acid	0.71 J	4.4	1	07/06/20 15:42	06/29/20 19:30	
(PFHpA)						
Perfluorohexanesulfonic	- 0.50 J - ND/4.4 U	4.4	1	07/06/20 15:42	06/29/20 19:30	
Acid (PFHxS)						
Perfluorohexanoic Acid	ND U	4.4	1	07/06/20 15:42	06/29/20 19:30	
(PFHxA)						
Perfluorononanoic Acid	ND U	4.4	1	07/06/20 15:42	06/29/20 19:30	
(PFNA)						
Perfluorooctanesulfonamide	ND U	4.4	1	07/06/20 15:42	06/29/20 19:30	
(PFOSA)						
Perfluorooctanesulfonic	1.6 J	1.7	1	07/06/20 15:42	06/29/20 19:30	
Acid (PFOS)						
Perfluorooctanoic Acid	2.2	1.7	1	07/06/20 15:42	06/29/20 19:30	
(PFOA)						
Perfluoropentanoic Acid	ND U	4.4	1	07/06/20 15:42	06/29/20 19:30	
(PFPeA)				/ /		
Perfluorotetradecanoic Acid	ND U	4.4	1	07/06/20 15:42	06/29/20 19:30	
(PFTeA)			1	07/06/20 15 40	06/20/20 10 20	
Perfluorotridecanoic Acid	ND U	4.4	1	07/06/20 15:42	06/29/20 19:30	
(PFTriA)		4 4	1	07/06/20 15 40	06/20/20 10 20	
Perfluoroundecanoic Acid	ND U	4.4	1	07/06/20 15:42	06/29/20 19:30	
(PFUnA) N-	ND U	4 4	1	07/06/20 15 42	0(/20/20 10 20	
	ND U	4.4	1	07/06/20 15:42	06/29/20 19:30	
Ethylperfluorooctanesulfon						
amidoacetic Acid						

Analysis Method:

Prep Method:

E537 Mod

E537 Mod

			Analytical Report	•t					
Client:	ALS - ROCHESTER	2			Se	ervice Req	uest: 200	061912	
Project:	R2005213				I	- Date Colle	cted: 06/	16/20 10:2	0
Sample Matrix:	Water							23/20 10:0	
Sample Matrix.	w ater				1	Date Rece	iveu. 00/	23/20 10.0	0
Sample Name:	CCSK-MW-01B					U	nits: ng/	'L	
Lab Code:	20061912-02					В	asis: We	et	
			Organic LC						
Analysis Method:	E537 Mod								
Prep Method:	E537 Mod								
Analyte Name	Res	ult	MRL	Dil.	Date Ana	alyzed	Date Ext	racted	Q
N-	N	ID U	4.4	1	07/06/20	15:42	06/29/20	19:30	
Methylperfluorooctan	nesulfo								
namidoacetic Acid									
Surrogate Name			% Rec	Contr	ol Limits	Date An	alvzed	Q	
Surrogate Name 13C2-FtS 6:2			% Rec 83.3		ol Limits - 150	Date An: 07/06/20		Q	
0				50) 15:42	Q	
13C2-FtS 6:2			83.3	50 50	- 150	07/06/20) 15:42) 15:42	Q	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDA 13C2-PFDoA			83.3 89.1 69.6 67.3	50 50 50	- 150 - 150	07/06/20 07/06/20) 15:42) 15:42) 15:42	Q	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA			83.3 89.1 69.6 67.3 69.3	50 50 50 50 50	- 150 - 150 - 150 - 150 - 150 - 150	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42	Q	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxDA			83.3 89.1 69.6 67.3 69.3 72.8	50 50 50 50 50 50	- 150 - 150 - 150 - 150 - 150 - 150 - 150	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42	Q	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxDA 13C2-PFTeA			83.3 89.1 69.6 67.3 69.3 72.8 53.8	50 50 50 50 50 50 50 50	- 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42	Q	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxDA 13C2-PFTeA 13C2-PFUnA			83.3 89.1 69.6 67.3 69.3 72.8 53.8 72.5	50 50 50 50 50 50 50 50 50	- 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42	Q	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFUnA 13C3-HFPO-DA			83.3 89.1 69.6 67.3 69.3 72.8 53.8 72.5 71.6	50 50 50 50 50 50 50 50 50	- 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42	Q	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFUnA 13C3-HFPO-DA 13C3-PFBS			83.3 89.1 69.6 67.3 69.3 72.8 53.8 72.5 71.6 86.9	50 50 50 50 50 50 50 50 50 50 50	- 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 150	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42	Q	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFUnA 13C3-HFPO-DA 13C3-PFBS 13C4-PFBA			83.3 89.1 69.6 67.3 69.3 72.8 53.8 72.5 71.6 86.9 65.3	50 50 50 50 50 50 50 50 50 50 50	- 150 - 150	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42	Q	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTeA 13C3-HFPO-DA 13C3-PFBS 13C4-PFHpA			83.3 89.1 69.6 67.3 69.3 72.8 53.8 72.5 71.6 86.9 65.3 83.5	50 50 50 50 50 50 50 50 50 50 50 50	- 150 - 150	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42) 15:42	Q	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTeA 13C3-HFPO-DA 13C3-PFBS 13C4-PFBA 13C4-PFDA 13C4-PFDA 13C4-PFDA			83.3 89.1 69.6 67.3 69.3 72.8 53.8 72.5 71.6 86.9 65.3 83.5 74.3	50 50 50 50 50 50 50 50 50 50 50 50	- 150 - 150	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20) 15:42) 15:42	Q	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTeA 13C3-PFBS 13C4-PFBA 13C4-PFDA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C4-PFOA			83.3 89.1 69.6 67.3 69.3 72.8 53.8 72.5 71.6 86.9 65.3 83.5 74.3 64.8	50 50 50 50 50 50 50 50 50 50 50 50 50 5	- 150 - 150	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20) 15:42) 15:42	Q	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTeA 13C3-PFBS 13C4-PFBA 13C4-PFOA 13C4-PFOS 13C4-PFOS 13C5-PFNA			83.3 89.1 69.6 67.3 69.3 72.8 53.8 72.5 71.6 86.9 65.3 83.5 74.3 64.8 67.6	50 50 50 50 50 50 50 50 50 50 50 50 50 5	- 150 - 150	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20) 15:42) 15:42	Q	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxDA 13C2-PFTeA 13C2-PFTeA 13C3-PFBS 13C4-PFBA 13C4-PFOA 13C4-PFOS 13C5-PFNA 13C5-PFPeA			83.3 89.1 69.6 67.3 69.3 72.8 53.8 72.5 71.6 86.9 65.3 83.5 74.3 64.8 67.6 75.5	50 50 50 50 50 50 50 50 50 50 50 50 50 5	- 150 - 150	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20) 15:42) 15:42	Q	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTeA 13C3-PFBS 13C4-PFBA 13C4-PFOA 13C4-PFOS 13C5-PFNA 13C5-PFPeA 13C8-FOSA			83.3 89.1 69.6 67.3 69.3 72.8 53.8 72.5 71.6 86.9 65.3 83.5 74.3 64.8 67.6 75.5 73.8	50 50 50 50 50 50 50 50 50 50 50 50 50 5	- 150 - 150	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20) 15:42) 15:42	Q	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTeA 13C2-PFUnA 13C3-PFBS 13C4-PFBA 13C4-PFOA 13C5-PFNA 13C5-PFPeA 13C8-FOSA 18O2-PFHxS			83.3 89.1 69.6 67.3 69.3 72.8 53.8 72.5 71.6 86.9 65.3 83.5 74.3 64.8 67.6 75.5 73.8 64.3	$ \begin{array}{r} 50 \\$	- 150 - 150	07/06/20 07/06/) 15:42) 15:42	Q	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTeA 13C3-PFBS 13C4-PFBA 13C4-PFOA 13C4-PFOS 13C5-PFNA 13C5-PFPeA 13C8-FOSA			83.3 89.1 69.6 67.3 69.3 72.8 53.8 72.5 71.6 86.9 65.3 83.5 74.3 64.8 67.6 75.5 73.8	$ \begin{array}{r} 50 \\$	- 150 - 150	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20) 15:42) 15:42	Q	

Analytical Report

Client:	ALS - ROCHESTER		Service Request:	20061912
Project:	R2005213		Date Collected:	06/16/20 12:50
Sample Matrix:	Water		Date Received:	06/23/20 10:00
Sample Name:	CCSK-MW-01A		Units:	ng/L
Lab Code:	20061912-03		Basis:	Wet
		Organic LC		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Fluorotelomer Sulphonic Acid 6:2 (FtS 6:2)	570 J	4.4	1	07/06/20 15:53	06/29/20 19:30	
Fluorotelomer Sulphonic Acid 8:2 (FtS 8:2)	1.5 J	4.4	1	07/06/20 15:53	06/29/20 19:30	
Perfluorobutanesulfonic Acid (PFBS)	ND U	4.4	1	07/06/20 15:53	06/29/20 19:30	
Perfluorobutanoic Acid (PFBA)	ND U	4.4	1	07/06/20 15:53	06/29/20 19:30	
Perfluorodecanesulfonic Acid (PFDS)	ND U	4.4	1	07/06/20 15:53	06/29/20 19:30	
Perfluorodecanoic Acid (PFDA)	ND U	4.4	1	07/06/20 15:53	06/29/20 19:30	
Perfluorododecanoic Acid (PFDoA)	ND U	4.4	1	07/06/20 15:53	06/29/20 19:30	
Perfluoroheptanesulfonic Acid (PFHpS)	ND U	4.4	1	07/06/20 15:53	06/29/20 19:30	
Perfluoroheptanoic Acid (PFHpA)	0.60 J	4.4	1	07/06/20 15:53	06/29/20 19:30	
Perfluorohexanesulfonic Acid (PFHxS)	- 0.87 J ND/4.4 U	4.4	1	07/06/20 15:53	06/29/20 19:30	
Perfluorohexanoic Acid	1.3 J	4.4	1	07/06/20 15:53	06/29/20 19:30	
(PFHxA) Perfluorononanoic Acid	ND U	4.4	1	07/06/20 15:53	06/29/20 19:30	
(PFNA) Perfluorooctanesulfonamide	ND U	4.4	1	07/06/20 15:53	06/29/20 19:30	
(PFOSA)			1			
Perfluorooctanesulfonic Acid (PFOS)	0.83 J	1.8	1	07/06/20 15:53	06/29/20 19:30	
Perfluorooctanoic Acid (PFOA)	1.8 J	1.8	1	07/06/20 15:53	06/29/20 19:30	
Perfluoropentanoic Acid (PFPeA)	1.2 J	4.4	1	07/06/20 15:53	06/29/20 19:30	
Perfluorotetradecanoic Acid (PFTeA)	ND U	4.4	1	07/06/20 15:53	06/29/20 19:30	
Perfluorotridecanoic Acid (PFTriA)	ND U	4.4	1	07/06/20 15:53	06/29/20 19:30	
Perfluoroundecanoic Acid (PFUnA)	ND U	4.4	1	07/06/20 15:53	06/29/20 19:30	
N- Ethylperfluorooctanesulfon amidoacetic Acid	ND U	4.4	1	07/06/20 15:53	06/29/20 19:30	

Analysis Method:

Prep Method:

E537 Mod

E537 Mod

			Analytical Repo	rt					
Client:	ALS - ROCI	HESTER			S	ervice Re	equest:	20061912	
Project:	R2005213					Date Coll	lected:	06/16/20 12:5	0
Sample Matrix:	Water							06/23/20 10:0	
Sample Name:	CCSK-MW-	01A					Units:	ng/L	
Lab Code:	20061912-03	3					Basis:	Wet	
			Organic LC						
			orgunit Le						
Analysis Method:	E537 Mod								
Prep Method:	E537 Mod								
Analyte Name		Result	MRL	Dil.	Date An	alvzed	Date	Extracted	Q
N-		ND U	4.4	1	07/06/20	v	06/29	9/20 19:30	
Methylperfluoroocta	nesulfo								
namidoacetic Acid									
Surrogate Name			% Rec	Cont	rol Limits	Date A	nalyzeo	ı Q	
13C2-FtS 6:2			101	5	0 - 150	07/06/2	20 15:53	3	
13C2-FtS 8:2			88.8		0 - 150		20 15:53		
13C2-PFDA			64.5		0 - 150		20 15:53		
13C2-PFDoA			64.7		0 - 150		20 15:53		
13C2-PFHxA			64.2	5	0 - 150	07/06/2	20 15:53	3	

13C2-PFDoA	64.7	50 - 150	07/06/20 15:53	
13C2-PFHxA	64.2	50 - 150	07/06/20 15:53	
13C2-PFHxDA	67.4	50 - 150	07/06/20 15:53	
13C2-PFTeA	68.0	50 - 150	07/06/20 15:53	
13C2-PFUnA	67.5	50 - 150	07/06/20 15:53	
13C3-HFPO-DA	60.0	50 - 150	07/06/20 15:53	
13C3-PFBS	77.4	50 - 150	07/06/20 15:53	
13C4-PFBA	60.3	50 - 150	07/06/20 15:53	
13C4-PFHpA	80.5	50 - 150	07/06/20 15:53	
13C4-PFOA	68.5	50 - 150	07/06/20 15:53	
13C4-PFOS	60.4	50 - 150	07/06/20 15:53	
13C5-PFNA	67.5	50 - 150	07/06/20 15:53	
13C5-PFPeA	67.1	50 - 150	07/06/20 15:53	
13C8-FOSA	63.8	50 - 150	07/06/20 15:53	
18O2-PFHxS	62.3	50 - 150	07/06/20 15:53	
d5-N-EtFOSAA	72.2	50 - 150	07/06/20 15:53	
d3-N-MeFOSAA	69.8	50 - 150	07/06/20 15:53	

Analytical Report

Client:	ALS - ROCHESTER		Service Request:	20061912
Project:	R2005213		Date Collected:	06/16/20 13:50
Sample Matrix:	Water		Date Received:	06/23/20 10:00
Sample Name:	CCSK-MW-03A		Units:	ng/L
Lab Code:	20061912-04		Basis:	Wet
		Organic LC		

Prep Method: E537 Mod

E537 Mod

Analysis Method:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Fluorotelomer Sulphonic Acid 6:2 (FtS 6:2)	0.64 J	4.3	1	07/06/20 16:03	06/29/20 19:30	
Fluorotelomer Sulphonic Acid 8:2 (FtS 8:2)	ND U	4.3	1	07/06/20 16:03	06/29/20 19:30	
Perfluorobutanesulfonic	0.62 J	4.3	1	07/06/20 16:03	06/29/20 19:30	
Acid (PFBS) Perfluorobutanoic Acid	8.6	4.3	1	07/06/20 16:03	06/29/20 19:30	
(PFBA) Perfluorodecanesulfonic Acid (PFDS)	ND U	4.3	1	07/06/20 16:03	06/29/20 19:30	
Perfluorodecanoic Acid (PFDA)	ND U	4.3	1	07/06/20 16:03	06/29/20 19:30	
Perfluorododecanoic Acid	ND U	4.3	1	07/06/20 16:03	06/29/20 19:30	
(PFDoA) Perfluoroheptanesulfonic Acid (PFHpS)	ND U	4.3	1	07/06/20 16:03	06/29/20 19:30	
Perfluoroheptanoic Acid	1.6 J	4.3	1	07/06/20 16:03	06/29/20 19:30	
(PFHpA) Perfluorohexanesulfonic Acid (PFHxS)	- 1.8J ND/4.3 U	4.3	1	07/06/20 16:03	06/29/20 19:30	
Perfluorohexanoic Acid (PFHxA)	5.3	4.3	1	07/06/20 16:03	06/29/20 19:30	
Perfluorononanoic Acid (PFNA)	ND U	4.3	1	07/06/20 16:03	06/29/20 19:30	
Perfluorooctanesulfonamide (PFOSA)	ND U	4.3	1	07/06/20 16:03	06/29/20 19:30	
Perfluorooctanesulfonic Acid (PFOS)	ND U	1.7	1	07/06/20 16:03	06/29/20 19:30	
Perfluorooctanoic Acid (PFOA)	1.8	1.7	1	07/06/20 16:03	06/29/20 19:30	
Perfluoropentanoic Acid (PFPeA)	3.9 J	4.3	1	07/06/20 16:03	06/29/20 19:30	
Perfluorotetradecanoic Acid (PFTeA)	ND U	4.3	1	07/06/20 16:03	06/29/20 19:30	
Perfluorotridecanoic Acid (PFTriA)	ND U	4.3	1	07/06/20 16:03	06/29/20 19:30	
Perfluoroundecanoic Acid	ND U	4.3	1	07/06/20 16:03	06/29/20 19:30	
(PFUnA) N-	ND U	4.3	1	07/06/20 16:03	06/29/20 19:30	
Ethylperfluorooctanesulfon amidoacetic Acid						

			Analytical Repo	rt					
Client:	ALS - ROCHES	ΓER			Se	rvice Requ	uest: 2006191	2	
Project:	R2005213				Т	- Date Collec	eted: 06/16/20	13:50	
Sample Matrix:	Water						ved: 06/23/20		
Sample Matrix.	vv ater						veu. 00/25/20	10.00	
Sample Name:	CCSK-MW-03A					U	nits: ng/L		
Lab Code:	20061912-04					В	asis: Wet		
			Organic LC						
Analysis Method:	E537 Mod								
Prep Method:	E537 Mod								
Analyte Name	1	Result	MRL	Dil.	Date Ana	lyzed	Date Extracted	d Ç	2
N-		ND U	4.3	1	07/06/20	16:03	06/29/20 19:30)	
Methylperfluorooctar	nesulfo								
namidoacetic Acid									
Surrogate Name			% Rec	Conti	rol Limits	Date Ana	alvzed Q		
Surrogate Name 13C2-FtS 6:2			% Rec 70.0		rol Limits 0 - 150	Date Ana 07/06/20	<u>j = • •</u>		
				50			16:03		
13C2-FtS 6:2			70.0	5(5(0 - 150	07/06/20	16:03 16:03		
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA			70.0 65.6 58.0 54.9	5(5(5(0 - 150 0 - 150	07/06/20 07/06/20	16:03 16:03 16:03		
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA			70.0 65.6 58.0 54.9 65.7	5(5(5(5(5(0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20	16:03 16:03 16:03 16:03 16:03 16:03	1	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA			70.0 65.6 58.0 54.9 65.7 54.7	50 50 50 50 50 50	0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20	16:03 16:03 16:03 16:03 16:03 16:03 16:03	<u>.</u>	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA			70.0 65.6 58.0 54.9 65.7 54.7 52.0	50 50 50 50 50 50	0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20	16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03	<u>.</u>	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxDA 13C2-PFTeA 13C2-PFUnA			70.0 65.6 58.0 54.9 65.7 54.7 52.0 60.3	5(5(5(5(5(5(5(5(0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20	16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03	<u>.</u>	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxDA 13C2-PFTeA 13C2-PFTuAA 13C2-PFTeA 13C2-PFUnA 13C3-HFPO-DA			70.0 65.6 58.0 54.9 65.7 54.7 52.0 60.3 66.8	50 50 50 50 50 50 50 50 50 50 50	$\begin{array}{c} 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \end{array}$	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20	16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03	<u>.</u>	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTuA 13C3-PFTuA 13C3-PFBS			70.0 65.6 58.0 54.9 65.7 54.7 52.0 60.3 66.8 80.2	50 50 50 50 50 50 50 50 50 50 50 50	$\begin{array}{c} 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \end{array}$	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20	16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03		
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTeA 13C2-PFUnA 13C3-HFPO-DA 13C3-PFBS 13C4-PFBA			70.0 65.6 58.0 54.9 65.7 54.7 52.0 60.3 66.8 80.2 60.7	50 50 50 50 50 50 50 50 50 50 50 50	$\begin{array}{c} 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \end{array}$	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20	16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03	<u>.</u>	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTeA 13C3-PFBS 13C4-PFBA 13C4-PFHpA			70.0 65.6 58.0 54.9 65.7 54.7 52.0 60.3 66.8 80.2 60.7 75.9	50 50 50 50 50 50 50 50 50 50 50 50 50 5	$\begin{array}{c} 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \end{array}$	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20	16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03 16:03	<u>.</u>	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTeA 13C3-PFDo-DA 13C3-PFBS 13C4-PFHpA 13C4-PFOA 13C4-PFDA			70.0 65.6 58.0 54.9 65.7 54.7 52.0 60.3 66.8 80.2 60.7 75.9 69.8	50 50 50 50 50 50 50 50 50 50 50 50 50 5	$\begin{array}{c} 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \end{array}$	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20	16:03 16:03	<u>.</u>	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTeA 13C3-PFBS 13C4-PFBA 13C4-PFHpA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C4-PFOA			$\begin{array}{c} 70.0\\ 65.6\\ 58.0\\ 54.9\\ 65.7\\ 54.7\\ 52.0\\ 60.3\\ 66.8\\ 80.2\\ 60.7\\ 75.9\\ 69.8\\ 57.0\\ \end{array}$	50 50 50 50 50 50 50 50 50 50 50 50 50 5	$\begin{array}{c} 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \end{array}$	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20	16:03 16:03	<u>.</u>	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTeA 13C3-PFBS 13C3-PFBA 13C4-PFHpA 13C4-PFOS 13C5-PFNA			$\begin{array}{c} 70.0\\ 65.6\\ 58.0\\ 54.9\\ 65.7\\ 54.7\\ 52.0\\ 60.3\\ 66.8\\ 80.2\\ \hline 60.7\\ 75.9\\ 69.8\\ 57.0\\ 61.4\end{array}$	50 50 50 50 50 50 50 50 50 50 50 50 50 5	$\begin{array}{c} 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \end{array}$	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20	$\begin{array}{c} 16:03 \\ 10:03 \\$	<u>.</u>	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTeA 13C3-PFBS 13C3-PFBS 13C4-PFBA 13C4-PFOA 13C4-PFOS 13C5-PFNA 13C5-PFPeA			70.0 65.6 58.0 54.9 65.7 54.7 52.0 60.3 66.8 80.2 60.7 75.9 69.8 57.0 61.4 68.7	50 50 50 50 50 50 50 50 50 50 50 50 50 5	$\begin{array}{c} 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \end{array}$	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20	$\begin{array}{c} 16:03 \\ 10:03 \\$	<u>.</u>	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTeA 13C3-PFBS 13C4-PFBA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C5-PFNA 13C5-PFPeA 13C8-FOSA			$\begin{array}{c} 70.0\\ 65.6\\ 58.0\\ 54.9\\ 65.7\\ 54.7\\ 52.0\\ 60.3\\ 66.8\\ 80.2\\ \hline 60.7\\ 75.9\\ 69.8\\ 57.0\\ 61.4\\ \hline 68.7\\ 62.9\\ \end{array}$	50 50 50 50 50 50 50 50 50 50 50 50 50 5	$\begin{array}{c} 0 - 150 \\ 0 - 150 \end{array}$	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20	$\begin{array}{c} 16:03 \\ 10:03 \\$	<u>.</u>	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTeA 13C2-PFTeA 13C3-PFBS 13C4-PFBA 13C4-PFOA 13C5-PFNA 13C5-PFPeA 13C8-FOSA 18O2-PFHxS			$\begin{array}{c} 70.0\\ 65.6\\ 58.0\\ 54.9\\ 65.7\\ 54.7\\ 52.0\\ 60.3\\ 66.8\\ 80.2\\ \hline 60.7\\ 75.9\\ 69.8\\ 57.0\\ 61.4\\ \hline 68.7\\ 62.9\\ 61.7\\ \end{array}$	50 50 50 50 50 50 50 50 50 50 50 50 50 5	$\begin{array}{c} 0 - 150 \\ 0 - 150 \end{array}$	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20	$\begin{array}{c} 16:03 \\ 10:03 \\$	<u>.</u>	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTeA 13C3-PFBS 13C4-PFBA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C5-PFNA 13C5-PFPeA 13C8-FOSA			$\begin{array}{c} 70.0\\ 65.6\\ 58.0\\ 54.9\\ 65.7\\ 54.7\\ 52.0\\ 60.3\\ 66.8\\ 80.2\\ \hline 60.7\\ 75.9\\ 69.8\\ 57.0\\ 61.4\\ \hline 68.7\\ 62.9\\ \end{array}$	50 50 50 50 50 50 50 50 50 50 50 50 50 5	$\begin{array}{c} 0 - 150 \\ 0 - 150 \end{array}$	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20	$\begin{array}{c} 16:03 \\ 10:03 \\$	<u>.</u>	

Analytical Report **Client:** ALS - ROCHESTER **Project:** R2005213 Sample Matrix: Water Sample Name: CCSK-MW-20B Lab Code: 20061912-05

Organic LC

Analysis Method:	E537 Mod
Prep Method:	E537 Mod

Service Request:	20061912
Date Collected:	06/16/20 15:35
Date Received:	06/23/20 10:00

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Fluorotelomer Sulphonic Acid 6:2 (FtS 6:2)	1.7 J	4.4	1	07/06/20 16:14	06/29/20 19:30	
Fluorotelomer Sulphonic Acid 8:2 (FtS 8:2)	ND U	4.4	1	07/06/20 16:14	06/29/20 19:30	
Perfluorobutanesulfonic Acid (PFBS)	1.6 J	4.4	1	07/06/20 16:14	06/29/20 19:30	
Perfluorobutanoic Acid (PFBA)	6.6	4.4	1	07/06/20 16:14	06/29/20 19:30	
Perfluorodecanesulfonic Acid (PFDS)	ND U	4.4	1	07/06/20 16:14	06/29/20 19:30	
Perfluorodecanoic Acid (PFDA)	ND U	4.4	1	07/06/20 16:14	06/29/20 19:30	
Perfluorododecanoic Acid (PFDoA)	ND U	4.4	1	07/06/20 16:14	06/29/20 19:30	
Perfluoroheptanesulfonic Acid (PFHpS)	0.74 J	4.4	1	07/06/20 16:14	06/29/20 19:30	
Perfluoroheptanoic Acid (PFHpA)	4.4 J	4.4	1	07/06/20 16:14	06/29/20 19:30	
Perfluorohexanesulfonic Acid (PFHxS)	5.8	4.4	1	07/06/20 16:14	06/29/20 19:30	
Perfluorohexanoic Acid	6.2	4.4	1	07/06/20 16:14	06/29/20 19:30	
(PFHxA)			-	0770072010111	00,2,,20 1,00	
Perfluorononanoic Acid (PFNA)	2.0 J	4.4	1	07/06/20 16:14	06/29/20 19:30	
Perfluorooctanesulfonamide (PFOSA)	ND U	4.4	1	07/06/20 16:14	06/29/20 19:30	
Perfluorooctanesulfonic Acid (PFOS)	54	1.7	1	07/06/20 16:14	06/29/20 19:30	
Perfluorooctanoic Acid (PFOA)	24	1.7	1	07/06/20 16:14	06/29/20 19:30	
Perfluoropentanoic Acid (PFPeA)	4.3 J	4.4	1	07/06/20 16:14	06/29/20 19:30	
Perfluorotetradecanoic Acid (PFTeA)	ND U	4.4	1	07/06/20 16:14	06/29/20 19:30	
Perfluorotridecanoic Acid (PFTriA)	ND U	4.4	1	07/06/20 16:14	06/29/20 19:30	
Perfluoroundecanoic Acid (PFUnA)	ND U	4.4	1	07/06/20 16:14	06/29/20 19:30	
N- Ethylperfluorooctanesulfon	ND U	4.4	1	07/06/20 16:14	06/29/20 19:30	
amidoacetic Acid						

			Analytical Repor	t				
Client:	ALS - ROCHESTE	R			Service	Request:	20061912	
Project:	R2005213				Date C	Collected:	06/16/20 15:35	
Sample Matrix:	Water						06/23/20 10:00	
Sample Matrix.	vv ater				Date	Accelveu.	00/25/20 10:00	
Sample Name:	CCSK-MW-20B					Units:	ng/L	
Lab Code:	20061912-05					Basis:	-	
Lab Coue.	20001912-03					Dasis.	wet	
			Organic LC					
Analysis Method:	E537 Mod							
Prep Method:	E537 Mod							
. I								
Analyte Name	Re	sult	MRL	Dil.	Date Analyzed	Date	Extracted	Q
N-		ND U	4.4	1	07/06/20 16:14	06/29	9/20 19:30	
Methylperfluoroocta namidoacetic Acid								
Surrogate Name			% Rec	Control	Limits Dat	e Analyze	d Q	
13C2-FtS 6:2			124	<u>50 -</u>		6/20 16:1-		
13C2-FtS 8:2			77.5	50 -)6/20 16:14		
13C2-PFDA			62.8	50 -		6/20 16:14		
13C2-PFDoA			59.9	50 -		06/20 16:14		
12C2 DEU _V A			68.2	50		6/20 16.1		

15C2-11DA	02.0	50 - 150	07/00/20 10.14	
13C2-PFDoA	59.9	50 - 150	07/06/20 16:14	
13C2-PFHxA	68.3	50 - 150	07/06/20 16:14	
13C2-PFHxDA	66.1	50 - 150	07/06/20 16:14	
13C2-PFTeA	50.7	50 - 150	07/06/20 16:14	
13C2-PFUnA	66.2	50 - 150	07/06/20 16:14	
13C3-HFPO-DA	65.1	50 - 150	07/06/20 16:14	
13C3-PFBS	75.2	50 - 150	07/06/20 16:14	
13C4-PFBA	64.5	50 - 150	07/06/20 16:14	
13C4-PFHpA	78.9	50 - 150	07/06/20 16:14	
13C4-PFOA	72.0	50 - 150	07/06/20 16:14	
13C4-PFOS	58.9	50 - 150	07/06/20 16:14	
13C5-PFNA	67.5	50 - 150	07/06/20 16:14	
13C5-PFPeA	68.2	50 - 150	07/06/20 16:14	
13C8-FOSA	57.5	50 - 150	07/06/20 16:14	
18O2-PFHxS	61.4	50 - 150	07/06/20 16:14	
d5-N-EtFOSAA	59.6	50 - 150	07/06/20 16:14	
d3-N-MeFOSAA	63.5	50 - 150	07/06/20 16:14	

Analytical Report

Client:	ALS - ROCHESTER	Service Request:	20061912
Project:	R2005213	Date Collected:	06/17/20 10:15
Sample Matrix:	Water	Date Received:	06/23/20 10:00
Sample Name:	CCSK-MW-20A	Units:	ng/L
Lab Code:	20061912-06	Basis:	Wet
		Organic LC	

Analysis Method:	E537 Mod
Prep Method:	E537 Mod

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Fluorotelomer Sulphonic Acid 6:2 (FtS 6:2)	0.61 J	4.3	1	07/06/20 16:24	06/29/20 19:30	
Fluorotelomer Sulphonic	ND U	4.3	1	07/06/20 16:24	06/29/20 19:30	
Acid 8:2 (FtS 8:2)						
Perfluorobutanesulfonic	1.6 J	4.3	1	07/06/20 16:24	06/29/20 19:30	
Acid (PFBS)						
Perfluorobutanoic Acid	8.2	4.3	1	07/06/20 16:24	06/29/20 19:30	
(PFBA)						
Perfluorodecanesulfonic	ND U	4.3	1	07/06/20 16:24	06/29/20 19:30	
Acid (PFDS)						
Perfluorodecanoic Acid	ND U	4.3	1	07/06/20 16:24	06/29/20 19:30	
(PFDA)						
Perfluorododecanoic Acid	ND U	4.3	1	07/06/20 16:24	06/29/20 19:30	
(PFDoA)						
Perfluoroheptanesulfonic	0.77 J	4.3	1	07/06/20 16:24	06/29/20 19:30	
Acid (PFHpS)						
Perfluoroheptanoic Acid	4.8	4.3	1	07/06/20 16:24	06/29/20 19:30	
(PFHpA)						
Perfluorohexanesulfonic	7.1	4.3	1	07/06/20 16:24	06/29/20 19:30	
Acid (PFHxS)						
Perfluorohexanoic Acid	7.8	4.3	1	07/06/20 16:24	06/29/20 19:30	
(PFHxA)		4.0				
Perfluorononanoic Acid	2.4 J	4.3	1	07/06/20 16:24	06/29/20 19:30	
(PFNA)		4.0			0.6/00/00 10 00	
Perfluorooctanesulfonamide	ND U	4.3	1	07/06/20 16:24	06/29/20 19:30	
(PFOSA)		1.5			0.6/00/00 10 00	
Perfluorooctanesulfonic	45	1.7	1	07/06/20 16:24	06/29/20 19:30	
Acid (PFOS)	25	1.7	1	07/06/00 16 04	06/00/00 10 20	
Perfluorooctanoic Acid	27	1.7	1	07/06/20 16:24	06/29/20 19:30	
(PFOA)	1.2	4.2	1	07/06/00 16 04	06/20/20 10 20	
Perfluoropentanoic Acid	4.3	4.3	1	07/06/20 16:24	06/29/20 19:30	
(PFPeA)		4.2	1	07/06/00 16 04	06/00/00 10 20	
Perfluorotetradecanoic Acid	ND UJ	4.3	1	07/06/20 16:24	06/29/20 19:30	
(PFTeA)	NID II-	4.2	1	07/06/00 16 04	06/20/20 10 20	
Perfluorotridecanoic Acid	ND UJ	4.3	1	07/06/20 16:24	06/29/20 19:30	
(PFTriA)	NID II	4.2	1	07/06/00 16 04	06/20/20 10 20	
Perfluoroundecanoic Acid	ND U	4.3	1	07/06/20 16:24	06/29/20 19:30	
(PFUnA)		4.0	1	07/06/00 16:04	06/20/20 10 20	
N-	ND U	4.3	1	07/06/20 16:24	06/29/20 19:30	
Ethylperfluorooctanesulfon						
amidoacetic Acid						

			Analytical Repo	rt					
Client:	ALS - ROCHESTE	ER			S	ervice Req	uest: 2	0061912	
Project:	R2005213					Date Colle		6/17/20 10:	15
0	Water						eeeur	6/23/20 10:	
Sample Matrix:	water					Date Rece	iveu: 0	0/25/20 10:	00
Sample Name:	CCSK-MW-20A					U	nits: n	ig/L	
Lab Code:	20061912-06					B	Basis: V	Vet	
			Organic LC						
Analysis Method:	E537 Mod								
Prep Method:	E537 Mod								
-									
Analyte Name	Re	esult	MRL	Dil.	Date Ana	alyzed	Date E	xtracted	Q
N-		ND U	4.3	1	07/06/20	,	06/29/2	20 19:30	
Methylperfluoroocta									
namidoacetic Acid									
Surrogate Name			% Rec	Canto		Data Am	له مسط	0	
Surrogate Name			% Rec		rol Limits	Date An		Q	
13C2-FtS 6:2			119	5(0 - 150	07/06/20) 16:24	Q	
13C2-FtS 6:2 13C2-FtS 8:2			119 75.9	5(5(0 - 150 0 - 150	07/06/20 07/06/20) 16:24) 16:24	Q	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA			119 75.9 58.1	5(5(5(0 - 150 0 - 150 0 - 150	07/06/20 07/06/20 07/06/20) 16:24) 16:24) 16:24	Q	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA			119 75.9 58.1 56.7	5(5(5(5(0 - 150 0 - 150 0 - 150 0 - 150 0 - 150	07/06/20 07/06/20 07/06/20 07/06/20) 16:24) 16:24) 16:24) 16:24) 16:24	Q	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA			119 75.9 58.1 56.7 62.4	5(5(5(5(5(0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24	Q	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxDA			119 75.9 58.1 56.7 62.4 65.1	5(5(5(5(5(5(5(0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24		
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFHxDA 13C2-PFTeA			119 75.9 58.1 56.7 62.4 65.1 49.7	5(5(5(5(5(5(5(5(0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24	Q	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxDA 13C2-PFHxDA 13C2-PFTeA 13C2-PFUnA			119 75.9 58.1 56.7 62.4 65.1 49.7 63.3	50 50 50 50 50 50 50 50 50 50	0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24		
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxAA 13C2-PFHxDA 13C2-PFTeA 13C2-PFTuAA 13C2-PFTeA 13C2-PFTuAA			119 75.9 58.1 56.7 62.4 65.1 49.7 63.3 61.1	50 50 50 50 50 50 50 50 50 50 50	0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24		
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxDA 13C2-PFHxDA 13C2-PFTeA 13C2-PFUnA			119 75.9 58.1 56.7 62.4 65.1 49.7 63.3	50 50 50 50 50 50 50 50 50 50 50 50	0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24		
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTeA 13C3-HFPO-DA 13C3-PFBS 13C4-PFBA			119 75.9 58.1 56.7 62.4 65.1 49.7 63.3 61.1 71.6	50 50 50 50 50 50 50 50 50 50 50 50 50	0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150 0 - 150	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24		
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTuA 13C3-PFDO-DA 13C3-PFBS			119 75.9 58.1 56.7 62.4 65.1 49.7 63.3 61.1 71.6 56.2 74.5	50 50 50 50 50 50 50 50 50 50 50 50 50 5	$\begin{array}{c} 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \end{array}$	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24		
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTeA 13C3-PFBS 13C4-PFBA 13C4-PFHpA 13C4-PFOA			$ \begin{array}{r} 119\\ 75.9\\ 58.1\\ 56.7\\ 62.4\\ 65.1\\ 49.7\\ 63.3\\ 61.1\\ 71.6\\ 56.2\\ 74.5\\ 64.8\\ \end{array} $	50 50 50 50 50 50 50 50 50 50 50 50 50 5	$\begin{array}{c} 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \end{array}$	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24		
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTeA 13C3-PFBS 13C4-PFBA 13C4-PFFOA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C4-PFOA			119 75.9 58.1 56.7 62.4 65.1 49.7 63.3 61.1 71.6 56.2 74.5	50 50 50 50 50 50 50 50 50 50 50 50 50 5	$\begin{array}{c} 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \end{array}$	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24		
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTeA 13C3-PFBS 13C4-PFBA 13C4-PFHpA 13C4-PFOA			$ \begin{array}{r} 119\\ 75.9\\ 58.1\\ 56.7\\ 62.4\\ 65.1\\ 49.7\\ 63.3\\ 61.1\\ 71.6\\ 56.2\\ 74.5\\ 64.8\\ 54.1\\ \end{array} $	50 50 50 50 50 50 50 50 50 50 50 50 50 5	$\begin{array}{c} 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \end{array}$	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24		
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTeA 13C3-PFBS 13C4-PFBA 13C4-PFOA 13C4-PFOS 13C5-PFNA			$ \begin{array}{r} 119\\ 75.9\\ 58.1\\ 56.7\\ 62.4\\ 65.1\\ 49.7\\ 63.3\\ 61.1\\ 71.6\\ 56.2\\ 74.5\\ 64.8\\ 54.1\\ 60.5\\ \end{array} $	50 50 50 50 50 50 50 50 50 50 50 50 50 5	$\begin{array}{c} 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \\ 0 - 150 \end{array}$	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24		
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTeA 13C2-PFTeA 13C3-PFBS 13C4-PFBA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C5-PFNA 13C5-PFPeA			$ \begin{array}{r} 119\\ 75.9\\ 58.1\\ 56.7\\ 62.4\\ 65.1\\ 49.7\\ 63.3\\ 61.1\\ 71.6\\ 56.2\\ 74.5\\ 64.8\\ 54.1\\ 60.5\\ 65.1\\ \end{array} $	50 50 50 50 50 50 50 50 50 50 50 50 50 5	$\begin{array}{c} 0 - 150 \\ 0 - 150 \end{array}$	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24		
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTeA 13C2-PFTeA 13C3-PFBS 13C4-PFBA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C5-PFNA 13C5-PFPeA 13C8-FOSA			$ \begin{array}{r} 119\\ 75.9\\ 58.1\\ 56.7\\ 62.4\\ 65.1\\ 49.7\\ 63.3\\ 61.1\\ 71.6\\ 56.2\\ 74.5\\ 64.8\\ 54.1\\ 60.5\\ 65.1\\ 53.5\\ \end{array} $	50 50 50 50 50 50 50 50 50 50 50 50 50 5	$\begin{array}{c} 0 - 150 \\ 0 - 150 \end{array}$	07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20 07/06/20) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24) 16:24		

Analytical Report

Client:	ALS - ROCHESTER	Service Request:	20061912
Project:	R2005213	Date Collected:	06/17/20 12:00
Sample Matrix:	Water	Date Received:	06/23/20 10:00
Sample Name:	CCSK-MW-05B	Units:	ng/L
Lab Code:	20061912-07	Basis:	Wet
		Organic LC	

Analysis Methou: E357 Wood	L					
Prep Method: E537 Mod	l					
Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Fluorotelomer Sulphonic	1.6 J	4.4	1	07/06/20 16:35	06/29/20 19:30	
Acid 6:2 (FtS 6:2)						
Fluorotelomer Sulphonic	ND U	4.4	1	07/06/20 16:35	06/29/20 19:30	
Acid 8:2 (FtS 8:2)	4.0.7				06/00/00 10 00	
Perfluorobutanesulfonic	1.9 J	4.4	1	07/06/20 16:35	06/29/20 19:30	
Acid (PFBS) Perfluorobutanoic Acid	12	4.4	1	07/06/20 16:35	06/29/20 19:30	
(PFBA)	12	4.4	1	07/00/20 10.33	00/29/20 19:30	
Perfluorodecanesulfonic	ND U	4.4	1	07/06/20 16:35	06/29/20 19:30	
Acid (PFDS)	112 0		-	07/00/2010/000	00,2,120 1,100	
Perfluorodecanoic Acid	ND U	4.4	1	07/06/20 16:35	06/29/20 19:30	
(PFDA)						
Perfluorododecanoic Acid	ND U	4.4	1	07/06/20 16:35	06/29/20 19:30	
(PFDoA)						
Perfluoroheptanesulfonic	2.6 J	4.4	1	07/06/20 16:35	06/29/20 19:30	
Acid (PFHpS) Perfluoroheptanoic Acid	9.6	4.4	1	07/06/20 16:35	06/29/20 19:30	
(PFHpA)	9.0	4.4	1	07/00/20 10:55	00/29/20 19:50	
Perfluorohexanesulfonic	6.9	4.4	1	07/06/20 16:35	06/29/20 19:30	
Acid (PFHxS)	0.07	1	Ĩ	07100120 10.00	00/29/20 19:50	
Perfluorohexanoic Acid	12	4.4	1	07/06/20 16:35	06/29/20 19:30	
(PFHxA)						
Perfluorononanoic Acid	21	4.4	1	07/06/20 16:35	06/29/20 19:30	
(PFNA)					06/00/00 10 00	
Perfluorooctanesulfonamide	ND U	4.4	1	07/06/20 16:35	06/29/20 19:30	
(PFOSA) Perfluorooctanesulfonic	120	1.8	1	07/06/20 16:35	06/29/20 19:30	
Acid (PFOS)	120	1.0	1	07/00/20 10.33	00/29/20 19:30	
Perfluorooctanoic Acid	54	1.8	1	07/06/20 16:35	06/29/20 19:30	
(PFOA)			-			
Perfluoropentanoic Acid	5.6	4.4	1	07/06/20 16:35	06/29/20 19:30	
(PFPeA)						
Perfluorotetradecanoic Acid	ND U	4.4	1	07/06/20 16:35	06/29/20 19:30	
(PFTeA)			1	07/06/00 16 05	06/20/20 10 20	
Perfluorotridecanoic Acid	ND U	4.4	1	07/06/20 16:35	06/29/20 19:30	
(PFTriA) Perfluoroundecanoic Acid	ND U	4.4	1	07/06/20 16:35	06/29/20 19:30	
(PFUnA)	IND U	4.4	1	07/00/20 10.33	00/27/20 17.30	
N-	ND U	4.4	1	07/06/20 16:35	06/29/20 19:30	
Ethylperfluorooctanesulfon			Ŧ	0,,00,2010,00	30.29.20 19.00	
amidoacetic Acid						

Analysis Method:

			Analytical Repo	ort				
Client:	ALS - ROCHES	STER			Servi	ce Request:	20061912	
Project:	R2005213				Date	e Collected:	06/17/20 12:	00
Sample Matrix:	Water						06/23/20 10:0	
Sample Matrix.	water				Dat	e Receiveu.	00/23/20 10.	00
Sample Name:	CCSK-MW-05E	3				Units:	ng/L	
Lab Code:	20061912-07					Basis:	Wet	
			Organic LC					
Analysis Method:	E537 Mod							
Prep Method:	E537 Mod							
Analyte Name		Result	MRL	Dil.	Date Analyz	ed Date	Extracted	Q
N-		ND U	4.4	1	07/06/20 16:		9/20 19:30	×
Methylperfluoroocta	nesulfo	ND 0	т.т	1	07/00/20 10	55 00/2.	//2017.50	
namidoacetic Acid								
							_	
Surrogate Name			% Rec			ate Analyze		
13C2-FtS 6:2			212	5	0 - 150 0	7/06/20 16:3	5 S	
13C2-FtS 6:2 13C2-FtS 8:2			212 101	5 5	0 - 150 0° 0 - 150 0°	7/06/20 16:3 7/06/20 16:3	5 S 5	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA			212 101 62.2	5) 5) 5)	0 - 150 0 0 - 150 0 0 - 150 0	7/06/20 16:3: 7/06/20 16:3: 7/06/20 16:3:	5 S 5 5	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA			212 101 62.2 57.1	5 5 5 5	0 - 150 0 0 - 150 0 0 - 150 0 0 - 150 0	7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3	5 S 5 5 5	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA			212 101 62.2 57.1 61.6	5 5 5 5 5	0 - 150 0 0 - 150 0 0 - 150 0 0 - 150 0 0 - 150 0 0 - 150 0	7/06/20 16:3: 7/06/20 16:3: 7/06/20 16:3: 7/06/20 16:3: 7/06/20 16:3:	5 S 5 5 5 5	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxDA			212 101 62.2 57.1 61.6 64.1	5 5 5 5 5 5 5	$\begin{array}{ccccc} 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \end{array}$	7/06/20 16:33 7/06/20 16:33 7/06/20 16:33 7/06/20 16:33 7/06/20 16:33 7/06/20 16:33	5 S 5 5 5 5 5	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxDA 13C2-PFTeA			212 101 62.2 57.1 61.6 64.1 62.1	5 5 5 5 5 5 5 5	$\begin{array}{ccccccc} 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \end{array}$	7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3	5 S 5 5 5 5 5 5 5	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxDA 13C2-PFTeA 13C2-PFUnA			212 101 62.2 57.1 61.6 64.1 62.1 62.7	5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{ccccccc} 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \end{array}$	7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3	5 S 5 5 5 5 5 5 5 5 5 5	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxDA 13C2-PFTeA 13C2-PFUnA 13C3-HFPO-DA			212 101 62.2 57.1 61.6 64.1 62.1 62.7 53.7	5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{cccccccc} 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \end{array}$	7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3	5 S 5 5 5 5 5 5 5 5 5 5	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxDA 13C2-PFTeA 13C2-PFUnA			212 101 62.2 57.1 61.6 64.1 62.1 62.7	5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{cccccccc} 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \\ 0 - 150 & 0 \end{array}$	7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3	5 S 5 5 5 5 5 5 5 5 5 5 5 5	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFUnA 13C3-HFPO-DA 13C3-PFBS 13C4-PFBA			212 101 62.2 57.1 61.6 64.1 62.1 62.7 53.7 51.5	5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3	5 S 5 5 5 5 5 5 5 5 5 5 5 5 5	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxAA 13C2-PFHxDA 13C2-PFTeA 13C2-PFTunA 13C3-HFPO-DA 13C3-PFBS			212 101 62.2 57.1 61.6 64.1 62.1 62.7 53.7 51.5 57.4	5 5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3	5 S 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTeA 13C3-PFBS 13C4-PFBA 13C4-PFHpA			212 101 62.2 57.1 61.6 64.1 62.1 62.7 53.7 51.5 57.4 76.2	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{cccccccc} 0 & -150 & 0 & 0 \\ 0 & -150 & 0 & 0 \\ 0 & -150 & 0 & 0 \\ 0 & -150 & 0 & 0 \\ 0 & -150 & 0 & 0 \\ 0 & -150 & 0 & 0 \\ 0 & -150 & 0 & 0 \\ 0 & -150 & 0 & 0 \\ 0 & -150 & 0 & 0 \\ 0 & -150 & 0 & 0 \\ 0 & -150 & 0 & 0 \\ 0 & -150 & 0 & 0 \\ 0 & -150 & 0 & 0 \\ \end{array}$	7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3 7/06/20 16:3	5 S 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTeA 13C3-PFBS 13C4-PFBA 13C4-PFDA 13C4-PFDA 13C4-PFDA 13C4-PFDA			$212 \\ 101 \\ 62.2 \\ 57.1 \\ 61.6 \\ 64.1 \\ 62.1 \\ 62.7 \\ 53.7 \\ 51.5 \\ 57.4 \\ 76.2 \\ 68.7 \\ $	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7/06/20 16:3 7/06/20 16:3	5 S 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFUnA 13C3-PFBS 13C4-PFBA 13C4-PFHpA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C4-PFOA			$212 \\ 101 \\ 62.2 \\ 57.1 \\ 61.6 \\ 64.1 \\ 62.1 \\ 62.7 \\ 53.7 \\ 51.5 \\ 57.4 \\ 76.2 \\ 68.7 \\ 57.4 \\ 57.4 \\ 76.2 \\ 68.7 \\ 57.4 \\ 57$	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7/06/20 16:3 7/06/20 16:3	5 S 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFDA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTeA 13C3-PFBS 13C4-PFBA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C5-PFNA 13C5-PFPeA 13C8-FOSA			$\begin{array}{c} 212\\ 101\\ 62.2\\ 57.1\\ 61.6\\ 64.1\\ 62.1\\ 62.7\\ 53.7\\ 51.5\\ 57.4\\ 76.2\\ 68.7\\ 57.4\\ 64.3\\ 63.7\\ 58.0\\ \end{array}$	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7/06/20 16:3 7/06/20 16:3	5 S 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFDoA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTeA 13C3-PFBS 13C4-PFBA 13C4-PFOA 13C5-PFNA 13C5-PFPeA 13C8-FOSA 18O2-PFHxS			$\begin{array}{c} 212\\ 101\\ 62.2\\ 57.1\\ 61.6\\ 64.1\\ 62.1\\ 62.7\\ 53.7\\ 51.5\\ 57.4\\ 76.2\\ 68.7\\ 57.4\\ 64.3\\ 63.7\\ 58.0\\ 59.1\\ \end{array}$	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7/06/20 16:3 7/06/20 16:3	5 S 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
13C2-FtS 6:2 13C2-FtS 8:2 13C2-PFDA 13C2-PFDoA 13C2-PFDoA 13C2-PFDA 13C2-PFHxA 13C2-PFHxA 13C2-PFTeA 13C2-PFTeA 13C3-PFBS 13C4-PFBA 13C4-PFOA 13C4-PFOA 13C4-PFOA 13C5-PFNA 13C5-PFPeA 13C8-FOSA			$\begin{array}{c} 212\\ 101\\ 62.2\\ 57.1\\ 61.6\\ 64.1\\ 62.1\\ 62.7\\ 53.7\\ 51.5\\ 57.4\\ 76.2\\ 68.7\\ 57.4\\ 64.3\\ 63.7\\ 58.0\\ \end{array}$	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7/06/20 16:3 7/06/20 16:3	5 S 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	

Analytical Report

Client:	ALS - ROCHESTER		Service Request:	20061912	
Project:	R2005213		Date Collected:	06/17/20 12:55	
Sample Matrix:	Water		Date Received:	06/23/20 10:00	
Sample Name:	CCSK-MW-05A		Units:	ng/L	
Lab Code:	20061912-08		Basis:	Wet	
Organic LC					

			5.1			0
Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Fluorotelomer Sulphonic	0.63 J	4.4	1	07/06/20 16:45	06/29/20 19:30	
Acid 6:2 (FtS 6:2)						
Fluorotelomer Sulphonic	ND U	J 4.4	1	07/06/20 16:45	06/29/20 19:30	
Acid 8:2 (FtS 8:2)						
Perfluorobutanesulfonic	2.5 J	4.4	1	07/06/20 16:45	06/29/20 19:30	
Acid (PFBS)						
Perfluorobutanoic Acid	ND U	J 4.4	1	07/06/20 16:45	06/29/20 19:30	
(PFBA)		тал	1	07/06/20 16 45	06/00/00 10 20	
Perfluorodecanesulfonic	ND U	J 4.4	1	07/06/20 16:45	06/29/20 19:30	
Acid (PFDS) Perfluorodecanoic Acid	ND U	J 4.4	1	07/06/20 16:45	06/29/20 19:30	
(PFDA)	ND U	4.4	1	0//00/20 10:45	06/29/20 19:30	
(PFDA) Perfluorododecanoic Acid	ND U	J 4.4	1	07/06/20 16:45	06/29/20 19:30	
(PFDoA)	ND U	4.4	1	0//00/20 10:45	06/29/20 19:30	
Perfluoroheptanesulfonic	1.8 J	4.4	1	07/06/20 16:45	06/29/20 19:30	
Acid (PFHpS)	1.0 J	+.+	1	07/00/20 10.45	00/29/20 19.30	
Perfluoroheptanoic Acid	8.4	4.4	1	07/06/20 16:45	06/29/20 19:30	
(PFHpA)	0.1	7.7	1	07/00/20 10:45	00/20/20 10:50	
Perfluorohexanesulfonic	7.8	4.4	1	07/06/20 16:45	06/29/20 19:30	
Acid (PFHxS)			-	0,,,00,2010,10	00.29.20 19.00	
Perfluorohexanoic Acid	11	4.4	1	07/06/20 16:45	06/29/20 19:30	
(PFHxA)						
Perfluorononanoic Acid	9.4	4.4	1	07/06/20 16:45	06/29/20 19:30	
(PFNA)						
Perfluorooctanesulfonamide	ND U	J 4.4	1	07/06/20 16:45	06/29/20 19:30	
(PFOSA)						
Perfluorooctanesulfonic	96	1.7	1	07/06/20 16:45	06/29/20 19:30	
Acid (PFOS)						
Perfluorooctanoic Acid	46	1.7	1	07/06/20 16:45	06/29/20 19:30	
(PFOA)						
Perfluoropentanoic Acid	5.4	4.4	1	07/06/20 16:45	06/29/20 19:30	
(PFPeA)						
Perfluorotetradecanoic Acid	ND U	J 4.4	1	07/06/20 16:45	06/29/20 19:30	
(PFTeA)						
Perfluorotridecanoic Acid	ND U	J 4.4	1	07/06/20 16:45	06/29/20 19:30	
(PFTriA)						
Perfluoroundecanoic Acid	ND U	J 4.4	1	07/06/20 16:45	06/29/20 19:30	
(PFUnA)		т АА	1	07/06/20 16 45	0(100100 10 20	
N-	ND U	J 4.4	1	07/06/20 16:45	06/29/20 19:30	
Ethylperfluorooctanesulfon						
amidoacetic Acid						

Analysis Method:

Prep Method:

E537 Mod

			Analytical Repo	ort				
Client:	ALS - ROCHES	TER			Servie	ce Request:	20061912	
Project:	R2005213				Date	e Collected:	06/17/20 12::	55
Sample Matrix:	Water						06/23/20 10:0	00
Sample Matrix.	w ater				Date	e Receiveu.	00/23/20 10.0	00
Sample Name:	CCSK-MW-05A					Units:	ng/L	
Lab Code:	20061912-08					Basis:	Wet	
			Organic LC					
Analysis Method:	E537 Mod							
Prep Method:	E537 Mod							
P								
Analyte Name	1	Result	MRL	Dil.	Date Analyz	ed Date	Extracted	Q
N-		ND U	4.4	1	07/06/20 16:4		9/20 19:30	×
Methylperfluorooctar	nesulfo	ND 0	7.7	1	07/00/20 10	tJ 00/2.	/20 19.30	
namidoacetic Acid								
Surrogate Name			% Rec			ate Analyze		
13C2-FtS 6:2			199			7/06/20 16:4		
13C2-FtS 8:2			106			7/06/20 16:4		
13C2-PFDA			55.8			7/06/20 16:4		
13C2-PFDoA 13C2-PFHxA			54.3 57.3			7/06/20 16:4 7/06/20 16:4		
13C2-PFHxDA			60.8			7/06/20 16:4		
13C2-PFTeA			55.1			7/06/20 16:4		
13C2-PFUnA			63.2			7/06/20 16:4		
13C3-HFPO-DA			52.0			7/06/20 16:4		
13C3-PFBS			66.9			7/06/20 16:4		
13C4-PFBA			53.3	50	0 - 150 07	7/06/20 16:4	5	
13C4-PFHpA			68.2	50	0 - 150 07	7/06/20 16:4	5	
13C4-PFOA			60.0			7/06/20 16:4		
13C4-PFOS			50.4			7/06/20 16:4		
13C5-PFNA			60.4			7/06/20 16:4		
13C5-PFPeA			61.2			7/06/20 16:4		
13C8-FOSA			54.0	50	0 - 150 07	7/06/20 16:4	5	
							_	
18O2-PFHxS			50.4			7/06/20 16:4		
18O2-PFHxS d5-N-EtFOSAA d3-N-MeFOSAA			50.4 60.2 66.8	50	0 - 150 07	7/06/20 16:4 7/06/20 16:4 7/06/20 16:4	5	

Analytical Report

Client: ALS - ROCHESTER Service Request: 20061912 Date Collected: 06/17/20 13:25 **Project:** R2005213 Date Received: 06/23/20 10:00 Sample Matrix: Water Sample Name: CCSK-Equip Blank Units: ng/L Lab Code: 20061912-09 Basis: Wet

MRL

4.3

Result

ND U

ND U

ND U

Organic LC

Dil.

1

Date Analyzed

07/06/20 16:56

Date Extracted

06/29/20 19:30

Q

Analysis Method:	E537 Mod
Prep Method:	E537 Mod

Analyte Name

(PFTriA)

(PFUnA) N-

Fluorotelomer Sulphonic

	ND U	4.5	1	07/00/20 10.50	00/2//20 17.50	
Acid 6:2 (FtS 6:2)						
Fluorotelomer Sulphonic	ND U	4.3	1	07/06/20 16:56	06/29/20 19:30	
Acid 8:2 (FtS 8:2)						
Perfluorobutanesulfonic	ND U	4.3	1	07/06/20 16:56	06/29/20 19:30	
Acid (PFBS)						
Perfluorobutanoic Acid	ND U	4.3	1	07/06/20 16:56	06/29/20 19:30	
(PFBA)						
Perfluorodecanesulfonic	ND U	4.3	1	07/06/20 16:56	06/29/20 19:30	
Acid (PFDS)						
Perfluorodecanoic Acid	ND U	4.3	1	07/06/20 16:56	06/29/20 19:30	
(PFDA)						
Perfluorododecanoic Acid	ND U	4.3	1	07/06/20 16:56	06/29/20 19:30	
(PFDoA)						
Perfluoroheptanesulfonic	ND U	4.3	1	07/06/20 16:56	06/29/20 19:30	
Acid (PFHpS)						
Perfluoroheptanoic Acid	ND U	4.3	1	07/06/20 16:56	06/29/20 19:30	
(PFHpA)						
Perfluorohexanesulfonic	0.45 J ND/4.3 U	4.3	1	07/06/20 16:56	06/29/20 19:30	
Acid (PFHxS)						
Perfluorohexanoic Acid	ND U	4.3	1	07/06/20 16:56	06/29/20 19:30	
(PFHxA)						
Perfluorononanoic Acid	ND U	4.3	1	07/06/20 16:56	06/29/20 19:30	
(PFNA)						
Perfluorooctanesulfonamide	ND UJ	4.3	1	07/06/20 16:56	06/29/20 19:30	
(PFOSA)						
Perfluorooctanesulfonic	ND U	1.7	1	07/06/20 16:56	06/29/20 19:30	
Acid (PFOS)						
Perfluorooctanoic Acid	ND U	1.7	1	07/06/20 16:56	06/29/20 19:30	
(PFOA)						
Perfluoropentanoic Acid	ND U	4.3	1	07/06/20 16:56	06/29/20 19:30	
(PFPeA)						
Perfluorotetradecanoic Acid	ND U	4.3	1	07/06/20 16:56	06/29/20 19:30	
(PFTeA)						
Perfluorotridecanoic Acid	ND II	4.3	1	07/06/20 16:56	06/29/20 19:30	
	ND U	т.5	1	07/00/20 10.30	00/20/20 19:50	

Printed 7/29/2020 3:30:48 PM

Perfluoroundecanoic Acid

Ethylperfluorooctanesulfon

amidoacetic Acid

07/06/20 16:56

07/06/20 16:56

4.3

4.3

1

1

06/29/20 19:30

06/29/20 19:30

		Analytical Report	rt		
Client:	ALS - ROCHESTER			Service Request	20061912
Project:	R2005213			Date Collected	06/17/20 13:25
Sample Matrix:	Water				06/23/20 10:00
Sampie Matrix.	Water			Date Received	00/23/20 10:00
Sample Name:	CCSK-Equip Blank			Units	: ng/L
Lab Code:	20061912-09			Basis	: Wet
		Organic LC			
Analysis Method:	E537 Mod				
Prep Method:	E537 Mod				
riep without					
Analyte Name	Result	MRL	Dil. Da	te Analyzed Dat	e Extracted Q
N-	ND U	4.3		·	29/20 19:30
Methylperfluorooctar			1 077	00.2010.00	
namidoacetic Acid					
C ()		0/ D			0
Surrogate Name		% Rec	Control Lim		
13C2-FtS 6:2		66.3	50 - 150	07/06/20 16::	
13C2-FtS 8:2 13C2-PFDA		76.2 67.8	50 - 150 50 - 150	07/06/20 16:: 07/06/20 16::	
13C2-PFDA 13C2-PFDoA		66.0	50 - 150 50 - 150	07/06/20 16::	
13C2-PFHxA		69.1	50 - 150	07/06/20 16::	
13C2-PFHxDA		68.6	50 - 150	07/06/20 16::	
13C2-PFTeA		62.0	50 - 150	07/06/20 16::	
13C2-PFUnA		77.5	50 - 150	07/06/20 16::	
13C3-HFPO-DA		65.8	50 - 150	07/06/20 16::	
13C3-PFBS		78.4	50 - 150	07/06/20 16::	
13C4-PFBA		65.8	50 - 150	07/06/20 16::	
13C4-PFHpA		73.2	50 - 150	07/06/20 16::	
13C4-PFOA		70.6	50 - 150	07/06/20 16::	
13C4-PFOS		64.2	50 - 150	07/06/20 16::	
13C5-PFNA		69.7	50 - 150	07/06/20 16::	
13C5-PFPeA		67.4	50 - 150	07/06/20 16::	
13C8-FOSA		49.9	50 - 150	07/06/20 16::	
18O2-PFHxS		63.9	50 - 150	07/06/20 16::	
d5-N-EtFOSAA		72.6	50 - 150	07/06/20 16::	
d3-N-MeFOSAA		68.9	50 - 150	07/06/20 16::	

QC NONCONFORMANCE DOCUMENTATION

Analytical Report

ALS - ROCHESTER Service Request: 20061912 Client: Date Collected: NA **Project:** R2005213 **Sample Matrix:** Water Date Received: NA Sample Name: MBLK-158242 Units: ng/L Lab Code: MBLK-158242 Basis: Wet **Organic LC Analysis Method:** E537 Mod

Analyte Name Result MRL Dil. **Date Analyzed Date Extracted** Q Fluorotelomer Sulphonic ND U 5.0 06/30/20 17:19 06/29/20 19:30 1 Acid 6:2 (FtS 6:2) Fluorotelomer Sulphonic ND U 5.0 1 06/30/20 17:19 06/29/20 19:30 Acid 8:2 (FtS 8:2) Perfluorobutanesulfonic ND U 5.0 1 06/30/20 17:19 06/29/20 19:30 Acid (PFBS) Perfluorobutanoic Acid ND U 5.0 1 06/30/20 17:19 06/29/20 19:30 (PFBA) Perfluorodecanesulfonic ND U 5.0 1 06/30/20 17:19 06/29/20 19:30 Acid (PFDS) Perfluorodecanoic Acid ND U 5.0 06/30/20 17:19 06/29/20 19:30 1 (PFDA) Perfluorododecanoic Acid ND U 5.0 1 06/30/20 17:19 06/29/20 19:30 (PFDoA) Perfluoroheptanesulfonic 06/30/20 17:19 06/29/20 19:30 ND U 5.0 1 Acid (PFHpS) Perfluoroheptanoic Acid ND U 5.0 1 06/30/20 17:19 06/29/20 19:30 (PFHpA) 0.4768 J Perfluorohexanesulfonic 5.0 1 06/30/20 17:19 06/29/20 19:30 Acid (PFHxS) Perfluorohexanoic Acid ND U 06/30/20 17:19 06/29/20 19:30 5.0 1 (PFHxA) Perfluorononanoic Acid ND U 5.0 1 06/30/20 17:19 06/29/20 19:30 (PFNA) 1 Perfluorooctanesulfonamide ND U 5.0 06/30/20 17:19 06/29/20 19:30 (PFOSA) Perfluorooctanesulfonic 2.0 1 06/30/20 17:19 06/29/20 19:30 ND U Acid (PFOS) Perfluorooctanoic Acid ND U 2.0 06/30/20 17:19 06/29/20 19:30 1 (PFOA) Perfluoropentanoic Acid ND U 06/30/20 17:19 06/29/20 19:30 5.0 1 (PFPeA) ND U Perfluorotetradecanoic Acid 5.0 1 06/30/20 17:19 06/29/20 19:30 (PFTeA) Perfluorotridecanoic Acid ND U 5.0 1 06/30/20 17:19 06/29/20 19:30 (PFTriA) Perfluoroundecanoic Acid ND U 5.0 1 06/30/20 17:19 06/29/20 19:30 (PFUnA) N-ND U 5.0 1 06/30/20 17:19 06/29/20 19:30 Ethylperfluorooctanesulfon

amidoacetic Acid

Prep Method:

Analytical Report

Service Request: 20061912 Client: ALS - ROCHESTER Date Collected: NA **Project:** R2005213 **Sample Matrix:** Water Date Received: NA Sample Name: MBLK-158324 Units: ng/L Lab Code: MBLK-158324 Basis: Wet **Organic LC Analysis Method:** E537 Mod

Analyte Name Result MRL Dil. **Date Analyzed Date Extracted** Q Fluorotelomer Sulphonic ND U 5.0 07/06/20 17:17 06/30/20 18:56 1 Acid 6:2 (FtS 6:2) Fluorotelomer Sulphonic ND U 5.0 1 07/06/20 17:17 06/30/20 18:56 Acid 8:2 (FtS 8:2) Perfluorobutanesulfonic ND U 5.0 1 07/06/20 17:17 06/30/20 18:56 Acid (PFBS) Perfluorobutanoic Acid ND U 5.0 1 07/06/20 17:17 06/30/20 18:56 (PFBA) Perfluorodecanesulfonic ND U 5.0 1 07/06/20 17:17 06/30/20 18:56 Acid (PFDS) Perfluorodecanoic Acid ND U 5.0 07/06/20 17:17 06/30/20 18:56 1 (PFDA) Perfluorododecanoic Acid ND U 5.0 1 07/06/20 17:17 06/30/20 18:56 (PFDoA) Perfluoroheptanesulfonic 07/06/20 17:17 06/30/20 18:56 ND U 5.0 1 Acid (PFHpS) Perfluoroheptanoic Acid ND U 5.0 1 07/06/20 17:17 06/30/20 18:56 (PFHpA) 0.5504 J Perfluorohexanesulfonic 5.0 1 07/06/20 17:17 06/30/20 18:56 Acid (PFHxS) Perfluorohexanoic Acid ND U 07/06/20 17:17 06/30/20 18:56 5.0 1 (PFHxA) Perfluorononanoic Acid ND U 5.0 1 07/06/20 17:17 06/30/20 18:56 (PFNA) Perfluorooctanesulfonamide ND U 5.0 1 07/06/20 17:17 06/30/20 18:56 (PFOSA) Perfluorooctanesulfonic 2.0 1 07/06/20 17:17 06/30/20 18:56 ND U Acid (PFOS) Perfluorooctanoic Acid ND U 2.0 07/06/20 17:17 06/30/20 18:56 1 (PFOA) Perfluoropentanoic Acid ND U 07/06/20 17:17 06/30/20 18:56 5.0 1 (PFPeA) ND U Perfluorotetradecanoic Acid 5.0 1 07/06/20 17:17 06/30/20 18:56 (PFTeA) Perfluorotridecanoic Acid ND U 5.0 1 07/06/20 17:17 06/30/20 18:56 (PFTriA) Perfluoroundecanoic Acid ND U 5.0 1 07/06/20 17:17 06/30/20 18:56 (PFUnA) N-ND U 5.0 1 07/06/20 17:17 06/30/20 18:56 Ethylperfluorooctanesulfon amidoacetic Acid

Prep Method:

QA/QC Report

Client:ALS - ROCHESTERProject:R2005213Sample Matrix:Water

Service Request: 20061912

SURROGATE RECOVERY SUMMARY

Organic LC

Analysis Method:E537 ModExtraction Method:E537 Mod

		13C5-PFPeA	1 <mark>3C8-FOSA</mark>	18O2-PFHxS
Sample Name	Lab Code	50 - 150	50 - 150	50 - 150
20061898-03AMS	20061898-03AMS	72.3	55.2	61.4
20061898-03AMSD	20061898-03AMSD	74.5	63.6	68.3
CCSK-MW-03B	20061912-01A	94.9	86.6	92.2
20061912-01AMS	20061912-01AMS	88.2	67.7	84.7
20061912-01AMSD	20061912-01AMSD	84.5	63.7	79.0
CCSK-MW-01B	20061912-02A	75.5	73.8	64.3
CCSK-MW-01A	20061912-03A	67.1	63.8	62.3
CCSK-MW-03A	20061912-04A	68.7	62.9	61.7
CCSK-MW-20B	20061912-05A	68.2	57.5	61.4
CCSK-MW-20A	20061912-06A	65.1	53.5	54.5
CCSK-MW-05B	20061912-07A	63.7	58.0	59.1
CCSK-MW-05A	20061912-08A	61.2	54.0	50.4
CCSK-Equip Blank	20061912-09A	67.4	<mark>49.9</mark> \$ *	63.9
LCS-158242	LCS-158242	77.4	59.9	67.4
LCS-158324	LCS-158324	90.2	86.9	83.9
MBLK-158242	MBLK-158242	73.3	64.1	69.8
MBLK-158324	MBLK-158324	84.9	76.7	94.4

QA/QC Report

Client:ALS - ROCHESTERProject:R2005213Sample Matrix:Water

Service Request: 20061912

SURROGATE RECOVERY SUMMARY

Organic LC

Analysis Method:E537 ModExtraction Method:E537 Mod

		13C2-FtS 6:2	13C2-FtS 8:2	13C2-PFDA
Sample Name	Lab Code	50 - 150	50 - 150	50 - 150
20061898-03AMS	20061898-03AMS	79.1	74.6	58.0
20061898-03AMSD	20061898-03AMSD	83.0	74.8	66.8
CCSK-MW-03B	20061912-01	129	110	90.5
20061912-01AMS	20061912-01AMS	111	104	93.8
20061912-01AMSD	20061912-01AMSD	107	103	83.2
CCSK-MW-01B	20061912-02	83.3	89.1	69.6
CCSK-MW-01A	20061912-03	101	88.8	64.5
CCSK-MW-03A	20061912-04	70.0	65.6	58.0
CCSK-MW-20B	20061912-05	124	77.5	62.8
CCSK-MW-20A	20061912-06	119	75.9	58.1
CCSK-MW-05B	20061912-07	<mark>212</mark> S *	101	62.2
CCSK-MW-05A	20061912-08	<mark>199</mark> S *	106	55.8
CCSK-Equip Blank	20061912-09	66.3	76.2	67.8
LCS-158242	LCS-158242	81.0	88.9	71.3
LCS-158324	LCS-158324	90.8	108	93.5
MBLK-158242	MBLK-158242	78.4	82.5	72.8
MBLK-158324	MBLK-158324	82.4	91.6	98.5

QA/QC Report

Client:ALS - ROCHESTERProject:R2005213Sample Matrix:Water

Service Request: 20061912

SURROGATE RECOVERY SUMMARY

Organic LC

Analysis Method:E537 ModExtraction Method:E537 Mod

		13C2-PFTeA	13C2-PFUnA	13C3-HFPO-DA
Sample Name	Lab Code	50 - 150	50 - 150	50 - 150
20061898-03AMS	20061898-03AMS	61.8	62.8	70.6
20061898-03AMSD	20061898-03AMSD	68.4	70.6	73.1
CCSK-MW-03B	20061912-01A	85.7	99.1	85.9
20061912-01AMS	20061912-01AMS	103	113	67.9
20061912-01AMSD	20061912-01AMSD	93.7	99.5	64.4
CCSK-MW-01B	20061912-02A	53.8	72.5	71.6
CCSK-MW-01A	20061912-03A	68.0	67.5	60.0
CCSK-MW-03A	20061912-04A	52.0	60.3	66.8
CCSK-MW-20B	20061912-05A	50.7	66.2	65.1
CCSK-MW-20A	20061912-06A	<mark>49.7</mark> S *	63.3	61.1
CCSK-MW-05B	20061912-07A	62.1	62.7	53.7
CCSK-MW-05A	20061912-08A	55.1	63.2	52.0
CCSK-Equip Blank	20061912-09A	62.0	77.5	65.8
LCS-158242	LCS-158242	74.3	78.1	76.6
LCS-158324	LCS-158324	88.5	105	91.7
MBLK-158242	MBLK-158242	71.4	77.9	74.5
MBLK-158324	MBLK-158324	74.7	113	82.6

QA/QC Report

Client:	ALS - ROCHESTER
Project:	R2005213
Sample Matrix:	Water

Service Request: 20061912 Date Analyzed: 07/06/2020 Date Extracted: 06/30/2020

Lab Control Sample Summary

Organic LC

Analysis Method:	E537 Mod
Prep Method:	E537 Mod

 Units:
 ng/L

 Basis:
 Wet

 Analysis Lot:
 LCMS1_200706B

LCS-158324

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
Fluorotelomer Sulphonic Acid 6:2 (FtS 6:2)	36.71	30.3	121	64-140
Fluorotelomer Sulphonic Acid 8:2 (FtS 8:2)	34.57	30.7	113	67-138
N-Ethylperfluorooctanesulfonamidoacetic Acid	31.46	32	98.3	61-135
N-Methylperfluorooctanesulfonamidoacetic Acid	33.64	32	105	65-136
Perfluorobutanesulfonic Acid (PFBS)	25.8	28.3	91.2	72-130
Perfluorobutanoic Acid (PFBA)	42.92 S	32	134 *	73-129
Perfluorodecanesulfonic Acid (PFDS)	32.59	30.8	106	53-142
Perfluorodecanoic Acid (PFDA)	41.27	32	129	71-129
Perfluorododecanoic Acid (PFDoA)	39	32	122	72-134
Perfluoroheptanesulfonic Acid (PFHpS)	35.34	30.5	116	69-134
Perfluoroheptanoic Acid (PFHpA)	35.44	32	111	72-130
Perfluorohexanesulfonic Acid (PFHxS)	31.98	29.1	110	68-131
Perfluorohexanoic Acid (PFHxA)	38.01	32	119	72-129
Perfluorononanoic Acid (PFNA)	40.25	32	126	69-130
Perfluorooctanesulfonamide (PFOSA)	37.71	32	118	67-137
Perfluorooctanesulfonic Acid (PFOS)	34.07	29.7	115	65-140
Perfluorooctanoic Acid (PFOA)	36.34	32	114	71-133
Perfluoropentanoic Acid (PFPeA)	37.96	32	119	72-129
Perfluorotetradecanoic Acid (PFTeA)	34.92	32	109	71-132
Perfluorotridecanoic Acid (PFTriA)	37.79	32	118	65-144
Perfluoroundecanoic Acid (PFUnA)	36.32	32	114	69-133