

SITE CHARACTERIZATION REPORT

Fair Street Landfill, Site #340021 131 Commerce Drive Carmel, NY

Prepared For:

Contract# D009808, Work Assignment No. 05 New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, NY 12233-7017

Prepared By:

HRP Associates, Inc. 1 Fairchild Square, Suite 110 Clifton Park, NY 12065

HRP #: DEC1005.P3

Issued On: July 21, 2021

TABLE OF CONTENTS

1.0	INTR	INTRODUCTION 1			
	1.1	Report Organization	1		
	1.2	Site Description			
	1.3	Records Review			
		1.3.1 Previous Environmental Investigations			
		1.3.2 Historical Map Review			
		1.3.3 Regulatory Database Records			
		1.3.4 Municipal Information			
	1.4	Site Industrial/Commercial History			
	1.5	Areas of Concern (AOCs)	6		
2.0	PHYS	SICAL CHARACTERISTICS OF THE STUDY AREA	7		
	2.1	Site Features/Topography	7		
	2.2	Soils			
	2.3	Geology	7		
	2.4	Hydrogeology			
		2.4.1 Surface Water			
		2.4.2 Groundwater	٤		
3.0	STUE	DY AREA INVESTIGATIONS	10		
	3.1	Geophysical Investigations and GPR Survey	11		
	3.2	Soil Investigation			
		3.2.1 Surface Soil Sampling			
		3.2.2 Soil Boring Installation	13		
		3.2.3 Test Pit Installation	1 <i>6</i>		
	3.3	Groundwater Investigations	17		
		3.3.1 Monitoring Well Installation	17		
		3.3.2 Methods of Development			
		3.3.3 Sampling Methods and Procedures			
	3.4	Surface Water Investigation			
	3.5	Sediment Investigations			
	3.6	Deviations from Work Plan			
	3.7	Technical Correspondence	21		
4.0	NATU	JRE AND EXTENT OF CONTAMINATION	22		
	4.1	Soils			
		4.1.1 Surface Soil			
		4.1.2 Subsurface Soils- Soil Borings			
		4.1.3 Subsurface Soil - Test Pits			
	4.2	Groundwater			
	4.3	Surface Water and Sediment			
		4.3.1 Surface Water	28		

DRAFT Site Characterization Report Fair Street Landfill, Site #340021 131 Carmel Drive, Carmel, NY Page ii of iv

		4.3.2 Sediment	28
	4.4	Wastewater Generation	30
	4.5	Data Validation and Usability	30
5.0	CONCLUSIONS		31
	5.1	C & D Waste Disposal Area	31
	5.2	Culvert Pipe	31
	5.3	Current Use of the Site	33
6.0	REFI	ERENCES	34

Figures

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3A	Geology Cross- Section Transect Map
Figure 3B	Cross Section A – A'
Figure 3C	Cross Section B – B'
Figure 4	Groundwater Contour Map
Figure 5	Soil Analyte Detections
Figure 6	Soil PFAS Detections
Figure 7	Groundwater Analyte Detections
Figure 8	Groundwater PFAS Detections
Figure 9	Surface Water and Sediment Analyte Detections
Figure 10	Surface Water and Sediment PFAS Detections

Tables

Summary Groundwater Elevation Information Soil Boring Subsurface Soil Analytical Data
Soil Boring Subsurface Soil Arialytical Data Soil Boring Subsurface Soil PFAS Analytical Data
· · · · · · · · · · · · · · · · · · ·
Surface Soil Analytical Data
Surface Soil PFAS Analytical Data
Test Pit Subsurface Soil Analytical Data
Test Pit Subsurface Soil PFAS Analytical Data
Test Pit Subsurface Soil PFAS TOPA Analytical Data
Surface Water Analytical Data
Surface Water PFAS Analytical Data
Sediment Analytical Data
Sediment PFAS Analytical Data
Groundwater Analytical Data
Groundwater PFAS Analytical Data
Groundwater PFAS TOPA Analytical Data

Appendices

Appendix A	EDR Report/ Land Use Records
Appendix B	CAMP Monitoring Documents
Appendix C	Geophysical Survey Letter Report
Appendix D	Soil Boring & Monitoring Well Logs
Appendix E	Analytical Results
Λ := := = =!: · · · □	DUCDa

Appendix F DUSRs

General Information

Project/Site Information:

Fair Street Landfill, Site #340021 131 Commerce Drive Carmel, NY

Consultant Information:

HRP Associates, Inc. 1 Fairchild Square, Suite 110 Clifton Park, NY 12065 Phone: 518-877-7101

Fax: 518-877-8561

E-mail: mark.wright@hrpassociates.com

Project Number: DEC1005.P3

Client Information:

Contract# D009808-05 New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233-7017

Report Date: 7/21/2021

Report Author:

Kristen A. Amodeo

Senior Consultant

Project Manager: Mark E. Wright, CHMM, CSP, PG

Project Manager

QEP Certification:

I, Mark Wright, certify that I am currently a Qualified Environmental Professional as defined in 6 NYCRR Part 375 and that this Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

Mark Wright - Project Manager

1.0 <u>INTRODUCTION</u>

This report presents the results of the Site Characterization (SC) completed by HRP Associates, Inc. (HRP), from September 2020 through March 2021 in connection with the Fair Street Landfill Site located at 131 Commerce Drive, in the Town of Carmel, Putnam County, New York (Site #340021, referred to herein as the Site) (**Figure 1**). The investigation assessed environmental impacts associated with the use of the Site as a former landfill. The SC was completed for the New York State Department of Environmental Conservation (NYSDEC).

Interpretations presented within this report are based primarily on the investigations described herein. Previous investigations completed by others at the Site have been reviewed by HRP. Applicable data from these reports have been included in sections of this report.

1.1 Report Organization

The text of this report is divided into six sections. Immediately following the text are the tables, figures, and appendices. A summary of each report section is provided below:

Section 1.0 Introduction: Report organization followed by Site background, Site description, a Records Review (summary of previous environmental investigations, historical map review, regulatory database records and municipal information), a Site Commercial/Industrial History, and description of identified Areas of Concern.

Section 2.0 Physical Characteristics of the Study Area: Includes results of field activities to determine physical characteristics, including Site surface features/topography, soils, geology, and hydrogeology.

Section 3.0 Study Area Investigation: Summarizes field activities associated with the SC, including surface and subsurface soil investigations, groundwater, and surface water/sediment investigations.

Section 4.0 Nature and Extent of Contamination: Presents the analytical results of SC. The results are for the following media: soils, groundwater, surface water and sediment.

Section 5.0 Conclusions: Presents a discussion of the results by Areas of Concern or potential release area.

Section 6.0 References: Provides a list of references used throughout this report.

1.2 Site Description

The Fair Street Landfill (the Site) is located at 131 Commerce Drive, Carmel, Putnam County, New York, (**Figure 1**), and is the primary focus of this SC. The Site is approximately 2.88 acres of a 19.5-acre parcel located 500 feet east of Interstate Route 84 at the southern end of Commerce Drive.

The Site and surrounding area are located in a mixed commercial/ residential area of Carmel Hamlet, Putnam County, New York. At present, the areas surrounding the property include:

North: Commercial properties and vacant land under development along Commerce Drive

East: Vacant land followed by residences along Bullet Hole Road West: Interstate-84 followed by residences along Westgate Terrace South: Vacant land followed by residences along Fox Run Lane

1.3 Records Review

Historical information concerning the Site history was reviewed as part of this SC. This included a review of the following sources of information:

- Review of the following previously prepared reports, provided to HRP by NYSDEC:
 - Engineering Investigations at Construction & Demolition Debris Site Preliminary Site Assessment prepared by Dunn Geoscience Engineering, P.C, November 1991
 - Analytical Report 480-14625-1 ILI- Regions 3- Fair Street, Prepared by Test America Laboratories, Inc.; for Parsons Corporation, January 2019
- Review of regulatory database records and historical records available through Environmental Database Resources Inc. (EDR), a commercial database provider; and
- Submission of a Freedom of Information Law (FOIL) request to Putnam County and the Town of Carmel to determine if there are municipal files related to the Site.

1.3.1 Previous Environmental Investigations

Engineering Investigations at Construction & Demolition Debris Site Preliminary Site Assessment prepared by Dunn Geoscience Engineering, P.C, November 1991

The purpose of this preliminary Site Assessment was to determine if hazardous wastes were disposed of at the Site, and to determine the impact on human health and the environment. The Site Assessment involved a review of the waste disposal history, analysis of chemical constituents in the site media, review of potential transport routes and an assessment of potential receptors.

The conclusions of the assessment include the following:

- The disposal of hazardous wastes as defined in Title 6 of the New York Codes, Rules and Regulations (6NYCRR) Part 371 was not documented for this Site. Results of Toxic Leaching Procedure (TCLP) analyses indicated that samples of the fill were not hazardous by the characteristic of toxicity. However, many samples appeared oily and contaminants (BTEX compounds, phthalates, PNAs, and lead) were detected in samples of the fill. Fill material at the Site consists primarily of wood along with lesser amounts of miscellaneous debris. Non-Construction and Demolition (C & D) fill was found in the test pits, including glass, plastic, carpet, and tires.
- No significant contamination of sediments, surface water, or groundwater was detected at concentrations which would likely negatively influence the environment or human health. However, the detection of substantial concentrations of polynuclear aromatics and alkanes in some sediment samples may indicate migration or transport of Site contamination. The detection of unidentified organic compounds in groundwater samples from the downgradient monitoring wells indicates the possibility that contaminants may be leaching from the fill into the groundwater; however, it could not be determined from data collected during the investigation if the compounds detected in the groundwater samples are the same as those detected in the soil/waste samples.
- Surface water and associated sediments from the Site drain southwest into an emergent wetland adjacent to the Site. This wetland is connected to a series of wetlands which border the Middle Branch of the Croton River and the Middle Branch Reservoir.
- Groundwater discharges to the state-regulated wetland to the west of Interstate 84 and the wetland southwest of the Construction and Demolition (C & D) Waste Disposal Area EAST of Interstate 84.

Dunn Geoscience offered the following recommendation:

• Properly close the landfill in accordance with 6NYCRR Part 360 regulations. The closure should include a cap to reduce infiltration and provide surface water drainage control.

Analytical Report 480-14625-1 ILI- Regions 3- Fair Street prepared by Test America Laboratories, Inc.; for Parsons Corporation, January 2019

As part of the inactive solid waste site evaluation process, Parsons Corporation, at the direction of the NYSDEC Division of Material Management performed sampling at the Site in January 2019. This evaluation included the collection of groundwater samples from three existing monitoring wells and a surface water sample from a culvert pipe below the landfill. Samples were analyzed for PFAS (perand poly-fluoroalkyl substances) and 1,4-dioxane. Results indicated concentrations of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) were detected at concentrations exceeding the New York State drinking water Maximum Contaminant Level (MCL) of 10 parts per trillion (ppt).

Site Characterization Report Fair Street Landfill, Site #340021 131 Carmel Drive, Carmel, NY Page 4 of 34

1.3.2 Historical Map Review

Available Sanborn Fire Insurance Company maps, aerial photographs, historical topographic maps, and City Directories were obtained from EDR. These records were reviewed and are summarized below.

Sanborn Map coverage in the area of the Site was not available. The EDR Certified Sanborn Map Report can be found in **Appendix A**.

Historical aerial photographs were reviewed for the years 1941, 1958, 1974, 1984, 1992, 1994, 1997, 2006, 2009, 2013, and 2017. From 1941 through 1974, the Site appears to be forested land. Development of Commerce Drive began in 1984, and by 1992 the road was fully developed, and the C & D Waste Disposal Area is visible. A pathway around the vicinity of the C & D Waste Disposal Area is visible in the 1994 through 2013 aerial photographs. By the 2017 aerial photograph, the C & D waste disposal area appears to be grown over with grass with dirt patches throughout it. The EDR Aerial Photo package can be found in **Appendix A.**

City directory listings were reviewed for the years 1987, 1992, 1995, 2000, 2005, 2010, 2014, and 2017. The Site was not listed in the city directories.

1.3.3 Regulatory Database Records

Standard environmental records sources were obtained via EDR on April 30, 2020. The information provided is summarized below:

• Fair Street Landfill is listed in the State Hazardous Waste Site/State Superfund database under the Site Code #340021. This listing provides a Site description and summarizes the environmental characterization.

Other significant details were not provided in regulatory records. Additionally, the New York DEC Spills Incidents Database was reviewed for the available years (1978-2020); however no reported spills were identified for the Site in the database.

1.3.4 Municipal Information

Two FOIL requests were submitted on February 3, 2021, to the Town of Carmel and Putnam County. The purpose of the FOIL requests was to determine if there were any records related to potential environmental issues at the Site, such as underground or above ground storage tanks, septic systems, or information related to former use of petroleum products or hazardous substances by Site occupants. Putnam County responded to the FOIL request on February 4, 2021, indicating that there is no information on file for the property.

As of the date of issuance of this report, the Town of Carmel had not confirmed or denied the existence of any files related to the Site. Due to the use of the Site as C & D waste disposal for the entirety of its use, this is not considered to be a data gap.

1.4 Site Industrial/Commercial History

According to previously documented Site history and environmental investigations, the Site formerly operated as an unlined, illegal landfill from late 1987 to February 1988. During this time, the landfill operated without a permit and was primarily used as a (C & D) landfill. The onsite disposal reportedly occurred in a natural drainage channel that connected two wetlands on the Site. During the disposal period, a culvert pipe was reportedly installed within the landfill at a depth of approximately 15 to 20 feet beneath the current ground surface. As reported in the 1991 investigation report, a previous inspection of the landfill in 1988 revealed that surface water runoff from the hillside to the east was percolating into the western toe of the C & D material. The amount of discharge from the southern end of the buried culvert pipe exceeded the amount entering the northern end and was foamy, discolored, and malodorous. An inspection in November 1990 revealed leachate and a strong smell of hydrogen sulfide at both ends of the culvert pipe. Reportedly, approximately five percent of the material deposited was non - C & D materials including household hazardous waste, furniture polish and engine degreaser. Medical waste was also reported at the Site. Surface water runoff was historically observed percolating from the hillside to the east into the western end of the C & D materials. A soil cover had reportedly been placed over the landfill; however, documentation of the soil cover was not available for review.

The Site is currently in use as a staging area for a construction company that operates on an adjacent property. Sheds, wooden beams, tires, various scrap metal, and heavy machinery are currently staged on the property.

1.5 Areas of Concern (AOCs)

According to previous environmental reports and available historic Site records, the following specific areas of concern (AOCs) were identified that could have impacted the environmental media at the Site and may require further characterization.

- C & D Waste Disposal Area
- Culvert Pipe
- Current Use of the Site

Based on the results of previous investigations, the contaminants of concern at the Fair Street Landfill Site have been identified as per- and polyfluoroalkyl substances (PFAS) that are suspected to be associated with Site use as a landfill. The AOCs listed above are related to the potential for releases of PFAS impacted leachate from the C & D Waste Disposal Area into surface water and/or groundwater that may be used as a source of drinking water in the area.

2.0 PHYSICAL CHARACTERISTICS OF THE STUDY AREA

The following section discusses the physical characteristics and setting of the Site.

2.1 Site Features/Topography

Fair Street Landfill comprises 2.88 acres of a 19.5-acre parcel located 500 feet east of Interstate 84 at the end of Commerce Drive, in the Town of Carmel, Putnam County, New York. The C & D Waste Disposal Area has a gravel covering and is used by an adjacent property owner as a staging/storage area for machinery, sheds, and debris. The Site plan is depicted on **Figure 2**. The waste disposal area in the central portion of the Site is relatively flat. To the east of the disposal area the Site topography slopes steeply up to a ridge, west of the disposal area, the Site topography slopes down to a wetland feature.

2.2 Soils

According to the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) Web Soil Survey, the Site area is mainly mapped as the Charlton-Chatfield complex, 0 to 15 percent slopes. Charlton-Chatfield complex soils consist of moderately deep, well drained soils which have medium surface runoff and moderate to moderately rapid permeability (0.6 to 6.0 in/hr.). The soils in the wetlands adjacent to the landfill are mapped as Sun loam and are described as very poorly drained. Soil borings from current and previous investigations were reviewed and indicate that a thin layer of soil and glacial till is present at the Site. Native overburden materials at the Site were described as brown to grey medium to find sandy silt, with little fine gravel. Outside of the C&D waste disposal area, bedrock was encountered at depths ranging from two (2) to nine (9) feet below grade (ft bg), and groundwater was not observed in the overburden.

During the SC, overburden materials were observed to consist mainly of fine sandy silt, with little fine gravels. C & D waste material was deposited in a natural drainage channel which connected two wetlands on the property (**Figure 2**). C & D waste material was observed throughout the 2020 test pit locations and in soil boring SB-10 to a depth of 13 ft bg as described in **Section 3.0**. Typical C & D waste material observed consisted predominantly of construction debris, including metal, wood, plastic, wire, and an air canister. Cross-section views of the C & D Waste Disposal Area are shown in **Figure 3**.

2.3 Geology

The shallow bedrock at the Site consists of weathered, fractured and jointed gneiss, with quartzite or amphibolite. Undifferentiated granite and gneiss are described as banded black and white gneiss and grey or pink granite. According to previous environmental investigations done at the Site, iron-oxide staining was observed on most fractures. Joints and fractures commonly occurred at 30 degree to 45-degree angles from horizontal. Few fractures were noted at 70 degrees to 80 degrees from horizontal. Bedrock outcrops were observed throughout the boundary of the C & D Waste Disposal Area.

2.4 Hydrogeology

2.4.1 Surface Water

Lake Carmel is located approximately 1 mile west of the Site. Smaller ponds and tributaries surround the Site to the north, east, south, and west. The direction of groundwater flow in the shallow bedrock is southwest. Three wetlands are located on the property, and one is located across Interstate 84 from the property. The buried culvert pipe runs beneath the C & D Waste Disposal Area allowing surface water to flow from the wetland on the northeast to the wetland on the southwest. The wetland located to the southwest is adjacent to Interstate 84 and is topographically the lowest point on the property. A culvert pipe which runs generally east to west beneath Interstate 84 connects the two wetlands on either side of the roadway. The surface water flow extends from the C & D Waste Disposal Area through the culvert, west across Interstate 84, and discharges into a series of regulated wetlands. These wetlands are ultimately connected to the Middle Branch Reservoir, approximately three miles south of the Site. The Middle Branch Reservoir is a reservoir in the New York City water supply system located in the Town of Southeast in Putnam County.

2.4.2 Groundwater

According to the 1991 environmental investigation, groundwater in the shallow bedrock is believed to be unconfined. Groundwater flow in the shallow bedrock was calculated to be to the southwest. The precipitous western gradient at the Site suggests likely discharge of groundwater to local wetland areas west and southwest of the Site. Testing performed at each monitoring well during the investigation yielded an estimated hydraulic conductivity of 3.1 x 10⁻⁴ cm/sec.

During the 2020 Site investigation, the shallow groundwater was observed to be influenced by seasonal precipitation fluctuations. Drought conditions were observed during the September 2020 investigation causing a decrease (up to 6 feet) in depth to the water table. Groundwater elevations measured during the SC indicate a southeasterly groundwater flow.

Shallow bedrock was observed throughout the Site and no overburden water table was observed, apart from the center of the C & D Waste disposal area, where limited overburden groundwater was observed at a depth of 20 to 25 feet below grade. Groundwater at the Site is inferred to be flowing from the shallow bedrock, which acts as an unconfined aquifer, to the wetlands located to the West of the Site.

HRP conducted a groundwater sampling event of the existing monitoring wells on May 26, 2020, November 3, 2020, and February 17, 2021. The groundwater levels recorded during the events are summarized on **Table 1**.

Groundwater was observed in the monitoring wells at depths ranging from 2.77 to 28.10 feet below the reference point with an average of approximately 15.45 feet on February 17, 2021. Groundwater purged from all five (5) monitoring wells was initially turbid with fine-grained sediment (i.e., clay and silt). However, with continual pumping during well development and sampling, turbidity decreased and no evidence of suspended solids in groundwater was visible. No odors or sheens were observed in the groundwater.

Site Characterization Report Fair Street Landfill, Site #340021 131 Carmel Drive, Carmel, NY Page 9 of 34

The direction of groundwater flow in the shallow bedrock is southwest. The groundwater in the shallow bedrock is believed to be an unconfined water table. Based on the elevation data and flow direction, groundwater is expected to discharge into a series of regulated wetlands southwest of the Site. A Groundwater flow map was developed from data collected on February 17, 2021 and is included as **Figure 4**.

3.0 STUDY AREA INVESTIGATIONS

Study area investigations were completed at the Site in accordance with the SC Work Plan, Fair Street Landfill- Site #340021, 131 Commerce Drive, Carmel, New York, dated September 9, 2020, to evaluate the subsurface environmental conditions and to provide data pertaining to the extent of contamination. A description of the study area investigations conducted during this SC is presented in this Section.

Deviations based on field conditions are noted in **Section 3.6**. The investigation tasks described in the work plan utilized the NYSDEC's DER-10 (DER-10), Technical Guidance for Site Investigation and Remediation, dated May 2010. The SC scope of work was approved by the NYSDEC Project Manager in September 2020. HRP followed the procedures outlined in the previously approved generic Field Activity Plan (FAP), Quality Assurance Project Plan (QAPP), and Health and Safety Plan (HASP). As required by the NYSDEC, the Work Plan for this Work Assignment (WA) incorporated the following Site-specific components:

- Scope of Work (SOW) Summary;
- Health and Safety Plan (HASP); and
- Community Air Monitoring Plan (CAMP).

Community Air Monitoring Plan (CAMP)

A Community Air Monitoring Plan (CAMP) was included in the scope of work as presented and approved in the SC Work Plan. Real-time monitoring was conducted for volatile organic compounds (VOCs) and particulates (i.e., dust) at the downwind perimeter of each designated work area when ground intrusive activities were being conducted, including soil borings and monitoring well installation. Its intent was to provide a measure of protection for the downwind community (i.e., off-Site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. Additionally, the CAMP helps to confirm that work activities did not spread contamination off-site through the air.

VOCs were monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a continuous basis during intrusive work or as otherwise specified. Upwind concentrations were measured at the start of each workday and periodically thereafter to establish background conditions. The monitoring work was performed using a Mini Rae 2000 photo ionization detector (PID) equipped with a 10.2 eV bulb. The PID was routinely calibrated as per manufacturer's instructions for the contaminant(s) of concern or for an appropriate surrogate. The PID was placed in a weather-proof box that sat on a tripod approximately four feet off the ground. The downwind PID readings did not exceed 5 ppm during the field investigations.

Particulate concentrations were monitored continuously at the upwind and downwind perimeters of the exclusion zone at temporary particulate monitoring stations during intrusive work. The particulate monitoring was performed using a Quest Dust Trak 8520, a real-time monitor capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The

Dust Trak was routinely zero (0) checked and was placed in a weatherproof box that sat on a tripod approximately four feet off the ground. The equipment was equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration was visually assessed during all work activities. The particulate readings were below 100 mcg/m³ during all field investigations and IRM activities. All tables for VOCs and particulates concentration readings can be found in the CAMP (**Appendix B**).

Field work for this SC was conducted in several mobilizations to the Site and included the following tasks:

- Initial Site inspection (May 26, 2020);
- A Ground Penetrating Radar (GPR) and Electromagnetic (EM) survey was conducted to determine the extent of the C & D Waste Disposal Area (September 10 and 11, 2020);
- Advancement of ten soil borings and the collection and submittal for analysis of select soil samples (September 15, 2020);
- The collection of five surface soil samples (September 14, 2020);
- The collection of five test pit soil samples (September 14, 2020);
- Installation of three bedrock monitoring wells (September 29 and 30, 2020);
- Development of bedrock monitoring wells (September 30, 2020);
- Sampling of five groundwater monitoring wells and submittal for analysis (November 13, 2020);
- The collection of four surface water samples (November 3 and 13, 2020);
- The collection of four sediment samples (November 3 and 13, 2020);
- The elevation survey of newly installed monitoring well elevations (February 17, 2021);
- The video inspection of the culvert pipe (March 10, 2021).

3.1 Geophysical Investigations and GPR Survey

In order to determine the extent of the C & D Waste Disposal Area, Greenstar Environmental Solution, LLC completed ground penetrating radar (GPR) and an electromagnetic (EM) survey on September 10 and 11, 2020. GPR is a non-destructive and non-intrusive geophysical exploration technique that uses radar waves to detect subsurface metallic objects. A GSSI SIR-3000 coupled with a 400 MHz antenna was used to provide an instant graphic printout during the survey. The survey was conducted with XY grid patterns which had a line spacing of 4 feet in both directions.

The GPR and EM survey were conducted to assess where C & D waste may be present. Prior to the survey, portions of vegetation or brush were cleared with an excavator to allow access for the survey equipment. GPR was used across the Site to determine the edge of the disposal area. Transects were completed to the north of the disposal area along Commerce Drive as well as along the southern and eastern edge of the inferred disposal area. The Geophysical Survey Letter Report, including a map showing the area surveyed and results can be found in **Appendix C**.

3.2 Soil Investigation

3.2.1 Surface Soil Sampling

To evaluate the condition of the Site's surface soils to determine potential contamination due to current use of the Site, HRP mobilized to the Site on September 14, 2020, and collected a total of five surface samples (SS-01 through SS-05). The surface samples were collected at a depth of 0.5 to 1 ft bg. Soil sample locations were proposed in the work assignment and were modified in the field based on Site conditions (i.e., staining and machine storage).

The soil boring locations are shown on Figure 2 and are summarized below:

Soil Boring ID	Justification	Soil Sample Depth (ft bg)
SS-01	Area where staining was observed	0.25-0.50
SS-02	Area where machinery was parked	0.25-0.50
SS-03	Area near construction equipment and observed tank	0.25-0.50
SS-04	Area where construction vehicles are parked	0.5-1
SS-05	Area where construction vehicles are parked	0.5-1

During surface soil sampling activities, the following methodologies were employed. Using a precleaned stainless-steel trowel, HRP removed the grass layer over the soil. HRP then advanced the stainless-steel hand auger into the soil approximately 2 inches below the vegetative cover and removed the soil. HRP placed an adequate volume of soil from each sampling location into the appropriate containers. The sample jars were appropriately labeled and placed on ice in a cooler. All observations were recorded in a field book. Equipment was decontaminated after each use and between sample locations. Finally, HRP repaired each sampling location with native soil.

Each surface soil sample was submitted under chain of custody to ELAP certified laboratory. All five surface soil samples were analyzed for:

- Target Compound List (TCL) volatile organic compounds (VOCs)+10 by Method 8260;
- TCL semi volatile organic compounds (SVOCs) +20 by EPA Method 8270;
- Target Analyte List (TAL) metals, total cyanide, total mercury by EPA methods 6110, 9010;
- TCL polychlorinated biphenyls (PCBs) via EPA Method 8082;
- TCL chlorinated herbicides via EPA Method 8151A;

- Pesticides via EPA Method 8081B, pH via EPA Method 9040 / 9041;
- Total organic carbon by the Lloyd Kahn Method;
- 1,4 dioxane via EPA Method 8270 SIM; and
- PFAS Analyte list compounds via methods based on EPA Method 537.1.

3.2.2 Soil Boring Installation

To evaluate the conditions of the Site's subsurface soils and to determine the extent of the C & D Waste Disposal Area, HRP and Core Down Drilling mobilized to the Site on September 15, 2020 and installed a total of ten (10) soil borings (SB-1 through SB-10). The soil borings were advanced to a maximum depth of 25 ft bg. Core Down Drilling advanced the borings using a track mounted direct push drill rig and collected discrete soil samples using 2-inch diameter HDPE macro-core samplers. The soil borings were located along the edge of the C & D Waste Disposal Area to identify the C & D Waste Disposal Area boundaries, as well as a soil boring centrally located to determine the depth of the C & D Waste Disposal Area. The soil boring locations are shown on **Figure 2** and summarized below in the Soil Boring Location Summary table. Soil boring logs can be found in **Appendix D**.

	SOIL BORING LOCATION SUMMARY					
Soil Boring ID	Total Depth (ft bg)	Location	Justification			
SB-01	6.9 (bedrock refusal)	· ·				
SB-02	2.5 (bedrock refusal)	Western/ southwestern extent of C & D Waste Disposal Area, east of MW-3				
SB-03	2.5 (bedrock refusal)	Northwestern extent of C & D Waste Disposal Area, southeast of MW-4	Verify the extent			
SB-04	5 (bedrock refusal)	Northern extent of C & D Waste Disposal Area	of the C & D Waste Disposal Area boundaries			
SB-05	5 (bedrock refusal)	Northern extent of C & D Waste Disposal Area on the western side of the culvert	Area bourtdaries			
SB-06	4 (bedrock refusal)	Northern extent of the C & D Waste Disposal Area, on the eastern side of the C & D Waste Disposal Area				
SB-07	6 (bedrock refusal)	Along the eastern extent of the C & D Waste Disposal Area, west of MW-1/1A				
SB-08	8 (bedrock refusal)	On the eastern side of the C & D Waste Disposal Area within the & D Waste Disposal Area material	Observe C & D Waste Disposal Area material			
SB-09	0.5 (bedrock refusal)	Along the southern extent of the C & D Waste Disposal Area	Verify the extent of the C & D Waste Disposal Area boundaries			

	SOIL BORING LOCATION SUMMARY					
Soil Boring ID	Total Depth (ft bg)	Location	Justification			
SB-10	25	Located within the center of the gravel storage area	To observe C & D Waste Disposal Area material and verify depth of C & D Waste Disposal Area.			

Note: Locations for SB-7 and SB-9 were not suitable for advancement of the GeoProbe due to depth of shallow bedrock. Samples were taken with a hand shovel.

During the soil boring installations, samples were collected by the attending HRP geologist, placed in laboratory-provided containers, labeled, and preserved on ice in a cooler. Each sample was also reviewed for physical evidence of contamination (i.e., odor, staining).

In addition, a small portion (1-2 oz.) was also placed in a polyethylene bag, and allowed to attain ambient temperature, then subjected to a headspace analysis via a 5- gas meter.

Boreholes were abandoned (backfilled) using native material and bentonite chips.

Soil samples were taken at depths dependent on soil boring refusal, except for SB-10 which was taken to determine the depth of the C & D Waste Disposal Area material. A shallow and deep sample were taken from SB-10. The soil samples that were collected and analyzed are listed below:

SOIL BORING SAMPLE SUMMARY				
Sample ID	Sample Depth (ft bg)	Justification	Analysis	
SB-1	1-2	Shallow samples were taken due to refusal and being the only soil sample able to be obtained. C & D Waste Disposal Area	 pH via EPA Method 9040 / 9041, total organic carbon, PFAS Analyte list compounds via methods based on EPA Method 537.1. SPLP PFAS 	

SOIL BORING SAMPLE SUMMARY					
Sample ID	Sample Depth (ft bg)	Justification	Analysis		
SB-2	0-2				
SB-3	0-2	C & D Waste Disposal			
SB-4	0-2	Area Shallow samples were taken due to	- PFAS Analyte list compounds via methods based on EPA		
SB-6	0-2	refusal and being the only soil sample able to	Method 537.1.		
SB-7	0-0.5	be obtained.			
SB-9	0-0.5				
SB-5	0-2	C & D Waste Disposal Area shallow samples were taken due to refusal and being the only soil sample able to be obtained.	 TCL VOCs +10 by EPA Method 8260 TCL SVOCs +20 with 1,4- Dioxane by EPA Method 8270 TAL metals, total cyanide, total mercury TCL PCBs via EPA Method 		
SB-8	0-2	To evaluate degree and extent of contamination within C & D Waste Disposal Area	 8082 TCL chlorinated herbicides via EPA Method 8151A, pesticides via EPA Method 8081B, pH via EPA Method 9040 / 		
SB-10	0-5	To evaluate degree and extent of contamination within C & D Waste Disposal Area subsurface soils	 9041, total organic carbon, PFAS Analyte list compounds via methods based on EPA Method 537.1. SPLP PFAS 		

SOIL BORING SAMPLE SUMMARY					
Sample	Sample Depth (ft bg)	Justification	Analysis		
SB-10	20-25	To evaluate degree and extent of contamination within C & D Waste Disposal Area subsurface soils and soils below the C & D Waste Disposal Area materials.	 TCL VOCs+10 by Method 8260 TCL SVOCs +20 with 1,4-Dioxane by Method 8270 TAL metals, total cyanide, total mercury TCL PCBs via Method 8082 TCL chlorinated herbicides via Method 8151A, pesticides via Method 8081B, PFAS Analyte list compounds via methods based on EPA Method 537.1. SPLP PFAS 		

PCBs: Polychlorinated Biphenyls, VOCs: Volatile Organic Compounds, SVOCs: Semi-Volatile Organic Compounds

3.2.3 Test Pit Installation

To evaluate the conditions of the Site's subsurface soils within the C & D Waste Disposal Area, HRP and Core Down Drilling mobilized to the Site on September 14, 2020 and installed a total of five test pits (TP-1 through TP-5). The test pits were excavated down to a depth from 8 to 10 ft bg. The test pits were located throughout the C & D Waste Disposal Area to identify material disposed of. Test pit locations were proposed in the work assignment and were modified in the field based on Site conditions (i.e., anomalies observed during GPR). The test pit locations are shown on **Figure 2**.

During the test pit installations, samples were collected by the attending HRP geologist, placed in laboratory-provided jars, labeled, and preserved on ice in a cooler. Each sample was also reviewed for physical evidence of contamination (i.e., odor, staining).

In addition, a small portion (1-2 oz.) was also placed in a polyethylene bag, allowed to attain ambient temperature, and then subjected to a headspace analysis via a 5- gas meter. Data collected during the installation of the test pits were recorded on field forms and are included in **Appendix D**.

The soil samples that were collected and analyzed are listed below.

TEST PIT SAMPLE SUMMARY				
Sample ID	Justification	Analysis		
TP-1	To evaluate degree and	- pH via EPA Method 9040 / 9041,		
TP-2	extent of contamination in subsurface soils	 total organic carbon, PFAS Analyte list compounds via methods based on EPA Method 537.1. 		
TP-4	within the C & D Waste Disposal Area materials.	- SPLP PFAS		
TP-3	To evaluate degree and extent of contamination in subsurface soils within the C & D	 TCL VOCs+10 by EPA Method 8260 TCL SVOCs +20 with 1,4- Dioxane by Method 8270 TAL metals, total cyanide, total mercury TCL PCBs via EPA Method 8082 TCL chlorinated herbicides via EPA Method 8151A, pesticides via EPA Method 8081B, 		
TP-5	Waste Disposal Area materials.	 pH via EPA Method 9040 / 9041, total organic carbon, PFAS Analyte list compounds via methods based on EPA Method 537.1. SPLP PFAS 		

PCBs: Polychlorinated Biphenyls, VOCs: Volatile Organic Compounds, SVOCs: Semi-Volatile Organic Compounds

3.3 Groundwater Investigations

3.3.1 Monitoring Well Installation

On September 29 and 30, 2020, three new bedrock wells (MW-1A, MW-5 and MW-6) were installed by Core Down Drilling, LLC. of Brewster, NY. The bedrock wells were installed using an Air Rotary CME track-mounted rig. The new bedrock wells were installed to better characterize the contaminants as well as to replace MW-1 and MW-4, which were damaged. Depth to the bedrock at the bedrock wells ranged from 1.5 to 4 feet below grade. The bedrock wells were finished as open boreholes with 6-inch permanent steel casing seated into the bedrock. Well construction logs can be found in **Appendix D**.

3.3.2 Methods of Development

Groundwater wells were developed according to methods detailed in the Site-specific SOW Summary and generic FAP on file with the NYSDEC. HRP mobilized to the Site on September 30, 2020, to develop the newly installed monitoring wells. HRP pumped the wells using a submersible "Whale" pump and dedicated high-density polyethylene tubing, oscillating the pump throughout the open borehole. This method was chosen as the appropriate well development method based on water

depth, well productivity, and sediment content of the water. Non-disposable equipment (i.e., water level indicator, pump) were decontaminated prior to use in and between each well. Care was taken not to introduce contaminants to the equipment during well development. All development waters were emptied into a clean 5-gallon pail for approximate volume measurement and were then transferred to a 55-gallon steel drum for future offsite disposal. Groundwater showed no obvious sign of contamination (i.e., odor, sheen, etc.) during well development. The volume of water, depth to bottom of the well, and other visual observations were recorded in a field notebook. Well development logs can be found in **Appendix D**.

3.3.3 Sampling Methods and Procedures

Groundwater wells were sampled in general accordance with Environmental Protection Agency (EPA) low-flow techniques as described in the Site-specific scope of work and generic FAP. Monitoring well sampling data was recorded in a groundwater sampling data sheet (provided in **Appendix D**).

To evaluate the groundwater quality beneath the Site, groundwater samples were collected from each of the monitoring wells (MW-1A through MW-6). The groundwater samples that were collected and analyzed are listed in the table below.

Groundwater samples were submitted for analysis of:

- TCL VOCs +10 by EPA Method 8260;
- TCL SVOCs +20 by EPA Method 8270;
- TAL metals by EPA Methods 6010D & 6020B:
- Total cyanide by EPA 9012B;
- Total mercury by EPA Method 7473;
- PCBs by EPA Method 8082A;
- chlorinated herbicides, pesticides by EPA Method 8081B;
- PFAS Analyte list compounds by modified EPA Method 537; and
- 1,4-dioxane by EPA Method 8270 SIM.

Sample ID	Construction Details	Sample Location	Justification
MW-1A	Open borehole 4 ft bg		Evaluate groundwater
	to 41 ft bg	Northeast of the C & D	quality upgradient of the
		waste disposal area	C & D waste disposal area
MW-2	Open borehole 3 ft bg		Evaluate groundwater
	to 43 ft bg	Southwest of the C & D	quality downgradient of
		waste disposal area	the C & D waste disposal
			area
MW-3	Open borehole 4.5 ft		Evaluate groundwater
	bg to 37 ft bg	West of the C & D waste	quality downgradient of
		disposal area	the C & D waste disposal
			area

Sample ID	Construction Details	Sample Location	Justification
MW-5	Open borehole 1.5 ft bg to 41.2 ft bg	South of the C & D waste disposal area	Evaluate groundwater quality cross-gradient of the C & D waste disposal area
MW-6	Open borehole 3 ft bg to 27 ft bg	West of the C & D waste disposal area	Evaluate groundwater quality downgradient of the C & D waste disposal area

3.4 Surface Water Investigation

To evaluate the condition of Site's surface water, HRP mobilized to the Site on November 3 and 13, 2020 and collected a total of four surface water samples (SW-1 through SW-4). Surface water sample locations were proposed in the work assignment and were modified in the field based on Site conditions (i.e., water levels).

All surface water samples were submitted for analysis of:

- TCL VOCs+10 by Method 8260;
- TCL SVOCs +20 by Method 8270;
- TAL metals by EPA Methods 6010D & 6020B:
- Total cyanide by EPA 9012B;
- Total mercury by EPA Method 7473;
- PCBs via Method 8082
- chlorinated herbicides and pesticides by EPA Method 8151A;
- 1,4 dioxane via EPA Method 8270 SIM; and
- PFAS Analyte list compounds via methods based on EPA Method 537.1.

The surface water locations are shown on Figure 2 and are summarized below:

SURFACE WATER SAMPLE SUMMARY				
Sample ID	Sample Location	Justification		
SW-1	Upgradient of C & D Waste Disposal Area taking in ponding area	Evaluate surface was prior to flowing through the C & D Waste Disposal Area culvert pipe		
SW-2	Directly downgradient of C & D Waste Disposal Area material, taken within culvert of surface water after flowing through C & D Waste Disposal Area material	Evaluate the surface water as it flows directly out of the C & D Waste Disposal Area culvert pipe		
SW-3	Downgradient of C & D Waste Disposal Area culvert pipe	Evaluate the surface water entering the onsite wetland		
SW-4	Downgradient of C & D Waste Disposal Area prior to flowing under interstate towards reservoir	Evaluate surface water leaving the Site		

Surface-water logs can be found in **Appendix D**.

To inspect the condition of the culvert pipe, HRP and Underground Surveying mobilized to the SPite on March 10, 2021 to perform a video inspection of the culvert pipe. Underground Surveying used the P350 flexitrax robotic crawler manufactured by SPX Corp. to record a video of the inside of the culvert pipe. The robotic crawler entered the culvert pipe from the upgradient (northern) end. The robotic crawler progressed 74 feet into the culvert pipe before the route was deemed impassible due to mud. Due to a steep slope and icy conditions, the downgradient (southern) end of the culvert pipe was inaccessible.

3.5 Sediment Investigations

To evaluate the condition of on-site Site's sediment, HRP mobilized to the Site on November 3 and 13, 2020 and collected a total of four sediment samples (S-1 through S-4). The sediment samples were collected at the same location as the surface water samples.

All sediment samples were submitted for analysis of:

- Total carbon by the Llyod Kahn Method;
- TCL VOCs+10 by Method 8260;
- TCL SVOCs +20 by Method 8270;
- TAL metals by EPA Methods 6010D & 6020B:
- Total cyanide by EPA 9012B;
- Total mercury by EPA Method 7473;
- PCBs via Method 8082;
- chlorinated herbicides and pesticides by EPA Method 8151A
- 1,4 dioxane via EPA Method 8270 SIM; and
- PFAS Analyte list compounds via methods based on EPA Method 537.1.

The sediment sample locations are shown on Figure 2.

HRP geologist collected sediment samples, placed in laboratory-provided containers, labeled, and preserved on ice in a cooler. Each sample was also reviewed for physical evidence of contamination (i.e., odor, staining).

In addition, a small portion (1-2 oz.) was also placed in a polyethylene bag, allowed to attain ambient temperature, and then subjected to a headspace analysis via a 5- gas meter.

3.6 Deviations from Work Plan

During the SC, deviations from the work plan were as follows:

To evaluate groundwater quality and to obtain flow information, a total of six bedrock wells
were proposed for installation as part of the SC. Three bedrock wells along interstate-84
were not installed.

Site Characterization Report Fair Street Landfill, Site #340021 131 Carmel Drive, Carmel, NY Page 21 of 34

- The bedrock wells were proposed to be 20 feet into bedrock, however, due to minimal water visibility while drilling, the bedrock wells were installed up to 35 feet into bedrock under a second mobilization.
- The characterization of bedrock properties using borehole geophysics was proposed on the newly installed bedrock wells. After review of the results of the bedrock well installation logs, additional analysis of bedrock characteristics using borehole geophysics were determined to be unnecessary.

3.7 Technical Correspondence

Correspondence between HRP and NYSDEC was generally limited to conversations on-site during field activities, e-mails, and telephone conversations.

4.0 NATURE AND EXTENT OF CONTAMINATION

In order to identify the nature and extent of contamination at the Site, HRP submitted soil and groundwater samples to a NYSDOH ELAP (Environmental Laboratory Approval Program) certified laboratory for analysis of PFAS, VOCs, SVOCs, PCBs, pesticides, and TAL Metals.

Eurofins TestAmerica Laboratory, located in King of Prussia, Pennsylvania, an approved NYSDOH ELAP provided the analytical laboratory services for this project. Laboratory results are included in **Appendix E**. A NYSDEC-approved data validator, Alpha Geoscience, provided data validation services for this project. Data qualifiers and their definitions are included in **Appendix F**. The presentation of results within this text does not include data qualifiers. Detected chemical compounds in the various media sampled as part of the SC and the analytical results are presented in **Tables 2 through 7**. A general description of the various media sampled and analyzed is provided below.

- Surface soil sample (SS-1 through SS-5) were collected from areas with staining and equipment storage at depths ranging from 3 inches to 12 inches bgs;
- Subsurface soil samples (SB-1 through SB-10 [various depths]) were collected from soil borings located along the waste disposal boundary and on-site at depths ranging from 0 to 25 feet bgs;
- Test pit soil samples (TP-1 through TP-5) were collected within the waste disposal area; at depths ranging from 8 to 10 ft bg;
- Surface water (SW-1 through SW-4) and sediment (S-1 through S-4) samples were collected above and below the culvert that runs through the C & D Waste Disposal Area; and
- Groundwater samples were collected from monitoring wells (MW-1A through MW-6).

In order to determine if contaminant sources remained on-site, this SC evaluated a broad range of parameters including, VOCs, SVOCs, metals, PCBs, herbicides, and PFAS. Compounds detected in the various media tested during this SC were compared to the following New York State standards, criteria, and soil guidance values (SCGs):

- NYSDEC Division of Water Technical and Operational Guidance Series (TOGS 1.1.1);
 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations dated October 1993; Revised June 1998; ERRATA Sheet dated January 1999; and Addendum dated April 2000.
- NYSDEC Regulation, 6 NYCRR Subpart 375-6, "Remedial Program Soil Cleanup Objectives" which applies to the development and implementation of the remedial programs for soil and other media set forth in subparts 375-2 through 375-4 [Inactive Hazardous Waste Disposal Site Remedial Program, Brownfield Cleanup Program, and Environmental Restoration Program] and includes the soil cleanup objective tables developed pursuant to ECL 27-1415(6).

- Screening values for soil and groundwater contained in NYSDEC guidance document "Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS) under NYSDEC's Part 375 Remedial Programs", dated January 2021 (NYSDEC screening values).
- Freshwater Sediment Guidance Values contained in Table 5 of NYSDEC guidance document "Screening and Assessment of Contaminated Sediment" Dated June 24, 2014 (FSGVs). Specifically results were compared to the threshold criteria for the following Sediment Classification Categories: Class A (to presents little or no potential for risk to aquatic life), Class B (additional information is needed to determine the potential risk to aquatic life), and Class C (high potential for the sediments to be toxic to aquatic life).

To be consistent with the current and future use as a commercial use property, soil analytical results for this investigation were compared against NYSDEC 6 NYCRR Part 375-6 Unrestricted Use and, Commercial Use and the Protection of Groundwater Soil Cleanup Objectives (SCOs).

4.1 Soils

4.1.1 Surface Soil

Observations

Obvious indications of contamination (i.e., staining, odors) were not observed in the surface soil samples, with the exception of oily residue staining and slight petroleum odors observed at surface sample locations SS-1 and SS-2. Soil samples were screened for VOCs with a photoionization detector (PID), with no detectable results. Sample Logs are included in **Appendix D**.

Analytical results

Five (5) surface soil samples (SS-01 through SS-05) were collected on September 14, 2020. The samples were analyzed as described above. Sample results are presented below, on **Tables 3 and 3 A** and **Figures 5 and 6**.

VOCs were not detected in the surface soil samples at concentrations exceeding applicable SCGs, with the exception of acetone in SS-01 (120 ug/kg), SS-02 (98 ug/kg) and SS-06 (120 ug/kg), which exceed the Protection of Groundwater (PGW SCO) and Unrestricted Use SCO (50 ug/kg). It should be noted acetone is a common laboratory contaminant. Additional VOCs were detected at concentrations exceeding laboratory detection limits, but below applicable SCGs in each surface soil sample. VOC analytical results for surface soil samples are listed in **Table3**.

One SVOC, benzo(a)pyrene (1,200 ug/kg) was detected at a concentration exceeding the Commercial Use SCO (1,000 ug/kg) in one surface soil sample (SS-03). Several other SVOCs were detected in SS-03 at concentrations exceeding the Unrestricted Use SCO and/or the PGW SCO including benzo(a)anthracene, benzo(b)fluoranthene, chrysene and indeno(1,2,3-cd)pyrene. SVOCs were not detected at concentrations exceeding applicable SCOs in any other surface soil sample. Laboratory detection limits were generally higher than applicable SCOs for the samples collected from SS-01 and SS-05. SVOC results for surface soil samples are listed in **Table 3**

Metals were not detected in the surface soil samples at concentrations exceeding Commercial SCOs, with the exception of barium which was detected in SS-04 at a concentration of 480 mg/kg, exceeding the Commercial SCO of 400 mg/kg. One or more metal was detected at concentrations exceeding Unrestricted Use SCOs and/or PGW SCOs in four of the five surface soil samples analyzed (SS-01, SS-03, SS-04 and SS-05). Metal results for surface soil samples collected are listed in **Table 3.**

PCBs were not detected in surface soil samples collected at the Site at concentrations exceeding laboratory detection limits, with the exception of Aroclor 1254, which was detected in sample SS-04 at a concentration of 660 ug/kg, slightly exceeding the Unrestricted Use SCO of 100 ug/kg. PCB results for surface soil samples are listed in **Table 3**.

One pesticide, 4,4'-DDT, was detected exceeding the Unrestricted Use SCO in four of the five surface soil samples analyzed (SS-1, SS-3, SS-4 and SS-5). Although 4,4'-DDT was not detected above laboratory detection limits in SS-02, the detection limit was greater than the Unrestricted Use SCO. Pesticide results for surface soil samples are listed in **Table 3**.

One PFAS, PFOS, was detected at concentrations exceeding the NYSDEC guidance value for Unrestricted Use in four of the five samples analyzed (SS-02, SS-03, SS-04 and SS-05). PFOA was not detected at concentrations exceeding SCO guidance values. Results for subsurface soil samples are listed in **Table 3A**.

4.1.2 Subsurface Soils- Soil Borings

Observations

Obvious indications of contamination (i.e., staining, odors) were not observed in the subsurface soil samples, with the exception of slight organic odors noted in in SB-4 and SB-10, moderate staining was also observed in SB-10. Soil samples were screened for VOCs with a PID and results were all 0.0 ppm. Sample Logs are included in **Appendix D**.

Analytical results

Ten (10) subsurface soil samples, plus one (1) field duplicate and one (1) matrix spike/matrix spike duplicate (MS/MSD), were collected from soil borings during the SC investigation on September 15, 2020. Three samples were submitted for analysis as described above. Sample results are presented below, on **Tables 2 and 2A** and on **Figures 5 and 6**.

VOCs were not detected in the subsurface soil samples at concentrations exceeding applicable SCGs, with the exception of acetone in SB-8 (0-2) (59 ug/kg), and SB-10 (0-5) (130 ug/kg), which exceeds the Protection of Groundwater (PGW SCO) and Unrestricted Use SCO (50 ug/kg). Acetone is a common laboratory contaminant. Additional VOCs were detected at concentrations exceeding laboratory detection limits, but below applicable SCGs in each sample. VOC analytical results for soil borings are listed in **Table 2**.

Multiple SVOCs were detected at concentrations exceeding Commercial SCOs, PGW SCOs and Unrestricted Use SCOs in each of the three samples analyzed. Results for subsurface soil samples are listed in **Table 2**.

Metals were detected at concentrations exceeding laboratory detection limits in each of the three samples analyzed. With the exception of the concentration of chromium (31.5 mg/kg) exceeding the Unrestricted Use SCO (30 mg/kg), metals were not detected at concentrations exceeding SCGs in SB-5 (0-2). Several metals were detected at concentrations exceeding applicable SCOs in each of the two samples collected from inside the C & D Waste Disposal Area (SB-8 (0-2) and SB-10 (0-5)). Metals results for subsurface soil samples are listed in **Table 2**.

PCBs and Herbicides were not detected at concentrations exceeding laboratory detection limits in any of the samples collected and analyzed form the soil borings.

Several pesticides were detected exceeding the Unrestricted SCOs including 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, and dieldrin in soil sample SB-8 (0-2) and 4,4'-DDT in soil boring SB-5 (0-2). Pesticides were not detected at concentrations exceeding PGW SCOs or Commercial Use SCOs in any sample collected from the soil borings. Pesticides results for subsurface soil samples are listed in **Table 2**.

PFOA was detected in two samples (SB-2 (0-2) (2.3 ug/kg) and SB-4 (0-2) (1.1 ug/kg)) at concentrations exceeding the Unrestricted Use SCO (0.66 ug/kg) and the PGW SCO (1.1 ug/kg). PFOA was not detected at concentrations exceeding the Commercial SCO in any sample. PFOS was detected at concentrations exceeding the Unrestricted Use SCO in five of the eleven samples that were analyzed. PFOS was not detected at a concentration exceeding the PGW SCO or the Commercial Use SCO in any sample. Analytical results for subsurface soil samples analyzed for PFAS are listed in **Table 2A**.

To evaluate the potential for PFAS to mobilize in the subsurface, four samples (SB-1 (1-2), SB-5 (0-2), SB-8 (0-2), and SB-10 (0-5)) were analyzed SPLP PFAS, total organic carbon and pH.

Leachable PFOA was detected in each of the four samples, at concentrations ranging from 2.7 ng/l in SB-5 (0-2) to 15.0 ng/l in SB-8 (0-2). Leachable PFOS was detected in each of the four samples, at concentrations ranging from 13 ng/l in SB-1 (1-2) and SB-5 (0-2) to 150 ng/l in SB-8 (0-2). The total organic carbon ranges from 7,680 mg/kg to 61,900 mg/kg with the two soil borings taken within the C & D Waste Disposal Area, SB-8 and SB-10, having the highest concentration at 61,900 mg/kg and 52,600 mg/kg. The pH from these borings ranged from 6.5 to 7.2. These measurements are listed in **Table 2A**.

4.1.3 Subsurface Soil - Test Pits

Observations

Slight petroleum odors were observed in TP-2, slight organic material odor in TP-4 and TP-5 and a sulfur odor was observed in TP-3, as well as a detection of hydrogen sulfide at a concentration of 0.2 ppm. PID readings were all 0.0 ppm. An oil sheen was observed in TP-2 approximately 5 feet below grade. Soil observations and five- gas measurements are presented as **Attachment D**.

Analytical Results

Five (5) subsurface soil samples were collected from test pits during the SC investigation on September 14, 2020. The subsurface samples were submitted for analysis as described above Sample results are presented below, on **Tables 4**, **4A**, **and 4B** and on **Figure 5 and 6**.

VOCs were not detected in the test pit soil samples at concentrations exceeding applicable SCGs, with the exception of acetone in TP-3 (64 ug/kg), and TP-5 (120 ug/kg), which exceeds the PGW SCO and Unrestricted Use SCO (50 ug/kg). Acetone is a common laboratory contaminant. Additional VOCs were detected at concentrations exceeding laboratory detection limits, but below applicable SCGs in each sample. VOC results are listed in **Table 4**.

Three SVOCs, benzo(a) anthracene, benzo(a)pyrene, and benzo(b)fluoranthene, were detected at concentrations exceeding SCOs in each of the samples analyzed from the test pits. The compounds were detected at concentrations exceeding the Unrestricted Use SCOs and PGW SCOs, but below the Commercial SCOs in TP-3. Each compound was detected at a concentration exceeding all three relevant SCOs in TP-5. SVOC results are presented in **Table 4**.

Several metals, including barium, chromium, lead, mercury, nickel, and zinc were detected in both samples at concentrations exceeding Unrestricted Use SCOs and/or PGW SCOs. No metals were detected in either sample at concentrations exceeding Commercial Use SCOs. Metals results are presented in **Table 4**.

One PCB Aroclor, Aroclor 1242, was detected in both soil samples at concentrations exceeding the Unrestricted Use SCO. No other PCBs were detected above laboratory reporting limits. PCB results for the test pit soil samples are listed in **Table 4**.

Herbicides were not detected in the test pit samples at concentrations exceeding laboratory reporting limits.

Pesticides were detected at concentrations that exceed Unrestricted Use SOCs in each of the samples collected from the test pits. 4,4'-DDE, and 4,4'-DDT were detected at concentrations exceeding Unrestricted Use SOCs in TP-5, and 4,4'-DDE, was detected at a concentration exceeding the Unrestricted Use SCO in TP-3. Pesticide results for the test pit soil samples are listed in **Table 4**.

PFOS was detected at concentrations exceeding the SCO guidance values in TP-1, TP-2, TP-4, and TP-5. PFOA was detected at concentrations exceeding SCO guidance values in TP-1, TP-2, TP-4, and TP-5. Results for subsurface soil samples are listed in **Table 4A**.

To evaluate the potential for PFAS to mobilize in the subsurface, each of the samples collected from the test pits was analyzed for SPLP PFAS, total organic carbon and pH. Leachable PFOA was detected in each of the five samples, at concentrations ranging from 4.6 ng/l in TP-3 to 84 ng/l in TP-1. Leachable PFOS was detected in each of the five samples, at concentrations ranging from 37 ng/l in TP-3 to 290 ng/l in TP-5. The total organic carbon concentrations ranged from 49,300 mg/kg in TP-4 to 69,200 mg/kg in TP-5. The pH from these borings ranged from 7.1 to 7.7.

Total Oxidation Precursor (TOP) Assay analysis was conducted on the soil sample taken from TP-5. TOP Assay is used to identify the PFAS that can be biotically and abiotically transformed into Perfluoroalkyl acids (PFAAs). The TOP assay results in TP-5 indicates an approximately 72% increase in measurable PFAS from the pre- treatment to the post- treatment methods. The increase between the pre and the post TOP Assay results indicate a presence of and a potential for precursor conversion. In the case of a leachate system remedy, this conversion into detectable PFAS would increase effluent PFAS values increasing the need for treatment. The results for the TOP Assay PFAS analysis of the test pit soil sample collected is summarized on **Table 4B**.

4.2 Groundwater

Observations

No obvious visual or olfactory evidence (i.e., staining or odors) of contamination was noted in groundwater samples collected at the Site in this limited subsurface investigation. Groundwater monitoring logs are presented in **Appendix D**.

Analytical Results

Five (5) groundwater samples were collected on November 13, 2020, from two existing bedrock wells (MW-2 and MW-3) and three new bedrock wells (MW-1A, MW-5 and MW-6).

Groundwater samples collected from MW-1A, MW-2, MW-3 and MW-5 were analyzed as described above. The results for the analysis of the groundwater samples collected from monitoring wells are summarized below, shown on **Table 7**, **7A**, **and 7B** and **Figures 7 and 8**.

VOCs, SVOCs, pesticides, herbicides, 1,4-dioxane, and PCBs, were not detected in any groundwater sample at concentrations exceeding TOGS values. The results for the groundwater samples are listed in **Table 7**.

Several metals, including antimony, iron, magnesium, manganese, sodium, and thallium were detected above the TOGS values in one or more monitoring well. The metals results for the groundwater samples are listed in **Table 7**.

PFAS were detected above the NYSDEC Screening Values in four of the five monitoring wells sampled onsite. In MW-2, concentrations of PFOA, PFOS, and total PFAS exceeded NYSDEC Screening Values. In MW-3 concentrations of PFOA, PFOS, PFHxA, PFDS, and total PFAS exceeded NYSDEC Screening Values. In MW-5 and MW-6, concentrations of PFOA and PFOS exceeded NYDEC Screening values. PFAS were not detected at concentrations exceeding NYSDEC screening values in MW-1A. The PFAS results for the groundwater samples are listed in **Table 7A**.

TOP Assay analysis was conducted on the groundwater sample taken from MW-3. TOP Assay is used to identify the PFAS that can be biotically and abiotically transformed into Perfluoroalkyl acids (PFAAs). The TOP Assay results in MW-3 indicate an approximate 25% decrease in measurable PFAS from the pre- to the post- treatment methods. The decrease between the pre- and the post- TOP

Assay results indicate a lack of potential for precursor conversion into measurable PFAS in the groundwater. The results for the TOP Assay PFAS analysis of the groundwater sample collected is summarized on **Table 7B**.

4.3 Surface Water and Sediment

4.3.1 Surface Water

Observations

An organics odor was observed in SW-1 and SW-4 surface water samples collected at the Site in this investigation. A sheen or NAPL was not observed at any surface water sample location. Surface water logs are presented in **Attachment D**.

Culvert Pipe

In general, the interior of the 24-inch steel pipe, appeared to be rusted the entire length of the observed pipe. At approximately 9 feet, measured from the upgradient (northern) entrance, the culvert pipe is bulging inwards on the western side and large holes from decay are present. At approximately 38 feet, the culvert pipe has a large hole on the top portion and the pipe appears to be collapsing in. Water was observed dripping into the culvert pipe at this location. At approximately 72 feet, the robotic crawler began to sink into the muddy bottom, indicating that the base of the culvert pipe has rusted away. Due to the potential for the robotic crawler to become stuck inside the culvert pipe, the crawler was reversed out of the pipe at 74 feet. Based on this investigation, it is apparent that water is entering the culvert pipe from the C& D Waste Disposal Area leading to the increased concentrations of PFOA and PFOS in the downgradient surface water.

Analytical results

All the surface water samples were analyzed as described above. Sample results are presented below, in **Table 5 and 5 A** and **Figure 9 and 10**.

VOCs, SVOCs, pesticides, herbicides, 1,4-dioxane, and PCBs, were not detected in any surface water sample at concentrations exceeding TOGS values. Several metals, including (Cadmium, Cobalt, Total Cyanide, Iron, Lead, Mercury, Nickel, Selenium, Silver, and Zinc) were detected at concentrations exceeding the TOGS Class C surface water guidance values. Results for the surface water samples are shown in **Table 5**.

PFOA and PFOS were detected at concentrations exceeding the NYSDEC Screening Values in three of the four surface water samples collected (SW-2, SW-3, and SW-4). PFAS were not detected at concentrations exceeding NYSDEC guidance values in SW-1. PFAS results for the surface water samples are shown in **Table 5A**.

4.3.2 Sediment

Observations

No obvious evidence of contamination was observed in the sediment samples collected at the Site. A slight odor was observed in sediment samples S-1 and S-4. Sediment samples were screened for VOCs using a PID and readings were all below the detection limits of the instrument. Sediment sample logs are included in **Attachment D**.

Four (4) sediment samples (S-1 through S-4) were collected on November 3 and 13, 2020 at the same locations as the surface water samples. All sediment samples were analyzed as described above. Sample results are presented below, and shown in **Tables 6 and 6A** and **Figures 9 and 10**.

Analytical Results

- Concentrations of VOCs detected in sediment samples at the Site were below Class A FSGV concentrations. VOC results for the sediment samples are shown in **Table 6**.
- Individual SVOC concentrations detected in sediment samples at the Site were below Class A FSGV concentrations; however, the concentration of total poly aromatic hydrocarbons (PAHs) in sample S-2 (4,422 ug/kg) exceeds the Class A FSGV and places sediments collected from location S-2 into Class B. Class B sediments are slightly to moderately contaminated. Detected concentrations of SVOCs for the sediment samples are shown in Table 6.
- Detected metals concentrations exceed the Class A FSGVs in all four of the of the sediment samples collected at the Site. Detected metals concentrations in samples S-1 and S-2 place them in Class C. Detected metals concentrations in samples S-3 and S-4 place them in Class B. Detected concentrations of metals for the sediment samples are shown in **Table 6**.
- PCBs and chlorinated herbicides were not detected at concentrations exceeding laboratory detection limits.
- Concentrations of pesticides detected in sediment samples at the Site were below Class A FSGV concentrations. Pesticide results for the sediment samples are shown in **Table 6**.
- FSGVs have not been develop for PFAS compounds, therefore sample results were compared
 to SCOs. PFOS was detected at concentrations exceeding the Unrestricted Use and/or PGW
 SCO guidance values in each of the four sediment samples collected from the Site. PFOA
 was detected at concentrations exceeding Unrestricted Use and PGW SCO guidance values
 in two samples, S-2 and S-4. Detected concentrations of PFAS in sediment are listed in Table
 6A.
- To evaluate the potential for PFAS to mobilize in the sediment, two of the sediment samples (S-2 and S-3) were analyzed SPLP PFAS, total organic carbon and pH. Leachable PFOA was

detected in each of the samples, at concentrations ranging from 11 ng/L in S-3 to 58 ng/L in S-2. Leachable PFOS was detected in each of the five samples at concentrations ranging from 9.4 ng/L in S-3 to 22 ng/L in S-2. The total organic carbon concentrations ranged from 91,500 mg/kg in S-3 to 95,700 mg/kg in S-2. The pH from these samples ranged from 7.4 in S-2 to 6.2 in S-3. Analytical results are shown in **Table 6A**.

4.4 Wastewater Generation

All non-disposable soil sampling equipment was decontaminated between samples using an Alconox wash followed by a clean water rinse. All decontamination wastewater generated during test pit installation activities were placed in labeled 55-gallon drums stored on pallets for future offsite disposal.

4.5 Data Validation and Usability

Analytical data obtained during the SC were validated to evaluate the usability of the data. Data Usability Summary Reports (DUSRs) are provided in **Appendix F**. The DUSRs indicate which data are subject to limitations and identify certain data that are flagged as rejected and should not be used.

All data was qualified as usable with the following exceptions:

- The positive PFAS result for PFOS was qualified as "rejected, unusable" (R) for sample S-4 because the sample was associated with a blank containing an unacceptably high level of PFOS and reported concentration for PFOS was less than 10 times the blank level.
- The positive pesticide result for methoxychlor was qualified as rejected, unusable (R) in sample SB-02 (0-2) because the RPD for dual column quantitation of methoxychlor was above the allowable maximum and above 100% in the sample.
- The "not detected" herbicide result for 2,4-D was qualified as rejected, unusable (R) in sample SB-08 (0-2) because 1 or 2 percent recoveries for 2,4-D was below QC limits and below 10% in the soil MS/MSD sample.

All data that are not qualified rejected, unusable (R) are considered usable, with estimated (J, J-, or UJ) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the DUSR and included as **Appendix F**.

5.0 CONCLUSIONS

The goal of Site Characterization (SC) is to determine whether a Site poses a threat to human health and the environment, and whether the threat requires further investigation, or if sufficient information exists to make a decision regarding remediation at the Site.

5.1 C & D Waste Disposal Area

The information collected during this most recent investigation in combination with past investigations leads HRP to draw the following conclusions with respect to the C & D Waste Disposal Area:

- Based on the results of the SC, the C & D Waste Disposal Area has an aerial extent of approximately 2.25 acres (Figure 2). The C & D Waste Disposal Area ranges in depth from one to approximately twenty (20) feet below the current Site grade.
- Subsurface soil samples collected from inside the C & D Waste Disposal Area were found to contain metals, SVOCs, pesticides, PCBs, PFOA and PFOS at concentrations exceeding SCGs. It is likely that the presence of these contaminants at these concentrations are the source of the observed contamination in surface water and groundwater on and downgradient of the Site.
- Subsurface soil samples collected from outside the C & D Waste Disposal Area were found to contain metals, SVOCs, pesticides, PFOA and PFOS at concentrations exceeding SCGs. Concentrations detected in subsurface soils outside the C & D Waste Disposal Area were significantly lower than those detected inside the Area. The limited impacts to subsurface soil outside the C & D Waste Disposal Area are not a threat to human health or the environment.
- Due to the limited thickness of overburden material, an overburden aquifer was not observed during the SC. The groundwater in the shallow bedrock is believed to be an unconfined water table that flows to the southwest and appears to discharge into a NYS Class 2 freshwater wetland. The results of the SC indicate that the groundwater upgradient of the C & D Waste Disposal Area did not contain contaminants of concern at concentrations exceeding SCGs. All four groundwater samples collected from monitoring wells downgradient of the C & D Waste Disposal Area contained concentrations of contaminants of concern, particularly PFOA and PFOS, at concentrations exceeding SCGs. Based on these results HRP concludes that the groundwater is impacted by the disposal of PFAS containing materials in the C & D Waste Disposal Area.
- HRP has concluded C & D Waste Disposal Area has directly impacted soils at the surface and subsurface immediately within the Area, and adversely affected groundwater and surface water and sediments at and downgradient of the Site, are posing a threat to human health and the environment. In order to mitigate the effect of wastes placed at the C & D Waste Disposal Area,

5.2 Culvert Pipe

The information collected during this most recent investigation in combination with past investigations leads HRP to draw the following conclusions with respect to the culvert pipe:

- Prior to the disposal of C & D waste at the Site, a culvert pipe was installed in a natural drainage feature at the Site. The culvert is set at a depth 15 to 20 feet below the current grade. Surface water enters the culvert at the northern side of the Site, flows through the C & D Waste Disposal Area and discharges to the surface water on the southern end of the C & D Waste Disposal Area. The water then flows southwest to a NYS Class 2 freshwater wetland.
- The results of the SC indicate that the surface water upgradient of the C & D Waste Disposal
 Area did not contain contaminants of concern at concentrations exceeding SCGs. All three
 surface water samples collected from downgradient of the C & D Waste Disposal Area
 contained concentrations of contaminants of concern, particularly PFOA and PFOS, at
 concentrations exceeding SCGs.
- Based on these results HRP concludes that the channelized surface water flowing through the culvert beneath the C & D Waste Disposal Area is impacted by the disposal of PFAScontaining materials. Leachate from the disposal area appears to infiltrate the culvert pipe and cause the culvert pipe at the base of this area to discharge water containing PFAS to the surface water which flows into the freshwater wetland onsite.
- HRP has concluded that the presence of PFAS at concentrations exceeding SCGs in the surface water and sediment downgradient of the Site indicate that the Culvert Pipe transecting the C & D Waste Disposal Area appears to provide a conduit for impacted groundwater and contributes to a threat to human health and the environment.

The results of the SC provide sufficient information to the following recommendations with respect to the Culvert Pipe.

- To prevent the continued release of contaminated surface water emanating from the landfill from continuing to impact surface water resources at the Site via the conduit created by the Culvert pipe, HRP recommends that the surface water entering the C & D Waste Disposal Area via the Culvert Pipe should be re-routed. This could be accomplished in one of three ways:
 - Re-route the surface water to the west, under Commerce Drive, and around the C & D Waste Disposal Area to the wetland area. To keep flow to the wetland consistent with the pre-mitigation rates and volumes, the re-routed water will end at the same existing drainage swale that is currently being utilized. This alternative would require a significant amount of piping and excavation work at depths up to 13 ft bg.
 - o Re-route the surface water to the north and tie into the storm drainage in Commerce Drive. While this alternative will likely require more Site restoration/ paving, the distance to tie into the Commerce Drive storm line is considerably less than re-routing the pipe around the C & D Waste Removal Area. One possible negative aspect of this alternative is that the water normally routed to the wetland would no longer supply the wetland and could negatively affect the flora/fauna and natural biota of the wetland system. This would need to be evaluated prior to implementation.
 - o Fit the existing culvert pipe with a liner to seal off contaminated groundwater from infiltrating into the pipe. In addition, the installation of an anti-seep collar at each

Site Characterization Report Fair Street Landfill, Site #340021 131 Carmel Drive, Carmel, NY Page 33 of 34

end of this pipe would further minimize the risk of contaminated water migration through the base of the waste disposal area along the outside edge of the pipe reducing the likelihood that the Culvert Pipe act as a preferential pathway for impacted groundwater to reach downgradient surface water. If the existing pipe is determined to not be suitable for retrofit with a liner, a smaller diameter pipe may be able to be inserted through the existing culvert in its place. This would need to be evaluated further for consideration to determine if a smaller diameter pipe would be able to accommodate flow through a drainage analysis.

All alternatives would require Engineering Plans and Specifications prepared to support storm drainage design. All alternatives would likely require a Planning Board Site Plan Approval and applications made for the necessary associated town permits.

5.3 Current Use of the Site

The information collected during this most recent investigation leads HRP to draw the following conclusions with respect to the current use of the Site as storage for heavy machinery and equipment:

Surface soil at the Site is impacted by the current Site use as storage for construction equipment.
 Surface soil in the C & D Waste Disposal Area was found to contain metals, SVOCs, pesticides,
 PCBs and PFOS at concentrations exceeding SCGs.

6.0 REFERENCES

Published Resources

- DER-10/ Technical Guidance for Site Investigation and Remediation, May 3, 2010; New York State Department of Environmental Conservation DEC Program Policy
- Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, October 22, 1993, Reissued June 1998; Division of Water Technical and Operational Guidance Series

Environmental Database Provider

Environmental Database Resources (EDR)

- Aerial Photo Decade Package (**Appendix F**)
- Historical Topographic Map Report (Appendix F)
- Certified Sanborn Map Report (Appendix F)
- City Directory Image Report (**Appendix F**)
- Radius Map Report with GeoCheck (Appendix F)

Regulatory Agency Files

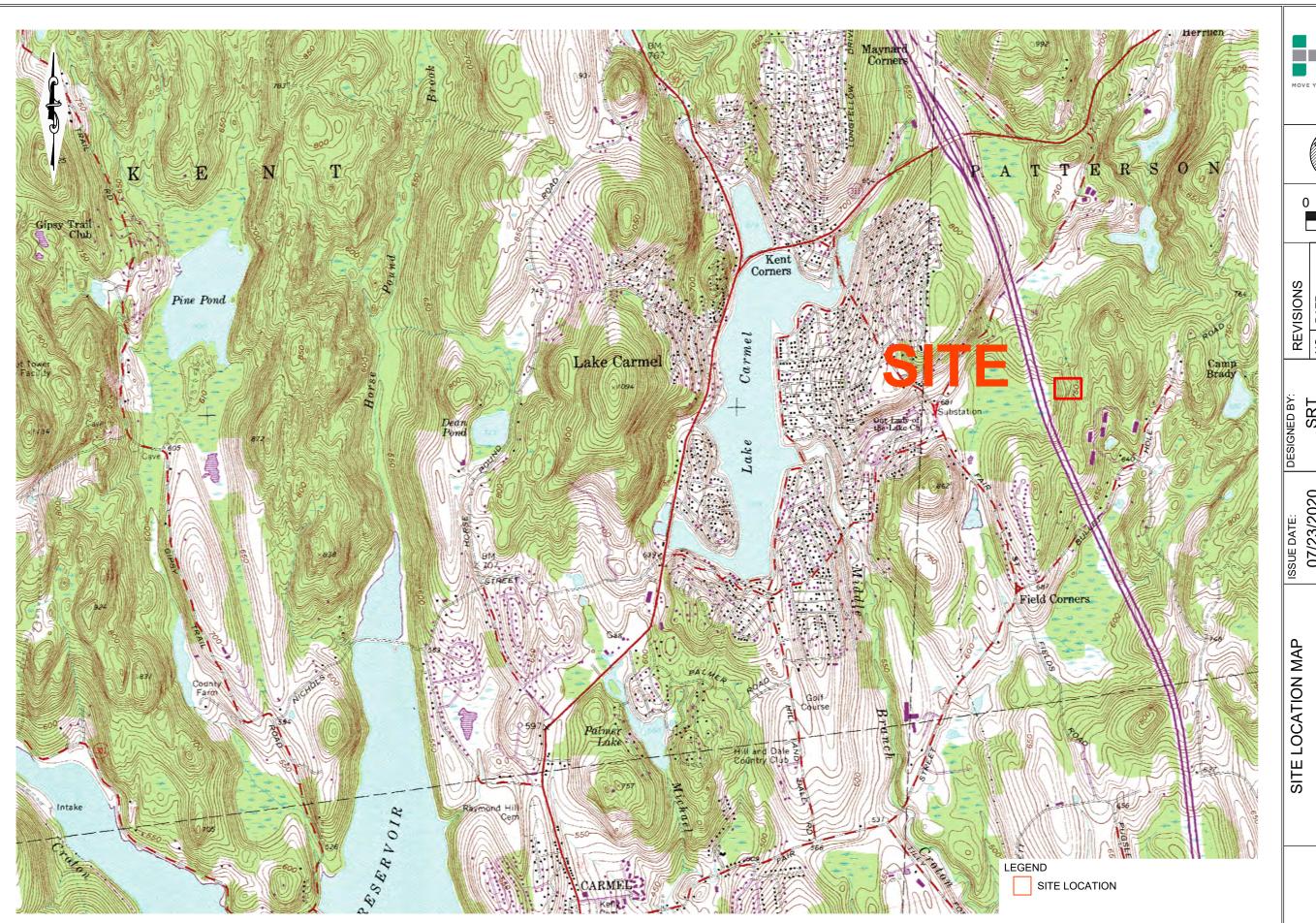
New York State Department of Environmental Conservation

• Environmental Site Database Search (Appendix F)

Putnam County Records

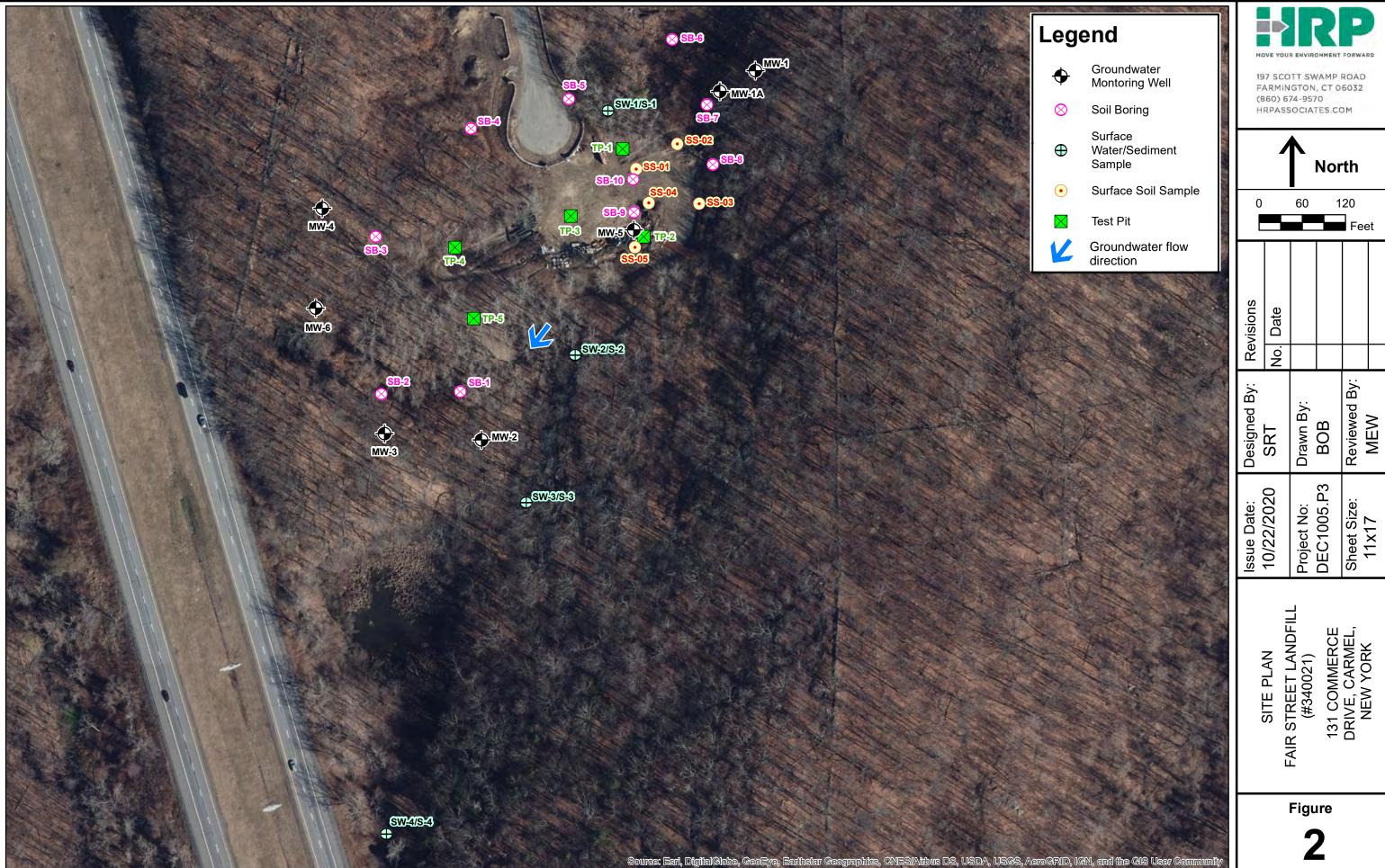
Putnam County Department of Health (Appendix F)

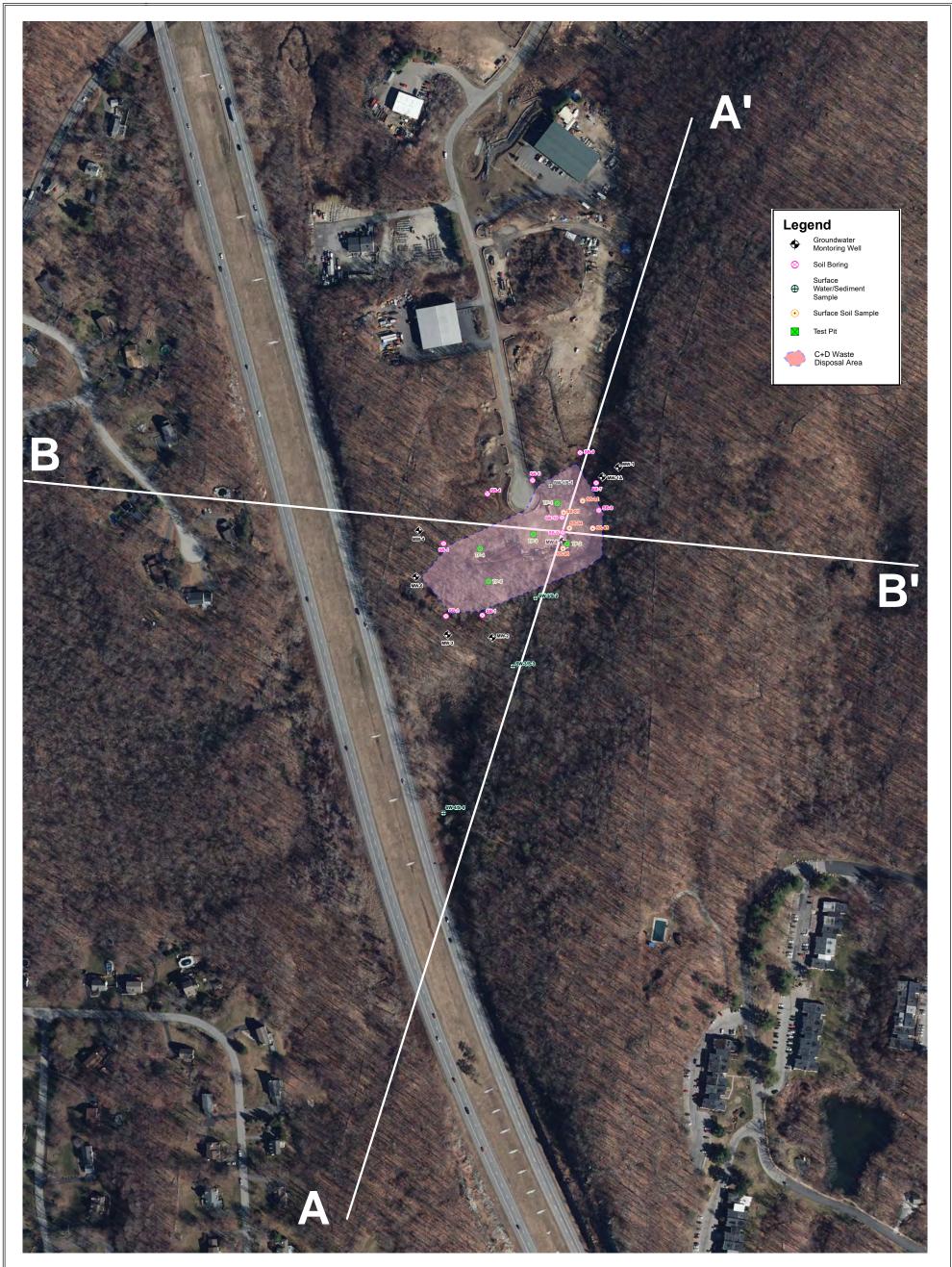
Town of Carmel Records


Town Clerk FOIL Request

Site Characterization Report Fair Street Landfill, Site #340021 131 Carmel Drive, Carmel, NY

FIGURES


NORTH


0 1000' 20 2000' REVISIONS NO. DATE

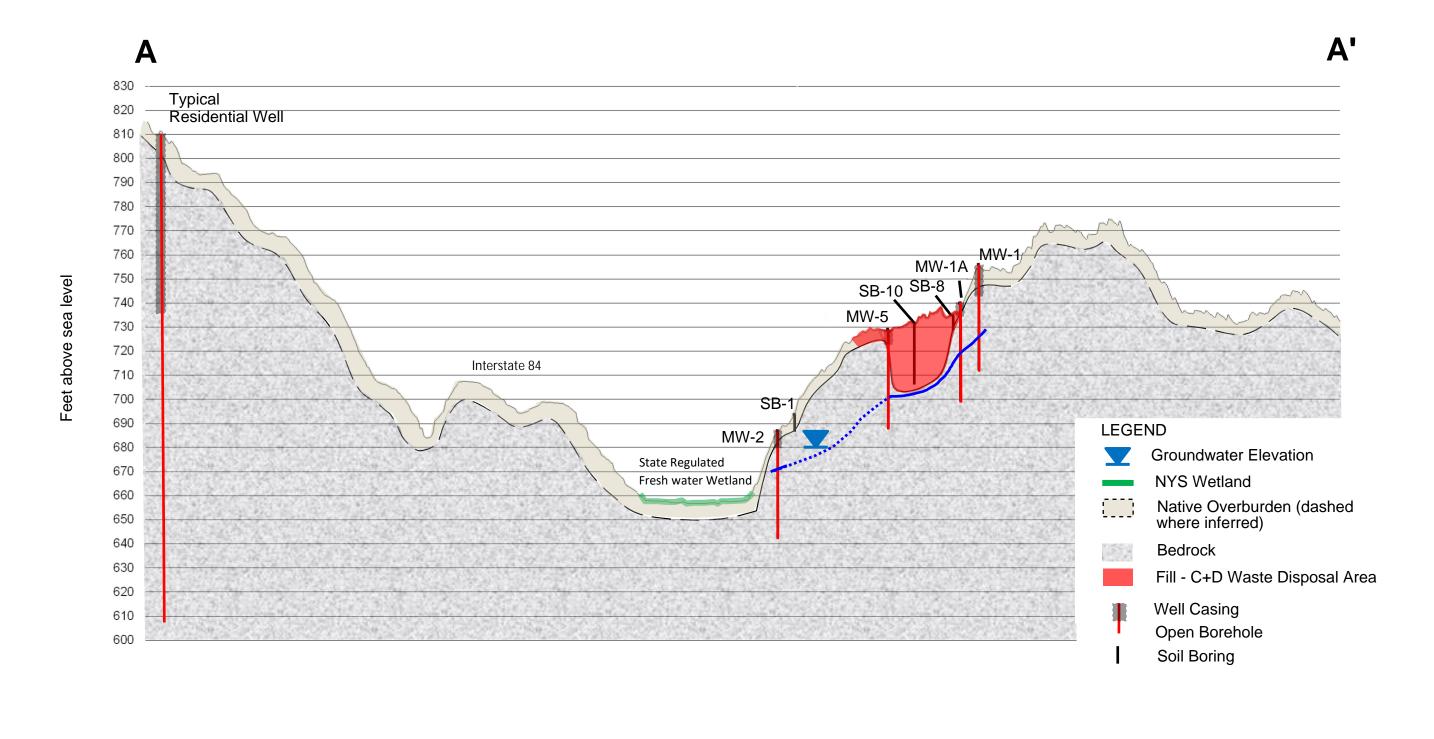
SRT SRT DRAWN BY: PROJECT NUMBER:
DEC1009.RA 07/23/2020 11"x17" SHEET SIZE:

131 COMMERCE DRIVE CARMEL, NEW YORK

FIGURE

MOVE YOUR ENVIRONMENT FORWARD
197 SCOTT SWAMP ROAD

197 SCOTT SWAMP ROAD FARMINGTON, CT 06032 (860) 674-9570 HRPASSOCIATES.COM

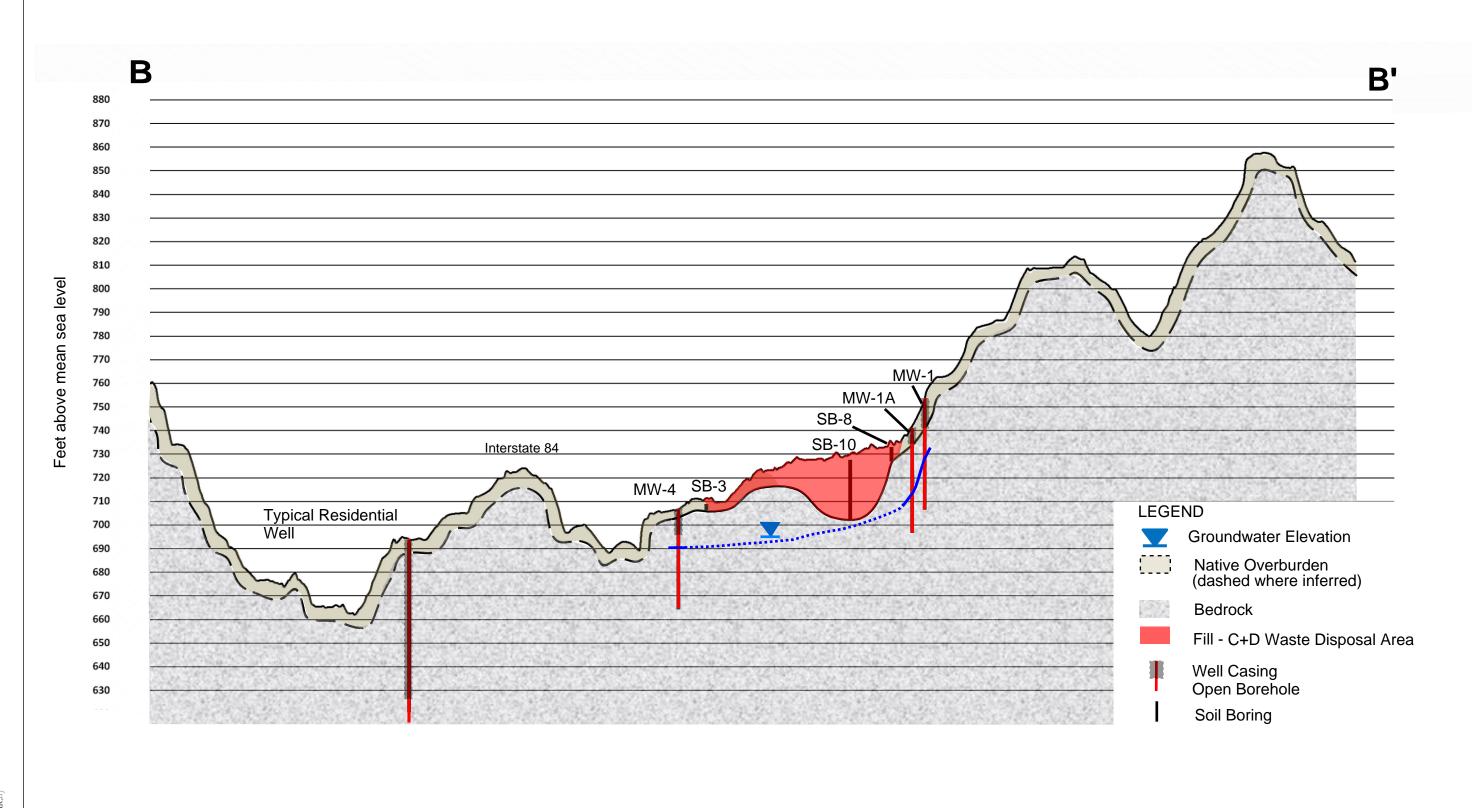

DESIGNED BY:	REVIE
CMS	
DRAWN BY:	PROJI
CMS	DE

E:
2021
≣:
:17"

TRANSECT A-A' AND B-B' FAIR STREET LANDFILL SITE (#340021) 131 COMMERCE DRIVE CARMEL, NEW YORK

FIGURE NO.

3A


	RE'	VISIONS	DESIGNED BY:	REVIEWED BY:	ISSUE DATE:
NORTH	NO.	DATE	CMS	MW	1/18/2021
0 20' 40'			DRAWN BY:	PROJECT NUMBER:	SHEET SIZE:
HEIGHT			CMS	DEC1005.P3	11"x17"
DISTANCE			CIVIS	DEC 1005.P3	11 X17
0 150' 300'					

CROSS SECTION A - A'
FAIR STREET LANDFILL
(#340021)

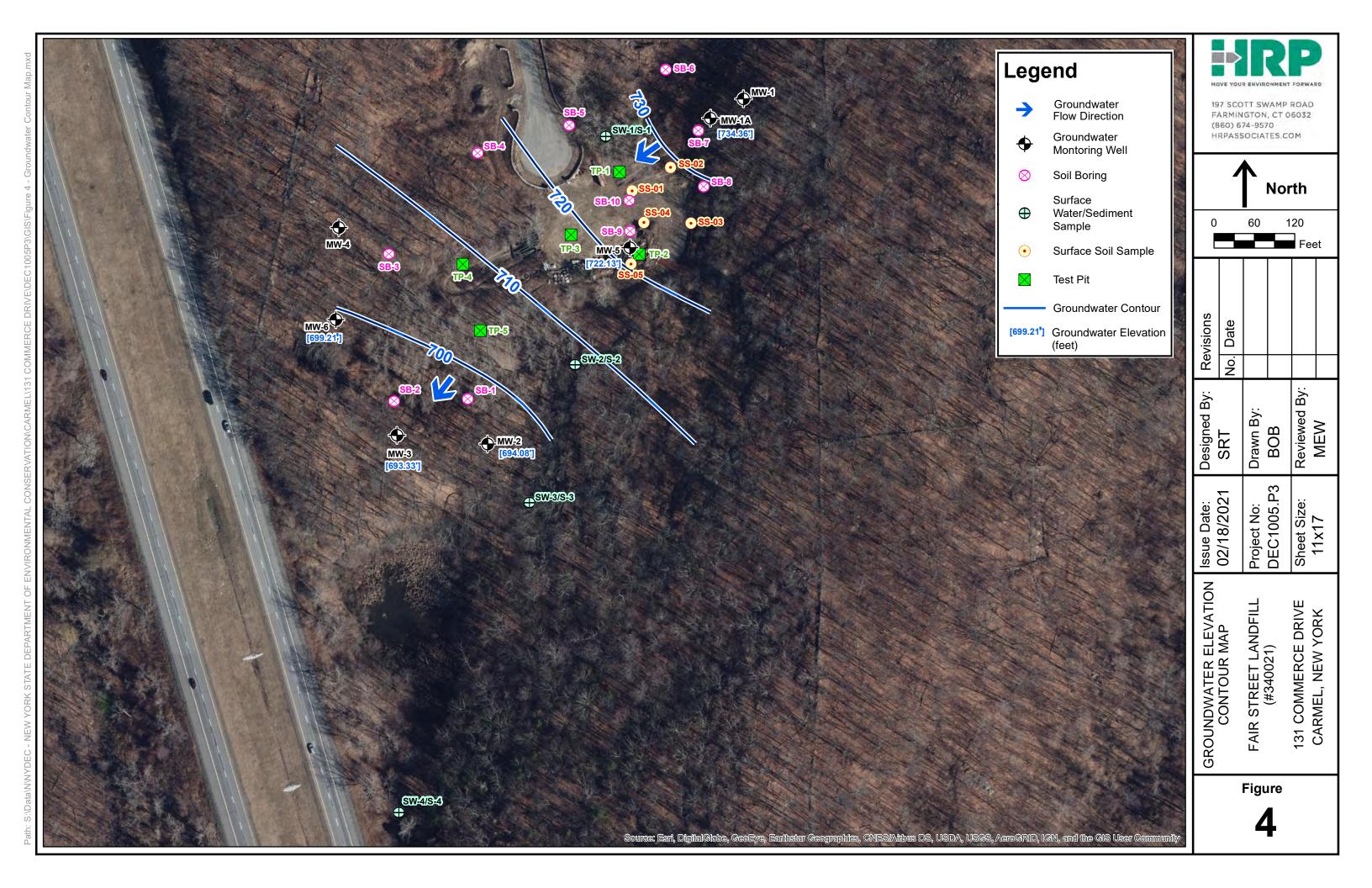
131 COMMERCE DRIVE, CARMEL, NEW YORK

FIGURE NO.

3B

	RE\	VISIONS	DESIGNED BY:	REVIEWED BY:	ISSUE DATE:
NORTH	NO.	DATE	CMS	MW	1/18/2021
0 20' 40'			DRAWN BY:	PROJECT NUMBER:	SHEET SIZE:
HEIGHT DISTANCE			CMS	DEC1005.P3	11"x17"
0 150' 300'			36	223.0000	

CROSS SECTION B - B' FAIR STREET LANDFILL

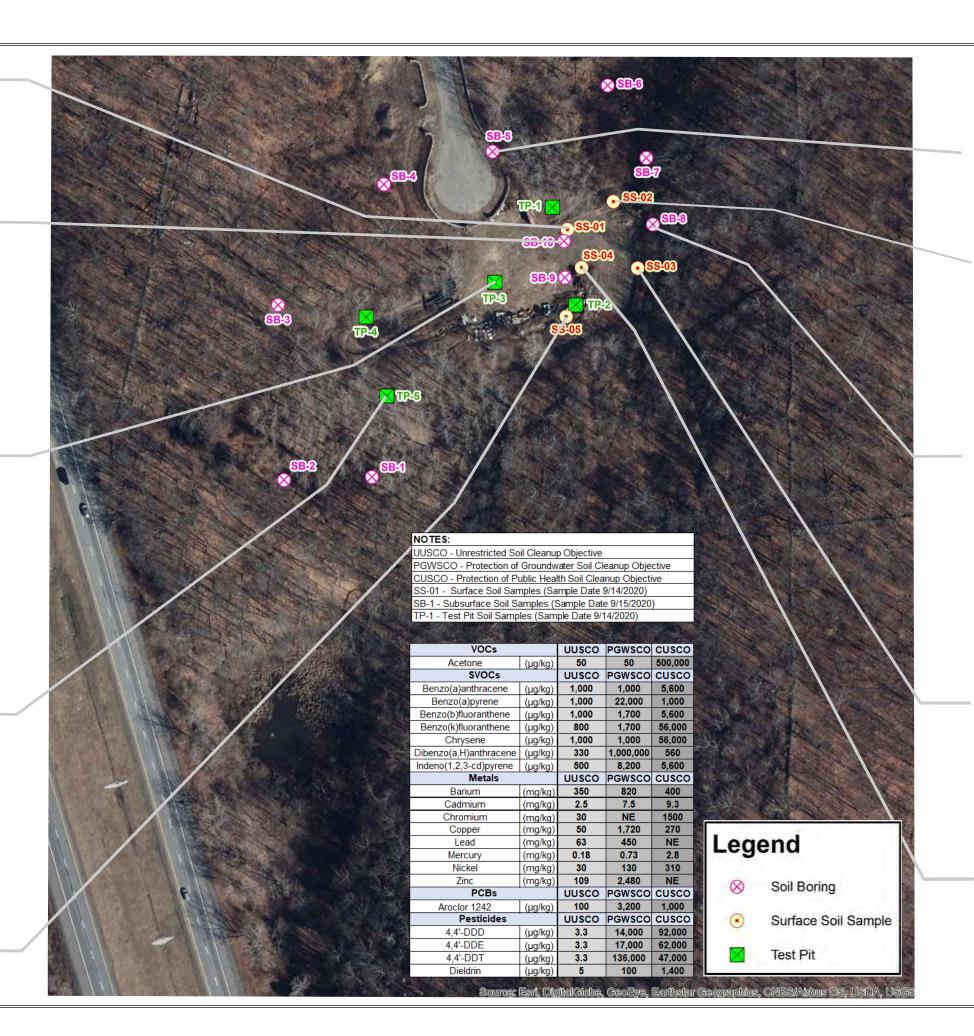

(#340021)

131 COMMERCE DRIVE,

CARMEL, NEW YORK

FIGURE NO.

3C


lt
llt
}
llt

SB-10	
VOCs (µg/kg)	Resu
Acetone	130
SVOCs (µg/kg)	Resu
Benzo(a)anthracene	13,00
Benzo(a)pyrene	15,00
Benzo(b)fluoranthene	18,00
Benzo(k)fluoranthene	6,500
Chrysene	13,00
Indeno(1,2,3-cd)pyrene	8,700
Metals (mg/kg)	Resu
Barium	447
Chromium	32.9
Lead	593
Mercury	0.32
Zinc	486
	•

TP-3	
VOCs (µg/kg)	Resul
Acetone	64
SVOCs (µg/kg)	Resul
Benzo(a)anthracene	4,600
Benzo(a)pyrene	4,300
Benzo(b)fluoranthene	5,000
Metals (mg/kg)	Resul
Barium	1,110
Cadmium	2.5
Chromium	126
Copper	92.4
Lead	640
Mercury	1.1
Nickel	55.9
Zinc	1,120
PCBs (µg/kg)	Resul
Aroclor 1242	570
Pesticides (µg/kg)	Resul
4,4'-DDD	68
4,4'-DDE	55

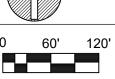
T,T-DDL	-	
TP-5		
VOCs (µg/kg)	Result	
Acetone	120	
SVOCs (µg/kg)	Result	
Benzo(a)anthracene	11,000	
Benzo(a)pyrene	11,000	
Benzo(b)fluoranthene	15,000	
Metals (mg/kg)	Result	
Barium	1,680	
Chromium	65.7	
Lead	709	
Mercury	0.48	
Nickel	32.9	
Zinc	1,190	
PCBs (µg/kg)	Result	
Aroclor 1242	510	
Pesticides (µg/kg)	Result	
4,4'-DDD	27	
4,4'-DDE	35	
4,4'-DDT	48	

SS-05	
VOCs (µg/kg)	Result
Acetone	120
SVOCs (µg/kg)	Result
Benzo(b)fluoranthene	1,000
Metals (mg/kg)	Result
Zinc	116
Pesticides (µg/kg)	Result
4,4'-DDT	29

SB-5	
(µg/kg)	Result
nthracene	4,100
)pyrene	4,000
oranthene	4,400
oranthene	2,100
sene	3,700
)anthracene	670
-cd)pyrene	2,100
mg/kg)	Result
nium	31.5
s (µg/kg)	Result
TDC	23

SS-02	
VOCs (µg/kg)	Result
Acetone	98

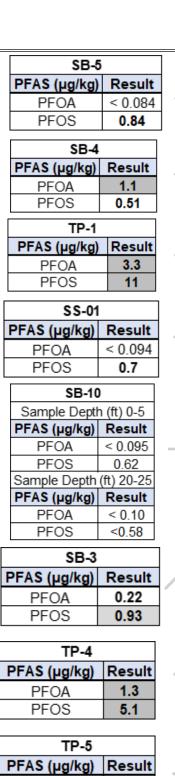
	SB-8
Resul	VOCs (µg/kg)
59	Acetone
Resul	SVOCs (µg/kg)
6,600	Benzo(a)anthracene
7,500	Benzo(a)pyrene
8,800	Benzo(b)fluoranthene
Resul	Metals (mg/kg)
2280	Barium
3.2	Cadmium
210	Chromium
144	Copper
1,420	Lead
0.58	Mercury
68.8	Nickel
811	Zinc
Resul	Pesticides (µg/kg)
200	4,4'-DDD
86	4,4'-DDE
440	4,4'-DDT
76	Dieldrin

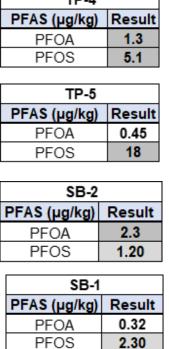

SS-03		
SVOCs (µg/kg)	Result	
Benzo(a)anthracene	1,300	
Benzo(a)pyrene	1,200	
Benzo(b)fluoranthene	1,400	
Chrysene	1,200	
Indeno(1,2,3-cd)pyrene	700	
Metals (mg/kg)	Result	
Chromium	38.6	
Lead	235	
Zinc	263	
Pesticides (µg/kg)	Result	
4,4'-DDT	15	

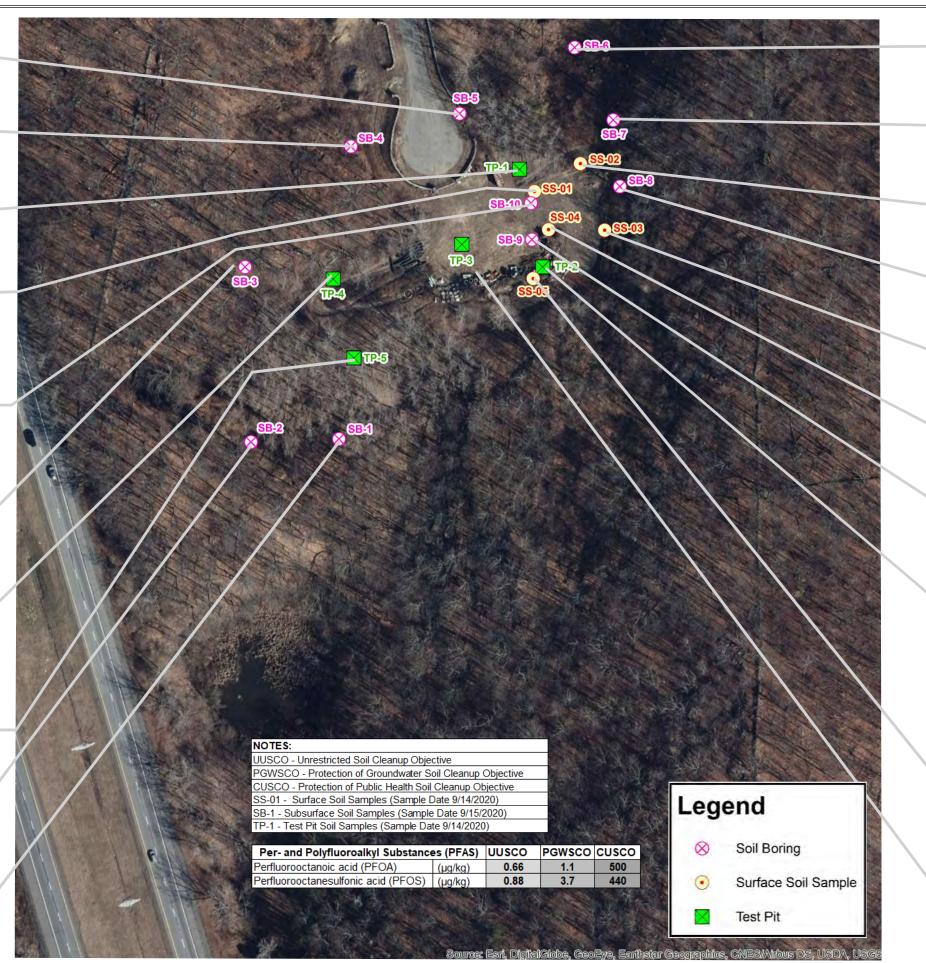
04	SS-04
g) Result	Metals (mg/kg)
480	Barium
37.5	Chromium
62.6	Copper
429	Lead
0.26	Mercury
631	Zinc
) Result	PCBs (µg/kg)
660	Aroclor 1254
kg) Result	Pesticides (µg/kg)
16	4,4'-DDT

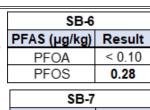
\Rightarrow	P	P
VE YOUR E	NVIRONMENT	FORWARD
NE FAIR	CHILD SQU	ARE

SUITE 110 CLIFTON PARK, NY 12065 (518) 877-7101 HRPASSOCIATES.COM




	L						_	
REVISIONS)	NO. DATE						
R F	ļ	NO.						
DESIGNED BY:		YMY	DRAWN BY:	BOB	REVIEWED BY:		WITN	NIE N
ISSUE DATE:	7000,07,00	02/10/2021	PROJECT NUMBER:	DEC1005.P3	CUEET CIZE.	SHEET SIZE.		11"×1/


SOIL SAMPLE RESULTS EXCEEDING
SOIL CLEAN-UP OBJECTIVES
FAIR STREET LANDFILL
(#340021)


FIGURE NO.

131 COMMERCE DRIVE CARMEL, NEW YORK

SB-7		
PFAS (µg/kg)	Result	
PFOA	0.15	
PFOS	0.6	

SS-02		
PFAS (µg/kg)	Result	
PFOA	0.24	
PFOS	2.7	

SB-8		
PFAS (µg/kg)	Result	
PFOA	0.42	
PFOS	3.90	

SS-03		
Result		
0.11		
3		

SS-04		
PFAS (µg/kg)	Result	
PFOA	0.24	
PFOS	2.6	

SB-9		
PFAS (µg/kg)	Result	
PFOA	0.39	
PFOS	1.30	

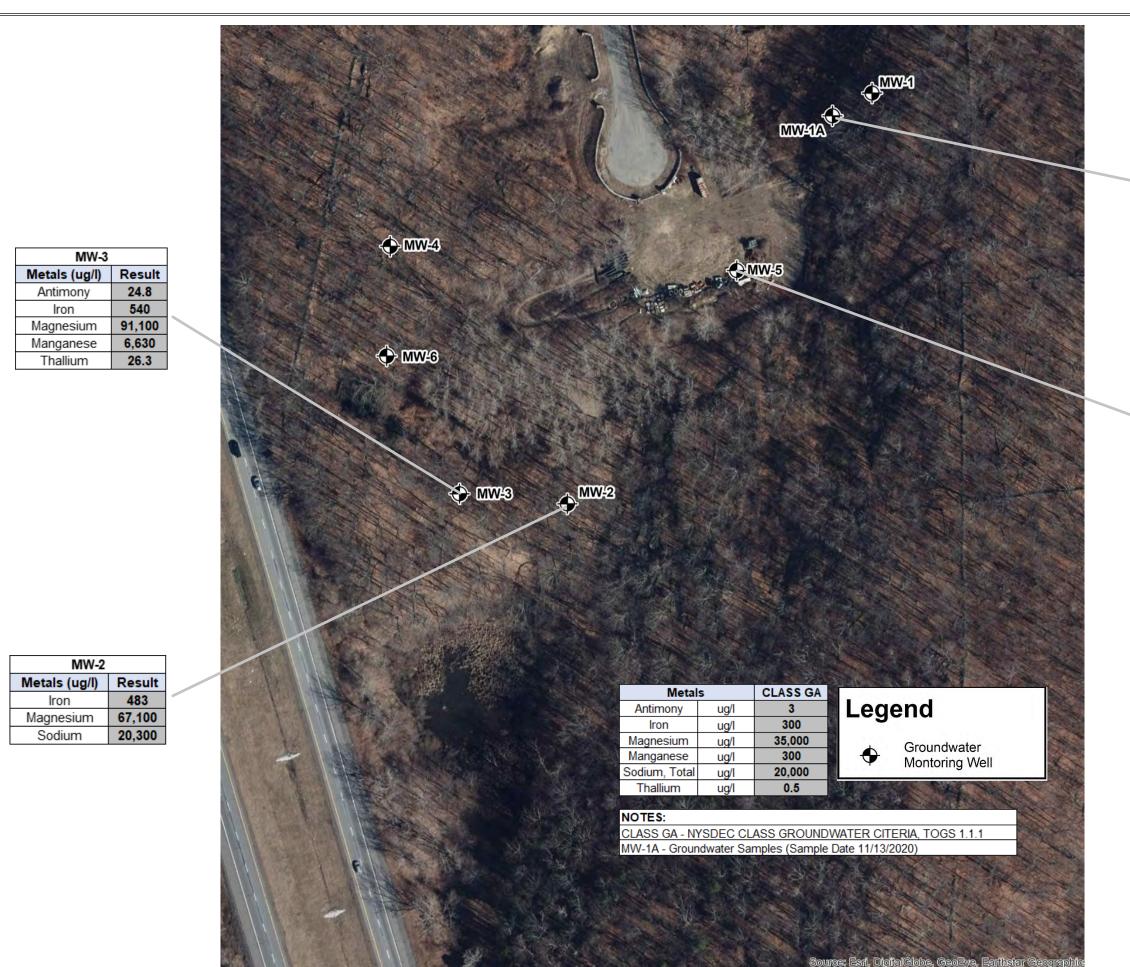
TP-2	
PFAS (µg/kg)	Result
PFOA	1.4
PFOS	27

S S-05					
PFAS (μg/kg) Result					
PFOA	0.21				
PFOS	1.5				

TP-3	
PFAS (µg/kg)	Result
PFOA	0.16
PFOS	3.5

ONE FAIRCHILD SQUARE SUITE 110 CLIFTON PARK, NY 12065 (518) 877-7101 HRPASSOCIATES.COM

REVISIONS	NO. DATE					
<u>~</u>	2					
NED BY:	KMA	N BY:	BOB	WED BY:		\ \ \ \ \


DRAWI REVIE	PROJECT NUMBER: DEC1005.P3 SHEET SIZE:
DRAWN BY:	PROJECT NUMBER:
Ϋ́	02/10/2021
DESIGNED	ISSUE DATE:

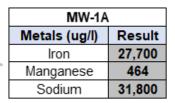

SOIL SAMPLE PFAS RESULTS
EXCEEDING GUIDANCE VALUE;
FAIR STREET LANDFILL
(#340021)
131 COMMERCE DRIVE
CARMEL, NEW YORK

FIGURE NO.

_					
	MW-5				
	Metals (ug/l) Result				
	Iron	3070			
	Manganese	420			

0		60'		120'		0'	
REVISIONS	NO. DATE						
RE	NO.						
3Y:	< -		В		BY:	~	>

RE	NON					
DESIGNED BY:	KMA	DRAWN BY:	BOB	REVIEWED BY:		MEW
ISSUE DATE:	02/10/2021	PROJECT NUMBER:	DEC1005.P3	SHEET SIZE:	OI ILL I OIZL:	11">17"
Щ	SDEC	•				

GROUNDWATER SAMPLE
RESULTS EXCEEDING NYSDE(
GA CRITERIA
STREET LANDFILL
(#340021)
131 COMMERCE DRIVE
CARMEL, NEW YORK

FIGURE NO.

7

MW-6

PFAS (ng/l) Result

MW-3

MW-2 PFAS (ng/l) Result

23 35

79

Result

69

100

512

150

NA

436

PFOA

PFOS

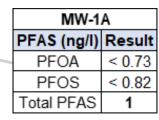
Total PFAS

PFAS (ng/l)

PFOA

PFOS PFHxA

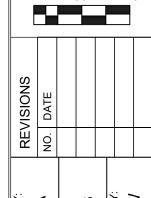
Total PFAS


PFOA

PFOS

Total PFAS

Total PFAS


MW-5				
PFAS (ng/l)	Result			
PFOA	20			
PFOS	25			
Total PFAS	103			

MOVE YOUR ENVIRONMENT FORWARD

ONE FAIRCHILD SQUARE SUITE 110 CLIFTON PARK, NY 12065 (518) 877-7101 HRPASSOCIATES.COM

		NORTH
)	60'	120'

	MEW	11"x17"
一	REVIEWED BY:	
	BOB	DEC1005.P3
	DRAWN BY:	PROJECT NUMBER:
	YWA	02/10/2021
	DESIGNED BY:	

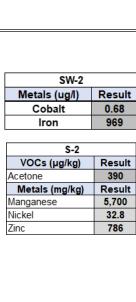
GROUNDWATER SAMPLE PFAS
RESULTS EXCEEDING NYSDEC
GA GUIDANCE VALUES
FAIR STREET LANDFILL
(#340021)
131 COMMERCE DRIVE
CARMEL, NEW YORK

nd G

Groundwater

Montoring Well

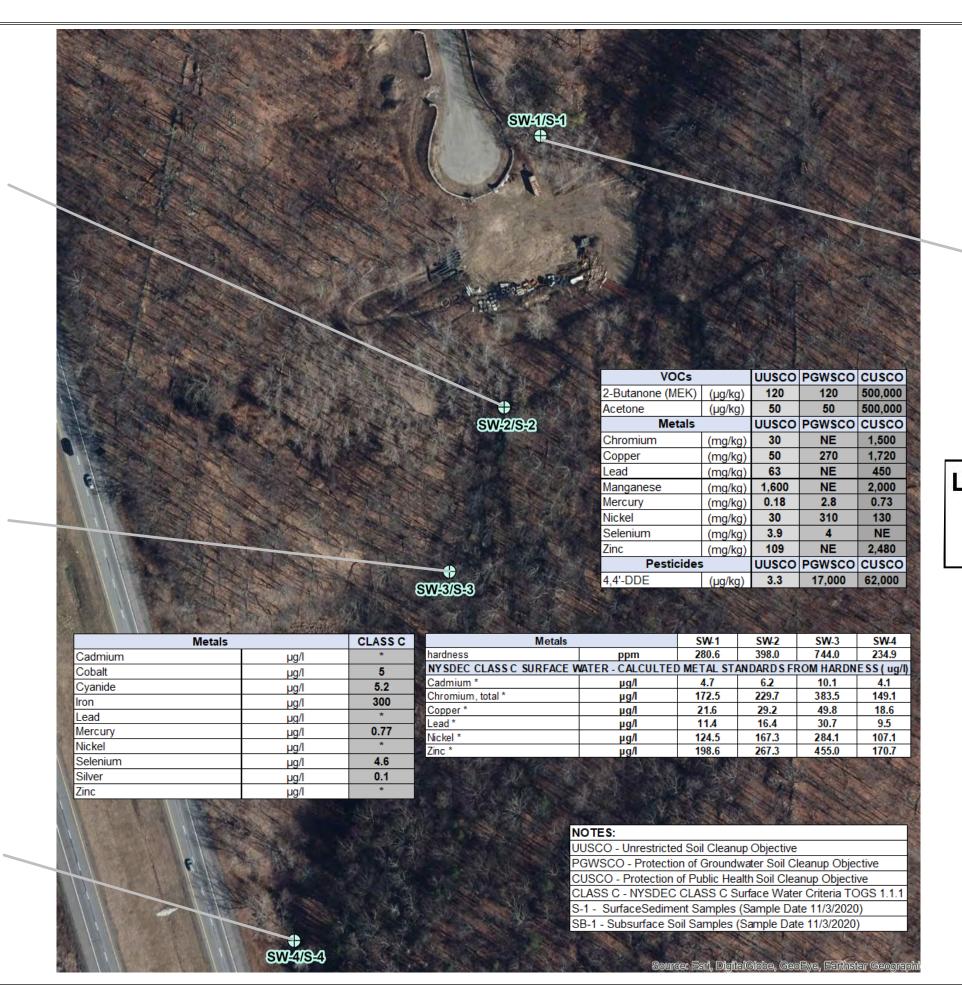
FIGURE NO.


8

•

(ng/l)

500


SW-3	
Metals (ug/l)	Result
Aluminum	150,000
Cadmium	11.1
Cyanide	11
Iron	447,000
Lead	513
Mercury	1.5
Selenium	10.4
Silver	1.3
Vanadium	442
Zinc	3,410

S-3	
VOCs (µg/kg)	Result
Acetone	74
Metals (mg/kg)	Result
Zinc	123

S-4

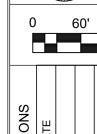
Metals (mg/kg) Result

120

	SW-1	
Ī	Metals (ug/l)	Result
	Aluminum	76,000
	Cadmium	5.5
Ī	Iron	102,000
	Lead	314
	Nickel	152
	Selenium	8.3
	Silver	0.87
	Vanadium	197
	Zinc	993

S-1	
VOCs (µg/kg)	Result
2-Butanone (MEK)	280
Acetone	480
Metals (mg/kg)	Result
Chromium, Total	46.3
Copper	96.7
Lead	63.4
Mercury	0.19
Nickel	50.2
Selenium	4.5
Zinc	151
Pesticides (µg/kg)	Result
4,4'-DDE	12

Legend


Surface Water/Sediment Sample

ONE FAIRCHILD SQUARE SUITE 110 CLIFTON PARK, NY 12065 (518) 877-7101 HRPASSOCIATES.COM

120'

D BY:	R	REVISIONS
V V V	!	
MA	NO.	NO. DATE
Υ:		
OB		
D RV.		
> 1		
^ ⊔		

S ISSUE DATE:

02/10/2021

PROJECT NUMBER:

DEC 1005.P3

SHEET SIZE:

11"X17"

ME

SURFACE WATER SAMPLE RESULTS ISSESURE EXCEEDING NYSDEC CLASS C
CRITERIA AND SEDIMENT SAMPLE
RESULTS EXCEEDING SOIL
CLEAN-UP OBJECTIVES
FAIR STREET LANDFILL (#340021)
131 COMMERCE DRIVE
CARMEL, NEW YORK

FIGURE NO.

SW-3 PFAS (ng/l) Result

S-3

15

51

115

Result

0.52

1.7

PFOA

PFOS

Total PFAS

PFAS (μg/kg)

PFOA

PFOS

SW-4

PFAS (ng/l) Result

S-4

PFAS (μg/kg) Result

15

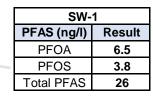
120

209

2.9

2.2

PFOA


PFOS

Total PFAS

PFOA

PFOS

Result
0.61
5.2

SW-2			
PFAS (ng/l)	Result		
PFOA	33		
PFOS	220		
Total PFAS	396		

Result
3.6
6.6

⇒R	P
MOVE YOUR ENVIRONME	NT FORWARD

ONE FAIRCHILD SQUARE SUITE 110 CLIFTON PARK, NY 12065 (518) 877-7101 HRPASSOCIATES.COM

120'

ISIONS	DATE		

			- II
VED BY:	RE	REVISIONS	
V V V V	!))	
AMA	NO.	NO. DATE	
V BY:			
BOB			
WED RV.			
M = \/\			
NI L			

DRAWN BY:

PROJECT NUMBER: DEC1005.P3

11"x17"

SHEET SIZE:

FAIR STREET LANDFILL (#340021) 131 COMMERCE DRIVE CARMEL, NEW YORK

02/10/2021

ISSUE DATE:

PFAS (ng/l)	Result	
PFOA	33	
PFOS	220	
Total PFAS	396	
_		

S-2	
PFAS (µg/kg)	Result
PFOA	3.6
PFOS	6.6

SURFACE SOIL AND WATER SAMPLE RESULTS EXCEEDING NYSDEC SCREENING VALUES

FIGURE NO.

Surface Water/Sediment Sample

Legend

Site Characterization Report Fair Street Landfill, Site #340021 131 Carmel Drive, Carmel, NY

TABLES

Table 1
Summary Groundwater Elevation Information
Fair Street Landfill Site, #340021
131 Commerce Avenue, Carmel, New York

Monitoring Well ID	Reference point Elevation (Feet MSL)	Depth to Groundwater Feet from Reference Point (feet below top of casing)	Groundwater Elevation (Feet MSL)	Depth to Groundwater Feet from Reference Point (feet below top of casing)	Groundwater Elevation (Feet MSL)	Depth to Groundwater Feet from Reference Point (feet below top of casing)	Groundwater Elevation (feet MSL)
		May 26, 2020		November 3, 2020		February	17, 2021
MW-1A		NM NM		31.70	729.34	26.68	734.36
MW-2		14.68	693.14	16.74	691.08	13.74	694.08
MW-3		7.99	691.65	12.8	686.51	5.98	693.33
MW-5		NM	NM	26.18	724.05	28.10	722.13
MW-6		NM	NM	5.53	696.45	2.77	699.21

NM- Note Measured

Feet MSL- Feet above mean sea level

MW – Groundwater Monitoring Well

Table 2A Soil Laboratory Analytical Results PFAS and SPLP-PFAS (Detection Only) Fair Street Landfill Site, # 340021 131 Commerce Avenue, Carmel, New York

Lab Report No.:		375 6 660	375-6 SCO -	4602184801	4602184801	4602184801	4602184801	4602184801	4602184801	4602184801	4602184801	4602184801	4602184801	4602184801
Sample ID:	375-6 SCO -	375-6 SCO -	PROTECTION OF	SB-1(1-2)	SB-2(0-2)	SB-3(0-2)	SB-4(0-2)	SB-5(0-2)	SB-6(0-2)	SB-7(0-0.5)	SB-8(0-2)	SB-9(0-0.5)	SB-10(0-5)	SB-10(20-25)
Date Collected:	UNRESTRICTED	PROTECTION OF GROUNDWATER	PUBLIC HEALTH - COMMERCIAL	9/15/2020	9/15/2020	9/15/2020	9/15/2020	9/15/2020	9/15/2020	9/15/2020	9/15/2020	9/15/2020	9/15/2020	9/15/2020
			Per-	and Polyfluor	roalkyl Substar	nces (PFAS) (μ	ıg/kg)							
Perfluorooctanoic acid (PFOA)	0.66	1.1	500	0.32	2.3	0.22	1.1	< 0.084	< 0.10	0.15	0.42	0.39	< 0.095	< 0.10
Perfluorooctanesulfonic acid (PFOS)	0.88	3.7	440	2.30	1.20	0.93	0.51	0.84	0.28	0.6	3.90	1.30	0.62	<0.58
Perfluorobutanesulfonic acid	NE	NE	NE	< 0.027	0.04	< 0.028	< 0.026	< 0.025	< 0.030	< 0.030	< 0.029	0.076	< 0.028	< 0.029
Perfluorobutanoic acid	NE	NE	NE	0.27	0.68	0.23	0.22	0.14	0.1	0.33	0.24	1.1	0.085	0.093
Perfluorodecanesulfonic acid	NE	NE	NE	< 0.042	< 0.042	< 0.043	< 0.041	< 0.038	< 0.046	< 0.046	0.18	< 0.049	< 0.043	< 0.045
Perfluorodecanoic acid	NE	NE	NE	0.32	0.057	0.079	0.13	0.082	< 0.026	0.07	0.39	0.28	0.028	< 0.025
Perfluorododecanoic acid	NE	NE	NE	0.21	< 0.073	< 0.074	0.12	< 0.066	< 0.080	< 0.079	0.32	0.15	< 0.074	< 0.078
Perfluoroheptanesulfonic acid	NE	NE	NE	< 0.038	< 0.038	< 0.039	< 0.037	< 0.034	< 0.042	< 0.041	< 0.041	< 0.044	< 0.039	< 0.041
Perfluoroheptanoic acid	NE	NE	NE	0.1	0.46	0.059	0.19	< 0.028	< 0.034	0.048	0.14	0.24	< 0.032	< 0.034
Perfluorohexanesulfonic acid	NE	NE	NE	0.061	0.098	< 0.034	0.061	< 0.030	< 0.037	< 0.037	0.17	< 0.039	< 0.034	< 0.036
Perfluorohexanoic acid	NE	NE	NE	0.084	0.63	0.049	0.15	< 0.041	< 0.050	< 0.050	< 0.049	0.17	< 0.047	< 0.049
Perfluorononanoic acid	NE	NE	NE	0.14	0.17	0.13	0.19	0.037	< 0.043	0.096	0.21	0.34	0.044	< 0.042
Perfluoropentanoic acid	NE	NE	NE	0.12	0.66	0.1	0.19	< 0.076	< 0.091	< 0.091	0.22	0.29	< 0.085	< 0.089
Perfluorotetradecanoic acid	NE	NE	NE	0.077	< 0.059	< 0.060	0.066	< 0.053	< 0.064	< 0.064	0.11	0.11	< 0.060	< 0.063
Perfluorotridecanoic acid	NE	NE	NE	0.099	< 0.055	< 0.056	0.072	< 0.050	< 0.061	< 0.060	0.08	0.16	< 0.057	< 0.059
Perfluoroundecanoic acid	NE	NE	NE	0.24	< 0.039	0.051	0.2	0.044	< 0.043	0.055	0.23	0.31	< 0.040	< 0.042
		Per- and P	olyfluoroalkyl Subs	tances (PFAS)	- Synthetic Pr	ecipitation Le	aching Proce	dure (SPLP) (n	ıg/l)					
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid(FtS 8:2)	NE	NE	NE	< 0.43	NA	NA	NA	< 0.41	NA	NA	0.69	NA	< 0.42	< 0.42
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid(FtS 6:2)	NE	NE	NE	< 2.3	NA	NA	NA	< 2.2	NA	NA	140	NA	< 2.3	< 2.3
Perfluorobutanesulfonic acid(PFBS)	NE	NE	NE	0.59	NA	NA	NA	< 0.18	NA	NA	0.4	NA	< 0.18	< 0.18
Perfluorobutanoic acid(PFBA)	NE	NE	NE	4.5	NA	NA	NA	< 2.1	NA	NA	4.1	NA	< 2.2	< 2.2
Perfluorodecanoic acid(PFDA)	NE	NE	NE	1.2	NA	NA	NA	1	NA	NA	1.2	NA	0.97	< 0.29
Perfluoroheptanesulfonic acid(PFHpS)	NE	NE	NE	< 0.18	NA	NA	NA	< 0.17	NA	NA	0.8	NA	< 0.17	< 0.18
Perfluoroheptanoic acid(PFHpA)	NE	NE	NE	1.4	NA	NA	NA	0.37	NA	NA	3.6	NA	0.42	< 0.23
Perfluorohexanesulfonic acid(PFHxS)	NE	NE	NE	0.54	NA	NA	NA	< 0.51	NA	NA	1.2	NA	0.82	< 0.53
Perfluorohexanoic acid(PFHxA)	NE	NE	NE	1	NA	NA	NA	< 0.52	NA	NA	4.8	NA	< 0.53	< 0.54
Perfluorononanoic acid(PFNA)	NE	NE	NE	1.4	NA	NA	NA	1.5	NA	NA	4.6	NA	2.1	< 0.25
Perfluorooctanesulfonic acid(PFOS)	NE	NE	NE	13	NA	NA	NA	13	NA	NA	150	NA	18	3.2
Perfluorooctanoic acid(PFOA)	NE	NE	NE	3.3	NA	NA	NA	2.7	NA	NA	15	NA	12	< 0.78
Perfluoropentanoic acid(PFPeA)	NE	NE	NE	1.7	NA	NA	NA	0.72	NA	NA	3.7	NA	< 0.45	0.52
Perfluroroctanesulfonamide(PFOSA)	NE	NE	NE	< 0.92	NA	NA	NA	< 0.87	NA	NA	1.7	NA	< 0.90	< 0.90
				Total O	rganic Carbon	(mg/kg)								
Total Organic Carbon - Quad	NE	NE	NE	20,500	NA	NA	NA	7,680	NA	NA	61,900	NA	52,600	NA
					рН									
рН	NE	NE	NE	6.5	NA	NA	NA	6.9	NA	NA	7.0	NA	7.2	NA

Legend

<1	Parameter not detected above the method dection limit
Bold	Sample Exceeds Unresitricted Objective
Bold	Sample Exceeds Commercial Objective
Bold	Sample Exceeds Protection of Ground water

 μ g/kg = micrograms per kilogram

NA = Not Submitted for Analysis

ng/l = nanograms per liter

SB = soil samples from soil borings

NE = Standard Not Established

Soil Laboratory Analytical Results VOCs, SVOC, TAL Metals, PCBs, Pesticides, Herbicides (Detection Only) Fair Street Landfill Site, # 340021 131 Commerce Avenue, Carmel, New York

				1500101001	1500101001	4500404004
Lab Report No.: Sample ID:	375-6 SCO -	375-6 SCO -	375-6 SCO - PROTECTION OF	4602184801 SB-5(0-2)	4602184801 SB-8(0-2)	4602184801 SB-10(0-5)
Sample ID.	UNRESTRICTED	PROTECTION OF	PUBLIC HEALTH -	` '	` '	`
Date Collected:		GROUNDWATER	COMMERCIAL	9/15/2020	9/15/2020	9/15/2020
2 Butanono (MEV)	120		Compound (VOC) (μ	g/kg) < 2.4	10	25
2-Butanone (MEK) Acetone	120 50	120 50	500,000 500,000	< 2.4 < 5.1	59	130
Carbon disulfide	NE NE	2,700	NE	< 0.24	2	0.77
Methylene chloride	50	50	500,000	1.3	2.3	5.5
		Semi-Volatile Orga	nic Compound (SVOC	(μg/kg)		
2,4,5-Trichlorophenol	NE	100	NE	< 490	< 11000	< 11000
2,4-Dichlorophenol	NE	400	NE	< 190	< 4500	< 4100
2,4-Dinitrophenol 2,6-Dinitrotoluene	NE NE	200 170	NE NE	< 8300 < 210	< 200000 < 5000	< 180000 < 4600
2,6-Dinitrotoluene 2-Nitroaniline	NE NE	400	NE NE	< 210	< 6200	< 4600 < 5800
2-Nitrophenol	NE	300	NE NE	< 510	< 12000	< 11000
3-Nitroaniline	NE	500	NE	< 500	< 12000	< 11000
4-Chloroaniline	NE	220	NE	< 440	< 10000	< 9700
4-Nitrophenol	NE	100	NE	< 1300	< 30000	< 27000
Anthracene	100,000	1,000,000	500,000	960	< 10000	< 9700
Benzo(a)anthracene	1,000	1,000	5,600	4,100	6,600	13,000
Benzo(a)pyrene Benzo(b)fluoranthene	1,000 1,000	22,000 1,700	1,000 5,600	4,000 4,400	7,500 8,800	15,000 18,000
Benzo(b)nuoranthene Benzo(e)pyrene	1,000 NE	1,700 NE	5,600 NE	2,400	8,800 NA	18,000 NA
Benzo(ghi)perylene	100,000	1,000,000	500,000	2,300	5,600	9,100
Benzo(k)fluoranthene	800	1,700	56,000	2,100	< 5500	6,500
Chrysene	1,000	1,000	56,000	3,700	< 9500	13,000
Dibenzo(a,h)anthracene	330	1,000,000	560	670	< 7500	< 6900
Fluoranthene	100,000	1,000,000	500,000	7,600	9,400	31,000
Hexachlorobenzene Indeno(1,2,3-cd)pyrene	330 500	3,200 8,200	6,000 5,600	< 240 2,100	< 5700 < 5200	< 5300 8,700
Perylene	NE	8,200 NE	5,600 NE	1,600	NA	8,700 NA
Phenanthrene	100,000	1,000,000	500.000	2,700	< 6200	15,000
Phenol	330	330	500,000	< 280	< 6500	< 6000
Pyrene	100,000	1,000,000	500,000	6,800	10,000	26,000
Aluminum Total	NE		etals (mg/kg)	17.000	11 500	0.020
Aluminum, Total Antimony	NE NE	NE NE	NE NE	17,000 < 0.42	11,500 < 0.51	9,020 0.67
Arsenic	13	16	16	2.4	6.8	5.6
Barium	350	820	400	251	2280	447
Beryllium	7.2	47	590	0.25	0.53	0.36
Cadmium	2.5	7.5	9.3	0.041	3.2	2
Calcium	NE	NE	NE	4,830	48,500	41,100
Chromium, Total	30	NE	1,500	31.5	210	32.9
Cobalt	NE	NE	NE	10.4	5	5.6
Copper	50	1,720	270	16.6	144	22.7
Iron	NE	NE	NE	24,500	10,700	8720
Lead	63	450	NE	24.6	1,420	593
Magnesium Manganese	NE 1.600	NE 2.000	NE NE	7,550 367	7,110 360	7,350 149
Manganese Mercury	1,600 0.18	2,000 0.73	NE 2.8	0.0099	0.58	0.32
Nickel	30	130	310	18.1	68.8	21.4
Potassium, Total	NE	NE NE	NE	5,700	723	1,210
Silver	2	8.3	NE	< 0.21	0.78	0.23
- " - · ·						
·	NE	NE	NE	287	247	274
Vanadium	NE	NE	NE	37.7	28.7	18.5
Vanadium		NE 2,480	NE NE	37.7 70.6		
Vanadium	NE	NE 2,480 Polychlorinate	NE	37.7 70.6	28.7	18.5
Vanadium	NE	NE 2,480 Polychlorinate	NE NE d Biphenyl (PCB) (μg,	37.7 70.6	28.7	18.5
Vanadium	NE	NE 2,480 Polychlorinate N Heri	NE NE d Biphenyl (PCB) (μg, o Detections bicides (μg/kg) o Detections	37.7 70.6	28.7	18.5
Vanadium Zinc	NE 109	NE 2,480 Polychlorinate N Her	NE NE d Biphenyl (PCB) (μg, o Detections bicides (μg/kg) o Detections ticides (μg/kg)	37.7 70.6 (kg)	28.7 811	18.5 486
Vanadium Zinc 4,4'-DDD	NE 109	NE 2,480 Polychlorinate N Heri N Pes 14,000	NE NE d Biphenyl (PCB) (μg, o Detections bicides (μg/kg) o Detections ticides (μg/kg) 92,000	37.7 70.6 /kg)	28.7 811	18.5 486
Vanadium Zinc 4,4'-DDD 4,4'-DDE	NE 109 3.3 3.3	NE 2,480 Polychlorinate N Heri N Pes 14,000 17,000	NE NE d Biphenyl (PCB) (μg, o Detections bicides (μg/kg) o Detections ticides (μg/kg) 92,000 62,000	37.7 70.6 /kg) < 17 < 19	28.7 811 200 86	18.5 486 < 37 < 40
Vanadium Zinc 4,4'-DDD 4,4'-DDE 4,4'-DDT	NE 109 3.3 3.3 3.3	NE 2,480 Polychlorinate N Heri N Pes 14,000 17,000 136,000	NE NE d Biphenyl (PCB) (μg, o Detections bicides (μg/kg) o Detections ticides (μg/kg) 92,000 62,000 47,000	37.7 70.6 /kg) < 17 < 19 23	28.7 811 200 86 440	18.5 486 486 37 40 45
Vanadium Zinc 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin	3.3 3.3 3.3 5	NE 2,480 Polychlorinate N Heri N Pes 14,000 17,000 136,000 190	NE NE d Biphenyl (PCB) (μg, o Detections bicides (μg/kg) o Detections ticides (μg/kg) 92,000 62,000 47,000 680	37.7 70.6 /kg) <17 <19 23 <22	28.7 811 200 86 440 < 26	18.5 486 < 37 < 40 < 45 < 47
Vanadium Zinc 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC	NE 109 3.3 3.3 3.3	NE 2,480 Polychlorinate N Heri N Pes 14,000 17,000 136,000	NE NE d Biphenyl (PCB) (μg, o Detections bicides (μg/kg) o Detections ticides (μg/kg) 92,000 62,000 47,000	37.7 70.6 /kg) < 17 < 19 23	28.7 811 200 86 440	18.5 486 486 37 40 45
Vanadium Zinc 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC cis-Chlordane	3.3 3.3 3.3 5 20	NE 2,480 Polychlorinate N Her N Pes 14,000 17,000 136,000 190 20	NE NE OBJECT NE N	37.7 70.6 /kg) <17 <19 23 <22 <16	28.7 811 200 86 440 < 26 < 19	18.5 486 < 37 < 40 < 45 < 47 < 35
Vanadium Zinc 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC cis-Chlordane Dieldrin	3.3 3.3 3.3 5 20	NE 2,480 Polychlorinate N Her N Pes 14,000 17,000 136,000 190 20 2,900	NE NE NE d Biphenyl (PCB) (μg/ o Detections bicides (μg/kg) o Detections ticides (μg/kg) 92,000 62,000 47,000 680 3,400 24,000	37.7 70.6 //kg) < 17 < 19 23 < 22 < 16 < 44	28.7 811 200 86 440 < 26 < 19 < 52	18.5 486 <pre></pre>
Vanadium Zinc 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC cis-Chlordane Dieldrin Endrin Heptachlor	3.3 3.3 3.3 5 20 94 5 14 42	NE 2,480 Polychlorinate N Heri N Pes 14,000 17,000 136,000 190 20 2,900 100 60 380	NE	37.7 70.6 /kg) <17 <19 23 <22 <16 <44 <21 <18 <19	28.7 811 200 86 440 < 26 < 19 < 52 76 < 21 < 23	18.5 486 486 486 40 45 47 35 96 46 46 38 42
Sodium, Total Vanadium Zinc 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC cis-Chlordane Dieldrin Endrin Heptachlor Heptachlor Epoxide Methoxychlor	3.3 3.3 3.3 5 20 94 5	NE 2,480 Polychlorinate N Heri N Pes 14,000 17,000 136,000 190 20 2,900 100 60	NE	37.7 70.6 /kg) <17 <19 23 <22 <16 <44 <21 <18	28.7 811 200 86 440 < 26 < 19 < 52 76	18.5 486 < 37 < 40 < 45 < 47 < 35 < 96 < 46 < 38

Legend	
<1	Parameter not detected above the method detection limit
<1	Indicates the method detection limit is greater than NYSDEC Class GA criteria
Bold	Sample Exceeds Unresitricted Objective
Bold	Sample Exceeds Protection of Ground water
Bold	Sample Exceeds Commercial Objective
1	Parameter reported above the method dection limit but below the NYSDEC Class GA criteria

 μ g/kg = micrograms per kilogram NE = Standard Not Established mg/kg = micrograms per kilogram NA = Not Submitted for Analysis SB = soil samples from soil borings

Table 3A

Soil Laboratory Analytical Results PFAS and SPLP-PFAS (Detection Only) Fair Street Landfill Site, # 340021

131 Commerce Avenue, Carmel, New York

Lab Report No.:			375-6 SCO -	4602184801	4602184801	4602184801	4602184801	4602184801
Sample ID	375-6 SCO - UNRESTRICTED	-6 SCO - PROTECTION OF PU		SS-01	SS-02	SS-03	SS-04	SS-05
Date Collected:		GROWUNDWATER	COMMERCIAL	9/14/2020	9/14/2020	9/14/2020	9/14/2020	9/14/2020
	Per- and Pol	yfluoroalkyl Substanc	es (PFAS) (μg/kg)					
Perfluorooctanoic acid(PFOA)	0.66	1.1	500	< 0.094	0.24	0.11	0.24	0.21
Perfluorooctanesulfonic acid(PFOS)	0.88	3.7	440	0.70	2.7	3.0	2.6	1.5
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid(FtS 8:2)	NE	NE	NE	< 0.27	0.28	< 0.29	< 0.27	< 0.28
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid(FtS 6:2)	NE	NE	NE	< 0.16	0.16	< 0.17	< 0.16	< 0.17
N-ethyl perfluorooctanesulfonamidoacetic acid(NEtFOSAA)	NE	NE	NE	< 0.40	< 0.40	< 0.42	< 0.39	< 0.41
N-methyl perfluorooctanesulfonamidoacetic acid(NMeFOSAA)	NE	NE	NE	< 0.43	5.2	< 0.45	< 0.42	< 0.43
Perfluorobutanesulfonic acid(PFBS)	NE	NE	NE	< 0.027	< 0.027	< 0.029	< 0.027	< 0.028
Perfluorobutanoic acid(PFBA)	NE	NE	NE	< 0.031	< 0.030	0.19	0.065	< 0.031
Perfluorodecanesulfonic acid(PFDS)	NE	NE	NE	< 0.043	0.042	0.048	0.33	< 0.043
Perfluorodecanoic acid(PFDA)	NE	NE	NE	0.072	2.2	0.23	0.39	0.22
Perfluorododecanoic acid(PFDoA)	NE	NE	NE	< 0.073	7.1	0.16	0.27	0.12
Perfluoroheptanesulfonic acid(PFHpS)	NE	NE	NE	< 0.038	< 0.038	< 0.040	< 0.037	< 0.039
Perfluoroheptanoic acid(PFHpA)	NE	NE	NE	< 0.032	0.063	< 0.033	0.031	0.043
Perfluorohexanesulfonic acid(PFHxS)	NE	NE	NE	< 0.034	0.048	0.13	0.094	0.058
Perfluorohexanoic acid(PFHxA)	NE	NE	NE	< 0.046	0.098	< 0.048	0.048	0.057
Perfluorononanoic acid(PFNA)	NE	NE	NE	0.054	0.12	0.061	0.071	0.10
Perfluoropentanoic acid(PFPeA)	NE	NE	NE	< 0.084	< 0.084	0.11	< 0.082	< 0.086
Perfluorotetradecanoic acid(PFTA)	NE	NE	NE	< 0.059	4.6	< 0.062	0.072	0.064
Perfluorotridecanoic acid(PFTrDA)	NE	NE	NE	< 0.056	1.1	< 0.058	< 0.054	< 0.057
Perfluoroundecanoic acid(PFUnA)	NE	NE	NE	0.060	1.4	0.10	0.13	0.097
Perfluroroctanesulfonamide(PFOSA)	NE	NE	NE	< 0.089	0.53	< 0.094	< 0.087	< 0.091

Legend

<1	Parameter not detected above the method dection limit
Bold	Sample Exceeds Unresitricted Objective
Bold	Sample Exceeds Protection of Ground water
Bold	Sample Exceeds Commercial Objective

μg/kg = micrograms per kilogram

NE = Standard Not Established SS = soil samples from surface soil

Table 3

Soil Laboratory Analytical Results

VOCs, SVOC, TAL Metals, PCBs, Pesticides, Herbicides (Detection Only)

Fair Street Landfill Site, #340021

131 Commerce Avenue, Carmel, New York

Lab Report No.:			375-6 SCO -	4602184801	4602184801	4602184801	4602184801	4602184801
ID:	375-6 SCO -	375-6 SCO -	PROTECTION OF	SS-01	SS-02	SS-03	SS-04	SS-05
Date Collected:	UNRESTRICTED	PROTECTION OF GROUNDWATER	PUBLIC HEALTH - COMMERCIAL	9/14/2020	9/14/2020	9/14/2020	9/14/2020	9/14/2020
		V	olatile Organic Comp	ound (VOC) (μg/kg)				
2-Butanone (MEK)	120	120	500,000	23	20	< 2.7	< 3.1	32
Acetone	50	50	500,000	120	98	6.6	< 6.5	120
Carbon disulfide	NE	2,700	NE	< 0.31	0.43	< 0.26	0.39	< 0.34
Methylene chloride	50	50	500,000	3.3	1.5	0.91	2.8	2.4
Toluene	700	700	500,000	2.3	< 0.28	< 0.23	< 0.26	1.2
		Semi	i-Volatile Organic Con	npound (SVOC) (μg/kg	g)			
2,4,5-Trichlorophenol	NE	100	NE	< 10000	< 270	< 270	< 11000	< 550
2,4-Dichlorophenol	NE	400	NE	< 4100	< 100	< 110	< 4200	< 220
2,4-Dinitrophenol	NE	200	NE	< 180000	< 4600	< 4700	< 180000	< 9400
2,6-Dinitrotoluene	NE	170	NE	< 4500	< 120	< 120	< 4600	< 240
2-Nitroaniline	NE	400	NE	< 5700	< 150	< 150	< 5800	< 300
2-Nitrophenol	NE	300	NE	< 11000	< 280	< 290	< 11000	< 580
3-Nitroaniline	NE	500	NE	< 11000	< 270	< 280	< 11000	< 560
4-Chloroaniline	NE	220	NE	< 9500	< 240	< 250	< 9700	< 500
4-Nitrophenol	NE	100	NE	< 27000	< 690	< 710	< 28000	< 1400
Anthracene	100,000	1,000,000	500,000	< 9500	< 240	360	< 9700	< 500
Benzo(a)anthracene	1,000	1,000	5,600	< 3900	< 99	1,300	< 3900	700
Benzo(a)pyrene	1,000	22,000	1,000	< 5700	180	1,200	< 5800	850
Benzo(b)fluoranthene	1,000	1,700	5,600	< 6100	190	1,400	< 6200	1,000
Benzo(e)pyrene	NE	NE	NE	NA	NA	800	NA	NA
Benzo(ghi)perylene	100,000	1,000,000	500,000	< 4100	110	820	< 4200	600
Benzo(k)fluoranthene	800	1,700	56,000	< 5000	< 130	740	< 5100	380
Butylbenzyl phthalate	NE	122,000	NE	< 6400	550	< 170	< 6500	< 340
Chrysene	1,000	1,000	56,000	< 8600	< 220	1,200	< 8800	770
Dibenzo(a,h)anthracene	330	1,000,000	560	< 6800	< 170	220	< 6900	< 360
Fluoranthene	100,000	1,000,000	500,000	< 4100	260	2,400	< 4200	1,200
Fluorene	30,000	386,000	500,000	< 4500	< 120	140	< 4600	< 240
Hexachlorobenzene	330	3,200	6,000	< 5200	< 130	< 140	< 5300	< 280
Indeno(1,2,3-cd)pyrene	500	8,200	5,600	< 4800	< 120	700	< 4900	490
Isophorone	NE	4,400	NE	< 8200	< 210	< 210	< 8300	< 430
Nitrobenzene	NE	170	69,000	< 4300	< 110	< 110	< 4400	< 230
o-cresol	330	330	500,000	< 4500	< 120	< 120	< 4600	< 240
p-Cresol	330	330	500,000	< 4500	< 120	< 120	< 4600	< 240
Pentachlorophenol	800	800	6,700	< 39000	< 990	< 1000	< 39000	< 2000
Phenanthrene	100,000	1,000,000	500,000	< 5700	< 150	1,700	< 5800	500
Phenol	330	330	500,000	< 5900	< 150	< 150	< 6000	< 310
Pyrene	100,000	1,000,000	500,000	< 4500	250	2,200	< 4600	1,200

Soil Laboratory Analytical Results

VOCs, SVOC, TAL Metals, PCBs, Pesticides, Herbicides (Detection Only)

Fair Street Landfill Site, #340021

131 Commerce Avenue, Carmel, New York

Lab Report No.:			375-6 SCO -	4602184801	4602184801	4602184801	4602184801	4602184801
ID:	375-6 SCO -	375-6 SCO -	PROTECTION OF	SS-01	SS-02	SS-03	SS-04	SS-05
Date Collected:	UNRESTRICTED	PROTECTION OF GROUNDWATER	PUBLIC HEALTH - COMMERCIAL	9/14/2020	9/14/2020	9/14/2020	9/14/2020	9/14/2020
			Metals (n	ng/kg)				
Aluminum, Total	NE	NE	NE	19,900	18,600	22,600	11,000	16,900
Arsenic	13	16	16	4.2	3.6	4.3	8.5	4.4
Barium	350	820	400	105	90.5	241	480	121
Beryllium	7.2	47	590	0.46	0.42	0.42	0.35	0.43
Cadmium	2.5	7.5	9.3	0.16	0.099	0.57	1.4	0.27
Calcium	NE	NE	NE	3,790	2,810	5,070	24,300	4,910
Chromium, Total	30	NE	1,500	32.3	28.1	38.6	37.5	25.1
Cobalt	NE	NE	NE	17	10.1	13.9	9.6	9.3
Copper	50	1720	270	22.6	18.7	41	62.6	24.6
Iron	NE	NE	NE	25,200	22,400	29,700	37,200	20,700
Lead	63	450	NE	33.6	21.9	235	429	56.7
Magnesium	NE	NE	NE	7,060	6190	8,070	7,510	6,020
Manganese	1,600	2,000	NE	649	328	332	436	413
Mercury	0.18	0.73	2.8	0.045	0.026	0.11	0.26	0.082
Nickel	30	130	310	24.2	20.8	26.6	26.4	19.8
Potassium, Total	NE	NE	NE	2,250	2,170	2,400	1,500	2,060
Selenium	3.9	4	NE	< 0.46	0.67	0.68	2.4	< 0.46
Silver	2	8.3	NE	< 0.23	< 0.24	< 0.24	0.3	< 0.23
Sodium, Total	NE	NE	NE	180	143	142	227	125
Vanadium	NE	NE	NE	37.9	35.1	51.7	26.7	28.5
Zinc	109	2,480	NE	85.5	70.6	263	631	116
			Polychlorinated Bipho	enyl (PCB) (μg/kg)				
Aroclor 1254	100	3,200	1000	< 120	< 120	< 100	660	< 120
			Herbicides	(μg/kg)				
			No Detec					
			Pesticides	(μg/kg)				
4,4'-DDT	3.3	136,000	47,000	25	< 4.5	15	73	29
Methoxychlor	NE	900,000	NE	< 20	< 3.9	18	48	26

Legend

<1	Parameter not detected above the method detection limit
<1	Indicates the method detection limit is greater than NYSDEC Class GA criteria
Bold	Sample Exceeds Unresitricted Objective
Bold	Sample Exceeds Protection of Ground water
Bold	Sample Exceeds Commercial Objective

μg/kg = micrograms per kilogram

NE = Standard Not Established

mg/kg = micrograms per kilogram

NA = Not Submitted for Analysis

SS = soil sample from suface soil

Table 4A Soil Laboratory Analytical Results PFAS and SPLP-PFAS (Detection Only) Fair Street Landfill Site, # 340021

131 Commerce Avenue, Carmel, New York

Lab Report No.:		375-6 SCO -	375-6 SCO - PROTECTION	4602184801	4602184801	4602184801	4602184801	4602184801
Sample ID:	375-6 SCO - UNRESTRICTED	PROTECTION OF GROUNDWATER	OF PUBLIC HEALTH -	TP-1	TP-2	TP-3	TP-4	TP-5
Date Collected:			COMMERCIAL	9/14/2020	9/14/2020	9/14/2020	9/14/2020	9/14/2020
P	er- and Polyfluoroalk	/l Substances (PFAS) (μg/kg)					
Perfluorooctanoic acid(PFOA)	0.66	1.1	500	3.3	1.4	0.16	1.3	.45
Perfluorooctanesulfonic acid(PFOS)	0.88	3.7	440	11	27	3.5	5.1	18
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid(FtS 8:2)	NE	NE	NE	< 0.29	< 3.3	< 0.33	< 0.35	< 0.34
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid(FtS 6:2)	NE	NE	NE	< 0.17	< 2.0	< 0.20	< 0.21	< 0.21
N-ethyl perfluorooctanesulfonamidoacetic acid(NEtFOSAA)	NE	NE	NE	0.73	< 4.9	4.4	5.6	5.2
N-methyl perfluorooctanesulfonamidoacetic acid(NMeFOSAA)	NE	NE	NE	0.57	< 5.2	0.94	2.2	1.8
Perfluorobutanesulfonic acid(PFBS)	NE	NE	NE	< 0.029	< 0.33	< 0.033	< 0.035	< 0.034
Perfluorobutanoic acid(PFBA)	NE	NE	NE	0.31	0.40	0.86	0.47	2.0
Perfluorodecanesulfonic acid(PFDS)	NE	NE	NE	0.12	< 0.52	0.075	0.17	0.092
Perfluorodecanoic acid(PFDA)	NE	NE	NE	2.6	0.58	0.050	0.18	0.45
Perfluorododecanoic acid(PFDoA)	NE	NE	NE	1.1	< 0.89	< 0.087	< 0.095	0.18
Perfluoroheptanesulfonic acid(PFHpS)	NE	NE	NE	0.11	< 0.46	< 0.046	0.082	0.15
Perfluoroheptanoic acid(PFHpA)	NE	NE	NE	0.96	0.61	0.040	0.17	1.4
Perfluorohexanesulfonic acid(PFHxS)	NE	NE	NE	0.34	0.57	0.93	0.51	< 0.043
Perfluorohexanoic acid(PFHxA)	NE	NE	NE	0.65	< 0.56	< 0.055	0.18	2.1
Perfluorononanoic acid(PFNA)	NE	NE	NE	0.72	< 0.48	< 0.047	0.15	2.2
Perfluoropentanoic acid(PFPeA)	NE	NE	NE	0.51	< 1.0	< 0.10	0.21	1.1
Perfluorotetradecanoic acid(PFTA)	NE	NE	NE	0.26	< 0.72	< 0.070	< 0.076	0.12
Perfluorotridecanoic acid(PFTrDA)	NE	NE	NE	0.26	< 0.68	< 0.066	< 0.072	< 0.070
Perfluoroundecanoic acid(PFUnA)	NE	NE	NE	0.86	< 0.48	< 0.047	< 0.051	0.073
Perfluroroctanesulfonamide(PFOSA)	NE	NE	NE	0.40	< 1.1	< 0.11	0.18	0.61
Per- and Polyfluoroalkyl So	ubstances (PFAS) - Syr	thetic Precipitation L	eaching Procedu	re (SPLP) (ng/				
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid(FtS 8:2)	NE	NE	NE	< 0.41	< 0.41	1.3	1.6	0.49
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid(FtS 6:2)	NE	NE	NE	< 2.3	< 2.2	< 2.4	< 2.2	< 2.3
N-ethyl perfluorooctanesulfonamidoacetic acid(NEtFOSAA)	NE	NE	NE	1.3	4.9	52	13	21
N-methyl perfluorooctanesulfonamidoacetic acid(NMeFOSAA)	NE	NE	NE	1.3	1.3	15	9.9	14
Perfluorobutanesulfonic acid(PFBS)	NE	NE	NE	0.20	< 0.18	< 0.19	0.66	< 0.18
Perfluorobutanoic acid(PFBA)	NE	NE	NE	3.5	4.1	2.4	2.2	< 2.2
Perfluorodecanesulfonic acid(PFDS)	NE	NE	NE	< 0.29	< 0.28	< 0.31	< 0.28	< 0.29
Perfluorodecanoic acid(PFDA)	NE	NE	NE	29	7.5	1.8	2.7	9.4
Perfluorododecanoic acid(PFDoA)	NE	NE	NE	0.72	< 0.49	< 0.53	< 0.49	0.71
Perfluoroheptanesulfonic acid(PFHpS)	NE	NE	NE	2.4	2.8	0.47	0.78	2.6
Perfluoroheptanoic acid(PFHpA)	NE	NE	NE	24	12	0.74	4.5	2.8
Perfluorohexanesulfonic acid(PFHxS)	NE	NE	NE	5.7	7.9	3.0	6.7	4.4
Perfluorohexanoic acid(PFHxA)	NE	NE	NE	16	10	< 0.56	< 0.52	2.5
Perfluorononanoic acid(PFNA)	NE	NE	NE	15	6.3	1.7	2.8	5.2
Perfluorooctanesulfonic acid(PFOS)	NE	NE	NE	150	190	37	48	290
, ,			·		1		1	

Table 4A

Soil Laboratory Analytical Results PFAS and SPLP-PFAS (Detection Only)

Fair Street Landfill Site, # 340021

131 Commerce Avenue, Carmel, New York

Lab Report No.:	275 6 600	375-6 SCO -	375-6 SCO - PROTECTION	4602184801	4602184801	4602184801	4602184801	4602184801
Sample ID:	375-6 SCO - UNRESTRICTED	PROTECTION OF GROUNDWATER	OF PUBLIC HEALTH -	TP-1	TP-2	TP-3	TP-4	TP-5
Date Collected:			COMMERCIAL	9/14/2020	9/14/2020	9/14/2020	9/14/2020	9/14/2020
Per- and Polyfluoroalkyl Subs	tances (PFAS) - Syn	thetic Precipitation L	eaching Procedu	re (SPLP) (ng/	I)			
Perfluorooctanoic acid(PFOA)	NE	NE	NE	84	35	4.6	34	10
Perfluoropentanoic acid(PFPeA)	NE	NE	NE	11	8.4	1.1	3.0	1.9
Perfluorotetradecanoic acid(PFTA)	NE	NE	NE	< 0.66	< 0.65	< 0.70	< 0.65	< 0.67
Perfluorotridecanoic acid(PFTrDA)	NE	NE	NE	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Perfluoroundecanoic acid(PFUnA)	NE	NE	NE	1.6	< 0.98	< 1.1	< 0.98	< 1.0
Perfluroroctanesulfonamide(PFOSA)	NE	NE	NE	3.8	4.3	3.8	2.8	5.7
	Total Organi	c Carbon (mg/kg)						
Total Organic Carbon - Quad	NE	NE	NE	60,500	57,900	69,200	49,300	67,600
рН								
рН	NE	NE	NE	7.1	7.1	7.5	7.7	7.5

Legend

<1	Parameter not detected above the method dection
Bold	Sample Exceeds Unresitricted Objective
Bold	Sample Exceeds Protection of Ground water
Bold	Sample Exceeds Commercial Objective

mg/kg = milligrams per kilogram
ng/l = nanograms per liter

NE = Standard Not Established

NA = Not Submitted for Analysis

TP = soil samples from Test Pits

Table 4B Soil Laboratory Analytical Results PFAS TOPA

Fair Street Landfill Site, # 340021 131 Commerce Avenue, Carmel, New York

Lab Report No.:	4602184801	4602184801	4602184801				
TP-5	Pre-Treatment Method	Post-Treatment Method	Difference				
Date Collected:	9/14/2020	9/14/2020	9/14/2020				
Perfluorinated Alkyl Substances (PFAS) by Total Oxidizable Presursor (TOP) Assay (µg/kg)							
Perfluorobutanoic acid (PFBA)	0.52	2.6	2				
Perfluoropentanoic acid (PFPeA)	0.76	1.1	1.1				
Perfluorohexanoic acid (PFHxA)	0.76	2.1	2.1				
Perfluoroheptanoic acid (PFHpA)	0.76	1.4	1.4				
Perfluorooctanoic acid (PFOA)	2.2	2.2	3.3				
Perfluorononanoic acid (PFNA)	1	0.6	0				
Total PFCA	3.7	13	9.6				

Legend

μg/kg = micrograms per kilogram

PFCA = Perfluoroalkyl carboxylic acids

TP = soil sample collected from test pits

Soil Laboratory Analytical Results

VOCs, SVOC, TAL Metals, PCBs, Pesticides, Herbicides (Detection Only)

Fair Street Landfill Site, # 340021

131 Commerce Avenue, Carmel, New York

Lab Report No.:		275 6 660	375-6 SCO -	4602184801	4602184801	4602184801	4602184801	4602184801
Sample ID:	375-6 SCO -	375-6 SCO -	PROTECTION OF	TP-1	TP-2	TP-3	TP-4	TP-5
	UNRESTRICTED	PROTECTION OF	PUBLIC HEALTH -	0/44/2020	0/44/2020	0/44/2020	0/44/2020	0/44/2020
Date Collected:		GROUNDWATER	COMMERCIAL	9/14/2020	9/14/2020	9/14/2020	9/14/2020	9/14/2020
			Volatile Organi	c Compound (VOC) (բ	ıg/kg)			
Acetone	50	50	500,000	NA	NA	64	NA	120
Benzene, 1,2,4-trichloro-	NE	3,400	NE	NA	NA	< 0.41	NA	0.83
Carbon disulfide	NE	2,700	NE	NA	NA	1.4	NA	0.63
Chlorobenzene	1,100	1,100	500,000	NA	NA	< 0.20	NA	12
Ethylbenzene	1,000	1,000	390,000	NA	NA	0.78	NA	< 0.36
Isopropylbenzene	NE	2,300	NE	NA	NA	1.8	NA	0.46
Methylene chloride	50	50	500,000	NA	NA	1.7	NA	1.5
Toluene	700	700	500,000	NA	NA	0.4	NA	< 0.43
			Semi-Volatile Orga	nic Compound (SVO	C) (μg/kg)			
Heptachlor Epoxide	NE	20	NE	NA	NA	< 31	NA	< 33
2,4,5-Trichlorophenol	NE	100	NE	NA	NA	< 6500	NA	< 14000
2,4-Dichlorophenol	NE	400	NE	NA	NA	< 2600	NA	< 5500
2,4-Dinitrophenol	NE	200	NE	NA	NA	< 110000	NA	< 240000
2,6-Dinitrotoluene	NE	170	NE	NA	NA	< 2800	NA	< 6100
2-Nitroaniline	NE	400	NE	NA	NA	< 3600	NA	< 7600
2-Nitrophenol	NE	300	NE	NA	NA	< 6800	NA	< 15000
3-Nitroaniline	NE	500	NE	NA	NA	< 6700	NA	< 14000
4-Chloroaniline	NE	220	NE	NA	NA	< 6000	NA	< 13000
4-Nitrophenol	NE	100	NE	NA	NA	< 17000	NA	< 36000
Benzo(a)anthracene	1,000	1,000	5,600	NA	NA	4,600	NA	11,000
Benzo(a)pyrene	1,000	22,000	1,000	NA	NA	4,300	NA	11,000
Benzo(b)fluoranthene	1,000	1,700	5,600	NA	NA	5,000	NA	15,000
Benzo(k)fluoranthene	800	1,700	56,000	NA	NA	< 3100	NA	< 6700
Bis(2-ethylhexyl)phthalate	NE	435,000	NE	NA	NA	17,000	NA	< 18000
Chrysene	1,000	1,000	56,000	NA	NA	< 5400	NA	< 12000
Dibenzo(a,H)anthracene	330	1,000,000	560	NA	NA	< 4300	NA	< 9200
Di-n-butyl phthalate	NE	8,100	NE	NA	NA	< 4100	NA	< 8900
Fluoranthene	100,000	1,000,000	500,000	NA	NA	8,600	NA	18,000
Hexachlorobenzene	330	3,200	6,000	NA	NA	< 3300	NA	< 7000
Indeno(1,2,3-cd)pyrene	500	8,200	5,600	NA	NA	< 3000	NA	< 6400
Isophorone	NE	4,400	NE	NA	NA	< 5100	NA	< 11000
Nitrobenzene	NE	170	69,000	NA	NA	< 2700	NA	< 5800
o-cresol	330	330	500,000	NA	NA	< 2800	NA	< 6100
p-Cresol	330	330	500,000	NA	NA	< 2800	NA	< 6100
Pentachlorophenol	800	800	6,700	NA	NA	< 24000	NA	< 52000
Phenanthrene	100,000	1,000,000	500,000	NA	NA	5,400	NA	< 7600
Phenol	330	330	500,000	NA	NA	< 3700	NA	< 7900

Soil Laboratory Analytical Results

VOCs, SVOC, TAL Metals, PCBs, Pesticides, Herbicides (Detection Only)

Fair Street Landfill Site, # 340021

131 Commerce Avenue, Carmel, New York

Lab Report No.:			375-6 SCO -	4602184801	4602184801	4602184801	4602184801	4602184801
Sample ID:	375-6 SCO -	375-6 SCO -	PROTECTION OF	TP-1	TP-2	TP-3	TP-4	TP-5
	UNRESTRICTED	PROTECTION OF	PUBLIC HEALTH -			5		
Date Collected:	OMMESTIMETED	GROUNDWATER	COMMERCIAL	9/14/2020	9/14/2020	9/14/2020	9/14/2020	9/14/2020
Date conceted.			Semi-Volatile Organ	nic Compound (SVO	 C) (ug/kg)			
Pyrene	100,000	1,000,000	500,000	NA	NA NA	8,300	NA	18,000
1,2,3-Trimethylbenzene	NE NE	NE	NE NE	NA	NA	20	NA	NA NA
1,2,4-Trimethylbenzene	3,600	3,600	190,000	NA	NA	52	NA	NA
1,2-Dichlorobenzene	1,100	1,100	500,000	NA	NA	2.5	NA	2.2
1,3-Dichlorobenzene	2,400	2,400	280,000	NA	NA	< 0.18	NA	1.5
1,4-Dichlorobenzene	1,800	1,800	130,000	NA	NA	6.6	NA	7.3
2-Butanone (MEK)	120	120	500,000	NA	NA	7	NA	15
,		-		etals (mg/kg)				
Aluminum, Total	NE	NE	NE	NA	NA	8,540	NA	8,180
Arsenic	13	16	16	NA	NA	5.7	NA	3.1
Barium	350	820	400	NA	NA	1,110	NA	1,680
Beryllium	7.2	47	590	NA	NA	0.3	NA	0.33
Cadmium	2.5	7.5	9.3	NA	NA	2.5	NA	1.8
Calcium	NE	NE	NE	NA	NA	82,600	NA	43,700
Chromium, Total	30	NE	1500	NA	NA	126	NA	65.7
Cobalt	NE	NE	NE	NA	NA	5.9	NA	4.6
Copper	50	1,720	270	NA	NA	92.4	NA	45.2
Iron	NE	NE	NE	NA	NA	24,500	NA	16,100
Lead	63	450	NE	NA	NA	640	NA	709
Magnesium	NE	NE	NE	NA	NA	4,840	NA	4,400
Manganese	1,600	2,000	NE	NA	NA	269	NA	240
Mercury	0.18	0.73	2.8	NA	NA	1.1	NA	0.48
Nickel	30	130	310	NA	NA	55.9	NA	32.9
Potassium, Total	NE	NE	NE	NA	NA	935	NA	1,090
Silver	2	8.3	NE	NA	NA	0.51	NA	< 0.31
Sodium, Total	NE	NE	NE	NA	NA	299	NA	195
Vanadium	NE	NE	NE	NA	NA	16.4	NA	18.5
Zinc	109	2,480	NE	NA	NA	1,120	NA	1,190
			Polychlorinate	d Biphenyl (PCB) (µք	g/kg)			
Aroclor 1016	100	3,200	1,000	NA	NA	< 70	NA	< 310
Aroclor 1221	100	3,200	1,000	NA	NA	< 70	NA	< 310
Aroclor 1232	100	3,200	1,000	NA	NA	< 70	NA	< 310
Aroclor 1242	100	3,200	1,000	NA	NA	570	NA	510
Aroclor 1248	100	3,200	1,000	NA	NA	< 70	NA	< 310
Aroclor 1254	100	3,200	1,000	NA	NA	< 170	NA	< 740
Aroclor 1260	100	3,200	1,000	NA	NA	< 170	NA	< 740

Soil Laboratory Analytical Results

VOCs, SVOC, TAL Metals, PCBs, Pesticides, Herbicides (Detection Only)

Fair Street Landfill Site, # 340021

131 Commerce Avenue, Carmel, New York

			Her	rbicides (µg/kg)						
	No Detections									
			Pe	sticides (µg/kg)						
4,4'-DDD	3.3	14,000	92,000	NA	NA	68	NA	27		
4,4'-DDE	3.3	17,000	62,000	NA	NA	55	NA	35		
4,4'-DDT	3.3	136,000	47,000	NA	NA	< 28	NA	48		
Aldrin	5	190	680	NA	NA	< 29	NA	< 32		
alpha-BHC	20	20	3,400	NA	NA	< 21	NA	< 23		
Dieldrin	5	100	1,400	NA	NA	< 28	NA	< 31		
Endrin	14	60	89,000	NA	NA	< 23	NA	< 26		

Legend

<1	Parameter not detected above the method detection limit
<1	Indicates the method detection limit is greater than NYSDEC Class GA criteria
Bold	Sample Exceeds Unresitricted Objective
Bold	Sample Exceeds Protection of Ground water
Bold	Sample Exceeds Commercial Objective
1	Parameter reported above the method dection limit but below the NYSDEC Class GA crite

 μ g/kg = micrograms per kilogram NE = Standard Not Established mg/kg = micrograms per kilogram NA = Not Submitted for Analysis TP = soil samples form Test Pits

Water Laboratory Analytical Results VOCs, SVOC, TAL Metals, PCBs, Pesticides, Herbicides (Detection Only) Fair Street Landfill Site, # 340021

131 Commerce Avenue, Carmel, New York

Lab Report No.:		4602222161	4602222161	4602222161	4602229611
ID:	NYSDEC CLASS C	SW-1	SW-2	SW-3	SW-4
Date Collected:	SURFACE WATER	11/3/2020	11/3/2020	11/3/2020	11/13/2020
	Vol	atile Organic Compound		7-7	, ,, ,
Acetone	NE	5.6	< 4.4	11	< 4.4
Toluene	6000	1.2	< 0.38	< 0.38	< 0.38
	Semi-V	olatile Organic Compou	nd (SVOC) (μg/l)		
1,3-Butadiene, 1,1,2,3,4,4-he	xach NE	< 0.78	< 0.78	< 0.78	< 0.78
Benzo(a)anthracene	0.03	< 0.59	< 0.59	< 0.59	< 0.59
Chrysene	0.00003	< 0.91	< 0.91	< 0.91	< 0.91
Hexachlorobenzene	0.45	< 0.40	< 0.40	< 0.40	< 0.40
		Metals (μg/l)			
Aluminum, Total	100	76,000	55.6	150,000	< 76.9
Antimony	NE	1.2	< 0.76	3.5	< 3.7
Arsenic	150	17.7	< 0.89	49.5	< 3.3
Barium	NE	827	80.3	2,990	51.3
Beryllium	1,100	4.3	< 0.098	7.4	< 0.17
Cadmium	*	5.5	< 0.16	11.1	< 0.33
Calcium	NE	68,600	131,000	191,000	64,100
Chromium, Total	NE	123	< 0.69	205	< 5.0
Cobalt	5	46.5	0.68	180	< 2.0
Copper	*	249	2.7	325	< 6.9
Cyanide, Total	5.2	4.7	< 4.0	11	< 4.0
Iron	300	102,000	969	447,000	284
Lead	*	314	1.8	513	< 2.4
Magnesium	NE	26,600	17,200	65,000	18,200
Manganese	NE	1,180	235	42,000	258
Mercury	0.77	0.54	< 0.091	1.5	< 0.091
Nickel	*	152	4.8	214	< 4.1
Potassium, Total	NE	12,100	5,740	17,200	6,290
Selenium	4.6	8.3	< 0.46	10.4	< 5.9
Silver	0.1	0.87	< 0.19	1.3	< 5.8
Sodium, Total	NE	29,500	47,200	29,300	19,000
Thallium	8	0.88	< 0.17	3.9	< 4.1
Vanadium	14	197	0.61	442	< 7.2
Zinc	*	993	111	3,410	5.3
	Po	olychlorinated Biphenyl	(PCB) (μg/I)		
PCB 1016	0.00012	< 0.12	< 0.12	< 0.12	< 0.12
PCB 1221	0.00012	< 0.12	< 0.12	< 0.12	< 0.12
PCB 1232	0.00012	< 0.12	< 0.12	< 0.12	< 0.12
PCB 1242	0.00012	< 0.12	< 0.12	< 0.12	< 0.12
PCB 1248	0.00012	< 0.12	< 0.12	< 0.12	< 0.12
PCB 1254	0.00012	< 0.11	< 0.11	< 0.11	< 0.11
PCB 1260	0.00012	< 0.11	< 0.11	< 0.11	< 0.11
		Herbicides (μg/			
		No detections			
		Pesticides (μg/			
Toxaphene	0.06	< 0.11	< 0.11	< 0.11	< 0.11

Legend

Legenu	
<1	Parameter not detected above the method detection limit
<1	Indicates the method detection limit is greater than NYSDEC Class C surface water criteria
1	Parameter reported at a concentration greater than NYSDEC Class C surface water criteria
1	Parameter reported above the method detection limit but below the NYSDEC Class C surface water criteria

	SW-1	SW-2	SW-3	SW-4					
hardness (ppm)	281	398	744	235					
NYSDEC CLASS C SURFACE WATER - CALCULTED METAL STANDARDS FROM HARDNESS (μg/L)									
Cadmium *	4.70	6.19	10.12	4.09					
Chromium, total *	172.52	229.73	383.46	149.15					
copper *	21.62	29.16	49.76	18.58					
lead *	11.40	16.37	30.70	9.46					
nickel *	124.48	167.33	284.06	107.10					
zinc *	198.60	267.34	454.97	170.75					

μg/l = micrograms per liter

surface water Analytical Data Sheet: Generic Horizontal 1 Standard

NE = Standard Not Established

SW = water sample from surface water

^{* =} indicates a calculated standard from hardness

Table 5A

Water Laboratory Analytical Results PFAS (Detection Only)

Fair Street Landfill Site, # 340021

Lab Report No.:	NIVEDEC CLASS C	4602222161	4602222161	4602222161	4602229611
ID:	NYSDEC CLASS C	SW-1	SW-2	SW-3	SW-4
Date Collected:	SURFACE WATER	11/3/2020	11/3/2020	11/3/2020	11/13/2020
Per- and Polyfluoroalk	yl Substances (PFAS)	(ng/l)			
Perfluorooctanoic acid(PFOA)	10	6.5	33	15	15
Perfluorooctanesulfonic acid(PFOS)	10	3.8	220	51	120
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid(FtS 8:2)	100	< 0.43	< 0.45	< 0.47	< 0.56
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid(FtS 6:2)	100	< 2.4	< 2.4	< 2.5	< 0.61
N-ethyl perfluorooctanesulfonamidoacetic acid(NEtFOSAA)	100	< 1.2	2.6	< 1.3	< 0.79
N-methyl perfluorooctanesulfonamidoacetic acid(NMeFOSAA)	100	< 1.1	< 1.2	< 1.2	< 0.67
Perfluorobutanesulfonic acid(PFBS)	100	0.73	2.2	2.6	2.5
Perfluorobutanoic acid(PFBA)	100	2.9	20	4.5	11
Perfluorodecanesulfonic acid(PFDS)	100	< 0.30	< 0.31	< 0.32	< 0.41
Perfluorodecanoic acid(PFDA)	100	0.39	1.2	< 0.31	< 0.39
Perfluorododecanoic acid(PFDoA)	100	< 0.52	< 0.54	< 0.56	< 0.39
Perfluoroheptanesulfonic acid(PFHpS)	100	< 0.18	0.88	0.53	0.72
Perfluoroheptanoic acid(PFHpA)	100	1.6	32	9.4	13
Perfluorohexanesulfonic acid(PFHxS)	100	2.7	15	11	13
Perfluorohexanoic acid(PFHxA)	100	2.5	36	10	15
Perfluorononanoic acid(PFNA)	100	0.55	4.2	1.7	2
Perfluoropentanoic acid(PFPeA)	100	4.6	29	8.8	17
Perfluorotetradecanoic acid(PFTA)	100	< 0.69	< 0.71	< 0.74	< 0.50
Perfluorotridecanoic acid(PFTrDA)	100	< 1.2	< 1.3	< 1.3	< 0.36
Perfluoroundecanoic acid(PFUnA)	100	< 1.0	< 1.1	< 1.1	< 0.62
Perfluroroctanesulfonamide(PFOSA)	100	< 0.93	< 0.96	< 0.99	< 0.48
Total PFAS	500	26	396	115	209

Legend

<1	Parameter not detected above the method detection lim		
Bold	Sample Exceeds Protection of Ground water		

ng/l = nonograms per liter

SW = water sample from sufrace water

Table 6A Sediment Laboratory Analytical Results PFAS and SPLP-PFAS

Fair Street Landfill Site, # 340021

131 Commerce Avenue, Carmel, New York

Lab Report No.:		375 6 600	375-6 SCO -	4602222161	4602222161	4602222161	4602229611	4602229611
Sample ID:	375-6 SCO -	375-6 SCO - PROTECTION OF	PROTECTION OF	S-1	S-2	S-3	S-4	S-4RE
Date Collected:	UNRESTRICTED	GROUNDWATER	PUBLIC HEALTH - COMMERCIAL	11/3/2020	11/3/2020	11/3/2020	11/13/2020	11/13/2020
		Per- and Polyfl	uoroalkyl Substances	(PFAS) (μg/kg)				
Perfluorooctanoic acid(PFOA)	0.66	1.1	500	0.61	3.6	0.52	2.9	NA
Perfluorooctanesulfonic acid(PFOS)	0.88	3.7	440	5.2	6.6	1.7	2.2	2.1
N-ethyl perfluorooctanesulfonamidoacetic acid(NEtFOSAA)	NE	NE	NE	< 7.7	1.4	< 3.0	< 5.5	< 5.8
N-methyl perfluorooctanesulfonamidoacetic acid(NMeFOSAA)	NE	NE	NE	< 7.7	5.6	< 3.0	< 5.5	< 5.8
Perfluorobutanoic acid(PFBA)	NE	NE	NE	0.55	0.63	0.12	0.39	NA
Perfluorodecanesulfonic acid(PFDS)	NE	NE	NE	< 0.77	0.21	< 0.30	< 0.55	NA
Perfluorodecanoic acid(PFDA)	NE	NE	NE	0.30	0.72	0.079	0.17	NA
Perfluorododecanoic acid(PFDoA)	NE	NE	NE	0.27	0.34	0.11	< 0.55	NA
Perfluoroheptanoic acid(PFHpA)	NE	NE	NE	0.23	0.23	< 0.30	0.24	NA
Perfluorohexanesulfonic acid(PFHxS)	NE	NE	NE	0.81	0.46	0.14	0.36	NA
Perfluorohexanoic acid(PFHxA)	NE	NE	NE	0.28	0.26	< 0.30	0.22	NA
Perfluorononanoic acid(PFNA)	NE	NE	NE	0.22	0.32	0.057	0.28	NA
Perfluoropentanoic acid(PFPeA)	NE	NE	NE	0.48	0.69	< 0.30	0.24	NA
Perfluorotetradecanoic acid(PFTA)	NE	NE	NE	0.23	0.12	0.11	< 0.55	NA
Perfluorotridecanoic acid(PFTrDA)	NE	NE	NE	0.39	0.12	0.11	0.20	NA
Perfluoroundecanoic acid(PFUnA)	NE	NE	NE	0.34	0.39	0.15	0.26	NA
Perfluroroctanesulfonamide(PFOSA)	NE	NE	NE	< 0.77	0.48	< 0.30	< 0.55	NA
	Per- and Polyfluoro	oalkyl Substances (PF	AS) - Synthetic Precip	itation Leaching Proc	edure (SPLP) (ng/l)			
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid(FtS 8:2)	NE	NE	NE	NA	< 0.40	< 0.41	NA	NA
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid(FtS 6:2)	NE	NE	NE	NA	< 2.2	< 2.2	NA	NA
N-ethyl perfluorooctanesulfonamidoacetic acid(NEtFOSAA)	NE	NE	NE	NA	< 1.1	< 1.2	NA	NA
N-methyl perfluorooctanesulfonamidoacetic acid(NMeFOSAA)	NE	NE	NE	NA	< 1.0	< 1.1	NA	NA
Perfluorobutanesulfonic acid(PFBS)	NE	NE	NE	NA	0.30	0.19	NA	NA
Perfluorobutanoic acid(PFBA)	NE	NE	NE	NA	5.7	< 2.1	NA	NA
Perfluorodecanesulfonic acid(PFDS)	NE	NE	NE	NA	< 0.28	< 0.29	NA	NA
Perfluorodecanoic acid(PFDA)	NE	NE	NE	NA	1.3	< 0.28	NA	NA
Perfluorododecanoic acid(PFDoA)	NE	NE	NE	NA	< 0.48	< 0.49	NA	NA
Perfluoroheptanesulfonic acid(PFHpS)	NE	NE	NE	NA	0.56	0.30	NA	NA
Perfluoroheptanoic acid(PFHpA)	NE	NE	NE	NA	4.2	1.7	NA	NA
Perfluorohexanesulfonic acid(PFHxS)	NE	NE	NE	NA	2.7	1.7	NA	NA
Perfluorohexanoic acid(PFHxA)	NE	NE	NE	NA	3.7	1.6	NA	NA
Perfluorononanoic acid(PFNA)	NE	NE	NE	NA	3.1	0.90	NA	NA
Perfluorooctanesulfonic acid(PFOS)	NE	NE	NE	NA	22	9.4	NA	NA
Perfluorooctanoic acid(PFOA)	NE	NE	NE	NA	58	11	NA	NA
Perfluoropentanoic acid(PFPeA)	NE	NE	NE	NA	6.7	1.7	NA	NA
Perfluorotetradecanoic acid(PFTA)	NE	NE	NE	NA	< 0.63	< 0.65	NA	NA
Perfluorotridecanoic acid(PFTrDA)	NE	NE	NE	NA	< 1.1	< 1.2	NA	NA
Perfluoroundecanoic acid(PFUnA)	NE	NE	NE	NA	< 0.95	< 0.98	NA	NA

Table 6A Soil Laboratory Analytical Results PFAS and SPLP-PFAS

Fair Street Landfill Site, # 340021

131 Commerce Avenue, Carmel, New York

Lab Report No.:	375-6 SCO - UNRESTRICTED	375-6 SCO - PROTECTION OF GROUNDWATER	375-6 SCO - PROTECTION OF PUBLIC HEALTH - COMMERCIAL	4602222161	4602222161	4602222161	4602229611	4602229611
Sample ID:				S-1	S-2	S-3	S-4	S-4RE
Date Collected:				11/3/2020	11/3/2020	11/3/2020	11/13/2020	11/13/2020
Per- and Polyfluoroalkyl Substances (PFAS) - Synthetic Precipitation Leaching Procedure (SPLP) (ng/l)								
Perfluroroctanesulfonamide(PFOSA)	NE	NE	NE	NA	< 0.85	< 0.88	NA	NA
Total Organic Carbon (mg/kg)								
Total Organic Carbon - Quad	NE	NE	NE	NA	95,700	91,500	NA	NA
рН								
рН	NE	NE	NE	NA	7.4	6.2	NA	NA

Legend

<1	Parameter not detected above the method dection limit			
Bold	Sample Exceeds Unresitricted Objective			
Bold	Sample Exceeds Protection of Ground water			
Bold	Sample Exceeds Commercial Objective			

mg/kg = milligrams per kilogram NE = Standard Not Established

μg/kg = micrograms per kilogram

RE = Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

ng/l = nanogram per liter

NA = Not Submitted for Analysis

S= soil samples from sediment

Table 6 Sediment Laboratory Analytical Results

VOCs, SVOC, TAL Metals, PCBs, Pesticides, Herbicides (Detection Only)

OCS, SVOC, TAL Metals, PCBs, Pesticides, Herbicides (Detection Only Fair Street Landfill Site, # 340021

131 Commerce Avenue, Carmel, New York

Lab Report No.:				4602222161	4602222161	4602222161	4602229611	
D:	Fresh Water Sed - Class A	Fresh Water Sed - Class B	Fresh Water Sed - Class C	S-1	S-2	S-3	S-4	
Date Collected:				11/3/2020	11/3/2020	11/3/2020	11/13/2020	
Volatile Organic Compound (VOC) (μg/kg)								
2-Butanone (MEK)	NE	NE	NE	280	38	16	< 1100	
Acetone	NE	NE	NE	480	390	74	< 2200	
Carbon disulfide	NE	NE	NE	< 2.6	< 1.5	1	< 330	
Methyl acetate	NE	NE	NE	< 42	< 25	< 12	3,000	
Methylene chloride	NE	NE	NE	< 11	< 6.6	6.5	< 560	
		Semi-V	olatile Organic Compou	nd (SVOC) (μg/kg)				
Benzaldehyde	NE	NE	NE	< 230	< 120	< 89	730	
Benzo(a)anthracene	NE	NE	NE	140	400	72	44	
Benzo(a)pyrene	NE	NE	NE	130	400	84	< 26	
Benzo(b)fluoranthene	NE	NE	NE	200	510	100	< 25	
Benzo(ghi)perylene	NE	NE	NE	110	210	49	< 29	
Benzo(k)fluoranthene	NE	NE	NE	63	180	39	< 19	
Bis(2-ethylhexyl)phthalate	< 360,000	> 360,000	NE	< 73	71	< 28	< 51	
Carbazole	NE	NE	NE	< 53	120	< 20	< 37	
Chrysene	NE	NE	NE	130	400	68	28	
Dibenzo(a,H)anthracene	NE	NE	NE	< 60	80	< 23	< 42	
Dibenzofuran	NE	NE	NE	< 19	38	< 7.5	< 14	
Fluoranthene	NE	NE	NE	200	830	120	35	
Indeno(1,2,3-cd)pyrene	NE	NE	NE	110	220	50	< 38	
Naphthalene	NE	NE	NE	< 24	42	< 9.3	84	
Phenanthrene	NE	NE	NE	92	650	66	< 17	
Phenol	NE	NE	NE	< 51	< 26	< 20	180	
Pyrene	NE	NE	NE	250	790	130	< 24	
Total PAHs	< 4,000	4,000 - 35,000	> 35,000	1315	4422	729	191	
			Metals (mg/kg	g)				
Arsenic	< 10	10 – 33	> 33	7.8	12.4	4	2.8	
Cadmium	<1	1-5	> 5	0.63	0.91	0.3	0.29	
Chromium, Total	< 43	43 – 110	> 110	46.3	20.5	15.4	11.5	
Copper	< 32	32 – 150	> 150	96.7	34.7	15.9	16.9	
Lead	< 36	36 – 130	> 130	63.4	58.9	24	14.7	
Mercury	< 0.2	0.2 – 1	>1	0.19	0.096	0.097	0.04	
Nickel	< 23	23 – 49	> 49	50.2	32.8	12.8	12.2	
Silver	<1	1 – 2.2	> 2.2	< 4.0	< 1.8	< 1.4	< 3.3	
Zinc	< 120	120 – 460	> 460	151	786	123	120	
		Po	olychlorinated Biphenyl	(PCB) (μg/kg)				
			No Detects					
			Herbicides (μg/	kg)				
			No Detects					
			Pesticides (μg/	kg)				
4,4'-DDE	NE	NE	NE	12	< 1.7	5.3	< 2.3	

Legend

<1	Parameter not detected above the method detection limit
<1	Indicates the method detection limit is greater than the applicable standard
Bold	Sample Exceeds Fresh Water Sed - Class B
Bold	Sample Exceeds Fresh Water Sed - Class C
1	Parameter reported above the method dection limit but below the applicable standard

μg/kg = micrograms per kilogram

S = soil samples from sediment

mg/kg = micrograms per kilogram

NE = Standard Not Established

Fresh water Sediment Guidence Values (A, B, C) based on the NYSDEC Screening and Assessment of Contaminated Sediment (2014)

Table 7A Water Laboratory Analytical Results (Detection Only) PFAS

Fair Street Landfill Site, # 340021 131 Commerce Avenue, Carmel, New York

Lab Report No.:		4602229611	4602229611	4602229611	4602229611	4602229611	
ID:	NYSDEC CLASS GA	MW-1A	MW-2	MW-3	MW-5	MW-6	
Date Collected:	CRITERIA						
	reflerence Hard Crebetone			11/13/2020	11/13/2020	11/13/2020	
Per- and Polyfluoroalkyl Substances (PFAS) (ng/l)							
Perfluorooctanoic acid(PFOA)	10	< 0.73	150	69	20	23	
Perfluorooctanesulfonic acid(PFOS)	10	< 0.82	NA	< 0	25	35	
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid(FtS 8:2)	100	< 0.55	< 0.56	< 0.62	< 0.60	< 0.56	
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid(FtS 6:2)	100	0.87	< 0.61	25	4.2	0.62	
N-ethyl perfluorooctanesulfonamidoacetic acid(NEtFOSAA)	100	< 0.78	1.2	0.88	1.4	< 0.79	
N-methyl perfluorooctanesulfonamidoacetic acid(NMeFOSAA)	100	< 0.66	< 0.67	< 0.75	0.78	0.97	
Perfluorobutanesulfonic acid(PFBS)	100	< 0.53	6.5	8.6	0.87	0.56	
Perfluorobutanoic acid(PFBA)	100	< 0.95	25	56	6.1	2.6	
Perfluorodecanesulfonic acid(PFDS)	100	< 0.40	< 0.41	< 0.45	< 0.44	< 0.41	
Perfluorodecanoic acid(PFDA)	100	< 0.38	1.9	1.9	2.1	0.51	
Perfluorododecanoic acid(PFDoA)	100	< 0.38	< 0.39	< 0.43	< 0.42	< 0.39	
Perfluoroheptanesulfonic acid(PFHpS)	100	< 0.33	7.3	3.1	< 0.35	0.9	
Perfluoroheptanoic acid(PFHpA)	100	< 0.38	55	87	12	4.5	
Perfluorohexanesulfonic acid(PFHxS)	100	< 0.56	80	59	3.5	3.9	
Perfluorohexanoic acid(PFHxA)	100	< 0.69	46	100	12	2.6	
Perfluorononanoic acid(PFNA)	100	< 0.49	11	6	2.2	2	
Perfluoropentanoic acid(PFPeA)	100	< 0.90	52	96	13	2.1	
Perfluorotetradecanoic acid(PFTA)	100	< 0.49	< 0.50	< 0.56	< 0.54	< 0.50	
Perfluorotridecanoic acid(PFTrDA)	100	< 0.36	< 0.37	< 0.41	< 0.39	< 0.36	
Perfluoroundecanoic acid(PFUnA)	100	< 0.61	< 0.62	< 0.69	< 0.66	< 0.62	
Perfluroroctanesulfonamide(PFOSA)	100	< 0.48	< 0.48	< 0.54	< 0.52	< 0.48	
Total PFAS	500	1	436	512	103	79	

Legend

Parameter not detected above the method detection limit
Bold
Sample Exceeds Protection of Ground water

ng/l = nonograms per liter

NE = Standard Not Established

NA = Not Submitted for Analysis

MW = water sample from ground water collected from monitoring well

Table 7B Water Laboratory Analytical Results PFAS TOPA

Fair Street Landfill Site, # 340021 131 Commerce Avenue, Carmel, New York

Lab Report No.:	4602229611	4602229611	4602229611					
MW-3	Pre-Treatment Method	Post-Treatment Method	Difference					
Date Collected:	11/13/2020	11/13/2020	11/13/2020					
Perfluorinated Alkyl Substances (PFAS) by Total Oxidizable Precursor (TOP) Assay (ng/l)								
Perfluorobutanoic acid (PFBA)	69	110	46					
Perfluoropentanoic acid (PFPeA)	93	91	0					
Perfluorohexanoic acid (PFHxA)	120	120	7.2					
Perfluoroheptanoic acid (PFHpA)	97	78	0					
Perfluorooctanoic acid (PFOA)	800	490	0					
Perfluorononanoic acid (PFNA)	7	3.3	0					
Total PFCA	1200	890	0					

Legend

ng/l = nonograms per liter

PFCA = Perfluoroalkyl carboxylic acids

MW = water sample from ground water collected from monitoring well

Table 7

Groundwater Laboratory Analytical Results VOCs, SVOC, TAL Metals, PCBs, Pesticides, Herbicides (Detection Only) Fair Street Landfill Site, # 340021

131 Commerce Avenue, Carmel, New York

Lab Report No.:	NIVEDEC CLASS CA	4602229611	4602229611	4602229611	4602229611
ID:	NYSDEC CLASS GA	MW-1A	MW-2	MW-3	MW-5
Date Collected:	CRITERIA	11/13/2020	11/13/2020	11/13/2020	11/13/2020
	Volatile Organic	Compound (VOC) (µ	ig/I)		
1,2-Dibromo-3-chloropropane	0.04	< 0.38	< 0.38	< 0.38	< 0.38
1,2-Dibromoethane (EDB) (ethylene dibromide)	0.0006	< 0.50	< 0.50	< 0.50	< 0.50
Acetone	50	< 4.4	< 4.4	< 4.4	< 4.4
	Semi-Volatile Organ	nic Compound (SVOC	(μg/l)		
Benzo(a)pyrene	0.01	< 0.41	< 0.41	< 0.41	< 0.41
Benzo(b)fluoranthene	0.002	< 0.68	< 0.68	< 0.68	< 0.68
Benzo(k)fluoranthene	0.002	< 0.67	< 0.67	< 0.67	< 0.67
Chrysene	0.002	< 0.91	< 0.91	< 0.91	< 0.91
Hexachlorobenzene	0.04	< 0.40	< 0.40	< 0.40	< 0.40
Indeno(1,2,3-cd)pyrene	0.002	< 0.94	< 0.94	< 0.94	< 0.94
Nitrobenzene	0.4	< 0.57	< 0.57	< 0.57	< 0.57
Pentachlorophenol	1	< 1.4	< 1.4	< 1.4	< 1.4
	M	etals (μg/l)			
Aluminum, Total	NE	14,900	500	425	2,390
Antimony	3	< 3.7	< 3.7	24.8	< 3.7
Arsenic	25	< 3.3	< 3.3	< 3.3	< 3.3
Barium	1,000	228	88.1	217	109
Beryllium	3	< 0.17	< 0.17	< 0.17	< 0.17
Cadmium	5	< 0.33	< 0.33	0.66	< 0.33
Calcium	NE	16,500	283,000	253,000	67,200
Chromium, Total	50	36.8	< 5.0	< 5.0	6.2
Cobalt	NE	23	< 2.0	3.6	4.7
Copper	200	104	< 6.9	39.5	< 6.9
ron	300	27,700	483	540	3070
Lead	25	14	< 2.4	2.5	6.9
Magnesium	35,000	8,740	67,100	91,100	7,640
Vanganese	300	464	88.8	6,630	420
Mercury	0.7	< 0.091	< 0.091	< 0.091	< 0.091
Nickel	100	42.4	< 4.1	13.4	7.3
Potassium, Total	NE	7,780	15,300	14,000	11,600
Selenium	10	< 5.9	< 5.9	< 5.9	< 5.9
Silver	50	< 5.8	< 5.8	< 5.8	< 5.8
Sodium, Total	20,000	31,800	20,300	19,400	5,130
	0.5	< 4.1	< 4.1	26.3	< 4.1
Vanadium	NE	81.5	< 7.2	< 7.2	< 7.2
Zinc	2,000	89.7	3.7	28.3	13.5
		d Biphenyl (PCB) (μg			
PCB 1016	0.09	< 0.12	< 0.12	< 0.12	< 0.12

Table 7

Groundwater Laboratory Analytical Results VOCs, SVOC, TAL Metals, PCBs, Pesticides, Herbicides (Detection Only) Fair Street Landfill Site, # 340021

131 Commerce Avenue, Carmel, New York

Lab Report No.:	NYSDEC CLASS GA	4602229611	4602229611	4602229611	4602229611
ID:	CRITERIA	MW-1A	MW-2	MW-3	MW-5
Date Collected:		11/13/2020	11/13/2020	11/13/2020	11/13/2020
	Polychlorinate	d Biphenyl (PCB) (μg,	/I)		
PCB 1221	0.09	< 0.12	< 0.12	< 0.12	< 0.12
PCB 1232	0.09	< 0.12	< 0.12	< 0.12	< 0.12
PCB 1242	0.09	< 0.12	< 0.12	< 0.12	< 0.12
PCB 1248	0.09	< 0.12	< 0.12	< 0.12	< 0.12
PCB 1254	0.09	< 0.11	< 0.11	< 0.11	< 0.11
PCB 1260	0.09	< 0.11	< 0.11	< 0.11	< 0.11
Herbicides (μg/l)					
No detections					
	Pes	ticides (µg/l)			
Toxaphene	0.06	< 0.11	< 0.11	< 0.11	< 0.11

Legend

<1	Parameter not detected above the method detection limit
<1	Indicates the method detection limit is greater than NYSDEC Class GA criteria
1	Parameter reported at a concentration greater than NYSDEC Class GA criteria
1	Parameter reported above the method detection limit but below the NYSDEC Class GA criteria

μg/l = micrograms per liter

NE = Standard Not Established

MW = water sample from groundwater collected from monitoring wells

APPENDIX A EDR Report/Land Use Records

131 Commerce Ave

131 Commerce Ave Carmel, NY 10512

Inquiry Number: 6044645.8

April 21, 2020

The EDR Aerial Photo Decade Package

EDR Aerial Photo Decade Package

04/21/20

Site Name: Client Name:

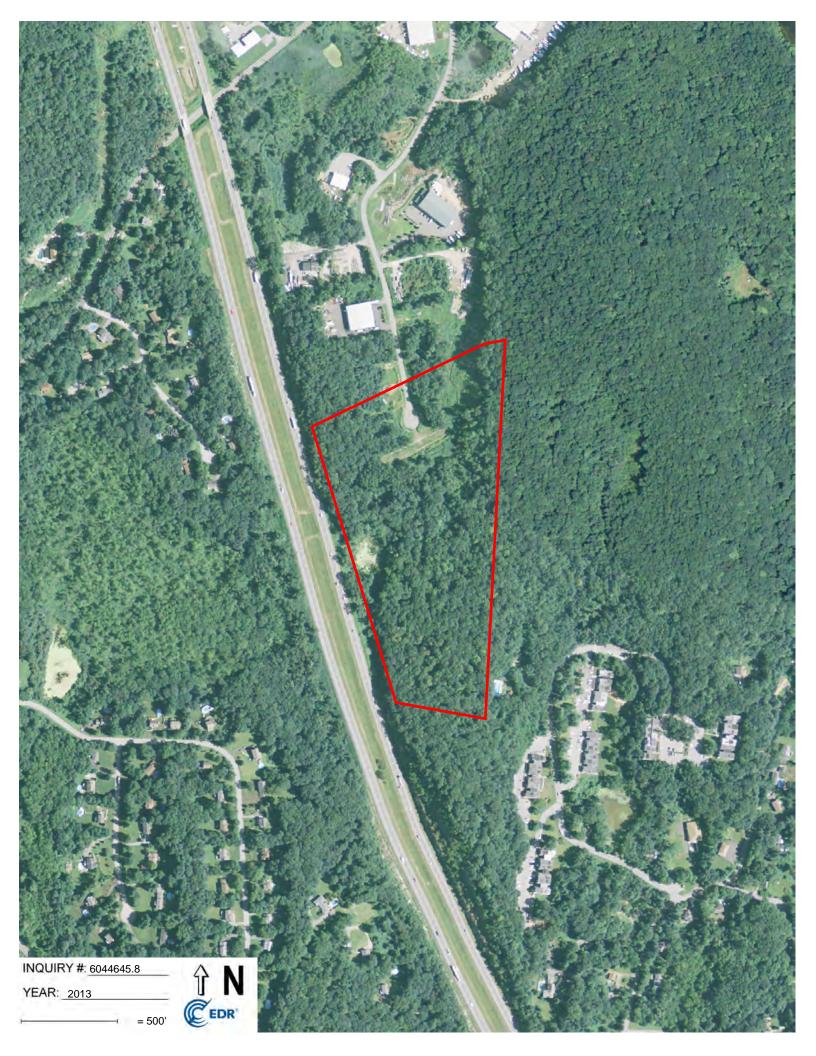
131 Commerce Ave HRP Associates, Inc.
131 Commerce Ave 197 Scott Swamp Road
Carmel, NY 10512 Farmington, CT 06032-0000
EDR Inquiry # 6044645.8 Contact: Stefan Truex

Environmental Data Resources, Inc. (EDR) Aerial Photo Decade Package is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's professional researchers provide digitally reproduced historical aerial photographs, and when available, provide one photo per decade.

Search Results:

<u>Year</u>	<u>Scale</u>	<u>Details</u>	Source
2017	1"=500'	Flight Year: 2017	USDA/NAIP
2013	1"=500'	Flight Year: 2013	USDA/NAIP
2009	1"=500'	Flight Year: 2009	USDA/NAIP
2006	1"=500'	Flight Year: 2006	USDA/NAIP
1997	1"=500'	Flight Date: March 27, 1997	USGS
1994	1"=500'	Acquisition Date: April 20, 1994	USGS/DOQQ
1992	1"=500'	Flight Date: April 13, 1992	USGS
1984	1"=500'	Flight Date: March 26, 1984	USDA
1974	1"=500'	Flight Date: February 24, 1974	USGS
1958	1"=500'	Flight Date: May 10, 1958	USGS
1941	1"=500'	Flight Date: October 26, 1941	USGS

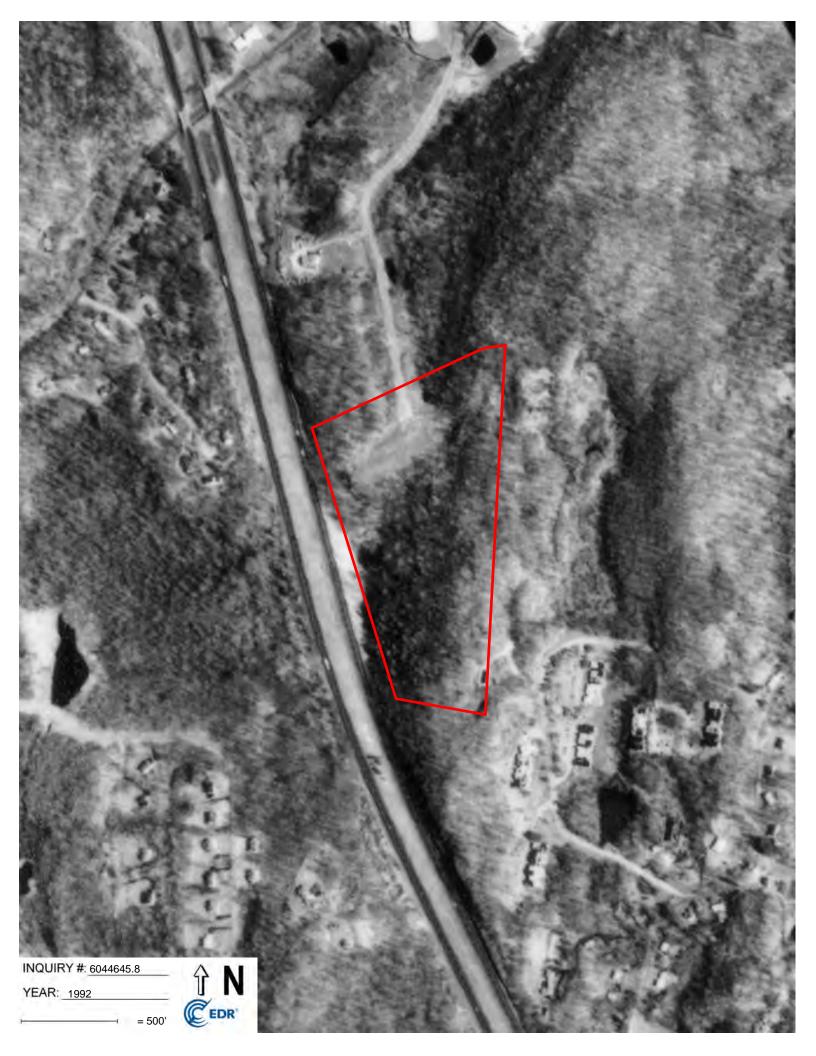
When delivered electronically by EDR, the aerial photo images included with this report are for ONE TIME USE ONLY. Further reproduction of these aerial photo images is prohibited without permission from EDR. For more information contact your EDR Account Executive.

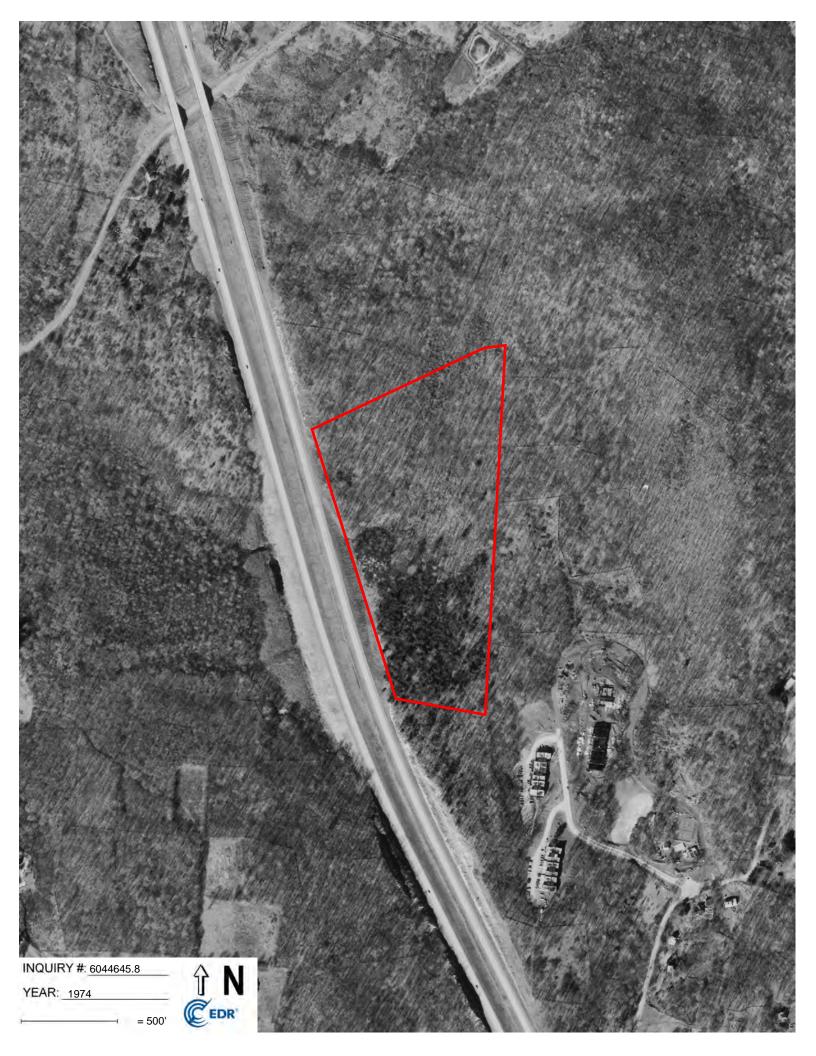

Disclaimer - Copyright and Trademark Notice

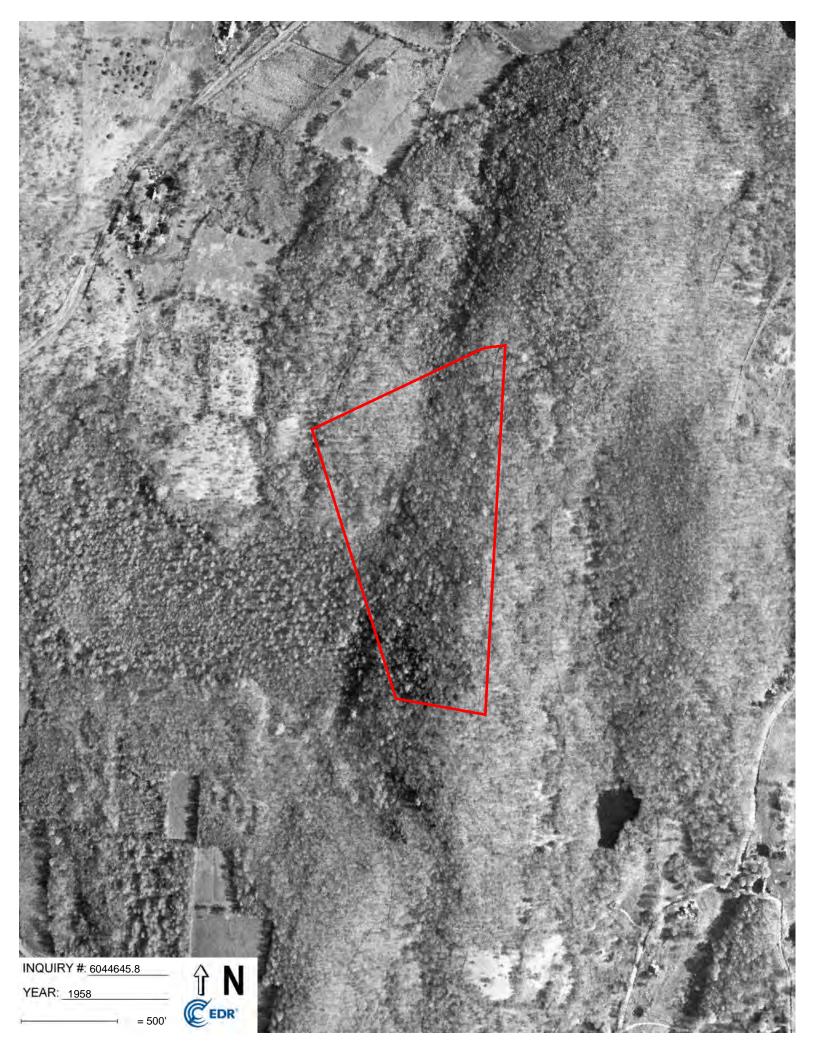
This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2020 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.







131 Commerce Ave 131 Commerce Ave Carmel, NY 10512

Inquiry Number: 6044645.5

April 21, 2020

The EDR-City Directory Image Report

TABLE OF CONTENTS

SECTION

Executive Summary

Findings

City Directory Images

Thank you for your business.Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OR DAMAGE, INCLUDING. WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction orforecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2020 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc. or its affiliates is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

EXECUTIVE SUMMARY

DESCRIPTION

Environmental Data Resources, Inc.'s (EDR) City Directory Report is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's City Directory Report includes a search of available city directory data at 5 year intervals.

RECORD SOURCES

EDR's Digital Archive combines historical directory listings from sources such as Cole Information and Dun & Bradstreet. These standard sources of property information complement and enhance each other to provide a more comprehensive report.

EDR is licensed to reproduce certain City Directory works by the copyright holders of those works. The purchaser of this EDR City Directory Report may include it in report(s) delivered to a customer. Reproduction of City Directories without permission of the publisher or licensed vendor may be a violation of copyright.

RESEARCH SUMMARY

The following research sources were consulted in the preparation of this report. A check mark indicates where information was identified in the source and provided in this report.

<u>Year</u>	Target Street	Cross Street	<u>Source</u>
2017	$\overline{\mathbf{V}}$		EDR Digital Archive
2014	$\overline{\checkmark}$		EDR Digital Archive
2010			EDR Digital Archive
2005	$\overline{\checkmark}$		EDR Digital Archive
2000			EDR Digital Archive
1995	$\overline{\checkmark}$		EDR Digital Archive
1992	$\overline{\mathbf{V}}$		EDR Digital Archive
1987	$\overline{\checkmark}$		Cole Criss-Cross Directory
1982			Cole Criss-Cross Directory
1977			Cole Criss-Cross Directory
1972			Cole Criss-Cross Directory

FINDINGS

TARGET PROPERTY STREET

131 Commerce Ave Carmel, NY 10512

<u>Year</u>	<u>CD Image</u>	<u>Source</u>	
COMMER	CE DR		
2017	pg A1	EDR Digital Archive	
2014	pg A2	EDR Digital Archive	
2010	pg A3	EDR Digital Archive	
2005	pg A4	EDR Digital Archive	
2000	pg A5	EDR Digital Archive	
1995	pg A6	EDR Digital Archive	
1992	pg A7	EDR Digital Archive	
1987	pg A8	Cole Criss-Cross Directory	
1982	-	Cole Criss-Cross Directory	Street not listed in Source
1977	-	Cole Criss-Cross Directory	Street not listed in Source
1972	-	Cole Criss-Cross Directory	Street not listed in Source

6044645-5 Page 2

FINDINGS

CROSS STREETS

No Cross Streets Identified

6044645-5 Page 3

Target Street Cross Street Source

- EDR Digital Archive

	COMMERCE DR 2017
10	FRANKS AUTOMOTIVE LLC INNER MOTIVES LTD NORTH EAST MESA
35	CRAIG ZOTTOLA INC R & V P FLOORING SYSTEMS INC RVP FLOORING SYSTEMS T & G CABINETRY
64	AIM TRUCKING
81	EUROSTYLE MARBLE & TILE
84	BETTER CAR SALES INC DALCOTT CORP
96	KNORR BRAKE COMPANY UTZ QUALITY FOODS

Target Street Cross Street Source

→ EDR Digital Archive

10	FRANKS AUTOMOTIVE LLC
	INNER MOTIVES LIMITED
	NORTH EAST MESA
30	EASTERN JUNGLE GYM CORPORATION
35	CRAIG ZOTTOLA INCORPORATED
	R & V P FLOORING SYSTEMS INC
	RVP FLOORING SYSTEMS
	T & G CABINETRY
	ZOTTOLA CRAIG INC
	ZOTTOLA CRAIG TRUCK REPAIR
64	AIM TRUCKING
81	EUROSTYLE MARBLE & GRANITE
84	BETTER CAR SALES INCORPORATED
	DALCOTT CORPORATION

Target Street Cross Street Source

→ EDR Digital Archive

3	0 60 55	MARTEC SYSTEMS INC EUROSTYLE MARBLE & TILING INNER MOTIVES LTD M C FINISHING INC NORTH EAST MESA EASTERN JUNGLE GYM CORP CRAIG ZOTTOLA INC
		R & V FLOORING SYSTEMS

Target Street Cross Street Source

✓ - EDR Digital Archive

10	GEO STRUCTURES INC M C FINISHING NORTH EAST MESA
30	EASTERN JUNGLE GYM INC

Target Street Cross Street Source

→ EDR Digital Archive

2 6	EASTERN JUNGLE GYM CORPORATION PIPELINING PRODUCTS INCORPORATED

Target Street Cross Street Source

→ EDR Digital Archive

COMMERCE DR 1995

2 **GSI MEDICAL** MICROAIR BY INVACARE PUTNAM REPORTER DISPATCH THE **COACH TOURS** 4 6 WESTMORELAND CONSTRUCTION

<u>Target Street</u> <u>Cross Street</u> <u>Source</u>

✓ - EDR Digital Archive

2	GEOMARINE SYSTEMS INC GSI DEVELOPMENT CO TECHNICAL ENVIRONMENTAL SPECIALISTS CORP TES CORP

	COMMENCE DIX	
16	Richard Brescia Richard Brescia * Dr A K Shapiro * Dr Elaine Shapiro Dr Elaine Shapiro George A Jones	77 472-4046
	Richard Brescia	// 4/2-61/8
17	★Dr A K Shapiro	. 72 472-5336
1	★ Dr Elaine Shapiro	72 472 – 5336
	Dr Elaine Shapiro	67 472~3923
19	George A Jones	79 723 – 84 18
	13 RESIDENCE	6 BUSINESS
l		40540
● C	DMANCHE CT	10526
New	Street-1982.	
Golde	ens Bridge PO	
40	Corey Smith	84 232 – 4636
NO #	Thomas E Bottin	82 232 – 5832
NO #	Richard B Hilton	82 232 – 4287
NO #	Surinder Kumar	84 232 – 5336
NO #	Edward P Mahoney	82 232 – 5931
NO #	Merton A Murphy	83 232 – 8657
NO #	Jack G Peltier	83 232 – 9529
NO #	Thomas E Bottin Richard B Hilton Surinder Kumar Edward P Mahoney Merton A Murphy Jack G Peltier Leslie Y Peltier Robert C Podewils James D Schmidt	85 232 – 86 77
NO #	Robert C Padewils	83 232 – 5284
NO #	James D Schmidt	. 85 232 – 5 49 3
2.2	10 RESIDENCE	
A 01	DARLY AVE	10573
- LI	DMLY AVE	103/3
	Brook Village	
Port	Chester PO	02.02 64 11 6
		83.02 \$AH 6
111	William H Todd III	.80 937-0304
500	Dave Rowland	. Д 939—1380
503		. H 93/-3108
- KIN	G	70 007 0490
504	David B Rosen R Rosen	.72 937 – 3428
	H Hosen	.85 937 - 5091
NU #	* Cartoon Museum	.84 939-0234
NU #	* Cartoon Museum	. 83 93/-1006
NU #	Joseph M. Fox	.// 939-80/6
IVU #	nev raul & newell	04 307 - 1000
NO #	Rev Paul Hewett	. ¤ 937-8721
NU #	GUY LOIZZO	./4 33/-2238
NU #	Museum Cartoon Art	.11 333~0234
NU #	* Newspr Comics Coun	. BZ 333-3313
NU #	William J Trepp	./5 335-233/
NU #	Hev Paul Hewett	C DUCHECO PG.
	10 RESIDENCE	5 BUSINESS
▲ C	OMMERCE DR	12563
	Street-1986.	
Datte	roop DO	
1 2	+ Res Fauint Co	- 878-3390
1 4	+ Sconek Conete Core	_ 878_ 9894
NO #	★Bes Equipt Co ★Scopek Constr Corp . ★Martec Systems Inc . ★Micro—Cmptr Autmtn	R7R_361R
NO #	★ Micro—Cmptr Autmtn	_ 878_6000
10 #	A MINIA AMPO MANIMO	4 BUSINESS
D TYPERT	AS AUTHORIZED BY THE	
n EXCEPT	Tract Wealth Rating CL10	_ Man lecation
— ceusus	ITALL TYCAILII NAUNG LEIU	- may cocation

131 Commerce Ave 131 Commerce Ave Carmel, NY 10512

Inquiry Number: 6044645.4

April 20, 2020

EDR Historical Topo Map Report

with QuadMatch™

EDR Historical Topo Map Report

04/20/20

Site Name: Client Name:

131 Commerce Ave
131 Commerce Ave
137 Scott Swamp Road
Carmel, NY 10512
Farmington, CT 06032-0000
EDR Inquiry # 6044645.4
Contact: Stefan Truex

EDR Topographic Map Library has been searched by EDR and maps covering the target property location as provided by HRP Associates, Inc. were identified for the years listed below. EDR's Historical Topo Map Report is designed to assist professionals in evaluating potential liability on a target property resulting from past activities. EDRs Historical Topo Map Report includes a search of a collection of public and private color historical topographic maps, dating back to the late 1800s.

P.O.#	DEC1005.P3	Latitude:	41.461313 41° 27' 41" North
Project:	NYSDEC - Fair Street Landfill	Longitude:	-73.64058 -73° 38' 26" West
-		UTM Zone:	Zone 18 North

Coordinates:

UTM X Meters: 613529.79
UTM Y Meters: 4590861.08

Elevation: 720.49' above sea level

Maps Provided:

Search Results:

2013

1981, 1984

1958, 1960

1943

1928

1894

1893

1892

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2020 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

Topo Sheet Key

This EDR Topo Map Report is based upon the following USGS topographic map sheets.

2013 Source Sheets

Brewster 2013 7.5-minute, 24000

Lake Carmel 2013 7.5-minute, 24000

1981, 1984 Source Sheets

Lake Carmel 1981 7.5-minute, 24000 Aerial Photo Revised 1941

Brewster 1984 7.5-minute, 24000 Aerial Photo Revised 1982

1958, 1960 Source Sheets

Brewster 1958 7.5-minute, 24000 Aerial Photo Revised 1941

Lake Carmel 1960 7.5-minute, 24000 Aerial Photo Revised 1941

1943 Source Sheets

Brewster 1943 7.5-minute, 24000

Lake Carmel 1943 7.5-minute, 24000

Topo Sheet Key

This EDR Topo Map Report is based upon the following USGS topographic map sheets.

1928 Source Sheets

Carmel 1928 15-minute, 62500

1894 Source Sheets

Carmel 1894 15-minute, 62500

1893 Source Sheets

Carmel 1893 15-minute, 62500

1892 Source Sheets

Carmel 1892 15-minute, 62500

0 Miles

0.25

NW N NE
TP, Lake Carmel, 1960, 7.5-minute
E, Brewster, 1958, 7.5-minute

following map sheet(s).

SITE NAME: 131 Commerce Ave ADDRESS: 131 Commerce Ave

0.5

Carmel, NY 10512

CLIENT: HRP Associates, Inc.

1.5

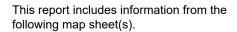
This report includes information from the following map sheet(s).

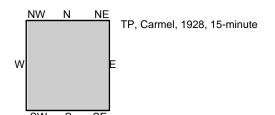
W

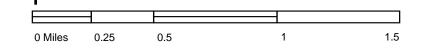
TP, Lake Carmel, 1943, 7.5-minute E, Brewster, 1943, 7.5-minute

SITE NAME: 131 Commerce Ave ADDRESS: 131 Commerce Ave

0.25


0 Miles


Carmel, NY 10512


CLIENT: HRP Associates, Inc.

0.5

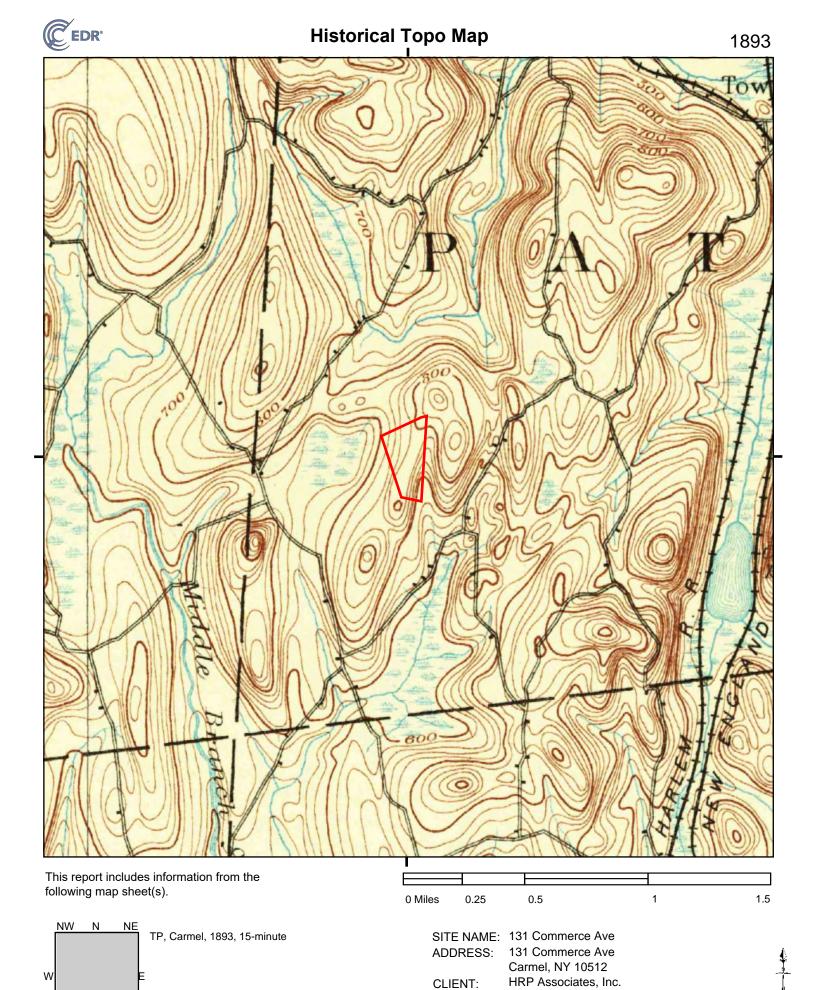
1.5

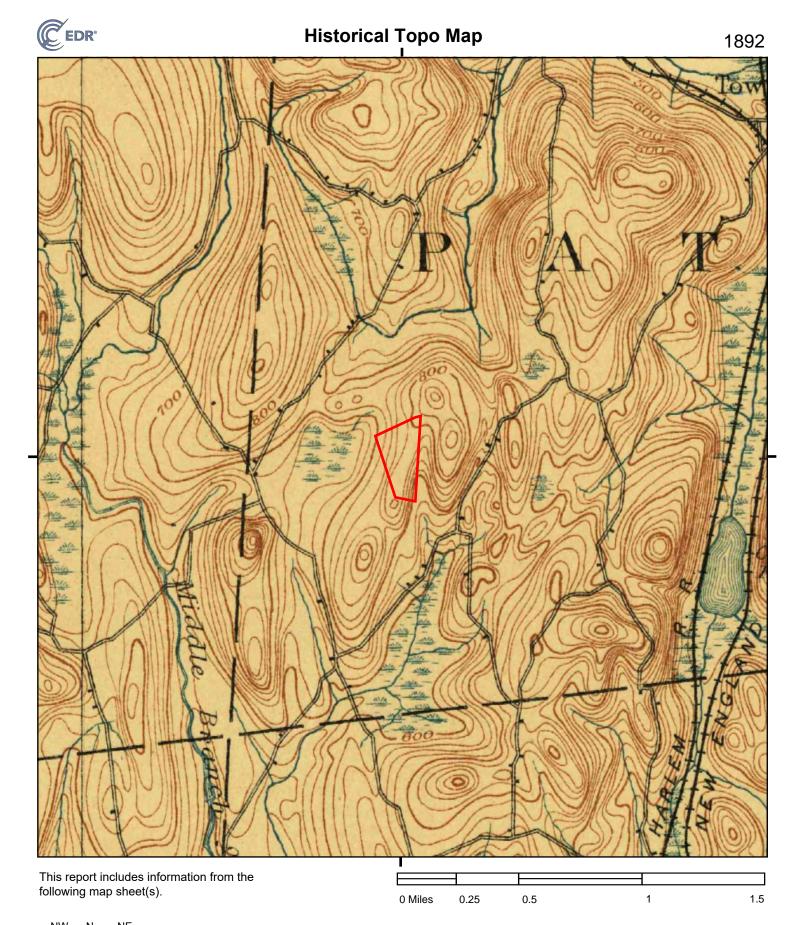
SITE NAME: 131 Commerce Ave ADDRESS: 131 Commerce Ave

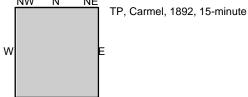
Carmel, NY 10512

HRP Associates, Inc. CLIENT:

This report includes information from the following map sheet(s).




1.5 0 Miles 0.25 0.5


SITE NAME: 131 Commerce Ave ADDRESS: 131 Commerce Ave

Carmel, NY 10512

HRP Associates, Inc. CLIENT:

SITE NAME: 131 Commerce Ave ADDRESS: 131 Commerce Ave

Carmel, NY 10512

CLIENT: HRP Associates, Inc.

131 Commerce Ave 131 Commerce Ave Carmel, NY 10512

Inquiry Number: 6044645.2s

April 20, 2020

The EDR Radius Map™ Report with GeoCheck®

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

TABLE OF CONTENTS

SECTION	PAGE
Executive Summary.	ES1
Overview Map.	2
Detail Map.	3
Map Findings Summary	4
Map Findings.	8
Orphan Summary.	45
Zip Scan Report	ZIP- 1
Government Records Searched/Data Currency Tracking	GR-1
GEOCHECK ADDENDUM	
Physical Setting Source Addendum	A-1
Physical Setting Source Summary	A-2
Physical Setting SSURGO Soil Map	A-5
Physical Setting Source Map	A-16
Physical Setting Source Map Findings.	A-18
Physical Setting Source Records Searched	PSGR-

Thank you for your business.Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2020 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

A search of available environmental records was conducted by Environmental Data Resources, Inc (EDR). The report was designed to assist parties seeking to meet the search requirements of EPA's Standards and Practices for All Appropriate Inquiries (40 CFR Part 312), the ASTM Standard Practice for Environmental Site Assessments (E 1527-13), the ASTM Standard Practice for Environmental Site Assessments for Forestland or Rural Property (E 2247-16), the ASTM Standard Practice for Limited Environmental Due Diligence: Transaction Screen Process (E 1528-14) or custom requirements developed for the evaluation of environmental risk associated with a parcel of real estate.

TARGET PROPERTY INFORMATION

ADDRESS

131 COMMERCE AVE CARMEL, NY 10512

COORDINATES

Latitude (North): 41.4613130 - 41° 27' 40.72" Longitude (West): 73.6405800 - 73° 38' 26.08"

Universal Tranverse Mercator: Zone 18 UTM X (Meters): 613532.9 UTM Y (Meters): 4590648.5

Elevation: 721 ft. above sea level

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property Map: 5939751 LAKE CARMEL, NY

Version Date: 2013

East Map: 5939739 BREWSTER, NY

Version Date: 2013

AERIAL PHOTOGRAPHY IN THIS REPORT

Portions of Photo from: 20150906, 20150610

Source: USDA

MAPPED SITES SUMMARY

Target Property Address: 131 COMMERCE AVE CARMEL, NY 10512

Click on Map ID to see full detail.

MAP ID	SITE NAME	ADDRESS	DATABASE ACRONYMS	RELATIVE ELEVATION	DIST (ft. & mi.) DIRECTION
1	FAIR STREET LANDFILL	131 COMMERCE DRIVE	SHWS		TP
2	C&D, RTE 52 HILLS HO	ROUTE 42	HSWDS	Lower	530, 0.100, West
A3	M&T BANK / COMMERCIA	84 COMMERCE DR	LTANKS, NY Spills	Lower	894, 0.169, North
A4	PATTERSON INTERSTATE	LOT5 COMMERCE DRIVE	NY Spills	Lower	1050, 0.199, North
A5	PETER MONTELEONE	PATTERSON INTERSTATE	NY Spills	Lower	1050, 0.199, North
A6	PIPPO CONTRACTING	PATTERSON INTR ST PK	NY Spills	Lower	1050, 0.199, North
B7	HERNANDEZ RES.	104 HIGHVIEW DR	NY Spills	Higher	1081, 0.205, SSW
A8	COM. PROPERTY	84 COMMERCE DR	NY Spills	Lower	1100, 0.208, North
B9	TAKAHASHI RES	109 HIGHVIEW	NY Spills	Higher	1111, 0.210, SSW
B10	ESTATE OF TAKAHASHI	109 HIGH VIEW RD	LTANKS	Higher	1145, 0.217, SSW
11	VALINE RES.: FLOODED	708 FAIR ST	NY Spills	Lower	1361, 0.258, WNW
12	KLINE RES.: 550 UST	158 BULLET HOLE RD	NY Spills	Lower	1425, 0.270, SSE
C13	ARGILA RESIDENCE	16 JENNIFER LANE	LTANKS	Lower	1605, 0.304, SW
C14	BULFARO	18 JENNIFER LA	NY Spills	Lower	1636, 0.310, SW
15	YONKERS REALITY	10 COMMERCE ST	LTANKS, NY Spills	Lower	1650, 0.312, North
16	HIGH VIEW DR. JENIFE	LOT 25 OFF FAIR ST.	NY Spills	Lower	1684, 0.319, SW
17	NYSE&G: TRANSFORMER	26 JENNIFER LANE	NY Spills	Lower	1728, 0.327, SSW
18	COATES HOME	115 BULLET HOLE ROAD	LTANKS	Lower	1871, 0.354, SSE
19	RICH SCHAAD	70 HIGH VIEW DRIVE	LTANKS, NY Spills	Higher	1983, 0.376, SSW
20	TIERNAN RES.: 550 US	29 CAROLYN WAY	NY Spills	Higher	1984, 0.376, ENE
21	KLETT	630 FAIR ST	LTANKS	Lower	2054, 0.389, WSW
22	SCHWARTZ RESIDENCE	282 TAMMANY HALL RD	NY Spills	Lower	2061, 0.390, SE
D23	PAVEMENT	262 BULLET HOLE RD	NY Spills	Higher	2079, 0.394, East
D24	GUFFEE RESIDENCE	272 BULLET HOLE RD	NY Spills	Higher	2173, 0.412, East
E25	ROBERT BAYER HOME	91 BULLETHOLE ROAD	LTANKS	Lower	2208, 0.418, South
E26	SHAKIN RENTAL TTF	76 BULLET HOLE RD	LTANKS	Lower	2393, 0.453, South
E27	MALDONADO RES	76 BULLET HOLE RD	NY Spills	Lower	2393, 0.453, South

TARGET PROPERTY SEARCH RESULTS

The target property was identified in the following records. For more information on this property see page 8 of the attached EDR Radius Map report:

Database(s) EPA ID Site

FAIR STREET LANDFILL 131 COMMERCE DRIVE CARMEL, NY 10512

SHWS

Site Code: 338798

DATABASES WITH NO MAPPED SITES

No mapped sites were found in EDR's search of available ("reasonably ascertainable ") government records either on the target property or within the search radius around the target property for the following databases:

STANDARD ENVIRONMENTAL RECORDS

Federal NPL site list

NPL..... National Priority List

Proposed NPL..... Proposed National Priority List Sites

NPL LIENS..... Federal Superfund Liens

Federal Delisted NPL site list

Delisted NPL..... National Priority List Deletions

Federal CERCLIS list

FEDERAL FACILITY..... Federal Facility Site Information listing SEMS...... Superfund Enterprise Management System

Federal CERCLIS NFRAP site list

SEMS-ARCHIVE..... Superfund Enterprise Management System Archive

Federal RCRA CORRACTS facilities list

CORRACTS..... Corrective Action Report

Federal RCRA non-CORRACTS TSD facilities list

RCRA-TSDF...... RCRA - Treatment, Storage and Disposal

Federal RCRA generators list

RCRA-LQG..... RCRA - Large Quantity Generators

N/A

RCRA-SQG..... RCRA - Small Quantity Generators

RCRA-VSQG......RCRA - Very Small Quantity Generators (Formerly Conditionally Exempt Small Quantity

Generators)

Federal institutional controls / engineering controls registries

LUCIS...... Land Use Control Information System US ENG CONTROLS...... Engineering Controls Sites List US INST CONTROLS...... Institutional Controls Sites List

Federal ERNS list

ERNS..... Emergency Response Notification System

State and tribal landfill and/or solid waste disposal site lists

SWF/LF..... Facility Register

State and tribal leaking storage tank lists

INDIAN LUST..... Leaking Underground Storage Tanks on Indian Land HIST LTANKS..... Listing of Leaking Storage Tanks

State and tribal registered storage tank lists

State and tribal institutional control / engineering control registries

TANKS..... Storage Tank Facility Listing

State and tribal voluntary cleanup sites

INDIAN VCP...... Voluntary Cleanup Priority Listing VCP..... Voluntary Cleanup Agreements

State and tribal Brownfields sites

BROWNFIELDS..... Brownfields Site List

ERP..... Environmental Restoration Program Listing

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS..... A Listing of Brownfields Sites

Local Lists of Landfill / Solid Waste Disposal Sites

SWRCY...... Registered Recycling Facility List

SWTIRE...... Registered Waste Tire Storage & Facility List

INDIAN ODI...... Report on the Status of Open Dumps on Indian Lands

IHS OPEN DUMPS..... Open Dumps on Indian Land

Local Lists of Hazardous waste / Contaminated Sites

US HIST CDL..... Delisted National Clandestine Laboratory Register

DEL SHWS..... Delisted Registry Sites

US CDL...... National Clandestine Laboratory Register PFAS Contamination Site Location Listing

Local Lists of Registered Storage Tanks

HIST UST..... Historical Petroleum Bulk Storage Database HIST AST_____ Historical Petroleum Bulk Storage Database

Local Land Records

LIENS...... Spill Liens Information LIENS 2..... CERCLA Lien Information

Records of Emergency Release Reports

HMIRS..... Hazardous Materials Information Reporting System

NY Hist Spills...... SPILLS Database

Other Ascertainable Records

RCRA NonGen / NLR...... RCRA - Non Generators / No Longer Regulated

FUDS..... Formerly Used Defense Sites Department of Defense Sites

SCRD DRYCLEANERS...... State Coalition for Remediation of Drycleaners Listing

US FIN ASSUR..... Financial Assurance Information

EPA WATCH LIST..... EPA WATCH LIST

2020 COR ACTION............ 2020 Corrective Action Program List TSCA..... Toxic Substances Control Act

TRIS...... Toxic Chemical Release Inventory System

SSTS..... Section 7 Tracking Systems ROD...... Records Of Decision RMP..... Risk Management Plans

RAATS...... RCRA Administrative Action Tracking System

PRP..... Potentially Responsible Parties PADS...... PCB Activity Database System

ICIS..... Integrated Compliance Information System

Act)/TSCA (Toxic Substances Control Act)

COAL ASH EPA..... Coal Combustion Residues Surface Impoundments List

PCB TRANSFORMER...... PCB Transformer Registration Database

RADINFO...... Radiation Information Database

HIST FTTS..... FIFRA/TSCA Tracking System Administrative Case Listing

DOT OPS...... Incident and Accident Data

CONSENT..... Superfund (CERCLA) Consent Decrees

INDIAN RESERV..... Indian Reservations

FUSRAP..... Formerly Utilized Sites Remedial Action Program

UMTRA..... Uranium Mill Tailings Sites

LEAD SMELTERS..... Lead Smelter Sites

US AIRS..... Aerometric Information Retrieval System Facility Subsystem

US MINES..... Mines Master Index File

ABANDONED MINES..... Abandoned Mines

UXO...... Unexploded Ordnance Sites

FUELS PROGRAM..... EPA Fuels Program Registered Listing

AIRS..... Air Emissions Data

COAL ASH...... Coal Ash Disposal Site Listing DRYCLEANERS....... Registered Drycleaners

E DESIGNATION..... E DESIGNATION SITE LISTING Financial Assurance..... Financial Assurance Information Listing

MANIFEST..... Facility and Manifest Data

SPDES...... State Pollutant Discharge Elimination System

VAPOR REOPENED....... Vapor Intrusion Legacy Site List UIC....... Underground Injection Control Wells COOLING TOWERS...... Registered Cooling Towers

MINES MRDS...... Mineral Resources Data System

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records

EDR MGP	EDR Proprietary Manufactured Gas Plants
	EDR Exclusive Historical Auto Stations
EDR Hist Cleaner	EDR Exclusive Historical Cleaners

EDR RECOVERED GOVERNMENT ARCHIVES

Exclusive Recovered Govt. Archives

RGA HWS	Recovered Government Archive State Hazardous Waste Facilities List
RGAIF	Recovered Government Archive Solid Waste Facilities List

SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were identified in the following databases.

Elevations have been determined from the USGS Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified. Sites with an elevation equal to or higher than the target property have been differentiated below from sites with an elevation lower than the target property.

Page numbers and map identification numbers refer to the EDR Radius Map report where detailed data on individual sites can be reviewed.

Sites listed in **bold italics** are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis.

STANDARD ENVIRONMENTAL RECORDS

State and tribal leaking storage tank lists

LTANKS: Leaking Storage Tank Incident Reports. These records contain an inventory of reported leaking storage tank incidents reported from 4/1/86 through the most recent update. They can be either leaking underground storage tanks or leaking aboveground storage tanks. The causes of the incidents are tank test failures, tank failures or tank overfills

A review of the LTANKS list, as provided by EDR, and dated 11/11/2019 has revealed that there are 9 LTANKS sites within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
ESTATE OF TAKAHASHI Spill Number/Closed Date: 0906968 / Site ID: 419364 Spill Date: 2009-09-21	109 HIGH VIEW RD 2010-01-25	SSW 1/8 - 1/4 (0.217 mi.)	B10	21
RICH SCHAAD Spill Number/Closed Date: 0906259 / Site ID: 418585 Spill Date: 2009-08-29	70 HIGH VIEW DRIVE 2010-01-13	SSW 1/4 - 1/2 (0.376 mi.)	19	33
Lower Elevation	Address	Direction / Distance	Map ID	Page
M&T BANK / COMMERCIA Spill Number/Closed Date: 0201692 / Site ID: 86660 Spill Date: 2002-05-15	84 COMMERCE DR 2002-05-21	N 1/8 - 1/4 (0.169 mi.)	А3	11
ARGILA RESIDENCE Spill Number/Closed Date: 1004917 / Site ID: 438208 Spill Date: 2010-07-31	16 JENNIFER LANE 2010-09-30	SW 1/4 - 1/2 (0.304 mi.)	C13	25
YONKERS REALITY Spill Number/Closed Date: 0102477 / Site ID: 69476 Spill Date: 2001-06-05	10 COMMERCE ST 2001-06-20	N 1/4 - 1/2 (0.312 mi.)	15	27
COATES HOME Spill Number/Closed Date: 0606480 / Site ID: 369829 Spill Date: 2006-09-06	115 BULLET HOLE ROAD 2009-08-13	SSE 1/4 - 1/2 (0.354 mi.)	18	31
KLETT Spill Number/Closed Date: 0308359 / Site ID: 273534 Spill Date: 2003-11-07	630 FAIR ST 2003-12-10	WSW 1/4 - 1/2 (0.389 mi.)	21	36
ROBERT BAYER HOME Spill Number/Closed Date: 0509310 / Site ID: 355071 Spill Date: 2005-11-03	91 BULLETHOLE ROAD 2008-04-30	S 1/4 - 1/2 (0.418 mi.)	E25	41
SHAKIN RENTAL TTF Spill Number/Closed Date: 1306348 / Site ID: 486955	76 BULLET HOLE RD Not Reported	S 1/4 - 1/2 (0.453 mi.)	E26	42

Spill Date: 2013-09-17

ADDITIONAL ENVIRONMENTAL RECORDS

Records of Emergency Release Reports

NY Spills: Data collected on spills reported to NYSDEC. is required by one or more of the following: Article 12 of the Navigation Law, 6 NYCRR Section 613.8 (from PBS regs), or 6 NYCRR Section 595.2 (from CBS regs). It includes spills active as of April 1, 1986, as well as spills occurring since this date.

A review of the NY Spills list, as provided by EDR, and dated 11/11/2019 has revealed that there are 19 NY Spills sites within approximately 0.5 miles of the target property.

Equal/Higher Elevation	Address	Direction / Distance	Map ID	Page
HERNANDEZ RES. Spill Number/Closed Date: 1602670 / Site ID: 529085 Spill Date: 2016-06-16	104 HIGHVIEW DR 2016-07-27	SSW 1/8 - 1/4 (0.205 mi.)	B7	18
TAKAHASHI RES Spill Number/Closed Date: 0907658 / Site ID: 420195 Spill Date: 2009-10-07	109 HIGHVIEW 2009-12-11	SSW 1/8 - 1/4 (0.210 mi.)	B9	20
RICH SCHAAD Spill Number/Closed Date: 0906665 / Site ID: 419015 Spill Date: 2009-09-11	70 HIGH VIEW DRIVE 2009-09-11	SSW 1/4 - 1/2 (0.376 mi.)	19	33
TIERNAN RES.: 550 US Spill Number/Closed Date: 1302864 / Site ID: 483315 Spill Date: 2013-06-16	29 CAROLYN WAY 2013-10-30	ENE 1/4 - 1/2 (0.376 mi.)	20	35
PAVEMENT Spill Number/Closed Date: 1801944 / Site ID: 570495 Spill Date: 2018-05-18	262 BULLET HOLE RD 2018-05-22	E 1/4 - 1/2 (0.394 mi.)	D23	38
GUFFEE RESIDENCE Spill Number/Closed Date: 1004263 / Site ID: 437530 Spill Date: 2010-07-16	272 BULLET HOLE RD 2010-10-05	E 1/4 - 1/2 (0.412 mi.)	D24	39
Lower Elevation	Address	Direction / Distance	Map ID	Page
M&T BANK / COMMERCIA Spill Number/Closed Date: 0900083 / Spill Number/Closed Date: 0903040 / Site ID: 411998 Site ID: 415118 Spill Date: 2009-04-02 Spill Date: 2009-06-15		N 1/8 - 1/4 (0.169 mi.)	A3	11
PATTERSON INTERSTATE	LOT5 COMMERCE DRIVE	N 1/8 - 1/4 (0.199 mi.)	A4	15

	Spill Number/Closed Date: 8802557 / Site ID: 314231	1988-07-06			
	Spill Date: 1988-06-20				
ı	PETER MONTELEONE Spill Number/Closed Date: 8805933 / Site ID: 328129 Spill Date: 1988-10-13	PATTERSON INTERSTATE 1988-10-18	N 1/8 - 1/4 (0.199 mi.)	A5	16
ı	PIPPO CONTRACTING Spill Number/Closed Date: 8800941 / Site ID: 116880 Spill Date: 1988-04-27	PATTERSON INTR ST PK 1989-03-31	N 1/8 - 1/4 (0.199 mi.)	A6	17
(COM. PROPERTY Spill Number/Closed Date: 0900037 / Site ID: 411949 Spill Date: 2008-02-01	84 COMMERCE DR 2009-04-01	N 1/8 - 1/4 (0.208 mi.)	A8	19
,	/ALINE RES.: FLOODED Spill Number/Closed Date: 1106439 / Site ID: 454121 Spill Date: 2011-08-28	708 FAIR ST 2011-09-13	WNW 1/4 - 1/2 (0.258 mi.)	11	22
ı	KLINE RES.: 550 UST Spill Number/Closed Date: 0506192 / Site ID: 351359 Spill Date: 2005-08-19	158 BULLET HOLE RD 2006-02-12	SSE 1/4 - 1/2 (0.270 mi.)	12	24
ı	BULFARO Spill Number/Closed Date: 9802679 / Site ID: 100755 Spill Date: 1998-05-30	18 JENNIFER LA 1998-06-08	SW 1/4 - 1/2 (0.310 mi.)	C14	26
	YONKERS REALITY Spill Number/Closed Date: 0004750 / Site ID: 323928 Spill Date: 2000-07-20	10 COMMERCE ST 2009-04-01	N 1/4 - 1/2 (0.312 mi.)	15	27
ı	HIGH VIEW DR. JENIFE Spill Number/Closed Date: 8900392 / Site ID: 149336 Spill Date: 1989-04-13	LOT 25 OFF FAIR ST. 1989-04-14	SW 1/4 - 1/2 (0.319 mi.)	16	29
ı	NYSE&G: TRANSFORMER Spill Number/Closed Date: 0710886 / Site ID: 392255 Spill Date: 2008-01-14	26 JENNIFER LANE 2008-01-14	SSW 1/4 - 1/2 (0.327 mi.)	17	30
;	SCHWARTZ RESIDENCE Spill Number/Closed Date: 0905554 / Site ID: 417825 Spill Date: 2009-08-12	282 TAMMANY HALL RD 2009-11-05	SE 1/4 - 1/2 (0.390 mi.)	22	37
ı	MALDONADO RES Spill Number/Closed Date: 1609129 / Site ID: 537894 Spill Date: 2016-12-29	76 BULLET HOLE RD Not Reported	S 1/4 - 1/2 (0.453 mi.)	E27	43

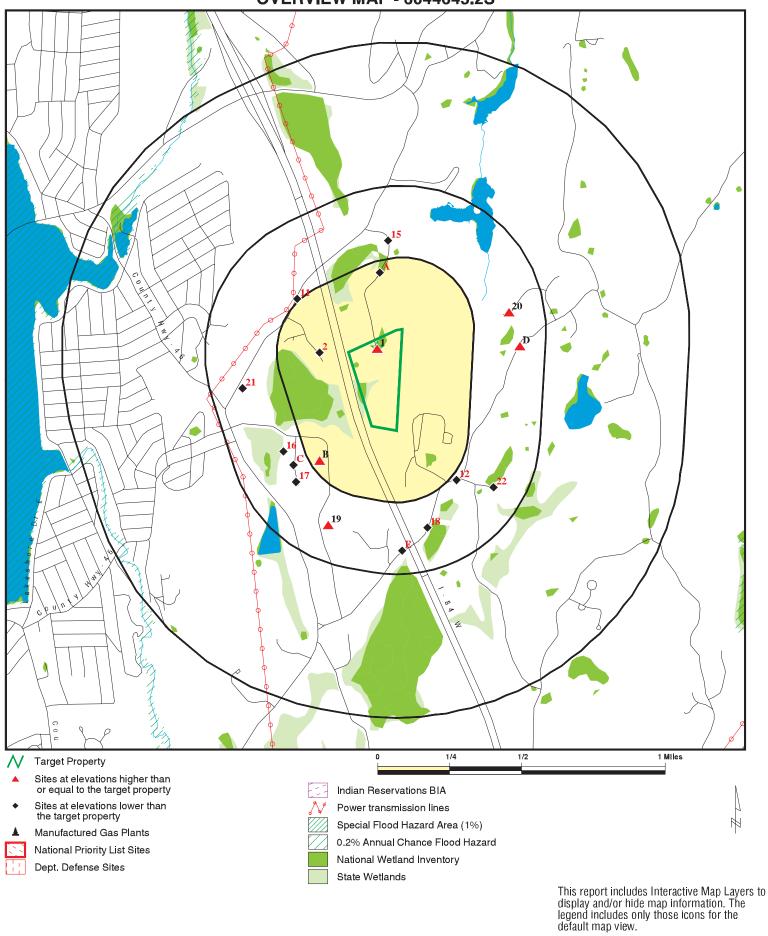
Other Ascertainable Records

HSWDS: The List includes any known or suspected hazardous substance waste disposal sites. Also included are sites delisted from the Registry of Inactive Hazardous Waste Disposal Sites and non-registry sites that U.S. EPA Preliminary Assessment (PA) reports or Site Investigation (SI) reports were prepared. Hazardous Substance Waste Disposal Sites are eligible to be Superfund sites now that the New York State Superfund has been refinanced and changed. This means that the study inventory has served its purpose and will no longer be maintained as a separate entity The latest version of the study is frozen in time. The sites on the study will not automatically be made superfund sites, rather each site will be further evaluated for listing in the registry. So overtime they will be added to the registry or not.

A review of the HSWDS list, as provided by EDR, and dated 01/01/2003 has revealed that there is 1 HSWDS site within approximately 0.5 miles of the target property.

Lower Elevation Address		Direction / Distance	Map ID	Page	
C&D, RTE 52 HILLS HO	ROUTE 42	W 0 - 1/8 (0.100 mi.)	2	9	
Facility Id: HS3008					

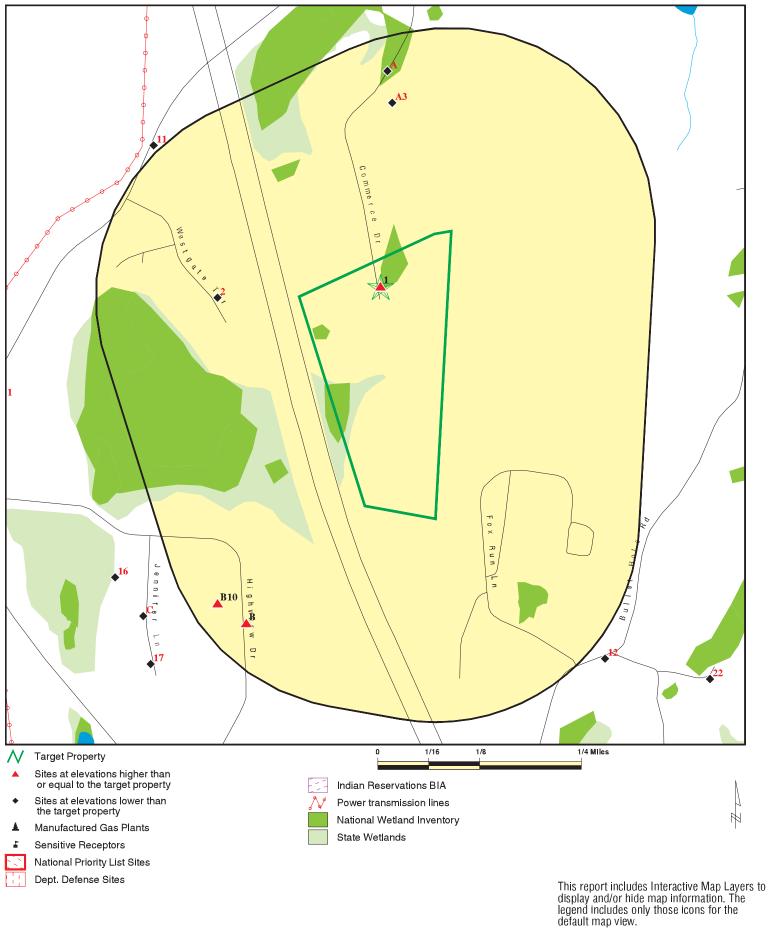
Due to poor or inadequate address information, the following sites were not mapped. Count: 3 records.


 Site Name
 Database(s)

 BREWSTER TRANSIT MIX
 SHWS

 RESIDENTIAL-TTF
 LTANKS

 WILLIAMS TENANT
 LTANKS


OVERVIEW MAP - 6044645.2S

SITE NAME: 131 Commerce Ave
ADDRESS: 131 Commerce Ave
Carmel NY 10512
LAT/LONG: 41.461313 / 73.64058

CLIENT: HRP Associates, Inc.
CONTACT: Stefan Truex
INQUIRY #: 6044645.2s
DATE: April 20, 2020 3:48 pm

DETAIL MAP - 6044645.2S

 SITE NAME:
 131 Commerce Ave
 CLIENT:
 HRP Associates, Inc.

 ADDRESS:
 131 Commerce Ave
 CONTACT:
 Stefan Truex

 Carmel NY 10512
 INQUIRY #:
 6044645.2s

 LAT/LONG:
 41.461313 / 73.64058
 DATE:
 April 20, 2020 3:51 pm

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
STANDARD ENVIRONMEN	TAL RECORDS							
Federal NPL site list								
NPL Proposed NPL NPL LIENS	1.000 1.000 TP		0 0 NR	0 0 NR	0 0 NR	0 0 NR	NR NR NR	0 0 0
Federal Delisted NPL sit	te list							
Delisted NPL	1.000		0	0	0	0	NR	0
Federal CERCLIS list								
FEDERAL FACILITY SEMS	1.000 0.500		0 0	0 0	0 0	0 NR	NR NR	0 0
Federal CERCLIS NFRA	P site list							
SEMS-ARCHIVE	0.500		0	0	0	NR	NR	0
Federal RCRA CORRAC	TS facilities lis	st						
CORRACTS	1.000		0	0	0	0	NR	0
Federal RCRA non-COR	RACTS TSD fa	acilities list						
RCRA-TSDF	0.500		0	0	0	NR	NR	0
Federal RCRA generator	rs list							
RCRA-LQG RCRA-SQG RCRA-VSQG	0.250 0.250 0.250		0 0 0	0 0 0	NR NR NR	NR NR NR	NR NR NR	0 0 0
Federal institutional con engineering controls re								
LUCIS US ENG CONTROLS US INST CONTROLS	0.500 0.500 0.500		0 0 0	0 0 0	0 0 0	NR NR NR	NR NR NR	0 0 0
Federal ERNS list								
ERNS	TP		NR	NR	NR	NR	NR	0
State- and tribal - equiva	alent CERCLIS	;						
SHWS	1.000	1	0	0	0	0	NR	1
State and tribal landfill a solid waste disposal site								
SWF/LF	0.500		0	0	0	NR	NR	0
State and tribal leaking	storage tank li	ists						
INDIAN LUST LTANKS HIST LTANKS	0.500 0.500 0.500		0 0 0	0 2 0	0 7 0	NR NR NR	NR NR NR	0 9 0
State and tribal registere	ed storage tan	k lists						
FEMA UST	0.250		0	0	NR	NR	NR	0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
UST CBS UST MOSF UST CBS MOSF AST CBS AST MOSF AST INDIAN UST TANKS	0.250 0.250 0.500 0.250 0.500 0.250 0.250 0.500 0.250 0.250		0 0 0 0 0 0 0	0 0 0 0 0 0 0	NR NR 0 NR 0 NR NR 0 NR	NR NR NR NR NR NR NR NR NR	NR NR NR NR NR NR NR NR NR	0 0 0 0 0 0 0
State and tribal institution control / engineering con		s						
RES DECL ENG CONTROLS INST CONTROL	0.125 0.500 0.500		0 0 0	NR 0 0	NR 0 0	NR NR NR	NR NR NR	0 0 0
State and tribal voluntary	cleanup site	es						
INDIAN VCP VCP	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
State and tribal Brownfie	lds sites							
BROWNFIELDS ERP	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
ADDITIONAL ENVIRONMEN	TAL RECORDS	<u>3</u>						
Local Brownfield lists								
US BROWNFIELDS	0.500		0	0	0	NR	NR	0
Local Lists of Landfill / S Waste Disposal Sites	olid							
SWRCY SWTIRE INDIAN ODI ODI DEBRIS REGION 9 IHS OPEN DUMPS	0.500 0.500 0.500 0.500 0.500 0.500		0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	NR NR NR NR NR	NR NR NR NR NR	0 0 0 0 0
Local Lists of Hazardous Contaminated Sites	waste/							
US HIST CDL DEL SHWS US CDL PFAS	TP 1.000 TP 0.500		NR 0 NR 0	NR 0 NR 0	NR 0 NR 0	NR 0 NR NR	NR NR NR NR	0 0 0
Local Lists of Registered	Storage Tan	ıks						
HIST UST HIST AST	0.250 TP		0 NR	0 NR	NR NR	NR NR	NR NR	0 0
Local Land Records								
LIENS	TP		NR	NR	NR	NR	NR	0

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	<u>1/2 - 1</u>	> 1	Total Plotted
LIENS 2	TP		NR	NR	NR	NR	NR	0
Records of Emergency I	Release Repo	rts						
HMIRS	TP		NR	NR	NR	NR	NR	0
NY Spills	0.500		0	7	12	NR	NR	19
NY Hist Spills	0.500		0	0	0	NR	NR	0
Other Ascertainable Rec				•	ND	ND	NE	•
RCRA NonGen / NLR FUDS	0.250 1.000		0 0	0 0	NR 0	NR 0	NR NR	0 0
DOD	1.000		0	0	0	0	NR	0
SCRD DRYCLEANERS	0.500		0	Ö	Ö	NR	NR	0
US FIN ASSUR	TP		NR	NR	NR	NR	NR	Ö
EPA WATCH LIST	TP		NR	NR	NR	NR	NR	Ö
2020 COR ACTION	0.250		0	0	NR	NR	NR	0
TSCA	TP		NR	NR	NR	NR	NR	0
TRIS	TP		NR	NR	NR	NR	NR	0
SSTS	TP		NR	NR	NR	NR	NR	0
ROD	1.000		0	0	0	0	NR	0
RMP	TP		NR	NR	NR	NR	NR	0
RAATS	TP		NR	NR	NR	NR	NR	0
PRP PADS	TP TP		NR NR	NR NR	NR NR	NR NR	NR NR	0 0
ICIS	TP		NR	NR	NR	NR	NR	0
FTTS	TP		NR	NR	NR	NR	NR	0
MLTS	TP		NR	NR	NR	NR	NR	0
COAL ASH DOE	TP		NR	NR	NR	NR	NR	Ō
COAL ASH EPA	0.500		0	0	0	NR	NR	0
PCB TRANSFORMER	TP		NR	NR	NR	NR	NR	0
RADINFO	TP		NR	NR	NR	NR	NR	0
HIST FTTS	TP		NR	NR	NR	NR	NR	0
DOT OPS	TP		NR	NR	NR	NR	NR	0
CONSENT	1.000		0	0	0	0	NR	0
INDIAN RESERV FUSRAP	1.000 1.000		0 0	0 0	0 0	0 0	NR NR	0 0
UMTRA	0.500		0	0	0	NR	NR	0
LEAD SMELTERS	TP		NR	NR	NR	NR	NR	0
US AIRS	TP		NR	NR	NR	NR	NR	Ő
US MINES	0.250		0	0	NR	NR	NR	Ō
ABANDONED MINES	TP		NR	NR	NR	NR	NR	0
FINDS	TP		NR	NR	NR	NR	NR	0
ECHO	TP		NR	NR	NR	NR	NR	0
DOCKET HWC	TP		NR	NR	NR	NR	NR	0
UXO	1.000		0	0	0	0	NR	0
FUELS PROGRAM	0.250		0	0	NR	NR	NR	0
AIRS COAL ASH	TP 0.500		NR 0	NR 0	NR 0	NR NR	NR NR	0 0
DRYCLEANERS	0.500		0	0	NR	NR NR	NR NR	0
E DESIGNATION	0.125		0	NR	NR	NR	NR	0
Financial Assurance	TP		NR	NR	NR	NR	NR	0
HSWDS	0.500		1	0	0	NR	NR	1

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted	
MANIFEST	0.250		0	0	NR	NR	NR	0	
SPDES	TP		NR	NR	NR	NR	NR	0	
VAPOR REOPENED UIC	1.000 TP		0 ND	0 NR	0 NR	0 NR	NR NR	0	
COOLING TOWERS	TP		NR NR	NR NR	NR NR	NR NR	NR NR	0 0	
MINES MRDS	TP		NR	NR	NR	NR	NR	Ő	
EDR HIGH RISK HISTORICAL RECORDS									
EDR Exclusive Records									
EDR MGP	1.000		0	0	0	0	NR	0	
EDR Hist Auto	0.250		0	0	NR	NR	NR	0	
EDR Hist Cleaner	0.250		0	0	NR	NR	NR	0	
EDR RECOVERED GOVERN	MENT ARCHIV	/ES							
Exclusive Recovered Go	vt. Archives								
RGA HWS	1.000		0	0	0	0	NR	0	
RGA LF	0.500		0	0	0	NR	NR	0	
- Totals		1	1	9	19	0	0	30	

NOTES:

TP = Target Property

NR = Not Requested at this Search Distance

Sites may be listed in more than one database

Map ID MAP FINDINGS

Direction Distance

Elevation Site Database(s) EPA ID Number

1 FAIR STREET LANDFILL (INACTIVE)

Target 131 COMMERCE DRIVE Property CARMEL, NY 10512

SHWS:

Name: FAIR STREET LANDFILL (INACTIVE)

Actual: Address: 131 COMMERCE DRIVE 721 ft. City,State,Zip: CARMEL, NY 10512

HW Program: Site Code: 338798 Classification: Р Region: 3 19.25 Acres: HW Code: 340021 Record Add: 11/18/1999 Record Upd: 04/18/2019 Updated By: **EGHAUSAM**

Site Description: Location: The site is located in a rural/suburban area in the

northeastern portion of the town of Carmel east of Interstate 84 at the south end of Commerce Drive. The site covers 19.25 acres with an inactive landfill comprising 3 acres of the site. Site Features: The majority of the site is wooded with hilly terrain sloping to the west towards Interstate 84. A small, approximately 1 acre, area devoid of trees located at the dead end of Commerce Drive contains various debris and material storage. The site is bounded by a highway to the west, woods to the east and south, with an apartment complex adjacent to the southeast of the site, and a food warehouse and vehicle storage lot to the north along Commerce Drive. Current Zoning: The site is zoned as Industrial according to the Putnam County tax/property data. Surrounding properties to the north are used for commercial purposes, with the adjacent property to the southeast zoned as Residential. Past use of the Site: The site was used as a construction and demolition landfill from late 1987 until mid-February 1988. The landfill contains mostly construction and demolition debris, but with an estimated 5 percent of the waste described as non-construction and demolition debris, including household hazardous wastes such as furniture polish and engine degreaser. Site Geology and Hydrogeology: According to EPA landfill report from January 1995, the site contains a thin layer of soil and residual glacial till that overly the bedrock at the site. Shallow bedrock is strongly fractured and faulted. Unconfined water in shallow bedrock likely discharges to wetland areas west and southwest

Env Problem:

of the site.

A Preliminary Site Assessment (PSA) was prepared for the site in November 1991 for what was then the Division of Hazardous Waste Remediation. The assessment concluded that disposal of hazardous waste was not documented for the site. Based on the findings of the PSA, the site was referred to the Division of Solid waste in February 1993. As part of the inactive solid waste site evaluation process, the Division of Material Management performed sampling at the site in January 2019. Groundwater samples from three existing monitoring wells and a surface water sample from a culvert pipe were obtained and analyzed for PFAS (per- and poly-fluoroalkyl substances) and 1,4-Dioxane. Results indicated combined perfluoroctanoic acid (PFOA) and perfluoroctanesulfonic acid (PFOS) concentrations exceeding the USEPA Health Advisory Level of 70 parts per trillion (ppt). Once additional information is available this assessment will be updated. As information for this site becomes available, it will be reviewed.

Health Problem:

As information for this site becomes available, it will be reviewed by the NYSDOH to determine if site contamination presents public

EDR ID Number

S113916604

N/A

SHWS

MAP FINDINGS Map ID

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

FAIR STREET LANDFILL (INACTIVE) (Continued)

S113916604

health exposure concerns. Not reported

Dump: Structure: Not reported Lagoon: Not reported Landfill: Not reported Not reported Pond: Not reported Disp Start: Disp Term: Not reported Lat/Long: Not reported Dell: Not reported Record Add: Not reported Not reported Record Upd: Updated By: Not reported Own Op: Not reported Sub Type: Not reported Owner Name: Not reported Owner Company: Not reported Owner Address: Not reported Owner Addr2: Not reported Owner City, St, Zip: Not reported Owner Country: Not reported HW Code: Not reported Waste Type: Not reported Waste Quantity: Not reported Not reported Waste Code: Crossref ID: Not reported Cross Ref Type Code: Not reported Cross Ref Type: Not reported Record Added Date: Not reported Record Updated: Not reported Updated By: Not reported

2 **HSWDS** S108146276 C&D, RTE 52 HILLS HOLDING CORP West **ROUTE 42** N/A

< 1/8 FALLSBURG, NY 12733

0.100 mi. 530 ft.

HSWDS: Relative:

Lower HS3008 Facility ID: Region: Actual: 705 ft. Facility Status: Unknown Owner Type: **Puplic**

> Owner: Thomas Gambino

Owner Address: Unknown Owner Phone: Unknown **Puplic** Operator Type: Same Operator: Operator: Same Operator Phone: Unknown EPA ID:

Registry: Not on NYS Registry of Inactive Haz Waste Disposal Sites

353008 Registry Site ID: RCRA Permitted: No

Site Code: Construction and Demolition Debris Site

Owner City State: Little Neck Operator City State: Not reported Quadrange: Woodridge

MAP FINDINGS Map ID

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

C&D, RTE 52 HILLS HOLDING CORP (Continued)

Latitude: 41 27 40 N 73 38 40 W Longitude: 8.00 Acres: Operator Date: 1988 Close Date: 10/88

Completed: **PSA** Active: No PCB's Disposed: No Pesticides Disposed: Yes Metals Disposed: Yes No Asbestos Disposed:

Volatile Organic Compounds Disposed: Yes Semi Volatile Organic Compounds Disposed: Yes Analytical Info Exists for Air: Air

Analytical Info Exists for Ground: Groundwater Analytical Info Exists for Surface: Surface Water Analytical Info Exists for Sediments: Sediment Analytical Info Exists for Surface: Surface Soil Analytical Info Exists for Substance: Not reported Analytical Info Exists for Waste: Not reported Analytical Info Exists for Leachate: Leachate Analytical Info Exists for EP Toxicity: **EPTox** Analytical Info Exists for TCLP: **TCLP**

Threat to Environment/Public Health: Environmental/Public

Surface Water Contamination: Yes Surface Water Body Class: Class B Groundwater Contamination: Yes Groundwater Classification: Unknown **Drinking Water Contamination:** Yes Drinking Water Supply is Active: Unknown Any Known Fish or Wildlife: Unknown Hazardous Exposure: No Site Has Controlled Acess: No Ambient Air Contamination: Yes Direct Contact: Yes EPA Hazardous Ranking System Score: Unknown

Inventory:

Nefrap: Not reported Mailing: Not reported Not reported Tax Map No:

Qualify:

Next Action: Not reported Agencies: Not reported Not reported Air: Not reported Building: Site Desc: Not reported Drink: Not reported Eptox: Not reported Fish: Not reported Not reported Ground: Not reported Ground Desc: Hazardous Threat: Not reported Not reported Haz Threat Desc: Leachate: Not reported Preparer: Not reported Sediment: Not reported Soil: Not reported

S108146276

Map ID MAP FINDINGS

Direction Distance

Elevation Site Database(s) EPA ID Number

C&D, RTE 52 HILLS HOLDING CORP (Continued)

Surface: Not reported Status: Not reported Surface Soil: Not reported Surface: Not reported TCLP: Not reported Waste: Not reported

A3 M&T BANK / COMMERCIAL PROP LTANKS

REAL LIFE LAND IMPROVE

84 COMMERCE DRIVE

A3 M&T BANK / COMMERCIAL PROP North 84 COMMERCE DR

1/8-1/4 PATTERSON, NY 0.169 mi.

894 ft. Site 1 of 5 in cluster A

Relative: LTANKS: Lower Name:

Actual: Address: 692 ft. City,State,Zip:

City,State,Zip: PATTERSON, NY Spill Number/Closed Date: 0201692 / 2002-05-21

Facility ID: 0201692
Site ID: 86660
Spill Date: 2002-05-15
Spill Cause: Tank Test Failure
Spill Source: Commercial/Industrial

Spill Class: C3

Cleanup Ceased: Not reported SWIS: 4024
Investigator: VPMCCABE Referred To: Not reported Reported to Dept: 2002-05-15

CID: 266

Water Affected:

Spill Notifier:

Last Inspection:

Recommended Penalty:

Meets Standard:

UST Involvement:

Remediation Phase:

Not reported

False

True

False

O

Date Entered In Computer: 2002-05-15
Spill Record Last Update: 2004-08-11
Spiller Name: ELAINE GREGUS

Spiller Company: REAL LIFE LAND IMPROVEMEN

Spiller Address: 84 COMMERCE DRIVE

Spiller County: 001

Spiller Contact: ELAINE GREGUS
Spiller Phone: (845) 878-7788
Spiller Extention: Not reported

DEC Region: 3
DER Facility ID: 79466

DEC Memo: "Prior to Sept, 2004 data translation this spill Lead_DEC Field was

MCCABE 05/21/2002 PASSED RETEST. NO FURTHER ACTION. This spill was

updated 08/11/2004 from info in V. McCabe's data files. 'Date:' =

05/15/02, 'Phone' = 5/21/2002, 'Site Insp' = N/A. "

Remarks: "TANK TO BE UNCOVERED, ISOLATED AND RETESTED."

All TTF:

 Facility ID:
 0201692

 Spill Number:
 0201692

 Spill Tank Test:
 1527132

EDR ID Number

S108146276

S109581536

N/A

NY Spills

MAP FINDINGS Map ID

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

M&T BANK / COMMERCIAL PROP (Continued)

S109581536

Site ID: 86660 Tank Number: Not reported Tank Size: 550 Material: 0001 EPA UST: Not reported UST: Not reported Cause: Not reported Not reported Source:

Test Method:

Test Method 2: Horner EZ Check I or II

.00 Leak Rate: Gross Fail: F Modified By: Spills Last Modified Date: Not reported

All Materials:

Site ID: 86660 Operable Unit ID: 852654 Operable Unit: 01 Material ID: 523102 Material Code: 0001A Material Name: #2 fuel oil Case No.: Not reported Petroleum Material FA: Quantity: .00 Units: G Recovered: .00

Oxygenate: Not reported

SPILLS:

Name: M&T BANK / COMMERCIAL PROP

Address: 84 COMMERCE DR City,State,Zip: PATTERSON, NY Spill Number/Closed Date: 0900083 / 2009-11-16

Facility ID: 0900083 Facility Type: ER 361195 DER Facility ID: 411998 Site ID: DEC Region: 3

Spill Cause: Abandoned Drums

Spill Class: Α1 SWIS: 4024 Spill Date: 2009-04-02 Investigator: **MBMASTRO** Referred To: Not reported 2009-04-02 Reported to Dept: CID: Not reported Water Affected: CREEK

Spill Source: Commercial/Industrial Spill Notifier: Fire Department Cleanup Ceased: Not reported Cleanup Meets Std: False Last Inspection: Not reported Recommended Penalty: False **UST Trust:** False

MAP FINDINGS Map ID Direction

Elevation Site

EDR ID Number EPA ID Number Database(s)

M&T BANK / COMMERCIAL PROP (Continued)

S109581536

Remediation Phase:

Distance

Date Entered In Computer: 2009-04-02 Spill Record Last Update: 2010-02-23

GENEVIEVE SCHILKE Spiller Name:

Spiller Company: M&T BANK Spiller Address: **PO BOX 407** Spiller Company: 999

DISPATCHER 420 Contact Name:

DEC Memo:

"Rec. call 17:30. FD & Putnam County Haz Mat on site. A 55 gal waste oil drum was found leaking at an abandoned construction site. Drum has been there for a while and is leaking into a stream. Spoke to County Fire Coodinator (Chris) who advised there were other spills on site. DEC was told by Putnam 911 that ECO Curinga would be responding. DEC let Co-ordinator know. Call from Dave Paines, building inspector requesting DEC response from spills. Contacted K. Browne to respond and advised J.O M. Called Tri-St. to respond & call building inspector for what materials would be needed to contain and cleanup. dvw 4/2/09: The larger spill is from the oil water separator on the property. An area in the general location of oil water separator, oil was pooling. The parking lot storm drain system is connected to the separator. The building was abandon 18 months ago, the tenants were evicted by a bank. The site has a building used as a garage and offices with large parking lot/equipment yard. There are various containers and drums associated with automotive repair and maintenance inside & outside the building. There is debris all over the yard. Since the site was dark there is a trip & fall hazardous at the site, TriSt. was directed to pad up the oil and placed new absorbent pads and cover with plastic sheeting. Absorbent pads were also placed downgradient from the separator in the receiving pond and other areas suspected to receive the outflow from the separator. One weeping 55-gal was sampled and overpacked. TriSt. was directed to bring an excavator, vac truck and personnel in the morning. The plan is to excavate the impacted soils and possibly pumping the oil water separator. Depending on the condition of the separator may need to be removed. TriSt. is to locate and investigate the outfalls of separator. DEC to be on site in the morning to oversight work. KAB 4-3-09: Mr.Rick DeVall/Esq.(McCabe&Mack 845 486 6855)^V.Mc./Dispt.: Rep for property owner, just heard that there was a spill and a clean up was started. Confirmed cleanup ongoing, provided cell # to Ms.L.H./TriSt for follow up. 4-3-09: M.M. site inspect.: TriSt. and DEP on site. Oil has not gone past retention pond. What was thought to be an oil water sep was a catch basin approx 25' bgs. A 6 pvc pipe enters basin approx 6' bgs. There was no oil in the catch basin. TriSt. removed contaminated soils around catch basin and is uncovering PVC pipe to determine if this is the pipe that is connected to a oil water sep. There are no floor drains in the bldg. Speedidri was applied to oil in parking lot. Vac truck was on site to help remove oil in retention pond and pools of oil in parking lot. Real Estate agent, Ellise DiRoma came to site - 845-228-9797, along with the prospective buyer, Evan Skibo - 914-494-0849. M.M. 11/16/09: There were 2 USTs on site, both removed under direction of PBS, M&T Bank had soils removed that TriSt. had excavated, all required work on site is done, reports are in edocs, NFA. ...mm 2-23-10: V.Mc.: See 3 page update, inc. site inspect.of 4-16-09, w/M.M. Noting: Aprx 100 tp 150 yds.^3 staged on site, 1 K UST for #2 heating oil front/left corner of building, potable well right side of build under poarch."

"CALLER STATES THAT A FULL 55 GALLON DRUM OF WASTE OIL SPILLED TO Remarks:

MAP FINDINGS Map ID

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

M&T BANK / COMMERCIAL PROP (Continued)

S109581536

SOIL AND PAVEMENT, A CREEK HAS ALSO BEEN AFFECTED."

All Materials:

Site ID: 411998 Operable Unit ID: 1168492 Operable Unit: 01 Material ID: 2160095 Material Code: 0022

Material Name: waste oil/used oil Case No.: Not reported Petroleum Material FA: Quantity: 55.00 Units: G Recovered: .00

Oxygenate: Not reported

M&T BANK/ COMM. PROPERTY Name:

Address: 84 COMMERCE DR City, State, Zip: PATTERSON, NY Spill Number/Closed Date: 0903040 / 2009-06-15

Facility ID: 0903040 Facility Type: ER DER Facility ID: 364259 Site ID: 415118 DEC Region:

Equipment Failure Spill Cause:

Spill Class: C3 SWIS: 4024 Spill Date: 2009-06-15 Investigator: **MBMASTRO** Referred To: Not reported Reported to Dept: 2009-06-15 CID: Not reported Water Affected: Not reported

Spill Source: Commercial/Industrial

Spill Notifier: Other Cleanup Ceased: Not reported Cleanup Meets Std: False Last Inspection: Not reported Recommended Penalty: False **UST Trust:** False Remediation Phase:

Date Entered In Computer: 2009-06-15 2010-02-23 Spill Record Last Update:

Spiller Name: **GENEVIEVE SCHILKE** Spiller Company: MAT PROPERTIES Spiller Address: 1769 RTE 52

Spiller Company: 999

Contact Name: SHAWN MITTLEFEHLDT

DEC Memo: "6/15/09: SPOKE TO LCS, INC. IMPACTED SOILS BEING EXCAVATED, POST EX

SAMPLES COLLECTED AND REPORT TO FOLLOW. D.Tr. 6-15-09: V.Mc.: This is

the same as spill # 09-00083, this spill NFA."

"IMPACTED SOIL WAS FOUND UNDER THE PUMP ISLAND. CLEAN UP IS IN Remarks:

PROGRESS."

All Materials:

Site ID: 415118 Map ID MAP FINDINGS

Direction Distance

Elevation Site Database(s) EPA ID Number

M&T BANK / COMMERCIAL PROP (Continued)

S109581536

EDR ID Number

Operable Unit ID: 1171478 Operable Unit: 01 Material ID: 2163282 Material Code: 8000 Material Name: diesel Not reported Case No.: Petroleum Material FA: Quantity: Not reported

Units: G

Recovered: Not reported Oxygenate: Not reported

A4 PATTERSON INTERSTATE NY Spills S102106522
North LOT5 COMMERCE DRIVE PARK N/A

1/8-1/4 PATTERSON, NY

0.199 mi.

1050 ft. Site 2 of 5 in cluster A

 Relative:
 SPILLS:

 Lower
 Name:
 PATTERSON INTERSTATE

 Actual:
 Address:
 LOT5 COMMERCE DRIVE PARK

664 ft. City,State,Zip: PATTERSON, NY

Spill Number/Closed Date: 8802557 / 1988-07-06

Facility ID: 8802557
Facility Type: ER
DER Facility ID: 253367
Site ID: 314231
DEC Region: 3

Spill Cause: Unknown Spill Class: Not reported SWIS: 4024 Spill Date: 1988-06-20 Investigator: dxtraver Referred To: Not reported Reported to Dept: 1988-06-21 CID: Not reported Water Affected: Not reported Spill Source: Unknown

Spill Notifier:
Cleanup Ceased:
Cleanup Meets Std:
Last Inspection:
Recommended Penalty:
UST Trust:
Remediation Phase:
Health Department
1988-07-06
True
Not reported
False
Palse
False

Date Entered In Computer:

Spill Record Last Update:

Spiller Name:

Spiller Company:

Spiller Address:

Not reported

2003-12-02

Not reported

GEORGE ROBERT

Not reported

Spiller Company: 001

Contact Name: Not reported

DEC Memo: "Prior to Sept, 2004 data translation this spill Lead_DEC Field was

TRAVER "

Remarks: "OIL TRAPPED BY CULVERT PIPE CLEANED UP N.F.A."

All Materials:

MAP FINDINGS Map ID

Direction Distance

Elevation Site Database(s) **EPA ID Number**

PATTERSON INTERSTATE (Continued)

S102106522

EDR ID Number

Site ID: 314231 Operable Unit ID: 917876 Operable Unit: 01 Material ID: 458126 Material Code: 0022

waste oil/used oil Material Name: Case No.: Not reported Petroleum Material FA: Quantity: 5.00 Units: G .00 Recovered:

Not reported Oxygenate:

Α5 PETER MONTELEONE NY Spills \$102106695 N/A

North **PATTERSON INTERSTATE** 1/8-1/4 PATTERSON, NY

0.199 mi.

1050 ft. Site 3 of 5 in cluster A

Relative: SPILLS:

Lower Name: PETER MONTELEONE PATTERSON INTERSTATE Address: Actual: 664 ft.

City,State,Zip: PATTERSON, NY Spill Number/Closed Date: 8805933 / 1988-10-18

> Facility ID: 8805933 Facility Type: ER 264088 DER Facility ID: Site ID: 328129 DEC Region:

Equipment Failure Spill Cause: Spill Class: Not reported SWIS: 4024 Spill Date: 1988-10-13 Investigator: **PCHD**

Referred To: Putnam Cnty Health Dept

Reported to Dept: 1988-10-13 Not reported CID: Water Affected: Not reported

Spill Source: Institutional, Educational, Gov., Other

Spill Notifier: Health Department Cleanup Ceased: 1988-10-18 Cleanup Meets Std: True Last Inspection: Not reported Recommended Penalty: False **UST Trust:** False Remediation Phase:

Date Entered In Computer: 1988-10-17 Spill Record Last Update: 1988-11-07 Spiller Name: Not reported

Spiller Company: **BUSINESS PARK LOT 3E** Spiller Address: COMMERCE DRIVE

Spiller Company: 001

Contact Name: Not reported

DEC Memo:

"OVERFILLING/MALFUNCTIONING AT FILL STATION. UNREGISTERED 3K GAL TANK Remarks:

ON PROPERTY. OFF FAIR ST NEAR RT 84. NEARBY WELL IN AREA. DEC TO

INSPECT."

Map ID MAP FINDINGS

Direction Distance

Elevation Site Database(s) EPA ID Number

PETER MONTELEONE (Continued)

S102106695

EDR ID Number

All Materials:

Site ID: 328129 Operable Unit ID: 922814 Operable Unit: 01 Material ID: 457842 Material Code: 0007 Material Name: cutting oil Not reported Case No.: Material FA: Petroleum Quantity: .00

Units: Not reported Recovered: .00

Oxygenate: Not reported

Site ID: 328129 Operable Unit ID: 922814 Operable Unit: 01 Material ID: 457843 Material Code: 8000 Material Name: diesel Not reported Case No.: Material FA: Petroleum Quantity: 30.00 G Units: Recovered: .00

Oxygenate: Not reported

A6 PIPPO CONTRACTING
North PATTERSON INTR ST PK LOT
1/8-1/4 PATTERSON, NY

1/8-1/4 0.199 mi.

1050 ft. Site 4 of 5 in cluster A

Relative: Lower Actual:

SPILLS:
Name: PIPPO CONTRACTING
Address: PATTERSON INTR ST PK LOT

664 ft. City,State,Zip: PATTERSON, NY Spill Number/Closed Date: 8800941 / 1989-03-31

 Facility ID:
 8800941

 Facility Type:
 ER

 DER Facility ID:
 101683

 Site ID:
 116880

 DEC Region:
 3

Spill Cause: Housekeeping
Spill Class: Not reported
SWIS: 4024
Spill Date: 1988-04-27
Investigator: PCHD

Referred To: Putnam Cnty Health Dept

Reported to Dept: 1988-04-29
CID: Not reported
Water Affected: Not reported

Spill Source: Commercial/Industrial
Spill Notifier: Health Department
Cleanup Ceased: 1989-03-31

Cleanup Ceased: 1989-Cleanup Meets Std: True **NY Spills**

S102106452

N/A

Map ID MAP FINDINGS

Direction Distance

Elevation Site Database(s) EPA ID Number

PIPPO CONTRACTING (Continued)

S102106452

EDR ID Number

Last Inspection: Not reported Recommended Penalty: False UST Trust: False Remediation Phase: 0

Date Entered In Computer: 1988-05-04
Spill Record Last Update: 1989-03-31
Spiller Name: Not reported

Spiller Company: PIPPO CONTRACTING

Spiller Address: 445 MAIN ST

Spiller Company: 001

Contact Name: Not reported

DEC Memo:

Remarks: "SPILLER CLEANED UP. NFA PCHD HANDLED."

All Materials:

 Site ID:
 116880

 Operable Unit ID:
 917935

 Operable Unit:
 01

 Material ID:
 460105

 Material Code:
 0022

Material Name: waste oil/used oil
Case No.: Not reported
Material FA: Petroleum
Quantity: 10.00
Units: G
Recovered: .00

Oxygenate: Not reported

B7 HERNANDEZ RES. NY Spills S118705640 SSW 104 HIGHVIEW DR N/A

1/8-1/4 CARMEL, NY 0.205 mi.

1081 ft. Site 1 of 3 in cluster B

Relative: SPILLS:

HigherName:HERNANDEZ RES.Actual:Address:104 HIGHVIEW DR752 ft.City,State,Zip:CARMEL, NY

Spill Number/Closed Date: 1602670 / 2016-07-27

 Facility ID:
 1602670

 Facility Type:
 ER

 DER Facility ID:
 483215

 Site ID:
 529085

 DEC Region:
 3

Spill Cause: Equipment Failure

Spill Class:

SWIS:

4020

Spill Date:

1016-06-16

Spill Date:

1020

Spill Date:

103

Spill Date:

104-06-16

Spill Date:

105-06-16

Spill Date:

106-06-16

Spill Date:

107-06-16

Spill Date:

108-08-16

Spill Class:

109-08-16

Spill Class:

Water Affected: Not reported
Spill Source: Private Dwelling
Spill Notifier: Other

Cleanup Ceased: Not reported Cleanup Meets Std: False

Direction Distance

Elevation Site Database(s) **EPA ID Number**

HERNANDEZ RES. (Continued)

S118705640

EDR ID Number

Last Inspection: Not reported Recommended Penalty: False **UST Trust:** False Remediation Phase: Date Entered In Computer: 2016-06-16

Spill Record Last Update: 2016-07-27 Spiller Name: Not reported Spiller Company:

STEVE HERNANDEZ

Spiller Address: Not reported

Spiller Company: 999

Contact Name: STEVE HERNANDEZ

DEC Memo: "6/16/16 Dutchess Env. doing tank removal and site remediation. Well

on opposite side of house greater than 50' away. No GW noted. dw

7-27-16 Received and reviewed TCR. NFA jm"

Remarks: "Caller advised during an in place closure of the tank found

contaminated soil. Clean up is pending."

All Materials:

Site ID: 529085 Operable Unit ID: 1277925 Operable Unit: 01 Material ID: 2282795 Material Code: 0001A Material Name: #2 fuel oil Case No.: Not reported Material FA: Petroleum Quantity: Not reported Units: Not reported Recovered: Not reported Oxygenate: Not reported

NY Spills S109581504 **A8 COM. PROPERTY** North **84 COMMERCE DR** N/A

COM. PROPERTY

1/8-1/4 0.208 mi.

1100 ft. Site 5 of 5 in cluster A

SPILLS: Relative: Lower Name:

Address: 84 COMMERCE DR Actual:

658 ft. City, State, Zip: NY

PUTNAM (County), NY

Spill Number/Closed Date: 0900037 / 2009-04-01

Facility ID: 0900037 Facility Type: ER **DER Facility ID:** 361145 Site ID: 411949 DEC Region: Spill Cause: Unknown Spill Class: C3 SWIS: 4024 Spill Date: 2008-02-01 Investigator: mbmastro Referred To: Not reported Reported to Dept: 2009-04-01

CID: Not reported Water Affected: Not reported

Spill Source: Commercial/Industrial

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

COM. PROPERTY (Continued)

S109581504

Spill Notifier: Citizen Cleanup Ceased: Not reported Cleanup Meets Std: False Last Inspection: Not reported Recommended Penalty: False **UST Trust:** Not reported

Remediation Phase:

Date Entered In Computer: 2009-04-01 Spill Record Last Update: 2009-05-15 Spiller Name: Not reported Spiller Company: Not reported Spiller Address: Not reported Not reported Spiller Company: Contact Name: SEE: 090-0083.

DEC Memo: "4-3-09: V.Mc.: NFA, See 090-0083."

Remarks: "Large surface spill on the grounds of aband. com. property. Property

is in forclosure. Surface spill may have entered C/B leading to

nearby wetland."

All Materials:

411949 Site ID: Operable Unit ID: 1168441 Operable Unit: 01 Material ID: 2160046 Material Code: 0064A

Material Name: unknown material Case No.: Not reported Material FA: Other Quantity: Not reported Units: Not reported Not reported Recovered: Not reported Oxygenate:

В9 **TAKAHASHI RES NY Spills** S110043794 **109 HIGHVIEW** SSW N/A

1/8-1/4 0.210 mi.

Site 2 of 3 in cluster B 1111 ft.

CARMEL, NY

Relative: SPILLS: Higher Name:

TAKAHASHI RES Address: 109 HIGHVIEW Actual: CARMEL, NY City,State,Zip: 753 ft.

Spill Number/Closed Date: 0907658 / 2009-12-11

Facility ID: 0907658 Facility Type: ER DER Facility ID: 369217 Site ID: 420195 DEC Region:

Spill Cause: **Equipment Failure**

Spill Class: C3 SWIS: 4020 Spill Date: 2009-10-07 Investigator: **VPMCCABE** Referred To: Not reported Reported to Dept: 2009-10-07 CID: Not reported

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

TAKAHASHI RES (Continued)

S110043794

Water Affected: Not reported Spill Source: Private Dwelling Spill Notifier: Other Cleanup Ceased: Not reported

Cleanup Meets Std: True Last Inspection: Not reported Recommended Penalty: False UST Trust: False Remediation Phase:

Date Entered In Computer: 2009-10-07 Spill Record Last Update: 2009-12-16 Spiller Name: Not reported Spiller Company: **TAKAHASHI** Spiller Address: Not reported Spiller Company: 999

Contact Name: **TAKAHASHI**

DEC Memo: "10/7/09: Envirostar doing tank pull and site remediation, pending

insurance action. No groundwater impacted. dw 12-16-09: V.Mc.: See

TCR dated 12-11-09, by EnviroStar. NFA." "550 gal. UST removed/loss of product."

Remarks: All Materials:

> Site ID: 420195 Operable Unit ID: 1176178 Operable Unit: 01 Material ID: 2168838 Material Code: 0001A Material Name: #2 fuel oil Case No.: Not reported Petroleum Material FA: Quantity: Not reported

Units: G

Recovered: Not reported Oxygenate: Not reported

LTANKS B10 **ESTATE OF TAKAHASHI** S109943815

SSW 109 HIGH VIEW RD 1/8-1/4 CARMEL, NY

0.217 mi.

1145 ft. Site 3 of 3 in cluster B

LTANKS: Relative: Higher **ESTATE OF TAKAHASHI** Name: 109 HIGH VIEW RD Address: Actual:

City, State, Zip: CARMEL, NY 739 ft. Spill Number/Closed Date: 0906968 / 2010-01-25

> Facility ID: 0906968 Site ID: 419364 Spill Date: 2009-09-21 Spill Cause: Tank Test Failure Spill Source: Private Dwelling

Spill Class: C3

Cleanup Ceased: Not reported SWIS: 4020 Investigator: **VPMCCABE** Referred To: Not reported Reported to Dept: 2009-09-21

N/A

Direction Distance

Distance Elevation Site EDR ID Number

Database(s) EPA ID Number

ESTATE OF TAKAHASHI (Continued)

S109943815

CID: Not reported
Water Affected: Not reported
Spill Notifier: Tank Tester
Last Inspection: Not reported
Recommended Penalty: False
Meets Standard: True
UST Involvement: False
Remediation Phase: 0

Date Entered In Computer: 2009-09-21
Spill Record Last Update: 2010-02-26
Spiller Name: PAT NAPPY
Spiller Company: ESTATE

Spiller Address: 109 HIGH VIEW RD

Spiller County: 999

Spiller Contact: JACKIE MALHEIRO
Spiller Phone: (845) 225-5924
Spiller Extention: Not reported
DEC Region: 3

DER Facility ID: 368456

DEC Memo: "9-21-09: Spoke w/Jackie. This was done for a real estate

transaction. Jackie says that she believes that the realtor plans on pulling tank. Spoke w/Pat Nappy, realtor for estate. They plan on pulling the tank - will probably use Dutchess Environmental. They

will contact V. Mc. jm 2-16-10: V.Mc. TCR, NFA."

Remarks: "TANK TEST FAILURE 550 UST."

All Materials:

419364 Site ID: Operable Unit ID: 1175473 Operable Unit: 01 2168050 Material ID: Material Code: 0001A Material Name: #2 fuel oil Case No.: Not reported Material FA: Petroleum Not reported Quantity: Units: G Recovered: Not reported Oxygenate: Not reported

11 VALINE RES.: FLOODED BASEMENT NY Spills S111237870

WNW 708 FAIR ST

1/4-1/2 CARMEL, NY

0.258 mi. 1361 ft.

 Relative:
 SPILLS:

 Lower
 Name:

 VALINE RES.: FLOODED BASEMENT

Actual: Address: 708 FAIR ST 703 ft. City,State,Zip: CARMEL, NY

Spill Number/Closed Date: 1106439 / 2011-09-13

 Facility ID:
 1106439

 Facility Type:
 ER

 DER Facility ID:
 408713

 Site ID:
 454121

 DEC Region:
 3

 Spill Cause:
 Storm

N/A

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

VALINE RES.: FLOODED BASEMENT (Continued)

S111237870

Spill Class: C3 SWIS: 4020 Spill Date: 2011-08-28 Investigator: **VPMCCABE** Referred To: Not reported Reported to Dept: 2011-08-30 CID: Not reported Water Affected: Not reported Spill Source: Private Dwelling Spill Notifier: Responsible Party

Not reported Cleanup Ceased: Cleanup Meets Std: False Last Inspection: Not reported Recommended Penalty: Not reported **UST Trust:** False Remediation Phase:

Date Entered In Computer: 2011-08-30 2013-05-06 Spill Record Last Update:

Spiller Name: SHANNON VALINE Spiller Company: **HOMEOWNER** Spiller Address: 708 FAIR ST

Spiller Company: 999

Contact Name: SHANNON VALINE

DEC Memo: "8-31-11: V.Mc.: See 1 page update, inc. site inspection on 8-30-11,

noting: Meet with Mrs.Shannon Valine/homeowner & Mr. M.Lee/PCHD. State Farm indicated she would have coverage for pumping out basement and clean up, up to \$10K/poicy coverage for water damage. V.Mc. recommented to contact contractor for vac out basement and bio-slove floor, & disposal of and debries in basement that came in contact water/oil mix. 9-13-11: V.Mc.: Recived disposal receipt from

Dut.Enviro.Const. NFA"

Remarks: "flooding causing minor redish sheen in water in basement as well as

odor of oil"

All Materials:

Site ID: 454121 Operable Unit ID: 1204273 Operable Unit: 01 Material ID: 2201044 Material Code: 0001A Material Name: #2 fuel oil Case No.: Not reported Material FA: Petroleum Quantity: Not reported Units: Not reported Not reported Recovered: Oxygenate: Not reported

Direction Distance

Elevation Site Database(s) EPA ID Number

12 KLINE RES.: 550 UST NY Spills S116552781
SSE 158 BULLET HOLE RD N/A

1/4-1/2 CARMEL, NY

0.270 mi. 1425 ft.

Relative: SPILLS: Lower Name

LowerName:KLINE RES.: 550 USTActual:Address:158 BULLET HOLE RD

637 ft. City, State, Zip: CARMEL, NY

Spill Number/Closed Date: 0506192 / 2006-02-12

 Facility ID:
 0506192

 Facility Type:
 ER

 DER Facility ID:
 298629

 Site ID:
 351359

 DEC Region:
 3

Spill Cause: Equipment Failure

Spill Class: C3
SWIS: 4020
Spill Date: 2005-08-19
Investigator: MBMASTRO
Referred To: Not reported
Reported to Dept: 2005-08-19
CID: 407

Water Affected: Not reported Spill Source: Private Dwelling

Spill Notifier:

Cleanup Ceased:
Cleanup Meets Std:
Last Inspection:
Recommended Penalty:
UST Trust:
Remediation Phase:

Other
Not reported
False
False
O

Date Entered In Computer: 2005-08-19
Spill Record Last Update: 2014-03-25
Spiller Name: ROBERT KLINE
Spiller Company: RESIDENCE

Spiller Address: 158 BULLET HOLE RD

Spiller Company: 001

Contact Name: ROBERT KLINE

DEC Memo: "Based on the information in the 2/12/06 report prepared by Grazi 1

Corp., no further action is required."

Remarks: "tank removal, tank size 550 gallons"

All Materials:

Site ID: 351359 Operable Unit ID: 1108879 Operable Unit: 01 Material ID: 2098854 Material Code: 0001A #2 fuel oil Material Name: Not reported Case No.: Petroleum Material FA: Quantity: Not reported

Units: G Recovered: .00

Oxygenate: Not reported

EDR ID Number

Direction Distance

Distance EDR ID Number Database(s) EPA ID Number

C13 ARGILA RESIDENCE LTANKS S110490797

N/A

SW 16 JENNIFER LANE 1/4-1/2 CARMEL, NY

0.304 mi.

1605 ft. Site 1 of 2 in cluster C

 Relative:
 LTANKS:

 Lower
 Name:
 ARGILA RESIDENCE

 Actual:
 Address:
 16 JENNIFER LANE

 695 ft.
 City,State,Zip:
 CARMEL, NY

Spill Number/Closed Date: 1004917 / 2010-09-30

 Facility ID:
 1004917

 Site ID:
 438208

 Spill Date:
 2010-07-31

 Spill Cause:
 Tank Test Failure

 Spill Source:
 Private Dwelling

Spill Class: C3

Cleanup Ceased: Not reported SWIS: 4020 **VPMCCABE** Investigator: Referred To: Not reported Reported to Dept: 2010-07-31 CID: Not reported Water Affected: Not reported Spill Notifier: Other Last Inspection: Not reported Recommended Penalty: False

Meets Standard: False
UST Involvement: False
Remediation Phase: 0
Date Entered In Computer: 2010-07-31
Spill Record Last Update: 2010-10-19
Spiller Name: Not reported

Spiller Company: ARGILA RESIDENCE Spiller Address: 16 JENNIFER LANE

Spiller County: 999

Spiller Contact: COLA PELUSEVIC (BUYER)

Spiller Phone: (914) 924-1316 Spiller Extention: Not reported

DEC Region: 3
DER Facility ID: 393189

DEC Memo: "7/31/10: Tank tested for real estate transaction. Contact info given

is for a buyer who does not have the owner's name or contact info. Tank was tested and failed, contaminated soil was evident in the well point. Tank will need to be pumped out and removed. jod 9-3-10: V.Mc.: See 1 page update, inc. site inspection of 8-30-10, noting: Meet w/ Mr.Argila, UST removed by Mountain View. house is for sale. 10-19-10: V.Mc.: See partial TCR dated 9-30-10, by CSC, single sample

only, NFA."

Remarks: "ALREADY AWARE OF THIS - CLEANUP PENDING"

All Materials:

Site ID: 438208 Operable Unit ID: 1188873 Operable Unit: 01 Material ID: 2183803 Material Code: 0001A Material Name: #2 fuel oil Case No.: Not reported Material FA: Petroleum

Direction Distance

Elevation Site Database(s) EPA ID Number

ARGILA RESIDENCE (Continued) S110490797

Quantity: Not reported Units: Not reported Recovered: Not reported Oxygenate: Not reported

 C14
 BULFARO
 NY Spills
 \$104647018

 SW
 18 JENNIFER LA
 N/A

1/4-1/2 CARMEL, NY

0.310 mi.

1636 ft. Site 2 of 2 in cluster C

 Relative:
 SPILLS:

 Lower
 Name:
 BULFARO

 Actual:
 Address:
 18 JENNIFER LA

 697 ft.
 City,State,Zip:
 CARMEL, NY

Spill Number/Closed Date: 9802679 / 1998-06-08

Facility ID: 9802679 Facility Type: ER DER Facility ID: 89424 Site ID: 100755 DEC Region: Spill Cause: Unknown Spill Class: C4 SWIS: 4020 Spill Date: 1998-05-30 Investigator: **VPMCCABE** Referred To: Not reported Reported to Dept: 1998-06-01

CID: 312
Water Affected: Not reported
Spill Source: Private Dwelling
Spill Notifier: Responsible Party
Cleanup Ceased: Not reported

Cleanup Meets Std: True
Last Inspection: Not reported
Recommended Penalty: False
UST Trust: False
Remediation Phase: 0
Date Entered In Computer: 1998-06-01

Date Entered In Computer: 1998-06-01
Spill Record Last Update: 2004-08-11
Spiller Name: STEVEN BULFARO
Spiller Company: Not reported
Spiller Address: 18 JENNIFER LA

Spiller Company: 001

Contact Name: STEVEN BULFARO

DEC Memo: "Prior to Sept, 2004 data translation this spill Lead_DEC Field was

MCCABE 06/08/98 CLEAN UP WAS COMPLETED ON 06/08/98 This spill was

updated 08/11/2004 from info in V. McCabe's data files. 'Date:' =

05/30/98, 'Phone' = 6/2/1998, 'Site Insp' = 6/1/1998. '

Remarks: "HOUSE IS LESS THAN A YEAR OLD - LOOKS LIKE TANK WAS FIXED - ABOUT

 $3/16\ \text{HOLE}$ IN BOTTOM WAS PLUGGED WITH AN EPOXY OR PUTTY AND THEN SPRAY

PAINTED BLACK - LEAKED IN GARAGE"

All Materials:

 Site ID:
 100755

 Operable Unit ID:
 1063343

 Operable Unit:
 01

EDR ID Number

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

BULFARO (Continued) S104647018

Material ID: 321002 Material Code: 0001A #2 fuel oil Material Name: Not reported Case No.: Material FA: Petroleum Quantity: 200.00 Units: G Recovered: .00

Oxygenate: Not reported

15 YONKERS REALITY **LTANKS** S105055017 North 10 COMMERCE ST **NY Spills** N/A

1/4-1/2 0.312 mi. 1650 ft.

PATTERSON, NY

Relative: LTANKS: ECO.GROUP OF COMP Lower Name: Address: 10 COMMERCE PARK Actual: City,State,Zip: PATTERSON, NY 659 ft.

Spill Number/Closed Date: 0102477 / 2001-06-20

Facility ID: 0102477 Site ID: 69476 Spill Date: 2001-06-05 Spill Cause: Tank Test Failure Spill Source: Commercial/Industrial

Spill Class: C4

Cleanup Ceased: Not reported SWIS: 4024

Investigator: **VPMCCABE** Referred To: Not reported Reported to Dept: 2001-06-05 CID: 396 Water Affected: Not reported Tank Tester Spill Notifier: Last Inspection: Not reported Recommended Penalty: False Meets Standard: True **UST Involvement:** False Remediation Phase:

Date Entered In Computer: 2001-06-05 Spill Record Last Update: 2004-08-11 Spiller Name: SAME Spiller Company: SAME Spiller Address: Not reported Spiller County: 001

RICH GIZZY Spiller Contact: Spiller Phone: (914) 963-3600 Spiller Extention: Not reported

DEC Region: DER Facility ID: 66055

DEC Memo: "Prior to Sept, 2004 data translation this spill Lead_DEC Field was

MCCABE 06/20/2001 THIS SPILL NUMBER CLOSED. PRE EXISTING SPILL NUMBER

FOR THIS LOCATION. SEE SPILL NUMBER 0004750. This spill was updated

08/11/2004 from info in V. McCabe's data files. 'Date:' = 06/05/01,

'Phone' = - -, 'Site Insp' = 000-4750."

Remarks: "uncover repair retest...current owner is considering removing tank"

Direction Distance Elevation

stance EDR ID Number evation Site Database(s) EPA ID Number

YONKERS REALITY (Continued)

S105055017

All TTF:

Facility ID: 0102477 Spill Number: 0102477 Spill Tank Test: 1526352 Site ID: 69476 Tank Number: Tank Size: 2500 Material: 0001 **EPA UST:** Not reported UST: Not reported Not reported Cause: Not reported Source:

Test Method: 03

Test Method 2: Horner EZ Check I or II

Leak Rate: .00

Gross Fail: Not reported Modified By: Spills
Last Modified Date: Not reported

All Materials:

69476 Site ID: Operable Unit ID: 841173 Operable Unit: 01 Material ID: 534592 Material Code: 0001A #2 fuel oil Material Name: Case No.: Not reported Petroleum Material FA: Quantity: .00 Units: G Recovered: .00

Oxygenate: Not reported

SPILLS:

Name: YONKERS REALITY
Address: 10 COMMERCE ST
City,State,Zip: PATTERSON, NY
Spill Number/Closed Date: 0004750 / 2009-04-01

 Facility ID:
 0004750

 Facility Type:
 ER

 DER Facility ID:
 260964

 Site ID:
 323928

 DEC Region:
 3

Spill Cause: Housekeeping

Spill Class: C3
SWIS: 4024
Spill Date: 2000-07-20
Investigator: dxweitz
Referred To: Not reported
Reported to Dept: 2000-07-20
CID: 398

Water Affected: Not reported

Spill Source: Commercial/Industrial

Spill Notifier: Other
Cleanup Ceased: Not reported

Direction Distance

Elevation Site Database(s) EPA ID Number

YONKERS REALITY (Continued)

S105055017

EDR ID Number

Cleanup Meets Std: False
Last Inspection: Not reported
Recommended Penalty: False
UST Trust: False
Remediation Phase: 0

Date Entered In Computer: 2000-07-20
Spill Record Last Update: 2009-04-23
Spiller Name: Not reported
Spiller Company: YONKERS REALTY
Spiller Address: Not reported

Spiller Company: 001

Contact Name: JACKIE PATT

DEC Memo: "ALSO SEE SPILL NUMBER 0102477. 04/10/09 Vinny to update JO'M.

4-10-09: V.Mc. review of file, NFA. Administrative Closure: 4-1-09."

Remarks: "TESTING OF THE SOIL AND THE TESTS CAME BACK POSITIVE."

HIGH VIEW DR. JENIFER LAN

All Materials:

 Site ID:
 323928

 Operable Unit ID:
 825823

 Operable Unit:
 01

 Material ID:
 549481

 Material Code:
 0066A

Material Name: unknown petroleum
Case No.: Not reported
Material FA: Petroleum
Quantity: .00
Units: G
Recovered: .00

Oxygenate: Not reported

16 HIGH VIEW DR. JENIFER LAN

SW LOT 25 OFF FAIR ST. 1/4-1/2 PATTERSON, NY

0.319 mi. 1684 ft.

Relative: SPILLS: Name:

Actual:Address:LOT 25 OFF FAIR ST.667 ft.City,State,Zip:PATTERSON, NY

 Spill Number/Closed Date:
 8900392 / 1989-04-14

 Facility ID:
 8900392

Facility Type: ER DER Facility ID: 127038 Site ID: 149336 DEC Region: Spill Cause: Unknown Spill Class: C3 SWIS: 4024 Spill Date: 1989-04-13 Investigator: dxtraver Referred To: Not reported Reported to Dept: 1989-04-13 CID: Not reported Water Affected: Not reported Spill Source: Unknown Spill Notifier: Citizen

NY Spills \$102106982

N/A

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

HIGH VIEW DR. JENIFER LAN (Continued)

S102106982

Cleanup Ceased: 1989-04-14 Cleanup Meets Std: True Last Inspection: 1989-04-14 Recommended Penalty: False **UST Trust:** False Remediation Phase: 0

Date Entered In Computer: 1989-04-24 1997-10-02 Spill Record Last Update: Spiller Name: Not reported Spiller Company: Not reported Spiller Address: Not reported Spiller Company: 001

Contact Name: Not reported

"Prior to Sept, 2004 data translation this spill Lead_DEC Field was DEC Memo:

NYSE&G: TRANSFORMER OIL

DAVE TRAVER "

Remarks: "NO OIL NOTED. ORGANIC DECAY SHEEN AND IRON BACTERIA. NFA"

All Materials:

Site ID: 149336 Operable Unit ID: 926695 Operable Unit: 01 Material ID: 451730 Material Code: 0066A

Material Name: unknown petroleum Case No.: Not reported Material FA: Petroleum Quantity: .00 Units: G Recovered: .00

Oxygenate: Not reported

NYSE&G: TRANSFORMER OIL 17

ssw **26 JENNIFER LANE** 1/4-1/2 CARMEL, NY

0.327 mi. 1728 ft.

SPILLS: Relative: Lower Name:

Address: 26 JENNIFER LANE Actual: 707 ft. City,State,Zip: CARMEL, NY

> Spill Number/Closed Date: 0710886 / 2008-01-14

Facility ID: 0710886 Facility Type: ER **DER Facility ID:** 341851 Site ID: 392255 DEC Region:

Spill Cause: **Human Error** Spill Class: C3 SWIS: 4020 Spill Date: 2008-01-14 Investigator: **VPMCCABE** Referred To: Not reported Reported to Dept: 2008-01-14 27

CID:

Water Affected: Not reported Spill Source: Commercial/Industrial NY Spills

S108982104

N/A

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

NYSE&G: TRANSFORMER OIL (Continued)

S108982104

Spill Notifier: Other Cleanup Ceased: Not reported Cleanup Meets Std: False Last Inspection: Not reported Recommended Penalty: False **UST Trust:** Not reported Remediation Phase: 0

Date Entered In Computer: 2008-01-15 Spill Record Last Update: 2008-01-17 Spiller Name: Not reported Spiller Company: NYSE&G Spiller Address: Not reported

Spiller Company: 999 Contact Name: Not reported

"Called and left message for NYSEG to return call. NFA." DEC Memo:

Remarks: "Non PCB oil spilled. Ground transformer was struck by a vehicle.

Clean Harbours will be doing the cleanup."

All Materials:

Site ID: 392255 Operable Unit ID: 1149275 Operable Unit: 01 Material ID: 2139794 Material Code: 0020A Material Name: transformer oil Not reported Case No.: Material FA: Petroleum 10.00 Quantity: Units: G Recovered: .00

Oxygenate: Not reported

18 **COATES HOME** LTANKS \$108131399 115 BULLET HOLE ROAD SSE N/A

COATES HOME

1/4-1/2 CARMEL, NY 0.354 mi.

1871 ft.

Relative: LTANKS: Lower Name:

Address: 115 BULLET HOLE ROAD Actual:

City,State,Zip: CARMEL, NY 602 ft.

Spill Number/Closed Date: 0606480 / 2009-08-13

Facility ID: 0606480 Site ID: 369829 Spill Date: 2006-09-06 Spill Cause: Tank Test Failure Spill Source: Private Dwelling

Spill Class: C3

Cleanup Ceased: Not reported SWIS: 4020 Investigator: **VPMCCABE** Referred To: Not reported Reported to Dept: 2006-09-06 CID: 444

Water Affected: Not reported Spill Notifier: Tank Tester

Direction Distance

Elevation Site Database(s) **EPA ID Number**

COATES HOME (Continued)

S108131399

EDR ID Number

Last Inspection: Not reported Recommended Penalty: False Meets Standard: False **UST Involvement:** False Remediation Phase: 0

Date Entered In Computer: 2006-09-06 Spill Record Last Update: 2009-08-17

Spiller Name: **BILL- REAL ESTATE** Spiller Company: **COATES HOME**

Spiller Address: 115 BULLET HOLE ROAD

Spiller County: 001

Spiller Contact: **BILL- REAL ESTATE** Spiller Phone: (845) 628-3410 Spiller Extention: Not reported

DEC Region: DER Facility ID: 319694

"Caryn Coates 718-981-8764 handling arrangements for the suggested DEC Memo:

tank pull, and remediation, as necessary. House is vacant, and for sale. Prospective buyer ordered tank test. Tank age is unknown. Names and #'s of contractors given to Ms. Coates. 8/13/09 Tank Pulled No

impact NFA JO'M. Administrative Closure."

"UNCOVER REPAIR AND TEST' Remarks:

All TTF:

0606480 Facility ID: 0606480 Spill Number: Spill Tank Test: 1550251 Site ID: 369829 Tank Number: Tank Size: 1000 0001 Material: **EPA UST:**

Not reported UST: Not reported Cause: Not reported Source: Not reported 03

Test Method:

Test Method 2: Horner EZ Check I or II

Leak Rate:

Gross Fail: Not reported Watchdog Modified By: Last Modified Date: Not reported

All Materials:

369829 Site ID: Operable Unit ID: 1127661 Operable Unit: 01 Material ID: 2117262 Material Code: 0001A Material Name: #2 fuel oil Case No.: Not reported Material FA: Petroleum Quantity: Not reported

Units: G Recovered: .00

Oxygenate: Not reported

Direction Distance

Distance Elevation Site EDR ID Number Database(s) EPA ID Number

19 RICH SCHAAD LTANKS S109943006 SSW 70 HIGH VIEW DRIVE NY Spills N/A

1/4-1/2 0.376 mi. 1983 ft. CARMEL, NY

 Relative:
 LTANKS:

 Higher
 Name:
 RICH SCHAAD

 Actual:
 Address:
 70 HIGH VIEW DRIVE

 780 ft.
 City,State,Zip:
 CARMEL, NY

Spill Number/Closed Date: 0906259 / 2010-01-13

Facility ID: 0906259
Site ID: 418585
Spill Date: 2009-08-29
Spill Cause: Tank Test Failure
Spill Source: Private Dwelling

Spill Class: C3

Remediation Phase:

Cleanup Ceased: Not reported SWIS: 4020 **VPMCCABE** Investigator: Referred To: Not reported Reported to Dept: 2009-08-29 CID: Not reported Water Affected: Not reported Spill Notifier: Tank Tester Last Inspection: Not reported Recommended Penalty: False Meets Standard: False **UST Involvement:** False

Date Entered In Computer: 2009-08-29
Spill Record Last Update: 2010-01-22
Spiller Name: Not reported
Spiller Company: RICH SCHAAD
Spiller Address: Not reported
Spiller County: 999
Spiller Contact: RICH

Spiller Phone: (845) 797-6433 Spiller Extention: Not reported

DEC Region: 3
DER Facility ID: 367677

DEC Memo: "8/29/09: Spoke to homeowner and tank tester about the tank testing results. Advised homeowner on future remedial actions. dw 01/07/10:

TCR prepared by Dutchess Environmental has been reviewed. There were two slight exceedances in post ex samples, a drinking water sample will be required before spill can be closed...mm 1-22-10: V.Mc.: See 1 page update, voice mail only, see potable water results of 1-13-10:

N/D all counts. NFA."

Remarks: "1039 The caller advised dispatch the tank test failed. The property

owner was told by the caller the system needed to be fixed. Unknown when the system will be fixed. The property owner is requesting a

call back from spills."

All Materials:

 Site ID:
 418585

 Operable Unit ID:
 1174753

 Operable Unit:
 01

 Material ID:
 2167133

 Material Code:
 0001A

 Material Name:
 #2 fuel oil

Direction Distance

Elevation Site Database(s) EPA ID Number

RICH SCHAAD (Continued) S109943006

Case No.:

Material FA:

Quantity:

Units:

Recovered:

Oxygenate:

Not reported

Not reported

Not reported

Not reported

SPILLS:

Name: SCHAAD RESIDENCE
Address: 70 HIGH VIEW DR
City,State,Zip: CARMEL, NY
Spill Number/Closed Date: 0906665 / 2009-09-11

 Facility ID:
 0906665

 Facility Type:
 ER

 DER Facility ID:
 368143

 Site ID:
 419015

 DEC Region:
 3

Spill Cause: Equipment Failure

Spill Class: C3 SWIS: 4020 Spill Date: 2009-09-11 Investigator: **VPMCCABE** Not reported Referred To: 2009-09-11 Reported to Dept: CID: Not reported Water Affected: Not reported Spill Source: Private Dwelling

Spill Notifier:

Cleanup Ceased:

Cleanup Meets Std:

Last Inspection:

Recommended Penalty:

UST Trust:

Remediation Phase:

Date Entered In Computer:

Other

Not reported

Not reported

Palse

Palse

2009-09-11

Spiller Name:TERESA SCHAADSpiller Company:TERESA SCHAADSpiller Address:70 HIGH VIEW DR

Spiller Company: 999

Spill Record Last Update:

Contact Name: KATE TODARO

DEC Memo: "9/11/09: CLEAN UP PENDING INS.CO. NOTIFICATION & ACCEPTANCE OF

CLEANUP PROPOSAL. DT 9-23-09: V.Mc.: Dup spill report, this file:

NFA, see: 090-6259."

Remarks: "REMOVAL OF A 550 GALLON UST. SOIL CONTAMINATION FOUND CLEAN UP

PENDING."

2009-09-23

All Materials:

Site ID: 419015 Operable Unit ID: 1175166 Operable Unit: 01 Material ID: 2167712 Material Code: 0001A Material Name: #2 fuel oil Case No.: Not reported Material FA: Petroleum

EDR ID Number

Direction Distance

Elevation Site Database(s) **EPA ID Number**

RICH SCHAAD (Continued) S109943006

Quantity: Not reported

Units: G

Recovered: Not reported Not reported Oxygenate:

TIERNAN RES.: 550 UST NY Spills S113818026 20 **ENE** 29 CAROLYN WAY N/A

TIERNAN RES.: 550 UST

1/4-1/2 0.376 mi.

1984 ft.

Relative: SPILLS: Higher Name:

PATTERSON, NY

Address: 29 CAROLYN WAY Actual: City, State, Zip: PATTERSON, NY 745 ft.

Spill Number/Closed Date: 1302864 / 2013-10-30

Facility ID: 1302864 Facility Type: ER DER Facility ID: 438524 Site ID: 483315 DEC Region:

Spill Cause: **Equipment Failure**

Spill Class: C3 SWIS: 4024 Spill Date: 2013-06-16 Investigator: **VPMCCABE** Referred To: Not reported Reported to Dept: 2013-06-16 CID: Not reported

Water Affected: Not reported Spill Source: Private Dwelling

Spill Notifier: Other Cleanup Ceased: Not reported Cleanup Meets Std: True Last Inspection: 2013-06-18 Recommended Penalty: False **UST Trust:** False Remediation Phase: 0

2013-06-16 Date Entered In Computer: Spill Record Last Update: 2013-11-04 Spiller Name: **BOB TIERNAN** Spiller Company: **BOB TIERNAN** Spiller Address: 29 CAROLYN WAY

Spiller Company: 999

Contact Name: **BOB TIERNAN**

"6-17-13: Spoke with Bob Tiernan/homeowner and Patrick/New England DEC Memo:

> Tank. Heavy rains over the past week. Bob/homeowner noticed dying grass on front lawn and smelled oil. He contacted his oil company who got in touch with New England Tank. NET arrived and found that 550 UST had been leaking and pushed oil up thru the ground due to the rains. NET excavated top of tank, cut it open and pumped it out. They observed water streaming back into the tank as they were pumping it down. They removed tank and found holes. No groundwater in excavation but contaminated soils were obvious. Bob says that he notified his insurance co, NationWide, Mary Ann Anton 845-342-4820 and file claim # 6631HO500612. New England will most likely be continuing with cleanup. jm 6-20-13: V.Mc.: See 1 page update, inc. site inspection

EDR ID Number

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

TIERNAN RES.: 550 UST (Continued)

S113818026

of 6-18-13, noting: Meet with Mr.Tiernan, provided TCR guidelines for contact info. UST left side of house, 10ft. off house. Slop down to small stream, no sheen noted. UST stagged on site, on/covered with poly, numerous holes noted, as per res. Aprx. 3 yards of soil stagged on/coverred with poly. Potable well off left side of house, aprx. 75ft upgrade of exc. & opp. side of sm. stream. 9-27-13: V.Mc.:

Reviewed TCR, dated 9-24-13, from NEETS, post exc. soil samples meet standards, but gr.water from Mon.Well is above standards. V.Mc. call to Pat/NEETS: Request re-sample of mon. well, (Vs. nfa not meet stand.). Re-sample to be submitted. 10-30-13: V.Mc.: Recived re-sample of Mon. Well, only several trace level hits, less then 1.

Gr.Wat meets standards. NFA."

Remarks: "tank failure caused fuel to mix w/flooding in front yard, c/u

pending"

All Materials:

Site ID: 483315 Operable Unit ID: 1233031 Operable Unit: 01 Material ID: 2231894 Material Code: 0001A Material Name: #2 fuel oil Case No.: Not reported Material FA: Petroleum Quantity: Not reported Units: Not reported Recovered: Not reported Oxygenate: Not reported

21 **KLETT** LTANKS S106123847 **WSW** 630 FAIR ST N/A

1/4-1/2 0.389 mi. 2054 ft.

Relative: LTANKS:

PATTERSON, NY

Lower Name: **KLETT** Address: 630 FAIR ST Actual: City,State,Zip: PATTERSON, NY 704 ft. Spill Number/Closed Date: 0308359 / 2003-12-10

Facility ID: 0308359 Site ID: 273534 Spill Date: 2003-11-07

Spill Cause: Tank Failure Spill Source: Private Dwelling Spill Class: С3 Cleanup Ceased: Not reported SWIS:

4024 VPMCCABE Investigator: Referred To: Not reported Reported to Dept: 2003-11-07 CID: 365

Water Affected: Not reported Spill Notifier: Other Last Inspection: Not reported Recommended Penalty: False Meets Standard: True

Direction Distance

Elevation Site Database(s) EPA ID Number

KLETT (Continued) S106123847

UST Involvement: False Remediation Phase: 0

Date Entered In Computer: 2003-11-07
Spill Record Last Update: 2004-08-11
Spiller Name: JOHN KLETT
Spiller Company: Not reported
Spiller Address: 630 FAIR ST
Spiller County: 001

Spiller Contact: JOHN KLETT
Spiller Phone: (845) 225-9398
Spiller Extention: Not reported

DEC Region: 3
DER Facility ID: 222538

DEC Memo: "Prior to Sept, 2004 data translation this spill Lead_DEC Field was

MCCABE 12/10/2003 REPORT BY DUTCHESS ENVIRONMENTAL CONSTRUCTION. TANK

HAD BEEN REMOVED BY BURKE HEAT. NFA This spill was updated 08/11/2004

from info in V. McCabe's data files. 'Date:' = 11/07/03, 'Phone' =

1/21/2004, 'Site Insp' = N/A."

Remarks: "underground tank is leaking - 550 gal - unk about repair or clean up

at this time"

All Materials:

Site ID: 273534 Operable Unit ID: 876858 Operable Unit: 01 Material ID: 559996 Material Code: 0001A Material Name: #2 fuel oil Case No.: Not reported Material FA: Petroleum .00 Quantity: Units: G Recovered: .00

Oxygenate: Not reported

22 SCHWARTZ RESIDENCE NY Spills S109828616

SE 282 TAMMANY HALL RD 1/4-1/2 CARMEL, NY

0.390 mi. 2061 ft.

Relative: SPILLS: Lower Name:

 Lower
 Name:
 SCHWARTZ RESIDENCE

 Actual:
 Address:
 282 TAMMANY HALL RD

644 ft. City,State,Zip: CARMEL, NY

Spill Number/Closed Date: 0905554 / 2009-11-05

 Facility ID:
 0905554

 Facility Type:
 ER

 DER Facility ID:
 366966

 Site ID:
 417825

 DEC Region:
 3

Spill Cause: Equipment Failure

Spill Class: C3
SWIS: 4020
Spill Date: 2009-08-12
Investigator: VPMCCABE
Referred To: Not reported

N/A

EDR ID Number

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

SCHWARTZ RESIDENCE (Continued)

S109828616

Reported to Dept: 2009-08-12 CID: Not reported Water Affected: Not reported Spill Source: Private Dwelling Spill Notifier: Other Cleanup Ceased: Not reported

Cleanup Meets Std: True Last Inspection: Not reported Recommended Penalty: False **UST Trust:** False Remediation Phase: 0

2009-08-12 Date Entered In Computer: 2009-11-27 Spill Record Last Update: Spiller Name: **INGA SCHWARTZ** Spiller Company: **INGA SCHWARTZ** Spiller Address: 282 TAMMANY HALL RD

Spiller Company: 999

Contact Name: **IRENE GRAZIANO**

DEC Memo: "8-12-09: 3-4 pencil size holes. Contacting insurance. Probable

groundwater contamination. jc 11-27-09: V.Mc.: See TCR dated 11-5-09,

by Grazi 1. NFA."

"REMOVAL OF A 1000 GALLON UST HOLES IN THE TANK CONTAMINATED SOIL Remarks:

FOUND AND GROUNDWATER WAS POURING INTO THE TANK, CLEAN UP PENDING."

All Materials:

Site ID: 417825 1174033 Operable Unit ID: Operable Unit: 01 Material ID: 2166254 Material Code: 0001A Material Name: #2 fuel oil Case No.: Not reported Material FA: Petroleum Quantity: Not reported

Units: G

Recovered: Not reported Oxygenate: Not reported

D23 **PAVEMENT NY Spills** S122478881 **East 262 BULLET HOLE RD** N/A

1/4-1/2 PATTERSON, NY

0.394 mi.

2079 ft. Site 1 of 2 in cluster D

Relative: SPILLS:

Higher Name: **PAVEMENT**

Address: 262 BULLET HOLE RD Actual: City,State,Zip: PATTERSON, NY 766 ft. Spill Number/Closed Date: 1801944 / 2018-05-22

> Facility ID: 1801944 Facility Type: ER DER Facility ID: 523707 570495 Site ID: DEC Region: 3

Spill Cause: Storm Spill Class: C4 SWIS: 4024

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

PAVEMENT (Continued) S122478881

Spill Date: 2018-05-18 Investigator: **LXRICCI** Referred To: Not reported Reported to Dept: 2018-05-18 CID: Not reported Water Affected: Not reported Spill Source: Transformer Spill Notifier: Other Cleanup Ceased: Not reported Cleanup Meets Std: False Last Inspection: Not reported Recommended Penalty: False **UST Trust:** False Remediation Phase:

Date Entered In Computer: 2018-05-18 Spill Record Last Update: 2018-05-22 Spiller Name: Not reported Spiller Company: **NYSEG** Spiller Address: Not reported

Spiller Company: 999

Contact Name: MICHAEL STAITI

DEC Memo: "5-18-18 spill contained on pavement no sensitive receptors clean up

scheduled NFA. LR '

Remarks: "Caller advised aprx 25 gal of oil spilled onto pavement. Clean up is

pending."

All Materials:

Oxygenate:

570495 Site ID: Operable Unit ID: 1318335 Operable Unit: 01 2326272 Material ID: Material Code: 0020A Material Name: transformer oil Case No.: Not reported Material FA: Petroleum 25.00 Quantity: Units: G Not reported Recovered:

Not reported

D24 **GUFFEE RESIDENCE NY Spills** S110488454 **272 BULLET HOLE RD** East N/A

1/4-1/2 PATTERSON, NY

0.412 mi.

Site 2 of 2 in cluster D 2173 ft.

SPILLS: Relative: Higher Name:

GUFFEE RESIDENCE Address: 272 BULLET HOLE RD Actual: 786 ft. City,State,Zip: PATTERSON, NY Spill Number/Closed Date: 1004263 / 2010-10-05

> Facility ID: 1004263 Facility Type: ER **DER Facility ID:** 392501 Site ID: 437530 DEC Region:

Spill Cause: **Equipment Failure**

Direction Distance Elevation

stance EDR ID Number evation Site Database(s) EPA ID Number

GUFFEE RESIDENCE (Continued)

S110488454

Spill Class: C3 SWIS: 4024 Spill Date: 2010-07-16 Investigator: **VPMCCABE** Referred To: Not reported 2010-07-16 Reported to Dept: Not reported CID: Water Affected: Not reported Spill Source: Private Dwelling

Spill Notifier:
Cleanup Ceased:
Cleanup Meets Std:
Last Inspection:
Recommended Penalty:
UST Trust:
Remediation Phase:
Other
Not reported
False
False
False
0

Date Entered In Computer: 2010-07-16

Spill Record Last Update: 2010-10-25

Spiller Name: RUTH GUFFEE

Spiller Company: RUTH GUFFEE

Spiller Address: 272 BULLET HOLE RD

Spiller Company: 999

Contact Name: ROB TURPINNING

DEC Memo: "7/16/10: Removal of a 550 heating oil UST. Tank had corrosion holes,

contaminated soil evident. Dut. states tank is still on site,

excavation has been secured, no contaminated soil has been removed. Dutchess instructed owner to notify her insurance company & is submitting a remediation proposal. I then spoke to the home owner, Ruth Guffee. She states she had a new AST installed in the basement approx one year ago; this UST was pumped out at that time. She was present with Dutchess Enviro during the removal and states there was one small hole in the top of the tank . She has not yet notified her insurance but will do so later today. She also states her potable well is approx 20 feet from the excavation but she believes the well is 700 feet deep. She is going to have the water tested as a precaution and will most likely have Dutchess complete the remediation, jod 7-30-10: V.Mc.: See 1 page update, inc. site inspection of 7-28-10, noting: No ans.at front door, left TCR guidelines w/req. for callbk. UST staged on site, covered w/poly., inspected one end, heavely pitted & rusted, 1 hole noted. Exc. backfilled, almost to grade. Potable well aprx 50' from exc. 8-11-10: V.Mc.: Site inspection of 8-10-10: Meet w/Dut.Envir.Const. Exc. backfilled, soil removed from site, one wall w/poss. impacts, non-recoverable due to utility lines. Potable well sampled. 10-25-10:

V.Mc.: See TCR dated 10-5-10, by Dut.Envir.Const., NFA." "Caller reporting a spill of an unknown amount of #2 fuel oil to

soil. Clean up pending."

All Materials:

Remarks:

Site ID: 437530 Operable Unit ID: 1188204 Operable Unit: 01 Material ID: 2183115 Material Code: 0001A Material Name: #2 fuel oil Case No.: Not reported Material FA: Petroleum Quantity: Not reported

Direction Distance

EDR ID Number Elevation Site Database(s) **EPA ID Number**

GUFFEE RESIDENCE (Continued)

S110488454

Units: G

Not reported Recovered: Not reported Oxygenate:

ROBERT BAYER HOME LTANKS \$107417196 E25 N/A

South 91 BULLETHOLE ROAD 1/4-1/2 CARMEL, NY

0.418 mi.

Site 1 of 3 in cluster E 2208 ft.

LTANKS: Relative: Lower Name: ROBERT BAYER HOME 91 BULLETHOLE ROAD Address: Actual:

City,State,Zip: CARMEL, NY 622 ft.

Spill Number/Closed Date: 0509310 / 2008-04-30

Facility ID: 0509310 Site ID: 355071 Spill Date: 2005-11-03 Spill Cause: Tank Test Failure Spill Source: Private Dwelling

Spill Class: C4

Cleanup Ceased: Not reported SWIS: 4020 Investigator: **VPMCCABE** Not reported Referred To: Reported to Dept: 2005-11-03 CID: 444

Water Affected: Not reported Spill Notifier: Other Last Inspection: Not reported Recommended Penalty: False Meets Standard: False **UST Involvement:** False Remediation Phase: 0

Date Entered In Computer: 2005-11-03 Spill Record Last Update: 2008-05-01 Spiller Name: **FRANK**

Spiller Company: ROBERT BAYER HOME Spiller Address: 91 BULLETHOLE ROAD

Spiller County: 001 Spiller Contact: **FRANK** Spiller Phone: (845) 721-9008 Spiller Extention: Not reported

DEC Region: **DER Facility ID:** 305077

"4-30-08: V.Mc. site inspect.: AST removed, clean up completed." DEC Memo:

"FRANK IS TRHE BUYER OF THIS HOME AND WANTS THE HOMEOWNER TO TAKE Remarks:

CARE OF THE LEAKING TANK BEFORE HE BUYS IT: IT IS THE COTTAGE ON THE

PROPERTY:"

All Materials:

Site ID: 355071 Operable Unit ID: 1112440 Operable Unit: 01 Material ID: 2102486 Material Code: 0001A Material Name: #2 fuel oil

Direction Distance

Elevation Site Database(s) EPA ID Number

ROBERT BAYER HOME (Continued)

S107417196

EDR ID Number

Case No.: Not reported Material FA: Petroleum Quantity: Not reported

Units: G Recovered: .00

Oxygenate: Not reported

E26 SHAKIN RENTAL TTF LTANKS S113916436
South 76 BULLET HOLE RD N/A

1/4-1/2 CARMEL, NY

0.453 mi.

613 ft.

2393 ft. Site 2 of 3 in cluster E

City,State,Zip:

 Relative:
 LTANKS:

 Lower
 Name:
 SHAKIN RENTAL TTF

 Actual:
 Address:
 76 BULLET HOLE RD

Spill Number/Closed Date: 1306348 / Not Reported

CARMEL, NY

Facility ID: 1306348
Site ID: 486955
Spill Date: 2013-09-17

Spill Cause: Tank Test Failure
Spill Source: Private Dwelling

Spill Class: D4

Cleanup Ceased: Not reported SWIS: 4020 Investigator: Unassigned Referred To: Not reported Reported to Dept: 2013-09-17 CID: Not reported Water Affected: Not reported Spill Notifier: Tank Tester

Spill Notifier: Tank Tester
Last Inspection: 2013-10-03
Recommended Penalty: False
Meets Standard: False
UST Involvement: False
Remediation Phase: 4

Date Entered In Computer: 2013-09-17
Spill Record Last Update: 2016-04-22
Spiller Name: Not reported
Spiller Company: SHAKIN, HILDA
Spiller Address: 76 BULLET HOLE RD

Spiller County: 999

Spiller Contact: LOU CARDILO
Spiller Phone: (914) 481-2223
Spiller Extention: Not reported

DEC Region:

DER Facility ID:

DEC Memo:

3
442056

"9/17/13: Residential tank test failure, no indication of an actual

release at this time. I called Lou Cardillo listed as the contact on the spill report and reached an answering machine. From the message

he is either a Realtor or Rental manager. I left a message requesting a call back to the dispatch desk. jod 10-8-13: V.Mc.: See 1 page update, inc. site inspection of 10-3-13, noting: No ans. at front door, left TCR guideLines with req. for callbk. Potable well: front

lawn, med-way between house & road, aprx. 50ft. upgrade of UST. UST:

left side of front door."

Direction Distance

Distance Elevation Site EDR ID Number

Database(s) EPA ID Number

SHAKIN RENTAL TTF (Continued)

S113916436

Remarks: "550 gal ust"

All TTF:

1306348 Facility ID: Spill Number: 1306348 Spill Tank Test: 2494296 Site ID: 486955 Tank Number: Tank Size: 550 Material: 0001 **EPA UST:** False UST: True Cause: 00 Source: 99 Test Method: 21

Test Method 2: Horner EZY3/EZY3 Locator Plus

Leak Rate: Not reported Gross Fail: Not reported Modified By: JBODEE Last Modified Date: Not reported

All Materials:

Site ID: 486955 Operable Unit ID: 1236598 Operable Unit: 01 Material ID: 2236023 Material Code: 0001A Material Name: #2 fuel oil Case No.: Not reported Material FA: Petroleum Quantity: Not reported

Units: G

Recovered: Not reported Oxygenate: Not reported

E27 MALDONADO RES NY Spills S119029091
South 76 BULLET HOLE RD N/A

1/4-1/2 0.453 mi.

2393 ft. Site 3 of 3 in cluster E

CARMEL, NY

Relative: SPILLS: Lower Name:

LowerName:MALDONADO RESActual:Address:76 BULLET HOLE RD613 ft.City,State,Zip:CARMEL, NY

Spill Number/Closed Date: 1609129 / Not Reported

 Facility ID:
 1609129

 Facility Type:
 ER

 DER Facility ID:
 442056

 Site ID:
 537894

 DEC Region:
 3

Spill Cause: Equipment Failure

Spill Class: C4
SWIS: 4020
Spill Date: 2016-12-29
Investigator: DXWEITZ
Referred To: Not reported

Distance

Elevation Site Database(s) EPA ID Number

MALDONADO RES (Continued)

S119029091

EDR ID Number

Reported to Dept: 2016-12-30
CID: Not reported
Water Affected: Not reported
Spill Source: Private Dwelling
Spill Notifier: Other
Cleanup Ceased: Not reported

Cleanup Meets Std: False
Last Inspection: Not reported
Recommended Penalty: False
UST Trust: False
Remediation Phase: 4

Date Entered In Computer: 2016-12-30
Spill Record Last Update: 2018-03-15
Spiller Name: BEN MALDONADO
Spiller Company: MALDONADO

Spiller Company: 999

Spiller Address:

Contact Name: BEN MALDONADO

DEC Memo: "12/30/16 t/c with Lori at Tank Masters: tank was leaking, does not

76 BULLET HOLE RD

appear to have GW in excavation. Soil sample going to lab today to run CP51. Emailed guidance to homeowner and left message on his answering machine. cj 1/3/17 Mr. Maldonado called. He said Tank Masters pulled his tank and took at pre-excavation soil sample. Result are not in yet. Well is 100' upgradient from tank site. dw 3/6/17 inquiry to Tank Masters regarding status. dw 3/28/17 response from TM- Sent proposal but lost communication Inquired about soil sample. dw 3-29-17 Follow up with Homeowner. GHP 3/15/18 Spoke to Mr. Maldonado- he said he had gone through many personal situations, and was ready to contact people to have the spill closed. He claimed that Tank Masters had spilled fuel oil in the process of removing his UST, and did not want them to come back. I will send him some other

contacts, which he will act on in the coming weeks. dw "
"tank removal - soil affected - clean up pending insurance"

Remarks: All Materials:

537894 Site ID: Operable Unit ID: 1286511 Operable Unit: 01 Material ID: 2292127 Material Code: 0001A #2 fuel oil Material Name: Case No.: Not reported Material FA: Petroleum Quantity: Not reported Units: Not reported Not reported Recovered: Oxygenate: Not reported

Count: 3 records. ORPHAN SUMMARY

City	EDR ID	Site Name	Site Address	Zip	Database(s)
CARMEL	S118462526	RESIDENTIAL-TTF	19 CAROLYN RD		LTANKS
CARMEL	S100492858	WILLIAMS TENANT	FAIR STREET		LTANKS
SOUTHEAST	S105972520	BREWSTER TRANSIT MIX	FIELDS LANE	10509	SHWS

ZIP	EDR-ID	Facility ID	Name	Address	Map/Dir/Dist	City	State	Databases
** - Indi	cates location i	may or may not be	e in requested radius. Site has not been assig	gned a latitude/longitude coordinate. Furthe	er review recommende	ed.		
10512	1025562289		GRANITIC GNEISS ROCK QUARRY NO. HI			CARMEL	NY	
10512 10512	1025611754 1021371147		HOBBY PYRITIFEROUS ORE CHESTER HEIGHTS GARDENS		**	CARMEL CARMEL	NY NY	EDR Historical Auto
10512	S123254802		WATSON LABORATORIES EXPANSION		**	CARMEL	NY	Stations SPDES
10512	S123252979		PLUMWAY II		**	CARMEL	NY	SPDES
10512	S122258941		CENTENIAL RIDGE		**	CARMEL	NY	SPDES
10512 10512	S122258917 S122259745		MICHAEL'S GLEN PROPOSED RESIDENCE		**	CARMEL KENT	NY NY	SPDES SPDES
10512	S122259639		STONELEIGH WOODS AT CARMEL		**	CARMEL	NY	SPDES
10512	S123254049		HORTONTOWN WOODS LOT 2		**	CARMEL	NY	SPDES
10512	1025656655		PUTNAM COUNTY ARSENIC MINE		**	CARMEL	NY	EDD Historical Oleanan
10512 10512	1020023034 S123255092		LA RUSSELLS LAUNDRY & DRY CLG PUTNAM BIKEWAY II, STAGE 2 & 3		**	CARMEL CARMEL	NY NY	EDR Historical Cleaners SPDES
10512	S123261871		FRANGEL REALTY REGULATORY UPGRA		**	KENT	NY	SPDES
10512	S123255905		COUNTRY VILLAS		**	CARMEL	NY	SPDES
10512	S123253296		PIN 8021.37		**	KENT	NY	SPDES
10512	S122266532		PUTNAM HOSPITAL CENTER - EMERGEN		**	CARMEL	NY	SPDES
10512 10512	S122266123 S122266355		TAAL CONSTRUCTION (EURO-BUILDERS HAMLET AT CARMEL, THE		**	CARMEL CARMEL	NY NY	SPDES SPDES
10512	S122200303 S123253973		SEMINARY HILL PARK		**	CARMEL	NY	SPDES SPDES
10512	2006810841				**	LAKE CARMEL	NY	ERNS
10512	1025575675		PUTMAN CO. AS MINE		**	CARMEL	NY	EDNO
10512	2018212648		TDAVIO: MACNETITE MINE		**	KENT	NY NY	ERNS
10512 10512	1025561443 S125296130		TRAVIS' MAGNETITE MINE EMTK REALTY CORP.			CARMEL CARMEL	NY NY	SPDES
10512	S122265597		CENTENNIAL PROVISIONS		**	PATTERSON	NY	SPDES
10512	S123698068		ROUTE 6 RETAIL & PCSB MAHOPAC BRAN		**	CARMEL	NY	SPDES
10512	S123253994		KENT SELF STORAGE		**	CARMEL	NY	SPDES
10512 10512	S122265791 1025611561		MEADÓWLAND EXTENSION BROWN'S QUARRY			CARMEL CARMEL	NY NY	SPDES
10512	1025611965		TRAVIS' MAGNETITE MINE			CARMEL	NY	
10512	1020106943		TOUCH OF CLASS INC		**	CARMEL	ŇÝ	EDR Historical Cleaners
10512	S123267439		MORINI RESIDENCE		**	KENT	NY	SPDES
10512	S122265095		ROUTE 6 RETAIL & PCSB MAHOPAC BRAN		**	CARMEL	NY	SPDES SPDES
10512 10512	S123253185 S123252618		PIN 8390.63 CARMEL CORP CENTER		**	CARMEL CARMEL	NY NY	SPDES
10512	S123253849		DEEP WOODS SUBDIVISION		**	CARMEL	NY	SPDES
10512	S123255045		PROPERTY OF RELIANCE REALTY		**	KENT	NY	SPDES
10512	1025656705		VIVIAN PIT		**	CARMEL	NY	00050
10512 10512	S123252923 S123698216		KENT TOWN CENTRE LAKE CARMEL DAM		**	KENT KENT	NY NY	SPDES SPDES
10512	S123266517		SEVEN HILLS LAKE DAM REHABILITATION		**	KENT	NY	SPDES
10512	S123257626		ANAKIN SUBDIVISION		**	KENT	NY	SPDES
10512	S122259675		CARMEL HIGH SCHOOL		**	CARMEL	NY	SPDES
10512	S123253942		RECON OF DELAWARE AQUEDUCT DEL-1		**	CARMEL	NY	SPDES
10512 10512	1025768328 S123266689		GRANITIC GNEISS ROCK QUARRY KENT TOWN HALL		**	CARMEL KENT	NY NY	SPDES
10512	S122262554		ROUTE 311 PLAZA		**	KENT	NY	SPDES
10512	S123252913		DBS CAMPUS - EMERGENCY OPS. & TRG		**	CARMEL	NY	SPDES
10512	S123252662		PIN 8755.80		**	CARMEL	NY	SPDES
10512 10512	1025561483 1025575668		PUTNAM COUNTY ARSENIC MINE TRAVIS' MINE/CLOVER HILL/UNNAMED MI			CARMEL CARMEL	NY NY	
10512	1025575668		HOBBY PYRITIFEROUS ORE OPENING			CARMEL	NY NY	
10512	S125296392		KENT-MB-601			KENT	NY	SPDES
10512	S123190721		REGA ASSOCIATES		**	CARMEL	NY	SPDES
10512	S122266226		P&G FARM CORP. THOMAS AND BRITT CONNOLLY EROSIO		**	KENT	NY	SPDES
10512 10512	S122266046 S125465544		ALMODOVAR AND DINALLO INTEGRATED			KENT CARMEL	NY NE	SPDES SPDES
10512	S125405544 S125296066		WEST BRANCH ACRES WATER SYSTEM -			CARMEL	NY	SPDES
10512	S123253833		ROGERS RESIDENCE		**	CARMEL	NY	SPDES
10512	S123257092		AARON KASS SENIOR HOUSING DEVELO	DOLITE WOOD	**	CARMEL	NY	SPDES
10512	1021391026		NASSAU HARDWARE CO INC	ROUTE #301	**	CARMEL	NY	EDR Historical Auto
10512	1021582628		HY-FORTE AUTOMOTIVE INC	ROUTE #52	**	CARMEL	NY	Stations EDR Historical Auto
10012	1021002020		THE TOTAL MOTORIOTIVE INC	10012 1102		O, II (IVILL	141	Stations
10512	1021041999		ANTIOCH ENTERPRISES INC	ROUTE #52 & FOWLER AVE	**	CARMEL	NY	EDR Historical Auto
10510	1000064000		DI AZA DIE 6 CI EANEDS INC	DOLITE #6	**	CADMEL	NIV	Stations
10512	1020064368		PLAZA RTE 6 CLEANERS INC	ROUTE #6		CARMEL	NY	EDR Historical Cleaners

ZIP	EDR-ID	Facility ID	Name	Address	Map/Dir/Dist	City	State	Databases
10512 10512 10512 10512 10512	A100326227 1007777128 1009231165 S108146305 1021190010	110019395812 HS3058	NYS THRUWAY LUDINGTONVILLE YARD CENTENIAL GOLF LINKS NYC DEP PUTNAM COUNTY LANDFILL A&L SERVICE INC	I-84 & LUDINGTONVILLE ROAD RT6 & ROOT AVE 1286 RTE 10 SHAFT 10 ROUTE 2 RR 2	**	CARMEL CARMEL CARMEL CARMEL CARMEL	NY NY NY NY NY	CORTLAND CO. AST FINDS NY MANIFEST HSWDS EDR Historical Auto
10512	U004081996	3-409162	NYSDOT	ROUTE 22		PAWLING	NY	Stations NY MANIFEST, CORTLAND
10512 10512 10512 10512 10512 10512 10512 10512 10512 10512	1010040724 1007817338 S119078851 1016974621 1024044300 1016891453 1007753774 U004078760 U003075665 1021070887	110028122993 110019798931 NYR000210799 110070127482 110060158369 110019161734 3-458651 3-458651	VERIZON OF NEW YORK ADAMS PROPERTY MSE ENVIRONMENTAL FOR NY CHEMSW CLARENCE FAHNESTOCK MEMORIAL ST/ UPPER CANOPUS LAKE CLARENCE FAHNESTOCK MEMORIAL ST/ EPSTEIN PROPERTY KENT FIRE DIST. #1 KENT FIRE DIST. #1 NASSAU HARDWARE CO INC	ROUTE 22 & DYKEMAN RD 3 FARMERS MILLS ROAD RTE 30 & TACONIC STATE PKWY 1498 RTE 301 1498 RTE 301 2330 ROUTE 301 (SOUTH OF FARMERS M 2490 ROUTE 301 HWY 301	** ** **	CARMEL	NY NY NY NY NY NY NY NY	CO. UST FINDS FINDS NY MANIFEST NY MANIFEST, RCRA-NonGen FINDS FINDS FINDS CORTLAND CO. UST CORTLAND CO. AST EDR Historical Auto Stations
10512 10512 10512	U004062224 1010033309 1020605565	3-413100 110028223410	CARMEL CITGO CLARENCE FAHNESTOCK STATE PARK NASSAU HARDWARE CO INC	ROUTE 301 ROUTE 301 ROUTE 301	**	CARMEL CARMEL CARMEL	NY NY NY	CORTLAND CO. UST FINDS EDR Historical Auto Stations
10512 10512 10512 10512 10512 10512 10512	U004062324 1010043836 U003075324 U003644610 1010046809 S108160773 1021037656	3-264830 110028148662 3-264830 3-413100 110028180297	CLARENCE FAHNESTOCK STATE PARK KENT FIRE DEPARTMENT CLARENCE FAHNESTOCK STATE PARK CARMEL CITGO CARMEL BP REMEDIATION PROJECT CARMEL BP REMEDIATION PROJECT NASSAU HARDWARE CO INC	ROUTE 301 ROUTE 301 ROUTE 301 ROUTE 301 ROUTE 301 & FOWLER AVE ROUTE 301 & FOWLER AVE RR 301	**	CARMEL CARMEL CARMEL CARMEL CARMEL CARMEL CARMEL CARMEL CARMEL	NY NY NY NY NY NY	CORTLAND CO. UST FINDS CORTLAND CO. AST CORTLAND CO. AST FINDS SPDES EDR Historical Auto
10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512	1007795853 1007772904 1007745564 92117750 1007797108 1016256342 1004762159 1007112674 1007217240 1016247135 \$117562212 1004755696 1006263895 U004800058 U001843006	110019583627 110019353518 110019079450 110019596187 110008114414 NYR000094128 NYR0000119768 110016727283 110007985635 NY0000259101 110010787862 3-167371 3-167371	BOYD S CORNER DAM CHUANG YEN MONASTARY FOOTENA DAVID & FOOTE PROPERTY CARMEL AMOCO SERVICE STATION NYCDEP - WEST BRANCH RESERVOIR NYCDEP - WEST BRANCH RESERVOIR MSE ENVIRONMENTAL FOR NY CHEMSW MSE ENVIRONMENTAL FOR NY CHEMSW NYS OPRHP FAHNESTOCK STATE PARK NEW YORK STATE PARKS & RECREATION NYS OPRHP FAHNESTOCK STATE PARK NEMEREST CLUB CHESTNUT MART OF KENT CHESTNUT MART OF KENT	RT 301 & SMOKEY HOLLOW RT 301 & ND FOWLER AVE RTE 301 & RTE 47 KENT CLIFFS RTE 301 & RTE 47 KENT CLIFFS RTE 301 & TACONIC STATE PKY RTE 301 & TACONIC STATE PKY RTE 301 - 4 MI E OF RTE 9 RTE 301 - 4 MI E OF RTE 9 RTE 301 - 4 MI E OF RTE 9 RTE 301 - 4 MI E OF RTE 9 RTE 301 AND PEEKSKILL HOLLOW RD 126 ROUTE 311	** ** ** **	KENT KENT KENT CARMEL	NY NY NY NY NY NY NY NY NY NY NY NY	Stations FINDS FINDS FINDS FINDS FINDS FINDS FINDS RCRA-NonGen RCRA-CESQG FINDS FINDS FINDS CORTLAND CO. UST SPILLS, CORTLAND CO. AST
10512 10512 10512 10512	1010043985 U004062691 U003080372 1020554615	110028148671 3-004235 3-004235	FARMER S PRIDE INC FARMER'S PRIDE, INC. FARMER'S PRIDE, INC. BOBS GARAGE INC	164 ROUTE 311 164 ROUTE 311 164 ROUTE 311 ROUTE 311	**	CARMEL CARMEL CARMEL CARMEL	NY NY NY NY	FINDS CORTLAND CO. UST CORTLAND CO. AST EDR Historical Auto
10512	1022178670		BOBS GARAGE INC	RR 311	**	CARMEL	NY	Stations EDR Historical Auto Stations
10512 10512 10512 10512 10512 10512 10512	1007785517 1016314266 1016249350 1000137557 1001223018 1016212013 1014821860	110019479955 110019147724 110008018331 NYD981130594 NYR000027011 110006101921	T/KENT MTA PROGRAM EVANS SEPTIC TANK SERVICE RONS AUTO BODY SHOP RONS AUTO BODY SHOP ARLENE EVANOWSKI EVANOWSKI ARLENE RON'S AUTO BODY SHOP	RT 311 DRAINAGE IMPROVEMENTS RTE 311 RD 5 RTE 52 RD 5 RTE 52 RR 5 41 BIRCH TRAIL RR 5 41 BIRCH TRAIL	**	LAKE CARMEL LAKE CARMEL LAKE CARMEL LAKE CARMEL CARMEL CARMEL CARMEL	NY NY NY NY NY NY	FINDS FINDS FINDS NY MANIFEST, RCRA-NonGen NY MANIFEST, RCRA-NonGen FINDS
10512 10512	U003644564 1001029113	3-012343 110006101510	KENT PRIMARY SCHOOL KENT PRIMARY SCHOOL	1065 ROUTE 52 1065 RTE 52		CARMEL CARMEL	NY NY	CORTLAND CO. UST NY MANIFEST, RCRA-NonGen, FINDS
10512	1000391883	0301015	KENT ELEMENTARY SCHOOL	1091 ROUTE 52		CARMEL	NY	SPILLS, CORTLAND CO. UST
10512 10512 10512 10512 10512	\$117562438 1004756488 U000377700 U004064820 1014818813	110006094724 3-012335 3-012335 110041635834	CARMEL CENTRAL SCHOOLS CARMEL CENTRAL SCHOOL DIST TRANSPORTATION DEPARTMENT TRANSPORTATION DEPARTMENT CARMEL CTL SCHOOL DIST BUS GARAGE	1091 RTE 52 1091 RTE 52 1099 ROUTE 52 1099 ROUTE 52 1099 RTE 52		CARMEL CARMEL CARMEL CARMEL CARMEL	NY NY NY NY NY	NY MANIFEST RCRA-NonGen, FINDS CORTLAND CO. AST CORTLAND CO. UST FINDS

ZIP	EDR-ID	Facility ID	Name	Address	Map/Dir/Dist	City	State	Databases
10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512	U001842276 1018399903 U003397991 1010044237 U004063168 U003644618 1022896738 1024918383 1024918341 \$122375819 1021273322	3-019240 3-601258 110028138566 3-601258 3-485977	KENT CENTER CLEANERS HY-FORTE AUTOMOTIVE INC. HY-FORTH AUTOMOTIVE HY-FORTE AUTOMOTIVE INC. KBD REALTY THE KENT MINE INTERCOASTAL AGGREGATES #1 THE KENT MINE KENT MATERIALS SUNOCO	1100-1112 ROUTE 52 1106 ROUTE 52 SENT CTR 1210 ROUTE 52 1210 ROUTE 52 1210 ROUTE 52 1214 ROUTE 52 1264 ROUTE 52 1264 ROUTE 52 1264 ROUTE 52 1264 ROUTE 52 1264 ROUTE 52 1264 ROUTE 52		CARMEL KENT CLIFFS CARMEL	NY NY NY NY NY NY NY NY NY	CORTLAND CO. UST EDR Historical Cleaners CORTLAND CO. AST ICIS, FINDS CORTLAND CO. UST CORTLAND CO. UST AIRS EDR Historical Auto
10512 10512 10512 10512 10512	A100433738 U004159813 U001843544 S121983971 1004755519	3-180351 110007982727	7 - ELEVEN # 40090 7 - ELEVEN # 40090 SPEEDWAY # 7724 SPEEDYWAY #7724 AMERADA HESS #32429	1320 ROUTE 52 & I-84 1320 ROUTE 52 & I-84 1338 ROUTE 52 1338 ROUTE 52 1338 RTE 52 & LUDINGTONVILLE	**	CARMEL CARMEL CARMEL CARMEL CARMEL	NY NY NY NY NY	Stations CORTLAND CO. AST CORTLAND CO. UST CORTLAND CO. UST SPILLS NY MANIFEST, RCRA-CESQG,
10512 10512 10512 10512 10512 10512 10512 10512 10512 10512	U003397781 S113813610 1012280768 1012187081 1014919644 1014904200 U004064109 1006798979 U003075705 1020235256	3-600044 110040099728 NYR000169458 NYR000184325 110043983231 3-488666 110013694270 3-488666	LIBERTY BELL TRUCKING CO., INC. LIBERTY BELL TRUCKING LIBERTY BELL TRUCKING CO INC LIBERTY BELL TRUCKING CO INC RITE AID #10546 RITE AID #10546 QUICK STOP AUTOMOTIVE HUNTER AUTOMOTIVE QUIKSTOP/TOP G. QUICK STOP GAS STATION	1341 ROUTE 52 1341 ROUTE 52 1341 RTE 52 1341 RTE 52 1360 RTE 52 180 RTE 52 238 ROUTE 52 238 ROUTE 52 238 ROUTE 52 238 ROUTE 52 238 ROUTE 52		CARMEL	NY NY NY NY NY NY NY NY	FINDS CORTLAND CO. AST SWF/LF FINDS RCRA-NonGen NY MANIFEST, RCRA-CESQG FINDS CORTLAND CO. UST ICIS, FINDS CORTLAND CO. AST EDR Historical Auto
10512	U004148290		GLOBAL MONTELLO GROUP CORP. #6704	245 ROUTE 52		CARMEL	NY	Stations CORTLAND CO. AST, CORTLAND
10512 10512 10512 10512 10512	1024365811 2013003365 U004063963 1024704890 1021589613	110070262243 3-459062 110070499356	GLOBAL MONTELLO GROUP CORP #6704 245 RT 52 OWENS CAR CARE SERVICE OWENS CAR CARE SERVICE CITGO RT 52	245 ROUTE 52 245 RT 52 253 ROUTE 52 253 ROUTE 52 253 ROUTE 52		CARMEL CARMEL CARMEL CARMEL CARMEL	NY NY NY NY NY	CO. UST FINDS HMIRS CORTLAND CO. UST FINDS EDR Historical Auto
10512 10512 10512 10512 10512 10512 10512 10512 10512	U000378406 1025815178 S112226133 A100157750 1025478531 1017377566 1014903702 A100147141 A100320151 1001223130	3-459062 110070556053 3-601388 110061521517 110043818143 3-448044 110006102056	OWENS CAR CARE SERVICE TITAN CONCRETE, INC. PUTNAM STONE & MASON SUPPLY PUTNAM STONE & MASON SUPPLY, INC. TITAN CONCRETE, INC. STORMWATER RETROFIT KENT-PA-31 JOSE LEMA OFFICE/WAREHOUSE NONE (FORMERLY WHALECO) CHRIS' AUTOMOTIVE CENTER, INC. CHRIS AUTOMOTIVE CENTER	253 ROUTE 52 301 ROUTE 52 301 ROUTE 52 301 ROUTE 52 301 ROUTE 52 301 RTE 52 329 RTE 52 333 ROUTE 52 349 ROUTE 52 349 ROUTE 52		CARMEL	NY NY NY NY NY NY NY NY	Stations CORTLAND CO. AST FINDS SPILLS CORTLAND CO. AST FINDS FINDS CORTLAND CO. AST CORTLAND CO. AST CORTLAND CO. AST NY MANIFEST, RCRA-NonGen,
10512	S109374932		LA RUSSELL'S CLEANERS	406 ROUTE 52		LAKE CARMEL	NY	FINDS INST CONTROL, ENG CONTROLS,
10512 10512 10512 10512 10512	S110139197 S122267755 1018715904 1017808075 1004758882	110064232352 110006100744	FORMER GAS STATION TOWN OF KENT CLEANERS FRANGEL REALTY LLC PUTNAM ASSOC RESOURCE CENTER	523 RTE 52 531 ROUTE 52 - SUITE 1 531 ROUTE 52 STE 1 531 RTE 52 531 RTE 52 STE 5		KENT CARMEL CARMEL CARMEL CARMEL	NY NY NY NY	SHWS SPILLS SPDES EDR Historical Cleaners FINDS NY MANIFEST, RCRA-NonGen,
10512	1022019966		RKJ ENTERPRISE INC	184 52	**	CARMEL	NY	FINDS EDR Historical Auto
10512	1021320501		SCLAFANI ANTHONY	ROUTE 52	**	CARMEL	NY	Stations EDR Historical Auto Stations
10512 10512 10512 10512 10512 10512 10512 10512	\$106442141 1010027985 \$108160686 1004566419 U001842299 U001843135 1018854565 1007767378	110028127783 110009826803 3-029327 3-178829 110019298106	FRANGEL REALTY LLC TEXACO SERVICE STATION TEXACO SERVICE STATION FRANGEL REALTY LLC DURKIN FUEL LLOYD LUMBER LLOYD HOME & BUILDING CENTER LA RUSSELLS LAUNDRY & DRY CLG TOWN OF KENT TOWN HALL	ROUTE 52 ROUTE 52 ROUTE 52 ROUTE 52 ROUTE 52 ROUTE 52 ROUTE 52 ROUTE 52	**	CARMEL LAKE CARMEL LAKE CARMEL CARMEL LAKE CARMEL CARMEL CARMEL CARMEL CARMEL	NY NY NY NY NY NY NY	SALIOTIS SPDES FINDS SPDES FINDS CORTLAND CO. UST CORTLAND CO. UST EDR Historical Cleaners FINDS
10512 10512 10512	A100382482 1021533737	110010230100	CARMEL PLANT HALSTEAD QUINN VIN-CAR ENTERPRISES INC	ROUTE 52 ROUTE 52 ROUTE 52 & INTERSTATE 84	**	CARMEL CARMEL	NY NY	CORTLAND CO. AST EDR Historical Auto Stations

ZIP	EDR-ID	Facility ID	Name	Address	Map/Dir/Dist	City	State	Databases
10512	1020996471		FUEL & WASH ASSOCIATES	ROUTE 52 AND FOWLER AVE		CARMEL	NY	EDR Historical Auto
10512 10512 10512 10512	1007781502 U001323433 S102639412 1020315448	110019439650 3-600275 3-000228	SPAIN OIL COMPANY MARKENSTEVE HOLDING CO. PUTNAM CONCRETE PRODUCTS, INC. TRANSMISSION KING INC	ROUTE 52 AT CHAUNCY ROAD ROUTE 52 KENT BUSINESS CENTER ROUTE 52 P.O. BOX 36 RR 52	**	CARMEL CARMEL CARMEL CARMEL	NY NY NY NY	Stations FINDS CORTLAND CO. UST CBS AST, CBS EDR Historical Auto
10512 10512 10512 10512	1018944355 1007780947 1007784452 1021810749	110019434101 110019469243	LA RUSSELLS LAUNDRY & DRY CLG MAZZOTTA OFFICE-RETAIL BLDG SUNOCO SERVICE STATION #0011-7986 B & D AUTOMOTIVE	RR 52 RT 52 RT 52 RT 52 RT 52	**	CARMEL KENT CARMEL CARMEL	NY NY NY NY	Stations EDR Historical Cleaners FINDS FINDS EDR Historical Auto
10512 10512 10512	1007741636 1007785646 1021810219	110019040045 110019481283	RT 52 AUTO BODY & REPAIR RONS AUTO BODY SHOP BEE & DEE AUTOMOTIVE INC	RT 52 RT 52 RT 52	**	CARMEL CARMEL CARMEL	NY NY NY	Stations FINDS FINDS EDR Historical Auto
10512	1020777706		GETTY PETROLEUM CORP (DEL)	RT 52 & HORSEPOUND RD	**	CARMEL	NY	Stations EDR Historical Auto
10512	1020796906		RAMOS ROBERT J	RT 52 AND HORSEPOUND AVE	**	CARMEL	NY	Stations EDR Historical Auto Stations
10512 10512 10512	1010043986 1010043987 1020717222	110028148706 110028148715	SUNOCO #0011-7986 HESS SS KERRIGAN WILLIAM	RT 52 AND I-84 RT 52 AND LUDINGTONVILLE ROAD RT 52 AT FOWLER AVE	**	CARMEL CARMEL CARMEL	NY NY NY	FINDS FINDS EDR Historical Auto
10512	1020324248		TSR SERVICE CENTER	RT 52 DYKEMAN RD	**	CARMEL	NY	Stations EDR Historical Auto
10512 10512 10512	1000458116 1000279746 1020342942	NYD986934537 NYD135635936	GETTY SERVICE STATION WHALECO CORP CARMEL TRUCK & CAR WORKSHOP	RTE 52 RTE 52 RTE 52	**	CARMEL CARMEL CARMEL	NY NY NY	Stations NY MANIFEST, RCRA-NonGen RCRA-NonGen EDR Historical Auto Stations
10512 10512 10512 10512 10512 10512 10512 10512	1016248688 1000265171 1020023425 1007746484 1016251513 1007751642 1016248343 1020545786	110008009243 NYD056832033 110019088645 110008045980 110019140384 110008003374	WHALECO CORP MC GIVNEY BROTHERS CARMEL HARDW. LAKE CARMEL TAILOR T-KENT HIGHWAY GARAGE GETTY SERVICE STATION WATCH HILL CONDOMINIUMS MCGIVNEY BROS CARMEL HARDWARE C TSR SERVICE CENTER	RTE 52 RTE 52 RTE 52 RTE 52 RTE 52 RTE 52 RTE 52 RTE 52 RTE 52 RTE 52 & DYKEMAN RD	**	CARMEL LAKE CARMEL CARMEL CARMEL CARMEL KENT LAKE CARMEL CARMEL	NY NY NY NY NY NY NY	FINDS NY MANIFEST, RCRA-NonGen EDR Historical Cleaners FINDS FINDS FINDS EDR Historical Auto
10512	1020880841		LUDDINGTONVILLE SUNOCO SERVICE	RTE 52 & RTE 84	**	CARMEL	NY	Stations EDR Historical Auto
10512 10512 10512 10512 10512 10512 10512 10512 10512	1006799395 1000555476 1016252593 1016700287 1000370512 1016211772 1016095960 1017446079 U003075434	110013698962 NYD986980126 110008069106 110056389162 NYD024879744 110006093832 110012590605 3-171891	TMS GAS STATION ERICKS MACHINE SHOP ERICKS MACHINE SHOP TOWN OF KENT ROUTE 52 SEWER DISTR LARUSSELL CLEANERS SITE LARUSSELL CLEANERS SITE LARUSSELLS LAUNDRY & DRY CLEANING LARUSSELLS LAUNDRY & DRY CLEANING TEXACO SERVICE STATION-LAKE CARME	RTE 52 & TOWERS ROAD RTE 52 & TOWNERS RD RTE 52 & TOWNERS RD RTE 52 & TOWNERS RD RTE 52 - GREY OAKS CT TO HORSEPOUN RTE 52 MAP 37.72 BLK 5 LOT 18 RTE 52 MAP 37.72 BLK 5 LOT 18 406 ROUTE 52, BOX 727 406 ROUTE 52, BOX 727 ROUTE 52, 157 SMADBACK AVE	**	CARMEL CARMEL CARMEL LAKE CARMEL LAKE CARMEL CARMEL CARMEL CARMEL LAKE CARMEL	NY NY NY NY NY NY NY	Stations SPILLS, ICIS, FINDS RCRA-NonGen FINDS FINDS NY MANIFEST, RCRAInfo-SQG FINDS FINDS CORTLAND CO. AST, CORTLAND
10512 10512 10512 10512 10512 10512 10512 10512 10512	\$109580359 \$103036625 \$116554402 \$108465839 1016007831 1000890282 \$122258622 \$105998849 U003075856	9713741 0612212 110045412665 NY0000309443 0301127 3-600581	CARMEL PLANT #36 CARMEL RECYCLING AND TRANSFER ST. DEP: HYDRO OIL/ AUTO. GATE SHAFT 10 DELAWARE AQUEDUCT NYCDEP SHAFT 10 DEL AQUEDUCT NYCDEP SHAFT 10 DEL AQUEDUCT ROUTE 6 RETAIL CARMEL CWD#2 BRADY-PALMER LABEL CORP.	1181 RTE 6 1285 ROUTE 6 1286 ROUTE 6 1286 ROUTE 6 1286 RTE 6 1286 RTE 6 150 RTE 6 1744 RTE 6 1791 ROUTE 6		CARMEL	NY NY NY NY NY NY NY NY	CO. UST SPILLS, SPDES, SWF/LF SWRCY, SPILLS SPILLS CBS FINDS NY MANIFEST, RCRA-CESQG SPDES SPILLS, CBS CORTLAND CO. AST, CORTLAND
10512 10512 10512 10512 10512	A100354175 1020064364 S116555421 S121981651 1000352324	110004373838	MAVIS DISCOUNT TIRE #49 PLAZA ROUTE 6 CLEANERS INC BLACK GOLD ENTERPRISES: UST MATRA & EVERY BLACK GOLD ENTERPRISES	1855 ROUTE 6 1862 ROUTE 6 1862 ROUTE 6 1863 ROUTE 6 1863 ROUTE 6		CARMEL CARMEL CARMEL CARMEL CARMEL	NY NY NY NY	CO. UST, LTANKS CORTLAND CO. AST EDR Historical Cleaners SPILLS SPILLS CORTLAND CO. AST, RCRA-NonGen, FINDS, CORTLAND CO.
10512	1021639192		MATRA & EVERY AUTOMOTIVE	1863 ROUTE 6		CARMEL	NY	UST, LTANKS EDR Historical Auto
10512	S121982252		MOBIL/BLACK GOLD ENTERPRISES	1863 ROUTE 6		CARMEL	NY	Stations SPILLS

ZIP	EDR-ID	Facility ID	Name	Address	Map/Dir/Dist	City	State	Databases
10512 10512 10512 10512 10512 10512 10512 10512	\$123659725 1020106941 1018327339 1014919645 U004061807 1018159082 \$118708564 1022232047	110043983240 NYR000184333 3-601838 110066949887	BLACK GOLD ENTRERPRISES TOUCH OF CLASS INC RITE AID #00594 RITE AID #00594 A&P FOOD MARKET CVS PHARMACY #10038 CVS PHARMACY #10038 WILLIAMS SHELL SERVICE CENTER	1863 RT 6 1891 ROUTE 6 1896 ROUTE 6 1896 RTE 6 1905 ROUTE 6 1905 RTE 6 1905 RTE 6 1923 ROUTE 6		CARMEL	NY NY NY NY NY NY NY	SPILLS EDR Historical Cleaners FINDS NY MANIFEST, RCRA-CESQG CORTLAND CO. UST RCRA-CESQG, FINDS NY MANIFEST EDR Historical Auto
10512 10512	S110044059 U004107547	3-412325	SHELL PUTNAM ASSOCIATED RESOURCE CENTI	1923 ROUTE 6 1938 ROUTE 6		CARMEL CARMEL	NY NY	Stations SPILLS CORTLAND CO. AST, CORTLAND CO. UST
10512	U004125667		MEADOW LAND CHRYSLER	1952 ROUTE 6		CARMEL	NY	CO. UST CORTLAND CO. AST, CORTLAND CO. UST
10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512	1016011047 1019966006 1024044298 1007770752 1007772238 1010352735 9170891 \$108146564 1020078483 \$1122258046 \$105972528 \$117937024 \$105972530 A100412885 U004244800 1025804479 \$122258045 \$104541607 1020064365 1020580154	110045532303 110070127480 110019331891 110019346830 110030926069 110009825939 340014 340016 110019625486	MEADOWLAND OF CARMEL R O AND K E INC MEADOWLAND EXTENSION DECKER & COMPANY FACILITY SENIOR HOUSING AT MAHOPAC HILLS CARMEL RECYLCING CENTER CARMEL LANDFILL SOCIETY HILL AT MAHOPAC RTE 6 CLEANERS INC SENIOR HOUSING AT MAHOPAC HILLS PUTNAM CO. LANDFILL CARMEL RECYLCING CENTER CARMEL TOWN LANDFILL CARMEL GARAGE CARMEL GARAGE CARMEL GARAGE PUTNAM COUNTY SENIOR CITIZEN CENT PUTNAM COUNTY SENIOR CITIZEN CENT MAHOPAC BUSINESS DISTRICT WELLS PLAZA ROUTE 6 CLEANERS INC ABLE AUTO SERVICE CENTER INC	1952 RTE 6 1961 ROUTE 6 1979 RTE 6 837 ROUTE 6 & BELDEN ROAD ROUTE 6 & BELDEN ROAD ROUTE 6 (500' SW OF MILLER RD INTERS ROUTE 6 (500' SW OF MILLER RD INTERS ROUTE 6 AND ROUTE 6N RR 6 RT 6	** ** ** ** **	CARMEL	NY N	FINDS EDR Historical Cleaners FINDS FINDS FINDS FINDS FINDS FINDS FINDS EDR Historical Cleaners SPDES SHWS SPDES SHWS SPDES SHWS CORTLAND CO. AST CORTLAND CO. UST FINDS SPDES VAPOR REOPENED, SHWS EDR Historical Cleaners EDR Historical Cleaners
10512 10512	1007795077 1018575149 1007786961 1007784034 1007784703 1007754746 S119070718 100778789 1007811054 1007780275 1003863711 1009231166 100778136 1005500224 1016256136 1001961677 1000694056 1016253149 1000169570 1016110068 1007797792 1022148439	110019575841 110019482255 110019482255 110019485041 110019070832 110019171475 110019412483 110019427379 NYD980507891 110019438278 110009826796 110008111952 NYR090084939 NYD987003290 110008019349 110019603035	HYNES REALTY PROPERTY PLAZA ROUTE 6 CLEANERS INC MAHOPAC VILLAGE CENTER MANASSA ENTERPRISES C/NY D/ENVIRONMENTAL PROTECTION TEMPLE BETH SHALOM VOLZ COLLISION NEW YORK CITY DEPT OF ENVIRON PRO SHELL S/S #231-1225-0305 RIDGEVIEW AUTO BODY INC CARMEL GAS MAIN EXTENSION CARMEL GAS MAIN EXTENSION CARMEL LF DEP BELDEN HOUSE RTE 6 & MEADOWLARK DR LAKE PLAZA SHOPPING CENTER NYCDEP SHAFT 10 DELAWARE AQ NYCDEP SHAFT 10 DELAWARE AQ NYCDEP SHAFT 10 DELA AQDT NYSDOT BIN 1003460 NYSDOT BIN 1003460 TOUCH OF CLASS DRY CLEANERS TOUCH OF CLASS CLEANERS LAKE MAHOPAC MARINA SUNOCO INC	RT 6 & BELDEN RD RT 6 & CROTON FALLS RD RT 6 & UNION VALLEY RD RT 6 AND INCINERATOR RD RT 6 AND STONELEIGH AVE RT 6 P O BOX 416 RTE 6 RTE 6 RTE 6 RTE 6 & BELDEN RD RTE 6 & MEADOWLARK DR RTE 6 AND BALDWIN LN RTE 6 AT INCINERATOR RD RTE 6 N OF DREWILLE RD RTE 6 N OF DREWILLE RD RTE 6 OVER W BRG CROTON RIVER RTE 6 OVER W BRG CROTON RIVER RTE 6 WALDBAUMS SHOP PLZ RTE 6 WALDBAUMS SHOP PLZ RTE 6N & CHERRY LANE 184 & 52	** ** ** **	CARMEL	NY N	Stations FINDS EDR Historical Cleaners FINDS CERCLIS-NFRAP NY MANIFEST FINDS CERCLIS-NFRAP NY MANIFEST FINDS CIS, FINDS ICIS, FINDS ICIS, FINDS ICIS, FINDS
10512 10512 10512 10512 10512 10512 10512 10512 10512 10512	1014903199 1014917890 1007773416 1016031983 1009235304 94256811 1007807792 1007797226 1007785610 1007785696	110043764432 NYP000967547 110019358648 110046411557 110019703285 110019597364 110019480890 110019481755	A DUIE PYLE A DUIE PYLE MINCHENBERG PROPERTY WETLAND MITIGATION AREAS NYSDEC PRAGER/LK MAHOPAC PROJECT TEIRSTEIN PROPERTY BALDWIN WOODS SUBDIVISION BALDWIN PARK	I 84 MM S5 I 84 MM S5 ADAM WAGNER LN ALONG PUTNAM COUNTY BIKE TRAIL ARCHER RD 2 ARMONK RD AVERILL DR AVERILL DR BALDWIN PLACE RD BALDWIN PLACE RD	**	CARMEL	NY NY NY NY NY NY NY NY	FINDS RCRA-NonGen FINDS FINDS NY MANIFEST ERNS FINDS FINDS FINDS FINDS FINDS FINDS FINDS

ZIP	EDR-ID	Facility ID	Name	Address	Map/Dir/Dist	City	State	Databases
10512 10512 10512 10512 10512 10512 10512 10512	1007807629 1007772297 S113915467 1016033462 1007741703 U004157017 S111063832 1000890283	110019701633 110019347410 110044368145 110019040731 110007986224	BALDWIN ESTATES VILLAGE HOUSING TOWNHOUSE HIDIRI RES.: 1K UST MCCOLLUM PROPERTY HAYDEN PROPERTY ROBERT & FLORENCE REILLY NELL RES.: 550 UST - TTF NYCDEP - CARMEL GARAGE MAINTENAN	BALDWIN PLACE ROAD 1 BALLA RD 72 BARRETT CIRCLE 8 BARRETT CIRCLE CT BARRETTHILL RD 12 BARRY GOLDWATER DRIVE 14 BEAVER HILL RD 1 BELDEN RD & ROUTE 6	**	CARMEL CARMEL CARMEL CARMEL CARMEL CARMEL LAKE CARMEL CARMEL	NY NY NY NY NY NY	FINDS FINDS SPILLS FINDS FINDS CORTLAND CO. UST LTANKS NY MANIFEST, FINDS,
10512 10512 10512 10512 10512 10512 10512	1007744696 1007749112 1016103480 1010034820 1017431107 1011842188 1021823675	110019070725 110019114983 110010356578 110028161851 110000719679	TEMPLAND SUBDIVISION FRED DILL WILDLIFE SANCTUARY & EDU(PATTERSON BLACKTOP DIPIETRO SUBDIVISION WEST BRANCH (SHAFT 10) WEST BRANCH (SHAFT 10) MATRA & EVERY AUTOMOTIVE INC	BELLA RD & SEDGEWICK DR BETWEEN RTE 6 & FAIR ST BLDG 1181, ROUTE 6 BOWEN RD WEST BRANCH EFFLUENT CHAMBER WEST BRANCH EFFLUENT CHAMBER 100 BREWSTER	**	CARMEL CARMEL CARMEL KENT CARMEL CARMEL CARMEL CARMEL	NY NY NY NY NY NY	RCRAInfo-LQG FINDS FINDS FINDS FINDS FINDS RMP EDR Historical Auto Stations
10512	1021321730		DOMS SUNOCO SERVICE STATION	100 BREWSTER AVE	**	CARMEL	NY	EDR Historical Auto
10512	1020689624		DOMS SUNOCO SERV STA	100 BREWSTER AVENUE	**	CARMEL	NY	Stations EDR Historical Auto
10512	U004065170	3-166669	SHELL STATION #138608	1923 BREWSTER AVENUE		CARMEL	NY	Stations CORTLAND CO. AST, CORTLAND CO. UST
10512	1022070956		WILLIAMS RAYMOND	200 BREWSTER AVE	**	CARMEL	NY	EDR Historical Auto Stations
10512	1020227900		WILLIAMS RAYMOND	200 BREWSTER AVE	**	CARMEL	NY	EDR Historical Auto Stations
10512	1021842737		WILLIAMS RAYMOND	200 BREWSTER AVENUE	**	CARMEL	NY	EDR Historical Auto Stations
10512 10512 10512 10512	1007778688 1000191842 U000381599 1000193804	110019411475 NYD056307853 3-502472 110002092841	MEADOWLAND CHRYSLER PLYMOUTH IN MEADOWLAND CHRYLSER PLYMOUTH CARMEL ANIMAL HOSPITAL BRADY PALMER LABEL	221 BREWSTER AVE 221 BREWSTER AVE 298 BREWSTER AVENUE 36 BREWSTER AVE.		CARMEL CARMEL CARMEL CARMEL	NY NY NY NY	Staturis FINDS NY MANIFEST, RCRA-NonGen CORTLAND CO. UST NY MANIFEST, FINDS, RCRAInfo-LQG
10512	1022066144		OSTER CLIFFORD T	1923 BRUSTER AVE	**	CARMEL	NY	EDR Historical Auto Stations
10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512	92134803 U004078915 U003075755 1007778282 1004566353 1012085237 1009232555 2009909191 1007773088 1007800435 1016037801 S113916604 A100320332 1016698556 1001090200	3-501867 3-501867 1-501867 110019407391 110006702032 110038400352 110019355357 110019629543 110046480090	PECKHAM MATERIALS CORP. PECKHAM MATERIALS CORP. THE WOODS AT KING POND FOX RUN CONDOMINIMUMS VISUAL POLYMER TECHOLOGY NYSDEC SEDGEWOOD CLUB CLEAR POOL CAMP DORRIE O'BRIEN HOUSE FAIR STREET LANDFILL (INACTIVE) CARMEL GARAGE EUROSTYLE MARBLE & GRANITE PIPELINING	698 BRUSTER DR BUILDING #1181 BUILDING #1181 BULLET HOLE RD BULLET HOLE RD 3701 BUTTONWOOD LANE CEMENARY HILL RD 73 CHIEF MINHAM CIRCLE CHINA & BARRETT PONDS/RTE 301 CLEAR POOL RD COBB RD - 1000 FT E OF STARR RIDGE RI 131 COMMERCE DRIVE 35 B COMMERCE STREET 35-37 COMMERCE DR 6 COMMERCE ST	** ** 1, North, 0 - 1/8	LAKE CARMELLE CARMEL	NY NY NY NY NY NY NY NY NY NY	STATIONS ERNS CORTLAND CO. UST CORTLAND CO. AST FINDS SPDES, ICIS, FINDS FINDS NY MANIFEST ERNS FINDS FINDS FINDS SHWS CORTLAND CO. AST FINDS NY MANIFEST, RCRA-NonGen,
10512 10512 10512 10512 10512 10512	1007090200 1007776575 2003642934 U001843054 1010045473 U000379155	110004522788 110019390292 3-168521 110028154850 3-168548	PURE TECH COUNTY COURT HOUSE COUNTY OFFICE BUILDING COUNTY OFFICE BUILDING	COMMERCE ST COMMERCE DR CORNER OF SALEM & HUGUENOT ROAD 1 COUNTY CENTER 2 COUNTY CENTER 2 COUNTY CENTER		CARMEL CARMEL CARMEL CARMEL CARMEL CARMEL	NY NY NY NY NY	FINDS FINDS ERNS CORTLAND CO. UST FINDS CORTLAND CO. AST, CORTLAND
10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512	U001843055 1010045471 1007819099 1012223652 1007809761 U004048817 A100154050 1014813575 1007751746 1007799509 U004198969 1007786490 1007788746	3-168556 110028154832 110019816573 110040628265 110019723003 3-104450 3-601366 110043478714 110019141427 110019620221 110019489695 110019512339	RAYNOR WEIZNECKER CORRECTIONAL F RAYNOR WEIZNECKER CORRECTION FA(HILL PROPERTY JOHN'S BODY SHOP PENNEBROOK ESTATES YONKERS EXCAVATING CORP THOMAS STUART BRYSON'S INC STRAWBERRY FIELDS CROTON FALLS RD CROTON FALLS TREATMENT PLANT ROGERS PROPERTY ROBERT HALL PROPERTY	3 COUNTY CENTER 3 COUNTY CENTER CRAESCOT WAY 235 CRANE RD CRANE RD & LONG POND BROOK 553 CROTON FALLS RD 631 CROTON FALLS ROAD 820 CROTON FALLS RD OROTON FALLS RD CROTON FALLS RD OVER WEST BRANCH CROTON FALLS ROAD & HEMLOCK ROAD DAFFODIL HILL SUBDIVISION DEAN RD		CARMEL KENT CARMEL	NY NY NY NY NY NY NY NY NY	CO. UST CORTLAND CO. UST, LTANKS FINDS FINDS FINDS CORTLAND CO. AST CORTLAND CO. AST FINDS FINDS FINDS FINDS FINDS CORTLAND CO. UST FINDS

ZIP	EDR-ID	Facility ID	Name	Address	Map/Dir/Dist	City	State	Databases
10512	1021882288		PUMP IT UP INC	23 DECOLORES DR		CARMEL	NY	EDR Historical Auto
10512 10512 10512 10512 10512 10512 10512	1001969003 1007806726 1007752251 1007747046 1001202903 1016255108 1021191470	NYR000085415 110019692607 110019146477 110019094246 NYR000041723 110008099798	NYCDEP SHAFT 9 DEL AQUEDUCT BARRETT BROOK HOLLOW SUBD STONY RIDGE FARMS SUBDIVISION DIXON RD PUTNAM COUNTY OF DEPT HWY & FACIL PUTNAM COUNTY OF DEPT HWY & FACIL A&L SERVICE INC	352 DIXON RD DIXON RD DIXON RD DIXON RD DIXON RD OVER WEST BRANCH CROTON DREWVILLE RD BRIDGE NEAR SE DREWVILLE RD BRIDGE NEAR SE & DYKEMAN RD RR 52	** **	KENT KENT CARMEL KENT CARMEL CARMEL CARMEL	NY NY NY NY NY	Stations NY MANIFEST, RCRA-CESQG FINDS FINDS FINDS RCRA-NonGen FINDS EDR Historical Auto Stations
10512 10512 10512 10512	S116349361 A100296231 U004064596 1020152010	3-171921 3-171921	VERIZON NEW YORK INC-NY-96255 T&J FOODMART, INC. T&J FOODMART, INC. A&L SERVICE INC	10 DYKEMAN ROAD 2 DYKEMAN ROAD 2 DYKEMAN ROAD 52 DYKEMAN RD		CARMEL CARMEL CARMEL CARMEL	NY NY NY NY	CORTLAND CO. AST CORTLAND CO. UST EDR Historical Auto Stations
10512	1021927911		A&L TEXACO INC	DYKEMAN RD	**	CARMEL	NY	EDR Historical Auto Stations
10512 10512 10512 10512	1016247669 1000328706 1004566414 1022233804	110007992565 NYD000698886 110009827349	SUNOCO SERVICE STATION SUNOCO SERVICE STATION CLEAR POOL CAMP NORTH AVENUE SERVICE STATION	I-84 E RTE 52 RFD 2 I-84 E RTE 52 RFD 2 RD#2, EAST BOYDS ROAD 5 ECHO RD		CARMEL CARMEL CARMEL CARMEL	NY NY NY NY	FINDS RCRA-NonGen SPDES, FINDS EDR Historical Auto Stations
10512 10512 10512 10512	1007766177 1016091906 S124517768 1021007694	110019286039	SHAFT 10 DELAWARE AQUEDUCT SHAFT 10 DELAWARE AQUEDUCT RESIDENCE T & J AUTO SERVICE INC	SOUTH END OF WEST BRANCH RESER SOUTH END OF WEST BRANCH RESERV(44 EVERETT RD 1 FAIR ST	**	CARMEL CARMEL CARMEL CARMEL	NY NY NY NY	FINDS SPILLS EDR Historical Auto Stations
10512 10512 10512 10512	U001844269 1010044240 S110043888 1001029114	3-492272 110028138593 110004518629	PUTNAM REALTY GROUP LLC ARTHUR AVENUE DELI BP STATION: SPILL BUCKETS CARMEL CENTRAL SCHOOL DIST	2 FAIR STREET 2 FAIR STREET 2 FAIR STREET 275 FAIR ST		CARMEL CARMEL CARMEL CARMEL	NY NY NY NY	CORTLAND CO. UST FINDS SPILLS, LTANKS NY MANIFEST, RCRA-NonGen, FINDS
10512 10512 10512 10512 10512 10512 10512 10512	1010013454 S105996263 S121997179 U001842198 A100358231 U001844077 1008176725 1000446243	110028284826 0203870 3-012394 3-448834 NYD986905503	GEORGE FISCHER MIDDLE SCHOOL GEORGE FISCHER MIDDLE SCHOOL GEORGE FISCHER MIDDLE SCHOOL GEORGE FISCHER MIDDLE SCHOOL CARMEL MPO CARMEL HS CARMEL HIGH SCHOOL	281 FAIR ST 281 FAIR ST 281 FAIR ST. 281 FAIR STREET 281 FAIR STREET 29 FAIR ST 30 FAIR ST 30 FAIR ST		CARMEL CARMEL CARMEL PATTERSON PATTERSON CARMEL CARMEL CARMEL	NY NY NY NY NY NY NY	FINDS SPILLS, SPDES CORTLAND CO. UST CORTLAND CO. AST CORTLAND CO. UST FTTS SPILLS, CORTLAND CO. AST, NY MANIFEST, RCRA-CESQG,
10512 10512 10512 10512 10512	1007797130 1009232643 1010352379 S114561630 U000381718	110019596436 110030925391 3-515302	CARMEL CENTRAL SCHOOL DIST NEW YORK STATE HIGHWAY SHED PUTM FIRST TRANSIT INC #57220 FIRST TRANSIT INC #57220 PUTNAM COUNTY TRANSIT FACILITY	30 FAIR STREET, CARMEL 551 FAIR ST 841 FAIR ST 841 FAIR ST 841 FAIR STREET		CARMEL CARMEL CARMEL CARMEL CARMEL	NY NY NY NY	CORTLAND CO. UST, LTANKS FINDS NY MANIFEST FINDS SPILLS, SPDES SPILLS, CORTLAND CO. UST
10512 10512 10512 10512 10512	1010045466 1010328648 S109373897 1010429309 U000379153	110028154789 NYR000144246 110032742557 3-168513	PUTNAM COUNTY TRANSIT FACILITY PUTNAM CO DEPT OF HIGHWAY & FACILI FAIR ST DPW FACILITY PUTNAM COUNTY DEPARTMENT OF HIGH PUTNAM COUNTY HIGHWAY DEPT.	841 FAIR STREET 842 FAIR ST 842 FAIR ST 842 FAIR ST 842 FAIR STREET		CARMEL CARMEL CARMEL CARMEL CARMEL	NY NY NY NY NY	CORTLAND CO. AST, FINDS NY MANIFEST, RCRAInfo-LQG SPILLS, SPDES, LTANKS FINDS CORTLAND CO. AST, CORTLAND CO. UST
10512 10512 10512 10512 10512 10512 10512 10512 10512 10512	1016982247 U000377615 S109318767 1007809626 1007763308 1007803994 1009445939 1016983831 1007776106 1007768235 U003075423	110006660425 3-004227 110019721657 110019257310 110019625209 110024582227 110009826368 110019385609 110019306687 3-171573	FAIR STREET DPW FACILITY WILLIAM VON ESSEN SONS INC HUNTER'S GLEN AVITECH TWIN BROOK MANOR POND VIEW FAIR STREET PROJECT HUNTER'S GLEN WWTP MICHAELS GLEN COLONIAL RIDGE DEVELOPMENT FAIR ST TEXACO	842 FAIR STREET 859 FAIR STREET FAIR ST	** **	CARMEL CARMEL CARMEL PATTERSON SOUTHEAST PATTERSON CARMEL CARMEL CARMEL PATTERSON CARMEL PATTERSON	NY	FINDS CORTLAND CO. UST SPDES FINDS FOR THE PROPERTY OF THE PROPERT
10512 10512 10512 10512	1024044299 1019961423 1007750095 1016990239	110070127481 110019124865 110019326273	GARFINKLE PROPERTY COMMUTER DRY CLEANING & TAILOR FARMERS MILL RD PROJECT DELAURENTIS BROTHERS RD	1103 FARMERS MILLS RD 1166 FARMERS MILL RD FARMERS MILL RD FARMERS MILLS RD & LACROSS RD		CARMEL CARMEL CARMEL CARMEL	NY NY NY NY	LTANKS FINDS EDR Historical Cleaners FINDS FINDS

ZIP	EDR-ID	Facility ID	Name	Address	Map/Dir/Dist	City	State	Databases
10512 10512 10512	1007748163 1007792194 1020573524	110019105449 110019546936	FIELDS LN OVER TRIB TO MIDDLE BR OF MARILY CAPLAN HOME BARRIER OIL CORP	FIELDS LN OVER TRIB TO MIDDLE BR OF FOREST HAVEN APTS 1 FOWLER AVE		CARMEL CARMEL CARMEL	NY NY NY	FINDS FINDS EDR Historical Auto
10512 10512 10512 10512 10512 10512 10512 10512 10512	\$104653481 1019999312 \$120700766 1007757126 U003758146 1005695923 1007751778 U004063744 U004079012	110019195333 3-601453 110010763799 110019141757 3-027901 3-441643	CARMEL CITGO GUERRA CLEANING SERVICES IN THE SEWER SPRING LAKE (LITTLE BUCK POND) JOSHUA SCHWARTZ GIPSY TRAIL CLUB (PINE POND) GIPSY TRAIL RD NINHAM MOUNTAIN FIELD HDQTRS GIPSY TRAIL CLUB	1 FOWLER AVENUE 6 FOX RUN CONDOS 4 GATEWAY COURT GIPSEY TRAIL RD 133 GIPSY TRAIL ROAD GIPSY TRAIL RD GIPSY TRAIL RD 500 S OF MT NINHAM TO GIPSY TRAIL ROAD GIPSY TRAIL ROAD	**	CARMEL	NY NY NY NY NY NY NY NY	Stations SPILLS EDR Historical Cleaners SPILLS FINDS CORTLAND CO. UST ICIS, FINDS FINDS CORTLAND CO. UST CORTLAND CO. UST CORTLAND CO. UST CORTLAND CO. AST, CORTLAND CO. UST
10512 10512 10512 10512	U003075062 1025961666 1024904913 1021120803	3-027901 110070550364 NYD982531469	NINHAM MOUNTAIN FIELD HDQTRS ARSENIC MINE ARSENIC MINE TIBS TEXACO	GIPSY TRAIL ROAD GIPSY TRAIL ROAD AND MT. NIMHAM RO GIPSY TRAIL ROAD AND MT. NIMHAM RO 1 SOUTH GLENEIDA AVENUE		CARMEL KENT KENT CARMEL	NY NY NY NY	CORTLAND CO. AST FINDS CERCLIS, NPL EDR Historical Auto
10512	1020372402		FRANKS GARAGE	125 GLENEIDA AVE		CARMEL	NY	Stations EDR Historical Auto
10512	1022138046		T & J AUTO SERVICE INC	127 GLENEIDA AVE		CARMEL	NY	Stations EDR Historical Auto Stations
10512	1020995013		T & J AUTO SERVICE INC	129 GLENEIDA AVE		CARMEL	NY	EDR Historical Auto Stations
10512 10512 10512	U004064410 U003075193 1000356037	3-122874 3-122874 110000809073	ST JAMES THE APOSTLE CHURCH ST JAMES THE APOSTLE CHURCH LAURENS CLEANERS-C/O MIF REALTY	14 GLENEIDA AVENUE 14 GLENEIDA AVENUE 180 GLENEIDA AVE		CARMEL CARMEL CARMEL	NY NY NY	CORTLAND CO. UST CORTLAND CO. AST NY MANIFEST, RCRA-NonGen, FINDS
10512 10512 10512	S113916714 1019928376 1000307142	110004348643	CARMEL SHOP-RITE PLAZA LAURENS CLEANERS INC PUTNA M COUNTY COURTHOUSE	180 GLENEIDA AVENUE 180 GLENEIDA AVENUE 34 GLENEIDA AVENUE		GLENDALE CARMEL CARMEL	NY NY NY	SHWS EDR Historical Cleaners NY MANIFEST, RCRA-NonGen, FINDS, CORTLAND CO.
10512 10512 10512 10512 10512 10512	1015999169 1014958122 S103574780 1010029848 1018467805 1020835625	110046535905 NYR000193672 0403120 110028151318	PRESTIGE BUILDING CO - CARMEL COUR PRESTIGE BUILDING CO - CARMEL COUR COUNTY OF PUTNAM BALDWIN WOODS SUBDIVISION CARMEL CLEANERS & TAILORS JOES CARMEL SHELL SERVICE STN	40 GLENEIDA AVE 40 GLENEIDA AVE 40 GLENEIDA AVENUE 48 GLENEIDA AVENUE 51 GLENEIDA AV 58 GLENEIDA AVENUE		CARMEL CARMEL CARMEL CARMEL CARMEL CARMEL CARMEL	NY NY NY NY NY	UST, LTANKS FINDS NY MANIFEST, RCRA-NonGen SPILLS, SPDES, LTANKS FINDS EDR Historical Cleaners EDR Historical Auto Stations
10512 10512 10512	1010044239 1007772096 1022225598	110028138584 110019345387	1-2-3 JACKPOT INC. FOWLER BP 123 JACKPOT INC	89 GLENEIDA AVE 89 GLENEIDA AVE 89 GLENEIDA AVE		CARMEL CARMEL CARMEL	NY NY NY	ICIS, FINDS FINDS EDR Historical Auto Stations
10512 10512 10512 10512	S104651727 U004118657 U003075431 U003740232	0000422 3-171824 0001400	FOWLER TEXACO FOWLER BP/DBA 123 JACKPOT, INC. FOWLER BP/DBA 123 JACKPOT, INC. CARMEL FIRE DEPARTMENT	89 GLENEIDA AVENUE 89 GLENEIDA AVENUE ROUTE 52 89 GLENEIDA AVENUE ROUTE 52 94 GLENEIDA AVENUE		CARMEL CARMEL CARMEL CARMEL	NY NY NY NY	SPILLS CORTLAND CO. UST CORTLAND CO. AST SPILLS, CORTLAND CO. UST
10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512	U004082996 U004240751 1016297663 1004566210 1016249876 1000307148 U004154660 1007776277 1007766815 1003864253 S102108901 1016031982 1016025882 1007112589 A100382493 U004198964 1016688441 S121490072 1016938776 1000324926 1007776906	3-601879 110011778040 110008025500 NYD982189367 110019387297 110019292460 NYD982273575 9308160 110046245531 NYR000118703 110042262191 NYD093841484 110019393609	MOORE RESIDENCE EPPINGER RESIDENCE ST JAMES THE APOSTLE CHURCH ST JAMES THE APOSTLE CHURCH PUTNAM COUNTY OF FIRE PUTNAM COUNTY OF FIRE LAKEVIEW TRAIL ESTATES NINHAM MT MULTIPLE USE AREA LANDWAARD PROPERTY KENT DRUM SITE ARSENIC MINES SITE CROTON FALLS RESERVOIR BOAT RAMP NYCDEP - CROTON FALLS RESV DAM NYCDEP CROTON FALLS DAM CROTON FALLS PUMP STATION CROTON FALLS PUMP STATION AUTO CRAFT BODY & COLLISION AUTO CRAFT PAINT & BODY SHOP INC CENTENNIAL RIDGE	23 GLENVUE DRIVE 26 GLENVUE DRIVE 14 GLEWEIDA AVE 14 GLEWEIDA AVE 14 GLEWEIDA AVE GYPSEY TRAIL RD GYPSEY TRAIL RD 130 GYPSY TRAIL ROAD HEMLOCK DAM RD HEMLOCK RD AT INTERSECTION OF HEMLOCK ROAD HEMLOCK ROAD 146 HILL & DALE RD 146 HILL & DALE RD 146 HILL & DALE RD HILL & DALE RD HILL & DALE RD	** ** ** ** ** ** **	CARMEL CARMEL CARMEL CARMEL CARMEL CARMEL KENT CARMEL	NY N	CORTLAND CO. UST CORTLAND CO. UST CORTLAND CO. UST FINDS FINDS NY MANIFEST, RCRA-NonGen CORTLAND CO. UST FINDS FINDS CERCLIS-NFRAP HSWDS, SPILLS FINDS FINDS NY MANIFEST, RCRA-NonGen CORTLAND CO. AST CORTLAND CO. UST FINDS AIRS NY MANIFEST, RCRA-CESQG FINDS

ZIP	EDR-ID	Facility ID	Name	Address	Map/Dir/Dist	City	State	Databases
10512 10512 10512 10512 10512 10512	1007810065 1010449808 1012287439 1003863579 S113917139 1021837434	110019726046 110031461175 110040177858 NYD002005841	AUTO CRAFT BODY & COLLISION CARMEL CLUB MACREGOR MODEL HOM! TOWN OF CARMEL WATER DISTRICT #14 LEMAY OPTICAL SCHWARK FRED	HILL & DALE RD P O BOX 427 HILL ST HILL ST NW OF ST RTE 6N & HILL ST NEAL HORSEPOND RD HORSEPOND ROAD 245 HORSEPOUND RD	**	CARMEL CARMEL CARMEL CARMEL CARMEL CARMEL	NY NY NY NY NY	FINDS FINDS FINDS CERCLIS-NFRAP SHWS EDR Historical Auto
10512	1020200121		GETTY PETROLEUM CORP (DEL)	HORSEPOUND RD	**	CARMEL	NY	Stations EDR Historical Auto
10512	1021006506		SCHWARK FRED	HORSEPOUND RD RR 52	**	CARMEL	NY	Stations EDR Historical Auto
10512 10512 10512 10512 10512 10512 10512	1014814035 1007816447 S112258030 1007744609 1007753938 1007751029 1020969799	110042399339 110019790001 110019069853 110019163368 110019134202	MICHAEL BROOK HUGHSON COMMONS SENIOR HOUSING COMPOLOGY FOOD WASTE COMPOSTINI SEDGEWOOD CLUB GROUP HOME/SOMERS HILLS SUBDIVISION FAIR ST SUBDIVISION LOT 15 DE ESSO SIEGEL	HUGHSON RD - 590 FT E OF STONELEIGH HUGHSON RD - SW OF OLD RTE 6 22 INNINGWOOD ROAD INTERLAKEN RD JEANNE COURT JENNIFER LN 41 JOSEPH DR	**	CARMEL CARMEL OSSINING CARMEL CARMEL PATTERSON CARMEL	NY NY NY NY NY NY	Stations FINDS FINDS SWF/LF FINDS FINDS FINDS EDR Historical Auto
10512 10512	1015997636 1007809757 S111378408 1016043087 1016397943 1016399829 1007797262 1007779262 1007779263 1007781341 1007806769 1007754200 1007781452 S118704759 1007780309 1007780309 1007786947 1009607987 1016900117 1015997459 1014399856 1016320533 1001233056 1016255551 1014904037 S119028828 1007759829 1016408968 U003031060 U004079013 101043989 1020609148	110044959710 110019722950 110044916703 110055317839 110055336907 110019597710 110019597710 110019607317 110019759590 110019693036 110019165981 110019439188 110019427716 110019427716 1100194227716 110019427716 11001949428 110025327581 110060250446 110044944950 NYR000179465 110019384398 NYR000061101 110008105175 110043866484 110019222447 110055486291 3-448656 3-448656 110028148733	MICHAEL BROOK HUGHSON COMMONS SENIOR HOUSING COMPOLOGY FOOD WASTE COMPOSTINI SEDGEWOOD CLUB GROUP HOME/SOMERS HILLS SUBDIVISION FAIR ST SUBDIVISION LOT 15 DE ESSO SIEGEL SPIDAL PROPERTY FORKELL PROPERTY KENT TS (T) BIBEN PROPERTY PIAN PROPERTY VENT TS (T) BIBEN PROPERTY PIAN PROPERTY PIAN PROPERTY CO RTE 33 - WEST LAKE BLVD CARMEL WATER DIST. #3 (LAKE SECOR V SEVEN HILLS LAKE LAKE CARMEL PEDESTRIAN BRIDGE ANDRON PROPERTY BARON PROPERTY GROSE PROPERTY UNDERGROUND STORAGE TANK LAKE CARMEL DAM CARMEL SOIL BORING PROJECT MAHOPAC HILLS WATER DISTRICT #9 BRODSKY PROPERTY HOSCH/TORRES PROPERTY DARWELL GLEN WIGHT PROPERTY AGT - VALVE 17 CARMEL ALGONQUIN GAS TRANSMISSION CO - V/ SOLOF PROPERTY TOWN OF KENT HIGHWAY DEPT. TOWN OF KENT HIGHWAY DEPARTMENT NYSDOT HESS CORPORATION CARMEL HIGHWAY GRAGE MEADUNI ABUSELED	78 KELLY RD KENT LAKE AVE KENT TOWN HALL 146 S KNAPP CT KNAPP RD 200 WEST LAKE BLVD LAKE SHORE DR LAKE SHORE DR LAKE SHORE DR LAKE SHORE DRIVE EAST SOUTH LAKE BLVD SOUTH LAKE BLVD WEST LAKE BLVD UNEST LAKE BLVD WEST LAKE BLVD WEST LAKE BLVD UNEST LAKE BLVD WEST	**	CARMEL KENT KENT LAKES KENT KENT CARMEL CARMEL CARMEL KENT CORNERS CARMEL LAKE CARMEL LAKE CARMEL LAKE CARMEL LAKE CARMEL LAKE CARMEL	NY NY NY NY NY NY NY NY NY NY NY NY NY N	Stations FINDS FINDS SWF/LF FINDS CORTLAND FINDS
10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512	1007797136 1007778693 1011909545 1007769278 1007774244 1007774259 S118950989 S117742400 1016681663 1008223320 1007789516 S122258371 U004062287 U003075301 1010040562 U004107558	110019596463 110019411527 110037272064 110019317121 110019366924 110019367077 1100291076324 110021076324 110019520044 3-168025 3-168025 110028126169 3-601601 110019458852 11002921333	CARMEL HIGHWAY GARAGE MEADOWLARK SEDIMENTATION BASIN ALBANO ESTATES TOWNERS ROAD BRIDGE #45 MILLER HILL PROPERTIES LOT 1 MILLER HILL RD TIERNEY HOME KENT MANOR KENT MANOR CONDOMINIUMS CORIGLIANO PROPERTY & POND LOWER LAKE NIMHAM DAM NINHAM RD IRA BIRCH HOUSE CHILDRENS BIBLE FELLOWSHIP OF NY, II CHILDRENS BIBLE FELLOWSHIP OF NY, II CHILDRENS BIBLE FELLOWSHIP OF NY OUR LADY OF THE LAKE CHURCH MARRONE AND DUSENBURY MT NINHAM	55 MCALPIN HWY MEADOWLARK DRIVE & ROUTE 6 MECHANIC ST MIDDLE BRANCH OF CROTON RIVER & TO MILLER HILL RD MILLER HILL RD 292 NICHOLS ST 346 NICHOLS ST NICHOLS STREET 163 NIMHAM RD 250 NINHAM RD 128 NINHAM RD 250 NINHAM ROAD 250 NINHAM ROAD 250 NINHAM ROAD NOONAN DRIVE NYS RT 52 NYSDEC FIELD HQTRS GYPSY TRAIL ROA		CARMEL CARMEL CARMEL KENT CARMEL KENT CARMEL	NY NY NY NY NY NY NY NY NY NY NY	Stations FINDS FINDS FINDS FINDS FINDS FINDS FINDS SPILLS SPDES FINDS FINDS FINDS FINDS FINDS FINDS CORTLAND CO. UST CORTLAND CO. AST FINDS CORTLAND CO. AST, CORTLAND CO. UST FINDS

ZIP	EDR-ID	Facility ID	Name	Address	Map/Dir/Dist	City	State	Databases
10512 10512 10512 10512 10512 10512 10512	1007747740 1007800025 1018351851 1018312212 U000378930 A100361254 S123658132	110019101238 110019625422 110061745330 3-165107	DORVIT TIMBER SALE PUTNAM COUNTY COURTHOUSE CARMEL SEWER DISTRICT #2 WWTP CARMEL (T) SD#2 WWTP PTC BUILDING 3 PUTNAM COUNTY-SMITH GOV'T. CAMPUS PUTNAM COUNTY BUREAU OF ENVIRONI	SOUTH OF DORVIT RD/WEST OF PEAVY FOFF RT 6 11 OLD ROUTE 6 110 OLD ROUTE 6 110 OLD ROUTE 6 110 OLD ROUTE 6 111 OLD ROUTE 6		ALLEN CARMEL CARMEL CARMEL CARMEL CARMEL CARMEL CARMEL CARMEL	NY NY NY NY NY	FINDS FINDS FINDS ICIS CORTLAND CO. UST CORTLAND CO. AST SHWS
10512 10512 10512 10512 10512	1016393805 1016031984 U004198968 U003075746	110055276035 110046411566 3-497045	VIP WASH & LUBE D & L REALTY PROPERTY RCN PYRAMID OIL TERMINAL	118 OLD RTE 6 130 OLD RTE 6 21 OLD ROUTE 6 21 OLD ROUTE 6 (BREWSTER RD)		CARMEL CARMEL CARMEL CARMEL CARMEL	NY NY NY NY	FINDS FINDS CORTLAND CO. UST CORTLAND CO. AST, CORTLAND
10512	1020660525		MC NULTY OIL CO INC	21 OLD RT 6		CARMEL	NY	CO. UST EDR Historical Auto
10512 10512	1014816355 1014399855 1014399855 1014395323 10004222839 1007745966 1010040726 A100382464 10023372282 5118091672 1017780168 1017765792 S112258056 1010197330 1000283874 1005500036 1003107200 1017400788 1016974873 1000555381 1016252574 1016091907 1016091907 101699411 1004759731 1016254633 1003863626 1007771353	110041643479 NYR000179457 NYP000966358 110019083472 110028123019 110066701787 110063757064 110029005840 NYD056290075 110006803343 3-029335 110063000648 NYR000213348 NYD986979144 110008068820 110019286253 110019286253 110019679604 NYR000018978 110008093632 NYD072709553 110019337911	COMCAST COMCAST COMCAST COMCAST CARMEL BOWL FLORMAN PROPERTY VERIZON OF NEW YORK VERIZON NEW YORK INC-NY-96586 VERIZON NEW YORK INC-NY-96586 PUTNAM COLLISION CENTER LLC PUTNAM COLLISION CENTER PUTNAM COLLISION CENTER PUTNAM COLLISION CENTER TOMPKINS RECYCLING FACILITY; INC. WILLIAM MULLERS AUTO BODY CARMEL AUTO BODY CARMEL TERMINALS INC CARMEL TERMINALS INC SCENTISPHERE LLC SCENTISPHERE LLC VERIZON COMMUNICATIONS NEW YORK TELEPHONE CO NAGLER PROPERTY ON LAKE SAGAMOR KAWALLER PROPERTY KENT TOWN OF KENT TOWN OF PUTNAM COUNTY LF DBS CAMPUS CARMEL SEWER DISTRICT #2	21 OLD RTE 6 21 OLD RTE 6 21 OLD RTE 6 23 OLD ROUTE 6 232 OLD FORGE RD 25 OLD ROUTE 6 25 OLD ROUTE 6 25 OLD ROUTE 6 25 OLD ROUTE 6 50 OLD RTE 6 50 OLD RTE 6 50 OLD RTE 6 50 OLD RTE 6 60 OLD RTE 6 67 OLD RTE 6 77 OLD RTE 6 77 OLD RTE 6 79 OLD RTE 6 97 OLD RTE 6 97 OLD RTE 6 UNIT 2 97 OLD RTE 6 UNIT 2 97 OLD RTE 6 UNIT 2 OLD BREWSTER RD & RTE 6 OLD BREWSTER RD & RTE 6 OLD FORGE DR OLD LUDINGTONVILLE RD SITE OLD LUDINGTONVILLE RD SITE OLD ROUTE 6 OLD ROUTE 6 OLD ROUTE 6	**	CARMEL	NY N	Stations FINDS NY MANIFEST, RCRAInfo-SQG NY MANIFEST, RCRA-NonGen CORTLAND CO. UST FINDS FINDS CORTLAND CO. UST FINDS NY MANIFEST RCRA-CESQG, FINDS SWF/LF FINDS NY MANIFEST, RCRA-CESQG ICIS, FINDS SPDES, LTANKS FINDS NY MANIFEST, RCRAInfo-SQG NY MANIFEST, RCRAInfo-SQG NY MANIFEST, RCRAInfo-SQG NY MANIFEST, RCRAInfo-SQG FINDS CERCLIS-NFRAP FINDS CERCLIS-NFRAP FINDS
10512 10512	\$102107597 U000377945 U000102460 \$117937379 1016247909 1018310663 1000297351 1016033457 \$109371766 1007813283 1016394709 1017377271 1016033729 1016710595 1016026761 1007774840 1007806077 99472125 1007809764 1017389235 \$109583745 1007797587 1008916844 1020064366 1016095196 1000297352 1020064367 \$110246139 1007808588	3-000339 3-037583 3-409170 110007995385 NYD000730291 110044368038 110019758270 110055285203 110061502654 110044372381 110044372381 110046306804 110019372917 110019686099 110019723030 110062876204 110019600984 110023019696 110008000670 NYD013445226 110019711249	CARMEL-OLD ROUTE 6 BLDG NYSDOT LEE SHULTZ NYSEG CARMEL SERVICE CENTER LEE SHULTZ NYSEG CARMEL SERVICE CENTER LEE SHULTZ	OLD ROUTE 6 OLD ROUTE 6 OLD RT 22 OLD RTE 6 OLD RTE 7 O	** ** ** ** ** **	CARMEL CARMEL AMENIA CARMEL CARMEL CARMEL CARMEL LAKE CARMEL LAKE CARMEL KENT LAKES KENT KENT CARMEL CARM	NY N	CBS AST, SPILLS, CORTLAND CO. AST CORTLAND CO. UST SPDES FINDS ICIS RCRA-NonGen FINDS

ZIP	EDR-ID	Facility ID	Name	Address	Map/Dir/Dist	City	State	Databases
10512 10512 10512 10512	1020064585 1014903272 U003128265 1022102255	110043867241 3-002194	PNV CLEANERS CORP ADAMS PROPERTY FRED ADOMS JR FOSSIL PETROLEUM INC	37 RESERVOIR CT RICHARDSVILLE RD - SE OF HILLTOP CT RICHARDVILLE RD 11 RIDGE RD		CARMEL KENT CARMEL CARMEL	NY NY NY NY	EDR Historical Cleaners FINDS CORTLAND CO. UST EDR Historical Auto
10512 10512	1010350678 1010045054 A100320193 1007752684 1017808413 1016318574 1016393555 1016125764 1016023831 S122258197 1014816568 1016395534 1007766080 S122258047 1016399391 1012288324 10077817426 1016990108 1007774765680 1007774276 1007774278 1007371378 1007371378 S117564985 1007371378 S117564985 10073716	110030923357 110028152754 110019150817 110064244964 110019309416 110055273528 110038042908 110019335833 110044364791 110042151159 110055293542 110019285067 110055332466 110040177876 11001999814 11001999814 110019981828 110019981828 110019481871 110055276277 110019071537 110019071537 110019071537 110019071537 110019071537 110019071537 110019071537 11001907122 NYD982273468 NYR000124438	RIVER RUN ESTATES CLARENCE FAHNESTOCK STATE PARK KING TRANSMISSION & AUTO REPAIR GLENEIDA R.R. BED MINE MAHOPAC VILLAGE CENTER TOUCH OF CLASS CLEANERS MCDONALDS MEADOWLANDS CHRYSLER PLYMOUTH I MILLWORKS INC PUTNAM COUNTY SAVINGS BANK PUTNAM COUNTY SAVINGS BANK PUTNAM COUNTY SAVINGS BANK AUTO COLLISION CENTER HARRIS GRAVEL MINE LAKE CARMEL - KENT PARK DISTRICT TOWN OF KENT - TOWN CENTER STATELINE RETAIL CENTER HOPTA OFFICE BUILDING CARMEL RECYCLING CTR & LANDFILL BALDWIN PLACE TEXACO THE FAIRWAYS & GATEWAY SUMMIT WILFLING LE BUDABIN PROPERTY SAGAMORE LAKE DRY HYDRANT SAGAMORE DR BRIDGE TOWN OF KENT DRUM NYCDEP CROTON FALLS TREATMENT PL	RIVER RUN ROTE 301 325 C. ROUTE 52 US RT 6 155 US RTE 6 1891 US RTE 6 1991 US RTE 6 1992 US RTE 6 2022 ST RTE 52 256 ST RTE 52 256 ST RTE 52 256 ST RTE 52 278 US RTE 6 CO RTE 15 - E SIDE - S OF CO RTE 15A ST RTE 52 & ST RTE 311 ST RTE 52 ACROSS FROM HORSE POUNI ST RTE 52 ACROSS FROM HORSE POUNI ST RTE 52 ACROSS FROM HORSE POUNI US RTE 6 ® ST RTE 118 US RTE 6 SOUTH OF FAIR ST RD2 SAGAMORE DR SAMANTHA & CROTON FALLS RD	** ** ** ** ** ** ** ** **	CARMEL CARMEL CARMEL CARMEL CARMEL CARMEL CARMEL CARMEL BREWSTER CARMEL CARMEL CARMEL CARMEL CARMEL CARMEL CARMEL CARMEL CARMEL ALLEN LAKE CARMEL KENT LAKES SOUTHEAST SOUTHEAST CARMEL	NY NY NY NY NY NY NY NY NY NY NY NY NY N	Stations FINDS FINDS CORTLAND CO. AST FINDS
10512 10512 10512	1007371377 1021642439 1007797726	110017875272 NYR000124420 110019602376	NYCDEP CROTON FALLS TREATMENT PL NYCDEP CROTON FALLS HYDRAULIC PUI A & P MOBIL SERVICE STATION LAKE SECOR PARK DISTRICT	SAMANTHA & CROTON FALLS RD 13 SCARSDALE RD SECOR ROAD		CARMEL CARMEL CARMEL	NY NY	RCRA-NonGen EDR Historical Auto Stations FINDS
10512 10512	U004081988 U001842714	3-123307 3-123307	PALADIN CENTER PALADIN CENTER	39 SEMINARY HILL RD 39 SEMINARY HILL RD		CARMEL CARMEL	NY NY	CORTLAND CO. UST SPILLS, CORTLAND CO. AST
10512	1004758961	110004504251	GUIDEPOSTS ASSOCIATES INC	39 SEMINARY HILL RD		CARMEL	NY	NY MANIFEST, RCRA-NonGen, FINDS
10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512	1016400188 S111238889 1010689339 1014904038 U004274827 1007775231 1007806852 1007766323 1007768477 1007805794 1007800217 1007807091 1007763348 1021997844	110055340536 110033110354 110043866493 110019376833 110019693866 110019287500 110019309103 110019683270 110019627368 110019627368 110019627631	CARMEL REVITALIZATION II ERDMAN RES.: ODOR IN WATER KTT BUILDERS PROPERTY SOLOF PROPERTY MATTHEW HOWE WEST SHORE DR PILBERG PROPERTY LAKE SAGAMORE BEACHFRONT LIEBERMAN PROPERTY/LAKE SAGAMORI KATES PROPERTY KRAUS PROPERTY ON LAKE SAGAMORE PLUMWAY II COMMERCIAL SUBDIVISION SIEMUNDS PL & NORTH LAKE BLVD DRAI BUDCO INC	WEST SHORE ROAD EAST SIDE HUGHSON RDNA SOUTH OF N	**	CARMEL KENT KENT CARMEL CARMEL CARMEL CARMEL CARMEL	NY N	FINDS SPILLS FINDS FINDS CORTLAND CO. UST FINDS
10512	1020233121		A & P PETROLEUM INC	157 SMADBECK AVENUE	**	CARMEL	NY	EDR Historical Auto Stations
10512	1021573236		DELTA MOTORS INC	35 SMADBECK AVE	**	CARMEL	NY	EDR Historical Auto Stations
10512 10512 10512 10512 10512 10512 10512 10512 10512	1016254376 1001028399 U000380953 U004082003 S110824154 1016408812 S117937415 S121490076 S121995085	110008090136 NYR000006312 3-448664 3-448664 110055484658	KENT TOWN OF KENT DPW KENT DEPT OF PUBLIC WORKS TOWN OF KENT HIGHWAY GARAGE TOWN OF KENT HIGHWAY GARAGE HILL SPARROW WWTP KENT MATERIALS SILARX PHARMACEUTICALS, INC.	SMOKEY HOLLOW RD & RTE 311 SMOKEY HOLLOW RD & RTE 311 SMOKEY HOLLOW ROAD SMOKEY HOLLOW ROAD 117 SPARROW RIDGE RD STATE RTE 52 STATE RTE 52 1033 STONELEIGH AVE 1033 STONELEIGH AVE	**	CARMEL CARMEL KENT CLIFFS KENT CLIFFS CARMEL CARMEL CARMEL CARMEL CARMEL CARMEL CARMEL	NY	FINDS NY MANIFEST, RCRA-NonGen CORTLAND CO. AST CORTLAND CO. UST SPDES FINDS SPDES AIRS

ZIP	EDR-ID	Facility ID	Name	Address	Map/Dir/Dist	City	State	Databases
10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512	\$121490069 \$104880576 U003397892 \$111319255 \$121990390 \$121997196 \$121997231 \$121990393 \$121490068 U004064095 A100159825 1016251488 1004757406 1000307146	0009544 3-600891 3-601395 3-601395 110008045640 NYD986933158 110008012907	WATSON LABORATORIES INC SILARX PHARMACEUTICALS (FORMALLY WATSON LABORATORIES, INC. DR OFFICE BUILD.: 2 X 1K UST PUTNAM HOSPITAL CENTER PUTNAM HOSPITAL CENTER PUTNAM HOSPITAL CENTER SHELL OIL CO - CARMEL STATION SHELL OIL PUTNAM HOSPITAL CENTER	1033 STONELEIGH AVE 1033 STONELEIGH AVENUE 1033 STONELEIGH AVENUE 1071 STONELEIGH AVE 670 STONELEIGH AVENUE 670 STONELEIGH AVENUE 570 STONELEIGH & RTE 6 STONELEIGH & RTE 6 STONELEIGH & RTE 6 STONELEIGH AVE		CARMEL	NY NY NY NY NY NY NY NY NY NY	AIRS SPILLS, NY MANIFEST CORTLAND CO. AST LTANKS AIRS CORTLAND CO. UST CORTLAND CO. AST FINDS NY MANIFEST, RCRA-NonGen SPILLS, NY MANIFEST,
10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512	1007798841 1010350682 1009225809 1004756988 1016250262 1016247237 1004755771 1003863979 1007749701 1007746518 1010493671 1003740235 1008912310 1016394096 1007768869 1007767912 2003704803 1021882282	110019613514 110030923393 NYD982738494 110008030736 110007986876 NY0000365718 NYD980654339 110019120878 110019088976 110032597697 3-601407 110024234498 110055278961 110019313018 110019313018	R & R AUTO BODY CARMEL CENTRE SENIOR HOUSING PUTNAM HOSPITAL BARRYS AUTO BODY BARRYS AUTO BODY VISTA ON THE LAKE VISTA ON THE LAKE VISTA ON THE LAKE LAKE CARMEL WELLS SUNRISE RIDGE WATER COMPANY TACONIC PKWY PATRICK EGGENA PATRICK EGGENA TERRY HILL RD CULVERT LUCK/FABIITTI PROPERTY KENT MS4 STORM SEWERS CARMEL MS4 STORM SEWERS VANBERGEN CAROL	STONELEIGH AVE STONELEIGH AVE STONELEIGH AVE STONELEIGH AVE & DAISY LANE STONELEIGH AVE & DAISY LANE STONELEIGH AVE & DAISY LANE STONELEIGH AVE - MAINT GARAGE STONELEIGH AVE - MAINT GARAGE NO STREET APPLICABLE SUNRISE DR - W OF WOOD ST TACONIC PKWY @ RT 301 39 TERRY HILL ROAD #11 39 TERRY HILL ROAD #11 39 TERRY HILL ROAD RD TERRY HILL RO (CO RTE 46) 123 TIBET DR TOWN-WIDE TOWN-WIDE 1 TOWNERS ROAD 101 TOWNERS RD	**	CARMEL CARMEL CARMEL CARMEL LAKE CARMEL LAKE CARMEL KENT CARMEL KENT CARMEL KENT CARMEL KENT CARMEL KENT CARMEL KENT KENT KENT KENT KENT CARMEL KENT KENT CARMEL CARMEL CARMEL CARMEL CARMEL	NY NY NY NY NY NY NY NY NY NY NY NY NY N	ICIS, FINDS, RCRAInfo-LQG FINDS NY MANIFEST NY MANIFEST, RCRA-CESQG FINDS FINDS NY MANIFEST, RCRA-NonGen CERCLIS-NFRAP FINDS
10512 10512 10512 10512	U003075424 U004061872 1010045467 U004125685	3-171581 3-171581 110028154798	AMAZON CITGO AMAZON CITGO BEST FRIEND AUTO REPAIR (CITGO SS) TOWNER'S ROAD MART, INC.	101 TOWNERS ROAD 101 TOWNERS ROAD 101 TOWNERS ROAD 2 TOWNERS ROAD		CARMEL CARMEL CARMEL CARMEL	NY NY NY NY	CORTLAND CO. AST CORTLAND CO. UST FINDS CORTLAND CO. AST, CORTLAND CO. UST
10512 10512	1007780575 1020611752	110019430374	RYAN TOWN PARK TWIN STAR TEXACO	TOWNERS RD TOWNERS RD	**	CARMEL CARMEL	NY NY	FINDS EDR Historical Auto Stations
10512	1020356700		TWIN STAR TEXACO	TOWNERS RD	**	CARMEL	NY	EDR Historical Auto Stations
10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10512 10513 12531 12531 12531 12531 12531 12531	1007785087 1005500227 1009324618 1009232889 1016365899 1014811896 1016126951 S121490077 1016700286 1007750705 2010105545 1023537505 1016050485 1007743447 1010030480 1016400925 1007740053 S122255839 1027795569 1025588339 1025723843 S122264500 1025656362 1025561482 1025745852	110019475628 110010126728 110024410154 110045399056 110043320803 110056389153 110019130965 110069449895 110019459147 110019058204 110028159506 110055347959 110019024198	MAPLE HILL ESTATES MAPLE HILL ESTATES PROPOSED RESIDENCE WEST PUT CONTRACTING FORESTVILLE WATER SUPPLY SYSTEM WACHTNER RESIDENCE WACHTNER RESIDENCE KENT MATERIALS KENT MATERIALS KENT MATERIALS WATERMELON HILL RESIDENCE I-84 WEST BOUNT ON EXIT 18 TO WHITE POND WILLIAMSBURG RIDGE CONDOMINIUMS WILLOW RIDGE COUNTRYSCAPES SUBDIVISION WIXON POND ESTATES ROCK HILL PROGRAM CENTER (GIRL SC(ROCK HILL PROGRAM CENTER (GIRL SC(LAUREL FARMS UNNAMED MINE/PAULING MINE UNNAMED LIMONITE MINE GLEN D. BAKER/HOLMES RD, PAWLING, N UNNAMED LIMONITE MINE GLEN D. BAKER/HOLMES RD, PAWLING, N UNNAMED LIMONITE MINE GLEN D. BAKER/HOLMES RD, PAWLING, N UNNAMED LIMONITE MINE GLEN D. BAKER/HOLMES RD, PAWLING, N UNNAMED LIMONITE MINE GLEN D. BAKER/HOLMES RD, PAWLING, N UNNAMED LIMONITE MINE GLEN D. BAKER/HOLMES RD, PAWLING, N UNNAMED LIMONITE MINE GLEN D. BAKER/HOLMES RD, PAWLING, N UNNAMED LIMONITE MINE DEP, NO. 29 HOLMES PRESBYTERIAN CAMP &CONFEI VALLEY POND MINE LUDINGTONVILLE PYRITE PROSPECT LUDINGTONVILLE PYRITE PROSPECT	UNION VALLEY RD UNION VALLEY RD UNKNOWN VARNER LANE VILLAGE-WIDE 42 WAINWRIGHT DR 42 WAINWRIGHT DR 3 WARING DR 3 WARING DR 265 WATERMELON HILL RD I-84 WEST BOUNT ON EXIT 18 TO WHITE POND ROAD 500 FT N OF FARMER WILLIAMSBURG RD & STILLWATER RD WILLOW ROAD EXT 144 WIXON POND RD 243 WIXON POND RD WYNDHAM LN & OLD FARM RD	** ** ** **	CARMEL CARMEL KENT CARMEL HANOVER & ARK CARMEL CARMEL CARMEL CARMEL CARMEL LAKE CARMEL KENT CARMEL HOLMES HOLMES HOLMES HOLMES HOLMES HOLMES HOLMES	NY NY NY NY NY NY NY NY NY NY NY NY NY N	FINDS SPDES, FINDS FINDS NY MANIFEST FINDS ICIS FINDS AIRS FINDS FINDS HMIRS FINDS SPDES SPDES

ZIP	EDR-ID	Facility ID	Name	Address	Map/Dir/Dist	City	State	Databases
12531 12531	\$122265343 1020496058		COLLEY RESIDENCE HOLMES GARAGE	RT 216	**	EAST FISHKILL HOLMES	NY NY	SPDES EDR Historical Auto
12531 12531 12531	2001561050 1016398425 1020175897	110055322681	DEMARCO APTS HOLMES SERVICE STATION	1678 RTE 292 172 RTE 292 ROUTE 292	**	HOLMES HOLMES HOLMES	NY NY NY	Stations ERNS FINDS EDR Historical Auto
12531 12531	1016321348 1020579797	110019414784	SALERNO PROPERTY HOLMES GARAGE	RT 292 RT 292	**	HOLMES HOLMES	NY NY	Stations FINDS EDR Historical Auto
12531	1020573649		HOLMES GARAGE	RT 292	**	HOLMES	NY	Stations EDR Historical Auto
12531 12531	1000215999 1017377952 1016249607 A100360437 U004063870 U004048498 S122258304 1016319669 1005642795 S102154050 S109829646 1016336529 1016336538 S122255472 1007807918 1008924019 U004078951 A100296575 1020117810 1016395630 1017377560 1007819511 1020429812	NYD981555410 110061525693 110008021899 3-409367 3-601787 110019352984 110010635740 9006410 110027995515 110023018287 110023019348 3-049557 110055294505 110061521456 110019820693	FIBERLUX INC GOTTLIEB PROPERTY FIBERLUX INC NYSDOT NYSDOT THE MISSION CHURCH MISSION CHURCH MISSION CHURCH SHOREHAVEN CIVIC ASSOCIATION DEBRA HANSEN HOSWEBER RES.: 1K UST FROST PROPERTY DENTON LAKE PRESBYTERIAN CAMP & CONFEERENCE PRESBYTERIAN CAMP & CONFEERENCE WESTMINSTER LAKE VINCENT FIRPO VINCENT FIRPO WASSAIC DRY CLEANERS ZAHN PROPERTY GRAPE HOLLOW SUBDIVISION GRAPE HOLLOW RD CULVERT CENTURY AUTO TRANSMISSIONS	RTE 292 ROUTE 501 ROUTE 501 ROUTE 52 WEST OF HOLMES ROAD ROUTE 52 WEST OF HOLMES ROAD ROUTE 52 WEST OF HOLMES ROAD ROAD ROAD RR.1 BOX 426 A RR.1 BOX	**	HOLMES PAWLING HOLMES HOLMES PHILIPSTOWN PHILIPSTOWN HOLMES	NY NY NY NY NY NY NY NY NY NY NY NY NY N	Stations NY MANIFEST, RCRA-CESQG FINDS FINDS CORTLAND CO. AST CORTLAND CO. UST SPDES FINDS ICIS, FINDS SPILLS LTANKS FINDS FIN
12531 12531	1016320969 1007790889 1016325617 1016338478 1016332984 1016332984 1016312680 A100360438 5109826877 1007789232 5120959906 5103824701 1018281311 U003652138 1000554965 1016252509 1007786649 1018298799 U004122432 2001579121 1019961424 94248027 1007767849 1016394250 1007794081 1005500258 100779902 1016328927 5121489872 1010350823 1020719355	110019400316 11001953833 110019564032 110025324236 110022445200 110019845113 110019088075 3-409421 110019517209 9813436 110069283705 3-601320 NYD986974574 110008068081 110019491281 110019302789 110055280565 110019565861 110019564069 110019685517	MOUNTAIN LAUREL ESTATES BRIDGE PA-30 HOLMES RD DRY HYDRANT PETITJEAN PROPERTY ANDREW BLOCK PROPERTY ZUNNO PROPERTY COLBERT PROPERTY - WHALEY LAKE NYSDOT KENT RESIDENT ENGINEER'S HQ LUDINGTONVILLE APTS PUTNAM NURSING & REHABILITATION CT PUTNAM OPERATION AQUISITION 1 DBA PUTNAM NURSING & REHABILITATION PUTNAM NURSING & REHAB. METRIC MOTORS METRIC MOTORS BB&S SUBDIVISION PUTNAM NURSING & REHAB CTR FORMER RILEY'S GARAGE COMMUTER DRY CLEANING & TAILOR LEICHTER SUBDIVISION NICHOLS PROPERTY LAWTON ADAMSMINE CAMP LUDINGTON HOLMES RD ESTATES ELLIS PROPERTY ON WHALEY LAKE CLANCY MOVING SYSTEMS GENES SERVICE STATION	HOLMES RD CO RT 30 HOLMES RD (CO RTE 30) AT INTERSECTION HOLMES RD JUST WEST OF RT 292 96 LAKE DR 12 LAKEVIEW DR LAKEVIEW DR LAKEVIEW DR 106 LUDINGTON VILLE RD 106 LUDINGTON VILLE RD 106 LUDINGTONVILLE RD 106 LUDINGTONVILLE RD 107-203 LUDINGTONVILLE RD 108 LUDINGTONVILLE RD 109 LUDINGT	** ** **	HOLMES PAWLING HOLMES PAWLING HOLMES WEST PAWLING WEST PAWLING HOLMES	NYY	FINDS FINDS FINDS FINDS FINDS FINDS FINDS FINDS CORTLAND CO. AST CORTLAND CO. UST SPILLS, SPDES FINDS SPDES NY MANIFEST, LTANKS RCRA-CESQG, FINDS CORTLAND CO. UST RCRA-NonGen FINDS FINDS FINDS FINDS FINDS FINDS EDR Historical Cleaners ERNS FINDS
12531 12531	1001090112 A100295537	110006101681 3-601786	VERGA DOMINIC PINE BUSH EQUIPMENT CO., INC.	6855-02 STATE RTE 292 24 SYBIL COURT		HOLMES HOLMES	NY NY	RCRA-NonGen, FINDS CORTLAND CO. AST

ZIP	EDR-ID	Facility ID	Name	Address	Map/Dir/Dist	City	State	Databases
12531 12531 12531	1012186670 1016350412 1023395475	NYR000165324 110039085352 110067223105	NYSDOT BIN 1052741 NYSDOT BIN 1052741 WRIGHT PRIVATE RESIDENCE	I-84 WB OVER LUDINGTONVILLE RD I-84 WB OVER LUDINGTONVILLE RD 38 WINDY HILL RD	**	KENT KENT EAST FISHKILL	NY NY NY	NY MANIFEST, RCRAInfo-LQG FINDS FINDS
12563 12563 12563	S123252984 S123253392 1025656263		GUIDING EYES FOR THE BLIND, INC. FUCA SUBDIVISION TOWNERS PYRITE DEPOSIT		**	PATTERSON PATTERSON PATTERSON	NY NY NY	SPDES SPDES
12563 12563	S125465476 S125295848		VETERAN'S MEMORIAL PARK STORMWAT CONKLIN RESIDENCE		**	PATTERSON PATTERSON	NY NY	SPDES SPDES
12563 12563 12563	S123253859 S123190722 1025567249		FRANTELL DEVELOPMENT CORP. CLANCY PROPERTIES, LLC PATTERSON QUARRY AND MILL		**	PATTERSON PATTERSON PATTERSON	NY NY NY	SPDES SPDES
12563 12563 12563	S122266794 S123252765 1021961228		CAMP HERRLICH DEER WOOD SUBDIVISION GETGO MART INC		** ** **	PATTERSON PATTERSON PATTERSON	NY NY NY	SPDES SPDES EDR Historical Auto
12563	1022867565		BREWSTER HIGHLANDS		**		NY	Stations
12563 12563 12563	S125295762 S123254218 S123267784		FAIRFIELD DRIVE OVER PUTNAM LAKE O PATTERSON BRICH HOLLOW CENTER PIN 8009.11 ROUTE 115 OVER LITTLE WAI		**	PATTERSON PATTERSON TOWN OF PLEASANT	NY NY /ANLYEY	SPDES SPDES SPDES
12563 12563 12563	\$125465492 \$123254219 \$122258743		RODINA RESIDENCE PATTERSON BRICH HOLLOW CENTER FRANTEL DEVELOPMENT		**	PATTERSON PATTERSON PATTERSON	NY NY	SPDES SPDES SPDES
12563 12563	S122259809 S122258757		THOMAS SUBDIVISION CHESTNUT KNOLLS		**	PATTERSON PATTERSON	NY NY NY	SPDES SPDES SPDES
12563 12563 12563	1025745896 S123253070 S125295927		PATTERSON QUARRY CENTERLINE PROPERTIES LAPCORS LLC		**	PATTERSON PATTERSON PATTERSON	NY NY NY	SPDES SPDES
12563	1021997002		T W K SERVICE STATION INC		**	PATTERSON	NY	EDR Historical Auto Stations
12563 12563 12563	\$122262126 \$123253071 \$125296371		PATTERSON CROSSING RETAIL CENTER SCHOEN PROPERTY METRO-NORTH RR REHAB OF HARLEM B		**	PATTERSON & KENT PATTERSON PATTERSON	NY NY NY	SPDES SPDES SPDES
12563 12563 12563	S123254801 S122259559 1025562290		THOMAS SUBDIVISION EQUIPMENT & MATERIALS STORAGE FAC MARBLE ROCK QUARRY NO. GK-011		**	PATTERSON PATTERSON PATTERSON	NY NY NY	SPDES SPDES
12563 12563 12563	S122258777 S122259402 1025679310		CORNWALL HILL ESTATES SUBDIVISION NEW ENGLAND EQUINE PRACTICE, PC MARBLE ROCK QUARRY NO. 6K		**	PATTERSON PATTERSON PATTERSON	NY NY NY	SPDES SPDES
12563 12563	1023079310 1000302430 1020573680	NYD980531743	CHAMPION INTERNATIONAL BLDG PROD MC ECKRON GEORGE	NY #22 ROUTE #311	**	PATTERSON PATTERSON PATTERSON	NY NY	CERCLIS-NFRAP EDR Historical Auto
12563	1020876466		OWENS JR JOSEPH L	RD 103 FAIRFIELD DRIVE	**	PATTERSON	NY	Stations EDR Historical Auto Stations
12563 12563 12563	U004157013 1007818448 1000108816	110019810061 NYD982737629	GUIDING EYES FOR THE BLIND A & R CORVETTE A & R CORVETTE SERVICE INC	361 ROUTE 164 RD 2 ROUTE 164 BOX 293 RD 2 RTE 164	**	PATTERSON PATTERSON PATTERSON	NY NY NY	CORTLAND CO. UST FINDS NY MANIFEST, RCRA-NonGen
12563	1021992041		RAYS TOWING & LOCKOUT SERVICE	2122 ROUTE 22	**	PATTERSON	NY	EDR Historical Auto Stations
12563 12563 12563	\$106736696 1016068331 1007811764	0411015 110009242266	TEXAS TACOS: WHFS PATTERSON AUTO BODY PATTERSON AUTO BODY INC	2588 RT. 22 2597 ROUTE 22 2597A RTE 22		PATTERSON PATTERSON PATTERSON	NY NY NY	SPILLS FINDS
12563 12563 12563	S121490081 1007749390 1008197881	110019117766 110022330039	PATTERSON AUTO BODY INC GRECO PROPERTY NEW ENGLAND EQUINE PRACTICE	2597A RTE 22 2600 RTE 22 AT HAVILAND HOLLOW BRO(2933 ROUTE 22		PATTERSON PATTERSON PATTERSON	NY NY NY	AIRS FINDS FINDS
12563 12563	A100470043 S121490083		CLANCY RELOCATION & LOGISTICS TIMERX TECHNOLOGIES	2963 ROUTE 22 2981 RTE 22		PATTERSON PATTERSON	NY NY	CORTLAND CO. AST AIRS
12563 12563	1000790516 U000101106	NYD987020005 3-413623	PENWEST PHARMACEUTICALS CO MOBIL	2981 RTE 22 SUITE A 3081 ROUTE 22		PATTERSON PATTERSON	NY NY	NY MANIFEST, RCRA-NonGen CORTLAND CO. AST, CORTLAND CO. UST
12563 12563	1012218211 1021613598	110055185017	EXXONMOBIL OIL CORP. 10241 EXXON MOBIL CORPORATION	3081 ROUTE 22 3081 ROUTE 22		PATTERSON PATTERSON	NY NY	FINDS EDR Historical Auto Stations
12563 12563	S117653703 2013007802		MOBIL: INVENTORY 3081 RTE 22	3081 ROUTE 22 3081 RTE 22 3101 ROUTE 33		PATTERSON PATTERSON	NY NY	SPILLS HMIRS
12563 12563 12563	S110246437 1019976355 1018159221	110066948272	DRYCLEANER/WATCHTOWER FARMS DRY CLEANER A&P 70126	3101 ROUTE 22 3101 ROUTE 22 3101 RTE 22		PATTERSON PATTERSON PATTERSON	NY NY NY	DRYCLEANERS EDR Historical Cleaners RCRA-NonGen, FINDS
12563 12563 12563	1016051455 1019917127 1020610272	110019443244	PATTERSON COMMONS 311 DRY CLEANERS CORP PLEASANTVILLE AUTOMOTIVE INC	3103-3113 RTE 22 3105 RTE 22 3124 ROUTE 22		ATKINS CORNERS (PA PATTERSON PATTERSON	TTNEYRS(NY NY	FINDS EDR Historical Cleaners EDR Historical Auto
								Stations

ZIP	EDR-ID	Facility ID	Name	Address	Map/Dir/Dist	City	State	Databases
12563	1010448527	110031462539	CLASSIC GOLF CTR	3201 RT 22		PATTERSON	NY	FINDS
12563	S122257477		CLASSIC GOLF CTR	3201 RT 22		PATTERSON	NY	SPDES
12563	A100294661	3-601717	KECT CONSTRUCTION CORP.	3210 ROUTE 22		PATTERSON	NY	CORTLAND CO. AST
12563	1020968360		NESCO BUS MAINTENANCE	3230 ROUTE 22		PATTERSON	NY	EDR Historical Auto
								Stations
12563	1024365761	110070262184	GLOBAL MONTELLO GROUP CORP #6707	3230 ROUTE 22		SULLIVAN	NY	FINDS
12563	U001843282	3-174955	GLOBAL MONTELLO GROUP #6707	3230 ROUTE 22		PATTERSON	NY	CORTLAND CO. AST, CORTLAND
40500	0405070007	0.40000	OLIAMBION BUIL BING BROBLISTS	DOLITE 00		DATTEROOM	ND/	CO. UST
12563	S105973037	340009	CHAMPION BUILDING PRODUCTS	ROUTE 22		PATTERSON	NY	VAPOR REOPENED, SHWS
12563 12563	U000379559 1022003593	3-174963	GETTY00364 PATTERSON AUTO BODY INC	ROUTE 22 ROUTE 22	**	PATTERSON PATTERSON	NY NY	CORTLAND CO. UST EDR Historical Auto
12303	1022003393		PATTERSON AUTO BODT INC	ROUTE 22		PATTERSON	INT	Stations
12563	1007745125	110019075043	HAMILTON CORPORATE PARK	ROUTE 22		PATTERSON	NY	FINDS
12563	S108146883	110013073043	C&D, PRISCO SITE	ROUTE 22		PATTERSON	ŇÝ	HSWDS
12563	1004569573	110009827606	THUNDER RIDGE SKI AREA STP	ROUTE 22		PATTERSON	NY	SPDES, ICIS, FINDS
12563	U001843284	3-175005	POWER TEST/GETTY	ROUTE 22 & ROUTE 311		PATTERSON	NY	0. = = 0,
12563	1020688738		MB TRANSMISSIONS INC	RR 22	**	PATTERSON	NY	EDR Historical Auto
								Stations
12563	1021412829		MB TRANSMISSIONS	RT 22	**	PATTERSON	NY	EDR Historical Auto
								Stations
12563	1020135674		DELTA AUTO BODY WORKS	RT 22	**	PATTERSON	NY	EDR Historical Auto
40500	4007700004	440040057005	COUNTY LINE ALITO & TOLICK	DT 00		DATTERCON	NIX	Stations
12563	1007763304	110019257285	COUNTY LINE AUTO & TRUCK	RT 22	**	PATTERSON	NY	FINDS EDR Historical Auto
12563	1020997912		MOBIL OIL CORPORATION	RT 22 & 311		PATTERSON	NY	Stations
12563	1021044910		MOBIL OIL CORPORATION	RT 22 & 311 CORNER	**	PATTERSON	NY	EDR Historical Auto
12000	1021044310		WOBIE OIL CONTON	IN 22 d 311 OOKNER		TATTEROOM	141	Stations
12563	1007771869	110019343094	MOBIL STATION #06-13W	RT 22 & RT 311		PATTERSON	NY	FINDS
12563	1007771841	110019342825	CLANCY MOVING SYSTEMS	RT 22 (SOUTH OF BIRCH HILL RD)		PATTERSON	NY	FINDS
12563	1016250898	110008038532	GETTY SERVICE STATION	RTE 22		PATTERSON	NY	FINDS
12563	1016250824	110008037579	S L AMERITECH	RTE 22		PATTERSON	NY	FINDS
12563	1000423353	NYD986896702	GETTY PETROLEUM CORP	RTE 22		PATTERSON	NY	NY MANIFEST, RCRA-NonGen
12563	1020914343		PATTERSON GARAGE INC	RTE 22	**	PATTERSON	NY	EDR Historical Auto
40=00			MODIL OFFICIAL	DTE 00		D. TTEDOON		Stations
12563	1016251161	110008041582	MOBIL SERVICE STATION	RTE 22		PATTERSON	NY	FINDS
12563	1000306509	NYD099476061	STANS AUTO BODY & TOWING	RTE 22	**	PATTERSON	NY	NY MANIFEST, RCRA-NonGen
12563 12563	1000101703 1000446756	NYD986890424 NYD986906329	S L AMERITEK MOBIL SERVICE STATION	RTE 22 RTE 22		PATTERSON PATTERSON	NY NY	NY MANIFEST, RCRA-NonGen NY MANIFEST, RCRA-NonGen
12563	1021876907	N1D900900329	PATTERSON GARAGE INC	RTE 22	**	PATTERSON	NY	EDR Historical Auto
12303	1021070907		FATTERSON GARAGE INC	KTL ZZ		PATTERSON	INI	Stations
12563	1000403444	110064189890	PATTERSON AUTO BODY INCORPORATE	RTE 22		PATTERSON	NY	SPILLS, NY MANIFEST,
.2000								RCRA-NonGen, FINDS
12563	1020551690		JOHNS SERVICE CENTER	RTE 22 & RTE 311	**	PATTERSON	NY	EDR Historical Auto
								Stations
12563	1022043956		JOHNS SERVICE CENTER	RTE 22 & RTE 311	**	PATTERSON	NY	EDR Historical Auto
								Stations
12563	1007757031	110019194398	GAS PIPELINE FOR NEW A&P STORE	RTE 22 N NEAR RTE 311	**	PATTERSON	NY	FINDS
12563	1016253504	110008079578	NYSDOT BIN 1016680	RTE 22 OVER CROTON RIVER		PATTERSON	NY	FINDS
12563	1000790086	NYD987015625	NYSDOT BIN 1016680	RTE 22 OVER CROTON RIVER	**	PATTERSON	NY	RCRA-NonGen
12563 12563	1016250744	110008036687 NYD986887511	GETTY PETROLEUM CORP GETTY PETROLEUM CORP	RTE 22 S RTE 22 S		PATTERSON PATTERSON	NY NY	FINDS
12303	1000423286	N1D900007311	GETTT PETROLEUW CORP	KIE 22 3		PATTERSON	INT	NY MANIFEST, RCRA-NonGen, LTANKS
12563	1016305916	110014360280	PENWEST PHARMACEUTICALS, INC.	RTE. 22 SUITE 2		PATTERSON	NY	FINDS
12563	1006810613	NYR000114306	PENWEST PHARMACEUTICALS CO	RTE. 22 SUITE 2		PATTERSON	NY	NY MANIFEST, RCRAInfo-SQG
12563	1020463340	14111000111000	FAIRCLOUGH GAS CORP	800 E 27TH ST	**	PATTERSON	NY	EDR Historical Auto
								Stations
12563	1017377034	110061469218	CLARK PROPERTY	15 RT 292		PATTERSON	NY	FINDS
12563	1014810334	110043643368	FESER PROPERTY	325 RTE 292		PATTERSON	NY	FINDS
12563	1020969783		MOBIL OIL CORPORATION	& 311 COR RR 22	**	PATTERSON	NY	EDR Historical Auto
40=00				1440 BTE 044		D. TTEDOON		Stations
12563	1006810300	110013385229	HUDSON VALLEY FURNITURE SERVICES	1112 RTE 311		PATTERSON	NY	NY MANIFEST, RCRAInfo-SQG,
12552	11004109072		VEDIZONI NEW YORK INC. (NYOGOG)	1130 POLITE 311		DATTEDSON	NV	FINDS CORTLAND CO. UST
12563 12563	U004198973 A100382497		VERIZON NEW YORK, INC. (NY96225) VERIZON NEW YORK, INC. (NY96225)	1130 ROUTE 311 1130 ROUTE 311		PATTERSON PATTERSON	NY NY	CORTLAND CO. UST CORTLAND CO. AST
12563	1016990234	110019307962	TOTS-N-US	1136 ROUTE 311 1136 RTE 311		PATTERSON	NY NY	FINDS
12563	S122267617	110010001002	TOWN OF PATTERSON	1142 ROUTE 311		PATTERSON	NY	SPDES
12563	1024917611		PATTERSON QUARRY PLANT #79	1150 ROUTE 311		PATTERSON	NY	5. 525
12563	1013886244		PUTNAM MATERIALS CORP	1150 ROUTE 311		PATTERSON	ŇÝ	
12563	U004138409		BENFIELD ELECTRICAL SUPPLY	1157 ROUTE 311		PATTERSON	NY	CORTLAND CO. UST
12563	1014903917	110043831235	PATTERSON HAMLET SEWER DISTRICT E	1157 RTE 311		PATTERSON	NY	FINDS
12563	1016974595	NYR000210534	TRACTOR SUPPLY CO #1338	1253 RTE 311		PATTERSON	NY	RCRA-CESQG

ZIP	EDR-ID	Facility ID	Name	Address	Map/Dir/Dist	City	State	Databases
12563	S118464319	440000450400	TRACTOR SUPPLY CO #1338	1253 RTE 311		PATTERSON	NY	NY MANIFEST
12563 12563	1016891428 1016418476	110060158109 110055645146	TRACTOR SUPPLY CO #1338 GEORGE APAP PAINTING	1253 RTE 311 1278 ROUTE 311		PATTERSON PATERSON	NY NY	FINDS FINDS
12563	1007807774	110033043140	JOSEPH CAPASSO PRPERTY	683 ROUTE 311		PATTERSON	NY	FINDS
12563	1020902888		PIT STOP QUICK OIL CHANGE INC	HWY 311	**	PATTERSON	NY	EDR Historical Auto Stations
12563	1007810832	110019733724	ASTRO ASSOCIATES SUBDIVISION	ROUTE 311	**	PATTERSON	NY	FINDS
12563	1022220548		MC ECKRON GEORGE	ROUTE 311	**	PATTERSON	NY	EDR Historical Auto Stations
12563	1007766202	110019286306	TOWNERS STAGECOACH POST & STABLE	RT 311 & RT 164		TOWNERS	NY	FINDS
12563	1007740869	110019032358	ROSEBUD CONDOMINIUMS	RT 311 MAIN ST	**	PATTERSON	NY	FINDS
12563 12563	S117936868 U001843138	3-178934	PATTERSON PLANT #36 R TIMOTHY DWYER	RTE 311 RTE 311	2.2	PATTERSON PATTERSON	NY NY	SPDES CORTLAND CO. UST
12563	1007795051	110019575583	ROUTE 311 CENTER	RTE 311		PATTERSON	NY	FINDS
12563	1016124884	110030924310	PATTERSON PLANT	RTE 311	**	PATTERSON	NY	FINDS
12563	S117562826		NYSDOT	RTE 311 OVER E BRANCH CROTON	**	PATTERSON	NY	NY MANIFEST
12563	1016251085	110008040761	NYSDOT BIN 1045600	RTE 311 OVER E BRANCH CROTON		PATTERSON	NY	FINDS
12563 12563	1000446757 1004569695	NYD986903649 110001579916	NYSDOT BIN 1045600 PUTNAM MATERIALS	RTE 311 OVER E BRANCH CROTON ROUTE 311, BOX 242		PATTERSON PATTERSON	NY NY	RCRA-NonGen CORTLAND CO. AST, FINDS,
				,				CORTLAND CO. UST
12563 12563	1007759350 1005691120	110019217649 110009823735	VAN CLEEF ESTATES SUBD CARMEL SCH DIST BUS GARAGE	RTE 311/CORNWALL HILL RD RTE 52, FARMERS MILL RD		PATTERSON PATTERSON	NY NY	FINDS SPDES, ICIS, FINDS
12563	1000790708	NYD987021946	NYSDOT BIN 1052791 & 1052792	184 OVER BULLET HOLE RD		PATTERSON	NY	NY MANIFEST, RCRA-NonGen
12563	1016208293	110005584509	NYSDOT BIN 1052791 & 1052792	I 84 OVER BULLET HOLE RD		PATTERSON	NY	FINDS
12563	1000790707	NYD987021938	NYSDOT BIN 1052781 & 1052782	I 84 OVER FAIR ST		PATTERSON	NY	NY MANIFEST, RCRA-NonGen
12563	1016200177	110004497839	NYSDOT BIN 1052781 & 1052782	I 84 OVER FAIR ST		PATTERSON	NY	FINDS
12563 12563	1016281208 1000790706	110009482700 NYD987021920	NYSDOT BIN 1052771 & 1052772 NYSDOT BIN 1052771 & 1052772	I 84 OVER RTE 311 I 84 OVER RTE 311		PATTERSON PATTERSON	NY NY	FINDS NY MANIFEST, RCRA-NonGen
12563	U000412140	3-012386	CARMEL CENTRAL SCHOOL DISTRICT	ADMINISTRATION BUILDING		PATTERSON	NY	CORTLAND CO. UST
12563	1007781306	110019437705	MAYBROOK BIKE PATH	ALONG MAYBROOK FREIGHT LINE FROM		PATTERSON	NY	FINDS
12563	1008913017	110024236423	PATTERSON HAMLET WWTP	APPROX 2000 FT SE OF INTERSECTION C		PATTERSON	NY	FINDS
12563	1007793370	110019558726	MORAN PROPERTY	BIG ELM RD	**	PATTERSON	NY	FINDS
12563 12563	1007786388 1007821379	110019488687 110019839399	BARTZICK PROPERTY THUNDER RIDGE SKI AREA	BIG ELM ROAD 137 BIRCH HILL RD		PATTERSON PATTERSON	NY NY	FINDS FINDS
12563	1007621379	110019035399	SYPKO PROPERTY	BIRCH HILL RD		PATTERSON	NY	FINDS
12563	1014820464	110041299939	NRA SUBDIVISION	BIRCH HILL RD - E SIDE - SE OF STEPHEN		PATTERSON	NY	FINDS
12563	S110248297		WATCHTOWER EDUCATIONAL CTR	BLD-E3, 100 WATCHTOWER DRIVE/RT. 22	**	PATTERSON	NY	DRYCLEANERS
12563	1016117672	110019743072	PATTERSON AUTO BODY INC	BOX 233A KT 22		PATTERSON	NY	FINDS
12563 12563	U003128320 1010493663	3-136972 110032597599	KESSMAN BROS KESSMAN BROS.	BOX 405 CORNWALL HILL RD BOX 405 CORNWALL HILL ROAD		PATTERSON PATTERSON	NY NY	CORTLAND CO. UST FINDS
12563	1010508398	110032597599	HAVILAND HOLLOW FARM	815 EAST BRANCH RD		PATTERSON	NY	FINDS
12563	1007807016	110019695506	BARLOW PROPERTY	EAST BRANCH RD		PATTERSON	NY	FINDS
12563	1007766682	110019291130	CONKLIN PROPERTY	EAST BRANCH RD		PATTERSON	NY	FINDS
12563	1016684868	110019666413	BRIMSTONE	64 BRIMSTONE HILL RD		PATTERSON	NY	FINDS
12563 12563	S122258425	110010241062	BRIMSTONE FOX RUN WATER DISTRICT	64 BRIMSTONE HILL RD BULLET HOLE RD		PATTERSON PATTERSON	NY NY	SPDES FINDS
12563	1007761769 1007753242	110019241863 110019156401	GINSBERG DEV SUBDIVISION	BULLET HOLE RD & FIELDS LANE		PATTERSON	NY NY	FINDS
12563	1010039728	110028191551	PATTERSON FIRE DEPARTMENT	13 BURDICK ROAD		PATTERSON	NY	FINDS
12563	U004047917	3-601748	PATTERSON FIRE DEPARTMENT	13 BURDICK STREET		PATTERSON	NY	CORTLAND CO. UST
12563	A100356975	440040050700	PATTERSON FIRE DEPARTMENT	13 BURDICK STREET		PATTERSON	NY	CORTLAND CO. AST
12563 12563	1007802846 1004570206	110019653739	BELL PROPERTY PECKHAM-BURDICK ROAD ASPHALT PLA	16 BURDICK RD BURDICK RD	**	PATTERSON PATTERSON	NY NY	FINDS
12563	S121490079		PECKHAM-BURDICK ROAD ASPHALT PLA	BURDICK RD		PATTERSON	NY	AIRS
12563	1016067889	110007152972	PECKHAM-BURDICK ROAD ASPHALT PLA	BURDICK ROAD		PATTERSON	NY	FINDS
12563	U003397746	3-501859	PECKHAM MATERIALS CORP.	BURDICK ROAD		PATTERSON	NY	CORTLAND CO. AST
12563	U001844612	3-600239	FORMER DORIA EXCAVATING CORP.	INTERSTATE BUSINESS PARK COMMERCE DR		PATTERSON	NY	CORTLAND CO. UST
12563 12563	1007777026 1010493667	110019394813 110032597633	CENTERLINE PROPERTIES DORIA EXCAVATING CORP.	COMMERCE DR COMMERCE DRIVE		PATTERSON PATTERSON	NY NY	FINDS FINDS
12563	A100082742	3-463647	YONKERS AVENUE REALTY CORP	COMMERCE STREET		PATTERSON	NY	CORTLAND CO. AST
12563	1021740208	0 100011	EXXONMOBIL OIL CORPORATION	311 COR RR 22	**	PATTERSON	NY	EDR Historical Auto
12563	1020969801		MOBIL OIL CORPORATION	311 CORNER RR 22	**	PATTERSON	NY	Stations EDR Historical Auto
								Stations
12563	1007802717	110019652446	CORNWALL MEADOWS	212 CORNWALL HILL BOAD		PATTERSON	NY	FINDS
12563 12563	S109580327 1016026734	110046301186	PATTERSON (T) RECYCLING CENTER SVOBODA BULLDOZING & TRUCKING	271 CORNWALL HILL ROAD 272 CORNWALL HILL ROAD (PO BOX 261)		PATTERSON PATTERSON	NY NY	SWRCY FINDS
12563	U003075848	3-600510	TOWN OF PATTERSON HIGHWAY DEPAR	281 CORNWALL HILL ROAD		PATTERSON	NY	CORTLAND CO. AST
12563	1016026735	110046301220	PATTERSON HIGHWAY DEPARTMENT	281 CORNWALL HILL ROAD		PATTERSON	NY	FINDS
12563	U004080390	3-600510	TOWN OF PATTERSON HIGHWAY DEPAR	281 CORNWALL HILL ROAD		PATTERSON	NY	CORTLAND CO. UST
12563	1016400452	110055343196	PUTNAM ASSOCIATED RESOURCE CENTI CORNWALL HILL RESIDENCE	393 CORNWALL HILL RD		PATTERSON PATTERSON	NY	FINDS
12563	S105135370	0105460	CORINWALL HILL KESIDENCE	393 CORNWALL HILL RD		PATTERSON	NY	SPDES, LTANKS

ZIP	EDR-ID	Facility ID	Name	Address	Map/Dir/Dist	City	State	Databases
12563 12563 12563 12563 12563 12563 12563 12563 12563	U004046676 1009325793 1008170803 1007775816 1007797368 1007766929 1006837158 1016278267 1000385820	3-601801 110024410582 110020692017 110019382675 110019598773 110019293593 110013980530 110009302959 NYD980528491	ESTATE OF DONALD GIPSON PATTERSON HAMLET WWTP JOSEPH REILLY SR PROPERTY SCHEPPERLE SUBDIVISION CASSIA PROPERTY/CORNWALL HILL EST TOWN OF PATTERSON BALLFIELD PATTERSON SANITARY LANDFILL CROSS COUNTY SANITATION LANDFILL CROSS COUNTY SANITATION LANDFILL	435 CORNWALL HILL ROAD 470 CORNWALL HILL RD 484 CORNWALL HILL RD AT PATTERSON LAN CORNWALL HILL RD. CORNWALL HILL RD. CORNWALL HILL ROAD & METRONORTH CORNWALL HILL ROAD & METRONORTH		PATTERSON	NY NY NY NY NY NY NY NY	CORTLAND CO. UST SPDES, FINDS FINDS FINDS FINDS FINDS FINDS FINDS FINDS INST CONTROL, NY MANIFEST, CERCLIS, ENG CONTROLS, RCRA-NonGen, SHWS
12563 12563 12563 12563 12563 12563 12563 12563 12563 12563 12563	1005500154 1007782528 10077804644 1007809154 1007789883 U001844489 1007800795 S122255793 1007778085 1007807844 \$108146896 1022233655	110009825948 110019449934 110019671728 110019716912 110019523951 3-507377 110019633155 110019405419 110019703793	CORNWALL MEADOWS STP CAMP WILBUR HERRLICH PATTERSON COMM CENTER PROPERTY R & P DRAINAGE PROJECT LOST LAKE THUNDER RIDGE SKI AREA CLOVER LAKE ESTATES CLOVER LAKE ESTATES SANBORN POND FAIR ST SELF-STORAGE WAREHOUSE HEELAN/ARMENTO LF(FAIR ST C&D) MARRONE JUSTIN	CORNWALL HILL ROAD & METRONORTH RD#2, CORNWALL HILL ROAD DEACON SMITH HILL RD DITCH BET-LIBRARY & BENFIELD ELEC - I DOANSBURG (EAST BRANCH) RD DOANSBURG RD AND FAIRFIELD RD F/K/A BIG BIRCH SKI AREA 838 FAIR ST 838 FAIR ST FAIR ST FAIR ST FAIR ST FAIR ST 103 FAIRFIELD DRIVE 103 FAIRFIELD DRIVE	**	PATTERSON	NY NY NY NY NY NY NY NY NY	SPDES, ICIS, FINDS FINDS FINDS FINDS FINDS CORTLAND CO. UST FINDS SPDES FINDS HSWDS EDR Historical Auto
12563 12563 12563 12563	U004064096 U003075599 1007780070 1021336225	3-413119 3-413119 110019425326	PUTNAM LAKE BARRIER PUTNAM LAKE BARRIER 3600 CORP WESTCHESTER AUTOMOTIVE TRANSM*	103 FAIRFIELD DRIVE 103 FAIRFIELD DRIVE 63 FAIRFIELD DRIVE 63 FAIRFIELD DRIVE	**	PUTNAM LAKE PUTNAM LAKE PATTERSON PATTERSON	NY NY NY NY	Stations CORTLAND CO. UST CORTLAND CO. AST FINDS EDR Historical Auto
12563 12563 12563 12563	\$110248293 1023397309 1010012453 1022048233	110067363748 110027992769	WATCHTOWER B&T SOCIETY OFNY(3372- PUTNAM LAKE DRY HYDRANT PUTNAM LAKE B P	72 FAIRFIELD DRIVE FAIRFIELD DR FAIRFIELD DR AT THE DAM 103 FAIRVILLE DR	**	PATTERSON PATTERSON PATTERSON PATTERSON	NY NY NY NY	Stations DRYCLEANERS FINDS FINDS FINDS EDR Historical Auto Stations
12563 12563 12563 12563 12563 12563 12563 12563 12563 12563	1007784327 1007780032 1025807431 1010329135 1025960302 1025894829 1010446245 1018436813 1019986955 1021390978	110019467986 110019424942 110056420555 NYR000147587 110031429675 110031462030	ROTUNDA PROPERTY SMITH PROPERTY FIELDS CORNER RD RETROFIT (MB-06) HARLEM LINE - PUTNAM CO MP 48.21-61.0 METRO NORTH RAILROAD HARLEM LINE METRO NORTH RAILROAD HARLEM LINE CASCADE FARM PUTNAM LAKE CLEANERS FASHION CLRS & CONSIGNMENTS ALLEN & DUERR SERVICE STATION*	FARM TO MARKET RD FARM-TO-MARKET RD FIELDS CORNER RD - 800' FROM FAIR ST FRONT & CENTER ST RTE 22 FRONT ST & CENTER ST RTE 22 FRONT ST & CENTER ST RTE 22 HARMONY HILL RD 83 HAVILAND HOLLOW RD 89 HAVILAND DR E/S HAVILAND DR	** ** **	PATTERSON	NY NY NY NY NY NY NY NY NY	FINDS FINDS FINDS NY MANIFEST, RCRA-CESQG FINDS FINDS EDR Historical Cleaners EDR Historical Cleaners EDR Historical Auto
12563	1020659616		ALLEN & DUERR SERVICE STATION*	E/S HAVILAND DR	**	PATTERSON	NY	Stations EDR Historical Auto
12563 12563 12563 12563 12563 12563 12563 12563 12563 12563 12563 12563 12563 12563 12563	1007780925 1007799659 1007759059 1007756005 1023397284 1010029866 1007790093 1014815449 1016942881 U003418674 1024368180 1024114867 1016990085 1007753094 1010014961 S106770134 1007765355 S105841259 1007815527 1020431115	110019433889 110019621738 110019184069 110067363490 110027996239 110019525851 110043237191 3-601295 110070269909 110019049493 110019154911 110027994295 110019277806 110019780806	CAR-DEE SUBDIVISION QUAL RIDGE HAVILAND HOLLOW RD BRIDGE CRANBERRY MOUNTAIN WMA DRY HYDRANT LOT 14 - FAIR STREET SUBDIVISION WERLATONE INC WERLATONE INC DICAMILLO MARBLE DICAMILLO MARBLE AND GRANITE INC REELEX PACKAGING SOLUTIONS NAT'L FIRE SPRINKLER BLDG/ROBIN HILL BREWSTER PLASTICS INC DRY HYDRANT LIOTTA BROTHERS KRIDEL PROPERTY DAVID C. FLATAU; INC. OLIVIER PROPERTY G & D AUTO SERVICE	HAVILAND DR HAVILAND DRIVE HAVILAND HOLLOW RD HAVILAND HOLLOW RD HAVILAND HOLLOW RD HAVILAND HOLLOW RD HAVILAND BR NEAR GATES JENNIFER LANE 17 JON BARRETT RD 17 JON BARRETT RD 20 JON BARRETT ROAD 20 JON BARRETT ROAD 39 JON BARRETT ROAD 39 JON BARRETT RD 60 JON BARRETT RD 60 JON BARRETT RD LAKESHORE DR NEAR PALMYRA RD LIOTTA BROTHERS LONG POND RD LOT 9 JOHN BARRETT ROAD LUDDINGTONVILLE RD MAIN ST	**	PATTERSON	NY NY NY NY NY NY NY NY NY NY NY NY NY N	Stations FINDS CORTLAND CO. UST FINDS SWF/LF FINDS SWF/LF FINDS SUF/LF FI
12563	1020784418	2 19/129	G & D AUTO SERVICE	MAIN ST	**	PATTERSON	NY	EDR Historical Auto Stations
12563 12563	U000414399 1007740772	3-184128 110019031386	NEW YORK TELEPHONE ROTHACKER PROPERTY	N/S MAIN ST MAPLE AVE		PATTERSON PATTERSON	NY NY	CORTLAND CO. UST FINDS

ZIP	EDR-ID	Facility ID	Name	Address	Map/Dir/Dist	City	State	Databases
12563 12563 12563	1007757389 S105972461 U003790918	110019197983 314017 0102753	VETERAN'S MEMORIAL PARK PARDEE PROPERTY HUGHES RESIDENCE	MAPLE AVE & POND AT E BRANCH OF CR MASTEN ROAD 372 MOONEY HILL ROAD		PATTERSON PLEASANT VALLEY PATTERSON	NY NY NY	FINDS SHWS SPILLS, CORTLAND CO. UST
12563 12563 12563 12563 12563 12563 12563	1016411946 1016169675 S113916414 1007764564 1007778879 1016393717 1020258317	110055528861 NYR000201467 110019269879 110019413384 110055275143	METRO NORTH RAILROAD BEACON LINE METRO NORTH RAILROAD BEACON LINE IVERS RES.: 550 UST CORNWALL HILL BRIDGE MEADOWBROOK FARMS RTE 311/I-84 INTERCHANGE T W K SERVICE STATION INC	372 MOONEY HILL & CROSS RD MOONEY HILL & CROSS RD 30 MORNINGSIDE DRIVE MUDDY BROOK NYS RT 292 NYS RTE 311/I-84 INTERCHANGE P O BOX 313	**	PATTERSON PATTERSON PATTERSON PATTERSON PATTERSON PATTERSON PATTERSON PATTERSON	NY NY NY NY NY NY	FINDS RCRA-NonGen SPILLS FINDS FINDS FINDS FINDS FINDS FOR Historical Auto Stations
12563 12563 12563 12563 12563 12563 12563 12563	1010359802 1007764555 1024044301 1007745763 1007811779 1016255187 1001215477 1005500247	110030752184 110019269780 110070127483 110019081447 110019743198 110008100866 NYR000045872 110006660005	FRONT STREET SEWER DISTRICT STP CORNWALL CONDO COMPLEX LINE 813 POLE REPLACEMENT - NYSEG DEERWOOD SUBDIVISION PATTERSON PARK MEDICAL BLDG A & S IGNITION INC A & S IGNITION INC PATTERSON VILLAGE CONDOMINIUMS	NORTH OF ST RTE 311 OPPOSITE FRONT SE OF RTE 311 & 64 W OF RTE 22 & S OF RTE 311 31 OLD RD OLD RT 22 ORCHARD ST & RTE 311 SW CORNER ORCHARD ST & RTE 311 SW CORNER 64 PATTERSON VILLAGE	**	PATTERSON PATTERSON PATTERSON PATTERSON PATTERSON PATTERSON PATTERSON PATTERSON	NY NY NY NY NY NY NY	FINDS FINDS FINDS FINDS FINDS FINDS FINDS FINDS FINDS RCRA-CESQG SPILLS, SPDES, ICIS, FINDS
12563 12563 12563	S113916605 1007814798 1000872425	110019773468 110004506151	PRISCO PATTERSON C&D DUMP SITE RIVERA PROPERTY WINDINGS	340022 PRISCO PATTERSON C&D DUMP { QUAKER LN 1 ROBIN HILL CORPORATE PARK	**	PATTERSON PATTERSON PATTERSON	NY NY NY	SHWS FINDS NY MANIFEST, RCRA-NonGen,
12563 12563	1000872425 1007803919 S121490078 1015737702 S109695716 S121490067 1016124885 1012305032 1014811866 1017744499 1007762761 1016098346 S121490082 1007782880 1016397603 1007754257 1016119978 1007774023 1012304784 1007750253 1007762431 1016400305 1016397334 1016397334 1016397334 1016397334 1016397334 101639733 1023387594 1009511789 10025453 1023387594 1009511789 1016065990 S122257475 1001482197 1016065990 S1222578048 10077768930 1007766930 1007766835 1009328590 1009328590 1009332069	110004506151 110019664460 110064318411 110040344883 110043244129 110063726589 110019251824 110055314413 110019166579 11001928602 110040344865 110019575609 110019248517 110055341704 110055311675 110030731126 110019739844 110067004654 NYR000013664 110043377510 3-012378 110011540653 110012303890 110019362777 110019293619 110019312590 110019312590 110024545388 110024547418	RIVERA PROPERTY WINDINGS KENT ELEMENTARY SCHOOL PUTNAM MATERIALS PUTNAM MATERIALS PUTNAM MATERIALS PUTNAM MATERIALS PECKHAM BLACKTOP-CARMEL PECKHAM BLACKTOP-CARMEL COPIA MARKETPLACE FLEX BUILDING RETAIL STORE JRS PHARMA JRS PHARMA STANS AUTO BODY LTD STANS AUTO BOD	1091 ST RTE 52 1150 ST RTE 311 1150 ST RTE 311 1150 ST RTE 311 1181 US RTE 6 1181 US RTE 6 1181 US RTE 6 1296 ST RTE 22 2160 ST RTE 22 22588 ST RTE 22 22981 ST RTE 22 23981 ST RTE 22 23981 ST RTE 22 2304 ST RTE 22 3130 ST RTE 22 3130 ST RTE 22 3120 ST RTE 22 3150 ST RTE 31 310 ST RTE 311 310 ST RTE 311 311 ST RTE 311 ST RTE 31 311 ST RTE 311 ST RTE 311 311 ST RTE 311 S SIDE NEAR ST RTE 22 315 RTE 311 AT RR TRACKS 31 RTE 311 & 292 20 SOMERSET DR 100 SOUTH ST	** ** **	PATTERSON	NY N	NY MANIFEST, RCRA-NonGen, FINDS FINDS AIRS ICIS SPDES AIRS ICIS, FINDS FOES CORTLAND CO. UST FINDS SPDES FINDS
12563 12563 12563 12563 12563 12563	\$121994834 \$121994836 \$121994829 1016084987 1010012454 1007795150	110013744261 110027992778 110019576573	WATCHTOWER EDUCATIONAL CENTER DRY HYDRANT - PUTNAM LAKE SUMMERFIELD RESIDENTIAL DEVELOPM	100 WATCHTOWER DRIVE 100 WATCHTOWER DRIVE 100 WATCHTOWER DRIVE 100 WATCHTOWER DRIVE ROUTE 22 WATERFORD RD X	**	PATTERSON PATTERSON PATTERSON PATTERSON PATTERSON PATTERSON	NY NY NY NY NY NY	FINDS FINDS FINDS

To maintain currency of the following federal and state databases, EDR contacts the appropriate governmental agency on a monthly or quarterly basis, as required.

Number of Days to Update: Provides confirmation that EDR is reporting records that have been updated within 90 days from the date the government agency made the information available to the public.

STANDARD ENVIRONMENTAL RECORDS

Federal NPL site list

NPL: National Priority List

National Priorities List (Superfund). The NPL is a subset of CERCLIS and identifies over 1,200 sites for priority cleanup under the Superfund Program. NPL sites may encompass relatively large areas. As such, EDR provides polygon coverage for over 1,000 NPL site boundaries produced by EPA's Environmental Photographic Interpretation Center (EPIC) and regional EPA offices.

Date of Government Version: 01/30/2020 Source: EPA
Date Data Arrived at EDR: 02/05/2020 Telephone: N/A

Date Made Active in Reports: 02/14/2020 Last EDR Contact: 03/25/2020

Number of Days to Update: 9 Next Scheduled EDR Contact: 07/13/2020
Data Release Frequency: Quarterly

NPL Site Boundaries

Sources

EPA's Environmental Photographic Interpretation Center (EPIC)

Telephone: 202-564-7333

EPA Region 1 EPA Region 6

Telephone 617-918-1143 Telephone: 214-655-6659

EPA Region 3 EPA Region 7

Telephone 215-814-5418 Telephone: 913-551-7247

EPA Region 4 EPA Region 8

Telephone 404-562-8033 Telephone: 303-312-6774

EPA Region 5 EPA Region 9

Telephone 312-886-6686 Telephone: 415-947-4246

EPA Region 10

Telephone 206-553-8665

Proposed NPL: Proposed National Priority List Sites

A site that has been proposed for listing on the National Priorities List through the issuance of a proposed rule in the Federal Register. EPA then accepts public comments on the site, responds to the comments, and places on the NPL those sites that continue to meet the requirements for listing.

Date of Government Version: 01/30/2020 Source: EPA
Date Data Arrived at EDR: 02/05/2020 Telephone: N/A

Date Made Active in Reports: 02/14/2020 Last EDR Contact: 04/02/2020 Number of Days to Update: 9 Next Scheduled EDR Contact:

Next Scheduled EDR Contact: 07/13/2020
Data Release Frequency: Quarterly

NPL LIENS: Federal Superfund Liens

Federal Superfund Liens. Under the authority granted the USEPA by CERCLA of 1980, the USEPA has the authority to file liens against real property in order to recover remedial action expenditures or when the property owner received notification of potential liability. USEPA compiles a listing of filed notices of Superfund Liens.

Date of Government Version: 10/15/1991 Date Data Arrived at EDR: 02/02/1994 Date Made Active in Reports: 03/30/1994

Number of Days to Update: 56

Source: EPA

Telephone: 202-564-4267 Last EDR Contact: 08/15/2011

Next Scheduled EDR Contact: 11/28/2011 Data Release Frequency: No Update Planned

Federal Delisted NPL site list

Delisted NPL: National Priority List Deletions

The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) establishes the criteria that the EPA uses to delete sites from the NPL. In accordance with 40 CFR 300.425.(e), sites may be deleted from the NPL where no further response is appropriate.

Date of Government Version: 01/30/2020 Date Data Arrived at EDR: 02/05/2020 Date Made Active in Reports: 02/14/2020

Number of Days to Update: 9

Source: EPA Telephone: N/A

Last EDR Contact: 04/02/2020

Next Scheduled EDR Contact: 07/13/2020 Data Release Frequency: Quarterly

Federal CERCLIS list

FEDERAL FACILITY: Federal Facility Site Information listing

A listing of National Priority List (NPL) and Base Realignment and Closure (BRAC) sites found in the Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) Database where EPA Federal Facilities Restoration and Reuse Office is involved in cleanup activities.

Date of Government Version: 04/03/2019 Date Data Arrived at EDR: 04/05/2019 Date Made Active in Reports: 05/14/2019

Number of Days to Update: 39

Source: Environmental Protection Agency Telephone: 703-603-8704

Last EDR Contact: 04/03/2020

Next Scheduled EDR Contact: 07/13/2020 Data Release Frequency: Varies

SEMS: Superfund Enterprise Management System

SEMS (Superfund Enterprise Management System) tracks hazardous waste sites, potentially hazardous waste sites, and remedial activities performed in support of EPA's Superfund Program across the United States. The list was formerly know as CERCLIS, renamed to SEMS by the EPA in 2015. The list contains data on potentially hazardous waste sites that have been reported to the USEPA by states, municipalities, private companies and private persons, pursuant to Section 103 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This dataset also contains sites which are either proposed to or on the National Priorities List (NPL) and the sites which are in the screening and assessment phase for possible inclusion on the NPL.

Date of Government Version: 01/30/2020 Date Data Arrived at EDR: 02/05/2020 Date Made Active in Reports: 02/14/2020

Number of Days to Update: 9

Source: EPA

Telephone: 800-424-9346 Last EDR Contact: 04/02/2020

Next Scheduled EDR Contact: 07/27/2020 Data Release Frequency: Quarterly

Federal CERCLIS NFRAP site list

SEMS-ARCHIVE: Superfund Enterprise Management System Archive

SEMS-ARCHIVE (Superfund Enterprise Management System Archive) tracks sites that have no further interest under the Federal Superfund Program based on available information. The list was formerly known as the CERCLIS-NFRAP, renamed to SEMS ARCHIVE by the EPA in 2015. EPA may perform a minimal level of assessment work at a site while it is archived if site conditions change and/or new information becomes available. Archived sites have been removed and archived from the inventory of SEMS sites. Archived status indicates that, to the best of EPA's knowledge, assessment at a site has been completed and that EPA has determined no further steps will be taken to list the site on the National Priorities List (NPL), unless information indicates this decision was not appropriate or other considerations require a recommendation for listing at a later time. The decision does not necessarily mean that there is no hazard associated with a given site; it only means that based upon available information, the location is not judged to be potential NPL site.

Date of Government Version: 01/30/2020 Date Data Arrived at EDR: 02/05/2020 Date Made Active in Reports: 02/14/2020

Number of Days to Update: 9

Source: EPA

Telephone: 800-424-9346 Last EDR Contact: 04/02/2020

Next Scheduled EDR Contact: 07/27/2020 Data Release Frequency: Quarterly

Federal RCRA CORRACTS facilities list

CORRACTS: Corrective Action Report

CORRACTS identifies hazardous waste handlers with RCRA corrective action activity.

Date of Government Version: 12/16/2019 Date Data Arrived at EDR: 12/16/2019 Date Made Active in Reports: 12/20/2019

Number of Days to Update: 4

Source: EPA

Telephone: 800-424-9346 Last EDR Contact: 03/25/2020

Next Scheduled EDR Contact: 07/06/2020 Data Release Frequency: Quarterly

Federal RCRA non-CORRACTS TSD facilities list

RCRA-TSDF: RCRA - Treatment, Storage and Disposal

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Transporters are individuals or entities that move hazardous waste from the generator offsite to a facility that can recycle, treat, store, or dispose of the waste. TSDFs treat, store, or dispose of the waste.

Date of Government Version: 12/16/2019 Date Data Arrived at EDR: 12/16/2019 Date Made Active in Reports: 12/20/2019

Number of Days to Update: 4

Source: Environmental Protection Agency

Telephone: (212) 637-3660 Last EDR Contact: 03/25/2020

Next Scheduled EDR Contact: 07/06/2020 Data Release Frequency: Quarterly

Federal RCRA generators list

RCRA-LQG: RCRA - Large Quantity Generators

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Large quantity generators (LQGs) generate over 1,000 kilograms (kg) of hazardous waste, or over 1 kg of acutely hazardous waste per month.

Date of Government Version: 12/16/2019
Date Data Arrived at EDR: 12/16/2019
Date Made Active in Reports: 12/20/2019

Number of Days to Update: 4

Source: Environmental Protection Agency

Telephone: (212) 637-3660 Last EDR Contact: 03/25/2020

Next Scheduled EDR Contact: 07/06/2020 Data Release Frequency: Quarterly

RCRA-SQG: RCRA - Small Quantity Generators

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Small quantity generators (SQGs) generate between 100 kg and 1,000 kg of hazardous waste per month.

Date of Government Version: 12/16/2019 Date Data Arrived at EDR: 12/16/2019 Date Made Active in Reports: 12/20/2019

Number of Days to Update: 4

Source: Environmental Protection Agency

Telephone: (212) 637-3660 Last EDR Contact: 03/25/2020

Next Scheduled EDR Contact: 07/06/2020 Data Release Frequency: Quarterly

RCRA-VSQG: RCRA - Very Small Quantity Generators (Formerly Conditionally Exempt Small Quantity Generators)
RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation
and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database
includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste
as defined by the Resource Conservation and Recovery Act (RCRA). Very small quantity generators (VSQGs) generate
less than 100 kg of hazardous waste, or less than 1 kg of acutely hazardous waste per month.

Date of Government Version: 12/16/2019 Date Data Arrived at EDR: 12/16/2019 Date Made Active in Reports: 12/20/2019

Number of Days to Update: 4

Source: Environmental Protection Agency

Telephone: (212) 637-3660 Last EDR Contact: 03/25/2020

Next Scheduled EDR Contact: 07/06/2020 Data Release Frequency: Quarterly

Federal institutional controls / engineering controls registries

LUCIS: Land Use Control Information System

LUCIS contains records of land use control information pertaining to the former Navy Base Realignment and Closure properties.

Date of Government Version: 11/04/2019 Date Data Arrived at EDR: 11/13/2019 Date Made Active in Reports: 01/28/2020

Number of Days to Update: 76

Source: Department of the Navy Telephone: 843-820-7326 Last EDR Contact: 02/10/2020

Next Scheduled EDR Contact: 05/25/2020 Data Release Frequency: Varies

US ENG CONTROLS: Engineering Controls Sites List

A listing of sites with engineering controls in place. Engineering controls include various forms of caps, building foundations, liners, and treatment methods to create pathway elimination for regulated substances to enter environmental media or effect human health.

Date of Government Version: 11/22/2019 Date Data Arrived at EDR: 11/22/2019 Date Made Active in Reports: 01/28/2020

Number of Days to Update: 67

Source: Environmental Protection Agency

Telephone: 703-603-0695 Last EDR Contact: 02/20/2020

Next Scheduled EDR Contact: 06/08/2020 Data Release Frequency: Varies

US INST CONTROLS: Institutional Controls Sites List

A listing of sites with institutional controls in place. Institutional controls include administrative measures, such as groundwater use restrictions, construction restrictions, property use restrictions, and post remediation care requirements intended to prevent exposure to contaminants remaining on site. Deed restrictions are generally required as part of the institutional controls.

Date of Government Version: 11/22/2019 Date Data Arrived at EDR: 11/22/2019 Date Made Active in Reports: 01/28/2020

Number of Days to Update: 67

Source: Environmental Protection Agency

Telephone: 703-603-0695 Last EDR Contact: 02/20/2020

Next Scheduled EDR Contact: 06/08/2020

Data Release Frequency: Varies

Federal ERNS list

ERNS: Emergency Response Notification System

Emergency Response Notification System. ERNS records and stores information on reported releases of oil and hazardous

substances.

Date of Government Version: 12/16/2019 Date Data Arrived at EDR: 12/19/2019 Date Made Active in Reports: 03/06/2020

Number of Days to Update: 78

Source: National Response Center, United States Coast Guard

Telephone: 202-267-2180 Last EDR Contact: 03/24/2020

Next Scheduled EDR Contact: 07/06/2020 Data Release Frequency: Quarterly

State- and tribal - equivalent CERCLIS

SHWS: Inactive Hazardous Waste Disposal Sites in New York State

Referred to as the State Superfund Program, the Inactive Hazardous Waste Disposal Site Remedial Program is the cleanup program for inactive hazardous waste sites and now includes hazardous substance sites

Date of Government Version: 11/11/2019 Date Data Arrived at EDR: 11/12/2019 Date Made Active in Reports: 01/17/2020

Number of Days to Update: 66

Source: Department of Environmental Conservation

Telephone: 518-402-9622 Last EDR Contact: 02/12/2020

Next Scheduled EDR Contact: 05/25/2020 Data Release Frequency: Annually

State and tribal landfill and/or solid waste disposal site lists

SWF/LF: Facility Register

Solid Waste Facilities/Landfill Sites. SWF/LF type records typically contain an inventory of solid waste disposal facilities or landfills in a particular state. Depending on the state, these may be active or inactive facilities or open dumps that failed to meet RCRA Subtitle D Section 4004 criteria for solid waste landfills or disposal sites.

Date of Government Version: 10/09/2019 Date Data Arrived at EDR: 10/10/2019 Date Made Active in Reports: 12/18/2019

Number of Days to Update: 69

Source: Department of Environmental Conservation

Telephone: 518-402-8678 Last EDR Contact: 04/03/2020

Next Scheduled EDR Contact: 07/13/2020 Data Release Frequency: Quarterly

State and tribal leaking storage tank lists

INDIAN LUST R10: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Alaska, Idaho, Oregon and Washington.

Date of Government Version: 10/11/2019 Date Data Arrived at EDR: 12/04/2019 Date Made Active in Reports: 02/10/2020

Number of Days to Update: 68

Source: EPA Region 10 Telephone: 206-553-2857 Last EDR Contact: 01/24/2020

Next Scheduled EDR Contact: 05/04/2020 Data Release Frequency: Varies

INDIAN LUST R1: Leaking Underground Storage Tanks on Indian Land
A listing of leaking underground storage tank locations on Indian Land.

Date of Government Version: 10/01/2019 Date Data Arrived at EDR: 12/04/2019 Date Made Active in Reports: 02/10/2020

Number of Days to Update: 68

Source: EPA Region 1 Telephone: 617-918-1313 Last EDR Contact: 01/24/2020

Next Scheduled EDR Contact: 05/04/2020 Data Release Frequency: Varies

INDIAN LUST R6: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in New Mexico and Oklahoma.

Date of Government Version: 10/02/2019 Date Data Arrived at EDR: 12/04/2019 Date Made Active in Reports: 02/10/2020

Number of Days to Update: 68

Source: EPA Region 6 Telephone: 214-665-6597 Last EDR Contact: 01/24/2020

Next Scheduled EDR Contact: 05/04/2020 Data Release Frequency: Varies

INDIAN LUST R5: Leaking Underground Storage Tanks on Indian Land

Leaking underground storage tanks located on Indian Land in Michigan, Minnesota and Wisconsin.

Date of Government Version: 10/01/2019 Date Data Arrived at EDR: 12/04/2019 Date Made Active in Reports: 02/10/2020

Number of Days to Update: 68

Source: EPA, Region 5 Telephone: 312-886-7439 Last EDR Contact: 01/24/2020

Next Scheduled EDR Contact: 05/04/2020 Data Release Frequency: Varies

INDIAN LUST R9: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Arizona, California, New Mexico and Nevada

Date of Government Version: 10/04/2019 Date Data Arrived at EDR: 12/04/2019 Date Made Active in Reports: 02/27/2020

Number of Days to Update: 85

Source: Environmental Protection Agency

Telephone: 415-972-3372 Last EDR Contact: 01/24/2020

Next Scheduled EDR Contact: 05/04/2020 Data Release Frequency: Varies

INDIAN LUST R4: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Florida, Mississippi and North Carolina.

Date of Government Version: 10/10/2019 Date Data Arrived at EDR: 12/05/2019 Date Made Active in Reports: 02/10/2020

Number of Days to Update: 67

Source: EPA Region 4 Telephone: 404-562-8677 Last EDR Contact: 01/24/2020

Next Scheduled EDR Contact: 05/04/2020 Data Release Frequency: Varies

INDIAN LUST R7: Leaking Underground Storage Tanks on Indian Land

LUSTs on Indian land in Iowa, Kansas, and Nebraska

Date of Government Version: 10/15/2019 Date Data Arrived at EDR: 12/17/2019 Date Made Active in Reports: 02/10/2020

Number of Days to Update: 55

Source: EPA Region 7 Telephone: 913-551-7003 Last EDR Contact: 12/16/2019

Next Scheduled EDR Contact: 05/04/2020 Data Release Frequency: Varies

INDIAN LUST R8: Leaking Underground Storage Tanks on Indian Land

LUSTs on Indian land in Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming.

Date of Government Version: 10/03/2019 Date Data Arrived at EDR: 12/04/2019 Date Made Active in Reports: 02/14/2020

Number of Days to Update: 72

Source: EPA Region 8 Telephone: 303-312-6271 Last EDR Contact: 01/24/2020

Next Scheduled EDR Contact: 05/04/2020 Data Release Frequency: Varies

LTANKS: Spills Information Database

Leaking Storage Tank Incident Reports. These records contain an inventory of reported leaking storage tank incidents reported from 4/1/86 through the most recent update. They can be either leaking underground storage tanks or leaking aboveground storage tanks. The causes of the incidents are tank test failures, tank failures or tank overfills.

Date of Government Version: 11/11/2019 Date Data Arrived at EDR: 11/11/2019 Date Made Active in Reports: 11/13/2019

Number of Days to Update: 2

Source: Department of Environmental Conservation

Telephone: 518-402-9549 Last EDR Contact: 02/07/2020

Next Scheduled EDR Contact: 05/25/2020 Data Release Frequency: Varies

HIST LTANKS: Listing of Leaking Storage Tanks

A listing of leaking underground and aboveground storage tanks. The causes of the incidents are tank test failures, tank failures or tank overfills. In 2002, the Department of Environmental Conservation stopped providing updates to its original Spills Information Database. This database includes fields that are no longer available from the NYDEC as of January 1, 2002. Current information may be found in the NY LTANKS database. Department of Environmental Conservation.

Date of Government Version: 01/01/2002 Date Data Arrived at EDR: 07/08/2005 Date Made Active in Reports: 07/14/2005

Number of Days to Update: 6

Source: Department of Environmental Conservation

Telephone: 518-402-9549 Last EDR Contact: 07/07/2005 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

State and tribal registered storage tank lists

FEMA UST: Underground Storage Tank Listing

A listing of all FEMA owned underground storage tanks.

Date of Government Version: 08/27/2019 Date Data Arrived at EDR: 08/28/2019 Date Made Active in Reports: 11/11/2019

Number of Days to Update: 75

Source: FEMA

Telephone: 202-646-5797 Last EDR Contact: 03/19/2020

Next Scheduled EDR Contact: 07/20/2020 Data Release Frequency: Varies

UST: Petroleum Bulk Storage (PBS) Database

Facilities that have petroleum storage capacities in excess of 1,100 gallons and less than 400,000 gallons.

Date of Government Version: 12/18/2019 Date Data Arrived at EDR: 12/19/2019 Date Made Active in Reports: 03/02/2020

Number of Days to Update: 74

Source: Department of Environmental Conservation

Telephone: 518-402-9549 Last EDR Contact: 03/25/2020

Next Scheduled EDR Contact: 07/06/2020 Data Release Frequency: No Update Planned

CBS UST: Chemical Bulk Storage Database

Facilities that store regulated hazardous substances in underground tanks of any size

Date of Government Version: 01/01/2002 Date Data Arrived at EDR: 02/20/2002 Date Made Active in Reports: 03/22/2002

Number of Days to Update: 30

Source: NYSDEC Telephone: 518-402-9549 Last EDR Contact: 10/24/2005

Next Scheduled EDR Contact: 01/23/2006 Data Release Frequency: No Update Planned

MOSF UST: Major Oil Storage Facilities Database

Facilities that may be onshore facilities or vessels, with petroleum storage capacities of 400,000 gallons or greater.

Date of Government Version: 01/01/2002 Date Data Arrived at EDR: 02/20/2002 Date Made Active in Reports: 03/22/2002

Number of Days to Update: 30

Source: NYSDEC Telephone: 518-402-9549 Last EDR Contact: 07/25/2005

Next Scheduled EDR Contact: 10/24/2005 Data Release Frequency: No Update Planned

CBS: Chemical Bulk Storage Site Listing

These facilities store regulated hazardous substances in aboveground tanks with capacities of 185 gallons or greater, and/or in underground tanks of any size

Date of Government Version: 12/18/2019 Date Data Arrived at EDR: 12/19/2019 Date Made Active in Reports: 03/02/2020

Number of Days to Update: 74

Source: Department of Environmental Conservation

Telephone: 518-402-9549 Last EDR Contact: 03/25/2020

Next Scheduled EDR Contact: 07/06/2020 Data Release Frequency: Quarterly

MOSF: Major Oil Storage Facility Site Listing

These facilities may be onshore facilities or vessels, with petroleum storage capacities of 400,000 gallons or

greater.

Date of Government Version: 12/18/2019 Date Data Arrived at EDR: 12/19/2019 Date Made Active in Reports: 03/02/2020

Number of Days to Update: 74

Source: Department of Environmental Conservation

Telephone: 518-402-9549 Last EDR Contact: 03/25/2020

Next Scheduled EDR Contact: 07/06/2020 Data Release Frequency: Quarterly

AST: Petroleum Bulk Storage

Registered Aboveground Storage Tanks.

Date of Government Version: 12/18/2019 Date Data Arrived at EDR: 12/19/2019 Date Made Active in Reports: 03/02/2020

Number of Days to Update: 74

Source: Department of Environmental Conservation

Telephone: 518-402-9549 Last EDR Contact: 03/25/2020

Next Scheduled EDR Contact: 07/06/2020 Data Release Frequency: No Update Planned

CBS AST: Chemical Bulk Storage Database

Facilities that store regulated hazardous substances in aboveground tanks with capacities of 185 gallons or greater,

and/or in underground tanks of any size.

Date of Government Version: 01/01/2002 Date Data Arrived at EDR: 02/20/2002 Date Made Active in Reports: 03/22/2002

Number of Days to Update: 30

Source: NYSDEC Telephone: 518-402-9549 Last EDR Contact: 07/25/2005

Next Scheduled EDR Contact: 10/24/2005 Data Release Frequency: No Update Planned

MOSF AST: Major Oil Storage Facilities Database

Facilities that may be onshore facilities or vessels, with petroleum storage capacities of 400,000 gallons or

greater.

Date of Government Version: 01/01/2002 Date Data Arrived at EDR: 02/20/2002 Date Made Active in Reports: 03/22/2002

Number of Days to Update: 30

Source: NYSDEC Telephone: 518-402-9549 Last EDR Contact: 07/25/2005

Next Scheduled EDR Contact: 10/24/2005 Data Release Frequency: No Update Planned

INDIAN UST R10: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 10 (Alaska, Idaho, Oregon, Washington, and Tribal Nations).

Date of Government Version: 10/11/2019

Date Data Arrived at EDR: 12/04/2019 Date Made Active in Reports: 02/10/2020

Number of Days to Update: 68

Source: EPA Region 10 Telephone: 206-553-2857 Last EDR Contact: 01/24/2020

Next Scheduled EDR Contact: 05/04/2020

Data Release Frequency: Varies

INDIAN UST R1: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 1 (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont and ten Tribal Nations).

ivations).

Date of Government Version: 10/01/2019 Date Data Arrived at EDR: 12/04/2019 Date Made Active in Reports: 02/10/2020

Number of Days to Update: 68

Source: EPA, Region 1 Telephone: 617-918-1313 Last EDR Contact: 01/24/2020

Next Scheduled EDR Contact: 05/04/2020

Data Release Frequency: Varies

INDIAN UST R4: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 4 (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee and Tribal Nations)

Date of Government Version: 10/10/2019 Date Data Arrived at EDR: 12/05/2019 Date Made Active in Reports: 02/10/2020

Number of Days to Update: 67

Source: EPA Region 4 Telephone: 404-562-9424 Last EDR Contact: 01/24/2020

Next Scheduled EDR Contact: 05/04/2020 Data Release Frequency: Varies

INDIAN UST R5: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 5 (Michigan, Minnesota and Wisconsin and Tribal Nations).

Date of Government Version: 10/01/2019 Date Data Arrived at EDR: 12/04/2019 Date Made Active in Reports: 02/10/2020

Number of Days to Update: 68

Source: EPA Region 5 Telephone: 312-886-6136 Last EDR Contact: 01/24/2020

Next Scheduled EDR Contact: 05/04/2020 Data Release Frequency: Varies

INDIAN UST R6: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 6 (Louisiana, Arkansas, Oklahoma, New Mexico, Texas and 65 Tribes).

Date of Government Version: 10/02/2019 Date Data Arrived at EDR: 12/04/2019 Date Made Active in Reports: 02/10/2020

Number of Days to Update: 68

Source: EPA Region 6 Telephone: 214-665-7591 Last EDR Contact: 01/24/2020

Next Scheduled EDR Contact: 05/04/2020 Data Release Frequency: Varies

INDIAN UST R7: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 7 (Iowa, Kansas, Missouri, Nebraska, and 9 Tribal Nations).

Date of Government Version: 10/11/2019 Date Data Arrived at EDR: 12/04/2019 Date Made Active in Reports: 02/10/2020

Number of Days to Update: 68

Source: EPA Region 7 Telephone: 913-551-7003 Last EDR Contact: 01/24/2020

Next Scheduled EDR Contact: 05/04/2020

Data Release Frequency: Varies

INDIAN UST R8: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 8 (Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming and 27 Tribal Nations).

Date of Government Version: 10/03/2019 Date Data Arrived at EDR: 12/04/2019 Date Made Active in Reports: 02/14/2020

Number of Days to Update: 72

Source: EPA Region 8 Telephone: 303-312-6137 Last EDR Contact: 01/24/2020

Next Scheduled EDR Contact: 05/04/2020 Data Release Frequency: Varies

INDIAN UST R9: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 9 (Arizona, California, Hawaii, Nevada, the Pacific Islands, and Tribal Nations).

Date of Government Version: 10/04/2019 Date Data Arrived at EDR: 12/04/2019 Date Made Active in Reports: 02/27/2020

Number of Days to Update: 85

Source: EPA Region 9 Telephone: 415-972-3368 Last EDR Contact: 01/24/2020

Next Scheduled EDR Contact: 05/04/2020 Data Release Frequency: Varies

TANKS: Storage Tank Faciliy Listing

This database contains records of facilities that are or have been regulated under Bulk Storage Program. Tank information for these facilities may not be releasable by the state agency.

Date of Government Version: 12/18/2019 Date Data Arrived at EDR: 12/19/2019 Date Made Active in Reports: 03/02/2020

Number of Days to Update: 74

Source: Department of Environmental Conservation

Telephone: 518-402-9543 Last EDR Contact: 03/25/2020

Next Scheduled EDR Contact: 07/06/2020 Data Release Frequency: Quarterly

State and tribal institutional control / engineering control registries

ENV RES DECL: Environmental Restrictive Declarations

The Environmental Restrictive Declarations (ERD) listed were recorded in connection with a zoning action against the noted Tax Blocks and Tax Lots, or portion thereof, and are available in the property records on file at the Office of the City Register for Bronx, Kings, New York and Queens counties or at the Richmond County Clerk's office. They contain environmental requirements with respect to hazardous materials, air quality and/or noise in accordance with Section 11-15 of this Resolution.

Date of Government Version: 12/16/2019 Date Data Arrived at EDR: 12/17/2019 Date Made Active in Reports: 03/02/2020

Number of Days to Update: 76

Source: New York City Department of City Planning

Telephone: 212-720-3300 Last EDR Contact: 03/20/2020

Next Scheduled EDR Contact: 06/29/2020 Data Release Frequency: Varies

RES DECL: Restrictive Declarations Listing

A restrictive declaration is a covenant running with the land which binds the present and future owners of the property. As a condition of certain special permits, the City Planning Commission may require an applicant to sign and record a restrictive declaration that places specified conditions on the future use and development of the property. Certain restrictive declarations are indicated by a D on zoning maps.

Date of Government Version: 12/16/2019 Date Data Arrived at EDR: 12/16/2019 Date Made Active in Reports: 03/02/2020

Number of Days to Update: 77

Source: NYC Department of City Planning

Telephone: 212-720-3401 Last EDR Contact: 03/20/2020

Next Scheduled EDR Contact: 06/29/2020 Data Release Frequency: Varies

ENG CONTROLS: Registry of Engineering Controls

Environmental Remediation sites that have engineering controls in place.

Date of Government Version: 11/11/2019 Date Data Arrived at EDR: 11/12/2019 Date Made Active in Reports: 01/17/2020

Number of Days to Update: 66

Source: Department of Environmental Conservation

Telephone: 518-402-9553 Last EDR Contact: 02/12/2020

Next Scheduled EDR Contact: 05/25/2020 Data Release Frequency: Quarterly

INST CONTROL: Registry of Institutional Controls

Environmental Remediation sites that have institutional controls in place.

Date of Government Version: 11/11/2019 Date Data Arrived at EDR: 11/12/2019 Date Made Active in Reports: 01/17/2020

Number of Days to Update: 66

Source: Department of Environmental Conservation

Telephone: 518-402-9553 Last EDR Contact: 02/12/2020

Next Scheduled EDR Contact: 05/25/2020 Data Release Frequency: Quarterly

State and tribal voluntary cleanup sites

VCP: Voluntary Cleanup Agreements

New York established its Voluntary Cleanup Program (VCP) to address the environmental, legal and financial barriers that often hinder the redevelopment and reuse of contaminated properties. The Voluntary Cleanup Program was developed to enhance private sector cleanup of brownfields by enabling parties to remediate sites using private rather than public funds and to reduce the development pressures on "greenfield" sites.

Date of Government Version: 11/11/2019 Date Data Arrived at EDR: 11/12/2019 Date Made Active in Reports: 01/17/2020

Number of Days to Update: 66

Source: Department of Environmental Conservation

Telephone: 518-402-9711 Last EDR Contact: 02/12/2020

Next Scheduled EDR Contact: 05/25/2020 Data Release Frequency: Semi-Annually

VCP NYC: Voluntary Cleanup Program Listing NYC New York City voluntary cleanup program sites.

> Date of Government Version: 08/20/2019 Date Data Arrived at EDR: 08/21/2019 Date Made Active in Reports: 10/24/2019

Number of Days to Update: 64

Source: New York City Office of Environmental Protection

Telephone: 212-788-8841 Last EDR Contact: 03/16/2020

Next Scheduled EDR Contact: 06/29/2020 Data Release Frequency: Varies

INDIAN VCP R1: Voluntary Cleanup Priority Listing

A listing of voluntary cleanup priority sites located on Indian Land located in Region 1.

Date of Government Version: 07/27/2015 Date Data Arrived at EDR: 09/29/2015 Date Made Active in Reports: 02/18/2016

Number of Days to Update: 142

Source: EPA, Region 1 Telephone: 617-918-1102 Last EDR Contact: 03/18/2020

Next Scheduled EDR Contact: 07/06/2020 Data Release Frequency: Varies

INDIAN VCP R7: Voluntary Cleanup Priority Lisitng

A listing of voluntary cleanup priority sites located on Indian Land located in Region 7.

Date of Government Version: 03/20/2008 Date Data Arrived at EDR: 04/22/2008 Date Made Active in Reports: 05/19/2008

Number of Days to Update: 27

Source: EPA, Region 7 Telephone: 913-551-7365 Last EDR Contact: 04/20/2009

Next Scheduled EDR Contact: 07/20/2009

Data Release Frequency: Varies

State and tribal Brownfields sites

BROWNFIELDS: Brownfields Site List

A Brownfield is any real property where redevelopment or re-use may be complicated by the presence or potential presence of a hazardous waste, petroleum, pollutant, or contaminant.

Date of Government Version: 11/11/2019 Date Data Arrived at EDR: 11/12/2019 Date Made Active in Reports: 01/17/2020

Number of Days to Update: 66

Source: Department of Environmental Conservation

Telephone: 518-402-9764 Last EDR Contact: 02/12/2020

Next Scheduled EDR Contact: 05/25/2020 Data Release Frequency: Semi-Annually

ERP: Environmental Restoration Program Listing

In an effort to spur the cleanup and redevelopment of brownfields, New Yorkers approved a \$200 million Environmental Restoration or Brownfields Fund as part of the \$1.75 billion Clean Water/Clean Air Bond Act of 1996 (1996 Bond Act). Enhancements to the program were enacted on October 7, 2003. Under the Environmental Restoration Program, the State provides grants to municipalities to reimburse up to 90 percent of on-site eligible costs and 100% of off-site eligible costs for site investigation and remediation activities. Once remediated, the property may then be reused for commercial, industrial, residential or public use.

Date of Government Version: 11/11/2019 Date Data Arrived at EDR: 11/12/2019 Date Made Active in Reports: 01/17/2020

Number of Days to Update: 66

Source: Department of Environmental Conservation

Telephone: 518-402-9622 Last EDR Contact: 02/12/2020

Next Scheduled EDR Contact: 05/25/2020 Data Release Frequency: Quarterly

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS: A Listing of Brownfields Sites

Brownfields are real property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant. Cleaning up and reinvesting in these properties takes development pressures off of undeveloped, open land, and both improves and protects the environment. Assessment, Cleanup and Redevelopment Exchange System (ACRES) stores information reported by EPA Brownfields grant recipients on brownfields properties assessed or cleaned up with grant funding as well as information on Targeted Brownfields Assessments performed by EPA Regions. A listing of ACRES Brownfield sites is obtained from Cleanups in My Community. Cleanups in My Community provides information on Brownfields properties for which information is reported back to EPA, as well as areas served by Brownfields grant programs.

Date of Government Version: 12/02/2019 Date Data Arrived at EDR: 12/16/2019 Date Made Active in Reports: 03/06/2020

Number of Days to Update: 81

Source: Environmental Protection Agency

Telephone: 202-566-2777 Last EDR Contact: 03/17/2020

Next Scheduled EDR Contact: 06/29/2020 Data Release Frequency: Semi-Annually

Local Lists of Landfill / Solid Waste Disposal Sites

SWTIRE: Registered Waste Tire Storage & Facility List A listing of facilities registered to accept waste tires.

Date of Government Version: 02/27/2018 Date Data Arrived at EDR: 04/06/2018 Date Made Active in Reports: 06/08/2018

Number of Days to Update: 63

Source: Department of Environmental Conservation

Telephone: 518-402-8694 Last EDR Contact: 03/09/2020

Next Scheduled EDR Contact: 06/22/2020 Data Release Frequency: No Update Planned

SWRCY: Registered Recycling Facility List A listing of recycling facilities.

Date of Government Version: 10/09/2019 Date Data Arrived at EDR: 10/10/2019 Date Made Active in Reports: 12/18/2019

Number of Days to Update: 69

Source: Department of Environmental Conservation

Telephone: 518-402-8678 Last EDR Contact: 04/03/2020

Next Scheduled EDR Contact: 07/13/2020 Data Release Frequency: Quarterly

INDIAN ODI: Report on the Status of Open Dumps on Indian Lands

Location of open dumps on Indian land.

Date of Government Version: 12/31/1998 Date Data Arrived at EDR: 12/03/2007 Date Made Active in Reports: 01/24/2008

Number of Days to Update: 52

Source: Environmental Protection Agency

Telephone: 703-308-8245 Last EDR Contact: 04/16/2020

Next Scheduled EDR Contact: 08/10/2020 Data Release Frequency: Varies

ODI: Open Dump Inventory

An open dump is defined as a disposal facility that does not comply with one or more of the Part 257 or Part 258 Subtitle D Criteria.

Date of Government Version: 06/30/1985 Date Data Arrived at EDR: 08/09/2004 Date Made Active in Reports: 09/17/2004

Number of Days to Update: 39

Source: Environmental Protection Agency

Telephone: 800-424-9346 Last EDR Contact: 06/09/2004 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

DEBRIS REGION 9: Torres Martinez Reservation Illegal Dump Site Locations

A listing of illegal dump sites location on the Torres Martinez Indian Reservation located in eastern Riverside County and northern Imperial County, California.

Date of Government Version: 01/12/2009 Date Data Arrived at EDR: 05/07/2009 Date Made Active in Reports: 09/21/2009

Number of Days to Update: 137

Source: EPA, Region 9 Telephone: 415-947-4219 Last EDR Contact: 04/09/2020

Next Scheduled EDR Contact: 08/03/2020 Data Release Frequency: No Update Planned

IHS OPEN DUMPS: Open Dumps on Indian Land

A listing of all open dumps located on Indian Land in the United States.

Date of Government Version: 04/01/2014
Date Data Arrived at EDR: 08/06/2014
Date Made Active in Reports: 01/29/2015

Number of Days to Update: 176

Source: Department of Health & Human Serivces, Indian Health Service

Telephone: 301-443-1452 Last EDR Contact: 01/31/2020

Next Scheduled EDR Contact: 05/11/2020 Data Release Frequency: Varies

Local Lists of Hazardous waste / Contaminated Sites

US HIST CDL: National Clandestine Laboratory Register

A listing of clandestine drug lab locations that have been removed from the DEAs National Clandestine Laboratory Register.

Date of Government Version: 06/11/2019 Date Data Arrived at EDR: 06/13/2019 Date Made Active in Reports: 09/03/2019

Number of Days to Update: 82

Source: Drug Enforcement Administration

Telephone: 202-307-1000 Last EDR Contact: 02/21/2020

Next Scheduled EDR Contact: 06/08/2020 Data Release Frequency: No Update Planned

DEL SHWS: Delisted Registry Sites

A database listing of sites delisted from the Registry of Inactive Hazardous Waste Disposal Sites.

Date of Government Version: 11/11/2019 Date Data Arrived at EDR: 11/12/2019 Date Made Active in Reports: 01/17/2020

Number of Days to Update: 66

Source: Department of Environmental Conservation

Telephone: 518-402-9622 Last EDR Contact: 02/12/2020

Next Scheduled EDR Contact: 05/25/2020 Data Release Frequency: Quarterly

US CDL: Clandestine Drug Labs

A listing of clandestine drug lab locations. The U.S. Department of Justice ("the Department") provides this web site as a public service. It contains addresses of some locations where law enforcement agencies reported they found chemicals or other items that indicated the presence of either clandestine drug laboratories or dumpsites. In most cases, the source of the entries is not the Department, and the Department has not verified the entry and does not guarantee its accuracy. Members of the public must verify the accuracy of all entries by, for example, contacting local law enforcement and local health departments.

Date of Government Version: 06/11/2019 Date Data Arrived at EDR: 06/13/2019 Date Made Active in Reports: 09/03/2019

Number of Days to Update: 82

Source: Drug Enforcement Administration

Telephone: 202-307-1000 Last EDR Contact: 02/21/2020

Next Scheduled EDR Contact: 06/08/2020 Data Release Frequency: Quarterly

PFAS: PFAS Contamination Site Location Listing

DEC surveyed select businesses, fire departments, fire training centers, bulk storage facilities, airports, and Department of Defense (DoD) facilities. The responses to the survey have helped to determine if these entities used or stored materials containing PFOA/PFOS including AFFF and dispersants used in Teflon coating operations. The results of this survey will be updated periodically as additional responses are received..

Date of Government Version: 01/16/2019 Date Data Arrived at EDR: 05/08/2019 Date Made Active in Reports: 06/24/2019

Number of Days to Update: 47

Source: Department of Environmental Conservation

Telephone: 518-402-9020 Last EDR Contact: 02/07/2020

Next Scheduled EDR Contact: 05/18/2020

Data Release Frequency: Varies

Local Lists of Registered Storage Tanks

SUFFOLK CO TANKS: Storage Tank Database Facilities that have no tank information

Date of Government Version: 06/28/2018 Date Data Arrived at EDR: 02/05/2019 Date Made Active in Reports: 03/08/2019

Number of Days to Update: 31

Source: Department of Health Services

Telephone: 631-854-2516 Last EDR Contact: 04/17/2020

Next Scheduled EDR Contact: 08/10/2020 Data Release Frequency: Varies

HIST UST: Historical Petroleum Bulk Storage Database

These facilities have petroleum storage capacities in excess of 1,100 gallons and less than 400,000 gallons. This database contains detailed information per site. It is no longer updated due to the sensitive nature of the information involved. See UST for more current data.

Date of Government Version: 01/01/2002 Date Data Arrived at EDR: 06/02/2006 Date Made Active in Reports: 07/20/2006

Number of Days to Update: 48

Source: Department of Environmental Conservation

Telephone: 518-402-9549 Last EDR Contact: 10/23/2006

Next Scheduled EDR Contact: 01/22/2007 Data Release Frequency: Varies

_,

HIST AST: Historical Petroleum Bulk Storage Database

These facilities have petroleum storage capabilities in excess of 1,100 gallons and less than 400,000 gallons. This database contains detailed information per site. No longer updated due to the sensitive nature of the information involved. See AST for more current data.

Date of Government Version: 01/01/2002 Date Data Arrived at EDR: 06/02/2006 Date Made Active in Reports: 07/20/2006

Number of Days to Update: 48

Source: Department of Environmental Conservation

Telephone: 518-402-9549 Last EDR Contact: 10/23/2006

Next Scheduled EDR Contact: 01/22/2007 Data Release Frequency: No Update Planned

Local Land Records

LIENS: Spill Liens Information

Lien information from the Oil Spill Fund.

Date of Government Version: 11/04/2019 Date Data Arrived at EDR: 11/05/2019 Date Made Active in Reports: 01/14/2020

Number of Days to Update: 70

Source: Office of the State Comptroller

Telephone: 518-474-9034 Last EDR Contact: 03/02/2020

Next Scheduled EDR Contact: 05/18/2020 Data Release Frequency: Quarterly

LIENS 2: CERCLA Lien Information

A Federal CERCLA ('Superfund') lien can exist by operation of law at any site or property at which EPA has spent Superfund monies. These monies are spent to investigate and address releases and threatened releases of contamination. CERCLIS provides information as to the identity of these sites and properties.

Date of Government Version: 01/30/2020 Date Data Arrived at EDR: 02/05/2020 Date Made Active in Reports: 02/14/2020

Number of Days to Update: 9

Source: Environmental Protection Agency

Telephone: 202-564-6023 Last EDR Contact: 04/02/2020

Next Scheduled EDR Contact: 07/13/2020 Data Release Frequency: Semi-Annually

Records of Emergency Release Reports

HMIRS: Hazardous Materials Information Reporting System

Hazardous Materials Incident Report System. HMIRS contains hazardous material spill incidents reported to DOT.

Date of Government Version: 12/05/2019 Date Data Arrived at EDR: 12/06/2019 Date Made Active in Reports: 02/14/2020

Number of Days to Update: 70

Source: U.S. Department of Transportation

Telephone: 202-366-4555 Last EDR Contact: 03/24/2020

Next Scheduled EDR Contact: 07/06/2020 Data Release Frequency: Quarterly

SPILLS: Spills Information Database

Data collected on spills reported to NYSDEC as required by one or more of the following: Article 12 of the Navigation Law, 6 NYCRR Section 613.8 (from PBS regs), or 6 NYCRR Section 595.2 (from CBS regs). It includes spills active as of April 1, 1986, as well as spills occurring since this date.

Date of Government Version: 11/11/2019 Date Data Arrived at EDR: 11/11/2019 Date Made Active in Reports: 11/13/2019

Number of Days to Update: 2

Source: Department of Environmental Conservation

Telephone: 518-402-9549 Last EDR Contact: 02/07/2020

Next Scheduled EDR Contact: 05/25/2020 Data Release Frequency: Varies

HIST SPILLS: SPILLS Database

This database contains records of chemical and petroleum spill incidents. Under State law, petroleum and hazardous chemical spills that can impact the waters of the state must be reported by the spiller (and, in some cases, by anyone who has knowledge of the spills). In 2002, the Department of Environmental Conservation stopped providing updates to its original Spills Information Database. This database includes fields that are no longer available from the NYDEC as of January 1, 2002. Current information may be found in the NY SPILLS database. Department of Environmental Conservation.

Date of Government Version: 01/01/2002 Date Data Arrived at EDR: 07/08/2005 Date Made Active in Reports: 07/14/2005

Number of Days to Update: 6

Source: Department of Environmental Conservation Telephone: 518-402-9549 Last EDR Contact: 07/07/2005

Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

Other Ascertainable Records

RCRA NonGen / NLR: RCRA - Non Generators / No Longer Regulated

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Non-Generators do not presently generate hazardous

Date of Government Version: 12/16/2019 Date Data Arrived at EDR: 12/16/2019 Date Made Active in Reports: 12/20/2019

Number of Days to Update: 4

Source: Environmental Protection Agency

Telephone: (212) 637-3660 Last EDR Contact: 03/25/2020

Next Scheduled EDR Contact: 07/06/2020 Data Release Frequency: Quarterly

FUDS: Formerly Used Defense Sites

The listing includes locations of Formerly Used Defense Sites properties where the US Army Corps of Engineers is actively working or will take necessary cleanup actions.

Date of Government Version: 11/12/2019 Date Data Arrived at EDR: 11/19/2019 Date Made Active in Reports: 01/28/2020

Number of Days to Update: 70

Source: U.S. Army Corps of Engineers Telephone: 202-528-4285

Last EDR Contact: 02/19/2020

Next Scheduled EDR Contact: 06/01/2020 Data Release Frequency: Varies

DOD: Department of Defense Sites

This data set consists of federally owned or administered lands, administered by the Department of Defense, that have any area equal to or greater than 640 acres of the United States, Puerto Rico, and the U.S. Virgin Islands.

Date of Government Version: 12/31/2005 Date Data Arrived at EDR: 11/10/2006 Date Made Active in Reports: 01/11/2007

Number of Days to Update: 62

Source: USGS

Telephone: 888-275-8747 Last EDR Contact: 04/10/2020

Next Scheduled EDR Contact: 07/20/2020 Data Release Frequency: Semi-Annually

FEDLAND: Federal and Indian Lands

Federally and Indian administrated lands of the United States. Lands included are administrated by: Army Corps of Engineers, Bureau of Reclamation, National Wild and Scenic River, National Wildlife Refuge, Public Domain Land, Wilderness, Wilderness Study Area, Wildlife Management Area, Bureau of Indian Affairs, Bureau of Land Management, Department of Justice, Forest Service, Fish and Wildlife Service, National Park Service.

Date of Government Version: 04/02/2018 Date Data Arrived at EDR: 04/11/2018 Date Made Active in Reports: 11/06/2019

Number of Days to Update: 574

Source: U.S. Geological Survey Telephone: 888-275-8747 Last EDR Contact: 04/06/2020

Next Scheduled EDR Contact: 07/20/2020

Data Release Frequency: N/A

SCRD DRYCLEANERS: State Coalition for Remediation of Drycleaners Listing

The State Coalition for Remediation of Drycleaners was established in 1998, with support from the U.S. EPA Office of Superfund Remediation and Technology Innovation. It is comprised of representatives of states with established drycleaner remediation programs. Currently the member states are Alabama, Connecticut, Florida, Illinois, Kansas, Minnesota, Missouri, North Carolina, Oregon, South Carolina, Tennessee, Texas, and Wisconsin.

Date of Government Version: 01/01/2017 Date Data Arrived at EDR: 02/03/2017 Date Made Active in Reports: 04/07/2017

Number of Days to Update: 63

Source: Environmental Protection Agency

Telephone: 615-532-8599 Last EDR Contact: 02/13/2020

Next Scheduled EDR Contact: 05/25/2020 Data Release Frequency: Varies

US FIN ASSUR: Financial Assurance Information

All owners and operators of facilities that treat, store, or dispose of hazardous waste are required to provide proof that they will have sufficient funds to pay for the clean up, closure, and post-closure care of their facilities.

Date of Government Version: 12/16/2019 Date Data Arrived at EDR: 12/19/2019 Date Made Active in Reports: 02/27/2020

Number of Days to Update: 70

Source: Environmental Protection Agency

Telephone: 202-566-1917 Last EDR Contact: 03/24/2020

Next Scheduled EDR Contact: 07/06/2020 Data Release Frequency: Quarterly

EPA WATCH LIST: EPA WATCH LIST

EPA maintains a "Watch List" to facilitate dialogue between EPA, state and local environmental agencies on enforcement matters relating to facilities with alleged violations identified as either significant or high priority. Being on the Watch List does not mean that the facility has actually violated the law only that an investigation by EPA or a state or local environmental agency has led those organizations to allege that an unproven violation has in fact occurred. Being on the Watch List does not represent a higher level of concern regarding the alleged violations that were detected, but instead indicates cases requiring additional dialogue between EPA, state and local agencies - primarily because of the length of time the alleged violation has gone unaddressed or unresolved.

Date of Government Version: 08/30/2013
Date Data Arrived at EDR: 03/21/2014
Date Made Active in Reports: 06/17/2014

Number of Days to Update: 88

Source: Environmental Protection Agency

Telephone: 617-520-3000 Last EDR Contact: 02/03/2020

Next Scheduled EDR Contact: 05/18/2020 Data Release Frequency: Quarterly

2020 COR ACTION: 2020 Corrective Action Program List

The EPA has set ambitious goals for the RCRA Corrective Action program by creating the 2020 Corrective Action Universe. This RCRA cleanup baseline includes facilities expected to need corrective action. The 2020 universe contains a wide variety of sites. Some properties are heavily contaminated while others were contaminated but have since been cleaned up. Still others have not been fully investigated yet, and may require little or no remediation. Inclusion in the 2020 Universe does not necessarily imply failure on the part of a facility to meet its RCRA obligations.

Date of Government Version: 09/30/2017 Date Data Arrived at EDR: 05/08/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 73

Source: Environmental Protection Agency

Telephone: 703-308-4044 Last EDR Contact: 02/07/2020

Next Scheduled EDR Contact: 05/18/2020 Data Release Frequency: Varies

TSCA: Toxic Substances Control Act

Toxic Substances Control Act. TSCA identifies manufacturers and importers of chemical substances included on the TSCA Chemical Substance Inventory list. It includes data on the production volume of these substances by plant

Date of Government Version: 12/31/2016 Date Data Arrived at EDR: 06/21/2017 Date Made Active in Reports: 01/05/2018

Number of Days to Update: 198

Source: EPA

Telephone: 202-260-5521 Last EDR Contact: 03/20/2020

Next Scheduled EDR Contact: 06/29/2020 Data Release Frequency: Every 4 Years

TRIS: Toxic Chemical Release Inventory System

Toxic Release Inventory System. TRIS identifies facilities which release toxic chemicals to the air, water and land in reportable quantities under SARA Title III Section 313.

Date of Government Version: 12/31/2017 Date Data Arrived at EDR: 11/16/2018 Date Made Active in Reports: 11/21/2019

Number of Days to Update: 370

Source: EPA

Telephone: 202-566-0250 Last EDR Contact: 02/05/2020

Next Scheduled EDR Contact: 06/01/2020 Data Release Frequency: Annually

SSTS: Section 7 Tracking Systems

Section 7 of the Federal Insecticide, Fungicide and Rodenticide Act, as amended (92 Stat. 829) requires all registered pesticide-producing establishments to submit a report to the Environmental Protection Agency by March 1st each year. Each establishment must report the types and amounts of pesticides, active ingredients and devices being produced, and those having been produced and sold or distributed in the past year.

Date of Government Version: 05/01/2019 Date Data Arrived at EDR: 10/23/2019 Date Made Active in Reports: 01/15/2020

Number of Days to Update: 84

Source: EPA

Telephone: 202-564-4203 Last EDR Contact: 01/24/2020

Next Scheduled EDR Contact: 05/04/2020 Data Release Frequency: Annually

ROD: Records Of Decision

Record of Decision. ROD documents mandate a permanent remedy at an NPL (Superfund) site containing technical and health information to aid in the cleanup.

Date of Government Version: 01/30/2020 Date Data Arrived at EDR: 02/05/2020 Date Made Active in Reports: 02/14/2020

Number of Days to Update: 9

Source: EPA

Telephone: 703-416-0223 Last EDR Contact: 04/02/2020

Next Scheduled EDR Contact: 06/15/2020 Data Release Frequency: Annually

RMP: Risk Management Plans

When Congress passed the Clean Air Act Amendments of 1990, it required EPA to publish regulations and guidance for chemical accident prevention at facilities using extremely hazardous substances. The Risk Management Program Rule (RMP Rule) was written to implement Section 112(r) of these amendments. The rule, which built upon existing industry codes and standards, requires companies of all sizes that use certain flammable and toxic substances to develop a Risk Management Program, which includes a(n): Hazard assessment that details the potential effects of an accidental release, an accident history of the last five years, and an evaluation of worst-case and alternative accidental releases; Prevention program that includes safety precautions and maintenance, monitoring, and employee training measures; and Emergency response program that spells out emergency health care, employee training measures and procedures for informing the public and response agencies (e.g the fire department) should an accident occur.

Date of Government Version: 11/05/2019
Date Data Arrived at EDR: 11/20/2019
Date Made Active in Reports: 04/17/2020

Number of Days to Update: 149

Source: Environmental Protection Agency

Telephone: 202-564-8600 Last EDR Contact: 04/15/2020

Next Scheduled EDR Contact: 08/03/2020 Data Release Frequency: Varies

RAATS: RCRA Administrative Action Tracking System

RCRA Administration Action Tracking System. RAATS contains records based on enforcement actions issued under RCRA pertaining to major violators and includes administrative and civil actions brought by the EPA. For administration actions after September 30, 1995, data entry in the RAATS database was discontinued. EPA will retain a copy of the database for historical records. It was necessary to terminate RAATS because a decrease in agency resources made it impossible to continue to update the information contained in the database.

Date of Government Version: 04/17/1995 Date Data Arrived at EDR: 07/03/1995 Date Made Active in Reports: 08/07/1995

Number of Days to Update: 35

Source: EPA

Telephone: 202-564-4104 Last EDR Contact: 06/02/2008

Next Scheduled EDR Contact: 09/01/2008 Data Release Frequency: No Update Planned

PRP: Potentially Responsible Parties

A listing of verified Potentially Responsible Parties

Date of Government Version: 01/30/2020 Date Data Arrived at EDR: 02/06/2020 Date Made Active in Reports: 02/14/2020

Number of Days to Update: 8

Source: EPA

Telephone: 202-564-6023 Last EDR Contact: 04/02/2020

Next Scheduled EDR Contact: 05/18/2020 Data Release Frequency: Quarterly

PADS: PCB Activity Database System

PCB Activity Database. PADS Identifies generators, transporters, commercial storers and/or brokers and disposers of PCB's who are required to notify the EPA of such activities.

Date of Government Version: 10/09/2019 Date Data Arrived at EDR: 10/11/2019 Date Made Active in Reports: 12/20/2019

Number of Days to Update: 70

Source: EPA

Telephone: 202-566-0500 Last EDR Contact: 04/10/2020

Next Scheduled EDR Contact: 07/20/2020 Data Release Frequency: Annually

ICIS: Integrated Compliance Information System

The Integrated Compliance Information System (ICIS) supports the information needs of the national enforcement and compliance program as well as the unique needs of the National Pollutant Discharge Elimination System (NPDES) program.

Date of Government Version: 11/18/2016 Date Data Arrived at EDR: 11/23/2016 Date Made Active in Reports: 02/10/2017

Number of Days to Update: 79

Source: Environmental Protection Agency

Telephone: 202-564-2501 Last EDR Contact: 03/26/2020

Next Scheduled EDR Contact: 07/20/2020 Data Release Frequency: Quarterly

FTTS: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act)

FTTS tracks administrative cases and pesticide enforcement actions and compliance activities related to FIFRA, TSCA and EPCRA (Emergency Planning and Community Right-to-Know Act). To maintain currency, EDR contacts the Agency on a quarterly basis.

Date of Government Version: 04/09/2009 Date Data Arrived at EDR: 04/16/2009 Date Made Active in Reports: 05/11/2009

Number of Days to Update: 25

Source: EPA/Office of Prevention, Pesticides and Toxic Substances

Telephone: 202-566-1667 Last EDR Contact: 08/18/2017

Next Scheduled EDR Contact: 12/04/2017 Data Release Frequency: No Update Planned

FTTS INSP: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act)
A listing of FIFRA/TSCA Tracking System (FTTS) inspections and enforcements.

Date of Government Version: 04/09/2009 Date Data Arrived at EDR: 04/16/2009 Date Made Active in Reports: 05/11/2009

Number of Days to Update: 25

Source: EPA

Telephone: 202-566-1667 Last EDR Contact: 08/18/2017

Next Scheduled EDR Contact: 12/04/2017 Data Release Frequency: No Update Planned

MLTS: Material Licensing Tracking System

MLTS is maintained by the Nuclear Regulatory Commission and contains a list of approximately 8,100 sites which possess or use radioactive materials and which are subject to NRC licensing requirements. To maintain currency, EDR contacts the Agency on a quarterly basis.

Date of Government Version: 10/25/2019 Date Data Arrived at EDR: 10/25/2019 Date Made Active in Reports: 01/15/2020

Number of Days to Update: 82

Source: Nuclear Regulatory Commission

Telephone: 301-415-7169 Last EDR Contact: 04/10/2020

Next Scheduled EDR Contact: 08/03/2020 Data Release Frequency: Quarterly

COAL ASH DOE: Steam-Electric Plant Operation Data

A listing of power plants that store ash in surface ponds.

Date of Government Version: 12/31/2018 Date Data Arrived at EDR: 12/04/2019 Date Made Active in Reports: 01/15/2020

Number of Days to Update: 42

Source: Department of Energy Telephone: 202-586-8719 Last EDR Contact: 03/06/2020

Next Scheduled EDR Contact: 06/15/2020 Data Release Frequency: Varies

COAL ASH EPA: Coal Combustion Residues Surface Impoundments List

A listing of coal combustion residues surface impoundments with high hazard potential ratings.

Date of Government Version: 01/12/2017
Date Data Arrived at EDR: 03/05/2019
Date Made Active in Reports: 11/11/2019

Number of Days to Update: 251

Source: Environmental Protection Agency

Telephone: N/A

Last EDR Contact: 02/27/2020

Next Scheduled EDR Contact: 06/15/2020 Data Release Frequency: Varies

PCB TRANSFORMER: PCB Transformer Registration Database

The database of PCB transformer registrations that includes all PCB registration submittals.

Date of Government Version: 09/13/2019 Date Data Arrived at EDR: 11/06/2019 Date Made Active in Reports: 02/10/2020

Number of Days to Update: 96

Source: Environmental Protection Agency

Telephone: 202-566-0517 Last EDR Contact: 02/07/2020

Next Scheduled EDR Contact: 05/18/2020 Data Release Frequency: Varies

RADINFO: Radiation Information Database

The Radiation Information Database (RADINFO) contains information about facilities that are regulated by U.S. Environmental Protection Agency (EPA) regulations for radiation and radioactivity.

Date of Government Version: 07/01/2019 Date Data Arrived at EDR: 07/01/2019 Date Made Active in Reports: 09/23/2019

Number of Days to Update: 84

Source: Environmental Protection Agency

Telephone: 202-343-9775 Last EDR Contact: 07/01/2019

Next Scheduled EDR Contact: 07/13/2020 Data Release Frequency: Quarterly

HIST FTTS: FIFRA/TSCA Tracking System Administrative Case Listing

A complete administrative case listing from the FIFRA/TSCA Tracking System (FTTS) for all ten EPA regions. The information was obtained from the National Compliance Database (NCDB). NCDB supports the implementation of FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act) and TSCA (Toxic Substances Control Act). Some EPA regions are now closing out records. Because of that, and the fact that some EPA regions are not providing EPA Headquarters with updated records, it was decided to create a HIST FTTS database. It included records that may not be included in the newer FTTS database updates. This database is no longer updated.

Date of Government Version: 10/19/2006 Date Data Arrived at EDR: 03/01/2007 Date Made Active in Reports: 04/10/2007

Number of Days to Update: 40

Source: Environmental Protection Agency

Telephone: 202-564-2501 Last EDR Contact: 12/17/2007

Next Scheduled EDR Contact: 03/17/2008

Data Release Frequency: No Update Planned

HIST FTTS INSP: FIFRA/TSCA Tracking System Inspection & Enforcement Case Listing

A complete inspection and enforcement case listing from the FIFRA/TSCA Tracking System (FTTS) for all ten EPA regions. The information was obtained from the National Compliance Database (NCDB). NCDB supports the implementation of FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act) and TSCA (Toxic Substances Control Act). Some EPA regions are now closing out records. Because of that, and the fact that some EPA regions are not providing EPA Headquarters with updated records, it was decided to create a HIST FTTS database. It included records that may not be included in the newer FTTS database updates. This database is no longer updated.

Date of Government Version: 10/19/2006 Date Data Arrived at EDR: 03/01/2007 Date Made Active in Reports: 04/10/2007

Number of Days to Update: 40

Source: Environmental Protection Agency

Telephone: 202-564-2501 Last EDR Contact: 12/17/2008

Next Scheduled EDR Contact: 03/17/2008 Data Release Frequency: No Update Planned

DOT OPS: Incident and Accident Data

Department of Transporation, Office of Pipeline Safety Incident and Accident data.

Date of Government Version: 01/02/2020 Date Data Arrived at EDR: 01/28/2020 Date Made Active in Reports: 04/17/2020

Number of Days to Update: 80

Source: Department of Transporation, Office of Pipeline Safety

Telephone: 202-366-4595 Last EDR Contact: 01/28/2020

Next Scheduled EDR Contact: 05/11/2020 Data Release Frequency: Quarterly

CONSENT: Superfund (CERCLA) Consent Decrees

Major legal settlements that establish responsibility and standards for cleanup at NPL (Superfund) sites. Released periodically by United States District Courts after settlement by parties to litigation matters.

Date of Government Version: 12/31/2019 Date Data Arrived at EDR: 01/17/2020 Date Made Active in Reports: 03/06/2020

Number of Days to Update: 49

Source: Department of Justice, Consent Decree Library

Telephone: Varies

Last EDR Contact: 03/26/2020

Next Scheduled EDR Contact: 07/20/2020 Data Release Frequency: Varies

BRS: Biennial Reporting System

The Biennial Reporting System is a national system administered by the EPA that collects data on the generation and management of hazardous waste. BRS captures detailed data from two groups: Large Quantity Generators (LQG) and Treatment, Storage, and Disposal Facilities.

Date of Government Version: 12/31/2015 Date Data Arrived at EDR: 02/22/2017 Date Made Active in Reports: 09/28/2017

Number of Days to Update: 218

Source: EPA/NTIS Telephone: 800-424-9346 Last EDR Contact: 03/25/2020

Next Scheduled EDR Contact: 07/06/2020 Data Release Frequency: Biennially

INDIAN RESERV: Indian Reservations

This map layer portrays Indian administered lands of the United States that have any area equal to or greater

than 640 acres.

Date of Government Version: 12/31/2014 Date Data Arrived at EDR: 07/14/2015 Date Made Active in Reports: 01/10/2017

Number of Days to Update: 546

Source: USGS

Telephone: 202-208-3710 Last EDR Contact: 04/10/2020

Next Scheduled EDR Contact: 07/20/2020 Data Release Frequency: Semi-Annually

FUSRAP: Formerly Utilized Sites Remedial Action Program

DOE established the Formerly Utilized Sites Remedial Action Program (FUSRAP) in 1974 to remediate sites where radioactive contamination remained from Manhattan Project and early U.S. Atomic Energy Commission (AEC) operations.

Date of Government Version: 08/08/2017 Date Data Arrived at EDR: 09/11/2018 Date Made Active in Reports: 09/14/2018

Number of Days to Update: 3

Source: Department of Energy Telephone: 202-586-3559 Last EDR Contact: 01/31/2020

Next Scheduled EDR Contact: 05/18/2020

Data Release Frequency: Varies

UMTRA: Uranium Mill Tailings Sites

Uranium ore was mined by private companies for federal government use in national defense programs. When the mills shut down, large piles of the sand-like material (mill tailings) remain after uranium has been extracted from the ore. Levels of human exposure to radioactive materials from the piles are low; however, in some cases tailings were used as construction materials before the potential health hazards of the tailings were recognized.

Date of Government Version: 08/30/2019 Date Data Arrived at EDR: 11/15/2019 Date Made Active in Reports: 01/28/2020

Number of Days to Update: 74

Source: Department of Energy Telephone: 505-845-0011 Last EDR Contact: 02/21/2020

Next Scheduled EDR Contact: 06/01/2020

Data Release Frequency: Varies

LEAD SMELTER 1: Lead Smelter Sites

A listing of former lead smelter site locations.

Date of Government Version: 01/30/2020 Date Data Arrived at EDR: 02/05/2020 Date Made Active in Reports: 02/14/2020

Number of Days to Update: 9

Source: Environmental Protection Agency

Telephone: 703-603-8787 Last EDR Contact: 04/02/2020

Next Scheduled EDR Contact: 07/13/2020

Data Release Frequency: Varies

LEAD SMELTER 2: Lead Smelter Sites

A list of several hundred sites in the U.S. where secondary lead smelting was done from 1931and 1964. These sites may pose a threat to public health through ingestion or inhalation of contaminated soil or dust

Date of Government Version: 04/05/2001 Date Data Arrived at EDR: 10/27/2010 Date Made Active in Reports: 12/02/2010

Number of Days to Update: 36

Source: American Journal of Public Health

Telephone: 703-305-6451 Last EDR Contact: 12/02/2009 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

US AIRS (AFS): Aerometric Information Retrieval System Facility Subsystem (AFS)

The database is a sub-system of Aerometric Information Retrieval System (AIRS). AFS contains compliance data on air pollution point sources regulated by the U.S. EPA and/or state and local air regulatory agencies. This information comes from source reports by various stationary sources of air pollution, such as electric power plants, steel mills, factories, and universities, and provides information about the air pollutants they produce. Action, air program, air program pollutant, and general level plant data. It is used to track emissions and compliance data from industrial plants.

Telephone: 202-564-2496

Last EDR Contact: 09/26/2017

Next Scheduled EDR Contact: 01/08/2018
Data Release Frequency: Annually

Date of Government Version: 10/12/2016 Date Data Arrived at EDR: 10/26/2016 Date Made Active in Reports: 02/03/2017

Number of Days to Update: 100

US AIRS MINOR: Air Facility System Data A listing of minor source facilities.

Date of Government Version: 10/12/2016
Date Data Arrived at EDR: 10/26/2016
Date Made Active in Reports: 02/03/2017

Number of Days to Update: 100

Source: EPA

Source: EPA

Telephone: 202-564-2496 Last EDR Contact: 09/26/2017

Next Scheduled EDR Contact: 01/08/2018 Data Release Frequency: Annually

US MINES: Mines Master Index File

Contains all mine identification numbers issued for mines active or opened since 1971. The data also includes violation information.

Date of Government Version: 11/06/2019 Date Data Arrived at EDR: 11/25/2019 Date Made Active in Reports: 01/28/2020

Number of Days to Update: 64

Source: Department of Labor, Mine Safety and Health Administration

Telephone: 303-231-5959 Last EDR Contact: 02/25/2020

Next Scheduled EDR Contact: 06/08/2020 Data Release Frequency: Semi-Annually

MINES VIOLATIONS: MSHA Violation Assessment Data

Mines violation and assessment information. Department of Labor, Mine Safety & Health Administration.

Date of Government Version: 12/03/2019 Date Data Arrived at EDR: 12/03/2019 Date Made Active in Reports: 01/28/2020

Number of Days to Update: 56

Source: DOL, Mine Safety & Health Admi

Telephone: 202-693-9424 Last EDR Contact: 03/02/2020

Next Scheduled EDR Contact: 06/15/2020 Data Release Frequency: Quarterly

US MINES 2: Ferrous and Nonferrous Metal Mines Database Listing

This map layer includes ferrous (ferrous metal mines are facilities that extract ferrous metals, such as iron ore or molybdenum) and nonferrous (Nonferrous metal mines are facilities that extract nonferrous metals, such as gold, silver, copper, zinc, and lead) metal mines in the United States.

Date of Government Version: 12/05/2005 Date Data Arrived at EDR: 02/29/2008 Date Made Active in Reports: 04/18/2008

Number of Days to Update: 49

Source: USGS

Telephone: 703-648-7709 Last EDR Contact: 02/28/2020

Next Scheduled EDR Contact: 06/08/2020 Data Release Frequency: Varies

US MINES 3: Active Mines & Mineral Plants Database Listing

Active Mines and Mineral Processing Plant operations for commodities monitored by the Minerals Information Team of the USGS.

Date of Government Version: 04/14/2011 Date Data Arrived at EDR: 06/08/2011 Date Made Active in Reports: 09/13/2011

Number of Days to Update: 97

Source: USGS

Telephone: 703-648-7709 Last EDR Contact: 02/28/2020

Next Scheduled EDR Contact: 06/08/2020

Data Release Frequency: Varies

ABANDONED MINES: Abandoned Mines

An inventory of land and water impacted by past mining (primarily coal mining) is maintained by OSMRE to provide information needed to implement the Surface Mining Control and Reclamation Act of 1977 (SMCRA). The inventory contains information on the location, type, and extent of AML impacts, as well as, information on the cost associated with the reclamation of those problems. The inventory is based upon field surveys by State, Tribal, and OSMRE program officials. It is dynamic to the extent that it is modified as new problems are identified and existing problems are reclaimed.

Date of Government Version: 12/09/2019 Date Data Arrived at EDR: 12/11/2019 Date Made Active in Reports: 02/27/2020

Number of Days to Update: 78

Source: Department of Interior Telephone: 202-208-2609 Last EDR Contact: 03/05/2020

Next Scheduled EDR Contact: 06/22/2020 Data Release Frequency: Quarterly

FINDS: Facility Index System/Facility Registry System

Facility Index System. FINDS contains both facility information and 'pointers' to other sources that contain more detail. EDR includes the following FINDS databases in this report: PCS (Permit Compliance System), AIRS (Aerometric Information Retrieval System), DOCKET (Enforcement Docket used to manage and track information on civil judicial enforcement cases for all environmental statutes), FURS (Federal Underground Injection Control), C-DOCKET (Criminal Docket System used to track criminal enforcement actions for all environmental statutes), FFIS (Federal Facilities Information System), STATE (State Environmental Laws and Statutes), and PADS (PCB Activity Data System).

Date of Government Version: 11/22/2019 Date Data Arrived at EDR: 12/04/2019 Date Made Active in Reports: 03/02/2020

Number of Days to Update: 89

Source: EPA Telephone: (212) 637-3000 Last EDR Contact: 03/03/2020

Next Scheduled EDR Contact: 06/15/2020 Data Release Frequency: Quarterly

ECHO: Enforcement & Compliance History Information

ECHO provides integrated compliance and enforcement information for about 800,000 regulated facilities nationwide.

Date of Government Version: 01/05/2020 Date Data Arrived at EDR: 01/07/2020 Date Made Active in Reports: 03/06/2020

Number of Days to Update: 59

Source: Environmental Protection Agency

Telephone: 202-564-2280 Last EDR Contact: 04/07/2020

Next Scheduled EDR Contact: 07/20/2020 Data Release Frequency: Quarterly

DOCKET HWC: Hazardous Waste Compliance Docket Listing

A complete list of the Federal Agency Hazardous Waste Compliance Docket Facilities.

Date of Government Version: 05/31/2018 Date Data Arrived at EDR: 07/26/2018 Date Made Active in Reports: 10/05/2018

Number of Days to Update: 71

Source: Environmental Protection Agency

Telephone: 202-564-0527 Last EDR Contact: 02/21/2020

Next Scheduled EDR Contact: 06/08/2020 Data Release Frequency: Varies

UXO: Unexploded Ordnance Sites

A listing of unexploded ordnance site locations

Date of Government Version: 12/31/2017 Date Data Arrived at EDR: 01/17/2019 Date Made Active in Reports: 04/01/2019

Number of Days to Update: 74

Source: Department of Defense Telephone: 703-704-1564 Last EDR Contact: 04/03/2020

Next Scheduled EDR Contact: 07/27/2020 Data Release Frequency: Varies

FUELS PROGRAM: EPA Fuels Program Registered Listing

This listing includes facilities that are registered under the Part 80 (Code of Federal Regulations) EPA Fuels Programs. All companies now are required to submit new and updated registrations.

Date of Government Version: 11/18/2019 Date Data Arrived at EDR: 11/19/2019 Date Made Active in Reports: 01/28/2020

Number of Days to Update: 70

Source: EPA

Telephone: 800-385-6164 Last EDR Contact: 02/19/2020

Next Scheduled EDR Contact: 06/01/2020 Data Release Frequency: Quarterly

AIRS: Air Emissions Data

Point source emissions inventory data.

Date of Government Version: 08/14/2019 Date Data Arrived at EDR: 08/14/2019 Date Made Active in Reports: 10/16/2019

Number of Days to Update: 63

Source: Department of Environmental Conservation

Telephone: 518-402-8452 Last EDR Contact: 03/25/2020

Next Scheduled EDR Contact: 08/03/2020 Data Release Frequency: Annually

COAL ASH: Coal Ash Disposal Site Listing
A listing of coal ash disposal site locations.

Date of Government Version: 10/09/2019 Date Data Arrived at EDR: 10/10/2019 Date Made Active in Reports: 12/18/2019

Number of Days to Update: 69

Source: Department of Environmental Conservation

Telephone: 518-402-8660 Last EDR Contact: 03/20/2020

Next Scheduled EDR Contact: 07/13/2020 Data Release Frequency: Quarterly

DRYCLEANERS: Registered Drycleaners

A listing of all registered drycleaning facilities.

Date of Government Version: 07/12/2019 Date Data Arrived at EDR: 12/09/2019 Date Made Active in Reports: 02/06/2020

Number of Days to Update: 59

Source: Department of Environmental Conservation

Telephone: 518-402-8403 Last EDR Contact: 03/09/2020

Next Scheduled EDR Contact: 06/22/2020 Data Release Frequency: Annually

E DESIGNATION: E DESIGNATION SITE LISTING

The (E (Environmental)) designation would ensure that sampling and remediation take place on the subject properties, and would avoid any significant impacts related to hazardous materials at these locations. The (E) designations would require that the fee owner of the sites conduct a testing and sampling protocol, and remediation where appropriate, to the satisfaction of the NYCDEP before the issuance of a building permit by the Department of Buildings pursuant to the provisions of Section 11-15 of the Zoning Resolution (Environmental Requirements). The (E) designations also include a mandatory construction-related health and safety plan which must be approved by NYCDEP.

Date of Government Version: 12/16/2019 Date Data Arrived at EDR: 01/16/2020 Date Made Active in Reports: 03/26/2020

Number of Days to Update: 70

Source: New York City Department of City Planning

Telephone: 718-595-6658 Last EDR Contact: 03/17/2020

Next Scheduled EDR Contact: 06/29/2020 Data Release Frequency: Semi-Annually

Financial Assurance 1: Financial Assurance Information Listing

Financial assurance information.

Date of Government Version: 07/01/2019 Date Data Arrived at EDR: 07/02/2019 Date Made Active in Reports: 09/06/2019

Number of Days to Update: 66

Source: Department of Environmental Conservation

Telephone: 518-402-8660 Last EDR Contact: 03/20/2020

Next Scheduled EDR Contact: 07/13/2020 Data Release Frequency: Quarterly

Financial Assurance 2: Financial Assurance Information Listing

A listing of financial assurance information for hazardous waste facilities. Financial assurance is intended to ensure that resources are available to pay for the cost of closure, post-closure care, and corrective measures if the owner or operator of a regulated facility is unable or unwilling to pay.

Date of Government Version: 03/01/2019 Date Data Arrived at EDR: 03/19/2019 Date Made Active in Reports: 06/18/2019

Number of Days to Update: 91

Source: Department of Environmental Conservation

Telephone: 518-402-8712 Last EDR Contact: 03/09/2020

Next Scheduled EDR Contact: 06/22/2020 Data Release Frequency: Varies

HSWDS: Hazardous Substance Waste Disposal Site Inventory

The list includes any known or suspected hazardous substance waste disposal sites. Also included are sites delisted from the Registry of Inactive Hazardous Waste Disposal Sites and non-Registry sites that U.S. EPA Preliminary Assessment (PA) reports or Site Investigation (SI) reports were prepared. Hazardous Substance Waste Disposal Sites are eligible to be Superfund sites now that the New York State Superfund has been refinanced and changed. This means that the study inventory has served its purpose and will no longer be maintained as a separate entity. The last version of the study inventory is frozen in time. The sites on the study will not automatically be made Superfund sites, rather each site will be further evaluated for listing on the Registry. So overtime they will be added to the registry or not.

Date of Government Version: 01/01/2003 Date Data Arrived at EDR: 10/20/2006 Date Made Active in Reports: 11/30/2006

Number of Days to Update: 41

Source: Department of Environmental Conservation

Telephone: 518-402-9564 Last EDR Contact: 05/26/2009

Next Scheduled EDR Contact: 08/24/2009 Data Release Frequency: No Update Planned

NY MANIFEST: Facility and Manifest Data

Manifest is a document that lists and tracks hazardous waste from the generator through transporters to a TSD

facility.

Date of Government Version: 01/01/2019 Date Data Arrived at EDR: 05/01/2019 Date Made Active in Reports: 06/21/2019

Number of Days to Update: 51

Source: Department of Environmental Conservation

Telephone: 518-402-8651 Last EDR Contact: 01/31/2020

Next Scheduled EDR Contact: 05/11/2020 Data Release Frequency: Quarterly

SPDES: State Pollutant Discharge Elimination System

New York State has a state program which has been approved by the United States Environmental Protection Agency for the control of wastewater and stormwater discharges in accordance with the Clean Water Act. Under New York State law the program is known as the State Pollutant Discharge Elimination System (SPDES) and is broader in scope than that required by the Clean Water Act in that it controls point source discharges to groundwaters as well as surface waters.

Date of Government Version: 11/14/2019 Date Data Arrived at EDR: 11/15/2019 Date Made Active in Reports: 01/17/2020

Number of Days to Update: 63

Source: Department of Environmental Conservation

Telephone: 518-402-8233 Last EDR Contact: 04/14/2020

Next Scheduled EDR Contact: 08/03/2020 Data Release Frequency: No Update Planned

VAPOR REOPENED: Vapor Intrusion Legacy Site List

New York is currently re-evaluating previous assumptions and decisions regarding the potential for soil vapor intrusion exposures at sites. As a result, all past, current, and future contaminated sites will be evaluated to determine whether these sites have the potential for exposures related to soil vapor intrusion.

Date of Government Version: 12/01/2018 Date Data Arrived at EDR: 02/13/2019 Date Made Active in Reports: 06/13/2019

Number of Days to Update: 120

Source: Department of Environmenal Conservation

Telephone: 518-402-9814 Last EDR Contact: 02/14/2020

Next Scheduled EDR Contact: 05/25/2020 Data Release Frequency: Varies

UIC: Underground Injection Control Wells

A listing of enhanced oil recovery underground injection wells.

Date of Government Version: 12/02/2019 Date Data Arrived at EDR: 12/05/2019 Date Made Active in Reports: 02/06/2020

Number of Days to Update: 63

Source: Department of Environmental Conservation

Telephone: 518-402-8056 Last EDR Contact: 03/04/2020

Next Scheduled EDR Contact: 06/15/2020 Data Release Frequency: Quarterly

COOLING TOWERS: Registered Cooling Towers

This data includes the location of cooling towers registered with New York State. The data is self-reported by owners/property managers of cooling towers in service in New York State. In August 2015, the New York State Department of Health released emergency regulations requiring the owners of cooling towers to register them with New York State.

Date of Government Version: 01/14/2020 Date Data Arrived at EDR: 01/15/2020 Date Made Active in Reports: 03/25/2020

Number of Days to Update: 70

Source: Department of Health Telephone: 518-402-7650 Last EDR Contact: 04/15/2020

Next Scheduled EDR Contact: 07/27/2020

Data Release Frequency: Varies

MINES MRDS: Mineral Resources Data System

Mineral Resources Data System

Date of Government Version: 04/06/2018 Date Data Arrived at EDR: 10/21/2019 Date Made Active in Reports: 10/24/2019

Number of Days to Update: 3

Source: USGS

Telephone: 703-648-6533 Last EDR Contact: 02/28/2020

Next Scheduled EDR Contact: 06/08/2020

Data Release Frequency: Varies

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records

EDR MGP: EDR Proprietary Manufactured Gas Plants

The EDR Proprietary Manufactured Gas Plant Database includes records of coal gas plants (manufactured gas plants) compiled by EDR's researchers. Manufactured gas sites were used in the United States from the 1800's to 1950's to produce a gas that could be distributed and used as fuel. These plants used whale oil, rosin, coal, or a mixture of coal, oil, and water that also produced a significant amount of waste. Many of the byproducts of the gas production, such as coal tar (oily waste containing volatile and non-volatile chemicals), sludges, oils and other compounds are potentially hazardous to human health and the environment. The byproduct from this process was frequently disposed of directly at the plant site and can remain or spread slowly, serving as a continuous source of soil and groundwater contamination.

Date of Government Version: N/A Source: EDR, Inc.

Date Data Arrived at EDR: N/A Telephone: N/A

Date Made Active in Reports: N/A Last EDR Contact: N/A

Number of Days to Update: N/A Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

EDR Hist Auto: EDR Exclusive Historical Auto Stations

EDR has searched selected national collections of business directories and has collected listings of potential gas station/filling station/service station sites that were available to EDR researchers. EDR's review was limited to those categories of sources that might, in EDR's opinion, include gas station/filling station/service station establishments. The categories reviewed included, but were not limited to gas, gas station, gasoline station, filling station, auto, automobile repair, auto service station, service station, etc. This database falls within a category of information EDR classifies as "High Risk Historical Records", or HRHR. EDR's HRHR effort presents unique and sometimes proprietary data about past sites and operations that typically create environmental concerns, but may not show up in current government records searches.

Date of Government Version: N/A Source: EDR, Inc.
Date Data Arrived at EDR: N/A Telephone: N/A
Date Made Active in Reports: N/A Last EDR Contact: N/A

Number of Days to Update: N/A Next Scheduled EDR Contact: N/A

Data Release Frequency: Varies

EDR Hist Cleaner: EDR Exclusive Historical Cleaners

EDR has searched selected national collections of business directories and has collected listings of potential dry cleaner sites that were available to EDR researchers. EDR's review was limited to those categories of sources that might, in EDR's opinion, include dry cleaning establishments. The categories reviewed included, but were not limited to dry cleaners, cleaners, laundry, laundromat, cleaning/laundry, wash & dry etc. This database falls within a category of information EDR classifies as "High Risk Historical Records", or HRHR. EDR's HRHR effort presents unique and sometimes proprietary data about past sites and operations that typically create environmental concerns, but may not show up in current government records searches.

Date of Government Version: N/A

Date Data Arrived at EDR: N/A

Date Made Active in Reports: N/A

Number of Days to Update: N/A

Source: EDR, Inc.

Telephone: N/A

Last EDR Contact: N/A

Next Scheduled EDR C

Imber of Days to Update: N/A Next Scheduled EDR Contact: N/A
Data Release Frequency: Varies

EDR RECOVERED GOVERNMENT ARCHIVES

Exclusive Recovered Govt. Archives

RGA HWS: Recovered Government Archive State Hazardous Waste Facilities List

The EDR Recovered Government Archive State Hazardous Waste database provides a list of SHWS incidents derived from historical databases and includes many records that no longer appear in current government lists. Compiled from Records formerly available from the Department of Environmental Conservation in New York.

Date of Government Version: N/A Date Data Arrived at EDR: 07/01/2013 Date Made Active in Reports: 12/30/2013 Number of Days to Update: 182

Telephone: N/A Last EDR Contact: 06/01/2012

Source: Department of Environmental Conservation

Source: Department of Environmental Conservation

Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

RGA LF: Recovered Government Archive Solid Waste Facilities List

The EDR Recovered Government Archive Landfill database provides a list of landfills derived from historical databases and includes many records that no longer appear in current government lists. Compiled from Records formerly available from the Department of Environmental Conservation in New York.

Date of Government Version: N/A Date Data Arrived at EDR: 07/01/2013 Date Made Active in Reports: 01/10/2014

Telephone: N/A Last EDR Contact: 06/01/2012

Number of Days to Update: 193

Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

COUNTY RECORDS

CORTLAND COUNTY:

AST - CORTLAND: Cortland County Storage Tank Listing A listing of aboveground storage tank sites located in Cortland County.

Date of Government Version: 08/20/2019 Date Data Arrived at EDR: 08/20/2019 Date Made Active in Reports: 10/16/2019

Number of Days to Update: 57

Source: Cortland County Health Department Telephone: 607-753-5035 Last EDR Contact: 04/17/2020

Next Scheduled EDR Contact: 08/10/2020 Data Release Frequency: Quarterly

UST - CORTLAND: Cortland County Storage Tank Listing

A listing of underground storage tank sites located in Cortland County.

Date of Government Version: 08/20/2019 Date Data Arrived at EDR: 08/20/2019 Date Made Active in Reports: 10/16/2019

Number of Days to Update: 57

Source: Cortland County Health Department

Telephone: 607-753-5035 Last EDR Contact: 04/17/2020

Next Scheduled EDR Contact: 08/10/2020 Data Release Frequency: Quarterly

NASSAU COUNTY:

AST - NASSAU: Registered Tank Database

A listing of aboveground storage tank sites located in Nassau County.

Date of Government Version: 01/09/2017 Date Data Arrived at EDR: 01/11/2017 Date Made Active in Reports: 02/15/2017

Number of Days to Update: 35

Source: Nassau County Health Department

Telephone: 516-571-3314 Last EDR Contact: 04/17/2020

Next Scheduled EDR Contact: 08/10/2020 Data Release Frequency: No Update Planned

AST NCFM: Storage Tank Database

A listing of aboveground storage tank sites located in Nassau County.

Date of Government Version: 02/15/2011 Date Data Arrived at EDR: 02/23/2011 Date Made Active in Reports: 03/29/2011

Number of Days to Update: 34

Source: Nassau County Office of the Fire Marshal

Telephone: 516-572-1000 Last EDR Contact: 04/17/2020

Next Scheduled EDR Contact: 08/10/2020 Data Release Frequency: Varies

TANKS NASSAU: Registered Tank Database in Nassau County A listing of facilities in Nassau County with storage tanks.

Date of Government Version: 01/09/2017 Date Data Arrived at EDR: 01/11/2017 Date Made Active in Reports: 02/15/2017

Number of Days to Update: 35

Source: Nassau County Department of Health

Telephone: 516-227-9691 Last EDR Contact: 04/17/2020

Next Scheduled EDR Contact: 08/10/2020

Data Release Frequency: Varies

UST - NASSAU: Registered Tank Database

A listing of underground storage tank sites located in Nassau County.

Date of Government Version: 01/09/2017 Date Data Arrived at EDR: 01/11/2017 Date Made Active in Reports: 02/15/2017

Number of Days to Update: 35

Source: Nassau County Health Department

Telephone: 516-571-3314 Last EDR Contact: 04/17/2020

Next Scheduled EDR Contact: 08/10/2020 Data Release Frequency: No Update Planned

UST NCFM: Storage Tank Database

A listing of underground storage tank sites located in Nassau County.

Date of Government Version: 02/15/2011 Date Data Arrived at EDR: 02/23/2011 Date Made Active in Reports: 03/29/2011

Number of Days to Update: 34

Source: Nassau County Office of the Fire Marshal

Telephone: 516-572-1000 Last EDR Contact: 04/17/2020

Next Scheduled EDR Contact: 08/10/2020

Data Release Frequency: Varies

ROCKLAND COUNTY:

AST - ROCKLAND: Petroleum Bulk Storage Database

A listing of aboveground storage tank sites located in Rockland County. Rockland County?s Petroleum Bulk Storage (PBS) program is no longer in service. All related operations/duties are now wholly overseen by the New York State Dept. of Environmental Conservation (NYSDEC).

Date of Government Version: 02/02/2017 Date Data Arrived at EDR: 03/17/2017 Date Made Active in Reports: 09/22/2017

Number of Days to Update: 189

Source: Rockland County Health Department

Telephone: 914-364-2605 Last EDR Contact: 03/02/2020

Next Scheduled EDR Contact: 06/15/2020 Data Release Frequency: No Update Planned

UST - ROCKLAND: Petroleum Bulk Storage Database

A listing of underground storage tank sites located in Rockland County. Rockland County?s Petroleum Bulk Storage (PBS) program is no longer in service. All related operations/duties are now wholly overseen by the New York State Dept. of Environmental Conservation (NYSDEC).

Date of Government Version: 02/02/2017 Date Data Arrived at EDR: 03/17/2017 Date Made Active in Reports: 09/22/2017 Number of Days to Update: 189

Source: Rockland County Health Department Telephone: 914-364-2605

Last EDR Contact: 03/02/2020

Next Scheduled EDR Contact: 06/15/2020 Data Release Frequency: No Update Planned

SUFFOLK COUNTY:

AST - SUFFOLK: Storage Tank Database

A listing of aboveground storage tank sites located in Suffolk County.

Date of Government Version: 06/28/2018 Date Data Arrived at EDR: 12/06/2018 Date Made Active in Reports: 02/07/2019

Number of Days to Update: 63

Source: Suffolk County Department of Health Services

Telephone: 631-854-2521 Last EDR Contact: 04/17/2020

Next Scheduled EDR Contact: 08/10/2020 Data Release Frequency: No Update Planned

UST - SUFFOLK: Storage Tank Database

A listing of underground storage tank sites located in Suffolk County.

Date of Government Version: 06/28/2018 Date Data Arrived at EDR: 12/06/2018 Date Made Active in Reports: 02/07/2019

Number of Days to Update: 63

Source: Suffolk County Department of Health Services

Telephone: 631-854-2521 Last EDR Contact: 04/17/2020

Next Scheduled EDR Contact: 08/10/2020 Data Release Frequency: No Update Planned

WESTCHESTER COUNTY:

AST - WESTCHESTER: Listing of Storage Tanks

A listing of aboveground storage tank sites located in Westchester County.

Date of Government Version: 01/31/2020 Date Data Arrived at EDR: 02/11/2020 Date Made Active in Reports: 02/14/2020

Number of Days to Update: 3

Source: Westchester County Department of Health

Telephone: 914-813-5161 Last EDR Contact: 04/17/2020

Next Scheduled EDR Contact: 08/10/2020 Data Release Frequency: Semi-Annually

UST - WESTCHESTER: Listing of Storage Tanks

A listing of underground storage tank sites located in Westchester County.

Date of Government Version: 01/31/2020 Date Data Arrived at EDR: 02/11/2020 Date Made Active in Reports: 02/14/2020

Number of Days to Update: 3

Source: Westchester County Department of Health

Telephone: 914-813-5161 Last EDR Contact: 04/17/2020

Next Scheduled EDR Contact: 08/10/2020 Data Release Frequency: Semi-Annually

OTHER DATABASE(S)

Depending on the geographic area covered by this report, the data provided in these specialty databases may or may not be complete. For example, the existence of wetlands information data in a specific report does not mean that all wetlands in the area covered by the report are included. Moreover, the absence of any reported wetlands information does not necessarily mean that wetlands do not exist in the area covered by the report.

CT MANIFEST: Hazardous Waste Manifest Data

Facility and manifest data. Manifest is a document that lists and tracks hazardous waste from the generator through transporters to a tsd facility.

Date of Government Version: 01/30/2020 Date Data Arrived at EDR: 01/30/2020 Date Made Active in Reports: 03/09/2020

Number of Days to Update: 39

Source: Department of Energy & Environmental Protection

Telephone: 860-424-3375 Last EDR Contact: 01/30/2020

Next Scheduled EDR Contact: 05/25/2020 Data Release Frequency: No Update Planned

NJ MANIFEST: Manifest Information
Hazardous waste manifest information.

Date of Government Version: 12/31/2018 Date Data Arrived at EDR: 04/10/2019 Date Made Active in Reports: 05/16/2019

Number of Days to Update: 36

Source: Department of Environmental Protection

Telephone: N/A

Last EDR Contact: 04/10/2020

Next Scheduled EDR Contact: 07/20/2020 Data Release Frequency: Annually

PA MANIFEST: Manifest Information
Hazardous waste manifest information.

Date of Government Version: 06/30/2018 Date Data Arrived at EDR: 07/19/2019 Date Made Active in Reports: 09/10/2019

Number of Days to Update: 53

Source: Department of Environmental Protection

Telephone: 717-783-8990 Last EDR Contact: 04/02/2020

Next Scheduled EDR Contact: 07/27/2020 Data Release Frequency: Annually

RI MANIFEST: Manifest information

Hazardous waste manifest information

Date of Government Version: 12/31/2018 Date Data Arrived at EDR: 10/02/2019 Date Made Active in Reports: 12/10/2019

Number of Days to Update: 69

Source: Department of Environmental Management

Telephone: 401-222-2797 Last EDR Contact: 02/18/2020

Next Scheduled EDR Contact: 06/01/2020 Data Release Frequency: Annually

VT MANIFEST: Hazardous Waste Manifest Data Hazardous waste manifest information.

Date of Government Version: 10/28/2019 Date Data Arrived at EDR: 10/29/2019 Date Made Active in Reports: 01/09/2020

Number of Days to Update: 72

Source: Department of Environmental Conservation

Telephone: 802-241-3443 Last EDR Contact: 04/03/2020

Next Scheduled EDR Contact: 07/27/2020 Data Release Frequency: Annually

WI MANIFEST: Manifest Information

Hazardous waste manifest information.

Date of Government Version: 05/31/2018 Date Data Arrived at EDR: 06/19/2019 Date Made Active in Reports: 09/03/2019

Number of Days to Update: 76

Source: Department of Natural Resources

Telephone: N/A

Last EDR Contact: 03/09/2020

Next Scheduled EDR Contact: 06/22/2020 Data Release Frequency: Annually

Oil/Gas Pipelines

Source: Endeavor Business Media

Petroleum Bundle (Crude Oil, Refined Products, Petrochemicals, Gas Liquids (LPG/NGL), and Specialty Gases (Miscellaneous)) N = Natural Gas Bundle (Natural Gas, Gas Liquids (LPG/NGL), and Specialty Gases (Miscellaneous)). This map includes information copyrighted by Endeavor Business Media. This information is provided on a best effort basis and Endeavor Business Media does not guarantee its accuracy nor warrant its fitness for any particular purpose. Such information has been reprinted with the permission of Endeavor Business Media.

Electric Power Transmission Line Data

Source: Endeavor Business Media

This map includes information copyrighted by Endeavor Business Media. This information is provided on a best effort basis and Endeavor Business Media does not guarantee its accuracy nor warrant its fitness for any particular purpose. Such information has been reprinted with the permission of Endeavor Business Media.

Sensitive Receptors: There are individuals deemed sensitive receptors due to their fragile immune systems and special sensitivity to environmental discharges. These sensitive receptors typically include the elderly, the sick, and children. While the location of all sensitive receptors cannot be determined, EDR indicates those buildings and facilities - schools, daycares, hospitals, medical centers, and nursing homes - where individuals who are sensitive receptors are likely to be located.

AHA Hospitals:

Source: American Hospital Association, Inc.

Telephone: 312-280-5991

The database includes a listing of hospitals based on the American Hospital Association's annual survey of hospitals.

Medical Centers: Provider of Services Listing

Source: Centers for Medicare & Medicaid Services

Telephone: 410-786-3000

A listing of hospitals with Medicare provider number, produced by Centers of Medicare & Medicaid Services,

a federal agency within the U.S. Department of Health and Human Services.

Nursing Homes

Source: National Institutes of Health

Telephone: 301-594-6248

Information on Medicare and Medicaid certified nursing homes in the United States.

Public Schools

Source: National Center for Education Statistics

Telephone: 202-502-7300

The National Center for Education Statistics' primary database on elementary

and secondary public education in the United States. It is a comprehensive, annual, national statistical database of all public elementary and secondary schools and school districts, which contains data that are comparable across all states.

Private Schools

Source: National Center for Education Statistics

Telephone: 202-502-7300

The National Center for Education Statistics' primary database on private school locations in the United States.

Daycare Centers: Day Care Providers Source: Department of Health Telephone: 212-676-2444

Flood Zone Data: This data was obtained from the Federal Emergency Management Agency (FEMA). It depicts 100-year and 500-year flood zones as defined by FEMA. It includes the National Flood Hazard Layer (NFHL) which incorporates Flood Insurance Rate Map (FIRM) data and Q3 data from FEMA in areas not covered by NFHL.

Source: FEMA

Telephone: 877-336-2627

Date of Government Version: 2003, 2015

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002, 2005 and 2010 from the U.S. Fish and Wildlife Service.

State Wetlands Data: Freshwater Wetlands

Source: Department of Environmental Conservation

Telephone: 518-402-8961

Current USGS 7.5 Minute Topographic Map Source: U.S. Geological Survey

STREET AND ADDRESS INFORMATION

© 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

GEOCHECK®-PHYSICAL SETTING SOURCE ADDENDUM

TARGET PROPERTY ADDRESS

131 COMMERCE AVE 131 COMMERCE AVE CARMEL, NY 10512

TARGET PROPERTY COORDINATES

Latitude (North): 41.461313 - 41° 27′ 40.73″ Longitude (West): 73.64058 - 73° 38′ 26.09″

Universal Tranverse Mercator: Zone 18 UTM X (Meters): 613532.9 UTM Y (Meters): 4590648.5

Elevation: 721 ft. above sea level

USGS TOPOGRAPHIC MAP

Target Property Map: 5939751 LAKE CARMEL, NY

Version Date: 2013

East Map: 5939739 BREWSTER, NY

Version Date: 2013

EDR's GeoCheck Physical Setting Source Addendum is provided to assist the environmental professional in forming an opinion about the impact of potential contaminant migration.

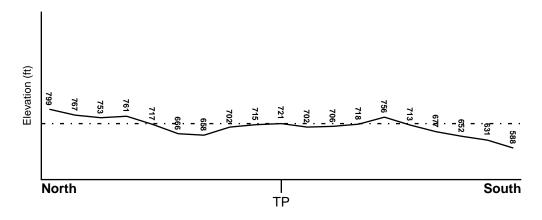
Assessment of the impact of contaminant migration generally has two principle investigative components:

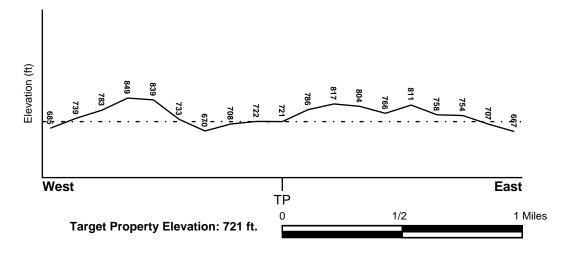
- 1. Groundwater flow direction, and
- 2. Groundwater flow velocity.

Groundwater flow direction may be impacted by surface topography, hydrology, hydrogeology, characteristics of the soil, and nearby wells. Groundwater flow velocity is generally impacted by the nature of the geologic strata.

GROUNDWATER FLOW DIRECTION INFORMATION

Groundwater flow direction for a particular site is best determined by a qualified environmental professional using site-specific well data. If such data is not reasonably ascertainable, it may be necessary to rely on other sources of information, such as surface topographic information, hydrologic information, hydrogeologic data collected on nearby properties, and regional groundwater flow information (from deep aquifers).


TOPOGRAPHIC INFORMATION


Surface topography may be indicative of the direction of surficial groundwater flow. This information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

TARGET PROPERTY TOPOGRAPHY

General Topographic Gradient: General WNW

SURROUNDING TOPOGRAPHY: ELEVATION PROFILES

Source: Topography has been determined from the USGS 7.5' Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified.

HYDROLOGIC INFORMATION

Surface water can act as a hydrologic barrier to groundwater flow. Such hydrologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Refer to the Physical Setting Source Map following this summary for hydrologic information (major waterways and bodies of water).

FEMA FLOOD ZONE

Flood Plain Panel at Target Property FEMA Source Type

36079C0134E FEMA FIRM Flood data

Additional Panels in search area: FEMA Source Type

 36079C0131E
 FEMA FIRM Flood data

 36079C0132E
 FEMA FIRM Flood data

 36079C0151E
 FEMA FIRM Flood data

 36079C0133E
 FEMA FIRM Flood data

 36079C0153E
 FEMA FIRM Flood data

NATIONAL WETLAND INVENTORY

NWI Quad at Target Property Data Coverage

LAKE CARMEL YES - refer to the Overview Map and Detail Map

HYDROGEOLOGIC INFORMATION

Hydrogeologic information obtained by installation of wells on a specific site can often be an indicator of groundwater flow direction in the immediate area. Such hydrogeologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Site-Specific Hydrogeological Data*:

Search Radius: 1.25 miles Status: Not found

AQUIFLOW®

Search Radius: 1.000 Mile.

EDR has developed the AQUIFLOW Information System to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted by environmental professionals to regulatory authorities at select sites and has extracted the date of the report, groundwater flow direction as determined hydrogeologically, and the depth to water table.

 MAP ID
 FROM TP
 GROUNDWATER FLOW

 Not Reported
 GROUNDWATER FLOW

GROUNDWATER FLOW VELOCITY INFORMATION

Groundwater flow velocity information for a particular site is best determined by a qualified environmental professional using site specific geologic and soil strata data. If such data are not reasonably ascertainable, it may be necessary to rely on other sources of information, including geologic age identification, rock stratigraphic unit and soil characteristics data collected on nearby properties and regional soil information. In general, contaminant plumes move more quickly through sandy-gravelly types of soils than silty-clayey types of soils.

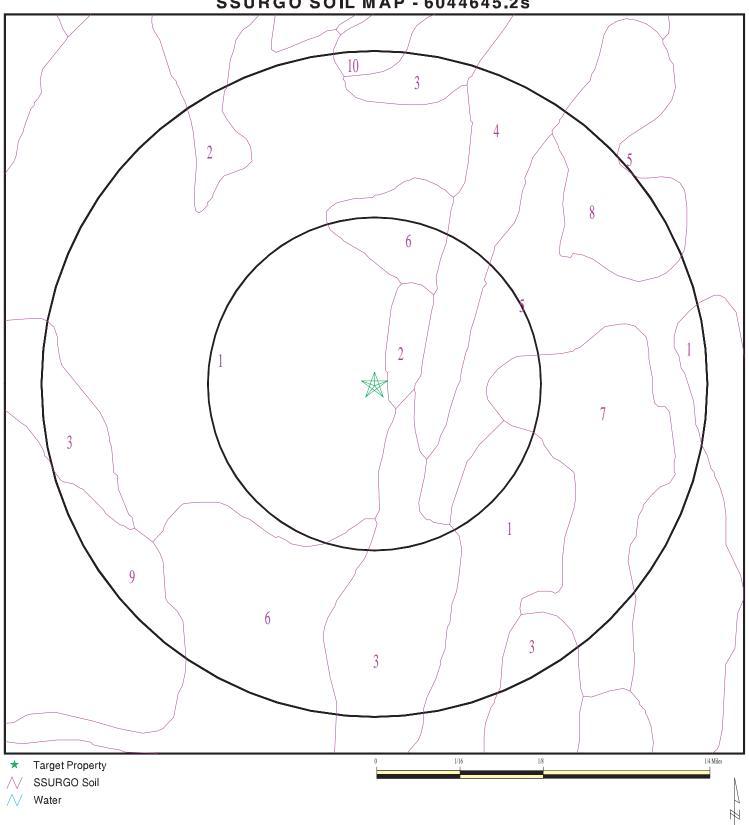
GEOLOGIC INFORMATION IN GENERAL AREA OF TARGET PROPERTY

Geologic information can be used by the environmental professional in forming an opinion about the relative speed at which contaminant migration may be occurring.

ROCK STRATIGRAPHIC UNIT

GEOLOGIC AGE IDENTIFICATION

Era: Precambrian Category: Metamorphic Rocks


System: Precambrian

Series: Paragneiss and schist

Code: Ym (decoded above as Era, System & Series)

Geologic Age and Rock Stratigraphic Unit Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - a digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

SSURGO SOIL MAP - 6044645.2s

SITE NAME: 131 Commerce Ave ADDRESS: 131 Commerce Ave Carmel NY 10512 LAT/LONG: 41.461313 / 73.64058 CLIENT: HRP Associates, Inc.
CONTACT: Stefan Truex
INQUIRY#: 6044645.2s

DATE: April 20, 2020 3:52 pm

DOMINANT SOIL COMPOSITION IN GENERAL AREA OF TARGET PROPERTY

The U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS) leads the National Cooperative Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. The following information is based on Soil Conservation Service SSURGO data.

Soil Map ID: 1

Soil Component Name: Charlton

Soil Surface Texture: loam

Hydrologic Group: Class B - Moderate infiltration rates. Deep and moderately deep,

moderately well and well drained soils with moderately coarse

textures.

Soil Drainage Class: Well drained

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: Low

Depth to Bedrock Min: > 77 inches

Depth to Watertable Min: > 0 inches

Soil Layer Information								
	Bou	ındary		Classi	fication	Saturated hydraulic	Soil Reaction (pH)	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec		
1	0 inches	7 inches	loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 42 Min: 4	Max: 6 Min: 4.5	
2	7 inches	24 inches	sandy loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 42 Min: 4	Max: 6 Min: 4.5	
3	24 inches	59 inches	sandy loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 42 Min: 4	Max: 6 Min: 4.5	

Soil Map ID: 2

Soil Component Name: Palms

Soil Surface Texture: muck

Hydrologic Group: Class A/D - Drained/undrained hydrology class of soils that can be

drained and are classified.

Soil Drainage Class: Very poorly drained

Hydric Status: All hydric

Corrosion Potential - Uncoated Steel: High

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

						Saturated	
	Bou	ındary		Classi	fication	hydraulic	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Soil Reaction (pH)
1	0 inches	9 inches	muck	A-8	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14 Min: 1.4	Max: Min:
2	9 inches	48 inches	muck	A-8	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14 Min: 1.4	Max: Min:
3	48 inches	59 inches	loam	A-8	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14 Min: 1.4	Max: Min:

Soil Map ID: 3

Soil Component Name: Chatfield

Soil Surface Texture: loam

Hydrologic Group: Class B - Moderate infiltration rates. Deep and moderately deep,

moderately well and well drained soils with moderately coarse

textures.

Soil Drainage Class: Well drained

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: Low

Depth to Bedrock Min: > 77 inches

Depth to Watertable Min: > 0 inches

Soil Layer Information									
	Вои	ındary		Classi	fication	Saturated hydraulic conductivity micro m/sec			
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil				
1	0 inches	7 inches	loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	Not reported	Max: 141 Min: 0.07	Max: Min:		
2	7 inches	24 inches	flaggy silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	Not reported	Max: 141 Min: 0.07	Max: Min:		
3	24 inches	27 inches	unweathered bedrock	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	Not reported	Max: 141 Min: 0.07	Max: Min:		

Soil Map ID: 4

Soil Component Name: Hollis

Soil Surface Texture: fine sandy loam

Hydrologic Group: Class C/D - Drained/undrained hydrology class of soils that can be

drained and classified.

Soil Drainage Class: Somewhat excessively drained

Hydric Status: Unknown

Corrosion Potential - Uncoated Steel: Low

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

			Soil Layer	r Information			
	Воц	ındary		Classi	fication	Saturated hydraulic conductivity micro m/sec	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil		
1	0 inches	1 inches	fine sandy loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	Not reported	Max: 0.01 Min: 0	Max: Min:
2	1 inches	16 inches	fine sandy loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	Not reported	Max: 0.01 Min: 0	Max: Min:
3	16 inches	20 inches	unweathered bedrock	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	Not reported	Max: 0.01 Min: 0	Max: Min:

Soil Map ID: 5

Chatfield Soil Component Name:

Soil Surface Texture: loam

Class $\mbox{C/D}$ - Drained/undrained hydrology class of soils that can be drained and classified. Hydrologic Group:

Soil Drainage Class: Well drained

Hydric Status: Unknown

Corrosion Potential - Uncoated Steel: Low

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

Soil Layer Information									
	Вои	ındary	Soil Texture Class	Classi	fication	Saturated hydraulic			
Layer	Upper	Lower		AASHTO Group	Unified Soil	conductivity micro m/sec			
1	0 inches	7 inches	loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	Not reported	Max: 141 Min: 0.07	Max: Min:		
2	7 inches	24 inches	flaggy silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	Not reported	Max: 141 Min: 0.07	Max: Min:		
3	24 inches	27 inches	unweathered bedrock	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	Not reported	Max: 141 Min: 0.07	Max: Min:		

Soil Map ID: 6

Soil Component Name: Sun

Soil Surface Texture: loam

Hydrologic Group: Class D - Very slow infiltration rates. Soils are clayey, have a high

water table, or are shallow to an impervious layer.

Soil Drainage Class: Very poorly drained

Hydric Status: All hydric

Corrosion Potential - Uncoated Steel: High

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

	Soil Layer Information								
	Вои	ındary	Soil Texture Class	Classi	fication	Saturated hydraulic			
Layer	Upper	Lower		AASHTO Group	Unified Soil	conductivity micro m/sec			
1	0 inches	9 inches	loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 1.4 Min: 0.42	Max: 8.4 Min: 6.6		
2	9 inches	27 inches	loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 1.4 Min: 0.42	Max: 8.4 Min: 6.6		
3	27 inches	59 inches	gravelly fine sandy loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 1.4 Min: 0.42	Max: 8.4 Min: 6.6		

Soil Map ID: 7

Soil Component Name: Udorthents

Soil Surface Texture: gravelly loam

Hydrologic Group: Class D - Very slow infiltration rates. Soils are clayey, have a high

water table, or are shallow to an impervious layer.

Soil Drainage Class: Moderately well drained

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: Not Reported

Depth to Bedrock Min: > 127 inches

Depth to Watertable Min: > 84 inches

	Soil Layer Information								
	Воц	ındary	Soil Texture Class	Classi	fication	Saturated hydraulic conductivity micro m/sec	Soil Reaction (pH)		
Layer	Upper	Lower		AASHTO Group	Unified Soil				
1	0 inches	3 inches	gravelly loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 42 Min: 0.42	Max: 8.4 Min: 4.5		
2	3 inches	70 inches	very gravelly loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 42 Min: 0.42	Max: 8.4 Min: 4.5		

Soil Map ID: 8

Soil Component Name: Chatfield

Soil Surface Texture: loam

Class $\mbox{C/D}$ - Drained/undrained hydrology class of soils that can be drained and classified. Hydrologic Group:

Soil Drainage Class: Well drained

Hydric Status: Unknown

Corrosion Potential - Uncoated Steel: Low

Depth to Bedrock Min: > 0 inches Depth to Watertable Min: > 0 inches

Soil Layer Information								
	Воц	ındary	Soil Texture Class	Classification		Saturated hydraulic		
Layer	Upper	Lower		AASHTO Group	Unified Soil		Soil Reaction (pH)	
1	0 inches	7 inches	loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	Not reported	Max: 141 Min: 0.07	Max: Min:	

	Soil Layer Information								
	Bou	ındary		Classi	fication	Saturated hydraulic			
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity Soi			
2	7 inches	24 inches	flaggy silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	Not reported	Max: 141 Min: 0.07	Max: Min:		
3	24 inches	27 inches	unweathered bedrock	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	Not reported	Max: 141 Min: 0.07	Max: Min:		

Soil Map ID: 9

Soil Component Name: Carlisle

Soil Surface Texture: muck

Class A/D - Drained/undrained hydrology class of soils that can be drained and are classified. Hydrologic Group:

Soil Drainage Class: Very poorly drained

Hydric Status: All hydric

Corrosion Potential - Uncoated Steel: High

Depth to Bedrock Min: > 0 inches Depth to Watertable Min: > 0 inches

Soil Layer Information								
	Bou	ndary		Classification		Saturated hydraulic		
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil		Soil Reaction (pH)	
1	0 inches	59 inches	muck	A-8	Highly organic soils, Peat.	Max: 42 Min: 1.4	Max: Min:	

Soil Map ID: 10

Soil Component Name: Charlton

Soil Surface Texture: loam

Hydrologic Group: Class B - Moderate infiltration rates. Deep and moderately deep,

moderately well and well drained soils with moderately coarse

textures.

Soil Drainage Class: Well drained

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: Low

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

	Soil Layer Information								
	Bou	ındary		Classi	fication	Saturated hydraulic conductivity micro m/sec	Soil Reaction (pH)		
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil				
1	0 inches	7 inches	loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 42 Min: 4	Max: 6 Min: 4.5		
2	7 inches	24 inches	sandy loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 42 Min: 4	Max: 6 Min: 4.5		
3	24 inches	59 inches	sandy loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 42 Min: 4	Max: 6 Min: 4.5		

LOCAL / REGIONAL WATER AGENCY RECORDS

EDR Local/Regional Water Agency records provide water well information to assist the environmental professional in assessing sources that may impact ground water flow direction, and in forming an opinion about the impact of contaminant migration on nearby drinking water wells.

WELL SEARCH DISTANCE INFORMATION

DATABASE SEARCH DISTANCE (miles)

Federal USGS 1.000

Federal FRDS PWS Nearest PWS within 1 mile

State Database 1.000

FEDERAL USGS WELL INFORMATION

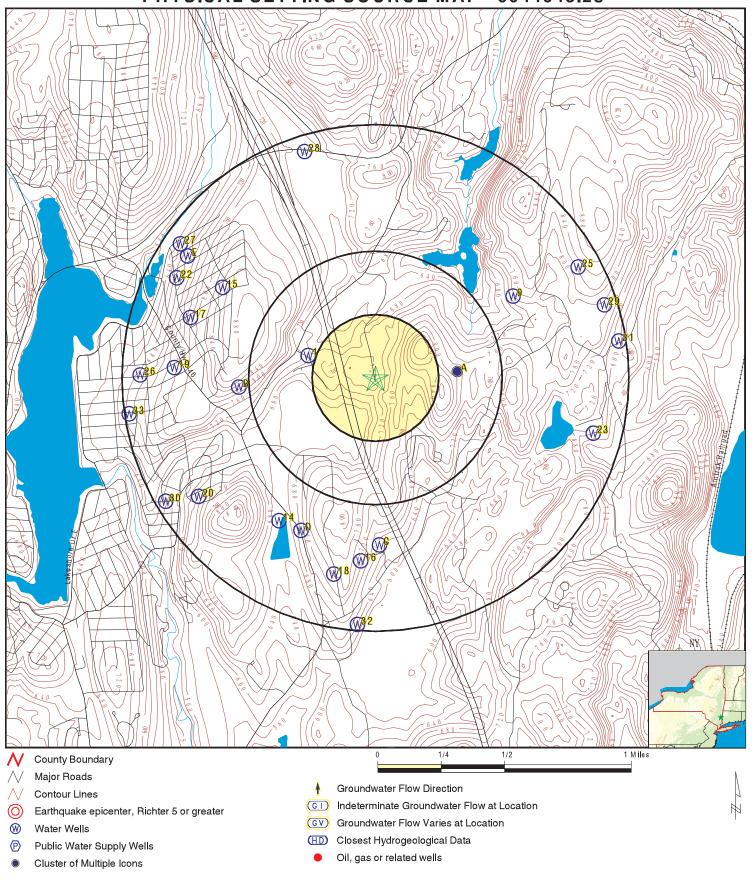
MAP ID	WELL ID	LOCATION FROM TP
1	USGS40000843899	1/4 - 1/2 Mile WNW
B7	USGS40000843894	1/2 - 1 Mile West
B8	USGS40000843890	1/2 - 1 Mile West
C10	USGS40000843788	1/2 - 1 Mile South
D11	USGS40000843802	1/2 - 1 Mile SSW
D12	USGS40000842730	1/2 - 1 Mile SSW
C13	USGS40000843791	1/2 - 1 Mile South
14	USGS40000843810	1/2 - 1 Mile SW
18	USGS40000843919	1/2 - 1 Mile SSW
20	USGS40000843823	1/2 - 1 Mile SW
E21	USGS40000843958	1/2 - 1 Mile WNW
22	USGS40000843952	1/2 - 1 Mile WNW
23	USGS40000843862	1/2 - 1 Mile ESE
E24	USGS40000843975	1/2 - 1 Mile NW
26	USGS40000843900	1/2 - 1 Mile West
27	USGS40000843976	1/2 - 1 Mile NW
28	USGS40000844030	1/2 - 1 Mile NNW
30	USGS40000843817	1/2 - 1 Mile WSW
31	USGS40000843904	1/2 - 1 Mile East
33	USGS40000843875	1/2 - 1 Mile West

FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION

		LOCATION
MAP ID	WELL ID	FROM TP
A6	NY0003711	1/4 - 1/2 Mile East

Note: PWS System location is not always the same as well location.

STATE DATABASE WELL INFORMATION


MAP ID	WELL ID	LOCATION FROM TP
A2	NYWS004702	1/4 - 1/2 Mile East
A3	NYWS004701	1/4 - 1/2 Mile East
A4	NYWS004704	1/4 - 1/2 Mile East
A5	NYWS004703	1/4 - 1/2 Mile East
9	NYWS30000013668	1/2 - 1 Mile ENE
15	NYWS30000013603	1/2 - 1 Mile WNW

GEOCHECK[®] - PHYSICAL SETTING SOURCE SUMMARY

STATE DATABASE WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
16	NYWS30000013670	1/2 - 1 Mile South
17	NYWS3000013618	1/2 - 1 Mile WNW
19	NYWS3000013620	1/2 - 1 Mile West
25	NYWS30000013681	1/2 - 1 Mile ENE
29	NYWS3000013684	1/2 - 1 Mile ENE
32	NYWS3000013674	1/2 - 1 Mile South

PHYSICAL SETTING SOURCE MAP - 6044645.2s

SITE NAME: 131 Commerce Ave ADDRESS: 131 Commerce Ave Carmel NY 10512

41.461313 / 73.64058

LAT/LONG:

CLIENT: HRP Associates, Inc. CONTACT: Stefan Truex INQUIRY #: 6044645.2s

DATE: April 20, 2020 3:52 pm

Map ID Direction Distance

EDR ID Number Elevation Database

WNW

FED USGS USGS40000843899

NYWS004702

NYWS004701

NYWS004704

NY WELLS

WELL #4

NY WELLS

NY WELLS

1/4 - 1/2 Mile Lower

> Organization ID: **USGS-NY** Organization Name: USGS New York Water Science Center

Monitor Location: P1097 Type: Well HUC: Description: 02030101 Not Reported Drainage Area: Not Reported Drainage Area Units: Not Reported Not Reported Contrib Drainage Area: Contrib Drainage Area Unts: Not Reported Aquifer: Not Reported Formation Type: Not Reported Aquifer Type: Not Reported Construction Date: Not Reported

Well Depth: Well Depth Units: 150 ft Well Hole Depth: Well Hole Depth Units: 150 ft

A2 **East** 1/4 - 1/2 Mile Higher

Well ID: NY3903711 Well Name: System ID: WL4 System Name: FOX RUN CONDOMINIUMS

Type: WL Status:

FOX RUN CONDO BOARD OF MANAGERS Agency:

A3 East 1/4 - 1/2 Mile Higher

NY3903711 Well ID: Well Name: WELL #1

FOX RUN CONDOMINIUMS System ID: WL1 System Name:

WL Status: Type: Α

Agency: FOX RUN CONDO BOARD OF MANAGERS

East 1/4 - 1/2 Mile Higher

> Well ID: NY3903711 Well Name: WELL #3

System ID: WL3 System Name: FOX RUN CONDOMINIUMS

Type: WL Status:

FOX RUN CONDO BOARD OF MANAGERS Agency:

NYWS004703 **NY WELLS** East 1/4 - 1/2 Mile Higher

Well ID: NY3903711 Well Name: WELL #2

System ID: WL2 System Name: FOX RUN CONDOMINIUMS

Type: WL Status: A

Agency: FOX RUN CONDO BOARD OF MANAGERS

A6
East FRDS PWS NY0003711

1/4 - 1/2 Mile Higher

PWS ID: NY0003711 PWS type: System Owner/Responsible Party
PWS name: LILL PAUL PWS address: C/O SPECTRUM REAL ESTATE SERV.

PWS address: RT. 52 @ LAKE ROAD PWS city: HOPEWELL JUNCTION

PWS state: NY PWS zip: 12533
PWS ID: NY0003711 Activity status: Active

Date system activated: Not Reported Date system deactivated: Not Reported

Retail population: System name: FOX RUN CONDOMINIUMS

System address: Not Reported System address: BULLET HOLE RD

System city: PATTERSON System state: NY

System zip: 12563

County FIPS: 039 City served: PATTERSON (T)

Latitude: 412742 Longitude: 0733804

Latitude: 412742 Longitude: 0733804

Latitude: 412742 Longitude: 0733804

Latitude: 412742 Longitude: 0733804

West FED USGS USGS40000843894

1/2 - 1 Mile Higher

Organization ID: USGS-NY Organization Name: USGS New York Water Science Center

Monitor Location: P 149 Type: Well Description: Not Reported HUC: 01100005 Drainage Area: Not Reported **Drainage Area Units:** Not Reported Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Aquifer: Not Reported Formation Type: Not Reported Construction Date: Aquifer Type: Not Reported Not Reported Well Depth: Not Reported Well Depth Units: Not Reported

Well Hole Depth: Not Reported Well Hole Depth Units: Not Reported

B8
West FED USGS USGS40000843890

1/2 - 1 Mile Higher

Organization ID: USGS-NY Organization Name: USGS New York Water Science Center

Monitor Location: P 433 Type: Well HUC: 02030101 Description: Not Reported Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Aquifer: Not Reported Formation Type: Not Reported Aquifer Type: Construction Date: Not Reported Not Reported

Well Depth: 101 Well Depth Units: ft

Well Hole Depth: 101 Well Hole Depth Units: ft

1/2 - 1 Mile Higher

DEC Well #: P1920 Location Description: MCMANUS RD

Well Depth (ft):363Bedrock Depth (ft):10Groundwater Depth (ft):75Casing Depth(ft):41Screened Well:NAvg Dischg Rate (g/m):5

Driller Registration #: NYRD10071

C10 South 1/2 - 1 Mile Lower

Organization ID: USGS-NY Organization Name: USGS New York Water Science Center

Monitor Location: P 483 Type: Well Description: Not Reported HUC: 02030101 Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported

Aquifer: Not Reported Formation Type: Precambrian Erathem

Aquifer Type: Not Reported Construction Date: Not Reported

Well Depth: 53 Well Depth Units: f

Well Hole Depth: Not Reported Well Hole Depth Units: Not Reported

D11 SSW FED USGS USGS40000843802

1/2 - 1 Mile Lower

Organization ID: USGS-NY Organization Name: USGS New York Water Science Center

Monitor Location: P 804 Type: Well HUC: Description: Not Reported 01100005 Drainage Area: Not Reported Not Reported Drainage Area Units: Contrib Drainage Area Unts: Contrib Drainage Area: Not Reported Not Reported Aquifer: Not Reported Formation Type: Not Reported Aquifer Type: Not Reported Construction Date: Not Reported

Well Depth:40Well Depth Units:ftWell Hole Depth:40Well Hole Depth Units:ft

D12 SSW FED USGS USGS40000842730

1/2 - 1 Mile Lower

Organization ID: USGS-NY Organization Name: USGS New York Water Science Center

Monitor Location: P 805 Type: Well Description: Not Reported HUC: 02030101 Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area: Contrib Drainage Area Unts: Not Reported Not Reported

Aquifer: Sand and gravel aquifers (glaciated regions)

FED USGS

USGS40000843788

Formation Type: Sand and Gravel Aquifer Type: Not Reported

Construction Date: Not Reported Well Depth: 20

Well Depth Units: ft

Not Reported

C13 South FED USGS USGS40000843791

1/2 - 1 Mile Lower

Well Hole Depth Units:

Organization ID: USGS-NY Organization Name: USGS New York Water Science Center

Well Hole Depth:

Not Reported

Monitor Location: P 482 Type: Well Description: HUC: 02030101 Not Reported Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area Unts: Contrib Drainage Area: Not Reported Not Reported Aquifer: Not Reported Formation Type: Not Reported Construction Date: Aquifer Type: Not Reported Not Reported

Well Depth:16Well Depth Units:ftWell Hole Depth:16Well Hole Depth Units:ft

14 SW FED USGS USGS40000843810

1/2 - 1 Mile Lower

Organization ID: USGS-NY Organization Name: USGS New York Water Science Center

Monitor Location: P 357 Type: Well Description: Not Reported HUC: 02030101 Not Reported Not Reported Drainage Area Units: Drainage Area: Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Aquifer: Not Reported Formation Type: Not Reported Aquifer Type: Not Reported Construction Date: Not Reported

Well Depth: 112 Well Depth Units: ft Well Hole Depth Units: ft Well Hole Depth Units: ft

15 WNW NY WELLS NYWS3000013603

1/2 - 1 Mile Higher

DEC Well #: P1528 Location Description: HUNTINGTON RD

Well Depth (ft):255Bedrock Depth (ft):38Groundwater Depth (ft):Not ReportedCasing Depth(ft):51Screened Well:NAvg Dischg Rate (g/m):5

Driller Registration #: NYRD01695

16 South NY WELLS NYWS30000013670

1/2 - 1 Mile Lower

DEC Well #: P1929 Location Description: N/A
Well Depth (ft): 405 Bedrock Depth (ft): 1
Groundwater Depth (ft): 105 Casing Depth(ft): 25

TC6044645.2s Page A-21

5 Screened Well: Avg Dischg Rate (g/m): Driller Registration #: NYRD10194

WNW **NY WELLS** NYWS30000013618

1/2 - 1 Mile Higher

> P1626 ECHO RD DEC Well #: Location Description: Well Depth (ft): 605 Bedrock Depth (ft): 15 Groundwater Depth (ft): Not Reported Casing Depth(ft): 31 Screened Well: Avg Dischg Rate (g/m): 0.25 Ν

Driller Registration #: NYRD01695

SSW 1/2 - 1 Mile **FED USGS** USGS40000843919

Higher

USGS-NY Organization ID: Organization Name: USGS New York Water Science Center

Monitor Location: P1100 Well Type: Description: Not Reported HUC: 02030101 Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Aquifer: Not Reported Formation Type: Not Reported Construction Date: Aquifer Type: Not Reported Not Reported

Well Depth: Well Depth Units: 261 ft Well Hole Depth: 261 Well Hole Depth Units: ft

West 1/2 - 1 Mile **NY WELLS** NYWS30000013620

Higher

WOODLAND DR DEC Well #: P1654 Location Description: Well Depth (ft): 305 Bedrock Depth (ft): Not Reported Groundwater Depth (ft): 30 Casing Depth(ft): Not Reported

Screened Well: Avg Dischg Rate (g/m): Ν Driller Registration #: NYRD10105

FED USGS USGS40000843823 1/2 - 1 Mile

Organization ID: **USGS-NY** Organization Name: USGS New York Water Science Center

Monitor Location: P1050 Type: Well HUC: 02030101 Description: Not Reported Not Reported Drainage Area: Not Reported Drainage Area Units: Contrib Drainage Area: Contrib Drainage Area Unts: Not Reported Not Reported Aquifer: Not Reported Formation Type: Not Reported Aquifer Type: Not Reported Construction Date: Not Reported

Well Depth Units: Well Depth: 260 ft Well Hole Depth: 260 Well Hole Depth Units: ft

Map ID Direction Distance

EDR ID Number Elevation Database

E21 WNW

FED USGS USGS40000843958

USGS40000843952

USGS40000843862

USGS New York Water Science Center

USGS40000843975

FED USGS

FED USGS

1/2 - 1 Mile Lower

> Organization ID: **USGS-NY** Organization Name: USGS New York Water Science Center

Monitor Location: P1069 Type: Well HUC: 02030101 Description: Not Reported Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Aquifer: Not Reported Formation Type: Not Reported Aquifer Type: Not Reported Construction Date: Not Reported

Well Depth: Well Depth Units: 320 ft Well Hole Depth: 320 Well Hole Depth Units: ft

WNW 1/2 - 1 Mile Lower

> Organization ID: **USGS-NY** USGS New York Water Science Center Organization Name:

Monitor Location: P1068 Type: Well HUC: 02030101 Description: Not Reported Not Reported Drainage Area Units: Not Reported Drainage Area: Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Aquifer: Not Reported Formation Type: Not Reported Aquifer Type: Not Reported Construction Date: Not Reported

Well Depth: 205 Well Depth Units: ft 205 ft Well Hole Depth: Well Hole Depth Units:

ESE 1/2 - 1 Mile

Lower

Organization ID: Organization Name: Monitor Location: Well P 273 Type: 02030101 Description: Not Reported HUC: Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Aquifer: Not Reported Formation Type: Not Reported Aquifer Type: Not Reported Construction Date: Not Reported

Well Depth: 254 Well Depth Units: ft Well Hole Depth: 254 Well Hole Depth Units: ft

USGS-NY

NW 1/2 - 1 Mile Lower

> Organization ID: **USGS-NY** Organization Name: USGS New York Water Science Center

Monitor Location: P1091 Type: Well HUC: 02030101 Description: Not Reported Drainage Area: Not Reported Drainage Area Units: Not Reported

FED USGS

Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Aquifer: Not Reported Formation Type: Not Reported Aquifer Type: Not Reported Construction Date: Not Reported

Well Depth: 300 Well Depth Units: ft Well Hole Depth: 300 Well Hole Depth Units: ft

25
ENE NY WELLS NYWS3000013681

1/2 - 1 Mile Higher

DEC Well #: P2503 Location Description: BURDICK FARMS

Well Depth (ft):365Bedrock Depth (ft):65Groundwater Depth (ft):30Casing Depth(ft):80Screened Well:NAvg Dischg Rate (g/m):15

Driller Registration #: NYRD10105

26 West FED USGS USGS40000843900 1/2 - 1 Mile

Lower

Organization ID: USGS-NY Organization Name: USGS New York Water Science Center

Monitor Location: P 150 Type: Well Description: Not Reported HUC: 02030101 Drainage Area Units: Not Reported Drainage Area: Not Reported Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported

Aquifer: Sand and gravel aquifers (glaciated regions)

Formation Type: Sand and Gravel Aquifer Type: Not Reported

Construction Date: Not Reported Well Depth: 210

Well Depth Units: ft Well Hole Depth: Not Reported

Well Hole Depth Units: Not Reported

27 NW FED USGS USGS40000843976

1/2 - 1 Mile Lower

Organization ID: USGS-NY Organization Name: USGS New York Water Science Center

Monitor Location: P1048 Type: Well Description: Not Reported HUC: 02030101 Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area Unts: Not Reported Contrib Drainage Area: Not Reported Aquifer: Not Reported Formation Type: Not Reported Construction Date: Aquifer Type: Not Reported Not Reported

Well Depth:220Well Depth Units:ftWell Hole Depth:220Well Hole Depth Units:ft

Map ID Direction Distance

Elevation Database EDR ID Number

28 NNW 1/2 - 1 Mile

FED USGS USGS40000844030

Lower

Organization ID: USGS-NY Organization Name: USGS New York Water Science Center

Monitor Location: P1098 Type: Well HUC: 02030101 Description: Not Reported Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Aquifer: Not Reported Formation Type: Not Reported Aquifer Type: Not Reported Construction Date: Not Reported

Well Depth: 325 Well Depth Units: ft Well Hole Depth: 325 Well Hole Depth Units: ft

29
ENE NY WELLS NYWS30000013684

1/2 - 1 Mile Higher

DEC Well #: P2506 Location Description: BURDICK FARMS

 Well Depth (ft):
 565
 Bedrock Depth (ft):
 17

 Groundwater Depth (ft):
 30
 Casing Depth(ft):
 32

 Screened Well:
 N
 Avg Dischg Rate (g/m):
 15

Driller Registration #: NYRD10105

WSW 1/2 - 1 Mile

Lower

Organization ID: USGS-NY Organization Name: USGS New York Water Science Center

Monitor Location: P1076 Type: Well Description: Not Reported HUC: 02030101 Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Aquifer: Not Reported Formation Type: Not Reported Aquifer Type: Construction Date: Not Reported Not Reported

Well Depth:140Well Depth Units:ftWell Hole Depth:140Well Hole Depth Units:ft

21

31 East FED USGS USGS40000843904 1/2 - 1 Mile

Organization ID: USGS-NY Organization Name: USGS New York Water Science Center

Monitor Location: P 425 Type: Well HUC: 02030101 Description: Not Reported Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Aquifer: Not Reported Formation Type: Precambrian Erathem

Aquifer Type: Not Reported Construction Date: Not Reported

Well Depth: 112 Well Depth Units: ft

FED USGS

USGS40000843817

Well Hole Depth: Not Reported Well Hole Depth Units: Not Reported

32 South 1/2 - 1 Mile Lower **NY WELLS** NYWS30000013674

DEC Well #: P2438 Location Description: N/A Well Depth (ft): 350 Bedrock Depth (ft): 10 Groundwater Depth (ft): 30 Casing Depth(ft): 61 Screened Well: Ν Avg Dischg Rate (g/m): 80

NYRD10071 Driller Registration #:

33 West 1/2 - 1 Mile **FED USGS** USGS40000843875

Lower

USGS-NY Organization ID: Organization Name: USGS New York Water Science Center

Monitor Location: P 151 Well Type: HUC: 02030101 Description: Not Reported Drainage Area: Not Reported Drainage Area Units: Not Reported Not Reported Contrib Drainage Area Unts: Not Reported Contrib Drainage Area: Aquifer: Not Reported Formation Type: Not Reported Aquifer Type: Not Reported Construction Date: Not Reported

Well Depth: 158 Well Depth Units: ft Well Hole Depth: 158 Well Hole Depth Units: ft

AREA RADON INFORMATION

State Database: NY Radon

Radon Test Results

County	Town	Num Tests	Avg Result	Geo Mean	Max Result
PUTNAM	CARMEL	357	4.37	2.43	235.2
PUTNAM	KENT	85	5.61	3.45	40.6
PUTNAM	PATTERSON	77	3.13	1.93	39.2
PUTNAM	PHILIPSTOWN	128	7.28	4	74.6
PUTNAM	PUTNAM VALLEY	145	5.54	3.5	34.2
PUTNAM	SOUTHEAST	148	3.26	1.77	43.7

Federal EPA Radon Zone for PUTNAM County: 1

Note: Zone 1 indoor average level > 4 pCi/L.

: Zone 2 indoor average level >= 2 pCi/L and <= 4 pCi/L.

: Zone 3 indoor average level < 2 pCi/L.

Federal Area Radon Information for PUTNAM COUNTY, NY

Number of sites tested: 277

Area	Average Activity	% <4 pCi/L	% 4-20 pCi/L	% >20 pCi/L
Living Area	1.430 pCi/L	89%	11%	0%
Basement	2.330 pCi/L	71%	27%	1%

PHYSICAL SETTING SOURCE RECORDS SEARCHED

TOPOGRAPHIC INFORMATION

USGS 7.5' Digital Elevation Model (DEM)

Source: United States Geologic Survey

EDR acquired the USGS 7.5' Digital Elevation Model in 2002 and updated it in 2006. The 7.5 minute DEM corresponds to the USGS 1:24,000- and 1:25,000-scale topographic quadrangle maps. The DEM provides elevation data with consistent elevation units and projection.

Current USGS 7.5 Minute Topographic Map Source: U.S. Geological Survey

HYDROLOGIC INFORMATION

Flood Zone Data: This data was obtained from the Federal Emergency Management Agency (FEMA). It depicts 100-year and 500-year flood zones as defined by FEMA. It includes the National Flood Hazard Layer (NFHL) which incorporates Flood Insurance Rate Map (FIRM) data and Q3 data from FEMA in areas not covered by NFHL.

Source: FEMA

Telephone: 877-336-2627

Date of Government Version: 2003, 2015

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002, 2005 and 2010 from the U.S. Fish and Wildlife Service.

State Wetlands Data: Freshwater Wetlands

Source: Department of Environmental Conservation

Telephone: 518-402-8961

HYDROGEOLOGIC INFORMATION

AQUIFLOW^R Information System

Source: EDR proprietary database of groundwater flow information

EDR has developed the AQUIFLOW Information System (AIS) to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted to regulatory authorities at select sites and has extracted the date of the report, hydrogeologically determined groundwater flow direction and depth to water table information.

GEOLOGIC INFORMATION

Geologic Age and Rock Stratigraphic Unit

Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - A digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

STATSGO: State Soil Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS)

The U.S. Department of Agriculture's (USDA) Natural Resources Conservation Service (NRCS) leads the national Conservation Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps.

SSURGO: Soil Survey Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS)

Telephone: 800-672-5559

SSURGO is the most detailed level of mapping done by the Natural Resources Conservation Service, mapping scales generally range from 1:12,000 to 1:63,360. Field mapping methods using national standards are used to construct the soil maps in the Soil Survey Geographic (SSURGO) database. SSURGO digitizing duplicates the original soil survey maps. This level of mapping is designed for use by landowners, townships and county natural resource planning and management.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

LOCAL / REGIONAL WATER AGENCY RECORDS

FEDERAL WATER WELLS

PWS: Public Water Systems

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Public Water System data from the Federal Reporting Data System. A PWS is any water system which provides water to at least 25 people for at least 60 days annually. PWSs provide water from wells, rivers and other sources.

PWS ENF: Public Water Systems Violation and Enforcement Data

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Violation and Enforcement data for Public Water Systems from the Safe Drinking Water Information System (SDWIS) after August 1995. Prior to August 1995, the data came from the Federal Reporting Data System (FRDS).

USGS Water Wells: USGS National Water Inventory System (NWIS)

This database contains descriptive information on sites where the USGS collects or has collected data on surface water and/or groundwater. The groundwater data includes information on wells, springs, and other sources of groundwater.

STATE RECORDS

New York Public Water Wells

Source: New York Department of Health

Telephone: 518-458-6731

OTHER STATE DATABASE INFORMATION

Oil and Gas Well Database

Source: Department of Environmental Conservation

Telephone: 518-402-8072

These files contain records, in the database, of wells that have been drilled.

RADON

State Database: NY Radon Source: Department of Health Telephone: 518-402-7556 Radon Test Results

Area Radon Information Source: USGS

Telephone: 703-356-4020

The National Radon Database has been developed by the U.S. Environmental Protection Agency

(USEPA) and is a compilation of the EPA/State Residential Radon Survey and the National Residential Radon Survey. The study covers the years 1986 - 1992. Where necessary data has been supplemented by information collected at private sources such as universities and research institutions.

EPA Radon Zones Source: EPA

Telephone: 703-356-4020

Sections 307 & 309 of IRAA directed EPA to list and identify areas of U.S. with the potential for elevated indoor

radon levels.

OTHER

Airport Landing Facilities: Private and public use landing facilities

Source: Federal Aviation Administration, 800-457-6656

Epicenters: World earthquake epicenters, Richter 5 or greater

Source: Department of Commerce, National Oceanic and Atmospheric Administration

Earthquake Fault Lines: The fault lines displayed on EDR's Topographic map are digitized quaternary faultlines, prepared

in 1975 by the United State Geological Survey

PHYSICAL SETTING SOURCE RECORDS SEARCHED

STREET AND ADDRESS INFORMATION

© 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

131 Commerce Ave131 Commerce AveCarmel, NY 10512

Inquiry Number: 6044645.3

April 20, 2020

Certified Sanborn® Map Report

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

Certified Sanborn® Map Report

04/20/20

Site Name: Client Name:

131 Commerce Ave HRP Associates, Inc.
131 Commerce Ave 197 Scott Swamp Road
Carmel, NY 10512 Farmington, CT 06032-0000
EDR Inquiry # 6044645.3 Contact: Stefan Truex

The Sanborn Library has been searched by EDR and maps covering the target property location as provided by HRP Associates, Inc. were identified for the years listed below. The Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by the Sanborn Library LLC, the copyright holder for the collection. Results can be authenticated by visiting www.edrnet.com/sanborn.

The Sanborn Library is continually enhanced with newly identified map archives. This report accesses all maps in the collection as of the day this report was generated.

Certified Sanborn Results:

Certification # 1EDB-4118-B41B **PO #** DEC1005.P3

Project NYSDEC - Fair Street Landfill

UNMAPPED PROPERTY

This report certifies that the complete holdings of the Sanborn Library, LLC collection have been searched based on client supplied target property information, and fire insurance maps covering the target property were not found.

Sanborn® Library search results

Certification #: 1EDB-4118-B41B

The Sanborn Library includes more than 1.2 million fire insurance maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow and others which track historical property usage in approximately 12,000 American cities and towns. Collections searched:

✓ Library of Congress

University Publications of America

EDR Private Collection

The Sanborn Library LLC Since 1866™

Limited Permission To Make Copies

HRP Associates, Inc. (the client) is permitted to make up to FIVE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2020 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

APPENDIX B CAMP Monitoring Documents

Model:,DustTrak II Model Number:,8530 Serial Number:,8530131401 Test ID:,001 Test Abbreviation:, MANUAL_001 Start Date:,09/14/2020 Start Time:,09:19:26 Duration (dd:hh:mm:ss):,0:06:48:00 Log Interval (mm:ss):,01:00 Number of points:,408 Notes:, Statistics, Channel:, AEROSOL Units:,mg/m^3 ,Average:,0.010 ,Minimum:,0.007 Time of Minimum:,09:21:26 ,Date of Minimum:,09/14/2020 ,Maximum:,0.096 Time of Maximum:,11:13:26 ,Date of Maximum:,09/14/2020 Calibration, Sensor:, AEROSOL ,Cal. date,02/28/2020 Date, Time, AEROSOL MM/dd/yyyy,hh:mm:ss,mg/m^3 09/14/2020,09:20:26,0.020 09/14/2020,09:21:26,0.007 09/14/2020,09:22:26,0.007 09/14/2020,09:23:26,0.007 09/14/2020,09:24:26,0.007 09/14/2020,09:25:26,0.007 09/14/2020,09:26:26,0.008 09/14/2020,09:27:26,0.008 09/14/2020,09:28:26,0.008 09/14/2020,09:29:26,0.009 09/14/2020,09:30:26,0.008 09/14/2020,09:31:26,0.008 09/14/2020,09:32:26,0.009 09/14/2020,09:33:26,0.008 09/14/2020,09:34:26,0.007 09/14/2020,09:35:26,0.009 09/14/2020,09:36:26,0.009 09/14/2020,09:37:26,0.008

09/14/2020,09:38:26,0.009 09/14/2020,09:39:26,0.007 09/14/2020,09:40:26,0.008

```
09/14/2020,09:41:26,0.007
09/14/2020,09:42:26,0.008
09/14/2020,09:43:26,0.008
09/14/2020,09:44:26,0.007
09/14/2020,09:45:26,0.007
09/14/2020,09:46:26,0.008
09/14/2020,09:47:26,0.008
09/14/2020,09:48:26,0.007
09/14/2020,09:49:26,0.007
09/14/2020,09:50:26,0.007
09/14/2020,09:51:26,0.008
09/14/2020,09:52:26,0.008
09/14/2020,09:53:26,0.007
09/14/2020,09:54:26,0.007
09/14/2020,09:55:26,0.008
09/14/2020,09:56:26,0.008
09/14/2020,09:57:26,0.014
09/14/2020,09:58:26,0.008
09/14/2020,09:59:26,0.011
09/14/2020,10:00:26,0.009
09/14/2020,10:01:26,0.008
09/14/2020,10:02:26,0.008
09/14/2020,10:03:26,0.008
09/14/2020,10:04:26,0.008
09/14/2020,10:05:26,0.009
09/14/2020,10:06:26,0.009
09/14/2020,10:07:26,0.007
09/14/2020,10:08:26,0.008
09/14/2020,10:09:26,0.009
09/14/2020,10:10:26,0.009
09/14/2020,10:11:26,0.008
09/14/2020,10:12:26,0.008
09/14/2020,10:13:26,0.008
09/14/2020,10:14:26,0.008
09/14/2020,10:15:26,0.008
09/14/2020,10:16:26,0.008
09/14/2020,10:17:26,0.008
09/14/2020,10:18:26,0.009
09/14/2020,10:19:26,0.010
09/14/2020,10:20:26,0.009
09/14/2020,10:21:26,0.009
09/14/2020,10:22:26,0.010
09/14/2020,10:23:26,0.009
09/14/2020,10:24:26,0.008
09/14/2020,10:25:26,0.008
09/14/2020,10:26:26,0.008
09/14/2020,10:27:26,0.008
09/14/2020,10:28:26,0.008
09/14/2020,10:29:26,0.008
09/14/2020,10:30:26,0.008
```

```
09/14/2020,10:31:26,0.008
09/14/2020,10:32:26,0.015
09/14/2020,10:33:26,0.012
09/14/2020,10:34:26,0.009
09/14/2020,10:35:26,0.008
09/14/2020,10:36:26,0.009
09/14/2020,10:37:26,0.010
09/14/2020,10:38:26,0.009
09/14/2020,10:39:26,0.012
09/14/2020,10:40:26,0.009
09/14/2020,10:41:26,0.008
09/14/2020,10:42:26,0.009
09/14/2020,10:43:26,0.008
09/14/2020,10:44:26,0.018
09/14/2020,10:45:26,0.025
09/14/2020,10:46:26,0.014
09/14/2020,10:47:26,0.008
09/14/2020,10:48:26,0.008
09/14/2020,10:49:26,0.008
09/14/2020,10:50:26,0.010
09/14/2020,10:51:26,0.008
09/14/2020,10:52:26,0.008
09/14/2020,10:53:26,0.008
09/14/2020,10:54:26,0.009
09/14/2020,10:55:26,0.011
09/14/2020,10:56:26,0.010
09/14/2020,10:57:26,0.009
09/14/2020,10:58:26,0.009
09/14/2020,10:59:26,0.008
09/14/2020,11:00:26,0.008
09/14/2020,11:01:26,0.009
09/14/2020,11:02:26,0.008
09/14/2020,11:03:26,0.012
09/14/2020,11:04:26,0.019
09/14/2020,11:05:26,0.009
09/14/2020,11:06:26,0.008
09/14/2020,11:07:26,0.015
09/14/2020,11:08:26,0.009
09/14/2020,11:09:26,0.008
09/14/2020,11:10:26,0.008
09/14/2020,11:11:26,0.008
09/14/2020,11:12:26,0.008
09/14/2020,11:13:26,0.096
09/14/2020,11:14:26,0.068
09/14/2020,11:15:26,0.010
09/14/2020,11:16:26,0.009
09/14/2020,11:17:26,0.008
09/14/2020,11:18:26,0.008
09/14/2020,11:19:26,0.015
09/14/2020,11:20:26,0.012
```

```
09/14/2020,11:21:26,0.009
09/14/2020,11:22:26,0.008
09/14/2020,11:23:26,0.008
09/14/2020,11:24:26,0.008
09/14/2020,11:25:26,0.009
09/14/2020,11:26:26,0.009
09/14/2020,11:27:26,0.008
09/14/2020,11:28:26,0.009
09/14/2020,11:29:26,0.008
09/14/2020,11:30:26,0.014
09/14/2020,11:31:26,0.009
09/14/2020,11:32:26,0.010
09/14/2020,11:33:26,0.012
09/14/2020,11:34:26,0.009
09/14/2020,11:35:26,0.008
09/14/2020,11:36:26,0.008
09/14/2020,11:37:26,0.023
09/14/2020,11:38:26,0.010
09/14/2020,11:39:26,0.061
09/14/2020,11:40:26,0.014
09/14/2020,11:41:26,0.011
09/14/2020,11:42:26,0.010
09/14/2020,11:43:26,0.009
09/14/2020,11:44:26,0.009
09/14/2020,11:45:26,0.009
09/14/2020,11:46:26,0.009
09/14/2020,11:47:26,0.008
09/14/2020,11:48:26,0.010
09/14/2020,11:49:26,0.009
09/14/2020,11:50:26,0.009
09/14/2020,11:51:26,0.010
09/14/2020,11:52:26,0.011
09/14/2020,11:53:26,0.011
09/14/2020,11:54:26,0.010
09/14/2020,11:55:26,0.010
09/14/2020,11:56:26,0.009
09/14/2020,11:57:26,0.010
09/14/2020,11:58:26,0.009
09/14/2020,11:59:26,0.012
09/14/2020,12:00:26,0.009
09/14/2020,12:01:26,0.010
09/14/2020,12:02:26,0.008
09/14/2020,12:03:26,0.008
09/14/2020,12:04:26,0.009
09/14/2020,12:05:26,0.009
09/14/2020,12:06:26,0.010
09/14/2020,12:07:26,0.013
09/14/2020,12:08:26,0.009
09/14/2020,12:09:26,0.008
09/14/2020,12:10:26,0.008
```

```
09/14/2020,12:11:26,0.009
09/14/2020,12:12:26,0.015
09/14/2020,12:13:26,0.011
09/14/2020,12:14:26,0.013
09/14/2020,12:15:26,0.013
09/14/2020,12:16:26,0.011
09/14/2020,12:17:26,0.009
09/14/2020,12:18:26,0.009
09/14/2020,12:19:26,0.009
09/14/2020,12:20:26,0.009
09/14/2020,12:21:26,0.010
09/14/2020,12:22:26,0.010
09/14/2020,12:23:26,0.009
09/14/2020,12:24:26,0.009
09/14/2020,12:25:26,0.009
09/14/2020,12:26:26,0.009
09/14/2020,12:27:26,0.009
09/14/2020,12:28:26,0.009
09/14/2020,12:29:26,0.011
09/14/2020,12:30:26,0.012
09/14/2020,12:31:26,0.012
09/14/2020,12:32:26,0.010
09/14/2020,12:33:26,0.009
09/14/2020,12:34:26,0.012
09/14/2020,12:35:26,0.010
09/14/2020,12:36:26,0.010
09/14/2020,12:37:26,0.009
09/14/2020,12:38:26,0.009
09/14/2020,12:39:26,0.009
09/14/2020,12:40:26,0.011
09/14/2020,12:41:26,0.009
09/14/2020,12:42:26,0.009
09/14/2020,12:43:26,0.009
09/14/2020,12:44:26,0.009
09/14/2020,12:45:26,0.009
09/14/2020,12:46:26,0.009
09/14/2020,12:47:26,0.009
09/14/2020,12:48:26,0.010
09/14/2020,12:49:26,0.009
09/14/2020,12:50:26,0.010
09/14/2020,12:51:26,0.009
09/14/2020,12:52:26,0.009
09/14/2020,12:53:26,0.009
09/14/2020,12:54:26,0.014
09/14/2020,12:55:26,0.012
09/14/2020,12:56:26,0.010
09/14/2020,12:57:26,0.009
09/14/2020,12:58:26,0.009
09/14/2020,12:59:26,0.008
09/14/2020,13:00:26,0.009
```

```
09/14/2020,13:01:26,0.008
09/14/2020,13:02:26,0.009
09/14/2020,13:03:26,0.009
09/14/2020,13:04:26,0.009
09/14/2020,13:05:26,0.009
09/14/2020,13:06:26,0.009
09/14/2020,13:07:26,0.009
09/14/2020,13:08:26,0.009
09/14/2020,13:09:26,0.008
09/14/2020,13:10:26,0.009
09/14/2020,13:11:26,0.008
09/14/2020,13:12:26,0.009
09/14/2020,13:13:26,0.009
09/14/2020,13:14:26,0.008
09/14/2020,13:15:26,0.009
09/14/2020,13:16:26,0.010
09/14/2020,13:17:26,0.008
09/14/2020,13:18:26,0.009
09/14/2020,13:19:26,0.008
09/14/2020,13:20:26,0.009
09/14/2020,13:21:26,0.009
09/14/2020,13:22:26,0.009
09/14/2020,13:23:26,0.009
09/14/2020,13:24:26,0.009
09/14/2020,13:25:26,0.009
09/14/2020,13:26:26,0.008
09/14/2020,13:27:26,0.009
09/14/2020,13:28:26,0.022
09/14/2020,13:29:26,0.011
09/14/2020,13:30:26,0.009
09/14/2020,13:31:26,0.008
09/14/2020,13:32:26,0.009
09/14/2020,13:33:26,0.010
09/14/2020,13:34:26,0.009
09/14/2020,13:35:26,0.009
09/14/2020,13:36:26,0.009
09/14/2020,13:37:26,0.008
09/14/2020,13:38:26,0.009
09/14/2020,13:39:26,0.010
09/14/2020,13:40:26,0.009
09/14/2020,13:41:26,0.009
09/14/2020,13:42:26,0.024
09/14/2020,13:43:26,0.010
09/14/2020,13:44:26,0.008
09/14/2020,13:45:26,0.009
09/14/2020,13:46:26,0.009
09/14/2020,13:47:26,0.010
09/14/2020,13:48:26,0.010
09/14/2020,13:49:26,0.009
09/14/2020,13:50:26,0.009
```

```
09/14/2020,13:51:26,0.008
09/14/2020,13:52:26,0.008
09/14/2020,13:53:26,0.009
09/14/2020,13:54:26,0.009
09/14/2020,13:55:26,0.008
09/14/2020,13:56:26,0.009
09/14/2020,13:57:26,0.009
09/14/2020,13:58:26,0.009
09/14/2020,13:59:26,0.008
09/14/2020,14:00:26,0.008
09/14/2020,14:01:26,0.008
09/14/2020,14:02:26,0.009
09/14/2020,14:03:26,0.009
09/14/2020,14:04:26,0.009
09/14/2020,14:05:26,0.008
09/14/2020,14:06:26,0.008
09/14/2020,14:07:26,0.008
09/14/2020,14:08:26,0.009
09/14/2020,14:09:26,0.009
09/14/2020,14:10:26,0.008
09/14/2020,14:11:26,0.008
09/14/2020,14:12:26,0.008
09/14/2020,14:13:26,0.008
09/14/2020,14:14:26,0.008
09/14/2020,14:15:26,0.008
09/14/2020,14:16:26,0.008
09/14/2020,14:17:26,0.008
09/14/2020,14:18:26,0.009
09/14/2020,14:19:26,0.008
09/14/2020,14:20:26,0.009
09/14/2020,14:21:26,0.009
09/14/2020,14:22:26,0.009
09/14/2020,14:23:26,0.008
09/14/2020,14:24:26,0.011
09/14/2020,14:25:26,0.008
09/14/2020,14:26:26,0.008
09/14/2020,14:27:26,0.013
09/14/2020,14:28:26,0.017
09/14/2020,14:29:26,0.012
09/14/2020,14:30:26,0.009
09/14/2020,14:31:26,0.012
09/14/2020,14:32:26,0.012
09/14/2020,14:33:26,0.010
09/14/2020,14:34:26,0.009
09/14/2020,14:35:26,0.008
09/14/2020,14:36:26,0.009
09/14/2020,14:37:26,0.008
09/14/2020,14:38:26,0.009
09/14/2020,14:39:26,0.009
09/14/2020,14:40:26,0.010
```

```
09/14/2020,14:41:26,0.009
09/14/2020,14:42:26,0.010
09/14/2020,14:43:26,0.011
09/14/2020,14:44:26,0.009
09/14/2020,14:45:26,0.009
09/14/2020,14:46:26,0.008
09/14/2020,14:47:26,0.008
09/14/2020,14:48:26,0.009
09/14/2020,14:49:26,0.009
09/14/2020,14:50:26,0.009
09/14/2020,14:51:26,0.009
09/14/2020,14:52:26,0.009
09/14/2020,14:53:26,0.009
09/14/2020,14:54:26,0.009
09/14/2020,14:55:26,0.008
09/14/2020,14:56:26,0.011
09/14/2020,14:57:26,0.008
09/14/2020,14:58:26,0.009
09/14/2020,14:59:26,0.009
09/14/2020,15:00:26,0.010
09/14/2020,15:01:26,0.009
09/14/2020,15:02:26,0.010
09/14/2020,15:03:26,0.011
09/14/2020,15:04:26,0.010
09/14/2020,15:05:26,0.009
09/14/2020,15:06:26,0.009
09/14/2020,15:07:26,0.009
09/14/2020,15:08:26,0.010
09/14/2020,15:09:26,0.023
09/14/2020,15:10:26,0.024
09/14/2020,15:11:26,0.011
09/14/2020,15:12:26,0.009
09/14/2020,15:13:26,0.010
09/14/2020,15:14:26,0.008
09/14/2020,15:15:26,0.009
09/14/2020,15:16:26,0.008
09/14/2020,15:17:26,0.009
09/14/2020,15:18:26,0.009
09/14/2020,15:19:26,0.010
09/14/2020,15:20:26,0.009
09/14/2020,15:21:26,0.011
09/14/2020,15:22:26,0.009
09/14/2020,15:23:26,0.009
09/14/2020,15:24:26,0.009
09/14/2020,15:25:26,0.009
09/14/2020,15:26:26,0.008
09/14/2020,15:27:26,0.007
09/14/2020,15:28:26,0.010
09/14/2020,15:29:26,0.009
09/14/2020,15:30:26,0.008
```

```
09/14/2020,15:31:26,0.008
09/14/2020,15:32:26,0.010
09/14/2020,15:33:26,0.008
09/14/2020,15:34:26,0.008
09/14/2020,15:35:26,0.008
09/14/2020,15:36:26,0.008
09/14/2020,15:37:26,0.009
09/14/2020,15:38:26,0.011
09/14/2020,15:39:26,0.016
09/14/2020,15:40:26,0.012
09/14/2020,15:41:26,0.012
09/14/2020,15:42:26,0.014
09/14/2020,15:43:26,0.008
09/14/2020,15:44:26,0.009
09/14/2020,15:45:26,0.008
09/14/2020,15:46:26,0.008
09/14/2020,15:47:26,0.009
09/14/2020,15:48:26,0.042
09/14/2020,15:49:26,0.008
09/14/2020,15:50:26,0.008
09/14/2020,15:51:26,0.028
09/14/2020,15:52:26,0.014
09/14/2020,15:53:26,0.010
09/14/2020,15:54:26,0.010
09/14/2020,15:55:26,0.011
09/14/2020,15:56:26,0.009
09/14/2020,15:57:26,0.009
09/14/2020,15:58:26,0.008
09/14/2020,15:59:26,0.009
09/14/2020,16:00:26,0.009
09/14/2020,16:01:26,0.008
09/14/2020,16:02:26,0.008
09/14/2020,16:03:26,0.008
09/14/2020,16:04:26,0.008
09/14/2020,16:05:26,0.008
09/14/2020,16:06:26,0.009
09/14/2020,16:07:26,0.011
```

Model:,DustTrak II Model Number:,8530 Serial Number:,8530131401 Test ID:,002 Test Abbreviation:, MANUAL_002 Start Date:,09/15/2020 Start Time:,07:47:32 Duration (dd:hh:mm:ss):,0:06:59:00 Log Interval (mm:ss):,01:00 Number of points:,419 Notes:, Statistics, Channel:, AEROSOL Units:,mg/m^3 ,Average:,0.006 ,Minimum:,0.002 Time of Minimum:, 10:32:32 ,Date of Minimum:,09/15/2020 ,Maximum:,0.105 Time of Maximum:,08:05:32 ,Date of Maximum:,09/15/2020 Calibration, Sensor:, AEROSOL ,Cal. date,02/28/2020 Date, Time, AEROSOL MM/dd/yyyy,hh:mm:ss,mg/m^3 09/15/2020,07:48:32,0.011 09/15/2020,07:49:32,0.007 09/15/2020,07:50:32,0.007 09/15/2020,07:51:32,0.007 09/15/2020,07:52:32,0.006 09/15/2020,07:53:32,0.007 09/15/2020,07:54:32,0.007 09/15/2020,07:55:32,0.007 09/15/2020,07:56:32,0.007 09/15/2020,07:57:32,0.008 09/15/2020,07:58:32,0.007 09/15/2020,07:59:32,0.007 09/15/2020,08:00:32,0.008 09/15/2020,08:01:32,0.008 09/15/2020,08:02:32,0.007 09/15/2020,08:03:32,0.007 09/15/2020,08:04:32,0.063 09/15/2020,08:05:32,0.105 09/15/2020,08:06:32,0.019 09/15/2020,08:07:32,0.009 09/15/2020,08:08:32,0.009

```
09/15/2020,08:09:32,0.008
09/15/2020,08:10:32,0.008
09/15/2020,08:11:32,0.007
09/15/2020,08:12:32,0.006
09/15/2020,08:13:32,0.006
09/15/2020,08:14:32,0.040
09/15/2020,08:15:32,0.042
09/15/2020,08:16:32,0.012
09/15/2020,08:17:32,0.006
09/15/2020,08:18:32,0.007
09/15/2020,08:19:32,0.006
09/15/2020,08:20:32,0.006
09/15/2020,08:21:32,0.005
09/15/2020,08:22:32,0.005
09/15/2020,08:23:32,0.005
09/15/2020,08:24:32,0.005
09/15/2020,08:25:32,0.006
09/15/2020,08:26:32,0.006
09/15/2020,08:27:32,0.006
09/15/2020,08:28:32,0.005
09/15/2020,08:29:32,0.005
09/15/2020,08:30:32,0.005
09/15/2020,08:31:32,0.005
09/15/2020,08:32:32,0.005
09/15/2020,08:33:32,0.005
09/15/2020,08:34:32,0.005
09/15/2020,08:35:32,0.005
09/15/2020,08:36:32,0.005
09/15/2020,08:37:32,0.005
09/15/2020,08:38:32,0.005
09/15/2020,08:39:32,0.005
09/15/2020,08:40:32,0.005
09/15/2020,08:41:32,0.005
09/15/2020,08:42:32,0.004
09/15/2020,08:43:32,0.004
09/15/2020,08:44:32,0.005
09/15/2020,08:45:32,0.005
09/15/2020,08:46:32,0.005
09/15/2020,08:47:32,0.005
09/15/2020,08:48:32,0.005
09/15/2020,08:49:32,0.006
09/15/2020,08:50:32,0.005
09/15/2020,08:51:32,0.005
09/15/2020,08:52:32,0.005
09/15/2020,08:53:32,0.004
09/15/2020,08:54:32,0.005
09/15/2020,08:55:32,0.005
09/15/2020,08:56:32,0.005
09/15/2020,08:57:32,0.006
09/15/2020,08:58:32,0.005
```

```
09/15/2020,08:59:32,0.005
09/15/2020,09:00:32,0.005
09/15/2020,09:01:32,0.005
09/15/2020,09:02:32,0.004
09/15/2020,09:03:32,0.004
09/15/2020,09:04:32,0.004
09/15/2020,09:05:32,0.004
09/15/2020,09:06:32,0.007
09/15/2020,09:07:32,0.008
09/15/2020,09:08:32,0.008
09/15/2020,09:09:32,0.046
09/15/2020,09:10:32,0.018
09/15/2020,09:11:32,0.009
09/15/2020,09:12:32,0.008
09/15/2020,09:13:32,0.005
09/15/2020,09:14:32,0.031
09/15/2020,09:15:32,0.010
09/15/2020,09:16:32,0.005
09/15/2020,09:17:32,0.006
09/15/2020,09:18:32,0.004
09/15/2020,09:19:32,0.004
09/15/2020,09:20:32,0.004
09/15/2020,09:21:32,0.004
09/15/2020,09:22:32,0.004
09/15/2020,09:23:32,0.004
09/15/2020,09:24:32,0.005
09/15/2020,09:25:32,0.005
09/15/2020,09:26:32,0.033
09/15/2020,09:27:32,0.023
09/15/2020,09:28:32,0.007
09/15/2020,09:29:32,0.005
09/15/2020,09:30:32,0.004
09/15/2020,09:31:32,0.005
09/15/2020,09:32:32,0.004
09/15/2020,09:33:32,0.005
09/15/2020,09:34:32,0.004
09/15/2020,09:35:32,0.011
09/15/2020,09:36:32,0.007
09/15/2020,09:37:32,0.012
09/15/2020,09:38:32,0.008
09/15/2020,09:39:32,0.005
09/15/2020,09:40:32,0.004
09/15/2020,09:41:32,0.005
09/15/2020,09:42:32,0.004
09/15/2020,09:43:32,0.006
09/15/2020,09:44:32,0.007
09/15/2020,09:45:32,0.012
09/15/2020,09:46:32,0.012
09/15/2020,09:47:32,0.008
09/15/2020,09:48:32,0.011
```

```
09/15/2020,09:49:32,0.007
09/15/2020,09:50:32,0.004
09/15/2020,09:51:32,0.008
09/15/2020,09:52:32,0.005
09/15/2020,09:53:32,0.006
09/15/2020,09:54:32,0.005
09/15/2020,09:55:32,0.004
09/15/2020,09:56:32,0.006
09/15/2020,09:57:32,0.009
09/15/2020,09:58:32,0.032
09/15/2020,09:59:32,0.011
09/15/2020,10:00:32,0.009
09/15/2020,10:01:32,0.006
09/15/2020,10:02:32,0.006
09/15/2020,10:03:32,0.004
09/15/2020,10:04:32,0.004
09/15/2020,10:05:32,0.005
09/15/2020,10:06:32,0.004
09/15/2020,10:07:32,0.005
09/15/2020,10:08:32,0.007
09/15/2020,10:09:32,0.004
09/15/2020,10:10:32,0.005
09/15/2020,10:11:32,0.005
09/15/2020,10:12:32,0.007
09/15/2020,10:13:32,0.007
09/15/2020,10:14:32,0.010
09/15/2020,10:15:32,0.014
09/15/2020,10:16:32,0.040
09/15/2020,10:17:32,0.016
09/15/2020,10:18:32,0.010
09/15/2020,10:19:32,0.008
09/15/2020,10:20:32,0.007
09/15/2020,10:21:32,0.008
09/15/2020,10:22:32,0.009
09/15/2020,10:23:32,0.013
09/15/2020,10:24:32,0.010
09/15/2020,10:25:32,0.007
09/15/2020,10:26:32,0.004
09/15/2020,10:27:32,0.004
09/15/2020,10:28:32,0.003
09/15/2020,10:29:32,0.003
09/15/2020,10:30:32,0.003
09/15/2020,10:31:32,0.003
09/15/2020,10:32:32,0.002
09/15/2020,10:33:32,0.005
09/15/2020,10:34:32,0.006
09/15/2020,10:35:32,0.003
09/15/2020,10:36:32,0.003
09/15/2020,10:37:32,0.003
09/15/2020,10:38:32,0.003
```

```
09/15/2020,10:39:32,0.003
09/15/2020,10:40:32,0.003
09/15/2020,10:41:32,0.004
09/15/2020,10:42:32,0.005
09/15/2020,10:43:32,0.007
09/15/2020,10:44:32,0.006
09/15/2020,10:45:32,0.004
09/15/2020,10:46:32,0.004
09/15/2020,10:47:32,0.006
09/15/2020,10:48:32,0.006
09/15/2020,10:49:32,0.004
09/15/2020,10:50:32,0.005
09/15/2020,10:51:32,0.006
09/15/2020,10:52:32,0.004
09/15/2020,10:53:32,0.004
09/15/2020,10:54:32,0.003
09/15/2020,10:55:32,0.003
09/15/2020,10:56:32,0.003
09/15/2020,10:57:32,0.003
09/15/2020,10:58:32,0.004
09/15/2020,10:59:32,0.003
09/15/2020,11:00:32,0.005
09/15/2020,11:01:32,0.006
09/15/2020,11:02:32,0.004
09/15/2020,11:03:32,0.003
09/15/2020,11:04:32,0.004
09/15/2020,11:05:32,0.002
09/15/2020,11:06:32,0.005
09/15/2020,11:07:32,0.007
09/15/2020,11:08:32,0.005
09/15/2020,11:09:32,0.003
09/15/2020,11:10:32,0.003
09/15/2020,11:11:32,0.003
09/15/2020,11:12:32,0.002
09/15/2020,11:13:32,0.002
09/15/2020,11:14:32,0.002
09/15/2020,11:15:32,0.003
09/15/2020,11:16:32,0.005
09/15/2020,11:17:32,0.004
09/15/2020,11:18:32,0.003
09/15/2020,11:19:32,0.003
09/15/2020,11:20:32,0.004
09/15/2020,11:21:32,0.005
09/15/2020,11:22:32,0.006
09/15/2020,11:23:32,0.005
09/15/2020,11:24:32,0.004
09/15/2020,11:25:32,0.003
09/15/2020,11:26:32,0.002
09/15/2020,11:27:32,0.003
09/15/2020,11:28:32,0.007
```

```
09/15/2020,11:29:32,0.014
09/15/2020,11:30:32,0.027
09/15/2020,11:31:32,0.022
09/15/2020,11:32:32,0.008
09/15/2020,11:33:32,0.010
09/15/2020,11:34:32,0.003
09/15/2020,11:35:32,0.003
09/15/2020,11:36:32,0.004
09/15/2020,11:37:32,0.032
09/15/2020,11:38:32,0.005
09/15/2020,11:39:32,0.003
09/15/2020,11:40:32,0.002
09/15/2020,11:41:32,0.003
09/15/2020,11:42:32,0.003
09/15/2020,11:43:32,0.002
09/15/2020,11:44:32,0.002
09/15/2020,11:45:32,0.002
09/15/2020,11:46:32,0.012
09/15/2020,11:47:32,0.003
09/15/2020,11:48:32,0.003
09/15/2020,11:49:32,0.002
09/15/2020,11:50:32,0.003
09/15/2020,11:51:32,0.003
09/15/2020,11:52:32,0.003
09/15/2020,11:53:32,0.003
09/15/2020,11:54:32,0.003
09/15/2020,11:55:32,0.003
09/15/2020,11:56:32,0.002
09/15/2020,11:57:32,0.002
09/15/2020,11:58:32,0.002
09/15/2020,11:59:32,0.002
09/15/2020,12:00:32,0.003
09/15/2020,12:01:32,0.006
09/15/2020,12:02:32,0.004
09/15/2020,12:03:32,0.003
09/15/2020,12:04:32,0.004
09/15/2020,12:05:32,0.003
09/15/2020,12:06:32,0.002
09/15/2020,12:07:32,0.003
09/15/2020,12:08:32,0.003
09/15/2020,12:09:32,0.002
09/15/2020,12:10:32,0.002
09/15/2020,12:11:32,0.003
09/15/2020,12:12:32,0.002
09/15/2020,12:13:32,0.002
09/15/2020,12:14:32,0.003
09/15/2020,12:15:32,0.002
09/15/2020,12:16:32,0.002
09/15/2020,12:17:32,0.002
09/15/2020,12:18:32,0.002
```

```
09/15/2020,12:19:32,0.003
09/15/2020,12:20:32,0.002
09/15/2020,12:21:32,0.091
09/15/2020,12:22:32,0.062
09/15/2020,12:23:32,0.003
09/15/2020,12:24:32,0.003
09/15/2020,12:25:32,0.003
09/15/2020,12:26:32,0.002
09/15/2020,12:27:32,0.003
09/15/2020,12:28:32,0.002
09/15/2020,12:29:32,0.003
09/15/2020,12:30:32,0.003
09/15/2020,12:31:32,0.002
09/15/2020,12:32:32,0.002
09/15/2020,12:33:32,0.003
09/15/2020,12:34:32,0.002
09/15/2020,12:35:32,0.002
09/15/2020,12:36:32,0.002
09/15/2020,12:37:32,0.002
09/15/2020,12:38:32,0.002
09/15/2020,12:39:32,0.002
09/15/2020,12:40:32,0.002
09/15/2020,12:41:32,0.002
09/15/2020,12:42:32,0.002
09/15/2020,12:43:32,0.002
09/15/2020,12:44:32,0.003
09/15/2020,12:45:32,0.002
09/15/2020,12:46:32,0.006
09/15/2020,12:47:32,0.003
09/15/2020,12:48:32,0.002
09/15/2020,12:49:32,0.002
09/15/2020,12:50:32,0.002
09/15/2020,12:51:32,0.004
09/15/2020,12:52:32,0.004
09/15/2020,12:53:32,0.004
09/15/2020,12:54:32,0.003
09/15/2020,12:55:32,0.003
09/15/2020,12:56:32,0.002
09/15/2020,12:57:32,0.002
09/15/2020,12:58:32,0.003
09/15/2020,12:59:32,0.002
09/15/2020,13:00:32,0.002
09/15/2020,13:01:32,0.002
09/15/2020,13:02:32,0.002
09/15/2020,13:03:32,0.002
09/15/2020,13:04:32,0.003
09/15/2020,13:05:32,0.002
09/15/2020,13:06:32,0.003
09/15/2020,13:07:32,0.003
09/15/2020,13:08:32,0.002
```

```
09/15/2020,13:09:32,0.002
09/15/2020,13:10:32,0.002
09/15/2020,13:11:32,0.003
09/15/2020,13:12:32,0.002
09/15/2020,13:13:32,0.002
09/15/2020,13:14:32,0.003
09/15/2020,13:15:32,0.092
09/15/2020,13:16:32,0.013
09/15/2020,13:17:32,0.003
09/15/2020,13:18:32,0.004
09/15/2020,13:19:32,0.002
09/15/2020,13:20:32,0.002
09/15/2020,13:21:32,0.002
09/15/2020,13:22:32,0.002
09/15/2020,13:23:32,0.003
09/15/2020,13:24:32,0.002
09/15/2020,13:25:32,0.003
09/15/2020,13:26:32,0.003
09/15/2020,13:27:32,0.002
09/15/2020,13:28:32,0.003
09/15/2020,13:29:32,0.003
09/15/2020,13:30:32,0.003
09/15/2020,13:31:32,0.003
09/15/2020,13:32:32,0.003
09/15/2020,13:33:32,0.003
09/15/2020,13:34:32,0.002
09/15/2020,13:35:32,0.003
09/15/2020,13:36:32,0.003
09/15/2020,13:37:32,0.003
09/15/2020,13:38:32,0.002
09/15/2020,13:39:32,0.003
09/15/2020,13:40:32,0.003
09/15/2020,13:41:32,0.003
09/15/2020,13:42:32,0.002
09/15/2020,13:43:32,0.003
09/15/2020,13:44:32,0.005
09/15/2020,13:45:32,0.003
09/15/2020,13:46:32,0.003
09/15/2020,13:47:32,0.039
09/15/2020,13:48:32,0.004
09/15/2020,13:49:32,0.004
09/15/2020,13:50:32,0.003
09/15/2020,13:51:32,0.003
09/15/2020,13:52:32,0.003
09/15/2020,13:53:32,0.003
09/15/2020,13:54:32,0.003
09/15/2020,13:55:32,0.003
09/15/2020,13:56:32,0.003
09/15/2020,13:57:32,0.003
09/15/2020,13:58:32,0.003
```

```
09/15/2020,13:59:32,0.003
09/15/2020,14:00:32,0.003
09/15/2020,14:01:32,0.005
09/15/2020,14:02:32,0.003
09/15/2020,14:03:32,0.003
09/15/2020,14:04:32,0.003
09/15/2020,14:05:32,0.002
09/15/2020,14:06:32,0.003
09/15/2020,14:07:32,0.003
09/15/2020,14:08:32,0.003
09/15/2020,14:09:32,0.003
09/15/2020,14:10:32,0.003
09/15/2020,14:11:32,0.003
09/15/2020,14:12:32,0.003
09/15/2020,14:13:32,0.003
09/15/2020,14:14:32,0.003
09/15/2020,14:15:32,0.003
09/15/2020,14:16:32,0.003
09/15/2020,14:17:32,0.003
09/15/2020,14:18:32,0.003
09/15/2020,14:19:32,0.003
09/15/2020,14:20:32,0.003
09/15/2020,14:21:32,0.003
09/15/2020,14:22:32,0.003
09/15/2020,14:23:32,0.003
09/15/2020,14:24:32,0.003
09/15/2020,14:25:32,0.004
09/15/2020,14:26:32,0.004
09/15/2020,14:27:32,0.003
09/15/2020,14:28:32,0.003
09/15/2020,14:29:32,0.003
09/15/2020,14:30:32,0.003
09/15/2020,14:31:32,0.003
09/15/2020,14:32:32,0.003
09/15/2020,14:33:32,0.003
09/15/2020,14:34:32,0.003
09/15/2020,14:35:32,0.003
09/15/2020,14:36:32,0.003
09/15/2020,14:37:32,0.003
09/15/2020,14:38:32,0.004
09/15/2020,14:39:32,0.003
09/15/2020,14:40:32,0.003
09/15/2020,14:41:32,0.003
09/15/2020,14:42:32,0.003
09/15/2020,14:43:32,0.003
09/15/2020,14:44:32,0.003
09/15/2020,14:45:32,0.003
09/15/2020,14:46:32,0.003
```

Model:,DustTrak II
Model Number:,8530
Serial Number:,8530133002
Test ID:,001
Test Abbreviation:,MANUAL_001
Start Date:,09/14/2020
Start Time:,09:22:57
Duration (dd:hh:mm:ss):,0:00:01:00
Number of points:,1
Notes:,
Statistics,Channel:,AEROSOL

Junits:,mg/m^3
,Average:,0.012
,Minimum:,0.012
,Time of Minimum:,09:23:57
,Date of Minimum:,09/14/2020
,Maximum:,0.012
,Time of Maximum:,09:23:57
,Date of Maximum:,09/14/2020

Calibration, Sensor:, AEROSOL, Cal. date, 08/27/2020

Date, Time, AEROSOL MM/dd/yyyy, hh: mm:ss, mg/m^3 09/14/2020,09:23:57,0.012

Model:,DustTrak II
Model Number:,8530
Serial Number:,8530133002
Test ID:,002
Test Abbreviation:,MANUAL_002
Start Date:,09/15/2020
Start Time:,07:31:11
Duration (dd:hh:mm:ss):,0:00:01:00
Number of points:,1
Notes:,
Statistics,Channel:,AEROSOL

,Units:,mg/m^3
,Average:,0.040
,Minimum:,0.040
,Time of Minimum:,07:32:11
,Date of Minimum:,09/15/2020
,Maximum:,0.040
,Time of Maximum:,07:32:11
,Date of Maximum:,07:32:20

Calibration, Sensor:, AEROSOL, Cal. date, 08/27/2020

Date, Time, AEROSOL MM/dd/yyyy, hh: mm:ss, mg/m^3 09/15/2020,07:32:11,0.040

Model:,DustTrak II Model Number:,8530 Serial Number:,8530133002 Test ID:,003 Test Abbreviation:, MANUAL_003 Start Date:,09/15/2020 Start Time:,07:37:17 Duration (dd:hh:mm:ss):,0:03:34:00 Log Interval (mm:ss):,01:00 Number of points:,214 Notes:, ERROR: FLOW, Statistics, Channel:, AEROSOL Units:,mg/m^3 ,Average:,0.006 ,Minimum:,0.001 ,Time of Minimum:,11:08:17 ,Date of Minimum:,09/15/2020 ,Maximum:,0.018 Time of Maximum:, 10:19:17 ,Date of Maximum:,09/15/2020 Calibration, Sensor:, AEROSOL ,Cal. date,08/27/2020 Date, Time, AEROSOL MM/dd/yyyy,hh:mm:ss,mg/m^3 09/15/2020,07:38:17,0.003 09/15/2020,07:39:17,0.004 09/15/2020,07:40:17,0.004 09/15/2020,07:41:17,0.004 09/15/2020,07:42:17,0.003 09/15/2020,07:43:17,0.004 09/15/2020,07:44:17,0.004 09/15/2020,07:45:17,0.004 09/15/2020,07:46:17,0.003 09/15/2020,07:47:17,0.003 09/15/2020,07:48:17,0.003 09/15/2020,07:49:17,0.004 09/15/2020,07:50:17,0.004 09/15/2020,07:51:17,0.004 09/15/2020,07:52:17,0.005 09/15/2020,07:53:17,0.005 09/15/2020,07:54:17,0.005 09/15/2020,07:55:17,0.005

09/15/2020,07:56:17,0.007 09/15/2020,07:57:17,0.006 09/15/2020,07:58:17,0.006

```
09/15/2020,07:59:17,0.006
09/15/2020,08:00:17,0.005
09/15/2020,08:01:17,0.005
09/15/2020,08:02:17,0.005
09/15/2020,08:03:17,0.004
09/15/2020,08:04:17,0.004
09/15/2020,08:05:17,0.005
09/15/2020,08:06:17,0.005
09/15/2020,08:07:17,0.005
09/15/2020,08:08:17,0.005
09/15/2020,08:09:17,0.005
09/15/2020,08:10:17,0.005
09/15/2020,08:11:17,0.005
09/15/2020,08:12:17,0.005
09/15/2020,08:13:17,0.006
09/15/2020,08:14:17,0.005
09/15/2020,08:15:17,0.005
09/15/2020,08:16:17,0.005
09/15/2020,08:17:17,0.005
09/15/2020,08:18:17,0.004
09/15/2020,08:19:17,0.004
09/15/2020,08:20:17,0.004
09/15/2020,08:21:17,0.004
09/15/2020,08:22:17,0.004
09/15/2020,08:23:17,0.004
09/15/2020,08:24:17,0.004
09/15/2020,08:25:17,0.004
09/15/2020,08:26:17,0.005
09/15/2020,08:27:17,0.005
09/15/2020,08:28:17,0.004
09/15/2020,08:29:17,0.004
09/15/2020,08:30:17,0.004
09/15/2020,08:31:17,0.005
09/15/2020,08:32:17,0.004
09/15/2020,08:33:17,0.004
09/15/2020,08:34:17,0.004
09/15/2020,08:35:17,0.004
09/15/2020,08:36:17,0.004
09/15/2020,08:37:17,0.005
09/15/2020,08:38:17,0.004
09/15/2020,08:39:17,0.005
09/15/2020,08:40:17,0.004
09/15/2020,08:41:17,0.005
09/15/2020,08:42:17,0.005
09/15/2020,08:43:17,0.004
09/15/2020,08:44:17,0.004
09/15/2020,08:45:17,0.005
09/15/2020,08:46:17,0.004
09/15/2020,08:47:17,0.004
09/15/2020,08:48:17,0.005
```

```
09/15/2020,08:49:17,0.004
09/15/2020,08:50:17,0.004
09/15/2020,08:51:17,0.005
09/15/2020,08:52:17,0.004
09/15/2020,08:53:17,0.004
09/15/2020,08:54:17,0.004
09/15/2020,08:55:17,0.004
09/15/2020,08:56:17,0.004
09/15/2020,08:57:17,0.004
09/15/2020,08:58:17,0.004
09/15/2020,08:59:17,0.006
09/15/2020,09:00:17,0.004
09/15/2020,09:01:17,0.005
09/15/2020,09:02:17,0.005
09/15/2020,09:03:17,0.004
09/15/2020,09:04:17,0.004
09/15/2020,09:05:17,0.004
09/15/2020,09:06:17,0.004
09/15/2020,09:07:17,0.005
09/15/2020,09:08:17,0.004
09/15/2020,09:09:17,0.004
09/15/2020,09:10:17,0.005
09/15/2020,09:11:17,0.005
09/15/2020,09:12:17,0.005
09/15/2020,09:13:17,0.005
09/15/2020,09:14:17,0.004
09/15/2020,09:15:17,0.005
09/15/2020,09:16:17,0.005
09/15/2020,09:17:17,0.004
09/15/2020,09:18:17,0.004
09/15/2020,09:19:17,0.004
09/15/2020,09:20:17,0.004
09/15/2020,09:21:17,0.004
09/15/2020,09:22:17,0.004
09/15/2020,09:23:17,0.004
09/15/2020,09:24:17,0.004
09/15/2020,09:25:17,0.004
09/15/2020,09:26:17,0.004
09/15/2020,09:27:17,0.004
09/15/2020,09:28:17,0.004
09/15/2020,09:29:17,0.004
09/15/2020,09:30:17,0.005
09/15/2020,09:31:17,0.007
09/15/2020,09:32:17,0.007
09/15/2020,09:33:17,0.005
09/15/2020,09:34:17,0.005
09/15/2020,09:35:17,0.004
09/15/2020,09:36:17,0.004
09/15/2020,09:37:17,0.006
09/15/2020,09:38:17,0.005
```

```
09/15/2020,09:39:17,0.005
09/15/2020,09:40:17,0.004
09/15/2020,09:41:17,0.005
09/15/2020,09:42:17,0.005
09/15/2020,09:43:17,0.004
09/15/2020,09:44:17,0.006
09/15/2020,09:45:17,0.010
09/15/2020,09:46:17,0.009
09/15/2020,09:47:17,0.009
09/15/2020,09:48:17,0.008
09/15/2020,09:49:17,0.007
09/15/2020,09:50:17,0.006
09/15/2020,09:51:17,0.006
09/15/2020,09:52:17,0.006
09/15/2020,09:53:17,0.012
09/15/2020,09:54:17,0.009
09/15/2020,09:55:17,0.009
09/15/2020,09:56:17,0.009
09/15/2020,09:57:17,0.010
09/15/2020,09:58:17,0.011
09/15/2020,09:59:17,0.016
09/15/2020,10:00:17,0.013
09/15/2020,10:01:17,0.008
09/15/2020,10:02:17,0.008
09/15/2020,10:03:17,0.009
09/15/2020,10:04:17,0.004
09/15/2020,10:05:17,0.004
09/15/2020,10:06:17,0.006
09/15/2020,10:07:17,0.008
09/15/2020,10:08:17,0.006
09/15/2020,10:09:17,0.007
09/15/2020,10:10:17,0.007
09/15/2020,10:11:17,0.007
09/15/2020,10:12:17,0.007
09/15/2020,10:13:17,0.007
09/15/2020,10:14:17,0.013
09/15/2020,10:15:17,0.010
09/15/2020,10:16:17,0.011
09/15/2020,10:17:17,0.012
09/15/2020,10:18:17,0.009
09/15/2020,10:19:17,0.018
09/15/2020,10:20:17,0.012
09/15/2020,10:21:17,0.007
09/15/2020,10:22:17,0.010
09/15/2020,10:23:17,0.006
09/15/2020,10:24:17,0.007
09/15/2020,10:25:17,0.006
09/15/2020,10:26:17,0.003
09/15/2020,10:27:17,0.003
09/15/2020,10:28:17,0.003
```

```
09/15/2020,10:29:17,0.003
09/15/2020,10:30:17,0.002
09/15/2020,10:31:17,0.003
09/15/2020,10:32:17,0.002
09/15/2020,10:33:17,0.003
09/15/2020,10:34:17,0.005
09/15/2020,10:35:17,0.003
09/15/2020,10:36:17,0.003
09/15/2020,10:37:17,0.004
09/15/2020,10:38:17,0.005
09/15/2020,10:39:17,0.007
09/15/2020,10:40:17,0.003
09/15/2020,10:41:17,0.005
09/15/2020,10:42:17,0.004
09/15/2020,10:43:17,0.011
09/15/2020,10:44:17,0.014
09/15/2020,10:45:17,0.011
09/15/2020,10:46:17,0.006
09/15/2020,10:47:17,0.008
09/15/2020,10:48:17,0.009
09/15/2020,10:49:17,0.011
09/15/2020,10:50:17,0.015
09/15/2020,10:51:17,0.016
09/15/2020,10:52:17,0.007
09/15/2020,10:53:17,0.006
09/15/2020,10:54:17,0.003
09/15/2020,10:55:17,0.002
09/15/2020,10:56:17,0.004
09/15/2020,10:57:17,0.005
09/15/2020,10:58:17,0.007
09/15/2020,10:59:17,0.008
09/15/2020,11:00:17,0.008
09/15/2020,11:01:17,0.009
09/15/2020,11:02:17,0.006
09/15/2020,11:03:17,0.003
09/15/2020,11:04:17,0.003
09/15/2020,11:05:17,0.003
09/15/2020,11:06:17,0.003
09/15/2020,11:07:17,0.002
09/15/2020,11:08:17,0.001
09/15/2020,11:09:17,0.004
09/15/2020,11:10:17,0.008
09/15/2020,11:11:17,0.001
```

=======				
20/09/14 0	7:45			******
Summary				
	592-902053	0 +(PGM-7320)		
Datalog Mo Diagnostic Stop Reaso	No Power Down			
	RAE00000 USER0000			
Begin End		9/14/2020 7:45 9/14/2020 7:47		
Sample Per Number of		60 1		
Measure To Span Span 2	S023030090	100 1000		
Low Alarm High Alarm Over Alarm		50 100 15000		
STEL Alarm	1	100 50		
Measurem Calibration Peak Min Average	N/A N/A N/A N/A	9/10/2020 10:24		
******	*****	******	******	*******
Datalog			PID(ppm	n)
Index 1	Date/Time	9/14/2020 7:46	(Avg)	0
Peak Min Average		· ·		0 0 0

20/09/14 (******	*****	*****	*****
Summary					
	MiniRAE 300 592-902053	00 +(PGM-7320)			
Datalog Mo Diagnostic					
	RAE00000 USER0000				
Begin End Sample Per Number of		9/14/2020 8:33 9/14/2020 15:22 60 409			
Sensor SN Sensor SN Measure T Span Span 2	S023030090	A5 100 1000			
Low Alarm High Alarm Over Alarm STEL Alarm TWA Alarm Measurem	1	50 100 15000 100 50			
Calibration Peak Min Average	-	9/10/2020 10:24			
******** Datalog	******	******	*****	*****	******
Index 1 2 3 4 5	Date/Time	9/14/2020 8:34 9/14/2020 8:35 9/14/2020 8:36 9/14/2020 8:37 9/14/2020 8:38	PID(pp (Avg)	om) 0 0 0 0 0 0	

6	9/14/2020 8:39	0	
7	9/14/2020 8:40	0	
8	9/14/2020 8:41	0	
9	9/14/2020 8:42	0	
10	9/14/2020 8:43	0	
11	9/14/2020 8:44	0	
12	9/14/2020 8:45	0	
13	9/14/2020 8:46	0	
14	9/14/2020 8:47	0	
15	9/14/2020 8:48	0	
15 16	9/14/2020 8:49	0	
17		0	
	9/14/2020 8:50		
18	9/14/2020 8:51	0	
19	9/14/2020 8:52	0	
20	9/14/2020 8:53	0	
21	9/14/2020 8:54	0	
22	9/14/2020 8:55	0	
23	9/14/2020 8:56	0	
24	9/14/2020 8:57	0	
25	9/14/2020 8:58	0	
26	9/14/2020 8:59	0	
27	9/14/2020 9:00	0	
28	9/14/2020 9:01	0	
29	9/14/2020 9:02	0	
30	9/14/2020 9:03	0	
31	9/14/2020 9:04	0	
32	9/14/2020 9:05	0	
33	9/14/2020 9:06	0	
34	9/14/2020 9:07	0	
35	9/14/2020 9:08	0	
36	9/14/2020 9:09	0	
37	9/14/2020 9:10	0	
38	9/14/2020 9:11	0	
39	9/14/2020 9:12	0	
40	9/14/2020 9:13	0	
41	9/14/2020 9:14	0	
42	9/14/2020 9:15	0	
43	9/14/2020 9:16	0	
44	9/14/2020 9:17	0	
45	9/14/2020 9:18	0	
45 46	9/14/2020 9:19	0	
46 47	• •		
	9/14/2020 9:20	0	
48	9/14/2020 9:21	0	
49 50	9/14/2020 9:22	0	
50	9/14/2020 9:23	0	
51	9/14/2020 9:24	0	
52	9/14/2020 9:25	0	

53	9/14/2020 9:26	0
54	9/14/2020 9:27	0
55	9/14/2020 9:28	0
56	9/14/2020 9:29	0
57	9/14/2020 9:30	0
58	9/14/2020 9:31	0
59	9/14/2020 9:32	0
60	9/14/2020 9:33	0
61	9/14/2020 9:34	0
62	9/14/2020 9:35	0
63	9/14/2020 9:36	0
64	9/14/2020 9:37	0
65	9/14/2020 9:38	0
66	9/14/2020 9:39	0
67	9/14/2020 9:40	0
68	9/14/2020 9:41	0
69	9/14/2020 9:42	0
70	9/14/2020 9:43	0
71	9/14/2020 9:44	0
72	9/14/2020 9:45	0
73	9/14/2020 9:46	0
74	9/14/2020 9:47	0
75	9/14/2020 9:48	0
76	9/14/2020 9:49	0
77	9/14/2020 9:50	0
78	9/14/2020 9:51	0
79	9/14/2020 9:52	0
80	9/14/2020 9:53	0
81	9/14/2020 9:54	0
82	9/14/2020 9:55	0
83	9/14/2020 9:56	0
84	9/14/2020 9:57	0
85	9/14/2020 9:58	0
86	9/14/2020 9:59	0
87	9/14/2020 10:00	0
88	9/14/2020 10:01	0
89	9/14/2020 10:02	0
90	9/14/2020 10:03	0
91	9/14/2020 10:04	0
92	9/14/2020 10:05	0
93	9/14/2020 10:06	0
94	9/14/2020 10:07	0
	·	
95	9/14/2020 10:08	0
96	9/14/2020 10:09	0
97	9/14/2020 10:10	0
98	9/14/2020 10:11	0
99	9/14/2020 10:12	0

100	9/14/2020 10:13	0
101	9/14/2020 10:14	0
102	9/14/2020 10:15	0
103	9/14/2020 10:16	0
104	9/14/2020 10:17	0
105	9/14/2020 10:18	0
106	9/14/2020 10:19	0
107	9/14/2020 10:20	0
108	9/14/2020 10:21	0
109	9/14/2020 10:22	0
110	9/14/2020 10:23	0
111	9/14/2020 10:24	0
112	9/14/2020 10:25	0
113	9/14/2020 10:26	0
114	9/14/2020 10:27	0
115	9/14/2020 10:28	0
116	9/14/2020 10:29	0
117	9/14/2020 10:30	0
118	9/14/2020 10:31	0
119	9/14/2020 10:32	0
120	9/14/2020 10:32	0
121	9/14/2020 10:33	0
121	· · ·	0
	9/14/2020 10:35	
123	9/14/2020 10:36	0
124	9/14/2020 10:37	0
125	9/14/2020 10:38	0
126	9/14/2020 10:39	0
127	9/14/2020 10:40	0
128	9/14/2020 10:41	0
129	9/14/2020 10:42	0
130	9/14/2020 10:43	0
131	9/14/2020 10:44	0
132	9/14/2020 10:45	0
133	9/14/2020 10:46	0
134	9/14/2020 10:47	0
135	9/14/2020 10:48	0
136	9/14/2020 10:49	0
137	9/14/2020 10:50	0
138	9/14/2020 10:51	0
139	9/14/2020 10:52	0
140	9/14/2020 10:53	0
141	9/14/2020 10:54	0
142	9/14/2020 10:55	0
143	9/14/2020 10:56	0
143	9/14/2020 10:57	0
145	9/14/2020 10:58	0
146	9/14/2020 10:59	0

147	9/14/2020 11:00	0
148	9/14/2020 11:01	0
149	9/14/2020 11:02	0
150	9/14/2020 11:03	0
151	9/14/2020 11:04	0
152	9/14/2020 11:05	0
153	9/14/2020 11:06	0
154	9/14/2020 11:07	0
155	9/14/2020 11:08	0
156	9/14/2020 11:09	0
157	9/14/2020 11:10	0
158	9/14/2020 11:11	0
159	9/14/2020 11:12	0
160	9/14/2020 11:13	0
161	9/14/2020 11:14	0
162	9/14/2020 11:15	0
163	9/14/2020 11:16	0
164	9/14/2020 11:17	0
165	9/14/2020 11:18	0
166	9/14/2020 11:19	0
167	9/14/2020 11:20	0
168	9/14/2020 11:21	0
169	9/14/2020 11:22	0
170	9/14/2020 11:23	0
171	9/14/2020 11:24	0
172	9/14/2020 11:25	0
173		0
	9/14/2020 11:26	
174	9/14/2020 11:27	0
175	9/14/2020 11:28	0
176	9/14/2020 11:29	0
177	9/14/2020 11:30	0
178	9/14/2020 11:31	0
179	9/14/2020 11:32	0
180	9/14/2020 11:33	0
181	9/14/2020 11:34	0
182	9/14/2020 11:35	0
183	9/14/2020 11:36	0
184	9/14/2020 11:37	0
185	9/14/2020 11:38	0
	• •	0
186	9/14/2020 11:39	
187	9/14/2020 11:40	0
188	9/14/2020 11:41	0
189	9/14/2020 11:42	0
190	9/14/2020 11:43	0
191	9/14/2020 11:44	0
192	9/14/2020 11:45	0
193	9/14/2020 11:46	0
	• ,	

194	9/14/2020 11:47	0
195	9/14/2020 11:48	0
196	9/14/2020 11:49	0
197	9/14/2020 11:50	0
198	9/14/2020 11:51	0
199	9/14/2020 11:52	0
200	9/14/2020 11:53	0
201	9/14/2020 11:54	0
202	9/14/2020 11:55	0
203	9/14/2020 11:56	0
204	9/14/2020 11:57	0
205	9/14/2020 11:58	0
206	9/14/2020 11:59	0
207	9/14/2020 12:00	0
208	9/14/2020 12:01	0
209	9/14/2020 12:02	0
210	9/14/2020 12:03	0
	• •	
211	9/14/2020 12:04	0
212	9/14/2020 12:05	0
213	9/14/2020 12:06	0
214	9/14/2020 12:07	0
215	9/14/2020 12:08	0
216	9/14/2020 12:09	0
217	9/14/2020 12:10	0
218	9/14/2020 12:11	0
219	9/14/2020 12:12	0
220	9/14/2020 12:13	0
221	9/14/2020 12:14	0
222	9/14/2020 12:15	0
223	9/14/2020 12:16	0
		_
224	9/14/2020 12:17	0
225	9/14/2020 12:18	0
226	9/14/2020 12:19	0
227	9/14/2020 12:20	0
228	9/14/2020 12:21	0
229	9/14/2020 12:22	0
	• •	0
230	9/14/2020 12:23	
231	9/14/2020 12:24	0
232	9/14/2020 12:25	0
233	9/14/2020 12:26	0
234	9/14/2020 12:27	0
235	9/14/2020 12:28	0
236	9/14/2020 12:29	0
237	9/14/2020 12:30	0
238	9/14/2020 12:31	0
239	9/14/2020 12:32	0
240	9/14/2020 12:33	0

241	9/14/2020 12:34	0
242	9/14/2020 12:35	0
243	9/14/2020 12:36	0
244	9/14/2020 12:37	0
245	9/14/2020 12:38	0
246	9/14/2020 12:39	0
247	9/14/2020 12:40	0
248	9/14/2020 12:41	0
249	9/14/2020 12:42	0
250	9/14/2020 12:43	0
251	9/14/2020 12:44	0
252	9/14/2020 12:45	0
253	9/14/2020 12:46	0
254	9/14/2020 12:47	0
255	9/14/2020 12:48	0
256	9/14/2020 12:49	0
257	9/14/2020 12:50	0
258	9/14/2020 12:51	0
259	9/14/2020 12:52	0
260	9/14/2020 12:53	0
261	9/14/2020 12:54	0
262	9/14/2020 12:55	0
263	9/14/2020 12:56	0
264	9/14/2020 12:57	0
265	9/14/2020 12:58	0
266	9/14/2020 12:59	0
267	9/14/2020 13:00	0
268	9/14/2020 13:01	0
269	9/14/2020 13:02	0
270	9/14/2020 13:03	0
271	9/14/2020 13:04	0
272	9/14/2020 13:05	0
273	9/14/2020 13:06	0
274	9/14/2020 13:07	0
275	9/14/2020 13:08	0
276	9/14/2020 13:09	0
277	9/14/2020 13:10	0
278	9/14/2020 13:11	0
279	9/14/2020 13:12	0
280	9/14/2020 13:13	0
281	9/14/2020 13:14	0
282	9/14/2020 13:15	0
283	9/14/2020 13:16	0
284	9/14/2020 13:17	0
285	9/14/2020 13:18	0
286	9/14/2020 13:19	0
287	9/14/2020 13:20	0

288	9/14/2020 13:21	0
289	9/14/2020 13:22	0
290	9/14/2020 13:23	0
291	9/14/2020 13:24	0
292	9/14/2020 13:25	0
293	9/14/2020 13:26	0
294	9/14/2020 13:27	0
295	9/14/2020 13:28	0
296	9/14/2020 13:29	0
297	9/14/2020 13:30	0
298	9/14/2020 13:31	0
299	9/14/2020 13:32	0
300	9/14/2020 13:33	0
301	9/14/2020 13:34	0
302	9/14/2020 13:35	0
303	9/14/2020 13:36	0
304	9/14/2020 13:37	0
305	9/14/2020 13:38	0
306	9/14/2020 13:39	0
307	9/14/2020 13:40	0
308	9/14/2020 13:41	0
309	9/14/2020 13:42	0
310	9/14/2020 13:43	0
311	9/14/2020 13:44	0
312	9/14/2020 13:45	0
313	9/14/2020 13:46	0
314	9/14/2020 13:47	0
315	9/14/2020 13:48	0
316	9/14/2020 13:49	0
317	9/14/2020 13:50	0
318	9/14/2020 13:51	0
319	9/14/2020 13:52	0
320	9/14/2020 13:53	0
321	9/14/2020 13:54	0
322	9/14/2020 13:55	0
323	9/14/2020 13:56	0
324		0
	9/14/2020 13:57	
325	9/14/2020 13:58	0
326	9/14/2020 13:59	0
327	9/14/2020 14:00	0
328	9/14/2020 14:01	0
329	9/14/2020 14:02	0
330	9/14/2020 14:03	0
331	9/14/2020 14:04	0
332	9/14/2020 14:05	0
333	9/14/2020 14:06	0
334	9/14/2020 14:07	0
	-	

335	9/14/2020 14:08	0
336	9/14/2020 14:09	0
337	9/14/2020 14:10	0
	•	
338	9/14/2020 14:11	0
339	9/14/2020 14:12	0
340	9/14/2020 14:13	0
341	9/14/2020 14:14	0
342	9/14/2020 14:15	0
343	9/14/2020 14:16	0
344	9/14/2020 14:17	0
	•	
345	9/14/2020 14:18	0
346	9/14/2020 14:19	0
347	9/14/2020 14:20	0
348	9/14/2020 14:21	0
349	9/14/2020 14:22	0
350	9/14/2020 14:23	0
351	9/14/2020 14:24	0
352	9/14/2020 14:25	0
		0
353	9/14/2020 14:26	
354	9/14/2020 14:27	0
355	9/14/2020 14:28	0
356	9/14/2020 14:29	0
357	9/14/2020 14:30	0
358	9/14/2020 14:31	0
359	9/14/2020 14:32	0
360	9/14/2020 14:33	0
361	9/14/2020 14:34	0
362	9/14/2020 14:35	0
363	9/14/2020 14:36	0
364	9/14/2020 14:37	0
365	9/14/2020 14:38	0
366	9/14/2020 14:39	0
367	9/14/2020 14:40	0
368	9/14/2020 14:41	0
369	9/14/2020 14:42	0
370	9/14/2020 14:43	0
371	9/14/2020 14:44	0
	•	
372	9/14/2020 14:45	0
373	9/14/2020 14:46	0
374	9/14/2020 14:47	0
375	9/14/2020 14:48	0
376	9/14/2020 14:49	0
377	9/14/2020 14:50	0
378	9/14/2020 14:51	0
379	9/14/2020 14:52	0
	•	
380	9/14/2020 14:53	0
381	9/14/2020 14:54	0

	382	9/14/2020 14:55	0
	383	9/14/2020 14:56	0
	384	9/14/2020 14:57	0
	385	9/14/2020 14:58	0
	386	9/14/2020 14:59	0
	387	9/14/2020 15:00	0
	388	9/14/2020 15:01	0
	389	9/14/2020 15:02	0
	390	9/14/2020 15:03	0
	391	9/14/2020 15:04	0
	392	9/14/2020 15:05	0
	393	9/14/2020 15:06	0
	394	9/14/2020 15:07	0
	395	9/14/2020 15:08	0
	396	9/14/2020 15:09	0
	397	9/14/2020 15:10	0
	398	9/14/2020 15:11	0
	399	9/14/2020 15:12	0
	400	9/14/2020 15:13	0
	401	9/14/2020 15:14	0
	402	9/14/2020 15:15	0
	403	9/14/2020 15:16	0
	404	9/14/2020 15:17	0
	405	9/14/2020 15:18	0
	406	9/14/2020 15:19	0
	407	9/14/2020 15:20	0
	408	9/14/2020 15:21	0
	409	9/14/2020 15:22	0
Peak			0
Min			0
Avera	ge		0

20/09/15		*****	****	******
Summary				
	MiniRAE 300 592-902053	00 +(PGM-7320)		
Datalog M Diagnostic				
	RAE00000 USER0000			
Begin End Sample Pe		9/15/2020 6:54 9/15/2020 14:01 60		
Number o		427		
	PID(ppm) S023030090 Avg	A5		
Span Span 2		100 1000		
Low Alarm	1	50		
High Alarn		100		
Over Alarr STEL Alarn		15000 100		
TWA Alarr		50		
Calibration		9/10/2020 10:24		
Peak Min	N/A N/A			
Average	N/A			
******	******	******	*****	*******
Datalog				,
Index	Date/Time		PID(ppm (Avg)	1)
1		9/15/2020 6:55		0
2		9/15/2020 6:56 9/15/2020 6:57		0 0
4		9/15/2020 6:58		0
5		9/15/2020 6:59		0

6	9/15/2020 7:00	0	
7	9/15/2020 7:01	0	
8	9/15/2020 7:02	0	
9	9/15/2020 7:03	0	
10	9/15/2020 7:04	0	
11	9/15/2020 7:05	0	
12	9/15/2020 7:06	0	
13	9/15/2020 7:07	0	
14	9/15/2020 7:08	0	
15	9/15/2020 7:09	0	
16	9/15/2020 7:10	0	
17	9/15/2020 7:11	0	
18	9/15/2020 7:12	0	
19	9/15/2020 7:13	0	
20	9/15/2020 7:14	0	
21	9/15/2020 7:15	0	
22	9/15/2020 7:16	0	
23	9/15/2020 7:17	0	
23 24	9/15/2020 7:18	0	
24 25	9/15/2020 7:19	0	
	• •		
26	9/15/2020 7:20	0	
27	9/15/2020 7:21	0	
28	9/15/2020 7:22	0	
29	9/15/2020 7:23	0	
30	9/15/2020 7:24	0	
31	9/15/2020 7:25	0	
32	9/15/2020 7:26	0	
33	9/15/2020 7:27	0	
34	9/15/2020 7:28	0	
35	9/15/2020 7:29	0	
36	9/15/2020 7:30	0	
37	9/15/2020 7:31	0	
38	9/15/2020 7:32	0	
39	9/15/2020 7:33	0	
40	9/15/2020 7:34	0	
41	9/15/2020 7:35	0	
42	9/15/2020 7:36	0	
43	9/15/2020 7:37	0	
44	9/15/2020 7:38	0	
45	9/15/2020 7:39	0	
46	9/15/2020 7:40	0	
47	9/15/2020 7:41	0	
48	9/15/2020 7:42	0	
49	9/15/2020 7:43	0	
50	9/15/2020 7:44	0	
51	9/15/2020 7:45	0	
52	9/15/2020 7:46	0	

53	9/15/2020 7:47	0
54	9/15/2020 7:48	0
55	9/15/2020 7:49	0
56	9/15/2020 7:50	0
57	9/15/2020 7:51	0
58	9/15/2020 7:52	0
59	9/15/2020 7:53	0
60	9/15/2020 7:54	0
61	9/15/2020 7:55	0
62	9/15/2020 7:56	0
63	9/15/2020 7:57	0
64	9/15/2020 7:58	0
65	9/15/2020 7:59	0
66	9/15/2020 7:39	0
67	9/15/2020 8:01	0
68	9/15/2020 8:02	0
69	9/15/2020 8:03	0
70	• •	
70 71	9/15/2020 8:04	0
	9/15/2020 8:05	0
72	9/15/2020 8:06	0
73	9/15/2020 8:07	0
74	9/15/2020 8:08	0
75 76	9/15/2020 8:09	0
76 77	9/15/2020 8:10	0
77	9/15/2020 8:11	0
78	9/15/2020 8:12	0
79	9/15/2020 8:13	0
80	9/15/2020 8:14	0
81	9/15/2020 8:15	0
82	9/15/2020 8:16	0
83	9/15/2020 8:17	0
84	9/15/2020 8:18	0
85	9/15/2020 8:19	0
86	9/15/2020 8:20	0
87	9/15/2020 8:21	0
88	9/15/2020 8:22	0
89	9/15/2020 8:23	0
90	9/15/2020 8:24	0
91	9/15/2020 8:25	0
92	9/15/2020 8:26	0
93	9/15/2020 8:27	0
94	9/15/2020 8:28	0
95	9/15/2020 8:29	0
96	9/15/2020 8:30	0
97	9/15/2020 8:31	0
98	9/15/2020 8:32	0
99	9/15/2020 8:33	0

100	9/15/2020 8:34	0
101	9/15/2020 8:35	0
102	9/15/2020 8:36	0
103	9/15/2020 8:37	0
	• •	0
104	9/15/2020 8:38	
105	9/15/2020 8:39	0
106	9/15/2020 8:40	0
107	9/15/2020 8:41	0
108	9/15/2020 8:42	0
109	9/15/2020 8:43	0
110	9/15/2020 8:44	0
111	9/15/2020 8:45	0
112	9/15/2020 8:46	0
113	9/15/2020 8:47	0
114	9/15/2020 8:48	0
115	9/15/2020 8:49	0
116	9/15/2020 8:50	0
117	9/15/2020 8:51	0
118	9/15/2020 8:52	0
119	9/15/2020 8:53	0
120	9/15/2020 8:54	0
121	9/15/2020 8:55	0
122	9/15/2020 8:56	0
123	9/15/2020 8:57	0
124	9/15/2020 8:58	0
125	9/15/2020 8:59	0
126		0
	9/15/2020 9:00	
127	9/15/2020 9:01	0
128	9/15/2020 9:02	0
129	9/15/2020 9:03	0
130	9/15/2020 9:04	0
131	9/15/2020 9:05	0
132	9/15/2020 9:06	0
133	9/15/2020 9:07	0
134	9/15/2020 9:08	0
135	9/15/2020 9:09	0
136	9/15/2020 9:10	0
137	9/15/2020 9:11	0
138	9/15/2020 9:12	0
	• •	0
139	9/15/2020 9:13	
140	9/15/2020 9:14	0
141	9/15/2020 9:15	0
142	9/15/2020 9:16	0
143	9/15/2020 9:17	0
144	9/15/2020 9:18	0
145	9/15/2020 9:19	0
146	9/15/2020 9:20	0

147	9/15/2020 9:21	0	
148	9/15/2020 9:22	0	
149	9/15/2020 9:23	0	
150	9/15/2020 9:24	0	
151	9/15/2020 9:25	0	
152	9/15/2020 9:26	0	
153	9/15/2020 9:27	0	
154	9/15/2020 9:28	0	
155	9/15/2020 9:29	0	
156	9/15/2020 9:30	0	
157	9/15/2020 9:31	0	
158	9/15/2020 9:32	0	
159	9/15/2020 9:33	0	
160	9/15/2020 9:34	0	
161	9/15/2020 9:35	0	
162	9/15/2020 9:36	0	
163	9/15/2020 9:37	0	
164	9/15/2020 9:38	0	
165	9/15/2020 9:39	0	
166	9/15/2020 9:40	0	
167	9/15/2020 9:41	0	
168	9/15/2020 9:42	0	
169	9/15/2020 9:43	0	
170	9/15/2020 9:44	0	
171	9/15/2020 9:45	0	
172	9/15/2020 9:46	0	
173	9/15/2020 9:47	0	
174	9/15/2020 9:48	0	
175	9/15/2020 9:49	0	
176	9/15/2020 9:50	0	
177	9/15/2020 9:51	0	
178	9/15/2020 9:52	0	
179	9/15/2020 9:53	0	
180	9/15/2020 9:54	0	
181	9/15/2020 9:55	0	
182	9/15/2020 9:56	0	
183	9/15/2020 9:57	0	
184	9/15/2020 9:58	0	
185	9/15/2020 9:59	0	
186	9/15/2020 10:00	0	
187	9/15/2020 10:01	0	
188	9/15/2020 10:02	0	
189	9/15/2020 10:03	0	
190	9/15/2020 10:04	0	
191	9/15/2020 10:05	0	
192	9/15/2020 10:06	0	
193	9/15/2020 10:07	0	

194	9/15/2020 10:08	0
195	9/15/2020 10:09	0
196	9/15/2020 10:10	0
197	9/15/2020 10:11	0
198	9/15/2020 10:12	0
199	9/15/2020 10:13	0
200	9/15/2020 10:13	0
200	9/15/2020 10:14	0
202	9/15/2020 10:16	0
203	9/15/2020 10:17	0
204	9/15/2020 10:18	0
205	9/15/2020 10:19	0
206	9/15/2020 10:20	0
207	9/15/2020 10:21	0
208	9/15/2020 10:22	0
209	9/15/2020 10:23	0
210	9/15/2020 10:24	0
211	9/15/2020 10:25	0
212	9/15/2020 10:26	0
213	9/15/2020 10:27	0
214	9/15/2020 10:28	0
215	9/15/2020 10:29	0
216	9/15/2020 10:30	0
217	9/15/2020 10:31	0
218	9/15/2020 10:32	0
219	9/15/2020 10:33	0
220	9/15/2020 10:34	0
221	9/15/2020 10:35	0
222	9/15/2020 10:36	0
223	9/15/2020 10:37	0
224	9/15/2020 10:38	0
225		
	9/15/2020 10:39	0
226	9/15/2020 10:40	0
227	9/15/2020 10:41	0
228	9/15/2020 10:42	0
229	9/15/2020 10:43	0
230	9/15/2020 10:44	0
231	9/15/2020 10:45	0
232	9/15/2020 10:46	0
233	9/15/2020 10:47	0
234	9/15/2020 10:48	0
235	9/15/2020 10:49	0
236	9/15/2020 10:50	0
237	9/15/2020 10:51	0
238	9/15/2020 10:52	0
239	9/15/2020 10:53	0
240	9/15/2020 10:54	0
	•	

241	9/15/2020 10:55	0
242	9/15/2020 10:56	0
243	9/15/2020 10:57	0
244	9/15/2020 10:58	0
245	9/15/2020 10:59	0
246	9/15/2020 11:00	0
247	9/15/2020 11:01	0
248	9/15/2020 11:02	0
249	9/15/2020 11:03	0
250	9/15/2020 11:04	0
251	9/15/2020 11:05	0
252	9/15/2020 11:06	0
253	9/15/2020 11:07	0
254	9/15/2020 11:08	0
255	9/15/2020 11:09	0
256	9/15/2020 11:10	0
257	9/15/2020 11:11	0
258	9/15/2020 11:12	0
259	9/15/2020 11:13	0
260	9/15/2020 11:14	0
261	9/15/2020 11:15	0
262	9/15/2020 11:16	0
263	9/15/2020 11:17	0
264	9/15/2020 11:18	0
265	9/15/2020 11:19	0
266	9/15/2020 11:20	0
267	9/15/2020 11:21	0
268	9/15/2020 11:22	0
	• •	
269	9/15/2020 11:23	0
270	9/15/2020 11:24	0
271	9/15/2020 11:25	0
272	9/15/2020 11:26	0
273	9/15/2020 11:27	0
274	9/15/2020 11:28	0
275	9/15/2020 11:29	0
276	9/15/2020 11:30	0
277	9/15/2020 11:31	0
278	9/15/2020 11:32	0
279	9/15/2020 11:32	0
	• •	
280	9/15/2020 11:34	0
281	9/15/2020 11:35	0
282	9/15/2020 11:36	0
283	9/15/2020 11:37	0
284	9/15/2020 11:38	0
285	9/15/2020 11:39	0
286	9/15/2020 11:40	0
287	9/15/2020 11:41	0
	-, -0, -0-0 11.11	9

288	9/15/2020 11:42	0
289	9/15/2020 11:43	0
290	9/15/2020 11:44	0
291	9/15/2020 11:45	0
292	9/15/2020 11:46	0
293	9/15/2020 11:47	0
	•	
294	9/15/2020 11:48	0
295	9/15/2020 11:49	0
296	9/15/2020 11:50	0
297	9/15/2020 11:51	0
298	9/15/2020 11:52	0
299	9/15/2020 11:53	0
300	9/15/2020 11:54	0
301	9/15/2020 11:55	0
302	9/15/2020 11:56	0
303	9/15/2020 11:57	0
304	9/15/2020 11:58	0
305	9/15/2020 11:59	0
306	9/15/2020 12:00	0
307	9/15/2020 12:01	0
308	9/15/2020 12:02	0
309	9/15/2020 12:03	0
310	9/15/2020 12:04	0
311	9/15/2020 12:05	0
312	9/15/2020 12:06	0
313	9/15/2020 12:07	0
314	9/15/2020 12:08	0
315	9/15/2020 12:09	0
316	9/15/2020 12:10	0
317	9/15/2020 12:11	0
318	9/15/2020 12:12	0
319	9/15/2020 12:13	0
320	9/15/2020 12:14	0
321	9/15/2020 12:15	0
322	9/15/2020 12:16	0
323	9/15/2020 12:17	0
324	9/15/2020 12:18	0
325	9/15/2020 12:19	0
326	9/15/2020 12:20	0
327	9/15/2020 12:21	0
328	9/15/2020 12:22	0
329	9/15/2020 12:23	0
330	9/15/2020 12:24	0
331	9/15/2020 12:25	0
332	9/15/2020 12:26	0
333	•	0
	9/15/2020 12:27	0
334	9/15/2020 12:28	U

335	9/15/2020 12:29	0
336	9/15/2020 12:30	0
	• •	
337	9/15/2020 12:31	0
338	9/15/2020 12:32	0
339	9/15/2020 12:33	0
340	9/15/2020 12:34	0
341	9/15/2020 12:35	0
	• •	
342	9/15/2020 12:36	0
343	9/15/2020 12:37	0
344	9/15/2020 12:38	0
345	9/15/2020 12:39	0
346		0
	9/15/2020 12:40	
347	9/15/2020 12:41	0
348	9/15/2020 12:42	0
349	9/15/2020 12:43	0
350	9/15/2020 12:44	0
351	9/15/2020 12:45	0
352	9/15/2020 12:46	0
353	9/15/2020 12:47	0
354	9/15/2020 12:48	0
355	9/15/2020 12:49	0
	• •	
356	9/15/2020 12:50	0
357	9/15/2020 12:51	0
358	9/15/2020 12:52	0
359	9/15/2020 12:53	0
360	9/15/2020 12:54	0
361	9/15/2020 12:55	0
362	9/15/2020 12:56	0
363	9/15/2020 12:57	0
364	9/15/2020 12:58	0
365	9/15/2020 12:59	0
366	9/15/2020 13:00	0
367	9/15/2020 13:01	0
368	9/15/2020 13:02	0
369	9/15/2020 13:03	0
370	9/15/2020 13:04	0
	• •	
371	9/15/2020 13:05	0
372	9/15/2020 13:06	0
373	9/15/2020 13:07	0
374	9/15/2020 13:08	0
375	9/15/2020 13:09	0
	• •	
376	9/15/2020 13:10	0
377	9/15/2020 13:11	0
378	9/15/2020 13:12	0
379	9/15/2020 13:13	0
380	9/15/2020 13:14	0
381	9/15/2020 13:15	0

382	9/15/2020 13:16	0
383	9/15/2020 13:17	0
384	9/15/2020 13:18	0
385	9/15/2020 13:19	0
386	9/15/2020 13:20	0
387	9/15/2020 13:21	0
388	9/15/2020 13:22	0
389	9/15/2020 13:23	0
390	9/15/2020 13:24	0
391	9/15/2020 13:25	0
392	9/15/2020 13:26	0
393	9/15/2020 13:27	0
394	9/15/2020 13:28	0
395	9/15/2020 13:29	0
396	9/15/2020 13:30	0
397	9/15/2020 13:31	0
398	9/15/2020 13:32	0
399	9/15/2020 13:33	0
400	9/15/2020 13:34	0
401	9/15/2020 13:35	0
402	9/15/2020 13:36	0
403	9/15/2020 13:37	0
404	9/15/2020 13:38	0
405	9/15/2020 13:39	0
406	9/15/2020 13:40	0
407	9/15/2020 13:41	0
408	9/15/2020 13:42	0
409	9/15/2020 13:43	0
410	9/15/2020 13:44	0
411	9/15/2020 13:45	0
412	9/15/2020 13:46	0
413	9/15/2020 13:47	0
414	9/15/2020 13:48	0
415	9/15/2020 13:49	0
416	9/15/2020 13:50	0
417	9/15/2020 13:51	0
418	9/15/2020 13:52	0
419	9/15/2020 13:53	0
420	·	0
	9/15/2020 13:54	
421	9/15/2020 13:55	0
422	9/15/2020 13:56	0
423	9/15/2020 13:57	0
424	9/15/2020 13:58	0
425	9/15/2020 13:59	0
426	9/15/2020 14:00	0
427	9/15/2020 14:01	0
		0

Peak

Min 0 Average 0

======================================	:========	
	******	*********
Summary		
Unit Name MiniRAE		
Unit SN 592-9190)32	
Unit Firmw V2.20A		
Running M Hygiene	 Mode	-
Datalog Mc Auto		
Diagnostic No		
Stop Reaso Power Do	own	
Site ID RAE0000	 O	
User ID USER000	0	
-	9/14/2020 10:20	
End	9/14/2020 10:20	
Sample Per	60	
Number of	0	
Sensor PID(ppm)	
Sensor SN S023030	206U3	
Measure Ty Avg		
Span	100	
Span 2	1000	
Low Alarm	50	
High Alarm	100	
Over Alarm	15000	
STEL Alarm	100	
TWA Alarm	50	
Measurem Isobutyle	ne	
Calibration	9/10/2020 17:50	
******	*********	********
Datalog		
<u> </u>		

0 record.

======================================	===========	
	******	*********
Summary		
Unit Name MiniRAE		
Unit SN 592-9190	32	
Unit Firmw V2.20A		
Running M Hygiene I	 Mode	
Datalog Mc Auto		
Diagnostic No		
Stop Reaso Power Do	own	
Site ID RAE0000	 0	
User ID USER000		
Begin	9/14/2020 10:23	
End	9/14/2020 10:24	
Sample Per	60	
Number of	0	
Sensor PID(ppm)	·	
Sensor SN S0230302	206U3	
Measure Ty Avg		
Span	100	
Span 2	1000	
Low Alarm	50	
High Alarm	100	
Over Alarm	15000	
STEL Alarm	100	
TWA Alarm	50	
Measurem Isobutyle		
Calibration	9/10/2020 17:50	
******	******	*********
Datalog		

0 record.

Summary			*****	*******
			****	***********
Unit SN Unit Firmw	592-91903 V2.20A			
Running M Datalog Mo Diagnostic	Hygiene Mo Auto			
Site ID User ID	USER0000			
Begin End		9/14/2020 11:29 9/14/2020 18:14		
Sample Per Number of		60 404		
Sensor	PID(ppm) S02303020	06U3		
Span Span 2		100 1000		
Low Alarm High Alarm	l	50 100		
Over Alarm		15000 100		
TWA Alarm		50		
Calibration Peak Min Average	N/A N/A N/A	9/10/2020 17:50		
******	******	******	*****	*******
Datalog			PID(ppm	n)
Index	Date/Time		(Avg)	
1 2		9/14/2020 11:30 9/14/2020 11:31		0
3		9/14/2020 11:32		0
4 5		9/14/2020 11:33 9/14/2020 11:34		0

6	9/14/2020 11:35	0
7	9/14/2020 11:36	0
	·	
8	9/14/2020 11:37	0
9	9/14/2020 11:38	0
10	9/14/2020 11:39	0
		0
11	9/14/2020 11:40	
12	9/14/2020 11:41	0
13	9/14/2020 11:42	0
14	9/14/2020 11:43	0
15	9/14/2020 11:44	0
16	9/14/2020 11:45	0
17	9/14/2020 11:46	0
18	9/14/2020 11:47	0
19	9/14/2020 11:48	0
20	9/14/2020 11:49	0
21	9/14/2020 11:50	0
22	9/14/2020 11:51	0
	·	
23	9/14/2020 11:52	0
24	9/14/2020 11:53	0
25	9/14/2020 11:54	0
26	9/14/2020 11:55	0
27	9/14/2020 11:56	0
28	9/14/2020 11:57	0
29	9/14/2020 11:58	0
30	9/14/2020 11:59	0
31	9/14/2020 12:00	0
32	9/14/2020 12:01	0
33	9/14/2020 12:02	0
34	9/14/2020 12:03	0
35	9/14/2020 12:04	0
36	9/14/2020 12:05	0
	9/14/2020 12:06	
37	• •	0
38	9/14/2020 12:07	0
39	9/14/2020 12:08	0
40	9/14/2020 12:09	0
41	9/14/2020 12:10	0
	• • • • • • • • • • • • • • • • • • •	
42	9/14/2020 12:11	0
43	9/14/2020 12:12	0
44	9/14/2020 12:13	0
45	9/14/2020 12:14	0
46	9/14/2020 12:15	0
	·	
47	9/14/2020 12:16	0
48	9/14/2020 12:17	0
49	9/14/2020 12:18	0
50	9/14/2020 12:19	0
51	9/14/2020 12:20	0
52	9/14/2020 12:21	0

53	9/14/2020 12:22	0
54	9/14/2020 12:23	0
55	9/14/2020 12:24	0
56	9/14/2020 12:25	0
57	9/14/2020 12:26	0
58	9/14/2020 12:27	0
59	9/14/2020 12:28	0
60	9/14/2020 12:29	0
61	9/14/2020 12:30	0
62	9/14/2020 12:31	0
63	9/14/2020 12:32	0
64	9/14/2020 12:33	0
65	9/14/2020 12:34	0
66	9/14/2020 12:35	0
67	9/14/2020 12:36	0
68	9/14/2020 12:37	0
69	9/14/2020 12:38	0
70	9/14/2020 12:39	0
71	9/14/2020 12:40	0
72	9/14/2020 12:41	0
73	9/14/2020 12:42	0
74	9/14/2020 12:43	0
75	9/14/2020 12:44	0
76	9/14/2020 12:45	0
77	9/14/2020 12:46	0
78	9/14/2020 12:47	0
79	9/14/2020 12:48	0
80	9/14/2020 12:49	0
81	9/14/2020 12:50	0
82	9/14/2020 12:51	0
83	9/14/2020 12:52	0
84	9/14/2020 12:53	0
85	9/14/2020 12:54	0
86	9/14/2020 12:55	0
87	9/14/2020 12:56	0
88	9/14/2020 12:57	0
89	9/14/2020 12:58	0
90	9/14/2020 12:59	0
91	9/14/2020 13:00	0
	• •	0
92	9/14/2020 13:01	
93	9/14/2020 13:02	0
94	9/14/2020 13:03	0
95	9/14/2020 13:04	0
96	9/14/2020 13:05	0
97	9/14/2020 13:06	0
98	9/14/2020 13:07	0
99	9/14/2020 13:08	0
	•	

100	9/14/2020 13:09	0
101	9/14/2020 13:10	0
102	9/14/2020 13:11	0
103	9/14/2020 13:12	0
104	9/14/2020 13:12	0
105	9/14/2020 13:14	0
106	9/14/2020 13:15	0
107	9/14/2020 13:16	0
108	9/14/2020 13:17	0
109	9/14/2020 13:18	0
110	9/14/2020 13:19	0
111	9/14/2020 13:20	0
112	9/14/2020 13:21	0
113	9/14/2020 13:22	0
114	9/14/2020 13:23	0
115	9/14/2020 13:24	0
116	9/14/2020 13:25	0
	•	
117	9/14/2020 13:26	0
118	9/14/2020 13:27	0
119	9/14/2020 13:28	0
120	9/14/2020 13:29	0
121	9/14/2020 13:30	0
122	9/14/2020 13:31	0
123	9/14/2020 13:32	0
124	9/14/2020 13:33	0
125	9/14/2020 13:34	0
126	9/14/2020 13:35	0
127	9/14/2020 13:36	0
128	9/14/2020 13:37	0
129	9/14/2020 13:38	0
	• •	
130	9/14/2020 13:39	0
131	9/14/2020 13:40	0
132	9/14/2020 13:41	0
133	9/14/2020 13:42	0
134	9/14/2020 13:43	0
135	9/14/2020 13:44	0
136	9/14/2020 13:45	0
137	9/14/2020 13:46	0
138	9/14/2020 13:47	0
139	9/14/2020 13:48	0
140	9/14/2020 13:49	0
141	9/14/2020 13:50	0
	• •	
142	9/14/2020 13:51	0
143	9/14/2020 13:52	0
144	9/14/2020 13:53	0
145	9/14/2020 13:54	0
146	9/14/2020 13:55	0

147	9/14/2020 13:56	0
148	9/14/2020 13:57	0
149	9/14/2020 13:58	0
150	9/14/2020 13:59	0
151	9/14/2020 14:00	0
152	9/14/2020 14:01	0
153	9/14/2020 14:02	0
154	9/14/2020 14:03	0
155	9/14/2020 14:04	0
156	9/14/2020 14:04	0
157	9/14/2020 14:06	0
158	9/14/2020 14:07	0
159	9/14/2020 14:08	0
160	9/14/2020 14:09	0
161	9/14/2020 14:10	0
162	9/14/2020 14:11	0
163	9/14/2020 14:12	0
164	9/14/2020 14:13	0
165	9/14/2020 14:14	0
166	9/14/2020 14:15	0
167	9/14/2020 14:16	0
168	9/14/2020 14:17	0
169	9/14/2020 14:18	0
170	9/14/2020 14:19	0
171	9/14/2020 14:20	0
172	9/14/2020 14:21	0
173	9/14/2020 14:22	0
174	9/14/2020 14:23	0
175	9/14/2020 14:24	0
176	9/14/2020 14:25	0
177	9/14/2020 14:26	0
177	9/14/2020 14:27	
	• •	0 0
179	9/14/2020 14:28	
180	9/14/2020 14:29	0
181	9/14/2020 14:30	0
182	9/14/2020 14:31	0
183	9/14/2020 14:32	0
184	9/14/2020 14:33	0
185	9/14/2020 14:34	0
186	9/14/2020 14:35	0
187	9/14/2020 14:36	0
188	9/14/2020 14:37	0
189	9/14/2020 14:38	0
190	9/14/2020 14:39	0
191	9/14/2020 14:40	0
192	9/14/2020 14:41	0
193	9/14/2020 14:42	0

194	9/14/2020 14:43	0
195	9/14/2020 14:44	0
196	9/14/2020 14:45	0
197	9/14/2020 14:46	0
198	9/14/2020 14:47	0
199	9/14/2020 14:48	0
200	9/14/2020 14:49	0
201	9/14/2020 14:50	0
202	9/14/2020 14:51	0
203	9/14/2020 14:52	0
204	9/14/2020 14:53	0
205	9/14/2020 14:54	0
206	9/14/2020 14:55	0
207	9/14/2020 14:56	0
208	9/14/2020 14:57	0
209	9/14/2020 14:58	0
210	9/14/2020 14:59	0
	• •	
211	9/14/2020 15:00	0
212	9/14/2020 15:01	0
213	9/14/2020 15:02	0
214	9/14/2020 15:03	0
215	9/14/2020 15:04	0
216	9/14/2020 15:05	0
217	9/14/2020 15:06	0
218	9/14/2020 15:07	0
219	9/14/2020 15:08	0
220	9/14/2020 15:09	0
221	9/14/2020 15:10	0
222	9/14/2020 15:11	0
223	9/14/2020 15:12	0
	• •	
224	9/14/2020 15:13	0
225	9/14/2020 15:14	0
226	9/14/2020 15:15	0
227	9/14/2020 15:16	0
228	9/14/2020 15:17	0
229	9/14/2020 15:18	0
230	9/14/2020 15:19	0
231	9/14/2020 15:20	0
232	9/14/2020 15:21	0
233	9/14/2020 15:22	0
234	9/14/2020 15:23	0
235	9/14/2020 15:24	0
236	9/14/2020 15:25	0
	• •	0
237	9/14/2020 15:26	
238	9/14/2020 15:27	0
239	9/14/2020 15:28	0
240	9/14/2020 15:29	0

241	9/14/2020 15:30	0
242	9/14/2020 15:31	0
243	9/14/2020 15:32	0
244	9/14/2020 15:33	0
245	9/14/2020 15:34	0
246	9/14/2020 15:35	0
247	9/14/2020 15:36	0
248	9/14/2020 15:37	0
249	9/14/2020 15:38	0
250	9/14/2020 15:39	0
	• •	
251	9/14/2020 15:40	0
252	9/14/2020 15:41	0
253	9/14/2020 15:42	0
254	9/14/2020 15:43	0
255	9/14/2020 15:44	0
256	9/14/2020 15:45	0
257	9/14/2020 15:46	0
258	9/14/2020 15:47	0
259	9/14/2020 15:48	0
260	9/14/2020 15:49	0
261	9/14/2020 15:50	0
262	9/14/2020 15:51	0
263	9/14/2020 15:52	0
264	9/14/2020 15:53	0
265	9/14/2020 15:54	0
266	9/14/2020 15:55	0
267	9/14/2020 15:56	0
268	9/14/2020 15:57	0
269	9/14/2020 15:58	0
270	9/14/2020 15:59	0
271	9/14/2020 16:00	0
272	9/14/2020 16:01	0
273	9/14/2020 16:02	0
274	9/14/2020 16:03	0
275	9/14/2020 16:04	0
276	9/14/2020 16:05	0
	• •	
277	9/14/2020 16:06	0
278	9/14/2020 16:07	0
279	9/14/2020 16:08	0
280	9/14/2020 16:09	0
281	9/14/2020 16:10	0
282	9/14/2020 16:11	0
283	9/14/2020 16:12	0
284	9/14/2020 16:13	0
285	9/14/2020 16:14	0
286	9/14/2020 16:15	0
287	9/14/2020 16:16	0
	2, = ., = 0.10	Ü

288	9/14/2020 16:17	0
289	9/14/2020 16:18	0
290	9/14/2020 16:19	0
291	9/14/2020 16:20	0
292	9/14/2020 16:21	0
293	9/14/2020 16:22	0
294	9/14/2020 16:23	0
295	9/14/2020 16:24	0
296	9/14/2020 16:25	0
297	9/14/2020 16:26	0
298	9/14/2020 16:27	0
299	9/14/2020 16:28	0
300	9/14/2020 16:29	0
301	9/14/2020 16:30	0
302	9/14/2020 16:31	0
303	9/14/2020 16:32	0
304	9/14/2020 16:33	0
305	9/14/2020 16:34	0
		0
306	9/14/2020 16:35	
307	9/14/2020 16:36	0
308	9/14/2020 16:37	0
309	9/14/2020 16:38	0
310	9/14/2020 16:39	0
311	9/14/2020 16:40	0
312	9/14/2020 16:41	0
313	9/14/2020 16:42	0
314	9/14/2020 16:43	0
315	9/14/2020 16:44	0
316	9/14/2020 16:45	0
317	9/14/2020 16:46	0
318	9/14/2020 16:47	0
319	9/14/2020 16:48	0
320	9/14/2020 16:49	0
321	9/14/2020 16:50	0
322	9/14/2020 16:51	0
323	9/14/2020 16:52	0
324	9/14/2020 16:53	0
325	9/14/2020 16:54	0
326	9/14/2020 16:55	0
327	9/14/2020 16:56	0
328	9/14/2020 16:57	0
329	9/14/2020 16:58	0
330	9/14/2020 16:59	0
331	9/14/2020 17:00	0
332	9/14/2020 17:01	0
333	9/14/2020 17:02	0
334		0
J34	9/14/2020 17:03	U

335	9/14/2020 17:04	0
336	9/14/2020 17:05	0
337	9/14/2020 17:06	0
338	9/14/2020 17:07	0
339	9/14/2020 17:08	0
340	9/14/2020 17:09	0
341	9/14/2020 17:10	0
342	9/14/2020 17:11	0
343	9/14/2020 17:12	0
344	9/14/2020 17:13	0
345	9/14/2020 17:14	0
346	9/14/2020 17:15	0
347	9/14/2020 17:16	0
348	9/14/2020 17:17	0
349	9/14/2020 17:18	0
	• •	
350	9/14/2020 17:19	0
351	9/14/2020 17:20	0
352	9/14/2020 17:21	0
353	9/14/2020 17:22	0
354	9/14/2020 17:23	0
355	9/14/2020 17:24	0
356	9/14/2020 17:25	0
357	9/14/2020 17:26	0
358	9/14/2020 17:27	0
359	9/14/2020 17:28	0
360	9/14/2020 17:29	0
361	9/14/2020 17:30	0
362	9/14/2020 17:31	0
363	9/14/2020 17:32	0
364	9/14/2020 17:33	0
365	9/14/2020 17:34	0
366	9/14/2020 17:35	0
367	9/14/2020 17:36	0
368	9/14/2020 17:37	0
369	9/14/2020 17:38	0
370	9/14/2020 17:39	0
371	9/14/2020 17:40	0
372	9/14/2020 17:41	0
373	9/14/2020 17:42	0
374	9/14/2020 17:43	0
375	9/14/2020 17:44	0
376	9/14/2020 17:45	0
377	9/14/2020 17:46	0
378	9/14/2020 17:47	0
379	9/14/2020 17:48	0
380	9/14/2020 17:49	0
381	9/14/2020 17:50	0

	382	9/14/2020 17:51	0
	383	9/14/2020 17:52	0
	384	9/14/2020 17:53	0
	385	9/14/2020 17:54	0
	386	9/14/2020 17:55	0
	387	9/14/2020 17:56	0
	388	9/14/2020 17:57	0
	389	9/14/2020 17:58	0
	390	9/14/2020 17:59	0
	391	9/14/2020 18:00	0
	392	9/14/2020 18:01	0
	393	9/14/2020 18:02	0
	394	9/14/2020 18:03	0
	395	9/14/2020 18:04	0
	396	9/14/2020 18:05	0
	397	9/14/2020 18:06	0
	398	9/14/2020 18:07	0
	399	9/14/2020 18:08	0
	400	9/14/2020 18:09	0
	401	9/14/2020 18:10	0
	402	9/14/2020 18:11	0
	403	9/14/2020 18:12	0
	404	9/14/2020 18:13	0
Peak			0
Min			0
Avera	ge		0

======				
20/09/15				
Summary	*****	******	*****	******
Unit Nam Unit SN Unit Firm	592-919032	00(PGM-7320) 2		
Datalog M Diagnostic				
	RAE00000 USER0000			
Begin End		9/15/2020 9:39 9/15/2020 9:57		
Sample Po Number o	of	60 18		
Sensor	PID(ppm) S02303020	6U3		
Span		100		
Span 2 Low Alarn	n	1000 50		
High Alarr	-	100		
Over Alar		15000		
STEL Alarr	n	100		
TWA Alar		50		
	n Isobutylene			
Calibratio Peak	n N/A	9/10/2020 17:50		
Min	N/A			
Average	N/A			
******	******	******	*****	*******
Datalog				,
Index	Date/Time		PID(ppn (Avg)	n)
	1	9/15/2020 9:40		0
	2	9/15/2020 9:41		0
	3	9/15/2020 9:42		0
	4 5	9/15/2020 9:43		0
;	و	9/15/2020 9:44		0

6	9/15/2020 9:45	0	
7	9/15/2020 9:46	0	
8	9/15/2020 9:47	0	
9	9/15/2020 9:48	0	
10	9/15/2020 9:49	0	
11	9/15/2020 9:50	0	
12	9/15/2020 9:51	0	
13	9/15/2020 9:52	0	
14	9/15/2020 9:53	0	
15	9/15/2020 9:54	0	
16	9/15/2020 9:55	0	
17	9/15/2020 9:56	0	
18	9/15/2020 9:57	0	
Peak		0	
Min		0	
Average		0	

20/09/15		*****	*****	*******
Summary				
Unit Name Unit SN Unit Firmv	592-91903	 000(PGM-7320) 2		
Datalog M Diagnostic				
	RAE00000 USER0000			
Begin End		9/15/2020 10:02 9/15/2020 10:13		
Sample Pe Number o		60 11		
	PID(ppm) S02303020	06U3		
Span Span 2		100 1000		
Low Alarm	l	50		
High Alarn		100		
Over Alarr STEL Alarn		15000		
TWA Alarn		100 50		
	ı Isobutylen			
Calibration		9/10/2020 17:50		
Peak Min	N/A N/A			
Average	N/A			
	*******	******	*****	*******
Datalog			PID(ppr	n)
Index	Date/Time		(Avg)	''',
1	•	9/15/2020 10:03		0
2		9/15/2020 10:04		0
3		9/15/2020 10:05		0
5		9/15/2020 10:06 9/15/2020 10:07		0
J	•	3, 13, 2020 10.07		· ·

6	9/15/2020 10:08	0
7	9/15/2020 10:09	0
8	9/15/2020 10:10	0
9	9/15/2020 10:11	0
10	9/15/2020 10:12	0
11	9/15/2020 10:13	0
Peak		0
Min		0
Average		0

20/09/15 1		*****	***	. * * * * *	****	· · · · · · · · · · · · · · · · · · ·	•
Summary		**********	*****	****	*****		т
Unit SN Unit Firmw	592-91903 V2.20A						
Running M Datalog Mo Diagnostic	Hygiene M Auto						
	RAE00000 USER0000						
Begin End		9/15/2020 13:09 9/15/2020 16:53					
Sample Per Number of	:	60 223					
Sensor	PID(ppm) S02303020	96U3					
Span Span 2		100 1000					
Low Alarm		50					
High Alarm Over Alarm		100					
STEL Alarm		15000 100					
TWA Alarm		50					
Measurem Calibration Peak	Isobutylene N/A	9/10/2020 17:50					
Min Average	N/A N/A						
******	******	******	*****	****	*****	******	*
Datalog			DID (,			
Index	Date/Time		PID(ppn (Avg)	n)			
1		9/15/2020 13:10		0			
2		9/15/2020 13:11 9/15/2020 13:12		0			
4		9/15/2020 13:12		0			
5		9/15/2020 13:14		0			

6	9/15/2020 13:15	0
7	9/15/2020 13:16	0
8	9/15/2020 13:17	0
9	9/15/2020 13:18	0
10	9/15/2020 13:19	0
11	9/15/2020 13:20	0
12	9/15/2020 13:21	0
13	9/15/2020 13:22	0
14	9/15/2020 13:23	0
15	9/15/2020 13:24	0
16	9/15/2020 13:25	0
17	9/15/2020 13:26	0
18	9/15/2020 13:27	0
19	9/15/2020 13:28	0
20	9/15/2020 13:29	0
21	9/15/2020 13:30	0
22	9/15/2020 13:31	0
23	9/15/2020 13:32	0
	• •	
24	9/15/2020 13:33	0
25	9/15/2020 13:34	0
26	9/15/2020 13:35	0
27	9/15/2020 13:36	0
28	9/15/2020 13:37	0
29	9/15/2020 13:38	0
30	9/15/2020 13:39	0
31	9/15/2020 13:40	0
32	9/15/2020 13:41	0
33	9/15/2020 13:42	0
34	9/15/2020 13:43	0
	• •	
35	9/15/2020 13:44	0
36	9/15/2020 13:45	0
37	9/15/2020 13:46	0
38	9/15/2020 13:47	0
39	9/15/2020 13:48	0
40	9/15/2020 13:49	0
41	9/15/2020 13:50	0
	• •	
42	9/15/2020 13:51	0
43	9/15/2020 13:52	0
44	9/15/2020 13:53	0
45	9/15/2020 13:54	0
46	9/15/2020 13:55	0
47	9/15/2020 13:56	0
48	9/15/2020 13:57	0
49	9/15/2020 13:58	0
50	9/15/2020 13:59	0
51	9/15/2020 14:00	0
52	9/15/2020 14:01	0
J_	3, 13, 2020 1 1.01	Ü

53	9/15/2020 14:02	0
54	9/15/2020 14:03	0
	•	
55	9/15/2020 14:04	0
56	9/15/2020 14:05	0
57	9/15/2020 14:06	0
58	9/15/2020 14:07	0
59	9/15/2020 14:08	0
	• •	
60	9/15/2020 14:09	0
61	9/15/2020 14:10	0
62	9/15/2020 14:11	0
63	9/15/2020 14:12	0
64	9/15/2020 14:13	0
65	9/15/2020 14:14	0
66	9/15/2020 14:15	0
67	9/15/2020 14:16	0
68	9/15/2020 14:17	0
69	9/15/2020 14:18	0
70	9/15/2020 14:19	0
	•	
71	9/15/2020 14:20	0
72	9/15/2020 14:21	0
73	9/15/2020 14:22	0
74	9/15/2020 14:23	0
75	9/15/2020 14:24	0
76	9/15/2020 14:25	0
77	9/15/2020 14:26	0
78	9/15/2020 14:27	0
79	9/15/2020 14:28	0
80	9/15/2020 14:29	0
81	9/15/2020 14:30	0
82	9/15/2020 14:31	0
83	9/15/2020 14:32	0
84	9/15/2020 14:33	0
85	9/15/2020 14:34	0
86	9/15/2020 14:35	0
87	9/15/2020 14:36	0
88	9/15/2020 14:37	0
89	9/15/2020 14:38	0
90	9/15/2020 14:39	0
91	9/15/2020 14:40	0
92	9/15/2020 14:41	0
93	9/15/2020 14:42	0
94	9/15/2020 14:43	0
95	9/15/2020 14:44	0
96	9/15/2020 14:45	0
97	9/15/2020 14:46	0
98	9/15/2020 14:47	0
99	9/15/2020 14:48	0
	•	

100	9/15/2020 14:49	0
101	9/15/2020 14:50	0
102	9/15/2020 14:51	0
103	9/15/2020 14:52	0
104	9/15/2020 14:53	0
105	9/15/2020 14:54	0
106	9/15/2020 14:55	0
107	9/15/2020 14:56	0
	• •	
108	9/15/2020 14:57	0
109	9/15/2020 14:58	0
110	9/15/2020 14:59	0
111	9/15/2020 15:00	0
112	9/15/2020 15:01	0
113	9/15/2020 15:02	0
		0
114	9/15/2020 15:03	
115	9/15/2020 15:04	0
116	9/15/2020 15:05	0
117	9/15/2020 15:06	0
118	9/15/2020 15:07	0
119	9/15/2020 15:08	0
120	• •	0
	9/15/2020 15:09	
121	9/15/2020 15:10	0
122	9/15/2020 15:11	0
123	9/15/2020 15:12	0
124	9/15/2020 15:13	0
125	9/15/2020 15:14	0
126	9/15/2020 15:15	0
127		0
	9/15/2020 15:16	
128	9/15/2020 15:17	0
129	9/15/2020 15:18	0
130	9/15/2020 15:19	0
131	9/15/2020 15:20	0
132	9/15/2020 15:21	0
133	9/15/2020 15:22	0
134		
	9/15/2020 15:23	0
135	9/15/2020 15:24	0
136	9/15/2020 15:25	0
137	9/15/2020 15:26	0
138	9/15/2020 15:27	0
139	9/15/2020 15:28	0
140	9/15/2020 15:29	0
141	9/15/2020 15:30	0
142	9/15/2020 15:31	0
143	9/15/2020 15:32	0
144	9/15/2020 15:33	0
145	9/15/2020 15:34	0
146	9/15/2020 15:35	0
	2, 13, 1320 13.33	9

147	9/15/2020 15:36	0
148	9/15/2020 15:37	0
149	9/15/2020 15:38	0
150	9/15/2020 15:39	0
151	9/15/2020 15:40	0
152	9/15/2020 15:41	0
153	9/15/2020 15:42	0
154	9/15/2020 15:43	0
155	9/15/2020 15:44	0
156	9/15/2020 15:45	0
157	9/15/2020 15:46	0
158		0
	9/15/2020 15:47	
159	9/15/2020 15:48	0
160	9/15/2020 15:49	0
161	9/15/2020 15:50	0
162	9/15/2020 15:51	0
163	9/15/2020 15:52	0
164	9/15/2020 15:53	0
165	9/15/2020 15:54	0
166	9/15/2020 15:55	0
	• •	
167	9/15/2020 15:56	0
168	9/15/2020 15:57	0
169	9/15/2020 15:58	0
170	9/15/2020 15:59	0
171	9/15/2020 16:00	0
172	9/15/2020 16:01	0
173	9/15/2020 16:02	0
174	9/15/2020 16:03	0
175	9/15/2020 16:04	0
176	9/15/2020 16:05	0
177	9/15/2020 16:06	0
178	9/15/2020 16:07	0
179	9/15/2020 16:08	0
180	9/15/2020 16:09	0
181	9/15/2020 16:10	0
182	9/15/2020 16:11	0
183	9/15/2020 16:12	0
184	9/15/2020 16:13	0
185	9/15/2020 16:14	0
186	9/15/2020 16:15	0
187	9/15/2020 16:16	0
188	9/15/2020 16:17	0
189	9/15/2020 16:18	0
190	9/15/2020 16:19	0
191	9/15/2020 16:20	0
192	9/15/2020 16:21	0
193	9/15/2020 16:22	0
	. ,	-

	194	9/15/2020 16:23	0
	195	9/15/2020 16:24	0
	196	9/15/2020 16:25	0
	197	9/15/2020 16:26	0
	198	9/15/2020 16:27	0
	199	9/15/2020 16:28	0
	200	9/15/2020 16:29	0
	201	9/15/2020 16:30	0
	202	9/15/2020 16:31	0
	203	9/15/2020 16:32	0
	204	9/15/2020 16:33	0
	205	9/15/2020 16:34	0
	206	9/15/2020 16:35	0
	207	9/15/2020 16:36	0
	208	9/15/2020 16:37	0
	209	9/15/2020 16:38	0
	210	9/15/2020 16:39	0
	211	9/15/2020 16:40	0
	212	9/15/2020 16:41	0
	213	9/15/2020 16:42	0
	214	9/15/2020 16:43	0
	215	9/15/2020 16:44	0
	216	9/15/2020 16:45	0
	217	9/15/2020 16:46	0
	218	9/15/2020 16:47	0
	219	9/15/2020 16:48	0
	220	9/15/2020 16:49	0
	221	9/15/2020 16:50	0
	222	9/15/2020 16:51	0
	223	9/15/2020 16:52	0
Peak			0
Min			0
Avera	ge		0

20/09/16 14:16	*******	
Summary		
Unit Name MiniRAE 3000(PG		
Unit SN 592-919032 Unit Firmw V2.20A		
Running M Hygiene Mode		
Datalog Mc Auto		
Diagnostic No	nication Mode	
Stop Reaso Pause in Commu 		
Site ID RAE00000		
User ID USER0000		
Begin	9/16/2020 14:16	
End	9/16/2020 14:17	
Sample Per	60	
Number of	0	
Sensor PID(ppm)		
Sensor SN S023030206U3		
Measure Ty Avg		
Span	100	
Span 2	1000	
Low Alarm	50	
High Alarm Over Alarm	100 15000	
STEL Alarm	100	
TWA Alarm	50	
Measurem Isobutylene		
Calibration	9/10/2020 17:50	
*****	*********	*****
Datalog		· · · · · · · · · · · · · · · · · · ·
Jataiog		

0 record.

20/	'n9.	/14	09	:40
201	UJ.	<i>,</i>	UJ.	

Summary

Unit Name MultiRAE Lite(PGM-6208)

Unit SN M01CA03285

Unit Firmw V1.40

Running M Hygiene Mode

Datalog Mc Auto

Diagnostic No Stop Reaso Power Down

Site ID SITE0000 User ID USER0000

 Begin
 9/14/2020 9:40

 End
 9/14/2020 16:22

 Sample Per
 60

 Number of
 401

Sensor	LEL(%	,	OXY(%)	H2S(ppr	-	CO(ppm)	VOC(ppm)
Sensor SN	SC031	111566U8	SC03420329V5	SC03AR	0446U8	SC03060358R7	SC03A30466S6
Measure T	Avg		Avg	Avg		Avg	Avg
Span		50	1	3	10	50	100
Span 2	N/A		N/A	N/A		N/A	N/A
Low Alarm	l	10	19.	5	10	35	50
High Alarn	1	20	23.	5	20	200	100
Over Alarn	r	100	3)	100	500	1000
STEL Alarm	n N/A		N/A		15	100	25
TWA Alarn	r N/A		N/A		10	35	10
Measurem	Meth	ane(1.00)	N/A	N/A		N/A	Isobutylene(1.00)
Calibration	1	9/10/2020 17:13	9/10/2020 17:1	9/10/2	020 17:13	9/10/2020 17:13	9/10/2020 17:15
Peak	N/A		N/A	N/A		N/A	N/A
Min	N/A		N/A	N/A		N/A	N/A
Average	N/A		N/A	N/A		N/A	N/A

Datalog

	,							
			LEL(%LEL)	OXY(%)	H2S(ppm)	CO(ppm)	VOC	(ppm)
Index	Da	te/Time	(Avg)	(Avg)	(Avg)	(Avg)	(Avg)	
	1	9/14/2020 9:4	1					
	2 9/14/2020 9:4		2	0	20.9	0	0	
	3	9/14/2020 9:4	3	0	20.9	0	0	0
	4	9/14/2020 9:4	4	0	20.9	0	0	0
	5	9/14/2020 9:4	5	0	20.9	0	0	0
	6	9/14/2020 9:4	6	0	20.9	0	0	0
	7	9/14/2020 9:4	7	0	20.9	0	0	0
	8	9/14/2020 9:4	8	0	20.9	0	0	0
	9	9/14/2020 9:4	9	0	20.9	0	0	0
	10	9/14/2020 9:5	0	0	20.9	0	0	0

11	9/14/2020 9:51	0	20.9	0	0	0
12	9/14/2020 9:52	0	20.9	0	0	0
13	9/14/2020 9:53	0	20.9	0	0	0
14	9/14/2020 9:54	0	20.9	0	0	0
15	9/14/2020 9:55	0	20.9	0	0	0
16	9/14/2020 9:56	0	20.9	0	0	0
17	9/14/2020 9:57	0	20.9	0	0	0
18	9/14/2020 9:58	0	20.9	0	0	0
19	9/14/2020 9:59	0	20.9	0	0	0
20	9/14/2020 10:00	0	20.9	0	0	0
21	9/14/2020 10:01	0	20.9	0	0	0
22	9/14/2020 10:02	0	20.9	0	0	0
23	9/14/2020 10:03	0	20.9	0	0	0
24	9/14/2020 10:04	0	20.9	0	0	0
25	9/14/2020 10:05	0	20.9	0	0	0
26	9/14/2020 10:06	0	20.9	0	0	0
27	9/14/2020 10:07	0	20.9	0	0	0
28	9/14/2020 10:08	0	20.9	0	0	0
29	9/14/2020 10:09	0	20.9	0	0	0
30	9/14/2020 10:10	0	20.9	0	0	0
31	9/14/2020 10:11	0	20.9	0	0	0
32	9/14/2020 10:12	0	20.9	0	0	0
33	9/14/2020 10:13	0	20.9	0	0	0
34	9/14/2020 10:14	0	20.9	0	0	0
35	9/14/2020 10:15	0	20.9	0	0	0
36	9/14/2020 10:16	0	20.9	0	0	0
37	9/14/2020 10:17	0	20.9	0	0	0
38	9/14/2020 10:18	0	20.9	0	0	0
39	9/14/2020 10:19	0	20.9	0	0	0
40	9/14/2020 10:20	0	20.9	0	0	0
41	9/14/2020 10:21	0	20.9	0	0	0
42	9/14/2020 10:22	0	20.9	0	0	0
43	9/14/2020 10:23	0	20.9	0	0	0
44	9/14/2020 10:24	0	20.9	0	0	0
45	9/14/2020 10:25	0	20.9	0	0	0
46	9/14/2020 10:26	0	20.9	0	0	0
47	9/14/2020 10:27	0	20.9	0	0	0
48	9/14/2020 10:28	0	20.9	0	0	0
49	9/14/2020 10:29	0	20.9	0	0	0
50	9/14/2020 10:30	0	20.9	0	0	0
51	9/14/2020 10:31	0	20.9	0	0	0
52	9/14/2020 10:32	0	20.9	0	0	0
53	9/14/2020 10:33	0	20.9	0	0	0
54	9/14/2020 10:34	0	20.9	0	0	0
55	9/14/2020 10:35	0	20.9	0	0	0
56	9/14/2020 10:36	0	20.9	0	0	0
57	9/14/2020 10:37	0	20.9	0	0	0
58	9/14/2020 10:38	0	20.9	0	0	0
59	9/14/2020 10:39	0	20.9	0	0	0
60	9/14/2020 10:40	0	20.9	0	0	0
61	9/14/2020 10:41	0	20.9	0	0	0
62	9/14/2020 10:42	0	20.9	0	0	0
	0, = ., = 0 = 0 10 =	ŭ	_5.5	•	Ŭ	Ū

63	9/14/2020 10:43	0	20.9	0	0	0
64	9/14/2020 10:44	0	20.9	0	0	0
65	9/14/2020 10:45	0	20.9	0	0	0
66	9/14/2020 10:46	0	20.9	0	0	0
67	9/14/2020 10:47	0	20.9	0	0	0
68	9/14/2020 10:48	0	20.9	0	0	0
69	9/14/2020 10:49	0	20.9	0	0	0
70	9/14/2020 10:50	0	20.9	0	0	0
71	9/14/2020 10:51	0	20.9	0	0	0
72	9/14/2020 10:52	0	20.9	0	0	0
73	9/14/2020 10:53	0	20.9	0	0	0
74	9/14/2020 10:54	0	20.9	0	0	0
75	9/14/2020 10:55	0	20.9	0	0	0
76	9/14/2020 10:56	0	20.9	0	0	0
77	9/14/2020 10:57	0	20.9	0	0	0
78	9/14/2020 10:58	0	20.9	0	0	0
79	9/14/2020 10:59	0	20.9	0	0	0
80	9/14/2020 11:00	0	20.9	0	0	0
81	9/14/2020 11:01	0	20.9	0	0	0
82	9/14/2020 11:02	0	20.9	0	0	0
83	9/14/2020 11:03	0	20.9	0	0	0
84	9/14/2020 11:04	0	20.9	0	0	0
85	9/14/2020 11:05	0	20.9	0	0	0
86	9/14/2020 11:06	0	20.9	0	0	0
87	9/14/2020 11:07	0	20.9	0	0	0
88	9/14/2020 11:08	0	20.9	0	0	0
89	9/14/2020 11:09	0	20.9	0	0	0
90	9/14/2020 11:10	0	20.9	0	0	0
91	9/14/2020 11:11	0	20.9	0	0	0
92	9/14/2020 11:12	0	20.9	0	0	0
93	9/14/2020 11:13	0	20.9	0	0	0
94	9/14/2020 11:14	0	20.9	0	0	0
95	9/14/2020 11:15	0	20.9	0	0	0
96	9/14/2020 11:16	0	20.9	0	0	0
97	9/14/2020 11:17	0	20.9	0	0	0
98	9/14/2020 11:18	0	20.9	0	0	0
99	9/14/2020 11:19	0	20.9	0	0	0
100	9/14/2020 11:20	0	20.9	0	0	0
101	9/14/2020 11:21	0	20.9	0	0	0
102	9/14/2020 11:22	0	20.9	0	0	0
103	9/14/2020 11:23	0	20.9	0	0	0
104	9/14/2020 11:24	0	20.9	0	0	0
105	9/14/2020 11:25	0	20.9	0	0	0
106	9/14/2020 11:26	0	20.9	0	0	0
107	9/14/2020 11:27	0	20.9	0	0	0
108	9/14/2020 11:28	0	20.9	0	0	0
109	9/14/2020 11:29	0	20.9	0	0	0
110	9/14/2020 11:30	0	20.9	0	0	0
111	9/14/2020 11:31	0	20.9	0	0	0
112	9/14/2020 11:32	0	20.9	0	0	0
113	9/14/2020 11:33	0	20.9	0	0	0
114	9/14/2020 11:34	0	20.9	0	0	0

115	9/14/2020 11:35	0	20.9	0	0	0
116	9/14/2020 11:36	0	20.9	0	0	0
117	9/14/2020 11:37	0	20.9	0	0	0
118	9/14/2020 11:38	0	20.9	0	0	0
119	9/14/2020 11:39	0	20.9	0	0	0
120	9/14/2020 11:40	0	20.9	0	0	0
121	9/14/2020 11:41	0	20.9	0	0	0
122	9/14/2020 11:42	0	20.9	0	0	0
123	9/14/2020 11:43	0	20.9	0	0	0
124	9/14/2020 11:44	0	20.9	0	0	0
125	9/14/2020 11:45	0	20.9	0	0	0
126	9/14/2020 11:46	0	20.9	0	0	0
127	9/14/2020 11:47	0	20.9	0	0	0
128	9/14/2020 11:48	0	20.9	0	0	0
129	9/14/2020 11:49	0	20.9	0	0	0
130	9/14/2020 11:50	0	20.9	0	0	0
131	9/14/2020 11:51	0	20.9	0	0	0
132	9/14/2020 11:52	0	20.9	0	0	0
133	9/14/2020 11:53	0	20.9	0	0	0
134	9/14/2020 11:54	0	20.9	0	0	0
135	9/14/2020 11:55	0	20.9	0	0	0
136	9/14/2020 11:56	0	20.9	0	0	0
137	9/14/2020 11:57	0	20.9	0	0	0
138	9/14/2020 11:58	0	21.1	0	0	0
139	9/14/2020 11:59	0	21.1	0	0	0
140	9/14/2020 11:39		21.2	0	0	0
141	9/14/2020 12:00	0 0	21.2	0		0
					0	
142	9/14/2020 12:02	0	21.2	0	0	0
143	9/14/2020 12:03	0	21.2	0	0	0
144	9/14/2020 12:04	0	21.2	0	0	0
145	9/14/2020 12:05	0	21.2	0	0	0
146	9/14/2020 12:06	0	21.2	0	0	0
147	9/14/2020 12:07	0	21.2	0	0	0
148	9/14/2020 12:08	0	21.2	0.1	0	0
149	9/14/2020 12:09	0	21.2	0	0	0
150	9/14/2020 12:10	0	21.2	0	0	0
151	9/14/2020 12:11	0	21.2	0	0	0
152	9/14/2020 12:12	0	21.2	0	0	0
153	9/14/2020 12:13	0	21.2	0	0	0
154	9/14/2020 12:14	0	21.2	0	0	0
155	9/14/2020 12:15	0	21.2	0	0	0
156	9/14/2020 12:16	0	21.2	0	0	0
157	9/14/2020 12:17	0	21.2	0	0	0
158	9/14/2020 12:18	0	21.2	0	0	0
159	9/14/2020 12:19	0	21.2	0	0	0
160	9/14/2020 12:20	0	21.2	0	0	0
161	9/14/2020 12:21	0	21.3	0	0	0
162	9/14/2020 12:22	0	21.2	0	0	0
163	9/14/2020 12:23	0	21.3	0	0	0
164	9/14/2020 12:24	0	21.2	0	0	0
165	9/14/2020 12:25	0	21.2	0	0	0
166	9/14/2020 12:26	0	21.2	0	0	0

167	9/14/2020 12:27	0	21.2	0	0	0
168	9/14/2020 12:28	0	21.2	0	0	0
169	9/14/2020 12:29	0	21.2	0	0	0
170	9/14/2020 12:30	0	21.2	0	0	0
171	9/14/2020 12:31	0	21.2	0	0	0
172	9/14/2020 12:32	0	21.2	0	0	0
173	9/14/2020 12:33	0	21.2	0	0	0
174	9/14/2020 12:34	0	21.2	0	0	0
175	9/14/2020 12:35	0	21.2	0	0	0
176	9/14/2020 12:36	0	21.2	0	0	0
177	9/14/2020 12:37	0	21.2	0	0	0
178	9/14/2020 12:38	0	21.2	0	0	0
179	9/14/2020 12:39	0	21.2	0	0	0
180	9/14/2020 12:40	0	21.2	0	0	0
181	9/14/2020 12:41	0	21.2	0	0	0
182	9/14/2020 12:42	0	21.2	0	0	0
183	9/14/2020 12:43	0	21.2	0	0	0
184	9/14/2020 12:44	0	21.2	0	0	0
185	9/14/2020 12:45	0	21.2	0	0	0
186	9/14/2020 12:46	0	21.2	0	0	0
187	9/14/2020 12:47	0	21.2	0	0	0
188	9/14/2020 12:48	0	21.2	0	0	0
189	9/14/2020 12:49	0	21.2	0	0	0
190	9/14/2020 12:50	0	21.2	0	0	0
191	9/14/2020 12:51	0	21.2	0	0	0
192	9/14/2020 12:52	0	21.2	0	0	0
193	9/14/2020 12:53	0	21.2	0	0	0
194	9/14/2020 12:54	0	21.2	0	0	0
195	9/14/2020 12:55	0	21.2	0	0	0
196	9/14/2020 12:56	0	21.2	0	0	0
197	9/14/2020 12:57	0	21.2	0		0
197	9/14/2020 12:58	0	21.3	0	0	0
					0	
199	9/14/2020 12:59	0	21.3	0	0	0
200	9/14/2020 13:00	0	21.3	0	0	0
201	9/14/2020 13:01	0	21.3	0	0	0
202	9/14/2020 13:02	0	21.3	0	0	0
203	9/14/2020 13:03	0	21.3	0	0	0
204	9/14/2020 13:04	0	21.3	0	0	0
205	9/14/2020 13:05	0	21.3	0	0	0
206	9/14/2020 13:06	0	21.3	0	0	0
207	9/14/2020 13:07	0	21.3	0	0	0
208	9/14/2020 13:08	0	21.3	0	0	0
209	9/14/2020 13:09	0	21.3	0	0	0
210	9/14/2020 13:10	0	21.3	0	0	0
211	9/14/2020 13:11	0	21.3	0	0	0
212	9/14/2020 13:12	0	21.3	0	0	0
213	9/14/2020 13:13	0	21.3	0	0	0
214	9/14/2020 13:14	0	21.3	0	0	0
215	9/14/2020 13:15	0	21.3	0	0	0
216	9/14/2020 13:16	0	21.3	0	0	0
217	9/14/2020 13:17	0	21.3	0	0	0
218	9/14/2020 13:18	0	21.3	0	0	0

219	9/14/2020 13:19	0	21.3	0	0	0
220	9/14/2020 13:20	0	21.3	0	0	0
221	9/14/2020 13:21	0	21.3	0	0	0
222	9/14/2020 13:22	0	21.3	0	0	0
223	9/14/2020 13:23	0	21.3	0	0	0
224	9/14/2020 13:24	0	21.3	0	0	0
225	9/14/2020 13:25	0	21.3	0	0	0
226	9/14/2020 13:26	0	21.3	0	0	0
227	9/14/2020 13:27	0	21.3	0	0	0
228	9/14/2020 13:28	0	21.3	0	0	0
229	9/14/2020 13:29	0	21.3	0	0	0
230	9/14/2020 13:30	0	21.3	0	0	0
231	9/14/2020 13:31	0	21.3	0	0	0
232	9/14/2020 13:32	0	21.3	0	0	0
233	9/14/2020 13:33	0	21.3	0	0	0
234	9/14/2020 13:34	0	21.3	0	0	0
235	9/14/2020 13:35	0	21.3	0	0	0
236	9/14/2020 13:36	0	21.3	0	0	0
237	9/14/2020 13:37	0	21.3	0	0	0
238	9/14/2020 13:38	0	21.3	0	0	0
239	9/14/2020 13:39	0	21.3	0	0	0
240	9/14/2020 13:40	0	21.3	0	0	0
241	9/14/2020 13:41	0	21.3	0	0	0
242	9/14/2020 13:42	0	21.3	0	0	0
243	9/14/2020 13:43	0	21.3	0	0	0
244	9/14/2020 13:44	0	21.3	0	0	0
245	9/14/2020 13:45	0	21.3	0	0	0
246	9/14/2020 13:46	0	21.3	0	0	0
247	9/14/2020 13:47	0	21.3	0	0	0
248	9/14/2020 13:48	0	21.3	0	0	0
249	9/14/2020 13:49	0	21.3	0		0
250	9/14/2020 13:49	0	21.3	0	0	0
					0	
251	9/14/2020 13:51 9/14/2020 13:52	0	21.3	0	0	0
252		0	21.3	0	0	0
253	9/14/2020 13:53	0	21.3	0	0	0
254	9/14/2020 13:54	0	21.3	0	0	0
255	9/14/2020 13:55	0	21.3	0	0	0
256	9/14/2020 13:56	0	21.3	0	0	0
257	9/14/2020 13:57	0	21.3	0	0	0
258	9/14/2020 13:58	0	21.3	0	0	0
259	9/14/2020 13:59	0	21.3	0	0	0
260	9/14/2020 14:00	0	21.3	0	0	0
261	9/14/2020 14:01	0	21.3	0	0	0
262	9/14/2020 14:02	0	21.3	0	0	0
263	9/14/2020 14:03	0	21.3	0	0	0
264	9/14/2020 14:04	0	21.3	0	0	0
265	9/14/2020 14:05	0	21.3	0	0	0
266	9/14/2020 14:06	0	21.3	0	0	0
267	9/14/2020 14:07	0	21.3	0	0	0
268	9/14/2020 14:08	0	21.3	0	0	0
269	9/14/2020 14:09	0	21.3	0	0	0
270	9/14/2020 14:10	0	21.3	0	0	0

271	9/14/2020 14:11	0	21.3	0	0	0
272	9/14/2020 14:12	0	21.3	0	0	0
273	9/14/2020 14:13	0	21.3	0	0	0
274	9/14/2020 14:14	0	21.3	0	0	0
275	9/14/2020 14:15	0	21.3	0	0	0
276	9/14/2020 14:16	0	21.3	0	0	0
277	9/14/2020 14:17	0	21.3	0	0	0
278	9/14/2020 14:18	0	21.4	0	0	0
279	9/14/2020 14:19	0	21.3	0	0	0
280	9/14/2020 14:20	0	21.4	0	0	0
281	9/14/2020 14:21	0	21.3	0	0	0
282	9/14/2020 14:22	0	21.3	0	0	0
283	9/14/2020 14:23	0	21.3	0	0	0
284	9/14/2020 14:24	0	21.3	0	0	0
285	9/14/2020 14:25	0	21.4	0	0	0
286	9/14/2020 14:26	0	21.4	0	0	0
287	9/14/2020 14:27	0	21.4	0	0	0
288	9/14/2020 14:28	0	21.4	0	0	0
289	9/14/2020 14:29	0	21.4	0	0	0
290	9/14/2020 14:30	0	21.4	0	0	0
291	9/14/2020 14:31	0	21.4	0	0	0
292	9/14/2020 14:32	0	21.4	0	0	0
293	9/14/2020 14:33	0	21.4	0	0	0
294	9/14/2020 14:34	0	21.4	0	0	0
295	9/14/2020 14:35	0	21.4	0	0	0
296	9/14/2020 14:36	0	21.4			0
296	9/14/2020 14:37	0	21.4	0	0	0
298	9/14/2020 14:38	0	21.4	0	0	
298			21.4			0
300	9/14/2020 14:39 9/14/2020 14:40	0	21.4	0	0	0 0
	9/14/2020 14:41		21.4			
301	9/14/2020 14:41	0		0	0	0
302		0	21.4	0	0	0
303	9/14/2020 14:43	0	21.4	0	0	0
304	9/14/2020 14:44	0	21.4	0	0	0
305	9/14/2020 14:45	0	21.4	0	0	0
306	9/14/2020 14:46	0	21.4	0	0	0
307	9/14/2020 14:47	0	21.4	0	0	0
308	9/14/2020 14:48	0	21.5	0	0	0
309	9/14/2020 14:49	0	21.4	0	0	0
310	9/14/2020 14:50	0	21.4	0	0	0
311	9/14/2020 14:51	0	21.4	0	0	0
312	9/14/2020 14:52	0	21.4	0	0	0
313	9/14/2020 14:53	0	21.4	0	0	0
314	9/14/2020 14:54	0	21.4	0	0	0
315	9/14/2020 14:55	0	21.4	0	0	0
316	9/14/2020 14:56	0	21.4	0	0	0
317	9/14/2020 14:57	0	21.4	0	0	0
318	9/14/2020 14:58	0	21.4	0	0	0
319	9/14/2020 14:59	0	21.4	0	0	0
320	9/14/2020 15:00	0	21.4	0	0	0
321	9/14/2020 15:01	0	21.4	0	0	0
322	9/14/2020 15:02	0	21.4	0	0	0

323	9/14/2020 15:03	0	21.4	0	0	0
324	9/14/2020 15:04	0	21.4	0	0	0
325	9/14/2020 15:05	0	21.4	0	0	0
326	9/14/2020 15:06	0	21.4	0	0	0
327	9/14/2020 15:07	0	21.4	0	0	0
328	9/14/2020 15:08	0	21.4	0	0	0
329	9/14/2020 15:09	0	21.4	0	0	0
330	9/14/2020 15:10	0	21.4	0	0	0
331	9/14/2020 15:11	0	21.4	0	0	0
332	9/14/2020 15:12	0	21.4	0	0	0
333	9/14/2020 15:13	0	21.4	0	0	0
334	9/14/2020 15:14	0	21.4	0	0	0
335	9/14/2020 15:15	0	21.4	0	0	0
336	9/14/2020 15:16	0	21.4	0	0	0
337	9/14/2020 15:17	0	21.4	0	0	0
338	9/14/2020 15:18	0	21.4	0	0	0
339	9/14/2020 15:19	0	21.4	0	0	0
340	9/14/2020 15:20	0	21.4	0	0	0
341	9/14/2020 15:21	0	21.4	0	0	0
342	9/14/2020 15:22	0	21.4	0	0	0
343	9/14/2020 15:23	0	21.4	0	0	0
344	9/14/2020 15:24	0	21.4	0	0	0
345	9/14/2020 15:25	0	21.4	0	0	0
346	9/14/2020 15:26	0	21.4	0	0	0
347	9/14/2020 15:27	0	21.4	0	0	0
348	9/14/2020 15:28	0	21.4	0	0	0
349	9/14/2020 15:29	0	21.4	0	0	0
350	9/14/2020 15:30	0	21.4	0	0	0
351	9/14/2020 15:31	0	21.4	0	0	0
352	9/14/2020 15:32	0	21.4	0	0	0
353	9/14/2020 15:33	0	21.4			0
354	9/14/2020 15:34	0	21.4	0	0	0
					0	
355	9/14/2020 15:35 9/14/2020 15:36	0	21.4	0	0	0
356		0	21.4	0	0	0
357	9/14/2020 15:37	0	21.4	0	0	0
358	9/14/2020 15:38	0	21.4	0	0	0
359	9/14/2020 15:39	0	21.4	0	0	0
360	9/14/2020 15:40	0	21.4	0	0	0
361	9/14/2020 15:41	0	21.5	0	0	0
362	9/14/2020 15:42	0	21.5	0	0	0
363	9/14/2020 15:43	0	21.5	0	0	0
364	9/14/2020 15:44	0	21.5	0	0	0
365	9/14/2020 15:45	0	21.5	0	0	0
366	9/14/2020 15:46	0	21.5	0	0	0
367	9/14/2020 15:47	0	21.5	0	0	0
368	9/14/2020 15:48	0	21.5	0	0	0
369	9/14/2020 15:49	0	21.5	0	0	0
370	9/14/2020 15:50	0	21.5	0	0	0
371	9/14/2020 15:51	0	21.5	0	0	0
372	9/14/2020 15:52	0	21.5	0	0	0
373	9/14/2020 15:53	0	21.5	0	0	0
374	9/14/2020 15:54	0	21.5	0	0	0

375	9/14/2020 15:55	0	21.4	0	0	0	
376	9/14/2020 15:56	0	21.4	0	0	0	
377	9/14/2020 15:57	0	21.4	0	0	0	
378	9/14/2020 15:58	0	21.4	0	0	0	
379	9/14/2020 15:59	0	21.4	0	0	0	
380	9/14/2020 16:00	0	21.4	0	0	0	
381	9/14/2020 16:01	0	21.4	0	0	0	
382	9/14/2020 16:02	0	21.4	0	0	0	
383	9/14/2020 16:03	0	21.4	0	0	0	
384	9/14/2020 16:04	0	21.4	0	0	0	
385	9/14/2020 16:05	0	21.4	0	0	0	
386	9/14/2020 16:06	0	21.3	0	0	0	
387	9/14/2020 16:07	0	21.3	0	0	0	
388	9/14/2020 16:08	0	21.3	0	0	0	
389	9/14/2020 16:09	0	21.3	0	0	0	
390	9/14/2020 16:10	0	21.3	0	0	0	
391	9/14/2020 16:11	0	21.3	0	0	0	
392	9/14/2020 16:12	0	21.3	0	0	0	
393	9/14/2020 16:13	0	21.3	0	0	0	
394	9/14/2020 16:14	0	21.3	0	0	0	
395	9/14/2020 16:15	0	21.3	0	0	0	
396	9/14/2020 16:16	0	21.3	0	0	0	
397	9/14/2020 16:17	0	21.3	0	0	0	
398	9/14/2020 16:18	0	21.3	0	0	0	
399	9/14/2020 16:19	0	21.3	0	0	0	
400	9/14/2020 16:20	0	21.3	0	0	0	
401	9/14/2020 16:21	0	21.3	0	0	0	
Peak		0	21.5	0.1	0	0	
Min		0	20.9	0	0	0	
Average		0	21.2	0	0	0	

======================================	*******			****	
Unit Name Unit SN Unit Firmware Ver	MultiRAE Lite(PG M01CA03285 V1.40				
Running Mode Datalog Mode Diagnostic Mode Stop Reason	Hygiene Mode Auto No Power Down	-			
Site ID User ID	SITE0000 USER0000	-			
Begin End Sample Period(s) Number of Records	9/15/2020 9/15/2020				
Sensor	LEL(%LEL)	OXY	• •		CO(ppm)
Sensor SN	SC03111566U8	SC03	3420329V5	SC03AR0446U8	SC03060358R7
Measure Type	Avg	Avg		Avg	Avg
Span		50	18	10	50
Span 2	N/A	N/A	40.5	N/A	N/A
Low Alarm		10	19.5	10	35
High Alarm		20	23.5		200
Over Alarm	NI/A	100	30	100	500
STEL Alarm TWA Alarm	N/A N/A	N/A N/A		15 10	100 35
Measurement Gas(CF)	Methane(1.00)	N/A N/A		N/A	N/A
Calibration Time	, ,		∩/2∩2∩ 17·13	9/10/2020 17:13	•
Peak	N/A	N/A	0,2020 17.13	N/A	N/A
Min	N/A	N/A		N/A	N/A
Average	, N/A	N/A		N/A	N/A
*******	*******	*****	*****	****	
Datalog		1 E1 /9	%LEL)	OXY(%)	H2S(ppm)
Index	Date/Time	(Avg		(Avg)	(Avg)
IIIdex	1 9/15/2020		,	(AVS)	(AVS)
	2 9/15/2020		0	20.9	0
	3 9/15/2020		0	20.9	0
	4 9/15/2020		0	20.9	0
	5 9/15/2020		0	20.9	0
	5, 25, 2520	-	Ū	20.3	3

6	9/15/2020 8:49	0	20.9	0
7	9/15/2020 8:50	0	20.9	0
8	9/15/2020 8:51	0	20.9	0
9	9/15/2020 8:52	0	20.9	0
10	9/15/2020 8:53	0	20.9	0
11	9/15/2020 8:54	0	20.9	0
12	9/15/2020 8:55	0	20.9	0
13	9/15/2020 8:56	0	20.9	0
14	9/15/2020 8:57	0	20.9	0
15	9/15/2020 8:58	0	20.9	0
16	9/15/2020 8:59	0	20.9	0
17	9/15/2020 9:00	0	20.9	0
18	9/15/2020 9:01	0	20.9	0
19	9/15/2020 9:02	0	20.9	0
20	9/15/2020 9:03	0	20.9	0
21	9/15/2020 9:04	0	20.9	0
22	9/15/2020 9:05	0	20.9	0
23	9/15/2020 9:06	0	20.9	0
24	9/15/2020 9:07	0	20.9	0
25	9/15/2020 9:08	0	20.9	0
26	9/15/2020 9:09	0	20.9	0
27	9/15/2020 9:10	0	20.9	0
28	9/15/2020 9:11	0	20.9	0
29	9/15/2020 9:12	0	20.9	0
30	9/15/2020 9:13	0	20.9	0
31	9/15/2020 9:14	0	20.9	0
32	9/15/2020 9:15	0	20.9	0
33	9/15/2020 9:16	0	20.9	0
34	9/15/2020 9:17	0	20.9	0
35	9/15/2020 9:18	0	20.9	0
36	9/15/2020 9:19	0	20.9	0
37	9/15/2020 9:20	0	20.9	0
38	9/15/2020 9:21	0	20.9	0
39	9/15/2020 9:22	0	20.9	
				0
40	9/15/2020 9:23	0	20.9	0
41	9/15/2020 9:24	0	20.9	0
42	9/15/2020 9:25	0	20.9	0
43	9/15/2020 9:26	0	20.9	0
44	9/15/2020 9:27	0	20.9	0
45	9/15/2020 9:28	0	20.9	0
46	9/15/2020 9:29	0	20.9	0
47	9/15/2020 9:30	0	20.9	0
48	9/15/2020 9:31	0	20.9	0
49	9/15/2020 9:32	0	20.9	0
50	9/15/2020 9:33	0	20.9	0
51	9/15/2020 9:34	0	20.9	0
52	9/15/2020 9:35	0	20.9	0

53	9/15/2020 9:36	0	20.9	0
54	9/15/2020 9:37	0	20.9	0
55	9/15/2020 9:38	0	20.9	0
56	9/15/2020 9:39	0	20.9	0
57	9/15/2020 9:40	0	20.9	0
58	9/15/2020 9:41	0	20.9	0
59	9/15/2020 9:42	0	20.9	0
60	9/15/2020 9:43	0	20.9	0
61	9/15/2020 9:44	0	20.9	0
62	9/15/2020 9:45	0	20.9	0
63	9/15/2020 9:46	0	20.9	0
64	9/15/2020 9:47	0	20.9	0
65	9/15/2020 9:48	0	20.9	0
	9/15/2020 9:49			
66		0	20.9	0
67	9/15/2020 9:50	0	20.9	0
68	9/15/2020 9:51	0	20.9	0
69	9/15/2020 9:52	0	20.9	0
70	9/15/2020 9:53	0	20.9	0
71	9/15/2020 9:54	0	20.9	0
72	9/15/2020 9:55	0	20.9	0
73	9/15/2020 9:56	0	20.9	0
74	9/15/2020 9:57	0	20.9	0
75	9/15/2020 9:58	0	20.9	0
76	9/15/2020 9:59	0	20.9	0
70 77	9/15/2020 10:00	0	20.9	0
78	9/15/2020 10:01	0	20.9	0
79	9/15/2020 10:02	0	20.9	0
80	9/15/2020 10:03	0	20.9	0
81	9/15/2020 10:04	0	20.9	0
82	9/15/2020 10:05	0	20.9	0
83	9/15/2020 10:06	0	20.9	0
84	9/15/2020 10:07	0	20.9	0
85	9/15/2020 10:08	0	20.9	0
86	9/15/2020 10:09	0	20.9	0
87	9/15/2020 10:10	0	20.9	0
88	9/15/2020 10:11	0	20.9	0
89	9/15/2020 10:12	0	20.9	0
90	9/15/2020 10:13	0	20.9	0
91	9/15/2020 10:14	0	20.9	0
92	9/15/2020 10:15	0	20.9	0
93	9/15/2020 10:16	0	20.9	0
94	9/15/2020 10:17	0	20.9	0
95	9/15/2020 10:18	0	20.9	0
96	9/15/2020 10:19	0	20.9	0
97	9/15/2020 10:20	0	20.9	0
98	9/15/2020 10:21	0	20.9	0
99	9/15/2020 10:22	0	20.9	0
	•			

100	9/15/2020 10:23	0	20.9	0
101	9/15/2020 10:24	0	20.9	0
102	9/15/2020 10:25	0	20.9	0
103	9/15/2020 10:26	0	20.9	0
104	9/15/2020 10:27	0	20.9	0
105	9/15/2020 10:28	0	20.9	0
106	9/15/2020 10:29	0	20.9	0
107	9/15/2020 10:30	0	20.9	0
108	9/15/2020 10:31	0	20.9	0
109	9/15/2020 10:32	0	20.9	0
110	9/15/2020 10:33	0	20.9	0
111	9/15/2020 10:34	0	20.9	0
112	9/15/2020 10:35	0	20.9	0
113	9/15/2020 10:36	0	20.9	0
114	9/15/2020 10:37	0	20.9	0
115	9/15/2020 10:38	0	20.9	0
116	9/15/2020 10:39	0	20.9	0
117	9/15/2020 10:40	0	20.9	0
118	9/15/2020 10:41	0	20.9	0
119	9/15/2020 10:42	0	20.9	0
120	9/15/2020 10:43	0	20.9	0
121	9/15/2020 10:44	0	20.9	0
122	9/15/2020 10:45	0	20.9	0
123	9/15/2020 10:46	0	20.9	0
124	9/15/2020 10:47	0	20.9	0
125	9/15/2020 10:48	0	20.9	0
126	9/15/2020 10:49	0	20.9	0
127	9/15/2020 10:50	0	20.9	0
128	9/15/2020 10:51	0	20.9	0
129	9/15/2020 10:52	0	20.9	0
130	9/15/2020 10:53	0	20.9	0
131	9/15/2020 10:54	0	20.9	0
132	9/15/2020 10:55	0	20.9	0
133	9/15/2020 10:56	0	20.9	
				0
134	9/15/2020 10:57	0	20.9	0
135	9/15/2020 10:58	0	20.9	0
136	9/15/2020 10:59	0	20.9	0
137	9/15/2020 11:00	0	20.9	0
138	9/15/2020 11:01	0	20.9	0
139	9/15/2020 11:02	0	20.9	0
140	9/15/2020 11:03	0	20.9	0
141	9/15/2020 11:04	0	20.9	0
142	9/15/2020 11:05	0	20.9	0
143	9/15/2020 11:06	0	20.9	0
144	9/15/2020 11:07	0	20.9	0
145	9/15/2020 11:08	0	20.9	0
146	9/15/2020 11:09	0	20.9	0

147	9/15/2020 11:10	0	20.9	0
148	9/15/2020 11:11	0	20.9	0
149	9/15/2020 11:12	0	20.9	0
150	9/15/2020 11:13	0	20.9	0
151	9/15/2020 11:14	0	20.9	0
152	9/15/2020 11:15	0	20.9	0
153	9/15/2020 11:16	0	20.9	0
154	9/15/2020 11:17	0	20.9	0
155	9/15/2020 11:18	0	20.9	0
156	9/15/2020 11:19	0	20.9	0
157	9/15/2020 11:20	0	20.9	0
158	9/15/2020 11:21	0	20.9	0
159	9/15/2020 11:22	0	20.9	0
160	9/15/2020 11:23	0	20.9	0
161	9/15/2020 11:24	0	20.9	0
162	9/15/2020 11:24	0	20.9	0
163	9/15/2020 11:25	0	20.9	
				0
164	9/15/2020 11:27 9/15/2020 11:28	0	20.9	0
165	• •	0	20.9	0
166	9/15/2020 11:29	0	20.9	0
167	9/15/2020 11:30	0	20.9	0
168	9/15/2020 11:31	0	20.9	0
169	9/15/2020 11:32	0	20.9	0
170	9/15/2020 11:33	0	20.9	0
171	9/15/2020 11:34	0	20.9	0
172	9/15/2020 11:35	0	20.9	0
173	9/15/2020 11:36	0	20.9	0
174	9/15/2020 11:37	0	20.9	0
175	9/15/2020 11:38	0	20.9	0
176	9/15/2020 11:39	0	20.9	0
177	9/15/2020 11:40	0	20.9	0
178	9/15/2020 11:41	0	20.9	0
179	9/15/2020 11:42	0	20.9	0
180	9/15/2020 11:43	0	20.9	0
181	9/15/2020 11:44	0	20.9	0
182	9/15/2020 11:45	0	20.9	0
183	9/15/2020 11:46	0	20.9	0
184	9/15/2020 11:47	0	20.9	0
185	9/15/2020 11:48	0	20.9	0
186	9/15/2020 11:49	0	20.9	0
187	9/15/2020 11:50	0	20.9	0
188	9/15/2020 11:51	0	20.9	0
189	9/15/2020 11:52	0	20.9	0
190	9/15/2020 11:53	0	20.9	0
191	9/15/2020 11:54	0	20.9	0
192	9/15/2020 11:55	0	20.9	0
193	9/15/2020 11:56	0	20.9	0

194	9/15/2020 11:57	0	20.9	0
195	9/15/2020 11:58	0	20.9	0
196	9/15/2020 11:59	0	20.9	0
197	9/15/2020 12:00	0	20.9	0
198	9/15/2020 12:01	0	20.9	0
199	9/15/2020 12:02	0	20.9	0
200	9/15/2020 12:02		20.9	
		0		0
201	9/15/2020 12:04	0	20.9	0
202	9/15/2020 12:05	0	20.9	0
203	9/15/2020 12:06	0	20.9	0
204	9/15/2020 12:07	0	20.9	0
205	9/15/2020 12:08	0	20.9	0
206	9/15/2020 12:09	0	20.9	0
207	9/15/2020 12:10	0	20.9	0
208	9/15/2020 12:11	0	20.9	0
209	9/15/2020 12:12	0	20.9	0
210	9/15/2020 12:13	0	20.9	0
211	9/15/2020 12:14	0	20.9	0
212	9/15/2020 12:15	0	20.9	0
213	9/15/2020 12:16	0	20.9	0
214	9/15/2020 12:17	0	20.9	0
215	9/15/2020 12:18	0	20.9	0
216	9/15/2020 12:19	0	20.9	0
217	9/15/2020 12:20	0	21.1	0
218	9/15/2020 12:21	0	21.2	0
219	9/15/2020 12:22	0	21.2	0
220	9/15/2020 12:23	0	21.2	0
221	9/15/2020 12:24	0	21.3	0
222	9/15/2020 12:25	0	21.3	0
223	9/15/2020 12:26	0	21.3	0
224	9/15/2020 12:27	0	21.3	0
225	9/15/2020 12:28	0	21.3	0
226	9/15/2020 12:29	0	21.3	0
227	9/15/2020 12:30	0	21.4	0
228	9/15/2020 12:31	0	21.4	0
229	9/15/2020 12:32	0	21.4	0
230	9/15/2020 12:33	0	21.4	0
	9/15/2020 12:34		21.4	
231		0		0
232	9/15/2020 12:35	0	21.4	0
233	9/15/2020 12:36	0	21.4	0
234	9/15/2020 12:37	0	21.4	0
235	9/15/2020 12:38	0	21.4	0
236	9/15/2020 12:39	0	21.4	0
237	9/15/2020 12:40	0	21.4	0
238	9/15/2020 12:41	0	21.4	0
239	9/15/2020 12:42	0	21.5	0
240	9/15/2020 12:43	0	21.5	0
	• •			

241	9/15/2020 12:44	0	21.5	0
242	9/15/2020 12:45	0	21.5	0
243	9/15/2020 12:46	0	21.5	0
244	9/15/2020 12:47	0	21.5	0
245	9/15/2020 12:48	0	21.5	0
246	9/15/2020 12:49	0	21.5	0
247	9/15/2020 12:50	0	21.5	0
248	9/15/2020 12:51	0	21.5	0
249	9/15/2020 12:52	0	21.5	0
250	9/15/2020 12:53	0	21.5	0
251	9/15/2020 12:54	0	21.5	0
252	9/15/2020 12:55	0	21.5	0
253	9/15/2020 12:56	0	21.5	0
254	9/15/2020 12:57	0	21.5	0
255	9/15/2020 12:58	0	21.5	0
256	9/15/2020 12:59	0	21.6	0
	9/15/2020 12:39	0		
257			21.5	0
258	9/15/2020 13:01	0	21.5	0
259	9/15/2020 13:02	0	21.6	0
260	9/15/2020 13:03	0	21.5	0
261	9/15/2020 13:04	0	21.5	0
262	9/15/2020 13:05	0	21.5	0
263	9/15/2020 13:06	0	21.5	0
264	9/15/2020 13:07	0	21.5	0
265	9/15/2020 13:08	0	21.5	0
266	9/15/2020 13:09	0	21.5	0
267	9/15/2020 13:10	0	21.5	0
268	9/15/2020 13:11	0	21.5	0
269	9/15/2020 13:12	0	21.5	0
270	9/15/2020 13:13	0	21.5	0
271	9/15/2020 13:14	0	21.5	0
272	9/15/2020 13:15	0	21.4	0
273	9/15/2020 13:16	0	21.4	0
274	9/15/2020 13:17	0	21.4	0
275	9/15/2020 13:18	0	21.4	0
276	9/15/2020 13:19	0	21.4	0
277	9/15/2020 13:20	0	21.4	0
278	9/15/2020 13:21	0	21.4	0
279	9/15/2020 13:22	0	21.4	0
280	9/15/2020 13:23	0	21.5	0
281	9/15/2020 13:24	0	21.5	0
282	9/15/2020 13:25	0	21.5	0
283	9/15/2020 13:26	0	21.5	0
284	9/15/2020 13:27	0	21.5	0
285	9/15/2020 13:28	0	21.5	0
286	9/15/2020 13:29	0	21.5	0
287	9/15/2020 13:30	0	21.5	0
	-, -0, -0-0 10.00	Ü	0	J

288	9/15/2020 13:31	0	21.5	0
289	9/15/2020 13:32	0	21.5	0
290	9/15/2020 13:33	0	21.5	0
291	9/15/2020 13:34	0	21.6	0
292	9/15/2020 13:35	0	21.6	0
293	9/15/2020 13:36	0	21.6	0
294	9/15/2020 13:37	0	21.6	0
295	9/15/2020 13:38	0	21.6	0
296	9/15/2020 13:39	0	21.6	0
297	9/15/2020 13:40	0	21.6	0
298	9/15/2020 13:41	0	21.5	0
299	9/15/2020 13:42	0	21.5	0
300	9/15/2020 13:43	0	21.5	0
301	9/15/2020 13:44	0	21.5	0
302				
	9/15/2020 13:45	0	21.5	0
303	9/15/2020 13:46	0	21.5	0
304	9/15/2020 13:47	0	21.5	0
305	9/15/2020 13:48	0	21.5	0
306	9/15/2020 13:49	0	21.4	0
307	9/15/2020 13:50	0	21.4	0
308	9/15/2020 13:51	0	21.4	0
309	9/15/2020 13:52	0	21.4	0
310	9/15/2020 13:53	0	21.4	0
311	9/15/2020 13:54	0	21.4	0
312	9/15/2020 13:55	0	21.4	0
313	9/15/2020 13:56	0	21.4	0
314	9/15/2020 13:57	0	21.4	0
315	9/15/2020 13:58	0	21.3	0
316	9/15/2020 13:59	0	21.4	0
317	9/15/2020 14:00	0	21.3	0
318	9/15/2020 14:01	0	21.3	0
319	9/15/2020 14:02	0	21.3	0
320	9/15/2020 14:03	0	21.3	0
321	9/15/2020 14:04	0	21.3	0
322	9/15/2020 14:05	0	21.3	0
323	9/15/2020 14:06	0	21.3	0
324	9/15/2020 14:07	0	21.3	0
325	9/15/2020 14:08	0	21.3	0
326	9/15/2020 14:09	0	21.3	0
327	9/15/2020 14:10	0	21.3	0
328	9/15/2020 14:11	0	21.3	0
329	9/15/2020 14:11	0	21.3	0
330	9/15/2020 14:12	0	21.3	
				0
331	9/15/2020 14:14	0	21.3	0
332	9/15/2020 14:15	0	21.3	0
333	9/15/2020 14:16	0	21.3	0
334	9/15/2020 14:17	0	21.3	0

335	9/15/2020 14:18	0	21.3	0
336	9/15/2020 14:19	0	21.3	0
337	9/15/2020 14:20	0	21.3	0
338	9/15/2020 14:21	0	21.2	0
339	9/15/2020 14:22	0	21.2	0
340	9/15/2020 14:23	0	21.2	0
341	9/15/2020 14:24	0	21.2	0
342	9/15/2020 14:25	0	21.2	0
343	9/15/2020 14:26	0	21.2	0
344	9/15/2020 14:27	0	21.3	0
345	9/15/2020 14:28	0	21.2	0
346	9/15/2020 14:29	0	21.3	0
347	9/15/2020 14:30	0	21.2	0
348	9/15/2020 14:31	0	21.2	0
349	9/15/2020 14:32	0	21.3	0
350	9/15/2020 14:33	0	21.3	0
351	9/15/2020 14:34	0	21.3	0
352	9/15/2020 14:35	0	21.3	0
353	9/15/2020 14:36	0	21.3	0
354	9/15/2020 14:37	0	21.3	0
355	9/15/2020 14:38	0	21.3	0
356	9/15/2020 14:39	0	21.3	0
357	9/15/2020 14:40	0	21.3	0
358	9/15/2020 14:41	0	21.3	0
359	9/15/2020 14:42	0	21.3	0
360	9/15/2020 14:43	0	21.3	0
361	9/15/2020 14:44	0	21.3	0
362	9/15/2020 14:45	0	21.3	0
363	9/15/2020 14:46	0	21.3	0
364	9/15/2020 14:47	0	21.3	0
365	9/15/2020 14:48	0	21.3	0
366	9/15/2020 14:49	0	21.3	0
367	9/15/2020 14:50	0	21.3	0
368	9/15/2020 14:51	0	21.3	0
369	9/15/2020 14:52	0	21.3	0
		0	21.6	0
		0	20.9	0
		0	21.1	0

Peak Min Average

APPENDIX C Geophysical Survey Letter Report

September 21, 2020

Mark Wright, PG, CHMM, CSP Senior Project Scientist HRP Associates, Inc. 1 Fairchild Square, Suite 110 Clifton Park, NY 120

RE: Geophysical Survey Letter Report, 131 Commerce Drive, Carmel, New York

Dear Mr. Wright:

Greenstar Environmental Solutions, LLC (Greenstar) is pleased to present this letter report summarizing the ground penetrating radar (GPR) and Electromagnetic (EM) survey completed Commerce Drive, Carmel, New York.

SITE AND PROJECT DESCRIPTION

Greenstar Environmental Solutions LLC (Greenstar) was contracted by HRP Associates, Inc. to conduct a GPR survey at Commerce Drive, Carmel Hamlet, New York (subject property). The survey was completed on September 10 and 11, 2020 by Greenstar staff overseen HRP staff. The objective of the survey was to identify the extent of a debris landfill using GPR and EM field screening methods.

The GPR survey was completed using a GSSI SIR-3000 with a 400 mHz antenna. GPR surveying is a nonintrusive, subsurface geophysical investigation technique that detects subsurface structures by transmitting electromagnetic waves from an antenna into the ground. The antenna then monitors the strength and time delay of the return signal. The return signal is then evaluated for any anomalies, which by their size, shape and orientation can be interpreted as voids, underground storage tanks, utility pipelines, soil-bedrock interface or areas of different sediment compaction. An electromagnetic survey was completed using a hand held magnetometer. This equipment can detect both ferrous and nonferrous metals.

RESULTS

131 Commerce Drive, Carmel, New York – HRP staff identified areas along the inferred landfill perimeter where GPR and EM were used to assess where landfill material may be present. Areas with vegetation or brush were cleared with an excavator by HRP prior to and during scanning.

The magnetometer was used as an initial screening tool to assess where the landfill edge may be present. However, surface metal debris was encountered across the landfill area which caused consistent false positive readings for the EM equipment.

The GPR was used across the landfill area in an attempt to assess the thickness of the landfill and the edge of the landfill area. The areas where GPR scanning was completed is shown on the attached figure.

Several GPR transects were completed outside the landfill area along the dead-end road to assess GPR returns in native soil. Results at these transects noted horizontal layering between 2 and 6 ft below grade indicative of an undisturbed soil profile. Additional GPR transects were completed within the landfill area to assess GPR returns from the fill material. These results show limited GPR returns below 2 to 3 ft and indicated GPR signals are not able to penetrate the landfill material likely due to the soil properties of the fill. These findings were used to assess areas outside the known area of the landfill.

A test pit was completed by HRP near the inferred southern end of the landfill which indicated fill material was present at approximately 2 ft below grade. This finding was used to calibrate the GPR signal returns.

Additional GPR transects were completed along the southern and eastern edge of the inferred landfill area in an attempt to identify where landfill material ends and native soil is present. Areas at the inferred edge of the landfill that were cleared of vegetation were scanned with GPR. Results from these transects did not identify native soil. Instead, GPR signal returns were similar to those found from within the landfill. These results suggest the areas scanned with GPR along the southern and eastern areas are underlain by landfill material. The thickness of the material could not be accurately assessed due to soil properties of the fill which prevent effective GPR signal returns below 2 to 3 ft below ground surface. Additional transects beyond the areas shown could not be completed due to the presence of vegetation and a steep hillside which prevented access for the GPR equipment.

Thank you for allowing Greenstar to assist HRP with this project. If you have any questions, please do not hesitate to contact me at (917) 655-5123 or via email at pnimmer@greenstarsolutions.com.

Sincerely,

GREENSTAR ENVIRONMENTAL SOLUTIONS, LLC

Pete Nimmer, PG, LSRP


Peter Muni

Senior Geologist

Figure 1 Survey Area and Markout Results 131 Commerce Drive, Carmel Hamlet, NY

131 Commerce Dr

Culvert Drain

Inspection Report

Dated: 3/11/2021

Report details

Address: 72 Gray's Bridge Rd. Unit Q

Brookfield

CT 06804

Tel: 203.312.9844 Fax: 203.663.8330

Email: Pgiro@undergroundsurveying.com

Survey Crew: Team E

Client Details

Client Name: HRP Associates

Client Ref: Address:

Telephone: Email:

Site Details

Site Contact:

Site Reference: Culvert Pipe Site Address: 131 Commerce Dr

Town Carmel NY

ZIP/PostCode Telephone: Email:

Survey details

Survey Date: 3/10/2021

Our Reference: Culvert Pipe

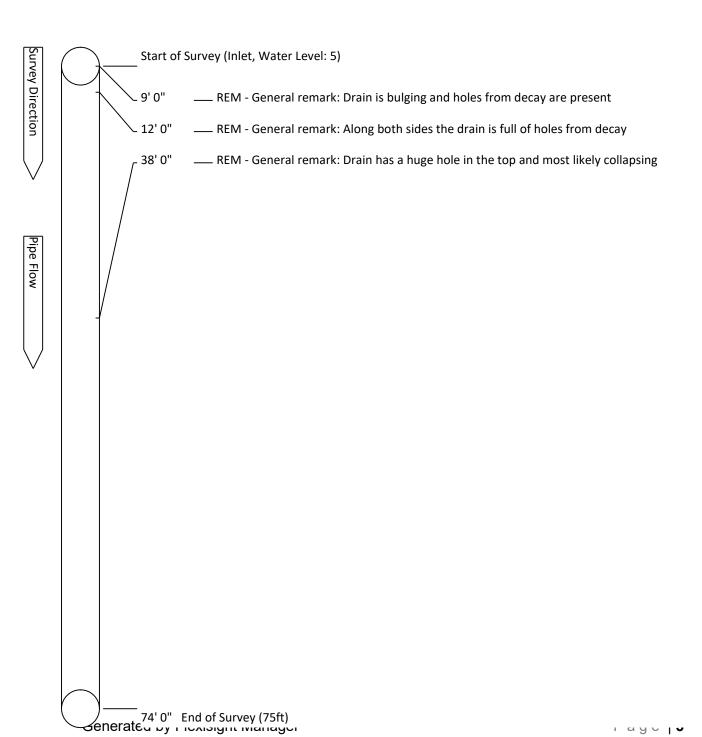
Use: Surface water

Purpose: Routine inspection of condition

Weather: No rain or snow

Pipe Height/Diameter: 24"
Pipe Width: 24"
Pipe Size: Medium
Pipe Shape: Circular
Pipe Material: Steel

Direction: Downstream


Observations

Crew: Survey Custon Job Ref: Survey Addres		Team C HRP Associates Culvert Pipe 131 Commerce Dr	Survey Date:	3/10/2021			
Start:		Inlet	Finish:		75ft		
Depth at Start Node:			Depth at Finish Node:				
Direction: Downstream		Downstream	Height: 24"				
Length Surveyed:		74ft					
Material:	Steel		Size:	Medium		Shape:	Circular

Position 9' 0"	Code REM	Description/Remarks General remark: Drain is bulging and holes from decay are present	Grade	Photo
12' 0"	REM	General remark: Along both sides the drain is full of holes from decay		10Mar_002.MP4_003.JPG
38' 0"	REM	General remark: Drain has a huge hole in the top and most likely collapsing		10Mar, 002 MPA, 005 IPG

Pipe Graphic

Crew: Survey Custom Job Ref:	ner:	Team C HRP Associates Culvert Pipe	Survey Date:	3/10/2021		
Survey Addres	s:	131 Commerce Dr				
Start:		Inlet	Finish:	75ft		
Depth at Start Node:			Depth at Finish N	Node:		
Direction:		Downstream	Height:	24"		
Length Surveyed:		74ft				
Material:	Steel		Size:	Medium	Shape:	Circular

Observation Table

Crew:		Team C								
Survey Customer: HRP Associate		es								
Job Ref:		Culvert Pipe		Survey Da	ate:	3/10/2021				
Survey Ad	ddress:	131 Commerce	e Dr	-						
Start:		Inlet		Finish:			75ft			
Depth at S	Start Node:			Depth at F	inish No	de:				
Direction:		Downstream		Height:			24"			
Length Su	ırveyed:	74ft		_						
Material:	Steel			Size:		Medium	Shape:	Circu	lar	
							•			
	Code and De	scription	Grade	Cont.	t. VALUE Clock					
		•		Defect		mm		%	At/From	То
Position	Code	Description			SML	1st	2nd			
9' 0"	REM	General remark:								
12' 0"	REM	General remark:								
38' 0"	REM	General remark:								

Comments

Glossary

Code	Description
REM	General remark:

APPENDIX D Soil Boring & Monitoring Well Logs

₽	WELL NO: MW-1A
HRP Associates, Inc.	
Monitoring Well Installation Log	PAGE 1 OF 1 PAGES
PROJECT: Fair Street Landfill	SCREEN SIZE & TYPE: Open borehole
JOB NUMBER: DEC1005.P3	SLOT NO.: N/A SETTING: N/A
DATE COMPLETED: 9/29/2020	SAND PACK SIZE & TYPE: NA
DRILLING COMPANY: Core Down Drilling	SETTING: NA
RIG TYPE:CME	CASING SIZE & TYPE: 6 inch steel
DRILLING METHOD: Air Rotary	SETTING: Bedrock
HAMMER WEIGHT/DROP:4.25 inch OD	SEAL TYPE: concrete
SAMPLING METHOD: NA	SETTING:
OBSERVER: Kristen Amodeo	BACKFILL TYPE: NA
REFERENCE POINT (RP): North of MW-1	STATIC WATER LEVEL 38.35' bgs
STICK-UP: 2.75 ft	GPS COORDINATES: N: N/A
SURFACE COMPLETION: concrete	W: N/A
REMARKS: Bedrock @ 4' bgs. DTB: 41' bgs	

REMARKS: Bedrock @ 4' bgs, DTB: 41' bgs

ABBREVIATIONS: SS = split spoon W = wash C = cuttings G = grab ST = shelby tube REC = recovery NR= No Recovery NA= Not Available PPM = parts per million

DEPTH	(FEET)	SAMPLE	BLOW	REC.	MOISTURE	DESCRIPTION	PID READING
FROM	то	ТҮРЕ	COUNT	(FEET)	MOISTURE	DESCRIPTION	(PPM)
0	20	NA			DRY	Bedrock at 20 feet: no water observed	ND
						DEC approval for deeper drilling until maximum rig testing achieved or water observed	
20	41.4	NA			DRY	DEC approval to dig until maximum rig tooling achieved at 41.4' bgs	

₽RP	WELL NO: MW-5				
HRP Associates, Inc.					
Monitoring Well Installation Log	PAGE 1 OF 1 PAGES				
PROJECT: Fair Street Landfill	SCREEN SIZE & TYPE: Open borehole				
JOB NUMBER: DEC1005.P3	SLOT NO.: N/A SETTING: N/A				
DATE COMPLETED: 9/30/2020	SAND PACK SIZE & TYPE:				
DRILLING COMPANY: Core Down Drilling	SETTING:				
RIG TYPE:CME	CASING SIZE & TYPE: 6 inch steel				
DRILLING METHOD: Air Rotary	SETTING: Bedrock				
HAMMER WEIGHT/DROP:4.25 inch OD	SEAL TYPE: concrete				
SAMPLING METHOD: NA	SETTING:				
OBSERVER: Kristen Amodeo	BACKFILL TYPE: NA				
REFERENCE POINT (RP): Southern landfill SE of culvert	STATIC WATER LEVEL: 39.95				
STICK-UP: 2.5 ft	GPS COORDINATES: N: 41.4607				
SURFACE COMPLETION: concrete	W:-73.6402				
REMARKS: Bedrock @ 1.5' bgs. DTW: 4.12' bgs. DTB: 39.95' b	ons -				

REMARKS: Bedrock @ 1.5' bgs, DTW: 4.12' bgs, DTB: 39.95' bgs

ABBREVIATIONS: SS = split spoon W = wash C = cuttings G = grab ST = shelby tube REC = recovery NR= No Recovery NA= Not Available PPM = parts per million

DEPTH	(FEET)	SAMPLE	BLOW	REC.	MOISTURE	DESCRIPTION	PID READING	
FROM	то	ТҮРЕ	COUNT	(FEET)		DESCRIPTION	(PPM)	
0	20	NA			DRY	Bedrock at 20 feet: no water observed	ND	
						DEC approval for deeper drilling until maximum rig testing achieved or water observed		
20	41.2	N/A			DRY	DEC approval for deeper drilling until maximum rig testing achieved or water observed		

HRP Associates, Inc.	WELL NO: MW-6				
Monitoring Well Installation Log	PAGE 1 OF 1 PAGES				
PROJECT: Fair Street Landfill	SCREEN SIZE & TYPE: Open borehole				
JOB NUMBER: DEC1005.P3	SLOT NO.: N/A SETTING: N/A				
DATE COMPLETED: 9/30/2020	SAND PACK SIZE & TYPE:				
DRILLING COMPANY: Core Down Drilling	SETTING:				
RIG TYPE:CME	CASING SIZE & TYPE: 6 inch steel				
DRILLING METHOD: Air Rotary	SETTING: Bedrock				
HAMMER WEIGHT/DROP:4.25 inch OD	SEAL TYPE: concrete				
SAMPLING METHOD: NA	SETTING:				
OBSERVER: Kristin Amodeo	BACKFILL TYPE: NA				
REFERENCE POINT (RP): Between MW-3 and MW-4	STATIC WATER LEVEL: 16.2				
STICK-UP: 1.7 ft	GPS COORDINATES: N: 41.4602				
SURFACE COMPLETION: concrete	W:-73.6418				
REMARKS: Bedrock @ 3' bgs, DTB: 27' bgs	•				

DEPTH	DEPTH (FEET)		BLOW	REC.	MOISTUDE	DESCRIPTION	PID	
FROM	то	ТҮРЕ	COUNT	(FEET) MOISTURE		DESCRIPTION	READING (PPM)	
0	14.0	NA				Damp Drill cuttings observed about 14 feet from grade	ND	
14.0	27.0	N/A						

ABBREVIATIONS: SS = split spoon W = wash C = cuttings G = grab ST = shelby tube REC = recovery NR= No Recovery NA= Not Available PPM = parts per million

		HRP E	NGINEERI	NG, P.C.			PAGE	1 OF	1_	
							SAMPLE DATE:	11/13/	2020	
		LOW-F	LOW SAM	PLING LOG	ì		TOTAL # WELLS:			
		•								
Client Na	ame:		NYSDEC			Sample Pump: Peristaltic				
Project L	_ocatior		Fair Stre	eet Landfill		Tubing Typ	PFAS FREE HE	DPE		
Sampler	(s):		KMA/ST			Monitoring	Equipment: YSI,	, turbidity mete	<u>ər</u>	
Well I.D.							tting (ft btoc):			
Well Dia	meter (inches): o̞r	oen borehole			Tubing Inta	ake (ft btoc <u>): 40 f</u>	eet		
Total De	pth (ft b	otoc): 4 <u>3.75</u>	5 top of casing	<u> </u>		Comments	: duplicate taker	n		
Depth to	Water	(ft btoc): 2	0.65 top of cas	sing	<u></u>				<u> </u>	
Well Cor	ndition		Good							
Tim	ıе	Depth to	Evacuation		Wat	er Quality M	Ionitoring Param	eters		
		Water	Rate	Temperature	рН	ORP	Conductivity	Turbidity	Dissolved	
(hou	ıre)	(ft btoc)	(ml/min)	(oC)		(mv)	(ms/cm)	(NTU)	oxygen (mg/l)	
•	(hours) (ft btoc) (ml/min) (oC) 1310 20.65					static water le	,	(1410)	(1119/1)	
131		20.74	0.2	10.30	6.41	174.40	58.20	584.00	8.44	
132		21.84	0.2	10.80	6.45	174.40	27.40	567.00	8.06	
132		21.82	0.2	10.80	6.46	170.20	54.40	602.00	7.87	
133		21.94	0.2	10.70	6.44	180.40	57.30	612.00	7.90	
133		21.99	0.2	10.40	6.45	180.20	58.40	594.00	7.90	
134		22.21	0.2	10.30	6.42	183.40	58.20	580.00	7.82	
			<u> </u>	10.00		100	33.23	-	+ -	
									+	
									+	
									+	
					-				+	
		Stabilization	on of Paramet	ers (stabilization	n achieved	for three co	nsecutive meas	urements)		
Tim	ıе	Depth to	Evacuation	Temperature	рН	ORP	Conductivity	Turbidity	Dissolved	
FROM	ТО	Water (ft btoc)	Rate (ml/min)	(oC)		(m)()	(ms/cm)	/NITTII)	oxygen	
FROIVI	1340		0.20	` ,	6.1	(mv) 183.4	(ms/cm)	(NTU) 580.0	(mg/l) 7.82	
	1340	22.21	0.20	10.30	6.4	103.4	58.2	300.0	1.02	
					. <u></u>	<u> </u>			+	
	 					1			+	
Recomm	nended	./ 0.3	100 500	1/ 20/	./ 0.1	1 1/ 10	./ 20/	+/- 10%	+/- 10%	
Stabiliz Stabiliz		+/- 0.3	100-500	+/- 3%	+/- 0.1	+/- 10	+/- 3%		1	
(Yes/		Y	Y	Y	Υ	Y	Υ	Y	Y	
Sample ⁻	Time: _	1340				Reviewed by	/ JG			
ft btoc		feet below top	ū		•	: Turbidity Units	-	degrees Celsius		
ml/min	ml/min milliliters per minute mg/l milligrams				milligrams per					

μs/cm

microseimons per centimeter

		HRP E	NGINEERI	ING, P.C.			PAGE	1OF	1_		
							SAMPLE DATE:	11/13	/2020		
		LOW-F	LOW SAM	IPLING LOG	<u> </u>		TOTAL # WELLS:				
Client Na	ame:		NYSDEC	;		Sample Pump: Peristaltic					
Project L	_ocatior		Fair Stre	eet Landfill		Tubing Typ	PFAS FREE HE	DPE			
Sampler	(s):		KMA/ST			Monitoring	Equipment: YSI,	, turbidity met	<u>er</u>		
Well I.D.	: <u>MV</u>	N- 2				Screen Set	tting (ft btoc):	<u>-</u> to			
Well Dia	meter (inches): 3 <u>ir</u>	<u>n. open boreh</u>	ole		Tubing Inta	ake (ft btoc <u>): 40 f</u>	eet			
Total De	pth (ft b	otoc): 4 <u>4.82</u>	2 top of casing	1		Comments	:				
Depth to	Water	(ft btoc): 1	5.75 top of cas	sing							
Well Cor	ndition		Good		<u></u>				<u></u>		
Tim	ıe	Depth to			Wat	ter Quality M	Ionitoring Param				
		Water	Rate	Temperature	pН	ORP	Conductivity	Turbidity	Dissolved		
(hou	ırs)	(ft btoc)	(ml/min)	(oC)	I	(mv)	(ms/cm)	(NTU)	oxygen (mg/l)		
•	1025 15.75					static water l	, ,	(111.5)	('''ਲ਼'')		
	1030 15.84 0.2 12.6		7.36	164.2	1143	Х	7.54				
103		15.79	0.2	12.6	7.27	160.4	1201	Х	7.50		
104		17.28	0.2	12.6	7.00	156.2	1221	8.92	6.97		
104	1 5	17.28	0.2	12.6	6.79	157.5	1239	8.46	6.44		
105	50	17.28	0.2	12.4	6.79	152.2	1252	7.78	6.44		
					·	1			†		
						1			†		
									1		
									1		
					ı						
					<u> </u>						
				,			nsecutive meas				
Tim	ıe	Depth to Water	Evacuation Rate	Temperature	pН	ORP	Conductivity	Turbidity	Dissolved oxygen		
FROM	ТО	(ft btoc)	(ml/min)	(oC)	I	(mv)	(ms/cm)	(NTU)	(mg/l)		
	1050	17.28	0.20	12.4	6.79	152.2	1252.0	7.8	6.49		
									+		
					 I				†		
					 I				+		
Recomm Stabiliz		+/- 0.3	100-500	+/- 3%	+/- 0.1	+/- 10	+/- 3%	+/- 10%	+/- 10%		
Stabiliz	ation:	Y	Y	Y	Υ	Υ	Y		Υ		
(Yes/		1050				Reviewed by					
ft btoc			of casing	NTU I	Nephelometric	Turbidity Units		degrees Celsius			
·					milligrams per	•		millivolts			

μs/cm

microseimons per centimeter

HRP Engineering, P.C.							PAGE	1 OF	1_	
						SAMPLE DATE:11/13/2020				
		LOW-F	LOW SAM	PLING LOG	į		TOTAL # WELLS:			
Client Na	ame:		NYSDEC	,		Sample Pump: Peristaltic				
Project L	_ocatior	-	Fair Stre	et Landfill		Tubing Typ	PFAS FREE HE	<u>DPE</u>		
Sampler((s):		KMA/ST			Monitoring	Equipment: YSI,	, turbidity mete	<u>:r</u>	
Well I.D.	: <u>M\</u>	N- 3					tting (ft btoc):			
Well Dia	meter (inches): 3_i	in open boreho	ole		Tubing Inta	ake (ft btoc <u>): 30 f</u>	<u>eet</u>		
Total De	pth (ft k	otoc): <u>38.8</u>	top of casing			Comments	i <u>. </u>			
Depth to	Water	(ft btoc): 1	2.35 top of cas	sing						
Well Cor	ndition		Good						_	
Tim	ne	Depth to	Evacuation		Waf	ter Quality M	lonitoring Param	eters		
		Water	Rate	Temperature	рН	ORP	Conductivity	Turbidity	Dissolved	
/hou	ıre)	(ft btoc)	(ml/min)	(oC)	I	(mv)	(ms/cm)	(NTU)	oxygen (mg/l)	
,	(hours) (ft btoc) (ml/min) (oC) (mv) (ms/cm) (NTU) 905 12.35 static water level						(IIIg/I)			
910		12.81	0.2	11.1	6.73	105.3	1245	24.70	1.39	
91		12.85	0.2	11.3	6.73	109.8	1268	4.20	0.63	
920		12.89	0.2	11.4	6.73	112.2	1128	0.70	0.65	
92		13.18	0.2	11.2	6.73	115.9	1131	0.20	0.66	
930		13.17	0.2	11.2	6.73	117.4	1142	0.50	0.65	
	-	1311				+			+	
						+			+	
						+			+	
						+			+	
						+				
					 I			<u> </u>		
		Stabilization	on of Paramet	ers (stabilization	n achieved	for three co	nsecutive measu	urements)		
Tim	ne	Depth to	Evacuation	Temperature	рН	ORP	Conductivity	Turbidity	Dissolved	
FROM	ТО	Water (ft btoc)	Rate (ml/min)	(oC)	I	(mv)	(ms/cm)	(NTU)	oxygen (mg/l)	
I I CON	930	13.17	0.20	11.2	6.73	117.4	1142.0	(NTO) 0.5	(mg/l) 0.65	
	950	13.17	0.20	11.2	0.73	111.4	1142.0	0.5	0.00	
					 I		 			
							 		+	
Recomm Stabiliz		+/- 0.3	100-500	+/- 3%	+/- 0.1	+/- 10	+/- 3%	+/- 10%	+/- 10%	
Stabiliza (Yes/I	ation:	Υ	Y	Υ	Υ	Y	Y	Υ	Y	
Sample 1		935				Reviewed by	y JG			
ft btoc feet below top of casing ml/min milliliters per minute				Nephelometric milligrams per	Turbidity Units	_	degrees Celsius millivolts			

μs/cm

microseimons per centimeter

	HRP E	NGINEER	ING, P.C.	PAGE 1 OF 1					
					SAMPLE DATE: <u>11/13/2020</u>				
	LOW-F	LOW SAM	IPLING LOG	3		TOTAL # WELLS:			
Client Name:					•	mp: Peristaltic			
•	r		eet Landfill		Tubing Typ PFAS FREE HDPE				
Sampler(s):		KMA/ST				Equipment <u>: YSI</u>			
Well I.D <u>.: M</u>	<u>W- 5</u>				Screen Set	tting (ft btoc):	<u>-</u> to		
Well Diameter	(inches): be	<u>edrock open b</u>	orehole		Tubing Inta	ike (ft btoc <u>): 40 f</u>	<u>ieet</u>		
Total Depth (ft	btoc): <u>43.7</u>	top of casing			Comments	taken as MS/M	SD		
Depth to Water	(ft btoc): 2	8.62 top of ca	sing						
Well Condition		Good							
Time	Depth to Water	Evacuation Rate				lonitoring Param			
	Water	Nate	Temperature	рН	ORP	Conductivity	Turbidity	Dissolved	
(hours)	(ft btoc)	(ml/min)	(oC)		(mv)	(ms/cm)	(NTU)	oxygen (mg/l)	
1445	28.62		, ,	<u> </u>	static water le	, ,	, ,	, J,	
1450	28.76	0.2	10.8	6.67	201.7	551.9	64.9	4.14	
1455	29.16	0.2	10.9	6.67	201.6	552.2	12.0	4.13	
1500	29.34	0.2	10.7	6.68	201.5	554.5	10.2	4.00	
1505	29.43	0.2	10.8	6.68	201.4	554.1	8.1	4.01	
					<u> </u>				
						nsecutive meas		15: 11	
Time	Depth to Water	Evacuation Rate	Temperature	рН	ORP	Conductivity	Turbidity	Dissolved oxygen	
FROM TO	(ft btoc)	(ml/min)	(oC)		(mv)	(ms/cm)	(NTU)	(mg/l)	
1505	29.42	0.20	10.8	6.68	201.4	554.1	8.1	4.01	
	†								
	†								
	†!				<u> </u>			<u> </u>	
Recommended Stabilization	+/- 0.3	100-500	+/- 3%	+/- 0.1	+/- 10	+/- 3%	+/- 10%	+/- 10%	
Stabilization:	Y	Y	Υ	Υ	Y	Y		Y	
Sample Time:	1510				Reviewed by	/ JG			
· · · · · · · · · · · · · · · · · · ·									
(Yes/No) Sample Time:	Y 1510	Y	Y	Y	Y Reviewed by	Y JG			

ml/min

μs/cm

milliliters per minute

microseimons per centimeter

mg/l

milligrams per liter

mν

millivolts

		HRP E	NGINEERI	ING, P.C.				1 OF	
						SAMPLE DATE: <u>11/13/2020</u>			
LOW-FLOW SAMPLING LOG							TOTAL # WELLS:		
Client Nar	me:		NYSDEC	<u>; </u>	Sample Pu	mp: Peristaltic			
Project Lo	ocatior		Fair Stre	eet Landfill		Tubing Typ	PFAS FREE H	DPE	
Sampler(s	s):		KMA/ST			Monitoring	Equipment <u>: YSI,</u>	<u>, turbidity mete</u>	<u>r</u>
WelLLD.:	MV	V- 6				Screen Set	tting (ft btoc):	<u>-</u> to	
Well Diam	neter (i	inches): be	edrock open b	orehole		Tubing Inta	ake (ft btoc <u>): 25 f</u>	eet	
Total Dep	th (ft b	otoc): <u>29.8</u> 1	1 top of casing]		Comments	:		
Depth to V	Water	(ft btoc): 4	.58 top of casi	ng					<u></u>
Well Cond	dition		Good						
Time	9	Depth to			Wate	er Quality M	Ionitoring Param	eters	
		Water	Rate	Temperature	рН	ORP	Conductivity	Turbidity	Dissolved
(hours	د)	(ft btoc)	(ml/min)	(oC)		(mv)	(ms/cm)	(NTU)	oxygen (mg/l)
740		4.58	(111311117)	()	s	tatic water le	,	(1110)	('''8'')
750		4.68	0.2	10.9	6.17	48.8	576.0	28.3	0.63
755		4.71	0.2	11.0	6.16	50.1	577.0	25.2	0.60
800		4.74	0.2	11.0	6.15	52.0	577.4	23.8	0.55
805	;	4.77	0.2	11.1	6.13	65.3	576.6	18.8	0.45
810		4.78	0.2	11.1	6.12	67.80	574.60	21.50	0.40
815	,	4.79	0	11.1	6.110	69.4	575.40	20.40	0.39
				<u> </u>			nsecutive meas		-
Time	Э	Depth to Water	Evacuation Rate	Temperature	рН	ORP	Conductivity	Turbidity	Dissolved oxygen
FROM	TO	(ft btoc)	(ml/min)	(oC)		(mv)	(ms/cm)	(NTU)	(mg/l)
	815	4.79	0.20	11.1	6.11	69.4	575.4	20.4	0.39
Recomme Stabilizat		+/- 0.3	100-500	+/- 3%	+/- 0.1	+/- 10	+/- 3%	+/- 10%	+/- 10%
Stabilizat (Yes/N	tion:	Υ	Υ	Y	Υ	Υ	Y	Υ	Υ
Sample Ti	ime: _	0820				Reviewed by	/ JG		
ft btoc		feet below top	of casing	NTU	Nephelometric ³	Turbidity Units	°C	degrees Celsius	

ml/min

μs/cm

milliliters per minute

microseimons per centimeter

mg/l

milligrams per liter

millivolts

mν

Project: Fair Street Landfill Boring I.D.: S-1/ SW-1

Drilling Company: NA Time:

Location: Culvert, northern side of landfill

	GPS Coordinates N: 41.461279			W: -73.640121		
Sampl (f Top	Sample Interval (ftbg) Top Bottom		Moisture	Description (grain size, color, compaction, staining, odor)	PID (PPM)	
0	0.5	NA	Wet	Brown fine/medium sand, some silt,	NA	
				trace organics, slight organic odor. wet		
Well Screen: NA		T	Soil Samples Collected:	Time		
Water 9	Sample ID		Time	SW-1	1200	
				S-1	1230	
Sampli	ng Method:	Grab				
.						

Description of Water: High suspended solids, organics odor

Project: Fair Street Landfill Boring I.D.: S-2/ SW-2

Drilling Company: NA Time:

Location: Culvert exit from south side of landfill

	ordinates	N: 41.40	W: -73.640525		
Sample	e Interval tbg) Bottom	Recovery (ft)	Moisture	Description (grain size, color, compaction, staining, odor)	PID (PPM)
0	0.5	NA	Wet		NA
U	0.5	INA	vvet	Brown fine/medium sand, some silt, some fine gravel, trace organics, wet	INA
				Some mie graver, trace organies, wet	
Well Sc	reen: NA	<u> </u>	<u> </u>	Soil Samples Collected:	Time
		Time	SW-2	1330	
Water Sample ID				S-2	1400
Samplin	ng Method:	Grah			
		or: High susp			

Description of Water: High suspended solids

Project: Fair Street Landfill Boring I.D.: S-3/ SW-3

Job Number: DEC1005.P3 Date: 11/3/2020
Drilling Company: NA Time:

Drilling Company: NA
Location: Culvert, east of MW-2

	GPS Coordinates N: 41.459700			W: -73.640914		
Sampl	e Interval tbg) Bottom	Recovery (ft)	Moisture	Description (grain size, color, compaction, staining, odor)	PID (PPM)	
0	0.5	NA	Wet	Brown fine/medium sand, some silt,	NA	
				little fine gravel, trace organics		
Well Screen: NA			Soil Samples Collected:	Time		
Water 9	Sample ID		Time	SW-3	1600	
•				S-3	1545	
Sampli	ng Method:	Grab				

Description of Water: High suspended solids

Project:Fair Street LandfillBoring I.D.: S-4/ SW-4Job Number:DEC1005.P3Date: 11/13/2020

Drilling Company: NA Time:

Location: Culvert, entrance to piping under interstate

GPS C	GPS Coordinates N: 41.459224			W: -73.641336		
	e Interval tbg) Bottom	Recovery (ft)	Moisture	Description (grain size, color, compaction, staining, odor)	PID (PPM)	
0	0.5	NA	Wet	Brown fine/medium sand, some silt, trace organics, slight organics smell	NA	
				trado organico, engrit organico emen		
Well Screen: NA				Soil Samples Collected:	Time	
Water Sample ID T			Time	SW-4	1245	
				S-4	1230	
Sampli	ng Method:	Grab				

Description of Water: High suspended solids, organics odor

MOVE TOUR ENVIRONMENT FORWARD	
Project: Fair Street Landfill	Boring I.D.: SB-1
Job Number: DEC1005.P3	Date: 9/15/2020
Drilling Company: Core Down Drilling	Time: 08:02

Location: Near MW-2

GPS C	GPS Coordinates N: 41.4602		W: -73.6411		
Sample Interval (ftbg)		Recovery (ft)	Moisture	Description (grain size, color, compaction,	5- GAS
Тор	Bottom	(ft)		staining, odor)	(PPM)
0'	5'	3.4'	DRY	0 - 1.5': SAND; some SILT; some roots and wood chips; m-f; Dark brown; No odor or staining	ND
			DRY	1.5 -2.5': SAND; some GRAVEL and SILT; c-f; Rusty red to brown; No odor or staining	ND
				2.5' -3.5': SAND and SILT; m-f; Brown; some GRAVEL; some roots; No odor or staining	ND
			DRY	3.5 – 5.0': SAND and GRAVEL; some large rocks; Light brown to tan; No odor or staining	
-					
Notes:	Refusal a	t 6 0'			

Notes: Refusal at 6.9'

	Time
Soil Samples Collected:	
Soil Sample (SB-1)	8:15
Interval 1.0'- 2.0'	
Sampling Method: Grab	
Description of Water: No water encountered	

Project: Fair Street Landfill Boring I.D.: SB-2 Job Number: DEC1005.P3 Date: 9/15/2020 **Drilling Company: Core Down Drilling** Time: 08:30

Location: Near MW-3
GPS Coordinates N: 41 4602 W: -73 6/15

GPS C	GPS Coordinates N: 41.4602		02	W: -73.6415		
Sample Interval (ftbg)		Recovery	Moisture	Description (grain size, color, compaction,	5- GAS	
Top	Bottom	(ft)		staining, odor)	(PPM)	
0'	2.5'	2.0'	DRY	0 - 1.0': SAND and SILT; c-f; Dark Brown; some GRAVEL; some wood chips and roots; No odor and staining	ND	
			DRY	1.0 -2.0': SAND and GRAVEL; little SILT; c-f; Brown to tan; No odor or staining	ND	
					<u> </u>	
					-	
Notos	Pofucal a	+ O F'				

Notes: Refusal at 2.5'

	Time
Soil Samples Collected:	
Soil Sample (SB-2)	8:40
Interval 0.0'- 2.0'	
Sampling Method: Grab	
Description of Water: No water encountered	

Project: Fair Street Landfill Boring I.D.: SB-3

Job Number: DEC1005.P3 Date: 9/15/2020

Drilling Company: Core Down Drilling Time: 09:00

Location: Near MW-4

GPS Coordinates N: 41.4608 W: -73.6415

GF3 C	Ourdinates N. 41.4606 VV73.6415				
Sample Interval (ftbg)		Recovery (ft)	Moisture	Description (grain size, color, compaction,	5- GAS
Тор	Bottom	(10)		staining, odor)	(PPM)
0'	2.5'	2.0'	DRY	0 - 1.0': SAND and GRAVEL; some SILT; c-f; Brown; No odor and staining	ND
			MOIST	1.0 -2.0': SAND, SILT, and GRAVEL; c-f; Brown; No odor or staining	ND
Nieter	Danima a st	44.4007.1 -1	70.0445	. Atili in law dfill and	
Notes:	Boring at	41.4607 Lat, -	-73.6415 LON	g still in landfill area	1
Soil Sa	amples Co	llected:			Time
Soil Sa	mple (SB-3	3)			9:10

	Time
Soil Samples Collected:	
Soil Sample (SB-3)	9:10
Interval 0.0'- 2.0'	
Sampling Method: Grab	
Description of Water: No water encountered	

Project: Fair Street Landfill	Boring I.D.: SB-4
Job Number: DEC1005.P3	Date: 9/15/2020

Drilling Company: Core Down Drilling Time: 09:30

Location: West of culver, east of MW-4
GPS Coordinates N: 41 4612

GPS Coordinates N: 41.4612 W: -73.6410

GPS Coordinates N: 41.4612		W: -73.6410			
Sample Interval (ftbg)		Recovery Moist	Moisture	, , , , , ,	5- GAS
Тор	Bottom	(11)		staining, odor)	(PPM)
0'	5.0'	4.0'	DRY	0 - 1.5': SAND, SILT, and GRAVEL; c- f; Brown to gray; No odor or staining	ND
			DRY	1.5 -2.5': SILT and SAND; some GRAVEL and wood chips; c-f; Black; Slight odor and no staining	ND
			MOIST	2.5 -4.0': SILT and SAND; c-f; Brown; No odor or staining	ND
			DRY	4.0 – 5.0': SAND, large GRAVEL and ROCKS; c-f: White, tan, and gray; No odor or staining	ND
Notes:					

Notes:

	Time
Soil Samples Collected:	
Soil Sample (SB-4)	9:30
Interval 0.0'- 2.0'	
Sampling Method: Grab	
Description of Water: No water encountered	

Project: Fair Street Landfill	Boring I.D.: SB-5
Job Number: DEC1005.P3	Date: 9/15/2020

Drilling Company: Core Down Drilling Time: 09:45

Location: NW of Culvert

GPS Coordinates N: 41.4613 W: -73.6405

GPS Coordinates N: 41.4613		W: -73.6405			
Sample Interval (ftbg)		Recovery Moisture	Moisture	, , , ,	5- GAS
Top	Bottom	(11)		staining, odor)	(PPM)
0'	5.0'	4.0'	DRY	0 - 1.0': SAND and GRAVEL; m-c; Brown; No odor or staining	ND
			DRY	1.0 - 2.0': SAND and GRAVEL; little SILT; m-c; Brown and gray; No odor or staining	ND
			DRY	2.0 -3.0': GRAVEL, LARGE ROCKS, and SAND; m-c; White and gray; No odor or staining	ND
			DRY to MOIST	3.0 – 4.0': SAND, SILT, and GRAVEL; c-f; Brown; No odor or staining	ND
Notes:					

Notes:

	Time
Soil Samples Collected:	
Soil Sample (SB-5)	10:10
Interval 0.0'- 2.0'	
Sampling Method: Grab	
Description of Water: No water encountered	

Project: Fair Street Landfill

Job Number: DEC1005.P3

Drilling Company: Core Down Drilling

Time: 12:30

Location: NE of Culvert

GPS Coordinates N: 41.4617 W: -73.6399

GPS Coordinates N: 41.4617		W: -73.6399			
Sample Interval (ftbg)		Recovery Moisture	Description (grain size, color, compaction,	5- GAS	
Тор	Bottom	(11)		staining, odor)	(PPM)
0'	4.0'	3.5'	DRY	0 – 0.5': SAND and GRAVEL; some roots; c-f; Dark brown; No odor or staining	ND
			VERY DRY	0.5 - 3.0': SAND; c-f; Tan; No odor or staining	ND
	5.	1.4.01.5	1.44.4046	1.70.00001 (11.1.1.1511	

Notes: Refusal at 4.0'. Boring at 41.4613 lat and -73.6399 long, still in landfill, move out

	Time
Soil Samples Collected:	ļ
Soil Sample (SB-6)	11:00
Interval 0.0'- 2.0'	
Sampling Method: Grab	
Description of Water: No water engulatored	

Description of Water: No water encountered

Project: Fair Street Landfill Boring I.D.: SB-7

Job Number: DEC1005.P3 Date: 9/15/2020

Drilling Company: Core Down Drilling Time: 11:15

Location: Near MW-1

GPS Coordinates N: 41.4612 W: -73.6400

GF 3 C	Julullates	11. 41.40	14	VV7 3.0400	
(f	e Interval bg)	Recovery Moisture			5- GAS
Top	Bottom	(11)		staining, odor)	(PPM)
0	6.0"	6.0"	DRY	0 - 6": SAND ,GRAVEL, and SILT; some roots; c-f; Brown; No odor or staining	ND
Notes:	Boring at	41 4615 lat ar	nd -73 6400 la	ong landfill material	

Notes: | Boring at 41.4615 lat and -73.6400 long, landfill material.

	Time
Soil Samples Collected:	
Soil Sample (SB-7)	11:30
DUP sample taken here	
Interval 0.0'- 6.0"	
Sampling Method: Grab	
Description of Water: No water encountered	

Project: Fair Street Landfill

Job Number: DEC1005.P3

Drilling Company: Core Down Drilling

Location: SE corner of landfill

GPS Coordinates N: 41 4612

W: -73 6402

GPS CC	ordinates	N: 41.461	2	W: -73.6402	
(ft	e Interval bg)	Recovery (ft)	Moisture	Description (grain size, color, compaction,	5- GAS
Тор	Bottom	(14)		staining, odor)	(PPM)
0	5.0'	2.8'	DRY to MOIST	0 – 2': SAND; c-f; some SILT and GRAVEL; c-f; Dark Brown; some BRICK material; Red; No odor or staining	ND
			MOIST	2.0' – 5.0': SAND, SILT, GRAVEL, and WOODCHIPS; c-f; Dark to light brown; No odor or staining	ND
Notes	Defined	+ 0.0' Com:-1-	takan in Lau	dfill (approved by DEC)	

Notes: Refusal at 8.0'. Sample taken in Landfill (approved by DEC)

	Time
Soil Samples Collected:	
Soil Sample (SB-8)	11:40
MS'MSD sample taken here	
Interval 0.0'- 2.0'	
Sampling Method: Grab	
Description of Water: No water encountered	

Project: Fair Street Landfill Boring I.D.: SB-9 Job Number: DEC1005.P3 Date: 9/15/2020 **Drilling Company: Core Down Drilling** Time: 12:20

Location: S edge of landfill
GPS Coordinates N: 41.4

N: 41.4603 W· -73 6402

GPS Coordinates		N: 41.460	J3	VV: -/3.64UZ		
(f	e Interval tbg)	Recovery (ft)	Moisture	Description (grain size, color, compaction,	5- GAS	
Тор	Bottom	(14)		staining, odor)	(PPM)	
0	0.5'	0.5'	DRY	0 – 0.5': SAND and GRAVEL; c-f; some SILT; fine; little ORGANICS; Dark brown; No odor or staining	ND	
Notes:					<u> </u>	

	I ime
Soil Samples Collected:	
Soil Sample (SB-8)	12:30
Interval 0.0'- 0.5'	
Sampling Method: Grab	
Description of Water, No water open interest	·

Description of Water: No water encountered

Project: Fair Street Landfill	Boring I.D.: SB-10
Job Number: DEC1005.P3	Date: 9/15/2020

Drilling Company: Core Down Drilling Time: 1:25

Location: Center of gravel yard GPS Coordinates N: 41,4608

GPS Coordinates N: 41.4608 W: -73.6402

GPS Coordinates N: 41.4608				W: -73.6402		
Sample Interval (ftbg)		Recovery (ft)	Moisture	Description (grain size, color, compaction,	5- GAS	
Тор	Bottom	(11)		staining, odor)	(PPM)	
0	5.0'	2.7'	DRY	0 – 0.1': SAND and GRAVEL; c-f; Gray to black; No odor or staining	ND	
			MOIST	2.0'- 5.0': SAND, SILT, and GRAVEL; c-f; some woodchips, brick, and large rocks; Dark brown; No odor or staining	ND	
5.0'	10.0'	3.0'	DRY to MOSIT	5.0'- 10.0': SAND; c-f; some SILT and GRAVEL; Large woodchips; Black; Moderate odor and staining	ND	
10.0'	15.0'	4.0'	MOIST	10.0'- 13.0': SAND and SILT; c-f; some GRAVEL; Woodchips; Black; Moderate odor and staining	ND	
			MOIST	13.0'- 15.0': SILT and SAND; c-f; Brown; No odor or staining	ND	
15.0	20.0'	2.5'	MOIST	Same as above	ND	
20.0'	25.0'	4.5'	MOIST to WET	20.0'- 20.5': SAND, GRAVEL; c-f; some SILT; Black; No odor or staining	ND	
				20.5' - 25.0': SILT; some SAND; m-f; Gray; No odor or staining	ND	
Notes:	EB-09152	 200 from Shov	el at 14:55 pi	<u> </u> m		

	Time
Soil Samples Collected:	
Soil Sample (SB-10 0-5')	1:40
Soil Sample (SB-10 20-25')	2:00
Sampling Method: Grab	
Description of Water: No water encountered	

Project: Fair Street Landfill Boring I.D.: SS-01
Job Number: DEC1005.P3 Date: 9/14/2020

Drilling Company: Core Down Drilling Time: 2:10

Location: 5.0' South of TP-1

GPS Coordinates N: 41.4610454 W: -73.6401628

GPS Coordinates N: 41.461045		10454	W: -/3.6401628		
	e Interval ftbg) Bottom	Recovery Moisture		Description (grain size, color, compaction, staining, odor)	PID (PPM)
0	3"	3"	DRY	GRAVEL and ASPHALT; c; black and brown; slight odor and staining	ND
3"	6"	3"	MOIST	SAND and SILT; c-f; brown; slight odor in some gravel and no staining	ND
		1	<u> </u>		Time

	Time
Soil Samples Collected:	
Surface Soil Sample (SS-01)	2:15
Sample interval 3"-6"	
Sampling Method: Grab Sample	
Description of Water: No water encountered	

Project: Fair Street Landfill Boring I.D.: SS-02 Job Number: DEC1005.P3 Date: 9/14/2020

Drilling Company: Core Down Drilling Time: 2:52

Location: 15' East of SS-01

W: _73 6398943

GPS Coordinates N: 41.46		11075	W: -73.6398943			
(1	e Interval ftbg)	Recovery (ft)	Moisture	Description (grain size, color, compaction,	PID (PPM)	
Top	Bottom		DD)/	staining, odor)		
0	2"	2"	DRY	ROCK and GRAVEL; c; moderate	ND	
	<u> </u>			odor and staining		
2"	5"	3"	DRY	SAND; c-f; black	ND	
				Some SILT; gray to black		
5"	6"	1"	MOIST	SAND and SILT; c-f; brown	ND	
				Some GRAVEL		
				Slight odor and no staining		
					Time	
	Soil Samples Collected:					
Surface	e Soil Samp	ole (SS-02)			3:00	
Sample	e interval 3"	-6"				

Sample interval 3"-6" Sampling Method: Grab Sample Description of Water: No water encountered

MOVE YOUR ENVIRONMENT FORWARD

Drilling Company Core Down Drilling	Time: 2:45
Job Number: DEC1005.P3	Date: 9/14/2020
Project: Fair Street Landfill	Boring I.D.: SS-03

Drilling Company: Core Down Drilling Time: 3:15
Location: SE of Culver near parked Baco Truck

Description of Water: No water encountered

GPS Coordinates	N:	41.4611856	W: -73.6398591

GPS Coordinates N: 41.4611856		W: -73.6398591				
(f	e Interval tbg)	Recovery (ft) Moisture		Description (grain size, color, compaction,	PID (PPM)	
Тор	Bottom			staining, odor)		
0	2"	2"	DRY	ROCK and GRAVEL; c ; black; no odor or staining	ND	
2"	6"	4"	DRY to MOIST	SAND, SILT, and GRAVEL; c-f; brown; no odor or staining	ND	
					Time	
	Soil Samples Collected:					
Surface Soil Sample (SS-03)						
	e interval 3"					
Samplii	ig ivietnod:	Grab Sample				

Project: Fair Street Landfill
Job Number: DEC1005.P3
Drilling Company: Core Down Drilling Boring I.D.: SS-04 Date: 9/14/2020

Time: 3:38

	Location:							
	GPS Coordinates N: 41.4609017 W: -73.6401062							
Sample	e Interval bg) Bottom	Recovery (ft)	Moisture	Description (grain size, color, compaction, staining, odor)	PID (PPM)			
0	6"	6"	DRY	ASPHALT with ROCKS and	ND			
	ŭ		5111	GRAVEL; c; black; no odor or staining	.,2			
6"	12"	6"	DRY to MOIST	SAND, SILT, and GRAVEL; c-f; dark brown to gray; contains large rocks, C & D landfill material, pieces of glass; no odor or staining	ND			
Soil Samples Collected:								
Surface Soil Sample (SS-04)					3:45			
Sample interval 6"-12"								
		Grab Sample						
Descrip	Description of Water: No water encountered							

Project: Fair Street Landfill Boring I.D.: SS-05

Job Number: DEC1005.P3 Date: 9/14/2020

Drilling Company: Core Down Drilling Time: 3:50

Location: South of Culver

GPS Coordinates N: 41.46007439 W: -73.6401937

GPS Coordinates N. 41.46007439		VV/ 3.040193/			
Sample Interval (ftbg)		Recovery Moisture		Description (grain size, color, compaction,	PID (PPM)
Тор	Bottom			staining, odor)	
0	6"	6"	DRY	ASPHALT with ROCKS and GRAVEL; c; black and gray; no odor or staining	ND
6"	12"	6"	MOIST	SAND, SILT, and GRAVEL; c-f; brown to gray; contains large rocks, C & D landfill material; no odor or staining	ND
Soil Samples Collected:					Time

Soil Samples Collected:

Surface Soil Sample (SS-05)

Sample interval 6"-12"

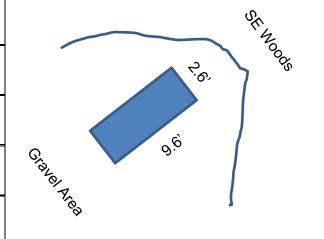
Sampling Method: Grab Sample

Description of Water: No water encountered

Project: Fair Street Landfill	Test Pit I.D.: 1	TP-1	
Job Number: DEC1005.P3	Sketch Map:		
Date: 9/14/2020		E Culver	
Time: 09:25		3.0'	l
Contractor: Core Down Drilling			
Location: South of Culver and Cul-de-sac	10.3'		
GPS Coordinates N : 41.461121			
W: -73.640232			•

VV/ J.0402J2					
	e Interval			Description	5-
	tbg)	Location	Moisture	(grain size, color, compaction,	GAS
Тор	Bottom			staining, odor)	(PPM)
0' 1'		DRY	SAND; c-f; dark brown	ND	
				Some GRAVEL; f-m	
				Some SILT; f	
1'	9'		DRY	Same as above with C & D landfill	ND
				debris, trace iron rust, and some	
				boulders	
Comme	nts		•	Soil Samples Collected:	Time
Tony fro	om NYSDE	C arrives ons	ite 9:30	See COC	10.00
				Sample interval 9.0'	

Project: Fair Street Landfill	Test Pit I.D.: TP-2
Job Number: DEC1005.P3	Sketch Map:


Date: 9/14/2020

Time: 10:40

Contractor: Core Down Drilling

Location: Southeast corner of gravel, south of TP-1

GPS Coordinates
N: 41.4606987
W: -73.6404015

W: -73.6404015						
Sample Interval (ftbg)		Location	Moisture	Description (grain size, color, compaction,	5- GAS	
Top	Bottom			staining, odor)	(PPM)	
0'	0.5'		DRY	GRAVEL covering SAN and GRAVEL; c-f; dark brown Some SILT	ND	
0.5' 1.0'			DRY	Same as above with C & D landfill material, trace iron rust, boulders Oil sheen at 5.0', slight odor, no gas meter hit	ND	
Comme	nts			Soil Samples Collected:	Time	
				See COC	11:10	
				Sample interval at 10.0'		

MOVE YOU	R ENVIRONMENT F	ORWARD				
Projec	t: Fair Stre	et Landfill		Test Pit I.D.: TP-3		
Job N	umber: DEC	C1005.P3		Sketch Map:		
Date: 9	9/14/2020V			•		
Time:	Time: 11:50 Contractor: Core Down Drilling			36"		
Contra				8.6'		
Locati	on: Central	gravel area				
N : 41.	GPS Coordinates N : 41.4608756 W: -73.6404787 Sample Interval					
				Description	5-	
Top	ftbg) Bottom	Location	Moisture	(grain size, color, compaction, staining, odor)	GAS (PPM)	
0'	0.5'		DRY	GRAVEL	ND	
0.5'	2.0'			SAND; m-f; light brown Little CLAY Trace SILT	ND	
2.0'	9.0'			SAND and GRAVEL; c-f; dark brown; some SILT C & D material, sulfur odor	0.6	
				,		
Comme	ents			Soil Samples Collected:	Time	
Refusa	al at 9.0' due	to hard diggi	ng	Sample interval at 9.0'	12:30	

Project: Fair Street Landfill Test Pit I.D.: TP-4
Job Number: DEC1005.P3 Sketch Map:

Date: 9/14/2020

Citoton map.

Time: 14:00

Contractor: Core Down Drilling

Location: South of gravel area

17'
3.0'
Gravel Area

Gravel Area

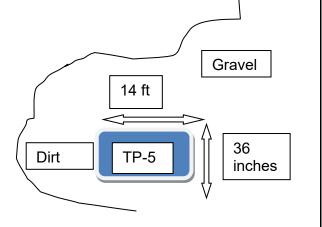
GPS Coordinates

N: 41.4607 W: -73.6410

VV: -/3.041U					
	e Interval tbg)	Location	Moisture	Description (grain size, color, compaction,	PID
Top	Bottom			staining, odor)	(PPM)
0' 2'			DRY	SAND and GRAVEL; c-f; light brown Some SILT Some C & D landfill material	ND
2'	2.5'			ASPHALT layer	ND
2.5' 10'		SAND and GRAVEL; c-f; dark brown Some SILT Some C & D landfill material Slight organic material odor	ND		
Comme	nts			Soil Samples Collected:	Time
				See COC	
-	-			Sample interval 10'	14:35

Project: Fair Street Landfill	Test Pit I.D.: TP-5
Job Number: DEC1005.P3	Sketch Map:
Data: 0/14/2020	1

Date: 9/14/2020


Time: 1500

Contractor: Core Down

Location: Southeast of gravel

GPS Coordinates

N:44.4607 W: -73.6410

W: -73.6410						
	e Interval			Description	PID	
(f Top	tbg) Bottom	Location Moisture		(grain size, color, compaction, staining, odor)	(PPM)	
0' 8'			DRY	Light brown fine/coarse sand and gravel, trace silt, C+D landfill material		
8'						
				Dark brown fine/coarse sand and gravel, some silt C+D landfill material, organic decay odor, air canister		
Comme	l nts			Soil Samples Collected:	Time	
		onsists of stee ood, burlap, wi	•	Sample @ 8', see C.O.C. + total oxidizable precursor (on hold)	1530	

 1	· •

Site Characterization Report Fair Street Landfill, Site #340021 131 Carmel Drive, Carmel, NY

APPENDIX E Analytical Results

ANALYTICAL REPORT

Eurofins TestAmerica, Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

Laboratory Job ID: 460-222216-1

Client Project/Site: DEC - FAIR STREET LANDFILL SITE:

340021

For:

eurofins 💸

New York State D.E.C. 625 Broadway Division of Environmental Remediation Albany, New York 12233-7014

Attn: Anthony J Bollasina

Julie Hilmore

Authorized for release by: 3/30/2021 4:48:44 PM

Julie Gilmore, Project Manager I (484)685-0865

Julie.Gilmore@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

4

5

7

8

10

12

14

16

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	5
Detection Summary	12
Client Sample Results	18
Surrogate Summary	58
Isotope Dilution Summary	62
QC Sample Results	66
QC Association Summary	130
Lab Chronicle	138
Certification Summary	143
Method Summary	145
Sample Summary	146
Chain of Custody	147
Field Data Sheets	154
Receipt Checklists	155

3

4

6

8

10

11

13

15

Definitions/Glossary

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Qualifiers

G			

J

U

Qualifier	Qualifier Description
Н	Sample was prepped or analyzed beyond the specified holding time

Н3 Sample was received and analyzed past holding time.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Indicates the analyte was analyzed for but not detected.

GC/MS VOA TICs

Qualifier	Qualifier Description

Sample was prepped or analyzed beyond the specified holding time

H3 Sample was received and analyzed past holding time.

GC/MS Semi VOA

Qualifier Qualifier Describti	Qualifier	Qualifier Description
-------------------------------	-----------	-----------------------

LCS or LCSD is outside acceptance limits. *1 LCS/LCSD RPD exceeds control limits.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

E Result exceeded calibration range.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Surrogate recovery exceeds control limits Х

LCMS

Qualifier **Qualifier Description**

*5 Isotope dilution analyte is outside acceptance limits. В Compound was found in the blank and sample. F1 MS and/or MSD recovery exceeds control limits.

Value is EMPC (estimated maximum possible concentration).

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Metals

Qualifier **Qualifier Description**

В Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier **Qualifier Description**

Н Sample was prepped or analyzed beyond the specified holding time

HF Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. J

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid **CFU** Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

Page 3 of 157

3/30/2021

Definitions/Glossary

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Glossary (Continued)

TEQ

TNTC

Abbreviation	These commonly used abbreviations may or may not be present in this report.
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Job ID: 460-222216-1

Laboratory: Eurofins TestAmerica, Edison

Narrative

CASE NARRATIVE

Client: New York State D.E.C.

Project: DEC - FAIR STREET LANDFILL SITE: 340021

Report Number: 460-222216-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 11/05/2020; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 2.8 C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

VOLATILE ORGANIC COMPOUNDS (GC/MS)

Samples S-1 (460-222216-4), S-2 (460-222216-5) and S-3 (460-222216-6) were analyzed for Volatile Organic Compounds (GC/MS) in accordance with EPA SW-846 Method 8260D. The samples were prepared on 11/06/2020 and analyzed on 11/14/2020.

The continuing calibration verification (CCV) associated with batch 460-739694 recovered above the upper control limit for Trichlorofluoromethane. The samples associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported.

The continuing calibration verification (CCV) associated with batch 460-739828 recovered above the upper control limit for Trichlorofluoromethane. The samples associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported.

No difficulties were encountered during the Volatiles analysis.

All quality control parameters were within the acceptance limits.

VOLATILE ORGANIC COMPOUNDS (GC/MS)

Samples SW-1 (460-222216-1), SW-2 (460-222216-2), SW-3 (460-222216-3), TB (460-222216-7) and EB (460-222216-8) were analyzed for Volatile Organic Compounds (GC/MS) in accordance with EPA SW-846 Method 8260D. The samples were analyzed on 11/11/2020 and 11/12/2020.

No difficulties were encountered during the Volatiles analysis.

Page 5 of 157

Eurofins TestAmerica, Edison

3/30/2021

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Job ID: 460-222216-1 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

All quality control parameters were within the acceptance limits.

SEMIVOLATILE ORGANIC COMPOUNDS (GC/MS)

Samples S-1 (460-222216-4), S-2 (460-222216-5) and S-3 (460-222216-6) were analyzed for semivolatile organic compounds (GC/MS) in accordance with EPA SW-846 Methods 8270E. The samples were prepared on 11/10/2020 and analyzed on 11/11/2020.

Benzaldehyde and Caprolactam exceeded the RPD limit for LCSD 460-738890/3-A. Refer to the QC report for details.

The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 460-738369 and analytical batch 460-738564 recovered outside control limits for the following analytes: < 2,4-Dinitrophenol>. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

The continuing calibration verification (CCV) associated with batch 460-738564 recovered above the upper control limit for < 2,3,4,6-Tetrachlorophenol, 2,4-Dinitrophenol, 2,4-Dinitrotoluene, 2,6-Dinitrotoluene, 2-Nitrophenol, 4,6-Dinitro-2-methylphenol, 4-Nitroaniline, Pentachlorophenol and Caprolactam>. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCVIS 460-738564/2).

The continuing calibration verification (CCV) analyzed in batch 460-738564 was outside the method criteria for the following analyte(s): < Benzaldehyde>. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

The continuing calibration verification (CCV) analyzed in batch 460-739058 was outside the method criteria for the following analyte(s): 4-Nitrophenol, Indeno[1,2,3-cd]pyrene, Pentachlorophenol, Di-n-octyl phthalate and Benzaldehyde. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 460-738890 and analytical batch 460-739058 recovered outside control limits for the following analytes: Benzaldehyde and Caprolactam.

No other difficulties were encountered during the semivolatiles analysis.

All other quality control parameters were within the acceptance limits.

SEMIVOLATILE ORGANIC COMPOUNDS (GC/MS)

Samples SW-1 (460-222216-1), SW-2 (460-222216-2) and SW-3 (460-222216-3) were analyzed for semivolatile organic compounds (GC/MS) in accordance with EPA SW-846 Methods 8270E. The samples were prepared on 11/09/2020 and analyzed on 11/10/2020.

2,4-Dinitrophenol failed the recovery criteria high for LCS 460-738369/2-A. 2,4-Dinitrophenol failed the recovery criteria high for LCSD 460-738369/3-A. Refer to the QC report for details.

No other difficulties were encountered during the semivolatiles analysis.

All other quality control parameters were within the acceptance limits.

SEMIVOLATILE ORGANIC COMPOUNDS - SELECTED ION MODE (SIM) - ISOTOPE DILUTION - 1,4 DIOXANE

Samples SW-1 (460-222216-1), SW-2 (460-222216-2) and SW-3 (460-222216-3) were analyzed for semivolatile organic compounds -Selected Ion Mode (SIM) - Isotope Dilution - 1,4 Dioxane in accordance with EPA SW-846 Method 8270E SIM 1,4Dioxane. The samples were prepared on 11/10/2020 and analyzed on 11/11/2020.

No difficulties were encountered during the 1,4 Dioxane analysis.

All quality control parameters were within the acceptance limits.

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Job ID: 460-222216-1 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

PESTICIDES

Samples S-1 (460-222216-4), S-2 (460-222216-5) and S-3 (460-222216-6) were analyzed for Pesticides in accordance with EPA SW-846 Methods 8081B. The samples were prepared on 11/13/2020 and analyzed on 11/16/2020.

The continuing calibration verification (CCV) associated with batch 460-738911 recovered above the upper control limit for Methoxychlor on the secondary column. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCVIS 460-738911/3).

The continuing calibration verification (CCV) for 4,4'-DDT and Methoxychlor recovered outside the lower control limit on the primary column but within control limits on the secondary column. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported on the secondary column. (CCVIS 460-740150/3)

No difficulties were encountered during the Pesticides analysis.

All quality control parameters were within the acceptance limits.

PESTICIDES

Samples SW-1 (460-222216-1), SW-2 (460-222216-2) and SW-3 (460-222216-3) were analyzed for Pesticides in accordance with EPA SW-846 Methods 8081B. The samples were prepared on 11/08/2020 and analyzed on 11/11/2020.

No difficulties were encountered during the pesticides analysis.

All quality control parameters were within the acceptance limits.

POLYCHLORINATED BIPHENYLS

Samples S-1 (460-222216-4), S-2 (460-222216-5) and S-3 (460-222216-6) were analyzed for polychlorinated biphenyls in accordance with EPA SW-846 Method 8082A. The samples were prepared on 11/13/2020 and analyzed on 11/16/2020.

Tetrachloro-m-xylene surrogate recovery for the LCS was outside the upper control limits but spike recovery within control limits. The data have been qualified and reported.(LCS 460-738219/2-A)

No difficulties were encountered during the PCBs analysis.

All quality control parameters were within the acceptance limits.

POLYCHLORINATED BIPHENYLS (PCBS)

Samples SW-1 (460-222216-1), SW-2 (460-222216-2) and SW-3 (460-222216-3) were analyzed for polychlorinated biphenyls (PCBs) in accordance with EPA SW-846 Method 8082A. The samples were prepared on 11/08/2020 and analyzed on 11/09/2020.

Tetrachloro-m-xylene failed the surrogate recovery criteria high for LCS 460-738219/2-A. Refer to the QC report for details.

No other difficulties were encountered during the PCBs analysis.

All other quality control parameters were within the acceptance limits.

CHLORINATED HERBICIDES

Samples S-1 (460-222216-4), S-2 (460-222216-5) and S-3 (460-222216-6) were analyzed for chlorinated herbicides in accordance with EPA SW-846 Method 8151A. The samples were prepared on 11/09/2020 and analyzed on 11/10/2020.

The closing continuing calibration verification (CCVC) associated with batch 460-738660 recovered above the upper control limit for 2,4,5-T. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

No difficulties were encountered during the herbicides analysis.

All quality control parameters were within the acceptance limits.

Ι

5

7

Ŏ

10

11

13

. .

16

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Job ID: 460-222216-1 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

CHLORINATED HERBICIDES

Samples SW-1 (460-222216-1), SW-2 (460-222216-2) and SW-3 (460-222216-3) were analyzed for chlorinated herbicides in accordance with EPA SW-846 Method 8151A. The samples were prepared on 11/09/2020 and analyzed on 11/10/2020.

No difficulties were encountered during the herbicides analysis.

All quality control parameters were within the acceptance limits.

PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS)

Samples S-1 (460-222216-4), S-2 (460-222216-5) and S-3 (460-222216-6) were analyzed for Per- and Polyfluoroalkyl Substances (PFAS) in accordance with PFC. The samples were prepared on 11/17/2020 and analyzed on 11/19/2020.

Perfluorobutanoic acid (PFBA) and Perfluoroctanesulfonic acid (PFOS) were detected in method blank MB 320-432465/1-A at levels that were above the method detection limit but below the reporting limit. The values should be considered estimates, and have been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

Perfluorodecanesulfonic acid (PFDS) and Perfluoroundecanoic acid (PFUnA) failed the recovery criteria high for the MS of sample S-1MS (460-222216-4) in batch 320-433288.

Perfluoroundecanoic acid (PFUnA) failed the recovery criteria high for the MSD of sample S-1MSD (460-222216-4) in batch 320-433288.

Refer to the QC report for details.

No other difficulties were encountered during the PFAS analysis.

All other quality control parameters were within the acceptance limits.

PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS)

Samples SW-1 (460-222216-1), SW-2 (460-222216-2) and SW-3 (460-222216-3) were analyzed for Per- and Polyfluoroalkyl Substances (PFAS) in accordance with PFC. The samples were prepared on 11/09/2020 and analyzed on 11/10/2020.

The "I" qualifier means the transition mass ratio for the indicated analytes was outside of the established ratio limits. The qualitative identification of the analytes has some degree of uncertainty. However, analyst judgment was used to positively identify the analytes.

The method blank for preparation batch 320-430759 contained Perfluorooctanesulfonic acid (PFOS) above the reporting limit (RL). None of the samples associated with this method blank contained the target compound; therefore, re-extraction and/or re-analysis of samples were not performed.

Isotope Dilution Analyte (IDA) recovery is above the method recommended limit for M2-6:2 FTS and M2-8:2 FTS in the following samples: S-2 (460-222216-5), (460-222216-H-4-F MS) and (460-222216-H-4-G MSD). Quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated IDA recoveries.

Isotope Dilution Analyte (IDA) recovery is above the method recommended limit for M2-8:2 FTS in the following sample: S-3 (460-222216-6). Quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated IDA recoveries.

The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 320-431317 and analytical batch 320-432127 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

The matrix spike (MS) recovery for preparation batch 320-433288 was outside control limits for Perfluorodecanesulfonic acid (PFDS) and Perfluoroundecanoic acid (PFUnA). Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Isotope Dilution Analyte (IDA) recovery is above the method recommended limit for M2-6:2 FTS and M2-8:2 FTS in the following samples:

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Job ID: 460-222216-1 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

S-1 (460-222216-4), S-2 (460-222216-5), S-3 (460-222216-6), (460-222216-H-4-I MS) and (460-222216-H-4-J MSD). Quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated IDA recoveries.

Isotope Dilution Analyte (IDA) recovery is above the method recommended limit for M2-6:2 FTS and M2-8:2 FTS in the following sample: S-2 (460-222216-5). Quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated IDA recoveries.

Isotope Dilution Analyte (IDA) recovery is above the method recommended limit for M2-8:2 FTS in the following method blank (MB): (MB 320-433241/1-A). Quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated IDA recoveries.

The matrix spike duplicate (MSD) Perfluoroundecanoic acid (PFUnA) recovery for preparation batch 320-432465 and analytical batch 320-433288 was outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No difficulties were encountered during the PFAS analysis.

All quality control parameters were within the acceptance limits.

PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS)

Samples S-2 (460-222216-5) and S-3 (460-222216-6) were analyzed for Per- and Polyfluoroalkyl Substances (PFAS) in accordance with PFC. The samples were leached on 11/16/2020, prepared on 11/18/2020 and analyzed on 11/19/2020.

No difficulties were encountered during the PFAS analysis.

All quality control parameters were within the acceptance limits.

TOTAL METALS (ICP)

Samples S-1 (460-222216-4), S-2 (460-222216-5) and S-3 (460-222216-6) were analyzed for Total Metals (ICP) in accordance with EPA SW-846 Methods 6010D. The samples were prepared on 11/12/2020 and analyzed on 11/13/2020.

The method blank for preparation batch 460-741239 and analytical batch 460-741658 contained Lead above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction and re-analysis of samples was not performed.

The method blank for preparation batch 460-741239 and analytical batch 460-738739 contained Lead above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction and re-analysis of samples was not performed.

Insufficient samples were available to perform the leaching procedure with the required 100g for the following samples: S-2 (460-222216-5) and S-3 (460-222216-6). The volume of leaching fluid was adjusted proportionally to maintain a 20:1 ratio of leaching fluid to weight of sample. Reporting limits (RLs) are not affected.

Calcium failed the recovery criteria low for the MS of sample 460-222350-1 in batch 460-739688. Iron failed the recovery criteria high.

Refer to the QC report for details.

Lead exceeded the RPD limit for the duplicate of sample 460-222350-1. Refer to the QC report for details.

Samples S-1 (460-222216-4)[2X], S-2 (460-222216-5)[2X], S-2 (460-222216-5)[20X] and S-3 (460-222216-6)[2X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No other difficulties were encountered during the Total Metals (ICP) analysis.

All other quality control parameters were within the acceptance limits.

TOTAL METALS (ICP/MS)

4

5

6

ŏ

10

13

14

16

Case Narrative

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Job ID: 460-222216-1 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

Samples SW-1 (460-222216-1), SW-2 (460-222216-2) and SW-3 (460-222216-3) were analyzed for Total Metals (ICP/MS) in accordance with EPA SW-846 Method 6020B. The samples were prepared on 11/10/2020 and 11/19/2020 and analyzed on 11/10/2020 and 11/21/2020.

Lead was detected in method blank MB 460-741239/1-A at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

Potassium and Sodium failed the recovery criteria low for the MS of sample 460-223050-5 in batch 460-741658. Calcium failed the recovery criteria high.

Refer to the QC report for details.

Cadmium exceeded the RPD limit for the duplicate of sample 460-223050-5. Refer to the QC report for details.

No other difficulties were encountered during the Total Metals (ICP/MS) analysis.

All other quality control parameters were within the acceptance limits.

TOTAL MERCURY

Samples SW-1 (460-222216-1), SW-2 (460-222216-2) and SW-3 (460-222216-3) were analyzed for total mercury in accordance with EPA SW-846 Methods 7470A. The samples were prepared and analyzed on 11/09/2020.

No difficulties were encountered during the Hg analysis.

All quality control parameters were within the acceptance limits.

TOTAL MERCURY

Samples S-1 (460-222216-4), S-2 (460-222216-5) and S-3 (460-222216-6) were analyzed for total mercury in accordance with EPA SW-846 Method 7471B. The samples were prepared and analyzed on 11/16/2020.

No difficulties were encountered during the Hg analysis.

All quality control parameters were within the acceptance limits.

TOTAL CYANIDE

Samples S-1 (460-222216-4), S-2 (460-222216-5) and S-3 (460-222216-6) were analyzed for total cyanide in accordance with EPA SW-846 Method 9012B. The samples were prepared on 11/15/2020 and analyzed on 11/16/2020.

Cyanide, Total failed the recovery criteria high for the MS/MSD of sample 460-222540-11 in batch 460-740267.

Refer to the QC report for details.

No other difficulties were encountered during the cyanide analysis.

All other quality control parameters were within the acceptance limits.

TOTAL CYANIDE

Samples SW-1 (460-222216-1), SW-2 (460-222216-2) and SW-3 (460-222216-3) were analyzed for total cyanide in accordance with EPA SW-846 Method 9012B. The samples were prepared and analyzed on 11/17/2020.

Cyanide, Total failed the recovery criteria high for the MS/MSD of sample 460-222901-2 in batch 460-740582.

The presence of the '4' qualifier in the data indicates analytes where the concentration in the unspiked sample exceeded four times the spiking amount.

3

4

5

6

7

_

10

11

12

14

16

Case Narrative

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Job ID: 460-222216-1 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

Refer to the QC report for details.

No other difficulties were encountered during the cyanide analysis.

All other quality control parameters were within the acceptance limits.

CORROSIVITY (PH)

Samples S-2 (460-222216-5) and S-3 (460-222216-6) were analyzed for corrosivity (pH) in accordance with EPA SW-846 Method 9045D. The samples were analyzed on 11/17/2020.

No other difficulties were encountered during the corrosivity (pH) analysis.

All other quality control parameters were within the acceptance limits.

LLOYD KAHN METHOD (TOTAL ORGANIC CARBON)

Samples S-2 (460-222216-5) and S-3 (460-222216-6) were analyzed for Lloyd Kahn Method (total organic carbon) in accordance with Lloyd Kahn Method. The samples were analyzed on 11/20/2020.

Analysis of the following samples was performed outside of the analytical holding time as the initial prep and analysis was performed as Total Organic Carbon: S-2 (460-222216-5) and S-3 (460-222216-6).

No difficulties were encountered during the TOC analysis.

All quality control parameters were within the acceptance limits.

PERCENT SOLIDS/PERCENT MOISTURE

Samples S-1 (460-222216-4), S-2 (460-222216-5) and S-3 (460-222216-6) were analyzed for percent solids/percent moisture in accordance with EPA Method CLPISM01.2 (Exhibit D) Modified. The samples were analyzed on 11/16/2020.

No difficulties were encountered during the %solids/moisture analysis.

All quality control parameters were within the acceptance limits.

1

3

_

7

8

9

4 4

12

13

15

16

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: SW-1

Lab Sample ID: 460-222216-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
Acetone	5.6		5.0	4.4	ug/L		8260D	Total/NA
Toluene	1.2		1.0	0.38	ug/L	1	8260D	Total/NA
Perfluorobutanoic acid (PFBA)	2.9	J	4.7	2.3	ng/L	1	537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	4.6		1.9	0.46	ng/L	1	537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	2.5		1.9	0.55	ng/L	1	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.6	J	1.9	0.24	ng/L	1	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	3.8		1.9	0.80	ng/L	1	537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	0.55	J	1.9	0.26	ng/L	1	537 (modified)	Total/NA
Perfluorodecanoic acid (PFDA)	0.39	J	1.9	0.29	ng/L	1	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.73	JI	1.9	0.19	ng/L	1	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	2.7		1.9	0.54	ng/L	1	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	6.5		1.9	0.51	ng/L	1	537 (modified)	Total/NA
Silver	0.87	J	2.0	0.19	ug/L	1	6020B	Total/NA
Aluminum	76000		40.0	8.0	ug/L	1	6020B	Total/NA
Arsenic	17.7		2.0	0.89	ug/L	1	6020B	Total/NA
Barium	827		4.0	0.91	ug/L	1	6020B	Total/NA
Beryllium	4.3		0.80	0.098	ug/L	1	6020B	Total/NA
Calcium	68600		200	22.7	ug/L	1	6020B	Total/NA
Cadmium	5.5		2.0	0.16	ug/L	1	6020B	Total/NA
Cobalt	46.5		4.0	0.26	ug/L	1	6020B	Total/NA
Chromium	123		4.0	0.69	ug/L	1	6020B	Total/NA
Copper	249		4.0	2.5	ug/L	1	6020B	Total/NA
Iron	102000		120	8.5	ug/L	1	6020B	Total/NA
Potassium	12100		200	112	ug/L	1	6020B	Total/NA
Magnesium	26600		200	15.4	ug/L	1	6020B	Total/NA
Manganese	1180		8.0	1.1	ug/L	1	6020B	Total/NA
Sodium	29500		200	58.2	ug/L	1	6020B	Total/NA
Nickel	152		4.0	0.45	ug/L	1	6020B	Total/NA
Lead	314	В	1.2	0.11	ug/L	1	6020B	Total/NA
Antimony	1.2	J	2.0	0.76	ug/L	1	6020B	Total/NA
Selenium	8.3		2.5	0.46	ug/L	1	6020B	Total/NA
Thallium	0.88		0.80	0.17	-	1	6020B	Total/NA
Vanadium	197		4.0		ug/L	1	6020B	Total/NA
Zinc	993		16.0		ug/L	1	6020B	Total/NA
Mercury	0.54		0.20	0.091	-	1	7470A	Total/NA
Cyanide, Total	0.0047	J	0.010	0.0040	-	1	9012B	Total/NA

Client Sample ID: SW-2

Lab Sample ID: 460-222216-2

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	20	4.9	2.3	ng/L	1	_	537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	29	2.0	0.48	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	36	2.0	0.57	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	32	2.0	0.24	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	220	2.0	0.83	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	4.2	2.0	0.26	ng/L	1		537 (modified)	Total/NA
Perfluorodecanoic acid (PFDA)	1.2 J	2.0	0.30	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	2.2	2.0	0.20	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	15	2.0	0.56	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanesulfonic Acid (PFHpS)	0.88 J	2.0	0.19	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	33	2.0	0.53	ng/L	1		537 (modified)	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Edison

3/30/2021

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: SW-2 (Continued)

Lab Sample ID: 460-222216-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	2.6	J	4.9	1.3	ng/L	1	_	537 (modified)	Total/NA
Aluminum	55.6		40.0	8.0	ug/L	1		6020B	Total/NA
Barium	80.3		4.0	0.91	ug/L	1		6020B	Total/NA
Calcium	131000		200	22.7	ug/L	1		6020B	Total/NA
Cobalt	0.68	J	4.0	0.26	ug/L	1		6020B	Total/NA
Copper	2.7	J	4.0	2.5	ug/L	1		6020B	Total/NA
Iron	969		120	8.5	ug/L	1		6020B	Total/NA
Potassium	5740		200	112	ug/L	1		6020B	Total/NA
Magnesium	17200		200	15.4	ug/L	1		6020B	Total/NA
Manganese	235		8.0	1.1	ug/L	1		6020B	Total/NA
Sodium	47200		200	58.2	ug/L	1		6020B	Total/NA
Nickel	4.8		4.0	0.45	ug/L	1		6020B	Total/NA
Lead	1.8	В	1.2	0.11	ug/L	1		6020B	Total/NA
Vanadium	0.61	J	4.0	0.37	ug/L	1		6020B	Total/NA
Zinc	111		16.0	5.1	ug/L	1		6020B	Total/NA

Client Sample ID: SW-3

Lab Sample ID: 460-222216-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	11		5.0	4.4	ug/L	1	_	8260D	Total/NA
Perfluorobutanoic acid (PFBA)	4.5	J	5.1	2.4	ng/L	1		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	8.8		2.0	0.50	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	10		2.0	0.59	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	9.4		2.0	0.25	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	51		2.0	0.86	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	1.7	J	2.0	0.27	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	2.6		2.0	0.20	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	11		2.0	0.58	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanesulfonic Acid (PFHpS)	0.53	J	2.0	0.19	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	15		2.0	0.55	ng/L	1		537 (modified)	Total/NA
Silver	1.3	J	2.0	0.19	ug/L	1		6020B	Total/NA
Aluminum	150000		40.0	8.0	ug/L	1		6020B	Total/NA
Arsenic	49.5		2.0	0.89	ug/L	1		6020B	Total/NA
Barium	2990		4.0	0.91	ug/L	1		6020B	Total/NA
Beryllium	7.4		0.80	0.098	ug/L	1		6020B	Total/NA
Calcium	191000		200	22.7	ug/L	1		6020B	Total/NA
Cadmium	11.1		2.0	0.16	ug/L	1		6020B	Total/NA
Cobalt	180		4.0	0.26	ug/L	1		6020B	Total/NA
Chromium	205		4.0	0.69	ug/L	1		6020B	Total/NA
Copper	325		4.0	2.5	ug/L	1		6020B	Total/NA
Iron	447000		120	8.5	ug/L	1		6020B	Total/NA
Potassium	17200		200	112	ug/L	1		6020B	Total/NA
Magnesium	65000		200	15.4	ug/L	1		6020B	Total/NA
Manganese	42000		80.0	11.1	ug/L	10		6020B	Total/NA
Sodium	29300		200	58.2	ug/L	1		6020B	Total/NA
Nickel	214		4.0	0.45	ug/L	1		6020B	Total/NA
Lead	513	В	1.2	0.11	ug/L	1		6020B	Total/NA
Antimony	3.5		2.0	0.76	ug/L	1		6020B	Total/NA
Selenium	10.4		2.5	0.46	ug/L	1		6020B	Total/NA
Thallium	3.9		0.80	0.17	ug/L	1		6020B	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Edison

3/30/2021

Job ID: 460-222216-1

3

4

6

8

10

4.0

13

15

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: SW-3 (Continued)

Lab Sample ID: 460-222216-3

	Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
	Vanadium	442		4.0	0.37	ug/L	1	_	6020B	Total/NA
	Zinc	3410		16.0	5.1	ug/L	1		6020B	Total/NA
İ	Mercury	1.5		0.20	0.091	ug/L	1		7470A	Total/NA
	Cyanide, Total	0.011		0.010	0.0040	mg/L	1		9012B	Total/NA

Client Sample ID: S-1

Lab Sample ID: 460-222216-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Typ
Acetone	480	H H3	58	55	ug/Kg		₩	8260D	Total/NA
2-Butanone (MEK)	280	H H3	48	3.6	ug/Kg	1	₩	8260D	Total/NA
Phenanthrene	92	J	1400	24	ug/Kg	1	₩	8270E	Total/NA
Fluoranthene	200	J	1400	48	ug/Kg	1	₩	8270E	Total/NA
Pyrene	250	J	1400		ug/Kg	1	₩	8270E	Total/NA
Benzo[a]anthracene	140		140	48	ug/Kg	1	₩	8270E	Total/NA
Chrysene	130	J	1400		ug/Kg	1	₩	8270E	Total/NA
Benzo[b]fluoranthene	200		140	36	ug/Kg	1	₽	8270E	Total/NA
Benzo[k]fluoranthene	63	J	140		ug/Kg	1	₩	8270E	Total/NA
Benzo[a]pyrene	130	J	140		ug/Kg	1	₩	8270E	Total/NA
Indeno[1,2,3-cd]pyrene	110	J	140	54	ug/Kg	1	₽	8270E	Total/NA
Benzo[g,h,i]perylene	110	J	1400	41	ug/Kg	1	₩	8270E	Total/NA
4,4'-DDE	12	J	28	3.3	ug/Kg	1		8081B	Total/NA
Perfluorobutanoic acid (PFBA)	0.55	JB	0.77	0.11	ug/Kg	1	₩	537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	0.48	J	0.77	0.30	ug/Kg	1	₽	537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	0.28	J	0.77	0.16	ug/Kg	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.23	J	0.77	0.11	ug/Kg	1	₩	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	0.61	J	0.77	0.33	ug/Kg	1	₩	537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	0.22	J	0.77	0.14	ug/Kg	1	₩	537 (modified)	Total/NA
Perfluorodecanoic acid (PFDA)	0.30	J	0.77	0.084	ug/Kg	1	₩	537 (modified)	Total/NA
Perfluoroundecanoic acid (PFUnA)	0.34	J F1	0.77		ug/Kg	1	₩	537 (modified)	Total/NA
Perfluorododecanoic acid (PFDoA)	0.27	J	0.77	0.26	ug/Kg	1	₩	537 (modified)	Total/NA
Perfluorotridecanoic acid (PFTriA)	0.39	J	0.77	0.20	ug/Kg	1	₩	537 (modified)	Total/NA
Perfluorotetradecanoic acid (PFTeA)	0.23	J	0.77		ug/Kg	1	₩	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.81		0.77	0.12	ug/Kg	1	₩	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	5.2	В	1.9		ug/Kg	1	₩	537 (modified)	Total/NA
Aluminum	27600		142	20.1	mg/Kg	2	₩	6010D	Total/NA
Arsenic	7.8	J	10.6	2.2	mg/Kg	2		6010D	Total/NA
Barium	293		142		mg/Kg	2	₩	6010D	Total/NA
Calcium	5780		3540	262	mg/Kg	2	₩	6010D	Total/NA
Cadmium	0.63	J	2.8		mg/Kg	2	₩	6010D	Total/NA
Cobalt	12.3	J	35.4	2.0	mg/Kg	2	₽	6010D	Total/NA
Chromium	46.3		7.1	5.0	mg/Kg	2	₽	6010D	Total/NA
Copper	96.7		17.7	4.4	mg/Kg	2	₩	6010D	Total/NA
Iron	21300		106	73.0	mg/Kg	2	₩	6010D	Total/NA
Potassium	1630	J	3540	218	mg/Kg	2	₩	6010D	Total/NA
Magnesium	5660		3540	240	mg/Kg	2	 ∵	6010D	Total/NA
Manganese	175		10.6		mg/Kg	2	₩	6010D	Total/NA
Nickel	50.2		28.4		mg/Kg			6010D	Total/NA
Lead	63.4		7.1		mg/Kg			6010D	Total/NA
Selenium	4.5	J	14.2		mg/Kg	2	₽	6010D	Total/NA
Vanadium	64.0		35.4		mg/Kg		₩	6010D	Total/NA
Zinc	151		21.3		mg/Kg			6010D	Total/NA

This Detection Summary does not include radiochemical test results.

Page 14 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: S-1 (Continued)

Lab Sample ID: 460-222216-4

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Mercury	0.19	0.071	0.017 mg/Kg	1 ☆ 7471B	Total/NA

Lab Sample ID: 460-222216-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	390	H H3	34	33	ug/Kg	1	_	8260D	Total/NA
2-Butanone (MEK)	38	H H3	29	2.1	ug/Kg	1	₩	8260D	Total/NA
Naphthalene	42	J	710	12	ug/Kg	1	₩	8270E	Total/NA
Acenaphthene	89	J	710	20	ug/Kg	1	₩	8270E	Total/NA
Dibenzofuran	38	J	710	10	ug/Kg	1	₽	8270E	Total/NA
Fluorene	87	J	710	9.7	ug/Kg	1	₩	8270E	Total/NA
Phenanthrene	650	J	710	13	ug/Kg	1	₩	8270E	Total/NA
Anthracene	160	J	710	22	ug/Kg	1	☼	8270E	Total/NA
Carbazole	120	J	710	27	ug/Kg	1	₩	8270E	Total/NA
Fluoranthene	830		710	25	ug/Kg	1	₩	8270E	Total/NA
Pyrene	790		710	18		1	₩	8270E	Total/NA
Benzo[a]anthracene	400		71	25		1	₩	8270E	Total/NA
Chrysene	400	J	710	12		1	₽.	8270E	Total/NA
Bis(2-ethylhexyl) phthalate	71		710	38		1	☼	8270E	Total/NA
Benzo[b]fluoranthene	510		71		ug/Kg	1	☼	8270E	Total/NA
Benzo[k]fluoranthene	180		71		ug/Kg	1	 ;;;	8270E	Total/NA
Benzo[a]pyrene	400		71	19		1	₩	8270E	Total/NA
Indeno[1,2,3-cd]pyrene	220		71	28		1	₩	8270E	Total/NA
Dibenz(a,h)anthracene	80		71	31		1		8270E	Total/NA
Benzo[g,h,i]perylene	210	J	710	21		1		8270E	Total/NA
Perfluorobutanoic acid (PFBA)	0.63		0.43	0.061		1		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	0.69		0.43		ug/Kg	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	0.26	J	0.43		ug/Kg	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.23		0.43		ug/Kg		₩	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	3.6		0.43	0.19			∵. .;;	537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	0.32	J	0.43		ug/Kg	1		537 (modified)	Total/NA
Perfluorodecanoic acid (PFDA)	0.72		0.43	0.048		1		537 (modified)	Total/NA
Perfluoroundecanoic acid (PFUnA)	0.39		0.43		ug/Kg			537 (modified)	Total/NA
Perfluorododecanoic acid (PFDoA)	0.34		0.43	0.14		1		537 (modified)	Total/NA
Perfluorotridecanoic acid (PFTriA)	0.12		0.43	0.11		1		537 (modified)	Total/NA
Perfluorotetradecanoic acid (PFTeA)	0.12		0.43		ug/Kg	· · · · · · · · · · · · · · · · · · ·		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.12	3	0.43		ug/Kg ug/Kg	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	6.6	D	1.1		ug/Kg ug/Kg			537 (modified)	Total/NA
Perfluorodecanesulfonic acid (PFDS)	0.21		0.43		ug/Kg ug/Kg			537 (modified)	Total/NA
Perfluorooctanesulfonamide (FOSA)	0.48	J	0.43		ug/Kg ug/Kg			537 (modified)	Total/NA
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	5.6		4.3		ug/Kg			537 (modified)	Total/NA
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	1.4	J	4.3	0.80	ug/Kg	1	₽	537 (modified)	Total/NA
Perfluorobutanoic acid (PFBA)	5.7		4.3	2.1	ng/L	1		537 (modified)	SPLP East
Perfluoropentanoic acid (PFPeA)	6.7		1.7		ng/L	1		537 (modified)	SPLP East
Perfluorohexanoic acid (PFHxA)	3.7		1.7		ng/L	1		537 (modified)	SPLP East
Perfluoroheptanoic acid (PFHpA)	4.2		1.7		ng/L	1		537 (modified)	SPLP East
Perfluorooctanoic acid (PFOA)	58		1.7		ng/L	1		537 (modified)	SPLP East
Perfluorononanoic acid (PFNA)	3.1		1.7		ng/L	1		537 (modified)	SPLP East
Perfluorodecanoic acid (PFDA)	1.3	J	1.7		ng/L	1		537 (modified)	SPLP East
Perfluorobutanesulfonic acid (PFBS)	0.30		1.7		ng/L	1		537 (modified)	SPLP East

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Edison

3/30/2021

Page 15 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: S-2 (Continued)

Lab Sample ID: 460-222216-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanesulfonic acid (PFHxS)	2.7		1.7	0.49	ng/L	1	_	537 (modified)	SPLP East
Perfluoroheptanesulfonic Acid (PFHpS)	0.56	J	1.7	0.16	ng/L	1		537 (modified)	SPLP East
Perfluorooctanesulfonic acid (PFOS)	22		1.7	0.47	ng/L	1		537 (modified)	SPLP East
Aluminum	9180		65.5	9.3	mg/Kg	2	₩	6010D	Total/NA
Arsenic	12.4		4.9	1.0	mg/Kg	2	₩	6010D	Total/NA
Barium	241		65.5	6.3	mg/Kg	2	₩	6010D	Total/NA
Calcium	5240		1640	121	mg/Kg	2	₩	6010D	Total/NA
Cadmium	0.91	J	1.3	0.11	mg/Kg	2	₩	6010D	Total/NA
Cobalt	20.5		16.4	0.91	mg/Kg	2	₩	6010D	Total/NA
Chromium	20.5		3.3	2.3	mg/Kg	2	₩	6010D	Total/NA
Copper	34.7		8.2	2.0	mg/Kg	2	₩	6010D	Total/NA
Iron	60100		49.1	33.7	mg/Kg	2	₩	6010D	Total/NA
Potassium	1150	J	1640	101	mg/Kg	2	₩	6010D	Total/NA
Magnesium	3520		1640	111	mg/Kg	2	₩	6010D	Total/NA
Manganese	5700		49.1	3.7	mg/Kg	20	₩	6010D	Total/NA
Nickel	32.8		13.1	0.86	mg/Kg	2	₩	6010D	Total/NA
Lead	58.9		3.3	0.53	mg/Kg	2	₩	6010D	Total/NA
Antimony	23.6		6.5	1.9	mg/Kg	2	₩	6010D	Total/NA
Selenium	1.7	J	6.5	1.1	mg/Kg	2	₩	6010D	Total/NA
Vanadium	23.1		16.4	1.5	mg/Kg	2	₩	6010D	Total/NA
Zinc	786		9.8	1.8	mg/Kg	2	₩	6010D	Total/NA
Mercury	0.096		0.036	0.0084	mg/Kg	1	₩	7471B	Total/NA
Cyanide, Total	1.3		0.50	0.26	mg/Kg	1	₩	9012B	Total/NA
pH	7.4	HF	0.1	0.1	SU	1		9045D	Total/NA
Corrosivity	7.4	HF	0.1	0.1	SU	1		9045D	Total/NA
Temperature	21.0	HF	0.1	0.1	Degrees C	1		9045D	Total/NA
Total Carbon	95700	Н	1000	671	mg/Kg	1		Lloyd Kahn	Total/NA

Client Sample ID: S-3

Lab Sample ID: 460-222216-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	6.5	H H3	2.8	3.2	ug/Kg		₩	8260D	Total/NA
Acetone	74	H H3	17	16	ug/Kg	1	₩	8260D	Total/NA
Carbon disulfide	1.0	J H H3	2.8	0.74	ug/Kg	1	₩	8260D	Total/NA
2-Butanone (MEK)	16	H H3	14	1.0	ug/Kg	1	₩	8260D	Total/NA
Phenanthrene	66	J	540	9.4	ug/Kg	1	₩	8270E	Total/NA
Fluoranthene	120	J	540	19	ug/Kg	1	₽	8270E	Total/NA
Pyrene	130	J	540	13	ug/Kg	1	₽	8270E	Total/NA
Benzo[a]anthracene	72		54	19	ug/Kg	1	₩	8270E	Total/NA
Chrysene	68	J	540	9.1	ug/Kg	1	₽	8270E	Total/NA
Benzo[b]fluoranthene	100		54	14	ug/Kg	1	₩	8270E	Total/NA
Benzo[k]fluoranthene	39	J	54	11	ug/Kg	1	₽	8270E	Total/NA
Benzo[a]pyrene	84		54	14	ug/Kg	1	₩	8270E	Total/NA
Indeno[1,2,3-cd]pyrene	50	J	54	21	ug/Kg	1	₽	8270E	Total/NA
Benzo[g,h,i]perylene	49	J	540	16	ug/Kg	1	₩	8270E	Total/NA
4,4'-DDE	5.3	J	11	1.3	ug/Kg	1	₩	8081B	Total/NA
Perfluorobutanoic acid (PFBA)	0.12	JВ	0.30	0.043	ug/Kg	1	₽	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	0.52		0.30	0.13	ug/Kg	1	₩	537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	0.057	J	0.30	0.055	ug/Kg	1	₩	537 (modified)	Total/NA
Perfluorodecanoic acid (PFDA)	0.079	J	0.30	0.033	ug/Kg	1	₩	537 (modified)	Total/NA
Perfluoroundecanoic acid (PFUnA)	0.15	J	0.30	0.055	ug/Kg	1	₽	537 (modified)	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Edison

Page 16 of 157

2

5

9

11

13

15

16

1/

3/30/2021

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: S-3 (Continued)

Lab Sample ID: 460-222216-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorododecanoic acid (PFDoA)	0.11	J	0.30	0.10	ug/Kg	1	☼	537 (modified)	Total/NA
Perfluorotridecanoic acid (PFTriA)	0.11	J	0.30	0.078	ug/Kg	1	₩	537 (modified)	Total/NA
Perfluorotetradecanoic acid (PFTeA)	0.11	J	0.30	0.082	ug/Kg	1	₩	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.14	J	0.30	0.047	ug/Kg	1	₩	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.7	В	0.76	0.30	ug/Kg	1	₩	537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	1.7	J	1.8	0.44	ng/L	1		537 (modified)	SPLP East
Perfluorohexanoic acid (PFHxA)	1.6	J	1.8	0.52	ng/L	1		537 (modified)	SPLP East
Perfluoroheptanoic acid (PFHpA)	1.7	J	1.8	0.22	ng/L	1		537 (modified)	SPLP East
Perfluorooctanoic acid (PFOA)	11		1.8	0.76	ng/L	1		537 (modified)	SPLP East
Perfluorononanoic acid (PFNA)	0.90	J	1.8	0.24	ng/L	1		537 (modified)	SPLP East
Perfluorobutanesulfonic acid (PFBS)	0.19	J	1.8	0.18	ng/L	1		537 (modified)	SPLP East
Perfluorohexanesulfonic acid (PFHxS)	1.7	J	1.8	0.51	ng/L	1		537 (modified)	SPLP East
Perfluoroheptanesulfonic Acid (PFHpS)	0.30	J	1.8	0.17	ng/L	1		537 (modified)	SPLP East
Perfluorooctanesulfonic acid (PFOS)	9.4		1.8	0.48	ng/L	1		537 (modified)	SPLP East
Aluminum	9670		51.1	7.2	mg/Kg	2	₩	6010D	Total/NA
Arsenic	4.0		3.8	0.79	mg/Kg	2	₩	6010D	Total/NA
Barium	95.5		51.1	4.9	mg/Kg	2	₩	6010D	Total/NA
Calcium	3100		1280	94.4	mg/Kg	2	₩	6010D	Total/NA
Cadmium	0.30	J	1.0	0.088	mg/Kg	2	₩	6010D	Total/NA
Cobalt	8.4	J	12.8	0.71	mg/Kg	2	₩	6010D	Total/NA
Chromium	15.4		2.6	1.8	mg/Kg	2	₩	6010D	Total/NA
Copper	15.9		6.4	1.6	mg/Kg	2	☼	6010D	Total/NA
Iron	14500		38.3	26.3	mg/Kg	2	⊅	6010D	Total/NA
Potassium	901	J	1280	78.4	mg/Kg	2	☼	6010D	Total/NA
Magnesium	3720		1280	86.5	mg/Kg	2	₩	6010D	Total/NA
Manganese	1050		3.8	0.29	mg/Kg	2	⊅	6010D	Total/NA
Nickel	12.8		10.2	0.67	mg/Kg	2	☼	6010D	Total/NA
Lead	24.0		2.6	0.41	mg/Kg	2	₩	6010D	Total/NA
Antimony	5.1		5.1	1.5	mg/Kg	2	⊅	6010D	Total/NA
Vanadium	22.1		12.8	1.2	mg/Kg	2	₩	6010D	Total/NA
Zinc	123		7.7	1.4	mg/Kg	2	₩	6010D	Total/NA
Mercury	0.097		0.026	0.0061	mg/Kg	1	☼	7471B	Total/NA
pH	6.2	HF	0.1	0.1	SU	1		9045D	Total/NA
Corrosivity	6.2	HF	0.1	0.1	SU	1		9045D	Total/NA
Temperature	21.1	HF	0.1	0.1	Degrees C	1		9045D	Total/NA
Total Carbon	91500	Н	1000	671	mg/Kg	1		Lloyd Kahn	Total/NA

Client Sample ID: TB

_						
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Methylene Chloride	2.1	1.0	0.32 ug/L		8260D	Total/NA
Acetone	5.7	5.0	4.4 ua/L	1	8260D	Total/NA

Client Sample ID: EB

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Methylene Chloride	0.73 J	1.0	0.32 ug/L		8260D	Total/NA
Acetone	6.2	5.0	4.4 ua/L	1	8260D	Total/NA

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 460-222216-7

Lab Sample ID: 460-222216-8

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: SW-1 Lab Sample ID: 460-222216-1

Date Collected: 11/03/20 12:00 Matrix: Water

Date Received: 11/05/20 18:00

Analyte		Qualifier	RL _	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloromethane	1.0	U	1.0	0.40	ug/L			11/11/20 05:28	
Bromomethane	1.0	U	1.0	0.55	ug/L			11/11/20 05:28	
Vinyl chloride	1.0	U	1.0	0.17	ug/L			11/11/20 05:28	
Chloroethane	1.0	U	1.0	0.32	ug/L			11/11/20 05:28	
Methylene Chloride	1.0	U	1.0	0.32	ug/L			11/11/20 05:28	
Acetone	5.6		5.0	4.4	ug/L			11/11/20 05:28	
Carbon disulfide	1.0	U	1.0	0.82	ug/L			11/11/20 05:28	
Trichlorofluoromethane	1.0	U	1.0	0.32	ug/L			11/11/20 05:28	
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			11/11/20 05:28	
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			11/11/20 05:28	
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			11/11/20 05:28	
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			11/11/20 05:28	
Chloroform	1.0	U	1.0		ug/L			11/11/20 05:28	
1,2-Dichloroethane	1.0	U	1.0		ug/L			11/11/20 05:28	
2-Butanone (MEK)	5.0	U	5.0		ug/L			11/11/20 05:28	
1,1,1-Trichloroethane	1.0		1.0		ug/L			11/11/20 05:28	
Carbon tetrachloride	1.0		1.0		ug/L			11/11/20 05:28	
Dichlorobromomethane	1.0		1.0		ug/L			11/11/20 05:28	
1,2-Dichloropropane	1.0	. 	1.0		ug/L			11/11/20 05:28	
cis-1,3-Dichloropropene	1.0		1.0		ug/L			11/11/20 05:28	
Trichloroethene	1.0		1.0		ug/L			11/11/20 05:28	
Chlorodibromomethane	1.0		1.0		ug/L			11/11/20 05:28	
	1.0		1.0		ug/L			11/11/20 05:28	
1,1,2-Trichloroethane Benzene	1.0		1.0		ug/L ug/L			11/11/20 05:28	
	1.0		1.0					11/11/20 05:28	
trans-1,3-Dichloropropene					ug/L				
Bromoform	1.0		1.0		ug/L			11/11/20 05:28	
4-Methyl-2-pentanone (MIBK)	5.0		5.0		ug/L			11/11/20 05:28	
2-Hexanone	5.0		5.0		ug/L			11/11/20 05:28	
Tetrachloroethene	1.0		1.0		ug/L			11/11/20 05:28	
1,1,2,2-Tetrachloroethane	1.0	U	1.0		ug/L			11/11/20 05:28	
Toluene	1.2		1.0		ug/L			11/11/20 05:28	
Chlorobenzene	1.0		1.0		ug/L			11/11/20 05:28	
Ethylbenzene	1.0		1.0		ug/L			11/11/20 05:28	
Styrene	1.0		1.0		ug/L			11/11/20 05:28	
m-Xylene & p-Xylene	1.0		1.0		ug/L			11/11/20 05:28	
o-Xylene	1.0	U	1.0		ug/L			11/11/20 05:28	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0		ug/L			11/11/20 05:28	
Methyl tert-butyl ether	1.0	U	1.0		ug/L			11/11/20 05:28	
Cyclohexane	1.0	U	1.0		ug/L			11/11/20 05:28	
Ethylene Dibromide	1.0	U	1.0	0.50	ug/L			11/11/20 05:28	
1,3-Dichlorobenzene	1.0	U	1.0	0.34	ug/L			11/11/20 05:28	
1,4-Dichlorobenzene	1.0	U	1.0	0.33	ug/L			11/11/20 05:28	
1,2-Dichlorobenzene	1.0	U	1.0	0.21	ug/L			11/11/20 05:28	
Dichlorodifluoromethane	1.0	U	1.0	0.31	ug/L			11/11/20 05:28	
1,2,4-Trichlorobenzene	1.0	U	1.0	0.37	ug/L			11/11/20 05:28	
1,4-Dioxane	50	U	50	28	ug/L			11/11/20 05:28	
1,2,3-Trichlorobenzene	1.0	U	1.0		ug/L			11/11/20 05:28	
1,2-Dibromo-3-Chloropropane	1.0		1.0		ug/L			11/11/20 05:28	
Chlorobromomethane	1.0		1.0		ug/L			11/11/20 05:28	

Eurofins TestAmerica, Edison

Page 18 of 157

2

3

_

6

9

11

13

13

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Lab Sample ID: 460-222216-1 **Client Sample ID: SW-1**

Date Collected: 11/03/20 12:00 **Matrix: Water**

Date Received: 11/05/20 18:00

Method: 8260D - Volatile Org	ganic Compo	unds by GC/	MS (Contin	ued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	1.0	U	1.0	0.34	ug/L			11/11/20 05:28	1
Methyl acetate	5.0	U	5.0	0.79	ug/L			11/11/20 05:28	1
Methylcyclohexane	1.0	U	1.0	0.71	ug/L			11/11/20 05:28	1

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					11/11/20 05:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		75 - 123					11/11/20 05:28	1

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	DII Fac
1,2-Dichloroethane-d4 (Surr)	101		75 - 123	_		11/11/20 05:28	1
Toluene-d8 (Surr)	98		80 - 120			11/11/20 05:28	1
4-Bromofluorobenzene	103		76 - 120			11/11/20 05:28	1
Dibromofluoromethane (Surr)	99		77 - 124			11/11/20 05:28	1

Method: 8270E SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.20	U	0.20	0.016	ug/L		11/10/20 21:30	11/11/20 03:22	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	39		10 - 150				11/10/20 21:30	11/11/20 03:22	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	10	U –	10	0.29	ug/L		11/09/20 09:26	11/10/20 11:43	1
2-Chlorophenol	10	U	10	0.38	ug/L		11/09/20 09:26	11/10/20 11:43	1
2-Methylphenol	10	U	10	0.67	ug/L		11/09/20 09:26	11/10/20 11:43	1
4-Methylphenol	10	U	10	0.65	ug/L		11/09/20 09:26	11/10/20 11:43	1
2-Nitrophenol	10	U	10	0.75	ug/L		11/09/20 09:26	11/10/20 11:43	1
2,4-Dimethylphenol	10	U	10	0.62	ug/L		11/09/20 09:26	11/10/20 11:43	1
2,4-Dichlorophenol	10	U	10	1.1	ug/L		11/09/20 09:26	11/10/20 11:43	1
4-Chloro-3-methylphenol	10	U	10	0.58	ug/L		11/09/20 09:26	11/10/20 11:43	1
2,4,6-Trichlorophenol	10	U	10	0.86	ug/L		11/09/20 09:26	11/10/20 11:43	1
2,4,5-Trichlorophenol	10	U	10	0.88	ug/L		11/09/20 09:26	11/10/20 11:43	1
2,4-Dinitrotoluene	2.0	U	2.0	1.0	ug/L		11/09/20 09:26	11/10/20 11:43	1
4-Nitrophenol	30	U	30	4.0	ug/L		11/09/20 09:26	11/10/20 11:43	1
4,6-Dinitro-2-methylphenol	30	U	30	3.0	ug/L		11/09/20 09:26	11/10/20 11:43	1
Pentachlorophenol	30	U	30	1.4	ug/L		11/09/20 09:26	11/10/20 11:43	1
Bis(2-chloroethyl)ether	1.0	U	1.0	0.63	ug/L		11/09/20 09:26	11/10/20 11:43	1
N-Nitrosodi-n-propylamine	1.0	U	1.0	0.43	ug/L		11/09/20 09:26	11/10/20 11:43	1
Hexachloroethane	2.0	U	2.0	0.80	ug/L		11/09/20 09:26	11/10/20 11:43	1
Nitrobenzene	1.0	U	1.0	0.57	ug/L		11/09/20 09:26	11/10/20 11:43	1
Isophorone	10	U	10	0.80	ug/L		11/09/20 09:26	11/10/20 11:43	1
Naphthalene	2.0	U	2.0	0.54	ug/L		11/09/20 09:26	11/10/20 11:43	1
4-Chloroaniline	2.0	U	2.0	1.9	ug/L		11/09/20 09:26	11/10/20 11:43	1
Hexachlorobutadiene	2.0	U	2.0	0.78	ug/L		11/09/20 09:26	11/10/20 11:43	1
2-Methylnaphthalene	10	U	10	0.53	ug/L		11/09/20 09:26	11/10/20 11:43	1
Hexachlorocyclopentadiene	10	U	10	3.6	ug/L		11/09/20 09:26	11/10/20 11:43	1
2-Chloronaphthalene	10	U	10	1.2	ug/L		11/09/20 09:26	11/10/20 11:43	1
2-Nitroaniline	20	U	20	0.47	ug/L		11/09/20 09:26	11/10/20 11:43	1
Dimethyl phthalate	10	U	10	0.77	ug/L		11/09/20 09:26	11/10/20 11:43	1
Acenaphthylene	10	U	10	0.82	ug/L		11/09/20 09:26	11/10/20 11:43	1
2.6-Dinitrotoluene	2.0	11	2.0	0.02	ug/L		11/09/20 09:26	11/10/20 11:43	4

Eurofins TestAmerica, Edison

Page 19 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: SW-1 Lab Sample ID: 460-222216-1

Date Collected: 11/03/20 12:00 Matrix: Water

Date Received: 11/05/20 18:00

Surrogate

Nitrobenzene-d5 (Surr)

Terphenyl-d14 (Surr)

2-Fluorophenol (Surr)

2,4,6-Tribromophenol (Surr)

Phenol-d5 (Surr)

2-Fluorobiphenyl

Analyte	Result	Qualifier	RL	MDI	_ Unit	D	Prepared	Analyzed	Dil Fac
3-Nitroaniline	20	U	20	1.9	ug/L		11/09/20 09:26	11/10/20 11:43	1
Acenaphthene	10	U	10	1.	1 ug/L		11/09/20 09:26	11/10/20 11:43	1
Dibenzofuran	10	U	10	1.1	1 ug/L		11/09/20 09:26	11/10/20 11:43	1
2,4-Dinitrophenol	30	U *	30	2.6	3 ug/L		11/09/20 09:26	11/10/20 11:43	1
Diethyl phthalate	10	U	10	0.98	3 ug/L		11/09/20 09:26	11/10/20 11:43	1
4-Chlorophenyl phenyl ether	10	U	10	1.3	3 ug/L		11/09/20 09:26	11/10/20 11:43	1
Fluorene	10	U	10	0.9	1 ug/L		11/09/20 09:26	11/10/20 11:43	1
4-Nitroaniline	20	U	20	1.2	2 ug/L		11/09/20 09:26	11/10/20 11:43	1
N-Nitrosodiphenylamine	10	U	10	0.89	g ug/L		11/09/20 09:26	11/10/20 11:43	1
4-Bromophenyl phenyl ether	10	U	10	0.75	5 ug/L		11/09/20 09:26	11/10/20 11:43	1
Hexachlorobenzene	1.0	U	1.0	0.40	ug/L		11/09/20 09:26	11/10/20 11:43	1
Phenanthrene	10	U	10	1.3	3 ug/L		11/09/20 09:26	11/10/20 11:43	1
Anthracene	10	U	10	1.3	3 ug/L		11/09/20 09:26	11/10/20 11:43	1
Carbazole	10	U	10	0.68	3 ug/L		11/09/20 09:26	11/10/20 11:43	1
Di-n-butyl phthalate	10	U	10	0.84	1 ug/L		11/09/20 09:26	11/10/20 11:43	1
Fluoranthene	10	U	10	0.84	1 ug/L		11/09/20 09:26	11/10/20 11:43	1
Pyrene	10	U	10	1.6	3 ug/L		11/09/20 09:26	11/10/20 11:43	1
Butyl benzyl phthalate	10	U	10	0.8	5 ug/L		11/09/20 09:26	11/10/20 11:43	1
Benzo[a]anthracene	1.0	U	1.0	0.59	g ug/L		11/09/20 09:26	11/10/20 11:43	1
Chrysene	10	U	10	0.9	1 ug/L		11/09/20 09:26	11/10/20 11:43	1
Bis(2-ethylhexyl) phthalate	10	U	10	0.80	ug/L		11/09/20 09:26	11/10/20 11:43	1
Di-n-octyl phthalate	10	U	10	0.75	5 ug/L		11/09/20 09:26	11/10/20 11:43	1
Benzo[b]fluoranthene	2.0	U	2.0	0.68	3 ug/L		11/09/20 09:26	11/10/20 11:43	1
Benzo[k]fluoranthene	1.0	U	1.0	0.67	7 ug/L		11/09/20 09:26	11/10/20 11:43	1
Benzo[a]pyrene	1.0	U	1.0	0.4	1 ug/L		11/09/20 09:26	11/10/20 11:43	1
Indeno[1,2,3-cd]pyrene	2.0	U	2.0	0.94	1 ug/L		11/09/20 09:26	11/10/20 11:43	1
Dibenz(a,h)anthracene	1.0	U	1.0	0.72	2 ug/L		11/09/20 09:26	11/10/20 11:43	1
Benzo[g,h,i]perylene	10	U	10	0.70	ug/L		11/09/20 09:26	11/10/20 11:43	1
1,1'-Biphenyl	10	U	10	1.2	2 ug/L		11/09/20 09:26	11/10/20 11:43	1
Acetophenone	10	U	10	2.3	3 ug/L		11/09/20 09:26	11/10/20 11:43	1
1,4-Dioxane	10	U	10	1.6	3 ug/L		11/09/20 09:26	11/10/20 11:43	1
Benzaldehyde	10	U	10	2.			11/09/20 09:26	11/10/20 11:43	1
Caprolactam	10	U	10	2.2	2 ug/L		11/09/20 09:26	11/10/20 11:43	1
Atrazine	10	U	10	1.3	3 ug/L		11/09/20 09:26	11/10/20 11:43	1
2,2'-oxybis[1-chloropropane]	10	U	10	0.63	3 ug/L		11/09/20 09:26	11/10/20 11:43	1
1,2,4,5-Tetrachlorobenzene	10	U	10	1.2	2 ug/L		11/09/20 09:26	11/10/20 11:43	1
2,3,4,6-Tetrachlorophenol	10	U	10	0.7	5 ug/L		11/09/20 09:26	11/10/20 11:43	1
3,3'-Dichlorobenzidine	20		20		1 ug/L		11/09/20 09:26	11/10/20 11:43	1
Bis(2-chloroethoxy)methane	10		10		g ug/L		11/09/20 09:26	11/10/20 11:43	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L				11/09/20 09:26	11/10/20 11:43	1
	0/5	0	1 : :4				Duamanad	A a la a al	57.5

Eurofins TestAmerica, Edison

Analyzed

11/09/20 09:26 11/10/20 11:43

11/09/20 09:26 11/10/20 11:43

11/09/20 09:26 11/10/20 11:43

11/09/20 09:26 11/10/20 11:43

Prepared

Limits

10 - 50

39 - 150

36 - 159

18 - 72

42 - 127

46 - 137

%Recovery Qualifier

92

29

61

113

43

74

9

6

8

9

12

14

Dil Fac

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Lab Sample ID: 460-222216-1 **Client Sample ID: SW-1**

Date Collected: 11/03/20 12:00 **Matrix: Water**

Date Received: 11/05/20 18:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	0.020	U	0.020	0.0060	ug/L		11/08/20 14:01	11/11/20 10:24	1
4,4'-DDE	0.020	U	0.020	0.0020	ug/L		11/08/20 14:01	11/11/20 10:24	1
4,4'-DDT	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/11/20 10:24	1
Aldrin	0.020	U	0.020	0.0030	ug/L		11/08/20 14:01	11/11/20 10:24	1
alpha-BHC	0.020	U	0.020	0.0070	ug/L		11/08/20 14:01	11/11/20 10:24	1
beta-BHC	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/11/20 10:24	1
Chlordane (technical)	0.50	U	0.50	0.055	ug/L		11/08/20 14:01	11/11/20 10:24	1
delta-BHC	0.020	U	0.020	0.0050	ug/L		11/08/20 14:01	11/11/20 10:24	1
Dieldrin	0.020	U	0.020	0.0030	ug/L		11/08/20 14:01	11/11/20 10:24	1
Endosulfan I	0.020	U	0.020	0.0020	ug/L		11/08/20 14:01	11/11/20 10:24	1
Endosulfan II	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/11/20 10:24	1
Endosulfan sulfate	0.020	U	0.020	0.0060	ug/L		11/08/20 14:01	11/11/20 10:24	1
Endrin	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/11/20 10:24	1
Endrin aldehyde	0.020	U	0.020	0.0080	ug/L		11/08/20 14:01	11/11/20 10:24	1
Endrin ketone	0.020	U	0.020	0.0080	ug/L		11/08/20 14:01	11/11/20 10:24	1
gamma-BHC (Lindane)	0.020	U	0.020	0.012	ug/L		11/08/20 14:01	11/11/20 10:24	1
Heptachlor	0.020	U	0.020	0.0030	ug/L		11/08/20 14:01	11/11/20 10:24	1
Heptachlor epoxide	0.020	U	0.020	0.0050	ug/L		11/08/20 14:01	11/11/20 10:24	1
Methoxychlor	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/11/20 10:24	1
Toxaphene	0.50	U	0.50	0.11	ug/L		11/08/20 14:01	11/11/20 10:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	57		10 - 132				11/08/20 14:01	11/11/20 10:24	1
DCB Decachlorobiphenyl	54		10 - 132				11/08/20 14:01	11/11/20 10:24	1
Tetrachloro-m-xylene	75		10 - 150				11/08/20 14:01	11/11/20 10:24	1
Tetrachloro-m-xylene	74		10 - 150				11/08/20 14:01	11/11/20 10:24	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 17:20	1
Aroclor 1221	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 17:20	1
Aroclor 1232	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 17:20	1
Aroclor 1242	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 17:20	1
Aroclor 1248	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 17:20	1
Aroclor 1254	0.40	U	0.40	0.11	ug/L		11/08/20 14:08	11/09/20 17:20	1
Aroclor 1260	0.40	U	0.40	0.11	ug/L		11/08/20 14:08	11/09/20 17:20	1
Aroclor-1262	0.40	U	0.40	0.11	ug/L		11/08/20 14:08	11/09/20 17:20	1
Aroclor 1268	0.40	U	0.40	0.11	ug/L		11/08/20 14:08	11/09/20 17:20	1
Polychlorinated biphenyls, Total	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 17:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	67	-	10 - 150				11/08/20 14:08	11/09/20 17:20	1
DCB Decachlorobiphenyl	66		10 - 150				11/08/20 14:08	11/09/20 17:20	1
Tetrachloro-m-xylene	94		48 - 125				11/08/20 14:08	11/09/20 17:20	1
Tetrachloro-m-xylene	96		48 - 125				11/08/20 14:08	11/09/20 17:20	1

Method: 8151A - Herbicides (GC)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	1.2	U	1.2	0.13	ug/L		11/09/20 20:09	11/10/20 12:12	1
Silvex (2,4,5-TP)	1.2	U	1.2	0.11	ug/L		11/09/20 20:09	11/10/20 12:12	1

Eurofins TestAmerica, Edison

Page 21 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8151A - Herbicides (GC) (Continued)

Client Sample ID: SW-1 Lab Sample ID: 460-222216-1

Result Qualifier

Date Collected: 11/03/20 12:00 Matrix: Water

RL

MDL Unit

Prepared

Analyzed

Date Received: 11/05/20 18:00

13C8 FOSA

d3-NMeFOSAA

Allalyte	Result	Qualifier	NL.	IVIDE	Ullit	U	riepaieu	Allalyzeu	DIIFac
2,4,5-T	1.2	U	1.2	0.12	ug/L		11/09/20 20:09	11/10/20 12:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	94		39 - 145				11/09/20 20:09	11/10/20 12:12	1
2,4-Dichlorophenylacetic acid	107		39 - 145				11/09/20 20:09	11/10/20 12:12	1
Method: 537 (modified) - Fluor	rinated Alky	/I Substan	ces						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	2.9	J	4.7	2.3	ng/L		11/09/20 12:10	11/10/20 19:39	1
Perfluoropentanoic acid (PFPeA)	4.6		1.9		ng/L		11/09/20 12:10	11/10/20 19:39	1
Perfluorohexanoic acid (PFHxA)	2.5		1.9		ng/L		11/09/20 12:10	11/10/20 19:39	1
Perfluoroheptanoic acid (PFHpA)	1.6	J	1.9	0.24	ng/L		11/09/20 12:10	11/10/20 19:39	1
Perfluorooctanoic acid (PFOA)	3.8		1.9		ng/L		11/09/20 12:10	11/10/20 19:39	1
Perfluorononanoic acid (PFNA)	0.55	J	1.9		ng/L		11/09/20 12:10	11/10/20 19:39	1
Perfluorodecanoic acid (PFDA)	0.39		1.9		ng/L		11/09/20 12:10	11/10/20 19:39	1
Perfluoroundecanoic acid (PFUnA)	1.9		1.9		ng/L		11/09/20 12:10	11/10/20 19:39	1
Perfluorododecanoic acid (PFDoA)	1.9		1.9		ng/L			11/10/20 19:39	1
Perfluorotridecanoic acid (PFTriA)	1.9		1.9		ng/L			11/10/20 19:39	1
Perfluorotetradecanoic acid (PFTeA)	1.9		1.9		ng/L			11/10/20 19:39	1
Perfluorobutanesulfonic acid (PFBS)	0.73		1.9		ng/L			11/10/20 19:39	1
Perfluorohexanesulfonic acid (PFHxS)	2.7		1.9	0.54	ng/L		11/09/20 12:10	11/10/20 19:39	1
Perfluoroheptanesulfonic Acid (PFHpS)	1.9	U	1.9	0.18	ng/L		11/09/20 12:10	11/10/20 19:39	1
Perfluorooctanesulfonic acid (PFOS)	6.5		1.9	0.51	ng/L		11/09/20 12:10	11/10/20 19:39	1
Perfluorodecanesulfonic acid (PFDS)	1.9	U	1.9	0.30	ng/L		11/09/20 12:10	11/10/20 19:39	1
Perfluorooctanesulfonamide (FOSA)	1.9	U	1.9	0.93	ng/L		11/09/20 12:10	11/10/20 19:39	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	4.7	U	4.7	1.1	ng/L		11/09/20 12:10	11/10/20 19:39	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	4.7	U	4.7		ng/L		11/09/20 12:10	11/10/20 19:39	1
6:2 FTS	4.7		4.7		ng/L		11/09/20 12:10	11/10/20 19:39	1
8:2 FTS	1.9	U	1.9	0.43	ng/L		11/09/20 12:10	11/10/20 19:39	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	30		25 - 150				11/09/20 12:10	11/10/20 19:39	1
13C5 PFPeA	35		25 - 150				11/09/20 12:10	11/10/20 19:39	1
13C2 PFHxA	36		25 - 150				11/09/20 12:10	11/10/20 19:39	1
13C4 PFHpA	38		25 - 150				11/09/20 12:10	11/10/20 19:39	1
13C4 PFOA	41		25 - 150				11/09/20 12:10	11/10/20 19:39	1
13C5 PFNA	36		25 - 150				11/09/20 12:10	11/10/20 19:39	1
13C2 PFDA	37		25 - 150				11/09/20 12:10	11/10/20 19:39	1
13C2 PFUnA	38		25 - 150				11/09/20 12:10	11/10/20 19:39	1
13C2 PFDoA	32		25 - 150				11/09/20 12:10	11/10/20 19:39	1
13C2 PFTeDA	31		25 - 150				11/09/20 12:10	11/10/20 19:39	1
13C3 PFBS	40		25 - 150				11/09/20 12:10	11/10/20 19:39	1
1802 PFHxS	45		25 - 150					11/10/20 19:39	1
13C4 PFOS	46		25 - 150					11/10/20 19:39	1

Eurofins TestAmerica, Edison

11/09/20 12:10 11/10/20 19:39

11/09/20 12:10 11/10/20 19:39

Page 22 of 157

25 - 150

25 - 150

39

41

2

3

5

Dil Fac

7

6

9

12

14

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Lab Sample ID: 460-222216-1 **Client Sample ID: SW-1**

Date Collected: 11/03/20 12:00 **Matrix: Water**

Date Received: 11/05/20 18:00

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
d5-NEtFOSAA	46		25 - 150	11/09/20 12:10	11/10/20 19:39	1
M2-6:2 FTS	53		25 - 150	11/09/20 12:10	11/10/20 19:39	1
M2-8:2 FTS	50		25 - 150	11/09/20 12:10	11/10/20 19:39	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	0.87	J	2.0	0.19	ug/L		11/10/20 10:17	11/10/20 20:33	1
Aluminum	76000		40.0	8.0	ug/L		11/10/20 10:17	11/10/20 20:33	1
Arsenic	17.7		2.0	0.89	ug/L		11/10/20 10:17	11/10/20 20:33	1
Barium	827		4.0	0.91	ug/L		11/10/20 10:17	11/10/20 20:33	1
Beryllium	4.3		0.80	0.098	ug/L		11/10/20 10:17	11/10/20 20:33	1
Calcium	68600		200	22.7	ug/L		11/10/20 10:17	11/10/20 20:33	1
Cadmium	5.5		2.0	0.16	ug/L		11/10/20 10:17	11/10/20 20:33	1
Cobalt	46.5		4.0	0.26	ug/L		11/10/20 10:17	11/10/20 20:33	1
Chromium	123		4.0	0.69	ug/L		11/10/20 10:17	11/10/20 20:33	1
Copper	249		4.0	2.5	ug/L		11/10/20 10:17	11/10/20 20:33	1
Iron	102000		120	8.5	ug/L		11/10/20 10:17	11/10/20 20:33	1
Potassium	12100		200	112	ug/L		11/10/20 10:17	11/10/20 20:33	1
Magnesium	26600		200	15.4	ug/L		11/10/20 10:17	11/10/20 20:33	1
Manganese	1180		8.0	1.1	ug/L		11/10/20 10:17	11/10/20 20:33	1
Sodium	29500		200	58.2	ug/L		11/10/20 10:17	11/10/20 20:33	1
Nickel	152		4.0	0.45	ug/L		11/10/20 10:17	11/10/20 20:33	1
Lead	314	В	1.2	0.11	ug/L		11/10/20 10:17	11/10/20 20:33	1
Antimony	1.2	J	2.0	0.76	ug/L		11/10/20 10:17	11/10/20 20:33	1
Selenium	8.3		2.5	0.46	ug/L		11/10/20 10:17	11/10/20 20:33	1
Thallium	0.88		0.80	0.17	ug/L		11/10/20 10:17	11/10/20 20:33	1
Vanadium	197		4.0	0.37	ug/L		11/10/20 10:17	11/10/20 20:33	1
Zinc	993		16.0	5.1	ug/L		11/10/20 10:17	11/10/20 20:33	1

Method:	7/70A _	Morcury	(C)(A A)
Metriou.	141 UM -	IVIEI CUI V	I C VAAI

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.54	0.20	0.091 ug/L		11/09/20 12:39	11/09/20 14:18	1

General Chemistry

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.0047	J	0.010	0.0040	mg/L		11/17/20 12:02	11/17/20 13:07	1

Client Sample ID: SW-2

Lab Sample ID: 460-222216-2 Date Collected: 11/03/20 13:30

Date Received: 11/05/20 18:00

anic Compoi	unds by GC/	MS						
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1.0	U	1.0	0.40	ug/L			11/11/20 04:43	1
1.0	U	1.0	0.55	ug/L			11/11/20 04:43	1
1.0	U	1.0	0.17	ug/L			11/11/20 04:43	1
1.0	U	1.0	0.32	ug/L			11/11/20 04:43	1
1.0	U	1.0	0.32	ug/L			11/11/20 04:43	1
5.0	U	5.0	4.4	ug/L			11/11/20 04:43	1
1.0	U	1.0	0.82	ug/L			11/11/20 04:43	1
1.0	U	1.0	0.32	ug/L			11/11/20 04:43	1
	Result 1.0 1.0 1.0 1.0 1.0 5.0	Result Qualifier	1.0 U 1.0 1.0 U 1.0 1.0 U 1.0 1.0 U 1.0 1.0 U 1.0 5.0 U 5.0 1.0 U 1.0	Result Qualifier RL MDL 1.0 U 1.0 0.40 1.0 U 1.0 0.55 1.0 U 1.0 0.17 1.0 U 1.0 0.32 1.0 U 1.0 0.32 5.0 U 5.0 4.4 1.0 U 1.0 0.82	Result Qualifier RL MDL Unit 1.0 U 1.0 0.40 ug/L 1.0 U 1.0 0.55 ug/L 1.0 U 1.0 0.17 ug/L 1.0 U 1.0 0.32 ug/L 1.0 U 1.0 0.32 ug/L 5.0 U 5.0 4.4 ug/L 1.0 U 1.0 0.82 ug/L	Result Qualifier RL MDL Unit D 1.0 U 1.0 0.40 ug/L ug/L 1.0 U 1.0 0.55 ug/L 1.0 U 1.0 0.17 ug/L 1.0 U 1.0 0.32 ug/L 1.0 U 1.0 0.32 ug/L 5.0 U 4.4 ug/L 1.0 U 1.0 0.82 ug/L	Result Qualifier RL MDL Unit D Prepared 1.0 U 1.0 0.40 ug/L ug	Result Qualifier RL MDL ug/L D Prepared Analyzed 1.0 U 1.0 U 0.40 ug/L 11/11/20 04:43 1.0 U 1.0 U 0.55 ug/L 11/11/20 04:43 1.0 U 1.0 U 0.17 ug/L 11/11/20 04:43 1.0 U 1.0 U 0.32 ug/L 11/11/20 04:43 1.0 U 1.0 U 0.32 ug/L 11/11/20 04:43 5.0 U 5.0 U 4.4 ug/L 11/11/20 04:43 1.0 U 1.0 U 0.82 ug/L 11/11/20 04:43

Eurofins TestAmerica, Edison

Page 23 of 157

Matrix: Water

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: SW-2 Lab Sample ID: 460-222216-2

Date Collected: 11/03/20 13:30 Matrix: Water Date Received: 11/05/20 18:00

Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			11/11/20 04:43	-
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			11/11/20 04:43	
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			11/11/20 04:43	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			11/11/20 04:43	1
Chloroform	1.0	U	1.0	0.33	ug/L			11/11/20 04:43	1
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			11/11/20 04:43	1
2-Butanone (MEK)	5.0	U	5.0	1.9	ug/L			11/11/20 04:43	1
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L			11/11/20 04:43	1
Carbon tetrachloride	1.0	U	1.0	0.21	ug/L			11/11/20 04:43	1
Dichlorobromomethane	1.0	U	1.0	0.34	ug/L			11/11/20 04:43	1
1,2-Dichloropropane	1.0	U	1.0		ug/L			11/11/20 04:43	1
cis-1,3-Dichloropropene	1.0	U	1.0		ug/L			11/11/20 04:43	1
Trichloroethene	1.0	U	1.0		ug/L			11/11/20 04:43	1
Chlorodibromomethane	1.0	U	1.0		ug/L			11/11/20 04:43	1
1,1,2-Trichloroethane	1.0		1.0		ug/L			11/11/20 04:43	1
Benzene	1.0		1.0		ug/L			11/11/20 04:43	1
trans-1,3-Dichloropropene	1.0		1.0		ug/L			11/11/20 04:43	1
Bromoform	1.0		1.0		ug/L			11/11/20 04:43	1
4-Methyl-2-pentanone (MIBK)	5.0		5.0		ug/L			11/11/20 04:43	1
2-Hexanone	5.0		5.0		ug/L			11/11/20 04:43	
Tetrachloroethene	1.0		1.0		ug/L			11/11/20 04:43	1
1,1,2,2-Tetrachloroethane	1.0		1.0		ug/L			11/11/20 04:43	1
Toluene	1.0		1.0		ug/L			11/11/20 04:43	
Chlorobenzene	1.0		1.0		ug/L ug/L			11/11/20 04:43	1
Ethylbenzene	1.0		1.0		ug/L ug/L			11/11/20 04:43	1
Styrene	1.0		1.0		ug/L			11/11/20 04:43	
m-Xylene & p-Xylene	1.0		1.0		ug/L ug/L			11/11/20 04:43	1
o-Xylene	1.0		1.0		ug/L ug/L			11/11/20 04:43	1
1,1,2-Trichloro-1,2,2-trifluoroethane								11/11/20 04:43	· · · · · · · · · · · · · · · · · · ·
	1.0		1.0		ug/L				
Methyl tert-butyl ether	1.0		1.0		ug/L			11/11/20 04:43	1
Cyclohexane	1.0		1.0		ug/L			11/11/20 04:43	1
Ethylene Dibromide	1.0		1.0		ug/L			11/11/20 04:43	1
1,3-Dichlorobenzene	1.0		1.0		ug/L			11/11/20 04:43	1
1,4-Dichlorobenzene	1.0		1.0		ug/L			11/11/20 04:43	1
1,2-Dichlorobenzene	1.0		1.0		ug/L			11/11/20 04:43	1
Dichlorodifluoromethane	1.0		1.0		ug/L			11/11/20 04:43	1
1,2,4-Trichlorobenzene	1.0		1.0		ug/L			11/11/20 04:43	1
1,4-Dioxane	50		50		ug/L			11/11/20 04:43	1
1,2,3-Trichlorobenzene	1.0		1.0		ug/L			11/11/20 04:43	1
1,2-Dibromo-3-Chloropropane	1.0		1.0		ug/L			11/11/20 04:43	1
Chlorobromomethane	1.0		1.0		ug/L			11/11/20 04:43	1
Isopropylbenzene	1.0	U	1.0	0.34	ug/L			11/11/20 04:43	1
Methyl acetate	5.0		5.0		ug/L			11/11/20 04:43	1
Methylcyclohexane	1.0	U	1.0	0.71	ug/L			11/11/20 04:43	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	<u>D</u>	RT _	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					11/11/20 04:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Eurofins TestAmerica, Edison

2

3

2

<u>'</u>

10

12

14

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: SW-2 Lab Sample ID: 460-222216-2

Date Collected: 11/03/20 13:30 Matrix: Water

Date Received: 11/05/20 18:00

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		80 - 120		11/11/20 04:43	1
4-Bromofluorobenzene	104		76 - 120		11/11/20 04:43	1
Dibromofluoromethane (Surr)	100		77 - 124		11/11/20 04:43	1

Method: 8270E SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.20	U	0.20	0.016	ug/L		11/10/20 21:30	11/11/20 03:38	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	10	U	10	0.29	ug/L		11/09/20 09:26	11/10/20 11:01	1
2-Chlorophenol	10	U	10	0.38	ug/L		11/09/20 09:26	11/10/20 11:01	1
2-Methylphenol	10	U	10	0.67	ug/L		11/09/20 09:26	11/10/20 11:01	1
4-Methylphenol	10	U	10	0.65	ug/L		11/09/20 09:26	11/10/20 11:01	1
2-Nitrophenol	10	U	10	0.75	ug/L		11/09/20 09:26	11/10/20 11:01	1
2,4-Dimethylphenol	10	U	10	0.62	ug/L		11/09/20 09:26	11/10/20 11:01	1
2,4-Dichlorophenol	10	U	10	1.1	ug/L		11/09/20 09:26	11/10/20 11:01	1
4-Chloro-3-methylphenol	10	U	10	0.58	ug/L		11/09/20 09:26	11/10/20 11:01	1
2,4,6-Trichlorophenol	10	U	10	0.86	ug/L		11/09/20 09:26	11/10/20 11:01	1
2,4,5-Trichlorophenol	10	U	10	0.88	ug/L		11/09/20 09:26	11/10/20 11:01	1
2,4-Dinitrotoluene	2.0	U	2.0	1.0	ug/L		11/09/20 09:26	11/10/20 11:01	1
4-Nitrophenol	30	U	30	4.0	ug/L		11/09/20 09:26	11/10/20 11:01	1
4,6-Dinitro-2-methylphenol	30	U	30	3.0	ug/L		11/09/20 09:26	11/10/20 11:01	1
Pentachlorophenol	30	U	30	1.4	ug/L		11/09/20 09:26	11/10/20 11:01	1
Bis(2-chloroethyl)ether	1.0	U	1.0	0.63	ug/L		11/09/20 09:26	11/10/20 11:01	1
N-Nitrosodi-n-propylamine	1.0	U	1.0	0.43	ug/L		11/09/20 09:26	11/10/20 11:01	1
Hexachloroethane	2.0	U	2.0	0.80	ug/L		11/09/20 09:26	11/10/20 11:01	1
Nitrobenzene	1.0	U	1.0	0.57	ug/L		11/09/20 09:26	11/10/20 11:01	1
Isophorone	10	U	10	0.80	ug/L		11/09/20 09:26	11/10/20 11:01	1
Naphthalene	2.0	U	2.0	0.54	ug/L		11/09/20 09:26	11/10/20 11:01	1
4-Chloroaniline	2.0	U	2.0	1.9	ug/L		11/09/20 09:26	11/10/20 11:01	1
Hexachlorobutadiene	2.0	U	2.0	0.78	ug/L		11/09/20 09:26	11/10/20 11:01	1
2-Methylnaphthalene	10	U	10	0.53	ug/L		11/09/20 09:26	11/10/20 11:01	1
Hexachlorocyclopentadiene	10	U	10	3.6	ug/L		11/09/20 09:26	11/10/20 11:01	1
2-Chloronaphthalene	10	U	10	1.2	ug/L		11/09/20 09:26	11/10/20 11:01	1
2-Nitroaniline	20	U	20	0.47	ug/L		11/09/20 09:26	11/10/20 11:01	1
Dimethyl phthalate	10	U	10	0.77	ug/L		11/09/20 09:26	11/10/20 11:01	1
Acenaphthylene	10	U	10	0.82	ug/L		11/09/20 09:26	11/10/20 11:01	1
2,6-Dinitrotoluene	2.0	U	2.0	0.83	ug/L		11/09/20 09:26	11/10/20 11:01	1
3-Nitroaniline	20	U	20	1.9	ug/L		11/09/20 09:26	11/10/20 11:01	1
Acenaphthene	10	U	10	1.1	ug/L		11/09/20 09:26	11/10/20 11:01	1
Dibenzofuran	10	U	10	1.1	ug/L		11/09/20 09:26	11/10/20 11:01	1
2,4-Dinitrophenol	30	U *	30	2.6	ug/L		11/09/20 09:26	11/10/20 11:01	1
Diethyl phthalate	10	U	10	0.98	ug/L		11/09/20 09:26	11/10/20 11:01	1
4-Chlorophenyl phenyl ether	10	U	10	1.3	ug/L		11/09/20 09:26	11/10/20 11:01	1
Fluorene	10	U	10	0.91	ug/L		11/09/20 09:26	11/10/20 11:01	1
4-Nitroaniline	20	U	20	1.2	ug/L		11/09/20 09:26	11/10/20 11:01	1

Eurofins TestAmerica, Edison

Page 25 of 157

2

3

_

6

8

4.0

11

12

14

16

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: SW-2 Lab Sample ID: 460-222216-2

Date Collected: 11/03/20 13:30 Matrix: Water
Date Received: 11/05/20 18:00

Analyte	Result	Qualifier	RL	ME)L	Unit	D	Prepared	Analyzed	Dil Fac
N-Nitrosodiphenylamine	10	U	10	0.0	39	ug/L		11/09/20 09:26	11/10/20 11:01	1
4-Bromophenyl phenyl ether	10	U	10	0.7	75	ug/L		11/09/20 09:26	11/10/20 11:01	1
Hexachlorobenzene	1.0	U	1.0	0.4	10	ug/L		11/09/20 09:26	11/10/20 11:01	1
Phenanthrene	10	U	10	1	.3	ug/L		11/09/20 09:26	11/10/20 11:01	1
Anthracene	10	U	10	1	.3	ug/L		11/09/20 09:26	11/10/20 11:01	1
Carbazole	10	U	10	0.6	86	ug/L		11/09/20 09:26	11/10/20 11:01	1
Di-n-butyl phthalate	10	U	10	0.0	34	ug/L		11/09/20 09:26	11/10/20 11:01	1
Fluoranthene	10	U	10	0.8	34	ug/L		11/09/20 09:26	11/10/20 11:01	1
Pyrene	10	U	10	1	.6	ug/L		11/09/20 09:26	11/10/20 11:01	1
Butyl benzyl phthalate	10	U	10	0.0	35	ug/L		11/09/20 09:26	11/10/20 11:01	1
Benzo[a]anthracene	1.0	U	1.0	0.5	59	ug/L		11/09/20 09:26	11/10/20 11:01	1
Chrysene	10	U	10			ug/L		11/09/20 09:26	11/10/20 11:01	1
Bis(2-ethylhexyl) phthalate	10	U	10	0.0		ug/L		11/09/20 09:26	11/10/20 11:01	1
Di-n-octyl phthalate	10	U	10	0.7	75	ug/L		11/09/20 09:26	11/10/20 11:01	1
Benzo[b]fluoranthene	2.0	U	2.0			ug/L		11/09/20 09:26	11/10/20 11:01	1
Benzo[k]fluoranthene	1.0	U	1.0	0.6	67	ug/L		11/09/20 09:26	11/10/20 11:01	1
Benzo[a]pyrene	1.0	U	1.0	0.4	11	ug/L		11/09/20 09:26	11/10/20 11:01	1
Indeno[1,2,3-cd]pyrene	2.0	U	2.0			ug/L		11/09/20 09:26	11/10/20 11:01	1
Dibenz(a,h)anthracene	1.0	U	1.0	0.7	72	ug/L		11/09/20 09:26	11/10/20 11:01	1
Benzo[g,h,i]perylene	10	U	10	0.7	70	ug/L		11/09/20 09:26	11/10/20 11:01	1
1,1'-Biphenyl	10	U	10	1	.2	ug/L		11/09/20 09:26	11/10/20 11:01	1
Acetophenone	10	U	10	2	.3	ug/L		11/09/20 09:26	11/10/20 11:01	1
1,4-Dioxane	10	U	10	1	.6	ug/L		11/09/20 09:26	11/10/20 11:01	1
Benzaldehyde	10	U	10	2	.1	ug/L		11/09/20 09:26	11/10/20 11:01	1
Caprolactam	10	U	10	2	.2	ug/L		11/09/20 09:26	11/10/20 11:01	1
Atrazine	10	U	10			ug/L		11/09/20 09:26	11/10/20 11:01	1
2,2'-oxybis[1-chloropropane]	10		10			ug/L		11/09/20 09:26	11/10/20 11:01	1
1,2,4,5-Tetrachlorobenzene	10	U	10	1	.2	ug/L		11/09/20 09:26	11/10/20 11:01	1
2,3,4,6-Tetrachlorophenol	10	U	10	0.7	75	ug/L		11/09/20 09:26	11/10/20 11:01	1
3,3'-Dichlorobenzidine	20	U	20			ug/L		11/09/20 09:26	11/10/20 11:01	1
Bis(2-chloroethoxy)methane	10	U	10			ug/L		11/09/20 09:26	11/10/20 11:01	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	F	₹ <i>T</i>	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L	_				11/09/20 09:26	11/10/20 11:01	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	77		46 - 137					11/09/20 09:26	11/10/20 11:01	-
Phenol-d5 (Surr)	28		10 - 50					11/09/20 09:26	11/10/20 11:01	1
Terphenyl-d14 (Surr)	68		39 - 150					11/09/20 09:26	11/10/20 11:01	1
2,4,6-Tribromophenol (Surr)	114		36 - 159					11/09/20 09:26	11/10/20 11:01	
2-Fluorophenol (Surr)	41		18 - 72					11/09/20 09:26	11/10/20 11:01	1
2-Fluorobiphenyl	69		42 - 127						11/10/20 11:01	1

Method: 8081B -	Organochlorine Pe	sticides (GC)
-----------------	-------------------	---------------

Method: 6061B - Organochiofine Pesticides (GC)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	4,4'-DDD	0.020	U	0.020	0.0060	ug/L		11/08/20 14:01	11/11/20 10:39	1
	4,4'-DDE	0.020	U	0.020	0.0020	ug/L		11/08/20 14:01	11/11/20 10:39	1
	4,4'-DDT	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/11/20 10:39	1
	Aldrin	0.020	U	0.020	0.0030	ug/L		11/08/20 14:01	11/11/20 10:39	1
	alpha-BHC	0.020	U	0.020	0.0070	ug/L		11/08/20 14:01	11/11/20 10:39	1

Eurofins TestAmerica, Edison

Page 26 of 157

2

3

5

7

10

12

14

19

Щ

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: SW-2 Lab Sample ID: 460-222216-2

Date Collected: 11/03/20 13:30 **Matrix: Water** Date Received: 11/05/20 18:00

Method: 8081B - Organo			onunuea)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
beta-BHC	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/11/20 10:39	1
Chlordane (technical)	0.50	U	0.50	0.055	ug/L		11/08/20 14:01	11/11/20 10:39	1
delta-BHC	0.020	U	0.020	0.0050	ug/L		11/08/20 14:01	11/11/20 10:39	1
Dieldrin	0.020	U	0.020	0.0030	ug/L		11/08/20 14:01	11/11/20 10:39	1
Endosulfan I	0.020	U	0.020	0.0020	ug/L		11/08/20 14:01	11/11/20 10:39	1
Endosulfan II	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/11/20 10:39	1
Endosulfan sulfate	0.020	U	0.020	0.0060	ug/L		11/08/20 14:01	11/11/20 10:39	1
Endrin	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/11/20 10:39	1
Endrin aldehyde	0.020	U	0.020	0.0080	ug/L		11/08/20 14:01	11/11/20 10:39	1
Endrin ketone	0.020	U	0.020	0.0080	ug/L		11/08/20 14:01	11/11/20 10:39	1
gamma-BHC (Lindane)	0.020	U	0.020	0.012	ug/L		11/08/20 14:01	11/11/20 10:39	1
Heptachlor	0.020	U	0.020	0.0030	ug/L		11/08/20 14:01	11/11/20 10:39	1
Heptachlor epoxide	0.020	U	0.020	0.0050	ug/L		11/08/20 14:01	11/11/20 10:39	1
Methoxychlor	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/11/20 10:39	1
Toxaphene	0.50	U	0.50	0.11	ug/L		11/08/20 14:01	11/11/20 10:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	85		10 - 132				11/08/20 14:01	11/11/20 10:39	1
DCB Decachlorobiphenyl	74		10 - 132				11/08/20 14:01	11/11/20 10:39	1
Tetrachloro-m-xylene	91		10 - 150				11/08/20 14:01	11/11/20 10:39	1
Tetrachloro-m-xylene	88		10 - 150				11/08/20 14:01	11/11/20 10:39	1

Method: 8082A - Polychloria	nated Bipheny	/Is (PCBs)	by Gas Chro	matogra	aphy				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 17:37	1
Aroclor 1221	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 17:37	1
Aroclor 1232	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 17:37	1
Aroclor 1242	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 17:37	1
Aroclor 1248	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 17:37	1
Aroclor 1254	0.40	U	0.40	0.11	ug/L		11/08/20 14:08	11/09/20 17:37	1
Aroclor 1260	0.40	U	0.40	0.11	ug/L		11/08/20 14:08	11/09/20 17:37	1
Aroclor-1262	0.40	U	0.40	0.11	ug/L		11/08/20 14:08	11/09/20 17:37	1
Aroclor 1268	0.40	U	0.40	0.11	ug/L		11/08/20 14:08	11/09/20 17:37	1
Polychlorinated biphenyls, Total	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 17:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	92		10 - 150				11/08/20 14:08	11/09/20 17:37	1
DCB Decachlorobiphenyl	76		10 - 150				11/08/20 14:08	11/09/20 17:37	1
Tetrachloro-m-xylene	91		48 - 125				11/08/20 14:08	11/09/20 17:37	1
Tetrachloro-m-xylene	83		48 - 125				11/08/20 14:08	11/09/20 17:37	1

Method: 8151A - Herbicides	s (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	1.2	U	1.2	0.13	ug/L		11/09/20 20:09	11/10/20 12:26	1
Silvex (2,4,5-TP)	1.2	U	1.2	0.11	ug/L		11/09/20 20:09	11/10/20 12:26	1
2,4,5-T	1.2	U	1.2	0.12	ug/L		11/09/20 20:09	11/10/20 12:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	99		39 - 145				11/09/20 20:09	11/10/20 12:26	1
2,4-Dichlorophenylacetic acid	111		39 - 145				11/09/20 20:09	11/10/20 12:26	1

Eurofins TestAmerica, Edison

Page 27 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: SW-2 Lab Sample ID: 460-222216-2

Date Collected: 11/03/20 13:30 Matrix: Water Date Received: 11/05/20 18:00

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Perfluorobutanoic acid (PFBA)	20		4.9	2.3	ng/L		11/09/20 12:10	11/10/20 20:06	
Perfluoropentanoic acid (PFPeA)	29		2.0	0.48	ng/L		11/09/20 12:10	11/10/20 20:06	
Perfluorohexanoic acid (PFHxA)	36		2.0	0.57	ng/L		11/09/20 12:10	11/10/20 20:06	
Perfluoroheptanoic acid (PFHpA)	32		2.0	0.24	ng/L		11/09/20 12:10	11/10/20 20:06	
Perfluorooctanoic acid (PFOA)	220		2.0	0.83	ng/L		11/09/20 12:10	11/10/20 20:06	
Perfluorononanoic acid (PFNA)	4.2		2.0	0.26	ng/L		11/09/20 12:10	11/10/20 20:06	
Perfluorodecanoic acid (PFDA)	1.2	J	2.0	0.30	ng/L		11/09/20 12:10	11/10/20 20:06	
Perfluoroundecanoic acid (PFUnA)	2.0	U	2.0	1.1	ng/L		11/09/20 12:10	11/10/20 20:06	
Perfluorododecanoic acid (PFDoA)	2.0	U	2.0	0.54	ng/L		11/09/20 12:10	11/10/20 20:06	
Perfluorotridecanoic acid (PFTriA)	2.0	U	2.0	1.3	ng/L		11/09/20 12:10	11/10/20 20:06	
Perfluorotetradecanoic acid (PFTeA)	2.0	U	2.0	0.71	ng/L		11/09/20 12:10	11/10/20 20:06	
Perfluorobutanesulfonic acid (PFBS)	2.2		2.0	0.20	ng/L		11/09/20 12:10	11/10/20 20:06	
Perfluorohexanesulfonic acid (PFHxS)	15		2.0	0.56	ng/L		11/09/20 12:10	11/10/20 20:06	
Perfluoroheptanesulfonic Acid (PFHpS)	0.88	J	2.0		ng/L			11/10/20 20:06	
Perfluorooctanesulfonic acid (PFOS)	33		2.0		ng/L			11/10/20 20:06	
Perfluorodecanesulfonic acid (PFDS)	2.0		2.0		ng/L			11/10/20 20:06	
Perfluorooctanesulfonamide (FOSA)	2.0		2.0		ng/L			11/10/20 20:06	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	4.9	U 	4.9		ng/L			11/10/20 20:06	
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	2.6		4.9		ng/L			11/10/20 20:06	
6:2 FTS	4.9		4.9		ng/L			11/10/20 20:06	
8:2 FTS	2.0	U	2.0	0.45	ng/L		11/09/20 12:10	11/10/20 20:06	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C4 PFBA	34		25 - 150				11/09/20 12:10	11/10/20 20:06	
13C5 PFPeA	61		25 - 150				11/09/20 12:10	11/10/20 20:06	
13C2 PFHxA	74		25 - 150				11/09/20 12:10	11/10/20 20:06	
13C4 PFHpA	85		25 - 150				11/09/20 12:10	11/10/20 20:06	
13C4 PFOA	93		25 - 150				11/09/20 12:10	11/10/20 20:06	
13C5 PFNA	91		25 - 150				11/09/20 12:10	11/10/20 20:06	
13C2 PFDA	92		25 - 150				11/09/20 12:10	11/10/20 20:06	
13C2 PFUnA	88		25 - 150				11/09/20 12:10	11/10/20 20:06	
13C2 PFDoA	74		25 - 150				11/09/20 12:10	11/10/20 20:06	
13C2 PFTeDA	63		25 - 150				11/09/20 12:10	11/10/20 20:06	
13C3 PFBS	93		25 - 150				11/09/20 12:10	11/10/20 20:06	
1802 PFHxS	104		25 - 150				11/09/20 12:10	11/10/20 20:06	
13C4 PFOS	112		25 - 150				11/09/20 12:10	11/10/20 20:06	
13C8 FOSA	107		25 - 150				11/09/20 12:10	11/10/20 20:06	
d3-NMeFOSAA	97		25 - 150				11/09/20 12:10	11/10/20 20:06	
d5-NEtFOSAA	104		25 - 150				11/09/20 12:10	11/10/20 20:06	
M2-6:2 FTS	144		25 - 150				11/09/20 12:10	11/10/20 20:06	
M2-8:2 FTS	133		25 - 150				11/09/20 12:10	11/10/20 20:06	
Method: 6020B - Metals (ICP/N	•								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Silver	2.0	U	2.0		ug/L		11/19/20 17:20	11/21/20 14:41	
Aluminum	55.6		40.0	8.0	ug/L		11/19/20 17:20	11/21/20 14:41	

Eurofins TestAmerica, Edison

Page 28 of 157

2

3

6

Ŏ

11

13

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Lab Sample ID: 460-222216-2 **Client Sample ID: SW-2**

Date Collected: 11/03/20 13:30 **Matrix: Water** Date Received: 11/05/20 18:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.0	U	2.0	0.89	ug/L		11/19/20 17:20	11/21/20 14:41	1
Barium	80.3		4.0	0.91	ug/L		11/19/20 17:20	11/21/20 14:41	1
Beryllium	0.80	U	0.80	0.098	ug/L		11/19/20 17:20	11/21/20 14:41	1
Calcium	131000		200	22.7	ug/L		11/19/20 17:20	11/21/20 14:41	1
Cadmium	2.0	U	2.0	0.16	ug/L		11/19/20 17:20	11/21/20 14:41	1
Cobalt	0.68	J	4.0	0.26	ug/L		11/19/20 17:20	11/21/20 14:41	1
Chromium	4.0	U	4.0	0.69	ug/L		11/19/20 17:20	11/21/20 14:41	1
Copper	2.7	J	4.0	2.5	ug/L		11/19/20 17:20	11/21/20 14:41	1
Iron	969		120	8.5	ug/L		11/19/20 17:20	11/21/20 14:41	1
Potassium	5740		200	112	ug/L		11/19/20 17:20	11/21/20 14:41	1
Magnesium	17200		200	15.4	ug/L		11/19/20 17:20	11/21/20 14:41	1
Manganese	235		8.0	1.1	ug/L		11/19/20 17:20	11/21/20 14:41	1
Sodium	47200		200	58.2	ug/L		11/19/20 17:20	11/21/20 14:41	1
Nickel	4.8		4.0	0.45	ug/L		11/19/20 17:20	11/21/20 14:41	1
Lead	1.8	В	1.2	0.11	ug/L		11/19/20 17:20	11/21/20 14:41	1
Antimony	2.0	U	2.0	0.76	ug/L		11/19/20 17:20	11/21/20 14:41	1
Selenium	2.5	U	2.5	0.46	ug/L		11/19/20 17:20	11/21/20 14:41	1
Thallium	0.80	U	0.80	0.17	ug/L		11/19/20 17:20	11/21/20 14:41	1
Vanadium	0.61	J	4.0	0.37	ug/L		11/19/20 17:20	11/21/20 14:41	1
Zinc	111		16.0	5.1	ug/L		11/19/20 17:20	11/21/20 14:41	1
Method: 7470A - Mercury	(CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	0.091	ug/L		11/09/20 12:39	11/09/20 14:20	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.010	U	0.010	0.0040	mg/L		11/17/20 12:02	11/17/20 13:08	

Client Sample ID: SW-3 Lab Sample ID: 460-222216-3 Date Collected: 11/03/20 16:00 **Matrix: Water**

Date Received: 11/05/20 18:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	1.0	U	1.0	0.40	ug/L			11/11/20 05:06	1
Bromomethane	1.0	U	1.0	0.55	ug/L			11/11/20 05:06	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			11/11/20 05:06	1
Chloroethane	1.0	U	1.0	0.32	ug/L			11/11/20 05:06	1
Methylene Chloride	1.0	U	1.0	0.32	ug/L			11/11/20 05:06	1
Acetone	11		5.0	4.4	ug/L			11/11/20 05:06	1
Carbon disulfide	1.0	U	1.0	0.82	ug/L			11/11/20 05:06	1
Trichlorofluoromethane	1.0	U	1.0	0.32	ug/L			11/11/20 05:06	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			11/11/20 05:06	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			11/11/20 05:06	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			11/11/20 05:06	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			11/11/20 05:06	1
Chloroform	1.0	U	1.0	0.33	ug/L			11/11/20 05:06	1
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			11/11/20 05:06	1
2-Butanone (MEK)	5.0	U	5.0	1.9	ug/L			11/11/20 05:06	1

Page 29 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: SW-3 Lab Sample ID: 460-222216-3

Date Collected: 11/03/20 16:00 Matrix: Water

Date Received: 11/05/20 18:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L		-	11/11/20 05:06	1
Carbon tetrachloride	1.0	U	1.0	0.21	ug/L			11/11/20 05:06	1
Dichlorobromomethane	1.0	U	1.0	0.34	ug/L			11/11/20 05:06	1
1,2-Dichloropropane	1.0	U	1.0	0.35	ug/L			11/11/20 05:06	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			11/11/20 05:06	1
Trichloroethene	1.0	U	1.0	0.31	ug/L			11/11/20 05:06	1
Chlorodibromomethane	1.0	U	1.0	0.28	ug/L			11/11/20 05:06	1
1,1,2-Trichloroethane	1.0	U	1.0	0.20	ug/L			11/11/20 05:06	1
Benzene	1.0	U	1.0	0.20	ug/L			11/11/20 05:06	1
trans-1,3-Dichloropropene	1.0	U	1.0		ug/L			11/11/20 05:06	1
Bromoform	1.0	U	1.0		ug/L			11/11/20 05:06	1
4-Methyl-2-pentanone (MIBK)	5.0	U	5.0	1.3	ug/L			11/11/20 05:06	1
2-Hexanone	5.0	U	5.0	1.1	ug/L			11/11/20 05:06	1
Tetrachloroethene	1.0	U	1.0		ug/L			11/11/20 05:06	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0		ug/L			11/11/20 05:06	1
Toluene	1.0	U	1.0	0.38	ug/L			11/11/20 05:06	1
Chlorobenzene	1.0	U	1.0		ug/L			11/11/20 05:06	1
Ethylbenzene	1.0	U	1.0	0.30	ug/L			11/11/20 05:06	1
Styrene	1.0	U	1.0	0.42	ug/L			11/11/20 05:06	1
m-Xylene & p-Xylene	1.0	U	1.0		ug/L			11/11/20 05:06	1
o-Xylene	1.0	U	1.0	0.36	ug/L			11/11/20 05:06	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.31	ug/L			11/11/20 05:06	1
Methyl tert-butyl ether	1.0	U	1.0	0.22	ug/L			11/11/20 05:06	1
Cyclohexane	1.0	U	1.0	0.32	ug/L			11/11/20 05:06	1
Ethylene Dibromide	1.0	U	1.0	0.50	ug/L			11/11/20 05:06	1
1,3-Dichlorobenzene	1.0	U	1.0	0.34	ug/L			11/11/20 05:06	1
1,4-Dichlorobenzene	1.0	U	1.0	0.33	ug/L			11/11/20 05:06	1
1,2-Dichlorobenzene	1.0	U	1.0	0.21	ug/L			11/11/20 05:06	1
Dichlorodifluoromethane	1.0	U	1.0	0.31	ug/L			11/11/20 05:06	1
1,2,4-Trichlorobenzene	1.0	U	1.0		ug/L			11/11/20 05:06	1
1,4-Dioxane	50	U	50	28	ug/L			11/11/20 05:06	1
1,2,3-Trichlorobenzene	1.0	U	1.0	0.36	ug/L			11/11/20 05:06	1
1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.38	ug/L			11/11/20 05:06	1
Chlorobromomethane	1.0	U	1.0		ug/L			11/11/20 05:06	1
Isopropylbenzene	1.0	U	1.0		ug/L			11/11/20 05:06	1
Methyl acetate	5.0	U	5.0	0.79	ug/L			11/11/20 05:06	1
Methylcyclohexane	1.0	U	1.0		ug/L			11/11/20 05:06	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					11/11/20 05:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1 2-Dichloroethane-d4 (Surr)	102	_	75 - 123					11/11/20 05:06	1

rematively identified Compound	None	ug/L		11/11/20 05.06	1
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102	75 - 123		11/11/20 05:06	1
Toluene-d8 (Surr)	99	80 - 120		11/11/20 05:06	1
4-Bromofluorobenzene	104	76 - 120		11/11/20 05:06	1
Dibromofluoromethane (Surr)	102	77 - 124		11/11/20 05:06	1

Method: 8270E SIM ID - Semiv	olatile Organic Compo	unds (GC/M	S SIM / Isotope	Dilutio	on)		
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1.4-Dioxane		0.20	0.016 ug/L		11/10/20 21:30	11/11/20 03:54	1

Eurofins TestAmerica, Edison

Page 30 of 157

S

3

4

7

9

11

13

15

16

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: SW-3 Lab Sample ID: 460-222216-3

Date Collected: 11/03/20 16:00 Matrix: Water Date Received: 11/05/20 18:00

Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	32		10 - 150				11/10/20 21:30	11/11/20 03:54	1
Method: 8270E - Semivola	tile Organic Co	mpounds	(GC/MS)						
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	10	U	10	0.29	ug/L		11/09/20 09:26	11/10/20 11:22	1
2-Chlorophenol	10	U	10	0.38	ug/L		11/09/20 09:26	11/10/20 11:22	1
2-Methylphenol	10	U	10	0.67	ug/L		11/09/20 09:26	11/10/20 11:22	1
4-Methylphenol	10	U	10	0.65	ug/L		11/09/20 09:26	11/10/20 11:22	1
2-Nitrophenol	10	U	10		ug/L		11/09/20 09:26	11/10/20 11:22	1
2,4-Dimethylphenol	10	U	10	0.62	ug/L		11/09/20 09:26	11/10/20 11:22	1
2,4-Dichlorophenol	10	U	10		ug/L		11/09/20 09:26	11/10/20 11:22	1
4-Chloro-3-methylphenol	10	U	10		ug/L		11/09/20 09:26	11/10/20 11:22	1
2,4,6-Trichlorophenol	10	U	10		ug/L		11/09/20 09:26	11/10/20 11:22	1
2,4,5-Trichlorophenol	10	U	10		ug/L		11/09/20 09:26	11/10/20 11:22	1
2,4-Dinitrotoluene	2.0	U	2.0		ug/L		11/09/20 09:26	11/10/20 11:22	1
4-Nitrophenol	30		30		ug/L		11/09/20 09:26	11/10/20 11:22	1
4,6-Dinitro-2-methylphenol	30		30		ug/L		11/09/20 09:26	11/10/20 11:22	1
Pentachlorophenol	30		30		ug/L		11/09/20 09:26	11/10/20 11:22	1
Bis(2-chloroethyl)ether	1.0		1.0		ug/L		11/09/20 09:26	11/10/20 11:22	1
N-Nitrosodi-n-propylamine	1.0		1.0		ug/L		11/09/20 09:26	11/10/20 11:22	1
Hexachloroethane	2.0		2.0		ug/L		11/09/20 09:26	11/10/20 11:22	1
Nitrobenzene	1.0		1.0		ug/L		11/09/20 09:26	11/10/20 11:22	1
Isophorone	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	
Naphthalene	2.0		2.0		ug/L		11/09/20 09:26	11/10/20 11:22	1
4-Chloroaniline	2.0		2.0		ug/L		11/09/20 09:26	11/10/20 11:22	1
Hexachlorobutadiene	2.0		2.0		ug/L		11/09/20 09:26	11/10/20 11:22	·
2-Methylnaphthalene	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	1
Hexachlorocyclopentadiene	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	1
2-Chloronaphthalene	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	· · · · · · · · · · · · · · · · · · ·
2-Nitroaniline	20		20		ug/L		11/09/20 09:26	11/10/20 11:22	1
Dimethyl phthalate	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	1
Acenaphthylene	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	· · · · · · · · 1
2,6-Dinitrotoluene	2.0		2.0		ug/L		11/09/20 09:26	11/10/20 11:22	1
3-Nitroaniline	20		20		ug/L		11/09/20 09:26	11/10/20 11:22	1
Acenaphthene	10		10	1.1	ug/L		11/09/20 09:26	11/10/20 11:22	
Dibenzofuran	10		10		ug/L ug/L			11/10/20 11:22	1
2,4-Dinitrophenol		U *	30		ug/L ug/L			11/10/20 11:22	1
Diethyl phthalate	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	
4-Chlorophenyl phenyl ether	10				•			11/10/20 11:22	1
, , , ,	10		10 10		ug/L		11/09/20 09:26	11/10/20 11:22	1
Fluorene 4 Nitrappilina					ug/L		11/09/20 09:26		1
4-Nitroaniline	20		20		ug/L		11/09/20 09:26	11/10/20 11:22	1
N-Nitrosodiphenylamine	10 10		10 10		ug/L		11/09/20 09:26	11/10/20 11:22	1
4-Bromophenyl phenyl ether					ug/L		11/09/20 09:26	11/10/20 11:22	
Hexachlorobenzene	1.0		1.0		ug/L		11/09/20 09:26	11/10/20 11:22	1
Phenanthrene	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	1
Anthracene	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	
Carbazole	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	1
Di-n-butyl phthalate	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	1
Fluoranthene	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	
Pyrene	10	U	10	1.6	ug/L		11/09/20 09:26	11/10/20 11:22	1
Access to the access of the fall had a district.	10	1.1	10	0.05	/1		44100100 00.00		

Eurofins TestAmerica, Edison

11/09/20 09:26 11/10/20 11:22

Page 31 of 157

10

0.85 ug/L

10 U

Butyl benzyl phthalate

2

3

5

b

11

13

<u>15</u>

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: SW-3 Lab Sample ID: 460-222216-3

Date Collected: 11/03/20 16:00 Matrix: Water
Date Received: 11/05/20 18:00

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1.0	U	1.0	0.59	ug/L		11/09/20 09:26	11/10/20 11:22	1
10	U	10	0.91	ug/L		11/09/20 09:26	11/10/20 11:22	1
10	U	10	0.80	ug/L		11/09/20 09:26	11/10/20 11:22	1
10	U	10	0.75	ug/L		11/09/20 09:26	11/10/20 11:22	1
2.0	U	2.0	0.68	ug/L		11/09/20 09:26	11/10/20 11:22	1
1.0	U	1.0	0.67	ug/L		11/09/20 09:26	11/10/20 11:22	1
1.0	U	1.0	0.41	ug/L		11/09/20 09:26	11/10/20 11:22	1
2.0	U	2.0	0.94	ug/L		11/09/20 09:26	11/10/20 11:22	1
1.0	U	1.0	0.72	ug/L		11/09/20 09:26	11/10/20 11:22	1
10	U	10	0.70	ug/L		11/09/20 09:26	11/10/20 11:22	1
10	U	10	1.2	ug/L		11/09/20 09:26	11/10/20 11:22	1
10	U	10	2.3	ug/L		11/09/20 09:26	11/10/20 11:22	1
10	U	10	1.6	ug/L		11/09/20 09:26	11/10/20 11:22	1
10	U	10	2.1	ug/L		11/09/20 09:26	11/10/20 11:22	1
10	U	10	2.2	ug/L		11/09/20 09:26	11/10/20 11:22	1
10	U	10	1.3	ug/L		11/09/20 09:26	11/10/20 11:22	1
10	U	10	0.63	ug/L		11/09/20 09:26	11/10/20 11:22	1
10	U	10	1.2	ug/L		11/09/20 09:26	11/10/20 11:22	1
10	U	10	0.75	ug/L		11/09/20 09:26	11/10/20 11:22	1
20	U	20	1.4	ug/L		11/09/20 09:26	11/10/20 11:22	1
10	U	10	0.59	ug/L		11/09/20 09:26	11/10/20 11:22	1
Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
None		ug/L				11/09/20 09:26	11/10/20 11:22	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
92		46 - 137				11/09/20 09:26	11/10/20 11:22	1
38		10 - 50				11/09/20 09:26	11/10/20 11:22	1
80		39 - 150				11/09/20 09:26	11/10/20 11:22	1
125		36 - 159				11/09/20 09:26	11/10/20 11:22	1
50		18 - 72				11/09/20 09:26	11/10/20 11:22	1
84		42 - 127				11/09/20 09:26	11/10/20 11:22	1
rine Pesticid	les (GC)							
Regult	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
	1.0 10 10 10 2.0 1.0 1.0 2.0 1.0 10 10 10 10 10 10 10 10 20 10 Est. Result None %Recovery 92 38 80 125 50 84	%Recovery 92 38 80 125 50	1.0 U 1.0 10 U 10 10 U 10 10 U 10 10 U 10 2.0 U 2.0 1.0 U 1.0 1.0 U 1.0 2.0 U 2.0 1.0 U 1.0 2.0 U 2.0 1.0 U 1.0 1.0 U 1.0 10 U 10 20 U 20 10 U 10 Est. Result Qualifier Unit ug/L %Recovery Qualifier Limits 92 U 20 10 U 10 **Recovery Qualifier Unit ug/L %Recovery Qualifier Limits 92 U 20 10 U 10 **Recovery Qualifier Unit ug/L 10 U 10 11 U 10 12 U 10 13 U 10 Est. Result Qualifier Unit ug/L	1.0 U 1.0 0.59 10 U 10 0.80 10 U 10 0.80 10 U 10 0.75 2.0 U 2.0 0.68 1.0 U 1.0 0.41 2.0 U 2.0 0.94 1.0 U 1.0 0.72 10 U 1.0 0.72 10 U 10 0.70 10 U 10 10 0.70 10 U 10 10 1.2 10 U 10 10 2.3 10 U 10 10 1.6 10 U 10 10 2.1 10 U 10 10 1.3 10 U 10 10 1.3 10 U 10 10 1.2 10 U 10 0.63 10 U 10 10 0.63 10 U 10 10 0.59 Est. Result None Unit Ug/L **Recovery Qualifier Unit Ug/L **Recovery Unit Ug/L **Recovery Qualifier Unit Ug/L **Recovery Qualifier Unit Ug/L **Recovery Unit Ug/L **Recovery Unit Ug/L **Recovery Unit Ug/L **Recovery Unit Unit Unit Ug/L **Recovery Unit Unit Unit Unit Unit Unit Unit Unit	1.0 U 1.0 0.59 ug/L 10 U 10 0.91 ug/L 10 U 10 0.80 ug/L 10 U 10 0.75 ug/L 2.0 U 2.0 0.68 ug/L 1.0 U 1.0 0.67 ug/L 1.0 U 1.0 0.41 ug/L 2.0 U 2.0 0.94 ug/L 1.0 U 1.0 0.72 ug/L 1.0 U 1.0 0.70 ug/L 1.0 U 10 10 1.2 ug/L 10 U 10 10 2.3 ug/L 10 U 10 10 2.3 ug/L 10 U 10 10 2.1 ug/L 10 U 10 10 2.1 ug/L 10 U 10 10 2.2 ug/L 10 U 10 10 2.9 ug/L 10 U 10 10 2.9 ug/L 10 U 10 10 2.9 ug/L 10 U 10 0.63 ug/L 10 U 10 0.63 ug/L 10 U 10 0.63 ug/L 10 U 10 0.59 ug/L 20 U 20 1.4 ug/L 20 U 20 1.4 ug/L 20 U 20 1.4 ug/L 20 U 20 1.59 ug/L 20 U 20 1.59 ug/L 21 Ug/L 22 U 20 1.4 ug/L 23 Ug/L 24 Ug/L 25 U 20 1.4 ug/L 26 U 20 1.59 ug/L 27 Unit D 0.59 ug/L 28 U 20 1.4 ug/L 29 U 20 1.4 ug/L 20 U 30 1.4 ug/L 21 Ug/L 22 U 4.2 ug/L 23 U 5.59 ug/L 24 0.137 ug/L 25 ug/L 26 1.59 ug/L	1.0 U 1.0 0.59 ug/L 10 U 10 0.91 ug/L 10 U 10 0.80 ug/L 10 U 10 0.75 ug/L 2.0 U 2.0 0.68 ug/L 1.0 U 1.0 0.67 ug/L 1.0 U 1.0 0.67 ug/L 2.0 U 2.0 0.94 ug/L 1.0 U 1.0 0.72 ug/L 1.0 U 1.0 0.70 ug/L 1.0 U 10 1.2 ug/L 1.0 U 10 1.3 ug/L 1.0 U 10 1.3 ug/L 1.0 U 10 1.3 ug/L 1.0 U 10 1.2 ug/L 1.0 U 10 0.63 ug/L 1.0 U 10 1.5 ug/L 1.0 U 10 0.63 ug/L 1.0 U 10 0.65 ug/L 20 U 20 1.4 ug/L 20 U 20 1.59 ug/L 20 U 20 1.59 ug/L 21 Ug/L 22 Ug/L 23 U 20 0.59 ug/L 24 U 25 U 0.59 ug/L 25 U 36 159 36 159 50 18 72 84 42 127	1.0 U 1.0 0.59 ug/L 11/09/20 09:26 10 U 10 0.91 ug/L 11/09/20 09:26 10 U 10 0.80 ug/L 11/09/20 09:26 10 U 10 0.75 ug/L 11/09/20 09:26 10 U 10 0.68 ug/L 11/09/20 09:26 1.0 U 1.0 0.67 ug/L 11/09/20 09:26 1.0 U 1.0 0.67 ug/L 11/09/20 09:26 1.0 U 1.0 0.41 ug/L 11/09/20 09:26 1.0 U 1.0 0.41 ug/L 11/09/20 09:26 1.0 U 1.0 0.72 ug/L 11/09/20 09:26 1.0 U 1.0 0.72 ug/L 11/09/20 09:26 1.0 U 1.0 0.70 ug/L 11/09/20 09:26 1.0 U 1.0 1.2 ug/L 11/09/20 09:26 1.0 U 1.1 1.2 ug/L 11/09/20 09:26 1.0 U 1.1 1.2 ug/L 11/09/20 09:26 1.0 U 1.2 ug/L 11/09/20 09:26 1.0 U 1.3 ug/L 11/09/20 09:26 1.0 U 1.0 0.63 ug/L 11/09/20 09:26 1.0 U 1.0 0.63 ug/L 11/09/20 09:26 1.0 U 1.0 0.75 ug/L 11/09	1.0 U

Method: 8081B - Organoc	hlorine Pesticio	les (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	0.020	U	0.020	0.0060	ug/L		11/08/20 14:01	11/11/20 10:55	1
4,4'-DDE	0.020	U	0.020	0.0020	ug/L		11/08/20 14:01	11/11/20 10:55	1
4,4'-DDT	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/11/20 10:55	1
Aldrin	0.020	U	0.020	0.0030	ug/L		11/08/20 14:01	11/11/20 10:55	1
alpha-BHC	0.020	U	0.020	0.0070	ug/L		11/08/20 14:01	11/11/20 10:55	1
beta-BHC	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/11/20 10:55	1
Chlordane (technical)	0.50	U	0.50	0.055	ug/L		11/08/20 14:01	11/11/20 10:55	1
delta-BHC	0.020	U	0.020	0.0050	ug/L		11/08/20 14:01	11/11/20 10:55	1
Dieldrin	0.020	U	0.020	0.0030	ug/L		11/08/20 14:01	11/11/20 10:55	1
Endosulfan I	0.020	U	0.020	0.0020	ug/L		11/08/20 14:01	11/11/20 10:55	1
Endosulfan II	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/11/20 10:55	1
Endosulfan sulfate	0.020	U	0.020	0.0060	ug/L		11/08/20 14:01	11/11/20 10:55	1
Endrin	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/11/20 10:55	1
Endrin aldehyde	0.020	U	0.020	0.0080	ug/L		11/08/20 14:01	11/11/20 10:55	1
Endrin ketone	0.020	U	0.020	0.0080	ug/L		11/08/20 14:01	11/11/20 10:55	1

Eurofins TestAmerica, Edison

Page 32 of 157

2

3

5

10

12

14

15

10

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: SW-3 Lab Sample ID: 460-222216-3

Date Collected: 11/03/20 16:00 Matrix: Water Date Received: 11/05/20 18:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
gamma-BHC (Lindane)	0.020	U	0.020	0.012	ug/L		11/08/20 14:01	11/11/20 10:55	1
Heptachlor	0.020	U	0.020	0.0030	ug/L		11/08/20 14:01	11/11/20 10:55	1
Heptachlor epoxide	0.020	U	0.020	0.0050	ug/L		11/08/20 14:01	11/11/20 10:55	1
Methoxychlor	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/11/20 10:55	1
Toxaphene	0.50	U	0.50	0.11	ug/L		11/08/20 14:01	11/11/20 10:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	77		10 - 132				11/08/20 14:01	11/11/20 10:55	1
DCB Decachlorobiphenyl	75		10 - 132				11/08/20 14:01	11/11/20 10:55	1
Tetrachloro-m-xylene	81		10 - 150				11/08/20 14:01	11/11/20 10:55	1
Tetrachloro-m-xylene	79		10 - 150				11/08/20 14:01	11/11/20 10:55	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 17:53	1
Aroclor 1221	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 17:53	1
Aroclor 1232	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 17:53	1
Aroclor 1242	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 17:53	1
Aroclor 1248	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 17:53	1
Aroclor 1254	0.40	U	0.40	0.11	ug/L		11/08/20 14:08	11/09/20 17:53	1
Aroclor 1260	0.40	U	0.40	0.11	ug/L		11/08/20 14:08	11/09/20 17:53	1
Aroclor-1262	0.40	U	0.40	0.11	ug/L		11/08/20 14:08	11/09/20 17:53	1
Aroclor 1268	0.40	U	0.40	0.11	ug/L		11/08/20 14:08	11/09/20 17:53	1
Polychlorinated biphenyls, Total	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 17:53	1
Surragata	9/ Bassyami	Ovalifian	Limita				Dramarad	Amalumad	Dil 500

Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	89	10 - 150	11/08/20 14:08	11/09/20 17:53	1
DCB Decachlorobiphenyl	83	10 - 150	11/08/20 14:08	11/09/20 17:53	1
Tetrachloro-m-xylene	88	48 - 125	11/08/20 14:08	11/09/20 17:53	1
Tetrachloro-m-xylene	91	48 - 125	11/08/20 14:08	11/09/20 17:53	1

Method: 8151A - Herbicides	(GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	1.2	U	1.2	0.13	ug/L		11/09/20 20:09	11/10/20 12:39	1
Silvex (2,4,5-TP)	1.2	U	1.2	0.11	ug/L		11/09/20 20:09	11/10/20 12:39	1
2,4,5-T	1.2	U	1.2	0.12	ug/L		11/09/20 20:09	11/10/20 12:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	92		39 - 145				11/09/20 20:09	11/10/20 12:39	1
2,4-Dichlorophenylacetic acid	112		39 ₋ 145				11/09/20 20:09	11/10/20 12:39	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	4.5	J	5.1	2.4	ng/L		11/09/20 12:10	11/10/20 20:15	1
Perfluoropentanoic acid (PFPeA)	8.8		2.0	0.50	ng/L		11/09/20 12:10	11/10/20 20:15	1
Perfluorohexanoic acid (PFHxA)	10		2.0	0.59	ng/L		11/09/20 12:10	11/10/20 20:15	1
Perfluoroheptanoic acid (PFHpA)	9.4		2.0	0.25	ng/L		11/09/20 12:10	11/10/20 20:15	1
Perfluorooctanoic acid (PFOA)	51		2.0	0.86	ng/L		11/09/20 12:10	11/10/20 20:15	1
Perfluorononanoic acid (PFNA)	1.7	J	2.0	0.27	ng/L		11/09/20 12:10	11/10/20 20:15	1
Perfluorodecanoic acid (PFDA)	2.0	U	2.0	0.31	ng/L		11/09/20 12:10	11/10/20 20:15	1
Perfluoroundecanoic acid (PFUnA)	2.0	U	2.0	1.1	ng/L		11/09/20 12:10	11/10/20 20:15	1

Eurofins TestAmerica, Edison

Page 33 of 157

2

3

5

<u>'</u>

10

11

11

15

10

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: SW-3 Lab Sample ID: 460-222216-3

Date Collected: 11/03/20 16:00 Matrix: Water

Date Received: 11/05/20 18:00

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perfluorododecanoic acid (PFDoA)	2.0	U	2.0	0.56	ng/L		11/09/20 12:10	11/10/20 20:15	
Perfluorotridecanoic acid (PFTriA)	2.0	U	2.0	1.3	ng/L		11/09/20 12:10	11/10/20 20:15	
Perfluorotetradecanoic acid (PFTeA)	2.0	U	2.0	0.74	ng/L		11/09/20 12:10	11/10/20 20:15	•
Perfluorobutanesulfonic acid (PFBS)	2.6		2.0	0.20	ng/L		11/09/20 12:10	11/10/20 20:15	,
Perfluorohexanesulfonic acid (PFHxS)	11		2.0	0.58	ng/L		11/09/20 12:10	11/10/20 20:15	,
Perfluoroheptanesulfonic Acid (PFHpS)	0.53	J	2.0	0.19	ng/L		11/09/20 12:10	11/10/20 20:15	,
Perfluorooctanesulfonic acid (PFOS)	15		2.0	0.55	ng/L		11/09/20 12:10	11/10/20 20:15	,
Perfluorodecanesulfonic acid (PFDS)	2.0	U	2.0	0.32	ng/L		11/09/20 12:10	11/10/20 20:15	
Perfluorooctanesulfonamide (FOSA)	2.0	U	2.0	0.99	ng/L		11/09/20 12:10	11/10/20 20:15	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	5.1	U	5.1	1.2	ng/L		11/09/20 12:10	11/10/20 20:15	,
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	5.1	U	5.1	1.3	ng/L		11/09/20 12:10	11/10/20 20:15	
6:2 FTS `	5.1	U	5.1	2.5	ng/L		11/09/20 12:10	11/10/20 20:15	•
8:2 FTS	2.0	U	2.0	0.47	ng/L		11/09/20 12:10	11/10/20 20:15	•
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C4 PFBA	46		25 - 150				11/09/20 12:10	11/10/20 20:15	-
13C5 PFPeA	61		25 - 150				11/09/20 12:10	11/10/20 20:15	
13C2 PFHxA	68		25 - 150				11/09/20 12:10	11/10/20 20:15	
13C4 PFHpA	70		25 - 150				11/09/20 12:10	11/10/20 20:15	
13C4 PFOA	69		25 - 150				11/09/20 12:10	11/10/20 20:15	
13C5 PFNA	63		25 - 150				11/09/20 12:10	11/10/20 20:15	
13C2 PFDA	61		25 - 150				11/09/20 12:10	11/10/20 20:15	
13C2 PFUnA	57		25 - 150				11/09/20 12:10	11/10/20 20:15	
13C2 PFDoA	56		25 - 150				11/09/20 12:10	11/10/20 20:15	
13C2 PFTeDA	52		25 - 150				11/09/20 12:10	11/10/20 20:15	
13C3 PFBS	79		25 - 150				11/09/20 12:10	11/10/20 20:15	
1802 PFHxS	87		25 - 150				11/09/20 12:10	11/10/20 20:15	
13C4 PFOS	86		25 - 150				11/09/20 12:10	11/10/20 20:15	
13C8 FOSA	69		25 - 150				11/09/20 12:10	11/10/20 20:15	
d3-NMeFOSAA	66		25 - 150				11/09/20 12:10	11/10/20 20:15	
d5-NEtFOSAA	68		25 - 150				11/09/20 12:10	11/10/20 20:15	
M2-6:2 FTS	72		25 - 150				11/09/20 12:10	11/10/20 20:15	
	68		25 - 150					11/10/20 20:15	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	1.3	J	2.0	0.19	ug/L		11/10/20 10:17	11/10/20 20:42	1
Aluminum	150000		40.0	8.0	ug/L		11/10/20 10:17	11/10/20 20:42	1
Arsenic	49.5		2.0	0.89	ug/L		11/10/20 10:17	11/10/20 20:42	1
Barium	2990		4.0	0.91	ug/L		11/10/20 10:17	11/10/20 20:42	1
Beryllium	7.4		0.80	0.098	ug/L		11/10/20 10:17	11/10/20 20:42	1
Calcium	191000		200	22.7	ug/L		11/10/20 10:17	11/10/20 20:42	1
Cadmium	11.1		2.0	0.16	ug/L		11/10/20 10:17	11/10/20 20:42	1
Cobalt	180		4.0	0.26	ug/L		11/10/20 10:17	11/10/20 20:42	1
Chromium	205		4.0	0.69	ug/L		11/10/20 10:17	11/10/20 20:42	1
Copper	325		4.0	2.5	ug/L		11/10/20 10:17	11/10/20 20:42	1

Eurofins TestAmerica, Edison

Page 34 of 157

2

3

5

7

9

11

1 <u>/</u>

15

17

3/30/2021

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: SW-3 Lab Sample ID: 460-222216-3

Date Collected: 11/03/20 16:00 Matrix: Water Date Received: 11/05/20 18:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	447000		120	8.5	ug/L		11/10/20 10:17	11/10/20 20:42	1
Potassium	17200		200	112	ug/L		11/10/20 10:17	11/10/20 20:42	1
Magnesium	65000		200	15.4	ug/L		11/10/20 10:17	11/10/20 20:42	1
Manganese	42000		80.0	11.1	ug/L		11/10/20 10:17	11/10/20 20:49	10
Sodium	29300		200	58.2	ug/L		11/10/20 10:17	11/10/20 20:42	1
Nickel	214		4.0	0.45	ug/L		11/10/20 10:17	11/10/20 20:42	1
Lead	513	В	1.2	0.11	ug/L		11/10/20 10:17	11/10/20 20:42	1
Antimony	3.5		2.0	0.76	ug/L		11/10/20 10:17	11/10/20 20:42	1
Selenium	10.4		2.5	0.46	ug/L		11/10/20 10:17	11/10/20 20:42	1
Thallium	3.9		0.80	0.17	ug/L		11/10/20 10:17	11/10/20 20:42	1
Vanadium	442		4.0	0.37	ug/L		11/10/20 10:17	11/10/20 20:42	1
Zinc	3410		16.0	5.1	ug/L		11/10/20 10:17	11/10/20 20:42	1
Method: 7470A - Mercury (CVAA	A)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	1.5		0.20	0.091	ug/L		11/09/20 12:39	11/09/20 14:22	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.011		0.010	0.0040	mg/L		11/17/20 12:02	11/17/20 13:09	

Client Sample ID: S-1 Lab Sample ID: 460-222216-4

 Date Collected: 11/03/20 12:30
 Matrix: Solid

 Date Received: 11/05/20 18:00
 Percent Solids: 23.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	9.7	U H H3	9.7	4.2	ug/Kg	☆	11/06/20 19:10	11/14/20 14:48	1
Bromomethane	9.7	U H H3	9.7	9.7	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
Vinyl chloride	9.7	U H H3	9.7	5.3	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
Chloroethane	9.7	U H H3	9.7	5.1	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
Methylene Chloride	9.7	U H H3	9.7	11	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
Acetone	480	H H3	58	55	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
Carbon disulfide	9.7	U H H3	9.7	2.6	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
Trichlorofluoromethane	9.7	U H H3	9.7	3.9	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
1,1-Dichloroethene	9.7	U H H3	9.7	2.2	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
1,1-Dichloroethane	9.7	U H H3	9.7	2.0	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
trans-1,2-Dichloroethene	9.7	U H H3	9.7	2.4	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
cis-1,2-Dichloroethene	9.7	U H H3	9.7	3.5	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
Chloroform	9.7	U H H3	9.7	9.4	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
1,2-Dichloroethane	9.7	U H H3	9.7	2.9	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
2-Butanone (MEK)	280	H H3	48	3.6	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
1,1,1-Trichloroethane	9.7	U H H3	9.7	2.3	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
Carbon tetrachloride	9.7	U H H3	9.7	3.7	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
Dichlorobromomethane	9.7	U H H3	9.7	2.5	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
1,2-Dichloropropane	9.7	U H H3	9.7	4.1	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
cis-1,3-Dichloropropene	9.7	U H H3	9.7	2.6	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
Trichloroethene	9.7	U H H3	9.7	3.1	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
Chlorodibromomethane	9.7	U H H3	9.7	1.9	ug/Kg	☼	11/06/20 19:10	11/14/20 14:48	1
1,1,2-Trichloroethane	9.7	U H H3	9.7	1.7	ug/Kg	₽	11/06/20 19:10	11/14/20 14:48	1

Eurofins TestAmerica, Edison

Page 35 of 157

2

3

5

7

9

11

12

14

15

16

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: S-1 Lab Sample ID: 460-222216-4

Date Collected: 11/03/20 12:30 **Matrix: Solid** Date Received: 11/05/20 18:00 Percent Solids: 23.9

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	9.7	U H H3	9.7	2.5	ug/Kg	*	11/06/20 19:10	11/14/20 14:48	1
trans-1,3-Dichloropropene	9.7	U H H3	9.7	2.6	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
Bromoform	9.7	U H H3	9.7	4.1	ug/Kg	☆	11/06/20 19:10	11/14/20 14:48	1
4-Methyl-2-pentanone (MIBK)	48	U H H3	48	15	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
2-Hexanone	48	U H H3	48	17	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
Tetrachloroethene	9.7	U H H3	9.7	3.0	ug/Kg	₽	11/06/20 19:10	11/14/20 14:48	1
1,1,2,2-Tetrachloroethane	9.7	U H H3	9.7	2.1	ug/Kg	₽	11/06/20 19:10	11/14/20 14:48	1
Toluene	9.7	U H H3	9.7	2.3	ug/Kg	₽	11/06/20 19:10	11/14/20 14:48	1
Chlorobenzene	9.7	U H H3	9.7	1.7	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
Ethylbenzene	9.7	U H H3	9.7	1.9	ug/Kg	₽	11/06/20 19:10	11/14/20 14:48	1
Styrene	9.7	U H H3	9.7	2.7	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
m-Xylene & p-Xylene	9.7	U H H3	9.7	1.7	ug/Kg	₽	11/06/20 19:10	11/14/20 14:48	1
o-Xylene	9.7	U H H3	9.7	1.9	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
1,1,2-Trichloro-1,2,2-trifluoroethane	9.7	U H H3	9.7	2.9	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
Methyl tert-butyl ether	9.7	U H H3	9.7	5.0	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
Cyclohexane	9.7	U H H3	9.7	2.1	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
Ethylene Dibromide	9.7	U H H3	9.7	1.7	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
1,3-Dichlorobenzene	9.7	U H H3	9.7	3.5	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
1,4-Dichlorobenzene	9.7	U H H3	9.7	2.2	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
1,2-Dichlorobenzene	9.7	U H H3	9.7	3.5	ug/Kg	₽	11/06/20 19:10	11/14/20 14:48	1
Dichlorodifluoromethane	9.7	U H H3	9.7	3.3	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
1,2,4-Trichlorobenzene	9.7	U H H3	9.7	3.5	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
1,4-Dioxane	190	U H H3	190	89	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
1,2,3-Trichlorobenzene	9.7	U H H3	9.7	1.8	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
1,2-Dibromo-3-Chloropropane	9.7	U H H3	9.7	4.5	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
Chlorobromomethane	9.7	U H H3	9.7	2.7	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
Isopropylbenzene	9.7	U H H3	9.7	2.8	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
Methyl acetate	48	U H H3	48	42	ug/Kg	₩	11/06/20 19:10	11/14/20 14:48	1
Methylcyclohexane	9.7	U H H3	9.7	4.8	ug/Kg	≎	11/06/20 19:10	11/14/20 14:48	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None	Н НЗ	ug/Kg	‡			11/06/20 19:10	11/14/20 14:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	117		77 - 145				11/06/20 19:10	11/14/20 14:48	1
Toluene-d8 (Surr)	94		80 - 120				11/06/20 19:10	11/14/20 14:48	1
4-Bromofluorobenzene	108		79 - 125				11/06/20 19:10	11/14/20 14:48	1
Dibromofluoromethane (Surr)	111		48 - 150				11/06/20 19:10	11/14/20 14:48	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	1400	U	1400	51	ug/Kg		11/10/20 22:20	11/11/20 23:39	1
2-Chlorophenol	1400	U	1400	49	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	1
2-Methylphenol	1400	U	1400	52	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	1
4-Methylphenol	1400	U	1400	86	ug/Kg	₽	11/10/20 22:20	11/11/20 23:39	1
2-Nitrophenol	1400	U	1400	140	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	1
2,4-Dimethylphenol	1400	U	1400	61	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	1
2,4-Dichlorophenol	560	U	560	89	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	1
4-Chloro-3-methylphenol	1400	U	1400	78	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	1
2,4,6-Trichlorophenol	560	U	560	180	ug/Kg	☆	11/10/20 22:20	11/11/20 23:39	1

Page 36 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: S-1 Lab Sample ID: 460-222216-4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2,4,5-Trichlorophenol	1400		1400	140	ug/Kg	— <u>=</u>	11/10/20 22:20	11/11/20 23:39	Diria
2,4-Dinitrotoluene	280		280	150	ug/Kg		11/10/20 22:20	11/11/20 23:39	
4-Nitrophenol	2800		2800	230	ug/Kg	~ ☆	11/10/20 22:20	11/11/20 23:39	
4,6-Dinitro-2-methylphenol	1100		1100	560	ug/Kg		11/10/20 22:20	11/11/20 23:39	
Pentachlorophenol	1100		1100	280	ug/Kg ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
Bis(2-chloroethyl)ether	140		140		ug/Kg ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
N-Nitrosodi-n-propylamine	140		140	100	ug/Kg ug/Kg		11/10/20 22:20	11/11/20 23:39	
Hexachloroethane	140		140	47	ug/Kg ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
Nitrobenzene	140		140	33	ug/Kg ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
sophorone	560		560	400	ug/Kg ug/Kg		11/10/20 22:20	11/11/20 23:39	
•	1400		1400	24	ug/Kg ug/Kg		11/10/20 22:20	11/11/20 23:39	
Naphthalene 4-Chloroaniline	1400		1400	250	ug/Kg ug/Kg	*	11/10/20 22:20	11/11/20 23:39	
						· · · · · · · · · · · · · · · · · · ·			
Hexachlorobutadiene	280		280	29	ug/Kg	₩.	11/10/20 22:20	11/11/20 23:39	
2-Methylnaphthalene	1400		1400	39	ug/Kg	☆	11/10/20 22:20	11/11/20 23:39	
Hexachlorocyclopentadiene	1400		1400	120	ug/Kg	<u> </u>	11/10/20 22:20	11/11/20 23:39	
2-Chloronaphthalene	1400		1400		ug/Kg	☼	11/10/20 22:20	11/11/20 23:39	
2-Nitroaniline	1400		1400		ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
Dimethyl phthalate	1400		1400	310	ug/Kg	<u></u>	11/10/20 22:20	11/11/20 23:39	
Acenaphthylene	1400		1400		ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
2,6-Dinitrotoluene	280		280	100		₩	11/10/20 22:20	11/11/20 23:39	
3-Nitroaniline	1400		1400	160	ug/Kg		11/10/20 22:20	11/11/20 23:39	
Acenaphthene	1400	U	1400	39	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
Dibenzofuran	1400	U	1400	19	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
2,4-Dinitrophenol	1100	U	1100	680	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
Diethyl phthalate	1400	U	1400	20	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
I-Chlorophenyl phenyl ether	1400	U	1400	49	ug/Kg	☼	11/10/20 22:20	11/11/20 23:39	
Fluorene	1400	U	1400	19	ug/Kg	☼	11/10/20 22:20	11/11/20 23:39	
4-Nitroaniline	1400	U	1400	160	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
N-Nitrosodiphenylamine	1400	U	1400	110	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
4-Bromophenyl phenyl ether	1400	U	1400	55	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
Hexachlorobenzene	140	U	140	66	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
Phenanthrene	92	J	1400	24	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
Anthracene	1400	U	1400	42	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
Carbazole	1400	U	1400	53	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
Di-n-butyl phthalate	1400	U	1400	52	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
Fluoranthene	200	J	1400	48	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
Pyrene	250		1400	34	ug/Kg		11/10/20 22:20	11/11/20 23:39	
Butyl benzyl phthalate	1400		1400		ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
Benzo[a]anthracene	140		140		ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
Chrysene	130		1400		ug/Kg	∴	11/10/20 22:20	11/11/20 23:39	
Bis(2-ethylhexyl) phthalate	1400		1400		ug/Kg		11/10/20 22:20	11/11/20 23:39	
Di-n-octyl phthalate	1400		1400		ug/Kg		11/10/20 22:20	11/11/20 23:39	
Benzo[b]fluoranthene	200		140		ug/Kg	 ∵	11/10/20 22:20	11/11/20 23:39	
Benzo[k]fluoranthene	63	.1	140		ug/Kg ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
			140		ug/Kg ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
Benzo[a]pyrene	130							11/11/20 23:39	
ndeno[1,2,3-cd]pyrene	110 140		140 140		ug/Kg	*	11/10/20 22:20		
Dibenz(a,h)anthracene	140		140	60	ug/Kg	φ.	11/10/20 22:20	11/11/20 23:39	
Benzo[g,h,i]perylene 1,1'-Biphenyl	110 1400		1400 1400	41	ug/Kg ug/Kg	 ∴	11/10/20 22:20 11/10/20 22:20	11/11/20 23:39 11/11/20 23:39	

Eurofins TestAmerica, Edison

3

8

11

13

15

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: S-1 Lab Sample ID: 460-222216-4

Date Collected: 11/03/20 12:30 **Matrix: Solid** Percent Solids: 23.9 Date Received: 11/05/20 18:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetophenone	1400	U	1400	68	ug/Kg	<u></u>	11/10/20 22:20	11/11/20 23:39	1
Benzaldehyde	1400	U *1	1400	230	ug/Kg	☼	11/10/20 22:20	11/11/20 23:39	1
Caprolactam	1400	U *1	1400	220	ug/Kg	₽	11/10/20 22:20	11/11/20 23:39	1
Atrazine	560	U	560	81	ug/Kg	☼	11/10/20 22:20	11/11/20 23:39	1
2,2'-oxybis[1-chloropropane]	1400	U	1400	25	ug/Kg	☼	11/10/20 22:20	11/11/20 23:39	1
1,2,4,5-Tetrachlorobenzene	1400	U	1400	43	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	1
2,3,4,6-Tetrachlorophenol	1400	U	1400	94	ug/Kg	☼	11/10/20 22:20	11/11/20 23:39	1
3,3'-Dichlorobenzidine	560	U	560	210	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	1
Bis(2-chloroethoxy)methane	1400	U	1400	110	ug/Kg	☼	11/10/20 22:20	11/11/20 23:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	82		19 - 105				11/10/20 22:20	11/11/20 23:39	1
Phenol-d5 (Surr)	86		26 - 101				11/10/20 22:20	11/11/20 23:39	1
Terphenyl-d14 (Surr)	118		25 - 127				11/10/20 22:20	11/11/20 23:39	1
2,4,6-Tribromophenol (Surr)	83		10 - 123				11/10/20 22:20	11/11/20 23:39	1
2-Fluorophenol (Surr)	83		18 - 106				11/10/20 22:20	11/11/20 23:39	1
2-Fluorobiphenyl	85		25 - 104				11/10/20 22:20	11/11/20 23:39	1

Z-i idolobiplichyi	00		20 - 104				11/10/20 22.20	11/11/20 20.00	,
Method: 8081B - Organoch	lorine Pesticid	les (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	28	U		4.8	ug/Kg		11/13/20 09:54	11/16/20 10:00	1
4,4'-DDE	12	J	28	3.3	ug/Kg	₩	11/13/20 09:54	11/16/20 10:00	1
4,4'-DDT	28	U	28	5.1	ug/Kg	₽	11/13/20 09:54	11/16/20 10:00	1
Aldrin	28	U	28	4.2	ug/Kg	₩	11/13/20 09:54	11/16/20 10:00	1
alpha-BHC	8.4	U	8.4	2.8	ug/Kg	₩	11/13/20 09:54	11/16/20 10:00	1
beta-BHC	8.4	U	8.4	3.1	ug/Kg	₩	11/13/20 09:54	11/16/20 10:00	1
Chlordane (technical)	280	U	280	68	ug/Kg	≎	11/13/20 09:54	11/16/20 10:00	1
delta-BHC	8.4	U	8.4	1.7	ug/Kg	₩	11/13/20 09:54	11/16/20 10:00	1
Dieldrin	8.4	U	8.4	3.6	ug/Kg	₩	11/13/20 09:54	11/16/20 10:00	1
Endosulfan I	28	U	28	4.3	ug/Kg	₽	11/13/20 09:54	11/16/20 10:00	1
Endosulfan II	28	U	28	7.2	ug/Kg	₩	11/13/20 09:54	11/16/20 10:00	1
Endosulfan sulfate	28	U	28	3.5	ug/Kg	₩	11/13/20 09:54	11/16/20 10:00	1
Endrin	28	U	28	4.0	ug/Kg	₩	11/13/20 09:54	11/16/20 10:00	1
Endrin aldehyde	28	U	28	6.6	ug/Kg	₩	11/13/20 09:54	11/16/20 10:00	1
Endrin ketone	28	U	28	5.4	ug/Kg	₩	11/13/20 09:54	11/16/20 10:00	1
gamma-BHC (Lindane)	8.4	U	8.4	2.6	ug/Kg	₩	11/13/20 09:54	11/16/20 10:00	1
Heptachlor	28	U	28	3.3	ug/Kg	₩	11/13/20 09:54	11/16/20 10:00	1
Heptachlor epoxide	28	U	28	4.2	ug/Kg	₩	11/13/20 09:54	11/16/20 10:00	1
Methoxychlor	28	U	28		ug/Kg	₩	11/13/20 09:54	11/16/20 10:00	1
Toxaphene	280	U	280	100	ug/Kg	₽	11/13/20 09:54	11/16/20 10:00	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	78	28 - 148	11/13/20 09:54	11/16/20 10:00	1
DCB Decachlorobiphenyl	93	28 - 148	11/13/20 09:54	11/16/20 10:00	1
Tetrachloro-m-xylene	70	34 - 118	11/13/20 09:54	11/16/20 10:00	1
Tetrachloro-m-xylene	72	34 - 118	11/13/20 09:54	11/16/20 10:00	1

Method: 8082A - Polychlorinat	ted Biphenyls ((PCBs) by Gas Ch	romatogra	phy				
Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	280 U	280	37	ug/Kg	<u></u>	11/13/20 09:49	11/16/20 22:27	1

Page 38 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: S-1 Lab Sample ID: 460-222216-4

Date Collected: 11/03/20 12:30

Matrix: Solid

Date Received: 11/05/20 18:00

Percent Solids: 23.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1221	280	U	280	37	ug/Kg	<u></u>	11/13/20 09:49	11/16/20 22:27	1
Aroclor 1232	280	U	280	37	ug/Kg	☼	11/13/20 09:49	11/16/20 22:27	1
Aroclor 1242	280	U	280	37	ug/Kg	₽	11/13/20 09:49	11/16/20 22:27	1
Aroclor 1248	280	U	280	37	ug/Kg	₩	11/13/20 09:49	11/16/20 22:27	1
Aroclor 1254	280	U	280	38	ug/Kg	₩	11/13/20 09:49	11/16/20 22:27	1
Aroclor 1260	280	U	280	38	ug/Kg	₽	11/13/20 09:49	11/16/20 22:27	1
Aroclor-1262	280	U	280	38	ug/Kg	₩	11/13/20 09:49	11/16/20 22:27	1
Aroclor 1268	280	U	280	38	ug/Kg	☼	11/13/20 09:49	11/16/20 22:27	1
Polychlorinated biphenyls, Total	280	U	280	38	ug/Kg	₩	11/13/20 09:49	11/16/20 22:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	124		10 - 150				11/13/20 09:49	11/16/20 22:27	1
DCB Decachlorobiphenyl	120		10 - 150				11/13/20 09:49	11/16/20 22:27	1
Tetrachloro-m-xylene	120		58 - 145				11/13/20 09:49	11/16/20 22:27	1
Tetrachloro-m-xylene	115		58 ₋ 145				11/13/20 09:49	11/16/20 22:27	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	140	U	140	51	ug/Kg	<u></u>	11/09/20 20:10	11/10/20 11:26	1
Silvex (2,4,5-TP)	140	U	140	15	ug/Kg	₩	11/09/20 20:10	11/10/20 11:26	1
2,4,5-T	140	U	140	30	ug/Kg	₩	11/09/20 20:10	11/10/20 11:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	92		30 - 150				11/09/20 20:10	11/10/20 11:26	1
2,4-Dichlorophenylacetic acid	90		30 - 150				11/09/20 20:10	11/10/20 11:26	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	0.55	JB	0.77	0.11	ug/Kg	<u></u>	11/17/20 09:15	11/19/20 08:53	1
Perfluoropentanoic acid (PFPeA)	0.48	J	0.77	0.30	ug/Kg	☼	11/17/20 09:15	11/19/20 08:53	1
Perfluorohexanoic acid (PFHxA)	0.28	J	0.77	0.16	ug/Kg	☼	11/17/20 09:15	11/19/20 08:53	1
Perfluoroheptanoic acid (PFHpA)	0.23	J	0.77	0.11	ug/Kg	₽	11/17/20 09:15	11/19/20 08:53	1
Perfluorooctanoic acid (PFOA)	0.61	J	0.77	0.33	ug/Kg	☼	11/17/20 09:15	11/19/20 08:53	1
Perfluorononanoic acid (PFNA)	0.22	J	0.77	0.14	ug/Kg	☼	11/17/20 09:15	11/19/20 08:53	1
Perfluorodecanoic acid (PFDA)	0.30	J	0.77	0.084	ug/Kg	₩	11/17/20 09:15	11/19/20 08:53	1
Perfluoroundecanoic acid (PFUnA)	0.34	J F1	0.77	0.14	ug/Kg	₩	11/17/20 09:15	11/19/20 08:53	1
Perfluorododecanoic acid (PFDoA)	0.27	J	0.77	0.26	ug/Kg	₩	11/17/20 09:15	11/19/20 08:53	1
Perfluorotridecanoic acid (PFTriA)	0.39	J	0.77	0.20	ug/Kg	₽	11/17/20 09:15	11/19/20 08:53	1
Perfluorotetradecanoic acid (PFTeA)	0.23	J	0.77	0.21	ug/Kg	₩	11/17/20 09:15	11/19/20 08:53	1
Perfluorobutanesulfonic acid (PFBS)	0.77	U	0.77	0.096	ug/Kg	☼	11/17/20 09:15	11/19/20 08:53	1
Perfluorohexanesulfonic acid (PFHxS)	0.81		0.77	0.12	ug/Kg	₩	11/17/20 09:15	11/19/20 08:53	1
Perfluoroheptanesulfonic Acid (PFHpS)	0.77	U	0.77	0.13	ug/Kg	₩	11/17/20 09:15	11/19/20 08:53	1
Perfluorooctanesulfonic acid (PFOS)	5.2	В	1.9	0.77	ug/Kg	₩	11/17/20 09:15	11/19/20 08:53	1
Perfluorodecanesulfonic acid (PFDS)	0.77	U F1	0.77	0.15	ug/Kg	₩	11/17/20 09:15	11/19/20 08:53	1
Perfluorooctanesulfonamide (FOSA)	0.77	U	0.77	0.31	ug/Kg	≎	11/17/20 09:15	11/19/20 08:53	1

Eurofins TestAmerica, Edison

6

3

6

8

10

12

4

16

17

erica, Edisori

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: S-1 Lab Sample ID: 460-222216-4

Date Collected: 11/03/20 12:30

Matrix: Solid

Date Received: 11/05/20 18:00

Percent Solids: 23.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	7.7	U	7.7	1.5	ug/Kg	— <u> </u>	11/17/20 09:15	11/19/20 08:53	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	7.7	U	7.7	1.4	ug/Kg	☼	11/17/20 09:15	11/19/20 08:53	1
6:2 FTS	7.7	U	7.7	0.58	ug/Kg	₩	11/17/20 09:15	11/19/20 08:53	1
8:2 FTS	7.7	U	7.7		ug/Kg	₽	11/17/20 09:15	11/19/20 08:53	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	81		25 - 150				11/17/20 09:15	11/19/20 08:53	1
13C5 PFPeA	61		25 - 150				11/17/20 09:15	11/19/20 08:53	1
13C2 PFHxA	90		25 - 150				11/17/20 09:15	11/19/20 08:53	1
13C4 PFHpA	90		25 - 150				11/17/20 09:15	11/19/20 08:53	1
13C4 PFOA	91		25 - 150				11/17/20 09:15	11/19/20 08:53	1
13C5 PFNA	83		25 - 150				11/17/20 09:15	11/19/20 08:53	1
13C2 PFDA	92		25 - 150				11/17/20 09:15	11/19/20 08:53	1
13C2 PFUnA	95		25 - 150				11/17/20 09:15	11/19/20 08:53	1
13C2 PFDoA	80		25 - 150				11/17/20 09:15	11/19/20 08:53	1
13C2 PFTeDA	94		25 - 150				11/17/20 09:15	11/19/20 08:53	1
13C3 PFBS	69		25 - 150				11/17/20 09:15	11/19/20 08:53	1
1802 PFHxS	94		25 - 150				11/17/20 09:15	11/19/20 08:53	1
13C4 PFOS	88		25 - 150				11/17/20 09:15	11/19/20 08:53	1
13C8 FOSA	64		25 - 150				11/17/20 09:15	11/19/20 08:53	1
d3-NMeFOSAA	79		25 - 150				11/17/20 09:15	11/19/20 08:53	1
d5-NEtFOSAA	82		25 - 150				11/17/20 09:15	11/19/20 08:53	1
M2-6:2 FTS	258	*5	25 - 150				11/17/20 09:15	11/19/20 08:53	1
M2-8:2 FTS	268	*5	25 - 150				11/17/20 09:15	11/19/20 08:53	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	7.1	U	7.1	4.0	mg/Kg	<u></u>	11/12/20 16:30	11/13/20 17:55	2
Aluminum	27600		142	20.1	mg/Kg	₩	11/12/20 16:30	11/13/20 17:55	2
Arsenic	7.8	J	10.6	2.2	mg/Kg	₩	11/12/20 16:30	11/13/20 17:55	2
Barium	293		142	13.7	mg/Kg	₩	11/12/20 16:30	11/13/20 17:55	2
Beryllium	1.4	U	1.4	0.23	mg/Kg	₩	11/12/20 16:30	11/13/20 17:55	2
Calcium	5780		3540	262	mg/Kg	₩	11/12/20 16:30	11/13/20 17:55	2
Cadmium	0.63	J	2.8	0.24	mg/Kg	₩	11/12/20 16:30	11/13/20 17:55	2
Cobalt	12.3	J	35.4	2.0	mg/Kg	₩	11/12/20 16:30	11/13/20 17:55	2
Chromium	46.3		7.1	5.0	mg/Kg	₩	11/12/20 16:30	11/13/20 17:55	2
Copper	96.7		17.7	4.4	mg/Kg	₩	11/12/20 16:30	11/13/20 17:55	2
Iron	21300		106	73.0	mg/Kg	₩	11/12/20 16:30	11/13/20 17:55	2
Potassium	1630	J	3540	218	mg/Kg	₩	11/12/20 16:30	11/13/20 17:55	2
Magnesium	5660		3540	240	mg/Kg	☆	11/12/20 16:30	11/13/20 17:55	2
Manganese	175		10.6	0.80	mg/Kg	₩	11/12/20 16:30	11/13/20 17:55	2
Sodium	3540	U	3540	308	mg/Kg	₩	11/12/20 16:30	11/13/20 17:55	2
Nickel	50.2		28.4	1.9	mg/Kg	₩	11/12/20 16:30	11/13/20 17:55	2
Lead	63.4		7.1	1.1	mg/Kg	₩	11/12/20 16:30	11/13/20 17:55	2
Antimony	14.2	U	14.2	4.1	mg/Kg	₩	11/12/20 16:30	11/13/20 17:55	2
Selenium	4.5	J	14.2	2.4	mg/Kg	₩	11/12/20 16:30	11/13/20 17:55	2
Thallium	14.2	U	14.2	2.2	mg/Kg	₩	11/12/20 16:30	11/13/20 17:55	2
Vanadium	64.0		35.4	3.3	mg/Kg	₩	11/12/20 16:30	11/13/20 17:55	2
Zinc	151		21.3	3.9	mg/Kg	☼	11/12/20 16:30	11/13/20 17:55	2

Eurofins TestAmerica, Edison

Page 40 of 157

2

3

6

8

10

12

14

10

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: S-1 Lab Sample ID: 460-222216-4

Date Collected: 11/03/20 12:30

Matrix: Solid

Date Received: 11/05/20 18:00

Percent Solids: 23.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.19		0.071	0.017	mg/Kg	<u></u>	11/16/20 03:07	11/16/20 07:17	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.87	U	0.87	0.44	mg/Kg	*	11/15/20 12:34	11/16/20 14:04	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	76.1		1.0	1.0	%			11/16/20 10:45	1

Client Sample ID: S-2

Date Collected: 11/03/20 04:00

Lab Sample ID: 460-222216-5

Matrix: Solid

Date Received: 11/05/20 18:00 Percent Solids: 46.3

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	5.7	U H H3	5.7	2.5	ug/Kg	<u></u>	11/06/20 19:11	11/14/20 01:51	1
Bromomethane	5.7	U H H3	5.7	5.7	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
Vinyl chloride	5.7	U H H3	5.7	3.1	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
Chloroethane	5.7	U H H3	5.7	3.0	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
Methylene Chloride	5.7	U H H3	5.7	6.6	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
Acetone	390	H H3	34	33	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
Carbon disulfide	5.7	U H H3	5.7	1.5	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
Trichlorofluoromethane	5.7	U H H3	5.7	2.3	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
1,1-Dichloroethene	5.7	U H H3	5.7	1.3	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
1,1-Dichloroethane	5.7	U H H3	5.7	1.2	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
trans-1,2-Dichloroethene	5.7	U H H3	5.7	1.4	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
cis-1,2-Dichloroethene	5.7	U H H3	5.7	2.1	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
Chloroform	5.7	U H H3	5.7	5.6	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
1,2-Dichloroethane	5.7	U H H3	5.7	1.7	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
2-Butanone (MEK)	38	H H3	29	2.1	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
1,1,1-Trichloroethane	5.7	U H H3	5.7	1.3	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
Carbon tetrachloride	5.7	U H H3	5.7	2.2	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
Dichlorobromomethane	5.7	U H H3	5.7	1.5	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
1,2-Dichloropropane	5.7	U H H3	5.7	2.4	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
cis-1,3-Dichloropropene	5.7	U H H3	5.7	1.6	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
Trichloroethene	5.7	U H H3	5.7	1.8	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
Chlorodibromomethane	5.7	U H H3	5.7	1.1	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
1,1,2-Trichloroethane	5.7	U H H3	5.7	1.0	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
Benzene	5.7	U H H3	5.7	1.5	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
trans-1,3-Dichloropropene	5.7	U H H3	5.7	1.5	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
Bromoform	5.7	U H H3	5.7	2.4	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
4-Methyl-2-pentanone (MIBK)	29	U H H3	29	8.9	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
2-Hexanone	29	U H H3	29	9.8	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
Tetrachloroethene	5.7	U H H3	5.7	1.8	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
1,1,2,2-Tetrachloroethane	5.7	U H H3	5.7	1.2	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
Toluene	5.7	U H H3	5.7	1.3	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
Chlorobenzene	5.7	U H H3	5.7	1.0	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
Ethylbenzene	5.7	U H H3	5.7	1.1	ug/Kg	₽	11/06/20 19:11	11/14/20 01:51	1
Styrene	5.7	U H H3	5.7	1.6	ug/Kg	₽	11/06/20 19:11	11/14/20 01:51	1
m-Xylene & p-Xylene	5.7	U H H3	5.7	1.0	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1

Eurofins TestAmerica, Edison

Page 41 of 157

2

3

5

6

8

10

12

14

4.6

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Dibromofluoromethane (Surr)

Client Sample ID: S-2 Lab Sample ID: 460-222216-5

Date Collected: 11/03/20 04:00 Matrix: Solid
Date Received: 11/05/20 18:00 Percent Solids: 46.3

Analyte	Result	Qualifier	RL	MDI	_ Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	5.7	U H H3	5.7	1.	ug/Kg		11/06/20 19:11	11/14/20 01:51	1
1,1,2-Trichloro-1,2,2-trifluoroethane	5.7	U H H3	5.7	1.7	7 ug/Kg	₽	11/06/20 19:11	11/14/20 01:51	1
Methyl tert-butyl ether	5.7	U H H3	5.7	2.9	ug/Kg	₽	11/06/20 19:11	11/14/20 01:51	1
Cyclohexane	5.7	U H H3	5.7	1.3	3 ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
Ethylene Dibromide	5.7	U H H3	5.7	1.0	ug/Kg	₽	11/06/20 19:11	11/14/20 01:51	1
1,3-Dichlorobenzene	5.7	U H H3	5.7	2.	1 ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
1,4-Dichlorobenzene	5.7	U H H3	5.7	1.3	3 ug/Kg	₽	11/06/20 19:11	11/14/20 01:51	1
1,2-Dichlorobenzene	5.7	U H H3	5.7	2.	1 ug/Kg	₽	11/06/20 19:11	11/14/20 01:51	1
Dichlorodifluoromethane	5.7	U H H3	5.7	1.9	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
1,2,4-Trichlorobenzene	5.7	U H H3	5.7	2.	1 ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
1,4-Dioxane	110	U H H3	110	53	3 ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
1,2,3-Trichlorobenzene	5.7	U H H3	5.7	1.0	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
1,2-Dibromo-3-Chloropropane	5.7	U H H3	5.7	2.6	ug/Kg	₽	11/06/20 19:11	11/14/20 01:51	1
Chlorobromomethane	5.7	U H H3	5.7	1.6	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
Isopropylbenzene	5.7	U H H3	5.7	1.6	ug/Kg	₽	11/06/20 19:11	11/14/20 01:51	1
Methyl acetate	29	U H H3	29	2	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
Methylcyclohexane	5.7	U H H3	5.7	2.9	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None	Н НЗ	ug/Kg	*			11/06/20 19:11	11/14/20 01:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	124	-	77 - 145				11/06/20 19:11	11/14/20 01:51	1
Toluene-d8 (Surr)	103		80 - 120				11/06/20 19:11	11/14/20 01:51	1
4-Bromofluorobenzene	115		79 - 125				11/06/20 19:11	11/14/20 01:51	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	710	U	710	26	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
2-Chlorophenol	710	U	710	25	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
2-Methylphenol	710	U	710	27	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
4-Methylphenol	710	U	710	45	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
2-Nitrophenol	710	U	710	72	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
2,4-Dimethylphenol	710	U	710	31	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
2,4-Dichlorophenol	290	U	290	46	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
4-Chloro-3-methylphenol	710	U	710	40	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
2,4,6-Trichlorophenol	290	U	290	92	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
2,4,5-Trichlorophenol	710	U	710	73	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
2,4-Dinitrotoluene	140	U	140	77	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
4-Nitrophenol	1400	U	1400	120	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
4,6-Dinitro-2-methylphenol	570	U	570	290	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
Pentachlorophenol	570	U	570	150	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
Bis(2-chloroethyl)ether	71	U	71	25	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
N-Nitrosodi-n-propylamine	71	U	71	52	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
Hexachloroethane	71	U	71	25	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
Nitrobenzene	71	U	71	17	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
Isophorone	290	U	290	210	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
Naphthalene	42	J	710	12	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
4-Chloroaniline	710	U	710	130	ug/Kg	≎	11/10/20 22:20	11/11/20 22:29	1

48 - 150

125

Eurofins TestAmerica, Edison

11/06/20 19:11 11/14/20 01:51

Page 42 of 157

2

3

6

9

11

13

15

16

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Phenol-d5 (Surr)

Client Sample ID: S-2 Lab Sample ID: 460-222216-5

Date Collected: 11/03/20 04:00 Matrix: Solid
Date Received: 11/05/20 18:00 Percent Solids: 46.3

Method: 8270E - Semivolati Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Hexachlorobutadiene	140	U	140	15	ug/Kg	— <u></u>	11/10/20 22:20	11/11/20 22:29	
2-Methylnaphthalene	710	U	710	20	ug/Kg		11/10/20 22:20	11/11/20 22:29	
Hexachlorocyclopentadiene	710	U	710	63	ug/Kg	≎	11/10/20 22:20	11/11/20 22:29	
2-Chloronaphthalene	710	U	710	33	ug/Kg	₽	11/10/20 22:20	11/11/20 22:29	
2-Nitroaniline	710	U	710	27		☆	11/10/20 22:20	11/11/20 22:29	
Dimethyl phthalate	710	U	710	160	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	
Acenaphthylene	710	U	710	7.2	ug/Kg		11/10/20 22:20	11/11/20 22:29	
2,6-Dinitrotoluene	140	U	140		ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	
3-Nitroaniline	710	U	710		ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	
Acenaphthene	89		710		ug/Kg		11/10/20 22:20	11/11/20 22:29	
Dibenzofuran	38	J	710		ug/Kg	☆	11/10/20 22:20	11/11/20 22:29	
2,4-Dinitrophenol	570		570		ug/Kg	☆	11/10/20 22:20	11/11/20 22:29	
Diethyl phthalate	710		710		ug/Kg	 	11/10/20 22:20	11/11/20 22:29	
4-Chlorophenyl phenyl ether	710		710	25		☆	11/10/20 22:20	11/11/20 22:29	
Fluorene	87		710	9.7		₩	11/10/20 22:20	11/11/20 22:29	
4-Nitroaniline	710		710		ug/Kg		11/10/20 22:20	11/11/20 22:29	
N-Nitrosodiphenylamine	710		710	59		~ \$	11/10/20 22:20	11/11/20 22:29	
4-Bromophenyl phenyl ether	710		710		ug/Kg	~ \$	11/10/20 22:20	11/11/20 22:29	
Hexachlorobenzene	710		71		ug/Kg		11/10/20 22:20	11/11/20 22:29	
Phenanthrene	650		710		ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	
	160		710		ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	
Anthracene			710		ug/Kg ug/Kg		11/10/20 22:20	11/11/20 22:29	
Carbazole	120								
Di-n-butyl phthalate	710	U	710 710		ug/Kg	φ.	11/10/20 22:20	11/11/20 22:29	
Fluoranthene	830				ug/Kg		11/10/20 22:20	11/11/20 22:29	
Pyrene	790		710		ug/Kg	₩.	11/10/20 22:20	11/11/20 22:29	
Butyl benzyl phthalate	710	U	710		ug/Kg	₩.	11/10/20 22:20	11/11/20 22:29	
Benzo[a]anthracene	400		71		ug/Kg	.	11/10/20 22:20	11/11/20 22:29	
Chrysene	400		710		ug/Kg	*	11/10/20 22:20	11/11/20 22:29	
Bis(2-ethylhexyl) phthalate	71	J	710		ug/Kg	*	11/10/20 22:20	11/11/20 22:29	
Di-n-octyl phthalate	710	. U	710		ug/Kg	<u>.</u> .	11/10/20 22:20	11/11/20 22:29	
Benzo[b]fluoranthene	510		71		ug/Kg	*	11/10/20 22:20	11/11/20 22:29	
Benzo[k]fluoranthene	180		71		ug/Kg	*	11/10/20 22:20	11/11/20 22:29	
Benzo[a]pyrene	400		71		ug/Kg	<u>.</u> .	11/10/20 22:20	11/11/20 22:29	
Indeno[1,2,3-cd]pyrene	220		71		ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	
Dibenz(a,h)anthracene	80		71		ug/Kg	₩		11/11/20 22:29	
Benzo[g,h,i]perylene	210		710		ug/Kg	.	11/10/20 22:20	11/11/20 22:29	
1,1'-Biphenyl	710		710		ug/Kg	₽	11/10/20 22:20	11/11/20 22:29	
Acetophenone	710	U	710		ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	
Benzaldehyde		U *1	710		ug/Kg		11/10/20 22:20	11/11/20 22:29	
Caprolactam	710	U *1	710		ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	
Atrazine	290		290	42	ug/Kg	☼	11/10/20 22:20	11/11/20 22:29	
2,2'-oxybis[1-chloropropane]	710	U	710	13	ug/Kg		11/10/20 22:20	11/11/20 22:29	
1,2,4,5-Tetrachlorobenzene	710	U	710		ug/Kg	₽	11/10/20 22:20	11/11/20 22:29	
2,3,4,6-Tetrachlorophenol	710	U	710	48	ug/Kg	₽	11/10/20 22:20	11/11/20 22:29	
3,3'-Dichlorobenzidine	290	U	290	110	ug/Kg	₽	11/10/20 22:20	11/11/20 22:29	
Bis(2-chloroethoxy)methane	710	U	710	56	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	85		19 - 105				11/10/20 22:20	11/11/20 22:29	

Eurofins TestAmerica, Edison

11/10/20 22:20 11/11/20 22:29

26 - 101

89

2

3

6

8

10

12

14

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: S-2 Lab Sample ID: 460-222216-5

Date Collected: 11/03/20 04:00 Matrix: Solid
Date Received: 11/05/20 18:00 Percent Solids: 46.3

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Terphenyl-d14 (Surr)	114	25 - 127	11/10/20 22:20	11/11/20 22:29	1
2,4,6-Tribromophenol (Surr)	87	10 - 123	11/10/20 22:20	11/11/20 22:29	1
2-Fluorophenol (Surr)	86	18 - 106	11/10/20 22:20	11/11/20 22:29	1
2-Fluorobiphenyl	89	25 - 104	11/10/20 22:20	11/11/20 22:29	1

Method: 8081B - Organochlorine Pesticides (GC)
--

Analyte	esult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	14	U	14	2.5	ug/Kg	<u></u>	11/13/20 09:54	11/16/20 10:15	1
4,4'-DDE	14	U	14	1.7	ug/Kg	₩	11/13/20 09:54	11/16/20 10:15	1
4,4'-DDT	14	U	14	2.7	ug/Kg	₩	11/13/20 09:54	11/16/20 10:15	1
Aldrin	14	U	14	2.2	ug/Kg	₽	11/13/20 09:54	11/16/20 10:15	1
alpha-BHC	4.3	U	4.3	1.5	ug/Kg	₩	11/13/20 09:54	11/16/20 10:15	1
beta-BHC	4.3	U	4.3	1.6	ug/Kg	₩	11/13/20 09:54	11/16/20 10:15	1
Chlordane (technical)	140	U	140	35	ug/Kg	₩	11/13/20 09:54	11/16/20 10:15	1
delta-BHC	4.3	U	4.3	0.89	ug/Kg	₩	11/13/20 09:54	11/16/20 10:15	1
Dieldrin	4.3	U	4.3	1.9	ug/Kg	₩	11/13/20 09:54	11/16/20 10:15	1
Endosulfan I	14	U	14	2.2	ug/Kg	⊅	11/13/20 09:54	11/16/20 10:15	1
Endosulfan II	14	U	14	3.7	ug/Kg	₩	11/13/20 09:54	11/16/20 10:15	1
Endosulfan sulfate	14	U	14	1.8	ug/Kg	₩	11/13/20 09:54	11/16/20 10:15	1
Endrin	14	U	14	2.1	ug/Kg	₩	11/13/20 09:54	11/16/20 10:15	1
Endrin aldehyde	14	U	14	3.4	ug/Kg	₩	11/13/20 09:54	11/16/20 10:15	1
Endrin ketone	14	U	14	2.8	ug/Kg	☼	11/13/20 09:54	11/16/20 10:15	1
gamma-BHC (Lindane)	4.3	U	4.3	1.3	ug/Kg	₩	11/13/20 09:54	11/16/20 10:15	1
Heptachlor	14	U	14	1.7	ug/Kg	☼	11/13/20 09:54	11/16/20 10:15	1
Heptachlor epoxide	14	U	14	2.2	ug/Kg	₩	11/13/20 09:54	11/16/20 10:15	1
Methoxychlor	14	U	14	3.3	ug/Kg	₩	11/13/20 09:54	11/16/20 10:15	1
Toxaphene	140	U	140	52	ug/Kg	☼	11/13/20 09:54	11/16/20 10:15	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	85		28 - 148	11/13/20 09:54	11/16/20 10:15	1
DCB Decachlorobiphenyl	88		28 - 148	11/13/20 09:54	11/16/20 10:15	1
Tetrachloro-m-xylene	82		34 - 118	11/13/20 09:54	11/16/20 10:15	1
Tetrachloro-m-xylene	76		34 - 118	11/13/20 09:54	11/16/20 10:15	1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

120

116

DCB Decachlorobiphenyl

DCB Decachlorobiphenyl

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	140	U	140	19	ug/Kg	-	11/13/20 09:49	11/16/20 22:10	1
Aroclor 1221	140	U	140	19	ug/Kg	₩	11/13/20 09:49	11/16/20 22:10	1
Aroclor 1232	140	U	140	19	ug/Kg	₩	11/13/20 09:49	11/16/20 22:10	1
Aroclor 1242	140	U	140	19	ug/Kg	₩	11/13/20 09:49	11/16/20 22:10	1
Aroclor 1248	140	U	140	19	ug/Kg	₩	11/13/20 09:49	11/16/20 22:10	1
Aroclor 1254	140	U	140	20	ug/Kg	₩	11/13/20 09:49	11/16/20 22:10	1
Aroclor 1260	140	U	140	20	ug/Kg	₽	11/13/20 09:49	11/16/20 22:10	1
Aroclor-1262	140	U	140	20	ug/Kg	₩	11/13/20 09:49	11/16/20 22:10	1
Aroclor 1268	140	U	140	20	ug/Kg	₩	11/13/20 09:49	11/16/20 22:10	1
Polychlorinated biphenyls, Total	140	U	140	20	ug/Kg	₽	11/13/20 09:49	11/16/20 22:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

11/13/20 09:49 11/16/20 22:10 1

3/30/2021

Eurofins TestAmerica, Edison

11/13/20 09:49 11/16/20 22:10

10 - 150

10 - 150

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Lab Sample ID: 460-222216-5 Client Sample ID: S-2

Date Collected: 11/03/20 04:00 **Matrix: Solid** Date Received: 11/05/20 18:00 Percent Solids: 46.3

Method: 8082A - Polye	chlorinated Biphenyls	(PCBs) by Gas	s Chromatography (Continued)	
-----------------------	-----------------------	---------------	------------------------------	--

118

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	115		58 - 145	11/13/20 09:49	11/16/20 22:10	1
Tetrachloro-m-xylene	110		58 - 145	11/13/20 09:49	11/16/20 22:10	1

Method: 8151A - Herbicides (GC)

2,4-Dichlorophenylacetic acid

13C4 PFHpA

13C4 PFOA

mothodi o io i/t i ioi biolaco	(30)								
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D		J	72	26	ug/Kg	≎	11/09/20 20:10	11/10/20 11:41	1
Silvex (2,4,5-TP)	72 L	J	72	7.5	ug/Kg	☆	11/09/20 20:10	11/10/20 11:41	1
2,4,5-T	72 L	J	72	15	ug/Kg	≎	11/09/20 20:10	11/10/20 11:41	1
Surrogate	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	100		30 - 150				11/09/20 20:10	11/10/20 11:41	1

30 - 150

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	0.63	В	0.43	0.061	ug/Kg	*	11/17/20 09:15	11/19/20 09:21	1
Perfluoropentanoic acid (PFPeA)	0.69		0.43	0.17	ug/Kg	₽	11/17/20 09:15	11/19/20 09:21	1
Perfluorohexanoic acid (PFHxA)	0.26	J	0.43	0.091	ug/Kg	₽	11/17/20 09:15	11/19/20 09:21	1
Perfluoroheptanoic acid (PFHpA)	0.23	J	0.43	0.063	ug/Kg	₽	11/17/20 09:15	11/19/20 09:21	1
Perfluorooctanoic acid (PFOA)	3.6		0.43	0.19	ug/Kg	₽	11/17/20 09:15	11/19/20 09:21	1
Perfluorononanoic acid (PFNA)	0.32	J	0.43	0.078	ug/Kg	₽	11/17/20 09:15	11/19/20 09:21	1
Perfluorodecanoic acid (PFDA)	0.72		0.43	0.048	ug/Kg	₩	11/17/20 09:15	11/19/20 09:21	1
Perfluoroundecanoic acid (PFUnA)	0.39	J	0.43	0.078	ug/Kg	₩	11/17/20 09:15	11/19/20 09:21	1
Perfluorododecanoic acid (PFDoA)	0.34	J	0.43	0.14	ug/Kg	₩	11/17/20 09:15	11/19/20 09:21	1
Perfluorotridecanoic acid (PFTriA)	0.12	J	0.43	0.11	ug/Kg	₩	11/17/20 09:15	11/19/20 09:21	1
Perfluorotetradecanoic acid (PFTeA)	0.12	J	0.43	0.12	ug/Kg	₩	11/17/20 09:15	11/19/20 09:21	1
Perfluorobutanesulfonic acid (PFBS)	0.43	U	0.43	0.054	ug/Kg	₩	11/17/20 09:15	11/19/20 09:21	1
Perfluorohexanesulfonic acid (PFHxS)	0.46		0.43	0.067	ug/Kg	₩	11/17/20 09:15	11/19/20 09:21	1
Perfluoroheptanesulfonic Acid (PFHpS)	0.43	U	0.43	0.076	ug/Kg	₩	11/17/20 09:15	11/19/20 09:21	1
Perfluorooctanesulfonic acid (PFOS)	6.6	В	1.1	0.43	ug/Kg	₩	11/17/20 09:15	11/19/20 09:21	1
Perfluorodecanesulfonic acid (PFDS)	0.21	J	0.43	0.084	ug/Kg	₩	11/17/20 09:15	11/19/20 09:21	1
Perfluorooctanesulfonamide (FOSA)	0.48		0.43	0.18	ug/Kg	₩	11/17/20 09:15	11/19/20 09:21	1
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	5.6		4.3	0.84	ug/Kg	₩	11/17/20 09:15	11/19/20 09:21	1
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	1.4	J	4.3	0.80	ug/Kg	₩	11/17/20 09:15	11/19/20 09:21	1
6:2 FTS	4.3	U	4.3	0.32	ug/Kg	₩	11/17/20 09:15	11/19/20 09:21	1
8:2 FTS	4.3	U	4.3	0.54	ug/Kg	☼	11/17/20 09:15	11/19/20 09:21	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	73		25 - 150				11/17/20 09:15	11/19/20 09:21	1
13C5 PFPeA	58		25 - 150				11/17/20 09:15	11/19/20 09:21	1
13C2 PFHxA	88		25 - 150				11/17/20 09:15	11/19/20 09:21	1

Eurofins TestAmerica, Edison

11/17/20 09:15 11/19/20 09:21

11/17/20 09:15 11/19/20 09:21

Page 45 of 157

25 - 150

25 - 150

88

92

11/09/20 20:10 11/10/20 11:41

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: S-2 Lab Sample ID: 460-222216-5

Date Collected: 11/03/20 04:00 Matrix: Solid
Date Received: 11/05/20 18:00 Percent Solids: 46.3

Isotope Dilution	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
13C5 PFNA	87	25 - 150	11/17/20 09:15	11/19/20 09:21	1
13C2 PFDA	94	25 - 150	11/17/20 09:15	11/19/20 09:21	1
13C2 PFUnA	95	25 - 150	11/17/20 09:15	11/19/20 09:21	1
13C2 PFDoA	84	25 - 150	11/17/20 09:15	11/19/20 09:21	1
13C2 PFTeDA	68	25 - 150	11/17/20 09:15	11/19/20 09:21	1
13C3 PFBS	69	25 - 150	11/17/20 09:15	11/19/20 09:21	1
18O2 PFHxS	91	25 - 150	11/17/20 09:15	11/19/20 09:21	1
13C4 PFOS	94	25 - 150	11/17/20 09:15	11/19/20 09:21	1
13C8 FOSA	69	25 - 150	11/17/20 09:15	11/19/20 09:21	1
d3-NMeFOSAA	87	25 - 150	11/17/20 09:15	11/19/20 09:21	1
d5-NEtFOSAA	91	25 - 150	11/17/20 09:15	11/19/20 09:21	1
M2-6:2 FTS	248 *5	25 - 150	11/17/20 09:15	11/19/20 09:21	1
M2-8:2 FTS	271 *5	25 - 150	11/17/20 09:15	11/19/20 09:21	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	5.7		4.3	2.1	ng/L		11/18/20 19:40	11/19/20 13:30	1
Perfluoropentanoic acid (PFPeA)	6.7		1.7	0.42	ng/L		11/18/20 19:40	11/19/20 13:30	1
Perfluorohexanoic acid (PFHxA)	3.7		1.7	0.50	ng/L		11/18/20 19:40	11/19/20 13:30	1
Perfluoroheptanoic acid (PFHpA)	4.2		1.7	0.22	ng/L		11/18/20 19:40	11/19/20 13:30	1
Perfluorooctanoic acid (PFOA)	58		1.7	0.74	ng/L		11/18/20 19:40	11/19/20 13:30	1
Perfluorononanoic acid (PFNA)	3.1		1.7	0.23	ng/L		11/18/20 19:40	11/19/20 13:30	1
Perfluorodecanoic acid (PFDA)	1.3	J	1.7	0.27	ng/L		11/18/20 19:40	11/19/20 13:30	1
Perfluoroundecanoic acid (PFUnA)	1.7	U	1.7	0.95	ng/L		11/18/20 19:40	11/19/20 13:30	1
Perfluorododecanoic acid (PFDoA)	1.7	U	1.7	0.48	ng/L		11/18/20 19:40	11/19/20 13:30	1
Perfluorotridecanoic acid (PFTriA)	1.7	U	1.7	1.1	ng/L		11/18/20 19:40	11/19/20 13:30	1
Perfluorotetradecanoic acid (PFTeA)	1.7	U	1.7	0.63	ng/L		11/18/20 19:40	11/19/20 13:30	1
Perfluorobutanesulfonic acid (PFBS)	0.30	J	1.7	0.17	ng/L		11/18/20 19:40	11/19/20 13:30	1
Perfluorohexanesulfonic acid (PFHxS)	2.7		1.7	0.49	ng/L		11/18/20 19:40	11/19/20 13:30	1
Perfluoroheptanesulfonic Acid (PFHpS)	0.56	J	1.7	0.16	ng/L		11/18/20 19:40	11/19/20 13:30	1
Perfluorooctanesulfonic acid (PFOS)	22		1.7	0.47	ng/L		11/18/20 19:40	11/19/20 13:30	1
Perfluorodecanesulfonic acid (PFDS)	1.7	U	1.7	0.28	ng/L		11/18/20 19:40	11/19/20 13:30	1
Perfluorooctanesulfonamide (FOSA)	1.7	U	1.7	0.85	ng/L		11/18/20 19:40	11/19/20 13:30	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	4.3	U	4.3	1.0	ng/L		11/18/20 19:40	11/19/20 13:30	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	4.3	U	4.3	1.1	ng/L		11/18/20 19:40	11/19/20 13:30	1
6:2 FTS	4.3	U	4.3	2.2	ng/L		11/18/20 19:40	11/19/20 13:30	1
8:2 FTS	1.7	U	1.7	0.40	ng/L		11/18/20 19:40	11/19/20 13:30	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	83		25 - 150				11/18/20 19:40	11/19/20 13:30	1
13C5 PFPeA	91		25 - 150				11/18/20 19:40	11/19/20 13:30	1
13C2 PFHxA	95		25 - 150				11/18/20 19:40	11/19/20 13:30	1

13C4 PFBA	83	25 - 150	11/18/20 19:40	11/19/20 13:30	1
13C5 PFPeA	91	25 - 150	11/18/20 19:40	11/19/20 13:30	1
13C2 PFHxA	95	25 - 150	11/18/20 19:40	11/19/20 13:30	1
13C4 PFHpA	95	25 - 150	11/18/20 19:40	11/19/20 13:30	1
13C4 PFOA	97	25 - 150	11/18/20 19:40	11/19/20 13:30	1
13C5 PFNA	91	25 - 150	11/18/20 19:40	11/19/20 13:30	1
13C2 PFDA	88	25 - 150	11/18/20 19:40	11/19/20 13:30	1

Eurofins TestAmerica, Edison

Page 46 of 157

2

3

6

8

4.6

11

13

_

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: S-2 Lab Sample ID: 460-222216-5

Date Collected: 11/03/20 04:00 **Matrix: Solid** Percent Solids: 46.3 Date Received: 11/05/20 18:00

Isotope Dilution	%Recovery Qualifier	Limits	Prepared Ar	nalyzed	Dil Fac
13C2 PFUnA	88	25 - 150	11/18/20 19:40 11/19	9/20 13:30	1
13C2 PFDoA	73	25 - 150	11/18/20 19:40 11/19	9/20 13:30	1
13C2 PFTeDA	51	25 - 150	11/18/20 19:40 11/19	9/20 13:30	1
13C3 PFBS	96	25 - 150	11/18/20 19:40 11/19	9/20 13:30	1
1802 PFHxS	110	25 - 150	11/18/20 19:40 11/19	9/20 13:30	1
13C4 PFOS	106	25 - 150	11/18/20 19:40 11/19	1/20 13:30	1
13C8 FOSA	102	25 - 150	11/18/20 19:40 11/19	9/20 13:30	1
d3-NMeFOSAA	71	25 - 150	11/18/20 19:40 11/19	9/20 13:30	1
d5-NEtFOSAA	96	25 - 150	11/18/20 19:40 11/19	9/20 13:30	1
M2-6:2 FTS	157 *5	25 - 150	11/18/20 19:40 11/19	9/20 13:30	1
M2-8:2 FTS	155 *5	25 - 150	11/18/20 19:40 11/19	9/20 13:30	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	3.3	U	3.3	1.8	mg/Kg	<u></u>	11/12/20 16:30	11/13/20 17:59	2
Aluminum	9180		65.5	9.3	mg/Kg	₩	11/12/20 16:30	11/13/20 17:59	2
Arsenic	12.4		4.9	1.0	mg/Kg	₩	11/12/20 16:30	11/13/20 17:59	2
Barium	241		65.5	6.3	mg/Kg	₩	11/12/20 16:30	11/13/20 17:59	2
Beryllium	0.65	U	0.65	0.10	mg/Kg	₩	11/12/20 16:30	11/13/20 17:59	2
Calcium	5240		1640	121	mg/Kg	₩	11/12/20 16:30	11/13/20 17:59	2
Cadmium	0.91	J	1.3	0.11	mg/Kg	₩	11/12/20 16:30	11/13/20 17:59	2
Cobalt	20.5		16.4	0.91	mg/Kg	₩	11/12/20 16:30	11/13/20 17:59	2
Chromium	20.5		3.3	2.3	mg/Kg	₽	11/12/20 16:30	11/13/20 17:59	2
Copper	34.7		8.2	2.0	mg/Kg	₩	11/12/20 16:30	11/13/20 17:59	2
Iron	60100		49.1	33.7	mg/Kg	₩	11/12/20 16:30	11/13/20 17:59	2
Potassium	1150	J	1640	101	mg/Kg	₩	11/12/20 16:30	11/13/20 17:59	2
Magnesium	3520		1640	111	mg/Kg	₩	11/12/20 16:30	11/13/20 17:59	2
Manganese	5700		49.1	3.7	mg/Kg	₩	11/12/20 16:30	11/13/20 18:21	20
Sodium	1640	U	1640	142	mg/Kg	₩	11/12/20 16:30	11/13/20 17:59	2
Nickel	32.8		13.1	0.86	mg/Kg	₩	11/12/20 16:30	11/13/20 17:59	2
Lead	58.9		3.3	0.53	mg/Kg	₩	11/12/20 16:30	11/13/20 17:59	2
Antimony	23.6		6.5	1.9	mg/Kg	₩	11/12/20 16:30	11/13/20 17:59	2
Selenium	1.7	J	6.5	1.1	mg/Kg	₩	11/12/20 16:30	11/13/20 17:59	2
Thallium	6.5	U	6.5	1.0	mg/Kg	₩	11/12/20 16:30	11/13/20 17:59	2
Vanadium	23.1		16.4	1.5	mg/Kg	₩	11/12/20 16:30	11/13/20 17:59	2
Zinc	786		9.8	1.8	mg/Kg	☆	11/12/20 16:30	11/13/20 17:59	2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.096		0.036	0.0084	mg/Kg	☆	11/16/20 03:07	11/16/20 07:19	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	1.3		0.50	0.26	mg/Kg	-	11/15/20 12:34	11/16/20 14:04	1
Total Carbon	95700	H	1000	671	mg/Kg			11/20/20 11:32	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.4	HF	0.1	0.1	SU			11/17/20 13:08	1
Corrosivity	7.4	HF	0.1	0.1	SU			11/17/20 13:08	1
Temperature	21.0	HF	0.1	0.1	Degrees C			11/17/20 13:08	1
Percent Moisture	53.7		1.0	1.0	%			11/16/20 10:45	1

Eurofins TestAmerica, Edison

Page 47 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: S-2 Lab Sample ID: 460-222216-5

Date Collected: 11/03/20 04:00

Matrix: Solid

Date Received: 11/05/20 18:00

Percent Solids: 46.3

General Chemistry (Continued)									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	46.3		1.0	1.0	%			11/16/20 10:45	1

Client Sample ID: S-3

Date Collected: 11/03/20 15:45

Matrix: Solid

Date Received: 11/05/20 18:00 Percent Solids: 61.6

Method: 8260D - Volatile Orgai Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane		U H H3	2.8	1.2	ug/Kg	— -	11/06/20 19:13	11/14/20 15:12	1
Bromomethane		U H H3	2.8		ug/Kg	☆	11/06/20 19:13	11/14/20 15:12	1
Vinyl chloride		U H H3	2.8		ug/Kg	☆	11/06/20 19:13	11/14/20 15:12	1
Chloroethane		U H H3	2.8		ug/Kg		11/06/20 19:13	11/14/20 15:12	1
Methylene Chloride		H H3	2.8		ug/Kg	☆	11/06/20 19:13	11/14/20 15:12	1
Acetone		H H3	17		ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
Carbon disulfide		J H H3	2.8		ug/Kg	 .		11/14/20 15:12	1
Trichlorofluoromethane		U H H3	2.8		ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
1,1-Dichloroethene	2.8	U H H3	2.8		ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
1,1-Dichloroethane	2.8	U H H3	2.8		ug/Kg		11/06/20 19:13	11/14/20 15:12	1
trans-1,2-Dichloroethene	2.8	U H H3	2.8		ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
cis-1,2-Dichloroethene	2.8	U H H3	2.8		ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
Chloroform	2.8	U H H3	2.8		ug/Kg		11/06/20 19:13	11/14/20 15:12	1
1,2-Dichloroethane	2.8	U H H3	2.8	0.82	ug/Kg	₽	11/06/20 19:13	11/14/20 15:12	1
2-Butanone (MEK)	16	Н Н3	14		ug/Kg	☆	11/06/20 19:13	11/14/20 15:12	1
1,1,1-Trichloroethane	2.8	U H H3	2.8		ug/Kg	₽	11/06/20 19:13	11/14/20 15:12	1
Carbon tetrachloride	2.8	U H H3	2.8	1.1	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
Dichlorobromomethane	2.8	U H H3	2.8	0.71	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
1,2-Dichloropropane	2.8	U H H3	2.8	1.2	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
cis-1,3-Dichloropropene	2.8	U H H3	2.8	0.76	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
Trichloroethene	2.8	U H H3	2.8	0.89	ug/Kg	₽	11/06/20 19:13	11/14/20 15:12	1
Chlorodibromomethane	2.8	U H H3	2.8	0.54	ug/Kg		11/06/20 19:13	11/14/20 15:12	1
1,1,2-Trichloroethane	2.8	U H H3	2.8	0.49	ug/Kg	₽	11/06/20 19:13	11/14/20 15:12	1
Benzene	2.8	U H H3	2.8	0.71	ug/Kg	₽	11/06/20 19:13	11/14/20 15:12	1
trans-1,3-Dichloropropene	2.8	U H H3	2.8	0.74	ug/Kg	₽	11/06/20 19:13	11/14/20 15:12	1
Bromoform	2.8	U H H3	2.8	1.2	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
4-Methyl-2-pentanone (MIBK)	14	U H H3	14	4.3	ug/Kg	₽	11/06/20 19:13	11/14/20 15:12	1
2-Hexanone	14	U H H3	14	4.7	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
Tetrachloroethene	2.8	U H H3	2.8	0.84	ug/Kg	₽	11/06/20 19:13	11/14/20 15:12	1
1,1,2,2-Tetrachloroethane	2.8	U H H3	2.8	0.59	ug/Kg	₽	11/06/20 19:13	11/14/20 15:12	1
Toluene	2.8	U H H3	2.8	0.65	ug/Kg	₽	11/06/20 19:13	11/14/20 15:12	1
Chlorobenzene	2.8	U H H3	2.8	0.49	ug/Kg	≎	11/06/20 19:13	11/14/20 15:12	1
Ethylbenzene	2.8	U H H3	2.8	0.55	ug/Kg	₽	11/06/20 19:13	11/14/20 15:12	1
Styrene	2.8	U H H3	2.8	0.77	ug/Kg	⊅	11/06/20 19:13	11/14/20 15:12	1
m-Xylene & p-Xylene	2.8	U H H3	2.8	0.48	ug/Kg	₽	11/06/20 19:13	11/14/20 15:12	1
o-Xylene	2.8	U H H3	2.8	0.54	ug/Kg	₽	11/06/20 19:13	11/14/20 15:12	1
1,1,2-Trichloro-1,2,2-trifluoroethane	2.8	U H H3	2.8	0.83	ug/Kg	₽	11/06/20 19:13	11/14/20 15:12	1
Methyl tert-butyl ether	2.8	U H H3	2.8	1.4	ug/Kg	☼	11/06/20 19:13	11/14/20 15:12	1
Cyclohexane	2.8	U H H3	2.8	0.61	ug/Kg	☼	11/06/20 19:13	11/14/20 15:12	1
Ethylene Dibromide	2.8	U H H3	2.8	0.50	ug/Kg	☼	11/06/20 19:13	11/14/20 15:12	1
1,3-Dichlorobenzene	2.8	U H H3	2.8	1.0	ug/Kg	☼	11/06/20 19:13	11/14/20 15:12	1
1,4-Dichlorobenzene	2.8	U H H3	2.8	0.62	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1

Eurofins TestAmerica, Edison

Page 48 of 157

2

3

_

6

9

11

13

1 E

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: S-3 Lab Sample ID: 460-222216-6

Date Collected: 11/03/20 15:45

Date Received: 11/05/20 18:00

Matrix: Solid

Percent Solids: 61.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	2.8	U H H3	2.8	1.0	ug/Kg	*	11/06/20 19:13	11/14/20 15:12	1
Dichlorodifluoromethane	2.8	U H H3	2.8	0.94	ug/Kg	₽	11/06/20 19:13	11/14/20 15:12	1
1,2,4-Trichlorobenzene	2.8	U H H3	2.8	0.99	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
1,4-Dioxane	55	U H H3	55	25	ug/Kg	₽	11/06/20 19:13	11/14/20 15:12	1
1,2,3-Trichlorobenzene	2.8	U H H3	2.8	0.50	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
1,2-Dibromo-3-Chloropropane	2.8	U H H3	2.8	1.3	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
Chlorobromomethane	2.8	U H H3	2.8	0.78	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
Isopropylbenzene	2.8	U H H3	2.8	0.79	ug/Kg	₽	11/06/20 19:13	11/14/20 15:12	1
Methyl acetate	14	U H H3	14	12	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
Methylcyclohexane	2.8	U H H3	2.8	1.4	ug/Kg	₽	11/06/20 19:13	11/14/20 15:12	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None	Н НЗ	ug/Kg	‡			11/06/20 19:13	11/14/20 15:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	125		77 - 145				11/06/20 19:13	11/14/20 15:12	1
Toluene-d8 (Surr)	100		80 - 120				11/06/20 19:13	11/14/20 15:12	1
4-Bromofluorobenzene	112		79 ₋ 125				11/06/20 19:13	11/14/20 15:12	1
Dibromofluoromethane (Surr)	121		48 - 150				11/06/20 19:13	11/14/20 15:12	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	540	U	540	20	ug/Kg	<u></u>	11/10/20 22:20	11/11/20 19:45	1
2-Chlorophenol	540	U	540	19	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
2-Methylphenol	540	U	540	20	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
4-Methylphenol	540	U	540	34	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
2-Nitrophenol	540	U	540	54	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
2,4-Dimethylphenol	540	U	540	24	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
2,4-Dichlorophenol	220	U	220	34	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
4-Chloro-3-methylphenol	540	U	540	30	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
2,4,6-Trichlorophenol	220	U	220	69	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
2,4,5-Trichlorophenol	540	U	540	55	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
2,4-Dinitrotoluene	110	U	110	58	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
4-Nitrophenol	1100	U	1100	87	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
4,6-Dinitro-2-methylphenol	430	U	430	220	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
Pentachlorophenol	430	U	430	110	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
Bis(2-chloroethyl)ether	54	U	54	19	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
N-Nitrosodi-n-propylamine	54	U	54	39	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
Hexachloroethane	54	U	54	18	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
Nitrobenzene	54	U	54	13	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
Isophorone	220	U	220	160	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
Naphthalene	540	U	540	9.3	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
4-Chloroaniline	540	U	540	95	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
Hexachlorobutadiene	110	U	110	11	ug/Kg	₽	11/10/20 22:20	11/11/20 19:45	1
2-Methylnaphthalene	540	U	540	15	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
Hexachlorocyclopentadiene	540	U	540	47	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
2-Chloronaphthalene	540	U	540	25	ug/Kg	₽	11/10/20 22:20	11/11/20 19:45	1
2-Nitroaniline	540	U	540	20	ug/Kg	₽	11/10/20 22:20	11/11/20 19:45	1
Dimethyl phthalate	540	U	540	120	ug/Kg	₽	11/10/20 22:20	11/11/20 19:45	1
Acenaphthylene	540	U	540	5.4	ug/Kg	☆	11/10/20 22:20	11/11/20 19:45	1

Eurofins TestAmerica, Edison

Page 49 of 157

2

3

6

8

10

12

14

16

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: S-3 Lab Sample ID: 460-222216-6

Date Collected: 11/03/20 15:45 **Matrix: Solid** Date Received: 11/05/20 18:00 Percent Solids: 61.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,6-Dinitrotoluene	110	U	110	39	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
3-Nitroaniline	540	U	540	60	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
Acenaphthene	540	U	540	15	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
Dibenzofuran	540	U	540	7.5	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
2,4-Dinitrophenol	430	U	430	260	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
Diethyl phthalate	540	U	540	7.8	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
4-Chlorophenyl phenyl ether	540	U	540		ug/Kg	☼	11/10/20 22:20	11/11/20 19:45	1
Fluorene	540	U	540	7.3	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
4-Nitroaniline	540	U	540	62	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
N-Nitrosodiphenylamine	540	U	540	44	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
4-Bromophenyl phenyl ether	540	U	540	21	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
Hexachlorobenzene	54	U	54	25	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
Phenanthrene	66	J	540	9.4	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
Anthracene	540	U	540	16	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
Carbazole	540	U	540	20	ug/Kg	₽	11/10/20 22:20	11/11/20 19:45	1
Di-n-butyl phthalate	540	U	540	20	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
Fluoranthene	120	J	540	19	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
Pyrene	130	J	540	13	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
Butyl benzyl phthalate	540	U	540	25	ug/Kg	≎	11/10/20 22:20	11/11/20 19:45	1
Benzo[a]anthracene	72		54	19	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
Chrysene	68	J	540	9.1	ug/Kg	₽	11/10/20 22:20	11/11/20 19:45	1
Bis(2-ethylhexyl) phthalate	540	U	540	28	ug/Kg	≎	11/10/20 22:20	11/11/20 19:45	1
Di-n-octyl phthalate	540	U	540	28	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
Benzo[b]fluoranthene	100		54	14	ug/Kg	≎	11/10/20 22:20	11/11/20 19:45	1
Benzo[k]fluoranthene	39	J	54	11	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
Benzo[a]pyrene	84		54	14	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
Indeno[1,2,3-cd]pyrene	50	J	54	21	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
Dibenz(a,h)anthracene	54	U	54	23	ug/Kg	☼	11/10/20 22:20	11/11/20 19:45	1
Benzo[g,h,i]perylene	49	J	540	16	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
1,1'-Biphenyl	540	U	540	7.1	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
Acetophenone	540	U	540	26	ug/Kg	≎	11/10/20 22:20	11/11/20 19:45	1
Benzaldehyde	540	U *1	540	89	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
Caprolactam	540	U *1	540	84	ug/Kg	₽	11/10/20 22:20	11/11/20 19:45	1
Atrazine	220	U	220	32	ug/Kg	≎	11/10/20 22:20	11/11/20 19:45	1
2,2'-oxybis[1-chloropropane]	540	U	540	9.7	ug/Kg	≎	11/10/20 22:20	11/11/20 19:45	1
1,2,4,5-Tetrachlorobenzene	540	U	540	17	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
2,3,4,6-Tetrachlorophenol	540	U	540	36	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
3,3'-Dichlorobenzidine	220	U	220	81	ug/Kg	₩	11/10/20 22:20	11/11/20 19:45	1
Bis(2-chloroethoxy)methane	540	U	540	42	ug/Kg	☼	11/10/20 22:20	11/11/20 19:45	1
Surrogato	%Pocovory	Qualifier	Limite				Propored	Analyzod	Dil Esa

Surrogate	%Recovery Q	Qualifier Lim	its	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	79	19 -	105	11/10/20 22:20	11/11/20 19:45	1
Phenol-d5 (Surr)	80	26 -	101	11/10/20 22:20	11/11/20 19:45	1
Terphenyl-d14 (Surr)	107	25 -	127	11/10/20 22:20	11/11/20 19:45	1
2,4,6-Tribromophenol (Surr)	81	10 -	123	11/10/20 22:20	11/11/20 19:45	1
2-Fluorophenol (Surr)	76	18 -	106	11/10/20 22:20	11/11/20 19:45	1
2-Fluorobiphenyl	85	25 -	104	11/10/20 22:20	11/11/20 19:45	1

Eurofins TestAmerica, Edison

Page 50 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Silvex (2,4,5-TP)

Client Sample ID: S-3 Lab Sample ID: 460-222216-6

Date Collected: 11/03/20 15:45 **Matrix: Solid** Percent Solids: 61.6 Date Received: 11/05/20 18:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD		U	11	1.8	ug/Kg	<u></u>	11/13/20 09:54	11/16/20 10:29	1
4,4'-DDE	5.3	J	11	1.3	ug/Kg	₽	11/13/20 09:54	11/16/20 10:29	1
4,4'-DDT	11	U	11	2.0	ug/Kg	₩	11/13/20 09:54	11/16/20 10:29	1
Aldrin	11	U	11	1.6	ug/Kg	₽	11/13/20 09:54	11/16/20 10:29	1
alpha-BHC	3.2	U	3.2	1.1	ug/Kg	≎	11/13/20 09:54	11/16/20 10:29	1
beta-BHC	3.2	U	3.2	1.2	ug/Kg	₩	11/13/20 09:54	11/16/20 10:29	1
Chlordane (technical)	110	U	110	26	ug/Kg	₽	11/13/20 09:54	11/16/20 10:29	1
delta-BHC	3.2	U	3.2	0.67	ug/Kg	₩	11/13/20 09:54	11/16/20 10:29	1
Dieldrin	3.2	U	3.2	1.4	ug/Kg	₩	11/13/20 09:54	11/16/20 10:29	1
Endosulfan I	11	U	11	1.7	ug/Kg	₩	11/13/20 09:54	11/16/20 10:29	1
Endosulfan II	11	U	11	2.8	ug/Kg	₩	11/13/20 09:54	11/16/20 10:29	1
Endosulfan sulfate	11	U	11	1.4	ug/Kg	₩	11/13/20 09:54	11/16/20 10:29	1
Endrin	11	U	11	1.6	ug/Kg	₽	11/13/20 09:54	11/16/20 10:29	1
Endrin aldehyde	11	U	11	2.6	ug/Kg	₩	11/13/20 09:54	11/16/20 10:29	1
Endrin ketone	11	U	11	2.1	ug/Kg	₩	11/13/20 09:54	11/16/20 10:29	1
gamma-BHC (Lindane)	3.2	U	3.2	1.0	ug/Kg	≎	11/13/20 09:54	11/16/20 10:29	1
Heptachlor	11	U	11	1.3	ug/Kg	₩	11/13/20 09:54	11/16/20 10:29	1
Heptachlor epoxide	11	U	11	1.6	ug/Kg	₩	11/13/20 09:54	11/16/20 10:29	1
Methoxychlor	11	U	11	2.5	ug/Kg	₽	11/13/20 09:54	11/16/20 10:29	1
Toxaphene	110	U	110	39	ug/Kg	₽	11/13/20 09:54	11/16/20 10:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	86		28 - 148				11/13/20 09:54	11/16/20 10:29	1
DCB Decachlorobiphenyl	97		28 - 148				11/13/20 09:54	11/16/20 10:29	1
Tetrachloro-m-xylene	96		34 - 118				11/13/20 09:54	11/16/20 10:29	1
Tetrachloro-m-xylene	79		34 - 118				11/13/20 09:54	11/16/20 10:29	1

Method: 8082A - Polychloria Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
									Dil Fac
Aroclor 1016	110	U	110	14	ug/Kg	₩	11/13/20 09:49	11/16/20 21:52	1
Aroclor 1221	110	U	110	14	ug/Kg	≎	11/13/20 09:49	11/16/20 21:52	1
Aroclor 1232	110	U	110	14	ug/Kg	≎	11/13/20 09:49	11/16/20 21:52	1
Aroclor 1242	110	U	110	14	ug/Kg	₽	11/13/20 09:49	11/16/20 21:52	1
Aroclor 1248	110	U	110	14	ug/Kg	₽	11/13/20 09:49	11/16/20 21:52	1
Aroclor 1254	110	U	110	15	ug/Kg	₽	11/13/20 09:49	11/16/20 21:52	1
Aroclor 1260	110	U	110	15	ug/Kg	₽	11/13/20 09:49	11/16/20 21:52	1
Aroclor-1262	110	U	110	15	ug/Kg	₽	11/13/20 09:49	11/16/20 21:52	1
Aroclor 1268	110	U	110	15	ug/Kg	₽	11/13/20 09:49	11/16/20 21:52	1
Polychlorinated biphenyls, Total	110	U	110	15	ug/Kg	₩	11/13/20 09:49	11/16/20 21:52	1
Surragata	9/ B aggyary	O	Limita				Branarad	Analyzad	Dil Ess

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	121		10 - 150	11/13/20 09:49	11/16/20 21:52	1
DCB Decachlorobiphenyl	117		10 - 150	11/13/20 09:49	11/16/20 21:52	1
Tetrachloro-m-xylene	114		58 - 145	11/13/20 09:49	11/16/20 21:52	1
Tetrachloro-m-xylene	109		58 - 145	11/13/20 09:49	11/16/20 21:52	1

Method: 8151A - Herbicides (G	iC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	54	U	54	20	ug/Kg	≎	11/09/20 20:10	11/10/20 11:56	1

54

5.6 ug/Kg

54 U

Eurofins TestAmerica, Edison

11/09/20 20:10 11/10/20 11:56

Page 51 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8151A - Herbicides (GC) (Continued)

Analyte

2,4,5-T

13C2 PFDA

13C2 PFUnA

13C2 PFDoA

13C2 PFTeDA

13C3 PFBS

1802 PFHxS

13C4 PFOS

13C8 FOSA

Client Sample ID: S-3 Lab Sample ID: 460-222216-6

Date Collected: 11/03/20 15:45

Date Received: 11/05/20 18:00

Matrix: Solid
Percent Solids: 61.6

RL

54

MDL Unit

11 ug/Kg

D

Prepared

11/09/20 20:10 11/10/20 11:56

Result Qualifier

54 U

86

86

81

68

66

93

89

68

2,1,0	0.		٠.	• • • • • • • • • • • • • • • • • • • •	~g/. \g	~	, 55, 25 25.16	,, 20 11.00	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	100		30 - 150				11/09/20 20:10	11/10/20 11:56	1
2,4-Dichlorophenylacetic acid	111		30 - 150				11/09/20 20:10	11/10/20 11:56	1
Method: 537 (modified) - Fluor	inated Alky	l Substan	ces						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	0.12	JB	0.30	0.043	ug/Kg	₩	11/17/20 09:15	11/19/20 09:31	1
Perfluoropentanoic acid (PFPeA)	0.30	U	0.30	0.12	ug/Kg	☼	11/17/20 09:15	11/19/20 09:31	1
Perfluorohexanoic acid (PFHxA)	0.30	U	0.30	0.064	ug/Kg	₽	11/17/20 09:15	11/19/20 09:31	1
Perfluoroheptanoic acid (PFHpA)	0.30	U	0.30	0.044	ug/Kg	₽	11/17/20 09:15	11/19/20 09:31	1
Perfluorooctanoic acid (PFOA)	0.52		0.30	0.13	ug/Kg	₽	11/17/20 09:15	11/19/20 09:31	1
Perfluorononanoic acid (PFNA)	0.057	J	0.30	0.055	ug/Kg	₩	11/17/20 09:15	11/19/20 09:31	1
Perfluorodecanoic acid (PFDA)	0.079	J	0.30	0.033	ug/Kg	₩	11/17/20 09:15	11/19/20 09:31	1
Perfluoroundecanoic acid (PFUnA)	0.15	J	0.30	0.055	ug/Kg	₽	11/17/20 09:15	11/19/20 09:31	1
Perfluorododecanoic acid (PFDoA)	0.11	J	0.30	0.10	ug/Kg	₽	11/17/20 09:15	11/19/20 09:31	1
Perfluorotridecanoic acid (PFTriA)	0.11	J	0.30	0.078	ug/Kg	≎	11/17/20 09:15	11/19/20 09:31	1
Perfluorotetradecanoic acid (PFTeA)	0.11	J	0.30		ug/Kg	₽	11/17/20 09:15	11/19/20 09:31	1
Perfluorobutanesulfonic acid (PFBS)	0.30	U	0.30	0.038	ug/Kg	₽	11/17/20 09:15	11/19/20 09:31	1
Perfluorohexanesulfonic acid (PFHxS)	0.14	J	0.30	0.047	ug/Kg	₽	11/17/20 09:15	11/19/20 09:31	1
Perfluoroheptanesulfonic Acid (PFHpS)	0.30	U	0.30	0.053	ug/Kg	₽	11/17/20 09:15	11/19/20 09:31	1
Perfluorooctanesulfonic acid (PFOS)	1.7	В	0.76		ug/Kg	₩	11/17/20 09:15	11/19/20 09:31	1
Perfluorodecanesulfonic acid (PFDS)	0.30	U	0.30	0.059	ug/Kg	₽	11/17/20 09:15	11/19/20 09:31	1
Perfluorooctanesulfonamide (FOSA)	0.30	U	0.30	0.12	ug/Kg	☼	11/17/20 09:15	11/19/20 09:31	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	3.0	U	3.0	0.59	ug/Kg	₽	11/17/20 09:15	11/19/20 09:31	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	3.0	U	3.0	0.56	ug/Kg	₽	11/17/20 09:15	11/19/20 09:31	1
6:2 FTS	3.0	U	3.0	0.23	ug/Kg	₽	11/17/20 09:15	11/19/20 09:31	1
8:2 FTS	3.0	U	3.0	0.38	ug/Kg	₩	11/17/20 09:15	11/19/20 09:31	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	83		25 - 150				11/17/20 09:15	11/19/20 09:31	1
13C5 PFPeA	60		25 - 150				11/17/20 09:15	11/19/20 09:31	1
13C2 PFHxA	77		25 - 150				11/17/20 09:15	11/19/20 09:31	1
13C4 PFHpA	91		25 - 150				11/17/20 09:15	11/19/20 09:31	1
13C4 PFOA	94		25 - 150				11/17/20 09:15	11/19/20 09:31	1
13C5 PFNA	85		25 - 150				11/17/20 09:15	11/19/20 09:31	1

Eurofins TestAmerica, Edison

11/17/20 09:15 11/19/20 09:31

11/17/20 09:15 11/19/20 09:31

11/17/20 09:15 11/19/20 09:31

11/17/20 09:15 11/19/20 09:31

11/17/20 09:15 11/19/20 09:31

11/17/20 09:15 11/19/20 09:31

11/17/20 09:15 11/19/20 09:31 11/17/20 09:15 11/19/20 09:31

25 - 150

25 - 150

25 - 150

25 - 150

25 - 150

25 - 150

25 - 150

25 - 150

2

3

56

Dil Fac

Analyzed

10

11 12

14

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: S-3 Lab Sample ID: 460-222216-6

Date Collected: 11/03/20 15:45

Date Received: 11/05/20 18:00

Matrix: Solid
Percent Solids: 61.6

Method: 537 (modified) - F	luorinated Alkyl \$	Substand	es (Continued)			
Isotope Dilution	%Recovery Q	Qualifier	Limits	Prepared	Analyzed	Dil Fac
d3-NMeFOSAA	75		25 - 150	11/17/20 09:15	11/19/20 09:31	1
d5-NEtFOSAA	77		25 - 150	11/17/20 09:15	11/19/20 09:31	1
M2-6:2 FTS	246 *5	5	25 - 150	11/17/20 09:15	11/19/20 09:31	1
M2-8:2 FTS	245 *5	5	25 - 150	11/17/20 09:15	11/19/20 09:31	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	4.5	U	4.5	2.1	ng/L		11/18/20 19:40	11/19/20 13:39	1
Perfluoropentanoic acid (PFPeA)	1.7	J	1.8	0.44	ng/L		11/18/20 19:40	11/19/20 13:39	1
Perfluorohexanoic acid (PFHxA)	1.6	J	1.8	0.52	ng/L		11/18/20 19:40	11/19/20 13:39	1
Perfluoroheptanoic acid (PFHpA)	1.7	J	1.8	0.22	ng/L		11/18/20 19:40	11/19/20 13:39	1
Perfluorooctanoic acid (PFOA)	11		1.8	0.76	ng/L		11/18/20 19:40	11/19/20 13:39	1
Perfluorononanoic acid (PFNA)	0.90	J	1.8	0.24	ng/L		11/18/20 19:40	11/19/20 13:39	1
Perfluorodecanoic acid (PFDA)	1.8	U	1.8	0.28	ng/L		11/18/20 19:40	11/19/20 13:39	1
Perfluoroundecanoic acid (PFUnA)	1.8	U	1.8	0.98	ng/L		11/18/20 19:40	11/19/20 13:39	1
Perfluorododecanoic acid (PFDoA)	1.8	U	1.8	0.49	ng/L		11/18/20 19:40	11/19/20 13:39	1
Perfluorotridecanoic acid (PFTriA)	1.8	U	1.8	1.2	ng/L		11/18/20 19:40	11/19/20 13:39	1
Perfluorotetradecanoic acid (PFTeA)	1.8	U	1.8	0.65	ng/L		11/18/20 19:40	11/19/20 13:39	1
Perfluorobutanesulfonic acid (PFBS)	0.19	J	1.8	0.18	ng/L		11/18/20 19:40	11/19/20 13:39	1
Perfluorohexanesulfonic acid (PFHxS)	1.7	J	1.8	0.51	ng/L		11/18/20 19:40	11/19/20 13:39	1
Perfluoroheptanesulfonic Acid (PFHpS)	0.30	J	1.8	0.17	ng/L		11/18/20 19:40	11/19/20 13:39	1
Perfluorooctanesulfonic acid (PFOS)	9.4		1.8	0.48	ng/L		11/18/20 19:40	11/19/20 13:39	1
Perfluorodecanesulfonic acid (PFDS)	1.8	U	1.8	0.29	ng/L		11/18/20 19:40	11/19/20 13:39	1
Perfluorooctanesulfonamide (FOSA)	1.8	U	1.8	0.88	ng/L		11/18/20 19:40	11/19/20 13:39	1
N-methylperfluorooctanesulfonamidoa	4.5	U	4.5	1.1	ng/L		11/18/20 19:40	11/19/20 13:39	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	4.5	U	4.5	1.2	ng/L		11/18/20 19:40	11/19/20 13:39	1
6:2 FTS `	4.5	U	4.5	2.2	ng/L		11/18/20 19:40	11/19/20 13:39	1
8:2 FTS	1.8	U	1.8	0.41	ng/L		11/18/20 19:40	11/19/20 13:39	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	86		25 - 150					11/19/20 13:39	
13C5 PFPeA	92		25 - 150					11/19/20 13:39	1
13C2 PFHxA	89		25 - 150					11/19/20 13:39	1
13C4 PFHpA	89		25 - 150					11/19/20 13:39	1
13C4 PFOA	90		25 - 150					11/19/20 13:39	1
13C5 PFNA	82		25 - 150					11/19/20 13:39	1
13C2 PFDA	79		25 - 150					11/19/20 13:39	
13C2 PFUnA	78		25 - 150					11/19/20 13:39	1
13C2 PFDoA	72		25 - 150					11/19/20 13:39	
13C2 PFTeDA	57		25 - 150					11/19/20 13:39	
13C3 PFBS	90		25 - 150 25 - 150					11/19/20 13:39	
1802 PFHxS	103		25 - 150 25 - 150					11/19/20 13:39	1
13C4 PFOS	100		25 - 150 25 - 150					11/19/20 13:39	
13C8 FOSA	90		25 - 150 25 - 150					11/19/20 13:39	1
d3-NMeFOSAA	90 61		25 - 150 25 - 150					11/19/20 13:39	1
JO-INIVICE COMM	01		20 - 100				11/10/20 19.40	11/19/20 13.39	

Eurofins TestAmerica, Edison

Page 53 of 157

2

3

5

7

9

11 12

14

16

1 /

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: S-3 Lab Sample ID: 460-222216-6

Date Collected: 11/03/20 15:45

Date Received: 11/05/20 18:00

Matrix: Solid
Percent Solids: 61.6

Method: 537 (modified)	- Fluorinated Alkyl Substances	- SPLP East (Continued)
------------------------	--------------------------------	-------------------------

Isotope Dilution	%Recovery Qualific	er Limits	Prepared	Analyzed	Dil Fac
M2-6:2 FTS	119	25 - 150	11/18/20 19:40	11/19/20 13:39	1
M2-8:2 FTS	117	25 - 150	11/18/20 19:40	11/19/20 13:39	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	2.6	U	2.6	1.4	mg/Kg	<u></u>	11/12/20 16:30	11/13/20 18:03	2
Aluminum	9670		51.1	7.2	mg/Kg	₩	11/12/20 16:30	11/13/20 18:03	2
Arsenic	4.0		3.8	0.79	mg/Kg	₩	11/12/20 16:30	11/13/20 18:03	2
Barium	95.5		51.1	4.9	mg/Kg	☼	11/12/20 16:30	11/13/20 18:03	2
Beryllium	0.51	U	0.51	0.082	mg/Kg	☼	11/12/20 16:30	11/13/20 18:03	2
Calcium	3100		1280	94.4	mg/Kg	₩	11/12/20 16:30	11/13/20 18:03	2
Cadmium	0.30	J	1.0	0.088	mg/Kg	₩	11/12/20 16:30	11/13/20 18:03	2
Cobalt	8.4	J	12.8	0.71	mg/Kg	☆	11/12/20 16:30	11/13/20 18:03	2
Chromium	15.4		2.6	1.8	mg/Kg	₩	11/12/20 16:30	11/13/20 18:03	2
Copper	15.9		6.4	1.6	mg/Kg	⊅	11/12/20 16:30	11/13/20 18:03	2
Iron	14500		38.3	26.3	mg/Kg	₩	11/12/20 16:30	11/13/20 18:03	2
Potassium	901	J	1280	78.4	mg/Kg	☼	11/12/20 16:30	11/13/20 18:03	2
Magnesium	3720		1280	86.5	mg/Kg	₩	11/12/20 16:30	11/13/20 18:03	2
Manganese	1050		3.8	0.29	mg/Kg	☼	11/12/20 16:30	11/13/20 18:03	2
Sodium	1280	U	1280	111	mg/Kg	☼	11/12/20 16:30	11/13/20 18:03	2
Nickel	12.8		10.2	0.67	mg/Kg	☼	11/12/20 16:30	11/13/20 18:03	2
Lead	24.0		2.6	0.41	mg/Kg	☼	11/12/20 16:30	11/13/20 18:03	2
Antimony	5.1		5.1	1.5	mg/Kg	₩	11/12/20 16:30	11/13/20 18:03	2
Selenium	5.1	U	5.1	0.87	mg/Kg	☼	11/12/20 16:30	11/13/20 18:03	2
Thallium	5.1	U	5.1	0.79	mg/Kg	☼	11/12/20 16:30	11/13/20 18:03	2
Vanadium	22.1		12.8	1.2	mg/Kg	☼	11/12/20 16:30	11/13/20 18:03	2
Zinc	123		7.7	1.4	mg/Kg		11/12/20 16:30	11/13/20 18:03	2

Method: 7471B - Mercury (CVA	A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.097		0.026	0.0061	mg/Kg	<u> </u>	11/16/20 03:07	11/16/20 07:21	1

				0 0				
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
0.36	U	0.36	0.18	mg/Kg	<u></u>	11/15/20 12:34	11/16/20 14:05	1
91500	H	1000	671	mg/Kg			11/20/20 11:36	1
Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
6.2	HF	0.1	0.1	SU			11/17/20 13:09	1
6.2	HF	0.1	0.1	SU			11/17/20 13:09	1
21.1	HF	0.1	0.1	Degrees C			11/17/20 13:09	1
38.4		1.0	1.0	%			11/16/20 10:45	1
61.6		1.0	1.0	%			11/16/20 10:45	1
	0.36 91500 Result 6.2 6.2 21.1 38.4		0.36 U 0.36 91500 H 1000 Result Qualifier RL 6.2 HF 0.1 6.2 HF 0.1 21.1 HF 0.1 38.4 1.0	0.36 U 0.36 0.18 91500 H 1000 671 Result Qualifier RL RL RL 6.2 HF 0.1 0.1 6.2 HF 0.1 0.1 21.1 HF 0.1 0.1 38.4 1.0 1.0	0.36 U 0.36 0.18 mg/Kg 91500 H 1000 671 mg/Kg Result Qualifier RL RL Unit 6.2 HF 0.1 0.1 SU 6.2 HF 0.1 0.1 SU 21.1 HF 0.1 0.1 Degrees C 38.4 1.0 1.0 %	0.36 U 0.36 0.18 mg/Kg ⇒ 91500 H 1000 671 mg/Kg Result Qualifier RL RL Unit D 6.2 HF 0.1 0.1 SU 6.2 HF 0.1 0.1 SU 21.1 HF 0.1 0.1 Degrees C 38.4 1.0 1.0 %	0.36 U 0.36 0.18 mg/Kg 11/15/20 12:34 91500 H 1000 671 mg/Kg Result Qualifier RL RL Unit D Prepared 6.2 HF 0.1 0.1 SU 6.2 HF 0.1 0.1 SU 21.1 HF 0.1 0.1 Degrees C 38.4 1.0 1.0 %	0.36 U 0.36 0.18 mg/Kg 11/15/20 12:34 11/16/20 14:05 91500 H 1000 671 mg/Kg 11/20/20 11:36 Result Qualifier RL RL Unit D Prepared Analyzed 6.2 HF 0.1 0.1 SU 11/17/20 13:09 6.2 HF 0.1 0.1 SU 11/17/20 13:09 21.1 HF 0.1 0.1 Degrees C 11/17/20 13:09 38.4 1.0 1.0 % 11/16/20 10:45

Client Sample ID: TB

Lab Sample ID: 460-222216-7

Date Collected: 11/03/20 10:00

Matrix: Water

Date Received: 11/05/20 18:00

Method: 8260D - Volatile Orga	nic Compo	unds by GC	:/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	1.0	U	1.0	0.40	ug/L			11/11/20 15:36	1

Eurofins TestAmerica, Edison

3/30/2021

Page 54 of 157

2

3

5

7

10

14

. .

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: TB Lab Sample ID: 460-222216-7

Date Collected: 11/03/20 10:00 Matrix: Water Date Received: 11/05/20 18:00

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Bromomethane	1.0		1.0		ug/L			11/11/20 15:36	1
Vinyl chloride	1.0		1.0		ug/L			11/11/20 15:36	1
Chloroethane	1.0	U	1.0	0.32	ug/L			11/11/20 15:36	1
Methylene Chloride	2.1		1.0	0.32	ug/L			11/11/20 15:36	1
Acetone	5.7		5.0	4.4	ug/L			11/11/20 15:36	1
Carbon disulfide	1.0	U	1.0	0.82	ug/L			11/11/20 15:36	1
Trichlorofluoromethane	1.0	U	1.0	0.32	ug/L			11/11/20 15:36	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			11/11/20 15:36	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			11/11/20 15:36	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			11/11/20 15:36	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			11/11/20 15:36	1
Chloroform	1.0	U	1.0	0.33	ug/L			11/11/20 15:36	1
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			11/11/20 15:36	1
2-Butanone (MEK)	5.0	U	5.0	1.9	ug/L			11/11/20 15:36	1
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L			11/11/20 15:36	1
Carbon tetrachloride	1.0	U	1.0	0.21	ug/L			11/11/20 15:36	1
Dichlorobromomethane	1.0	U	1.0	0.34	ug/L			11/11/20 15:36	1
1,2-Dichloropropane	1.0	Ü	1.0	0.35	ug/L			11/11/20 15:36	1
cis-1,3-Dichloropropene	1.0	U	1.0		ug/L			11/11/20 15:36	1
Trichloroethene	1.0	U	1.0		ug/L			11/11/20 15:36	1
Chlorodibromomethane	1.0	U	1.0		ug/L			11/11/20 15:36	1
1,1,2-Trichloroethane	1.0	U	1.0		ug/L			11/11/20 15:36	1
Benzene	1.0	U	1.0		ug/L			11/11/20 15:36	1
trans-1,3-Dichloropropene	1.0	U	1.0		ug/L			11/11/20 15:36	1
Bromoform	1.0		1.0		ug/L			11/11/20 15:36	1
4-Methyl-2-pentanone (MIBK)	5.0	U	5.0		ug/L			11/11/20 15:36	1
2-Hexanone	5.0		5.0		ug/L			11/11/20 15:36	
Tetrachloroethene	1.0		1.0		ug/L			11/11/20 15:36	1
1,1,2,2-Tetrachloroethane	1.0		1.0		ug/L			11/11/20 15:36	1
Toluene	1.0		1.0		ug/L			11/11/20 15:36	1
Chlorobenzene	1.0		1.0		ug/L			11/11/20 15:36	1
Ethylbenzene	1.0		1.0		ug/L			11/11/20 15:36	1
Styrene	1.0		1.0		ug/L			11/11/20 15:36	1
m-Xylene & p-Xylene	1.0		1.0		ug/L			11/11/20 15:36	1
o-Xylene	1.0		1.0		ug/L			11/11/20 15:36	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0		1.0		ug/L			11/11/20 15:36	
Methyl tert-butyl ether	1.0		1.0		ug/L			11/11/20 15:36	1
Cyclohexane	1.0		1.0		ug/L			11/11/20 15:36	1
Ethylene Dibromide	1.0		1.0		ug/L			11/11/20 15:36	1
1,3-Dichlorobenzene	1.0		1.0		ug/L			11/11/20 15:36	1
1,4-Dichlorobenzene	1.0		1.0		ug/L			11/11/20 15:36	1
1,2-Dichlorobenzene	1.0		1.0		ug/L			11/11/20 15:36	
Dichlorodifluoromethane	1.0		1.0		ug/L ug/L			11/11/20 15:36	,
1,2,4-Trichlorobenzene	1.0		1.0		ug/L ug/L			11/11/20 15:36	
1,4-Dioxane	50		50					11/11/20 15:36	
					ug/L				
1,2,3-Trichlorobenzene	1.0		1.0		ug/L			11/11/20 15:36	1
1,2-Dibromo-3-Chloropropane	1.0		1.0		ug/L			11/11/20 15:36	1
Chlorobromomethane Isopropylbenzene	1.0 1.0		1.0 1.0		ug/L ug/L			11/11/20 15:36 11/11/20 15:36	1

Eurofins TestAmerica, Edison

3

4

6

8

10

12

14

15

_

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: TB Lab Sample ID: 460-222216-7

Date Collected: 11/03/20 10:00 Matrix: Water Date Received: 11/05/20 18:00

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl acetate	5.0	U	5.0		0.79	ug/L			11/11/20 15:36	1
Methylcyclohexane	1.0	U	1.0		0.71	ug/L			11/11/20 15:36	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L						11/11/20 15:36	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		75 - 123				•		11/11/20 15:36	1
Toluene-d8 (Surr)	99		80 - 120						11/11/20 15:36	1
4-Bromofluorobenzene	101		76 - 120						11/11/20 15:36	1
Dibromofluoromethane (Surr)	99		77 - 124						11/11/20 15:36	

Client Sample ID: EB Lab Sample ID: 460-222216-8

Date Collected: 11/03/20 16:30 Matrix: Water

Date Received: 11/05/20 18:00

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	1.0 U	1.0	0.40	ug/L			11/12/20 21:51	1
Bromomethane	1.0 U	1.0	0.55	ug/L			11/12/20 21:51	1
Vinyl chloride	1.0 U	1.0	0.17	ug/L			11/12/20 21:51	1
Chloroethane	1.0 U	1.0	0.32	ug/L			11/12/20 21:51	1
Methylene Chloride	0.73 J	1.0	0.32	ug/L			11/12/20 21:51	1
Acetone	6.2	5.0	4.4	ug/L			11/12/20 21:51	1
Carbon disulfide	1.0 U	1.0	0.82	ug/L			11/12/20 21:51	1
Trichlorofluoromethane	1.0 U	1.0	0.32	ug/L			11/12/20 21:51	1
1,1-Dichloroethene	1.0 U	1.0	0.26	ug/L			11/12/20 21:51	1
1,1-Dichloroethane	1.0 U	1.0	0.26	ug/L			11/12/20 21:51	1
trans-1,2-Dichloroethene	1.0 U	1.0	0.24	ug/L			11/12/20 21:51	1
cis-1,2-Dichloroethene	1.0 U	1.0	0.22	ug/L			11/12/20 21:51	1
Chloroform	1.0 U	1.0	0.33	ug/L			11/12/20 21:51	1
1,2-Dichloroethane	1.0 U	1.0	0.43	ug/L			11/12/20 21:51	1
2-Butanone (MEK)	5.0 U	5.0	1.9	ug/L			11/12/20 21:51	1
1,1,1-Trichloroethane	1.0 U	1.0	0.24	ug/L			11/12/20 21:51	1
Carbon tetrachloride	1.0 U	1.0	0.21	ug/L			11/12/20 21:51	1
Dichlorobromomethane	1.0 U	1.0	0.34	ug/L			11/12/20 21:51	1
1,2-Dichloropropane	1.0 U	1.0	0.35	ug/L			11/12/20 21:51	1
cis-1,3-Dichloropropene	1.0 U	1.0	0.22	ug/L			11/12/20 21:51	1
Trichloroethene	1.0 U	1.0	0.31	ug/L			11/12/20 21:51	1
Chlorodibromomethane	1.0 U	1.0	0.28	ug/L			11/12/20 21:51	1
1,1,2-Trichloroethane	1.0 U	1.0	0.20	ug/L			11/12/20 21:51	1
Benzene	1.0 U	1.0	0.20	ug/L			11/12/20 21:51	1
trans-1,3-Dichloropropene	1.0 U	1.0	0.22	ug/L			11/12/20 21:51	1
Bromoform	1.0 U	1.0	0.54	ug/L			11/12/20 21:51	1
4-Methyl-2-pentanone (MIBK)	5.0 U	5.0	1.3	ug/L			11/12/20 21:51	1
2-Hexanone	5.0 U	5.0	1.1	ug/L			11/12/20 21:51	1
Tetrachloroethene	1.0 U	1.0	0.25	ug/L			11/12/20 21:51	1
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.37	ug/L			11/12/20 21:51	1
Toluene	1.0 U	1.0	0.38	ug/L			11/12/20 21:51	1
Chlorobenzene	1.0 U	1.0		ug/L			11/12/20 21:51	1

Eurofins TestAmerica, Edison

3/30/2021

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Dibromofluoromethane (Surr)

Lab Sample ID: 460-222216-8 **Client Sample ID: EB**

Date Collected: 11/03/20 16:30 **Matrix: Water** Date Received: 11/05/20 18:00

Analyte	Result	Qualifier	RL	M	DL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	1.0	U	1.0	0	.30	ug/L			11/12/20 21:51	1
Styrene	1.0	U	1.0	0	.42	ug/L			11/12/20 21:51	1
m-Xylene & p-Xylene	1.0	U	1.0	0	.30	ug/L			11/12/20 21:51	1
o-Xylene	1.0	U	1.0	0	.36	ug/L			11/12/20 21:51	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0	.31	ug/L			11/12/20 21:51	1
Methyl tert-butyl ether	1.0	U	1.0	0	.22	ug/L			11/12/20 21:51	1
Cyclohexane	1.0	U	1.0	0	.32	ug/L			11/12/20 21:51	1
Ethylene Dibromide	1.0	U	1.0	0	.50	ug/L			11/12/20 21:51	1
1,3-Dichlorobenzene	1.0	U	1.0	0	.34	ug/L			11/12/20 21:51	1
1,4-Dichlorobenzene	1.0	U	1.0	0	.33	ug/L			11/12/20 21:51	1
1,2-Dichlorobenzene	1.0	U	1.0	0	.21	ug/L			11/12/20 21:51	1
Dichlorodifluoromethane	1.0	U	1.0	0	.31	ug/L			11/12/20 21:51	1
1,2,4-Trichlorobenzene	1.0	U	1.0	0	.37	ug/L			11/12/20 21:51	1
1,4-Dioxane	50	U	50		28	ug/L			11/12/20 21:51	1
1,2,3-Trichlorobenzene	1.0	U	1.0	0	.36	ug/L			11/12/20 21:51	1
1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0	.38	ug/L			11/12/20 21:51	1
Chlorobromomethane	1.0	U	1.0	0	.41	ug/L			11/12/20 21:51	1
Isopropylbenzene	1.0	U	1.0	0	.34	ug/L			11/12/20 21:51	1
Methyl acetate	5.0	U	5.0	0	.79	ug/L			11/12/20 21:51	1
Methylcyclohexane	1.0	U	1.0	0	.71	ug/L			11/12/20 21:51	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					-	11/12/20 21:51	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		75 - 123						11/12/20 21:51	1
Toluene-d8 (Surr)	99		80 - 120						11/12/20 21:51	1
4-Bromofluorobenzene	102		76 - 120						11/12/20 21:51	1

77 - 124

101

11/12/20 21:51

Surrogate Summary

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	TOL	BFB	DBFM
Lab Sample ID	Client Sample ID	(77-145)	(80-120)	(79-125)	(48-150)
460-222216-4	S-1	117	94	108	111
460-222216-5	S-2	124	103	115	125
460-222216-6	S-3	125	100	112	121
LB3 460-737953/1-A	Method Blank	106	95	96	107
LCS 460-738783/3	Lab Control Sample	103	99	102	105
LCS 460-739694/4	Lab Control Sample	108	98	105	107
LCS 460-739828/3	Lab Control Sample	119	110	113	117
LCSD 460-738783/4	Lab Control Sample Dup	100	96	100	101
LCSD 460-739694/5	Lab Control Sample Dup	123	115	122	127
LCSD 460-739828/4	Lab Control Sample Dup	106	98	105	105
MB 460-738783/7	Method Blank	107	96	100	105
MB 460-739694/9	Method Blank	118	104	115	115
MB 460-739828/7	Method Blank	119	104	115	122

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene

DBFM = Dibromofluoromethane (Surr)

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surro	ogate Recover	ry (Accep
		DCA	TOL	BFB	DBFM	
Lab Sample ID	Client Sample ID	(75-123)	(80-120)	(76-120)	(77-124)	
460-222216-1	SW-1	101	98	103	99	
460-222216-2	SW-2	104	100	104	100	
460-222216-3	SW-3	102	99	104	102	
460-222216-7	ТВ	103	99	101	99	
460-222216-8	EB	105	99	102	101	
LCS 460-738814/4	Lab Control Sample	102	98	102	97	
LCS 460-738942/4	Lab Control Sample	103	101	103	100	
LCS 460-739430/4	Lab Control Sample	103	99	101	101	
LCSD 460-738814/5	Lab Control Sample Dup	101	100	101	100	
LCSD 460-738942/5	Lab Control Sample Dup	104	100	106	101	
LCSD 460-739430/5	Lab Control Sample Dup	104	101	105	103	
MB 460-738814/9	Method Blank	101	99	102	99	
MB 460-738942/8	Method Blank	100	98	102	99	
MB 460-739430/10	Method Blank	104	97	100	102	

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene

DBFM = Dibromofluoromethane (Surr)

Page 58 of 157

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8270E - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surro	ogate Reco	very (Accep	otance Lim
		NBZ	PHL	TPHL	TBP	2FP	FBP
Lab Sample ID	Client Sample ID	(19-105)	(26-101)	(25-127)	(10-123)	(18-106)	(25-104)
160-222216-4	S-1	82	86	118	83	83	85
160-222216-5	S-2	85	89	114	87	86	89
0-222216-6	S-3	79	80	107	81	76	85
S 460-738890/2-A	Lab Control Sample	85	89	98	82	84	83
CSD 460-738890/3-A	Lab Control Sample Dup	82	83	97	80	79	82
IB 460-738890/1-A	Method Blank	82	81	98	78	82	82

Surrogate Legend

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPHL = Terphenyl-d14 (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

2FP = 2-Fluorophenol (Surr)

FBP = 2-Fluorobiphenyl

Method: 8270E - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surro	ogate Recov	ery (Acce	ptance Lim
		NBZ	PHL	TPHL	TBP	2FP	FBP
Lab Sample ID	Client Sample ID	(46-137)	(10-50)	(39-150)	(36-159)	(18-72)	(42-127)
460-222216-1	SW-1	92	29	61	113	43	74
460-222216-2	SW-2	77	28	68	114	41	69
460-222216-3	SW-3	92	38	80	125	50	84
LCS 460-738369/2-A	Lab Control Sample	83	31	80	138	44	80
LCSD 460-738369/3-A	Lab Control Sample Dup	85	32	80	138	45	83
MB 460-738369/1-A	Method Blank	85	28	85	136	41	75

Surrogate Legend

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPHL = Terphenyl-d14 (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

2FP = 2-Fluorophenol (Surr)

FBP = 2-Fluorobiphenyl

Method: 8081B - Organochlorine Pesticides (GC)

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCBP1	DCBP2	TCX1	TCX2
Lab Sample ID	Client Sample ID	(28-148)	(28-148)	(34-118)	(34-118)
460-222216-4	S-1	93	78	72	70
460-222216-5	S-2	88	85	76	82
460-222216-6	S-3	97	86	79	96
LCS 460-739629/2-A	Lab Control Sample	91	84	82	82
LCSD 460-739629/3-A	Lab Control Sample Dup	84	90	86	86
MB 460-739629/1-A	Method Blank	95	116	104	113

Surrogate Legend

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Eurofins TestAmerica, Edison

Page 59 of 157

6

Job ID: 460-222216-1

4

8

9

11

14

16

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021 Method: 8081B - Organochlorine Pesticides (GC)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Rec
		DCBP1	DCBP2	TCX1	TCX2
Lab Sample ID	Client Sample ID	(10-132)	(10-132)	(10-150)	(10-150)
460-222216-1	SW-1	54	57	74	75
460-222216-2	SW-2	74	85	88	91
460-222216-3	SW-3	75	77	79	81
LCS 460-738218/2-A	Lab Control Sample	87	100	98	101
LCSD 460-738218/3-A	Lab Control Sample Dup	86	94	97	97
MB 460-738218/1-A	Method Blank	99	106	108	105
Surrogate Legend					
DCBP = DCB Decachlo	orobiphenyl				

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCBP1	DCBP2	TCX1	TCX2
Lab Sample ID	Client Sample ID	(10-150)	(10-150)	(58-145)	(58-145)
460-222216-4	S-1	120	124	115	120
460-222216-5	S-2	116	120	110	115
460-222216-6	S-3	117	121	109	114
LCS 460-739628/2-A	Lab Control Sample	105	108	102	106
LCSD 460-739628/3-A	Lab Control Sample Dup	97	101	93	97
MB 460-739628/1-A	Method Blank	104	108	100	106

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

TCX = Tetrachloro-m-xylene

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		DCBP1	DCBP2	TCX1	TCX2			
Lab Sample ID	Client Sample ID	(10-150)	(10-150)	(48-125)	(48-125)			
460-222216-1	SW-1	66	67	96	94			
460-222216-2	SW-2	76	92	83	91			
460-222216-3	SW-3	83	89	91	88			
LCS 460-738219/2-A	Lab Control Sample	145	146	139 X	135 X			
LCSD 460-738219/3-A	Lab Control Sample Dup	126	127	120	115			
MB 460-738219/1-A	Method Blank	127	130	122	119			

Surrogate Legend

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Method: 8151A - Herbicides (GC)

Matrix: Solid Prep Type: Total/NA

			Percent	Surrogate Recovery (Acceptance Limits)
		DCPAA1	DCPAA2	
Lab Sample ID	Client Sample ID	(30-150)	(30-150)	
460-222216-4	S-1	92	90	
460-222216-5	S-2	100	118	

Eurofins TestAmerica, Edison

3/30/2021

Page 60 of 157

Surrogate Summary

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8151A - Herbicides (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		DCPAA1	DCPAA2					
Lab Sample ID	Client Sample ID	(30-150)	(30-150)					
460-222216-6	S-3	100	111					
LCS 460-738542/2-A	Lab Control Sample	119	124					
LCSD 460-738542/3-A	Lab Control Sample Dup	119	125					
MB 460-738542/1-A	Method Blank	100	103					
Surrogate Legend								
DCPAA = 2,4-Dichlorop	phenylacetic acid							

Method: 8151A - Herbicides (GC)

Matrix: Water Prep Type: Total/NA

<u> </u>	lient Sample ID	(20 445)			
400 000040 4		(39-145)	(39-145)		
460-222216-1 S	SW-1	107	94	 	
460-222216-2 S	SW-2	111	99		
460-222216-3 S	SW-3	112	92		
LCS 460-738541/2-A La	ab Control Sample	111	99		
LCSD 460-738541/3-A La	ab Control Sample Dup	113	101		
MB 460-738541/1-A M	lethod Blank	100	93		

7

Eurofins TestAmerica, Edison

3

5

7

O

10

12

4.4

10

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8270E SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

Matrix: Water Prep Type: Total/NA

		DXE	Percent Isotope Dilution Recovery (Acceptance Limits)
		DXE	
Lab Sample ID	Client Sample ID	(10-150)	
460-222216-1	SW-1	39	
460-222216-2	SW-2	35	
460-222216-3	SW-3	32	
MB 460-738693/1-A	Method Blank	32	
Surrogate Legend			
Surrogate Legend DXE = 1,4-Dioxane-d8			

Method: 8270E SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

Matrix: Water Prep Type: Total/NA

		Percent Isotope Dilution Recovery (Acceptance Limits)							
		DXE							
Lab Sample ID	Client Sample ID	(10-200)							
LCS 460-738693/2-A	Lab Control Sample	31							
LCSD 460-738693/3-A	Lab Control Sample Dup	33							
Surrogate Legend									
DXE = 1,4-Dioxane-d8									

Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Solid Prep Type: Total/NA

natrixi oona								op ijpo.	TO COMPTEN		
-		Percent Isotope Dilution Recovery (Acceptance Limits)									
		PFBA	PFPeA	PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA		
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)		
460-222216-4	S-1	81	61	90	90	91	83	92	95		
460-222216-4 MS	S-1	78	58	88	93	87	82	96	95		
460-222216-4 MSD	S-1	80	58	89	96	94	84	91	102		
460-222216-5	S-2	73	58	88	88	92	87	94	95		
460-222216-6	S-3	83	60	77	91	94	85	86	86		
LCS 320-432465/2-A	Lab Control Sample	97	91	98	104	102	97	93	93		
LCS 320-433241/2-A	Lab Control Sample	95	98	93	89	94	86	92	91		
LCSD 320-433241/3-A	Lab Control Sample Dup	99	104	97	95	97	90	89	93		
MB 320-432465/1-A	Method Blank	94	87	99	99	98	97	94	95		
MB 320-433241/1-A	Method Blank	102	107	101	99	105	92	99	75		
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	.imits)			
		PFDoA	PFTDA	C3PFBS	PFHxS	PFOS	PFOSA	d3NMFOS	d5NEFOS		
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)		
460-222216-4	S-1	80	94	69	94	88	64	79	82		
460-222216-4 MS	S-1	82	81	66	96	86	63	83	84		
460-222216-4 MSD	S-1	82	84	72	100	93	64	80	83		
460-222216-5	S-2	84	68	69	91	94	69	87	91		
460-222216-6	S-3	81	68	66	93	89	68	75	77		

		PFDoA	PFTDA	C3PFBS	PFHxS	PFOS	PFOSA	d3NMFOS	d5NEFOS
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
460-222216-4	S-1	80	94	69	94	88	64	79	82
460-222216-4 MS	S-1	82	81	66	96	86	63	83	84
460-222216-4 MSD	S-1	82	84	72	100	93	64	80	83
460-222216-5	S-2	84	68	69	91	94	69	87	91
460-222216-6	S-3	81	68	66	93	89	68	75	77
LCS 320-432465/2-A	Lab Control Sample	98	101	94	97	98	91	95	102
LCS 320-433241/2-A	Lab Control Sample	76	77	99	108	109	93	70	91
LCSD 320-433241/3-A	Lab Control Sample Dup	83	85	98	109	108	96	72	90
MB 320-432465/1-A	Method Blank	97	101	86	90	93	89	92	102
MB 320-433241/1-A	Method Blank	45	79	102	111	109	99	58	62

Page 62 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Matrix: Solid Prep Type: Total/NA

			Percent Is	sotope Dilution R
		M262FTS	M282FTS	
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	
460-222216-4	S-1	258 *5	268 *5	
460-222216-4 MS	S-1	245 *5	263 *5	
460-222216-4 MSD	S-1	270 *5	277 *5	
460-222216-5	S-2	248 *5	271 *5	
460-222216-6	S-3	246 *5	245 *5	
LCS 320-432465/2-A	Lab Control Sample	136	114	
LCS 320-433241/2-A	Lab Control Sample	119	119	
LCSD 320-433241/3-A	Lab Control Sample Dup	122	113	
MB 320-432465/1-A	Method Blank	127	107	
MB 320-433241/1-A	Method Blank	129	173 *5	

Surrogate Legend

PFBA = 13C4 PFBA

PFPeA = 13C5 PFPeA

PFHxA = 13C2 PFHxA

C4PFHA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA

PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA

PFDoA = 13C2 PFDoA

PFTDA = 13C2 PFTeDA

C3PFBS = 13C3 PFBS

PFHxS = 18O2 PFHxS

PFOS = 13C4 PFOS

PFOSA = 13C8 FOSA

d3NMFOS = d3-NMeFOSAA

d5NEFOS = d5-NEtFOSAA

M262FTS = M2-6:2 FTS

M282FTS = M2-8:2 FTS

Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Solid Prep Type: SPLP East

			Perc	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)		
		PFBA	PFPeA	PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA	
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	
460-222216-5	S-2	83	91	95	95	97	91	88	88	
460-222216-6	S-3	86	92	89	89	90	82	79	78	
LB 320-432086/1-B	Method Blank	108	111	106	102	105	100	94	98	
		Percent Isotope Dilution Recovery (Acceptance Limits)								
		PFDoA	PFTDA	C3PFBS	PFHxS	PFOS	PFOSA	d3NMFOS	d5NEFOS	
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	
460-222216-5	S-2	73	51	96	110	106	102	71	96	
460-222216-6	S-3	72	57	90	103	100	90	61	86	
LB 320-432086/1-B	Method Blank	82	79	108	119	117	102	69	93	
			Perc	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)		
		M262FTS	M282FTS							
Lab Sample ID	Client Sample ID	(25-150)	(25-150)							
460-222216-5	S-2	157 *5	155 *5							

Page 63 of 157

3/30/2021

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Matrix: Solid Prep Type: SPLP East

			Percent	Isotope Dilution Recovery (Acceptance Limits)
		M262FTS	M282FTS	
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	
460-222216-6	S-3	119	117	
LB 320-432086/1-B	Method Blank	135	135	

Surrogate Legend

PFBA = 13C4 PFBA

PFPeA = 13C5 PFPeA

PFHxA = 13C2 PFHxA

C4PFHA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA

PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA

PFDoA = 13C2 PFDoA

PFTDA = 13C2 PFTeDA

C3PFBS = 13C3 PFBS

PFHxS = 18O2 PFHxS

PFOS = 13C4 PFOS

PFOSA = 13C8 FOSA

d3NMFOS = d3-NMeFOSAA

d5NEFOS = d5-NEtFOSAA

M262FTS = M2-6:2 FTS

M282FTS = M2-8:2 FTS

Method: 537 (modified) - Fluorinated Alkyl Substances

Prop Type: Total/NA

		Percent Isotope Dilution Recovery (Acceptance Limits)									
		PFBA	PFPeA	PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA		
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)		
460-222216-1	SW-1	30	35	36	38	41	36	37	38		
460-222216-2	SW-2	34	61	74	85	93	91	92	88		
460-222216-3	SW-3	46	61	68	70	69	63	61	57		
LCS 320-429840/2-A	Lab Control Sample	90	94	92	95	99	96	98	92		
LCSD 320-429840/3-A	Lab Control Sample Dup	70	75	72	74	76	70	71	70		
MB 320-429840/1-A	Method Blank	72	76	74	76	80	73	74	69		
		Percent Isotope Dilution Recovery (Acceptance Limits)									
		PFDoA	PFTDA	C3PFBS	PFHxS	PFOS	PFOSA	d3NMFOS	d5NEFOS		
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)		
460-222216-1	SW-1	32	31	40	45	46	39	41	46		
460-222216-2	SW-2	74	63	93	104	112	107	97	104		
460-222216-3	SW-3	56	52	79	87	86	69	66	68		
LCS 320-429840/2-A	Lab Control Sample	93	87	88	94	95	89	94	90		
LCSD 320-429840/3-A	Lab Control Sample Dup	72	75	85	90	90	78	83	84		
MB 320-429840/1-A	Method Blank	73	79	92	99	99	84	94	93		
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)			
		M262FTS	M282FTS								
Lab Sample ID	Client Sample ID	(25-150)	(25-150)								
460-222216-1	SW-1	53	50								
460-222216-2	SW-2	144	133								
460-222216-3	SW-3	72	68								

Eurofins TestAmerica, Edison

Page 64 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

PFOS = 13C4 PFOS PFOSA = 13C8 FOSA d3NMFOS = d3-NMeFOSAA d5NEFOS = d5-NEtFOSAA M262FTS = M2-6:2 FTSM282FTS = M2-8:2 FTS

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Matrix: Water Prep Type: Total/NA

			Percent Is	sotope Dilution Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	M262FTS (25-150)	M282FTS (25-150)	
LCS 320-429840/2-A	Lab Control Sample	98	101	
LCSD 320-429840/3-A	Lab Control Sample Dup	81	73	
MB 320-429840/1-A	Method Blank	87	80	
Surrogate Legend				
PFBA = 13C4 PFBA				
PFPeA = 13C5 PFPeA				
PFHxA = 13C2 PFHxA				
C4PFHA = 13C4 PFHpA				
PFOA = 13C4 PFOA				
PFNA = 13C5 PFNA				
PFDA = 13C2 PFDA				
PFUnA = 13C2 PFUnA				
PFDoA = 13C2 PFDoA				
PFTDA = 13C2 PFTeDA				
C3PFBS = 13C3 PFBS				
PFHxS = 18O2 PFHxS				

3/30/2021

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: LB3 460-737953/1-A

Matrix: Solid

Analysis Batch: 738783

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 737953

		LB3				_	_		
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Chloromethane	1.0		1.0	0.44			11/06/20 19:08	11/10/20 22:10	1
Bromomethane	1.0		1.0		ug/Kg		11/06/20 19:08	11/10/20 22:10	1
Vinyl chloride	1.0		1.0		ug/Kg		11/06/20 19:08	11/10/20 22:10	1
Chloroethane	1.0		1.0		ug/Kg		11/06/20 19:08	11/10/20 22:10	1
Methylene Chloride	1.0		1.0	1.1	0 0		11/06/20 19:08	11/10/20 22:10	1
Acetone	6.0		6.0		ug/Kg		11/06/20 19:08	11/10/20 22:10	1
Carbon disulfide	1.0		1.0		0 0		11/06/20 19:08	11/10/20 22:10	1
Trichlorofluoromethane	1.0		1.0	0.41			11/06/20 19:08	11/10/20 22:10	1
1,1-Dichloroethene	1.0		1.0		ug/Kg		11/06/20 19:08	11/10/20 22:10	1
1,1-Dichloroethane	1.0		1.0	0.21			11/06/20 19:08	11/10/20 22:10	1
trans-1,2-Dichloroethene	1.0		1.0		ug/Kg		11/06/20 19:08	11/10/20 22:10	1
cis-1,2-Dichloroethene	1.0		1.0		ug/Kg		11/06/20 19:08	11/10/20 22:10	1
Chloroform	1.0		1.0		ug/Kg		11/06/20 19:08	11/10/20 22:10	1
1,2-Dichloroethane	1.0		1.0		ug/Kg		11/06/20 19:08	11/10/20 22:10	1
2-Butanone (MEK)	5.0		5.0		ug/Kg		11/06/20 19:08	11/10/20 22:10	1
1,1,1-Trichloroethane	1.0		1.0		ug/Kg		11/06/20 19:08		1
Carbon tetrachloride	1.0		1.0		ug/Kg		11/06/20 19:08	11/10/20 22:10	1
Dichlorobromomethane	1.0	U	1.0		ug/Kg		11/06/20 19:08	11/10/20 22:10	1
1,2-Dichloropropane	1.0		1.0		ug/Kg		11/06/20 19:08	11/10/20 22:10	1
cis-1,3-Dichloropropene	1.0	U	1.0		ug/Kg		11/06/20 19:08	11/10/20 22:10	1
Trichloroethene	1.0	U	1.0		ug/Kg		11/06/20 19:08	11/10/20 22:10	1
Chlorodibromomethane	1.0	U	1.0	0.19	ug/Kg		11/06/20 19:08	11/10/20 22:10	1
1,1,2-Trichloroethane	1.0	U	1.0		ug/Kg		11/06/20 19:08	11/10/20 22:10	1
Benzene	1.0	U	1.0		ug/Kg		11/06/20 19:08	11/10/20 22:10	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.27	ug/Kg		11/06/20 19:08	11/10/20 22:10	1
Bromoform	1.0	U	1.0		ug/Kg		11/06/20 19:08	11/10/20 22:10	1
4-Methyl-2-pentanone (MIBK)	5.0	U	5.0	1.6	ug/Kg		11/06/20 19:08	11/10/20 22:10	1
2-Hexanone	5.0	U	5.0	1.7	ug/Kg		11/06/20 19:08	11/10/20 22:10	1
Tetrachloroethene	1.0	U	1.0	0.31	ug/Kg		11/06/20 19:08	11/10/20 22:10	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.21	ug/Kg		11/06/20 19:08	11/10/20 22:10	1
Toluene	1.0	U	1.0	0.23	ug/Kg		11/06/20 19:08	11/10/20 22:10	1
Chlorobenzene	1.0	U	1.0	0.18	0 0		11/06/20 19:08	11/10/20 22:10	1
Ethylbenzene	1.0	U	1.0	0.20			11/06/20 19:08	11/10/20 22:10	1
Styrene	1.0	U	1.0	0.28	ug/Kg		11/06/20 19:08	11/10/20 22:10	1
m-Xylene & p-Xylene	1.0	U	1.0	0.17	ug/Kg		11/06/20 19:08	11/10/20 22:10	1
o-Xylene	1.0	U	1.0	0.19	ug/Kg		11/06/20 19:08	11/10/20 22:10	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.30	ug/Kg		11/06/20 19:08	11/10/20 22:10	1
Methyl tert-butyl ether	1.0	U	1.0	0.51	ug/Kg		11/06/20 19:08	11/10/20 22:10	1
Cyclohexane	1.0	U	1.0	0.22	ug/Kg		11/06/20 19:08	11/10/20 22:10	1
Ethylene Dibromide	1.0	U	1.0	0.18	ug/Kg		11/06/20 19:08	11/10/20 22:10	1
1,3-Dichlorobenzene	1.0	U	1.0	0.37	ug/Kg		11/06/20 19:08	11/10/20 22:10	1
1,4-Dichlorobenzene	1.0	U	1.0	0.23	ug/Kg		11/06/20 19:08	11/10/20 22:10	1
1,2-Dichlorobenzene	1.0	U	1.0	0.36	ug/Kg		11/06/20 19:08	11/10/20 22:10	1
Dichlorodifluoromethane	1.0	U	1.0	0.34	ug/Kg		11/06/20 19:08	11/10/20 22:10	1
1,2,4-Trichlorobenzene	1.0	U	1.0	0.36	ug/Kg		11/06/20 19:08	11/10/20 22:10	1
1,4-Dioxane	20	U	20	9.2	ug/Kg		11/06/20 19:08	11/10/20 22:10	1
1,2,3-Trichlorobenzene	1.0	U	1.0	0.18	ug/Kg		11/06/20 19:08	11/10/20 22:10	1
1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.46	ug/Kg		11/06/20 19:08	11/10/20 22:10	1

Eurofins TestAmerica, Edison

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Tentatively Identified Compound

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

None

Lab Sample ID: LB3 460-737953/1-A	Client Sample ID: Method Blank
Matrix: Solid	Prep Type: Total/NA
Analysis Batch: 738783	Prep Batch: 737953
LB3 LB3	

	LB3	LB3								
Analyte	Result	Qualifier		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorobromomethane	1.0	U		1.0	0.28	ug/Kg		11/06/20 19:08	11/10/20 22:10	1
Isopropylbenzene	1.0	U		1.0	0.29	ug/Kg		11/06/20 19:08	11/10/20 22:10	1
Methyl acetate	5.0	U		5.0	4.3	ug/Kg		11/06/20 19:08	11/10/20 22:10	1
Methylcyclohexane	1.0	U		1.0	0.50	ug/Kg		11/06/20 19:08	11/10/20 22:10	1
	LB3	LB3								
Tentatively Identified Compound	Fet Result	Qualifier	Unit)	RT	CASNO	Propared	Analyzed	Dil Fac

	LB3 LB3				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106	77 - 145	11/06/20 19:08	11/10/20 22:10	1
Toluene-d8 (Surr)	95	80 - 120	11/06/20 19:08	11/10/20 22:10	1
4-Bromofluorobenzene	96	79 - 125	11/06/20 19:08	11/10/20 22:10	1
Dibromofluoromethane (Surr)	107	48 - 150	11/06/20 19:08	11/10/20 22:10	1

ug/Kg

Lab Sample ID: MB 460-738783/7

Matrix: Solid

Client Sample ID: Method Blank
Prep Type: Total/NA

Analysis Batch: 738783									
-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	1.0	U	1.0	0.44	ug/Kg			11/10/20 21:42	1
Bromomethane	1.0	U	1.0	1.0	ug/Kg			11/10/20 21:42	1
Vinyl chloride	1.0	U	1.0	0.55	ug/Kg			11/10/20 21:42	1
Chloroethane	1.0	U	1.0	0.52	ug/Kg			11/10/20 21:42	1
Methylene Chloride	1.0	U	1.0	1.1	ug/Kg			11/10/20 21:42	1
Acetone	6.0	U	6.0	5.7	ug/Kg			11/10/20 21:42	1
Carbon disulfide	1.0	U	1.0	0.27	ug/Kg			11/10/20 21:42	1
Trichlorofluoromethane	1.0	U	1.0	0.41	ug/Kg			11/10/20 21:42	1
1,1-Dichloroethene	1.0	U	1.0	0.23	ug/Kg			11/10/20 21:42	1
1,1-Dichloroethane	1.0	U	1.0	0.21	ug/Kg			11/10/20 21:42	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.25	ug/Kg			11/10/20 21:42	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.36	ug/Kg			11/10/20 21:42	1
Chloroform	1.0	U	1.0	0.97	ug/Kg			11/10/20 21:42	1
1,2-Dichloroethane	1.0	U	1.0	0.30	ug/Kg			11/10/20 21:42	1
2-Butanone (MEK)	5.0	U	5.0	0.37	ug/Kg			11/10/20 21:42	1
1,1,1-Trichloroethane	1.0	U	1.0	0.23	ug/Kg			11/10/20 21:42	1
Carbon tetrachloride	1.0	U	1.0	0.39	ug/Kg			11/10/20 21:42	1
Dichlorobromomethane	1.0	U	1.0	0.26	ug/Kg			11/10/20 21:42	1
1,2-Dichloropropane	1.0	U	1.0	0.42	ug/Kg			11/10/20 21:42	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.27	ug/Kg			11/10/20 21:42	1
Trichloroethene	1.0	U	1.0	0.32	ug/Kg			11/10/20 21:42	1
Chlorodibromomethane	1.0	U	1.0	0.19	ug/Kg			11/10/20 21:42	1
1,1,2-Trichloroethane	1.0	U	1.0	0.18	ug/Kg			11/10/20 21:42	1
Benzene	1.0	U	1.0	0.26	ug/Kg			11/10/20 21:42	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.27	ug/Kg			11/10/20 21:42	1
Bromoform	1.0	U	1.0	0.43	ug/Kg			11/10/20 21:42	1
4-Methyl-2-pentanone (MIBK)	5.0	U	5.0		ug/Kg			11/10/20 21:42	1
2-Hexanone	5.0	U	5.0		ug/Kg			11/10/20 21:42	1
Tetrachloroethene	1.0	U	1.0		ug/Kg			11/10/20 21:42	1

Eurofins TestAmerica, Edison

Page 67 of 157

2

3

<u>5</u>

6

8

11/06/20 19:08 11/10/20 22:10

10

12

13

15

16

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

MB MB

Lab Sample ID: MB 460-738783/7

Matrix: Solid

Analysis Batch: 738783

Client Sample ID: Method Blank

Prep Type: Total/NA

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.21	ug/Kg			11/10/20 21:42	1
Toluene	1.0	U	1.0	0.23	ug/Kg			11/10/20 21:42	1
Chlorobenzene	1.0	U	1.0	0.18	ug/Kg			11/10/20 21:42	1
Ethylbenzene	1.0	U	1.0	0.20	ug/Kg			11/10/20 21:42	1
Styrene	1.0	U	1.0	0.28	ug/Kg			11/10/20 21:42	1
m-Xylene & p-Xylene	1.0	U	1.0	0.17	ug/Kg			11/10/20 21:42	1
o-Xylene	1.0	U	1.0	0.19	ug/Kg			11/10/20 21:42	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.30	ug/Kg			11/10/20 21:42	1
Methyl tert-butyl ether	1.0	U	1.0	0.51	ug/Kg			11/10/20 21:42	1
Cyclohexane	1.0	U	1.0	0.22	ug/Kg			11/10/20 21:42	1
Ethylene Dibromide	1.0	U	1.0	0.18	ug/Kg			11/10/20 21:42	1
1,3-Dichlorobenzene	1.0	U	1.0	0.37	ug/Kg			11/10/20 21:42	1
1,4-Dichlorobenzene	1.0	U	1.0	0.23	ug/Kg			11/10/20 21:42	1
1,2-Dichlorobenzene	1.0	U	1.0	0.36	ug/Kg			11/10/20 21:42	1
Dichlorodifluoromethane	1.0	U	1.0	0.34	ug/Kg			11/10/20 21:42	1
1,2,4-Trichlorobenzene	1.0	U	1.0	0.36	ug/Kg			11/10/20 21:42	1
1,4-Dioxane	20	U	20	9.2	ug/Kg			11/10/20 21:42	1
1,2,3-Trichlorobenzene	1.0	U	1.0	0.18	ug/Kg			11/10/20 21:42	1
1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.46	ug/Kg			11/10/20 21:42	1
Chlorobromomethane	1.0	U	1.0	0.28	ug/Kg			11/10/20 21:42	1
Isopropylbenzene	1.0	U	1.0	0.29	ug/Kg			11/10/20 21:42	1
Methyl acetate	5.0	U	5.0	4.3	ug/Kg			11/10/20 21:42	1
Methylcyclohexane	1.0	U	1.0	0.50	ug/Kg			11/10/20 21:42	1
I and the second									

MB MB Tentatively Identified Compound Est. Result Qualifier Unit RT Prepared Analyzed Dil Fac Tentatively Identified Compound None ug/Kg 11/10/20 21:42 MB MB

Surrogate	%Recovery Quali	fier Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107	77 - 145	11/10/20 21:42	<u> </u>
Toluene-d8 (Surr)	96	80 - 120	11/10/20 21:4	2 1
4-Bromofluorobenzene	100	79 - 125	11/10/20 21:4	2 1
Dibromofluoromethane (Surr)	105	48 - 150	11/10/20 21:4	2 1

Lab Sample ID: LCS 460-738783/3

Matrix: Solid

1,1-Dichloroethane

Analysis Batch: 738783

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloromethane	20.0	21.8		ug/Kg		109	48 - 150	
Bromomethane	20.0	22.9		ug/Kg		114	68 - 136	
Vinyl chloride	20.0	22.1		ug/Kg		111	56 - 147	
Chloroethane	20.0	22.9		ug/Kg		115	65 - 134	
Methylene Chloride	20.0	20.7		ug/Kg		104	76 - 127	
Acetone	100	93.3		ug/Kg		93	63 - 131	
Carbon disulfide	20.0	22.3		ug/Kg		112	67 - 136	
Trichlorofluoromethane	20.0	24.0		ug/Kg		120	67 - 142	
1 1-Dichloroethene	20.0	22 1		ua/Ka		111	77 - 132	

Eurofins TestAmerica, Edison

76 - 129

109

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Page 68 of 157

21.7

ug/Kg

20.0

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-738783/3

Matrix: Solid

Analysis Batch: 738783

Client Sample ID: Lab Control Sample

••	up.o .=.				
		Prep	Type:	Total/NA	

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
trans-1,2-Dichloroethene	20.0	21.4		ug/Kg		107	78 - 128
cis-1,2-Dichloroethene	20.0	21.3		ug/Kg		107	80 - 123
Chloroform	20.0	21.2		ug/Kg		106	79 - 126
1,2-Dichloroethane	20.0	21.0		ug/Kg		105	70 - 132
2-Butanone (MEK)	100	99.6		ug/Kg		100	75 - 120
1,1,1-Trichloroethane	20.0	22.6		ug/Kg		113	78 - 132
Carbon tetrachloride	20.0	22.9		ug/Kg		115	72 - 136
Dichlorobromomethane	20.0	21.5		ug/Kg		108	73 - 124
1,2-Dichloropropane	20.0	21.3		ug/Kg		107	73 - 124
cis-1,3-Dichloropropene	20.0	21.3		ug/Kg		106	72 - 120
Trichloroethene	20.0	21.6		ug/Kg		108	79 - 120
Chlorodibromomethane	20.0	20.3		ug/Kg		102	62 - 128
1,1,2-Trichloroethane	20.0	20.0		ug/Kg		100	75 - 120
Benzene	20.0	20.0		ug/Kg		100	80 - 123
trans-1,3-Dichloropropene	20.0	21.0		ug/Kg		105	68 - 120
Bromoform	20.0	20.7		ug/Kg		104	48 - 142
4-Methyl-2-pentanone (MIBK)	100	109		ug/Kg		109	80 - 122
2-Hexanone	100	109		ug/Kg		109	78 - 120
Tetrachloroethene	20.0	21.3		ug/Kg		106	78 ₋ 123
1,1,2,2-Tetrachloroethane	20.0	18.1		ug/Kg		91	69 - 123
Toluene	20.0	20.0		ug/Kg		100	80 - 120
Chlorobenzene	20.0	20.1		ug/Kg		101	80 - 120
Ethylbenzene	20.0	20.8		ug/Kg		104	80 - 120
Styrene	20.0	20.4		ug/Kg		102	80 - 120
m-Xylene & p-Xylene	20.0	20.5		ug/Kg		102	80 - 120
o-Xylene	20.0	20.2		ug/Kg		101	80 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	20.0	22.7		ug/Kg		113	78 - 136
Methyl tert-butyl ether	20.0	21.1		ug/Kg		106	80 - 125
Cyclohexane	20.0	22.5		ug/Kg		113	80 - 132
Ethylene Dibromide	20.0	20.0		ug/Kg		100	79 - 120
1,3-Dichlorobenzene	20.0	20.1		ug/Kg		100	80 - 120
1,4-Dichlorobenzene	20.0	19.8		ug/Kg		99	80 - 120
1,2-Dichlorobenzene	20.0	19.4		ug/Kg		97	80 - 120
Dichlorodifluoromethane	20.0	22.2		ug/Kg		111	40 - 146
1,2,4-Trichlorobenzene	20.0	20.1		ug/Kg		100	75 - 120
1,4-Dioxane	400	420		ug/Kg		105	73 - 136
1,2,3-Trichlorobenzene	20.0	19.9		ug/Kg		99	77 - 120
1,2-Dibromo-3-Chloropropane	20.0	18.8		ug/Kg		94	60 - 126
Chlorobromomethane	20.0	21.7		ug/Kg		108	76 - 127
Isopropylbenzene	20.0	21.1		ug/Kg		105	80 - 120
Methyl acetate	40.0	40.3		ug/Kg		101	58 - 143
Methylcyclohexane	20.0	22.2		ug/Kg		111	79 - 133

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		77 - 145
Toluene-d8 (Surr)	99		80 - 120
4-Bromofluorobenzene	102		79 - 125

Eurofins TestAmerica, Edison

Page 69 of 157

2

3

5

8

J

11

13

1 T

16

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-738783/3

Matrix: Solid

Analysis Batch: 738783

LCS LCS

Surrogate %Recovery Qualifier Limits Dibromofluoromethane (Surr) 105 48 - 150

Lab Sample ID: LCSD 460-738783/4

Matrix: Solid

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Analysis Batch: 738783						i icp iy	pc. 100	.aii/NA
•	Spike	LCSD	LCSD			%Rec.		RPD
Analyte	Added		Qualifier Unit	_ D	%Rec	Limits	RPD	Limit
Chloromethane	20.0	20.3	ug/Kg		101	48 - 150	7	30
Bromomethane	20.0	22.4	ug/Kg		112	68 - 136	2	30
Vinyl chloride	20.0	21.1	ug/Kg		106	56 - 147	5	30
Chloroethane	20.0	21.2	ug/Kg		106	65 - 134	8	30
Methylene Chloride	20.0	20.5	ug/Kg		102	76 - 127	1	30
Acetone	100	88.3	ug/Kg		88	63 - 131	5	30
Carbon disulfide	20.0	21.8	ug/Kg		109	67 - 136	2	30
Trichlorofluoromethane	20.0	21.9	ug/Kg		109	67 - 142	9	30
1,1-Dichloroethene	20.0	21.7	ug/Kg		109	77 - 132	2	30
1,1-Dichloroethane	20.0	21.1	ug/Kg		105	76 - 129	3	30
trans-1,2-Dichloroethene	20.0	20.8	ug/Kg		104	78 - 128	3	30
cis-1,2-Dichloroethene	20.0	20.7	ug/Kg		104	80 - 123	3	30
Chloroform	20.0	20.8	ug/Kg		104	79 - 126	2	30
1,2-Dichloroethane	20.0	20.6	ug/Kg		103	70 - 132	2	30
2-Butanone (MEK)	100	96.5	ug/Kg		96	75 - 120	3	30
1,1,1-Trichloroethane	20.0	22.1	ug/Kg		110	78 - 132	2	30
Carbon tetrachloride	20.0	22.2	ug/Kg		111	72 - 136	3	30
Dichlorobromomethane	20.0	21.1	ug/Kg		106	73 - 124	2	30
1,2-Dichloropropane	20.0	21.2	ug/Kg		106	73 - 124	1	30
cis-1,3-Dichloropropene	20.0	20.7	ug/Kg		104	72 - 120	3	30
Trichloroethene	20.0	20.9	ug/Kg		105	79 - 120	3	30
Chlorodibromomethane	20.0	20.2	ug/Kg		101	62 - 128	1	30
1,1,2-Trichloroethane	20.0	19.5	ug/Kg		98	75 - 120	2	30
Benzene	20.0	19.7	ug/Kg		98	80 - 123	2	30
trans-1,3-Dichloropropene	20.0	21.1	ug/Kg		105	68 - 120	0	30
Bromoform	20.0	20.8	ug/Kg		104	48 - 142	1	30
4-Methyl-2-pentanone (MIBK)	100	107	ug/Kg		107	80 - 122	2	30
2-Hexanone	100	106	ug/Kg		106	78 - 120	3	30
Tetrachloroethene	20.0	20.9	ug/Kg		105	78 - 123	2	30
1,1,2,2-Tetrachloroethane	20.0	17.6	ug/Kg		88	69 - 123	3	30
Toluene	20.0	19.5	ug/Kg		98	80 - 120	2	30
Chlorobenzene	20.0	19.9	ug/Kg		100	80 - 120	1	30
Ethylbenzene	20.0	20.5	ug/Kg		103	80 - 120	1	30
Styrene	20.0	20.1	ug/Kg		100	80 - 120	2	30
m-Xylene & p-Xylene	20.0	20.1	ug/Kg		101	80 - 120	2	30
o-Xylene	20.0	20.2	ug/Kg		101	80 - 120	0	30
1,1,2-Trichloro-1,2,2-trifluoroetha	20.0	22.0	ug/Kg		110	78 - 136	3	30
ne Methyl tert-butyl ether	20.0	21.1	ua/Ka		106	80 125	0	30
			ug/Kg			80 ₋ 125 80 ₋ 132	0	30
Cyclohexane	20.0	21.8	ug/Kg		109		4	30
Ethylene Dibromide	20.0	19.5	ug/Kg		98	79 - 120	2	30
1,3-Dichlorobenzene	20.0	19.6	ug/Kg		98	80 - 120	2	30

Eurofins TestAmerica, Edison

Page 70 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 460-738783/4

Matrix: Solid

Analysis Batch: 738783

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dichlorobenzene	20.0	19.6		ug/Kg		98	80 - 120	1	30
1,2-Dichlorobenzene	20.0	19.4		ug/Kg		97	80 - 120	0	30
Dichlorodifluoromethane	20.0	20.6		ug/Kg		103	40 - 146	8	30
1,2,4-Trichlorobenzene	20.0	19.7		ug/Kg		98	75 - 120	2	30
1,4-Dioxane	400	396		ug/Kg		99	73 - 136	6	30
1,2,3-Trichlorobenzene	20.0	19.2		ug/Kg		96	77 - 120	3	30
1,2-Dibromo-3-Chloropropane	20.0	17.7		ug/Kg		89	60 - 126	6	30
Chlorobromomethane	20.0	20.7		ug/Kg		104	76 - 127	4	30
Isopropylbenzene	20.0	20.8		ug/Kg		104	80 - 120	1	30
Methyl acetate	40.0	39.6		ug/Kg		99	58 - 143	2	30
Methylcyclohexane	20.0	21.6		ug/Kg		108	79 - 133	2	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		77 - 145
Toluene-d8 (Surr)	96		80 - 120
4-Bromofluorobenzene	100		79 - 125
Dibromofluoromethane (Surr)	101		48 - 150

Lab Sample ID: MB 460-738814/9

Matrix: Water

Analysis Batch: 738814

Client Sample ID: Method Blank

Prep Type: Total/NA

			•	
3 M	MP			

Allaly	313	Dateii.	1 300	
•				

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	1.0	U	1.0	0.40	ug/L			11/10/20 21:33	1
Bromomethane	1.0	U	1.0	0.55	ug/L			11/10/20 21:33	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			11/10/20 21:33	1
Chloroethane	1.0	U	1.0	0.32	ug/L			11/10/20 21:33	1
Methylene Chloride	1.0	U	1.0	0.32	ug/L			11/10/20 21:33	1
Acetone	5.0	U	5.0	4.4	ug/L			11/10/20 21:33	1
Carbon disulfide	1.0	U	1.0	0.82	ug/L			11/10/20 21:33	1
Trichlorofluoromethane	1.0	U	1.0	0.32	ug/L			11/10/20 21:33	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			11/10/20 21:33	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			11/10/20 21:33	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			11/10/20 21:33	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			11/10/20 21:33	1
Chloroform	1.0	U	1.0	0.33	ug/L			11/10/20 21:33	1
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			11/10/20 21:33	1
2-Butanone (MEK)	5.0	U	5.0	1.9	ug/L			11/10/20 21:33	1
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L			11/10/20 21:33	1
Carbon tetrachloride	1.0	U	1.0	0.21	ug/L			11/10/20 21:33	1
Dichlorobromomethane	1.0	U	1.0	0.34	ug/L			11/10/20 21:33	1
1,2-Dichloropropane	1.0	U	1.0	0.35	ug/L			11/10/20 21:33	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			11/10/20 21:33	1
Trichloroethene	1.0	U	1.0	0.31	ug/L			11/10/20 21:33	1
Chlorodibromomethane	1.0	U	1.0	0.28	ug/L			11/10/20 21:33	1
1,1,2-Trichloroethane	1.0	U	1.0	0.20	ug/L			11/10/20 21:33	1
Benzene	1.0	U	1.0	0.20	ug/L			11/10/20 21:33	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			11/10/20 21:33	1

Eurofins TestAmerica, Edison

Page 71 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 460-738814/9

Matrix: Water

Analysis Batch: 738814

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Bromoform 1.0 U 1.0 0.54 ug/L 11/10/20 21:33 4-Methyl-2-pentanone (MIBK) 5.0 U 5.0 1.3 ug/L 11/10/20 21:33 5.0 U 2-Hexanone 5.0 11/10/20 21:33 1.1 ug/L Tetrachloroethene 1.0 U 1.0 0.25 ug/L 11/10/20 21:33 1,1,2,2-Tetrachloroethane 1.0 U 0.37 ug/L 1.0 11/10/20 21:33 Toluene 1.0 U 1.0 0.38 ug/L 11/10/20 21:33 Chlorobenzene 1.0 U 1.0 0.38 ug/L 11/10/20 21:33 0.30 ug/L Ethylbenzene 1.0 U 1.0 11/10/20 21:33 Styrene 1.0 U 1.0 0.42 ug/L 11/10/20 21:33 m-Xylene & p-Xylene 1.0 U 1.0 0.30 ug/L 11/10/20 21:33 o-Xylene 1.0 U 1.0 0.36 ug/L 11/10/20 21:33 1,1,2-Trichloro-1,2,2-trifluoroethane 1.0 U 1.0 0.31 ug/L 11/10/20 21:33 Methyl tert-butyl ether 1.0 U 1.0 0.22 ug/L 11/10/20 21:33 Cyclohexane 1.0 U 1.0 0.32 ug/L 11/10/20 21:33 1 Ethylene Dibromide 1.0 U 1.0 0.50 ug/L 11/10/20 21:33 1.0 U 1,3-Dichlorobenzene 1.0 0.34 ug/L 11/10/20 21:33 1,4-Dichlorobenzene 1.0 U 1.0 0.33 ug/L 11/10/20 21:33 1.2-Dichlorobenzene 1.0 U 1.0 0.21 ug/L 11/10/20 21:33 Dichlorodifluoromethane 1.0 U 1.0 0.31 ug/L 11/10/20 21:33 1,2,4-Trichlorobenzene 1.0 U 1.0 0.37 ug/L 11/10/20 21:33 50 U 1,4-Dioxane 50 28 ug/L 11/10/20 21:33 1.2.3-Trichlorobenzene 1.0 U 1.0 0.36 ug/L 11/10/20 21:33 1,2-Dibromo-3-Chloropropane 1.0 U 1.0 0.38 ug/L 11/10/20 21:33 Chlorobromomethane 1.0 0.41 ug/L 1.0 U 11/10/20 21:33

MB MB

1.0 U

5.0 U

1.0 U

Tentatively Identified Compound Est. Result Qualifier Unit D RT CAS No. Prepared Analyzed Dil Fac Tentatively Identified Compound None ug/L 11/10/20 21:33

1.0

5.0

1.0

0.34 ug/L

0.79 ug/L

0.71 ug/L

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		75 - 123		11/10/20 21:33	1
Toluene-d8 (Surr)	99		80 - 120		11/10/20 21:33	1
4-Bromofluorobenzene	102		76 - 120		11/10/20 21:33	1
Dibromofluoromethane (Surr)	99		77 - 124		11/10/20 21:33	1

Lab Sample ID: LCS 460-738814/4

Matrix: Water

Isopropylbenzene

Methyl acetate Methylcyclohexane

Analysis Batch: 738814

Client Sample ID: Lab Control Samp	e
Prep Type: Total/N	Α

11/10/20 21:33

11/10/20 21:33

11/10/20 21:33

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloromethane	20.0	19.6		ug/L		98	38 - 150	
Bromomethane	20.0	20.6		ug/L		103	10 - 150	
Vinyl chloride	20.0	19.5		ug/L		98	61 - 144	
Chloroethane	20.0	20.4		ug/L		102	29 - 150	
Methylene Chloride	20.0	19.0		ug/L		95	74 - 127	
Acetone	100	94.6		ug/L		95	61 - 134	

Eurofins TestAmerica, Edison

Page 72 of 157

3/30/2021

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-738814/4

Client Sample ID: Lab Control Sample

Job ID: 460-222216-1

Matrix: Water			Prep Type: Total/NA
Analysis Batch: 738814			
	Spike	LCS LCS	%Rec.

Australia	Spike		LCS	•4	D 0/D	%Rec.	
Analyte Carbon disulfide	Added 20.0	20.5		nit g/L	$- \frac{\mathbf{D}}{103}$	Limits 64 - 138	
Trichlorofluoromethane	20.0	20.9		T		61 - 140	
1,1-Dichloroethene	20.0	18.0		g/L	105 90	68 - 133	
1,1-Dichloroethane	20.0	19.2		g/L	96	73 - 130	
trans-1,2-Dichloroethene	20.0	19.2		g/L g/L	99	73 - 130 74 - 126	
cis-1,2-Dichloroethene	20.0	19.9		g/L g/L	99	74 - 120 78 - 121	
Chloroform	20.0	19.4		g/L g/L	99	78 - 125	
1,2-Dichloroethane	20.0	20.2		g/L g/L	101	76 - 123 75 - 121	
2-Butanone (MEK)	100	94.0		g/L g/L	94	69 - 128	
1,1,1-Trichloroethane	20.0	20.5		g/L g/L	102	68 - 128	
Carbon tetrachloride	20.0	20.2		g/L	101	56 - 131	
Dichlorobromomethane	20.0	19.5		g/L	97	72 - 121	
1,2-Dichloropropane	20.0	20.4		g/L g/L	102	76 - 126	
cis-1,3-Dichloropropene	20.0	20.4		g/L g/L	102	70 - 120 74 - 125	
Trichloroethene	20.0	19.2		g/L g/L	96	74 - 125 71 - 121	
Chlorodibromomethane	20.0	19.4		g/L g/L	97	58 - 130	
1,1,2-Trichloroethane	20.0	19.4		-	97	74 - 125	
Benzene	20.0	19.5		g/L	99	74 - 125 78 - 126	
trans-1,3-Dichloropropene	20.0	20.4		g/L	102	66 - 127	
Bromoform		18.4		g/L ~/l	92	38 - 144	
	20.0 100	10.4		g/L		36 - 144 78 - 125	
4-Methyl-2-pentanone (MIBK)				g/L /'	111	74 - 127	
2-Hexanone	100 20.0	90.6 19.0		g/L ~/l	91	74 - 127 70 - 127	
Tetrachloroethene	20.0			g/L ~/l	95	63 ₋ 139	
1,1,2,2-Tetrachloroethane		19.4		g/L ~ /!	97		
Toluene	20.0	19.1		g/L /l	95	78 ₋ 119 80 ₋ 119	
Chlorobenzene	20.0	19.3		g/L /'	97		
Ethylbenzene	20.0	19.9		g/L /i	99	78 - 120 75 - 127	
Styrene	20.0 20.0	20.3		g/L ~/l	101	75 - 127 78 - 123	
m-Xylene & p-Xylene		19.7		g/L /'	98		
o-Xylene	20.0	20.3		g/L	102	78 - 122	
1,1,2-Trichloro-1,2,2-trifluoroetha ne	20.0	21.5	u	g/L	107	59 - 142	
Methyl tert-butyl ether	20.0	19.6	u	g/L	98	65 - 131	
Cyclohexane	20.0	22.1		g/L	111	67 - 133	
Ethylene Dibromide	20.0	19.0		g/L	95	69 - 126	
1,3-Dichlorobenzene	20.0	19.0		g/L	95	80 - 121	
1,4-Dichlorobenzene	20.0	19.3		g/L	96	80 - 118	
1,2-Dichlorobenzene	20.0	19.4		g/L	97	79 - 122	
Dichlorodifluoromethane	20.0	21.5		g/L	108	31 - 150	
1,2,4-Trichlorobenzene	20.0	19.5		g/L	97	64 - 132	
1,4-Dioxane	400	402		g/L	100	70 - 142	
1,2,3-Trichlorobenzene	20.0	19.8		g/L	99	53 - 144	
1,2-Dibromo-3-Chloropropane	20.0	17.8		g/L	89	41 - 143	
Chlorobromomethane	20.0	19.4		g/L	97	73 - 126	
Isopropylbenzene	20.0	19.9		g/L	99	79 - 125	
Methyl acetate	40.0	39.5		g/L	99	70 - 127	
Methylcyclohexane	20.0	21.6		g/L g/L	108	60 - 139	
	20.0	21.0	u	ਤ [,] –	100	00 - 100	

Eurofins TestAmerica, Edison

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-738814/4

Matrix: Water

Analysis Batch: 738814

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	102		75 - 123
Toluene-d8 (Surr)	98		80 - 120
4-Bromofluorobenzene	102		76 - 120
Dibromofluoromethane (Surr)	97		77 - 124

Lab Sample ID: LCSD 460-738814/5

Matrix: Water

Analysis Batch: 738814

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

,	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloromethane	20.0	17.1		ug/L		86	38 - 150	14	30
Bromomethane	20.0	20.6		ug/L		103	10 - 150	0	30
Vinyl chloride	20.0	19.4		ug/L		97	61 - 144	1	30
Chloroethane	20.0	20.3		ug/L		102	29 - 150	0	30
Methylene Chloride	20.0	19.9		ug/L		100	74 - 127	5	30
Acetone	100	92.7		ug/L		93	61 - 134	2	30
Carbon disulfide	20.0	21.5		ug/L		107	64 - 138	4	30
Trichlorofluoromethane	20.0	21.6		ug/L		108	61 - 140	3	30
1,1-Dichloroethene	20.0	20.0		ug/L		100	68 - 133	11	30
1,1-Dichloroethane	20.0	20.5		ug/L		102	73 - 130	6	30
trans-1,2-Dichloroethene	20.0	20.4		ug/L		102	74 - 126	3	30
cis-1,2-Dichloroethene	20.0	19.8		ug/L		99	78 - 121	2	30
Chloroform	20.0	20.6		ug/L		103	78 - 125	4	30
1,2-Dichloroethane	20.0	21.0		ug/L		105	75 - 121	4	30
2-Butanone (MEK)	100	97.0		ug/L		97	69 - 128	3	30
1,1,1-Trichloroethane	20.0	20.1		ug/L		100	68 - 128	2	30
Carbon tetrachloride	20.0	20.9		ug/L		104	56 - 131	3	30
Dichlorobromomethane	20.0	21.0		ug/L		105	72 - 121	7	30
1,2-Dichloropropane	20.0	21.5		ug/L		108	76 - 126	5	30
cis-1,3-Dichloropropene	20.0	20.8		ug/L		104	74 - 125	3	30
Trichloroethene	20.0	19.4		ug/L		97	71 - 121	1	30
Chlorodibromomethane	20.0	19.6		ug/L		98	58 - 130	1	30
1,1,2-Trichloroethane	20.0	20.7		ug/L		103	74 - 125	6	30
Benzene	20.0	20.4		ug/L		102	78 - 126	3	30
trans-1,3-Dichloropropene	20.0	20.9		ug/L		105	66 - 127	2	30
Bromoform	20.0	19.3		ug/L		96	38 - 144	5	30
4-Methyl-2-pentanone (MIBK)	100	112		ug/L		112	78 - 125	1	30
2-Hexanone	100	87.6		ug/L		88	74 - 127	3	30
Tetrachloroethene	20.0	19.5		ug/L		98	70 - 127	2	30
1,1,2,2-Tetrachloroethane	20.0	20.6		ug/L		103	63 - 139	6	30
Toluene	20.0	19.7		ug/L		99	78 - 119	3	30
Chlorobenzene	20.0	19.3		ug/L		96	80 - 119	0	30
Ethylbenzene	20.0	20.6		ug/L		103	78 - 120	3	30
Styrene	20.0	20.3		ug/L		102	75 - 127	0	30
m-Xylene & p-Xylene	20.0	20.5		ug/L		103	78 - 123	4	30
o-Xylene	20.0	20.2		ug/L		101	78 - 122	1	30
1,1,2-Trichloro-1,2,2-trifluoroetha	20.0	21.0		ug/L		105	59 - 142	2	30
Methyl tert-butyl ether	20.0	20.8		ug/L		104	65 - 131	6	30

Eurofins TestAmerica, Edison

Page 74 of 157

6

3

4

6

8

10

12

14

3/30/2021

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 460-738814/5

Matrix: Water

Analysis Batch: 738814

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cyclohexane	20.0	22.0		ug/L		110	67 - 133	0	30
Ethylene Dibromide	20.0	19.0		ug/L		95	69 - 126	0	30
1,3-Dichlorobenzene	20.0	20.0		ug/L		100	80 - 121	5	30
1,4-Dichlorobenzene	20.0	19.2		ug/L		96	80 - 118	1	30
1,2-Dichlorobenzene	20.0	19.8		ug/L		99	79 - 122	2	30
Dichlorodifluoromethane	20.0	18.9		ug/L		94	31 - 150	13	30
1,2,4-Trichlorobenzene	20.0	20.3		ug/L		102	64 - 132	4	30
1,4-Dioxane	400	446		ug/L		111	70 - 142	10	30
1,2,3-Trichlorobenzene	20.0	20.7		ug/L		103	53 - 144	4	30
1,2-Dibromo-3-Chloropropane	20.0	18.5		ug/L		92	41 - 143	4	30
Chlorobromomethane	20.0	20.1		ug/L		100	73 - 126	3	30
Isopropylbenzene	20.0	20.4		ug/L		102	79 - 125	3	30
Methyl acetate	40.0	40.6		ug/L		102	70 - 127	3	30
Methylcyclohexane	20.0	22.4		ua/L		112	60 - 139	4	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		75 - 123
Toluene-d8 (Surr)	100		80 - 120
4-Bromofluorobenzene	101		76 - 120
Dibromofluoromethane (Surr)	100		77 - 124

Lab Sample ID: MB 460-738942/8

Matrix: Water

Analysis Batch: 738942

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	1.0	U	1.0	0.40	ug/L			11/11/20 08:49	1
Bromomethane	1.0	U	1.0	0.55	ug/L			11/11/20 08:49	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			11/11/20 08:49	1
Chloroethane	1.0	U	1.0	0.32	ug/L			11/11/20 08:49	1
Methylene Chloride	1.0	U	1.0	0.32	ug/L			11/11/20 08:49	1
Acetone	5.0	U	5.0	4.4	ug/L			11/11/20 08:49	1
Carbon disulfide	1.0	U	1.0	0.82	ug/L			11/11/20 08:49	1
Trichlorofluoromethane	1.0	U	1.0	0.32	ug/L			11/11/20 08:49	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			11/11/20 08:49	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			11/11/20 08:49	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			11/11/20 08:49	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			11/11/20 08:49	1
Chloroform	1.0	U	1.0	0.33	ug/L			11/11/20 08:49	1
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			11/11/20 08:49	1
2-Butanone (MEK)	5.0	U	5.0	1.9	ug/L			11/11/20 08:49	1
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L			11/11/20 08:49	1
Carbon tetrachloride	1.0	U	1.0	0.21	ug/L			11/11/20 08:49	1
Dichlorobromomethane	1.0	U	1.0	0.34	ug/L			11/11/20 08:49	1
1,2-Dichloropropane	1.0	U	1.0	0.35	ug/L			11/11/20 08:49	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			11/11/20 08:49	1
Trichloroethene	1.0	U	1.0	0.31	ug/L			11/11/20 08:49	1
Chlorodibromomethane	1.0	U	1.0	0.28	ug/L			11/11/20 08:49	1

Eurofins TestAmerica, Edison

Page 75 of 157

3/30/2021

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 460-738942/8

Matrix: Water

Analysis Batch: 738942

Client Sample ID: Method Blank

Prep Type: Total/NA

•	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.20	ug/L			11/11/20 08:49	1
Benzene	1.0	U	1.0	0.20	ug/L			11/11/20 08:49	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			11/11/20 08:49	1
Bromoform	1.0	U	1.0	0.54	ug/L			11/11/20 08:49	1
4-Methyl-2-pentanone (MIBK)	5.0	U	5.0	1.3	ug/L			11/11/20 08:49	1
2-Hexanone	5.0	U	5.0	1.1	ug/L			11/11/20 08:49	1
Tetrachloroethene	1.0	U	1.0	0.25	ug/L			11/11/20 08:49	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.37	ug/L			11/11/20 08:49	1
Toluene	1.0	U	1.0	0.38	ug/L			11/11/20 08:49	1
Chlorobenzene	1.0	U	1.0	0.38	ug/L			11/11/20 08:49	1
Ethylbenzene	1.0	U	1.0	0.30	ug/L			11/11/20 08:49	1
Styrene	1.0	U	1.0	0.42	ug/L			11/11/20 08:49	1
m-Xylene & p-Xylene	1.0	U	1.0	0.30	ug/L			11/11/20 08:49	1
o-Xylene	1.0	U	1.0	0.36	ug/L			11/11/20 08:49	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.31	ug/L			11/11/20 08:49	1
Methyl tert-butyl ether	1.0	U	1.0	0.22	ug/L			11/11/20 08:49	1
Cyclohexane	1.0	U	1.0	0.32	ug/L			11/11/20 08:49	1
Ethylene Dibromide	1.0	U	1.0	0.50	ug/L			11/11/20 08:49	1
1,3-Dichlorobenzene	1.0	U	1.0	0.34	ug/L			11/11/20 08:49	1
1,4-Dichlorobenzene	1.0	U	1.0	0.33	ug/L			11/11/20 08:49	1
1,2-Dichlorobenzene	1.0	U	1.0	0.21	ug/L			11/11/20 08:49	1
Dichlorodifluoromethane	1.0	U	1.0	0.31	ug/L			11/11/20 08:49	1
1,2,4-Trichlorobenzene	1.0	U	1.0	0.37	ug/L			11/11/20 08:49	1
1,4-Dioxane	50	U	50	28	ug/L			11/11/20 08:49	1
1,2,3-Trichlorobenzene	1.0	U	1.0	0.36	ug/L			11/11/20 08:49	1
1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.38	ug/L			11/11/20 08:49	1
Chlorobromomethane	1.0	U	1.0	0.41	ug/L			11/11/20 08:49	1
Isopropylbenzene	1.0	U	1.0	0.34	ug/L			11/11/20 08:49	1
Methyl acetate	5.0	U	5.0	0.79	ug/L			11/11/20 08:49	1
Methylcyclohexane	1.0	U	1.0	0.71	ug/L			11/11/20 08:49	1
	440	MD							

MB MB Tentatively Identified Compound Est. Result Qualifier Unit D RT CAS No. Prepared Analyzed Dil Fac Tentatively Identified Compound 11/11/20 08:49 None ug/L MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		75 - 123		11/11/20 08:49	1
Toluene-d8 (Surr)	98		80 - 120		11/11/20 08:49	1
4-Bromofluorobenzene	102		76 - 120		11/11/20 08:49	1
Dibromofluoromethane (Surr)	99		77 - 124		11/11/20 08:49	1

Lab Sample ID: LCS 460-738942/4

Matrix: Water

Analysis Batch: 738942

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloromethane	20.0	17.0		ug/L		85	38 - 150	
Bromomethane	20.0	19.3		ug/L		97	10 - 150	
Vinyl chloride	20.0	18.1		ug/L		91	61 - 144	

Eurofins TestAmerica, Edison

Page 76 of 157

Prep Type: Total/NA

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-738942/4

Client Sample ID: Lab Control Sample

Job ID: 460-222216-1

Matrix: Water			Prep Type: Total/NA
Analysis Batch: 738942			
	Snike	LCS LCS	%Rec.

	Spike		LCS	- ~-	%Rec.
Analyte	Added		Qualifier Unit	<u>D</u> %Rec	Limits
Chloroethane	20.0	19.9	ug/L	99	29 - 150
Methylene Chloride	20.0	19.0	ug/L	95	74 - 127
Acetone	100	90.3	ug/L	90	61 - 134
Carbon disulfide	20.0	20.6	ug/L	103	64 - 138
Trichlorofluoromethane	20.0	20.2	ug/L	101	61 - 140
1,1-Dichloroethene	20.0	19.9	ug/L	100	68 - 133
1,1-Dichloroethane	20.0	19.7	ug/L	98	73 - 130
trans-1,2-Dichloroethene	20.0	19.5	ug/L	97	74 - 126
cis-1,2-Dichloroethene	20.0	19.4	ug/L	97	78 - 121
Chloroform	20.0	19.1	ug/L	95	78 - 125
1,2-Dichloroethane	20.0	20.7	ug/L	104	75 - 121
2-Butanone (MEK)	100	93.2	ug/L	93	69 - 128
1,1,1-Trichloroethane	20.0	19.7	ug/L	99	68 - 128
Carbon tetrachloride	20.0	19.1	ug/L	96	56 - 131
Dichlorobromomethane	20.0	19.2	ug/L	96	72 - 121
1,2-Dichloropropane	20.0	19.8	ug/L	99	76 - 126
cis-1,3-Dichloropropene	20.0	20.5	ug/L	102	74 - 125
Trichloroethene	20.0	18.8	ug/L	94	71 - 121
Chlorodibromomethane	20.0	19.6	ug/L	98	58 - 130
1,1,2-Trichloroethane	20.0	19.2	ug/L	96	74 - 125
Benzene	20.0	19.8	ug/L	99	78 - 126
trans-1,3-Dichloropropene	20.0	20.4	ug/L	102	66 - 127
Bromoform	20.0	18.9	ug/L	94	38 - 144
4-Methyl-2-pentanone (MIBK)	100	109	ug/L	109	78 - 125
2-Hexanone	100	85.7	ug/L	86	74 - 127
Tetrachloroethene	20.0	18.3	ug/L	92	70 - 127
1,1,2,2-Tetrachloroethane	20.0	20.0	ug/L	100	63 - 139
Toluene	20.0	18.9	ug/L	95	78 - 119
Chlorobenzene	20.0	19.5	ug/L	97	80 - 119
Ethylbenzene	20.0	19.5	ug/L	97	78 - 120
Styrene	20.0	19.5	ug/L	98	75 - 127
m-Xylene & p-Xylene	20.0	19.2	ug/L	96	78 - 123
o-Xylene	20.0	19.5	ug/L	97	78 - 122
1,1,2-Trichloro-1,2,2-trifluoroetha	20.0	20.6	ug/L	103	59 - 142
ne	20.0	20.0	ug/L	100	00 - 142
Methyl tert-butyl ether	20.0	19.5	ug/L	98	65 - 131
Cyclohexane	20.0	22.3	ug/L	112	67 - 133
Ethylene Dibromide	20.0	18.6	ug/L	93	69 - 126
1,3-Dichlorobenzene	20.0	19.3	ug/L	96	80 - 121
1.4-Dichlorobenzene	20.0	19.3	ug/L	96	80 - 118
1,2-Dichlorobenzene	20.0	19.6	ug/L	98	79 - 122
Dichlorodifluoromethane	20.0	18.5	ug/L	93	31 - 150
1,2,4-Trichlorobenzene	20.0	18.8	ug/L	94	64 - 132
1,4-Dioxane	400	404	ug/L	101	70 - 142
1,2,3-Trichlorobenzene	20.0	19.8	ug/L	99	53 - 144
1,2-Dibromo-3-Chloropropane	20.0	18.0	ug/L	90	41 - 143
Chlorobromomethane	20.0	20.0	ug/L ug/L	100	73 - 126
Isopropylbenzene	20.0	20.0	ug/L	100	79 ₋ 125
Methyl acetate	40.0	36.4	ug/L ug/L	91	79 - 125 70 - 127

Eurofins TestAmerica, Edison

Page 77 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-738942/4

Matrix: Water

Surrogate

Toluene-d8 (Surr)

4-Bromofluorobenzene

Analysis Batch: 738942

1,2-Dichloroethane-d4 (Surr)

Dibromofluoromethane (Surr)

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits Methylcyclohexane 20.0 21.6 ug/L 108 60 - 139

> LCS LCS %Recovery Qualifier Limits 103 75 - 123 101 80 - 120 103 76 - 120 100 77 - 124

> > **Client Sample ID: Lab Control Sample Dup**

An

Lab Sample ID: LCSD 460-738942/5

latrix: Water			Prep Type: Total/NA
nalysis Batch: 738942			
	Cuilea	LCCD LCCD	0/ Date DDD

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloromethane	20.0	17.8		ug/L		89	38 - 150	4	30
Bromomethane	20.0	20.1		ug/L		101	10 - 150	4	30
Vinyl chloride	20.0	18.4		ug/L		92	61 - 144	2	30
Chloroethane	20.0	20.0		ug/L		100	29 - 150	1	30
Methylene Chloride	20.0	19.6		ug/L		98	74 - 127	3	30
Acetone	100	91.2		ug/L		91	61 - 134	1	30
Carbon disulfide	20.0	20.5		ug/L		102	64 - 138	0	30
Trichlorofluoromethane	20.0	21.5		ug/L		107	61 - 140	6	30
1,1-Dichloroethene	20.0	19.0		ug/L		95	68 - 133	5	30
1,1-Dichloroethane	20.0	19.8		ug/L		99	73 - 130	1	30
trans-1,2-Dichloroethene	20.0	19.0		ug/L		95	74 - 126	3	30
cis-1,2-Dichloroethene	20.0	19.2		ug/L		96	78 - 121	1	30
Chloroform	20.0	20.0		ug/L		100	78 - 125	5	30
1,2-Dichloroethane	20.0	20.1		ug/L		100	75 - 121	3	30
2-Butanone (MEK)	100	92.8		ug/L		93	69 - 128	0	30
1,1,1-Trichloroethane	20.0	19.8		ug/L		99	68 - 128	1	30
Carbon tetrachloride	20.0	19.9		ug/L		99	56 - 131	4	30
Dichlorobromomethane	20.0	19.2		ug/L		96	72 - 121	0	30
1,2-Dichloropropane	20.0	19.9		ug/L		99	76 - 126	0	30
cis-1,3-Dichloropropene	20.0	20.3		ug/L		102	74 - 125	1	30
Trichloroethene	20.0	18.9		ug/L		95	71 - 121	0	30
Chlorodibromomethane	20.0	19.2		ug/L		96	58 - 130	2	30
1,1,2-Trichloroethane	20.0	19.6		ug/L		98	74 - 125	2	30
Benzene	20.0	19.5		ug/L		97	78 - 126	2	30
trans-1,3-Dichloropropene	20.0	19.6		ug/L		98	66 - 127	4	30
Bromoform	20.0	18.1		ug/L		90	38 - 144	4	30
4-Methyl-2-pentanone (MIBK)	100	107		ug/L		107	78 - 125	1	30
2-Hexanone	100	86.2		ug/L		86	74 - 127	1	30
Tetrachloroethene	20.0	19.0		ug/L		95	70 - 127	4	30
1,1,2,2-Tetrachloroethane	20.0	20.2		ug/L		101	63 - 139	1	30
Toluene	20.0	18.9		ug/L		95	78 - 119	0	30
Chlorobenzene	20.0	19.4		ug/L		97	80 - 119	0	30
Ethylbenzene	20.0	19.7		ug/L		98	78 - 120	1	30
Styrene	20.0	19.6		ug/L		98	75 - 127	1	30
m-Xylene & p-Xylene	20.0	20.3		ug/L		102	78 - 123	6	30

Eurofins TestAmerica, Edison

Page 78 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 460-738942/5

Matrix: Water

Analysis Batch: 738942

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
o-Xylene	20.0	19.8		ug/L		99	78 - 122	2	30
1,1,2-Trichloro-1,2,2-trifluoroetha	20.0	20.2		ug/L		101	59 - 142	2	30
ne									
Methyl tert-butyl ether	20.0	19.9		ug/L		99	65 - 131	2	30
Cyclohexane	20.0	22.1		ug/L		110	67 - 133	1	30
Ethylene Dibromide	20.0	18.9		ug/L		94	69 - 126	2	30
1,3-Dichlorobenzene	20.0	19.1		ug/L		95	80 - 121	1	30
1,4-Dichlorobenzene	20.0	19.2		ug/L		96	80 - 118	0	30
1,2-Dichlorobenzene	20.0	19.8		ug/L		99	79 - 122	1	30
Dichlorodifluoromethane	20.0	19.8		ug/L		99	31 - 150	6	30
1,2,4-Trichlorobenzene	20.0	19.4		ug/L		97	64 - 132	3	30
1,4-Dioxane	400	470		ug/L		117	70 - 142	15	30
1,2,3-Trichlorobenzene	20.0	20.3		ug/L		101	53 - 144	2	30
1,2-Dibromo-3-Chloropropane	20.0	18.9		ug/L		94	41 - 143	4	30
Chlorobromomethane	20.0	19.0		ug/L		95	73 - 126	5	30
Isopropylbenzene	20.0	19.6		ug/L		98	79 - 125	3	30
Methyl acetate	40.0	38.9		ug/L		97	70 - 127	7	30
Methylcyclohexane	20.0	21.4		ug/L		107	60 - 139	1	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		75 - 123
Toluene-d8 (Surr)	100		80 - 120
4-Bromofluorobenzene	106		76 - 120
Dibromofluoromethane (Surr)	101		77 - 124

Lab Sample ID: MB 460-739430/10

Matrix: Water

Analysis Batch: 739430

Client Sample ID: Method Blank

Prep Type: Total/NA

Allalysis Datcil. 133430									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	1.0	U	1.0	0.40	ug/L			11/12/20 21:28	1
Bromomethane	1.0	U	1.0	0.55	ug/L			11/12/20 21:28	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			11/12/20 21:28	1
Chloroethane	1.0	U	1.0	0.32	ug/L			11/12/20 21:28	1
Methylene Chloride	1.0	U	1.0	0.32	ug/L			11/12/20 21:28	1
Acetone	5.0	U	5.0	4.4	ug/L			11/12/20 21:28	1
Carbon disulfide	1.0	U	1.0	0.82	ug/L			11/12/20 21:28	1
Trichlorofluoromethane	1.0	U	1.0	0.32	ug/L			11/12/20 21:28	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			11/12/20 21:28	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			11/12/20 21:28	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			11/12/20 21:28	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			11/12/20 21:28	1
Chloroform	1.0	U	1.0	0.33	ug/L			11/12/20 21:28	1
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			11/12/20 21:28	1
2-Butanone (MEK)	5.0	U	5.0	1.9	ug/L			11/12/20 21:28	1
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L			11/12/20 21:28	1
Carbon tetrachloride	1.0	U	1.0	0.21	ug/L			11/12/20 21:28	1
Dichlorobromomethane	1.0	U	1.0	0.34	ug/L			11/12/20 21:28	1
1,2-Dichloropropane	1.0	U	1.0	0.35	ug/L			11/12/20 21:28	1

Eurofins TestAmerica, Edison

Page 79 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 460-739430/10

Matrix: Water

Analysis Batch: 739430

Client Sample ID: Method Blank

Prep Type: Total/NA

- III-0 1

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			11/12/20 21:28	1
Trichloroethene	1.0	U	1.0	0.31	ug/L			11/12/20 21:28	1
Chlorodibromomethane	1.0	U	1.0	0.28	ug/L			11/12/20 21:28	1
4.4.0 T.: 1.1	4.0		4.0	0.00	/1			44/40/00 04 00	

1,1,2-Trichloroethane 1.0 U 1.0 0.20 ug/L 11/12/20 21:28 1.0 U 1.0 11/12/20 21:28 Benzene 0.20 ug/L trans-1,3-Dichloropropene 1.0 U 1.0 0.22 ug/L 11/12/20 21:28 0.54 ug/L 1.0 U 1.0 11/12/20 21:28

Bromoform 4-Methyl-2-pentanone (MIBK) 5.0 U 5.0 1.3 ug/L 11/12/20 21:28 2-Hexanone 5.0 U 5.0 1.1 ug/L 11/12/20 21:28 Tetrachloroethene 1.0 U 1.0 0.25 ug/L 11/12/20 21:28

1,1,2,2-Tetrachloroethane 1.0 U 1.0 0.37 ug/L 11/12/20 21:28 Toluene 1.0 U 1.0 0.38 ug/L 11/12/20 21:28 Chlorobenzene 1.0 U 1.0 0.38 ug/L 11/12/20 21:28 Ethylbenzene 1.0 U 1.0 0.30 ug/L 11/12/20 21:28 Styrene 1.0 U 1.0 0.42 ug/L 11/12/20 21:28

1.0 U m-Xylene & p-Xylene 1.0 0.30 ug/L 11/12/20 21:28 o-Xylene 1.0 U 1.0 0.36 ug/L 11/12/20 21:28 1,1,2-Trichloro-1,2,2-trifluoroethane 1.0 U 1.0 0.31 ug/L 11/12/20 21:28 Methyl tert-butyl ether 1.0 U 1.0 0.22 ug/L 11/12/20 21:28 Cyclohexane 1.0 U 1.0 0.32 ug/L 11/12/20 21:28

Ethylene Dibromide 1.0 U 1.0 0.50 ug/L 11/12/20 21:28 1.3-Dichlorobenzene 1.0 U 1.0 0.34 ug/L 11/12/20 21:28 1,4-Dichlorobenzene 1.0 U 1.0 0.33 ug/L 11/12/20 21:28 1,2-Dichlorobenzene 1.0 U 1.0 0.21 ug/L 11/12/20 21:28

Dichlorodifluoromethane 1.0 U 1.0 0.31 ug/L 11/12/20 21:28 1,2,4-Trichlorobenzene 1.0 U 1.0 0.37 ug/L 11/12/20 21:28 1.4-Dioxane 50 U 50 28 ug/L 11/12/20 21:28 1,2,3-Trichlorobenzene 1.0 U 1.0 0.36 ug/L 11/12/20 21:28

1,2-Dibromo-3-Chloropropane 1.0 U 1.0 0.38 ug/L 11/12/20 21:28 Chlorobromomethane 1.0 U 1.0 0.41 ug/L 11/12/20 21:28 Isopropylbenzene 1.0 U 1.0 0.34 ug/L 11/12/20 21:28 Methyl acetate 5.0 U 5.0 0.79 ug/L 11/12/20 21:28

Methylcyclohexane 1.0 U 1.0 0.71 ug/L 11/12/20 21:28 MB MB Dil Fac Tentatively Identified Compound Est. Result Qualifier RT CAS No. Prepared

Unit Analyzed Tentatively Identified Compound None ug/L 11/12/20 21:28 MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac

1,2-Dichloroethane-d4 (Surr) 75 - 123 11/12/20 21:28 104 Toluene-d8 (Surr) 97 80 - 120 11/12/20 21:28 4-Bromofluorobenzene 100 76 - 120 11/12/20 21:28 Dibromofluoromethane (Surr) 102 77 - 124 11/12/20 21:28

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-739430/4

Matrix: Water

Analysis Batch: 739430

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analyte	Spike Added		LCS Qualifier	Unit	D %Rec	%Rec. Limits	
Chloromethane	20.0	20.4	- Guainioi	ug/L	<u>B</u>	38 - 150	— —
Bromomethane	20.0	20.8		ug/L	104	10 - 150	
Vinyl chloride	20.0	19.4		ug/L	97	61 - 144	
Chloroethane	20.0	20.8		ug/L	104	29 - 150	
Methylene Chloride	20.0	21.6		ug/L	108	74 - 127	
Acetone	100	99.0		ug/L	99	61 - 134	
Carbon disulfide	20.0	22.0		ug/L	110	64 - 138	
Trichlorofluoromethane	20.0	21.9		ug/L	110	61 - 140	
1,1-Dichloroethene	20.0	20.2		ug/L	101	68 - 133	
1,1-Dichloroethane	20.0	21.8		ug/L	109	73 - 130	
trans-1,2-Dichloroethene	20.0	21.6		ug/L	108	74 - 126	
cis-1,2-Dichloroethene	20.0	21.0		ug/L ug/L	106	78 - 121	
Chloroform	20.0	21.4		ug/L	107	78 - 125	
1,2-Dichloroethane	20.0	21.4		ug/L ug/L	107	76 - 123 75 - 121	
2-Butanone (MEK)	100	101		ug/L ug/L	107	69 ₋ 128	
1,1,1-Trichloroethane	20.0	21.5			107	68 - 128	
Carbon tetrachloride	20.0	21.3		ug/L	107	56 - 131	
Dichlorobromomethane	20.0	21.4		ug/L	107	72 - 121	
	20.0	21.0		ug/L		76 - 126	
1,2-Dichloropropane	20.0			ug/L	108		
cis-1,3-Dichloropropene		21.5		ug/L	107	74 ₋ 125	
Trichloroethene	20.0	20.1		ug/L	101	71 - 121	
Chlorodibromomethane	20.0	20.5		ug/L	103	58 - 130	
1,1,2-Trichloroethane	20.0	21.0		ug/L	105	74 - 125	
Benzene	20.0	20.6		ug/L	103	78 - 126	
trans-1,3-Dichloropropene	20.0	21.4		ug/L	107	66 - 127	
Bromoform	20.0	19.1		ug/L	95	38 - 144	
4-Methyl-2-pentanone (MIBK)	100	117		ug/L	117	78 - 125	
2-Hexanone	100	89.9		ug/L	90	74 - 127	
Tetrachloroethene	20.0	19.5		ug/L	97	70 - 127	
1,1,2,2-Tetrachloroethane	20.0	20.9		ug/L	105	63 - 139	
Toluene	20.0	20.2		ug/L	101	78 - 119	
Chlorobenzene	20.0	21.0		ug/L	105	80 - 119	
Ethylbenzene	20.0	21.7		ug/L	108	78 - 120	
Styrene	20.0	21.2		ug/L	106	75 - 127	
m-Xylene & p-Xylene	20.0	21.1		ug/L	105	78 - 123	
o-Xylene	20.0	21.1		ug/L	106	78 - 122	
1,1,2-Trichloro-1,2,2-trifluoroetha ne	20.0	21.3		ug/L	107	59 - 142	
Methyl tert-butyl ether	20.0	20.7		ug/L	104	65 - 131	
Cyclohexane	20.0	22.2		ug/L	111	67 - 133	
Ethylene Dibromide	20.0	19.9		ug/L	100	69 - 126	
1,3-Dichlorobenzene	20.0	21.1		ug/L	106	80 - 121	
1,4-Dichlorobenzene	20.0	21.1		ug/L	105	80 - 118	
1,2-Dichlorobenzene	20.0	20.8		ug/L	104	79 - 122	
Dichlorodifluoromethane	20.0	20.4		ug/L	102	31 - 150	
1,2,4-Trichlorobenzene	20.0	20.3		ug/L	101	64 - 132	
1,4-Dioxane	400	415		ug/L	104	70 - 142	
1,2,3-Trichlorobenzene	20.0	21.4		ug/L	107	53 - 144	
1,2-Dibromo-3-Chloropropane	20.0	19.9		ug/L	100	41 - 143	

Eurofins TestAmerica, Edison

Page 81 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-739430/4

Lab Sample ID: LCSD 460-739430/5

Matrix: Water

Analysis Batch: 739430

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chlorobromomethane	20.0	20.4		ug/L		102	73 - 126	
Isopropylbenzene	20.0	20.5		ug/L		103	79 - 125	
Methyl acetate	40.0	36.5		ug/L		91	70 - 127	
Methylcyclohexane	20.0	22.1		ug/L		110	60 - 139	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		75 - 123
Toluene-d8 (Surr)	99		80 - 120
4-Bromofluorobenzene	101		76 - 120
Dibromofluoromethane (Surr)	101		77 - 124

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 739430							i icp iy	pc. 10t	uiii
Analysis Batch. 100400	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloromethane	20.0	18.2		ug/L		91	38 - 150	11	30
Bromomethane	20.0	20.7		ug/L		104	10 - 150	0	30
Vinyl chloride	20.0	18.2		ug/L		91	61 - 144	6	30
Chloroethane	20.0	20.1		ug/L		100	29 - 150	4	30
Methylene Chloride	20.0	21.1		ug/L		105	74 - 127	2	30
Acetone	100	85.8		ug/L		86	61 - 134	14	30
Carbon disulfide	20.0	21.3		ug/L		106	64 - 138	3	30
Trichlorofluoromethane	20.0	21.1		ug/L		106	61 - 140	4	30
1,1-Dichloroethene	20.0	20.1		ug/L		101	68 - 133	0	30
1,1-Dichloroethane	20.0	21.0		ug/L		105	73 - 130	4	30
trans-1,2-Dichloroethene	20.0	20.5		ug/L		102	74 - 126	6	30
cis-1,2-Dichloroethene	20.0	19.7		ug/L		99	78 - 121	7	30
Chloroform	20.0	20.5		ug/L		103	78 - 125	4	30
1,2-Dichloroethane	20.0	20.3		ug/L		102	75 - 121	5	30
2-Butanone (MEK)	100	93.0		ug/L		93	69 - 128	8	30
1,1,1-Trichloroethane	20.0	20.8		ug/L		104	68 - 128	3	30
Carbon tetrachloride	20.0	20.6		ug/L		103	56 - 131	4	30
Dichlorobromomethane	20.0	19.9		ug/L		99	72 - 121	5	30
1,2-Dichloropropane	20.0	20.7		ug/L		104	76 - 126	5	30
cis-1,3-Dichloropropene	20.0	21.2		ug/L		106	74 - 125	1	30
Trichloroethene	20.0	18.8		ug/L		94	71 - 121	7	30
Chlorodibromomethane	20.0	20.6		ug/L		103	58 - 130	0	30
1,1,2-Trichloroethane	20.0	21.1		ug/L		106	74 - 125	1	30
Benzene	20.0	20.4		ug/L		102	78 - 126	1	30
trans-1,3-Dichloropropene	20.0	20.5		ug/L		102	66 - 127	4	30
Bromoform	20.0	18.9		ug/L		94	38 - 144	1	30
4-Methyl-2-pentanone (MIBK)	100	112		ug/L		112	78 - 125	5	30
2-Hexanone	100	84.8		ug/L		85	74 - 127	6	30
Tetrachloroethene	20.0	19.6		ug/L		98	70 - 127	0	30
1,1,2,2-Tetrachloroethane	20.0	20.2		ug/L		101	63 - 139	4	30
Toluene	20.0	20.0		ug/L		100	78 - 119	1	30
Chlorobenzene	20.0	20.3		ug/L		102	80 - 119	3	30

Eurofins TestAmerica, Edison

Page 82 of 157

6

3

6

9

11

3

5

3/30/2021

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 460-739430/5

Matrix: Water

Analysis Batch: 739430

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethylbenzene	20.0	20.9		ug/L		105	78 - 120	3	30
Styrene	20.0	19.9		ug/L		99	75 - 127	6	30
m-Xylene & p-Xylene	20.0	20.6		ug/L		103	78 - 123	2	30
o-Xylene	20.0	20.9		ug/L		105	78 - 122	1	30
1,1,2-Trichloro-1,2,2-trifluoroetha	20.0	20.5		ug/L		103	59 - 142	4	30
ne									
Methyl tert-butyl ether	20.0	20.6		ug/L		103	65 - 131	1	30
Cyclohexane	20.0	21.7		ug/L		109	67 - 133	2	30
Ethylene Dibromide	20.0	19.3		ug/L		97	69 - 126	3	30
1,3-Dichlorobenzene	20.0	19.4		ug/L		97	80 - 121	8	30
1,4-Dichlorobenzene	20.0	20.0		ug/L		100	80 - 118	5	30
1,2-Dichlorobenzene	20.0	19.8		ug/L		99	79 - 122	5	30
Dichlorodifluoromethane	20.0	18.9		ug/L		94	31 - 150	8	30
1,2,4-Trichlorobenzene	20.0	19.7		ug/L		98	64 - 132	3	30
1,4-Dioxane	400	411		ug/L		103	70 - 142	1	30
1,2,3-Trichlorobenzene	20.0	20.8		ug/L		104	53 - 144	2	30
1,2-Dibromo-3-Chloropropane	20.0	17.6		ug/L		88	41 - 143	13	30
Chlorobromomethane	20.0	20.1		ug/L		100	73 - 126	2	30
Isopropylbenzene	20.0	20.7		ug/L		103	79 - 125	1	30
Methyl acetate	40.0	39.6		ug/L		99	70 - 127	8	30
Methylcyclohexane	20.0	21.4		ug/L		107	60 - 139	3	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		75 - 123
Toluene-d8 (Surr)	101		80 - 120
4-Bromofluorobenzene	105		76 - 120
Dibromofluoromethane (Surr)	103		77 - 124

Lab Sample ID: MB 460-739694/9

Matrix: Solid

Analysis Batch: 739694

Client Sample ID: Method Blank

Prep Type: Total/NA

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	1.0	U	1.0	0.44	ug/Kg			11/13/20 20:17	1
Bromomethane	1.0	U	1.0	1.0	ug/Kg			11/13/20 20:17	1
Vinyl chloride	1.0	U	1.0	0.55	ug/Kg			11/13/20 20:17	1
Chloroethane	1.0	U	1.0	0.52	ug/Kg			11/13/20 20:17	1
Methylene Chloride	1.0	U	1.0	1.1	ug/Kg			11/13/20 20:17	1
Acetone	6.0	U	6.0	5.7	ug/Kg			11/13/20 20:17	1
Carbon disulfide	1.0	U	1.0	0.27	ug/Kg			11/13/20 20:17	1
Trichlorofluoromethane	1.0	U	1.0	0.41	ug/Kg			11/13/20 20:17	1
1,1-Dichloroethene	1.0	U	1.0	0.23	ug/Kg			11/13/20 20:17	1
1,1-Dichloroethane	1.0	U	1.0	0.21	ug/Kg			11/13/20 20:17	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.25	ug/Kg			11/13/20 20:17	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.36	ug/Kg			11/13/20 20:17	1
Chloroform	1.0	U	1.0	0.97	ug/Kg			11/13/20 20:17	1
1,2-Dichloroethane	1.0	U	1.0	0.30	ug/Kg			11/13/20 20:17	1
2-Butanone (MEK)	5.0	U	5.0	0.37	ug/Kg			11/13/20 20:17	1
1,1,1-Trichloroethane	1.0	U	1.0	0.23	ug/Kg			11/13/20 20:17	1

Eurofins TestAmerica, Edison

Page 83 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Client Sample ID: Method Blank Lab Sample ID: MB 460-739694/9 **Prep Type: Total/NA**

Matrix: Solid

Analysis Ratch: 739694

Analysis Batch: 739694	MB	MB							
Analyte	Result	Qualifier	RL	. MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon tetrachloride	1.0		1.0	0.39	ug/Kg		<u> </u>	11/13/20 20:17	
Dichlorobromomethane	1.0	U	1.0		ug/Kg			11/13/20 20:17	1
1,2-Dichloropropane	1.0	U	1.0		ug/Kg			11/13/20 20:17	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.27	ug/Kg			11/13/20 20:17	1
Trichloroethene	1.0	U	1.0	0.32	ug/Kg			11/13/20 20:17	1
Chlorodibromomethane	1.0	U	1.0	0.19	ug/Kg			11/13/20 20:17	1
1,1,2-Trichloroethane	1.0	U	1.0		ug/Kg			11/13/20 20:17	1
Benzene	1.0	U	1.0		ug/Kg			11/13/20 20:17	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.27	ug/Kg			11/13/20 20:17	1
Bromoform	1.0	U	1.0	0.43	ug/Kg			11/13/20 20:17	1
4-Methyl-2-pentanone (MIBK)	5.0	U	5.0	1.6	ug/Kg			11/13/20 20:17	1
2-Hexanone	5.0	U	5.0	1.7	ug/Kg			11/13/20 20:17	1
Tetrachloroethene	1.0	U	1.0		ug/Kg			11/13/20 20:17	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.21	ug/Kg			11/13/20 20:17	1
Toluene	1.0	U	1.0	0.23	ug/Kg			11/13/20 20:17	1
Chlorobenzene	1.0	U	1.0	0.18	ug/Kg			11/13/20 20:17	1
Ethylbenzene	1.0	U	1.0	0.20	ug/Kg			11/13/20 20:17	1
Styrene	1.0	U	1.0	0.28	ug/Kg			11/13/20 20:17	1
m-Xylene & p-Xylene	1.0	U	1.0	0.17	ug/Kg			11/13/20 20:17	1
o-Xylene	1.0	U	1.0	0.19	ug/Kg			11/13/20 20:17	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.30	ug/Kg			11/13/20 20:17	1
Methyl tert-butyl ether	1.0	U	1.0	0.51	ug/Kg			11/13/20 20:17	1
Cyclohexane	1.0	U	1.0	0.22	ug/Kg			11/13/20 20:17	1
Ethylene Dibromide	1.0	U	1.0	0.18	ug/Kg			11/13/20 20:17	1
1,3-Dichlorobenzene	1.0	U	1.0	0.37	ug/Kg			11/13/20 20:17	1
1,4-Dichlorobenzene	1.0	U	1.0	0.23	ug/Kg			11/13/20 20:17	1
1,2-Dichlorobenzene	1.0	U	1.0	0.36	ug/Kg			11/13/20 20:17	1
Dichlorodifluoromethane	1.0	U	1.0	0.34	ug/Kg			11/13/20 20:17	1
1,2,4-Trichlorobenzene	1.0	U	1.0	0.36	ug/Kg			11/13/20 20:17	1
1,4-Dioxane	20	U	20	9.2	ug/Kg			11/13/20 20:17	1
1,2,3-Trichlorobenzene	1.0	U	1.0		ug/Kg			11/13/20 20:17	1
1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.46	ug/Kg			11/13/20 20:17	1
Chlorobromomethane	1.0	U	1.0	0.28	ug/Kg			11/13/20 20:17	1
Isopropylbenzene	1.0	U	1.0		ug/Kg			11/13/20 20:17	1
Methyl acetate	5.0	U	5.0	4.3	ug/Kg			11/13/20 20:17	1
Methylcyclohexane	1.0	U	1.0	0.50	ug/Kg			11/13/20 20:17	1
	MB	МВ							
Tentatively Identified Compound	Est. Result		Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ua/Ka					11/13/20 20:17	

	III D	W.D							
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg					11/13/20 20:17	1

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	118	77 - 145		11/13/20 20:17	1
Toluene-d8 (Surr)	104	80 - 120		11/13/20 20:17	1
4-Bromofluorobenzene	115	79 - 125		11/13/20 20:17	1
Dibromofluoromethane (Surr)	115	48 - 150		11/13/20 20:17	1

Eurofins TestAmerica, Edison

Page 84 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-739694/4

Matrix: Solid

Analysis Batch: 739694

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analyte	Spike Added		LCS Qualifier	Unit	D	%Rec	%Rec. Limits	
Chloromethane	20.0	18.7		ug/Kg	_ =	93	48 - 150	
Bromomethane	20.0	20.2		ug/Kg		101	68 - 136	
Vinyl chloride	20.0	18.4		ug/Kg		92	56 - 147	
Chloroethane	20.0	17.9		ug/Kg		89	65 - 134	
Methylene Chloride	20.0	18.1		ug/Kg		90	76 - 127	
Acetone	100	105		ug/Kg		105	63 - 131	
Carbon disulfide	20.0	17.8		ug/Kg		89	67 - 136	
Trichlorofluoromethane	20.0	22.9		ug/Kg		114	67 - 142	
1,1-Dichloroethene	20.0	20.8		ug/Kg		104	77 - 132	
1,1-Dichloroethane	20.0	18.2		ug/Kg		91	76 - 129	
trans-1,2-Dichloroethene	20.0	19.1		ug/Kg		95	78 - 128	
cis-1,2-Dichloroethene	20.0	18.9		ug/Kg		95	80 - 123	
Chloroform	20.0	20.0		ug/Kg		100	79 - 126	
1,2-Dichloroethane	20.0	20.8		ug/Kg ug/Kg		104	79 - 120 70 - 132	
2-Butanone (MEK)	100	101		ug/Kg ug/Kg		104	75 - 120	
1,1,1-Trichloroethane	20.0	21.1		ug/Kg ug/Kg		106	78 - 132	
Carbon tetrachloride	20.0	22.7		ug/Kg ug/Kg		113	70 - 132	
Dichlorobromomethane	20.0	19.3		ug/Kg ug/Kg		97	73 - 124	
1,2-Dichloropropane	20.0	16.9		ug/Kg		85	73 - 124	
cis-1,3-Dichloropropene	20.0	18.7		ug/Kg ug/Kg		93	73 - 124 72 - 120	
Trichloroethene	20.0	19.6				93 98	72 - 120 79 - 120	
Chlorodibromomethane	20.0	22.2		ug/Kg			62 - 128	
•	20.0	18.9		ug/Kg		111		
1,1,2-Trichloroethane	20.0	17.3		ug/Kg		94	75 - 120 80 - 123	
Benzene	20.0			ug/Kg		86		
trans-1,3-Dichloropropene		19.4		ug/Kg		97	68 - 120	
Bromoform	20.0	23.8		ug/Kg		119	48 - 142	
4-Methyl-2-pentanone (MIBK)	100	100		ug/Kg		100	80 - 122	
2-Hexanone	100	98.0		ug/Kg		98	78 - 120	
Tetrachloroethene	20.0	20.9		ug/Kg		105	78 - 123	
1,1,2,2-Tetrachloroethane	20.0	18.0		ug/Kg		90	69 - 123	
Toluene	20.0	17.8		ug/Kg		89	80 - 120	
Chlorobenzene	20.0	19.9		ug/Kg		99	80 - 120	
Ethylbenzene	20.0	19.3		ug/Kg		96	80 - 120	
Styrene	20.0	18.2		ug/Kg		91	80 - 120	
m-Xylene & p-Xylene	20.0	18.8		ug/Kg		94	80 - 120	
o-Xylene	20.0	18.7		ug/Kg		93	80 - 120	
1,1,2-Trichloro-1,2,2-trifluoroetha	20.0	21.1		ug/Kg		106	78 - 136	
ne Methyl tert-butyl ether	20.0	20.2		ug/Kg		101	80 - 125	
Cyclohexane	20.0	17.7		ug/Kg ug/Kg		88	80 - 132	
Ethylene Dibromide	20.0	21.4		ug/Kg		107	79 - 120	
1,3-Dichlorobenzene	20.0	19.9		ug/Kg ug/Kg		100	80 - 120	
1,4-Dichlorobenzene	20.0	19.9		ug/Kg ug/Kg		98	80 - 120 80 - 120	
1,2-Dichlorobenzene	20.0	20.2		ug/Kg ug/Kg		101	80 - 120	
Dichlorodifluoromethane	20.0	18.5				92	40 - 146	
1,2,4-Trichlorobenzene	20.0	21.9		ug/Kg		92 109	40 - 146 75 - 120	
	400			ug/Kg			75 - 120 73 - 136	
1,4-Dioxane		384		ug/Kg		96 105		
1,2,3-Trichlorobenzene	20.0	21.1		ug/Kg		105	77 - 120	
1,2-Dibromo-3-Chloropropane	20.0	22.3		ug/Kg		111	60 - 126	

Eurofins TestAmerica, Edison

Page 85 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-739694/4

Matrix: Solid

Analysis Batch: 739694

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS Spike %Rec. D %Rec Added Result Qualifier Unit Limits Chlorobromomethane 20.0 21.4 ug/Kg 107 76 - 127 Isopropylbenzene 20.0 19.5 ug/Kg 97 80 - 120 Methyl acetate 40.0 36.0 ug/Kg 90 58 - 143 Methylcyclohexane 20.0 92 79 - 133 18.3 ug/Kg

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	108		77 - 145
Toluene-d8 (Surr)	98		80 - 120
4-Bromofluorobenzene	105		79 - 125
Dibromofluoromethane (Surr)	107		48 - 150

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Solid

Lab Sample ID: LCSD 460-739694/5

Analysis Batch: 739694								, , , , , ,	
-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloromethane	20.0	21.0		ug/Kg		105	48 - 150	12	30
Bromomethane	20.0	22.6		ug/Kg		113	68 - 136	11	30
Vinyl chloride	20.0	21.1		ug/Kg		106	56 - 147	14	30
Chloroethane	20.0	19.4		ug/Kg		97	65 - 134	8	30
Methylene Chloride	20.0	19.1		ug/Kg		96	76 - 127	6	30
Acetone	100	111		ug/Kg		111	63 - 131	6	30
Carbon disulfide	20.0	20.3		ug/Kg		102	67 - 136	13	30
Trichlorofluoromethane	20.0	25.1		ug/Kg		125	67 - 142	9	30
1,1-Dichloroethene	20.0	22.4		ug/Kg		112	77 - 132	7	30
1,1-Dichloroethane	20.0	19.9		ug/Kg		100	76 - 129	9	30
trans-1,2-Dichloroethene	20.0	20.4		ug/Kg		102	78 - 128	7	30
cis-1,2-Dichloroethene	20.0	19.9		ug/Kg		99	80 - 123	5	30
Chloroform	20.0	21.3		ug/Kg		107	79 - 126	6	30
1,2-Dichloroethane	20.0	21.3		ug/Kg		106	70 - 132	2	30
2-Butanone (MEK)	100	101		ug/Kg		101	75 - 120	0	30
1,1,1-Trichloroethane	20.0	22.8		ug/Kg		114	78 - 132	8	30
Carbon tetrachloride	20.0	24.4		ug/Kg		122	72 - 136	7	30
Dichlorobromomethane	20.0	20.7		ug/Kg		103	73 - 124	7	30
1,2-Dichloropropane	20.0	17.7		ug/Kg		88	73 - 124	4	30
cis-1,3-Dichloropropene	20.0	19.2		ug/Kg		96	72 - 120	3	30
Trichloroethene	20.0	20.7		ug/Kg		104	79 - 120	6	30
Chlorodibromomethane	20.0	22.6		ug/Kg		113	62 - 128	2	30
1,1,2-Trichloroethane	20.0	18.9		ug/Kg		94	75 - 120	0	30
Benzene	20.0	18.6		ug/Kg		93	80 - 123	8	30
trans-1,3-Dichloropropene	20.0	19.3		ug/Kg		96	68 - 120	1	30
Bromoform	20.0	24.5		ug/Kg		122	48 - 142	3	30
4-Methyl-2-pentanone (MIBK)	100	104		ug/Kg		104	80 - 122	3	30
2-Hexanone	100	100		ug/Kg		100	78 - 120	2	30
Tetrachloroethene	20.0	23.0		ug/Kg		115	78 - 123	9	30
1,1,2,2-Tetrachloroethane	20.0	16.7		ug/Kg		84	69 - 123	7	30
Toluene	20.0	19.1		ug/Kg		96	80 - 120	7	30
Chlorobenzene	20.0	20.9		ug/Kg		104	80 - 120	5	30

Eurofins TestAmerica, Edison

Page 86 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 460-739694/5

Matrix: Solid

Analysis Batch: 739694

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Alialysis Datcil. 133034									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethylbenzene	20.0	20.6		ug/Kg		103	80 - 120	7	30
Styrene	20.0	19.4		ug/Kg		97	80 - 120	6	30
m-Xylene & p-Xylene	20.0	20.0		ug/Kg		100	80 - 120	6	30
o-Xylene	20.0	19.8		ug/Kg		99	80 - 120	6	30
1,1,2-Trichloro-1,2,2-trifluoroetha	20.0	23.0		ug/Kg		115	78 - 136	9	30
ne									
Methyl tert-butyl ether	20.0	20.3		ug/Kg		102	80 - 125	1	30
Cyclohexane	20.0	19.9		ug/Kg		99	80 - 132	12	30
Ethylene Dibromide	20.0	21.2		ug/Kg		106	79 - 120	1	30
1,3-Dichlorobenzene	20.0	20.3		ug/Kg		101	80 - 120	2	30
1,4-Dichlorobenzene	20.0	20.0		ug/Kg		100	80 - 120	2	30
1,2-Dichlorobenzene	20.0	20.8		ug/Kg		104	80 - 120	3	30
Dichlorodifluoromethane	20.0	21.6		ug/Kg		108	40 - 146	15	30
1,2,4-Trichlorobenzene	20.0	21.6		ug/Kg		108	75 - 120	1	30
1,4-Dioxane	400	495		ug/Kg		124	73 - 136	25	30
1,2,3-Trichlorobenzene	20.0	21.9		ug/Kg		110	77 - 120	4	30
1,2-Dibromo-3-Chloropropane	20.0	20.9		ug/Kg		104	60 - 126	6	30
Chlorobromomethane	20.0	21.8		ug/Kg		109	76 - 127	2	30
Isopropylbenzene	20.0	21.0		ug/Kg		105	80 - 120	7	30
Methyl acetate	40.0	38.6		ug/Kg		97	58 - 143	7	30

20.0

194

ug/Kg

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	123		77 - 145
Toluene-d8 (Surr)	115		80 - 120
4-Bromofluorobenzene	122		79 - 125
Dibromofluoromethane (Surr)	127		48 - 150

Lab Sample ID: MB 460-739828/7

Matrix: Solid

Methylcyclohexane

Analysis Batch: 739828

Client Sample ID: Method Blank

79 - 133

Prep Type: Total/NA

MB MB Result Qualifier RL **MDL** Unit D Dil Fac **Analyte** Prepared Analyzed 1.0 U 1.0 Chloromethane 0.44 ug/Kg 11/14/20 07:16 1.0 U 11/14/20 07:16 Bromomethane 1.0 1.0 ug/Kg Vinyl chloride 1.0 U 11/14/20 07:16 1.0 0.55 ug/Kg Chloroethane 1.0 U 1.0 0.52 ug/Kg 11/14/20 07:16 Methylene Chloride 1.0 U 1.0 11/14/20 07:16 1.1 ug/Kg 6.0 U 6.0 Acetone 5.7 ug/Kg 11/14/20 07:16 Carbon disulfide 1.0 1.0 U 0.27 ug/Kg 11/14/20 07:16 Trichlorofluoromethane 0.41 ug/Kg 1.0 U 1.0 11/14/20 07:16 1.0 U 0.23 ug/Kg 1,1-Dichloroethene 1.0 11/14/20 07:16 1,1-Dichloroethane 1.0 U 1.0 0.21 ug/Kg 11/14/20 07:16 trans-1,2-Dichloroethene 0.25 ug/Kg 1.0 U 1.0 11/14/20 07:16 cis-1,2-Dichloroethene 1.0 U 1.0 0.36 ug/Kg 11/14/20 07:16 Chloroform 1.0 U 1.0 0.97 ug/Kg 11/14/20 07:16 1,2-Dichloroethane 1.0 U 1.0 0.30 ug/Kg 11/14/20 07:16 2-Butanone (MEK) 5.0 U 5.0 0.37 ug/Kg 11/14/20 07:16 1,1,1-Trichloroethane 1.0 U 1.0 0.23 ug/Kg 11/14/20 07:16

Eurofins TestAmerica, Edison

Page 87 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 460-739828/7

Matrix: Solid

Toluene-d8 (Surr)

4-Bromofluorobenzene

Dibromofluoromethane (Surr)

Analysis Batch: 739828

Client Sample ID: Method Blank

Prep Type: Total/NA

6 7

ŏ

40

11

13

15

17

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	. Unit	D	Prepared	Analyzed	Dil Fac
Carbon tetrachloride	1.0	U	1.0	0.39	ug/Kg			11/14/20 07:16	1
Dichlorobromomethane	1.0	U	1.0	0.26	ug/Kg			11/14/20 07:16	1
1,2-Dichloropropane	1.0	U	1.0	0.42	2 ug/Kg			11/14/20 07:16	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.27	ug/Kg			11/14/20 07:16	1
Trichloroethene	1.0	U	1.0	0.32	2 ug/Kg			11/14/20 07:16	1
Chlorodibromomethane	1.0	U	1.0	0.19	ug/Kg			11/14/20 07:16	1
1,1,2-Trichloroethane	1.0	U	1.0	0.18	3 ug/Kg			11/14/20 07:16	1
Benzene	1.0	U	1.0	0.26	ug/Kg			11/14/20 07:16	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.27	ug/Kg			11/14/20 07:16	1
Bromoform	1.0	U	1.0	0.43	3 ug/Kg			11/14/20 07:16	1
4-Methyl-2-pentanone (MIBK)	5.0	U	5.0	1.6	ug/Kg			11/14/20 07:16	1
2-Hexanone	5.0	U	5.0	1.7	ug/Kg			11/14/20 07:16	1
Tetrachloroethene	1.0	U	1.0	0.3	l ug/Kg			11/14/20 07:16	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.2	l ug/Kg			11/14/20 07:16	1
Toluene	1.0	U	1.0	0.23	3 ug/Kg			11/14/20 07:16	1
Chlorobenzene	1.0	U	1.0	0.18	3 ug/Kg			11/14/20 07:16	1
Ethylbenzene	1.0	U	1.0	0.20	ug/Kg			11/14/20 07:16	1
Styrene	1.0	U	1.0	0.28	3 ug/Kg			11/14/20 07:16	1
m-Xylene & p-Xylene	1.0	U	1.0		ug/Kg			11/14/20 07:16	1
o-Xylene	1.0	U	1.0	0.19	ug/Kg			11/14/20 07:16	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0		ug/Kg			11/14/20 07:16	1
Methyl tert-butyl ether	1.0	U	1.0		l ug/Kg			11/14/20 07:16	1
Cyclohexane	1.0	U	1.0		2 ug/Kg			11/14/20 07:16	1
Ethylene Dibromide	1.0	U	1.0		3 ug/Kg			11/14/20 07:16	1
1,3-Dichlorobenzene	1.0	U	1.0		ug/Kg			11/14/20 07:16	1
1,4-Dichlorobenzene	1.0	U	1.0		3 ug/Kg			11/14/20 07:16	1
1,2-Dichlorobenzene	1.0	U	1.0	0.36	ug/Kg			11/14/20 07:16	1
Dichlorodifluoromethane	1.0	U	1.0		l ug/Kg			11/14/20 07:16	1
1,2,4-Trichlorobenzene	1.0	U	1.0		3 ug/Kg			11/14/20 07:16	1
1,4-Dioxane	20	U	20	9.2	2 ug/Kg			11/14/20 07:16	1
1,2,3-Trichlorobenzene	1.0	U	1.0		3 ug/Kg			11/14/20 07:16	1
1,2-Dibromo-3-Chloropropane	1.0	U	1.0		ug/Kg			11/14/20 07:16	1
Chlorobromomethane	1.0	U	1.0		3 ug/Kg			11/14/20 07:16	1
Isopropylbenzene	1.0	U	1.0		ug/Kg			11/14/20 07:16	1
Methyl acetate	5.0	U	5.0		3 ug/Kg			11/14/20 07:16	1
Methylcyclohexane	1.0	U	1.0		ug/Kg			11/14/20 07:16	1
					0 0				
		MB		_			_		
Tentatively Identified Compound	Est. Result	Qualifier	- Unit	<u>D</u>	RT _	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg					11/14/20 07:16	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	119		77 - 145					11/14/20 07:16	1

11/14/20 07:16

11/14/20 07:16

11/14/20 07:16

80 - 120

79 - 125

48 - 150

104

115

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-739828/3

Matrix: Solid

Analysis Batch: 739828

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analyte Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene Chloride Acetone Carbon disulfide Trichlorofluoromethane 1,1-Dichloroethene 1,1-Dichloroethane trans-1,2-Dichloroethene cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Dichlorobromomethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	21.4 23.3 20.9 20.2 17.5 95.7 18.2 24.9 21.2 17.7 18.2	Qualifier Unit ug/Kg	D %Rec 107 116 104 101 87 96 91 125	Limits 48 - 150 68 - 136 56 - 147 65 - 134 76 - 127 63 - 131 67 - 136 67 - 142	
Bromomethane Vinyl chloride Chloroethane Methylene Chloride Acetone Carbon disulfide Trichlorofluoromethane 1,1-Dichloroethene 1,1-Dichloroethene trans-1,2-Dichloroethene cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Dichlorobromomethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane	20.0 20.0 20.0 20.0 100 20.0 20.0 20.0 2	23.3 20.9 20.2 17.5 95.7 18.2 24.9 21.2	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	116 104 101 87 96 91 125	68 - 136 56 - 147 65 - 134 76 - 127 63 - 131 67 - 136	
Vinyl chloride Chloroethane Methylene Chloride Acetone Carbon disulfide Trichlorofluoromethane 1,1-Dichloroethene 1,1-Dichloroethane trans-1,2-Dichloroethene cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Dichlorobromomethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane	20.0 20.0 20.0 100 20.0 20.0 20.0 20.0 2	20.9 20.2 17.5 95.7 18.2 24.9 21.2	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	104 101 87 96 91 125	56 - 147 65 - 134 76 - 127 63 - 131 67 - 136	
Chloroethane Methylene Chloride Acetone Carbon disulfide Trichlorofluoromethane 1,1-Dichloroethene 1,1-Dichloroethane trans-1,2-Dichloroethene cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Dichlorobromomethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane	20.0 20.0 100 20.0 20.0 20.0 20.0 20.0 2	20.2 17.5 95.7 18.2 24.9 21.2	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	101 87 96 91 125	65 - 134 76 - 127 63 - 131 67 - 136	
Methylene Chloride Acetone Carbon disulfide Trichlorofluoromethane 1,1-Dichloroethene 1,1-Dichloroethane trans-1,2-Dichloroethene cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Dichlorobromomethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane	20.0 100 20.0 20.0 20.0 20.0 20.0 20.0 2	17.5 95.7 18.2 24.9 21.2 17.7	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	87 96 91 125	76 ₋ 127 63 ₋ 131 67 ₋ 136	
Acetone Carbon disulfide Trichlorofluoromethane 1,1-Dichloroethene 1,1-Dichloroethane trans-1,2-Dichloroethene cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Dichlorobromomethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane	100 20.0 20.0 20.0 20.0 20.0 20.0 20.0	95.7 18.2 24.9 21.2 17.7	ug/Kg ug/Kg ug/Kg ug/Kg	96 91 125	63 - 131 67 - 136	
Carbon disulfide Trichlorofluoromethane 1,1-Dichloroethene 1,1-Dichloroethane trans-1,2-Dichloroethene cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Dichlorobromomethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane	20.0 20.0 20.0 20.0 20.0 20.0 20.0	18.2 24.9 21.2 17.7	ug/Kg ug/Kg ug/Kg	91 125	67 - 136	
Trichlorofluoromethane 1,1-Dichloroethene 1,1-Dichloroethane trans-1,2-Dichloroethene cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Dichlorobromomethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane	20.0 20.0 20.0 20.0 20.0 20.0	24.9 21.2 17.7	ug/Kg ug/Kg	125		
1,1-Dichloroethene 1,1-Dichloroethane trans-1,2-Dichloroethene cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Dichlorobromomethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane	20.0 20.0 20.0 20.0 20.0	21.2 17.7	ug/Kg		67 149	
1,1-Dichloroethane trans-1,2-Dichloroethene cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Dichlorobromomethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane	20.0 20.0 20.0 20.0	17.7			07 - 142	
trans-1,2-Dichloroethene cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Dichlorobromomethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane	20.0 20.0 20.0			106	77 - 132	
cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Dichlorobromomethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane	20.0 20.0	18.2	ug/Kg	89	76 - 129	
Chloroform 1,2-Dichloroethane 2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Dichlorobromomethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane	20.0		ug/Kg	91	78 - 128	
1,2-Dichloroethane 2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Dichlorobromomethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane		18.7	ug/Kg	93	80 - 123	
2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Dichlorobromomethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane	00.0	19.2	ug/Kg	96	79 - 126	
2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Dichlorobromomethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane	20.0	19.7	ug/Kg	99	70 - 132	
1,1,1-Trichloroethane Carbon tetrachloride Dichlorobromomethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane	100	98.0	ug/Kg	98	75 - 120	
Carbon tetrachloride Dichlorobromomethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane	20.0	20.9	ug/Kg	105	78 - 132	
1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane	20.0	22.1	ug/Kg	110	72 - 136	
cis-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane	20.0	19.1	ug/Kg	95	73 - 124	
cis-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane	20.0	16.4	ug/Kg	82	73 - 124	
Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane	20.0	16.7	ug/Kg	83	72 - 120	
Chlorodibromomethane 1,1,2-Trichloroethane	20.0	18.0	ug/Kg	90	79 - 120	
1,1,2-Trichloroethane	20.0	19.7	ug/Kg	99	62 - 128	
	20.0	17.2	ug/Kg	86	75 - 120	
	20.0	16.8	ug/Kg	84	80 - 123	
trans-1,3-Dichloropropene	20.0	17.4	ug/Kg	87	68 - 120	
Bromoform	20.0	21.3	ug/Kg	107	48 - 142	
4-Methyl-2-pentanone (MIBK)	100	93.7	ug/Kg	94	80 - 122	
2-Hexanone	100	93.0	ug/Kg	93	78 - 120	
Tetrachloroethene	20.0	20.8	ug/Kg	104	78 - 123	
1,1,2,2-Tetrachloroethane	20.0	17.6	ug/Kg	88	69 - 123	
Toluene	20.0	17.5	ug/Kg	88	80 - 120	
Chlorobenzene	20.0	18.4	ug/Kg	92	80 - 120	
Ethylbenzene	20.0	18.2	ug/Kg	91	80 - 120	
Styrene	20.0	17.5	ug/Kg	88	80 - 120	
m-Xylene & p-Xylene	20.0	17.8	ug/Kg	89	80 - 120	
o-Xylene	20.0	18.1	ug/Kg	90	80 - 120	
1,1,2-Trichloro-1,2,2-trifluoroetha	20.0	21.4	ug/Kg	107	78 - 136	
ne	20.0	21.7	ug/itg	107	70 - 100	
Methyl tert-butyl ether	20.0	19.1	ug/Kg	95	80 - 125	
Cyclohexane	20.0	18.0	ug/Kg	90	80 - 132	
Ethylene Dibromide	20.0	18.9	ug/Kg	95	79 - 120	
1,3-Dichlorobenzene	20.0	19.4	ug/Kg	97	80 - 120	
1,4-Dichlorobenzene	20.0	19.3	ug/Kg	97	80 - 120	
1,2-Dichlorobenzene	20.0	19.9	ug/Kg	99	80 - 120	
Dichlorodifluoromethane	20.0	20.0	ug/Kg	100	40 - 146	
1,2,4-Trichlorobenzene	20.0	21.8	ug/Kg	109	75 - 120	
1,4-Dioxane	400	399	ug/Kg	100	73 - 136	
1,2,3-Trichlorobenzene			aa	100	10-100	
1,2-Dibromo-3-Chloropropane	20.0	21.2	ug/Kg	106	77 - 120	

Eurofins TestAmerica, Edison

Page 89 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-739828/3

Matrix: Solid

Analysis Batch: 739828

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS Spike %Rec. Added Result Qualifier Unit D %Rec Limits Chlorobromomethane 20.0 20.5 ug/Kg 103 76 - 127 Isopropylbenzene 20.0 18.7 ug/Kg 94 80 - 120 Methyl acetate 40.0 ug/Kg 80 58 - 143 32.2 Methylcyclohexane 20.0 87 79 - 133 17.4 ug/Kg

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	119		77 - 145
Toluene-d8 (Surr)	110		80 - 120
4-Bromofluorobenzene	113		79 - 125
Dibromofluoromethane (Surr)	117		48 - 150

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Solid

Lab Sample ID: LCSD 460-739828/4

Analysis Batch: 739828									
	Spike	_	LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloromethane	20.0	19.7		ug/Kg		98	48 - 150	8	30
Bromomethane	20.0	22.1		ug/Kg		111	68 - 136	5	30
Vinyl chloride	20.0	18.3		ug/Kg		91	56 - 147	13	30
Chloroethane	20.0	19.5		ug/Kg		97	65 - 134	4	30
Methylene Chloride	20.0	15.9		ug/Kg		79	76 - 127	10	30
Acetone	100	98.7		ug/Kg		99	63 - 131	3	30
Carbon disulfide	20.0	17.6		ug/Kg		88	67 - 136	3	30
Trichlorofluoromethane	20.0	24.2		ug/Kg		121	67 - 142	3	30
1,1-Dichloroethene	20.0	19.2		ug/Kg		96	77 - 132	10	30
1,1-Dichloroethane	20.0	17.3		ug/Kg		87	76 - 129	2	30
trans-1,2-Dichloroethene	20.0	17.4		ug/Kg		87	78 - 128	5	30
cis-1,2-Dichloroethene	20.0	17.4		ug/Kg		87	80 - 123	7	30
Chloroform	20.0	18.3		ug/Kg		92	79 - 126	5	30
1,2-Dichloroethane	20.0	18.1		ug/Kg		91	70 - 132	8	30
2-Butanone (MEK)	100	95.4		ug/Kg		95	75 - 120	3	30
1,1,1-Trichloroethane	20.0	20.2		ug/Kg		101	78 - 132	3	30
Carbon tetrachloride	20.0	21.1		ug/Kg		106	72 - 136	4	30
Dichlorobromomethane	20.0	17.1		ug/Kg		85	73 - 124	11	30
1,2-Dichloropropane	20.0	15.4		ug/Kg		77	73 - 124	6	30
cis-1,3-Dichloropropene	20.0	16.1		ug/Kg		80	72 - 120	4	30
Trichloroethene	20.0	17.1		ug/Kg		86	79 - 120	5	30
Chlorodibromomethane	20.0	19.2		ug/Kg		96	62 - 128	3	30
1,1,2-Trichloroethane	20.0	16.2		ug/Kg		81	75 - 120	6	30
Benzene	20.0	16.1		ug/Kg		81	80 - 123	4	30
trans-1,3-Dichloropropene	20.0	16.8		ug/Kg		84	68 - 120	3	30
Bromoform	20.0	19.9		ug/Kg		99	48 - 142	7	30
4-Methyl-2-pentanone (MIBK)	100	92.0		ug/Kg		92	80 - 122	2	30
2-Hexanone	100	90.4		ug/Kg		90	78 - 120	3	30
Tetrachloroethene	20.0	20.5		ug/Kg		103	78 - 123	1	30
1,1,2,2-Tetrachloroethane	20.0	15.8		ug/Kg		79	69 - 123	11	30
Toluene	20.0	16.6		ug/Kg		83	80 - 120	6	30
Chlorobenzene	20.0	18.1		ug/Kg		90	80 - 120	2	30

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 460-739828/4

Matrix: Solid

Analysis Batch: 739828

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethylbenzene	20.0	17.2		ug/Kg		86	80 - 120	6	30
Styrene	20.0	16.6		ug/Kg		83	80 - 120	5	30
m-Xylene & p-Xylene	20.0	17.1		ug/Kg		86	80 - 120	4	30
o-Xylene	20.0	17.0		ug/Kg		85	80 - 120	6	30
1,1,2-Trichloro-1,2,2-trifluoroetha	20.0	20.5		ug/Kg		103	78 - 136	4	30
ne									
Methyl tert-butyl ether	20.0	17.3		ug/Kg		87	80 - 125	10	30
Cyclohexane	20.0	17.3		ug/Kg		87	80 - 132	4	30
Ethylene Dibromide	20.0	17.5		ug/Kg		87	79 - 120	8	30
1,3-Dichlorobenzene	20.0	18.4		ug/Kg		92	80 - 120	5	30
1,4-Dichlorobenzene	20.0	18.5		ug/Kg		93	80 - 120	4	30
1,2-Dichlorobenzene	20.0	18.8		ug/Kg		94	80 - 120	6	30
Dichlorodifluoromethane	20.0	18.5		ug/Kg		93	40 - 146	7	30
1,2,4-Trichlorobenzene	20.0	20.7		ug/Kg		104	75 - 120	5	30
1,4-Dioxane	400	357		ug/Kg		89	73 - 136	11	30
1,2,3-Trichlorobenzene	20.0	19.5		ug/Kg		97	77 - 120	8	30
1,2-Dibromo-3-Chloropropane	20.0	18.0		ug/Kg		90	60 - 126	14	30
Chlorobromomethane	20.0	18.7		ug/Kg		94	76 - 127	9	30
Isopropylbenzene	20.0	18.0		ug/Kg		90	80 - 120	4	30
Methyl acetate	40.0	29.7		ug/Kg		74	58 - 143	8	30
Methylcyclohexane	20.0	16.6		ug/Kg		83	79 - 133	4	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	106		77 - 145
Toluene-d8 (Surr)	98		80 - 120
4-Bromofluorobenzene	105		79 - 125
Dibromofluoromethane (Surr)	105		48 - 150

Method: 8270E - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 460-738369/1-A

Matrix: Water

Analysis Batch: 738564

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 738369

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	10	U	10	0.29	ug/L		11/09/20 09:26	11/10/20 03:15	1
2-Chlorophenol	10	U	10	0.38	ug/L		11/09/20 09:26	11/10/20 03:15	1
2-Methylphenol	10	U	10	0.67	ug/L		11/09/20 09:26	11/10/20 03:15	1
4-Methylphenol	10	U	10	0.65	ug/L		11/09/20 09:26	11/10/20 03:15	1
2-Nitrophenol	10	U	10	0.75	ug/L		11/09/20 09:26	11/10/20 03:15	1
2,4-Dimethylphenol	10	U	10	0.62	ug/L		11/09/20 09:26	11/10/20 03:15	1
2,4-Dichlorophenol	10	U	10	1.1	ug/L		11/09/20 09:26	11/10/20 03:15	1
4-Chloro-3-methylphenol	10	U	10	0.58	ug/L		11/09/20 09:26	11/10/20 03:15	1
2,4,6-Trichlorophenol	10	U	10	0.86	ug/L		11/09/20 09:26	11/10/20 03:15	1
2,4,5-Trichlorophenol	10	U	10	0.88	ug/L		11/09/20 09:26	11/10/20 03:15	1
2,4-Dinitrotoluene	2.0	U	2.0	1.0	ug/L		11/09/20 09:26	11/10/20 03:15	1
4-Nitrophenol	30	U	30	4.0	ug/L		11/09/20 09:26	11/10/20 03:15	1
4,6-Dinitro-2-methylphenol	30	U	30	3.0	ug/L		11/09/20 09:26	11/10/20 03:15	1
Pentachlorophenol	30	U	30	1.4	ug/L		11/09/20 09:26	11/10/20 03:15	1

Eurofins TestAmerica, Edison

Page 91 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 460-738369/1-A

Matrix: Water

Analysis Batch: 738564

Client Sample ID: Method Blank Pren Type: Total/NA

Lieb	iype.	IOtallitA
Prep	Batch	: 738369

Analyte		MB Qualifier	RL	MDL	Unit	D	Dropared	Analyzed	Dil Fac
Bis(2-chloroethyl)ether		U	1.0		ug/L		Prepared 11/09/20 09:26	11/10/20 03:15	1
N-Nitrosodi-n-propylamine	1.0		1.0		ug/L		11/09/20 09:26	11/10/20 03:15	
Hexachloroethane	2.0		2.0		ug/L		11/09/20 09:26	11/10/20 03:15	1
Nitrobenzene	1.0		1.0		ug/L		11/09/20 09:26	11/10/20 03:15	1
	1.0		1.0		ug/L ug/L		11/09/20 09:26	11/10/20 03:15	1
Isophorone	2.0		2.0		ug/L ug/L		11/09/20 09:26	11/10/20 03:15	1
Naphthalene	2.0				-				
4-Chloroaniline	2.0		2.0		ug/L		11/09/20 09:26	11/10/20 03:15	
Hexachlorobutadiene			2.0		ug/L		11/09/20 09:26	11/10/20 03:15	1
2-Methylnaphthalene	10		10		ug/L		11/09/20 09:26	11/10/20 03:15	1
Hexachlorocyclopentadiene	10		10		ug/L		11/09/20 09:26	11/10/20 03:15	
2-Chloronaphthalene	10		10		ug/L		11/09/20 09:26	11/10/20 03:15	1
2-Nitroaniline	20		20		ug/L		11/09/20 09:26	11/10/20 03:15	1
Dimethyl phthalate	10		10		ug/L		11/09/20 09:26	11/10/20 03:15	
Acenaphthylene	10		10		ug/L		11/09/20 09:26	11/10/20 03:15	1
2,6-Dinitrotoluene	2.0		2.0		ug/L		11/09/20 09:26	11/10/20 03:15	1
3-Nitroaniline	20		20	1.9	ug/L		11/09/20 09:26	11/10/20 03:15	1
Acenaphthene	10		10	1.1	ug/L		11/09/20 09:26	11/10/20 03:15	1
Dibenzofuran	10	U	10	1.1	ug/L		11/09/20 09:26	11/10/20 03:15	1
2,4-Dinitrophenol	30	U	30	2.6	ug/L		11/09/20 09:26	11/10/20 03:15	1
Diethyl phthalate	10	U	10	0.98	ug/L		11/09/20 09:26	11/10/20 03:15	1
4-Chlorophenyl phenyl ether	10	U	10	1.3	ug/L		11/09/20 09:26	11/10/20 03:15	1
Fluorene	10	U	10	0.91	ug/L		11/09/20 09:26	11/10/20 03:15	1
4-Nitroaniline	20	U	20	1.2	ug/L		11/09/20 09:26	11/10/20 03:15	1
N-Nitrosodiphenylamine	10	U	10	0.89	ug/L		11/09/20 09:26	11/10/20 03:15	1
4-Bromophenyl phenyl ether	10	U	10	0.75	ug/L		11/09/20 09:26	11/10/20 03:15	1
Hexachlorobenzene	1.0	U	1.0	0.40	ug/L		11/09/20 09:26	11/10/20 03:15	1
Phenanthrene	10	U	10	1.3	ug/L		11/09/20 09:26	11/10/20 03:15	1
Anthracene	10	U	10	1.3	ug/L		11/09/20 09:26	11/10/20 03:15	1
Carbazole	10	U	10	0.68	ug/L		11/09/20 09:26	11/10/20 03:15	1
Di-n-butyl phthalate	10	U	10	0.84	ug/L		11/09/20 09:26	11/10/20 03:15	1
Fluoranthene	10	U	10	0.84	ug/L		11/09/20 09:26	11/10/20 03:15	1
Pyrene	10	U	10	1.6	ug/L		11/09/20 09:26	11/10/20 03:15	1
Butyl benzyl phthalate	10	U	10		ug/L		11/09/20 09:26	11/10/20 03:15	1
Benzo[a]anthracene	1.0	U	1.0		ug/L		11/09/20 09:26	11/10/20 03:15	1
Chrysene	10	U	10	0.91	ug/L		11/09/20 09:26	11/10/20 03:15	1
Bis(2-ethylhexyl) phthalate	10	U	10	0.80	ug/L		11/09/20 09:26	11/10/20 03:15	1
Di-n-octyl phthalate	10	U	10	0.75	ug/L		11/09/20 09:26	11/10/20 03:15	1
Benzo[b]fluoranthene	2.0		2.0		ug/L		11/09/20 09:26	11/10/20 03:15	1
Benzo[k]fluoranthene	1.0		1.0		ug/L		11/09/20 09:26	11/10/20 03:15	1
Benzo[a]pyrene	1.0		1.0		ug/L		11/09/20 09:26	11/10/20 03:15	1
Indeno[1,2,3-cd]pyrene	2.0		2.0		ug/L		11/09/20 09:26	11/10/20 03:15	1
Dibenz(a,h)anthracene	1.0		1.0		ug/L		11/09/20 09:26	11/10/20 03:15	1
Benzo[g,h,i]perylene	10		10		ug/L		11/09/20 09:26	11/10/20 03:15	1
1,1'-Biphenyl	10		10		ug/L		11/09/20 09:26	11/10/20 03:15	
Acetophenone	10		10		ug/L		11/09/20 09:26	11/10/20 03:15	1
1,4-Dioxane	10		10		ug/L		11/09/20 09:26	11/10/20 03:15	1
Benzaldehyde	10		10		ug/L ug/L		11/09/20 09:26	11/10/20 03:15	
Caprolactam	10		10		ug/L ug/L		11/09/20 09:20	11/10/20 03:15	1
Atrazine	10		10		ug/L ug/L			11/10/20 03:15	1

Eurofins TestAmerica, Edison

Page 92 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 460-738369/1-A

Matrix: Water

Analysis Batch: 738564

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 738369

•	MB	MB						•	
Analyte Res	sult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,2'-oxybis[1-chloropropane]	10	U —	10	0.63	ug/L		11/09/20 09:26	11/10/20 03:15	1
1,2,4,5-Tetrachlorobenzene	10	U	10	1.2	ug/L		11/09/20 09:26	11/10/20 03:15	1
2,3,4,6-Tetrachlorophenol	10	U	10	0.75	ug/L		11/09/20 09:26	11/10/20 03:15	1
3,3'-Dichlorobenzidine	20	U	20	1.4	ug/L		11/09/20 09:26	11/10/20 03:15	1
Bis(2-chloroethoxy)methane	10	U	10	0.59	ug/L		11/09/20 09:26	11/10/20 03:15	1

MB MB

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L				11/09/20 09:26	11/10/20 03:15	1

MR MR

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	85	46 - 137	11/09/20 09:26	11/10/20 03:15	1
Phenol-d5 (Surr)	28	10 - 50	11/09/20 09:26	11/10/20 03:15	1
Terphenyl-d14 (Surr)	85	39 - 150	11/09/20 09:26	11/10/20 03:15	1
2,4,6-Tribromophenol (Surr)	136	36 - 159	11/09/20 09:26	11/10/20 03:15	1
2-Fluorophenol (Surr)	41	18 - 72	11/09/20 09:26	11/10/20 03:15	1
2-Fluorobiphenyl	75	42 - 127	11/09/20 09:26	11/10/20 03:15	1
←					

Lab Sample ID: LCS 460-738369/2-A

Matrix: Water

Hexachlorocyclopentadiene

2-Chloronaphthalene

2-Nitroaniline

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 738564							Prep Batch: 738369
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Phenol	80.0	28.3		ug/L		35	20 - 53
2-Chlorophenol	80.0	61.0		ug/L		76	57 - 93
2-Methylphenol	80.0	56.4		ug/L		70	45 - 86
4-Methylphenol	80.0	52.8		ug/L		66	37 - 86
2-Nitrophenol	80.0	82.5		ug/L		103	60 - 126
2.4 Dimethylphenel	90.0	67.0		/1		0.4	EO 101

2,4-Dimethylphenol 59 - 101 80.0 67.2 ug/L 84 2,4-Dichlorophenol 80.0 73.3 ug/L 92 65 - 1074-Chloro-3-methylphenol 80.0 72.2 ug/L 90 60 - 107 2,4,6-Trichlorophenol 80.0 76.0 ug/L 95 64 - 115 2,4,5-Trichlorophenol 80.0 94 74.8 ug/L 64 - 1102,4-Dinitrotoluene 80.0 95.1 ug/L 119 63 - 122 4-Nitrophenol 160 56.7 ug/L 35 17 - 61 160 135 4,6-Dinitro-2-methylphenol 217 ug/L 69 - 149 Pentachlorophenol 160 185 116 57 - 135 ug/L 80.0 81 57 - 112 Bis(2-chloroethyl)ether 64.4 ug/L N-Nitrosodi-n-propylamine 80.0 68.9 ug/L 86 60 - 111 Hexachloroethane 80.0 24.7 ug/L 31 27 - 94 Nitrobenzene 80.0 76.1 ug/L 95 67 - 109 Isophorone 80.0 72.0 ug/L 90 64 - 113 80.0 77 56 - 99 Naphthalene 61.4 ug/L 4-Chloroaniline 80.0 52.6 ug/L 66 43 - 105 80.0 29.7 37 33 - 98 Hexachlorobutadiene ug/L 80.0 57 - 103 2-Methylnaphthalene 64.7 ug/L 81

Eurofins TestAmerica, Edison

14 - 97

57 - 102

54 - 123

34

Page 93 of 157

26.9

59.2

67.4

ug/L

ug/L

ug/L

80.0

80.0

80.0

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-738369/2-A

Matrix: Water

Analysis Batch: 738564

Client Sample ID: Lab Control Sample

Prep	Type: Total/NA
Prep	Batch: 738369
%Rec.	

Analysis Batch: 730304	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Dimethyl phthalate	80.0	77.4		ug/L		97	68 - 105
Acenaphthylene	80.0	67.2		ug/L		84	64 - 102
2,6-Dinitrotoluene	80.0	84.4		ug/L		106	71 - 118
3-Nitroaniline	80.0	71.7		ug/L		90	57 - 110
Acenaphthene	80.0	62.0		ug/L		78	54 - 108
Dibenzofuran	80.0	69.1		ug/L		86	65 - 104
2,4-Dinitrophenol	160	261	*	ug/L		163	36 - 150
Diethyl phthalate	80.0	76.1		ug/L		95	65 - 105
4-Chlorophenyl phenyl ether	80.0	69.5		ug/L		87	60 - 113
Fluorene	80.0	70.8		ug/L		88	64 - 108
4-Nitroaniline	80.0	78.3		ug/L		98	52 - 122
N-Nitrosodiphenylamine	80.0	64.7		ug/L		81	67 - 110
4-Bromophenyl phenyl ether	80.0	63.6		ug/L		80	65 - 115
Hexachlorobenzene	80.0	68.8		ug/L		86	59 - 129
Phenanthrene	80.0	64.9		ug/L		81	69 - 108
Anthracene	80.0	64.7		ug/L		81	69 - 110
Carbazole	80.0	70.3		ug/L		88	68 - 113
Di-n-butyl phthalate	80.0	68.3		ug/L		85	66 - 113
Fluoranthene	80.0	74.2		ug/L		93	66 - 116
Pyrene	80.0	58.2		ug/L		73	66 - 121
Butyl benzyl phthalate	80.0	65.0		ug/L		81	63 - 126
Benzo[a]anthracene	80.0	65.1		ug/L		81	71 - 114
Chrysene	80.0	65.5		ug/L		82	74 - 122
Bis(2-ethylhexyl) phthalate	80.0	67.6		ug/L		84	60 - 135
Di-n-octyl phthalate	80.0	77.0		ug/L		96	40 - 133
Benzo[b]fluoranthene	80.0	82.3		ug/L		103	65 - 113
Benzo[k]fluoranthene	80.0	77.3		ug/L		97	66 - 116
Benzo[a]pyrene	80.0	73.9		ug/L		92	67 - 106
Indeno[1,2,3-cd]pyrene	80.0	79.1		ug/L		99	55 - 139
Dibenz(a,h)anthracene	80.0	68.7		ug/L		86	57 - 144
Benzo[g,h,i]perylene	80.0	64.9		ug/L		81	48 - 145
1,1'-Biphenyl	80.0	61.5		ug/L		77	59 - 102
Acetophenone	80.0	73.4		ug/L		92	65 - 109
1,4-Dioxane	80.0	35.8		ug/L		45	29 - 68
Benzaldehyde	40.0	33.6		ug/L		84	47 - 134
Caprolactam	40.0	13.6		ug/L		34	10 - 60
Atrazine	40.0	40.2		ug/L		100	10 - 150
2,2'-oxybis[1-chloropropane]	80.0	53.8		ug/L		67	38 - 124
1,2,4,5-Tetrachlorobenzene	80.0	54.2		ug/L		68	48 - 109
2,3,4,6-Tetrachlorophenol	80.0	89.8		ug/L		112	64 - 123
3,3'-Dichlorobenzidine	80.0	58.3		ug/L		73	59 - 125
Bis(2-chloroethoxy)methane	80.0	66.5		ug/L		83	64 - 114
				5			
<i>I</i> C:	S ICS						

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5 (Surr)	83		46 - 137
Phenol-d5 (Surr)	31		10 - 50
Terphenyl-d14 (Surr)	80		39 - 150
2 4 6-Tribromonhenol (Surr)	138		36 - 159

Eurofins TestAmerica, Edison

Page 94 of 157

9

9

4

6

8

10

12

4 4

15

15

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-738369/2-A

Matrix: Water

Analysis Batch: 738564

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 738369

LCS LCS

Surrogate	%Recovery Q	ualifier	Limits
2-Fluorophenol (Surr)	44		18 - 72
2-Fluorobiphenyl	80		42 - 127

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 738369

Lab Sample ID: LCSD 460-738369/3-A **Matrix: Water**

Analysis Batch: 738564

Analysis Batch: 738564			LCSD				Prep Ba	atcn: /	
	Spike		LCSD		_		%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Phenol	80.0	29.1		ug/L		36	20 - 53	3	30
2-Chlorophenol	80.0	62.0		ug/L		78	57 - 93	2	30
2-Methylphenol	80.0	56.4		ug/L		71	45 - 86	0	30
4-Methylphenol	80.0	52.9		ug/L		66	37 - 86	0	30
2-Nitrophenol	80.0	81.2		ug/L		102	60 - 126	2	30
2,4-Dimethylphenol	80.0	67.0		ug/L		84	59 - 101	0	30
2,4-Dichlorophenol	80.0	74.7		ug/L		93	65 - 107	2	30
4-Chloro-3-methylphenol	80.0	72.1		ug/L		90	60 - 107	0	30
2,4,6-Trichlorophenol	80.0	80.5		ug/L		101	64 - 115	6	30
2,4,5-Trichlorophenol	80.0	78.9		ug/L		99	64 - 110	5	30
2,4-Dinitrotoluene	80.0	95.3		ug/L		119	63 - 122	0	30
4-Nitrophenol	160	58.5		ug/L		37	17 - 61	3	30
4,6-Dinitro-2-methylphenol	160	223		ug/L		140	69 - 149	3	30
Pentachlorophenol	160	189		ug/L		118	57 - 135	2	30
Bis(2-chloroethyl)ether	80.0	65.2		ug/L		82	57 - 112	1	30
N-Nitrosodi-n-propylamine	80.0	70.8		ug/L		89	60 - 111	3	30
Hexachloroethane	80.0	24.9		ug/L		31	27 - 94	1	30
Nitrobenzene	80.0	75.7		ug/L		95	67 - 109	1	30
Isophorone	80.0	72.6		ug/L		91	64 - 113	1	30
Naphthalene	80.0	60.6		ug/L		76	56 - 99	1	30
4-Chloroaniline	80.0	52.9		ug/L		66	43 - 105	1	30
Hexachlorobutadiene	80.0	29.7		ug/L		37	33 - 98	0	30
2-Methylnaphthalene	80.0	64.9		ug/L		81	57 - 103	0	30
Hexachlorocyclopentadiene	80.0	27.7		ug/L		35	14 - 97	3	30
2-Chloronaphthalene	80.0	58.2		ug/L		73	57 - 102	2	30
2-Nitroaniline	80.0	66.0		ug/L		82	54 - 123	2	30
Dimethyl phthalate	80.0	76.2		ug/L		95	68 - 105	2	30
Acenaphthylene	80.0	66.3		ug/L		83	64 - 102	1	30
2,6-Dinitrotoluene	80.0	85.6		ug/L		107	71 - 118	1	30
3-Nitroaniline	80.0	70.4		ug/L		88	57 - 110	2	30
Acenaphthene	80.0	60.6		ug/L		76	54 - 108	2	30
Dibenzofuran	80.0	68.3		ug/L		85	65 - 104	1	30
2,4-Dinitrophenol	160	265	*	ug/L		166	36 - 150	2	30
Diethyl phthalate	80.0	75.3		ug/L		94	65 - 105	<u>.</u>	30
4-Chlorophenyl phenyl ether	80.0	69.4		ug/L		87	60 - 113	0	30
Fluorene	80.0	69.5		ug/L		87	64 - 108	2	30
4-Nitroaniline	80.0	78.8		ug/L ug/L		99	52 - 122	1	30
N-Nitrosodiphenylamine	80.0	64.3		ug/L ug/L		80	67 - 110	1	30
	80.0	64.0				80	67 - 110 65 - 115	1	30
4-Bromophenyl phenyl ether Hexachlorobenzene	80.0	69.6		ug/L ug/L		87	59 - 129	1	30

Eurofins TestAmerica, Edison

Page 95 of 157

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 460-738369/3-A

Matrix: Water

Analysis Batch: 738564

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA
Prep Batch: 738369
%Rec. RPD
t D %Rec Limits RPD Limit

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Phenanthrene	80.0	65.3		ug/L		82	69 - 108	1	30
Anthracene	80.0	65.2		ug/L		81	69 - 110	1	30
Carbazole	80.0	70.8		ug/L		89	68 - 113	1	30
Di-n-butyl phthalate	80.0	68.2		ug/L		85	66 - 113	0	30
Fluoranthene	80.0	75.2		ug/L		94	66 - 116	1	30
Pyrene	80.0	58.6		ug/L		73	66 - 121	1	30
Butyl benzyl phthalate	80.0	65.2		ug/L		81	63 - 126	0	30
Benzo[a]anthracene	80.0	65.0		ug/L		81	71 - 114	0	30
Chrysene	80.0	68.6		ug/L		86	74 - 122	5	30
Bis(2-ethylhexyl) phthalate	80.0	67.6		ug/L		84	60 - 135	0	30
Di-n-octyl phthalate	80.0	75.6		ug/L		95	40 - 133	2	30
Benzo[b]fluoranthene	80.0	75.9		ug/L		95	65 - 113	8	30
Benzo[k]fluoranthene	80.0	80.0		ug/L		100	66 - 116	3	30
Benzo[a]pyrene	80.0	73.4		ug/L		92	67 - 106	1	30
Indeno[1,2,3-cd]pyrene	80.0	65.9		ug/L		82	55 - 139	18	30
Dibenz(a,h)anthracene	80.0	66.3		ug/L		83	57 - 144	4	30
Benzo[g,h,i]perylene	80.0	62.8		ug/L		79	48 - 145	3	30
1,1'-Biphenyl	80.0	60.3		ug/L		75	59 - 102	2	30
Acetophenone	80.0	74.8		ug/L		93	65 - 109	2	30
1,4-Dioxane	80.0	37.0		ug/L		46	29 - 68	3	30
Benzaldehyde	40.0	33.6		ug/L		84	47 - 134	0	30
Caprolactam	40.0	13.3		ug/L		33	10 - 60	2	30
Atrazine	40.0	39.4		ug/L		98	10 - 150	2	30
2,2'-oxybis[1-chloropropane]	80.0	54.1		ug/L		68	38 - 124	0	30
1,2,4,5-Tetrachlorobenzene	80.0	56.7		ug/L		71	48 - 109	4	30
2,3,4,6-Tetrachlorophenol	80.0	89.3		ug/L		112	64 - 123	1	30
3,3'-Dichlorobenzidine	80.0	60.3		ug/L		75	59 - 125	3	30
Bis(2-chloroethoxy)methane	80.0	67.2		ug/L		84	64 - 114	1	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5 (Surr)	85		46 - 137
Phenol-d5 (Surr)	32		10 - 50
Terphenyl-d14 (Surr)	80		39 - 150
2,4,6-Tribromophenol (Surr)	138		36 - 159
2-Fluorophenol (Surr)	45		18 - 72
2-Fluorobiphenyl	83		42 - 127

Lab Sample ID: MB 460-738890/1-A

Matrix: Solid

Analysis Batch: 739058

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 738890

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	330	U	330	12	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
2-Chlorophenol	330	U	330	12	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
2-Methylphenol	330	U	330	12	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
4-Methylphenol	330	U	330	21	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
2-Nitrophenol	330	U	330	33	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
2,4-Dimethylphenol	330	U	330	15	ug/Kg		11/10/20 22:20	11/11/20 15:49	1

Eurofins TestAmerica, Edison

Page 96 of 157

9

3

5

7

9

11

12

14

15

4-

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 460-738890/1-A

Matrix: Solid

Analysis Batch: 739058

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 738890

•	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-Dichlorophenol	130	U	130	21	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
4-Chloro-3-methylphenol	330	U	330	19	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
2,4,6-Trichlorophenol	130	U	130	42	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
2,4,5-Trichlorophenol	330	U	330	34	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
2,4-Dinitrotoluene	67	U	67	36	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
4-Nitrophenol	670	U	670	54	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
4,6-Dinitro-2-methylphenol	270	U	270	140	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
Pentachlorophenol	270	U	270	68	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
Bis(2-chloroethyl)ether	33	U	33	12	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
N-Nitrosodi-n-propylamine	33	U	33	24	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
Hexachloroethane	33	U	33	11	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
Nitrobenzene	33	U	33	7.9	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
Isophorone	130	U	130	96	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
Naphthalene	330	U	330	5.7			11/10/20 22:20	11/11/20 15:49	1
4-Chloroaniline	330	U	330	59	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
Hexachlorobutadiene	67		67	7.0	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
2-Methylnaphthalene	330	U	330	9.3	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
Hexachlorocyclopentadiene	330	U	330	29	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
2-Chloronaphthalene	330	U	330	15	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
2-Nitroaniline	330	U	330	12			11/10/20 22:20	11/11/20 15:49	1
Dimethyl phthalate	330		330	75	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
Acenaphthylene	330		330	3.3	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
2,6-Dinitrotoluene	67		67	24	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
3-Nitroaniline	330	U	330	37	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
Acenaphthene	330		330		ug/Kg		11/10/20 22:20	11/11/20 15:49	1
Dibenzofuran	330		330	4.6	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
2,4-Dinitrophenol	270		270	160			11/10/20 22:20	11/11/20 15:49	1
Diethyl phthalate	330		330		ug/Kg		11/10/20 22:20	11/11/20 15:49	1
4-Chlorophenyl phenyl ether	330		330		ug/Kg		11/10/20 22:20	11/11/20 15:49	1
Fluorene	330		330		ug/Kg		11/10/20 22:20	11/11/20 15:49	1
4-Nitroaniline	330		330	38	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
N-Nitrosodiphenylamine	330	U	330	27	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
4-Bromophenyl phenyl ether	330		330	13			11/10/20 22:20	11/11/20 15:49	1
Hexachlorobenzene	33		33		ug/Kg		11/10/20 22:20	11/11/20 15:49	1
Phenanthrene	330		330	5.8	ug/Kg		11/10/20 22:20	11/11/20 15:49	1
Anthracene	330		330		ug/Kg		11/10/20 22:20	11/11/20 15:49	1
Carbazole	330		330		ug/Kg		11/10/20 22:20	11/11/20 15:49	1
Di-n-butyl phthalate	330		330		ug/Kg		11/10/20 22:20	11/11/20 15:49	1
Fluoranthene	330		330		ug/Kg		11/10/20 22:20	11/11/20 15:49	1
Pyrene	330		330		ug/Kg		11/10/20 22:20	11/11/20 15:49	1
Butyl benzyl phthalate	330		330		ug/Kg		11/10/20 22:20	11/11/20 15:49	1
Benzo[a]anthracene	33		33		ug/Kg		11/10/20 22:20	11/11/20 15:49	1
Chrysene	330		330		ug/Kg		11/10/20 22:20	11/11/20 15:49	
Bis(2-ethylhexyl) phthalate	330		330		ug/Kg		11/10/20 22:20	11/11/20 15:49	1
Di-n-octyl phthalate	330		330		ug/Kg		11/10/20 22:20	11/11/20 15:49	1
Benzo[b]fluoranthene	33		33		ug/Kg ug/Kg		11/10/20 22:20	11/11/20 15:49	
Benzo[k]fluoranthene	33		33		ug/Kg ug/Kg		11/10/20 22:20	11/11/20 15:49	1
									1
Benzo[a]pyrene	33	L I	33	Q Q	ug/Kg		11/10/20 22:20	11/11/20 15:49	1

Eurofins TestAmerica, Edison

Page 97 of 157

2

3

4

6

0

10

12

14

4.0

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 460-738890/1-A

Matrix: Solid

Analysis Batch: 739058

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 738890**

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Dibenz(a,h)anthracene 33 U 33 14 ug/Kg 11/10/20 22:20 11/11/20 15:49 Benzo[g,h,i]perylene 330 U 330 9.8 ug/Kg 11/10/20 22:20 11/11/20 15:49 1,1'-Biphenyl 330 U 330 11/10/20 22:20 11/11/20 15:49 4.4 ug/Kg Acetophenone 330 U 330 16 ug/Kg 11/10/20 22:20 11/11/20 15:49 Benzaldehyde 330 U 330 11/10/20 22:20 11/11/20 15:49 55 ug/Kg Caprolactam 330 U 330 51 ug/Kg 11/10/20 22:20 11/11/20 15:49 Atrazine 130 U 130 19 ug/Kg 11/10/20 22:20 11/11/20 15:49 2,2'-oxybis[1-chloropropane] 330 U 330 6.0 ug/Kg 11/10/20 22:20 11/11/20 15:49 1,2,4,5-Tetrachlorobenzene 330 U 330 10 ug/Kg 11/10/20 22:20 11/11/20 15:49 2,3,4,6-Tetrachlorophenol 11/10/20 22:20 11/11/20 15:49 330 U 330 ug/Kg 3,3'-Dichlorobenzidine 130 U 130 11/10/20 22:20 11/11/20 15:49 50 ug/Kg 330 11/10/20 22:20 11/11/20 15:49 Bis(2-chloroethoxy)methane 330 U 26 ug/Kg

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	82	19 - 105	11/10/20 22:20	11/11/20 15:49	1
Phenol-d5 (Surr)	81	26 - 101	11/10/20 22:20	11/11/20 15:49	1
Terphenyl-d14 (Surr)	98	25 - 127	11/10/20 22:20	11/11/20 15:49	1
2,4,6-Tribromophenol (Surr)	78	10 - 123	11/10/20 22:20	11/11/20 15:49	1
2-Fluorophenol (Surr)	82	18 - 106	11/10/20 22:20	11/11/20 15:49	1
2-Fluorobiphenyl	82	25 - 104	11/10/20 22:20	11/11/20 15:49	1

Lab Sample ID: LCS 460-738890/2-A

Matrix: Solid

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 739058							Prep Batch: 738890
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Phenol	3330	2870		ug/Kg		86	63 - 110
2-Chlorophenol	3330	2830		ug/Kg		85	63 - 106
2-Methylphenol	3330	3000		ug/Kg		90	63 - 108
4-Methylphenol	3330	2700		ug/Kg		81	61 - 108
2-Nitrophenol	3330	2760		ug/Kg		83	64 - 112
2,4-Dimethylphenol	3330	2870		ug/Kg		86	63 - 107
2,4-Dichlorophenol	3330	2870		ug/Kg		86	66 - 113
4-Chloro-3-methylphenol	3330	2960		ug/Kg		89	66 - 114
2,4,6-Trichlorophenol	3330	2630		ug/Kg		79	63 - 113
2,4,5-Trichlorophenol	3330	2670		ug/Kg		80	64 - 112
2,4-Dinitrotoluene	3330	3020		ug/Kg		91	65 - 124
4-Nitrophenol	6670	4640		ug/Kg		70	47 - 123
4,6-Dinitro-2-methylphenol	6670	5210		ug/Kg		78	64 - 129
Pentachlorophenol	6670	3970		ug/Kg		60	44 - 126
Bis(2-chloroethyl)ether	3330	2720		ug/Kg		82	60 - 107
N-Nitrosodi-n-propylamine	3330	2970		ug/Kg		89	61 - 108
Hexachloroethane	3330	2810		ug/Kg		84	61 - 102
Nitrobenzene	3330	2940		ug/Kg		88	63 - 110
Isophorone	3330	2900		ug/Kg		87	63 - 107
Naphthalene	3330	2730		ug/Kg		82	63 - 106
4-Chloroaniline	3330	2340		ug/Kg		70	20 - 98
Hexachlorobutadiene	3330	2700		ug/Kg		81	62 - 109

Eurofins TestAmerica, Edison

Page 98 of 157

LCS LCS

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-738890/2-A

Matrix: Solid

Nitrobenzene-d5 (Surr)

Analysis Batch: 739058

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Job ID: 460-222216-1

P	Typo: Totaliti
rep	Batch: 738890
Rec.	
• •	

Prep Batch: 738890	
%Rec.	
Limits	

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2-Methylnaphthalene	3330	2810		ug/Kg		84	64 - 108
Hexachlorocyclopentadiene	3330	2000		ug/Kg		60	22 - 124
2-Chloronaphthalene	3330	2720		ug/Kg		82	65 - 109
2-Nitroaniline	3330	2600		ug/Kg		78	59 - 119
Dimethyl phthalate	3330	2820		ug/Kg		85	65 - 109
Acenaphthylene	3330	2840		ug/Kg		85	64 - 108
2,6-Dinitrotoluene	3330	3010		ug/Kg		90	67 - 121
3-Nitroaniline	3330	2680		ug/Kg		81	31 - 102
Acenaphthene	3330	2520		ug/Kg		76	53 - 110

Spike

Nitrobanzana dE (Surr)		10 105					
Surrogate	%Recovery Qu						
	LCS LC	:s					
Bis(2-chloroethoxy)methane		3330	2760	ug/Kg	83	62 - 107	
3,3'-Dichlorobenzidine		3330	2020	ug/Kg	61	4 - 119	
2,3,4,6-Tetrachlorophenol		3330	2350	ug/Kg	70	58 - 113	
1,2,4,5-Tetrachlorobenzene		3330	2630	ug/Kg	79	64 - 110	
2,2'-oxybis[1-chloropropane]		3330	3010	ug/Kg	90	49 - 109	
Atrazine		1330	1700	ug/Kg	127	44 - 145	
Caprolactam		1330	1660	ug/Kg	125	59 - 140	
Benzaldehyde		1330	1490	ug/Kg	112	39 - 113	
Acetophenone		3330	2660	ug/Kg	80	61 - 103	
1,1'-Biphenyl		3330	2730	ug/Kg	82	65 - 110	
Benzo[g,h,i]perylene		3330	3010	ug/Kg	90	61 - 113	
Dibenz(a,h)anthracene		3330	3250	ug/Kg	97	66 - 119	
Indeno[1,2,3-cd]pyrene		3330	3730	ug/Kg	112	62 - 121	
Benzo[a]pyrene		3330	3300	ug/Kg	99	63 - 108	
Benzo[k]fluoranthene		3330	3420	ug/Kg	102	67 - 115	
Benzo[b]fluoranthene		3330	3360	ug/Kg	101	64 - 116	
Di-n-octyl phthalate		3330	3760	ug/Kg	113	65 - 122	
Bis(2-ethylhexyl) phthalate		3330	3030	ug/Kg	91	69 - 124	
Chrysene		3330	2770	ug/Kg	83	71 - 122	
Benzo[a]anthracene		3330	2810	ug/Kg	84	67 - 115	
Butyl benzyl phthalate		3330	2990	ug/Kg	90	70 - 123	
Pyrene		3330	2770	ug/Kg	83	71 - 122	
Fluoranthene		3330	2770	ug/Kg	83	64 - 113	
Di-n-butyl phthalate		3330	2940	ug/Kg	88	66 - 114	
Carbazole		3330	2810	ug/Kg	84	64 - 113	
Anthracene		3330	2780	ug/Kg	83	67 - 114	
Phenanthrene		3330	2790	ug/Kg	84	66 - 112	
Hexachlorobenzene		3330	2690	ug/Kg	81	70 - 119	
4-Bromophenyl phenyl ether		3330	2610	ug/Kg	78	67 - 113	
N-Nitrosodiphenylamine		3330	2790	ug/Kg	84	67 - 113	
4-Nitroaniline		3330	2710	ug/Kg	81	50 - 110	
Fluorene		3330	2830	ug/Kg	85	65 - 109	
Diethyl phthalate 4-Chlorophenyl phenyl ether		3330 3330	2800	ug/Kg ug/Kg	84	66 - 110	
			2910		87	63 - 109	
2,4-Dinitrophenol		6670	4710	ug/Kg ug/Kg	86 71	37 ₋ 125	
Acenaphthene Dibenzofuran		3330 3330	2860	ug/Kg	76 86	65 - 108	
			2520		76	53 - 110	
3-Nitroaniline		3330	2680	ug/Kg ug/Kg	90 81	31 - 102	
2,6-Dinitrotoluene		3330 3330	3010	ug/Kg	90	67 - 121	
Dimethyl phthalate Acenaphthylene		3330	2820 2840	ug/Kg	85 85	65 - 109 64 - 108	
2-Nitroaniline		3330	2600	ug/Kg	78 95	59 ₋ 119	
2-Chloronaphthalene		3330	2720	ug/Kg	82	65 ₋ 109	
Hexachlorocyclopentadiene		3330	2000	ug/Kg	60	22 - 124	
2-Methylnaphthalene		3330	2810	ug/Kg	84	64 - 108	

19 - 105 85

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

100 100

Lab Sample ID: LCS 460-738890/2-A

Lab Sample ID: LCSD 460-738890/3-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 739058

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 738890

	LC3 LC3							
Surrogate	%Recovery	Qualifier	Limits					
Phenol-d5 (Surr)	89		26 - 101					
Terphenyl-d14 (Surr)	98		25 - 127					
2,4,6-Tribromophenol (Surr)	82		10 - 123					
2-Fluorophenol (Surr)	84		18 - 106					
2-Fluorobiphenvl	83		25 - 104					

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 739058 Prep Batch: 738890 LCSD LCSD Spike %Rec. **RPD** Analyte Added Result Qualifier Unit Limits RPD Limit D %Rec Phenol 3330 2840 ug/Kg 85 63 - 110 30 2-Chlorophenol 3330 2790 ug/Kg 84 63 - 106 30 2-Methylphenol 3330 2970 ug/Kg 89 63 - 108 30 4-Methylphenol 3330 2660 ug/Kg 80 61 - 108 30

4-Methylphenol	3330	2000	ug/itg	00	01-100	_	30
2-Nitrophenol	3330	2800	ug/Kg	84	64 - 112	1	30
2,4-Dimethylphenol	3330	2900	ug/Kg	87	63 - 107	1	30
2,4-Dichlorophenol	3330	2880	ug/Kg	86	66 - 113	0	30
4-Chloro-3-methylphenol	3330	2990	ug/Kg	90	66 - 114	1	30
2,4,6-Trichlorophenol	3330	2770	ug/Kg	83	63 - 113	5	30
2,4,5-Trichlorophenol	3330	2810	ug/Kg	84	64 - 112	5	30
2,4-Dinitrotoluene	3330	3050	ug/Kg	91	65 - 124	1	30
4-Nitrophenol	6670	4940	ug/Kg	74	47 - 123	6	30
4,6-Dinitro-2-methylphenol	6670	5360	ug/Kg	80	64 - 129	3	30
Pentachlorophenol	6670	4200	ug/Kg	63	44 - 126	6	30
Bis(2-chloroethyl)ether	3330	2750	ug/Kg	83	60 - 107	1	30
N-Nitrosodi-n-propylamine	3330	2840	ug/Kg	85	61 - 108	4	30
Hexachloroethane	3330	2860	ug/Kg	86	61 - 102	2	30
Nitrobenzene	3330	2820	ug/Kg	85	63 - 110	4	30
Isophorone	3330	2900	ug/Kg	87	63 - 107	0	30
Naphthalene	3330	2790	ug/Kg	84	63 - 106	2	30
4-Chloroaniline	3330	2320	ug/Kg	70	20 - 98	1	30
Hexachlorobutadiene	3330	2780	ug/Kg	83	62 - 109	3	30
2-Methylnaphthalene	3330	2860	ug/Kg	86	64 - 108	2	30
Hexachlorocyclopentadiene	3330	2250	ug/Kg	67	22 - 124	12	30
2-Chloronaphthalene	3330	2890	ug/Kg	87	65 - 109	6	30
2-Nitroaniline	3330	2630	ug/Kg	79	59 - 119	1	30
Dimethyl phthalate	3330	2840	ug/Kg	85	65 - 109	1	30
Acenaphthylene	3330	2930	ug/Kg	88	64 - 108	3	30
2,6-Dinitrotoluene	3330	3020	ug/Kg	91	67 - 121	0	30
3-Nitroaniline	3330	2610	ug/Kg	78	31 - 102	3	30
Acenaphthene	3330	2570	ug/Kg	77	53 - 110	2	30
Dibenzofuran	3330	2930	ug/Kg	88	65 - 108	2	30
2,4-Dinitrophenol	6670	5060	ug/Kg	76	37 - 125	7	30
Diethyl phthalate	3330	2940	ug/Kg	88	63 - 109	1	30
4-Chlorophenyl phenyl ether	3330	2920	ug/Kg	87	66 - 110	4	30
Fluorene	3330	2900	ug/Kg	87	65 - 109	2	30
4-Nitroaniline	3330	2680	ug/Kg	80	50 - 110	1	30
	2-Nitrophenol 2,4-Dimethylphenol 2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrotoluene 4-Nitrophenol 4,6-Dinitro-2-methylphenol Pentachlorophenol Bis(2-chloroethyl)ether N-Nitrosodi-n-propylamine Hexachloroethane Nitrobenzene Isophorone Naphthalene 4-Chloroaniline Hexachlorobutadiene 2-Methylnaphthalene Hexachlorocyclopentadiene 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline Acenaphthene Dibenzofuran 2,4-Dinitrophenol Diethyl phthalate 4-Chlorophenyl phenyl ether Fluorene	2-Nitrophenol 3330 2,4-Dimethylphenol 3330 2,4-Dichlorophenol 3330 4-Chloro-3-methylphenol 3330 2,4,5-Trichlorophenol 3330 2,4-Dinitrotoluene 3330 4-Nitrophenol 6670 4,6-Dinitro-2-methylphenol 6670 Pentachlorophenol 6670 Bis(2-chloroethyl)ether 3330 N-Nitrosodi-n-propylamine 3330 Hexachloroethane 3330 Isophorone 3330 Isophorone 3330 Naphthalene 3330 4-Chloroaniline 3330 Hexachlorobutadiene 3330 2-Methylnaphthalene 3330 Hexachlorocyclopentadiene 3330 2-Chloronaphthalene 3330 2-Nitroaniline 3330 Acenaphthylene 3330 2,6-Dinitrotoluene 3330 Acenaphthene 3330 Dibenzofuran 3330 2,4-Dinitrophenol 6670 Diethyl phthalate 3330 4-Chlorophenyl phenyl ether 3330 </td <td>2.Nitrophenol 3330 2800 2.4-Dimethylphenol 3330 2900 2.4-Dichlorophenol 3330 2880 4-Chloro-3-methylphenol 3330 2990 2.4,6-Trichlorophenol 3330 2810 2.4,5-Trichlorophenol 3330 3050 4-Nitrophenol 6670 4940 4,6-Dinitro-2-methylphenol 6670 5360 Pentachlorophenol 6670 4200 Bis(2-chloroethyl)ether 3330 2750 N-Nitrosodi-n-propylamine 3330 2840 Hexachloroethane 3330 2820 Nitrobenzene 3330 2820 Isophorone 3330 2820 Naphthalene 3330 2790 4-Chloroaniline 3330 2320 Hexachlorobutadiene 3330 2860 2-Methylnaphthalene 3330 2860 Hexachloropophenol 3330 2890 2-Nitroaniline 3330 2840 Acenaphthylene 3330 2840 Acenaphthylene 3330 2930</td> <td>2.Nitrophenol 3330 2800 ug/kg 2.4-Dimethylphenol 3330 2900 ug/kg 2.4-Dichlorophenol 3330 2880 ug/kg 2.4-Chloro-3-methylphenol 3330 2990 ug/kg 2.4.6-Trichlorophenol 3330 2770 ug/kg 2.4.5-Trichlorophenol 3330 3050 ug/kg 2.4-Dinitrotoluene 3330 3050 ug/kg 4.Nitrophenol 6670 4940 ug/kg 4.Nitrophenol 6670 4940 ug/kg Pentachlorophenol 6670 4940 ug/kg Pentachlorophenol 6670 4200 ug/kg Pentachlorophenol 6670 4200 ug/kg Bisi(2-chloroethyljether 3330 2750 ug/kg N-Nitrosodi-n-propylamine 3330 2840 ug/kg Nevachloroethane 3330 2860 ug/kg Nitrobenzene 3330 2820 ug/kg Isophoroe 3330 2790</td> <td>2-Nitrophenol 3330 2800 ug/Kg 84 2.4-Dienbrlylphenol 3330 2900 ug/Kg 86 2.4-Dichlorophenol 3330 2880 ug/Kg 86 4-Chloro-3-methylphenol 3330 2990 ug/Kg 83 2.4.5-Trichlorophenol 3330 2810 ug/Kg 84 2.4-Dinitrotoluene 3330 3050 ug/Kg 84 2.4-Dinitrotoluene 3330 3050 ug/Kg 84 4.6-Dinitro-2-methylphenol 6670 4940 ug/Kg 77 4,6-Dinitro-2-methylphenol 6670 4200 ug/Kg 63 Bis(2-chloroethyl)ether 3330 2840 ug/Kg 83 N-Nitrosodi-n-propylamine 3330 2840 ug/Kg 85 Hexachloroethane 3330 2860 ug/Kg 85 Hexachlorobutadiene 3330 2800 ug/Kg 86 Nitrobenzene 3330 2790 ug/Kg 86 Hexachloro</td> <td>2-Nitrophenol 3330 2800 ug/Kg 84 64 - 112 2,4-Dindehylphenol 3330 2900 ug/Kg 87 63 - 107 2,4-Dichlorophenol 3330 2890 ug/Kg 80 66 - 113 4-Chloro-3-methylphenol 3330 2890 ug/Kg 80 66 - 114 2,4-5-Trichlorophenol 3330 2810 ug/Kg 81 64 - 112 2,4-Dinitrobluene 3330 2810 ug/Kg 84 64 - 112 4-Nitrophenol 6670 4940 ug/Kg 80 64 - 129 4-Nitrophenol 6670 5360 ug/Kg 80 64 - 129 Pentachlorophenol 6670 4200 ug/Kg 80 64 - 129 Pentachlorophylether 3330 2750 ug/Kg 83 60 - 107 N-Nitrosodi-n-propylamine 3330 2820 ug/Kg 85 61 - 108 Hexachlorothylinehen 3330 2820 ug/Kg 85 61 - 102 Nitro</td> <td>2-Nitrophenol 3330 2800 ug/kg 84 64 - 112 1 2-A-Dinbrophenol 3330 2800 ug/kg 86 66 - 113 0 4-Chloro-3-methylphenol 3330 2890 ug/kg 80 66 - 113 0 4-Chloro-3-methylphenol 3330 2990 ug/kg 83 63 - 113 5 2.4-5-Trichlorophenol 3330 2810 ug/kg 84 64 - 112 5 2.4-5-Trichlorophenol 6670 4940 ug/kg 74 47 - 123 6 4-Nitrophenol 6670 4940 ug/kg 74 47 - 123 6 4-Dinitro-2-methylphenol 6670 4200 ug/kg 83 60 - 107 1 N-Nitrosodi-n-propylamine 3330 2850 ug/kg 85 61 - 108 4 Napithalene 3330 2860 ug/kg 85 63 - 107 0 Napithalene 3330 2800 ug/kg 86 61 - 102 2</td>	2.Nitrophenol 3330 2800 2.4-Dimethylphenol 3330 2900 2.4-Dichlorophenol 3330 2880 4-Chloro-3-methylphenol 3330 2990 2.4,6-Trichlorophenol 3330 2810 2.4,5-Trichlorophenol 3330 3050 4-Nitrophenol 6670 4940 4,6-Dinitro-2-methylphenol 6670 5360 Pentachlorophenol 6670 4200 Bis(2-chloroethyl)ether 3330 2750 N-Nitrosodi-n-propylamine 3330 2840 Hexachloroethane 3330 2820 Nitrobenzene 3330 2820 Isophorone 3330 2820 Naphthalene 3330 2790 4-Chloroaniline 3330 2320 Hexachlorobutadiene 3330 2860 2-Methylnaphthalene 3330 2860 Hexachloropophenol 3330 2890 2-Nitroaniline 3330 2840 Acenaphthylene 3330 2840 Acenaphthylene 3330 2930	2.Nitrophenol 3330 2800 ug/kg 2.4-Dimethylphenol 3330 2900 ug/kg 2.4-Dichlorophenol 3330 2880 ug/kg 2.4-Chloro-3-methylphenol 3330 2990 ug/kg 2.4.6-Trichlorophenol 3330 2770 ug/kg 2.4.5-Trichlorophenol 3330 3050 ug/kg 2.4-Dinitrotoluene 3330 3050 ug/kg 4.Nitrophenol 6670 4940 ug/kg 4.Nitrophenol 6670 4940 ug/kg Pentachlorophenol 6670 4940 ug/kg Pentachlorophenol 6670 4200 ug/kg Pentachlorophenol 6670 4200 ug/kg Bisi(2-chloroethyljether 3330 2750 ug/kg N-Nitrosodi-n-propylamine 3330 2840 ug/kg Nevachloroethane 3330 2860 ug/kg Nitrobenzene 3330 2820 ug/kg Isophoroe 3330 2790	2-Nitrophenol 3330 2800 ug/Kg 84 2.4-Dienbrlylphenol 3330 2900 ug/Kg 86 2.4-Dichlorophenol 3330 2880 ug/Kg 86 4-Chloro-3-methylphenol 3330 2990 ug/Kg 83 2.4.5-Trichlorophenol 3330 2810 ug/Kg 84 2.4-Dinitrotoluene 3330 3050 ug/Kg 84 2.4-Dinitrotoluene 3330 3050 ug/Kg 84 4.6-Dinitro-2-methylphenol 6670 4940 ug/Kg 77 4,6-Dinitro-2-methylphenol 6670 4200 ug/Kg 63 Bis(2-chloroethyl)ether 3330 2840 ug/Kg 83 N-Nitrosodi-n-propylamine 3330 2840 ug/Kg 85 Hexachloroethane 3330 2860 ug/Kg 85 Hexachlorobutadiene 3330 2800 ug/Kg 86 Nitrobenzene 3330 2790 ug/Kg 86 Hexachloro	2-Nitrophenol 3330 2800 ug/Kg 84 64 - 112 2,4-Dindehylphenol 3330 2900 ug/Kg 87 63 - 107 2,4-Dichlorophenol 3330 2890 ug/Kg 80 66 - 113 4-Chloro-3-methylphenol 3330 2890 ug/Kg 80 66 - 114 2,4-5-Trichlorophenol 3330 2810 ug/Kg 81 64 - 112 2,4-Dinitrobluene 3330 2810 ug/Kg 84 64 - 112 4-Nitrophenol 6670 4940 ug/Kg 80 64 - 129 4-Nitrophenol 6670 5360 ug/Kg 80 64 - 129 Pentachlorophenol 6670 4200 ug/Kg 80 64 - 129 Pentachlorophylether 3330 2750 ug/Kg 83 60 - 107 N-Nitrosodi-n-propylamine 3330 2820 ug/Kg 85 61 - 108 Hexachlorothylinehen 3330 2820 ug/Kg 85 61 - 102 Nitro	2-Nitrophenol 3330 2800 ug/kg 84 64 - 112 1 2-A-Dinbrophenol 3330 2800 ug/kg 86 66 - 113 0 4-Chloro-3-methylphenol 3330 2890 ug/kg 80 66 - 113 0 4-Chloro-3-methylphenol 3330 2990 ug/kg 83 63 - 113 5 2.4-5-Trichlorophenol 3330 2810 ug/kg 84 64 - 112 5 2.4-5-Trichlorophenol 6670 4940 ug/kg 74 47 - 123 6 4-Nitrophenol 6670 4940 ug/kg 74 47 - 123 6 4-Dinitro-2-methylphenol 6670 4200 ug/kg 83 60 - 107 1 N-Nitrosodi-n-propylamine 3330 2850 ug/kg 85 61 - 108 4 Napithalene 3330 2860 ug/kg 85 63 - 107 0 Napithalene 3330 2800 ug/kg 86 61 - 102 2

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 460-738890/3-A

Matrix: Solid

Analysis Batch: 739058

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 738890 %Rec. RPD

Analysis Datch. 155050							i ieb De	<i>1</i> (0)11. <i>1</i> (
	Spike	LCSD			_		%Rec.		RPD
Analyte	Added		Qualifier	Unit	_ D	%Rec	Limits	RPD	Limit
N-Nitrosodiphenylamine	3330	2950		ug/Kg		89	67 - 113	6	30
4-Bromophenyl phenyl ether	3330	2770		ug/Kg		83	67 - 113	6	30
Hexachlorobenzene	3330	2840		ug/Kg		85	70 - 119	5	30
Phenanthrene	3330	2940		ug/Kg		88	66 - 112	5	30
Anthracene	3330	2890		ug/Kg		87	67 - 114	4	30
Carbazole	3330	2840		ug/Kg		85	64 - 113	1	30
Di-n-butyl phthalate	3330	2960		ug/Kg		89	66 - 114	1	30
Fluoranthene	3330	2840		ug/Kg		85	64 - 113	2	30
Pyrene	3330	3030		ug/Kg		91	71 - 122	9	30
Butyl benzyl phthalate	3330	3090		ug/Kg		93	70 - 123	3	30
Benzo[a]anthracene	3330	2900		ug/Kg		87	67 - 115	3	30
Chrysene	3330	2880		ug/Kg		87	71 - 122	4	30
Bis(2-ethylhexyl) phthalate	3330	3200		ug/Kg		96	69 - 124	5	30
Di-n-octyl phthalate	3330	3920		ug/Kg		118	65 - 122	4	30
Benzo[b]fluoranthene	3330	3390		ug/Kg		102	64 - 116	1	30
Benzo[k]fluoranthene	3330	3570		ug/Kg		107	67 - 115	4	30
Benzo[a]pyrene	3330	3340		ug/Kg		100	63 - 108	1	30
Indeno[1,2,3-cd]pyrene	3330	3770		ug/Kg		113	62 - 121	1	30
Dibenz(a,h)anthracene	3330	3340		ug/Kg		100	66 - 119	3	30
Benzo[g,h,i]perylene	3330	3090		ug/Kg		93	61 - 113	3	30
1,1'-Biphenyl	3330	2890		ug/Kg		87	65 - 110	6	30
Acetophenone	3330	2650		ug/Kg		80	61 - 103	0	30
Benzaldehyde	1330	1060	*1	ug/Kg		79	39 - 113	34	30
Caprolactam	1330	1120	*1	ug/Kg		84	59 - 140	39	30
Atrazine	1330	1290		ug/Kg		97	44 - 145	27	30
2,2'-oxybis[1-chloropropane]	3330	2990		ug/Kg		90	49 - 109	1	30
1,2,4,5-Tetrachlorobenzene	3330	2750		ug/Kg		83	64 - 110	4	30
2,3,4,6-Tetrachlorophenol	3330	2480		ug/Kg		74	58 - 113	5	30
3,3'-Dichlorobenzidine	3330	1970		ug/Kg		59	4 - 119	3	30
Bis(2-chloroethoxy)methane	3330	2820		ug/Kg		85	62 - 107	2	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5 (Surr)	82		19 - 105
Phenol-d5 (Surr)	83		26 - 101
Terphenyl-d14 (Surr)	97		25 - 127
2,4,6-Tribromophenol (Surr)	80		10 - 123
2-Fluorophenol (Surr)	79		18 - 106
2-Fluorobiphenyl	82		25 - 104

Method: 8270E SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

Lab Sample ID: MB 460-738693/1-A

Matrix: Water

Analysis Batch: 738828

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 738693

 Analyte
 Result 1,4-Dioxane
 Qualifier 0.20
 RL 0.20
 MDL 0.20
 Unit ug/L
 D 1/11/10/20 09:02
 Prepared 1/11/10/20 09:02
 Analyzed Dil Fac 1/11/10/20 09:02
 D 1/11/10/20 09:02

Eurofins TestAmerica, Edison

5

3

4

7

9

11

12

14

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8270E SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution) (Continued)

		1	MB MB									
Isotope	Dilution	%Recove	ery Qualifier	Lin	nits				P	repared	Analyzed	Dil Fac
1,4-Diox	rane-d8	_	32	10	- 150				11/1	0/20 09:02	11/10/20 21:16	1
Lab Sa	ample ID: LCS 460-738	3693/2-A						Client	Sai	mple ID:	Lab Control	Sample
	: Water									•	Prep Type: 1	•
Analys	sis Batch: 738828										Prep Batch:	738693
				Spike		LCS	LCS				%Rec.	
Analyte				Added		Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Diox	ane			1.60		1.89		ug/L	_	118	10 - 200	
		LCS I	cs									
Isotope	Dilution	%Recovery (Qualifier	Limits								

10 - 200

Lab Sample ID: LCSD 460 Matrix: Water Analysis Batch: 738828		Client Sample ID: Lab Control Sam Prep Type: ¹ Prep Batch:							al/NA		
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dioxane			1.60	1.86		ug/L		117	10 - 200	1	50
	LCSD	LCSD									
Isotope Dilution	%Recovery	Qualifier	Limits								
1,4-Dioxane-d8	33		10 - 200								

Method: 8081B - Organochlorine Pesticides (GC)

31

1,4-Dioxane-d8

Lab Sample ID: MB 460-7382 Matrix: Water Analysis Batch: 738595	218/1- A						•	le ID: Method Prep Type: To Prep Batch:	otal/NA
	MB								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
4,4'-DDD	0.020	U	0.020	0.0060	ug/L		11/08/20 14:01	11/10/20 11:34	1
4,4'-DDD	0.020	U	0.020	0.0060	ug/L		11/08/20 14:01	11/10/20 11:34	1
4,4'-DDE	0.020	U	0.020	0.0020	ug/L		11/08/20 14:01	11/10/20 11:34	1
4,4'-DDE	0.020	U	0.020	0.0020	ug/L		11/08/20 14:01	11/10/20 11:34	1
4,4'-DDT	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/10/20 11:34	1
4,4'-DDT	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/10/20 11:34	1
Aldrin	0.020	U	0.020	0.0030	ug/L		11/08/20 14:01	11/10/20 11:34	1
Aldrin	0.020	U	0.020	0.0030	ug/L		11/08/20 14:01	11/10/20 11:34	1
alpha-BHC	0.020	U	0.020	0.0070	ug/L		11/08/20 14:01	11/10/20 11:34	1
alpha-BHC	0.020	U	0.020	0.0070	ug/L		11/08/20 14:01	11/10/20 11:34	1
beta-BHC	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/10/20 11:34	1
beta-BHC	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/10/20 11:34	1
Chlordane (technical)	0.50	U	0.50	0.055	ug/L		11/08/20 14:01	11/10/20 11:34	1
Chlordane (technical)	0.50	U	0.50	0.055	ug/L		11/08/20 14:01	11/10/20 11:34	1
delta-BHC	0.020	U	0.020	0.0050	ug/L		11/08/20 14:01	11/10/20 11:34	1
delta-BHC	0.020	U	0.020	0.0050	ug/L		11/08/20 14:01	11/10/20 11:34	1
Dieldrin	0.020	U	0.020	0.0030	ug/L		11/08/20 14:01	11/10/20 11:34	1
Dieldrin	0.020	U	0.020	0.0030	ug/L		11/08/20 14:01	11/10/20 11:34	1
Endosulfan I	0.020	Ü	0.020	0.0020	ug/L		11/08/20 14:01	11/10/20 11:34	1
Endosulfan I	0.020	U	0.020	0.0020	ug/L		11/08/20 14:01	11/10/20 11:34	1
Endosulfan II	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/10/20 11:34	1
Endosulfan II	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/10/20 11:34	1

Eurofins TestAmerica, Edison

Page 102 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: MB 460-738218/1-A

Matrix: Water

Analysis Batch: 738595

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 738218

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Endosulfan sulfate	0.020	U	0.020	0.0060	ug/L		11/08/20 14:01	11/10/20 11:34	1
Endosulfan sulfate	0.020	U	0.020	0.0060	ug/L		11/08/20 14:01	11/10/20 11:34	1
Endrin	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/10/20 11:34	1
Endrin	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/10/20 11:34	1
Endrin aldehyde	0.020	U	0.020	0.0080	ug/L		11/08/20 14:01	11/10/20 11:34	1
Endrin aldehyde	0.020	U	0.020	0.0080	ug/L		11/08/20 14:01	11/10/20 11:34	1
Endrin ketone	0.020	U	0.020	0.0080	ug/L		11/08/20 14:01	11/10/20 11:34	1
Endrin ketone	0.020	U	0.020	0.0080	ug/L		11/08/20 14:01	11/10/20 11:34	1
gamma-BHC (Lindane)	0.020	U	0.020	0.012	ug/L		11/08/20 14:01	11/10/20 11:34	1
gamma-BHC (Lindane)	0.020	U	0.020	0.012	ug/L		11/08/20 14:01	11/10/20 11:34	1
Heptachlor	0.020	U	0.020	0.0030	ug/L		11/08/20 14:01	11/10/20 11:34	1
Heptachlor	0.020	U	0.020	0.0030	ug/L		11/08/20 14:01	11/10/20 11:34	1
Heptachlor epoxide	0.020	U	0.020	0.0050	ug/L		11/08/20 14:01	11/10/20 11:34	1
Heptachlor epoxide	0.020	U	0.020	0.0050	ug/L		11/08/20 14:01	11/10/20 11:34	1
Methoxychlor	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/10/20 11:34	1
Methoxychlor	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/10/20 11:34	1
Toxaphene	0.50	U	0.50	0.11	ug/L		11/08/20 14:01	11/10/20 11:34	1
Toxaphene	0.50	U	0.50	0.11	ug/L		11/08/20 14:01	11/10/20 11:34	1

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	106	10 - 132	11/08/20 14:01	11/10/20 11:34	1
DCB Decachlorobiphenyl	99	10 - 132	11/08/20 14:01	11/10/20 11:34	1
Tetrachloro-m-xylene	105	10 - 150	11/08/20 14:01	11/10/20 11:34	1
Tetrachloro-m-xylene	108	10 - 150	11/08/20 14:01	11/10/20 11:34	1
	DCB Decachlorobiphenyl DCB Decachlorobiphenyl Tetrachloro-m-xylene	Surrogate%RecoveryQualifierDCB Decachlorobiphenyl106DCB Decachlorobiphenyl99Tetrachloro-m-xylene105	Surrogate%RecoveryQualifierLimitsDCB Decachlorobiphenyl10610 - 132DCB Decachlorobiphenyl9910 - 132Tetrachloro-m-xylene10510 - 150	Surrogate %Recovery Qualifier Limits Prepared DCB Decachlorobiphenyl 106 10 - 132 11/08/20 14:01 DCB Decachlorobiphenyl 99 10 - 132 11/08/20 14:01 Tetrachloro-m-xylene 105 10 - 150 11/08/20 14:01	Surrogate %Recovery Qualifier Limits Prepared Analyzed DCB Decachlorobiphenyl 106 10 - 132 11/08/20 14:01 11/10/20 11:34 DCB Decachlorobiphenyl 99 10 - 132 11/08/20 14:01 11/10/20 11:34 Tetrachloro-m-xylene 105 10 - 150 11/08/20 14:01 11/10/20 11:34

Lab Sample ID: LCS 460-738218/2-A

Matrix: Water Analysis Batch: 738595							Prep Type: Total/NA Prep Batch: 738218
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
4,4'-DDD	0.800	0.838		ug/L		105	55 - 150
4,4'-DDD	0.800	0.757		ug/L		95	55 - 150
4,4'-DDE	0.800	0.873		ug/L		109	52 - 150
4,4'-DDE	0.800	0.762		ug/L		95	52 - 150
4,4'-DDT	0.800	0.635		ug/L		79	51 - 141
4,4'-DDT	0.800	0.629		ug/L		79	51 - 141
Aldrin	0.800	0.864		ug/L		108	46 - 144
Aldrin	0.800	0.771		ug/L		96	46 - 144
alpha-BHC	0.800	0.876		ug/L		109	53 - 143
alpha-BHC	0.800	0.817		ug/L		102	53 - 143
beta-BHC	0.800	0.878		ug/L		110	54 - 143
beta-BHC	0.800	0.843		ug/L		105	54 - 143
delta-BHC	0.800	0.869		ug/L		109	23 - 147
delta-BHC	0.800	0.801		ug/L		100	23 - 147
Dieldrin	0.800	0.863		ug/L		108	53 - 149
Dieldrin	0.800	0.779		ug/L		97	53 - 149
Endosulfan I	0.800	0.863		ug/L		108	54 - 149
Endosulfan I	0.800	0.765		ug/L		96	54 - 149

Eurofins TestAmerica, Edison

Client Sample ID: Lab Control Sample

Page 103 of 157

2

3

4

6

9

11

13

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCS 460-738218/2-A

Matrix: Water

Analysis Batch: 738595

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 738218 %Rec.

	Spike	LCS I	LCS		%Rec.
Analyte	Added	Result (Qualifier Unit	D %Rec	Limits
Endosulfan II	0.800	0.845	ug/L	106	60 - 144
Endosulfan II	0.800	0.741	ug/L	93	60 - 144
Endosulfan sulfate	0.800	0.820	ug/L	103	50 - 150
Endosulfan sulfate	0.800	0.734	ug/L	92	50 - 150
Endrin	0.800	0.812	ug/L	101	49 - 150
Endrin	0.800	0.733	ug/L	92	49 - 150
Endrin aldehyde	0.800	0.770	ug/L	96	53 - 140
Endrin aldehyde	0.800	0.702	ug/L	88	53 - 140
Endrin ketone	0.800	0.805	ug/L	101	53 - 150
Endrin ketone	0.800	0.745	ug/L	93	53 - 150
gamma-BHC (Lindane)	0.800	0.878	ug/L	110	53 - 140
gamma-BHC (Lindane)	0.800	0.816	ug/L	102	53 - 140
Heptachlor	0.800	0.794	ug/L	99	49 - 140
Heptachlor	0.800	0.721	ug/L	90	49 - 140
Heptachlor epoxide	0.800	0.836	ug/L	104	55 - 146
Heptachlor epoxide	0.800	0.763	ug/L	95	55 - 146
Methoxychlor	0.800	0.523	ug/L	65	52 - 145
Methoxychlor	0.800	0.505	ug/L	63	52 - 145

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	100		10 - 132
DCB Decachlorobiphenyl	87		10 - 132
Tetrachloro-m-xylene	101		10 - 150
Tetrachloro-m-xylene	98		10 - 150

Lab Sample ID: LCSD 460-738218/3-A

Matrix: Water

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 738218

Analysis Batch: 738595 LCSD LCSD Spike %Rec. **RPD** Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit 4,4'-DDD 0.800 0.805 55 - 150 4 30 ug/L 101 4,4'-DDD 0.800 0.763 ug/L 95 55 - 150 30 4,4'-DDE 0.800 0.844 105 52 - 150 30 ug/L 3 ug/L 4,4'-DDE 0.800 0.769 96 52 - 150 30 4,4'-DDT 0.800 0.616 ug/L 77 51 - 141 30 3 4,4'-DDT 0.800 0.638 ug/L 80 51 - 141 30 ug/L Aldrin 0.800 0.835 104 46 - 144 30 Aldrin 0.800 46 - 144 30 0.779 ug/L 97 alpha-BHC 0.800 0.852 ug/L 107 53 - 143 30 alpha-BHC 0.800 0.829 ug/L 104 53 - 143 30 beta-BHC 0.800 0.865 ug/L 108 54 - 143 2 30 beta-BHC 0.800 107 30 0.859 ug/L 54 - 143 2 delta-BHC 0.800 0.848 106 23 - 147 30 ug/L delta-BHC 0.800 0.812 ug/L 101 23 - 147 30 Dieldrin 0.800 0.830 ug/L 104 53 - 149 30 Dieldrin 0.800 ug/L 0.786 98 53 - 149 30 Endosulfan I 0.800 0.833 ug/L 104 54 - 149 30 Endosulfan I 0.800 0.773 ug/L 97 54 - 149 30

Eurofins TestAmerica, Edison

Page 104 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCSD 460-738218/3-A

Matrix: Water

Analysis Batch: 738595

Client Sample ID: Lab Control Sample Dup

96

63

Prep Type: Total/NA Prep Batch: 738218

7									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Endosulfan II	0.800	0.820		ug/L		102	60 - 144	3	30
Endosulfan II	0.800	0.758		ug/L		95	60 - 144	2	30
Endosulfan sulfate	0.800	0.797		ug/L		100	50 - 150	3	30
Endosulfan sulfate	0.800	0.744		ug/L		93	50 - 150	1	30
Endrin	0.800	0.782		ug/L		98	49 - 150	4	30
Endrin	0.800	0.740		ug/L		93	49 - 150	1	30
Endrin aldehyde	0.800	0.747		ug/L		93	53 - 140	3	30
Endrin aldehyde	0.800	0.712		ug/L		89	53 - 140	1	30
Endrin ketone	0.800	0.784		ug/L		98	53 - 150	3	30
Endrin ketone	0.800	0.755		ug/L		94	53 - 150	1	30
gamma-BHC (Lindane)	0.800	0.860		ug/L		107	53 - 140	2	30
gamma-BHC (Lindane)	0.800	0.827		ug/L		103	53 - 140	1	30
Heptachlor	0.800	0.776		ug/L		97	49 - 140	2	30
Heptachlor	0.800	0.731		ug/L		91	49 - 140	1	30
Heptachlor epoxide	0.800	0.805		ug/L		101	55 - 146	4	30

0.769

0.505

0.509

ug/L

ug/L

ug/L

0.800

0.800

0.800

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	94		10 - 132
DCB Decachlorobiphenyl	86		10 - 132
Tetrachloro-m-xylene	97		10 - 150
Tetrachloro-m-xylene	97		10 - 150

Lab Sample ID: MB 460-739629/1-A

Matrix: Solid

Heptachlor epoxide

Methoxychlor

Methoxychlor

Analysis Batch: 740150

Client Sample ID: Method Blank Prep Type: Total/NA

55 - 146

52 - 145

52 - 145

Prep Batch: 739629

Tillary Cio Batolii Tio 100								op =uto	
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	6.7	U	6.7	1.1	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
4,4'-DDD	6.7	U	6.7	1.1	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
4,4'-DDE	6.7	U	6.7	0.79	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
4,4'-DDE	6.7	U	6.7	0.79	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
4,4'-DDT	6.7	U	6.7	1.2	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
4,4'-DDT	6.7	U	6.7	1.2	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
Aldrin	6.7	U	6.7	1.0	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
Aldrin	6.7	U	6.7	1.0	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
alpha-BHC	2.0	U	2.0	0.68	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
alpha-BHC	2.0	U	2.0	0.68	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
beta-BHC	2.0	U	2.0	0.75	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
beta-BHC	2.0	U	2.0	0.75	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
Chlordane (technical)	67	U	67	16	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
Chlordane (technical)	67	U	67	16	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
delta-BHC	2.0	U	2.0	0.41	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
delta-BHC	2.0	U	2.0	0.41	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
Dieldrin	2.0	U	2.0	0.87	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
Dieldrin	2.0	U	2.0	0.87	ug/Kg		11/13/20 09:54	11/16/20 09:46	1

Eurofins TestAmerica, Edison

Page 105 of 157

2

5

7

9

11

13

30

30

30

3

4 -

16

17

3/30/2021

Job ID: 460-222216-1 Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

MB MB

Lab Sample ID: MB 460-739629/1-A

Matrix: Solid

Analysis Batch: 740150

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 739629

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Endosulfan I	6.7	U	6.7	1.0	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
Endosulfan I	6.7	U	6.7	1.0	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
Endosulfan II	6.7	U	6.7	1.7	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
Endosulfan II	6.7	U	6.7	1.7	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
Endosulfan sulfate	6.7	U	6.7	0.84	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
Endosulfan sulfate	6.7	U	6.7	0.84	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
Endrin	6.7	U	6.7	0.96	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
Endrin	6.7	U	6.7	0.96	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
Endrin aldehyde	6.7	U	6.7	1.6	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
Endrin aldehyde	6.7	U	6.7	1.6	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
Endrin ketone	6.7	U	6.7	1.3	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
Endrin ketone	6.7	U	6.7	1.3	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
gamma-BHC (Lindane)	2.0	U	2.0	0.62	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
gamma-BHC (Lindane)	2.0	U	2.0	0.62	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
Heptachlor	6.7	U	6.7	0.79	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
Heptachlor	6.7	U	6.7	0.79	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
Heptachlor epoxide	6.7	U	6.7	1.0	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
Heptachlor epoxide	6.7	U	6.7	1.0	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
Methoxychlor	6.7	U	6.7	1.5	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
Methoxychlor	6.7	U	6.7	1.5	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
Toxaphene	67	U	67	24	ug/Kg		11/13/20 09:54	11/16/20 09:46	1
Toxaphene	67	U	67	24	ug/Kg		11/13/20 09:54	11/16/20 09:46	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	116		28 - 148	11/13/20 09:54	11/16/20 09:46	1
DCB Decachlorobiphenyl	95		28 - 148	11/13/20 09:54	11/16/20 09:46	1
Tetrachloro-m-xylene	113		34 - 118	11/13/20 09:54	11/16/20 09:46	1
Tetrachloro-m-xylene	104		34 - 118	11/13/20 09:54	11/16/20 09:46	1

Lab Sample ID: LCS 460-739629/2-A

Matrix: Solid

Analysis Batch: 740150

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 739629

Analysis Batch: 740150	Smiles	1.00	1.00				Prep Batch: 739629
	Spike		LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
4,4'-DDD	133	146		ug/Kg		109	70 - 140
4,4'-DDD	133	135		ug/Kg		101	70 - 140
4,4'-DDE	133	148		ug/Kg		111	71 - 137
4,4'-DDE	133	132		ug/Kg		99	71 - 137
4,4'-DDT	133	114		ug/Kg		86	63 - 131
4,4'-DDT	133	101		ug/Kg		76	63 - 131
Aldrin	133	148		ug/Kg		111	74 - 140
Aldrin	133	135		ug/Kg		101	74 - 140
alpha-BHC	133	151		ug/Kg		114	72 - 142
alpha-BHC	133	144		ug/Kg		108	72 - 142
beta-BHC	133	150		ug/Kg		112	65 - 137
beta-BHC	133	144		ug/Kg		108	65 - 137
delta-BHC	133	148		ug/Kg		111	70 - 143
delta-BHC	133	138		ug/Kg		104	70 - 143

Eurofins TestAmerica, Edison

Page 106 of 157

Job ID: 460-222216-1 Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCS 460-739629/2-A

Matrix: Solid

Analysis Batch: 740150

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 739629

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dieldrin	133	145		ug/Kg		109	70 - 135	
Dieldrin	133	132		ug/Kg		99	70 - 135	
Endosulfan I	133	145		ug/Kg		109	68 - 135	
Endosulfan I	133	131		ug/Kg		99	68 - 135	
Endosulfan II	133	143		ug/Kg		107	64 - 130	
Endosulfan II	133	127		ug/Kg		95	64 - 130	
Endosulfan sulfate	133	141		ug/Kg		106	66 - 143	
Endosulfan sulfate	133	125		ug/Kg		94	66 - 143	
Endrin	133	135		ug/Kg		101	68 - 136	
Endrin	133	118		ug/Kg		88	68 - 136	
Endrin aldehyde	133	136		ug/Kg		102	68 - 132	
Endrin aldehyde	133	127		ug/Kg		95	68 - 132	
Endrin ketone	133	144		ug/Kg		108	60 - 150	
Endrin ketone	133	131		ug/Kg		99	60 - 150	
gamma-BHC (Lindane)	133	151		ug/Kg		113	70 - 134	
gamma-BHC (Lindane)	133	142		ug/Kg		107	70 - 134	
Heptachlor	133	135		ug/Kg		101	69 - 134	
Heptachlor	133	121		ug/Kg		90	69 - 134	
Heptachlor epoxide	133	141		ug/Kg		106	70 - 135	
Heptachlor epoxide	133	130		ug/Kg		98	70 - 135	
Methoxychlor	133	105		ug/Kg		79	57 - 135	
Methoxychlor	133	87.3		ug/Kg		66	57 - 135	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	84		28 - 148
DCB Decachlorobiphenyl	91		28 - 148
Tetrachloro-m-xylene	82		34 - 118
Tetrachloro-m-xylene	82		34 - 118

Lab Sample ID: LCSD 460-739629/3-A

Matrix: Solid

Analysis Batch: 740150

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 739629

Analysis Batch: 740150							Prep Ba	itcn: /?	39629
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4,4'-DDD	133	154		ug/Kg		115	70 - 140	5	30
4,4'-DDD	133	140		ug/Kg		105	70 - 140	4	30
4,4'-DDE	133	157		ug/Kg		118	71 - 137	6	30
4,4'-DDE	133	137		ug/Kg		103	71 - 137	4	30
4,4'-DDT	133	119		ug/Kg		89	63 - 131	4	30
4,4'-DDT	133	104		ug/Kg		78	63 - 131	3	30
Aldrin	133	156		ug/Kg		117	74 - 140	6	30
Aldrin	133	140		ug/Kg		105	74 - 140	4	30
alpha-BHC	133	160		ug/Kg		120	72 - 142	6	30
alpha-BHC	133	149		ug/Kg		112	72 - 142	4	30
beta-BHC	133	159		ug/Kg		119	65 - 137	6	30
beta-BHC	133	150		ug/Kg		112	65 - 137	4	30
delta-BHC	133	157		ug/Kg		117	70 - 143	6	30
delta-BHC	133	143		ug/Kg		107	70 - 143	4	30

Eurofins TestAmerica, Edison

Page 107 of 157

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCSD 460-739629/3-A

Matrix: Solid

Analysis Batch: 740150

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 739629

Analysis Baton: 140100							i icp be	1011. 7	00020
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dieldrin	133	154		ug/Kg		116	70 - 135	6	30
Dieldrin	133	138		ug/Kg		103	70 - 135	4	30
Endosulfan I	133	154		ug/Kg		116	68 - 135	6	30
Endosulfan I	133	137		ug/Kg		103	68 - 135	4	30
Endosulfan II	133	151		ug/Kg		113	64 - 130	6	30
Endosulfan II	133	132		ug/Kg		99	64 - 130	4	30
Endosulfan sulfate	133	148		ug/Kg		111	66 - 143	5	30
Endosulfan sulfate	133	130		ug/Kg		97	66 - 143	4	30
Endrin	133	142		ug/Kg		107	68 - 136	6	30
Endrin	133	123		ug/Kg		92	68 - 136	4	30
Endrin aldehyde	133	144		ug/Kg		108	68 - 132	6	30
Endrin aldehyde	133	132		ug/Kg		99	68 - 132	4	30
Endrin ketone	133	151		ug/Kg		113	60 - 150	5	30
Endrin ketone	133	136		ug/Kg		102	60 - 150	4	30
gamma-BHC (Lindane)	133	160		ug/Kg		120	70 - 134	6	30
gamma-BHC (Lindane)	133	148		ug/Kg		111	70 - 134	4	30
Heptachlor	133	143		ug/Kg		108	69 - 134	6	30
Heptachlor	133	125		ug/Kg		94	69 - 134	4	30
Heptachlor epoxide	133	150		ug/Kg		112	70 - 135	6	30
Heptachlor epoxide	133	136		ug/Kg		102	70 - 135	4	30
Methoxychlor	133	108		ug/Kg		81	57 - 135	2	30
Methoxychlor	133	88.6		ug/Kg		66	57 - 135	1	30
-									

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	90		28 - 148
DCB Decachlorobiphenyl	84		28 - 148
Tetrachloro-m-xylene	86		34 - 118
Tetrachloro-m-xylene	86		34 - 118

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 460-738219/1-A

Matrix: Water

Analysis Batch: 738426

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 738219

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 15:57	1
Aroclor 1016	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 15:57	1
Aroclor 1221	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 15:57	1
Aroclor 1221	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 15:57	1
Aroclor 1232	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 15:57	1
Aroclor 1232	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 15:57	1
Aroclor 1242	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 15:57	1
Aroclor 1242	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 15:57	1
Aroclor 1248	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 15:57	1
Aroclor 1248	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 15:57	1
Aroclor 1254	0.40	U	0.40	0.11	ug/L		11/08/20 14:08	11/09/20 15:57	1
Aroclor 1254	0.40	U	0.40	0.11	ug/L		11/08/20 14:08	11/09/20 15:57	1
Aroclor 1260	0.40	U	0.40	0.11	ug/L		11/08/20 14:08	11/09/20 15:57	1

Eurofins TestAmerica, Edison

Page 108 of 157

5

7

9

11

13

4 5

16

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: MB 460-738219/1-A

Matrix: Water

Analysis Batch: 738426

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 738219

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1260	0.40	U	0.40	0.11	ug/L		11/08/20 14:08	11/09/20 15:57	1
Aroclor-1262	0.40	U	0.40	0.11	ug/L		11/08/20 14:08	11/09/20 15:57	1
Aroclor-1262	0.40	U	0.40	0.11	ug/L		11/08/20 14:08	11/09/20 15:57	1
Aroclor 1268	0.40	U	0.40	0.11	ug/L		11/08/20 14:08	11/09/20 15:57	1
Aroclor 1268	0.40	U	0.40	0.11	ug/L		11/08/20 14:08	11/09/20 15:57	1
Polychlorinated biphenyls, Total	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 15:57	1
Polychlorinated biphenyls, Total	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 15:57	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	130	10 - 150	11/08/20 14:08	11/09/20 15:57	1
DCB Decachlorobiphenyl	127	10 - 150	11/08/20 14:08	11/09/20 15:57	1
Tetrachloro-m-xylene	119	48 - 125	11/08/20 14:08	11/09/20 15:57	1
Tetrachloro-m-xylene	122	48 - 125	11/08/20 14:08	11/09/20 15:57	1

Lab Sample ID: LCS 460-738219/2-A

Matrix: Water

Analysis Batch: 738426

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 738219

%Rec.

	Spike	LUS	LUS				70ReC.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aroclor 1016	4.00	4.13		ug/L		103	66 - 141	
Aroclor 1016	4.00	4.53		ug/L		113	66 - 141	
Aroclor 1260	4.00	4.38		ug/L		110	75 - 150	
Aroclor 1260	4.00	4.24		ug/L		106	75 - 150	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	146		10 - 150
DCB Decachlorobiphenyl	145		10 - 150
Tetrachloro-m-xylene	135	Χ	48 - 125
Tetrachloro-m-xylene	139	X	48 - 125

Lab Sample ID: LCSD 460-738219/3-A

Matrix: Water

Analysis Batch: 738426

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 738219

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aroclor 1016	4.00	3.57		ug/L		89	66 - 141	15	30
Aroclor 1016	4.00	3.86		ug/L		96	66 - 141	16	30
Aroclor 1260	4.00	3.79		ug/L		95	75 - 150	14	30
Aroclor 1260	4.00	3.70		ua/L		93	75 - 150	14	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	127		10 - 150
DCB Decachlorobiphenyl	126		10 - 150
Tetrachloro-m-xylene	115		48 - 125
Tetrachloro-m-xylene	120		48 - 125

Eurofins TestAmerica, Edison

3

<u>.</u> 5

6

8

10

15

13

_

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: MB 460-739628/1-A

Matrix: Solid

Analysis Batch: 740270

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 739628 ac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aroclor 1016	67	U	67	8.9	ug/Kg		11/13/20 09:49	11/16/20 17:19	
Aroclor 1016	67	U	67	8.9	ug/Kg		11/13/20 09:49	11/16/20 17:19	
Aroclor 1221	67	U	67	8.9	ug/Kg		11/13/20 09:49	11/16/20 17:19	
Aroclor 1221	67	U	67	8.9	ug/Kg		11/13/20 09:49	11/16/20 17:19	
Aroclor 1232	67	U	67	8.9	ug/Kg		11/13/20 09:49	11/16/20 17:19	
Aroclor 1232	67	U	67	8.9	ug/Kg		11/13/20 09:49	11/16/20 17:19	
Aroclor 1242	67	U	67	8.9	ug/Kg		11/13/20 09:49	11/16/20 17:19	
Aroclor 1242	67	U	67	8.9	ug/Kg		11/13/20 09:49	11/16/20 17:19	
Aroclor 1248	67	U	67	8.9	ug/Kg		11/13/20 09:49	11/16/20 17:19	
Aroclor 1248	67	U	67	8.9	ug/Kg		11/13/20 09:49	11/16/20 17:19	
Aroclor 1254	67	U	67	9.2	ug/Kg		11/13/20 09:49	11/16/20 17:19	
Aroclor 1254	67	U	67	9.2	ug/Kg		11/13/20 09:49	11/16/20 17:19	
Aroclor 1260	67	U	67	9.2	ug/Kg		11/13/20 09:49	11/16/20 17:19	
Aroclor 1260	67	U	67	9.2	ug/Kg		11/13/20 09:49	11/16/20 17:19	
Aroclor-1262	67	U	67	9.2	ug/Kg		11/13/20 09:49	11/16/20 17:19	
Aroclor-1262	67	U	67	9.2	ug/Kg		11/13/20 09:49	11/16/20 17:19	
Aroclor 1268	67	U	67	9.2	ug/Kg		11/13/20 09:49	11/16/20 17:19	
Aroclor 1268	67	U	67	9.2	ug/Kg		11/13/20 09:49	11/16/20 17:19	

67	U
MB	MB

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	108		10 - 150	11/13/20 09:49	11/16/20 17:19	1
DCB Decachlorobiphenyl	104		10 - 150	11/13/20 09:49	11/16/20 17:19	1
Tetrachloro-m-xylene	106		58 - 145	11/13/20 09:49	11/16/20 17:19	1
Tetrachloro-m-xylene	100		58 ₋ 145	11/13/20 09:49	11/16/20 17:19	1

67

9.2 ug/Kg

9.2 ug/Kg

Lab Sample ID: LCS 460-739628/2-A

Matrix: Solid

Analysis Batch: 740270

Polychlorinated biphenyls, Total

Polychlorinated biphenyls, Total

Client Sample ID: Lab Control Sample Prep Type: Total/NA

11/13/20 09:49 11/16/20 17:19

11/13/20 09:49 11/16/20 17:19

Prep Batch: 739628

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aroclor 1016	333	350		ug/Kg		105	65 - 133	
Aroclor 1016	333	339		ug/Kg		102	65 - 133	
Aroclor 1260	333	358		ug/Kg		108	71 - 150	
Aroclor 1260	333	328		ug/Kg		98	71 - 150	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	108		10 - 150
DCB Decachlorobiphenyl	105		10 - 150
Tetrachloro-m-xylene	106		58 - 145
Tetrachloro-m-xylene	102		58 ₋ 145

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: LCSD 460-739628/3-A

Matrix: Solid

Analysis Batch: 740270

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 739628

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aroclor 1016	333	326		ug/Kg		98	65 - 133	7	30
Aroclor 1016	333	315		ug/Kg		94	65 - 133	8	30
Aroclor 1260	333	344		ug/Kg		103	71 - 150	4	30
Aroclor 1260	333	316		ug/Kg		95	71 - 150	4	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	101		10 - 150
DCB Decachlorobiphenyl	97		10 - 150
Tetrachloro-m-xylene	97		58 - 145
Tetrachloro-m-xylene	93		58 - 145

Method: 8151A - Herbicides (GC)

Lab Sample ID: MB 460-738541/1-A

Matrix: Water

Analysis Batch: 738660

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 738541

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 2,4-D 1.2 U 1.2 0.13 ug/L 11/09/20 20:09 11/10/20 11:32 1.2 U 2,4-D 1.2 0.13 ug/L 11/09/20 20:09 11/10/20 11:32 Silvex (2,4,5-TP) 1.2 U 1.2 0.11 ug/L 11/09/20 20:09 11/10/20 11:32 1.2 U Silvex (2,4,5-TP) 1.2 0.11 ug/L 11/09/20 20:09 11/10/20 11:32 2,4,5-T 1.2 U 1.2 0.12 ug/L 11/09/20 20:09 11/10/20 11:32 2,4,5-T 1.2 U 1.2 0.12 ug/L 11/09/20 20:09 11/10/20 11:32

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	93		39 - 145	11/09/20 20:09	11/10/20 11:32	1
2,4-Dichlorophenylacetic acid	100		39 - 145	11/09/20 20:09	11/10/20 11:32	1

Lab Sample ID: LCS 460-738541/2-A

Matrix: Water

Analysis Batch: 738660

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 738541

	Spike	LCS	LCS				%Rec.	
Analyte	Added R	esult	Qualifier	Unit	D	%Rec	Limits	
2,4-D	16.0	15.2	E	ug/L		95	10 - 150	
2,4-D	16.0	17.2	E	ug/L		108	10 - 150	
Silvex (2,4,5-TP)	4.00	4.11		ug/L		103	35 - 150	
Silvex (2,4,5-TP)	4.00	5.10		ug/L		128	35 - 150	
2,4,5-T	4.00	4.15		ug/L		104	33 - 150	
2,4,5-T	4.00	4.72		ug/L		118	33 - 150	

LCS LCS

Surrogate	%Recovery Qu	ıalifier	Limits
2,4-Dichlorophenylacetic acid	99		39 - 145
2.4-Dichlorophenvlacetic acid	111		39 - 145

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8151A - Herbicides (GC) (Continued)

Lab Sample ID: LCSD 460-738541/3-A

Matrix: Water

Analysis Batch: 738660

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 738541

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,4-D	16.0	15.5	E	ug/L		97	10 - 150	2	30
2,4-D	16.0	17.6	E	ug/L		110	10 - 150	2	30
Silvex (2,4,5-TP)	4.00	4.19		ug/L		105	35 - 150	2	30
Silvex (2,4,5-TP)	4.00	5.25		ug/L		131	35 - 150	3	30
2,4,5-T	4.00	4.21		ug/L		105	33 - 150	1	30
2,4,5-T	4.00	4.86		ug/L		121	33 - 150	3	30

LCSD LCSD

Surrogate %Recovery Qualifier Limits 2,4-Dichlorophenylacetic acid 101 39 - 145 2,4-Dichlorophenylacetic acid 113 39 - 145

Lab Sample ID: MB 460-738542/1-A

Matrix: Solid

Analysis Batch: 738659

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 738542

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 2,4-D 33 11/09/20 20:10 11/10/20 09:15 33 U 12 ug/Kg 2,4-D 33 U 33 11/09/20 20:10 11/10/20 09:15 12 ug/Kg 33 U 33 11/09/20 20:10 11/10/20 09:15 Silvex (2,4,5-TP) 3.5 ug/Kg 33 Silvex (2,4,5-TP) 33 U 3.5 ug/Kg 11/09/20 20:10 11/10/20 09:15 2,4,5-T 33 U 33 11/09/20 20:10 11/10/20 09:15 7.1 ug/Kg

> 33 U MB MB

Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed 2,4-Dichlorophenylacetic acid 100 30 - 150 11/09/20 20:10 11/10/20 09:15 30 - 150 11/09/20 20:10 11/10/20 09:15 2,4-Dichlorophenylacetic acid 103

33

7.1 ug/Kg

Lab Sample ID: LCS 460-738542/2-A

Matrix: Solid

2,4,5-T

Analysis Batch: 738659

Client Sample ID: Lab Control Sample

11/09/20 20:10 11/10/20 09:15

Prep Type: Total/NA

Prep Batch: 738542

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4-D	333	275		ug/Kg		83	42 - 150	
2,4-D	333	296		ug/Kg		89	42 - 150	
Silvex (2,4,5-TP)	83.3	80.3		ug/Kg		96	58 - 150	
Silvex (2,4,5-TP)	83.3	91.1		ug/Kg		109	58 - 150	
2,4,5-T	83.3	73.4		ug/Kg		88	59 - 150	
2,4,5-T	83.3	79.7		ug/Kg		96	59 - 150	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
2,4-Dichlorophenylacetic acid	119	30 - 150
2 4-Dichlorophenylacetic acid	124	30 - 150

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8151A - Herbicides (GC) (Continued)

Lab Sample ID: LCSD 460-738542/3-A

Matrix: Solid

Analyte

Analysis Batch: 738659

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 738542**

%Rec. **RPD** Limits RPD Limit %Rec 82 42 - 150 0 30 42 - 150 O 30 58 - 150 30 0

2,4-D 333 274 ug/Kg 2,4-D 333 295 ug/Kg 88 80.2 83.3 ug/Kg 96 Silvex (2,4,5-TP) Silvex (2,4,5-TP) 83.3 90.7 ug/Kg 109 58 - 150 0 30 2,4,5-T 83.3 73.1 ug/Kg នន 59 - 150n 30 2,4,5-T 83.3 2 30 78.4 ug/Kg 94 59 - 150 LCSD LCSD

LCSD LCSD

Result Qualifier

Unit

D

Spike

Added

%Recovery Qualifier Limits Surrogate 30 - 150 2,4-Dichlorophenylacetic acid 119 125 30 - 150 2,4-Dichlorophenylacetic acid

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 320-429840/1-A

Matrix: Water

Analysis Batch: 430227

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 429840

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Perfluorobutanoic acid (PFBA) 5.0 U 5.0 2.4 ng/L 11/09/20 12:10 11/10/20 16:28 2.0 U 2.0 11/09/20 12:10 11/10/20 16:28 Perfluoropentanoic acid (PFPeA) 0.49 ng/L Perfluorohexanoic acid (PFHxA) 2.0 U 0.58 11/09/20 12:10 11/10/20 16:28 2.0 ng/L 2.0 U 2.0 11/09/20 12:10 11/10/20 16:28 Perfluoroheptanoic acid (PFHpA) 0.25 ng/L Perfluorooctanoic acid (PFOA) 2.0 U 2.0 0.85 ng/L 11/09/20 12:10 11/10/20 16:28 2.0 U 2.0 11/09/20 12:10 11/10/20 16:28 Perfluorononanoic acid (PFNA) 0.27 ng/L Perfluorodecanoic acid (PFDA) 2.0 U 2.0 0.31 ng/L 11/09/20 12:10 11/10/20 16:28 Perfluoroundecanoic acid (PFUnA) 2.0 U 2.0 1 1 ng/L 11/09/20 12:10 11/10/20 16:28 Perfluorododecanoic acid (PFDoA) 2.0 U 2.0 0.55 ng/L 11/09/20 12:10 11/10/20 16:28 Perfluorotridecanoic acid (PFTriA) 2.0 U 2.0 1.3 ng/L 11/09/20 12:10 11/10/20 16:28 Perfluorotetradecanoic acid (PFTeA) 20 U 2.0 0.73 ng/L 11/09/20 12:10 11/10/20 16:28 Perfluorobutanesulfonic acid (PFBS) 2.0 U 2.0 0.20 ng/L 11/09/20 12:10 11/10/20 16:28 Perfluorohexanesulfonic acid (PFHxS) 2.0 U 2.0 0.57 ng/L 11/09/20 12:10 11/10/20 16:28 2.0 U 0.19 ng/L 11/09/20 12:10 11/10/20 16:28 Perfluoroheptanesulfonic Acid 2.0 (PFHpS) Perfluorooctanesulfonic acid (PFOS) 2.0 U 2.0 0.54 ng/L 11/09/20 12:10 11/10/20 16:28 Perfluorodecanesulfonic acid (PFDS) 2.0 U 2.0 0.32 ng/L 11/09/20 12:10 11/10/20 16:28 2.0 U Perfluorooctanesulfonamide (FOSA) 20 0.98 ng/L 11/09/20 12:10 11/10/20 16:28 N-methylperfluorooctanesulfonamidoa 5.0 U 5.0 1.2 ng/L 11/09/20 12:10 11/10/20 16:28 cetic acid (NMeFOSAA) 11/09/20 12:10 11/10/20 16:28 N-ethylperfluorooctanesulfonamidoac 5.0 U 5.0 1.3 ng/L etic acid (NEtFOSAA) 6:2 FTS 5.0 U 5.0 2.5 ng/L 11/09/20 12:10 11/10/20 16:28 8:2 FTS 2.0 U 2.0 0.46 ng/L 11/09/20 12:10 11/10/20 16:28

Isotope Dilution Qualifier Limits Dil Fac %Recovery Prepared Analyzed 11/09/20 12:10 11/10/20 16:28 13C4 PFBA 72 25 - 150 76 13C5 PFPeA 25 - 150 11/09/20 12:10 11/10/20 16:28 13C2 PFHxA 74 25 - 150 11/09/20 12:10 11/10/20 16:28 13C4 PFHpA 76 25 - 150 11/09/20 12:10 11/10/20 16:28 13C4 PFOA 25 - 150 11/09/20 12:10 11/10/20 16:28 80

MB MB

Eurofins TestAmerica, Edison

Page 113 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: MB 320-429840/1-A
Matrix: Water
Analysis Batch: 430227

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 429840

	MB MB	3			
Isotope Dilution	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
13C5 PFNA	73	25 - 150	11/09/20 12:10	11/10/20 16:28	1
13C2 PFDA	74	25 - 150	11/09/20 12:10	11/10/20 16:28	1
13C2 PFUnA	69	25 - 150	11/09/20 12:10	11/10/20 16:28	1
13C2 PFDoA	73	25 - 150	11/09/20 12:10	11/10/20 16:28	1
13C2 PFTeDA	79	25 - 150	11/09/20 12:10	11/10/20 16:28	1
13C3 PFBS	92	25 - 150	11/09/20 12:10	11/10/20 16:28	1
1802 PFHxS	99	25 - 150	11/09/20 12:10	11/10/20 16:28	1
13C4 PFOS	99	25 - 150	11/09/20 12:10	11/10/20 16:28	1
13C8 FOSA	84	25 - 150	11/09/20 12:10	11/10/20 16:28	1
d3-NMeFOSAA	94	25 - 150	11/09/20 12:10	11/10/20 16:28	1
d5-NEtFOSAA	93	25 - 150	11/09/20 12:10	11/10/20 16:28	1
M2-6:2 FTS	87	25 - 150	11/09/20 12:10	11/10/20 16:28	1
M2-8:2 FTS	80	25 - 150	11/09/20 12:10	11/10/20 16:28	1

Lab Sample ID: LCS 320-429840/2-A

Matrix: Water

8:2 FTS

Analysis Batch: 431175

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 429840

Analysis Batch: 431175	Spike	LCS	LCS				Prep Batch: 429840 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorobutanoic acid (PFBA)	40.0	43.9		ng/L		110	76 - 136
Perfluoropentanoic acid (PFPeA)	40.0	39.8		ng/L		100	71 - 131
Perfluorohexanoic acid (PFHxA)	40.0	42.6		ng/L		107	73 - 133
Perfluoroheptanoic acid (PFHpA)	40.0	41.8		ng/L		104	72 - 132
Perfluorooctanoic acid (PFOA)	40.0	38.5		ng/L		96	70 - 130
Perfluorononanoic acid (PFNA)	40.0	41.9		ng/L		105	75 - 135
Perfluorodecanoic acid (PFDA)	40.0	42.2		ng/L		105	76 - 136
Perfluoroundecanoic acid (PFUnA)	40.0	45.6		ng/L		114	68 - 128
Perfluorododecanoic acid (PFDoA)	40.0	45.6		ng/L		114	71 - 131
Perfluorotridecanoic acid (PFTriA)	40.0	47.3		ng/L		118	71 - 131
Perfluorotetradecanoic acid (PFTeA)	40.0	43.9		ng/L		110	70 - 130
Perfluorobutanesulfonic acid (PFBS)	35.4	38.5		ng/L		109	67 - 127
Perfluorohexanesulfonic acid (PFHxS)	36.4	36.1		ng/L		99	59 - 119
Perfluoroheptanesulfonic Acid (PFHpS)	38.1	40.4		ng/L		106	76 - 136
Perfluorooctanesulfonic acid (PFOS)	37.1	39.7		ng/L		107	70 - 130
Perfluorodecanesulfonic acid (PFDS)	38.6	39.5		ng/L		102	71 - 131
Perfluorooctanesulfonamide (FOSA)	40.0	44.8		ng/L		112	73 - 133
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	40.0	43.4		ng/L		109	76 - 136
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	40.0	43.8		ng/L		110	76 - 136
6:2 FTS	37.9	39.0		ng/L		103	59 - 175
	_						

Eurofins TestAmerica, Edison

75 - 135

113

Page 114 of 157

43.3

ng/L

38.3

2

3

<u>.</u> 5

7

9

10

12

14

4.0

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

	LCS	LCS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFBA	90		25 - 150
13C5 PFPeA	94		25 - 150
13C2 PFHxA	92		25 - 150
13C4 PFHpA	95		25 - 150
13C4 PFOA	99		25 - 150
13C5 PFNA	96		25 - 150
13C2 PFDA	98		25 - 150
13C2 PFUnA	92		25 - 150
13C2 PFDoA	93		25 - 150
13C2 PFTeDA	87		25 - 150
13C3 PFBS	88		25 - 150
1802 PFHxS	94		25 - 150
13C4 PFOS	95		25 - 150
13C8 FOSA	89		25 - 150
d3-NMeFOSAA	94		25 - 150
d5-NEtFOSAA	90		25 - 150
M2-6:2 FTS	98		25 - 150
M2-8:2 FTS	101		25 - 150

Lab Sample ID: LCSD 320-429840/3-A

Matrix: Water

Analysis Batch: 430227

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 429840

Spike LCSD LCSD %Rec. **RPD Analyte** Added Result Qualifier Unit %Rec Limits **RPD** Limit Perfluorobutanoic acid (PFBA) 40.0 43.0 107 76 - 136 30 ng/L 40.0 ng/L 30 Perfluoropentanoic acid (PFPeA) 37.9 95 71 - 131 6 Perfluorohexanoic acid (PFHxA) 40.0 41.1 103 73 - 133 30 ng/L 2 40.0 Perfluoroheptanoic acid (PFHpA) 40.9 ng/L 102 72 - 132 5 30

Perfluorooctanoic acid (PFOA) 40.0 38.9 ng/L 97 70 - 130 30 Perfluorononanoic acid (PFNA) 40.0 44.6 ng/L 111 75 - 135 1 30 Perfluorodecanoic acid (PFDA) 40.0 42.7 107 76 - 136 30 ng/L 40.0 40.1 100 68 - 128 8 30 Perfluoroundecanoic acid ng/L (PFUnA) Perfluorododecanoic acid 40.0 38.7 97 71 - 131 13 30 ng/L (PFDoA) Perfluorotridecanoic acid 40.0 42.8 ng/L 107 71 - 131 30 (PFTriA) Perfluorotetradecanoic acid 40.0 47.1 ng/L 118 70 - 130 11 30 (PFTeA) 105 35.4 37.3 67 - 127 0 30 Perfluorobutanesulfonic acid ng/L (PFBS) 36.4 34.1 94 59 - 119 30 Perfluorohexanesulfonic acid ng/L

(PFHxS) ng/L Perfluoroheptanesulfonic Acid 38.1 39.6 104 76 - 136 5 30 (PFHpS) Perfluorooctanesulfonic acid 37.1 39.9 107 70 - 130 ng/L 30 (PFOS) 39.7 Perfluorodecanesulfonic acid 38.6 ng/L 103 71 - 131 30 (PFDS) Perfluorooctanesulfonamide 40.0 45.7 ng/L 114 73 - 133 30 (FOSA)

43.9

42.0

ng/L

ng/L

40.0

40.0

N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)

N-methylperfluorooctanesulfona

midoacetic acid (NMeFOSAA)

Eurofins TestAmerica, Edison

76 - 136

76 - 136

110

105

30

30

5

3/30/2021

3

4

6

8

10

12

Л

15

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Lab Sample ID: LCSD 320-429840/3-A

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Prep Type: Total/NA **Matrix: Water Analysis Batch: 430227 Prep Batch: 429840** LCSD LCSD Spike %Rec. **RPD** Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit 6:2 FTS 37.9 34.1 ng/L 90 59 - 175 3 30 8:2 FTS 38.3 75 - 135 30 40.2 ng/L 105

	LCSD	LCSD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFBA	70		25 - 150
13C5 PFPeA	75		25 - 150
13C2 PFHxA	72		25 - 150
13C4 PFHpA	74		25 - 150
13C4 PFOA	76		25 - 150
13C5 PFNA	70		25 - 150
13C2 PFDA	71		25 - 150
13C2 PFUnA	70		25 - 150
13C2 PFDoA	72		25 - 150
13C2 PFTeDA	75		25 - 150
13C3 PFBS	85		25 - 150
1802 PFHxS	90		25 - 150
13C4 PFOS	90		25 - 150
13C8 FOSA	78		25 - 150
d3-NMeFOSAA	83		25 - 150
d5-NEtFOSAA	84		25 - 150
M2-6:2 FTS	81		25 - 150
M2-8:2 FTS	73		25 - 150

Lab Sample ID: MB 320-432465/1-A

Matrix: Solid

Analysis Batch: 433288

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Prep Batch: 432465

Alialysis Dalcii. 433200								Fieb Datcii.	432403
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	0.0736	J	0.20	0.028	ug/Kg		11/17/20 09:15	11/19/20 08:16	1
Perfluoropentanoic acid (PFPeA)	0.20	U	0.20	0.077	ug/Kg		11/17/20 09:15	11/19/20 08:16	1
Perfluorohexanoic acid (PFHxA)	0.20	U	0.20	0.042	ug/Kg		11/17/20 09:15	11/19/20 08:16	1
Perfluoroheptanoic acid (PFHpA)	0.20	U	0.20	0.029	ug/Kg		11/17/20 09:15	11/19/20 08:16	1
Perfluorooctanoic acid (PFOA)	0.20	U	0.20	0.086	ug/Kg		11/17/20 09:15	11/19/20 08:16	1
Perfluorononanoic acid (PFNA)	0.20	U	0.20	0.036	ug/Kg		11/17/20 09:15	11/19/20 08:16	1
Perfluorodecanoic acid (PFDA)	0.20	U	0.20	0.022	ug/Kg		11/17/20 09:15	11/19/20 08:16	1
Perfluoroundecanoic acid (PFUnA)	0.20	U	0.20	0.036	ug/Kg		11/17/20 09:15	11/19/20 08:16	1
Perfluorododecanoic acid (PFDoA)	0.20	U	0.20	0.067	ug/Kg		11/17/20 09:15	11/19/20 08:16	1
Perfluorotridecanoic acid (PFTriA)	0.20	U	0.20	0.051	ug/Kg		11/17/20 09:15	11/19/20 08:16	1
Perfluorotetradecanoic acid (PFTeA)	0.20	U	0.20	0.054	ug/Kg		11/17/20 09:15	11/19/20 08:16	1
Perfluorobutanesulfonic acid (PFBS)	0.20	U	0.20	0.025	ug/Kg		11/17/20 09:15	11/19/20 08:16	1
Perfluorohexanesulfonic acid (PFHxS)	0.20	U	0.20	0.031	ug/Kg		11/17/20 09:15	11/19/20 08:16	1
Perfluoroheptanesulfonic Acid (PFHpS)	0.20	U	0.20	0.035	ug/Kg		11/17/20 09:15	11/19/20 08:16	1
Perfluorooctanesulfonic acid (PFOS)	0.414	J	0.50	0.20	ug/Kg		11/17/20 09:15	11/19/20 08:16	1
Perfluorodecanesulfonic acid (PFDS)	0.20	U	0.20	0.039	ug/Kg		11/17/20 09:15	11/19/20 08:16	1
Perfluorooctanesulfonamide (FOSA)	0.20	U	0.20	0.082	ug/Kg		11/17/20 09:15	11/19/20 08:16	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	2.0	U	2.0	0.39	ug/Kg		11/17/20 09:15	11/19/20 08:16	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	2.0	U	2.0	0.37	ug/Kg		11/17/20 09:15	11/19/20 08:16	1

Eurofins TestAmerica, Edison

Page 116 of 157

2

3

7

9

11

13

15

16

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

107

Lab Sample ID: MB 320-432465/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Total/NA Analysis Batch: 433288 Prep Batch: 432465** MB MB Analyte Result Qualifier RL MDL Unit **Prepared** Analyzed Dil Fac 6:2 FTS 2.0 U 2.0 0.15 ug/Kg 11/17/20 09:15 11/19/20 08:16 8:2 FTS 2.0 U 2.0 0.25 ug/Kg 11/17/20 09:15 11/19/20 08:16 MB MB Isotope Dilution Qualifier Limits Prepared Dil Fac %Recovery Analyzed 13C4 PFBA 94 25 - 150 11/17/20 09:15 11/19/20 08:16 13C5 PFPeA 87 25 - 150 11/17/20 09:15 11/19/20 08:16 13C2 PFHxA 99 25 - 150 11/17/20 09:15 11/19/20 08:16 13C4 PFHpA 99 25 - 150 11/17/20 09:15 11/19/20 08:16 13C4 PFOA 98 25 - 150 11/17/20 09:15 11/19/20 08:16 97 13C5 PFNA 25 - 150 11/17/20 09:15 11/19/20 08:16 13C2 PFDA 94 25 - 150 11/17/20 09:15 11/19/20 08:16 95 13C2 PFUnA 25 - 150 11/17/20 09:15 11/19/20 08:16 13C2 PFDoA 97 11/17/20 09:15 11/19/20 08:16 25 - 150 13C2 PFTeDA 11/17/20 09:15 11/19/20 08:16 101 25 - 150 13C3 PFBS 86 25 - 150 11/17/20 09:15 11/19/20 08:16 1802 PFHxS 90 25 - 150 11/17/20 09:15 11/19/20 08:16 13C4 PFOS 93 25 - 150 11/17/20 09:15 11/19/20 08:16 13C8 FOSA 89 11/17/20 09:15 11/19/20 08:16 25 - 150 d3-NMeFOSAA 92 25 - 150 11/17/20 09:15 11/19/20 08:16 11/17/20 09:15 11/19/20 08:16 d5-NEtFOSAA 102 25 - 150 M2-6:2 FTS 127 25 - 150 11/17/20 09:15 11/19/20 08:16

25 - 150

Lab Sample ID: LCS 320-432465/2-A

Matrix: Solid

M2-8:2 FTS

Client Sample ID: Lab Control Sample

11/17/20 09:15 11/19/20 08:16

Prep Type: Total/NA

Analysis Batch: 433288			LCS				Prep Batch: 432465
	Spike	LCS					%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorobutanoic acid (PFBA)	2.00	2.24		ug/Kg		112	76 - 136
Perfluoropentanoic acid (PFPeA)	2.00	2.10		ug/Kg		105	69 - 129
Perfluorohexanoic acid (PFHxA)	2.00	2.14		ug/Kg		107	71 - 131
Perfluoroheptanoic acid (PFHpA)	2.00	2.11		ug/Kg		105	71 - 131
Perfluorooctanoic acid (PFOA)	2.00	1.98		ug/Kg		99	72 - 132
Perfluorononanoic acid (PFNA)	2.00	2.07		ug/Kg		104	73 - 133
Perfluorodecanoic acid (PFDA)	2.00	2.21		ug/Kg		111	72 - 132
Perfluoroundecanoic acid (PFUnA)	2.00	2.09		ug/Kg		104	66 - 126
Perfluorododecanoic acid (PFDoA)	2.00	2.23		ug/Kg		112	71 - 131
Perfluorotridecanoic acid (PFTriA)	2.00	2.42		ug/Kg		121	71 - 131
Perfluorotetradecanoic acid (PFTeA)	2.00	2.19		ug/Kg		110	67 - 127
Perfluorobutanesulfonic acid (PFBS)	1.77	1.89		ug/Kg		107	69 - 129
Perfluorohexanesulfonic acid (PFHxS)	1.82	1.90		ug/Kg		104	62 - 122
Perfluoroheptanesulfonic Acid (PFHpS)	1.90	1.95		ug/Kg		102	76 - 136
Perfluorooctanesulfonic acid (PFOS)	1.86	2.48		ug/Kg		133	68 - 141

Eurofins TestAmerica, Edison

Page 117 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-432465/2-A

Matrix: Solid

Analysis Batch: 433288

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 432465

,								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorodecanesulfonic acid (PFDS)	1.93	2.07		ug/Kg		107	71 - 131	
Perfluorooctanesulfonamide (FOSA)	2.00	2.19		ug/Kg		110	77 - 137	
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	2.00	2.20		ug/Kg		110	72 - 132	
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	2.00	2.07		ug/Kg		103	72 - 132	
6:2 FTS	1.90	1.96	J	ug/Kg		103	73 - 139	
8:2 FTS	1.92	2.26		ug/Kg		118	75 - 135	

	LCS	LCS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFBA	97		25 - 150
13C5 PFPeA	91		25 - 150
13C2 PFHxA	98		25 - 150
13C4 PFHpA	104		25 - 150
13C4 PFOA	102		25 - 150
13C5 PFNA	97		25 - 150
13C2 PFDA	93		25 - 150
13C2 PFUnA	93		25 - 150
13C2 PFDoA	98		25 - 150
13C2 PFTeDA	101		25 - 150
13C3 PFBS	94		25 - 150
1802 PFHxS	97		25 - 150
13C4 PFOS	98		25 - 150
13C8 FOSA	91		25 - 150
d3-NMeFOSAA	95		25 - 150
d5-NEtFOSAA	102		25 - 150
M2-6:2 FTS	136		25 - 150
M2-8:2 FTS	114		25 - 150

Lab Sample ID: 460-222216-4 MS

Matrix: Solid

Client Sample ID: S-1 Prep Type: Total/NA

Analysis Batch: 433288 Prep Batch: 432465 Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Perfluorobutanoic acid (PFBA) 0.55 JB 7.94 7.80 <u>~</u> 91 76 - 136 ug/Kg Perfluoropentanoic acid (PFPeA) 0.48 J 7.94 8.93 106 69 - 129 ug/Kg ₩ Perfluorohexanoic acid (PFHxA) 7.94 8.28 101 0.28 J ug/Kg 71 - 131 Ö Perfluoroheptanoic acid (PFHpA) 0.23 J 7.94 9.00 ug/Kg ₩ 110 71 - 131 Perfluorooctanoic acid (PFOA) 7.94 108 0.61 J 9.17 ug/Kg ₩ 72 - 132 Perfluorononanoic acid (PFNA) 0.22 J 7.94 9.52 ug/Kg 117 73 - 133 Perfluorodecanoic acid (PFDA) 0.30 J 7.94 8.43 ug/Kg ₩ 103 72 - 132 Perfluoroundecanoic acid 0.34 JF1 7.94 11.4 F1 ug/Kg 139 66 - 126 (PFUnA) Perfluorododecanoic acid 0.27 J 7.94 9.01 ug/Kg 110 71 - 131 (PFDoA) 0.39 J 7.94 9.41 Perfluorotridecanoic acid ug/Kg ₩ 114 71 - 131(PFTriA) 0.23 J 7.94 8.69 ug/Kg 107 67 - 127 Perfluorotetradecanoic acid (PFTeA)

Eurofins TestAmerica, Edison

Page 118 of 157

Job ID: 460-222216-1 Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: 460-222216-4 MS

Matrix: Solid

Analysis Batch: 433288

Client Sample ID: S-1 **Prep Type: Total/NA Prep Batch: 432465**

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorobutanesulfonic acid (PFBS)	0.77	U	7.01	8.94		ug/Kg	-	127	69 - 129	
Perfluorohexanesulfonic acid (PFHxS)	0.81		7.22	8.58		ug/Kg	₽	108	62 - 122	
Perfluoroheptanesulfonic Acid (PFHpS)	0.77	U	7.55	9.03		ug/Kg	≎	120	76 - 136	
Perfluorooctanesulfonic acid (PFOS)	5.2	В	7.36	14.3		ug/Kg	₽	124	68 - 141	
Perfluorodecanesulfonic acid (PFDS)	0.77	U F1	7.65	10.3	F1	ug/Kg	₽	135	71 - 131	
Perfluorooctanesulfonamide (FOSA)	0.77	U	7.94	9.45		ug/Kg	₽	119	77 - 137	
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	7.7	U	7.94	10.3		ug/Kg	₽	129	72 - 132	
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	7.7	U	7.94	9.50		ug/Kg	₽	120	72 - 132	
6:2 FTS	7.7	U	7.52	8.40		ug/Kg	☼	112	73 - 139	
8:2 FTS	7.7	U	7.60	9.09		ug/Kg	☼	120	75 - 135	
	MS	MS								

	MS	MS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFBA	78		25 - 150
13C5 PFPeA	58		25 - 150
13C2 PFHxA	88		25 - 150
13C4 PFHpA	93		25 - 150
13C4 PFOA	87		25 - 150
13C5 PFNA	82		25 - 150
13C2 PFDA	96		25 - 150
13C2 PFUnA	95		25 - 150
13C2 PFDoA	82		25 - 150
13C2 PFTeDA	81		25 - 150
13C3 PFBS	66		25 - 150
1802 PFHxS	96		25 - 150
13C4 PFOS	86		25 - 150
13C8 FOSA	63		25 - 150
d3-NMeFOSAA	83		25 - 150
d5-NEtFOSAA	84		25 - 150
M2-6:2 FTS	245	*5	25 - 150
M2-8:2 FTS	263	*5	25 - 150

Lab Sample ID: 460-222216-4 MSD

Matrix: Solid

Analysis Batch: 433288

Client Sample ID: S-1 **Prep Type: Total/NA Prep Batch: 432465**

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorobutanoic acid (PFBA)	0.55	JB	7.82	7.34		ug/Kg	☼	87	76 - 136	6	30
Perfluoropentanoic acid (PFPeA)	0.48	J	7.82	9.05		ug/Kg	☼	110	69 - 129	1	30
Perfluorohexanoic acid (PFHxA)	0.28	J	7.82	8.24		ug/Kg	☼	102	71 - 131	1	30
Perfluoroheptanoic acid (PFHpA)	0.23	J	7.82	8.90		ug/Kg	₽	111	71 - 131	1	30
Perfluorooctanoic acid (PFOA)	0.61	J	7.82	8.84		ug/Kg	☼	105	72 - 132	4	30
Perfluorononanoic acid (PFNA)	0.22	J	7.82	9.14		ug/Kg	☼	114	73 - 133	4	30
Perfluorodecanoic acid (PFDA)	0.30	J	7.82	8.44		ug/Kg	₩	104	72 - 132	0	30

Eurofins TestAmerica, Edison

Page 119 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample	ID: 460-222216-4 MSD
------------	----------------------

Matrix: Solid

Analysis Batch: 433288

Client Sample ID: S-1 Prep Type: Total/NA **Prep Batch: 432465**

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluoroundecanoic acid	0.34	J F1	7.82	10.4	F1	ug/Kg	<u></u>	129	66 - 126	9	30
(PFUnA)											
Perfluorododecanoic acid (PFDoA)	0.27	J	7.82	8.61		ug/Kg	₩	107	71 - 131	4	30
Perfluorotridecanoic acid (PFTriA)	0.39	J	7.82	9.35		ug/Kg	₩	115	71 - 131	1	30
Perfluorotetradecanoic acid (PFTeA)	0.23	J	7.82	9.38		ug/Kg	₽	117	67 - 127	8	30
Perfluorobutanesulfonic acid (PFBS)	0.77	U	6.91	8.23		ug/Kg	₽	119	69 - 129	8	30
Perfluorohexanesulfonic acid (PFHxS)	0.81		7.11	8.50		ug/Kg	₩	108	62 - 122	1	30
Perfluoroheptanesulfonic Acid (PFHpS)	0.77	U	7.44	8.39		ug/Kg	₩	113	76 - 136	7	30
Perfluorooctanesulfonic acid (PFOS)	5.2	В	7.25	13.8		ug/Kg	₩	119	68 - 141	3	30
Perfluorodecanesulfonic acid (PFDS)	0.77	U F1	7.54	9.81		ug/Kg	.⇔	130	71 - 131	5	30
Perfluorooctanesulfonamide (FOSA)	0.77	U	7.82	9.69		ug/Kg	₽	124	77 - 137	3	30
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	7.7	U	7.82	9.95		ug/Kg	₩	127	72 - 132	3	30
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	7.7	U	7.82	10.0		ug/Kg		128	72 - 132	6	30
6:2 FTS	7.7	U	7.41	7.96		ug/Kg	₩	107	73 - 139	5	30
8:2 FTS	7.7	U	7.49	8.06		ug/Kg	₩	108	75 - 135	12	30

MSD	MSD

	MSD	MSD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFBA	80		25 - 150
13C5 PFPeA	58		25 - 150
13C2 PFHxA	89		25 - 150
13C4 PFHpA	96		25 - 150
13C4 PFOA	94		25 - 150
13C5 PFNA	84		25 - 150
13C2 PFDA	91		25 - 150
13C2 PFUnA	102		25 - 150
13C2 PFDoA	82		25 - 150
13C2 PFTeDA	84		25 - 150
13C3 PFBS	72		25 - 150
1802 PFHxS	100		25 - 150
13C4 PFOS	93		25 - 150
13C8 FOSA	64		25 - 150
d3-NMeFOSAA	80		25 - 150
d5-NEtFOSAA	83		25 - 150
M2-6:2 FTS	270	*5	25 - 150
M2-8:2 FTS	277	*5	25 - 150

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: MB 320-433241/1-A **Client Sample ID: Method Blank** Prep Type: Total/NA **Matrix: Solid**

Analysis Batch: 433144	MR	МВ						Prep Type: 10 Prep Batch:	
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	5.0		5.0		ng/L		11/18/20 19:40		1
Perfluoropentanoic acid (PFPeA)	2.0		2.0		ng/L		11/18/20 19:40	11/19/20 12:17	1
Perfluorohexanoic acid (PFHxA)	2.0	U	2.0		ng/L		11/18/20 19:40		1
Perfluoroheptanoic acid (PFHpA)	2.0	U	2.0		ng/L		11/18/20 19:40	11/19/20 12:17	1
Perfluorooctanoic acid (PFOA)	2.0	U	2.0	0.85	ng/L		11/18/20 19:40	11/19/20 12:17	1
Perfluorononanoic acid (PFNA)	2.0	U	2.0	0.27	ng/L		11/18/20 19:40	11/19/20 12:17	1
Perfluorodecanoic acid (PFDA)	2.0	U	2.0	0.31	ng/L		11/18/20 19:40	11/19/20 12:17	1
Perfluoroundecanoic acid (PFUnA)	2.0	U	2.0	1.1	ng/L		11/18/20 19:40	11/19/20 12:17	1
Perfluorododecanoic acid (PFDoA)	2.0	U	2.0	0.55	ng/L		11/18/20 19:40	11/19/20 12:17	1
Perfluorotridecanoic acid (PFTriA)	2.0	U	2.0	1.3	ng/L		11/18/20 19:40	11/19/20 12:17	1
Perfluorotetradecanoic acid (PFTeA)	2.0	U	2.0	0.73	ng/L		11/18/20 19:40	11/19/20 12:17	1
Perfluorobutanesulfonic acid (PFBS)	2.0	U	2.0	0.20	ng/L		11/18/20 19:40	11/19/20 12:17	1
Perfluorohexanesulfonic acid (PFHxS)	2.0	U	2.0	0.57	ng/L		11/18/20 19:40	11/19/20 12:17	1
Perfluoroheptanesulfonic Acid (PFHpS)	2.0	U	2.0	0.19	ng/L		11/18/20 19:40	11/19/20 12:17	1
Perfluorooctanesulfonic acid (PFOS)	2.0	U	2.0	0.54	ng/L		11/18/20 19:40	11/19/20 12:17	1
Perfluorodecanesulfonic acid (PFDS)	2.0	U	2.0	0.32	ng/L		11/18/20 19:40	11/19/20 12:17	1
Perfluorooctanesulfonamide (FOSA)	2.0	U	2.0	0.98	ng/L		11/18/20 19:40	11/19/20 12:17	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	5.0	U	5.0	1.2	ng/L		11/18/20 19:40	11/19/20 12:17	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	5.0	U	5.0	1.3	ng/L		11/18/20 19:40	11/19/20 12:17	1
6:2 FTS	5.0	U	5.0	2.5	ng/L		11/18/20 19:40	11/19/20 12:17	1
8:2 FTS	2.0	U	2.0	0.46	ng/L		11/18/20 19:40	11/19/20 12:17	1
	MB	MB							
Isotope Dilution	%Recovery		Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	102		25 - 150				11/18/20 19:40	11/19/20 12:17	1
13C5 PFPeA	107		25 - 150				11/18/20 19:40		1
13C2 PFHxA	101		25 - 150				11/18/20 19:40	11/19/20 12:17	1
13C4 PFHpA	99		25 - 150					11/19/20 12:17	1
13C4 PFOA	105		25 - 150					11/19/20 12:17	1
13C5 PFNA	92		25 - 150					11/19/20 12:17	1
13C2 PFDA	99		25 - 150					11/19/20 12:17	1
13C2 PFUnA	75		25 - 150					11/19/20 12:17	1
13C2 PFDoA	45		25 - 150					11/19/20 12:17	1
13C2 PFTeDA	79		25 - 150					11/19/20 12:17	1
13C3 PFBS	102		25 - 150					11/19/20 12:17	1
1802 PFHxS	111		25 - 150					11/19/20 12:17	
13C4 PFOS	109		25 - 150					11/19/20 12:17	1
13C8 FOSA	99		25 - 150					11/19/20 12:17	1
d3-NMeFOSAA	58		25 - 150					11/19/20 12:17	1
d5-NEtFOSAA	62		25 - 150					11/19/20 12:17	1
M2-6:2 FTS	129		25 - 150					11/19/20 12:17	1
M2-8:2 FTS	173	*5	25 - 150				11/18/20 19:40	11/19/20 12:17	1

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

d3-NMeFOSAA

d5-NEtFOSAA

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-4 Matrix: Solid Analysis Batch: 433144	33241/2-A		Spike	1.00	LCS	Clie	ent Sample ID	: Lab Control Sample Prep Type: Total/NA Prep Batch: 433241 %Rec.
Analyte			Added		Qualifier	Unit	D %Rec	%Rec.
Perfluorobutanoic acid (PFBA)			40.0	42.5	Qualifier		<u>B</u>	76 - 136
* *			40.0	39.1		ng/L		70 - 130 71 - 131
Perfluers beverage acid (PFLIVA)			40.0	42.3		ng/L	98	73 - 133
Perfluorohexanoic acid (PFHxA)						ng/L	106	
Perfluoroheptanoic acid (PFHpA)			40.0	44.8		ng/L	112	72 - 132
Perfluorooctanoic acid (PFOA)			40.0	38.2		ng/L	95	70 - 130
Perfluorononanoic acid (PFNA)			40.0	45.0		ng/L	112	75 - 135
Perfluorodecanoic acid (PFDA)			40.0	39.5		ng/L	99	76 - 136
Perfluoroundecanoic acid			40.0	44.3		ng/L	111	68 - 128
(PFUnA)			10.0	44.7		,,	440	74 404
Perfluorododecanoic acid			40.0	44.7		ng/L	112	71 - 131
(PFDoA)			40.0	40.5		na/l	101	74 494
Perfluorotridecanoic acid (PFTriA)			40.0	40.5		ng/L	101	71 - 131
Perfluorotetradecanoic acid			40.0	42.2		ng/L	106	70 - 130
(PFTeA)			40.0	72.2		iig/L	100	70-100
Perfluorobutanesulfonic acid			35.4	38.1		ng/L	108	67 - 127
(PFBS)						3		
Perfluorohexanesulfonic acid			36.4	36.0		ng/L	99	59 - 119
(PFHxS)								
Perfluoroheptanesulfonic Acid			38.1	40.6		ng/L	107	76 - 136
(PFHpS)								
Perfluorooctanesulfonic acid (PFOS)			37.1	38.5		ng/L	104	70 - 130
Perfluorodecanesulfonic acid (PFDS)			38.6	38.3		ng/L	99	71 - 131
Perfluorooctanesulfonamide (FOSA)			40.0	43.7		ng/L	109	73 - 133
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)			40.0	54.1		ng/L	135	76 - 136
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)			40.0	41.4		ng/L	103	76 - 136
6:2 FTS			37.9	33.3		ng/L	88	59 - 175
8:2 FTS			38.3	36.5		ng/L	95	75 - 135
	LCS	LCS						
Isotope Dilution	%Recovery	Qualifier	Limits					
13C4 PFBA	95		25 - 150					
13C5 PFPeA	98		25 - 150					
13C2 PFHxA	93		25 - 150					
13C4 PFHpA	89		25 - 150					
13C4 PFOA	94		25 - 150					
13C5 PFNA	86		25 ₋ 150					
13C2 PFDA	92		25 - 150					
13C2 PFUnA	91		25 - 150					
13C2 PFDoA	76		25 - 150 25 - 150					
13C2 PFTeDA			25 - 150 25 - 150					
13C3 PFBS	99		25 - 150 25 - 150					
1802 PFHxS	108		25 - 150					
13C4 PFOS	109		25 - 150					
13C8 FOSA	93		25 - 150					
42 NM45EOCAA	70		25 150					

25 - 150

25 - 150

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-433241/2-A

Lab Sample ID: LCSD 320-433241/3-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 433144

LCS LCS

Isotope Dilution	%Recovery Qualifier	Limits
M2-6:2 FTS	119	25 - 150
M2-8:2 FTS	119	25 - 150

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 433241

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 433241

Analysis Batch: 433144						Prep Batch: 433241			
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorobutanoic acid (PFBA)	40.0	41.4		ng/L		104	76 - 136	4	30
Perfluoropentanoic acid (PFPeA)	40.0	38.1		ng/L		95	71 - 131	3	30
Perfluorohexanoic acid (PFHxA)	40.0	40.1		ng/L		100	73 - 133	0	30
Perfluoroheptanoic acid (PFHpA)	40.0	41.4		ng/L		104	72 - 132	4	30
Perfluorooctanoic acid (PFOA)	40.0	38.0		ng/L		95	70 - 130	2	30
Perfluorononanoic acid (PFNA)	40.0	42.0		ng/L		105	75 - 135	3	30
Perfluorodecanoic acid (PFDA)	40.0	41.3		ng/L		103	76 - 136	10	30
Perfluoroundecanoic acid (PFUnA)	40.0	40.2		ng/L		101	68 - 128	19	30
Perfluorododecanoic acid (PFDoA)	40.0	42.3		ng/L		106	71 - 131	7	30
Perfluorotridecanoic acid (PFTriA)	40.0	38.0		ng/L		95	71 - 131	8	30
Perfluorotetradecanoic acid (PFTeA)	40.0	43.3		ng/L		108	70 - 130	24	30
Perfluorobutanesulfonic acid (PFBS)	35.4	38.7		ng/L		110	67 - 127	0	30
Perfluorohexanesulfonic acid	36.4	35.3		ng/L		97	59 - 119	0	30
(PFHxS) Perfluoroheptanesulfonic Acid	38.1	39.5		ng/L		104	76 - 136	5	30
(PFHpS) Perfluorooctanesulfonic acid (PFOS)	37.1	38.8		ng/L		105	70 - 130	1	30
Perfluorodecanesulfonic acid (PFDS)	38.6	39.6		ng/L		103	71 - 131	2	30
Perfluorooctanesulfonamide (FOSA)	40.0	43.4		ng/L		108	73 - 133	3	30
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	40.0	54.5		ng/L		136	76 - 136	5	30
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	40.0	40.7		ng/L		102	76 - 136	1	30
6:2 FTS	37.9	32.6		ng/L		86	59 - 175	7	30
8:2 FTS	38.3	37.8		ng/L		99	75 - 135	7	30
1000 1000	55.5	00					. 5 5 5	•	

LCSD LCSD

Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFBA	99		25 - 150
13C5 PFPeA	104		25 - 150
13C2 PFHxA	97		25 - 150
13C4 PFHpA	95		25 - 150
13C4 PFOA	97		25 - 150
13C5 PFNA	90		25 - 150
13C2 PFDA	89		25 - 150
13C2 PFUnA	93		25 - 150
13C2 PFDoA	83		25 - 150

Eurofins TestAmerica, Edison

3

7

9

11

13

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCSD 320-433241/3-A

Matrix: Solid

Analysis Batch: 433144

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 433241**

LCSD LCSD Isotope Dilution %Recovery Qualifier Limits 13C2 PFTeDA 85 25 - 150 13C3 PFBS 98 25 - 150 1802 PFHxS 109 25 - 150 13C4 PFOS 108 25 - 150 13C8 FOSA 25 - 150 96 d3-NMeFOSAA 72 25 - 150 d5-NEtFOSAA 90 25 - 150 M2-6:2 FTS 122 25 - 150 M2-8:2 FTS 113 25 - 150

Lab Sample ID: LB 320-432086/1-B

Matrix: Solid

Analysis Batch: 433144

Client Sample ID: Method Blank Prep Type: SPLP East Prep Batch: 433241

LB LB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Perfluorobutanoic acid (PFBA) 4.5 U 4.5 2.1 ng/L 11/18/20 19:40 11/19/20 12:44 Perfluoropentanoic acid (PFPeA) 1.8 U 1.8 0.44 ng/L 11/18/20 19:40 11/19/20 12:44 Perfluorohexanoic acid (PFHxA) 0.52 ng/L 11/18/20 19:40 11/19/20 12:44 1.8 U 1.8 Perfluoroheptanoic acid (PFHpA) 18 U 1.8 0.22 ng/L 11/18/20 19:40 11/19/20 12:44 Perfluorooctanoic acid (PFOA) 1.8 U 1.8 0.76 ng/L 11/18/20 19:40 11/19/20 12:44 Perfluorononanoic acid (PFNA) 11/18/20 19:40 11/19/20 12:44 1.8 U 1.8 0.24 ng/L Perfluorodecanoic acid (PFDA) 1.8 U 1.8 0.28 ng/L 11/18/20 19:40 11/19/20 12:44 Perfluoroundecanoic acid (PFUnA) 0.98 ng/L 11/18/20 19:40 11/19/20 12:44 1.8 U 1.8 Perfluorododecanoic acid (PFDoA) 1.8 U 1.8 0.49 ng/L 11/18/20 19:40 11/19/20 12:44 Perfluorotridecanoic acid (PFTriA) 1.8 U 1.8 1.2 ng/L 11/18/20 19:40 11/19/20 12:44 Perfluorotetradecanoic acid (PFTeA) 18 U 18 0.65 ng/L 11/18/20 19:40 11/19/20 12:44 Perfluorobutanesulfonic acid (PFBS) 1.8 U 1.8 0.18 ng/L 11/18/20 19:40 11/19/20 12:44 1 Perfluorohexanesulfonic acid (PFHxS) 1.8 U 1.8 0.51 ng/L 11/18/20 19:40 11/19/20 12:44 11/18/20 19:40 11/19/20 12:44 Perfluoroheptanesulfonic Acid 1.8 U 1.8 0.17 ng/L (PFHpS) Perfluorooctanesulfonic acid (PFOS) 1.8 U 1.8 0.48 ng/L 11/18/20 19:40 11/19/20 12:44 Perfluorodecanesulfonic acid (PFDS) 1.8 U 1.8 0.29 ng/L 11/18/20 19:40 11/19/20 12:44 Perfluorooctanesulfonamide (FOSA) 1.8 U 1.8 0.88 ng/L 11/18/20 19:40 11/19/20 12:44 11/18/20 19:40 11/19/20 12:44 N-methylperfluorooctanesulfonamidoa 4.5 U 4.5 1.1 ng/L cetic acid (NMeFOSAA) 4.5 U 4.5 11/18/20 19:40 11/19/20 12:44 N-ethylperfluorooctanesulfonamidoac 1.2 ng/L etic acid (NEtFOSAA) 11/18/20 19:40 11/19/20 12:44 6:2 FTS 4.5 U 4.5 2.2 ng/L 8:2 FTS 1.8 U 0.41 ng/L 11/18/20 19:40 11/19/20 12:44 18 LB LB

Isotope Dilution	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
13C4 PFBA	108	25 - 150	11/18/20 19:40	11/19/20 12:44	1
13C5 PFPeA	111	25 - 150	11/18/20 19:40	11/19/20 12:44	1
13C2 PFHxA	106	25 - 150	11/18/20 19:40	11/19/20 12:44	1
13C4 PFHpA	102	25 - 150	11/18/20 19:40	11/19/20 12:44	1
13C4 PFOA	105	25 - 150	11/18/20 19:40	11/19/20 12:44	1
13C5 PFNA	100	25 - 150	11/18/20 19:40	11/19/20 12:44	1
13C2 PFDA	94	25 - 150	11/18/20 19:40	11/19/20 12:44	1
13C2 PFUnA	98	25 - 150	11/18/20 19:40	11/19/20 12:44	1
13C2 PFDoA	82	25 - 150	11/18/20 19:40	11/19/20 12:44	1

Eurofins TestAmerica, Edison

Page 124 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

IR IR

Lab Sample ID: LB 320-432086/1-B

Matrix: Solid

Analysis Batch: 433144

Client Sample ID: Method Blank **Prep Type: SPLP East**

Prep Batch: 433241

	LD LD	•				
Isotope Dilution	%Recovery Qua	ıalifier Lin	nits	Prepared	Analyzed	Dil Fac
13C2 PFTeDA	79	25	_ 150	11/18/20 19:40	11/19/20 12:44	1
13C3 PFBS	108	25	- 150	11/18/20 19:40	11/19/20 12:44	1
18O2 PFHxS	119	25	₋ 150	11/18/20 19:40	11/19/20 12:44	1
13C4 PFOS	117	25	₋ 150	11/18/20 19:40	11/19/20 12:44	1
13C8 FOSA	102	25	₋ 150	11/18/20 19:40	11/19/20 12:44	1
d3-NMeFOSAA	69	25	₋ 150	11/18/20 19:40	11/19/20 12:44	1
d5-NEtFOSAA	93	25	- 150	11/18/20 19:40	11/19/20 12:44	1
M2-6:2 FTS	135	25	₋ 150	11/18/20 19:40	11/19/20 12:44	1
M2-8:2 FTS	135	25	₋ 150	11/18/20 19:40	11/19/20 12:44	1

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 460-739444/1-A

Matrix: Solid

Analysis Batch: 739688

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 739444

,	MD	МВ							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	1.0	U	1.0	0.56	mg/Kg		11/12/20 16:30	11/13/20 15:34	1
Aluminum	20.0	U	20.0	2.8	mg/Kg		11/12/20 16:30	11/13/20 15:34	1
Arsenic	1.5	U	1.5	0.31	mg/Kg		11/12/20 16:30	11/13/20 15:34	1
Barium	20.0	U	20.0	1.9	mg/Kg		11/12/20 16:30	11/13/20 15:34	1
Beryllium	0.20	U	0.20	0.032	mg/Kg		11/12/20 16:30	11/13/20 15:34	1
Calcium	500	U	500	37.0	mg/Kg		11/12/20 16:30	11/13/20 15:34	1
Cadmium	0.40	U	0.40	0.035	mg/Kg		11/12/20 16:30	11/13/20 15:34	1
Cobalt	5.0	U	5.0	0.28	mg/Kg		11/12/20 16:30	11/13/20 15:34	1
Chromium	1.0	U	1.0	0.71	mg/Kg		11/12/20 16:30	11/13/20 15:34	1
Copper	2.5	U	2.5	0.63	mg/Kg		11/12/20 16:30	11/13/20 15:34	1
Iron	15.0	U	15.0	10.3	mg/Kg		11/12/20 16:30	11/13/20 15:34	1
Potassium	500	U	500	30.7	mg/Kg		11/12/20 16:30	11/13/20 15:34	1
Magnesium	500	U	500	33.9	mg/Kg		11/12/20 16:30	11/13/20 15:34	1
Manganese	1.5	U	1.5	0.11	mg/Kg		11/12/20 16:30	11/13/20 15:34	1
Sodium	500	U	500	43.5	mg/Kg		11/12/20 16:30	11/13/20 15:34	1
Nickel	4.0	U	4.0	0.26	mg/Kg		11/12/20 16:30	11/13/20 15:34	1
Lead	1.0	U	1.0	0.16	mg/Kg		11/12/20 16:30	11/13/20 15:34	1
Antimony	2.0	U	2.0	0.58	mg/Kg		11/12/20 16:30	11/13/20 15:34	1
Selenium	2.0	U	2.0	0.34	mg/Kg		11/12/20 16:30	11/13/20 15:34	1
Thallium	2.0	U	2.0	0.31	mg/Kg		11/12/20 16:30	11/13/20 15:34	1
Vanadium	5.0	U	5.0	0.47	mg/Kg		11/12/20 16:30	11/13/20 15:34	1
Zinc	3.0	U	3.0	0.55	mg/Kg		11/12/20 16:30	11/13/20 15:34	1

Lab Sample ID: LCSSRM 460-739444/2-A

Matrix: Solid

Analysis Batch: 739688

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 739444

	Бріке	LC22KM	LC22KW				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Silver	24.7	21.90		mg/Kg		88.7	80.6 - 119.	
Aluminum	8190	7057		mg/Kg		86.2	48.7 - 151. 4	

Eurofins TestAmerica, Edison

Page 125 of 157

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: LCSSRM 460-739444/2-A

Matrix: Solid

Analysis Batch: 739688

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 739444

Analysis Batch: 739688 Analyte	Spike Added		LCSSRM Qualifier	Unit	D	%Rec	Prep Batch: 739444 %Rec. Limits
Arsenic	162	141.4		mg/Kg	— <u> </u>		82.7 - 117.
Barium	138	123.0		mg/Kg		89.2	9 82.6 - 117.
Beryllium	157	147.7		mg/Kg		94.1	82.8 - 117.
Calcium	4790	4302		mg/Kg		89.8	2 81.6 - 118. 2
Cadmium	135	126.6		mg/Kg		93.8	82.2 - 117. 0
Cobalt	92.6	88.33		mg/Kg		95.4	83.4 - 116.
Chromium	117	109.8		mg/Kg		93.9	6 82.0 - 117. 9
Copper	143	135.4		mg/Kg		94.7	83.2 - 116. 1
Iron	15100	12750		mg/Kg		84.4	63.0 - 137.
Potassium	2050	1677		mg/Kg		81.8	70.2 - 129.
Magnesium	2320	2137		mg/Kg		92.1	8 75.9 - 124.
Manganese	319	307.5		mg/Kg		96.4	1 82.1 - 118.
Sodium	137	98.96	J	mg/Kg		72.2	2 72.1 - 127.
Nickel	79.9	78.80		mg/Kg		98.6	82.1 - 117.
Lead	77.6	72.82		mg/Kg		93.8	9 83.4 - 116.
Antimony	110	70.86		mg/Kg		64.4	5 3.6 - 210.
Selenium	172	162.0		mg/Kg		94.2	9 79.1 - 120.
Thallium	88.0	84.84		mg/Kg		96.4	9 80.7 - 119.
Vanadium	99.9	90.22		mg/Kg		90.3	3 79.0 - 121.
Zinc	312	298.6		mg/Kg		95.7	1 80.4 - 119.
							6

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 460-741239/1-A

Matrix: Water

Analysis Batch: 741658

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 741239

_	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	2.0	U	2.0	0.19	ug/L		11/19/20 17:20	11/21/20 09:17	1
Aluminum	40.0	U	40.0	8.0	ug/L		11/19/20 17:20	11/21/20 09:17	1
Arsenic	2.0	U	2.0	0.89	ug/L		11/19/20 17:20	11/21/20 09:17	1
Barium	4.0	U	4.0	0.91	ug/L		11/19/20 17:20	11/21/20 09:17	1
Beryllium	0.80	U	0.80	0.098	ug/L		11/19/20 17:20	11/21/20 09:17	1
Calcium	200	U	200	22.7	ug/L		11/19/20 17:20	11/21/20 09:17	1

Eurofins TestAmerica, Edison

Page 126 of 157

9

3

6

8

10

12

14

Job ID: 460-222216-1 Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: MB 460-741239/1-A

Matrix: Water

Analysis Batch: 741658

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 741239

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	2.0	U	2.0	0.16	ug/L		11/19/20 17:20	11/21/20 09:17	1
Cobalt	4.0	U	4.0	0.26	ug/L		11/19/20 17:20	11/21/20 09:17	1
Chromium	4.0	U	4.0	0.69	ug/L		11/19/20 17:20	11/21/20 09:17	1
Copper	4.0	U	4.0	2.5	ug/L		11/19/20 17:20	11/21/20 09:17	1
Iron	120	U	120	8.5	ug/L		11/19/20 17:20	11/21/20 09:17	1
Potassium	200	U	200	112	ug/L		11/19/20 17:20	11/21/20 09:17	1
Magnesium	200	U	200	15.4	ug/L		11/19/20 17:20	11/21/20 09:17	1
Manganese	8.0	U	8.0	1.1	ug/L		11/19/20 17:20	11/21/20 09:17	1
Sodium	200	U	200	58.2	ug/L		11/19/20 17:20	11/21/20 09:17	1
Nickel	4.0	U	4.0	0.45	ug/L		11/19/20 17:20	11/21/20 09:17	1
Lead	0.404	J	1.2	0.11	ug/L		11/19/20 17:20	11/21/20 09:17	1
Antimony	2.0	U	2.0	0.76	ug/L		11/19/20 17:20	11/21/20 09:17	1
Selenium	2.5	U	2.5	0.46	ug/L		11/19/20 17:20	11/21/20 09:17	1
Thallium	0.80	U	0.80	0.17	ug/L		11/19/20 17:20	11/21/20 09:17	1
Vanadium	4.0	U	4.0	0.37	ua/L		11/19/20 17:20	11/21/20 09:17	1

16.0

5.1 ug/L

16.0 U

Lab Sample ID: LCS 460-741239/2-A

Matrix: Water

Zinc

Analysis Batch: 741658

Client Sample ID: Lab Control Sample

11/19/20 17:20 11/21/20 09:17

Prep	Type: Total/NA
Prep	Batch: 741239
%Rec.	

Analysis Batch. 141000	Spike	LCS	LCS		%Rec.
Analyte	Added		Qualifier Unit	D %Rec	Limits
Silver	25.0	25.10	ug/L		80 - 120
Aluminum	2500	2640	ug/L	106	80 - 120
Arsenic	50.0	49.45	ug/L	99	80 - 120
Barium	50.0	51.90	ug/L	104	80 - 120
Beryllium	25.0	25.49	ug/L	102	80 - 120
Calcium	2500	2450	ug/L	98	80 - 120
Cadmium	25.0	25.54	ug/L	102	80 - 120
Cobalt	25.0	25.20	ug/L	101	80 - 120
Chromium	50.0	50.96	ug/L	102	80 - 120
Copper	50.0	50.52	ug/L	101	80 - 120
Iron	2500	2596	ug/L	104	80 - 120
Potassium	2500	2714	ug/L	109	80 - 120
Magnesium	2500	2618	ug/L	105	80 - 120
Manganese	250	250.6	ug/L	100	80 - 120
Sodium	2500	2738	ug/L	110	80 - 120
Nickel	50.0	49.92	ug/L	100	80 - 120
Lead	25.0	25.74	ug/L	103	80 - 120
Antimony	25.0	26.19	ug/L	105	80 - 120
Selenium	50.0	51.72	ug/L	103	80 - 120
Thallium	20.0	19.71	ug/L	99	80 - 120
Vanadium	50.0	50.21	ug/L	100	80 - 120
Zinc	250	239.7	ug/L	96	80 - 120

Job ID: 460-222216-1

Prep Type: Total/NA

Prep Batch: 740145

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 460-740145/10-A

Matrix: Solid

Analysis Batch: 740233

Client: New York State D.E.C.

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared 0.017 0.0040 mg/Kg 11/16/20 03:07 11/16/20 06:29 Mercury 0.017 U

Lab Sample ID: LCSSRM 460-740145/11-A ^40

Matrix: Solid

Mercury

Analysis Batch: 740233

Analyte

Spike Added

18.4

RL

RL

0.010

0.24

Spike

Added

Spike

Added

0.100

157

Result Qualifier 18.95

LCSSRM LCSSRM

Unit

MDL Unit

LCSSRM LCSSRM

60.48

Result Qualifier

MDL Unit

0.0040 mg/L

LCS LCS

0.102

Result Qualifier

RL Unit

0.12 mg/Kg

mg/Kg

Unit

Unit

mg/L

mg/Kg

103.0

D %Rec

6

Method: 9012B - Cyanide, Total andor Amenable

Lab Sample ID: MB 460-740055/1-A

Matrix: Solid

Analysis Batch: 740267

MB MB

Analyte

Result Qualifier Cyanide, Total 0.24 U

Lab Sample ID: LCSSRM 460-740055/2-A ^20

Matrix: Solid

Cyanide, Total

Cyanide, Total

Analysis Batch: 740267

Analyte

Lab Sample ID: MB 460-740554/1-A **Matrix: Water**

Analysis Batch: 740582

MB MB Result Qualifier

Analyte

Lab Sample ID: LCS 460-740554/2-A

Matrix: Water

Analysis Batch: 740582

Cyanide, Total

Method: 9045D - pH

Lab Sample ID: MB 460-740528/2

Matrix: Solid

Analyte

Analysis Batch: 740528

MB MB Result Qualifier

0.010 U

рН 6.3 0.1 0.1 SU 6.3 0.1 0.1 SU Corrosivity 22.4 0.1 Degrees C Temperature 0.1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Method Blank

Prep Batch: 740145

%Rec.

Limits

60.9 - 138.

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 740055

Analyzed Dil Fac

Prepared 11/15/20 12:34 11/16/20 13:37

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 740055

%Rec. Limits

D %Rec 38.5 23.5 - 110.

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 740554

Prepared Analyzed Dil Fac 11/17/20 12:02 11/17/20 13:00

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 740554

%Rec.

Limits

%Rec 102 85 - 115

Client Sample ID: Method Blank

Prepared

Prep Type: Total/NA

Eurofins TestAmerica, Edison

Analyzed

11/17/20 12:35

11/17/20 12:35

11/17/20 12:35

RL

Dil Fac

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 9045D - pH

Lab Sample ID: LCSSRM 460-740528/3

Matrix: Solid

Analysis Batch: 740528

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

-	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
pH	 8.31	8.1		SU		97.8	97.6 - 102.	
							4	
Corrosivity	8.31	8.1		SU		97.8	97.6 - 102.	
_							4	

Method: Lloyd Kahn - Organic Carbon, Total (TOC)

Lab Sample ID: MB 200-161381/5

Matrix: Solid

Analysis Batch: 161381

MB MB

Result Qualifier RL **MDL** Unit **Analyte** Prepared Analyzed Dil Fac **Total Carbon** 1000 U 1000 671 mg/Kg 11/20/20 11:11

Lab Sample ID: LCS 200-161381/6

Matrix: Solid

Analysis Batch: 161381

Spike LCS LCS %Rec. Added Analyte Limits Result Qualifier Unit D %Rec **Total Carbon** 8300 8440 mg/Kg 102 75 - 125

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

GC/MS VOA

Dron	Batc	h• 7	777	353
ILED	Date	II. <i>1</i>		,,,,

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-4	S-1	Total/NA	Solid	5035	
460-222216-5	S-2	Total/NA	Solid	5035	
460-222216-6	S-3	Total/NA	Solid	5035	
LB3 460-737953/1-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 738783

Lab Sample ID LB3 460-737953/1-A	Client Sample ID Method Blank	Prep Type Total/NA	Matrix Solid	Method 8260D	Prep Batch 737953
MB 460-738783/7	Method Blank	Total/NA	Solid	8260D	
LCS 460-738783/3	Lab Control Sample	Total/NA	Solid	8260D	
LCSD 460-738783/4	Lab Control Sample Dup	Total/NA	Solid	8260D	

Analysis Batch: 738814

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-1	SW-1	Total/NA	Water	8260D	
460-222216-2	SW-2	Total/NA	Water	8260D	
460-222216-3	SW-3	Total/NA	Water	8260D	
MB 460-738814/9	Method Blank	Total/NA	Water	8260D	
LCS 460-738814/4	Lab Control Sample	Total/NA	Water	8260D	
LCSD 460-738814/5	Lab Control Sample Dup	Total/NA	Water	8260D	

Analysis Batch: 738942

Lab Sample ID 460-222216-7	Client Sample ID TB	Prep Type Total/NA	Matrix Water	Method 8260D	Prep Batch
MB 460-738942/8	Method Blank	Total/NA	Water	8260D	
LCS 460-738942/4	Lab Control Sample	Total/NA	Water	8260D	
LCSD 460-738942/5	Lab Control Sample Dup	Total/NA	Water	8260D	

Analysis Batch: 739430

Lab Sample ID 460-222216-8	Client Sample ID EB	Prep Type Total/NA	Matrix Water	Method 8260D	Prep Batch
MB 460-739430/10	Method Blank	Total/NA	Water	8260D	
LCS 460-739430/4	Lab Control Sample	Total/NA	Water	8260D	
LCSD 460-739430/5	Lab Control Sample Dup	Total/NA	Water	8260D	

Analysis Batch: 739694

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-5	S-2	Total/NA	Solid	8260D	737953
MB 460-739694/9	Method Blank	Total/NA	Solid	8260D	
LCS 460-739694/4	Lab Control Sample	Total/NA	Solid	8260D	
LCSD 460-739694/5	Lab Control Sample Dup	Total/NA	Solid	8260D	

Analysis Batch: 739828

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-4	S-1	Total/NA	Solid	8260D	737953
460-222216-6	S-3	Total/NA	Solid	8260D	737953
MB 460-739828/7	Method Blank	Total/NA	Solid	8260D	
LCS 460-739828/3	Lab Control Sample	Total/NA	Solid	8260D	
LCSD 460-739828/4	Lab Control Sample Dup	Total/NA	Solid	8260D	

Eurofins TestAmerica, Edison

Page 130 of 157

_

Job ID: 460-222216-1

9

4

6

3

10

12

13

4 E

16

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

GC/MS Semi VOA

Prep Batch: 738369

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-1	SW-1	Total/NA	Water	3510C	
460-222216-2	SW-2	Total/NA	Water	3510C	
460-222216-3	SW-3	Total/NA	Water	3510C	
MB 460-738369/1-A	Method Blank	Total/NA	Water	3510C	
LCS 460-738369/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 460-738369/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 738564

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-1	SW-1	Total/NA	Water	8270E	738369
460-222216-2	SW-2	Total/NA	Water	8270E	738369
460-222216-3	SW-3	Total/NA	Water	8270E	738369
MB 460-738369/1-A	Method Blank	Total/NA	Water	8270E	738369
LCS 460-738369/2-A	Lab Control Sample	Total/NA	Water	8270E	738369
LCSD 460-738369/3-A	Lab Control Sample Dup	Total/NA	Water	8270E	738369

Prep Batch: 738693

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-1	SW-1	Total/NA	Water	3510C	
460-222216-2	SW-2	Total/NA	Water	3510C	
460-222216-3	SW-3	Total/NA	Water	3510C	
MB 460-738693/1-A	Method Blank	Total/NA	Water	3510C	
LCS 460-738693/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 460-738693/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 738828

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-1	SW-1	Total/NA	Water	8270E SIM ID	738693
460-222216-2	SW-2	Total/NA	Water	8270E SIM ID	738693
460-222216-3	SW-3	Total/NA	Water	8270E SIM ID	738693
MB 460-738693/1-A	Method Blank	Total/NA	Water	8270E SIM ID	738693
LCS 460-738693/2-A	Lab Control Sample	Total/NA	Water	8270E SIM ID	738693
LCSD 460-738693/3-A	Lab Control Sample Dup	Total/NA	Water	8270E SIM ID	738693

Prep Batch: 738890

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-4	S-1	Total/NA	Solid	3546	 : :
460-222216-5	S-2	Total/NA	Solid	3546	
460-222216-6	S-3	Total/NA	Solid	3546	
MB 460-738890/1-A	Method Blank	Total/NA	Solid	3546	
LCS 460-738890/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 460-738890/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	

Analysis Batch: 739058

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-4	S-1	Total/NA	Solid	8270E	738890
460-222216-5	S-2	Total/NA	Solid	8270E	738890
460-222216-6	S-3	Total/NA	Solid	8270E	738890
MB 460-738890/1-A	Method Blank	Total/NA	Solid	8270E	738890
LCS 460-738890/2-A	Lab Control Sample	Total/NA	Solid	8270E	738890
LCSD 460-738890/3-A	Lab Control Sample Dup	Total/NA	Solid	8270E	738890

Eurofins TestAmerica, Edison

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

GC Semi VOA

Prep Batch: 738218

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-1	SW-1	Total/NA	Water	3510C	
460-222216-2	SW-2	Total/NA	Water	3510C	
460-222216-3	SW-3	Total/NA	Water	3510C	
MB 460-738218/1-A	Method Blank	Total/NA	Water	3510C	
LCS 460-738218/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 460-738218/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Prep Batch: 738219

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-1	SW-1	Total/NA	Water	3510C	
460-222216-2	SW-2	Total/NA	Water	3510C	
460-222216-3	SW-3	Total/NA	Water	3510C	
MB 460-738219/1-A	Method Blank	Total/NA	Water	3510C	
LCS 460-738219/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 460-738219/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 738426

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-1	SW-1	Total/NA	Water	8082A	738219
460-222216-2	SW-2	Total/NA	Water	8082A	738219
460-222216-3	SW-3	Total/NA	Water	8082A	738219
MB 460-738219/1-A	Method Blank	Total/NA	Water	8082A	738219
LCS 460-738219/2-A	Lab Control Sample	Total/NA	Water	8082A	738219
LCSD 460-738219/3-A	Lab Control Sample Dup	Total/NA	Water	8082A	738219

Prep Batch: 738541

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-1	SW-1	Total/NA	Water	8151A	
460-222216-2	SW-2	Total/NA	Water	8151A	
460-222216-3	SW-3	Total/NA	Water	8151A	
MB 460-738541/1-A	Method Blank	Total/NA	Water	8151A	
LCS 460-738541/2-A	Lab Control Sample	Total/NA	Water	8151A	
LCSD 460-738541/3-A	Lab Control Sample Dup	Total/NA	Water	8151A	

Prep Batch: 738542

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-4	S-1	Total/NA	Solid	8151A	
460-222216-5	S-2	Total/NA	Solid	8151A	
460-222216-6	S-3	Total/NA	Solid	8151A	
MB 460-738542/1-A	Method Blank	Total/NA	Solid	8151A	
LCS 460-738542/2-A	Lab Control Sample	Total/NA	Solid	8151A	
LCSD 460-738542/3-A	Lab Control Sample Dup	Total/NA	Solid	8151A	

Analysis Batch: 738595

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 460-738218/1-A	Method Blank	Total/NA	Water	8081B	738218
LCS 460-738218/2-A	Lab Control Sample	Total/NA	Water	8081B	738218
LCSD 460-738218/3-A	Lab Control Sample Dup	Total/NA	Water	8081B	738218

Eurofins TestAmerica, Edison

Page 132 of 157

9

3

5

7

_

10

4.0

12

14

15

Щ

17

3/30/2021

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

GC Semi VOA

Analysis Batch: 738659

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-4	S-1	Total/NA	Solid	8151A	738542
460-222216-5	S-2	Total/NA	Solid	8151A	738542
460-222216-6	S-3	Total/NA	Solid	8151A	738542
MB 460-738542/1-A	Method Blank	Total/NA	Solid	8151A	738542
LCS 460-738542/2-A	Lab Control Sample	Total/NA	Solid	8151A	738542
LCSD 460-738542/3-A	Lab Control Sample Dup	Total/NA	Solid	8151A	738542

Analysis Batch: 738660

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-1	SW-1	Total/NA	Water	8151A	738541
460-222216-2	SW-2	Total/NA	Water	8151A	738541
460-222216-3	SW-3	Total/NA	Water	8151A	738541
MB 460-738541/1-A	Method Blank	Total/NA	Water	8151A	738541
LCS 460-738541/2-A	Lab Control Sample	Total/NA	Water	8151A	738541
LCSD 460-738541/3-A	Lab Control Sample Dup	Total/NA	Water	8151A	738541

Analysis Batch: 738911

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-1	SW-1	Total/NA	Water	8081B	738218
460-222216-2	SW-2	Total/NA	Water	8081B	738218
460-222216-3	SW-3	Total/NA	Water	8081B	738218

Prep Batch: 739628

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-4	S-1	Total/NA	Solid	3546	
460-222216-5	S-2	Total/NA	Solid	3546	
460-222216-6	S-3	Total/NA	Solid	3546	
MB 460-739628/1-A	Method Blank	Total/NA	Solid	3546	
LCS 460-739628/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 460-739628/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	

Prep Batch: 739629

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-4	S-1	Total/NA	Solid	3546	<u> </u>
460-222216-5	S-2	Total/NA	Solid	3546	
460-222216-6	S-3	Total/NA	Solid	3546	
MB 460-739629/1-A	Method Blank	Total/NA	Solid	3546	
LCS 460-739629/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 460-739629/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	

Analysis Batch: 740150

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-4	S-1	Total/NA	Solid	8081B	739629
460-222216-5	S-2	Total/NA	Solid	8081B	739629
460-222216-6	S-3	Total/NA	Solid	8081B	739629
MB 460-739629/1-A	Method Blank	Total/NA	Solid	8081B	739629
LCS 460-739629/2-A	Lab Control Sample	Total/NA	Solid	8081B	739629
LCSD 460-739629/3-A	Lab Control Sample Dup	Total/NA	Solid	8081B	739629

Eurofins TestAmerica, Edison

Page 133 of 157

2

3

7

8

10

4.0

14

15

10

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

GC Semi VOA

Analysis Batch: 740270

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-4	S-1	Total/NA	Solid	8082A	739628
460-222216-5	S-2	Total/NA	Solid	8082A	739628
460-222216-6	S-3	Total/NA	Solid	8082A	739628
MB 460-739628/1-A	Method Blank	Total/NA	Solid	8082A	739628
LCS 460-739628/2-A	Lab Control Sample	Total/NA	Solid	8082A	739628
LCSD 460-739628/3-A	Lab Control Sample Dup	Total/NA	Solid	8082A	739628

LCMS

Prep Batch: 429840

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-1	SW-1	Total/NA	Water	3535	
460-222216-2	SW-2	Total/NA	Water	3535	
460-222216-3	SW-3	Total/NA	Water	3535	
MB 320-429840/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-429840/2-A	Lab Control Sample	Total/NA	Water	3535	
LCSD 320-429840/3-A	Lab Control Sample Dup	Total/NA	Water	3535	

Analysis Batch: 430227

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-1	SW-1	Total/NA	Water	537 (modified)	429840
460-222216-2	SW-2	Total/NA	Water	537 (modified)	429840
460-222216-3	SW-3	Total/NA	Water	537 (modified)	429840
MB 320-429840/1-A	Method Blank	Total/NA	Water	537 (modified)	429840
LCSD 320-429840/3-A	Lab Control Sample Dup	Total/NA	Water	537 (modified)	429840

Analysis Batch: 431175

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 320-429840/2-A	Lab Control Sample	Total/NA	Water	537 (modified)	429840

Leach Batch: 432086

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-5	S-2	SPLP East	Solid	1312	
460-222216-6	S-3	SPLP East	Solid	1312	
LB 320-432086/1-B	Method Blank	SPLP East	Solid	1312	

Prep Batch: 432465

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-4	S-1	Total/NA	Solid	SHAKE	·
460-222216-5	S-2	Total/NA	Solid	SHAKE	
460-222216-6	S-3	Total/NA	Solid	SHAKE	
MB 320-432465/1-A	Method Blank	Total/NA	Solid	SHAKE	
LCS 320-432465/2-A	Lab Control Sample	Total/NA	Solid	SHAKE	
460-222216-4 MS	S-1	Total/NA	Solid	SHAKE	
460-222216-4 MSD	S-1	Total/NA	Solid	SHAKE	

Analysis Batch: 433144

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-5	S-2	SPLP East	Solid	537 (modified)	433241
460-222216-6	S-3	SPLP East	Solid	537 (modified)	433241
LB 320-432086/1-B	Method Blank	SPLP East	Solid	537 (modified)	433241

Eurofins TestAmerica, Edison

Page 134 of 157

9

3

4

6

10

11

13

14

16

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

LCMS (Continued)

Analysis Batch: 433144 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 320-433241/1-A	Method Blank	Total/NA	Solid	537 (modified)	433241
LCS 320-433241/2-	A Lab Control Sample	Total/NA	Solid	537 (modified)	433241
LCSD 320-433241/3	3-A Lab Control Sample Dup	Total/NA	Solid	537 (modified)	433241

Prep Batch: 433241

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-5	S-2	SPLP East	Solid	3535	432086
460-222216-6	S-3	SPLP East	Solid	3535	432086
LB 320-432086/1-B	Method Blank	SPLP East	Solid	3535	432086
MB 320-433241/1-A	Method Blank	Total/NA	Solid	3535	
LCS 320-433241/2-A	Lab Control Sample	Total/NA	Solid	3535	
LCSD 320-433241/3-A	Lab Control Sample Dup	Total/NA	Solid	3535	

Analysis Batch: 433288

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-4	S-1	Total/NA	Solid	537 (modified)	432465
460-222216-5	S-2	Total/NA	Solid	537 (modified)	432465
460-222216-6	S-3	Total/NA	Solid	537 (modified)	432465
MB 320-432465/1-A	Method Blank	Total/NA	Solid	537 (modified)	432465
LCS 320-432465/2-A	Lab Control Sample	Total/NA	Solid	537 (modified)	432465
460-222216-4 MS	S-1	Total/NA	Solid	537 (modified)	432465
460-222216-4 MSD	S-1	Total/NA	Solid	537 (modified)	432465

Metals

Prep Batch: 738401

Lab Sample ID 460-222216-1	Client Sample ID SW-1	Prep Type Total/NA	Matrix Water	Method 7470A	Prep Batch
460-222216-2	SW-2	Total/NA	Water	7470A	
460-222216-3	SW-3	Total/NA	Water	7470A	

Analysis Batch: 738452

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-1	SW-1	Total/NA	Water	7470A	738401
460-222216-2	SW-2	Total/NA	Water	7470A	738401
460-222216-3	SW-3	Total/NA	Water	7470A	738401

Prep Batch: 738713

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-1	SW-1	Total/NA	Water	3010A	
460-222216-3	SW-3	Total/NA	Water	3010A	

Analysis Batch: 738739

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-1	SW-1	Total/NA	Water	6020B	738713
460-222216-3	SW-3	Total/NA	Water	6020B	738713
460-222216-3	SW-3	Total/NA	Water	6020B	738713

Prep Batch: 739444

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-4	S-1	Total/NA	Solid	3050B	

Eurofins TestAmerica, Edison

Page 135 of 157

2

3

4

6

8

10

11

13

14

16

17

3/30/2021

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Metals (Continued)

Prep Batch: 739444 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-5	S-2	Total/NA	Solid	3050B	
460-222216-6	S-3	Total/NA	Solid	3050B	
MB 460-739444/1-A	Method Blank	Total/NA	Solid	3050B	
LCSSRM 460-739444/2-A	Lab Control Sample	Total/NA	Solid	3050B	

Analysis Batch: 739688

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-4	S-1	Total/NA	Solid	6010D	739444
460-222216-5	S-2	Total/NA	Solid	6010D	739444
460-222216-5	S-2	Total/NA	Solid	6010D	739444
460-222216-6	S-3	Total/NA	Solid	6010D	739444
MB 460-739444/1-A	Method Blank	Total/NA	Solid	6010D	739444
LCSSRM 460-739444/2-A	Lab Control Sample	Total/NA	Solid	6010D	739444

Prep Batch: 740145

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-4	S-1	Total/NA	Solid	7471B	
460-222216-5	S-2	Total/NA	Solid	7471B	
460-222216-6	S-3	Total/NA	Solid	7471B	
MB 460-740145/10-A	Method Blank	Total/NA	Solid	7471B	
LCSSRM 460-740145/11-	A ^ Lab Control Sample	Total/NA	Solid	7471B	

Analysis Batch: 740233

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-4	S-1	Total/NA	Solid	7471B	740145
460-222216-5	S-2	Total/NA	Solid	7471B	740145
460-222216-6	S-3	Total/NA	Solid	7471B	740145
MB 460-740145/10-A	Method Blank	Total/NA	Solid	7471B	740145
LCSSRM 460-740145/1	1-A ^ Lab Control Sample	Total/NA	Solid	7471B	740145

Prep Batch: 741239

Lab Sample ID 460-222216-2	Client Sample ID SW-2	Prep Type Total/NA	Matrix Water	Method 3010A	Prep Batch
MB 460-741239/1-A	Method Blank	Total/NA	Water	3010A	
LCS 460-741239/2-A	Lab Control Sample	Total/NA	Water	3010A	

Analysis Batch: 741658

	Sample ID -222216-2	Client Sample ID SW-2	Prep Type Total/NA	Matrix Water	Method Pr 6020B	741239
MB	460-741239/1-A	Method Blank	Total/NA	Water	6020B	741239
LCS	3 460-741239/2-A	Lab Control Sample	Total/NA	Water	6020B	741239

General Chemistry

Analysis Batch: 161381

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-5	S-2	Total/NA	Solid	Lloyd Kahn	
460-222216-6	S-3	Total/NA	Solid	Lloyd Kahn	
MB 200-161381/5	Method Blank	Total/NA	Solid	Lloyd Kahn	
LCS 200-161381/6	Lab Control Sample	Total/NA	Solid	Lloyd Kahn	

Eurofins TestAmerica, Edison

Page 136 of 157

2

3

4

6

8

10

12

13

16

1/

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

General Chemistry

Prep Batch: 740055

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-4	S-1	Total/NA	Solid	9012B	
460-222216-5	S-2	Total/NA	Solid	9012B	
460-222216-6	S-3	Total/NA	Solid	9012B	
MB 460-740055/1-A	Method Blank	Total/NA	Solid	9012B	
LCSSRM 460-740055/2-A ^	2 Lab Control Sample	Total/NA	Solid	9012B	

Analysis Batch: 740236

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-4	S-1	Total/NA	Solid	Moisture	
460-222216-5	S-2	Total/NA	Solid	Moisture	
460-222216-6	S-3	Total/NA	Solid	Moisture	

Analysis Batch: 740267

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-4	S-1	Total/NA	Solid	9012B	740055
460-222216-5	S-2	Total/NA	Solid	9012B	740055
460-222216-6	S-3	Total/NA	Solid	9012B	740055
MB 460-740055/1-A	Method Blank	Total/NA	Solid	9012B	740055
LCSSRM 460-740055/2-A ^2	Lab Control Sample	Total/NA	Solid	9012B	740055

Analysis Batch: 740528

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-5	S-2	Total/NA	Solid	9045D	
460-222216-6	S-3	Total/NA	Solid	9045D	
MB 460-740528/2	Method Blank	Total/NA	Solid	9045D	
LCSSRM 460-740528/3	Lab Control Sample	Total/NA	Solid	9045D	

Prep Batch: 740554

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-1	SW-1	Total/NA	Water	9012B	
460-222216-2	SW-2	Total/NA	Water	9012B	
460-222216-3	SW-3	Total/NA	Water	9012B	
MB 460-740554/1-A	Method Blank	Total/NA	Water	9012B	
LCS 460-740554/2-A	Lab Control Sample	Total/NA	Water	9012B	

Analysis Batch: 740582

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222216-1	SW-1	Total/NA	Water	9012B	740554
460-222216-2	SW-2	Total/NA	Water	9012B	740554
460-222216-3	SW-3	Total/NA	Water	9012B	740554
MB 460-740554/1-A	Method Blank	Total/NA	Water	9012B	740554
LCS 460-740554/2-A	Lab Control Sample	Total/NA	Water	9012B	740554

Eurofins TestAmerica, Edison

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: SW-1 Lab Sample ID: 460-222216-1

Date Collected: 11/03/20 12:00 Matrix: Water Date Received: 11/05/20 18:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	738814	11/11/20 05:28	GXY	TAL EDI
Total/NA	Prep	3510C			738369	11/09/20 09:26	RPC	TAL EDI
Total/NA	Analysis	8270E		1	738564	11/10/20 11:43	MME	TAL EDI
Total/NA	Prep	3510C			738693	11/10/20 21:30	RPC	TAL EDI
Total/NA	Analysis	8270E SIM ID		1	738828	11/11/20 03:22	MME	TAL EDI
Total/NA	Prep	3510C			738218	11/08/20 14:01	ATF	TAL EDI
Total/NA	Analysis	8081B		1	738911	11/11/20 10:24	FAM	TAL EDI
Total/NA	Prep	3510C			738219	11/08/20 14:08	ATF	TAL EDI
Total/NA	Analysis	8082A		1	738426	11/09/20 17:20	DXB	TAL EDI
Total/NA	Prep	8151A			738541	11/09/20 20:09	AFR	TAL EDI
Total/NA	Analysis	8151A		1	738660	11/10/20 12:12	SAK	TAL EDI
Total/NA	Prep	3535			429840	11/09/20 12:10	LA	TAL SAC
Total/NA	Analysis	537 (modified)		1	430227	11/10/20 19:39	K1S	TAL SAC
Total/NA	Prep	3010A			738713	11/10/20 10:17	IBS	TAL EDI
Total/NA	Analysis	6020B		1	738739	11/10/20 20:33	MDC	TAL EDI
Total/NA	Prep	7470A			738401	11/09/20 12:39	RBS	TAL EDI
Total/NA	Analysis	7470A		1	738452	11/09/20 14:18	RBS	TAL EDI
Total/NA	Prep	9012B			740554	11/17/20 12:02	IAA	TAL EDI
Total/NA	Analysis	9012B		1	740582	11/17/20 13:07	HTV	TAL EDI

Client Sample ID: SW-2 Lab Sample ID: 460-222216-2

Date Collected: 11/03/20 13:30 Matrix: Water Date Received: 11/05/20 18:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	738814	11/11/20 04:43	GXY	TAL EDI
Total/NA	Prep	3510C			738369	11/09/20 09:26	RPC	TAL EDI
Total/NA	Analysis	8270E		1	738564	11/10/20 11:01	MME	TAL EDI
Total/NA	Prep	3510C			738693	11/10/20 21:30	RPC	TAL EDI
Total/NA	Analysis	8270E SIM ID		1	738828	11/11/20 03:38	MME	TAL EDI
Total/NA	Prep	3510C			738218	11/08/20 14:01	ATF	TAL EDI
Total/NA	Analysis	8081B		1	738911	11/11/20 10:39	FAM	TAL EDI
Total/NA	Prep	3510C			738219	11/08/20 14:08	ATF	TAL EDI
Total/NA	Analysis	8082A		1	738426	11/09/20 17:37	DXB	TAL EDI
Total/NA	Prep	8151A			738541	11/09/20 20:09	AFR	TAL EDI
Total/NA	Analysis	8151A		1	738660	11/10/20 12:26	SAK	TAL EDI
Total/NA	Prep	3535			429840	11/09/20 12:10	LA	TAL SAC
Total/NA	Analysis	537 (modified)		1	430227	11/10/20 20:06	K1S	TAL SAC
Total/NA	Prep	3010A			741239	11/19/20 17:20	GAE	TAL EDI
Total/NA	Analysis	6020B		1	741658	11/21/20 14:41	MDC	TAL EDI
Total/NA	Prep	7470A			738401	11/09/20 12:39	RBS	TAL EDI
Total/NA	Analysis	7470A		1	738452	11/09/20 14:20	RBS	TAL EDI
Total/NA	Prep	9012B			740554	11/17/20 12:02	IAA	TAL EDI
Total/NA	Analysis	9012B		1	740582	11/17/20 13:08	HTV	TAL EDI

Eurofins TestAmerica, Edison

3

7

9

11

13

14

16

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Lab Sample ID: 460-222216-3 **Client Sample ID: SW-3**

Date Collected: 11/03/20 16:00 **Matrix: Water** Date Received: 11/05/20 18:00

-	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	738814	11/11/20 05:06	GXY	TAL EDI
Total/NA	Prep	3510C			738369	11/09/20 09:26	RPC	TAL EDI
Total/NA	Analysis	8270E		1	738564	11/10/20 11:22	MME	TAL EDI
Total/NA	Prep	3510C			738693	11/10/20 21:30	RPC	TAL EDI
Total/NA	Analysis	8270E SIM ID		1	738828	11/11/20 03:54	MME	TAL EDI
Total/NA	Prep	3510C			738218	11/08/20 14:01	ATF	TAL EDI
Total/NA	Analysis	8081B		1	738911	11/11/20 10:55	FAM	TAL EDI
Total/NA	Prep	3510C			738219	11/08/20 14:08	ATF	TAL EDI
Total/NA	Analysis	8082A		1	738426	11/09/20 17:53	DXB	TAL EDI
Total/NA	Prep	8151A			738541	11/09/20 20:09	AFR	TAL EDI
Total/NA	Analysis	8151A		1	738660	11/10/20 12:39	SAK	TAL EDI
Total/NA	Prep	3535			429840	11/09/20 12:10	LA	TAL SAC
Total/NA	Analysis	537 (modified)		1	430227	11/10/20 20:15	K1S	TAL SAC
Total/NA	Prep	3010A			738713	11/10/20 10:17	IBS	TAL EDI
Total/NA	Analysis	6020B		1	738739	11/10/20 20:42	MDC	TAL EDI
Total/NA	Prep	3010A			738713	11/10/20 10:17	IBS	TAL EDI
Total/NA	Analysis	6020B		10	738739	11/10/20 20:49	MDC	TAL EDI
Total/NA	Prep	7470A			738401	11/09/20 12:39	RBS	TAL EDI
Total/NA	Analysis	7470A		1	738452	11/09/20 14:22	RBS	TAL EDI
Total/NA	Prep	9012B			740554	11/17/20 12:02	IAA	TAL EDI
Total/NA	Analysis	9012B		1	740582	11/17/20 13:09	HTV	TAL EDI

Client Sample ID: S-1

Lab Sample ID: 460-222216-4 Date Collected: 11/03/20 12:30

Date Received: 11/05/20 18:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	740236	11/16/20 10:45	OJR	TAL EDI

Client Sample ID: S-1 Lab Sample ID: 460-222216-4

Date Collected: 11/03/20 12:30									Matrix: Solid
Date Receive	ed: 11/05/20	18:00							Percent Solids: 23.9
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			737953	11/06/20 19:10	AVM	TAL EDI
Total/NA	Analysis	8260D		1	739828	11/14/20 14:48	AAT	TAL EDI
Total/NA	Prep	3546			738890	11/10/20 22:20	AFR	TAL EDI
Total/NA	Analysis	8270E		1	739058	11/11/20 23:39	CAZ	TAL EDI
Total/NA	Prep	3546			739629	11/13/20 09:54	ZXB	TAL EDI
Total/NA	Analysis	8081B		1	740150	11/16/20 10:00	FAM	TAL EDI
Total/NA	Prep	3546			739628	11/13/20 09:49	ZXB	TAL EDI
Total/NA	Analysis	8082A		1	740270	11/16/20 22:27	DXB	TAL EDI
Total/NA	Prep	8151A			738542	11/09/20 20:10	AFR	TAL EDI
Total/NA	Analysis	8151A		1	738659	11/10/20 11:26	SAK	TAL EDI

Eurofins TestAmerica, Edison

Page 139 of 157

Matrix: Solid

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: S-1 Lab Sample ID: 460-222216-4

Date Collected: 11/03/20 12:30 Matrix: Solid
Date Received: 11/05/20 18:00 Percent Solids: 23.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	SHAKE			432465	11/17/20 09:15	NSS	TAL SAC
Total/NA	Analysis	537 (modified)		1	433288	11/19/20 08:53	MNV	TAL SAC
Total/NA	Prep	3050B			739444	11/12/20 16:30	GAE	TAL EDI
Total/NA	Analysis	6010D		2	739688	11/13/20 17:55	YZH	TAL EDI
Total/NA	Prep	7471B			740145	11/16/20 03:07	TJS	TAL EDI
Total/NA	Analysis	7471B		1	740233	11/16/20 07:17	TJS	TAL EDI
Total/NA	Prep	9012B			740055	11/15/20 12:34	VBG	TAL EDI
Total/NA	Analysis	9012B		1	740267	11/16/20 14:04	HTV	TAL EDI

Client Sample ID: S-2 Lab Sample ID: 460-222216-5

Date Collected: 11/03/20 04:00 Matrix: Solid

Date Received: 11/05/20 18:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			432086	11/16/20 14:33	CF	TAL SAC
SPLP East	Prep	3535			433241	11/18/20 19:40	VP	TAL SAC
SPLP East	Analysis	537 (modified)		1	433144	11/19/20 13:30	JC	TAL SAC
Total/NA	Analysis	9045D		1	740528	11/17/20 13:08	AAP	TAL EDI
Total/NA	Analysis	Lloyd Kahn		1	161381	11/20/20 11:32	RWM	TAL BUR
Total/NA	Analysis	Moisture		1	740236	11/16/20 10:45	OJR	TAL EDI

Client Sample ID: S-2 Lab Sample ID: 460-222216-5

Date Collected: 11/03/20 04:00 Matrix: Solid
Date Received: 11/05/20 18:00 Percent Solids: 46.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			737953	11/06/20 19:11	AVM	TAL ED
Total/NA	Analysis	8260D		1	739694	11/14/20 01:51	AAT	TAL ED
Total/NA	Prep	3546			738890	11/10/20 22:20	AFR	TAL ED
Total/NA	Analysis	8270E		1	739058	11/11/20 22:29	CAZ	TAL ED
Total/NA	Prep	3546			739629	11/13/20 09:54	ZXB	TAL ED
Total/NA	Analysis	8081B		1	740150	11/16/20 10:15	FAM	TAL ED
Total/NA	Prep	3546			739628	11/13/20 09:49	ZXB	TAL ED
Total/NA	Analysis	8082A		1	740270	11/16/20 22:10	DXB	TAL ED
Total/NA	Prep	8151A			738542	11/09/20 20:10	AFR	TAL ED
Total/NA	Analysis	8151A		1	738659	11/10/20 11:41	SAK	TAL ED
Total/NA	Prep	SHAKE			432465	11/17/20 09:15	NSS	TAL SA
Total/NA	Analysis	537 (modified)		1	433288	11/19/20 09:21	MNV	TAL SA
Total/NA	Prep	3050B			739444	11/12/20 16:30	GAE	TAL ED
Total/NA	Analysis	6010D		2	739688	11/13/20 17:59	YZH	TAL ED
Total/NA	Prep	3050B			739444	11/12/20 16:30	GAE	TAL ED
Total/NA	Analysis	6010D		20	739688	11/13/20 18:21	YZH	TAL ED
Total/NA	Prep	7471B			740145	11/16/20 03:07	TJS	TAL ED
Total/NA	Analysis	7471B		1	740233	11/16/20 07:19	TJS	TAL ED

Eurofins TestAmerica, Edison

3

_

6

Ö

10

12

1 1

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: S-2

Date Collected: 11/03/20 04:00
Date Received: 11/05/20 18:00

Matrix: Solid Percent Solids: 46.3

Lab Sample ID: 460-222216-5

Batch Batch Dilution Batch **Prepared** Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab Total/NA 9012B 740055 11/15/20 12:34 TAL EDI Prep 740267 11/16/20 14:04 HTV Total/NA 9012B TAL EDI Analysis 1

Client Sample ID: S-3 Lab Sample ID: 460-222216-6

Date Collected: 11/03/20 15:45 Matrix: Solid

Date Received: 11/05/20 18:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			432086	11/16/20 14:33	CF	TAL SAC
SPLP East	Prep	3535			433241	11/18/20 19:40	VP	TAL SAC
SPLP East	Analysis	537 (modified)		1	433144	11/19/20 13:39	JC	TAL SAC
Total/NA	Analysis	9045D		1	740528	11/17/20 13:09	AAP	TAL EDI
Total/NA	Analysis	Lloyd Kahn		1	161381	11/20/20 11:36	RWM	TAL BUR
Total/NA	Analysis	Moisture		1	740236	11/16/20 10:45	OJR	TAL EDI

Client Sample ID: S-3 Lab Sample ID: 460-222216-6

Date Collected: 11/03/20 15:45

Matrix: Solid
Percent Solido: 61.6

Date Received: 11/05/20 18:00 Percent Solids: 61.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			737953	11/06/20 19:13	AVM	TAL ED
Total/NA	Analysis	8260D		1	739828	11/14/20 15:12	AAT	TAL ED
Total/NA	Prep	3546			738890	11/10/20 22:20	AFR	TAL ED
Total/NA	Analysis	8270E		1	739058	11/11/20 19:45	CAZ	TAL ED
Total/NA	Prep	3546			739629	11/13/20 09:54	ZXB	TAL ED
Total/NA	Analysis	8081B		1	740150	11/16/20 10:29	FAM	TAL ED
Total/NA	Prep	3546			739628	11/13/20 09:49	ZXB	TAL ED
Total/NA	Analysis	8082A		1	740270	11/16/20 21:52	DXB	TAL ED
Total/NA	Prep	8151A			738542	11/09/20 20:10	AFR	TAL ED
Total/NA	Analysis	8151A		1	738659	11/10/20 11:56	SAK	TAL ED
Total/NA	Prep	SHAKE			432465	11/17/20 09:15	NSS	TAL SA
Total/NA	Analysis	537 (modified)		1	433288	11/19/20 09:31	MNV	TAL SA
Total/NA	Prep	3050B			739444	11/12/20 16:30	GAE	TAL ED
Total/NA	Analysis	6010D		2	739688	11/13/20 18:03	YZH	TAL ED
Total/NA	Prep	7471B			740145	11/16/20 03:07	TJS	TAL ED
Total/NA	Analysis	7471B		1	740233	11/16/20 07:21	TJS	TAL ED
Total/NA	Prep	9012B			740055	11/15/20 12:34	VBG	TAL ED
Total/NA	Analysis	9012B		1	740267	11/16/20 14:05	HTV	TAL ED

Client Sample ID: TB Lab Sample ID: 460-222216-7

Date Collected: 11/03/20 10:00 Date Received: 11/05/20 18:00

Dilution Batch Batch Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260D 738942 11/11/20 15:36 CJM TAL EDI

Eurofins TestAmerica, Edison

Page 141 of 157

2

3

5

6

0

11

16

14

16

Matrix: Water

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: EB Lab Sample ID: 460-222216-8

Date Collected: 11/03/20 16:30 Matrix: Water

Date Received: 11/05/20 18:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	739430	11/12/20 21:51	GXY	TAL EDI

Laboratory References:

TAL BUR = Eurofins TestAmerica, Burlington, 530 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990 TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

2

_

9

11

13

14

16

Accreditation/Certification Summary

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Laboratory: Eurofins TestAmerica, Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Connecticut	State	PH-0200	09-30-22
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	12-31-21
Georgia	State	12028 (NJ)	07-01-21
Massachusetts	State	M-NJ312	06-30-21
New Jersey	NELAP	12028	06-30-21
New York	NELAP	11452	02-16-21
Pennsylvania	NELAP	68-00522	02-10-21
Rhode Island	State	LAO00132	12-30-20
USDA	US Federal Programs	P330-20-00244	11-03-23

Laboratory: Eurofins TestAmerica, Burlington

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
ANAB	Dept. of Defense ELAP	L2336	02-25-23
Connecticut	State	PH-0751	09-30-21
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	05-16-21
Florida	NELAP	E87467	01-20-21
Minnesota	NELAP	050-999-436	12-01-20
New Hampshire	NELAP	2006	12-18-20
New Jersey	NELAP	VT972	12-28-20
New York	NELAP	10391	04-01-21
Pennsylvania	NELAP	68-00489	04-30-21
Rhode Island	State	LAO00298	12-30-20
US Fish & Wildlife	US Federal Programs	058448	07-31-21
USDA	US Federal Programs	P330-17-00272	10-30-23
Vermont	State	VT4000	12-30-20
Virginia	NELAP	460209	12-14-20
Wisconsin	State	399133350	12-20-20

Eurofins TestAmerica, Edison

Page 143 of 157

2

3

4

6

8

9

11

12

11

15

16

Accreditation/Certification Summary

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Laboratory: Eurofins TestAmerica, Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
Alaska (UST)	State	17-020	01-20-21	
ANAB	Dept. of Defense ELAP	L2468	01-10-21	
ANAB	Dept. of Energy	L2468.01	01-10-21	
ANAB	ISO/IEC 17025	L2468	01-10-21	
Arizona	State	AZ0708	02-16-21	
Arkansas DEQ	State	88-0691	06-17-21	
California	State	2897	02-21-21	
Colorado	State	CA0004	08-31-21	
Connecticut	State	PH-0691	06-30-21	
Florida	NELAP	E87570	06-30-21	
Georgia	State	4040	01-29-21	
Hawaii	State	<cert no.=""></cert>	01-29-21	
Illinois	NELAP	200060	03-16-21	
Kansas	NELAP	E-10375	10-31-21	
Louisiana	NELAP	01944	06-30-21	
Maine	State	CA00004	04-14-22	
Michigan	State	9947	01-29-21	
Nevada	State	CA000442021-2	11-23-20	
New Hampshire	NELAP	2997	02-07-21	
New Jersey	NELAP	CA005	06-30-21	
New York	NELAP	11666	04-01-21	
Ohio	State	41252	01-21-21	
Oregon	NELAP	4040	01-29-21	
Pennsylvania	NELAP	68-01272	03-31-21	
Texas	NELAP	T104704399-19-13	06-01-21	
US Fish & Wildlife	US Federal Programs	58448	07-31-21	
USDA	US Federal Programs	P330-18-00239	07-31-21	
Utah	NELAP	CA000442021-12	02-28-21	
Vermont	State	VT-4040	04-16-21	
Virginia	NELAP	460278	03-14-21	
Washington	State	C581	05-05-21	
West Virginia (DW)	State	9930C	12-31-20	
Wisconsin	State	998204680	08-31-21	
Wyoming	State Program	8TMS-L	01-28-19 *	

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	TAL EDI
8270E	Semivolatile Organic Compounds (GC/MS)	SW846	TAL EDI
8270E SIM ID	Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)	SW846	TAL EDI
8081B	Organochlorine Pesticides (GC)	SW846	TAL EDI
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL EDI
8151A	Herbicides (GC)	SW846	TAL EDI
537 (modified)	Fluorinated Alkyl Substances	EPA	TAL SAC
6010D	Metals (ICP)	SW846	TAL EDI
6020B	Metals (ICP/MS)	SW846	TAL EDI
7470A	Mercury (CVAA)	SW846	TAL EDI
7471B	Mercury (CVAA)	SW846	TAL EDI
9012B	Cyanide, Total andor Amenable	SW846	TAL EDI
9045D	pH	SW846	TAL EDI
Lloyd Kahn	Organic Carbon, Total (TOC)	EPA	TAL BUR
Moisture	Percent Moisture	EPA	TAL EDI
1312	SPLP Extraction	SW846	TAL SAC
3010A	Preparation, Total Metals	SW846	TAL EDI
3050B	Preparation, Metals	SW846	TAL EDI
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	TAL EDI
3535	Solid-Phase Extraction (SPE)	SW846	TAL SAC
3546	Microwave Extraction	SW846	TAL EDI
5030C	Purge and Trap	SW846	TAL EDI
5035	Closed System Purge and Trap	SW846	TAL EDI
7470A	Preparation, Mercury	SW846	TAL EDI
7471B	Preparation, Mercury	SW846	TAL EDI
8151A	Extraction (Herbicides)	SW846	TAL EDI
9012B	Cyanide, Total and/or Amenable, Distillation	SW846	TAL EDI
SHAKE	Shake Extraction with Ultrasonic Bath Extraction	SW846	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUR = Eurofins TestAmerica, Burlington, 530 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Eurofins TestAmerica, Edison

Job ID: 460-222216-1

3

4

6

9

10

12

13

19

Sample Summary

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
460-222216-1	SW-1	Water	11/03/20 12:00	11/05/20 18:00	
460-222216-2	SW-2	Water	11/03/20 13:30	11/05/20 18:00	
460-222216-3	SW-3	Water	11/03/20 16:00	11/05/20 18:00	
460-222216-4	S-1	Solid	11/03/20 12:30	11/05/20 18:00	
460-222216-5	S-2	Solid	11/03/20 04:00	11/05/20 18:00	
460-222216-6	S-3	Solid	11/03/20 15:45	11/05/20 18:00	
460-222216-7	ТВ	Water	11/03/20 10:00	11/05/20 18:00	
460-222216-8	EB	Water	11/03/20 16:30	11/05/20 18:00	

Job ID: 460-222216-1

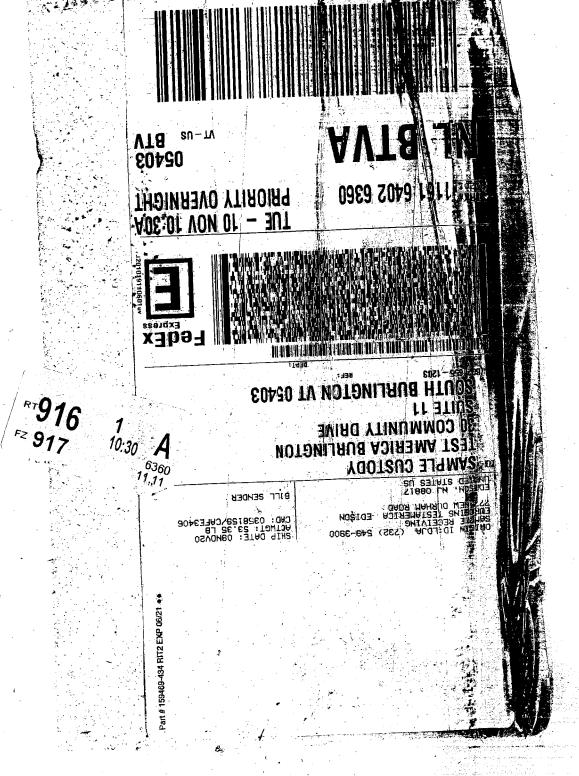
Client Contact Clie	Sample Sa	Address:	Regul	Regulatory Program:	ram:	C MG	NPDES	RCRA	Other:					122216 TestAmerica
Sumple Description Descr	Sample towns the Act of the Act o	Client Contact	Project M.	anager: 1	¥	Sciant	Site				Date:			
Sample identification NICS 190	Sample transferred than 1 to 1 t	Ompany Name: Hep ACCC 41CC	Tel/Email:		1	0	Lab		D	ann.	Carrier:	(
Sample General Date Control	Simple themtication Simple th	ddress: 197 CCTT Stand OC		Analysis Tu	rnaround	Time		00			(288		Sampler:
Sample founditation Sample fo	Sample dendification Name to the control of the co	6	CALEN	DAR DAYS		GING DAYS	П	Con	9	SA LA		9)		For Lab Use Only:
Sample Identification Sample Identification Date Time Graph (NET) (17 M V X X X X X X X X X X X X X X X X X X	Sample identification Sample identification Sample identification Sample identification Date The Control of Sample Specification Sample identification Sample identification Sample identification Date The Control of Sample Specification Sample identification Sample Specification Sample identification Sample Specification Sample Specification Sample Specification Sample identification Sample identificat	e: 208-380-1995	Z	T if different fro.	m Below			5	PIC	T		(S)		Walk-in Client;
Sample S	Sample Identification Sample Sample Sample Sample Sample Sample Sample Sample Identification Sam	ct Name: +3,7 /+		7 1	veeks			0	TE	30		JIC HO	5	
Sample Identification Sample	Sample identification Sample Samp	Pair St Lanz		20	days			DC+	277	30			EV.	Job / SDG No.:
Sample identification NA Caroler Carole	Sample teartification Date Time Govern NICS (200 C) (200 E)				day			NS	7	8	יוכו	-	J .	
11/2 12/0 1/2 1/	17.30 17.3	Sample Identification	Sample Date				Piltered S	TCLV		ब्रञ्च	US24	TOTAL E	nas	Sample Specific Notes:
## 1720 1	1720 1	10	113	iaoo	9	_	10	×	×	X	×			-
CACO C C C C C C C C C	et: 1º lee 2º HCl; 2º HCSO4, 4º HNO3, 5º NaOH 100	¢		130		-		1-	_	=	-			4
ed: 1= lce, 2= HCl; 3= H2SO4, 4=HNO3, 5=NaOH; 6= Other Obool W	of the Leb is to dispose of the sample Pasco Pasc	1		005		-) -)		3	2	->	->			n
ed: 1= lee, 2= HCl; 3= H2SO4, 4=HNO3; 5=NaOH; 6= Other Tolentification: Infact: Yes No	1000 W R X X X X X X X X X X X X X X X X X X	T. T.		1330			20	×	×	×	×	-		5
ed: 1= lee, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Tomortification: Trom a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Intentity as one present is consistent as Company. Intent: I vies I No. Company. Company. Company. Date/Time: Received by: Company. Company. Date/Time: Received by: Company. Date/Time: Received by: Company. Date/Time: Received by: Company. Company. Company. Date/Time: Received by: Company.	The contraction of the contract of the contrac	d		300		1 /6	2	×	×	×	×	×××	X	~
dd: 1= Lee, 2= HCI; 3= H2SO4, 4=HNO3; S=NaOH; 6= Other Ton at listed EPA Hazardous Wassle? Please List any EPA Waste Codes for the sample in the Informations on strict Company. Infact: The Information Company of the Sample Dispose Information Company of the Sample Dispose Information Company. Infact: The Infact Company of Comp	ed: 11 lce, 2= HCI; 3= H2804; 4=HNO3; 5=NaOH; 6= Other Classification: not the lab is to dispose of the sample in the lab is to dispose of the sample Company: Comp	2-5	->	SHE	-	->	-	1	コ	ナッナ	-3	ショマラコ	<u>ا</u>	J
ed: 1= lee, 2= HCi; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Identification: from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the cannot a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the cannot a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the cannot be considered by the configuration of Company Com	ed: 1= loe, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Identification: Infact: Infact	713	-	0001	-	3		×						٦
ed: 1= lee, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Identification: The lab is to dispose of the sample in the and the lab is to dispose of the sample in the and the lab is to dispose of the sample. Innact: Innact: Company: Com	ed: 11 ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Toman sisted EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the constitute of the sample in the list of object of the sample in the list of th	ER	5	4:30	٧	7 7		_ <u>></u>						
ed: 1= Ice, 2= HCj; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Identification: Indentification: In	ed: 1= lce, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Identification: Indentification: Indentifica													anous of the second
ed: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Identification: Iron a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the an it the lab is to dispose of the sample. □ Flammable □ Skn Intent □ Poison B □ Unknown □ Return to Conpany: □ Received by: Company: Comp	ed: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Identification: Inact:													OW
Company:	ed: 1= lce, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Identification: from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the last dispose of the sample. Interest in the last of dispose of the sample. Interest in the last of dispose of the sample. Interest in the last of dispose of the sample. Interest in the last of dispose of the sample in the last of dispose of the sample. Interest in the last of dispose of the sample in the last of dispose of the sample. Interest in the last of dispose of the sample in the last of dispose of the sample. Interest in the last of dispose of the sample in the last of dispose of the sample. Interest in the last of dispose of the sample in the last of dispose of the sample. Interest in the last of dispose of the sample in the last of dispose of the sample. Interest in the last of dispose of the sample in the last of dispose of the sample. Interest in the last of dispose of the sample in the last of dispose of the sample. Interest in the last of dispose of the sample in the last of dispose of the sample. Interest in the last of dispose of the sample in the last of dispose of the sample. Interest in the last of dispose of the sample in the last of dispose of the sample. Interest in the last of dispose of the sample in the last of dispose of the sample. Interest in the last of dispose of the sample. Interest in the last of dispose of the sample. Interest in the last of dispose of the sample. Interest in the last of dispose of the las													
from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the poison B Unknown If the lab is to dispose of the sample. Flammable	from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the contribution on if the lab is to dispose of the sample. Received by: Company: Co	servation Used: 1= lce, 2= HCl; 3= H2SO4; 4=HNCsible Hazard Identification:	3; 5=NaOH;	6= Other				ample Dis	_ ■ Hä					longer than 1 month)
Flammable Skin Irritant Poison B Unknown Company: Comp	Flammable Skin Irritant Poison B Unknown Date/Time: Received by: Cooler Temp. (*O): Obs'd: Corrd: Therm ID No.: Company: Date/Time: Received by: Company: Date/Time: Company: Date/Time: Received by: Company: Date/Time: Date/Time: Company: Date/Time:	any samples from a listed EPA Hazardous Waste? Pmments Section if the lab is to dispose of the sample.	ease List any E	EPA Waste	Codes for t	ne sample i	n the							
Intact: Ves No Custody Seal No.: Company: Compan	Intact: Yes No Custody Seal No.: Cooler Temp. ("C); Obs'd: Corrd: Therm ID No.:	Non-Hazard Flammable Skin Irritant	Poison	8	Unkno	WIL		Return	Do					Months
Intact: Ves No Custody Seal No.: Company: Compan	Company: Com	ecial Instructions/QC Requirements & Comments:							460	-222216	5	stody		
Company: Com	Company: Com	Yes	Custody S	eal No.:				0	cooler Tem			Corr'd:		Therm ID No.:
Company: Date/Time: Received by: Company Date/Time: Received Laboratory by: Company: Edit Date/Time: Second Date/Time: Date	Company: Date/Time: Received by: Company Date/Time: Received by: Company Sale/Time: Received by: Company	1	Company:				E -	Received by		1	0	Ompany:		47
Company Date/Time: Received Laboratory by Company: Ed i Date/Time	Company " Pate/Time: Received Laboratory by M. The Company: Edi Pate/Time 2. 8 Z.R. 11	Inquished by:	Company:			Date/Time:	0	Received by	no de			ompany		Date/Time:
		1 4	Company			Date/Time:	186	Received	Laboratory	Day.	0)			5/20

Date:

H Log
and ph
ture
nperat
t Ten
Receip

いかろん

Job Number:


1	Cooler Temperatures RAW CORRECTED RAW CORRECTED RAW CORRECTED RAW CC CC RAW CC CC RAW CC CC CC CC CC CC RAW CC CC CC CC CC CC RAW CC CC	Cooler #7: Cooler #8: Cooler #9: Sulfide TKN (pH>9) (pH<2)	TOC TOC	CORRECTED &				
Cooler #1: 28° ° ° Cooler #4: Cooler #2: ° ° ° Cooler #5: Cooler #3: ° ° ° Cooler #5: Cooler #6: Anmonia COD Nitrite Metals Hardness Number (pH<2) (pH<2) (pH<2) (pH<2) (pH<2)	EPH C QAN		Cooler #7: Cooler #8: Cooler #9: H>9) (pH<2)	TOC TOC	CORRECTED &			
### Cooler #5: Cooler #5:	EPH G QAM		Cooler #8: Cooler #9: H>9) (pH<2)	D 201	8			
Cooler #6: Coo	EPH o aan		Cooler #9:	D 70C				
Nitrate Nitrate Metals Hardness					υ Q			
(pH<2) (Total Cyanide	Total Phos	Other	Other
				(pH<2)	(pH>12)	(pH<2)		
					トナン			
					70			
					113			
If pH adjustments are required record the information below:	nation below:							
Sample No(s). adjusted:								
Preservative Name/Conc.:	Volume of Preservative used (ml):	servative used	(ml):					
Lot # of Preservative(s):		Expiration Date:	Date:					

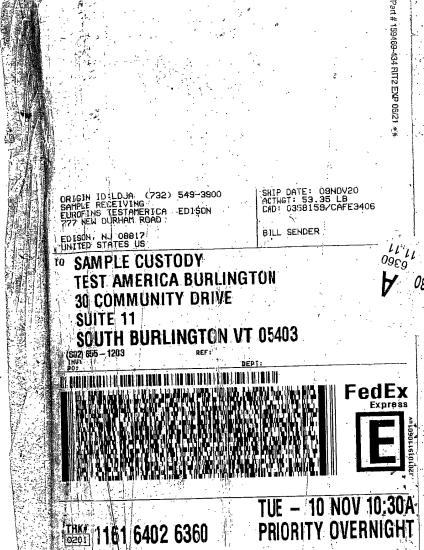
	6
	P
	4
1	5
,1	6

.*	
	,
	•

		E-Mail:		Phone:	Client Confact:
•		Gilmore, Julie L			Client Information (Sub Contract Lab)
	460-222216 Chain of Custody	Lab PM:		Sampler:	
			7		Phone: 732-549-3900 Fax: 732-549-3679
America		Stoay Itooola			Edison, NJ 08817
15 Environment Testing		Chain of Custody Record	Chain of Cu		777 New Durham Road
-					Eurofins TestAmerica, Edison

FINITE: /32-349-3900 Fax: /32-349-30/9					ļ Į		,)			
Client Information (Sub Contract Lab)	Sampler:		Lab PM: Gilmon	Lab PM: Gilmore, Julie L	. 1 .	460-222216 Chain of Custody	n of Custody			
Client Contact: Shipping/Receiving	Phone:		E-Mail: Julie.(E-Mail: Julie.Gilmore@Eurofinset.com	finset.com	New Jersey	ey	Page 1 of 1	<u> </u>	
Company: TestAmerica Laboratories, Inc.				Accreditations Required (See note	uired (See note):			Job #: 460-222216-1	16-1	
Address: 30 Community Drive, Suite 11,	Due Date Requested: 11/17/2020	8.			Analy	lysis Requested		Preservat	ğ	
Ì	TAT Requested (days):	/s):						A - HCL B - NaOH		M - Hexane N - None O - AsNaO?
State, Zip: VT, 05403								D - Nitric Acid E - NaHSO4		P - Na2O4S Q - Na2SO3
Phone: 802-660-1990(Tel) 802-660-1919(Fax)	PO#:		:					100	<u>a:</u>	K - NaZSZO3 S - H2SO4 T - TSP Dodecahydrate
Email:	wo #:			Table 1						U - Acetone V - MCAA
Project Name: DEC - FAIR STREET LANDFILL SITE: 340021	Project #: 46033503			r de la composition della comp				K-EDTA L-EDA	Z - ot W - I	W - pH 4-5 Z - other (specify)
Site:	SSOW#:		,					Other:		
				V., S						
	ર્-	Sar T,	Sample Matrix Type (w=water,	Kahn/						-
Sample Identification - Client ID (Lab ID)	Sample Date	Sample (C=	(C=comp, o=waste/oil,	loyd			-	'n	necial Instructions/Note:	tions/Note:
	1									
S-2 (460-222216-5)	11/3/20	04:00 Eastern	Solid	×				}		
S-3 (460-222216-6)	11/3/20	15:45 Eastern	Solid	×						
							7			
						-				
			, ,							
3										
Note: Since laboratory accreditations are subject to change, Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica.	places the ownership peing analyzed, the sa late, return the signed	of method, analyte mples must be shipp Chain of Custody at	& accreditation complianed back to the Eurofins testing to said complicants.	nce upon out subco TestAmerica labora nce to Eurofins Tes	ntract laboratories. atory or other instructions. tAmerica.	This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently ctions will be provided. Any changes to accreditation status should be brought to Eurofins	shipment is forwarded under chain-of-custody. If the laboratory does not cur provided. Any changes to accreditation status should be brought to Eurofins	ain-of-custody. If t	the laboratory do ₁uld be brought tı	es not currently o Eurofins
Possible Hazard Identification Unconfirmed				Sample Dis	le Disposal (A fee n Return To Client	Sample Disposal (A fee may be assessed if samples are retained longer Return To Client Disposal By Lab Archive For	if samples are re ∨ Lab	tained longer Archive For	than 1 moi	nth) Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 1	ble Rank: 1		Special Instructions/QC		Requirements:	- 1			
Empty Kit Relinquished by:	-	Date:		Time:		Metho	Method of Shipment:			
Relinquished by	Date/Time:	2 1700	Company	Received by:	by.	2	Date/Time:	300 10	Company Company	DANNY SANY
Relinquished by:	Date/Time:	,	Company	Received by:	by:		Date/Time:		Company	pany
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No	Ī			Coaler Te	Cooler Temperature(s) °C and	d Other Remarks:	·			
	Ì			-		į.		ļ	Ver:	Ver: 01/16/2019

Ver: 01/16/2019


P - Na204S Q - Na2SO3 R - Na2S2O3 S - H2SO4 T - TSP Dodecahydrate Environment Testing Vote: Since laboratory accereitations are subject to change, Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently analyzed, the samples must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica attention immediately, If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica. Special Instructions/Note: Z - other (specify) U - Acetone V - MCAA Months W - pH 4-5 Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon Preservation Codes: JS A - HCL
B - NaOH
C - Zn Acetate
D - Nitro Acid
F - NaHSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid 460-222216-1 Page 1 of 1 I - Ice J - DI Water K - EDTA L - EDA Archive Fo Total Number of containers 460-222216 Chain of Custody Disposal By Lab New Jersey **Analysis Requested** Special Instructions/QC Requirements: Accreditations Required (See note) Julie.Gilmore@Eurofinset.com Lab PM: Gilmore, Julie L Chain of Custody Record × × -loyd_Kahn/ Total Carbon Perform MS/MSD (Yes or No) Filtered Sample (Yes or No) (W=water, S=solid, O=waste/oil, Preservation Code: Matrix Solid Solid Sample (C=comp G=grab) Туре Primary Deliverable Rank: 1 Eastern 15:45 Eastern Sample 04:00 FAT Requested (days): Due Date Requested 11/17/2020 Sample Date 11/3/20 11/3/20 Project #: 46033503 SSOW#: Phone: Client Information (Sub Contract Lab) Deliverable Requested: I, II, III, IV, Other (specify) Project Name: DEC - FAIR STREET LANDFILL SITE: 340021 Eurofins TestAmerica, Edison Sample Identification - Client ID (Lab ID) Phone: 732-549-3900 Fax: 732-549-3679 802-660-1990(Tel) 802-660-1919(Fax) Suite 11, Possible Hazard Identification estAmerica Laboratories, Inc. 777 New Durham Road 30 Community Drive, 5-3 (460-222216-6) Shipping/Receiving S-2 (460-222216-5) Edison, NJ 08817 South Burlington Empty Kit Relin Inconfirmed State, Zip: VT, 05403

0.28 Date/Time: lethod of Shipment: Cooler Temperature(s) °C and Other Remarks: Received by: Received by: Sompany 2 5 Date/Time: Custody Seal No.: Custody Seals Intact: △ Yes △ No elinquished by: elinquished by: elinquished by

15

TUE - 10 NOV 10:30A PRIORITY OVERNIGHT

05403 s BTV

Chain of Custody Record

Eurofins TestAmerica, Edison

777 New Durham Road

Edison, NJ 08817 Phone: 732-549-3900 Fax: 732-549-3679

lient Information (Sub Contract Lab)				Ö	Gilmore, Julie L	ieL									460-59964.1	64.1		
lent Contact:	Phone:			E-Mail	fall:	Ġ				Sta	State of Origin	· Unit			Page:	0.7		
hipping/Receiving				Ju	Julie. Gilmore@Eurofinset.com	e@Eur	ofinset	com	1	ž	New Jersey	ey			Page 1 of 1	1.1		
ompany: estAmerica Laboratories, Inc.					Accreditations Required (See note) NELAP - New York	V- New	York	see note	ú.						Job #: 460-222216-1	216-1		
ddress. 80 Riverside Parkway,	Due Date Requested: 11/17/2020	:pe						Ana	Analysis Requested	Seque	sted				Preservation Codes	tion Cod	les:	
ly. /est Sacramento ate, Zip.	TAT Requested (days):	ays):				124000000	40.00								B - NaOH C - Zn Acetate D - Nitric Acid	state	N - None O - AsNaO2 P - Na2O4S	
A, 95605 none: 16-373-5600(Tel) 916-372-1059(Fax)	# Od				- (F - MeOH G - Amchlor	or or	R - Na2S203 S - H2S04 T - TSP Dodershudrate	9
1	#OM					and the same		-		_				-	_	- L	U - Acetone	
oject Name: EC - FAIR STREET LANDFILL SITE; 340021	Project #: 46033503							7.7						meniatr			W - pH 4-5 Z - other (specify)	
10	SSOW#:													nos lo	Other:			
ample Identification - Client (D (Lab ID)	Sample Date	Sample	Sample Type (C=comp, G=grab)	Matrix (waysser, Sesolid, Orwesteroll, BT-Tiester, Andre	Fleid Filtered S WS/M moher	PFC_IDA/Shake_	Proslytes)	PFC_IDA/TOPS_ Pralytes)	(selytes)					Total Number		ecial in	Special Instructions/Note:	
	\ \ \	X	Preserv	Preservation Code:	X			H						X		Λ	V	
W-1 (460-222216-1)	11/3/20	12:00 Fastern		Water		×								2				
W-2 (460-222216-2)	11/3/20	13:30 Fastern		Water		×								2				
W-3 (460-222216-3)	11/3/20	16:00 Eastern		Water		×								2				
-1 (460-222216-4)	11/3/20	12:30 Fastern		Solid		×								-				
-2 (460-222216-5)	11/3/20	04:00 Eastern		Solid		×	×							2				
-3 (460-222216-6)	11/3/20	15:45 Eastern		Solid		×	×	×		H				2				
										+		+						
						H				+		-		100				
screditations are subject to change. Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently accreditation in the State of Origin issed above for analysis/sests/marix being analyzed, the samples must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins bestAmerica afteritor immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica.	America places the ownershi matrix being analyzed, the signer rent to date, return the signer	p of method, a amples must b d Chain of Cur	inalyte & accri e shipped bac itody attesting	of method, analyte & accreditation compliance upon out subcontract lab npies must be shipped back to the Eurolins' FestAmerica laboratory or o Chain of Custody affesting to said complicance to Eurofins TestAmerica	lance upon ns TestAme cance to Eur	out subor rica labor ofins Tex	ontract la alory or stAmeno	boratorie other ins	ructions	ample st	pment i	s forwar Any char	sed unde	r chain-c ccreditat	f-custody If on status sho	the labora	story does not currently ought to Eurofins	2
ossible Hazard Identification					San	id eldi	sposa	(A fee	a may b	e asse	pass	fsamp	les an	retair	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	than 1	month)	
nconfirmed					1 6	Retu	Return To Client	lient		Disp	Disposal By Lab	/ Lab	1	Arc	Archive For		Months	T
eliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 1	able Rank:			Spe	cial Ins	truction	s/ac	Special Instructions/QC Requirements:	ments:								
mpty Kit Relinquished by:		Date;			Time:		(1	1		Metho	Method of Shipment	ment					
)	Date/Time/	20	000	Company	19	Received by	PA	14	h			Date	e(Time.	3	328	1	Company	1

ooler Temperature(s) "C and Other Remarks:

15

equished by:

Custody Seal No.:

Custody Seals Intact:

Date/Time:

Job:

Environment Testing TestAmerica

Sacramento Sample Receiving Notes

11					
46	0-222	2216 F	eld Sh	eet	

Tracking #: 8/42 0456 6371

SO / PO / FO / SAD / 2-Day / Ground / UPS / CDO / Courier GSO / OnTrac / Goldstreak / USPS / Other_____

Use this form to record Sample Custody Seal, Cooler Custody Seal, Temperature & corrected Temperature & other observations.

Therm. ID: Corr. Factor:	(+/-)		_°C	Notes:		_	0
Ice Wet Gel	Othe	Γ	_	-			_
Cooler Custody Seal: 11747	11			/			_
1							_
Cooler ID:							
Temp Observed: 0-6 °C Correct From: Temp Blank □ Sam	ple D	3.6	_°C				
Opening/Processing The Shipment	Yes	No	NA D				-
Cooler compromised/tampered with? Cooler Temperature is acceptable?	600	D	0				
The state of the s	1	1	u	-			
Initials: Date:	117	12)				
Unpacking/Labeling The Samples	Yes	No	NA				_
CoC is complete w/o discrepancies?	D	2					_
Samples compromised/tampered with?	0	K		-	_		-
Sample containers have legible labels?	Q	D	0				_
Sample custody seal?	D		K				
Containers are not broken or leaking?	A						
Sample date/times are provided?	D		D	Language services			
Appropriate containers are used?	9			Trizma Lot #(s):			-
Sample bottles are completely filled?	Q		0				_
Sample preservatives verified?	D		P				
Samples w/o discrepancies?	D						
Zero headspace?*	D	D	200	Login Completion	Voc	No	NA
			16	Receipt Temperature on COC?	Yes	No D	NA D
Alkalinity has no headspace?					X		ч
Alkalinity has no headspace? Perchlorate has headspace? (Methods 314, 331, 6850)	D		Ø	Samples received within hold time?	R		
Perchlorate has headspace?	0	0	Ø D	Samples received within hold time? NCM Filed? Log Release checked in TALS?	D. R. O	0	D R

I/TACORPICORPIQAIQA_FACILITIESISACRAMENTO-QAIDOCUMENT-MANAGEMENTIFORMSIQA-812 SAMPLE RECEIVING NOTES.DOC

OA-812 TGT 6/11/2020

Job Number: 460-222216-1

Login Number: 222216 List Source: Eurofins TestAmerica, Edison

List Number: 1

Creator: Meyers, Gary

Creator. Meyers, Gary		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

N/A

Residual Chlorine Checked.

Client: New York State D.E.C.

Job Number: 460-222216-1

Login Number: 222216

List Number: 3

Creator: Khudaier, Zahraa

List Source: Eurofins TestAmerica, Burlington

List Creation: 11/11/20 03:32 PM

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td>Lab does not accept radioactive samples.</td>	True	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	1134282
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	6.5°C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	N/A	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

N/A

Residual Chlorine Checked.

Client: New York State D.E.C.

Job Number: 460-222216-1

Login Number: 222216

List Number: 2

Creator: Nelson, Kym D

List Source: Eurofins TestAmerica, Sacramento

List Creation: 11/07/20 12:52 PM

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	1134271
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.6c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

5

6

8

10

12

14

16

ANALYTICAL REPORT

Eurofins TestAmerica, Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

Laboratory Job ID: 460-222961-1

Client Project/Site: DEC - FAIR STREET LANDFILL SITE:

340021

For:

New York State D.E.C. 625 Broadway Division of Environmental Remediation Albany, New York 12233-7014

Attn: Anthony J Bollasina

gullethmore

Authorized for release by: 3/30/2021 4:42:10 PM

Julie Gilmore, Project Manager I (484)685-0865

Julie.Gilmore@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	5
Detection Summary	12
Client Sample Results	17
Surrogate Summary	61
Isotope Dilution Summary	65
QC Sample Results	69
QC Association Summary	129
Lab Chronicle	138
Certification Summary	143
Method Summary	145
Sample Summary	146
Chain of Custody	147
Field Data Sheets	154
Receipt Checklists	155

3

4

6

R

46

11

13

14

16

Definitions/Glossary

Client: New York State D.E.C. Job ID: 460-222961-1 Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Qualifiers		
GC/MS VOA		

Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
F1	MS and/or MSD recovery exceeds control limits.
Н	Sample was prepped or analyzed beyond the specified holding time
H3	Sample was received and analyzed past holding time.
U	Indicates the analyte was analyzed for but not detected.

GC/MS VOA TICs

Qualifier	Qualifier Description
Н	Sample was prepped or analyzed beyond the specified holding time
H3	Sample was received and analyzed past holding time.

escription ED is outside acceptance limits. eded calibration range.
eded calibration range.
·
ACD recovery evenede control limits
MSD recovery exceeds control limits.
PD exceeds control limits
ss than the RL but greater than or equal to the MDL and the concentration is an approximate value.
e analyte was analyzed for but not detected.
ecovery exceeds control limits

X	Surrogate recovery exceeds control limits	
LCMS		
Qualifier	Qualifier Description	
*	LCS or LCSD is outside acceptance limits.	
*5	Isotope dilution analyte is outside acceptance limits.	
В	Compound was found in the blank and sample.	
Н	Sample was prepped or analyzed beyond the specified holding time	
1	Value is EMPC (estimated maximum possible concentration).	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	

Metals

Qualifier

Qualifier Description

Indicates the analyte was analyzed for but not detected.

Indicates the analyte was analyzed for but not detected.

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
U	Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
U	Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)

Eurofins TestAmerica, Edison

Page 3 of 158 3/30/2021

Definitions/Glossary

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Glossary (Continued)

TEF TEQ

TNTC

Abbreviation	These commonly used abbreviations may or may not be present in this report.
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Job ID: 460-222961-1

Laboratory: Eurofins TestAmerica, Edison

Narrative

CASE NARRATIVE

Client: New York State D.E.C.

Project: DEC - FAIR STREET LANDFILL SITE: 340021

Report Number: 460-222961-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 11/16/2020; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

1,2-Dichloroethane failed the recovery criteria high for LCS 460-742890/4. Refer to the QC report for details.

VOLATILE ORGANIC COMPOUNDS (GC/MS)

Sample S-4 (460-222961-9) was analyzed for Volatile Organic Compounds (GC/MS) in accordance with EPA SW-846 Method 8260D. The samples were prepared on 11/17/2020 and analyzed on 11/27/2020.

The laboratory control sample (LCS) and/or laboratory control sample duplicate (LCSD) for analytical batch 460-741805 recovered outside control limits for the following analytes: 2-Hexanone and 4-Methyl-2-pentanone (MIBK). These analytes were biased high in the LCS/LCSD and were not detected in the associated samples; therefore, the data have been reported.

The continuing calibration verification (CCV) associated with batch 460-742890 recovered above the upper control limit for 1,2-Dichloroethane. The samples associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported.

The laboratory control sample (LCS) for analytical batch 460-742890 recovered outside control limits for the following analyte: 1,2-Dichloroethane. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported.

No difficulties were encountered during the Volatiles analysis.

All quality control parameters were within the acceptance limits.

4

5

6

7

8

10

4.0

13

-

16

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Job ID: 460-222961-1 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

VOLATILE ORGANIC COMPOUNDS (GC/MS)

Samples MW-1A (460-222961-1), MW-2 (460-222961-2), MW-3 (460-222961-3), MW-5 (460-222961-4), DUP (460-222961-6) and SW-4 (460-222961-8) were analyzed for Volatile Organic Compounds (GC/MS) in accordance with EPA SW-846 Method 8260D. The samples were analyzed on 11/22/2020.

2-Hexanone and 4-Methyl-2-pentanone (MIBK) failed the recovery criteria high for LCS 460-741805/3. 4-Methyl-2-pentanone (MIBK) failed the recovery criteria high for LCSD 460-741805/4. Refer to the QC report for details.

4-Methyl-2-pentanone (MIBK) failed the recovery criteria high for the MS of sample MW-5MS (460-222961-4) in batch 460-741805.

Refer to the QC report for details.

No other difficulties were encountered during the Volatiles analysis.

All other quality control parameters were within the acceptance limits.

SEMIVOLATILE ORGANIC COMPOUNDS (GC/MS)

Sample S-4 (460-222961-9) was analyzed for semivolatile organic compounds (GC/MS) in accordance with EPA SW-846 Methods 8270E. The samples were prepared on 11/18/2020 and analyzed on 11/19/2020.

The continuing calibration verification (CCV) analyzed in batch 460-740997 was outside the method criteria for the following analyte(s): Indeno[1,2,3-cd]pyrene, Benzo[a]pyrene, Benzaldehyde and Dibenz(a,h)anthracene. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

The laboratory control sample (LCS) associated with preparation batch 460-740823 and analytical batch 460-740997 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

The continuing calibration verification (CCV) analyzed in batch 460-741238 was outside the method criteria for the following analyte(s): Atrazine, Indeno[1,2,3-cd]pyrene, 2,2'-oxybis[1-chloropropane], Benzo[g,h,i]perylene, 2,4-Dinitrotoluene, 4,6-Dinitro-2-methylphenol, Benzaldehyde and Dibenz(a,h)anthracene. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 460-741112 and analytical batch 460-741238 recovered outside control limits for the following analytes: Atrazine. This analyte was biased high in the LCS/LCSD and was not detected in the associated samples; therefore, the data have been reported.

Surrogate recovery for the following sample was outside the upper control limit: MW-2 (460-222961-2). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

Atrazine, Benzaldehyde and Benzo[a]pyrene failed the recovery criteria high for LCS 460-740823/2-A. Refer to the QC report for details.

Several analytes failed the recovery criteria low for the MS of sample 460-222916-1 in batch 460-740997.

Several analytes failed the recovery criteria low for the MSD of sample 460-222916-1 in batch 460-740997. Benzaldehyde exceeded the RPD limit.

Refer to the QC report for details.

No other difficulties were encountered during the semivolatiles analysis.

All other quality control parameters were within the acceptance limits.

4

O

O

0

9

10

12

13

15

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Job ID: 460-222961-1 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

SEMIVOLATILE ORGANIC COMPOUNDS (GC/MS)

Samples MW-1A (460-222961-1), MW-2 (460-222961-2), MW-3 (460-222961-3), MW-5 (460-222961-4), DUP (460-222961-6) and SW-4 (460-222961-8) were analyzed for semivolatile organic compounds (GC/MS) in accordance with EPA SW-846 Methods 8270E. The samples were prepared on 11/19/2020 and analyzed on 11/20/2020.

2,4,6-Tribromophenol (Surr), 2-Fluorophenol (Surr) and Phenol-d5 (Surr) failed the surrogate recovery criteria high for MW-2 (460-222961-2). Refer to the QC report for details.

Atrazine failed the recovery criteria high for LCS 460-741112/2-A. Atrazine failed the recovery criteria high for LCSD 460-741112/3-A. Refer to the QC report for details.

2,4-Dinitrotoluene, Atrazine and Benzo[a]pyrene failed the recovery criteria high for the MS of sample MW-5MS (460-222961-4) in batch 460-741238.

Several analytes failed the recovery criteria high for the MSD of sample MW-5MSD (460-222961-4) in batch 460-741238. 3,3'-Dichlorobenzidine and 4-Chloroaniline exceeded the RPD limit.

Refer to the QC report for details.

No other difficulties were encountered during the semivolatiles analysis.

All other quality control parameters were within the acceptance limits.

SEMIVOLATILE ORGANIC COMPOUNDS - SELECTED ION MODE (SIM) - ISOTOPE DILUTION - 1,4 DIOXANE

Samples MW-1A (460-222961-1), MW-2 (460-222961-2), MW-3 (460-222961-3), MW-5 (460-222961-4), DUP (460-222961-6) and SW-4 (460-222961-8) were analyzed for semivolatile organic compounds - Selected Ion Mode (SIM) - Isotope Dilution - 1,4 Dioxane in accordance with EPA SW-846 Method 8270E SIM 1,4Dioxane. The samples were prepared on 11/18/2020 and analyzed on 11/19/2020.

No difficulties were encountered during the 1,4 Dioxane analysis.

All quality control parameters were within the acceptance limits.

PESTICIDES

Sample S-4 (460-222961-9) was analyzed for Pesticides in accordance with EPA SW-846 Methods 8081B. The samples were prepared on 11/19/2020 and analyzed on 11/20/2020.

No difficulties were encountered during the Pesticides analysis.

All quality control parameters were within the acceptance limits.

PESTICIDES 1 2 2

Samples MW-1A (460-222961-1), MW-2 (460-222961-2), MW-3 (460-222961-3), MW-5 (460-222961-4), DUP (460-222961-6) and SW-4 (460-222961-8) were analyzed for Pesticides in accordance with EPA SW-846 Methods 8081B. The samples were prepared on 11/18/2020 and analyzed on 11/19/2020.

No difficulties were encountered during the pesticides analysis.

All quality control parameters were within the acceptance limits.

POLYCHLORINATED BIPHENYLS

Sample S-4 (460-222961-9) was analyzed for polychlorinated biphenyls in accordance with EPA SW-846 Method 8082A. The samples were prepared on 11/19/2020 and analyzed on 11/20/2020.

Tetrachloro-m-xylene surrogate recovery for this sample was outside control limits but Decachlorobiphenyl surrogate recovery within control limits; therefore the data have been qualified and reported.SW-4 (460-222961-8)

3

4

5

6

9

11

40

14

16

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Job ID: 460-222961-1 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

The continuing calibration verification (CCVIS) for AR1016 peak # 6 was outside control limits on the primary column. (CCVIS 460-741324/2)

No difficulties were encountered during the PCBs analysis.

All quality control parameters were within the acceptance limits.

POLYCHLORINATED BIPHENYLS (PCBS)

Samples MW-1A (460-222961-1), MW-2 (460-222961-2), MW-3 (460-222961-3), MW-5 (460-222961-4), DUP (460-222961-6) and SW-4 (460-222961-8) were analyzed for polychlorinated biphenyls (PCBs) in accordance with EPA SW-846 Method 8082A. The samples were prepared on 11/18/2020 and analyzed on 11/18/2020 and 11/19/2020.

Tetrachloro-m-xylene failed the surrogate recovery criteria low for SW-4 (460-222961-8). Tetrachloro-m-xylene failed the surrogate recovery criteria low for LCS 460-740863/2-A. Tetrachloro-m-xylene failed the surrogate recovery criteria low for LCSD 460-740863/3-A. Refer to the QC report for details.

No other difficulties were encountered during the PCBs analysis.

All other quality control parameters were within the acceptance limits.

CHLORINATED HERBICIDES

Sample S-4 (460-222961-9) was analyzed for chlorinated herbicides in accordance with EPA SW-846 Method 8151A. The samples were prepared on 11/17/2020 and analyzed on 11/18/2020.

No difficulties were encountered during the herbicides analysis.

All quality control parameters were within the acceptance limits.

CHLORINATED HERBICIDES

Samples MW-1A (460-222961-1), MW-2 (460-222961-2), MW-3 (460-222961-3), MW-5 (460-222961-4), DUP (460-222961-6) and SW-4 (460-222961-8) were analyzed for chlorinated herbicides in accordance with EPA SW-846 Method 8151A. The samples were prepared on 11/17/2020 and analyzed on 11/18/2020.

No difficulties were encountered during the herbicides analysis.

All quality control parameters were within the acceptance limits.

PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS)

Sample S-4 (460-222961-9) was analyzed for Per- and Polyfluoroalkyl Substances (PFAS) in accordance with PFC. The samples were prepared on 11/24/2020 and 11/30/2020 and analyzed on 11/28/2020 and 12/01/2020.

Several Isotope Dilution Analyte (IDA) recoveries associated with the following samples are below the method recommended limit: (LCS 320-435252/2-A) and (MB 320-435252/1-A). The associated samples were re-prepared outside holding time. Both sets of data have been reported. Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the samples.

M2-6:2 FTS and M2-8:2 FTS Isotope Dilution Analyte (IDA) recoveries are above the method recommended limit for the following sample: S-4 (460-222961-9), (460-222961-F-9-C MS) and (460-222961-F-9-D MSD). Quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated IDA recoveries.

13C4 PFBA Isotope Dilution Analyte (IDA) recovery associated with the following sample is below the method recommended limit: (460-222961-F-9-C MS). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample.

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Job ID: 460-222961-1 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

Perfluorooctanesulfonic acid (PFOS) was detected in method blank MB 320-435252/1-A at a level exceeding the reporting limit. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Perfluorobutanoic acid (PFBA) was detected in method blank MB 320-435252/1-A at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA) failed the recovery criteria low for LCS 320-435252/2-A. Perfluorooctanesulfonic acid (PFOS) failed the recovery criteria high. Refer to the QC report for details.

6:2 FTS and Perfluorooctanesulfonic acid (PFOS) failed the recovery criteria low for the MS of sample 320-66868-2 in batch 320-437343. Perfluorohexanoic acid (PFHxA) failed the recovery criteria high.

6:2 FTS, Perfluorohexanoic acid (PFHxA), Perfluorooctanesulfonic acid (PFOS) and Perfluoropentanoic acid (PFPeA) failed the recovery criteria low for the MSD of sample 320-66868-2 in batch 320-437343.

Refer to the QC report for details.

No other difficulties were encountered during the PFAS analysis.

All other quality control parameters were within the acceptance limits.

PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS)

Samples MW-1A (460-222961-1), MW-2 (460-222961-2), MW-3 (460-222961-3), MW-5 (460-222961-4), MW-6 (460-222961-5), DUP (460-222961-6), EB-11132020 (460-222961-7) and SW-4 (460-222961-8) were analyzed for Per- and Polyfluoroalkyl Substances (PFAS) in accordance with PFC. The samples were prepared on 11/20/2020 and analyzed on 11/20/2020 and 11/23/2020.

Samples MW-2 (460-222961-2)[2X] and MW-3 (460-222961-3)[2X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No difficulties were encountered during the PFAS analysis.

All quality control parameters were within the acceptance limits.

TOTAL METALS (ICP)

Sample S-4 (460-222961-9) was analyzed for Total Metals (ICP) in accordance with EPA SW-846 Methods 6010D. The samples were prepared on 11/18/2020 and analyzed on 11/18/2020 and 11/19/2020.

Antimony, Chromium and Nickel failed the recovery criteria low for the MS of sample 460-222984-1 in batch 460-740839. Aluminum, Calcium, Iron and Manganese failed the recovery criteria high.

Refer to the QC report for details.

Several analytes exceeded the RPD limit for the duplicate of sample 460-222984-1. Refer to the QC report for details.

No other difficulties were encountered during the Total Metals (ICP) analysis.

All other quality control parameters were within the acceptance limits.

METALS

Samples MW-1A (460-222961-1), MW-2 (460-222961-2), MW-3 (460-222961-3), MW-5 (460-222961-4), DUP (460-222961-6) and SW-4 (460-222961-8) were analyzed for Metals in accordance with 6010D. The samples were prepared on 11/22/2020 and analyzed on 11/23/2020.

Iron failed the recovery criteria high for the MS of sample MW-5MS (460-222961-4) in batch 460-742067.

4

6

7

10

12

4

10

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Job ID: 460-222961-1 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

Refer to the QC report for details.

for the duplicate of sample MW-5DU (460-222961-4). Refer to the QC report for details.

No other difficulties were encountered during the Metals analysis.

All other quality control parameters were within the acceptance limits.

TOTAL MERCURY

Samples MW-1A (460-222961-1), MW-2 (460-222961-2), MW-3 (460-222961-3), MW-5 (460-222961-4), DUP (460-222961-6) and SW-4 (460-222961-8) were analyzed for total mercury in accordance with EPA SW-846 Methods 7470A. The samples were prepared and analyzed on 11/24/2020 and 11/25/2020.

No difficulties were encountered during the Hg analysis.

All quality control parameters were within the acceptance limits.

TOTAL MERCURY

Sample S-4 (460-222961-9) was analyzed for total mercury in accordance with EPA SW-846 Method 7471B. The samples were prepared and analyzed on 11/24/2020.

No difficulties were encountered during the Hg analysis.

All quality control parameters were within the acceptance limits.

TOTAL CYANIDE

Sample S-4 (460-222961-9) was analyzed for total cyanide in accordance with EPA SW-846 Method 9012B. The samples were prepared and analyzed on 11/27/2020.

Cyanide, Total failed the recovery criteria high for the MS of sample 460-223243-1 in batch 460-742995.

Cyanide, Total failed the recovery criteria high for the MSD of sample 460-223243-1 in batch 460-742995.

Refer to the QC report for details.

No other difficulties were encountered during the cyanide analysis.

All other quality control parameters were within the acceptance limits.

TOTAL CYANIDE

Samples MW-1A (460-222961-1), MW-2 (460-222961-2), MW-3 (460-222961-3), MW-5 (460-222961-4), DUP (460-222961-6) and SW-4 (460-222961-8) were analyzed for total cyanide in accordance with EPA SW-846 Method 9012B. The samples were prepared and analyzed on 11/27/2020.

Cyanide, Total failed the recovery criteria high for the MS of sample MW-5MS (460-222961-4) in batch 460-742995.

Cyanide, Total failed the recovery criteria high for the MSD of sample MW-5MSD (460-222961-4) in batch 460-742995.

Refer to the QC report for details.

The presence of the '4' qualifier in the data indicates analytes where the concentration in the unspiked sample exceeded four times the spiking amount.

Refer to the QC report for details.

3

4

5

6

9

10

12

15

4 E

16

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Job ID: 460-222961-1 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

No other difficulties were encountered during the cyanide analysis.

All other quality control parameters were within the acceptance limits.

PERCENT SOLIDS/PERCENT MOISTURE

Sample S-4 (460-222961-9) was analyzed for percent solids/percent moisture in accordance with EPA Method CLPISM01.2 (Exhibit D) Modified. The samples were analyzed on 11/25/2020.

No difficulties were encountered during the %solids/moisture analysis.

All quality control parameters were within the acceptance limits.

ORGANIC PREP

Method SHAKE: The following samples were yellow after final volume/extraction: S-4 (460-222961-9), (460-222961-F-9 MS) and (460-222961-F-9 MSD).

preparation batch 320-435252 Method: PFC_IDA/Shake_Bath_14D

Matrix: Solid

Method SHAKE: The following sample was re-prepared outside of preparation holding time due to low % recovery for several IDA in MB and LCS: S-4 (460-222961-9).

Method SHAKE: The following sample was yellow prior to elution: S-4 (460-222961-9).

preparation batch 320-436644 Method: Shake_Bath_14D

Matrix: Soil

Method SHAKE: The following samples are observed to be yellow color after final volume: S-4 (460-222961-9).

Method: Shake_Bath_14D

Matrix: Solid

preparation batch 320-436644

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

_

-

6

7

Ö

10

1 1

13

16

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: MW-1A

Lab Sample ID: 460-222961-1

Job ID: 460-222961-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	0.87	J	4.2	0.60	ng/L		537 (modified)	Total/NA
Aluminum	14900		200	76.9	ug/L	1	6010D	Total/NA
Barium	228		200	13.2	ug/L	1	6010D	Total/NA
Calcium	16500		5000	152	ug/L	1	6010D	Total/NA
Cobalt	23.0	J	50.0	2.0	ug/L	1	6010D	Total/NA
Chromium	36.8		10.0	5.0	ug/L	1	6010D	Total/NA
Copper	104		25.0	6.9	ug/L	1	6010D	Total/NA
Iron	27700		150	80.8	ug/L	1	6010D	Total/NA
Potassium	7780		5000	142	ug/L	1	6010D	Total/NA
Magnesium	8740		5000	142	ug/L	1	6010D	Total/NA
Manganese	464		15.0	0.76	ug/L	1	6010D	Total/NA
Sodium	31800		5000	83.8	ug/L	1	6010D	Total/NA
Nickel	42.4		40.0	4.1	ug/L	1	6010D	Total/NA
Lead	14.0		10.0	2.4	ug/L	1	6010D	Total/NA
Vanadium	81.5		50.0	7.2	ug/L	1	6010D	Total/NA
Zinc	89.7		30.0	1.2	ug/L	1	6010D	Total/NA

Client Sample ID: MW-2

Lab Sample ID: 460-222961-2

- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	25		4.2	0.96	ng/L	1	_	537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	52		1.7	0.92	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	46		1.7	0.70	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	55		1.7	0.39	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	11		1.7	0.49	ng/L	1		537 (modified)	Total/NA
Perfluorodecanoic acid (PFDA)	1.9		1.7	0.39	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	6.5		1.7	0.53	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	80		1.7	0.57	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanesulfonic Acid (PFHpS)	7.3		1.7	0.33	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	150		1.7	0.74	ng/L	1		537 (modified)	Total/NA
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	1.2	J	4.2	0.79	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA) - DL	550		3.4	1.7	ng/L	2		537 (modified)	Total/NA
Aluminum	500		200	76.9	ug/L	1		6010D	Total/NA
Barium	88.1	J	200	13.2	ug/L	1		6010D	Total/NA
Calcium	283000		5000	152	ug/L	1		6010D	Total/NA
Iron	483		150	80.8	ug/L	1		6010D	Total/NA
Potassium	15300		5000	142	ug/L	1		6010D	Total/NA
Magnesium	67100		5000	142	ug/L	1		6010D	Total/NA
Manganese	88.8		15.0	0.76	ug/L	1		6010D	Total/NA
Sodium	20300		5000	83.8	ug/L	1		6010D	Total/NA
Zinc	3.7	J	30.0	1.2	ug/L	1		6010D	Total/NA
Cyanide, Total	0.0053	J	0.010	0.0040	mg/L	1		9012B	Total/NA

Client Sample ID: MW-3

Lab Sample ID: 460-222961-3

Analyte	Result Q	Qualifier F	L MDL	Unit	Dil Fac	D	Method	Prep Type
1,4-Dioxane	0.20	0.2	0.016	ug/L	1	_	8270E SIM ID	Total/NA
Perfluorobutanoic acid (PFBA)	56	4	7 1.1	ng/L	1		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	96	1	9 1.0	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	100	1	9 0.78	ng/L	1		537 (modified)	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Edison

3/30/2021

Page 12 of 158

2

3

F

7

9

10

12

14

4-

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: MW-3 (Continued)

Lab Sample ID: 460-222961-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluoroheptanoic acid (PFHpA)	87		1.9	0.43	ng/L		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	6.0		1.9	0.55	ng/L	1	537 (modified)	Total/NA
Perfluorodecanoic acid (PFDA)	1.9		1.9	0.43	ng/L	1	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	8.6		1.9	0.59	ng/L	1	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	59		1.9	0.63	ng/L	1	537 (modified)	Total/NA
Perfluoroheptanesulfonic Acid (PFHpS)	3.1		1.9	0.37	ng/L	1	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	69		1.9	0.82	ng/L	1	537 (modified)	Total/NA
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	0.88	J	4.7	0.88	ng/L	1	537 (modified)	Total/NA
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	25		4.7	0.68	ng/L	1	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA) - DL	690		3.8	1.8	ng/L	2	537 (modified)	Total/NA
Aluminum	425		200	76.9	ug/L	1	6010D	Total/NA
Barium	217		200	13.2	ug/L	1	6010D	Total/NA
Calcium	253000		5000	152	ug/L	1	6010D	Total/NA
Cadmium	0.66	J	4.0	0.33	ug/L	1	6010D	Total/NA
Cobalt	3.6	J	50.0	2.0	ug/L	1	6010D	Total/NA
Copper	39.5		25.0	6.9	ug/L	1	6010D	Total/NA
Iron	540		150	80.8	ug/L	1	6010D	Total/NA
Potassium	14000		5000	142	ug/L	1	6010D	Total/NA
Magnesium	91100		5000	142	ug/L	1	6010D	Total/NA
Manganese	6630		15.0	0.76	ug/L	1	6010D	Total/NA
Sodium	19400		5000	83.8	ug/L	1	6010D	Total/NA
Nickel	13.4	J	40.0	4.1	ug/L	1	6010D	Total/NA
Lead	2.5	J	10.0	2.4	ug/L	1	6010D	Total/NA
Antimony	24.8		20.0	3.7	ug/L	1	6010D	Total/NA
Thallium	26.3		20.0	4.1	ug/L	1	6010D	Total/NA
Zinc	28.3	J	30.0	1.2	ug/L	1	6010D	Total/NA

Client Sample ID: MW-5

Lab Sample ID: 460-222961-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	6.1		4.5	1.0	ng/L	1	_	537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	13		1.8	0.98	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	12		1.8	0.76	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	12		1.8	0.42	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	25		1.8	0.89	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	2.2		1.8	0.53	ng/L	1		537 (modified)	Total/NA
Perfluorodecanoic acid (PFDA)	2.1		1.8	0.42	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.87	J	1.8	0.57	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	3.5		1.8	0.61	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	20		1.8	0.79	ng/L	1		537 (modified)	Total/NA
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	0.78	J	4.5	0.72	ng/L	1		537 (modified)	Total/NA
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	1.4	J	4.5	0.85	ng/L	1		537 (modified)	Total/NA
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	4.2	J	4.5	0.66	ng/L	1		537 (modified)	Total/NA
Aluminum	2390		200	76.9	ug/L	1		6010D	Total/NA
Barium	109	J	200	13.2	ug/L	1		6010D	Total/NA
Calcium	67200		5000	152	ug/L	1		6010D	Total/NA
Cobalt	4.7	J	50.0	2.0	ug/L	1		6010D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Edison

3/30/2021

5

8

9

11

13

15

16

1/

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: MW-5 (Continued)

Lab Sample ID: 460-222961-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	6.2	J	10.0	5.0	ug/L	1	_	6010D	Total/NA
Iron	3070	F1	150	80.8	ug/L	1		6010D	Total/NA
Potassium	11600		5000	142	ug/L	1		6010D	Total/NA
Magnesium	7640		5000	142	ug/L	1		6010D	Total/NA
Manganese	420		15.0	0.76	ug/L	1		6010D	Total/NA
Sodium	5130		5000	83.8	ug/L	1		6010D	Total/NA
Nickel	7.3	J	40.0	4.1	ug/L	1		6010D	Total/NA
Lead	6.9	J	10.0	2.4	ug/L	1		6010D	Total/NA
Zinc	13.5	J	30.0	1.2	ug/L	1		6010D	Total/NA

Client Sample ID: MW-6

Lab Sample ID: 460-222961-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	2.6	J	4.2	0.96	ng/L		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	2.1		1.7	0.92	ng/L	1	537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	2.6		1.7	0.70	ng/L	1	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	4.5		1.7	0.39	ng/L	1	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	35		1.7	0.83	ng/L	1	537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	2.0		1.7	0.49	ng/L	1	537 (modified)	Total/NA
Perfluorodecanoic acid (PFDA)	0.51	J	1.7	0.39	ng/L	1	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.56	J	1.7	0.53	ng/L	1	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	3.9		1.7	0.57	ng/L	1	537 (modified)	Total/NA
Perfluoroheptanesulfonic Acid (PFHpS)	0.90	J	1.7	0.33	ng/L	1	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	23	1	1.7	0.74	ng/L	1	537 (modified)	Total/NA
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	0.97	J	4.2	0.67	ng/L	1	537 (modified)	Total/NA
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	0.62	J	4.2	0.61	ng/L	1	537 (modified)	Total/NA

Client Sample ID: DUP

Lab Sample ID: 460-222961-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	1.2	J	4.5	0.64	ng/L	1	_	537 (modified)	Total/NA
Aluminum	16700		200	76.9	ug/L	1		6010D	Total/NA
Barium	271		200	13.2	ug/L	1		6010D	Total/NA
Calcium	18700		5000	152	ug/L	1		6010D	Total/NA
Cobalt	26.1	J	50.0	2.0	ug/L	1		6010D	Total/NA
Chromium	44.5		10.0	5.0	ug/L	1		6010D	Total/NA
Copper	116		25.0	6.9	ug/L	1		6010D	Total/NA
Iron	31800		150	80.8	ug/L	1		6010D	Total/NA
Potassium	8870		5000	142	ug/L	1		6010D	Total/NA
Magnesium	10100		5000	142	ug/L	1		6010D	Total/NA
Manganese	522		15.0	0.76	ug/L	1		6010D	Total/NA
Sodium	4730	J	5000	83.8	ug/L	1		6010D	Total/NA
Nickel	49.7		40.0	4.1	ug/L	1		6010D	Total/NA
Lead	13.7		10.0	2.4	ug/L	1		6010D	Total/NA
Vanadium	89.4		50.0	7.2	ug/L	1		6010D	Total/NA
Zinc	136		30.0	1.2	ug/L	1		6010D	Total/NA

Client Sample ID: EB-11132020

Lab Sample ID: 460-222961-7

No Detections.

This Detection Summary does not include radiochemical test results.

Page 14 of 158

Detection Summary

Client: New York State D.E.C.

Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: SW-4

Lab Sample ID: 460-222961-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	11		4.2	0.96	ng/L		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	17		1.7	0.92	ng/L	1	537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	15		1.7	0.70	ng/L	1	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	13		1.7	0.39	ng/L	1	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	120		1.7	0.83	ng/L	1	537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	2.0		1.7	0.49	ng/L	1	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	2.5		1.7	0.53	ng/L	1	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	13		1.7	0.57	ng/L	1	537 (modified)	Total/NA
Perfluoroheptanesulfonic Acid (PFHpS)	0.72	J	1.7	0.33	ng/L	1	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	15		1.7	0.74	ng/L	1	537 (modified)	Total/NA
Barium	51.3	J	200	13.2	ug/L	1	6010D	Total/NA
Calcium	64100		5000	152	ug/L	1	6010D	Total/NA
Iron	284		150	80.8	ug/L	1	6010D	Total/NA
Potassium	6290		5000	142	ug/L	1	6010D	Total/NA
Magnesium	18200		5000	142	ug/L	1	6010D	Total/NA
Manganese	258		15.0	0.76	ug/L	1	6010D	Total/NA
Sodium	19000		5000	83.8	ug/L	1	6010D	Total/NA
Zinc	5.3	J	30.0	1.2	ug/L	1	6010D	Total/NA

Client Sample ID: S-4

Lab Sample ID: 460-222961-9

							.p.o .pcc	
Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
3000	H H3	2400	380	ug/Kg	50	☼	8260D	Total/NA
180	J	960	36	ug/Kg	1	₩	8270E	Total/NA
84	J	960	17	ug/Kg	1	₩	8270E	Total/NA
35	J	960	34	ug/Kg	1	₩	8270E	Total/NA
44	J	96	34	ug/Kg	1	₩	8270E	Total/NA
28	J	960	16	ug/Kg	1	₩	8270E	Total/NA
130	J	960	47	ug/Kg	1	₩	8270E	Total/NA
730	J *	960	160	ug/Kg	1	₩	8270E	Total/NA
0.39	JB	0.55	0.077	ug/Kg	1	₩	537 (modified)	Total/NA
0.24	J	0.55	0.21	ug/Kg	1	₩	537 (modified)	Total/NA
0.22	J	0.55	0.12	ug/Kg	1	₩	537 (modified)	Total/NA
0.24	J	0.55	0.080	ug/Kg	1	₩	537 (modified)	Total/NA
2.9		0.55	0.24	ug/Kg	1	₩	537 (modified)	Total/NA
0.28	J	0.55	0.099	ug/Kg	1	₩	537 (modified)	Total/NA
0.17	JI	0.55	0.061	ug/Kg	1	₩	537 (modified)	Total/NA
0.26	J	0.55	0.099	ug/Kg	1	₩	537 (modified)	Total/NA
0.20	J	0.55	0.14	ug/Kg	1	₩	537 (modified)	Total/NA
0.36	J	0.55	0.085	ug/Kg	1	₩	537 (modified)	Total/NA
2.2	B *	1.4	0.55	ug/Kg	1	₩	537 (modified)	Total/NA
2.1	Н	1.4	0.58	ug/Kg	1	₩	537 (modified)	Total/NA
6660		117	16.5	mg/Kg	2	₩	6010D	Total/NA
2.8	J	8.8	1.8	mg/Kg	2	₽	6010D	Total/NA
81.2	J	117	11.3	mg/Kg	2	₩	6010D	Total/NA
10500		2920	216	mg/Kg	2	₩	6010D	Total/NA
0.29	J	2.3	0.20	mg/Kg	2	₩	6010D	Total/NA
5.8	J	29.2	1.6	mg/Kg	2	₩	6010D	Total/NA
11.5		5.8	4.1	mg/Kg	2	₩	6010D	Total/NA
16.9		14.6	3.7	mg/Kg	2	₩	6010D	Total/NA
	3000 180 84 35 44 28 130 730 0.39 0.24 0.22 0.24 2.9 0.28 0.17 0.26 0.20 0.36 2.2 2.1 6660 2.8 81.2 10500 0.29 5.8 11.5	0.28 J 0.17 JI 0.26 J 0.20 J 0.36 J 2.2 B* 2.1 H 6660 2.8 J 81.2 J 10500 0.29 J 5.8 J 11.5	3000 H H3 2400 180 J 960 84 J 960 35 J 960 44 J 96 28 J 960 130 J 960 730 J* 960 0.39 J B 0.55 0.24 J 0.55 0.22 J 0.55 0.24 J 0.55 0.28 J 0.55 0.17 J I 0.55 0.26 J 0.55 0.20 J 0.55 0.20 J 0.55 0.20 J 0.55 0.20 J 0.55 0.21 H 1.4 6660 117 2.8 J 8.8 81.2 J 117 10500 2920 0.29 J 2.3 5.8 J 29.2 11.5 5.8	3000 H H3 2400 380 180 J 960 36 84 J 960 17 35 J 960 34 44 J 96 34 28 J 960 46 130 J 960 47 730 J* 960 160 0.39 J B 0.55 0.077 0.24 J 0.55 0.21 0.22 J 0.55 0.21 0.24 J 0.55 0.080 2.9 0.55 0.24 0.28 J 0.55 0.080 2.9 0.55 0.04 0.28 J 0.55 0.099 0.17 J I 0.55 0.099 0.20 J 0.55 0.099 0.20 J 0.55 0.085 2.2 B* 1.4 0.58 6660 117 16.5 2.8 J 8.8 1.8 <td>3000 H H3 2400 380 ug/Kg 180 J 960 36 ug/Kg 84 J 960 17 ug/Kg 35 J 960 34 ug/Kg 44 J 96 34 ug/Kg 28 J 960 16 ug/Kg 130 J 960 47 ug/Kg 730 J* 960 160 ug/Kg 0.39 J B 0.55 0.077 ug/Kg 0.24 J 0.55 0.21 ug/Kg 0.24 J 0.55 0.21 ug/Kg 0.24 J 0.55 0.21 ug/Kg 0.24 J 0.55 0.080 ug/Kg 0.29 J 0.55 0.080 ug/Kg 0.29 U 0.55 0.099 ug/Kg 0.20 J 0.55 0.099 ug/Kg 0.20 J 0.55 0.099 ug/Kg 0.20 J 0.55</td> <td>3000 H H3 2400 380 ug/Kg 50 180 J 960 36 ug/Kg 1 84 J 960 17 ug/Kg 1 35 J 960 34 ug/Kg 1 44 J 96 34 ug/Kg 1 28 J 960 16 ug/Kg 1 130 J 960 47 ug/Kg 1 730 J* 960 160 ug/Kg 1 0.39 JB 0.55 0.077 ug/Kg 1 0.24 J 0.55 0.21 ug/Kg 1 0.24 J 0.55 0.21 ug/Kg 1 0.24 J 0.55 0.21 ug/Kg 1 0.24 J 0.55 0.080 ug/Kg 1 0.29 0.55 0.24 ug/Kg 1 0.29 0.55 0.099 ug/Kg 1 0.20 J 0.55 0.061<</td> <td>3000 HH3 2400 380 ug/kg 50 ★ 180 J 960 36 ug/kg 1 ★ 84 J 960 17 ug/kg 1 ★ 35 J 960 34 ug/kg 1 ★ 44 J 96 34 ug/kg 1 ★ 28 J 960 16 ug/kg 1 ★ 130 J 960 47 ug/kg 1 ★ 730 J* 960 160 ug/kg 1 ★ 0.39 JB 0.55 0.077 ug/kg 1 ★ 0.24 J 0.55 0.21 ug/kg 1 ★ 0.22 J 0.55 0.12 ug/kg 1 ★ 0.24 J 0.55 0.080 ug/kg 1 ★ 0.29 J 0.55 0.080 ug/kg 1 ★ 0.29 J 0.55 0.099 <t< td=""><td>3000 H H3</td></t<></td>	3000 H H3 2400 380 ug/Kg 180 J 960 36 ug/Kg 84 J 960 17 ug/Kg 35 J 960 34 ug/Kg 44 J 96 34 ug/Kg 28 J 960 16 ug/Kg 130 J 960 47 ug/Kg 730 J* 960 160 ug/Kg 0.39 J B 0.55 0.077 ug/Kg 0.24 J 0.55 0.21 ug/Kg 0.24 J 0.55 0.21 ug/Kg 0.24 J 0.55 0.21 ug/Kg 0.24 J 0.55 0.080 ug/Kg 0.29 J 0.55 0.080 ug/Kg 0.29 U 0.55 0.099 ug/Kg 0.20 J 0.55 0.099 ug/Kg 0.20 J 0.55 0.099 ug/Kg 0.20 J 0.55	3000 H H3 2400 380 ug/Kg 50 180 J 960 36 ug/Kg 1 84 J 960 17 ug/Kg 1 35 J 960 34 ug/Kg 1 44 J 96 34 ug/Kg 1 28 J 960 16 ug/Kg 1 130 J 960 47 ug/Kg 1 730 J* 960 160 ug/Kg 1 0.39 JB 0.55 0.077 ug/Kg 1 0.24 J 0.55 0.21 ug/Kg 1 0.24 J 0.55 0.21 ug/Kg 1 0.24 J 0.55 0.21 ug/Kg 1 0.24 J 0.55 0.080 ug/Kg 1 0.29 0.55 0.24 ug/Kg 1 0.29 0.55 0.099 ug/Kg 1 0.20 J 0.55 0.061<	3000 HH3 2400 380 ug/kg 50 ★ 180 J 960 36 ug/kg 1 ★ 84 J 960 17 ug/kg 1 ★ 35 J 960 34 ug/kg 1 ★ 44 J 96 34 ug/kg 1 ★ 28 J 960 16 ug/kg 1 ★ 130 J 960 47 ug/kg 1 ★ 730 J* 960 160 ug/kg 1 ★ 0.39 JB 0.55 0.077 ug/kg 1 ★ 0.24 J 0.55 0.21 ug/kg 1 ★ 0.22 J 0.55 0.12 ug/kg 1 ★ 0.24 J 0.55 0.080 ug/kg 1 ★ 0.29 J 0.55 0.080 ug/kg 1 ★ 0.29 J 0.55 0.099 <t< td=""><td>3000 H H3</td></t<>	3000 H H3

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Edison

3/30/2021

Page 15 of 158

2

5

7

9

10

12

14

4.0

Detection Summary

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: S-4 (Continued)

Lab Sample ID: 460-222961-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Iron	15800		87.7	60.2	mg/Kg	2	₩	6010D	Total/NA
Potassium	1470	J	2920	179	mg/Kg	2	₩	6010D	Total/NA
Magnesium	5000		2920	198	mg/Kg	2	₽	6010D	Total/NA
Manganese	380		8.8	0.66	mg/Kg	2	₩	6010D	Total/NA
Nickel	12.2	J	23.4	1.5	mg/Kg	2	₩	6010D	Total/NA
Lead	14.7		5.8	0.95	mg/Kg	2	₩	6010D	Total/NA
Vanadium	14.2	J	29.2	2.7	mg/Kg	2	₩	6010D	Total/NA
Zinc	120		17.5	3.2	mg/Kg	2	₩	6010D	Total/NA
Mercury	0.040	J	0.044	0.010	mg/Kg	1	☼	7471B	Total/NA
Cyanide, Total	1.5		0.70	0.36	mg/Kg	1	☼	9012B	Total/NA

5

6

9

10

12

13

15

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: MW-1A Lab Sample ID: 460-222961-1

Date Collected: 11/13/20 13:40 **Matrix: Water**

Date Received: 11/16/20 19:40

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Chloromethane	1.0	U	1.0	0.40	ug/L			11/22/20 16:14	
Bromomethane	1.0	U	1.0	0.55	ug/L			11/22/20 16:14	
Vinyl chloride	1.0	U	1.0	0.17	ug/L			11/22/20 16:14	
Chloroethane	1.0	U	1.0	0.32	ug/L			11/22/20 16:14	
Methylene Chloride	1.0	U	1.0	0.32	ug/L			11/22/20 16:14	
Acetone	5.0	U	5.0	4.4	ug/L			11/22/20 16:14	
Carbon disulfide	1.0	U	1.0	0.82	ug/L			11/22/20 16:14	
Trichlorofluoromethane	1.0	U	1.0	0.32	ug/L			11/22/20 16:14	
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			11/22/20 16:14	
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			11/22/20 16:14	
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			11/22/20 16:14	
cis-1,2-Dichloroethene	1.0	U	1.0		ug/L			11/22/20 16:14	
Chloroform	1.0	U	1.0		ug/L			11/22/20 16:14	
1,2-Dichloroethane	1.0		1.0		ug/L			11/22/20 16:14	
2-Butanone (MEK)	5.0		5.0		ug/L			11/22/20 16:14	
1,1,1-Trichloroethane	1.0		1.0		ug/L			11/22/20 16:14	
Carbon tetrachloride	1.0		1.0		ug/L			11/22/20 16:14	
Dichlorobromomethane	1.0		1.0		ug/L			11/22/20 16:14	
1,2-Dichloropropane	1.0		1.0		ug/L			11/22/20 16:14	
cis-1,3-Dichloropropene	1.0		1.0	0.22	-			11/22/20 16:14	
Trichloroethene	1.0	_	1.0		ug/L			11/22/20 16:14	
Chlorodibromomethane	1.0		1.0		ug/L			11/22/20 16:14	
1,1,2-Trichloroethane	1.0		1.0		ug/L			11/22/20 16:14	
Benzene	1.0		1.0		ug/L			11/22/20 16:14	
trans-1,3-Dichloropropene	1.0		1.0	0.22	-			11/22/20 16:14	
Bromoform	1.0		1.0		ug/L			11/22/20 16:14	
4-Methyl-2-pentanone (MIBK)		U *	5.0		ug/L			11/22/20 16:14	
2-Hexanone		U *	5.0		ug/L			11/22/20 16:14	
Tetrachloroethene	1.0		1.0	0.25	-			11/22/20 16:14	
1,1,2,2-Tetrachloroethane	1.0		1.0		ug/L			11/22/20 16:14	
Toluene	1.0		1.0	0.37				11/22/20 16:14	
Chlorobenzene	1.0		1.0		ug/L ug/L			11/22/20 16:14	
	1.0				-				
Ethylbenzene	1.0		1.0		ug/L			11/22/20 16:14	
Styrene	***	_	1.0		ug/L			11/22/20 16:14	
m-Xylene & p-Xylene	1.0		1.0	0.30				11/22/20 16:14	
o-Xylene	1.0		1.0		ug/L			11/22/20 16:14	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0		1.0		ug/L			11/22/20 16:14	
Methyl tert-butyl ether	1.0		1.0		ug/L			11/22/20 16:14	
Cyclohexane	1.0		1.0		ug/L			11/22/20 16:14	
Ethylene Dibromide	1.0		1.0		ug/L			11/22/20 16:14	
1,3-Dichlorobenzene	1.0		1.0		ug/L			11/22/20 16:14	
1,4-Dichlorobenzene	1.0		1.0		ug/L			11/22/20 16:14	
1,2-Dichlorobenzene	1.0		1.0		ug/L			11/22/20 16:14	
Dichlorodifluoromethane	1.0		1.0		ug/L			11/22/20 16:14	
1,2,4-Trichlorobenzene	1.0	U	1.0	0.37	ug/L			11/22/20 16:14	
1,4-Dioxane	50	U	50	28	ug/L			11/22/20 16:14	
1,2,3-Trichlorobenzene	1.0	U	1.0	0.36	ug/L			11/22/20 16:14	
1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.38	ug/L			11/22/20 16:14	

Eurofins TestAmerica, Edison

Page 17 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: MW-1A Lab Sample ID: 460-222961-1

Date Collected: 11/13/20 13:40

Date Received: 11/16/20 19:40

Matrix: Water

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	1.0	U	1.0		0.34	ug/L			11/22/20 16:14	1
Methyl acetate	5.0	U	5.0		0.79	ug/L			11/22/20 16:14	1
Methylcyclohexane	1.0	U	1.0		0.71	ug/L			11/22/20 16:14	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L						11/22/20 16:14	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	82		75 - 123						11/22/20 16:14	1
Toluene-d8 (Surr)	104		80 - 120						11/22/20 16:14	1
4-Bromofluorobenzene	101		76 - 120						11/22/20 16:14	1

Method: 8270E SIM ID - Semi	volatile Orga	anic Comp	ounds (GC/N	is sim /	Isotope	Diluti	on)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.20	U	0.20	0.016	ug/L		11/18/20 09:12	11/19/20 13:50	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	29	·	10 - 150				11/18/20 09:12	11/19/20 13:50	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol		U	10	0.29	ug/L		11/19/20 09:29	11/20/20 05:28	1
2-Chlorophenol	10	U	10	0.38	ug/L		11/19/20 09:29	11/20/20 05:28	1
2-Methylphenol	10	U	10	0.67	ug/L		11/19/20 09:29	11/20/20 05:28	1
4-Methylphenol	10	U	10	0.65	ug/L		11/19/20 09:29	11/20/20 05:28	1
2-Nitrophenol	10	U	10	0.75	ug/L		11/19/20 09:29	11/20/20 05:28	1
2,4-Dimethylphenol	10	U	10	0.62	ug/L		11/19/20 09:29	11/20/20 05:28	1
2,4-Dichlorophenol	10	U	10	1.1	ug/L		11/19/20 09:29	11/20/20 05:28	1
4-Chloro-3-methylphenol	10	U	10	0.58	ug/L		11/19/20 09:29	11/20/20 05:28	1
2,4,6-Trichlorophenol	10	U	10	0.86	ug/L		11/19/20 09:29	11/20/20 05:28	1
2,4,5-Trichlorophenol	10	U	10	0.88	ug/L		11/19/20 09:29	11/20/20 05:28	1
2,4-Dinitrotoluene	2.0	U	2.0	1.0	ug/L		11/19/20 09:29	11/20/20 05:28	1
4-Nitrophenol	30	U	30	4.0	ug/L		11/19/20 09:29	11/20/20 05:28	1
4,6-Dinitro-2-methylphenol	30	U	30	3.0	ug/L		11/19/20 09:29	11/20/20 05:28	1
Pentachlorophenol	30	U	30	1.4	ug/L		11/19/20 09:29	11/20/20 05:28	1
Bis(2-chloroethyl)ether	1.0	U	1.0	0.63	ug/L		11/19/20 09:29	11/20/20 05:28	1
N-Nitrosodi-n-propylamine	1.0	U	1.0	0.43	ug/L		11/19/20 09:29	11/20/20 05:28	1
Hexachloroethane	2.0	U	2.0	0.80	ug/L		11/19/20 09:29	11/20/20 05:28	1
Nitrobenzene	1.0	U	1.0	0.57	ug/L		11/19/20 09:29	11/20/20 05:28	1
Isophorone	10	U	10	0.80	ug/L		11/19/20 09:29	11/20/20 05:28	1
Naphthalene	2.0	U	2.0	0.54	ug/L		11/19/20 09:29	11/20/20 05:28	1
4-Chloroaniline	1.0	U	1.0	1.9	ug/L		11/19/20 09:29	11/20/20 05:28	1
Hexachlorobutadiene	2.0	U	2.0	0.78	ug/L		11/19/20 09:29	11/20/20 05:28	1
2-Methylnaphthalene	10	U	10	0.53	ug/L		11/19/20 09:29	11/20/20 05:28	1
Hexachlorocyclopentadiene	10	U	10	3.6	ug/L		11/19/20 09:29	11/20/20 05:28	1
2-Chloronaphthalene	10	U	10	1.2	ug/L		11/19/20 09:29	11/20/20 05:28	1
2-Nitroaniline	20	U	20	0.47	ug/L		11/19/20 09:29	11/20/20 05:28	1
Dimethyl phthalate	10	U	10	0.77	ug/L		11/19/20 09:29	11/20/20 05:28	1
Acenaphthylene	10	U	10	0.82	ug/L		11/19/20 09:29	11/20/20 05:28	1
2,6-Dinitrotoluene	2.0	U	2.0	0.83	ug/L		11/19/20 09:29	11/20/20 05:28	1

Eurofins TestAmerica, Edison

Page 18 of 158

2

3

6

8

10

12

14

15

10

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: MW-1A Lab Sample ID: 460-222961-1

Date Collected: 11/13/20 13:40 Matrix: Water

Date Received: 11/16/20 19:40

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3-Nitroaniline	20	U	20	1.9	ug/L		11/19/20 09:29	11/20/20 05:28	1
Acenaphthene	10	U	10	1.1	ug/L		11/19/20 09:29	11/20/20 05:28	1
Dibenzofuran	10	U	10	1.1	ug/L		11/19/20 09:29	11/20/20 05:28	1
2,4-Dinitrophenol	30	U	30	2.6	ug/L		11/19/20 09:29	11/20/20 05:28	1
Diethyl phthalate	10	U	10	0.98	ug/L		11/19/20 09:29	11/20/20 05:28	1
4-Chlorophenyl phenyl ether	10	U	10	1.3	ug/L		11/19/20 09:29	11/20/20 05:28	1
Fluorene	10	U	10	0.91	ug/L		11/19/20 09:29	11/20/20 05:28	1
4-Nitroaniline	20	U	20	1.2	ug/L		11/19/20 09:29	11/20/20 05:28	1
N-Nitrosodiphenylamine	10	U	10	0.89	ug/L		11/19/20 09:29	11/20/20 05:28	1
4-Bromophenyl phenyl ether	10	U	10	0.75	ug/L		11/19/20 09:29	11/20/20 05:28	1
Hexachlorobenzene	1.0	U	1.0	0.40	ug/L		11/19/20 09:29	11/20/20 05:28	1
Phenanthrene	10	U	10		ug/L		11/19/20 09:29	11/20/20 05:28	1
Anthracene	10	U	10	1.3	ug/L		11/19/20 09:29	11/20/20 05:28	1
Carbazole	10	U	10	0.68	ug/L		11/19/20 09:29	11/20/20 05:28	1
Di-n-butyl phthalate	10	U	10		ug/L		11/19/20 09:29	11/20/20 05:28	1
Fluoranthene	10	U	10	0.84	ug/L		11/19/20 09:29	11/20/20 05:28	1
Pyrene	10	U	10	1.6	ug/L		11/19/20 09:29	11/20/20 05:28	1
Butyl benzyl phthalate	10	U	10	0.85	ug/L		11/19/20 09:29	11/20/20 05:28	1
Benzo[a]anthracene	1.0	U	1.0	0.59	ug/L		11/19/20 09:29	11/20/20 05:28	1
Chrysene	10	U	10	0.91	ug/L		11/19/20 09:29	11/20/20 05:28	1
Bis(2-ethylhexyl) phthalate	10	U	10	0.80	ug/L		11/19/20 09:29	11/20/20 05:28	1
Di-n-octyl phthalate	10	U	10		ug/L		11/19/20 09:29	11/20/20 05:28	1
Benzo[b]fluoranthene	2.0	U	2.0	0.68	ug/L		11/19/20 09:29	11/20/20 05:28	1
Benzo[k]fluoranthene	1.0	U	1.0	0.67	ug/L		11/19/20 09:29	11/20/20 05:28	1
Benzo[a]pyrene	1.0	U	1.0	0.41			11/19/20 09:29	11/20/20 05:28	1
Indeno[1,2,3-cd]pyrene	2.0	U	2.0	0.94	ug/L		11/19/20 09:29	11/20/20 05:28	1
Dibenz(a,h)anthracene	1.0	U	1.0	0.72	ug/L		11/19/20 09:29	11/20/20 05:28	1
Benzo[g,h,i]perylene	10	U	10	0.70	ug/L		11/19/20 09:29	11/20/20 05:28	1
1,1'-Biphenyl	10	U	10	1.2	ug/L		11/19/20 09:29	11/20/20 05:28	1
Acetophenone	10	U	10		ug/L		11/19/20 09:29	11/20/20 05:28	1
1,4-Dioxane	10	U	10		ug/L		11/19/20 09:29	11/20/20 05:28	1
Benzaldehyde	10	U	10		ug/L		11/19/20 09:29	11/20/20 05:28	1
Caprolactam	10	U	10		ug/L		11/19/20 09:29		1
Atrazine	10	U *	10	1.3	ug/L		11/19/20 09:29	11/20/20 05:28	1
2,2'-oxybis[1-chloropropane]	10	U	10		ug/L		11/19/20 09:29		1
1,2,4,5-Tetrachlorobenzene	10	U	10		ug/L		11/19/20 09:29	11/20/20 05:28	1
2,3,4,6-Tetrachlorophenol	10	U	10		ug/L			11/20/20 05:28	1
3,3'-Dichlorobenzidine	20	U	20		ug/L		11/19/20 09:29		1
Bis(2-chloroethoxy)methane	10	U	10		ug/L		11/19/20 09:29	11/20/20 05:28	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac

Tentatively Identified Compound	None	ug/L	11/19/20 09:29	11/20/20 05:28	1
Surrogate	%Recovery Quali	fier Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	86	46 - 137	11/19/20 09:29	11/20/20 05:28	1
Phenol-d5 (Surr)	28	10 - 50	11/19/20 09:29	11/20/20 05:28	1
Terphenyl-d14 (Surr)	82	39 ₋ 150	11/19/20 09:29	11/20/20 05:28	1
2,4,6-Tribromophenol (Surr)	123	36 - 159	11/19/20 09:29	11/20/20 05:28	1
2-Fluorophenol (Surr)	44	18 - 72	11/19/20 09:29	11/20/20 05:28	1
2-Fluorobiphenyl	81	42 - 127	11/19/20 09:29	11/20/20 05:28	1

Eurofins TestAmerica, Edison

Page 19 of 158

2

3

6

8

10

12

14

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Lab Sample ID: 460-222961-1 **Client Sample ID: MW-1A**

Date Collected: 11/13/20 13:40 **Matrix: Water**

Date Received: 11/16/20 19:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	0.020	U	0.020	0.0060	ug/L		11/18/20 09:44	11/19/20 13:41	1
4,4'-DDE	0.020	U	0.020	0.0020	ug/L		11/18/20 09:44	11/19/20 13:41	1
4,4'-DDT	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 13:41	1
Aldrin	0.020	U	0.020	0.0030	ug/L		11/18/20 09:44	11/19/20 13:41	1
alpha-BHC	0.020	U	0.020	0.0070	ug/L		11/18/20 09:44	11/19/20 13:41	1
beta-BHC	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 13:41	1
Chlordane (technical)	0.50	U	0.50	0.055	ug/L		11/18/20 09:44	11/19/20 13:41	1
delta-BHC	0.020	U	0.020	0.0050	ug/L		11/18/20 09:44	11/19/20 13:41	1
Dieldrin	0.020	U	0.020	0.0030	ug/L		11/18/20 09:44	11/19/20 13:41	1
Endosulfan I	0.020	U	0.020	0.0020	ug/L		11/18/20 09:44	11/19/20 13:41	1
Endosulfan II	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 13:41	1
Endosulfan sulfate	0.020	U	0.020	0.0060	ug/L		11/18/20 09:44	11/19/20 13:41	1
Endrin	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 13:41	1
Endrin aldehyde	0.020	U	0.020	0.0080	ug/L		11/18/20 09:44	11/19/20 13:41	1
Endrin ketone	0.020	U	0.020	0.0080	ug/L		11/18/20 09:44	11/19/20 13:41	1
gamma-BHC (Lindane)	0.020	U	0.020	0.012	ug/L		11/18/20 09:44	11/19/20 13:41	1
Heptachlor	0.020	U	0.020	0.0030	ug/L		11/18/20 09:44	11/19/20 13:41	1
Heptachlor epoxide	0.020	U	0.020	0.0050	ug/L		11/18/20 09:44	11/19/20 13:41	1
Methoxychlor	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 13:41	1
Toxaphene	0.50	U	0.50	0.11	ug/L		11/18/20 09:44	11/19/20 13:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	50		10 - 132				11/18/20 09:44	11/19/20 13:41	1
DCB Decachlorobiphenyl	43		10 - 132				11/18/20 09:44	11/19/20 13:41	1
Tetrachloro-m-xylene	70		10 - 150				11/18/20 09:44	11/19/20 13:41	1
Tetrachloro-m-xylene	69		10 - 150				11/18/20 09:44	11/19/20 13:41	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 18:19	1
Aroclor 1221	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 18:19	1
Aroclor 1232	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 18:19	1
Aroclor 1242	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 18:19	1
Aroclor 1248	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 18:19	1
Aroclor 1254	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 18:19	1
Aroclor 1260	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 18:19	1
Aroclor-1262	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 18:19	1
Aroclor 1268	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 18:19	1
Polychlorinated biphenyls, Total	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 18:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobinhenyl	48		10 150				11/18/20 09:41	11/18/20 18:19	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	48		10 - 150	11/18/20 09:41	11/18/20 18:19	1
DCB Decachlorobiphenyl	48		10 - 150	11/18/20 09:41	11/18/20 18:19	1
Tetrachloro-m-xylene	77		48 - 125	11/18/20 09:41	11/18/20 18:19	1
Tetrachloro-m-xylene	80		48 - 125	11/18/20 09:41	11/18/20 18:19	1

Method:	8151A - Herbicides	(GC)
motilou.	O TO TA - TICI DICIGOS	(\smile)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	1.2	U	1.2	0.13	ug/L		11/17/20 20:26	11/18/20 09:03	1
Silvex (2,4,5-TP)	1.2	U	1.2	0.11	ug/L		11/17/20 20:26	11/18/20 09:03	1

Eurofins TestAmerica, Edison

Page 20 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8151A - Herbicides (GC) (Continued)

N-ethylperfluorooctanesulfonamidoac

1H,1H,2H,2H-perfluorooctanesulfo

1H,1H,2H,2H-perfluorodecanesulfonic

etic acid (NEtFOSAA)

nic acid (6:2)

Client Sample ID: MW-1A Lab Sample ID: 460-222961-1

Date Collected: 11/13/20 13:40 **Matrix: Water** Date Received: 11/16/20 19:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-T	1.2	U	1.2	0.12	ug/L		11/17/20 20:26	11/18/20 09:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	66		39 - 145				11/17/20 20:26	11/18/20 09:03	1
2,4-Dichlorophenylacetic acid	73		39 - 145				11/17/20 20:26	11/18/20 09:03	1
Method: 537 (modified) - Fluo	rinated Alky	/I Substan	ces						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	4.2	U	4.2	0.95	ng/L		11/20/20 09:01	11/20/20 16:39	1
Perfluoropentanoic acid (PFPeA)	1.7	U	1.7	0.90	ng/L		11/20/20 09:01	11/20/20 16:39	1
Perfluorohexanoic acid (PFHxA)	1.7	U	1.7	0.69	ng/L		11/20/20 09:01	11/20/20 16:39	1
Perfluoroheptanoic acid (PFHpA)	1.7	U	1.7	0.38	ng/L		11/20/20 09:01	11/20/20 16:39	1
Perfluorooctanoic acid (PFOA)	1.7	U	1.7	0.82	ng/L		11/20/20 09:01	11/20/20 16:39	1
Perfluorononanoic acid (PFNA)	1.7	U	1.7	0.49	ng/L		11/20/20 09:01	11/20/20 16:39	1
Perfluorodecanoic acid (PFDA)	1.7	U	1.7	0.38	ng/L		11/20/20 09:01	11/20/20 16:39	1
Perfluoroundecanoic acid (PFUnA)	1.7	U	1.7	0.61	ng/L		11/20/20 09:01	11/20/20 16:39	1
Perfluorododecanoic acid (PFDoA)	1.7	U	1.7	0.38	ng/L		11/20/20 09:01	11/20/20 16:39	1
Perfluorotridecanoic acid (PFTriA)	1.7	U	1.7	0.36	ng/L		11/20/20 09:01	11/20/20 16:39	1
Perfluorotetradecanoic acid (PFTeA)	1.7	U	1.7	0.49	ng/L		11/20/20 09:01	11/20/20 16:39	1
Perfluorobutanesulfonic acid (PFBS)	1.7	U	1.7	0.53	ng/L		11/20/20 09:01	11/20/20 16:39	1
Perfluorohexanesulfonic acid (PFHxS)	1.7	U	1.7	0.56	ng/L		11/20/20 09:01	11/20/20 16:39	1
Perfluoroheptanesulfonic Acid (PFHpS)	1.7	U	1.7	0.33	ng/L		11/20/20 09:01	11/20/20 16:39	1
Perfluorooctanesulfonic acid (PFOS)	1.7	U	1.7	0.73	ng/L		11/20/20 09:01	11/20/20 16:39	1
Perfluorodecanesulfonic acid (PFDS)	1.7	U	1.7	0.40	ng/L		11/20/20 09:01	11/20/20 16:39	1
Perfluorooctanesulfonamide (PFOSA)	1.7	U	1.7	0.48	ng/L		11/20/20 09:01	11/20/20 16:39	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	4.2	U	4.2	0.66	ng/L		11/20/20 09:01	11/20/20 16:39	1

acid (8:2)					
Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
18O2 PFHxS	110	50 - 150	11/20/20 09:01	11/20/20 16:39	1
13C4 PFHpA	104	50 - 150	11/20/20 09:01	11/20/20 16:39	1
13C4 PFOA	104	50 - 150	11/20/20 09:01	11/20/20 16:39	1
13C4 PFOS	107	50 - 150	11/20/20 09:01	11/20/20 16:39	1
13C5 PFNA	108	50 - 150	11/20/20 09:01	11/20/20 16:39	1
13C4 PFBA	81	25 - 150	11/20/20 09:01	11/20/20 16:39	1
13C2 PFHxA	97	50 - 150	11/20/20 09:01	11/20/20 16:39	1
13C2 PFDA	107	50 - 150	11/20/20 09:01	11/20/20 16:39	1
13C2 PFUnA	88	50 - 150	11/20/20 09:01	11/20/20 16:39	1
13C2 PFDoA	60	50 - 150	11/20/20 09:01	11/20/20 16:39	1
13C8 FOSA	83	25 - 150	11/20/20 09:01	11/20/20 16:39	1
13C5 PFPeA	99	25 - 150	11/20/20 09:01	11/20/20 16:39	1
13C2 PFTeDA	56	50 - 150	11/20/20 09:01	11/20/20 16:39	1
d3-NMeFOSAA	81	50 - 150	11/20/20 09:01	11/20/20 16:39	1
d5-NEtFOSAA	71	50 - 150	11/20/20 09:01	11/20/20 16:39	1
M2-6:2 FTS	111	25 - 150	11/20/20 09:01	11/20/20 16:39	1

4.2

4.2

1.7

0.78 ng/L

0.60 ng/L

0.55 ng/L

4.2 U

0.87 J

1.7 U

Eurofins TestAmerica, Edison

11/20/20 09:01 11/20/20 16:39

11/20/20 09:01 11/20/20 16:39

11/20/20 09:01 11/20/20 16:39

Page 21 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Lab Sample ID: 460-222961-1 **Client Sample ID: MW-1A**

Date Collected: 11/13/20 13:40 **Matrix: Water**

Date Received: 11/16/20 19:40

89.7

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
M2-8:2 FTS	95		25 - 150	11/20/20 09:01	1/20/20 16:39	1
13C3 PFBS	103		50 - 150	11/20/20 09:01 11	1/20/20 16:39	1

Method: 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	10.0	U	10.0	5.8	ug/L		11/22/20 16:15	11/23/20 18:24	
Aluminum	14900		200	76.9	ug/L		11/22/20 16:15	11/23/20 18:24	•
Arsenic	15.0	U	15.0	3.3	ug/L		11/22/20 16:15	11/23/20 18:24	•
Barium	228		200	13.2	ug/L		11/22/20 16:15	11/23/20 18:24	
Beryllium	2.0	U	2.0	0.17	ug/L		11/22/20 16:15	11/23/20 18:24	•
Calcium	16500		5000	152	ug/L		11/22/20 16:15	11/23/20 18:24	•
Cadmium	4.0	U	4.0	0.33	ug/L		11/22/20 16:15	11/23/20 18:24	
Cobalt	23.0	J	50.0	2.0	ug/L		11/22/20 16:15	11/23/20 18:24	•
Chromium	36.8		10.0	5.0	ug/L		11/22/20 16:15	11/23/20 18:24	•
Copper	104		25.0	6.9	ug/L		11/22/20 16:15	11/23/20 18:24	
Iron	27700		150	80.8	ug/L		11/22/20 16:15	11/23/20 18:24	•
Potassium	7780		5000	142	ug/L		11/22/20 16:15	11/23/20 18:24	•
Magnesium	8740		5000	142	ug/L		11/22/20 16:15	11/23/20 18:24	
Manganese	464		15.0	0.76	ug/L		11/22/20 16:15	11/23/20 18:24	•
Sodium	31800		5000	83.8	ug/L		11/22/20 16:15	11/23/20 18:24	•
Nickel	42.4		40.0	4.1	ug/L		11/22/20 16:15	11/23/20 18:24	
Lead	14.0		10.0	2.4	ug/L		11/22/20 16:15	11/23/20 18:24	•
Antimony	20.0	U	20.0	3.7	ug/L		11/22/20 16:15	11/23/20 18:24	•
Selenium	20.0	U	20.0	5.9	ug/L		11/22/20 16:15	11/23/20 18:24	
Thallium	20.0	U	20.0	4.1	ug/L		11/22/20 16:15	11/23/20 18:24	•
Vanadium	81.5		50.0	7.2	ug/L		11/22/20 16:15	11/23/20 18:24	•

Method: 7470A - Mercury (CVAA	A)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Moreury	0.20 11	0.20	0.001 μα/Ι		11/25/20 12:42	11/25/20 14:09	

30.0

1.2 ug/L

Mercury	0.20	U	0.20	0.091	ug/L		11/25/20 12:43	11/25/20 14:08	1
General Chemistry Analyte Cyanide, Total		Qualifier U	RL 0.010	MDL 0.0040		<u>D</u>	Prepared 11/27/20 09:11	Analyzed 11/27/20 13:13	Dil Fac

Client Sample ID: MW-2 Lab Sample ID: 460-222961-2 Date Collected: 11/13/20 10:55 **Matrix: Water**

Date Received: 11/16/20 19:40

Zinc

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	1.0	U	1.0	0.40	ug/L			11/22/20 16:40	1
Bromomethane	1.0	U	1.0	0.55	ug/L			11/22/20 16:40	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			11/22/20 16:40	1
Chloroethane	1.0	U	1.0	0.32	ug/L			11/22/20 16:40	1
Methylene Chloride	1.0	U	1.0	0.32	ug/L			11/22/20 16:40	1
Acetone	5.0	U	5.0	4.4	ug/L			11/22/20 16:40	1
Carbon disulfide	1.0	U	1.0	0.82	ug/L			11/22/20 16:40	1
Trichlorofluoromethane	1.0	U	1.0	0.32	ug/L			11/22/20 16:40	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			11/22/20 16:40	1

Eurofins TestAmerica, Edison

11/22/20 16:15 11/23/20 18:24

Page 22 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: MW-2 Lab Sample ID: 460-222961-2

Date Collected: 11/13/20 10:55

Date Received: 11/16/20 19:40

Matrix: Water

Method: 8260D - Volatile Orga Analyte	-	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L		-	11/22/20 16:40	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			11/22/20 16:40	1
cis-1,2-Dichloroethene	1.0	U	1.0		ug/L			11/22/20 16:40	1
Chloroform	1.0	U	1.0		ug/L			11/22/20 16:40	1
1,2-Dichloroethane	1.0	U	1.0		ug/L			11/22/20 16:40	1
2-Butanone (MEK)	5.0	U	5.0		ug/L			11/22/20 16:40	1
1,1,1-Trichloroethane	1.0	U	1.0		ug/L			11/22/20 16:40	1
Carbon tetrachloride	1.0	U	1.0		ug/L			11/22/20 16:40	1
Dichlorobromomethane	1.0	U	1.0		ug/L			11/22/20 16:40	1
1,2-Dichloropropane	1.0		1.0		ug/L			11/22/20 16:40	1
cis-1,3-Dichloropropene	1.0		1.0		ug/L			11/22/20 16:40	1
Trichloroethene	1.0		1.0		ug/L			11/22/20 16:40	1
Chlorodibromomethane	1.0		1.0		ug/L			11/22/20 16:40	1
1,1,2-Trichloroethane	1.0		1.0		ug/L			11/22/20 16:40	1
Benzene	1.0		1.0		ug/L			11/22/20 16:40	1
trans-1,3-Dichloropropene	1.0		1.0		ug/L			11/22/20 16:40	· · · · · · · · · · · · · · · · · · ·
Bromoform	1.0		1.0		ug/L			11/22/20 16:40	1
4-Methyl-2-pentanone (MIBK)		U *	5.0		ug/L			11/22/20 16:40	1
2-Hexanone			5.0		ug/L			11/22/20 16:40	· · · · · · · · · · · · · · · · · · ·
Tetrachloroethene	1.0		1.0		ug/L			11/22/20 16:40	1
1,1,2,2-Tetrachloroethane	1.0		1.0		ug/L			11/22/20 16:40	1
Toluene	1.0		1.0		ug/L ug/L			11/22/20 16:40	· · · · · · · · · · · · · · · · · · ·
	1.0		1.0		ug/L ug/L			11/22/20 16:40	1
Chlorobenzene Ethylbenzene	1.0		1.0		ug/L ug/L			11/22/20 16:40	1
Styrene	1.0		1.0		ug/L ug/L			11/22/20 16:40	
•					_				-
m-Xylene & p-Xylene	1.0		1.0		ug/L			11/22/20 16:40	1
o-Xylene	1.0		1.0		ug/L			11/22/20 16:40	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0		1.0		ug/L			11/22/20 16:40	1
Methyl tert-butyl ether	1.0		1.0		ug/L			11/22/20 16:40	1
Cyclohexane	1.0		1.0		ug/L			11/22/20 16:40	1
Ethylene Dibromide	1.0		1.0		ug/L			11/22/20 16:40	1
1,3-Dichlorobenzene	1.0		1.0		ug/L			11/22/20 16:40	1
1,4-Dichlorobenzene	1.0		1.0		ug/L			11/22/20 16:40	1
1,2-Dichlorobenzene	1.0		1.0		ug/L			11/22/20 16:40	1
Dichlorodifluoromethane	1.0		1.0		ug/L			11/22/20 16:40	1
1,2,4-Trichlorobenzene	1.0		1.0		ug/L			11/22/20 16:40	1
1,4-Dioxane	50		50		ug/L			11/22/20 16:40	1
1,2,3-Trichlorobenzene	1.0		1.0		ug/L			11/22/20 16:40	1
1,2-Dibromo-3-Chloropropane	1.0		1.0		ug/L			11/22/20 16:40	1
Chlorobromomethane	1.0		1.0		ug/L			11/22/20 16:40	1
Isopropylbenzene	1.0		1.0		ug/L			11/22/20 16:40	1
Methyl acetate	5.0		5.0		ug/L			11/22/20 16:40	1
Methylcyclohexane	1.0	U	1.0	0.71	ug/L			11/22/20 16:40	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	<u>D</u>	RT _	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					11/22/20 16:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		75 - 123					11/22/20 16:40	1
Toluene-d8 (Surr)	103		80 - 120					11/22/20 16:40	1

Eurofins TestAmerica, Edison

3/30/2021

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: MW-2 Lab Sample ID: 460-222961-2

Date Collected: 11/13/20 10:55

Date Received: 11/16/20 19:40

Matrix: Water

Method: 8260D - Volatile Organic	Compounds by	GC/MS	(Continued)
----------------------------------	--------------	-------	-------------

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	102	76 - 120		11/22/20 16:40	1
Dibromofluoromethane (Surr)	93	77 - 124		11/22/20 16:40	1

							,			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,4-Dioxane	0.20	U	0.20	0.016	ug/L		11/18/20 09:12	11/19/20 14:06	1	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1,4-Dioxane-d8	32		10 - 150				11/18/20 09:12	11/19/20 14:06	1	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	10	U	10	0.29	ug/L		11/19/20 09:29	11/20/20 08:17	1
2-Chlorophenol	10	U	10	0.38	ug/L		11/19/20 09:29	11/20/20 08:17	1
2-Methylphenol	10	U	10	0.67	ug/L		11/19/20 09:29	11/20/20 08:17	1
4-Methylphenol	10	U	10	0.65	ug/L		11/19/20 09:29	11/20/20 08:17	1
2-Nitrophenol	10	U	10	0.75	ug/L		11/19/20 09:29	11/20/20 08:17	1
2,4-Dimethylphenol	10	U	10	0.62	ug/L		11/19/20 09:29	11/20/20 08:17	1
2,4-Dichlorophenol	10	U	10	1.1	ug/L		11/19/20 09:29	11/20/20 08:17	1
4-Chloro-3-methylphenol	10	U	10	0.58	ug/L		11/19/20 09:29	11/20/20 08:17	1
2,4,6-Trichlorophenol	10	U	10	0.86	ug/L		11/19/20 09:29	11/20/20 08:17	1
2,4,5-Trichlorophenol	10	U	10	0.88	ug/L		11/19/20 09:29	11/20/20 08:17	1
2,4-Dinitrotoluene	2.0	U	2.0	1.0	ug/L		11/19/20 09:29	11/20/20 08:17	1
4-Nitrophenol	30	U	30	4.0	ug/L		11/19/20 09:29	11/20/20 08:17	1
4,6-Dinitro-2-methylphenol	30	U	30	3.0	ug/L		11/19/20 09:29	11/20/20 08:17	1
Pentachlorophenol	30	U	30	1.4	ug/L		11/19/20 09:29	11/20/20 08:17	1
Bis(2-chloroethyl)ether	1.0	U	1.0	0.63	ug/L		11/19/20 09:29	11/20/20 08:17	1
N-Nitrosodi-n-propylamine	1.0	U	1.0	0.43	ug/L		11/19/20 09:29	11/20/20 08:17	1
Hexachloroethane	2.0	U	2.0	0.80	ug/L		11/19/20 09:29	11/20/20 08:17	1
Nitrobenzene	1.0	U	1.0	0.57	ug/L		11/19/20 09:29	11/20/20 08:17	1
Isophorone	10	U	10		ug/L		11/19/20 09:29	11/20/20 08:17	1
Naphthalene	2.0	U	2.0		ug/L		11/19/20 09:29	11/20/20 08:17	1
4-Chloroaniline	1.0	U	1.0	1.9	ug/L		11/19/20 09:29	11/20/20 08:17	1
Hexachlorobutadiene	2.0	U	2.0	0.78	ug/L		11/19/20 09:29	11/20/20 08:17	1
2-Methylnaphthalene	10	U	10		ug/L		11/19/20 09:29	11/20/20 08:17	1
Hexachlorocyclopentadiene	10	U	10	3.6	ug/L		11/19/20 09:29	11/20/20 08:17	1
2-Chloronaphthalene	10	U	10	1.2	ug/L		11/19/20 09:29	11/20/20 08:17	1
2-Nitroaniline	20	U	20		ug/L		11/19/20 09:29	11/20/20 08:17	1
Dimethyl phthalate	10	U	10		ug/L		11/19/20 09:29	11/20/20 08:17	1
Acenaphthylene	10	U	10	0.82	ug/L		11/19/20 09:29	11/20/20 08:17	1
2,6-Dinitrotoluene	2.0	U	2.0	0.83	ug/L		11/19/20 09:29	11/20/20 08:17	1
3-Nitroaniline	20	U	20	1.9	ug/L		11/19/20 09:29	11/20/20 08:17	1
Acenaphthene	10	U	10	1.1	ug/L		11/19/20 09:29	11/20/20 08:17	1
Dibenzofuran	10	U	10	1.1	ug/L		11/19/20 09:29	11/20/20 08:17	1
2,4-Dinitrophenol	30	U	30	2.6	ug/L		11/19/20 09:29	11/20/20 08:17	1
Diethyl phthalate	10	U	10		ug/L		11/19/20 09:29	11/20/20 08:17	1
4-Chlorophenyl phenyl ether	10	U	10		ug/L		11/19/20 09:29	11/20/20 08:17	1
Fluorene	10		10	0.91	ug/L		11/19/20 09:29	11/20/20 08:17	1
4-Nitroaniline	20		20		ug/L		11/19/20 09:29	11/20/20 08:17	1
N-Nitrosodiphenylamine	10		10		ug/L		11/19/20 09:29	11/20/20 08:17	1

Eurofins TestAmerica, Edison

Page 24 of 158

2

3

7

10

12

14

16

1/

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: MW-2 Lab Sample ID: 460-222961-2

Date Collected: 11/13/20 10:55 Matrix: Water

Date Received: 11/16/20 19:40

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Bromophenyl phenyl ether	10	U	10	0.75	ug/L		11/19/20 09:29	11/20/20 08:17	1
Hexachlorobenzene	1.0	U	1.0	0.40	ug/L		11/19/20 09:29	11/20/20 08:17	1
Phenanthrene	10	U	10	1.3	ug/L		11/19/20 09:29	11/20/20 08:17	1
Anthracene	10	U	10	1.3	ug/L		11/19/20 09:29	11/20/20 08:17	1
Carbazole	10	U	10	0.68	ug/L		11/19/20 09:29	11/20/20 08:17	1
Di-n-butyl phthalate	10	U	10	0.84	ug/L		11/19/20 09:29	11/20/20 08:17	1
Fluoranthene	10	U	10	0.84	ug/L		11/19/20 09:29	11/20/20 08:17	1
Pyrene	10	U	10	1.6	ug/L		11/19/20 09:29	11/20/20 08:17	1
Butyl benzyl phthalate	10	U	10	0.85	ug/L		11/19/20 09:29	11/20/20 08:17	1
Benzo[a]anthracene	1.0	U	1.0	0.59	ug/L		11/19/20 09:29	11/20/20 08:17	1
Chrysene	10	U	10	0.91	ug/L		11/19/20 09:29	11/20/20 08:17	1
Bis(2-ethylhexyl) phthalate	10	U	10	0.80	ug/L		11/19/20 09:29	11/20/20 08:17	1
Di-n-octyl phthalate	10	U	10	0.75	ug/L		11/19/20 09:29	11/20/20 08:17	1
Benzo[b]fluoranthene	2.0	U	2.0	0.68	ug/L		11/19/20 09:29	11/20/20 08:17	1
Benzo[k]fluoranthene	1.0	U	1.0	0.67	ug/L		11/19/20 09:29	11/20/20 08:17	1
Benzo[a]pyrene	1.0	U	1.0	0.41	ug/L		11/19/20 09:29	11/20/20 08:17	1
Indeno[1,2,3-cd]pyrene	2.0	U	2.0	0.94	ug/L		11/19/20 09:29	11/20/20 08:17	1
Dibenz(a,h)anthracene	1.0	U	1.0	0.72	ug/L		11/19/20 09:29	11/20/20 08:17	1
Benzo[g,h,i]perylene	10	U	10	0.70	ug/L		11/19/20 09:29	11/20/20 08:17	1
1,1'-Biphenyl	10	U	10	1.2	ug/L		11/19/20 09:29	11/20/20 08:17	1
Acetophenone	10	U	10	2.3	ug/L		11/19/20 09:29	11/20/20 08:17	1
1,4-Dioxane	10	U	10	1.6	ug/L		11/19/20 09:29	11/20/20 08:17	1
Benzaldehyde	10	U	10	2.1	ug/L		11/19/20 09:29	11/20/20 08:17	1
Caprolactam	10	U	10	2.2	ug/L		11/19/20 09:29	11/20/20 08:17	1
Atrazine	10	U *	10	1.3	ug/L		11/19/20 09:29	11/20/20 08:17	1
2,2'-oxybis[1-chloropropane]	10	U	10	0.63	ug/L		11/19/20 09:29	11/20/20 08:17	1
1,2,4,5-Tetrachlorobenzene	10	U	10	1.2	ug/L		11/19/20 09:29	11/20/20 08:17	1
2,3,4,6-Tetrachlorophenol	10	U	10	0.75	ug/L		11/19/20 09:29	11/20/20 08:17	1
3,3'-Dichlorobenzidine	20	U	20	1.4	ug/L		11/19/20 09:29	11/20/20 08:17	1
Bis(2-chloroethoxy)methane	10	U	10	0.59	ug/L		11/19/20 09:29	11/20/20 08:17	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac

remanively identified Compound	Est. Result	Qualifier	OIIIL	 	CAS NO.	riepaieu	Allalyzeu	DII Fac
Tentatively Identified Compound	None		ug/L			11/19/20 09:29	11/20/20 08:17	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	117		46 - 137			11/19/20 09:29	11/20/20 08:17	1
Phenol-d5 (Surr)	68	Χ	10 - 50			11/19/20 09:29	11/20/20 08:17	1
Terphenyl-d14 (Surr)	103		39 - 150			11/19/20 09:29	11/20/20 08:17	1
2,4,6-Tribromophenol (Surr)	173	X	36 - 159			11/19/20 09:29	11/20/20 08:17	1
2-Fluorophenol (Surr)	86	X	18 - 72			11/19/20 09:29	11/20/20 08:17	1
2-Fluorobiphenyl	120		42 - 127			11/19/20 09:29	11/20/20 08:17	1

Method: 8081B - Organochlorine Pesticides (GC)
--

mountain out in a significant									
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	0.020	J	0.020	0.0060	ug/L		11/18/20 09:44	11/19/20 13:57	1
4,4'-DDE	0.020 L	J	0.020	0.0020	ug/L		11/18/20 09:44	11/19/20 13:57	1
4,4'-DDT	0.020 L	J	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 13:57	1
Aldrin	0.020 L	J	0.020	0.0030	ug/L		11/18/20 09:44	11/19/20 13:57	1
alpha-BHC	0.020 L	J	0.020	0.0070	ug/L		11/18/20 09:44	11/19/20 13:57	1
beta-BHC	0.020 L	J	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 13:57	1

Eurofins TestAmerica, Edison

Page 25 of 158

G

3

6

10

12

14

15

16

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: MW-2

Date Collected: 11/13/20 10:55 Date Received: 11/16/20 19:40

Lab Sample	ID: 460-222961-2
	Matrix: Water

Method: 8081B - Organoo	chlorine Pesticid	les (GC) (C	Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlordane (technical)	0.50	U	0.50	0.055	ug/L		11/18/20 09:44	11/19/20 13:57	1
delta-BHC	0.020	U	0.020	0.0050	ug/L		11/18/20 09:44	11/19/20 13:57	1
Dieldrin	0.020	U	0.020	0.0030	ug/L		11/18/20 09:44	11/19/20 13:57	1
Endosulfan I	0.020	U	0.020	0.0020	ug/L		11/18/20 09:44	11/19/20 13:57	1
Endosulfan II	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 13:57	1
Endosulfan sulfate	0.020	U	0.020	0.0060	ug/L		11/18/20 09:44	11/19/20 13:57	1
Endrin	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 13:57	1
Endrin aldehyde	0.020	U	0.020	0.0080	ug/L		11/18/20 09:44	11/19/20 13:57	1
Endrin ketone	0.020	U	0.020	0.0080	ug/L		11/18/20 09:44	11/19/20 13:57	1
gamma-BHC (Lindane)	0.020	U	0.020	0.012	ug/L		11/18/20 09:44	11/19/20 13:57	1
Heptachlor	0.020	U	0.020	0.0030	ug/L		11/18/20 09:44	11/19/20 13:57	1
Heptachlor epoxide	0.020	U	0.020	0.0050	ug/L		11/18/20 09:44	11/19/20 13:57	1
Methoxychlor	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 13:57	1
Toxaphene	0.50	U	0.50	0.11	ug/L		11/18/20 09:44	11/19/20 13:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	75		10 - 132				11/18/20 09:44	11/19/20 13:57	1
DCB Decachlorobiphenyl	67		10 - 132				11/18/20 09:44	11/19/20 13:57	1
Tetrachloro-m-xylene	73		10 - 150				11/18/20 09:44	11/19/20 13:57	1
Tetrachloro-m-xylene	70		10 - 150				11/18/20 09:44	11/19/20 13:57	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 18:35	1
Aroclor 1221	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 18:35	1
Aroclor 1232	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 18:35	1
Aroclor 1242	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 18:35	1
Aroclor 1248	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 18:35	1
Aroclor 1254	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 18:35	1
Aroclor 1260	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 18:35	1
Aroclor-1262	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 18:35	1
Aroclor 1268	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 18:35	1
Polychlorinated biphenyls, Total	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 18:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	92		10 - 150				11/18/20 09:41	11/18/20 18:35	1
DCB Decachlorobiphenyl	85		10 - 150				11/18/20 09:41	11/18/20 18:35	1
Tetrachloro-m-xylene	94		48 - 125				11/18/20 09:41	11/18/20 18:35	1
Tetrachloro-m-xylene	94		48 - 125				11/18/20 09:41	11/18/20 18:35	1

Method: 8151A - Herbicides	s (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	1.2	U	1.2	0.13	ug/L		11/17/20 20:26	11/18/20 09:17	1
Silvex (2,4,5-TP)	1.2	U	1.2	0.11	ug/L		11/17/20 20:26	11/18/20 09:17	1
2,4,5-T	1.2	U	1.2	0.12	ug/L		11/17/20 20:26	11/18/20 09:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	67		39 - 145				11/17/20 20:26	11/18/20 09:17	1
2,4-Dichlorophenylacetic acid	73		39 - 145				11/17/20 20:26	11/18/20 09:17	1

Eurofins TestAmerica, Edison

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: MW-2 Lab Sample ID: 460-222961-2

Date Collected: 11/13/20 10:55

Date Received: 11/16/20 19:40

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perfluorobutanoic acid (PFBA)	25		4.2	0.96	ng/L		11/20/20 09:01	11/20/20 16:47	
Perfluoropentanoic acid (PFPeA)	52		1.7	0.92	ng/L		11/20/20 09:01	11/20/20 16:47	
Perfluorohexanoic acid (PFHxA)	46		1.7	0.70	ng/L		11/20/20 09:01	11/20/20 16:47	
Perfluoroheptanoic acid (PFHpA)	55		1.7	0.39	ng/L		11/20/20 09:01	11/20/20 16:47	
Perfluorononanoic acid (PFNA)	11		1.7	0.49	ng/L		11/20/20 09:01	11/20/20 16:47	
Perfluorodecanoic acid (PFDA)	1.9		1.7	0.39	ng/L		11/20/20 09:01	11/20/20 16:47	
Perfluoroundecanoic acid (PFUnA)	1.7	U	1.7	0.62	ng/L		11/20/20 09:01	11/20/20 16:47	
Perfluorododecanoic acid (PFDoA)	1.7	U	1.7	0.39	ng/L		11/20/20 09:01	11/20/20 16:47	
Perfluorotridecanoic acid (PFTriA)	1.7	U	1.7	0.37	-		11/20/20 09:01	11/20/20 16:47	
Perfluorotetradecanoic acid (PFTeA)	1.7		1.7	0.50			11/20/20 09:01	11/20/20 16:47	
Perfluorobutanesulfonic acid (PFBS)	6.5		1.7	0.53	-			11/20/20 16:47	
Perfluorohexanesulfonic acid (PFHxS)	80		1.7	0.57	ng/L		11/20/20 09:01	11/20/20 16:47	
Perfluoroheptanesulfonic Acid (PFHpS)	7.3		1.7	0.33	ng/L		11/20/20 09:01	11/20/20 16:47	
Perfluorooctanesulfonic acid (PFOS)	150		1.7	0.74			11/20/20 09:01	11/20/20 16:47	
Perfluorodecanesulfonic acid (PFDS)	1.7	U	1.7	0.41			11/20/20 09:01	11/20/20 16:47	
Perfluorooctanesulfonamide (PFOSA)	1.7	U	1.7	0.48	ng/L		11/20/20 09:01	11/20/20 16:47	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	4.2	U	4.2	0.67	ng/L		11/20/20 09:01	11/20/20 16:47	
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	1.2	J	4.2	0.79	ng/L		11/20/20 09:01	11/20/20 16:47	
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	4.2	U	4.2	0.61	-		11/20/20 09:01	11/20/20 16:47	
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	1.7	U	1.7	0.56	ng/L		11/20/20 09:01	11/20/20 16:47	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1802 PFHxS	104		50 - 150				11/20/20 09:01	11/20/20 16:47	
13C4 PFHpA	98		50 - 150				11/20/20 09:01	11/20/20 16:47	
13C4 PFOS	98		50 - 150				11/20/20 09:01	11/20/20 16:47	
13C5 PFNA	100		50 - 150				11/20/20 09:01	11/20/20 16:47	
13C4 PFBA	62		25 - 150				11/20/20 09:01	11/20/20 16:47	
13C2 PFHxA	93		50 - 150				11/20/20 09:01	11/20/20 16:47	
13C2 PFDA	93		50 - 150				11/20/20 09:01	11/20/20 16:47	
13C2 PFUnA	94		50 - 150				11/20/20 09:01	11/20/20 16:47	
13C2 PFDoA	98		50 - 150				11/20/20 09:01	11/20/20 16:47	
13C8 FOSA	87		25 - 150				11/20/20 09:01	11/20/20 16:47	
13C5 PFPeA	88		25 - 150				11/20/20 09:01	11/20/20 16:47	
13C2 PFTeDA	95		50 - 150				11/20/20 09:01	11/20/20 16:47	
d3-NMeFOSAA	90		50 - 150				11/20/20 09:01	11/20/20 16:47	
d5-NEtFOSAA	96		50 - 150				11/20/20 09:01	11/20/20 16:47	
M2-6:2 FTS	116		25 - 150				11/20/20 09:01	11/20/20 16:47	
M2-8:2 FTS	90		25 - 150				11/20/20 09:01	11/20/20 16:47	
13C3 PFBS	99		50 - 150				11/20/20 09:01	11/20/20 16:47	
Method: 537 (modified) - Fluor			ces - DL						
Analyte	Docult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

Eurofins TestAmerica, Edison

2

3

5

1

10

12

14

15

1/

erica, Luisori

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Lab Sample ID: 460-222961-2 **Client Sample ID: MW-2 Matrix: Water**

Date Collected: 11/13/20 10:55 Date Received: 11/16/20 19:40

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C4 PFOA	105	50 - 150	11/20/20 09:01	11/23/20 17:07	2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	10.0	U	10.0	5.8	ug/L		11/22/20 16:15	11/23/20 18:28	1
Aluminum	500		200	76.9	ug/L		11/22/20 16:15	11/23/20 18:28	1
Arsenic	15.0	U	15.0	3.3	ug/L		11/22/20 16:15	11/23/20 18:28	1
Barium	88.1	J	200	13.2	ug/L		11/22/20 16:15	11/23/20 18:28	1
Beryllium	2.0	U	2.0	0.17	ug/L		11/22/20 16:15	11/23/20 18:28	1
Calcium	283000		5000	152	ug/L		11/22/20 16:15	11/23/20 18:28	1
Cadmium	4.0	U	4.0	0.33	ug/L		11/22/20 16:15	11/23/20 18:28	1
Cobalt	50.0	U	50.0	2.0	ug/L		11/22/20 16:15	11/23/20 18:28	1
Chromium	10.0	U	10.0	5.0	ug/L		11/22/20 16:15	11/23/20 18:28	1
Copper	25.0	U	25.0	6.9	ug/L		11/22/20 16:15	11/23/20 18:28	1
Iron	483		150	80.8	ug/L		11/22/20 16:15	11/23/20 18:28	1
Potassium	15300		5000	142	ug/L		11/22/20 16:15	11/23/20 18:28	1
Magnesium	67100		5000	142	ug/L		11/22/20 16:15	11/23/20 18:28	1
Manganese	88.8		15.0	0.76	ug/L		11/22/20 16:15	11/23/20 18:28	1
Sodium	20300		5000	83.8	ug/L		11/22/20 16:15	11/23/20 18:28	1
Nickel	40.0	U	40.0	4.1	ug/L		11/22/20 16:15	11/23/20 18:28	1
Lead	10.0	U	10.0	2.4	ug/L		11/22/20 16:15	11/23/20 18:28	1
Antimony	20.0	U	20.0	3.7	ug/L		11/22/20 16:15	11/23/20 18:28	1
Selenium	20.0	U	20.0	5.9	ug/L		11/22/20 16:15	11/23/20 18:28	1
Thallium	20.0	U	20.0	4.1	ug/L		11/22/20 16:15	11/23/20 18:28	1
Vanadium	50.0	U	50.0	7.2	ug/L		11/22/20 16:15	11/23/20 18:28	1
Zinc	3.7	J	30.0	1.2	ug/L		11/22/20 16:15	11/23/20 18:28	1

Method: 7470A - Mercury (CVAA))								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	0.091	ug/L		11/25/20 12:43	11/25/20 14:10	1
<u> </u>									

General Chemistry						
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Cyanide, Total	0.0053 J	0.010	0.0040 mg/L	11/27/20 09:11	11/27/20 13:14	1

Client Sample ID: MW-3 Lab Sample ID: 460-222961-3 Date Collected: 11/13/20 09:35

Date Received: 11/16/20 19:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	1.0	U	1.0	0.40	ug/L			11/22/20 17:06	1
Bromomethane	1.0	U	1.0	0.55	ug/L			11/22/20 17:06	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			11/22/20 17:06	1
Chloroethane	1.0	U	1.0	0.32	ug/L			11/22/20 17:06	1
Methylene Chloride	1.0	U	1.0	0.32	ug/L			11/22/20 17:06	1
Acetone	5.0	U	5.0	4.4	ug/L			11/22/20 17:06	1
Carbon disulfide	1.0	U	1.0	0.82	ug/L			11/22/20 17:06	1
Trichlorofluoromethane	1.0	U	1.0	0.32	ug/L			11/22/20 17:06	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			11/22/20 17:06	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			11/22/20 17:06	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			11/22/20 17:06	1

Eurofins TestAmerica, Edison

Page 28 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

4-Bromofluorobenzene

Dibromofluoromethane (Surr)

Client Sample ID: MW-3 Lab Sample ID: 460-222961-3

Date Collected: 11/13/20 09:35

Date Received: 11/16/20 19:40

Matrix: Water

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued) Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac cis-1,2-Dichloroethene 1.0 U 1.0 0.22 ug/L 11/22/20 17:06 1.0 U Chloroform 1.0 0.33 ug/L 11/22/20 17:06 1,2-Dichloroethane 1.0 U 1.0 0.43 ug/L 11/22/20 17:06 2-Butanone (MEK) 5.0 U 5.0 1.9 ug/L 11/22/20 17:06 1,1,1-Trichloroethane 1.0 U 0.24 ug/L 11/22/20 17:06 1.0 Carbon tetrachloride 10 U 1.0 0.21 ug/L 11/22/20 17:06 Dichlorobromomethane 1.0 U 1.0 0.34 ug/L 11/22/20 17:06 1.0 U 11/22/20 17:06 1,2-Dichloropropane 1.0 0.35 ug/L cis-1,3-Dichloropropene 1.0 U 1.0 0.22 ug/L 11/22/20 17:06 Trichloroethene 1.0 U 1.0 0.31 ug/L 11/22/20 17:06 Chlorodibromomethane 1.0 U 1.0 0.28 ug/L 11/22/20 17:06 1.1.2-Trichloroethane 1.0 U 1.0 0.20 ua/L 11/22/20 17:06 Benzene 1.0 U 1.0 0.20 ug/L 11/22/20 17:06 trans-1,3-Dichloropropene 1.0 U 1.0 0.22 ug/L 11/22/20 17:06 Bromoform 0.54 ug/L 1.0 U 1.0 11/22/20 17:06 4-Methyl-2-pentanone (MIBK) 5.0 U* 5.0 1.3 ug/L 11/22/20 17:06 2-Hexanone 5.0 U 5.0 1.1 11/22/20 17:06 ug/L Tetrachloroethene 1.0 U 0.25 11/22/20 17:06 1.0 ug/L 1.1.2.2-Tetrachloroethane 0.37 ug/L 10 U 1.0 11/22/20 17:06 Toluene 1.0 U 1.0 0.38 ug/L 11/22/20 17:06 Chlorobenzene 1.0 U 1.0 0.38 ug/L 11/22/20 17:06 Ethylbenzene 1.0 U 1.0 0.30 ug/L 11/22/20 17:06 Styrene 10 U 1.0 0.42 ug/L 11/22/20 17:06 m-Xylene & p-Xylene 1.0 U 1.0 0.30 ug/L 11/22/20 17:06 o-Xylene 1.0 U 1.0 0.36 ug/L 11/22/20 17:06 1,1,2-Trichloro-1,2,2-trifluoroethane 1.0 U 1.0 0.31 ug/L 11/22/20 17:06 Methyl tert-butyl ether 1.0 U 1.0 0.22 ug/L 11/22/20 17:06 Cyclohexane 10 U 1.0 0.32 ug/L 11/22/20 17:06 Ethylene Dibromide 1.0 U 1.0 0.50 ug/L 11/22/20 17:06 1,3-Dichlorobenzene 1.0 U 1.0 0.34 ug/L 11/22/20 17:06 1,4-Dichlorobenzene 1.0 U 1.0 0.33 ug/L 11/22/20 17:06 10 U 1.0 0.21 ug/L 1.2-Dichlorobenzene 11/22/20 17:06 Dichlorodifluoromethane 1.0 U 1.0 0.31 ug/L 11/22/20 17:06 1,2,4-Trichlorobenzene 10 U 1.0 0.37 ug/L 11/22/20 17:06 1,4-Dioxane 50 U 50 28 ug/L 11/22/20 17:06 1.2.3-Trichlorobenzene 1.0 U 1.0 0.36 ug/L 11/22/20 17:06 1,2-Dibromo-3-Chloropropane 1.0 U 1.0 0.38 ug/L 11/22/20 17:06 Chlorobromomethane 1.0 U 1.0 0.41 ug/L 11/22/20 17:06 Isopropylbenzene 0.34 ug/L 1.0 U 1.0 11/22/20 17:06 Methyl acetate 5.0 U 5.0 0.79 ug/L 11/22/20 17:06 Methylcyclohexane 1.0 U 1.0 0.71 ug/L 11/22/20 17:06 Tentatively Identified Compound Est. Result Qualifier D RT CAS No. Unit Prepared Analyzed Dil Fac Tentatively Identified Compound None ug/L 11/22/20 17:06 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 90 11/22/20 17:06 75 - 123103 Toluene-d8 (Surr) 80 - 120 11/22/20 17:06

Eurofins TestAmerica, Edison

11/22/20 17:06

11/22/20 17:06

76 - 120

77 - 124

104

91

2

3

6

8

10

13

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: MW-3 Lab Sample ID: 460-222961-3

Date Collected: 11/13/20 09:35 **Matrix: Water** Date Received: 11/16/20 19:40

TRANSPORT OF THE CONTRACT OF T		
Method: 8270E SIM ID - Semivolatile Organic Compounds	is (GC/N3 3IN / ISOlobe Dilutio	JHI

monioai ozi oz omi ib	Commodiating Crys		ounae (een		iootopo	Dilati	J,		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.20		0.20	0.016	ug/L		11/18/20 09:12	11/19/20 14:22	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	32		10 - 150				11/18/20 09:12	11/19/20 14:22	1

Method:	8270E - Semivolatile	Organic Compounds	(GC/MS)
---------	----------------------	--------------------------	---------

Analyte	e Organic Co Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	10	U –	10	0.29	ug/L		11/19/20 09:29	11/20/20 06:11	1
2-Chlorophenol	10	U	10	0.38	ug/L		11/19/20 09:29	11/20/20 06:11	1
2-Methylphenol	10	U	10	0.67	ug/L		11/19/20 09:29	11/20/20 06:11	1
4-Methylphenol	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:11	1
2-Nitrophenol	10	U	10	0.75	ug/L		11/19/20 09:29	11/20/20 06:11	1
2,4-Dimethylphenol	10	U	10	0.62	_		11/19/20 09:29	11/20/20 06:11	1
2,4-Dichlorophenol	10	U	10	1.1	ug/L		11/19/20 09:29	11/20/20 06:11	1
4-Chloro-3-methylphenol	10	U	10	0.58	-		11/19/20 09:29	11/20/20 06:11	1
2,4,6-Trichlorophenol	10	U	10	0.86	ug/L		11/19/20 09:29	11/20/20 06:11	1
2,4,5-Trichlorophenol	10	U	10	0.88	ug/L		11/19/20 09:29	11/20/20 06:11	1
2,4-Dinitrotoluene	2.0	U	2.0		ug/L		11/19/20 09:29	11/20/20 06:11	1
4-Nitrophenol	30	U	30				11/19/20 09:29	11/20/20 06:11	1
4,6-Dinitro-2-methylphenol	30	U	30				11/19/20 09:29	11/20/20 06:11	1
Pentachlorophenol	30	U	30		ug/L		11/19/20 09:29	11/20/20 06:11	1
Bis(2-chloroethyl)ether	1.0	U	1.0	0.63	ug/L		11/19/20 09:29	11/20/20 06:11	1
N-Nitrosodi-n-propylamine	1.0	U	1.0	0.43			11/19/20 09:29	11/20/20 06:11	1
Hexachloroethane	2.0	U	2.0	0.80	-		11/19/20 09:29	11/20/20 06:11	1
Nitrobenzene	1.0	U	1.0		ug/L		11/19/20 09:29	11/20/20 06:11	1
Isophorone	10	U	10	0.80	ug/L		11/19/20 09:29	11/20/20 06:11	1
Naphthalene	2.0	U	2.0	0.54			11/19/20 09:29	11/20/20 06:11	1
4-Chloroaniline	1.0	U	1.0		ug/L		11/19/20 09:29	11/20/20 06:11	1
Hexachlorobutadiene	2.0	U	2.0		ug/L		11/19/20 09:29	11/20/20 06:11	1
2-Methylnaphthalene	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:11	1
Hexachlorocyclopentadiene	10	U	10	3.6	ug/L		11/19/20 09:29	11/20/20 06:11	1
2-Chloronaphthalene	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:11	1
2-Nitroaniline	20	U	20	0.47	_		11/19/20 09:29	11/20/20 06:11	1
Dimethyl phthalate	10	U	10	0.77	-		11/19/20 09:29	11/20/20 06:11	1
Acenaphthylene	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:11	1
2,6-Dinitrotoluene	2.0	U	2.0	0.83	_		11/19/20 09:29	11/20/20 06:11	1
3-Nitroaniline	20	U	20		ug/L		11/19/20 09:29	11/20/20 06:11	1
Acenaphthene	10	U	10	1.1	ug/L		11/19/20 09:29	11/20/20 06:11	1
Dibenzofuran	10	U	10	1.1	ug/L		11/19/20 09:29	11/20/20 06:11	1
2,4-Dinitrophenol	30	U	30		ug/L		11/19/20 09:29	11/20/20 06:11	1
Diethyl phthalate	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:11	1
4-Chlorophenyl phenyl ether	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:11	1
Fluorene	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:11	1
4-Nitroaniline	20		20		ug/L		11/19/20 09:29	11/20/20 06:11	1
N-Nitrosodiphenylamine	10		10		ug/L		11/19/20 09:29	11/20/20 06:11	1
4-Bromophenyl phenyl ether	10		10		ug/L		11/19/20 09:29	11/20/20 06:11	1
Hexachlorobenzene	1.0		1.0	0.40			11/19/20 09:29	11/20/20 06:11	1
Phenanthrene	10		10		ug/L		11/19/20 09:29	11/20/20 06:11	1
Anthracene	10		10		ug/L		11/19/20 09:29	11/20/20 06:11	1
Carbazole	10		10		ug/L		11/19/20 09:29	11/20/20 06:11	

Eurofins TestAmerica, Edison

Page 30 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Lab Sample ID: 460-222961-3 **Client Sample ID: MW-3**

Date Collected: 11/13/20 09:35 **Matrix: Water** Date Received: 11/16/20 19:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Di-n-butyl phthalate	10	U	10	0.84	ug/L		11/19/20 09:29	11/20/20 06:11	1
Fluoranthene	10	U	10	0.84	ug/L		11/19/20 09:29	11/20/20 06:11	1
Pyrene	10	U	10	1.6	ug/L		11/19/20 09:29	11/20/20 06:11	1
Butyl benzyl phthalate	10	U	10	0.85	ug/L		11/19/20 09:29	11/20/20 06:11	1
Benzo[a]anthracene	1.0	U	1.0	0.59	ug/L		11/19/20 09:29	11/20/20 06:11	1
Chrysene	10	U	10	0.91	ug/L		11/19/20 09:29	11/20/20 06:11	1
Bis(2-ethylhexyl) phthalate	10	U	10	0.80	ug/L		11/19/20 09:29	11/20/20 06:11	1
Di-n-octyl phthalate	10	U	10	0.75	ug/L		11/19/20 09:29	11/20/20 06:11	1
Benzo[b]fluoranthene	2.0	U	2.0	0.68	ug/L		11/19/20 09:29	11/20/20 06:11	1
Benzo[k]fluoranthene	1.0	U	1.0	0.67	ug/L		11/19/20 09:29	11/20/20 06:11	1
Benzo[a]pyrene	1.0	U	1.0	0.41	ug/L		11/19/20 09:29	11/20/20 06:11	1
Indeno[1,2,3-cd]pyrene	2.0	U	2.0	0.94	ug/L		11/19/20 09:29	11/20/20 06:11	1
Dibenz(a,h)anthracene	1.0	U	1.0	0.72	ug/L		11/19/20 09:29	11/20/20 06:11	1
Benzo[g,h,i]perylene	10	U	10	0.70	ug/L		11/19/20 09:29	11/20/20 06:11	1
1,1'-Biphenyl	10	U	10	1.2	ug/L		11/19/20 09:29	11/20/20 06:11	1
Acetophenone	10	U	10	2.3	ug/L		11/19/20 09:29	11/20/20 06:11	1
1,4-Dioxane	10	U	10	1.6	ug/L		11/19/20 09:29	11/20/20 06:11	1
Benzaldehyde	10	U	10	2.1	ug/L		11/19/20 09:29	11/20/20 06:11	1
Caprolactam	10	U	10	2.2	ug/L		11/19/20 09:29	11/20/20 06:11	1
Atrazine	10	U *	10	1.3	ug/L		11/19/20 09:29	11/20/20 06:11	1
2,2'-oxybis[1-chloropropane]	10	U	10	0.63	ug/L		11/19/20 09:29	11/20/20 06:11	1
1,2,4,5-Tetrachlorobenzene	10	U	10	1.2	ug/L		11/19/20 09:29	11/20/20 06:11	1
2,3,4,6-Tetrachlorophenol	10	U	10	0.75	ug/L		11/19/20 09:29	11/20/20 06:11	1
3,3'-Dichlorobenzidine	20	U	20	1.4	ug/L		11/19/20 09:29	11/20/20 06:11	1
Bis(2-chloroethoxy)methane	10	U	10	0.59	ug/L		11/19/20 09:29	11/20/20 06:11	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L				11/19/20 09:29	11/20/20 06:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	100		46 - 137				11/19/20 09:29	11/20/20 06:11	1
Phenol-d5 (Surr)	28		10 - 50				11/19/20 09:29	11/20/20 06:11	1
Terphenyl-d14 (Surr)	69		39 - 150				11/19/20 09:29	11/20/20 06:11	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	0.020	U	0.020	0.0060	ug/L		11/18/20 09:44	11/19/20 14:13	1
4,4'-DDE	0.020	U	0.020	0.0020	ug/L		11/18/20 09:44	11/19/20 14:13	1
4,4'-DDT	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 14:13	1
Aldrin	0.020	U	0.020	0.0030	ug/L		11/18/20 09:44	11/19/20 14:13	1
alpha-BHC	0.020	U	0.020	0.0070	ug/L		11/18/20 09:44	11/19/20 14:13	1
beta-BHC	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 14:13	1
Chlordane (technical)	0.50	U	0.50	0.055	ug/L		11/18/20 09:44	11/19/20 14:13	1
delta-BHC	0.020	U	0.020	0.0050	ug/L		11/18/20 09:44	11/19/20 14:13	1
Dieldrin	0.020	U	0.020	0.0030	ug/L		11/18/20 09:44	11/19/20 14:13	1
Endosulfan I	0.020	U	0.020	0.0020	ug/L		11/18/20 09:44	11/19/20 14:13	1
Endosulfan II	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 14:13	1

36 - 159

18 - 72

42 - 127

130

43

84

2,4,6-Tribromophenol (Surr)

2-Fluorophenol (Surr)

2-Fluorobiphenyl

11/19/20 09:29 11/20/20 06:11

11/19/20 09:29 11/20/20 06:11

11/19/20 09:29 11/20/20 06:11

Page 31 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: MW-3 Lab Sample ID: 460-222961-3

Date Collected: 11/13/20 09:35

Date Received: 11/16/20 19:40

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Endosulfan sulfate	0.020	U	0.020	0.0060	ug/L		11/18/20 09:44	11/19/20 14:13	1
Endrin	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 14:13	1
Endrin aldehyde	0.020	U	0.020	0.0080	ug/L		11/18/20 09:44	11/19/20 14:13	1
Endrin ketone	0.020	U	0.020	0.0080	ug/L		11/18/20 09:44	11/19/20 14:13	1
gamma-BHC (Lindane)	0.020	U	0.020	0.012	ug/L		11/18/20 09:44	11/19/20 14:13	1
Heptachlor	0.020	U	0.020	0.0030	ug/L		11/18/20 09:44	11/19/20 14:13	1
Heptachlor epoxide	0.020	U	0.020	0.0050	ug/L		11/18/20 09:44	11/19/20 14:13	1
Methoxychlor	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 14:13	1
Toxaphene	0.50	U	0.50	0.11	ug/L		11/18/20 09:44	11/19/20 14:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	79		10 - 132				11/18/20 09:44	11/19/20 14:13	1
DCB Decachlorobiphenyl	70		10 - 132				11/18/20 09:44	11/19/20 14:13	1
Tetrachloro-m-xylene	74		10 - 150				11/18/20 09:44	11/19/20 14:13	1
Tetrachloro-m-xylene	74		10 - 150				11/18/20 09:44	11/19/20 14:13	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 18:51	1
Aroclor 1221	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 18:51	1
Aroclor 1232	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 18:51	1
Aroclor 1242	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 18:51	1
Aroclor 1248	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 18:51	1
Aroclor 1254	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 18:51	1
Aroclor 1260	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 18:51	1
Aroclor-1262	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 18:51	1
Aroclor 1268	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 18:51	1
Polychlorinated biphenyls, Total	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 18:51	1
Surrogato	%Pocovory	Qualifior	Limite				Propared	Analyzod	Dil Esc

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	93	10 - 150	11/18/20 09:41	11/18/20 18:51	1
DCB Decachlorobiphenyl	90	10 - 150	11/18/20 09:41	11/18/20 18:51	1
Tetrachloro-m-xylene	89	48 - 125	11/18/20 09:41	11/18/20 18:51	1
Tetrachloro-m-xylene	94	48 - 125	11/18/20 09:41	11/18/20 18:51	1

Method: 8151A - Herbicide	s (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	1.2	U	1.2	0.13	ug/L		11/17/20 20:26	11/18/20 09:30	1
Silvex (2,4,5-TP)	1.2	U	1.2	0.11	ug/L		11/17/20 20:26	11/18/20 09:30	1
2,4,5-T	1.2	U	1.2	0.12	ug/L		11/17/20 20:26	11/18/20 09:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	63		39 - 145				11/17/20 20:26	11/18/20 09:30	1
2 4-Dichlorophenylacetic acid	68		39 _ 145				11/17/20 20:26	11/18/20 09:30	1

Method: 537 (modified) - Fluorinated Alkyl Substances								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	56	4.7	1.1	ng/L		11/20/20 09:01	11/20/20 16:55	1
Perfluoropentanoic acid (PFPeA)	96	1.9	1.0	ng/L		11/20/20 09:01	11/20/20 16:55	1
Perfluorohexanoic acid (PFHxA)	100	1.9	0.78	ng/L		11/20/20 09:01	11/20/20 16:55	1
Perfluoroheptanoic acid (PFHpA)	87	1.9	0.43	ng/L		11/20/20 09:01	11/20/20 16:55	1

Eurofins TestAmerica, Edison

Page 32 of 158

2

3

0

8

10

. . 12

14

13

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: MW-3 Lab Sample ID: 460-222961-3

Date Collected: 11/13/20 09:35 Matrix: Water

Date Received: 11/16/20 19:40

Perfluorooctanoic acid (PFOA)

Isotope Dilution

13C4 PFOA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorononanoic acid (PFNA)	6.0		1.9	0.55	ng/L		11/20/20 09:01	11/20/20 16:55	1
Perfluorodecanoic acid (PFDA)	1.9		1.9	0.43	ng/L		11/20/20 09:01	11/20/20 16:55	1
Perfluoroundecanoic acid (PFUnA)	1.9	U	1.9	0.69	ng/L		11/20/20 09:01	11/20/20 16:55	1
Perfluorododecanoic acid (PFDoA)	1.9	U	1.9	0.43	ng/L		11/20/20 09:01	11/20/20 16:55	1
Perfluorotridecanoic acid (PFTriA)	1.9	U	1.9	0.41	ng/L		11/20/20 09:01	11/20/20 16:55	1
Perfluorotetradecanoic acid (PFTeA)	1.9	U	1.9	0.56	ng/L		11/20/20 09:01	11/20/20 16:55	1
Perfluorobutanesulfonic acid (PFBS)	8.6		1.9	0.59	ng/L		11/20/20 09:01	11/20/20 16:55	1
Perfluorohexanesulfonic acid (PFHxS)	59		1.9	0.63	ng/L		11/20/20 09:01	11/20/20 16:55	1
Perfluoroheptanesulfonic Acid (PFHpS)	3.1		1.9	0.37	ng/L		11/20/20 09:01	11/20/20 16:55	1
Perfluorooctanesulfonic acid (PFOS)	69		1.9	0.82	ng/L		11/20/20 09:01	11/20/20 16:55	1
Perfluorodecanesulfonic acid (PFDS)	1.9	U	1.9	0.45	ng/L		11/20/20 09:01	11/20/20 16:55	1
Perfluorooctanesulfonamide (PFOSA)	1.9	U	1.9	0.54	ng/L		11/20/20 09:01	11/20/20 16:55	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	4.7	U	4.7	0.75	ng/L		11/20/20 09:01	11/20/20 16:55	1
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	0.88	J	4.7	0.88	ng/L		11/20/20 09:01	11/20/20 16:55	1
1H,1H,2H,2H-perfluorooctanesulfo nic acid (6:2)	25		4.7	0.68	ng/L		11/20/20 09:01	11/20/20 16:55	1
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	1.9	U	1.9	0.62	ng/L		11/20/20 09:01	11/20/20 16:55	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1802 PFHxS	102		50 - 150				11/20/20 09:01	11/20/20 16:55	1
13C4 PFHpA	96		50 - 150				11/20/20 09:01	11/20/20 16:55	1
13C4 PFOS	101		50 - 150				11/20/20 09:01	11/20/20 16:55	1
13C5 PFNA	101		50 - 150				11/20/20 09:01	11/20/20 16:55	1
13C4 PFBA	51		25 - 150				11/20/20 09:01	11/20/20 16:55	1
13C2 PFHxA	82		50 - 150				11/20/20 09:01	11/20/20 16:55	1
13C2 PFDA	107		50 - 150				11/20/20 09:01	11/20/20 16:55	1
13C2 PFUnA	111		50 - 150				11/20/20 09:01	11/20/20 16:55	1
13C2 PFDoA	117		50 - 150				11/20/20 09:01	11/20/20 16:55	1
13C8 FOSA	88		25 - 150				11/20/20 09:01	11/20/20 16:55	1
13C5 PFPeA	80		25 - 150				11/20/20 09:01	11/20/20 16:55	1
13C2 PFTeDA	115		50 - 150				11/20/20 09:01	11/20/20 16:55	1
d3-NMeFOSAA	98		50 - 150				11/20/20 09:01	11/20/20 16:55	1
d5-NEtFOSAA	99		50 - 150				11/20/20 09:01	11/20/20 16:55	1
M2-6:2 FTS	119		25 - 150					11/20/20 16:55	1
M2-8:2 FTS	105		25 - 150					11/20/20 16:55	1
13C3 PFBS	93		50 - 150					11/20/20 16:55	1
Method: 537 (modified) - Fluor									

11/20/20 09:01 11/23/20 17:16

11/20/20 09:01 11/23/20 17:16

Prepared

Eurofins TestAmerica, Edison

Analyzed

Limits

50 - 150

%Recovery Qualifier

100

1.8 ng/L

2

3

5

8

10

12

14

4.0

1/

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Lab Sample ID: 460-222961-3 **Client Sample ID: MW-3**

Date Collected: 11/13/20 09:35 **Matrix: Water**

Date Received: 11/16/20 19:40

Method: 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	10.0	U	10.0	5.8	ug/L		11/22/20 16:15	11/23/20 18:33	1
Aluminum	425		200	76.9	ug/L		11/22/20 16:15	11/23/20 18:33	1
Arsenic	15.0	U	15.0	3.3	ug/L		11/22/20 16:15	11/23/20 18:33	1
Barium	217		200	13.2	ug/L		11/22/20 16:15	11/23/20 18:33	1
Beryllium	2.0	U	2.0	0.17	ug/L		11/22/20 16:15	11/23/20 18:33	1
Calcium	253000		5000	152	ug/L		11/22/20 16:15	11/23/20 18:33	1
Cadmium	0.66	J	4.0	0.33	ug/L		11/22/20 16:15	11/23/20 18:33	1
Cobalt	3.6	J	50.0	2.0	ug/L		11/22/20 16:15	11/23/20 18:33	1
Chromium	10.0	U	10.0	5.0	ug/L		11/22/20 16:15	11/23/20 18:33	1
Copper	39.5		25.0	6.9	ug/L		11/22/20 16:15	11/23/20 18:33	1
Iron	540		150	80.8	ug/L		11/22/20 16:15	11/23/20 18:33	1
Potassium	14000		5000	142	ug/L		11/22/20 16:15	11/23/20 18:33	1
Magnesium	91100		5000	142	ug/L		11/22/20 16:15	11/23/20 18:33	1
Manganese	6630		15.0	0.76	ug/L		11/22/20 16:15	11/23/20 18:33	1
Sodium	19400		5000	83.8	ug/L		11/22/20 16:15	11/23/20 18:33	1
Nickel	13.4	J	40.0	4.1	ug/L		11/22/20 16:15	11/23/20 18:33	1
Lead	2.5	J	10.0	2.4	ug/L		11/22/20 16:15	11/23/20 18:33	1
Antimony	24.8		20.0	3.7	ug/L		11/22/20 16:15	11/23/20 18:33	1
Selenium	20.0	U	20.0	5.9	ug/L		11/22/20 16:15	11/23/20 18:33	1
Thallium	26.3		20.0	4.1	ug/L		11/22/20 16:15	11/23/20 18:33	1
Vanadium	50.0	U	50.0	7.2	ug/L		11/22/20 16:15	11/23/20 18:33	1
Zinc	28.3	J	30.0	1.2	ug/L		11/22/20 16:15	11/23/20 18:33	1
Method: 7470A - Mercury (CVA	A)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	0.091	ug/L		11/25/20 12:43	11/25/20 14:12	

Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20 U	0.20	0.091	ug/L		11/25/20 12:43	11/25/20 14:12	1

General	Chemistry
A I I I I I I I	

Chloroform

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.010	U	0.010	0.0040	mg/L		11/27/20 09:11	11/27/20 13:15	1

Client Sample ID: MW-5

Date Collected: 11/13/20 15:10 Date Received: 11/16/20 19:40

Method: 8260D - Volatile Organic Compounds by GC/MS

1.0 U

Lab	Sample	e ID:	460-222961-4	
			Matrix: Water	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	1.0	U	1.0	0.40	ug/L			11/22/20 17:32	1
Bromomethane	1.0	U	1.0	0.55	ug/L			11/22/20 17:32	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			11/22/20 17:32	1
Chloroethane	1.0	U	1.0	0.32	ug/L			11/22/20 17:32	1
Methylene Chloride	1.0	U	1.0	0.32	ug/L			11/22/20 17:32	1
Acetone	5.0	U	5.0	4.4	ug/L			11/22/20 17:32	1
Carbon disulfide	1.0	U	1.0	0.82	ug/L			11/22/20 17:32	1
Trichlorofluoromethane	1.0	U	1.0	0.32	ug/L			11/22/20 17:32	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			11/22/20 17:32	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			11/22/20 17:32	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			11/22/20 17:32	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			11/22/20 17:32	1

11/22/20 17:32

Page 34 of 158

1.0

0.33 ug/L

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: MW-5 Lab Sample ID: 460-222961-4

Date Collected: 11/13/20 15:10 Matrix: Water Date Received: 11/16/20 19:40

Analyte	Result	Qualifier	RL	N	IDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	1.0	U	1.0	(.43	ug/L		-	11/22/20 17:32	1
2-Butanone (MEK)	5.0	U	5.0		1.9	ug/L			11/22/20 17:32	1
1,1,1-Trichloroethane	1.0	U	1.0	(.24	ug/L			11/22/20 17:32	1
Carbon tetrachloride	1.0	U	1.0	(.21	ug/L			11/22/20 17:32	1
Dichlorobromomethane	1.0	U	1.0	(.34	ug/L			11/22/20 17:32	1
1,2-Dichloropropane	1.0	U	1.0	(.35	ug/L			11/22/20 17:32	1
cis-1,3-Dichloropropene	1.0	U	1.0	(.22	ug/L			11/22/20 17:32	1
Trichloroethene	1.0	U	1.0	(.31	ug/L			11/22/20 17:32	1
Chlorodibromomethane	1.0	U	1.0	(.28	ug/L			11/22/20 17:32	1
1,1,2-Trichloroethane	1.0	U	1.0	(.20	ug/L			11/22/20 17:32	1
Benzene	1.0	U	1.0	(.20	ug/L			11/22/20 17:32	1
trans-1,3-Dichloropropene	1.0	U	1.0	(.22	ug/L			11/22/20 17:32	1
Bromoform	1.0	U	1.0	(.54	ug/L			11/22/20 17:32	1
4-Methyl-2-pentanone (MIBK)	5.0	U * F1	5.0		1.3	ug/L			11/22/20 17:32	1
2-Hexanone	5.0	U *	5.0		1.1	ug/L			11/22/20 17:32	1
Tetrachloroethene	1.0	U	1.0	(.25	ug/L			11/22/20 17:32	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	(.37	ug/L			11/22/20 17:32	1
Toluene	1.0	U	1.0	(.38	ug/L			11/22/20 17:32	1
Chlorobenzene	1.0	U	1.0	(.38	ug/L			11/22/20 17:32	1
Ethylbenzene	1.0	U	1.0	(.30	ug/L			11/22/20 17:32	1
Styrene	1.0	U	1.0	(.42	ug/L			11/22/20 17:32	1
m-Xylene & p-Xylene	1.0	U	1.0	(.30	ug/L			11/22/20 17:32	1
o-Xylene	1.0	U	1.0	(.36	ug/L			11/22/20 17:32	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	(.31	ug/L			11/22/20 17:32	1
Methyl tert-butyl ether	1.0	U	1.0	(.22	ug/L			11/22/20 17:32	1
Cyclohexane	1.0	U	1.0	(.32	ug/L			11/22/20 17:32	1
Ethylene Dibromide	1.0	U	1.0	(.50	ug/L			11/22/20 17:32	1
1,3-Dichlorobenzene	1.0	U	1.0	(.34	ug/L			11/22/20 17:32	1
1,4-Dichlorobenzene	1.0	U	1.0	(.33	ug/L			11/22/20 17:32	1
1,2-Dichlorobenzene	1.0	U	1.0	().21	ug/L			11/22/20 17:32	1
Dichlorodifluoromethane	1.0	U	1.0	(.31	ug/L			11/22/20 17:32	1
1,2,4-Trichlorobenzene	1.0	U	1.0	(.37	ug/L			11/22/20 17:32	1
1,4-Dioxane	50	U	50		28	ug/L			11/22/20 17:32	1
1,2,3-Trichlorobenzene	1.0	U	1.0	(.36	ug/L			11/22/20 17:32	1
1,2-Dibromo-3-Chloropropane	1.0	U	1.0	(.38	ug/L			11/22/20 17:32	1
Chlorobromomethane	1.0	U	1.0	(.41	ug/L			11/22/20 17:32	1
Isopropylbenzene	1.0	U	1.0	(.34	ug/L			11/22/20 17:32	1
Methyl acetate	5.0	U	5.0	(.79	ug/L			11/22/20 17:32	1
Methylcyclohexane	1.0	U	1.0	().71	ug/L			11/22/20 17:32	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L						11/22/20 17:32	1

rentatively identified Compound	None	ug/L		11/22/20 17:32	7
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93	75 - 123		11/22/20 17:32	1
Toluene-d8 (Surr)	105	80 - 120		11/22/20 17:32	1
4-Bromofluorobenzene	104	76 - 120		11/22/20 17:32	1
Dibromofluoromethane (Surr)	93	77 124		11/22/20 17:32	1

Eurofins TestAmerica, Edison

9

3

7

9

12

14

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Lab Sample ID: 460-222961-4 **Client Sample ID: MW-5**

Date Collected: 11/13/20 15:10 **Matrix: Water** Date Received: 11/16/20 19:40

Method: 8270E SIM ID - Semivolatile Organic Compounds (GC/	/MS SIM / Isotope Dilution)
--	-----------------------------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.20	U	0.20	0.016	ug/L		11/18/20 09:12	11/19/20 14:38	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Method: 8270E - Semivola	tile Organic Compo	ounds (GC/MS)
--------------------------	--------------------	---------------

	27		10 - 100				11/10/20 03.12	11/19/20 14:50	,
Method: 8270E - Semivola Analyte		mpounds Qualifier	(GC/MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol		U	10			— <u> </u>	11/19/20 09:29	11/20/20 00:13	1
2-Chlorophenol	10	U	10		ug/L		11/19/20 09:29	11/20/20 00:13	1
2-Methylphenol	10	U	10		ug/L		11/19/20 09:29	11/20/20 00:13	1
4-Methylphenol	10	U	10		ug/L		11/19/20 09:29	11/20/20 00:13	1
2-Nitrophenol	10	U	10		ug/L		11/19/20 09:29	11/20/20 00:13	1
2,4-Dimethylphenol	10	U	10		ug/L		11/19/20 09:29	11/20/20 00:13	1
2,4-Dichlorophenol	10	U	10		ug/L		11/19/20 09:29	11/20/20 00:13	1
4-Chloro-3-methylphenol	10	U	10		ug/L		11/19/20 09:29	11/20/20 00:13	1
2,4,6-Trichlorophenol	10	U	10		ug/L		11/19/20 09:29	11/20/20 00:13	1
2,4,5-Trichlorophenol	10	U	10		ug/L		11/19/20 09:29	11/20/20 00:13	1
2,4-Dinitrotoluene	2.0	U F1	2.0		_		11/19/20 09:29	11/20/20 00:13	1
4-Nitrophenol	30	U	30	4.0			11/19/20 09:29	11/20/20 00:13	1
4,6-Dinitro-2-methylphenol	30	U	30	3.0			11/19/20 09:29	11/20/20 00:13	1
Pentachlorophenol	30	U	30	1.4	ug/L		11/19/20 09:29	11/20/20 00:13	1
Bis(2-chloroethyl)ether	1.0	U	1.0	0.63	ug/L		11/19/20 09:29	11/20/20 00:13	1
N-Nitrosodi-n-propylamine	1.0	U	1.0	0.43	ug/L		11/19/20 09:29	11/20/20 00:13	1
Hexachloroethane	2.0	U	2.0		ug/L		11/19/20 09:29	11/20/20 00:13	1
Nitrobenzene	1.0	U	1.0	0.57	ug/L		11/19/20 09:29	11/20/20 00:13	1
Isophorone	10	U	10	0.80	ug/L		11/19/20 09:29	11/20/20 00:13	1
Naphthalene	2.0	U	2.0	0.54	_		11/19/20 09:29	11/20/20 00:13	1
4-Chloroaniline	1.0	U F2	1.0		ug/L		11/19/20 09:29	11/20/20 00:13	1
Hexachlorobutadiene	2.0	U	2.0	0.78	ug/L		11/19/20 09:29	11/20/20 00:13	1
2-Methylnaphthalene	10	U	10	0.53	ug/L		11/19/20 09:29	11/20/20 00:13	1
Hexachlorocyclopentadiene	10	U	10	3.6	ug/L		11/19/20 09:29	11/20/20 00:13	1
2-Chloronaphthalene	10	U	10	1.2	ug/L		11/19/20 09:29	11/20/20 00:13	1
2-Nitroaniline	20	U	20	0.47	ug/L		11/19/20 09:29	11/20/20 00:13	1
Dimethyl phthalate	10	U F1	10	0.77	ug/L		11/19/20 09:29	11/20/20 00:13	1
Acenaphthylene	10	U	10	0.82	ug/L		11/19/20 09:29	11/20/20 00:13	1
2,6-Dinitrotoluene	2.0	U	2.0	0.83	ug/L		11/19/20 09:29	11/20/20 00:13	1
3-Nitroaniline	20	U	20	1.9	ug/L		11/19/20 09:29	11/20/20 00:13	1
Acenaphthene	10	U	10	1.1	ug/L		11/19/20 09:29	11/20/20 00:13	1
Dibenzofuran	10	U	10	1.1	ug/L		11/19/20 09:29	11/20/20 00:13	1
2,4-Dinitrophenol	30	U	30	2.6	ug/L		11/19/20 09:29	11/20/20 00:13	1
Diethyl phthalate	10	U F1	10	0.98	ug/L		11/19/20 09:29	11/20/20 00:13	1
4-Chlorophenyl phenyl ether	10	U	10	1.3	ug/L		11/19/20 09:29	11/20/20 00:13	1
Fluorene	10	U	10	0.91	ug/L		11/19/20 09:29	11/20/20 00:13	1
4-Nitroaniline	20	U	20	1.2	ug/L		11/19/20 09:29	11/20/20 00:13	1
N-Nitrosodiphenylamine	10	U	10		ug/L		11/19/20 09:29	11/20/20 00:13	1
4-Bromophenyl phenyl ether	10	U	10	0.75	ug/L		11/19/20 09:29	11/20/20 00:13	1
Hexachlorobenzene	1.0	U	1.0	0.40	ug/L		11/19/20 09:29	11/20/20 00:13	1
Phenanthrene	10	U	10		ug/L		11/19/20 09:29	11/20/20 00:13	1
Anthracene	10	U	10	1.3	ug/L		11/19/20 09:29	11/20/20 00:13	1
Carbazole	10	U	10		ug/L		11/19/20 09:29	11/20/20 00:13	1

Eurofins TestAmerica, Edison

Page 36 of 158

3/30/2021

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: MW-5 Lab Sample ID: 460-222961-4

Date Collected: 11/13/20 15:10 **Matrix: Water** Date Received: 11/16/20 19:40

Analyte	Result	Qualifier	RL	MDI	_ Unit	D	Prepared	Analyzed	Dil Fac
Di-n-butyl phthalate	10	U	10	0.84	ug/L		11/19/20 09:29	11/20/20 00:13	1
Fluoranthene	10	U	10	0.84	1 ug/L		11/19/20 09:29	11/20/20 00:13	1
Pyrene	10	U	10	1.6	3 ug/L		11/19/20 09:29	11/20/20 00:13	1
Butyl benzyl phthalate	10	U	10	0.8	5 ug/L		11/19/20 09:29	11/20/20 00:13	1
Benzo[a]anthracene	1.0	U	1.0	0.59	g ug/L		11/19/20 09:29	11/20/20 00:13	1
Chrysene	10	U	10	0.9	1 ug/L		11/19/20 09:29	11/20/20 00:13	1
Bis(2-ethylhexyl) phthalate	10	U	10	0.80	ug/L		11/19/20 09:29	11/20/20 00:13	1
Di-n-octyl phthalate	10	U	10	0.7	5 ug/L		11/19/20 09:29	11/20/20 00:13	1
Benzo[b]fluoranthene	2.0	U F1	2.0	0.68	3 ug/L		11/19/20 09:29	11/20/20 00:13	1
Benzo[k]fluoranthene	1.0	U F1	1.0	0.67	7 ug/L		11/19/20 09:29	11/20/20 00:13	1
Benzo[a]pyrene	1.0	U F1	1.0	0.4	1 ug/L		11/19/20 09:29	11/20/20 00:13	1
Indeno[1,2,3-cd]pyrene	2.0	U	2.0	0.94	1 ug/L		11/19/20 09:29	11/20/20 00:13	1
Dibenz(a,h)anthracene	1.0	U	1.0	0.72	2 ug/L		11/19/20 09:29	11/20/20 00:13	1
Benzo[g,h,i]perylene	10	U	10	0.70	ug/L		11/19/20 09:29	11/20/20 00:13	1
1,1'-Biphenyl	10	U	10	1.2	2 ug/L		11/19/20 09:29	11/20/20 00:13	1
Acetophenone	10	U	10	2.3	3 ug/L		11/19/20 09:29	11/20/20 00:13	1
1,4-Dioxane	10	U	10	1.6	3 ug/L		11/19/20 09:29	11/20/20 00:13	1
Benzaldehyde	10	U	10	2.	1 ug/L		11/19/20 09:29	11/20/20 00:13	1
Caprolactam	10	U	10	2.2	2 ug/L		11/19/20 09:29	11/20/20 00:13	1
Atrazine	10	U F1 *	10	1.3	3 ug/L		11/19/20 09:29	11/20/20 00:13	1
2,2'-oxybis[1-chloropropane]	10	U	10	0.63	3 ug/L		11/19/20 09:29	11/20/20 00:13	1
1,2,4,5-Tetrachlorobenzene	10	U	10	1.2	2 ug/L		11/19/20 09:29	11/20/20 00:13	1
2,3,4,6-Tetrachlorophenol	10	U	10	0.7	5 ug/L		11/19/20 09:29	11/20/20 00:13	1
3,3'-Dichlorobenzidine	20	U F2	20	1.4	1 ug/L		11/19/20 09:29	11/20/20 00:13	1
Bis(2-chloroethoxy)methane	10	U	10	0.59	9 ug/L		11/19/20 09:29	11/20/20 00:13	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L				11/19/20 09:29	11/20/20 00:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	93		46 - 137				11/19/20 09:29	11/20/20 00:13	1
Phenol-d5 (Surr)	28		10 - 50				11/19/20 09:29	11/20/20 00:13	1

Tentatively Identified Compound	None	Qualifici	ug/L	_	 <u> </u>	11/19/20 09:29	11/20/20 00:13	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	93		46 - 137			11/19/20 09:29	11/20/20 00:13	1
Phenol-d5 (Surr)	28		10 - 50			11/19/20 09:29	11/20/20 00:13	1
Terphenyl-d14 (Surr)	90		39 - 150			11/19/20 09:29	11/20/20 00:13	1
2,4,6-Tribromophenol (Surr)	133		36 - 159			11/19/20 09:29	11/20/20 00:13	1
2-Fluorophenol (Surr)	46		18 - 72			11/19/20 09:29	11/20/20 00:13	1
2-Fluorobiphenyl	89		42 - 127			11/19/20 09:29	11/20/20 00:13	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	0.020	U	0.020	0.0060	ug/L		11/18/20 09:44	11/19/20 12:53	1
4,4'-DDE	0.020	U	0.020	0.0020	ug/L		11/18/20 09:44	11/19/20 12:53	1
4,4'-DDT	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 12:53	1
Aldrin	0.020	U	0.020	0.0030	ug/L		11/18/20 09:44	11/19/20 12:53	1
alpha-BHC	0.020	U	0.020	0.0070	ug/L		11/18/20 09:44	11/19/20 12:53	1
beta-BHC	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 12:53	1
Chlordane (technical)	0.50	U	0.50	0.055	ug/L		11/18/20 09:44	11/19/20 12:53	1
delta-BHC	0.020	U	0.020	0.0050	ug/L		11/18/20 09:44	11/19/20 12:53	1
Dieldrin	0.020	U	0.020	0.0030	ug/L		11/18/20 09:44	11/19/20 12:53	1
Endosulfan I	0.020	U	0.020	0.0020	ug/L		11/18/20 09:44	11/19/20 12:53	1
Endosulfan II	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 12:53	1

Eurofins TestAmerica, Edison

Page 37 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: MW-5 Lab Sample ID: 460-222961-4

Date Collected: 11/13/20 15:10 Matrix: Water Date Received: 11/16/20 19:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Endosulfan sulfate	0.020	U	0.020	0.0060	ug/L		11/18/20 09:44	11/19/20 12:53	1
Endrin	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 12:53	1
Endrin aldehyde	0.020	U	0.020	0.0080	ug/L		11/18/20 09:44	11/19/20 12:53	1
Endrin ketone	0.020	U	0.020	0.0080	ug/L		11/18/20 09:44	11/19/20 12:53	1
gamma-BHC (Lindane)	0.020	U	0.020	0.012	ug/L		11/18/20 09:44	11/19/20 12:53	1
Heptachlor	0.020	U	0.020	0.0030	ug/L		11/18/20 09:44	11/19/20 12:53	1
Heptachlor epoxide	0.020	U	0.020	0.0050	ug/L		11/18/20 09:44	11/19/20 12:53	1
Methoxychlor	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 12:53	1
Toxaphene	0.50	U	0.50	0.11	ug/L		11/18/20 09:44	11/19/20 12:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	72		10 - 132				11/18/20 09:44	11/19/20 12:53	1
DCB Decachlorobiphenyl	65		10 - 132				11/18/20 09:44	11/19/20 12:53	1
Tetrachloro-m-xylene	73		10 - 150				11/18/20 09:44	11/19/20 12:53	1
Tetrachloro-m-xylene	73		10 - 150				11/18/20 09:44	11/19/20 12:53	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 19:07	1
Aroclor 1221	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 19:07	1
Aroclor 1232	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 19:07	1
Aroclor 1242	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 19:07	1
Aroclor 1248	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 19:07	1
Aroclor 1254	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 19:07	1
Aroclor 1260	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 19:07	1
Aroclor-1262	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 19:07	1
Aroclor 1268	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 19:07	1
Polychlorinated biphenyls, Total	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 19:07	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	87	10 - 150	11/18/20 09:41	11/18/20 19:07	1
DCB Decachlorobiphenyl	84	10 - 150	11/18/20 09:41	11/18/20 19:07	1
Tetrachloro-m-xylene	93	48 - 125	11/18/20 09:41	11/18/20 19:07	1
Tetrachloro-m-xylene	97	48 - 125	11/18/20 09:41	11/18/20 19:07	1

Method: 8151A - Herbicides	(GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	1.2	U	1.2	0.13	ug/L		11/17/20 20:26	11/18/20 09:44	1
Silvex (2,4,5-TP)	1.2	U	1.2	0.11	ug/L		11/17/20 20:26	11/18/20 09:44	1
2,4,5-T	1.2	U	1.2	0.12	ug/L		11/17/20 20:26	11/18/20 09:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	66		39 - 145				11/17/20 20:26	11/18/20 09:44	1
2.4-Dichlorophenylacetic acid	72		39 - 145				11/17/20 20:26	11/18/20 09:44	1

Method: 537 (modified) - Fluorinated Alkyl Substances										
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Perfluorobutanoic acid (PFBA)	6.1	4.5	1.0	ng/L		11/20/20 09:01	11/20/20 17:04	1		
Perfluoropentanoic acid (PFPeA)	13	1.8	0.98	ng/L		11/20/20 09:01	11/20/20 17:04	1		
Perfluorohexanoic acid (PFHxA)	12	1.8	0.76	ng/L		11/20/20 09:01	11/20/20 17:04	1		
Perfluoroheptanoic acid (PFHpA)	12	1.8	0.42	ng/L		11/20/20 09:01	11/20/20 17:04	1		

Eurofins TestAmerica, Edison

Page 38 of 158

2

3

5

7

9

11

13

15

16

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Aluminum

Arsenic

Barium

Client Sample ID: MW-5 Lab Sample ID: 460-222961-4

Date Collected: 11/13/20 15:10 Matrix: Water Date Received: 11/16/20 19:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanoic acid (PFOA)	25		1.8	0.89	ng/L		11/20/20 09:01	11/20/20 17:04	1
Perfluorononanoic acid (PFNA)	2.2		1.8	0.53	ng/L		11/20/20 09:01	11/20/20 17:04	1
Perfluorodecanoic acid (PFDA)	2.1		1.8	0.42	ng/L		11/20/20 09:01	11/20/20 17:04	1
Perfluoroundecanoic acid (PFUnA)	1.8	U	1.8	0.66	ng/L		11/20/20 09:01	11/20/20 17:04	1
Perfluorododecanoic acid (PFDoA)	1.8	U	1.8	0.42	ng/L		11/20/20 09:01	11/20/20 17:04	1
Perfluorotridecanoic acid (PFTriA)	1.8	U	1.8	0.39	ng/L		11/20/20 09:01	11/20/20 17:04	1
Perfluorotetradecanoic acid (PFTeA)	1.8	U	1.8	0.54	ng/L		11/20/20 09:01	11/20/20 17:04	1
Perfluorobutanesulfonic acid (PFBS)	0.87	J	1.8	0.57	ng/L		11/20/20 09:01	11/20/20 17:04	1
Perfluorohexanesulfonic acid (PFHxS)	3.5		1.8	0.61	ng/L		11/20/20 09:01	11/20/20 17:04	1
Perfluoroheptanesulfonic Acid (PFHpS)	1.8	U	1.8	0.35	ng/L		11/20/20 09:01	11/20/20 17:04	1
Perfluorooctanesulfonic acid (PFOS)	20		1.8	0.79	ng/L		11/20/20 09:01	11/20/20 17:04	1
Perfluorodecanesulfonic acid (PFDS)	1.8	U	1.8	0.44	ng/L		11/20/20 09:01	11/20/20 17:04	1
Perfluorooctanesulfonamide (PFOSA)	1.8	U	1.8	0.52	ng/L		11/20/20 09:01	11/20/20 17:04	1
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	0.78	J	4.5	0.72	ng/L		11/20/20 09:01	11/20/20 17:04	1
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	1.4	J	4.5	0.85	ng/L		11/20/20 09:01	11/20/20 17:04	1
1H,1H,2H,2H-perfluorooctanesulfo nic acid (6:2)	4.2	J	4.5	0.66	ng/L		11/20/20 09:01	11/20/20 17:04	1
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	1.8	U	1.8	0.60	ng/L		11/20/20 09:01	11/20/20 17:04	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1802 PFHxS	108		50 - 150				11/20/20 09:01	11/20/20 17:04	1
13C4 PFHpA	98		50 - 150				11/20/20 09:01	11/20/20 17:04	1
13C4 PFOA	106		50 - 150				11/20/20 09:01	11/20/20 17:04	1
13C4 PFOS	104		50 - 150				11/20/20 09:01	11/20/20 17:04	1
13C5 PFNA	107		50 - 150				11/20/20 09:01	11/20/20 17:04	1
13C4 PFBA	71		25 - 150				11/20/20 09:01	11/20/20 17:04	1
13C2 PFHxA	105		50 - 150				11/20/20 09:01	11/20/20 17:04	1
13C2 PFDA	109		50 - 150				11/20/20 09:01	11/20/20 17:04	1
13C2 PFUnA	99		50 - 150				11/20/20 09:01	11/20/20 17:04	1
13C2 PFDoA	92		50 - 150				11/20/20 09:01	11/20/20 17:04	1
13C8 FOSA	91		25 - 150				11/20/20 09:01	11/20/20 17:04	1
13C5 PFPeA	93		25 - 150				11/20/20 09:01	11/20/20 17:04	1
13C2 PFTeDA	88		50 - 150				11/20/20 09:01	11/20/20 17:04	1
d3-NMeFOSAA	93		50 - 150				11/20/20 09:01	11/20/20 17:04	1
d5-NEtFOSAA	94		50 - 150				11/20/20 09:01	11/20/20 17:04	1
M2-6:2 FTS	117		25 - 150				11/20/20 09:01	11/20/20 17:04	1
M2-8:2 FTS	110		25 - 150				11/20/20 09:01	11/20/20 17:04	1
13C3 PFBS	102		50 - 150				11/20/20 09:01	11/20/20 17:04	1
	B "	0	ъ.		11	_	D	Amal:	D!! = -
Method: 6010D - Metals (ICP) Analyte Silver	Result	Qualifier	RL	MDL	Unit ug/L	<u>D</u>	Prepared 11/22/20 16:15	Analyzed 11/23/20 17:23	Dil Fac

Eurofins TestAmerica, Edison

11/22/20 16:15 11/23/20 17:23

11/22/20 16:15 11/23/20 17:23

11/22/20 16:15 11/23/20 17:23

Page 39 of 158

200

15.0

200

76.9 ug/L

3.3 ug/L

13.2 ug/L

2390

15.0 U

109 J

2

3

5

8

10

12

14

16

17

3/30/2021

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Lab Sample ID: 460-222961-4 **Client Sample ID: MW-5**

Date Collected: 11/13/20 15:10 **Matrix: Water** Date Received: 11/16/20 19:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	2.0	U	2.0	0.17	ug/L		11/22/20 16:15	11/23/20 17:23	1
Calcium	67200		5000	152	ug/L		11/22/20 16:15	11/23/20 17:23	1
Cadmium	4.0	U	4.0	0.33	ug/L		11/22/20 16:15	11/23/20 17:23	1
Cobalt	4.7	J	50.0	2.0	ug/L		11/22/20 16:15	11/23/20 17:23	1
Chromium	6.2	J	10.0	5.0	ug/L		11/22/20 16:15	11/23/20 17:23	1
Copper	25.0	U	25.0	6.9	ug/L		11/22/20 16:15	11/23/20 17:23	1
Iron	3070	F1	150	80.8	ug/L		11/22/20 16:15	11/23/20 17:23	1
Potassium	11600		5000	142	ug/L		11/22/20 16:15	11/23/20 17:23	1
Magnesium	7640		5000	142	ug/L		11/22/20 16:15	11/23/20 17:23	1
Manganese	420		15.0	0.76	ug/L		11/22/20 16:15	11/23/20 17:23	1
Sodium	5130		5000	83.8	ug/L		11/22/20 16:15	11/23/20 17:23	1
Nickel	7.3	J	40.0	4.1	ug/L		11/22/20 16:15	11/23/20 17:23	1
Lead	6.9	J	10.0	2.4	ug/L		11/22/20 16:15	11/23/20 17:23	1
Antimony	20.0	U	20.0	3.7	ug/L		11/22/20 16:15	11/23/20 17:23	1
Selenium	20.0	U	20.0	5.9	ug/L		11/22/20 16:15	11/23/20 17:23	1
Thallium	20.0	U	20.0	4.1	ug/L		11/22/20 16:15	11/23/20 17:23	1
Vanadium	50.0	U	50.0	7.2	ug/L		11/22/20 16:15	11/23/20 17:23	1
Zinc	13.5	J	30.0	1.2	ug/L		11/22/20 16:15	11/23/20 17:23	1
Method: 7470A - Mercur	ry (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	0.091	ug/L		11/24/20 12:17	11/24/20 13:24	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: MW-6 Lab Sample ID: 460-222961-5 Date Collected: 11/13/20 08:20 **Matrix: Water**

0.010

0.0040 mg/L

0.010 U F1

Date Received: 11/16/20 19:40

Cyanide, Total

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	2.6	J	4.2	0.96	ng/L		11/20/20 09:01	11/20/20 17:37	1
Perfluoropentanoic acid (PFPeA)	2.1		1.7	0.92	ng/L		11/20/20 09:01	11/20/20 17:37	1
Perfluorohexanoic acid (PFHxA)	2.6		1.7	0.70	ng/L		11/20/20 09:01	11/20/20 17:37	1
Perfluoroheptanoic acid (PFHpA)	4.5		1.7	0.39	ng/L		11/20/20 09:01	11/20/20 17:37	1
Perfluorooctanoic acid (PFOA)	35		1.7	0.83	ng/L		11/20/20 09:01	11/20/20 17:37	1
Perfluorononanoic acid (PFNA)	2.0		1.7	0.49	ng/L		11/20/20 09:01	11/20/20 17:37	1
Perfluorodecanoic acid (PFDA)	0.51	J	1.7	0.39	ng/L		11/20/20 09:01	11/20/20 17:37	1
Perfluoroundecanoic acid (PFUnA)	1.7	U	1.7	0.62	ng/L		11/20/20 09:01	11/20/20 17:37	1
Perfluorododecanoic acid (PFDoA)	1.7	U	1.7	0.39	ng/L		11/20/20 09:01	11/20/20 17:37	1
Perfluorotridecanoic acid (PFTriA)	1.7	U	1.7	0.36	ng/L		11/20/20 09:01	11/20/20 17:37	1
Perfluorotetradecanoic acid (PFTeA)	1.7	U	1.7	0.50	ng/L		11/20/20 09:01	11/20/20 17:37	1
Perfluorobutanesulfonic acid (PFBS)	0.56	J	1.7	0.53	ng/L		11/20/20 09:01	11/20/20 17:37	1
Perfluorohexanesulfonic acid (PFHxS)	3.9		1.7	0.57	ng/L		11/20/20 09:01	11/20/20 17:37	1
Perfluoroheptanesulfonic Acid (PFHpS)	0.90	J	1.7	0.33	ng/L		11/20/20 09:01	11/20/20 17:37	1

11/27/20 09:11 11/27/20 13:16

Page 40 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Lab Sample ID: 460-222961-5 **Client Sample ID: MW-6**

Date Collected: 11/13/20 08:20 **Matrix: Water**

Date Received: 11/16/20 19:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanesulfonic acid (PFOS)	23	I	1.7	0.74	ng/L		11/20/20 09:01	11/20/20 17:37	1
Perfluorodecanesulfonic acid (PFDS)	1.7	U	1.7	0.41	ng/L		11/20/20 09:01	11/20/20 17:37	1
Perfluorooctanesulfonamide (PFOSA)	1.7	U	1.7	0.48	ng/L		11/20/20 09:01	11/20/20 17:37	1
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	0.97	J	4.2	0.67	ng/L		11/20/20 09:01	11/20/20 17:37	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	4.2	Ü	4.2	0.79	ng/L		11/20/20 09:01	11/20/20 17:37	1
1H,1H,2H,2H-perfluorooctanesulfo nic acid (6:2)	0.62	J	4.2	0.61	ng/L		11/20/20 09:01	11/20/20 17:37	1
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	1.7	U	1.7	0.56	ng/L		11/20/20 09:01	11/20/20 17:37	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
18O2 PFHxS	106		50 - 150				11/20/20 09:01	11/20/20 17:37	1
13C4 PFHpA	103		50 - 150				11/20/20 09:01	11/20/20 17:37	1
13C4 PFOA	101		50 - 150				11/20/20 09:01	11/20/20 17:37	1
13C4 PFOS	86		50 - 150				11/20/20 09:01	11/20/20 17:37	1
13C5 PFNA	90		50 - 150				11/20/20 09:01	11/20/20 17:37	1
13C4 PFBA	71		25 - 150				11/20/20 09:01	11/20/20 17:37	1
13C2 PFHxA	99		50 - 150				11/20/20 09:01	11/20/20 17:37	1
13C2 PFDA	82		50 - 150				11/20/20 09:01	11/20/20 17:37	1
13C2 PFUnA	84		50 - 150				11/20/20 09:01	11/20/20 17:37	1
13C2 PFDoA	86		50 - 150				11/20/20 09:01	11/20/20 17:37	1
13C8 FOSA	77		25 - 150				11/20/20 09:01	11/20/20 17:37	1
13C5 PFPeA	95		25 - 150				11/20/20 09:01	11/20/20 17:37	1
13C2 PFTeDA	85		50 - 150				11/20/20 09:01	11/20/20 17:37	1
d3-NMeFOSAA	78		50 - 150				11/20/20 09:01	11/20/20 17:37	1
d5-NEtFOSAA	85		50 - 150				11/20/20 09:01	11/20/20 17:37	1

Client Sample ID: DUP Lab Sample ID: 460-222961-6 Date Collected: 11/13/20 00:00 **Matrix: Water**

25 - 150

50 - 150

81

101

Date Received: 11/16/20 19:40

M2-8:2 FTS

13C3 PFBS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	1.0	U	1.0	0.40	ug/L			11/22/20 20:08	1
Bromomethane	1.0	U	1.0	0.55	ug/L			11/22/20 20:08	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			11/22/20 20:08	1
Chloroethane	1.0	U	1.0	0.32	ug/L			11/22/20 20:08	1
Methylene Chloride	1.0	U	1.0	0.32	ug/L			11/22/20 20:08	1
Acetone	5.0	U	5.0	4.4	ug/L			11/22/20 20:08	1
Carbon disulfide	1.0	U	1.0	0.82	ug/L			11/22/20 20:08	1
Trichlorofluoromethane	1.0	U	1.0	0.32	ug/L			11/22/20 20:08	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			11/22/20 20:08	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			11/22/20 20:08	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			11/22/20 20:08	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			11/22/20 20:08	1
Chloroform	1.0	U	1.0	0.33	ug/L			11/22/20 20:08	1

11/20/20 09:01 11/20/20 17:37

11/20/20 09:01 11/20/20 17:37

Page 41 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: DUP Lab Sample ID: 460-222961-6

Date Collected: 11/13/20 00:00 Matrix: Water Date Received: 11/16/20 19:40

Analyte	Result	Qualifier	RL	MDI	. Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			11/22/20 20:08	1
2-Butanone (MEK)	5.0	U	5.0	1.9	ug/L			11/22/20 20:08	1
1,1,1-Trichloroethane	1.0	U	1.0	0.24	l ug/L			11/22/20 20:08	1
Carbon tetrachloride	1.0	U	1.0	0.2	ug/L			11/22/20 20:08	1
Dichlorobromomethane	1.0	U	1.0	0.34	l ug/L			11/22/20 20:08	1
1,2-Dichloropropane	1.0	U	1.0	0.3	ug/L			11/22/20 20:08	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.22	2 ug/L			11/22/20 20:08	1
Trichloroethene	1.0	U	1.0	0.3	ug/L			11/22/20 20:08	1
Chlorodibromomethane	1.0	U	1.0	0.28	3 ug/L			11/22/20 20:08	1
1,1,2-Trichloroethane	1.0	U	1.0	0.20	ug/L			11/22/20 20:08	1
Benzene	1.0	U	1.0	0.20	ug/L			11/22/20 20:08	1
trans-1,3-Dichloropropene	1.0	U	1.0		2 ug/L			11/22/20 20:08	1
Bromoform	1.0	U	1.0	0.54	l ug/L			11/22/20 20:08	1
4-Methyl-2-pentanone (MIBK)	5.0	U *	5.0		3 ug/L			11/22/20 20:08	1
2-Hexanone	5.0		5.0		ug/L			11/22/20 20:08	1
Tetrachloroethene	1.0	U	1.0		ug/L			11/22/20 20:08	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0		ug/L			11/22/20 20:08	1
Toluene	1.0	U	1.0	0.38	ug/L			11/22/20 20:08	1
Chlorobenzene	1.0	U	1.0		3 ug/L			11/22/20 20:08	1
Ethylbenzene	1.0		1.0		ug/L			11/22/20 20:08	1
Styrene	1.0		1.0		ug/L			11/22/20 20:08	1
m-Xylene & p-Xylene	1.0		1.0		ug/L			11/22/20 20:08	1
o-Xylene	1.0		1.0		ug/L			11/22/20 20:08	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0		1.0		ug/L			11/22/20 20:08	1
Methyl tert-butyl ether	1.0		1.0		ug/L			11/22/20 20:08	1
Cyclohexane	1.0		1.0		ug/L			11/22/20 20:08	1
Ethylene Dibromide	1.0		1.0		ug/L			11/22/20 20:08	
1,3-Dichlorobenzene	1.0		1.0		ug/L			11/22/20 20:08	1
1,4-Dichlorobenzene	1.0		1.0		ug/L			11/22/20 20:08	1
1,2-Dichlorobenzene	1.0		1.0		ug/L			11/22/20 20:08	
Dichlorodifluoromethane	1.0		1.0		ug/L			11/22/20 20:08	1
1,2,4-Trichlorobenzene	1.0		1.0		ug/L ug/L			11/22/20 20:08	1
1,4-Dioxane	50		50		ug/L B ug/L			11/22/20 20:08	
1,2,3-Trichlorobenzene	1.0		1.0		ug/L ug/L			11/22/20 20:08	1
1,2-Dibromo-3-Chloropropane	1.0		1.0		ug/L ug/L			11/22/20 20:08	1
	1.0							11/22/20 20:08	
Chlorobromomethane			1.0		ug/L				١
Isopropylbenzene	1.0 5.0		1.0		ug/L ug/L			11/22/20 20:08 11/22/20 20:08	١
Methyl acetate			5.0						
Methylcyclohexane	1.0	U	1.0	0.7	ug/L			11/22/20 20:08	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	<u>D</u>	RT _	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					11/22/20 20:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		75 - 123					11/22/20 20:08	1
Toluene-d8 (Surr)	103		80 - 120					11/22/20 20:08	1
4-Bromofluorobenzene	104		76 - 120					11/22/20 20:08	1

Eurofins TestAmerica, Edison

6

3

5

7

10

12

14

15

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: DUP

Lab Sample ID: 460-222961-6

Date Collected: 11/13/20 00:00 Matrix: Water Date Received: 11/16/20 19:40

Method: 8270E SIM ID - Semivolatile Or		ACCIBAC CIBA I	In atoms Dilution
Method: 82/UE SIM ID - Semivolatile Or	Tanic Compounds	ひょしかいろ うけい /	ISOTODE LIIIITION

Analyte	Result	Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.20	U	0.20	0.016	ug/L		11/18/20 09:12	11/19/20 15:25	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	35		10 - 150				11/18/20 09:12	11/19/20 15:25	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	10	U	10	0.29	ug/L		11/19/20 09:29	11/20/20 06:32	1
2-Chlorophenol	10	U	10	0.38	ug/L		11/19/20 09:29	11/20/20 06:32	1
2-Methylphenol	10	U	10	0.67	ug/L		11/19/20 09:29	11/20/20 06:32	1
4-Methylphenol	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:32	1
2-Nitrophenol	10	U	10	0.75	ug/L		11/19/20 09:29	11/20/20 06:32	1
2,4-Dimethylphenol	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:32	1
2,4-Dichlorophenol	10	U	10	1.1	ug/L		11/19/20 09:29	11/20/20 06:32	1
4-Chloro-3-methylphenol	10	U	10	0.58	-		11/19/20 09:29	11/20/20 06:32	1
2,4,6-Trichlorophenol	10	U	10	0.86	ug/L		11/19/20 09:29	11/20/20 06:32	1
2,4,5-Trichlorophenol	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:32	1
2,4-Dinitrotoluene	2.0	U	2.0		-		11/19/20 09:29	11/20/20 06:32	1
4-Nitrophenol	30	U	30				11/19/20 09:29	11/20/20 06:32	1
4,6-Dinitro-2-methylphenol	30		30				11/19/20 09:29	11/20/20 06:32	1
Pentachlorophenol	30	U	30		ug/L		11/19/20 09:29	11/20/20 06:32	1
Bis(2-chloroethyl)ether	1.0	U	1.0	0.63	ug/L		11/19/20 09:29	11/20/20 06:32	1
N-Nitrosodi-n-propylamine	1.0	U	1.0	0.43			11/19/20 09:29	11/20/20 06:32	1
Hexachloroethane	2.0	U	2.0	0.80	•		11/19/20 09:29	11/20/20 06:32	1
Nitrobenzene	1.0	U	1.0		ug/L		11/19/20 09:29	11/20/20 06:32	1
Isophorone	10		10	0.80			11/19/20 09:29	11/20/20 06:32	1
Naphthalene	2.0	U	2.0	0.54			11/19/20 09:29	11/20/20 06:32	1
4-Chloroaniline	1.0	U	1.0		ug/L		11/19/20 09:29	11/20/20 06:32	1
Hexachlorobutadiene	2.0	U	2.0		ug/L		11/19/20 09:29	11/20/20 06:32	1
2-Methylnaphthalene	10	U	10		-		11/19/20 09:29	11/20/20 06:32	1
Hexachlorocyclopentadiene	10	U	10	3.6	ug/L		11/19/20 09:29	11/20/20 06:32	1
2-Chloronaphthalene	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:32	1
2-Nitroaniline	20	U	20	0.47	-		11/19/20 09:29	11/20/20 06:32	1
Dimethyl phthalate	10	U	10	0.77	-		11/19/20 09:29	11/20/20 06:32	1
Acenaphthylene	10		10		ug/L		11/19/20 09:29	11/20/20 06:32	1
2,6-Dinitrotoluene	2.0	U	2.0	0.83	-		11/19/20 09:29	11/20/20 06:32	1
3-Nitroaniline	20	U	20		ug/L		11/19/20 09:29	11/20/20 06:32	1
Acenaphthene	10	U	10	1.1			11/19/20 09:29	11/20/20 06:32	1
Dibenzofuran	10	U	10	1.1	ug/L		11/19/20 09:29	11/20/20 06:32	1
2,4-Dinitrophenol	30	U	30		ug/L		11/19/20 09:29	11/20/20 06:32	1
Diethyl phthalate	10		10		ug/L		11/19/20 09:29	11/20/20 06:32	1
4-Chlorophenyl phenyl ether	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:32	1
Fluorene	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:32	1
4-Nitroaniline	20		20		ug/L		11/19/20 09:29	11/20/20 06:32	1
N-Nitrosodiphenylamine	10		10		ug/L		11/19/20 09:29	11/20/20 06:32	1
4-Bromophenyl phenyl ether	10		10		ug/L		11/19/20 09:29	11/20/20 06:32	1
Hexachlorobenzene	1.0		1.0	0.40			11/19/20 09:29	11/20/20 06:32	1
Phenanthrene	10		10		ug/L		11/19/20 09:29	11/20/20 06:32	1
Anthracene	10		10		ug/L		11/19/20 09:29	11/20/20 06:32	1
Carbazole	10		10		ug/L		11/19/20 09:29	11/20/20 06:32	1

Eurofins TestAmerica, Edison

Page 43 of 158

2

3

6

8

10

12

14

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Terphenyl-d14 (Surr)

2-Fluorophenol (Surr)

2-Fluorobiphenyl

2,4,6-Tribromophenol (Surr)

Client Sample ID: DUP Lab Sample ID: 460-222961-6

Date Collected: 11/13/20 00:00 Matrix: Water Date Received: 11/16/20 19:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Di-n-butyl phthalate	10	U	10	0.84	ug/L		11/19/20 09:29	11/20/20 06:32	1
Fluoranthene	10	U	10	0.84	ug/L		11/19/20 09:29	11/20/20 06:32	1
Pyrene	10	U	10	1.6	ug/L		11/19/20 09:29	11/20/20 06:32	1
Butyl benzyl phthalate	10	U	10	0.85	ug/L		11/19/20 09:29	11/20/20 06:32	1
Benzo[a]anthracene	1.0	U	1.0	0.59	ug/L		11/19/20 09:29	11/20/20 06:32	1
Chrysene	10	U	10	0.91	ug/L		11/19/20 09:29	11/20/20 06:32	1
Bis(2-ethylhexyl) phthalate	10	U	10	0.80	ug/L		11/19/20 09:29	11/20/20 06:32	1
Di-n-octyl phthalate	10	U	10	0.75	ug/L		11/19/20 09:29	11/20/20 06:32	1
Benzo[b]fluoranthene	2.0	U	2.0	0.68	ug/L		11/19/20 09:29	11/20/20 06:32	1
Benzo[k]fluoranthene	1.0	U	1.0	0.67	ug/L		11/19/20 09:29	11/20/20 06:32	1
Benzo[a]pyrene	1.0	U	1.0	0.41	ug/L		11/19/20 09:29	11/20/20 06:32	1
Indeno[1,2,3-cd]pyrene	2.0	U	2.0	0.94	ug/L		11/19/20 09:29	11/20/20 06:32	1
Dibenz(a,h)anthracene	1.0	U	1.0	0.72	ug/L		11/19/20 09:29	11/20/20 06:32	1
Benzo[g,h,i]perylene	10	U	10	0.70	ug/L		11/19/20 09:29	11/20/20 06:32	1
1,1'-Biphenyl	10	U	10	1.2	ug/L		11/19/20 09:29	11/20/20 06:32	1
Acetophenone	10	U	10	2.3	ug/L		11/19/20 09:29	11/20/20 06:32	1
1,4-Dioxane	10	U	10	1.6	ug/L		11/19/20 09:29	11/20/20 06:32	1
Benzaldehyde	10	U	10	2.1	ug/L		11/19/20 09:29	11/20/20 06:32	1
Caprolactam	10	U	10	2.2	ug/L		11/19/20 09:29	11/20/20 06:32	1
Atrazine	10	U *	10	1.3	ug/L		11/19/20 09:29	11/20/20 06:32	1
2,2'-oxybis[1-chloropropane]	10	U	10	0.63	ug/L		11/19/20 09:29	11/20/20 06:32	1
1,2,4,5-Tetrachlorobenzene	10	U	10	1.2	ug/L		11/19/20 09:29	11/20/20 06:32	1
2,3,4,6-Tetrachlorophenol	10	U	10	0.75	ug/L		11/19/20 09:29	11/20/20 06:32	1
3,3'-Dichlorobenzidine	20	U	20	1.4	ug/L		11/19/20 09:29	11/20/20 06:32	1
Bis(2-chloroethoxy)methane	10	U	10	0.59	ug/L		11/19/20 09:29	11/20/20 06:32	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L	_			11/19/20 09:29	11/20/20 06:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	95		46 - 137				11/19/20 09:29	11/20/20 06:32	1
Phenol-d5 (Surr)	31		10 - 50				11/19/20 09:29	11/20/20 06:32	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	0.020	U	0.020	0.0060	ug/L		11/18/20 09:44	11/19/20 14:29	1
4,4'-DDE	0.020	U	0.020	0.0020	ug/L		11/18/20 09:44	11/19/20 14:29	1
4,4'-DDT	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 14:29	1
Aldrin	0.020	U	0.020	0.0030	ug/L		11/18/20 09:44	11/19/20 14:29	1
alpha-BHC	0.020	U	0.020	0.0070	ug/L		11/18/20 09:44	11/19/20 14:29	1
beta-BHC	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 14:29	1
Chlordane (technical)	0.50	U	0.50	0.055	ug/L		11/18/20 09:44	11/19/20 14:29	1
delta-BHC	0.020	U	0.020	0.0050	ug/L		11/18/20 09:44	11/19/20 14:29	1
Dieldrin	0.020	U	0.020	0.0030	ug/L		11/18/20 09:44	11/19/20 14:29	1
Endosulfan I	0.020	U	0.020	0.0020	ug/L		11/18/20 09:44	11/19/20 14:29	1
Endosulfan II	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 14:29	1

39 - 150

36 - 159

18 - 72

42 - 127

109

114

46

90

Eurofins TestAmerica, Edison

11/19/20 09:29 11/20/20 06:32

11/19/20 09:29 11/20/20 06:32

11/19/20 09:29 11/20/20 06:32

11/19/20 09:29 11/20/20 06:32

Page 44 of 158

2

3

6

0

1 U

12

14

10

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: DUP

Lab Sample ID: 460-222961-6

Date Collected: 11/13/20 00:00 Matrix: Water Date Received: 11/16/20 19:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Endosulfan sulfate	0.020	U	0.020	0.0060	ug/L		11/18/20 09:44	11/19/20 14:29	1
Endrin	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 14:29	1
Endrin aldehyde	0.020	U	0.020	0.0080	ug/L		11/18/20 09:44	11/19/20 14:29	1
Endrin ketone	0.020	U	0.020	0.0080	ug/L		11/18/20 09:44	11/19/20 14:29	1
gamma-BHC (Lindane)	0.020	U	0.020	0.012	ug/L		11/18/20 09:44	11/19/20 14:29	1
Heptachlor	0.020	U	0.020	0.0030	ug/L		11/18/20 09:44	11/19/20 14:29	1
Heptachlor epoxide	0.020	U	0.020	0.0050	ug/L		11/18/20 09:44	11/19/20 14:29	1
Methoxychlor	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 14:29	1
Toxaphene	0.50	U	0.50	0.11	ug/L		11/18/20 09:44	11/19/20 14:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	58		10 - 132				11/18/20 09:44	11/19/20 14:29	1
DCB Decachlorobiphenyl	50		10 - 132				11/18/20 09:44	11/19/20 14:29	1
Tetrachloro-m-xylene	75		10 - 150				11/18/20 09:44	11/19/20 14:29	1
Tetrachloro-m-xylene	73		10 - 150				11/18/20 09:44	11/19/20 14:29	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 19:22	1
Aroclor 1221	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 19:22	1
Aroclor 1232	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 19:22	1
Aroclor 1242	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 19:22	1
Aroclor 1248	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 19:22	1
Aroclor 1254	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 19:22	1
Aroclor 1260	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 19:22	1
Aroclor-1262	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 19:22	1
Aroclor 1268	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 19:22	1
Polychlorinated biphenyls, Total	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 19:22	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	45	10 - 150	11/18/20 09:41	11/18/20 19:22	1
DCB Decachlorobiphenyl	45	10 - 150	11/18/20 09:41	11/18/20 19:22	1
Tetrachloro-m-xylene	66	48 - 125	11/18/20 09:41	11/18/20 19:22	1
Tetrachloro-m-xylene	66	48 - 125	11/18/20 09:41	11/18/20 19:22	1

Method: 8151A - Herbicides	(GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	1.2	U	1.2	0.13	ug/L		11/17/20 20:26	11/18/20 09:58	1
Silvex (2,4,5-TP)	1.2	U	1.2	0.11	ug/L		11/17/20 20:26	11/18/20 09:58	1
2,4,5-T	1.2	U	1.2	0.12	ug/L		11/17/20 20:26	11/18/20 09:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	60		39 - 145				11/17/20 20:26	11/18/20 09:58	1
2 4-Dichlorophenylacetic acid	65		39 - 145				11/17/20 20:26	11/18/20 09:58	1

Method: 537 (modified) - Fluor	inated Alky	I Substance	s						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	4.5	U	4.5	1.0	ng/L		11/20/20 09:01	11/20/20 17:45	1
Perfluoropentanoic acid (PFPeA)	1.8	U	1.8	0.96	ng/L		11/20/20 09:01	11/20/20 17:45	1
Perfluorohexanoic acid (PFHxA)	1.8	U	1.8	0.74	ng/L		11/20/20 09:01	11/20/20 17:45	1
Perfluoroheptanoic acid (PFHpA)	1.8	U	1.8	0.41	ng/L		11/20/20 09:01	11/20/20 17:45	1

Eurofins TestAmerica, Edison

Page 45 of 158

2

3

5

8

10

12

4

16

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: DUP

Lab Sample ID: 460-222961-6

Date Collected: 11/13/20 00:00 Matrix: Water

Date Received: 11/16/20 19:40

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanoic acid (PFOA)	1.8	U	1.8	0.87	ng/L		11/20/20 09:01	11/20/20 17:45	1
Perfluorononanoic acid (PFNA)	1.8	U	1.8	0.52	ng/L		11/20/20 09:01	11/20/20 17:45	1
Perfluorodecanoic acid (PFDA)	1.8	U	1.8	0.41	ng/L		11/20/20 09:01	11/20/20 17:45	1
Perfluoroundecanoic acid (PFUnA)	1.8	U	1.8	0.65	ng/L		11/20/20 09:01	11/20/20 17:45	1
Perfluorododecanoic acid (PFDoA)	1.8	U	1.8	0.41	ng/L		11/20/20 09:01	11/20/20 17:45	1
Perfluorotridecanoic acid (PFTriA)	1.8	U	1.8	0.38	ng/L		11/20/20 09:01	11/20/20 17:45	1
Perfluorotetradecanoic acid (PFTeA)	1.8	U	1.8	0.53	ng/L		11/20/20 09:01	11/20/20 17:45	1
Perfluorobutanesulfonic acid (PFBS)	1.8	U	1.8	0.56	ng/L		11/20/20 09:01	11/20/20 17:45	1
Perfluorohexanesulfonic acid (PFHxS)	1.8	U	1.8	0.60	ng/L		11/20/20 09:01	11/20/20 17:45	1
Perfluoroheptanesulfonic Acid (PFHpS)	1.8	U	1.8	0.35	ng/L		11/20/20 09:01	11/20/20 17:45	1
Perfluorooctanesulfonic acid (PFOS)	1.8	U	1.8	0.78	ng/L		11/20/20 09:01	11/20/20 17:45	1
Perfluorodecanesulfonic acid (PFDS)	1.8	U	1.8	0.43	ng/L		11/20/20 09:01	11/20/20 17:45	1
Perfluorooctanesulfonamide (PFOSA)	1.8	U	1.8	0.51	ng/L		11/20/20 09:01	11/20/20 17:45	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	4.5	U	4.5	0.70	ng/L		11/20/20 09:01	11/20/20 17:45	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	4.5	U	4.5	0.83	ng/L		11/20/20 09:01	11/20/20 17:45	1
1H,1H,2H,2H-perfluorooctanesulfo nic acid (6:2)	1.2	J	4.5	0.64	ng/L		11/20/20 09:01	11/20/20 17:45	1
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	1.8	U	1.8	0.59	ng/L		11/20/20 09:01	11/20/20 17:45	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1802 PFHxS	117		50 - 150				11/20/20 09:01	11/20/20 17:45	1

acid (8:2)					
Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
18O2 PFHxS	117	50 - 150	11/20/20 09:01	11/20/20 17:45	1
13C4 PFHpA	105	50 - 150	11/20/20 09:01	11/20/20 17:45	1
13C4 PFOA	103	50 - 150	11/20/20 09:01	11/20/20 17:45	1
13C4 PFOS	106	50 - 150	11/20/20 09:01	11/20/20 17:45	1
13C5 PFNA	105	50 - 150	11/20/20 09:01	11/20/20 17:45	1
13C4 PFBA	84	25 - 150	11/20/20 09:01	11/20/20 17:45	1
13C2 PFHxA	108	50 - 150	11/20/20 09:01	11/20/20 17:45	1
13C2 PFDA	99	50 - 150	11/20/20 09:01	11/20/20 17:45	1
13C2 PFUnA	70	50 - 150	11/20/20 09:01	11/20/20 17:45	1
13C2 PFDoA	57	50 - 150	11/20/20 09:01	11/20/20 17:45	1
13C8 FOSA	76	25 - 150	11/20/20 09:01	11/20/20 17:45	1
13C5 PFPeA	101	25 - 150	11/20/20 09:01	11/20/20 17:45	1
13C2 PFTeDA	52	50 - 150	11/20/20 09:01	11/20/20 17:45	1
d3-NMeFOSAA	69	50 - 150	11/20/20 09:01	11/20/20 17:45	1
d5-NEtFOSAA	67	50 - 150	11/20/20 09:01	11/20/20 17:45	1
M2-6:2 FTS	117	25 - 150	11/20/20 09:01	11/20/20 17:45	1
M2-8:2 FTS	92	25 - 150	11/20/20 09:01	11/20/20 17:45	1
13C3 PFBS	113	50 - 150	11/20/20 09:01	11/20/20 17:45	1

Method: 6010D - Metals (ICP	')
-----------------------------	----

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	10.0	U	10.0	5.8	ug/L		11/22/20 16:15	11/23/20 18:45	1
Aluminum	16700		200	76.9	ug/L		11/22/20 16:15	11/23/20 18:45	1
Arsenic	15.0	U	15.0	3.3	ug/L		11/22/20 16:15	11/23/20 18:45	1
Barium	271		200	13.2	ug/L		11/22/20 16:15	11/23/20 18:45	1
Beryllium	2.0	U	2.0	0.17	ug/L		11/22/20 16:15	11/23/20 18:45	1
Calcium	18700		5000	152	ug/L		11/22/20 16:15	11/23/20 18:45	1
Cadmium	4.0	U	4.0	0.33	ug/L		11/22/20 16:15	11/23/20 18:45	1

Eurofins TestAmerica, Edison

Page 46 of 158

6

3

5

7

9

11 12

1 /

1 **5**

16

1 /

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: DUP Lab Sample ID: 460-222961-6

Date Collected: 11/13/20 00:00 Matrix: Water Date Received: 11/16/20 19:40

Method: 6010D - Metals (In Analyte	, ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	26.1	J	50.0	2.0	ug/L		11/22/20 16:15	11/23/20 18:45	1
Chromium	44.5		10.0	5.0	ug/L		11/22/20 16:15	11/23/20 18:45	1
Copper	116		25.0	6.9	ug/L		11/22/20 16:15	11/23/20 18:45	1
Iron	31800		150	80.8	ug/L		11/22/20 16:15	11/23/20 18:45	1
Potassium	8870		5000	142	ug/L		11/22/20 16:15	11/23/20 18:45	1
Magnesium	10100		5000	142	ug/L		11/22/20 16:15	11/23/20 18:45	1
Manganese	522		15.0	0.76	ug/L		11/22/20 16:15	11/23/20 18:45	1
Sodium	4730	J	5000	83.8	ug/L		11/22/20 16:15	11/23/20 18:45	1
Nickel	49.7		40.0	4.1	ug/L		11/22/20 16:15	11/23/20 18:45	1
Lead	13.7		10.0	2.4	ug/L		11/22/20 16:15	11/23/20 18:45	1
Antimony	20.0	U	20.0	3.7	ug/L		11/22/20 16:15	11/23/20 18:45	1
Selenium	20.0	U	20.0	5.9	ug/L		11/22/20 16:15	11/23/20 18:45	1
Thallium	20.0	U	20.0	4.1	ug/L		11/22/20 16:15	11/23/20 18:45	1
Vanadium	89.4		50.0	7.2	ug/L		11/22/20 16:15	11/23/20 18:45	1
Zinc	136		30.0	1.2	ug/L		11/22/20 16:15	11/23/20 18:45	1
Method: 7470A - Mercury	(CVAA)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	0.091	ug/L		11/25/20 12:43	11/25/20 14:13	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.010	U	0.010	0.0040	mg/L		11/27/20 09:11	11/27/20 13:22	

Client Sample ID: EB-11132020

Lab Sample ID: 460-222961-7

Date Collected: 11/13/20 16:30

Matrix: Water

Date Collected: 11/13/20 16:30 Date Received: 11/16/20 19:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	4.2	U	4.2	0.94	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluoropentanoic acid (PFPeA)	1.7	U	1.7	0.90	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluorohexanoic acid (PFHxA)	1.7	U	1.7	0.69	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluoroheptanoic acid (PFHpA)	1.7	U	1.7	0.38	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluorooctanoic acid (PFOA)	1.7	U	1.7	0.82	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluorononanoic acid (PFNA)	1.7	U	1.7	0.48	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluorodecanoic acid (PFDA)	1.7	U	1.7	0.38	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluoroundecanoic acid (PFUnA)	1.7	U	1.7	0.61	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluorododecanoic acid (PFDoA)	1.7	U	1.7	0.38	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluorotridecanoic acid (PFTriA)	1.7	U	1.7	0.36	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluorotetradecanoic acid (PFTeA)	1.7	U	1.7	0.49	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluorobutanesulfonic acid (PFBS)	1.7	U	1.7	0.52	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluorohexanesulfonic acid (PFHxS)	1.7	U	1.7	0.56	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluoroheptanesulfonic Acid (PFHpS)	1.7	U	1.7	0.32	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluorooctanesulfonic acid (PFOS)	1.7	U	1.7	0.72	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluorodecanesulfonic acid (PFDS)	1.7	U	1.7	0.40	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluorooctanesulfonamide (PFOSA)	1.7	U	1.7	0.47	ng/L		11/20/20 09:01	11/20/20 17:53	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	4.2	U	4.2	0.66	ng/L		11/20/20 09:01	11/20/20 17:53	1

Eurofins TestAmerica, Edison

Page 47 of 158

2

3

O

8

10

12

14

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: EB-11132020

13C3 PFBS

Date Received: 11/16/20 19:40

Lab Sample ID: 460-222961-7 Date Collected: 11/13/20 16:30

118

Matrix: Water Date Received: 11/16/20 19:40

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued) Result Qualifier **MDL** Unit Analyte D Prepared Analyzed Dil Fac 0.77 ng/L N-ethylperfluorooctanesulfonamidoac 4.2 U 4.2 11/20/20 09:01 11/20/20 17:53 etic acid (NEtFOSAA) 1H,1H,2H,2H-perfluorooctanesulfonic 4.2 U 4.2 0.60 ng/L 11/20/20 09:01 11/20/20 17:53 acid (6:2) 11/20/20 09:01 11/20/20 17:53 1H,1H,2H,2H-perfluorodecanesulfonic 1.7 U 1.7 0.55 ng/L acid (8:2) Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1802 PFHxS 117 50 - 150 11/20/20 09:01 11/20/20 17:53 13C4 PFHpA 108 50 - 150 11/20/20 09:01 11/20/20 17:53 13C4 PFOA 105 50 - 150 11/20/20 09:01 11/20/20 17:53 13C4 PFOS 50 - 150 11/20/20 09:01 11/20/20 17:53 114 13C5 PFNA 50 - 150 11/20/20 09:01 11/20/20 17:53 105 11/20/20 09:01 11/20/20 17:53 13C4 PFBA 119 25 - 150 13C2 PFHxA 112 50 - 150 11/20/20 09:01 11/20/20 17:53 13C2 PFDA 114 50 - 150 11/20/20 09:01 11/20/20 17:53 13C2 PFUnA 115 50 - 150 11/20/20 09:01 11/20/20 17:53 13C2 PFDoA 111 50 - 150 11/20/20 09:01 11/20/20 17:53 13C8 FOSA 77 25 - 150 11/20/20 09:01 11/20/20 17:53 13C5 PFPeA 119 25 - 150 11/20/20 09:01 11/20/20 17:53 13C2 PFTeDA 96 50 - 150 11/20/20 09:01 11/20/20 17:53 d3-NMeFOSAA 107 50 - 150 11/20/20 09:01 11/20/20 17:53 d5-NEtFOSAA 105 50 - 150 11/20/20 09:01 11/20/20 17:53 M2-6:2 FTS 118 25 - 150 11/20/20 09:01 11/20/20 17:53 11/20/20 09:01 11/20/20 17:53 M2-8:2 FTS 25 - 150 111

Client Sample ID: SW-4 Lab Sample ID: 460-222961-8 Date Collected: 11/13/20 12:30 **Matrix: Water**

50 - 150

Method: 8260D - Volatile Organic Compounds by GC/MS **Analyte** Result Qualifier RL**MDL** Unit Prepared Analyzed Dil Fac 0.40 ug/L Chloromethane 1.0 U 1.0 11/22/20 20:34 Bromomethane 1.0 U 1.0 0.55 ug/L 11/22/20 20:34 Vinvl chloride 1.0 U 1.0 0.17 ug/L 11/22/20 20:34 Chloroethane 1.0 U 1.0 0.32 ug/L 11/22/20 20:34 Methylene Chloride 1.0 U 1.0 0.32 ug/L 11/22/20 20:34 Acetone 5.0 U 5.0 4.4 ug/L 11/22/20 20:34 Carbon disulfide 1.0 U 1.0 0.82 ug/L 11/22/20 20:34 0.32 ug/L Trichlorofluoromethane 1.0 U 1.0 11/22/20 20:34 1,1-Dichloroethene 1.0 U 1.0 0.26 ug/L 11/22/20 20:34 0.26 ug/L 1 1-Dichloroethane 10 U 10 11/22/20 20:34 trans-1 2-Dichloroethene 10 U 1.0 0.24 ug/L 11/22/20 20:34 cis-1,2-Dichloroethene 1.0 1.0 U 0.22 ug/L 11/22/20 20:34 Chloroform 1.0 U 1.0 0.33 ug/L 11/22/20 20:34 1,2-Dichloroethane 10 U 1.0 0.43 ug/L 11/22/20 20:34 2-Butanone (MEK) 5.0 U 5.0 1.9 ug/L 11/22/20 20:34 1,1,1-Trichloroethane 1.0 U 0.24 ug/L 1.0 11/22/20 20:34 Carbon tetrachloride 10 U 1.0 0.21 ug/L 11/22/20 20:34 0.34 ug/L Dichlorobromomethane 1.0 U 1.0 11/22/20 20:34

Eurofins TestAmerica, Edison

11/20/20 09:01 11/20/20 17:53

Page 48 of 158

6

3/30/2021

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: SW-4 Lab Sample ID: 460-222961-8

Date Collected: 11/13/20 12:30 Matrix: Water

Date Received: 11/16/20 19:40

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	1.0	U	1.0	0.35	ug/L			11/22/20 20:34	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			11/22/20 20:34	1
Trichloroethene	1.0	U	1.0	0.31	ug/L			11/22/20 20:34	1
Chlorodibromomethane	1.0	U	1.0	0.28	ug/L			11/22/20 20:34	1
1,1,2-Trichloroethane	1.0	U	1.0	0.20	ug/L			11/22/20 20:34	1
Benzene	1.0	U	1.0	0.20	ug/L			11/22/20 20:34	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			11/22/20 20:34	1
Bromoform	1.0	U	1.0	0.54	ug/L			11/22/20 20:34	1
4-Methyl-2-pentanone (MIBK)	5.0	U *	5.0	1.3	ug/L			11/22/20 20:34	1
2-Hexanone	5.0	U *	5.0	1.1	ug/L			11/22/20 20:34	1
Tetrachloroethene	1.0	U	1.0	0.25	ug/L			11/22/20 20:34	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.37	ug/L			11/22/20 20:34	1
Toluene	1.0	U	1.0	0.38	ug/L			11/22/20 20:34	1
Chlorobenzene	1.0	U	1.0	0.38	ug/L			11/22/20 20:34	1
Ethylbenzene	1.0	U	1.0	0.30	ug/L			11/22/20 20:34	1
Styrene	1.0	U	1.0	0.42	ug/L			11/22/20 20:34	1
m-Xylene & p-Xylene	1.0	U	1.0	0.30	ug/L			11/22/20 20:34	1
o-Xylene	1.0	U	1.0	0.36	ug/L			11/22/20 20:34	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.31	ug/L			11/22/20 20:34	1
Methyl tert-butyl ether	1.0	U	1.0	0.22	ug/L			11/22/20 20:34	1
Cyclohexane	1.0	U	1.0	0.32	ug/L			11/22/20 20:34	1
Ethylene Dibromide	1.0	U	1.0	0.50	ug/L			11/22/20 20:34	1
1,3-Dichlorobenzene	1.0	U	1.0	0.34	ug/L			11/22/20 20:34	1
1,4-Dichlorobenzene	1.0	U	1.0	0.33	ug/L			11/22/20 20:34	1
1,2-Dichlorobenzene	1.0	U	1.0	0.21	ug/L			11/22/20 20:34	1
Dichlorodifluoromethane	1.0	U	1.0	0.31	ug/L			11/22/20 20:34	1
1,2,4-Trichlorobenzene	1.0	U	1.0	0.37	ug/L			11/22/20 20:34	1
1,4-Dioxane	50	U	50	28	ug/L			11/22/20 20:34	1
1,2,3-Trichlorobenzene	1.0	U	1.0	0.36	ug/L			11/22/20 20:34	1
1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.38	ug/L			11/22/20 20:34	1
Chlorobromomethane	1.0	U	1.0	0.41	ug/L			11/22/20 20:34	1
Isopropylbenzene	1.0	U	1.0	0.34	ug/L			11/22/20 20:34	1
Methyl acetate	5.0	U	5.0	0.79	ug/L			11/22/20 20:34	1
Methylcyclohexane	1.0	U	1.0	0.71	ug/L			11/22/20 20:34	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					11/22/20 20:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		75 ₋ 123					11/22/20 20:34	1
Toluene-d8 (Surr)	103		80 - 120					11/22/20 20:34	1

Method: 8270E SIM ID	- Semivolatile Organic	Compounds (C	C/MS SIM / I	sotone Dilution)

102

Dibromofluoromethane (Surr)

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.20	U	0.20	0.016	ug/L		11/18/20 09:12	11/19/20 15:41	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	27		10 - 150				11/18/20 09:12	11/19/20 15:41	1

77 - 124

Eurofins TestAmerica, Edison

11/22/20 20:34

3

5

7

1.0

12

1 /

15

16

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: SW-4 Lab Sample ID: 460-222961-8

Date Collected: 11/13/20 12:30 Matrix: Water

Date Received:	11/16/20 19:40
•	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	10	U	10	0.29	ug/L		11/19/20 09:29	11/20/20 06:53	1
2-Chlorophenol	10	U	10	0.38	ug/L		11/19/20 09:29	11/20/20 06:53	1
2-Methylphenol	10	U	10	0.67	ug/L		11/19/20 09:29	11/20/20 06:53	1
4-Methylphenol	10	U	10	0.65	ug/L		11/19/20 09:29	11/20/20 06:53	1
2-Nitrophenol	10	U	10	0.75	ug/L		11/19/20 09:29	11/20/20 06:53	1
2,4-Dimethylphenol	10	U	10	0.62	ug/L		11/19/20 09:29	11/20/20 06:53	1
2,4-Dichlorophenol	10	U	10	1.1	ug/L		11/19/20 09:29	11/20/20 06:53	1
4-Chloro-3-methylphenol	10	U	10	0.58	ug/L		11/19/20 09:29	11/20/20 06:53	1
2,4,6-Trichlorophenol	10	U	10	0.86	ug/L		11/19/20 09:29	11/20/20 06:53	1
2,4,5-Trichlorophenol	10	U	10	0.88	ug/L		11/19/20 09:29	11/20/20 06:53	1
2,4-Dinitrotoluene	2.0	U	2.0	1.0	ug/L		11/19/20 09:29	11/20/20 06:53	1
4-Nitrophenol	30	U	30	4.0	ug/L		11/19/20 09:29	11/20/20 06:53	1
4,6-Dinitro-2-methylphenol	30	U	30	3.0	ug/L		11/19/20 09:29	11/20/20 06:53	1
Pentachlorophenol	30	U	30	1.4	ug/L		11/19/20 09:29	11/20/20 06:53	1
Bis(2-chloroethyl)ether	1.0		1.0	0.63	-		11/19/20 09:29	11/20/20 06:53	1
N-Nitrosodi-n-propylamine	1.0		1.0	0.43			11/19/20 09:29	11/20/20 06:53	1
Hexachloroethane	2.0	U	2.0	0.80	-		11/19/20 09:29	11/20/20 06:53	1
Nitrobenzene	1.0	U	1.0	0.57	-		11/19/20 09:29	11/20/20 06:53	1
Isophorone	10	U	10	0.80			11/19/20 09:29	11/20/20 06:53	
Naphthalene	2.0		2.0	0.54	-		11/19/20 09:29	11/20/20 06:53	
4-Chloroaniline	1.0		1.0		ug/L		11/19/20 09:29	11/20/20 06:53	
Hexachlorobutadiene	2.0		2.0		ug/L		11/19/20 09:29	11/20/20 06:53	
2-Methylnaphthalene	10		10	0.53	-		11/19/20 09:29	11/20/20 06:53	
Hexachlorocyclopentadiene	10		10		ug/L		11/19/20 09:29	11/20/20 06:53	
2-Chloronaphthalene	10		10		ug/L		11/19/20 09:29	11/20/20 06:53	,
2-Nitroaniline	20		20	0.47	-		11/19/20 09:29	11/20/20 06:53	
Dimethyl phthalate	10		10	0.77	-		11/19/20 09:29	11/20/20 06:53	
Acenaphthylene	10		10	0.82			11/19/20 09:29	11/20/20 06:53	,
2,6-Dinitrotoluene	2.0		2.0	0.83	-		11/19/20 09:29	11/20/20 06:53	
3-Nitroaniline	20		20		ug/L		11/19/20 09:29	11/20/20 06:53	1
Acenaphthene	10		10	1.1	ug/L		11/19/20 09:29	11/20/20 06:53	
Dibenzofuran	10		10	1.1	ug/L		11/19/20 09:29	11/20/20 06:53	1
2,4-Dinitrophenol	30		30		ug/L		11/19/20 09:29	11/20/20 06:53	1
Diethyl phthalate	10		10		ug/L		11/19/20 09:29	11/20/20 06:53	,
4-Chlorophenyl phenyl ether	10		10		ug/L		11/19/20 09:29	11/20/20 06:53	
Fluorene	10		10	0.91			11/19/20 09:29	11/20/20 06:53	
4-Nitroaniline	20		20		ug/L		11/19/20 09:29	11/20/20 06:53	,
N-Nitrosodiphenylamine	10		10		ug/L		11/19/20 09:29	11/20/20 06:53	,
4-Bromophenyl phenyl ether	10		10		ug/L		11/19/20 09:29	11/20/20 06:53	
Hexachlorobenzene	1.0		1.0	0.40			11/19/20 09:29	11/20/20 06:53	
Phenanthrene	10		10		ug/L		11/19/20 09:29	11/20/20 06:53	1
Anthracene	10		10		ug/L		11/19/20 09:29	11/20/20 06:53	4
Carbazole	10		10	0.68			11/19/20 09:29	11/20/20 06:53	,
Di-n-butyl phthalate	10		10		ug/L ug/L		11/19/20 09:29	11/20/20 06:53	-
Fluoranthene	10		10		ug/L ug/L		11/19/20 09:29	11/20/20 06:53	,
Pyrene	10		10		ug/L ug/L		11/19/20 09:29	11/20/20 06:53	· · · · · · .
Butyl benzyl phthalate	10		10	0.85			11/19/20 09:29	11/20/20 06:53	,
					-				
Benzo[a]anthracene Chrysene	1.0		1.0 10	0.59	ug/L		11/19/20 09:29 11/19/20 09:29	11/20/20 06:53 11/20/20 06:53	1

Eurofins TestAmerica, Edison

Page 50 of 158

2

3

5

7

9

11

13

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: SW-4 Lab Sample ID: 460-222961-8

Date Collected: 11/13/20 12:30 Matrix: Water Date Received: 11/16/20 19:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	10	U	10	0.80	ug/L		11/19/20 09:29	11/20/20 06:53	1
Di-n-octyl phthalate	10	U	10	0.75	ug/L		11/19/20 09:29	11/20/20 06:53	1
Benzo[b]fluoranthene	2.0	U	2.0	0.68	ug/L		11/19/20 09:29	11/20/20 06:53	1
Benzo[k]fluoranthene	1.0	U	1.0	0.67	ug/L		11/19/20 09:29	11/20/20 06:53	1
Benzo[a]pyrene	1.0	U	1.0	0.41	ug/L		11/19/20 09:29	11/20/20 06:53	1
Indeno[1,2,3-cd]pyrene	2.0	U	2.0	0.94	ug/L		11/19/20 09:29	11/20/20 06:53	1
Dibenz(a,h)anthracene	1.0	U	1.0	0.72	ug/L		11/19/20 09:29	11/20/20 06:53	1
Benzo[g,h,i]perylene	10	U	10	0.70	ug/L		11/19/20 09:29	11/20/20 06:53	1
1,1'-Biphenyl	10	U	10	1.2	ug/L		11/19/20 09:29	11/20/20 06:53	1
Acetophenone	10	U	10	2.3	ug/L		11/19/20 09:29	11/20/20 06:53	1
1,4-Dioxane	10	U	10	1.6	ug/L		11/19/20 09:29	11/20/20 06:53	1
Benzaldehyde	10	U	10	2.1	ug/L		11/19/20 09:29	11/20/20 06:53	1
Caprolactam	10	U	10	2.2	ug/L		11/19/20 09:29	11/20/20 06:53	1
Atrazine	10	U *	10	1.3	ug/L		11/19/20 09:29	11/20/20 06:53	1
2,2'-oxybis[1-chloropropane]	10	U	10	0.63	ug/L		11/19/20 09:29	11/20/20 06:53	1
1,2,4,5-Tetrachlorobenzene	10	U	10	1.2	ug/L		11/19/20 09:29	11/20/20 06:53	1
2,3,4,6-Tetrachlorophenol	10	U	10	0.75	ug/L		11/19/20 09:29	11/20/20 06:53	1
3,3'-Dichlorobenzidine	20	U	20	1.4	ug/L		11/19/20 09:29	11/20/20 06:53	1
Bis(2-chloroethoxy)methane	10	U	10	0.59	ug/L		11/19/20 09:29	11/20/20 06:53	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L				11/19/20 09:29	11/20/20 06:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	87		46 - 137				11/19/20 09:29	11/20/20 06:53	1
Phenol-d5 (Surr)	24		10 - 50				11/19/20 09:29	11/20/20 06:53	1
Terphenyl-d14 (Surr)	82		39 - 150				11/19/20 09:29	11/20/20 06:53	1
2,4,6-Tribromophenol (Surr)	112		36 - 159				11/19/20 09:29	11/20/20 06:53	1
2-Fluorophenol (Surr)	40		18 - 72				11/19/20 09:29	11/20/20 06:53	1
2-Fluorobiphenyl	77		42 - 127				44/40/00 00:00	11/20/20 06:53	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	0.020	U	0.020	0.0060	ug/L		11/18/20 14:28	11/19/20 11:45	1
4,4'-DDE	0.020	U	0.020	0.0020	ug/L		11/18/20 14:28	11/19/20 11:45	1
4,4'-DDT	0.020	U	0.020	0.0040	ug/L		11/18/20 14:28	11/19/20 11:45	1
Aldrin	0.020	U	0.020	0.0030	ug/L		11/18/20 14:28	11/19/20 11:45	1
alpha-BHC	0.020	U	0.020	0.0070	ug/L		11/18/20 14:28	11/19/20 11:45	1
beta-BHC	0.020	U	0.020	0.0040	ug/L		11/18/20 14:28	11/19/20 11:45	1
Chlordane (technical)	0.50	U	0.50	0.055	ug/L		11/18/20 14:28	11/19/20 11:45	1
delta-BHC	0.020	U	0.020	0.0050	ug/L		11/18/20 14:28	11/19/20 11:45	1
Dieldrin	0.020	U	0.020	0.0030	ug/L		11/18/20 14:28	11/19/20 11:45	1
Endosulfan I	0.020	U	0.020	0.0020	ug/L		11/18/20 14:28	11/19/20 11:45	1
Endosulfan II	0.020	U	0.020	0.0040	ug/L		11/18/20 14:28	11/19/20 11:45	1
Endosulfan sulfate	0.020	U	0.020	0.0060	ug/L		11/18/20 14:28	11/19/20 11:45	1
Endrin	0.020	U	0.020	0.0040	ug/L		11/18/20 14:28	11/19/20 11:45	1
Endrin aldehyde	0.020	U	0.020	0.0080	ug/L		11/18/20 14:28	11/19/20 11:45	1
Endrin ketone	0.020	U	0.020	0.0080	ug/L		11/18/20 14:28	11/19/20 11:45	1
gamma-BHC (Lindane)	0.020	U	0.020	0.012	ug/L		11/18/20 14:28	11/19/20 11:45	1
Heptachlor	0.020	U	0.020	0.0030	ug/L		11/18/20 14:28	11/19/20 11:45	1

Eurofins TestAmerica, Edison

Page 51 of 158

2

3

5

8

10

12

13

15

16

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Result Qualifier

0.020 U

0.020 U

0.50 U

1.2 U

1.2 U

1.2 U

Lab Sample ID: 460-222961-8 Client Sample ID: SW-4

Date Collected: 11/13/20 12:30 **Matrix: Water**

0.020

0.020

0.50

MDL Unit

0.0050 ug/L

0.0040 ug/L

0.11 ug/L

Prepared

11/17/20 20:26

11/17/20 20:26 11/18/20 10:11

11/17/20 20:26 11/18/20 10:11

Date Received: 11/16/20 19:40

Analyte

Heptachlor epoxide

Methoxychlor

Toxaphene

2,4-D

2,4,5-T

Silvex (2,4,5-TP)

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	63		10 - 132				11/18/20 14:28	11/19/20 11:45	1
DCB Decachlorobiphenyl	62		10 - 132				11/18/20 14:28	11/19/20 11:45	1
Tetrachloro-m-xylene	36		10 - 150				11/18/20 14:28	11/19/20 11:45	1
Tetrachloro-m-xylene	31		10 - 150				11/18/20 14:28	11/19/20 11:45	1
Method: 8082A - Polychlorii	nated Bipheny	/Is (PCBs)	by Gas Chro	matogr	aphy				
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Aroclor 1016	0.40	U	0.40	0.12	ug/L		11/18/20 14:29	11/19/20 12:03	1
Aroclor 1221	0.40	U	0.40	0.12	ug/L		11/18/20 14:29	11/19/20 12:03	1
Aroclor 1232	0.40	U	0.40	0.12	ug/L		11/18/20 14:29	11/19/20 12:03	1
Aroclor 1242	0.40	U	0.40	0.12	ug/L		11/18/20 14:29	11/19/20 12:03	1
Aroclor 1248	0.40	U	0.40	0.12	ug/L		11/18/20 14:29	11/19/20 12:03	1
Aroclor 1254	0.40	U	0.40	0.11	ug/L		11/18/20 14:29	11/19/20 12:03	1
Aroclor 1260	0.40	U	0.40	0.11	ug/L		11/18/20 14:29	11/19/20 12:03	1
Aroclor-1262	0.40	U	0.40	0.11	ug/L		11/18/20 14:29	11/19/20 12:03	1
Aroclor 1268	0.40	U	0.40	0.11	ug/L		11/18/20 14:29	11/19/20 12:03	1
Polychlorinated biphenyls, Total	0.40	U	0.40	0.12	ug/L		11/18/20 14:29	11/19/20 12:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	69		10 - 150				11/18/20 14:29	11/19/20 12:03	1
DCB Decachlorobiphenyl	69		10 - 150				11/18/20 14:29	11/19/20 12:03	1
Tetrachloro-m-xylene	38	X	48 - 125				11/18/20 14:29	11/19/20 12:03	1
Tetrachloro-m-xylene	38	X	48 - 125				11/18/20 14:29	11/19/20 12:03	1
Method: 8151A - Herbicides	(GC)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared Analyze	ed Dil Fac
2 4-Dichlorophenylacetic acid	72	39 145	11/17/20 20:26 11/18/20 1	0.11 1

1 2,4-Dichlorophenylacetic acid 79 39 - 145 11/17/20 20:26 11/18/20 10:11

1.2

1.2

1.2

0.13 ug/L

0.11 ug/L

0.12 ug/L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	11		4.2	0.96	ng/L		11/20/20 09:01	11/20/20 18:02	1
Perfluoropentanoic acid (PFPeA)	17		1.7	0.92	ng/L		11/20/20 09:01	11/20/20 18:02	1
Perfluorohexanoic acid (PFHxA)	15		1.7	0.70	ng/L		11/20/20 09:01	11/20/20 18:02	1
Perfluoroheptanoic acid (PFHpA)	13		1.7	0.39	ng/L		11/20/20 09:01	11/20/20 18:02	1
Perfluorooctanoic acid (PFOA)	120		1.7	0.83	ng/L		11/20/20 09:01	11/20/20 18:02	1
Perfluorononanoic acid (PFNA)	2.0		1.7	0.49	ng/L		11/20/20 09:01	11/20/20 18:02	1
Perfluorodecanoic acid (PFDA)	1.7	U	1.7	0.39	ng/L		11/20/20 09:01	11/20/20 18:02	1
Perfluoroundecanoic acid (PFUnA)	1.7	U	1.7	0.62	ng/L		11/20/20 09:01	11/20/20 18:02	1
Perfluorododecanoic acid (PFDoA)	1.7	U	1.7	0.39	ng/L		11/20/20 09:01	11/20/20 18:02	1
Perfluorotridecanoic acid (PFTriA)	1.7	U	1.7	0.36	ng/L		11/20/20 09:01	11/20/20 18:02	1

11/18/20 10:11

Page 52 of 158

Dil Fac

Analyzed

11/18/20 14:28 11/19/20 11:45

11/18/20 14:28 11/19/20 11:45

11/18/20 14:28 11/19/20 11:45

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: SW-4 Lab Sample ID: 460-222961-8

Date Collected: 11/13/20 12:30 **Matrix: Water** Date Received: 11/16/20 19:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorotetradecanoic acid (PFTeA)	1.7	U	1.7	0.50	ng/L		11/20/20 09:01	11/20/20 18:02	1
Perfluorobutanesulfonic acid (PFBS)	2.5		1.7	0.53	ng/L		11/20/20 09:01	11/20/20 18:02	1
Perfluorohexanesulfonic acid (PFHxS)	13		1.7	0.57	ng/L		11/20/20 09:01	11/20/20 18:02	1
Perfluoroheptanesulfonic Acid (PFHpS)	0.72	J	1.7	0.33	ng/L		11/20/20 09:01	11/20/20 18:02	1
Perfluorooctanesulfonic acid (PFOS)	15		1.7	0.74	ng/L		11/20/20 09:01	11/20/20 18:02	1
Perfluorodecanesulfonic acid (PFDS)	1.7	U	1.7	0.41	ng/L		11/20/20 09:01	11/20/20 18:02	1
Perfluorooctanesulfonamide (PFOSA)	1.7	U	1.7	0.48	ng/L		11/20/20 09:01	11/20/20 18:02	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	4.2	U	4.2	0.67	ng/L		11/20/20 09:01	11/20/20 18:02	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	4.2	U	4.2	0.79	ng/L		11/20/20 09:01	11/20/20 18:02	1
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	4.2	U	4.2	0.61	ng/L		11/20/20 09:01	11/20/20 18:02	1
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	1.7	U	1.7	0.56	ng/L		11/20/20 09:01	11/20/20 18:02	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1802 PFHxS	112		50 - 150				11/20/20 09:01	11/20/20 18:02	1
13C4 PFHpA	102		50 - 150				11/20/20 09:01	11/20/20 18:02	1
13C4 PFOA	98		50 - 150				11/20/20 09:01	11/20/20 18:02	1
13C4 PFOS	107		50 ₋ 150				11/20/20 09:01	11/20/20 18:02	1
13C5 PFNA	99		50 - 150				11/20/20 09:01	11/20/20 18:02	1
13C4 PFBA	75		25 - 150				11/20/20 09:01	11/20/20 18:02	1
13C2 PFHxA	100		50 - 150				11/20/20 09:01	11/20/20 18:02	1
13C2 PFDA	111		50 - 150				11/20/20 09:01	11/20/20 18:02	1
13C2 PFUnA	113		50 - 150				11/20/20 09:01	11/20/20 18:02	1
13C2 PFDoA	112		50 - 150				11/20/20 09:01	11/20/20 18:02	1
13C8 FOSA	81		25 - 150				11/20/20 09:01	11/20/20 18:02	1
13C5 PFPeA	94		25 - 150				11/20/20 09:01	11/20/20 18:02	1
13C2 PFTeDA	91		50 - 150				11/20/20 09:01	11/20/20 18:02	1
			50 - 150				11/20/20 09:01	11/20/20 18:02	1
d3-NMeFOSAA	113		50 - 150						
	113 108		50 - 150 50 - 150				11/20/20 09:01	11/20/20 18:02	1
d5-NEtFOSAA									1
d3-NMeFOSAA d5-NEtFOSAA M2-6:2 FTS M2-8:2 FTS	108		50 - 150				11/20/20 09:01	11/20/20 18:02	

Method: 6010D - Metals ((ICP)								
Analyte	Result Qu	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	10.0 U		10.0	5.8	ug/L		11/22/20 16:15	11/23/20 18:49	1
Aluminum	200 U		200	76.9	ug/L		11/22/20 16:15	11/23/20 18:49	1
Arsenic	15.0 U		15.0	3.3	ug/L		11/22/20 16:15	11/23/20 18:49	1
Barium	51.3 J		200	13.2	ug/L		11/22/20 16:15	11/23/20 18:49	1
Beryllium	2.0 U		2.0	0.17	ug/L		11/22/20 16:15	11/23/20 18:49	1
Calcium	64100		5000	152	ug/L		11/22/20 16:15	11/23/20 18:49	1
Cadmium	4.0 U		4.0	0.33	ug/L		11/22/20 16:15	11/23/20 18:49	1
Cobalt	50.0 U		50.0	2.0	ug/L		11/22/20 16:15	11/23/20 18:49	1
Chromium	10.0 U		10.0	5.0	ug/L		11/22/20 16:15	11/23/20 18:49	1
Copper	25.0 U		25.0	6.9	ug/L		11/22/20 16:15	11/23/20 18:49	1

Page 53 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: SW-4 Lab Sample ID: 460-222961-8

Date Collected: 11/13/20 12:30 Matrix: Water Date Received: 11/16/20 19:40

Method: 6010D - Metals (IC	P) (Continued)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	284		150	80.8	ug/L		11/22/20 16:15	11/23/20 18:49	1
Potassium	6290		5000	142	ug/L		11/22/20 16:15	11/23/20 18:49	1
Magnesium	18200		5000	142	ug/L		11/22/20 16:15	11/23/20 18:49	1
Manganese	258		15.0	0.76	ug/L		11/22/20 16:15	11/23/20 18:49	1
Sodium	19000		5000	83.8	ug/L		11/22/20 16:15	11/23/20 18:49	1
Nickel	40.0	U	40.0	4.1	ug/L		11/22/20 16:15	11/23/20 18:49	1
Lead	10.0	U	10.0	2.4	ug/L		11/22/20 16:15	11/23/20 18:49	1
Antimony	20.0	U	20.0	3.7	ug/L		11/22/20 16:15	11/23/20 18:49	1
Selenium	20.0	U	20.0	5.9	ug/L		11/22/20 16:15	11/23/20 18:49	1
Thallium	20.0	U	20.0	4.1	ug/L		11/22/20 16:15	11/23/20 18:49	1
Vanadium	50.0	U	50.0	7.2	ug/L		11/22/20 16:15	11/23/20 18:49	1
Zinc	5.3	J	30.0	1.2	ug/L		11/22/20 16:15	11/23/20 18:49	1
- Method: 7470A - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	0.091	ug/L		11/25/20 12:43	11/25/20 14:15	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.010	U	0.010	0.0040	mg/L		11/27/20 09:11	11/27/20 13:23	1

Client Sample ID: S-4 Lab Sample ID: 460-222961-9

Date Collected: 11/13/20 12:45
Date Received: 11/16/20 19:40
Matrix: Solid
Percent Solids: 34.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	490	U H H3	490	200	ug/Kg	₽	11/17/20 23:44	11/27/20 14:45	50
Bromomethane	490	U H H3	490	490	ug/Kg	☼	11/17/20 23:44	11/27/20 14:45	50
Vinyl chloride	490	U H H3	490	98	ug/Kg	☼	11/17/20 23:44	11/27/20 14:45	50
Chloroethane	490	U H H3	490	180	ug/Kg	₩	11/17/20 23:44	11/27/20 14:45	50
Methylene Chloride	490	U H H3	490	560	ug/Kg	☼	11/17/20 23:44	11/27/20 14:45	50
Acetone	2400	U H H3	2400	2200	ug/Kg	☼	11/17/20 23:44	11/27/20 14:45	50
Carbon disulfide	490	U H H3	490	330	ug/Kg	₩	11/17/20 23:44	11/27/20 14:45	50
Trichlorofluoromethane	490	U H H3	490	160	ug/Kg	☼	11/17/20 23:44	11/27/20 14:45	50
1,1-Dichloroethene	490	U H H3	490	130	ug/Kg	☼	11/17/20 23:44	11/27/20 14:45	50
1,1-Dichloroethane	490	U H H3	490	120	ug/Kg	₩	11/17/20 23:44	11/27/20 14:45	50
trans-1,2-Dichloroethene	490	U H H3	490	88	ug/Kg	☼	11/17/20 23:44	11/27/20 14:45	50
cis-1,2-Dichloroethene	490	U H H3	490	170	ug/Kg	₩	11/17/20 23:44	11/27/20 14:45	50
Chloroform	490	U H H3	490	470	ug/Kg	☼	11/17/20 23:44	11/27/20 14:45	50
1,2-Dichloroethane	490	U H H3	490	120	ug/Kg	☼	11/17/20 23:44	11/27/20 14:45	50
2-Butanone (MEK)	2400	U H H3	2400	1100	ug/Kg	₩	11/17/20 23:44	11/27/20 14:45	50
1,1,1-Trichloroethane	490	U H H3	490	140	ug/Kg	₽	11/17/20 23:44	11/27/20 14:45	50
Carbon tetrachloride	490	U H H3	490	160	ug/Kg	☼	11/17/20 23:44	11/27/20 14:45	50
Dichlorobromomethane	490	U H H3	490	73	ug/Kg	☼	11/17/20 23:44	11/27/20 14:45	50
1,2-Dichloropropane	490	U H H3	490	88	ug/Kg	₽	11/17/20 23:44	11/27/20 14:45	50
cis-1,3-Dichloropropene	490	U H H3	490	110	ug/Kg	₩	11/17/20 23:44	11/27/20 14:45	50
Trichloroethene	490	U H H3	490	160	ug/Kg	☼	11/17/20 23:44	11/27/20 14:45	50
Chlorodibromomethane	490	U H H3	490	110	ug/Kg	₽	11/17/20 23:44	11/27/20 14:45	50
1,1,2-Trichloroethane	490	U H H3	490	39	ug/Kg	₽	11/17/20 23:44	11/27/20 14:45	50

Eurofins TestAmerica, Edison

Page 54 of 158

2

3

5

9

11 10

13

4 -

16

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

2,4-Dimethylphenol

2,4-Dichlorophenol

4-Chloro-3-methylphenol

2,4,6-Trichlorophenol

Client Sample ID: S-4 Lab Sample ID: 460-222961-9

Date Collected: 11/13/20 12:45

Matrix: Solid

Date Collected: 11/13/20 12:45

Date Received: 11/16/20 19:40

Percent Solids: 34.2

Analyte		Qualifier	RL		Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Benzene	490	U H H3	490	99	ug/Kg		11/17/20 23:44	11/27/20 14:45	5
trans-1,3-Dichloropropene		U H H3	490		ug/Kg	₽	11/17/20 23:44	11/27/20 14:45	5
Bromoform	490	U H H3	490	88	ug/Kg	☼	11/17/20 23:44	11/27/20 14:45	5
4-Methyl-2-pentanone (MIBK)	2400	U H H3	2400	640	ug/Kg		11/17/20 23:44	11/27/20 14:45	5
2-Hexanone	2400	U H H3	2400	550		≎	11/17/20 23:44	11/27/20 14:45	5
Tetrachloroethene	490	U H H3	490	150	ug/Kg	₽	11/17/20 23:44	11/27/20 14:45	5
1,1,2,2-Tetrachloroethane	490	U H H3	490	93	ug/Kg	₽	11/17/20 23:44	11/27/20 14:45	
Toluene	490	U H H3	490	120	ug/Kg	₽	11/17/20 23:44	11/27/20 14:45	!
Chlorobenzene	490	U H H3	490	120	ug/Kg	₩	11/17/20 23:44	11/27/20 14:45	;
Ethylbenzene	490	U H H3	490	150	ug/Kg	₩	11/17/20 23:44	11/27/20 14:45	;
Styrene	490	U H H3	490	83	ug/Kg	₽	11/17/20 23:44	11/27/20 14:45	
n-Xylene & p-Xylene	490	U H H3	490	140	ug/Kg	≎	11/17/20 23:44	11/27/20 14:45	!
o-Xylene	490	U H H3	490	160	ug/Kg	₽	11/17/20 23:44	11/27/20 14:45	;
1,1,2-Trichloro-1,2,2-trifluoroethane	490	U H H3	490	170	ug/Kg	₽	11/17/20 23:44	11/27/20 14:45	
Methyl tert-butyl ether	490	U H H3	490	250	ug/Kg	₽	11/17/20 23:44	11/27/20 14:45	;
Cyclohexane	490	U H H3	490	130	ug/Kg	₩	11/17/20 23:44	11/27/20 14:45	!
Ethylene Dibromide	490	U H H3	490	93	ug/Kg		11/17/20 23:44	11/27/20 14:45	
1,3-Dichlorobenzene	490	U H H3	490	180	ug/Kg	₩	11/17/20 23:44	11/27/20 14:45	!
1,4-Dichlorobenzene	490	U H H3	490	160	ug/Kg	₽	11/17/20 23:44	11/27/20 14:45	
1,2-Dichlorobenzene	490	U H H3	490	180	ug/Kg		11/17/20 23:44	11/27/20 14:45	
Dichlorodifluoromethane	490	U H H3	490	150	ug/Kg	₽	11/17/20 23:44	11/27/20 14:45	;
1,2,4-Trichlorobenzene	490	U H H3	490	130	ug/Kg	₽	11/17/20 23:44	11/27/20 14:45	
1,4-Dioxane	24000	U H H3	24000		ug/Kg		11/17/20 23:44	11/27/20 14:45	
1,2,3-Trichlorobenzene	490	U H H3	490		ug/Kg	₩	11/17/20 23:44	11/27/20 14:45	
1,2-Dibromo-3-Chloropropane	490	U H H3	490		ug/Kg	₩	11/17/20 23:44	11/27/20 14:45	
Chlorobromomethane	490	U H H3	490		ug/Kg		11/17/20 23:44	11/27/20 14:45	
Isopropylbenzene	490	U H H3	490		ug/Kg	₩	11/17/20 23:44	11/27/20 14:45	!
Methyl acetate		н нз	2400		ug/Kg			11/27/20 14:45	
Methylcyclohexane		U H H3	490		ug/Kg			11/27/20 14:45	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil F
Tentatively Identified Compound	None	Н НЗ	ug/Kg	*			11/17/20 23:44	11/27/20 14:45	-
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
,2-Dichloroethane-d4 (Surr)	149		70 - 150				11/17/20 23:44	11/27/20 14:45	
Toluene-d8 (Surr)	112		68 - 148					11/27/20 14:45	
1-Bromofluorobenzene	94		62 - 150				11/17/20 23:44	11/27/20 14:45	
Dibromofluoromethane (Surr)	115		54 - 150				11/17/20 23:44	11/27/20 14:45	
Method: 8270E - Semivolatile	•		(GC/MS)						
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
Phenol	180		960		ug/Kg	₽	11/18/20 18:42	11/19/20 08:25	
2-Chlorophenol	960		960		ug/Kg	☼		11/19/20 08:25	
2-Methylphenol	960		960		ug/Kg			11/19/20 08:25	
4-Methylphenol	960	U	960	60	ug/Kg	₩	11/18/20 18:42	11/19/20 08:25	
2-Nitrophenol	960	U	960	97	ug/Kg	☼	11/18/20 18:42	11/19/20 08:25	

Eurofins TestAmerica, Edison

11/18/20 18:42 11/19/20 08:25

11/18/20 18:42 11/19/20 08:25

11/18/20 18:42 11/19/20 08:25

\$\pi\$ 11/18/20 18:42 11/19/20 08:25

Page 55 of 158

960

390

960

390

43 ug/Kg

62 ug/Kg

54 ug/Kg

120 ug/Kg

960 U

390 U

960 U

390 U

2

3

6

8

11

13

14

16

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: S-4 Lab Sample ID: 460-222961-9

Date Collected: 11/13/20 12:45

Date Received: 11/16/20 19:40

Matrix: Solid
Percent Solids: 34.2

Method: 8270E - Semivolati Analyte	_	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	960	U	960	98	ug/Kg	— <u></u>	11/18/20 18:42	11/19/20 08:25	1
2,4-Dinitrotoluene	200	U	200	100	ug/Kg	₩	11/18/20 18:42	11/19/20 08:25	1
4-Nitrophenol	2000	U	2000	160	ug/Kg	₩	11/18/20 18:42	11/19/20 08:25	1
4,6-Dinitro-2-methylphenol	780	U	780	390	ug/Kg	₩	11/18/20 18:42	11/19/20 08:25	1
Pentachlorophenol	780	U	780	200	ug/Kg	₩	11/18/20 18:42	11/19/20 08:25	1
Bis(2-chloroethyl)ether	96	U	96	34	ug/Kg	₽	11/18/20 18:42	11/19/20 08:25	1
N-Nitrosodi-n-propylamine	96	U	96	70	ug/Kg	₽	11/18/20 18:42	11/19/20 08:25	1
Hexachloroethane	96	U	96	33	ug/Kg	≎	11/18/20 18:42	11/19/20 08:25	1
Nitrobenzene	96	U	96	23	ug/Kg	₽	11/18/20 18:42	11/19/20 08:25	1
Isophorone	390	U	390	280	ug/Kg	₩	11/18/20 18:42	11/19/20 08:25	1
Naphthalene	84	J	960	17	ug/Kg	₩	11/18/20 18:42	11/19/20 08:25	1
4-Chloroaniline	960	U	960	170	ug/Kg	₩	11/18/20 18:42	11/19/20 08:25	1
Hexachlorobutadiene	200	U	200	21	ug/Kg		11/18/20 18:42	11/19/20 08:25	1
2-Methylnaphthalene	960		960	27	ug/Kg	₩		11/19/20 08:25	1
Hexachlorocyclopentadiene	960	U	960	85	ug/Kg	₩	11/18/20 18:42	11/19/20 08:25	1
2-Chloronaphthalene	960	U	960	45	ug/Kg		11/18/20 18:42	11/19/20 08:25	1
2-Nitroaniline	960		960		ug/Kg	₩		11/19/20 08:25	1
Dimethyl phthalate	960		960	220	ug/Kg	₩		11/19/20 08:25	1
Acenaphthylene	960		960	9.7				11/19/20 08:25	1
2.6-Dinitrotoluene	200		200	70	ug/Kg	₩		11/19/20 08:25	1
3-Nitroaniline	960		960	110	ug/Kg			11/19/20 08:25	. 1
Acenaphthene	960		960	28	ug/Kg			11/19/20 08:25	· · · · · · · · 1
Dibenzofuran	960		960	14		₩		11/19/20 08:25	. 1
2,4-Dinitrophenol	780		780	470	ug/Kg		11/18/20 18:42	11/19/20 08:25	1
Diethyl phthalate	960		960		ug/Kg		11/18/20 18:42	11/19/20 08:25	· 1
4-Chlorophenyl phenyl ether	960		960	34	ug/Kg	₩	11/18/20 18:42	11/19/20 08:25	1
Fluorene	960		960		ug/Kg ug/Kg	₩		11/19/20 08:25	1
4-Nitroaniline	960		960	110	ug/Kg ug/Kg			11/19/20 08:25	
N-Nitrosodiphenylamine	960		960	79	ug/Kg ug/Kg	₩		11/19/20 08:25	1
4-Bromophenyl phenyl ether	960		960		ug/Kg ug/Kg	₩		11/19/20 08:25	1
Hexachlorobenzene	96		96		ug/Kg ug/Kg			11/19/20 08:25	
Phenanthrene	960		960			☆	11/18/20 18:42	11/19/20 08:25	1
					ug/Kg	*			-
Anthracene	960		960	29	ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/19/20 08:25 11/19/20 08:25	1 1
Carbazole	960 960		960 960		ug/Kg ug/Kg	*			1
Di-n-butyl phthalate					0 0	φ.		11/19/20 08:25	-
Fluoranthene	35		960		ug/Kg	· · · · ·		11/19/20 08:25	1
Pyrene	960		960		ug/Kg	₩.		11/19/20 08:25	1
Butyl benzyl phthalate	960		960		ug/Kg	‡		11/19/20 08:25	1
Benzo[a]anthracene	44		96		ug/Kg			11/19/20 08:25	
Chrysene	28		960		ug/Kg	.		11/19/20 08:25	1
Bis(2-ethylhexyl) phthalate	960		960	51	ug/Kg	‡		11/19/20 08:25	1
Di-n-octyl phthalate	960		960	51	ug/Kg	.		11/19/20 08:25	1
Benzo[b]fluoranthene	96		96		ug/Kg	‡		11/19/20 08:25	1
Benzo[k]fluoranthene	96		96		ug/Kg	₩		11/19/20 08:25	1
Benzo[a]pyrene		U *	96		ug/Kg			11/19/20 08:25	1
Indeno[1,2,3-cd]pyrene	96		96		ug/Kg	₩		11/19/20 08:25	1
Dibenz(a,h)anthracene	96		96		ug/Kg	₩		11/19/20 08:25	1
Benzo[g,h,i]perylene	960	U	960		ug/Kg			11/19/20 08:25	1
1,1'-Biphenyl	960	U	960	13	ug/Kg	☆	11/18/20 18:42	11/19/20 08:25	1

Eurofins TestAmerica, Edison

Page 56 of 158

2

3

5

7

9

11

1 1

15

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: S-4 Lab Sample ID: 460-222961-9

Date Collected: 11/13/20 12:45 **Matrix: Solid** Percent Solids: 34.2 Date Received: 11/16/20 19:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetophenone	130	J	960	47	ug/Kg	-	11/18/20 18:42	11/19/20 08:25	1
Benzaldehyde	730	J *	960	160	ug/Kg	☼	11/18/20 18:42	11/19/20 08:25	1
Caprolactam	960	U	960	150	ug/Kg	₽	11/18/20 18:42	11/19/20 08:25	1
Atrazine	390	U *	390	57	ug/Kg	☼	11/18/20 18:42	11/19/20 08:25	1
2,2'-oxybis[1-chloropropane]	960	U	960	17	ug/Kg	₩	11/18/20 18:42	11/19/20 08:25	1
1,2,4,5-Tetrachlorobenzene	960	U	960	30	ug/Kg	⊅	11/18/20 18:42	11/19/20 08:25	1
2,3,4,6-Tetrachlorophenol	960	U	960	65	ug/Kg	☼	11/18/20 18:42	11/19/20 08:25	1
3,3'-Dichlorobenzidine	390	U	390	150	ug/Kg	₩	11/18/20 18:42	11/19/20 08:25	1
Bis(2-chloroethoxy)methane	960	U	960	75	ug/Kg	⊅	11/18/20 18:42	11/19/20 08:25	1
1,4-Dioxane	290	U	290	84	ug/Kg	☼	11/18/20 18:42	11/19/20 08:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	42		19 - 105				11/18/20 18:42	11/19/20 08:25	1
Phenol-d5 (Surr)	50		26 - 101				11/18/20 18:42	11/19/20 08:25	1
Terphenyl-d14 (Surr)	56		25 - 127				11/18/20 18:42	11/19/20 08:25	1
2,4,6-Tribromophenol (Surr)	51		10 - 123				11/18/20 18:42	11/19/20 08:25	1
2-Fluorophenol (Surr)	55		18 - 106				11/18/20 18:42	11/19/20 08:25	1
2-Fluorobiphenyl	56		25 - 104				11/18/20 18:42	11/19/20 08:25	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	20	U	20	3.3	ug/Kg	-	11/19/20 09:41	11/20/20 10:35	1
4,4'-DDE	20	U	20	2.3	ug/Kg	₽	11/19/20 09:41	11/20/20 10:35	1
4,4'-DDT	20	U	20	3.6	ug/Kg	₽	11/19/20 09:41	11/20/20 10:35	1
Aldrin	20	U	20	3.0	ug/Kg	₽	11/19/20 09:41	11/20/20 10:35	1
alpha-BHC	5.8	U	5.8	2.0	ug/Kg	₽	11/19/20 09:41	11/20/20 10:35	1
beta-BHC	5.8	U	5.8	2.2	ug/Kg	☼	11/19/20 09:41	11/20/20 10:35	1
Chlordane (technical)	200	U	200	47	ug/Kg	₽	11/19/20 09:41	11/20/20 10:35	1
delta-BHC	5.8	U	5.8	1.2	ug/Kg	₽	11/19/20 09:41	11/20/20 10:35	1
Dieldrin	5.8	U	5.8	2.5	ug/Kg	₽	11/19/20 09:41	11/20/20 10:35	1
Endosulfan I	20	U	20	3.0	ug/Kg	≎	11/19/20 09:41	11/20/20 10:35	1
Endosulfan II	20	U	20	5.0	ug/Kg	₽	11/19/20 09:41	11/20/20 10:35	1
Endosulfan sulfate	20	U	20	2.5	ug/Kg	☼	11/19/20 09:41	11/20/20 10:35	1
Endrin	20	U	20	2.8	ug/Kg	₽	11/19/20 09:41	11/20/20 10:35	1
Endrin aldehyde	20	U	20	4.6	ug/Kg	₽	11/19/20 09:41	11/20/20 10:35	1
Endrin ketone	20	U	20	3.8	ug/Kg	☼	11/19/20 09:41	11/20/20 10:35	1
gamma-BHC (Lindane)	5.8	U	5.8	1.8	ug/Kg	≎	11/19/20 09:41	11/20/20 10:35	1
Heptachlor	20	U	20	2.3	ug/Kg	₽	11/19/20 09:41	11/20/20 10:35	1
Heptachlor epoxide	20	U	20	2.9	ug/Kg	≎	11/19/20 09:41	11/20/20 10:35	1
Methoxychlor	20	U	20	4.5	ug/Kg	≎	11/19/20 09:41	11/20/20 10:35	1
Toxaphene	200	U	200	71	ug/Kg	₩	11/19/20 09:41	11/20/20 10:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	40		28 - 148				11/19/20 09:41	11/20/20 10:35	

our oguto	701 1000 T C. y	Quannon			opa. ca	7 11.1di y 2 0 d	2
DCB Decachlorobiphenyl	40		28 - 148	•	11/19/20 09:41	11/20/20 10:35	1
DCB Decachlorobiphenyl	57		28 - 148		11/19/20 09:41	11/20/20 10:35	1
Tetrachloro-m-xylene	88		34 - 118		11/19/20 09:41	11/20/20 10:35	1
Tetrachloro-m-xylene	64		34 - 118		11/19/20 09:41	11/20/20 10:35	1

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: S-4 Lab Sample ID: 460-222961-9

Date Collected: 11/13/20 12:45

Date Received: 11/16/20 19:40

Matrix: Solid
Percent Solids: 34.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	200	U	200	26	ug/Kg	<u></u>	11/19/20 09:39	11/20/20 12:02	1
Aroclor 1221	200	U	200	26	ug/Kg	☼	11/19/20 09:39	11/20/20 12:02	1
Aroclor 1232	200	U	200	26	ug/Kg	₩	11/19/20 09:39	11/20/20 12:02	1
Aroclor 1242	200	U	200	26	ug/Kg	₩	11/19/20 09:39	11/20/20 12:02	1
Aroclor 1248	200	U	200	26	ug/Kg	☼	11/19/20 09:39	11/20/20 12:02	1
Aroclor 1254	200	U	200	27	ug/Kg	☼	11/19/20 09:39	11/20/20 12:02	1
Aroclor 1260	200	U	200	27	ug/Kg	₩	11/19/20 09:39	11/20/20 12:02	1
Aroclor-1262	200	U	200	27	ug/Kg	₩	11/19/20 09:39	11/20/20 12:02	1
Aroclor 1268	200	U	200	27	ug/Kg	☼	11/19/20 09:39	11/20/20 12:02	1
Polychlorinated biphenyls, Total	200	U	200	27	ug/Kg	₩	11/19/20 09:39	11/20/20 12:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	88		10 - 150				11/19/20 09:39	11/20/20 12:02	1
DCB Decachlorobiphenyl	94		10 - 150				11/19/20 09:39	11/20/20 12:02	1
Tetrachloro-m-xylene	92		58 ₋ 145				11/19/20 09:39	11/20/20 12:02	1
Tetrachloro-m-xylene	98		58 - 145				11/19/20 09:39	11/20/20 12:02	1

Method: 8151A - Herbicide	• •					_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	97	U	97	35	ug/Kg	₩	11/17/20 21:06	11/18/20 12:49	1
Silvex (2,4,5-TP)	97	U	97	10	ug/Kg	₩	11/17/20 21:06	11/18/20 12:49	1
2,4,5-T	97	U	97	21	ug/Kg	₩	11/17/20 21:06	11/18/20 12:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	78		30 - 150				11/17/20 21:06	11/18/20 12:49	1
2,4-Dichlorophenylacetic acid	85		30 - 150				11/17/20 21:06	11/18/20 12:49	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	0.39	JB	0.55	0.077	ug/Kg	<u></u>	11/24/20 14:27	11/28/20 00:02	1
Perfluoropentanoic acid (PFPeA)	0.24	J	0.55	0.21	ug/Kg	₩	11/24/20 14:27	11/28/20 00:02	1
Perfluorohexanoic acid (PFHxA)	0.22	J	0.55	0.12	ug/Kg	☼	11/24/20 14:27	11/28/20 00:02	1
Perfluoroheptanoic acid (PFHpA)	0.24	J	0.55	0.080	ug/Kg	₩	11/24/20 14:27	11/28/20 00:02	1
Perfluorooctanoic acid (PFOA)	2.9		0.55	0.24	ug/Kg	☼	11/24/20 14:27	11/28/20 00:02	1
Perfluorononanoic acid (PFNA)	0.28	J	0.55	0.099	ug/Kg	☼	11/24/20 14:27	11/28/20 00:02	1
Perfluorodecanoic acid (PFDA)	0.17	JI	0.55	0.061	ug/Kg	₩	11/24/20 14:27	11/28/20 00:02	1
Perfluoroundecanoic acid (PFUnA)	0.26	J	0.55	0.099	ug/Kg	₩	11/24/20 14:27	11/28/20 00:02	1
Perfluorododecanoic acid (PFDoA)	0.55	U	0.55	0.18	ug/Kg	☼	11/24/20 14:27	11/28/20 00:02	1
Perfluorotridecanoic acid (PFTriA)	0.20	J	0.55	0.14	ug/Kg	₩	11/24/20 14:27	11/28/20 00:02	1
Perfluorotetradecanoic acid (PFTeA)	0.55	U	0.55	0.15	ug/Kg	☼	11/24/20 14:27	11/28/20 00:02	1
Perfluorobutanesulfonic acid (PFBS)	0.55	U	0.55	0.069	ug/Kg	₩	11/24/20 14:27	11/28/20 00:02	1
Perfluorohexanesulfonic acid (PFHxS)	0.36	J	0.55	0.085	ug/Kg	₩	11/24/20 14:27	11/28/20 00:02	1
Perfluoroheptanesulfonic Acid (PFHpS)	0.55	U	0.55	0.096	ug/Kg	₩	11/24/20 14:27	11/28/20 00:02	1
Perfluorooctanesulfonic acid (PFOS)	2.2	B *	1.4	0.55	ug/Kg	₩	11/24/20 14:27	11/28/20 00:02	1
Perfluorodecanesulfonic acid (PFDS)	0.55	U	0.55	0.11	ug/Kg	₩	11/24/20 14:27	11/28/20 00:02	1
Perfluorooctanesulfonamide (FOSA)	0.55	U	0.55	0.23	ug/Kg	₩	11/24/20 14:27	11/28/20 00:02	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	5.5	U	5.5	1.1	ug/Kg	₩	11/24/20 14:27	11/28/20 00:02	1

Eurofins TestAmerica, Edison

Page 58 of 158

2

3

5

10

12

14

15

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: S-4 Lab Sample ID: 460-222961-9

Date Collected: 11/13/20 12:45 **Matrix: Solid**

Date Received: 11/16/20 19:40 Percent Solids: 34.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	5.5	U *	5.5	1.0	ug/Kg	<u></u>	11/24/20 14:27	11/28/20 00:02	1
6:2 FTS	5.5	U	5.5	0.41	ug/Kg	₩	11/24/20 14:27	11/28/20 00:02	1
8:2 FTS	5.5	U	5.5	0.69	ug/Kg	☆	11/24/20 14:27	11/28/20 00:02	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	61		25 - 150				11/24/20 14:27	11/28/20 00:02	1
13C5 PFPeA	49		25 - 150				11/24/20 14:27	11/28/20 00:02	1
13C2 PFHxA	82		25 - 150				11/24/20 14:27	11/28/20 00:02	1
13C4 PFHpA	84		25 - 150				11/24/20 14:27	11/28/20 00:02	1
13C4 PFOA	87		25 - 150				11/24/20 14:27	11/28/20 00:02	1
13C5 PFNA	89		25 - 150				11/24/20 14:27	11/28/20 00:02	1
13C2 PFDA	85		25 - 150				11/24/20 14:27	11/28/20 00:02	1
13C2 PFUnA	88		25 - 150				11/24/20 14:27	11/28/20 00:02	1
13C2 PFDoA	70		25 - 150				11/24/20 14:27	11/28/20 00:02	1
13C2 PFTeDA	62		25 - 150				11/24/20 14:27	11/28/20 00:02	1
13C3 PFBS	81		25 - 150				11/24/20 14:27	11/28/20 00:02	1
1802 PFHxS	91		25 - 150				11/24/20 14:27	11/28/20 00:02	1
13C4 PFOS	96		25 - 150				11/24/20 14:27	11/28/20 00:02	1
13C8 FOSA	65		25 - 150				11/24/20 14:27	11/28/20 00:02	1
d3-NMeFOSAA	79		25 - 150				11/24/20 14:27	11/28/20 00:02	1
d5-NEtFOSAA	108		25 - 150				11/24/20 14:27	11/28/20 00:02	1
M2-6:2 FTS	282	*5	25 - 150				11/24/20 14:27	11/28/20 00:02	1
M2-8:2 FTS	267	*5	25 - 150				11/24/20 14:27	11/28/20 00:02	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanesulfonic acid (PFOS)	2.1	Н	1.4	0.58	ug/Kg	*	11/30/20 04:07	12/01/20 20:26	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	5.8	UH	5.8	1.1	ug/Kg	₩	11/30/20 04:07	12/01/20 20:26	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	5.8	UH	5.8	1.1	ug/Kg	₩	11/30/20 04:07	12/01/20 20:26	1
6:2 FTS	5.8	UH	5.8	0.43	ug/Kg	₩	11/30/20 04:07	12/01/20 20:26	1
8:2 FTS	5.8	UH	5.8	0.72	ug/Kg	₩	11/30/20 04:07	12/01/20 20:26	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFOS	95		25 - 150				11/30/20 04:07	12/01/20 20:26	1
d3-NMeFOSAA	94		25 - 150				11/30/20 04:07	12/01/20 20:26	1
d5-NEtFOSAA	104		25 - 150				11/30/20 04:07	12/01/20 20:26	1
M2-6:2 FTS	270	*5	25 - 150				11/30/20 04:07	12/01/20 20:26	1
M2-8:2 FTS	264	*5	25 - 150				11/30/20 04:07	12/01/20 20:26	1

Method: 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	5.8	U	5.8	3.3	mg/Kg	*	11/18/20 10:12	11/18/20 21:08	2
Aluminum	6660		117	16.5	mg/Kg	₩	11/18/20 10:12	11/18/20 21:08	2
Arsenic	2.8	J	8.8	1.8	mg/Kg	☼	11/18/20 10:12	11/18/20 21:08	2
Barium	81.2	J	117	11.3	mg/Kg	₽	11/18/20 10:12	11/18/20 21:08	2
Beryllium	1.2	U	1.2	0.19	mg/Kg	☼	11/18/20 10:12	11/19/20 12:41	2
Calcium	10500		2920	216	mg/Kg	₩	11/18/20 10:12	11/18/20 21:08	2
Cadmium	0.29	J	2.3	0.20	mg/Kg	☼	11/18/20 10:12	11/18/20 21:08	2

Page 59 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: S-4 Lab Sample ID: 460-222961-9

Date Collected: 11/13/20 12:45

Date Received: 11/16/20 19:40

Matrix: Solid
Percent Solids: 34.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	5.8	J	29.2	1.6	mg/Kg	☼	11/18/20 10:12	11/18/20 21:08	2
Chromium	11.5		5.8	4.1	mg/Kg	☆	11/18/20 10:12	11/18/20 21:08	2
Copper	16.9		14.6	3.7	mg/Kg	₩	11/18/20 10:12	11/18/20 21:08	2
Iron	15800		87.7	60.2	mg/Kg	☆	11/18/20 10:12	11/18/20 21:08	2
Potassium	1470	J	2920	179	mg/Kg	₩	11/18/20 10:12	11/19/20 12:41	2
Magnesium	5000		2920	198	mg/Kg	☆	11/18/20 10:12	11/18/20 21:08	2
Manganese	380		8.8	0.66	mg/Kg	☆	11/18/20 10:12	11/18/20 21:08	2
Sodium	2920	U	2920	254	mg/Kg	☆	11/18/20 10:12	11/19/20 12:41	2
Nickel	12.2	J	23.4	1.5	mg/Kg	☼	11/18/20 10:12	11/18/20 21:08	2
Lead	14.7		5.8	0.95	mg/Kg	☆	11/18/20 10:12	11/18/20 21:08	2
Antimony	11.7	U	11.7	3.4	mg/Kg	☼	11/18/20 10:12	11/18/20 21:08	2
Selenium	11.7	U	11.7	2.0	mg/Kg	☆	11/18/20 10:12	11/18/20 21:08	2
Thallium	11.7	U	11.7	1.8	mg/Kg	☆	11/18/20 10:12	11/18/20 21:08	2
Vanadium	14.2	J	29.2	2.7	mg/Kg	☼	11/18/20 10:12	11/18/20 21:08	2
Zinc	120		17.5	3.2	mg/Kg	₽	11/18/20 10:12	11/18/20 21:08	2
Method: 7471B - Mercury (CVA)	A)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.040	J	0.044	0.010	mg/Kg	<u></u>	11/24/20 03:09	11/24/20 07:18	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	1.5		0.70	0.36	mg/Kg	<u></u>	11/27/20 08:25	11/27/20 14:49	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	65.8		1.0	1.0	%			11/25/20 10:53	1
Percent Solids	34.2		1.0	1.0	%			11/25/20 10:53	1

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	TOL	BFB	DBFM
Lab Sample ID	Client Sample ID	(70-150)	(68-148)	(62-150)	(54-150)
460-222961-9	S-4	149	112	94	115
LCS 460-742890/4	Lab Control Sample	120	103	95	101
LCSD 460-742890/5	Lab Control Sample Dup	117	104	95	99
MB 460-742890/15	Method Blank	122	103	93	103
O					

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene

DBFM = Dibromofluoromethane (Surr)

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

		DCA	TOL	BFB	DBFM
Lab Sample ID	Client Sample ID	(75-123)	(80-120)	(76-120)	(77-124)
460-222961-1	MW-1A	82	104	101	84
460-222961-2	MW-2	95	103	102	93
460-222961-3	MW-3	90	103	104	91
460-222961-4	MW-5	93	105	104	93
460-222961-4 MS	MW-5	93	101	101	95
460-222961-4 MSD	MW-5	97	100	100	97
460-222961-6	DUP	89	103	104	89
460-222961-8	SW-4	101	103	103	102
LCS 460-741805/3	Lab Control Sample	86	101	101	89
LCSD 460-741805/4	Lab Control Sample Dup	92	101	99	93
MB 460-741805/8	Method Blank	92	103	102	92

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene

DBFM = Dibromofluoromethane (Surr)

Method: 8270E - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco	very (Acce	otance Lim
		NBZ	PHL	TPHL	TBP	2FP	FBP
Lab Sample ID	Client Sample ID	(19-105)	(26-101)	(25-127)	(10-123)	(18-106)	(25-104)
460-222961-9	S-4	42	50	56	51	55	56
LCS 460-740823/2-A	Lab Control Sample	95	96	113	96	100	95
MB 460-740823/1-A	Method Blank	97	99	120	91	103	98

Surrogate Legend

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPHL = Terphenyl-d14 (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

2FP = 2-Fluorophenol (Surr)

FBP = 2-Fluorobiphenyl

Eurofins TestAmerica, Edison

Page 61 of 158

Surrogate Summary

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8270E - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surro	gate Recov	ery (Acce	ptance Lim
		NBZ	PHL	TPHL	TBP	2FP	FBP
Lab Sample ID	Client Sample ID	(46-137)	(10-50)	(39-150)	(36-159)	(18-72)	(42-127)
60-222961-1	MW-1A	86	28	82	123	44	81
60-222961-2	MW-2	117	68 X	103	173 X	86 X	120
60-222961-3	MW-3	100	28	69	130	43	84
60-222961-4	MW-5	93	28	90	133	46	89
60-222961-4 MS	MW-5	77	24	86	128	36	71
0-222961-4 MSD	MW-5	79	24	84	131	37	77
0-222961-6	DUP	95	31	109	114	46	90
60-222961-8	SW-4	87	24	82	112	40	77
CS 460-741112/2-A	Lab Control Sample	76	29	99	120	43	70
CSD 460-741112/3-A	Lab Control Sample Dup	80	28	94	123	41	74
IB 460-741112/1-A	Method Blank	80	27	98	96	41	69

Surrogate Legend

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPHL = Terphenyl-d14 (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

2FP = 2-Fluorophenol (Surr)

FBP = 2-Fluorobiphenyl

Method: 8081B - Organochlorine Pesticides (GC)

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surro	ogate Rec
		DCBP1	DCBP2	TCX1	TCX2
Lab Sample ID	Client Sample ID	(28-148)	(28-148)	(34-118)	(34-118)
460-222961-9	S-4	57	40	64	88
LCS 460-741118/2-A	Lab Control Sample	97	83	82	77
LCSD 460-741118/3-A	Lab Control Sample Dup	107	90	88	83
MB 460-741118/1-A	Method Blank	116	105	97	99

Surrogate Legend

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Method: 8081B - Organochlorine Pesticides (GC)

Matrix: Water Prep Type: Total/NA

_			Percent Surrogate Recove					
		DCBP1	DCBP2	TCX1	TCX2			
Lab Sample ID	Client Sample ID	(10-132)	(10-132)	(10-150)	(10-150)			
460-222961-1	MW-1A	43	50	69	70			
460-222961-2	MW-2	67	75	70	73			
460-222961-3	MW-3	70	79	74	74			
460-222961-4	MW-5	65	72	73	73			
460-222961-4 MS	MW-5	68	75	74	71			
460-222961-4 MSD	MW-5	59	64	68	69			
460-222961-6	DUP	50	58	73	75			
460-222961-8	SW-4	62	63	31	36			
LCS 460-740821/2-A	Lab Control Sample	64	73	66	65			
LCS 460-740857/2-A	Lab Control Sample	60	57	32	29			

Page 62 of 158

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)					
		DCBP1	DCBP2	TCX1	TCX2			
Lab Sample ID	Client Sample ID	(10-132)	(10-132)	(10-150)	(10-150)			
LCSD 460-740821/3-A	Lab Control Sample Dup	64	69	63	66			
LCSD 460-740857/3-A	Lab Control Sample Dup	62	58	39	36			
MB 460-740821/1-A	Method Blank	70	74	69	68			
MB 460-740857/1-A	Method Blank	76	68	73	71			
Surrogate Legend								

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)						
		DCBP1	DCBP2	TCX1	TCX2				
Lab Sample ID	Client Sample ID	(10-150)	(10-150)	(58-145)	(58-145)				
460-222961-9	S-4	94	88	98	92				
LCS 460-741117/2-A	Lab Control Sample	95	92	94	89				
LCSD 460-741117/3-A	Lab Control Sample Dup	92	93	93	89				
MB 460-741117/1-A	Method Blank	91	87	98	93				

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCBP1	DCBP2	TCX1	TCX2
Lab Sample ID	Client Sample ID	(10-150)	(10-150)	(48-125)	(48-125)
460-222961-1	MW-1A	48	48	80	77
460-222961-2	MW-2	85	92	94	94
460-222961-3	MW-3	90	93	94	89
460-222961-4	MW-5	84	87	97	93
460-222961-4 MS	MW-5	81	82	86	80
460-222961-4 MSD	MW-5	88	87	105	96
460-222961-6	DUP	45	45	66	66
460-222961-8	SW-4	69	69	38 X	38 X
LCS 460-740820/2-A	Lab Control Sample	81	84	82	83
LCS 460-740863/2-A	Lab Control Sample	83	87	40 X	41 X
LCSD 460-740820/3-A	Lab Control Sample Dup	83	87	86	86
LCSD 460-740863/3-A	Lab Control Sample Dup	81	84	40 X	40 X
MB 460-740820/1-A	Method Blank	84	87	87	88
MB 460-740863/1-A	Method Blank	88	95	91	92

Surrogate Legend

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Page 63 of 158

Job ID: 460-222961-1

Surrogate Summary

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8151A - Herbicides (GC)

Prep Type: Total/NA Matrix: Solid

			Percer	t Surrogate Recovery (Acceptance Limits)
		DCPAA1	DCPAA2	
Lab Sample ID	Client Sample ID	(30-150)	(30-150)	
460-222961-9	S-4	78	85	
LCS 460-740672/2-A	Lab Control Sample	111	116	
LCSD 460-740672/3-A	Lab Control Sample Dup	111	117	
MB 460-740672/1-A	Method Blank	86	87	
Surrogate Legend				
DCPAA = 2,4-Dichlorop	phenylacetic acid			

Method: 8151A - Herbicides (GC)

Matrix: Water Prep Type: Total/NA

			Percent Surrog	ate Recovery (Acceptance Limits)
		DCPAA1	DCPAA2	
Lab Sample ID	Client Sample ID	(39-145)	(39-145)	
460-222961-1	MW-1A	73	66	
460-222961-2	MW-2	73	67	
460-222961-3	MW-3	68	63	
460-222961-4	MW-5	72	66	
460-222961-4 MS	MW-5	81	72	
460-222961-4 MSD	MW-5	79	72	
460-222961-6	DUP	65	60	
460-222961-8	SW-4	79	72	
LCS 460-740669/2-A	Lab Control Sample	77	72	
LCSD 460-740669/3-A	Lab Control Sample Dup	70	63	
MB 460-740669/1-A	Method Blank	66	65	

Page 64 of 158

3/30/2021

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8270E SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

Matrix: Water Prep Type: Total/NA

		DXE	
Lab Sample ID	Client Sample ID	(10-150)	
460-222961-1	MW-1A		
460-222961-2	MW-2	32	
460-222961-3	MW-3	32	
460-222961-4	MW-5	27	
460-222961-4 MS	MW-5	27	
460-222961-4 MSD	MW-5	26	
460-222961-6	DUP	35	
460-222961-8	SW-4	27	
MB 460-740807/1-A	Method Blank	29	
Surrogate Legend			

Method: 8270E SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

Matrix: Water Prep Type: Total/NA

			Percent Isotope Dilution Recovery (Acceptance Limits)
		DXE	
Lab Sample ID	Client Sample ID	(10-200)	
LCS 460-740807/2-A	Lab Control Sample	31	
LCSD 460-740807/3-A	Lab Control Sample Dup	31	
Surrogate Legend			

Method: 537 (modified) - Fluorinated Alkyl Substances

Method Blank

MB 320-436644/1-A

Matrix: Solid Prep Type: Total/NA

			Perc	ent Isotope	Dilution Re	covery (Ac	ceptance L	_imits)	
		PFBA	PFPeA	PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
460-222961-9	S-4	61	49	82	84	87	89	85	88
460-222961-9 - RE	S-4								
460-222961-9 MS	S-4	18 *5	58	88	84	88	96	87	83
460-222961-9 MSD	S-4	46	55	74	72	78	82	74	76
LCS 320-435252/2-A	Lab Control Sample	19 *5	70	84	87	103	89	86	86
LCS 320-436644/2-A	Lab Control Sample	83	85	87	94	104	98	92	95
MB 320-435252/1-A	Method Blank	18 *5	69	85	89	99	88	89	90
MB 320-436644/1-A	Method Blank	87	90	90	100	108	103	104	99
			Perc	ent Isotope	Dilution Re	covery (Ac	ceptance L	_imits)	
		PFDoA	PFTDA	C3PFBS	PFHxS	PFOS	PFOSA	d3NMFOS	d5NEFOS
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
460-222961-9	S-4	70	62	81	91	96	65	79	108
460-222961-9 - RE	S-4					95		94	104
460-222961-9 MS	S-4	70	47	83	95	98	74	82	100
460-222961-9 MSD	S-4	63	41	75	81	82	64	65	88
LCS 320-435252/2-A	Lab Control Sample	85	85	83	91	86	86	0.2 *5	0.3 *5
LCS 320-436644/2-A	Lab Control Sample	92	88	88	91	93	85	100	108
MB 320-435252/1-A	Method Blank	84	81	86	91	89	88	0.3 *5	0.3 *5

110

Page 65 of 158

97

90

95

96

92

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Matrix: Solid Prep Type: Total/NA

			Percent	t Isotope Di	Dilution
		M262FTS	M282FTS		
Lab Sample ID	Client Sample ID	(25-150)	(25-150)		
460-222961-9	S-4	282 *5	267 *5		
460-222961-9 - RE	S-4	270 *5	264 *5		
460-222961-9 MS	S-4	274 *5	243 *5		
460-222961-9 MSD	S-4	211 *5	197 *5		
LCS 320-435252/2-A	Lab Control Sample	2 *5	0.8 *5		
LCS 320-436644/2-A	Lab Control Sample	189 *5	105		
MB 320-435252/1-A	Method Blank	0.6 *5	0.4 *5		
MB 320-436644/1-A	Method Blank	198 *5	116		
Surrogate Legend					

Surrogate Legend

PFBA = 13C4 PFBA

PFPeA = 13C5 PFPeA

PFHxA = 13C2 PFHxA

C4PFHA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA

PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA

PFDoA = 13C2 PFDoA

PFTDA = 13C2 PFTeDA

C3PFBS = 13C3 PFBS

PFHxS = 18O2 PFHxS

PFOS = 13C4 PFOS

PFOSA = 13C8 FOSA

d3NMFOS = d3-NMeFOSAA

d5NEFOS = d5-NEtFOSAA

M262FTS = M2-6:2 FTS

M282FTS = M2-8:2 FTS

Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Water Prep Type: Total/NA

		Percent Isotope Dilution Recovery (Acceptance Limits)							
		PFHxS	C4PFHA	PFOA	PFOS	PFNA	PFBA	PFHxA	PFDA
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(25-150)	(50-150)	(50-150)
460-222961-1	MW-1A	110	104	104	107	108	81	97	107
460-222961-2	MW-2	104	98		98	100	62	93	93
460-222961-2 - DL	MW-2			105					
460-222961-3	MW-3	102	96		101	101	51	82	107
460-222961-3 - DL	MW-3			100					
460-222961-4	MW-5	108	98	106	104	107	71	105	109
460-222961-4 MS	MW-5	109	105	107	106	108	77	102	105
460-222961-4 MSD	MW-5	107	101	103	101	102	75	95	98
460-222961-5	MW-6	106	103	101	86	90	71	99	82
460-222961-6	DUP	117	105	103	106	105	84	108	99
460-222961-7	EB-11132020	117	108	105	114	105	119	112	114
460-222961-8	SW-4	112	102	98	107	99	75	100	111
LCS 200-161345/2-A	Lab Control Sample	111	109	111	110	110	112	108	120
MB 200-161345/1-A	Method Blank	110	110	109	117	110	110	107	122

3/30/2021

Page 66 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Matrix: Water Prep Type: Total/NA

			Percent Isotope Dilution Recovery (Acceptance Limits)							
		PFUnA	PFDoA	PFOSA	PFPeA	PFTDA	d3NMFOS	d5NEFOS	M262FTS	
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(25-150)	(25-150)	(50-150)	(50-150)	(50-150)	(25-150)	
460-222961-1	MW-1A	88	60	83	99	56	81	71	111	
460-222961-2	MW-2	94	98	87	88	95	90	96	116	
460-222961-2 - DL	MW-2									
460-222961-3	MW-3	111	117	88	80	115	98	99	119	
460-222961-3 - DL	MW-3									
460-222961-4	MW-5	99	92	91	93	88	93	94	117	
460-222961-4 MS	MW-5	111	109	91	99	103	105	100	119	
460-222961-4 MSD	MW-5	98	102	87	96	94	89	91	113	
460-222961-5	MW-6	84	86	77	95	85	78	85	110	
460-222961-6	DUP	70	57	76	101	52	69	67	117	
460-222961-7	EB-11132020	115	111	77	119	96	107	105	118	
460-222961-8	SW-4	113	112	81	94	91	113	108	121	
LCS 200-161345/2-A	Lab Control Sample	117	118	78	115	109	109	122	118	
MB 200-161345/1-A	Method Blank	126	128	68	119	113	124	111	123	
			Perce	ent Isotope	Dilution Re	covery (Ad	cceptance L	imits)		
		M282FTS	C3PFBS							

		M282FTS	C3PFBS	
Lab Sample ID	Client Sample ID	(25-150)	(50-150)	
460-222961-1	MW-1A	95	103	
460-222961-2	MW-2	90	99	
460-222961-2 - DL	MW-2			
460-222961-3	MW-3	105	93	
460-222961-3 - DL	MW-3			
460-222961-4	MW-5	110	102	
460-222961-4 MS	MW-5	106	104	
460-222961-4 MSD	MW-5	97	102	
460-222961-5	MW-6	81	101	
460-222961-6	DUP	92	113	
460-222961-7	EB-11132020	111	118	
460-222961-8	SW-4	103	110	
LCS 200-161345/2-A	Lab Control Sample	119	112	
MB 200-161345/1-A	Method Blank	121	106	

Surrogate Legend

PFHxS = 18O2 PFHxS

C4PFHA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFOS = 13C4 PFOS

PFNA = 13C5 PFNA

PFBA = 13C4 PFBA

PFHxA = 13C2 PFHxA

PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA

PFDoA = 13C2 PFDoA PFOSA = 13C8 FOSA

PFPeA = 13C5 PFPeA

PFTDA = 13C2 PFTeDA

d3NMFOS = d3-NMeFOSAA

d5NEFOS = d5-NEtFOSAA M262FTS = M2-6:2 FTS

M282FTS = M2-8:2 FTS

Eurofins TestAmerica, Edison

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

C3PFBS = 13C3 PFBS

Job ID: 460-222961-1

3

1

5

7

8

46

11

13

14

16

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 460-741805/8

Matrix: Water

1,2,3-Trichlorobenzene

1,2-Dibromo-3-Chloropropane

Analysis Batch: 741805

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	1.0	U	1.0	0.40	ug/L			11/22/20 14:56	1
Bromomethane	1.0		1.0		ug/L			11/22/20 14:56	1
Vinyl chloride	1.0	U	1.0		ug/L			11/22/20 14:56	1
Chloroethane	1.0	U	1.0	0.32	ug/L			11/22/20 14:56	1
Methylene Chloride	1.0	U	1.0		ug/L			11/22/20 14:56	1
Acetone	5.0	U	5.0		ug/L			11/22/20 14:56	1
Carbon disulfide	1.0	U	1.0		ug/L			11/22/20 14:56	1
Trichlorofluoromethane	1.0	U	1.0		ug/L			11/22/20 14:56	1
1,1-Dichloroethene	1.0	U	1.0		ug/L			11/22/20 14:56	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			11/22/20 14:56	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			11/22/20 14:56	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			11/22/20 14:56	1
Chloroform	1.0	U	1.0	0.33	ug/L			11/22/20 14:56	1
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			11/22/20 14:56	1
2-Butanone (MEK)	5.0	U	5.0	1.9	ug/L			11/22/20 14:56	1
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L			11/22/20 14:56	1
Carbon tetrachloride	1.0	U	1.0	0.21	ug/L			11/22/20 14:56	1
Dichlorobromomethane	1.0	U	1.0	0.34	ug/L			11/22/20 14:56	1
1,2-Dichloropropane	1.0	U	1.0	0.35	ug/L			11/22/20 14:56	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			11/22/20 14:56	1
Trichloroethene	1.0	U	1.0	0.31	ug/L			11/22/20 14:56	1
Chlorodibromomethane	1.0	U	1.0	0.28	ug/L			11/22/20 14:56	1
1,1,2-Trichloroethane	1.0	U	1.0	0.20	ug/L			11/22/20 14:56	1
Benzene	1.0	U	1.0	0.20	ug/L			11/22/20 14:56	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			11/22/20 14:56	1
Bromoform	1.0	U	1.0	0.54	ug/L			11/22/20 14:56	1
4-Methyl-2-pentanone (MIBK)	5.0	U	5.0	1.3	ug/L			11/22/20 14:56	1
2-Hexanone	5.0	U	5.0	1.1	ug/L			11/22/20 14:56	1
Tetrachloroethene	1.0	U	1.0	0.25	ug/L			11/22/20 14:56	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.37	ug/L			11/22/20 14:56	1
Toluene	1.0	U	1.0	0.38	ug/L			11/22/20 14:56	1
Chlorobenzene	1.0	U	1.0	0.38	ug/L			11/22/20 14:56	1
Ethylbenzene	1.0	U	1.0	0.30	ug/L			11/22/20 14:56	1
Styrene	1.0	U	1.0	0.42	ug/L			11/22/20 14:56	1
m-Xylene & p-Xylene	1.0	U	1.0	0.30	ug/L			11/22/20 14:56	1
o-Xylene	1.0	U	1.0	0.36	ug/L			11/22/20 14:56	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0		ug/L			11/22/20 14:56	1
Methyl tert-butyl ether	1.0	U	1.0		ug/L			11/22/20 14:56	1
Cyclohexane	1.0	U	1.0		ug/L			11/22/20 14:56	1
Ethylene Dibromide	1.0		1.0		ug/L			11/22/20 14:56	1
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			11/22/20 14:56	1
1,4-Dichlorobenzene	1.0		1.0		ug/L			11/22/20 14:56	1
1,2-Dichlorobenzene	1.0		1.0		ug/L			11/22/20 14:56	1
Dichlorodifluoromethane	1.0		1.0		ug/L			11/22/20 14:56	1
1,2,4-Trichlorobenzene	1.0	U	1.0		ug/L			11/22/20 14:56	1
1,4-Dioxane	50		50		ug/L			11/22/20 14:56	1
					· .				

Eurofins TestAmerica, Edison

11/22/20 14:56

11/22/20 14:56

Page 69 of 158

1.0

1.0

0.36 ug/L

0.38 ug/L

1.0 U

1.0 U

3

5

7

9

10

12

14

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 460-741805/8

Matrix: Water

Analysis Batch: 741805

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorobromomethane	1.0	U	1.0	0.41	ug/L			11/22/20 14:56	1
Isopropylbenzene	1.0	U	1.0	0.34	ug/L			11/22/20 14:56	1
Methyl acetate	5.0	U	5.0	0.79	ug/L			11/22/20 14:56	1
Methylcyclohexane	1.0	U	1.0	0.71	ug/L			11/22/20 14:56	1

MB MB Tentatively Identified Compound Est. Result Qualifier RT CAS No. Dil Fac Unit D Prepared Analyzed Tentatively Identified Compound 11/22/20 14:56 None ug/L

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92	75 - 123		11/22/20 14:56	1
Toluene-d8 (Surr)	103	80 - 120		11/22/20 14:56	1
4-Bromofluorobenzene	102	76 - 120		11/22/20 14:56	1
Dibromofluoromethane (Surr)	92	77 - 124		11/22/20 14:56	1

Lab Sample ID: LCS 460-741805/3

Matrix: Water

Analysis Batch: 741805

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloromethane	20.0	20.6		ug/L		103	38 - 150	
Bromomethane	20.0	17.4		ug/L		87	10 - 150	
Vinyl chloride	20.0	20.4		ug/L		102	61 - 144	
Chloroethane	20.0	20.8		ug/L		104	29 - 150	
Methylene Chloride	20.0	21.1		ug/L		105	74 - 127	
Acetone	100	80.7		ug/L		81	61 - 134	
Carbon disulfide	20.0	21.0		ug/L		105	64 - 138	
Trichlorofluoromethane	20.0	16.6		ug/L		83	61 - 140	
1,1-Dichloroethene	20.0	15.7		ug/L		79	68 - 133	
1,1-Dichloroethane	20.0	16.8		ug/L		84	73 - 130	
trans-1,2-Dichloroethene	20.0	16.2		ug/L		81	74 - 126	
cis-1,2-Dichloroethene	20.0	15.7		ug/L		79	78 - 121	
Chloroform	20.0	17.3		ug/L		86	78 - 125	
1,2-Dichloroethane	20.0	17.1		ug/L		85	75 - 121	
2-Butanone (MEK)	100	98.1		ug/L		98	69 - 128	
1,1,1-Trichloroethane	20.0	19.5		ug/L		98	68 - 128	
Carbon tetrachloride	20.0	20.0		ug/L		100	56 - 131	
Dichlorobromomethane	20.0	19.5		ug/L		97	72 - 121	
1,2-Dichloropropane	20.0	21.5		ug/L		107	76 - 126	
cis-1,3-Dichloropropene	20.0	21.0		ug/L		105	74 - 125	
Trichloroethene	20.0	20.6		ug/L		103	71 - 121	
Chlorodibromomethane	20.0	20.9		ug/L		104	58 - 130	
1,1,2-Trichloroethane	20.0	21.5		ug/L		107	74 - 125	
Benzene	20.0	20.0		ug/L		100	78 - 126	
trans-1,3-Dichloropropene	20.0	21.0		ug/L		105	66 - 127	
Bromoform	20.0	21.3		ug/L		106	38 - 144	
4-Methyl-2-pentanone (MIBK)	100	142	*	ug/L		142	78 - 125	
2-Hexanone	100	141	*	ug/L		141	74 - 127	
Tetrachloroethene	20.0	19.8		ug/L		99	70 - 127	

Eurofins TestAmerica, Edison

Page 70 of 158

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-741805/3

Matrix: Water

Analysis Batch: 741805

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 460-222961-1

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits 1,1,2,2-Tetrachloroethane 20.0 21.0 ug/L 105 63 - 139 Toluene 20.0 20.0 ug/L 100 78 - 119 Chlorobenzene 20.0 20.2 ug/L 101 80 - 119 Ethylbenzene 20.0 20.0 ug/L 100 78 - 120 ug/L 20.0 21.1 106 75 - 127 Styrene m-Xylene & p-Xylene 20.0 20.7 ug/L 103 78 - 123 o-Xylene 20.0 20.8 ug/L 104 78 - 122 20.0 1,1,2-Trichloro-1,2,2-trifluoroetha 19.5 ug/L 98 59 - 142 20.0 Methyl tert-butyl ether 19.4 ug/L 97 65 - 131 Cyclohexane 20.0 20.7 ug/L 104 67 - 13320.0 107 Ethylene Dibromide 21.3 ug/L 69 - 126 1,3-Dichlorobenzene 20.0 20.6 ug/L 103 80 - 121 1,4-Dichlorobenzene 20.0 20.0 ug/L 100 80 - 118 1,2-Dichlorobenzene 20.0 20.9 ug/L 104 79 - 122 Dichlorodifluoromethane 20.0 20.4 ug/L 102 31 - 150 1,2,4-Trichlorobenzene 20.0 23.9 ug/L 120 64 - 132400 1.4-Dioxane 450 ug/L 113 70 - 1421,2,3-Trichlorobenzene 20.0 24.4 ug/L 122 53 - 144 1,2-Dibromo-3-Chloropropane 20.0 21.2 ug/L 106 41 - 143 73 - 126 Chlorobromomethane 20.0 17.2 ug/L 86 Isopropylbenzene 20.0 20.8 ug/L 104 79 - 125 Methyl acetate 40.0 31.5 ug/L 79 70 - 127 Methylcyclohexane ug/L 20.0 22.4 112 60 - 139

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	86		75 - 123
Toluene-d8 (Surr)	101		80 - 120
4-Bromofluorobenzene	101		76 - 120
Dibromofluoromethane (Surr)	89		77 - 124

Lab Sample ID: LCSD 460-741805/4

Matrix: Water

Analysis Batch: 741805

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloromethane	20.0	20.4		ug/L		102	38 - 150	1	30
Bromomethane	20.0	17.4		ug/L		87	10 - 150	0	30
Vinyl chloride	20.0	20.5		ug/L		102	61 - 144	0	30
Chloroethane	20.0	20.7		ug/L		104	29 - 150	1	30
Methylene Chloride	20.0	21.1		ug/L		106	74 - 127	0	30
Acetone	100	82.9		ug/L		83	61 - 134	3	30
Carbon disulfide	20.0	21.2		ug/L		106	64 - 138	1	30
Trichlorofluoromethane	20.0	17.7		ug/L		88	61 - 140	6	30
1,1-Dichloroethene	20.0	17.0		ug/L		85	68 - 133	8	30
1,1-Dichloroethane	20.0	18.0		ug/L		90	73 - 130	7	30
trans-1,2-Dichloroethene	20.0	17.9		ug/L		89	74 - 126	9	30
cis-1,2-Dichloroethene	20.0	17.1		ug/L		85	78 - 121	8	30
Chloroform	20.0	18.0		ug/L		90	78 - 125	4	30

Eurofins TestAmerica, Edison

Page 71 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 460-741805/4

Matrix: Water

Analysis Batch: 741805

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch. 741005	Cmiles	LCCD	LCSD			%Rec.		RPD
Analyte	Spike Added			nit D	%Rec	%Rec.	RPD	Limit
1,2-Dichloroethane		18.1	ug		91	75 - 121	6	30
2-Butanone (MEK)	100	97.7	นรู		98	69 - 128	0	30
1,1,1-Trichloroethane	20.0	20.7	uç		104	68 - 128	6	30
Carbon tetrachloride	20.0	21.3	uç		104	56 - 131	6	30
Dichlorobromomethane	20.0	20.3	uç		102	72 - 121	4	30
1,2-Dichloropropane	20.0	21.0	.	/L /L	105	76 - 126	2	30
cis-1,3-Dichloropropene	20.0	20.9	นรู		103	74 - 125	0	30
Trichloroethene	20.0	20.9	นรู		104	74 - 123	2	30
Chlorodibromomethane	20.0	21.0	uç 		103	58 - 130	2	30
	20.0	21.2	-			74 - 125	2	30
1,1,2-Trichloroethane		19.8	นดู		106		1	
Benzene	20.0		ug		99	78 - 126		30
trans-1,3-Dichloropropene	20.0	21.3	ug		107	66 - 127	1	30
Bromoform	20.0	21.1	ug		105	38 - 144	1	30
4-Methyl-2-pentanone (MIBK)	100	126			126	78 - 125	11	30
2-Hexanone	100	127	uç		127	74 - 127	10	30
Tetrachloroethene	20.0	19.9	uģ		100	70 - 127	1	30
1,1,2,2-Tetrachloroethane	20.0	20.0	uç		100	63 - 139	5	30
Toluene	20.0	20.1	ug		100	78 - 119	1	30
Chlorobenzene	20.0	20.1	นดู		100	80 - 119	1	30
Ethylbenzene	20.0	20.1	นดู	/L	101	78 - 120	0	30
Styrene	20.0	20.8	ug	/L	104	75 - 127	2	30
m-Xylene & p-Xylene	20.0	20.2	นดู	/L	101	78 - 123	2	30
o-Xylene	20.0	20.6	นดู	/L	103	78 - 122	1	30
1,1,2-Trichloro-1,2,2-trifluoroetha ne	20.0	21.7	uç	/L	109	59 - 142	11	30
Methyl tert-butyl ether	20.0	20.0	นธู	/L	100	65 - 131	3	30
Cyclohexane	20.0	22.1	ug	/L	110	67 - 133	6	30
Ethylene Dibromide	20.0	20.7	uç	/L	104	69 - 126	3	30
1,3-Dichlorobenzene	20.0	20.7	ug	/L	103	80 - 121	0	30
1,4-Dichlorobenzene	20.0	19.8	นดู	/L	99	80 - 118	1	30
1,2-Dichlorobenzene	20.0	20.6	uç	/L	103	79 - 122	1	30
Dichlorodifluoromethane	20.0	21.0	ug	/L	105	31 - 150	3	30
1,2,4-Trichlorobenzene	20.0	24.0	ug	/L	120	64 - 132	0	30
1,4-Dioxane	400	420	uç	/L	105	70 - 142	7	30
1,2,3-Trichlorobenzene	20.0	24.0	uç	/L	120	53 - 144	2	30
1,2-Dibromo-3-Chloropropane	20.0	20.6	นรู		103	41 - 143	3	30
Chlorobromomethane	20.0	17.9		/L	90	73 - 126	4	30
Isopropylbenzene	20.0	20.6	นู		103	79 - 125	1	30
Methyl acetate	40.0	36.7	uç		92	70 - 127	15	30
Methylcyclohexane	20.0	23.2	uç		116	60 - 139	3	30

.CSD	LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	92		75 - 123
Toluene-d8 (Surr)	101		80 - 120
4-Bromofluorobenzene	99		76 - 120
Dibromofluoromethane (Surr)	93		77 - 124

Eurofins TestAmerica, Edison

Page 72 of 158

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 460-222961-4 MS

Matrix: Water

Analysis Batch: 741805

Analysis Batch: 741805 Analyte	•	Sample Qualifier	Spike Added		MS Qualifier	Unit	D	%Rec	%Rec. Limits	
Chloromethane	1.0	U	20.0	19.1		ug/L		96	38 - 150	
Bromomethane	1.0		20.0	13.8		ug/L		69	10 - 150	
Vinyl chloride	1.0	U	20.0	19.6		ug/L		98	61 - 144	
Chloroethane	1.0	U	20.0	20.7		ug/L		103	29 - 150	
Methylene Chloride	1.0	U	20.0	20.0		ug/L		100	74 - 127	
Acetone	5.0	U	100	87.0		ug/L		87	61 - 134	
Carbon disulfide	1.0	U	20.0	17.7		ug/L		89	64 - 138	
Trichlorofluoromethane	1.0	U	20.0	17.7		ug/L		88	61 - 140	
1,1-Dichloroethene	1.0	U	20.0	15.9		ug/L		79	68 - 133	
1,1-Dichloroethane	1.0		20.0	17.5		ug/L		87	73 - 130	
trans-1,2-Dichloroethene	1.0		20.0	16.8		ug/L		84	74 - 126	
cis-1,2-Dichloroethene	1.0		20.0	16.4		ug/L		82	78 - 121	
Chloroform	1.0		20.0	17.9		ug/L		90	78 - 125	
1,2-Dichloroethane	1.0		20.0	16.9		ug/L		84	75 - 121	
2-Butanone (MEK)	5.0		100	91.5		ug/L		92	69 - 128	
1,1,1-Trichloroethane	1.0		20.0	19.0		ug/L		95	68 - 128	
Carbon tetrachloride	1.0		20.0	19.6		ug/L		98	56 - 131	
Dichlorobromomethane	1.0		20.0	18.9		ug/L		95	72 - 121	
1,2-Dichloropropane	1.0		20.0	20.3		ug/L		102	76 - 126	
cis-1,3-Dichloropropene	1.0		20.0	19.1		ug/L		95	74 - 125	
Trichloroethene	1.0		20.0	20.0		ug/L		100	71 - 121	
Chlorodibromomethane	1.0		20.0	20.0		ug/L		100	58 - 130	
1,1,2-Trichloroethane	1.0		20.0	20.0		ug/L ug/L		100	74 - 125	
Benzene	1.0		20.0	18.9		ug/L ug/L		95	74 - 125 78 - 126	
trans-1,3-Dichloropropene	1.0		20.0	19.0		ug/L		95	66 - 127	
Bromoform	1.0		20.0	20.1		ug/L ug/L		101	38 - 144	
4-Methyl-2-pentanone (MIBK)		U * F1	100	127	E1	ug/L ug/L		127	78 ₋ 125	
2-Hexanone		U *	100	124	L i			124	74 - 127	
Tetrachloroethene	1.0		20.0	21.7		ug/L		109	74 - 127 70 - 127	
1,1,2,2-Tetrachloroethane	1.0		20.0	19.9		ug/L		109	63 - 139	
Toluene						ug/L				
	1.0 1.0		20.0	19.0		ug/L		95	78 ₋ 119	
Chlorobenzene			20.0	18.9		ug/L		94	80 - 119	
Ethylbenzene	1.0		20.0	19.4		ug/L		97	78 - 120	
Styrene	1.0 1.0		20.0	19.6 19.1		ug/L		98 95	75 ₋ 127 78 ₋ 123	
m-Xylene & p-Xylene			20.0			ug/L				
o-Xylene 1,1,2-Trichloro-1,2,2-trifluoroetha ne	1.0		20.0 20.0	19.4 18.0		ug/L ug/L		97 90	78 - 122 59 - 142	
Methyl tert-butyl ether	1.0	U	20.0	19.7		ug/L		98	65 - 131	
Cyclohexane	1.0		20.0	19.7		ug/L		99	67 - 133	
Ethylene Dibromide	1.0		20.0	20.3		ug/L		101	69 - 126	
1,3-Dichlorobenzene	1.0		20.0	19.3		ug/L		96	80 - 121	
1,4-Dichlorobenzene	1.0		20.0	18.3		ug/L ug/L		91	80 - 121	
1,2-Dichlorobenzene	1.0		20.0	19.2		ug/L ug/L		96	79 - 122	
Dichlorodifluoromethane	1.0		20.0	19.2		ug/L ug/L		96 95	79 - 122 31 - 150	
1,2,4-Trichlorobenzene	1.0		20.0			-		95 104	64 ₋ 132	
				20.9		ug/L				
1,4-Dioxane	50		400	408		ug/L		102	70 ₋ 142	
1,2,3-Trichlorobenzene	1.0		20.0	21.5		ug/L		107	53 - 144	
1,2-Dibromo-3-Chloropropane	1.0	U	20.0	19.2		ug/L		96	41 - 143	

Job ID: 460-222961-1

Client Sample ID: MW-5

Prep Type: Total/NA

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 460-222961-4 MS

Matrix: Water

Analysis Batch: 741805

Client Sample ID: MW-5 Prep Type: Total/NA

Spike MS MS %Rec. Sample Sample Result Qualifier Added Result Qualifier Unit D %Rec Limits Chlorobromomethane 1.0 U 20.0 17.8 ug/L 89 73 - 126 Isopropylbenzene 1.0 U 20.0 19.5 ug/L 97 79 - 125 Methyl acetate 5.0 U 40.0 30.3 ug/L 76 70 - 127 Methylcyclohexane 1.0 U 20.0 101 60 - 139 20.2 ug/L

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		75 - 123
Toluene-d8 (Surr)	101		80 - 120
4-Bromofluorobenzene	101		76 - 120
Dibromofluoromethane (Surr)	95		77 - 124

Lab Sample ID: 460-222961-4 MSD

Matrix: Water

Analysis Batch: 741805

Client Sample ID: MW-5

Prep Type: Total/NA

Analyte Result Qualifier Added Result Qualifier Unit D %Rec. Limits Chloromethane 1.0 U 20.0 19.8 ug/L 99 38_15 Bromomethane 1.0 U 20.0 16.0 ug/L 80 10_15 Vinyl chloride 1.0 U 20.0 20.8 ug/L 104 61_14 Chloroethane 1.0 U 20.0 21.1 ug/L 105 29_15 Methylene Chloride 1.0 U 20.0 19.8 ug/L 99 74_12 Acetone 5.0 U 100 76.4 ug/L 99 74_12 Carbon disulfide 1.0 U 20.0 18.4 ug/L 92 64_13 Trichlorofluoromethane 1.0 U 20.0 19.3 ug/L 96 61_14 1,1-Dichloroethane 1.0 U 20.0 17.6 ug/L 92 7		RPD
Chloromethane 1.0 U 20.0 19.8 ug/L 99 38 - 15 Bromomethane 1.0 U 20.0 16.0 ug/L 80 10 - 15 Vinyl chloride 1.0 U 20.0 20.8 ug/L 104 61 - 14 Chloroethane 1.0 U 20.0 21.1 ug/L 105 29 - 15 Methylene Chloride 1.0 U 20.0 19.8 ug/L 99 74 - 12 Acetone 5.0 U 100 76.4 ug/L 99 74 - 12 Carbon disulfide 1.0 U 20.0 18.4 ug/L 92 64 - 13 Trichlorofluoromethane 1.0 U 20.0 19.3 ug/L 96 61 - 14 1,1-Dichloroethene 1.0 U 20.0 17.6 ug/L 88 68 - 13 1,1-Dichloroethane 1.0 U 20.0 18.4 ug/L 92 73 - 13 trans-1,2-Dichloroethene 1.0 U 20.0 17.6 ug/L 88 74 - 12	RPD	Limit
Bromomethane 1.0 U 20.0 16.0 ug/L 80 10 - 15 Vinyl chloride 1.0 U 20.0 20.8 ug/L 104 61 - 14 Chloroethane 1.0 U 20.0 21.1 ug/L 105 29 - 15 Methylene Chloride 1.0 U 20.0 19.8 ug/L 99 74 - 12 Acetone 5.0 U 100 76.4 ug/L 76 61 - 13 Carbon disulfide 1.0 U 20.0 18.4 ug/L 92 64 - 13 Trichlorofluoromethane 1.0 U 20.0 19.3 ug/L 96 61 - 14 1,1-Dichloroethane 1.0 U 20.0 17.6 ug/L 88 68 - 13 1,1-Dichloroethane 1.0 U 20.0 18.4 ug/L 92 73 - 13 trans-1,2-Dichloroethene 1.0 U 20.0 17.6 ug/L 88 74 - 12 </td <td></td> <td>30</td>		30
Vinyl chloride 1.0 U 20.0 20.8 ug/L 104 61 - 14 Chloroethane 1.0 U 20.0 21.1 ug/L 105 29 - 15 Methylene Chloride 1.0 U 20.0 19.8 ug/L 99 74 - 12 Acetone 5.0 U 100 76.4 ug/L 76 61 - 13 Carbon disulfide 1.0 U 20.0 18.4 ug/L 92 64 - 13 Trichlorofluoromethane 1.0 U 20.0 19.3 ug/L 96 61 - 14 1,1-Dichloroethene 1.0 U 20.0 17.6 ug/L 88 68 - 13 1,1-Dichloroethane 1.0 U 20.0 18.4 ug/L 92 73 - 13 trans-1,2-Dichloroethene 1.0 U 20.0 17.6 ug/L 88 74 - 12		30
Chloroethane 1.0 U 20.0 21.1 ug/L 105 29 - 15 Methylene Chloride 1.0 U 20.0 19.8 ug/L 99 74 - 12 Acetone 5.0 U 100 76.4 ug/L 76 61 - 13 Carbon disulfide 1.0 U 20.0 18.4 ug/L 92 64 - 13 Trichlorofluoromethane 1.0 U 20.0 19.3 ug/L 96 61 - 14 1,1-Dichloroethene 1.0 U 20.0 17.6 ug/L 88 68 - 13 1,1-Dichloroethane 1.0 U 20.0 18.4 ug/L 92 73 - 13 trans-1,2-Dichloroethene 1.0 U 20.0 17.6 ug/L 88 74 - 12	. 6	30
Methylene Chloride 1.0 U 20.0 19.8 ug/L 99 74 - 12 Acetone 5.0 U 100 76.4 ug/L 76 61 - 13 Carbon disulfide 1.0 U 20.0 18.4 ug/L 92 64 - 13 Trichlorofluoromethane 1.0 U 20.0 19.3 ug/L 96 61 - 14 1,1-Dichloroethene 1.0 U 20.0 17.6 ug/L 88 68 - 13 1,1-Dichloroethane 1.0 U 20.0 18.4 ug/L 92 73 - 13 trans-1,2-Dichloroethene 1.0 U 20.0 17.6 ug/L 88 74 - 12) 2	30
Acetone 5.0 U 100 76.4 ug/L 76 61-13 Carbon disulfide 1.0 U 20.0 18.4 ug/L 92 64-13 Trichlorofluoromethane 1.0 U 20.0 19.3 ug/L 96 61-14 1,1-Dichloroethene 1.0 U 20.0 17.6 ug/L 88 68-13 1,1-Dichloroethane 1.0 U 20.0 18.4 ug/L 92 73-13 trans-1,2-Dichloroethene 1.0 U 20.0 17.6 ug/L 88 74-12	' 1	30
Carbon disulfide 1.0 U 20.0 18.4 ug/L 92 64 - 13 Trichlorofluoromethane 1.0 U 20.0 19.3 ug/L 96 61 - 14 1,1-Dichloroethene 1.0 U 20.0 17.6 ug/L 88 68 - 13 1,1-Dichloroethane 1.0 U 20.0 18.4 ug/L 92 73 - 13 trans-1,2-Dichloroethene 1.0 U 20.0 17.6 ug/L 88 74 - 12	13	30
Trichlorofluoromethane 1.0 U 20.0 19.3 ug/L 96 61 - 14 1,1-Dichloroethene 1.0 U 20.0 17.6 ug/L 88 68 - 13 1,1-Dichloroethane 1.0 U 20.0 18.4 ug/L 92 73 - 13 trans-1,2-Dichloroethene 1.0 U 20.0 17.6 ug/L 88 74 - 12	3 4	30
1,1-Dichloroethene 1.0 U 20.0 17.6 ug/L 88 68 - 13 1,1-Dichloroethane 1.0 U 20.0 18.4 ug/L 92 73 - 13 trans-1,2-Dichloroethene 1.0 U 20.0 17.6 ug/L 88 74 - 12) 9	30
1,1-Dichloroethane 1.0 U 20.0 18.4 ug/L 92 73 - 13 trans-1,2-Dichloroethene 1.0 U 20.0 17.6 ug/L 88 74 - 12	3 11	30
trans-1,2-Dichloroethene 1.0 U 20.0 17.6 ug/L 88 74 - 12) 5	30
		30
	1 7	30
Chloroform 1.0 U 20.0 18.4 ug/L 92 78 - 12	5 3	30
1,2-Dichloroethane 1.0 U 20.0 17.8 ug/L 89 75 - 12	5	30
2-Butanone (MEK) 5.0 U 100 93.2 ug/L 93 69 - 12	3 2	30
1,1,1-Trichloroethane 1.0 U 20.0 20.1 ug/L 100 68 - 12	8 6	30
Carbon tetrachloride 1.0 U 20.0 20.8 ug/L 104 56 - 13	l 6	30
Dichlorobromomethane 1.0 U 20.0 19.7 ug/L 98 72 - 12	4	30
1,2-Dichloropropane 1.0 U 20.0 20.8 ug/L 104 76 - 12	3 2	30
cis-1,3-Dichloropropene 1.0 U 20.0 19.9 ug/L 99 74 - 12	5 4	30
Trichloroethene 1.0 U 20.0 20.3 ug/L 101 71 - 12	1 1	30
Chlorodibromomethane 1.0 U 20.0 20.1 ug/L 100 58 - 13	0	30
1,1,2-Trichloroethane 1.0 U 20.0 20.4 ug/L 102 74 - 12	5 2	30
Benzene 1.0 U 20.0 19.3 ug/L 96 78-12	5 2	30
trans-1,3-Dichloropropene 1.0 U 20.0 19.8 ug/L 99 66 - 12	7 4	30
Bromoform 1.0 U 20.0 20.3 ug/L 102 38 - 14	1	30
4-Methyl-2-pentanone (MIBK) 5.0 U * F1 100 120 ug/L 120 78 - 12	5 6	30
2-Hexanone 5.0 U* 100 119 ug/L 119 74 - 12	4	30
Tetrachloroethene 1.0 U 20.0 20.3 ug/L 101 70 - 12	7 7	30
1,1,2,2-Tetrachloroethane 1.0 U 20.0 20.0 ug/L 100 63 - 13	0	30
Toluene 1.0 U 20.0 19.5 ug/L 97 78-11	3	30
Chlorobenzene 1.0 U 20.0 19.3 ug/L 96 80 - 11) 2	30

Eurofins TestAmerica, Edison

Page 74 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 460-222961-4 MSD

Matrix: Water

Analysis Batch: 741805

Client Sample ID: MW-5 Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethylbenzene	1.0	U	20.0	19.6		ug/L		98	78 - 120	1	30
Styrene	1.0	U	20.0	20.0		ug/L		100	75 - 127	2	30
m-Xylene & p-Xylene	1.0	U	20.0	19.2		ug/L		96	78 - 123	0	30
o-Xylene	1.0	U	20.0	19.3		ug/L		97	78 - 122	0	30
1,1,2-Trichloro-1,2,2-trifluoroetha	1.0	U	20.0	20.0		ug/L		100	59 - 142	10	30
ne Methyl tert-butyl ether	1.0	U	20.0	19.8		ug/L		99	65 - 131	0	30
Cyclohexane	1.0	U	20.0	20.6		ug/L		103	67 - 133	4	30
Ethylene Dibromide	1.0	U	20.0	20.3		ug/L		102	69 - 126	0	30
1,3-Dichlorobenzene	1.0	U	20.0	19.4		ug/L		97	80 - 121	1	30
1,4-Dichlorobenzene	1.0	U	20.0	18.5		ug/L		93	80 - 118	1	30
1,2-Dichlorobenzene	1.0	U	20.0	19.3		ug/L		97	79 - 122	1	30
Dichlorodifluoromethane	1.0	U	20.0	20.5		ug/L		103	31 - 150	8	30
1,2,4-Trichlorobenzene	1.0	U	20.0	22.2		ug/L		111	64 - 132	6	30
1,4-Dioxane	50	U	400	409		ug/L		102	70 - 142	0	30
1,2,3-Trichlorobenzene	1.0	U	20.0	22.7		ug/L		114	53 - 144	6	30
1,2-Dibromo-3-Chloropropane	1.0	U	20.0	19.6		ug/L		98	41 - 143	2	30
Chlorobromomethane	1.0	U	20.0	18.7		ug/L		93	73 - 126	5	30
Isopropylbenzene	1.0	U	20.0	20.0		ug/L		100	79 - 125	3	30
Methyl acetate	5.0	U	40.0	31.0		ug/L		78	70 - 127	2	30
Methylcyclohexane	1.0	U	20.0	21.3		ug/L		106	60 - 139	5	30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		75 - 123
Toluene-d8 (Surr)	100		80 - 120
4-Bromofluorobenzene	100		76 - 120
Dibromofluoromethane (Surr)	97		77 - 124

Lab Sample ID: MB 460-742890/15

Matrix: Solid

Analysis Batch: 742890

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	50	U	50	20	ug/Kg			11/27/20 13:49	50
Bromomethane	50	U	50	50	ug/Kg			11/27/20 13:49	50
Vinyl chloride	50	U	50	10	ug/Kg			11/27/20 13:49	50
Chloroethane	50	U	50	19	ug/Kg			11/27/20 13:49	50
Methylene Chloride	50	U	50	57	ug/Kg			11/27/20 13:49	50
Acetone	250	U	250	220	ug/Kg			11/27/20 13:49	50
Carbon disulfide	50	U	50	34	ug/Kg			11/27/20 13:49	50
Trichlorofluoromethane	50	U	50	16	ug/Kg			11/27/20 13:49	50
1,1-Dichloroethene	50	U	50	13	ug/Kg			11/27/20 13:49	50
1,1-Dichloroethane	50	U	50	12	ug/Kg			11/27/20 13:49	50
trans-1,2-Dichloroethene	50	U	50	9.0	ug/Kg			11/27/20 13:49	50
cis-1,2-Dichloroethene	50	U	50	18	ug/Kg			11/27/20 13:49	50
Chloroform	50	U	50	49	ug/Kg			11/27/20 13:49	50
1,2-Dichloroethane	50	U	50	13	ug/Kg			11/27/20 13:49	50
2-Butanone (MEK)	250	U	250	110	ug/Kg			11/27/20 13:49	50
1,1,1-Trichloroethane	50	U	50	14	ug/Kg			11/27/20 13:49	50

Eurofins TestAmerica, Edison

Page 75 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 460-742890/15 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Solid

Toluene-d8 (Surr)

4-Bromofluorobenzene

Dibromofluoromethane (Surr)

Analysis Batch: 742890

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon tetrachloride	50	U	50	17	ug/Kg			11/27/20 13:49	50
Dichlorobromomethane	50	U	50	7.5	ug/Kg			11/27/20 13:49	50
1,2-Dichloropropane	50	U	50	9.0	ug/Kg			11/27/20 13:49	50
cis-1,3-Dichloropropene	50	U	50	11	ug/Kg			11/27/20 13:49	50
Trichloroethene	50	U	50	16	ug/Kg			11/27/20 13:49	50
Chlorodibromomethane	50	U	50	11	ug/Kg			11/27/20 13:49	50
1,1,2-Trichloroethane	50	U	50	4.0	ug/Kg			11/27/20 13:49	50
Benzene	50	U	50	10	ug/Kg			11/27/20 13:49	50
trans-1,3-Dichloropropene	50	U	50	9.5	ug/Kg			11/27/20 13:49	50
Bromoform	50	U	50	9.0	ug/Kg			11/27/20 13:49	50
4-Methyl-2-pentanone (MIBK)	250	U	250	65	ug/Kg			11/27/20 13:49	50
2-Hexanone	250	U	250	57	ug/Kg			11/27/20 13:49	50
Tetrachloroethene	50	U	50	15	ug/Kg			11/27/20 13:49	50
1,1,2,2-Tetrachloroethane	50	U	50	9.5	ug/Kg			11/27/20 13:49	50
Toluene	50	U	50	13	ug/Kg			11/27/20 13:49	50
Chlorobenzene	50	U	50		ug/Kg			11/27/20 13:49	50
Ethylbenzene	50	U	50		ug/Kg			11/27/20 13:49	50
Styrene	50	U	50		ug/Kg			11/27/20 13:49	50
m-Xylene & p-Xylene	50	U	50		ug/Kg			11/27/20 13:49	50
o-Xylene	50	U	50		ug/Kg			11/27/20 13:49	50
1,1,2-Trichloro-1,2,2-trifluoroethane	50	U	50		ug/Kg			11/27/20 13:49	50
Methyl tert-butyl ether	50	U	50		ug/Kg			11/27/20 13:49	50
Cyclohexane	50	U	50		ug/Kg			11/27/20 13:49	50
Ethylene Dibromide	50	U	50		ug/Kg			11/27/20 13:49	50
1,3-Dichlorobenzene	50	U	50		ug/Kg			11/27/20 13:49	50
1,4-Dichlorobenzene	50	U	50		ug/Kg			11/27/20 13:49	50
1,2-Dichlorobenzene	50	U	50		ug/Kg			11/27/20 13:49	50
Dichlorodifluoromethane	50	U	50		ug/Kg			11/27/20 13:49	50
1,2,4-Trichlorobenzene	50	U	50		ug/Kg			11/27/20 13:49	50
1,4-Dioxane	2500	U	2500		ug/Kg			11/27/20 13:49	50
1,2,3-Trichlorobenzene	50	U	50		ug/Kg			11/27/20 13:49	50
1,2-Dibromo-3-Chloropropane	50	U	50		ug/Kg			11/27/20 13:49	50
Chlorobromomethane	50		50		ug/Kg			11/27/20 13:49	50
Isopropylbenzene	50		50		ug/Kg			11/27/20 13:49	50
Methyl acetate	250		250		ug/Kg			11/27/20 13:49	50
Methylcyclohexane	50		50		ug/Kg			11/27/20 13:49	50
, ,					0 0				
		MB		_			_		5
Tentatively Identified Compound	Est. Result	Qualifier	Unit	<u>D</u>	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg					11/27/20 13:49	50
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	122		70 - 150				<u> </u>	11/27/20 13:49	50
T-1	100		00 440					11/07/00 12:10	

11/27/20 13:49

11/27/20 13:49

11/27/20 13:49

50

50

68 - 148

62 - 150

54 - 150

103

93

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-742890/4

Matrix: Solid

Analysis Batch: 742890

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloromethane	1000	987		ug/Kg		99	61 - 148
Bromomethane	1000	937		ug/Kg		94	39 - 150
Vinyl chloride	1000	858		ug/Kg		86	70 - 134
Chloroethane	1000	1090		ug/Kg		109	61 - 142
Methylene Chloride	1000	1060		ug/Kg		106	74 - 127
Acetone	5000	4920		ug/Kg		98	56 - 127
Carbon disulfide	1000	1010		ug/Kg		101	67 - 134
Trichlorofluoromethane	1000	1020		ug/Kg		102	66 - 133
1,1-Dichloroethene	1000	945		ug/Kg		95	72 - 128
I,1-Dichloroethane	1000	1190		ug/Kg		119	79 - 124
rans-1,2-Dichloroethene	1000	1020		ug/Kg		102	77 - 127
cis-1,2-Dichloroethene	1000	1030		ug/Kg		103	80 - 120
Chloroform	1000	1150		ug/Kg		115	80 - 120
1,2-Dichloroethane	1000	1230	*	ug/Kg		123	73 - 120
2-Butanone (MEK)	5000	4640		ug/Kg		93	73 - 120
1,1,1-Trichloroethane	1000	1090		ug/Kg		109	73 - 121
Carbon tetrachloride	1000	1080		ug/Kg		108	68 - 123
Dichlorobromomethane	1000	1130		ug/Kg		113	77 - 120
I,2-Dichloropropane	1000	1180		ug/Kg		118	78 - 125
cis-1,3-Dichloropropene	1000	1140		ug/Kg		114	71 - 132
Frichloroethene	1000	1070		ug/Kg		107	77 - 120
Chlorodibromomethane	1000	1060		ug/Kg		106	74 - 120
,1,2-Trichloroethane	1000	1100		ug/Kg		110	79 - 120
Benzene	1000	1090		ug/Kg		109	80 - 120
rans-1,3-Dichloropropene	1000	1150		ug/Kg		115	68 - 132
Bromoform	1000	950		ug/Kg		95	62 - 121
1-Methyl-2-pentanone (MIBK)	5000	5240		ug/Kg		105	80 - 120
2-Hexanone	5000	4800		ug/Kg		96	80 - 121
Tetrachloroethene	1000	869		ug/Kg		87	73 - 120
1,1,2,2-Tetrachloroethane	1000	1220		ug/Kg		122	74 - 138
roluene	1000	1040		ug/Kg		104	80 - 120
Chlorobenzene	1000	985		ug/Kg		98	80 - 120
Ethylbenzene	1000	997		ug/Kg		100	72 - 121
Styrene	1000	1020		ug/Kg		102	74 - 124
n-Xylene & p-Xylene	1000	965		ug/Kg		97	72 - 120
p-Xylene	1000	994		ug/Kg		99	72 - 123
1,1,2-Trichloro-1,2,2-trifluoroetha	1000	943		ug/Kg		94	63 - 137
19 17, 17,2 Thomaso 17,2,2 amadrocana	1000	0.10		ug/11g		0.1	00 - 101
Methyl tert-butyl ether	1000	1200		ug/Kg		120	77 - 125
Cyclohexane	1000	1020		ug/Kg		102	64 - 132
Ethylene Dibromide	1000	1030		ug/Kg		103	80 - 120
I,3-Dichlorobenzene	1000	1010		ug/Kg		101	80 - 120
,4-Dichlorobenzene	1000	992		ug/Kg		99	80 - 120
I,2-Dichlorobenzene	1000	994		ug/Kg		99	80 - 120
Dichlorodifluoromethane	1000	860		ug/Kg		86	45 - 145
1,2,4-Trichlorobenzene	1000	896		ug/Kg		90	70 - 138
1,4-Dioxane	20000	22500		ug/Kg		112	80 - 126
1,2,3-Trichlorobenzene	1000	918		ug/Kg		92	70 - 145
1,2-Dibromo-3-Chloropropane	1000	964		ug/Kg		96	73 - 131

Eurofins TestAmerica, Edison

Page 77 of 158

9

3

4

6

8

J

4.0

13

1 E

16

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-742890/4

Matrix: Solid

Analysis Batch: 742890

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chlorobromomethane	1000	995		ug/Kg		99	80 - 121	
Isopropylbenzene	1000	966		ug/Kg		97	67 - 125	
Methyl acetate	2000	2700		ug/Kg		135	65 - 139	
Methylcyclohexane	1000	874		ug/Kg		87	61 - 136	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	120		70 - 150
Toluene-d8 (Surr)	103		68 - 148
4-Bromofluorobenzene	95		62 - 150
Dibromofluoromethane (Surr)	101		54 150

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Solid

Lab Sample ID: LCSD 460-742890/5

Analysis Batch: 742890								•	
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloromethane	1000	1020		ug/Kg		102	61 - 148	3	30
Bromomethane	1000	1010		ug/Kg		101	39 - 150	7	30
Vinyl chloride	1000	942		ug/Kg		94	70 - 134	9	30
Chloroethane	1000	1110		ug/Kg		111	61 - 142	1	30
Methylene Chloride	1000	1030		ug/Kg		103	74 - 127	3	30
Acetone	5000	4880		ug/Kg		98	56 - 127	1	30
Carbon disulfide	1000	1010		ug/Kg		101	67 - 134	0	30
Trichlorofluoromethane	1000	1060		ug/Kg		106	66 - 133	4	30
1,1-Dichloroethene	1000	928		ug/Kg		93	72 - 128	2	30
1,1-Dichloroethane	1000	1190		ug/Kg		119	79 - 124	0	30
trans-1,2-Dichloroethene	1000	1040		ug/Kg		104	77 - 127	2	30
cis-1,2-Dichloroethene	1000	1010		ug/Kg		101	80 - 120	2	30
Chloroform	1000	1110		ug/Kg		111	80 - 120	3	30
1,2-Dichloroethane	1000	1180		ug/Kg		118	73 - 120	4	30
2-Butanone (MEK)	5000	4330		ug/Kg		87	73 - 120	7	30
1,1,1-Trichloroethane	1000	1060		ug/Kg		106	73 - 121	2	30
Carbon tetrachloride	1000	1040		ug/Kg		104	68 - 123	3	30
Dichlorobromomethane	1000	1100		ug/Kg		110	77 - 120	2	30
1,2-Dichloropropane	1000	1140		ug/Kg		114	78 - 125	3	30
cis-1,3-Dichloropropene	1000	1150		ug/Kg		115	71 - 132	1	30
Trichloroethene	1000	1040		ug/Kg		104	77 - 120	2	30
Chlorodibromomethane	1000	1020		ug/Kg		102	74 - 120	4	30
1,1,2-Trichloroethane	1000	1070		ug/Kg		107	79 - 120	2	30
Benzene	1000	1040		ug/Kg		104	80 - 120	5	30
trans-1,3-Dichloropropene	1000	1150		ug/Kg		115	68 - 132	0	30
Bromoform	1000	910		ug/Kg		91	62 - 121	4	30
4-Methyl-2-pentanone (MIBK)	5000	5010		ug/Kg		100	80 - 120	4	30
2-Hexanone	5000	4580		ug/Kg		92	80 - 121	5	30
Tetrachloroethene	1000	834		ug/Kg		83	73 - 120	4	30
1,1,2,2-Tetrachloroethane	1000	1130		ug/Kg		113	74 - 138	7	30
Toluene	1000	1000		ug/Kg		100	80 - 120	3	30
Chlorobenzene	1000	956		ug/Kg		96	80 - 120	3	30

Eurofins TestAmerica, Edison

Page 78 of 158

6

3

6

8

10

12

3

15

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 460-742890/5

Matrix: Solid

Analysis Batch: 742890

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethylbenzene	1000	971		ug/Kg		97	72 - 121	3	30
Styrene	1000	988		ug/Kg		99	74 - 124	3	30
m-Xylene & p-Xylene	1000	968		ug/Kg		97	72 - 120	0	30
o-Xylene	1000	962		ug/Kg		96	72 - 123	3	30
1,1,2-Trichloro-1,2,2-trifluoroetha	1000	946		ug/Kg		95	63 - 137	0	30
ne									
Methyl tert-butyl ether	1000	1180		ug/Kg		118	77 - 125	2	30
Cyclohexane	1000	1000		ug/Kg		100	64 - 132	1	30
Ethylene Dibromide	1000	1030		ug/Kg		103	80 - 120	0	30
1,3-Dichlorobenzene	1000	961		ug/Kg		96	80 - 120	5	30
1,4-Dichlorobenzene	1000	938		ug/Kg		94	80 - 120	6	30
1,2-Dichlorobenzene	1000	952		ug/Kg		95	80 - 120	4	30
Dichlorodifluoromethane	1000	913		ug/Kg		91	45 - 145	6	30
1,2,4-Trichlorobenzene	1000	831		ug/Kg		83	70 - 138	8	30
1,4-Dioxane	20000	21600		ug/Kg		108	80 - 126	4	30
1,2,3-Trichlorobenzene	1000	847		ug/Kg		85	70 - 145	8	30
1,2-Dibromo-3-Chloropropane	1000	900		ug/Kg		90	73 - 131	7	30
Chlorobromomethane	1000	953		ug/Kg		95	80 - 121	4	30
Isopropylbenzene	1000	969		ug/Kg		97	67 - 125	0	30
Methyl acetate	2000	2750		ug/Kg		137	65 - 139	2	30
Methylcyclohexane	1000	905		ug/Kg		91	61 - 136	4	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	117		70 - 150
Toluene-d8 (Surr)	104		68 ₋ 148
4-Bromofluorobenzene	95		62 - 150
Dibromofluoromethane (Surr)	99		54 - 150

Method: 8270E - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 460-740823/1-A

Matrix: Solid

Analysis Batch: 740997

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 740823

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	330	U	330	12	ug/Kg		11/18/20 09:51	11/19/20 00:16	1
2-Chlorophenol	330	U	330	12	ug/Kg		11/18/20 09:51	11/19/20 00:16	1
2-Methylphenol	330	U	330	12	ug/Kg		11/18/20 09:51	11/19/20 00:16	1
4-Methylphenol	330	U	330	21	ug/Kg		11/18/20 09:51	11/19/20 00:16	1
2-Nitrophenol	330	U	330	33	ug/Kg		11/18/20 09:51	11/19/20 00:16	1
2,4-Dimethylphenol	330	U	330	15	ug/Kg		11/18/20 09:51	11/19/20 00:16	1
2,4-Dichlorophenol	130	U	130	21	ug/Kg		11/18/20 09:51	11/19/20 00:16	1
4-Chloro-3-methylphenol	330	U	330	19	ug/Kg		11/18/20 09:51	11/19/20 00:16	1
2,4,6-Trichlorophenol	130	U	130	42	ug/Kg		11/18/20 09:51	11/19/20 00:16	1
2,4,5-Trichlorophenol	330	U	330	34	ug/Kg		11/18/20 09:51	11/19/20 00:16	1
2,4-Dinitrotoluene	67	U	67	36	ug/Kg		11/18/20 09:51	11/19/20 00:16	1
4-Nitrophenol	670	U	670	54	ug/Kg		11/18/20 09:51	11/19/20 00:16	1
4,6-Dinitro-2-methylphenol	270	U	270	140	ug/Kg		11/18/20 09:51	11/19/20 00:16	1
Pentachlorophenol	270	U	270	68	ug/Kg		11/18/20 09:51	11/19/20 00:16	1

Eurofins TestAmerica, Edison

Page 79 of 158

2

3

Ė

7

9

11

13

1 E

16

1/

Client: New York State D.E.C. Job ID: 460-222961-1

RL

33

33

MDL Unit

12 ug/Kg

24 ug/Kg

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB Result Qualifier

> 33 U

33

330 U

330 U

33 U

33 U

33 U

33 U

33 U

330 U

330 U

330 U

330 U

330 U

130 U

330 U

Lab Sample ID: MB 460-740823/1-A

Matrix: Solid

Bis(2-chloroethyl)ether

N-Nitrosodi-n-propylamine

Bis(2-ethylhexyl) phthalate

Di-n-octyl phthalate

Benzo[b]fluoranthene

Benzo[k]fluoranthene

Indeno[1,2,3-cd]pyrene

Dibenz(a,h)anthracene

2,2'-oxybis[1-chloropropane]

Benzo[g,h,i]perylene

Benzo[a]pyrene

1,1'-Biphenyl

Acetophenone

Benzaldehyde

Caprolactam

Atrazine

Analysis Batch: 740997

Client Sample ID: Method Blank Prep Type: Total/NA

11/18/20 09:51 11/19/20 00:16

Analyzed

11/19/20 00:16

Prepared

11/18/20 09:51

Prep Batch: 740823

Dil Fac

Hexachloroethane	33	U	33	11	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
Nitrobenzene	33	U	33	7.9	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
Isophorone	130	U	130	96	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
Naphthalene	330	U	330	5.7	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
4-Chloroaniline	330	U	330	59	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
Hexachlorobutadiene	67	U	67	7.0	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
2-Methylnaphthalene	330	U	330	9.3	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
Hexachlorocyclopentadiene	330	U	330	29	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
2-Chloronaphthalene	330	U	330	15	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
2-Nitroaniline	330	U	330	12	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
Dimethyl phthalate	330	U	330	75	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
Acenaphthylene	330	U	330	3.3	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
2,6-Dinitrotoluene	67	U	67	24	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
3-Nitroaniline	330	U	330	37	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
Acenaphthene	330	U	330	9.4	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
Dibenzofuran	330	U	330	4.6	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
2,4-Dinitrophenol	270	U	270	160	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
Diethyl phthalate	330	U	330	4.8	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
4-Chlorophenyl phenyl ether	330	U	330	12	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
Fluorene	330	U	330	4.5	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
4-Nitroaniline	330	U	330	38	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
N-Nitrosodiphenylamine	330	U	330	27	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
4-Bromophenyl phenyl ether	330	U	330	13	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
Hexachlorobenzene	33	U	33	16	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
Phenanthrene	330	U	330	5.8	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
Anthracene	330	U	330	10	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
Carbazole	330	U	330	13	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
Di-n-butyl phthalate	330	U	330	12	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
Fluoranthene	330	U	330	12	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
Pyrene	330	U	330	8.2	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
Butyl benzyl phthalate	330	U	330	16	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
Benzo[a]anthracene	33	U	33	12	ug/Kg	11/18/20 09:51	11/19/20 00:16	1
Chrysene	330	U	330	5.6	ug/Kg	11/18/20 09:51	11/19/20 00:16	1

Eurofins TestAmerica, Edison

11/18/20 09:51 11/19/20 00:16

11/18/20 09:51 11/19/20 00:16

11/18/20 09:51 11/19/20 00:16

11/18/20 09:51 11/19/20 00:16

11/18/20 09:51 11/19/20 00:16

11/18/20 09:51 11/19/20 00:16

11/18/20 09:51 11/19/20 00:16

11/18/20 09:51 11/19/20 00:16

11/18/20 09:51 11/19/20 00:16

11/18/20 09:51 11/19/20 00:16

11/18/20 09:51 11/19/20 00:16

11/19/20 00:16

11/19/20 00:16

11/19/20 00:16

11/18/20 09:51

11/18/20 09:51

11/18/20 09:51

Page 80 of 158

330

330

33

33

33

33

33

330

330

330

330

330

130

330

17 ug/Kg

18 ug/Kg

8.6

13

14 ug/Kg

4.4

55 ug/Kg

51

19 ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

6.0 ug/Kg

6.5 ug/Kg

8.8 ug/Kg

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 460-740823/1-A

Matrix: Solid

Analysis Batch: 740997

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 740823

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	330	U	330	10	ug/Kg		11/18/20 09:51	11/19/20 00:16	1
2,3,4,6-Tetrachlorophenol	330	U	330	22	ug/Kg		11/18/20 09:51	11/19/20 00:16	1
3,3'-Dichlorobenzidine	130	U	130	50	ug/Kg		11/18/20 09:51	11/19/20 00:16	1
Bis(2-chloroethoxy)methane	330	U	330	26	ug/Kg		11/18/20 09:51	11/19/20 00:16	1
1,4-Dioxane	100	U	100	29	ug/Kg		11/18/20 09:51	11/19/20 00:16	1

MB MB

Surrogate	%Recovery (Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	97		19 - 105	11/18/20 09:51	11/19/20 00:16	1
Phenol-d5 (Surr)	99		26 - 101	11/18/20 09:51	11/19/20 00:16	1
Terphenyl-d14 (Surr)	120		25 - 127	11/18/20 09:51	11/19/20 00:16	1
2,4,6-Tribromophenol (Surr)	91		10 - 123	11/18/20 09:51	11/19/20 00:16	1
2-Fluorophenol (Surr)	103		18 - 106	11/18/20 09:51	11/19/20 00:16	1
2-Fluorobiphenyl	98		25 - 104	11/18/20 09:51	11/19/20 00:16	1

Lab Sample ID: LCS 460-740823/2-A

Matrix: Solid

2,6-Dinitrotoluene

Analysis Batch: 740997

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 740823

Analysis Batch: 740997	Spike	LCS LC	cs		%Rec.
Analyte	Added	Result Q	ualifier Unit	D %Rec	Limits
Phenol	3330	3250	ug/Kg	98	63 - 110
2-Chlorophenol	3330	3290	ug/Kg	99	63 - 106
2-Methylphenol	3330	3100	ug/Kg	93	63 - 108
4-Methylphenol	3330	2880	ug/Kg	86	61 - 108
2-Nitrophenol	3330	3350	ug/Kg	101	64 - 112
2,4-Dimethylphenol	3330	3240	ug/Kg	97	63 - 107
2,4-Dichlorophenol	3330	3310	ug/Kg	99	66 - 113
4-Chloro-3-methylphenol	3330	3100	ug/Kg	93	66 - 114
2,4,6-Trichlorophenol	3330	3750	ug/Kg	112	63 - 113
2,4,5-Trichlorophenol	3330	3320	ug/Kg	99	64 - 112
2,4-Dinitrotoluene	3330	3440	ug/Kg	103	65 - 124
4-Nitrophenol	6670	6230	ug/Kg	93	47 - 123
4,6-Dinitro-2-methylphenol	6670	6130	ug/Kg	92	64 - 129
Pentachlorophenol	6670	6890	ug/Kg	103	44 - 126
Bis(2-chloroethyl)ether	3330	3300	ug/Kg	99	60 - 107
N-Nitrosodi-n-propylamine	3330	2990	ug/Kg	90	61 - 108
Hexachloroethane	3330	3190	ug/Kg	96	61 - 102
Nitrobenzene	3330	3230	ug/Kg	97	63 - 110
Isophorone	3330	3250	ug/Kg	97	63 - 107
Naphthalene	3330	3140	ug/Kg	94	63 - 106
4-Chloroaniline	3330	1870	ug/Kg	56	20 - 98
Hexachlorobutadiene	3330	3350	ug/Kg	101	62 - 109
2-Methylnaphthalene	3330	3130	ug/Kg	94	64 - 108
Hexachlorocyclopentadiene	3330	3540	ug/Kg	106	22 - 124
2-Chloronaphthalene	3330	3370	ug/Kg	101	65 - 109
2-Nitroaniline	3330	3050	ug/Kg	91	59 - 119
Dimethyl phthalate	3330	3230	ug/Kg	97	65 - 109
Acenaphthylene	3330	3320	ug/Kg	99	64 - 108

Eurofins TestAmerica, Edison

67 - 121

106

Page 81 of 158

3530

ug/Kg

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-740823/2-A

Matrix: Solid

Analysis Batch: 740997

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 740823

Allalysis Batch. 140991	Spike	ıcs	LCS		%Rec.	
Analyte	Added		Qualifier Unit	D %Rec	Limits	
3-Nitroaniline	3330	2550	ug/Kg	$\frac{2}{76}$	31 - 102	
Acenaphthene	3330	3250	ug/Kg	98	53 - 110	
Dibenzofuran	3330	3210	ug/Kg	96	65 - 108	
2,4-Dinitrophenol	6670	6220	ug/Kg	93	37 - 125	
Diethyl phthalate	3330	3140	ug/Kg	94	63 - 109	
4-Chlorophenyl phenyl ether	3330	3230	ug/Kg	97	66 - 110	
Fluorene	3330	3220	ug/Kg	97	65 - 109	
4-Nitroaniline	3330	2870	ug/Kg	86	50 - 110	
N-Nitrosodiphenylamine	3330	3350	ug/Kg	101	67 - 113	
4-Bromophenyl phenyl ether	3330	3410	ug/Kg	102	67 - 113	
Hexachlorobenzene	3330	3410	ug/Kg	102	70 - 119	
Phenanthrene	3330	3190	ug/Kg	96	66 - 112	
Anthracene	3330	3190	ug/Kg	96	67 - 114	
Carbazole	3330	3040	ug/Kg	91	64 - 113	
Di-n-butyl phthalate	3330	3210	ug/Kg	96	66 - 114	
Fluoranthene	3330	3060	ug/Kg	92	64 - 113	
Pyrene	3330	3390	ug/Kg	102	71 - 122	
Butyl benzyl phthalate	3330	3370	ug/Kg	101	70 - 123	
Benzo[a]anthracene	3330	3260	ug/Kg	98	67 - 115	
Chrysene	3330	3120	ug/Kg	94	71 - 122	
Bis(2-ethylhexyl) phthalate	3330	3310	ug/Kg	99	69 - 124	
Di-n-octyl phthalate	3330	3800	ug/Kg	114	65 - 122	
Benzo[b]fluoranthene	3330	3680	ug/Kg	111	64 - 116	
Benzo[k]fluoranthene	3330	3820	ug/Kg	115	67 - 115	
Benzo[a]pyrene	3330	3940	* ug/Kg	118	63 - 108	
Indeno[1,2,3-cd]pyrene	3330	3950	ug/Kg	118	62 - 121	
Dibenz(a,h)anthracene	3330	3920	ug/Kg	118	66 - 119	
Benzo[g,h,i]perylene	3330	3530	ug/Kg	106	61 - 113	
1,1'-Biphenyl	3330	3410	ug/Kg	102	65 - 110	
Acetophenone	3330	2730	ug/Kg	82	61 - 103	
Benzaldehyde	1330	1730	3 3	130	39 - 113	
Caprolactam	1330	1750	ug/Kg	132	59 - 140	
Atrazine	1330	2000	0 0	150	44 - 145	
2,2'-oxybis[1-chloropropane]	3330	2810	ug/Kg	84	49 - 109	
1,2,4,5-Tetrachlorobenzene	3330	3450	ug/Kg	104	64 - 110	
2,3,4,6-Tetrachlorophenol	3330	3300	ug/Kg	99	58 - 113	
3,3'-Dichlorobenzidine	3330	1940	ug/Kg	58	4 - 119	
Bis(2-chloroethoxy)methane	3330	3090	ug/Kg	93	62 - 107	
1,4-Dioxane	3330	2370	ug/Kg	71	31 - 81	

LCS	LCS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5 (Surr)	95	-	19 - 105
Phenol-d5 (Surr)	96		26 - 101
Terphenyl-d14 (Surr)	113		25 - 127
2,4,6-Tribromophenol (Surr)	96		10 - 123
2-Fluorophenol (Surr)	100		18 - 106
2-Fluorobiphenyl	95		25 - 104

Eurofins TestAmerica, Edison

Page 82 of 158

3

6

10

12

13

15

16

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 460-741112/1-A

Matrix: Water

Analysis Batch: 741238

Client Sample ID: Method Blank
Prep Type: Total/NA

Prep Batch: 741112

Analysis Batch: 741238	МВ	МВ						Prep Batch:	7-1112
Analyte		Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	10		10	0.29	ug/L	=	11/19/20 09:29	11/19/20 23:09	Dirac
2-Chlorophenol	10		10	0.29	-		11/19/20 09:29	11/19/20 23:09	4
2-Methylphenol	10		10	0.67	-		11/19/20 09:29	11/19/20 23:09	-
4-Methylphenol	10		10	0.65			11/19/20 09:29	11/19/20 23:09	
2-Nitrophenol	10		10	0.03	-		11/19/20 09:29	11/19/20 23:09	,
•	10		10		ug/L ug/L		11/19/20 09:29	11/19/20 23:09	-
2,4-Dimethylphenol	10		10		ug/L ug/L		11/19/20 09:29	11/19/20 23:09	
2,4-Dichlorophenol 4-Chloro-3-methylphenol	10		10		-		11/19/20 09:29	11/19/20 23:09	1
, ,	10				ug/L				
2,4,6-Trichlorophenol	10		10	0.86			11/19/20 09:29 11/19/20 09:29	11/19/20 23:09 11/19/20 23:09	1
2,4,5-Trichlorophenol					ug/L				
2,4-Dinitrotoluene	2.0		2.0		ug/L		11/19/20 09:29	11/19/20 23:09	•
4-Nitrophenol	30		30		ug/L		11/19/20 09:29	11/19/20 23:09	1
4,6-Dinitro-2-methylphenol	30		30		ug/L		11/19/20 09:29	11/19/20 23:09	1
Pentachlorophenol	30		30		ug/L		11/19/20 09:29	11/19/20 23:09	1
Bis(2-chloroethyl)ether	1.0		1.0	0.63			11/19/20 09:29	11/19/20 23:09	1
N-Nitrosodi-n-propylamine	1.0		1.0	0.43	-		11/19/20 09:29	11/19/20 23:09	1
Hexachloroethane	2.0		2.0	0.80	-		11/19/20 09:29	11/19/20 23:09	1
Nitrobenzene	1.0		1.0		ug/L		11/19/20 09:29	11/19/20 23:09	1
Isophorone	10		10	0.80	-		11/19/20 09:29	11/19/20 23:09	1
Naphthalene	2.0		2.0		ug/L		11/19/20 09:29	11/19/20 23:09	1
4-Chloroaniline	1.0		1.0		ug/L		11/19/20 09:29	11/19/20 23:09	1
Hexachlorobutadiene	2.0		2.0		ug/L		11/19/20 09:29	11/19/20 23:09	1
2-Methylnaphthalene	10		10		ug/L		11/19/20 09:29	11/19/20 23:09	1
Hexachlorocyclopentadiene	10	U	10	3.6	ug/L		11/19/20 09:29	11/19/20 23:09	1
2-Chloronaphthalene	10		10	1.2	ug/L		11/19/20 09:29	11/19/20 23:09	1
2-Nitroaniline	20		20	0.47	-		11/19/20 09:29	11/19/20 23:09	1
Dimethyl phthalate	10	U	10	0.77			11/19/20 09:29	11/19/20 23:09	1
Acenaphthylene	10	U	10	0.82	-		11/19/20 09:29	11/19/20 23:09	1
2,6-Dinitrotoluene	2.0	U	2.0	0.83	ug/L		11/19/20 09:29	11/19/20 23:09	1
3-Nitroaniline	20	U	20	1.9	ug/L		11/19/20 09:29	11/19/20 23:09	1
Acenaphthene	10	U	10	1.1	ug/L		11/19/20 09:29	11/19/20 23:09	1
Dibenzofuran	10	U	10	1.1	ug/L		11/19/20 09:29	11/19/20 23:09	1
2,4-Dinitrophenol	30	U	30	2.6	ug/L		11/19/20 09:29	11/19/20 23:09	1
Diethyl phthalate	10	U	10	0.98	ug/L		11/19/20 09:29	11/19/20 23:09	1
4-Chlorophenyl phenyl ether	10	U	10	1.3	ug/L		11/19/20 09:29	11/19/20 23:09	1
Fluorene	10	U	10	0.91	ug/L		11/19/20 09:29	11/19/20 23:09	1
4-Nitroaniline	20	U	20	1.2	ug/L		11/19/20 09:29	11/19/20 23:09	1
N-Nitrosodiphenylamine	10	U	10	0.89	ug/L		11/19/20 09:29	11/19/20 23:09	1
4-Bromophenyl phenyl ether	10	U	10	0.75	ug/L		11/19/20 09:29	11/19/20 23:09	1
Hexachlorobenzene	1.0	U	1.0	0.40	ug/L		11/19/20 09:29	11/19/20 23:09	1
Phenanthrene	10	U	10	1.3	ug/L		11/19/20 09:29	11/19/20 23:09	1
Anthracene	10	U	10	1.3	ug/L		11/19/20 09:29	11/19/20 23:09	1
Carbazole	10	U	10	0.68	ug/L		11/19/20 09:29	11/19/20 23:09	1
Di-n-butyl phthalate	10	U	10	0.84			11/19/20 09:29	11/19/20 23:09	1
Fluoranthene	10	U	10	0.84	ug/L		11/19/20 09:29	11/19/20 23:09	1
Pyrene	10	U	10		ug/L		11/19/20 09:29	11/19/20 23:09	1
Butyl benzyl phthalate	10		10		ug/L		11/19/20 09:29	11/19/20 23:09	1
Benzo[a]anthracene	1.0		1.0		ug/L		11/19/20 09:29	11/19/20 23:09	1

Eurofins TestAmerica, Edison

Page 83 of 158

6

3

4

6

8

10

12

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 460-741112/1-A Client Sample ID: Method Blank **Matrix: Water Prep Type: Total/NA Analysis Batch: 741238 Prep Batch: 741112**

•	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chrysene	10	U	10	0.91	ug/L		11/19/20 09:29	11/19/20 23:09	1
Bis(2-ethylhexyl) phthalate	10	U	10	0.80	ug/L		11/19/20 09:29	11/19/20 23:09	1
Di-n-octyl phthalate	10	U	10	0.75	ug/L		11/19/20 09:29	11/19/20 23:09	1
Benzo[b]fluoranthene	2.0	U	2.0	0.68	ug/L		11/19/20 09:29	11/19/20 23:09	1
Benzo[k]fluoranthene	1.0	U	1.0	0.67	ug/L		11/19/20 09:29	11/19/20 23:09	1
Benzo[a]pyrene	1.0	U	1.0	0.41	ug/L		11/19/20 09:29	11/19/20 23:09	1
Indeno[1,2,3-cd]pyrene	2.0	U	2.0	0.94	ug/L		11/19/20 09:29	11/19/20 23:09	1
Dibenz(a,h)anthracene	1.0	U	1.0	0.72	ug/L		11/19/20 09:29	11/19/20 23:09	1
Benzo[g,h,i]perylene	10	U	10	0.70	ug/L		11/19/20 09:29	11/19/20 23:09	1
1,1'-Biphenyl	10	U	10	1.2	ug/L		11/19/20 09:29	11/19/20 23:09	1
Acetophenone	10	U	10	2.3	ug/L		11/19/20 09:29	11/19/20 23:09	1
Benzaldehyde	10	U	10	2.1	ug/L		11/19/20 09:29	11/19/20 23:09	1
Caprolactam	10	U	10	2.2	ug/L		11/19/20 09:29	11/19/20 23:09	1
Atrazine	10	U	10	1.3	ug/L		11/19/20 09:29	11/19/20 23:09	1
2,2'-oxybis[1-chloropropane]	10	U	10	0.63	ug/L		11/19/20 09:29	11/19/20 23:09	1
1,2,4,5-Tetrachlorobenzene	10	U	10	1.2	ug/L		11/19/20 09:29	11/19/20 23:09	1
2,3,4,6-Tetrachlorophenol	10	U	10	0.75	ug/L		11/19/20 09:29	11/19/20 23:09	1
3,3'-Dichlorobenzidine	20	U	20	1.4	ug/L		11/19/20 09:29	11/19/20 23:09	1
Bis(2-chloroethoxy)methane	10	U	10	0.59	ug/L		11/19/20 09:29	11/19/20 23:09	1
1,4-Dioxane	10	U	10	1.6	ug/L		11/19/20 09:29	11/19/20 23:09	1
	MD	MP							

	IVID IVID							
Tentatively Identified Compound	Est. Result Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None	ug/L				11/19/20 09:29	11/19/20 23:09	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	80		46 - 137	11/19/20 09:29	11/19/20 23:09	1
Phenol-d5 (Surr)	27		10 - 50	11/19/20 09:29	11/19/20 23:09	1
Terphenyl-d14 (Surr)	98		39 - 150	11/19/20 09:29	11/19/20 23:09	1
2,4,6-Tribromophenol (Surr)	96		36 - 159	11/19/20 09:29	11/19/20 23:09	1
2-Fluorophenol (Surr)	41		18 - 72	11/19/20 09:29	11/19/20 23:09	1
2-Fluorobiphenyl	69		42 - 127	11/19/20 09:29	11/19/20 23:09	1

Lab Sample ID: LCS 460-741112/2-A **Client Sample ID: Lab Control Sample Matrix: Water**

Analysis Batch: 741238	Spike	LCS	LCS				Prep Batch: 741112
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Phenol	80.0	29.8		ug/L		37	20 - 53
2-Chlorophenol	80.0	61.7		ug/L		77	57 - 93
2-Methylphenol	80.0	52.6		ug/L		66	45 - 86
4-Methylphenol	80.0	49.6		ug/L		62	37 - 86
2-Nitrophenol	80.0	87.1		ug/L		109	60 - 126
2,4-Dimethylphenol	80.0	61.8		ug/L		77	59 - 101
2,4-Dichlorophenol	80.0	70.3		ug/L		88	65 - 107
4-Chloro-3-methylphenol	80.0	68.9		ug/L		86	60 - 107
2,4,6-Trichlorophenol	80.0	79.6		ug/L		100	64 - 115
2,4,5-Trichlorophenol	80.0	74.6		ug/L		93	64 - 110
2,4-Dinitrotoluene	80.0	95.7		ug/L		120	63 - 122

Eurofins TestAmerica, Edison

Prep Type: Total/NA

Page 84 of 158

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-741112/2-A

Matrix: Water

Analysis Batch: 741238

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 741112

Job ID: 460-222961-1

Analysis Batch: 741238	Spike Added		LCS Qualifier	Unit	D	%Rec	%Rec. Limits
4-Nitrophenol	160	42.5		ug/L		27	17 - 61
4,6-Dinitro-2-methylphenol	160	184		ug/L		115	69 - 149
Pentachlorophenol	160	148		ug/L		93	57 ₋ 135
Bis(2-chloroethyl)ether	80.0	67.0		ug/L		84	57 - 112
N-Nitrosodi-n-propylamine	80.0	67.9		ug/L		85	60 - 111
Hexachloroethane	80.0	38.3		ug/L		48	27 - 94
Nitrobenzene	80.0	79.3		ug/L		99	67 - 109
Isophorone	80.0	71.3		ug/L		89	64 - 113
Naphthalene	80.0	65.9		ug/L		82	56 - 99
4-Chloroaniline	80.0	60.3		ug/L		75	43 - 105
Hexachlorobutadiene	80.0	36.3		ug/L		45	33 - 98
2-Methylnaphthalene	80.0	65.8		ug/L		82	57 - 103
Hexachlorocyclopentadiene	80.0	41.2		ug/L		51	14 - 97
2-Chloronaphthalene	80.0	64.3		ug/L		80	57 - 102
2-Nitroaniline	80.0	69.2		ug/L		87	54 - 123
Dimethyl phthalate	80.0	78.4		ug/L		98	68 - 105
Acenaphthylene	80.0	68.1		ug/L		85	64 - 102
2,6-Dinitrotoluene	80.0	83.2		ug/L		104	71 - 118
3-Nitroaniline	80.0	71.5		ug/L		89	57 ₋ 110
Acenaphthene	80.0	60.4		ug/L		76	54 - 108
Dibenzofuran	80.0	68.2		ug/L		85	65 - 104
2,4-Dinitrophenol	160	179		ug/L		112	36 - 150
Diethyl phthalate	80.0	78.6		ug/L		98	65 - 105
4-Chlorophenyl phenyl ether	80.0	73.8		ug/L		92	60 - 113
Fluorene	80.0	69.4		ug/L		87	64 - 108
4-Nitroaniline	80.0	71.9		ug/L		90	52 - 122
N-Nitrosodiphenylamine	80.0	67.7		ug/L		85	67 - 110
4-Bromophenyl phenyl ether	80.0	78.5		ug/L		98	65 - 115
Hexachlorobenzene	80.0	78.8		ug/L		99	59 - 129
Phenanthrene	80.0	67.8		ug/L		85	69 - 108
Anthracene	80.0	68.1		ug/L		85	69 - 110
Carbazole	80.0	67.1		ug/L		84	68 - 113
Di-n-butyl phthalate	80.0	75.9		ug/L		95	66 - 113
Fluoranthene	80.0	71.9		ug/L		90	66 - 116
Pyrene	80.0	70.7		ug/L		88	66 - 121
Butyl benzyl phthalate	80.0	83.7		ug/L		105	63 - 126
Benzo[a]anthracene	80.0	71.4		ug/L		89	71 - 114
Chrysene	80.0	71.6		ug/L		89	74 - 122
Bis(2-ethylhexyl) phthalate	80.0	72.7		ug/L		91	60 - 135
Di-n-octyl phthalate	80.0	76.3		ug/L		95	40 - 133
Benzo[b]fluoranthene	80.0	82.9		ug/L		104	65 - 113
Benzo[k]fluoranthene	80.0	84.4		ug/L		106	66 - 116
Benzo[a]pyrene	80.0	83.9		ug/L ug/L		105	67 - 106
Indeno[1,2,3-cd]pyrene	80.0	95.3		ug/L ug/L		119	55 - 139
Dibenz(a,h)anthracene	80.0	91.9		ug/L ug/L		115	57 - 144
Benzo[g,h,i]perylene	80.0	90.1		ug/L ug/L		113	48 ₋ 145
1,1'-Biphenyl	80.0	65.1		ug/L		81	59 - 102 65 - 100
Acetophenone	80.0	71.8		ug/L		90	65 - 109
Benzaldehyde	40.0	41.9		ug/L		105	47 - 134

Eurofins TestAmerica, Edison

Page 85 of 158

9

3

5

7

9

10

12

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-741112/2-A

Matrix: Water

Analysis Batch: 741238

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 741112

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Caprolactam	40.0	16.8		ug/L		42	10 - 60	
Atrazine	40.0	60.9	*	ug/L		152	10 - 150	
2,2'-oxybis[1-chloropropane]	80.0	50.8		ug/L		63	38 - 124	
1,2,4,5-Tetrachlorobenzene	80.0	61.0		ug/L		76	48 - 109	
2,3,4,6-Tetrachlorophenol	80.0	83.4		ug/L		104	64 - 123	
3,3'-Dichlorobenzidine	80.0	76.2		ug/L		95	59 - 125	
Bis(2-chloroethoxy)methane	80.0	66.1		ug/L		83	64 - 114	
1,4-Dioxane	80.0	34.4		ug/L		43	29 - 68	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5 (Surr)	76		46 - 137
Phenol-d5 (Surr)	29		10 - 50
Terphenyl-d14 (Surr)	99		39 - 150
2,4,6-Tribromophenol (Surr)	120		36 - 159
2-Fluorophenol (Surr)	43		18 - 72
2-Fluorobiphenyl	70		42 - 127

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 741238

Matrix: Water

Lab Sample ID: LCSD 460-741112/3-A

Prep Batch: 741112

Analysis Batch: 741238 Analyte Phenol 2-Chlorophenol 2-Methylphenol 4-Methylphenol 2,4-Dimethylphenol 2,4-Dimethylphenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol							Prep Ba	atch: 74	
	Spike		LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Phenol	80.0	25.9		ug/L		32	20 - 53	14	30
2-Chlorophenol	80.0	58.5		ug/L		73	57 - 93	5	30
2-Methylphenol	80.0	48.8		ug/L		61	45 - 86	7	30
4-Methylphenol	80.0	44.8		ug/L		56	37 - 86	10	30
2-Nitrophenol	80.0	81.6		ug/L		102	60 - 126	7	30
2,4-Dimethylphenol	80.0	59.8		ug/L		75	59 - 101	3	30
2,4-Dichlorophenol	80.0	66.7		ug/L		83	65 - 107	5	30
4-Chloro-3-methylphenol	80.0	64.8		ug/L		81	60 - 107	6	30
2,4,6-Trichlorophenol	80.0	75.5		ug/L		94	64 - 115	5	30
2,4,5-Trichlorophenol	80.0	72.6		ug/L		91	64 - 110	3	30
2,4-Dinitrotoluene	80.0	90.4		ug/L		113	63 - 122	6	30
4-Nitrophenol	160	40.5		ug/L		25	17 - 61	5	30
4,6-Dinitro-2-methylphenol	160	177		ug/L		111	69 - 149	4	30
Pentachlorophenol	160	132		ug/L		83	57 - 135	11	30
Bis(2-chloroethyl)ether	80.0	63.0		ug/L		79	57 - 112	6	30
N-Nitrosodi-n-propylamine	80.0	65.2		ug/L		82	60 - 111	4	30
Hexachloroethane	80.0	35.8		ug/L		45	27 - 94	7	30
Nitrobenzene	80.0	75.2		ug/L		94	67 - 109	5	30
Isophorone	80.0	67.1		ug/L		84	64 - 113	6	30
Naphthalene	80.0	63.2		ug/L		79	56 - 99	4	30
4-Chloroaniline	80.0	50.5		ug/L		63	43 - 105	18	30
Hexachlorobutadiene	80.0	36.5		ug/L		46	33 - 98	1	30
2-Methylnaphthalene	80.0	60.4		ug/L		75	57 - 103	9	30
Hexachlorocyclopentadiene	80.0	37.9		ug/L		47	14 - 97	8	30
2-Chloronaphthalene	80.0	59.3		ug/L		74	57 - 102	8	30
2-Nitroaniline	80.0	64.6		ug/L		81	54 - 123	7	30

Eurofins TestAmerica, Edison

Page 86 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 460-741112/3-A

Matrix: Water

Analysis Batch: 741238

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA
Prep Batch: 741112

Analyte	Spike Added		LCSD Qualifier	Unit	D	%Rec	%Rec. Limits	RPD	RPD Limit
Dimethyl phthalate	80.0	74.5		ug/L		93	68 - 105	5	30
Acenaphthylene	80.0	65.3		ug/L		82	64 - 102	4	30
2,6-Dinitrotoluene	80.0	79.2		ug/L		99	71 - 118	5	30
3-Nitroaniline	80.0	64.9		ug/L		81	57 - 110	10	30
Acenaphthene	80.0	56.2		ug/L		70	54 - 108	7	30
Dibenzofuran	80.0	65.2		ug/L		82	65 - 104	4	30
2,4-Dinitrophenol	160	166		ug/L		104	36 - 150	7	30
Diethyl phthalate	80.0	73.9		ug/L		92	65 - 105	6	30
4-Chlorophenyl phenyl ether	80.0	67.8		ug/L		85	60 - 113	8	30
Fluorene	80.0	66.1		ug/L		83	64 - 108	5	30
4-Nitroaniline	80.0	66.0		ug/L		83	52 - 122	9	30
N-Nitrosodiphenylamine	80.0	63.1		ug/L		79	67 - 110	7	30
4-Bromophenyl phenyl ether	80.0	68.9		ug/L		86	65 - 115	13	30
Hexachlorobenzene	80.0	72.0		ug/L		90	59 - 129	9	30
Phenanthrene	80.0	63.0		ug/L		79	69 - 108	7	30
Anthracene	80.0	64.2		ug/L		80	69 - 110	6	30
Carbazole	80.0	62.8		ug/L		79	68 - 113	7	30
Di-n-butyl phthalate	80.0	69.8		ug/L		87	66 - 113	8	30
Fluoranthene	80.0	66.7		ug/L		83	66 - 116	7	30
Pyrene	80.0	63.3		ug/L		79	66 - 121	11	30
Butyl benzyl phthalate	80.0	73.9		ug/L		92	63 - 126	12	30
Benzo[a]anthracene	80.0	64.4		ug/L		80	71 - 114	10	30
Chrysene	80.0	64.9		ug/L		81	74 - 122	10	30
Bis(2-ethylhexyl) phthalate	80.0	66.4		ug/L		83	60 - 135	9	30
Di-n-octyl phthalate	80.0	69.6		ug/L		87	40 - 133	9	30
Benzo[b]fluoranthene	80.0	76.5		ug/L		96	65 - 113	8	30
Benzo[k]fluoranthene	80.0	76.7		ug/L		96	66 - 116	10	30
Benzo[a]pyrene	80.0	76.4		ug/L		96	67 - 106	9	30
Indeno[1,2,3-cd]pyrene	80.0	87.8		ug/L		110	55 - 139	8	30
Dibenz(a,h)anthracene	80.0	83.6		ug/L		104	57 - 144	10	30
Benzo[g,h,i]perylene	80.0	83.4		ug/L		104	48 - 145	8	30
1,1'-Biphenyl	80.0	60.7		ug/L		76	59 - 102	7	30
Acetophenone	80.0	66.5		ug/L		83	65 - 109	8	30
Benzaldehyde	40.0	49.8		ug/L		124	47 - 134	17	30
Caprolactam	40.0	19.1		ug/L		48	10 - 60	13	30
Atrazine	40.0	69.1	*	ug/L		173	10 - 150	13	30
2,2'-oxybis[1-chloropropane]	80.0	47.1		ug/L		59	38 - 124	8	30
1,2,4,5-Tetrachlorobenzene	80.0	54.7		ug/L		68	48 - 109	11	30
2,3,4,6-Tetrachlorophenol	80.0	74.8		ug/L		94	64 - 123	11	30
3,3'-Dichlorobenzidine	80.0	64.4		ug/L		81	59 - 125	17	30
Bis(2-chloroethoxy)methane	80.0	61.8		ug/L		77	64 - 114	7	30
1,4-Dioxane	80.0	31.0		ug/L		39	29 - 68	10	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5 (Surr)	80		46 - 137
Phenol-d5 (Surr)	28		10 - 50
Terphenyl-d14 (Surr)	94		39 - 150
2,4,6-Tribromophenol (Surr)	123		36 - 159

Page 87 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 460-741112/3-A

Matrix: Water

Analysis Batch: 741238

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 741112

LCSD LCSD

1.0 UF2

10 U

%Recovery Qualifier Limits Surrogate 2-Fluorophenol (Surr) 41 18 - 72 2-Fluorobiphenyl 74 42 - 127

Lab Sample ID: 460-222961-4 MS

Matrix: Water

4-Chloroaniline

Fluorene

Analysis Batch: 741238

Client Sample ID: MW-5 Prep Type: Total/NA

Prep Batch: 741112

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 10 U Phenol 80.0 24 9 ug/L 31 20 - 53 10 U 2-Chlorophenol 80.0 57.1 ug/L 71 57 - 93 2-Methylphenol 10 U 80.0 50.8 ug/L 64 45 - 86

4-Methylphenol 10 U 80.0 45.7 ug/L 57 37 - 86 2-Nitrophenol 10 U 80.0 80.4 ug/L 101 60 - 126 80.0 2,4-Dimethylphenol 10 U 62.6 ug/L 78 59 - 101 80.0 86 2,4-Dichlorophenol 10 U 69.2 ug/L 65 - 107 4-Chloro-3-methylphenol 10 U 80.0 70.7 ug/L 88 60 - 107

2,4,6-Trichlorophenol 80.0 100 10 U 80.1 ug/L 64 - 11579.1 2,4,5-Trichlorophenol 10 U 80.0 ug/L 99 64 - 1102,4-Dinitrotoluene 2.0 UF1 80.0 98.5 F1 ug/L 123 63 - 1224-Nitrophenol 30 U 160 43.0 ug/L 27 17 - 61 4,6-Dinitro-2-methylphenol 30 U 160 203 127 69 - 149 ug/L 30 U 160 164 102 57 - 135 Pentachlorophenol ug/L

Bis(2-chloroethyl)ether 1.0 U 80.0 64.8 ug/L 81 57 - 112 N-Nitrosodi-n-propylamine 1.0 U 80.0 68.6 86 60 - 111 ug/L 80.0 52 Hexachloroethane 2.0 U 41.3 ug/L 27 - 94 Nitrobenzene 1.0 U 80.0 80.6 ug/L 101 67 - 109Isophorone 10 U 80.0 ug/L 90 72.3 64 - 113Naphthalene 80.0 ug/L 85 56 - 99 2.0 U 68.2

80.0

35.1

73.2

ug/L

ug/L

Hexachlorobutadiene 2.0 U 80.0 39.6 ug/L 49 33 - 98 80.0 83 2-Methylnaphthalene 10 U 66.3 ug/L 57 - 103Hexachlorocyclopentadiene 10 U 80.0 42.5 ug/L 53 14 - 97 57 - 102 10 Ü 80.0 81 2-Chloronaphthalene 64.6 ug/L 2-Nitroaniline 20 U 80.0 70.2 ug/L 88 54 - 123 ug/L Dimethyl phthalate 10 U F1 80.0 82.2 103 68 - 105

Acenaphthylene 10 U 80.0 71.8 ug/L 90 64 - 102 2,6-Dinitrotoluene 2.0 U 80.0 88.3 ug/L 110 71 - 118 20 U 80.0 61.3 ug/L 77 57 - 110 3-Nitroaniline Acenaphthene 10 U 80.0 62.7 ug/L 78 54 - 108 Dibenzofuran 10 U 80.0 73.2 ug/L 91 65 - 1042,4-Dinitrophenol 30 U 160 185 ug/L 115 36 - 150 80.0 105 65 - 105 Diethyl phthalate 10 UF1 84.2 ug/L 4-Chlorophenyl phenyl ether 10 U 80.0 77.7 ug/L 97 60 - 113

4-Nitroaniline 20 U 80.0 64.2 ug/L 80 52 - 122 80.0 72.6 N-Nitrosodiphenylamine 10 U ug/L 91 67 - 1104-Bromophenyl phenyl ether 10 U 80.0 80.7 ug/L 101 65 - 115Hexachlorobenzene 1.0 U 80.0 83.6 ug/L 104 59 - 129

80.0

Eurofins TestAmerica, Edison

64 - 108

43 - 105

44

92

Page 88 of 158

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Job ID: 460-222961-1

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 460-222961-4 MS

Matrix: Water

Analysis Batch: 741238

Client Sample ID: MW-5 Prep Type: Total/NA **Prep Batch: 741112**

	Sample	Sample	Spike	MS	MS			%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D %Rec	Limits	
Phenanthrene	10	U	80.0	74.8		ug/L	93	69 - 108	
Anthracene	10	U	80.0	76.2		ug/L	95	69 - 110	
Carbazole	10	U	80.0	74.6		ug/L	93	68 - 113	
Di-n-butyl phthalate	10	U	80.0	82.7		ug/L	103	66 - 113	
Fluoranthene	10	U	80.0	79.8		ug/L	100	66 - 116	
Pyrene	10	U	80.0	77.5		ug/L	97	66 - 121	
Butyl benzyl phthalate	10	U	80.0	84.8		ug/L	106	63 - 126	
Benzo[a]anthracene	1.0	U	80.0	77.2		ug/L	97	71 - 114	
Chrysene	10	U	80.0	78.4		ug/L	98	74 - 122	
Bis(2-ethylhexyl) phthalate	10	U	80.0	76.6		ug/L	96	60 - 135	
Di-n-octyl phthalate	10	U	80.0	80.0		ug/L	100	40 - 133	
Benzo[b]fluoranthene	2.0	U F1	80.0	89.1		ug/L	111	65 - 113	
Benzo[k]fluoranthene	1.0	U F1	80.0	91.3		ug/L	114	66 - 116	
Benzo[a]pyrene	1.0	U F1	80.0	89.1	F1	ug/L	111	67 - 106	
Indeno[1,2,3-cd]pyrene	2.0	U	80.0	99.2		ug/L	124	55 - 139	
Dibenz(a,h)anthracene	1.0	U	80.0	95.3		ug/L	119	57 - 144	
Benzo[g,h,i]perylene	10	U	80.0	92.6		ug/L	116	48 - 145	
1,1'-Biphenyl	10	U	80.0	66.9		ug/L	84	59 - 102	
Acetophenone	10	U	80.0	72.0		ug/L	90	65 - 109	
1,4-Dioxane	10	U	80.0	28.9		ug/L	36	29 - 68	
Benzaldehyde	10	U	40.0	47.9	E	ug/L	120	47 - 134	
Caprolactam	10	U	40.0	14.5		ug/L	36	10 - 60	
Atrazine	10	U F1 *	40.0	67.7	E F1	ug/L	169	10 - 150	
2,2'-oxybis[1-chloropropane]	10	U	80.0	49.4		ug/L	62	38 - 124	
1,2,4,5-Tetrachlorobenzene	10	U	80.0	61.5		ug/L	77	48 - 109	
2,3,4,6-Tetrachlorophenol	10	U	80.0	84.9		ug/L	106	64 - 123	
3,3'-Dichlorobenzidine	20	U F2	80.0	48.7		ug/L	61	59 - 125	
Bis(2-chloroethoxy)methane	10	U	80.0	64.9		ug/L	81	64 - 114	
	MS	MS							

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5 (Surr)	77		46 - 137
Phenol-d5 (Surr)	24		10 - 50
Terphenyl-d14 (Surr)	86		39 - 150
2,4,6-Tribromophenol (Surr)	128		36 - 159
2-Fluorophenol (Surr)	36		18 - 72
2-Fluorobiphenyl	71		42 - 127

Lab Sample ID: 460-222961-4 MSD

Matrix: Water

Analysis Batch: 741238

Client Sample ID: MW-5
Prep Type: Total/NA
Prep Batch: 741112

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Phenol	10	U	80.0	24.4		ug/L		30	20 - 53	2	30
2-Chlorophenol	10	U	80.0	60.8		ug/L		76	57 - 93	6	30
2-Methylphenol	10	U	80.0	50.4		ug/L		63	45 - 86	1	30
4-Methylphenol	10	U	80.0	47.3		ug/L		59	37 - 86	3	30
2-Nitrophenol	10	U	80.0	86.3		ug/L		108	60 - 126	7	30
2,4-Dimethylphenol	10	U	80.0	64.4		ug/L		81	59 - 101	3	30

Eurofins TestAmerica, Edison

Page 89 of 158

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 460-222961-4 MSD

Matrix: Water									Prep Ty	-	
Analysis Batch: 741238									Prep B	atch: 7	
Amalista	•	Sample	Spike		MSD	1114	_	0/ 🗖	%Rec.	DDD	RPD
Analyte 2.4 Diablaranhanal	Result 10	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,4-Dichlorophenol			80.0	73.3		ug/L		92	65 - 107	6	30
4-Chloro-3-methylphenol	10		80.0	75.2		ug/L		94	60 - 107	6	30
2,4,6-Trichlorophenol	10		80.0	87.4		ug/L		109	64 - 115	9	30
2,4,5-Trichlorophenol	10		80.0	83.9		ug/L		105	64 - 110	6	30
2,4-Dinitrotoluene		U F1	80.0	110	F1	ug/L		137	63 - 122	11	30
4-Nitrophenol	30		160	41.7		ug/L		26	17 - 61	3	30
4,6-Dinitro-2-methylphenol	30		160	202		ug/L		126	69 - 149	1	30
Pentachlorophenol	30		160	172		ug/L		107	57 - 135	5	30
Bis(2-chloroethyl)ether	1.0		80.0	67.5		ug/L		84	57 - 112	4	30
N-Nitrosodi-n-propylamine	1.0		80.0	73.8		ug/L		92	60 - 111	7	30
Hexachloroethane	2.0	U	80.0	46.2		ug/L		58	27 - 94	11	30
Nitrobenzene	1.0	U	80.0	82.8		ug/L		104	67 - 109	3	30
Isophorone	10		80.0	75.1		ug/L		94	64 - 113	4	30
Naphthalene	2.0	U	80.0	71.4		ug/L		89	56 - 99	5	30
4-Chloroaniline	1.0	U F2	80.0	49.5	F2	ug/L		62	43 - 105	34	30
Hexachlorobutadiene	2.0	U	80.0	48.5		ug/L		61	33 - 98	20	30
2-Methylnaphthalene	10	U	80.0	72.9		ug/L		91	57 - 103	9	30
Hexachlorocyclopentadiene	10	U	80.0	49.5		ug/L		62	14 - 97	15	30
2-Chloronaphthalene	10	U	80.0	70.6		ug/L		88	57 - 102	9	30
2-Nitroaniline	20	U	80.0	76.8		ug/L		96	54 - 123	9	30
Dimethyl phthalate	10	U F1	80.0	86.7	F1	ug/L		108	68 - 105	5	30
Acenaphthylene	10	U	80.0	75.8		ug/L		95	64 - 102	5	30
2,6-Dinitrotoluene	2.0	U	80.0	91.5		ug/L		114	71 - 118	3	30
3-Nitroaniline	20	U	80.0	73.9		ug/L		92	57 - 110	19	30
Acenaphthene	10	U	80.0	69.6		ug/L		87	54 - 108	11	30
Dibenzofuran	10	U	80.0	77.5		ug/L		97	65 - 104	6	30
2,4-Dinitrophenol	30	U	160	177		ug/L		111	36 - 150	4	30
Diethyl phthalate	10	U F1	80.0	87.8	F1	ug/L		110	65 - 105	4	30
4-Chlorophenyl phenyl ether	10	U	80.0	82.1		ug/L		103	60 - 113	5	30
Fluorene	10	U	80.0	79.0		ug/L		99	64 - 108	8	30
4-Nitroaniline	20		80.0	77.1		ug/L		96	52 - 122	18	30
N-Nitrosodiphenylamine	10		80.0	76.5		ug/L		96	67 - 110	5	30
4-Bromophenyl phenyl ether	10		80.0	87.0		ug/L		109	65 - 115	8	30
Hexachlorobenzene	1.0		80.0	86.1		ug/L		108	59 - 129	3	30
Phenanthrene	10		80.0	77.4		ug/L		97	69 - 108	3	30
Anthracene	10		80.0	78.5		ug/L		98	69 - 110	3	30
Carbazole	10		80.0	76.6		ug/L		96	68 - 113	3	30
Di-n-butyl phthalate	10		80.0	86.7		ug/L		108	66 - 113	5	30
Fluoranthene	10		80.0	82.5		ug/L ug/L		103	66 - 116	3	30
Pyrene	10		80.0	80.6		ug/L		101	66 - 121	4	30
Butyl benzyl phthalate	10		80.0	89.6		ug/L ug/L		112	63 - 126	6	30
	1.0		80.0	80.3				100	71 - 114	4	30
Benzo[a]anthracene	1.0					ug/L		100		2	30
Chrysene Ris (2 othylboxyl) phthalato			80.0	80.1		ug/L			74 ₋ 122		
Bis(2-ethylhexyl) phthalate	10		80.0	80.2		ug/L		100	60 - 135	5	30
Di-n-octyl phthalate	10		80.0	83.7		ug/L		105	40 - 133	5	30
Benzo[b]fluoranthene		U F1	80.0	95.5		ug/L		119	65 - 113	7	30
Benzo[k]fluoranthene		U F1	80.0	93.9		ug/L		117	66 - 116	3	30
Benzo[a]pyrene	1.0	U F1	80.0	94.5	FΊ	ug/L		118	67 - 106	6	30

Eurofins TestAmerica, Edison

Page 90 of 158

Job ID: 460-222961-1

Client Sample ID: MW-5

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Job ID: 460-222961-1

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 460-222961-4 MSD

Matrix: Water

Analysis Batch: 741238

Client Sample ID: MW-5 **Prep Type: Total/NA**

Prep Batch: 741112

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dibenz(a,h)anthracene	1.0	U	80.0	101		ug/L		126	57 - 144	6	30
Benzo[g,h,i]perylene	10	U	80.0	96.9		ug/L		121	48 - 145	5	30
1,1'-Biphenyl	10	U	80.0	72.5		ug/L		91	59 - 102	8	30
Acetophenone	10	U	80.0	74.3		ug/L		93	65 - 109	3	30
1,4-Dioxane	10	U	80.0	28.3		ug/L		35	29 - 68	2	30
Benzaldehyde	10	U	40.0	51.5	E	ug/L		129	47 - 134	7	30
Caprolactam	10	U	40.0	15.2		ug/L		38	10 - 60	5	30
Atrazine	10	U F1 *	40.0	75.2	E F1	ug/L		188	10 - 150	11	30
2,2'-oxybis[1-chloropropane]	10	U	80.0	51.1		ug/L		64	38 - 124	3	30
1,2,4,5-Tetrachlorobenzene	10	U	80.0	69.6		ug/L		87	48 - 109	12	30
2,3,4,6-Tetrachlorophenol	10	U	80.0	89.2		ug/L		111	64 - 123	5	30
3,3'-Dichlorobenzidine	20	U F2	80.0	74.6	F2	ug/L		93	59 - 125	42	30
Bis(2-chloroethoxy)methane	10	U	80.0	68.4		ug/L		85	64 - 114	5	30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5 (Surr)	79		46 - 137
Phenol-d5 (Surr)	24		10 - 50
Terphenyl-d14 (Surr)	84		39 - 150
2,4,6-Tribromophenol (Surr)	131		36 - 159
2-Fluorophenol (Surr)	37		18 - 72
2-Fluorobiphenyl	77		42 - 127

Method: 8270E SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

Lab Sample ID: MB 460-740807/1-A

Matrix: Water

Analyte

Analyte 1,4-Dioxane

1,4-Dioxane

Analysis Batch: 741075

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 740807

Analyzed Dil Fac Prepared 11/18/20 09:12 11/19/20 10:22

	MB	MB				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	29	·	10 - 150	11/18/20 09:12	11/19/20 10:22	1

RL

0.20

MDL Unit

0.016 ug/L

Lab Sample ID: LCS 460-740807/2-A

Matrix: Water

Analysis Batch: 741075

				Clie	ent Sai	nple ID	ntrol Samp	le	
							Prep Ty	pe: Total/N	۱A
							Prep B	atch: 7408	07
	Spike	LCS	LCS				%Rec.		
	Added	Result	Qualifier	Unit	D	%Rec	Limits		
_	1.60	1.71		ug/L		107	10 - 200		_

LCS LCS

MB MB Result Qualifier

0.20 U

Isotope Dilution %Recovery Qualifier Limits 1,4-Dioxane-d8 31 10 - 200

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8270E SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution) (Continued)

Lab Sample ID: LCSD 460 Matrix: Water Analysis Batch: 741075	-740807/3-A				C	Client Sa	Sample ID: Lab Control Sample D Prep Type: Total/I Prep Batch: 7408				
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dioxane			1.60	1.73		ug/L		108	10 - 200	1	50
	LCSD	LCSD									
Isotope Dilution	%Recovery	Qualifier	Limits								
1,4-Dioxane-d8	31		10 - 200								

Lab Sample ID: 460-22296 Matrix: Water Analysis Batch: 741075	61-4 MS							CI	lient Sample ID: MW Prep Type: Total/I Prep Batch: 7408		
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
1,4-Dioxane	0.20	U	1.60	1.61		ug/L		100	70 - 130		
	MS	MS									
Isotope Dilution	%Recovery	Qualifier	Limits								
1,4-Dioxane-d8	27		10 - 150								

Lab Sample ID: 460-22296 Matrix: Water Analysis Batch: 741075	61-4 MSD						Client Sample I Prep Type: Prep Batch				Total/NA		
•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit		
1,4-Dioxane	0.20	U	1.60	1.61		ug/L		100	70 - 130	0	20		
	MSD	MSD											
Isotope Dilution	%Recovery	Qualifier	Limits										
1,4-Dioxane-d8	26	·	10 - 150										

Method: 8081B - Organochlorine Pesticides (GC)

Lab Sample ID: MB 460-74082	1/1-A						Client Samp	ole ID: Method	d Blank
Matrix: Water								Prep Type: T	otal/NA
Analysis Batch: 741018								Prep Batch:	740821
•	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	0.020	U	0.020	0.0060	ug/L		11/18/20 09:44	11/19/20 05:14	1
4,4'-DDD	0.020	U	0.020	0.0060	ug/L		11/18/20 09:44	11/19/20 05:14	1
4,4'-DDE	0.020	U	0.020	0.0020	ug/L		11/18/20 09:44	11/19/20 05:14	1
4,4'-DDE	0.020	U	0.020	0.0020	ug/L		11/18/20 09:44	11/19/20 05:14	1
4,4'-DDT	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 05:14	1
4,4'-DDT	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 05:14	1
Aldrin	0.020	U	0.020	0.0030	ug/L		11/18/20 09:44	11/19/20 05:14	1
Aldrin	0.020	U	0.020	0.0030	ug/L		11/18/20 09:44	11/19/20 05:14	1
alpha-BHC	0.020	U	0.020	0.0070	ug/L		11/18/20 09:44	11/19/20 05:14	1
alpha-BHC	0.020	U	0.020	0.0070	ug/L		11/18/20 09:44	11/19/20 05:14	1
beta-BHC	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 05:14	1
beta-BHC	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 05:14	1
Chlordane (technical)	0.50	U	0.50	0.055	ug/L		11/18/20 09:44	11/19/20 05:14	1
Chlordane (technical)	0.50	U	0.50	0.055	ug/L		11/18/20 09:44	11/19/20 05:14	1
delta-BHC	0.020	U	0.020	0.0050	ug/L		11/18/20 09:44	11/19/20 05:14	1
delta-BHC	0.020	U	0.020	0.0050	ug/L		11/18/20 09:44	11/19/20 05:14	1

Eurofins TestAmerica, Edison

Page 92 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: MB 460-740821/1-A

Matrix: Water

Analysis Batch: 741018

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 740821

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dieldrin	0.020	U	0.020	0.0030	ug/L		11/18/20 09:44	11/19/20 05:14	1
Dieldrin	0.020	U	0.020	0.0030	ug/L		11/18/20 09:44	11/19/20 05:14	1
Endosulfan I	0.020	U	0.020	0.0020	ug/L		11/18/20 09:44	11/19/20 05:14	1
Endosulfan I	0.020	U	0.020	0.0020	ug/L		11/18/20 09:44	11/19/20 05:14	1
Endosulfan II	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 05:14	1
Endosulfan II	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 05:14	1
Endosulfan sulfate	0.020	U	0.020	0.0060	ug/L		11/18/20 09:44	11/19/20 05:14	1
Endosulfan sulfate	0.020	U	0.020	0.0060	ug/L		11/18/20 09:44	11/19/20 05:14	1
Endrin	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 05:14	1
Endrin	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 05:14	1
Endrin aldehyde	0.020	U	0.020	0.0080	ug/L		11/18/20 09:44	11/19/20 05:14	1
Endrin aldehyde	0.020	U	0.020	0.0080	ug/L		11/18/20 09:44	11/19/20 05:14	1
Endrin ketone	0.020	U	0.020	0.0080	ug/L		11/18/20 09:44	11/19/20 05:14	1
Endrin ketone	0.020	U	0.020	0.0080	ug/L		11/18/20 09:44	11/19/20 05:14	1
gamma-BHC (Lindane)	0.020	U	0.020	0.012	ug/L		11/18/20 09:44	11/19/20 05:14	1
gamma-BHC (Lindane)	0.020	U	0.020	0.012	ug/L		11/18/20 09:44	11/19/20 05:14	1
Heptachlor	0.020	U	0.020	0.0030	ug/L		11/18/20 09:44	11/19/20 05:14	1
Heptachlor	0.020	U	0.020	0.0030	ug/L		11/18/20 09:44	11/19/20 05:14	1
Heptachlor epoxide	0.020	U	0.020	0.0050	ug/L		11/18/20 09:44	11/19/20 05:14	1
Heptachlor epoxide	0.020	U	0.020	0.0050	ug/L		11/18/20 09:44	11/19/20 05:14	1
Methoxychlor	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 05:14	1
Methoxychlor	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 05:14	1
Toxaphene	0.50	U	0.50	0.11	ug/L		11/18/20 09:44	11/19/20 05:14	1
Toxaphene	0.50	U	0.50	0.11	ug/L		11/18/20 09:44	11/19/20 05:14	1

4D	MD	
VI D	IVID	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	74	10 - 132	11/18/20 09:44	11/19/20 05:14	1
DCB Decachlorobiphenyl	70	10 - 132	11/18/20 09:44	11/19/20 05:14	1
Tetrachloro-m-xylene	68	10 - 150	11/18/20 09:44	11/19/20 05:14	1
Tetrachloro-m-xylene	69	10 - 150	11/18/20 09:44	11/19/20 05:14	1

Lab Sample ID: LCS 460-740821/2-A

Matrix: Water

Analysis Batch: 741018

Client Sample ID: Lab Control Sample	Client S	Sample	ID: Lab	Control	Sample
--------------------------------------	----------	--------	---------	---------	--------

Prep Batch: 740821

Analysis Baton: 741010							1 Top Baton: 140021
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
4,4'-DDD	0.800	0.717		ug/L		90	55 - 150
4,4'-DDD	0.800	0.735		ug/L		92	55 - 150
4,4'-DDE	0.800	0.691		ug/L		86	52 - 150
4,4'-DDE	0.800	0.703		ug/L		88	52 - 150
4,4'-DDT	0.800	0.708		ug/L		89	51 - 141
4,4'-DDT	0.800	0.696		ug/L		87	51 - 141
Aldrin	0.800	0.664		ug/L		83	46 - 144
Aldrin	0.800	0.684		ug/L		86	46 - 144
alpha-BHC	0.800	0.668		ug/L		84	53 - 143
alpha-BHC	0.800	0.710		ug/L		89	53 - 143
beta-BHC	0.800	0.733		ug/L		92	54 - 143
beta-BHC	0.800	0.710		ug/L		89	54 - 143

Eurofins TestAmerica, Edison

Page 93 of 158

3/30/2021

Client: New York State D.E.C. Job ID: 460-222961-1

Spike

0.800

0.800

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCS 460-740821/2-A

Matrix: Water

Analyte delta-BHC delta-BHC Dieldrin Dieldrin Endosulfan I

Endosulfan I

Endosulfan II

Endosulfan II

Endrin

Endrin

Endosulfan sulfate

Endosulfan sulfate

Endrin aldehyde

Endrin aldehyde

Endrin ketone

Heptachlor

Analysis Batch: 741018

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 740821 %Rec.

Added	Result	Qualifier	Unit	D	%Rec	Limits	
0.800	0.656		ug/L		82	23 - 147	
0.800	0.692		ug/L		86	23 - 147	
0.800	0.672		ug/L		84	53 - 149	
0.800	0.689		ug/L		86	53 - 149	

0.660 83 54 - 149 ug/L 0.648 ug/L 81 54 - 149 ug/L 89 60 - 144

0.800 0.710 0.800 0.704 ug/L 88 60 - 1440.800 0.703 ug/L 88 50 - 150 0.800 83 0.664 ug/L 50 - 150

ug/L

LCS LCS

0.800 86 0.691 ug/L 49 - 150 0.800 87 0.692 ug/L 49 - 150 0.800 0.616 ug/L 77 53 - 140 0.800 74 0.595 ug/L 53 - 140 0.800 0.738 ug/L 92 53 - 150

0.693

Endrin ketone 0.800 83 0.666 ug/L 53 - 150gamma-BHC (Lindane) 0.800 0.682 ug/L 85 53 - 140 gamma-BHC (Lindane) 0.800 0.694 87 53 - 140 ug/L Heptachlor 0.800 0.680 ug/L 85 49 - 140

0.800

Heptachlor epoxide 0.800 0.663 ug/L 83 55 - 146 Heptachlor epoxide 0.800 0.669 ug/L 84 55 - 146 Methoxychlor 0.800 0.949 ug/L 119 52 - 145

Methoxychlor 0.800 0.729 ug/L 52 - 145

LCS LCS %Recovery Qualifier Limits Surrogate DCB Decachlorobiphenyl 10 - 132 73 10 - 132 DCB Decachlorobiphenyl 64 Tetrachloro-m-xylene 65 10 - 150 Tetrachloro-m-xylene 66 10 - 150

Lab Sample ID: LCSD 460-740821/3-A

Matrix: Water

Analysis Batch: 741018

Client Sample ID: Lab Control Sample Dup

87

49 - 140

Prep Type: Total/NA Prep Batch: 740821

Allalysis Datell. 141010						1 Tep De	11011. 7-	10021	
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4,4'-DDD	0.800	0.675		ug/L		84	55 - 150	6	30
4,4'-DDD	0.800	0.723		ug/L		90	55 - 150	2	30
4,4'-DDE	0.800	0.657		ug/L		82	52 - 150	5	30
4,4'-DDE	0.800	0.678		ug/L		85	52 - 150	4	30
4,4'-DDT	0.800	0.674		ug/L		84	51 - 141	5	30
4,4'-DDT	0.800	0.691		ug/L		86	51 - 141	1	30
Aldrin	0.800	0.643		ug/L		80	46 - 144	3	30
Aldrin	0.800	0.649		ug/L		81	46 - 144	5	30
alpha-BHC	0.800	0.651		ug/L		81	53 - 143	3	30
alpha-BHC	0.800	0.682		ug/L		85	53 - 143	4	30
beta-BHC	0.800	0.720		ug/L		90	54 - 143	2	30
beta-BHC	0.800	0.691		ug/L		86	54 - 143	3	30

Eurofins TestAmerica, Edison

3/30/2021

Page 94 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCSD 460-740821/3-A

Matrix: Water

Analysis Batch: 741018

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 740821

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
delta-BHC	0.800	0.644		ug/L		80	23 - 147	2	30
delta-BHC	0.800	0.661		ug/L		83	23 - 147	5	30
Dieldrin	0.800	0.637		ug/L		80	53 - 149	5	30
Dieldrin	0.800	0.668		ug/L		84	53 - 149	3	30
Endosulfan I	0.800	0.625		ug/L		78	54 - 149	6	30
Endosulfan I	0.800	0.626		ug/L		78	54 - 149	3	30
Endosulfan II	0.800	0.673		ug/L		84	60 - 144	5	30
Endosulfan II	0.800	0.691		ug/L		86	60 - 144	2	30
Endosulfan sulfate	0.800	0.653		ug/L		82	50 - 150	7	30
Endosulfan sulfate	0.800	0.656		ug/L		82	50 - 150	1	30
Endrin	0.800	0.657		ug/L		82	49 - 150	5	30
Endrin	0.800	0.680		ug/L		85	49 - 150	2	30
Endrin aldehyde	0.800	0.585		ug/L		73	53 - 140	5	30
Endrin aldehyde	0.800	0.592		ug/L		74	53 - 140	0	30
Endrin ketone	0.800	0.675		ug/L		84	53 - 150	9	30
Endrin ketone	0.800	0.658		ug/L		82	53 - 150	1	30
gamma-BHC (Lindane)	0.800	0.661		ug/L		83	53 - 140	3	30
gamma-BHC (Lindane)	0.800	0.667		ug/L		83	53 - 140	4	30
Heptachlor	0.800	0.662		ug/L		83	49 - 140	3	30
Heptachlor	0.800	0.664		ug/L		83	49 - 140	4	30
Heptachlor epoxide	0.800	0.636		ug/L		80	55 - 146	4	30
Heptachlor epoxide	0.800	0.639		ug/L		80	55 - 146	5	30
Methoxychlor	0.800	0.829		ug/L		104	52 - 145	14	30
Methoxychlor	0.800	0.726		ug/L		91	52 - 145	1	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	69		10 - 132
DCB Decachlorobiphenyl	64		10 - 132
Tetrachloro-m-xylene	66		10 - 150
Tetrachloro-m-xylene	63		10 - 150

Lab Sample ID: 460-222961-4 MS

Matrix: Water

Analysis Batch: 741018

Client Sample ID: MW-5 Prep Type: Total/NA Prep Batch: 740821

-	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
4,4'-DDD	0.020	U	0.800	0.839		ug/L		105	55 - 150
4,4'-DDD	0.020	U	0.800	0.887		ug/L		111	55 - 150
4,4'-DDE	0.020	U	0.800	0.746		ug/L		93	52 - 150
4,4'-DDE	0.020	U	0.800	0.790		ug/L		99	52 - 150
4,4'-DDT	0.020	U	0.800	0.826		ug/L		103	51 - 141
4,4'-DDT	0.020	U	0.800	0.859		ug/L		107	51 - 141
Aldrin	0.020	U	0.800	0.716		ug/L		90	46 - 144
Aldrin	0.020	U	0.800	0.766		ug/L		96	46 - 144
alpha-BHC	0.020	U	0.800	0.737		ug/L		92	53 - 143
alpha-BHC	0.020	U	0.800	0.825		ug/L		103	53 - 143
beta-BHC	0.020	U	0.800	0.857		ug/L		107	54 - 143
beta-BHC	0.020	U	0.800	0.870		ug/L		109	54 - 143

Eurofins TestAmerica, Edison

Page 95 of 158

6

3

_

7

9

11

13

15

16

117

3/30/2021

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: 460-222961-4 MS

Matrix: Water

Analysis Batch: 741018

Client Sample ID: MW-5 Prep Type: Total/NA Prep Batch: 740821

Job ID: 460-222961-1

7 maryolo Batom 7 770 10	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
delta-BHC	0.020	U	0.800	0.773		ug/L		97	23 - 147
delta-BHC	0.020	U	0.800	0.851		ug/L		106	23 - 147
Dieldrin	0.020	U	0.800	0.774		ug/L		97	53 - 149
Dieldrin	0.020	U	0.800	0.820		ug/L		102	53 - 149
Endosulfan I	0.020	U	0.800	0.742		ug/L		93	54 - 149
Endosulfan I	0.020	U	0.800	0.769		ug/L		96	54 - 149
Endosulfan II	0.020	U	0.800	0.841		ug/L		105	60 - 144
Endosulfan II	0.020	U	0.800	0.860		ug/L		108	60 - 144
Endosulfan sulfate	0.020	U	0.800	0.837		ug/L		105	50 - 150
Endosulfan sulfate	0.020	U	0.800	0.839		ug/L		105	50 - 150
Endrin	0.020	U	0.800	0.850		ug/L		106	49 - 150
Endrin	0.020	U	0.800	0.892		ug/L		111	49 - 150
Endrin aldehyde	0.020	U	0.800	0.709		ug/L		89	53 - 140
Endrin aldehyde	0.020	U	0.800	0.727		ug/L		91	53 - 140
Endrin ketone	0.020	U	0.800	0.856		ug/L		107	53 - 150
Endrin ketone	0.020	U	0.800	0.835		ug/L		104	53 - 150
gamma-BHC (Lindane)	0.020	U	0.800	0.765		ug/L		96	53 - 140
gamma-BHC (Lindane)	0.020	U	0.800	0.817		ug/L		102	53 - 140
Heptachlor	0.020	U	0.800	0.753		ug/L		94	49 - 140
Heptachlor	0.020	U	0.800	0.796		ug/L		99	49 - 140
Heptachlor epoxide	0.020	U	0.800	0.755		ug/L		94	55 - 146
Heptachlor epoxide	0.020	U	0.800	0.784		ug/L		98	55 - 146
Methoxychlor	0.020	U	0.800	1.06		ug/L		133	52 - 145
Methoxychlor	0.020	U	0.800	0.940		ug/L		118	52 - 145
	MS	MS							

MS MS

Surrogate	%Recovery Quali	fier Limits
DCB Decachlorobiphenyl	75	10 - 132
DCB Decachlorobiphenyl	68	10 - 132
Tetrachloro-m-xylene	71	10 - 150
Tetrachloro-m-xvlene	74	10 - 150

Lab Sample ID: 460-222961-4 MSD

Matrix: Water

Analysis Batch: 741018

Client Sample ID: MW-5 Prep Type: Total/NA Prep Batch: 740821

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4,4'-DDD	0.020	U	0.800	0.796		ug/L		99	55 - 150	5	30
4,4'-DDD	0.020	U	0.800	0.884		ug/L		111	55 - 150	0	30
4,4'-DDE	0.020	U	0.800	0.710		ug/L		89	52 - 150	5	30
4,4'-DDE	0.020	U	0.800	0.776		ug/L		97	52 - 150	2	30
4,4'-DDT	0.020	U	0.800	0.780		ug/L		98	51 - 141	6	30
4,4'-DDT	0.020	U	0.800	0.838		ug/L		105	51 - 141	2	30
Aldrin	0.020	U	0.800	0.667		ug/L		83	46 - 144	7	30
Aldrin	0.020	U	0.800	0.727		ug/L		91	46 - 144	5	30
alpha-BHC	0.020	U	0.800	0.709		ug/L		89	53 - 143	4	30
alpha-BHC	0.020	U	0.800	0.789		ug/L		99	53 - 143	4	30
beta-BHC	0.020	U	0.800	0.832		ug/L		104	54 - 143	3	30
beta-BHC	0.020	U	0.800	0.860		ug/L		107	54 - 143	1	30

Page 96 of 158

Job ID: 460-222961-1 Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: 460-222961-4 MSD

Matrix: Water

Analysis Batch: 741018

Client Sample ID: MW-5 Prep Type: Total/NA

Prep Batch: 740821

Analysis Buton, 141010									i icp be	1011. 1-	1002
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
delta-BHC	0.020	U	0.800	0.751		ug/L		94	23 - 147	3	30
delta-BHC	0.020	U	0.800	0.842		ug/L		105	23 - 147	1	30
Dieldrin	0.020	U	0.800	0.735		ug/L		92	53 - 149	5	30
Dieldrin	0.020	U	0.800	0.815		ug/L		102	53 - 149	1	30
Endosulfan I	0.020	U	0.800	0.717		ug/L		90	54 - 149	3	30
Endosulfan I	0.020	U	0.800	0.760		ug/L		95	54 - 149	1	30
Endosulfan II	0.020	U	0.800	0.803		ug/L		100	60 - 144	5	30
Endosulfan II	0.020	U	0.800	0.862		ug/L		108	60 - 144	0	30
Endosulfan sulfate	0.020	U	0.800	0.808		ug/L		101	50 - 150	4	30
Endosulfan sulfate	0.020	U	0.800	0.834		ug/L		104	50 - 150	1	30
Endrin	0.020	U	0.800	0.808		ug/L		101	49 - 150	5	30
Endrin	0.020	U	0.800	0.889		ug/L		111	49 - 150	0	30
Endrin aldehyde	0.020	U	0.800	0.685		ug/L		86	53 - 140	3	30
Endrin aldehyde	0.020	U	0.800	0.712		ug/L		89	53 - 140	2	30
Endrin ketone	0.020	U	0.800	0.826		ug/L		103	53 - 150	4	30
Endrin ketone	0.020	U	0.800	0.828		ug/L		103	53 - 150	1	30
gamma-BHC (Lindane)	0.020	U	0.800	0.733		ug/L		92	53 - 140	4	30
gamma-BHC (Lindane)	0.020	U	0.800	0.788		ug/L		99	53 - 140	4	30
Heptachlor	0.020	U	0.800	0.703		ug/L		88	49 - 140	7	30
Heptachlor	0.020	U	0.800	0.757		ug/L		95	49 - 140	5	30
Heptachlor epoxide	0.020	U	0.800	0.719		ug/L		90	55 - 146	5	30
Heptachlor epoxide	0.020	U	0.800	0.771		ug/L		96	55 - 146	2	30
Methoxychlor	0.020	U	0.800	1.01		ug/L		126	52 - 145	5	30
Methoxychlor	0.020	U	0.800	0.922		ug/L		115	52 - 145	2	30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	64		10 - 132
DCB Decachlorobiphenyl	59		10 - 132
Tetrachloro-m-xylene	69		10 - 150
Tetrachloro-m-xvlene	68		10 - 150

Lab Sample ID: MB 460-740857/1-A

Matrix: Water

Analysis Batch: 741016

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 740857

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	0.020	U	0.020	0.0060	ug/L		11/18/20 13:29	11/19/20 10:44	1
4,4'-DDD	0.020	U	0.020	0.0060	ug/L		11/18/20 13:29	11/19/20 10:44	1
4,4'-DDE	0.020	U	0.020	0.0020	ug/L		11/18/20 13:29	11/19/20 10:44	1
4,4'-DDE	0.020	U	0.020	0.0020	ug/L		11/18/20 13:29	11/19/20 10:44	1
4,4'-DDT	0.020	U	0.020	0.0040	ug/L		11/18/20 13:29	11/19/20 10:44	1
4,4'-DDT	0.020	U	0.020	0.0040	ug/L		11/18/20 13:29	11/19/20 10:44	1
Aldrin	0.020	U	0.020	0.0030	ug/L		11/18/20 13:29	11/19/20 10:44	1
Aldrin	0.020	U	0.020	0.0030	ug/L		11/18/20 13:29	11/19/20 10:44	1
alpha-BHC	0.020	U	0.020	0.0070	ug/L		11/18/20 13:29	11/19/20 10:44	1
alpha-BHC	0.020	U	0.020	0.0070	ug/L		11/18/20 13:29	11/19/20 10:44	1
beta-BHC	0.020	U	0.020	0.0040	ug/L		11/18/20 13:29	11/19/20 10:44	1
beta-BHC	0.020	U	0.020	0.0040	ug/L		11/18/20 13:29	11/19/20 10:44	1

Eurofins TestAmerica, Edison

Page 97 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: MB 460-740857/1-A

Matrix: Water

Analysis Batch: 741016

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 740857

	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlordane (technical)	0.50	U	0.50	0.055	ug/L		11/18/20 13:29	11/19/20 10:44	1
Chlordane (technical)	0.50	U	0.50	0.055	ug/L		11/18/20 13:29	11/19/20 10:44	1
delta-BHC	0.020	U	0.020	0.0050	ug/L		11/18/20 13:29	11/19/20 10:44	1
delta-BHC	0.020	U	0.020	0.0050	ug/L		11/18/20 13:29	11/19/20 10:44	1
Dieldrin	0.020	U	0.020	0.0030	ug/L		11/18/20 13:29	11/19/20 10:44	1
Dieldrin	0.020	U	0.020	0.0030	ug/L		11/18/20 13:29	11/19/20 10:44	1
Endosulfan I	0.020	U	0.020	0.0020	ug/L		11/18/20 13:29	11/19/20 10:44	1
Endosulfan I	0.020	U	0.020	0.0020	ug/L		11/18/20 13:29	11/19/20 10:44	1
Endosulfan II	0.020	U	0.020	0.0040	ug/L		11/18/20 13:29	11/19/20 10:44	1
Endosulfan II	0.020	U	0.020	0.0040	ug/L		11/18/20 13:29	11/19/20 10:44	1
Endosulfan sulfate	0.020	U	0.020	0.0060	ug/L		11/18/20 13:29	11/19/20 10:44	1
Endosulfan sulfate	0.020	U	0.020	0.0060	ug/L		11/18/20 13:29	11/19/20 10:44	1
Endrin	0.020	U	0.020	0.0040	ug/L		11/18/20 13:29	11/19/20 10:44	1
Endrin	0.020	U	0.020	0.0040	ug/L		11/18/20 13:29	11/19/20 10:44	1
Endrin aldehyde	0.020	U	0.020	0.0080	ug/L		11/18/20 13:29	11/19/20 10:44	1
Endrin aldehyde	0.020	U	0.020	0.0080	ug/L		11/18/20 13:29	11/19/20 10:44	1
Endrin ketone	0.020	U	0.020	0.0080	ug/L		11/18/20 13:29	11/19/20 10:44	1
Endrin ketone	0.020	U	0.020	0.0080	ug/L		11/18/20 13:29	11/19/20 10:44	1
gamma-BHC (Lindane)	0.020	U	0.020	0.012	ug/L		11/18/20 13:29	11/19/20 10:44	1
gamma-BHC (Lindane)	0.020	U	0.020	0.012	ug/L		11/18/20 13:29	11/19/20 10:44	1
Heptachlor	0.020	U	0.020	0.0030	ug/L		11/18/20 13:29	11/19/20 10:44	1
Heptachlor	0.020	U	0.020	0.0030	ug/L		11/18/20 13:29	11/19/20 10:44	1
Heptachlor epoxide	0.020	U	0.020	0.0050	ug/L		11/18/20 13:29	11/19/20 10:44	1
Heptachlor epoxide	0.020	U	0.020	0.0050	ug/L		11/18/20 13:29	11/19/20 10:44	1
Methoxychlor	0.020	U	0.020	0.0040	ug/L		11/18/20 13:29	11/19/20 10:44	1
Methoxychlor	0.020	U	0.020	0.0040	ug/L		11/18/20 13:29	11/19/20 10:44	1
Toxaphene	0.50	U	0.50	0.11	ug/L		11/18/20 13:29	11/19/20 10:44	1
Toxaphene	0.50	U	0.50	0.11	ug/L		11/18/20 13:29	11/19/20 10:44	1

	IVIB IVIB	WB WB								
Surrogate	%Recovery Qualif	ïer Limits	Prepared	Analyzed	Dil Fac					
DCB Decachlorobiphenyl	68	10 - 132	11/18/20 13:29	11/19/20 10:44	1					
DCB Decachlorobiphenyl	76	10 - 132	11/18/20 13:29	11/19/20 10:44	1					
Tetrachloro-m-xylene	71	10 - 150	11/18/20 13:29	11/19/20 10:44	1					
Tetrachloro-m-xylene	73	10 - 150	11/18/20 13:29	11/19/20 10:44	1					

Lab Sample ID: LCS 460-740857/2-A

Matrix: Water

Analysis Batch: 741016

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA
	Prep Batch: 740857

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
4,4'-DDD	0.800	0.837		ug/L		105	55 - 150	
4,4'-DDD	0.800	0.914		ug/L		114	55 - 150	
4,4'-DDE	0.800	0.631		ug/L		79	52 - 150	
4,4'-DDE	0.800	0.713		ug/L		89	52 - 150	
4,4'-DDT	0.800	0.591		ug/L		74	51 - 141	
4,4'-DDT	0.800	0.605		ug/L		76	51 - 141	
Aldrin	0.800	0.563		ug/L		70	46 - 144	
Aldrin	0.800	0.618		ug/L		77	46 - 144	

Eurofins TestAmerica, Edison

Page 98 of 158

9

3

4

7

9

10

12

14

16

LCS LCS

Job ID: 460-222961-1 Client: New York State D.E.C.

Spike

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCS 460-740857/2-A

Matrix: Water

Analysis Batch: 741016

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 740857 %Rec.

	- P				,	
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	
alpha-BHC	0.800	0.760	ug/L	95	53 - 143	
alpha-BHC	0.800	0.822	ug/L	103	53 - 143	
beta-BHC	0.800	0.762	ug/L	95	54 - 143	
beta-BHC	0.800	0.964	ug/L	121	54 - 143	
delta-BHC	0.800	0.797	ug/L	100	23 - 147	
delta-BHC	0.800	0.887	ug/L	111	23 - 147	
Dieldrin	0.800	0.737	ug/L	92	53 - 149	
Dieldrin	0.800	0.835	ug/L	104	53 - 149	
Endosulfan I	0.800	0.720	ug/L	90	54 - 149	
Endosulfan I	0.800	0.814	ug/L	102	54 - 149	
Endosulfan II	0.800	0.789	ug/L	99	60 - 144	
Endosulfan II	0.800	0.848	ug/L	106	60 - 144	
Endosulfan sulfate	0.800	0.747	ug/L	93	50 - 150	
Endosulfan sulfate	0.800	0.819	ug/L	102	50 - 150	
Endrin	0.800	0.731	ug/L	91	49 - 150	
Endrin	0.800	0.831	ug/L	104	49 - 150	
Endrin aldehyde	0.800	0.632	ug/L	79	53 - 140	
Endrin aldehyde	0.800	0.677	ug/L	85	53 - 140	
Endrin ketone	0.800	0.745	ug/L	93	53 - 150	
Endrin ketone	0.800	0.804	ug/L	101	53 - 150	
gamma-BHC (Lindane)	0.800	0.803	ug/L	100	53 - 140	
gamma-BHC (Lindane)	0.800	0.831	ug/L	104	53 - 140	
Heptachlor	0.800	0.586	ug/L	73	49 - 140	
Heptachlor	0.800	0.616	ug/L	77	49 - 140	
Heptachlor epoxide	0.800	0.712	ug/L	89	55 - 146	
Heptachlor epoxide	0.800	0.789	ug/L	99	55 - 146	
Methoxychlor	0.800	0.587	ug/L	73	52 - 145	
I and the second se						

0.800

0.585

ug/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	57		10 - 132
DCB Decachlorobiphenyl	60		10 - 132
Tetrachloro-m-xylene	29		10 - 150
Tetrachloro-m-xylene	32		10 - 150

Lab Sample ID: LCSD 460-740857/3-A

Matrix: Water

Methoxychlor

Analysis Batch: 741016

Cilent Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

73

52 - 145

Prep Batch: 740857

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4,4'-DDD	0.800	0.909		ug/L		114	55 - 150	8	30
4,4'-DDD	0.800	0.923		ug/L		115	55 - 150	1	30
4,4'-DDE	0.800	0.706		ug/L		88	52 - 150	11	30
4,4'-DDE	0.800	0.759		ug/L		95	52 - 150	6	30
4,4'-DDT	0.800	0.551		ug/L		69	51 - 141	7	30
4,4'-DDT	0.800	0.534		ug/L		67	51 - 141	12	30
Aldrin	0.800	0.731		ug/L		91	46 - 144	26	30
Aldrin	0.800	0.770		ug/L		96	46 - 144	22	30

Eurofins TestAmerica, Edison

Page 99 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCSD 460-740857/3-A

Matrix: Water

Analysis Batch: 741016

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 740857

LCSD LCSD Spike %Rec. **RPD** Analyte Added Result Qualifier Unit %Rec Limits RPD Limit alpha-BHC 0.800 0.816 ug/L 102 53 - 143 7 30 alpha-BHC 0.800 0.852 ug/L 106 53 - 143 4 30 beta-BHC 0.800 0.816 ug/L 102 54 - 143 30 beta-BHC 0.800 0.858 ug/L 107 54 - 143 12 30 delta-BHC 0.800 0.832 104 23 - 147 30 ug/L 4 delta-BHC 0.800 0.865 ug/L 108 23 - 147 30 Dieldrin 0.800 0.772 ug/L 97 53 - 1495 30 Dieldrin 0.800 0.831 ug/L 104 53 - 149 0 30 Endosulfan I 0.800 0.762 ug/L 95 54 - 149 6 30 Endosulfan I 0.800 102 0 30 0.815 ug/L 54 - 149 Endosulfan II 104 30 0.800 0.831 ug/L 60 - 144 5 Endosulfan II 2 30 0.800 0.833 ug/L 104 60 - 144ug/L Endosulfan sulfate 0.800 0.764 95 50 - 150 30 Endosulfan sulfate 0.800 101 0.805 ug/L 50 - 150 2 30 Endrin 0.800 0.756 ug/L 95 49 - 150 30 Endrin 0.800 102 0.813 ug/L 49 - 150 2 30 Endrin aldehyde 0.800 0.680 ug/L 85 53 - 140 30 Endrin aldehyde 0.800 0.695 87 53 - 140 3 30 ug/L 96 Endrin ketone 0.800 0.766 ug/L 53 - 150 3 30 ug/L Endrin ketone 0.800 0.789 99 53 - 150 2 30 103 gamma-BHC (Lindane) 0.800 0.824 ug/L 53 - 140 3 30 gamma-BHC (Lindane) 0.800 0.849 ug/L 106 53 - 140 2 30 Heptachlor 0.800 0.695 ug/L 87 49 - 140 17 30 Heptachlor 0.800 0.714 89 49 - 140 30 ug/L 0.800 0.755 94 6 30 Heptachlor epoxide ug/L 55 - 146 Heptachlor epoxide 0.800 0.802 ug/L 100 55 - 146 2 30 0.800 0.560 70 52 - 145 Methoxychlor ug/L 5 30 Methoxychlor 0.800 0.535 ug/L 67 52 - 145 30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	58		10 - 132
DCB Decachlorobiphenyl	62		10 - 132
Tetrachloro-m-xylene	36		10 - 150
Tetrachloro-m-xylene	39		10 - 150

Lab Sample ID: MB 460-741118/1-A

Matrix: Solid

Analysis Batch: 741313

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 741118

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	6.7	U	6.7	1.1	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
4,4'-DDD	6.7	U	6.7	1.1	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
4,4'-DDE	6.7	U	6.7	0.79	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
4,4'-DDE	6.7	U	6.7	0.79	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
4,4'-DDT	6.7	U	6.7	1.2	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
4,4'-DDT	6.7	U	6.7	1.2	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
Aldrin	6.7	U	6.7	1.0	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
Aldrin	6.7	U	6.7	1.0	ug/Kg		11/19/20 09:41	11/20/20 06:13	1

Eurofins TestAmerica, Edison

Page 100 of 158

2

3

5

6

a

10

12

14

4.0

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: MB 460-741118/1-A

Matrix: Solid

Analysis Batch: 741313

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 460-222961-1

Prep Batch: 741118

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
alpha-BHC	2.0	U	2.0	0.68	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
alpha-BHC	2.0	U	2.0	0.68	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
beta-BHC	2.0	U	2.0	0.75	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
beta-BHC	2.0	U	2.0	0.75	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
Chlordane (technical)	67	U	67	16	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
Chlordane (technical)	67	U	67	16	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
delta-BHC	2.0	U	2.0	0.41	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
delta-BHC	2.0	U	2.0	0.41	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
Dieldrin	2.0	U	2.0	0.87	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
Dieldrin	2.0	U	2.0	0.87	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
Endosulfan I	6.7	U	6.7	1.0	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
Endosulfan I	6.7	U	6.7	1.0	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
Endosulfan II	6.7	U	6.7	1.7	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
Endosulfan II	6.7	U	6.7	1.7	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
Endosulfan sulfate	6.7	U	6.7	0.84	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
Endosulfan sulfate	6.7	U	6.7	0.84	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
Endrin	6.7	U	6.7	0.96	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
Endrin	6.7	U	6.7	0.96	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
Endrin aldehyde	6.7	U	6.7	1.6	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
Endrin aldehyde	6.7	U	6.7	1.6	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
Endrin ketone	6.7	U	6.7	1.3	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
Endrin ketone	6.7	U	6.7	1.3	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
gamma-BHC (Lindane)	2.0	U	2.0	0.62	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
gamma-BHC (Lindane)	2.0	U	2.0	0.62	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
Heptachlor	6.7	U	6.7	0.79	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
Heptachlor	6.7	U	6.7	0.79	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
Heptachlor epoxide	6.7	U	6.7	1.0	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
Heptachlor epoxide	6.7	U	6.7	1.0	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
Methoxychlor	6.7	U	6.7	1.5	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
Methoxychlor	6.7	U	6.7	1.5	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
Toxaphene	67	U	67	24	ug/Kg		11/19/20 09:41	11/20/20 06:13	1
Toxaphene	67	U	67	24	ug/Kg		11/19/20 09:41	11/20/20 06:13	1

Surrogate	%Recovery Qualifier	Limits	Prepared A	nalyzed Dil Fa	IC
DCB Decachlorobiphenyl	105	28 - 148	11/19/20 09:41 11/2	0/20 06:13	1
DCB Decachlorobiphenyl	116	28 - 148	11/19/20 09:41 11/2	0/20 06:13	1
Tetrachloro-m-xylene	99	34 - 118	11/19/20 09:41 11/2	0/20 06:13	1
Tetrachloro-m-xylene	97	34 - 118	11/19/20 09:41 11/2	0/20 06:13	1

Lab Sample ID: LCS 460-741118/2-A

Matrix: Solid

Analysis Batch: 741313

Client Sample	ID: Lab Control Sample
	Pren Type: Total/NA

Prep Batch: 741118

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
4,4'-DDD	133	135		ug/Kg		101	70 - 140	
4,4'-DDD	133	136		ug/Kg		102	70 - 140	
4,4'-DDE	133	134		ug/Kg		100	71 - 137	
4,4'-DDE	133	135		ug/Kg		101	71 - 137	

Eurofins TestAmerica, Edison

Page 101 of 158

LCS LCS

133

133

131

131

136

136

136

139

137

137

131

135

131

131

142

146

130

131

128

129

128

130

130

136

137

137

129

130

129

129

123

120

Result Qualifier

Unit

ug/Kg

Spike

Added

133

133

133

133

133

133

133

133

133

133

133

133

133

133

133

133

133

133

133

133

133

133

133

133

133

133

133

133

133

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCS 460-741118/2-A

Matrix: Solid

Analyte

4,4'-DDT

4,4'-DDT

alpha-BHC

alpha-BHC

beta-BHC

beta-BHC

delta-BHC

delta-BHC

Endosulfan I

Endosulfan I

Endosulfan II

Endosulfan II

Endosulfan sulfate

Endosulfan sulfate

Endrin aldehyde

Endrin aldehyde

Endrin ketone

Endrin ketone

Heptachlor

Heptachlor

gamma-BHC (Lindane)

gamma-BHC (Lindane)

Heptachlor epoxide

Matrix: Solid

Dieldrin

Dieldrin

Endrin

Endrin

Aldrin

Aldrin

Analysis Batch: 741313

Client Sample ID: Lab Control Sample

		Prep Type: Total/NA
		Prep Batch: 741118
		%Rec.
D	%Rec	Limits
_	99	63 - 131

70 - 143

70 - 143

70 - 135

70 - 135

68 - 135

68 - 135

64 - 130

64 - 130

66 - 143 66 - 143

68 - 136

68 - 136

68 - 132

68 - 132

60 - 150

60 - 150

70 - 134

70 - 134

69 - 134

69 - 134

70 - 135

70 - 135

57 - 135

57 - 135

Job ID: 460-222961-1

99 63 - 13199 74 - 140 99 74 - 140 102 72 - 142 102 72 - 142 102 65 - 137 104 65 - 137

103

102

99

101

98

98

106

109

97

98

96

97

96

98

98

102

103

103

97

98

97

97

92

90

Heptachlor epoxide			133
Methoxychlor			133
Methoxychlor			133
	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	83		28 - 148
DCB Decachlorobiphenyl	97		28 - 148
Tetrachloro-m-xylene	77		34 - 118
Tetrachloro-m-xylene	82		34 - 118

Lab Sample ID: LCSD 460-741118/3-A

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 741118**

Analysis Batch: 741313							Prep Ba	tch: 7	41118
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4,4'-DDD	133	149		ug/Kg		111	70 - 140	9	30
4,4'-DDD	133	151		ug/Kg		113	70 - 140	11	30
4,4'-DDE	133	148		ug/Kg		111	71 - 137	10	30
4,4'-DDE	133	150		ug/Kg		112	71 - 137	10	30

Eurofins TestAmerica, Edison

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCSD 460-741118/3-A

Matrix: Solid

Analysis Batch: 741313

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 741118**

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4,4'-DDT	133	144		ug/Kg		108	63 - 131	8	30
4,4'-DDT	133	146		ug/Kg		109	63 - 131	10	30
Aldrin	133	145		ug/Kg		109	74 - 140	10	30
Aldrin	133	144		ug/Kg		108	74 - 140	9	30
alpha-BHC	133	149		ug/Kg		112	72 - 142	9	30
alpha-BHC	133	147		ug/Kg		110	72 - 142	7	30
beta-BHC	133	149		ug/Kg		111	65 - 137	9	30
beta-BHC	133	151		ug/Kg		114	65 - 137	9	30
delta-BHC	133	150		ug/Kg		112	70 - 143	9	30
delta-BHC	133	148		ug/Kg		111	70 - 143	8	30
Dieldrin	133	143		ug/Kg		108	70 - 135	9	30
Dieldrin	133	150		ug/Kg		113	70 - 135	11	30
Endosulfan I	133	145		ug/Kg		108	68 - 135	10	30
Endosulfan I	133	145		ug/Kg		109	68 - 135	10	30
Endosulfan II	133	156		ug/Kg		117	64 - 130	9	30
Endosulfan II	133	162		ug/Kg		121	64 - 130	10	30
Endosulfan sulfate	133	143		ug/Kg		107	66 - 143	9	30
Endosulfan sulfate	133	146		ug/Kg		109	66 - 143	10	30
Endrin	133	140		ug/Kg		105	68 - 136	9	30
Endrin	133	142		ug/Kg		106	68 - 136	9	30
Endrin aldehyde	133	141		ug/Kg		106	68 - 132	10	30
Endrin aldehyde	133	146		ug/Kg		109	68 - 132	11	30
Endrin ketone	133	142		ug/Kg		107	60 - 150	9	30
Endrin ketone	133	152		ug/Kg		114	60 - 150	11	30
gamma-BHC (Lindane)	133	150		ug/Kg		112	70 - 134	9	30
gamma-BHC (Lindane)	133	149		ug/Kg		111	70 - 134	8	30
Heptachlor	133	141		ug/Kg		106	69 - 134	9	30
Heptachlor	133	142		ug/Kg		106	69 - 134	9	30
Heptachlor epoxide	133	142		ug/Kg		107	70 - 135	10	30
Heptachlor epoxide	133	143		ug/Kg		107	70 - 135	10	30
Methoxychlor	133	132		ug/Kg		99	57 - 135	7	30
Methoxychlor	133	131		ug/Kg		98	57 - 135	9	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	90		28 - 148
DCB Decachlorobiphenyl	107		28 - 148
Tetrachloro-m-xylene	83		34 - 118
Tetrachloro-m-xvlene	88		34 - 118

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 460-740820/1-A

Matrix: Water

Analysis Batch: 740769

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 740820

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 16:29	1
Aroclor 1016	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 16:29	1
Aroclor 1221	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 16:29	1

Eurofins TestAmerica, Edison

Page 103 of 158

Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: MB 460-740820/1-A

Matrix: Water

Analysis Batch: 740769

Client: New York State D.E.C.

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 740820

	MR	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1221	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 16:29	1
Aroclor 1232	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 16:29	1
Aroclor 1232	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 16:29	1
Aroclor 1242	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 16:29	1
Aroclor 1242	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 16:29	1
Aroclor 1248	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 16:29	1
Aroclor 1248	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 16:29	1
Aroclor 1254	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 16:29	1
Aroclor 1254	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 16:29	1
Aroclor 1260	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 16:29	1
Aroclor 1260	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 16:29	1
Aroclor-1262	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 16:29	1
Aroclor-1262	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 16:29	1
Aroclor 1268	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 16:29	1
Aroclor 1268	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 16:29	1
Polychlorinated biphenyls, Total	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 16:29	1
Polychlorinated biphenyls, Total	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 16:29	1
I The state of the									

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	87		10 - 150	11/18/20 09:41	11/18/20 16:29	1
DCB Decachlorobiphenyl	84		10 - 150	11/18/20 09:41	11/18/20 16:29	1
Tetrachloro-m-xylene	88		48 - 125	11/18/20 09:41	11/18/20 16:29	1
Tetrachloro-m-xylene	87		48 - 125	11/18/20 09:41	11/18/20 16:29	1

Lab Sample ID: LCS 460-740820/2-A

Matrix: Water

Analysis Batch: 740769

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 740820

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aroclor 1016	4.00	3.54	-	ug/L		89	66 - 141	
Aroclor 1016	4.00	3.64		ug/L		91	66 - 141	
Aroclor 1260	4.00	3.73		ug/L		93	75 - 150	
Aroclor 1260	4.00	3.69		ua/L		92	75 - 150	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	84		10 - 150
DCB Decachlorobiphenyl	81		10 - 150
Tetrachloro-m-xylene	83		48 - 125
Tetrachloro-m-xylene	82		48 - 125

Lab Sample ID: LCSD 460-740820/3-A Matrix: Water Analysis Batch: 740769			C	Client Sa	ımple	ID: Lat	Lab Control Sample Prep Type: Tota Prep Batch: 740				
-	Spike	LCSD	LCSD				%Rec.		RPD		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit		
Aroclor 1016	4.00	3.65		ug/L		91	66 - 141	3	30		
Aroclor 1016	4.00	3.78		ug/L		94	66 - 141	4	30		
Aroclor 1260	4 00	3 77		ua/l		94	75 - 150	1	30		

Eurofins TestAmerica, Edison

Page 104 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: LCSD 460-740820/3-A

Matrix: Water

Analysis Batch: 740769

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 740820**

LCSD LCSD Spike %Rec. **RPD** Analyte Added Result Qualifier Unit %Rec Limits RPD Limit ug/L Aroclor 1260 4 00 3.72 93 75 - 150 30

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	87		10 - 150
DCB Decachlorobiphenyl	83		10 - 150
Tetrachloro-m-xylene	86		48 - 125
Tetrachloro-m-xylene	86		48 - 125

Lab Sample ID: 460-222961-4 MS

Matrix: Water

Analysis Batch: 740769

Client Sample ID: MW-5 Prep Type: Total/NA

Prep Batch: 740820

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Aroclor 1016 66 - 141 0.40 U 4.00 3.66 ug/L 92 Aroclor 1016 0.40 U 4.00 3.93 ug/L 98 66 - 141 Aroclor 1260 4.00 3.75 0.40 U ug/L 94 75 - 150 Aroclor 1260 0.40 U 4.00 3.78 ug/L 95 75 - 150

MS MS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	82		10 - 150
DCB Decachlorobiphenyl	81		10 - 150
Tetrachloro-m-xylene	80		48 - 125
Tetrachloro-m-xylene	86		48 - 125

Lab Sample ID: 460-222961-4 MSD

Matrix: Water

Analysis Batch: 740769

Client Sample ID: MW-5

Prep Type: Total/NA Prep Batch: 740820

Spike MSD MSD %Rec. **RPD** Sample Sample Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Aroclor 1016 0.40 U 4.00 4.15 ug/L 104 66 - 141 13 30 Aroclor 1016 0.40 U 4.00 4.54 ug/L 113 66 - 141 14 30 Aroclor 1260 0.40 U 4.00 4.07 ug/L 102 75 - 150 8 30 Aroclor 1260 0.40 U 4.00 104 30 4.14 ug/L 75 - 150

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	87		10 - 150
DCB Decachlorobiphenyl	88		10 - 150
Tetrachloro-m-xylene	96		48 - 125
Tetrachloro-m-xylene	105		48 - 125

Lab Sample ID: MB 460-740863/1-A

Matrix: Water

Analysis Batch: 741103

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 740863

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	0.40	U	0.40	0.12	ug/L		11/18/20 14:29	11/19/20 09:41	1
Aroclor 1016	0.40	U	0.40	0.12	ug/L		11/18/20 14:29	11/19/20 09:41	1
Aroclor 1221	0.40	U	0.40	0.12	ug/L		11/18/20 14:29	11/19/20 09:41	1

Eurofins TestAmerica, Edison

Page 105 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: MB 460-740863/1-A

Matrix: Water

Analysis Batch: 741103

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 740863

MB	MB							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
0.40	U	0.40	0.12	ug/L		11/18/20 14:29	11/19/20 09:41	1
0.40	U	0.40	0.12	ug/L		11/18/20 14:29	11/19/20 09:41	1
0.40	U	0.40	0.12	ug/L		11/18/20 14:29	11/19/20 09:41	1
0.40	U	0.40	0.12	ug/L		11/18/20 14:29	11/19/20 09:41	1
0.40	U	0.40	0.12	ug/L		11/18/20 14:29	11/19/20 09:41	1
0.40	U	0.40	0.12	ug/L		11/18/20 14:29	11/19/20 09:41	1
0.40	U	0.40	0.12	ug/L		11/18/20 14:29	11/19/20 09:41	1
0.40	U	0.40	0.11	ug/L		11/18/20 14:29	11/19/20 09:41	1
0.40	U	0.40	0.11	ug/L		11/18/20 14:29	11/19/20 09:41	1
0.40	U	0.40	0.11	ug/L		11/18/20 14:29	11/19/20 09:41	1
0.40	U	0.40	0.11	ug/L		11/18/20 14:29	11/19/20 09:41	1
0.40	U	0.40	0.11	ug/L		11/18/20 14:29	11/19/20 09:41	1
0.40	U	0.40	0.11	ug/L		11/18/20 14:29	11/19/20 09:41	1
0.40	U	0.40	0.11	ug/L		11/18/20 14:29	11/19/20 09:41	1
0.40	U	0.40	0.11	ug/L		11/18/20 14:29	11/19/20 09:41	1
0.40	U	0.40	0.12	ug/L		11/18/20 14:29	11/19/20 09:41	1
0.40	U	0.40	0.12	ug/L		11/18/20 14:29	11/19/20 09:41	1
	Result 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.	MB MB Result Qualifier 0.40 U	Result Qualifier RL 0.40 U 0.40 0.40 U 0.40 </td <td>Result Qualifier RL MDL 0.40 U 0.40 0.12 0.40 U 0.40 0.11 0.40 U <td< td=""><td>Result Qualifier RL MDL Unit 0.40 U 0.40 0.12 ug/L 0.40 U 0.40 0.11 ug/L</td><td>Result Qualifier RL MDL Unit D 0.40 U 0.40 0.12 ug/L 0.40 U 0.40 0.11 ug/L</td><td>Result Qualifier RL MDL Unit D Prepared 0.40 U 0.40 0.12 ug/L 11/18/20 14:29 0.40 U 0.40 0.11 ug/L</td><td>Result Qualifier RL MDL Unit D Prepared Analyzed 0.40 U 0.40 0.12 ug/L 11/18/20 14:29 11/19/20 09:41 0.40 U 0.40 0.12 ug/L 11/18/20 14:29 11/19/20 09:41 0.40 U 0.40 0.12 ug/L 11/18/20 14:29 11/19/20 09:41 0.40 U 0.40 0.12 ug/L 11/18/20 14:29 11/19/20 09:41 0.40 U 0.40 0.12 ug/L 11/18/20 14:29 11/19/20 09:41 0.40 U 0.40 0.12 ug/L 11/18/20 14:29 11/19/20 09:41 0.40 U 0.40 0.12 ug/L 11/18/20 14:29 11/19/20 09:41 0.40 U 0.40 0.11 ug/L 11/18/20 14:29 11/19/20 09:41 0.40 U 0.40 0.11 ug/L 11/18/20 14:29 11/19/20 09:41 0.40 U 0.40 0.11 ug/L 11</td></td<></td>	Result Qualifier RL MDL 0.40 U 0.40 0.12 0.40 U 0.40 0.11 0.40 U <td< td=""><td>Result Qualifier RL MDL Unit 0.40 U 0.40 0.12 ug/L 0.40 U 0.40 0.11 ug/L</td><td>Result Qualifier RL MDL Unit D 0.40 U 0.40 0.12 ug/L 0.40 U 0.40 0.11 ug/L</td><td>Result Qualifier RL MDL Unit D Prepared 0.40 U 0.40 0.12 ug/L 11/18/20 14:29 0.40 U 0.40 0.11 ug/L</td><td>Result Qualifier RL MDL Unit D Prepared Analyzed 0.40 U 0.40 0.12 ug/L 11/18/20 14:29 11/19/20 09:41 0.40 U 0.40 0.12 ug/L 11/18/20 14:29 11/19/20 09:41 0.40 U 0.40 0.12 ug/L 11/18/20 14:29 11/19/20 09:41 0.40 U 0.40 0.12 ug/L 11/18/20 14:29 11/19/20 09:41 0.40 U 0.40 0.12 ug/L 11/18/20 14:29 11/19/20 09:41 0.40 U 0.40 0.12 ug/L 11/18/20 14:29 11/19/20 09:41 0.40 U 0.40 0.12 ug/L 11/18/20 14:29 11/19/20 09:41 0.40 U 0.40 0.11 ug/L 11/18/20 14:29 11/19/20 09:41 0.40 U 0.40 0.11 ug/L 11/18/20 14:29 11/19/20 09:41 0.40 U 0.40 0.11 ug/L 11</td></td<>	Result Qualifier RL MDL Unit 0.40 U 0.40 0.12 ug/L 0.40 U 0.40 0.11 ug/L	Result Qualifier RL MDL Unit D 0.40 U 0.40 0.12 ug/L 0.40 U 0.40 0.11 ug/L	Result Qualifier RL MDL Unit D Prepared 0.40 U 0.40 0.12 ug/L 11/18/20 14:29 0.40 U 0.40 0.11 ug/L	Result Qualifier RL MDL Unit D Prepared Analyzed 0.40 U 0.40 0.12 ug/L 11/18/20 14:29 11/19/20 09:41 0.40 U 0.40 0.12 ug/L 11/18/20 14:29 11/19/20 09:41 0.40 U 0.40 0.12 ug/L 11/18/20 14:29 11/19/20 09:41 0.40 U 0.40 0.12 ug/L 11/18/20 14:29 11/19/20 09:41 0.40 U 0.40 0.12 ug/L 11/18/20 14:29 11/19/20 09:41 0.40 U 0.40 0.12 ug/L 11/18/20 14:29 11/19/20 09:41 0.40 U 0.40 0.12 ug/L 11/18/20 14:29 11/19/20 09:41 0.40 U 0.40 0.11 ug/L 11/18/20 14:29 11/19/20 09:41 0.40 U 0.40 0.11 ug/L 11/18/20 14:29 11/19/20 09:41 0.40 U 0.40 0.11 ug/L 11

MB MB

Surragata	%Recovery Qualit	ier Limits	Prepared	Analyzed	Dil Fac
Surrogate	70Recovery Quality	ier Liiiits	Frepareu	Allalyzeu	DII Fac
DCB Decachlorobiphenyl	95	10 - 150	11/18/20 14:29	11/19/20 09:41	1
DCB Decachlorobiphenyl	88	10 - 150	11/18/20 14:29	11/19/20 09:41	1
Tetrachloro-m-xylene	92	48 - 125	11/18/20 14:29	11/19/20 09:41	1
Tetrachloro-m-xylene	91	48 - 125	11/18/20 14:29	11/19/20 09:41	1

Lab Sample ID: LCS 460-740863/2-A

Matrix: Water

Analysis Batch: 741103

lient Sample	ID: Lab	Control	Sample	

Prep Type: Total/NA

Prep Batch: 740863 %Rec.

Spike LCS LCS Analyte Added Result Qualifier D %Rec Limits Unit Aroclor 1016 4.00 3.29 ug/L 82 66 - 141 Aroclor 1016 4.00 86 3.43 ug/L 66 - 141 Aroclor 1260 4.00 3.26 ug/L 81 75 - 150 75 - 150 Aroclor 1260 4.00 3.09 ug/L 77

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	87		10 - 150
DCB Decachlorobiphenyl	83		10 - 150
Tetrachloro-m-xylene	41	X	48 - 125
Tetrachloro-m-xylene	40	X	48 - 125

Lab Sample ID: LCSD 460-740863/3-A

Matrix: Water

Analysis Batch: 741103

Client Sample	ID:	Lab	Control	Samp	ole l	Dup
			Drop T	mai T	-4-	I/NI A

Prep Type: Total/NA **Prep Batch: 740863**

,									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aroclor 1016	4.00	3.39		ug/L		85	66 - 141	3	30
Aroclor 1016	4.00	3.40		ug/L		85	66 - 141	1	30
Aroclor 1260	4.00	3.11		ug/L		78	75 - 150	5	30

Eurofins TestAmerica, Edison

Page 106 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: LCSD 460-740863/3-A

Matrix: Water

Analysis Batch: 741103

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 740863

LCSD LCSD Spike %Rec. RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit 4.00 3.02 Aroclor 1260 ug/L 75 - 150 2 30

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	84		10 - 150
DCB Decachlorobiphenyl	81		10 - 150
Tetrachloro-m-xylene	40	X	48 - 125
Tetrachloro-m-xylene	40	X	48 - 125

Lab Sample ID: MB 460-741117/1-A

Matrix: Solid

Analysis Batch: 741324

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 741117

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	67	U	67	8.9	ug/Kg		11/19/20 09:39	11/20/20 09:32	1
Aroclor 1016	67	U	67	8.9	ug/Kg		11/19/20 09:39	11/20/20 09:32	1
Aroclor 1221	67	U	67	8.9	ug/Kg		11/19/20 09:39	11/20/20 09:32	1
Aroclor 1221	67	U	67	8.9	ug/Kg		11/19/20 09:39	11/20/20 09:32	1
Aroclor 1232	67	U	67	8.9	ug/Kg		11/19/20 09:39	11/20/20 09:32	1
Aroclor 1232	67	U	67	8.9	ug/Kg		11/19/20 09:39	11/20/20 09:32	1
Aroclor 1242	67	U	67	8.9	ug/Kg		11/19/20 09:39	11/20/20 09:32	1
Aroclor 1242	67	U	67	8.9	ug/Kg		11/19/20 09:39	11/20/20 09:32	1
Aroclor 1248	67	U	67	8.9	ug/Kg		11/19/20 09:39	11/20/20 09:32	1
Aroclor 1248	67	U	67	8.9	ug/Kg		11/19/20 09:39	11/20/20 09:32	1
Aroclor 1254	67	U	67	9.2	ug/Kg		11/19/20 09:39	11/20/20 09:32	1
Aroclor 1254	67	U	67	9.2	ug/Kg		11/19/20 09:39	11/20/20 09:32	1
Aroclor 1260	67	U	67	9.2	ug/Kg		11/19/20 09:39	11/20/20 09:32	1
Aroclor 1260	67	U	67	9.2	ug/Kg		11/19/20 09:39	11/20/20 09:32	1
Aroclor-1262	67	U	67	9.2	ug/Kg		11/19/20 09:39	11/20/20 09:32	1
Aroclor-1262	67	U	67	9.2	ug/Kg		11/19/20 09:39	11/20/20 09:32	1
Aroclor 1268	67	U	67	9.2	ug/Kg		11/19/20 09:39	11/20/20 09:32	1
Aroclor 1268	67	U	67	9.2	ug/Kg		11/19/20 09:39	11/20/20 09:32	1
Polychlorinated biphenyls, Total	67	U	67	9.2	ug/Kg		11/19/20 09:39	11/20/20 09:32	1
Polychlorinated biphenyls, Total	67	U	67	9.2	ug/Kg		11/19/20 09:39	11/20/20 09:32	1

MB	MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	87	10 - 150	11/19/20 09:39	11/20/20 09:32	1
DCB Decachlorobiphenyl	91	10 - 150	11/19/20 09:39	11/20/20 09:32	1
Tetrachloro-m-xylene	93	58 ₋ 145	11/19/20 09:39	11/20/20 09:32	1
Tetrachloro-m-xylene	98	58 ₋ 145	11/19/20 09:39	11/20/20 09:32	1

Lab Sample ID: LCS 460-741117/2-A

Matrix: Solid

Analysis Batch: 741324

Client	Sample	ID:	Lab	Contro	I Sample	
			_	_		

Prep Type: Total/NA Prep Batch: 741117

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aroclor 1016	333	290		ug/Kg		87	65 - 133	
Aroclor 1016	333	303		ug/Kg		91	65 - 133	
Aroclor 1260	333	299		ug/Kg		90	71 - 150	

Eurofins TestAmerica, Edison

Page 107 of 158

9

3

4

6

8

J

11

13

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: LCS 460-741117/2-A

Matrix: Solid

Analyte

Aroclor 1260

Analysis Batch: 741324

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 741117**

%Rec.

LCS LCS Spike Added Result Qualifier Unit %Rec Limits 333 277 83 71 - 150

ug/Kg

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	92		10 - 150
DCB Decachlorobiphenyl	95		10 - 150
Tetrachloro-m-xylene	89		58 - 145
Tetrachloro-m-xylene	94		58 - 145

Lab Sample ID: LCSD 460-741117/3-A

Matrix: Solid

Analysis Batch: 741324

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 741117

Spike LCSD LCSD %Rec. **RPD** Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Aroclor 1016 333 295 65 - 133 2 30 ug/Kg 89 Aroclor 1016 333 304 91 65 - 133 30 ug/Kg 0 333 Aroclor 1260 298 ug/Kg 89 71 - 150 0 30 Aroclor 1260 333 288 86 71 - 150 30 ug/Kg

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	93		10 - 150
DCB Decachlorobiphenyl	92		10 - 150
Tetrachloro-m-xylene	89		58 - 145
Tetrachloro-m-xylene	93		58 - 145

Method: 8151A - Herbicides (GC)

Lab Sample ID: MB 460-740669/1-A

Matrix: Water

Analysis Batch: 740756

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 740669**

	IAID	IAID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	1.2	U	1.2	0.13	ug/L		11/17/20 20:26	11/18/20 07:42	1
2,4-D	1.2	U	1.2	0.13	ug/L		11/17/20 20:26	11/18/20 07:42	1
Silvex (2,4,5-TP)	1.2	U	1.2	0.11	ug/L		11/17/20 20:26	11/18/20 07:42	1
Silvex (2,4,5-TP)	1.2	U	1.2	0.11	ug/L		11/17/20 20:26	11/18/20 07:42	1
2,4,5-T	1.2	U	1.2	0.12	ug/L		11/17/20 20:26	11/18/20 07:42	1
2,4,5-T	1.2	U	1.2	0.12	ug/L		11/17/20 20:26	11/18/20 07:42	1

MB MB

MR MR

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	65		39 - 145	11/17/20 20:26	11/18/20 07:42	1
2,4-Dichlorophenylacetic acid	66		39 - 145	11/17/20 20:26	11/18/20 07:42	1

Lab Sample ID: LCS 460-740669/2-A

Matrix: Water

Analysis Batch: 740756

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 740669**

Allalysis Datcil. 140130							Lieh D	atcii. 74000
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4-D	16.0	13.1		ug/L		82	10 - 150	

Eurofins TestAmerica, Edison

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8151A - Herbicides (GC) (Continued)

Lab Sample ID: LCS 460-740669/2-A

Matrix: Water

Analysis Batch: 740756

Client Sample ID: Lab Control Sample

Prep Type: Total/NA
Prep Batch: 740669
%Rec

-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2,4-D	16.0	14.1		ug/L		88	10 - 150
Silvex (2,4,5-TP)	4.00	3.43		ug/L		86	35 - 150
Silvex (2,4,5-TP)	4.00	4.11		ug/L		103	35 - 150
2,4,5-T	4.00	3.47		ug/L		87	33 - 150
2,4,5-T	4.00	3.72		ug/L		93	33 - 150

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4-Dichlorophenylacetic acid	72		39 - 145
2,4-Dichlorophenylacetic acid	77		39 - 145

Lab Sample ID: LCSD 460-740669/3-A

Matrix: Water

Analysis Batch: 740756

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 740669

LCSD LCSD Spike %Rec. **RPD** Limit Added Limits Analyte Result Qualifier Unit D %Rec **RPD** 2,4-D 16.0 10.1 ug/L 63 10 - 150 26 30 2,4-D 16.0 10.6 67 10 - 150 28 30 ug/L Silvex (2,4,5-TP) 4.00 75 3.00 ug/L 35 - 150 13 30 Silvex (2,4,5-TP) 4.00 3.58 ug/L 89 35 - 150 14 2,4,5-T 4.00 2.80 ug/L 70 33 - 150 22 30 2,4,5-T 4.00 75 30 3.00 ug/L 33 - 150 21

LCSD LCSD

Surrogate	%Recovery G	Qualifier	Limits
2,4-Dichlorophenylacetic acid	63		39 - 145
2,4-Dichlorophenylacetic acid	70		39 - 145

Lab Sample ID: 460-222961-4 MS

Matrix: Water

Analysis Batch: 740756

Client Sample ID: MW-5 Prep Type: Total/NA

Prep Batch: 740669

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4-D	1.2	U	16.0	12.0		ug/L		75	10 - 150	
2,4-D	1.2	U	16.0	13.1		ug/L		82	10 - 150	
Silvex (2,4,5-TP)	1.2	U	4.00	3.18		ug/L		79	35 - 150	
Silvex (2,4,5-TP)	1.2	U	4.00	3.86		ug/L		97	35 - 150	
2,4,5-T	1.2	U	4.00	3.16		ug/L		79	33 - 150	
2,4,5-T	1.2	U	4.00	3.47		ug/L		87	33 - 150	

MS MS

Surrogate	%Recovery Qualifier	Limits
2,4-Dichlorophenylacetic acid	72	39 - 145
2,4-Dichlorophenylacetic acid	81	39 - 145

Lab Sample ID: 460-222961-4 MSD

Matrix: Water									Prep Ty	pe: Tot	:al/NA
Analysis Batch: 740756									Prep Ba	atch: 74	40669
_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,4-D	1.2	U	16.0	12.5		ug/L		78	10 - 150	4	30

Eurofins TestAmerica, Edison

Page 109 of 158

Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8151A - Herbicides (GC) (Continued)

Lab Sample ID: 460-222961-4 MSD

Matrix: Water

Analysis Batch: 740756

Client: New York State D.E.C.

Client Sample ID: MW-5 Prep Type: Total/NA

Prep Batch: 740669

San	iple Sam	nple Spike	MSD	MSD				%Rec.		RPD
Analyte Re	sult Qua	alifier Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,4-D	1.2 U	16.0	13.5		ug/L		85	10 - 150	3	30
Silvex (2,4,5-TP)	1.2 U	4.00	3.26		ug/L		82	35 - 150	3	30
Silvex (2,4,5-TP)	1.2 U	4.00	3.98		ug/L		100	35 - 150	3	30
2,4,5-T	1.2 U	4.00	3.29		ug/L		82	33 - 150	4	30
2,4,5-T	1.2 U	4.00	3.62		ug/L		91	33 - 150	4	30

MSD MSD

Surrogate	%Recovery Qualifier	Limits
2,4-Dichlorophenylacetic acid	72	39 - 145
2.4-Dichlorophenylacetic acid	79	39 - 145

Lab Sample ID: MB 460-740672/1-A

Matrix: Solid

Analysis Batch: 740757

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 740672

MR MR

	1410	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	33	U	33	12	ug/Kg		11/17/20 21:06	11/18/20 09:21	1
2,4-D	33	U	33	12	ug/Kg		11/17/20 21:06	11/18/20 09:21	1
Silvex (2,4,5-TP)	33	U	33	3.5	ug/Kg		11/17/20 21:06	11/18/20 09:21	1
Silvex (2,4,5-TP)	33	U	33	3.5	ug/Kg		11/17/20 21:06	11/18/20 09:21	1
2,4,5-T	33	U	33	7.1	ug/Kg		11/17/20 21:06	11/18/20 09:21	1
2,4,5-T	33	U	33	7.1	ug/Kg		11/17/20 21:06	11/18/20 09:21	1

MB MB

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	86	30 - 150	11/17/20 21:06	11/18/20 09:21	1
2,4-Dichlorophenylacetic acid	87	30 - 150	11/17/20 21:06	11/18/20 09:21	1

Lab Sample ID: LCS 460-740672/2-A

Matrix: Solid

Analysis Batch: 740757

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 740672

Client Sample ID: Lab Control Sample Dup

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4-D	333	258		ug/Kg		77	42 - 150	
2,4-D	333	282		ug/Kg		85	42 - 150	
Silvex (2,4,5-TP)	83.3	77.0		ug/Kg		92	58 - 150	
Silvex (2,4,5-TP)	83.3	89.3		ug/Kg		107	58 - 150	
2,4,5-T	83.3	68.8		ug/Kg		83	59 - 150	
2,4,5-T	83.3	72.8		ug/Kg		87	59 - 150	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4-Dichlorophenylacetic acid	111		30 - 150
2,4-Dichlorophenylacetic acid	116		30 - 150

Lab Sample ID: LCSD 460-740672/3-A

Matrix: Solid

Analyte 2,4-D

Analysis Batch: 740757

						Prep Ty	pe: Tot	al/NA	
						Prep Ba	tch: 74	10672	
Spike	LCSD	LCSD				%Rec.		RPD	
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
 333	256		ug/Kg		77	42 - 150	1	30	

Eurofins TestAmerica, Edison

Page 110 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 8151A - Herbicides (GC) (Continued)

Lab Sample ID: LCSD 460-740672/3-A

Matrix: Solid

Analysis Batch: 740757

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 740672**

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,4-D	333	281		ug/Kg		84	42 - 150	0	30
Silvex (2,4,5-TP)	83.3	75.9		ug/Kg		91	58 - 150	1	30
Silvex (2,4,5-TP)	83.3	88.2		ug/Kg		106	58 - 150	1	30
2,4,5-T	83.3	65.5		ug/Kg		79	59 - 150	5	30
2,4,5-T	83.3	72.1		ug/Kg		87	59 - 150	1	30

LCSD LCSD

ı	Surrogate	%Recovery Qualifier	Limits
	2,4-Dichlorophenylacetic acid	111	30 - 150
	2,4-Dichlorophenylacetic acid	117	30 - 150

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 200-161345/1-A

Matrix: Water

Analyte

Analysis Batch: 161351

Perfluorobutanoic acid (PFBA)

Perfluoropentanoic acid (PFPeA) Perfluorohexanoic acid (PFHxA)

Perfluorotetradecanoic acid (PFTeA)

1H,1H,2H,2H-perfluorodecanesulfonic

Client Sample ID: Method Blank Prep Type: Total/NA

11/20/20 09:01 11/20/20 16:22

11/20/20 09:01 11/20/20 16:22

Prep Batch: 161345

MR MR

sult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
5.0	U	5.0	1.1	ng/L		11/20/20 09:01	11/20/20 16:22	1
2.0	U	2.0	1.1	ng/L		11/20/20 09:01	11/20/20 16:22	1
2.0	U	2.0	0.83	ng/L		11/20/20 09:01	11/20/20 16:22	1
2.0	U	2.0	0.46	ng/L		11/20/20 09:01	11/20/20 16:22	1
2.0	U	2.0	0.98	ng/L		11/20/20 09:01	11/20/20 16:22	1

0.59 ng/L

0.66 ng/L

Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) 2. Perfluorononanoic acid (PFNA) 2.0 U 2.0 0.58 ng/L 11/20/20 09:01 11/20/20 16:22 Perfluorodecanoic acid (PFDA) 2.0 U 2.0 0.46 ng/L 11/20/20 09:01 11/20/20 16:22 2.0 Perfluoroundecanoic acid (PFUnA) 20 U 0.73 ng/L 11/20/20 09:01 11/20/20 16:22 Perfluorododecanoic acid (PFDoA) 2.0 U 2.0 11/20/20 09:01 11/20/20 16:22 0.46 ng/L 11/20/20 09:01 11/20/20 16:22 Perfluorotridecanoic acid (PFTriA) 2.0 U 2.0 0.43 ng/L

Perfluorobutanesulfonic acid (PFBS) 20 U 2.0 0.63 ng/L 11/20/20 09:01 11/20/20 16:22 0.67 ng/L 11/20/20 09:01 11/20/20 16:22 Perfluorohexanesulfonic acid (PFHxS) 2.0 U 2.0 Perfluoroheptanesulfonic Acid 2.0 U 2.0 11/20/20 09:01 11/20/20 16:22 0.39 ng/L (PFHpS) Perfluorooctanesulfonic acid (PFOS) 2.0 U 2.0 0.87 ng/L 11/20/20 09:01 11/20/20 16:22

2.0

Perfluorodecanesulfonic acid (PFDS) 2.0 U 2.0 0.48 ng/L 11/20/20 09:01 11/20/20 16:22 Perfluorooctanesulfonamide (PFOSA) 2.0 U 2.0 0.57 ng/L 11/20/20 09:01 11/20/20 16:22 N-methylperfluorooctanesulfonamidoa 5.0 U 5.0 0.79 ng/L 11/20/20 09:01 11/20/20 16:22 cetic acid (NMeFOSAA)

N-ethylperfluorooctanesulfonamidoac 5.0 U 5.0 11/20/20 09:01 11/20/20 16:22 0.93 ng/L etic acid (NEtFOSAA) 11/20/20 09:01 11/20/20 16:22 1H,1H,2H,2H-perfluorooctanesulfonic 5.0 U 5.0 0.72 ng/L acid (6:2)

2.0

acid (8:2)

MB MB

2.0 U

2.0 U

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
18O2 PFHxS	110		50 - 150	11/20/20 09:01	11/20/20 16:22	1
13C4 PFHpA	110		50 - 150	11/20/20 09:01	11/20/20 16:22	1
13C4 PFOA	109		50 - 150	11/20/20 09:01	11/20/20 16:22	1
13C4 PFOS	117		50 - 150	11/20/20 09:01	11/20/20 16:22	1
13C5 PFNA	110		50 - 150	11/20/20 09:01	11/20/20 16:22	1

Eurofins TestAmerica, Edison

Page 111 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: MB 200-161345/1-A

Matrix: Water

Analysis Batch: 161351

MB MB

Isotope Dilution

Client Sample ID: Method Blank
Prep Type: Total/NA

Prep Batch: 161345

MB MB

Prepared Analyzed Dil Fac

Isotope Dilution	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
13C4 PFBA	110	25 - 150	11/20/20 09:01	11/20/20 16:22	1
13C2 PFHxA	107	50 - 150	11/20/20 09:01	11/20/20 16:22	1
13C2 PFDA	122	50 - 150	11/20/20 09:01	11/20/20 16:22	1
13C2 PFUnA	126	50 - 150	11/20/20 09:01	11/20/20 16:22	1
13C2 PFDoA	128	50 - 150	11/20/20 09:01	11/20/20 16:22	1
13C8 FOSA	68	25 - 150	11/20/20 09:01	11/20/20 16:22	1
13C5 PFPeA	119	25 - 150	11/20/20 09:01	11/20/20 16:22	1
13C2 PFTeDA	113	50 - 150	11/20/20 09:01	11/20/20 16:22	1
d3-NMeFOSAA	124	50 - 150	11/20/20 09:01	11/20/20 16:22	1
d5-NEtFOSAA	111	50 - 150	11/20/20 09:01	11/20/20 16:22	1
M2-6:2 FTS	123	25 - 150	11/20/20 09:01	11/20/20 16:22	1
M2-8:2 FTS	121	25 - 150	11/20/20 09:01	11/20/20 16:22	1
13C3 PFBS	106	50 - 150	11/20/20 09:01	11/20/20 16:22	1

Lab Sample ID: LCS 200-161345/2-A

Matrix: Water

onic acid (6:2)

Analysis Batch: 161351

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 161345

Analysis Datch. 101331	Spike	LCS	LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Perfluorobutanoic acid (PFBA)	40.0	38.0	<u> </u>	ng/L		95	50 - 150
Perfluoropentanoic acid (PFPeA)	40.0	39.1		ng/L		98	50 - 150
Perfluorohexanoic acid (PFHxA)	40.0	38.1		ng/L		95	70 - 130
Perfluoroheptanoic acid (PFHpA)	40.0	38.6		ng/L		97	70 - 130
Perfluorooctanoic acid (PFOA)	40.0	38.3		ng/L		96	70 - 130
Perfluorononanoic acid (PFNA)	40.0	38.6		ng/L		96	70 - 130
Perfluorodecanoic acid (PFDA)	40.0	37.5		ng/L		94	70 - 130
Perfluoroundecanoic acid (PFUnA)	40.0	36.6		ng/L		92	70 - 130
Perfluorododecanoic acid (PFDoA)	40.0	40.8		ng/L		102	70 - 130
Perfluorotridecanoic acid (PFTriA)	40.0	36.9		ng/L		92	70 - 130
Perfluorotetradecanoic acid (PFTeA)	40.0	36.0		ng/L		90	70 - 130
Perfluorobutanesulfonic acid (PFBS)	35.4	34.2		ng/L		97	70 - 130
Perfluorohexanesulfonic acid (PFHxS)	36.4	34.9		ng/L		96	70 - 130
Perfluoroheptanesulfonic Acid (PFHpS)	38.1	38.3		ng/L		101	50 - 150
Perfluorooctanesulfonic acid (PFOS)	37.1	36.6		ng/L		99	70 - 130
Perfluorodecanesulfonic acid (PFDS)	38.6	35.4		ng/L		92	50 - 150
Perfluorooctanesulfonamide (PFOSA)	40.0	40.4		ng/L		101	50 - 150
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	40.0	43.4		ng/L		108	70 - 130
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	40.0	38.3		ng/L		96	70 - 130
1H,1H,2H,2H-perfluorooctanesulf	37.9	35.4		ng/L		93	50 - 150

Eurofins TestAmerica, Edison

Page 112 of 158

2

3

<u>:</u>

7

9

11

16

14

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 200-161345/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Analysis Batch: 161351 Prep Batch: 161345**

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 1H,1H,2H,2H-perfluorodecanesul 38.3 41.9 ng/L 109 50 - 150

fonic acid (8:2) LCS LCS Isotope Dilution %Recovery Qualifier Limits 1802 PFHxS 111 50 - 150 13C4 PFHpA 109 50 - 150 13C4 PFOA 111 50 - 150 13C4 PFOS 110 50 - 150 13C5 PFNA 110 50 - 150 13C4 PFBA 25 - 150 112 13C2 PFHxA 108 50 - 150 13C2 PFDA 120 50 - 150 13C2 PFUnA 117 50 - 150 13C2 PFDoA 118 50 - 150 13C8 FOSA 78 25 - 150 13C5 PFPeA 115 25 - 150 13C2 PFTeDA 109 50 - 150 d3-NMeFOSAA 109 50 - 150 d5-NEtFOSAA 122 50 - 150

118

119

112

Lab Sample ID: 460-222961-4 MS

M2-6:2 FTS

M2-8:2 FTS

13C3 PFBS

Matrix: Water Analysis Batch: 161351								0.	Prep Type: Total/NA Prep Batch: 161345
7 maryone Batom 101001	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorobutanoic acid (PFBA)	6.1		36.9	42.5		ng/L		98	40 - 160
Perfluoropentanoic acid (PFPeA)	13		36.9	48.9		ng/L		98	40 - 160
Perfluorohexanoic acid (PFHxA)	12		36.9	45.0		ng/L		90	40 - 160
Perfluoroheptanoic acid (PFHpA)	12		36.9	46.6		ng/L		94	40 - 160
Perfluorooctanoic acid (PFOA)	25		36.9	61.6		ng/L		100	40 - 160
Perfluorononanoic acid (PFNA)	2.2		36.9	38.5		ng/L		98	40 - 160
Perfluorodecanoic acid (PFDA)	2.1		36.9	37.1		ng/L		95	40 - 160
Perfluoroundecanoic acid (PFUnA)	1.8	U	36.9	34.1		ng/L		92	40 - 160
Perfluorododecanoic acid (PFDoA)	1.8	U	36.9	37.4		ng/L		101	40 - 160
Perfluorotridecanoic acid (PFTriA)	1.8	U	36.9	36.8		ng/L		100	40 - 160
Perfluorotetradecanoic acid (PFTeA)	1.8	U	36.9	37.4		ng/L		101	40 - 160
Perfluorobutanesulfonic acid (PFBS)	0.87	J	32.7	32.7		ng/L		97	40 - 160
Perfluorohexanesulfonic acid (PFHxS)	3.5		33.6	37.3		ng/L		100	40 - 160
Perfluoroheptanesulfonic Acid (PFHpS)	1.8	U	35.2	36.7		ng/L		104	40 - 160
Perfluorooctanesulfonic acid (PFOS)	20		34.3	54.2		ng/L		99	40 - 160

25 - 150

25 - 150

50 - 150

Eurofins TestAmerica, Edison

Client Sample ID: MW-5

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Job ID: 460-222961-1

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: 460-222961-4 MS

Matrix: Water

Analysis Batch: 161351

Client Sample ID: MW-5 Prep Type: Total/NA Prep Batch: 161345

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorodecanesulfonic acid (PFDS)	1.8	U	35.6	32.7		ng/L		92	40 - 160	
Perfluorooctanesulfonamide (PFOSA)	1.8	U	36.9	38.8		ng/L		105	40 - 160	
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	0.78	J	36.9	39.4		ng/L		105	40 - 160	
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	1.4	J	36.9	43.8		ng/L		115	40 - 160	
1H,1H,2H,2H-perfluorooctanesulf onic acid (6:2)	4.2	J	35.0	51.4		ng/L		135	40 - 160	
1H,1H,2H,2H-perfluorodecanesul fonic acid (8:2)	1.8	U	35.4	36.3		ng/L		102	40 - 160	

MS MS

	IVIS	IVIS	
Isotope Dilution	%Recovery	Qualifier	Limits
1802 PFHxS	109		50 - 150
13C4 PFHpA	105		50 - 150
13C4 PFOA	107		50 ₋ 150
13C4 PFOS	106		50 - 150
13C5 PFNA	108		50 ₋ 150
13C4 PFBA	77		25 - 150
13C2 PFHxA	102		50 - 150
13C2 PFDA	105		50 ₋ 150
13C2 PFUnA	111		50 - 150
13C2 PFDoA	109		50 - 150
13C8 FOSA	91		25 - 150
13C5 PFPeA	99		25 - 150
13C2 PFTeDA	103		50 ₋ 150
d3-NMeFOSAA	105		50 - 150
d5-NEtFOSAA	100		50 - 150
M2-6:2 FTS	119		25 - 150
M2-8:2 FTS	106		25 - 150
13C3 PFBS	104		50 - 150

Lab Sample ID: 460-222961-4 MSD

Matrix: Water

Analysis Batch: 161351

Client Sample ID: MW-5

Prep Type: Total/NA Prep Batch: 161345

MSD MSD RPD Sample Sample Spike %Rec. **Analyte** Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Perfluorobutanoic acid (PFBA) 6.1 36.9 41.8 ng/L 97 40 - 160 2 30 Perfluoropentanoic acid (PFPeA) 36.9 49.6 ng/L 100 40 - 160 30 13 Perfluorohexanoic acid (PFHxA) 12 36.9 49.8 103 40 - 160 20 ng/L 10 Perfluoroheptanoic acid (PFHpA) 12 36.9 48.5 ng/L 99 40 - 160 4 20 ng/L Perfluorooctanoic acid (PFOA) 25 36.9 62.1 102 40 - 160 20 Perfluorononanoic acid (PFNA) 2.2 36.9 38.9 99 40 - 160 20 ng/L ng/L Perfluorodecanoic acid (PFDA) 2.1 36.9 38.9 100 40 - 160 5 20 1.8 U 36.9 40 - 160 2 20 Perfluoroundecanoic acid 34.9 ng/L 94 (PFUnA) 36.9 Perfluorododecanoic acid 1.8 U 38.4 ng/L 104 40 - 160 3 20 (PFDoA) Perfluorotridecanoic acid 1.8 U 36.9 38.1 ng/L 103 40 - 160 20 (PFTriA)

Eurofins TestAmerica, Edison

Page 114 of 158

2

3

8

10

12

14

16

11/

3/30/2021

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: 460-222961-4 MSD

Matrix: Water

Analysis Batch: 161351

Client Sample ID: MW-5 Prep Type: Total/NA

Prep Batch: 161345

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorotetradecanoic acid	1.8	U	36.9	36.6		ng/L		99	40 - 160	2	20
(PFTeA)											
Perfluorobutanesulfonic acid	0.87	J	32.7	33.7		ng/L		101	40 - 160	3	20
(PFBS)											
Perfluorohexanesulfonic acid	3.5		33.6	36.8		ng/L		99	40 - 160	1	20
(PFHxS)											
Perfluoroheptanesulfonic Acid	1.8	U	35.2	38.1		ng/L		108	40 - 160	4	30
(PFHpS)											
Perfluorooctanesulfonic acid	20		34.3	56.8		ng/L		107	40 - 160	5	20
(PFOS)											
Perfluorodecanesulfonic acid	1.8	U	35.6	30.5		ng/L		86	40 - 160	7	30
(PFDS)											
Perfluorooctanesulfonamide	1.8	U	36.9	40.2		ng/L		109	40 - 160	4	30
(PFOSA)											
N-methylperfluorooctanesulfona	0.78	J	36.9	38.3		ng/L		102	40 - 160	3	20
midoacetic acid (NMeFOSAA)											
N-ethylperfluorooctanesulfonami	1.4	J	36.9	46.0		ng/L		121	40 - 160	5	20
doacetic acid (NEtFOSAA)											
1H,1H,2H,2H-perfluorooctanesulf	4.2	J	35.0	38.6		ng/L		98	40 - 160	28	30
onic acid (6:2)											
1H,1H,2H,2H-perfluorodecanesul	1.8	U	35.4	42.1		ng/L		119	40 - 160	15	30
fonic acid (8:2)											

MSD MSD

	III O D	IIIOD	
Isotope Dilution	%Recovery	Qualifier	Limits
1802 PFHxS	107		50 - 150
13C4 PFHpA	101		50 - 150
13C4 PFOA	103		50 - 150
13C4 PFOS	101		50 - 150
13C5 PFNA	102		50 - 150
13C4 PFBA	75		25 - 150
13C2 PFHxA	95		50 - 150
13C2 PFDA	98		50 - 150
13C2 PFUnA	98		50 - 150
13C2 PFDoA	102		50 - 150
13C8 FOSA	87		25 - 150
13C5 PFPeA	96		25 - 150
13C2 PFTeDA	94		50 - 150
d3-NMeFOSAA	89		50 - 150
d5-NEtFOSAA	91		50 - 150
M2-6:2 FTS	113		25 - 150
M2-8:2 FTS	97		25 - 150
13C3 PFBS	102		50 - 150

Lab Sample ID: MB 320-435252/1-A

Matrix: Solid

Analysis Batch: 436085

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 435252

ı		MR	MR							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Perfluorobutanoic acid (PFBA)	0.0522	J	0.20	0.028	ug/Kg		11/24/20 14:27	11/27/20 23:24	1
	Perfluoropentanoic acid (PFPeA)	0.20	U	0.20	0.077	ug/Kg		11/24/20 14:27	11/27/20 23:24	1
	Perfluorohexanoic acid (PFHxA)	0.20	U	0.20	0.042	ug/Kg		11/24/20 14:27	11/27/20 23:24	1
	Perfluoroheptanoic acid (PFHpA)	0.20	U	0.20	0.029	ug/Kg		11/24/20 14:27	11/27/20 23:24	1

Eurofins TestAmerica, Edison

Page 115 of 158

2

3

4

6

0

10

12

1 /

15

16

Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: MB 320-435252/1-A

Matrix: Solid

Analysis Batch: 436085

Client: New York State D.E.C.

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 435252

7									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanoic acid (PFOA)	0.20	U	0.20	0.086	ug/Kg		11/24/20 14:27	11/27/20 23:24	1
Perfluorononanoic acid (PFNA)	0.20	U	0.20	0.036	ug/Kg		11/24/20 14:27	11/27/20 23:24	1
Perfluorodecanoic acid (PFDA)	0.20	U	0.20	0.022	ug/Kg		11/24/20 14:27	11/27/20 23:24	1
Perfluoroundecanoic acid (PFUnA)	0.20	U	0.20	0.036	ug/Kg		11/24/20 14:27	11/27/20 23:24	1
Perfluorododecanoic acid (PFDoA)	0.20	U	0.20	0.067	ug/Kg		11/24/20 14:27	11/27/20 23:24	1
Perfluorotridecanoic acid (PFTriA)	0.20	U	0.20	0.051	ug/Kg		11/24/20 14:27	11/27/20 23:24	1
Perfluorotetradecanoic acid (PFTeA)	0.20	U	0.20	0.054	ug/Kg		11/24/20 14:27	11/27/20 23:24	1
Perfluorobutanesulfonic acid (PFBS)	0.20	U	0.20	0.025	ug/Kg		11/24/20 14:27	11/27/20 23:24	1
Perfluorohexanesulfonic acid (PFHxS)	0.20	U	0.20	0.031	ug/Kg		11/24/20 14:27	11/27/20 23:24	1
Perfluoroheptanesulfonic Acid (PFHpS)	0.20	U	0.20	0.035	ug/Kg		11/24/20 14:27	11/27/20 23:24	1
Perfluorooctanesulfonic acid (PFOS)	9.22		0.50	0.20	ug/Kg		11/24/20 14:27	11/27/20 23:24	1
Perfluorodecanesulfonic acid (PFDS)	0.20	U	0.20	0.039	ug/Kg		11/24/20 14:27	11/27/20 23:24	1
Perfluorooctanesulfonamide (FOSA)	0.20	U	0.20	0.082	ug/Kg		11/24/20 14:27	11/27/20 23:24	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	2.0	U	2.0	0.39	ug/Kg		11/24/20 14:27	11/27/20 23:24	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	2.0	U	2.0	0.37	ug/Kg		11/24/20 14:27	11/27/20 23:24	1
6:2 FTS	2.0	U	2.0	0.15	ug/Kg		11/24/20 14:27	11/27/20 23:24	1
8:2 FTS	2.0	U	2.0	0.25	ug/Kg		11/24/20 14:27	11/27/20 23:24	1
	MB	MB							
	^/=	• ""	,						

8:2 FTS	2.0	U	2.0	0.25 ug/Kg	11/24/20 14:27	11/27/20 23:24	1
	MB	MB					
Isotope Dilution	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
13C4 PFBA		*5	25 - 150		11/24/20 14:27	11/27/20 23:24	1
13C5 PFPeA	69		25 - 150		11/24/20 14:27	11/27/20 23:24	1
13C2 PFHxA	85		25 - 150		11/24/20 14:27	11/27/20 23:24	1
13C4 PFHpA	89		25 - 150		11/24/20 14:27	11/27/20 23:24	1
13C4 PFOA	99		25 - 150		11/24/20 14:27	11/27/20 23:24	1
13C5 PFNA	88		25 - 150		11/24/20 14:27	11/27/20 23:24	1
13C2 PFDA	89		25 - 150		11/24/20 14:27	11/27/20 23:24	1
13C2 PFUnA	90		25 - 150		11/24/20 14:27	11/27/20 23:24	1
13C2 PFDoA	84		25 - 150		11/24/20 14:27	11/27/20 23:24	1
13C2 PFTeDA	81		25 - 150		11/24/20 14:27	11/27/20 23:24	1
13C3 PFBS	86		25 - 150		11/24/20 14:27	11/27/20 23:24	1
18O2 PFHxS	91		25 - 150		11/24/20 14:27	11/27/20 23:24	1
13C4 PFOS	89		25 - 150		11/24/20 14:27	11/27/20 23:24	1
13C8 FOSA	88		25 - 150		11/24/20 14:27	11/27/20 23:24	1
d3-NMeFOSAA	0.3	*5	25 - 150		11/24/20 14:27	11/27/20 23:24	1
d5-NEtFOSAA	0.3	*5	25 - 150		11/24/20 14:27	11/27/20 23:24	1
M2-6:2 FTS	0.6	*5	25 - 150		11/24/20 14:27	11/27/20 23:24	1

Lab Sample ID: LCS 320-435252/2-A

Matrix: Solid

M2-8:2 FTS

Analysis Batch: 436085

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 435252**

11/24/20 14:27 11/27/20 23:24

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Perfluorobutanoic acid (PFBA) 2.00 2.09 ug/Kg 105 76 - 136 Perfluoropentanoic acid (PFPeA) 2.00 ug/Kg 1.78 89 69 - 129 Perfluorohexanoic acid (PFHxA) 2.00 1.91 ug/Kg 96 71 - 131 Perfluoroheptanoic acid (PFHpA) 71 - 131 2.00 1.96 ug/Kg 98

25 - 150

0.4 *5

Eurofins TestAmerica, Edison

Page 116 of 158

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Spike

LCS LCS

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-435252/2-A

Matrix: Solid

Analysis Batch: 436085

Perfluorooctanesulfonamide

N-methylperfluorooctanesulfona

N-ethylperfluorooctanesulfonami

midoacetic acid (NMeFOSAA)

doacetic acid (NEtFOSAA)

(FOSA)

6:2 FTS

8:2 FTS

Client Sample ID: Lab Control Sample

Job ID: 460-222961-1

Analyte	Added	Result Qualific	er Unit	D %Rec	Limits	
Perfluorooctanoic acid (PFOA)	2.00	1.84	ug/Kg	92	72 - 132	
Perfluorononanoic acid (PFNA)	2.00	2.00	ug/Kg	100	73 - 133	
Perfluorodecanoic acid (PFDA)	2.00	2.09	ug/Kg	105	72 - 132	
Perfluoroundecanoic acid (PFUnA)	2.00	1.95	ug/Kg	98	66 - 126	
Perfluorododecanoic acid (PFDoA)	2.00	2.07	ug/Kg	104	71 - 131	
Perfluorotridecanoic acid (PFTriA)	2.00	2.00	ug/Kg	100	71 - 131	
Perfluorotetradecanoic acid (PFTeA)	2.00	1.87	ug/Kg	94	67 - 127	
Perfluorobutanesulfonic acid (PFBS)	1.77	1.83	ug/Kg	104	69 - 129	
Perfluorohexanesulfonic acid (PFHxS)	1.82	1.61	ug/Kg	89	62 - 122	
Perfluoroheptanesulfonic Acid (PFHpS)	1.90	2.12	ug/Kg	111	76 - 136	
Perfluorooctanesulfonic acid (PFOS)	1.86	11.1 *	ug/Kg	600	68 - 141	
Perfluorodecanesulfonic acid (PFDS)	1.93	1.92	ug/Kg	99	71 - 131	

2.00

2.00

2.00

1.90

1.92

2.25

1.82 J

1.42 J*

2.55

1.77 J

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

113

91

71

135

92

77 - 137

72 - 132

72 - 132

73 - 139

75 - 135

	LCS	LCS		
Isotope Dilution	%Recovery	Qualifier	Limits	
13C4 PFBA		*5	25 - 150	
13C5 PFPeA	70		25 - 150	
13C2 PFHxA	84		25 - 150	
13C4 PFHpA	87		25 - 150	
13C4 PFOA	103		25 - 150	
13C5 PFNA	89		25 - 150	
13C2 PFDA	86		25 - 150	
13C2 PFUnA	86		25 - 150	
13C2 PFDoA	85		25 - 150	
13C2 PFTeDA	85		25 - 150	
13C3 PFBS	83		25 - 150	
1802 PFHxS	91		25 - 150	
13C4 PFOS	86		25 - 150	
13C8 FOSA	86		25 - 150	
d3-NMeFOSAA	0.2	*5	25 - 150	
d5-NEtFOSAA	0.3	*5	25 - 150	
M2-6:2 FTS	2	*5	25 - 150	
M2-8:2 FTS	0.8	*5	25 - 150	

Prep	Type: Total/NA
Prep	Batch: 435252
%Rec.	

Eurofins TestAmerica, Edison

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

1802 PFHxS

13C4 PFOS

13C8 FOSA

d3-NMeFOSAA

d5-NEtFOSAA

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: 460-22296 Matrix: Solid	1-9 MS								Client Sample ID: S-4 Prep Type: Total/NA
Analysis Batch: 436085									Prep Batch: 435252
7 maryolo Batom 400000	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits
Perfluorobutanoic acid (PFBA)	0.39		5.65	5.97		ug/Kg	— <u>-</u>	99	76 - 136
Perfluoropentanoic acid (PFPeA)	0.24	J	5.65	4.89		ug/Kg	☼	82	69 - 129
Perfluorohexanoic acid (PFHxA)	0.22	J	5.65	5.92		ug/Kg	₩	101	71 - 131
Perfluoroheptanoic acid (PFHpA)	0.24	J	5.65	6.07		ug/Kg	 ☆	103	71 - 131
Perfluorooctanoic acid (PFOA)	2.9		5.65	7.61		ug/Kg	₽	84	72 - 132
Perfluorononanoic acid (PFNA)	0.28	J	5.65	5.54		ug/Kg	₩	93	73 - 133
Perfluorodecanoic acid (PFDA)	0.17	JI	5.65	5.71		ug/Kg		98	72 - 132
Perfluoroundecanoic acid (PFUnA)	0.26	J	5.65	6.60		ug/Kg	≎	112	66 - 126
Perfluorododecanoic acid (PFDoA)	0.55	U	5.65	6.10		ug/Kg	₩	108	71 - 131
Perfluorotridecanoic acid (PFTriA)	0.20	J	5.65	5.20		ug/Kg	₩	89	71 - 131
Perfluorotetradecanoic acid (PFTeA)	0.55	U	5.65	5.73		ug/Kg	☼	101	67 - 127
Perfluorobutanesulfonic acid (PFBS)	0.55		5.00	5.18		ug/Kg	₩	104	69 - 129
Perfluorohexanesulfonic acid (PFHxS)	0.36	J	5.14	4.87		ug/Kg	₩	88	62 - 122
Perfluoroheptanesulfonic Acid (PFHpS)	0.55		5.38	5.92		ug/Kg	₽	110	76 - 136
Perfluorooctanesulfonic acid (PFOS)		B *	5.25	7.05		ug/Kg		92	68 - 141
Perfluorodecanesulfonic acid (PFDS)	0.55		5.45	5.37		ug/Kg	☼	99	71 - 131
Perfluorooctanesulfonamide (FOSA)	0.55		5.65	6.56		ug/Kg	☼	116	77 - 137
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	5.5		5.65	5.79		ug/Kg		102	72 - 132
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)		U *	5.65	6.03		ug/Kg	₩	107	72 - 132
6:2 FTS		U	5.36	5.25		ug/Kg	₩	98	73 - 139
8:2 FTS	5.5		5.42	5.18	J	ug/Kg	₩	96	75 - 135
		MS							
Isotope Dilution	%Recovery		Limits						
13C4 PFBA		*5	25 - 150						
13C5 PFPeA	58		25 - 150						
13C2 PFHxA	88		25 - 150						
13C4 PFHpA	84		25 - 150						
13C4 PFOA	88		25 - 150						
13C5 PFNA	96		25 - 150						
13C2 PFDA	87		25 - 150						
13C2 PFUnA	83		25 - 150						
13C2 PFDoA	70		25 - 150						
13C2 PFTeDA	47		25 - 150						
13C3 PFBS	83		25 - 150						

Page 118 of 158

25 - 150

25 - 150

25 - 150 25 - 150

25 - 150

95

98

74

82

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: 460-222961-9 MS

Matrix: Solid

Analysis Batch: 436085

MS MS

Isotope Dilution	%Recovery	Qualifier	Limits
M2-6:2 FTS	274	*5	25 - 150
M2-8:2 FTS	243	*5	25 - 150

Lab Sample ID: 460-222961-9 MSD

Matrix: Solid

Analysis Batch: 436085

Client Sample ID: S-4 Prep Type: Total/NA Prep Batch: 435252

Job ID: 460-222961-1

Client Sample ID: S-4

Prep Type: Total/NA

Prep Batch: 435252

Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added Result Qualifier %Rec Limits RPD Limit Analyte Unit D ug/Kg Perfluorobutanoic acid (PFBA) 0.39 JB 5.60 5.74 ✡ 95 76 - 136 30 5.60 83 30 Perfluoropentanoic acid (PFPeA) 0.24 J 4.87 ug/Kg ₩ 69 - 129 0 Perfluorohexanoic acid (PFHxA) 5.60 5.80 100 30 0.22 J ug/Kg ₩ 71 - 1312 101 Perfluoroheptanoic acid (PFHpA) 0.24 J 5.60 5.91 ug/Kg Ö 71 - 131 3 30 Perfluorooctanoic acid (PFOA) 29 5.60 7.32 ug/Kg Ö 79 72 - 132 30 Perfluorononanoic acid (PFNA) 0.28 J 5.60 5.55 ug/Kg 94 73 - 133 n 30 ∜ Perfluorodecanoic acid (PFDA) 0.17 JI 5.60 5.91 ug/Kg ₩ 103 72 - 132 3 30 5.60 5.87 100 66 - 126 12 Perfluoroundecanoic acid 0.26 J ug/Kg 30 Ö (PFUnA) Perfluorododecanoic acid 0.55 U 5.60 5.95 ug/Kg ₩ 106 71 - 131 2 30 (PFDoA) Perfluorotridecanoic acid 0.20 J 5.60 5.44 ug/Kg 94 71 - 131 30 (PFTriA) Perfluorotetradecanoic acid 0.55 U 5.60 5.32 ug/Kg ₩ 95 67 - 127 7 30 (PFTeA) Perfluorobutanesulfonic acid 0.55 U 4.95 103 30 5.12 ug/Kg 69 - 1291 ₩ (PFBS) 0.36 J 5.09 5.09 93 62 - 122 30 Perfluorohexanesulfonic acid ug/Kg ∜ (PFHxS) 0.55 U 5.33 5.96 Perfluoroheptanesulfonic Acid ug/Kg ₩ 112 76 - 136 1 30 (PFHpS) Perfluorooctanesulfonic acid 2.2 B* 5.20 7.32 ug/Kg 98 68 - 141 30 (PFOS) 0.55 U 5.40 5.32 99 71 - 131 30 Perfluorodecanesulfonic acid ug/Kg ₩ (PFDS) 0.55 U 5.60 6.78 121 3 30 Perfluorooctanesulfonamide ug/Kg Ö 77 - 137 (FOSA) N-methylperfluorooctanesulfona 5.60 6.18 110 30 5.5 U ug/Kg ∜ 72 - 132 6 midoacetic acid (NMeFOSAA) 5.60 N-ethylperfluorooctanesulfonami 5.5 U* 5.73 ug/Kg ₩ 102 72 - 132 30 doacetic acid (NEtFOSAA) 6:2 FTS 5.5 U 5.31 5.42 J ug/Kg 102 73 - 139 3 30 ₩ 8:2 FTS 5.36 5.67 106 75 - 135 30 5.5 U ug/Kg Ö

MSD MSD

Isotope Dilution	%Recovery Qualif	ier Limits
13C4 PFBA	46	25 - 150
13C5 PFPeA	55	25 - 150
13C2 PFHxA	74	25 - 150
13C4 PFHpA	72	25 - 150
13C4 PFOA	78	25 - 150
13C5 PFNA	82	25 - 150
13C2 PFDA	74	25 - 150
13C2 PFUnA	76	25 - 150
13C2 PFDoA	63	25 - 150

Eurofins TestAmerica, Edison

Page 119 of 158

2

3

4

6

8

10

12

14

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: 460-222961-9 MSD

Matrix: Solid

Client Sample ID: S-4

Prep Type: Total/NA

Analysis Batch: 436085

MSD MSD Isotope Dilution %Recovery Qualifier Limits 13C2 PFTeDA 41 25 - 150 13C3 PFBS 75 25 - 150 1802 PFHxS 81 25 - 150 13C4 PFOS 82 25 - 150 13C8 FOSA 25 - 150 64 d3-NMeFOSAA 65 25 - 150 d5-NEtFOSAA 88 25 - 150 M2-6:2 FTS 211 *5 25 - 150 M2-8:2 FTS 197 *5 25 - 150

Lab Sample ID: MB 320-436644/1-A

Matrix: Solid

Analysis Batch: 437343

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 436644

Prep Batch: 435252

MR MR Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Perfluorobutanoic acid (PFBA) 0.20 U 0.20 0.028 ug/Kg 11/30/20 04:07 12/01/20 19:39 Perfluoropentanoic acid (PFPeA) 0.20 U 0.20 0.077 ug/Kg 11/30/20 04:07 12/01/20 19:39 Perfluorohexanoic acid (PFHxA) 0.20 U 0.20 0.042 ug/Kg 11/30/20 04:07 12/01/20 19:39 Perfluoroheptanoic acid (PFHpA) 0.20 U 0.20 0.029 ug/Kg 11/30/20 04:07 12/01/20 19:39 Perfluorooctanoic acid (PFOA) 0.20 U 0.20 0.086 ug/Kg 11/30/20 04:07 12/01/20 19:39 Perfluorononanoic acid (PFNA) 11/30/20 04:07 12/01/20 19:39 0.20 U 0.20 0.036 ug/Kg Perfluorodecanoic acid (PFDA) 0.20 U 0.20 0.022 ug/Kg 11/30/20 04:07 12/01/20 19:39 Perfluoroundecanoic acid (PFUnA) 0.20 0.036 ug/Kg 11/30/20 04:07 12/01/20 19:39 0.20 U Perfluorododecanoic acid (PFDoA) 0.20 U 0.20 0.067 ug/Kg 11/30/20 04:07 12/01/20 19:39 Perfluorotridecanoic acid (PFTriA) 0.20 U 0.20 0.051 ug/Kg 11/30/20 04:07 12/01/20 19:39 Perfluorotetradecanoic acid (PFTeA) 0.20 U 0.20 0.054 ug/Kg 11/30/20 04:07 12/01/20 19:39 Perfluorobutanesulfonic acid (PFBS) 0.20 U 0.20 0.025 ug/Kg 11/30/20 04:07 12/01/20 19:39 1 Perfluorohexanesulfonic acid (PFHxS) 0.20 U 0.20 0.031 ug/Kg 11/30/20 04:07 12/01/20 19:39 0.035 ug/Kg 11/30/20 04:07 12/01/20 19:39 Perfluoroheptanesulfonic Acid 0.20 U 0.20 (PFHpS) Perfluorooctanesulfonic acid (PFOS) 0.50 U 0.50 0.20 ug/Kg 11/30/20 04:07 12/01/20 19:39 Perfluorodecanesulfonic acid (PFDS) 0.20 U 0.20 0.039 ug/Kg 11/30/20 04:07 12/01/20 19:39 Perfluorooctanesulfonamide (FOSA) 0.20 U 0.20 0.082 ug/Kg 11/30/20 04:07 12/01/20 19:39 11/30/20 04:07 12/01/20 19:39 N-methylperfluorooctanesulfonamidoa 2.0 U 2.0 0.39 ug/Kg cetic acid (NMeFOSAA) 2.0 U 2.0 11/30/20 04:07 12/01/20 19:39 N-ethylperfluorooctanesulfonamidoac 0.37 ug/Kg etic acid (NEtFOSAA) 11/30/20 04:07 12/01/20 19:39 6:2 FTS 2.0 U 2.0 0.15 ug/Kg 8:2 FTS 2.0 U 2.0 11/30/20 04:07 12/01/20 19:39 0.25 ug/Kg MB MB

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C4 PFBA	87		25 - 150	11/30/20 04:07	12/01/20 19:39	1
13C5 PFPeA	90		25 - 150	11/30/20 04:07	12/01/20 19:39	1
13C2 PFHxA	90		25 - 150	11/30/20 04:07	12/01/20 19:39	1
13C4 PFHpA	100		25 - 150	11/30/20 04:07	12/01/20 19:39	1
13C4 PFOA	108		25 - 150	11/30/20 04:07	12/01/20 19:39	1
13C5 PFNA	103		25 - 150	11/30/20 04:07	12/01/20 19:39	1
13C2 PFDA	104		25 - 150	11/30/20 04:07	12/01/20 19:39	1
13C2 PFUnA	99		25 - 150	11/30/20 04:07	12/01/20 19:39	1
13C2 PFDoA	97		25 - 150	11/30/20 04:07	12/01/20 19:39	1

Eurofins TestAmerica, Edison

Page 120 of 158

2

3

4

6

9

11

13

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: MB 320-436644/1-A Matrix: Solid

Analysis Batch: 437343

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 436644

	MB	МВ				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFTeDA	97		25 - 150	11/30/20 04:07	12/01/20 19:39	1
13C3 PFBS	90		25 - 150	11/30/20 04:07	12/01/20 19:39	1
18O2 PFHxS	95		25 - 150	11/30/20 04:07	12/01/20 19:39	1
13C4 PFOS	96		25 - 150	11/30/20 04:07	12/01/20 19:39	1
13C8 FOSA	92		25 - 150	11/30/20 04:07	12/01/20 19:39	1
d3-NMeFOSAA	110		25 - 150	11/30/20 04:07	12/01/20 19:39	1
d5-NEtFOSAA	114		25 - 150	11/30/20 04:07	12/01/20 19:39	1
M2-6:2 FTS	198	*5	25 - 150	11/30/20 04:07	12/01/20 19:39	1
M2-8:2 FTS	116		25 - 150	11/30/20 04:07	12/01/20 19:39	1
_						

Lab Sample ID: LCS 320-436644/2-A

Matrix: Solid

Analysis Batch: 437343

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 436644

Analysis Batch: 43/343			Spike		LCS		_	a. –	%Rec.
Analyte			Added		Qualifier	Unit	D	%Rec	Limits
Perfluorobutanoic acid (PFBA)			2.00	2.09		ug/Kg		104	76 - 136
Perfluoropentanoic acid (PFPeA)			2.00	1.89		ug/Kg		95	69 - 129
Perfluorohexanoic acid (PFHxA)			2.00	2.04		ug/Kg		102	71 - 131
Perfluoroheptanoic acid (PFHpA)			2.00	2.03		ug/Kg		101	71 - 131
Perfluorooctanoic acid (PFOA)			2.00	1.87		ug/Kg		94	72 - 132
Perfluorononanoic acid (PFNA)			2.00	2.01		ug/Kg		101	73 - 133
Perfluorodecanoic acid (PFDA)			2.00	2.03		ug/Kg		102	72 - 132
Perfluoroundecanoic acid (PFUnA)			2.00	2.07		ug/Kg		103	66 - 126
Perfluorododecanoic acid (PFDoA)			2.00	2.00		ug/Kg		100	71 - 131
Perfluorotridecanoic acid (PFTriA)			2.00	1.97		ug/Kg		98	71 - 131
Perfluorotetradecanoic acid (PFTeA)			2.00	1.86		ug/Kg		93	67 - 127
Perfluorobutanesulfonic acid (PFBS)			1.77	1.79		ug/Kg		101	69 - 129
Perfluorohexanesulfonic acid (PFHxS)			1.82	1.71		ug/Kg		94	62 - 122
Perfluoroheptanesulfonic Acid (PFHpS)			1.90	2.02		ug/Kg		106	76 - 136
Perfluorooctanesulfonic acid (PFOS)			1.86	1.79		ug/Kg		96	68 - 141
Perfluorodecanesulfonic acid (PFDS)			1.93	1.83		ug/Kg		95	71 - 131
Perfluorooctanesulfonamide (FOSA)			2.00	2.25		ug/Kg		113	77 - 137
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)			2.00	2.03		ug/Kg		102	72 - 132
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)			2.00	1.86	J	ug/Kg		93	72 - 132
6:2 FTS			1.90	1.84	J	ug/Kg		97	73 - 139
8:2 FTS			1.92	1.87	J	ug/Kg		97	75 - 135
	LCS	LCS							
Isotope Dilution	%Recovery	Qualifier	Limits						
12C4 DEDA			25 150						

	LUJ	LUS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFBA	83		25 - 150
13C5 PFPeA	85		25 - 150

Eurofins TestAmerica, Edison

2

3

5

7

9

10

12

14

. .

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-436644/2-A

Matrix: Solid

Analysis Batch: 437343

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 436644

		LCS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFHxA	87		25 - 150
13C4 PFHpA	94		25 - 150
13C4 PFOA	104		25 - 150
13C5 PFNA	98		25 - 150
13C2 PFDA	92		25 - 150
13C2 PFUnA	95		25 - 150
13C2 PFDoA	92		25 - 150
13C2 PFTeDA	88		25 - 150
13C3 PFBS	88		25 - 150
1802 PFHxS	91		25 - 150
13C4 PFOS	93		25 - 150
13C8 FOSA	85		25 - 150
d3-NMeFOSAA	100		25 - 150
d5-NEtFOSAA	108		25 - 150
M2-6:2 FTS	189	*5	25 - 150
M2-8:2 FTS	105		25 - 150

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 460-740829/1-A ^2

Matrix: Solid

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 740839								Prep Batch:	740829
		MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver	2.0	U	2.0	1.1	mg/Kg		11/18/20 10:12	11/18/20 17:19	2
Aluminum	40.0	U	40.0	5.7	mg/Kg		11/18/20 10:12	11/18/20 17:19	2
Arsenic	3.0	U	3.0	0.62	mg/Kg		11/18/20 10:12	11/18/20 17:19	2
Barium	40.0	U	40.0	3.9	mg/Kg		11/18/20 10:12	11/18/20 17:19	2
Beryllium	0.40	U	0.40	0.064	mg/Kg		11/18/20 10:12	11/18/20 17:19	2
Calcium	1000	U	1000	73.9	mg/Kg		11/18/20 10:12	11/18/20 17:19	2
Cadmium	0.80	U	0.80	0.069	mg/Kg		11/18/20 10:12	11/18/20 17:19	2
Cobalt	10.0	U	10.0	0.55	mg/Kg		11/18/20 10:12	11/18/20 17:19	2
Chromium	2.0	U	2.0	1.4	mg/Kg		11/18/20 10:12	11/18/20 17:19	2
Copper	5.0	U	5.0	1.3	mg/Kg		11/18/20 10:12	11/18/20 17:19	2
Iron	30.0	U	30.0	20.6	mg/Kg		11/18/20 10:12	11/18/20 17:19	2
Potassium	1000	U	1000	61.4	mg/Kg		11/18/20 10:12	11/18/20 17:19	2
Magnesium	1000	U	1000	67.7	mg/Kg		11/18/20 10:12	11/18/20 17:19	2
Manganese	3.0	U	3.0	0.23	mg/Kg		11/18/20 10:12	11/18/20 17:19	2
Sodium	1000	U	1000	87.0	mg/Kg		11/18/20 10:12	11/18/20 17:19	2
Nickel	8.0	U	8.0	0.53	mg/Kg		11/18/20 10:12	11/18/20 17:19	2
Lead	2.0	U	2.0	0.32	mg/Kg		11/18/20 10:12	11/18/20 17:19	2
Antimony	4.0	U	4.0	1.2	mg/Kg		11/18/20 10:12	11/18/20 17:19	2
Selenium	4.0	U	4.0	0.68	mg/Kg		11/18/20 10:12	11/18/20 17:19	2
Thallium	4.0	U	4.0	0.62	mg/Kg		11/18/20 10:12	11/18/20 17:19	2
Vanadium	10.0	U	10.0	0.93	mg/Kg		11/18/20 10:12	11/18/20 17:19	2
Zinc	6.0	U	6.0	1.1	mg/Kg		11/18/20 10:12	11/18/20 17:19	2

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: LCSSRM 460-740829/2-A ^2

Matrix: Solid

Client Sample ID: Lab Control Sample

Prep Type: Total/NA
Prep Batch: 740829

Analysis Batch: 740839 Analyte	Spike Added	LCSSRM Result	LCSSRM Qualifier	Unit	D	%Rec	Prep Batch: 74082 %Rec. Limits
Silver	24.7	25.16		mg/Kg		101.9	80.6 - 119.
Aluminum	8190	7712		mg/Kg		94.2	8 48.7 - 151.
Arsenic	162	166.4		mg/Kg		102.7	4 82.7 - 117. 9
Barium	138	139.7		mg/Kg		101.2	82.6 - 117. 4
Beryllium	157	153.0		mg/Kg		97.4	•
Calcium	4790	4960		mg/Kg		103.5	81.6 - 118. 2
Cadmium	135	140.0		mg/Kg		103.7	82.2 - 117. 0
Cobalt	92.6	98.78		mg/Kg		106.7	
Chromium	117	120.2		mg/Kg		102.7	82.0 - 117. 9
Copper	143	146.1		mg/Kg		102.2	
Iron	15100	15170		mg/Kg		100.4	63.0 ₋ 137.
Potassium	2050	2014		mg/Kg		98.2	70.2 - 129. 8
Magnesium	2320	2314		mg/Kg		99.7	75.9 - 124. 1
Manganese	319	324.6		mg/Kg		101.8	· · · · · · · · · · · · · · · · · · ·
Sodium	137	143.4	J	mg/Kg		104.7	72.1 - 127. 7
Nickel	79.9	84.58		mg/Kg		105.9	
Lead	77.6	82.40		mg/Kg		106.2	
Antimony	110	85.72		mg/Kg		77.9	3.6 - 210. 9
Selenium	172	174.5		mg/Kg		101.4	
Thallium	88.0	94.70		mg/Kg		107.6	
Vanadium	99.9	101.3		mg/Kg		101.4	79.0 - 121.
Zinc	312	336.8		mg/Kg		107.9	80.4 - 119. 6

Lab Sample ID: MB 460-741864/1-A

Matrix: Water

Analysis Batch: 742067

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 741864

	MB	S MB							
1	Analyte Result	Qualifier	RL I	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3	Silver 10.0	U	10.0	5.8	ug/L		11/22/20 16:15	11/23/20 17:11	1
1	Aluminum 200	U	200	76.9	ug/L		11/22/20 16:15	11/23/20 17:11	1
1	Arsenic 15.0	U	15.0	3.3	ug/L		11/22/20 16:15	11/23/20 17:11	1
E	3arium 200	U	200	13.2	ug/L		11/22/20 16:15	11/23/20 17:11	1

Eurofins TestAmerica, Edison

Page 123 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: MB 460-741864/1-A

Matrix: Water

Analysis Batch: 742067

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 741864

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	2.0	U	2.0	0.17	ug/L		11/22/20 16:15	11/23/20 17:11	1
Calcium	5000	U	5000	152	ug/L		11/22/20 16:15	11/23/20 17:11	1
Cadmium	4.0	U	4.0	0.33	ug/L		11/22/20 16:15	11/23/20 17:11	1
Cobalt	50.0	U	50.0	2.0	ug/L		11/22/20 16:15	11/23/20 17:11	1
Chromium	10.0	U	10.0	5.0	ug/L		11/22/20 16:15	11/23/20 17:11	1
Copper	25.0	U	25.0	6.9	ug/L		11/22/20 16:15	11/23/20 17:11	1
Iron	150	U	150	80.8	ug/L		11/22/20 16:15	11/23/20 17:11	1
Potassium	5000	U	5000	142	ug/L		11/22/20 16:15	11/23/20 17:11	1
Magnesium	5000	U	5000	142	ug/L		11/22/20 16:15	11/23/20 17:11	1
Manganese	15.0	U	15.0	0.76	ug/L		11/22/20 16:15	11/23/20 17:11	1
Sodium	5000	U	5000	83.8	ug/L		11/22/20 16:15	11/23/20 17:11	1
Nickel	40.0	U	40.0	4.1	ug/L		11/22/20 16:15	11/23/20 17:11	1
Lead	10.0	U	10.0	2.4	ug/L		11/22/20 16:15	11/23/20 17:11	1
Antimony	20.0	U	20.0	3.7	ug/L		11/22/20 16:15	11/23/20 17:11	1
Selenium	20.0	U	20.0	5.9	ug/L		11/22/20 16:15	11/23/20 17:11	1
Thallium	20.0	U	20.0	4.1	ug/L		11/22/20 16:15	11/23/20 17:11	1
Vanadium	50.0	U	50.0	7.2	ug/L		11/22/20 16:15	11/23/20 17:11	1
Zinc	30.0	U	30.0	1.2	ug/L		11/22/20 16:15	11/23/20 17:11	1

Lab Sample ID: LCS 460-741864/2-A

Matrix: Water

Analysis Batch: 742067

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 741864

-	Spike	LCS L	cs		%Rec.	
Analyte	Added	Result Q	ualifier Unit	D %Rec	Limits	
Silver	50.0	53.71	ug/L		80 - 120	
Aluminum	2000	2088	ug/L	104	80 - 120	
Arsenic	2000	2195	ug/L	110	80 - 120	
Barium	2000	2093	ug/L	105	80 - 120	
Beryllium	50.0	53.40	ug/L	107	80 - 120	
Calcium	20000	21200	ug/L	106	80 - 120	
Cadmium	50.0	54.23	ug/L	108	80 - 120	
Cobalt	500	548.6	ug/L	110	80 - 120	
Chromium	200	216.6	ug/L	108	80 - 120	
Copper	250	263.1	ug/L	105	80 - 120	
Iron	1000	1093	ug/L	109	80 - 120	
Potassium	20000	19210	ug/L	96	80 - 120	
Magnesium	20000	21890	ug/L	109	80 - 120	
Manganese	500	539.7	ug/L	108	80 - 120	
Sodium	20000	20450	ug/L	102	80 - 120	
Nickel	500	537.2	ug/L	107	80 - 120	
Lead	500	542.4	ug/L	108	80 - 120	
Antimony	500	494.5	ug/L	99	80 - 120	
Selenium	2000	2166	ug/L	108	80 - 120	
Thallium	2000	2136	ug/L	107	80 - 120	
Vanadium	500	546.3	ug/L	109	80 - 120	
Zinc	500	540.4	ug/L	108	80 - 120	

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: 460-222961-4 MS Matrix: Water

Analysis Batch: 742067

Client Sample ID: MW-5 Prep Type: Total/NA Prep Batch: 741864

Analysis Batch: 742067			_						Prep Batch: 741864
	-	Sample	Spike		MS				%Rec.
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits
Silver	10.0	U	50.0	54.71		ug/L		109	75 - 125
Aluminum	2390		2000	4735		ug/L		117	75 - 125
Arsenic	15.0	U	2000	2237		ug/L		112	75 - 125
Barium	109	J	2000	2212		ug/L		105	75 - 125
Beryllium	2.0	U	50.0	54.33		ug/L		109	75 - 125
Calcium	67200		20000	89940		ug/L		114	75 - 125
Cadmium	4.0	U	50.0	54.15		ug/L		108	75 - 125
Cobalt	4.7	J	500	553.2		ug/L		110	75 - 125
Chromium	6.2	J	200	224.5		ug/L		109	75 - 125
Copper	25.0	U	250	271.4		ug/L		109	75 - 125
Iron	3070	F1	1000	4413	F1	ug/L		134	75 - 125
Potassium	11600		20000	32120		ug/L		103	75 - 125
Magnesium	7640		20000	29690		ug/L		110	75 - 125
Manganese	420		500	969.8		ug/L		110	75 - 125
Sodium	5130		20000	26590		ug/L		107	75 - 125
Nickel	7.3	J	500	540.5		ug/L		107	75 - 125
Lead	6.9	J	500	547.1		ug/L		108	75 - 125
Antimony	20.0	U	500	501.6		ug/L		100	75 - 125
Selenium	20.0	U	2000	2190		ug/L		110	75 - 125
Thallium	20.0	U	2000	2131		ug/L		107	75 - 125
Vanadium	50.0	U	500	557.6		ug/L		112	75 - 125
Zinc	13.5	J	500	551.1		ug/L		108	75 - 125

Lab Sample ID: 460-222961-4 DU

Matrix: Water

Analysis Batch: 742067

Client Sample ID: MW-5
Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 741864

Analysis Batch: 742067							Prep Batch: 74	41864
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Silver	10.0	U	10.0	U	ug/L		NC	20
Aluminum	2390		2398		ug/L		0.4	20
Arsenic	15.0	U	15.0	U	ug/L		NC	20
Barium	109	J	109.5	J	ug/L		0.2	20
Beryllium	2.0	U	2.0	U	ug/L		NC	20
Calcium	67200		66900		ug/L		0.4	20
Cadmium	4.0	U	4.0	U	ug/L		NC	20
Cobalt	4.7	J	4.63	J	ug/L		0.5	20
Chromium	6.2	J	6.57	J	ug/L		7	20
Copper	25.0	U	25.0	U	ug/L		NC	20
Iron	3070	F1	3099		ug/L		0.8	20
Potassium	11600		11540		ug/L		0.09	20
Magnesium	7640		7662		ug/L		0.3	20
Manganese	420		419.0		ug/L		0.3	20
Sodium	5130		5183		ug/L		1	20
Nickel	7.3	J	7.39	J	ug/L		0.8	20
Lead	6.9	J	6.83	J	ug/L		0.8	20
Antimony	20.0	U	20.0	U	ug/L		NC	20
Selenium	20.0	U	20.0	U	ug/L		NC	20
Thallium	20.0	U	20.0	U	ug/L		NC	20
Vanadium	50.0	U	50.0	U	ug/L		NC	20

Eurofins TestAmerica, Edison

Page 125 of 158

2

3

5

8

10

12

14

10

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: 460-222961-4 DU **Matrix: Water**

Analysis Batch: 742067 Sample Sample

Analyte **Result Qualifier** Zinc 13.5 J

DU DU

Result Qualifier 13.59 J

MDL Unit

Unit ug/L

D

Prepared

%Rec

106

RPD Limit 0.7

Client Sample ID: MW-5 Prep Type: Total/NA

Client Sample ID: Method Blank

11/24/20 12:17 11/24/20 13:21

Client Sample ID: Lab Control Sample

%Rec.

Limits

80 - 120

%Rec.

Limits

75 - 125

Prep Batch: 741864

Prep Type: Total/NA

Prep Batch: 742339

Prep Type: Total/NA

Prep Batch: 742339

Client Sample ID: MW-5

Prep Type: Total/NA

Prep Batch: 742339

Analyzed

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 460-742339/1-A **Matrix: Water**

Analysis Batch: 742380

MB MB Analyte Result Qualifier 0.20 U

Mercury

Lab Sample ID: LCS 460-742339/2-A **Matrix: Water**

Analysis Batch: 742380

Analyte Mercury

Lab Sample ID: 460-222961-4 MS

Matrix: Water

Analysis Batch: 742380

Analyte

Mercury

Lab Sample ID: 460-222961-4 DU **Matrix: Water**

Analysis Batch: 742380

Analyte

Mercury

Lab Sample ID: MB 460-742636/1-A

Matrix: Water

Analysis Batch: 742688

Result Qualifier

Mercury

Lab Sample ID: LCS 460-742636/2-A **Matrix: Water**

Analysis Batch: 742688

Analyte

Added Mercury

0.20 0.091 ug/L

Spike

Added

Sample Sample

Sample Sample

0.20 U

Result Qualifier

MB MB

0.20 U

0.20 U

Result Qualifier

1.00

Spike

Added

1.00

RL

LCS LCS Result Qualifier 1.06

MS MS

Result Qualifier

DU DU

0.20 U

RL

0.20

Spike

1.00

Result Qualifier

MDL Unit

0.091 ug/L

LCS LCS

1.05

Result Qualifier

1.02

ug/L

Unit

Unit

ug/L

Unit

ug/L

Unit

ug/L

102

n %Rec

> Client Sample ID: MW-5 Prep Type: Total/NA

> > Prep Batch: 742339 **RPD**

RPD Limit NC 20

Client Sample ID: Method Blank

Analyzed

Prep Type: Total/NA Prep Batch: 742636

Client Sample ID: Lab Control Sample

11/25/20 12:43 11/25/20 13:41

Prep Type: Total/NA Prep Batch: 742636

%Rec.

Limits

105 80 - 120

%Rec

Eurofins TestAmerica, Edison

RPD

20

Dil Fac

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 460-742208/10-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 742320

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared Mercury 0.017 0.0040 mg/Kg 11/24/20 03:09 11/24/20 06:25 0.017 U

RL

0.24

RL

0.010

Lab Sample ID: LCSSRM 460-742208/11-A ^40

Matrix: Solid

Analyte

Mercury

Analysis Batch: 742320

Spike Added

18.4

Spike

Added

157

LCSSRM LCSSRM

Result Qualifier 17.82

MDL Unit

LCSSRM LCSSRM

46.13

Result Qualifier

MDL Unit

0.0040 mg/L

LCS LCS

MS MS

Result Qualifier

0.12 mg/Kg

Unit

Unit

mg/L

mg/Kg

Unit

mg/Kg

D %Rec 96.9

Prepared

11/27/20 08:25

%Rec

Prepared

D %Rec

29.4

Limits 60.9 - 138. 6

%Rec.

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 742208

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 742913

Prep Type: Total/NA **Prep Batch: 742913**

Analyzed

11/27/20 14:41

Client Sample ID: Lab Control Sample

%Rec.

Limits

23.5 - 110.

Method: 9012B - Cyanide, Total andor Amenable

Lab Sample ID: MB 460-742913/1-A

Matrix: Solid

Analysis Batch: 742995

MB MB

MB MB

0.010 U

Analyte Result Qualifier Cyanide, Total 0.24 U

Lab Sample ID: LCSSRM 460-742913/2-A ^20

Matrix: Solid

Cyanide, Total

Analysis Batch: 742995

Analyte Cyanide, Total

Lab Sample ID: MB 460-742922/1-A

Matrix: Water

Analysis Batch: 742995

Analyte Result Qualifier

Lab Sample ID: LCS 460-742922/2-A

Matrix: Water

Analysis Batch: 742995

Cyanide, Total

Lab Sample ID: 460-222961-4 MS

Matrix: Water

Analysis Batch: 742995

Sample Sample Analyte

Result Qualifier 0.010 U F1 Cyanide, Total

Added 0.200

Spike

Spike

Added

0.100

0.242 F1

0.0970

Result Qualifier

Unit mg/L

%Rec 121

90 - 110

Limits

Prep Batch: 742208

Dil Fac

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 742922

Analyzed Dil Fac 11/27/20 09:11 11/27/20 12:53

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 742922 %Rec.

Limits 85 - 115

Client Sample ID: MW-5 Prep Type: Total/NA

Prep Batch: 742922 %Rec.

Eurofins TestAmerica, Edison

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 9012B - Cyanide, Total andor Amenable (Continued)

Lab Sample ID: 460-222961-4 MSD

Matrix: Water

Client Sample ID: MW-5

Prep Type: Total/NA

Matrix: Water Prep Type: Total/NA Analysis Batch: 742995 Prep Batch: 742922

MSD MSD RPD Sample Sample Spike %Rec. Result Qualifier Added Result Qualifier Unit Limits RPD Limit Analyte D %Rec 0.010 UF1 0.200 0.237 F1 90 - 110 2 35 Cyanide, Total mg/L 119

- 5

4

5

6

8

9

11

13

14

16

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

GC/MS VOA

_				
Prep	Rate	h• 7	'ለበ	62つ
ILED	Date	II. <i>1</i>	TU	UUL

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-9	S-4	Total/NA	Solid	5035	

Analysis Batch: 741805

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-1	MW-1A	Total/NA	Water	8260D	
460-222961-2	MW-2	Total/NA	Water	8260D	
460-222961-3	MW-3	Total/NA	Water	8260D	
460-222961-4	MW-5	Total/NA	Water	8260D	
460-222961-6	DUP	Total/NA	Water	8260D	
460-222961-8	SW-4	Total/NA	Water	8260D	
MB 460-741805/8	Method Blank	Total/NA	Water	8260D	
LCS 460-741805/3	Lab Control Sample	Total/NA	Water	8260D	
LCSD 460-741805/4	Lab Control Sample Dup	Total/NA	Water	8260D	
460-222961-4 MS	MW-5	Total/NA	Water	8260D	
460-222961-4 MSD	MW-5	Total/NA	Water	8260D	

Analysis Batch: 742890

Lab Sample ID 460-222961-9	Client Sample ID S-4	Prep Type Total/NA	Matrix Solid	Method 8260D	Prep Batch 740682
MB 460-742890/15	Method Blank	Total/NA	Solid	8260D	
LCS 460-742890/4	Lab Control Sample	Total/NA	Solid	8260D	
LCSD 460-742890/5	Lab Control Sample Dup	Total/NA	Solid	8260D	

GC/MS Semi VOA

Prep Batch: 740807

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-1	MW-1A	Total/NA	Water	3510C	_
460-222961-2	MW-2	Total/NA	Water	3510C	
460-222961-3	MW-3	Total/NA	Water	3510C	
460-222961-4	MW-5	Total/NA	Water	3510C	
460-222961-6	DUP	Total/NA	Water	3510C	
460-222961-8	SW-4	Total/NA	Water	3510C	
MB 460-740807/1-A	Method Blank	Total/NA	Water	3510C	
LCS 460-740807/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 460-740807/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	
460-222961-4 MS	MW-5	Total/NA	Water	3510C	
460-222961-4 MSD	MW-5	Total/NA	Water	3510C	

Prep Batch: 740823

Lab Sample ID 460-222961-9	Client Sample ID	Prep Type Total/NA	Matrix Solid	Method 3546	Prep Batch
MB 460-740823/1-A	Method Blank	Total/NA	Solid	3546	
LCS 460-740823/2-A	Lab Control Sample	Total/NA	Solid	3546	

Analysis Batch: 740997

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-9	S-4	Total/NA	Solid	8270E	740823
MB 460-740823/1-A	Method Blank	Total/NA	Solid	8270E	740823
LCS 460-740823/2-A	Lab Control Sample	Total/NA	Solid	8270E	740823

Page 129 of 158

Job ID: 460-222961-1

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

GC/MS Semi VOA

Analysis Batch: 741075

Lab Sample ID 460-222961-1	Client Sample ID MW-1A	Prep Type Total/NA	Matrix Water	Method 8270E SIM ID	Prep Batch 740807
460-222961-2	MW-2	Total/NA	Water	8270E SIM ID	740807
460-222961-3	MW-3	Total/NA	Water	8270E SIM ID	740807
460-222961-4	MW-5	Total/NA	Water	8270E SIM ID	740807
460-222961-6	DUP	Total/NA	Water	8270E SIM ID	740807
460-222961-8	SW-4	Total/NA	Water	8270E SIM ID	740807
MB 460-740807/1-A	Method Blank	Total/NA	Water	8270E SIM ID	740807
LCS 460-740807/2-A	Lab Control Sample	Total/NA	Water	8270E SIM ID	740807
LCSD 460-740807/3-A	Lab Control Sample Dup	Total/NA	Water	8270E SIM ID	740807
460-222961-4 MS	MW-5	Total/NA	Water	8270E SIM ID	740807
460-222961-4 MSD	MW-5	Total/NA	Water	8270E SIM ID	740807

Prep Batch: 741112

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-1	MW-1A	Total/NA	Water	3510C	
460-222961-2	MW-2	Total/NA	Water	3510C	
460-222961-3	MW-3	Total/NA	Water	3510C	
460-222961-4	MW-5	Total/NA	Water	3510C	
460-222961-6	DUP	Total/NA	Water	3510C	
460-222961-8	SW-4	Total/NA	Water	3510C	
MB 460-741112/1-A	Method Blank	Total/NA	Water	3510C	
LCS 460-741112/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 460-741112/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	
460-222961-4 MS	MW-5	Total/NA	Water	3510C	
460-222961-4 MSD	MW-5	Total/NA	Water	3510C	

Analysis Batch: 741238

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-1	MW-1A	Total/NA	Water	8270E	741112
460-222961-2	MW-2	Total/NA	Water	8270E	741112
460-222961-3	MW-3	Total/NA	Water	8270E	741112
460-222961-4	MW-5	Total/NA	Water	8270E	741112
460-222961-6	DUP	Total/NA	Water	8270E	741112
460-222961-8	SW-4	Total/NA	Water	8270E	741112
MB 460-741112/1-A	Method Blank	Total/NA	Water	8270E	741112
LCS 460-741112/2-A	Lab Control Sample	Total/NA	Water	8270E	741112
LCSD 460-741112/3-A	Lab Control Sample Dup	Total/NA	Water	8270E	741112
460-222961-4 MS	MW-5	Total/NA	Water	8270E	741112
460-222961-4 MSD	MW-5	Total/NA	Water	8270E	741112

GC Semi VOA

Prep Batch: 740669

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
460-222961-1	MW-1A	Total/NA	Water	8151A	
460-222961-2	MW-2	Total/NA	Water	8151A	
460-222961-3	MW-3	Total/NA	Water	8151A	
460-222961-4	MW-5	Total/NA	Water	8151A	
460-222961-6	DUP	Total/NA	Water	8151A	
460-222961-8	SW-4	Total/NA	Water	8151A	
MB 460-740669/1-A	Method Blank	Total/NA	Water	8151A	

Page 130 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

GC Semi VOA (Continued)

Prep Batch: 740669 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 460-740669/2-A	Lab Control Sample	Total/NA	Water	8151A	
LCSD 460-740669/3-A	Lab Control Sample Dup	Total/NA	Water	8151A	
460-222961-4 MS	MW-5	Total/NA	Water	8151A	
460-222961-4 MSD	MW-5	Total/NA	Water	8151A	

Prep Batch: 740672

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-9	S-4	Total/NA	Solid	8151A	
MB 460-740672/1-A	Method Blank	Total/NA	Solid	8151A	
LCS 460-740672/2-A	Lab Control Sample	Total/NA	Solid	8151A	
LCSD 460-740672/3-A	Lab Control Sample Dup	Total/NA	Solid	8151A	

Analysis Batch: 740756

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-1	MW-1A	Total/NA	Water	8151A	740669
460-222961-2	MW-2	Total/NA	Water	8151A	740669
460-222961-3	MW-3	Total/NA	Water	8151A	740669
460-222961-4	MW-5	Total/NA	Water	8151A	740669
460-222961-6	DUP	Total/NA	Water	8151A	740669
460-222961-8	SW-4	Total/NA	Water	8151A	740669
MB 460-740669/1-A	Method Blank	Total/NA	Water	8151A	740669
LCS 460-740669/2-A	Lab Control Sample	Total/NA	Water	8151A	740669
LCSD 460-740669/3-A	Lab Control Sample Dup	Total/NA	Water	8151A	740669
460-222961-4 MS	MW-5	Total/NA	Water	8151A	740669
460-222961-4 MSD	MW-5	Total/NA	Water	8151A	740669

Analysis Batch: 740757

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-9	S-4	Total/NA	Solid	8151A	740672
MB 460-740672/1-A	Method Blank	Total/NA	Solid	8151A	740672
LCS 460-740672/2-A	Lab Control Sample	Total/NA	Solid	8151A	740672
LCSD 460-740672/3-A	Lab Control Sample Dup	Total/NA	Solid	8151A	740672

Analysis Batch: 740769

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-1	MW-1A	Total/NA	Water	8082A	740820
460-222961-2	MW-2	Total/NA	Water	8082A	740820
460-222961-3	MW-3	Total/NA	Water	8082A	740820
460-222961-4	MW-5	Total/NA	Water	8082A	740820
460-222961-6	DUP	Total/NA	Water	8082A	740820
MB 460-740820/1-A	Method Blank	Total/NA	Water	8082A	740820
LCS 460-740820/2-A	Lab Control Sample	Total/NA	Water	8082A	740820
LCSD 460-740820/3-A	Lab Control Sample Dup	Total/NA	Water	8082A	740820
460-222961-4 MS	MW-5	Total/NA	Water	8082A	740820
460-222961-4 MSD	MW-5	Total/NA	Water	8082A	740820

Prep Batch: 740820

Lab Sample ID 460-222961-1	Client Sample ID MW-1A	Prep Type Total/NA	Matrix Water	Method 3510C	Prep Batch
460-222961-2	MW-2	Total/NA	Water	3510C	
460-222961-3	MW-3	Total/NA	Water	3510C	

Page 131 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

GC Semi VOA (Continued)

Prep Batch: 740820 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-4	MW-5	Total/NA	Water	3510C	
460-222961-6	DUP	Total/NA	Water	3510C	
MB 460-740820/1-A	Method Blank	Total/NA	Water	3510C	
LCS 460-740820/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 460-740820/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	
460-222961-4 MS	MW-5	Total/NA	Water	3510C	
460-222961-4 MSD	MW-5	Total/NA	Water	3510C	

Prep Batch: 740821

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-1	MW-1A	Total/NA	Water	3510C	
460-222961-2	MW-2	Total/NA	Water	3510C	
460-222961-3	MW-3	Total/NA	Water	3510C	
460-222961-4	MW-5	Total/NA	Water	3510C	
460-222961-6	DUP	Total/NA	Water	3510C	
MB 460-740821/1-A	Method Blank	Total/NA	Water	3510C	
LCS 460-740821/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 460-740821/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	
460-222961-4 MS	MW-5	Total/NA	Water	3510C	
460-222961-4 MSD	MW-5	Total/NA	Water	3510C	

Prep Batch: 740857

Lab Sample ID 460-222961-8	Client Sample ID SW-4	Prep Type Total/NA	Matrix Water	Method 3510C	Prep Batch
MB 460-740857/1-A	Method Blank	Total/NA	Water	3510C	
LCS 460-740857/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 460-740857/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Prep Batch: 740863

Lab Sample ID 460-222961-8	Client Sample ID SW-4	Prep Type Total/NA	Matrix Water	Method 3510C	Prep Batch
MB 460-740863/1-A	Method Blank	Total/NA	Water	3510C	
LCS 460-740863/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 460-740863/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 741016

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method I	Prep Batch
460-222961-8	SW-4	Total/NA	Water	8081B	740857
MB 460-740857/1-A	Method Blank	Total/NA	Water	8081B	740857
LCS 460-740857/2-A	Lab Control Sample	Total/NA	Water	8081B	740857
LCSD 460-740857/3-A	Lab Control Sample Dup	Total/NA	Water	8081B	740857

Analysis Batch: 741018

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-1	MW-1A	Total/NA	Water	8081B	740821
460-222961-2	MW-2	Total/NA	Water	8081B	740821
460-222961-3	MW-3	Total/NA	Water	8081B	740821
460-222961-4	MW-5	Total/NA	Water	8081B	740821
460-222961-6	DUP	Total/NA	Water	8081B	740821
MB 460-740821/1-A	Method Blank	Total/NA	Water	8081B	740821
LCS 460-740821/2-A	Lab Control Sample	Total/NA	Water	8081B	740821

Eurofins TestAmerica, Edison

Page 132 of 158

2

3

4

6

8

10

. .

13

14

17

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

GC Semi VOA (Continued)

Analysis Batch: 741018 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 460-740821/3-A	Lab Control Sample Dup	Total/NA	Water	8081B	740821
460-222961-4 MS	MW-5	Total/NA	Water	8081B	740821
460-222961-4 MSD	MW-5	Total/NA	Water	8081B	740821

Analysis Batch: 741103

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-8	SW-4	Total/NA	Water	8082A	740863
MB 460-740863/1-A	Method Blank	Total/NA	Water	8082A	740863
LCS 460-740863/2-A	Lab Control Sample	Total/NA	Water	8082A	740863
LCSD 460-740863/3-A	Lab Control Sample Dup	Total/NA	Water	8082A	740863

Prep Batch: 741117

	Sample ID 222961-9	Client Sample ID S-4	Prep Type Total/NA	Matrix Solid	Method	Prep Batch
MB 4	460-741117/1-A	Method Blank	Total/NA	Solid	3546	
LCS	460-741117/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCS	D 460-741117/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	

Prep Batch: 741118

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-9	S-4	Total/NA	Solid	3546	<u> </u>
MB 460-741118/1-A	Method Blank	Total/NA	Solid	3546	
LCS 460-741118/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 460-741118/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	

Analysis Batch: 741313

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-9	S-4	Total/NA	Solid	8081B	741118
MB 460-741118/1-A	Method Blank	Total/NA	Solid	8081B	741118
LCS 460-741118/2-A	Lab Control Sample	Total/NA	Solid	8081B	741118
LCSD 460-741118/3-A	Lab Control Sample Dup	Total/NA	Solid	8081B	741118

Analysis Batch: 741324

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-9	S-4	Total/NA	Solid	8082A	741117
MB 460-741117/1-A	Method Blank	Total/NA	Solid	8082A	741117
LCS 460-741117/2-A	Lab Control Sample	Total/NA	Solid	8082A	741117
LCSD 460-741117/3-A	Lab Control Sample Dup	Total/NA	Solid	8082A	741117

LCMS

Prep Batch: 161345

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-1	MW-1A	Total/NA	Water	3535	_
460-222961-2	MW-2	Total/NA	Water	3535	
460-222961-2 - DL	MW-2	Total/NA	Water	3535	
460-222961-3 - DL	MW-3	Total/NA	Water	3535	
460-222961-3	MW-3	Total/NA	Water	3535	
460-222961-4	MW-5	Total/NA	Water	3535	
460-222961-5	MW-6	Total/NA	Water	3535	
460-222961-6	DUP	Total/NA	Water	3535	

Eurofins TestAmerica, Edison

Page 133 of 158

3

4

6

7

10

12

13

4 E

16

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

LCMS (Continued)

Prep Batch: 161345 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-7	EB-11132020	Total/NA	Water	3535	
460-222961-8	SW-4	Total/NA	Water	3535	
MB 200-161345/1-A	Method Blank	Total/NA	Water	3535	
LCS 200-161345/2-A	Lab Control Sample	Total/NA	Water	3535	
460-222961-4 MS	MW-5	Total/NA	Water	3535	
460-222961-4 MSD	MW-5	Total/NA	Water	3535	

Analysis Batch: 161351

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-1	MW-1A	Total/NA	Water	537 (modified)	161345
460-222961-2	MW-2	Total/NA	Water	537 (modified)	161345
460-222961-3	MW-3	Total/NA	Water	537 (modified)	161345
460-222961-4	MW-5	Total/NA	Water	537 (modified)	161345
460-222961-5	MW-6	Total/NA	Water	537 (modified)	161345
460-222961-6	DUP	Total/NA	Water	537 (modified)	161345
460-222961-7	EB-11132020	Total/NA	Water	537 (modified)	161345
460-222961-8	SW-4	Total/NA	Water	537 (modified)	161345
MB 200-161345/1-A	Method Blank	Total/NA	Water	537 (modified)	161345
LCS 200-161345/2-A	Lab Control Sample	Total/NA	Water	537 (modified)	161345
460-222961-4 MS	MW-5	Total/NA	Water	537 (modified)	161345
460-222961-4 MSD	MW-5	Total/NA	Water	537 (modified)	161345

Analysis Batch: 161441

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-2 - DL	MW-2	Total/NA	Water	537 (modified)	161345
460-222961-3 - DL	MW-3	Total/NA	Water	537 (modified)	161345

Prep Batch: 435252

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-9	S-4	Total/NA	Solid	SHAKE	
MB 320-435252/1-A	Method Blank	Total/NA	Solid	SHAKE	
LCS 320-435252/2-A	Lab Control Sample	Total/NA	Solid	SHAKE	
460-222961-9 MS	S-4	Total/NA	Solid	SHAKE	
460-222961-9 MSD	S-4	Total/NA	Solid	SHAKE	

Analysis Batch: 436085

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-9	S-4	Total/NA	Solid	537 (modified)	435252
MB 320-435252/1-A	Method Blank	Total/NA	Solid	537 (modified)	435252
LCS 320-435252/2-A	Lab Control Sample	Total/NA	Solid	537 (modified)	435252
460-222961-9 MS	S-4	Total/NA	Solid	537 (modified)	435252
460-222961-9 MSD	S-4	Total/NA	Solid	537 (modified)	435252

Prep Batch: 436644

Lab Sample ID 460-222961-9 - RE	Client Sample ID S-4	Prep Type Total/NA	Matrix Solid	Method SHAKE	Prep Batch
MB 320-436644/1-A	Method Blank	Total/NA	Solid	SHAKE	
LCS 320-436644/2-A	Lab Control Sample	Total/NA	Solid	SHAKE	

Page 134 of 158

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

LCMS

Analysis Batch: 437343

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-9 - RE	S-4	Total/NA	Solid	537 (modified)	436644
MB 320-436644/1-A	Method Blank	Total/NA	Solid	537 (modified)	436644
LCS 320-436644/2-A	Lab Control Sample	Total/NA	Solid	537 (modified)	436644

Metals

Prep Batch: 740829

Lab Sample ID 460-222961-9	Client Sample ID	Prep Type Total/NA	Matrix Solid	Method 3050B	Prep Batch
MB 460-740829/1-A ^2	Method Blank	Total/NA	Solid	3050B	
LCSSRM 460-740829/2-A ^2	2 Lab Control Sample	Total/NA	Solid	3050B	

Analysis Batch: 740839

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-9	S-4	Total/NA	Solid	6010D	740829
MB 460-740829/1-A ^2	Method Blank	Total/NA	Solid	6010D	740829
LCSSRM 460-740829/2-A ^2	Lab Control Sample	Total/NA	Solid	6010D	740829

Analysis Batch: 741136

Lab	Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460	-222301-3	S-4	Total/NA	Solid	6010D	740829

Prep Batch: 741864

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-1	MW-1A	Total/NA	Water	3010A	
460-222961-2	MW-2	Total/NA	Water	3010A	
460-222961-3	MW-3	Total/NA	Water	3010A	
460-222961-4	MW-5	Total/NA	Water	3010A	
460-222961-6	DUP	Total/NA	Water	3010A	
460-222961-8	SW-4	Total/NA	Water	3010A	
MB 460-741864/1-A	Method Blank	Total/NA	Water	3010A	
LCS 460-741864/2-A	Lab Control Sample	Total/NA	Water	3010A	
460-222961-4 MS	MW-5	Total/NA	Water	3010A	
460-222961-4 DU	MW-5	Total/NA	Water	3010A	

Analysis Batch: 742067

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-1	MW-1A	Total/NA	Water	6010D	741864
460-222961-2	MW-2	Total/NA	Water	6010D	741864
460-222961-3	MW-3	Total/NA	Water	6010D	741864
460-222961-4	MW-5	Total/NA	Water	6010D	741864
460-222961-6	DUP	Total/NA	Water	6010D	741864
460-222961-8	SW-4	Total/NA	Water	6010D	741864
MB 460-741864/1-A	Method Blank	Total/NA	Water	6010D	741864
LCS 460-741864/2-A	Lab Control Sample	Total/NA	Water	6010D	741864
460-222961-4 MS	MW-5	Total/NA	Water	6010D	741864
460-222961-4 DU	MW-5	Total/NA	Water	6010D	741864

Prep Batch: 742208

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-9	S-4	Total/NA	Solid	7471B	

Eurofins TestAmerica, Edison

Page 135 of 158

3

4

5

7

9

10

10

13

14

16

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Metals (Continued)

Prep Batch: 742208 (Continued

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 460-742208/10-A	Method Blank	Total/NA	Solid	7471B	
LCSSRM 460-742208/11-A ^	Lab Control Sample	Total/NA	Solid	7471B	

Analysis Batch: 742320

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-9	S-4	Total/NA	Solid	7471B	742208
MB 460-742208/10-A	Method Blank	Total/NA	Solid	7471B	742208
LCSSRM 460-742208/11-A '	Lab Control Sample	Total/NA	Solid	7471B	742208

Prep Batch: 742339

Lab Sample ID 460-222961-4	Client Sample ID MW-5	Prep Type Total/NA	Matrix Water	Method 7470A	Prep Batch
MB 460-742339/1-A	Method Blank	Total/NA	Water	7470A	
LCS 460-742339/2-A	Lab Control Sample	Total/NA	Water	7470A	
460-222961-4 MS	MW-5	Total/NA	Water	7470A	
460-222961-4 DU	MW-5	Total/NA	Water	7470A	

Analysis Batch: 742380

Lab Sample ID 460-222961-4	Client Sample ID MW-5	Prep Type Total/NA	Matrix Water	Method 7470A	Prep Batch 742339
MB 460-742339/1-A	Method Blank	Total/NA	Water	7470A	742339
LCS 460-742339/2-A	Lab Control Sample	Total/NA	Water	7470A	742339
460-222961-4 MS	MW-5	Total/NA	Water	7470A	742339
460-222961-4 DU	MW-5	Total/NA	Water	7470A	742339

Prep Batch: 742636

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-1	MW-1A	Total/NA	Water	7470A	
460-222961-2	MW-2	Total/NA	Water	7470A	
460-222961-3	MW-3	Total/NA	Water	7470A	
460-222961-6	DUP	Total/NA	Water	7470A	
460-222961-8	SW-4	Total/NA	Water	7470A	
MB 460-742636/1-A	Method Blank	Total/NA	Water	7470A	
LCS 460-742636/2-A	Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 742688

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-1	MW-1A	Total/NA	Water	7470A	742636
460-222961-2	MW-2	Total/NA	Water	7470A	742636
460-222961-3	MW-3	Total/NA	Water	7470A	742636
460-222961-6	DUP	Total/NA	Water	7470A	742636
460-222961-8	SW-4	Total/NA	Water	7470A	742636
MB 460-742636/1-A	Method Blank	Total/NA	Water	7470A	742636
LCS 460-742636/2-A	Lab Control Sample	Total/NA	Water	7470A	742636

General Chemistry

Analysis Batch: 742623

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-9	S-4	Total/NA	Solid	Moisture	

Eurofins TestAmerica, Edison

Page 136 of 158

3

4

_

7

9

10

12

14

15

16

17

3/30/2021

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

General Chemistry

Prep Batch: 742913

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-9	S-4	Total/NA	Solid	9012B	
MB 460-742913/1-A	Method Blank	Total/NA	Solid	9012B	
LCSSRM 460-742913/2-A	¹ 2 Lab Control Sample	Total/NA	Solid	9012B	

Prep Batch: 742922

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-1	MW-1A	Total/NA	Water	9012B	
460-222961-2	MW-2	Total/NA	Water	9012B	
460-222961-3	MW-3	Total/NA	Water	9012B	
460-222961-4	MW-5	Total/NA	Water	9012B	
460-222961-6	DUP	Total/NA	Water	9012B	
460-222961-8	SW-4	Total/NA	Water	9012B	
MB 460-742922/1-A	Method Blank	Total/NA	Water	9012B	
LCS 460-742922/2-A	Lab Control Sample	Total/NA	Water	9012B	
460-222961-4 MS	MW-5	Total/NA	Water	9012B	
460-222961-4 MSD	MW-5	Total/NA	Water	9012B	

Analysis Batch: 742995

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-1	MW-1A	Total/NA	Water	9012B	742922
460-222961-2	MW-2	Total/NA	Water	9012B	742922
460-222961-3	MW-3	Total/NA	Water	9012B	742922
460-222961-4	MW-5	Total/NA	Water	9012B	742922
460-222961-6	DUP	Total/NA	Water	9012B	742922
460-222961-8	SW-4	Total/NA	Water	9012B	742922
460-222961-9	S-4	Total/NA	Solid	9012B	742913
MB 460-742913/1-A	Method Blank	Total/NA	Solid	9012B	742913
MB 460-742922/1-A	Method Blank	Total/NA	Water	9012B	742922
LCS 460-742922/2-A	Lab Control Sample	Total/NA	Water	9012B	742922
LCSSRM 460-742913/2-A ^2	Lab Control Sample	Total/NA	Solid	9012B	742913
460-222961-4 MS	MW-5	Total/NA	Water	9012B	742922
460-222961-4 MSD	MW-5	Total/NA	Water	9012B	742922

Lab Chronicle

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: MW-1A

Date Collected: 11/13/20 13:40 Date Received: 11/16/20 19:40 Lab Sample ID: 460-222961-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	741805	11/22/20 16:14	EMM	TAL EDI
Total/NA	Prep	3510C			741112	11/19/20 09:29	OTS	TAL EDI
Total/NA	Analysis	8270E		1	741238	11/20/20 05:28	MME	TAL EDI
Total/NA	Prep	3510C			740807	11/18/20 09:12	RPC	TAL EDI
Total/NA	Analysis	8270E SIM ID		1	741075	11/19/20 13:50	DAN	TAL EDI
Total/NA	Prep	3510C			740821	11/18/20 09:44	ATF	TAL EDI
Total/NA	Analysis	8081B		1	741018	11/19/20 13:41	FAM	TAL EDI
Total/NA	Prep	3510C			740820	11/18/20 09:41	ATF	TAL EDI
Total/NA	Analysis	8082A		1	740769	11/18/20 18:19	JHP	TAL EDI
Total/NA	Prep	8151A			740669	11/17/20 20:26	JMS	TAL EDI
Total/NA	Analysis	8151A		1	740756	11/18/20 09:03	SAK	TAL EDI
Total/NA	Prep	3535			161345	11/20/20 09:01	KFW	TAL BUR
Total/NA	Analysis	537 (modified)		1	161351	11/20/20 16:39	BWC	TAL BUR
Total/NA	Prep	3010A			741864	11/22/20 16:15	GAE	TAL EDI
Total/NA	Analysis	6010D		1	742067	11/23/20 18:24	YZH	TAL EDI
Total/NA	Prep	7470A			742636	11/25/20 12:43	RBS	TAL EDI
Total/NA	Analysis	7470A		1	742688	11/25/20 14:08	RBS	TAL EDI
Total/NA	Prep	9012B			742922	11/27/20 09:11	IAA	TAL EDI
Total/NA	Analysis	9012B		1	742995	11/27/20 13:13	HTV	TAL EDI

Client Sample ID: MW-2 Lab Sample ID: 460-222961-2

Date Collected: 11/13/20 10:55 Matrix: Water

Date Received: 11/16/20 19:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	741805	11/22/20 16:40	EMM	TAL EDI
Total/NA	Prep	3510C			741112	11/19/20 09:29	OTS	TAL EDI
Total/NA	Analysis	8270E		1	741238	11/20/20 08:17	MME	TAL EDI
Total/NA	Prep	3510C			740807	11/18/20 09:12	RPC	TAL EDI
Total/NA	Analysis	8270E SIM ID		1	741075	11/19/20 14:06	DAN	TAL ED
Total/NA	Prep	3510C			740821	11/18/20 09:44	ATF	TAL ED
Total/NA	Analysis	8081B		1	741018	11/19/20 13:57	FAM	TAL ED
Total/NA	Prep	3510C			740820	11/18/20 09:41	ATF	TAL ED
Total/NA	Analysis	8082A		1	740769	11/18/20 18:35	JHP	TAL ED
Total/NA	Prep	8151A			740669	11/17/20 20:26	JMS	TAL ED
Total/NA	Analysis	8151A		1	740756	11/18/20 09:17	SAK	TAL ED
Total/NA	Prep	3535			161345	11/20/20 09:01	KFW	TAL BU
Total/NA	Analysis	537 (modified)		1	161351	11/20/20 16:47	BWC	TAL BU
Total/NA	Prep	3535	DL		161345	11/20/20 09:01	KFW	TAL BUI
Total/NA	Analysis	537 (modified)	DL	2	161441	11/23/20 17:07	BWC	TAL BU
Total/NA	Prep	3010A			741864	11/22/20 16:15	GAE	TAL ED
Total/NA	Analysis	6010D		1	742067	11/23/20 18:28	YZH	TAL ED
Total/NA	Prep	7470A			742636	11/25/20 12:43	RBS	TAL ED
Total/NA	Analysis	7470A		1	742688	11/25/20 14:10	RBS	TAL ED

Eurofins TestAmerica, Edison

Page 138 of 158

2

5

7

8

10

111

13

14

4.0

Lab Chronicle

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: MW-2

Date Collected: 11/13/20 10:55 Date Received: 11/16/20 19:40

Lab Sample ID: 460-222961-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	9012B			742922	11/27/20 09:11	IAA	TAL EDI
Total/NA	Analysis	9012B		1	742995	11/27/20 13:14	HTV	TAL EDI

Client Sample ID: MW-3 Lab Sample ID: 460-222961-3

Date Collected: 11/13/20 09:35 **Matrix: Water**

Date Received: 11/16/20 19:40

-	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D			741805	11/22/20 17:06	EMM	TAL EDI
Total/NA	Prep	3510C			741112	11/19/20 09:29	OTS	TAL EDI
Total/NA	Analysis	8270E		1	741238	11/20/20 06:11	MME	TAL EDI
Total/NA	Prep	3510C			740807	11/18/20 09:12	RPC	TAL EDI
Total/NA	Analysis	8270E SIM ID		1	741075	11/19/20 14:22	DAN	TAL EDI
Total/NA	Prep	3510C			740821	11/18/20 09:44	ATF	TAL EDI
Total/NA	Analysis	8081B		1	741018	11/19/20 14:13	FAM	TAL EDI
Total/NA	Prep	3510C			740820	11/18/20 09:41	ATF	TAL EDI
Total/NA	Analysis	8082A		1	740769	11/18/20 18:51	JHP	TAL EDI
Total/NA	Prep	8151A			740669	11/17/20 20:26	JMS	TAL EDI
Total/NA	Analysis	8151A		1	740756	11/18/20 09:30	SAK	TAL EDI
Total/NA	Prep	3535			161345	11/20/20 09:01	KFW	TAL BUR
Total/NA	Analysis	537 (modified)		1	161351	11/20/20 16:55	BWC	TAL BUR
Total/NA	Prep	3535	DL		161345	11/20/20 09:01	KFW	TAL BUR
Total/NA	Analysis	537 (modified)	DL	2	161441	11/23/20 17:16	BWC	TAL BUR
Total/NA	Prep	3010A			741864	11/22/20 16:15	GAE	TAL EDI
Total/NA	Analysis	6010D		1	742067	11/23/20 18:33	YZH	TAL EDI
Total/NA	Prep	7470A			742636	11/25/20 12:43	RBS	TAL EDI
Total/NA	Analysis	7470A		1	742688	11/25/20 14:12	RBS	TAL EDI
Total/NA	Prep	9012B			742922	11/27/20 09:11	IAA	TAL EDI
Total/NA	Analysis	9012B		1	742995	11/27/20 13:15	HTV	TAL EDI

Client Sample ID: MW-5 Lab Sample ID: 460-222961-4 Date Collected: 11/13/20 15:10 **Matrix: Water**

Date Received: 11/16/20 19:40

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	741805	11/22/20 17:32	EMM	TAL EDI
Total/NA	Prep	3510C			741112	11/19/20 09:29	OTS	TAL EDI
Total/NA	Analysis	8270E		1	741238	11/20/20 00:13	MME	TAL EDI
Total/NA	Prep	3510C			740807	11/18/20 09:12	RPC	TAL EDI
Total/NA	Analysis	8270E SIM ID		1	741075	11/19/20 14:38	DAN	TAL EDI
Total/NA	Prep	3510C			740821	11/18/20 09:44	ATF	TAL EDI
Total/NA	Analysis	8081B		1	741018	11/19/20 12:53	FAM	TAL EDI
Total/NA	Prep	3510C			740820	11/18/20 09:41	ATF	TAL EDI
Total/NA	Analysis	8082A		1	740769	11/18/20 19:07	JHP	TAL EDI

Page 139 of 158

Lab Chronicle

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: MW-5

Lab Sample ID: 460-222961-4 Date Collected: 11/13/20 15:10

Matrix: Water

Date Received: 11/16/20 19:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8151A			740669	11/17/20 20:26	JMS	TAL EDI
Total/NA	Analysis	8151A		1	740756	11/18/20 09:44	SAK	TAL EDI
Total/NA	Prep	3535			161345	11/20/20 09:01	KFW	TAL BUR
Total/NA	Analysis	537 (modified)		1	161351	11/20/20 17:04	BWC	TAL BUR
Total/NA	Prep	3010A			741864	11/22/20 16:15	GAE	TAL EDI
Total/NA	Analysis	6010D		1	742067	11/23/20 17:23	YZH	TAL EDI
Total/NA	Prep	7470A			742339	11/24/20 12:17	RBS	TAL EDI
Total/NA	Analysis	7470A		1	742380	11/24/20 13:24	RBS	TAL EDI
Total/NA	Prep	9012B			742922	11/27/20 09:11	IAA	TAL EDI
Total/NA	Analysis	9012B		1	742995	11/27/20 13:16	HTV	TAL EDI

Client Sample ID: MW-6

Date Collected: 11/13/20 08:20 Date Received: 11/16/20 19:40

Lab Sample ID: 460-222961-5

Matrix: Water

Batch Batch Dilution Batch Prepared Method **Prep Type** Type **Factor** Number or Analyzed Run Analyst Lab TAL BUR Total/NA Prep 3535 161345 11/20/20 09:01 KFW Total/NA 161351 11/20/20 17:37 BWC TAL BUR Analysis 537 (modified) 1

Client Sample ID: DUP

Date Collected: 11/13/20 00:00

Date Received: 11/16/20 19:40

Lab Sample ID: 460-222961-6

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	741805	11/22/20 20:08	EMM	TAL EDI
Total/NA	Prep	3510C			741112	11/19/20 09:29	OTS	TAL EDI
Total/NA	Analysis	8270E		1	741238	11/20/20 06:32	MME	TAL EDI
Total/NA	Prep	3510C			740807	11/18/20 09:12	RPC	TAL EDI
Total/NA	Analysis	8270E SIM ID		1	741075	11/19/20 15:25	DAN	TAL EDI
Total/NA	Prep	3510C			740821	11/18/20 09:44	ATF	TAL EDI
Total/NA	Analysis	8081B		1	741018	11/19/20 14:29	FAM	TAL EDI
Total/NA	Prep	3510C			740820	11/18/20 09:41	ATF	TAL EDI
Total/NA	Analysis	8082A		1	740769	11/18/20 19:22	JHP	TAL EDI
Total/NA	Prep	8151A			740669	11/17/20 20:26	JMS	TAL EDI
Total/NA	Analysis	8151A		1	740756	11/18/20 09:58	SAK	TAL EDI
Total/NA	Prep	3535			161345	11/20/20 09:01	KFW	TAL BU
Total/NA	Analysis	537 (modified)		1	161351	11/20/20 17:45	BWC	TAL BU
Total/NA	Prep	3010A			741864	11/22/20 16:15	GAE	TAL EDI
Total/NA	Analysis	6010D		1	742067	11/23/20 18:45	YZH	TAL EDI
Total/NA	Prep	7470A			742636	11/25/20 12:43	RBS	TAL ED
Total/NA	Analysis	7470A		1	742688	11/25/20 14:13	RBS	TAL EDI
Total/NA	Prep	9012B			742922	11/27/20 09:11	IAA	TAL ED
Total/NA	Analysis	9012B		1	742995	11/27/20 13:22	HTV	TAL ED

Page 140 of 158

Lab Chronicle

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: EB-11132020

Date Received: 11/16/20 19:40

Lab Sample ID: 460-222961-7 Date Collected: 11/13/20 16:30

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			161345	11/20/20 09:01	KFW	TAL BUR
Total/NA	Analysis	537 (modified)		1	161351	11/20/20 17:53	BWC	TAL BUR

Client Sample ID: SW-4 Lab Sample ID: 460-222961-8 Date Collected: 11/13/20 12:30

Matrix: Water

Date Received: 11/16/20 19:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D			741805	11/22/20 20:34	EMM	TAL EDI
Total/NA	Prep	3510C			741112	11/19/20 09:29	OTS	TAL EDI
Total/NA	Analysis	8270E		1	741238	11/20/20 06:53	MME	TAL EDI
Total/NA	Prep	3510C			740807	11/18/20 09:12	RPC	TAL EDI
Total/NA	Analysis	8270E SIM ID		1	741075	11/19/20 15:41	DAN	TAL EDI
Total/NA	Prep	3510C			740857	11/18/20 14:28	OXG	TAL EDI
Total/NA	Analysis	8081B		1	741016	11/19/20 11:45	FAM	TAL EDI
Total/NA	Prep	3510C			740863	11/18/20 14:29	OXG	TAL EDI
Total/NA	Analysis	8082A		1	741103	11/19/20 12:03	DXB	TAL EDI
Total/NA	Prep	8151A			740669	11/17/20 20:26	JMS	TAL EDI
Total/NA	Analysis	8151A		1	740756	11/18/20 10:11	SAK	TAL EDI
Total/NA	Prep	3535			161345	11/20/20 09:01	KFW	TAL BUR
Total/NA	Analysis	537 (modified)		1	161351	11/20/20 18:02	BWC	TAL BUR
Total/NA	Prep	3010A			741864	11/22/20 16:15	GAE	TAL EDI
Total/NA	Analysis	6010D		1	742067	11/23/20 18:49	YZH	TAL EDI
Total/NA	Prep	7470A			742636	11/25/20 12:43	RBS	TAL EDI
Total/NA	Analysis	7470A		1	742688	11/25/20 14:15	RBS	TAL EDI
Total/NA	Prep	9012B			742922	11/27/20 09:11	IAA	TAL EDI
Total/NA	Analysis	9012B		1	742995	11/27/20 13:23	HTV	TAL EDI

Client Sample ID: S-4 Lab Sample ID: 460-222961-9 Date Collected: 11/13/20 12:45 **Matrix: Solid**

Date Received: 11/16/20 19:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	742623	11/25/20 10:53	MMC	TAL EDI

Client Sample ID: S-4 Lab Sample ID: 460-222961-9

Date Collected: 11/13/20 12:45 **Matrix: Solid** Date Received: 11/16/20 19:40 Percent Solids: 34.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			740682	11/17/20 23:44	AVM	TAL EDI
Total/NA	Analysis	8260D		50	742890	11/27/20 14:45	MZS	TAL EDI
Total/NA	Prep	3546			740823	11/18/20 18:42	OTS	TAL EDI
Total/NA	Analysis	8270E		1	740997	11/19/20 08:25	MME	TAL EDI

Eurofins TestAmerica, Edison

Page 141 of 158

Lab Chronicle

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: S-4 Lab Sample ID: 460-222961-9

Date Collected: 11/13/20 12:45

Date Received: 11/16/20 19:40

Matrix: Solid
Percent Solids: 34.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			741118	11/19/20 09:41	ZXB	TAL EDI
Total/NA	Analysis	8081B		1	741313	11/20/20 10:35	FAM	TAL EDI
Total/NA	Prep	3546			741117	11/19/20 09:39	ZXB	TAL EDI
Total/NA	Analysis	8082A		1	741324	11/20/20 12:02	JHP	TAL EDI
Total/NA	Prep	8151A			740672	11/17/20 21:06	AFR	TAL EDI
Total/NA	Analysis	8151A		1	740757	11/18/20 12:49	SAK	TAL EDI
Total/NA	Prep	SHAKE			435252	11/24/20 14:27	GWO	TAL SAC
Total/NA	Analysis	537 (modified)		1	436085	11/28/20 00:02	D1R	TAL SAC
Total/NA	Prep	SHAKE	RE		436644	11/30/20 04:07	HJA	TAL SAC
Total/NA	Analysis	537 (modified)	RE	1	437343	12/01/20 20:26	D1R	TAL SAC
Total/NA	Prep	3050B			740829	11/18/20 10:12	IBS	TAL EDI
Total/NA	Analysis	6010D		2	740839	11/18/20 21:08	CDC	TAL EDI
Total/NA	Prep	3050B			740829	11/18/20 10:12	IBS	TAL EDI
Total/NA	Analysis	6010D		2	741136	11/19/20 12:41	CDC	TAL EDI
Total/NA	Prep	7471B			742208	11/24/20 03:09	TJS	TAL EDI
Total/NA	Analysis	7471B		1	742320	11/24/20 07:18	TJS	TAL EDI
Total/NA	Prep	9012B			742913	11/27/20 08:25	VBG	TAL EDI
Total/NA	Analysis	9012B		1	742995	11/27/20 14:49	HTV	TAL EDI

Laboratory References:

TAL BUR = Eurofins TestAmerica, Burlington, 530 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990 TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900 TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

3

4

6

44

12

11

16

Accreditation/Certification Summary

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Laboratory: Eurofins TestAmerica, Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Connecticut	State	PH-0200	09-30-22
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	12-31-21
Georgia	State	12028 (NJ)	07-01-21
Massachusetts	State	M-NJ312	06-30-21
New Jersey	NELAP	12028	06-30-21
New York	NELAP	11452	02-16-21
Pennsylvania	NELAP	68-00522	02-10-21
Rhode Island	State	LAO00132	12-30-20
USDA	US Federal Programs	P330-20-00244	11-03-23

Laboratory: Eurofins TestAmerica, Burlington

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
ANAB	Dept. of Defense ELAP	L2336	02-25-23
Connecticut	State	PH-0751	09-30-21
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	05-16-21
Florida	NELAP	E87467	01-20-21
Minnesota	NELAP	050-999-436	12-01-20
New Hampshire	NELAP	2006	12-18-20
New Jersey	NELAP	VT972	12-28-20
New York	NELAP	10391	04-01-21
Pennsylvania	NELAP	68-00489	04-30-21
Rhode Island	State	LAO00298	12-30-20
US Fish & Wildlife	US Federal Programs	058448	07-31-21
USDA	US Federal Programs	P330-17-00272	10-30-23
Vermont	State	VT4000	12-30-20
Virginia	NELAP	460209	12-14-20
Wisconsin	State	399133350	12-20-20

Eurofins TestAmerica, Edison

3/30/2021

Page 143 of 158

Accreditation/Certification Summary

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Laboratory: Eurofins TestAmerica, Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	01-20-21
ANAB	Dept. of Defense ELAP	L2468	01-10-21
ANAB	Dept. of Energy	L2468.01	01-10-21
ANAB	ISO/IEC 17025	L2468	01-10-21
Arizona	State	AZ0708	02-16-21
Arkansas DEQ	State	88-0691	06-17-21
California	State	2897	02-21-21
Colorado	State	CA0004	08-31-21
Connecticut	State	PH-0691	06-30-21
Florida	NELAP	E87570	06-30-21
Georgia	State	4040	01-29-21
Hawaii	State	<cert no.=""></cert>	01-29-21
Illinois	NELAP	200060	03-16-21
Kansas	NELAP	E-10375	10-31-21
Louisiana	NELAP	01944	06-30-21
Maine	State	CA00004	04-14-22
Michigan	State	9947	01-29-21
Nevada	State	CA000442021-2	07-31-21
New Hampshire	NELAP	2997	02-07-21
New Jersey	NELAP	CA005	06-30-21
New York	NELAP	11666	04-01-21
Ohio	State	41252	01-21-21
Oregon	NELAP	4040	01-29-21
Pennsylvania	NELAP	68-01272	03-31-21
Texas	NELAP	T104704399-19-13	06-01-21
US Fish & Wildlife	US Federal Programs	58448	07-31-21
USDA	US Federal Programs	P330-18-00239	07-31-21
Utah	NELAP	CA000442021-12	02-28-21
Vermont	State	VT-4040	04-16-21
Virginia	NELAP	460278	03-14-21
Washington	State	C581	05-05-21
West Virginia (DW)	State	9930C	12-31-20
Wisconsin	State	998204680	08-31-21
Wyoming	State Program	8TMS-L	01-28-19 *

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	TAL EDI
3270E	Semivolatile Organic Compounds (GC/MS)	SW846	TAL EDI
3270E SIM ID	Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)	SW846	TAL EDI
3081B	Organochlorine Pesticides (GC)	SW846	TAL EDI
3082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL EDI
3151A	Herbicides (GC)	SW846	TAL EDI
37 (modified)	Fluorinated Alkyl Substances	EPA	TAL BUR
37 (modified)	Fluorinated Alkyl Substances	EPA	TAL SAC
010D	Metals (ICP)	SW846	TAL EDI
470A	Mercury (CVAA)	SW846	TAL EDI
'471B	Mercury (CVAA)	SW846	TAL EDI
012B	Cyanide, Total andor Amenable	SW846	TAL EDI
Moisture	Percent Moisture	EPA	TAL EDI
010A	Preparation, Total Metals	SW846	TAL EDI
050B	Preparation, Metals	SW846	TAL EDI
510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	TAL EDI
535	Solid-Phase Extraction (SPE)	SW846	TAL BUR
546	Microwave Extraction	SW846	TAL EDI
030C	Purge and Trap	SW846	TAL EDI
035	Closed System Purge and Trap	SW846	TAL EDI
470A	Preparation, Mercury	SW846	TAL EDI
471B	Preparation, Mercury	SW846	TAL EDI
151A	Extraction (Herbicides)	SW846	TAL EDI
012B	Cyanide, Total and/or Amenable, Distillation	SW846	TAL EDI
SHAKE	Shake Extraction with Ultrasonic Bath Extraction	SW846	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUR = Eurofins TestAmerica, Burlington, 530 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Job ID: 460-222961-1

Sample Summary

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
460-222961-1	MW-1A	Water	11/13/20 13:40	11/16/20 19:40	
460-222961-2	MW-2	Water	11/13/20 10:55	11/16/20 19:40	
460-222961-3	MW-3	Water	11/13/20 09:35	11/16/20 19:40	
460-222961-4	MW-5	Water	11/13/20 15:10	11/16/20 19:40	
460-222961-5	MW-6	Water	11/13/20 08:20	11/16/20 19:40	
460-222961-6	DUP	Water	11/13/20 00:00	11/16/20 19:40	
460-222961-7	EB-11132020	Water	11/13/20 16:30	11/16/20 19:40	
460-222961-8	SW-4	Water	11/13/20 12:30	11/16/20 19:40	
460-222961-9	S-4	Solid	11/13/20 12:45	11/16/20 19:40	

Job ID: 460-222961-1

3

4

5

7

0

4.6

11

12

14

15

Chain of Custody Record 491184

Other:

RCRA

NPDES

Regulatory Program: Dw

Address:

eurofins Environment Testing TestAmerica

TAL-8210

Client Contact	Project Manager:	Mark	ナムかいろう	Sit	Site Contact:		6	Date:		COC No		
Company Name: HRP ASSOCICITES	Tel/Email:)	Lal	Lab Contact:		p;	Carrier:			of COCs	
1 4	Analysis	Analysis Turnaround Time	1 Time							Sampler	pler:	Г
Therman Co	CALENDAR DAYS TAT if different from Below	1 from Below	WORKING DAYS		2928 (N1)	21/15	100	10008	£	For L Walk Lab S	For Lab Use Only: Walk-in Client: Lab Sampling:	П
Project Name: Fair Street Landfill Site: Fair Street Landfill 3400 AN PO# DELIGOSPY (3936	\$000	1 week 2 days 1 day		M / Y) əldm	01+70	JAT Z. BLINOYS	6808 (etinisa etinisa	SUDKO LSS	06 P55c	/ qopr	JOB / SDG No.: 838961	П
Sample Identification	Sample Sample Date Time	Sample Type (C=Comp, G=Grab)	Matrix	Cont. Filtered Sa	(Meter 1 stote		2A39	SUB	B	Sample Specific Notes:	
Mw-IA	Orest ockilii		Ses.		×	×	×	×××	WORK	3K		
MW-2	3501 oct81111	5	3		×	X	×	×		1		0
MW-3	413bo 0935	9	35		X	XXX	×	×	×	place	LE PEAS TOP ABOUT	3
MW-5	0131 0613111	9	33		×	X	X	X		500		
NW-6	0830 व्यवा	9	35					×			>	
Dug	U113 ps	5	Cas		×	XXX	XXX	X			9	
CB-11132020	1113401630	P	53					×			7	
F-04.5	Ulaba 1230	٥	38		×	XXX	×	×			8	
8-4	111312 124	2	S		X	×	X	×	L	Š	SFORD	
				-								
										• `	2/2	_
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	; 5=NaOH; 6= Other			-	1							1
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes Comments Section if the lab is to dispose of the sample.	ase List any EPA Was		for the sample in the	in the	San 46	460-222961 Chain of Custody	hain of Cu	stody	re re	tained long	re retained longer than 1 month)	
Non-Hazard Flammable Skin Irritant	Poison B	Unkr	Jnknown		Retur	Return to Client		Disposal by Lab	Archive for	for	Months	
Special Instructions/QC Requirements & Comments:												
Custody Seals Intact:	Custody Seal No.:					Cooler Temp. (°C): Obs'd	0:(°C): 0	:p,sc	Corr'd:	Therm	Therm ID No.:	Т
Relinquished by:	Company:		Date/Time:	200	Received by	34. Se. Co.	770	ON PRIO	Company	11/16 Pote	Date/Time:	
Relinquished by:	Company:	1/	Date/Time:		Received by:	101.		0	Company	// Oate/	ime:	
	Company	11/16		7	Received	Received in Laboratory by:	y by:	0	Compt al	Date	Mille 1940	
2,5	11,1		12	1	0	5	12	,	1 ha (
			16 17	15	14	13	11	10	8	6	2 3 4 5	1

	MANA	CONNECTED			3	to conscise	CONNECTED	Sainies		1	1000	CONTRCTED	H	1	B
Cooler #1:	2	2./5	300	0	Cooler #4:	9	9	4	0	Cooler #7:	U	2			
Cooler #2:	d	cik		9	Cooler #5:	9	9		0	Cooler #8:	¥	2			
Cooler #3:	13: J. oc	2	To one of	3	Cooler #6:	D	U		3	Cooler #9:	D	2		ı	113
	Ammonla	COD	Nitrate Nitrite	Metals	Hardness	Pest	EPH or	Phenols	Phenois Sulfide	TKN	100	Total Cyanide	Total Phos	Other	Othe
TALS Sample Number	(pH<2)	(pH<2)	(pH<2)	(pH<2)	(pH<2)	(pH 5-9)	(pH<2)	(pH<2)	(pH>9)	(pH<2)	(pH<2)	(pH>12)	(pH<2)		
				23								717			
0				5								23			
3				2								713			
7				0								513			
0				9								719			
8				3								213			
															_
															_
	п рн ад	If pH adjustments are required record the information below:	are redui	red recor	d the info	mation b	elow:								
Sample No(s), adjusted.	s). dujustan														

of

Page

Receipt Temperature and pH Log **Eurofins TestAmerica Edison**

Job Number:

The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted. Samples for Metal analysis which are out of compliance must be acidified at least 24 hours prior to analysis. Expiration Date:

Initials:

Lot # of Preservative(s):

Date:

EDS-WI-038, Rev 4.1 10/22/2019

6

. .	🕏 eurofins	America		COCNO	1480 80074 4
		= = = = = = = = = = = = = = = = = = =	460-222961 Chain of Custody		
	Land of Charles of Charles	Citalli of Custody Record		Sampler: Lab PM:	city agamic
Eurofins TestAmerica. Edison	777 New Durham Road	Edison, NJ 08817	Phone: 732-549-3900 Fax: 732-549-3679		Client Information (Sub Contract Lab)

	Sampler:			Lab PM:	<u></u>						COC No:	
ormation (Sub Contract Lab)				Gilmo	Gilmore, Julie L	1					460-60071.1	
	Phone:			E-Mail:				State of Origin:	Origin:		Page:	
Shipping/Receiving				Julie.	3ilmore@	Julie.Gilmore@Eurofinset.com	۳.	New Jersey	ersey		Page 1 of 2	
Company: TactAmerica I showstoring Inc				_	Accreditations	Accreditations Required (See note)	note):				Job #:	
igina raboratorines, mo.											460-222961-1	1
30 Community Drive. Suite 11.	Due Date Requested:						Analysis Dogmostod	40011006	7		Preservation Codes:	Codes:
				Ĭ	200	`	vialy313 i	יבלחבטו			A - HCL	M - Hexane
urlington	TAT Requested (days):	÷			774						B - NaOH	N - None O - AsNaO2
State, zip: VT, 05403											49 10014 1	P - Na2O4S Q - Na2SO3
60-1990(Tel) 802-660-1919(Fax)	PO #:				tsiJ b						G - Amchlor H - Ascorbic Acid	R - Na2S2O3 S - H2SO4 id T - TSP Dodecahydrate
Email:	:# OM											
Project Name: DEC - FAIR STREET LANDFILL SITE: 340021	Project #: 46033503				(ki s						K-EDTA L-EDA	W - pH 4-5 Z - other (specify)
Site:	SSOW#:				50/45					· · ·	Other:	
	·	Sample	Sample Type (C≃comp,	Matrix (W=water, S=solid, O=waste/oil,						-		
Sample Identification - Client ID (Lab ID)	Sample Date	Time	10000	BT=Tissue, A=Air)	PFG						Specie	Special instructions/Note:
MW-1A (460-222961-1)	11/13/20	13:40 Eastern		Water	×							
MW-2 (460-222961-2)	11/13/20	10:55 Eastern		Water	×							
MW-3 (460-222961-3)	11/13/20	09:35 Eastern		Water	×							
MW-5 (460-222961-4)	11/13/20	15:10 Eastern	_	Water	×							
MW-5 (460-222961-4MS)	11/13/20	15:10 Eastern	MS	Water	×							
MW-5 (460-222961-4MSD)	11/13/20	15:10 Eastern	MSD	Water	×							
MW-6 (460-222961-5)	11/13/20	08:20 Eastern		Water	×							
DUP (460-222961-6)	11/13/20	Eastern		Water	×							
EB-11132020 (460-222961-7)	11/13/20	16:30 Eastern		Water	×						9	
Note: Since laboratory accreditations are subject to change, Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not cur maintain accreditation in the State of Origin listed above for analysis/ests/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica alaboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins	places the ownership eling analyzed, the sam	of method, an	alyte & accredi	tation compliants to the Eurofins	ce upon out s FestAmerica	ubcontract labor aboratory or othe	atories. This ser instructions	sample shipn will be provic	ent is forward ed. Any char	led under cha	ain-of-custody. If the l	method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently ses must be shipped back to the Euroffins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Euroffins

Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica. Possible Hazard Identification

Special Instructions/QC Requirements:

Primary Deliverable Rank: 1

Unconfirmed Deliverable Requested: I, II, III, IV, Other (specify)

	Empty Kit Relinquished by:	<u>a</u>	Date:	Time:		Method of Shipment:	
	Relinquished by:	Date/Time: //8/2	6	1900 Company	Received by:	Date Thine, 10,39 Company AN	Company AM S MA
3,	Relinquished by:	Date/Time:		Company	Received by:	.Date/Time:	Сотрану
/30/:	Relinquished by:	Date/Time:		Сомрапу	Received by:	Date/Time:	Сотрапу
2021	Custody Seals Intact: Custody Seal No.: Δ Yes Δ No				Cooler Temperature(s) °C and Other Remarks:		
							Ver: 11/01/2020

15

eceived by:

Chain of Custody Record

Eurofins TestAmerica, Edison

Euronns restAmerica, Edison					,	
777 New Durham Road	Chain of	Tuestody De	T		s enrotins	Engineer Testing
Edison, NJ 08817		IIaiii oi custouy Record	cord			America
Phone: 732-549-3900 Fax: 732-549-3679						
ormation (Sub Contract Lab)	Sampler:	Lab PM	Cilmore Iulie I	Carrier Tracking No(s):	COC No:	
	Phone:	E-Mail:		State of Origin:	400-000/ 1.2 Page:	
Company		Julie	Julie.Gilmore@Eurofinset.com	New Jersey	Page 2 of 2	
TestAmerica Laboratories, Inc.		₹	Accreditations Required (See note):		Job #: 460,222961-1	
	Due Date Requested:				Preservation Codes	· y
Community Drive, Suite 11,	11/30/2020		Analysis Requested	quested	Ç	···
ırlington	TAT Requested (days):	er H			B - NaOH	M - Hexane N - None
State, Zip: VT, 05403			12		D - Nitric Acid E - NaHSO4	C - ASNAOZ P - Na2O4S Q - Na2SO3
60-1990(Tel) 802-660-1919(Fax)	PO#:) isi l		F - MeOH G - Amchlor	R - Na2S2O3 S - H2SO4 T - TSD - T
Email:	WO#:		uepue			U - Acetone V - MCAA
Project Name: DEC - FAIR STREET LANDFILL SITE: 340021	Project #: 46033503		s 'sv-		K - EDTA L - EDA	W - pH 4-5 Z - other (specify)
Site:	SSOW#:		id TWV		Other:	
	Sample (Cec	Sample Matrix Type (wweter,	1.3636\ACI		est gNet s	
Sample Identification - Client ID (Lab ID)		ā 🚎			Special Ins	Special Instructions/Note:
	12:30 Fastern	Water	×			A STATE OF THE STA
					V: \$	
Note: Since aboratory accreditations are subject to change. Eurofins TrestAmerica places the ownership of method, analyte & accreditation compliance upon out subcontract laboratory accreditation in the State of Origin Israhamatry brings arrabyzed, the Eurofinis TsetAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TsetAmerica acceptation in the State of Origin Israhamatry brings are current to date, return the state of Custatory attents of Custatory attention for State of Eurofins TsetAmerica. TestAmerica are returned to Compliance of Custatory attention for State of Custatory	places the ownership of method, analyte 8 eing analyzed, the samples must be shippy atte, return the signed Chain of Custody att	s accreditation complianc ed back to the Eurofins T esting to said complicanc	e upon out subcontract laboratories. This sam sstAmerica laboratory or other instructions will et Eurofins TestAmerica.	ple shipment is forwarded under chain be provided. Any changes to accredit	n-of-custody. If the laboral itation status should be bro	tory does not currently inght to Eurofins
Possible Hazard Identification			Sample Disposal (A fee may be assessed if samples are ratained longer than 1 month)	assessed if samples are refa	ined longer than 1	month)
Unconfirmed			Return To Client	Disposal By Lab	Archive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 1		. Requirem			
Empty Kit Relinquished by:	Date:		Time:	Method of Shipment:		

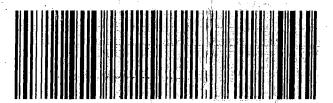
linquished by:

Custody Seal No.:

BILL SENDER

SHIPPING/RECEIVING TESTAMERICA LABORATORIES, INC. 30 COMMUNITY DRIVE

SOUTH BURLINGTON VT 05403 (802) 660 - 1990 PO: YES


FedEx Express

TRK# 1161 6402 7193

THU - 19 NOV 10:30A

NL BTVA

05403 VT-US BTV

🔆 eurofins

Carrier Tracking No(s)

Chain of Custody Record

Eurofins TestAmerica, Edison

777 New Durham Road

Phone: 732-549-3900 Fax: 732-549-3679

 TSP Dodecahydrate Note: Since aboratory accreditations are subject to change, Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This samples must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica. Special Instructions/Note: Company Sc.c Z - other (specify) P - Na204S Q - Na2S03 R - Na2S203 N - None O - AsNaO2 Months W - pH 4-5 S- H2SO4 V-MCAA Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont Preservation Codes A - HCL B - NaOH C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH G - Amchlor H - Assorbic Acid 460-222961-1 460-60076.1 26 Page 1 of 1 J - DI Water K-EDTA Total Number of containers 14//4/ Date/Time Method of Shipment 5 State of Origin: New Jersey Analysis Requested Cooler Temperature(s) C and Other Remarks. Return To Client Disp.
Special Instructions/QC Requirements: Julie, Gilmore@Eurofinset.com Accreditations Required (See note) Received by eceived by Received by: Lab PM Gilmore, Julie L × PFC_IDA/Shake_Bath_14D PFAS, Standard List (21 Perform MS/MSD (Yes or No) Field Filtered Sample (Yes or No) E-Mail: Preservation Code: Matrix Solid Company 250ML. OB 11/10/20 1900 (C=comb, G=grab) Sample Type Primary Deliverable Rank: 1 Sample 12:45 Eastern Time 15/10 (days) Due Date Requested: 11/30/2020 Sample Date 11/13/20 Project #: 46033503 SSOW#: Date/Time: Phone: WO # 2 CONTAINERS WATER Client Information (Sub Contract Lab) eliverable Requested: I, II, III, IV, Other (specify) DEC - FAIR STREET LANDFILL SITE: 340021 Custody Seal No.: Sample Identification - Client ID (Lab ID) 916-373-5600(Tel) 916-372-1059(Fax) Possible Hazard Identification TestAmerica Laboratories, Inc. Empty Kit Relinquished by: Custody Seals Intact: 880 Riverside Parkway · CAME WITH Shipping/Receiving V Yes A No S-4 (460-222961-9) West Sacramento quished by: quished by. nconfirmed iquished by CA, 95605

2.0

Cooler Temperature(s) °C and Other Remarks:

15

CAME WITH 2 CONTAINERS WATER 250 ML OB

Custody Seal No.:

Custody Seals Intact: △ Yes △ No

Chain of Custody Record

Eurofins TestAmerica, Edison

777 New Durham Road

Edison, NJ 08817 Phone: 732-549-3900 Fax: 732-549-3679

eurofins Environment Testing America

Client Information (Sub Contract Lab)				Gilm	Gilmore, Julie L		District Division in the Control of	· John	460-60076.1	
Client Contact:	Phone:			E-Mail:			State of Origin:		Page:	
Shipping/Receiving				Julie	Julie, Gilmore@Eurofinset.com	set.com	New Jersey		Page 1 of 1	
Company: TestAmerica Laboratories, Inc.					Accreditations Required (See note)	ed (See note):			Job #: 460-222961-1	
Address: 880 Riverside Parkway.	Due Date Requested: 11/30/2020	.poq:				Analysis Requested	nested		Preservation Codes:	des:
City. West Sacramento	TAT Requested (days):	ays):			12				B - NaOH C - Zn Acetate	M - Hexane N - None O - AsNaO2
State, Zip. CA, 95605					i List (D - Nitric Acid E - NaHSO4	P - Na204S O - Na2SO3
Phone. 916-373-5600(Tel) 916-372-1059(Fax)	,#Od								G - Amchlor H - Ascorbic Acid	R - NaZSZO3 S - HZSO4 T - TSP Dodecahydrate
Email:	WO#				(0)			6	I - Ice J - Di Water	U - Acetone V - MCAA
Project Name: DEC - FAIR STREET LANDFILL SITE: 340021	Project #: 46033503				4 10 8			nenist	K-EDTA L-EDA	W - pH 4-5 Z - other (specify)
Site.	SSOW#:				A) as			oo jo	Other:	
Sample Identification - Client ID (Lab ID)	Sample Date	Sample	Sample Type (C=comp, G=crab)	Matrix (wrwster, Sesolid, Orwesterfoll, BTOTHELIE ARAIR)	Fleid Filtered S Perform MS/MS PFC_IDA/Shake_ Analytes)) TedmuM letoT	Special	Special Instructions/Note:
	X	X		Preservation Code:	X			X		
S-4 (460-222961-9)	44743/50	12:45		Solid	>			,		
	0270	Eastem			<					
Note: Since laboratory accreditations are subject to change, Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample stripment is forwarded under chain-of-custody. If the laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica attention immediately, if all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica.	America places the ownersh /matrix being analyzed, the si rent to date, return the signer	p of method, a amples must b d Chain of Cus	nalyte & accred e shipped back fody attesting to	tation compliar to the Eurofins said complicar	of method, analyte & accreditation compliance upon out subcontract labor mples must be shipped back to the Eurofins TestAmerica laboratory or otl Chain of Custody attesting to said complicance to Eurofins TestAmerica.	of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently notes must be shipped back to the Eurofins TestAmerica (aboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Chain of Custody attesting to said complicance to Eurofins TestAmerica.	le shipment is forwal e provided. Any che	rded under chain-ol anges to accreditati	f-custody. If the labor on status should be b	atory does not currently rought to Eurofins
Possible Hazard Identification Unconfirmed					Sample Dispo	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon	assessed if sam Disposal By Lab	ples are retain	tained longer than 1 Archive For	(month) Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank:	able Rank:	1		Special Instruc	Special Instructions/QC Requirements:	its:			
Empty Kit Relinquished by:		Date:			Time;		Method of Shipment:	ipment:		
Relinquished by:	Date/Time: //S	07/	006	Company	F Received by	all	ă	Date/Time: 14/14/20	926	Company Sc.
Relinquished by:	Date/Time/	/		Company	Received by.		ä	Date/Time:		Company

Job:

Environment Testing TestAmerica

Sacramento Sample Receiving Notes

460 222061 Field Object

Tracking #: 8/42 04 % 7183

SO / PO / SAT / 2-Day / Ground / UPS / CDO / Courier GSO / OnTrac / Goldstreak / USPS / Other_____

Use this form to record Sample Custody Seal, Cooler Custody Seal, Temperature & corrected Temperature & other observations.

Therm. ID: Corr. Factor:	04-			Notes: X RECEIVED (2/2) WATER 250 ML SAME SAMPLE & 11/19/20
Cooler Custody Seal:				SAMPLE. 0 1/19/20
Cooler ID:				
Temp Observed:°C Correct From: Temp Blank, △ Sam	ted:	N_4	_°C	
Opening/Processing The Shipment	Yes	No	NA	
Cooler compromised/tampered with?	D	O	D	-
Cooler Temperature is acceptable?	D		D	
Frozen samples show signs of thaw?			D	
Initials: 57 Date: u/	1412			
Unpacking/Labeling The Samples	Yes	No	NA	
CoC is complete w/o discrepancies?	D	D	D	
Samples compromised/tampered with?	D	Ø	D	-
Sample containers have legible labels?	D	D		
Sample custody seal?	D		D	
Containers are not broken or leaking?	D			
Sample date/times are provided?	D		D	Trizma Lot #(s):
Appropriate containers are used?	Ø	D		Thema Lot m(s).
Sample bottles are completely filled?	D			
Sample preservatives verified?			B	
Samples w/o discrepancies?	D			
Zero headspace?*	D		Ø	Login Completion Yes No N/
	D	D	B	Receipt Temperature on COC?
Alkalinity has no headspace?			D	Samples received within hold time?
Alkalinity has no headspace? Perchlorate has headspace? (Methods 314, 331, 6850)			La	NCM Filed?

\\TACORP\CORP\QA\QA_FACILITIES\SACRAMENTO-QA\DOCUMENT-MANAGEMENT\FORMS\QA-812 SAMPLE RECEIVING NOTES.DOC

QA-812 MBB 11/06/2020

WR3-31B3/30/2027D

Client: New York State D.E.C.

Job Number: 460-222961-1

Login Number: 222961

List Number: 1 Creator: DiGuardia, Joseph L List Source: Eurofins TestAmerica, Edison

Answer	Comment
N/A	
True	
N/A	
	N/A True True True True True True True True

Client: New York State D.E.C. Job Number: 460-222961-1

Login Number: 222961

List Number: 2

Creator: Jaffe, Nat S

List Source: Eurofins TestAmerica, Burlington

List Creation: 11/19/20 12:35 PM

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	1134357
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.4°C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	N/A	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

N/A

Residual Chlorine Checked.

Client: New York State D.E.C.

Job Number: 460-222961-1

Login Number: 222961 List Source: Eurofins TestAmerica, Sacramento
List Number: 3 List Creation: 11/19/20 12:21 PM

List Number: 3 List Creation Creator: Saephan, Kae C

oreator. Saephan, Nae C		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	1134363
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	ob: 0.4c corr: 0.4c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Client: New York State D.E.C.

Job Number: 460-222961-1

Login Number: 222961

List Number: 4

Creator: Saephan, Kae C

List Source: Eurofins TestAmerica, Sacramento

List Creation: 11/19/20 12:40 PM

oreator. Saephan, Nae o		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	1134363
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	ob: 0.4c corr: 0.4c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

Laboratory Job ID: 460-222961-2

Client Project/Site: DEC - FAIR STREET LANDFILL SITE:

340021

For:

New York State D.E.C. 625 Broadway Division of Environmental Remediation Albany, New York 12233-7014

Attn: Anthony J Bollasina

Julist Throil

Authorized for release by: 3/30/2021 4:43:29 PM

Julie Gilmore, Project Manager I (484)685-0865

Julie.Gilmore@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	7
Client Sample Results	9
Isotope Dilution Summary	12
QC Sample Results	14
QC Association Summary	21
Lab Chronicle	22
Certification Summary	23
Method Summary	24
Sample Summary	25
Chain of Custody	26
Field Data Sheets	30
Receipt Checklists	31

46

11

13

14

Definitions/Glossary

Client: New York State D.E.C. Job ID: 460-222961-2

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)
Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Relative Percent Difference, a measure of the relative difference between two points

Qualifiers

		A A	C
L	U	VI	J

RL

RPD

TEF

TEQ TNTC

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
U	Indicates the analyte was analyzed for but not detected.

•	indicates the analyse was analyzed for but not detected.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Oil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
.OD	Limit of Detection (DoD/DOE)
.OQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
ИDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ΛL	Minimum Level (Dioxin)
MPN	Most Probable Number
ИQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)

Eurofins TestAmerica, Edison

Page 3 of 33

3

4

7

9

10

12

16

15

Case Narrative

Client: New York State D.E.C. Job ID: 460-222961-2

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Job ID: 460-222961-2

Laboratory: Eurofins TestAmerica, Edison

Narrative

CASE NARRATIVE

Client: New York State D.E.C.

Project: DEC - FAIR STREET LANDFILL SITE: 340021

Report Number: 460-222961-2

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 11/16/2020; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

TOTAL PFCA DIFFERENCE

Sample MW-3 (460-222961-3) was analyzed for Total PFCA Difference in accordance with Total PFCA Difference. The samples were analyzed on 12/03/2020.

No difficulties were encountered during the Total PFCA Difference analysis.

All quality control parameters were within the acceptance limits.

PFCA TOP ASSAY POST TREATMENT

Sample MW-3 (460-222961-3) was analyzed for PFCA TOP Assay Post Treatment in accordance with PFCA TOP Assay Post Treatment. The samples were analyzed on 12/03/2020.

No difficulties were encountered during the PFCA TOP Assay Post Treatment analysis.

All quality control parameters were within the acceptance limits.

PFCA TOP ASSAY PRE-TREATMENT

Sample MW-3 (460-222961-3) was analyzed for PFCA TOP Assay Pre-Treatment in accordance with PFCA TOP Assay Pre-Treatment. The samples were analyzed on 12/03/2020.

No difficulties were encountered during the PFCA TOP Assay Pre-Treatment analysis.

3

4

i

6

7

ŏ

10

4.0

13

15

Case Narrative

Client: New York State D.E.C. Job ID: 460-222961-2

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Job ID: 460-222961-2 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

All quality control parameters were within the acceptance limits.

PFAS

Sample MW-3 (460-222961-3) was analyzed for PFAS in accordance with 537. The samples were prepared on 11/20/2020 and analyzed on 11/26/2020.

Perfluorobutanoic acid (PFBA) was detected in method blank MB 320-434272/1-A at a level exceeding the reporting limit. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Perfluorohexanesulfonic acid (PFHxS) and Perfluoropentanoic acid (PFPeA) were detected in method blank MB 320-434272/1-A at levels that were above the method detection limit but below the reporting limit. The values should be considered estimates, and have been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

No other difficulties were encountered during the PFAS analysis.

All other quality control parameters were within the acceptance limits.

Sample MW-3 (460-222961-3) was analyzed for PFAS in accordance with 537. The samples were prepared on 11/20/2020 and analyzed on 11/26/2020.

The labeled analyte M2-4:2FTS is converted to PFBA during the oxidation step of the TOP assay. The PFBA result in the Post-Treatment Method Blank (MB) indicates how much of a field sample's Post-Treatment PFBA result is contributed by the Reverse Surrogate, when adjusted for dilution factors. (MB 320-434272/1-A)

Zero percent recovery of precursor analytes (4:2FTS, 6:2FTS, 8:2FTS, FOSA, NMeFOSAA, and NEtFOSAA) and enhanced recoveries of PFCAs is observed in the Post-Treatment Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (LCSD) associated with these samples, consistent with the expected oxidation of precursor analytes. (LCS 320-434272/2-A) and (LCSD 320-434272/3-A)

The labeled analyte M2-4:2FTS is employed in this analysis as a "Reverse Surrogate". It is used to monitor the oxidation efficiency of the TOP assay. This analyte is fortified into all sample fractions prior to any processing. The recovery of this analyte should be 0% in Post-Treatment fractions, indicating complete oxidation of the sample. MW-3 (460-222961-3), (LCS 320-434271/2-A), (LCS 320-434272/2-A), (LCSD 320-434271/3-A), (LCSD 320-434272/3-A), (MB 320-434271/1-A) and (MB 320-434272/1-A)

No difficulties were encountered during the PFAS analysis.

All quality control parameters were within the acceptance limits.

ORGANIC PREP

Method TOP Post Prep: Due to the matrix, the initial volume used for the following samples deviated from the standard procedure: MW-3 (460-222961-3). The reporting limits (RLs) have been adjusted proportionately.

preparation batch 320-434272 TOPS Post Prep Aqueous

Method TOP Pre - Prep: Due to the matrix, the initial volume used for the following samples deviated from the standard procedure: MW-3 (460-222961-3). The reporting limits (RLs) have been adjusted proportionately.

preparation batch 320-434271 TOPS Pre Prep Aqueous

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Case Narrative

Client: New York State D.E.C. Job ID: 460-222961-2

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Job ID: 460-222961-2 (Continued)

Laboratory: Eurofins TestAmerica, Edison (Continued)

Detection Summary

Client: New York State D.E.C.

Client Sample ID: MW-3

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Lab Sample ID: 460-222961-3

Job ID: 460-222961-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	69		5.0	0.88	ng/L		537 (modified)	Pre-Treatme
Double	00		5 0	4.0	/I	4	507 (difi - d)	nt
Perfluoropentanoic acid (PFPeA)	93		5.0	1.2	ng/L	1	537 (modified)	Pre-Treatme
Perfluorohexanoic acid (PFHxA)	120		5.0	1.4	ng/L	1	537 (modified)	Pre-Treatme
			<u>.</u> . <u>.</u>					nt
Perfluoroheptanoic acid (PFHpA)	97		5.0	0.63	ng/L	1	537 (modified)	Pre-Treatme
Perfluorooctanoic acid (PFOA)	800		5.0	2.1	ng/L	1	537 (modified)	Pre-Treatme
					,		()	nt
Perfluorononanoic acid (PFNA)	7.0		5.0	0.68	ng/L	1	537 (modified)	Pre-Treatme
Perfluorodecanoic acid (PFDA)	1.9	J	5.0	0.78	ng/L	1	537 (modified)	Pre-Treatme
					,		(nt
Perfluorobutanesulfonic acid (PFBS)	9.6		5.0	0.50	ng/L	1	537 (modified)	Pre-Treatme
Perfluorohexanesulfonic acid (PFHxS)	62		5.0	0.43	ng/L	1	537 (modified)	Pre-Treatme
								nt
Perfluoroheptanesulfonic Acid (PFHpS)	3.5	J	5.0	0.48	ng/L	1	537 (modified)	Pre-Treatme
Perfluorooctanesulfonic acid (PFOS)	76		5.0	0.80	ng/L	1	537 (modified)	Pre-Treatme
,					· ·		,	nt
Perfluorooctanesulfonamide (FOSA)	1.4	J	5.0	0.88	ng/L	1	537 (modified)	Pre-Treatme
6:2 FTS	15	J	50	5.0	ng/L	1	537 (modified)	nt Pre-Treatme
								nt
Perfluorobutanoic acid (PFBA)	110	В	5.0	0.88	ng/L	1	537 (modified)	Post-Treatm
Perfluoropentanoic acid (PFPeA)	91	В	5.0	1.2	ng/L	1	537 (modified)	nt Post-Treatm
, , , , , , , , , , , , , , , , , , , ,							,	nt
Perfluorohexanoic acid (PFHxA)	120		5.0	1.4	ng/L	1	537 (modified)	Post-Treatm
Perfluoroheptanoic acid (PFHpA)	78		5.0	0.63	ng/l	1	537 (modified)	nt Post-Treatm
· · · · · · · · · · · · · · · · · · ·			0.0	0.00	9/=	·	(nt
Perfluorooctanoic acid (PFOA)	490		5.0	2.1	ng/L	1	537 (modified)	Post-Treatm
Perfluorononanoic acid (PFNA)	3.3		5.0	0.68	ng/l		537 (modified)	nt Post-Treatm
	0.0	•	0.0	0.00	9/=	·	(nt
Perfluorodecanoic acid (PFDA)	1.0	J	5.0	0.78	ng/L	1	537 (modified)	Post-Treatm
Perfluorobutanesulfonic acid (PFBS)	10		5.0	0.50	ng/L	1	537 (modified)	nt Post-Treatm
omaciosatanesaneine asia (i i se)			0.0	0.00	119/12		oor (meamea)	nt
Perfluorohexanesulfonic acid (PFHxS)	51	В	5.0	0.43	ng/L	1	537 (modified)	Post-Treatm
Perfluoroheptanesulfonic Acid	1.9	J	5.0	0.48	na/l	1	537 (modified)	nt Post-Treatm
(PFHpS)	1.0	J	0.0	0.40	rig/L	·	oor (modifica)	nt
Perfluorooctanesulfonic acid (PFOS)	34		5.0	0.80	ng/L	1	537 (modified)	Post-Treatm
PFBA	46				ng/L	1	Total PFCA-Dif	nt Total/NA
PFPA	0.00				ng/L	1	Total PFCA-Dif	Total/NA
PFHxA	7.2				ng/L	1	Total PFCA-Dif	Total/NA
PFHpA	0.00				ng/L	1	Total PFCA-Dif	Total/NA
PFOA	0.00				ng/L	1	Total PFCA-Dif	Total/NA
PFNA	0.00				ng/L	1	Total PFCA-Dif	Total/NA
Total PFCA	0.00						Total PFCA-Dif	Total/NA
					ng/L			
Total PFCA	1200				ng/L	1	Total PFCA-Sum	Pre-Treatment

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Edison

Page 7 of 33

-0

3

5

12

15

Detection Summary

Client: New York State D.E.C. Job ID: 460-222961-2

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: MW-3 (Continued)

Lab Sample ID: 460-222961-3

Analyte	Result	Qualifier	NONE	NONE	Unit	Dil Fac	D	Method	Prep Type
Total PFCA	890				ng/L	1	_	Total PFCA-Sum	Post-Treatme
									nt

4

6

ا

9

11

12

14

. .

Client Sample Results

Client: New York State D.E.C. Job ID: 460-222961-2

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: MW-3 Lab Sample ID: 460-222961-3

Date Collected: 11/13/20 09:35 Matrix: Water

Date Received: 11/16/20 19:40

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
69	<u> </u>	5.0	0.88	ng/L				1
93		5.0		-		11/20/20 18:47	11/26/20 03:20	1
		5.0		-		11/20/20 18:47	11/26/20 03:20	1
								1
				J				1
				•				1
								· · · · · · · 1
				-				1
				•				. 1
								1
***	-			-				1
	O			J				1
62		5.0		-				1
3.5	J	5.0	0.48	ng/L		11/20/20 18:47	11/26/20 03:20	1
76		5.0	0.80	ng/L		11/20/20 18:47	11/26/20 03:20	1
5.0	U	5.0	1.4	ng/L		11/20/20 18:47	11/26/20 03:20	1
1.4	J	5.0	0.88	ng/L		11/20/20 18:47	11/26/20 03:20	1
50	U	50	7.8	ng/L		11/20/20 18:47	11/26/20 03:20	1
50	U	50	4.8	ng/L		11/20/20 18:47	11/26/20 03:20	1
15	J	50	5.0	ng/L		11/20/20 18:47	11/26/20 03:20	1
50	U	50	5.0	ng/L		11/20/20 18:47	11/26/20 03:20	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
								1
								1
97								1
								1
								1
								1
								1
								1
								1
								-
								1
								1
								1
130		25 - 150						1
102		25 - 150					11/26/20 03:20	1
	69 93 120 97 800 7.0 1.9 5.0 5.0 5.0 9.6 62 3.5 76 50 %Recovery 67 94 97 110 98 103 109 102 91 109 92 101 94 99 91 104	93 120 97 800 7.0 1.9 J 5.0 U 5.0 U 5.0 U 9.6 62 3.5 J 76 5.0 U 1.4 J 50 U 1.50 U %Recovery Qualifier 67 94 97 110 98 103 109 102 91 109 92 101 94 99 91 104	69	69	69 5.0 0.88 ng/L 93 5.0 1.2 ng/L 120 5.0 1.4 ng/L 97 5.0 0.63 ng/L 800 5.0 2.1 ng/L 7.0 5.0 0.68 ng/L 1.9 J 5.0 0.78 ng/L 5.0 U 5.0 2.8 ng/L 5.0 U 5.0 3.2 ng/L 5.0 U 5.0 3.2 ng/L 5.0 U 5.0 0.73 ng/L 9.6 5.0 0.50 ng/L 62 5.0 0.43 ng/L 3.5 J 5.0 0.48 ng/L 62 5.0 0.48 ng/L 76 5.0 0.80 ng/L 5.0 U 5.0 1.4 ng/L 1.4 J 5.0 0.88 ng/L 50 U 50 7.8 ng/L 50 U 50 7.8 ng/L 50 U 50 7.8 ng/L 50 U 50 5.0 ng/L 50 U 50 5.0 ng/L 7	Section Sect	Section	68

3/30/2021

Client Sample Results

Client: New York State D.E.C. Job ID: 460-222961-2

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Client Sample ID: MW-3 Lab Sample ID: 460-222961-3

Date Collected: 11/13/20 09:35 Matrix: Water

Date Received: 11/16/20 19:40

PFBA

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	110	В	5.0	0.88	ng/L		11/20/20 18:58	11/26/20 05:37	
Perfluoropentanoic acid (PFPeA)	91	В	5.0	1.2	ng/L		11/20/20 18:58	11/26/20 05:37	•
Perfluorohexanoic acid (PFHxA)	120		5.0	1.4	ng/L		11/20/20 18:58	11/26/20 05:37	•
Perfluoroheptanoic acid (PFHpA)	78		5.0	0.63	ng/L		11/20/20 18:58	11/26/20 05:37	1
Perfluorooctanoic acid (PFOA)	490		5.0	2.1	ng/L		11/20/20 18:58	11/26/20 05:37	•
Perfluorononanoic acid (PFNA)	3.3	J	5.0	0.68	ng/L		11/20/20 18:58	11/26/20 05:37	
Perfluorodecanoic acid (PFDA)	1.0		5.0	0.78	ng/L		11/20/20 18:58	11/26/20 05:37	
Perfluoroundecanoic acid (PFUnA)	5.0	U	5.0	2.8	ng/L		11/20/20 18:58	11/26/20 05:37	
Perfluorododecanoic acid (PFDoA)	5.0	U	5.0		ng/L		11/20/20 18:58	11/26/20 05:37	
Perfluorotridecanoic acid (PFTriA)	5.0		5.0		ng/L		11/20/20 18:58	11/26/20 05:37	
Perfluorotetradecanoic acid (PFTeA)	5.0		5.0		ng/L		11/20/20 18:58		
Perfluorobutanesulfonic acid	10		5.0		ng/L			11/26/20 05:37	
(PFBS)	10		0.0	0.00	119/12		11/20/20 10:00	11/20/20 00:07	
Perfluorohexanesulfonic acid (PFHxS)	51	В	5.0	0.43	ng/L		11/20/20 18:58	11/26/20 05:37	1
Perfluoroheptanesulfonic Acid (PFHpS)	1.9	J	5.0	0.48	ng/L		11/20/20 18:58	11/26/20 05:37	
Perfluorooctanesulfonic acid (PFOS)	34		5.0	0.80	ng/L		11/20/20 18:58	11/26/20 05:37	,
Perfluorodecanesulfonic acid (PFDS)	5.0	U	5.0	1.4	ng/L		11/20/20 18:58	11/26/20 05:37	
Perfluorooctanesulfonamide (FOSA)	5.0	U	5.0	0.88	ng/L		11/20/20 18:58	11/26/20 05:37	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	50	U	50	7.8	ng/L		11/20/20 18:58	11/26/20 05:37	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	50	U	50	4.8	ng/L		11/20/20 18:58	11/26/20 05:37	
6:2 FTS `	50	U	50	5.0	ng/L		11/20/20 18:58	11/26/20 05:37	
8:2 FTS	50	U	50	5.0	ng/L		11/20/20 18:58	11/26/20 05:37	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C4 PFBA	90		25 - 150					11/26/20 05:37	
13C5 PFPeA	114		25 - 150					11/26/20 05:37	
13C2 PFHxA	100		25 - 150 25 - 150					11/26/20 05:37	
13C4 PFHpA	112		25 - 150					11/26/20 05:37	
13C4 PFOA	100		25 - 150 25 - 150					11/26/20 05:37	
13C5 PFNA	100		25 - 150 25 - 150					11/26/20 05:37	
13C2 PFDA	99		25 ₋ 150					11/26/20 05:37	
13C2 PFUnA	100		25 - 150					11/26/20 05:37	
13C2 PFDoA	103		25 - 150					11/26/20 05:37	
13C2 PFTeDA	104		25 - 150					11/26/20 05:37	
13C3 PFBS	105		25 - 150				11/20/20 18:58	11/26/20 05:37	
1802 PFHxS	101		25 - 150				11/20/20 18:58	11/26/20 05:37	
13C4 PFOS	92		25 - 150				11/20/20 18:58	11/26/20 05:37	
13C8 FOSA	96		25 - 150				11/20/20 18:58	11/26/20 05:37	
d3-NMeFOSAA	101		25 - 150				11/20/20 18:58	11/26/20 05:37	
d5-NEtFOSAA	107		25 - 150				11/20/20 18:58	11/26/20 05:37	
M2-6:2 FTS	113		25 - 150				11/20/20 18:58	11/26/20 05:37	
M2-8:2 FTS	109		25 - 150					11/26/20 05:37	
M2-4:2 FTS	0		0 - 10					11/26/20 05:37	
Method: Total PFCA-Dif - Tota	•		•						
Analyte		Qualifier	NONE	NONE		D	Prepared	Analyzed	Dil Fa

Eurofins TestAmerica, Edison

12/03/20 12:51

Page 10 of 33

ng/L

46

2

3

6

8

10

12

14

3/30/2021

Client Sample Results

Client: New York State D.E.C. Job ID: 460-222961-2

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Lab Sample ID: 460-222961-3 **Client Sample ID: MW-3 Matrix: Water**

Date Collected: 11/13/20 09:35 Date Received: 11/16/20 19:40

Analyte	Dif - Total PFCA (Treatme Result Qua	* *	NONE Unit	D	Prepared	Analyzed	Dil Fac
PFPA	0.00		ng/L		-	12/03/20 12:51	1
PFHxA	7.2		ng/L			12/03/20 12:51	1
PFHpA	0.00		ng/L			12/03/20 12:51	1
PFOA	0.00		ng/L			12/03/20 12:51	1
PFNA	0.00		ng/L			12/03/20 12:51	1
Total PFCA	0.00		ng/L			12/03/20 12:51	1

Method: Total PFCA-Sum - Total	al PFCA (S	ummary) -	Pre-Treatm	ent					
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Total PFCA	1200				ng/L			12/03/20 12:45	1

Method: Total PFCA-Sum - To	tal PFCA (Su	ımmary) -	Post-Treatm	ent					
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Total PFCA	890				ng/L			12/03/20 12:48	1

Client: New York State D.E.C. Job ID: 460-222961-2

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Water Prep Type: Pre-Treatment

			Perc	ent Isotope	Dilution Re	covery (Ac	ceptance L	_imits)	
		PFBA	PFPeA	PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
460-222961-3	MW-3	67	94	97	110	98	103	109	102
LCS 320-434271/2-A	Lab Control Sample	97	108	97	114	101	98	102	97
LCSD 320-434271/3-A	Lab Control Sample Dup	96	107	94	107	93	94	93	94
MB 320-434271/1-A	Method Blank	100	109	97	107	98	97	105	103
			Perc	ent Isotope	Dilution Re	covery (Ac	ceptance L	_imits)	
		PFDoA	PFTDA	C3PFBS	PFHxS	PFOS	PFOSA	d3NMFOS	d5NEFOS
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
460-222961-3	MW-3	91	109	92	101	94	99	91	104
LCS 320-434271/2-A	Lab Control Sample	92	107	100	109	96	95	102	115
LCSD 320-434271/3-A	Lab Control Sample Dup	90	96	93	97	91	89	100	99
MB 320-434271/1-A	Method Blank	107	108	102	106	105	105	101	115
			Perc	ent Isotope	Dilution Re	covery (Ac	ceptance L	_imits)	
		M262FTS	M282FTS	M242FTS					
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)					
460-222961-3	MW-3	130	102	148					
LCS 320-434271/2-A	Lab Control Sample	122	107	114					
LCSD 320-434271/3-A	Lab Control Sample Dup	108	114	129					
MB 320-434271/1-A	Method Blank	129	123	127					
Surrogate Legend									

PFBA = 13C4 PFBA

PFPeA = 13C5 PFPeA

PFHxA = 13C2 PFHxA

C4PFHA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA

PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA

PFDoA = 13C2 PFDoA

PFTDA = 13C2 PFTeDA

C3PFBS = 13C3 PFBS

PFHxS = 18O2 PFHxS

PFOS = 13C4 PFOS

PFOSA = 13C8 FOSA

d3NMFOS = d3-NMeFOSAA

d5NEFOS = d5-NEtFOSAA

M262FTS = M2-6:2 FTS M282FTS = M2-8:2 FTS

M242FTS = M2-4:2 FTS

Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Water Prep Type: Post-Treatment

			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFBA	PFPeA	PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
460-222961-3	MW-3	90	114	100	112	100	101	99	100
LCS 320-434272/2-A	Lab Control Sample	83	100	82	106	93	94	91	91
LCSD 320-434272/3-A	Lab Control Sample Dup	92	112	92	118	101	106	101	101
MB 320-434272/1-A	Method Blank	88	108	103	106	102	98	100	98

Eurofins TestAmerica, Edison

Page 12 of 33 3/30/2021

Isotope Dilution Summary

Client: New York State D.E.C. Job ID: 460-222961-2

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Matrix: Water Prep Type: Post-Treatment

		Percent Isotope Dilution Recovery (Acceptance Limits)							
		PFDoA	PFTDA	C3PFBS	PFHxS	PFOS	PFOSA	d3NMFOS	d5NEFOS
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
460-222961-3	MW-3	103	104	105	101	92	96	101	107
LCS 320-434272/2-A	Lab Control Sample	92	95	85	91	84	85	87	94
LCSD 320-434272/3-A	Lab Control Sample Dup	104	100	100	103	97	96	99	110
MB 320-434272/1-A	Method Blank	101	101	93	99	90	93	92	96
			Perc	ent Isotope	Dilution Re	covery (Ac	ceptance L	_imits)	
		M262FTS	M282FTS	M242FTS					
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(0-10)					
460-222961-3	MW-3	113	109	0					
LCS 320-434272/2-A	Lab Control Sample	99	88	0					
LCSD 320-434272/3-A	Lab Control Sample Dup	104	106	0					
MB 320-434272/1-A	Method Blank	119	108	0					
Surrogate Legend									

Surrogate	Legend
-----------	--------

PFBA = 13C4 PFBA

PFPeA = 13C5 PFPeA

PFHxA = 13C2 PFHxA

C4PFHA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA

PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA

PFDoA = 13C2 PFDoA

PFTDA = 13C2 PFTeDA

C3PFBS = 13C3 PFBS

PFHxS = 18O2 PFHxS

PFOS = 13C4 PFOS

PFOSA = 13C8 FOSA

d3NMFOS = d3-NMeFOSAA

d5NEFOS = d5-NEtFOSAA

M262FTS = M2-6:2 FTS

M282FTS = M2-8:2 FTS

M242FTS = M2-4:2 FTS

Eurofins TestAmerica, Edison

Client: New York State D.E.C. Job ID: 460-222961-2

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample	ID: MB	320-43427	'1/1- A
------------	--------	-----------	----------------

Matrix: Water

Analysis Batch: 436111

Client	Sam	ple ID:	Metho	d Blank
	Prep	Type:	Pre-Tre	atment
		Prep	Batch:	434271

Timely one Duttern 100111									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	5.0	U	5.0	0.88	ng/L		11/20/20 18:47	11/26/20 01:46	1
Perfluoropentanoic acid (PFPeA)	5.0	U	5.0	1.2	ng/L		11/20/20 18:47	11/26/20 01:46	1
Perfluorohexanoic acid (PFHxA)	5.0	U	5.0	1.4	ng/L		11/20/20 18:47	11/26/20 01:46	1
Perfluoroheptanoic acid (PFHpA)	5.0	U	5.0	0.63	ng/L		11/20/20 18:47	11/26/20 01:46	1
Perfluorooctanoic acid (PFOA)	5.0	U	5.0	2.1	ng/L		11/20/20 18:47	11/26/20 01:46	1
Perfluorononanoic acid (PFNA)	5.0	U	5.0	0.68	ng/L		11/20/20 18:47	11/26/20 01:46	1
Perfluorodecanoic acid (PFDA)	5.0	U	5.0	0.78	ng/L		11/20/20 18:47	11/26/20 01:46	1
Perfluoroundecanoic acid (PFUnA)	5.0	U	5.0	2.8	ng/L		11/20/20 18:47	11/26/20 01:46	1
Perfluorododecanoic acid (PFDoA)	5.0	U	5.0	1.4	ng/L		11/20/20 18:47	11/26/20 01:46	1
Perfluorotridecanoic acid (PFTriA)	5.0	U	5.0	3.2	ng/L		11/20/20 18:47	11/26/20 01:46	1
Perfluorotetradecanoic acid (PFTeA)	5.0	U	5.0	0.73	ng/L		11/20/20 18:47	11/26/20 01:46	1
Perfluorobutanesulfonic acid (PFBS)	5.0	U	5.0	0.50	ng/L		11/20/20 18:47	11/26/20 01:46	1
Perfluorohexanesulfonic acid (PFHxS)	5.0	U	5.0	0.43	ng/L		11/20/20 18:47	11/26/20 01:46	1
Perfluoroheptanesulfonic Acid (PFHpS)	5.0	U	5.0	0.48	ng/L		11/20/20 18:47	11/26/20 01:46	1
Perfluorooctanesulfonic acid (PFOS)	5.0	U	5.0	0.80	ng/L		11/20/20 18:47	11/26/20 01:46	1
Perfluorodecanesulfonic acid (PFDS)	5.0	U	5.0	1.4	ng/L		11/20/20 18:47	11/26/20 01:46	1
Perfluorooctanesulfonamide (FOSA)	5.0	U	5.0	0.88	ng/L		11/20/20 18:47	11/26/20 01:46	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	50	U	50	7.8	ng/L		11/20/20 18:47	11/26/20 01:46	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	50	U	50	4.8	ng/L		11/20/20 18:47	11/26/20 01:46	1
6:2 FTS	50	U	50	5.0	ng/L		11/20/20 18:47	11/26/20 01:46	1
8:2 FTS	50	U	50	5.0	ng/L		11/20/20 18:47	11/26/20 01:46	1
	MB	MB							
Isotono Dilution	%Pocovory	Qualifier	l imite				Propared	Analyzod	Dil Esc

	MB	MB				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C4 PFBA	100		25 - 150	11/20/20 18:47	11/26/20 01:46	1
13C5 PFPeA	109		25 - 150	11/20/20 18:47	11/26/20 01:46	1
13C2 PFHxA	97		25 - 150	11/20/20 18:47	11/26/20 01:46	1
13C4 PFHpA	107		25 - 150	11/20/20 18:47	11/26/20 01:46	1
13C4 PFOA	98		25 - 150	11/20/20 18:47	11/26/20 01:46	1
13C5 PFNA	97		25 - 150	11/20/20 18:47	11/26/20 01:46	1
13C2 PFDA	105		25 - 150	11/20/20 18:47	11/26/20 01:46	1
13C2 PFUnA	103		25 - 150	11/20/20 18:47	11/26/20 01:46	1
13C2 PFDoA	107		25 - 150	11/20/20 18:47	11/26/20 01:46	1
13C2 PFTeDA	108		25 - 150	11/20/20 18:47	11/26/20 01:46	1
13C3 PFBS	102		25 - 150	11/20/20 18:47	11/26/20 01:46	1
1802 PFHxS	106		25 - 150	11/20/20 18:47	11/26/20 01:46	1
13C4 PFOS	105		25 - 150	11/20/20 18:47	11/26/20 01:46	1
13C8 FOSA	105		25 - 150	11/20/20 18:47	11/26/20 01:46	1
d3-NMeFOSAA	101		25 - 150	11/20/20 18:47	11/26/20 01:46	1
d5-NEtFOSAA	115		25 - 150	11/20/20 18:47	11/26/20 01:46	1
M2-6:2 FTS	129		25 - 150	11/20/20 18:47	11/26/20 01:46	1
M2-8:2 FTS	123		25 - 150	11/20/20 18:47	11/26/20 01:46	1
M2-4:2 FTS	127		25 - 150	11/20/20 18:47	11/26/20 01:46	1

Client: New York State D.E.C. Job ID: 460-222961-2

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID): LCS 320-43427	1/2-A
---------------	------------------	-------

Matrix: Water

Analysis Batch: 436111

Client Sample ID: Lab Control Sample Prep Type: Pre-Treatment

Prep Batch: 434271

Analysis Baton. 400111	Spike	LCS	LCS				%Rec.
Analyte	Added		Qualifier	Unit	D 9	%Rec	Limits
Perfluorobutanoic acid (PFBA)	100	101		ng/L		101	76 - 136
Perfluoropentanoic acid (PFPeA)	100	85.5		ng/L		86	71 - 131
Perfluorohexanoic acid (PFHxA)	100	103		ng/L		103	73 - 133
Perfluoroheptanoic acid (PFHpA)	100	87.5		ng/L		88	72 - 132
Perfluorooctanoic acid (PFOA)	100	94.5		ng/L		94	70 - 130
Perfluorononanoic acid (PFNA)	100	94.2		ng/L		94	75 - 135
Perfluorodecanoic acid (PFDA)	100	102		ng/L		102	76 - 136
Perfluoroundecanoic acid (PFUnA)	100	109		ng/L		109	68 - 128
Perfluorododecanoic acid (PFDoA)	100	98.0		ng/L		98	71 - 131
Perfluorotridecanoic acid (PFTriA)	100	92.0		ng/L		92	71 - 131
Perfluorotetradecanoic acid (PFTeA)	100	85.0		ng/L		85	70 - 130
Perfluorobutanesulfonic acid (PFBS)	88.4	91.5		ng/L		103	67 - 127
Perfluorohexanesulfonic acid (PFHxS)	91.0	79.3		ng/L		87	59 - 119
Perfluoroheptanesulfonic Acid (PFHpS)	95.2	110		ng/L		115	76 - 136
Perfluorooctanesulfonic acid (PFOS)	92.8	95.5		ng/L		103	70 - 130
Perfluorodecanesulfonic acid (PFDS)	96.4	102		ng/L		106	71 - 131
Perfluorooctanesulfonamide (FOSA)	100	89.0		ng/L		89	73 - 133
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	100	112		ng/L		112	76 - 136
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	100	92.2		ng/L		92	76 - 136
6:2 FTS	94.8	89.7		ng/L		95	59 - 175
8:2 FTS	95.8	101		ng/L		105	75 - 135
ICS ICS							

LCS	LCS
-----	-----

	LCS	LCS		
Isotope Dilution	%Recovery	Qualifier	Limits	
13C4 PFBA	97		25 - 150	
13C5 PFPeA	108		25 - 150	
13C2 PFHxA	97		25 - 150	
13C4 PFHpA	114		25 - 150	
13C4 PFOA	101		25 - 150	
13C5 PFNA	98		25 - 150	
13C2 PFDA	102		25 - 150	
13C2 PFUnA	97		25 - 150	
13C2 PFDoA	92		25 - 150	
13C2 PFTeDA	107		25 - 150	
13C3 PFBS	100		25 - 150	
1802 PFHxS	109		25 - 150	
13C4 PFOS	96		25 - 150	
13C8 FOSA	95		25 - 150	
d3-NMeFOSAA	102		25 - 150	
d5-NEtFOSAA	115		25 - 150	

Eurofins TestAmerica, Edison

Page 15 of 33

Client: New York State D.E.C. Job ID: 460-222961-2

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-434271/2-A

Lab Sample ID: LCSD 320-434271/3-A

Matrix: Water

Matrix: Water

Analysis Batch: 436111

Client Sample ID: Lab Control Sample Prep Type: Pre-Treatment

Prep Batch: 434271

LCS LCS

Isotope Dilution	%Recovery	Qualifier	Limits
M2-6:2 FTS	122		25 - 150
M2-8:2 FTS	107		25 - 150
M2-4:2 FTS	114		25 - 150

Client Sample ID: Lab Control Sample Dup

Prep Type: Pre-Treatment

Analysis Batch: 436111			LCSD		Prep Batch: 434271			
	Spike LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits	RPD	Limit
Perfluorobutanoic acid (PFBA)	100	105		ng/L	105	76 - 136	3	30
Perfluoropentanoic acid (PFPeA)	100	83.3		ng/L	83	71 - 131	3	30
Perfluorohexanoic acid (PFHxA)	100	99.9		ng/L	100	73 - 133	3	30
Perfluoroheptanoic acid (PFHpA)	100	93.4		ng/L	93	72 - 132	7	30
Perfluorooctanoic acid (PFOA)	100	102		ng/L	102	70 - 130	8	30
Perfluorononanoic acid (PFNA)	100	95.8		ng/L	96	75 - 135	2	30
Perfluorodecanoic acid (PFDA)	100	98.6		ng/L	99	76 - 136	3	30
Perfluoroundecanoic acid	100	96.7		ng/L	97	68 - 128	12	30
(PFUnA)	400	04.0			0.5	74 404	•	00
Perfluorododecanoic acid (PFDoA)	100	94.8		ng/L	95	71 - 131	3	30
Perfluorotridecanoic acid	100	102		ng/L	102	71 - 131	10	30
(PFTriA)								
Perfluorotetradecanoic acid (PFTeA)	100	96.7		ng/L	97	70 - 130	13	30
Perfluorobutanesulfonic acid	88.4	87.1		ng/L	98	67 - 127	5	30
(PFBS)								
Perfluorohexanesulfonic acid (PFHxS)	91.0	84.1		ng/L	92	59 - 119	6	30
Perfluoroheptanesulfonic Acid	95.2	97.0		ng/L	102	76 - 136	12	30
(PFHpS)								
Perfluorooctanesulfonic acid (PFOS)	92.8	91.3		ng/L	98	70 - 130	5	30
Perfluorodecanesulfonic acid	96.4	98.3		ng/L	102	71 - 131	4	30
(PFDS) Perfluorooctanesulfonamide	100	96.7		na/l	97	73 - 133	8	30
(FOSA)	100	90.1		ng/L	91	13-133	O	30
N-methylperfluorooctanesulfona	100	109		ng/L	109	76 - 136	3	30
midoacetic acid (NMeFOSAA)				3				
N-ethylperfluorooctanesulfonami	100	97.5		ng/L	97	76 - 136	6	30
doacetic acid (NEtFOSAA)								
6:2 FTS	94.8	96.5		ng/L	102	59 - 175	7	30
8:2 FTS	95.8	97.8		ng/L	102	75 - 135	3	30
LCSD LCS	D							

LCSD LC	CSD
---------	-----

Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFBA	96		25 - 150
13C5 PFPeA	107		25 - 150
13C2 PFHxA	94		25 - 150
13C4 PFHpA	107		25 - 150
13C4 PFOA	93		25 - 150
13C5 PFNA	94		25 - 150
13C2 PFDA	93		25 - 150
13C2 PFUnA	94		25 - 150

Eurofins TestAmerica, Edison

3/30/2021

Page 16 of 33

Client: New York State D.E.C. Job ID: 460-222961-2

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCSD 320-434271/3-A

Matrix: Water

Analysis Batch: 436111

Client Sample ID: Lab Control Sample Dup Prep Type: Pre-Treatment

Prep Batch: 434271

LCSD LCSD

%Recovery	Qualifier	Limits
90		25 - 150
96		25 - 150
93		25 - 150
97		25 - 150
91		25 - 150
89		25 - 150
100		25 - 150
99		25 - 150
108		25 - 150
114		25 - 150
129		25 - 150
	90 96 93 97 91 89 100 99 108	96 93 97 91 89 100 99 108

Client Sample ID: Method Blank **Prep Type: Post-Treatment**

Prep Batch: 434272

Lab Sample ID: MB 320-434272/1-A

Analysis Batch: 436111

Matrix: Water

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	16.4		5.0	0.88	ng/L		11/20/20 18:58	11/26/20 04:43	1
Perfluoropentanoic acid (PFPeA)	1.98	J	5.0	1.2	ng/L		11/20/20 18:58	11/26/20 04:43	1
Perfluorohexanoic acid (PFHxA)	5.0	U	5.0	1.4	ng/L		11/20/20 18:58	11/26/20 04:43	1
Perfluoroheptanoic acid (PFHpA)	5.0	U	5.0	0.63	ng/L		11/20/20 18:58	11/26/20 04:43	1
Perfluorooctanoic acid (PFOA)	5.0	U	5.0	2.1	ng/L		11/20/20 18:58	11/26/20 04:43	1
Perfluorononanoic acid (PFNA)	5.0	U	5.0	0.68	ng/L		11/20/20 18:58	11/26/20 04:43	1
Perfluorodecanoic acid (PFDA)	5.0	U	5.0	0.78	ng/L		11/20/20 18:58	11/26/20 04:43	1
Perfluoroundecanoic acid (PFUnA)	5.0	U	5.0	2.8	ng/L		11/20/20 18:58	11/26/20 04:43	1
Perfluorododecanoic acid (PFDoA)	5.0	U	5.0	1.4	ng/L		11/20/20 18:58	11/26/20 04:43	1
Perfluorotridecanoic acid (PFTriA)	5.0	U	5.0	3.2	ng/L		11/20/20 18:58	11/26/20 04:43	1
Perfluorotetradecanoic acid (PFTeA)	5.0	U	5.0	0.73	ng/L		11/20/20 18:58	11/26/20 04:43	1
Perfluorobutanesulfonic acid (PFBS)	5.0	U	5.0	0.50	ng/L		11/20/20 18:58	11/26/20 04:43	1
Perfluorohexanesulfonic acid (PFHxS)	0.632	J	5.0	0.43	ng/L		11/20/20 18:58	11/26/20 04:43	1
Perfluoroheptanesulfonic Acid (PFHpS)	5.0	U	5.0	0.48	ng/L		11/20/20 18:58	11/26/20 04:43	1
Perfluorooctanesulfonic acid (PFOS)	5.0	U	5.0	0.80	ng/L		11/20/20 18:58	11/26/20 04:43	1
Perfluorodecanesulfonic acid (PFDS)	5.0	U	5.0	1.4	ng/L		11/20/20 18:58	11/26/20 04:43	1
Perfluorooctanesulfonamide (FOSA)	5.0	U	5.0	0.88	ng/L		11/20/20 18:58	11/26/20 04:43	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	50	U	50	7.8	ng/L		11/20/20 18:58	11/26/20 04:43	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	50	Ü	50	4.8	ng/L		11/20/20 18:58	11/26/20 04:43	1
6:2 FTS	50	U	50	5.0	ng/L		11/20/20 18:58	11/26/20 04:43	1
8:2 FTS	50	U	50	5.0	ng/L		11/20/20 18:58	11/26/20 04:43	1
	MB	MB							

MB MB

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C4 PFBA	88		25 - 150	11/20/20 18:58	11/26/20 04:43	1
13C5 PFPeA	108		25 - 150	11/20/20 18:58	11/26/20 04:43	1
13C2 PFHxA	103		25 - 150	11/20/20 18:58	11/26/20 04:43	1
13C4 PFHpA	106		25 - 150	11/20/20 18:58	11/26/20 04:43	1
13C4 PFOA	102		25 - 150	11/20/20 18:58	11/26/20 04:43	1
13C5 PFNA	98		25 - 150	11/20/20 18:58	11/26/20 04:43	1
13C2 PFDA	100		25 - 150	11/20/20 18:58	11/26/20 04:43	1

Eurofins TestAmerica, Edison

Page 17 of 33

Client: New York State D.E.C. Job ID: 460-222961-2

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: MB 320-434272/1-A

Matrix: Water

Analysis Batch: 436111

Client Sample ID: Method Blank **Prep Type: Post-Treatment Prep Batch: 434272**

	MB	MB				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFUnA	98		25 - 150	11/20/20 18:58	11/26/20 04:43	1
13C2 PFDoA	101		25 - 150	11/20/20 18:58	11/26/20 04:43	1
13C2 PFTeDA	101		25 - 150	11/20/20 18:58	11/26/20 04:43	1
13C3 PFBS	93		25 - 150	11/20/20 18:58	11/26/20 04:43	1
1802 PFHxS	99		25 - 150	11/20/20 18:58	11/26/20 04:43	1
13C4 PFOS	90		25 - 150	11/20/20 18:58	11/26/20 04:43	1
13C8 FOSA	93		25 - 150	11/20/20 18:58	11/26/20 04:43	1
d3-NMeFOSAA	92		25 - 150	11/20/20 18:58	11/26/20 04:43	1
d5-NEtFOSAA	96		25 - 150	11/20/20 18:58	11/26/20 04:43	1
M2-6:2 FTS	119		25 - 150	11/20/20 18:58	11/26/20 04:43	1
M2-8:2 FTS	108		25 - 150	11/20/20 18:58	11/26/20 04:43	1
M2-4:2 FTS	0		0 - 10	11/20/20 18:58	11/26/20 04:43	1

Lab Sample ID: LCS 320-434272/2-A

Matrix: Water

Analysis Batch: 436111

Client Sample ID: Lab Control Sample Prep Type: Post-Treatment

Prep Batch: 434272 %Rec.

Analysis Datch. 400111	Spike	LCS	1.00				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Perfluorobutanoic acid (PFBA)		127		ng/L	— <u> </u>	127	93 - 153
Perfluoropentanoic acid (PFPeA)	100	104		ng/L		104	85 - 145
Perfluorohexanoic acid (PFHxA)	100	121		ng/L		121	81 - 141
Perfluoroheptanoic acid (PFHpA)	100	121		ng/L		121	104 - 171
Perfluorooctanoic acid (PFOA)	100	358		ng/L		358	158 - 454
Perfluorononanoic acid (PFNA)	100	109		ng/L		109	66 - 126
Perfluorodecanoic acid (PFDA)	100	107		ng/L		107	65 - 125
Perfluoroundecanoic acid (PFUnA)	100	100		ng/L		100	57 - 117
Perfluorododecanoic acid (PFDoA)	100	78.7		ng/L		79	66 - 126
Perfluorotridecanoic acid (PFTriA)	100	82.9		ng/L		83	65 - 136
Perfluorotetradecanoic acid (PFTeA)	100	82.3		ng/L		82	63 - 123
Perfluorobutanesulfonic acid (PFBS)	88.4	85.0		ng/L		96	75 - 135
Perfluorohexanesulfonic acid (PFHxS)	91.0	83.1		ng/L		91	64 - 124
Perfluoroheptanesulfonic Acid (PFHpS)	95.2	93.2		ng/L		98	70 - 131
Perfluorooctanesulfonic acid (PFOS)	92.8	90.0		ng/L		97	68 - 128
Perfluorodecanesulfonic acid (PFDS)	96.4	85.2		ng/L		88	66 - 126
Perfluorooctanesulfonamide (FOSA)	100	5.0	U	ng/L		0	0 - 10
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	100	50	U	ng/L		0	0 - 10
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	100	50	U	ng/L		0	0 - 10
6:2 FTS	94.8	50	U	ng/L		0	0 - 10
8:2 FTS	95.8	50	U	ng/L		0	0 - 10

Eurofins TestAmerica, Edison

Page 18 of 33

Client: New York State D.E.C. Job ID: 460-222961-2

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

	LCS	LCS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFBA	83		25 - 150
13C5 PFPeA	100		25 - 150
13C2 PFHxA	82		25 - 150
13C4 PFHpA	106		25 - 150
13C4 PFOA	93		25 - 150
13C5 PFNA	94		25 - 150
13C2 PFDA	91		25 - 150
13C2 PFUnA	91		25 - 150
13C2 PFDoA	92		25 - 150
13C2 PFTeDA	95		25 - 150
13C3 PFBS	85		25 - 150
1802 PFHxS	91		25 - 150
13C4 PFOS	84		25 - 150
13C8 FOSA	85		25 - 150
d3-NMeFOSAA	87		25 - 150
d5-NEtFOSAA	94		25 - 150
M2-6:2 FTS	99		25 - 150
M2-8:2 FTS	88		25 - 150
M2-4:2 FTS	0		0 - 10

Lab Sample ID: LCSD 320-434272/3-A

Matrix: Water

Analysis Batch: 436111

Client Sample ID: Lab Control Sample Dup

Prep Type: Post-Treatment Prep Batch: 434272

Analysis Buton: 400111							i icp b	4ton. 4	04 2 12
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorobutanoic acid (PFBA)	100	125		ng/L		125	93 - 153	2	30
Perfluoropentanoic acid (PFPeA)	100	97.9		ng/L		98	85 - 145	6	30
Perfluorohexanoic acid (PFHxA)	100	123		ng/L		123	81 - 141	1	30
Perfluoroheptanoic acid (PFHpA)	100	119		ng/L		119	104 - 171	2	30
Perfluorooctanoic acid (PFOA)	100	367		ng/L		367	158 - 454	2	30
Perfluorononanoic acid (PFNA)	100	107		ng/L		107	66 - 126	1	30
Perfluorodecanoic acid (PFDA)	100	113		ng/L		113	65 - 125	6	30
Perfluoroundecanoic acid (PFUnA)	100	96.9		ng/L		97	57 - 117	3	30
Perfluorododecanoic acid (PFDoA)	100	82.1		ng/L		82	66 - 126	4	30
Perfluorotridecanoic acid (PFTriA)	100	90.1		ng/L		90	65 - 136	8	30
Perfluorotetradecanoic acid (PFTeA)	100	85.2		ng/L		85	63 - 123	3	30
Perfluorobutanesulfonic acid (PFBS)	88.4	89.3		ng/L		101	75 - 135	5	30
Perfluorohexanesulfonic acid (PFHxS)	91.0	82.8		ng/L		91	64 - 124	0	30
Perfluoroheptanesulfonic Acid (PFHpS)	95.2	88.2		ng/L		93	70 - 131	5	30
Perfluorooctanesulfonic acid (PFOS)	92.8	89.9		ng/L		97	68 - 128	0	30
Perfluorodecanesulfonic acid (PFDS)	96.4	80.6		ng/L		84	66 - 126	6	30
Perfluorooctanesulfonamide (FOSA)	100	5.0	U	ng/L		0	0 - 10	NC	30
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	100	50	U	ng/L		0	0 - 10	NC	30

Eurofins TestAmerica, Edison

Page 19 of 33

3/30/2021

QC Sample Results

Client: New York State D.E.C. Job ID: 460-222961-2

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCSD 320 Matrix: Water Analysis Batch: 436111)-434272/3-A				(Client Sa	ample		Control Type: Po Prep B		tment
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)			100	50	U	ng/L		0	0 - 10	NC	30
6:2 FTS			94.8	50	U	ng/L		0	0 - 10	NC	30
8:2 FTS			95.8	50	U	ng/L		0	0 - 10	NC	30
	LCSD	LCSD									
Isotope Dilution	%Recovery	Qualifier	Limits								
13C4 PFBA	92		25 - 150								
13C5 PFPeA	112		25 - 150								
13C2 PFHxA	92		25 - 150								
13C4 PFHpA	118		25 - 150								
13C4 PFOA	101		25 - 150								
13C5 PFNA	106		25 - 150								
13C2 PFDA	101		25 - 150								
13C2 PFUnA	101		25 - 150								
13C2 PFDoA	104		25 - 150								
13C2 PFTeDA	100		25 - 150								
13C3 PFBS	100		25 - 150								
1802 PFHxS	103		25 - 150								
13C4 PFOS	97		25 - 150								
13C8 FOSA	96		25 - 150								
d3-NMeFOSAA	99		25 - 150								
d5-NEtFOSAA	110		25 - 150								
M2-6:2 FTS	104		25 - 150								
M2-8:2 FTS	106		25 - 150								
M2-4:2 FTS	0		0 - 10								

3/30/2021

QC Association Summary

Client: New York State D.E.C. Job ID: 460-222961-2

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

LCMS

Prep Batch: 434271

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-3	MW-3	Pre-Treatment	Water	TOP Pre - Prep	
MB 320-434271/1-A	Method Blank	Pre-Treatment	Water	TOP Pre - Prep	
LCS 320-434271/2-A	Lab Control Sample	Pre-Treatment	Water	TOP Pre - Prep	
LCSD 320-434271/3-A	Lab Control Sample Dup	Pre-Treatment	Water	TOP Pre - Prep	

Prep Batch: 434272

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-3	MW-3	Post-Treatment	Water	TOP Post Prep	
MB 320-434272/1-A	Method Blank	Post-Treatment	Water	TOP Post Prep	
LCS 320-434272/2-A	Lab Control Sample	Post-Treatment	Water	TOP Post Prep	
LCSD 320-434272/3-A	Lab Control Sample Dup	Post-Treatment	Water	TOP Post Prep	

Analysis Batch: 436111

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-3	MW-3	Post-Treatment	Water	537 (modified)	434272
460-222961-3	MW-3	Pre-Treatment	Water	537 (modified)	434271
MB 320-434271/1-A	Method Blank	Pre-Treatment	Water	537 (modified)	434271
MB 320-434272/1-A	Method Blank	Post-Treatment	Water	537 (modified)	434272
LCS 320-434271/2-A	Lab Control Sample	Pre-Treatment	Water	537 (modified)	434271
LCS 320-434272/2-A	Lab Control Sample	Post-Treatment	Water	537 (modified)	434272
LCSD 320-434271/3-A	Lab Control Sample Dup	Pre-Treatment	Water	537 (modified)	434271
LCSD 320-434272/3-A	Lab Control Sample Dup	Post-Treatment	Water	537 (modified)	434272

Analysis Batch: 437730

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-3	MW-3	Pre-Treatment	Water	Total PFCA-Sum	

Analysis Batch: 437733

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-3	MW-3	Post-Treatment	Water	Total PFCA-Sum	

Analysis Batch: 437734

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-222961-3	MW-3	Total/NA	Water	Total PFCA-Dif	

Eurofins TestAmerica, Edison

3/30/2021

3

4

6

9

11

12

14

15

16

Lab Chronicle

Client: New York State D.E.C. Job ID: 460-222961-2

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Lab Sample ID: 460-222961-3 **Client Sample ID: MW-3**

Date Collected: 11/13/20 09:35 **Matrix: Water**

Date Received: 11/16/20 19:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Post-Treatment	Prep	TOP Post Prep			434272	11/20/20 18:58	JER	TAL SAC
Post-Treatment	Analysis	537 (modified)		1	436111	11/26/20 05:37	JRB	TAL SAC
Pre-Treatment	Prep	TOP Pre - Prep			434271	11/20/20 18:47	JER	TAL SAC
Pre-Treatment	Analysis	537 (modified)		1	436111	11/26/20 03:20	JRB	TAL SAC
Total/NA	Analysis	Total PFCA-Dif		1	437734	12/03/20 12:51	VSG	TAL SAC
Post-Treatment	Analysis	Total PFCA-Sum		1	437733	12/03/20 12:48	VSG	TAL SAC
Pre-Treatment	Analysis	Total PFCA-Sum		1	437730	12/03/20 12:45	VSG	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Accreditation/Certification Summary

Client: New York State D.E.C. Job ID: 460-222961-2

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Laboratory: Eurofins TestAmerica, Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	01-20-21
ANAB	Dept. of Defense ELAP	L2468	01-10-21
ANAB	Dept. of Energy	L2468.01	01-10-21
ANAB	ISO/IEC 17025	L2468	01-10-21
Arizona	State	AZ0708	02-16-21
Arkansas DEQ	State	88-0691	06-17-21
California	State	2897	02-21-21
Colorado	State	CA0004	08-31-21
Connecticut	State	PH-0691	06-30-21
Florida	NELAP	E87570	06-30-21
Georgia	State	4040	01-29-21
Hawaii	State	<cert no.=""></cert>	01-29-21
Illinois	NELAP	200060	03-16-21
Kansas	NELAP	E-10375	10-31-21
Louisiana	NELAP	01944	06-30-21
Maine	State	CA00004	04-14-22
Michigan	State	9947	01-29-21
Nevada	State	CA000442021-2	07-31-21
New Hampshire	NELAP	2997	02-07-21
New Jersey	NELAP	CA005	06-30-21
New York	NELAP	11666	04-01-21
Ohio	State	41252	01-21-21
Oregon	NELAP	4040	01-29-21
Pennsylvania	NELAP	68-01272	03-31-21
Texas	NELAP	T104704399-19-13	06-01-21
US Fish & Wildlife	US Federal Programs	58448	07-31-21
USDA	US Federal Programs	P330-18-00239	07-31-21
Utah	NELAP	CA000442021-12	02-28-21
Vermont	State	VT-4040	04-16-21
Virginia	NELAP	460278	03-14-21
Washington	State	C581	05-05-21
West Virginia (DW)	State	9930C	12-31-20
Wisconsin	State	998204680	08-31-21
Wyoming	State Program	8TMS-L	01-28-19 *

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Method	Method Description	Protocol	Laboratory
537 (modified)	Fluorinated Alkyl Substances	EPA	TAL SAC
Total PFCA-Dif	Total PFCA (Treatment Difference)	TAL SOP	TAL SAC
Total PFCA-Sum	Total PFCA (Summary)	TAL SOP	TAL SAC
TOP Post Prep	Solid-Phase Extraction (SPE)	SW846	TAL SAC
TOP Pre - Prep	Solid-Phase Extraction (SPE)	SW846	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

2

Job ID: 460-222961-2

5

4

5

7

8

9

. .

12

13

15

116

Sample Summary

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
460-222961-3	MW-3	Water	11/13/20 09:35	11/16/20 19:40	

Job ID: 460-222961-2

3

4

5

9

11

14

14

15

116

Other:

RCRA

NPDES

Regulatory Program: Dw

Address:

TAL-8210

Client Contact	Project Manager:	Mark	ナムかころろ	0)	Site Contact:	ntact:			6	Date:	:e:			3	COC No:				_
Company Name: LACO CALCO COLLADO	Tel/Email:)	_	Lab Contact:	ntact:			m)	Ca	Carrier:				of	00	cocs		-
1 4	Analysi	Analysis Turnaround Time	1 Time	T	E	0	23	3			w		F	Š	Sampler:			Т	
Feir Street Land	2 5	tr from Below 2 weeks 1 week 2 days 1 day Samp Typ	AYS	(M/X/slams)pos	ered Sample (Y/N) Torm MS / MSD (Y/N)	DER OF TOUR	stel exemide gois	ALSOS OSTA	a uniccinuded herbi	ens esticides sush	4-Dioxone BROOM	0			Samples: For Lab Use Only: Walk-in Client: Lab Sampling: Job / SDG No.:	only:	101		
Sample Identification	Milispo 1340		Matrix GS	11	Ы	T ×	+ ×			L X	×	T	WORK	×	Samp	Sample Specific Notes:	lotes:	1	
G-337	3501 oct81111		3		-	×	X	X	×	×	×						6	1_	
MW-3	4113bo 0935	5	35			*	×	×	×	X	×			6	Place 76	PEAS TOP	Page 1	3	
NW-5	0131 0613111	5	33		×	×	×	X	X	X	X			-	NO M	MSIMSD	2		
MW-6	1113 bo 08 20	9	35							×							S		
Dup	W113 ps	9	3		X	×	×	X	×	X	X						9		
CB-11132020	1113501630	9	KB							×						17	7		
4-848	ा किन्न १३३०	0	35		_	×	×	×	×	X	×						×		
2-4	111312 De 124	2	S			X	×	×	X	X	*		Ц	2	S.	G			
							-									5)		
												8			7	N		_	
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	; 5=NaOH; 6= Othe			1	1														
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes Comments Section if the lab is to dispose of the sample.	ise List any EPA Wa		for the sample in the	in the	San	460	-2229	460-222961 Chain of Custody	lu of C	nstod			re ret	ained lo	re retained longer than 1 month)	1 month)			
☐ Non-Hazard ☐ Flammable ☐ Skin Irritant	Poison B	Unkr	nknown		П	Return	Return to Client			Disposal by	al by Lab		Archive for	for	Months	IS			
Special Instructions/QC Requirements & Comments:																			
Custody Seals Intact: Tes No	Custody Seal No.:						Sooler	Cooler Temp. (°C): Obs'd	(°C): (:p,sq(Corr'd:		Th	Therm ID No.	**			
Relinquished by:	Company:		Date/Time:	e: 0.28		Received by:	3	a	5	3	311	Company:		0//I	Date/Time:	13:	30		
Relinquished by:	Company:	U	Date/Time	£ (c)	-	Received by:	~\·			D	30	Company	1	0//	Date/Time:	,	7.20		
0	Company:	11/14		7 7	_	ived in	Labor	Received in Laboratory by:	.y.		CO	Company	10	Di	Date/Time:	No 194	0		
	111		7	1	D		0	10	2		1	14	1						
			3	40	0	14	7	1	1		1	8		6	5	3	2	1	
						4	3	2											1

Eurofins TestAmerica Edison Receipt Temperature and pH Log

Job Number:

Page of

1.	Number of Coolers:	9	1		IR Gun #			1	3							
1		RAW	COMMECTED			S	oler Te	CONTRICTED	tures			Anna	16		1	-
Cooler #8: C Cool	Cooler #1	Like	2.10		O	ooler #4:	9	P		Ö	ooler #7:	U	2			
Cooler #8: C Cool	Cooler #2	d			0	ooler#5:	P	9		Ü	poler #8:	U	2			
Perconstance Perc	Cooler #3	7		ı	O	ooler #6:	U	2		3	coler #9:	P	2			
TALS Sample Number (pHc2)		Ammonia	COD	Nitrate Nitrite	Metals		Pest	EPH or	Phenois	Sulfide	TKN		Total	Total Phos	Other	Other
	LS Sample Number	(pH<2)	(pH<2)	(pH<2)	(pH<2)	-	(pH 5-9)	(pH<2)	(pH<2)	(p++9)	(pH<2)	(pH<2)	(pH>12)	(pH<2)		
Sample No(s). adjusted: Sample No(s). adjusted: Preservative Is: Expiration Date: Expiration Date:					23								717			
Sample No(s), adjusted: Sample No(s), adjusted: Sample No(s) adjusted: Lot # of Preservative is: Expiration Date: Column of Preservative is: Expiration Date: Expiration Date: Column of Preservative is: Expiration Date: Column of Preservative is: Column of	0				5								2/3			
C	3				200								713			
C C C C C C C C C C	T				07								513			
Sample No(s). adjusted: Preservative (sh. 0				9								713			L	
Freservative Name/Conc.:	8				(%)								213			
Sample No(s). adjustments are required record the information below: Sample No(s). adjusted: Preservative Name/Conc.: Lot # of Preservative(s): Lot # of Preservative(s): Expiration Date:																
If pH adjustments are required record the information below: Sample No(s). adjusted: Volume of Preservative used (ml): Expiration Date:																
If pH adjustments are required record the information below: Sample No(s). adjusted: Volume of Preservative used (ml): Expiration Date:																
Sample No(s). adjusted: Semple No(s). adjusted: Volume of Preservative Name/Conc.: Lot # of Preservative(s):																
Sample No(s). adjusted: Semple No(s). adjusted: Preservative Name/Conc.: Lot # of Preservative(s):																
If pH adjustments are required record the information below: Sample No(s). adjusted: Preservative Name/Conc.: Lot # of Preservative(s):																
Sample No(s), adjusted: Semple No(s), adjusted: Preservative Name/Conc.: Lot # of Preservative(s):																
Preservative Name/Conc.: Lot # of Preservative(s): Expiration Date:	Sample No(s).	If pH adju adjusted:	stments	ire requir	red record	the infor	mation be	:Mok:								
Lot # of Preservative(s):	Preservative Na	me/Conc.:					Volur	ne of Pres	servative u	:(Im) pasr						
	Lot # of Prese	rvative(s):							Expiral	tion Date:						

EDS-WL038, Rev 4.1 10/22/2019

Initials:

🔆 eurofins

Chain of Custody Record

Eurofins TestAmerica, Edison

777 New Durham Road

Phone: 732-549-3900 Fax: 732-549-3679

 TSP Dodecahydrate Note: Since aboratory accreditations are subject to change, Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This samples must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica. Special Instructions/Note: Company Sc.c Z - other (specify) P - Na204S Q - Na2S03 R - Na2S203 N - None O - AsNaO2 Months W - pH 4-5 S- H2SO4 V-MCAA Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont Preservation Codes A - HCL B - NaOH C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH G - Amchlor H - Assorbic Acid 460-222961-1 460-60076.1 Page 1 of 1 200 J - DI Water K-EDTA Total Number of containers 14//4/ Date/Time Method of Shipment Carrier Tracking No(s) State of Origin: New Jersey Analysis Requested Feturn To Client Disp.
Special Instructions/QC Requirements: Julie, Gilmore@Eurofinset.com Accreditations Required (See note) Received by eceived by Received by: Lab PM Gilmore, Julie L × PFC_IDA/Shake_Bath_14D PFAS, Standard List (21 Perform MS/MSD (Yes or No) Field Filtered Sample (Yes or No) E-Mail: Preservation Code: Matrix Solid Company 1900 (C=comb, G=grab) Sample Type Primary Deliverable Rank: 1 Sample 12:45 Eastern Time 15/10 (days) Due Date Requested: 11/30/2020 Sample Date 11/13/20 Project #: 46033503 SSOW#: Date/Time: Phone: WO # Client Information (Sub Contract Lab) eliverable Requested: I, II, III, IV, Other (specify) DEC - FAIR STREET LANDFILL SITE: 340021 Sample Identification - Client ID (Lab ID) 916-373-5600(Tel) 916-372-1059(Fax) Possible Hazard Identification TestAmerica Laboratories, Inc. Empty Kit Relinquished by: 880 Riverside Parkway Shipping/Receiving S-4 (460-222961-9) West Sacramento quished by: quished by. nconfirmed iquished by CA, 95605

5

Cooler Temperature(s) °C and Other Remarks.

250ML. OB 11/19/20

2 CONTAINERS WATER

· CAME WITH

Custody Seal No.:

Custody Seals Intact:

V Yes A No

Eurofins TestAmerica, Edison

777 New Durham Road

Edison, NJ 08817

Phone: 732-549-3900 Fax: 732-549-3679

America

S - H2SO4 T - TSP Dodecahydrate U - Acetone
V - MCAA
W - pH 4-5
Z - other (specify) Special Instructions/Note: M - Hexane N - None O - AsNaO2 P - Na2O4S O - Na2SO3 R - Na2S2O3 Preservation Codes A - HCL B - NaOH C - Zn Acetate D - Nitric Acid F - NaHSOA F - MeOH G - Amchlor H - Ascorbic Acid 460-222961-1 COC No: 460-60076.1 Page 1 of 1 I - Ice J - DI Water K - EDTA L - EDA Total Number of containers Carrier Tracking No(s) State of Origin: New Jersey Analysis Requested E-Mail: Julie, Gilmore@Eurofinset.com PFC_IDA/Shake_Beth_14D PFAS, Standard List (21 Gilmore, Julie L. × Perform MS/MSD (Yes or No) Preservation Code: Matrix Solid (C=comp, G=grab) Sample Type Sample 12:45 Eastem Time (AT Requested (days) Due Date Requested: 11/30/2020 Sample Date 11/13/20 46033503 hone: Client Information (Sub Contract Lab) DEC - FAIR STREET LANDFILL SITE: 340021 Sample Identification - Client ID (Lab ID) 916-373-5600(Tel) 916-372-1059(Fax) TestAmerica Laboratories, Inc. Address: 880 Riverside Parkway. S-4 (460-222961-9) Shipping/Receiving West Sacramento CA, 95605

Note: Since aboratory acceditations are subject to change, Eurofins TestAmenica places the ownership of method, analyze & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmenica alternion will be provided. Any changes to accreditation status should be brought to Eurofins TestAmenica attention immediately, if all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmenica. Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Mon Possible Hazard Identification

Special Instructions/QC Requirements:

Primary Deliverable Rank: 1

Deliverable Requested: I, II, III, IV, Other (specify)

Unconfirmed

Months

Employ in remidelshed by	9.			•	11	
Relinquished by:		Date/Time: //	Date/Time / 18/10 (900 Company APA Received by	Company	Received by 900	Date/Time: 16/1/90
Relinquished by:		Date/Time/	6	Company	Received by:	Date/Time:
Relinquished by:		Date/Time:		Сотрану	Received by:	Date/Time:
Custody Seals Intact:	Custody Seal No.:	2784511			Cooler Temperature(s) °C and Other Remarks:	4.0

Ver. 11/01/2020

Initials:

Environment Testing TestAmerica

Sacramento Sample Receiving Notes

Tracking #: 8/42 0486

SO (PO) FO / SAT / 2-Day / Ground / UPS / CDO / Courier Job:

GSO / OnTrac / Goldstreak / USPS / Other Use this form to record Sample Custody Seal, Cooler Custody Seal, Temperature & corrected Temperature & other observations.

File in the job folder with the COC. Notes: X RECEIVED (2/2) Therm, ID: Corr. Factor: (+/-)____°C Cooler Custody Seal: Gel Other Other Cooler ID: Temp Observed: 6-4 °C Corrected: 6-4 From: Temp Blank D Sample D Opening/Processing The Shipment Yes NA Cooler compromised/tampered with? Cooler Temperature is acceptable? D Frozen samples show signs of thaw? D D Initials: 57 Date: u//4/70 Unpacking/Labeling The Samples Yes No NA CoC is complete w/o discrepancies? D Samples compromised/tampered with? Sample containers have legible labels? Ø Sample custody seal? DY Containers are not broken or leaking? D Sample date/times are provided? D Trizma Lot #(s): Appropriate containers are used? D Sample bottles are completely filled? Sample preservatives verified? D D Samples w/o discrepancies? Ø Zero headspace?* Login Completion NA Alkalinity has no headspace? D Receipt Temperature on COC? Samples received within hold time? Perchlorate has headspace? D 0 (Methods 314, 331, 6850) NCM Filed? Multiphasic samples are not present? Log Release checked in TALS? *Containers requiring zero headspace have no headspace, or bubble < 6 mm (1/4") Date: 11

ITACORPICORPIQAIQA_FACILITIESISACRAMENTO-QAIDOCUMENT-MANAGEMENTIFORMSIQA-812 SAMPLE RECEIVING NOTES.DOC

QA-812 MBB 11/06/2020

Client: New York State D.E.C. Job Number: 460-222961-2

Login Number: 222961 List Source: Eurofins TestAmerica, Edison

List Number: 1

Creator: DiGuardia, Joseph L

Creator: DiGuardia, Joseph L		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins TestAmerica, Edison

Client: New York State D.E.C. Job Number: 460-222961-2

Login Number: 222961 List Source: Eurofins TestAmerica, Sacramento
List Number: 3 List Creation: 11/19/20 12:21 PM

Creator: Saephan, Kae C

Greator. Saephan, Nae C		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	1134363
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	ob: 0.4c corr: 0.4c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

N/A

Eurofins TestAmerica, Edison

Residual Chlorine Checked.

Job Number: 460-222961-2

Client: New York State D.E.C.

Login Number: 222961

List Number: 4

Creator: Saephan, Kae C

List Source: Eurofins TestAmerica, Sacramento

List Creation: 11/19/20 12:40 PM

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	1134363
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	ob: 0.4c corr: 0.4c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Site Characterization Report Fair Street Landfill, Site #340021 131 Carmel Drive, Carmel, NY

APPENDIX F DUSRs

Geology

Hydrology

Remediation

Water Supply

February 8, 2021

Mr. Chris Sbarra Project Consultant HRP Associates, Inc. 1 Fairchild Square, Suite 110 Clifton Park, New York 12065

Re: Data Validation Report

Fair Street Landfill (Site: 340021) - Carmel, NY

September-November 2020 Ground and Surface Water, and Soil Sampling Events

Dear Mr. Sbarra:

The data usability summary reports (DUSRs) and supporting documentation have been sent via email for the Fair Street Landfill, September-November 2020 ground and surface water, and soil sampling events. The data for Eurofins TestAmerica job numbers 460-218480-1, 460-222216-1, and 460-222961-1 were mostly acceptable, with issues that are identified in the DUSRs and validation summaries. There were data qualified as unusable, rejected (R) in the data packs 460-218480-1 and 460-222961-1. The DUSRs and QA/QC reviews outline the reasons for qualifying data rejected (R). The data is rejected based solely on the validation guidance criteria. The rejected data may be determined to be acceptable to the user based on additional information that is not contained in the data validation criteria.

A list of data validation acronyms and qualifiers is attached to assist you in interpreting the data validation reviews. If you have any questions concerning the work to be performed, please contact me at (518) 348-6995. Thank you for the opportunity to assist HRP Associates, Inc.

Sincerely, Alpha Geoscience

Donald Anné Senior Chemist

DCA/bms Via email

 $z:\projects\2021\21600-21620\21600-dec\ carmel\ temp\ review\ dec\ carmel-211.ltr.docx$

Data Usability Summary Report for Eurofins TestAmerica-Edison, Buffalo, Burlington, and Sacramento Job No: 460-218480-1

21 Soil Samples, 1 Field Duplicate, 2 Equipment Blanks, and 1 Driller Water Sample Collected September 14-15, 2020

> Prepared by: Donald Anné February 8, 2021

Geology Hydrology

Remediation

Water Supply

The data package contains the documentation as required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appears legible and complete. The data pack contains the results of volatile, semi-volatile, pesticides, PCBs, metals, and total cyanide analyses for 11 soil samples; results of herbicides analyses for 6 soil samples; results of TOC analyses for 10 soil samples; results of PFAS for 21 soil samples, 1 soil field duplicate, 2 equipment blanks, 1 Driller Water sample; and results of SPLP PFAS analyses for 10 soil samples.

The overall performances of the analyses are acceptable. Eurofins TestAmerica-Edison, Buffalo, Burlington, and Sacramento labs did fulfill the requirements of the analytical methods.

The data are acceptable with some issues that are identified in the accompanying data validation reviews. The following data were qualified:

- The positive and "not detected" volatile results for target compounds were qualified as "estimated" (J, UJ respectively) for samples TP-3, TP-5, SS-02, SS-03, and SS-05 because the samples were analyzed beyond USEPA SW-846 holding times.
- The "not detected" volatile results for target compounds were qualified as "estimated" (J, UJ) for sample SS-01 because the samples were analyzed beyond USEPA SW-846 holding times.
- The positive volatile results for acetone, 2-butanone, methylene chloride, and toluene were qualified as "estimated, biased high" (J+) for sample SS-01 because 1 of 4 surrogate recoveries was above control limits for the sample.
- The positive volatiles result for acetone was qualified as "estimated, biased high" (J+) for sample SB-8 (0-2) because 1 of 2 percent recoveries for acetone was above QC limits in the soil MS/MSD sample.

Page 1 of 6

- The positive volatile results for 2-butanone and carbon disulfide were qualified as "estimated, biased low" (J-) for sample SB-8 (0-2) because 2 of 2 percent recoveries for 2-butanone and carbon disulfide were below QC limits, but not below 10% in soil MS/MSD sample.
- The "not detected" volatile results for 36 compounds were qualified as "estimated" (UJ) for sample SB-8 (0-2) because 1 or 2 percent recoveries for these 36 compounds were below QC limits, but not below 10% in soil MS/MSD sample.
- The positive semi-volatile result for fluoranthene was qualified as estimated (J) in sample SB-8 (0-2) because the relative percent difference for fluoranthene was above the allowable maximum in the soil MS/MSD sample.
- The positive semi-volatile results for benzo(a)anthracene, benzo(a)pyrene, and benzo(g,h,i)perylene were qualified as "estimated, biased low" (J-) for sample SB-8 (0-2) because 2 of 2 percent recoveries for benzo(a)anthracene, benzo(a)pyrene, and benzo(g,h,i)perylene were below QC limits and below 10% in the soil MS/MSD sample.
- The positive pesticide result for dieldrin was qualified as estimated, biased high (J+) in sample SB-8 (0-2) because the RPD for dual column quantitation of dieldrin was above the allowable maximum, but not above 70% in the sample and the higher result was reported.
- The positive pesticide result for 4,4'-DDD and 4,4'-DDE were qualified as estimated (J) in sample SB-8 (0-2) because the relative percent differences for 4,4'-DDD and 4,4'-DDE were above the allowable maximum in the soil MS/MSD sample.
- The positive pesticide result for methoxychlor was qualified as estimated, biased high (J+) in sample SB-10 (0-5) because the RPD for dual column quantitation of methoxychlor was above the allowable maximum, but not above 70% in the sample and the higher result was reported.
- The positive pesticide result for trans-chlordane was qualified as estimated, biased low (J-) in sample SB-8 (0-2) because 1 of 2 percent recoveries for trans-chlordane was below QC limits and below 10% in the soil MS/MSD sample.

- The positive pesticide result for 4,4'-DDD was qualified as estimated, biased low (J-) in sample TP-3 because the RPD for dual column quantitation of 4,4'-DDD were above the allowable maximum, but not above 70% in the sample and the lower result was reported.
- The positive pesticide results for 4,4'-DDD and 4,4'-DDE were qualified as estimated, biased low (J-) in sample TP-5 because the RPDs for dual column quantitation of 4,4'-DDD and 4,4'-DDE were above the allowable maximum, but not above 70% in the sample and the lower results were reported.
- The positive pesticide results for 4,4'-DDT were qualified as estimated, biased low (J-) in samples SS-01, SS-04, SS-05, and SB-5 (0-2) because the RPDs for dual column quantitation of 4,4'-DDT were above the allowable maximum, but not above 70% in the samples and the lower results were reported.
- The positive pesticide results for methoxychlor were qualified as estimated, presumptive evidence (JN) in samples TP-3, SS-03, and Dup because the RPDs for dual column quantitation of methoxychlor were above the allowable maximum and above 70%, but not above 100% in the samples.
- The positive pesticide result for methoxychlor was qualified as rejected, unusable (R) in sample SB-8 (0-2) because the RPD for dual column quantitation of methoxychlor was above the allowable maximum and above 100% in the sample.
- The positive PCB results for PCB-1242 was qualified as estimated, presumptive evidence (JN) in sample TP-3 because the RPD for dual column quantitation of PCB-1242 was above the allowable maximum and above 70%, but not above 100% in the sample.
- The "not detected" herbicide result for 2,4-D was qualified as rejected, unusable (R) in sample SB-8 (0-2) because 1 of 2 percent recoveries for 2,4-D was below QC limits and below 10% in the soil MS/MSD sample.
- The positive PFAS results for PFBA were qualified as "estimated, biased high" (J+) for samples SB-1 (1-2), SB-2 (0-2), SB-3 (0-2), SB-4 (0-2), SB-7 (0-0.5), SB-8 (0-2), and SB-9 (0-0.5) because the samples were associated with a blank containing PFBA and reported concentrations for PFBA were above the reporting limits, but less than 10 times the blank level.
- The positive PFAS results for FOSA were qualified as "estimated, biased high" (J+) for samples TP-1, TP-5, SS-01, and SS-02 because the samples were associated with a blank containing FOSA and reported concentrations for FOSA were above the reporting limits but less than 10 times the blank level.

- The positive PFAS result for PFOS was qualified as "estimated, biased high" (J+) for sample SS-05 because the sample was associated with a blank containing FOSA and reported concentration for FOSA was above the reporting limits and less than 10 times the blank level.
- The positive PFAS result for FOSA was qualified as "not detected" (U) at the reporting limits for sample TP-4 because the sample was associated with a blank containing FOSA and reported concentration for FOSA was below the reporting limits.
- The positive PFAS results for PFOS were qualified as "not detected" (U) at the reporting limits for samples EB-092420 and Driller Water because the samples were associated with a blank containing PFOS and reported concentrations for PFOS were below the reporting limits.
- The positive PFAS result for PFBA was qualified as "not detected" (U) at the reporting limits for samples SB-5 (0-2), SB-6 (0-2), SB-10 (0-5), SB-10 (20-25), and Dup because the samples were associated with a blank containing PFBA and reported concentrations for PFBA were below the reporting limits.
- The positive PFAS results for PFDA, PFOS, and PFDS were qualified as "estimated, biased high" (J+) in sample SB-8 (0-2) because the 1 or 2 percent recoveries for PFDA, PFOS, and PFDS were above QC limits in the associated soil MS/MSD sample.
- The positive PFAS result for PFOS was qualified as "estimated" (J) in SPLP sample SB-8 (0-2) because the relative percent difference for PFOS was above the allowable maximum in the soil SPLP MS/MSD sample.
- The positive PFAS result for 6:2 FTS was qualified as "estimated, biased low" (J-) in SPLP sample SB-8 (0-2) because the 2 of 2 percent recoveries for 6:2 FTS were below QC limits and below 10% in the soil SPLP MS/MSD sample.
- The "not detected" PFAS results for PFDoA and PFTeA were qualified as "estimated" (UJ) in SPLP sample SB-1 (1-2) because surrogates used to quantitate these PFDoA and PFTeA were below QC limits, but not below 10% in the SPLP sample SB-1 (1-2).
- The positive PFAS results for 6:2 FTS and 8:2 FTS were qualified as "estimated" (J) in sample SS-2 because the percent recoveries for the surrogates used to quantitate these results were above QC limits in the sample.
- The positive PFAS results for 8:2 FTS were qualified as "estimated" (J) in SPLP samples TP-3, TP-4, and TP-5 because the percent recoveries for the surrogates used to quantitate these results were above QC limits in the samples.

- The positive metal results for potassium were qualified as "estimated, biased high" (J+) in all 11 soil samples because 1 of 2 percent recoveries for potassium was above control limits in the associated soil MS/MSD sample.
- The positive metal results for copper, magnesium, and nickel were qualified as "estimated, biased low" (J-) in all 11 soil samples because 1 or 2 of 2 percent recoveries for copper, magnesium, and nickel were below control limits and copper and magnesium were below 10% in the associated soil MS/MSD sample.
- The positive metal result for antimony was qualified as "estimated, biased low" (J-) in sample SB-10 (0-5) because 1 of 2 percent recoveries for antimony was below control limits, but not below 10% in the associated soil MS/MSD sample.
- The "not detected" metal results for antimony were qualified as "estimated" (UJ) in all soil samples except sample SB-10 (0-5) because 1 of 2 percent recoveries for antimony was below control limits, but not below 10% in the associated soil MS/MSD sample.
- The positive metal results for barium, calcium, iron, and lead were qualified as estimated (J) in all 11 soil samples because the relative percent differences for these 5 metals were above the allowable maximum in the associated soil MS/MSD sample.
- The positive metal results for manganese and zinc were qualified as estimated (J) in all 11 soil samples because the %Ds for manganese and zinc were above the allowable maximum in the associated soil serial dilution sample and the results were above the RLs.
- The positive metal results for cadmium were qualified as estimated (J) in the following samples because the %D for cadmium was above the allowable maximum in the associated soil serial dilution sample and the results were above the RLs.

TP-3	TP-5	SS-03	SS-04
SS-05	SB-8 (0-2)	SB-10 (0-5)	

• The positive results for TOC were qualified as "estimated" (J) for all 10 re-analyzed soil samples because the samples were re-analyzed beyond established holding times.

• The positive results for TOC were qualified as "estimated, biased high" (J+) in all 10 initially analyzed soil samples because the percent recovery for TOC was above QC limits in the associated soil LCS.

All data that are not qualified rejected (R) are considered usable with estimated (J, J+, J-, JN, or UJ) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation review.

Qualified Data Section	

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;68

.(/&'()*!#&012&345678939568

1(%#& ?!!#A%#@**285BC**75&85255 1(%#&+#A#"D#@2&5BC84C75&892E5 <(%=">2&'?!"(

Job ID: 460-218480-1

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
;#=J!-?=?/-%(\$?"A&(A"@&ILQMK	ERG	S	4.5	2.2	ng/L		09/29/20 04:48	09/29/20 16:44	1
;#=J!-?=?*#\$%(\$?"A&(A"@&IL;#MK	S 88		1.8	0.44	ng/L		09/29/20 04:48	09/29/20 16:44	1
;#=J!-?=?F#>(\$?"A&(A"@&ILW>MK			1.8	0.52	ng/L		09/29/20 04:48	09/29/20 16:44	1
;#=J!-?=?F#*%(\$?"A&(A"@&ILW*M			1.8		ng/L		09/29/20 04:48	09/29/20 16:44	1
;#=J!-?=??A%(\$?"A&(A"@&ILXMK			1.8		ng/L		09/29/20 04:48	09/29/20 16:44	1
;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK	8G		1.8		ng/L			09/29/20 16:44	1
;#=J!-?=?@#A(\$?"A&(A"@&IL1MK			1.8		ng/L			09/29/20 16:44	
;#=J!-?=?-\$@#A(\$?"A&(A"@&	8R4	9	1.8		ng/L			09/29/20 16:44	1
I:L U\$MK	0114	3	1.0	0.33	iig/L		03/23/20 04.40	03/23/20 10.44	,
;#=J!-?=?@?@#A(\$?"A&(A"@&	5RH7	S	1.8	0.50	ng/L		09/29/20 04:48	09/29/20 16:44	1
I;L 1?MK	•								
Perfluorotridecanoic acid (PFTriA)	1.8	U	1.8	1.2	ng/L		09/29/20 04:48	09/29/20 16:44	1
Perfluorotetradecanoic acid (PFTeA)	1.8	U	1.8	0.66	ng/L		09/29/20 04:48	09/29/20 16:44	1
;#=J!-?=?/-%(\$#,-!J?\$"A&(A"@&	5R75	S	1.8		ng/L		09/29/20 04:48	09/29/20 16:44	1
I;L Q'K	J. 1. 0	-	-		J				
;#=J!-?=?F#>(\$#,-!J?\$"A&(A"@&	GRH		1.8	0.51	ng/L		09/29/20 04:48	09/29/20 16:44	1
I;L W>'K									
;#=J!-?=?F#*%(\$#,-!J?\$"A & IA"@&	7R3		1.8	0.17	ng/L		09/29/20 04:48	09/29/20 16:44	1
I;L W*'K									
;#=J!-?=??A%(\$#,-!J?\$"A&(A"@&	8 G 5		1.8	0.49	ng/L		09/29/20 04:48	09/29/20 16:44	1
I;L X'K							00/00/00 04 40	00/00/00 40 44	
Perfluorodecanesulfonic acid (PFDS)	1.8	U	1.8		ng/L			09/29/20 16:44	1
;#=J!-?=??A%(\$#,-!J?\$()"@#&	ER9		1.8	0.88	ng/L		09/29/20 04:48	09/29/20 16:44	1
ILX'MK Y6)#%FO!*#=J!-?=??A%(\$#,-!J?\$(ODE	c	4.5	1 1	ng/L		00/20/20 04:49	09/29/20 16:44	1
)"@?(A#%"A&(A"@&IY<#LX'MMK	8RE	3	4.5	1.1	rig/L		09/29/20 04.46	09/29/20 10.44	
Y6#%FO!*#=J!-?=??A%(\$#,-!J?\$()"	8RE		4.5	12	ng/L		09/29/20 04:48	09/29/20 16:44	1
@?(A#%"A&(A"@&IYP%LX'MMK	OILE				9/ =		00/20/20 0 11 10	00/20/20 .0	•
6:2 FTS	4.5	U	4.5	2.3	ng/L		09/29/20 04:48	09/29/20 16:44	1
8:2 FTS	1.8	U	1.8	0.41	ng/L		09/29/20 04:48	09/29/20 16:44	1
Isotope Dilution	%Recovery	Qualifier	Limito				Propored	Analyzad	Dil Eo
13C4 PFBA	66	Qualifier	25 - 150				Prepared	Analyzed 09/29/20 16:44	Dil Fac
13C5 PFPeA	74		25 - 150					09/29/20 16:44	
13C2 PFHxA	75		25 - 150					09/29/20 16:44	
13C4 PFHpA	84		25 - 150					09/29/20 16:44	
13C4 PFOA	76		25 - 150					09/29/20 16:44	
13C5 PFNA	91		25 - 150					09/29/20 16:44	
13C2 PFDA	79		25 - 150				09/29/20 04:48	09/29/20 16:44	
13C2 PFUnA	89		25 - 150				09/29/20 04:48	09/29/20 16:44	
13C2 PFDoA	84		25 - 150				09/29/20 04:48	09/29/20 16:44	
13C2 PFTeDA	67		25 - 150				09/29/20 04:48	09/29/20 16:44	
13C3 PFBS	77		25 - 150				09/29/20 04:48	09/29/20 16:44	
1802 PFHxS	84		25 - 150				09/29/20 04:48	09/29/20 16:44	
13C4 PFOS	82		25 - 150				09/29/20 04:48	09/29/20 16:44	
13C8 FOSA	82		25 - 150				09/29/20 04:48	09/29/20 16:44	
13001 004			25 - 150				09/29/20 04:48	09/29/20 16:44	
d3-NMeFOSAA	81		20 - 100						
d3-NMeFOSAA							09/29/20 04:48	09/29/20 16:44	
	90 162	*5	25 - 150 25 - 150 25 - 150					09/29/20 16:44 09/29/20 16:44	

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;68

.(/&'()*!#&012&345678939568

1(%#& ?!!#A%#@**2833E**C75&85255

1(%#&+#A#"D#@2&5BC84C75&892E5

<(%=">2&'?!"(

Z#\$#=(!& F#)",%=O M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
: ?%(!& (=/?\$	45G55 j+	1000	671	mg/Kg			09/23/20 19:46	1
: ?%(!& (=/?\$	GGE55 J	1000	671	mg/Kg			09/30/20 15:41	1
M\$(!O%#	+#,-!% V-(!"J"#=	+.	+.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
*W	HR8WL	0.1	0.1	SU			09/22/20 15:00	1
: #)*#=(%-=#	77R8 WL	0.001	0.001	Degrees C			09/22/20 15:00	1

!"#\$%&'()*!#&012&:;68

.(/&'()*!#&012&345678939568

1(%#& ?!!#A%#@2&5BC83C75&85255

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&H\$

M\$(!O%#	+#,-!% V-(!"J"#=	+,	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(/
#=J!-?=?/-%(\$?"A&(A"@&ILQMK	5RE8	0.23	0.033	ug/Kg		09/20/20 20:32	09/24/20 20:14	1
;#=J!-?=?*#\$%(\$?"A&(A"@&IL;#MK	5RG8	0.23	0.089	ug/Kg	₩	09/20/20 20:32	09/24/20 20:14	1
;#=J!-?=?F#>(\$?"A&(A"@&ILW>MK	5R4G	0.23	0.049	ug/Kg	≎	09/20/20 20:32	09/24/20 20:14	1
:#=J!-?=?F#*%(\$?"A&(A"@&ILW*MF	₹ 5RB4	0.23	0.034	ug/Kg	₽	09/20/20 20:32	09/24/20 20:14	1
;#=J!-?=??A%(\$?"A&(A"@&ILXMK	ERE	0.23		ug/Kg	₽	09/20/20 20:32	09/24/20 20:14	1
;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK	5RH7	0.23	0.042	ug/Kg	☼	09/20/20 20:32	09/24/20 20:14	1
;#=J!-?=?@#A(\$?"A&(A"@&IL1MK	7R4	0.23		ug/Kg		09/20/20 20:32	09/24/20 20:14	1
;#=J!-?=?-\$@#A(\$?"A&(A"@&	5R94	0.23		ug/Kg	₩		09/24/20 20:14	1
;LU\$MK	OI TO T	0.20	0.0.2	~g/ . tg	.,.	00,20,20 20.02	00/2 1/20 2011 1	
;#=J!-?=?@?@#A(\$?"A&(A"@&	8R8	0.23	0.078	ug/Kg	₽	09/20/20 20:32	09/24/20 20:14	1
;L1?MK				0 0				
#=J!-?=?%="@#A(\$?"A&(A"@ &!N LK	5R74	0.23	0.059	ug/Kg	≎	09/20/20 20:32	09/24/20 20:14	1
;#=J!-?=?%#%=(@#A(\$?"A&(A"@&	5R74	0.23	0.063	ug/Kg	₩	09/20/20 20:32	09/24/20 20:14	1
I;L: #MK								
Perfluorobutanesulfonic acid (PFBS)	0.23 U	0.23	0.029	ug/Kg	₽	09/20/20 20:32	09/24/20 20:14	1
;#=J!-?=?F#>(\$#,-!J?\$"A&(A"@&	5RE3	0.23	0.036	ug/Kg	≎	09/20/20 20:32	09/24/20 20:14	1
;LW>'K								
;#=J!-?=?F#*%(\$#,-!J?\$"A & IA"@&	5R8 S	0.23	0.041	ug/Kg	☼	09/20/20 20:32	09/24/20 20:14	1
;LW*'K								
;#=J!-?=??A%(\$#,-!J?\$"A&(A"@&	88 Q	0.58	0.23	ug/Kg	₩	09/20/20 20:32	09/24/20 20:14	1
;LX'K	ED07.0	0.23	0.045	/l/a		09/20/20 20:32	00/24/20 20:14	1
:#=J!-?=?@#A(\$#,-!J?\$"A&(A"@& I:L1'K	5R87 S	0.23	0.045	ug/Kg	₹.	09/20/20 20.32	09/24/20 20.14	'
;#=J!-?=??A%(\$#,-!J?\$()"@#&	5R35J+	0.23	0.095	ug/Kg	÷75-	09/20/20 20:32	09/24/20 20:14	1
LX'MK	31(330)	0.20	0.000	ug/itg	~	00/20/20 20:02	00/24/20 20:14	
Y6)#%FO!*#=J!-?=??A%(\$#,-!J?\$(5RGHS	2.3	0.45	ug/Kg	☼	09/20/20 20:32	09/24/20 20:14	1
)"@?(A#%"A&(A"@&IY<#LX'MMK				5. 5				
Y6#%FO!*#=J!-?=??A%(\$#,-!J?\$()"	5RHES	2.3	0.43	ug/Kg	₩	09/20/20 20:32	09/24/20 20:14	1
@?(A#%"A&(A"@&IYP%LX'MMK								
6:2 FTS	2.3 U	2.3	0.17	ug/Kg	≎	09/20/20 20:32	09/24/20 20:14	1
8:2 FTS	2.3 U	2.3	0.29	ug/Kg	₩	09/20/20 20:32	09/24/20 20:14	1
sotope Dilution	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	63	25 - 150				09/20/20 20:32	09/24/20 20:14	
13C5 PFPeA	67	25 - 150				09/20/20 20:32	09/24/20 20:14	
13C2 PFHxA	71	25 - 150				09/20/20 20:32	09/24/20 20:14	
13C4 PFHpA	75	25 - 150				09/20/20 20:32	09/24/20 20:14	
13C4 PFOA	75	25 - 150					09/24/20 20:14	
13C5 PFNA	83	25 - 150					09/24/20 20:14	
13C2 PFDA	76	25 - 150 25 - 150					09/24/20 20:14	
IJUZIIDM	/ U	20-100				03/20/20 20.32	03/24/20 20.14	

Eurofins TestAmerica, Edison

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;68

.(/&'()*!#&012&345678939568

1(%#& ?!!#A%#@285BC75&85255

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&H\$

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFDoA	76	25 - 150	09/20/20 20:32	09/24/20 20:14	
13C2 PFTeDA	75	25 - 150	09/20/20 20:32	09/24/20 20:14	
13C3 PFBS	74	25 - 150	09/20/20 20:32	09/24/20 20:14	
1802 PFHxS	82	25 - 150	09/20/20 20:32	09/24/20 20:14	
13C4 PFOS	86	25 - 150	09/20/20 20:32	09/24/20 20:14	
13C8 FOSA	68	25 - 150	09/20/20 20:32	09/24/20 20:14	
d3-NMeFOSAA	54	25 - 150	09/20/20 20:32	09/24/20 20:14	
d5-NEtFOSAA	59	25 - 150	09/20/20 20:32	09/24/20 20:14	
M2-6:2 FTS	200 *5	25 - 150	09/20/20 20:32	09/24/20 20:14	
M2-8:2 FTS	207 *5	25 - 150	09/20/20 20:32	09/24/20 20:14	

!"#\$%&'()*!#&012&:;67

.(/&'()*!#&012&345678939567

1(%#& ?!!#A%#@**2&53B**C7**5&2**B5

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
;#=J!-?=?/-%(\$?"A&(A"@&ILQMK	3R8 S	4.4	2.1	ng/L		09/29/20 04:48	09/29/20 16:53	1
;#=J!-?=?*#\$%(\$?"A&(A"@&IL;#MK	9R3	1.8	0.44	ng/L		09/29/20 04:48	09/29/20 16:53	1
;#=J!-?=?F#>(\$?"A&(A"@&ILW>MK	85	1.8	0.52	ng/L		09/29/20 04:48	09/29/20 16:53	1
;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MI		1.8	0.22	ng/L		09/29/20 04:48	09/29/20 16:53	1
;#=J!-?=??A%(\$?"A&(A"@&ILXMK	EG	1.8	0.76	ng/L		09/29/20 04:48	09/29/20 16:53	1
;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK	4RE	1.8	0.24	ng/L		09/29/20 04:48	09/29/20 16:53	1
;#=J!-?=?@#A(\$?"A&(A"@&IL1MK	HRG	1.8	0.28	ng/L		09/29/20 04:48	09/29/20 16:53	1
Perfluoroundecanoic acid (PFUnA)	1.8 U	1.8	0.98	ng/L		09/29/20 04:48	09/29/20 16:53	1
Perfluorododecanoic acid (PFDoA)	1.8 U	1.8	0.49	ng/L		09/29/20 04:48	09/29/20 16:53	1
Perfluorotridecanoic acid (PFTriA)	1.8 U	1.8	1.2	ng/L		09/29/20 04:48	09/29/20 16:53	1
Perfluorotetradecanoic acid (PFTeA)	1.8 U	1.8	0.65	ng/L		09/29/20 04:48	09/29/20 16:53	1
Perfluorobutanesulfonic acid (PFBS)	1.8 U	1.8	0.18	ng/L		09/29/20 04:48	09/29/20 16:53	1
;#=J!-?=?F#>(\$#,-!J?\$"A&(A"@& I;L W>'K	HRB	1.8	0.51	ng/L		09/29/20 04:48	09/29/20 16:53	1
;#=J!-?=?F#*%(\$#,-!J?\$"A&A"@& I;L W*'K	7R9	1.8	0.17	ng/L		09/29/20 04:48	09/29/20 16:53	1
;#=J!-?=??A%(\$#,-!J?\$"A&(A"@& I;L X'K	8B5	1.8	0.48	ng/L		09/29/20 04:48	09/29/20 16:53	1
Perfluorodecanesulfonic acid (PFDS)	1.8 U	1.8	0.28	ng/L		09/29/20 04:48	09/29/20 16:53	1
;#=J!-?=??A%(\$#,-!J?\$()"@#& ILX'MK	3RE	1.8	0.87	ng/L		09/29/20 04:48	09/29/20 16:53	1
Y6)#%FO!*#=J!-?=??A%(\$#,-!J?\$()"@?(A#%"A&(A"@&IY<#LX'MMK	8RES	4.4	1.1	ng/L		09/29/20 04:48	09/29/20 16:53	1
Y6#%FO!*#=J!-?=??A%(\$#,-!J?\$()" @?(A#%"A&(A"@&IYP%LX'MMK	3RB	4.4	1.2	ng/L		09/29/20 04:48	09/29/20 16:53	1
6:2 FTS	4.4 U	4.4	2.2	ng/L		09/29/20 04:48	09/29/20 16:53	1
8:2 FTS	1.8 U	1.8	0.41	ng/L		09/29/20 04:48	09/29/20 16:53	1
Isotope Dilution	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	47	25 - 150				09/29/20 04:48	09/29/20 16:53	
13C5 PFPeA	53	25 - 150				09/29/20 04:48	09/29/20 16:53	
13C2 PFHxA	55	25 - 150				09/29/20 04:48	09/29/20 16:53	
13C4 PFHpA	58	25 - 150				09/29/20 04:48	09/29/20 16:53	
13C4 PFOA	56	25 - 150				09/29/20 04:48	09/29/20 16:53	
13C5 PFNA	68	25 - 150				09/29/20 04:48	09/29/20 16:53	

Eurofins TestAmerica, Edison

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;67

.(/&'()*!#&012&345678939567

1(%#& ?!!#A%#@2335EC7582B5

1(%#&+#A#"D#@2&5BC84C75&892E5

<(%=">2&'?!"(

Job ID: 460-218480-1

Isotope Dilution	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFDA	57	25 - 150				09/29/20 04:48	09/29/20 16:53	
13C2 PFUnA	75	25 - 150				09/29/20 04:48	09/29/20 16:53	
13C2 PFDoA	67	25 - 150				09/29/20 04:48	09/29/20 16:53	
13C2 PFTeDA	67	25 - 150				09/29/20 04:48	09/29/20 16:53	
13C3 PFBS	58	25 - 150				09/29/20 04:48	09/29/20 16:53	
1802 PFHxS	62	25 - 150				09/29/20 04:48	09/29/20 16:53	
13C4 PFOS	61	25 - 150				09/29/20 04:48	09/29/20 16:53	
13C8 FOSA	59	25 - 150				09/29/20 04:48	09/29/20 16:53	
d3-NMeFOSAA	53	25 - 150				09/29/20 04:48	09/29/20 16:53	
d5-NEtFOSAA	69	25 - 150				09/29/20 04:48	09/29/20 16:53	
M2-6:2 FTS	129	25 - 150				09/29/20 04:48	09/29/20 16:53	
M2-8:2 FTS	114	25 - 150				09/29/20 04:48	09/29/20 16:53	
Z#\$#=(!& F#)",%=O								
M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
: ?%(!& (=/?\$	GHB55 J+	1000	671	mg/Kg			09/23/20 19:50	1
: ?%(!& (=/?\$	H7755 J	1000	671	mg/Kg			09/30/20 15:46	1
M\$(!O%#	+#,-!% V-(!"J"#=	+.	+.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
*W	HR8WL	0.1	0.1	SU			09/22/20 15:00	1
: #)*#=(%-=#	77R8 WL	0.001	0.001	Degrees C			09/22/20 15:00	1

!"#\$%&'()*!#&012&:;67

.(/&'()*!#&012&345678939567

1(%#& ?!!#A%#@2&5BC8**8285**&8

<(%=">2&'?!"(;#=A#\$%&'?!"@,2&4E

1(%#&+#A#"D#@2&5BC84C75&892E5

<#%F?@2&GEH&I)?@"J"#@K&66 M\$(!O%#		V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
;#=J!-?=?/-%(\$?"A&(A"@&ILQMK	5R35	S	2.6	0.37	ug/Kg	₽	09/20/20 20:32	09/24/20 21:38	10
Perfluoropentanoic acid (PFPeA)	2.6	U	2.6	1.0	ug/Kg	₽	09/20/20 20:32	09/24/20 21:38	10
Perfluorohexanoic acid (PFHxA)	2.6	U	2.6	0.56	ug/Kg	₽	09/20/20 20:32	09/24/20 21:38	10
;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MK	5R48	S	2.6	0.38	ug/Kg	₽	09/20/20 20:32	09/24/20 21:38	10
;#=J!-?=??A%(\$?"A&(A"@&ILXMK	8R3	S	2.6	1.1	ug/Kg	₽	09/20/20 20:32	09/24/20 21:38	10
Perfluorononanoic acid (PFNA)	2.6	U	2.6	0.48	ug/Kg	₩	09/20/20 20:32	09/24/20 21:38	10
;#=J!-?=?@#A(\$?"A&(A"@&IL1MK	5RG9	S	2.6	0.29	ug/Kg	₽	09/20/20 20:32	09/24/20 21:38	10
Perfluoroundecanoic acid (PFUnA)	2.6	U	2.6	0.48	ug/Kg	₽	09/20/20 20:32	09/24/20 21:38	10
Perfluorododecanoic acid (PFDoA)	2.6	U	2.6	0.89	ug/Kg	₽	09/20/20 20:32	09/24/20 21:38	10
Perfluorotridecanoic acid (PFTriA)	2.6	U	2.6	0.68	ug/Kg	⊅	09/20/20 20:32	09/24/20 21:38	10
Perfluorotetradecanoic acid (PFTeA)	2.6	U	2.6	0.72	ug/Kg	☼	09/20/20 20:32	09/24/20 21:38	10
Perfluorobutanesulfonic acid (PFBS)	2.6	U	2.6	0.33	ug/Kg	₽	09/20/20 20:32	09/24/20 21:38	10
;#=J!-?=?F#>(\$#,-!J?\$"A&(A"@& I;LW>'K	5RGH	IS	2.6	0.41	ug/Kg	₽	09/20/20 20:32	09/24/20 21:38	10
Perfluoroheptanesulfonic Acid (PFHpS)	2.6	U	2.6	0.46	ug/Kg	₽	09/20/20 20:32	09/24/20 21:38	10
;#=J!-?=??A%(\$#,-!J?\$"A&(A"@& I;LX'K	7H	Q	6.6	2.6	ug/Kg	₽	09/20/20 20:32	09/24/20 21:38	10
Perfluorodecanesulfonic acid (PFDS)	2.6	U	2.6	0.52	ug/Kg	₽	09/20/20 20:32	09/24/20 21:38	10
Perfluorooctanesulfonamide (FOSA)	2.6	U	2.6	1.1	ug/Kg	₽	09/20/20 20:32	09/24/20 21:38	10
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	26	U	26	5.2	ug/Kg	₩	09/20/20 20:32	09/24/20 21:38	10
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	26	U	26	4.9	ug/Kg	*	09/20/20 20:32	09/24/20 21:38	10

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;67

.(/&'()*!#&012&345678939567

1(%#& ?!!#A%#@**2&36**5**&**8285

<(%=">2&'?!"(

1(%#&+#A#"D#@28.5655&892E5

;#=A#\$%&'?!"@,2&4E

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(/
6:2 FTS	26	U	26	2.0	ug/Kg	₩	09/20/20 20:32	09/24/20 21:38	10
8:2 FTS	26	U	26	3.3	ug/Kg	≎	09/20/20 20:32	09/24/20 21:38	10
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	66		25 - 150				09/20/20 20:32	09/24/20 21:38	10
13C5 PFPeA	61		25 - 150				09/20/20 20:32	09/24/20 21:38	10
13C2 PFHxA	56		25 - 150				09/20/20 20:32	09/24/20 21:38	10
13C4 PFHpA	59		25 - 150				09/20/20 20:32	09/24/20 21:38	10
13C4 PFOA	56		25 - 150				09/20/20 20:32	09/24/20 21:38	10
13C5 PFNA	58		25 - 150				09/20/20 20:32	09/24/20 21:38	10
13C2 PFDA	56		25 - 150				09/20/20 20:32	09/24/20 21:38	10
13C2 PFUnA	49		25 - 150				09/20/20 20:32	09/24/20 21:38	10
13C2 PFDoA	50		25 - 150				09/20/20 20:32	09/24/20 21:38	10
13C2 PFTeDA	45		25 - 150				09/20/20 20:32	09/24/20 21:38	10
13C3 PFBS	70		25 - 150				09/20/20 20:32	09/24/20 21:38	10
1802 PFHxS	64		25 - 150				09/20/20 20:32	09/24/20 21:38	10
13C4 PFOS	59		25 - 150				09/20/20 20:32	09/24/20 21:38	10
13C8 FOSA	50		25 - 150				09/20/20 20:32	09/24/20 21:38	10
d3-NMeFOSAA	45		25 - 150				09/20/20 20:32	09/24/20 21:38	10
d5-NEtFOSAA	46		25 - 150				09/20/20 20:32	09/24/20 21:38	10
M2-6:2 FTS	56		25 - 150				09/20/20 20:32	09/24/20 21:38	10
M2-8:2 FTS	59		25 - 150				09/20/20 20:32	09/24/20 21:38	10

!"#\$%&'()*!#&012&:;6E

.(/&'()*!#&012&34567893956E

1(%#& ?!!#A%#@**2&36**5&872E5

<(%=">2&'?!"(

1(%#&+#A#"D#@**2&56**5&892E5

M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(/
;#=J!-?=?/-%(\$?"A&(A"@&ILQMK	7R3 S	4.8	2.3	ng/L		09/29/20 04:48	09/29/20 17:02	1
;#=J!-?=?*#\$%(\$?"A&(A"@&IL;#MK	8R8 S	1.9	0.47	ng/L		09/29/20 04:48	09/29/20 17:02	1
Perfluorohexanoic acid (PFHxA)	1.9 U	1.9	0.56	ng/L		09/29/20 04:48	09/29/20 17:02	1
;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MK	5RH3S	1.9	0.24	ng/L		09/29/20 04:48	09/29/20 17:02	1
;#=J!-?=??A%(\$?"A&(A"@&ILXMK	3R4	1.9	0.82	ng/L		09/29/20 04:48	09/29/20 17:02	1
;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK	8RHS	1.9	0.26	ng/L		09/29/20 04:48	09/29/20 17:02	1
;#=J!-?=?@#A(\$?"A&(A"@&IL1MK	8R9 S	1.9	0.30	ng/L		09/29/20 04:48	09/29/20 17:02	1
Perfluoroundecanoic acid (PFUnA)	1.9 U	1.9	1.1	ng/L		09/29/20 04:48	09/29/20 17:02	1
Perfluorododecanoic acid (PFDoA)	1.9 U	1.9	0.53	ng/L		09/29/20 04:48	09/29/20 17:02	1
Perfluorotridecanoic acid (PFTriA)	1.9 U	1.9	1.2	ng/L		09/29/20 04:48	09/29/20 17:02	1
Perfluorotetradecanoic acid (PFTeA)	1.9 U	1.9	0.70	ng/L		09/29/20 04:48	09/29/20 17:02	1
Perfluorobutanesulfonic acid (PFBS)	1.9 U	1.9	0.19	ng/L		09/29/20 04:48	09/29/20 17:02	1
;#=J!-?=?F#>(\$#,-!J?\$"A&(A"@& I;L W>'K	ER5	1.9	0.55	ng/L		09/29/20 04:48	09/29/20 17:02	1
;#=J!-?=?F#*%(\$#,-!J?\$ "A& IA"@& I;L W*'K	5R3HS	1.9	0.18	ng/L		09/29/20 04:48	09/29/20 17:02	1
;#=J!-?=??A%(\$#,-!J?\$"A&(A"@& I;L X'K	EH	1.9	0.52	ng/L		09/29/20 04:48	09/29/20 17:02	1
Perfluorodecanesulfonic acid (PFDS)	1.9 U	1.9	0.31	ng/L		09/29/20 04:48	09/29/20 17:02	1
;#=J!-?=??A%(\$#,-!J?\$()"@#& ILX'MK	ER9	1.9	0.94	ng/L		09/29/20 04:48	09/29/20 17:02	1
Y6)#%FO!*#=J!-?=??A%(\$#,-!J?\$()"@?(A#%"A&(A"@&IY<#LX'MMK	8 G	4.8	1.2	ng/L		09/29/20 04:48	09/29/20 17:02	1

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;6E

.(/&'()*!#&012&34567893956E

1(%#& ?!!#A%#@**2833E**C75&872E5

1(%#&+#A#"D#@2&5BC84C75&892E5

<(%=">2&'?!"(

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
Y6#%FO!*#=J!-?=??A%(\$#,-!J?\$()" @?(A#%"A&(A"@&IYP%LX'MMK	G7		4.8	1.2	ng/L		09/29/20 04:48	09/29/20 17:02	1
6:2 FTS	4.8	U	4.8	2.4	ng/L		09/29/20 04:48	09/29/20 17:02	1
927&L:'	8RE	SJ	1.9	0.44	ng/L		09/29/20 04:48	09/29/20 17:02	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	68		25 - 150				09/29/20 04:48	09/29/20 17:02	
13C5 PFPeA	71		25 - 150				09/29/20 04:48	09/29/20 17:02	
13C2 PFHxA	75		25 - 150				09/29/20 04:48	09/29/20 17:02	
13C4 PFHpA	80		25 - 150				09/29/20 04:48	09/29/20 17:02	
13C4 PFOA	81		25 - 150				09/29/20 04:48	09/29/20 17:02	
13C5 PFNA	84		25 - 150				09/29/20 04:48	09/29/20 17:02	
13C2 PFDA	75		25 - 150				09/29/20 04:48	09/29/20 17:02	
13C2 PFUnA	80		25 - 150				09/29/20 04:48	09/29/20 17:02	
13C2 PFDoA	65		25 - 150				09/29/20 04:48	09/29/20 17:02	
13C2 PFTeDA	86		25 - 150				09/29/20 04:48	09/29/20 17:02	
13C3 PFBS	78		25 - 150				09/29/20 04:48	09/29/20 17:02	
1802 PFHxS	83		25 - 150				09/29/20 04:48	09/29/20 17:02	
13C4 PFOS	82		25 - 150				09/29/20 04:48	09/29/20 17:02	
13C8 FOSA	72		25 - 150				09/29/20 04:48	09/29/20 17:02	
d3-NMeFOSAA	71		25 - 150				09/29/20 04:48	09/29/20 17:02	
d5-NEtFOSAA	83		25 - 150				09/29/20 04:48	09/29/20 17:02	
M2-6:2 FTS	214	*5	25 - 150				09/29/20 04:48	09/29/20 17:02	
M2-8:2 FTS	194	*5	25 - 150				09/29/20 04:48	09/29/20 17:02	
Z#\$#=(!& F#)",%=O									
M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
: ?%(!& (=/?\$	4B755	J+	1000	671	mg/Kg			09/23/20 19:55	1
: ?%(!& (=/?\$	39855	J	1000	671	mg/Kg			09/30/20 15:50	1
M\$(!O%#	+#,-!%	V-(!"J"#=	+.	+.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
*W	HR	GWL	0.1	0.1	SU			09/22/20 15:00	1
: #)*#=(%-=#	77R5	WL	0.001	0.001	Degrees C			09/22/20 15:00	1

!"#\$%&'()*!#&012&:;6E

1(%#& ?!!#A%#@2&5BC83C75&872E5

1(%#&+#A#"D#@2&5BC84C75&892E5

.(/&'()*!#&012&34567893956E

<(%=">2&'?!"(

;#=A#\$%&'?!"@,2&4E

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
1,1,1-Trichloroethane	1.1	U H H3 UJ	1.1	0.27	ug/Kg	☼	09/18/20 22:11	09/23/20 14:32	1
1,1,2,2-Tetrachloroethane	1.1	U H H3 <mark>UJ</mark>	1.1	0.25	ug/Kg	☼	09/18/20 22:11	09/23/20 14:32	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.1	U H H3 <mark>UJ</mark>	1.1	0.35	ug/Kg	☼	09/18/20 22:11	09/23/20 14:32	1
1,1,2-Trichloroethane	1.1	U H H3 <mark>UJ</mark>	1.1	0.20	ug/Kg	₽	09/18/20 22:11	09/23/20 14:32	1
1,1-Dichloroethane	1.1	U H H3 <mark>UJ</mark>	1.1	0.24	ug/Kg	₽	09/18/20 22:11	09/23/20 14:32	1
1,1-Dichloroethene	1.1	U H H3 <mark>UJ</mark>	1.1	0.26	ug/Kg	☼	09/18/20 22:11	09/23/20 14:32	1
1,2,4-Trichlorobenzene	1.1	U H H3 <mark>UJ</mark>	1.1	0.41	ug/Kg	₽	09/18/20 22:11	09/23/20 14:32	1
1,2-Dibromo-3-Chloropropane	1.1	U H H3 <mark>UJ</mark>	1.1	0.53	ug/Kg	₽	09/18/20 22:11	09/23/20 14:32	1
8_761"AF!?=?/#\$T#\$#	7R0	GW&W ∃	1.1	0.17	ug/Kg	☼	09/18/20 22:11	09/23/20 14:32	1
1,2-Dichloroethane	1.1	U H H3 <mark>UJ</mark>	1.1	0.34	ug/Kg	₽	09/18/20 22:11	09/23/20 14:32	1
1,2-Dichloropropane	1.1	U H H3 <mark>UJ</mark>	1.1	0.49	ug/Kg	☼	09/18/20 22:11	09/23/20 14:32	1
1,3-Dichlorobenzene	1.1	U H H3 UJ	1.1	0.18	ug/Kg	☆	09/18/20 22:11	09/23/20 14:32	1

Eurofins TestAmerica, Edison

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;6E

.(/&'()*!#&012&34567893956E

1(%#& ?!!#A%#@**285BC**75&872E5

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&4E

Job ID: 460-218480-1

M\$(!O%#	+#,-!%	V-(!"J"#=		+.	<1.		U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
8_361"AF!?=?/#\$T#\$#	4R4	W&W ∃		1.1	0.2	26	ug/Kg	*	09/18/20 22:11	09/23/20 14:32	
76Q-%(\$?\$#&I <p`k< td=""><td>HR5</td><td>W&W ■</td><td></td><td>5.7</td><td>3</td><td>.1</td><td>ug/Kg</td><td>ಘ</td><td>09/18/20 22:11</td><td>09/23/20 14:32</td><td></td></p`k<>	HR5	W&W ■		5.7	3	.1	ug/Kg	ಘ	09/18/20 22:11	09/23/20 14:32	
2-Hexanone	5.7	U H H3 UJ		5.7	2	.0	ug/Kg	☼	09/18/20 22:11	09/23/20 14:32	
4-Methyl-2-pentanone (MIBK)	5.7	U H H3 UJ		5.7	1	.8	ug/Kg	₩	09/18/20 22:11	09/23/20 14:32	
MA#%?\$#	43	W&W ∃		6.9	6	.6	ug/Kg	₩	09/18/20 22:11	09/23/20 14:32	
Benzene	1.1	U H H3 <mark>UJ</mark>		1.1	0.3	30	ug/Kg	₩	09/18/20 22:11	09/23/20 14:32	•
Bromoform	1.1	U H H3 UJ		1.1	0.4	49	ug/Kg		09/18/20 22:11	09/23/20 14:32	
Bromomethane	1.1	U H H3 UJ		1.1	0.5	54	ug/Kg	☼	09/18/20 22:11	09/23/20 14:32	
(=/?\$&@",-!J"@#	8R3	W&W ∃		1.1	0.3	31	ug/Kg	☼	09/18/20 22:11	09/23/20 14:32	
Carbon tetrachloride	1.1	U H H3 UJ		1.1	0.4	14	ug/Kg		09/18/20 22:11	09/23/20 14:32	
Chlorobenzene	1.1	U H H3 UJ		1.1	0.2	20	ug/Kg	☼	09/18/20 22:11	09/23/20 14:32	
Dibromochloromethane	1.1	U H H3 UJ		1.1	0.2	22	ug/Kg	☼	09/18/20 22:11	09/23/20 14:32	
Chloroethane	1.1	U H H3 UJ		1.1	0.6	30	ug/Kg		09/18/20 22:11	09/23/20 14:32	
Chloroform	1.1	U H H3 UJ		1.1			ug/Kg	₩	09/18/20 22:11	09/23/20 14:32	
Chloromethane	1.1	U H H3 <mark>UJ</mark>		1.1			ug/Kg	₩	09/18/20 22:11	09/23/20 14:32	
cis-1,2-Dichloroethene	1.1	U H H3 UJ		1.1			ug/Kg		09/18/20 22:11	09/23/20 14:32	· · · · · · · · ·
Cyclohexane	1.1	U H H3 UJ		1.1			ug/Kg	₩	09/18/20 22:11	09/23/20 14:32	
Bromodichloromethane	1.1	U H H3 UJ		1.1			ug/Kg	₩	09/18/20 22:11	09/23/20 14:32	
Dichlorodifluoromethane	1.1	U H H3 UJ		1.1			ug/Kg		09/18/20 22:11	09/23/20 14:32	
P%FO!/#\$T#\$#	5RH9	S&W&WE		1.1			ug/Kg	₩	09/18/20 22:11	09/23/20 14:32	
1,2-Dibromoethane		U H H3 UJ		1.1			ug/Kg	₩	09/18/20 22:11	09/23/20 14:32	
0,?*=?*O!/#\$T#\$#	8R9	W&WE		1.1			ug/Kg		09/18/20 22:11	09/23/20 14:32	
Methyl acetate	5.7	U H H3 UJ		5.7			ug/Kg	₩	09/18/20 22:11	09/23/20 14:32	
Methyl tert-butyl ether	1.1	U H H3 UJ		1.1			ug/Kg	₩	09/18/20 22:11	09/23/20 14:32	
Methylcyclohexane	1.1	U H H3 UJ		1.1			ug/Kg		09/18/20 22:11	09/23/20 14:32	
<#%FO!#\$#& F!?="@#	8RH	W&W ∃		1.1			ug/Kg	₩	09/18/20 22:11	09/23/20 14:32	
Tetrachloroethene	1.1	U H H3 UJ		1.1			ug/Kg	₩	09/18/20 22:11	09/23/20 14:32	
: ?!-#\$#	5R35	S&W&WE		1.1			ug/Kg		09/18/20 22:11	09/23/20 14:32	
trans-1,2-Dichloroethene		U H H3 UJ		1.1			ug/Kg	₩	09/18/20 22:11	09/23/20 14:32	
trans-1,3-Dichloropropene		U H H3 UJ		1.1			ug/Kg	☼		09/23/20 14:32	
Trichloroethene		U H H3 UJ		1.1			ug/Kg	∴		09/23/20 14:32	
Trichlorofluoromethane		U H H3 UJ		1.1			ug/Kg	☼	09/18/20 22:11		
Vinyl chloride		U H H3 UJ		1.1			ug/Kg	☼		09/23/20 14:32	
aO!#\$#, &?%(!		W&W ∃		2.3			ug/Kg		09/18/20 22:11	09/23/20 14:32	
cis-1,3-Dichloropropene		U H H3 UJ		1.1			ug/Kg	☼	09/18/20 22:11	09/23/20 14:32	
Styrene	1.1	U H H3 <mark>UJ</mark>		1.1			ug/Kg	₽	09/18/20 22:11	09/23/20 14:32	
Tentatively Identified Compound	Est. Result	Qualifier	Unit		D	F	RT	CAS No.	Prepared	Analyzed	Dil Fa
Benzene, 1,2,4-trimethyl-		T H H3 J N	ug/Kg			11.3			09/18/20 22:11	09/23/20 14:32	
Unknown		T H H3 J	ug/Kg			11.5			09/18/20 22:11	09/23/20 14:32	
Unknown		T H H3 J	ug/Kg			11.6				09/23/20 14:32	
Benzene, 1,2,3-trimethyl-		T H H3 J N	ug/Kg			11.8		526-73-8		09/23/20 14:32	
Unknown		T H H3 J	ug/Kg			11.9				09/23/20 14:32	
Unknown		T H H3 J	ug/Kg			12.0				09/23/20 14:32	
Naphthalene, decahydro-, trans-		T H H3 J N	ug/Kg			12.1		493-02-7		09/23/20 14:32	
Benzene, 1-methyl-2-(1-methylethyl)-		THH3JN	ug/Kg			12.6				09/23/20 14:32	
Benzene, 1-methyl-3-(1-methylethyl)-		THH3JN	ug/Kg			13.1				09/23/20 14:32	
			- 3,				_				

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;6E

.(/&'()*!#&012&34567893956E

1(%#& ?!!#A%#@**285B**C75&872E5

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&4E

Job ID: 460-218480-1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106	77 - 145	09/18/20 22:11	09/23/20 14:32	
Toluene-d8 (Surr)	95	80 - 120	09/18/20 22:11	09/23/20 14:32	
Dibromofluoromethane (Surr)	105	48 - 150	09/18/20 22:11	09/23/20 14:32	
4-Bromofluorobenzene	100	79 - 125	09/18/20 22:11	09/23/20 14:32	

4-bromonuorobenzene -	100		19 - 125				09/10/20 22.11	09/23/20 14.32	
<#%F?@2&97H51&6&'#)"D?!(%									
M\$(!O%#		V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
2,4,5-Trichlorophenol	24000		24000	6500		₽		09/22/20 16:32	10
2,4,6-Trichlorophenol	24000	U	24000		ug/Kg	☼	09/21/20 15:10	09/22/20 16:32	10
2,4-Dichlorophenol	24000	U	24000	2600	ug/Kg		09/21/20 15:10	09/22/20 16:32	10
2,4-Dimethylphenol	24000	U	24000	5800	ug/Kg	☼	09/21/20 15:10	09/22/20 16:32	10
2,4-Dinitrophenol	240000	U	240000	110000	ug/Kg	₩	09/21/20 15:10	09/22/20 16:32	10
2,4-Dinitrotoluene	24000	U	24000	5000	ug/Kg	☼	09/21/20 15:10	09/22/20 16:32	10
2,6-Dinitrotoluene	24000	U	24000	2800	ug/Kg	☼	09/21/20 15:10	09/22/20 16:32	10
2-Chloronaphthalene	24000	U	24000	4000	ug/Kg	≎	09/21/20 15:10	09/22/20 16:32	10
2-Chlorophenol	47000	U	47000	4400	ug/Kg	₽	09/21/20 15:10	09/22/20 16:32	10
2-Methylnaphthalene	24000	U	24000	4800	ug/Kg	₽	09/21/20 15:10	09/22/20 16:32	10
2-Methylphenol	24000	U	24000	2800	ug/Kg	₩	09/21/20 15:10	09/22/20 16:32	10
2-Nitroaniline	47000	U	47000	3600	ug/Kg	☼	09/21/20 15:10	09/22/20 16:32	10
2-Nitrophenol	24000	U	24000	6800	ug/Kg	≎	09/21/20 15:10	09/22/20 16:32	10
3,3'-Dichlorobenzidine	47000	U	47000	28000	ug/Kg	₽	09/21/20 15:10	09/22/20 16:32	10
3-Nitroaniline	47000	U	47000	6700	ug/Kg	₽	09/21/20 15:10	09/22/20 16:32	10
4,6-Dinitro-2-methylphenol	47000		47000	24000			09/21/20 15:10	09/22/20 16:32	10
4-Bromophenyl phenyl ether	24000		24000		ug/Kg	₩		09/22/20 16:32	10
4-Chloro-3-methylphenol	24000		24000		ug/Kg	₩		09/22/20 16:32	10
4-Chloroaniline	24000		24000		ug/Kg			09/22/20 16:32	10
4-Chlorophenyl phenyl ether	24000		24000		ug/Kg	Ť.		09/22/20 16:32	10
4-Methylphenol	47000		47000		ug/Kg	Ť.		09/22/20 16:32	10
4-Nitroaniline	47000		47000	13000				09/22/20 16:32	10
4-Nitrophenol	47000		47000	17000		₩		09/22/20 16:32	10
Acenaphthene	24000		24000		ug/Kg	₩		09/22/20 16:32	10
	24000		24000		ug/Kg			09/22/20 16:32	10
Acetophenone	24000		24000		ug/Kg ug/Kg	₩		09/22/20 16:32	10
•			24000		0 0				
Anthracene	24000				ug/Kg			09/22/20 16:32	10
Atrazine	24000		24000		ug/Kg	‡		09/22/20 16:32	10
Benzaldehyde	24000		24000		ug/Kg	‡		09/22/20 16:32	10
Q#\$T?b(c(\$%F=(A#\$#	3455		24000		ug/Kg	<u>.</u> .		09/22/20 16:32	10
Q#\$T?b(c*O=#\$#	3E55		24000		ug/Kg	☼		09/22/20 16:32	10
Q#\$T?b/cJ!-?=(\$%F#\$#	G555		24000	3800	0 0	≎		09/22/20 16:32	10
Benzo[g,h,i]perylene	24000		24000		ug/Kg	.		09/22/20 16:32	10
Benzo[k]fluoranthene	24000	U	24000	3100	ug/Kg	☼	09/21/20 15:10	09/22/20 16:32	10
Biphenyl	24000	U	24000	3600	ug/Kg	☼		09/22/20 16:32	10
bis (2-chloroisopropyl) ether	24000	U	24000	4800	ug/Kg	≎	09/21/20 15:10	09/22/20 16:32	10
Bis(2-chloroethoxy)methane	24000	U	24000	5100	ug/Kg	₽	09/21/20 15:10	09/22/20 16:32	10
Bis(2-chloroethyl)ether	24000	U	24000	3100	ug/Kg	☼	09/21/20 15:10	09/22/20 16:32	10
Q",I76#%FO!F#>O!K&*F%F(!(%#	8H555	S	24000	8300	ug/Kg	☼	09/21/20 15:10	09/22/20 16:32	10
Butyl benzyl phthalate	24000	U	24000	4000	ug/Kg	₩	09/21/20 15:10	09/22/20 16:32	10
Caprolactam	24000	U	24000	7300	ug/Kg	₩	09/21/20 15:10	09/22/20 16:32	10
Carbazole	24000	U	24000	2800	ug/Kg	₽	09/21/20 15:10	09/22/20 16:32	10
Chrysene	24000	U	24000		ug/Kg	₽	09/21/20 15:10	09/22/20 16:32	10

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;6E

.(/&'()*!#&012&34567893956E

1(%#& ?!!#A%#@**285B**C75&872E5

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&4E

<#%F?@2&97H51&6&'#)"D?! M\$(!O%#		V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
Dibenz(a,h)anthracene	24000		24000	4300				09/22/20 16:32	10
Dibenzofuran	24000	U	24000	2800		₽	09/21/20 15:10	09/22/20 16:32	10
Diethyl phthalate	24000	U	24000	3100	ug/Kg		09/21/20 15:10	09/22/20 16:32	10
Dimethyl phthalate	24000	U	24000		ug/Kg	☼	09/21/20 15:10	09/22/20 16:32	10
Di-n-butyl phthalate	24000		24000		ug/Kg	÷		09/22/20 16:32	10
Di-n-octyl phthalate	24000		24000		ug/Kg			09/22/20 16:32	10
L!-?=(\$%F#\$#	9455		24000		ug/Kg	÷		09/22/20 16:32	10
Fluorene	24000		24000		ug/Kg	÷		09/22/20 16:32	10
Hexachlorobenzene	24000		24000		ug/Kg			09/22/20 16:32	10
Hexachlorobutadiene	24000		24000		ug/Kg	₽		09/22/20 16:32	10
Hexachlorocyclopentadiene	24000		24000		ug/Kg	÷.		09/22/20 16:32	10
Hexachloroethane	24000		24000		ug/Kg	. '''		09/22/20 16:32	10
Indeno[1,2,3-cd]pyrene	24000		24000		ug/Kg	₩.		09/22/20 16:32	10
Isophorone	24000		24000		ug/Kg			09/22/20 16:32	10
Naphthalene	24000		24000		ug/Kg			09/22/20 16:32	10
Nitrobenzene	24000		24000		ug/Kg			09/22/20 16:32	10
N-Nitrosodi-n-propylamine	24000		24000		ug/Kg	~ ☆		09/22/20 16:32	10
N-Nitrosodiphenylamine	24000		24000		ug/Kg			09/22/20 16:32	10
Pentachlorophenol	47000		47000		ug/Kg			09/22/20 16:32	10
;F#\$(\$%F=#\$#	G355		24000		ug/Kg	₩ ₩		09/22/20 16:32	10
Phenol	24000		24000		ug/Kg			09/22/20 16:32	10
			24000			¥		09/22/20 16:32	10
;O=#\$#	9E55	3	24000	2000	ug/Kg	3-).	09/21/20 15.10	09/22/20 10.32	10
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	23000	TJ	ug/Kg	⇔ 9	0.56		09/21/20 15:10	09/22/20 16:32	10
Unknown	63000	TJ	ug/Kg	☼ 12	2.09		09/21/20 15:10	09/22/20 16:32	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol		X	54 - 120				09/21/20 15:10	09/22/20 16:32	10
2-Fluorobiphenyl	84		60 - 120				09/21/20 15:10	09/22/20 16:32	10
2-Fluorophenol	0	X	52 - 120				09/21/20 15:10	09/22/20 16:32	10
Nitrobenzene-d5	0	X	53 - 120				09/21/20 15:10	09/22/20 16:32	10
Phenol-d5	0	X	54 ₋ 120				09/21/20 15:10	09/22/20 16:32	10
p-Terphenyl-d14	0	X	79 - 130				09/21/20 15:10	09/22/20 16:32	10
<#%F?@2&9598Q&6&X=^(\$? M\$(!0%#		#,%"A"@ V-(!"J"#=	#,&IZ K +.	<1.	U\$"%	1	·-#*(-#@	M\$(!OT#@	1"!&L(
		S J-	120		ug/Kg	<u>+</u>	;=#*(=#@ 09/22/20 13:04		50
3_3d6111									
3_3d611P	GG		120		ug/Kg	\$	09/22/20 13:04		50
4,4'-DDT	120		120		ug/Kg		09/22/20 13:04		50
Aldrin	120		120		ug/Kg	☆		09/23/20 11:35	50
alpha-BHC	120		120		ug/Kg	‡	09/22/20 13:04		50
beta-BHC	120		120		ug/Kg		09/22/20 13:04		50
aia Oblandana	120		120		ug/Kg	₩.	09/22/20 13:04		50
cis-Chlordane			120	22	ug/Kg	☼	09/22/20 13:04	09/23/20 11:35	50
delta-BHC	120		120						
delta-BHC Dieldrin	120	U	120	28	ug/Kg		09/22/20 13:04		
delta-BHC Dieldrin Endosulfan I	120 120	U	120 120	28 23	ug/Kg		09/22/20 13:04	09/23/20 11:35	50
	120 120 120	U U U	120 120 120	28 23 21	ug/Kg ug/Kg		09/22/20 13:04 09/22/20 13:04	09/23/20 11:35 09/23/20 11:35	50 50 50
delta-BHC Dieldrin Endosulfan I	120 120	U U U	120 120	28 23 21	ug/Kg	₩	09/22/20 13:04 09/22/20 13:04 09/22/20 13:04	09/23/20 11:35 09/23/20 11:35	50

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;6E

.(/&'()*!#&012&34567893956E

1(%#& ?!!#A%#@**2833E**C75&872E5

<(%=">2&'?!"(1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&4E

<#%F?@2&9598Q&6&X=^(\$?A M\$(!O%#		V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
Endrin aldehyde	120		120	30		— <u>.</u>	09/22/20 13:04	09/23/20 11:35	50
Endrin ketone	120		120		ug/Kg	 \$	09/22/20 13:04		50
gamma-BHC (Lindane)	120		120		ug/Kg		09/22/20 13:04		50
Heptachlor	120		120		ug/Kg	 \$		09/23/20 11:35	50
Heptachlor epoxide	120		120		ug/Kg			09/23/20 11:35	5(
<#%F?>OAF!?=		S JN	120		ug/Kg		09/22/20 13:04		5(
Toxaphene	1200		1200		ug/Kg	~ \$		09/23/20 11:35	50
trans-Chlordane	120		120		ug/Kg	☆		09/23/20 11:35	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
DCB Decachlorobiphenyl			45 - 120				09/22/20 13:04	09/23/20 11:35	5
DCB Decachlorobiphenyl	0		45 - 120					09/23/20 11:35	5
Tetrachloro-m-xylene	0	X	30 - 124					09/23/20 11:35	5
Tetrachloro-m-xylene		X	30 - 124					09/23/20 11:35	5
<#%F?@2&959 &10 &;?!OAF!?="\$	\$(%#@&Q	"*F#\$O! &!	· O K&/O&7(& F=?)(%2^=(*F	0			
M\$(!O%#		V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L
PCB-1016	0.36		0.36	0.070	mg/Kg	— <u></u>	09/21/20 15:17	09/22/20 16:25	
PCB-1221	0.36	U	0.36		mg/Kg	₩	09/21/20 15:17	09/22/20 16:25	
PCB-1232	0.36		0.36		mg/Kg	₩	09/21/20 15:17	09/22/20 16:25	
Q68737	5RG		0.36		mg/Kg			09/22/20 16:25	
PCB-1248	0.36		0.36		mg/Kg	 \$		09/22/20 16:25	
PCB-1254	0.36		0.36		mg/Kg			09/22/20 16:25	
PCB-1260	0.36		0.36		mg/Kg		09/21/20 15:17		
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene	82		60 - 154				09/21/20 15:17	09/22/20 16:25	
Tetrachloro-m-xylene	71		60 - 154				09/21/20 15:17	09/22/20 16:25	
DCB Decachlorobiphenyl	82		65 - 174				09/21/20 15:17	09/22/20 16:25	
DCB Decachlorobiphenyl	51	X	65 - 174				09/21/20 15:17	09/22/20 16:25	
<#%F?@2&98 G99& W#=/"A"@#	,&IZ K								
M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L
2,4,5-T	240	U	240	75	ug/Kg	*	09/21/20 15:24	09/24/20 10:10	1
Silvex (2,4,5-TP)	240	U	240	84	ug/Kg	☼	09/21/20 15:24	09/24/20 10:10	1
2,4-D	240	U	240	150	ug/Kg	☼	09/21/20 15:24	09/24/20 10:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4-Dichlorophenylacetic acid	49		28 - 129				09/21/20 15:24	09/24/20 10:10	1
2,4-Dichlorophenylacetic acid	4081	X	28 - 129				09/21/20 15:24	09/24/20 10:10	1
<#%F?@2&GEH&I)?@"J"#@K&	86&L! -17# N	50!8#@& (\$.	A #,						
M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	_ 1	;=#*(=#@	M\$(!OT#@	1"!&L
#=J!-?=?/-%(\$?"A&(A"@&ILQMK	5R94	ļ <u> </u>	0.26	0.036	ug/Kg	-	09/20/20 20:32	09/24/20 20:24	
Perfluoropentanoic acid (PFPeA)	0.26	U	0.26	0.10	ug/Kg	₩	09/20/20 20:32	09/24/20 20:24	
Perfluorohexanoic acid (PFHxA)	0.26	U	0.26	0.055	ug/Kg	₩	09/20/20 20:32	09/24/20 20:24	
	/ EDEAF	S	0.26	0.038	ug/Kg	₩	09/20/20 20:32	09/24/20 20:24	
#=J!-?=?F#*%(\$?"A&(A"@&ILW*MI	K 5R535								
	5R84		0.26	0.11	ug/Kg	☼	09/20/20 20:32	09/24/20 20:24	
#=J!-?=??A%(\$?"A&(A"@&ILXMK		S			ug/Kg ug/Kg	☆		09/24/20 20:24 09/24/20 20:24	
;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MI ;#=J!-?=??A%(\$?"A&(A"@&ILXMK Perfluorononanoic acid (PFNA) ;#=J!-?=?@#A(\$?"A&(A"@&IL1MK	5R84	U U	0.26	0.047		≎		09/24/20 20:24	

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;6E

.(/&'()*!#&012&34567893956E

1(%#& ?!!#A%#@2**&\$B**C75&872E5

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&4E

<#%F?@2&GEH&I)?@"J"#@K	•	•	A#,&I ?\$%"\$	_					
M\$(!O%#	+#,-!% V	•	+ <u>.</u>	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
Perfluorododecanoic acid (PFDoA)	0.26 L		0.26		ug/Kg		09/20/20 20:32		1
Perfluorotridecanoic acid (PFTriA)	0.26 L		0.26		ug/Kg	☼	09/20/20 20:32	09/24/20 20:24	1
Perfluorotetradecanoic acid (PFTeA)	0.26 L	J	0.26		ug/Kg	☼	09/20/20 20:32	09/24/20 20:24	1
Perfluorobutanesulfonic acid (PFBS)	0.26 L	J	0.26	0.033	ug/Kg	₩	09/20/20 20:32	09/24/20 20:24	1
#=J!-?=?F#>(\$#,-!J?\$"A&(A"@& ;LW>'K	5RBE		0.26	0.040	ug/Kg	₽	09/20/20 20:32	09/24/20 20:24	1
Perfluoroheptanesulfonic Acid	0.26 L	J	0.26	0.046	ug/Kg	₩	09/20/20 20:32	09/24/20 20:24	1
#=J!-?=??A%(\$#,-!J?\$"A&(A"@& ;LX'K	ERGO	Q	0.65	0.26	ug/Kg	₽	09/20/20 20:32	09/24/20 20:24	1
#=J!-?=?@#A(\$#,-!J?\$"A&(A"@& ;L1'K	5R5HGS	3	0.26	0.051	ug/Kg	₽	09/20/20 20:32	09/24/20 20:24	
Perfluorooctanesulfonamide (FOSA)	0.26 L	J	0.26	0.11	ug/Kg	₩	09/20/20 20:32	09/24/20 20:24	
Y6)#%FO!*#=J!-?=??A%(\$#,-!J?\$()"@?(A#%"A&(A"@&IY<#LX'MMK	5RB3S	8	2.6	0.51	ug/Kg	₽	09/20/20 20:32	09/24/20 20:24	1
Y6#%FO!*#=J!-?=??A%(\$#,-!J?\$()" @?(A#%"A&(A"@&IYP%LX'MMK	3R3		2.6	0.48	ug/Kg	‡	09/20/20 20:32	09/24/20 20:24	1
6:2 FTS	2.6 L	J	2.6	0.20	ug/Kg	₩	09/20/20 20:32	09/24/20 20:24	1
3:2 FTS	2.6 L	J	2.6		ug/Kg	₩	09/20/20 20:32	09/24/20 20:24	
sotope Dilution	%Recovery 0	Qualifier	Limits				Prepared	Analyzed	Dil Fa
3C4 PFBA	68	guanner	25 - 150					09/24/20 20:24	Diria
3C5 PFPeA	74		25 - 150 25 - 150					09/24/20 20:24	
3C2 PFHxA	83		25 - 150 25 - 150					09/24/20 20:24	
	88		25 - 150 25 - 150					09/24/20 20:24	
3C4 PFHpA									
13C4 PFOA	92		25 - 150					09/24/20 20:24	
13C5 PFNA	91		25 - 150					09/24/20 20:24	
3C2 PFDA	88		25 - 150					09/24/20 20:24	
13C2 PFUnA	88		25 - 150					09/24/20 20:24	
3C2 PFDoA	80		25 - 150					09/24/20 20:24	
3C2 PFTeDA	78		25 - 150					09/24/20 20:24	
3C3 PFBS	87		25 - 150					09/24/20 20:24	
802 PFHxS	101		25 - 150				09/20/20 20:32	09/24/20 20:24	
13C4 PFOS	103		25 - 150				09/20/20 20:32	09/24/20 20:24	
3C8 FOSA	76		25 - 150				09/20/20 20:32	09/24/20 20:24	
13-NMeFOSAA	74		25 - 150				09/20/20 20:32	09/24/20 20:24	
15-NEtFOSAA	74		25 - 150				09/20/20 20:32	09/24/20 20:24	
M2-6:2 FTS	238 *	5	25 - 150				09/20/20 20:32	09/24/20 20:24	
M2-8:2 FTS	211 *	5	25 - 150				09/20/20 20:32	09/24/20 20:24	
<#%F?@2&4585 &6&<#%(!,&I0) ;K +#,-!% V	/_(" "#=	+.	~1	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L
M\$(!O%#	9G35	,-(: 0 # -	15.1		mg/Kg		09/24/20 17:07		i :OtL
//!-)"\$-)	22.7 L		22.7		mg/Kg		09/24/20 17:07		
Antimony									
Л=,#\$"A	GRHO		3.0		mg/Kg		09/24/20 17:07		
Q(="-)	8885	J	0.76		mg/Kg		09/24/20 17:07		
Q#=O!!"-)	5RE5		0.30		mg/Kg	₩.		09/25/20 13:03	
(@)"-)	7RGJ		0.30		mg/Kg		09/24/20 17:07		
(!A"-)	97455 J	l	75.6		mg/Kg		09/24/20 17:07		
F=?)"-)	874		0.76		mg/Kg		09/24/20 17:07		
?/(!%	GRB		0.76	0.076	mg/Kg	.	09/24/20 17:07	09/25/20 13:03	
?**#=	B7R3J	-	1.5	0.32	mg/Kg	☼	09/24/20 17:07	09/25/20 13:03	

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;6E

.(/&'()*!#&012&34567893956E

1(%#& ?!!#A%#@288BC75&872E5

+#,-!% V-(!"J"#=

5RHBS

1(%#&+#A#"D#@2&5BC84C75&892E5

<(%=">2&'?!"(;#=A#\$%&'?!"@,2&4E

Job ID: 460-218480-1

<#%F?@2&4585 &6&	<#%(!,&I0 ;K&I ?\$%"\$-#@K							
M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
0=?\$	73G55 J	15.1	5.3	mg/Kg	*	09/24/20 17:07	09/25/20 13:03	1
.#(@	435 J	1.5	0.36	mg/Kg	₽	09/24/20 17:07	09/25/20 13:03	1
<(^\$#,"-)	3935 J-	30.2	1.4	mg/Kg	₽	09/24/20 17:07	09/25/20 13:03	1
<(\$^(\$#,#	74B J	0.30	0.048	mg/Kg	₽	09/24/20 17:07	09/25/20 13:03	1
Y"AN#!	GGR ∄ -	7.6	0.35	mg/Kg	₽	09/24/20 17:07	09/25/20 13:03	1
;?%(,,"-)	BEGJ+	45.4	30.2	mg/Kg	₽	09/24/20 17:07	09/25/20 13:03	1
Selenium	6.0 U	6.0	0.60	mg/Kg	₽	09/24/20 17:07	09/25/20 13:03	1
""!D#=	5RG8S	0.91	0.30	mg/Kg	☼	09/24/20 17:07	09/25/20 13:03	1
'?@"-)	7BB	212	19.7	mg/Kg	⊅	09/24/20 17:07	09/25/20 13:03	1
Thallium	9.1 U	9.1	0.45	mg/Kg	₽	09/24/20 17:07	09/25/20 13:03	1
] (\$(@"-)	84R3	0.76	0.17	mg/Kg	☼	09/24/20 17:07	09/25/20 13:03	1
e"\$A	8875 J	3.0	0.97	mg/Kg	₩	09/24/20 17:07	09/25/20 13:03	1
<#%F?@2&H3H8Q&6	6&<#=A- =NOB K]							
M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
<#=A-=O	8R8	0.027	0.011	mg/Kg		09/22/20 11:56	09/22/20 14:00	1

1.3

<1. U\$"%

0.62 mg/Kg

!"#\$%&'()*!#&012&:;63

Z#\$#=(!& F#)",%=O

M\$(!O%#

O(\$"@#_&?%(!

.(/&'()*!#&012&345678939563

© 09/21/20 13:33 09/22/20 14:13

M\$(!OT#@

;=#*(=#@

1(%#& ?!!#A%#@**2853E**C75&832EG

1(%#&+#A#"D#@2&5BC84C75&892E5

<(%=">2&'?!"(

M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
;#=J!-?=?/-%(\$?"A&(A"@&ILQMK	7R7 S	4.4	2.1	ng/L		09/29/20 04:48	09/29/20 17:11	1
;#=J!-?=?*#\$%(\$?"A&(A"@&IL;#MK	ER5	1.8	0.44	ng/L		09/29/20 04:48	09/29/20 17:11	1
Perfluorohexanoic acid (PFHxA)	1.8 U	1.8	0.52	ng/L		09/29/20 04:48	09/29/20 17:11	1
;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MK	3RG	1.8	0.22	ng/L		09/29/20 04:48	09/29/20 17:11	1
;#=J!-?=??A%(\$?"A&(A"@&ILXMK	E3	1.8	0.76	ng/L		09/29/20 04:48	09/29/20 17:11	1
;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK	7R9	1.8	0.24	ng/L		09/29/20 04:48	09/29/20 17:11	1
;#=J!-?=?@#A(\$?"A&(A"@&IL1MK	7RH	1.8	0.28	ng/L		09/29/20 04:48	09/29/20 17:11	1
Perfluoroundecanoic acid (PFUnA)	1.8 U	1.8	0.98	ng/L		09/29/20 04:48	09/29/20 17:11	1
Perfluorododecanoic acid (PFDoA)	1.8 U	1.8	0.49	ng/L		09/29/20 04:48	09/29/20 17:11	1
Perfluorotridecanoic acid (PFTriA)	1.8 U	1.8	1.2	ng/L		09/29/20 04:48	09/29/20 17:11	1
Perfluorotetradecanoic acid (PFTeA)	1.8 U	1.8	0.65	ng/L		09/29/20 04:48	09/29/20 17:11	1
;#=J!-?=?/-%(\$#,-!J?\$"A&(A"@& I;L Q'K	5R44 S	1.8	0.18	ng/L		09/29/20 04:48	09/29/20 17:11	1
;#=J!-?=?F#>(\$#,-!J?\$"A&(A"@& I;L W>'K	4RH	1.8	0.51	ng/L		09/29/20 04:48	09/29/20 17:11	1
;#=J!-?=?F#*%(\$#,-!J?\$"A & IA"@& I;L W*'K	5RH9S	1.8	0.17	ng/L		09/29/20 04:48	09/29/20 17:11	1
;#=J!-?=??A%(\$#,-!J?\$"A&(A"@& I;L X'K	39	1.8	0.48	ng/L		09/29/20 04:48	09/29/20 17:11	1
Perfluorodecanesulfonic acid (PFDS)	1.8 U	1.8	0.28	ng/L		09/29/20 04:48	09/29/20 17:11	1
;#=J!-?=??A%(\$#,-!J?\$()"@#& ILX'MK	7R9	1.8	0.87	ng/L		09/29/20 04:48	09/29/20 17:11	1
Y6)#%F0!*#=J!-?=??A%(\$#,-!J?\$()"@?(A#%"A&(A"@&IY<#LX'MMK	BRB	4.4	1.1	ng/L		09/29/20 04:48	09/29/20 17:11	1

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;63

.(/&'()*!#&012&345678939563

1(%#& ?!!#A%#@285BC75&832EG

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(/
Y6#%FO!*#=J!-?=??A%(\$#,-!J?\$()" @?(A#%"A&(A"@&IYP%LX'MMK	8E		4.4	1.2	ng/L		09/29/20 04:48	09/29/20 17:11	1
6:2 FTS	4.4	Ú	4.4	2.2	ng/L		09/29/20 04:48	09/29/20 17:11	1
927&L:'	8R4 \$	SJ	1.8		ng/L		09/29/20 04:48	09/29/20 17:11	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	87		25 - 150					09/29/20 17:11	
13C5 PFPeA	97		25 - 150				09/29/20 04:48	09/29/20 17:11	
13C2 PFHxA	100		25 - 150				09/29/20 04:48	09/29/20 17:11	
13C4 PFHpA	121		25 - 150				09/29/20 04:48	09/29/20 17:11	
13C4 PFOA	106		25 - 150				09/29/20 04:48	09/29/20 17:11	
13C5 PFNA	119		25 - 150				09/29/20 04:48	09/29/20 17:11	
13C2 PFDA	114		25 - 150				09/29/20 04:48	09/29/20 17:11	
13C2 PFUnA	122		25 - 150				09/29/20 04:48	09/29/20 17:11	
13C2 PFDoA	106		25 - 150				09/29/20 04:48	09/29/20 17:11	
13C2 PFTeDA	131		25 - 150				09/29/20 04:48	09/29/20 17:11	
13C3 PFBS	114		25 - 150				09/29/20 04:48	09/29/20 17:11	
1802 PFHxS	120		25 - 150				09/29/20 04:48	09/29/20 17:11	
13C4 PFOS	123		25 - 150				09/29/20 04:48	09/29/20 17:11	
13C8 FOSA	101		25 - 150				09/29/20 04:48	09/29/20 17:11	
d3-NMeFOSAA	105		25 - 150				09/29/20 04:48	09/29/20 17:11	
d5-NEtFOSAA	122		25 - 150				09/29/20 04:48	09/29/20 17:11	
M2-6:2 FTS	335	*5	25 - 150				09/29/20 04:48	09/29/20 17:11	
M2-8:2 FTS	295	*5	25 - 150				09/29/20 04:48	09/29/20 17:11	
<#%F?@2&GEH&I)?@"J"#@K	9 C 9 I I KNHAM	T100#/⊊00 (¢.	A# 969' 91	D/ 0/ 969	24				
N\$(!0%#		V-(!"J"#=	+.	<1.	x I. U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(/
6:2 FTS	44	U -(: 3 #-	44		ng/L		09/29/20 04:48	09/30/20 15:27	10
8:2 FTS	7.7	U	18		ng/L			09/30/20 15:27	10
				4.1	rig/L				
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
M2-6:2 FTS	208	*5	25 - 150				09/29/20 04:48	09/30/20 15:27	10
M2-8:2 FTS	166	*5	25 - 150				09/29/20 04:48	09/30/20 15:27	10
Z#\$#=(!& F#)",%=O									
M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(/
: ?%(!& (=/?\$	3BE55	J+	1000	671	mg/Kg	_		09/23/20 20:09	1
: ?%(!& (=/?\$	EBE55	J	1000	671	mg/Kg			09/30/20 16:02	1
M\$(!O%#	+#,-!%	V-(!"J"#=	+.	+.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(/
*W	HRI		0.1	0.1	SU			09/22/20 15:00	1
: #)*#=(%-=#	78RE		0.001	0.004	Degrees C			09/22/20 15:00	1

!"#\$%&'()*!#&012&:;63

.(/&'()*!#&012&345678939563

1(%#& ?!!#A%#@2&5BC83C75&832EG 1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&40

<(%=">2&'?!"(

<#%F?@2&GEH&I)?@"J"#@K&6&L!-**I7I+N\$1!%#**@**%**(\$A#, 1"!&L(A M\$(!O%# +#,-!% V-(!"J"#= <1. U\$"% ;=#*(=#@ M\$(!OT#@ ;#=J!-?=?/-%(\$?"A&(A"@&I;LQMK 0.28 0.040 ug/Kg © 09/20/20 20:32 09/24/20 00:18 5R3H ;#=J!-?=?*#\$%(\$?"A&(A"@&I;L;#MK 5R78 S 0.28 0.11 ug/Kg 09/20/20 20:32 09/24/20 00:18 1 0.059 ug/Kg 0.28 © 09/20/20 20:32 09/24/20 00:18 ;#=J!-?=?F#>(\$?"A&(A"@&I;LW>MK 5R89 S 1 ;#=J!-?=?F#*%(\$?"A&(A"@&I;LW*MK **5R8HS** 0.28 0.041 ug/Kg © 09/20/20 20:32 09/24/20 00:18

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;63

!"#\$%&'()*!#&012&:;6G

Perfluorobutanoic acid (PFBA)

M\$(!O%#

1(%#& ?!!#A%#@**285B**C75&8G2E5

1(%#&+#A#"D#@2&5BC84C75&892E5

<#%F?@2&GEH&I)?@"J"#@K&6&L!**-W#N\$Q%#@%**(\$A#,&6&';.; &P(,%

+#,-!% V-(!"J"#=

4.6 U

.(/&'()*!#&012&345678939563

1(%#& ?!!#A%#@285BC75&832EG

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&40

Job ID: 460-218480-1

M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(/
;#=J!-?=??A%(\$?"A&(A"@&ILXMK	8RE	0.28	0.12	ug/Kg	₩	09/20/20 20:32	09/24/20 00:18	1
;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK	5R8GS	0.28	0.051	ug/Kg	☼	09/20/20 20:32	09/24/20 00:18	1
;#=J!-?=?@#A(\$?"A&(A"@&IL1MK	5R89 S	0.28	0.031	ug/Kg	☼	09/20/20 20:32	09/24/20 00:18	1
Perfluoroundecanoic acid (PFUnA)	0.28 U	0.28	0.051	ug/Kg	₽	09/20/20 20:32	09/24/20 00:18	1
Perfluorododecanoic acid (PFDoA)	0.28 U	0.28	0.095	ug/Kg	₽	09/20/20 20:32	09/24/20 00:18	1
Perfluorotridecanoic acid (PFTriA)	0.28 U	0.28	0.072	ug/Kg	₽	09/20/20 20:32	09/24/20 00:18	1
Perfluorotetradecanoic acid (PFTeA)	0.28 U	0.28	0.076	ug/Kg	₩	09/20/20 20:32	09/24/20 00:18	1
Perfluorobutanesulfonic acid (PFBS)	0.28 U	0.28	0.035	ug/Kg	☼	09/20/20 20:32	09/24/20 00:18	1
;#=J!-?=?F#>(\$#,-!J?\$"A&(A"@& I;LW>'K	5RG8	0.28	0.044	ug/Kg		09/20/20 20:32	09/24/20 00:18	1
;#=J!-?=?F#*%(\$#,-!J?\$"A&IA"@& I;LW*'K	5R597 S	0.28	0.049	ug/Kg	₽	09/20/20 20:32	09/24/20 00:18	1
;#=J!-?=??A%(\$#,-!J?\$"A&(A"@& I;LX'K	GR8Q	0.71	0.28	ug/Kg	₽	09/20/20 20:32	09/24/20 00:18	1
;#=J!-?=?@#A(\$#,-!J?\$"A&(A"@& I;L1'K	5R8HS	0.28	0.055	ug/Kg	☆	09/20/20 20:32	09/24/20 00:18	1
;#=J!-?=??A%(\$#,-!J?\$()"@#& ILX'MK	0.28 U	0.28	0.12	ug/Kg	₩	09/20/20 20:32	09/24/20 00:18	1
Y6)#%FO!*#=J!-?=??A%(\$#,-!J?\$()"@?(A#%"A&(A"@&IY<#LX'MMK	7R7 S	2.8	0.55	ug/Kg	₽	09/20/20 20:32	09/24/20 00:18	1
Y6#%FO!*#=J!-?=??A%(\$#,-!J?\$()" @?(A#%"A&(A"@&IYP%LX'MMK	GR4	2.8	0.52	ug/Kg	₽	09/20/20 20:32	09/24/20 00:18	1
6:2 FTS	2.8 U	2.8	0.21	ug/Kg	≎	09/20/20 20:32	09/24/20 00:18	1
8:2 FTS	2.8 U	2.8	0.35	ug/Kg	☼	09/20/20 20:32	09/24/20 00:18	1
Isotope Dilution	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	37	25 - 150				09/20/20 20:32	09/24/20 00:18	
13C5 PFPeA	43	25 - 150				09/20/20 20:32	09/24/20 00:18	
13C2 PFHxA	45	25 - 150				09/20/20 20:32	09/24/20 00:18	
13C4 PFHpA	47	25 - 150				09/20/20 20:32	09/24/20 00:18	
13C4 PFOA	51	25 - 150				09/20/20 20:32	09/24/20 00:18	
13C5 PFNA	50	25 - 150				09/20/20 20:32	09/24/20 00:18	
13C2 PFDA	50	25 - 150				09/20/20 20:32	09/24/20 00:18	
13C2 PFUnA	54	25 - 150				09/20/20 20:32	09/24/20 00:18	
13C2 PFDoA	51	25 - 150				09/20/20 20:32	09/24/20 00:18	
13C2 PFTeDA	44	25 - 150				09/20/20 20:32	09/24/20 00:18	
13C3 PFBS	56	25 - 150				09/20/20 20:32	09/24/20 00:18	
1802 PFHxS	63	25 - 150				09/20/20 20:32	09/24/20 00:18	
13C4 PFOS	67	25 - 150					09/24/20 00:18	
13C8 FOSA	39	25 - 150					09/24/20 00:18	
d3-NMeFOSAA	43	25 - 150					09/24/20 00:18	
d5-NEtFOSAA	45	25 - 150					09/24/20 00:18	
M2-6:2 FTS	179 *5	25 - 150					09/24/20 00:18	
M2-8:2 FTS	168 *5	25 - 150 25 - 150				09/20/20 20:32		

M\$(!OT#@

<(%=">2&'?!"(

1"!&L(A

.(/&'()*!#&012&34567893956G

09/29/20 04:48 09/29/20 17:21

;=#*(=#@

+.

4.6

<1. U\$"%

2.2 ng/L

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;6G

.(/&'()*!#&012&34567893956G

1(%#& ?!!#A%#@**2&5B**C75&8G2E5 1(%#&+#A#"D#@2&5BC84C75&892E5 <(%=">2&'?!"(

<#%F?@2&GEH&I)?@"J"#@K&6&L!**-I7!+N\$J%#***@*&(\$A#,&6&';.; &P(,%&I ?\$%"\$-#@K M\$(!O%# +#,-!% V-(!"J"#= +. <1. U\$"% 1 ;=#*(=#@ M\$(!OT#@ 1"!&L(A 8RB 1.8 0.45 ng/L 09/29/20 04:48 09/29/20 17:21 ;#=J!-?=?*#\$%(\$?"A&(A"@&I;L;#MK 7RG 1.8 0.53 ng/L 09/29/20 04:48 09/29/20 17:21 1 ;#=J!-?=?F#>(\$?"A&(A"@&I;LW>MK 1.8 ;#=J!-?=?F#*%(\$?"A&(A"@&I;LW*MK **7R9** 0.23 ng/L 09/29/20 04:48 09/29/20 17:21 1 ;#=J!-?=??A%(\$?"A&(A"@&I;LXMK 85 1.8 0.78 ng/L 09/29/20 04:48 09/29/20 17:21 1 18 09/29/20 04:48 09/29/20 17:21 ;#=J!-?=?\$?\$(\$?"A&(A"@&I;LYMK GR7 0.25 ng/L 1 ;#=J!-?=?@#A(\$?"A&(A"@&I;L1MK BR3 1.8 0.28 ng/L 09/29/20 04:48 09/29/20 17:21 1 Perfluoroundecanoic acid (PFUnA) 1.8 U 1.8 09/29/20 04:48 09/29/20 17:21 1.0 ng/L 1 ;#=J!-?=?@?@#A(\$?"A&(A"@& 5RH8S 1.8 0.50 ng/L 09/29/20 04:48 09/29/20 17:21 1 I;L1?MK 09/29/20 04:48 09/29/20 17:21 Perfluorotridecanoic acid (PFTriA) 18 U 1.8 1.2 ng/L Perfluorotetradecanoic acid (PFTeA) 1.8 U 1.8 0.67 ng/L 09/29/20 04:48 09/29/20 17:21 1 0.18 ng/L Perfluorobutanesulfonic acid (PFBS) 1.8 U 1.8 09/29/20 04:48 09/29/20 17:21 ;#=J!-?=?F#>(\$#,-!J?\$"A&(A"@& **3R3** 1.8 0.52 ng/L 09/29/20 04:48 09/29/20 17:21 I;LW>'K ;#=J!-?=?F#*%(\$#,-!J?\$"A&IA"@& **7R4** 1.8 0.17 ng/L 09/29/20 04:48 09/29/20 17:21 I;LW*'K 09/29/20 04:48 09/29/20 17:21 ;#=J!-?=??A%(\$#,-!J?\$"A&(A"@& **7B5** 1.8 0.49 ng/L I;LX'K 09/29/20 04:48 09/29/20 17:21 Perfluorodecanesulfonic acid (PFDS) 18 U 18 0.29 ng/L ;#=J!-?=??A%(\$#,-!J?\$()"@#& **GRH** 1.8 0.90 ng/L 09/29/20 04:48 09/29/20 17:21 1 **ILX'MK** 09/29/20 04:48 09/29/20 17:21 Y6)#%FO!*#=J!-?=??A%(\$#,-!J?\$(83 4.6 1.1 na/L 1)"@?(A#%"A&(A"@&IY<#LX'MMK 09/29/20 04:48 09/29/20 17:21 Y6#%FO!*#=J!-?=??A%(\$#,-!J?\$()" 78 46 1.2 ng/L @?(A#%"A&(A"@&IYP%LX'MMK 09/29/20 04:48 09/29/20 17:21 6:2 FTS 46 U 46 2.3 ng/L 5R3BSJ 09/29/20 04:48 09/29/20 17:21 18 927&L:' 0.42 ng/L 1 %Recovery Qualifier I imits Dil Fac Isotope Dilution Prepared Analyzed 13C4 PFBA 67 25 - 150 09/29/20 04:48 09/29/20 17:21 13C5 PFPeA 77 09/29/20 04:48 09/29/20 17:21 25 - 150 13C2 PFHxA 77 25 - 150 09/29/20 04:48 09/29/20 17:21 09/29/20 04:48 09/29/20 17:21 13C4 PFHnA 82 25 - 150 13C4 PFOA 88 25 - 150 09/29/20 04:48 09/29/20 17:21 25 - 150 09/29/20 04:48 09/29/20 17:21 13C5 PFNA 81 09/29/20 04:48 09/29/20 17:21 13C2 PFDA 83 25 - 150 13C2 PFUnA 86 25 - 150 09/29/20 04:48 09/29/20 17:21 13C2 PFDoA 66 25 - 150 09/29/20 04:48 09/29/20 17:21 09/29/20 04:48 09/29/20 17:21 13C2 PFTeDA 62 25 - 150 13C3 PFBS 81 25 - 150 09/29/20 04:48 09/29/20 17:21 1802 PFHxS 88 25 - 150 09/29/20 04:48 09/29/20 17:21 13C4 PFOS 82 25 - 150 09/29/20 04:48 09/29/20 17:21 13C8 FOSA 81 25 - 15009/29/20 04:48 09/29/20 17:21 d3-NMeFOSAA 69 25 - 150 09/29/20 04:48 09/29/20 17:21 d5-NEtFOSAA 91 25 - 150 09/29/20 04:48 09/29/20 17:21 M2-6:2 FTS 208 25 - 150 09/29/20 04:48 09/29/20 17:21 M2-8:2 FTS 177 *5 25 - 150 09/29/20 04:48 09/29/20 17:21 Z#\$#=(!& F#)",%=O M\$(!O%# +#,-!% V-(!"J"#= <1. U\$"% ;=#*(=#@ M\$(!OT#@ 1"!&L(A +. 1000 mg/Kg 09/23/20 20:14 : ?%(!& (=/?\$ 4H455 J+ 671 1000 mg/Kg 09/30/20 16:07 1 : ?%(!& (=/?\$ HHG55 J

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;6G

.(/&'()*!#&012&34567893956G

1(%#& ?!!#A%#@**288B**C75&8G2E5

1(%#&+#A#"D#@2&5BC84C75&892E5

<(%=">2&'?!"(

M\$(!O%#	+#,-!% V-(!"J"#=	+.	+.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
*W	HRGWL	0.1	0.1	SU			09/22/20 15:00	1
: #)*#=(%-=#	77R5 WL	0.001	0.001	Degrees C			09/22/20 15:00	1

!"#\$%&'()*!#&012&:;6G

.(/&'()*!#&012&34567893956G

1(%#& ?!!#A%#@**285E**C75&8G2E5

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(/
1,1,1-Trichloroethane	1.8	U H H3 UJ	1.8	0.42	ug/Kg	-	09/18/20 22:15	09/23/20 14:55	1
1,1,2,2-Tetrachloroethane	1.8	U H H3 <mark>UJ</mark>	1.8	0.39	ug/Kg	☼	09/18/20 22:15	09/23/20 14:55	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.8	U H H3 <mark>UJ</mark>	1.8	0.55	ug/Kg	☼	09/18/20 22:15	09/23/20 14:55	1
1,1,2-Trichloroethane	1.8	U H H3 <mark>UJ</mark>	1.8	0.32	ug/Kg	₽	09/18/20 22:15	09/23/20 14:55	1
1,1-Dichloroethane	1.8	U H H3 <mark>UJ</mark>	1.8	0.38	ug/Kg	☼	09/18/20 22:15	09/23/20 14:55	1
1,1-Dichloroethene	1.8	U H H3 <mark>UJ</mark>	1.8	0.41	ug/Kg	☼	09/18/20 22:15	09/23/20 14:55	1
8_7_3 6= "AF!?=?/#\$T#\$#	5R9E	S&W&WE	1.8	0.65	ug/Kg	₽	09/18/20 22:15	09/23/20 14:55	1
1,2-Dibromo-3-Chloropropane	1.8	U H H3 <mark>UJ</mark>	1.8	0.84	ug/Kg	☼	09/18/20 22:15	09/23/20 14:55	1
8_761"AF!?=?/#\$T#\$#	7R7	′ W&W ∃	1.8	0.26	ug/Kg	☼	09/18/20 22:15	09/23/20 14:55	1
1,2-Dichloroethane	1.8	U H H3 <mark>UJ</mark>	1.8	0.54	ug/Kg	⊅	09/18/20 22:15	09/23/20 14:55	1
1,2-Dichloropropane	1.8	U H H3 <mark>UJ</mark>	1.8	0.77	ug/Kg	☼	09/18/20 22:15	09/23/20 14:55	1
8_E61"AF!?=?/#\$T#\$#	8R0	GS&W&WE	1.8	0.29	ug/Kg	☼	09/18/20 22:15	09/23/20 14:55	1
8_361"AF!?=?/#\$T#\$#	HR	EW&W ∃	1.8	0.41	ug/Kg	₽	09/18/20 22:15	09/23/20 14:55	1
76Q-%(\$?\$#&I <p`k< td=""><td>8G</td><td>W&W∃</td><td>9.1</td><td>4.9</td><td>ug/Kg</td><td>₽</td><td>09/18/20 22:15</td><td>09/23/20 14:55</td><td>1</td></p`k<>	8G	W&W ∃	9.1	4.9	ug/Kg	₽	09/18/20 22:15	09/23/20 14:55	1
2-Hexanone	9.1	U H H3 <mark>UJ</mark>	9.1	3.1	ug/Kg	☼	09/18/20 22:15	09/23/20 14:55	1
4-Methyl-2-pentanone (MIBK)	9.1	U H H3 UJ	9.1	2.8	ug/Kg	₽	09/18/20 22:15	09/23/20 14:55	1
MA#%?\$#	875	W&W ∃	11	10	ug/Kg	☼	09/18/20 22:15	09/23/20 14:55	1
Benzene	1.8	U H H3 <mark>UJ</mark>	1.8	0.47	ug/Kg	☼	09/18/20 22:15	09/23/20 14:55	1
Bromoform	1.8	U H H3 <mark>UJ</mark>	1.8	0.77	ug/Kg	₽	09/18/20 22:15	09/23/20 14:55	1
Bromomethane	1.8	U H H3 <mark>UJ</mark>	1.8	0.86	ug/Kg	☼	09/18/20 22:15	09/23/20 14:55	1
(=/?\$&@",-!J"@#	5R4E	S&W&WE	1.8	0.48	ug/Kg	☼	09/18/20 22:15	09/23/20 14:55	1
Carbon tetrachloride	1.8	U H H3 UJ	1.8	0.70	ug/Kg	₽	09/18/20 22:15	09/23/20 14:55	1
F!?=?/#\$T#\$#	87	W&W ∃	1.8	0.32	ug/Kg	☼	09/18/20 22:15	09/23/20 14:55	1
Dibromochloromethane	1.8	U H H3 <mark>UJ</mark>	1.8	0.35	ug/Kg	☼	09/18/20 22:15	09/23/20 14:55	1
Chloroethane	1.8	U H H3 <mark>UJ</mark>	1.8	0.95	ug/Kg	₽	09/18/20 22:15	09/23/20 14:55	1
Chloroform	1.8	U H H3 <mark>UJ</mark>	1.8	0.58	ug/Kg	☼	09/18/20 22:15	09/23/20 14:55	1
Chloromethane	1.8	U H H3 <mark>UJ</mark>	1.8	0.79	ug/Kg	☼	09/18/20 22:15	09/23/20 14:55	1
cis-1,2-Dichloroethene	1.8	U H H3 <mark>UJ</mark>	1.8	0.28	ug/Kg	₽	09/18/20 22:15	09/23/20 14:55	1
Cyclohexane	1.8	U H H3 <mark>UJ</mark>	1.8	0.40	ug/Kg	☼	09/18/20 22:15	09/23/20 14:55	1
Bromodichloromethane	1.8	U H H3 <mark>UJ</mark>	1.8	0.47	ug/Kg	☼	09/18/20 22:15	09/23/20 14:55	1
Dichlorodifluoromethane	1.8	U H H3 <mark>UJ</mark>	1.8	0.62	ug/Kg	₽	09/18/20 22:15	09/23/20 14:55	1
Ethylbenzene	1.8	U H H3 <mark>UJ</mark>	1.8	0.36	ug/Kg	☼	09/18/20 22:15	09/23/20 14:55	1
1,2-Dibromoethane	1.8	U H H3 <mark>UJ</mark>	1.8	0.33	ug/Kg	☼	09/18/20 22:15	09/23/20 14:55	1
0,?*=?*O!/#\$T#\$#	5R34	S&W&WE	1.8	0.23	ug/Kg	₽	09/18/20 22:15	09/23/20 14:55	1
Methyl acetate	9.1	U H H3 <mark>UJ</mark>	9.1	7.8	ug/Kg	☼	09/18/20 22:15	09/23/20 14:55	1
Methyl tert-butyl ether	1.8	U H H3 <mark>UJ</mark>	1.8		ug/Kg	☼	09/18/20 22:15	09/23/20 14:55	1
Methylcyclohexane	1.8	U H H3 <mark>UJ</mark>	1.8		ug/Kg	☼	09/18/20 22:15	09/23/20 14:55	1
<#%FO!#\$#& F!?="@#	8R0	SS&W&WE	1.8		ug/Kg	☼	09/18/20 22:15	09/23/20 14:55	1
Tetrachloroethene		U H H3 <mark>UJ</mark>	1.8		ug/Kg	☼	09/18/20 22:15	09/23/20 14:55	1
Toluene	1.8	U H H3 <mark>UJ</mark>	1.8		ug/Kg		09/18/20 22:15	09/23/20 14:55	1
trans-1,2-Dichloroethene	1.8	U H H3 <mark>UJ</mark>	1.8		ug/Kg	☼	09/18/20 22:15	09/23/20 14:55	1
trans-1,3-Dichloropropene		U H H3 <mark>UJ</mark>	1.8		ug/Kg	₩	09/18/20 22:15	09/23/20 14:55	1

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;6G

.(/&'()*!#&012&34567893956G

1(%#& ?!!#A%#@**2&\$B**C75&8G2E5

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

(%#&+#A#"D#@2&5BC84C75	&892E5								;#=A#\$%&'?!'	''@,2&
<#%F?@2&9745 &&& %"!#&X:	=^/\$"A& ?)*1	2-\$@ &/0	R7 C<'RI 2¢	:0/,"\$_±	#@K					
M\$(!O%#		V-(!"J"#=	**************************************	ν/υ ψ *π	+@r\ <1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
Trichloroethene		U H H3	1.8			ug/Kg	<u>.</u>		09/23/20 14:55	1 :0:
Trichlorofluoromethane		U H H3	1.8			ug/Kg	. T		09/23/20 14:55	
Vinyl chloride		U H H3	1.8			ug/Kg	Ф		09/23/20 14:55	
Xylenes, Total		U H H3	3.6			ug/Kg			09/23/20 14:55	
cis-1,3-Dichloropropene		U H H3	1.8			ug/Kg	₩		09/23/20 14:55	
Styrene		U H H3	1.8			ug/Kg	☼		09/23/20 14:55	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	ı	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound		Н НЗ	ug/Kg	-					09/23/20 14:55	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	111		77 - 145					09/18/20 22:15	09/23/20 14:55	
Toluene-d8 (Surr)	101		80 - 120					09/18/20 22:15	09/23/20 14:55	
Dibromofluoromethane (Surr)	113		48 - 150					09/18/20 22:15	09/23/20 14:55	
4-Bromofluorobenzene	106		79 - 125						09/23/20 14:55	
<#%F?@2&97H51&6&'#)"D?! M\$(!O%#		\$"A& ?)*? V-(!"J"#=	'-\$@,&IZ C< +.		<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L
2,4,5-Trichlorophenol	52000		52000			ug/Kg	<u>.</u>	09/21/20 15:10		2
2,4,6-Trichlorophenol	52000		52000		0000	ug/Kg	₩ ₩	09/21/20 15:10		2
2,4-Dichlorophenol	52000		52000		5500	ug/Kg ug/Kg	** **		09/22/20 16:57	2
	52000		52000		3000	ug/Kg ug/Kg			09/22/20 16:57	2
2,4-Dimethylphenol						0 0				2
2,4-Dinitrophenol	510000		510000 52000		11000	ug/Kg	‡		09/22/20 16:57	2
2,4-Dinitrotoluene	52000				11000				09/22/20 16:57 09/22/20 16:57	
2,6-Dinitrotoluene	52000		52000			0 0	‡			2
2-Chloronaphthalene	52000		52000		8600	ug/Kg	☆		09/22/20 16:57	2
2-Chlorophenol	100000		100000		9500	ug/Kg	:		09/22/20 16:57	2
2-Methylnaphthalene	52000		52000		0000	ug/Kg	‡		09/22/20 16:57	2
2-Methylphenol	52000		52000		6100	ug/Kg	*		09/22/20 16:57	2
2-Nitroaniline	100000		100000		7600	ug/Kg	 .		09/22/20 16:57	2
2-Nitrophenol	52000		52000			0 0	*		09/22/20 16:57	2
3,3'-Dichlorobenzidine	100000		100000			0 0	*		09/22/20 16:57	2
3-Nitroaniline	100000		100000						09/22/20 16:57	2
4,6-Dinitro-2-methylphenol	100000		100000			ug/Kg	☼		09/22/20 16:57	2
4-Bromophenyl phenyl ether	52000		52000			ug/Kg	☼		09/22/20 16:57	2
4-Chloro-3-methylphenol	52000		52000			ug/Kg			09/22/20 16:57	2
4-Chloroaniline	52000		52000			ug/Kg	₩		09/22/20 16:57	2
4-Chlorophenyl phenyl ether	52000		52000			ug/Kg	₩		09/22/20 16:57	2
1-Methylphenol	100000		100000			ug/Kg			09/22/20 16:57	
4-Nitroaniline	100000		100000			ug/Kg	₩		09/22/20 16:57	2
1-Nitrophenol	100000		100000			ug/Kg	☼		09/22/20 16:57	2
Acenaphthene	52000		52000			ug/Kg			09/22/20 16:57	2
Acenaphthylene	52000	U	52000		6700	ug/Kg	₩		09/22/20 16:57	2
Acetophenone	52000	U	52000		7000	ug/Kg	₩	09/21/20 15:10	09/22/20 16:57	2
Anthracene	52000	U	52000	1	3000	ug/Kg	₩	09/21/20 15:10	09/22/20 16:57	2
Atrazine	52000	U	52000			ug/Kg	₩	09/21/20 15:10	09/22/20 16:57	2
Benzaldehyde	52000	U	52000	4	1000	ug/Kg	₩	09/21/20 15:10	09/22/20 16:57	2
O#\$T2b(a(\$9/ E=(A#\$#	88555	S	52000		5200	ug/Kg	₽	09/21/20 15:10	09/22/20 16:57	2
Ø#Φ1;D(C(Φ /0Γ−(Μ#Φ#	00000	•	02000		0_0	5. 5				
Q#\$T?b(c(\$%F=(A#\$# Q#\$T?b(c*O=#\$#	88555		52000			ug/Kg	₩	09/21/20 15:10	09/22/20 16:57	2

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;6G

.(/&'()*!#&012&34567893956G

1(%#& ?!!#A%#@**285B**C75&8G2E5

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

<#%F?@2&97H51&6&'#)"D?! M\$(!O%#		V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
Benzo[g,h,i]perylene	52000	U	52000	5500	ug/Kg	*	09/21/20 15:10	09/22/20 16:57	20
Benzo[k]fluoranthene	52000	U	52000	6700	ug/Kg		09/21/20 15:10	09/22/20 16:57	20
Biphenyl	52000	U	52000	7600	ug/Kg	₽	09/21/20 15:10	09/22/20 16:57	20
bis (2-chloroisopropyl) ether	52000	U	52000	10000	ug/Kg	☼	09/21/20 15:10	09/22/20 16:57	20
Bis(2-chloroethoxy)methane	52000	U	52000	11000	ug/Kg		09/21/20 15:10	09/22/20 16:57	20
Bis(2-chloroethyl)ether	52000	U	52000	6700	ug/Kg	≎	09/21/20 15:10	09/22/20 16:57	20
Bis(2-ethylhexyl) phthalate	52000	U	52000	18000	ug/Kg	₽	09/21/20 15:10	09/22/20 16:57	20
Butyl benzyl phthalate	52000	U	52000	8600	ug/Kg		09/21/20 15:10	09/22/20 16:57	20
Caprolactam	52000	U	52000	16000	ug/Kg	₽	09/21/20 15:10	09/22/20 16:57	20
Carbazole	52000	U	52000	6100	ug/Kg	₽	09/21/20 15:10	09/22/20 16:57	20
Chrysene	52000	U	52000	12000			09/21/20 15:10	09/22/20 16:57	20
Dibenz(a,h)anthracene	52000	U	52000	9200		₽	09/21/20 15:10	09/22/20 16:57	20
Dibenzofuran	52000	U	52000	6100	ug/Kg	₽	09/21/20 15:10	09/22/20 16:57	20
Diethyl phthalate	52000	U	52000	6700			09/21/20 15:10	09/22/20 16:57	20
Dimethyl phthalate	52000		52000	6100	0 0	₽		09/22/20 16:57	20
Di-n-butyl phthalate	52000		52000	8900	0 0	₽		09/22/20 16:57	20
Di-n-octyl phthalate	52000	U	52000	6100			09/21/20 15:10	09/22/20 16:57	20
L!-?=(\$%F#\$#	89555		52000	5500	0 0	☼	09/21/20 15:10	09/22/20 16:57	20
Fluorene	52000		52000	6100	0 0	÷		09/22/20 16:57	20
Hexachlorobenzene	52000		52000	7000				09/22/20 16:57	20
Hexachlorobutadiene	52000		52000	7600	0 0	÷		09/22/20 16:57	20
Hexachlorocyclopentadiene	52000		52000	7000	0 0	÷		09/22/20 16:57	20
Hexachloroethane	52000		52000	6700				09/22/20 16:57	20
Indeno[1,2,3-cd]pyrene	52000		52000	6400	0 0	₽		09/22/20 16:57	20
Isophorone	52000		52000	11000	0 0	₽		09/22/20 16:57	20
Naphthalene	52000		52000	6700				09/22/20 16:57	20
Nitrobenzene	52000		52000	5800	0 0	₽		09/22/20 16:57	20
N-Nitrosodi-n-propylamine	52000		52000	8900		₽		09/22/20 16:57	20
N-Nitrosodiphenylamine	52000		52000	42000				09/22/20 16:57	20
Pentachlorophenol	100000		100000	52000	0 0	₽		09/22/20 16:57	20
Phenanthrene	52000		52000	7600	0 0			09/22/20 16:57	20
Phenol	52000		52000	7900				09/22/20 16:57	20
;O=#\$#	89555		52000		ug/Kg	₩		09/22/20 16:57	20
,-					0 0				
Tentatively Identified Compound	Est. Result	Qualifier	Unit	<u>D</u>	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	☼			09/21/20 15:10	09/22/20 16:57	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol		X	54 - 120				09/21/20 15:10	09/22/20 16:57	20
2-Fluorobiphenyl	0	X	60 - 120				09/21/20 15:10	09/22/20 16:57	20
2-Fluorophenol	0	X	52 - 120				09/21/20 15:10	09/22/20 16:57	20
Nitrobenzene-d5	0	X	53 - 120				09/21/20 15:10	09/22/20 16:57	20
Phenol-d5	0	X	54 - 120				09/21/20 15:10	09/22/20 16:57	20
p-Terphenyl-d14	0	X	79 - 130				09/21/20 15:10	09/22/20 16:57	20
~#0/ E2@28 0E09O8 68 V=A/\$2) A E12-"¢#9	# 0/ " A "@	# 917 K						
<#%F?@2&9598Q&6&X=^(\$? M\$(!O%#		#,% A @ V-(!"J"#=	#,&IZ N +.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
3_3d6111		S J-	130		ug/Kg		09/22/20 13:04		50
3_3d611P		S J-	130		ug/Kg	₩		09/23/20 11:55	50
0 000111		J J-	130	21	ug/itg	74	00/22/20 10:04	55/20/20 11.00	30

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;6G

.(/&'()*!#&012&34567893956G

1(%#& ?!!#A%#@**2&56**5&8G2E5

<(%=">2&'?!"(

1(%#&+#A#"D#@23.5655&892E5

(%#&+#A#"D#@ 2&\$6 5&89		# 0/ H 5 !! 6 !!		ua // a :-				;#=A#\$%&'?! [\]	<u>w</u> ,204
<#%F?@2&9598Q&6&X=^(M\$(!0%#		#,%"A"@# V-(!"J"#=	,&IZ K&I ?\$% +	"\$-#@K <1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(/
Aldrin	130		130		ug/Kg	— <u>.</u>	09/22/20 13:04		50
alpha-BHC	130		130		ug/Kg			09/23/20 11:55	50
beta-BHC	130		130		ug/Kg	Ď.		09/23/20 11:55	50
cis-Chlordane	130		130		ug/Kg	 ☆		09/23/20 11:55	50
delta-BHC	130		130		ug/Kg			09/23/20 11:55	50
Dieldrin	130		130		ug/Kg	Ď.		09/23/20 11:55	50
Endosulfan I	130		130		ug/Kg	T. #		09/23/20 11:55	50
Endosulfan II	130		130		ug/Kg	~ ☆		09/23/20 11:55	50
Endosulfan sulfate	130		130		ug/Kg			09/23/20 11:55	50
Endrin	130		130		ug/Kg			09/23/20 11:55	50
Endrin aldehyde	130		130		ug/Kg ug/Kg	₩		09/23/20 11:55	50
Endrin ketone	130		130		ug/Kg ug/Kg	₩		09/23/20 11:55	50
gamma-BHC (Lindane)	130		130		ug/Kg ug/Kg	. .		09/23/20 11:55	50
Heptachlor	130		130			₩		09/23/20 11:55	50
•	130		130		ug/Kg			09/23/20 11:55	50
Heptachlor epoxide					ug/Kg	· · · · · ÷			
<#%F?>OAF!?=	G5		130		ug/Kg	±		09/23/20 11:55	50
Toxaphene	1300		1300		ug/Kg	\$		09/23/20 11:55	50
trans-Chlordane	130	U	130	41	ug/Kg	☼	09/22/20 13:04	09/23/20 11:55	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	0	X	45 - 120				09/22/20 13:04	09/23/20 11:55	50
DCB Decachlorobiphenyl	0	X	45 - 120				09/22/20 13:04	09/23/20 11:55	50
Tetrachloro-m-xylene	0	X	30 - 124				09/22/20 13:04	09/23/20 11:55	50
Tetrachloro-m-xylene	0	X	30 - 124				09/22/20 13:04	09/23/20 11:55	50
<#%F?@2&9 5%& 6&;?!OAF!	12="¢(%#@& ^	"*E#¢∩!	· O K 2 / O 2 7 / :	P E-2)/	0/.2 \-/ *EC	,			
M\$(!O%#		V-(!"J"#=	+.	x r− :)(<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
PCB-1016	1.6	V-(: J #-	1.6		mg/Kg	— <u> </u>		09/22/20 16:37	1 : OLL(F
PCB-1221	1.6		1.6		mg/Kg	₩		09/22/20 16:37	5
PCB-1232	1.6		1.6					09/22/20 16:37	5
					mg/Kg			09/22/20 16:37	5 5
; Q68737	5RG 1.6		1.6		mg/Kg			09/22/20 16:37	5 5
PCB-1248			1.6		mg/Kg	₩			
PCB-1254	1.6		1.6		mg/Kg			09/22/20 16:37	5
PCB-1260	1.6	U	1.6	0.74	mg/Kg	₩	09/21/20 15:17	09/22/20 16:37	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	78		60 - 154				09/21/20 15:17	09/22/20 16:37	5
Tetrachloro-m-xylene	72		60 - 154				09/21/20 15:17	09/22/20 16:37	5
DCB Decachlorobiphenyl	74		65 - 174				09/21/20 15:17	09/22/20 16:37	5
DCB Decachlorobiphenyl	64	X	65 - 174				09/21/20 15:17	09/22/20 16:37	5
~#9/ E2@2 8 0 9M/996 8 \A/#=/" A	"@# 917 K								
<#%F?@2&98 V68 6&W#=/"A M\$(!0%#		V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
2,4,5-T	130		130		ug/Kg	_ <u>•</u>		09/24/20 10:39	5
	130		130		ug/Kg ug/Kg	₩		09/24/20 10:39	5 5
Silvex (2,4,5-TP) 2,4-D	130		130		ug/Kg ug/Kg	₩		09/24/20 10:39	5
_,			100	01	~9′''9	~	55/2 I/20 10.24	30/2 1/20 10:00	0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	74		28 - 129					09/24/20 10:39	5
2,4-Dichlorophenylacetic acid	2194	X	28 - 129				09/21/20 15:24	09/24/20 10:39	5

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;6G

M2-6:2 FTS

M2-8:2 FTS

.(/&'()*!#&012&34567893956G

1(%#& ?!!#A%#@**285B**C75&8G2E5

<(%=">2&'?!"(;#=A#\$%&'?!"@,2&43

1(%#&+#A#"D#@2&5BC84C75&892E5

<#%F?@2&GEH&I)?@"J"#@K&6&L!**-W#N\$J!%#**@**%**(\$A#, M\$(!O%# +#,-!% V-(!"J"#= +. <1. U\$"% 1 ;=#*(=#@ M\$(!OT#@ 1"!&L(A ;#=J!-?=?/-%(\$?"A&(A"@&I;LQMK 5R83 S 0.27 0.038 ug/Kg 09/20/20 20:32 10/07/20 11:44 ;#=J!-?=?*#\$%(\$?"A&(A"@&I;L;#MK **5RE4** 0.27 0.11 ug/Kg 09/20/20 20:32 10/07/20 11:44 1 09/20/20 20:32 10/07/20 11:44 ;#=J!-?=?F#>(\$?"A&(A"@&I;LW>MK **5R5B5S** 0.27 0.058 ug/Kg ₩ 1 ;#=J!-?=?F#*%(\$?"A&(A"@&I;LW*MK 5R8 S 0.27 0.040 ug/Kg 09/20/20 20:32 10/07/20 11:44 1 09/20/20 20:32 10/07/20 11:44 1 ;#=J!-?=??A%(\$?"A&(A"@&I;LXMK 5R3G 0.27 0.12 ug/Kg 09/20/20 20:32 10/07/20 11:44 ;#=J!-?=?\$?\$(\$?"A&(A"@&I;LYMK 5R77 S 0.27 0.049 ug/Kg 1 ;#=J!-?=?@#A(\$?"A&(A"@&I;L1MK 0.27 0.030 ug/Kg 09/20/20 20:32 10/07/20 11:44 **5R3G** 1 ;#=J!-?=?-\$@#A(\$?"A&(A"@& **5R5HES** 0.27 0.049 ug/Kg 09/20/20 20:32 10/07/20 11:44 1 I;L U\$MK 09/20/20 20:32 10/07/20 11:44 ;#=J!-?=?@?@#A(\$?"A&(A"@& 5R89 S 0.27 0.092 ug/Kg I;L1?MK Perfluorotridecanoic acid (PFTriA) 0.27 U 0.27 0.070 ug/Kg 09/20/20 20:32 10/07/20 11:44 ;#=J!-?=?%#%=(@#A(\$?"A&(A"@& 09/20/20 20:32 10/07/20 11:44 0.27 0.074 ug/Kg 5R87 S 1 1:L: #MK 0.27 U 0.27 09/20/20 20:32 10/07/20 11:44 Perfluorobutanesulfonic acid (PFBS) 0.034 ug/Kg 1 Perfluorohexanesulfonic acid (PFHxS) 0.27 U 0.27 0.043 ug/Kg 09/20/20 20:32 10/07/20 11:44 09/20/20 20:32 ;#=J!-?=?F#*%(\$#,-!J?\$"A&IA"@& 0.27 0.048 ug/Kg 10/07/20 11:44 5R8GS 1 I;LW*'K 09/20/20 20:32 10/07/20 11:44 ;#=J!-?=??A%(\$#,-!J?\$"A&(A"@& 89 Q 0.69 0.27 ug/Kg I;LX'K 0.27 09/20/20 20:32 10/07/20 11:44 0.054 ug/Kg ;#=J!-?=?@#A(\$#,-!J?\$"A&(A"@& **5R5B7S** I;L1'K 0.27 0.11 ug/Kg 09/20/20 20:32 10/07/20 11:44 1 ;#=J!-?=??A%(\$#,-!J?\$()"@#& 5R48J+ **ILX'MK** Y6)#%FO!*#=J!-?=??A%(\$#,-!J?\$(27 0.54 ug/Kg 09/20/20 20:32 10/07/20 11:44 1 8R9 S)"@?(A#%"A&(A"@&IY<#LX'MMK Y6#%FO!*#=J!-?=??A%(\$#,-!J?\$()" 09/20/20 20:32 10/07/20 11:44 27 0.51 ug/Kg 1 GR7 @?(A#%"A&(A"@&IYP%LX'MMK 6:2 FTS 2.7 U 2.7 09/20/20 20:32 10/07/20 11:44 1 0.21 ug/Kg 8:2 FTS 2.7 U 2.7 0.34 ug/Kg 09/20/20 20:32 10/07/20 11:44 1 Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C4 PFBA 68 25 - 150 09/20/20 20:32 10/07/20 11:44 74 09/20/20 20:32 10/07/20 11:44 13C5 PFPeA 25 - 15013C2 PFHxA 92 25 - 150 09/20/20 20:32 10/07/20 11:44 09/20/20 20:32 10/07/20 11:44 13C4 PFHpA 96 25 - 150 13C4 PFOA 90 25 - 150 09/20/20 20:32 10/07/20 11:44 13C5 PFNA 95 25 - 150 09/20/20 20:32 10/07/20 11:44 13C2 PFDA 93 25 - 150 09/20/20 20:32 10/07/20 11:44 13C2 PFUnA 102 25 - 150 09/20/20 20:32 10/07/20 11:44 92 09/20/20 20:32 10/07/20 11:44 13C2 PFDoA 25 150 13C2 PFTeDA 83 25 - 150 09/20/20 20:32 10/07/20 11:44 13C3 PFBS 92 25 - 150 09/20/20 20:32 10/07/20 11:44 101 25 - 150 09/20/20 20:32 10/07/20 11:44 1802 PFHxS 13C4 PFOS 99 25 - 150 09/20/20 20:32 10/07/20 11:44 13C8 FOSA 74 25 - 150 09/20/20 20:32 10/07/20 11:44 73 25 - 150 10/07/20 11:44 d3-NMeFOSAA 09/20/20 20:32 d5-NEtFOSAA 84 25 - 150 09/20/20 20:32 10/07/20 11:44

10/07/20 11:44

09/20/20 20:32 10/07/20 11:44

09/20/20 20:32

25 - 150

25 - 150

250 *5

266 *5

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;6G .(/&'()*!#&012&34567893956G 1(%#& ?!!#A%#@**285B**C75&8G2E5 <(%=">2&'?!"(1(%#&+#A#"D#@2&5BC84C75&892E5 ;#=A#\$%&'?!"@,2&43

/I\$(!O%#	!,&I0 ;K +#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
M!-)"\$-)	9895	15.5	6.8	mg/Kg	-	09/24/20 17:07	09/25/20 13:07	1
Antimony	23.2 U <mark>UJ</mark>	23.2	0.62	mg/Kg	≎	09/24/20 17:07	09/25/20 13:07	1
M=,#\$"A	ER8 Q	3.1	0.62	mg/Kg	≎	09/24/20 17:07	09/25/20 13:07	1
Q(="-)	8495 J	3.9	0.85	mg/Kg	≎	09/24/20 17:07	09/29/20 01:20	5
Q#=O!!"-)	5REE	0.31	0.043	mg/Kg	☼	09/24/20 17:07	09/25/20 13:07	1
(@)"-)	8R9J	0.31	0.046	mg/Kg	☼	09/24/20 17:07	09/25/20 13:07	1
(!A"-)	3EH55 J	77.4	5.1	mg/Kg		09/24/20 17:07	09/25/20 13:07	1
F=?)"-)	4GRH	0.77	0.31	mg/Kg	☼	09/24/20 17:07	09/25/20 13:07	1
?/(!%	3R4	0.77	0.077	mg/Kg	₽	09/24/20 17:07	09/25/20 13:07	1
?**#=	3GR7J-	1.5	0.32	mg/Kg		09/24/20 17:07	09/25/20 13:07	1
)=?\$	84855 J	15.5	5.4	mg/Kg	☼	09/24/20 17:07	09/25/20 13:07	1
#(@	H5B J	1.5	0.37	mg/Kg	☼	09/24/20 17:07	09/25/20 13:07	1
<(^\$#,"-)	3355 J-	30.9	1.4	mg/Kg		09/24/20 17:07	09/25/20 13:07	1
<(\$^(\$#,#	735 J	0.31	0.050	mg/Kg	☼	09/24/20 17:07	09/25/20 13:07	1
/"AN#!	E7RBJ-	7.7	0.36	mg/Kg	☼	09/24/20 17:07	09/25/20 13:07	1
?%(,,"-)	85B5 J+	46.4	30.9	mg/Kg	☼	09/24/20 17:07	09/25/20 13:07	1
Selenium	6.2 U	6.2	0.62	mg/Kg	₽	09/24/20 17:07	09/25/20 13:07	1
Silver	0.93 U	0.93	0.31	mg/Kg	≎	09/24/20 17:07	09/25/20 13:07	1
?@"-)	8BG S	217	20.1	mg/Kg	₽	09/24/20 17:07	09/25/20 13:07	1
Γhallium	9.3 U	9.3	0.46	mg/Kg	☼	09/24/20 17:07	09/25/20 13:07	1
(\$(@"-)	89RG	0.77	0.17	mg/Kg	☼	09/24/20 17:07	09/25/20 13:07	1
e"\$A	88B5 J	3.1	0.99	mg/Kg	₩	09/24/20 17:07	09/25/20 13:07	1
<#%F?@2&H3H8Q&6&<#=								
M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
<#=A-=O	5R39	0.030	0.012	mg/Kg	☼	09/22/20 11:56	09/22/20 14:01	1
Z#\$#=(!& F#)",%=O								
Л\$(!О%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
Cyanide, Total	1.5 U	1.5	0.71	mg/Kg	☼	09/21/20 13:33	09/22/20 14:15	1
"#\$%&'()*!#&012& <mark>"65</mark> 8	3				.(/	&'()*!#& 0 12	2&34567893	39564

1(70#0x ?!!#A 70#@ 2000D / 3003200	
1(%#&+#A#"D#@2&5BC84C75&892E5	;#=A

<#%F?@2&9745 &6&%"!#&X=^(\$"A& ?)*?-\$@,&/O&Z C<' U\$"% 1"!&L(A M\$(!O%# +#,-!% V-(!"J"#= +. <1. ;=#*(=#@ M\$(!OT#@ 1,1,1-Trichloroethane 1.1 U H H3 UJ 1.1 0.27 ug/Kg 09/18/20 22:16 09/28/20 11:10 1 1,1,2,2-Tetrachloroethane 1.1 U H H3 UJ 1.1 0.25 ug/Kg 09/18/20 22:16 09/28/20 11:10 1 1,1,2-Trichloro-1,2,2-trifluoroethane 1.1 U H H3 UJ 1.1 0.35 ug/Kg © 09/18/20 22:16 09/28/20 11:10 1 1,1,2-Trichloroethane 1.1 U H H3 UJ 1.1 0.20 ug/Kg © 09/18/20 22:16 09/28/20 11:10 1 1.1 1 1,1-Dichloroethane 1.1 U H H3 UJ 0.24 ug/Kg 1,1-Dichloroethene 1.1 U H H3 UJ 1.1 0.26 ug/Kg © 09/18/20 22:16 09/28/20 11:10 1,2,4-Trichlorobenzene 1.1 U H H3 UJ 1.1 0.41 ug/Kg © 09/18/20 22:16 09/28/20 11:10 1 1,2-Dibromo-3-Chloropropane 1.1 U H H3 UJ 1.1 0.53 ug/Kg © 09/18/20 22:16 09/28/20 11:10 1,2-Dichlorobenzene 1.1 U H H3 UJ 1.1 0.17 ug/Kg © 09/18/20 22:16 09/28/20 11:10 1 1.1 U H H3 UJ 1.1 0.34 ug/Kg © 09/18/20 22:16 09/28/20 11:10 1,2-Dichloroethane 1,2-Dichloropropane 1.1 U H H3 UJ 1.1 0.49 ug/Kg © 09/18/20 22:16 09/28/20 11:10 1 1,3-Dichlorobenzene 1.1 U H H3 UJ 1.1 0.18 ug/Kg © 09/18/20 22:16 09/28/20 11:10 1 © 09/18/20 22:16 09/28/20 11:10 1,4-Dichlorobenzene 1.1 U H H3 UJ 1.1 0.26 ug/Kg 1

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&"658

.(/&'()*!#&012&345678939564

1(%#& ?!!#A%#@**265B**C75&8328G

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

M\$(!O%#	+#,-!%	V-(!"J"#=	+.		<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L
76Q-%(\$?\$#&I <p`k< td=""><td>7E</td><td>W&W∃+</td><td>5.7</td><td></td><td>3.1</td><td>ug/Kg</td><td>☼</td><td>09/18/20 22:16</td><td>09/28/20 11:10</td><td></td></p`k<>	7E	W&W ∃ +	5.7		3.1	ug/Kg	☼	09/18/20 22:16	09/28/20 11:10	
2-Hexanone	5.7	U H H3 UJ	5.7		2.0	ug/Kg	₽	09/18/20 22:16	09/28/20 11:10	
4-Methyl-2-pentanone (MIBK)	5.7	U H H3 UJ	5.7		1.8	ug/Kg	₩	09/18/20 22:16	09/28/20 11:10	
MA#%?\$#	875	W&W ∃+	6.9	1	6.6	ug/Kg	☼	09/18/20 22:16	09/28/20 11:10	
Benzene	1.1	U H H3 <mark>UJ</mark>	1.1		0.30	ug/Kg	₽	09/18/20 22:16	09/28/20 11:10	
Bromoform	1.1	U H H3 UJ	1.1		0.49	ug/Kg	₽	09/18/20 22:16	09/28/20 11:10	
Bromomethane	1.1	U H H3 UJ	1.1		0.54	ug/Kg	₽	09/18/20 22:16	09/28/20 11:10	
Carbon disulfide	1.1	U H H3 UJ	1.1		0.31	ug/Kg	₽	09/18/20 22:16	09/28/20 11:10	
Carbon tetrachloride	1.1	U H H3 UJ	1.1		0.44	ug/Kg	₩	09/18/20 22:16	09/28/20 11:10	
Chlorobenzene	1.1	U H H3 UJ	1.1		0.20	ug/Kg	₩	09/18/20 22:16	09/28/20 11:10	
Dibromochloromethane	1.1	U H H3 UJ	1.1		0.22	ug/Kg	₩	09/18/20 22:16	09/28/20 11:10	
Chloroethane	1.1	U H H3 UJ	1.1		0.60	ug/Kg		09/18/20 22:16	09/28/20 11:10	
Chloroform	1.1	U H H3 <mark>UJ</mark>	1.1		0.37	ug/Kg	≎	09/18/20 22:16	09/28/20 11:10	
Chloromethane	1.1	U H H3 UJ	1.1		0.50	ug/Kg	₽	09/18/20 22:16	09/28/20 11:10	
cis-1,2-Dichloroethene	1.1	U H H3 UJ	1.1			ug/Kg		09/18/20 22:16	09/28/20 11:10	
Cyclohexane	1.1	U H H3 UJ	1.1			ug/Kg	.⇔	09/18/20 22:16	09/28/20 11:10	
Bromodichloromethane	1.1	U H H3 UJ	1.1			ug/Kg	₽	09/18/20 22:16	09/28/20 11:10	
Dichlorodifluoromethane	1.1	U H H3 UJ	1.1			ug/Kg		09/18/20 22:16	09/28/20 11:10	
Ethylbenzene	1.1	U H H3 UJ	1.1			ug/Kg	₩	09/18/20 22:16	09/28/20 11:10	
1,2-Dibromoethane	1.1	U H H3 UJ	1.1		0.21		₩	09/18/20 22:16	09/28/20 11:10	
Isopropylbenzene	1.1	U H H3 UJ	1.1		0.14	ug/Kg		09/18/20 22:16	09/28/20 11:10	
Methyl acetate	5.7	U H H3 UJ	5.7				₩	09/18/20 22:16	09/28/20 11:10	
Methyl tert-butyl ether	1.1	U H H3 UJ	1.1			ug/Kg	₩	09/18/20 22:16	09/28/20 11:10	
Methylcyclohexane	1.1	U H H3 UJ	1.1			ug/Kg		09/18/20 22:16	09/28/20 11:10	
<#%FO!#\$#& F!?="@#	ERE		1.1			ug/Kg	₩	09/18/20 22:16	09/28/20 11:10	
Tetrachloroethene	1.1	U H H3 UJ	1.1			ug/Kg	₩	09/18/20 22:16	09/28/20 11:10	
: ?!-#\$#	7RE	W&W ∃ +	1.1			ug/Kg		09/18/20 22:16	09/28/20 11:10	
trans-1,2-Dichloroethene		U H H3 UJ	1.1			ug/Kg	₩	09/18/20 22:16	09/28/20 11:10	
trans-1,3-Dichloropropene		U H H3 UJ	1.1			ug/Kg	☼	09/18/20 22:16	09/28/20 11:10	
Trichloroethene	1.1	U H H3 UJ	1.1			ug/Kg		09/18/20 22:16	09/28/20 11:10	
Trichlorofluoromethane		U H H3 UJ	1.1			ug/Kg	☼		09/28/20 11:10	
Vinyl chloride		U H H3 UJ	1.1			ug/Kg	☼		09/28/20 11:10	
Xylenes, Total		U H H3 UJ	2.3			ug/Kg		09/18/20 22:16		
cis-1,3-Dichloropropene		U H H3 UJ	1.1			ug/Kg	÷		09/28/20 11:10	
Styrene		U H H3 UJ	1.1			ug/Kg	₽			
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fa
Unknown		T H H3 J	ug/Kg	- -		.65	OAO NO.	09/18/20 22:16		<i>Dii i</i> a
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	130	- Guaintei	77 - 145						09/28/20 11:10	-1110
Toluene-d8 (Surr)	116		80 - 120						09/28/20 11:10	
Dibromofluoromethane (Surr)	136		48 - 150						09/28/20 11:10	
4-Bromofluorobenzene	126	X	79 - 125						09/28/20 11:10	
∠#%, E2@2& Q7UE4 & 6& !#\"D2!	/0/_"I# 2 V =^/	\$"A & 2*2	¢ <i>ጮ ያ</i> I7 C	<i>-</i> יוני						
<#%F?@2&97H51&6&'#)"D?! M\$(!O%#		V-(!"J"#=	\$@,&IZ C +.	- n	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L
2,4,5-Trichlorophenol	39000		39000		10000		*		09/22/20 17:22	2
2,4,6-Trichlorophenol	39000		39000			ug/Kg	₽		09/22/20 17:22	2
2,4-Dichlorophenol	39000		39000			ug/Kg	÷		09/22/20 17:22	2

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&"658

.(/&'()*!#&012&345678939564

1(%#& ?!!#A%#@**2&36**5&8328G 1(%#&+#A#"D#@**2&46**5&892E5 <(%=">2&'?!"(

M\$(!O%#	+#!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
2,4-Dimethylphenol			39000	9300	ug/Kg	— <u>:</u>	09/21/20 15:10	09/22/20 17:22	20
2,4-Dinitrophenol	380000		380000	180000	ug/Kg	 ₩	09/21/20 15:10		20
2,4-Dinitrotoluene	39000		39000	8000	ug/Kg		09/21/20 15:10		20
2,6-Dinitrotoluene	39000		39000	4500	ug/Kg		09/21/20 15:10		20
2-Chloronaphthalene	39000		39000	6400	ug/Kg		09/21/20 15:10		20
2-Chlorophenol	75000		75000	7000	ug/Kg		09/21/20 15:10		20
2-Methylnaphthalene	39000		39000	7700			09/21/20 15:10		20
2-Methylphenol	39000		39000	4500	ug/Kg		09/21/20 15:10		20
2-Nitroaniline	75000		75000	5700	ug/Kg		09/21/20 15:10		20
2-Nitrophenol	39000		39000	11000	ug/Kg			09/22/20 17:22	20
3,3'-Dichlorobenzidine	75000		75000	45000	ug/Kg		09/21/20 15:10		20
3-Nitroaniline	75000		75000	11000	ug/Kg	~ ☆	09/21/20 15:10		20
4,6-Dinitro-2-methylphenol	75000		75000	39000				09/22/20 17:22	20
4-Bromophenyl phenyl ether	39000		39000	5500	ug/Kg	~ ☆	09/21/20 15:10		20
4-Chloro-3-methylphenol	39000		39000	9500	ug/Kg	~ ☆	09/21/20 15:10		20
4-Chloroaniline	39000		39000	9500	ug/Kg			09/22/20 17:22	20
4-Chlorophenyl phenyl ether	39000		39000	4800	ug/Kg		09/21/20 15:10		20
4-Methylphenol	75000		75000	4500	ug/Kg		09/21/20 15:10		20
4-Nitroaniline	75000		75000	20000				09/22/20 17:22	20
4-Nitrophenol	75000		75000	27000	0 0	₩	09/21/20 15:10		20
Acenaphthene	39000		39000	5700	0 0	₩	09/21/20 15:10		20
Acenaphthylene	39000		39000	5000	ug/Kg			09/22/20 17:22	20
Acetophenone	39000		39000	5200	ug/Kg ug/Kg		09/21/20 15:10		20
Anthracene	39000		39000	9500	ug/Kg ug/Kg		09/21/20 15:10		20
Atrazine	39000		39000	13000	ug/Kg			09/22/20 17:22	20
Benzaldehyde	39000		39000	31000			09/21/20 15:10		20
Benzo[a]anthracene	39000		39000	3900	ug/Kg ug/Kg		09/21/20 15:10		20
Benzo[a]pyrene	39000		39000		0 0	☆		09/22/20 17:22	20
Benzo[b]fluoranthene	39000		39000	6100	ug/Kg	☆		09/22/20 17:22	20
Benzo[g,h,i]perylene	39000		39000	4100	ug/Kg			09/22/20 17:22	20
Benzo[k]fluoranthene	39000		39000		ug/Kg	Ţ.		09/22/20 17:22	20
Biphenyl	39000		39000	5700	ug/Kg	₩.		09/22/20 17:22	20
bis (2-chloroisopropyl) ether	39000		39000	7700	ug/Kg	· · · · ·		09/22/20 17:22	20
Bis(2-chloroethoxy)methane	39000		39000		ug/Kg	₩.		09/22/20 17:22	20
Bis(2-chloroethyl)ether	39000		39000		ug/Kg	‡		09/22/20 17:22	20
Bis(2-ethylhexyl) phthalate	39000		39000	13000		- 		09/22/20 17:22	20
Butyl benzyl phthalate	39000		39000		ug/Kg	\$		09/22/20 17:22	20
Caprolactam	39000		39000	12000		\$		09/22/20 17:22	20
Carbazole	39000		39000		ug/Kg	. .		09/22/20 17:22	20
Chrysene	39000		39000		ug/Kg	₽		09/22/20 17:22	20
Dibenz(a,h)anthracene	39000		39000		ug/Kg	☼		09/22/20 17:22	20
Dibenzofuran	39000		39000		ug/Kg	<u>.</u> .		09/22/20 17:22	20
Diethyl phthalate	39000		39000		ug/Kg	₽		09/22/20 17:22	20
Dimethyl phthalate	39000		39000		ug/Kg	☼		09/22/20 17:22	20
Di-n-butyl phthalate	39000		39000		ug/Kg			09/22/20 17:22	20
Di-n-octyl phthalate	39000		39000		ug/Kg	☼		09/22/20 17:22	20
Fluoranthene	39000		39000		ug/Kg	≎		09/22/20 17:22	20
Fluorene	39000	U	39000	4500	ug/Kg	☼	09/21/20 15:10	09/22/20 17:22	20
Hexachlorobenzene	39000				ug/Kg			09/22/20 17:22	

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&"658

.(/&'()*!#&012&345678939564

1(%#& ?!!#A%#@**2853E**C75&8328G

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&9C

<#%F?@2&97H51&6&'#)"D?! M\$(!O%#		V-(!"J"#=	+.		<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
Hexachlorobutadiene	39000		39000		5700	ug/Kg	——————————————————————————————————————	09/21/20 15:10	09/22/20 17:22	20
Hexachlorocyclopentadiene	39000	U	39000		5200	ug/Kg	₽	09/21/20 15:10	09/22/20 17:22	20
Hexachloroethane	39000	U	39000		5000	ug/Kg		09/21/20 15:10	09/22/20 17:22	20
Indeno[1,2,3-cd]pyrene	39000	U	39000		4800	ug/Kg	₩	09/21/20 15:10	09/22/20 17:22	20
Isophorone	39000	U	39000			ug/Kg	☼	09/21/20 15:10	09/22/20 17:22	20
Naphthalene	39000	U	39000			ug/Kg		09/21/20 15:10	09/22/20 17:22	20
Nitrobenzene	39000	U	39000			ug/Kg	☼	09/21/20 15:10	09/22/20 17:22	20
N-Nitrosodi-n-propylamine	39000	U	39000			ug/Kg	₩	09/21/20 15:10	09/22/20 17:22	20
N-Nitrosodiphenylamine	39000	U	39000		31000		∴	09/21/20 15:10	09/22/20 17:22	20
Pentachlorophenol	75000		75000		39000		*	09/21/20 15:10		20
Phenanthrene	39000		39000			ug/Kg	*	09/21/20 15:10		20
Phenol	39000		39000			ug/Kg		09/21/20 15:10		20
Pyrene	39000		39000			ug/Kg	☼	09/21/20 15:10		20
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None	444	ug/Kg	<u>-</u>				09/21/20 15:10	09/22/20 17:22	20
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	0		54 - 120						09/22/20 17:22	20
2-Fluorobiphenyl	0		60 - 120					09/21/20 15:10	09/22/20 17:22	20
2-Fluorophenol	0	Χ	52 - 120					09/21/20 15:10	09/22/20 17:22	20
Nitrobenzene-d5	0	X	53 - 120					09/21/20 15:10	09/22/20 17:22	20
Phenol-d5	0		54 - 120						09/22/20 17:22	20
o-Terphenyl-d14	0	X	79 - 130						09/22/20 17:22	20
4#0/ F2@200 DE200 O CO V-A/#/) A FIO —U##0	# 0/ !! A !! 👄	4 0 1 7 17							
<#%F?@2&9598Q&6&X=^(\$? M\$(!O%#		#,% A @: V-(!"J"#=	+,αIZ N +.		<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
4,4'-DDD	97	U	97		19	ug/Kg		09/22/20 13:04	09/23/20 12:14	50
4,4'-DDE	97	U	97		20	ug/Kg	₽	09/22/20 13:04	09/23/20 12:14	50
3_3d611:	7 G	S J-	97			ug/Kg	₽	09/22/20 13:04	09/23/20 12:14	50
Aldrin	97	U	97			ug/Kg		09/22/20 13:04	09/23/20 12:14	50
alpha-BHC		11	0.7			ug/Kg	₽	09/22/20 13:04	09/23/20 12:14	50
טו וט־מוועוג	97	U	97		17	ug/itg			00/22/20 42:44	50
•	97 97		97 97				₩	09/22/20 13:04	09/23/20 12.14	
peta-BHC		U			17	ug/Kg	\$	09/22/20 13:04 09/22/20 13:04		50
oeta-BHC cis-Chlordane	97	U	97		17 48	ug/Kg ug/Kg			09/23/20 12:14	
beta-BHC cis-Chlordane delta-BHC	97 97	U U U	97 97 97		17 48 18	ug/Kg ug/Kg ug/Kg		09/22/20 13:04 09/22/20 13:04	09/23/20 12:14 09/23/20 12:14	50
oeta-BHC cis-Chlordane delta-BHC Dieldrin	97 97 97 97	U U U U	97 97 97 97		17 48 18 23	ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$	09/22/20 13:04 09/22/20 13:04 09/22/20 13:04	09/23/20 12:14 09/23/20 12:14 09/23/20 12:14	50 50 50
oeta-BHC cis-Chlordane delta-BHC Dieldrin Endosulfan I	97 97 97 97	U U U U	97 97 97 97		17 48 18 23 19	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$	09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04	09/23/20 12:14 09/23/20 12:14 09/23/20 12:14 09/23/20 12:14	50 50 50
oeta-BHC cis-Chlordane delta-BHC Dieldrin Endosulfan I Endosulfan II	97 97 97 97 97	U U U U U	97 97 97 97 97		17 48 18 23 19 17	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$	09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04	09/23/20 12:14 09/23/20 12:14 09/23/20 12:14 09/23/20 12:14 09/23/20 12:14	50 50 50
oeta-BHC cis-Chlordane delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate	97 97 97 97 97 97	U U U U U U	97 97 97 97 97 97		17 48 18 23 19 17	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$	09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04	09/23/20 12:14 09/23/20 12:14 09/23/20 12:14 09/23/20 12:14 09/23/20 12:14 09/23/20 12:14	50 50 50 50
oeta-BHC cis-Chlordane delta-BHC Dieldrin Endosulfan I Endosulfan sulfate Endrin	97 97 97 97 97	U U U U U U	97 97 97 97 97 97 97		17 48 18 23 19 17 18	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$	09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04	09/23/20 12:14 09/23/20 12:14 09/23/20 12:14 09/23/20 12:14 09/23/20 12:14 09/23/20 12:14 09/23/20 12:14	50 50 50 50 50
oeta-BHC cis-Chlordane delta-BHC Dieldrin Endosulfan I Endosulfan sulfate Endrin Endrin	97 97 97 97 97 97 97	U U U U U U U	97 97 97 97 97 97 97		17 48 18 23 19 17 18 19 25	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	*	09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04	09/23/20 12:14 09/23/20 12:14 09/23/20 12:14 09/23/20 12:14 09/23/20 12:14 09/23/20 12:14 09/23/20 12:14 09/23/20 12:14	50 50 50 50 50 50 50
oeta-BHC cis-Chlordane delta-BHC Dieldrin Endosulfan I Endosulfan sulfate Endrin Endrin Endrin aldehyde Endrin ketone	97 97 97 97 97 97 97 97	U U U U U U U U	97 97 97 97 97 97 97 97		17 48 18 23 19 17 18 19 25 24	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	* * * * * * * * * * * * * * * * * * *	09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04	09/23/20 12:14 09/23/20 12:14 09/23/20 12:14 09/23/20 12:14 09/23/20 12:14 09/23/20 12:14 09/23/20 12:14 09/23/20 12:14 09/23/20 12:14	50 50 50 50 50 50 50 50
peta-BHC cis-Chlordane delta-BHC Dieldrin Endosulfan I Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane)	97 97 97 97 97 97 97 97 97	U U U U U U U U U	97 97 97 97 97 97 97 97 97		17 48 18 23 19 17 18 19 25 24	ug/Kg	* * * * * * * * * * * * * * * * * * *	09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04	09/23/20 12:14 09/23/20 12:14 09/23/20 12:14 09/23/20 12:14 09/23/20 12:14 09/23/20 12:14 09/23/20 12:14 09/23/20 12:14 09/23/20 12:14	50 50 50 50 50 50 50 50
Deta-BHC Dis-Chlordane delta-BHC Dieldrin Endosulfan I Endosulfan sulfate Endrin Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane)	97 97 97 97 97 97 97 97 97	U U U U U U U U U	97 97 97 97 97 97 97 97 97 97		17 48 18 23 19 17 18 19 25 24 18	ug/Kg	* * * * * * * * * * * * * * * * * * *	09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04	09/23/20 12:14 09/23/20 12:14	50 55 50 50 50 50 50 50 50 50
peta-BHC cis-Chlordane delta-BHC Dieldrin Endosulfan I Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) Heptachlor epoxide	97 97 97 97 97 97 97 97 97 97	U U U U U U U U U U	97 97 97 97 97 97 97 97 97 97		17 48 18 23 19 17 18 19 25 24 18 21	ug/Kg	* * * * * * * * * * * * * * * * * * *	09/22/20 13:04 09/22/20 13:04	09/23/20 12:14 09/23/20 12:14	50 50 50 50 50 50 50 50 50 50 50 50
beta-BHC cis-Chlordane delta-BHC Dieldrin Endosulfan I Endosulfan sulfate Endrin Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Toxaphene	97 97 97 97 97 97 97 97 97		97 97 97 97 97 97 97 97 97 97		17 48 18 23 19 17 18 19 25 24 18 21 25 20	ug/Kg	* * * * * * * * * * * * * * * * * * *	09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04	09/23/20 12:14 09/23/20 12:14	50 55 50 50 50 50 50 50 50 50

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&"658

.(/&'()*!#&012&345678939564

1(%#& ?!!#A%#@**285B**C75&8328G

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl		X	45 - 120				09/22/20 13:04	09/23/20 12:14	50
DCB Decachlorobiphenyl	0	X	45 - 120				09/22/20 13:04	09/23/20 12:14	50
Tetrachloro-m-xylene	0	X	30 - 124				09/22/20 13:04	09/23/20 12:14	50
Tetrachloro-m-xylene	0	X	30 - 124				09/22/20 13:04	09/23/20 12:14	50
<#%F?@2&959 &b \&;?!OAF!?='			; Q,K&/O&Z	(,& F=?)(
M\$(!O%#		V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
PCB-1016	0.26		0.26		mg/Kg	₩		09/22/20 16:49	1
PCB-1221	0.26		0.26		mg/Kg	₩		09/22/20 16:49	1
PCB-1232	0.26		0.26		mg/Kg		09/21/20 15:17		1
PCB-1242	0.26		0.26		mg/Kg	₩	09/21/20 15:17	09/22/20 16:49	1
PCB-1248	0.26		0.26		mg/Kg	₩		09/22/20 16:49	1
PCB-1254	0.26	U	0.26		mg/Kg	₩.		09/22/20 16:49	1
PCB-1260	0.26	U	0.26	0.12	mg/Kg	₽	09/21/20 15:17	09/22/20 16:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	94		60 - 154				09/21/20 15:17	09/22/20 16:49	
Tetrachloro-m-xylene	83		60 - 154				09/21/20 15:17	09/22/20 16:49	
DCB Decachlorobiphenyl	89		65 - 174				09/21/20 15:17	09/22/20 16:49	
DCB Decachlorobiphenyl	56	X	65 - 174				09/21/20 15:17	09/22/20 16:49	
- <#%F?@2&GEH&I)?@"J"#@K	&6&L!- M#N	D!&#@& (\$.	A#,						
M\$(!O%#	+#,-!%	V-(!"J"#=	+,	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
Perfluorobutanoic acid (PFBA)	0.22	U	0.22	0.031	ug/Kg	₩	09/20/20 20:32	09/24/20 20:33	1
Perfluoropentanoic acid (PFPeA)	0.22	U	0.22	0.084	ug/Kg	₩	09/20/20 20:32	09/24/20 20:33	1
Perfluorohexanoic acid (PFHxA)	0.22	U	0.22	0.046	ug/Kg	₩	09/20/20 20:32	09/24/20 20:33	1
Perfluoroheptanoic acid (PFHpA)	0.22	U	0.22	0.032	ug/Kg	₽	09/20/20 20:32	09/24/20 20:33	1
Perfluorooctanoic acid (PFOA)	0.22	U	0.22	0.094	ug/Kg	₩	09/20/20 20:32	09/24/20 20:33	1
;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK	5R5G3	38	0.22	0.039	ug/Kg	₩	09/20/20 20:32	09/24/20 20:33	1
;#=J!-?=?@#A(\$?"A&(A"@&IL1MK	5R5H7	7 S	0.22	0.024	ug/Kg	₩	09/20/20 20:32	09/24/20 20:33	1
;#=J!-?=?-\$@#A(\$?"A&(A"@& I;LU\$MK	5R545	S	0.22		ug/Kg	☼	09/20/20 20:32	09/24/20 20:33	1
Perfluorododecanoic acid (PFDoA)	0.22	U	0.22		ug/Kg	₩	09/20/20 20:32	09/24/20 20:33	1
Perfluorotridecanoic acid (PFTriA)	0.22		0.22		ug/Kg	₩	09/20/20 20:32	09/24/20 20:33	1
Perfluorotetradecanoic acid (PFTeA)	0.22		0.22		ug/Kg	₩		09/24/20 20:33	1
Perfluorobutanesulfonic acid (PFBS)	0.22	U	0.22	0.027	ug/Kg	₩	09/20/20 20:32	09/24/20 20:33	1
Perfluorohexanesulfonic acid (PFHxS)	0.22	U	0.22	0.034	ug/Kg	₽	09/20/20 20:32	09/24/20 20:33	1
Perfluoroheptanesulfonic Acid (PFHpS)	0.22	U	0.22	0.038	ug/Kg	₽	09/20/20 20:32	09/24/20 20:33	1
;#=J!-?=??A%(\$#,-!J?\$"A&(A"@& I;LX'K	5RH	5Q J+	0.55	0.22	ug/Kg	₩	09/20/20 20:32	09/24/20 20:33	1
Perfluorodecanesulfonic acid (PFDS)	0.22	U	0.22	0.043	ug/Kg	₩	09/20/20 20:32	09/24/20 20:33	1
Perfluorooctanesulfonamide (FOSA)	0.22	U	0.22	0.089	ug/Kg	₩	09/20/20 20:32	09/24/20 20:33	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	2.2	U	2.2		ug/Kg		09/20/20 20:32	09/24/20 20:33	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	2.2		2.2		ug/Kg	\$	09/20/20 20:32		1
6:2 FTS	2.2		2.2		ug/Kg	₩		09/24/20 20:33	1
8:2 FTS	2.2		2.2	0.27	ug/Kg	₩		09/24/20 20:33	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	63		25 - 150					09/24/20 20:33	
13C5 PFPeA	71		25 - 150				09/20/20 20:32	09/24/20 20:33	

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&"658

.(/&'()*!#&012&345678939564

Job ID: 460-218480-1

<(%=">2&'?!"(

1(%#& ?!!#A%#@**2853E**75&8328G 1(%#&+#A#"D#@2&5BC84C75&892E5 ;#=A#\$%&'?!"@,2&9C

%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
82	25 - 150				09/20/20 20:32	09/24/20 20:33	
84	25 - 150				09/20/20 20:32	09/24/20 20:33	
88	25 - 150				09/20/20 20:32	09/24/20 20:33	
92	25 - 150				09/20/20 20:32	09/24/20 20:33	
86	25 - 150				09/20/20 20:32	09/24/20 20:33	
89	25 - 150				09/20/20 20:32	09/24/20 20:33	
90	25 - 150				09/20/20 20:32	09/24/20 20:33	
87	25 - 150				09/20/20 20:32	09/24/20 20:33	
79	25 - 150				09/20/20 20:32	09/24/20 20:33	
87	25 - 150				09/20/20 20:32	09/24/20 20:33	
90	25 - 150				09/20/20 20:32	09/24/20 20:33	
72	25 - 150				09/20/20 20:32	09/24/20 20:33	
64							
74	25 - 150						
194 *5							
199 *5							
-							
	+.			1	;=#*(=#@		1"!&L(/
8BB55	11.5						1
17.2 U <mark>UJ</mark>	17.2			₽	09/24/20 17:07	09/25/20 13:11	1
3R7 Q	2.3			₽	09/24/20 17:07	09/25/20 13:11	1
85G J	0.57			☼	09/24/20 17:07	09/25/20 13:11	1
5R34	0.23			₽	09/24/20 17:07	09/25/20 13:11	1
5R84 S	0.23			₽	09/24/20 17:07	09/25/20 13:11	1
EHB5 J	57.3	3.8	mg/Kg	₽	09/24/20 17:07	09/25/20 13:11	1
E7RE	0.57	0.23	mg/Kg	☼	09/24/20 17:07	09/25/20 13:11	1
8HR5	0.57	0.057	mg/Kg	☼	09/24/20 17:07	09/25/20 13:11	1
77R4J-	1.1	0.24	mg/Kg	₽	09/24/20 17:07	09/25/20 13:11	1
7G755 J	11.5	4.0	mg/Kg	₽	09/24/20 17:07	09/25/20 13:11	1
EER4J	1.1	0.27	mg/Kg	☼	09/24/20 17:07	09/25/20 13:11	1
H545 J -	22.9	1.1	mg/Kg	₩	09/24/20 17:07	09/25/20 13:11	1
43B J	0.23	0.037	mg/Kg	₽	09/24/20 17:07	09/25/20 13:11	1
	5.7			₩	09/24/20 17:07	09/25/20 13:11	1
	34.4				09/24/20 17:07	09/25/20 13:11	1
			0 0				1
							1
							 1
							1
							1
331\ 3	2.0	0.70	9/13	~	55,2 1,20 11.01	33/20/20 10:11	
A- #08 K]							
+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
5R53G	0.023	0.0092	mg/Kg	☼	09/22/20 11:56	09/22/20 14:03	1
,,		_					
+#,-!% V-(!"J"#=	+. 1.2	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
	84 88 92 86 89 90 87 79 87 90 72 64 74 194 *5 199 *5 17.2 U UJ 3R7 Q 85G J 5R34 5R84 S EHB5 J E7RE 8HR5 77R4J- 7G755 J EER4J H545 J- 43B J 73R7 J- 77G5 J+ 4.6 U 0.69 U 895 6.9 U EHRB 9GRGJ	84 25-150 88 25-150 88 25-150 89 25-150 89 25-150 89 25-150 89 25-150 87 25-150 87 25-150 87 25-150 87 25-150 87 25-150 90 25-150 72 25-150 64 25-150 74 25-150 194 *5 25-150 199 *5 25-150 199 *5 25-150 199 *5 25-150 199 *5 25-150 1,&IOK *#,-!% V-(!"J"#= +. 8BB55 11.5 17.2 U UJ 17.2 3R7 Q 2.3 85G J 0.57 5R34 0.23 5R84 S 0.23 EHB5 J 57.3 E7RE 0.57 8HR5 0.57 77R4J- 1.1 7G755 J 11.5 EER4J 1.1 H545 J- 22.9 43B J 0.23 73R7 J- 5.7 77G5 J+ 34.4 4.6 U 4.6 0.69 U 0.69 895 160 6.9 U 6.9 EHRB 0.57 9GRGJ 2.3 \$A-NOAK] *#,-!% V-(!"J"#= +. 5R53G 0.023	84	84	84	84 25.150 09/20/20 20:32 88 25.150 09/20/20 20:32 92 25.150 09/20/20 20:32 86 25.150 09/20/20 20:32 89 25.150 09/20/20 20:32 89 25.150 09/20/20 20:32 89 25.150 09/20/20 20:32 87 25.150 09/20/20 20:32 87 25.150 09/20/20 20:32 87 25.150 09/20/20 20:32 90 25.150 09/20/20 20:32 90 25.150 09/20/20 20:32 90 25.150 09/20/20 20:32 90 25.150 09/20/20 20:32 91 25.150 09/20/20 20:32 92 25.150 09/20/20 20:32 93 25.150 09/20/20 20:32 94 25.150 09/20/20 20:32 95 25.150 09/20/20 20:32 194 *5 25.150 09/20/20 20:32 194 *5 25.150 09/20/20 20:32 194 *5 25.150 09/20/20 20:32 199 *5 25.150 09/20/20 20:32 199 *5 25.150 09/20/20 20:32 199 *5 25.150 09/20/20 20:32 199 *5 25.150 09/20/20 20:32 199 *5 25.150 09/20/20 20:32 1,840 ;K *#,-!% V-(!"J"#= +. <1. U\$"% 1 :=#*(=#@ 8BB55 11.5 5.0 mg/kg 09/24/20 17:07 8SG J 0.57 0.13 mg/kg 09/24/20 17:07 8SG J 0.57 0.13 mg/kg 09/24/20 17:07 8S64 0.23 0.032 mg/kg 09/24/20 17:07 5R84 S 0.23 0.034 mg/kg 09/24/20 17:07 5R84 S 0.23 0.034 mg/kg 09/24/20 17:07 EPRE 0.57 0.23 mg/kg 09/24/20 17:07 EPRE 0.57 0.23 mg/kg 09/24/20 17:07 777R4 J- 1.1 0.24 mg/kg 09/24/20 17:07 777R5 J 11.5 4.0 mg/kg 09/24/20 17:07 776755 J 11.5 4.0 mg/kg 09/24/20 17:07 776755 J 11.5 4.0 mg/kg 09/24/20 17:07 776755 J 11.5 4.0 mg/kg 09/24/20 17:07 777R4 J- 1.1 0.27 mg/kg 09/24/20 17:07 777R5 J 11.5 4.0 mg/kg 09/24/20 17:07 777R5 J 11.5 4.0 mg/kg 09/24/20 17:07 777R5 J 11.5 4.0 mg/kg 09/24/20 17:07 7787 J- 5.7 0.26 mg/kg 09/24/20 17:07 7387 J- 5.7 0.26 mg/kg 09/24/20 17:07 7387 J- 5.7 0.26 mg/kg 09/24/20 17:07 7387 J- 5.7 0.26 mg/kg 09/24/20 17:07 73895 160 14.9 mg/kg 09/24/20 17:07 895 160 14.9 mg/kg 09/24/20 17:07 896 09 0.33 mg/kg 09/24/20 17:07 895 160 14.9 mg/kg 09/24/20 17:07 895 160 14.9 mg/kg 09/24/20 17:07 896 09 0.33 mg/kg 09/24/20 17:07 896 09 0.33 mg/kg 09/24/20 17:07 896 09 0.009 0.009 09/24/20 17:07 896 09 0.009 09/24/20 17:07 896 09 0.009 09/24/20 17:07 896 09 09/24/20 17:07	84 25.150 09/20/20 20:32 09/24/20 20:33 92 25.150 09/20/20 20:32 09/24/20 20:33 92 25.150 09/20/20 20:32 09/24/20 20:33 92 25.150 09/20/20 20:32 09/24/20 20:33 99 25.150 09/20/20 20:32 09/24/20 20:33 99 25.150 09/20/20 20:32 09/24/20 20:33 99 25.150 09/20/20 20:32 09/24/20 20:33 87 25.150 09/20/20 20:32 09/24/20 20:33 87 25.150 09/20/20 20:32 09/24/20 20:33 90 25.150 09/20/20 20:32 09/24/20 20:33 90 25.150 09/20/20 20:32 09/24/20 20:33 90 25.150 09/20/20 20:32 09/24/20 20:33 90 25.150 09/20/20 20:32 09/24/20 20:33 90 25.150 09/20/20 20:32 09/24/20 20:33 90 25.150 09/20/20 20:32 09/24/20 20:33 90 25.150 09/20/20 20:32 09/24/20 20:33 90 25.150 09/20/20 20:32 09/24/20 20:33 90 20/20/20 20:32 09/24/20 20:33 90/20/20 20:32 09/24/20 20:33 90/20/20 20:32 09/24/20 20:33 90/20/20 20:32 09/24/20 20:33 90/20/20 20:32 09/24/20 20:33 90/20/20 20:32 09/24/20 20:33 90/20/20 20:32 09/24/20 20:33 90/20/20 20:32 09/24/20 20:33 90/20/20 20:32 09/24/20 20:33 90/20/20 20:32 09/24/20 20:33 90/20/20 20:32 09/24/20 20:33 90/20/20 20:32 09/24/20 20:33 90/20/20 20:32 09/24/20 20:33 90/20/20 20:32 09/24/20 20:33 90/20/20 20:32 09/24/20 20:32 09/24/20 20:33 90/20/20 20:22 00:32 90/24/20 20:32 90/24/20 20:33 90/24/20 20:33 90/24/20 20:33 90/24/20 20:33 90/24/20

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&"657

.(/&'()*!#&012&34567893956H

1(%#& ?!!#A%#@**285B**C75&8G255

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&9C

/ 1\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
,1,1-Trichloroethane	·	U H H3 UJ	1.2		ug/Kg	— <u></u>	09/18/20 22:18	09/23/20 02:59	
I,1,2,2-Tetrachloroethane		U H H3 <mark>UJ</mark>	1.2		ug/Kg	₽	09/18/20 22:18	09/23/20 02:59	1
1,1,2-Trichloro-1,2,2-trifluoroethane		U H H3 <mark>UJ</mark>	1.2		ug/Kg	☆	09/18/20 22:18	09/23/20 02:59	,
1,1,2-Trichloroethane		U H H3 UJ	1.2		ug/Kg		09/18/20 22:18		
,1-Dichloroethane		U H H3 UJ	1.2		ug/Kg	☆		09/23/20 02:59	
,1-Dichloroethene		U H H3 UJ	1.2		ug/Kg			09/23/20 02:59	
,2,4-Trichlorobenzene		U H H3 UJ	1.2		ug/Kg		09/18/20 22:18		
,2-Dibromo-3-Chloropropane		U H H3 UJ	1.2		ug/Kg			09/23/20 02:59	
,2-Dichlorobenzene		U H H3 UJ	1.2		ug/Kg				
,2-Dichloroethane		U H H3 UJ	1.2		ug/Kg		09/18/20 22:18		}
,,2-Dichloropropane		U H H3 UJ	1.2		ug/Kg			09/23/20 02:59	,
,,2-Dichlorobenzene		U H H3 UJ	1.2		ug/Kg ug/Kg	₩		09/23/20 02:59	,
,4-Dichlorobenzene		U H H3 UJ	1.2 5.9		ug/Kg		09/18/20 22:18		1
76Q-%(\$?\$#&I <p`k< td=""><td></td><td>W&WB</td><td></td><td></td><td>ug/Kg</td><td></td><td></td><td>09/23/20 02:59</td><td></td></p`k<>		W&WB			ug/Kg			09/23/20 02:59	
2-Hexanone		U H H3 UJ	5.9		ug/Kg				
I-Methyl-2-pentanone (MIBK)		U H H3 UJ	5.9		ug/Kg		09/18/20 22:18		
MA#%?\$#		W&WB	7.1		ug/Kg	₩		09/23/20 02:59	•
Benzene		U H H3 <mark>UJ</mark>	1.2		ug/Kg			09/23/20 02:59	
Bromoform		U H H3 <mark>UJ</mark>	1.2		ug/Kg	≎	09/18/20 22:18		•
Bromomethane	1.2	U H H3 UJ	1.2		ug/Kg	₽	09/18/20 22:18	09/23/20 02:59	•
(=/ ?\$&@" ,-!J"@#	5R3I	S&W&WE	1.2		ug/Kg		09/18/20 22:18	09/23/20 02:59	
Carbon tetrachloride	1.2	U H H3 UJ	1.2	0.46	ug/Kg	₩	09/18/20 22:18	09/23/20 02:59	
Chlorobenzene	1.2	U H H3 UJ	1.2	0.21	ug/Kg	⇔	09/18/20 22:18	09/23/20 02:59	•
Dibromochloromethane	1.2	U H H3 <mark>UJ</mark>	1.2	0.23	ug/Kg	☼	09/18/20 22:18	09/23/20 02:59	
Chloroethane	1.2	U H H3 <mark>UJ</mark>	1.2	0.62	ug/Kg	≎	09/18/20 22:18	09/23/20 02:59	
Chloroform	1.2	U H H3 <mark>UJ</mark>	1.2	0.38	ug/Kg	⇔	09/18/20 22:18	09/23/20 02:59	
Chloromethane	1.2	U H H3 <mark>UJ</mark>	1.2	0.51	ug/Kg	₩	09/18/20 22:18	09/23/20 02:59	
cis-1,2-Dichloroethene	1.2	U H H3 <mark>UJ</mark>	1.2	0.18	ug/Kg	₩	09/18/20 22:18	09/23/20 02:59	
Cyclohexane	1.2	U H H3 <mark>UJ</mark>	1.2	0.26	ug/Kg	☼	09/18/20 22:18	09/23/20 02:59	
Bromodichloromethane	1.2	U H H3 <mark>UJ</mark>	1.2	0.30	ug/Kg	≎	09/18/20 22:18	09/23/20 02:59	
Dichlorodifluoromethane	1.2	U H H3 UJ	1.2	0.40	ug/Kg	≎	09/18/20 22:18	09/23/20 02:59	
Ethylbenzene	1.2	U H H3 <mark>UJ</mark>	1.2		ug/Kg	☼	09/18/20 22:18	09/23/20 02:59	
I,2-Dibromoethane		U H H3 <mark>UJ</mark>	1.2		ug/Kg	☼	09/18/20 22:18	09/23/20 02:59	
sopropylbenzene		U H H3 UJ	1.2		ug/Kg		09/18/20 22:18	09/23/20 02:59	
Methyl acetate		U H H3 UJ	5.9		ug/Kg	₽		09/23/20 02:59	
Methyl tert-butyl ether		U H H3 UJ	1.2		ug/Kg	☆		09/23/20 02:59	
Methylcyclohexane		U H H3 UJ	1.2		ug/Kg		09/18/20 22:18		
<#%FO!#\$#& F!?="@#		SW&W₽	1.2		ug/Kg	☆		09/23/20 02:59	
Tetrachloroethene		U H H3 UJ	1.2		ug/Kg	~ \$		09/23/20 02:59	
Foluene		U H H3 UJ	1.2		ug/Kg			09/23/20 02:59	
rans-1,2-Dichloroethene		U H H3 UJ	1.2		ug/Kg ug/Kg			09/23/20 02:59	
						*			
rans-1,3-Dichloropropene		U H H3 UJ	1.2		ug/Kg	.		09/23/20 02:59	
Frichloroethene		U H H3 UJ	1.2		ug/Kg			09/23/20 02:59	
Frichlorofluoromethane		U H H3 UJ	1.2		ug/Kg			09/23/20 02:59	
/inyl chloride		U H H3 UJ	1.2		ug/Kg	<u>.</u> .		09/23/20 02:59	
(ylenes, Total		U H H3 UJ	2.4		ug/Kg	☼		09/23/20 02:59	
cis-1,3-Dichloropropene	1.2	U H H3 UJ	1.2 1.2	0.32	ug/Kg	☼	09/18/20 22:18	09/23/20 02:59 09/23/20 02:59	•

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&"657

Bis(2-ethylhexyl) phthalate

Q-%O!&/#\$TO!&*F%F(!(%#

.(/&'()*!#&012&34567893956H

1(%#& ?!!#A%#@**2&\$B**C75&8G255

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&9C

Job ID: 460-218480-1

Tentatively Identified Compound	Est. Result		Unit	<u>D</u> _	ı	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None	H H3	ug/Kg	☼				09/18/20 22:18	09/23/20 02:59	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	112		77 - 145					09/18/20 22:18	09/23/20 02:59	
Toluene-d8 (Surr)	100		80 - 120					09/18/20 22:18	09/23/20 02:59	
Dibromofluoromethane (Surr)	113		48 - 150					09/18/20 22:18	09/23/20 02:59	
4-Bromofluorobenzene	106		79 - 125					09/18/20 22:18	09/23/20 02:59	
<#%F?@2&97H51&6&'#)"D?!	!(%"!#&X=^(\$	5"A& ?)*?	-\$@,&IZ C<	<'K						
M\$(!O%#	+#,-!%	V-(!"J"#=	+.		<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
2,4,5-Trichlorophenol	990	U	990		270	ug/Kg	*	09/21/20 15:10	09/22/20 17:46	
2,4,6-Trichlorophenol	990	U	990		200	ug/Kg	₩	09/21/20 15:10	09/22/20 17:46	
2,4-Dichlorophenol	990	U	990		100	ug/Kg	₩	09/21/20 15:10	09/22/20 17:46	
2,4-Dimethylphenol	990	U	990		240	ug/Kg	₩	09/21/20 15:10	09/22/20 17:46	
2,4-Dinitrophenol	9700	U	9700		4600	ug/Kg	₩	09/21/20 15:10	09/22/20 17:46	
2,4-Dinitrotoluene	990	U	990		200	ug/Kg	₩	09/21/20 15:10	09/22/20 17:46	;
2,6-Dinitrotoluene	990	U	990		120	ug/Kg		09/21/20 15:10	09/22/20 17:46	
2-Chloronaphthalene	990	U	990		160	ug/Kg	₽	09/21/20 15:10	09/22/20 17:46	
2-Chlorophenol	1900	U	1900		180	ug/Kg	₩	09/21/20 15:10	09/22/20 17:46	
2-Methylnaphthalene	990	U	990		200	ug/Kg		09/21/20 15:10	09/22/20 17:46	
2-Methylphenol	990	U	990		120	ug/Kg	₩	09/21/20 15:10	09/22/20 17:46	
2-Nitroaniline	1900	U	1900		150	ug/Kg		09/21/20 15:10	09/22/20 17:46	
2-Nitrophenol	990		990		280	ug/Kg		09/21/20 15:10		
3,3'-Dichlorobenzidine	1900		1900		1200	ug/Kg	 	09/21/20 15:10	09/22/20 17:46	
3-Nitroaniline	1900		1900		270	ug/Kg	Ť Š	09/21/20 15:10	09/22/20 17:46	
4,6-Dinitro-2-methylphenol	1900		1900		990	ug/Kg	. T	09/21/20 15:10		
4-Bromophenyl phenyl ether	990		990		140	ug/Kg		09/21/20 15:10	09/22/20 17:46	
4-Chloro-3-methylphenol	990		990		240	ug/Kg		09/21/20 15:10	09/22/20 17:46	
4-Chloroaniline	990		990		240	ug/Kg		09/21/20 15:10		
4-Chlorophenyl phenyl ether	990		990		120	ug/Kg	₩ ₩	09/21/20 15:10	09/22/20 17:46	
4-Methylphenol	1900		1900		120	ug/Kg	₩	09/21/20 15:10	09/22/20 17:46	
4-Nitroaniline	1900		1900		520	ug/Kg		09/21/20 15:10		
	1900		1900		690	ug/Kg		09/21/20 15:10	09/22/20 17:46	,
4-Nitrophenol	990		990				‡			
Acenaphthene					150	ug/Kg		09/21/20 15:10		
Acenaphthylene	990		990		130	ug/Kg	‡	09/21/20 15:10	09/22/20 17:46	:
Acetophenone	990		990			ug/Kg	☆	09/21/20 15:10		
Anthracene	990		990			ug/Kg		09/21/20 15:10		
Atrazine	990		990			ug/Kg	☆	09/21/20 15:10		:
Benzaldehyde	990		990			ug/Kg	‡		09/22/20 17:46	
Benzo[a]anthracene	990		990			ug/Kg			09/22/20 17:46	
Q#\$T?b(c*O=#\$#	895		990			ug/Kg	₩		09/22/20 17:46	
Q#\$T?b/cJ!-?=(\$%F#\$#	8B5		990			ug/Kg	₩	09/21/20 15:10		
Q#\$T?b^_F_"c*#=O!#\$#	885	S	990			ug/Kg	☼	09/21/20 15:10		
Benzo[k]fluoranthene	990	U	990			ug/Kg	₩	09/21/20 15:10	09/22/20 17:46	
Biphenyl	990	U	990			ug/Kg	₩	09/21/20 15:10	09/22/20 17:46	
bis (2-chloroisopropyl) ether	990	U	990			ug/Kg	₩	09/21/20 15:10	09/22/20 17:46	
Bis(2-chloroethoxy)methane	990	U	990		210	ug/Kg	₩	09/21/20 15:10	09/22/20 17:46	
Bis(2-chloroethyl)ether	990	U	990		130	ug/Kg	☼	09/21/20 15:10	09/22/20 17:46	
Dia/O attacilla accil) in latta al ata	000	1.1	000		240	110/1/-	· Li	00/04/00 45:40	00/00/00 47:40	,

5

© 09/21/20 15:10 09/22/20 17:46

© 09/21/20 15:10 09/22/20 17:46

990

990

340 ug/Kg

160 ug/Kg

990 U

GG5 S

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&"657

.(/&'()*!#&012&34567893956H

1(%#& ?!!#A%#@**2&36**5&8G255

<(%=">2&'?!"(

1(%#&+#A#"D#@**2&56**5&892E5

M\$(!O%#		V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
Caprolactam	990	U	990	300	ug/Kg	₽	09/21/20 15:10	09/22/20 17:46	5
Carbazole	990	U	990	120	ug/Kg	₽	09/21/20 15:10	09/22/20 17:46	5
Chrysene	990	U	990	220	ug/Kg	₽	09/21/20 15:10	09/22/20 17:46	5
Dibenz(a,h)anthracene	990	U	990	170	ug/Kg	₽	09/21/20 15:10	09/22/20 17:46	5
Dibenzofuran	990	U	990	120	ug/Kg	₽	09/21/20 15:10	09/22/20 17:46	5
Diethyl phthalate	990	U	990	130	ug/Kg	₩	09/21/20 15:10	09/22/20 17:46	5
Dimethyl phthalate	990	U	990	120	ug/Kg	₽	09/21/20 15:10	09/22/20 17:46	5
Di-n-butyl phthalate	990	U	990	170	ug/Kg	₩	09/21/20 15:10	09/22/20 17:46	5
Di-n-octyl phthalate	990	U	990	120	ug/Kg	☼	09/21/20 15:10	09/22/20 17:46	5
L!-?=(\$%F#\$#	745	S	990	100	ug/Kg	☼	09/21/20 15:10	09/22/20 17:46	5
Fluorene	990	U	990	120	ug/Kg	₽	09/21/20 15:10	09/22/20 17:46	5
Hexachlorobenzene	990	U	990	130	ug/Kg	₽	09/21/20 15:10	09/22/20 17:46	5
Hexachlorobutadiene	990	U	990	150	ug/Kg	₽	09/21/20 15:10	09/22/20 17:46	5
Hexachlorocyclopentadiene	990	U	990	130	ug/Kg	₽	09/21/20 15:10	09/22/20 17:46	5
Hexachloroethane	990	U	990	130	ug/Kg	₽	09/21/20 15:10	09/22/20 17:46	5
Indeno[1,2,3-cd]pyrene	990	U	990	120	ug/Kg	₩	09/21/20 15:10	09/22/20 17:46	5
Isophorone	990	U	990	210	ug/Kg	☼	09/21/20 15:10	09/22/20 17:46	5
Naphthalene	990	U	990	130	ug/Kg		09/21/20 15:10	09/22/20 17:46	5
Nitrobenzene	990	U	990	110	ug/Kg	₽	09/21/20 15:10	09/22/20 17:46	5
N-Nitrosodi-n-propylamine	990	U	990	170	ug/Kg	₽	09/21/20 15:10	09/22/20 17:46	5
N-Nitrosodiphenylamine	990	U	990	800	ug/Kg		09/21/20 15:10	09/22/20 17:46	5
Pentachlorophenol	1900	U	1900	990	ug/Kg	₩	09/21/20 15:10	09/22/20 17:46	5
Phenanthrene	990	U	990	150	ug/Kg	₩	09/21/20 15:10	09/22/20 17:46	5
Phenol	990	U	990		ug/Kg		09/21/20 15:10	09/22/20 17:46	5
;O=#\$#	7G5	S	990		ug/Kg	₽	09/21/20 15:10	09/22/20 17:46	5
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	860	TJ	ug/Kg		3.41		09/21/20 15:10	09/22/20 17:46	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	84		54 - 120				09/21/20 15:10	09/22/20 17:46	5
2-Fluorobiphenyl	95		60 - 120				09/21/20 15:10	09/22/20 17:46	5
2-Fluorophenol	82		52 - 120				09/21/20 15:10	09/22/20 17:46	5
Nitrobenzene-d5	83		53 - 120				09/21/20 15:10	09/22/20 17:46	5
Phenol-d5	87		54 ₋ 120				09/21/20 15:10	09/22/20 17:46	5
p-Terphenyl-d14	103		79 - 130				09/21/20 15:10	09/22/20 17:46	5
<#%F?@2&9598Q&6&X=^(\$`	?ΔFI?="\$#&·:	# %" ^ "@	# &I7 K						
M\$(!O%#		V-(!"J"#=	#, CALL TO	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
4,4'-DDD	19				ug/Kg	÷		09/23/20 12:34	10
4,4'-DDE	19		19		ug/Kg	₩		09/23/20 12:34	10
4,4'-DDT	19		19		ug/Kg	₩		09/23/20 12:34	10
Aldrin	19		19		ug/Kg			09/23/20 12:34	10
alpha-BHC	19		19		ug/Kg	₩		09/23/20 12:34	10
beta-BHC	19		19		ug/Kg ug/Kg	<i>¥</i> r		09/23/20 12:34	10
cis-Chlordane	19							09/23/20 12:34	10
			19		ug/Kg	<i>₩</i>			
delta-BHC Dieldrin	19 19		19 19		ug/Kg ug/Kg	₽		09/23/20 12:34 09/23/20 12:34	10
	10	U	าน	4 6	וותיאמ	☼	USIZZIZU 1.3 U4	U9/23/2U 12:34	10
						· · · · · · · · · · · · · · · · · · ·			
Endosulfan I Endosulfan II	19 19	U	19	3.7	ug/Kg ug/Kg		09/22/20 13:04	09/23/20 12:34 09/23/20 12:34	10

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&"657

.(/&'()*!#&012&34567893956H

1(%#& ?!!#A%#@**285B**C75&8G255

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&9C

	EIO-HA#C	# 0/ II & II ~	017 1/01 040/	HA 4101	,				
<#%F?@2&9598Q&6&X=^(\$? <i>A</i> M\$(!0%#		#,%"A"@# _! V-(!"J"#=	,&IZ K&I ?\$% +	"\$-#@K <1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(/
Endosulfan sulfate	19	U -(: 3 #-	19		ug/Kg	. <u>-</u>		09/23/20 12:34	1 :0:10
Endrin	19		19		ug/Kg	 		09/23/20 12:34	10
Endrin aldehyde	19		19		ug/Kg ug/Kg	;;; ;;;		09/23/20 12:34	10
•	19		19						
Endrin ketone					ug/Kg			09/23/20 12:34	10
gamma-BHC (Lindane)	19		19		ug/Kg	:		09/23/20 12:34	10
Heptachlor	19		19		ug/Kg	#		09/23/20 12:34	10
Heptachlor epoxide	19		19		ug/Kg	 		09/23/20 12:34	10
Methoxychlor	19		19		ug/Kg	₩		09/23/20 12:34	10
Toxaphene	190		190		ug/Kg	₩		09/23/20 12:34	10
rans-Chlordane	19	U	19	6.2	ug/Kg	₩	09/22/20 13:04	09/23/20 12:34	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	0	X	45 - 120				09/22/20 13:04	09/23/20 12:34	10
DCB Decachlorobiphenyl	0	X	45 - 120				09/22/20 13:04	09/23/20 12:34	10
Tetrachloro-m-xylene	101		30 - 124				09/22/20 13:04	09/23/20 12:34	10
Tetrachloro-m-xylene	76		30 - 124				09/22/20 13:04	09/23/20 12:34	10
<#%F?@2&959 &N &;?!OAF!?="	'\$(%#@&Q'	'*F#\$O!.&I	: O.K&/O&Z(.	& F=?\(%?^=(*FO				
M\$(!O%#	• •	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
PCB-1016	0.26		0.26		mg/Kg	<u></u>		09/22/20 17:02	1
PCB-1221	0.26		0.26		mg/Kg	##		09/22/20 17:02	1
PCB-1232	0.26		0.26		mg/Kg			09/22/20 17:02	1
PCB-1242	0.26		0.26		mg/Kg	T.		09/22/20 17:02	
PCB-1248	0.26		0.26		mg/Kg	₩		09/22/20 17:02	1
PCB-1254	0.26		0.26			 ∰		09/22/20 17:02	1
PCB-1260	0.26		0.26		mg/Kg mg/Kg	∵. 	09/21/20 15:17		ا 1
GB-1200	0.20	O	0.20	0.12	mg/rtg	74	09/21/20 13.17	09/22/20 17:02	'
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	106		60 - 154				09/21/20 15:17	09/22/20 17:02	
Tetrachloro-m-xylene	91		60 - 154				09/21/20 15:17	09/22/20 17:02	
DCB Decachlorobiphenyl	105		65 - 174				09/21/20 15:17	09/22/20 17:02	
DCB Decachlorobiphenyl	66		65 - 174				09/21/20 15:17	09/22/20 17:02	
<#%F?@2&GEH&I)?@"J"#@K	RESILIZAS.	519<i>R#G</i>9 2(\$)	Δ#						
M\$(!O%#		V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(/
Perfluorobutanoic acid (PFBA)	0.22	U	0.22	0.030	ug/Kg	₩	09/20/20 20:32	09/24/20 20:42	1
Perfluoropentanoic acid (PFPeA)	0.22	U	0.22	0.084	ug/Kg	₩	09/20/20 20:32	09/24/20 20:42	1
	K 5R5B9	9S	0.22	0.046	ug/Kg	₩	09/20/20 20:32	09/24/20 20:42	1
;#=J!-?=?F#>(\$?"A&(A"@&ILW>Mŀ							00/20/20 20:32	09/24/20 20:42	
'		S	0.22	0.032	ua/Ka	≎	03/20/20 20.32		
:#=J!-?=?F#*%(\$?"A&(A"@&ILW*M	1K 5R54E		0.22 0.22	0.032		₩			
#=J!-?=?F#*%(\$?"A&(A"@&ILW*M #=J!-?=??A%(\$?"A&(A"@&ILXMK	1K 5R54E 5R73	,	0.22	0.093	ug/Kg	☆	09/20/20 20:32	09/24/20 20:42	1
#=J!-?=?F#*%(\$?"A&(A"@&ILW*M #=J!-?=??A%(\$?"A&(A"@&ILXMK #=J!-?=?\$?\$(\$?"A&(A"@&ILYMK	1K 5R54E 5R73 5R87	'S	0.22 0.22	0.093 0.039	ug/Kg ug/Kg	\$ \$ \$	09/20/20 20:32 09/20/20 20:32	09/24/20 20:42 09/24/20 20:42	1
#=J!-?=?F#*%(\$?"A&(A"@&ILW*M #=J!-?=??A%(\$?"A&(A"@&ILXMK #=J!-?=?\$?\$(\$?"A&(A"@&ILYMK #=J!-?=?@#A(\$?"A&(A"@&IL1MK	5R54E 5R73 5R87 7R7	S	0.22 0.22 0.22	0.093 0.039 0.024	ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$	09/20/20 20:32 09/20/20 20:32 09/20/20 20:32	09/24/20 20:42 09/24/20 20:42 09/24/20 20:42	1 1 1
#=J!-?=?F#*%(\$?"A&(A"@&ILW*M #=J!-?=??A%(\$?"A&(A"@&ILXMK :#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK #=J!-?=?@#A(\$?"A&(A"@&IL1MK #=J!-?=?-\$@#A(\$?"A&(A"@&	1K 5R54E 5R73 5R87	S	0.22 0.22	0.093 0.039 0.024	ug/Kg ug/Kg	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	09/20/20 20:32 09/20/20 20:32 09/20/20 20:32	09/24/20 20:42 09/24/20 20:42	1 1 1
#=J!-?=?F#*%(\$?"A&(A"@&ILW*M #=J!-?=??A%(\$?"A&(A"@&ILXMK #=J!-?=?\$?\$(\$?"A&(A"@&ILYMK #=J!-?=?@#A(\$?"A&(A"@&IL1MK #=J!-?=?-\$@#A(\$?"A&(A"@& ;L U\$MK #=J!-?=?@?@#A(\$?"A&(A"@&	5R54E 5R73 5R87 7R7	S	0.22 0.22 0.22	0.093 0.039 0.024 0.039	ug/Kg ug/Kg ug/Kg		09/20/20 20:32 09/20/20 20:32 09/20/20 20:32	09/24/20 20:42 09/24/20 20:42 09/24/20 20:42 09/24/20 20:42	1 1 1 1
#=J!-?=?F#*%(\$?"A&(A"@&ILW*M;#=J!-?=??A%(\$?"A&(A"@&ILXMK;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK;#=J!-?=?@#A(\$?"A&(A"@&IL1MK;#=J!-?=?-\$@#A(\$?"A&(A"@&IL1MK;#=J!-?=?-\$@#A(\$?"A&(A"@&IL1MK;#=J!-?=?@?@#A(\$?"A&(A"@&IL1MK;#=J!-?=?@?@#A(\$?"A&(A"@&IL1MK	1K 5R54E 5R73 5R87 7R7 8R3	S S S S S S S S S S S S S S S S S S S	0.22 0.22 0.22 0.22 0.22	0.093 0.039 0.024 0.039 0.073	ug/Kg ug/Kg ug/Kg ug/Kg	\$	09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32	09/24/20 20:42 09/24/20 20:42 09/24/20 20:42 09/24/20 20:42 09/24/20 20:42	1 1 1 1
;#=J!-?=?F#>(\$?"A&(A"@&ILW>MI;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MI;#=J!-?=??A%(\$?"A&(A"@&ILXMK ;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK ;#=J!-?=?@#A(\$?"A&(A"@&ILYMK ;#=J!-?=?@#A(\$?"A&(A"@&IL1MK ;#=J!-?=?-\$@#A(\$?"A&(A"@& I;L U\$MK ;#=J!-?=?@?@#A(\$?"A&(A"@& I;L 1?MK ;#=J!-?=?%="@#A(\$?"A&(A"@&IMIX#=J!-?=?%#%=(@#A(\$?"A&(A"@& I;L: #MK	5R54E 5R73 5R87 7R7 8R3 HR0	S S	0.22 0.22 0.22 0.22	0.093 0.039 0.024 0.039 0.073	ug/Kg ug/Kg ug/Kg ug/Kg	≎	09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32	09/24/20 20:42 09/24/20 20:42 09/24/20 20:42 09/24/20 20:42 09/24/20 20:42 09/24/20 20:42	1 1 1 1 1 1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&"657

.(/&'()*!#&012&34567893956H

Job ID: 460-218480-1

1(%#& ?!!#A%#@**285B**C75&8G255 <(%=">2&'?!"(1(%#&+#A#"D#@2&5BC84C75&892E5 ;#=A#\$%&'?!"@,2&9C

<#%F?@2&GEH&I)?@"J"#@K M\$(!0%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
;#=J!-?=?F#>(\$#,-!J?\$"A&(A"@& I;LW>'K	5R539 S	0.22		ug/Kg			09/24/20 20:42	1
Perfluoroheptanesulfonic Acid (PFHpS)	0.22 U	0.22	0.038	ug/Kg		09/20/20 20:32	09/24/20 20:42	1
;#=J!-?=??A%(\$#,-!J?\$"A&(A"@& I:LX'K	7RHQ	0.54	0.22	ug/Kg	₩	09/20/20 20:32	09/24/20 20:42	1
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	5R537 S	0.22	0.042	ug/Kg		09/20/20 20:32	09/24/20 20:42	1
;#=J!-?=??A%(\$#,-!J?\$()"@#& ILX'MK	5RGEJ+	0.22	0.089	ug/Kg	₩	09/20/20 20:32	09/24/20 20:42	1
Y6)#%F0!*#=J!-?=??A%(\$#,-!J?\$()"@?(A#%"A&(A"@&IY<#LX'MMK	GR7	2.2	0.42	ug/Kg	₩	09/20/20 20:32	09/24/20 20:42	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	2.2 U	2.2	0.40	ug/Kg		09/20/20 20:32	09/24/20 20:42	1
427&L:'	5R84 SJ	2.2	0.16	ug/Kg	₩	09/20/20 20:32	09/24/20 20:42	1
927&L:'	5R79 SJ	2.2		ug/Kg			09/24/20 20:42	1
Isotope Dilution	%Recovery Qualifier	Limits		-9.1-9		Prepared	Analyzed	Dil Fac
13C4 PFBA	69	25 - 150				09/20/20 20:32	09/24/20 20:42	
13C5 PFPeA	82	25 - 150				09/20/20 20:32	09/24/20 20:42	
13C2 PFHxA	90	25 - 150				09/20/20 20:32	09/24/20 20:42	
13C4 PFHpA	90	25 - 150				09/20/20 20:32	09/24/20 20:42	
13C4 PFOA	90	25 - 150				09/20/20 20:32	09/24/20 20:42	
13C5 PFNA	92	25 - 150				09/20/20 20:32	09/24/20 20:42	
13C2 PFDA	90	25 - 150				09/20/20 20:32	09/24/20 20:42	
13C2 PFUnA	94	25 - 150				09/20/20 20:32	09/24/20 20:42	
13C2 PFDoA	89	25 - 150				09/20/20 20:32	09/24/20 20:42	
13C2 PFTeDA	95	25 - 150				09/20/20 20:32	09/24/20 20:42	
13C3 PFBS	82	25 - 150				09/20/20 20:32	09/24/20 20:42	
1802 PFHxS	95	25 - 150				09/20/20 20:32	09/24/20 20:42	
13C4 PFOS	92	25 - 150				09/20/20 20:32	09/24/20 20:42	
13C8 FOSA	82	25 - 150				09/20/20 20:32	09/24/20 20:42	
d3-NMeFOSAA	71	25 - 150				09/20/20 20:32	09/24/20 20:42	
d5-NEtFOSAA	80	25 - 150				09/20/20 20:32	09/24/20 20:42	
M2-6:2 FTS	156 *5	25 - 150				09/20/20 20:32	09/24/20 20:42	
M2-8:2 FTS	177 *5	25 - 150				09/20/20 20:32	09/24/20 20:42	
<#%F?@2&4585 &6&<#%(!,&I				11440/		##/ #O	******	4010174
M\$(!O%#	+#,-!% V-(!"J"#=	+.		U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
M!-)"\$-)	89455	12.2		mg/Kg	☼		09/25/20 13:26	1
Antimony	18.3 U UJ	18.3		mg/Kg	\$		09/25/20 13:26	1
M=,#\$"A	ER4Q	2.4		mg/Kg			09/25/20 13:26	1
Q(="-)	B5RGJ	0.61		mg/Kg	₩		09/25/20 13:26	1
Q#=O!!"-)	5R37	0.24		mg/Kg	₽		09/25/20 13:26	1
(@)"-)	5R5BBS	0.24		mg/Kg			09/25/20 13:26	1
(!A"-)	7985 J	61.0		mg/Kg	₽		09/25/20 13:26	1
F=?)"-)	79R8	0.61		mg/Kg	☼		09/25/20 13:26	1
?/(!%	85R8	0.61	0.061	mg/Kg			09/25/20 13:26	1
?**#=	89RHJ-	1.2	0.26	mg/Kg	₽	09/24/20 17:07	09/25/20 13:26	1
0=?\$	77355 J	12.2	4.3	mg/Kg	₩	09/24/20 17:07	09/25/20 13:26	1
.#(@	78RBJ	1.2	0.29	mg/Kg	☼	09/24/20 17:07	09/25/20 13:26	1
<(^\$#,"-)	48B5 J -	24.4	1.1	mg/Kg	☼	09/24/20 17:07	09/25/20 13:26	1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&"657

.(/&'()*!#&012&34567893956H

<(%=">2&'?!"(

Job ID: 460-218480-1

;#=A#\$%&'?!"@,2&9C

1(%#& ?!!#A%#@**285B**C75&8G255 1(%#&+#A#"D#@2&5BC84C75&892E5

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
<(\$^(\$#,#	E79	J	0.24	0.039	mg/Kg	⊅	09/24/20 17:07	09/25/20 13:26	1
Y"AN#!	75R9	J-	6.1	0.28	mg/Kg	☼	09/24/20 17:07	09/25/20 13:26	1
;?%(,,"-)	78H5	J+	36.6	24.4	mg/Kg	⊅	09/24/20 17:07	09/25/20 13:26	1
'#!#\$"-)	5R4H	IS	4.9	0.49	mg/Kg	☼	09/24/20 17:07	09/25/20 13:26	1
Silver	0.73	U	0.73	0.24	mg/Kg	☼	09/24/20 17:07	09/25/20 13:26	1
'?@"-)	83E	S	171	15.9	mg/Kg		09/24/20 17:07	09/25/20 13:26	1
Thallium	7.3	U	7.3	0.37	mg/Kg	☼	09/24/20 17:07	09/25/20 13:26	1
] (\$(@"-)	EGR	8	0.61	0.13	mg/Kg	☼	09/24/20 17:07	09/25/20 13:26	1
e"\$A	H5R4	Ŋ	2.4	0.78	mg/Kg	☼	09/24/20 17:07	09/25/20 13:26	1
<#%F?@2&H3H8Q&6&<#= <i>F</i>	√}=NOVS K								
M\$(!O%#	-	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
<#=A-=O	5R574		0.020	0.0082	mg/Kg	☼	09/22/20 11:56	09/22/20 14:04	1
Z#\$#=(!& F#)",%=O									
M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
Cyanide, Total	1.1	U	1.1	0.53	mg/Kg	— <u></u>	09/21/20 13:33	09/22/20 14:20	1

!"#\$%&'()*!#&012&"65E

1(%#& ?!!#A%#@**285B**C75&8G275 1(%#&+#A#"D#@2&5BC84C75&892E5 .(/&'()*!#&012&345678939569

<(%=">2&'?!"(

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
1,1,1-Trichloroethane	0.98	U H H3 UJ	0.98	0.23	ug/Kg	-	09/18/20 22:20	09/23/20 03:22	1
1,1,2,2-Tetrachloroethane	0.98	U H H3 <mark>UJ</mark>	0.98	0.21	ug/Kg	☼	09/18/20 22:20	09/23/20 03:22	1
1,1,2-Trichloro-1,2,2-trifluoroethane	0.98	U H H3 <mark>UJ</mark>	0.98	0.30	ug/Kg	☼	09/18/20 22:20	09/23/20 03:22	1
1,1,2-Trichloroethane	0.98	U H H3 UJ	0.98	0.17	ug/Kg	₩	09/18/20 22:20	09/23/20 03:22	1
1,1-Dichloroethane	0.98	U H H3 <mark>UJ</mark>	0.98	0.20	ug/Kg	☼	09/18/20 22:20	09/23/20 03:22	1
1,1-Dichloroethene	0.98	U H H3 <mark>UJ</mark>	0.98	0.22	ug/Kg	☼	09/18/20 22:20	09/23/20 03:22	1
1,2,4-Trichlorobenzene	0.98	U H H3 UJ	0.98	0.35	ug/Kg	₽	09/18/20 22:20	09/23/20 03:22	1
1,2-Dibromo-3-Chloropropane	0.98	U H H3 <mark>UJ</mark>	0.98	0.45	ug/Kg	☼	09/18/20 22:20	09/23/20 03:22	1
1,2-Dichlorobenzene	0.98	U H H3 <mark>UJ</mark>	0.98	0.14	ug/Kg	☼	09/18/20 22:20	09/23/20 03:22	1
1,2-Dichloroethane	0.98	U H H3 UJ	0.98	0.29	ug/Kg	₽	09/18/20 22:20	09/23/20 03:22	1
1,2-Dichloropropane	0.98	U H H3 <mark>UJ</mark>	0.98	0.42	ug/Kg	☼	09/18/20 22:20	09/23/20 03:22	1
1,3-Dichlorobenzene	0.98	U H H3 <mark>UJ</mark>	0.98	0.16	ug/Kg	☼	09/18/20 22:20	09/23/20 03:22	1
1,4-Dichlorobenzene	0.98	U H H3 UJ	0.98	0.22	ug/Kg	₽	09/18/20 22:20	09/23/20 03:22	1
2-Butanone (MEK)	4.9	U H H3 <mark>UJ</mark>	4.9	2.7	ug/Kg	☼	09/18/20 22:20	09/23/20 03:22	1
2-Hexanone	4.9	U H H3 <mark>UJ</mark>	4.9	1.7	ug/Kg	☼	09/18/20 22:20	09/23/20 03:22	1
4-Methyl-2-pentanone (MIBK)	4.9	U H H3 UJ	4.9	1.5	ug/Kg	₽	09/18/20 22:20	09/23/20 03:22	1
MA#%?\$#	4R4	₩&W₽	5.9	5.6	ug/Kg	☼	09/18/20 22:20	09/23/20 03:22	1
Benzene	0.98	U H H3 <mark>UJ</mark>	0.98	0.25	ug/Kg	☼	09/18/20 22:20	09/23/20 03:22	1
Bromoform	0.98	U H H3 UJ	0.98	0.42	ug/Kg	⊅	09/18/20 22:20	09/23/20 03:22	1
Bromomethane	0.98	U H H3 <mark>UJ</mark>	0.98	0.47	ug/Kg	☼	09/18/20 22:20	09/23/20 03:22	1
Carbon disulfide	0.98	U H H3 <mark>UJ</mark>	0.98	0.26	ug/Kg	☼	09/18/20 22:20	09/23/20 03:22	1
Carbon tetrachloride	0.98	U H H3 UJ	0.98	0.38	ug/Kg	⊅	09/18/20 22:20	09/23/20 03:22	1
Chlorobenzene	0.98	U H H3 <mark>UJ</mark>	0.98	0.17	ug/Kg	☼	09/18/20 22:20	09/23/20 03:22	1
Dibromochloromethane	0.98	U H H3 <mark>UJ</mark>	0.98	0.19	ug/Kg	☼	09/18/20 22:20	09/23/20 03:22	1
Chloroethane	0.98	U H H3 UJ	0.98	0.51	ug/Kg	₽	09/18/20 22:20	09/23/20 03:22	1
Chloroform	0.98	U H H3 <mark>UJ</mark>	0.98	0.31	ug/Kg	₩	09/18/20 22:20	09/23/20 03:22	1

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&"65E

.(/&'()*!#&012&345678939569

1(%#& ?!!#A%#@**285B**C75&8G275

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

M\$(!O%#		V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
Chloromethane	0.98	U H H3 UJ	0.98	0.43	ug/Kg	₽	09/18/20 22:20	09/23/20 03:22	1
cis-1,2-Dichloroethene	0.98	U H H3 UJ	0.98	0.15	ug/Kg	₽	09/18/20 22:20	09/23/20 03:22	1
Cyclohexane	0.98	U H H3 UJ	0.98	0.22	ug/Kg	₽	09/18/20 22:20	09/23/20 03:22	1
Bromodichloromethane	0.98	U H H3 UJ	0.98	0.25	ug/Kg	₽	09/18/20 22:20	09/23/20 03:22	1
Dichlorodifluoromethane	0.98	U H H3 UJ	0.98	0.33	ug/Kg	₩	09/18/20 22:20	09/23/20 03:22	1
Ethylbenzene	0.98	U H H3 UJ	0.98	0.20	ug/Kg	☼	09/18/20 22:20	09/23/20 03:22	1
1,2-Dibromoethane	0.98	U H H3 UJ	0.98	0.18	ug/Kg	☆	09/18/20 22:20	09/23/20 03:22	1
Isopropylbenzene	0.98	U H H3 UJ	0.98	0.12	ug/Kg	₽	09/18/20 22:20	09/23/20 03:22	1
Methyl acetate	4.9	U H H3 UJ	4.9	4.2	ug/Kg	₩	09/18/20 22:20	09/23/20 03:22	1
Methyl tert-butyl ether	0.98	U H H3 UJ	0.98	0.12	ug/Kg	₩	09/18/20 22:20	09/23/20 03:22	1
Methylcyclohexane	0.98	U H H3 UJ	0.98	0.49	ug/Kg	☼	09/18/20 22:20	09/23/20 03:22	1
<#%FO!#\$#& F!?="@#	5RB	8S&W&WE	0.98	0.46	ug/Kg	₩	09/18/20 22:20	09/23/20 03:22	1
Tetrachloroethene	0.98	U H H3 UJ	0.98	0.14	ug/Kg	₩	09/18/20 22:20	09/23/20 03:22	1
Toluene	0.98	U H H3 UJ	0.98	0.23	ug/Kg		09/18/20 22:20	09/23/20 03:22	1
trans-1,2-Dichloroethene	0.98	U H H3 UJ	0.98		ug/Kg	₩	09/18/20 22:20	09/23/20 03:22	1
trans-1,3-Dichloropropene	0.98	U H H3 UJ	0.98		ug/Kg	☼	09/18/20 22:20	09/23/20 03:22	1
Trichloroethene	0.98	U H H3 UJ	0.98		ug/Kg		09/18/20 22:20	09/23/20 03:22	1
Trichlorofluoromethane		U H H3 UJ	0.98		ug/Kg	÷		09/23/20 03:22	1
Vinyl chloride		U H H3 UJ	0.98		ug/Kg			09/23/20 03:22	1
Xylenes, Total		U H H3 UJ	2.0		ug/Kg			09/23/20 03:22	
cis-1,3-Dichloropropene		U H H3 UJ	0.98		ug/Kg	÷		09/23/20 03:22	1
Styrene		U H H3 UJ	0.98		ug/Kg			09/23/20 03:22	1
Ctyrene	0.50	011110 00	0.00	0.21	ug/itg	7	00/10/20 22:20	00/20/20 00:22	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None	H H3	ug/Kg	ф ————————————————————————————————————			09/18/20 22:20	09/23/20 03:22	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	133		77 - 145				09/18/20 22:20	09/23/20 03:22	
Toluene-d8 (Surr)	118		80 - 120				09/18/20 22:20	09/23/20 03:22	
Dibromofluoromethane (Surr)	133		48 - 150				09/18/20 22:20	09/23/20 03:22	
4-Bromofluorobenzene	124		79 - 125				09/18/20 22:20	09/23/20 03:22	
<#%F?@2&97H51&6&'#)"D?!	!(%"!#&X=^(\$"A& ?)*?-	\$@,&IZ C<	'K					
M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
2,4,5-Trichlorophenol	1000	U	1000	270	ug/Kg	*	09/21/20 15:10	09/22/20 18:11	5
2,4,6-Trichlorophenol	1000	U	1000	200	ug/Kg	₩	09/21/20 15:10	09/22/20 18:11	5
2,4-Dichlorophenol	1000	U	1000	110	ug/Kg	☼	09/21/20 15:10	09/22/20 18:11	5
2,4-Dimethylphenol	1000	U	1000		ug/Kg		09/21/20 15:10	09/22/20 18:11	5
2,4-Dinitrophenol	9900	U	9900		ug/Kg	☼	09/21/20 15:10	09/22/20 18:11	5
2,4-Dinitrotoluene	1000		1000		ug/Kg	☼		09/22/20 18:11	5
,			1000	120		. i		09/22/20 18:11	5
2 6-Dinitrotoluene	1000	U			0 0			00/22/20 10111	•
2,6-Dinitrotoluene 2-Chloronaphthalene	1000			170	ua/Ka	14	09/21/20 15:10	09/22/20 18:11	5
2-Chloronaphthalene	1000	U	1000	170 180	0 0	☆		09/22/20 18:11 09/22/20 18:11	
2-Chloronaphthalene 2-Chlorophenol	1000 2000	U U	1000 2000	180	ug/Kg	\$	09/21/20 15:10	09/22/20 18:11	5
2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene	1000 2000 1000	U U	1000 2000 1000	180 200	ug/Kg ug/Kg	\$ \$	09/21/20 15:10 09/21/20 15:10	09/22/20 18:11 09/22/20 18:11	5 5
2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol	1000 2000 1000 1000	U U U U	1000 2000 1000 1000	180 200 120	ug/Kg ug/Kg ug/Kg	\$ \$	09/21/20 15:10 09/21/20 15:10 09/21/20 15:10	09/22/20 18:11 09/22/20 18:11 09/22/20 18:11	5 5 5
2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline	1000 2000 1000 1000 2000	U U U U	1000 2000 1000 1000 2000	180 200 120 150	ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$	09/21/20 15:10 09/21/20 15:10 09/21/20 15:10 09/21/20 15:10	09/22/20 18:11 09/22/20 18:11 09/22/20 18:11 09/22/20 18:11	5 5 5 5
2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline 2-Nitrophenol	1000 2000 1000 1000 2000 1000	U U U U U	1000 2000 1000 1000 2000 1000	180 200 120 150 290	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$	09/21/20 15:10 09/21/20 15:10 09/21/20 15:10 09/21/20 15:10 09/21/20 15:10	09/22/20 18:11 09/22/20 18:11 09/22/20 18:11 09/22/20 18:11 09/22/20 18:11	5 5 5 5 5
2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine	1000 2000 1000 1000 2000 1000 2000	U U U U U U	1000 2000 1000 1000 2000 1000 2000	180 200 120 150 290 1200	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$ \$	09/21/20 15:10 09/21/20 15:10 09/21/20 15:10 09/21/20 15:10 09/21/20 15:10 09/21/20 15:10	09/22/20 18:11 09/22/20 18:11 09/22/20 18:11 09/22/20 18:11 09/22/20 18:11 09/22/20 18:11	5 5 5 5 5 5
2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline 2-Nitrophenol	1000 2000 1000 1000 2000 1000	U U U U U U U	1000 2000 1000 1000 2000 1000	180 200 120 150 290 1200 280	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$	09/21/20 15:10 09/21/20 15:10 09/21/20 15:10 09/21/20 15:10 09/21/20 15:10 09/21/20 15:10 09/21/20 15:10	09/22/20 18:11 09/22/20 18:11 09/22/20 18:11 09/22/20 18:11 09/22/20 18:11	5 5 5 5

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&"65E

.(/&'()*!#&012&345678939569

1(%#& ?!!#A%#@**2&36**5&8G275

<(%=">2&'?!"(

1(%#&+#A#"D#@**2&56**5&892E5

<#%F?@2&97H51&6&'#)"D?!(M\$(!O%#		ν Αα : <i>)</i> : -ψ(V-(!"J"#=	پ , ن , ب کارگری از این از	γπα <1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
4-Bromophenyl phenyl ether	1000	•	1000		ug/Kg	— <u>:</u>	09/21/20 15:10	09/22/20 18:11	1 .0.
4-Chloro-3-methylphenol	1000		1000		ug/Kg	~ \$	09/21/20 15:10		
4-Chloroaniline	1000		1000		ug/Kg		09/21/20 15:10		
4-Chlorophenyl phenyl ether	1000		1000		ug/Kg	₩	09/21/20 15:10		į
4-Methylphenol	2000		2000		ug/Kg ug/Kg		09/21/20 15:10		į
	2000		2000				09/21/20 15:10		
4-Nitroaniline					ug/Kg	☆			;
4-Nitrophenol	2000		2000		ug/Kg	.☆	09/21/20 15:10		
Acenaphthene	1000		1000		ug/Kg	<u>.</u> .	09/21/20 15:10		;
Acenaphthylene	1000		1000		ug/Kg	‡	09/21/20 15:10		;
Acetophenone	1000		1000		ug/Kg	☼	09/21/20 15:10		
M\$%F=(A#\$#	E45		1000		ug/Kg		09/21/20 15:10		
Atrazine	1000		1000		ug/Kg	₩	09/21/20 15:10		;
Benzaldehyde	1000		1000		ug/Kg	₽	09/21/20 15:10		;
Q#\$T?b(c(\$%F=(A#\$#	8E55		1000		ug/Kg	.	09/21/20 15:10	09/22/20 18:11	
Q#\$T?b(c*O=#\$#	8755		1000		ug/Kg	☼	09/21/20 15:10	09/22/20 18:11	;
Q#\$T?b/cJ!-?=(\$%F#\$#	8355		1000	160	ug/Kg	☼	09/21/20 15:10	09/22/20 18:11	
Q#\$T?b^_F_"c*#=O!#\$#	975	S	1000	110	ug/Kg		09/21/20 15:10	09/22/20 18:11	
Q#\$T?bNcJ!-?=(\$%F#\$#	H35	S	1000	130	ug/Kg	₩	09/21/20 15:10	09/22/20 18:11	;
Biphenyl	1000	U	1000	150	ug/Kg	☼	09/21/20 15:10	09/22/20 18:11	;
ois (2-chloroisopropyl) ether	1000	U	1000	200	ug/Kg	₩	09/21/20 15:10	09/22/20 18:11	
3is(2-chloroethoxy)methane	1000	U	1000	210	ug/Kg	₽	09/21/20 15:10	09/22/20 18:11	
Bis(2-chloroethyl)ether	1000	U	1000	130	ug/Kg	₽	09/21/20 15:10	09/22/20 18:11	:
Bis(2-ethylhexyl) phthalate	1000	U	1000	350	ug/Kg	₩	09/21/20 15:10	09/22/20 18:11	;
Butyl benzyl phthalate	1000	U	1000	170	ug/Kg	₩	09/21/20 15:10	09/22/20 18:11	:
Caprolactam	1000	U	1000	300	ug/Kg	₩	09/21/20 15:10	09/22/20 18:11	;
(=/(T?!#	835	S	1000	120	ug/Kg	☼	09/21/20 15:10	09/22/20 18:11	
F=O,#\$#	8755		1000	230	ug/Kg		09/21/20 15:10	09/22/20 18:11	
1"/#\$TI(_FK(\$%F=(A#\$#	775	S	1000	180	ug/Kg	₩	09/21/20 15:10	09/22/20 18:11	
Dibenzofuran	1000	U	1000	120	ug/Kg	₽	09/21/20 15:10	09/22/20 18:11	
Diethyl phthalate	1000	U	1000	130	ug/Kg		09/21/20 15:10	09/22/20 18:11	
Dimethyl phthalate	1000	U	1000		ug/Kg	₽	09/21/20 15:10	09/22/20 18:11	:
Di-n-butyl phthalate	1000	U	1000		ug/Kg	₩	09/21/20 15:10	09/22/20 18:11	
Di-n-octyl phthalate	1000		1000		ug/Kg		09/21/20 15:10		
L!-?=(\$%F#\$#	7355		1000		ug/Kg	₩	09/21/20 15:10	09/22/20 18:11	
L!-?=#\$#	835	S	1000		ug/Kg	₽	09/21/20 15:10		
Hexachlorobenzene	1000		1000		ug/Kg		09/21/20 15:10		
Hexachlorobutadiene	1000		1000		ug/Kg		09/21/20 15:10		:
Hexachlorocyclopentadiene	1000		1000		ug/Kg		09/21/20 15:10		
Hexachloroethane	1000		1000		ug/Kg				
			1000		ug/Kg	₩	09/21/20 15:10		
0\$@#\$?b8_7_E6A@c*O=#\$# sophorone	H55 1000		1000		ug/Kg ug/Kg				
						. .	09/21/20 15:10		
Naphthalene	1000		1000		ug/Kg				
Nitrobenzene	1000		1000		ug/Kg		09/21/20 15:10	09/22/20 18:11	
N-Nitrosodi-n-propylamine	1000		1000		ug/Kg	· · · · ·	09/21/20 15:10		
N-Nitrosodiphenylamine	1000		1000		ug/Kg	.☆	09/21/20 15:10		
Pentachlorophenol	2000		2000		ug/Kg	#	09/21/20 15:10	09/22/20 18:11	
F#\$(\$%F=#\$#	8H55		1000		ug/Kg		09/21/20 15:10		
Phenol	1000	U	1000		ug/Kg	☼	09/21/20 15:10		:
;O=#\$#	7755		1000	120	ug/Kg	☼	09/21/20 15:10	09/22/20 18:11	;

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&"65E

PCB-1254

PCB-1260

.(/&'()*!#&012&345678939569

1(%#& ?!!#A%#@**2&\$B**C75&8G275

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&97

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	1	R <i>T</i>	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	2900	TJ	ug/Kg	□	1.	89		09/21/20 15:10	09/22/20 18:11	5
Unknown	1100	TJ	ug/Kg	₩	3.	43		09/21/20 15:10	09/22/20 18:11	5
Benzo[e]pyrene	800	TJN	ug/Kg	₩	14.	35	192-97-2	09/21/20 15:10	09/22/20 18:11	5
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	80		54 - 120					09/21/20 15:10	09/22/20 18:11	5
2-Fluorobiphenyl	91		60 - 120					09/21/20 15:10	09/22/20 18:11	5
2-Fluorophenol	81		52 - 120					09/21/20 15:10	09/22/20 18:11	5
Nitrobenzene-d5	81		53 - 120					09/21/20 15:10	09/22/20 18:11	5
Phenol-d5	87		54 - 120					09/21/20 15:10	09/22/20 18:11	5
p-Terphenyl-d14	112		79 - 130					09/21/20 15:10	09/22/20 18:11	5
- <#%F?@2&9598Q&6&X=^(\$?	?AF!?="\$#&:	#.%"A"@	#.&IZ K							
M\$(!O%#		V-(!"J"#=	+.		<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
4,4'-DDD			20		3.9	ug/Kg		09/22/20 13:04		10
4,4'-DDE	20	U	20			ug/Kg	₽	09/22/20 13:04	09/23/20 12:53	10
3_3d611:	8 G	S	20			ug/Kg	≎	09/22/20 13:04	09/23/20 12:53	10
Aldrin	20		20			ug/Kg		09/22/20 13:04	09/23/20 12:53	10
alpha-BHC	20	U	20		3.6	ug/Kg	☼	09/22/20 13:04	09/23/20 12:53	10
beta-BHC	20	U	20		3.6	ug/Kg	☼	09/22/20 13:04	09/23/20 12:53	10
cis-Chlordane	20	U	20		10	ug/Kg		09/22/20 13:04	09/23/20 12:53	10
delta-BHC	20	U	20		3.7	ug/Kg	☼	09/22/20 13:04	09/23/20 12:53	10
Dieldrin	20	U	20		4.8	ug/Kg	₽	09/22/20 13:04	09/23/20 12:53	10
Endosulfan I	20	U	20		3.9	ug/Kg		09/22/20 13:04	09/23/20 12:53	10
Endosulfan II	20	U	20		3.6	ug/Kg	☼	09/22/20 13:04	09/23/20 12:53	10
Endosulfan sulfate	20	U	20		3.8	ug/Kg	☼	09/22/20 13:04	09/23/20 12:53	10
Endrin	20	U	20		4.0	ug/Kg	₩	09/22/20 13:04	09/23/20 12:53	10
Endrin aldehyde	20	U	20		5.1	ug/Kg	₽	09/22/20 13:04	09/23/20 12:53	10
Endrin ketone	20	U	20		5.0	ug/Kg	₽	09/22/20 13:04	09/23/20 12:53	10
gamma-BHC (Lindane)	20	U	20		3.7	ug/Kg	₽	09/22/20 13:04	09/23/20 12:53	10
Heptachlor	20	U	20		4.4	ug/Kg	☼	09/22/20 13:04	09/23/20 12:53	10
Heptachlor epoxide	20	U	20		5.2	ug/Kg	☼	09/22/20 13:04	09/23/20 12:53	10
<#%F?>OAF!?=	89	S JN	20		4.1	ug/Kg	☼	09/22/20 13:04	09/23/20 12:53	10
Toxaphene	200	U	200		120	ug/Kg	☆	09/22/20 13:04	09/23/20 12:53	10
trans-Chlordane	20	U	20		6.4	ug/Kg	₽	09/22/20 13:04	09/23/20 12:53	10
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	101		45 - 120					09/22/20 13:04	09/23/20 12:53	10
DCB Decachlorobiphenyl	182	X	45 - 120					09/22/20 13:04	09/23/20 12:53	10
Tetrachloro-m-xylene	120		30 - 124					09/22/20 13:04	09/23/20 12:53	10
Tetrachloro-m-xylene	93		30 - 124					09/22/20 13:04	09/23/20 12:53	10
- <#%F?@2&959 &bi &;?!OAF!?	="\$(%#@&O	"*F#\$OL&	ብ·	.7(&	F=2\(⁰ /₂2^=	(*FO			
M\$(!O%#		V-(!"J"#=	+.	(,∽		U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
PCB-1016	0.22	U	0.22		0.043	mg/Kg	*	09/21/20 15:17	09/22/20 17:14	1
PCB-1221	0.22	U	0.22		0.043	mg/Kg	₽	09/21/20 15:17	09/22/20 17:14	1
PCB-1232	0.22	U	0.22		0.043	mg/Kg	₽	09/21/20 15:17	09/22/20 17:14	1
PCB-1242	0.22	U	0.22		0.043	mg/Kg	₽	09/21/20 15:17	09/22/20 17:14	1
PCB-1248	0.22	U	0.22		0.043	mg/Kg	₽	09/21/20 15:17	09/22/20 17:14	1
DCD 4054	0.00		0.00		0.40			00/04/00 45 47	00/00/00 47 44	

1

© 09/21/20 15:17 09/22/20 17:14

09/21/20 15:17 09/22/20 17:14

0.22

0.22

0.10 mg/Kg

0.10 mg/Kg

0.22 U

0.22 U

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&"65E

.(/&'()*!#&012&345678939569

<(%=">2&'?!"(

1(%#& ?!!#A%#@**2855E**C75&8G275 1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&97

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	104		60 - 154				09/21/20 15:17	09/22/20 17:14	
Tetrachloro-m-xylene	85		60 - 154					09/22/20 17:14	
DCB Decachlorobiphenyl	112		65 - 174				09/21/20 15:17	09/22/20 17:14	
DCB Decachlorobiphenyl	70		65 - 174				09/21/20 15:17	09/22/20 17:14	
<#%F?@2&GEH&I)?@"J"#@K8	&6&L! -17#N\$!!&#@& (\$.	A #,						
M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
;#=J!-?=?/-%(\$?"A&(A"@&ILQMK	5R8B	S	0.23	0.032	ug/Kg	*	09/20/20 20:32	09/24/20 20:52	1
;#=J!-?=?*#\$%(\$?"A&(A"@&IL;#MK	5R8	S	0.23	0.088	ug/Kg	₽	09/20/20 20:32	09/24/20 20:52	1
Perfluorohexanoic acid (PFHxA)	0.23	U	0.23	0.048	ug/Kg	☼	09/20/20 20:32	09/24/20 20:52	1
Perfluoroheptanoic acid (PFHpA)	0.23	J	0.23	0.033	ug/Kg	☼	09/20/20 20:32	09/24/20 20:52	1
;#=J!-?=??A%(\$?"A&(A"@&ILXMK	5R8	S	0.23	0.098	ug/Kg	₽	09/20/20 20:32	09/24/20 20:52	1
;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK	5R548	S	0.23	0.041	ug/Kg	₽	09/20/20 20:32	09/24/20 20:52	1
;#=J!-?=?@#A(\$?"A&(A"@&IL1MK	5R7E		0.23	0.025	ug/Kg		09/20/20 20:32	09/24/20 20:52	1
;#=J!-?=?-\$@#A(\$?"A&(A"@& I;L U\$MK	5R85	S	0.23	0.041	ug/Kg	₽	09/20/20 20:32	09/24/20 20:52	1
;#=J!-?=?@?@#A(\$?"A&(A"@& I;L 1?MK	5R84	S	0.23	0.077	ug/Kg	₽	09/20/20 20:32	09/24/20 20:52	1
Perfluorotridecanoic acid (PFTriA)	0.23	U	0.23	0.058	ug/Kg		09/20/20 20:32	09/24/20 20:52	1
Perfluorotetradecanoic acid (PFTeA)	0.23		0.23		ug/Kg	÷	09/20/20 20:32	09/24/20 20:52	1
Perfluorobutanesulfonic acid (PFBS)	0.23		0.23		ug/Kg	±Ċ-		09/24/20 20:52	1
;#=J!-?=?F#>(\$#,-!J?\$"A&(A"@&	5R8E		0.23		ug/Kg	∴		09/24/20 20:52	1
I;L W>'K	JIKOL	5	0.20	0.000	ug/itg	~	00/20/20 20:02	00/24/20 20:02	
Perfluoroheptanesulfonic Acid (PFHpS)	0.23	U	0.23	0.040	ug/Kg	₽	09/20/20 20:32	09/24/20 20:52	1
;#=J!-?=??A%(\$#,-!J?\$"A&(A"@& I;L X'K	ER5	Q	0.57	0.23	ug/Kg	₽	09/20/20 20:32	09/24/20 20:52	1
;#=J!-?=?@#A(\$#,-!J?\$"A&(A"@& I;L 1'K	5R539	S	0.23	0.045	ug/Kg	₽	09/20/20 20:32	09/24/20 20:52	1
Perfluorooctanesulfonamide (FOSA)	0.23	U	0.23	0.094	ug/Kg	₽	09/20/20 20:32	09/24/20 20:52	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	2.3	U	2.3	0.45	ug/Kg	₽	09/20/20 20:32	09/24/20 20:52	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	2.3	Ú	2.3	0.42	ug/Kg		09/20/20 20:32	09/24/20 20:52	1
6:2 FTS	2.3	IJ	2.3	0.17	ug/Kg	±Ċ-	09/20/20 20:32	09/24/20 20:52	1
8:2 FTS	2.3		2.3		ug/Kg	±Ċ-		09/24/20 20:52	1
				0.20	~g/. tg	-1-			•
Isotope Dilution 13C4 PFBA	%Recovery	Qualifier	Limits				Prepared	Analyzed 09/24/20 20:52	Dil Fac
	66		25 ₋ 150						
13C5 PFPeA	78		25 - 150					09/24/20 20:52	
13C2 PFHxA	89		25 - 150					09/24/20 20:52	
13C4 PFHpA	93		25 - 150					09/24/20 20:52	
13C4 PFOA	93		25 - 150					09/24/20 20:52	
13C5 PFNA	93		25 - 150					09/24/20 20:52	
13C2 PFDA	94		25 - 150					09/24/20 20:52	
13C2 PFUnA	98		25 - 150					09/24/20 20:52	
13C2 PFDoA	87		25 - 150					09/24/20 20:52	
13C2 PFTeDA	89		25 - 150				09/20/20 20:32	09/24/20 20:52	
13C3 PFBS	83		25 - 150				09/20/20 20:32	09/24/20 20:52	
1802 PFHxS	95		25 - 150				09/20/20 20:32	09/24/20 20:52	
13C4 PFOS	98		25 - 150				09/20/20 20:32	09/24/20 20:52	
13C8 FOSA	85		25 - 150				09/20/20 20:32	09/24/20 20:52	
d3-NMeFOSAA	61		25 - 150				09/20/20 20:32	00/24/20 20:52	

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&"65E

.(/&'()*!#&012&345678939569

1(%#& ?!!#A%#@**285B**C75&8G275

1(%#&+#A#"D#@2&5BC84C75&892E5

<(%=">2&'?!"(

;#=A#\$%&'?!"@,2&97

Isotope Dilution	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
d5-NEtFOSAA	67	25 - 150				09/20/20 20:32	09/24/20 20:52	
M2-6:2 FTS	195 *5	25 - 150				09/20/20 20:32	09/24/20 20:52	
M2-8:2 FTS	223 *5	25 - 150				09/20/20 20:32	09/24/20 20:52	
<#%F?@2&4585 &6&<#%(!	,&I0 ;K							
M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
M!-)"\$-)	77455	11.9	5.3	mg/Kg	*	09/24/20 17:07	09/25/20 13:30	1
Antimony	17.9 U <mark>UJ</mark>	17.9	0.48	mg/Kg	₩	09/24/20 17:07	09/25/20 13:30	1
M=,#\$"A	3REQ	2.4	0.48	mg/Kg	≎	09/24/20 17:07	09/25/20 13:30	1
Q(="-)	738 J	0.60	0.13	mg/Kg	₩	09/24/20 17:07	09/25/20 13:30	1
Q#=O!!"-)	5R37	0.24	0.033	mg/Kg	₽	09/24/20 17:07	09/25/20 13:30	1
(@)"-)	5RGH <mark>J</mark>	0.24	0.036	mg/Kg	₽	09/24/20 17:07	09/25/20 13:30	1
(!A"-)	G5H5 J	59.7	3.9	mg/Kg		09/24/20 17:07	09/25/20 13:30	1
F=?)"-)	E9R4	0.60	0.24	mg/Kg	₽	09/24/20 17:07	09/25/20 13:30	1
?/(!%	8ERB	0.60	0.060	mg/Kg	₽	09/24/20 17:07	09/25/20 13:30	1
?**#=	38R5 J -	1.2	0.25	mg/Kg	*	09/24/20 17:07	09/25/20 13:30	1
0=?\$	7BH55 J	11.9	4.2	mg/Kg	₽	09/24/20 17:07	09/25/20 13:30	1
.#(@	7EG J	1.2	0.29	mg/Kg	₩	09/24/20 17:07	09/25/20 13:30	1
<(^\$#,"-)	95H5 J -	23.9	1.1	mg/Kg	₩	09/24/20 17:07	09/25/20 13:30	1
<(\$^(\$#,#	EE7 J	0.24	0.038	mg/Kg	₩	09/24/20 17:07	09/25/20 13:30	1
Y"AN#!	74R4 J -	6.0	0.27	mg/Kg	₩	09/24/20 17:07	09/25/20 13:30	1
;?%(,,"-)	7355 J +	35.8	23.9	mg/Kg	₩	09/24/20 17:07	09/25/20 13:30	1
'#!#\$"-)	5R49 S	4.8	0.48	mg/Kg	₩	09/24/20 17:07	09/25/20 13:30	1
Silver	0.72 U	0.72	0.24	mg/Kg	₩	09/24/20 17:07	09/25/20 13:30	1
'?@"-)	837 S	167	15.5	mg/Kg	☼	09/24/20 17:07	09/25/20 13:30	1
Thallium	7.2 U	7.2	0.36	mg/Kg	☼	09/24/20 17:07	09/25/20 13:30	1
] (\$(@"-)	G8RH	0.60	0.13	mg/Kg	₩	09/24/20 17:07	09/25/20 13:30	1
e"\$A	74E J	2.4	0.76	mg/Kg	₩	09/24/20 17:07	09/25/20 13:30	1
- <#%F?@2&H3H8Q&6&<#=	A- =ND& K]							
M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
<#=A-=O	5R8	0.019	0.0076	mg/Kg	₩	09/22/20 11:56	09/22/20 14:05	1
Z#\$#=(!& F#)",%=O								
M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
Cyanide, Total	1.2 U	1.2	0.58	mg/Kg	₩	09/21/20 13:33	09/22/20 14:22	1
"#\$%&'()*!#&012&"653	3				.(/	&'()*!#&01 2	2&3456789	3956B
(%#& ?!!#A%#@ 285B C75&					`	V		>2&'?!
(%#&+#A#"D#@2&5BC84C							;#=A#\$%&'?!'	

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
1,1,1-Trichloroethane	1.1	U	1.1	0.26	ug/Kg	*	09/28/20 11:25	09/28/20 12:21	1
1,1,2,2-Tetrachloroethane	1.1	U	1.1	0.24	ug/Kg	₽	09/28/20 11:25	09/28/20 12:21	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.1	U	1.1	0.34	ug/Kg	₽	09/28/20 11:25	09/28/20 12:21	1
1,1,2-Trichloroethane	1.1	U	1.1	0.20	ug/Kg	₽	09/28/20 11:25	09/28/20 12:21	1
1,1-Dichloroethane	1.1	U	1.1	0.23	ug/Kg	₽	09/28/20 11:25	09/28/20 12:21	1
1,1-Dichloroethene	1.1	U	1.1	0.25	ug/Kg	₽	09/28/20 11:25	09/28/20 12:21	1
1,2,4-Trichlorobenzene	1.1	U	1.1	0.41	ug/Kg	₽	09/28/20 11:25	09/28/20 12:21	1
1,2-Dibromo-3-Chloropropane	1.1	U	1.1	0.52	ug/Kg	☼	09/28/20 11:25	09/28/20 12:21	1

Eurofins TestAmerica, Edison

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&"653

.(/&'()*!#&012&34567893956B

1(%#& ?!!#A%#@**285E**C75&8G23G

<(%=">2&'?!"(

Job ID: 460-218480-1

1(%#&+#A#"D#@2&5BC84C75&892E5

M\$(!O%#		V-(!"J"#=	+.		<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
1,2-Dichlorobenzene	1.1	U	1.1		0.16	ug/Kg	≎	09/28/20 11:25	09/28/20 12:21	
1,2-Dichloroethane	1.1	U	1.1		0.33	ug/Kg	₽	09/28/20 11:25	09/28/20 12:21	
1,2-Dichloropropane	1.1	U	1.1		0.48	ug/Kg	₽	09/28/20 11:25	09/28/20 12:21	•
1,3-Dichlorobenzene	1.1	U	1.1		0.18	ug/Kg	☼	09/28/20 11:25	09/28/20 12:21	
1,4-Dichlorobenzene	1.1	U	1.1		0.25	ug/Kg	☼	09/28/20 11:25	09/28/20 12:21	
2-Butanone (MEK)	5.7	U	5.7		3.1	ug/Kg	☼	09/28/20 11:25	09/28/20 12:21	
2-Hexanone	5.7	U	5.7		1.9	ug/Kg	☼	09/28/20 11:25	09/28/20 12:21	
4-Methyl-2-pentanone (MIBK)	5.7	U	5.7		1.8	ug/Kg	₽	09/28/20 11:25	09/28/20 12:21	
Acetone	6.8	U	6.8		6.5	ug/Kg	₽	09/28/20 11:25	09/28/20 12:21	•
Benzene	1.1	U	1.1		0.29	ug/Kg	₩	09/28/20 11:25	09/28/20 12:21	
Bromoform	1.1	U	1.1		0.48	ug/Kg		09/28/20 11:25	09/28/20 12:21	
Bromomethane	1.1	U	1.1		0.54	ug/Kg	≎	09/28/20 11:25	09/28/20 12:21	
(=/?\$&@",-!J"@#	5RE	3S	1.1		0.30	ug/Kg	₽	09/28/20 11:25	09/28/20 12:21	
Carbon tetrachloride	1.1	U	1.1			ug/Kg	₽	09/28/20 11:25	09/28/20 12:21	
Chlorobenzene	1.1	U	1.1			ug/Kg	₽	09/28/20 11:25	09/28/20 12:21	
Dibromochloromethane	1.1		1.1			ug/Kg	₽	09/28/20 11:25	09/28/20 12:21	
Chloroethane	1.1		1.1			ug/Kg		09/28/20 11:25	09/28/20 12:21	
Chloroform	1.1		1.1			ug/Kg		09/28/20 11:25	09/28/20 12:21	
Chloromethane	1.1		1.1			ug/Kg	Di		09/28/20 12:21	
cis-1,2-Dichloroethene	1.1		1.1			ug/Kg			09/28/20 12:21	
Cyclohexane	1.1		1.1			ug/Kg	Di		09/28/20 12:21	
Bromodichloromethane	1.1		1.1			ug/Kg	₩.		09/28/20 12:21	
Dichlorodifluoromethane	1.1		1.1			ug/Kg			09/28/20 12:21	
Ethylbenzene	1.1		1.1			ug/Kg	Ť.		09/28/20 12:21	
1,2-Dibromoethane	1.1		1.1			ug/Kg	~ ☆		09/28/20 12:21	
Isopropylbenzene	1.1		 1.1			ug/Kg			09/28/20 12:21	
Methyl acetate	5.7		5.7			ug/Kg	~ ☆		09/28/20 12:21	
Methyl tert-butyl ether	1.1		1.1			ug/Kg	₩ ₩		09/28/20 12:21	
Methylcyclohexane	1.1		 1.1			ug/Kg			09/28/20 12:21	
<#%FO!#\$#& F!?="@#	7R9		1.1			ug/Kg	¥ \$		09/28/20 12:21	
Tetrachloroethene	1.1		1.1				¥ \$		09/28/20 12:21	
Toluene	1.1					ug/Kg				
			1.1			ug/Kg	\$		09/28/20 12:21	
trans-1,2-Dichloroethene	1.1		1.1			ug/Kg	\$		09/28/20 12:21	
trans-1,3-Dichloropropene	1.1		1.1			ug/Kg	. .		09/28/20 12:21	
Tricklanding	1.1		1.1			ug/Kg	‡		09/28/20 12:21	
Trichlorofluoromethane	1.1		1.1			ug/Kg	₽.		09/28/20 12:21	
Vinyl chloride	1.1		1.1			ug/Kg	 .		09/28/20 12:21	
Xylenes, Total	2.3		2.3			ug/Kg	₽		09/28/20 12:21	
cis-1,3-Dichloropropene	1.1		1.1			ug/Kg	☼		09/28/20 12:21	
Styrene	1.1	U	1.1		0.31	ug/Kg	₩	09/28/20 11:25	09/28/20 12:21	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	<u>D</u>	ı	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/Kg	₩				09/28/20 11:25	09/28/20 12:21	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	110		77 - 145					09/28/20 11:25	09/28/20 12:21	
Toluene-d8 (Surr)	101		80 - 120					09/28/20 11:25	09/28/20 12:21	
Dibromofluoromethane (Surr)	117		48 - 150					09/28/20 11:25	09/28/20 12:21	
4-Bromofluorobenzene	107		79 - 125					09/28/20 11:25	09/28/20 12:21	

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&"653

.(/&'()*!#&012&34567893956B

1(%#& ?!!#A%#@**2&36**5&8G23G 1(%#&+#A#"D#@**2&5**65&892E5 <(%=">2&'?!"(

<#%F?@2&97H51&6&'#)"D? M\$(!O%#		V-(!"J"#=	+,	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
2,4,5-Trichlorophenol	39000		39000	11000	ug/Kg	— <u></u>	09/21/20 15:10		20
2,4,6-Trichlorophenol	39000	U	39000	7900	ug/Kg	₩	09/21/20 15:10	09/22/20 18:35	20
2,4-Dichlorophenol	39000	U	39000	4200	ug/Kg	☼	09/21/20 15:10	09/22/20 18:35	20
2,4-Dimethylphenol	39000	U	39000	9500	ug/Kg		09/21/20 15:10	09/22/20 18:35	20
2,4-Dinitrophenol	380000	U	380000	180000	ug/Kg	₩	09/21/20 15:10	09/22/20 18:35	20
2,4-Dinitrotoluene	39000	U	39000	8100	ug/Kg	₩	09/21/20 15:10	09/22/20 18:35	20
2,6-Dinitrotoluene	39000	U	39000	4600	ug/Kg	∴	09/21/20 15:10	09/22/20 18:35	20
2-Chloronaphthalene	39000	U	39000	6500	ug/Kg	₩	09/21/20 15:10	09/22/20 18:35	20
2-Chlorophenol	76000	U	76000	7200	ug/Kg	₩	09/21/20 15:10	09/22/20 18:35	20
2-Methylnaphthalene	39000	U	39000	7900	ug/Kg	 \$	09/21/20 15:10	09/22/20 18:35	20
2-Methylphenol	39000	U	39000	4600	ug/Kg	☼	09/21/20 15:10	09/22/20 18:35	20
2-Nitroaniline	76000	U	76000	5800	ug/Kg	☆	09/21/20 15:10	09/22/20 18:35	20
2-Nitrophenol	39000	U	39000	11000	ug/Kg		09/21/20 15:10	09/22/20 18:35	20
3,3'-Dichlorobenzidine	76000		76000	46000	ug/Kg	☆	09/21/20 15:10	09/22/20 18:35	20
3-Nitroaniline	76000	U	76000	11000	ug/Kg	÷	09/21/20 15:10	09/22/20 18:35	20
4,6-Dinitro-2-methylphenol	76000	U	76000	39000	ug/Kg		09/21/20 15:10	09/22/20 18:35	20
4-Bromophenyl phenyl ether	39000		39000	5600	ug/Kg	₩	09/21/20 15:10		20
4-Chloro-3-methylphenol	39000		39000	9700	ug/Kg	₩	09/21/20 15:10		20
4-Chloroaniline	39000		39000	9700	ug/Kg			09/22/20 18:35	20
4-Chlorophenyl phenyl ether	39000		39000	4900	ug/Kg	₩		09/22/20 18:35	20
4-Methylphenol	76000		76000	4600	ug/Kg	₩		09/22/20 18:35	20
4-Nitroaniline	76000		76000	21000	ug/Kg			09/22/20 18:35	20
4-Nitrophenol	76000		76000	28000	ug/Kg	₩	09/21/20 15:10		20
Acenaphthene	39000		39000	5800	ug/Kg	₩	09/21/20 15:10		20
Acenaphthylene	39000		39000	5100	ug/Kg			09/22/20 18:35	20
Acetophenone	39000		39000	5300	ug/Kg	₩	09/21/20 15:10		20
Anthracene	39000		39000	9700	ug/Kg	₩	09/21/20 15:10		20
Atrazine	39000		39000	14000	ug/Kg		09/21/20 15:10		20
Benzaldehyde	39000		39000	31000	ug/Kg			09/22/20 18:35	20
Benzo[a]anthracene	39000		39000	3900	ug/Kg			09/22/20 18:35	20
Benzo[a]pyrene	39000		39000	5800	ug/Kg			09/22/20 18:35	20
Benzo[b]fluoranthene	39000		39000	6200	ug/Kg	~ ☆		09/22/20 18:35	20
Benzo[g,h,i]perylene	39000		39000	4200	ug/Kg	☆		09/22/20 18:35	20
Benzo[k]fluoranthene	39000		39000		ug/Kg			09/22/20 18:35	20
Biphenyl	39000		39000		ug/Kg	☼		09/22/20 18:35	20
bis (2-chloroisopropyl) ether	39000		39000		ug/Kg	*		09/22/20 18:35	20
Bis(2-chloroethoxy)methane	39000		39000		ug/Kg			09/22/20 18:35	20
Bis(2-chloroethyl)ether	39000		39000		ug/Kg			09/22/20 18:35	20
Bis(2-ethylhexyl) phthalate	39000		39000	13000				09/22/20 18:35	20
Butyl benzyl phthalate	39000		39000		ug/Kg			09/22/20 18:35	20
Caprolactam	39000		39000			<i>¥</i>		09/22/20 18:35	20
Carbazole	39000		39000		ug/Kg ug/Kg			09/22/20 18:35	20
Chrysene	39000		39000			· · · · · · · · · · ·		09/22/20 18:35	20
•					ug/Kg	‡			
Dibenz(a,h)anthracene	39000		39000		ug/Kg	☼		09/22/20 18:35	20
Dibenzofuran	39000		39000		ug/Kg	· · · · · ·		09/22/20 18:35	20
Diethyl phthalate	39000		39000		ug/Kg			09/22/20 18:35	20
Dimethyl phthalate	39000		39000		ug/Kg	☆		09/22/20 18:35	20
Di-n-butyl phthalate Di-n-octyl phthalate	39000 39000		39000 39000		ug/Kg ug/Kg			09/22/20 18:35 09/22/20 18:35	20

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&"653

.(/&'()*!#&012&34567893956B

1(%#& ?!!#A%#@**285B**C75&8G23G

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

M\$(!O%#	+#,-!%	V-(!"J"#=	+.		<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
Fluoranthene	39000	Ū	39000		4200	ug/Kg		09/21/20 15:10		20
Fluorene	39000		39000		4600	ug/Kg	₽	09/21/20 15:10	09/22/20 18:35	20
Hexachlorobenzene	39000		39000		5300	ug/Kg		09/21/20 15:10	09/22/20 18:35	20
Hexachlorobutadiene	39000		39000		5800	ug/Kg	₩	09/21/20 15:10	09/22/20 18:35	20
Hexachlorocyclopentadiene	39000		39000			ug/Kg	₽		09/22/20 18:35	20
Hexachloroethane	39000		39000			ug/Kg			09/22/20 18:35	20
Indeno[1,2,3-cd]pyrene	39000		39000		4900	ug/Kg	₽	09/21/20 15:10	09/22/20 18:35	20
Isophorone	39000		39000			ug/Kg		09/21/20 15:10		20
Naphthalene	39000		39000			ug/Kg		09/21/20 15:10		2
Vitrobenzene	39000		39000			ug/Kg	₩.	09/21/20 15:10		2
N-Nitrosodi-n-propylamine	39000		39000			ug/Kg	Ť.		09/22/20 18:35	20
N-Nitrosodiphenylamine	39000		39000		32000				09/22/20 18:35	20
Pentachlorophenol	76000		76000			ug/Kg	~ ⇔	09/21/20 15:10		2
Phenanthrene	39000		39000			ug/Kg	~ ☆	09/21/20 15:10		20
Phenol	39000		39000			ug/Kg			09/22/20 18:35	2
Pyrene	39000		39000			ug/Kg	₩ ₩		09/22/20 18:35	20
i yiene	39000	O	39000		4000	ug/itg	**	09/21/20 13.10	09/22/20 10.55	21
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		R <i>T</i>	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	35000	TJ	ug/Kg	☼	1.	87		09/21/20 15:10	09/22/20 18:35	20
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol		X	54 - 120					09/21/20 15:10	09/22/20 18:35	2
2-Fluorobiphenyl	0	X	60 - 120					09/21/20 15:10	09/22/20 18:35	20
2-Fluorophenol	0	X	52 - 120					09/21/20 15:10	09/22/20 18:35	2
Nitrobenzene-d5	0	X	53 - 120					09/21/20 15:10	09/22/20 18:35	2
Phenol-d5	0	Χ	54 ₋ 120					09/21/20 15:10	09/22/20 18:35	2
p-Terphenyl-d14	0	X	79 - 130						09/22/20 18:35	20
∠#0/ E2@29 0E00	A E12-"¢#0.	# 0/ " A "@:	# 01 7 1/							
<#%F?@2&9598Q&6&X=^(\$? M\$(!O%#		#,% A @: V-(!"J"#=	#,&IZ N +.		<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
4,4'-DDD	190		190		38	ug/Kg	<u>.</u>	09/22/20 13:04		100
4,4'-DDE	190		190		41	ug/Kg	₩	09/22/20 13:04		100
3_3d611:		S J-	190			ug/Kg	₩ ₩	09/22/20 13:04		100
Aldrin	190		190			ug/Kg		09/22/20 13:04		100
alpha-BHC	190		190			ug/Kg	₩ ₩		09/23/20 13:13	100
beta-BHC	190		190			ug/Kg	**	09/22/20 13:04	09/23/20 13:13	100
cis-Chlordane	190		190			ug/Kg		09/22/20 13:04		100
delta-BHC	190		190			ug/Kg		09/22/20 13:04		100
Dieldrin	190		190				☆		09/23/20 13:13	100
						ug/Kg				
Endosulfan I	190		190			ug/Kg	**		09/23/20 13:13	100
Endosulfan II	190		190			ug/Kg	\$	09/22/20 13:04		100
Endosulfan sulfate	190		190			ug/Kg		09/22/20 13:04		100
Endrin	190		190			ug/Kg	₩		09/23/20 13:13	100
Endrin aldehyde	190		190			ug/Kg	₩	09/22/20 13:04		100
Endrin ketone	190		190			ug/Kg		09/22/20 13:04		100
gamma-BHC (Lindane)	190		190			ug/Kg	₽		09/23/20 13:13	10
Heptachlor	190		190			ug/Kg	≎		09/23/20 13:13	100
Heptachlor epoxide	190	U	190		50	ug/Kg		09/22/20 13:04	09/23/20 13:13	100
<#%F?>OAF!?=	39	S	190		39	ug/Kg	₽	09/22/20 13:04	09/23/20 13:13	100
Toxaphene	1900	11	1900		1100	ug/Kg	☆	00/22/20 13:04	09/23/20 13:13	100

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&"653

.(/&'()*!#&012&34567893956B

() !#QU12Q34307093930D

<(%=">2&'?!"(

1(%#& ?!!#A%#@**2855E**C75&8G23G 1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&9C

ME(100/#				%''\$-#@K		_			
M\$(!O%#	-	V-(!"J"#=	+.	<1.	U\$"%	_ 1	;=#*(=#@	M\$(!OT#@	1"!&L(/
trans-Chlordane	190	U	190	61	ug/Kg	☼	09/22/20 13:04	09/23/20 13:13	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	0	X	45 - 120				09/22/20 13:04	09/23/20 13:13	100
DCB Decachlorobiphenyl	0	X	45 - 120				09/22/20 13:04	09/23/20 13:13	100
Tetrachloro-m-xylene	0	X	30 - 124				09/22/20 13:04	09/23/20 13:13	100
Tetrachloro-m-xylene	0	X	30 - 124				09/22/20 13:04	09/23/20 13:13	100
<#%F?@2&959 &B &;?!OAF!?="5	\$(%#@&Q'	'*F#\$O!,&I	; Q,K&/O&Z(,& F=?)(%?^=(*F	0			
M\$(!O%#		V-(!"J"#=	+		U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(/
PCB-1016	0.27	U	0.27	0.054	mg/Kg	₩	09/21/20 15:17	09/22/20 17:26	1
PCB-1221	0.27	U	0.27	0.054	mg/Kg	☼	09/21/20 15:17	09/22/20 17:26	1
PCB-1232	0.27	U	0.27	0.054	mg/Kg	☼	09/21/20 15:17	09/22/20 17:26	1
PCB-1242	0.27	U	0.27	0.054	mg/Kg	₽	09/21/20 15:17	09/22/20 17:26	1
PCB-1248	0.27	U	0.27	0.054	mg/Kg	☼	09/21/20 15:17	09/22/20 17:26	1
; Q687G3	5R44		0.27	0.13	mg/Kg	₩	09/21/20 15:17	09/22/20 17:26	1
PCB-1260	0.27	U	0.27	0.13	mg/Kg	₩	09/21/20 15:17	09/22/20 17:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	103		60 - 154				09/21/20 15:17	09/22/20 17:26	
Tetrachloro-m-xylene	90		60 - 154				09/21/20 15:17	09/22/20 17:26	
DCB Decachlorobiphenyl	96		65 - 174				09/21/20 15:17	09/22/20 17:26	
DCB Decachlorobiphenyl	59	X	65 - 174				09/21/20 15:17	09/22/20 17:26	
<#%F?@2&GEH&I)?@"J"#@K8 M\$(!O%#		D(!&#@%_(\$ / V-(!"J"#=	A#, +.	<1.	U\$"%	1	;=#*(=#@	MA(10T#6	
	- 17, 170	. (IVI5((() #(a)	1"!&I (/
・#=.II-?=?/-%/\$?"Δ&/Δ"@&I·I OMK	5R540	25	0.21					M\$(!OT#@ 10/07/20 11:54	
	5R540		0.21	0.030	ug/Kg	<u></u>	09/20/20 20:32	10/07/20 11:54	1
Perfluoropentanoic acid (PFPeA)	0.21	U	0.21	0.030 0.082	ug/Kg ug/Kg	*	09/20/20 20:32 09/20/20 20:32	10/07/20 11:54 10/07/20 11:54	1
Perfluoropentanoic acid (PFPeA) ;#=J!-?=?F#>(\$?"A&(A"@&ILW>MK	0.21 5R539	U S&0	0.21 0.21	0.030 0.082 0.045	ug/Kg ug/Kg ug/Kg	# # #	09/20/20 20:32 09/20/20 20:32 09/20/20 20:32	10/07/20 11:54 10/07/20 11:54 10/07/20 11:54	1 1 1
Perfluoropentanoic acid (PFPeA) ;#=J!-?=?F#>(\$?"A&(A"@&ILW>MK ;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MI	0.21 5R539 K 5R5E8	U S&0 BS	0.21 0.21 0.21	0.030 0.082 0.045 0.031	ug/Kg ug/Kg ug/Kg ug/Kg	# # # #	09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32	10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54	1 1 1
Perfluoropentanoic acid (PFPeA) ;#=J!-?=?F#>(\$?"A&(A"@&ILW>MK ;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MI ;#=J!-?=??A%(\$?"A&(A"@&ILXMK	0.21 5R539 K 5R5E8 5R73	U S&0 SS	0.21 0.21 0.21 0.21	0.030 0.082 0.045 0.031 0.092	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$	09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32	10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54	1 1 1 1 1
Perfluoropentanoic acid (PFPeA) ;#=J!-?=?F#>(\$?"A&(A"@&ILW>MK ;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MI ;#=J!-?=??A%(\$?"A&(A"@&ILXMK ;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK	0.21 5R539 K 5R5E8 5R73 5R5H8	U S&0 3S	0.21 0.21 0.21 0.21 0.21	0.030 0.082 0.045 0.031 0.092 0.038	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	# # # # # # # # # # # # # # # # # # #	09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32	10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54	1 1 1 1 1
Perfluoropentanoic acid (PFPeA) ;#=J!-?=?F#>(\$?"A&(A"@&ILW>MK ;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MI ;#=J!-?=??A%(\$?"A&(A"@&ILXMK ;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK ;#=J!-?=?@#A(\$?"A&(A"@&IL1MK	0.21 5R539 K 5R5E8 5R73 5R5H8	U S&0 SS SS	0.21 0.21 0.21 0.21 0.21 0.21	0.030 0.082 0.045 0.031 0.092 0.038	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	# # # # # # # # # # # # # # # # # # #	09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32	10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54	1 1 1 1 1 1
Perfluoropentanoic acid (PFPeA) ;#=J!-?=?F#>(\$?"A&(A"@&ILW>MK ;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MI ;#=J!-?=??A%(\$?"A&(A"@&ILXMK ;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK ;#=J!-?=?@#A(\$?"A&(A"@&IL1MK ;#=J!-?=?-\$@#A(\$?"A&(A"@&IL1MK	0.21 5R539 K 5R568 5R73 5R5H8 5REE 5R8E	U S&0 SS SS SS SS	0.21 0.21 0.21 0.21 0.21 0.21	0.030 0.082 0.045 0.031 0.092 0.038 0.023 0.038	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	***************************************	09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32	10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54	1 1 1 1 1 1
Perfluoropentanoic acid (PFPeA) ;#=J!-?=?F#>(\$?"A&(A"@&ILW>MK ;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MI ;#=J!-?=??A%(\$?"A&(A"@&ILXMK ;#=J!-?=?@#A(\$?"A&(A"@&ILYMK ;#=J!-?=?@#A(\$?"A&(A"@&IL1MK ;#=J!-?=?-\$@#A(\$?"A&(A"@&IL1MK ;#=J!-?=?@#A(\$?"A&(A"@&IL1MK ;#=J!-?=?@#A(\$?"A&(A"@&IL1MK	0.21 5R539 K 5R5E8 5R73 5R5H8	U S&0 SS SS SS SS	0.21 0.21 0.21 0.21 0.21 0.21	0.030 0.082 0.045 0.031 0.092 0.038 0.023 0.038	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	***************************************	09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32	10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54	1 1 1 1 1 1 1
Perfluoropentanoic acid (PFPeA) ;#=J!-?=?F#>(\$?"A&(A"@&ILW>MK ;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MI ;#=J!-?=??A%(\$?"A&(A"@&ILXMK ;#=J!-?=?@#A(\$?"A&(A"@&ILYMK ;#=J!-?=?@#A(\$?"A&(A"@&IL1MK ;#=J!-?=?-\$@#A(\$?"A&(A"@& I;L U\$MK ;#=J!-?=?@?@#A(\$?"A&(A"@& I;L 1?MK	0.21 5R539 K 5R568 5R73 5R5H8 5REE 5R8E	U S&0 SS SS SS SS	0.21 0.21 0.21 0.21 0.21 0.21	0.030 0.082 0.045 0.031 0.092 0.038 0.023 0.038	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32	10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54	1 1 1 1 1 1 1
Perfluoropentanoic acid (PFPeA) ;#=JI-?=?F#>(\$?"A&(A"@&ILW>MK ;#=JI-?=?F#*%(\$?"A&(A"@&ILW*MI ;#=JI-?=??A%(\$?"A&(A"@&ILXMK ;#=JI-?=?\$?\$(\$?"A&(A"@&ILYMK ;#=JI-?=?@#A(\$?"A&(A"@&IL1MK ;#=JI-?=?-\$@#A(\$?"A&(A"@& I;L U\$MK ;#=JI-?=?@?@#A(\$?"A&(A"@& I;L 1?MK Perfluorotridecanoic acid (PFTriA) ;#=JI-?=?%#%=(@#A(\$?"A&(A"@&	0.21 5R539 K 5R568 5R73 5R5H8 5REE 5R8E	U S&0 SS SS SS SS SS	0.21 0.21 0.21 0.21 0.21 0.21 0.21	0.030 0.082 0.045 0.031 0.092 0.038 0.023 0.038	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32	10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54	1 1 1 1 1 1 1
Perfluoropentanoic acid (PFPeA) ;#=JI-?=?F#>(\$?"A&(A"@&ILW>MK ;#=JI-?=?F#*%(\$?"A&(A"@&ILW*MI ;#=JI-?=??A%(\$?"A&(A"@&ILXMK ;#=JI-?=?\$?\$(\$?"A&(A"@&ILYMK ;#=JI-?=?@#A(\$?"A&(A"@&IL1MK ;#=JI-?=?-\$@#A(\$?"A&(A"@&IL1MK ;#=JI-?=?@?@#A(\$?"A&(A"@&IL1MK ;#=JI-?=?@?@#A(\$?"A&(A"@&IL1MK perfluorotridecanoic acid (PFTriA) ;#=JI-?=?%#%=(@#A(\$?"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&I]) ;#=JI-?=?%#%=(@#A(\$?"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&I]) ;#=JI-?=?%#%=(@#A(\$?"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&I)) ;#=JI-?=?%#%=(@#A(\$?"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&I)) ;#=JI-?=?%#%=(@#A(\$?"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&I)) ;#=JI-?=?%#%=(@#A(\$?"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&I)) ;#=JI-?=?%#%=(@#A(\$?"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&I)) ;#=JI-?=?%#%=(@#A(\$?"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&I)) ;#=JI-?=?%#%=(@#A(\$?"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&I)) ;#=JI-?=?%#%=(@#A(\$?"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&IL1"A&(A"@&I)) ;#=JI-?=?***********************************	0.21 5R539 K 5R5E8 5R73 5R5H8 5R8E 5R7H	U S&0 SS SS SS SS U U	0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21	0.030 0.082 0.045 0.031 0.092 0.038 0.023 0.038 0.071	ug/Kg		09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32 09/20/20 20:32	10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54	1 1 1 1 1 1 1 1
Perfluoropentanoic acid (PFPeA) ;#=J!-?=?F#>(\$?"A&(A"@&ILW>MK ;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MI ;#=J!-?=??A%(\$?"A&(A"@&ILXMK ;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK ;#=J!-?=?@#A(\$?"A&(A"@&IL1MK ;#=J!-?=?@#A(\$?"A&(A"@&IL1MK ;#=J!-?=?@?@#A(\$?"A&(A"@&IL1MK ;#=J!-?=?@?@#A(\$?"A&(A"@&IL1MK ;#=J!-?=?@?@#A(\$?"A&(A"@&IL1MK ;#=J!-?=?@?@#A(\$?"A&(A"@&IL1MK ;#=J!-?=?%#%=(@#A(\$?"A&(A"@&IL1MK Perfluorotridecanoic acid (PFTriA) ;#=J!-?=?%#%=(@#A(\$?"A&(A"@&IL: #MK Perfluorobutanesulfonic acid (PFBS) ;#=J!-?=?F#>(\$#,-!J?\$"A&(A"@&IL);#A&(A"@&IL);#A&(A"@&IL);##	0.21 5R539 K 5R588 5R73 5R5H6 5R88 5R7H	U S&0 3S 3S 3S 3 :S H	0.21 0.21 0.21 0.21 0.21 0.21 0.21	0.030 0.082 0.045 0.031 0.092 0.038 0.023 0.038 0.071 0.054 0.058	ug/Kg		09/20/20 20:32 09/20/20 20:32	10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54 10/07/20 11:54	1 1 1 1 1 1 1 1
Perfluoropentanoic acid (PFPeA) ;#=J!-?=?F#>(\$?"A&(A"@&ILW>MK ;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MI ;#=J!-?=??A%(\$?"A&(A"@&ILXMK ;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK ;#=J!-?=?@#A(\$?"A&(A"@&ILYMK ;#=J!-?=?@#A(\$?"A&(A"@&IL1MK ;#=J!-?=?@#A(\$?"A&(A"@&IL1MK i;#=J!-?=?@?@#A(\$?"A&(A"@&IL1MK perfluorotridecanoic acid (PFTriA) ;#=J!-?=?%#%=(@#A(\$?"A&(A"@&IL: #MK Perfluorobutanesulfonic acid (PFBS) ;#=J!-?=?F#>(\$#,-!J?\$"A&(A"@&IL W>'K Perfluoroheptanesulfonic Acid	0.21 5R539 K 5R5E8 5R73 5R5H8 5R8E 5R7H 0.21 5R5H7	U S&0 S S S S S S S S S	0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21	0.030 0.082 0.045 0.031 0.092 0.038 0.023 0.038 0.071 0.054 0.058	ug/Kg		09/20/20 20:32 09/20/20 20:32	10/07/20 11:54 10/07/20 11:54	1 1 1 1 1 1 1 1 1
Perfluoropentanoic acid (PFPeA) ;#=J!-?=?F#>(\$?"A&(A"@&ILW>MK ;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MI ;#=J!-?=??A%(\$?"A&(A"@&ILXMK ;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK ;#=J!-?=?@#A(\$?"A&(A"@&ILYMK ;#=J!-?=?@#A(\$?"A&(A"@&IL1MK ;#=J!-?=?@?@#A(\$?"A&(A"@&IL1MK ;#=J!-?=?@?@#A(\$?"A&(A"@&IL1MK ;#=J!-?=?@?@#A(\$?"A&(A"@&IL1MK Perfluorotridecanoic acid (PFTriA) ;#=J!-?=?%#%=(@#A(\$?"A&(A"@&IL: #MK Perfluorobutanesulfonic acid (PFBS) ;#=J!-?=?F#>(\$#,-!J?\$"A&(A"@&IL W>'K Perfluoroheptanesulfonic Acid (PFHpS) ;#=J!-?=??A%(\$#,-!J?\$"A&(A"@&I)	0.21 5R539 K 5R5E8 5R73 5R5H8 5R8E 5R7H 0.21 5R5H3	U S&0 S S S S S S S S S	0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21	0.030 0.082 0.045 0.031 0.092 0.038 0.023 0.038 0.071 0.054 0.058 0.027 0.033	ug/Kg		09/20/20 20:32 09/20/20 20:32	10/07/20 11:54 10/07/20 11:54	1 1 1 1 1 1 1 1 1 1
Perfluoropentanoic acid (PFPeA) ;#=J!-?=?F#>(\$?"A&(A"@&ILW>MK;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MI;#=J!-?=??A%(\$?"A&(A"@&ILXMK;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK;#=J!-?=?@#A(\$?"A&(A"@&ILYMK;#=J!-?=?@#A(\$?"A&(A"@&IL1MK;#=J!-?=?@#A(\$?"A&(A"@&IL1MK;#=J!-?=?@?@#A(\$?"A&(A"@&IL1MK;#=J!-?=?@?@#A(\$?"A&(A"@&IL1MK;#=J!-?=?%#%=(@#A(\$?"A&(A"@&IL1MK);#=J!-?=?%#%=(@#A(\$?"A&(A"@&IL1MK);#=J!-?=?%#%=(@#A(\$?"A&(A"@&IL1,L1MK);#=J!-?=?%#%=(@#A(\$?"A&(A"@&IL1,L1MK);#=J!-?=?%#%=(@#A(\$?"A&(A"@&IL1,L1MK);#=J!-?=?F#>(\$#,-!J?\$"A&(A"@&IL1,L1MK);#=J!-?=?P#>(\$#,-!J?\$"A&(A"@&IL1,L1MK);#=J!-?=??A%(\$#,-!J?\$"A&(A"@&IL1,L1MK);#=J!-?=??A%(\$#,-!J?\$"A&(A"@&IL1,L1,L1MK);#=J!-?=??A%(\$#,-!J?\$"A&(A"@&IL1,L1,L1MK);#=J!-?=?@#A(\$#,-!J?\$"A&(A"@&IL1,L1,L1,L1,L1,L1,L1,L1,L1,L1,L1,L1,L1,L	0.21 5R539 K 5R5E8 5R73 5R5H8 5R8E 5R7H 0.21 5R5H7 0.21 5R5B3	U S&0 S S S S S S S S S	0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21	0.030 0.082 0.045 0.031 0.092 0.038 0.023 0.038 0.071 0.054 0.058 0.027 0.033 0.037	ug/Kg		09/20/20 20:32 09/20/20 20:32	10/07/20 11:54 10/07/20 11:54	1 1 1 1 1 1 1 1 1
Perfluoropentanoic acid (PFPeA) ;#=J!-?=?F#>(\$?"A&(A"@&ILW>MK ;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MI ;#=J!-?=??A%(\$?"A&(A"@&ILXMK ;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK ;#=J!-?=?@#A(\$?"A&(A"@&ILYMK ;#=J!-?=?@#A(\$?"A&(A"@&IL1MK ;#=J!-?=?@?@#A(\$?"A&(A"@&IL1MK ;#=J!-?=?@?@#A(\$?"A&(A"@&IL1MK Perfluorotridecanoic acid (PFTriA) ;#=J!-?=?%#%=(@#A(\$?"A&(A"@&IL: #MK Perfluorobutanesulfonic acid (PFBS) ;#=J!-?=?F#>(\$#,-!J?\$"A&(A"@&IL W>'K Perfluoroheptanesulfonic Acid (PFHpS) ;#=J!-?=??A%(\$#,-!J?\$"A&(A"@&IL X'K ;#=J!-?=?@#A(\$#,-!J?\$"A&(A"@&IL X'K ;#=J!-?=?@#A(\$#,-!J?\$"A&(A"@&IL X'K ;#=J!-?=?@#A(\$#,-!J?\$"A&(A"@&IL X'K	0.21 5R539 K 5R5E8 5R73 5R5H8 5R8E 5R7H 0.21 5R5H7 0.21 5R5B3 0.21 7R4	U S&0 S S S S S S S S S	0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21	0.030 0.082 0.045 0.031 0.092 0.038 0.023 0.038 0.071 0.054 0.058 0.027 0.033 0.037	ug/Kg		09/20/20 20:32 09/20/20 20:32	10/07/20 11:54 10/07/20 11:54	1 1 1 1 1 1 1 1 1 1 1
;#=J!-?=?/-%(\$?"A&(A"@&ILQMK Perfluoropentanoic acid (PFPeA) ;#=J!-?=?F#>(\$?"A&(A"@&ILW>MK ;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MI ;#=J!-?=??A%(\$?"A&(A"@&ILXMK ;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK ;#=J!-?=?@#A(\$?"A&(A"@&ILYMK ;#=J!-?=?@#A(\$?"A&(A"@&IL1MK ;#=J!-?=?@#A(\$?"A&(A"@&IL1MK ;#=J!-?=?@?@#A(\$?"A&(A"@&IL1MK ;#=J!-?=?@?@#A(\$?"A&(A"@&IL1MK Perfluorotridecanoic acid (PFTriA) ;#=J!-?=?%#%=(@#A(\$?"A&(A"@&IL: #MK Perfluorobutanesulfonic acid (PFBS) ;#=J!-?=?F#>(\$#,-!J?\$"A&(A"@&IL W>'K Perfluoroheptanesulfonic Acid (PFHpS) ;#=J!-?=??A%(\$#,-!J?\$"A&(A"@&IL X'K ;#=J!-?=?@#A(\$#,-!J?\$"A&(A"@&IL X'K ;#=J!-?=?@#A(\$#,-!J?\$"A&(A"@&IL X'K Perfluorooctanesulfonamide (FOSA) N-methylperfluorooctanesulfonamidoa	0.21 5R539 K 5R5E8 5R73 5R5H8 5REE 5R8E 5R7H 0.21 5R5H7 0.21 5R5B3 0.21	U S&0 SS	0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21	0.030 0.082 0.045 0.031 0.092 0.038 0.023 0.038 0.071 0.054 0.058 0.027 0.033 0.037 0.21 0.042	ug/Kg		09/20/20 20:32 09/20/20 20:32	10/07/20 11:54 10/07/20 11:54	1"!&L(A

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&"653

.(/&'()*!#&012&34567893956B

1(%#& ?!!#A%#@285EC75&8G23G

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5 ;#=A#\$%&'?!"@,2&9C

M\$(!O%#	+#,-!% V-(!"J"	%:(\$A#,&I ?\$%"\$ '#= +.	// C 1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
N-ethylperfluorooctanesulfonamidoac	2.1 U	2.1		ug/Kg		09/20/20 20:32		1
etic acid (NEtFOSAA)	2.1 0		0.00	ug/11g	~	00/20/20 20:02	10/01/20 11:01	
3:2 FTS	2.1 U	2.1	0.16	ug/Kg		09/20/20 20:32	10/07/20 11:54	1
3:2 FTS	2.1 U	2.1		ug/Kg	₽	09/20/20 20:32	10/07/20 11:54	1
sotope Dilution	%Recovery Qualifi	ier Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	62	25 - 150					10/07/20 11:54	- Diri do
13C5 PFPeA	73	25 - 150					10/07/20 11:54	
I3C2 PFHxA	92	25 ₋ 150					10/07/20 11:54	
13C4 PFHpA	95	25 - 150					10/07/20 11:54	
I3C4 PFOA	94	25 ₋ 150					10/07/20 11:54	
I3C5 PFNA	102	25 ₋ 150					10/07/20 11:54	
13C2 PFDA	88	25 - 150 25 - 150					10/07/20 11:54	
13C2 PFUnA	108	25 - 150 25 - 150					10/07/20 11:54	
13C2 PFDoA	106	25 - 150 25 - 150					10/07/20 11:54	
3C2 PFTeDA	99	25 - 150 25 - 150					10/07/20 11:54	
I3C2 PF IEDA I3C3 PFBS	99 88						10/07/20 11:54	
		25 ₋ 150						
1802 PFHxS	103	25 - 150					10/07/20 11:54	
13C4 PFOS	107	25 - 150					10/07/20 11:54	
13C8 FOSA	71	25 - 150					10/07/20 11:54	
I3-NMeFOSAA	96	25 - 150					10/07/20 11:54	
15-NEtFOSAA	104	25 - 150					10/07/20 11:54	
И2-6:2 FTS	283 *5	25 - 150				00/20/20 20·32	10/07/20 11:54	
12-8:2 FTS	295 *5	25 - 150 25 - 150					10/07/20 11:54	
M2-8:2 FTS < #%F?@2&4585 &6&<#%(!,&I	295 *5	25 - 150	<1.	U\$"%	1			1"!&L(/
M2-8:2 FTS <#%F?@2&4585 &6&<#%(!,&I M\$(!O%#	295 *5	25 - 150		U\$"% mg/Kg		09/20/20 20:32	10/07/20 11:54 M\$(!OT#@	
M2-8:2 FTS <#%F?@2&4585 &6&<#%(!,&I M\$(!O%# M!-)"\$-)	295 *5 0 ;K +#,-!% V-(!"J"	25 - 150 #= +.	4.9		-	09/20/20 20:32 ;=#*(=#@	10/07/20 11:54 M\$(!OT#@ 09/25/20 13:34	
M2-8:2 FTS <#%F?@2&4585 &6&<#%(!,&I M\$(!O%# M!-)"\$-) Antimony	295 *5 0 ;K +#,-!% 88555	25 - 150 #= +. 11.0	4.9 0.44	mg/Kg	*	09/20/20 20:32 ;=#*(=#@ 09/24/20 17:07	10/07/20 11:54 M\$(!OT#@ 09/25/20 13:34 09/25/20 13:34	1
M2-8:2 FTS <#%F?@2&4585 &6&<#%(!,&I M\$(!O%# M!-)"\$-) Antimony M=,#\$"A	295 *5 0 ;K +#,-!% 88555 16.5 U UJ	25 - 150 #= +. 11.0 16.5	4.9 0.44 0.44	mg/Kg mg/Kg	*	;=#*(=#@ 09/24/20 17:07 09/24/20 17:07	M\$(!OT#@ 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34	1 1
M2-8:2 FTS <#%F?@2&4585 &6&<#%(!,&I M\$(!O%# M!-)"\$-) Antimony M=,#\$"A Q(="-)	295 *5 10 ;K +#,-!% 88555 16.5 U UJ 9RGQ	25 - 150 #= +. 11.0 16.5 2.2	4.9 0.44 0.44 0.12	mg/Kg mg/Kg mg/Kg	# # #	;=#*(=#@ 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07	M\$(!OT#@ 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34	1 1 1
M2-8:2 FTS <#%F?@2&4585 &6&<#%(!,&I M\$(!O%# M!-)"\$-) Antimony M=,#\$"A Q(="-) Q#=O!!"-)	295 *5 10 ;K +#,-!% 88555 16.5 U UJ 9RGQ 395 J	25 - 150 #= +. 11.0 16.5 2.2 0.55	4.9 0.44 0.44 0.12 0.031	mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$ \$;=#*(=#@ 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07	M\$(!OT#@ 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34	1 1 1 1
M2-8:2 FTS <#%F?@2&4585 &6&<#%(!,&I M\$(!O%# M!-)"\$-) Antimony M=,#\$"A Q(="-) Q#=O!!"-) (@)"-)	295 *5 10 ;K +#,-!% 88555 16.5 U UJ 9RGQ 395 J 5REG	25 - 150 #= +. 11.0 16.5 2.2 0.55 0.22	4.9 0.44 0.44 0.12 0.031 0.033	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * * * * * * * * * * * * * * * * * *	;=#*(=#@ 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07	M\$(!OT#@ 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34	1 1 1 1 1
M2-8:2 FTS <#%F?@2&4585 &6&<#%(!,&I M\$(!O%# M!-)"\$-) Antimony M=,#\$"A Q(="-) Q#=O!!"-) ((@)"-) (!A"-)	295 *5 10 ;K +#,-!% 88555 16.5 U UJ 9RGQ 395 J 5REG 8R3J	25 - 150 #= +. 11.0 16.5 2.2 0.55 0.22 0.22	4.9 0.44 0.42 0.031 0.033 3.6	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$;=#*(=#@ 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07	M\$(!OT#@ 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34	1 1 1 1 1
M2-8:2 FTS <#%F?@2&4585 &6&<#%(!,&I M\$(!O%# M!-)"\$-) Antimony M=,#\$"A Q(="-) Q#=O!!"-) ((@)"-) (!A"-)	295 *5 10 ;K +#,-!% V-(!"J" 88555 16.5 U UJ 9RGQ 395 J 5REG 8R3J 73E55 J	#= +. 11.0 16.5 2.2 0.55 0.22 0.22 55.2	4.9 0.44 0.44 0.12 0.031 0.033 3.6 0.22	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$;=#*(=#@ 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07	M\$(!OT#@ 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34	1 1 1 1 1
M2-8:2 FTS <#%F?@2&4585 &6&<#%(!,&I M\$(!O%# M!-)"\$-) Antimony M=,#\$"A Q(="-) Q#=O!!"-) ((@)"-) (!A"-) F=?)"-) ?/(!%	295 *5 10;K +#,-!% V-(!"J" 88555 16.5 U UJ 9RGQ 395 J 5REG 8R3J 73E55 J EHRG	#= +. 11.0 16.5 2.2 0.55 0.22 0.22 55.2 0.55	4.9 0.44 0.44 0.12 0.031 0.033 3.6 0.22 0.055	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		;=#*(=#@ 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07	M\$(!OT#@ 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34	1 1 1 1 1 1 1
M2-8:2 FTS <#%F?@2&4585 &6&<#%(!,&I M\$(!O%# M!-)"\$-) Antimony M=,#\$"A Q(="-) Q#=O!!"-) ((@)"-) (!A"-) F=?)"-) ?/(!% ?**#=	295 *5 10;K +#,-!% V-(!"J" 88555 16.5 U UJ 9RGQ 395 J 5REG 8R3J 73E55 J EHRG BR4	25 - 150 #= +. 11.0 16.5 2.2 0.55 0.22 0.22 55.2 0.55 0.55	4.9 0.44 0.44 0.12 0.031 0.033 3.6 0.22 0.055	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		;=#*(=#@ 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07	M\$(!OT#@ 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34	1 1 1 1 1 1 1
M2-8:2 FTS <#%F?@2&4585 &6&<#%(!,&I M\$(!O%# M!-)"\$-) Antimony M=,#\$"A Q(="-) Q#=O!!"-) ((@)"-) (!A"-) F=?)"-) ?/(!% ?**#= D=?\$	295 *5 10 ;K +#,-!% 88555 16.5 U UJ 9RGQ 395 J 5REG 8R3 J 73E55 J EHRG BR4 47R4 J- EH755 J	25 - 150 #= +. 11.0 16.5 2.2 0.55 0.22 0.22 55.2 0.55 0.55 1.1	4.9 0.44 0.44 0.031 0.033 3.6 0.22 0.055 0.23 3.9	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * * * * * * * * * * * * * * * * * *	;=#*(=#@ 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07 09/24/20 17:07	M\$(!OT#@ 09/25/20 13:34 09/25/20 13:34	1 1 1 1 1 1 1
M2-8:2 FTS <#%F?@2&4585 &6&<#%(!,&I M\$(!O%# M!-)"\$-) Antimony M=,#\$"A Q(="-) Q#=O!!"-) ((@)"-) (!A"-) F=?)"-) ?/(!% ?**#= D=?\$ #(@	295 *5 10;K +#,-!% 88555 16.5 U UJ 9RGQ 395 J 5REG 8R3J 73E55 J EHRG BR4 47R4J-	25 - 150 #= +. 11.0 16.5 2.2 0.55 0.22 0.22 55.2 0.55 0.55 1.1 11.0	4.9 0.44 0.44 0.031 0.033 3.6 0.22 0.055 0.23 3.9 0.26	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * * * * * * * * * * * * * * * * * *	;=#*(=#@ 09/24/20 17:07 09/24/20 17:07	M\$(!OT#@ 09/25/20 13:34 09/25/20 13:34	1 1 1 1 1 1 1 1
M2-8:2 FTS <#%F?@2&4585 &6&<#%(!,&I M\$(!O%# M!-)"\$-) Antimony M=,#\$"A Q(="-) Q#=O!!"-) ((@)"-) (!A"-) F=?)"-) ?/(!% ?**#= D=?\$ #(@ <(^\$#,"-)	295 *5 10;K +#,-!% V-(!"J" 88555 16.5 U UJ 9RGQ 395 J 5REG 8R3J 73E55 J EHRG BR4 47R4J- EH755 J 37B J HG85 J-	#= +. 11.0 16.5 2.2 0.55 0.22 0.22 55.2 0.55 0.55 1.1 11.0 1.1	4.9 0.44 0.44 0.031 0.033 3.6 0.22 0.055 0.23 3.9 0.26 1.0	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * * * * * * * * * * * * * * * * * *	;=#*(=#@ 09/24/20 17:07 09/24/20 17:07	M\$(!OT#@ 09/25/20 13:34 09/25/20 13:34	1 1 1 1 1 1 1 1
M2-8:2 FTS <#%F?@2&4585 &6&<#%(!,&I M\$(!O%# M!-)"\$-) Antimony M=,#\$"A Q(="-) Q#=O!!"-) ((@)"-) (!A"-) F=?)"-) ?/(!% ?**#= D=?\$ #(@ <(^\$#,"-) <(\$^(\$*,#	295 *5 10;K +#,-!% V-(!"J" 88555 16.5 U UJ 9RGQ 395 J 5REG 8R3J 73E55 J EHRG BR4 47R4J- EH755 J 37B J HG85 J- 3E4 J	#= +. 11.0 16.5 2.2 0.55 0.22 0.22 55.2 0.55 0.55 1.1 11.0 1.1 22.1	4.9 0.44 0.44 0.031 0.033 3.6 0.22 0.055 0.23 3.9 0.26 1.0	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		;=#*(=#@ 09/24/20 17:07 09/24/20 17:07	M\$(!OT#@ 09/25/20 13:34 09/25/20 13:34	1 1 1 1 1 1 1 1
M2-8:2 FTS <#%F?@2&4585 &6&<#%(!,&I M\$(!O%# M!-)"\$-) Antimony M=,#\$"A Q(="-) Q#=O!!"-) ((@)"-) (!A"-) F=?)"-) ?/(!% ?**#= D=?\$ #(@ <(^\$#,"-) <(\$^(\$#,# ("AN#!	295 *5 10;K +#,-!% V-(!"J" 88555 16.5 U UJ 9RGQ 395 J 5REG 8R3J 73E55 J EHRG BR4 47R4J- EH755 J 37B J HG85 J-	#= +. 11.0 16.5 2.2 0.55 0.22 0.22 55.2 0.55 0.55 1.1 11.0 1.1 22.1 0.22	4.9 0.44 0.44 0.12 0.031 0.033 3.6 0.22 0.055 0.23 3.9 0.26 1.0 0.035 0.25	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		;=#*(=#@ 09/24/20 17:07 09/24/20 17:07	M\$(!OT#@ 09/25/20 13:34 09/25/20 13:34	1 1 1 1 1 1 1 1 1 1
M2-8:2 FTS <#%F?@2&4585 &6&<#%(!,&I M\$(!O%# M!-)"\$-) Antimony M=,#\$"A Q(="-) Q#=O!!"-) ((@)"-) (!A"-) F=?)"-) ?/(!% ?**#= D=?\$ #(@ <(^\$#,"-) <(\$^(\$#,# Y"AN#! ?%(,,"-)	295 *5 10;K +#,-!% V-(!"J" 88555 16.5 U UJ 9RGQ 395 J 5REG 8R3J 73E55 J EHRG BR4 47R4J- EH755 J 37B J HG85 J- 3E4 J 74R3 J- 8G55 J+	#= +. 11.0 16.5 2.2 0.55 0.22 0.22 55.2 0.55 0.55 1.1 11.0 1.1 22.1 0.22 5.5	4.9 0.44 0.44 0.12 0.031 0.033 3.6 0.22 0.055 0.23 3.9 0.26 1.0 0.035 0.25 22.1	mg/Kg		;=#*(=#@ 09/24/20 17:07 09/24/20 17:07	M\$(!OT#@ 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34	1 1 1 1 1 1 1 1 1 1
M2-8:2 FTS <#%F?@2&4585 &6&<#%(!,&I M\$(!O%# M!-)"\$-) Antimony M=,#\$"A Q(="-) Q#=O!!"-) ((@)"-) (!A"-) F=?)"-) ?/(!% ?**#= D=?\$ #(@ <(^\$#,"-) <(\$^(\$#,# Y"AN#! !?%(,,"-) #!#\$"-)	295 *5 10;K +#,-!% 88555 16.5 U UJ 9RGQ 395 J 5REG 8R3J 73E55 J EHRG BR4 47R4J- EH755 J 37B J HG85 J- 3E4 J 74R3 J- 8G55 J+ 7R3 S	#= +. 11.0 16.5 2.2 0.55 0.22 0.22 55.2 0.55 0.55 1.1 11.0 1.1 22.1 0.22 5.5 33.1 4.4	4.9 0.44 0.44 0.12 0.031 0.033 3.6 0.22 0.055 0.23 3.9 0.26 1.0 0.035 0.25 22.1 0.44	mg/Kg		";=#*(=#@) 09/24/20 17:07	M\$(!OT#@ 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34 09/25/20 13:34	1 1 1 1 1 1 1 1 1 1
M2-8:2 FTS <#%F?@2&4585 &6&<#%(!,&I M\$(!O%# M!-)"\$-) Antimony M=,#\$"A Q(="-) Q#=O!!"-) (!A"-) F=?)"-) ?/(!% ?**#= D=?\$ #(@ <(^\$#,"-) <(\$^(\$#,# Y"AN#! :?%(,,"-) #!#\$"-) "!D#=	295 *5 10;K +#,-!% V-(!"J" 88555 16.5 U UJ 9RGQ 395 J 5REG 8R3J 73E55 J EHRG BR4 47R4J- EH755 J 37B J HG85 J- 3E4 J 74R3J- 8G55 J+ 7R3 S 5RE5 S	#= +. 11.0 16.5 2.2 0.55 0.22 0.22 55.2 0.55 0.55 1.1 11.0 1.1 22.1 0.22 5.5 33.1 4.4 0.66	4.9 0.44 0.44 0.12 0.031 0.033 3.6 0.22 0.055 0.23 3.9 0.26 1.0 0.035 0.25 22.1 0.44 0.22	mg/Kg		";=#*(=#@) 09/24/20 17:07	M\$(!OT#@) 09/25/20 13:34	1 1 1 1 1 1 1 1 1 1 1 1 1
M2-8:2 FTS <#%F?@2&4585 &6&<#%(!,&I M\$(!O%# M!-)"\$-) Antimony M=,#\$"A Q(="-) Q#=O!!"-) ((@)"-) (!A"-) F=?)"-) ?/(!% ?**#= D=?\$ #(@ <(^\$#,"-) <(\$^(\$#,# Y"AN#! ??%(,,"-) #!#\$"-) "!D#= ?@"-)	295 *5 10;K +#,-!% V-(!"J" 88555 16.5 U UJ 9RGQ 395 J 5REG 8R3J 73E55 J EHRG BR4 47R4J- EH755 J 37B J HG85 J- 3E4 J 74R3 J- 8G55 J+ 7R3 S 5RE5 S 77H	#= +. 11.0 16.5 2.2 0.55 0.22 0.22 55.2 0.55 0.55 1.1 11.0 1.1 22.1 0.22 5.5 33.1 4.4 0.66 154	4.9 0.44 0.44 0.12 0.031 0.033 3.6 0.22 0.055 0.23 3.9 0.26 1.0 0.035 0.25 22.1 0.44 0.22 14.3	mg/Kg		";=#*(=#@ 09/24/20 17:07	M\$(!OT#@ 09/25/20 13:34	1 1 1 1 1 1 1 1 1 1 1 1 1
M2-8:2 FTS <#%F?@2&4585 &6&<#%(!,&I M\$(!O%# M!-)"\$-) Antimony M=,#\$"A Q(="-) Q#=O!!"-) (!A"-) F=?)"-) ?/(!% ?**#= D=?\$ #(@ <(^\$#,"-) <(\$^(\$#,# Y"AN#! :?%(,,"-) #!#\$"-) "!D#=	295 *5 10;K +#,-!% V-(!"J" 88555 16.5 U UJ 9RGQ 395 J 5REG 8R3J 73E55 J EHRG BR4 47R4J- EH755 J 37B J HG85 J- 3E4 J 74R3J- 8G55 J+ 7R3 S 5RE5 S	#= +. 11.0 16.5 2.2 0.55 0.22 0.22 55.2 0.55 0.55 1.1 11.0 1.1 22.1 0.22 5.5 33.1 4.4 0.66	4.9 0.44 0.44 0.031 0.033 3.6 0.22 0.055 0.23 3.9 0.26 1.0 0.035 0.25 22.1 0.44 0.22 14.3 0.33	mg/Kg		";=#*(=#@) 09/24/20 17:07	M\$(!OT#@ 09/25/20 13:34 09/25/20 13:34	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&"653

.(/&'()*!#&012&34567893956B

<(%=">2&'?!"(

1(%#& ?!!#A%#@**285B**C75&8G23G

;#=A#\$%&'?!"@,2&9C

1(%#&+#A#"D#@2&5BC84C75&892E5 ;#=A#\$%

<#%F?@2&H3H8Q&6&<#=A}- \ \(M\$(!O%#	M ** +#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@ <u>.</u>	M\$(!OT#@	1"!&L(A
<#=A-=O	5R74	0.021		mg/Kg	<u>.</u>			1
Z#\$#=(!& F#)",%=O								
M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
Cyanide, Total	1.1 U	1.1	0.54	mg/Kg	☼	09/21/20 13:33	09/22/20 14:23	1

!"#\$%&'()*!#&012&"65G

.(/&'()*!#&012&3456789395685

1(%#& ?!!#A%#@265BC75&8G2GG

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

<#%F?@2&9745 &6& %"!#&X= M\$(!O%#		V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
1,1,1-Trichloroethane	1.3	U H H3 UJ	1.3	0.30	ug/Kg	☼	09/18/20 22:24	09/23/20 04:10	1
1,1,2,2-Tetrachloroethane	1.3	U H H3 UJ	1.3	0.27	ug/Kg	₩	09/18/20 22:24	09/23/20 04:10	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.3	U H H3 <mark>UJ</mark>	1.3	0.38	ug/Kg	₽	09/18/20 22:24	09/23/20 04:10	1
1,1,2-Trichloroethane	1.3	U H H3 <mark>UJ</mark>	1.3	0.23	ug/Kg	₩	09/18/20 22:24	09/23/20 04:10	1
1,1-Dichloroethane	1.3	U H H3 <mark>UJ</mark>	1.3	0.26	ug/Kg	₽	09/18/20 22:24	09/23/20 04:10	1
1,1-Dichloroethene	1.3	U H H3 <mark>UJ</mark>	1.3	0.29	ug/Kg	₽	09/18/20 22:24	09/23/20 04:10	1
1,2,4-Trichlorobenzene	1.3	U H H3 <mark>UJ</mark>	1.3	0.45	ug/Kg	₩	09/18/20 22:24	09/23/20 04:10	1
1,2-Dibromo-3-Chloropropane	1.3	U H H3 <mark>UJ</mark>	1.3	0.58	ug/Kg	₽	09/18/20 22:24	09/23/20 04:10	1
1,2-Dichlorobenzene	1.3	U H H3 <mark>UJ</mark>	1.3	0.18	ug/Kg	₽	09/18/20 22:24	09/23/20 04:10	1
1,2-Dichloroethane	1.3	U H H3 <mark>UJ</mark>	1.3	0.38	ug/Kg	₩	09/18/20 22:24	09/23/20 04:10	1
1,2-Dichloropropane	1.3	U H H3 <mark>UJ</mark>	1.3	0.54	ug/Kg	☼	09/18/20 22:24	09/23/20 04:10	1
1,3-Dichlorobenzene	1.3	U H H3 <mark>UJ</mark>	1.3	0.20	ug/Kg	☼	09/18/20 22:24	09/23/20 04:10	1
1,4-Dichlorobenzene	1.3	U H H3 <mark>UJ</mark>	1.3	0.29	ug/Kg	☼	09/18/20 22:24	09/23/20 04:10	1
76Q-%(\$?\$#&I <p`k< td=""><td>E7</td><td>W&W⊟</td><td>6.4</td><td>3.4</td><td>ug/Kg</td><td>☼</td><td>09/18/20 22:24</td><td>09/23/20 04:10</td><td>1</td></p`k<>	E7	W&W ⊟	6.4	3.4	ug/Kg	☼	09/18/20 22:24	09/23/20 04:10	1
2-Hexanone	6.4	U H H3 <mark>UJ</mark>	6.4	2.2	ug/Kg	≎	09/18/20 22:24	09/23/20 04:10	1
4-Methyl-2-pentanone (MIBK)	6.4	U H H3 UJ	6.4	2.0	ug/Kg		09/18/20 22:24	09/23/20 04:10	1
MA#%?\$#	875	W&W ■	7.6		ug/Kg	≎	09/18/20 22:24	09/23/20 04:10	1
Benzene	1.3	U H H3 <mark>UJ</mark>	1.3	0.33	ug/Kg	☼	09/18/20 22:24	09/23/20 04:10	1
Bromoform	1.3	U H H3 UJ	1.3	0.54	ug/Kg	 \$	09/18/20 22:24	09/23/20 04:10	1
Bromomethane	1.3	U H H3 <mark>UJ</mark>	1.3		ug/Kg	≎	09/18/20 22:24	09/23/20 04:10	1
Carbon disulfide	1.3	U H H3 <mark>UJ</mark>	1.3	0.34	ug/Kg	≎	09/18/20 22:24	09/23/20 04:10	1
Carbon tetrachloride	1.3	U H H3 UJ	1.3		ug/Kg		09/18/20 22:24	09/23/20 04:10	1
Chlorobenzene	1.3	U H H3 <mark>UJ</mark>	1.3	0.22	ug/Kg	☼	09/18/20 22:24	09/23/20 04:10	1
Dibromochloromethane	1.3	U H H3 <mark>UJ</mark>	1.3	0.25	ug/Kg	≎	09/18/20 22:24	09/23/20 04:10	1
Chloroethane	1.3	U H H3 UJ	1.3		ug/Kg		09/18/20 22:24	09/23/20 04:10	1
Chloroform	1.3	U H H3 <mark>UJ</mark>	1.3	0.41	ug/Kg	☼	09/18/20 22:24	09/23/20 04:10	1
Chloromethane	1.3	U H H3 <mark>UJ</mark>	1.3	0.55	ug/Kg	☼	09/18/20 22:24	09/23/20 04:10	1
cis-1,2-Dichloroethene	1.3	U H H3 <mark>UJ</mark>	1.3	0.19	ug/Kg	☼	09/18/20 22:24	09/23/20 04:10	1
Cyclohexane	1.3	U H H3 <mark>UJ</mark>	1.3	0.28	ug/Kg	☼	09/18/20 22:24	09/23/20 04:10	1
Bromodichloromethane	1.3	U H H3 <mark>UJ</mark>	1.3	0.33	ug/Kg	☼	09/18/20 22:24	09/23/20 04:10	1
Dichlorodifluoromethane	1.3	U H H3 UJ	1.3	0.43	ug/Kg		09/18/20 22:24	09/23/20 04:10	1
Ethylbenzene	1.3	U H H3 <mark>UJ</mark>	1.3	0.25	ug/Kg	≎	09/18/20 22:24	09/23/20 04:10	1
1,2-Dibromoethane	1.3	U H H3 <mark>UJ</mark>	1.3	0.23	ug/Kg	≎	09/18/20 22:24	09/23/20 04:10	1
Isopropylbenzene	1.3	U H H3 <mark>UJ</mark>	1.3		ug/Kg		09/18/20 22:24	09/23/20 04:10	1
Methyl acetate	6.4	U H H3 <mark>UJ</mark>	6.4		ug/Kg	☼	09/18/20 22:24	09/23/20 04:10	1
Methyl tert-butyl ether	1.3	U H H3 <mark>UJ</mark>	1.3	0.16	ug/Kg	☼	09/18/20 22:24	09/23/20 04:10	1
Methylcyclohexane	1.3	U H H3 <mark>UJ</mark>	1.3		ug/Kg		09/18/20 22:24	09/23/20 04:10	1
<#%FO!#\$#& F!?="@#	7R3	8 W&W₽	1.3		ug/Kg	÷.	09/18/20 22:24	09/23/20 04:10	1

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&"65G

.(/&'()*!#&012&3456789395685

1(%#& ?!!#A%#@**2&\$B**C75&8G2GG

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

70#AT#A# D#@2A3BC04C73									<u>w</u> ,2&
<#%F?@2&9745 &8& %"!#&X	=^(\$"A& ?)*1	?-\$@,&/O8	Z C<'&I ?\$	5% "\$-#@	K				
Л\$(!O%#	<u> </u>	V-(!"J"#=	+.	<1.		1	;=#*(=#@	M\$(!OT#@	1"!&L
etrachloroethene	1.3	U H H3 UJ	1.3	0.1			09/18/20 22:24	09/23/20 04:10	
?!-#\$#	8R7	S&W&WE	1.3	0.3		☼	09/18/20 22:24	09/23/20 04:10	
rans-1,2-Dichloroethene	1.3	U H H3 UJ	1.3		31 ug/Kg	₽	09/18/20 22:24	09/23/20 04:10	
rans-1,3-Dichloropropene	1.3	U H H3 UJ	1.3	0.3	34 ug/Kg	₩	09/18/20 22:24	09/23/20 04:10	
richloroethene	1.3	U H H3 UJ	1.3	0.1	l8 ug/Kg	₽	09/18/20 22:24	09/23/20 04:10	
richlorofluoromethane	1.3	U H H3 UJ	1.3	0.5	52 ug/Kg	₽	09/18/20 22:24	09/23/20 04:10	
/inyl chloride	1.3	U H H3 UJ	1.3	0.6	9 ug/Kg	₽	09/18/20 22:24	09/23/20 04:10	
(ylenes, Total	2.5	U H H3 UJ	2.5	0.2	22 ug/Kg	₽	09/18/20 22:24	09/23/20 04:10	
sis-1,3-Dichloropropene	1.3	U H H3 UJ	1.3	0.3	35 ug/Kg	☼	09/18/20 22:24	09/23/20 04:10	
Styrene	1.3	U H H3 UJ	1.3	0.3	35 ug/Kg	₩	09/18/20 22:24	09/23/20 04:10	
entatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
entatively Identified Compound	None	H H3	ug/Kg	*			09/18/20 22:24		
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
,2-Dichloroethane-d4 (Surr)	112		77 - 145				09/18/20 22:24	09/23/20 04:10	
Toluene-d8 (Surr)	99		80 - 120				09/18/20 22:24	09/23/20 04:10	
Dibromofluoromethane (Surr)	109		48 - 150				09/18/20 22:24	09/23/20 04:10	
l-Bromofluorobenzene	106		79 - 125				09/18/20 22:24	09/23/20 04:10	
:#%F?@2&97H51&6&'#)"D?!	/º/-"I#8.Y=^/0	ኒ "ለ <i>ዴ</i> ኃ*ኃ.	\$ <i>@</i> ይሀን ርሬ	''K					
/\$(!O%#		V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L
2,4,5-Trichlorophenol	2000		2000	55			09/21/20 15:10		1
2,4,6-Trichlorophenol	2000		2000		0 ug/Kg	~ ☆		09/22/20 18:59	1
2,4-Dichlorophenol	2000		2000	22		~ ☆		09/22/20 18:59	1
2,4-Dimethylphenol	2000		2000		0 ug/Kg			09/22/20 18:59	
2,4-Dinitrophenol	20000		20000	940		₩		09/22/20 18:59	,
2,4-Dinitrotoluene	2000		2000	42		₩		09/22/20 18:59	
2,6-Dinitrotoluene	2000		2000	24				09/22/20 18:59	
2-Chloronaphthalene	2000		2000		lo ug/Kg	₩		09/22/20 18:59	
•	4000		4000	37		∵ ∴		09/22/20 18:59	,
2-Chlorophenol	2000		2000					09/22/20 18:59	;
2-Methylnaphthalene	2000		2000	24	0 0	☆		09/22/20 18:59	
2-Methylphenol									1
2-Nitroaniline	4000		4000		00 ug/Kg			09/22/20 18:59	1
2-Nitrophenol	2000		2000		30 ug/Kg	*		09/22/20 18:59	
3,3'-Dichlorobenzidine	4000		4000		00 ug/Kg	±.		09/22/20 18:59	1
B-Nitroaniline	4000		4000		30 ug/Kg			09/22/20 18:59	1
l,6-Dinitro-2-methylphenol	4000		4000		00 ug/Kg	₽		09/22/20 18:59	•
l-Bromophenyl phenyl ether	2000		2000		00 ug/Kg	₽		09/22/20 18:59	1
l-Chloro-3-methylphenol	2000		2000		00 ug/Kg			09/22/20 18:59	1
l-Chloroaniline	2000		2000		00 ug/Kg	‡		09/22/20 18:59	1
l-Chlorophenyl phenyl ether	2000		2000		0 ug/Kg	₩		09/22/20 18:59	1
l-Methylphenol	4000		4000		l0 ug/Kg			09/22/20 18:59	1
l-Nitroaniline	4000		4000		00 ug/Kg	₽		09/22/20 18:59	1
-Nitrophenol	4000		4000		00 ug/Kg	₽		09/22/20 18:59	,
Acenaphthene	2000		2000		00 ug/Kg			09/22/20 18:59	
Acenaphthylene	2000		2000		30 ug/Kg	₽		09/22/20 18:59	•
		1.1	0000	0.0		- L	00/21/20 15:10	09/22/20 18:59	1
Acetophenone	2000 2000		2000 2000		30 ug/Kg 30 ug/Kg	☼		09/22/20 18:59	1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&"65G

.(/&'()*!#&012&3456789395685

1(%#& ?!!#A%#@**2&36**5&8G2GG

<(%=">2&'?!"(

1(%#&+#A#"D#@**28.46**5&892E5 ;#

;#=A#\$%&'?!"@,2&98

<#%F?@2&97H51&6&'#)"D?! M\$(!O%#		V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
Benzaldehyde	2000	U	2000	1600	ug/Kg	<u></u>	09/21/20 15:10	09/22/20 18:59	10
Q#\$T?b(c(\$%F=(A#\$#	H55	S	2000	200	ug/Kg	₽	09/21/20 15:10	09/22/20 18:59	10
Q#\$T?b(c*O=#\$#	9G5	S	2000	300	ug/Kg	₽	09/21/20 15:10	09/22/20 18:59	10
Q#\$T?b/cJ!-?=(\$%F#\$#	8555	S	2000	320	ug/Kg	₽	09/21/20 15:10	09/22/20 18:59	10
Q#\$T?b^_F_"c*#=O!#\$#	455	S	2000	220	ug/Kg	₽	09/21/20 15:10	09/22/20 18:59	10
Q#\$T?bNcJ!-?=(\$%F#\$#	E95	S	2000	260	ug/Kg	₽	09/21/20 15:10	09/22/20 18:59	10
Biphenyl	2000	U	2000	300	ug/Kg	₩	09/21/20 15:10	09/22/20 18:59	10
bis (2-chloroisopropyl) ether	2000	U	2000	410	ug/Kg	₩	09/21/20 15:10	09/22/20 18:59	10
Bis(2-chloroethoxy)methane	2000	U	2000	430	ug/Kg	☼	09/21/20 15:10	09/22/20 18:59	10
Bis(2-chloroethyl)ether	2000	U	2000	260	ug/Kg	☼	09/21/20 15:10	09/22/20 18:59	10
Bis(2-ethylhexyl) phthalate	2000	U	2000	690	ug/Kg	☼	09/21/20 15:10	09/22/20 18:59	10
Butyl benzyl phthalate	2000	U	2000	340	ug/Kg		09/21/20 15:10	09/22/20 18:59	10
Caprolactam	2000	U	2000	610	ug/Kg	₽	09/21/20 15:10	09/22/20 18:59	10
Carbazole	2000	U	2000	240	ug/Kg	₽	09/21/20 15:10	09/22/20 18:59	10
F=O,#\$#	HH5	S	2000		ug/Kg		09/21/20 15:10	09/22/20 18:59	10
Dibenz(a,h)anthracene	2000	U	2000		ug/Kg	☼	09/21/20 15:10	09/22/20 18:59	10
Dibenzofuran	2000	U	2000	240	ug/Kg	₽	09/21/20 15:10	09/22/20 18:59	10
Diethyl phthalate	2000	U	2000	260	ug/Kg		09/21/20 15:10	09/22/20 18:59	10
Dimethyl phthalate	2000	U	2000	240	ug/Kg	₽	09/21/20 15:10	09/22/20 18:59	10
Di-n-butyl phthalate	2000	U	2000	350	ug/Kg	₽	09/21/20 15:10	09/22/20 18:59	10
Di-n-octyl phthalate	2000	U	2000	240	ug/Kg		09/21/20 15:10	09/22/20 18:59	10
L!-?=(\$%F#\$#	8755	S	2000		ug/Kg	₽	09/21/20 15:10	09/22/20 18:59	10
Fluorene	2000	U	2000		ug/Kg	₽	09/21/20 15:10	09/22/20 18:59	10
Hexachlorobenzene	2000	U	2000		ug/Kg		09/21/20 15:10	09/22/20 18:59	10
Hexachlorobutadiene	2000	U	2000		ug/Kg	₽	09/21/20 15:10	09/22/20 18:59	10
Hexachlorocyclopentadiene	2000	U	2000		ug/Kg	₽	09/21/20 15:10	09/22/20 18:59	10
Hexachloroethane	2000	U	2000		ug/Kg		09/21/20 15:10	09/22/20 18:59	10
0\$@#\$?b8_7_E6A@c*O=#\$#	3B5	S	2000		ug/Kg	₽	09/21/20 15:10	09/22/20 18:59	10
Isophorone	2000	U	2000		ug/Kg	₽	09/21/20 15:10	09/22/20 18:59	10
Naphthalene	2000	U	2000		ug/Kg		09/21/20 15:10	09/22/20 18:59	10
Nitrobenzene	2000	U	2000		ug/Kg	☼	09/21/20 15:10	09/22/20 18:59	10
N-Nitrosodi-n-propylamine	2000	U	2000		ug/Kg	☼	09/21/20 15:10	09/22/20 18:59	10
N-Nitrosodiphenylamine	2000	U	2000		ug/Kg		09/21/20 15:10	09/22/20 18:59	10
Pentachlorophenol	4000	U	4000		ug/Kg	₩	09/21/20 15:10	09/22/20 18:59	10
;F#\$(\$%F=#\$#	G55	S	2000		ug/Kg	₩	09/21/20 15:10	09/22/20 18:59	10
Phenol	2000		2000		ug/Kg		09/21/20 15:10		10
;O=#\$#	8755	S	2000		ug/Kg	₩	09/21/20 15:10	09/22/20 18:59	10
Tentatively Identified Compound	Est. Result	Qualifier	Unit	<u>D</u>	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	☼			09/21/20 15:10	09/22/20 18:59	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	91		54 - 120					09/22/20 18:59	10
2-Fluorobiphenyl	96		60 - 120					09/22/20 18:59	10
2-Fluorophenol	90		52 - 120					09/22/20 18:59	10
Nitrobenzene-d5	84		53 - 120					09/22/20 18:59	10
Phenol-d5	89		54 - 120					09/22/20 18:59	10

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&"65G

.(/&'()*!#&012&3456789395685

1(%#& ?!!#A%#@**2855E**C75&8G2GG 1(%#&+#A#"D#@2&5BC84C75&892E5 <(%=">2&'?!"(

;#=A#\$%&'?!"@,2&98

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
4,4'-DDD	100	U	100	20	ug/Kg	☆	09/22/20 13:04	09/23/20 13:33	50
4,4'-DDE	100	U	100	21	ug/Kg	☼	09/22/20 13:04	09/23/20 13:33	50
3_3d611:	7B	S J-	100	24	ug/Kg	₩	09/22/20 13:04	09/23/20 13:33	50
Aldrin	100	U	100	25	ug/Kg	☆	09/22/20 13:04	09/23/20 13:33	50
alpha-BHC	100	U	100	18	ug/Kg	☆	09/22/20 13:04	09/23/20 13:33	50
beta-BHC	100	U	100	18	ug/Kg	₽	09/22/20 13:04	09/23/20 13:33	50
cis-Chlordane	100	U	100	51	ug/Kg	₩	09/22/20 13:04	09/23/20 13:33	50
delta-BHC	100	U	100	19	ug/Kg	≎	09/22/20 13:04	09/23/20 13:33	50
Dieldrin	100	U	100	24	ug/Kg	≎	09/22/20 13:04	09/23/20 13:33	50
Endosulfan I	100	U	100	20	ug/Kg	₩	09/22/20 13:04	09/23/20 13:33	50
Endosulfan II	100	U	100	18	ug/Kg	☆	09/22/20 13:04	09/23/20 13:33	50
Endosulfan sulfate	100	U	100		ug/Kg	☼	09/22/20 13:04	09/23/20 13:33	50
Endrin	100	U	100		ug/Kg		09/22/20 13:04	09/23/20 13:33	50
Endrin aldehyde	100	U	100		ug/Kg	₩	09/22/20 13:04	09/23/20 13:33	50
Endrin ketone	100	U	100		ug/Kg	☆	09/22/20 13:04	09/23/20 13:33	50
gamma-BHC (Lindane)	100	U	100		ug/Kg		09/22/20 13:04	09/23/20 13:33	50
Heptachlor	100		100		ug/Kg			09/23/20 13:33	50
Heptachlor epoxide	100	U	100		ug/Kg			09/23/20 13:33	50
<#%F?>OAF!?=	74		100		ug/Kg			09/23/20 13:33	50
Toxaphene	1000		1000		ug/Kg			09/23/20 13:33	50
trans-Chlordane	100		100		ug/Kg	☼		09/23/20 13:33	50
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fa
DCB Decachlorobiphenyl	0	X	45 - 120				09/22/20 13:04	09/23/20 13:33	50
DCB Decachlorobiphenyl	0	X	45 - 120				09/22/20 13:04	09/23/20 13:33	50
Tetrachloro-m-xylene	0	X	30 - 124				09/22/20 13:04	09/23/20 13:33	50
Tetrachloro-m-xylene	0	X	30 - 124				09/22/20 13:04	09/23/20 13:33	50
<#%F?@2&959& N &;?!OAF!?=			•						
M\$(!O%#		V-(!"J"#=	+.	<1.	U\$"%	_ 1	;=#*(=#@	M\$(!OT#@	1"!&L(
PCB-1016		U	0.26		mg/Kg	☆		09/22/20 17:39	1
PCB-1221	0.26		0.26		mg/Kg	☆		09/22/20 17:39	1
PCB-1232	0.26		0.26		mg/Kg			09/22/20 17:39	1
PCB-1242	0.26		0.26		mg/Kg	☼		09/22/20 17:39	1
					ma/Ka	≎	09/21/20 15:17	09/22/20 17:39	1
PCB-1248	0.26		0.26	0.050					
PCB-1248 PCB-1254	0.26	U	0.26 0.26	0.12	mg/Kg	₩	09/21/20 15:17		1
PCB-1248		U		0.12		₩	09/21/20 15:17 09/21/20 15:17		1 1
PCB-1248 PCB-1254 PCB-1260 Surrogate	0.26 0.26 %Recovery	U	0.26 0.26 <i>Limits</i>	0.12	mg/Kg	₩	09/21/20 15:17 Prepared	09/22/20 17:39 Analyzed	1
PCB-1248 PCB-1254 PCB-1260 Surrogate Tetrachloro-m-xylene	0.26	U	0.26 0.26 Limits 60 - 154	0.12	mg/Kg	₩	09/21/20 15:17 Prepared	09/22/20 17:39	Dil Fac
PCB-1248 PCB-1254 PCB-1260 Surrogate Tetrachloro-m-xylene Tetrachloro-m-xylene	0.26 0.26 %Recovery	U	0.26 0.26 <i>Limits</i>	0.12	mg/Kg	₩	09/21/20 15:17 Prepared 09/21/20 15:17	09/22/20 17:39 Analyzed	1
PCB-1248 PCB-1254 PCB-1260 Surrogate Tetrachloro-m-xylene	0.26 0.26 %Recovery 107	U	0.26 0.26 Limits 60 - 154	0.12	mg/Kg	₩	09/21/20 15:17 Prepared 09/21/20 15:17 09/21/20 15:17	09/22/20 17:39 Analyzed 09/22/20 17:39	1
PCB-1248 PCB-1254 PCB-1260 Surrogate Tetrachloro-m-xylene Tetrachloro-m-xylene	0.26 0.26 %Recovery 107 87	U U Qualifier	0.26 0.26 Limits 60 - 154 60 - 154	0.12	mg/Kg	₩	09/21/20 15:17 Prepared 09/21/20 15:17 09/21/20 15:17 09/21/20 15:17	09/22/20 17:39 Analyzed 09/22/20 17:39 09/22/20 17:39	1
PCB-1248 PCB-1254 PCB-1260 Surrogate Tetrachloro-m-xylene Tetrachloro-m-xylene DCB Decachlorobiphenyl DCB Decachlorobiphenyl <#%F?@2&GEH&I)?@"J"#@K	0.26 0.26 **Recovery 107 87 102 63 (&6&L!-₩\)	U Qualifier X	0.26 0.26 Limits 60 - 154 60 - 154 65 - 174	0.12 0.12	mg/Kg mg/Kg	₩	09/21/20 15:17 Prepared 09/21/20 15:17 09/21/20 15:17 09/21/20 15:17 09/21/20 15:17	09/22/20 17:39 Analyzed 09/22/20 17:39 09/22/20 17:39 09/22/20 17:39 09/22/20 17:39	Dil Fac
PCB-1248 PCB-1254 PCB-1260 Surrogate Tetrachloro-m-xylene Tetrachloro-m-xylene DCB Decachlorobiphenyl DCB Decachlorobiphenyl <#%F?@2&GEH&I)?@"J"#@KM\$(!0%#	0.26 0.26 **Recovery 107 87 102 63 ***&6&L!-W#N +#,-!%	U Qualifier X X V-(!"J"#=	0.26 0.26 Limits 60 - 154 60 - 154 65 - 174 65 - 174	0.12 0.12	mg/Kg mg/Kg	₩	09/21/20 15:17 Prepared 09/21/20 15:17 09/21/20 15:17 09/21/20 15:17 09/21/20 15:17 ;=#*(=#@	09/22/20 17:39 Analyzed 09/22/20 17:39 09/22/20 17:39 09/22/20 17:39 09/22/20 17:39	Dil Fac
PCB-1248 PCB-1254 PCB-1260 Surrogate Tetrachloro-m-xylene Tetrachloro-m-xylene DCB Decachlorobiphenyl DCB Decachlorobiphenyl <#%F?@2&GEH&I)?@"J"#@KM\$(!0%#	0.26 0.26 **Recovery 107 87 102 63 (&6&L!-₩\)	U Qualifier X X V-(!"J"#=	0.26 0.26 Limits 60 - 154 60 - 154 65 - 174 65 - 174	0.12 0.12 	mg/Kg mg/Kg	*	09/21/20 15:17 Prepared 09/21/20 15:17 09/21/20 15:17 09/21/20 15:17 09/21/20 15:17 :=#*(=#@	09/22/20 17:39 Analyzed 09/22/20 17:39 09/22/20 17:39 09/22/20 17:39 09/22/20 17:39	Dil Fac
PCB-1248 PCB-1254 PCB-1260 Surrogate Tetrachloro-m-xylene Tetrachloro-m-xylene DCB Decachlorobiphenyl DCB Decachlorobiphenyl <#%F?@2&GEH&I)?@"J"#@K	0.26 0.26 **Recovery 107 87 102 63 ***&6&L!-W#N +#,-!%	Qualifier X D18#@2(\$) V-(!"J"#=	0.26 0.26 Limits 60 - 154 60 - 154 65 - 174 65 - 174	<1. 0.031 0.086	mg/Kg mg/Kg	* * * * * * * * * * * * * * * * * * *	09/21/20 15:17 Prepared 09/21/20 15:17 09/21/20 15:17 09/21/20 15:17 09/21/20 15:17 ;=#*(=#@ 09/20/20 20:32	09/22/20 17:39 Analyzed 09/22/20 17:39 09/22/20 17:39 09/22/20 17:39 09/22/20 17:39	1

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&"65G

.(/&'()*!#&012&3456789395685

1(%#& ?!!#A%#@**285E**C75&8G2GG

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

<#%F?@2&GEH&I)?@"J"#@K M\$(!0%#		V-(!"J"# =		-#@K <1.	U\$"%	1	·=#*(-#@	M\$(!OT#@	1"!&L(
					ug/Kg		;=#*(=#@ 09/20/20 20:32		1 !&L(
;#=J!-?=??A%(\$?"A&(A"@&ILXMK			0.22	0.090		**		09/24/20 21:01	
;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK	5R85	5			ug/Kg ug/Kg			09/24/20 21:01	· · · · · · · · .
;#=J!-?=?@#A(\$?"A&(A"@&IL1MK		0	0.22			‡; ∴			
;#=J!-?=?-\$@#A(\$?"A&(A"@& l;LU\$MK	5R5BH	5	0.22	0.040	ug/Kg	₩	09/20/20 20:32	09/24/20 21:01	
;#=J!-?=?@?@#A(\$?"A&(A"@& I;L1?MK	5R87	S	0.22	0.075	ug/Kg	₽	09/20/20 20:32	09/24/20 21:01	
Perfluorotridecanoic acid (PFTriA)	0.22		0.22	0.057	ua/Ka	 . ¤-	09/20/20 20:32	09/24/20 21:01	
;#=J!-?=?%#%=(@#A(\$?"A&(A"@&			0.22		ug/Kg	₩		09/24/20 21:01	
;L: #MK	011040		0.22	0.000	49/19	.,.	00/20/20 20:02	00/2 1/20 2 110 1	
Perfluorobutanesulfonic acid (PFBS)	0.22	U	0.22	0.028	ug/Kg	☼	09/20/20 20:32	09/24/20 21:01	
#=J!-?=?F#>(\$#,-!J?\$"A&(A"@& :LW>'K	5R5G9	S	0.22	0.035	ug/Kg	₽	09/20/20 20:32	09/24/20 21:01	
Perfluoroheptanesulfonic Acid (PFHpS)	0.22	U	0.22	0.039	ug/Kg	₽	09/20/20 20:32	09/24/20 21:01	
#=J!-?=??A%(\$#,-!J?\$"A&(A"@& ;LX'K	8RG	Q J+	0.56	0.22	ug/Kg	₽	09/20/20 20:32	09/24/20 21:01	
Perfluorodecanesulfonic acid (PFDS)	0.22	U	0.22	0.043	ug/Kg	₽	09/20/20 20:32	09/24/20 21:01	
Perfluorooctanesulfonamide (FOSA)	0.22	U	0.22	0.091	ug/Kg	≎	09/20/20 20:32	09/24/20 21:01	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	2.2	U	2.2	0.43	ug/Kg	₩	09/20/20 20:32	09/24/20 21:01	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	2.2	U	2.2	0.41	ug/Kg	₽	09/20/20 20:32	09/24/20 21:01	
3:2 FTS	2.2	U	2.2	0.17	ug/Kg	₩	09/20/20 20:32	09/24/20 21:01	
3:2 FTS	2.2	U	2.2	0.28	ug/Kg	₽	09/20/20 20:32	09/24/20 21:01	
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C4 PFBA	70		25 - 150					09/24/20 21:01	
13C5 PFPeA	81		25 - 150				09/20/20 20:32	09/24/20 21:01	
13C2 PFHxA	93		25 - 150				09/20/20 20:32	09/24/20 21:01	
13C4 PFHpA	96		25 - 150				09/20/20 20:32	09/24/20 21:01	
13C4 PFOA	97		25 - 150				09/20/20 20:32	09/24/20 21:01	
13C5 PFNA	102		25 - 150				09/20/20 20:32	09/24/20 21:01	
13C2 PFDA	95		25 - 150				09/20/20 20:32	09/24/20 21:01	
13C2 PFUnA	95		25 - 150				09/20/20 20:32	09/24/20 21:01	
13C2 PFDoA	82		25 - 150				09/20/20 20:32	09/24/20 21:01	
13C2 PFTeDA	76		25 - 150				09/20/20 20:32	09/24/20 21:01	
13C3 PFBS	92		25 - 150					09/24/20 21:01	
1802 PFHxS	101		25 ₋ 150					09/24/20 21:01	
13C4 PFOS	103		25 - 150					09/24/20 21:01	
13C8 FOSA	75		25 - 150					09/24/20 21:01	
d3-NMeFOSAA	67		25 - 150 25 - 150					09/24/20 21:01	
d5-NEtFOSAA	72		25 - 150 25 - 150					09/24/20 21:01	
M2-6:2 FTS	229	*5	25 - 150 25 - 150					09/24/20 21:01	
M2-8:2 FTS	242							09/24/20 21:01	
		3	25 - 150				09/20/20 20.32	09/24/20 21.01	
<#%F?@2&4585 &6&<#%(!,&I0		V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L
	· 11 ,-: /0								
M\$(!O%#	84B55		11.6	5.1	mg/Kg	₩	09/24/20 17:07	09/25/20 13:38	
M\$(!O%# M!-)"\$-)		U UJ	11.6 17.3		mg/Kg mg/Kg	₽		09/25/20 13:38 09/25/20 13:38	
M\$(!O%# M!-)"\$-) Antimony M=,#\$"A	84B55			0.46			09/24/20 17:07		

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&"65G

.(/&'()*!#&012&3456789395685

1(%#& ?!!#A%#@285EC75&8G2GG

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&98

M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
Q#=O!!"-)	5R3E	0.23	0.032	mg/Kg	<u></u>	09/24/20 17:07	09/25/20 13:38	1
(@)"-)	5R7HJ	0.23	0.035	mg/Kg	☼	09/24/20 17:07	09/25/20 13:38	1
(!A"-)	3B85 J	57.8	3.8	mg/Kg	₩	09/24/20 17:07	09/25/20 13:38	1
F=?)"-)	7GR8	0.58	0.23	mg/Kg	₩	09/24/20 17:07	09/25/20 13:38	1
?/(!%	BRE	0.58	0.058	mg/Kg	₩	09/24/20 17:07	09/25/20 13:38	1
?**#=	73R4J-	1.2	0.24	mg/Kg	₩	09/24/20 17:07	09/25/20 13:38	1
0=?\$	75H55 J	11.6	4.0	mg/Kg	₩	09/24/20 17:07	09/25/20 13:38	1
.#(@	G4RHJ	1.2	0.28	mg/Kg	₩	09/24/20 17:07	09/25/20 13:38	1
<(^\$#,"-)	4575 J-	23.1	1.1	mg/Kg	₽	09/24/20 17:07	09/25/20 13:38	1
<(\$^(\$#,#	38E J	0.23	0.037	mg/Kg	₽	09/24/20 17:07	09/25/20 13:38	1
Y"AN#!	8BR9J-	5.8	0.27	mg/Kg	₽	09/24/20 17:07	09/25/20 13:38	1
;?%(,,"-)	7545 J+	34.7	23.1	mg/Kg	₽	09/24/20 17:07	09/25/20 13:38	1
Selenium	4.6 U	4.6	0.46	mg/Kg	₽	09/24/20 17:07	09/25/20 13:38	1
Silver	0.69 U	0.69	0.23	mg/Kg	☼	09/24/20 17:07	09/25/20 13:38	1
'?@"-)	87G S	162	15.0	mg/Kg	≎	09/24/20 17:07	09/25/20 13:38	1
Thallium	6.9 U	6.9	0.35	mg/Kg	☼	09/24/20 17:07	09/25/20 13:38	1
] (\$(@"-)	79RG	0.58	0.13	mg/Kg	₽	09/24/20 17:07	09/25/20 13:38	1
e"\$A	884 J	2.3	0.74	mg/Kg	₽	09/24/20 17:07	09/25/20 13:38	1
<#%F?@2&H3H8Q&6&<#=	A- #08 K]							
M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
<#=A-=O	5R597	0.024	0.0097	mg/Kg	☆	09/22/20 11:56	09/22/20 14:08	1
Z#\$#=(!& F#)",%=O								
M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
Cyanide, Total		1.1	0.55	mg/Kg	☆	09/21/20 13:33	09/22/20 14:25	1

!"#\$%&'()*!#&012&'Q68I867K

.(/&'()*!#&012&3456789395688

1(%#& ?!!#A%#@**2&\$G**C75&5928G

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
;#=J!-?=?/-%(\$?"A&(A"@&ILQMK	3RGS	4.7	2.2	ng/L		09/29/20 04:48	09/29/20 17:48	1
;#=J!-?=?*#\$%(\$?"A&(A"@&IL;#MK	8RHS	1.9	0.46	ng/L		09/29/20 04:48	09/29/20 17:48	1
;#=J!-?=?F#>(\$?"A&(A"@&ILW>MK	8R5 S	1.9	0.54	ng/L		09/29/20 04:48	09/29/20 17:48	1
;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MK	8R3 S	1.9	0.23	ng/L		09/29/20 04:48	09/29/20 17:48	1
;#=J!-?=??A%(\$?"A&(A"@&ILXMK	ERE	1.9	0.80	ng/L		09/29/20 04:48	09/29/20 17:48	1
;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK	8R3 S	1.9	0.25	ng/L		09/29/20 04:48	09/29/20 17:48	1
;#=J!-?=?@#A(\$?"A&(A"@&IL1MK	8R7 S	1.9	0.29	ng/L		09/29/20 04:48	09/29/20 17:48	1
Perfluoroundecanoic acid (PFUnA)	1.9 U	1.9	1.0	ng/L		09/29/20 04:48	09/29/20 17:48	1
Perfluorododecanoic acid (PFDoA)	1.9 U <mark>UJ</mark>	1.9	0.51	ng/L		09/29/20 04:48	09/29/20 17:48	1
Perfluorotridecanoic acid (PFTriA)	1.9 U	1.9	1.2	ng/L		09/29/20 04:48	09/29/20 17:48	1
Perfluorotetradecanoic acid (PFTeA)	1.9 U <mark>UJ</mark>	1.9	0.68	ng/L		09/29/20 04:48	09/29/20 17:48	1
;#=J!-?=?/-%(\$#,-!J?\$"A&(A"@& I;LQ'K	5RGBS	1.9	0.19	ng/L		09/29/20 04:48	09/29/20 17:48	1
;#=J!-?=?F#>(\$#,-!J?\$"A&(A"@& I;L W>'K	5RG3S	1.9	0.53	ng/L		09/29/20 04:48	09/29/20 17:48	1
Perfluoroheptanesulfonic Acid (PFHpS)	1.9 U	1.9	0.18	ng/L		09/29/20 04:48	09/29/20 17:48	1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q68I867K

.(/&'()*!#&012&3456789395688

1(%#& ?!!#A%#@**2&3G**C75&5928G

<(%=">2&'?!"(

Job ID: 460-218480-1

1(%#&+#A#"D#@2&5BC84C75&892E5

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(/
;#=J!-?=??A%(\$#,-!J?\$"A&(A"@&	8E		1.9	0.51	ng/L		09/29/20 04:48	09/29/20 17:48	1
I;LX'K									
Perfluorodecanesulfonic acid (PFDS)	1.9		1.9		ng/L			09/29/20 17:48	1
Perfluorooctanesulfonamide (FOSA)	1.9	U	1.9		ng/L		09/29/20 04:48	09/29/20 17:48	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	4.7	U	4.7	1.1	ng/L		09/29/20 04:48	09/29/20 17:48	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	4.7	U	4.7	1.2	ng/L		09/29/20 04:48	09/29/20 17:48	1
6:2 FTS	4.7	U	4.7	2.3	ng/L		09/29/20 04:48	09/29/20 17:48	1
8:2 FTS	1.9	U	1.9	0.43	ng/L		09/29/20 04:48	09/29/20 17:48	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	25		25 - 150				09/29/20 04:48	09/29/20 17:48	
13C5 PFPeA	26		25 - 150				09/29/20 04:48	09/29/20 17:48	
13C2 PFHxA	28		25 - 150				09/29/20 04:48	09/29/20 17:48	
13C4 PFHpA	30		25 - 150				09/29/20 04:48	09/29/20 17:48	
13C4 PFOA	29		25 - 150				09/29/20 04:48	09/29/20 17:48	
13C5 PFNA	33		25 - 150				09/29/20 04:48	09/29/20 17:48	
13C2 PFDA	32		25 - 150				09/29/20 04:48	09/29/20 17:48	
13C2 PFUnA	29		25 - 150				09/29/20 04:48	09/29/20 17:48	
13C2 PFDoA	22	*5	25 - 150				09/29/20 04:48	09/29/20 17:48	
13C2 PFTeDA	20	*5	25 - 150				09/29/20 04:48	09/29/20 17:48	
13C3 PFBS	27		25 - 150				09/29/20 04:48	09/29/20 17:48	
1802 PFHxS	30		25 - 150				09/29/20 04:48	09/29/20 17:48	
13C4 PFOS	30		25 - 150				09/29/20 04:48	09/29/20 17:48	
13C8 FOSA	27		25 - 150				09/29/20 04:48	09/29/20 17:48	
d3-NMeFOSAA	25		25 - 150				09/29/20 04:48	09/29/20 17:48	
d5-NEtFOSAA	29		25 - 150				09/29/20 04:48	09/29/20 17:48	
M2-6:2 FTS	43		25 - 150				09/29/20 04:48	09/29/20 17:48	
M2-8:2 FTS	44		25 - 150				09/29/20 04:48	09/29/20 17:48	
Z#\$#=(!& F#)",%=O									
M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(/
: ?%(!& (=/?\$	75G55	J+	1000	671	mg/Kg	-		09/23/20 20:19	1
: ?%(!& (=/?\$	8H855	J	1000	671	mg/Kg			09/30/20 16:11	1
M\$(!O%#	+#,-!%	V-(!"J"#=	+,	+,	U\$"%	_ 1_	;=#*(=#@	M\$(!OT#@	1"!&L(
*W	4R(WL	0.1	0.1	SU			09/22/20 15:00	1
: #)*#=(%-=#	78RE	3WL	0.001	0.001	Degrees C			09/22/20 15:00	1

!"#\$%&'()*!#&012&'Q68I867K

1(%#& ?!!#A%#@2&5BC8GC75&5928G

1(%#&+#A#"D#@2&5BC84C75&892E5

.(/&'()*!#&012&3456789395688

<(%=">2&'?!"(

<#%F?@2&GEH&I)?@"J"#@K&68	&L! -171+1\\$)!%#@% (\$A#	# ,						
M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
;#=J!-?=?/-%(\$?"A&(A"@&ILQMK	5R7HQ J+	0.21	0.030	ug/Kg	*	09/22/20 11:42	09/26/20 00:54	1
;#=J!-?=?*#\$%(\$?"A&(A"@&IL;#MK	5R87 S	0.21	0.083	ug/Kg	₩	09/22/20 11:42	09/26/20 00:54	1
;#=J!-?=?F#>(\$?"A&(A"@&ILW>MK	5R593 S	0.21	0.045	ug/Kg	₩	09/22/20 11:42	09/26/20 00:54	1
;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MK	5R85 S	0.21	0.031	ug/Kg	₩	09/22/20 11:42	09/26/20 00:54	1
;#=J!-?=??A%(\$?"A&(A"@&ILXMK	5RE7	0.21	0.092	ug/Kg	₩	09/22/20 11:42	09/26/20 00:54	1
;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK	5R83 S	0.21	0.039	ug/Kg	☼	09/22/20 11:42	09/26/20 00:54	1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q68I867K

.(/&'()*!#&012&3456789395688

1(%#& ?!!#A%#@2886C75&5928G

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&9E

M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(/
;#=J!-?=?@#A(\$?"A&(A"@&IL1MK	5RE7	0.21	0.024	ug/Kg	— -	09/22/20 11:42		1
;#=J!-?=?-\$@#A(\$?"A&(A"@&	5R73	0.21		ug/Kg	 ☆	09/22/20 11:42	09/26/20 00:54	1
I;L U\$MK								
;#=J!-?=?@?@#A(\$?"A&(A"@&	5R78	0.21	0.072	ug/Kg	₽	09/22/20 11:42	09/26/20 00:54	1
I;L 1?MK	, <u></u>							
;#=J!-?=?%="@#A(\$?"A&(A"@ &!N LK		0.21		ug/Kg			09/26/20 00:54	1
;#=J!-?=?%#%=(@#A(\$?"A&(A"@& I:L: #MK	5R5HHS	0.21	0.058	ug/Kg	.	09/22/20 11:42	09/26/20 00:54	1
Perfluorobutanesulfonic acid (PFBS)	0.21 U	0.21	0.027	ug/Kg	-Ö-	09/22/20 11:42	09/26/20 00:54	1
;#=J!-?=?F#>(\$#,-!J?\$"A&(A"@&	5R548 S	0.21		ug/Kg			09/26/20 00:54	
I;L W>'K	0110400	0.21	0.000	agritg	~	00/22/20 11.12	00/20/20 00:01	·
Perfluoroheptanesulfonic Acid (PFHpS)	0.21 U	0.21	0.038	ug/Kg	₽	09/22/20 11:42	09/26/20 00:54	1
Perfluorodecanesulfonic acid (PFDS)	0.21 U	0.21	0.042	ug/Kg	₽	09/22/20 11:42	09/26/20 00:54	1
Perfluorooctanesulfonamide (FOSA)	0.21 U	0.21		ug/Kg	ф	09/22/20 11:42	09/26/20 00:54	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	2.1 U	2.1		ug/Kg	₽	09/22/20 11:42	09/26/20 00:54	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	2.1 U	2.1	0.40	ug/Kg	₩	09/22/20 11:42	09/26/20 00:54	1
6:2 FTS	2.1 U	2.1	0.16	ug/Kg	₽	09/22/20 11:42	09/26/20 00:54	1
8:2 FTS	2.1 U	2.1	0.27	ug/Kg	☼	09/22/20 11:42	09/26/20 00:54	1
Isotope Dilution	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	44	25 - 150				09/22/20 11:42	09/26/20 00:54	
13C5 PFPeA	57	25 - 150				09/22/20 11:42	09/26/20 00:54	
13C2 PFHxA	70	25 - 150				09/22/20 11:42	09/26/20 00:54	
13C4 PFHpA	72	25 - 150				09/22/20 11:42	09/26/20 00:54	
13C4 PFOA	70	25 - 150				09/22/20 11:42	09/26/20 00:54	
13C5 PFNA	79	25 - 150				09/22/20 11:42	09/26/20 00:54	
13C2 PFDA	72	25 - 150				09/22/20 11:42	09/26/20 00:54	
13C2 PFUnA	76	25 - 150				09/22/20 11:42	09/26/20 00:54	
13C2 PFDoA	68	25 - 150				09/22/20 11:42	09/26/20 00:54	
13C2 PFTeDA	64	25 - 150				09/22/20 11:42	09/26/20 00:54	
13C3 PFBS	67	25 - 150				09/22/20 11:42	09/26/20 00:54	
18O2 PFHxS	74	25 - 150				09/22/20 11:42	09/26/20 00:54	
13C8 FOSA	62	25 - 150				09/22/20 11:42	09/26/20 00:54	
d3-NMeFOSAA	58	25 - 150				09/22/20 11:42	09/26/20 00:54	
d5-NEtFOSAA	70	25 - 150				09/22/20 11:42	09/26/20 00:54	
M2-6:2 FTS	231 *5	25 - 150				09/22/20 11:42	09/26/20 00:54	
M2-8:2 FTS	244 *5	25 - 150				09/22/20 11:42	09/26/20 00:54	
<#%F?@2&GEH&I)?@"J"#@K	&6&L! -17#N\$(%#@% ((\$A#,&6&+P						
M\$(!O%#	+#,-!% V-(!"J"#=	+.		U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
;#=J!-?=??A%(\$#,-!J?\$"A&(A"@& I;L X'K	7RE	0.55	0.22	ug/Kg	₩	09/28/20 06:28	09/30/20 04:32	1
Isotope Dilution	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFOS	63	25 - 150				09/28/20 06:28	09/30/20 04:32	

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q67I567K

.(/&'()*!#&012&3456789395687

1(%#& ?!!#A%#@2**&\$G**C75&59235

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
;#=J!-?=?/-%(\$?"A&(A"@&ILQMK	5R49	Q J+	0.22	0.030	ug/Kg	☼	09/22/20 11:42	09/26/20 01:03	
;#=J!-?=?*#\$%(\$?"A&(A"@&IL;#MK	5R44		0.22	0.084	ug/Kg	☼	09/22/20 11:42	09/26/20 01:03	
;#=J!-?=?F#>(\$?"A&(A"@&ILW>MK	5R4E		0.22	0.046	ug/Kg	☼	09/22/20 11:42	09/26/20 01:03	
;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MI	K 5R34		0.22	0.032	ug/Kg	₩	09/22/20 11:42	09/26/20 01:03	
;#=J!-?=??A%(\$?"A&(A"@&ILXMK	7RE		0.22	0.093	ug/Kg	☼	09/22/20 11:42	09/26/20 01:03	
;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK	5R8H	S	0.22	0.039	ug/Kg	☼	09/22/20 11:42	09/26/20 01:03	
;#=J!-?=?@#A(\$?"A&(A"@&IL1MK	5R5GH	IS	0.22	0.024	ug/Kg	₽	09/22/20 11:42	09/26/20 01:03	
Perfluoroundecanoic acid (PFUnA)	0.22	U	0.22	0.039	ug/Kg	≎	09/22/20 11:42	09/26/20 01:03	
Perfluorododecanoic acid (PFDoA)	0.22	U	0.22	0.073	ug/Kg	₽	09/22/20 11:42	09/26/20 01:03	
Perfluorotridecanoic acid (PFTriA)	0.22	U	0.22	0.055	ug/Kg	₽	09/22/20 11:42	09/26/20 01:03	
Perfluorotetradecanoic acid (PFTeA)	0.22	U	0.22	0.059	ug/Kg	₽	09/22/20 11:42	09/26/20 01:03	
;#=J!-?=?/-%(\$#,-!J?\$"A&(A"@& I;LQ'K	5R535	S	0.22	0.027	ug/Kg	₩	09/22/20 11:42	09/26/20 01:03	
;#=J!-?=?F#>(\$#,-!J?\$"A&(A"@& I;LW>'K	5R5B9	S	0.22	0.034	ug/Kg	₽	09/22/20 11:42	09/26/20 01:03	1
Perfluoroheptanesulfonic Acid (PFHpS)	0.22	U	0.22	0.038	ug/Kg	₽	09/22/20 11:42	09/26/20 01:03	•
Perfluorodecanesulfonic acid (PFDS)	0.22	U	0.22	0.042	ug/Kg	☼	09/22/20 11:42	09/26/20 01:03	
Perfluorooctanesulfonamide (FOSA)	0.22	U	0.22	0.089	ug/Kg	₽	09/22/20 11:42	09/26/20 01:03	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	2.2	U	2.2	0.42	ug/Kg	₩	09/22/20 11:42	09/26/20 01:03	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	2.2	U	2.2	0.40	ug/Kg	₽	09/22/20 11:42	09/26/20 01:03	
6:2 FTS	2.2	U	2.2	0.16	ug/Kg	☼	09/22/20 11:42	09/26/20 01:03	
8:2 FTS	2.2	U	2.2	0.27	ug/Kg	☼	09/22/20 11:42	09/26/20 01:03	
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C4 PFBA	51		25 - 150				09/22/20 11:42	09/26/20 01:03	
13C5 PFPeA	63		25 - 150				09/22/20 11:42	09/26/20 01:03	
13C2 PFHxA	75		25 - 150				09/22/20 11:42	09/26/20 01:03	
13C4 PFHpA	80		25 - 150				09/22/20 11:42	09/26/20 01:03	
13C4 PFOA	73		25 - 150				09/22/20 11:42	09/26/20 01:03	
13C5 PFNA	79		25 - 150				09/22/20 11:42	09/26/20 01:03	
13C2 PFDA	79		25 - 150				09/22/20 11:42	09/26/20 01:03	
13C2 PFUnA	85		25 - 150				09/22/20 11:42	09/26/20 01:03	
13C2 PFDoA	84		25 - 150				09/22/20 11:42	09/26/20 01:03	
13C2 PFTeDA	84		25 - 150				09/22/20 11:42	09/26/20 01:03	
13C3 PFBS	68		25 - 150				09/22/20 11:42	09/26/20 01:03	
1802 PFHxS	77		25 - 150				09/22/20 11:42	09/26/20 01:03	
13C8 FOSA	74		25 - 150				09/22/20 11:42	09/26/20 01:03	
d3-NMeFOSAA	70		25 - 150				09/22/20 11:42	09/26/20 01:03	
d5-NEtFOSAA	87		25 - 150				09/22/20 11:42	09/26/20 01:03	
M2-6:2 FTS	163	*5	25 - 150				09/22/20 11:42	09/26/20 01:03	
M2-8:2 FTS	196	*5	25 - 150				09/22/20 11:42	09/26/20 01:03	
<#%F?@2&GEH&I)?@"J"#@K&				-4	11¢"0/	4	.=#*(-#@	M¢/IOT#@	4"1014
M\$(!O%#		V-(!"J"#=	+.		U\$"%	— 1		M\$(!OT#@	1"!&L(
;#=J!-?=??A%(\$#,-!J?\$"A&(A"@& I;L X'K	8R7		0.56	0.23	ug/Kg	₽.	09/28/20 06:28		ĺ
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFOS	77		25 - 150				00/00/00 00:00	09/30/20 04:41	

Client: New York State D.E.C.

Job ID: 460-218480-1 Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q6EI567K

.(/&'()*!#&012&345678939568E

1(%#& ?!!#A%#@**2835G**C75&5B285

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

<#%F?@2&GEH&I)?@"J"#@K M\$(!0%#	+#,-!% V		+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
#=J!-?=?/-%(\$?"A&(A"@&ILQMK	5R7E Q	J+	0.22	0.031	ug/Kg	<u></u>	09/22/20 11:42	09/26/20 01:13	
;#=J!-?=?*#\$%(\$?"A&(A"@&IL;#MI	K 5R85 S		0.22	0.085	ug/Kg	☼	09/22/20 11:42	09/26/20 01:13	1
;#=J!-?=?F#>(\$?"A&(A"@&ILW>MI			0.22	0.046	ug/Kg	☼	09/22/20 11:42	09/26/20 01:13	
;#=J!-?=?F#*%(\$?"A&(A"@&ILW*N			0.22	0.032	ug/Kg	₩	09/22/20 11:42	09/26/20 01:13	1
;#=J!-?=??A%(\$?"A&(A"@&ILXMK			0.22	0.095	ug/Kg	☼	09/22/20 11:42	09/26/20 01:13	1
;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK	5R8ES		0.22	0.040	ug/Kg	₩	09/22/20 11:42	09/26/20 01:13	1
;#=J!-?=?@#A(\$?"A&(A"@&IL1MK	5R5HBS		0.22	0.024	ug/Kg	₩	09/22/20 11:42	09/26/20 01:13	1
;#=J!-?=?-\$@#A(\$?"A&(A"@& I;L U\$MK	5R5G8S		0.22	0.040	ug/Kg	☼	09/22/20 11:42	09/26/20 01:13	1
Perfluorododecanoic acid (PFDoA)	0.22 U		0.22	0.074	ug/Kg	₩	09/22/20 11:42	09/26/20 01:13	1
Perfluorotridecanoic acid (PFTriA)	0.22 U		0.22	0.056	ug/Kg		09/22/20 11:42	09/26/20 01:13	1
Perfluorotetradecanoic acid (PFTeA)	0.22 U		0.22	0.060	ug/Kg	☼	09/22/20 11:42	09/26/20 01:13	
Perfluorobutanesulfonic acid (PFBS)	0.22 U		0.22	0.028	ug/Kg	☼	09/22/20 11:42	09/26/20 01:13	
Perfluorohexanesulfonic acid (PFHxS)	0.22 U		0.22	0.034		☼	09/22/20 11:42	09/26/20 01:13	1
Perfluoroheptanesulfonic Acid (PFHpS)	0.22 U		0.22	0.039		☼	09/22/20 11:42	09/26/20 01:13	1
Perfluorodecanesulfonic acid (PFDS)	0.22 U		0.22	0.043	ug/Kg	₩	09/22/20 11:42	09/26/20 01:13	
Perfluorooctanesulfonamide (FOSA)	0.22 U		0.22	0.091	ug/Kg		09/22/20 11:42	09/26/20 01:13	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	2.2 U		2.2	0.43	ug/Kg	☼	09/22/20 11:42	09/26/20 01:13	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	2.2 U		2.2	0.41	ug/Kg	☼	09/22/20 11:42	09/26/20 01:13	
6:2 FTS	2.2 U		2.2	0.17	ug/Kg	₽	09/22/20 11:42	09/26/20 01:13	
8:2 FTS	2.2 U		2.2	0.28	ug/Kg	₩	09/22/20 11:42	09/26/20 01:13	1
Isotope Dilution	%Recovery Q	ualifier L	imits				Prepared	Analyzed	Dil Fac
13C4 PFBA	56		5 - 150				09/22/20 11:42	09/26/20 01:13	
13C5 PFPeA	65	2	5 - 150				09/22/20 11:42	09/26/20 01:13	
13C2 PFHxA	77	2	5 - 150				09/22/20 11:42	09/26/20 01:13	
13C4 PFHpA	79	2	5 - 150				09/22/20 11:42	09/26/20 01:13	
13C4 PFOA	72	2	5 - 150				09/22/20 11:42	09/26/20 01:13	
13C5 PFNA	78	2	5 - 150				09/22/20 11:42	09/26/20 01:13	
13C2 PFDA	79	2	5 - 150				09/22/20 11:42	09/26/20 01:13	
13C2 PFUnA	85	2	5 - 150				09/22/20 11:42	09/26/20 01:13	
13C2 PFDoA	87	2	5 - 150				09/22/20 11:42	09/26/20 01:13	
13C2 PFTeDA	85	2:	5 - 150				09/22/20 11:42	09/26/20 01:13	
13C3 PFBS	67	28	5 - 150				09/22/20 11:42	09/26/20 01:13	
1802 PFHxS	70	28	5 - 150				09/22/20 11:42	09/26/20 01:13	
13C8 FOSA	74	2	5 - 150				09/22/20 11:42	09/26/20 01:13	
d3-NMeFOSAA	78	28	5 - 150				09/22/20 11:42	09/26/20 01:13	
d5-NEtFOSAA	95	28	5 - 150				09/22/20 11:42	09/26/20 01:13	
M2-6:2 FTS	158 *5	5 28	5 - 150				09/22/20 11:42	09/26/20 01:13	
M2-8:2 FTS	188 *5	5 25	5 - 150				09/22/20 11:42	09/26/20 01:13	
<#%F?@2&GEH&I)?@"J"#@K	•	•		4	11640/	4	.=#*/-#@	M¢/IOT#@	411101 /
M\$(!O%#	+#,-!% V	-(! 'J''#=	+.	<1.	U\$"%		;=#*(=#@	M\$(!OT#@	1"!&L(
;#=J!-?=??A%(\$#,-!J?\$"A&(A"@& l;L X'K	5RBE		0.57	0.23	ug/Kg	☼	09/28/20 06:28	09/30/20 04:51	1
							D	A a l a al	Dil Fac
Isotope Dilution	%Recovery Q		imits 5 - 150				Prepared	Analyzed 09/30/20 04:51	DII Fac

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q63I567K

.(/&'()*!#&012&3456789395683

1(%#& ?!!#A%#@2886C75&5B2E5

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&B7

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L
#=J!-?=?/-%(\$?"A&(A"@&ILQMK	5R77	Q J+	0.21	0.029	ug/Kg		09/22/20 11:42	09/26/20 01:22	
;#=J!-?=?*#\$%(\$?"A&(A"@&IL;#MK	5R8E	BS	0.21	0.081	ug/Kg	₽	09/22/20 11:42	09/26/20 01:22	
;#=J!-?=?F#>(\$?"A&(A"@&ILW>MK	5R80	SS	0.21	0.044	ug/Kg	₩	09/22/20 11:42	09/26/20 01:22	
:#=J!-?=?F#*%(\$?"A&(A"@&ILW*MK	5R8E	38	0.21	0.030	ug/Kg	☼	09/22/20 11:42	09/26/20 01:22	
;#=J!-?=??A%(\$?"A&(A"@&ILXMK	8R8	3	0.21	0.090	ug/Kg	☼	09/22/20 11:42	09/26/20 01:22	
;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK	5R8E	38	0.21	0.038	ug/Kg	₽	09/22/20 11:42	09/26/20 01:22	
;#=J!-?=?@#A(\$?"A&(A"@&IL1MK	5R8E	S	0.21	0.023	ug/Kg	₩	09/22/20 11:42	09/26/20 01:22	
;#=J!-?=?-\$@#A(\$?"A&(A"@& l;L U\$MK	5R75	S	0.21	0.038	ug/Kg	₩	09/22/20 11:42	09/26/20 01:22	
;#=J!-?=?@?@#A(\$?"A&(A"@& I;L 1?MK	5R87	'S	0.21		ug/Kg		09/22/20 11:42	09/26/20 01:22	
;#=J!-?=?%="@#A(\$?"A&(A"@ &!Ņ LK	5R5H7	7S	0.21	0.054	ug/Kg	₽	09/22/20 11:42	09/26/20 01:22	
;#=J!-?=?%#%=(@#A(\$?"A&(A"@& I;L: #MK	5R544	S	0.21		ug/Kg	₩	09/22/20 11:42	09/26/20 01:22	
Perfluorobutanesulfonic acid (PFBS)	0.21	U	0.21		ug/Kg			09/26/20 01:22	
;#=J!-?=?F#>(\$#,-!J?\$"A&(A"@& I;L W>'K	5R548		0.21		ug/Kg	₩		09/26/20 01:22	
Perfluoroheptanesulfonic Acid (PFHpS)	0.21		0.21		ug/Kg	‡		09/26/20 01:22	
Perfluorodecanesulfonic acid (PFDS)	0.21		0.21	0.041	ug/Kg	<u>.</u> .		09/26/20 01:22	
Perfluorooctanesulfonamide (FOSA)	0.21		0.21		ug/Kg	☼		09/26/20 01:22	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	2.1		2.1		ug/Kg	‡		09/26/20 01:22	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	2.1		2.1		ug/Kg			09/26/20 01:22	
6:2 FTS	2.1		2.1		ug/Kg	☼		09/26/20 01:22	
3:2 FTS	2.1	U	2.1	0.26	ug/Kg	₽	09/22/20 11:42	09/26/20 01:22	
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil I
13C4 PFBA	32		25 - 150				09/22/20 11:42	09/26/20 01:22	
13C5 PFPeA	59		25 - 150				09/22/20 11:42	09/26/20 01:22	
13C2 PFHxA	77		25 - 150				09/22/20 11:42	09/26/20 01:22	
13C4 PFHpA	79		25 - 150				09/22/20 11:42	09/26/20 01:22	
13C4 PFOA	72		25 - 150				09/22/20 11:42	09/26/20 01:22	
13C5 PFNA	75		25 - 150				09/22/20 11:42	09/26/20 01:22	
13C2 PFDA	71		25 - 150				09/22/20 11:42	09/26/20 01:22	
13C2 PFUnA	89		25 - 150				09/22/20 11:42	09/26/20 01:22	
13C2 PFDoA	79		25 - 150				09/22/20 11:42	09/26/20 01:22	
13C2 PFTeDA	82		25 - 150				09/22/20 11:42	09/26/20 01:22	
3C3 PFBS	77		25 - 150				09/22/20 11:42	09/26/20 01:22	
1802 PFHxS	86		25 - 150				09/22/20 11:42	09/26/20 01:22	
3C8 FOSA	58		25 - 150					09/26/20 01:22	
I3-NMeFOSAA	78		25 - 150					09/26/20 01:22	
I5-NEtFOSAA	90		25 - 150					09/26/20 01:22	
M2-6:2 FTS	237	*5	25 - 150					09/26/20 01:22	
M2-8:2 FTS	233		25 - 150					09/26/20 01:22	
<#%F?@2&GEH&I)?@"J"#@K8			A#,&6&+P						
M\$(!O%#	+#!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q63I567K

.(/&'()*!#&012&3456789395683

1(%#& ?!!#A%#@**283B**C75&5B2E5

<(%=">2&'?!"(

Job ID: 460-218480-1

1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&B7

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C4 PFOS	88	25 - 150	09/28/20 06:28	09/30/20 05:00	

!"#\$%&'()*!#&012&'Q6GI567K

.(/&'()*!#&012&345678939568G

1(%#& ?!!#A%#@**2&5B**C75&85285 1(%#&+#A#"D#@2&5BC84C75&892E5 <(%=">2&'?!"(

M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(/
Perfluorobutanoic acid (PFBA)	4.5 U	4.5	2.1	ng/L		09/29/20 04:48	09/29/20 17:57	1
;#=J!-?=?*#\$%(\$?"A&(A"@&IL;#MK	5RH7S	1.8	0.44	ng/L		09/29/20 04:48	09/29/20 17:57	1
Perfluorohexanoic acid (PFHxA)	1.8 U	1.8	0.52	ng/L		09/29/20 04:48	09/29/20 17:57	1
;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MI	K 5REHS	1.8	0.22	ng/L		09/29/20 04:48	09/29/20 17:57	1
;#=J!-?=??A%(\$?"A&(A"@&ILXMK	7RH	1.8	0.76	ng/L		09/29/20 04:48	09/29/20 17:57	1
;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK	8RGS	1.8	0.24	ng/L		09/29/20 04:48	09/29/20 17:57	1
;#=J!-?=?@#A(\$?"A&(A"@&IL1MK	8R5 S	1.8	0.28	ng/L		09/29/20 04:48	09/29/20 17:57	1
Perfluoroundecanoic acid (PFUnA)	1.8 U	1.8	0.98	ng/L		09/29/20 04:48	09/29/20 17:57	1
Perfluorododecanoic acid (PFDoA)	1.8 U	1.8	0.49	ng/L		09/29/20 04:48	09/29/20 17:57	1
Perfluorotridecanoic acid (PFTriA)	1.8 U	1.8	1.2	ng/L		09/29/20 04:48	09/29/20 17:57	1
Perfluorotetradecanoic acid (PFTeA)	1.8 U	1.8	0.65	ng/L		09/29/20 04:48	09/29/20 17:57	1
Perfluorobutanesulfonic acid (PFBS)	1.8 U	1.8	0.18	ng/L		09/29/20 04:48	09/29/20 17:57	1
Perfluorohexanesulfonic acid (PFHxS)	1.8 U	1.8	0.51	ng/L		09/29/20 04:48	09/29/20 17:57	1
Perfluoroheptanesulfonic Acid (PFHpS)	1.8 U	1.8		ng/L			09/29/20 17:57	1
;#=J!-?=??A%(\$#,-!J?\$"A&(A"@& I;L X'K	8E	1.8		ng/L			09/29/20 17:57	
Perfluorodecanesulfonic acid (PFDS)	1.8 U	1.8		ng/L		09/29/20 04:48	09/29/20 17:57	1
Perfluorooctanesulfonamide (FOSA)	1.8 U	1.8	0.87	ng/L		09/29/20 04:48	09/29/20 17:57	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	4.5 U	4.5		ng/L			09/29/20 17:57	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	4.5 U	4.5		ng/L			09/29/20 17:57	1
6:2 FTS	4.5 U	4.5		ng/L			09/29/20 17:57	1
8:2 FTS	1.8 U	1.8	0.41	ng/L		09/29/20 04:48	09/29/20 17:57	1
Isotope Dilution	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	65	25 - 150				09/29/20 04:48	09/29/20 17:57	
13C5 PFPeA	68	25 - 150				09/29/20 04:48	09/29/20 17:57	
13C2 PFHxA	70	25 - 150				09/29/20 04:48	09/29/20 17:57	
13C4 PFHpA	74	25 - 150				09/29/20 04:48	09/29/20 17:57	
13C4 PFOA	74	25 - 150				09/29/20 04:48	09/29/20 17:57	
13C5 PFNA	81	25 - 150				09/29/20 04:48	09/29/20 17:57	
13C2 PFDA	80	25 - 150				09/29/20 04:48	09/29/20 17:57	
13C2 PFUnA	80	25 - 150				09/29/20 04:48	09/29/20 17:57	
13C2 PFDoA	64	25 - 150				09/29/20 04:48	09/29/20 17:57	
13C2 PFTeDA	68	25 - 150				09/29/20 04:48	09/29/20 17:57	
13C3 PFBS	72	25 - 150				09/29/20 04:48	09/29/20 17:57	
18O2 PFHxS	77	25 - 150				09/29/20 04:48	09/29/20 17:57	
13C4 PFOS	78	25 - 150				09/29/20 04:48	09/29/20 17:57	
13C8 FOSA	72	25 - 150				09/29/20 04:48	09/29/20 17:57	
d3-NMeFOSAA	69	25 - 150				09/29/20 04:48	09/29/20 17:57	
d5-NEtFOSAA	77	25 - 150				09/29/20 04:48	09/29/20 17:57	
M2-6:2 FTS	102	25 - 150				09/29/20 04:48	09/29/20 17:57	
M2-8:2 FTS	102	25 - 150				09/29/20 04:48	09/29/20 17:57	

Eurofins TestAmerica, Edison

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q6GI567K

.(/&'()*!#&012&345678939568G

<(%=">2&'?!"(

Job ID: 460-218480-1

1(%#& ?!!#A%#@**2835B**C75&85285 1(%#&+#A#"D#@2&5BC84C75&892E5

Z#\$#=(!& F#)",%=O M\$(!0%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
: ?%(!& (=/?\$	H495 J+	1000	671	mg/Kg			09/23/20 20:23	1
: ?%(!& (=/?\$	G875 J	1000	671	mg/Kg			09/30/20 16:15	1
M\$(!O%#	+#,-!% V-(!"J"#=	+.	+.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
*W	4RBWL	0.1	0.1	SU			09/22/20 15:00	1
: #)*#=(%-=#	78R9 WL	0.001	0.001	Degrees C			09/22/20 15:00	1

!"#\$%&'()*!#&012&'Q6GI567K

.(/&'()*!#&012&345678939568G

1(%#& ?!!#A%#@2&5BC8GC75&85285 1(%#&+#A#"D#@2&5BC84C75&892E5

<(%=">2&'?!"(;#=A#\$%&'?!"@,2&BI

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(<i>A</i>
1,1,1-Trichloroethane	0.89	U	0.89	0.21	ug/Kg	☼	09/18/20 22:35	09/23/20 14:07	1
1,1,2,2-Tetrachloroethane	0.89	U	0.89	0.19	ug/Kg	₽	09/18/20 22:35	09/23/20 14:07	1
1,1,2-Trichloro-1,2,2-trifluoroethane	0.89	U	0.89	0.27	ug/Kg	☼	09/18/20 22:35	09/23/20 14:07	1
1,1,2-Trichloroethane	0.89	U	0.89	0.16	ug/Kg	₽	09/18/20 22:35	09/23/20 14:07	1
1,1-Dichloroethane	0.89	U	0.89	0.18	ug/Kg	☼	09/18/20 22:35	09/23/20 14:07	1
1,1-Dichloroethene	0.89	U	0.89	0.20	ug/Kg	☼	09/18/20 22:35	09/23/20 14:07	1
1,2,4-Trichlorobenzene	0.89	U	0.89	0.32	ug/Kg	₽	09/18/20 22:35	09/23/20 14:07	1
1,2-Dibromo-3-Chloropropane	0.89	U	0.89	0.41	ug/Kg	≎	09/18/20 22:35	09/23/20 14:07	1
1,2-Dichlorobenzene	0.89	U	0.89	0.13	ug/Kg	☼	09/18/20 22:35	09/23/20 14:07	1
1,2-Dichloroethane	0.89	U	0.89	0.26	ug/Kg		09/18/20 22:35	09/23/20 14:07	1
1,2-Dichloropropane	0.89	U	0.89	0.38	ug/Kg	☼	09/18/20 22:35	09/23/20 14:07	1
1,3-Dichlorobenzene	0.89	U	0.89	0.14	ug/Kg	☼	09/18/20 22:35	09/23/20 14:07	1
1,4-Dichlorobenzene	0.89	U	0.89	0.20	ug/Kg		09/18/20 22:35	09/23/20 14:07	1
2-Butanone (MEK)	4.5	U	4.5		ug/Kg	☼	09/18/20 22:35	09/23/20 14:07	1
2-Hexanone	4.5	U	4.5	1.5	ug/Kg	☼	09/18/20 22:35	09/23/20 14:07	1
4-Methyl-2-pentanone (MIBK)	4.5	U	4.5		ug/Kg		09/18/20 22:35	09/23/20 14:07	1
Acetone	5.4	U	5.4	5.1	ug/Kg	☼	09/18/20 22:35	09/23/20 14:07	1
Benzene	0.89	U	0.89	0.23	ug/Kg	☼	09/18/20 22:35	09/23/20 14:07	1
Bromoform	0.89	U	0.89		ug/Kg		09/18/20 22:35	09/23/20 14:07	1
Bromomethane	0.89	U	0.89		ug/Kg	☼	09/18/20 22:35	09/23/20 14:07	1
Carbon disulfide	0.89	U	0.89	0.24	ug/Kg	☼	09/18/20 22:35	09/23/20 14:07	1
Carbon tetrachloride	0.89	U	0.89		ug/Kg	∴	09/18/20 22:35	09/23/20 14:07	1
Chlorobenzene	0.89	U	0.89	0.16	ug/Kg	₽	09/18/20 22:35	09/23/20 14:07	1
Dibromochloromethane	0.89	U	0.89	0.17	ug/Kg	₽	09/18/20 22:35	09/23/20 14:07	1
Chloroethane	0.89	U	0.89		ug/Kg	 \$	09/18/20 22:35	09/23/20 14:07	1
Chloroform	0.89	U	0.89		ug/Kg	₩	09/18/20 22:35	09/23/20 14:07	1
Chloromethane	0.89	U	0.89	0.39	ug/Kg	₩	09/18/20 22:35	09/23/20 14:07	1
cis-1,2-Dichloroethene	0.89	U	0.89		ug/Kg	 \$	09/18/20 22:35	09/23/20 14:07	1
Cyclohexane	0.89	U	0.89	0.20	ug/Kg	₩	09/18/20 22:35	09/23/20 14:07	1
Bromodichloromethane	0.89	U	0.89		ug/Kg	₩	09/18/20 22:35	09/23/20 14:07	1
Dichlorodifluoromethane	0.89	U	0.89		ug/Kg	 .	09/18/20 22:35	09/23/20 14:07	1
Ethylbenzene	0.89	U	0.89		ug/Kg	₩	09/18/20 22:35	09/23/20 14:07	1
1.2-Dibromoethane	0.89	U	0.89		ug/Kg	₩	09/18/20 22:35	09/23/20 14:07	1
Isopropylbenzene	0.89	U	0.89		ug/Kg	 .	09/18/20 22:35	09/23/20 14:07	1
Methyl acetate	4.5	U	4.5		ug/Kg	₩	09/18/20 22:35	09/23/20 14:07	1
Methyl tert-butyl ether	0.89		0.89		ug/Kg	₽		09/23/20 14:07	1
Methylcyclohexane	0.89		0.89		ug/Kg			09/23/20 14:07	
<#%FO!#\$#& F!?="@#	8RE		0.89		ug/Kg	 		09/23/20 14:07	1

Eurofins TestAmerica, Edison

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q6GI567K

.(/&'()*!#&012&345678939568G

1(%#& ?!!#A%#@**2859**C75&85285

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

M\$(!O%#	=^(\$"A& ?)*1 +#,-!%	V-(!"J"#=	+.		<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L
Tetrachloroethene	0.89		0.89			ug/Kg		09/18/20 22:35	09/23/20 14:07	
Toluene	0.89		0.89		0.21				09/23/20 14:07	
trans-1,2-Dichloroethene	0.89		0.89			ug/Kg	Di		09/23/20 14:07	
trans-1,3-Dichloropropene	0.89		0.89			ug/Kg	 \$		09/23/20 14:07	
Trichloroethene	0.89		0.89			ug/Kg	. T		09/23/20 14:07	
Trichlorofluoromethane	0.89		0.89			ug/Kg	Ť.		09/23/20 14:07	
Vinyl chloride	0.89		0.89			ug/Kg	Ť.		09/23/20 14:07	
Xylenes, Total	1.8		1.8			ug/Kg	. T		09/23/20 14:07	
cis-1,3-Dichloropropene	0.89		0.89			ug/Kg	₩ ₩		09/23/20 14:07	
Styrene	0.89		0.89			ug/Kg	*		09/23/20 14:07	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/Kg	⇔				09/18/20 22:35		
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	110		77 - 145					09/18/20 22:35	09/23/20 14:07	
Toluene-d8 (Surr)	98		80 - 120					09/18/20 22:35	09/23/20 14:07	
Dibromofluoromethane (Surr)	110		48 - 150					09/18/20 22:35	09/23/20 14:07	
4-Bromofluorobenzene	105		79 - 125					09/18/20 22:35	09/23/20 14:07	
<#%F?@2&97H51&6&'#)"D?!	!(%"!#&X=^(\$"A& ?)*?	-\$@,&IZ C<	<'K						
M\$(!O%#	+#,-!%	V-(!"J"#=	+.		<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L
2,4,5-Trichlorophenol	1800	U	1800		490	ug/Kg	₽	09/21/20 15:10	09/22/20 19:24	1
2,4,6-Trichlorophenol	1800	U	1800		360	ug/Kg	₽	09/21/20 15:10	09/22/20 19:24	1
2,4-Dichlorophenol	1800	U	1800		190	ug/Kg	₽	09/21/20 15:10	09/22/20 19:24	1
2,4-Dimethylphenol	1800	U	1800		430	ug/Kg	₽	09/21/20 15:10	09/22/20 19:24	1
2,4-Dinitrophenol	18000	U	18000		8300	ug/Kg	₽	09/21/20 15:10	09/22/20 19:24	1
2,4-Dinitrotoluene	1800	U	1800		370	ug/Kg	₽	09/21/20 15:10	09/22/20 19:24	1
2,6-Dinitrotoluene	1800	U	1800		210	ug/Kg	≎	09/21/20 15:10	09/22/20 19:24	1
2-Chloronaphthalene	1800	U	1800		300	ug/Kg	☼	09/21/20 15:10	09/22/20 19:24	1
2-Chlorophenol	3500	U	3500		330	ug/Kg	₽	09/21/20 15:10	09/22/20 19:24	1
2-Methylnaphthalene	1800	U	1800		360	ug/Kg	≎	09/21/20 15:10	09/22/20 19:24	1
2-Methylphenol	1800	U	1800		210	ug/Kg	≎	09/21/20 15:10	09/22/20 19:24	1
2-Nitroaniline	3500	U	3500		260	ug/Kg	₽	09/21/20 15:10	09/22/20 19:24	1
2-Nitrophenol	1800	U	1800		510	ug/Kg	₽	09/21/20 15:10	09/22/20 19:24	1
3,3'-Dichlorobenzidine	3500	U	3500		2100	ug/Kg	₽	09/21/20 15:10	09/22/20 19:24	1
3-Nitroaniline	3500	U	3500		500	ug/Kg	₽	09/21/20 15:10	09/22/20 19:24	1
4,6-Dinitro-2-methylphenol	3500	U	3500		1800	ug/Kg	₽	09/21/20 15:10	09/22/20 19:24	1
4-Bromophenyl phenyl ether	1800	U	1800		250	ug/Kg	₽	09/21/20 15:10	09/22/20 19:24	1
4-Chloro-3-methylphenol	1800	U	1800		440	ug/Kg	₽	09/21/20 15:10	09/22/20 19:24	1
4-Chloroaniline	1800	U	1800		440	ug/Kg		09/21/20 15:10	09/22/20 19:24	1
4-Chlorophenyl phenyl ether	1800	U	1800		220	ug/Kg	₩	09/21/20 15:10	09/22/20 19:24	1
4-Methylphenol	3500	U	3500		210	ug/Kg	☼	09/21/20 15:10	09/22/20 19:24	1
4-Nitroaniline	3500	U	3500		940	ug/Kg		09/21/20 15:10	09/22/20 19:24	1
4-Nitrophenol	3500	U	3500		1300	ug/Kg	₽	09/21/20 15:10	09/22/20 19:24	1
Acenaphthene	1800		1800		260	ug/Kg	₽	09/21/20 15:10	09/22/20 19:24	1
Acenaphthylene	1800		1800		230	ug/Kg			09/22/20 19:24	1
Acetophenone	1800		1800		240	ug/Kg	₽		09/22/20 19:24	1
M\$%F=(A#\$#	B45		1800		440	ug/Kg	₩		09/22/20 19:24	1
Atrazine	1800		1800			ug/Kg	.T		09/22/20 19:24	 1

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q6GI567K

.(/&'()*!#&012&345678939568G

1(%#& ?!!#A%#@**2&6B**5&85285 1(%#&+#A#"D#@**2&5B**5&892E5

<(%=">2&'?!"(

M\$(!O%#	· — ·	V-(!"J"#=	+.	<1	1	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
Benzaldehyde	1800	U	1800	14	100	ug/Kg	☼	09/21/20 15:10	09/22/20 19:24	10
Q#\$T?b(c(\$%F=(A#\$#	3855		1800	1	180	ug/Kg	₩	09/21/20 15:10	09/22/20 19:24	10
Q#\$T?b(c*O=#\$#	3555		1800	2	260	ug/Kg	₽	09/21/20 15:10	09/22/20 19:24	10
Q#\$T?b/cJ!-?=(\$%F#\$#	3355		1800	2	290	ug/Kg	₩	09/21/20 15:10	09/22/20 19:24	10
Q#\$T?b^_F_"c*#=O!#\$#	7E55		1800	1	190	ug/Kg	₩	09/21/20 15:10	09/22/20 19:24	10
Q#\$T?bNcJ!-?=(\$%F#\$#	7855		1800	2	230	ug/Kg	₩	09/21/20 15:10	09/22/20 19:24	10
Biphenyl	1800	U	1800	2	260	ug/Kg	₩	09/21/20 15:10	09/22/20 19:24	10
bis (2-chloroisopropyl) ether	1800	U	1800	3	360	ug/Kg	☼	09/21/20 15:10	09/22/20 19:24	10
Bis(2-chloroethoxy)methane	1800	U	1800	3	380	ug/Kg		09/21/20 15:10	09/22/20 19:24	10
Bis(2-chloroethyl)ether	1800	U	1800	2		ug/Kg	₽	09/21/20 15:10	09/22/20 19:24	10
Bis(2-ethylhexyl) phthalate	1800	U	1800	6	310	ug/Kg	☼	09/21/20 15:10	09/22/20 19:24	10
Butyl benzyl phthalate	1800	U	1800			ug/Kg		09/21/20 15:10	09/22/20 19:24	10
Caprolactam	1800	U	1800			ug/Kg	₩	09/21/20 15:10	09/22/20 19:24	10
Carbazole	1800		1800			ug/Kg	₩		09/22/20 19:24	10
F=O,#\$#	EH55		1800			ug/Kg	∴		09/22/20 19:24	10
1"/#\$TI(_FK(\$%F=(A#\$#	4H5		1800			ug/Kg			09/22/20 19:24	10
Dibenzofuran	1800		1800			ug/Kg			09/22/20 19:24	10
Diethyl phthalate	1800		1800			ug/Kg			09/22/20 19:24	10
Dimethyl phthalate	1800		1800			ug/Kg	Ť Š		09/22/20 19:24	10
Di-n-butyl phthalate	1800		1800			ug/Kg			09/22/20 19:24	10
Di-n-octyl phthalate	1800		1800			ug/Kg			09/22/20 19:24	 10
L!-?=(\$%F#\$#	H455	O	1800			ug/Kg	₩		09/22/20 19:24	10
Fluorene	1800	11	1800			ug/Kg	₩		09/22/20 19:24	10
Hexachlorobenzene	1800		1800			ug/Kg			09/22/20 19:24	10
Hexachlorobutadiene	1800		1800			ug/Kg	₩ ₩		09/22/20 19:24	10
Hexachlorocyclopentadiene	1800		1800			ug/Kg	₩ ₩		09/22/20 19:24	10
Hexachloroethane	1800		1800						09/22/20 19:24	10
		U				ug/Kg				10
0\$@#\$?b8_7_E6A@c*O=#\$#	7855		1800			ug/Kg	₩		09/22/20 19:24	
Isophorone	1800		1800			ug/Kg			09/22/20 19:24	10
Naphthalene	1800		1800			ug/Kg	‡		09/22/20 19:24	10
Nitrobenzene	1800		1800		200	ug/Kg	‡		09/22/20 19:24	10
N-Nitrosodi-n-propylamine	1800		1800			ug/Kg			09/22/20 19:24	10
N-Nitrosodiphenylamine	1800		1800			ug/Kg	☼		09/22/20 19:24	10
Pentachlorophenol	3500	U	3500			ug/Kg	☼		09/22/20 19:24	10
;F#\$(\$%F=#\$#	7H55		1800			ug/Kg			09/22/20 19:24	10
Phenol	1800	U	1800			ug/Kg		09/21/20 15:10		10
;O=#\$#	4955		1800	2	210	ug/Kg	☼	09/21/20 15:10	09/22/20 19:24	10
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Perylene		TJN	ug/Kg	* —	14.		198-55-0	09/21/20 15:10		10
Benzo[e]pyrene		TJN	ug/Kg ug/Kg	₩	14.			09/21/20 15:10		10
Unknown	2100		ug/Kg	₩	16.		702 07 2		09/22/20 19:24	10
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	95	<u> </u>	54 - 120						09/22/20 19:24	10 Tal
	100		60 - 120						09/22/20 19:24	10
2-Fluorobiphenyl	82									
2-Fluorophenol			52 - 120 52 - 120						09/22/20 19:24	10
Nitrobenzene-d5 Phenol-d5	92 88		53 - 120 54 - 120						09/22/20 19:24 09/22/20 19:24	10 10

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q6GI567K

.(/&'()*!#&012&345678939568G

1(%#& ?!!#A%#@**2&\$G**C75&85285

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&BI

<#%F?@2&9598Q&6&X= M\$(!O%#		V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
4,4'-DDD	89	U	89	17	ug/Kg	<u></u>	09/22/20 13:04	09/23/20 13:52	50
4,4'-DDE	89	U	89	19	ug/Kg	☼	09/22/20 13:04	09/23/20 13:52	50
3_3d611:	7E	S J-	89	21	ug/Kg	☼	09/22/20 13:04	09/23/20 13:52	50
Aldrin	89	U	89	22	ug/Kg	₩	09/22/20 13:04	09/23/20 13:52	50
alpha-BHC	89	U	89	16	ug/Kg	☆	09/22/20 13:04	09/23/20 13:52	50
beta-BHC	89	U	89	16	ug/Kg	☆	09/22/20 13:04	09/23/20 13:52	50
cis-Chlordane	89	U	89		ug/Kg	₩	09/22/20 13:04	09/23/20 13:52	50
delta-BHC	89	U	89	16	ug/Kg	☼	09/22/20 13:04	09/23/20 13:52	50
Dieldrin	89	U	89		ug/Kg	₩	09/22/20 13:04	09/23/20 13:52	50
Endosulfan I	89	U	89		ug/Kg		09/22/20 13:04	09/23/20 13:52	50
Endosulfan II	89	U	89		ug/Kg	☆	09/22/20 13:04	09/23/20 13:52	50
Endosulfan sulfate	89	U	89		ug/Kg	☆	09/22/20 13:04	09/23/20 13:52	50
Endrin	89		89		ug/Kg			09/23/20 13:52	50
Endrin aldehyde	89		89		ug/Kg			09/23/20 13:52	50
Endrin ketone	89		89		ug/Kg	₩		09/23/20 13:52	50
gamma-BHC (Lindane)	89		89		ug/Kg	T. ☆		09/23/20 13:52	
Heptachlor	89		89		ug/Kg	₩		09/23/20 13:52	50
Heptachlor epoxide	89		89		ug/Kg	₩		09/23/20 13:52	50
<#%F?>OAF!?=	78		89		ug/Kg	~~. ☆		09/23/20 13:52	
Toxaphene	890		890		ug/Kg ug/Kg	₩		09/23/20 13:52	50
trans-Chlordane	89		89		ug/Kg ug/Kg			09/23/20 13:52	50
trans-Chiordane	69	U	69	20	ug/Ng	\$ \	09/22/20 13.04	09/23/20 13.32	31
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fa
DCB Decachlorobiphenyl		X	45 - 120				09/22/20 13:04	09/23/20 13:52	50
DCB Decachlorobiphenyl	0	X	45 - 120				09/22/20 13:04	09/23/20 13:52	50
Tetrachloro-m-xylene	0	X	30 - 124				09/22/20 13:04	09/23/20 13:52	5
Tetrachloro-m-xylene	0	X	30 - 124				09/22/20 13:04	09/23/20 13:52	5
<#%F?@2&959 &b/ &;?!OA	F!?="\$(%#@&Q	"*F#\$O!.&I	: Q.K&/Q&Z(.& F=?)(%?^=(*F	0			
M\$(!O%#		V-(!"J"#=	+.	, s , (<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
PCB-1016	0.23		0.23	0.045	mg/Kg	— <u>—</u>	09/21/20 15:17		
PCB-1221	0.23		0.23		mg/Kg	☆	09/21/20 15:17	09/22/20 17:51	
PCB-1232	0.23		0.23		mg/Kg	₩		09/22/20 17:51	
PCB-1242	0.23		0.23		mg/Kg			09/22/20 17:51	
PCB-1248	0.23		0.23		mg/Kg	₩		09/22/20 17:51	
PCB-1254	0.23		0.23		mg/Kg		09/21/20 15:17		
PCB-1260	0.23		0.23		mg/Kg		09/21/20 15:17		
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene	111		60 - 154					09/22/20 17:51	
Tetrachloro-m-xylene	85		60 - 154					09/22/20 17:51	
DCB Decachlorobiphenyl	118		65 - 174					09/22/20 17:51	
DCB Decachlorobiphenyl	72		65 - 174				09/21/20 15:17	09/22/20 17:51	
<#%F?@2&98 G88& W#=/"	A"@#,&IZ K								
M\$(!O%#		V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L
2,4,5-T	18	U	18	5.7	ug/Kg	☆	09/21/20 15:24	09/23/20 21:58	
O:h (O 4 5 TD)	10	11	18	6.4	ug/Kg	u.	00/24/20 45:24	09/23/20 21:58	
Silvex (2,4,5-TP)	18	U	10	0.4	ug/Ng	₽	09/21/20 15.24	09/23/20 21.36	

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q6GI567K

.(/&'()*!#&012&345678939568G

1(%#& ?!!#A%#@**2839**C75&85285

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&BI

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	61		28 - 129				09/21/20 15:24	09/23/20 21:58	
2,4-Dichlorophenylacetic acid	66		28 - 129				09/21/20 15:24	09/23/20 21:58	
<#%F?@2&GEH&I)?@"J"#@K	&6&L!- IVI!IV !	5)%#@% (\$	A#.						
M\$(!O%#		V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
;#=J!-?=?/-%(\$?"A&(A"@&ILQMK	0.20		0.20	0.027	ug/Kg	<u></u>	09/22/20 11:42	09/26/20 01:31	
Perfluoropentanoic acid (PFPeA)	0.20	U	0.20		ug/Kg	☼	09/22/20 11:42	09/26/20 01:31	1
Perfluorohexanoic acid (PFHxA)	0.20	U	0.20	0.041	ug/Kg	☼	09/22/20 11:42	09/26/20 01:31	1
Perfluoroheptanoic acid (PFHpA)	0.20	U	0.20	0.028	ug/Kg	☼	09/22/20 11:42	09/26/20 01:31	1
Perfluorooctanoic acid (PFOA)	0.20	U	0.20	0.084	ug/Kg	☼	09/22/20 11:42	09/26/20 01:31	1
;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK	5R5EI	HS	0.20	0.035	ug/Kg	☼	09/22/20 11:42	09/26/20 01:31	1
;#=J!-?=?@#A(\$?"A&(A"@&IL1MK	5R597	'S	0.20	0.022	ug/Kg	☼	09/22/20 11:42	09/26/20 01:31	1
;#=J!-?=?-\$@#A(\$?"A&(A"@& I;LU\$MK	5R533	SS	0.20	0.035	ug/Kg	₽	09/22/20 11:42	09/26/20 01:31	1
Perfluorododecanoic acid (PFDoA)	0.20	U	0.20	0.066	ug/Kg	☼	09/22/20 11:42	09/26/20 01:31	1
Perfluorotridecanoic acid (PFTriA)	0.20	U	0.20	0.050	ug/Kg	₽	09/22/20 11:42	09/26/20 01:31	1
Perfluorotetradecanoic acid (PFTeA)	0.20	U	0.20	0.053	ug/Kg	≎	09/22/20 11:42	09/26/20 01:31	1
Perfluorobutanesulfonic acid (PFBS)	0.20	U	0.20	0.025	ug/Kg	≎	09/22/20 11:42	09/26/20 01:31	1
Perfluorohexanesulfonic acid (PFHxS)	0.20	U	0.20	0.030	ug/Kg	₽	09/22/20 11:42	09/26/20 01:31	1
Perfluoroheptanesulfonic Acid (PFHpS)	0.20	U	0.20	0.034	ug/Kg	₽	09/22/20 11:42	09/26/20 01:31	1
Perfluorodecanesulfonic acid (PFDS)	0.20	U	0.20		ug/Kg	☼	09/22/20 11:42	09/26/20 01:31	1
Perfluorooctanesulfonamide (FOSA)	0.20	U	0.20	0.080	ug/Kg	₽	09/22/20 11:42	09/26/20 01:31	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	2.0	U	2.0		ug/Kg	≎	09/22/20 11:42	09/26/20 01:31	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	2.0	U	2.0	0.36	ug/Kg	₩	09/22/20 11:42	09/26/20 01:31	1
6:2 FTS	2.0	U	2.0	0.15	ug/Kg	 Ö:	09/22/20 11:42	09/26/20 01:31	1
8:2 FTS	2.0		2.0		ug/Kg	₽		09/26/20 01:31	1
Isotope Dilution	%Recovery	Qualifier	Limits		0 0		Prepared	Analyzed	Dil Fac
13C4 PFBA	64		25 - 150				09/22/20 11:42		
13C5 PFPeA	75		25 - 150				09/22/20 11:42	09/26/20 01:31	
13C2 PFHxA	88		25 - 150				09/22/20 11:42	09/26/20 01:31	
13C4 PFHpA	90		25 - 150				09/22/20 11:42	09/26/20 01:31	
13C4 PFOA	88		25 - 150				09/22/20 11:42	09/26/20 01:31	
13C5 PFNA	94		25 - 150				09/22/20 11:42	09/26/20 01:31	
13C2 PFDA	94		25 - 150				09/22/20 11:42	09/26/20 01:31	
13C2 PFUnA	98		25 - 150				09/22/20 11:42	09/26/20 01:31	
13C2 PFDoA	96		25 - 150				09/22/20 11:42	09/26/20 01:31	
13C2 PFTeDA	101		25 - 150				09/22/20 11:42	09/26/20 01:31	
13C3 PFBS	79		25 - 150				09/22/20 11:42	09/26/20 01:31	
1802 PFHxS	85		25 - 150					09/26/20 01:31	
13C8 FOSA	85		25 - 150					09/26/20 01:31	
d3-NMeFOSAA	90		25 - 150					09/26/20 01:31	
d5-NEtFOSAA	106		25 - 150					09/26/20 01:31	
M2-6:2 FTS	227	*5	25 - 150					09/26/20 01:31	
M2-8:2 FTS	264		25 - 150					09/26/20 01:31	

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q6GI567K

.(/&'()*!#&012&345678939568G

1(%#& ?!!#A%#@288BC75&85285

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&BI

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(/
;#=J!-?=??A%(\$#,-!J?\$"A&(A"@& I;LX'K	5R93		0.51	0.21	ug/Kg	☆	09/28/20 06:28	09/30/20 05:09	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFOS	84	Quamor	25 - 150					09/30/20 05:09	211140
<#%F?@2&4585 &6&<#%(!,&I0	0 :K								
M\$(!O%#		V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(/
M!-)"\$-)	8H555		10.5	4.6	mg/Kg	— <u></u>	09/24/20 17:07		1
Antimony		U UJ	15.8		mg/Kg	☼	09/24/20 17:07		1
M=,#\$"A	7R3	Q	2.1		mg/Kg	₽	09/24/20 17:07	09/25/20 13:42	1
Q(="-)	7G8	J	0.53		mg/Kg		09/24/20 17:07	09/25/20 13:42	1
Q#=O!!"-)	5R70		0.21		mg/Kg	☼	09/24/20 17:07	09/25/20 13:42	1
(@)"-)	5R538	S	0.21		mg/Kg	≎	09/24/20 17:07	09/25/20 13:42	1
(!A"-)	39E5	J	52.5	3.5	mg/Kg		09/24/20 17:07	09/25/20 13:42	1
F=?)"-)	E8R0	3	0.53	0.21	mg/Kg	₩	09/24/20 17:07	09/25/20 13:42	1
?/(!%	85R3		0.53	0.053	mg/Kg	₩	09/24/20 17:07	09/25/20 13:42	1
?**#=	84R4	J-	1.1	0.22	mg/Kg	*	09/24/20 17:07	09/25/20 13:42	1
0=?\$	73G55	J	10.5	3.7	mg/Kg	₽	09/24/20 17:07	09/25/20 13:42	1
.#(@	73R4	J	1.1	0.25	mg/Kg	₽	09/24/20 17:07	09/25/20 13:42	1
<(^\$#,"-)	HGG	J -	21.0	0.97	mg/Kg	*	09/24/20 17:07	09/25/20 13:42	1
<(\$^(\$#,#	E4H	J	0.21	0.034	mg/Kg	≎	09/24/20 17:07	09/25/20 13:42	1
Y"AN#!	89R8	J-	5.3	0.24	mg/Kg	≎	09/24/20 17:07	09/25/20 13:42	1
;?%(,,"-)	GH55	J+	31.5	21.0	mg/Kg	☼	09/24/20 17:07	09/25/20 13:42	1
Selenium	4.2	U	4.2	0.42	mg/Kg	≎	09/24/20 17:07	09/25/20 13:42	1
Silver	0.63	U	0.63	0.21	mg/Kg	☼	09/24/20 17:07	09/25/20 13:42	1
'?@"-)	79H		147	13.7	mg/Kg	☼	09/24/20 17:07	09/25/20 13:42	1
Thallium	6.3	U	6.3	0.32	mg/Kg	☼	09/24/20 17:07	09/25/20 13:42	1
] (\$(@"-)	EHRI	4	0.53	0.12	mg/Kg	₽	09/24/20 17:07	09/25/20 13:42	1
e"\$A	H5R4	IJ	2.1	0.67	mg/Kg	₩	09/24/20 17:07	09/25/20 13:42	1
<#%F?@2&H3H8Q&6&<#=A-#	/D/8 /K]								
M\$(!O%#	_	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
<#=A-=O	5R55BE	BS	0.020	0.0080	mg/Kg	*	09/22/20 11:56	09/22/20 14:09	1
Z#\$#=(!& F#)",%=O									
M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
Cyanide, Total	0.97		0.97	0.47	mg/Kg	⇒	09/21/20 13:33	09/22/20 14:26	1

<#%F?@2&GEH&I)?@"J"#@K& M\$(!O%#		V-(!"J"#=	•	<1.	U\$"%	4	#*/-#@	M\$(!OT#@	1"!&L(A
W1\$(!O 76#	T#,-: 70	V-(: J #-	<u>+.</u> _	<u> </u>	U\$ 70		;=#*(=#@	1VI\$(:O1#@	I :OLL(A
;#=J!-?=?/-%(\$?"A&(A"@&ILQMK	0.24	U	0.24	0.033	ug/Kg	☆	09/22/20 11:42	09/26/20 01:41	1
Perfluoropentanoic acid (PFPeA)	0.24	U	0.24	0.091	ug/Kg	⇔	09/22/20 11:42	09/26/20 01:41	1
Perfluorohexanoic acid (PFHxA)	0.24	U	0.24	0.050	ug/Kg	☼	09/22/20 11:42	09/26/20 01:41	1
Perfluoroheptanoic acid (PFHpA)	0.24	U	0.24	0.034	ug/Kg	≎	09/22/20 11:42	09/26/20 01:41	1
Perfluorooctanoic acid (PFOA)	0.24	U	0.24	0.10	ug/Kg	≎	09/22/20 11:42	09/26/20 01:41	1
Perfluorononanoic acid (PFNA)	0.24	U	0.24	0.043	ug/Kg	☼	09/22/20 11:42	09/26/20 01:41	1
Perfluorodecanoic acid (PFDA)	0.24	U	0.24	0.026	ug/Kg	≎	09/22/20 11:42	09/26/20 01:41	1

Eurofins TestAmerica, Edison

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q64I567K

.(/&'()*!#&012&3456789395684

1(%#& ?!!#A%#@**285B**C7**525**5

1(%#&+#A#"D#@2&5BC84C75&892E5

<(%=">2&'?!"(;#=A#\$%&'?!"@,2&98

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(<i>A</i>
Perfluoroundecanoic acid (PFUnA)	0.24	U	0.24	0.043	ug/Kg	☼	09/22/20 11:42	09/26/20 01:41	1
Perfluorododecanoic acid (PFDoA)	0.24	U	0.24	0.080	ug/Kg	☼	09/22/20 11:42	09/26/20 01:41	1
Perfluorotridecanoic acid (PFTriA)	0.24	U	0.24	0.061	ug/Kg	☼	09/22/20 11:42	09/26/20 01:41	1
Perfluorotetradecanoic acid (PFTeA)	0.24	U	0.24	0.064	ug/Kg	≎	09/22/20 11:42	09/26/20 01:41	1
Perfluorobutanesulfonic acid (PFBS)	0.24	U	0.24	0.030	ug/Kg	≎	09/22/20 11:42	09/26/20 01:41	1
Perfluorohexanesulfonic acid (PFHxS)	0.24	U	0.24	0.037	ug/Kg	₩	09/22/20 11:42	09/26/20 01:41	1
Perfluoroheptanesulfonic Acid (PFHpS)	0.24	U	0.24	0.042	ug/Kg	₽	09/22/20 11:42	09/26/20 01:41	1
Perfluorodecanesulfonic acid (PFDS)	0.24	U	0.24	0.046	ug/Kg	₽	09/22/20 11:42	09/26/20 01:41	1
Perfluorooctanesulfonamide (FOSA)	0.24	U	0.24	0.097	ug/Kg	₽	09/22/20 11:42	09/26/20 01:41	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	2.4	U	2.4	0.46	ug/Kg	₽	09/22/20 11:42	09/26/20 01:41	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	2.4	U	2.4	0.44	ug/Kg	₩	09/22/20 11:42	09/26/20 01:41	1
6:2 FTS	2.4	U	2.4	0.18	ug/Kg	₽	09/22/20 11:42	09/26/20 01:41	1
8:2 FTS	2.4	U	2.4	0.30	ug/Kg	☼	09/22/20 11:42	09/26/20 01:41	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	61		25 - 150				09/22/20 11:42	09/26/20 01:41	
13C5 PFPeA	67		25 - 150				09/22/20 11:42	09/26/20 01:41	
13C2 PFHxA	71		25 - 150				09/22/20 11:42	09/26/20 01:41	
13C4 PFHpA	75		25 - 150				09/22/20 11:42	09/26/20 01:41	
13C4 PFOA	68		25 - 150				09/22/20 11:42	09/26/20 01:41	
13C5 PFNA	75		25 - 150				09/22/20 11:42	09/26/20 01:41	
13C2 PFDA	74		25 - 150				09/22/20 11:42	09/26/20 01:41	
13C2 PFUnA	75		25 - 150				09/22/20 11:42	09/26/20 01:41	
13C2 PFDoA	70		25 - 150				09/22/20 11:42	09/26/20 01:41	
13C2 PFTeDA	66		25 - 150				09/22/20 11:42	09/26/20 01:41	
13C3 PFBS	58		25 - 150				09/22/20 11:42	09/26/20 01:41	
1802 PFHxS	61		25 - 150				09/22/20 11:42	09/26/20 01:41	
13C8 FOSA	67		25 - 150				09/22/20 11:42	09/26/20 01:41	
d3-NMeFOSAA	73		25 - 150				09/22/20 11:42	09/26/20 01:41	
d5-NEtFOSAA	73		25 - 150				09/22/20 11:42	09/26/20 01:41	
M2-6:2 FTS	88		25 - 150				09/22/20 11:42	09/26/20 01:41	
M2-8:2 FTS	119		25 - 150				09/22/20 11:42	09/26/20 01:41	
<#%F?@2&GEH&I)?@"J"#@K			A#,&6&+P						
M\$(!O%#		V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
;#=J!-?=??A%(\$#,-!J?\$"A&(A"@& I;L X'K	5R79	S	0.61	0.24	ug/Kg	₽	09/28/20 06:28	09/30/20 05:19	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFOS	65		25 - 150				09/28/20 06:28	09/30/20 05:19	

!"#\$%&'()*!#&012&'Q6HI565RGK

.(/&'()*!#&012&345678939568H

1(%#& ?!!#A%#@2&5BC8**62275**&8

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

<#%F?@2&GEH&I)?@"J"#@K&6	&L!- IVHN\$(!&#@% (\$A	#,						
M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
;#=J!-?=?/-%(\$?"A&(A"@&ILQMK	5REEQ J+	0.24	0.033	ug/Kg	☼	09/28/20 06:28	09/30/20 05:28	1
Perfluoropentanoic acid (PFPeA)	0.24 U	0.24	0.091	ug/Kg	☼	09/28/20 06:28	09/30/20 05:28	1
Perfluorohexanoic acid (PFHxA)	0.24 U	0.24	0.050	ug/Kg	☼	09/28/20 06:28	09/30/20 05:28	1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q6HI565RGK

.(/&'()*!#&012&345678939568H

Job ID: 460-218480-1

1(%#& ?!!#A%#@285BC752E5

<(%=">2&'?!"(1(%#&+#A#"D#@2&5BC84C75&892E5 ;#=A#\$%&'?!"@,2&98

<#%F?@2&GEH&I)?@"J"#@K& M\$(!O%#		V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MF			0.24			— <u>-</u>	09/28/20 06:28	09/30/20 05:28	1
;#=J!-?=??A%(\$?"A&(A"@&ILXMK	5R8G		0.24		ug/Kg		09/28/20 06:28	09/30/20 05:28	1
;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK	5R5B4		0.24		ug/Kg		09/28/20 06:28	09/30/20 05:28	1
;#=J!-?=?@#A(\$?"A&(A"@&IL1MK	5R5H5		0.24		ug/Kg	∴	09/28/20 06:28	09/30/20 05:28	1
;#=J!-?=?-\$@#A(\$?"A&(A"@&	5R5GG		0.24		ug/Kg	≎	09/28/20 06:28	09/30/20 05:28	1
I;L U\$MK									
Perfluorododecanoic acid (PFDoA)	0.24 \		0.24		ug/Kg			09/30/20 05:28	
Perfluorotridecanoic acid (PFTriA)	0.24		0.24		ug/Kg	☼		09/30/20 05:28	1
Perfluorotetradecanoic acid (PFTeA)	0.24		0.24		ug/Kg	₽		09/30/20 05:28	1
Perfluorobutanesulfonic acid (PFBS)	0.24	J	0.24		ug/Kg	☼	09/28/20 06:28	09/30/20 05:28	1
Perfluorohexanesulfonic acid (PFHxS)	0.24	J	0.24		ug/Kg	☼	09/28/20 06:28	09/30/20 05:28	1
Perfluoroheptanesulfonic Acid (PFHpS)	0.24	J	0.24	0.041	ug/Kg	₽	09/28/20 06:28	09/30/20 05:28	1
`;#=J!-?=??A%(\$#,-!J?\$"A&(A"@& I;L X'K	5R45		0.59	0.24	ug/Kg	₩	09/28/20 06:28	09/30/20 05:28	1
Perfluorodecanesulfonic acid (PFDS)	0.24	J	0.24	0.046	ug/Kg		09/28/20 06:28	09/30/20 05:28	1
Perfluorooctanesulfonamide (FOSA)	0.24	J	0.24		ug/Kg	÷	09/28/20 06:28	09/30/20 05:28	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	2.4	J	2.4		ug/Kg	₩		09/30/20 05:28	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	2.4 (J	2.4	0.44	ug/Kg	₩	09/28/20 06:28	09/30/20 05:28	1
6:2 FTS	2.4 1	J	2.4	0.18	ug/Kg	☆	09/28/20 06:28	09/30/20 05:28	1
8:2 FTS	2.4		2.4		ug/Kg			09/30/20 05:28	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	55		25 - 150				09/28/20 06:28	09/30/20 05:28	
13C5 PFPeA	68		25 - 150				09/28/20 06:28	09/30/20 05:28	
13C2 PFHxA	79		25 - 150				09/28/20 06:28	09/30/20 05:28	
13C4 PFHpA	83		25 - 150				09/28/20 06:28	09/30/20 05:28	
13C4 PFOA	81		25 - 150				09/28/20 06:28	09/30/20 05:28	
13C5 PFNA	75		25 - 150				09/28/20 06:28	09/30/20 05:28	
							09/28/20 06:28	09/30/20 05:28	
13C2 PFDA	72		25 - 150				00, 20, 20 00.20		
13C2 PFDA 13C2 PFUnA	72 71		25 ₋ 150 25 ₋ 150					09/30/20 05:28	
							09/28/20 06:28	09/30/20 05:28 09/30/20 05:28	
13C2 PFUnA 13C2 PFDoA	71		25 - 150				09/28/20 06:28 09/28/20 06:28		
13C2 PFUnA 13C2 PFDoA 13C2 PFTeDA	71 76		25 - 150 25 - 150				09/28/20 06:28 09/28/20 06:28 09/28/20 06:28	09/30/20 05:28	
13C2 PFUnA 13C2 PFDoA 13C2 PFTeDA 13C3 PFBS	71 76 71		25 - 150 25 - 150 25 - 150				09/28/20 06:28 09/28/20 06:28 09/28/20 06:28 09/28/20 06:28	09/30/20 05:28 09/30/20 05:28	
13C2 PFUnA 13C2 PFDoA 13C2 PFTeDA 13C3 PFBS 18O2 PFHxS	71 76 71 76		25 - 150 25 - 150 25 - 150 25 - 150				09/28/20 06:28 09/28/20 06:28 09/28/20 06:28 09/28/20 06:28 09/28/20 06:28	09/30/20 05:28 09/30/20 05:28 09/30/20 05:28 09/30/20 05:28	
13C2 PFUnA 13C2 PFDoA 13C2 PFTeDA 13C3 PFBS 18O2 PFHxS 13C4 PFOS	71 76 71 76 80 74		25 - 150 25 - 150 25 - 150 25 - 150 25 - 150 25 - 150				09/28/20 06:28 09/28/20 06:28 09/28/20 06:28 09/28/20 06:28 09/28/20 06:28 09/28/20 06:28	09/30/20 05:28 09/30/20 05:28 09/30/20 05:28 09/30/20 05:28 09/30/20 05:28	
13C2 PFUnA 13C2 PFDoA 13C2 PFTeDA 13C3 PFBS 18O2 PFHxS 13C4 PFOS 13C8 FOSA	71 76 71 76 80 74 74		25 - 150 25 - 150 25 - 150 25 - 150 25 - 150 25 - 150 25 - 150				09/28/20 06:28 09/28/20 06:28 09/28/20 06:28 09/28/20 06:28 09/28/20 06:28 09/28/20 06:28	09/30/20 05:28 09/30/20 05:28 09/30/20 05:28 09/30/20 05:28	
13C2 PFUnA 13C2 PFDoA 13C2 PFTeDA 13C3 PFBS 18O2 PFHxS 13C4 PFOS 13C8 FOSA d3-NMeFOSAA	71 76 71 76 80 74 74 60		25 - 150 25 - 150				09/28/20 06:28 09/28/20 06:28 09/28/20 06:28 09/28/20 06:28 09/28/20 06:28 09/28/20 06:28 09/28/20 06:28	09/30/20 05:28 09/30/20 05:28 09/30/20 05:28 09/30/20 05:28 09/30/20 05:28 09/30/20 05:28 09/30/20 05:28	
13C2 PFUnA	71 76 71 76 80 74 74	*5	25 - 150 25 - 150 25 - 150 25 - 150 25 - 150 25 - 150 25 - 150				09/28/20 06:28 09/28/20 06:28 09/28/20 06:28 09/28/20 06:28 09/28/20 06:28 09/28/20 06:28 09/28/20 06:28 09/28/20 06:28	09/30/20 05:28 09/30/20 05:28 09/30/20 05:28 09/30/20 05:28 09/30/20 05:28 09/30/20 05:28	

!"#\$%&'()*!#&012&'Q69I567K

1(%#& ?!!#A%#@2856C75&87255

1(%#&+#A#"D#@2&5BC84C75&892E5

.(/&'()*!#&012&3456789395689

<(%=">2&'?!"(

<#%F?@2&GEH&I)?@"J"#@K&6	8&L! -171±N\$)!&#@% (\$A	#,&6& ' ;.; &l	P(,%					
M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
;#=J!-?=?/-%(\$?"A&(A"@&ILQMK	3R8 S	4.6	2.2	ng/L		10/01/20 22:45	10/02/20 17:04	1
;#=J!-?=?*#\$%(\$?"A&(A"@&IL;#MK	ERH	1.8	0.45	ng/L		10/01/20 22:45	10/02/20 17:04	1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q69I567K

.(/&'()*!#&012&3456789395689

Job ID: 460-218480-1

1(%#& ?!!#A%#@**2&\$G**C75&87255 1(%#&+#A#"D#@2&5BC84C75&892E5

M\$(!O%#	+#,-!% V-(!"J"#=	+.		U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
;#=J!-?=?F#>(\$?"A&(A"@&ILW>MK	3R9	1.8	0.53	ng/L		10/01/20 22:45	10/02/20 17:04	1
;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MF	K ER4	1.8	0.23	ng/L		10/01/20 22:45	10/02/20 17:04	1
;#=J!-?=??A%(\$?"A&(A"@&ILXMK	8 G	1.8	0.78	ng/L		10/01/20 22:45	10/02/20 17:04	1
;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK	3R4	1.8	0.25	ng/L		10/01/20 22:45	10/02/20 17:04	1
;#=J!-?=?@#A(\$?"A&(A"@&IL1MK	8R7 S	1.8	0.29	ng/L		10/01/20 22:45	10/02/20 17:04	1
Perfluoroundecanoic acid (PFUnA)	1.8 U	1.8	1.0	ng/L		10/01/20 22:45	10/02/20 17:04	1
Perfluorododecanoic acid (PFDoA)	1.8 U	1.8	0.51	ng/L		10/01/20 22:45	10/02/20 17:04	1
Perfluorotridecanoic acid (PFTriA)	1.8 U	1.8	1.2	ng/L		10/01/20 22:45	10/02/20 17:04	1
Perfluorotetradecanoic acid (PFTeA)	1.8 U	1.8		ng/L		10/01/20 22:45	10/02/20 17:04	1
;#=J!-?=?/-%(\$#,-!J?\$"A&(A"@& I;LQ'K	5R35 S	1.8	0.18	ng/L		10/01/20 22:45	10/02/20 17:04	1
;#=J!-?=?F#>(\$#,-!J?\$"A&(A"@& I:LW>'K	8R7 S	1.8	0.53	ng/L		10/01/20 22:45	10/02/20 17:04	1
;#=J!-?=?F#*%(\$#,-!J?\$"A&IA"@& I;LW*'K	5R95 S	1.8	0.18	ng/L		10/01/20 22:45	10/02/20 17:04	1
;#=J!-?=??A%(\$#,-!J?\$"A&(A"@& I;LX'K	8G5 L7 J	1.8	0.50	ng/L		10/01/20 22:45	10/02/20 17:04	1
Perfluorodecanesulfonic acid (PFDS)	1.8 U	1.8	0.29	ng/L		10/01/20 22:45	10/02/20 17:04	1
;#=J!-?=??A%(\$#,-!J?\$()"@#& ILX'MK	8RHS	1.8	0.90	ng/L		10/01/20 22:45	10/02/20 17:04	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	4.6 U	4.6		ng/L		10/01/20 22:45	10/02/20 17:04	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	4.6 U	4.6		ng/L		10/01/20 22:45	10/02/20 17:04	1
427&L:'	835 L8 J -	4.6		ng/L		10/01/20 22:45	10/02/20 17:04	1
927&L:'	5R4BS	1.8	0.42	ng/L		10/01/20 22:45	10/02/20 17:04	1
Isotope Dilution	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	97	25 - 150				10/01/20 22:45	10/02/20 17:04	
13C5 PFPeA	99	25 - 150				10/01/20 22:45	10/02/20 17:04	
13C2 PFHxA	97	25 - 150				10/01/20 22:45	10/02/20 17:04	
13C4 PFHpA	107	25 - 150				10/01/20 22:45	10/02/20 17:04	
13C4 PFOA	98	25 - 150				10/01/20 22:45	10/02/20 17:04	
13C5 PFNA	98	25 - 150				10/01/20 22:45	10/02/20 17:04	
13C2 PFDA	86	25 - 150				10/01/20 22:45	10/02/20 17:04	
13C2 PFUnA	86	25 - 150				10/01/20 22:45	10/02/20 17:04	
13C2 PFDoA	78	25 - 150				10/01/20 22:45	10/02/20 17:04	
13C2 PFTeDA	71	25 - 150				10/01/20 22:45	10/02/20 17:04	
13C3 PFBS	97	25 - 150				10/01/20 22:45	10/02/20 17:04	
1802 PFHxS	99	25 - 150				10/01/20 22:45	10/02/20 17:04	
13C4 PFOS	89	25 - 150				10/01/20 22:45	10/02/20 17:04	
13C8 FOSA	89	25 - 150				10/01/20 22:45	10/02/20 17:04	
d3-NMeFOSAA	67	25 - 150					10/02/20 17:04	
d5-NEtFOSAA	89	25 - 150					10/02/20 17:04	
M2-6:2 FTS	108	25 - 150					10/02/20 17:04	
M2-8:2 FTS	97	25 - 150					10/02/20 17:04	
Z#\$#=(!& F#)",%=O								
M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
: ?%(!& (=/?\$	48B55 J+	1000		mg/Kg			09/23/20 20:28	1
: ?%(!& (=/?\$	3HB55 J	1000		mg/Kg			09/30/20 16:19	1

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q69I567K

.(/&'()*!#&012&3456789395689

1(%#& ?!!#A%#@**2836**C75&87255

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

M\$(!O%#	+#,-!% V-(!"J"#=	+.	+.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
*W	HR5WL	0.1	0.1	SU			09/22/20 15:00	1
: #)*#=(%-=#	78R7 WL	0.001	0.001	Degrees C			09/22/20 15:00	1

!"#\$%&'()*!#&012&'Q69I567K

.(/&'()*!#&012&3456789395689

1(%#& ?!!#A%#@**285/B**C75&87255

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
1,1,1-Trichloroethane	1.1	U UJ	1.1	0.26	ug/Kg	☼	09/18/20 22:40	09/23/20 04:58	1
1,1,2,2-Tetrachloroethane	1.1	U F1 <mark>UJ</mark>	1.1	0.24	ug/Kg	₩	09/18/20 22:40	09/23/20 04:58	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.1	U F1 UJ	1.1	0.34	ug/Kg	☼	09/18/20 22:40	09/23/20 04:58	1
1,1,2-Trichloroethane	1.1	U F1 UJ	1.1	0.20	ug/Kg	☼	09/18/20 22:40	09/23/20 04:58	1
1,1-Dichloroethane	1.1	U <mark>UJ</mark>	1.1	0.23	ug/Kg	☼	09/18/20 22:40	09/23/20 04:58	1
1,1-Dichloroethene	1.1	U <mark>UJ</mark>	1.1	0.25	ug/Kg	☼	09/18/20 22:40	09/23/20 04:58	1
1,2,4-Trichlorobenzene	1.1	U F2 F1 UJ	1.1	0.40	ug/Kg	₩	09/18/20 22:40	09/23/20 04:58	1
1,2-Dibromo-3-Chloropropane	1.1	U F2 F1 UJ	1.1	0.51	ug/Kg	☼	09/18/20 22:40	09/23/20 04:58	1
1,2-Dichlorobenzene	1.1	U F2 F1 UJ	1.1	0.16	ug/Kg	₽	09/18/20 22:40	09/23/20 04:58	1
1,2-Dichloroethane	1.1	U	1.1	0.33	ug/Kg	₩	09/18/20 22:40	09/23/20 04:58	1
1,2-Dichloropropane	1.1	U <mark>UJ</mark>	1.1	0.47	ug/Kg	☼	09/18/20 22:40	09/23/20 04:58	1
1,3-Dichlorobenzene	1.1	U F2 F1 UJ	1.1	0.18	ug/Kg	☼	09/18/20 22:40	09/23/20 04:58	1
1,4-Dichlorobenzene	1.1	U F2 F1 UJ	1.1	0.25	ug/Kg	₩	09/18/20 22:40	09/23/20 04:58	1
76Q-%(\$?\$#&I <p`k< td=""><td>85</td><td>L8 J-</td><td>5.6</td><td>3.0</td><td>ug/Kg</td><td>☼</td><td>09/18/20 22:40</td><td>09/23/20 04:58</td><td>1</td></p`k<>	85	L8 J -	5.6	3.0	ug/Kg	☼	09/18/20 22:40	09/23/20 04:58	1
2-Hexanone	5.6	U F1 <mark>UJ</mark>	5.6	1.9	ug/Kg	☼	09/18/20 22:40	09/23/20 04:58	1
4-Methyl-2-pentanone (MIBK)	5.6	U F1 <mark>UJ</mark>	5.6	1.7	ug/Kg	₩	09/18/20 22:40	09/23/20 04:58	1
MA#%?\$#	GE	8 L8 J+	6.7	6.4	ug/Kg	☼	09/18/20 22:40	09/23/20 04:58	1
Benzene	1.1	U F1 <mark>UJ</mark>	1.1	0.29	ug/Kg	☼	09/18/20 22:40	09/23/20 04:58	1
Bromoform	1.1	U <mark>UJ</mark>	1.1	0.47	ug/Kg	₩	09/18/20 22:40	09/23/20 04:58	1
Bromomethane	1.1	U <mark>UJ</mark>	1.1	0.53	ug/Kg	☼	09/18/20 22:40	09/23/20 04:58	1
(=/?\$&@",-!J"@#	7R	5 L8 J -	1.1	0.30	ug/Kg	☼	09/18/20 22:40	09/23/20 04:58	1
Carbon tetrachloride	1.1	U F1 <mark>UJ</mark>	1.1	0.43	ug/Kg	₩	09/18/20 22:40	09/23/20 04:58	1
Chlorobenzene	1.1	U F1 <mark>UJ</mark>	1.1	0.20	ug/Kg	☼	09/18/20 22:40	09/23/20 04:58	1
Dibromochloromethane	1.1	U F1 <mark>UJ</mark>	1.1	0.22	ug/Kg	☼	09/18/20 22:40	09/23/20 04:58	1
Chloroethane	1.1	U	1.1	0.58	ug/Kg	☼	09/18/20 22:40	09/23/20 04:58	1
Chloroform	1.1	U <mark>UJ</mark>	1.1	0.36	ug/Kg	☼	09/18/20 22:40	09/23/20 04:58	1
Chloromethane	1.1	U	1.1	0.48	ug/Kg	☼	09/18/20 22:40	09/23/20 04:58	1
cis-1,2-Dichloroethene	1.1	U <mark>UJ</mark>	1.1	0.17	ug/Kg	₩	09/18/20 22:40	09/23/20 04:58	1
Cyclohexane	1.1	U F1 <mark>UJ</mark>	1.1	0.25	ug/Kg	☼	09/18/20 22:40	09/23/20 04:58	1
Bromodichloromethane	1.1	U F1 <mark>UJ</mark>	1.1	0.29	ug/Kg	☼	09/18/20 22:40	09/23/20 04:58	1
Dichlorodifluoromethane	1.1	U	1.1	0.38	ug/Kg	₩	09/18/20 22:40	09/23/20 04:58	1
Ethylbenzene	1.1	U F2 F1 UJ	1.1		ug/Kg	₽	09/18/20 22:40	09/23/20 04:58	1
1,2-Dibromoethane	1.1	U F1 UJ	1.1		ug/Kg	₩	09/18/20 22:40	09/23/20 04:58	1
Isopropylbenzene	1.1	U F2 F1 UJ	1.1		ug/Kg		09/18/20 22:40	09/23/20 04:58	1
Methyl acetate	5.6	U F2 F1	5.6		ug/Kg	₩	09/18/20 22:40	09/23/20 04:58	1
Methyl tert-butyl ether	1.1		1.1		ug/Kg	₩	09/18/20 22:40		1
Methylcyclohexane	1.1	U F1 UJ	1.1		ug/Kg			09/23/20 04:58	1
<#%FO!#\$#& F!?="@#	7RI		1.1		ug/Kg	₽		09/23/20 04:58	1
Tetrachloroethene		U F1 <mark>UJ</mark>	1.1		ug/Kg	₽		09/23/20 04:58	1
Toluene		U F1 UJ	1.1		ug/Kg			09/23/20 04:58	1
trans-1,2-Dichloroethene		U UJ	1.1		ug/Kg			09/23/20 04:58	1
trans-1,3-Dichloropropene		U F1 <mark>UJ</mark>	1.1		ug/Kg			09/23/20 04:58	1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q69I567K

.(/&'()*!#&012&3456789395689

1(%#& ?!!#A%#@**2836**C75&87255

Q#\$T?b/cJ!-?=(\$%F#\$#

<(%=">2&'?!"(

Job ID: 460-218480-1

<#%F?@2&9745 &6& %"!#&X	=^(\$"A& ?)*?	?-\$@,&/O8	Z C<'&I ?	\$%"	\$-#@K					
M\$(!O%#		V-(!"J"#=	+.		<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
Trichloroethene	1.1	U F1 UJ	1.1		0.16	ug/Kg	≎	09/18/20 22:40	09/23/20 04:58	1
Trichlorofluoromethane	1.1	U	1.1		0.45	ug/Kg	☼	09/18/20 22:40	09/23/20 04:58	1
Vinyl chloride	1.1	U	1.1		0.61	ug/Kg	₩	09/18/20 22:40	09/23/20 04:58	1
Xylenes, Total	2.2	U F2 F1 UJ	2.2		0.19	ug/Kg	₩	09/18/20 22:40	09/23/20 04:58	•
cis-1,3-Dichloropropene	1.1	U F1 UJ	1.1		0.30	ug/Kg	₩	09/18/20 22:40	09/23/20 04:58	•
Styrene	1.1	U F2 F1 UJ	1.1		0.31	ug/Kg	₽	09/18/20 22:40	09/23/20 04:58	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	6.8	TJ	ug/Kg	₩	10	.65		09/18/20 22:40	09/23/20 04:58	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	114		77 - 145					09/18/20 22:40	09/23/20 04:58	
Toluene-d8 (Surr)	102		80 - 120					09/18/20 22:40	09/23/20 04:58	
Dibromofluoromethane (Surr)	114		48 - 150					09/18/20 22:40	09/23/20 04:58	
4-Bromofluorobenzene	105		79 - 125					09/18/20 22:40	09/23/20 04:58	
<#%F?@2&97H51&6&'#)"D?!	!(%"!#&X=^(\$"A& ?)*?-	\$@,&IZ C<	<'K						
M\$(!O%#		V-(!"J"#=	+,		<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
2,4,5-Trichlorophenol	42000	U	42000		11000	ug/Kg	<u></u>	09/21/20 15:10	09/22/20 16:08	20
2,4,6-Trichlorophenol	42000	U	42000		8500	ug/Kg	≎	09/21/20 15:10	09/22/20 16:08	20
2,4-Dichlorophenol	42000	U	42000		4500	ug/Kg	☼	09/21/20 15:10	09/22/20 16:08	20
2,4-Dimethylphenol	42000	U	42000		10000	ug/Kg		09/21/20 15:10	09/22/20 16:08	20
2,4-Dinitrophenol	410000	U	410000		200000	ug/Kg	☼	09/21/20 15:10	09/22/20 16:08	20
2,4-Dinitrotoluene	42000	U	42000		8700	ug/Kg	☼	09/21/20 15:10	09/22/20 16:08	20
2,6-Dinitrotoluene	42000	U	42000		5000	ug/Kg		09/21/20 15:10	09/22/20 16:08	20
2-Chloronaphthalene	42000	U	42000		7000	ug/Kg	☼	09/21/20 15:10	09/22/20 16:08	20
2-Chlorophenol	82000	U	82000		7700	ug/Kg	≎	09/21/20 15:10	09/22/20 16:08	2
2-Methylnaphthalene	42000	U	42000		8500	ug/Kg		09/21/20 15:10	09/22/20 16:08	2
2-Methylphenol	42000	U	42000		5000	ug/Kg	₩	09/21/20 15:10	09/22/20 16:08	2
2-Nitroaniline	82000	U	82000		6200	ug/Kg	₩	09/21/20 15:10	09/22/20 16:08	20
2-Nitrophenol	42000	U	42000		12000	ug/Kg		09/21/20 15:10	09/22/20 16:08	20
3,3'-Dichlorobenzidine	82000		82000			ug/Kg	☼	09/21/20 15:10	09/22/20 16:08	20
3-Nitroaniline	82000	U	82000			ug/Kg	☼	09/21/20 15:10	09/22/20 16:08	20
4,6-Dinitro-2-methylphenol	82000	U	82000			ug/Kg		09/21/20 15:10	09/22/20 16:08	20
4-Bromophenyl phenyl ether	42000	U	42000			ug/Kg	☼	09/21/20 15:10	09/22/20 16:08	20
4-Chloro-3-methylphenol	42000		42000		10000		☆	09/21/20 15:10		20
4-Chloroaniline	42000		42000		10000				09/22/20 16:08	20
4-Chlorophenyl phenyl ether	42000		42000		5200	ug/Kg	*		09/22/20 16:08	20
4-Methylphenol	82000		82000		5000	ug/Kg		09/21/20 15:10		20
4-Nitroaniline	82000		82000		22000	ug/Kg		09/21/20 15:10		20
4-Nitrophenol	82000		82000		30000			09/21/20 15:10		20
Acenaphthene	42000		42000		6200		₩	09/21/20 15:10		20
Acenaphthylene	42000		42000		5500		. T	09/21/20 15:10		20
Acetophenone	42000		42000		5700	ug/Kg	₩	09/21/20 15:10		2
Anthracene	42000		42000		10000	ug/Kg	¥ \$	09/21/20 15:10		2
Atrazine	42000		42000		15000			09/21/20 15:10		2
Benzaldehyde	42000		42000		34000		₩ ₩	09/21/20 15:10		20
•			42000			ug/Kg ug/Kg		09/21/20 15:10		20
Q#\$T?b(c(\$%F=(A#\$#		S&L8J- S&L8J-	42000			ug/Kg	ф ф		09/22/20 16:08	2
Q#\$T?b(c*O=#\$#	поээ	JOLOJ-	42000		0200	ug/Ng	1,2	03/21/20 15.10	09/22/20 10.00	21

20

© 09/21/20 15:10 09/22/20 16:08

42000

6700 ug/Kg

9955 S

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q69I567K

.(/&'()*!#&012&3456789395689

1(%#& ?!!#A%#@**2&8G**C75&87255

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

<#%F?@2&97H51&6&'#)"D?! M\$(!0%#		V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
Q#\$T?b^_F_"c*#=O!#\$#	G455	S&L8J-	42000	4500	ug/Kg		09/21/20 15:10	09/22/20 16:08	20
Benzo[k]fluoranthene	42000	U	42000	5500	ug/Kg		09/21/20 15:10	09/22/20 16:08	20
Biphenyl	42000	U	42000	6200	ug/Kg	₩	09/21/20 15:10	09/22/20 16:08	20
bis (2-chloroisopropyl) ether	42000	U	42000	8500	ug/Kg	₽	09/21/20 15:10	09/22/20 16:08	20
Bis(2-chloroethoxy)methane	42000	U	42000	9000	ug/Kg		09/21/20 15:10	09/22/20 16:08	20
Bis(2-chloroethyl)ether	42000	U	42000	5500	ug/Kg	₽	09/21/20 15:10	09/22/20 16:08	20
Bis(2-ethylhexyl) phthalate	42000	U	42000	14000	ug/Kg	₽	09/21/20 15:10	09/22/20 16:08	20
Butyl benzyl phthalate	42000	U	42000	7000	ug/Kg		09/21/20 15:10	09/22/20 16:08	20
Caprolactam	42000	U	42000	13000	ug/Kg	₩	09/21/20 15:10	09/22/20 16:08	20
Carbazole	42000	U	42000	5000	ug/Kg	₩	09/21/20 15:10	09/22/20 16:08	20
Chrysene	42000	U	42000	9500	ug/Kg		09/21/20 15:10	09/22/20 16:08	20
Dibenz(a,h)anthracene	42000		42000	7500	ug/Kg	☼	09/21/20 15:10	09/22/20 16:08	20
Dibenzofuran	42000		42000	5000	ug/Kg	*		09/22/20 16:08	20
Diethyl phthalate	42000		42000	5500	ug/Kg			09/22/20 16:08	20
Dimethyl phthalate	42000		42000	5000	ug/Kg	*		09/22/20 16:08	20
Di-n-butyl phthalate	42000		42000	7200	ug/Kg	*		09/22/20 16:08	20
Di-n-octyl phthalate	42000		42000	5000	ug/Kg			09/22/20 16:08	20
L!-?=(\$%F#\$#		S&L7J	42000	4500	ug/Kg	÷		09/22/20 16:08	20
Fluorene	42000		42000	5000	ug/Kg	÷		09/22/20 16:08	20
Hexachlorobenzene	42000		42000	5700	ug/Kg			09/22/20 16:08	20
Hexachlorobutadiene	42000		42000	6200	ug/Kg			09/22/20 16:08	20
Hexachlorocyclopentadiene	42000		42000	5700	ug/Kg			09/22/20 16:08	20
Hexachloroethane	42000		42000	5500	ug/Kg			09/22/20 16:08	20
Indeno[1,2,3-cd]pyrene	42000		42000	5200	ug/Kg			09/22/20 16:08	20
Isophorone	42000		42000	9000	ug/Kg			09/22/20 16:08	20
Naphthalene	42000		42000	5500	ug/Kg			09/22/20 16:08	20
Nitrobenzene	42000		42000	4700	ug/Kg	÷		09/22/20 16:08	20
N-Nitrosodi-n-propylamine	42000		42000	7200	ug/Kg	÷		09/22/20 16:08	20
N-Nitrosodiphenylamine	42000		42000	34000	ug/Kg			09/22/20 16:08	20
Pentachlorophenol	82000		82000	42000	ug/Kg	₩		09/22/20 16:08	20
Phenanthrene	42000		42000	6200	ug/Kg			09/22/20 16:08	20
Phenol	42000		42000	6500	ug/Kg			09/22/20 16:08	20
					0 0	₽			20
;O=#\$#	85555	5	42000	5000	ug/Kg	₽	09/21/20 15.10	09/22/20 16:08	20
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/Kg	* *			09/21/20 15:10	09/22/20 16:08	20
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol		X	54 - 120					09/22/20 16:08	20
2-Fluorobiphenyl		X	60 - 120					09/22/20 16:08	20
2-Fluorophenol	0	X	52 - 120				09/21/20 15:10	09/22/20 16:08	20
Nitrobenzene-d5	0	X	53 - 120				09/21/20 15:10	09/22/20 16:08	20
Phenol-d5	0	X	54 - 120				09/21/20 15:10	09/22/20 16:08	20
p-Terphenyl-d14	0	X	79 - 130				09/21/20 15:10	09/22/20 16:08	20
~#0/ F2@29.0E000.00 V=A/#2	A F10-440	# 0/ !! A !! 🏟	# 01 7 1/						
<#%F?@2&9598Q&6&X=^(\$? M\$/!0%#				-1	¢"0/	4	·=#*/-#@	M¢/IOT#@	4"191
M\$(!O%#		V-(!"J"#=	+.	<u><1.</u>	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
0.040444									
3_3d6111 3_3d611P		L7 J S&L7J	100 100		ug/Kg ug/Kg	☆		09/23/20 11:16 09/23/20 11:16	50 50

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q69I567K

.(/&'()*!#&012&3456789395689

1(%#& ?!!#A%#@**2&3G**C75&87255

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&95

<#%F?@2&9598Q&6&X=^ M\$(!O%#	· ·	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(/
Aldrin	100		100	26	ug/Kg	— <u></u>	09/22/20 13:04		50
alpha-BHC	100	U	100		ug/Kg		09/22/20 13:04	09/23/20 11:16	50
beta-BHC	100	U F1	100		ug/Kg	☼	09/22/20 13:04	09/23/20 11:16	50
cis-Chlordane	100	U F1	100		ug/Kg		09/22/20 13:04	09/23/20 11:16	50
delta-BHC		U F1	100		ug/Kg	☼	09/22/20 13:04	09/23/20 11:16	50
1"#!@="\$	H4	S&L8&L7+	100		ug/Kg	₩	09/22/20 13:04	09/23/20 11:16	50
Endosulfan I		U F1	100		ug/Kg		09/22/20 13:04	09/23/20 11:16	50
Endosulfan II	100	U F1	100		ug/Kg	₩	09/22/20 13:04		50
Endosulfan sulfate	100	U F1	100		ug/Kg	₩	09/22/20 13:04	09/23/20 11:16	50
Endrin	100	U F1	100		ug/Kg			09/23/20 11:16	50
Endrin aldehyde	100		100		ug/Kg	₩		09/23/20 11:16	50
Endrin ketone	100		100		ug/Kg	 		09/23/20 11:16	50
gamma-BHC (Lindane)		U F1	100		ug/Kg	∷ ∴		09/23/20 11:16	50
Heptachlor	100		100		ug/Kg			09/23/20 11:16	50
Heptachlor epoxide	100		100		ug/Kg ug/Kg	₩		09/23/20 11:16	50
<pre><#%F?>OAF!?=</pre>		L7 R	100		ug/Kg			09/23/20 11:16	50
Toxaphene	1000		1000		ug/Kg ug/Kg	~ #		09/23/20 11:16	50
•		S&L8&L7-	1000		ug/Kg ug/Kg			09/23/20 11:16	50
%=(\$,6 F!?=@(\$#	⊑ 9	Saloal J-	100	33	ug/Ng	244	09/22/20 13.04	09/23/20 11.10	30
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	666		45 - 120					09/23/20 11:16	50
DCB Decachlorobiphenyl	1938	X	45 - 120				09/22/20 13:04	09/23/20 11:16	50
Tetrachloro-m-xylene	0	X	30 - 124				09/22/20 13:04	09/23/20 11:16	50
Tetrachloro-m-xylene	0	X	30 - 124				09/22/20 13:04	09/23/20 11:16	50
<#%F?@2&959 &19 &;?!OAF	F!?="\$(%#@&Q	"*F#\$O!,&I	Q,K&/O&Z(,& F=?)(%?^=(*F	0			
M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
PCB-1016	0.28	U	0.28	0.054	mg/Kg	☼	09/21/20 15:17	09/22/20 16:12	1
PCB-1221	0.28	U	0.28	0.054	mg/Kg	☼	09/21/20 15:17	09/22/20 16:12	1
PCB-1232	0.28	U	0.28	0.054	mg/Kg	☼	09/21/20 15:17	09/22/20 16:12	1
PCB-1242	0.28	U	0.28	0.054	mg/Kg	₩	09/21/20 15:17	09/22/20 16:12	1
PCB-1248	0.28	U	0.28	0.054	mg/Kg	≎	09/21/20 15:17	09/22/20 16:12	1
PCB-1254	0.28	U	0.28	0.13	mg/Kg	☼	09/21/20 15:17	09/22/20 16:12	1
PCB-1260	0.28	U	0.28	0.13	mg/Kg	☼	09/21/20 15:17	09/22/20 16:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	100		60 - 154					09/22/20 16:12	
Tetrachloro-m-xylene	87		60 - 154				09/21/20 15:17	09/22/20 16:12	
DCB Decachlorobiphenyl	103		65 - 174					09/22/20 16:12	
DCB Decachlorobiphenyl	66		65 - 174				09/21/20 15:17	09/22/20 16:12	
, , , , , , , , , , , , , , , , , , ,							00.220	00/12/20 / 0///2	
<#%F?@2&98 G89& W#=/" <i>I</i>									
M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
2,4,5-T	21		21		ug/Kg	≎		09/23/20 19:59	1
Silvex (2,4,5-TP)	21	U	21		ug/Kg	₽	09/21/20 15:24	09/23/20 19:59	1
2,4-D	21	UF1 R	21	13	ug/Kg	₩	09/21/20 15:24	09/23/20 19:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	87		28 - 129				09/21/20 15:24	09/23/20 19:59	
2,4-Dichlorophenylacetic acid	66		28 - 129				00/04/00 45:04	09/23/20 19:59	

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q69I567K

.(/&'()*!#&012&3456789395689

1(%#& ?!!#A%#@**28356**C75&87255

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&95

M\$(!O%#	%6&L! -17!:N\$)(%#@% (\$) +#,-!% V-(!"J"#=	+	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
;#=J!-?=?/-%(\$?"A&(A"@&ILQMK	5R73 Q J+	0.23			☼		09/30/20 05:56	•
;#=J!-?=?*#\$%(\$?"A&(A"@&IL;#MK		0.23		ug/Kg	☼	09/28/20 06:28	09/30/20 05:56	•
Perfluorohexanoic acid (PFHxA)	0.23 U	0.23		ug/Kg			09/30/20 05:56	
;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MF	K 5R83 S	0.23		ug/Kg	☼	09/28/20 06:28	09/30/20 05:56	•
;#=J!-?=??A%(\$?"A&(A"@&ILXMK	5R37	0.23	0.10	ug/Kg	☼	09/28/20 06:28	09/30/20 05:56	
;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK	5R78 S	0.23	0.042	ug/Kg	₽	09/28/20 06:28	09/30/20 05:56	
;#=J!-?=?@#A(\$?"A&(A"@&IL1MK	5REBL8 J+	0.23	0.026	ug/Kg	₩	09/28/20 06:28	09/30/20 05:56	
;#=J!-?=?-\$@#A(\$?"A&(A"@&	5R7E	0.23	0.042	ug/Kg	☼	09/28/20 06:28	09/30/20 05:56	
I;LU\$MK								
;#=J!-?=?@?@#A(\$?"A&(A"@& l;L1?MK	5RE7	0.23	0.078	ug/Kg	₩	09/28/20 06:28	09/30/20 05:56	
;#=J!-?=?%="@#A(\$?"A&(A"@ &!N LK	5R595 S	0.23	0.060	ug/Kg	☼	09/28/20 06:28	09/30/20 05:56	
;#=J!-?=?%#%=(@#A(\$?"A&(A"@&	5R8 S	0.23	0.063	ug/Kg	☼	09/28/20 06:28	09/30/20 05:56	
I;L: #MK								
Perfluorobutanesulfonic acid (PFBS)	0.23 U	0.23		ug/Kg	₩	09/28/20 06:28	09/30/20 05:56	
;#=J!-?=?F#>(\$#,-!J?\$"A&(A"@& l;LW>'K	5R8HS	0.23	0.036	ug/Kg	₽	09/28/20 06:28	09/30/20 05:56	
Perfluoroheptanesulfonic Acid (PFHpS)	0.23 U	0.23	0.041	ug/Kg	₽	09/28/20 06:28	09/30/20 05:56	
;#=J!-?=??A%(\$#,-!J?\$"A&(A"@& I;LX'K	ERBL8&L7J+	0.59	0.23	ug/Kg	☼	09/28/20 06:28	09/30/20 05:56	•
:#=J!-?=?@#A(\$#,-!J?\$"A&(A"@& I;L1'K	5R89 S&L8J+	0.23	0.046	ug/Kg	☼	09/28/20 06:28	09/30/20 05:56	
Perfluorooctanesulfonamide (FOSA)	0.23 U	0.23	0.096	ug/Kg	☼	09/28/20 06:28	09/30/20 05:56	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	2.3 UF1	2.3	0.46	ug/Kg	₩	09/28/20 06:28	09/30/20 05:56	•
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	2.3 UF1	2.3	0.43	ug/Kg	☼	09/28/20 06:28	09/30/20 05:56	
6:2 FTS `	2.3 U	2.3	0.18	ug/Kg	₩	09/28/20 06:28	09/30/20 05:56	
8:2 FTS	2.3 U	2.3		ug/Kg	₩	09/28/20 06:28	09/30/20 05:56	
Isotope Dilution	%Recovery Qualifier	Limits		0 0		Prepared	Analyzed	Dil Fa
13C4 PFBA	50	25 - 150				<u> </u>	09/30/20 05:56	
13C5 PFPeA	55	25 - 150				09/28/20 06:28	09/30/20 05:56	
13C2 PFHxA	69	25 - 150					09/30/20 05:56	
13C4 PFHpA	71	25 - 150					09/30/20 05:56	
13C4 PFOA	70	25 ₋ 150					09/30/20 05:56	
13C5 PFNA	74	25 - 150 25 - 150					09/30/20 05:56	
13C2 PFDA	73	25 ₋ 150					09/30/20 05:56	
13C2 PFUnA	73	25 - 150					09/30/20 05:56	
13C2 PFDoA	74	25 - 150					09/30/20 05:56	
13C2 PFTeDA	87	25 - 150					09/30/20 05:56	
13C3 PFBS	70	25 - 150					09/30/20 05:56	
18O2 PFHxS	79	25 - 150				09/28/20 06:28	09/30/20 05:56	
13C4 PFOS	78	25 - 150				09/28/20 06:28	09/30/20 05:56	
13C8 FOSA	58	25 - 150				09/28/20 06:28	09/30/20 05:56	
d3-NMeFOSAA	65	25 - 150				09/28/20 06:28	09/30/20 05:56	
d5-NEtFOSAA	77	25 - 150				09/28/20 06:28	09/30/20 05:56	
M2-6:2 FTS	210 *5	25 - 150				09/28/20 06:28	09/30/20 05:56	
M2-8:2 FTS	191 *5	25 - 150					09/30/20 05:56	

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q69I567K

.(/&'()*!#&012&3456789395689

1(%#& ?!!#A%#@**2836**C75&87255

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&95

Job ID: 460-218480-1

M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
M!-)"\$-)	88G55	12.7	5.6	mg/Kg	-	09/24/20 17:07	09/25/20 13:46	1
Antimony	19.0 U <mark>UJ</mark>	19.0	0.51	mg/Kg	≎	09/24/20 17:07	09/25/20 13:46	1
M=,#\$"A	4R9 Q	2.5	0.51	mg/Kg	≎	09/24/20 17:07	09/25/20 13:46	1
Q(="-)	7795 J	3.2	0.70	mg/Kg	☼	09/24/20 17:07	09/29/20 01:24	5
Q#=O!!"-)	5RGE	0.25	0.035	mg/Kg	☼	09/24/20 17:07	09/25/20 13:46	1
(@)"-)	ER7J	0.25	0.038	mg/Kg	☼	09/24/20 17:07	09/25/20 13:46	1
(!A"-)	39G55 J	63.4	4.2	mg/Kg	≎	09/24/20 17:07	09/25/20 13:46	1
F=?)"-)	785	0.63	0.25	mg/Kg	≎	09/24/20 17:07	09/25/20 13:46	1
?/(!%	GR5	0.63	0.063	mg/Kg	≎	09/24/20 17:07	09/25/20 13:46	1
?**#=	833 J-	1.3	0.27	mg/Kg	≎	09/24/20 17:07	09/25/20 13:46	1
0=?\$	85H55 J	12.7	4.4	mg/Kg	≎	09/24/20 17:07	09/25/20 13:46	1
.#(@	8375 J	1.3	0.30	mg/Kg	≎	09/24/20 17:07	09/25/20 13:46	1
<(^\$#,"-)	H885 J-	25.4	1.2	mg/Kg	☼	09/24/20 17:07	09/25/20 13:46	1
<(\$^(\$#,#	E45 J	0.25	0.041	mg/Kg	☼	09/24/20 17:07	09/25/20 13:46	1
Y"AN#!	49R9 J-	6.3	0.29	mg/Kg	☼	09/24/20 17:07	09/25/20 13:46	1
;?%(,,"-)	H7E J+	38.0	25.4	mg/Kg	☼	09/24/20 17:07	09/25/20 13:46	1
Selenium	5.1 U	5.1	0.51	mg/Kg	☼	09/24/20 17:07	09/25/20 13:46	1
'''!D#=	5RH9	0.76	0.25	mg/Kg	☼	09/24/20 17:07	09/25/20 13:46	1
'?@"-)	73H	177	16.5	mg/Kg	☼	09/24/20 17:07	09/25/20 13:46	1
Thallium	7.6 U	7.6	0.38	mg/Kg	☼	09/24/20 17:07	09/25/20 13:46	1
] (\$(@"-)	79RH	0.63	0.14	mg/Kg	☼	09/24/20 17:07	09/25/20 13:46	1
e"\$A	988 J	2.5	0.81	mg/Kg	≎	09/24/20 17:07	09/25/20 13:46	1
- <#%F?@2&H3H8Q&6&<#=	A- -NOVS K1							
M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
<#=A-=O	5RG9	0.026	0.010	mg/Kg	₽	09/22/20 11:56	09/22/20 14:13	1
Z#\$#=(!& F#)",%=O								
M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
Cyanide, Total	1.2 U	1.2	0.58	mg/Kg	*	09/21/20 13:33	09/22/20 14:28	1

!"#\$%&'()*!#&012&'Q6BI565RGK

1(%#& ?!!#A%#@**28356**C75&872E5

1(%#&+#A#"D#@2&5BC84C75&892E5

.(/&'()*!#&012&345678939568B

<(%=">2&'?!"(

M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
;#=J!-?=?/-%(\$?"A&(A"@&ILQMK	8R8 Q J+	0.25	0.035	ug/Kg	₽	09/22/20 11:42	09/26/20 01:59	1
;#=J!-?=?*#\$%(\$?"A&(A"@&IL;#MK	5R7B	0.25	0.097	ug/Kg	₽	09/22/20 11:42	09/26/20 01:59	1
;#=J!-?=?F#>(\$?"A&(A"@&ILW>MK	5R8HS	0.25	0.053	ug/Kg	₽	09/22/20 11:42	09/26/20 01:59	1
;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MK	5R73 S	0.25	0.037	ug/Kg	₽	09/22/20 11:42	09/26/20 01:59	1
;#=J!-?=??A%(\$?"A&(A"@&ILXMK	5REB	0.25	0.11	ug/Kg	₩	09/22/20 11:42	09/26/20 01:59	1
;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK	5RE3	0.25	0.046	ug/Kg	₽	09/22/20 11:42	09/26/20 01:59	1
;#=J!-?=?@#A(\$?"A&(A"@&IL1MK	5R79	0.25	0.028	ug/Kg	☼	09/22/20 11:42	09/26/20 01:59	1
;#=J!-?=?-\$@#A(\$?"A&(A"@& I;LU\$MK	5RE8	0.25	0.046	ug/Kg	₽	09/22/20 11:42	09/26/20 01:59	1
;#=J!-?=?@?@#A(\$?"A&(A"@& I;L1?MK	5R8GS	0.25	0.085	ug/Kg	₩	09/22/20 11:42	09/26/20 01:59	1
;#=J!-?=?%="@#A(\$?"A&(A"@ &'INI K	5R84 S	0.25	0.065	ug/Kg	₽	09/22/20 11:42	09/26/20 01:59	1
;#=J!-?=?%#%=(@#A(\$?"A&(A"@& I;L: #MK	5R8 S	0.25	0.068	ug/Kg	₽	09/22/20 11:42	09/26/20 01:59	1

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q6BI565RGK

.(/&'()*!#&012&345678939568B

1(%#& ?!!#A%#@**28356**C75&872E5

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&H4

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
;#=J!-?=?/-%(\$#,-!J?\$"A&(A"@& I;L Q'K	5R5H4	IS	0.25	0.032	ug/Kg	₩	09/22/20 11:42	09/26/20 01:59	1
Perfluorohexanesulfonic acid (PFHxS)	0.25	U	0.25	0.039	ug/Kg	₽	09/22/20 11:42	09/26/20 01:59	1
Perfluoroheptanesulfonic Acid (PFHpS)	0.25	U	0.25	0.044	ug/Kg	₩	09/22/20 11:42	09/26/20 01:59	1
Perfluorodecanesulfonic acid (PFDS)	0.25	U	0.25	0.049	ug/Kg	₽	09/22/20 11:42	09/26/20 01:59	1
Perfluorooctanesulfonamide (FOSA)	0.25	U	0.25	0.10	ug/Kg	☼	09/22/20 11:42	09/26/20 01:59	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	2.5	U	2.5	0.49	ug/Kg	₽	09/22/20 11:42	09/26/20 01:59	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	2.5	U	2.5	0.47	ug/Kg	₽	09/22/20 11:42	09/26/20 01:59	1
6:2 FTS	2.5	U	2.5	0.19	ug/Kg	☼	09/22/20 11:42	09/26/20 01:59	1
8:2 FTS	2.5	U	2.5	0.32	ug/Kg	☼	09/22/20 11:42	09/26/20 01:59	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	60		25 - 150				09/22/20 11:42	09/26/20 01:59	
13C5 PFPeA	74		25 - 150				09/22/20 11:42	09/26/20 01:59	
13C2 PFHxA	90		25 - 150				09/22/20 11:42	09/26/20 01:59	
13C4 PFHpA	94		25 - 150				09/22/20 11:42	09/26/20 01:59	
13C4 PFOA	87		25 - 150				09/22/20 11:42	09/26/20 01:59	
13C5 PFNA	99		25 - 150				09/22/20 11:42	09/26/20 01:59	
13C2 PFDA	91		25 - 150				09/22/20 11:42	09/26/20 01:59	
13C2 PFUnA	104		25 - 150				09/22/20 11:42	09/26/20 01:59	
13C2 PFDoA	75		25 - 150				09/22/20 11:42	09/26/20 01:59	
13C2 PFTeDA	97		25 - 150				09/22/20 11:42	09/26/20 01:59	
13C3 PFBS	89		25 - 150				09/22/20 11:42	09/26/20 01:59	
1802 PFHxS	97		25 - 150				09/22/20 11:42	09/26/20 01:59	
13C8 FOSA	75		25 - 150				09/22/20 11:42	09/26/20 01:59	
d3-NMeFOSAA	86		25 - 150				09/22/20 11:42	09/26/20 01:59	
d5-NEtFOSAA	118		25 - 150				09/22/20 11:42	09/26/20 01:59	
M2-6:2 FTS	290	*5	25 - 150				09/22/20 11:42	09/26/20 01:59	
M2-8:2 FTS	271	*5	25 - 150				09/22/20 11:42	09/26/20 01:59	
<#%F?@2&GEH&I)?@"J"#@K	&6&L!- IVI!! N	D(!&#@& (\$.	A#,&6&+P						
M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
;#=J!-?=??A%(\$#,-!J?\$"A&(A"@& l;L X'K	8RE		0.61	0.25	ug/Kg	☼	09/28/20 06:28	09/30/20 06:24	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFOS	72		25 - 150				09/28/20 06:28	09/30/20 06:24	

!"#\$%&'()*!#&012&'Q685I56GK

.(/&'()*!#&012&3456789395675

1(%#& ?!!#A%#@**2&\$G**C75&8E235

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

<#%F?@2&GEH&I)?@"J"#@K&68	RL!-MHN	50!&#@& (\$A#	,&6&';.; &F	P(,%					
M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
Perfluorobutanoic acid (PFBA)	4.6	U	4.6	2.2	ng/L		09/29/20 04:48	09/29/20 18:06	1
Perfluoropentanoic acid (PFPeA)	1.8	U	1.8	0.45	ng/L		09/29/20 04:48	09/29/20 18:06	1
Perfluorohexanoic acid (PFHxA)	1.8	U	1.8	0.53	ng/L		09/29/20 04:48	09/29/20 18:06	1
;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MK	5R37	'S	1.8	0.23	ng/L		09/29/20 04:48	09/29/20 18:06	1
;#=J!-?=??A%(\$?"A&(A"@&ILXMK	87		1.8	0.78	ng/L		09/29/20 04:48	09/29/20 18:06	1
;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK	7R8	3	1.8	0.25	ng/L		09/29/20 04:48	09/29/20 18:06	1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q685I56GK

.(/&'()*!#&012&3456789395675

1(%#& ?!!#A%#@**2&33B**C75&8E235

<(%=">2&'?!"(

Job ID: 460-218480-1

1(%#&+#A#"D#@2&5BC84C75&892E5

1\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
#=J!-?=?@#A(\$?"A&(A"@&IL1MK	5RBH		1.8	0.28	ng/L		09/29/20 04:48	09/29/20 18:06	
Perfluoroundecanoic acid (PFUnA)	1.8	U	1.8	1.0	ng/L		09/29/20 04:48	09/29/20 18:06	
Perfluorododecanoic acid (PFDoA)	1.8	U	1.8	0.51	ng/L		09/29/20 04:48	09/29/20 18:06	
Perfluorotridecanoic acid (PFTriA)	1.8	U	1.8	1.2	ng/L		09/29/20 04:48	09/29/20 18:06	
Perfluorotetradecanoic acid (PFTeA)	1.8	U	1.8		ng/L		09/29/20 04:48	09/29/20 18:06	
Perfluorobutanesulfonic acid (PFBS)	1.8	U	1.8	0.18	ng/L		09/29/20 04:48	09/29/20 18:06	
#=J!-?=?F#>(\$#,-!J?\$"A&(A"@& L W>'K	5R97	S	1.8		ng/L		09/29/20 04:48	09/29/20 18:06	,
Perfluoroheptanesulfonic Acid	1.8	U	1.8	0.17	ng/L		09/29/20 04:48	09/29/20 18:06	•
#=J!-?=??A%(\$#,-!J?\$"A&(A"@& LX'K	89		1.8	0.50	ng/L		09/29/20 04:48	09/29/20 18:06	
Perfluorodecanesulfonic acid (PFDS)	1.8	U	1.8	0.29	ng/L		09/29/20 04:48	09/29/20 18:06	
Perfluorooctanesulfonamide (FOSA)	1.8	U	1.8		ng/L		09/29/20 04:48	09/29/20 18:06	
I-methylperfluorooctanesulfonamidoa etic acid (NMeFOSAA)	4.6	U	4.6		ng/L		09/29/20 04:48	09/29/20 18:06	,
I-ethylperfluorooctanesulfonamidoac tic acid (NEtFOSAA)	4.6	U	4.6	1.2	ng/L		09/29/20 04:48	09/29/20 18:06	
:2 FTS	4.6	U	4.6	2.3	ng/L		09/29/20 04:48	09/29/20 18:06	
:2 FTS	1.8	U	1.8	0.42	ng/L		09/29/20 04:48	09/29/20 18:06	
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
3C4 PFBA	68		25 - 150					09/29/20 18:06	
3C5 PFPeA	81		25 - 150					09/29/20 18:06	
3C2 PFHxA	89		25 - 150				09/29/20 04:48	09/29/20 18:06	
3C4 PFHpA	94		25 - 150				09/29/20 04:48	09/29/20 18:06	
3C4 PFOA	97		25 - 150				09/29/20 04:48	09/29/20 18:06	
3C5 PFNA	109		25 - 150				09/29/20 04:48	09/29/20 18:06	
3C2 PFDA	95		25 - 150				09/29/20 04:48	09/29/20 18:06	
3C2 PFUnA	95		25 - 150				09/29/20 04:48	09/29/20 18:06	
3C2 PFDoA	78		25 - 150				09/29/20 04:48	09/29/20 18:06	
3C2 PFTeDA	65		25 - 150				09/29/20 04:48	09/29/20 18:06	
3C3 PFBS	88		25 - 150				09/29/20 04:48	09/29/20 18:06	
8O2 PFHxS	98		25 - 150				09/29/20 04:48	09/29/20 18:06	
3C4 PFOS	98		25 - 150				09/29/20 04:48	09/29/20 18:06	
3C8 FOSA	89		25 - 150				09/29/20 04:48	09/29/20 18:06	
3-NMeFOSAA	83		25 - 150				09/29/20 04:48	09/29/20 18:06	
5-NEtFOSAA	95		25 - 150				09/29/20 04:48	09/29/20 18:06	
12-6:2 FTS	193	*5	25 - 150					09/29/20 18:06	
12-8:2 FTS	164		25 - 150					09/29/20 18:06	
#\$#=(!& F#)",%=O									
1 \$(!O%#		V-(!"J"#=	+.	<1.	U\$"%	_ 1	;=#*(=#@	M\$(!OT#@	1"!&L
?%(!& (=/?\$	G7455	J+	1000	671	mg/Kg			09/23/20 20:42	-
?%(!& (=/?\$	EHE55	J	1000	671	mg/Kg			09/30/20 16:32	
1 \$(!O%# W	+#,-!% HR7	V-(!"J"#=	+. 0.1	+.	U\$"% SU	_ 1	;=#*(=#@	M\$(!OT#@ 09/22/20 15:00	1"!&L

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q685I56GK

.(/&'()*!#&012&3456789395675

1(%#& ?!!#A%#@**2&6B**5&8E235

<(%=">2&'?!"(

1(%#&+#A#"D#@2**3.56**5&892E5

;#=A#\$%&'?!"@,2&94

<#%F?@2&9745 %%% %"!#&X=^	(\$"A& ?)*1	?-\$@,&/O& Z @	≿'						
M\$(!O%#		V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
1,1,1-Trichloroethane	1.2	U	1.2	0.28	ug/Kg	☼	09/18/20 22:46	09/23/20 05:22	
1,1,2,2-Tetrachloroethane	1.2	U	1.2	0.26	ug/Kg	☼	09/18/20 22:46	09/23/20 05:22	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.2	U	1.2	0.36	ug/Kg	☼	09/18/20 22:46	09/23/20 05:22	1
1,1,2-Trichloroethane	1.2	U	1.2	0.21	ug/Kg	☼	09/18/20 22:46	09/23/20 05:22	1
1,1-Dichloroethane	1.2	U	1.2	0.25	ug/Kg	≎	09/18/20 22:46	09/23/20 05:22	
1,1-Dichloroethene	1.2	U	1.2	0.27	ug/Kg	₽	09/18/20 22:46	09/23/20 05:22	
1,2,4-Trichlorobenzene	1.2	U	1.2	0.43	ug/Kg	☼	09/18/20 22:46	09/23/20 05:22	
1,2-Dibromo-3-Chloropropane	1.2	U	1.2	0.55	ug/Kg	☼	09/18/20 22:46	09/23/20 05:22	
1,2-Dichlorobenzene	1.2	U	1.2	0.17	ug/Kg	≎	09/18/20 22:46	09/23/20 05:22	
1,2-Dichloroethane	1.2	U	1.2	0.35	ug/Kg		09/18/20 22:46	09/23/20 05:22	
1,2-Dichloropropane	1.2	U	1.2		ug/Kg	₽	09/18/20 22:46	09/23/20 05:22	
1,3-Dichlorobenzene	1.2	U	1.2		ug/Kg	☼	09/18/20 22:46	09/23/20 05:22	
1,4-Dichlorobenzene	1.2	U	1.2		ug/Kg		09/18/20 22:46	09/23/20 05:22	
76Q-%(\$?\$#&I <p`k< td=""><td>7G</td><td></td><td>6.0</td><td></td><td>ug/Kg</td><td>⊅</td><td></td><td>09/23/20 05:22</td><td></td></p`k<>	7G		6.0		ug/Kg	⊅		09/23/20 05:22	
2-Hexanone	6.0	U	6.0		ug/Kg	.∵		09/23/20 05:22	
4-Methyl-2-pentanone (MIBK)	6.0	U	6.0		ug/Kg		09/18/20 22:46	09/23/20 05:22	
MA#%?\$#	8E5		7.2		ug/Kg	÷		09/23/20 05:22	
Benzene	1.2	U	1.2		ug/Kg	Ď.		09/23/20 05:22	
Bromoform	1.2		1.2		ug/Kg			09/23/20 05:22	
Bromomethane	1.2		1.2		ug/Kg	₩		09/23/20 05:22	
(=/?\$&@",-!J"@#	5RH		1.2		ug/Kg	₩		09/23/20 05:22	
Carbon tetrachloride	1.2		1.2		ug/Kg			09/23/20 05:22	
Chlorobenzene	1.2		1.2			₩		09/23/20 05:22	
Dibromochloromethane	1.2		1.2		ug/Kg			09/23/20 05:22	
			1.2		ug/Kg	· · · · ·			
Chloroethane	1.2				ug/Kg			09/23/20 05:22	
Chloroform	1.2		1.2		ug/Kg	‡		09/23/20 05:22	
Chloromethane	1.2		1.2		ug/Kg	<u>.</u> .		09/23/20 05:22	
is-1,2-Dichloroethene	1.2		1.2		ug/Kg	₽.		09/23/20 05:22	
Cyclohexane	1.2		1.2		ug/Kg	₽.		09/23/20 05:22	
Bromodichloromethane	1.2		1.2		ug/Kg			09/23/20 05:22	
Dichlorodifluoromethane	1.2		1.2		ug/Kg	≎		09/23/20 05:22	
Ethylbenzene	1.2		1.2		ug/Kg	₽		09/23/20 05:22	
I,2-Dibromoethane	1.2		1.2		ug/Kg	‡	09/18/20 22:46	09/23/20 05:22	
sopropylbenzene	1.2	U	1.2		ug/Kg	☼	09/18/20 22:46	09/23/20 05:22	
Methyl acetate	6.0	U	6.0		ug/Kg	☼	09/18/20 22:46	09/23/20 05:22	
Methyl tert-butyl ether	1.2	U	1.2	0.15	ug/Kg	₽	09/18/20 22:46	09/23/20 05:22	
Methylcyclohexane	1.2	U	1.2	0.59	ug/Kg	☼	09/18/20 22:46	09/23/20 05:22	
#%FO!#\$#& F!?="@#	GR	G	1.2	0.55	ug/Kg	≎	09/18/20 22:46	09/23/20 05:22	
Tetrachloroethene	1.2	U	1.2	0.17	ug/Kg	₽	09/18/20 22:46	09/23/20 05:22	
- oluene	1.2	U	1.2	0.28	ug/Kg	₽	09/18/20 22:46	09/23/20 05:22	
rans-1,2-Dichloroethene	1.2	U	1.2	0.29	ug/Kg	₩	09/18/20 22:46	09/23/20 05:22	
rans-1,3-Dichloropropene	1.2	U	1.2		ug/Kg	₩	09/18/20 22:46	09/23/20 05:22	
richloroethene	1.2	U	1.2	0.17	ug/Kg		09/18/20 22:46	09/23/20 05:22	
richlorofluoromethane	1.2		1.2		ug/Kg	₽	09/18/20 22:46	09/23/20 05:22	
/inyl chloride	1.2		1.2		ug/Kg	₩		09/23/20 05:22	
Kylenes, Total	2.4		2.4		ug/Kg			09/23/20 05:22	
sis-1,3-Dichloropropene	1.2		1.2		ug/Kg	☼		09/23/20 05:22	
Styrene	1.2		1.2		ug/Kg	₩		09/23/20 05:22	

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q685I56GK

.(/&'()*!#&012&3456789395675

1(%#& ?!!#A%#@**2889**C75&8E235

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&94

Tentatively Identified Compound	Est. Result		Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	8.7	TJ	ug/Kg	☼	10.	.65		09/18/20 22:46	09/23/20 05:22	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	112		77 - 145					09/18/20 22:46	09/23/20 05:22	
Toluene-d8 (Surr)	101		80 - 120					09/18/20 22:46	09/23/20 05:22	
Dibromofluoromethane (Surr)	113		48 - 150					09/18/20 22:46	09/23/20 05:22	
4-Bromofluorobenzene	107		79 - 125					09/18/20 22:46	09/23/20 05:22	
- <#%F?@2&97H51&6&'#)"D?!	(%"!#&X=^(\$"A& ?)*?	?-\$@,&IZ C<	<'K						
M\$(!O%#		V-(!"J"#=	+.		<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
2,4,5-Trichlorophenol	39000	U	39000		11000	ug/Kg	₽	09/21/20 15:10	09/22/20 19:48	20
2,4,6-Trichlorophenol	39000	U	39000		7800	ug/Kg	₽	09/21/20 15:10	09/22/20 19:48	20
2,4-Dichlorophenol	39000	U	39000		4100	ug/Kg	₽	09/21/20 15:10	09/22/20 19:48	20
2,4-Dimethylphenol	39000	U	39000		9400	ug/Kg	☼	09/21/20 15:10	09/22/20 19:48	20
2,4-Dinitrophenol	380000	U	380000		180000	ug/Kg	₽	09/21/20 15:10	09/22/20 19:48	20
2,4-Dinitrotoluene	39000	U	39000		8100	ug/Kg	₽	09/21/20 15:10	09/22/20 19:48	20
2,6-Dinitrotoluene	39000	U	39000		4600	ug/Kg		09/21/20 15:10	09/22/20 19:48	20
2-Chloronaphthalene	39000	U	39000		6500	ug/Kg	₽	09/21/20 15:10	09/22/20 19:48	20
2-Chlorophenol	76000	U	76000		7100	ug/Kg	₽	09/21/20 15:10	09/22/20 19:48	20
2-Methylnaphthalene	39000	U	39000		7800	ug/Kg		09/21/20 15:10	09/22/20 19:48	20
2-Methylphenol	39000		39000		4600	ug/Kg	₩	09/21/20 15:10	09/22/20 19:48	20
2-Nitroaniline	76000		76000		5800	0 0	₩	09/21/20 15:10	09/22/20 19:48	20
2-Nitrophenol	39000		39000		11000				09/22/20 19:48	20
3,3'-Dichlorobenzidine	76000		76000		46000	0 0	₽	09/21/20 15:10		20
3-Nitroaniline	76000		76000		11000	0 0	÷.	09/21/20 15:10		20
4,6-Dinitro-2-methylphenol	76000		76000				. '.'		09/22/20 19:48	20
4-Bromophenyl phenyl ether	39000		39000		5500		₩.	09/21/20 15:10		20
4-Chloro-3-methylphenol	39000		39000		9700	0 0		09/21/20 15:10		20
4-Chloroaniline	39000		39000		9700		. T		09/22/20 19:48	20
4-Chlorophenyl phenyl ether	39000		39000		4800	ug/Kg	₩.	09/21/20 15:10		20
4-Methylphenol	76000		76000		4600	ug/Kg	~ ☆	09/21/20 15:10		20
4-Nitroaniline	76000		76000		21000		. T		09/22/20 19:48	20
4-Nitrophenol	76000		76000		27000		~ ⇔		09/22/20 19:48	20
Acenaphthene	39000		39000			0 0	₩		09/22/20 19:48	20
Acenaphthylene	39000		39000			ug/Kg	· · · · · · · · · · · · · · · · · · ·		09/22/20 19:48	20
Acetophenone	39000		39000			ug/Kg	¥		09/22/20 19:48	20
Anthracene	39000		39000			ug/Kg	** **		09/22/20 19:48	20
Atrazine	39000		39000			ug/Kg	1.tr		09/22/20 19:48	20
Benzaldehyde	39000		39000			ug/Kg	₩.		09/22/20 19:48	20
Q#\$T?b(c(\$%F=(A#\$#	8E555		39000			ug/Kg			09/22/20 19:48	20
Q#\$T?b(c*O=#\$#	8G555		39000			ug/Kg	\$		09/22/20 19:48	20
Q#\$T?b/cJ!-?=(\$%F#\$#	89555		39000			ug/Kg	☼		09/22/20 19:48	20
Q#\$T?b^_F_"c*#=O!#\$#	B855		39000			ug/Kg	. .		09/22/20 19:48	20
Q#\$T?bNcJ!-?=(\$%F#\$#	4G55		39000			ug/Kg	₽		09/22/20 19:48	20
Biphenyl	39000		39000			ug/Kg	₽		09/22/20 19:48	20
bis (2-chloroisopropyl) ether	39000		39000			ug/Kg			09/22/20 19:48	20
Bis(2-chloroethoxy)methane	39000		39000			ug/Kg	☼		09/22/20 19:48	20
Bis(2-chloroethyl)ether	39000		39000			ug/Kg	≎		09/22/20 19:48	20
Bis(2-ethylhexyl) phthalate	39000	U	39000			ug/Kg	\$	09/21/20 15:10	09/22/20 19:48	20
Butyl benzyl phthalate	39000	U	39000		6500	ug/Kg	₽	09/21/20 15:10	09/22/20 19:48	20

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q685I56GK

.(/&'()*!#&012&3456789395675

1(%#& ?!!#A%#@**2&6B**5&8E235

<(%=">2&'?!"(

1(%#&+#A#"D#@**28.5G**5&892E5 ;#=A#\$%&'?!"@,2&94

<#%F?@2&97H51&6&'#)"D?! M\$(!0%#	+#,-!%	V-(!"J"#=	+.		<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
Caprolactam	39000	U	39000		12000	ug/Kg	≎	09/21/20 15:10	09/22/20 19:48	20
Carbazole	39000	U	39000		4600	ug/Kg	₽	09/21/20 15:10	09/22/20 19:48	20
F=O,#\$#	8E555	S	39000		8800	ug/Kg	₩	09/21/20 15:10	09/22/20 19:48	20
Dibenz(a,h)anthracene	39000	U	39000		6900	ug/Kg	☼	09/21/20 15:10	09/22/20 19:48	20
Dibenzofuran	39000	U	39000		4600	ug/Kg	₽	09/21/20 15:10	09/22/20 19:48	20
Diethyl phthalate	39000	U	39000		5100	ug/Kg	₽	09/21/20 15:10	09/22/20 19:48	20
Dimethyl phthalate	39000	U	39000		4600	ug/Kg	₽	09/21/20 15:10	09/22/20 19:48	20
Di-n-butyl phthalate	39000	U	39000		6700	ug/Kg	₽	09/21/20 15:10	09/22/20 19:48	20
Di-n-octyl phthalate	39000	U	39000		4600	ug/Kg	₩	09/21/20 15:10	09/22/20 19:48	20
L!-?=(\$%F#\$#	E8555	S	39000		4100	ug/Kg	☼	09/21/20 15:10	09/22/20 19:48	20
Fluorene	39000	U	39000		4600	ug/Kg	₩	09/21/20 15:10	09/22/20 19:48	20
Hexachlorobenzene	39000	U	39000		5300	ug/Kg		09/21/20 15:10	09/22/20 19:48	20
Hexachlorobutadiene	39000	U	39000			ug/Kg	₽	09/21/20 15:10	09/22/20 19:48	20
Hexachlorocyclopentadiene	39000	U	39000			ug/Kg	₩	09/21/20 15:10	09/22/20 19:48	20
Hexachloroethane	39000		39000			ug/Kg			09/22/20 19:48	20
0\$@#\$?b8_7_E6A@c*O=#\$#	9H55		39000			ug/Kg	₩	09/21/20 15:10	09/22/20 19:48	20
Isophorone	39000		39000			ug/Kg	☼	09/21/20 15:10	09/22/20 19:48	20
Naphthalene	39000		39000			ug/Kg		09/21/20 15:10	09/22/20 19:48	20
Nitrobenzene	39000		39000			ug/Kg	*		09/22/20 19:48	20
N-Nitrosodi-n-propylamine	39000		39000			ug/Kg	*		09/22/20 19:48	20
N-Nitrosodiphenylamine	39000		39000		32000				09/22/20 19:48	20
Pentachlorophenol	76000		76000		39000				09/22/20 19:48	20
;F#\$(\$%F=#\$#	8G555		39000			ug/Kg			09/22/20 19:48	20
Phenol	39000		39000			ug/Kg			09/22/20 19:48	20
;O=#\$#	74555		39000			ug/Kg	₽		09/22/20 19:48	20
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	☼				09/21/20 15:10	09/22/20 19:48	20
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	0	X	54 - 120					09/21/20 15:10	09/22/20 19:48	20
2-Fluorobiphenyl	0	Χ	60 - 120					09/21/20 15:10	09/22/20 19:48	20
2-Fluorophenol	0	Χ	52 ₋ 120					09/21/20 15:10	09/22/20 19:48	20
Nitrobenzene-d5	0	X	53 - 120					09/21/20 15:10	09/22/20 19:48	20
Phenol-d5	0	Χ	54 - 120					09/21/20 15:10	09/22/20 19:48	20
p-Terphenyl-d14	0	X	79 - 130					09/21/20 15:10	09/22/20 19:48	20
<#%F?@2&9598Q&6&X=^(\$?	?AF!?="\$#&;	#,%"A"@#	#,&IZ K							
M\$(!O%#		V-(!"J"#=	+.		<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
, ,		U	190		37	ug/Kg	*	09/22/20 13:04	09/23/20 14:12	100
4,4'-DDD	190				40	ug/Kg	₩	09/22/20 13:04	09/23/20 14:12	100
	190 190	U	190							
4,4'-DDD			190 190			ug/Kg	₩	09/22/20 13:04	09/23/20 14:12	100
4,4'-DDD 4,4'-DDE	190	U			45		\$ \$		09/23/20 14:12 09/23/20 14:12	100
4,4'-DDD 4,4'-DDE 4,4'-DDT	190 190	U	190		45 47	ug/Kg ug/Kg		09/22/20 13:04		100
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC	190 190 190 190	U U U	190 190 190		45 47 35	ug/Kg ug/Kg ug/Kg	‡	09/22/20 13:04 09/22/20 13:04	09/23/20 14:12 09/23/20 14:12	100
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC	190 190 190 190 190	U U U U	190 190 190 190		45 47 35 35	ug/Kg ug/Kg ug/Kg ug/Kg	\$	09/22/20 13:04 09/22/20 13:04 09/22/20 13:04	09/23/20 14:12 09/23/20 14:12 09/23/20 14:12	100 100 100
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC cis-Chlordane	190 190 190 190 190	U U U U	190 190 190 190		45 47 35 35 96	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$	09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04	09/23/20 14:12 09/23/20 14:12 09/23/20 14:12 09/23/20 14:12	100 100 100 100
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC cis-Chlordane delta-BHC	190 190 190 190 190 190	U U U U U	190 190 190 190 190		45 47 35 35 96 36	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$	09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04	09/23/20 14:12 09/23/20 14:12 09/23/20 14:12 09/23/20 14:12 09/23/20 14:12	100 100 100 100 100
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC cis-Chlordane	190 190 190 190 190	U U U U U U	190 190 190 190		45 47 35 35 96 36 46	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$	09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04	09/23/20 14:12 09/23/20 14:12 09/23/20 14:12 09/23/20 14:12 09/23/20 14:12 09/23/20 14:12	100 100 100 100

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q685I56GK

.(/&'()*!#&012&3456789395675

1(%#& ?!!#A%#@**2859**C75&8E235

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

<#%F?@2&9598Q&6&X=^(\$? <i>F</i> M\$(!O%#		V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
Endosulfan sulfate	190		190		ug/Kg	— <u>-</u>	09/22/20 13:04	09/23/20 14:12	100
Endrin	190	U	190		ug/Kg		09/22/20 13:04		100
Endrin aldehyde	190		190		ug/Kg				100
Endrin ketone	190		190		ug/Kg		09/22/20 13:04		100
gamma-BHC (Lindane)	190		190		ug/Kg		09/22/20 13:04		100
Heptachlor	190		190		ug/Kg ug/Kg			09/23/20 14:12	100
'								09/23/20 14:12	
Heptachlor epoxide	190		190		ug/Kg				100
<#%F?>OAF!?=		S J+	190		ug/Kg	#		09/23/20 14:12	100
Toxaphene	1900		1900		ug/Kg	☼		09/23/20 14:12	100
trans-Chlordane	190	U	190	61	ug/Kg	₽	09/22/20 13:04	09/23/20 14:12	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
DCB Decachlorobiphenyl	0	X	45 - 120				09/22/20 13:04	09/23/20 14:12	10
DCB Decachlorobiphenyl	0	X	45 - 120				09/22/20 13:04	09/23/20 14:12	10
Tetrachloro-m-xylene	0	X	30 - 124				09/22/20 13:04	09/23/20 14:12	10
Tetrachloro-m-xylene	0	X	30 - 124				09/22/20 13:04	09/23/20 14:12	10
<#%F?@2&959 &bl &;?!OAF!?='	'\$(%# @& O	"*F#\$O! &!	· ೧ K&/೧& 7 (& F=?\(%2^=(*F(0			
M\$(!O%#		V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L
PCB-1016	5.6		5.6	1.1	mg/Kg	<u> </u>	09/21/20 15:17		2
PCB-1221	5.6		5.6	1.1	mg/Kg			09/22/20 18:04	2
PCB-1232	5.6		5.6	1.1	mg/Kg		09/21/20 15:17		2
PCB-1242	5.6		5.6	1.1	mg/Kg		09/21/20 15:17		2
PCB-1248	5.6		5.6	1.1	mg/Kg			09/22/20 18:04	2
	5.6				0 0				
PCB-1254 PCB-1260	5.6		5.6 5.6		mg/Kg mg/Kg	<u>.</u> .	09/21/20 15:17	09/22/20 18:04	2
FCB-1200	5.0	U	5.0	2.0	mg/Kg	¥	09/21/20 13.17	09/22/20 18.04	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene	122		60 - 154					09/22/20 18:04	2
Tetrachloro-m-xylene	120		60 - 154				09/21/20 15:17	09/22/20 18:04	2
DCB Decachlorobiphenyl	117		65 - 174				09/21/20 15:17	09/22/20 18:04	2
DCB Decachlorobiphenyl	82		65 - 174				09/21/20 15:17	09/22/20 18:04	2
<#%F?@2&98 G886& W#=/"A"@a	#,&IZ K								
M\$(!O%#		V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L
2,4,5-T	19	U	19	6.1	ug/Kg	☼	09/21/20 15:24	09/23/20 22:28	
Silvex (2,4,5-TP)	19	U	19	6.9	ug/Kg	☼	09/21/20 15:24	09/23/20 22:28	
2,4-D	19	U	19	12	ug/Kg	☼	09/21/20 15:24	09/23/20 22:28	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4-Dichlorophenylacetic acid	38		28 - 129					09/23/20 22:28	
2,4-Dichlorophenylacetic acid	336	Χ	28 - 129				09/21/20 15:24	09/23/20 22:28	
<#%F?@2&GEH&I)?@"J"#@K	ZERIILINHU	C19R# ##92/\$	Λ#						
\# %F ! @ 2&GEH&I) ! @ 3 #@K M\$(!O%#		V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L
#=J!-?=?/-%(\$?"A&(A"@&ILQMK	0.22		0.22	0.031	ug/Kg	— <u>•</u>	09/22/20 11:42		1 :01
Perfluoropentanoic acid (PFPeA)	0.22		0.22		ug/Kg ug/Kg	»≺ >≺		09/26/20 02:55	
omadiopentandio adia (FFFEA)			0.22		ug/Kg ug/Kg	74.	09/22/20 11:42		
Porfluorobovanois asid (DELVA)	0 00								
	0.22					<u></u>			
Perfluoroheptanoic acid (PFHpA)	0.22	U	0.22	0.032	ug/Kg		09/22/20 11:42	09/26/20 02:55	
Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) ;#=J!-?=?\$?\$(\$?"A&(A"@&ILYMK		U U		0.032 0.095		 	09/22/20 11:42	09/26/20 02:55 09/26/20 02:55	

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q685I56GK

.(/&'()*!#&012&3456789395675

1(%#& ?!!#A%#@**2839**C75&8E235

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

<#%F?@2&GEH&I)?@"J"#@K M\$(!0%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(/
;#=J!-?=?@#A(\$?"A&(A"@&IL1MK	5R579	S	0.22	0.024	ug/Kg	<u></u>	09/22/20 11:42	09/26/20 02:55	1
Perfluoroundecanoic acid (PFUnA)	0.22	U	0.22	0.040	ug/Kg	₩	09/22/20 11:42	09/26/20 02:55	1
Perfluorododecanoic acid (PFDoA)	0.22	U	0.22	0.074	ug/Kg	₩	09/22/20 11:42	09/26/20 02:55	1
Perfluorotridecanoic acid (PFTriA)	0.22	U	0.22	0.057	ug/Kg	₩	09/22/20 11:42	09/26/20 02:55	1
Perfluorotetradecanoic acid (PFTeA)	0.22	U	0.22		ug/Kg	₩	09/22/20 11:42	09/26/20 02:55	1
Perfluorobutanesulfonic acid (PFBS)	0.22	U	0.22	0.028	ug/Kg	₩	09/22/20 11:42	09/26/20 02:55	1
Perfluorohexanesulfonic acid (PFHxS)	0.22	U	0.22	0.034	ug/Kg		09/22/20 11:42	09/26/20 02:55	1
Perfluoroheptanesulfonic Acid (PFHpS)	0.22	U	0.22	0.039	ug/Kg	₩	09/22/20 11:42	09/26/20 02:55	1
Perfluorodecanesulfonic acid (PFDS)	0.22	U	0.22	0.043	ug/Kg	₩	09/22/20 11:42	09/26/20 02:55	1
Perfluorooctanesulfonamide (FOSA)	0.22	U	0.22	0.091	ug/Kg	₩	09/22/20 11:42	09/26/20 02:55	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	2.2	U	2.2	0.43	ug/Kg	₩	09/22/20 11:42	09/26/20 02:55	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	2.2	U	2.2		ug/Kg	₩	09/22/20 11:42	09/26/20 02:55	1
6:2 FTS	2.2	U	2.2		ug/Kg	₩	09/22/20 11:42	09/26/20 02:55	1
8:2 FTS	2.2	U	2.2	0.28	ug/Kg	₩	09/22/20 11:42	09/26/20 02:55	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	60		25 - 150				09/22/20 11:42	09/26/20 02:55	
13C5 PFPeA	73		25 - 150				09/22/20 11:42	09/26/20 02:55	
13C2 PFHxA	82		25 - 150				09/22/20 11:42	09/26/20 02:55	
13C4 PFHpA	90		25 - 150				09/22/20 11:42	09/26/20 02:55	
13C4 PFOA	83		25 - 150				09/22/20 11:42	09/26/20 02:55	
13C5 PFNA	95		25 - 150				09/22/20 11:42	09/26/20 02:55	
13C2 PFDA	87		25 - 150				09/22/20 11:42	09/26/20 02:55	
13C2 PFUnA	93		25 - 150				09/22/20 11:42	09/26/20 02:55	
13C2 PFDoA	91		25 - 150				09/22/20 11:42	09/26/20 02:55	
13C2 PFTeDA	97		25 - 150				09/22/20 11:42	09/26/20 02:55	
13C3 PFBS	74		25 - 150				09/22/20 11:42	09/26/20 02:55	
1802 PFHxS	81		25 - 150				09/22/20 11:42	09/26/20 02:55	
13C8 FOSA	80		25 - 150				09/22/20 11:42	09/26/20 02:55	
d3-NMeFOSAA	85		25 - 150				09/22/20 11:42	09/26/20 02:55	
d5-NEtFOSAA	94		25 - 150				09/22/20 11:42	09/26/20 02:55	
M2-6:2 FTS	189	*5	25 - 150				09/22/20 11:42	09/26/20 02:55	
M2-8:2 FTS	216	*5	25 - 150				09/22/20 11:42	09/26/20 02:55	
<#%F?@2&GEH&I)?@"J"#@K M\$(!0%#		D(%#@&(\$. V-(!"J"#=	A#,&6&+P +.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(/
;#=J!-?=??A%(\$#,-!J?\$"A&(A"@&	5R47		0.56		ug/Kg		09/28/20 06:28		1
I;L X'K				0.20	ug/itg	*			57.5
Isotope Dilution 13C4 PFOS	%Recovery	Qualitier	Limits				Prepared	Analyzed 09/30/20 06:34	Dil Fac
<#%F?@2&4585 &6&<#%(!,&I0) ;K	V (!" !"#=	25 - 150	<1.	U\$"%	1		M\$(!OT#@	1"!&L(/
M\$(!O%# M!-)"\$-)	B575	V-(!"J"#=	+. 11.5	5.1			;= #*(=#@ 09/24/20 17:07		1 :0:1
		10 1	17.3		mg/Kg		09/24/20 17:07		1 1
M\$%")?\$O		IS J-							•
M=,#\$"A Q(="-)	GR4 33H		2.3 0.58		mg/Kg mg/Kg		09/24/20 17:07 09/24/20 17:07		1 1
			ארוו	1113	10000000		1190 741 711 1 7 11 /	UM/20/20 14 18	1

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q685I56GK

.(/&'()*!#&012&3456789395675

1(%#& ?!!#A%#@**2&\$G**C75&8E235

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&94

M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
(@)"-)	7R5J	0.23	0.035	mg/Kg	-	09/24/20 17:07	09/25/20 14:18	1
(!A"-)	38855 J	57.6	3.8	mg/Kg	₽	09/24/20 17:07	09/25/20 14:18	1
F=?)"-)	E7RB	0.58	0.23	mg/Kg	☼	09/24/20 17:07	09/25/20 14:18	1
?/(!%	GR4	0.58	0.058	mg/Kg	☼	09/24/20 17:07	09/25/20 14:18	1
?**#=	77RH <mark>J-</mark>	1.2	0.24	mg/Kg	₩	09/24/20 17:07	09/25/20 14:18	1
0=?\$	9H75 J	11.5	4.0	mg/Kg	₽	09/24/20 17:07	09/25/20 14:18	1
.#(@	GBEJ	1.2	0.28	mg/Kg	☼	09/24/20 17:07	09/25/20 14:18	1
<(^\$#,"-)	HEG5J-	23.1	1.1	mg/Kg	☼	09/24/20 17:07	09/25/20 14:18	1
<(\$^(\$#,#	83B J	0.23	0.037	mg/Kg	☼	09/24/20 17:07	09/25/20 14:18	1
Y"AN#!	78R3 <mark>J-</mark>	5.8	0.27	mg/Kg	☼	09/24/20 17:07	09/25/20 14:18	1
;?%(,,"-)	8785 J+	34.6	23.1	mg/Kg	☼	09/24/20 17:07	09/25/20 14:18	1
Selenium	4.6 U	4.6	0.46	mg/Kg	☼	09/24/20 17:07	09/25/20 14:18	1
""!D#=	5R7ES	0.69	0.23	mg/Kg	₽	09/24/20 17:07	09/25/20 14:18	1
'?@"-)	7H3	161	15.0	mg/Kg	☼	09/24/20 17:07	09/25/20 14:18	1
Thallium	6.9 U	6.9	0.35	mg/Kg	☼	09/24/20 17:07	09/25/20 14:18	1
] (\$(@"-)	89RG	0.58	0.13	mg/Kg	₽	09/24/20 17:07	09/25/20 14:18	1
e"\$A	394 J	2.3	0.74	mg/Kg	☼	09/24/20 17:07	09/25/20 14:18	1
<#%F?@2&H3H8Q&6&<#= <i>i</i>	∆-#Ø& K]							
M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
<#=A-=O	5RE7	0.020	0.0082	mg/Kg	₩	09/22/20 11:56	09/22/20 14:18	1
Z#\$#=(!& F#)",%=O								
M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
Cyanide, Total	1.1 U	1.1	0.55	mg/Kg		09/21/20 13:33	09/22/20 14:29	1

!"#\$%&'()*!#&012&'Q685I7567GK

.(/&'()*!#&012&3456789395678

1(%#& ?!!#A%#@**2835B**C75&83255

1(%#&+#A#"D#@2&5BC84C75&892E5

<(%=">2&'?!"(

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
Perfluorobutanoic acid (PFBA)	4.6	U	4.6	2.2	ng/L		09/29/20 04:48	09/29/20 18:15	1
;#=J!-?=?*#\$%(\$?"A&(A"@&IL;#MK	5RG	7 S	1.8	0.45	ng/L		09/29/20 04:48	09/29/20 18:15	1
Perfluorohexanoic acid (PFHxA)	1.8	U	1.8	0.54	ng/L		09/29/20 04:48	09/29/20 18:15	1
Perfluoroheptanoic acid (PFHpA)	1.8	U	1.8	0.23	ng/L		09/29/20 04:48	09/29/20 18:15	1
Perfluorooctanoic acid (PFOA)	1.8	U	1.8	0.78	ng/L		09/29/20 04:48	09/29/20 18:15	1
Perfluorononanoic acid (PFNA)	1.8	U	1.8	0.25	ng/L		09/29/20 04:48	09/29/20 18:15	1
Perfluorodecanoic acid (PFDA)	1.8	U	1.8	0.29	ng/L		09/29/20 04:48	09/29/20 18:15	1
Perfluoroundecanoic acid (PFUnA)	1.8	U	1.8	1.0	ng/L		09/29/20 04:48	09/29/20 18:15	1
Perfluorododecanoic acid (PFDoA)	1.8	U	1.8	0.51	ng/L		09/29/20 04:48	09/29/20 18:15	1
Perfluorotridecanoic acid (PFTriA)	1.8	U	1.8	1.2	ng/L		09/29/20 04:48	09/29/20 18:15	1
Perfluorotetradecanoic acid (PFTeA)	1.8	U	1.8	0.67	ng/L		09/29/20 04:48	09/29/20 18:15	1
Perfluorobutanesulfonic acid (PFBS)	1.8	U	1.8	0.18	ng/L		09/29/20 04:48	09/29/20 18:15	1
Perfluorohexanesulfonic acid (PFHxS)	1.8	U	1.8	0.53	ng/L		09/29/20 04:48	09/29/20 18:15	1
Perfluoroheptanesulfonic Acid (PFHpS)	1.8	U	1.8	0.18	ng/L		09/29/20 04:48	09/29/20 18:15	1
;#=J!-?=??A%(\$#,-!J?\$"A&(A"@& I;L X'K	ER	70	1.8	0.50	ng/L		09/29/20 04:48	09/29/20 18:15	1
Perfluorodecanesulfonic acid (PFDS)	1.8	U	1.8	0.30	ng/L		09/29/20 04:48	09/29/20 18:15	1
Perfluorooctanesulfonamide (FOSA)	1.8	U	1.8	0.90	ng/L		09/29/20 04:48	09/29/20 18:15	1

Eurofins TestAmerica, Edison

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q685I7567GK

.(/&'()*!#&012&3456789395678

1(%#& ?!!#A%#@**2&\$G**C75&83255

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	4.6	U	4.6	1.1	ng/L		09/29/20 04:48	09/29/20 18:15	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	4.6	U	4.6	1.2	ng/L		09/29/20 04:48	09/29/20 18:15	1
6:2 FTS	4.6	U	4.6	2.3	ng/L		09/29/20 04:48	09/29/20 18:15	1
8:2 FTS	1.8	U	1.8	0.42	ng/L		09/29/20 04:48	09/29/20 18:15	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	64		25 - 150				09/29/20 04:48	09/29/20 18:15	
13C5 PFPeA	69		25 - 150				09/29/20 04:48	09/29/20 18:15	
13C2 PFHxA	72		25 - 150				09/29/20 04:48	09/29/20 18:15	
13C4 PFHpA	77		25 - 150				09/29/20 04:48	09/29/20 18:15	
13C4 PFOA	74		25 - 150				09/29/20 04:48	09/29/20 18:15	
13C5 PFNA	71		25 - 150				09/29/20 04:48	09/29/20 18:15	
13C2 PFDA	76		25 - 150				09/29/20 04:48	09/29/20 18:15	
13C2 PFUnA	73		25 - 150				09/29/20 04:48	09/29/20 18:15	
13C2 PFDoA	76		25 - 150				09/29/20 04:48	09/29/20 18:15	
13C2 PFTeDA	66		25 - 150				09/29/20 04:48	09/29/20 18:15	
13C3 PFBS	71		25 - 150				09/29/20 04:48	09/29/20 18:15	
1802 PFHxS	72		25 - 150				09/29/20 04:48	09/29/20 18:15	
13C4 PFOS	75		25 - 150				09/29/20 04:48	09/29/20 18:15	
13C8 FOSA	71		25 - 150				09/29/20 04:48	09/29/20 18:15	
d3-NMeFOSAA	64		25 - 150				09/29/20 04:48	09/29/20 18:15	
d5-NEtFOSAA	78		25 - 150				09/29/20 04:48	09/29/20 18:15	
M2-6:2 FTS	97		25 - 150				09/29/20 04:48	09/29/20 18:15	
M2-8:2 FTS	100		25 - 150				09/29/20 04:48	09/29/20 18:15	

!"#\$%&'()*!#&012&'Q685I7567GK

1(%#& ?!!#A%#@**2&\$G**C75&83255

1(%#&+#A#"D#@2&5BC84C75&892E5

.(/&'()*!#&012&3456789395678

<(%=">2&'?!"(

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
;#=J!-?=?/-%(\$?"A&(A"@&ILQMK	0.23 l	J	0.23	0.032	ug/Kg	₽	09/22/20 11:42	09/26/20 03:05	1
Perfluoropentanoic acid (PFPeA)	0.23	U	0.23	0.089	ug/Kg	₽	09/22/20 11:42	09/26/20 03:05	1
Perfluorohexanoic acid (PFHxA)	0.23	U	0.23	0.049	ug/Kg	☼	09/22/20 11:42	09/26/20 03:05	1
Perfluoroheptanoic acid (PFHpA)	0.23	U	0.23	0.034	ug/Kg	₽	09/22/20 11:42	09/26/20 03:05	1
Perfluorooctanoic acid (PFOA)	0.23	U	0.23	0.10	ug/Kg	☼	09/22/20 11:42	09/26/20 03:05	1
Perfluorononanoic acid (PFNA)	0.23	U	0.23	0.042	ug/Kg	☼	09/22/20 11:42	09/26/20 03:05	1
Perfluorodecanoic acid (PFDA)	0.23	U	0.23	0.025	ug/Kg	⊅	09/22/20 11:42	09/26/20 03:05	1
Perfluoroundecanoic acid (PFUnA)	0.23	U	0.23	0.042	ug/Kg	₽	09/22/20 11:42	09/26/20 03:05	1
Perfluorododecanoic acid (PFDoA)	0.23	U	0.23	0.078	ug/Kg	₽	09/22/20 11:42	09/26/20 03:05	1
Perfluorotridecanoic acid (PFTriA)	0.23	U	0.23	0.059	ug/Kg	☼	09/22/20 11:42	09/26/20 03:05	1
Perfluorotetradecanoic acid (PFTeA)	0.23	U	0.23	0.063	ug/Kg	☼	09/22/20 11:42	09/26/20 03:05	1
Perfluorobutanesulfonic acid (PFBS)	0.23	U	0.23	0.029	ug/Kg	☼	09/22/20 11:42	09/26/20 03:05	1
Perfluorohexanesulfonic acid (PFHxS)	0.23	U	0.23	0.036	ug/Kg	₽	09/22/20 11:42	09/26/20 03:05	1
Perfluoroheptanesulfonic Acid (PFHpS)	0.23	U	0.23	0.041	ug/Kg	₩	09/22/20 11:42	09/26/20 03:05	1
Perfluorooctanesulfonic acid (PFOS)	0.58	U *	0.58	0.23	ug/Kg	₽	09/22/20 11:42	09/26/20 03:05	1
Perfluorodecanesulfonic acid (PFDS)	0.23	U	0.23	0.045	ug/Kg	⊅	09/22/20 11:42	09/26/20 03:05	1
Perfluorooctanesulfonamide (FOSA)	0.23	U	0.23	0.095	ug/Kg	₩	09/22/20 11:42	09/26/20 03:05	1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'Q685I7567GK

.(/&'()*!#&012&3456789395678

1(%#& ?!!#A%#@**28356**C75&83255

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&98

Job ID: 460-218480-1

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(<i>F</i>
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	2.3	U	2.3	0.45	ug/Kg	₩	09/22/20 11:42	09/26/20 03:05	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	2.3	U	2.3	0.43	ug/Kg	₩	09/22/20 11:42	09/26/20 03:05	1
6:2 FTS	2.3	U	2.3	0.17	ug/Kg	₩	09/22/20 11:42	09/26/20 03:05	1
8:2 FTS	2.3	U	2.3	0.29	ug/Kg	₽	09/22/20 11:42	09/26/20 03:05	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	77		25 - 150				09/22/20 11:42	09/26/20 03:05	
13C5 PFPeA	79		25 - 150				09/22/20 11:42	09/26/20 03:05	
13C2 PFHxA	78		25 - 150				09/22/20 11:42	09/26/20 03:05	
13C4 PFHpA	88		25 - 150				09/22/20 11:42	09/26/20 03:05	
13C4 PFOA	84		25 - 150				09/22/20 11:42	09/26/20 03:05	
13C5 PFNA	92		25 - 150				09/22/20 11:42	09/26/20 03:05	
13C2 PFDA	91		25 - 150				09/22/20 11:42	09/26/20 03:05	
13C2 PFUnA	90		25 - 150				09/22/20 11:42	09/26/20 03:05	
13C2 PFDoA	93		25 - 150				09/22/20 11:42	09/26/20 03:05	
13C2 PFTeDA	95		25 - 150				09/22/20 11:42	09/26/20 03:05	
13C3 PFBS	70		25 - 150				09/22/20 11:42	09/26/20 03:05	
1802 PFHxS	72		25 - 150				09/22/20 11:42	09/26/20 03:05	
13C4 PFOS	74		25 - 150				09/22/20 11:42	09/26/20 03:05	
13C8 FOSA	80		25 - 150				09/22/20 11:42	09/26/20 03:05	
d3-NMeFOSAA	83		25 - 150				09/22/20 11:42	09/26/20 03:05	
d5-NEtFOSAA	88		25 - 150				09/22/20 11:42	09/26/20 03:05	
M2-6:2 FTS	87		25 - 150				09/22/20 11:42	09/26/20 03:05	
M2-8:2 FTS	105		25 - 150				09/22/20 11:42	09/26/20 03:05	

!"#\$%&'()*!#&012&1-*

.(/&'()*!#&012&3456789395677

1(%#& ?!!#A%#@2856C75&55255

1(%#&+#A#"D#@2&5BC84C75&892E5

<(%=">2&'?!"(

Z#\$#=(!& F#)",%=O M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
						,-# (-#@		I :QL(A
: ?%(!& (=/?\$	8GB55 J+	1000	671	mg/Kg			09/23/20 20:47	1
: ?%(!& (=/?\$	87E55 J	1000	671	mg/Kg			09/30/20 16:36	1
M\$(!O%#	+#,-!% V-(!"J"#=	+.	+.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
*W	GRHWL	0.1	0.1	SU			09/22/20 15:00	1
: #)*#=(%-=#	78R7 WL	0.001	0.001	Degrees C			09/22/20 15:00	1

!"#\$%&'()*!#&012&1-*

.(/&'()*!#&012&3456789395677

1(%#& ?!!#A%#@2&5BC8GC75&55255

<(%=">2&'?!"(;#=A#\$%&'?!"@,2&9E

1(%#&+#A#"D#@2&5BC84C75&892E5

<#%F?@2&9745 & B& %"!#&X=	^(\$"A& ?)*1	?-\$@,&/O&Z	C<'						
M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
1,1,1-Trichloroethane	1.1	U	1.1	0.25	ug/Kg	₩	09/18/20 22:50	09/23/20 05:45	1
1 1 2 2-Tetrachloroethane	1 1	11	1 1	0.33	ua/Ka	24.	00/18/20 22:50	00/23/20 05:45	1

1,1, 1,1,2,2-Tetrachloroethane 0.23 ug/Kg © 09/18/20 22:50 09/23/20 05:45 0.33 ug/Kg 1,1,2-Trichloro-1,2,2-trifluoroethane 1.1 U 1.1 © 09/18/20 22:50 09/23/20 05:45 1 0.19 ug/Kg 1,1,2-Trichloroethane 1.1 U 1.1 © 09/18/20 22:50 09/23/20 05:45 1 1,1-Dichloroethane 1.1 U 1.1 0.22 ug/Kg © 09/18/20 22:50 09/23/20 05:45 1 1,1-Dichloroethene 0.24 ug/Kg © 09/18/20 22:50 09/23/20 05:45 1 1.1 U 1.1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&1-*

.(/&'()*!#&012&3456789395677

1(%#& ?!!#A%#@288BC75&55255 <(%=">2&'?!"(1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&9E

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
1,2,4-Trichlorobenzene	1.1	U	1.1	0.3	9 ug/Kg	*	09/18/20 22:50	09/23/20 05:45	1
1,2-Dibromo-3-Chloropropane	1.1	U	1.1	0.5	0 ug/Kg	☼	09/18/20 22:50	09/23/20 05:45	1
1,2-Dichlorobenzene	1.1	U	1.1	0.1	6 ug/Kg	☼	09/18/20 22:50	09/23/20 05:45	1
1,2-Dichloroethane	1.1	U	1.1	0.3	2 ug/Kg	₽	09/18/20 22:50	09/23/20 05:45	1
1,2-Dichloropropane	1.1	U	1.1	0.4	6 ug/Kg	₽	09/18/20 22:50	09/23/20 05:45	1
1,3-Dichlorobenzene	1.1	U	1.1	0.1	7 ug/Kg	₽	09/18/20 22:50	09/23/20 05:45	1
1,4-Dichlorobenzene	1.1	U	1.1	0.2	4 ug/Kg	₽	09/18/20 22:50	09/23/20 05:45	1
2-Butanone (MEK)	5.4	U	5.4	2.	9 ug/Kg	₩	09/18/20 22:50	09/23/20 05:45	1
2-Hexanone	5.4	U	5.4	1.9	9 ug/Kg	☼	09/18/20 22:50	09/23/20 05:45	1
4-Methyl-2-pentanone (MIBK)	5.4	U	5.4	1.	7 ug/Kg	☼	09/18/20 22:50	09/23/20 05:45	1
Acetone	6.5	U	6.5	6.3	2 ug/Kg	☼	09/18/20 22:50	09/23/20 05:45	1
Benzene	1.1	U	1.1	0.2	8 ug/Kg	☼	09/18/20 22:50	09/23/20 05:45	1
Bromoform	1.1	U	1.1	0.4	6 ug/Kg		09/18/20 22:50	09/23/20 05:45	1
Bromomethane	1.1	U	1.1		2 ug/Kg	₽	09/18/20 22:50	09/23/20 05:45	1
Carbon disulfide	1.1	U	1.1		9 ug/Kg	₩	09/18/20 22:50	09/23/20 05:45	1
Carbon tetrachloride	1.1	U	1.1		2 ug/Kg		09/18/20 22:50	09/23/20 05:45	1
Chlorobenzene	1.1	U	1.1		9 ug/Kg	☼	09/18/20 22:50	09/23/20 05:45	1
Dibromochloromethane	1.1	U	1.1		1 ug/Kg	☼	09/18/20 22:50	09/23/20 05:45	1
Chloroethane	1.1	U	1.1		7 ug/Kg		09/18/20 22:50	09/23/20 05:45	1
Chloroform	1.1	U	1.1		5 ug/Kg	₩		09/23/20 05:45	1
Chloromethane	1.1	U	1.1		7 ug/Kg	÷.		09/23/20 05:45	1
cis-1,2-Dichloroethene	1.1	U	1.1		7 ug/Kg			09/23/20 05:45	1
Cyclohexane	1.1	U	1.1		4 ug/Kg	☼		09/23/20 05:45	1
Bromodichloromethane	1.1		1.1		B ug/Kg			09/23/20 05:45	1
Dichlorodifluoromethane	1.1		1.1		7 ug/Kg			09/23/20 05:45	1
Ethylbenzene	1.1		1.1		2 ug/Kg	☼		09/23/20 05:45	1
1,2-Dibromoethane	1.1		1.1		0 ug/Kg	☼		09/23/20 05:45	1
Isopropylbenzene	1.1		1.1		4 ug/Kg	∴		09/23/20 05:45	1
Methyl acetate	5.4		5.4		7 ug/Kg			09/23/20 05:45	1
Methyl tert-butyl ether	1.1		1.1		4 ug/Kg			09/23/20 05:45	1
Methylcyclohexane	1.1		1.1		4 ug/Kg	∴		09/23/20 05:45	·
<#%FO!#\$#& F!?="@#	GR:		1.1		ug/Kg	т ф		09/23/20 05:45	1
Tetrachloroethene	1.1		1.1		6 ug/Kg	т ф		09/23/20 05:45	1
Toluene	1.1		 1.1		5 ug/Kg			09/23/20 05:45	· · · · · · · · · · · · · · · · · · ·
trans-1,2-Dichloroethene	1.1		1.1		7 ug/Kg	~ ☆		09/23/20 05:45	1
trans-1,3-Dichloropropene	1.1		1.1		9 ug/Kg	~ :		09/23/20 05:45	1
Trichloroethene	1.1		 1.1		6 ug/Kg			09/23/20 05:45	1
Trichlorofluoromethane	1.1		1.1		ug/Kg ug/Kg			09/23/20 05:45	1
Vinyl chloride	1.1		1.1		9 ug/Kg			09/23/20 05:45	1
Xylenes, Total	2.2		2.2		9 ug/Kg			09/23/20 05:45	1
cis-1,3-Dichloropropene	1.1		1.1		0 ug/Kg	₩ \$E		09/23/20 05:45	1
Styrene	1.1		1.1		0 ug/Kg	₩		09/23/20 05:45	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/Kg	-				09/23/20 05:45	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113	_	77 - 145				09/18/20 22:50	09/23/20 05:45	
Toluene-d8 (Surr)	102		80 - 120				09/18/20 22:50	09/23/20 05:45	
Dibromofluoromethane (Surr)	115		48 - 150				09/18/20 22:50	09/23/20 05:45	

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&1-*

.(/&'()*!#&012&3456789395677

1(%#& ?!!#A%#@288BC75&55255

<(%=">2&'?!"(

Job ID: 460-218480-1

1(%#&+#A#"D#@2&5BC84C75&892E5

<#%F?@2&9745 %B& %"!#&X=	^(\$"A& ?)*1	?-\$@,&/O&Z	C<'&I ?\$%"\$-#@K			
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac

4-Bromofluorobenzene	107		79 - 125				09/18/20 22:50	09/23/20 05:45	
4-Biomondologonzene			73-120				03/10/20 22.00	09/20/20 00.40	
<#%F?@2&97H51&6&'#)"D1	•		•		11640/	4	· -# */-#@	M¢/IOT#@	41101 /4
M\$(!O%#	1000	V-(!"J"#=	1000	<1. 270	u\$"% ug/Kg	— 1	;=#*(=#@	M\$(!OT#@ 09/22/20 20:12	1"!&L(A
2,4,5-Trichlorophenol			1000			ψ.			
2,4,6-Trichlorophenol	1000				ug/Kg			09/22/20 20:12	5
2,4-Dichlorophenol	1000		1000		ug/Kg	<u>.</u> .		09/22/20 20:12	5
2,4-Dimethylphenol	1000		1000		ug/Kg	‡		09/22/20 20:12	5
2,4-Dinitrophenol	9800		9800		ug/Kg	₽		09/22/20 20:12	5
2,4-Dinitrotoluene	1000		1000		ug/Kg			09/22/20 20:12	5
2,6-Dinitrotoluene	1000		1000		ug/Kg	₩		09/22/20 20:12	5
2-Chloronaphthalene	1000		1000		ug/Kg	≎		09/22/20 20:12	5
2-Chlorophenol	1900		1900		ug/Kg			09/22/20 20:12	5
2-Methylnaphthalene	1000		1000		ug/Kg	₽		09/22/20 20:12	5
2-Methylphenol	1000	U	1000		ug/Kg	₽	09/21/20 15:10	09/22/20 20:12	5
2-Nitroaniline	1900	U	1900	150	ug/Kg		09/21/20 15:10	09/22/20 20:12	5
2-Nitrophenol	1000	U	1000	280	ug/Kg	₩	09/21/20 15:10	09/22/20 20:12	5
3,3'-Dichlorobenzidine	1900	U	1900	1200	ug/Kg	☼	09/21/20 15:10	09/22/20 20:12	5
3-Nitroaniline	1900	U	1900	280	ug/Kg	☼	09/21/20 15:10	09/22/20 20:12	5
4,6-Dinitro-2-methylphenol	1900	U	1900	1000	ug/Kg	₩	09/21/20 15:10	09/22/20 20:12	5
4-Bromophenyl phenyl ether	1000	U	1000	140	ug/Kg	≎	09/21/20 15:10	09/22/20 20:12	5
4-Chloro-3-methylphenol	1000	U	1000	250	ug/Kg	₩	09/21/20 15:10	09/22/20 20:12	5
4-Chloroaniline	1000	U	1000	250	ug/Kg	₽	09/21/20 15:10	09/22/20 20:12	5
4-Chlorophenyl phenyl ether	1000	U	1000	120	ug/Kg	₽	09/21/20 15:10	09/22/20 20:12	5
4-Methylphenol	1900	U	1900	120	ug/Kg	☼	09/21/20 15:10	09/22/20 20:12	5
4-Nitroaniline	1900	U	1900	520	ug/Kg		09/21/20 15:10	09/22/20 20:12	5
4-Nitrophenol	1900	U	1900	700	ug/Kg	≎	09/21/20 15:10	09/22/20 20:12	5
Acenaphthene	1000	U	1000	150	ug/Kg	₽	09/21/20 15:10	09/22/20 20:12	5
Acenaphthylene	1000	U	1000		ug/Kg	₽	09/21/20 15:10	09/22/20 20:12	5
Acetophenone	1000	U	1000			₽	09/21/20 15:10	09/22/20 20:12	5
Anthracene	1000		1000		ug/Kg	☼	09/21/20 15:10	09/22/20 20:12	5
Atrazine	1000		1000		ug/Kg			09/22/20 20:12	5
Benzaldehyde	1000		1000			₩		09/22/20 20:12	5
Q#\$T?b(c(\$%F=(A#\$#	745		1000		ug/Kg	.∵		09/22/20 20:12	5
Q#\$T?b(c*O=#\$#	735		1000		ug/Kg			09/22/20 20:12	5
Q#\$T?b/cJ!-?=(\$%F#\$#	735		1000			Ď.		09/22/20 20:12	5
Q#\$T?b^_F_"c*#=O!#\$#	8E5		1000		ug/Kg	<i>~</i>		09/22/20 20:12	5
		2	1000		ug/Kg			09/22/20 20:12	5
Q#\$T?bNcJ!-?=(\$%F#\$# Biphenyl	845 1000		1000		ug/Kg	☆		09/22/20 20:12	5
• •	1000		1000					09/22/20 20:12	5
bis (2-chloroisopropyl) ether			1000		ug/Kg	· · · · · · · · · · · ·		09/22/20 20:12	
Bis(2-chloroethoxy)methane	1000				ug/Kg	3./t			5
Bis(2-chloroethyl)ether	1000		1000		ug/Kg			09/22/20 20:12	5
Bis(2-ethylhexyl) phthalate	1000		1000		ug/Kg	<u>.</u> .		09/22/20 20:12	5
Butyl benzyl phthalate	1000		1000		ug/Kg	:D		09/22/20 20:12	5
Caprolactam	1000		1000		ug/Kg			09/22/20 20:12	5
Carbazole	1000		1000		ug/Kg			09/22/20 20:12	5
Chrysene	1000		1000		ug/Kg	‡		09/22/20 20:12	5
Dibenz(a,h)anthracene	1000		1000		ug/Kg	‡		09/22/20 20:12	5
Dibenzofuran	1000	U	1000	120	ug/Kg	☼	09/21/20 15:10	09/22/20 20:12	5

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&1-*

.(/&'()*!#&012&3456789395677

1(%#& ?!!#A%#@**2&66**5&55255 1(%#&+#A#"D#@**2&56**5&892E5 <(%=">2&'?!"(;#=A#\$%&'?!"@,2&9E

<#%F?@2&97H51&6&'#)"D?!(%"!#&X=^(\$"A& ?)*?-\$@,**&IZ**K&I ?\$%"\$-#@K U\$"% M\$(!O%# +#,-!% V-(!"J"#= +. <1. ;=#*(=#@ M\$(!OT#@ 1"!&L(A Ū 1000 Diethyl phthalate 1000 130 ug/Kg 09/21/20 15:10 09/22/20 20:12 5 5 Dimethyl phthalate 1000 U 1000 120 ug/Kg 09/21/20 15:10 09/22/20 20:12 1000 U 1000 170 09/21/20 15:10 09/22/20 20:12 5 Di-n-butyl phthalate ug/Kg ₩ Di-n-octyl phthalate 1000 U 1000 ug/Kg 09/21/20 15:10 09/22/20 20:12 5 L!-?=(\$%F#\$# 1000 09/21/20 15:10 09/22/20 20:12 5 E95 S 110 ug/Kg ₹ U 09/21/20 15:10 09/22/20 20:12 5 Fluorene 1000 1000 120 ug/Kg 09/22/20 20:12 5 Hexachlorobenzene 1000 U 1000 09/21/20 15:10 140 ug/Kg 09/22/20 20:12 Hexachlorobutadiene 1000 U 1000 150 ug/Kg 09/21/20 15:10 5 09/22/20 20:12 5 Hexachlorocyclopentadiene 1000 U 1000 140 ug/Kg 09/21/20 15:10 Hexachloroethane 09/21/20 15:10 1000 U 1000 130 ug/Kg 09/22/20 20:12 5 ug/Kg 09/22/20 20:12 5 0\$@#\$?b8 7 E6A@c*O=#\$# S 1000 120 09/21/20 15:10 875 U 1000 09/21/20 15:10 09/22/20 20:12 5 Isophorone 1000 210 ug/Kg 5 Naphthalene 1000 U 1000 ug/Kg 09/21/20 15:10 09/22/20 20:12 Nitrobenzene 1000 U 1000 ug/Kg 09/21/20 15:10 09/22/20 20:12 5 110 170 N-Nitrosodi-n-propylamine 1000 U 1000 ug/Kg 09/21/20 15:10 09/22/20 20:12 5 1000 09/21/20 15:10 09/22/20 20:12 5 N-Nitrosodiphenylamine 1000 U 810 ug/Kg 09/22/20 20:12 5 Pentachlorophenol 1900 U 1900 1000 ug/Kg 09/21/20 15:10 1000 09/22/20 20:12 5 ;F#\$(\$%F=#\$# 785 S 150 ug/Kg 09/21/20 15:10 Phenol 1000 U 1000 150 ug/Kg 09/21/20 15:10 09/22/20 20:12 5 5 1000 09/21/20 15:10 09/22/20 20:12 :O=#\$# EH₅ S 120 ug/Kg Tentatively Identified Compound Est. Result Qualifier Unit D RT CAS No. Prepared Analyzed Dil Fac Unknown 1100 TJug/Kg ☼ 3.41 09/21/20 15:10 09/22/20 20:12 5 09/21/20 15:10 09/22/20 20:12 Octacosane 1100 TJNug/Kg ₩ 14.71 630-02-4 5 Unknown ΤJ ₩ 15.96 09/21/20 15:10 09/22/20 20:12 5 840 ug/Kg 5 Unknown 1700 ΤJ ug/Kg ₽ 16.09 09/21/20 15:10 09/22/20 20:12 Unknown uq/Kg 16.17 09/21/20 15:10 09/22/20 20:12 5 960 TJ₩ Unknown 800 TJug/Kg ₩ 16.76 09/21/20 15:10 09/22/20 20:12 5 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 09/21/20 15:10 09/22/20 20:12 54 - 120 5 2,4,6-Tribromophenol 95 2-Fluorobiphenyl 95 60 - 120 09/21/20 15:10 09/22/20 20:12 5 2-Fluorophenol 89 52 - 120 09/21/20 15:10 09/22/20 20:12 5 Nitrobenzene-d5 83 53 - 120 09/21/20 15:10 09/22/20 20:12 5 89 5 Phenol-d5 54 - 120 09/21/20 15:10 09/22/20 20:12 p-Terphenyl-d14 108 79 - 130 09/21/20 15:10 09/22/20 20:12 5 <#%F?@2&9598Q&6&X=^(\$?AF!?="\$#&;#,%"A"@#,&IZ K M\$(!O%# +#,-!% V-(!"J"#= <1. U\$"% ;=#*(=#@ M\$(!OT#@ 1"!&L(A U 4.4'-DDD 9.9 99 1.9 ug/Kg 09/22/20 13:04 09/23/20 14:31 5 4,4'-DDE 9.9 U 9.9 2.1 ug/Kg 09/22/20 13:04 09/23/20 14:31 5 9.9 2.3 09/22/20 13:04 09/23/20 14:31 5 ug/Kg ₽ 3_3d611: GR5S 9.9 09/22/20 13:04 09/23/20 14:31 5 Aldrin 9.9 U ug/Kg 5 alpha-BHC 9.9 U 9.9 ug/Kg 09/22/20 13:04 09/23/20 14:31 beta-BHC 9.9 U 9.9 1.8 ug/Kg 09/22/20 13:04 09/23/20 14:31 5 09/23/20 14:31 5 cis-Chlordane 9.9 U 9.9 4.9 ug/Kg 09/22/20 13:04 5 delta-BHC 9.9 U 9.9 1.8 ug/Kg 09/22/20 13:04 09/23/20 14:31 2.4 5 Dieldrin 9.9 U 9.9 ug/Kg 09/22/20 13:04 09/23/20 14:31 Endosulfan I 9.9 U 9.9 ug/Kg 09/22/20 13:04 09/23/20 14:31 5 1.9 ť Endosulfan II 9.9 U 9.9 ug/Kg 09/22/20 13:04 09/23/20 14:31 5

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&1-*

.(/&'()*!#&012&3456789395677

<(%=">2&'?!"(

1(%#& ?!!#A%#@**2&3G**C75&55255 1(%#&+#A#"D#@2&5BC84C75&892E5

;#=A#\$%&'?!"@,2&9E

F#\$O!,&I O	9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9	2.0 2.5 2.4 1.8 2.1 2.6 2.0 58 3.2 (,& F=?)(<1. 0.057 0.057 0.057 0.057	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	**************************************	09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 Prepared 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04	09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31	5 5 1"!&L(. 1
F#\$O!,&I C	9.9 9.9 9.9 9.9 9.9 9.9 9.9 Limits 45 - 120 45 - 120 30 - 124 30 - 124 Q,K&/O&Z +. 0.29 0.29 0.29 0.29 0.29 0.29 0.29	2.5 2.4 1.8 2.1 2.6 2.0 58 3.2 (,& F=?)(<1. 0.057 0.057 0.057 0.057	ug/Kg	* * * * * * * * * * * * * * * * * * *	09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 Prepared 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04	09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 Analyzed 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 18:16 09/22/20 18:16 09/22/20 18:16	Dil Fac
F#\$O!,&I C	9.9 9.9 9.9 9.9 9.9 9.9 Limits 45 - 120 45 - 120 30 - 124 30 - 124 Q,K&/O&Z(+. 0.29 0.29 0.29 0.29 0.29 0.29 0.29	2.4 1.8 2.1 2.6 2.0 58 3.2 (,& F=?)(<1. 0.057 0.057 0.057 0.057	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * * * * * * * * * * * * * * * * * *	09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 Prepared 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 ;=#*(=#@ 09/21/20 15:17 09/21/20 15:17	09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 Analyzed 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 18:16 09/22/20 18:16 09/22/20 18:16	Dil Face 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
F#\$O!,&I O	9.9 9.9 9.9 9.9 9.9 Limits 45 - 120 45 - 124 30 - 124 30 - 124 2,K&/O&Z(+. 0.29 0.29 0.29 0.29 0.29 0.29 0.29	1.8 2.1 2.6 2.0 58 3.2 (,& F=?)(<1. 0.057 0.057 0.057 0.057 0.057	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * * * * * * * * * * * * * * * * * *	09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 15:17 09/21/20 15:17	09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 Analyzed 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 M\$(!OT#@ 09/22/20 18:16 09/22/20 18:16	Dil Fac
	9.9 9.9 9.9 9.9 Limits 45 - 120 45 - 124 30 - 124 2,K&/O&Z(+. 0.29 0.29 0.29 0.29 0.29 0.29 0.29	2.1 2.6 2.0 58 3.2 (,& F=?)(<1. 0.057 0.057 0.057 0.057	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	0 1 x x	09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 Prepared 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 ;=#*(=#@ 09/21/20 15:17 09/21/20 15:17	09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 Analyzed 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 M\$(!OT#@ 09/22/20 18:16 09/22/20 18:16	Dil Face 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	9.9 9.9 9.9 9.9 Limits 45 - 120 45 - 120 30 - 124 30 - 124 2,K&/O&Z(+. 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.2	2.6 2.0 58 3.2 (,& F=?)(<1. 0.057 0.057 0.057 0.057	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg mg/Kg mg/Kg mg/Kg mg/Kg	0 <u>1</u> * *	09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 Prepared 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 ;=#*(=#@ 09/21/20 15:17 09/21/20 15:17	09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 Analyzed 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 18:16 09/22/20 18:16 09/22/20 18:16	Dil Face 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
F#\$O!,&I C	9.9 99 9.9 Limits 45 - 120 45 - 120 30 - 124 30 - 124 Q,K&/O&Z(+. 0.29 0.29 0.29 0.29 0.29 0.29 0.29	2.0 58 3.2 (,& F=?)(<1. 0.057 0.057 0.057 0.057	ug/Kg ug/Kg ug/Kg %?^=(*F U\$"% mg/Kg mg/Kg mg/Kg mg/Kg	0 - 1 * *	09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 Prepared 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 ;=#*(=#@ 09/21/20 15:17 09/21/20 15:17	09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 Analyzed 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 M\$(!OT#@ 09/22/20 18:16 09/22/20 18:16	Dil Face 5 5 8 4 1"!&L(
	99 9.9 Limits 45 - 120 45 - 120 30 - 124 30 - 124 Q,K&/O&Z(+. 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29	58 3.2 (,& F=?)(<1. 0.057 0.057 0.057 0.057	wg/Kg wg/Kg %?^=(*F) U\$"% mg/Kg mg/Kg mg/Kg mg/Kg	0 <u>1</u> × ×	09/22/20 13:04 09/22/20 13:04 Prepared 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 ;=#*(=#@ 09/21/20 15:17 09/21/20 15:17 09/21/20 15:17	09/23/20 14:31 09/23/20 14:31 Analyzed 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 M\$(!OT#@ 09/22/20 18:16 09/22/20 18:16	Dil Face 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	9.9 Limits 45 - 120 45 - 120 30 - 124 30 - 124 Q,K&/O&Z(+. 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29	58 3.2 (,& F=?)(<1. 0.057 0.057 0.057 0.057	wg/Kg wg/Kg %?^=(*F) U\$"% mg/Kg mg/Kg mg/Kg mg/Kg	O 1 × ×	09/22/20 13:04 Prepared 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 ;=#*(=#@ 09/21/20 15:17 09/21/20 15:17	09/23/20 14:31 Analyzed 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 M\$(!OT#@ 09/22/20 18:16 09/22/20 18:16	Dil Face \$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
F#\$O!,&I C /-("J"#=]]]	Limits 45 - 120 45 - 120 30 - 124 30 - 124 2,K&/O&Z(+. 0.29 0.29 0.29 0.29 0.29 0.29 0.29	(,& F=?)(<1. 0.057 0.057 0.057 0.057 0.057	%?^=(*F U\$"% mg/Kg mg/Kg mg/Kg	0 - 1 * *	Prepared 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 ;=#*(=#@ 09/21/20 15:17 09/21/20 15:17	Analyzed 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 M\$(!OT#@ 09/22/20 18:16 09/22/20 18:16 09/22/20 18:16	Dil Face 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
F#\$O!,&I C	45 - 120 45 - 120 30 - 124 30 - 124 2,K&/O&Z(+. 0.29 0.29 0.29 0.29 0.29 0.29 0.29	<1. 0.057 0.057 0.057 0.057 0.057	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 ;=#*(=#@ 09/21/20 15:17 09/21/20 15:17 09/21/20 15:17	09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 M\$(!OT#@ 09/22/20 18:16 09/22/20 18:16 09/22/20 18:16	1"!&L(
/-(!" J "#=]]]]]	45 - 120 30 - 124 30 - 124 Q,K&/O&Z(+. 0.29 0.29 0.29 0.29 0.29 0.29	<1. 0.057 0.057 0.057 0.057 0.057	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		09/22/20 13:04 09/22/20 13:04 09/22/20 13:04 ;=#*(=#@ 09/21/20 15:17 09/21/20 15:17 09/21/20 15:17	09/23/20 14:31 09/23/20 14:31 09/23/20 14:31 M\$(!OT#@ 09/22/20 18:16 09/22/20 18:16 09/22/20 18:16	1 1 1
/-(!" J "#=]]]]]	30 - 124 30 - 124 2,K&/O&Z(+. 0.29 0.29 0.29 0.29 0.29 0.29	<1. 0.057 0.057 0.057 0.057 0.057	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		09/22/20 13:04 09/22/20 13:04 ;=#*(=#@ 09/21/20 15:17 09/21/20 15:17 09/21/20 15:17	09/23/20 14:31 09/23/20 14:31 M\$(!OT#@ 09/22/20 18:16 09/22/20 18:16 09/22/20 18:16	1"!&L(1
/-(!" J "#=]]]]]	30 - 124 Q,K&/O&Z(+. 0.29 0.29 0.29 0.29 0.29 0.29 0.29	<1. 0.057 0.057 0.057 0.057 0.057	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		09/22/20 13:04 ;=#*(=#@ 09/21/20 15:17 09/21/20 15:17 09/21/20 15:17	09/23/20 14:31 M\$(!OT#@) 09/22/20 18:16 09/22/20 18:16 09/22/20 18:16	1"!&L(,
/-(!" J "#=]]]]]	0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29	<1. 0.057 0.057 0.057 0.057 0.057	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		;=#*(=#@ 09/21/20 15:17 09/21/20 15:17 09/21/20 15:17	M\$(!OT#@ 09/22/20 18:16 09/22/20 18:16 09/22/20 18:16	1"!&L(. 1
/-(!" J "#=]]]]]	+. 0.29 0.29 0.29 0.29 0.29 0.29	<1. 0.057 0.057 0.057 0.057 0.057	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		09/21/20 15:17 09/21/20 15:17 09/21/20 15:17	09/22/20 18:16 09/22/20 18:16 09/22/20 18:16	1 1 1
/-(!" J "#=]]]]]	+. 0.29 0.29 0.29 0.29 0.29 0.29	<1. 0.057 0.057 0.057 0.057 0.057	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		09/21/20 15:17 09/21/20 15:17 09/21/20 15:17	09/22/20 18:16 09/22/20 18:16 09/22/20 18:16	1"!&L(/ 1 1 1
J J J	0.29 0.29 0.29 0.29 0.29	0.057 0.057 0.057 0.057	mg/Kg mg/Kg mg/Kg	\$	09/21/20 15:17 09/21/20 15:17	09/22/20 18:16 09/22/20 18:16 09/22/20 18:16	1 1
]] J	0.29 0.29 0.29 0.29	0.057 0.057 0.057 0.057	mg/Kg mg/Kg mg/Kg		09/21/20 15:17	09/22/20 18:16	1
) J J	0.29 0.29 0.29	0.057 0.057 0.057	mg/Kg mg/Kg				
J J	0.29 0.29	0.057 0.057	mg/Kg	₽	09/21/20 15:17	09/22/20 18:16	
J J	0.29 0.29	0.057					1
J	0.29		mu/r\u	☆	09/21/20 15:17	09/22/20 18:16	1
			mg/Kg	X		09/22/20 18:16	1
			mg/Kg	₩		09/22/20 18:16	1
Qualifier	Limits				Prepared	Analyzed	Dil Fac
	60 - 154				09/21/20 15:17	09/22/20 18:16	
	60 - 154				09/21/20 15:17	09/22/20 18:16	
	65 - 174				09/21/20 15:17	09/22/20 18:16	
	65 - 174				09/21/20 15:17	09/22/20 18:16	
/-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(
J	20	6.3	ug/Kg	☼	09/21/20 15:24	09/23/20 22:57	1
J	20	7.1	ug/Kg	☼	09/21/20 15:24	09/23/20 22:57	1
J	20	12	ug/Kg	₩	09/21/20 15:24	09/23/20 22:57	1
Qualifier	Limits				Prepared	Analyzed	Dil Fac
	28 - 129				09/21/20 15:24	09/23/20 22:57	
	28 - 129				09/21/20 15:24	09/23/20 22:57	
•	# ,						
/_(!". "#=	+.	<1.		_ 1	;=#*(=#@	M\$(!OT#@	1"!&L(
		0 000	11a/K~		00/00/00 11 1-	09/26/20 03:14	1
<u> </u>				☼			
J	0.23	0.089	ug/Kg	‡	09/22/20 11:42	09/26/20 03:14	1
<u> </u>			ug/Kg			09/26/20 03:14	1
J	0.23	0.089 0.049 0.034	ug/Kg		09/22/20 11:42 09/22/20 11:42 09/22/20 11:42	09/26/20 03:14 09/26/20 03:14	1 1 1
۰	/-(!"J"#=		V-(!"J"#= +. <1.	V-(!"J"#= +. <1. U\$"%	V-(!"J"#= +. <1. U\$"% 1	V-(!"J"#= +. <1. U\$"% 1 ;=#*(=#@	V-(!"J"#= +. <1. U\$"% 1 ;=#*(=#@ M\$(!OT#@

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&1-*

M=,#\$"A

Q#=O!!"-)

Q(="-)

.(/&'()*!#&012&3456789395677

1(%#& ?!!#A%#@288BC75&55255

;#=A#\$%&'?!"@,2&9E

<(%=">2&'?!"(

1(%#&+#A#"D#@2&5BC84C75&892E5

<#%F?@2&GEH&I)?@"J"#@K&6&L!-**VPHN\$J!&#@&**(\$A#,&I ?\$%"\$-#@K U\$"% M\$(!O%# +#,-!% V-(!"J"#= +. <1. ;=#*(=#@ M\$(!OT#@ 1"!&L(A ;#=J!-?=?@#A(\$?"A&(A"@&I;L1MK 5R599 S 0.23 0.026 ug/Kg 09/22/20 11:42 09/26/20 03:14 ;#=J!-?=?-\$@#A(\$?"A&(A"@& **5R5BHS** 0.23 0.042 ug/Kg 09/22/20 11:42 09/26/20 03:14 1 I;LU\$MK Perfluorododecanoic acid (PFDoA) 0.23 U 0.23 0.078 ug/Kg ₩ 09/22/20 11:42 09/26/20 03:14 1 0.059 ug/Kg Perfluorotridecanoic acid (PFTriA) 0.23 U 0.23 09/22/20 11:42 09/26/20 03:14 1 ug/Kg Perfluorotetradecanoic acid (PFTeA) 0.23 U 0.23 0.063 09/22/20 11:42 09/26/20 03:14 1 Perfluorobutanesulfonic acid (PFBS) 09/26/20 03:14 0.23 U 0.23 0.029 ug/Kg 09/22/20 11:42 1 Perfluorohexanesulfonic acid (PFHxS) 0.23 U 0.23 0.036 ug/Kg 09/22/20 11:42 09/26/20 03:14 1 Perfluoroheptanesulfonic Acid 0.23 U 09/22/20 11:42 09/26/20 03:14 0.23 0.041 ug/Kg 1 (PFHpS) 0.23 U 0.23 0.045 ug/Kg 09/22/20 11:42 09/26/20 03:14 Perfluorodecanesulfonic acid (PFDS) 1 Perfluorooctanesulfonamide (FOSA) 0.23 U 0.23 0.095 ug/Kg 09/22/20 11:42 09/26/20 03:14 09/22/20 11:42 2.3 U 23 0.45 ug/Kg 09/26/20 03:14 N-methylperfluorooctanesulfonamidoa 1 cetic acid (NMeFOSAA) 09/22/20 11:42 09/26/20 03:14 N-ethylperfluorooctanesulfonamidoac 23 U 23 0.43 ug/Kg 1 etic acid (NEtFOSAA) 23 09/22/20 11:42 09/26/20 03:14 6:2 FTS 23 U 0.17 ug/Kg 8:2 FTS 2.3 U 2.3 09/22/20 11:42 09/26/20 03:14 0.29 ug/Kg 1 Isotope Dilution Qualifier Limits Prepared Analyzed Dil Fac %Recovery 13C4 PFBA 53 25 - 150 09/22/20 11:42 09/26/20 03:14 13C5 PFPeA 68 25 - 150 09/22/20 11:42 09/26/20 03:14 13C2 PFHxA 81 25 - 150 09/22/20 11:42 09/26/20 03:14 13C4 PFHpA 85 25 - 150 09/22/20 11:42 09/26/20 03:14 13C4 PEOA 83 25 - 150 09/22/20 11:42 09/26/20 03:14 13C5 PFNA 92 25 - 150 09/22/20 11:42 09/26/20 03:14 13C2 PFDA 84 25 - 150 09/22/20 11:42 09/26/20 03:14 09/22/20 11:42 09/26/20 03:14 13C2 PFUnA 89 25 - 150 09/22/20 11:42 09/26/20 03:14 13C2 PFDoA 25 - 150 89 13C2 PFTeDA 93 25 - 150 09/22/20 11:42 09/26/20 03:14 09/22/20 11:42 09/26/20 03:14 13C3 PFBS 77 25 - 150 1802 PFHxS 86 25 - 150 09/22/20 11:42 09/26/20 03:14 13C8 FOSA 78 25 - 150 09/22/20 11:42 09/26/20 03:14 d3-NMeFOSAA 83 25 - 150 09/22/20 11:42 09/26/20 03:14 d5-NEtFOSAA 104 25 - 150 09/22/20 11:42 09/26/20 03:14 M2-6:2 FTS 248 *5 25 - 150 09/22/20 11:42 09/26/20 03:14 M2-8:2 FTS 286 *5 25 - 150 09/22/20 11:42 09/26/20 03:14 <#%F?@2&GEH&I)?@"J"#@K&6&L!**-VH:N\$Q!&#@%**(\$A#,&6&+P M\$(!O%# +#,-!% V-(!"J"#= <1 U\$"% ;=#*(=#@ M\$(!OT#@ 1"!&L(A ;#=J!-?=??A%(\$#,-!J?\$"A&(A"@& **5RH9** 0.59 0.24 ug/Kg 09/28/20 06:28 09/30/20 06:52 I:L X'K %Recovery Qualifier Isotope Dilution Limits Dil Fac Prepared Analyzed 13C4 PFOS 71 25 - 150 09/28/20 06:28 09/30/20 06:52 <#%F?@2&4585 &6&<#%(!,&I0 ;K V-(!"J"#= 1"!&L(A M\$(!O%# +#,-!% + <1. U\$"% ;=#*(=#@ M\$(!OT#@ 1 12.2 mg/Kg ₩ 09/24/20 17:07 09/25/20 14:21 M!-)"\$-) 78755 18.3 U UJ 18.3 0.49 mg/Kg 09/24/20 17:07 09/25/20 14:21 1 Antimony

Eurofins TestAmerica, Edison

09/25/20 14:21

09/25/20 14:21

09/25/20 14:21

1

09/24/20 17:07

09/24/20 17:07

09/24/20 17:07

2.4

0.61

0.24

0.49

0.13

0.034 mg/Kg

mg/Kg

mg/Kg

3R8 Q

B8R8

5R39

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&1-*

.(/&'()*!#&012&3456789395677

1(%#& ?!!#A%#@**2836**C75&55255

1(%#&+#A#"D#@2&5BC84C75&892E5

<(%=">2&'?!"(

;#=A#\$%&'?!"@,2&9E

Job ID: 460-218480-1

M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
(@)"-)	5R5H7S	0.24	0.037	mg/Kg	<u></u>	09/24/20 17:07	09/25/20 14:21	1
(!A"-)	8HH5 J	60.9	4.0	mg/Kg	☼	09/24/20 17:07	09/25/20 14:21	1
F=?)"-)	7GRH	0.61	0.24	mg/Kg	☼	09/24/20 17:07	09/25/20 14:21	1
?/(!%	87R4	0.61	0.061	mg/Kg	☼	09/24/20 17:07	09/25/20 14:21	1
?**#=	7GR7J-	1.2	0.26	mg/Kg	☼	09/24/20 17:07	09/25/20 14:21	1
0=?\$	79E55 J	12.2	4.3	mg/Kg	☼	09/24/20 17:07	09/25/20 14:21	1
.#(@	74RGJ	1.2	0.29	mg/Kg	₩	09/24/20 17:07	09/25/20 14:21	1
<(^\$#,"-)	4HE5 J-	24.4	1.1	mg/Kg	☼	09/24/20 17:07	09/25/20 14:21	1
<(\$^(\$#,#	E3H J	0.24	0.039	mg/Kg	☼	09/24/20 17:07	09/25/20 14:21	1
Y"AN#!	77RBJ-	6.1	0.28	mg/Kg	☼	09/24/20 17:07	09/25/20 14:21	1
;?%(,,"-)	7E45 J+	36.6	24.4	mg/Kg	☼	09/24/20 17:07	09/25/20 14:21	1
Selenium	4.9 U	4.9	0.49	mg/Kg	₩	09/24/20 17:07	09/25/20 14:21	1
Silver	0.73 U	0.73	0.24	mg/Kg	☼	09/24/20 17:07	09/25/20 14:21	1
'?@"-)	85E S	171	15.8	mg/Kg	₽	09/24/20 17:07	09/25/20 14:21	1
Thallium	7.3 U	7.3	0.37	mg/Kg	☼	09/24/20 17:07	09/25/20 14:21	1
] (\$(@"-)	35R8	0.61	0.13	mg/Kg	₽	09/24/20 17:07	09/25/20 14:21	1
e"\$A	HHRH	2.4	0.78	mg/Kg	₩	09/24/20 17:07	09/25/20 14:21	1
- <#%F?@2&H3H8Q&6&<#=	A- #08 K]							
M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
<#=A-=O	5R5EH	0.022	0.0089	mg/Kg	☼	09/22/20 11:56	09/22/20 14:20	1
Z#\$#=(!& F#)",%=O								
M\$(!O%#	+#,-!% V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
Cyanide, Total		1.1	0.52	mg/Kg	\	09/21/20 13:33	09/22/20 14:30	1

!"#\$%&'()*!#&012&PQ65B8375

1(%#& ?!!#A%#@**2853E**C75&84255

1(%#&+#A#"D#@2&5BC84C75&892E5

.(/&'()*!#&012&345678939567E

<(%=">28(f%#=

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
Perfluorobutanoic acid (PFBA)	6.2	U	6.2	3.0	ng/L		09/22/20 12:50	09/23/20 23:07	1
Perfluoropentanoic acid (PFPeA)	2.5	U	2.5	0.60	ng/L		09/22/20 12:50	09/23/20 23:07	1
Perfluorohexanoic acid (PFHxA)	2.5	U	2.5	0.71	ng/L		09/22/20 12:50	09/23/20 23:07	1
Perfluoroheptanoic acid (PFHpA)	2.5	U	2.5	0.31	ng/L		09/22/20 12:50	09/23/20 23:07	1
Perfluorooctanoic acid (PFOA)	2.5	U	2.5	1.0	ng/L		09/22/20 12:50	09/23/20 23:07	1
Perfluorononanoic acid (PFNA)	2.5	U	2.5	0.33	ng/L		09/22/20 12:50	09/23/20 23:07	1
Perfluorodecanoic acid (PFDA)	2.5	U	2.5	0.38	ng/L		09/22/20 12:50	09/23/20 23:07	1
Perfluoroundecanoic acid (PFUnA)	2.5	U	2.5	1.4	ng/L		09/22/20 12:50	09/23/20 23:07	1
Perfluorododecanoic acid (PFDoA)	2.5	U	2.5	0.68	ng/L		09/22/20 12:50	09/23/20 23:07	1
Perfluorotridecanoic acid (PFTriA)	2.5	U	2.5	1.6	ng/L		09/22/20 12:50	09/23/20 23:07	1
Perfluorotetradecanoic acid (PFTeA)	2.5	U	2.5	0.90	ng/L		09/22/20 12:50	09/23/20 23:07	1
Perfluorobutanesulfonic acid (PFBS)	2.5	U	2.5	0.25	ng/L		09/22/20 12:50	09/23/20 23:07	1
Perfluorohexanesulfonic acid (PFHxS)	2.5	U	2.5	0.70	ng/L		09/22/20 12:50	09/23/20 23:07	1
Perfluoroheptanesulfonic Acid (PFHpS)	2.5	U	2.5	0.23	ng/L		09/22/20 12:50	09/23/20 23:07	1
;#=J!-?=??A%(\$#,-!J?\$"A&(A"@& I;LX'K	2.5	U	2.5	0.67	ng/L		09/22/20 12:50	09/23/20 23:07	1
Perfluorodecanesulfonic acid (PFDS)	2.5	U	2.5	0.39	ng/L		09/22/20 12:50	09/23/20 23:07	1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&PQ65B8375

.(/&'()*!#&012&345678939567E

1(%#& ?!!#A%#@**285B**C75&84255

<(%=">28(f%#=

Job ID: 460-218480-1

1(%#&+#A#"D#@2&5BC84C75&892E5

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
;#=J!-?=??A%(\$#,-!J?\$()"@#&	8R7	S	2.5	1.2	ng/L		09/22/20 12:50	09/23/20 23:07	1
ILX'MK									
N-methylperfluorooctanesulfonamidoa	6.2	U	6.2	1.5	ng/L		09/22/20 12:50	09/23/20 23:07	1
cetic acid (NMeFOSAA)									
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	6.2	U	6.2	1.6	ng/L		09/22/20 12:50	09/23/20 23:07	1
6:2 FTS	6.2	U	6.2	3.1	ng/L		09/22/20 12:50	09/23/20 23:07	1
8:2 FTS	2.5		2.5		ng/L			09/23/20 23:07	1
				0.01	ng/L				
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C8 FOSA	89		25 - 150				09/22/20 12:50	09/23/20 23:07	
13C4 PFBA	83		25 - 150				09/22/20 12:50	09/23/20 23:07	
13C5 PFPeA	95		25 - 150				09/22/20 12:50	09/23/20 23:07	
13C2 PFHxA	97		25 - 150				09/22/20 12:50	09/23/20 23:07	
13C4 PFHpA	109		25 - 150				09/22/20 12:50	09/23/20 23:07	
13C4 PFOA	103		25 - 150				09/22/20 12:50	09/23/20 23:07	
13C5 PFNA	117		25 - 150				09/22/20 12:50	09/23/20 23:07	
13C2 PFDA	115		25 - 150				09/22/20 12:50	09/23/20 23:07	
13C2 PFUnA	103		25 - 150				09/22/20 12:50	09/23/20 23:07	
13C2 PFDoA	88		25 - 150				09/22/20 12:50	09/23/20 23:07	
13C2 PFTeDA	105		25 - 150				09/22/20 12:50	09/23/20 23:07	
13C3 PFBS	92		25 - 150				09/22/20 12:50	09/23/20 23:07	
1802 PFHxS	96		25 - 150				09/22/20 12:50	09/23/20 23:07	
13C4 PFOS	95		25 - 150				09/22/20 12:50	09/23/20 23:07	
d3-NMeFOSAA	91		25 - 150				09/22/20 12:50	09/23/20 23:07	
d5-NEtFOSAA	95		25 - 150				09/22/20 12:50	09/23/20 23:07	
M2-6:2 FTS	130		25 - 150					09/23/20 23:07	
M2-8:2 FTS	131		25 - 150 25 - 150					09/23/20 23:07	

!"#\$%&'()*!#&012&1="!!#**=**&%#=

1(%#& ?!!#A%#@**265B**C75&84285

1(%#&+#A#"D#@2&5BC84C75&892E5

.(/&'()*!#&012&3456789395673

<(%=">28(f%#=

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
Perfluorobutanoic acid (PFBA)	6.0	U	6.0	2.9	ng/L		09/22/20 12:50	09/23/20 23:16	1
Perfluoropentanoic acid (PFPeA)	2.4	U	2.4	0.59	ng/L		09/22/20 12:50	09/23/20 23:16	1
Perfluorohexanoic acid (PFHxA)	2.4	U	2.4	0.69	ng/L		09/22/20 12:50	09/23/20 23:16	1
;#=J!-?=?F#*%(\$?"A&(A"@&ILW*MK	5RE8	38	2.4	0.30	ng/L		09/22/20 12:50	09/23/20 23:16	1
;#=J!-?=??A%(\$?"A&(A"@&ILXMK	7R8	S	2.4	1.0	ng/L		09/22/20 12:50	09/23/20 23:16	1
Perfluorononanoic acid (PFNA)	2.4	U	2.4	0.32	ng/L		09/22/20 12:50	09/23/20 23:16	1
Perfluorodecanoic acid (PFDA)	2.4	U	2.4	0.37	ng/L		09/22/20 12:50	09/23/20 23:16	1
Perfluoroundecanoic acid (PFUnA)	2.4	U	2.4	1.3	ng/L		09/22/20 12:50	09/23/20 23:16	1
Perfluorododecanoic acid (PFDoA)	2.4	U	2.4	0.66	ng/L		09/22/20 12:50	09/23/20 23:16	1
Perfluorotridecanoic acid (PFTriA)	2.4	U	2.4	1.6	ng/L		09/22/20 12:50	09/23/20 23:16	1
Perfluorotetradecanoic acid (PFTeA)	2.4	U	2.4	0.87	ng/L		09/22/20 12:50	09/23/20 23:16	1
;#=J!-?=?/-%(\$#,-!J?\$"A&(A"@& I;L Q'K	5RE7	7S	2.4	0.24	ng/L		09/22/20 12:50	09/23/20 23:16	1
Perfluorohexanesulfonic acid (PFHxS)	2.4	U	2.4	0.68	ng/L		09/22/20 12:50	09/23/20 23:16	1
Perfluoroheptanesulfonic Acid (PFHpS)	2.4	U	2.4	0.23	ng/L		09/22/20 12:50	09/23/20 23:16	1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&1="!!#=**&**%#=

.(/&'()*!#&012&3456789395673

1(%#& ?!!#A%#@**285B**C75&84285

<(%=">2&(f%#=

Job ID: 460-218480-1

1(%#&+#A#"D#@2&5BC84C75&892E5

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
;#=J!-?=??A%(\$#,-!J?\$"A&(A"@& I;LX'K	2.4	U	2.4	0.65	ng/L		09/22/20 12:50	09/23/20 23:16	1
Perfluorodecanesulfonic acid (PFDS)	2.4	U	2.4	0.38	ng/L		09/22/20 12:50	09/23/20 23:16	1
;#=J!-?=??A%(\$#,-!J?\$()"@#& ILX'MK	75		2.4		ng/L		09/22/20 12:50	09/23/20 23:16	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	6.0	U	6.0	1.4	ng/L		09/22/20 12:50	09/23/20 23:16	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	6.0	U	6.0	1.6	ng/L		09/22/20 12:50	09/23/20 23:16	1
6:2 FTS	6.0	U	6.0	3.0	ng/L		09/22/20 12:50	09/23/20 23:16	1
8:2 FTS	2.4	U	2.4	0.55	ng/L		09/22/20 12:50	09/23/20 23:16	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C8 FOSA	92		25 - 150				09/22/20 12:50	09/23/20 23:16	
13C4 PFBA	71		25 - 150				09/22/20 12:50	09/23/20 23:16	
13C5 PFPeA	91		25 - 150				09/22/20 12:50	09/23/20 23:16	
13C2 PFHxA	99		25 - 150				09/22/20 12:50	09/23/20 23:16	
13C4 PFHpA	118		25 - 150				09/22/20 12:50	09/23/20 23:16	
13C4 PFOA	94		25 - 150				09/22/20 12:50	09/23/20 23:16	
13C5 PFNA	123		25 - 150				09/22/20 12:50	09/23/20 23:16	
13C2 PFDA	117		25 - 150				09/22/20 12:50	09/23/20 23:16	
13C2 PFUnA	103		25 - 150				09/22/20 12:50	09/23/20 23:16	
13C2 PFDoA	103		25 - 150				09/22/20 12:50	09/23/20 23:16	
13C2 PFTeDA	115		25 - 150				09/22/20 12:50	09/23/20 23:16	
13C3 PFBS	92		25 - 150				09/22/20 12:50	09/23/20 23:16	
1802 PFHxS	101		25 - 150				09/22/20 12:50	09/23/20 23:16	
13C4 PFOS	97		25 - 150				09/22/20 12:50	09/23/20 23:16	
d3-NMeFOSAA	92		25 - 150				09/22/20 12:50	09/23/20 23:16	
d5-NEtFOSAA	97		25 - 150				09/22/20 12:50	09/23/20 23:16	
M2-6:2 FTS	130		25 - 150				09/22/20 12:50	09/23/20 23:16	
M2-8:2 FTS	118		25 - 150				09/22/20 12:50	09/23/20 23:16	

!"#\$%&'()*!#&012&PQ65B8G75

1(%#& ?!!#A%#@**2&5G**C75&832GG

1(%#&+#A#"D#@2&5BC84C75&892E5

.(/&'()*!#&012&345678939567G

<(%=">28(f%#=

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
Perfluorobutanoic acid (PFBA)	7.3	U	7.3	3.5	ng/L		09/22/20 12:50	09/23/20 23:25	1
Perfluoropentanoic acid (PFPeA)	2.9	U	2.9	0.71	ng/L		09/22/20 12:50	09/23/20 23:25	1
Perfluorohexanoic acid (PFHxA)	2.9	U	2.9	0.85	ng/L		09/22/20 12:50	09/23/20 23:25	1
Perfluoroheptanoic acid (PFHpA)	2.9	U	2.9	0.36	ng/L		09/22/20 12:50	09/23/20 23:25	1
Perfluorooctanoic acid (PFOA)	2.9	U	2.9	1.2	ng/L		09/22/20 12:50	09/23/20 23:25	1
Perfluorononanoic acid (PFNA)	2.9	U	2.9	0.39	ng/L		09/22/20 12:50	09/23/20 23:25	1
Perfluorodecanoic acid (PFDA)	2.9	U	2.9	0.45	ng/L		09/22/20 12:50	09/23/20 23:25	1
Perfluoroundecanoic acid (PFUnA)	2.9	U	2.9	1.6	ng/L		09/22/20 12:50	09/23/20 23:25	1
Perfluorododecanoic acid (PFDoA)	2.9	U	2.9	0.80	ng/L		09/22/20 12:50	09/23/20 23:25	1
Perfluorotridecanoic acid (PFTriA)	2.9	U	2.9	1.9	ng/L		09/22/20 12:50	09/23/20 23:25	1
Perfluorotetradecanoic acid (PFTeA)	2.9	U	2.9	1.1	ng/L		09/22/20 12:50	09/23/20 23:25	1
Perfluorobutanesulfonic acid (PFBS)	2.9	U	2.9	0.29	ng/L		09/22/20 12:50	09/23/20 23:25	1
Perfluorohexanesulfonic acid (PFHxS)	2.9	U	2.9	0.83	ng/L		09/22/20 12:50	09/23/20 23:25	1

Client: New York State D.E.C. Job ID: 460-218480-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&PQ65B8G75

.(/&'()*!#&012&345678939567G

M\$(!O%#	+#,-!%	V-(!"J"#=	+.	<1.	U\$"%	1	;=#*(=#@	M\$(!OT#@	1"!&L(A
Perfluoroheptanesulfonic Acid	2.9	U	2.9	0.28	ng/L		09/22/20 12:50	09/23/20 23:25	1
(PFHpS)					_				
Perfluorooctanesulfonic acid (PFOS)	2.9		2.9		ng/L			09/23/20 23:25	1
Perfluorodecanesulfonic acid (PFDS)	2.9	U	2.9	0.47	ng/L		09/22/20 12:50	09/23/20 23:25	1
Perfluorooctanesulfonamide (FOSA)	2.9	U	2.9		ng/L		09/22/20 12:50	09/23/20 23:25	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	7.3	U	7.3	1.8	ng/L		09/22/20 12:50	09/23/20 23:25	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	7.3	U	7.3	1.9	ng/L		09/22/20 12:50	09/23/20 23:25	1
6:2 FTS	7.3	U	7.3	3.6	ng/L		09/22/20 12:50	09/23/20 23:25	1
8:2 FTS	2.9	U	2.9	0.67	ng/L		09/22/20 12:50	09/23/20 23:25	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C8 FOSA	82		25 - 150				09/22/20 12:50	09/23/20 23:25	
13C4 PFBA	79		25 - 150				09/22/20 12:50	09/23/20 23:25	
13C5 PFPeA	86		25 - 150				09/22/20 12:50	09/23/20 23:25	
13C2 PFHxA	92		25 - 150				09/22/20 12:50	09/23/20 23:25	
13C4 PFHpA	99		25 - 150				09/22/20 12:50	09/23/20 23:25	
13C4 PFOA	96		25 - 150				09/22/20 12:50	09/23/20 23:25	
13C5 PFNA	109		25 - 150				09/22/20 12:50	09/23/20 23:25	
13C2 PFDA	110		25 - 150				09/22/20 12:50	09/23/20 23:25	
13C2 PFUnA	105		25 - 150				09/22/20 12:50	09/23/20 23:25	
13C2 PFDoA	102		25 - 150				09/22/20 12:50	09/23/20 23:25	
13C2 PFTeDA	98		25 - 150				09/22/20 12:50	09/23/20 23:25	
13C3 PFBS	86		25 - 150				09/22/20 12:50	09/23/20 23:25	
1802 PFHxS	89		25 - 150				09/22/20 12:50	09/23/20 23:25	
13C4 PFOS	91		25 - 150				09/22/20 12:50	09/23/20 23:25	
d3-NMeFOSAA	90		25 - 150				09/22/20 12:50	09/23/20 23:25	
d5-NEtFOSAA	90		25 - 150				09/22/20 12:50	09/23/20 23:25	
M2-6:2 FTS	117		25 - 150				09/22/20 12:50	09/23/20 23:25	
M2-8:2 FTS	111		25 - 150				09/22/20 12:50	09/23/20 23:25	

VOC Data Section

QA/QC Review of Method 8260C Volatiles Data for Eurofins TestAmerica Edison, Job No. 460-218480-1

11 Soil Samples Collected September 14-15, 2020

Prepared by: Donald Anné February 8, 2021

Geology

Hydrology

Remediation

Water Supply

<u>Holding Times</u>: Samples TP-3, TP-5, SS-01, SS-02, SS-03, and SS-05 were analyzed beyond USEPA SW-846 holding times. Positive and "not detected results for these samples should be considered estimated (J or UJ respectively).

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

<u>Initial Calibration</u>: The average RRFs for applicable compounds were above the method minimums and the %RSDs were below the method maximum, as required.

The average RRFs for target compounds were above the allowable minimum (0.050) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The RRFs for applicable compounds were above the method minimums, as required. The %D for dichlorodifluoromethane was above the method maximum on 09-22-20 (K18989.D). The %Ds for 1,1-dichloroethene and 1,1,2-trichloro-1,2,2-trifluoroethane were above the method maximum on 09-28-20 (K19145.D). No action is taken on fewer than 20% of the compounds with method criteria outside control limits per calibration.

The associated RRFs for target compounds were above the allowable minimum (0.050), as required.

The %D for dichlorodifluoromethane was above the allowable maximum (20%) on 09-22-20 (K18989.D). The %Ds for 1,1-dichloroethene and 1,1,2-trichloro-1,2,2-trifluoroethane were above the allowable maximum (20%) on 09-28-20 (K19145.D). Positive results for these compounds should be considered estimated (J) in associated samples.

<u>Blanks</u>: The analyses of the method blanks reported target compounds as not detected.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

- <u>Surrogate Recovery</u>: One of four surrogate recoveries for sample SS-01 was above control limits. Positive results for sample SS-01 should be considered estimated, biased high (J+).
- Matrix Spike/Matrix Spike Duplicate: The relative percent differences for 10 target compounds (highlighted yellow on attached FORM III) were above the allowable maximum; 1 of 2 percent recoveries for acetone and methyl acetate were above QC limits; and 1 or 2 %Rs for 38 compounds were below QC limits, but not below 10% for soil MS/MSD sample SB-8 (0-2). The positive result for acetone should be considered estimated, biased high (J+); positive results for 2-butanone and carbon disulfide estimated, biased low (J-); and the "not detected" results for 36 compounds estimated (UJ) in sample SB-8 (0-2)
- <u>Laboratory Control Sample</u>: The relative percent differences for target compounds were below the allowable maximum and the percent recoveries were within QC limits for soil samples LCS 460-726019/3, LCSD 460-726019/4, LCS 460-726089/3, LCSD 460-726089/4, LCS 460-727227/3, and LCSD 460-727227/4.
- <u>Field Duplicates</u>: The soil field duplicate, Dup, was collected at sample location SB-7 (0-0.5) and analyzed for volatiles. However, the sample SB-7 (0-0.5) was not analyzed for volatiles. The results for the Dup should be considered representative of location SB-7 (0-0.5).
- <u>Compound ID</u>: Checked compounds and surrogates were within quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

FORM II GC/MS VOA SURROGATE RECOVERY

ab Name: Eurofins TestAmerica, Edison	0-1
---------------------------------------	-----

SDG No.: ____

Matrix: Solid Level: Low

GC Column (1): Rtx-624 ID: 0.25 (mm)

Client Sample ID	Lab Sample ID	DBFM #	DCA #	TOL #	BFB #
TP-3	460-218480-3	105	106	95	100
TP-5	460-218480-5	113	111	101	106
SS-01	460-218480-6	136	130	116	126 X
SS-02	460-218480-7	113	112	100	106
SS-03	460-218480-8	133	133	118	124
SS-04	460-218480-9	117	110	101	107
SS-05	460-218480-10	109	112	99	106
SB-5(0-2)	460-218480-15	110	110	98	105
SB-8(0-2)	460-218480-18	114	114	102	105
SB-10(0-5)	460-218480-20	113	112	101	107
Dup	460-218480-22	115	113	102	107
	MB 460-726019/7	107	100	98	106
	MB 460-726089/7	108	105	98	106
	MB 460-727227/7	109	103	95	106
	LB3 460-727322/1-A	113	106	99	109
	LCS 460-726019/3	108	104	102	107
	LCS 460-726089/3	107	104	99	105
	LCS 460-727227/3	106	98	96	105
	LCSD 460-726019/4	103	100	95	100
	LCSD 460-726089/4	105	101	97	103
	LCSD 460-727227/4	105	99	94	102
SB-8(0-2) MS	460-218480-18 MS	114	106	103	107
SB-8(0-2) MSD	460-218480-18 MSD	116	109	103	109

		QC LIMITS
<pre>DBFM = Dibromofluoromethane</pre>	(Surr)	48-150
DCA = 1,2-Dichloroethane-d4	(Surr)	77-145
TOL = Toluene-d8 (Surr)		80-120
BFB = 4-Bromofluorobenzene		79-125

FORM III GC/MS VOA MATRIX SPIKE RECOVERY

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-218480-1

SDG No.:

Matrix: Solid Level: Low Lab File ID: K19014.D

Lab ID: 460-218480-18 MS Client ID: SB-8(0-2) MS

	CDIVE	CAMPLE	MC	МС	00	
	SPIKE	SAMPLE	MS	MS %	QC LIMITS	#
COMPOUND	ADDED	CONCENTRATION			-	#
COMPOUND 1,1,1+Trichloroethane	(ug/Kg) 26.3	(ug/Kg) 1.1 U	(ug/Kg) 17.0	REC 64	REC 78-132	F1
1,1,2,2 Tetrachloroethane	26.3	1.1 U	11.2	42	· I	F1
1,1,2,7 Trichloro 1,2,2 trifluor	26.3	1.1 U	16.5	63		F1
oethane	20.3	1.10	10.5	03	70-136	ГI
1,1,2 Trichloroethane	26.3	1.1 U	14.8	56	75-120	F1
1,1 Dichloroethane	26.3	1.1 U	19.3	73	·	F1
1,1 Dichloroethene	26.3	1.1 U	19.4	74	·	F1
1,2,4 Trichlorobenzene	26.3	1.1 U	2.89	11		F1
1,2-Dibromo-3-Chloropropane	26.3	1.1 U	9.01	34	·	F1
1,2 Dichlorobenzene	26.3	1.1 U	5.63	21	·	F1
1,2-Dichloroethane	26.3	1.1 U	18.3	70	70-132	
1,2 Dichloropropane	26.3	1.1 U	16.6	63	·	F1
1,3 Dichlorobenzene	26.3	1.1 U	5.94	23	·	F1
1,4 Dichlorobenzene	26.3	1.1 U	5.87	22		F1
2 Butanone (MEK)	132	10	101	69	·	F1
2-Hexanone	132	5.6 U	88.9	67	·	F1
4-Methyl-2-pentanone (MIBK)	132	5.6 U	102	77	·	F1
Acetone	132	59	205	111		
Benzene	26.3	1.1 U	17.0	65	·	F1
Bromoform	26.3	1.1 U	10.3	39	·	F1
Bromomethane	26.3	1.1 U	15.7	60	·	F1
Carbon disulfide	26.3	2.0	18.3	62	·	F1
Carbon tetrachloride	26.3	1.1 U	15.1	57	·	F1
Chlorobenzene	26.3	1.1 U	10.4	40	·	F1
Dibromochloromethane	26.3	1.1 U	12.4	47	·	F1
Chloroethane	26.3	1.1 U	19.0	72		
Chloroform	26.3	1.1 U	18.5	70	· I	F1
Chloromethane	26.3	1.1 U	17.5	67	48-150	
cis+1,2+Dichloroethene	26.3	1.1 U	18.8	71	·	F1
Cyclohexane	26.3	1.1 U	14.0	53		F1
Bromodichloromethane	26.3	1.1 U	14.9	56		F1
Dichlorodifluoromethane	26.3	1.1 U	14.1	54	40-146	
Ethylbenzene	26.3	1.1 U	10.5	40	·	F1
1,2 Dibromoethane	26.3	1.1 U	13.7	52		F1
Isopropylbenzene	26.3	1.1 U	8.93	34		F1
Methyl acetate	52.7	5.6 U	59.4	113		
Methyl tert-butyl ether	26.3	1.1 U	22.1	84		
Methylcyclohexane	26.3	1.1 U	11.7	44		F1
Methylene Chloride	26.3	2.3	25.8	89		
Tetrach loroethene	26.3	1.1 U	10.9	41		F1
Toluene	26.3	1.1 U	13.3	50		F1
trans (1,2) Dichloroethene	26.3	1.1 U	19.0	72	78-128	F1

[#] Column to be used to flag recovery and RPD values FORM III $8260\,\mathrm{C}$

FORM III GC/MS VOA MATRIX SPIKE RECOVERY

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-218480-1

SDG No.:

Matrix: Solid Level: Low Lab File ID: K19014.D

Lab ID: 460-218480-18 MS Client ID: SB-8(0-2) MS

	SPIKE	SAMPLE	MS	MS	QC	
	ADDED	CONCENTRATION	CONCENTRATION	용	LIMITS	#
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC	REC	
Trichloroethene	26.3	1.1 U	14.6	55	79-120	F1
Trichlorofluoromethane	26.3	1.1 U	17.8	68	67-142	
Vinyl chloride	26.3	1.1 U	18.1	69	56-147	
Xylenes, Total	52.7	2.2 U	19.9	38	80-120	F1
cis+1,3+Dichloropropene	26.3	1.1 U	11.4	43	72-120	F1
Styrene	26.3	1.1 U	9.06	34	80-120	F1

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

FORM III GC/MS VOA MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-218480-1

SDG No.:

Matrix: Solid Level: Low Lab File ID: K19015.D

Lab ID: 460-218480-18 MSD Client ID: SB-8(0-2) MSD

	SPIKE	MSD	MSD		QC LI	MITS	
	ADDED	CONCENTRATION	%	용			#
COMPOUND	(ug/Kg)	(ug/Kg)	REC	RPD	RPD	REC	
1,1,1-Trichloroethane	25.5	20.0	78	16	30	78-132	
1,1,2,2 Tetrachloroethane	25.5	14.8	58	28	30	69-123	F1
1,1,2-Trichloro-1,2,2-trifluor	25.5	18.9	74	13	30	78-136	F1
oethane							
1,1,2 Trichloroethane	25.5	17.2	67	/	30	75-120	
1,1-Dichloroethane	25.5	20.7	81		30	76-129	
1,1-Dichloroethene	25.5	20.7	81		30	77-132	1
1,2,4 Trichlorobenzene	25.5	5.27	21		30		F1 F2
1,2 Dibromo 3 Chloropropane	25.5	13.3	52		30		F1 F2
1,2 Dichlorobenzene	25.5	9.18	36		30		F1 F2
1,2-Dichloroethane	25.5	19.4	76		30	70-132	
1,2-Dichloropropane	25.5	18.5	73		30	73-124	
1,3 Dichlorobenzene	25.5	9.16	36		30		F1 F2
1,4 Dichlorobenzene	25.5	9.10	36		30		F1 F2
2-Butanone (MEK)	128	96.4	67		30	75-120	1
2-Hexanone	128	86.5	68	, I	30	78-120	
4-Methyl-2-pentanone (MIBK)	128	98.4	77	, I	30	80-122	
Acetone	128	237	140	14	30	63-131	F1
Benzene	25.5	18.8	74	10	30	80-123	F1
Bromoform	25.5	13.9	55	30	30	48-142	2
Bromomethane	25.5	21.3	83		30	68-136	
Carbon disulfide	25.5	16.1	55	13	30	67-136	F1
Carbon tetrachloride	25.5	18.1	71	18	30	72-136	
Chlorobenzene	25.5	14.0	55	30	30	80-120	F1
Dibromochloromethane	25.5	15.4	60	22	30	62-128	
Chloroethane	25.5	21.3	83	11	30	65-134	
Chloroform	25.5	20.4	80	10	30	79-126	5
Chloromethane	25.5	20.0	78	13	30	48-150	
cis-1,2-Dichloroethene	25.5	20.6	81	9	30	80-123	3
Cyclohexane	25.5	16.4	64	16	30	80-132	F1
Bromodichloromethane	25.5	17.8	70	18	30	73-124	F1
Dichlorodifluoromethane	25.5	17.3	68	21	30	40-146	5
Ethylbenzene	25.5	14.3	56	31	30	80-120	F1 F2
1,2 Dibromoethane	25.5	16.6	65	19	30	79-120	F1
Isopropylbenzene	25.5	13.4	53	40	30	80-120	F1 F2
Methyl acetate	51.0	94.3	185	45	30	58-143	F1 F2
Methyl tert-butyl ether	25.5	21.6	85	2	30	80-125	
Methylcyclohexane	25.5	13.5	53		30	79-133	F1
Methylene Chloride	25.5	26.3	94		30	76-127	
Tetrachloroethene	25.5	14.3	56		30	78-123	F1
Toluene	25.5	16.5	65	, I	30	80-120	
trans-1,2-Dichloroethene	25.5	20.0	79		30	78-128	
·	1	1					

[#] Column to be used to flag recovery and RPD values

FORM III GC/MS VOA MATRIX SPIKE DUPLICATE RECOVERY

Lab Nam	me: Eurofins	TestAmerica,	Edison	Job No.:	460-218480-1
SDG No.	.:				

Matrix: Solid Level: Low Lab File ID: K19015.D

Lab ID: 460-218480-18 MSD Client ID: SB-8(0-2) MSD

	SPIKE ADDED	MSD CONCENTRATION	MSD %	00	QC L1	MITS	#
COMPOUND	(ug/Kg)	(ug/Kg)	REC	RPD	RPD	REC	
Trichloroethene	25.5	17.7	69	19	30	79-120	F1
Trichlorofluoromethane	25.5	21.7	85	19	30	67-142	
Vinyl chloride	25.5	21.3	83	16	30	56-147	
Xylenes, Total	51.0	27.9	55	34	30	80-120	F1 F2
cis-1,3-Dichloropropene	25.5	15.3	60	29	30	72-120	F1
Styrene	25.5	13.0	51	35	30	80-120	F1 F2

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260C}$

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-218480-1

SDG No.:

Lab Sample ID: CCVIS 460-726019/2 Calibration Date: 09/22/2020 23:00

Instrument ID: CVOAMS9 Calib Start Date: 09/10/2020 06:02

GC Column: Rtx-624 ID: 0.25(mm) Calib End Date: 09/10/2020 07:59

Lab File ID: $\underline{\text{K18989.D}}$ Conc. Units: $\underline{\text{ug/L}}$ Heated Purge: $\underline{\text{(Y/N)}}$ Y

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.7025	0.5241	0.1000	14.9	20.0	-25.4*	20.0
Chloromethane	Ave	0.8807	0.8288	0.1000	18.8	20.0	-5.9	20.0
Butadiene	Ave	0.5735	0.5333		18.6	20.0	-7.0	20.0
Vinyl chloride	Ave	0.6015	0.5824	0.1000	19.4	20.0	-3.2	20.0
Bromomethane	Ave	0.3732	0.3378	0.1000	18.1	20.0	-9.5	50.0
Chloroethane	Ave	0.2986	0.2778	0.1000	18.6	20.0	-7.0	50.0
Dichlorofluoromethane	Ave	0.7206	0.6787		18.8	20.0	-5.8	20.0
Pentane	Ave	1.595	1.696		42.5	40.0	6.3	20.0
Trichlorofluoromethane	Ave	0.6096	0.5795	0.1000	19.0	20.0	-4.9	20.0
Ethyl ether	Ave	0.2907	0.3350		23.0	20.0	15.2	20.0
Ethanol	QuaF		0.0690		777	800	-2.8	50.0
2-Methyl-1,3-butadiene	Ave	0.3872	0.4590		23.7	20.0	18.5	20.0
Acrolein	Ave	1.311	1.164		266	300	-11.2	50.0
1,1-Dichloroethene	Ave	0.3557	0.3897	0.1000	21.9	20.0	9.6	20.0
Acetone	Ave	1.309	1.152	0.0500	88.0	100	-12.0	50.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.3790	0.4292	0.1000	22.7	20.0	13.3	20.0
Iodomethane	Ave	0.7149	0.7366		20.6	20.0	3.0	20.0
Isopropyl alcohol	QuaF		0.9126		166	200	-17.1	50.0
Carbon disulfide	Ave	1.704	1.913	0.1000	22.5	20.0	12.3	50.0
Allyl chloride	Ave	0.5357	0.5873		21.9	20.0	9.6	20.0
Methyl acetate	Ave	7.664	7.505	0.1000	39.2	40.0	-2.1	20.0
Acetonitrile	Ave	0.9580	0.6838		143	200	-28.6*	20.0
Cyclopentene	Ave	1.059	1.192		22.5	20.0	12.5	20.0
Methylene Chloride	Ave	0.4570	0.4970	0.1000	21.8	20.0	8.8	20.0
2-Methyl-2-propanol	QuaF		1.330		167	200	-16.6	50.0
Acrylonitrile	Ave	0.1478	0.1703		230	200	15.2	20.0
trans-1,2-Dichloroethene	Ave	0.3900	0.4493	0.1000	23.0	20.0	15.2	20.0
Methyl tert-butyl ether	Ave	1.026	1.106	0.1000	21.5	20.0	7.7	20.0
Hexane	Ave	0.3740	0.4326		23.1	20.0	15.6	20.0
1,1-Dichloroethane	Ave	0.7301	0.8499	0.2000	23.3	20.0	16.4	20.0
Vinyl acetate	QuaF		1.589		34.4	40.0	-13.9	20.0
2-Chloro-1,3-butadiene	Ave	0.3544	0.4246		24.0	20.0	19.8	20.0
Isopropyl ether	Ave	1.300	1.489		22.9	20.0	14.5	20.0
Tert-butyl ethyl ether	QuaF		1.389		21.2	20.0	6.0	20.0
cis-1,2-Dichloroethene	Ave	0.4297	0.4946	0.1000	23.0	20.0	15.1	20.0
2-Butanone (MEK)	Ave	0.4185	0.4238	0.0500	101	100	1.3	50.0
2,2-Dichloropropane	Ave	0.1879	0.1972		21.0	20.0	4.9	20.0
Propionitrile	Ave	1.507	1.465		194	200	-2.8	20.0
Ethyl acetate	Ave	0.3704	0.3823		41.3	40.0	3.2	20.0
Methyl acrylate	Ave	0.4048	0.4368		21.6	20.0	7.9	20.0

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-218480-1

SDG No.:

Lab Sample ID: CCVIS 460-726019/2 Calibration Date: 09/22/2020 23:00

Instrument ID: CVOAMS9 Calib Start Date: 09/10/2020 06:02

GC Column: Rtx-624 ID: 0.25(mm) Calib End Date: 09/10/2020 07:59

Lab File ID: K18989.D Conc. Units: ug/L Heated Purge: (Y/N) Y

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Methacrylonitrile	Ave	0.1430	0.1644		230	200	15.0	20.0
Chlorobromomethane	Ave	0.2037	0.2380		23.4	20.0	16.8	20.0
Tetrahydrofuran	Ave	0.4540	0.5211		45.9	40.0	14.8	20.0
Chloroform	Ave	0.6764	0.7735	0.2000	22.9	20.0	14.4	20.0
1,1,1-Trichloroethane	Ave	0.5767	0.6451	0.1000	22.4	20.0	11.8	20.0
Cyclohexane	Ave	0.6107	0.6882	0.1000	22.5	20.0	12.7	50.0
1,1-Dichloropropene	Ave	0.5072	0.5957		23.5	20.0	17.4	20.0
Carbon tetrachloride	Ave	0.4980	0.5521	0.1000	22.2	20.0	10.9	20.0
Benzene	Ave	1.977	2.179	0.5000	22.0	20.0	10.2	20.0
Isobutyl alcohol	QuaF		0.1339		394	500	-21.1*	20.0
1,2-Dichloroethane	Ave	0.4686	0.5233	0.1000	22.3	20.0	11.7	20.0
2,2,4-Trimethylpentane	Ave	1.672	1.970		23.6	20.0	17.8	20.0
Isopropyl acetate	Ave	1.444	1.533		21.2	20.0	6.2	20.0
Tert-amyl methyl ether	Ave	0.3213	0.3456		21.5	20.0	7.6	20.0
n-Heptane	QuaF		0.4788		25.1	20.0	25.7*	20.0
n-Butanol	QuaF		0.2868		353	500	-29.4	50.0
Trichloroethene	Ave	0.3632	0.4140	0.2000	22.8	20.0	14.0	20.0
Ethyl acrylate	Ave	0.1986	0.2321		23.4	20.0	16.9	20.0
Methylcyclohexane	Ave	0.7248	0.8514	0.1000	23.5	20.0	17.5	50.0
1,2-Dichloropropane	Ave	0.3659	0.4186	0.1000	22.9	20.0	14.4	20.0
Dibromomethane	Ave	0.2188	0.2467		22.5	20.0	12.7	20.0
Methyl methacrylate	Ave	0.2039	0.2228		43.7	40.0	9.3	20.0
1,4-Dioxane	QuaF		1.473		376	400	-6.1	50.0
n-Propyl acetate	Ave	0.4449	0.4617		20.8	20.0	3.8	20.0
Bromodichloromethane	Ave	0.4582	0.4939	0.2000	21.6	20.0	7.8	20.0
2-Nitropropane	Ave	0.0802	0.0710		35.4	40.0	-11.6	20.0
2-Chloroethyl vinyl ether	Ave	0.0664	0.0866		26.2	20.0	30.5*	20.0
Epichlorohydrin	Ave	0.3273	0.3309		404	400	1.1	20.0
cis-1,3-Dichloropropene	Ave	0.7024	0.7201	0.2000	20.5	20.0	2.5	50.0
4-Methyl-2-pentanone (MIBK)	Ave	3.399	3.628	0.0500	107	100	6.7	50.0
Toluene	Ave	1.811	1.994	0.4000	22.0	20.0	10.1	20.0
trans-1,3-Dichloropropene	Ave	0.5855	0.5737	0.1000	19.6	20.0	-2.0	50.0
Ethyl methacrylate	Ave	0.5247	0.5390		20.5	20.0	2.7	20.0
1,1,2-Trichloroethane	Ave	0.3060	0.3179	0.1000	20.8	20.0	3.9	20.0
Tetrachloroethene	Ave	0.4454	0.4870	0.2000	21.9	20.0	9.3	20.0
1,3-Dichloropropane	Ave	0.5871	0.6192		21.1	20.0	5.5	20.0
2-Hexanone	Ave	2.103	2.087	0.0500	99.2	100	-0.8	50.0
Dibromochloromethane	Ave	0.4054	0.4016	0.1000	19.8	20.0	-0.9	50.0
n-Butyl acetate	QuaF		0.6437		18.9	20.0	-5.7	20.0
1,2-Dibromoethane	Ave	0.3523	0.3737	0.1000	21.2	20.0	6.1	20.0
Chlorobenzene	Ave	1.106	1.197	0.5000	21.6	20.0	8.2	20.0

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-218480-1

SDG No.:

Lab Sample ID: CCVIS 460-726019/2 Calibration Date: 09/22/2020 23:00

Instrument ID: CVOAMS9 Calib Start Date: 09/10/2020 06:02

GC Column: Rtx-624 ID: 0.25(mm) Calib End Date: 09/10/2020 07:59

Lab File ID: K18989.D Conc. Units: ug/L Heated Purge: (Y/N) Y

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,1,1,2-Tetrachloroethane	Ave	0.4857	0.4993		20.6	20.0	2.8	20.0
Ethylbenzene	Ave	0.6058	0.6853	0.1000	22.6	20.0	13.1	20.0
m-Xylene & p-Xylene	Ave	0.7516	0.8336	0.1000	22.2	20.0	10.9	20.0
o-Xylene	Ave	0.7861	0.8767	0.3000	22.3	20.0	11.5	20.0
Styrene	Ave	1.200	1.325	0.3000	22.1	20.0	10.4	20.0
n-Butyl acrylate	QuaF		0.3339		19.6	20.0	-2.0	20.0
Bromoform	Ave	0.2891	0.2861	0.1000	19.8	20.0	-1.0	20.0
Amyl acetate (mixed isomers)	QuaF		1.310		17.8	20.0	-11.0	20.0
Isopropylbenzene	Ave	2.115	2.392	0.1000	22.6	20.0	13.1	20.0
Bromobenzene	Ave	0.9016	0.9227		20.5	20.0	2.3	20.0
1,1,2,2-Tetrachloroethane	Ave	0.998	1.002	0.3000	20.1	20.0	0.4	20.0
1,2,3-Trichloropropane	Ave	0.2433	0.2475		20.3	20.0	1.7	20.0
trans-1,4-Dichloro-2-butene	Ave	0.2359	0.2194		18.6	20.0	-7.0	20.0
N-Propylbenzene	Ave	4.405	4.839		22.0	20.0	9.8	20.0
2-Chlorotoluene	Ave	2.639	2.830		21.4	20.0	7.2	20.0
4-Ethyltoluene	Ave	3.519	3.820		21.7	20.0	8.5	20.0
4-Chlorotoluene	Ave	2.645	2.871		21.7	20.0	8.5	20.0
1,3,5-Trimethylbenzene	Ave	3.247	3.425		21.1	20.0	5.5	20.0
Butyl Methacrylate	Ave	1.085	1.025		18.9	20.0	-5.5	20.0
tert-Butylbenzene	Ave	2.653	2.701		20.4	20.0	1.8	20.0
1,2,4-Trimethylbenzene	Ave	3.323	3.475		20.9	20.0	4.6	20.0
sec-Butylbenzene	Ave	4.210	4.474		21.3	20.0	6.3	20.0
1,3-Dichlorobenzene	Ave	1.692	1.814	0.6000	21.4	20.0	7.2	20.0
1,4-Dichlorobenzene	Ave	1.681	1.813	0.5000	21.6	20.0	7.9	20.0
4-Isopropyltoluene	Ave	3.606	3.868		21.5	20.0	7.3	20.0
1,2,3-Trimethylbenzene	Ave	3.516	3.590		20.4	20.0	2.1	20.0
Benzyl chloride	Ave	1.706	1.517		17.8	20.0	-11.1	50.0
Indan	Ave	3.185	3.309		20.8	20.0	3.9	20.0
1,2-Dichlorobenzene	Ave	1.774	1.826	0.4000	20.6	20.0	2.9	20.0
p-Diethylbenzene	Ave	1.868	2.012		21.5	20.0	7.7	20.0
n-Butylbenzene	Ave	1.909	2.140		22.4	20.0	12.1	20.0
1,2-Dibromo-3-Chloropropane	Ave	0.2462	0.2231	0.0500	18.1	20.0	-9.4	50.0
1,2,4,5-Tetramethylbenzene	Ave	3.633	3.639		20.0	20.0	0.2	20.0
1,3,5-Trichlorobenzene	Ave	1.622	1.726		21.3	20.0	6.4	20.0
1,2,4-Trichlorobenzene	Ave	1.558	1.622	0.2000	20.8	20.0	4.1	20.0
Hexachlorobutadiene	Ave	0.8127	0.8231		20.3	20.0	1.3	20.0
Naphthalene	Ave	3.710	3.532		19.0	20.0	-4.8	50.0
1,2,3-Trichlorobenzene	Ave	1.589	1.572		19.8	20.0	-1.1	20.0
Dibromofluoromethane (Surr)	Ave	0.3610	0.3863		53.5	50.0	7.0	20.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.3724	0.3880		52.1	50.0	4.2	20.0
Toluene-d8 (Surr)	Ave	1.591	1.590		50.0	50.0	-0.0	20.0

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-218480-1

SDG No.:

Lab Sample ID: CCVIS 460-726019/2 Calibration Date: 09/22/2020 23:00

Instrument ID: CVOAMS9 Calib Start Date: 09/10/2020 06:02

GC Column: Rtx-624 ID: 0.25(mm) Calib End Date: 09/10/2020 07:59

Lab File ID: K18989.D Conc. Units: ug/L Heated Purge: (Y/N) Y

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
4-Bromofluorobenzene	Ave	0.4787	0.4949		51.7	50.0	3.4	20.0

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-218480-1

SDG No.:

Lab Sample ID: CCVIS 460-727227/2 Calibration Date: 09/28/2020 05:09

Instrument ID: CVOAMS9 Calib Start Date: 09/10/2020 06:02

GC Column: Rtx-624 ID: 0.25(mm) Calib End Date: 09/10/2020 07:59

Lab File ID: $\underline{\text{K19145.D}}$ Conc. Units: $\underline{\text{ug/L}}$ Heated Purge: $(\underline{\text{Y/N}})$ $\underline{\text{Y}}$

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.7025	0.7791	0.1000	22.2	20.0	10.9	20.0
Chloromethane	Ave	0.8807	0.8982	0.1000	20.4	20.0	2.0	20.0
Butadiene	Ave	0.5735	0.5837		20.4	20.0	1.8	20.0
Vinyl chloride	Ave	0.6015	0.6439	0.1000	21.4	20.0	7.0	20.0
Bromomethane	Ave	0.3732	0.3942	0.1000	21.1	20.0	5.6	50.0
Chloroethane	Ave	0.2986	0.3138	0.1000	21.0	20.0	5.1	50.0
Dichlorofluoromethane	Ave	0.7206	0.8202		22.8	20.0	13.8	20.0
Pentane	Ave	1.595	1.783		44.7	40.0	11.8	20.0
Trichlorofluoromethane	Ave	0.6096	0.7096	0.1000	23.3	20.0	16.4	20.0
Ethyl ether	Ave	0.2907	0.3168		21.8	20.0	9.0	20.0
2-Methyl-1,3-butadiene	Ave	0.3872	0.4583		23.7	20.0	18.4	20.0
Ethanol	QuaF		0.0722		813	800	1.6	50.0
Acrolein	Ave	1.311	1.231		282	300	-6.1	50.0
1,1-Dichloroethene	Ave	0.3557	0.4374	0.1000	24.6	20.0	23.0*	20.0
Acetone	Ave	1.309	1.182	0.0500	90.3	100	-9.7	50.0
1,1,2 Trichloro 1,2,2 triflu oroethane	Ave	0.3790	0.4708	0.1000	24.8	20.0	24.2*	20.0
Iodomethane	Ave	0.7149	0.8308		23.2	20.0	16.2	20.0
Isopropyl alcohol	QuaF		0.8716		158	200	-20.8	50.0
Carbon disulfide	Ave	1.704	1.984	0.1000	23.3	20.0	16.5	50.0
Allyl chloride	Ave	0.5357	0.5485		20.5	20.0	2.4	20.0
Methyl acetate	Ave	7.664	7.190	0.1000	37.5	40.0	-6.2	20.0
Acetonitrile	Ave	0.9580	0.8788		183	200	-8.3	20.0
Cyclopentene	Ave	1.059	1.158		21.9	20.0	9.3	20.0
Methylene Chloride	Ave	0.4570	0.5040	0.1000	22.1	20.0	10.3	20.0
2-Methyl-2-propanol	QuaF		1.390		174	200	-12.8	50.0
Acrylonitrile	Ave	0.1478	0.1495		202	200	1.1	20.0
trans-1,2-Dichloroethene	Ave	0.3900	0.4626	0.1000	23.7	20.0	18.6	20.0
Methyl tert-butyl ether	Ave	1.026	1.119	0.1000	21.8	20.0	9.0	20.0
Hexane	Ave	0.3740	0.3995		21.4	20.0	6.8	20.0
1,1-Dichloroethane	Ave	0.7301	0.8058	0.2000	22.1	20.0	10.4	20.0
Vinyl acetate	QuaF		1.593		34.5	40.0	-13.7	20.0
2-Chloro-1,3-butadiene	Ave	0.3544	0.3952		22.3	20.0	11.5	20.0
Isopropyl ether	Ave	1.300	1.399		21.5	20.0	7.6	20.0
Tert-butyl ethyl ether	QuaF		1.365		20.8	20.0	4.2	20.0
cis-1,2-Dichloroethene	Ave	0.4297	0.4732	0.1000	22.0	20.0	10.1	20.0
2-Butanone (MEK)	Ave	0.4185	0.4398	0.0500	105	100	5.1	50.0
2,2-Dichloropropane	Ave	0.1879	0.2031		21.6	20.0	8.1	20.0
Propionitrile	Ave	1.507	1.377		183	200	-8.6	20.0
Ethyl acetate	Ave	0.3704	0.3704		40.0	40.0	0.0	20.0
Methyl acrylate	Ave	0.4048	0.3973		19.6	20.0	-1.8	20.0

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-218480-1

SDG No.:

Lab Sample ID: CCVIS 460-727227/2 Calibration Date: 09/28/2020 05:09

Instrument ID: CVOAMS9 Calib Start Date: 09/10/2020 06:02

GC Column: Rtx-624 ID: 0.25(mm) Calib End Date: 09/10/2020 07:59

Lab File ID: K19145.D Conc. Units: ug/L Heated Purge: (Y/N) Y

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Methacrylonitrile	Ave	0.1430	0.1494		209	200	4.5	20.0
Chlorobromomethane	Ave	0.2037	0.2299		22.6	20.0	12.8	20.0
Tetrahydrofuran	Ave	0.4540	0.5129		45.2	40.0	13.0	20.0
Chloroform	Ave	0.6764	0.7499	0.2000	22.2	20.0	10.9	20.0
1,1,1-Trichloroethane	Ave	0.5767	0.6640	0.1000	23.0	20.0	15.1	20.0
Cyclohexane	Ave	0.6107	0.6929	0.1000	22.7	20.0	13.5	50.0
1,1-Dichloropropene	Ave	0.5072	0.5576		22.0	20.0	9.9	20.0
Carbon tetrachloride	Ave	0.4980	0.5661	0.1000	22.7	20.0	13.7	20.0
Benzene	Ave	1.977	1.962	0.5000	19.8	20.0	-0.8	20.0
Isobutyl alcohol	QuaF		0.1393		410	500	-17.9	20.0
1,2-Dichloroethane	Ave	0.4686	0.4852	0.1000	20.7	20.0	3.6	20.0
Isopropyl acetate	Ave	1.444	1.484		20.6	20.0	2.8	20.0
2,2,4-Trimethylpentane	Ave	1.672	1.868		22.3	20.0	11.7	20.0
Tert-amyl methyl ether	Ave	0.3213	0.3450		21.5	20.0	7.4	20.0
n-Heptane	QuaF		0.4318		22.6	20.0	13.2	20.0
n-Butanol	QuaF		0.3134		386	500	-22.8	50.0
Trichloroethene	Ave	0.3632	0.4020	0.2000	22.1	20.0	10.7	20.0
Ethyl acrylate	Ave	0.1986	0.2201		22.2	20.0	10.8	20.0
Methylcyclohexane	Ave	0.7248	0.8328	0.1000	23.0	20.0	14.9	50.0
1,2-Dichloropropane	Ave	0.3659	0.3919	0.1000	21.4	20.0	7.1	20.0
Dibromomethane	Ave	0.2188	0.2372		21.7	20.0	8.4	20.0
Methyl methacrylate	Ave	0.2039	0.2098		41.2	40.0	2.9	20.0
1,4-Dioxane	QuaF		1.517		387	400	-3.2	50.0
n-Propyl acetate	Ave	0.4449	0.4289		19.3	20.0	-3.6	20.0
Bromodichloromethane	Ave	0.4582	0.4900	0.2000	21.4	20.0	6.9	20.0
2-Nitropropane	Ave	0.0802	0.0650		32.4	40.0	-19.0	20.0
2-Chloroethyl vinyl ether	Ave	0.0664	0.0814		24.6	20.0	22.6*	20.0
Epichlorohydrin	Ave	0.3273	0.3348		409	400	2.3	20.0
cis-1,3-Dichloropropene	Ave	0.7024	0.6760	0.2000	19.2	20.0	-3.8	50.0
4-Methyl-2-pentanone (MIBK)	Ave	3.399	3.515	0.0500	103	100	3.4	50.0
Toluene	Ave	1.811	1.856	0.4000	20.5	20.0	2.5	20.0
trans-1,3-Dichloropropene	Ave	0.5855	0.5396	0.1000	18.4	20.0	-7.8	50.0
Ethyl methacrylate	Ave	0.5247	0.4789		18.3	20.0	-8.7	20.0
1,1,2-Trichloroethane	Ave	0.3060	0.2942	0.1000	19.2	20.0	-3.9	20.0
Tetrachloroethene	Ave	0.4454	0.4748	0.2000	21.3	20.0	6.6	20.0
1,3-Dichloropropane	Ave	0.5871	0.5637		19.2	20.0	-4.0	20.0
2-Hexanone	Ave	2.103	2.166	0.0500	103	100	3.0	50.0
Dibromochloromethane	Ave	0.4054	0.3852	0.1000	19.0	20.0	-5.0	50.0
n-Butyl acetate	QuaF		0.5642		16.5	20.0	-17.5	20.0
1,2-Dibromoethane	Ave	0.3523	0.3501	0.1000	19.9	20.0	-0.6	20.0
Chlorobenzene	Ave	1.106	1.158	0.5000	20.9	20.0	4.7	20.0

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-218480-1

SDG No.:

Lab Sample ID: CCVIS 460-727227/2 Calibration Date: 09/28/2020 05:09

Instrument ID: CVOAMS9 Calib Start Date: 09/10/2020 06:02

GC Column: Rtx-624 ID: 0.25(mm) Calib End Date: 09/10/2020 07:59

Lab File ID: $\underline{\text{K19145.D}}$ Conc. Units: $\underline{\text{ug/L}}$ Heated Purge: $(\underline{\text{Y/N}})$ $\underline{\text{Y}}$

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,1,1,2-Tetrachloroethane	Ave	0.4857	0.4708		19.4	20.0	-3.1	20.0
Ethylbenzene	Ave	0.6058	0.6299	0.1000	20.8	20.0	4.0	20.0
m-Xylene & p-Xylene	Ave	0.7516	0.7700	0.1000	20.5	20.0	2.5	20.0
o-Xylene	Ave	0.7861	0.8054	0.3000	20.5	20.0	2.5	20.0
Styrene	Ave	1.200	1.231	0.3000	20.5	20.0	2.5	20.0
n-Butyl acrylate	QuaF		0.3127		18.3	20.0	-8.3	20.0
Bromoform	Ave	0.2891	0.2707	0.1000	18.7	20.0	-6.4	20.0
Amyl acetate (mixed isomers)	QuaF		1.198		16.3	20.0	-18.7	20.0
Isopropylbenzene	Ave	2.115	2.243	0.1000	21.2	20.0	6.0	20.0
Bromobenzene	Ave	0.9016	0.8732		19.4	20.0	-3.1	20.0
1,1,2,2-Tetrachloroethane	Ave	0.998	0.8919	0.3000	17.9	20.0	-10.6	20.0
1,2,3-Trichloropropane	Ave	0.2433	0.2233		18.4	20.0	-8.2	20.0
trans-1,4-Dichloro-2-butene	Ave	0.2359	0.1912		16.2	20.0	-18.9	20.0
N-Propylbenzene	Ave	4.405	4.437		20.1	20.0	0.7	20.0
2-Chlorotoluene	Ave	2.639	2.584		19.6	20.0	-2.1	20.0
4-Ethyltoluene	Ave	3.519	3.595		20.4	20.0	2.2	20.0
4-Chlorotoluene	Ave	2.645	2.528		19.1	20.0	-4.4	20.0
1,3,5-Trimethylbenzene	Ave	3.247	3.208		19.8	20.0	-1.2	20.0
Butyl Methacrylate	Ave	1.085	0.9791		18.1	20.0	-9.7	20.0
tert-Butylbenzene	Ave	2.653	2.575		19.4	20.0	-3.0	20.0
1,2,4-Trimethylbenzene	Ave	3.323	3.277		19.7	20.0	-1.4	20.0
sec-Butylbenzene	Ave	4.210	4.246		20.2	20.0	0.9	20.0
1,3-Dichlorobenzene	Ave	1.692	1.697	0.6000	20.1	20.0	0.3	20.0
1,4-Dichlorobenzene	Ave	1.681	1.687	0.5000	20.1	20.0	0.4	20.0
4-Isopropyltoluene	Ave	3.606	3.615		20.0	20.0	0.2	20.0
1,2,3-Trimethylbenzene	Ave	3.516	3.335		19.0	20.0	-5.2	20.0
Benzyl chloride	Ave	1.706	1.296		15.2	20.0	-24.0	50.0
Indan	Ave	3.185	3.134		19.7	20.0	-1.6	20.0
1,2-Dichlorobenzene	Ave	1.774	1.725	0.4000	19.4	20.0	-2.8	20.0
p-Diethylbenzene	Ave	1.868	1.914		20.5	20.0	2.4	20.0
n-Butylbenzene	Ave	1.909	1.962		20.6	20.0	2.8	20.0
1,2-Dibromo-3-Chloropropane	Ave	0.2462	0.2181	0.0500	17.7	20.0	-11.4	50.0
1,2,4,5-Tetramethylbenzene	Ave	3.633	3.531		19.4	20.0	-2.8	20.0
1,3,5-Trichlorobenzene	Ave	1.622	1.626		20.0	20.0	0.2	20.0
1,2,4-Trichlorobenzene	Ave	1.558	1.531	0.2000	19.6	20.0	-1.8	20.0
Hexachlorobutadiene	Ave	0.8127	0.8036		19.8	20.0	-1.1	20.0
Naphthalene	Ave	3.710	3.491		18.8	20.0	-5.9	50.0
1,2,3-Trichlorobenzene	Ave	1.589	1.529		19.2	20.0	-3.8	20.0
Dibromofluoromethane (Surr)	Ave	0.3610	0.3800		52.6	50.0	5.3	20.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.3724	0.3668		49.3	50.0	-1.5	20.0
Toluene-d8 (Surr)	Ave	1.591	1.535		48.2	50.0	-3.5	20.0
	1				1	1		

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-218480-1

SDG No.:

Lab Sample ID: CCVIS 460-727227/2 Calibration Date: 09/28/2020 05:09

Instrument ID: CVOAMS9 Calib Start Date: 09/10/2020 06:02

GC Column: Rtx-624 ID: 0.25(mm) Calib End Date: 09/10/2020 07:59

Lab File ID: K19145.D Conc. Units: ug/L Heated Purge: (Y/N) Y

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
4-Bromofluorobenzene	Ave	0.4787	0.4999		52.2	50.0	4.4	20.0

SVOC Data Section

Hydrology

Remediation

QA/QC Review of Method 8270D Semi-Volatiles Data for Eurofins TestAmerica-Buffalo, Job No: 460-218480-1

11 Soil Samples Collected September 14-15, 2020

Prepared by: Donald Anné February 8, 2021

Water Supply February 8, 202

Holding Times: Samples were extracted and analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The DFTPP tuning criteria were within control limits.

<u>Initial Calibration</u>: The average RRFs for applicable compounds were above the method minimums and the %RSDs were below the method maximum, as required.

The average RRFs for target compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

<u>Continuing Calibration</u>: The RRFs for applicable compounds were above the method minimums and the %Ds were below the method maximum, as required.

The associated RRFs for target compounds were above the allowable minimum (0.010) and the %Ds were below the allowable maximum (20%0, as required.

Blanks: The analyses of method blanks reported target compounds as not detected.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

<u>Surrogate Recovery</u>: The surrogates for samples TP-3, TP-5, SS-01, SS-04, SB-8 (0-2), and SB-10 (0-5) were diluted beyond detection limits. No action is taken on surrogates diluted beyond detection limits.

Matrix Spike/Matrix Spike Duplicate: The relative percent difference for fluoranthene was above the allowable maximum and 2 of 2 percent recoveries for benzo(a)anthracene, benzo(a)pyrene, and benzo(g,h,i)perylene were below QC limits and below 10% for soil MS/MSD sample SB-8 (0-2). The positive result for fluoranthene should be considered estimated (J) and the positive results for benzo(a)anthracene, benzo(a)pyrene, and benzo(g,h,i)perylene estimated, biased low (J-) in sample SB-8 (0-2).

- <u>Laboratory Control Sample</u>: The percent recoveries for target compounds were within QC limits for soil sample LCS 480-550485/2-A.
- <u>Field Duplicates</u>: The soil field duplicate, Dup, was collected at sample location SB-7 (0-0.5) and analyzed for semi-volatiles. However, the sample SB-7 (0-0.5) was not analyzed for semi-volatiles. The results for the Dup should be considered representative of location SB-7 (0-0.5).
- <u>Compound ID</u>: Checked compounds and surrogates were within quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

FORM II GC/MS SEMI VOA SURROGATE RECOVERY

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 460-2184	180-1
---	-------

SDG No.:

Matrix: Solid Level: Low

GC Column (1): RXI-5Sil MS ID: 0.25(mm)

Client Sample ID	Lab Sample ID	2FP	#	PHL	#	NBZ	#	FBP	#	TBP	#	TPHd14	#
TP+3	460-218480-3	DL	Х	DL	Х	DL	Х	84		DL	Х	DL	Х
TP-5	460-218480-5	DL	Х	DL	Х								
SS-01	460-218480-6	DL	Х	DL	Х								
SS-02	460-218480-7	82		87		83		95		84		103	
SS-03	460-218480-8	81		87		81		91		80		112	_
SS-04	460-218480-9	DL	Х	DL	Х								
SS-05	460-218480-10	90		89		84		96		91		103	
SB-5(0-2)	460-218480-15	82		88		92		100		95		106	_
SB+8 (0+2)	460-218480-18	DL	Х	DL	Х								
SB+10(0+5)	460-218480-20	DL	Х	DL	Х								
Dup	460-218480-22	89		89		83		95		95		108	
	MB 480-550485/1-A	76		82		79		85		79		111	П
	LCS 480-550485/2-A	73		77		76		87		93		105	
SB-8(0-2) MS	460-218480-18 MS	0	Х	0	Х	0	Χ	0	Χ	0	Х	0	Х
SB-8(0-2) MSD	460-218480-18 MSD	0	Χ	0	Х	0	Х	0	Х	0	Χ	0	Х

DL - Surrogate diluted beyond detection limits.

	QC LIMITS
2FP = 2-Fluorophenol	52-120
PHL = Phenol-d5	54-120
NBZ = Nitrobenzene-d5	53-120
FBP = 2-Fluorobiphenyl	60-120
TBP = 2, 4, 6-Tribromophenol	54-120
TPHd14 = p-Terphenyl-d14	79-130

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery values

FORM III GC/MS SEMI VOA MATRIX SPIKE RECOVERY

Lab	Name:	Eurofins	TestAmerica,	Buffalo	Job	No.:	460-218480-1

SDG No.:

Matrix: Solid Level: Low Lab File ID: X21469761.D

Lab ID: 460-218480-18 MS Client ID: SB-8(0-2) MS

	SPIKE	SAMPLE	MS	MS	QC	
	ADDED	CONCENTRATION	CONCENTRATION	용	LIMITS	#
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC	REC	
2,4,5-Trichlorophenol	2080	42000 U	43000 U	NC	46-120	
2,4,6-Trichlorophenol	2080	42000 U	43000 U	NC	41-123	
2,4-Dichlorophenol	2080	42000 U	43000 U	NC	45-120	
2,4-Dimethylphenol	2080	42000 U	43000 U	NC	52-120	
2,4-Dinitrophenol	4170	410000 U	420000 U	NC	41-146	
2,4-Dinitrotoluene	2080	42000 U	43000 U	NC	63-125	
2,6-Dinitrotoluene	2080	42000 U	43000 U	NC	66-120	
2-Chloronaphthalene	2080	42000 U	43000 U	NC	57-120	
2-Chlorophenol	2080	82000 U	83000 U	NC	43-120	
2-Methylnaphthalene	2080	42000 U	43000 U	NC	55-120	
2-Methylphenol	2080	42000 U	43000 U	NC	48-120	
2-Nitroaniline	2080	82000 U	83000 U	NC	61-120	
2-Nitrophenol	2080	42000 U	43000 U	NC	37-120	
3,3'-Dichlorobenzidine	4170	82000 U	83000 U	NC	37-126	
3-Nitroaniline	2080	82000 U	83000 U	NC	48-120	
4,6-Dinitro-2-methylphenol	4170	82000 U	83000 U	NC	23-149	
4-Bromophenyl phenyl ether	2080	42000 U	43000 U	NC	58-120	
4-Chloro-3-methylphenol	2080	42000 U	43000 U	NC	49-125	
4-Chloroaniline	2080	42000 U	43000 U	NC	38-120	
4-Chlorophenyl phenyl ether	2080	42000 U	43000 U	NC	63-124	
4-Methylphenol	2080	82000 U	83000 U	NC	50-120	
4-Nitroaniline	2080	82000 U	83000 U	NC	47-120	
4-Nitrophenol	4170	82000 U	83000 U	NC	31-147	
Acenaphthene	2080	42000 U	43000 U	NC	60-120	
Acenaphthylene	2080	42000 U	43000 U	NC	58-121	
Acetophenone	2080	42000 U	43000 U	NC	47-120	
Anthracene	2080	42000 U	43000 U	NC	62-120	
Atrazine	4170	42000 U	43000 U	NC	60-150	
Benzaldehyde	4170	42000 U	43000 U	NC	10-150	
Benzo[a]anthracene	2080	6600 J	43000 U	0	65-120	F1
Benzo[a]pyrene	2080	7500 J	43000 U	0	64-120	F1
Benzo[b]fluoranthene	2080	8800 J	43000 U	0	10-150	4NA
Benzo[g,h,i]perylene	2080	5600 J	43000 U	0	45-145	F1
Benzo[k]fluoranthene	2080	42000 U	43000 U	NC	23-150	
Biphenyl	2080	42000 U	43000 U	NC	58-120	
bis (2-chloroisopropyl) ether	2080	42000 U	43000 U	NC	31-120	
Bis(2-chloroethoxy)methane	2080	42000 U	43000 U	NC	52-120	
Bis(2-chloroethyl)ether	2080	42000 U	43000 U	NC	45-120	
Bis(2-ethylhexyl) phthalate	2080	42000 U	18600 J	NC	61-133	
Butyl benzyl phthalate	2080	42000 U	43000 U	NC	61-120	
Caprolactam	4170	42000 U	43000 U	NC	37-133	
Carbazole	2080	42000 U	43000 U	NC	59-120	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8270D}$

FORM III GC/MS SEMI VOA MATRIX SPIKE RECOVERY

Lab Name	: Eurofins	TestAmerica,	Buffalo	Job No.:	460-218480-1	

SDG No.:

Matrix: Solid Level: Low Lab File ID: X21469761.D

Lab ID: 460-218480-18 MS Client ID: <u>SB-8(0-2)</u> MS

	SPIKE	SAMPLE	MS	MS	QC	
	ADDED	CONCENTRATION	CONCENTRATION	용	LIMITS	#
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC	REC	
Chrysene	2080	42000 U	43000 U	NC	64-120	
Dibenz(a,h)anthracene	2080	42000 U	43000 U	NC	54-132	
Dibenzofuran	2080	42000 U	43000 U	NC	62-120	
Diethyl phthalate	2080	42000 U	43000 U	NC	66-120	
Dimethyl phthalate	2080	42000 U	43000 U	NC	65-124	
Di-n-butyl phthalate	2080	42000 U	43000 U	NC	58-130	
Di-n-octyl phthalate	2080	42000 U	43000 U	NC	57-133	
Fluoranthene	2080	9400 J	6260 J	-150	62-120	4NA
Fluorene	2080	42000 U	43000 U	NC	63-120	
Hexachlorobenzene	2080	42000 U	43000 U	NC	60-120	
Hexachlorobutadiene	2080	42000 U	43000 U	NC	45-120	
Hexachlorocyclopentadiene	2080	42000 U	43000 U	NC	31-120	
Hexachloroethane	2080	42000 U	43000 U	NC	21-120	
Indeno[1,2,3-cd]pyrene	2080	42000 U	43000 U	NC	56-134	
Isophorone	2080	42000 U	43000 U	NC	56-120	
Naphthalene	2080	42000 U	43000 U	NC	46-120	
Nitrobenzene	2080	42000 U	43000 U	NC	49-120	
N-Nitrosodi-n-propylamine	2080	42000 U	43000 U	NC	46-120	
Pentachlorophenol	4170	82000 U	83000 U	NC	25-136	
Phenanthrene	2080	42000 U	6490 J	NC	60-122	
Phenol	2080	42000 U	43000 U	NC	50-120	
Pyrene	2080	10000 J	7080 J	-162	61-133	4NA

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8270D}$

FORM III GC/MS SEMI VOA MATRIX SPIKE DUPLICATE RECOVERY

Lab 1	Name:	Eurofins	TestAmerica,	Buffalo	Job N	10.:	460-	218480-1
SDG 1	No.:							
Matr	ix: S	olid	Level	l: Low	Lab F	File	ID:	X21469762.D

Client ID: SB-8(0-2) MSD

Lab ID: 460-218480-18 MSD

MSD SPIKE MSD OC LIMITS ADDED 응 # CONCENTRATION 2 REC RPD RPD REC COMPOUND (ug/Kg) (ug/Kg) 18 46-120 2,4,5-Trichlorophenol 2050 42000 U NC NC 2,4,6-Trichlorophenol 2050 42000 U NC NC 19 41-123 2050 19 45-120 2,4-Dichlorophenol 42000 U NC NC 2050 42000 U 42 52-120 2,4-Dimethylphenol NC NC 2,4-Dinitrophenol 4090 410000 U NC NC 22 41-146 2050 20 63-125 2,4-Dinitrotoluene 42000 U NC NC 2,6-Dinitrotoluene 2050 42000 U NC NC 15 66-120 2-Chloronaphthalene 2050 42000 U NC NC 21 57-120 2050 81000 U 25 43-120 2-Chlorophenol NC NC 2-Methylnaphthalene 2050 42000 U NC NC 21 55-120 2050 42000 U 27 48-120 2-Methylphenol NC NC 2-Nitroaniline 2050 81000 U NC NC 15 61-120 2-Nitrophenol 2050 42000 U 18 37-120 NC NC 4090 25 37-126 3,3'-Dichlorobenzidine 81000 U NC NC 2050 81000 U NC 19 48-120 3-Nitroaniline NC 4,6-Dinitro-2-methylphenol 4090 81000 U NC NC 15 23-149 4-Bromophenyl phenyl ether 2050 42000 U NC NC 15 58-120 4-Chloro-3-methylphenol 2050 42000 U NC 27 49-125 NC 22 4-Chloroaniline 2050 42000 U NC NC 38-120 4-Chlorophenyl phenyl ether 2050 42000 U 63-124 NC NC 16 4-Methylphenol 2050 81000 U NC NC 24 50-120 4-Nitroaniline 2050 81000 U NC NC 24 47-120 4090 81000 U 25 31-147 4-Nitrophenol NC NC 2050 42000 U 35 60-120 Acenaphthene NC NC 2050 58-121 Acenaphthylene 42000 U NC NC 18 Acetophenone 2050 42000 U NC NC 20 47-120 Anthracene 2050 42000 U NC NC 15 62-120 20 60-150 Atrazine 4090 42000 U NC NC 4090 42000 U NC 20 10-150 Benzaldehyde NC Benzo[a]anthracene 2050 42000 U 0 NC 15 65-120 F1 2050 42000 U 0 15 Benzo[a]pyrene NC 64-120 F1 2050 42000 U 15 10-150 Benzo[b] fluoranthene 0 NC 4 2050 0 15 45-145 F1 Benzo[g,h,i]perylene 42000 U NC 2050 42000 U 22 23-150 Benzo[k]fluoranthene NC NC 2050 42000 U 20 58-120 Biphenyl NC NC 24 31-120 bis (2-chloroisopropyl) ether 2050 42000 U NC NC 2050 42000 U 17 52-120 Bis (2-chloroethoxy) methane NC NC Bis(2-chloroethyl)ether 2050 42000 U NC NC 21 45-120 15 61-133 Bis(2-ethylhexyl) phthalate 2050 42000 U NC NC 2050 7310 J NC 61-120 Butyl benzyl phthalate NC 16 37-133 Caprolactam 4090 42000 U NC NC 20 Carbazole 2050 42000 U NC NC 20 59-120

[#] Column to be used to flag recovery and RPD values FORM III 8270D

FORM III GC/MS SEMI VOA MATRIX SPIKE DUPLICATE RECOVERY

Lab Name	e: Eurofins TestAme	erica, Buffalo	Job No.: 460-218480-1	
SDG No.	:			
Matrix:	Solid	Level: Low	Lab File ID: X21469762.D	
Lab ID:	460-218480-18 MSD		Client ID: $SB-8(0-2)$ MSD	

	CDIKE	MCD	MCD		00.11	мтшс	
	SPIKE ADDED	MSD CONCENTRATION	MSD %	9.	QC LI	MITS	#
COMPOUND	(ug/Kg)	(ug/Kg)	REC	RPD	RPD	REC	#
Chrysene	2050	42000 U	NC	NC	15	64-120	
Dibenz(a,h)anthracene	2050	42000 U	NC	NC	15	54-132	
Dibenzofuran	2050	42000 U	NC	NC	15	62-120	
Diethyl phthalate	2050	42000 U	NC	NC	15	66-120	
Dimethyl phthalate	2050	42000 U	NC	NC	15	65-124	
Di-n-butyl phthalate	2050	42000 U	NC	NC	15	58-130	
Di-n-octyl phthalate	2050	42000 U	NC	NC	16	57-133	
Fluoranthene	2050	4590 J	-235	31	15	62-120	4NAF2
Fluorene	2050	42000 U	NC	NC	15	63-120	
Hexachlorobenzene	2050	42000 U	NC	NC	15	60-120	
Hexachlorobutadiene	2050	42000 U	NC	NC	44	45-120	
Hexachlorocyclopentadiene	2050	42000 U	NC	NC	49	31-120	
Hexachloroethane	2050	42000 U	NC	NC	46	21-120	
<pre>Indeno[1,2,3-cd]pyrene</pre>	2050	42000 U	NC	NC	15	56-134	
Isophorone	2050	42000 U	NC	NC	17	56-120	
Naphthalene	2050	42000 U	NC	NC	29	46-120	
Nitrobenzene	2050	42000 U	NC	NC	24	49-120	
N-Nitrosodi-n-propylamine	2050	42000 U	NC	NC	31	46-120	
Pentachlorophenol	4090	81000 U	NC	NC	35	25-136	
Phenanthrene	2050	42000 U	NC	NC	15	60-122	
Phenol	2050	42000 U	NC	NC	35	50-120	
Pyrene	2050	42000 U	0	NC	35	61-133	4NA

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8270D}$

Pesticide Data Section

QA/QC Review of Method 8081B Pesticide Data for Eurofins TestAmerica-Buffalo, Job No. 480-218480-1

11 Soil Samples Collected September 14-15, 2020

Prepared by: Donald Anné February 8, 2021

Geology Hydrology

Remediation

Water Supply

<u>Holding Times</u>: Samples were extracted and analyzed within USEPA SW-846 holding times.

Blanks: The analysis of the method blank reported target pesticides as not detected.

<u>Surrogate Recovery</u>: The surrogates for the following samples were diluted beyond detection/quantitation limits. No action is taken on surrogates diluted beyond detection/quantitation limits.

TP-3 TP-5 SS-01 SS-02 SS-04 SS-05 SB-5 (0-2) SB-8 (0-2) SB-10 (0-2)

<u>Laboratory Control Sample</u>: The percent recoveries for target pesticides were within QC limits for soil sample LCS 480-550632/2-A.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences for 4,4'-DDD, 4,4'-DDE, dieldrin, methoxychlor, and trans-chlordane were above the allowable maximum; 2 of 2 percent recoveries (%Rs) for delta-BHC and gamma-BHC and 1 of 2 %Rs for endosulfan II and endrin were above QC limits; and 2 of 2 %Rs for dieldrin and 1 of 2 %Rs for trans-chlordane were below QC limits and below 10% for soil MS/MSD sample SB-8 (0-2). Positive results for 4,4'-DDD, 4,4'-DDE, and methoxychlor should be considered estimated (J) and positive results for dieldrin and trans-chlordane estimated, biased low (J-) in sample SB-8 (0-2).

<u>Field Duplicates</u>: The soil field duplicate, Dup, was collected at sample location SB-7 (0-0.5) and analyzed for pesticides. However, the sample SB-7 (0-0.5) was not analyzed for pesticides. The results for the Dup should be considered representative of location SB-7 (0-0.5).

<u>Initial Calibration</u>: The Rs squared for target pesticides were above the allowable minimum (0.9900), as required.

- Continuing Calibration: The %Ds for endosulfan sulfate and endrin ketone were above the allowable maximum (20%) on 09-23-20 (CCVIS 480-550730/5) for the RTX-CLPI column. Positive results for these pesticides should be considered estimated (J) in associated samples.
- <u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits on both columns.
- <u>DDT/Endrin Breakdown Check</u>: The percent breakdowns were below the allowable maximum (15%) for 4,4'-DDT and endrin, as required.
- Pesticide Identification Summary for Single Component Analytes: The RPD for dual quantitation of dieldrin in sample SB-8 (0-2) was above the allowable maximum (25%), but not above 70% and the higher result was reported. The RPD for dual quantitation of methoxychlor in sample SB-10 (0-5) was above the allowable maximum (25%), but not above 70% and the higher result was reported. The positive results for these pesticides should be considered estimated, biased high (J+) in the samples.

The RPD for dual quantitation of 4,4'-DDD in sample TP-3 was above the allowable maximum (25%), but not above 70% and the lower result was reported. The RPDs for dual quantitation of 4,4'-DDD and 4,4'-DDE in sample TP-5 were above the allowable maximum (25%), but not above 70% and the lower results were reported. The RPDs for dual quantitation of 4,4'-DDT in sample SS-01, SS-04, SS-05, and SB-5 (0-2) were above the allowable maximum (25%), but not above 70% and the lower results were reported. The positive results for these pesticides should be considered estimated, biased low (J-) in the samples.

The RPDs for dual quantitation of methoxychlor in sample TP-3, SS-03, and Dup were above the allowable maximum (25%) and above 70%, but not above 100%. The positive result for methoxychlor should be considered estimated, presumptive evidence (JN) in the samples.

The RPD for dual quantitation of methoxychlor in sample SB-8 (0-2) was above the allowable maximum (25%) and above 100%. The positive results for methoxychlor should be considered rejected, unusable (R) in the samples.

<u>Pesticide Identification Summary for Multicomponent Analytes</u>: The analyses of the soil samples reported multicomponent pesticides as not detected.

FORM II PESTICIDES SURROGATE RECOVERY

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 460-218480-1

SDG No.:

Matrix: Solid Level: Low

GC Column (1): RTX-CLPI ID: 0.53(mm) GC Column (2): RTX-CLPII ID: 0.53(mm)

Client Sample ID	Lab Sample ID	TCX1	#	TCX2	#	DCBP1	#	DCBP2	#
TP-(3)	460-218480-3	DL	Х	DL	Х	DL	Х	DL	Х
TP-5	460-218480-5	DL	Х	DL	Х	DL	Х	DL	Х
SS-01	460-218480-6	DL	Х	DL	Х	DL	Х	DL	Х
SS-02	460-218480-7	101		76		FL	Х	DL	Х
SS-03	460-218480-8	120		93		101		182	Х
SS-04	460-218480-9	DL	Х	DL	Х	DL	Х	DL	Х
SS-05	460-218480-10	DL	Х	DL	Х	DL	Х	DL	Х
$\overline{SB}+\overline{5}(\overline{0}+\overline{2})$	460-218480-15	DL	Х	DL	Х	DL	Х	DL	Х
$\overline{SB}+8(0+2)$	460-218480-18	DL	Х	DL	Х	DL	Х	DL	Х
SB-10 (0+5)	460-218480-20	DL	Х	DL	Х	DL	Х	DL	Х
Dup	460-218480-22	94	\neg	78		71		104	
	MB 480-550632/1-A	78		63		100		89	
	LCS 480-550632/2-A	77		65		99		91	
SB-8(0-2) MS	460-218480-18 MS	0	Х	0	Х	0	Х	0	Х
SB-8(0-2) MSD	460-218480-18 MSD	0	Х	0	Χ	0	Χ	0	Х

DL-surrogates diluted beyond detection/quantitation limits.

TCX = Tetrachloro-m-xylene
DCBP = DCB Decachlorobiphenyl

QC LIMITS 30-124 45-120

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery values

FORM III PESTICIDES MATRIX SPIKE RECOVERY

Lab Name: Eurofins TestAmerica, Buffalo	Lab	Name:	Eurofins	TestAmerica,	Buffalo	Job No.:	460-218480-1	_
---	-----	-------	----------	--------------	---------	----------	--------------	---

SDG No.:

Matrix: Solid Level: Low Lab File ID: 5_37410.D

Lab ID: 460-218480-18 MS Client ID: SB-8(0-2) MS

	SPIKE	SAMPLE	MS	MS	QC	
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS	#
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC	REC	
4,4'-DDD	20.7	200	47.8 J	-749	37-126	4
4,4'-DDE	20.7	86 J	27.9 J	-279	34-120	4
4,4'-DDT	20.7	440	72.0 J	-1773	43-123	4
Aldrin	20.7	100 U	100 U	NC	37-125	
alpha-BHC	20.7	100 U	21.6 J	104	39-120	
beta-BHC	20.7	100 U	100 U	N	C 36-120	
cis-Chlordane	20.7	100 U	100 U	N	C 35-120	
delta-BHC	20.7	100 U	25.6 J	124	34-120	F1
Dieldrin	20.7	76 J	35.1 J	-200	45-120	F1
Endosulfan I	20.7	100 U	100 U	N	C 39-120	
Endosulfan <mark>II</mark>	20.7	100 U	27.0 J	131	34-126	F1
Endosulfan sulfate	20.7	100 U	22.4 J	109	27-130	
Endrin	20.7	100 U	100 U	N	C 47-121	
Endrin aldehyde	20.7	100 U	100 U	NC	I	
Endrin ketone	20.7	100 U	29.8 J	NC	43-126	
gamma-BHC (Lindane)	20.7	100 U	27.5 J	133	50-120	F1
Heptachlor	20.7	100 U	100 U	NC	42-120	
Heptachlor epoxide	20.7	100 U	100 U	NC	40-120	
Methoxychlor	20.7	200	74.9 J	-587	44-150	4
trans-Chlordane	20.7	38 J	34.1 J	-17	31-120	F1

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8081B}$

FORM III PESTICIDES MATRIX SPIKE DUPLICATE RECOVERY

Lab Name	e: Eurofins TestAme	rica, Buffalo	Job No.: 460-218480-1
SDG No.	:		
Matrix:	Solid	Level: Low	Lab File ID: 5_37411.D
Lab ID:	460-218480-18 MSD		Client ID: SB-8(0-2) MSD

	QDTWD	1100	,,,,,,		00.7.7		
	SPIKE ADDED	MSD	MSD 8	QC LIMITS			ш
COMPOUND	(ug/Kg)	CONCENTRATION (ug/Kg)	REC	RPD	RPD	REC	#
4,4'HDDD	20.6	61.8 J	-685	25	21	37-126	4 F2
4,4'+DDE	20.6	35.0 J	-247	23	18	34-120	4 F2
4,4'-DDT	20.6	77.9 J	-1755	8	25	43-123	4
Aldrin	20.6	100 U	NC	NC	12	37-125	
alpha-BHC	20.6	21.3 J	104	1	15	39-120	
beta-BHC	20.6	100 U	N	C NC	19	36-120	
cis-Chlordane	20.6	100 U	NC	NC	23	35-120	
delta-BHC	20.6	25.2 J	123	2	14	34-120	F1
Dieldrin	20.6	30.4 J	-223	14	12	45-120	F1 F2
Endosulfan I	20.6	100 U	N	C NC	18	39-120	
Endosulfan II	20.6	21.5 J	105	23	26	34-126	
Endosulfan sulfate	20.6	100 U	N	C NC	35	27-130	
Endrin	20.6	26.0 J	127	NC	20	47-121	F1
Endrin aldehyde	20.6	100 U	NC	NC	47	33-123	
Endrin ketone	20.6	100 U	NC	NC	37	43-126	
gamma+BHC (Lindane)	20.6	25.0 J	122	10	12	50-120	F1
Heptachlor	20.6	100 U	NC	NC	22	42-120	
Heptachlor epoxide	20.6	100 U	NC	NC	15	40-120	
Methoxychlor	20.6	58.5 J	-670	25	24	44-150	4 F2
trans-Chlordane	20.6	45.6 J	39	29	15	31-120	F2

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III 8081B

FORM X IDENTIFICATION SUMMARY

Lab Name: Eurofins TestAmerica, Buffalo

SDG No.:

Client Sample ID: TP-3

Lab Sample ID: 460-218480-3

Instrument ID (1): HP6890-5

Date Analyzed (1): 09/23/2020 11:35

GC Column (1): RTX-CLPI

ID: 0.53 (mm)

Job No.: 460-218480-1

Lab Sample ID: 460-218480-3

Instrument ID (2): HP6890-5

Date Analyzed (2): 09/23/2020 11:35

GC Column (2): RTX-CLPII

ID: 0.53 (mm)

ANALYTE	COL	PEAK	RT	RT WI	INDOW	CONCENT	TRATION	RPD
ANALITE		COL FEAR		FROM TO		PEAK MEAN		
4,4'-DDE	1		4.92	4.90	4.96	66		18.4
	2		5.82	5.79	5.85	55		
4,4'HDDD	1		5.54	5.51	5.57	93		30.4
	2		6.43	6.40	6.46	68		
Methoxychlor	1		6.33	6.30	6.36	76		79.1
	2		7.47	7.43	7.49	33		

FORM X IDENTIFICATION SUMMARY

Lab Name: Eurofins TestAmerica, Buffalo

SDG No.:

Client Sample ID: TP-5

Lab Sample ID: 460-218480-5

Instrument ID (1): HP6890-5

Date Analyzed (1): 09/23/2020 11:55

GC Column (1): RTX-CLPI ID: 0.53 (mm)

Job No.: 460-218480-1

Lab Sample ID: 460-218480-5

Instrument ID (2): HP6890-5

Date Analyzed (2): 09/23/2020 11:55

GC Column (2): RTX-CLPII ID: 0.53 (mm)

ANALYTE	COL	PEAK	RT	RT WINDOW		CONCENT	RPD		
ANALITE	COL FEAR		KI	FROM TO		PEAK MEAN		- KFD	
4,4'+DDE	1		4.92	4.90	4.96	70		66.7	
	2		5.82	5.79	5.85	35			
4,4'-DDD	1		5.54	5.51	5.57	38		34.4	
	2		6.43	6.40	6.46	27			
4,4'-DDT	1		5.84	5.80	5.86	57		16.9	
	2		6.77	6.73	6.79	48			
Methoxychlor	1		6.34	6.30	6.36	40		22.3	
	2		7.46	7.43	7.49	50			

Lab Name: Eurofins TestAmerica, Buffalo

SDG No.:

Client Sample ID: SS-01

Lab Sample ID: 460-218480-6

Instrument ID (1): HP6890-5

Date Analyzed (1): 09/23/2020 12:14

GC Column (1): RTX-CLPI

ID: 0.53 (mm)

Job No.: 460-218480-1

Instrument ID: 460-218480-6

Instrument ID: 460-218480-6

Instrument ID: 460-218480-6

Instrument ID: 460-218480-1

Instrument ID: 460-218480-1

Instrument ID: 460-218480-1

Instrument ID: 460-218480-1

Instrument ID: 460-218480-6

ID: 460-218480-6

ID: 460-218480-6

ID: 460-218480-6

ID: 460-218480-6

ID: 460-218480-6

ID: 460-218480-6

ID: 460-218480-6

ID:

ANALYTE	COL	PEAK	RT	RT WINDOW		CONCENT	RPD	
ANALITE	COL	LEAN	KI	FROM	TO	PEAK	MEAN	KED
4,4'-DDT	1		5.82	5.80	5.86	37		40.6
	2		6.76	6.73	6.79	25		

Lab Name: Eurofins TestAmerica, Buffalo

SDG No.:

Client Sample ID: SS-03

Lab Sample ID: 460-218480-8

Instrument ID (1): HP6890-5

Date Analyzed (1): 09/23/2020 12:53

GC Column (1): RTX-CLPI

ID: 0.53 (mm)

Job No.: 460-218480-1

Lab Sample ID: 460-218480-8

Instrument ID (2): HP6890-5

Date Analyzed (2): 09/23/2020 12:53

GC Column (2): RTX-CLPII

ID: 0.53 (mm)

ANALYTE	COL	PEAK	RT	RT WJ	INDOW	CONCENT	TRATION	RPD
ANALITE	СОП	FEAN	KI	FROM	TO	PEAK	MEAN	KED
4,4'-DDT	1		5.82	5.80	5.86	18		18.4
	2		6.76	6.73	6.79	15		
Methoxychlor	1		6.32	6.30	6.36	7.2		84.2
	2		7.47	7.43	7.49	18		

Lab Name: Eurofins TestAmerica, Buffalo

SDG No.:

Client Sample ID: SS-04

Instrument ID (1): HP6890-5

Date Analyzed (1): 09/23/2020 13:13

GC Column (1): RTX-CLPI

Lab Sample ID: 460-218480-9

Instrument ID (2): HP6890-5

Date Analyzed (2): 09/23/2020 13:13

GC Column (2): RTX-CLPII

ID: 0.53 (mm)

ANALYTE	COL	PEAK	RT .	RT WINDOW		CONCENT	RPD	
ANAUTIE	СОП		1/1	FROM	TO	PEAK	MEAN	IVLD
4,4'-DDT	1		5.80	5.80	5.86	97		28.6
	2		6.77	6.73	6.79	73		
Methoxychlor	1		6.33	6.30	6.36	58		19.3
	2		7.47	7.43	7.49	48		

Lab Name: Eurofins TestAmerica, Buffalo

SDG No.:

Client Sample ID: SS-05

Lab Sample ID: 460-218480-10

Instrument ID (1): HP6890-5

Date Analyzed (1): 09/23/2020 13:33

GC Column (1): RTX-CLPI

ID: 0.53 (mm)

Job No.: 460-218480-1

Instrument ID (2): HP6890-5

Date Analyzed (2): 09/23/2020 13:33

GC Column (2): RTX-CLPII

ID: 0.53 (mm)

ANALYTE	COL	PEAK	RT	RT WI	INDOW	CONCENT	TRATION	RPD
ANADITE		LUAI	1/1	FROM	TO	PEAK	MEAN	IXI D
4,4'-DDT	1		5.82	5.80	5.86	41		34.2
	2		6.76	6.73	6.79	29		
Methoxychlor	1		6.33	6.30	6.36	23		10.0
	2		7.47	7.43	7.49	26		

Lab Name: Eurofins TestAmerica, Buffalo

SDG No.:

Client Sample ID: SB-5(0-2)

Instrument ID (1): HP6890-5

Date Analyzed (1): 09/23/2020 13:52

GC Column (1): RTX-CLPI

Lab Sample ID: 460-218480-15

Instrument ID (2): HP6890-5

Date Analyzed (2): 09/23/2020 13:52

GC Column (2): RTX-CLPII

ID: 0.53 (mm)

ANALYTE	COL	PEAK	RT	RT WI	INDOW	CONCENT	TRATION	RPD
ANALITE	СОП	LEAR	1/1	FROM	TO	PEAK	MEAN	INID
4,4'-DDT	1		5.82	5.80	5.86	37		43.7
	2		6.76	6.73	6.79	23		
Methoxychlor	1		6.32	6.30	6.36	21		1.3
	2		7.47	7.43	7.49	21		

Lab Name: Eurofins TestAmerica, Buffalo

SDG No.:

Client Sample ID: SB-8(0-2)

Instrument ID (1): HP6890-5

Date Analyzed (1): 09/23/2020 11:16

GC Column (1): RTX-CLPI

Lab Sample ID: 460-218480-18

Instrument ID (2): HP6890-5

Date Analyzed (2): 09/23/2020 11:16

GC Column (2): RTX-CLPII

ID: 0.53 (mm)

ANALYTE	COL	PEAK	RT	RT W	INDOW	CONCENT	RATION	RPD
ANALITE	COL	FEAN	KI	FROM	TO	PEAK	MEAN	KED
trans-Chlordane	1		4.71	4.68	4.74	33		14.5
	2		5.49	5.47	5.53	38		
4,4'-DDE	1		4.92	4.90	4.96	82		4.6
	2		5.81	5.79	5.85	86]
Dieldrin	1		5.23	5.20	5.26	50		41.7
	2		6.02	5.98	6.04	76		
4,4'-DDD	1		5.54	5.51	5.57	220		7.3
	2		6.43	6.40	6.46	200		
4,4'-DDT	1		5.82	5.80	5.86	450		3.2
	2		6.76	6.73	6.79	440		
Methoxychlor	1		6.33	6.30	6.36	33		142.8
	2		7.47	7.43	7.49	200		

Lab Name: Eurofins TestAmerica, Buffalo

SDG No.:

Client Sample ID: SB-10(0-5)

Instrument ID (1): HP6890-5

Date Analyzed (1): 09/23/2020 14:12

GC Column (1): RTX-CLPI

ID: 0.53(mm)

Job No.: 460-218480-1

Lab Sample ID: 460-218480-20

Instrument ID (2): HP6890-5

Date Analyzed (2): 09/23/2020 14:12

Date Analyzed (2): 09/23/2020 14:12

GC Column (1): RTX-CLPI

ID: 0.53(mm)

ANALYTE	COL	PEAK	RT	RT WINDOW		CONCENT	RPD	
ANALITE	СОП	LEAR	1/1	FROM	TO	PEAK	MEAN	INLD
Methoxychlor	1		6.35	6.30	6.36	46		66.8
	2		7.47	7.43	7.49	92		

Lab Name: Eurofins TestAmerica, Buffalo

SDG No.:

Client Sample ID: Dup

Lab Sample ID: 460-218480-22

Instrument ID (1): HP6890-5

Date Analyzed (1): 09/23/2020 14:31

GC Column (1): RTX-CLPI ID: 0.53 (mm)

Job No.: 460-218480-1

Lab Sample ID: 460-218480-22

Instrument ID (2): HP6890-5

Date Analyzed (2): 09/23/2020 14:31

GC Column (2): RTX-CLPII ID: 0.53 (mm)

ANALYTE	COL	PEAK	RT	RT WINDOW		CONCENT	RPD	
ANALITE	СОП	LEAR	1/1	FROM	TO	PEAK	MEAN	INID
4,4'-DDT	1		5.83	5.80	5.86	6.1		19.8
	2		6.76	6.73	6.79	5.0		
Methoxychlor	1		6.33	6.30	6.36	2.5		72.7
	2		7.47	7.43	7.49	5.3		

FORM VII PESTICIDES CONTINUING CALIBRATION DATA

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 460-218480-1

SDG No.:

Lab Sample ID: CCVIS 480-550730/5 Calibration Date: 09/23/2020 08:40

Instrument ID: HP6890-5 Calib Start Date: 08/17/2020 15:27

GC Column: RTX-CLPI ID: 0.53 (mm) Calib End Date: 08/17/2020 16:45

Lab File ID: 5_37404.D Conc. Units: ng/uL

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
alpha-BHC	Lin1		1.842		0.0517	0.0500	3.4	20.0
gamma-BHC (Lindane)	Lin1		1.603		0.0518	0.0500	3.6	20.0
beta-BHC	Lin1		0.5884		0.0499	0.0500	-0.2	20.0
delta-BHC	Lin1		1.632		0.0523	0.0500	4.6	20.0
Heptachlor	Lin1		1.522		0.0543	0.0500	8.7	20.0
Aldrin	Lin1		1.486		0.0559	0.0500	11.8	20.0
Heptachlor epoxide	Lin1		1.201		0.0513	0.0500	2.5	20.0
trans-Chlordane	Lin1		1.257		0.0486	0.0500	-2.7	20.0
cis-Chlordane	Lin1		1.172		0.0477	0.0500	-4.7	20.0
4,4'-DDE	Lin1		1.137		0.0468	0.0500	-6.4	20.0
Endosulfan I	Lin1		1.025		0.0475	0.0500	-5.0	20.0
Dieldrin	Lin1		1.140		0.0471	0.0500	-5.8	20.0
Endrin	Lin1		1.015		0.0470	0.0500	-6.0	20.0
4,4'-DDD	Lin1		0.8544		0.0462	0.0500	-7.6	20.0
Endosulfan II	Lin1		0.8372		0.0480	0.0500	-3.9	20.0
4,4'-DDT	Lin1		0.8759		0.0494	0.0500	-1.1	20.0
Endrin aldehyde	Lin1		0.7578		0.0549	0.0500	9.8	20.0
Methoxychlor	Lin1		0.4351		0.0573	0.0500	14.7	20.0
Endosulfan sulfate	Lin1		0.9820		0.0661	0.0500	32.1*	20.0
Endrin ketone	Lin1		1.154		0.0670	0.0500	34.0*	20.0
Tetrachloro-m-xylene	Lin1		0.8824		0.0491	0.0500	-1.8	20.0
DCB Decachlorobiphenyl	Lin1		1.020		0.0602	0.0500	20.5*	20.0

PCB Data Section

QA/QC Review of Method 8082A PCB Data for Eurofins TestAmerica-Buffalo, Job No. 460-218480-1

11 Soil Samples Collected September 14-15, 2020

Prepared by: Donald Anné February 8, 2021

Geology

Hydrology

Remediation

Water Supply

<u>Holding Times</u>: Samples were extracted and analyzed within USEPA SW-846 holding times.

Blanks: The analysis of the method blank reported target PCBs as not detected.

- <u>Surrogate Recovery</u>: One of two surrogate recoveries for samples TP-3, TP-5, SS-01, SS-04, and SS-05 was below QC limits, but not below 10% on one column. No action is taken on one surrogate recovery on one column, provided the recovery is not less than 10%.
- Matrix Spike/Matrix Spike Duplicate: The relative percent differences for PCB-1016 and PCB-1260 were below the allowable maximum and the percent recoveries were within QC limits for soil MS/MSD sample SB-8 (0-2).
- <u>Laboratory Control Sample</u>: The percent recoveries for PCB-1016 and PCB-1260 were within QC limits for soil sample LCS 480-550486/2-A.
- <u>Field Duplicates</u>: The soil field duplicate, Dup, was collected at sample location SB-7 (0-0.5) and analyzed for PCBs. However, the sample SB-7 (0-0.5) was not analyzed for PCBs. The results for the Dup should be considered representative of location SB-7 (0-0.5).
- <u>Initial Calibration</u>: The average %RSDs for target PCBs were below the allowable maximum (20%) on both columns, as required.
- <u>Continuing Calibration</u>: The average %Ds for target PCBs were below the allowable maximum (20%) on both columns, as required.
- <u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits on both columns.
- PCB Identification Summary: Checked surrogates were within GC quantitation limits. The RPD for dual quantitation of PCB-1242 in sample TP-3 was above the allowable maximum (25%) and above 70%, but not above 100%. The positive result for PCB-1242 should be considered estimated, presumptive evidence (JN) in the sample.

 $z:\projects\2021\21600-21620\21600-dec\ carmel\ temp\ review\460-218480-1.pcb.docx$

Lab Name:	Eurofins	TestAmerica,	Buffalo	Job No.:	460-218480-1	
						

SDG No.:

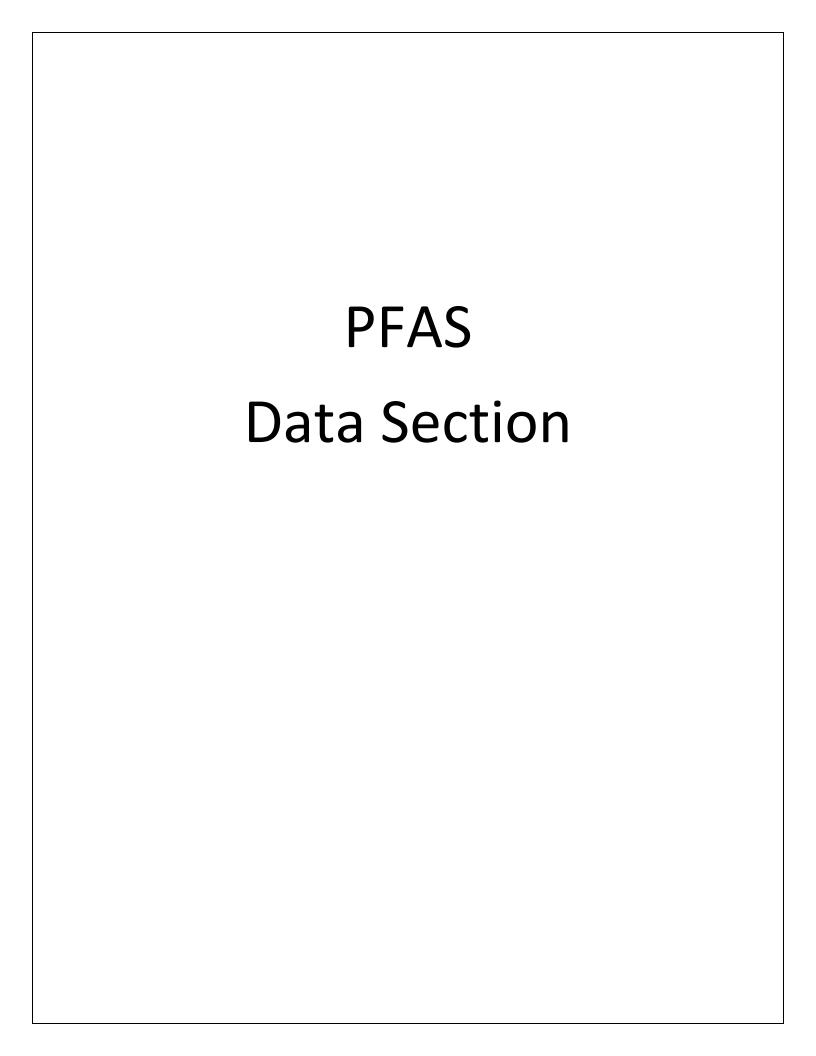
Matrix: Solid Level: Low

					_	
Client Sample ID	Lab Sample ID	TCX1 #	TCX2 #	DCBP1	#	DCBP2 #
TP+3	460-218480-3	71	82	51	Х	82
TP-5	460-218480-5	72	78	64	Х	74
SS-01	460-218480-6	83	94	56	Х	89
SS-02	460-218480-7	91	106	66		105
SS-03	460-218480-8	85	104	70		112
SS-04	460-218480-9	90	103	59	Х	96
SS-05	460-218480-10	87	107	63	Х	102
SB-5(0-2)	460-218480-15	85	111	72		118
SB-8(0-2)	460-218480-18	87	100	66		103
SB-10(0-5)	460-218480-20	120	122	82		117
Dup	460-218480-22	94	115	78		126
	MB 480-550486/1-A	96	113	92		142
	LCS 480-550486/2-A	112	137	111		167
SB-8(0-2) MS	460-218480-18 MS	100	114	64	Х	103
SB-8(0-2) MSD	460-218480-18 MSD	69	87	51	Х	81

TCX = Tetrachloro-m-xylene
DCBP = DCB Decachlorobiphenyl

QC LIMITS
60-154
65-174

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 460-218480-1


SDG No.:

Client Sample ID: TP-3 Lab Sample ID: 460-218480-3

Instrument ID (1): <u>HP6890-6</u> Instrument ID (2): HP6890-6

Date Analyzed (1): 09/22/2020 16:25 Date Analyzed (2): 09/22/2020 16:25

ANALYTE	COL	PEAK	RT	RT WI	INDOW	CONCENT	RATION	RPD
ANALIE	COL	FEAN	KI	FROM	TO	PEAK	MEAN	KFD
PCB-1242	1	1	1.55	1.53	1.56	0.285	0.23	83.6
		2	1.84	1.82	1.85	0.212		
		3	2.12	2.10	2.13	0.229		
		4	2.58	2.56	2.59	0.278		
		5	2.81	2.79	2.82	0.165		
	2	1	1.87	1.85	1.88	0.307	0.57	
		2	1.99	1.97	2.00	1.01		
		3	2.25	2.23	2.26	0.738		
		4	2.55	2.53	2.56	0.233		
		5	2.67	2.65	2.68	0.563		

Geology

Hydrology

Remediation

Water Supply

QA/QC Review of Method 537 (Modified) PFAS Data for Eurofins TestAmerica-Sacramento, Job No: 460-218480-1

21 Soil Samples, 1 Field Duplicate, 10 SPLP Soil Samples, 2 Equipment Blanks, and 1 Driller Water Collected September 14-15, 2020

Prepared by: Donald Anné February 8, 2021

Holding Times: Samples were analyzed within USEPA holding times.

<u>Initial Calibration</u>: The %RSDs for applicable PFAS compounds were below the method maximums, as required.

<u>Continuing Calibration</u>: The %Ds for applicable PFAS compounds were below the allowable maximums, as required

Blanks: Method blank MB 320-414128/1-A contained a trace of PFOS (0.201 ug/kg). Method blank MB 320-414617/1-A contained traces of PFBA (0.0756 ug/kg) and PFOS (0.608 ug/kg). Method blank MB 320-414634/1-A contained traces of PFOS (7.50 ng/L) and 6:2 FTS (3.49 ng/L). Method blank MB 320-416276/1-A contained a trace of PFBA (0.0546 ng/L). The equipment blank EB-091420 contained a trace of FOSA (1.2 ng/L). Positive results for these PFAS that are below the reporting limit (RL) should be reported as not detected (U) at the reporting limit in associated samples. Positive results for these PFAS that are above the RL and less than ten times the highest blank level should be considered estimated, biased high (J+) in associated samples.

Surrogate Recovery: Two of eighteen surrogate recoveries for the following samples were above QC limits. Positive results associated with surrogates outside QC limits should be considered estimated (J) in these samples.

TP-1	TP-3	TP-4	TP-5	SS-01	SS-02
SS-03	SS-04	SS-05	SB-7 (0-0.5)	SB-8 (0-2)	

Two of seventeen surrogate recoveries for the following samples were above QC limits. Positive results associated with surrogates outside QC limits should be considered estimated (J) in these samples.

SB-1 (1-2) SB-2 (0-2) SB-3 (0-2) SB-4 (0-2) SB-5 (0-2) SB-9 (0-0.5) SB-10 (0-5) Dup

Page 1 of 3

Two of eighteen surrogate recoveries for SPLP samples TP-1, TP-3, TP-4, TP-5, and SB-10 (0-5) were above QC limits. Positive results associated with surrogates outside QC limits should be considered estimated (J) in these samples.

Two of two surrogate recoveries for samples TP-4DL were above QC limits. Positive results associated with surrogates outside QC limits should be considered estimated (J) in sample TP-4DL.

Two of eighteen surrogate recoveries for SPLP sample SB-1 (1-2) were below QC limits, but not below 10%. Positive and "not detected" results associated with surrogates outside QC limits should be considered estimated (J or UJ respectively) in sample SB-1 (1-2).

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences (RPDs) for target PFAS were below the allowable maximum and the percent recoveries (%Rs) were within QC limits for soil MS/MSD sample SS-05.

The RPD for PFOS was above the allowable maximum and 2 of 2 %Rs for PFOS, PFDS, and NEtFOSAA and 1 of 2 %Rs for PFDA and NMeFOSAA were above QC limits and below 10% for soil MS/MSD sample SB-8 (0-2). The positive results for PFOS, PFDA, and PFDS should be considered estimated, biased high (J+) in sample SB-8 (0-2).

The RPD for PFOS was above the allowable maximum and 2 of 2 %Rs for 6:2 FTS were below QC limits and below 10% for soil SPLP MS/MSD sample SB-8 (0-2). The positive result for PFOS should be considered estimated (J) and the positive result for 6:2 FTS estimated, biased low (J-) in SPLP sample SB-8 (0-2).

<u>Laboratory Control Sample</u>: The relative percent differences for target PFAS were below the allowable maximum and the percent recoveries (%Rs) were within QC limits for aqueous samples LCS 320-414634/2-A, LCSD 320-414634/3-A, LCS 320-416609/2-A, and LCSD 320-416609/3-A. The %Rs for target PFAS were within QC limits for soil samples LCS 320-414128/2-A and LCS 320-416276/2-A, and aqueous sample LCS 320-417934/2-A.

The %R for PFOS was above QC limits for soil sample LCS 320-414617/2-A. Positive results for PFOS should be considered estimated, biased high (J+) in associated soil samples.

<u>Field Duplicate</u>: The relative percent difference for PFOS was below the allowable maximum (35%) for soil field duplicate pairSB-7 (0-0.5)/Dup (attached table), as required.

Compound ID: Checked compounds and surrogates were within LC quantitation limits.

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-218480-1

SDG No.:

Matrix: Solid Level: Low

GC Column (1): Acquity ID: 2.1 (mm)

Client Sample ID	Lab Sample ID	PFBA #	PFPeA #	C3PFBS #	PFHxA #	C4PFHA #	PFHxS #	M262FTS#	PFOA #
$\overline{SB} - \overline{1}(\overline{1} - 2)$	460-218480-11	44	57	67	70	72	74	231 *5	70
SB-2 (0-2)	460-218480-12	51	63	68	75	80	77	163 *5	73
SB-3 (0-2)	460-218480-13	56	65	67	77	79	70	158 *5	72
SB-4(0-2)	460-218480-14	32	59	77	77	79	86	237 *5	72
SB-5 (0-2)	460-218480-15	64	75	79	88	90	85	227 *5	88
SB-6(0-2)	460-218480-16	61	67	58	71	75	61	88	68
SB+9(0+0.5)	460-218480-19	60	74	89	90	94	97	290 *5	87
SB-10(0+5)	460-218480-20	60	73	74	82	90	81	189 *5	83
Dup	460-218480-22	53	68	77	81	85	86	248 *5	83

	QC LIMITS
PFBA = 13C4 PFBA	25-150
PFPeA = 13C5 PFPeA	25-150
C3PFBS = 13C3 PFBS	25-150
PFHxA = 13C2 PFHxA	25-150
C4PFHA = 13C4 PFHpA	25-150
PFHxS = 1802 PFHxS	25-150
M262FTS = M2-6:2 FTS	25-150
PFOA = 13C4 PFOA	25-150

Column to be used to flag recovery values

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-218480-1

SDG No.:

Matrix: Solid Level: Low

GC Column (1): Acquity ID: 2.1 (mm)

Client Sample ID	Lab Sample ID	PFNA #	PFOSA #	PFDA	# M282FTS #	d3NMFOS#	PFUnA #	d5NEFOS#	PFDoA ‡
SB-1(1-2)	460-218480-11	79	62	72	244 *5	58	76	70	68
SB-2(0-2)	460-218480-12	79	74	79	196 *5	70	85	87	84
SB-3 (0-2)	460-218480-13	78	74	79	188 *5	78	85	95	87
SB-4 (0-2)	460-218480-14	75	58	71	233 *5	78	89	90	79
S <mark>B-5 (0-2</mark>)	460-218480-15	94	85	94	264 *5	90	98	106	96
SB-6(0-2)	460-218480-16	75	67	74	119	73	75	73	70
SB-9(0-0.5)	460-218480-19	99	75	91	271 *5	86	104	118	75
SB-10 (0-5)	460-218480-20	95	80	87	216 *5	85	93	94	91
Dup	460-218480-22	92	78	84	286 *5	83	89	104	89

	QC LIMITS
PFNA = 13C5 PFNA	25-150
PFOSA = 13C8 FOSA	25-150
PFDA = 13C2 PFDA	25-150
M282FTS = M2-8:2 FTS	25-150
d3NMFOS = d3-NMeFOSAA	25-150
PFUnA = 13C2 PFUnA	25-150
d5NEFOS = d5-NEtFOSAA	25-150
PFDoA = 13C2 PFDoA	25-150

Column to be used to flag recovery values

Lab Name: Eurofins TestAmerica, Sacramento Job	No.:	460-218480-1
--	------	--------------

SDG No.:

Matrix: Solid Level: Low

GC Column (1): Acquity ID: 2.1 (mm)

Client Sample ID	Lab Sample ID	PFTDA #
SB-1 (1-2)	460-218480-11	64
SB-2(0-2)	460-218480-12	84
SB-3 (0-2)	460-218480-13	85
SB-4(0-2)	460-218480-14	82
S <mark>B-5 (0-</mark> 2)	460-218480-15	101
SB-6(0-2)	460-218480-16	66
SB-9(0-0.5)	460-218480-19	97
SB-10 (0-5)	460-218480-20	97
Dup	460-218480-22	93

 $\frac{QC LIMITS}{25-150}$

PFTDA = 13C2 PFTeDA

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-218480-1

SDG No.:

Matrix: Solid Level: Low

GC Column (1): Acquity ID: 2.1 (mm)

Client Sample ID	Lab Sample ID	PFBA	# PFPeA :	# C3PFBS #	PFHxA :	C4PFHA #	PFHxS	# M262FTS #	PFOA
TP-1	460-218480-1	63	67	74	71	75	82	200 *5	75
TP-2	460-218480-2	66	61	70	56	59	64	56	56
T <mark>P-3</mark>	460-218480-3	68	74	87	83	88	101	238 *5	92
TP-4	460-218480-4	37	43	56	45	47	63	179 *5	51
TP-5	460-218480-5	68	74	92	92	96	101	250 *5	90
SS-01	460-218480-6	63	71	79	82	84	87	194 *5	88
SS-02	460-218480-7	69	82	82	90	90	95	<mark>156</mark> *5	90
SS-03	460-218480-8	66	78	83	89	93	95	195 *5	93
SS-04	460-218480-9	62	73	88	92	95	103	283 *5	94
S <mark>S-05</mark>	460-218480-10	70	81	92	93	96	101	229 *5	97
	MB 320-414128/1-A	90	92	91	88	100	101	81	95
	LCS 320-414128/2-A	69	69	69	64	72	81	50	68
SS-05 MS	460-218480-10 MS	64	74	82	84	86	94	181 *5	90
SS-05 MSD	460-218480-10 MSD	66	77	91	89	93	98	220 *5	94

	QC LIMITS
PFBA = 13C4 PFBA	25-150
PFPeA = 13C5 PFPeA	25-150
C3PFBS = 13C3 PFBS	25-150
PFHxA = 13C2 PFHxA	25-150
C4PFHA = 13C4 PFHpA	25-150
PFHxS = 1802 PFHxS	25-150
M262FTS = M2-6:2 FTS	25-150
PFOA = 13C4 PFOA	25-150

 $\ensuremath{\text{\#}}$ Column to be used to flag recovery values

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-218480-1

SDG No.:

Matrix: Solid Level: Low

GC Column (1): <u>Acquity</u> ID: <u>2.1 (mm)</u>

Client Sample ID	Lab Sample ID	PFOS #	PFNA ‡	PFOSA	#M282FTS#	PFDA	# d3NMFOS #	d5NEFOS#	PFUnA
TP-1	460-218480-1	86	83	68	207 *5	76	54	59	79
TP-2	460-218480-2	59	58	50	59	56	45	46	49
T <mark>P-3</mark>	460-218480-3	103	91	76	211 *5	88	74	74	88
T <mark>P-4</mark>	460-218480-4	67	50	39	168 *5	50	43	45	54
T <mark>P-5</mark>	460-218480-5	99	95	74	266 *5	93	73	84	102
S <mark>S-01</mark>	460-218480-6	90	92	72	199 *5	86	64	74	89
S <mark>S-02</mark>	460-218480-7	92	92	82	177 *5	90	71	80	94
S <mark>S-0</mark> 3	460-218480-8	98	93	85	223 *5	94	61	67	98
S <mark>S-04</mark>	460-218480-9	107	102	71	295 *5	88	96	104	108
S <mark>S-05</mark>	460-218480-10	103	102	75	242 *5	95	67	72	95
	MB 320-414128/1-A	91	92	85	71	90	71	73	90
	LCS 320-414128/2-A	71	68	62	49	63	50	54	67
SS-05 MS	460-218480-10 MS	96	96	81	191 *5	91	69	77	90
SS-05 MSD	460-218480-10 MSD	96	98	79	212 *5	94	67	72	93

	QC LIMITS
PFOS = 13C4 PFOS	25-150
PFNA = 13C5 PFNA	25-150
PFOSA = 13C8 FOSA	25-150
M282FTS = M2-8:2 FTS	25-150
PFDA = 13C2 PFDA	25-150
d3NMFOS = d3-NMeFOSAA	25-150
d5NEFOS = d5-NEtFOSAA	25-150
PFUnA = 13C2 PFUnA	25-150

 $\ensuremath{\text{\#}}$ Column to be used to flag recovery values

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-218480-1

SDG No.:

Matrix: Solid Level: Low

GC Column (1): Acquity ID: 2.1 (mm)

Client Sample ID	Lab Sample ID	PFDoA #	PFTDA #
TP-1	460-218480-1	76	75
TP-2	460-218480-2	50	45
TP+3	460-218480-3	80	78
TP-4	460-218480-4	51	44
TP-5	460-218480-5	92	83
SS-01	460-218480-6	90	87
SS-02	460-218480-7	89	95
SS-03	460-218480-8	87	89
SS-04	460-218480-9	106	99
SS-05	460-218480-10	82	76
	MB 320-414128/1-A	85	93
	LCS 320-414128/2-A	63	73
SS-05 MS	460-218480-10 MS	85	90
SS-05 MSD	460-218480-10 MSD	86	78

 $\begin{array}{c} \text{QC LIMITS} \\ \text{PFDoA} = 13\text{C2 PFDoA} \\ \text{PFTDA} = 13\text{C2 PFTeDA} \\ \end{array}$

Lab Name: Eurofins	TestAmerica,	Sacramento	Job No.:	460-218480-1
--------------------	--------------	------------	----------	--------------

SDG No.: ____

Matrix: Solid Level: Low

GC Column (1): Acquity ID: 2.1 (mm)

Client Sample ID	Lab Sample ID	PFBA #	PFPeA #	C3PFBS #	PFHxA #	C4PFHA #	PFHxS	#M262FTS#	PFOA #
SB-7(0-0.5)	460-218480-17	55	68	76	79	83	80	224 *5	81
SB-8 (0-2)	460-218480-18	50	55	70	69	71	79	210 *5	70
	MB 320-416276/1-A	72	73	77	72	72	77	97	71
	LCS 320-416276/2-A	86	84	91	89	93	91	119	91
SB-8(0-2) MS	460-218480-18 MS	50	51	74	61	66	79	232 *5	67
SB-8(0-2) MSD	460-218480-18 MSD	45	48	68	63	63	77	181 *5	63

	QC LIMITS
PFBA = 13C4 PFBA	25-150
PFPeA = 13C5 PFPeA	25-150
C3PFBS = 13C3 PFBS	25-150
PFHxA = 13C2 PFHxA	25-150
C4PFHA = 13C4 PFHpA	25-150
PFHxS = 1802 PFHxS	25-150
M262FTS = M2-6:2 FTS	25-150
PFOA = 13C4 PFOA	25-150

Column to be used to flag recovery values

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-218480-1

SDG No.:

Matrix: Solid Level: Low

GC Column (1): <u>Acquity</u> ID: <u>2.1 (mm)</u>

Client Sample ID	Lab Sample ID	PFOS #	PFNA #	PFOSA #	#M282FTS#	PFDA ‡	d3NMFOS#	PFUnA #	d5NEFOS#
SB-7(0-0.5)	460-218480-17	74	75	74	183 *5	72	60	71	62
SB-8 (0-2)	460-218480-18	78	74	58	191 *5	73	65	73	77
	MB 320-416276/1-A	72	69	57	84	73	76	72	74
	LCS 320-416276/2-A	88	90	86	99	93	91	89	85
SB-8(0-2) MS	460-218480-18 MS	71	64	50	233 *5	70	63	72	65
SB-8(0-2) MSD	460-218480-18 MSD	74	67	51	189 *5	67	57	71	67

	QC LIMITS
PFOS = 13C4 PFOS	25-150
PFNA = 13C5 PFNA	25-150
PFOSA = 13C8 FOSA	25-150
M282FTS = M2-8:2 FTS	25-150
PFDA = 13C2 PFDA	25-150
d3NMFOS = d3-NMeFOSAA	25-150
PFUnA = 13C2 PFUnA	25-150
d5NEFOS = d5-NEtFOSAA	25-150

 $\ensuremath{\text{\#}}$ Column to be used to flag recovery values

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-	50-218480-1
--	-------------

SDG No.:

Matrix: Solid Level: Low

GC Column (1): Acquity ID: 2.1 (mm)

Client Sample ID	Lab Sample ID	PFDoA #	PFTDA #
SB-7(0-0.5)	460-218480-17	76	71
SB-8 (0-2)	460-218480-18	74	87
	MB 320-416276/1-A	70	78
	LCS 320-416276/2-A	90	100
SB-8(0-2) MS	460-218480-18 MS	70	63
SB-8(0-2) MSD	460-218480-18 MSD	70	75

PFDoA = 13C2 PFDoA PFTDA = 13C2 PFTeDA QC LIMITS
25-150
25-150

SDG No.:

Matrix: Solid (SPLP East) Level: Low

GC Column (1): Gemini C18 ID: 3 (mm)

Client Sample ID	Lab Sample ID	M262FTS # M282FTS #
TP-4 DL	460-218480-4 DL	208) *5 (166) *5

M262FTS = M2-6:2 FTS M282FTS = M2-8:2 FTS QC LIMITS 25-150 25-150

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-218480-1

SDG No.:

Matrix: Solid (SPLP East) Level: Low

GC Column (1): <u>Gemini C18</u> ID: <u>3</u> (mm)

Client Sample ID	Lab Sample ID	PFBA #	PFPeA #	C3PFBS #	PFHxA #	C4PFHA #	PFHxS	#M262FTS#	PFOA
TP-1	460-218480-1	66	74	77	75	84	84	162 *5	76
TP-2	460-218480-2	47	53	58	55	58	62	129	56
TP-3	460-218480-3	68	71	78	75	80	83	214 *5	81
T <mark>P-4</mark>	460-218480-4	87	97	114	100	121	120	335 *5	106
TP-5	460-218480-5	67	77	81	77	82	88	208 *5	88
SB-1 (1-2)	460-218480-11	25	26	27	28	30	30	43	29
SB-5(0-2)	460-218480-15	65	68	72	70	74	77	102	74
SB-10(0-5)	460-218480-20	68	81	88	89	94	98	193 *5	97
SB-10(20-25)	460-218480-21	64	69	71	72	77	72	97	74
MB 32 LC:	MB 320-416609/1-A	69	72	73	73	87	76	93	77
	MB 320-417934/1-A	96	100	97	94	98	95	93	95
	LCS 320-416609/2-A	66	69	69	68	73	71	86	68
	LCSD 320-416609/3-A	71	76	75	77	81	78	93	76

	QC LIMITS
PFBA = 13C4 PFBA	25-150
PFPeA = 13C5 PFPeA	25-150
C3PFBS = 13C3 PFBS	25-150
PFHxA = 13C2 PFHxA	25-150
C4PFHA = 13C4 PFHpA	25-150
PFHxS = 1802 PFHxS	25-150
M262FTS = M2-6:2 FTS	25-150
PFOA = 13C4 PFOA	25-150

 $\ensuremath{\text{\#}}$ Column to be used to flag recovery values

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-218480-1

SDG No.:

Matrix: Solid (SPLP East) Level: Low

GC Column (1): <u>Gemini C18</u> ID: <u>3</u> (mm)

Client Sample ID	Lab Sample ID	PFOS #	PFNA	# PFOSA	#M282FTS#	PFDA	# d3NMFOS #	d5NEFOS#	PFUnA
T <mark>P-1</mark>	460-218480-1	82	91	82	154 *5	79	81	90	89
TP-2	460-218480-2	61	68	59	114	57	53	69	75
TP-3	460-218480-3	82	84	72	194 *5	75	71	83	80
TP-4	460-218480-4	123	119	101	295 *5	114	105	122	122
TP-5	460-218480-5	82	81	81	177 *5	83	69	91	86
SB-1 (1-2)	460-218480-11	30	33	27	44	32	25	29	29
SB-5(0-2)	460-218480-15	78	81	72	102	80	69	77	80
SB-10 (0-5)	460-218480-20	98	109	89	164 *5	95	83	95	95
SB-10(20-25)	460-218480-21	75	71	71	100	76	64	78	73
MB 320- LCS 320- LCSI	MB 320-416609/1-A	78	86	71	120	84	74	81	91
	MB 320-417934/1-A	93	93	88	98	102	89	90	98
	LCS 320-416609/2-A	73	79	67	86	75	69	74	79
	LCSD 320-416609/3-A	82	89	76	97	88	76	83	80

PFOS = 13C4 PFOS PFNA = 13C5 PFNA PFOSA = 13C8 FOSA	QC LIMITS 25-150 25-150 25-150
M282FTS = M2-8:2 FTS	25-150
PFDA = 13C2 PFDA	25-150
d3NMFOS = d3-NMeFOSAA	25-150
d5NEFOS = d5-NEtFOSAA	25-150
PFUnA = 13C2 PFUnA	25-150

 $\ensuremath{\text{\#}}$ Column to be used to flag recovery values

SDG No.:

Matrix: Solid (SPLP East) Level: Low

GC Column (1): Gemini C18 ID: 3 (mm)

	1		
Client Sample ID	Lab Sample ID	PFDoA #	PFTDA #
TP-1	460-218480-1	84	67
TP-2	460-218480-2	67	67
T <mark>P-3</mark>	460-218480-3	65	86
TP-4	460-218480-4	106	131
T <mark>P-5</mark>	460-218480-5	66	62
SB-1(1-2)	460-218480-11	22 *5	20 *5
SB-5(0-2)	460-218480-15	64	68
SB-10 (0-5)	460-218480-20	78	65
SB-10(20-25)	460-218480-21	76	66
	MB 320-416609/1-A	75	93
	MB 320-417934/1-A	84	93
	LCS 320-416609/2-A	69	82
	LCSD 320-416609/3-A	76	79

FORM III LCMS LAB CONTROL SAMPLE RECOVERY

ab Name: Eurofins TestAmerica, S	Sacramento Job No.:	460-218480-1
----------------------------------	---------------------	--------------

SDG No.:

Matrix: Solid Level: Low Lab File ID: 2020.09.25_A9_PFC_C_008.d

Lab ID: LCS 320-414617/2-A Client ID:

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(ug/Kg)	(ug/Kg)	REC	REC	
Perfluorobutanoic acid (PFBA)	2.00	2.26	113		
Perfluoropentanoic acid	2.00	1.94	97		
(PFPeA)	2.00	1.51		05 125	
Perfluorohexanoic acid (PFHxA)	2.00	2.14	107	71-131	
Perfluoroheptanoic acid	2.00	1.93	96		
(PFHpA)					
Perfluorooctanoic acid (PFOA)	2.00	1.98	99	72-132	
Perfluorononanoic acid (PFNA)	2.00	2.04	102	73-133	
Perfluorodecanoic acid (PFDA)	2.00	2.07	104	72-132	
Perfluoroundecanoic acid	2.00	1.98	99	66-126	
(PFUnA)					
Perfluorododecanoic acid	2.00	2.13	106	71-131	
(PFDoA)					
Perfluorotridecanoic acid	2.00	2.03	101	71-131	
(PFTriA)					
Perfluorotetradecanoic acid	2.00	2.03	102	67-127	
(PFTeA)	1 77	1 05	110	60 100	
Perfluorobutanesulfonic acid	1.77	1.95	110	69-129	
(PFBS) Perfluorohexanesulfonic acid	1.82	1.68	92	62-122	
(PFHxS)	1.02	1.00	92	02-122	
Perfluoroheptanesulfonic Acid	1.90	2.16	114	76-136	
(PFHpS)	1.50	2.10		, 0 100	
Perfluorooctanesulfonic acid	1.86	3.03	163	68-141	*
(PFOS)					
Perfluorodecanesulfonic acid	1.93	1.93	100	71-131	
(PFDS)					
Perfluorooctanesulfonamide	2.00	2.33	117	77-137	
(FOSA)	5 00		0.0	05.450	
13C4 PFBA	5.00	4.12	82		
13C5 PFPeA	5.00	4.36	87		
13C2 PFHxA	5.00	4.38	88		
13C4 PFHpA	5.00	4.72	94		
13C4 PFOA	5.00	4.47	89		
13C5 PFNA	5.00	4.40	88		
13C2 PFDA	5.00	4.35	87		
13C2 PFUnA	5.00	4.65	93	25-150	
13C2 PFDoA	5.00	4.51	90		
13C2 PFTeDA	5.00	4.58	92		
13C3 PFBS	4.65	4.13	89		
N-methylperfluorooctanesulfona	2.00	2.11	105		
midoacetic acid (NMeFOSAA)					
1802 PFHxS	4.73	4.47	95	25-150	
N-ethylperfluorooctanesulfonam	2.00	1.92 J	96	72-132	
idoacetic acid (NEtFOSAA)					

[#] Column to be used to flag recovery and RPD values
FORM III 537 (modified)

FORM III LCMS LAB CONTROL SAMPLE RECOVERY

Lab	Name:	Eurofins	TestAmerica,	Sacramento	Job No.:	460-218480-1
-----	-------	----------	--------------	------------	----------	--------------

SDG No.: ____

Matrix: Solid Level: Low Lab File ID: 2020.09.25_A9_PFC_C_008.d

Lab ID: LCS 320-414617/2-A Client ID:

COMPOUND	SPIKE ADDED (ug/Kg)	LCS CONCENTRATION (ug/Kg)	LCS % REC	QC LIMITS REC	#
13C4 PFOS	4.78	4.19	88	25-150	
13C8 FOSA	5.00	3.90	78	25-150	
6:2 FTS	1.90	1.65 J	87	73-139	
d3-NMeFOSAA	5.00	3.69	74	25-150	
8:2 FTS	1.92	2.03	106	75-135	
d5-NEtFOSAA	5.00	3.88	78	25-150	
M2-6:2 FTS	4.75	5.29	111	25-150	
M2-8:2 FTS	4.79	4.02	84	25-150	

[#] Column to be used to flag recovery and RPD values
FORM III 537 (modified)

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-218480-1

SDG No.:

Matrix: Solid Level: Low Lab File ID: 2020.09.29_PFC_A_064.d

	SPIKE	SAMPLE	MS	MS	QC	
	ADDED	CONCENTRATION	CONCENTRATION	용	LIMITS	#
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC	REC	
Perfluorobutanoic acid (PFBA)	2.31	0.24	2.59	102	76-136	
Perfluoropentanoic acid	2.31	0.22 J	2.42	95	69-129	
(PFPeA)						
Perfluorohexanoic acid (PFHxA)	2.31	0.23 U	2.78	121		
Perfluoroheptanoic acid	2.31	0.14 J	2.63	108	71-131	
(PFHpA)						
Perfluorooctanoic acid (PFOA)	2.31	0.42	3.03	113		
Perfluorononanoic acid (PFNA)	2.31	0.21 J	2.70	108		
Perfluorodecanoic acid (PFDA)	2.31	0.39	3.49	134	7	
Perfluoroundecanoic acid	2.31	0.23	2.70	107	66-126	
(PFUnA)	0 21	0 20	0.70	1.07	71 101	
Perfluorododecanoic acid	2.31	0.32	2.78	107	71-131	
(PFDoA) Perfluorotridecanoic acid	2.31	0.080 J	2.38	100	71-131	
(PFTriA)	2.51	0.0000	2.50	100	71 151	
Perfluorotetradecanoic acid	2.31	0.11 J	2.41	99	67-127	
(PFTeA)						
Perfluorobutanesulfonic acid	2.04	0.23 U	2.32	114	69-129	
(PFBS)						
Perfluorohexanesulfonic acid	2.10	0.17 J	2.46	109	62-122	
(PFHxS)	0.00	0 00 77	0.00	1.00		
Perfluoroheptanesulfonic Acid	2.20	0.23 U	2.83	129	76-136	
(PFHpS) Perfluorooctanesulfonic acid	2.14	3.9	25.2	993	68-141	E F1
(PFOS)	2.11		23.2		00 141	
Perfluorodecanesulfonic acid	2.22	0.18 J	3.30	141	71-131	F1
(PFDS)						
Perfluorooctanesulfonamide	2.31	0.23 U	2.82	122	77-137	
(FOSA)						
N-methylperfluorooctanesulfona	2.31	2.3 U	3.39	147	72-132	F1
midoacetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonam	2.31	2.3 U	3.27	1 40	70 100	m1
idoacetic acid (NEtFOSAA)	2.31	2.30	3.21	142	72-132	F1
6:2 FTS	2.19	2.3 U	2.05 J	94	73-139	
8:2 FTS	2.21	2.3 U	2.24 J	101		
13C4 PFBA	5.77	2.9	2.90	50		
13C5 PFPeA	5.77	3.2	2.96	51		
13C2 PFHxA	5.77	4.1	3.49	61		
13C4 PFHpA	5.77	4.2	3.81	66		
13C4 PFOA	5.77	4.1	3.85	67	25-150	
13C4 FFOA 13C5 PFNA	5.77	4.3	3.66	64		
13C2 PFDA	5.77	4.3	4.01	70	25-150	
13C2 PFDA	5.77	4.3	4.14	70	25-150	
13C2 PFONA 13C2 PFDOA	5.77			70	25-150	l .
		4.4	4.01			l
13C2 PFTeDA	5.77	5.1	3.61	63	25-150	

[#] Column to be used to flag recovery and RPD values
FORM III 537 (modified)

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-218480-1

SDG No.:

Matrix: Solid Level: Low Lab File ID: 2020.09.29_PFC_A_064.d

COMPOUND	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	MS % REC	QC LIMITS REC	#
13C3 PFBS	5.36	3.8	3.97	74	25-150	
1802 PFHxS	5.45	4.4	4.31	79	25-150	
13C4 PFOS	5.51	4.4	3.93	71	25-150	
13C8 FOSA	5.77	3.4	2.86	50	25-150	
d3-NMeFOSAA	5.77	3.8	3.61	63	25-150	
d5-NEtFOSAA	5.77	4.5	3.75	65	25-150	
M2-6:2 FTS	5.48	12	12.7	232	25-150	*5
M2-8:2 FTS	5.52	11	12.9	233	25-150	*5

[#] Column to be used to flag recovery and RPD values
FORM III 537 (modified)

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-218480-1

SDG No.:

Matrix: Solid (SPLP East Level: Low Lab File ID: 2020.10.02_A13_PFC_B_014.d

	SPIKE	SAMPLE	MS	MS	QC	
	ADDED	CONCENTRATION	_	_	LIMITS	#
COMPOUND	(ng/L)	(ng/L)	(ng/L)	REC	REC	"
Perfluorobutanoic acid (PFBA)	39.2	4.1 J	40.9	94		
	39.2	3.7	39.3	91		
Perfluoropentanoic acid (PFPeA)	39.2	3.7	39.3	91	11-131	
Perfluorohexanoic acid (PFHxA)	39.2	4.8	46.8	107	73-133	
Perfluoroheptanoic acid	39.2	3.6	46.8	110		
(PFHpA)	03.2		10.0		, 2 202	
Perfluorooctanoic acid (PFOA)	39.2	15	57.8	109	70-130	
Perfluorononanoic acid (PFNA)	39.2	4.6	49.6	115	75-135	
Perfluorodecanoic acid (PFDA)	39.2	1.2 J	45.1	112	76-136	
Perfluoroundecanoic acid	39.2	1.8 U	43.0	110	68-128	
(PFUnA)						
Perfluorododecanoic acid	39.2	1.8 U	39.0	99	71-131	
(PFDoA)						
Perfluorotridecanoic acid (PFTriA)	39.2	1.8 U	31.5	81	71-131	
Perfluorotetradecanoic acid	39.2	1.8 U	38.9	99	70-130	
(PFTeA)						
Perfluorobutanesulfonic acid	34.6	0.40 J	38.6	110	67-127	
(PFBS)						
Perfluorohexanesulfonic acid	35.6	1.2 J	32.6	88	59-119	
(PFHxS)	37.3	0 00 7	40.4	111	76-136	
Perfluoroheptanesulfonic Acid (PFHpS)	37.3	0.80 J	42.4	111	/6-136	
Perfluorooctanesulfonic acid	36.3	150	210	165	70-130	4
(PFOS)	30.3	150	210	100	70 130	4
Perfluorodecanesulfonic acid	37.8	1.8 U	32.1	85	71-131	
(PFDS)						
Perfluorooctanesulfonamide	39.2	1.7 J	43.6	107	73-133	
(FOSA)						
N-methylperfluorooctanesulfona	39.2	4.6 U	43.5	111	76-136	
midoacetic acid (NMeFOSAA)	20.2	4.6 U	27.2	O.E.	76 126	
N-ethylperfluorooctanesulfonam idoacetic acid (NEtFOSAA)	39.2	4.60	37.3	95	76-136	
6:2 FTS	37.1	140	38.3	- 267	59-175	F1
8:2 FTS	37.5	0.69 J	38.9	102	,	
13C4 PFBA	97.9	89	89.5	91		
13C5 PFPeA	97.9	91	92.3	94		
13C2 PFHxA	97.9	89	95.5	98		
	97.9	98	94.1	96		
13C4 PFHpA				96		
13C4 PFOA	97.9	91	94.5	-		
13C5 PFNA	97.9	90	90.2	92		
13C2 PFDA	97.9	79	94.4	96		
13C2 PFUnA	97.9	79	82.0	84		
13C2 PFDoA	97.9	72	74.3	76		
13C2 PFTeDA	97.9	65	66.4	68	25-150	

[#] Column to be used to flag recovery and RPD values
FORM III 537 (modified)

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-218480-1

SDG No.:

Matrix: Solid (SPLP East Level: Low Lab File ID: 2020.10.02_A13_PFC_B_014.d

		SAMPLE CONCENTRATION			QC LIMITS	#
COMPOUND	(ng/L)	(ng/L)	(ng/L)	REC	REC	
13C3 PFBS	91.1	83	84.2	92	25-150	
1802 PFHxS	92.6	86	88.8	96	25-150	
13C4 PFOS	93.6	79	82.3	88	25-150	
13C8 FOSA	97.9	82	86.2	88	25-150	
d3-NMeFOSAA	97.9	62	57.3	58	25-150	
d5-NEtFOSAA	97.9	82	82.1	84	25-150	
M2-6:2 FTS	93.0	94	123	132	25-150	
M2-8:2 FTS	93.8	86	107	115	25-150	

[#] Column to be used to flag recovery and RPD values
FORM III 537 (modified)

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-218480-1

SDG No.:

Matrix: Solid Level: Low Lab File ID: 2020.09.29_PFC_A_065.d

	SPIKE ADDED	MSD CONCENTRATION	MSD	olc .	QC LIMITS		#
COMPOUND	(ug/Kg)	(ug/Kg)	REC	RPD	RPD	REC	π
Perfluorobutanoic acid (PFBA)	2.43	2.83	107	9	30	76-136	
Perfluoropentanoic acid	2.43	2.60	98		30	69-129	
(PFPeA)	_,						
Perfluorohexanoic acid (PFHxA)	2.43	2.82	116	1	30	71-131	
Perfluoroheptanoic acid	2.43	2.65	103	1	30	71-131	
(PFHpA)							
Perfluorooctanoic acid (PFOA)	2.43	3.03	107	0	30	72-132	
Perfluorononanoic acid (PFNA)	2.43	2.54	96	6	30	73-133	
Perfluorodecanoic acid (PFDA)	2.43	3.43	125	2	30	72-132	
Perfluoroundecanoic acid	2.43	3.25	124	18	30	66-126	
(PFUnA)							
Perfluorododecanoic acid	2.43	3.02	111	8	30	71-131	
(PFDoA)							
Perfluorotridecanoic acid (PFTriA)	2.43	2.83	113	17	30	71-131	
Perfluorotetradecanoic acid (PFTeA)	2.43	2.64	104	9	30	67-127	
Perfluorobutanesulfonic acid (PFBS)	2.15	2.61	121	11	30	69-129	
Perfluorohexanesulfonic acid (PFHxS)	2.21	2.31	97	6	30	62-122	
Perfluoroheptanesulfonic Acid (PFHpS)	2.32	2.72	117	4	30	76-136	
Perfluorooctanesulfonic acid	2.26	8.53	203	99	30	68-141	F1 F2
(PFOS) Perfluorodecanesulfonic acid	2.34	3.40	107	3	30	71-131	m1
(PFDS)	2.34	3.40	137	3	30	/1-131	F1
Perfluorooctanesulfonamide	2.43	2.91	120	3	30	77-137	
(FOSA)	2.45	2.51	120		30	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
N-methylperfluorooctanesulfona	2.43	3.21	132	5	30	72-132	
midoacetic acid (NMeFOSAA)							
N-ethylperfluorooctanesulfonam	2.43	3.37	138	3	30	72-132	F1
idoacetic acid (NEtFOSAA)							
6:2 FTS	2.31	2.31 J	100		30	73-139	
8:2 FTS	2.33	2.47	106	- 1	30	75-135	
13C4 PFBA	6.08	2.77	45			25-150	
13C5 PFPeA	6.08	2.94	48			25-150	
13C2 PFHxA	6.08	3.83	63			25-150	
13C4 PFHpA	6.08	3.85	63			25-150	
13C4 PFOA	6.08	3.85	63			25-150	
13C5 PFNA	6.08	4.06	67			25-150	
13C2 PFDA	6.08	4.08	67			25-150	
13C2 PFUnA	6.08	4.29	71			25-150	
13C2 PFDoA	6.08	4.26	70			25-150	
13C2 PFTeDA	6.08	4.55	75			25-150	1 1

[#] Column to be used to flag recovery and RPD values
FORM III 537 (modified)

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-218480-1

SDG No.:

Matrix: Solid Level: Low Lab File ID: 2020.09.29_PFC_A_065.d

	SPIKE	MSD	MSD	0	QC LIMITS		
201/201712		CONCENTRATION		%			#
COMPOUND	(ug/Kg)	(ug/Kg)	REC	RPD	RPD	REC	
13C3 PFBS	5.65	3.86	68			25-150	
1802 PFHxS	5.75	4.45	77			25-150	
13C4 PFOS	5.81	4.28	74			25-150	
13C8 FOSA	6.08	3.12	51			25-150	
d3-NMeFOSAA	6.08	3.45	57			25-150	
d5-NEtFOSAA	6.08	4.10	67			25-150	
M2-6:2 FTS	5.78	10.5	181			25-150	*5
M2-8:2 FTS	5.82	11.0	189			25-150	*5

[#] Column to be used to flag recovery and RPD values
FORM III 537 (modified)

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-218480-1

SDG No.:

Matrix: Solid (SPLP East Level: Low Lab File ID: 2020.10.02_A13_PFC_B_015.d

	SPIKE	MSD	MSD		QC LI	MITS	
201701777	ADDED	CONCENTRATION		8			#
COMPOUND	(ng/L)	(ng/L)	REC	RPD	RPD	REC	
Perfluorobutanoic acid (PFBA)	39.9	45.1	103		30	76-136	
Perfluoropentanoic acid	39.9	38.9	88	ᅦ	30	71-131	
(PFPeA) Perfluorohexanoic acid (PFHxA)	39.9	46.4	104	1	30	73-133	
Perfluoroheptanoic acid	39.9	47.7	111	2	30	72-132	
(PFHpA)	39.9	4/./	111	2	30	/2-132	
Perfluorooctanoic acid (PFOA)	39.9	48.5	84	17	30	70-130	
Perfluorononanoic acid (PFNA)	39.9	41.8	93		30	75-135	
Perfluorodecanoic acid (PFDA)	39.9	39.7	96		30	76-136	
Perfluoroundecanoic acid	39.9	37.9	95		30	68-128	
(PFUnA)	39.9	37.9	93	13	30	00-120	
Perfluorododecanoic acid	39.9	42.3	106	8	30	71-131	
(PFDoA)	33.3	12.0				, 1 101	
Perfluorotridecanoic acid	39.9	36.5	91	14	30	71-131	
(PFTriA)							
Perfluorotetradecanoic acid	39.9	35.5	89	9	30	70-130	
(PFTeA)							
Perfluorobutanesulfonic acid	35.2	36.5	102	5	30	67-127	
(PFBS)		2.1.2	0.1				
Perfluorohexanesulfonic acid	36.3	34.2	91	5	30	59-119	
(PFHxS) Perfluoroheptanesulfonic Acid	38.0	38.9	100	8	30	76-136	
(PFHpS)	30.0	30.9	100	0	30	/6-136	
Perfluorooctanesulfonic acid	37.0	54.5	-258	118	30	70-130	4 F2
(PFOS)	37.0	34.5	250	110	30	70 130	7 12
Perfluorodecanesulfonic acid	38.4	34.9	91	9	30	71-131	
(PFDS)							
Perfluorooctanesulfonamide	39.9	39.8	96	9	30	73-133	
(FOSA)							
N-methylperfluorooctanesulfona	39.9	43.5	109	0	30	76-136	
midoacetic acid (NMeFOSAA)		0.7.0					
N-ethylperfluorooctanesulfonam	39.9	37.3	94	0	30	76-136	
idoacetic acid (NEtFOSAA) 6:2 FTS	37.8	38.1	- 262	1	30	59-175	F1
8:2 FTS	38.2	39.5	102	· I	30	75-135	
0:2 F15 13C4 PFBA	99.7	95.4	96	I	30	25-150	
			l 1	- 1			
13C5 PFPeA	99.7	99.6	100	- 1		25-150	
13C2 PFHxA	99.7	98.9	99	- 1		25-150	
13C4 PFHpA	99.7	97.6	98	I		25-150	
13C4 PFOA	99.7	105	105			25-150	
13C5 PFNA	99.7	99.5	100	- 1		25-150	
13C2 PFDA	99.7	97.9	98			25-150	
13C2 PFUnA	99.7	97.0	97			25-150	
13C2 PFDoA	99.7	88.4	89	I		25-150	
13C2 PFTeDA	99.7	75.1	75			25-150	

[#] Column to be used to flag recovery and RPD values
FORM III 537 (modified)

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-218480-1

SDG No.:

Matrix: Solid (SPLP East Level: Low Lab File ID: 2020.10.02_A13_PFC_B_015.d

	SPIKE	MSD	MSD %	olc	QC LIMITS		щ
COMPOUND		CONCENTRATION		RPD	DDD	DEC	#
COMPOUND	(ng/L)	(ng/L)	REC	RPD	RPD	REC	
13C3 PFBS	92.7	92.5	100			25-150	
1802 PFHxS	94.3	89.8	95			25-150	
13C4 PFOS	95.3	88.3	93			25-150	
13C8 FOSA	99.7	90.8	91			25-150	
d3-NMeFOSAA	99.7	80.4	81			25-150	
d5-NEtFOSAA	99.7	92.4	93			25-150	
M2-6:2 FTS	94.7	104	110			25-150	
M2-8:2 FTS	95.5	94.4	99			25-150	

[#] Column to be used to flag recovery and RPD values
FORM III 537 (modified)

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-218480-1 SDG No.: Client Sample ID: Lab Sample ID: MB 320-414128/1-A Matrix: Solid Lab File ID: 2020.09.24_A9_PFC_C_007.d Date Collected: Analysis Method: 537 (modified) Date Extracted: 09/20/2020 20:32 Extraction Method: SHAKE Sample wt/vol: 5.00(g) Date Analyzed: 09/24/2020 20:05 Con. Extract Vol.: 10.00(mL) Dilution Factor: 1 Injection Volume: 20(uL) GC Column: Acquity ID: 2.1(mm) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 415420 Units: ug/Kg

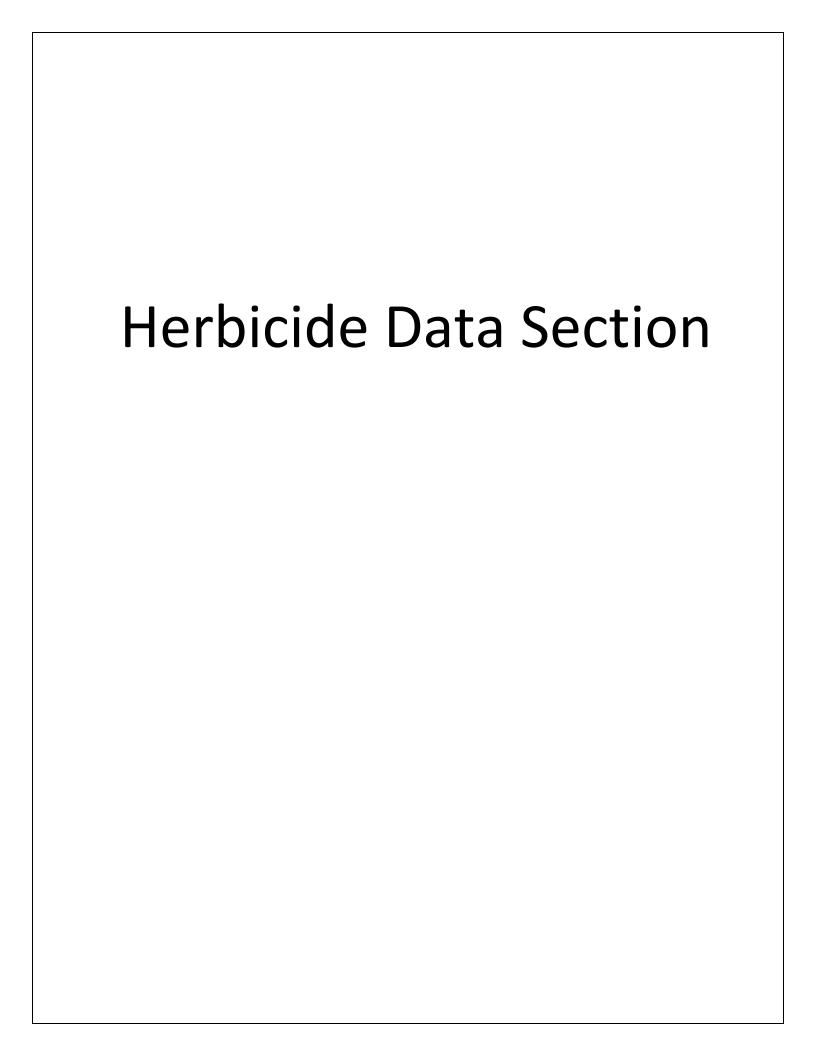
CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.20	U	0.20	0.028
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.20	U	0.20	0.077
307-24-4	Perfluorohexanoic acid (PFHxA)	0.20	U	0.20	0.042
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.20	U	0.20	0.029
335-67-1	Perfluorooctanoic acid (PFOA)	0.20	U	0.20	0.086
375-95-1	Perfluorononanoic acid (PFNA)	0.20	U	0.20	0.036
335-76-2	Perfluorodecanoic acid (PFDA)	0.20	U	0.20	0.022
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.20	U	0.20	0.036
307-55-1	Perfluorododecanoic acid (PFDoA)	0.20	U	0.20	0.067
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.20	U	0.20	0.051
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.20	U	0.20	0.054
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.20	U	0.20	0.025
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.20	U	0.20	0.031
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.20	U	0.20	0.035
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.201	J	0.50	0.20
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.20	U	0.20	0.039
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.20	U	0.20	0.082
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	2.0	Ū	2.0	0.39
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	2.0	U	2.0	0.37
27619-97-2	6:2 FTS	2.0	U	2.0	0.15
39108-34-4	8:2 FTS	2.0	U	2.0	0.25

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-218480-1 SDG No.: Client Sample ID: Lab Sample ID: MB 320-414617/1-A Matrix: Solid Lab File ID: 2020.09.25_A9_PFC_C_007.d Date Collected: Analysis Method: 537 (modified) Date Extracted: 09/22/2020 11:42 Extraction Method: SHAKE Sample wt/vol: 5.00(g) Date Analyzed: 09/26/2020 00:35 Con. Extract Vol.: 10.0(mL) Dilution Factor: 1 Injection Volume: 20(uL) GC Column: Acquity ID: 2.1 (mm) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 416007 Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.0756	J	0.20	0.028
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.20	U	0.20	0.077
307-24-4	Perfluorohexanoic acid (PFHxA)	0.20	U	0.20	0.042
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.20	U	0.20	0.029
335-67-1	Perfluorooctanoic acid (PFOA)	0.20	U	0.20	0.086
375-95-1	Perfluorononanoic acid (PFNA)	0.20	U	0.20	0.036
335-76-2	Perfluorodecanoic acid (PFDA)	0.20	U	0.20	0.022
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.20	U	0.20	0.036
307-55-1	Perfluorododecanoic acid (PFDoA)	0.20	U	0.20	0.067
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.20	U	0.20	0.051
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.20	U	0.20	0.054
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.20	U	0.20	0.025
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.20	U	0.20	0.031
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.20	Ū	0.20	0.035
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.608		0.50	0.20
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.20	U	0.20	0.039
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.20	U	0.20	0.082
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	2.0	U	2.0	0.39
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	2.0	U	2.0	0.37
27619-97-2	6:2 FTS	2.0	U	2.0	0.15
39108-34-4	8:2 FTS	2.0	U	2.0	0.25

FORM I LCMS ORGANICS ANALYSIS DATA SHEET


Lab Name: Eurofins TestAmerica, Sacramento	Job No.: 460-218480-1					
SDG No.:						
Client Sample ID:	Lab Sample ID: MB 320-414634/1-A					
Matrix: Water	Lab File ID: 2020.09.23_A18_PFC_A_046.d					
Analysis Method: 537 (modified)	Date Collected:					
Extraction Method: 3535	Date Extracted: 09/22/2020 12:25					
Sample wt/vol: 250(mL)	Date Analyzed: 09/23/2020 22:40					
Con. Extract Vol.: 10.0(mL)	Dilution Factor: 1					
Injection Volume: 20(uL)	GC Column: Gemini C18 3x50 ID: 3 (mm)					
% Moisture:	GPC Cleanup: (Y/N) N					
Analysis Batch No.: 415095	Units: ng/L					

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	5.0	U	5.0	2.4
2706-90-3	Perfluoropentanoic acid (PFPeA)	2.0	U	2.0	0.49
307-24-4	Perfluorohexanoic acid (PFHxA)	2.0	U	2.0	0.58
375-85-9	Perfluoroheptanoic acid (PFHpA)	2.0	U	2.0	0.25
335-67-1	Perfluorooctanoic acid (PFOA)	2.0	U	2.0	0.85
375-95-1	Perfluorononanoic acid (PFNA)	2.0	U	2.0	0.27
335-76-2	Perfluorodecanoic acid (PFDA)	2.0	U	2.0	0.31
2058-94-8	Perfluoroundecanoic acid (PFUnA)	2.0	U	2.0	1.1
307-55-1	Perfluorododecanoic acid (PFDoA)	2.0	U	2.0	0.55
72629-94-8	Perfluorotridecanoic acid (PFTriA)	2.0	U	2.0	1.3
376-06-7	Perfluorotetradecanoic acid (PFTeA)	2.0	U	2.0	0.73
375-73-5	Perfluorobutanesulfonic acid (PFBS)	2.0	U	2.0	0.20
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	2.0	U	2.0	0.57
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	2.0	Ū	2.0	0.19
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	7.50		2.0	0.54
335-77-3	Perfluorodecanesulfonic acid (PFDS)	2.0	U	2.0	0.32
754-91-6	Perfluorooctanesulfonamide (FOSA)	2.0	U	2.0	0.98
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	5.0	Ū	5.0	1.2
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	5.0	U	5.0	1.3
27619-97-2	6:2 FTS	3.49	J	5.0	2.5
39108-34-4	8:2 FTS	2.0	U	2.0	0.46

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Sacramento	Job No.: 460-218480-1					
SDG No.:						
Client Sample ID:	Lab Sample ID: MB 320-416276/1-A					
Matrix: Solid						
Analysis Method: 537 (modified)	Date Collected:					
Extraction Method: SHAKE	Date Extracted: 09/28/2020 06:28					
Sample wt/vol: 5.00(g)	Date Analyzed: 09/30/2020 04:13					
Con. Extract Vol.: 10.00(mL)	Dilution Factor: 1					
Injection Volume: 20(uL)	GC Column: Acquity ID: 2.1(mm)					
% Moisture:	GPC Cleanup: (Y/N) N					
Analysis Batch No.: 416999	Units: ug/Kg					

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.0546	J	0.20	0.028
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.20	U	0.20	0.077
307-24-4	Perfluorohexanoic acid (PFHxA)	0.20	U	0.20	0.042
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.20	U	0.20	0.029
335-67-1	Perfluorooctanoic acid (PFOA)	0.20	U	0.20	0.086
375-95-1	Perfluorononanoic acid (PFNA)	0.20	U	0.20	0.036
335-76-2	Perfluorodecanoic acid (PFDA)	0.20	U	0.20	0.022
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.20	U	0.20	0.036
307-55-1	Perfluorododecanoic acid (PFDoA)	0.20	U	0.20	0.067
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.20	U	0.20	0.051
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.20	U	0.20	0.054
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.20	U	0.20	0.025
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.20	U	0.20	0.031
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.20	U	0.20	0.035
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.50	U	0.50	0.20
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.20	U	0.20	0.039
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.20	U	0.20	0.082
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	2.0	Ū	2.0	0.39
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	2.0	Ū	2.0	0.37
27619-97-2	6:2 FTS	2.0	U	2.0	0.15
39108-34-4	8:2 FTS	2.0	U	2.0	0.25

QA/QC Review of Method 8151A Herbicide Data for Eurofins TestAmerica-Buffalo, Job No. 460-218480-1

6 Soil Samples Collected September 14-15, 2020

Prepared by: Donald Anné February 8, 2021

Geology

Hydrology

Remediation

Water Supply

<u>Holding Times</u>: Samples were extracted and analyzed within USEPA SW-846 holding times.

Blanks: The analysis of the method blank reported target herbicides as not detected.

- <u>Surrogate Recovery</u>: The surrogate recoveries for samples TP-3, TP-5, and SB-10 (0-5) were above QC limit on one column. Positive results for these samples should be considered estimated, biased high (J+).
- Matrix Spike/Matrix Spike Duplicate: The relative percent differences for target herbicides were below the allowable maximum, but 1 of 2 percent recoveries for 2,4-D was below QC limits and below 10% for soil MS/MSD sample SB-8 (0-2). The "not detected" result for 2.4-D should be considered rejected, unusable (R) in sample SB-8 (0-2).
- <u>Laboratory Control Sample</u>: The percent recoveries for target herbicides were within QC limits for soil sample LCS 480-550487/2-A.
- <u>Field Duplicates</u>: The soil field duplicate, Dup, was collected at sample location SB-7 (0-0.5) and analyzed for herbicides. However, the sample SB-7 (0-0.5) was not analyzed for herbicides. The results for the Dup should be considered representative of location SB-7 (0-0.5).
- <u>Initial Calibration</u>: The average %RSDs for target herbicides were below the allowable maximum (20%) on both columns, as required.
- <u>Continuing Calibration</u>: The average %Ds for target herbicides were below the allowable maximum (20%) on both columns, as required.
- <u>PCB Identification Summary</u>: Checked surrogates were within GC quantitation limits. The analyses of the soil samples reported target herbicides as not detected.

z:\projects\2021\21600-21620\21600-dec carmel\temp review\460-218480-1.her.docx

FORM II HERBICIDES SURROGATE RECOVERY

ab Name: Eurofins TestAmerica, Buffalo Job No.: 460-218480-	30-1
---	------

SDG No.:

Matrix: Solid Level: Low

GC Column (1): RTX-CLPI ID: 0.53 (mm) GC Column (2): RTX-CLPII ID: 0.32 (mm)

Client Sample ID	Lab Sample ID	DCPAA1 #	DCPAA2	#
TP+3	460-218480-3	49	4081	Χ
TP-5	460-218480-5	74	2194	Χ
SB-5(0-2)	460-218480-15	61	66	٦
SB-8 (0-2)	460-218480-18	87	66	
SB-10 (0-5)	460-218480-20	38	336	Χ
Dup	460-218480-22	61	67	
	MB 480-550487/1-A	57	65	
	LCS 480-550487/2-A	72	66	
SB-8(0-2) MS	460-218480-18 MS	84	83	
SB-8(0-2) MSD	460-218480-18 MSD	19 X	854	Χ

 $\frac{QC LIMITS}{28-129}$

DCPAA = 2,4-Dichlorophenylacetic acid

FORM III HERBICIDES MATRIX SPIKE RECOVERY

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 460-218480-1

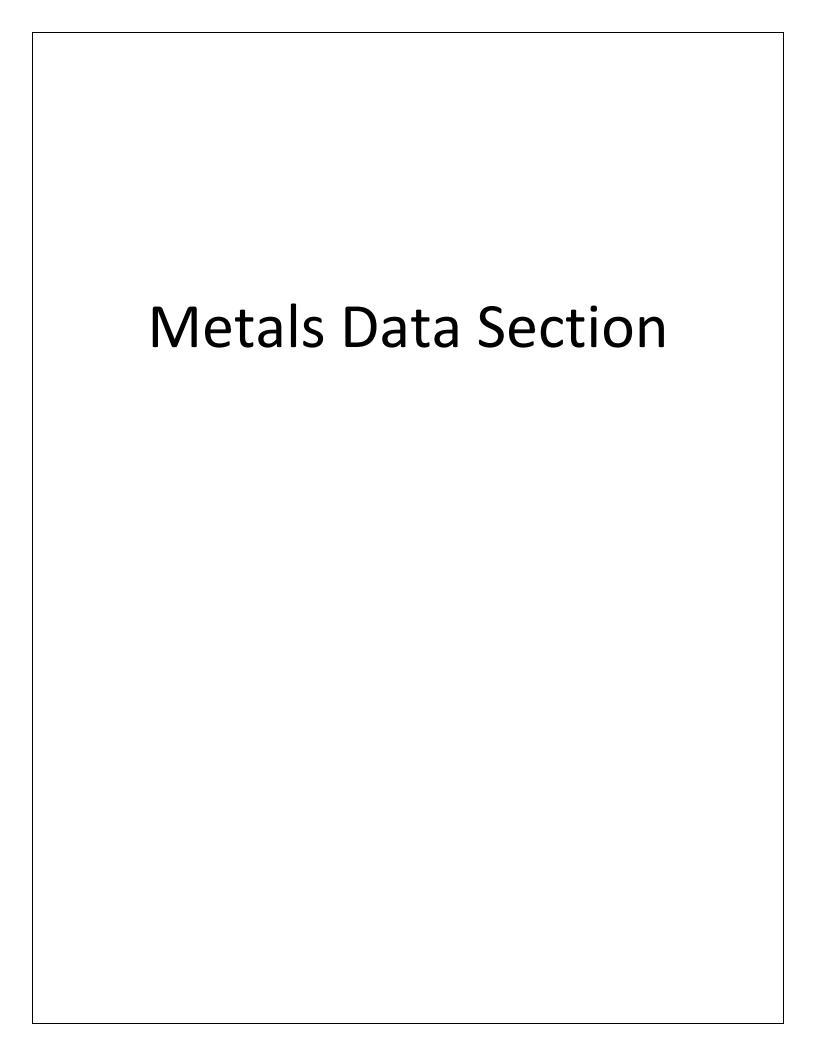
SDG No.:

Matrix: Solid Level: Low Lab File ID: 13_34-175.D

	SPIKE ADDED	SAMPLE CONCENTRATION	MS CONCENTRATION	MS %	QC LIMITS	#
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC	REC	
2,4,5-T	82.1	21 U	49.1	60	29-123	
Silvex (2,4,5-TP)	82.1	21 U	48.9	60	22-140	
2,4-D	82.1	21 U	56.1	68	32-115	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8151A}$

FORM III HERBICIDES MATRIX SPIKE DUPLICATE RECOVERY


Lab Name: Eurofins TestAmerica, Buffalo Job No.: 460-218480-1

SDG No.:

Matrix: Solid Level: Low Lab File ID: 13_34-176.D

	SPIKE	MSD	MSD		QC LI	IMITS	
	ADDED	CONCENTRATION	%	용			#
COMPOUND	(ug/Kg)	(ug/Kg)	REC	RPD	RPD	REC	
2,4,5-T	83.1	43.6	52	12	50	29-123	
Silvex (2,4,5-TP)	83.1	45.6	55	7	50	22-140	
2,4-D	83.1	21 U	0	NC	50	32-115	F1

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8151A}$

QA/QC Review of TAL Metals Data for Eurofins TestAmerica-Buffalo, Job No: 480-218480-1

11 Soil Samples Collected September 14- 15, 2020

Prepared by: Donald Anné February 8, 2021

Geology

Hydrology

Remediation

Water Supply

<u>Holding Times</u>: Samples were analyzed within the USEPA SW-846 holding times.

<u>Initial and Continuing Calibration Verification</u>: The percent recoveries for TAL metals were within control limits (90-110% for all metals except Hg, 80-120% for Hg).

<u>Low Level Initial and Continuing Calibration Verification</u>: The percent recoveries for applicable TAL metals were within laboratory QC limits (70-130% for all metals except Hg).

<u>Blanks</u>: The analyses for initial and continuing calibration, and method blanks reported TAL metals as either not detected or below the reporting limits, as required.

<u>ICP Interference Check Sample</u>: The percent recoveries for applicable TAL metals were within control limits (80-120%).

<u>Spike Sample Recovery</u>: Two of two percent recoveries (%Rs) for nickel and 1 of 2 %Rs for antimony were below control limits (75-125%), but not below 10% for soil MS/MSD sample SB-8 (0-2). Positive results for these metals should be considered estimated, biased low (J-) and "not detected" results estimated (UJ) in associated soil samples.

Two of two %Rs for copper and 1 of 2 %Rs for magnesium were below control limits (75-125%) and below 10% for soil MS/MSD sample SB-8 (0-2). Positive results for these metals should be considered estimated, biased low (J-) and "not detected" results rejected, unusable (R) in associated soil samples.

One of two %Rs for potassium was above control limits for soil MS/MSD sample SB-8 (0-2). Positive results for potassium should be considered estimated, biased high (J+) in associated soil samples.

<u>Laboratory Duplicates</u>: The relative percent differences for barium, calcium, iron, and lead were above allowable maximum (35%) for soil MS/MSD sample SB-8 (0-2). Positive results for these metals should be considered estimated (J) in associated soil samples.

- <u>Field Duplicates</u>: The soil field duplicate, Dup, was collected at sample location SB-7 (0-0.5) and analyzed for metals. However, the sample SB-7 (0-0.5) was not analyzed for metals. The results for the Dup should be considered representative of location SB-7 (0-0.5).
- <u>Laboratory Control Sample</u>: The recoveries for TAL metals were within control limits for soil samples LCSSRM 480-551058/2-A and LCSSRM 480-55061/2-A.
- <u>Serial Dilution</u>: The %Ds for cadmium, calcium, iron, manganese, and zinc were above the allowable maximum (15%) for soil serial dilution sample SB-8 (0-2). Positive results for these metals that are above the RLs should be considered estimated (J) in associated soil samples.

<u>Instrument Detection Limits</u>: The IDLs were at or below the MRLs, as required.

<u>Percent Solids</u>: The percent solids for soil samples were greater than 50%.

5A-IN MATRIX SPIKE SAMPLE RECOVERY METALS

Client ID: SB-8(0-2) MS Lab ID: 460-218480-18 MS

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 460-218480-1

SDG No.:

Matrix: Solid Concentration Units: mg/Kg

% Solids: 80.0

Analyte	SSR C	Sample Result (SR	.) C	Spike Added (SA)	%R	Control Limit %R	Q	Method
Aluminum	15380	11500		2450	157	75-125	4	6010C
Antimony	38.53	19.0	U	49.0	79	75-125		6010C
Arsenic	55.06	6.8		49.0	99	75-125		6010C
Barium	1234	2280		49.0	-2129	75-125	^ 4	6010C
Beryllium	48.00	0.53		49.0	97	75-125		6010C
Cadmium	49.66	3.2		49.0	95	75-125		6010C
Calcium	62610	48500		2450	578	75-125	4	6010C
Chromium	125.9	210		49.0	-171	75-125	4	6010C
Cobalt	55.70	5.0		49.0	104	75-125		6010C
Copper	105.9	144		49.0	-78	75-125	F1	6010C
Iron	15240	10700		2450	185	75-125	4	6010C
Lead	1130	1420		49.0	-596	75-125	4	6010C
Magnesium	9280	7110		2450	88	75-125		6010C
Manganese	424.8	360		49.0	132	75-125	4	6010C
Nickel	79.62	68.8		49.0	22	75-125	F1	6010C
Potassium	3702	723		2450	122	75-125		6010C
Selenium	45.40	5.1	U	49.0	93	75-125		6010C
Silver	13.33	0.78		12.2	103	75-125		6010C
Sodium	2956	247		2450	111	75-125		6010C
Thallium	47.64	7.6	U	49.0	97	75-125		6010C
Vanadium	71.27	28.7		49.0	87	75-125		6010C
Zinc	863.1	811		49.0	106	75-125	4	6010C
Mercury	0.881	0.58		0.365	83	80-120		7471B

SSR = Spiked Sample Result

Calculations are performed before rounding to avoid round-off errors in calculated results. Note - Results and Reporting Limits have been adjusted for dry weight.

5A-IN MATRIX SPIKE DUPLICATE SAMPLE RECOVERY METALS

Client ID: SB-8(0-2) MSD Lab ID: 460-218480-18 MSD

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 460-218480-1

SDG No.:

Matrix: Solid Concentration Units: mg/Kg

% Solids: 80.0

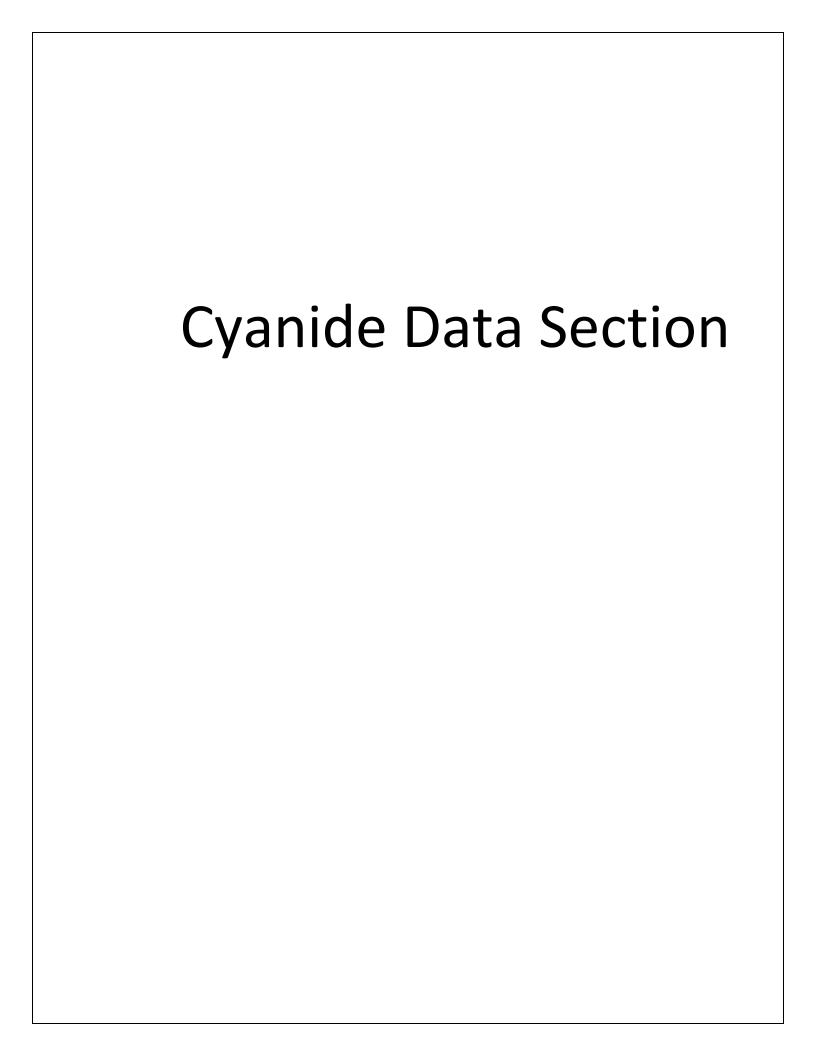
Analyte	(SDR)	Spike Added (SA)	%R	Control Limit %R	RPD	RPD Limit	Q	Method
Aluminum	17240	2420	236	75-125	11	20	4	6010C
Antimony	29.90	48.4	62	75-125	25	20	F1 F2	6010C
Arsenic	51.78	48.4	93	75-125	6	20		6010C
Barium	489.4	48.4	-3690	75-125	86	20	4 F2	6010C
Beryllium	45.30	48.4	92	75-125	6	20		6010C
Cadmium	45.75	48.4	88	75-125	8	20		6010C
Calcium	30570	2420	-739	75-125	69	20	4 F2	6010C
Chromium	88.09	48.4	-251	75-125	35	20	4 F2	6010C
Cobalt	59.10	48.4	112	75-125	6	20		6010C
Copper	84.40	48.4	-123	75-125	23	20	F1 F2	6010C
Iron	35560	2420	1026	75-125	80	20	4 F2	6010C
Lead	629.1	48.4	-1637	75-125	57	20	4 F2	6010C
Magnesium	6856	2420	-(11)	75-125	30	20	F1 F2	6010C
Manganese	415.4	48.4	114	75-125	2	20	4	6010C
Nickel	79.68	48.4	22	75-125	0	20	F1	6010C
Potassium	4482	2420	155	75-125	19	20	F1	6010C
Selenium	43.25	48.4	89	75-125	5	20		6010C
Silver	11.99	12.1	93	75-125	11	20		6010C
Sodium	2633	2420	98	75-125	12	20		6010C
Thallium	47.82	48.4	99	75-125	0	20		6010C
Vanadium	68.22	48.4	82	75-125	4	20		6010C
Zinc	942.6	48.4	271	75-125	9	20	4	6010C
Mercury	1.06	0.401	120	80-120	18	20		7471B

SDR = Sample Duplicate Result

Calculations are performed before rounding to avoid round-off errors in calculated results. Note - Results and Reporting Limits have been adjusted for dry weight.

$$8\mbox{-IN}$$ ICP-AES AND ICP-MS SERIAL DILUTIONS METALS

Lab ID: 460-218480-18


SDG No:

Lab Name: Eurofins TestAmerica, Buffalo Job No: 460-218480-1

Matrix: Solid Concentration Units: mg/Kg

Analyte	Initial Samp Result (I)		Serial Dilution Result (S)	С	% Difference	Q	Method
Aluminum	11500		12740		10		6010C
Antimony	19.0	U	95.1	U	NC		6010C
Arsenic	6.8		8.22	J	NC		6010C
Barium	2280		2300		1.0	^	6010C
Beryllium	0.53		0.590	J	NC		6010C
Cadmium	3.2		3.78		17	V	6010C
Calcium	48500		56290		16	V	6010C
Chromium	210		239.1		14	V	6010C
Cobalt	5.0		5.58		11	V	6010C
Copper	144		160.4		11	V	6010C
Iron	10700		12420		16	V	6010C
Lead	1420		1574		11	V	6010C
Magnesium	7110		8110		14	V	6010C
Manganese	360		419.1		16	V	6010C
Nickel	68.8		76.90		12	V	6010C
Potassium	723		757.1		4.7		6010C
Selenium	5.1	U	25.4	U	NC		6010C
Silver	0.78		3.8	U	NC		6010C
Sodium	247		226.7	J	NC		6010C
Thallium	7.6	U	38.0	U	NC		6010C
Vanadium	28.7		32.97		15	V	6010C
Zinc	811		968.6		19	V	6010C

Calculations are performed before rounding to avoid round-off errors in calculated results.

QA/QC Review of Total Cyanide Data for Eurofins TestAmerica-Edison, Job No: 460-218480-1

11 Soil samples Collected September 14-15, 2020

Prepared by: Donald Anné February 8, 2021

Geology

Hydrology

Remediation

Water Supply

<u>Holding Times</u>: Samples were analyzed within USEPA SW-846 holding times.

<u>Initial and Continuing Calibration Verification</u>: The percent recoveries for total cyanide were within control limits (85-115%).

<u>Blanks</u>: The analyses of initial calibration and continuing calibration blanks reported total cyanide as not detected.

<u>Spike Sample Recovery</u>: The percent recovery (%R) for total cyanide was within QC limits (85-155%) for soil spike sample Dup.

One of two %Rs for total cyanide was above QC limits (75-125%) for soil MS/MSD sample SB-8 (0-2). Positive results for total cyanide should be considered estimated, biased high (J+) in associated soil samples.

<u>Laboratory Duplicates</u>: The relative percent difference for total cyanide was below the allowable maximum (20%) for soil MS/MSD sample SB-8 (0-2), as required.

<u>Field Duplicates</u>: The soil field duplicate, Dup, was collected at sample location SB-7 (0-0.5) and analyzed for total cyanide. However, the sample SB-7 (0-0.5) was not analyzed for total cyanide. The results for the Dup should be considered representative of location SB-7 (0-0.5).

<u>Laboratory Control Sample</u>: The percent recoveries for total cyanide were within QC limits for soil samples LCSSRM 480-550454/2-A and LCSSRM 480-550507/2-A.

z:\projects\2021\21600-21620\21600-dec carmel\temp review\460-218480-1.tcn.docx

5-IN MATRIX SPIKE SAMPLE RECOVERY GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 460-218480-1

SDG No.:

Matrix: Solid

Method Lab Sample ID Analyte	Result C Unit	Spike Pct. RPD Amount Rec. Limits RPD Limit Q
Batch ID: 550697 Date: 09/22/2020 14:32	Prep Batch: 550454	Date: 09/21/2020 13:33
9012B 460-218480-22 Cyanide, Total	1.1 U mg/Kg	
9012B 460-218480-22 Cyanide, Total MS Dup	1.31 mg/Kg	1.33 99 85-115
Batch ID: 550681 Date: 09/22/2020 15:08	Prep Batch: 550507	Date: 09/21/2020 20:59
9012B 460-218480-18 Cyanide, Total	1.2 U mg/Kg	
9012B 460-218480-18 Cyanide, Total MS SB-8 (0-2)	1.86 mg/Kg	1.46 1 <mark>28</mark> 85-115 F1

Calculations are performed before rounding to avoid round-off errors in calculated results. Note - Results and Reporting Limits have been adjusted for dry weight.

5-IN MATRIX SPIKE DUPLICATE SAMPLE RECOVERY GENERAL CHEMISTRY

Lab	Name:	Eurofins	TestAmerica,	Buffalo	Job No.:	460-218480-1
SDG	No.:			_		

Matrix: Solid

Method Lab Sample ID Analyte	Result C Unit	Spike Pct. RPD Amount Rec. Limits RPD Limit	Q
Batch ID: 550681 Date: 09/22/2020 15:09	Prep Batch: 550507	Date: 09/21/2020 20:59	
9012B 460-218480-18 Cyanide, Total MSD SB-8 (0-2)	1.52 mg/Kg	1.48 103 85-115 20 15	F2

Calculations are performed before rounding to avoid round-off errors in calculated results. Note - Results and Reporting Limits have been adjusted for dry weight.

TOC Data Section

Geology

Hydrology

Remediation

Water Supply

QA/QC Review of Total Organic Carbon (TOC) Data for Eurofins TestAmerica-Burlington, Job No: 460-218480-1

10 Soil Samples Collected September 14-15, 2020

Prepared by: Donald Anné February 8, 2021

- <u>Holding Times</u>: All samples were re-analyzed outside established holding time. Results for re-analyzed samples should be considered estimated (J).
- <u>Initial and Continuing Calibration Verification</u>: The percent recoveries for TOC were within laboratory QC limits (75-125%).
- <u>Blanks</u>: Method blank MB 200-160181/31 contained TOC (2230 mg/kg). Results for TOC that are less than 5 times the blank level should be reported as not detected (U) in associated samples.
- <u>Spike Sample Recovery</u>: The percent recoveries (%Rs) for TOC were within laboratory QC limits (75-125%) for the reanalysis of soil MS/MSD sample SB-8 (0-2).

One of two %Rs for TOC was above QC limits (75-125%) for the initial analysis of soil MS/MSD sample SB-8 (0-2). Positive results for TOC should be considered estimated, biased high (J+) in associated soil samples.

- <u>Duplicates</u>: The relative percent difference for TOC was below the allowable maximum (20%) for aqueous MS/MSD sample MW41-80, as required.
- <u>Field Duplicates</u>: The soil field duplicate, Dup, was collected at sample location SB-7 (0-0.5) and analyzed for TOC. However, the sample SB-7 (0-0.5) was not analyzed for TOC. The results for the Dup should be considered representative of location SB-7 (0-0.5).
- <u>Laboratory Control Sample</u>: The percent recovery (%R) for TOC was within laboratory QC limits (75-125%) for aqueous sample LCS 200-160143/6.

The %R for TOC was above QC limits (75-125%) for soil sample LCS 200-160181/32. Positive results for TOC should be considered estimated, biased high (J+) in associated soil samples.

z:\projects\2021\21600-21620\21600-dec carmel\temp review\460-218480-1.toc.docx

3-IN METHOD BLANK GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Burlington Job No.: 460-218480-1

SDG No.:

Method Lab Sample ID Analyte	Result Qual	Units	RL	Dil
Batch ID: 160181 Date: 09/23/2020 18:49				
Lloyd Kahn MB 200-160181/31 Total Carbon	2230 ^	mg/Kg	1000	1
Batch ID: 160143 Date: 09/30/2020 14:50				
Lloyd Kahn MB 200-160143/5 Total Carbon	1000 U	mg/Kg	1000	1

5-IN MATRIX SPIKE SAMPLE RECOVERY GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Burlington Job No.: 460-218480-1

SDG No.:

Matrix: Solid

Method	Lab Sample ID Analyte	Result C	Unit	Spike Amount	Pct. Rec.	Limits	RPD RPD Limit	Q
Batch	ID: 160181 Date: 09/23/2020 20:33							
Lloyd Kahn	460-218480-18 Total Carbon	61900	mg/Kg					^ B F1 *
Lloyd Kahn	460-218480-18 Total Carbon MS SB-8 (0-2)	117200	mg/Kg	38000	145	75-125		F1 ^
Batch	ID: 160143 Date: 09/30/2020 16:24							
Lloyd Kahn	460-218480-18 Total Carbon	47900	mg/Kg					Н
Lloyd Kahn	460-218480-18 Total Carbon MS SB-8 (0-2)	125700	mg/Kg	70000	111	75-125		Н

 $\hbox{\it Calculations are performed before rounding to avoid round-off errors in calculated results.}$

5-IN MATRIX SPIKE DUPLICATE SAMPLE RECOVERY GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Burlington Job No.: 460-218480-1

SDG No.:

Matrix: Solid

Method Lab Sample ID Analyte	Result C	Unit	Spike Amount	Pct. Rec.	Limits	RPD	RPD Limit	Q
Batch ID: 160181 Date: 09/23/2020 20:37 Lloyd 460-218480-18 Total Carbon Kahn MSD SB-8 (0-2)	106200	mg/Kg	35400	125	75-125	10	20	^
Batch ID: 160143 Date: 09/30/2020 16:28 Lloyd 460-218480-18 Total Carbon Kahn MSD SB-8 (0-2)	140000	mg/Kg	76100	121	75-125	11	20	Н

 $\hbox{\it Calculations are performed before rounding to avoid round-off errors in calculated results.}$

7A-IN LAB CONTROL SAMPLE GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Burlington Job No.: 460-218480-1

SDG No.:

Matrix: Solid

Method	Lab Sample ID) Analyte	Result	C Unit	Spike Amount		Limits	RPD RPD Limit	Q
Batch	ID: 160181	Date: 09/23/2020 18:54							
				LCS	S Source: W	CLKLCS	s_00026		
	LCS) 200-160181/32	Total Carbon	11220	mg/Kg	8300	135	75-125		* ^
Batch	ID: 160143	Date: 09/30/2020 14:55							
				LCS	S Source: W	CLKLCS	s_00026		
Lloyd Kahn	LCS 200-160143/6	Total Carbon	8488	mg/Kg	8300	102	75-125		

Calculations are performed before rounding to avoid round-off errors in calculated results.

Alpha Geoscience: Acronyms and Definitions

Data Validation Acronyms

AA Atomic absorption, flame technique

BHC Hexachlorocyclohexane BFB Bromofluorobenzene

CCB Continuing calibration blank
CCC Calibration check compound
CCV Continuing calibration verification

CN Cyanide

CRDL Contract required detection limit
CRQL Contract required quantitation limit
CVAA Atomic adsorption, cold vapor technique

DCAA 2,4-Dichlophenylacetic acid

DCB Decachlorobiphenyl

DFTPP Decafluorotriphenyl phosphine ECD Electron capture detector

FAA Atomic absorption, furnace technique

FID Flame ionization detector FNP 1-Fluoronaphthalene GC Gas chromatography

GC/MS Gas chromatography/mass spectrometry

GPC Gel permeation chromatography

ICB Initial calibration blank

ICP Inductively coupled plasma-atomic emission spectrometer

ICV Initial calibration verification IDL Instrument detection limit

IS Internal standard

LCS Laboratory control sample

LCS/LCSD Laboratory control sample/laboratory control sample duplicate

MSA Method of standard additions
MS/MSD Matrix spike/matrix spike duplicate

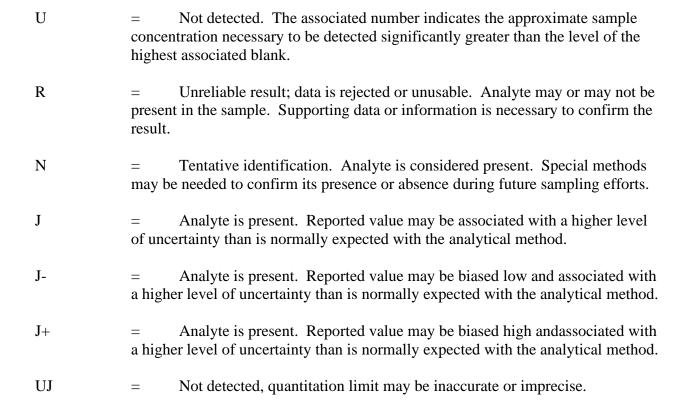
PID Photo ionization detector
PCB Polychlorinated biphenyl
PCDD Polychlorinated dibenzodioxins
PCDF Polychlorinated dibenzofurans

QA Quality assurance QC Quality control RF Response factor

RPD Relative percent difference RRF Relative response factor

RRF(number) Relative response factor at concentration of the number following

RT Retention time


RRT Relative retention time SDG Sample delivery group

SPCC System performance check compound

TCX Tetrachloro-m-xylene %D Percent difference %R Percent recovery

%RSD Percent relative standard deviation

Data Validation Qualifiers Used in the QA/QC Reviews for USEPA Region II

Note: These qualifiers are used for data validation purposes. The data validation qualifiers may differ from the qualifiers that the laboratory assigns to the data. Refer to the laboratory analytical report for the definitions of the laboratory qualifiers.

EPA Method 537 PFC

Calculations for Field Duplicate Relative Percent Difference (RPD) SDG No. 460-218480-1

	S1= SB-7 (0-0.5)	S2=	Dup
<u>Analyte</u>	<u>S1</u>	<u>\$2</u>	RPD (%)
Perfluorobutanoic Acid (PFBA)	0.33	0.19	NC
Perfluoroheptanoic Acid (PFHpA)	0.048	0.038	NC
Perfluorooctanoic Acid (PFOA)	0.15	0.12	NC
Perfluorononanoic Acid (PFNA)	0.096	0.11	NC
Perfluorodecanoic acid (PFDA)	0.070	0.088	NC
Perfluoroundecanoic acid (PFUnA)	0.055	0.097	NC
Perfluorooctanesulfonic Acid (PFOS)	0.60	0.78	26%

All results are in ug/Kg.

Bold numbers were values that below the CRQL or above the high standard.

ND - Not detected.

NC - Not calculated, both results must be within the linear range for valid RPDs to be calculated.

^{*} RPD is above the allowable maximum (35%)

Geology

Hydrology

Remediation

Water Supply

Data Usability Summary Report for Eurofins TestAmerica-Edison, Burlington, and Sacramento Job No: 460-222216-1

3 Soil Samples, 3 Surface Water Samples, 1 Equipment Blank, and 1 Trip Blank Collected November 3, 2020

Prepared by: Donald Anné February 8, 2021

The data package contains the documentation as required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appears legible and complete. The data pack contains the results of volatile analyses for 3 soil samples, 3 surface water samples, 1 trip blank, and 1 equipment blank; semi-volatile, pesticides, herbicides, PCBs, PFAS, metals, and total cyanide analyses for 3 soil samples and 3 ground water samples; the results of TOC and SPLP PFAS analyses for 2 soil samples; and the results of 3 surface water samples analyzed for 1,4-dioxane by 8270E SIM.

The overall performances of the analyses are acceptable. Eurofins TestAmerica-Edison, Burlington, and Sacramento labs did fulfill the requirements of the analytical methods.

The data are acceptable with some issues that are identified in the accompanying data validation reviews. The following data were qualified:

- Positive volatile results for acetone were qualified as "not detected" (U) for samples SW-1, SW-3, S-1, and S-3 because the level reported in the samples were not significantly greater than (more than 10 times) the highest associated blank level.
- The positive volatile result for methylene chloride was qualified as "not detected" (U) for sample S-3 because the level reported in the sample was not significantly greater than (more than 10 times) the highest associated blank level.
- The positive and "not detected" volatile results for target compounds were qualified as "estimated" (J, UJ respectively) for samples S-1, S-2, and S-3 because the samples were analyzed beyond USEPA SW-846 holding times.
- The positive semi-volatile results for indeno(1,2,3-cd)pyrene were qualified as estimated (J) in samples S-1, S-2, and S-3 because the %D for indeno(1,2,3-cd)pyrene was above the allowable maximum in associated continuing calibration.

Page 1 of 2

Job No: 460-222216-1

- The positive PFAS result for PFBA was qualified as "estimated, biased high" (J+) for sample S-2 because the sample was associated with a blank containing PFBA and reported the concentration for PFBA was above the reporting limits, but below 10 times the blank level.
- The positive PFAS results for PFOS were qualified as "estimated, biased high" (J+) for samples S-1, S-2, and S-3 because the samples were associated with a blank containing FOSA and reported concentrations for PFOS were above the reporting limits, but below 10 times the blank level.
- The positive PFAS result for PFBA was qualified as "not detected" (U) at the reporting limits for samples S-1 and S-3 because the samples were associated with a blank containing PFBA and reported concentrations for PFBA were below the reporting limits.
- The positive PFAS result for PFUnA was qualified as "estimated, biased high" (J+) in sample S-1 because the 2 of 2 percent recoveries for PFUnA were above QC limits in the associated soil MS/MSD sample.
- The positive metal results for 18 metals were qualified as "estimated" (J) in sample S-1 because the percent solids for the sample was below 50%, but not below 10%.
- The positive metal results for 19 metals were qualified as "estimated" (J) in sample S-2 because the percent solids for the sample was below 50%, but not below 10%.
- The positive results for TOC were qualified as "estimated" (J) for samples S-2 and S-3 because the samples were analyzed beyond established holding times.

All data are considered usable with estimated (J, J+, or UJ) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation review.

Qualified Data Section	

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'968

.(/&'()*!#&012&345677778468

1(%#& =!!#>%#**?886**@5A@75&87255

:(%;"<2&9%#;

1(%#&+#>#"B#?**28@**5C@75&8D255

< \$(!I%#	+#,-!%	P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
Chloromethane	1.0		1.0	0.40	ug/L			11/11/20 05:28	
Bromomethane	1.0	U	1.0	0.55	ug/L			11/11/20 05:28	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			11/11/20 05:28	1
Chloroethane	1.0	U	1.0		ug/L			11/11/20 05:28	1
Methylene Chloride	1.0	U	1.0		ug/L			11/11/20 05:28	1
K>#%=\$#	CR4	·U	5.0		ug/L			11/11/20 05:28	1
Carbon disulfide	1.0		1.0	0.82	-			11/11/20 05:28	,
- Trichlorofluoromethane	1.0		1.0	0.32	-			11/11/20 05:28	
1.1-Dichloroethene	1.0	U	1.0	0.26	-			11/11/20 05:28	
1,1-Dichloroethane	1.0		1.0		ug/L			11/11/20 05:28	,
rans-1,2-Dichloroethene	1.0		1.0	0.24	-			11/11/20 05:28	
cis-1,2-Dichloroethene	1.0		1.0		ug/L			11/11/20 05:28	
Chloroform	1.0		1.0		ug/L			11/11/20 05:28	,
1,2-Dichloroethane	1.0		1.0	0.43	-			11/11/20 05:28	
2-Butanone (MEK)	5.0		5.0		ug/L ug/L			11/11/20 05:28	
1,1,1-Trichloroethane	1.0		1.0	0.24				11/11/20 05:28	
Carbon tetrachloride	1.0			0.24	_				
⊖arbon tetracnioride Dichlorobromomethane	1.0		1.0		_			11/11/20 05:28	
			1.0	0.34				11/11/20 05:28	
1,2-Dichloropropane	1.0		1.0		ug/L			11/11/20 05:28	
cis-1,3-Dichloropropene	1.0		1.0	0.22	•			11/11/20 05:28	
Trichloroethene	1.0		1.0		ug/L			11/11/20 05:28	
Chlorodibromomethane	1.0		1.0		ug/L			11/11/20 05:28	,
I,1,2-Trichloroethane	1.0		1.0	0.20	•			11/11/20 05:28	,
Benzene	1.0		1.0		ug/L			11/11/20 05:28	
rans-1,3-Dichloropropene	1.0		1.0		ug/L			11/11/20 05:28	
Bromoform	1.0		1.0	0.54	_			11/11/20 05:28	
I-Methyl-2-pentanone (MIBK)	5.0		5.0		ug/L			11/11/20 05:28	
2-Hexanone	5.0		5.0		ug/L			11/11/20 05:28	
Tetrachloroethene	1.0		1.0	0.25	_			11/11/20 05:28	
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.37				11/11/20 05:28	
S=!-#\$#	8R7		1.0		ug/L			11/11/20 05:28	
Chlorobenzene	1.0	U	1.0	0.38	_			11/11/20 05:28	
Ethylbenzene	1.0	U	1.0	0.30	ug/L			11/11/20 05:28	
Styrene	1.0	U	1.0	0.42	ug/L			11/11/20 05:28	
n-Xylene & p-Xylene	1.0	U	1.0	0.30	ug/L			11/11/20 05:28	
o-Xylene	1.0	U	1.0	0.36	ug/L			11/11/20 05:28	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.31	ug/L			11/11/20 05:28	
Methyl tert-butyl ether	1.0	U	1.0	0.22	ug/L			11/11/20 05:28	
Cyclohexane	1.0	U	1.0	0.32	ug/L			11/11/20 05:28	
Ethylene Dibromide	1.0	U	1.0	0.50	ug/L			11/11/20 05:28	
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			11/11/20 05:28	
1,4-Dichlorobenzene	1.0	U	1.0		ug/L			11/11/20 05:28	
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			11/11/20 05:28	
Dichlorodifluoromethane	1.0		1.0		ug/L			11/11/20 05:28	
1,2,4-Trichlorobenzene	1.0		1.0		ug/L			11/11/20 05:28	
1,4-Dioxane	50		50		ug/L			11/11/20 05:28	
1,2,3-Trichlorobenzene	1.0		1.0		ug/L			11/11/20 05:28	
1,2-Dibromo-3-Chloropropane	1.0		1.0		ug/L			11/11/20 05:28	
Chlorobromomethane	1.0		1.0		ug/L			11/11/20 05:28	

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'968

.(/&'()*!#&012&345677778468

1(%#& =!!#>%#?**3336**A**@**5&87255

#%E=?2&D7451 &6& %"!#&G			_						
(\$(!1%#		P-(!"Q"#;	+.	:1.	O\$"%		N;#*(;#?	K\$(!IM#?	1"!&L(
sopropylbenzene	1.0		1.0	0.34	-			11/11/20 05:28	,
Methyl acetate	5.0		5.0		ug/L			11/11/20 05:28	
Methylcyclohexane	1.0	U	1.0	0.71	ug/L			11/11/20 05:28	•
entatively Identified Compound	Est. Result	Qualifier	Unit	<u>D</u>	RT	CAS No.	Prepared	Analyzed	Dil Fa
entatively Identified Compound	None		ug/L					11/11/20 05:28	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
,2-Dichloroethane-d4 (Surr)	101		75 - 123					11/11/20 05:28	
oluene-d8 (Surr)	98		80 - 120					11/11/20 05:28	
-Bromofluorobenzene	103		76 - 120					11/11/20 05:28	
Dibromofluoromethane (Surr)	99		77 - 124					11/11/20 05:28	
#%E=?2&D7V5W&'0:&01&6&	.'#)"B=!(%"!	#&GH(\$"	>& =)*=-\$?,	8@8 '0:& (@ 0,=%	=*#&1"!	-%"=\$U		
(\$)		P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
,4-Dioxane	0.20	U	0.20	0.016	ug/L		11/10/20 21:30	11/11/20 03:22	
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
,4-Dioxane-d8	39		10 - 150				11/10/20 21:30	11/11/20 03:22	
#%E=?2&D7V5W&6&'#)"B=!(\$\$(!I%#		5">& =)*=- P-(!"Q"#;	·\$?,& @ U +.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
henol	10		10	0.29			11/09/20 09:26	11/10/20 11:43	I :OLL
-Chlorophenol	10		10		ug/L		11/09/20 09:26	11/10/20 11:43	
Chlorophenol Methylphenol	10		10		ug/L ug/L		11/09/20 09:26	11/10/20 11:43	
	10						11/09/20 09:26	11/10/20 11:43	
-Methylphenol !-Nitrophenol	10		10 10		ug/L ug/L		11/09/20 09:26	11/10/20 11:43	
,4-Dimethylphenol	10		10		ug/L ug/L		11/09/20 09:26	11/10/20 11:43	
,,4-Dichlorophenol	10		10		ug/L ug/L		11/09/20 09:26	11/10/20 11:43	
	10		10		ug/L ug/L		11/09/20 09:26	11/10/20 11:43	
-Chloro-3-methylphenol 2.4.6-Trichlorophenol	10		10		ug/L ug/L		11/09/20 09:26	11/10/20 11:43	
2,4,5-Trichlorophenol	10		10		ug/L ug/L		11/09/20 09:26	11/10/20 11:43	
2,4-Dinitrotoluene	2.0		2.0		ug/L		11/09/20 09:26	11/10/20 11:43	
-Nitrophenol	30		30		ug/L		11/09/20 09:26	11/10/20 11:43	
,6-Dinitro-2-methylphenol	30		30		ug/L ug/L			11/10/20 11:43	
Pentachlorophenol	30		30		ug/L		11/09/20 09:26	11/10/20 11:43	
Bis(2-chloroethyl)ether	1.0		1.0		ug/L		11/09/20 09:26	11/10/20 11:43	
N-Nitrosodi-n-propylamine	1.0		1.0		ug/L		11/09/20 09:26	11/10/20 11:43	
Hexachloroethane	2.0		2.0		ug/L		11/09/20 09:26	11/10/20 11:43	
litrobenzene	1.0		1.0		ug/L ug/L		11/09/20 09:26	11/10/20 11:43	
sophorone	10 2.0		10 2.0		ug/L ug/L		11/09/20 09:26 11/09/20 09:26	11/10/20 11:43 11/10/20 11:43	
Janhthalene			2.0		ug/L ug/L			11/10/20 11:43	
·	2 0		∠.∪	1.9			11/09/20 09:26		
-Chloroaniline	2.0			Λ 70	ua/I		11/NQ/20 00:06	11/10/20 11-12	
-Chloroaniline lexachlorobutadiene	2.0	U	2.0		ug/L		11/09/20 09:26	11/10/20 11:43	
laphthaleneChloroaniline -lexachlorobutadieneMethylnaphthalene	2.0 10	U	2.0 10	0.53	ug/L		11/09/20 09:26	11/10/20 11:43	
Chloroaniline Hexachlorobutadiene Methylnaphthalene Hexachlorocyclopentadiene	2.0 10 10	U U U	2.0 10 10	0.53 3.6	ug/L ug/L		11/09/20 09:26 11/09/20 09:26	11/10/20 11:43 11/10/20 11:43	
-Chloroaniline Hexachlorobutadiene P-Methylnaphthalene Hexachlorocyclopentadiene P-Chloronaphthalene	2.0 10 10 10	U U U	2.0 10 10 10	0.53 3.6 1.2	ug/L ug/L ug/L		11/09/20 09:26 11/09/20 09:26 11/09/20 09:26	11/10/20 11:43 11/10/20 11:43 11/10/20 11:43	
Chloroaniline Hexachlorobutadiene I-Methylnaphthalene Hexachlorocyclopentadiene IChloronaphthalene I-Nitroaniline	2.0 10 10 10 20	U U U U	2.0 10 10 10 20	0.53 3.6 1.2 0.47	ug/L ug/L ug/L ug/L		11/09/20 09:26 11/09/20 09:26 11/09/20 09:26 11/09/20 09:26	11/10/20 11:43 11/10/20 11:43 11/10/20 11:43 11/10/20 11:43	
-Chloroaniline Hexachlorobutadiene P-Methylnaphthalene Hexachlorocyclopentadiene P-Chloronaphthalene	2.0 10 10 10	U U U U U	2.0 10 10 10	0.53 3.6 1.2 0.47 0.77	ug/L ug/L ug/L		11/09/20 09:26 11/09/20 09:26 11/09/20 09:26	11/10/20 11:43 11/10/20 11:43 11/10/20 11:43	

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'968

.(/&'()*!#&012&345677778468

1(%#& =!!#>%#?**8860A@**5&87255 1(%#&+#>#"B#?**886**C**@**5&8D255

K\$(!I%#	+#,-!%	P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
3-Nitroaniline	20	U	20	1.9	ug/L		11/09/20 09:26	11/10/20 11:43	
Acenaphthene	10	U	10	1.1	ug/L		11/09/20 09:26	11/10/20 11:43	
Dibenzofuran	10	U	10	1.1	ug/L		11/09/20 09:26	11/10/20 11:43	
2,4-Dinitrophenol	30	U *	30	2.6			11/09/20 09:26	11/10/20 11:43	
Diethyl phthalate	10	U	10	0.98	ug/L		11/09/20 09:26	11/10/20 11:43	
4-Chlorophenyl phenyl ether	10	U	10	1.3	ug/L		11/09/20 09:26	11/10/20 11:43	
Fluorene	10	U	10	0.91	ug/L		11/09/20 09:26	11/10/20 11:43	
4-Nitroaniline	20	U	20	1.2	ug/L		11/09/20 09:26	11/10/20 11:43	
N-Nitrosodiphenylamine	10	U	10	0.89	ug/L		11/09/20 09:26	11/10/20 11:43	
4-Bromophenyl phenyl ether	10	U	10	0.75	ug/L		11/09/20 09:26	11/10/20 11:43	
Hexachlorobenzene	1.0	U	1.0	0.40	ug/L		11/09/20 09:26	11/10/20 11:43	
Phenanthrene	10	U	10	1.3	ug/L		11/09/20 09:26	11/10/20 11:43	
Anthracene	10	U	10	1.3	ug/L		11/09/20 09:26	11/10/20 11:43	
Carbazole	10	U	10		ug/L		11/09/20 09:26	11/10/20 11:43	
Di-n-butyl phthalate	10	U	10		ug/L		11/09/20 09:26	11/10/20 11:43	
Fluoranthene	10	U	10		ug/L		11/09/20 09:26	11/10/20 11:43	
Pyrene	10	U	10		ug/L		11/09/20 09:26	11/10/20 11:43	
Butyl benzyl phthalate	10	U	10		ug/L		11/09/20 09:26	11/10/20 11:43	
Benzo[a]anthracene	1.0		1.0		ug/L		11/09/20 09:26	11/10/20 11:43	
Chrysene	10		10		ug/L		11/09/20 09:26	11/10/20 11:43	
Bis(2-ethylhexyl) phthalate	10		10		ug/L		11/09/20 09:26	11/10/20 11:43	
Di-n-octyl phthalate	10		10		ug/L		11/09/20 09:26	11/10/20 11:43	
Benzo[b]fluoranthene	2.0		2.0		ug/L		11/09/20 09:26	11/10/20 11:43	
Benzo[k]fluoranthene	1.0		1.0		ug/L		11/09/20 09:26	11/10/20 11:43	
Benzo[a]pyrene	1.0		1.0		ug/L		11/09/20 09:26	11/10/20 11:43	
Indeno[1,2,3-cd]pyrene	2.0		2.0		ug/L		11/09/20 09:26	11/10/20 11:43	
Dibenz(a,h)anthracene	1.0		1.0		ug/L		11/09/20 09:26	11/10/20 11:43	
Benzo[g,h,i]perylene	10		10		ug/L		11/09/20 09:26	11/10/20 11:43	
1,1'-Biphenyl	10		10		ug/L		11/09/20 09:26	11/10/20 11:43	
Acetophenone	10		10		ug/L		11/09/20 09:26	11/10/20 11:43	
1,4-Dioxane	10		10	1.6	-		11/09/20 09:26	11/10/20 11:43	
Benzaldehyde	10		10	2.1			11/09/20 09:26	11/10/20 11:43	
•	10		10		ug/L ug/L		11/09/20 09:26	11/10/20 11:43	
Caprolactam	10		10		ug/L ug/L			11/10/20 11:43	
Atrazine									
2,2'-oxybis[1-chloropropane]	10		10		ug/L			11/10/20 11:43	
1,2,4,5-Tetrachlorobenzene	10		10		ug/L			11/10/20 11:43	
2,3,4,6-Tetrachlorophenol	10		10		ug/L			11/10/20 11:43	
3,3'-Dichlorobenzidine	20		20		ug/L			11/10/20 11:43	
Bis(2-chloroethoxy)methane	10	U	10	0.59	ug/L		11/09/20 09:26	11/10/20 11:43	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	<u>D</u>	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L				11/09/20 09:26	11/10/20 11:43	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	92		46 - 137				11/09/20 09:26	11/10/20 11:43	
Phenol-d5 (Surr)	29		10 - 50				11/09/20 09:26	11/10/20 11:43	
Terphenyl-d14 (Surr)	61		39 - 150				11/09/20 09:26	11/10/20 11:43	
2,4,6-Tribromophenol (Surr)	113		36 - 159				11/09/20 09:26	11/10/20 11:43	
2-Fluorophenol (Surr)	43		18 - 72				11/09/20 09:26	11/10/20 11:43	
2-Fluorobiphenyl	74		42 - 127					11/10/20 11:43	

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'968

.(/&'()*!#&012&345677778468

1(%#& =!!#>%#?**3283**A**0**5&87255 1(%#&+#>#"B#**?3286**C**0**5&8D255

K\$(!I%#	+#,-!%	P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
4,4'-DDD	0.020		0.020	0.0060	ug/L		11/08/20 14:01	11/11/20 10:24	
4,4'-DDE	0.020	U	0.020	0.0020	ug/L		11/08/20 14:01	11/11/20 10:24	
4,4'-DDT	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/11/20 10:24	
Aldrin	0.020	U	0.020	0.0030	ug/L		11/08/20 14:01	11/11/20 10:24	
alpha-BHC	0.020	U	0.020	0.0070	ug/L		11/08/20 14:01	11/11/20 10:24	
beta-BHC	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/11/20 10:24	
Chlordane (technical)	0.50	U	0.50	0.055	ug/L		11/08/20 14:01	11/11/20 10:24	
delta-BHC	0.020	U	0.020	0.0050	ug/L		11/08/20 14:01	11/11/20 10:24	
Dieldrin	0.020	U	0.020	0.0030	ug/L		11/08/20 14:01	11/11/20 10:24	
Endosulfan I	0.020	U	0.020	0.0020	ug/L		11/08/20 14:01	11/11/20 10:24	
Endosulfan II	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/11/20 10:24	
Endosulfan sulfate	0.020	U	0.020	0.0060	ug/L		11/08/20 14:01	11/11/20 10:24	
Endrin	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/11/20 10:24	· · · · · · · ·
Endrin aldehyde	0.020	U	0.020	0.0080	•		11/08/20 14:01	11/11/20 10:24	
Endrin ketone	0.020		0.020	0.0080	•		11/08/20 14:01	11/11/20 10:24	
gamma-BHC (Lindane)	0.020		0.020	0.012			11/08/20 14:01	11/11/20 10:24	
Heptachlor	0.020		0.020	0.0030	•		11/08/20 14:01	11/11/20 10:24	
Heptachlor epoxide	0.020		0.020	0.0050	•		11/08/20 14:01	11/11/20 10:24	
Methoxychlor	0.020		0.020	0.0040			11/08/20 14:01	11/11/20 10:24	
Toxaphene	0.50		0.50		ug/L			11/11/20 10:24	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
DCB Decachlorobiphenyl	57		10 - 132				11/08/20 14:01	11/11/20 10:24	
DOD Decacillolopiphenyl	•								
DCB Decachlorobiphenyl	54		10 - 132				11/08/20 14:01	11/11/20 10:24	
, ,								11/11/20 10:24 11/11/20 10:24	
DCB Decachlorobiphenyl	54		10 - 132				11/08/20 14:01 11/08/20 14:01		
DCB Decachlorobiphenyl Tetrachloro-m-xylene Tetrachloro-m-xylene :#%E=?2&D5B7&6&N=!I>E!=	54 75 74 =;"\$(%#?&X"*I		10 - 132 10 - 150 10 - 150 (,U&/I&J(,&				11/08/20 14:01 11/08/20 14:01 11/08/20 14:01	11/11/20 10:24 11/11/20 10:24	
DCB Decachlorobiphenyl Tetrachloro-m-xylene Tetrachloro-m-xylene :#%E=?2&D5B7&6&N=!I>E!= K\$(!!%#	54 75 74 =;"\$(%#?&X"*I +#,-!%	P-(!"Q"#;	10 - 132 10 - 150 10 - 150 (,U&/I&J(,& +.	:1.	O\$"%	1	11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 N;#*(;#?	11/11/20 10:24 11/11/20 10:24 K\$(!IM#?	1"!&L(
DCB Decachlorobiphenyl Tetrachloro-m-xylene Tetrachloro-m-xylene :#%E=?2&D5BC&6&N=!I>E!= K\$(!I%# Aroclor 1016	54 75 74 =;"\$(%#?&X"*I +#,-!% 0.40	P-(!"Q"#; U	10 - 132 10 - 150 10 - 150 X,U&/I&J(,& +. 0.40	: 1. 0.12	O\$"% ug/L	1	11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 N;#*(;#? 11/08/20 14:08	11/11/20 10:24 11/11/20 10:24 K\$(!IM#? 11/09/20 17:20	1"!&L(
DCB Decachlorobiphenyl Tetrachloro-m-xylene Tetrachloro-m-xylene :#%E=?2&D5BT&6&N=!I>E!= K\$(!I%# Aroclor 1016 Aroclor 1221	54 75 74 =;"\$(%#?&X"*I +#,-!% 0.40 0.40	P-(!"Q"#; U U	10 - 132 10 - 150 10 - 150 X,U&/I&J(,& +. 0.40 0.40	0.12 0.12	O\$"% ug/L ug/L	1	11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 N;#*(;#? 11/08/20 14:08 11/08/20 14:08	11/11/20 10:24 11/11/20 10:24 K\$(!!M#? 11/09/20 17:20 11/09/20 17:20	1"!&L(
DCB Decachlorobiphenyl Tetrachloro-m-xylene Tetrachloro-m-xylene :#%E=?2&D5IX&6&N=!I>E!= K\$(!I%# Aroclor 1016 Aroclor 1221 Aroclor 1232	54 75 74 =;"\$(%#?&X"*I +#,-!% 0.40 0.40 0.40	P-(!"Q"#; U U U	10 - 132 10 - 150 10 - 150 X,U&/I&J(,& +. 0.40 0.40 0.40	21. 0.12 0.12 0.12	O\$"% ug/L ug/L ug/L	1	11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 N;#*(;#? 11/08/20 14:08 11/08/20 14:08	11/11/20 10:24 11/11/20 10:24 K\$(!!M#? 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20	1"!&L(
DCB Decachlorobiphenyl Tetrachloro-m-xylene Tetrachloro-m-xylene :#%E=?2&D5BC&6&N=!I>E!= K\$(!I%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242	54 75 74 =;"\$(%#?&X"* +#,-!% 0.40 0.40 0.40	P-(!"Q"#; U U U	10 - 132 10 - 150 10 - 150 X,U&/I&J(,& +. 0.40 0.40 0.40 0.40	1. 0.12 0.12 0.12 0.12	Ug/L ug/L ug/L ug/L ug/L	1	11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 N;#*(;#? 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	11/11/20 10:24 11/11/20 10:24 K\$(!IM#? 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20	1"!&L(
DCB Decachlorobiphenyl Tetrachloro-m-xylene Tetrachloro-m-xylene :#%E=?2&D5BC&6&N=!I>E!= K\$(!I%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248	54 75 74 =;"\$(%#?&X"* +#,-!% 0.40 0.40 0.40 0.40 0.40	P-(!"Q"#; U U U U	10 - 132 10 - 150 10 - 150 X,U&/I&J(,& +. 0.40 0.40 0.40 0.40 0.40	11. 0.12 0.12 0.12 0.12 0.12	ug/L ug/L ug/L ug/L ug/L	1	11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 N;#*(;#? 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	K\$(!IM#? 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20	_1"!&L(
DCB Decachlorobiphenyl Tetrachloro-m-xylene Tetrachloro-m-xylene :#%E=?2&D5BC&6&N=!I>E!= K\$(!!%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	54 75 74 =;"\$(%#?&X"*] +#,-!% 0.40 0.40 0.40 0.40 0.40 0.40	P-(!"Q"#; U U U U U U	10 - 132 10 - 150 10 - 150 (,U&/I&J(,& +. 0.40 0.40 0.40 0.40 0.40 0.40	11. 0.12 0.12 0.12 0.12 0.12 0.11	ug/L ug/L ug/L ug/L ug/L ug/L	1	11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 N;#*(;#? 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	K\$(!IM#? 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20	1"!&L(
DCB Decachlorobiphenyl Tetrachloro-m-xylene Tetrachloro-m-xylene :#%E=?2&D5BC&6&N=!I>E!= K\$(!!%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260	54 75 74 =;"\$(%#?&X"*I +#,-!% 0.40 0.40 0.40 0.40 0.40 0.40	P-(!"Q"#; U U U U U U U U	10 - 132 10 - 150 10 - 150 X,U&/I&J(,& +. 0.40 0.40 0.40 0.40 0.40 0.40	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1	11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 N;#*(;#? 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	K\$(!IM#? 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20	1"!&L(
DCB Decachlorobiphenyl Tetrachloro-m-xylene Tetrachloro-m-xylene :#%E=?2&D5IX&6&N=!I>E!= K\$(!I%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor-1262	54 75 74 =;"\$(%#?&X"*I +#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40	P-(!"Q"#; U U U U U U U U U U U	10 - 132 10 - 150 10 - 150 X,U&/I&J(,& +. 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11	o\$"% ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1	11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 N;#*(;#? 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	K\$(!IM#? 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20	1"!&L(
DCB Decachlorobiphenyl Tetrachloro-m-xylene Tetrachloro-m-xylene :#%E=?2&D5BC&6&N=!I>E!= K\$(!I%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor-1262 Aroclor-1262 Aroclor 1268	54 75 74 =;"\$(%#?&X"* +#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	P-(!"Q"#; U U U U U U U U U U U U U	10 - 132 10 - 150 10 - 150 X,U&/I&J(,&	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1	11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	K\$(!IM#? 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20	<u>1"!&L</u> (
DCB Decachlorobiphenyl Tetrachloro-m-xylene Tetrachloro-m-xylene :#%E=?2&D5IX&6&N=!I>E!= K\$(!I%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor-1262	54 75 74 =;"\$(%#?&X"*I +#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40	P-(!"Q"#; U U U U U U U U U U U U U	10 - 132 10 - 150 10 - 150 X,U&/I&J(,& +. 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11	o\$"% ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1	11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 N;#*(;#? 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	K\$(!IM#? 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20	<u>1"!&L</u> (
DCB Decachlorobiphenyl Tetrachloro-m-xylene Tetrachloro-m-xylene :#%E=?2&D5BC&6&N=!I>E!= K\$(!I%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor-1262 Aroclor 1268 Polychlorinated biphenyls, Total Surrogate	54 75 74 =;"\$(%#?&X"* +#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	P-(!"Q"#; U U U U U U U U U U U U U U U	10 - 132 10 - 150 10 - 150 X,U&/I&J(,&	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1	11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 N;#*(;#? 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	K\$(!IM#? 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20	1"!&L
Tetrachloro-m-xylene Tetrachloro-m-xylene Tetrachloro-m-xylene :#%E=?2&D5BC&6&N=!I>E!= K\$(!!%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor-1262 Aroclor 1268 Polychlorinated biphenyls, Total Surrogate DCB Decachlorobiphenyl	54 75 74 =;"\$(%#?&X"* +#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	P-(!"Q"#; U U U U U U U U U U U U U U U	10 - 132 10 - 150 10 - 150 X,U&/I&J(,&	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1	11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 N;#*(;#? 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	K\$(!IM#? 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20	1"!&L(
DCB Decachlorobiphenyl Tetrachloro-m-xylene Tetrachloro-m-xylene :#%E=?2&D5BC&6&N=!I>E!= K\$(!!%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor-1262 Aroclor-1262 Aroclor 1268 Polychlorinated biphenyls, Total Surrogate DCB Decachlorobiphenyl	54 75 74 =;"\$(%#?&X"* +#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	P-(!"Q"#; U U U U U U U U U U U U U U U	10 - 132 10 - 150 10 - 150 X,U&/I&J(,& +. 0.40 0.40 0.40 0.40 0.40 0.40 0.40	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1	11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 N;#*(;#? 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	K\$(!IM#? 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20	1"!&L(
DCB Decachlorobiphenyl Tetrachloro-m-xylene Tetrachloro-m-xylene :#%E=?2&D5BC&6&N=!I>E!= K\$(!!%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor-1262 Aroclor 1268 Polychlorinated biphenyls, Total Surrogate DCB Decachlorobiphenyl Tetrachloro-m-xylene	54 75 74 =;"\$(%#?&X"* +#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	P-(!"Q"#; U U U U U U U U U U U U U U U	10 - 132 10 - 150 10 - 150 X,U&/I&J(,& +. 0.40 0.40 0.40 0.40 0.40 0.40 0.40	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1	11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 N;#*(;#? 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	K\$(!IM#? 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20	1"!&L(
DCB Decachlorobiphenyl Tetrachloro-m-xylene Tetrachloro-m-xylene :#%E=?2&D5BC&6&N=!I>E!= K\$(!!%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor-1262 Aroclor-1262 Aroclor 1268 Polychlorinated biphenyls, Total Surrogate DCB Decachlorobiphenyl	54 75 74 =;"\$(%#?&X"* +#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	P-(!"Q"#; U U U U U U U U U U U U U U U	10 - 132 10 - 150 10 - 150 X,U&/I&J(,& +. 0.40 0.40 0.40 0.40 0.40 0.40 0.40	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1	11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 N;#*(;#? 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	K\$(!IM#? 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20	1"!&L(
Tetrachloro-m-xylene Tetrachloro-m-xylene Tetrachloro-m-xylene :#%E=?2&D5BC&6&N=!I>E!= K\$(!I%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1260 Aroclor-1262 Aroclor 1268 Polychlorinated biphenyls, Total Surrogate DCB Decachlorobiphenyl DCB Decachloro-m-xylene Tetrachloro-m-xylene :#%E=?2&D8&&6&Y#;/">"?	54 75 74 =;"\$(%#?&X"* +#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	P-(!"Q"#; U U U U U U U U U U U U U U U U	10 - 132 10 - 150 10 - 150 X,U&/I&J(,&	:1. 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.12	o\$"% ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	11/11/20 10:24 11/11/20 10:24 K\$(!IM#? 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20	1"!&L(
DCB Decachlorobiphenyl Tetrachloro-m-xylene Tetrachloro-m-xylene :#%E=?2&D5BC&6&N=!I>E!= K\$(!!%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor-1262 Aroclor 1268 Polychlorinated biphenyls, Total Surrogate DCB Decachlorobiphenyl DCB Decachlorobiphenyl Tetrachloro-m-xylene Tetrachloro-m-xylene	54 75 74 =;"\$(%#?&X"* +#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	P-(!"Q"#; U U U U U U U U P-(!"Q"#;	10 - 132 10 - 150 10 - 150 X,U&/I&J(,& +. 0.40 0.40 0.40 0.40 0.40 0.40 0.40	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11	O\$"% ug/L	11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 N;#*(;#? 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	K\$(!IM#? 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20 11/09/20 17:20	1"!&L(1 1 1 1 1 1 1 1 1 1 1 1 1	

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'968

.(/&'()*!#&012&345677778468

1(%#& =!!#>%#?**886**A**@**5&87255 1(%#&+#>#"B#**?886**C**@**5&8D255

:(%;"<2&9%#;

Job ID: 460-222216-1

:#%E=?2&D8 &% 6&Y#;/">"?#,& K\$(!!%#		P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
2,4,5-T	1.2		1.2	0.12	ug/L		11/09/20 20:09	11/10/20 12:12	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4-Dichlorophenylacetic acid	94		39 - 145				11/09/20 20:09	11/10/20 12:12	
2,4-Dichlorophenylacetic acid	107		39 - 145				11/09/20 20:09	11/10/20 12:12	1
:#%E=?2&CAV&T)=?"Q"#?U&6	&L!- =8K\$7 9	ル&2 /.%(\$>‡	# .						
K\$(!I%#		P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
N#;Q!-=;=/-%(\$=">&(>"?&TNLXKU	7R[1	4.7	2.3	ng/L		11/09/20 12:10	11/10/20 19:39	1
N#;Q!-=;=*#\$%(\$=">&(>"?&TNLN#KL	J 3R4	1	1.9	0.46	ng/L		11/09/20 12:10	11/10/20 19:39	1
N#;Q!-=;=E#<(\$=">&(>"?&TNLY <ku< td=""><td>7R0</td><td></td><td>1.9</td><td>0.55</td><td>ng/L</td><td></td><td>11/09/20 12:10</td><td>11/10/20 19:39</td><td>1</td></ku<>	7R0		1.9	0.55	ng/L		11/09/20 12:10	11/10/20 19:39	1
N#;Q!-=;=E#*%(\$=">&(>"?&TNLY*KU	J 8R4	1 \	1.9	0.24	ng/L		11/09/20 12:10	11/10/20 19:39	1
N#;Q!-=;==>%(\$=">&(>"?&TNLGKU	ARI	D	1.9	0.80	ng/L		11/09/20 12:10	11/10/20 19:39	1
N#;Q!-=;=\$=\$(\$=">&(>"?&TNL]KU	5RC	C/	1.9	0.26	ng/L		11/09/20 12:10	11/10/20 19:39	1
N#;Q!-=;=?#>(\$=">&(>"?&TNL1KU	5RA	[\	1.9	0.29	ng/L		11/09/20 12:10	11/10/20 19:39	1
Perfluoroundecanoic acid (PFUnA)	1.9	U	1.9	1.0	ng/L		11/09/20 12:10	11/10/20 19:39	1
Perfluorododecanoic acid (PFDoA)	1.9	U	1.9	0.52	ng/L		11/09/20 12:10	11/10/20 19:39	1
Perfluorotridecanoic acid (PFTriA)	1.9	U	1.9	1.2	ng/L		11/09/20 12:10	11/10/20 19:39	1
Perfluorotetradecanoic acid (PFTeA)	1.9	U	1.9	0.69	ng/L		11/09/20 12:10	11/10/20 19:39	1
N#;Q!-=;=/-%(\$#,-!Q=\$">&(>"?& TNIX'U	5RV	A\&0	1.9	0.19	ng/L		11/09/20 12:10	11/10/20 19:39	1
N#;Q!-=;=E#<(\$#,-!Q=\$">&(>"?& TNLY<'U	7R\		1.9		ng/L		11/09/20 12:10	11/10/20 19:39	1
Perfluoroheptanesulfonic Acid (PFHpS)	1.9		1.9		ng/L			11/10/20 19:39	1
N#;Q!-=;==>%(\$#,-!Q=\$">&(>"?& TNIG'U	4R0		1.9		ng/L			11/10/20 19:39	1
Perfluorodecanesulfonic acid (PFDS)	1.9		1.9		ng/L		11/09/20 12:10		1
Perfluorooctanesulfonamide (FOSA)	1.9		1.9		ng/L			11/10/20 19:39	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	4.7		4.7		ng/L			11/10/20 19:39	
N-ethylperfluorooctanesulfonamidoac	4.7	U	4.7	1.2	ng/L		11/09/20 12:10	11/10/20 19:39	1
etic acid (NEtFOSAA) 6:2 FTS	4.7	U	4.7	24	ng/L		11/09/20 12:10	11/10/20 19:39	,
8:2 FTS	1.9	_	1.9		ng/L		11/09/20 12:10		
				0.10	119/2				
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	30		25 ₋ 150					11/10/20 19:39	1
13C5 PFPeA	35		25 ₋ 150					11/10/20 19:39	1
13C2 PFHxA	36		25 - 150					11/10/20 19:39	
13C4 PFHpA	38		25 - 150					11/10/20 19:39	1
13C4 PFOA	41		25 - 150					11/10/20 19:39	1
13C5 PFNA	36		25 - 150					11/10/20 19:39	
13C2 PFDA	37		25 - 150					11/10/20 19:39	1
13C2 PFUnA	38		25 - 150					11/10/20 19:39	1
13C2 PFDoA	32		25 - 150					11/10/20 19:39	
13C2 PFTeDA	31		25 - 150					11/10/20 19:39	1
13C3 PFBS	40		25 - 150					11/10/20 19:39	1
1802 PFHxS	45		25 - 150					11/10/20 19:39	
13C4 PFOS	46		25 - 150				11/09/20 12:10	11/10/20 19:39	1
13C8 FOSA	39		25 - 150				11/09/20 12:10	11/10/20 19:39	1
d3-NMeFOSAA	41		25 - 150				11/09/20 12:10	11/10/20 19:39	1

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'968

.(/&'()*!#&012&345677778468

1(%#& =!!#>%#**?8866)**A@5&87255

1(%#&+#>#"B#?**228@C@**5&8D255

:(%;"<2&9%#;

sotope Dilution	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fa
d5-NEtFOSAA	46	25 - 150				11/09/20 12:10	11/10/20 19:39	
M2-6:2 FTS	53	25 - 150				11/09/20 12:10	11/10/20 19:39	
M2-8:2 FTS	50	25 - 150				11/09/20 12:10	11/10/20 19:39	
#%E=?2&4575X&6&:#%(!,& @ UN							
< \$(!I%#	+#,-!% P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L
"!B#;	5RDV\	2.0		ug/L		11/10/20 10:17	11/10/20 20:33	
<!---)"\$-)</b-->	V4555	40.0	8.0	ug/L		11/10/20 10:17	11/10/20 20:33	
K;,#\$">	8VRV	2.0	0.89	ug/L		11/10/20 10:17	11/10/20 20:33	
X(;"-)	D7V	4.0	0.91	ug/L		11/10/20 10:17	11/10/20 20:33	
X#;I!!"-)	3RA	0.80	0.098	ug/L		11/10/20 10:17	11/10/20 20:33	
(!>"-)	4D455	200	22.7	ug/L		11/10/20 10:17	11/10/20 20:33	
(?)"-)	CRC	2.0	0.16	ug/L		11/10/20 10:17	11/10/20 20:33	
=/(!%	34RC	4.0	0.26	ug/L		11/10/20 10:17	11/10/20 20:33	
E;=)"-)	87A	4.0	0.69	ug/L		11/10/20 10:17	11/10/20 20:33	
=**#;	73[4.0	2.5	ug/L		11/10/20 10:17	11/10/20 20:33	
0;=\$	857555	120	8.5	ug/L		11/10/20 10:17	11/10/20 20:33	
N=%(,,"-)	87855	200	112	ug/L		11/10/20 10:17	11/10/20 20:33	
(H\$#,"-)	74455	200	15.4	ug/L		11/10/20 10:17	11/10/20 20:33	
(\$H(\$#,#	88D5	8.0	1.1	ug/L		11/10/20 10:17	11/10/20 20:33	
=?"-)	7[C55	200	58.2	ug/L		11/10/20 10:17	11/10/20 20:33	
"> Z #!	8C7	4.0	0.45	ug/L		11/10/20 10:17	11/10/20 20:33	
#(?	A83 X	1.2	0.11	ug/L		11/10/20 10:17	11/10/20 20:33	
K\$%")=\$I	8R7 \	2.0	0.76	ug/L		11/10/20 10:17	11/10/20 20:33	
'#!#\$"-)	DRA	2.5	0.46	ug/L		11/10/20 10:17	11/10/20 20:33	
SE(!!"-)	5RDD	0.80	0.17	ug/L		11/10/20 10:17	11/10/20 20:33	
F(\$(?"-)	8[V	4.0		ug/L		11/10/20 10:17	11/10/20 20:33	
^"\$>	[[A	16.0	5.1	ug/L		11/10/20 10:17	11/10/20 20:33	
#%E=?2&V3 \% 6&:#;>-;I	&TFKKU							
< \$(!I%#	+#,-!% P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L
#;>-;I	5RC3	0.20	0.091	ug/L		11/09/20 12:39	11/09/20 14:18	
J#\$#;(!& E#)",%;I								
< \$(!I%#	+#,-!% P-(!"Q"#;	+ <u></u>	:1.	O\$"%	_ 1	N;#*(;#?	K\$(!IM#?	1"!&L
I(\$"?#_&S=%(!	5R553V\	0.010	0.0040	mg/L		11/17/20 12:02	11/17/20 13:07	

1(%#&=!!#>%# <i>?&%@C@</i> 5&8D25& 1(%#&+#>#"B# ?&%@ C@5&8D25&								:(%;**<	2&9 %
 :#%E=?2&D7451 &6& %"!#&GI	H(\$">& =)*=-\$?,&/I&J	@							
K\$(!I%#	+#,-!% P-(!"Q"#;		+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&I
Chlanamathana	40 11		4.0	0.40	/1			44/44/00 04 40	

:#%E=?2&D/451&6&;%"!#? K\$(!!%#	, V.	P-(!"Q"#;	@ +.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(>
Chloromethane	1.0	U	1.0	0.40	ug/L			11/11/20 04:43	1
Bromomethane	1.0	U	1.0	0.55	ug/L			11/11/20 04:43	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			11/11/20 04:43	1
Chloroethane	1.0	U	1.0	0.32	ug/L			11/11/20 04:43	1
Methylene Chloride	1.0	U	1.0	0.32	ug/L			11/11/20 04:43	1
Acetone	5.0	U	5.0	4.4	ug/L			11/11/20 04:43	1
Carbon disulfide	1.0	U	1.0	0.82	ug/L			11/11/20 04:43	1
Trichlorofluoromethane	1.0	U	1.0	0.32	ug/L			11/11/20 04:43	1

Eurofins TestAmerica, Edison

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'967

.(/&'()*!#&012&345677778467

1(%#& =!!#>%#?**????@A@**5&8A2A5 1(%#&+#>#"B#?**????**@C**@**5&8D255

:#%E=?2&D7451 &6& %"!#&G					O##0/	4	NI.##/-#0	I/#/!!!!	411101
K\$(!I%#		P-(!"Q"#;	+.	:1.	O\$"%		N;#*(;#?	K\$(!IM#?	1"!&L
1,1-Dichloroethene	1.0		1.0		ug/L			11/11/20 04:43	
1,1-Dichloroethane	1.0		1.0		ug/L			11/11/20 04:43	
trans-1,2-Dichloroethene	1.0		1.0		ug/L			11/11/20 04:43	
cis-1,2-Dichloroethene	1.0		1.0		ug/L			11/11/20 04:43	
Chloroform	1.0		1.0		ug/L			11/11/20 04:43	ĺ
1,2-Dichloroethane	1.0		1.0		ug/L			11/11/20 04:43	1
2-Butanone (MEK)	5.0		5.0		ug/L			11/11/20 04:43	1
1,1,1-Trichloroethane	1.0		1.0		ug/L			11/11/20 04:43	,
Carbon tetrachloride	1.0		1.0		ug/L			11/11/20 04:43	,
Dichlorobromomethane	1.0		1.0		ug/L			11/11/20 04:43	
1,2-Dichloropropane	1.0		1.0		ug/L			11/11/20 04:43	•
cis-1,3-Dichloropropene	1.0		1.0	0.22	ug/L			11/11/20 04:43	,
Trichloroethene	1.0	U	1.0	0.31	ug/L			11/11/20 04:43	
Chlorodibromomethane	1.0	U	1.0	0.28	ug/L			11/11/20 04:43	1
1,1,2-Trichloroethane	1.0	U	1.0	0.20	ug/L			11/11/20 04:43	1
Benzene	1.0	U	1.0	0.20	ug/L			11/11/20 04:43	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			11/11/20 04:43	
Bromoform	1.0	U	1.0	0.54	ug/L			11/11/20 04:43	1
4-Methyl-2-pentanone (MIBK)	5.0	U	5.0	1.3	ug/L			11/11/20 04:43	
2-Hexanone	5.0	U	5.0	1.1	ug/L			11/11/20 04:43	
Tetrachloroethene	1.0	U	1.0	0.25	ug/L			11/11/20 04:43	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.37	ug/L			11/11/20 04:43	1
Toluene	1.0	U	1.0	0.38	ug/L			11/11/20 04:43	1
Chlorobenzene	1.0	U	1.0	0.38	ug/L			11/11/20 04:43	1
Ethylbenzene	1.0	U	1.0	0.30	ug/L			11/11/20 04:43	1
Styrene	1.0	U	1.0	0.42	ug/L			11/11/20 04:43	1
m-Xylene & p-Xylene	1.0	U	1.0	0.30	ug/L			11/11/20 04:43	1
o-Xylene	1.0	U	1.0		ug/L			11/11/20 04:43	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0		1.0		ug/L			11/11/20 04:43	
Methyl tert-butyl ether	1.0		1.0		ug/L			11/11/20 04:43	,
Cyclohexane	1.0		1.0		ug/L			11/11/20 04:43	,
Ethylene Dibromide	1.0		1.0		ug/L			11/11/20 04:43	
1,3-Dichlorobenzene	1.0		1.0		ug/L			11/11/20 04:43	
1,4-Dichlorobenzene	1.0		1.0		ug/L			11/11/20 04:43	
1,2-Dichlorobenzene	1.0		1.0		ug/L			11/11/20 04:43	
Dichlorodifluoromethane	1.0		1.0		ug/L			11/11/20 04:43	
1,2,4-Trichlorobenzene	1.0		1.0		ug/L			11/11/20 04:43	
1,4-Dioxane	50		50		ug/L			11/11/20 04:43	
1,2,3-Trichlorobenzene	1.0		1.0		ug/L			11/11/20 04:43	
1,2-Dibromo-3-Chloropropane	1.0		1.0		ug/L			11/11/20 04:43	
Chlorobromomethane	1.0		1.0		ug/L			11/11/20 04:43	
Isopropylbenzene	1.0		1.0		ug/L ug/L			11/11/20 04:43	
	5.0		5.0		ug/L ug/L			11/11/20 04:43	
Methyl acetate Methylcyclohexane	1.0		1.0		ug/L ug/L			11/11/20 04:43	
Tentatively Identified Compound	Est. Result	Qualifier	Unit		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None	Quaiiilei	ug/L			CA3 NO.	rrepareu	11/11/20 04:43	DII Fac
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'967

.(/&'()*!#&012&345677778467

1(%#& =!!#>%#?**3366**A**0**5&8A2A5 1(%#&+#>#"B#**?3366**C**0**5&8D255

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	100		80 - 120					11/11/20 04:43	
1-Bromofluorobenzene	104		76 - 120					11/11/20 04:43	
Dibromofluoromethane (Surr)	100		77 - 124					11/11/20 04:43	
#%E=?2&D7V5W&'0:&01&	.6&'#)"B=!(%"!	#&GH(\$">	·& =)*=-\$?, & @	58 '0:& (#&1"!	-%"=\$U		
< \$(!I%#		P-(!"Q"#;	+ <u>.</u>	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L
1,4-Dioxane	0.20	U	0.20	0.016	ug/L		11/10/20 21:30	11/11/20 03:38	
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,4-Dioxane-d8	35		10 - 150				11/10/20 21:30	11/11/20 03:38	
#%E=?2&D7V5W&6&'#)"B	=!(%"!#&GH(\$	s">& =)*=-\$	6?,& @ U						
< \$(!1%#	+#,-!%	P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L
Phenol	10	U	10	0.29	ug/L		11/09/20 09:26	11/10/20 11:01	
2-Chlorophenol	10	U	10	0.38	ug/L		11/09/20 09:26	11/10/20 11:01	
2-Methylphenol	10	U	10	0.67	ug/L		11/09/20 09:26	11/10/20 11:01	
1-Methylphenol	10	U	10	0.65	ug/L		11/09/20 09:26	11/10/20 11:01	
2-Nitrophenol	10	U	10	0.75	ug/L		11/09/20 09:26	11/10/20 11:01	
2,4-Dimethylphenol	10	U	10	0.62	ug/L		11/09/20 09:26	11/10/20 11:01	
2,4-Dichlorophenol	10	U	10	1.1	ug/L		11/09/20 09:26	11/10/20 11:01	
1-Chloro-3-methylphenol	10	U	10	0.58	ug/L		11/09/20 09:26	11/10/20 11:01	
2,4,6-Trichlorophenol	10	U	10	0.86	ug/L		11/09/20 09:26	11/10/20 11:01	
2,4,5-Trichlorophenol	10	U	10		ug/L		11/09/20 09:26	11/10/20 11:01	
2,4-Dinitrotoluene	2.0	U	2.0		-		11/09/20 09:26	11/10/20 11:01	
1-Nitrophenol	30	U	30		ug/L		11/09/20 09:26	11/10/20 11:01	
4,6-Dinitro-2-methylphenol	30	U	30		ug/L		11/09/20 09:26	11/10/20 11:01	
Pentachlorophenol	30	U	30		ug/L		11/09/20 09:26	11/10/20 11:01	
Bis(2-chloroethyl)ether	1.0	U	1.0		ug/L		11/09/20 09:26	11/10/20 11:01	
N-Nitrosodi-n-propylamine	1.0	U	1.0		ug/L		11/09/20 09:26	11/10/20 11:01	
Hexachloroethane	2.0	U	2.0		ug/L		11/09/20 09:26	11/10/20 11:01	
Nitrobenzene	1.0	U	1.0		ug/L		11/09/20 09:26	11/10/20 11:01	
sophorone	10	U	10		ug/L		11/09/20 09:26	11/10/20 11:01	
Naphthalene	2.0	U	2.0		ug/L		11/09/20 09:26	11/10/20 11:01	
- 1-Chloroaniline	2.0		2.0		ug/L		11/09/20 09:26	11/10/20 11:01	
Hexachlorobutadiene	2.0	U	2.0	0.78				11/10/20 11:01	
2-Methylnaphthalene	10		10		ug/L		11/09/20 09:26	11/10/20 11:01	
Hexachlorocyclopentadiene	10		10		ug/L		11/09/20 09:26	11/10/20 11:01	
2-Chloronaphthalene	10		10		ug/L		11/09/20 09:26	11/10/20 11:01	
2-Nitroaniline	20		20		ug/L		11/09/20 09:26	11/10/20 11:01	
Dimethyl phthalate	10		10		ug/L		11/09/20 09:26	11/10/20 11:01	
Acenaphthylene	10		10		ug/L		11/09/20 09:26	11/10/20 11:01	
2,6-Dinitrotoluene	2.0		2.0		ug/L		11/09/20 09:26	11/10/20 11:01	
3-Nitroaniline	20		20		ug/L		11/09/20 09:26	11/10/20 11:01	
Acenaphthene	10		10		ug/L		11/09/20 09:26	11/10/20 11:01	
Dibenzofuran	10		10		ug/L		11/09/20 09:26	11/10/20 11:01	
2,4-Dinitrophenol		U *	30		ug/L		11/09/20 09:26	11/10/20 11:01	
Diethyl phthalate	10		10		ug/L ug/L		11/09/20 09:26	11/10/20 11:01	
	10		10		-		11/09/20 09:26	11/10/20 11:01	
1-Chlorophenyl phenyl ether					ug/L				
Fluorene I-Nitroaniline	10		10		ug/L ug/L		11/09/20 09:26 11/09/20 09:26	11/10/20 11:01 11/10/20 11:01	

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'967

.(/&'()*!#&012&345677778467

1(%#& =!!#>%#?**????@A@**5&8A2A5 1(%#&+#>#"B#?**????**@C**@**5&8D255

K\$(!I%#	+#,-!%	P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
N-Nitrosodiphenylamine	10	U	10	0.89	ug/L		11/09/20 09:26	11/10/20 11:01	1
4-Bromophenyl phenyl ether	10	U	10	0.75	ug/L		11/09/20 09:26	11/10/20 11:01	1
Hexachlorobenzene	1.0	U	1.0	0.40	ug/L		11/09/20 09:26	11/10/20 11:01	1
Phenanthrene	10	U	10	1.3	ug/L		11/09/20 09:26	11/10/20 11:01	1
Anthracene	10	U	10	1.3	ug/L		11/09/20 09:26	11/10/20 11:01	1
Carbazole	10	U	10	0.68	ug/L		11/09/20 09:26	11/10/20 11:01	
Di-n-butyl phthalate	10	U	10	0.84	ug/L		11/09/20 09:26	11/10/20 11:01	1
Fluoranthene	10	U	10	0.84	ug/L		11/09/20 09:26	11/10/20 11:01	1
Pyrene	10	U	10	1.6	ug/L		11/09/20 09:26	11/10/20 11:01	
Butyl benzyl phthalate	10	U	10		ug/L		11/09/20 09:26	11/10/20 11:01	
Benzo[a]anthracene	1.0	U	1.0	0.59	ug/L		11/09/20 09:26	11/10/20 11:01	
Chrysene	10	U	10	0.91			11/09/20 09:26	11/10/20 11:01	
Bis(2-ethylhexyl) phthalate	10	U	10	0.80	-		11/09/20 09:26	11/10/20 11:01	
Di-n-octyl phthalate	10	U	10		ug/L		11/09/20 09:26	11/10/20 11:01	
Benzo[b]fluoranthene	2.0		2.0		ug/L		11/09/20 09:26	11/10/20 11:01	
Benzo[k]fluoranthene	1.0		1.0		ug/L		11/09/20 09:26	11/10/20 11:01	
Benzo[a]pyrene	1.0	-	1.0	0.41	_		11/09/20 09:26	11/10/20 11:01	
Indeno[1,2,3-cd]pyrene	2.0		2.0		ug/L		11/09/20 09:26	11/10/20 11:01	
Dibenz(a,h)anthracene	1.0		1.0		ug/L		11/09/20 09:26	11/10/20 11:01	
Benzo[g,h,i]perylene	10		10	0.72	-		11/09/20 09:26	11/10/20 11:01	
1,1'-Biphenyl	10		10		ug/L		11/09/20 09:26	11/10/20 11:01	,
Acetophenone	10		10	2.3	-		11/09/20 09:26	11/10/20 11:01	
1,4-Dioxane	10		10	1.6	-		11/09/20 09:26	11/10/20 11:01	
Benzaldehyde	10		10	2.1			11/09/20 09:26	11/10/20 11:01	
•	10		10		U				,
Caprolactam					ug/L		11/09/20 09:26	11/10/20 11:01	
Atrazine	10		10		ug/L		11/09/20 09:26	11/10/20 11:01	
2,2'-oxybis[1-chloropropane]	10		10		ug/L		11/09/20 09:26	11/10/20 11:01	•
1,2,4,5-Tetrachlorobenzene	10		10		ug/L		11/09/20 09:26	11/10/20 11:01	•
2,3,4,6-Tetrachlorophenol	10		10		ug/L		11/09/20 09:26	11/10/20 11:01	
3,3'-Dichlorobenzidine	20		20		ug/L		11/09/20 09:26	11/10/20 11:01	,
Bis(2-chloroethoxy)methane	10	U	10	0.59	ug/L		11/09/20 09:26	11/10/20 11:01	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L				11/09/20 09:26	11/10/20 11:01	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	7011000017	Qualifier	46 - 137				11/09/20 09:26	11/10/20 11:01	Diria
Phenol-d5 (Surr)	28		10 - 101				11/09/20 09:26	11/10/20 11:01	
Terphenyl-d14 (Surr)	68		39 ₋ 150				11/09/20 09:26	11/10/20 11:01	
2,4,6-Tribromophenol (Surr)	114		36 - 159				11/09/20 09:26	11/10/20 11:01	
2,4,0-111b101110p11e1101 (Surr) 2-Fluorophenol (Surr)	41		18 - 72				11/09/20 09:26	11/10/20 11:01	
2-Fluorophenol (Surr) 2-Fluorobiphenyl								11/10/20 11:01	
z-Fluorobipnenyi	69		42 - 127				11/09/20 09:26	11/10/20 11.01	1
:#%E=?2&D5D8X&6&GH(\$=	>E!=;"\$#&N#	t,%">"?#,	&TJ U						
K\$(!I%#	+#,-!%	P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
4,4'-DDD	0.020	U	0.020	0.0060	-		11/08/20 14:01	11/11/20 10:39	
4,4'-DDE	0.020	U	0.020	0.0020	ug/L		11/08/20 14:01	11/11/20 10:39	
4,4'-DDT	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/11/20 10:39	
Aldrin	0.020	U	0.020	0.0030	ug/L		11/08/20 14:01	11/11/20 10:39	1
alpha-BHC	0.020		0.020	0.0070	_		11/08/20 14:01	11/11/20 10:39	

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'967

.(/&'()*!#&012&345677778467

1(%#& =!!#>%#**?2860**A**0**5&8A2A5 1(%#&+#>#"B#**?2860**C**0**5&8D255

K\$(!I%#	=>E!=;"\$#&N# +#,-!%	P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
peta-BHC	0.020		0.020	0.0040	ug/L		11/08/20 14:01	11/11/20 10:39	
Chlordane (technical)	0.50	U	0.50	0.055	ug/L		11/08/20 14:01	11/11/20 10:39	
delta-BHC	0.020	U	0.020	0.0050	ug/L		11/08/20 14:01	11/11/20 10:39	
Dieldrin	0.020	U	0.020	0.0030	ug/L		11/08/20 14:01	11/11/20 10:39	
Endosulfan I	0.020	U	0.020	0.0020	ug/L		11/08/20 14:01	11/11/20 10:39	
Endosulfan II	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/11/20 10:39	
Endosulfan sulfate	0.020	U	0.020	0.0060	ug/L		11/08/20 14:01	11/11/20 10:39	
Endrin	0.020	U	0.020	0.0040	ug/L		11/08/20 14:01	11/11/20 10:39	
Endrin aldehyde	0.020	U	0.020	0.0080	ug/L		11/08/20 14:01	11/11/20 10:39	1
Endrin ketone	0.020	U	0.020	0.0080	ug/L		11/08/20 14:01	11/11/20 10:39	1
gamma-BHC (Lindane)	0.020	U	0.020	0.012	ug/L		11/08/20 14:01	11/11/20 10:39	1
Heptachlor	0.020	U	0.020	0.0030	-		11/08/20 14:01	11/11/20 10:39	1
- Heptachlor epoxide	0.020	U	0.020	0.0050	•		11/08/20 14:01	11/11/20 10:39	1
Methoxychlor	0.020		0.020	0.0040				11/11/20 10:39	1
Toxaphene	0.50		0.50		ug/L		11/08/20 14:01	11/11/20 10:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	85		10 - 132				11/08/20 14:01	11/11/20 10:39	
DCB Decachlorobiphenyl	74		10 - 132				11/08/20 14:01	11/11/20 10:39	1
Tetrachloro-m-xylene	91		10 - 150				11/08/20 14:01	11/11/20 10:39	1
Tetrachloro-m-xylene	88		10 - 150				11/08/20 14:01	11/11/20 10:39	1
(\$(!!%#		P-(!"Q"#;	X,U&/I&J(,& +. 0.40	:1.	O\$"%	1	N;#*(;#? 11/08/20 14:08	K\$(!IM#? 11/09/20 17:37	
			*		* *	1	N:#*(:#2	K\$/IIM#2	1"121 /
\$(!1%#	+#,-!%	P-(!"Q"#;	+. 0.40	: 1. 0.12	O\$"% ug/L	_ 1			
(\$(!!%# Aroclor 1016 Aroclor 1221	+#,-!% 0.40 0.40	P-(!"Q"#; U	+. 0.40 0.40	0.12 0.12	O\$"% ug/L ug/L	1_	11/08/20 14:08 11/08/20 14:08	11/09/20 17:37 11/09/20 17:37	1
(\$(!!%# vroclor 1016 vroclor 1221 vroclor 1232	+#,-!% 0.40 0.40 0.40	P-(!"Q"#; U U	0.40 0.40 0.40 0.40	21. 0.12 0.12 0.12	O\$"% ug/L ug/L ug/L	_ 1	11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	11/09/20 17:37 11/09/20 17:37 11/09/20 17:37	1
(\$(!!%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242	+#,-!% 0.40 0.40 0.40 0.40	P-(!"Q"#; U U U	+. 0.40 0.40 0.40 0.40	1. 0.12 0.12 0.12 0.12	O\$"% ug/L ug/L ug/L ug/L	1	11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37	1
(\$(!!%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248	+#,-!% 0.40 0.40 0.40 0.40 0.40 0.40	P-(!"Q"#; U U U U	+. 0.40 0.40 0.40 0.40 0.40	11. 0.12 0.12 0.12 0.12 0.12	O\$"% ug/L ug/L ug/L ug/L ug/L	1	11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37	1
(\$(!!%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	+#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40	P-(!"Q"#; U U U U U	+. 0.40 0.40 0.40 0.40 0.40 0.40	:1. 0.12 0.12 0.12 0.12 0.12 0.12 0.11	Ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1	11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37	1 1 1 1
(\$(!!%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	+#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	P-(!"Q"#; U U U U U U U U U	+. 0.40 0.40 0.40 0.40 0.40 0.40	:1. 0.12 0.12 0.12 0.12 0.12 0.12 0.11 0.11	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1	11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37	1 1 1 1 1
(\$(!!%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor-1262	+#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	P-(!"Q"#; U U U U U U U U U U U U U	+. 0.40 0.40 0.40 0.40 0.40 0.40 0.40	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11	os"% ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1	11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37	1 1 1 1 1 1
(\$(!!%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor-1262 Aroclor 1268	+#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	P-(!"Q"#; U U U U U U U U U U U U U U	+. 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11	o\$"% ug/L	1	11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37	1"!&L(: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(\$(!!%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor-1262 Aroclor 1268	+#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	P-(!"Q"#; U U U U U U U U U U U U U U	+. 0.40 0.40 0.40 0.40 0.40 0.40 0.40	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11	o\$"% ug/L	1	11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37	1 1 1 1 1 1 1
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor-1262 Aroclor 1268 Polychlorinated biphenyls, Total	+#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	P-(!"Q"#; U U U U U U U U U U U U U U U U	+. 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11	o\$"% ug/L	1	11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37	1
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor-1262 Aroclor 1268 Polychlorinated biphenyls, Total	+#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40	P-(!"Q"#; U U U U U U U U U U U U U U U U	+. 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11	o\$"% ug/L	1	11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37	Dil Fac
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1254 Aroclor 1260 Aroclor-1262 Aroclor-1268 Polychlorinated biphenyls, Total Surrogate DCB Decachlorobiphenyl	+#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	P-(!"Q"#; U U U U U U U U U U U U U U U U	+. 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11	o\$"% ug/L	1	11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37	Dil Fac
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1254 Aroclor 1260 Aroclor-1262 Aroclor-1268 Polychlorinated biphenyls, Total Surrogate DCB Decachlorobiphenyl	+#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	P-(!"Q"#; U U U U U U U U U U U U U U U U	+. 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11	o\$"% ug/L	1	11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 Analyzed 11/09/20 17:37	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1254 Aroclor 1260 Aroclor-1262 Aroclor-1268 Polychlorinated biphenyls, Total Surrogate DCB Decachlorobiphenyl Tetrachloro-m-xylene	+#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.	P-(!"Q"#; U U U U U U U U U U U U U U U U	+. 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11	o\$"% ug/L	1	11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 Prepared 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 Analyzed 11/09/20 17:37	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1254 Aroclor 1260 Aroclor-1262 Aroclor-1268 Polychlorinated biphenyls, Total Surrogate DCB Decachlorobiphenyl Fetrachloro-m-xylene Fetrachloro-m-xylene	*#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.	P-(!"Q"#; U U U U U U U U U U U U U U U U	+. 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11	o\$"% ug/L	1	11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 Prepared 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	11/09/20 17:37 11/09/20 17:37	Dil Fac
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1254 Aroclor 1260 Aroclor-1262 Aroclor-1268 Polychlorinated biphenyls, Total Surrogate DCB Decachlorobiphenyl DCB Decachlorobiphenyl Fetrachloro-m-xylene Fetrachloro-m-xylene #%E=?2&D8@&6&Y#;/">"?	*#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.	P-(!"Q"#; U U U U U U U U U U U U U U U U	+. 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11	o\$"% ug/L	1	11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 Prepared 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	11/09/20 17:37 11/09/20 17:37	Dil Fac
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor-1262 Aroclor 1268 Polychlorinated biphenyls, Total Surrogate DCB Decachlorobiphenyl DCB Decachlorobiphenyl Fetrachloro-m-xylene Fetrachloro-m-xylene #%E=?2&D8&&6&Y#;/">"? (\$(!!%#	*#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.	P-(!"Q"#; U U U U U U U U P-(!"Q"#;	+. 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.	:1. 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.	O\$"% ug/L		11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	11/09/20 17:37 11/09/20 17:37	Dil Fac
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268 Polychlorinated biphenyls, Total Surrogate DCB Decachlorobiphenyl Tetrachloro-m-xylene Tetrachloro-m-xylene #%E=?2&D8@&6&Y#;/">"? (\$(!!%#	*#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.	P-(!"Q"#; U U U U U U U U U U U P-(!"Q"#; U	+. 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.	:1. 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.12	O\$"% ug/L		11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37	Dil Fac
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268 Polychlorinated biphenyls, Total Surrogate DCB Decachlorobiphenyl Tetrachloro-m-xylene Tetrachloro-m-xylene #%E=?2&D8@&6&Y#;/">"? (\$(!!%# 2,4-D Silvex (2,4,5-TP)	*#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.	P-(!"Q"#; U U U U U U U U U U P-(!"Q"#; U U U U U U U U U U U U U U U U U U U	+. 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.	:1. 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.12	O\$"% ug/L	11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 Prepared 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37	<i>Dil Fac</i>	
K\$(!!%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor-1262 Aroclor-1268 Polychlorinated biphenyls, Total Surrogate DCB Decachlorobiphenyl DCB Decachlorobiphenyl Tetrachloro-m-xylene Tetrachloro-m-xylene X\$(!!%# 2,4-D Silvex (2,4,5-TP) 2,4,5-T	*#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.	P-(!"Q"#; U U U U U U U U U U U U U U U U U U U	+. 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 10-150 48-125 48-125 +. 1.2 1.2	:1. 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.12	O\$"% ug/L	11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
##%E=?2&D5BC&6&N=!I>E!= K\$(!I%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 Polychlorinated biphenyls, Total Surrogate DCB Decachlorobiphenyl DCB Decachlorobiphenyl Tetrachloro-m-xylene Tetrachloro-m-xylene ##%E=?2&D8&&6&Y#;/">"? K\$(!I%# 2,4-D Silvex (2,4,5-TP) 2,4,5-T Surrogate 2,4-Dichlorophenylacetic acid	*#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.	P-(!"Q"#; U U U U U U U U U U U U U U U U U U U	+. 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 10-150 48-125 48-125 48-125	:1. 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.12	O\$"% ug/L	11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08 11/08/20 14:08	11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37 11/09/20 17:37	1 1 1 1 1 1	

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'967

.(/&'()*!#&012&345677778467

1(%#&+#>#"B#?886C@5&8D255

(\$(! 1 %#	+#,-!%	P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&
N#;Q!-=;=/-%(\$=">&(>"?&TNLXKU	75		4.9	2.3	ng/L		11/09/20 12:10	11/10/20 20:06	
N#;Q!-=;=*#\$%(\$=">&(>"?&TNLN#KI	J 7[2.0	0.48	ng/L		11/09/20 12:10	11/10/20 20:06	
N#;Q!-=;=E#<(\$=">&(>"?&TNLY <ku< td=""><td>A4</td><td></td><td>2.0</td><td>0.57</td><td>ng/L</td><td></td><td>11/09/20 12:10</td><td>11/10/20 20:06</td><td></td></ku<>	A4		2.0	0.57	ng/L		11/09/20 12:10	11/10/20 20:06	
N#;Q!-=;=E#*%(\$=">&(>"?&TNLY*K\	J A7		2.0	0.24	ng/L		11/09/20 12:10	11/10/20 20:06	
N#;Q!-=;==>%(\$=">&(>"?&TNLGKU	775		2.0	0.83	ng/L		11/09/20 12:10	11/10/20 20:06	
N#;Q!-=;=\$=\$(\$=">&(>"?&TNL]KU	3R7		2.0	0.26	ng/L		11/09/20 12:10	11/10/20 20:06	
N#;Q!-=;=?#>(\$=">&(>"?&TNL1KU	8R7	1	2.0	0.30	ng/L		11/09/20 12:10	11/10/20 20:06	
Perfluoroundecanoic acid (PFUnA)	2.0	U	2.0	1.1	ng/L		11/09/20 12:10	11/10/20 20:06	
Perfluorododecanoic acid (PFDoA)	2.0	U	2.0	0.54	ng/L		11/09/20 12:10	11/10/20 20:06	
Perfluorotridecanoic acid (PFTriA)	2.0	U	2.0	1.3	ng/L		11/09/20 12:10	11/10/20 20:06	
Perfluorotetradecanoic acid (PFTeA)	2.0	U	2.0	0.71	ng/L		11/09/20 12:10	11/10/20 20:06	
N#;Q!-=;=/-%(\$#,-!Q=\$">&(>"?& FNIX'U	7R7		2.0	0.20	ng/L		11/09/20 12:10	11/10/20 20:06	
N#;Q!-=;=E#<(\$#,-!Q=\$">&(>"?& 「NIY<'U	8C		2.0		ng/L			11/10/20 20:06	
N#;Q!-=;=E#*%(\$#,-!Q=\$" % <>"?& [NIY*'U	5RDD	\	2.0	0.19	Ü			11/10/20 20:06	
N#;Q!-=;==>%(\$#,-!Q=\$">&(>"?& FNIG'U	AA		2.0	0.53				11/10/20 20:06	
Perfluorodecanesulfonic acid (PFDS)	2.0		2.0	0.31	_			11/10/20 20:06	
Perfluorooctanesulfonamide (FOSA)	2.0		2.0	0.96	•			11/10/20 20:06	
I-methylperfluorooctanesulfonamidoa etic acid (NMeFOSAA)	4.9		4.9		ng/L			11/10/20 20:06	
6#%EI!*#;Q!-=;==>%(\$#,-!Q=\$()" '=(>#%">&(>"?&T]W%LG'KKU	7R4		4.9		ng/L			11/10/20 20:06	
6:2 FTS	4.9		4.9		ng/L			11/10/20 20:06	
:2 FTS	2.0	U	2.0	0.45	ng/L		11/09/20 12:10	11/10/20 20:06	
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil
3C4 PFBA	34		25 - 150				11/09/20 12:10	11/10/20 20:06	
3C5 PFPeA	61		25 - 150				11/09/20 12:10	11/10/20 20:06	
3C2 PFHxA	74		25 - 150				11/09/20 12:10	11/10/20 20:06	
3C4 PFHpA	85		25 - 150				11/09/20 12:10	11/10/20 20:06	
3C4 PFOA	93		25 - 150				11/09/20 12:10	11/10/20 20:06	
3C5 PFNA	91		25 - 150				11/09/20 12:10	11/10/20 20:06	
3C2 PFDA	92		25 - 150				11/09/20 12:10	11/10/20 20:06	
3C2 PFUnA	88		25 - 150				11/09/20 12:10	11/10/20 20:06	
3C2 PFDoA	74		25 - 150				11/09/20 12:10	11/10/20 20:06	
3C2 PFTeDA	63		25 - 150				11/09/20 12:10	11/10/20 20:06	
3C3 PFBS	93		25 - 150				11/09/20 12:10	11/10/20 20:06	
802 PFHxS	104		25 - 150				11/09/20 12:10	11/10/20 20:06	
3C4 PFOS	112		25 - 150				11/09/20 12:10	11/10/20 20:06	
3C8 FOSA	107		25 - 150				11/09/20 12:10	11/10/20 20:06	
3-NMeFOSAA	97		25 - 150				11/09/20 12:10	11/10/20 20:06	
5-NEtFOSAA	104		25 - 150				11/09/20 12:10	11/10/20 20:06	
12-6:2 FTS	144		25 - 150				11/09/20 12:10	11/10/20 20:06	
12-8:2 FTS	133		25 - 150				11/09/20 12:10	11/10/20 20:06	
#%E=?2&4575X&6&:#%(!,& 7@		D //"O"#-		.4	O#110/	4	N.#*/-#2	V¢/1184#2	4111
(\$(!1%#	+#,-!% 2.0	P-(!"Q"#;		:1.	O\$"% ug/L	1	N;#*(;#?	K\$(!IM#? 11/21/20 14:41	1"!8
Silver									

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'967

.(/&'()*!#&012&345677778467

1(%#& =!!#>%#?**286**05A@75&8A2A5 1(%#&+#>#"B#?**286**05C@75&8D255

1(%#&+#>#"B#?28@5C@75&8D255

K\$(!I%#	+#,-!% P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(>
Arsenic	2.0 U	2.0	0.89	ug/L		11/19/20 17:20	11/21/20 14:41	1
X(;"-)	D5RA	4.0	0.91	ug/L		11/19/20 17:20	11/21/20 14:41	1
Beryllium	0.80 U	0.80	0.098	ug/L		11/19/20 17:20	11/21/20 14:41	1
(!>"-)	8A8555	200	22.7	ug/L		11/19/20 17:20	11/21/20 14:41	1
Cadmium	2.0 U	2.0	0.16	ug/L		11/19/20 17:20	11/21/20 14:41	1
=/(!%	5R4D\	4.0	0.26	ug/L		11/19/20 17:20	11/21/20 14:41	1
Chromium	4.0 U	4.0	0.69	ug/L		11/19/20 17:20	11/21/20 14:41	1
=**#;	7 RV \	4.0	2.5	ug/L		11/19/20 17:20	11/21/20 14:41	1
0;=\$	[4[120	8.5	ug/L		11/19/20 17:20	11/21/20 14:41	1
N=%(,,"-)	CV35	200	112	ug/L		11/19/20 17:20	11/21/20 14:41	1
:(H\$#,"-)	8V755	200	15.4	ug/L		11/19/20 17:20	11/21/20 14:41	1
:(\$H(\$#,#	7AC	8.0	1.1	ug/L		11/19/20 17:20	11/21/20 14:41	1
'=?"-)	3V755	200	58.2	ug/L		11/19/20 17:20	11/21/20 14:41	1
]">Z#!	3RD	4.0	0.45	ug/L		11/19/20 17:20	11/21/20 14:41	1
.#(?	8RDX	1.2	0.11	ug/L		11/19/20 17:20	11/21/20 14:41	1
Antimony	2.0 U	2.0	0.76	ug/L		11/19/20 17:20	11/21/20 14:41	1
Selenium	2.5 U	2.5	0.46	ug/L		11/19/20 17:20	11/21/20 14:41	1
Thallium	0.80 U	0.80	0.17	ug/L		11/19/20 17:20	11/21/20 14:41	1
F(\$(?"-)	5R48 \	4.0	0.37	ug/L		11/19/20 17:20	11/21/20 14:41	1
^"\$>	888	16.0	5.1	ug/L		11/19/20 17:20	11/21/20 14:41	1
:#%E=?2&V3V5%6&:#;>-;I								
K\$(!I%#	+#,-!% P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(>
Mercury	0.20 U	0.20	0.091	ug/L		11/09/20 12:39	11/09/20 14:20	1
J#\$#;(!& E#)",%;I								
K\$(!I%#	+#,-!% P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(>
Cyanide, Total	0.010 U	0.010	0.0040	mg/L		11/17/20 12:02	11/17/20 13:08	1
!"#\$%&'()*!#&012&'96 (%#& =!!#>%#? 88 @5A@7					.(/	&'()*!# & 012	2&34567777 :(%;"<	

K\$(!I%#	+#,-!%	P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(>
Chloromethane	1.0	U	1.0	0.40	ug/L			11/11/20 05:06	1
Bromomethane	1.0	U	1.0	0.55	ug/L			11/11/20 05:06	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			11/11/20 05:06	1
Chloroethane	1.0	U	1.0	0.32	ug/L			11/11/20 05:06	1
Methylene Chloride	1.0	U	1.0	0.32	ug/L			11/11/20 05:06	1
K>#%=\$#	88	U	5.0	4.4	ug/L			11/11/20 05:06	1
Carbon disulfide	1.0	U	1.0	0.82	ug/L			11/11/20 05:06	1
Trichlorofluoromethane	1.0	U	1.0	0.32	ug/L			11/11/20 05:06	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			11/11/20 05:06	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			11/11/20 05:06	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			11/11/20 05:06	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			11/11/20 05:06	1
Chloroform	1.0	U	1.0	0.33	ug/L			11/11/20 05:06	1
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			11/11/20 05:06	1
2-Butanone (MEK)	5.0	U	5.0	1.9	ug/L			11/11/20 05:06	1

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'96A

.(/&'()*!#&012&34567777846A

1(%#& =!!#>%#?**3263**A**@**5&84255 1(%#&+#>#"B#**?3266**C**@**5&8D255

:#%E=?2&D7451 &6& %"!#&G K\$(!I%#		P-(!"Q"#;	@&T =\$% +	:1.	O\$"	% 1	N;#*(;#?	K\$(!IM#?	1"!&L(
1,1,1-Trichloroethane	1.0		1.0	0.2	24 ug/L			11/11/20 05:06	
Carbon tetrachloride	1.0	U	1.0	0.2	21 ug/L			11/11/20 05:06	
Dichlorobromomethane	1.0	U	1.0	0.3	34 ug/L			11/11/20 05:06	
1,2-Dichloropropane	1.0	U	1.0	0.3	35 ug/L			11/11/20 05:06	
cis-1,3-Dichloropropene	1.0	U	1.0		22 ug/L			11/11/20 05:06	
Trichloroethene	1.0	U	1.0		31 ug/L			11/11/20 05:06	
Chlorodibromomethane	1.0	U	1.0		28 ug/L			11/11/20 05:06	,
1,1,2-Trichloroethane	1.0		1.0		20 ug/L			11/11/20 05:06	
Benzene	1.0		1.0		20 ug/L			11/11/20 05:06	
trans-1,3-Dichloropropene	1.0	U	1.0		22 ug/L			11/11/20 05:06	
Bromoform	1.0		1.0		54 ug/L			11/11/20 05:06	
4-Methyl-2-pentanone (MIBK)	5.0		5.0		.3 ug/L			11/11/20 05:06	
2-Hexanone	5.0		5.0		.1 ug/L			11/11/20 05:06	
Tetrachloroethene	1.0		1.0		25 ug/L			11/11/20 05:06	,
1,1,2,2-Tetrachloroethane	1.0		1.0		37 ug/L			11/11/20 05:06	
Toluene	1.0		1.0		38 ug/L			11/11/20 05:06	
Chlorobenzene	1.0		1.0		38 ug/L			11/11/20 05:06	
Ethylbenzene	1.0		1.0		30 ug/L			11/11/20 05:06	
Styrene	1.0		1.0		12 ug/L			11/11/20 05:06	
m-Xylene & p-Xylene	1.0		1.0		30 ug/L			11/11/20 05:06	
o-Xylene	1.0		1.0		36 ug/L			11/11/20 05:06	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0		1.0		31 ug/L			11/11/20 05:06	
Methyl tert-butyl ether	1.0		1.0		22 ug/L			11/11/20 05:06	
Cyclohexane	1.0		1.0		32 ug/L			11/11/20 05:06	
Ethylene Dibromide	1.0		1.0		50 ug/L			11/11/20 05:06	
1,3-Dichlorobenzene	1.0		1.0		34 ug/L			11/11/20 05:06	
1,4-Dichlorobenzene	1.0		1.0		34 ug/L 33 ug/L			11/11/20 05:06	
1,2-Dichlorobenzene Dichlorodifluoromethane	1.0		1.0		21 ug/L			11/11/20 05:06	
	1.0		1.0		31 ug/L			11/11/20 05:06	
1,2,4-Trichlorobenzene	1.0		1.0		37 ug/L			11/11/20 05:06	
1,4-Dioxane	50		50		28 ug/L			11/11/20 05:06	
1,2,3-Trichlorobenzene	1.0		1.0		36 ug/L			11/11/20 05:06	•
1,2-Dibromo-3-Chloropropane	1.0		1.0		38 ug/L			11/11/20 05:06	
Chlorobromomethane	1.0		1.0		11 ug/L			11/11/20 05:06	•
sopropylbenzene	1.0		1.0		34 ug/L			11/11/20 05:06	•
Methyl acetate	5.0		5.0		79 ug/L			11/11/20 05:06	
Methylcyclohexane	1.0	U	1.0	0.7	71 ug/L			11/11/20 05:06	•
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None	Qualifier	ug/L			CAS NO.	riepareu	11/11/20 05:06	Dirrac
remailvely lachimed compound	140116		ug/L					71771720 00.00	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	102		75 - 123					11/11/20 05:06	
Toluene-d8 (Surr)	99		80 - 120					11/11/20 05:06	•
4-Bromofluorobenzene	104		76 - 120					11/11/20 05:06	
Dibromofluoromethane (Surr)	102		77 - 124					11/11/20 05:06	
			. = .						
:#%E=?2&D7V5W&'0:&01&68	k'#)"B=!(%"!	#&GH(\$"	>& =)*=-\$?,	8:0'8 <u>:0</u> 8	@ 0,=	=%=*# &1 "!-	·%"=\$U		
K \$(!I%#		P-(!"Q"#;	+.	:1.			N;#*(;#?	K\$(!IM#?	1"!&L

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'96A

.(/&'()*!#&012&34567777846A

1(%#& =!!#>%#?**BROA@**5&84255 1(%#&+#>#"B#?**BRO©**5&8D255

Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,4-Dioxane-d8	32		10 - 150				11/10/20 21:30	11/11/20 03:54	
:#%E=?2&D7V5W&6&'#)"B	B=!(%"!#&GH(\$	5">& =)*=-\$	\$?,& @U						
K\$(!I%#		P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L
Phenol		U	10	0.29	ug/L		11/09/20 09:26	11/10/20 11:22	
2-Chlorophenol	10	U	10	0.38	ug/L		11/09/20 09:26	11/10/20 11:22	
2-Methylphenol	10	U	10	0.67	ug/L		11/09/20 09:26	11/10/20 11:22	
4-Methylphenol	10	U	10	0.65	ug/L		11/09/20 09:26	11/10/20 11:22	
2-Nitrophenol	10	U	10	0.75	ug/L		11/09/20 09:26	11/10/20 11:22	
2,4-Dimethylphenol	10	U	10	0.62	_		11/09/20 09:26	11/10/20 11:22	
2,4-Dichlorophenol	10	U	10		ug/L		11/09/20 09:26	11/10/20 11:22	
4-Chloro-3-methylphenol	10	U	10	0.58	_		11/09/20 09:26	11/10/20 11:22	
2,4,6-Trichlorophenol	10	U	10	0.86	-		11/09/20 09:26	11/10/20 11:22	
2,4,5-Trichlorophenol	10	U	10	0.88			11/09/20 09:26	11/10/20 11:22	
2,4-Dinitrotoluene	2.0		2.0		-		11/09/20 09:26	11/10/20 11:22	
4-Nitrophenol	30		30		ug/L		11/09/20 09:26	11/10/20 11:22	
4,6-Dinitro-2-methylphenol	30		30		ug/L		11/09/20 09:26	11/10/20 11:22	
Pentachlorophenol	30		30		ug/L		11/09/20 09:26	11/10/20 11:22	
Bis(2-chloroethyl)ether	1.0		1.0		ug/L		11/09/20 09:26	11/10/20 11:22	
N-Nitrosodi-n-propylamine	1.0		1.0	0.43			11/09/20 09:26	11/10/20 11:22	
Hexachloroethane	2.0		2.0		_		11/09/20 09:26	11/10/20 11:22	
Nitrobenzene	1.0		1.0	0.57	•		11/09/20 09:26	11/10/20 11:22	
	1.0		1.0				11/09/20 09:26	11/10/20 11:22	
sophorone	2.0				•				
Naphthalene			2.0		•		11/09/20 09:26	11/10/20 11:22	
4-Chloroaniline	2.0		2.0		ug/L		11/09/20 09:26	11/10/20 11:22	
Hexachlorobutadiene	2.0		2.0		ug/L		11/09/20 09:26	11/10/20 11:22	
2-Methylnaphthalene	10		10	0.53	-		11/09/20 09:26	11/10/20 11:22	
Hexachlorocyclopentadiene	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	
2-Chloronaphthalene	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	
2-Nitroaniline	20		20	0.47	_		11/09/20 09:26	11/10/20 11:22	
Dimethyl phthalate	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	
Acenaphthylene	10		10	0.82	_		11/09/20 09:26	11/10/20 11:22	
2,6-Dinitrotoluene	2.0		2.0	0.83	_		11/09/20 09:26	11/10/20 11:22	
3-Nitroaniline	20		20		ug/L		11/09/20 09:26	11/10/20 11:22	
Acenaphthene	10	U	10	1.1	ug/L		11/09/20 09:26	11/10/20 11:22	
Dibenzofuran	10		10	1.1	J		11/09/20 09:26	11/10/20 11:22	
2,4-Dinitrophenol	30	U *	30		ug/L		11/09/20 09:26	11/10/20 11:22	
Diethyl phthalate	10	U	10	0.98	ug/L		11/09/20 09:26	11/10/20 11:22	
4-Chlorophenyl phenyl ether	10	U	10	1.3	ug/L		11/09/20 09:26	11/10/20 11:22	
Fluorene	10	U	10	0.91	ug/L		11/09/20 09:26	11/10/20 11:22	
4-Nitroaniline	20	U	20	1.2	ug/L		11/09/20 09:26	11/10/20 11:22	
N-Nitrosodiphenylamine	10	U	10	0.89	ug/L		11/09/20 09:26	11/10/20 11:22	
4-Bromophenyl phenyl ether	10	U	10	0.75	ug/L		11/09/20 09:26	11/10/20 11:22	
Hexachlorobenzene	1.0	U	1.0	0.40	ug/L		11/09/20 09:26	11/10/20 11:22	
Phenanthrene	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	
Anthracene	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	
Carbazole	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	
Di-n-butyl phthalate	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	
Fluoranthene	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	
Pyrene	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	
Butyl benzyl phthalate	10		10		ug/L			11/10/20 11:22	

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'96A

.(/&'()*!#&012&34567777846A

1(%#& =!!#>%#?**8860A@**5&84255 1(%#&+#>#"B#?**886**C**@**5&8D255

K\$(!I%#	+#,-!%	P-(!"Q"#;	+,	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
Benzo[a]anthracene	1.0	U	1.0	0.59	ug/L		11/09/20 09:26	11/10/20 11:22	
Chrysene	10	U	10	0.91	ug/L		11/09/20 09:26	11/10/20 11:22	
Bis(2-ethylhexyl) phthalate	10	U	10	0.80	ug/L		11/09/20 09:26	11/10/20 11:22	
Di-n-octyl phthalate	10	U	10	0.75	ug/L		11/09/20 09:26	11/10/20 11:22	
Benzo[b]fluoranthene	2.0	U	2.0	0.68	ug/L		11/09/20 09:26	11/10/20 11:22	
Benzo[k]fluoranthene	1.0	U	1.0		ug/L		11/09/20 09:26	11/10/20 11:22	
Benzo[a]pyrene	1.0	U	1.0		ug/L		11/09/20 09:26	11/10/20 11:22	
Indeno[1,2,3-cd]pyrene	2.0	U	2.0		ug/L		11/09/20 09:26	11/10/20 11:22	
Dibenz(a,h)anthracene	1.0		1.0		ug/L		11/09/20 09:26	11/10/20 11:22	
Benzo[g,h,i]perylene	10	U	10		ug/L		11/09/20 09:26	11/10/20 11:22	
1,1'-Biphenyl	10	U	10		ug/L		11/09/20 09:26	11/10/20 11:22	
Acetophenone	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	
1,4-Dioxane	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	
Benzaldehyde	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	
Caprolactam	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	
Atrazine	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	
2,2'-oxybis[1-chloropropane]	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	
1,2,4,5-Tetrachlorobenzene	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	
2,3,4,6-Tetrachlorophenol	10		10		ug/L		11/09/20 09:26	11/10/20 11:22	
3,3'-Dichlorobenzidine	20		20		ug/L		11/09/20 09:26	11/10/20 11:22	
Bis(2-chloroethoxy)methane	10		10		ug/L			11/10/20 11:22	
bis(2-cilioroethoxy)methane	10	U	10	0.59	ug/L		11/09/20 09.20	11/10/20 11.22	
Tentatively Identified Compound	Est. Result	Qualifier	Unit D)	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L	-			11/09/20 09:26	11/10/20 11:22	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	92		46 - 137				11/09/20 09:26	11/10/20 11:22	-
Phenol-d5 (Surr)	38		10 - 50				11/09/20 09:26	11/10/20 11:22	
Terphenyl-d14 (Surr)	80		39 - 150				11/09/20 09:26	11/10/20 11:22	
2,4,6-Tribromophenol (Surr)	125		36 - 159				11/09/20 09:26	11/10/20 11:22	
2-Fluorophenol (Surr)	50		18 - 72					11/10/20 11:22	
2-Fluorobiphenyl							11/09/20 09:26		
	84		42 - 127						
·#%E=222D5D8Y262G·U(\$=		F 0/. "\>"2# 3							
The second secon	>E!=;"\$#&N#	ŧ,%">"?#,& P-(!"Q"#;		:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L
K \$(!I%#	>E!=;"\$#&N#	P-(!"Q"#;	&TJ U	: 1. 0.0060		1	N;#*(;#? 11/08/20 14:01		
K\$(!I%# 4,4'-DDD	>E!=;"\$#&N# +#,-!% 0.020	P-(!"Q"#; U	&TJ U +.	0.0060	ug/L	1		K\$(!IM#?	
(\$(!!%# 4,4'-DDD 4,4'-DDE	>E!=;"\$#&N# +#,-!%	P-(!"Q"#; U	%TJ U +. 0.020	0.0060 0.0020	ug/L ug/L	1	11/08/20 14:01	K\$(!IM#? 11/11/20 10:55	1"!&L
(\$(!!%# 4,4'-DDD 4,4'-DDE 4,4'-DDT	>E!=;"\$#&N# +#,-!% 0.020 0.020 0.020	P-(!"Q"#; U U	**************************************	0.0060 0.0020 0.0040	ug/L ug/L ug/L	1	11/08/20 14:01 11/08/20 14:01 11/08/20 14:01	K\$(!IM#? 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55	1"!&L
K\$(!!%# 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin	>E!=;"\$#&N# +#,-!% 0.020 0.020 0.020 0.020	P-(!"Q"#; U U U	**************************************	0.0060 0.0020 0.0040 0.0030	ug/L ug/L ug/L ug/L	1	11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01	K\$(!IM#? 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55	
K\$(!!%# 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC	>E!=;"\$#&N# +#,-!% 0.020 0.020 0.020 0.020 0.020	P-(!"Q"#; U U U U	**************************************	0.0060 0.0020 0.0040 0.0030 0.0070	ug/L ug/L ug/L ug/L ug/L	1	11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01	K\$(!!M#? 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55	
K\$(!!%# 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC	>E!=;"\$#&N# +#,-!% 0.020 0.020 0.020 0.020 0.020 0.020	P-(!"Q"#; U U U U U U		0.0060 0.0020 0.0040 0.0030 0.0070 0.0040	ug/L ug/L ug/L ug/L ug/L ug/L	1	11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01	K\$(!!M#? 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55	
(\$(!!%# 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical)	>E!=;"\$#&N# +#,-!% 0.020 0.020 0.020 0.020 0.020 0.020 0.020	P-(!"Q"#; U U U U U U		0.0060 0.0020 0.0040 0.0030 0.0070 0.0040	ug/L ug/L ug/L ug/L ug/L ug/L	1	11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01	K\$(!!M#? 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55	1"!&L
K\$(!!%# 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical) delta-BHC	>E!=;"\$#&N# +#,-!% 0.020 0.020 0.020 0.020 0.020 0.020 0.50 0.020	P-(!"Q"#; U U U U U U U		0.0060 0.0020 0.0040 0.0030 0.0070 0.0040 0.055	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1	11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01	K\$(!IM#? 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55	1"!&L
(\$(!!%# i,4'-DDD i,4'-DDE i,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical) delta-BHC Dieldrin	>E!=;"\$#&N# +#,-!% 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	P-(!"Q"#; U U U U U U U U U U U U	*. 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	0.0060 0.0020 0.0040 0.0030 0.0070 0.0040 0.055 0.0050 0.0030	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1	11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01	K\$(!IM#? 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55	1"!&L
K\$(!!%# 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical) delta-BHC Dieldrin Endosulfan I	>E!=;"\$#&N# +#,-!% 0.020 0.020 0.020 0.020 0.020 0.020 0.50 0.020 0.020 0.020	P-(!"Q"#; U U U U U U U U U U U U U U U U U		0.0060 0.0020 0.0040 0.0030 0.0070 0.0040 0.055 0.0050 0.0030	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1	11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01 11/08/20 14:01	K\$(!IM#? 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55	1"!&L
K\$(!!%# 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical) delta-BHC Dieldrin Endosulfan II	>E!=;"\$#&N# +#,-!% 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	P-(!"Q"#; U U U U U U U U U U U U U U U U U U U		0.0060 0.0020 0.0040 0.0030 0.0070 0.0040 0.055 0.0050 0.0030 0.0020	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1	11/08/20 14:01 11/08/20 14:01	K\$(!IM#? 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55	1"!&L
K\$(!!%# 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical) delta-BHC Dieldrin Endosulfan I Endosulfan sulfate	>E!=;"\$#&N# +#,-!% 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	P-(!"Q"#; U U U U U U U U U U U U U U U U U U U		0.0060 0.0020 0.0040 0.0030 0.0070 0.0040 0.055 0.0050 0.0030 0.0020 0.0040 0.0060	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1	11/08/20 14:01 11/08/20 14:01	K\$(!!M#? 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55	1"!&L
:#%E=?2&D5D8X&6&GH(\$= K\$(!!%# 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical) delta-BHC Dieldrin Endosulfan I Endosulfan sulfate Endrin	>E!=;"\$#&N# +#,-!% 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	P-(!"Q"#; U U U U U U U U U U U U U U U U U U U	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	0.0060 0.0020 0.0040 0.0030 0.0070 0.0040 0.055 0.0050 0.0030 0.0020 0.0040 0.0060	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1	11/08/20 14:01 11/08/20 14:01	K\$(!IM#? 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55	1"!&L
K\$(!I%# 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical) delta-BHC Dieldrin Endosulfan I Endosulfan sulfate	>E!=;"\$#&N# +#,-!% 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	P-(!"Q"#; U U U U U U U U U U U U U U U U U U U		0.0060 0.0020 0.0040 0.0030 0.0070 0.0040 0.055 0.0050 0.0030 0.0020 0.0040 0.0060	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1	11/08/20 14:01 11/08/20 14:01	K\$(!!M#? 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55 11/11/20 10:55	1"!&l

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'96A

.(/&'()*!#&012&34567777846A

1(%#& =!!#>%#?**886**A**@**5&84255 1(%#&+#>#"B#**?886**C**@**5&8D255

:#%E=?2&D5D8X&6&GH(\$=>E K\$(!1%#	*	P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
gamma-BHC (Lindane)	0.020		0.020	0.012	ug/L		11/08/20 14:01	11/11/20 10:55	
Heptachlor	0.020	U	0.020				11/08/20 14:01	11/11/20 10:55	
Heptachlor epoxide	0.020	U	0.020	0.0050	•		11/08/20 14:01	11/11/20 10:55	
Methoxychlor	0.020	U	0.020	0.0040			11/08/20 14:01	11/11/20 10:55	1
Toxaphene	0.50	U	0.50		ug/L		11/08/20 14:01	11/11/20 10:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	77		10 - 132				11/08/20 14:01	11/11/20 10:55	1
DCB Decachlorobiphenyl	75		10 - 132				11/08/20 14:01	11/11/20 10:55	1
Tetrachloro-m-xylene	81		10 - 150				11/08/20 14:01	11/11/20 10:55	1
Tetrachloro-m-xylene	79		10 - 150				11/08/20 14:01	11/11/20 10:55	1
:#%E=?2&D5 BC &6&N=!I>E!=;"\$(
K\$(!I%#		P-(!"Q"#;		:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
Aroclor 1016	0.40		0.40	0.12	-		11/08/20 14:08	11/09/20 17:53	1
Aroclor 1221	0.40		0.40		ug/L		11/08/20 14:08	11/09/20 17:53	1
Aroclor 1232	0.40		0.40		ug/L		11/08/20 14:08	11/09/20 17:53	1
Aroclor 1242	0.40	U	0.40		ug/L		11/08/20 14:08	11/09/20 17:53	1
Aroclor 1248	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 17:53	1
Aroclor 1254	0.40	U	0.40	0.11	ug/L		11/08/20 14:08	11/09/20 17:53	1
Aroclor 1260	0.40	U	0.40	0.11	ug/L		11/08/20 14:08	11/09/20 17:53	1
Aroclor-1262	0.40	U	0.40	0.11	ug/L		11/08/20 14:08	11/09/20 17:53	1
Aroclor 1268	0.40	U	0.40	0.11	ug/L		11/08/20 14:08	11/09/20 17:53	1
Polychlorinated biphenyls, Total	0.40	U	0.40	0.12	ug/L		11/08/20 14:08	11/09/20 17:53	1
	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	89		10 - 150				11/08/20 14:08	11/09/20 17:53	1
DCB Decachlorobiphenyl	83		10 - 150				11/08/20 14:08	11/09/20 17:53	1
Tetrachloro-m-xylene	88		48 - 125				11/08/20 14:08	11/09/20 17:53	1
Tetrachloro-m-xylene	91		48 - 125				11/08/20 14:08	11/09/20 17:53	1
:#%E=?2&D8 && 6&Y#;/">"?#,& ⁻		D (111011#.		.4	O¢W0/		N.#+/.#2	V&(118442)	4111017
K\$(!I%# 2.4-D	1.2	P-(!"Q"#;	1.2	: 1 . 0.13	O\$"%	_ 1	N;#*(;#?	K\$(!IM#? 11/10/20 12:39	1"!&L(
,					ug/L		11/09/20 20:09		
Silvex (2,4,5-TP)	1.2		1.2		ug/L		11/09/20 20:09	11/10/20 12:39	1
2,4,5-T	1.2		1.2	0.12	ug/L		11/09/20 20:09	11/10/20 12:39	1
	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	92		39 - 145				11/09/20 20:09	11/10/20 12:39	1
2,4-Dichlorophenylacetic acid	112		39 - 145				11/09/20 20:09	11/10/20 12:39	1
:#%E=?2&CAV&T)=?"Q"#?U&6	, , , , , , , , , , , , , , , , , , ,	* * * * * * * * * * * * * * * * * * *	# ,						
K\$(!I%#		P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
N#;Q!-=;=/-%(\$=">&(>"?&TNLXKU	3R0		5.1		ng/L		11/09/20 12:10	11/10/20 20:15	1
N#;Q!-=;=*#\$%(\$=">&(>"?&TNLN#KU		D	2.0		ng/L		11/09/20 12:10	11/10/20 20:15	1
N#;Q!-=;=E#<(\$=">&(>"?&TNLY <ku< td=""><td>85</td><td></td><td>2.0</td><td></td><td>ng/L</td><td></td><td>11/09/20 12:10</td><td></td><td>1</td></ku<>	85		2.0		ng/L		11/09/20 12:10		1
N#;Q!-=;=E#*%(\$=">&(>"?&TNLY*KU	_		2.0		ng/L			11/10/20 20:15	1
N#;Q!-=;==>%(\$=">&(>"?&TNLGKU	C8		2.0	0.86	ng/L		11/09/20 12:10	11/10/20 20:15	1
The state of the s									
N#;Q!-=;=\$=\$(\$=">&(>"?&TNL]KU	8R\		2.0		ng/L			11/10/20 20:15	1
N#;Q!-=;=\$=\$(\$=">&(>"?&TNL]KU Perfluorodecanoic acid (PFDA) Perfluoroundecanoic acid (PFUnA)	8R\ 2.0 2.0	U	2.0 2.0	0.31	ng/L ng/L ng/L			11/10/20 20:15 11/10/20 20:15	1

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'96A

.(/&'()*!#&012&34567777846A

1(%#& =!!#>%#?**\%%**\$**@**5&84255 1(%#&+#>#"B#**?&\&****C@**5&8D255

:#%E=?2&CAV&T)=?"Q"#?U& K\$(!I%#		P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
Perfluorododecanoic acid (PFDoA)	2.0		2.0	0.56					
Perfluorotridecanoic acid (PFTriA)	2.0	U	2.0		ng/L		11/09/20 12:10	11/10/20 20:15	
Perfluorotetradecanoic acid (PFTeA)	2.0		2.0		ng/L			11/10/20 20:15	
N#;Q!-=;=/-%(\$#,-!Q=\$">&(>"?& TNIX'U	7R4		2.0		ng/L			11/10/20 20:15	
N#;Q!-=;=E#<(\$#,-!Q=\$">&(>"?& TNIY<'U	88		2.0	0.58	ng/L		11/09/20 12:10	11/10/20 20:15	· · · · · · · · · · · ·
N#;Q!-=;=E#*%(\$#,-!Q=\$" % <>"?& TNIY*'U	5RCA	41	2.0	0.19	ng/L		11/09/20 12:10	11/10/20 20:15	•
N#;Q!-=;==>%(\$#,-!Q=\$">&(>"?& TNIG'U	8C		2.0	0.55	ng/L		11/09/20 12:10	11/10/20 20:15	
Perfluorodecanesulfonic acid (PFDS)	2.0	U	2.0	0.32	ng/L		11/09/20 12:10	11/10/20 20:15	
Perfluorooctanesulfonamide (FOSA)	2.0	U	2.0		ng/L		11/09/20 12:10	11/10/20 20:15	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	5.1	U	5.1		ng/L		11/09/20 12:10	11/10/20 20:15	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	5.1	U	5.1	1.3	ng/L		11/09/20 12:10	11/10/20 20:15	
6:2 FTS `	5.1	U	5.1	2.5	ng/L		11/09/20 12:10	11/10/20 20:15	
8:2 FTS	2.0	U	2.0	0.47	ng/L		11/09/20 12:10	11/10/20 20:15	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C4 PFBA	46		25 - 150				11/09/20 12:10	11/10/20 20:15	
13C5 PFPeA	61		25 - 150				11/09/20 12:10	11/10/20 20:15	
13C2 PFHxA	68		25 - 150				11/09/20 12:10	11/10/20 20:15	
13C4 PFHpA	70		25 - 150				11/09/20 12:10	11/10/20 20:15	
13C4 PFOA	69		25 - 150					11/10/20 20:15	
13C5 PFNA	63		25 - 150					11/10/20 20:15	
13C2 PFDA	61		25 - 150					11/10/20 20:15	
13C2 PFUnA	57		25 - 150					11/10/20 20:15	
13C2 PFDoA	56		25 ₋ 150					11/10/20 20:15	
13C2 PFTeDA	52		25 - 150					11/10/20 20:15	
13C3 PFBS	79		25 ₋ 150					11/10/20 20:15	
1802 PFHxS	87		25 ₋ 150					11/10/20 20:15	
13C4 PFOS	86		25 - 150					11/10/20 20:15	
13C8 FOSA	69		25 ₋ 150					11/10/20 20:15	
d3-NMeFOSAA	66		25 ₋ 150					11/10/20 20:15	
d5-NEtFOSAA	68		25 - 150					11/10/20 20:15	
M2-6:2 FTS	72		25 ₋ 150					11/10/20 20:15	
M2-8:2 FTS	68		25 - 150					11/10/20 20:15	
:#%E=?2&4575X&6&:#%(!,& T @	J UN								
K\$(!I%#	+#,-!%	P-(!"Q"#;	+.	:1.		1	N;#*(;#?	K\$(!IM#?	1"!&L(
'"!B#;	8RA	11	2.0	0.19	ug/L			11/10/20 20:42	
K!-)"\$-)	8C5555		40.0	8.0	ug/L		11/10/20 10:17	11/10/20 20:42	
K;,#\$">	3[RC		2.0		ug/L		11/10/20 10:17	11/10/20 20:42	
X(;"-)	7[[5		4.0	0.91	ug/L		11/10/20 10:17	11/10/20 20:42	
X#;I!!"-)	VR3	}	0.80	0.098	-		11/10/20 10:17	11/10/20 20:42	
(!>"-)	8[8555		200	22.7	ug/L		11/10/20 10:17	11/10/20 20:42	
(?)"-)	88R8		2.0	0.16	ug/L		11/10/20 10:17	11/10/20 20:42	
=/(!%	8D5		4.0	0.26	ug/L		11/10/20 10:17	11/10/20 20:42	
E;=)"-)	75C		4.0	0.69	ug/L		11/10/20 10:17	11/10/20 20:42	
=**#;	A7C		4.0		ug/L		44/40/00 40 47	11/10/20 20:42	

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'96A

.(/&'()*!#&012&34567777846A

1(%#& =!!#>%#?88605A@75&84255

1(%#&+#>#"B#?28665C@75&8D255

:(%;"<2&9%#;

Job ID: 460-222216-1

K\$(!I%#	+#,-!% P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(>
0;=\$	33V555	120	8.5	ug/L		11/10/20 10:17	11/10/20 20:42	1
N=%(,,"-)	8V755	200	112	ug/L		11/10/20 10:17	11/10/20 20:42	1
:(H\$#,"-)	4C555	200	15.4	ug/L		11/10/20 10:17	11/10/20 20:42	1
:(\$H(\$#,#	37555	80.0	11.1	ug/L		11/10/20 10:17	11/10/20 20:49	10
'=?"-)	7[A55	200	58.2	ug/L		11/10/20 10:17	11/10/20 20:42	1
]">Z#!	783	4.0	0.45	ug/L		11/10/20 10:17	11/10/20 20:42	1
.#(?	C8A X	1.2	0.11	ug/L		11/10/20 10:17	11/10/20 20:42	1
K\$%")=\$I	ARC	2.0	0.76	ug/L		11/10/20 10:17	11/10/20 20:42	1
'#!#\$"-)	85R3	2.5	0.46	ug/L		11/10/20 10:17	11/10/20 20:42	1
SE(!!"-)	AR[0.80	0.17	ug/L		11/10/20 10:17	11/10/20 20:42	1
F(\$(?"-)	337	4.0	0.37	ug/L		11/10/20 10:17	11/10/20 20:42	1
^"\$>	A385	16.0	5.1	ug/L		11/10/20 10:17	11/10/20 20:42	1
:#%E=?2&V3 V6 &6&:#;>-;I	&T FKKU							
K\$(!I%#	+#,-!% P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(>
:#;>-;I	8RC	0.20	0.091	ug/L		11/09/20 12:39	11/09/20 14:22	1
J#\$#;(!& E#)",%;I								
K\$(!I%#	+#,-!% P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(>
I(\$"?#_&S=%(!	5R58	0.010	0.0040	mg/L		11/17/20 12:02	11/17/20 13:09	1

!"#\$%&'()*!#&012&'68

.(/&'()*!#&012&345677778463

1(%#& =!!#>%#**?886**05A@75&872A5

:(%;"<2&'=!"?

1(%#&+#>#"B#?28@5C@75&8D255

N#;>#\$%&'=!"?,2&7A|

:#%E=?2&D7451& 6& %"!#8 K\$(!!%#		P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(>
Chloromethane		U H H3 UJ	9.7		ug/Kg	_	11/06/20 19:10	11/14/20 14:48	1
Bromomethane	9.7	U H H3 <mark>UJ</mark>	9.7	9.7	ug/Kg	☼	11/06/20 19:10	11/14/20 14:48	1
Vinyl chloride	9.7	U H H3 <mark>UJ</mark>	9.7	5.3		☼	11/06/20 19:10	11/14/20 14:48	1
Chloroethane	9.7	U H H3 UJ	9.7	5.1			11/06/20 19:10	11/14/20 14:48	1
Methylene Chloride	9.7	U H H3 <mark>UJ</mark>	9.7	11		₽	11/06/20 19:10	11/14/20 14:48	1
K>#%=\$#	3D5	Y&YAU UJ	58	55	ug/Kg	☼	11/06/20 19:10	11/14/20 14:48	1
Carbon disulfide	9.7	U H H3 <mark>UJ</mark>	9.7	2.6	ug/Kg	₽	11/06/20 19:10	11/14/20 14:48	1
Trichlorofluoromethane	9.7	U H H3 <mark>UJ</mark>	9.7	3.9	ug/Kg	☼	11/06/20 19:10	11/14/20 14:48	1
1,1-Dichloroethene	9.7	U H H3 <mark>UJ</mark>	9.7	2.2	ug/Kg	☼	11/06/20 19:10	11/14/20 14:48	1
1,1-Dichloroethane	9.7	U H H3 <mark>UJ</mark>	9.7	2.0	ug/Kg	₽	11/06/20 19:10	11/14/20 14:48	1
trans-1,2-Dichloroethene	9.7	U H H3 <mark>UJ</mark>	9.7	2.4	ug/Kg	☼	11/06/20 19:10	11/14/20 14:48	1
cis-1,2-Dichloroethene	9.7	U H H3 <mark>UJ</mark>	9.7	3.5	ug/Kg	☼	11/06/20 19:10	11/14/20 14:48	1
Chloroform	9.7	U H H3 UJ	9.7	9.4	ug/Kg	☼	11/06/20 19:10	11/14/20 14:48	1
1,2-Dichloroethane	9.7	U H H3 <mark>UJ</mark>	9.7	2.9	ug/Kg	☼	11/06/20 19:10	11/14/20 14:48	1
76X-%(\$=\$#&T:W`U	7D5	Y&YAJ	48	3.6	ug/Kg	☼	11/06/20 19:10	11/14/20 14:48	1
1,1,1-Trichloroethane	9.7	U H H3 UJ	9.7	2.3	ug/Kg	☼	11/06/20 19:10	11/14/20 14:48	1
Carbon tetrachloride	9.7	U H H3 <mark>UJ</mark>	9.7	3.7	ug/Kg	☼	11/06/20 19:10	11/14/20 14:48	1
Dichlorobromomethane	9.7	U H H3 <mark>UJ</mark>	9.7	2.5	ug/Kg	☼	11/06/20 19:10	11/14/20 14:48	1
1,2-Dichloropropane	9.7	U H H3 UJ	9.7	4.1	ug/Kg	☼	11/06/20 19:10	11/14/20 14:48	1
cis-1,3-Dichloropropene	9.7	U H H3 <mark>UJ</mark>	9.7	2.6	ug/Kg	☼	11/06/20 19:10	11/14/20 14:48	1
Trichloroethene	9.7	U H H3 <mark>UJ</mark>	9.7	3.1	ug/Kg	☼	11/06/20 19:10	11/14/20 14:48	1
Chlorodibromomethane	9.7	U H H3 UJ	9.7	1.9	ug/Kg	☼	11/06/20 19:10	11/14/20 14:48	1
1,1,2-Trichloroethane	9.7	U H H3 UJ	9.7	1.7	ug/Kg	☼	11/06/20 19:10	11/14/20 14:48	1

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'68

.(/&'()*!#&012&345677778463

1(%#& =!!#>%#?**28@**5A@75&872A5 1(%#&+#>#"B#?**28@**5C@75&8D255

:(%;"<2&'=!"? N#;>#\$%&'=!"?,2&7A

:#%E=?2&D7451 &6& %"!#&G K\$(!1%#		P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(>
Benzene		U H H3 UJ	9.7	2.5	ug/Kg		11/06/20 19:10	11/14/20 14:48	1
trans-1,3-Dichloropropene	9.7	U H H3 UJ	9.7	2.6	ug/Kg		11/06/20 19:10	11/14/20 14:48	1
Bromoform	9.7	U H H3 UJ	9.7			₩	11/06/20 19:10	11/14/20 14:48	1
4-Methyl-2-pentanone (MIBK)		U H H3 UJ	48		ug/Kg	☼	11/06/20 19:10	11/14/20 14:48	1
2-Hexanone		U H H3 UJ	48		ug/Kg		11/06/20 19:10	11/14/20 14:48	1
Tetrachloroethene	9.7	U H H3 UJ	9.7			☼	11/06/20 19:10	11/14/20 14:48	1
1,1,2,2-Tetrachloroethane	9.7	U H H3 UJ	9.7			☼	11/06/20 19:10	11/14/20 14:48	1
Toluene	9.7	U H H3 UJ	9.7		ug/Kg		11/06/20 19:10	11/14/20 14:48	1
Chlorobenzene		U H H3 UJ	9.7		ug/Kg			11/14/20 14:48	1
Ethylbenzene		U H H3 UJ	9.7		ug/Kg			11/14/20 14:48	1
Styrene		U H H3 UJ	9.7			∴		11/14/20 14:48	1
m-Xylene & p-Xylene		U H H3 UJ	9.7	1.7	ug/Kg			11/14/20 14:48	1
o-Xylene		U H H3 UJ	9.7		ug/Kg			11/14/20 14:48	1
1,1,2-Trichloro-1,2,2-trifluoroethane		U H H3 UJ	9.7		ug/Kg			11/14/20 14:48	
Methyl tert-butyl ether		U H H3 UJ	9.7		ug/Kg			11/14/20 14:48	1
Cyclohexane		U H H3 UJ	9.7		ug/Kg			11/14/20 14:48	1
Ethylene Dibromide		U H H3 UJ	9.7		ug/Kg			11/14/20 14:48	1
1,3-Dichlorobenzene		U H H3 UJ	9.7		ug/Kg	☆		11/14/20 14:48	1
1,4-Dichlorobenzene		U H H3 UJ	9.7		ug/Kg	₩		11/14/20 14:48	1
1,2-Dichlorobenzene		U H H3 UJ	9.7					11/14/20 14:48	1
Dichlorodifluoromethane		U H H3 UJ	9.7			₩		11/14/20 14:48	1
1,2,4-Trichlorobenzene		U H H3 UJ	9.7		ug/Kg	₩		11/14/20 14:48	1
1,4-Dioxane		U H H3 UJ	190		ug/Kg			11/14/20 14:48	1
1,2,3-Trichlorobenzene		U H H3 UJ	9.7		ug/Kg	₩		11/14/20 14:48	1
1,2-Dibromo-3-Chloropropane		U H H3 UJ	9.7		ug/Kg	₩		11/14/20 14:48	1
Chlorobromomethane		U H H3 UJ	9.7					11/14/20 14:48	1
Isopropylbenzene		U H H3 UJ	9.7		ug/Kg	₩ \$		11/14/20 14:48	1
Methyl acetate		U H H3 UJ	48			₩		11/14/20 14:48	1
		J H H3 <mark>UJ</mark>			ug/Kg				
Methylcyclohexane	5.1	5 11113 00	9.7	4.0	ug/Kg	₽	11/06/20 19.10	11/14/20 14:48	1
Tentatively Identified Compound	Est. Result	t Qualifie	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None	H H3	ug/Kg	φ			11/06/20 19:10	11/14/20 14:48	1
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	117		77 - 145					11/14/20 14:48	1
Toluene-d8 (Surr)	94		80 - 120				11/06/20 19:10	11/14/20 14:48	1
4-Bromofluorobenzene	108		79 - 125					11/14/20 14:48	1
Dibromofluoromethane (Surr)	111		48 - 150					11/14/20 14:48	1
:#%E=?2&D7V5W&6&'#)"B=!	(%"!#&G:H(9	S">& =)*=-	\$?.&TJ @:'L	ı					
K\$(!!%#		P-(!"Q"#;	+	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(>
Phenol	1400		1400	51	ug/Kg		11/10/20 22:20	11/11/20 23:39	1
2-Chlorophenol	1400		1400		ug/Kg	☼	11/10/20 22:20	11/11/20 23:39	1
•	1400	U	1400		ug/Kg	☼	11/10/20 22:20	11/11/20 23:39	1
2-Methylphenol			1400		ug/Kg		11/10/20 22:20	11/11/20 23:39	1
2-Methylphenol 4-Methylphenol	1400	U							1
4-Methylphenol	1400 1400		1400	140	ug/Ka	5.2	11/10/20 22:20	11/11/20 23:39	
4-Methylphenol 2-Nitrophenol	1400	U	1400 1400		ug/Kg ua/Ka		11/10/20 22:20 11/10/20 22:20	11/11/20 23:39 11/11/20 23:39	
4-Methylphenol 2-Nitrophenol 2,4-Dimethylphenol	1400 1400	U U	1400	61	ug/Kg	⊅	11/10/20 22:20	11/11/20 23:39	1
4-Methylphenol 2-Nitrophenol	1400	U U		61 89					

Client: New York State D.E.C.

Job ID: 460-222216-1 Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'68

.(/&'()*!#&012&345677778463

1(%#& =!!#>%#**?886**@5A@75&872A5 1(%#&+#>#"B#?28665C@75&8D255

:(%;"<2&'=!"?

N#;>#\$%&'=!"?,2&7A

K\$(!I%#	+#,-!%	P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
2,4,5-Trichlorophenol	1400	U	1400	140	ug/Kg	<u></u>	11/10/20 22:20	11/11/20 23:39	-
2,4-Dinitrotoluene	280	U	280	150	ug/Kg	☼	11/10/20 22:20	11/11/20 23:39	
4-Nitrophenol	2800	U	2800	230	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
4,6-Dinitro-2-methylphenol	1100	U	1100	560	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
Pentachlorophenol	1100	U	1100	280	ug/Kg	☼	11/10/20 22:20	11/11/20 23:39	
Bis(2-chloroethyl)ether	140	U	140	48	ug/Kg	☼	11/10/20 22:20	11/11/20 23:39	
N-Nitrosodi-n-propylamine	140	U	140	100	ug/Kg		11/10/20 22:20	11/11/20 23:39	
Hexachloroethane	140	U	140	47	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
Nitrobenzene	140	U	140	33	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
Isophorone	560	U	560	400	ug/Kg		11/10/20 22:20	11/11/20 23:39	
Naphthalene	1400	U	1400	24	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
4-Chloroaniline	1400	U	1400	250	ug/Kg	☆	11/10/20 22:20	11/11/20 23:39	
Hexachlorobutadiene	280		280	29	ug/Kg		11/10/20 22:20	11/11/20 23:39	
2-Methylnaphthalene	1400		1400	39	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
Hexachlorocyclopentadiene	1400		1400	120	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
2-Chloronaphthalene	1400		1400	64	ug/Kg	∵.	11/10/20 22:20	11/11/20 23:39	
2-Nitroaniline	1400		1400		ug/Kg		11/10/20 22:20	11/11/20 23:39	
Dimethyl phthalate	1400		1400	310			11/10/20 22:20	11/11/20 23:39	
Acenaphthylene	1400		1400	14	ug/Kg	∷ ∵	11/10/20 22:20	11/11/20 23:39	
2,6-Dinitrotoluene	280		280	100	ug/Kg	₩.	11/10/20 22:20	11/11/20 23:39	
3-Nitroaniline	1400		1400	160		₩.	11/10/20 22:20	11/11/20 23:39	
Acenaphthene	1400		1400	39	ug/Kg		11/10/20 22:20	11/11/20 23:39	
Dibenzofuran	1400		1400	19	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
2,4-Dinitrophenol	1100		1100	680	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
Diethyl phthalate	1400		1400	20	ug/Kg	[™] -	11/10/20 22:20	11/11/20 23:39	
4-Chlorophenyl phenyl ether	1400		1400	49	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
Fluorene	1400		1400	19	ug/Kg	₩	11/10/20 22:20	11/11/20 23:39	
4-Nitroaniline	1400		1400	160	ug/Kg		11/10/20 22:20	11/11/20 23:39	
N-Nitrosodiphenylamine	1400		1400	110		☆	11/10/20 22:20	11/11/20 23:39	
4-Bromophenyl phenyl ether	1400		1400		ug/Kg ug/Kg	☆	11/10/20 22:20	11/11/20 23:39	
Hexachlorobenzene	1400		1400		ug/Kg	~~. ☆	11/10/20 22:20	11/11/20 23:39	
			1400		ug/Kg ug/Kg	₩.	11/10/20 22:20	11/11/20 23:39	
NE#\$(\$%E;#\$# Anthracene	[7 1400	\	1400			¥ \$	11/10/20 22:20	11/11/20 23:39	
Carbazole	1400		1400		ug/Kg ug/Kg		11/10/20 22:20	11/11/20 23:39	
Di-n-butyl phthalate	1400		1400			‡		11/11/20 23:39	
					ug/Kg	±,			
L!-=;(\$%E#\$#	755		1400		ug/Kg		11/10/20 22:20		
NI;#\$#	7C5		1400		ug/Kg		11/10/20 22:20		
Butyl benzyl phthalate	1400	U	1400		ug/Kg			11/11/20 23:39	
X#\$M=a(b(\$%E;(>#\$#	835		140		ug/Kg	<u></u> .		11/11/20 23:39	
E;I,#\$#	8A5		1400		ug/Kg	‡		11/11/20 23:39	
Bis(2-ethylhexyl) phthalate	1400		1400		ug/Kg	‡		11/11/20 23:39	
Di-n-octyl phthalate	1400	U	1400		ug/Kg	<u>.</u> .	11/10/20 22:20	11/11/20 23:39	
X#\$M=a/bQ!-=;(\$%E#\$#	755		140		ug/Kg			11/11/20 23:39	
X#\$M=aZbQ!-=;(\$%E#\$#	4A		140		ug/Kg	<u></u>		11/11/20 23:39	
X#\$M=a(b*I;#\$#	8A5		140		ug/Kg	.	11/10/20 22:20	11/11/20 23:39	
0\$?#\$=a8_7_A6>?b*I;#\$#		\ J	140		ug/Kg	‡		11/11/20 23:39	
Dibenz(a,h)anthracene	140		140		ug/Kg	‡		11/11/20 23:39	
X#\$M=aH_E_"b*#;I!#\$# 1,1'-Biphenyl	885	\ U	1400	41	ug/Kg ug/Kg		11/10/20 22:20 11/10/20 22:20	11/11/20 23:39	

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'68

.(/&'()*!#&012&345677778463

1(%#& =!!#>%#?**3386**A**0**5&872A5 1(%#&+#>#"B#**?3386**C**0**5&8D255 :(%;"<2&'=!"?

N#;>#\$%&'=!"?,2&7A

:#%E=?2&D7V5W&6&'#)"E K\$(!I%#				5%"\$-#? :1.	O\$"%	4	N·#*/·#?	K\$(!IM#?	1"!&L(
Acetophenone	1400	P-(!"Q"#;	+. 1400	68	ug/Kg	<u>1</u>	N;#*(;#? 11/10/20 22:20	11/11/20 23:39	1 : & L (
Benzaldehyde	1400		1400				11/10/20 22:20	11/11/20 23:39	
Caprolactam	1400		1400		ug/Kg ug/Kg	· · · ·	11/10/20 22:20	11/11/20 23:39	
•			560						•
Atrazine	560			81	ug/Kg		11/10/20 22:20	11/11/20 23:39	1
2,2'-oxybis[1-chloropropane]	1400		1400		ug/Kg		11/10/20 22:20	11/11/20 23:39	
1,2,4,5-Tetrachlorobenzene	1400		1400		ug/Kg	:Q:	11/10/20 22:20	11/11/20 23:39	1
2,3,4,6-Tetrachlorophenol	1400		1400		ug/Kg	☼	11/10/20 22:20	11/11/20 23:39	
3,3'-Dichlorobenzidine	560		560		ug/Kg	<u>.</u> .	11/10/20 22:20	11/11/20 23:39	1
Bis(2-chloroethoxy)methane	1400	U	1400	110	ug/Kg	☼	11/10/20 22:20	11/11/20 23:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	82		19 - 105				11/10/20 22:20	11/11/20 23:39	1
Phenol-d5 (Surr)	86		26 - 101				11/10/20 22:20	11/11/20 23:39	1
Terphenyl-d14 (Surr)	118		25 - 127				11/10/20 22:20	11/11/20 23:39	1
2,4,6-Tribromophenol (Surr)	83		10 - 123				11/10/20 22:20	11/11/20 23:39	1
2-Fluorophenol (Surr)	83		18 - 106				11/10/20 22:20	11/11/20 23:39	1
2-Fluorobiphenyl	85		25 - 104				11/10/20 22:20	11/11/20 23:39	1
.#0/ E=220 DED0V0 60 C.U/	¢⊏ "¢#0 NI+	4 0/ IINID# 0	T.111						
:#%E=?2&D5D8X&6&GH(K\$(!I%#	•	P-(!"Q"#;	+,	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
4,4'-DDD				4.8	ug/Kg	— <u></u>	11/13/20 09:54	11/16/20 10:00	
3_3c611W	87	1	28		ug/Kg	₩	11/13/20 09:54	11/16/20 10:00	4
4,4'-DDT	28		28	5.1	ug/Kg	⊅	11/13/20 09:54	11/16/20 10:00	1
Aldrin	28		28		ug/Kg		11/13/20 09:54	11/16/20 10:00	
alpha-BHC	8.4		8.4		ug/Kg		11/13/20 09:54	11/16/20 10:00	1
beta-BHC	8.4		8.4		ug/Kg	 \$	11/13/20 09:54	11/16/20 10:00	
Chlordane (technical)	280		280		ug/Kg		11/13/20 09:54	11/16/20 10:00	
delta-BHC	8.4		8.4		ug/Kg		11/13/20 09:54	11/16/20 10:00	1
Dieldrin	8.4		8.4		ug/Kg	~ \$	11/13/20 09:54	11/16/20 10:00	1
Endosulfan I	28		28		ug/Kg	· · · · · · · · · · · · · · · · · · ·	11/13/20 09:54	11/16/20 10:00	
Endosulfan II	28		28		ug/Kg ug/Kg	₩	11/13/20 09:54	11/16/20 10:00	1
Endosulfan sulfate	28		28		ug/Kg ug/Kg	₩	11/13/20 09:54	11/16/20 10:00	1
Endrin	28		28				11/13/20 09:54	11/16/20 10:00	
Endrin aldehyde	28		28		ug/Kg		11/13/20 09:54	11/16/20 10:00	
•					ug/Kg				1
Endrin ketone	28		28		ug/Kg		11/13/20 09:54		
gamma-BHC (Lindane)	8.4		8.4		ug/Kg		11/13/20 09:54	11/16/20 10:00	
Heptachlor	28		28		ug/Kg	:Q:	11/13/20 09:54	11/16/20 10:00	1
Heptachlor epoxide	28		28		ug/Kg		11/13/20 09:54	11/16/20 10:00	1
Methoxychlor 	28		28		ug/Kg	‡	11/13/20 09:54	11/16/20 10:00	1
Toxaphene	280	U	280	100	ug/Kg	₽	11/13/20 09:54	11/16/20 10:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	78		28 - 148				11/13/20 09:54	11/16/20 10:00	1
DCB Decachlorobiphenyl	93		28 - 148				11/13/20 09:54	11/16/20 10:00	1
Tetrachloro-m-xylene	70		34 - 118				11/13/20 09:54	11/16/20 10:00	1
Tetrachloro-m-xylene	72		34 - 118				11/13/20 09:54	11/16/20 10:00	1
:#%E=?2&D5 B C&6&N=!I>E	"¢(0/ #2 9 V "*	E#¢II Q TNI	Y Q / Q / O	=\/0/	⊔./ *⊏I				
	- DI /OH / (A A ""	⊏#JI!.OxIIN	7.U0/I0J(.0: b	1(%=	⊓,(⊑1				
.# %E= ! 2&D3BA&0&N=!!>E! K\$(!!%#		P-(!"Q"#;	+.	:1.	Ó\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'68

.(/&'()*!#&012&345677778463

:(%;"<2&'=!"?

1(%#& =!!#>%#?**28@**5A@75&872A5 1(%#&+#>#"B#?**28@**5C@75&8D255

N#;>#\$%&'=!"?,2&7A

Job ID: 460-222216-1

K\$(!I%#	+#,-!%	P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
Aroclor 1221	280	U	280	37	ug/Kg	<u></u>	11/13/20 09:49	11/16/20 22:27	1
Aroclor 1232	280	U	280	37	ug/Kg	≎	11/13/20 09:49	11/16/20 22:27	1
Aroclor 1242	280	U	280	37	ug/Kg	₩	11/13/20 09:49	11/16/20 22:27	1
Aroclor 1248	280	U	280	37	ug/Kg	☼	11/13/20 09:49	11/16/20 22:27	1
Aroclor 1254	280	U	280	38	ug/Kg	₽	11/13/20 09:49	11/16/20 22:27	1
Aroclor 1260	280	U	280	38	ug/Kg	₩	11/13/20 09:49	11/16/20 22:27	1
Aroclor-1262	280	U	280		ug/Kg	☼	11/13/20 09:49	11/16/20 22:27	1
Aroclor 1268	280	U	280		ug/Kg	₽	11/13/20 09:49	11/16/20 22:27	1
Polychlorinated biphenyls, Total	280	U	280		ug/Kg		11/13/20 09:49	11/16/20 22:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	124		10 - 150				11/13/20 09:49	11/16/20 22:27	1
DCB Decachlorobiphenyl	120		10 - 150				11/13/20 09:49	11/16/20 22:27	1
Tetrachloro-m-xylene	120		58 ₋ 145				11/13/20 09:49	11/16/20 22:27	1
Tetrachloro-m-xylene	115		58 - 145				11/13/20 09:49	11/16/20 22:27	1
:#%E=?2&D8C &6 &Y#:/">"?#,&	T.I.U								
K\$(!!%#		P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
2,4-D	140	U	140	51	ug/Kg	☼	11/09/20 20:10	11/10/20 11:26	1
Silvex (2,4,5-TP)	140	U	140	15	ug/Kg	≎	11/09/20 20:10	11/10/20 11:26	1
2,4,5-T	140	U	140	30	ug/Kg	₩	11/09/20 20:10	11/10/20 11:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	92		30 - 150				11/09/20 20:10	11/10/20 11:26	1
2,4-Dichlorophenylacetic acid	90		30 - 150				11/09/20 20:10	11/10/20 11:26	1
:#%E=?2&CAV&T)=?"Q"#?U&6	&L!-=;K \$Z ¶	%#? &%(\$>;	# ,						
K\$(!I%#	+#,-!%	P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
N#;Q!-=;=/-%(\$=">&(>"?&TNLXKU	0.77	U	0.77	0.11	ug/Kg	☆	11/17/20 09:15	11/19/20 08:53	1
N#;Q!-=;=*#\$%(\$=">&(>"?&TNLN#KL	J 5R3[) (0.77	0.30	ug/Kg	≎	11/17/20 09:15	11/19/20 08:53	1
N#;Q!-=;=E#<(\$=">&(>"?&TNLY <ku< td=""><td>5R7[</td><td>)(</td><td>0.77</td><td>0.16</td><td>ug/Kg</td><td>₽</td><td>11/17/20 09:15</td><td>11/19/20 08:53</td><td>1</td></ku<>	5R7[) (0.77	0.16	ug/Kg	₽	11/17/20 09:15	11/19/20 08:53	1
N#;Q!-=;=E#*%(\$=">&(>"?&TNLY*KU	5R7/	A \	0.77	0.11	ug/Kg	₩	11/17/20 09:15	11/19/20 08:53	1
N#;Q!-=;==>%(\$=">&(>"?&TNLGKU	5R48	3 \	0.77	0.33	ug/Kg	☼	11/17/20 09:15	11/19/20 08:53	1
N#;Q!-=;=\$=\$(\$=">&(>"?&TNL]KU	5R77	7 \	0.77	0.14	ug/Kg	☼	11/17/20 09:15	11/19/20 08:53	1
N#;Q!-=;=?#>(\$=">&(>"?&TNL1KU	5RA	5\	0.77	0.084	ug/Kg	⊅	11/17/20 09:15	11/19/20 08:53	1
N#;Q!-=;=-\$?#>(\$=">&(>"?& TNLO\$KU	5RA	3\&L8 J+	0.77		ug/Kg	₩	11/17/20 09:15	11/19/20 08:53	1
N#;Q!-=;=?=?#>(\$=">&(>"?&	5R7\	/ \	0.77	0.26	ug/Kg	₩	11/17/20 09:15	11/19/20 08:53	1
TNL1=KU	EDAI		0.77	0.20	ug/Kg		11/17/20 09:15	11/10/20 08:53	1
N#;Q!-=;=%;"?#>(\$=">&(>"?&TN \LS) N#;Q!-=;=%#%;(?#>(\$=">&(>"?&	5RA 5R7	_	0.77		ug/Kg		11/17/20 09:15		1
TNLS#KU									
Perfluorobutanesulfonic acid (PFBS)	0.77	U	0.77		ug/Kg		11/17/20 09:15		1
N#;Q!-=;=E#<(\$#,-!Q=\$">&(>"?& TNLY<'U	5RD	8	0.77	0.12	ug/Kg	₩	11/17/20 09:15	11/19/20 08:53	1
Perfluoroheptanesulfonic Acid (PFHpS)	0.77	U	0.77	0.13	ug/Kg	₽	11/17/20 09:15	11/19/20 08:53	1
N#;Q!-=;==>%(\$#,-!Q=\$">&(>"?& TNLG'U	CR	7X J+	1.9	0.77	ug/Kg	₩	11/17/20 09:15	11/19/20 08:53	1
Perfluorodecanesulfonic acid (PFDS)	0.77	U F1	0.77	0.15	ug/Kg	 .	11/17/20 09:15	11/19/20 08:53	1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'68

.(/&'()*!#&012&345677778463

1(%#& =!!#>%#**?886**@5A@75&872A5

:(%;"<2&'=!"?

Job ID: 460-222216-1

1(%#&+#>#"B#?28665C@75&8D255

N#;>#\$%&'=!"?,2&7A

:#%E=?2&CAV&T)=?"Q"#?U&			•		O#110/	4	N.#*/.#2	NG(IIBAHO	41101.4
K\$(!I%#	+#,-!% 7.7	P-(!"Q"#;		:1.	O\$"%		N;#*(;#?	K\$(!IM#?	1"!&L(>
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)					ug/Kg			11/19/20 08:53	
N-ethylperfluorooctanesulfonamidoac	7.7	U	7.7	1.4	ug/Kg	₩	11/17/20 09:15	11/19/20 08:53	1
etic acid (NEtFOSAA)	7.7		7.7	0.50	110/1/0		11/17/20 00:15	44/40/20 00:52	4
6:2 FTS 8:2 FTS	7.7		7.7 7.7		ug/Kg ug/Kg	☆		11/19/20 08:53	1
			7.7	0.96	ug/Kg	☼	11/1//20 09.15	11/19/20 08:53	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	81		25 - 150					11/19/20 08:53	1
13C5 PFPeA	61		25 - 150					11/19/20 08:53	1
13C2 PFHxA	90		25 - 150					11/19/20 08:53	1
13C4 PFHpA	90		25 - 150					11/19/20 08:53	1
13C4 PFOA	91		25 - 150					11/19/20 08:53	1
13C5 PFNA	83		25 - 150				11/17/20 09:15	11/19/20 08:53	1
13C2 PFDA	92		25 - 150				11/17/20 09:15	11/19/20 08:53	1
13C2 PFUnA	95		25 - 150					11/19/20 08:53	1
13C2 PFDoA	80		25 - 150				11/17/20 09:15	11/19/20 08:53	1
13C2 PFTeDA	94		25 - 150				11/17/20 09:15	11/19/20 08:53	1
13C3 PFBS	69		25 - 150				11/17/20 09:15	11/19/20 08:53	1
1802 PFHxS	94		25 - 150				11/17/20 09:15	11/19/20 08:53	1
13C4 PFOS	88		25 - 150				11/17/20 09:15	11/19/20 08:53	1
13C8 FOSA	64		25 - 150				11/17/20 09:15	11/19/20 08:53	1
d3-NMeFOSAA	79		25 - 150				11/17/20 09:15	11/19/20 08:53	1
d5-NEtFOSAA	82		25 - 150				11/17/20 09:15	11/19/20 08:53	1
M2-6:2 FTS	258	*5	25 - 150				11/17/20 09:15	11/19/20 08:53	1
M2-8:2 FTS	268	*5	25 - 150				11/17/20 09:15	11/19/20 08:53	1
:#%E=?2&45851&6&:#%(!,&T0									
K\$(!I%#		P-(!"Q"#;	+	:1.	O\$"%		N;#*(;#?	K\$(!IM#?	1"!&L(>
Silver	7.1		7.1		0 0	₽		11/13/20 17:55	2
K!-)"\$-)	7V455		142		mg/Kg	*		11/13/20 17:55	2
K;,#\$">		D\	10.6		mg/Kg	<u>.</u> .		11/13/20 17:55	2
X(;"-)	7[A		142		mg/Kg	*		11/13/20 17:55	2
3eryllium	1.4		1.4		mg/Kg	*		11/13/20 17:55	2
(!>"-)	CVD		3540		mg/Kg	<u>.</u> .		11/13/20 17:55	2
(?)"-)		A\ J	2.8		mg/Kg	☼		11/13/20 17:55	2
=/(!%		A\ J	35.4		mg/Kg	☼		11/13/20 17:55	2
E;=)"-)	34R/		7.1		mg/Kg			11/13/20 17:55	2
=**#;	[4RV	⁷ J	17.7		mg/Kg	≎		11/13/20 17:55	2
0;=\$	78A55	J	106		mg/Kg	₩		11/13/20 17:55	2
N=%(,,"-)	84A5	\ J	3540		mg/Kg	☆		11/13/20 17:55	2
:(H\$#,"-)	C445	J	3540		mg/Kg	₩	11/12/20 16:30	11/13/20 17:55	2
:(\$H(\$#,#	8VC		10.6		mg/Kg	₩	11/12/20 16:30	11/13/20 17:55	2
Sodium	3540	U	3540		mg/Kg			11/13/20 17:55	2
]">Z#!	C5R	7 J	28.4		mg/Kg	₽		11/13/20 17:55	2
.#(?	4AR	3 J	7.1	1.1	mg/Kg	☼	11/12/20 16:30	11/13/20 17:55	2
Antimony	14.2	U	14.2	4.1	mg/Kg	₽	11/12/20 16:30	11/13/20 17:55	2
'#!#\$"-)	3R0	C\ J	14.2		mg/Kg	₽	11/12/20 16:30	11/13/20 17:55	2
Thallium	14.2	U	14.2	2.2	mg/Kg	☼	11/12/20 16:30	11/13/20 17:55	2
E(A(A))	400/	- 1	25.4	2.2	mg/Kg	w.	11/12/20 16:20	11/12/20 17:55	2
F(\$(?"-)	43R	J	35.4	3.3	mg/rtg	☼	11/12/20 10.30	11/13/20 17:55	

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'68 .(/&'()*!#&012&345677778463 1(%#& =!!#>%#?\$88@5A@75&872A5 :(%;"<2&'=!"?

1(%#&+#>#"B#?28665C@75&8D255

:(%;"<2&'=!"? N#;>#\$%&'=!"?,2&7A

Job ID: 460-222216-1

:#%E=?2&V3V8X&6&:#;>-;I&FIKKU K\$(!!%#	+#,-!%	P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(>
:#;>-;I	5R8[J	0.071	0.017	mg/Kg	<u></u>	11/16/20 03:07	11/16/20 07:17	1
J#\$#;(!& E#)",%;I									
K\$(!I%#	+#,-!%	P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(>
Cyanide, Total	0.87	U	0.87	0.44	mg/Kg	☼	11/15/20 12:34	11/16/20 14:04	1

!"#\$%&'()*!#&012&'67

.(/&'()*!#&012&34567777846C

1(%#& =!!#>%#**?886**@5A@75&53255

:(%;"<2&'=!"?

1(%#&+#>#"B#?28@5C@75&8D255

K\$(!I%#	+#,-!% P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(>
N#;Q!-=;=/-%(\$=">&(>"?&TNLXKU	CRV	4.3	2.1	ng/L		11/18/20 19:40	11/19/20 13:30	1
N#;Q!-=;=*#\$%(\$=">&(>"?&TNLN#KU	4RV	1.7	0.42	ng/L		11/18/20 19:40	11/19/20 13:30	1
N#;Q!-=;=E#<(\$=">&(>"?&TNLY <ku< td=""><td>ARV</td><td>1.7</td><td>0.50</td><td>ng/L</td><td></td><td>11/18/20 19:40</td><td>11/19/20 13:30</td><td>1</td></ku<>	ARV	1.7	0.50	ng/L		11/18/20 19:40	11/19/20 13:30	1
N#;Q!-=;=E#*%(\$=">&(>"?&TNLY*KU	3R7	1.7	0.22	ng/L		11/18/20 19:40	11/19/20 13:30	1
N#;Q!-=;==>%(\$=">&(>"?&TNLGKU	CD	1.7	0.74	ng/L		11/18/20 19:40	11/19/20 13:30	1
N#;Q!-=;=\$=\$(\$=">&(>"?&TNL]KU	AR8	1.7	0.23	ng/L		11/18/20 19:40	11/19/20 13:30	1
N#;Q!-=;=?#>(\$=">&(>"?&TNL1KU	8RA\	1.7	0.27	ng/L		11/18/20 19:40	11/19/20 13:30	1
Perfluoroundecanoic acid (PFUnA)	1.7 U	1.7	0.95	ng/L		11/18/20 19:40	11/19/20 13:30	1
Perfluorododecanoic acid (PFDoA)	1.7 U	1.7	0.48	ng/L		11/18/20 19:40	11/19/20 13:30	1
Perfluorotridecanoic acid (PFTriA)	1.7 U	1.7	1.1	ng/L		11/18/20 19:40	11/19/20 13:30	1
Perfluorotetradecanoic acid (PFTeA)	1.7 U	1.7	0.63	ng/L		11/18/20 19:40	11/19/20 13:30	1
N#;Q!-=;=/-%(\$#,-!Q=\$">&(>"?& TNIX'U	5RA5\	1.7	0.17	ng/L		11/18/20 19:40	11/19/20 13:30	1
N#;Q!-=;=E#<(\$#,-!Q=\$">&(>"?& TNIY<'U	7RV	1.7	0.49	ng/L		11/18/20 19:40	11/19/20 13:30	1
N#;Q!-=;=E#*%(\$#,-!Q=\$"> % >"?& TNLY*'U	5RC4\	1.7	0.16	ng/L		11/18/20 19:40	11/19/20 13:30	1
N#;Q!-=;==>%(\$#,-!Q=\$">&(>"?& TNIG'U	77	1.7	0.47	ng/L		11/18/20 19:40	11/19/20 13:30	1
Perfluorodecanesulfonic acid (PFDS)	1.7 U	1.7	0.28	ng/L		11/18/20 19:40	11/19/20 13:30	1
Perfluorooctanesulfonamide (FOSA)	1.7 U	1.7	0.85	ng/L		11/18/20 19:40	11/19/20 13:30	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	4.3 U	4.3	1.0	ng/L		11/18/20 19:40	11/19/20 13:30	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	4.3 U	4.3	1.1	ng/L		11/18/20 19:40	11/19/20 13:30	1
6:2 FTS	4.3 U	4.3	2.2	ng/L		11/18/20 19:40	11/19/20 13:30	1
8:2 FTS	1.7 U	1.7	0.40	ng/L		11/18/20 19:40	11/19/20 13:30	1
Isotope Dilution	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	83	25 - 150				11/18/20 19:40	11/19/20 13:30	1
13C5 PFPeA	91	25 - 150				11/18/20 19:40	11/19/20 13:30	1
13C2 PFHxA	95	25 - 150				11/18/20 19:40	11/19/20 13:30	1
13C4 PFHpA	95	25 - 150				11/18/20 19:40	11/19/20 13:30	1
13C4 PFOA	97	25 - 150				11/18/20 19:40	11/19/20 13:30	1
13C5 PFNA	91	25 - 150				11/18/20 19:40	11/19/20 13:30	1
13C2 PFDA	88	25 - 150				11/18/20 19:40	11/19/20 13:30	1
13C2 PFUnA	88	25 - 150				11/18/20 19:40	11/19/20 13:30	1
13C2 PFDoA	73	25 - 150				11/18/20 19:40	11/19/20 13:30	1
13C2 PFTeDA	51	25 - 150				11/18/20 19:40	11/19/20 13:30	1
13C3 PFBS	96	25 - 150				11/18/20 19:40	11/19/20 13:30	1

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'67

.(/&'()*!#&012&34567777846C

1(%#& =!!#>%#?**28@**5A@75&53255

1(%#&+#>#"B#?28665C@75&8D255

1(%#& =!!#>%#?**28@**5A@75&53255

1(%#&+#>#"B#?28665C@75&8D255

:(%;"<2&'=!"?

:(%;"<2&'=!"?

N#;>#\$%&'=!"?,2&34F

Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1802 PFHxS	110		25 - 150				11/18/20 19:40	11/19/20 13:30	1
13C4 PFOS	106		25 - 150				11/18/20 19:40	11/19/20 13:30	1
13C8 FOSA	102		25 - 150				11/18/20 19:40	11/19/20 13:30	1
d3-NMeFOSAA	71		25 - 150				11/18/20 19:40	11/19/20 13:30	1
d5-NEtFOSAA	96		25 - 150				11/18/20 19:40	11/19/20 13:30	1
M2-6:2 FTS	157	*5	25 - 150				11/18/20 19:40	11/19/20 13:30	1
M2-8:2 FTS	155	*5	25 - 150				11/18/20 19:40	11/19/20 13:30	1
J#\$#;(!& E#)",%;I									
K\$(!I%#	+#,-!%	P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
S=%(!& (;/=\$	[CV55	YJ	1000	671	mg/Kg			11/20/20 11:32	1
K\$(!I%#	+#,-!%	P-(!"Q"#;	+.	+.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
*Y	VR3	YL	0.1	0.1	SU			11/17/20 13:08	1
=;;=,"B"%I	VR3	3 YL	0.1	0.1	SU			11/17/20 13:08	1
S#)*#;(%-;#	78R5	YL	0.1	0.1	Degrees C			11/17/20 13:08	1

:#%E=?2&D7451 &6& %"!#&G	H(\$">& =)*=-\$?,&/I&J @:'	
K\$(!I%#	+#,-!% P-(!"Q"#;	+

K\$(!I%#	+#,-!%	P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(>
Chloromethane	5.7	U H H3 UJ	5.7	2.5	ug/Kg	☼	11/06/20 19:11	11/14/20 01:51	1
Bromomethane	5.7	U H H3 <mark>UJ</mark>	5.7	5.7	ug/Kg	₽	11/06/20 19:11	11/14/20 01:51	1
Vinyl chloride	5.7	U H H3 <mark>UJ</mark>	5.7	3.1	ug/Kg	₽	11/06/20 19:11	11/14/20 01:51	1
Chloroethane	5.7	U H H3 UJ	5.7	3.0	ug/Kg	₽	11/06/20 19:11	11/14/20 01:51	1
Methylene Chloride	5.7	U H H3 <mark>UJ</mark>	5.7	6.6	ug/Kg	☼	11/06/20 19:11	11/14/20 01:51	1
K>#%=\$#	A[5	Y&YAJ	34	33	ug/Kg	☼	11/06/20 19:11	11/14/20 01:51	1
Carbon disulfide	5.7	U H H3 UJ	5.7	1.5	ug/Kg	₽	11/06/20 19:11	11/14/20 01:51	1
Trichlorofluoromethane	5.7	U H H3 <mark>UJ</mark>	5.7	2.3	ug/Kg	☼	11/06/20 19:11	11/14/20 01:51	1
1,1-Dichloroethene	5.7	U H H3 <mark>UJ</mark>	5.7	1.3	ug/Kg	₽	11/06/20 19:11	11/14/20 01:51	1
1,1-Dichloroethane	5.7	U H H3 <mark>UJ</mark>	5.7	1.2	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
trans-1,2-Dichloroethene	5.7	U H H3 <mark>UJ</mark>	5.7	1.4	ug/Kg	☼	11/06/20 19:11	11/14/20 01:51	1
cis-1,2-Dichloroethene	5.7	U H H3 <mark>UJ</mark>	5.7	2.1	ug/Kg	☼	11/06/20 19:11	11/14/20 01:51	1
Chloroform	5.7	U H H3 <mark>UJ</mark>	5.7	5.6	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
1,2-Dichloroethane	5.7	U H H3 <mark>UJ</mark>	5.7	1.7	ug/Kg	☼	11/06/20 19:11	11/14/20 01:51	1
76X-%(\$=\$#&T:W`U	AD	Y&YAJ	29	2.1	ug/Kg	☼	11/06/20 19:11	11/14/20 01:51	1
1,1,1-Trichloroethane	5.7	U H H3 <mark>UJ</mark>	5.7	1.3	ug/Kg	₽	11/06/20 19:11	11/14/20 01:51	1
Carbon tetrachloride	5.7	U H H3 <mark>UJ</mark>	5.7	2.2	ug/Kg	☼	11/06/20 19:11	11/14/20 01:51	1
Dichlorobromomethane	5.7	U H H3 <mark>UJ</mark>	5.7	1.5	ug/Kg	☼	11/06/20 19:11	11/14/20 01:51	1
1,2-Dichloropropane	5.7	U H H3 <mark>UJ</mark>	5.7	2.4	ug/Kg	⊅	11/06/20 19:11	11/14/20 01:51	1
cis-1,3-Dichloropropene	5.7	U H H3 <mark>UJ</mark>	5.7	1.6	ug/Kg	☼	11/06/20 19:11	11/14/20 01:51	1
Trichloroethene	5.7	U H H3 <mark>UJ</mark>	5.7	1.8	ug/Kg	☼	11/06/20 19:11	11/14/20 01:51	1
Chlorodibromomethane	5.7	U H H3 <mark>UJ</mark>	5.7	1.1	ug/Kg	₽	11/06/20 19:11	11/14/20 01:51	1
1,1,2-Trichloroethane	5.7	U H H3 <mark>UJ</mark>	5.7	1.0	ug/Kg	☼	11/06/20 19:11	11/14/20 01:51	1
Benzene	5.7	U H H3 <mark>UJ</mark>	5.7	1.5	ug/Kg	☼	11/06/20 19:11	11/14/20 01:51	1
trans-1,3-Dichloropropene	5.7	U H H3 <mark>UJ</mark>	5.7	1.5	ug/Kg	₽	11/06/20 19:11	11/14/20 01:51	1
Bromoform	5.7	U H H3 <mark>UJ</mark>	5.7	2.4	ug/Kg	☼	11/06/20 19:11	11/14/20 01:51	1
4-Methyl-2-pentanone (MIBK)	29	U H H3 <mark>UJ</mark>	29	8.9	ug/Kg	☼	11/06/20 19:11	11/14/20 01:51	1
2-Hexanone	29	U H H3 UJ	29	9.8	ug/Kg	₽	11/06/20 19:11	11/14/20 01:51	1

Eurofins TestAmerica, Edison

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'67

.(/&'()*!#&012&34567777846C

1(%#& =!!#>%#?**28@**5A@75&53255

:(%;"<2&'=!"?

Job ID: 460-222216-1

1(%#&+#>#"B#?28665C@75&8D255

N#;>#\$%&'=!"?,2&34F

(/0#&+#># B#:2000C@15&0	D200							N#, >#Φ /0 CX -:	: ,203
:#%E=?2&D7451 &6& %"!#&G	;H(\$">& =)*=	-\$?,&/I&J	@: '&T =\$%	6"\$-#?U					
K\$(!I%#		P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
Tetrachloroethene	5.7	U H H3 UJ	5.7	1.8	ug/Kg	₽	11/06/20 19:11	11/14/20 01:51	•
1,1,2,2-Tetrachloroethane	5.7	U H H3 UJ	5.7	1.2	ug/Kg	₽	11/06/20 19:11	11/14/20 01:51	
Toluene	5.7	U H H3 UJ	5.7		ug/Kg	₽	11/06/20 19:11	11/14/20 01:51	•
Chlorobenzene	5.7	U H H3 UJ	5.7	1.0	ug/Kg	≎	11/06/20 19:11	11/14/20 01:51	•
Ethylbenzene	5.7	U H H3 UJ	5.7	1.1	ug/Kg	☼	11/06/20 19:11	11/14/20 01:51	•
Styrene	5.7	U H H3 UJ	5.7	1.6	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	1
m-Xylene & p-Xylene	5.7	U H H3 UJ	5.7	1.0	ug/Kg	☼	11/06/20 19:11	11/14/20 01:51	
o-Xylene	5.7	U H H3 UJ	5.7	1.1	ug/Kg	₽	11/06/20 19:11	11/14/20 01:51	
1,1,2-Trichloro-1,2,2-trifluoroethane	5.7	U H H3 UJ	5.7	1.7	ug/Kg	₽	11/06/20 19:11	11/14/20 01:51	
Methyl tert-butyl ether	5.7	U H H3 UJ	5.7	2.9	ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	
Cyclohexane	5.7	U H H3 UJ	5.7	1.3	ug/Kg	≎	11/06/20 19:11	11/14/20 01:51	
Ethylene Dibromide	5.7	U H H3 UJ	5.7	1.0	ug/Kg		11/06/20 19:11	11/14/20 01:51	
1,3-Dichlorobenzene	5.7	U H H3 UJ	5.7		ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	
1,4-Dichlorobenzene	5.7	U H H3 UJ	5.7		ug/Kg	₩	11/06/20 19:11	11/14/20 01:51	
1,2-Dichlorobenzene		U H H3 UJ	5.7		ug/Kg			11/14/20 01:51	
Dichlorodifluoromethane		U H H3 UJ	5.7		ug/Kg	₽		11/14/20 01:51	
1,2,4-Trichlorobenzene		U H H3 UJ	5.7		ug/Kg			11/14/20 01:51	
1,4-Dioxane		U H H3 UJ	110		ug/Kg			11/14/20 01:51	
1,2,3-Trichlorobenzene		U H H3 UJ	5.7		ug/Kg			11/14/20 01:51	
,2-Dibromo-3-Chloropropane		U H H3 UJ	5.7		ug/Kg			11/14/20 01:51	
Chlorobromomethane		U H H3 UJ	5.7		ug/Kg			11/14/20 01:51	
sopropylbenzene		U H H3 UJ	5.7		ug/Kg	₩ \$		11/14/20 01:51	
Methyl acetate		U H H3 UJ	29		ug/Kg	₩ \$		11/14/20 01:51	
Methylcyclohexane		J H H3 UJ	5.7			¥. 		11/14/20 01:51	
vietriyicycloriexarie	3.7	711113 00	5.7	2.9	ug/Kg	34:	11/00/20 19.11	11/14/20 01.51	
Tentatively Identified Compound	Est. Result	t Qualifie	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None	H H3	ug/Kg	*				11/14/20 01:51	
Surrogate	%Recovery	r Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	124		77 - 145					11/14/20 01:51	
Toluene-d8 (Surr)	103		80 - 120					11/14/20 01:51	
4-Bromofluorobenzene	115		79 - 125					11/14/20 01:51	
Dibromofluoromethane (Surr)	125		48 - 150					11/14/20 01:51	
#%E=?2&D7V5W&6&'#)"B=!		\$">& =)*=-		'U			11100/20 10:11	777 7720 07.07	
K\$(!I%#		P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L
Phenol	710	U	710	26	ug/Kg	₽	11/10/20 22:20	11/11/20 22:29	
2-Chlorophenol	710	U	710	25	ug/Kg	≎	11/10/20 22:20	11/11/20 22:29	
2-Methylphenol	710	U	710	27	ug/Kg	☆	11/10/20 22:20	11/11/20 22:29	
4-Methylphenol	710	U	710	45	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	
2-Nitrophenol	710	U	710	72	ug/Kg	☼	11/10/20 22:20	11/11/20 22:29	
2,4-Dimethylphenol	710	U	710		ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	
2,4-Dichlorophenol	290		290		ug/Kg		11/10/20 22:20	11/11/20 22:29	
1-Chloro-3-methylphenol	710		710		ug/Kg	₽	11/10/20 22:20		
2,4,6-Trichlorophenol	290		290		ug/Kg	₩	11/10/20 22:20		
2,4,5-Trichlorophenol	710		710		ug/Kg	∴	11/10/20 22:20		
2,4-Dinitrotoluene	140		140		ug/Kg		11/10/20 22:20		
4-Nitrophenol	1400		1400		ug/Kg	₩	11/10/20 22:20		
4,6-Dinitro-2-methylphenol	570		570		ug/Kg		11/10/20 22:20		
Pentachlorophenol	570		570		ug/Kg	¥ \$		11/11/20 22:29	
a chiachiolophichol	570	9	570	130	ug/Ng	14.	11/10/20 22.20	11/11/20 22.29	

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'67

.(/&'()*!#&012&34567777846C

1(%#& =!!#>%#**?888**@5A@75&53255

:(%;"<2&'=!"?

Job ID: 460-222216-1

1(%#&+#>#"B#?28@5C@75&8D255

N#;>#\$%&'=!"?,2&34F

//o/ =				- 40/11	. "011				
:#%E=?2&D7V5W&6&'#)"B=!(% K\$(!I%#		5">& =)*=-\$?, P-(!"Q"#;	&TJ @:'U& +	:T =\$%" :1.	\$-#?U O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(>
Bis(2-chloroethyl)ether	71	U	71	25	ug/Kg	— -	11/10/20 22:20	11/11/20 22:29	1
N-Nitrosodi-n-propylamine	71	U	71	52	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
Hexachloroethane	71	U	71	25	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
Nitrobenzene	71	U	71	17	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
Isophorone	290	U	290		ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
](*E%E(!#\$#	37	\	710		ug/Kg	₽	11/10/20 22:20	11/11/20 22:29	1
4-Chloroaniline	710	U	710		ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
Hexachlorobutadiene	140	U	140		ug/Kg		11/10/20 22:20	11/11/20 22:29	1
2-Methylnaphthalene	710		710		ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
Hexachlorocyclopentadiene	710		710		ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
2-Chloronaphthalene	710		710		ug/Kg	∴	11/10/20 22:20	11/11/20 22:29	
2-Nitroaniline	710		710		ug/Kg	Ď.	11/10/20 22:20	11/11/20 22:29	1
Dimethyl phthalate	710		710		ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
Acenaphthylene	710		710		ug/Kg		11/10/20 22:20	11/11/20 22:29	· · · · · · · · · · · · · · · · · · ·
2,6-Dinitrotoluene	140		140		ug/Kg ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
2,0-Diritioloidene 3-Nitroaniline	710		710		ug/Kg ug/Kg	∵ \$	11/10/20 22:20	11/11/20 22:29	1
			710				11/10/20 22:20	11/11/20 22:29	
K>#\$(*E%E#\$#	D[ug/Kg				
1"/#\$M=Q-;(\$	AD 570		710 570		ug/Kg		11/10/20 22:20	11/11/20 22:29	1
2,4-Dinitrophenol					ug/Kg		11/10/20 22:20	11/11/20 22:29	
Diethyl phthalate	710		710		ug/Kg	‡	11/10/20 22:20	11/11/20 22:29	1
4-Chlorophenyl phenyl ether	710		710		ug/Kg	‡	11/10/20 22:20	11/11/20 22:29	1
L!-=;#\$#	DV		710		ug/Kg	.	11/10/20 22:20	11/11/20 22:29	1
4-Nitroaniline	710		710		ug/Kg	‡	11/10/20 22:20	11/11/20 22:29	1
N-Nitrosodiphenylamine	710		710		ug/Kg	‡	11/10/20 22:20	11/11/20 22:29	1
4-Bromophenyl phenyl ether	710		710		ug/Kg		11/10/20 22:20	11/11/20 22:29	
Hexachlorobenzene	71		71		ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
NE#\$(\$%E;#\$#	4C5		710		ug/Kg	≎	11/10/20 22:20	11/11/20 22:29	1
K\$%E;(>#\$#	845		710		ug/Kg	.	11/10/20 22:20	11/11/20 22:29	1
(;/(M=!#	875	1	710		ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
Di-n-butyl phthalate	710	U	710		ug/Kg	☆	11/10/20 22:20	11/11/20 22:29	1
L!-=;(\$%E#\$#	DAS		710	25	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
NI;#\$#	V[5		710	18	ug/Kg	₽	11/10/20 22:20	11/11/20 22:29	1
Butyl benzyl phthalate	710	U	710	34	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
X#\$M=a(b(\$%E;(>#\$#	355		71	25	ug/Kg	☼	11/10/20 22:20	11/11/20 22:29	1
E;I,#\$#	355	\	710	12	ug/Kg	☼	11/10/20 22:20	11/11/20 22:29	1
X",T76#%EI!E# <i!u&*e%e(!(%#< td=""><td>V8</td><td>1</td><td>710</td><td>38</td><td>ug/Kg</td><td>₽</td><td>11/10/20 22:20</td><td>11/11/20 22:29</td><td>1</td></i!u&*e%e(!(%#<>	V8	1	710	38	ug/Kg	₽	11/10/20 22:20	11/11/20 22:29	1
Di-n-octyl phthalate	710	U	710	38	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
X#\$M=a/bQ!-=;(\$%E#\$#	C85		71	18	ug/Kg	₽	11/10/20 22:20	11/11/20 22:29	1
X#\$M=aZbQ!-=;(\$%E#\$#	8D5		71	14	ug/Kg	☆	11/10/20 22:20	11/11/20 22:29	1
X#\$M=a(b*I;#\$#	355		71	19	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
0\$?#\$=a8_7_A6>?b*I;#\$#	775	J	71		ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
1"/#\$MT(_EU(\$%E;(>#\$#	D5		71	31	ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
X#\$M=aH_E_"b*#;I!#\$#	785	١	710		ug/Kg	☼	11/10/20 22:20	11/11/20 22:29	1
1,1'-Biphenyl	710		710		ug/Kg		11/10/20 22:20	11/11/20 22:29	1
Acetophenone	710		710		ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
Benzaldehyde		U *1	710		ug/Kg	₩	11/10/20 22:20	11/11/20 22:29	1
Caprolactam	710	U *1	710	110	ua/Ka	-⇔	11/10/20 22:20	11/11/20 22 29	1
Caprolactam Atrazine	710 290	U *1	710 290		ug/Kg ug/Kg	≎	11/10/20 22:20 11/10/20 22:20	11/11/20 22:29 11/11/20 22:29	1 1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'67

.(/&'()*!#&012&34567777846C

:(%;"<2&'=!"?

1(%#& =!!#>%#?**\%%**05&53255 1(%#&+#>#"B#?**\%**0C@5&8D255

N#;>#\$%&'=!"?,2&34F

Job ID: 460-222216-1

%#&+#>#"B# 66660005&8D	255							N#;>#\$%&`=!`	?,2&34
:#%E=?2&D7V5W&6&'#)"B:	=!(%"!#&G:H(\$	5">& =)*=-9	5?.& @U&T= \$	%"\$-#?	U				
K\$(!I%#		P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(>
1,2,4,5-Tetrachlorobenzene	710		710	22	ug/Kg	— -	11/10/20 22:20	11/11/20 22:29	1
2,3,4,6-Tetrachlorophenol	710	U	710	48	ug/Kg	₽	11/10/20 22:20	11/11/20 22:29	1
3,3'-Dichlorobenzidine	290	U	290		ug/Kg	₽	11/10/20 22:20	11/11/20 22:29	1
Bis(2-chloroethoxy)methane	710	U	710		ug/Kg		11/10/20 22:20	11/11/20 22:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	85		19 - 105				11/10/20 22:20	11/11/20 22:29	1
Phenol-d5 (Surr)	89		26 - 101				11/10/20 22:20		1
Terphenyl-d14 (Surr)	114		25 - 127				11/10/20 22:20		1
2,4,6-Tribromophenol (Surr)	87		10 - 123				11/10/20 22:20		1
2-Fluorophenol (Surr)	86		18 - 106				11/10/20 22:20		1
2-Fluorobiphenyl	89		25 - 104					11/11/20 22:29	1
:#%E=?2&D5D8X&6&GH(\$	=>E!=:"\$#&N#	!%">"?#.8	TJ U						
\\$ (!I%#		P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
4,4'-DDD	14	U	14	2.5	ug/Kg	— <u></u>	11/13/20 09:54	11/16/20 10:15	1
4,4'-DDE	14	U	14		ug/Kg	₩	11/13/20 09:54	11/16/20 10:15	1
4,4'-DDT	14	U	14		ug/Kg	₩	11/13/20 09:54	11/16/20 10:15	1
Aldrin	14	U	14		ug/Kg		11/13/20 09:54	11/16/20 10:15	1
alpha-BHC	4.3	U	4.3		ug/Kg	₩	11/13/20 09:54	11/16/20 10:15	1
beta-BHC	4.3	U	4.3		ug/Kg	☆	11/13/20 09:54	11/16/20 10:15	1
Chlordane (technical)	140		140		ug/Kg			11/16/20 10:15	1
delta-BHC	4.3	U	4.3		ug/Kg	☆	11/13/20 09:54	11/16/20 10:15	1
Dieldrin	4.3	U	4.3		ug/Kg	☆	11/13/20 09:54	11/16/20 10:15	1
Endosulfan I	14		14		ug/Kg		11/13/20 09:54		1
Endosulfan II	14	U	14		ug/Kg	₩	11/13/20 09:54		1
Endosulfan sulfate	14	U	14		ug/Kg	₩	11/13/20 09:54		1
Endrin	14		14		ug/Kg		11/13/20 09:54		1
Endrin aldehyde	14		14		ug/Kg	₩	11/13/20 09:54		1
Endrin ketone	14		14		ug/Kg		11/13/20 09:54		1
gamma-BHC (Lindane)	4.3		4.3		ug/Kg		11/13/20 09:54		· · · · · · · · · · · · · · · · · · ·
Heptachlor	14		14		ug/Kg		11/13/20 09:54		
Heptachlor epoxide	14		14		ug/Kg			11/16/20 10:15	1
Methoxychlor	14		14		ug/Kg			11/16/20 10:15	· · · · · · · · · · · · · · · · · · ·
Toxaphene	140		140		ug/Kg	₩		11/16/20 10:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	85		28 - 148						1
DCB Decachlorobiphenyl	88		28 - 148				11/13/20 09:54	11/16/20 10:15	1
Tetrachloro-m-xylene	82		34 - 118				11/13/20 09:54	11/16/20 10:15	1
Tetrachloro-m-xylene	76		34 - 118				11/13/20 09:54	11/16/20 10:15	1
:#%E=?2&D5 BC &6&N=!I>E!=	=;"\$(%#?&X"*I	E#\$I!,&TN]	X,U&/I&J(,& I	Ξ;=)(%=	H;(*El				
< \$(!1%#	The second secon	P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
Aroclor 1016	140	U	140	19	ug/Kg	<u></u>	11/13/20 09:49	11/16/20 22:10	1
Aroclor 1221	140	U	140	19	ug/Kg	₽	11/13/20 09:49	11/16/20 22:10	1
Aroclor 1232	140	U	140		ug/Kg	₽	11/13/20 09:49	11/16/20 22:10	1
			140		ug/Kg				1
Aroclor 1242	140	O	170	10					
Aroclor 1242 Aroclor 1248	140		140		ug/Kg	₽	11/13/20 09:49		1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'67

.(/&'()*!#&012&34567777846C

1(%#& =!!#>%#**?886**@5A@75&53255

:(%;"<2&'=!"?

1(%#&+#>#"B#?28665C@75&8D255

N#;>#\$%&'=!"?,2&34F

Job ID: 460-222216-1

K\$(!I%#		P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
Aroclor 1260	140	U	140	20	ug/Kg	₽	11/13/20 09:49	11/16/20 22:10	
Aroclor-1262	140	U	140	20	ug/Kg	₽	11/13/20 09:49	11/16/20 22:10	
Aroclor 1268	140	U	140	20	ug/Kg	☼	11/13/20 09:49	11/16/20 22:10	
Polychlorinated biphenyls, Total	140	U	140	20	ug/Kg	₽	11/13/20 09:49	11/16/20 22:10	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
DCB Decachlorobiphenyl	120		10 - 150				11/13/20 09:49	11/16/20 22:10	
DCB Decachlorobiphenyl	116		10 - 150				11/13/20 09:49	11/16/20 22:10	
Tetrachloro-m-xylene	115		58 ₋ 145				11/13/20 09:49	11/16/20 22:10	
Tetrachloro-m-xylene	110		58 - 145				11/13/20 09:49	11/16/20 22:10	
:#%E=?2&D8C &6 &Y#;/">"?#,& ⁻	ΓJ U								
K\$(!I%#	+#,-!%	P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L
2,4-D	72	U	72	26	ug/Kg	<u></u>	11/09/20 20:10	11/10/20 11:41	-
Silvex (2,4,5-TP)	72	U	72	7.5	ug/Kg	₩	11/09/20 20:10	11/10/20 11:41	
2,4,5-T	72	U	72		ug/Kg	₽	11/09/20 20:10	11/10/20 11:41	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4-Dichlorophenylacetic acid	100		30 - 150				11/09/20 20:10	11/10/20 11:41	
2,4-Dichlorophenylacetic acid	118		30 - 150				11/09/20 20:10	11/10/20 11:41	
:#%E=?2&CAV&T)=?"Q"#?U&6 K\$(!I%#	, , , , , , , , , , , , , , , , , , ,	%#?& %(\$># P-(!"Q"#;	<u>+.</u>	:1.	O\$"%	1_	N;#*(;#?	K\$(!IM#?	1"!&L
N#;Q!-=;=/-%(\$=">&(>"?&TNLXKU	5R4/	XX J+	0.43	0.061	ug/Kg	₽	11/17/20 09:15	11/19/20 09:21	
N#;Q!-=;=*#\$%(\$=">&(>"?&TNLN#KU	5R4[0.43	0.17	ug/Kg	₽	11/17/20 09:15	11/19/20 09:21	
N#;Q!-=;=E#<(\$=">&(>"?&TNLY <ku< td=""><td>5R74</td><td>11</td><td>0.43</td><td>0.091</td><td>ug/Kg</td><td>≎</td><td>11/17/20 09:15</td><td>11/19/20 09:21</td><td></td></ku<>	5R74	11	0.43	0.091	ug/Kg	≎	11/17/20 09:15	11/19/20 09:21	
N#;Q!-=;=E#*%(\$=">&(>"?&TNLY*KU	5R7/	41	0.43		ug/Kg	₽	11/17/20 09:15	11/19/20 09:21	
N#;Q!-=;==>%(\$=">&(>"?&TNLGKU	AR	4	0.43	0.19	ug/Kg	≎	11/17/20 09:15	11/19/20 09:21	
N#;Q!-=;=\$=\$(\$=">&(>"?&TNL]KU	5RA	7\	0.43	0.078	ug/Kg	₩	11/17/20 09:15	11/19/20 09:21	
N#;Q!-=;=?#>(\$=">&(>"?&TNL1KU	5RV	7	0.43	0.048	ug/Kg	☼	11/17/20 09:15	11/19/20 09:21	
N#;Q!-=;=-\$?#>(\$=">&(>"?& TNIO\$KU	5RA	[/	0.43	0.078	ug/Kg	☼	11/17/20 09:15	11/19/20 09:21	
N#;Q!-=;=?=?#>(\$=">&(>"?& TN∐=KU	5RA	3\	0.43	0.14	ug/Kg	*	11/17/20 09:15	11/19/20 09:21	
N#;Q!-=;=%;"?#>(\$=">&(>"?&TNKS)	5R87	'\	0.43	0.11	ug/Kg	₽	11/17/20 09:15	11/19/20 09:21	
N#;Q!-=;=%#%;(?#>(\$=">&(>"?& TNLS#KU	5R87	' \	0.43	0.12	ug/Kg	₩	11/17/20 09:15	11/19/20 09:21	
Perfluorobutanesulfonic acid (PFBS)	0.43	U	0.43	0.054	ug/Kg	☼	11/17/20 09:15	11/19/20 09:21	
N#;Q!-=;=E#<(\$#,-!Q=\$">&(>"?& TNLY<'U	5R34		0.43	0.067	ug/Kg	₽	11/17/20 09:15	11/19/20 09:21	
Perfluoroheptanesulfonic Acid (PFHpS)	0.43	U	0.43	0.076	ug/Kg	☼	11/17/20 09:15	11/19/20 09:21	
N#;Q!;==>%(\$#,-!Q=\$">&(>"?& TNLG'U	4R4	IX J+	1.1	0.43	ug/Kg	☼	11/17/20 09:15	11/19/20 09:21	
N#;Q!-=;=?#>(\$#,-!Q=\$">&(>"?& TN∐'U	5R78	31	0.43	0.084	ug/Kg	₩	11/17/20 09:15	11/19/20 09:21	
N#;Q!-=;==>%(\$#,-!Q=\$()"?#& TLG'KU	5R3[O	0.43	0.18	ug/Kg	₩	11/17/20 09:15	11/19/20 09:21	
]6)#%EI!*#;Q!-=;==>%(\$#,-!Q=\$()"?=(>#%">&(>"?&T]:#LG'KKU	CR	4	4.3	0.84	ug/Kg	‡	11/17/20 09:15	11/19/20 09:21	
) 6#%EI!*#;Q!-=;==>%(\$#,-!Q=\$()" ?=(>#%">&(>"?&T]W%LG'KKU	8R3	81	4.3	0.80	ug/Kg		11/17/20 09:15	11/19/20 09:21	
6:2 FTS	4.3	U	4.3	0.32	ug/Kg	₽	11/17/20 09:15	11/19/20 09:21	

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'67

.(/&'()*!#&012&34567777846C

1(%#& =!!#>%#**?886**@5A@75&53255

:(%;"<2&'=!"?

1(%#&+#>#"B#?28665C@75&8D255

N#;>#\$%&'=!"?,2&34F

0.0 ETC	+#,-!%	P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
8:2 FTS	4.3	U	4.3	0.54	ug/Kg	<u></u>	11/17/20 09:15	11/19/20 09:21	-
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C4 PFBA	73		25 - 150				11/17/20 09:15	11/19/20 09:21	
13C5 PFPeA	58		25 - 150				11/17/20 09:15	11/19/20 09:21	
13C2 PFHxA	88		25 - 150				11/17/20 09:15	11/19/20 09:21	
13C4 PFHpA	88		25 - 150				11/17/20 09:15	11/19/20 09:21	
13C4 PFOA	92		25 - 150				11/17/20 09:15	11/19/20 09:21	
13C5 PFNA	87		25 - 150				11/17/20 09:15	11/19/20 09:21	
13C2 PFDA	94		25 - 150				11/17/20 09:15	11/19/20 09:21	
13C2 PFUnA	95		25 - 150				11/17/20 09:15	11/19/20 09:21	
13C2 PFDoA	84		25 - 150				11/17/20 09:15	11/19/20 09:21	
13C2 PFTeDA	68		25 - 150				11/17/20 09:15	11/19/20 09:21	
13C3 PFBS	69		25 - 150					11/19/20 09:21	
1802 PFHxS	91		25 - 150					11/19/20 09:21	
13C4 PFOS	94		25 - 150					11/19/20 09:21	,
13C8 FOSA	69		25 - 150 25 - 150					11/19/20 09:21	
d3-NMeFOSAA	87		25 - 150 25 - 150					11/19/20 09:21	
d5-NEtFOSAA	91		25 - 150 25 - 150					11/19/20 09:21	
M2-6:2 FTS	248	*5	25 - 150 25 - 150					11/19/20 09:21	
W2-8:2 FTS W2-8:2 FTS	271		25 - 150 25 - 150					11/19/20 09:21	
(\$(!!%# Silver	+#,-!%	P-(!"Q"#; U		:1.	O\$"% mg/Kg	<u>1</u>	N;#*(;#? 11/12/20 16:30	K\$(!IM#? 11/13/20 17:59	1"!&L
Silver	3.3	U	3.3		mg/Kg	₩	11/12/20 16:30	11/13/20 17:59	2
K!-)"\$-)	[8D5		65.5		mg/Kg	₩	11/12/20 16:30		2
K;,#\$">	87R3		4.9		mg/Kg		11/12/20 16:30	11/13/20 17:59	2
V/." \	738	J	65.5		mg/Kg				
						☼		11/13/20 17:59	
Beryllium	0.65		0.65	0.10	mg/Kg	₩	11/12/20 16:30	11/13/20 17:59	:
Beryllium (!>"-)	0.65 C735	J	0.65 1640	0.10 121	mg/Kg mg/Kg		11/12/20 16:30 11/12/20 16:30	11/13/20 17:59 11/13/20 17:59	:
Beryllium (!>"-) (?)"-)	0.65 C735 5R[8	J \ J	0.65 1640 1.3	0.10 121 0.11	mg/Kg mg/Kg mg/Kg	₽	11/12/20 16:30 11/12/20 16:30 11/12/20 16:30	11/13/20 17:59 11/13/20 17:59 11/13/20 17:59	
Beryllium (!>"-) (?)"-) =/(!%	0.65 C735 5R[8 75RC	.) /]]	0.65 1640 1.3 16.4	0.10 121 0.11 0.91	mg/Kg mg/Kg mg/Kg mg/Kg	# # #	11/12/20 16:30 11/12/20 16:30 11/12/20 16:30 11/12/20 16:30	11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59	2
Beryllium (!>"-) (?)"-) =/(!% E;=)"-)	0.65 C735 5R[8 75RC 75RC	ר ה 1 / ח	0.65 1640 1.3 16.4 3.3	0.10 121 0.11 0.91 2.3	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$ \$	11/12/20 16:30 11/12/20 16:30 11/12/20 16:30 11/12/20 16:30 11/12/20 16:30	11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59	2
Beryllium (!>"-) (?)"-) =/(!% E;=)"-) =**#;	0.65 C735 5R[8 75RC 75RC	n n n n 1	0.65 1640 1.3 16.4 3.3 8.2	0.10 121 0.11 0.91 2.3 2.0	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$ \$ \$	11/12/20 16:30 11/12/20 16:30 11/12/20 16:30 11/12/20 16:30 11/12/20 16:30 11/12/20 16:30	11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59	
Beryllium (!>"-) (?)"-) =/(!% E;=)"-) =**#; 0;=\$	0.65 C735 5R[8 75RC 75RC A3R\ 45855	1 n 1 1 / 1	0.65 1640 1.3 16.4 3.3 8.2 49.1	0.10 121 0.11 0.91 2.3 2.0 33.7	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$ \$ \$	11/12/20 16:30 11/12/20 16:30 11/12/20 16:30 11/12/20 16:30 11/12/20 16:30 11/12/20 16:30 11/12/20 16:30	11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59	
Beryllium (!>"-) (?)"-) =/(!% E;=)"-) =**#; 0;=\$	0.65 C735 5R[8 75RC 75RC	1 n 1 1 / 1	0.65 1640 1.3 16.4 3.3 8.2	0.10 121 0.11 0.91 2.3 2.0 33.7	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$ \$ \$	11/12/20 16:30 11/12/20 16:30 11/12/20 16:30 11/12/20 16:30 11/12/20 16:30 11/12/20 16:30	11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59	
Beryllium (!>"-) (?)"-) =/(!% E;=)"-) =**#; 0;=\$ N=%(,,"-)	0.65 C735 5R[8 75RC 75RC A3R\ 45855	/ J J n n 1 / J	0.65 1640 1.3 16.4 3.3 8.2 49.1	0.10 121 0.11 0.91 2.3 2.0 33.7 101	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$ \$ \$	11/12/20 16:30 11/12/20 16:30 11/12/20 16:30 11/12/20 16:30 11/12/20 16:30 11/12/20 16:30 11/12/20 16:30	11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59	
Beryllium (!>"-) (?)"-) =/(!% E;=)"-) =**#; 0;=\$ N=%(,,"-) :(H\$#,"-)	0.65 C735 5R[8 75RC 75RC A3R\ 45855 88C5	7 7 8 1 1 1 7	0.65 1640 1.3 16.4 3.3 8.2 49.1 1640	0.10 121 0.11 0.91 2.3 2.0 33.7 101 111 3.7	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	\$ \$ \$ \$ \$	11/12/20 16:30 11/12/20 16:30 11/12/20 16:30 11/12/20 16:30 11/12/20 16:30 11/12/20 16:30 11/12/20 16:30 11/12/20 16:30	11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59	
Beryllium (!>"-) (?)"-) =/(!% E;=)"-) =**#; 0;=\$ N=%(,,"-) :(H\$#,"-)	0.65 C735 5R[8 75RC 75RC A3R\ 45855 88C5	1 / 1 / 1 n 1 1	0.65 1640 1.3 16.4 3.3 8.2 49.1 1640	0.10 121 0.11 0.91 2.3 2.0 33.7 101 111 3.7	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	***************************************	11/12/20 16:30 11/12/20 16:30 11/12/20 16:30 11/12/20 16:30 11/12/20 16:30 11/12/20 16:30 11/12/20 16:30 11/12/20 16:30	11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59	20
Beryllium (!>"-) (?)"-) =/(!% E;=)"-) =**#; 0;=\$ N=%(,,"-) :(H\$#,"-) :(\$H(\$#,# Sodium	0.65 C735 5R[8 75RC 75RC A3RV 45855 88C5 AC75	n n / n n n	0.65 1640 1.3 16.4 3.3 8.2 49.1 1640 1640 49.1	0.10 121 0.11 0.91 2.3 2.0 33.7 101 111 3.7	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	***************************************	11/12/20 16:30 11/12/20 16:30	11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59	20
Beryllium (!>"-) (?)"-) =/(!% E;=)"-) =**#; 0;=\$ N=%(,,"-) :(H\$#,"-) :(\$H(\$#,# Sodium ">Z#!	0.65 C735 5R[8 75RC 75RC A3RV 45855 88C5 AC75 CV55	n n 1 / n n n	0.65 1640 1.3 16.4 3.3 8.2 49.1 1640 49.1 1640	0.10 121 0.11 0.91 2.3 2.0 33.7 101 111 3.7 142	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	***************************************	11/12/20 16:30 11/12/20 16:30	11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 18:21 11/13/20 17:59	20
Beryllium (!>"-) (?)"-) =/(!% E;=)"-) =**#; 0;=\$ N=%(,,"-) :(H\$#,"-) :(\$H(\$#,# Sodium]">Z#! #(?	0.65 C735 5R[8 75R0 75R0 A3R\ 45855 88C5 AC75 CV55 1640	n n 1 / 1 / 1 n n	0.65 1640 1.3 16.4 3.3 8.2 49.1 1640 49.1 1640 13.1	0.10 121 0.11 0.91 2.3 2.0 33.7 101 111 3.7 142 0.86 0.53	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		11/12/20 16:30 11/12/20 16:30	11/13/20 17:59 11/13/20 17:59	20
Beryllium (!>"-) (?)"-) =/(!% E;=)"-) =**#; 0;=\$ N=%(,,"-) :(H\$#,"-) :(\$H(\$#,# Sodium]">Z#! #(? K\$%")=\$I	0.65 C735 5R[8 75R0 75R0 A3RV 45855 88C5 AC75 CV55 1640 A7RI CDR	7 7 7 7 7 7 1 1 1	0.65 1640 1.3 16.4 3.3 8.2 49.1 1640 49.1 1640 13.1 3.3	0.10 121 0.11 0.91 2.3 2.0 33.7 101 111 3.7 142 0.86 0.53 1.9	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		11/12/20 16:30 11/12/20 16:30	11/13/20 17:59 11/13/20 17:59	20
Beryllium (!>"-) (?)"-) =/(!% E;=)"-) =**#; 0;=\$ N=%(,,"-) :(H\$#,"-) :(\$H(\$#,# Sodium]">Z#! #(? K\$%")=\$I	0.65 C735 5R[8 75R0 75R0 A3RV 45855 88C5 AC75 CV55 1640 A7RI CDR 7AR4	/ 1 n n n n 1 / 1 n n	0.65 1640 1.3 16.4 3.3 8.2 49.1 1640 49.1 1640 13.1 3.3 6.5	0.10 121 0.11 0.91 2.3 2.0 33.7 101 111 3.7 142 0.86 0.53 1.9	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		11/12/20 16:30 11/12/20 16:30	11/13/20 17:59 11/13/20 17:59	20
Beryllium (!>"-) (?)"-) =/(!% E;=)"-) =**#; 0;=\$ N=%(,,"-) :(H\$#,"-) :(\$H(\$#,# Sodium]">Z#! #(? K\$%")=\$I	0.65 C735 5R[8 75R0 75R0 A3RV 45855 88C5 AC75 CV55 1640 A7RI CDR 7AR4	0 1 1 1 1 1 1 1 1 1	0.65 1640 1.3 16.4 3.3 8.2 49.1 1640 49.1 1640 13.1 3.3 6.5 6.5	0.10 121 0.11 0.91 2.3 2.0 33.7 101 111 3.7 142 0.86 0.53 1.9	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		11/12/20 16:30 11/12/20 16:30	11/13/20 17:59 11/13/20 17:59	20
E;=)"-)	0.65 C735 5R[8 75R0 75R0 45855 88C5 AC75 CV55 1640 A7RI CDR 7AR4 8RV 6.5	., ., ., ., ., ., ., ., ., ., ., ., ., .	0.65 1640 1.3 16.4 3.3 8.2 49.1 1640 49.1 1640 13.1 3.3 6.5 6.5	0.10 121 0.11 0.91 2.3 2.0 33.7 101 111 3.7 142 0.86 0.53 1.9 1.1	mg/Kg		11/12/20 16:30 11/12/20 16:30	11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59	20
Beryllium (!>"-) (?)"-) =/(!% E;=)"-) =**#; 0;=\$ N=%(,,"-) :(H\$#,"-) :(\$H(\$#,# Sodium]">Z#! .#(? K\$%")=\$I '#!#\$"-) Thallium F(\$(?"-)	0.65 C735 5R[8 75R0 75R0 A3RV 45855 88C5 AC75 CV55 1640 A7RI CDR 7AR4 8RV 6.5 7AR8 VD4	., ., ., ., ., ., ., ., ., ., ., ., ., .	0.65 1640 1.3 16.4 3.3 8.2 49.1 1640 49.1 1640 13.1 3.3 6.5 6.5 6.5	0.10 121 0.11 0.91 2.3 2.0 33.7 101 111 3.7 142 0.86 0.53 1.9 1.1	mg/Kg		11/12/20 16:30 11/12/20 16:30	11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59 11/13/20 17:59	20 20 21 1"!&L(

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'67

.(/&'()*!#&012&34567777846C

1(%#& =!!#>%#**????@A@**5&53255

:(%;"<2&'=!"?

Job ID: 460-222216-1

1(%#&+#>#"B#?886C@5&8D255

N#;>#\$%&'=!"?,2&34F

J#\$#;(!& E#)",%;I								
K\$(!I%#	+#,-!% P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(>
I(\$"?#_&S=%(!	8RA	0.50	0.26	mg/Kg	*	11/15/20 12:34	11/16/20 14:04	1

!"#\$%&'()*!#&012&'6A

.(/&'()*!#&012&345677778464

1(%#& =!!#>%#**?8860**A**@**5&8C23C

:(%;"<2&'=!"?

:#%E=?2&CAV&T)=?"Q"#?U&6		•	**	O#!!!!/	4	N.#*/.#2	V¢/11M#2	4"101/>
K\$(!I%# Perfluorobutanoic acid (PFBA)	+#,-!% P-(!"Q"#; 4.5 U	+.	:1.	O\$"%		N;#*(;#?	K\$(!IM#? 11/19/20 13:39	1"!&L(>
, ,		4.5		ng/L				•
N#;Q!-=;=*#\$%(\$=">&(>"?&TNLN#KU		1.8		ng/L			11/19/20 13:39	1
N#;Q!-=;=E#<(\$=">&(>"?&TNLY <ku< td=""><td>8R4 \</td><td>1.8</td><td></td><td>ng/L</td><td></td><td></td><td>11/19/20 13:39</td><td></td></ku<>	8R4 \	1.8		ng/L			11/19/20 13:39	
N#;Q!-=;=E#*%(\$=">&(>"?&TNLY*KU		1.8		ng/L			11/19/20 13:39	1
N#;Q!-=;==>%(\$=">&(>"?&TNLGKU	88	1.8		ng/L			11/19/20 13:39	1
N#;Q!-=;=\$=\$(\$=">&(>"?&TNL]KU	5R[5 \	1.8		ng/L			11/19/20 13:39	
Perfluorodecanoic acid (PFDA)	1.8 U	1.8		ng/L			11/19/20 13:39	1
Perfluoroundecanoic acid (PFUnA)	1.8 U	1.8		ng/L			11/19/20 13:39	1
Perfluorododecanoic acid (PFDoA)	1.8 U	1.8		ng/L			11/19/20 13:39	1
Perfluorotridecanoic acid (PFTriA)	1.8 U	1.8		ng/L		11/18/20 19:40	11/19/20 13:39	1
Perfluorotetradecanoic acid (PFTeA)	1.8 U	1.8	0.65	ng/L		11/18/20 19:40	11/19/20 13:39	1
N#;Q!-=;=/-%(\$#,-!Q=\$">&(>"?& TNIX'U	5R8[\	1.8	0.18	ng/L		11/18/20 19:40	11/19/20 13:39	1
N#;Q!-=;=E#<(\$#,-!Q=\$">&(>"?& TNLY<'U	8RV\	1.8	0.51	ng/L		11/18/20 19:40	11/19/20 13:39	1
N#;Q!-=;=E#*%(\$#,-!Q=\$"' % >"?& TNIY*'U	5RA5\	1.8	0.17	ng/L		11/18/20 19:40	11/19/20 13:39	1
N#;Q!-=;==>%(\$#,-!Q=\$">&(>"?& TNIG'U	[R3	1.8	0.48	ng/L		11/18/20 19:40	11/19/20 13:39	1
Perfluorodecanesulfonic acid (PFDS)	1.8 U	1.8	0.29	ng/L		11/18/20 19:40	11/19/20 13:39	1
Perfluorooctanesulfonamide (FOSA)	1.8 U	1.8		ng/L		11/18/20 19:40	11/19/20 13:39	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	4.5 U	4.5		ng/L		11/18/20 19:40	11/19/20 13:39	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	4.5 U	4.5	1.2	ng/L		11/18/20 19:40	11/19/20 13:39	1
6:2 FTS	4.5 U	4.5	2.2	ng/L		11/18/20 19:40	11/19/20 13:39	1
8:2 FTS	1.8 U	1.8		ng/L		11/18/20 19:40	11/19/20 13:39	1
laatana Dilutian	%Recovery Qualifier	Limits		Ü		Branarad	Analyzad	Dil Fac
Isotope Dilution 13C4 PFBA	86 Qualifier	25 - 150				Prepared	Analyzed 11/19/20 13:39	DII Fac
13C5 PFPeA	92	25 - 150 25 - 150					11/19/20 13:39	1
	92 89						11/19/20 13:39	1
13C2 PFHxA		25 - 150						
13C4 PFHpA	89	25 - 150					11/19/20 13:39	1
13C4 PFOA	90	25 - 150					11/19/20 13:39	1
13C5 PFNA	82	25 - 150					11/19/20 13:39	
13C2 PFDA	79	25 - 150					11/19/20 13:39	1
13C2 PFUnA	78	25 - 150					11/19/20 13:39	1
13C2 PFDoA	72	25 - 150					11/19/20 13:39	1
13C2 PFTeDA	57	25 - 150				11/18/20 19:40	11/19/20 13:39	1
13C3 PFBS	90	25 - 150					11/19/20 13:39	1
1802 PFHxS	103	25 - 150				11/18/20 19:40	11/19/20 13:39	1
13C4 PFOS	100	25 - 150				11/18/20 19:40	11/19/20 13:39	1
13C8 FOSA	90	25 - 150				11/18/20 19:40	11/19/20 13:39	1
d3-NMeFOSAA	61	25 - 150				11/18/20 19:40	11/19/20 13:39	1

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'6A

.(/&'()*!#&012&345677778464

1(%#& =!!#>%#?28665A@75&8C23C

:(%;"<2&'=!"?

(
1(%#&+#>	#"B#?	286350	@758	8D255

Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
d5-NEtFOSAA	86		25 - 150				11/18/20 19:40	11/19/20 13:39	1
M2-6:2 FTS	119		25 - 150				11/18/20 19:40	11/19/20 13:39	1
M2-8:2 FTS	117		25 - 150				11/18/20 19:40	11/19/20 13:39	1
_ J#\$#;(!& E#)",%;I									
K\$(!I%#	+#,-!%	P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(>
S=%(!& (;/=\$	[8C55	ΥJ	1000	671	mg/Kg	_		11/20/20 11:36	1
K\$(!I%#	+#,-!%	P-(!"Q"#;	+.	+.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(>
*Y	4R7	YL	0.1	0.1	SU	_		11/17/20 13:09	1
=;;=,"B"%I	4R7	YL	0.1	0.1	SU			11/17/20 13:09	1
S#)*#;(%-;#	78R8	YL	0.1	0.1	Degrees C			11/17/20 13:09	1

!"#\$%&'()*!#&012&'6A

.(/&'()*!#&012&345677778464

1(%#& =!!#>%#?**28@**5A@75&8C23C

:(%;"<2&'=!"?

1(%#&+#>#"B#?**2866**5C@75&8D255 N#;>#\$%&'=!"?,2&48F

:#%E=?2&D7451 &6& %"!#&G K\$(!I%#		P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(>
Chloromethane	2.8	U H H3 UJ	2.8	1.2	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
Bromomethane	2.8	U H H3 <mark>UJ</mark>	2.8	2.8	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
Vinyl chloride	2.8	U H H3 <mark>UJ</mark>	2.8	1.5	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
Chloroethane	2.8	U H H3 UJ	2.8	1.4	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
:#%EI!#\$#& E!=;"?#	4R0	CY&YAU UJ	2.8	3.2	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
K>#%=\$#	V3	Y&YAU UJ	17	16	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
(;/=\$&?",-!Q"?#	8R5	\&Y&YAJ	2.8	0.74	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
Trichlorofluoromethane	2.8	U H H3 UJ	2.8	1.1	ug/Kg	₽	11/06/20 19:13	11/14/20 15:12	1
1,1-Dichloroethene	2.8	U H H3 <mark>UJ</mark>	2.8	0.62	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
1,1-Dichloroethane	2.8	U H H3 UJ	2.8	0.57	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
trans-1,2-Dichloroethene	2.8	U H H3 UJ	2.8	0.68	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
cis-1,2-Dichloroethene	2.8	U H H3 UJ	2.8	0.99	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
Chloroform	2.8	U H H3 UJ	2.8	2.7	ug/Kg	₽	11/06/20 19:13	11/14/20 15:12	1
1,2-Dichloroethane	2.8	U H H3 UJ	2.8	0.82	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
76X-%(\$=\$#&T:W`U	84	Y&YAJ	14	1.0	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
1,1,1-Trichloroethane	2.8	U H H3 <mark>UJ</mark>	2.8	0.65	ug/Kg	₽	11/06/20 19:13	11/14/20 15:12	1
Carbon tetrachloride	2.8	U H H3 <mark>UJ</mark>	2.8	1.1	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
Dichlorobromomethane	2.8	U H H3 <mark>UJ</mark>	2.8	0.71	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
1,2-Dichloropropane	2.8	U H H3 <mark>UJ</mark>	2.8		ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
cis-1,3-Dichloropropene	2.8	U H H3 UJ	2.8	0.76	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
Trichloroethene	2.8	U H H3 UJ	2.8	0.89	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
Chlorodibromomethane	2.8	U H H3 <mark>UJ</mark>	2.8	0.54	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
1,1,2-Trichloroethane	2.8	U H H3 <mark>UJ</mark>	2.8	0.49	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
Benzene	2.8	U H H3 <mark>UJ</mark>	2.8	0.71	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
trans-1,3-Dichloropropene	2.8	U H H3 <mark>UJ</mark>	2.8	0.74	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
Bromoform	2.8	U H H3 <mark>UJ</mark>	2.8	1.2	ug/Kg	≎	11/06/20 19:13	11/14/20 15:12	1
4-Methyl-2-pentanone (MIBK)	14	U H H3 <mark>UJ</mark>	14	4.3	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
2-Hexanone	14	U H H3 <mark>UJ</mark>	14	4.7	ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
Tetrachloroethene	2.8	U H H3 <mark>UJ</mark>	2.8		ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
1,1,2,2-Tetrachloroethane	2.8	U H H3 <mark>UJ</mark>	2.8		ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
Toluene	2.8	U H H3 UJ	2.8		ug/Kg	₩	11/06/20 19:13	11/14/20 15:12	1
Chlorobenzene	2.8	U H H3 UJ	2.8		ug/Kg	☆	11/06/20 19:13	11/14/20 15:12	1

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'6A

.(/&'()*!#&012&345677778464

1(%#& =!!#>%#?886@5A@75&8C23C 1(%#&+#>#"B#?28665C@75&8D255 :(%;"<2&'=!"? N#;>#\$%&'=!"?,2&48F

:#%E=?2&D7451**&6&**%"!#&G;H(\$">& =)*=-\$?,&/I&J @:'&T =\$%"\$-#?U +#,-!% P-(!"Q"#; O\$"% K\$(!1%# +. :1. 1 N;#*(;#? K\$(!IM#? 1"!&L(> 2.8 Ethylbenzene 2.8 U H H3 UJ 0.55 ug/Kg 11/06/20 19:13 11/14/20 15:12 2.8 Styrene 2.8 U H H3 UJ 0.77 ug/Kg 11/06/20 19:13 11/14/20 15:12 1 2.8 UHH3 UJ 2.8 0.48 11/06/20 19:13 11/14/20 15:12 m-Xylene & p-Xylene ug/Kg 1 o-Xylene 2.8 UHH3 UJ 2.8 0.54 ug/Kg 11/06/20 19:13 11/14/20 15:12 1 1,1,2-Trichloro-1,2,2-trifluoroethane 28 UHH3 UJ 2.8 0.83 ug/Kg 11/06/20 19:13 11/14/20 15:12 1 ∜ Methyl tert-butyl ether UHH3 UJ 2.8 11/06/20 19:13 11/14/20 15:12 1 ug/Kg Cyclohexane 2.8 11/14/20 15:12 2.8 UHH3 UJ 0.61 ug/Kg ∜ 11/06/20 19:13 1 2.8 11/14/20 15:12 Ethylene Dibromide 2.8 UHH3 UJ 0.50 ug/Kg 11/06/20 19:13 2.8 U H H3 UJ 28 11/06/20 19:13 11/14/20 15:12 1,3-Dichlorobenzene 1.0 ug/Kg 1 ug/Kg 1.4-Dichlorobenzene 2.8 U H H3 UJ 2.8 0.62 11/06/20 19:13 11/14/20 15:12 1 2.8 11/14/20 15:12 1,2-Dichlorobenzene 28 UHH3 UJ 1.0 ug/Kg 11/06/20 19:13 1 Dichlorodifluoromethane 2.8 UHH3 UJ 2.8 11/06/20 19:13 11/14/20 15:12 1 0.94 ug/Kg 1,2,4-Trichlorobenzene 2.8 U H H3 UJ 2.8 0.99 ug/Kg 11/06/20 19:13 11/14/20 15:12 1 1 4-Dioxane 55 U H H3 UJ 55 25 ug/Kg ₩ 11/06/20 19:13 11/14/20 15:12 1 1,2,3-Trichlorobenzene 2.8 U H H3 UJ 2.8 ug/Kg 11/06/20 19:13 11/14/20 15:12 1,2-Dibromo-3-Chloropropane 2.8 U H H3 UJ 28 11/06/20 19:13 11/14/20 15:12 1.3 ug/Kg 1 Chlorobromomethane 2.8 U H H3 UJ 2.8 0.78 11/06/20 19:13 11/14/20 15:12 ug/Kg 2.8 11/06/20 19:13 11/14/20 15:12 Isopropylbenzene 28 UHH3 UJ 0.79 ug/Kg 1 Methyl acetate U H H3 UJ 14 12 ug/Kg 11/06/20 19:13 11/14/20 15:12 1 2.8 Methylcyclohexane 11/06/20 19:13 11/14/20 15:12 2.8 U H H3 UJ 14 ug/Kg 1 Tentatively Identified Compound Est. Result Qualifier Unit D RT CAS No. Prepared Analyzed Dil Fac Tentatively Identified Compound None HH3 ug/Kg 11/06/20 19:13 11/14/20 15:12 %Recovery Prepared Qualifier Limits Dil Fac Surrogate Analyzed 1,2-Dichloroethane-d4 (Surr) 125 77 - 145 11/06/20 19:13 11/14/20 15:12 Toluene-d8 (Surr) 100 80 - 120 11/06/20 19:13 11/14/20 15:12 1 4-Bromofluorobenzene 112 79 - 125 11/06/20 19:13 11/14/20 15:12 1 Dibromofluoromethane (Surr) 121 48 - 150 11/06/20 19:13 11/14/20 15:12 1 :#%E=?2&D7V5W&6&'#)"B=!(%"!#&G;H(\$">& =)*=-\$?,&TJ @:'U K\$(!I%# +#,-!% P-(!"Q"#; O\$"% N;#*(;#? K\$(!IM#? 1"!&L(> U Phenol 540 540 20 11/10/20 22:20 11/11/20 19:45 ug/Kg 1 2-Chlorophenol 540 U 540 ug/Kg 11/10/20 22:20 11/11/20 19:45 1 19 540 U 540 20 11/10/20 22:20 2-Methylphenol ug/Kg 11/11/20 19:45 1 4-Methylphenol 540 U 540 ug/Kg 11/10/20 22:20 11/11/20 19:45 540 11/10/20 22:20 11/11/20 19:45 2-Nitrophenol 540 U ug/Kg 1 11/10/20 22:20 2,4-Dimethylphenol 540 U 540 ug/Kg 11/11/20 19:45 1 2,4-Dichlorophenol 220 U 220 ug/Kg 11/10/20 22:20 11/11/20 19:45 1 4-Chloro-3-methylphenol 540 U 540 30 ug/Kg 11/10/20 22:20 11/11/20 19:45 1 2,4,6-Trichlorophenol 220 U 220 ug/Kg 11/10/20 22:20 11/11/20 19:45 1 2,4,5-Trichlorophenol 540 U 540 55 11/10/20 22:20 11/11/20 19:45 1 ug/Kg ∜ 2,4-Dinitrotoluene 11/10/20 22:20 110 U 110 58 ug/Kg 11/11/20 19:45 1100 87 4-Nitrophenol 1100 U ug/Kg 11/10/20 22:20 11/11/20 19:45 1 4,6-Dinitro-2-methylphenol 430 U 430 220 ug/Kg 11/10/20 22:20 11/11/20 19:45 1 Pentachlorophenol 430 U 430 11/10/20 22:20 1 110 ug/Kg ∜ 11/11/20 19:45 Bis(2-chloroethyl)ether 54 U 54 ug/Kg 11/10/20 22:20 11/11/20 19:45 1 19 U 54 N-Nitrosodi-n-propylamine 54 ug/Kg 11/10/20 22:20 11/11/20 19:45 1 Hexachloroethane 54 U 54 11/10/20 22:20 11/11/20 19:45 1 18 ug/Kg ₩ Nitrobenzene 54 U 54 13 ug/Kg 11/10/20 22:20 11/11/20 19:45 1

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'6A

.(/&'()*!#&012&345677778464

1(%#& =!!#>%#?\$\$@5A@75&8C23C 1(%#&+#>#"B#?\$\$@5C@75&8D255 :(%;"<2&'=!"? N#;>#\$%&'=!"?,2&48F

:#%E=?2&D7V5W&6&'#)"B=!(%"!#&G;H(\$">& =)*=-\$?,&TJ @:'U&T =\$%"\$-#?U +#,-!% P-(!"Q"#; O\$"% N;#*(;#? K\$(!I%# +. :1. 1 K\$(!IM#? 1"!&L(> Ū 220 220 160 ug/Kg 11/10/20 22:20 11/11/20 19:45 Isophorone U 540 Naphthalene 540 9.3 ug/Kg 11/10/20 22:20 11/11/20 19:45 1 4-Chloroaniline 540 U 540 11/10/20 22:20 11/11/20 19:45 95 ug/Kg 1 Hexachlorobutadiene 110 U 110 ug/Kg 11/10/20 22:20 11/11/20 19:45 1 2-Methylnaphthalene 540 U 540 11/10/20 22:20 11/11/20 19:45 1 15 ug/Kg ∜ Hexachlorocyclopentadiene 540 U 540 11/10/20 22:20 11/11/20 19:45 ug/Kg 1 11/10/20 22:20 2-Chloronaphthalene U 540 25 540 ug/Kg 11/11/20 19:45 1 11/10/20 22:20 2-Nitroaniline 540 U 540 20 ug/Kg 11/11/20 19:45 1 U 540 120 11/10/20 22:20 Dimethyl phthalate 540 ug/Kg 11/11/20 19:45 1 Acenaphthylene 540 U 540 5.4 ug/Kg 11/10/20 22:20 11/11/20 19:45 1 11/10/20 22:20 2,6-Dinitrotoluene 110 U 110 39 ug/Kg 11/11/20 19:45 1 3-Nitroaniline 540 U 540 11/10/20 22:20 11/11/20 19:45 60 ug/Kg 1 Acenaphthene 540 U 540 15 ug/Kg 11/10/20 22:20 11/11/20 19:45 1 Dibenzofuran 540 U 540 7.5 ug/Kg 11/10/20 22:20 11/11/20 19:45 1 2,4-Dinitrophenol 430 U 430 260 ug/Kg 11/10/20 22:20 11/11/20 19:45 Diethyl phthalate U 540 11/10/20 22:20 11/11/20 19:45 540 7.8 ug/Kg 1 540 11/10/20 22:20 4-Chlorophenyl phenyl ether 540 U 19 ug/Kg 11/11/20 19:45 1 540 7.3 11/10/20 22:20 Fluorene 540 U ug/Kg 11/11/20 19:45 1 4-Nitroaniline 540 U 540 62 ug/Kg 11/10/20 22:20 11/11/20 19:45 1 540 U 540 11/10/20 22:20 11/11/20 19:45 N-Nitrosodiphenylamine ug/Kg 1 4-Bromophenyl phenyl ether 540 U 540 21 ug/Kg 11/10/20 22:20 11/11/20 19:45 1 54 U 54 25 11/10/20 22:20 Hexachlorobenzene ug/Kg ₩ 11/11/20 19:45 1 540 11/10/20 22:20 11/11/20 19:45 NE#\$(\$%E;#\$# 44 ١ 9.4 ug/Kg 1 Anthracene 540 U 540 16 ug/Kg 11/10/20 22:20 11/11/20 19:45 1 540 11/10/20 22:20 11/11/20 19:45 Carbazole 540 U 20 1 ug/Kg Di-n-butyl phthalate 540 U 540 20 ug/Kg 11/10/20 22:20 11/11/20 19:45 1 540 11/10/20 22:20 11/11/20 19:45 L!-=;(\$%E#\$# ug/Kg 1 875 \ 19 NI:#\$# 8A5 \ 540 13 ug/Kg 11/10/20 22:20 11/11/20 19:45 1 Butyl benzyl phthalate 540 U 540 25 ug/Kg 11/10/20 22:20 11/11/20 19:45 1 **V7** 54 11/10/20 22:20 X#\$M=a(b(\$%E;(>#\$#19 ug/Kg 11/11/20 19:45 1 E:I,#\$# **4**D 540 ug/Kg 11/10/20 22:20 11/11/20 19:45 1 Bis(2-ethylhexyl) phthalate 540 U 540 28 11/10/20 22:20 11/11/20 19:45 1 ug/Kg ∜ Di-n-octyl phthalate 540 U 540 28 ug/Kg 11/10/20 22:20 11/11/20 19:45 1 855 54 11/10/20 22:20 X#\$M=a/bQ!-=;(\$%E#\$# ug/Kg ∜ 11/11/20 19:45 1 54 11/10/20 22:20 X#\$M=aZbQ!-=;(\$%E#\$# ug/Kg 11/11/20 19:45 1 **A[** \ 11/10/20 22:20 54 X#\$M=a(b*I;#\$#D3 14 ug/Kg 11/11/20 19:45 1 C5 54 21 ug/Kg 77 11/10/20 22:20 11/11/20 19:45 1 0\$?#\$=a8_7_A6>?b*I;#\$# ١ Dibenz(a,h)anthracene 54 U 54 ug/Kg 11/10/20 22:20 11/11/20 19:45 1 X#\$M=aH_E_"b*#;I!#\$# 540 11/10/20 22:20 11/11/20 19:45 1 3[16 ug/Kg U 1,1'-Biphenyl 540 540 7.1 ug/Kg 11/10/20 22:20 11/11/20 19:45 1 Acetophenone U 540 11/10/20 22:20 11/11/20 19:45 1 540 26 ug/Kg ₩ Benzaldehyde 540 U *1 540 ug/Kg 11/10/20 22:20 11/11/20 19:45 1 Caprolactam 540 U*1 540 84 ug/Kg ÷. 11/10/20 22:20 11/11/20 19:45 1 220 U 220 32 11/10/20 22:20 11/11/20 19:45 Atrazine ug/Kg 540 9.7 540 U ug/Kg 11/10/20 22:20 11/11/20 19:45 1 2,2'-oxybis[1-chloropropane] U 540 1,2,4,5-Tetrachlorobenzene 540 ug/Kg 11/10/20 22:20 11/11/20 19:45 1 11/11/20 19:45 2,3,4,6-Tetrachlorophenol 540 U 540 ug/Kg 11/10/20 22:20 1 3,3'-Dichlorobenzidine 220 U 220 81 ug/Kg 11/10/20 22:20 11/11/20 19:45 1 Bis(2-chloroethoxy)methane 11/10/20 22:20 1 540 U 540 42 ug/Kg 11/11/20 19:45

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'6A

.(/&'()*!#&012&345677778464

1(%#& =!!#>%#?**886**A@5&8C23C

:(%;"<2&'=!"?

1(%#&+#>#"B#?886C@5&8D255

N#;>#\$%&'=!"?,2&48F

(%#&+#>#"B# 66660@5&8D	255							N#;>#\$%&`=!`	?,2&48
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	79		19 - 105				11/10/20 22:20	11/11/20 19:45	1
Phenol-d5 (Surr)	80		26 - 101				11/10/20 22:20	11/11/20 19:45	1
Terphenyl-d14 (Surr)	107		25 - 127				11/10/20 22:20	11/11/20 19:45	1
2,4,6-Tribromophenol (Surr)	81		10 - 123				11/10/20 22:20	11/11/20 19:45	1
2-Fluorophenol (Surr)	76		18 - 106				11/10/20 22:20	11/11/20 19:45	1
2-Fluorobiphenyl	85		25 - 104				11/10/20 22:20	11/11/20 19:45	1
:#%E=?2&D5D8X&6&GH(\$	5=>E!=;"\$#&N#	!,%">"?#,8	&TJ U						
K\$(!I%#	+#,-!%	P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(>
4,4'-DDD		U	11	1.8	ug/Kg	-	11/13/20 09:54	11/16/20 10:29	1
3_3c611W	CR	A \	11	1.3	ug/Kg	₩	11/13/20 09:54	11/16/20 10:29	1
4,4'-DDT	11	U	11	2.0	ug/Kg	☼	11/13/20 09:54	11/16/20 10:29	1
Aldrin	11	U	11	1.6	ug/Kg	₽	11/13/20 09:54	11/16/20 10:29	1
alpha-BHC	3.2	U	3.2	1.1	ug/Kg	₩	11/13/20 09:54	11/16/20 10:29	1
beta-BHC	3.2	U	3.2	1.2	ug/Kg	₩	11/13/20 09:54	11/16/20 10:29	1
Chlordane (technical)	110	U	110		ug/Kg		11/13/20 09:54	11/16/20 10:29	1
delta-BHC	3.2	U	3.2			₩	11/13/20 09:54	11/16/20 10:29	1
Dieldrin	3.2	U	3.2		ug/Kg	☼	11/13/20 09:54	11/16/20 10:29	1
Endosulfan I	11		11		ug/Kg			11/16/20 10:29	1
Endosulfan II	11	U	11		ug/Kg	☆	11/13/20 09:54	11/16/20 10:29	1
Endosulfan sulfate	11		11		ug/Kg	₩.	11/13/20 09:54		1
Endrin	11		11		ug/Kg			11/16/20 10:29	1
Endrin aldehyde	11		11		ug/Kg	₩.	11/13/20 09:54		1
Endrin ketone		U	11	2.1	ug/Kg	₩.		11/16/20 10:29	1
gamma-BHC (Lindane)	3.2		3.2		ug/Kg			11/16/20 10:29	
Heptachlor	11		11		ug/Kg	₩.	11/13/20 09:54		1
Heptachlor epoxide	11	U	11		ug/Kg	₩.		11/16/20 10:29	1
Methoxychlor	11				ug/Kg			11/16/20 10:29	
Toxaphene	110		110		ug/Kg	₽		11/16/20 10:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl			28 - 148				11/13/20 09:54	11/16/20 10:29	1
DCB Decachlorobiphenyl	97		28 - 148				11/13/20 09:54		1
Tetrachloro-m-xylene	96		34 - 118				11/13/20 09:54		1
Tetrachloro-m-xylene	79		34 - 118					11/16/20 10:29	1
:#%E=?2&D5 B7 &6&N=!I>E!	=:"\$(%#?&X"*I	E#\$I!.&TN	X.U&/I&J(.& E	E:=)(%=	H: <i>(</i> *El				
K\$(!I%#	The second secon	P-(!"Q"#;	+.	-, /(/o · :1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(>
Aroclor 1016			110	14	ug/Kg	_	11/13/20 09:49	11/16/20 21:52	<u> </u>
Aroclor 1221	110		110		ug/Kg	₩	11/13/20 09:49	11/16/20 21:52	1
Aroclor 1232	110		110		ug/Kg	₩	11/13/20 09:49	11/16/20 21:52	1
Aroclor 1242	110		110		ug/Kg		11/13/20 09:49	11/16/20 21:52	1
Aroclor 1248	110		110		ug/Kg	₩	11/13/20 09:49	11/16/20 21:52	1
Aroclor 1254	110		110		ug/Kg	₩	11/13/20 09:49	11/16/20 21:52	1
Aroclor 1260	110		110		ug/Kg		11/13/20 09:49	11/16/20 21:52	· · · · · · · · · · · · · · · · · · ·
Aroclor-1262	110		110		ug/Kg ug/Kg		11/13/20 09:49	11/16/20 21:52	1
Aroclor 1268	110		110		ug/Kg ug/Kg		11/13/20 09:49	11/16/20 21:52	1
Polychlorinated biphenyls, Total	110		110		ug/Kg ug/Kg	₩	11/13/20 09:49	11/16/20 21:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'6A

.(/&'()*!#&012&345677778464

Job ID: 460-222216-1

1(%#& =!!#>%#?**386**@5A@75&8C23C

1(%#&+#>#"B#?**28@**5C@75&8D255 N#;>#\$%&'=!"?,2&48F

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	117		10 - 150				11/13/20 09:49	11/16/20 21:52	
Tetrachloro-m-xylene	114		58 ₋ 145				11/13/20 09:49	11/16/20 21:52	1
Tetrachloro-m-xylene	109		58 - 145				11/13/20 09:49	11/16/20 21:52	
:#%E=?2&D8C &6 &Y#;/">"?#,&	TJ U								
K\$(!I%#	+#,-!%	P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
2,4-D	54	U	54	20	ug/Kg	*	11/09/20 20:10	11/10/20 11:56	-
Silvex (2,4,5-TP)	54	U	54	5.6	ug/Kg	₽	11/09/20 20:10	11/10/20 11:56	
2,4,5-T	54	U	54	11	ug/Kg	₩	11/09/20 20:10	11/10/20 11:56	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4-Dichlorophenylacetic acid	100		30 - 150				11/09/20 20:10	11/10/20 11:56	
2,4-Dichlorophenylacetic acid	111		30 - 150				11/09/20 20:10	11/10/20 11:56	í
:#%E=?2&CAV&T)=?"Q"#?U&6	, .	, , , , , , , , , , , , , , , , , , ,	# ,						
K\$(!I%#		P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
N#;Q!-=;=/-%(\$=">&(>"?&TNLXKU	0.30	U	0.30		ug/Kg	₽	11/17/20 09:15	11/19/20 09:31	,
Perfluoropentanoic acid (PFPeA)	0.30	U	0.30		ug/Kg	₽	11/17/20 09:15	11/19/20 09:31	1
Perfluorohexanoic acid (PFHxA)	0.30	U	0.30		ug/Kg	₩	11/17/20 09:15	11/19/20 09:31	
Perfluoroheptanoic acid (PFHpA)	0.30	U	0.30	0.044	ug/Kg	☼	11/17/20 09:15	11/19/20 09:31	•
N#;Q!-=;==>%(\$=">&(>"?&TNLGKU	5RC7	7	0.30	0.13	ug/Kg	☼	11/17/20 09:15	11/19/20 09:31	•
N#;Q!-=;=\$=\$(\$=">&(>"?&TNL]KU	5R5C\	Λ	0.30	0.055	ug/Kg	₽	11/17/20 09:15	11/19/20 09:31	
N#;Q!-=;=?#>(\$=">&(>"?&TNL1KU	5R5V[\	0.30	0.033	ug/Kg	₽	11/17/20 09:15	11/19/20 09:31	1
N#;Q!-=;=-\$?#>(\$=">&(>"?& TNIO\$KU	5R80	: \	0.30	0.055	ug/Kg	₽	11/17/20 09:15	11/19/20 09:31	,
N#;Q!-=;=?=?#>(\$=">&(>"?& TNഥ=KU	5R8	1	0.30	0.10	ug/Kg	₩	11/17/20 09:15	11/19/20 09:31	
N#;Q!-=;=%;"?#>(\$=">&(>"?&T,NK\$)	5R8	1	0.30	0.078	ug/Kg	₩	11/17/20 09:15	11/19/20 09:31	
N#;Q!-=;=%#%;(?#>(\$=">&(>"?& TNLS#KU	5R8	1	0.30	0.082	ug/Kg	☼	11/17/20 09:15	11/19/20 09:31	
Perfluorobutanesulfonic acid (PFBS)	0.30	U	0.30	0.038	ug/Kg	₽	11/17/20 09:15	11/19/20 09:31	
N#;Q!-=;=E#<(\$#,-!Q=\$">&(>"?& TNLY<'U	5R83	X.	0.30	0.047	ug/Kg	₽	11/17/20 09:15	11/19/20 09:31	
Perfluoroheptanesulfonic Acid (PFHpS)	0.30	U	0.30	0.053	ug/Kg	₽	11/17/20 09:15	11/19/20 09:31	
N#;Q!-=;==>%(\$#,-!Q=\$">&(>"?& TNLG'U	8RV	/X J+	0.76	0.30	ug/Kg	₩	11/17/20 09:15	11/19/20 09:31	
Perfluorodecanesulfonic acid (PFDS)	0.30	U	0.30	0.059	ug/Kg	₽	11/17/20 09:15	11/19/20 09:31	
Perfluorooctanesulfonamide (FOSA)	0.30	U	0.30	0.12	ug/Kg	₽	11/17/20 09:15	11/19/20 09:31	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	3.0	U	3.0	0.59	ug/Kg	₩	11/17/20 09:15	11/19/20 09:31	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	3.0	U	3.0	0.56	ug/Kg	₩	11/17/20 09:15	11/19/20 09:31	
6:2 FTS	3.0	U	3.0	0.23	ug/Kg	₽	11/17/20 09:15	11/19/20 09:31	
8:2 FTS	3.0		3.0	0.38	ug/Kg	₩	11/17/20 09:15	11/19/20 09:31	,
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C4 PFBA	83		25 - 150					11/19/20 09:31	1
13C5 PFPeA	60		25 - 150					11/19/20 09:31	1
13C2 PFHxA			25 - 150					11/19/20 09:31	
13C4 PFHpA	91		25 - 150				11/17/20 09:15	11/19/20 09:31	1
13C4 PFOA	94		25 - 150				11/17/20 09:15	11/19/20 09:31	

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'6A

.(/&'()*!#&012&345677778464

1(%#& =!!#>%#?**????3.** (%;"<2&'=!"? 1(%#&+#>#"B#?**????3.** N#;>#\$%&'=!"?,2&48F

Isotope Dilution	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C5 PFNA	85	25 - 150				11/17/20 09:15	11/19/20 09:31	1
13C2 PFDA	86	25 - 150				11/17/20 09:15	11/19/20 09:31	1
13C2 PFUnA	86	25 - 150				11/17/20 09:15	11/19/20 09:31	1
13C2 PFDoA	81	25 - 150				11/17/20 09:15	11/19/20 09:31	1
13C2 PFTeDA	68	25 - 150				11/17/20 09:15	11/19/20 09:31	1
13C3 PFBS	66	25 - 150				11/17/20 09:15	11/19/20 09:31	1
1802 PFHxS	93	25 - 150				11/17/20 09:15	11/19/20 09:31	1
13C4 PFOS	89	25 - 150				11/17/20 09:15	11/19/20 09:31	1
13C8 FOSA	68	25 - 150				11/17/20 09:15	11/19/20 09:31	1
d3-NMeFOSAA	75	25 - 150				11/17/20 09:15	11/19/20 09:31	1
d5-NEtFOSAA	77	25 - 150				11/17/20 09:15	11/19/20 09:31	1
M2-6:2 FTS	246 *5	25 - 150				11/17/20 09:15	11/19/20 09:31	1
M2-8:2 FTS	245 *5	25 - 150				11/17/20 09:15	11/19/20 09:31	1
:#%E=?2&45851&6&:#%								
K\$(!I%#	+#,-!% P-(!"Q"#;	_ _ +. _	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
Silver	2.6 U	2.6		mg/Kg	₩	11/12/20 16:30	11/13/20 18:03	2
K!-)"\$-)	[4V5	51.1		mg/Kg	₩		11/13/20 18:03	2
< ;,# \$">	3R5	3.8	0.79	mg/Kg			11/13/20 18:03	2
X(;"-)	[CRC	51.1		mg/Kg	₩	11/12/20 16:30		2
Beryllium	0.51 U	0.51	0.082	mg/Kg	₩	11/12/20 16:30	11/13/20 18:03	2
(!>"-)	A855	1280		mg/Kg	₩	11/12/20 16:30	11/13/20 18:03	2
(?)"-)	5RA5\	1.0	0.088	mg/Kg	₽	11/12/20 16:30	11/13/20 18:03	2
=/(!%	DR3\	12.8	0.71	mg/Kg	₩	11/12/20 16:30	11/13/20 18:03	2
E;=)"-)	8CR3	2.6	1.8	mg/Kg	₩	11/12/20 16:30	11/13/20 18:03	2
=**#;	8CR[6.4		mg/Kg	₽	11/12/20 16:30	11/13/20 18:03	2
0;=\$	83C55	38.3	26.3	mg/Kg	☼	11/12/20 16:30	11/13/20 18:03	2
N=%(,,"-)	[58 \	1280	78.4	mg/Kg	☼	11/12/20 16:30	11/13/20 18:03	2
:(H\$#,"-)	AV75	1280	86.5	mg/Kg	₽	11/12/20 16:30	11/13/20 18:03	2
:(\$H(\$#,#	85C5	3.8	0.29	mg/Kg	₩	11/12/20 16:30	11/13/20 18:03	2
Sodium	1280 U	1280	111	mg/Kg	₽	11/12/20 16:30	11/13/20 18:03	2
"> Z #!	87RD	10.2	0.67	mg/Kg	₽	11/12/20 16:30	11/13/20 18:03	2
#(?	73R5	2.6	0.41	mg/Kg	☼	11/12/20 16:30	11/13/20 18:03	2
K\$%")=\$I	CR8	5.1	1.5	mg/Kg	☼	11/12/20 16:30	11/13/20 18:03	2
Selenium	5.1 U	5.1	0.87	mg/Kg	≎	11/12/20 16:30	11/13/20 18:03	2
Thallium	5.1 U	5.1	0.79	mg/Kg	₩	11/12/20 16:30	11/13/20 18:03	2
F(\$(?"-)	77R8	12.8	1.2	mg/Kg	₽	11/12/20 16:30	11/13/20 18:03	2
^"\$>	87A	7.7	1.4	mg/Kg	₩	11/12/20 16:30	11/13/20 18:03	2
:#%E=?2&V3V8X&6&:#;>	>-;1 8FI KKU							
K\$(!I%#	+#,-!% P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
:#;>-;I	5R5[V	0.026	0.0061	mg/Kg	₩	11/16/20 03:07	11/16/20 07:21	1
J#\$#;(!& E#)",%;I	_							
< \$(!1%#	+#,-!% P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
Cyanide, Total	0.36 U	0.36	0.18	mg/Kg	₽	11/15/20 12:34	11/16/20 14:05	1

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&SX

.(/&'()*!#&012&34567777846V

1(%#& =!!#>%#?**%%30305**&85255 1(%#&+#>#"B#?**%6005**&8D255 :(%;"<2&9%#;

K\$(!I%#	+#,-!% P-(!"Q"#;	+.	:1. O\$"%	1 N;#*(;#?	K\$(!IM#?	1"!&L
Chloromethane	1.0 U	1.0	0.40 ug/L		11/11/20 15:36	
Bromomethane	1.0 U	1.0	0.55 ug/L		11/11/20 15:36	
Vinyl chloride	1.0 U	1.0	0.17 ug/L		11/11/20 15:36	
Chloroethane	1.0 U	1.0	0.32 ug/L		11/11/20 15:36	
:#%EI!#\$#& E!=;"?#	7R8	1.0	0.32 ug/L		11/11/20 15:36	
K>#%=\$#	CRV	5.0	4.4 ug/L		11/11/20 15:36	
Carbon disulfide	1.0 U	1.0	0.82 ug/L		11/11/20 15:36	
Trichlorofluoromethane	1.0 U	1.0	0.32 ug/L		11/11/20 15:36	
1,1-Dichloroethene	1.0 U	1.0	0.26 ug/L		11/11/20 15:36	
, 1,1-Dichloroethane	1.0 U	1.0	0.26 ug/L		11/11/20 15:36	
trans-1,2-Dichloroethene	1.0 U	1.0	0.24 ug/L		11/11/20 15:36	
cis-1,2-Dichloroethene	1.0 U	1.0	0.22 ug/L		11/11/20 15:36	
Chloroform	1.0 U	1.0	0.33 ug/L		11/11/20 15:36	
1,2-Dichloroethane	1.0 U	1.0	0.43 ug/L		11/11/20 15:36	
2-Butanone (MEK)	5.0 U	5.0	1.9 ug/L		11/11/20 15:36	
1,1,1-Trichloroethane	1.0 U	1.0	0.24 ug/L		11/11/20 15:36	
Carbon tetrachloride	1.0 U	1.0	0.21 ug/L		11/11/20 15:36	
Dichlorobromomethane	1.0 U	1.0	0.34 ug/L		11/11/20 15:36	
1,2-Dichloropropane	1.0 U	1.0	0.35 ug/L		11/11/20 15:36	
cis-1,3-Dichloropropene	1.0 U	1.0	0.22 ug/L		11/11/20 15:36	
Trichloroethene	1.0 U	1.0	0.31 ug/L		11/11/20 15:36	
Chlorodibromomethane	1.0 U	1.0	0.28 ug/L		11/11/20 15:36	
1,1,2-Trichloroethane	1.0 U	1.0	0.20 ug/L		11/11/20 15:36	
Benzene	1.0 U	1.0	0.20 ug/L		11/11/20 15:36	
trans-1,3-Dichloropropene	1.0 U	1.0	0.22 ug/L		11/11/20 15:36	
Bromoform	1.0 U	1.0	0.54 ug/L		11/11/20 15:36	
4-Methyl-2-pentanone (MIBK)	5.0 U	5.0	1.3 ug/L		11/11/20 15:36	
2-Hexanone	5.0 U	5.0	1.1 ug/L		11/11/20 15:36	
Tetrachloroethene	1.0 U	1.0	0.25 ug/L		11/11/20 15:36	
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.23 ug/L 0.37 ug/L		11/11/20 15:36	
Toluene	1.0 U	1.0	0.38 ug/L		11/11/20 15:36	
Chlorobenzene	1.0 U	1.0	0.38 ug/L		11/11/20 15:36	
	1.0 U	1.0	0.30 ug/L		11/11/20 15:36	
Ethylbenzene Styrono	1.0 U	1.0			11/11/20 15:36	
Styrene	1.0 U	1.0	0.42 ug/L 0.30 ug/L		11/11/20 15:36	
m-Xylene & p-Xylene	1.0 U	1.0	0.30 ug/L 0.36 ug/L			
o-Xylene 1,1,2-Trichloro-1,2,2-trifluoroethane					11/11/20 15:36	
	1.0 U	1.0	0.31 ug/L		11/11/20 15:36	
Methyl tert-butyl ether	1.0 U	1.0	0.22 ug/L		11/11/20 15:36	
Cyclohexane	1.0 U	1.0	0.32 ug/L		11/11/20 15:36	
Ethylene Dibromide	1.0 U	1.0	0.50 ug/L		11/11/20 15:36	
1,3-Dichlorobenzene	1.0 U	1.0	0.34 ug/L		11/11/20 15:36	
1,4-Dichlorobenzene	1.0 U	1.0	0.33 ug/L		11/11/20 15:36	
1,2-Dichlorobenzene	1.0 U	1.0	0.21 ug/L		11/11/20 15:36	
Dichlorodifluoromethane	1.0 U	1.0	0.31 ug/L		11/11/20 15:36	
1,2,4-Trichlorobenzene	1.0 U	1.0	0.37 ug/L		11/11/20 15:36	
1,4-Dioxane	50 U	50	28 ug/L		11/11/20 15:36	
1,2,3-Trichlorobenzene	1.0 U	1.0	0.36 ug/L		11/11/20 15:36	
1,2-Dibromo-3-Chloropropane Chlorobromomethane	1.0 U 1.0 U	1.0	0.38 ug/L 0.41 ug/L		11/11/20 15:36 11/11/20 15:36	

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&SX

.(/&'()*!#&012&34567777846V

1(%#& =!!#>%#?**&&@**A**@**5&85255 1(%#&+#>#"B#**?&&©**C**@**5&8D255

:(%;"<2&9%#;

K\$(!I%#	+#,-!%	P-(!"Q"#;	+.		:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(>
Isopropylbenzene	1.0	U	1.0)	0.34	ug/L			11/11/20 15:36	1
Methyl acetate	5.0	U	5.0)	0.79	ug/L			11/11/20 15:36	1
Methylcyclohexane	1.0	U	1.0)	0.71	ug/L			11/11/20 15:36	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L						11/11/20 15:36	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		75 - 123	-					11/11/20 15:36	1
Toluene-d8 (Surr)	99		80 - 120						11/11/20 15:36	1
4-Bromofluorobenzene	101		76 - 120						11/11/20 15:36	1
Dibromofluoromethane (Surr)	99		77 - 124						11/11/20 15:36	

!"#\$%&'()*!#&012&WX

.(/&'()*!#&012&34567777846D

1(%#& =!!#>%#?**3286**A**0**5&842A5 1(%#&+#>#"B#**?3286**C**0**5&8D255 :(%;"<2&9%#;

K\$(!I%#	+#,-!% P-(!"Q"#;	+.	:1. O\$"%	1 N;#*(;#?	K\$(!IM#?	1"!&L(>
Chloromethane	1.0 U	1.0	0.40 ug/L		11/12/20 21:51	1
Bromomethane	1.0 U	1.0	0.55 ug/L		11/12/20 21:51	1
Vinyl chloride	1.0 U	1.0	0.17 ug/L		11/12/20 21:51	1
Chloroethane	1.0 U	1.0	0.32 ug/L		11/12/20 21:51	1
:#%EI!#\$#& E!=;"?#	5RVA\	1.0	0.32 ug/L		11/12/20 21:51	1
K>#%=\$#	4R7	5.0	4.4 ug/L		11/12/20 21:51	1
Carbon disulfide	1.0 U	1.0	0.82 ug/L		11/12/20 21:51	1
Trichlorofluoromethane	1.0 U	1.0	0.32 ug/L		11/12/20 21:51	1
1,1-Dichloroethene	1.0 U	1.0	0.26 ug/L		11/12/20 21:51	1
1,1-Dichloroethane	1.0 U	1.0	0.26 ug/L		11/12/20 21:51	1
trans-1,2-Dichloroethene	1.0 U	1.0	0.24 ug/L		11/12/20 21:51	1
cis-1,2-Dichloroethene	1.0 U	1.0	0.22 ug/L		11/12/20 21:51	1
Chloroform	1.0 U	1.0	0.33 ug/L		11/12/20 21:51	1
1,2-Dichloroethane	1.0 U	1.0	0.43 ug/L		11/12/20 21:51	1
2-Butanone (MEK)	5.0 U	5.0	1.9 ug/L		11/12/20 21:51	1
1,1,1-Trichloroethane	1.0 U	1.0	0.24 ug/L		11/12/20 21:51	1
Carbon tetrachloride	1.0 U	1.0	0.21 ug/L		11/12/20 21:51	1
Dichlorobromomethane	1.0 U	1.0	0.34 ug/L		11/12/20 21:51	1
1,2-Dichloropropane	1.0 U	1.0	0.35 ug/L		11/12/20 21:51	1
cis-1,3-Dichloropropene	1.0 U	1.0	0.22 ug/L		11/12/20 21:51	1
Trichloroethene	1.0 U	1.0	0.31 ug/L		11/12/20 21:51	1
Chlorodibromomethane	1.0 U	1.0	0.28 ug/L		11/12/20 21:51	1
1,1,2-Trichloroethane	1.0 U	1.0	0.20 ug/L		11/12/20 21:51	1
Benzene	1.0 U	1.0	0.20 ug/L		11/12/20 21:51	1
trans-1,3-Dichloropropene	1.0 U	1.0	0.22 ug/L		11/12/20 21:51	1
Bromoform	1.0 U	1.0	0.54 ug/L		11/12/20 21:51	1
4-Methyl-2-pentanone (MIBK)	5.0 U	5.0	1.3 ug/L		11/12/20 21:51	1
2-Hexanone	5.0 U	5.0	1.1 ug/L		11/12/20 21:51	1
Tetrachloroethene	1.0 U	1.0	0.25 ug/L		11/12/20 21:51	1
1,1,2,2-Tetrachloroethane	1.0 U	1.0	0.37 ug/L		11/12/20 21:51	1
Toluene	1.0 U	1.0	0.38 ug/L		11/12/20 21:51	1

Client: New York State D.E.C. Job ID: 460-222216-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&WX

.(/&'()*!#&012&34567777846D

1(%#& =!!#>%#?**!!!80A@**5&842A5 1(%#&+#>#"B#**?!!!6**C**@**5&8D255 :(%;"<2&9%#;

K\$(!I%#	+#,-!%	P-(!"Q"#;	+.	:1.	O\$"%	1	N;#*(;#?	K\$(!IM#?	1"!&L(
Chlorobenzene	1.0	U	1.0	0.38	ug/L			11/12/20 21:51	1
Ethylbenzene	1.0	U	1.0	0.30	ug/L			11/12/20 21:51	1
Styrene	1.0	U	1.0	0.42	ug/L			11/12/20 21:51	1
m-Xylene & p-Xylene	1.0	U	1.0	0.30	ug/L			11/12/20 21:51	1
o-Xylene	1.0	U	1.0	0.36	ug/L			11/12/20 21:51	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	0.31	ug/L			11/12/20 21:51	1
Methyl tert-butyl ether	1.0	U	1.0	0.22	ug/L			11/12/20 21:51	1
Cyclohexane	1.0	U	1.0	0.32	ug/L			11/12/20 21:51	1
Ethylene Dibromide	1.0	U	1.0	0.50	ug/L			11/12/20 21:51	1
1,3-Dichlorobenzene	1.0	U	1.0	0.34	ug/L			11/12/20 21:51	1
1,4-Dichlorobenzene	1.0	U	1.0	0.33	ug/L			11/12/20 21:51	1
1,2-Dichlorobenzene	1.0	U	1.0	0.21	ug/L			11/12/20 21:51	1
Dichlorodifluoromethane	1.0	U	1.0	0.31	ug/L			11/12/20 21:51	1
1,2,4-Trichlorobenzene	1.0	U	1.0	0.37	ug/L			11/12/20 21:51	1
1,4-Dioxane	50	U	50	28	ug/L			11/12/20 21:51	1
1,2,3-Trichlorobenzene	1.0	U	1.0	0.36	ug/L			11/12/20 21:51	1
1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.38	ug/L			11/12/20 21:51	1
Chlorobromomethane	1.0	U	1.0	0.41	ug/L			11/12/20 21:51	1
Isopropylbenzene	1.0	U	1.0	0.34	ug/L			11/12/20 21:51	1
Methyl acetate	5.0	U	5.0	0.79	ug/L			11/12/20 21:51	1
Methylcyclohexane	1.0	U	1.0	0.71	ug/L			11/12/20 21:51	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					11/12/20 21:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		75 - 123					11/12/20 21:51	1
Toluene-d8 (Surr)	99		80 - 120					11/12/20 21:51	1
4-Bromofluorobenzene	102		76 - 120					11/12/20 21:51	1
Dibromofluoromethane (Surr)	101		77 - 124					11/12/20 21:51	1

VOC Data Section

Geology

Hydrology

Remediation

Water Supply

QA/QC Review of Method 8260D Volatiles Data for Eurofins TestAmerica Edison, Job No. 460-222216-1

3 Soil Samples, 3 Surface Water Samples, 1 Equipment Blank, and 1 Trip Blank Collected November 3, 2020

Prepared by: Donald Anné February 8, 2021

<u>Holding Times</u>: Samples S-1, S-2, and S-3 were analyzed beyond USEPA SW-846 holding times. Positive and "not detected results for these samples should be considered estimated (J or UJ respectively).

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

<u>Initial Calibration</u>: The average RRFs for applicable compounds were above the method minimums and the %RSDs were below the method maximum, as required.

The average RRFs for target compounds were above the allowable minimum (0.050) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The RRFs for applicable compounds were above the method minimums, as required. The %D for dichlorodifluoromethane was above the method maximum on 11-13-20 (B65826.D). The %D for trichlorofluoromethane was above the method maximum on 11-14-20 (B65853.D). No action is taken on fewer than 20% of the compounds with method criteria outside control limits per calibration.

The associated RRFs for target compounds were above the allowable minimum (0.050), as required.

The %D for dichlorodifluoromethane was above the allowable maximum (20%) on 11-13-20 (B65826.D). The %D for trichlorofluoromethane was above the allowable maximum (20%) on 11-14-20 (B65853.D). Positive results for trichlorofluoromethane should be considered estimated (J) in associated samples.

Blanks: The analyses of the method blanks reported target compounds as not detected. The trip blank TB contained traces of acetone (5.7 ug/L) and methylene chloride (2.1 ug/L). The equipment blank EB contained traces of acetone (6.2 ug/L) and methylene chloride (0.73 ug/L). Positive results for acetone and methylene chloride that are less than 10 times the highest blank level should be reported as not detected (U) in associated samples.

Page 1 of 2

- <u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.
- <u>Surrogate Recovery</u>: The surrogate recoveries were within control limits for the soil samples, surface water samples, equipment blank, and trip blank.
- <u>Laboratory Control Sample</u>: The relative percent differences for target compounds were below the allowable maximum and the percent recoveries were within QC limits for soil samples LCS 460-738783/3, LCSD 460-738783/4, LCS 460-739694/4, LCSD 460-739694/5, LCS 460-739828/3, and LCSD 460-739828/4, and aqueous samples LCS 460-738814/4, LCSD 460-738814/5, LCS 460-738942/4, LCSD 460-738942/5, LCS 460-739430/4, and LCSD 460-739430/5.
- <u>Compound ID</u>: Checked compounds and surrogates were within quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222216-1

SDG No.:

Lab Sample ID: CCVIS 460-739694/3 Calibration Date: 11/13/2020 17:43

Instrument ID: CVOAMS2 Calib Start Date: 10/15/2020 06:26

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 10/15/2020 11:49

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Chlorodifluoromethane	Ave	0.4180	0.4374		20.9	20.0	4.7	20.0
Dichlorodifluoromethane	Ave	0.5654	0.5854	0.1000	20.7	20.0	3.5	20.0
Chloromethane	Ave	0.6282	0.6581	0.1000	21.0	20.0	4.8	20.0
Butadiene	Ave	0.4178	0.4597		22.0	20.0	10.0	20.0
Vinyl chloride	Ave	0.5082	0.5239	0.1000	20.6	20.0	3.1	20.0
Bromomethane	Ave	0.3403	0.3931	0.1000	23.1	20.0	15.5	50.0
Chloroethane	Ave	0.2648	0.2642	0.1000	19.9	20.0	-0.3	50.0
Dichlorofluoromethane	Ave	0.6350	0.7371		23.2	20.0	16.1	20.0
Trichlorofluoromethane	Ave	0.5427	0.6933	0.1000	25.6	20.0	27.8*	20.0
Pentane	QuaF		0.0565		41.7	40.0	4.3	20.0
Ethanol	Ave	0.0401	0.0407		811	800	1.4	50.0
Ethyl ether	Ave	0.2179	0.2153		19.8	20.0	-1.2	20.0
2-Methyl-1,3-butadiene	Ave	0.2949	0.2813		19.1	20.0	-4.6	20.0
1,2-Dichloro-1,1,2-trifluoro ethane	Ave	0.3128	0.3725		23.8	20.0	19.1	20.0
1,1,1-Trifluoro-2,2-dichloro ethane	Ave	0.5083	0.5299		20.8	20.0	4.2	20.0
Acrolein	Ave	1.014	1.133		335	300	11.7	50.0
1,1-Dichloroethene	Ave	0.3216	0.3205	0.1000	19.9	20.0	-0.3	20.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.3596	0.3936	0.1000	21.9	20.0	9.5	20.0
Acetone	Ave	0.9895	1.011	0.0500	102	100	2.2	50.0
Iodomethane	Ave	0.6812	0.7257		21.3	20.0	6.5	20.0
Carbon disulfide	Ave	1.286	1.183	0.1000	18.4	20.0	-8.1	50.0
Isopropyl alcohol	Ave	0.8664	0.8478		196	200	-2.1	50.0
3-Chloro-1-propene	Ave	0.4257	0.3899		18.3	20.0	-8.4	20.0
Methyl acetate	Ave	0.2483	0.2099	0.1000	33.8	40.0	-15.4	20.0
Acetonitrile	Ave	0.7818	0.6704		171	200	-14.3	20.0
Methylene Chloride	Ave	0.4211	0.3710	0.1000	17.6	20.0	-11.9	20.0
2-Methyl-2-propanol	Ave	1.498	1.516		202	200	1.2	50.0
Acrylonitrile	Ave	3.794	3.283		173	200	-13.5	20.0
trans-1,2-Dichloroethene	Ave	0.3887	0.3605	0.1000	18.6	20.0	-7.2	20.0
Methyl tert-butyl ether	Ave	0.9096	0.8394	0.1000	18.5	20.0	-7.7	20.0
Hexane	Ave	0.5708	0.4909		17.2	20.0	-14.0	20.0
1,1-Dichloroethane	Ave	0.6616	0.5793	0.2000	17.5	20.0	-12.4	20.0
2-Chloro-1,3-butadiene	Ave	0.3449	0.3164		18.3	20.0	-8.3	20.0
Vinyl acetate	Ave	0.6040	0.6367		42.2	40.0	5.4	20.0
Isopropyl ether	Ave	1.186	0.9616		16.2	20.0	-18.9	20.0
Tert-butyl ethyl ether	Ave	0.4140	0.3741		18.1	20.0	-9.6	20.0
2,2-Dichloropropane	Ave	0.1870	0.1720		18.4	20.0	-8.0	20.0
cis-1,2-Dichloroethene	Ave	0.4136	0.3701	0.1000	17.9	20.0	-10.5	20.0
2-Butanone (MEK)	Ave	0.4022	0.3685	0.0500	91.6	100	-8.4	50.0

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222216-1

SDG No.:

Lab Sample ID: CCVIS 460-739694/3 Calibration Date: 11/13/2020 17:43

Instrument ID: CVOAMS2 Calib Start Date: 10/15/2020 06:26

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 10/15/2020 11:49

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Propionitrile	Ave	0.4540	0.4433		195	200	-2.3	20.0
Ethyl acetate	Ave	0.3534	0.3359		38.0	40.0	-4.9	20.0
Methyl acrylate	Ave	0.3074	0.2882		18.7	20.0	-6.3	20.0
Chlorobromomethane	Ave	0.1997	0.2014		20.2	20.0	0.9	20.0
Methacrylonitrile	Ave	0.1223	0.1108		181	200	-9.3	20.0
Tetrahydrofuran	Ave	0.4478	0.4658		41.6	40.0	4.0	20.0
Chloroform	Ave	0.6093	0.5863	0.2000	19.2	20.0	-3.8	20.0
1,1,1-Trichloroethane	Ave	0.5386	0.5573	0.1000	20.7	20.0	3.5	20.0
Cyclohexane	Ave	0.6196	0.5262	0.1000	17.0	20.0	-15.1	50.0
Carbon tetrachloride	Ave	0.4576	0.4944	0.1000	21.6	20.0	8.0	20.0
1,1-Dichloropropene	Ave	0.4957	0.4428		17.9	20.0	-10.7	20.0
Benzene	Ave	2.023	1.741	0.5000	17.2	20.0	-14.0	20.0
1,2-Dichloroethane	Ave	0.4071	0.3975	0.1000	19.5	20.0	-2.3	20.0
Isobutyl alcohol	Ave	0.3404	0.2822		415	500	-17.1	50.0
Tert-amyl methyl ether	Ave	1.196	1.089		18.2	20.0	-8.9	20.0
Isopropyl acetate	Ave	1.110	0.9491		17.1	20.0	-14.5	20.0
n-Heptane	Ave	0.6570	0.5311		16.2	20.0	-19.2	20.0
Trichloroethene	Ave	0.3647	0.3367	0.2000	18.5	20.0	-7.7	20.0
n-Butanol	QuaF		0.0682		274	500	-45.1	50.0
Ethyl acrylate	Ave	0.9323	0.7489		16.1	20.0	-19.7	20.0
Methylcyclohexane	Ave	0.7357	0.6176	0.1000	16.8	20.0	-16.1	50.0
1,2-Dichloropropane	Ave	0.3869	0.3189	0.1000	16.5	20.0	-17.6	20.0
Dibromomethane	Ave	0.1930	0.1784		18.5	20.0	-7.6	20.0
1,4-Dioxane	Ave	1.475	1.507		409	400	2.2	50.0
Methyl methacrylate	Ave	0.0784	0.0699		35.7	40.0	-10.8	20.0
n-Propyl acetate	Ave	0.4082	0.3011		14.8	20.0	-26.2*	20.0
Dichlorobromomethane	Ave	0.4143	0.3945	0.2000	19.0	20.0	-4.8	20.0
2-Nitropropane	Ave	0.0649	0.0571		35.2	40.0	-12.0	20.0
2-Chloroethyl vinyl ether	Ave	0.0622	0.0907		29.2	20.0	45.8*	20.0
Epichlorohydrin	Ave	0.2953	0.2796		379	400	-5.3	20.0
cis-1,3-Dichloropropene	Ave	0.6966	0.6228	0.2000	17.9	20.0	-10.6	50.0
4-Methyl-2-pentanone (MIBK)	Ave	3.431	3.203	0.0500	93.4	100	-6.6	50.0
Toluene	Ave	2.068	1.822	0.4000	17.6	20.0	-11.9	20.0
trans-1,3-Dichloropropene	Ave	0.5649	0.5160	0.1000	18.3	20.0	-8.7	50.0
1,1,2-Trichloroethane	Ave	0.3123	0.2856	0.1000	18.3	20.0	-8.6	20.0
Ethyl methacrylate	Ave	0.3926	0.3121		15.9	20.0	-20.5*	20.0
Tetrachloroethene	Ave	0.5409	0.5858	0.2000	21.7	20.0	8.3	20.0
1,3-Dichloropropane	Ave	0.6191	0.5661		18.3	20.0	-8.6	20.0
2-Hexanone	Ave	2.172	1.961	0.0500	90.3	100	-9.7	50.0
Chlorodibromomethane	Ave	0.3765	0.3983	0.1000	21.2	20.0	5.8	50.0
Ethylene Dibromide	Ave	0.3393	0.3404	0.1000	20.1	20.0	0.3	20.0

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222216-1

SDG No.:

Lab Sample ID: CCVIS 460-739694/3 Calibration Date: 11/13/2020 17:43

Instrument ID: CVOAMS2 Calib Start Date: 10/15/2020 06:26

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 10/15/2020 11:49

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
n-Butyl acetate	Ave	0.1058	0.0884		16.7	20.0	-16.5	20.0
Chlorobenzene	Ave	1.288	1.219	0.5000	18.9	20.0	-5.4	20.0
1,1,1,2-Tetrachloroethane	Ave	0.4958	0.5048		20.4	20.0	1.8	20.0
Ethylbenzene	Ave	0.7386	0.6825	0.1000	18.5	20.0	-7.6	20.0
m-Xylene & p-Xylene	Ave	0.9005	0.8173	0.1000	18.2	20.0	-9.2	20.0
o-Xylene	Ave	0.9305	0.8292	0.3000	17.8	20.0	-10.9	20.0
Styrene	Ave	1.407	1.244	0.3000	17.7	20.0	-11.5	20.0
n-Butyl acrylate	Ave	0.3049	0.2310		15.1	20.0	-24.3*	20.0
Bromoform	Ave	0.2714	0.2970	0.1000	21.9	20.0	9.4	20.0
Amyl acetate (mixed isomers)	Ave	1.333	0.9561		14.3	20.0	-28.3*	20.0
Isopropylbenzene	Ave	2.475	2.310	0.1000	18.7	20.0	-6.7	20.0
Bromobenzene	Ave	1.001	0.9873		19.7	20.0	-1.4	20.0
1,2,3-Trichloropropane	Ave	0.2506	0.2356		18.8	20.0	-6.0	20.0
1,1,2,2-Tetrachloroethane	Ave	0.9325	0.8194	0.3000	17.6	20.0	-12.1	20.0
trans-1,4-Dichloro-2-butene	Ave	0.2326	0.1909		16.4	20.0	-17.9	20.0
N-Propylbenzene	Ave	1.155	1.027		17.8	20.0	-11.0	20.0
2-Chlorotoluene	Ave	1.005	0.9476		18.9	20.0	-5.7	20.0
4-Ethyltoluene	Ave	4.046	3.565		17.6	20.0	-11.9	20.0
4-Chlorotoluene	Ave	3.279	2.827		17.2	20.0	-13.8	20.0
1,3,5-Trimethylbenzene	Ave	3.549	3.128		17.6	20.0	-11.8	20.0
Butyl Methacrylate	Ave	1.002	0.7225		14.4	20.0	-27.9*	20.0
tert-Butylbenzene	Ave	2.860	2.511		17.6	20.0	-12.2	20.0
1,2,4-Trimethylbenzene	Ave	3.647	3.126		17.1	20.0	-14.3	20.0
sec-Butylbenzene	Ave	4.655	3.953		17.0	20.0	-15.1	20.0
1,3-Dichlorobenzene	Ave	1.960	1.893	0.6000	19.3	20.0	-3.4	20.0
1,4-Dichlorobenzene	Ave	1.975	1.927	0.5000	19.5	20.0	-2.4	20.0
4-Isopropyltoluene	Ave	3.975	3.477		17.5	20.0	-12.5	20.0
1,2,3-Trimethylbenzene	Ave	3.751	3.271		17.4	20.0	-12.8	20.0
Benzyl chloride	Ave	0.3396	0.3302		19.4	20.0	-2.8	50.0
Indan	Ave	1.573	1.533		19.5	20.0	-2.5	20.0
1,2-Dichlorobenzene	Ave	1.955	1.984	0.4000	20.3	20.0	1.5	20.0
p-Diethylbenzene	Ave	2.185	1.973		18.1	20.0	-9.7	20.0
n-Butylbenzene	Ave	2.221	1.991		17.9	20.0	-10.4	20.0
1,2-Dibromo-3-Chloropropane	Ave	0.2072	0.2222	0.0500	21.4	20.0	7.2	50.0
1,2,4,5-Tetramethylbenzene	Ave	3.747	3.508		18.7	20.0	-6.4	20.0
1,3,5-Trichlorobenzene	Ave	1.868	2.009		21.5	20.0	7.5	20.0
1,2,4-Trichlorobenzene	Ave	1.610	1.808	0.2000	22.5	20.0	12.3	20.0
Hexachlorobutadiene	Ave	0.9400	1.020		21.7	20.0	8.5	20.0
Naphthalene	Ave	3.286	3.494		21.3	20.0	6.3	50.0
1,2,3-Trichlorobenzene	Ave	1.596	1.720		21.5	20.0	7.7	20.0
Dibromofluoromethane (Surr)	Ave	0.3022	0.3113		51.5	50.0	3.0	20.0

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222216-1

SDG No.:

Lab Sample ID: CCVIS 460-739694/3 Calibration Date: 11/13/2020 17:43

Instrument ID: CVOAMS2 Calib Start Date: 10/15/2020 06:26

GC Column: DB-624 ID: 0.18 (mm) Calib End Date: 10/15/2020 11:49

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dichloroethane-d4 (Surr)	Ave	0.2859	0.2987		52.2	50.0	4.5	20.0
Toluene-d8 (Surr)	Ave	1.614	1.555		48.2	50.0	-3.6	20.0
4-Bromofluorobenzene	Ave	0.8901	0.8839		49.7	50.0	-0.7	20.0

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222216-1

SDG No.:

Lab Sample ID: CCVIS 460-739828/2 Calibration Date: 11/14/2020 05:06

Instrument ID: CVOAMS2 Calib Start Date: 10/15/2020 06:26

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.5654	0.5715	0.1000	20.2	20.0	1.1	20.0
Chlorodifluoromethane	Ave	0.4180	0.3048		14.6	20.0	-27.1*	20.0
Chloromethane	Ave	0.6282	0.6908	0.1000	22.0	20.0	10.0	20.0
Butadiene	Ave	0.4178	0.4518		21.6	20.0	8.1	20.0
Vinyl chloride	Ave	0.5082	0.5449	0.1000	21.4	20.0	7.2	20.0
Bromomethane	Ave	0.3403	0.4046	0.1000	23.8	20.0	18.9	50.0
Chloroethane	Ave	0.2648	0.2827	0.1000	21.3	20.0	6.7	50.0
Dichlorofluoromethane	Ave	0.6350	0.7505		23.6	20.0	18.2	20.0
Trichlorofluoromethane	Ave	0.5427	0.6763	0.1000	24.9	20.0	24.6*	20.0
Pentane	QuaF		0.0607		44.8	40.0	12.1	20.0
Ethanol	Ave	0.0401	0.0383		764	800	-4.5	50.0
Ethyl ether	Ave	0.2179	0.2289		21.0	20.0	5.0	20.0
2-Methyl-1,3-butadiene	Ave	0.2949	0.3113		21.1	20.0	5.6	20.0
1,2-Dichloro-1,1,2-trifluoro ethane	Ave	0.3128	0.3252		20.8	20.0	4.0	20.0
1,1,1-Trifluoro-2,2-dichloro ethane	Ave	0.5083	0.4892		19.2	20.0	-3.8	20.0
Acrolein	Ave	1.014	1.170		346	300	15.3	50.0
1,1-Dichloroethene	Ave	0.3216	0.3424	0.1000	21.3	20.0	6.5	20.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.3596	0.4043	0.1000	22.5	20.0	12.4	20.0
Acetone	Ave	0.9895	1.014	0.0500	102	100	2.5	50.0
Iodomethane	Ave	0.6812	0.7255		21.3	20.0	6.5	20.0
Carbon disulfide	Ave	1.286	1.148	0.1000	17.8	20.0	-10.8	50.0
Isopropyl alcohol	Ave	0.8664	0.8205		189	200	-5.3	50.0
3-Chloro-1-propene	Ave	0.4257	0.3869		18.2	20.0	-9.1	20.0
Methyl acetate	Ave	0.2483	0.2252	0.1000	36.3	40.0	-9.3	20.0
Acetonitrile	Ave	0.7818	0.6199		159	200	-20.7*	20.0
Methylene Chloride	Ave	0.4211	0.3675	0.1000	17.5	20.0	-12.7	20.0
2-Methyl-2-propanol	Ave	1.498	1.426		190	200	-4.8	50.0
Acrylonitrile	Ave	3.794	3.391		179	200	-10.6	20.0
trans-1,2-Dichloroethene	Ave	0.3887	0.3371	0.1000	17.3	20.0	-13.3	20.0
Methyl tert-butyl ether	Ave	0.9096	0.8716	0.1000	19.2	20.0	-4.2	20.0
Hexane	Ave	0.5708	0.5010		17.6	20.0	-12.2	20.0
1,1-Dichloroethane	Ave	0.6616	0.5896	0.2000	17.8	20.0	-10.9	20.0
Vinyl acetate	Ave	0.6040	0.5699		37.7	40.0	-5.6	20.0
2-Chloro-1,3-butadiene	Ave	0.3449	0.3255		18.9	20.0	-5.6	20.0
Isopropyl ether	Ave	1.186	0.9815		16.6	20.0	-17.2	20.0
Tert-butyl ethyl ether	Ave	0.4140	0.3749		18.1	20.0	-9.5	20.0
2,2-Dichloropropane	Ave	0.1870	0.1824		19.5	20.0	-2.5	20.0
cis-1,2-Dichloroethene	Ave	0.4136	0.3828	0.1000	18.5	20.0	-7.4	20.0
2-Butanone (MEK)	Ave	0.4022	0.3885	0.0500	96.6	100	-3.4	50.0

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222216-1

SDG No.:

Lab Sample ID: CCVIS 460-739828/2 Calibration Date: 11/14/2020 05:06

Instrument ID: CVOAMS2 Calib Start Date: 10/15/2020 06:26

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 10/15/2020 11:49

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Propionitrile	Ave	0.4540	0.4538		200	200	-0.0	20.0
Ethyl acetate	Ave	0.3534	0.3258		36.9	40.0	-7.8	20.0
Methyl acrylate	Ave	0.3074	0.2653		17.3	20.0	-13.7	20.0
Chlorobromomethane	Ave	0.1997	0.1952		19.6	20.0	-2.2	20.0
Methacrylonitrile	Ave	0.1223	0.1100		180	200	-10.0	20.0
Tetrahydrofuran	Ave	0.4478	0.4169		37.2	40.0	-6.9	20.0
Chloroform	Ave	0.6093	0.5817	0.2000	19.1	20.0	-4.5	20.0
1,1,1-Trichloroethane	Ave	0.5386	0.5599	0.1000	20.8	20.0	4.0	20.0
Cyclohexane	Ave	0.6196	0.5703	0.1000	18.4	20.0	-8.0	50.0
1,1-Dichloropropene	Ave	0.4957	0.4617		18.6	20.0	-6.9	20.0
Carbon tetrachloride	Ave	0.4576	0.5062	0.1000	22.1	20.0	10.6	20.0
Benzene	Ave	2.023	1.785	0.5000	17.6	20.0	-11.8	20.0
1,2-Dichloroethane	Ave	0.4071	0.3893	0.1000	19.1	20.0	-4.4	20.0
Isobutyl alcohol	Ave	0.3404	0.2970		436	500	-12.7	50.0
Tert-amyl methyl ether	Ave	1.196	1.091		18.3	20.0	-8.7	20.0
Isopropyl acetate	Ave	1.110	0.9600		17.3	20.0	-13.5	20.0
n-Heptane	Ave	0.6570	0.5844		17.8	20.0	-11.0	20.0
Trichloroethene	Ave	0.3647	0.3412	0.2000	18.7	20.0	-6.4	20.0
n-Butanol	QuaF		0.0442		179	500	-64.2*	50.0
Methylcyclohexane	Ave	0.7357	0.6547	0.1000	17.8	20.0	-11.0	50.0
Ethyl acrylate	Ave	0.9323	0.7799		16.7	20.0	-16.3	20.0
1,2-Dichloropropane	Ave	0.3869	0.3259	0.1000	16.8	20.0	-15.8	20.0
Dibromomethane	Ave	0.1930	0.1892		19.6	20.0	-2.0	20.0
1,4-Dioxane	Ave	1.475	1.603		435	400	8.7	50.0
Methyl methacrylate	Ave	0.0784	0.0689		35.1	40.0	-12.1	20.0
n-Propyl acetate	Ave	0.4082	0.3325		16.3	20.0	-18.6	20.0
Dichlorobromomethane	Ave	0.4143	0.3863	0.2000	18.6	20.0	-6.8	20.0
2-Nitropropane	Ave	0.0649	0.0557		34.3	40.0	-14.3	20.0
2-Chloroethyl vinyl ether	Ave	0.0622	0.0855		27.5	20.0	37.3*	20.0
Epichlorohydrin	Ave	0.2953	0.2787		378	400	-5.6	20.0
cis-1,3-Dichloropropene	Ave	0.6966	0.6127	0.2000	17.6	20.0	-12.0	50.0
4-Methyl-2-pentanone (MIBK)	Ave	3.431	3.205	0.0500	93.4	100	-6.6	50.0
Toluene	Ave	2.068	1.829	0.4000	17.7	20.0	-11.6	20.0
trans-1,3-Dichloropropene	Ave	0.5649	0.4930	0.1000	17.5	20.0	-12.7	50.0
1,1,2-Trichloroethane	Ave	0.3123	0.2838	0.1000	18.2	20.0	-9.1	20.0
Ethyl methacrylate	Ave	0.3926	0.3124		15.9	20.0	-20.4*	20.0
Tetrachloroethene	Ave	0.5409	0.5791	0.2000	21.4	20.0	7.1	20.0
1,3-Dichloropropane	Ave	0.6191	0.5560		18.0	20.0	-10.2	20.0
2-Hexanone	Ave	2.172	1.886	0.0500	86.9	100	-13.1	50.0
Chlorodibromomethane	Ave	0.3765	0.3963	0.1000	21.1	20.0	5.3	50.0
Ethylene Dibromide	Ave	0.3393	0.3347	0.1000	19.7	20.0	-1.3	20.0

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222216-1

SDG No.:

Lab Sample ID: CCVIS 460-739828/2 Calibration Date: 11/14/2020 05:06

Instrument ID: CVOAMS2 Calib Start Date: 10/15/2020 06:26

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 10/15/2020 11:49

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
n-Butyl acetate	Ave	0.1058	0.0928		17.5	20.0	-12.3	20.0
Chlorobenzene	Ave	1.288	1.218	0.5000	18.9	20.0	-5.4	20.0
1,1,1,2-Tetrachloroethane	Ave	0.4958	0.4936		19.9	20.0	-0.4	20.0
Ethylbenzene	Ave	0.7386	0.6809	0.1000	18.4	20.0	-7.8	20.0
m-Xylene & p-Xylene	Ave	0.9005	0.8456	0.1000	18.8	20.0	-6.1	20.0
o-Xylene	Ave	0.9305	0.8529	0.3000	18.3	20.0	-8.3	20.0
Styrene	Ave	1.407	1.217	0.3000	17.3	20.0	-13.5	20.0
n-Butyl acrylate	Ave	0.3049	0.2316		15.2	20.0	-24.1*	20.0
Bromoform	Ave	0.2714	0.2797	0.1000	20.6	20.0	3.1	20.0
Amyl acetate (mixed isomers)	Ave	1.333	0.9430		14.1	20.0	-29.3*	20.0
Isopropylbenzene	Ave	2.475	2.337	0.1000	18.9	20.0	-5.6	20.0
Bromobenzene	Ave	1.001	0.9476		18.9	20.0	-5.4	20.0
1,2,3-Trichloropropane	Ave	0.2506	0.2385		19.0	20.0	-4.8	20.0
1,1,2,2-Tetrachloroethane	Ave	0.9325	0.8282	0.3000	17.8	20.0	-11.2	20.0
trans-1,4-Dichloro-2-butene	Ave	0.2326	0.2070		17.8	20.0	-11.0	20.0
N-Propylbenzene	Ave	1.155	1.025		17.8	20.0	-11.2	20.0
2-Chlorotoluene	Ave	1.005	0.9382		18.7	20.0	-6.6	20.0
4-Ethyltoluene	Ave	4.046	3.554		17.6	20.0	-12.2	20.0
4-Chlorotoluene	Ave	3.279	2.815		17.2	20.0	-14.2	20.0
1,3,5-Trimethylbenzene	Ave	3.549	3.076		17.3	20.0	-13.3	20.0
Butyl Methacrylate	Ave	1.002	0.7052		14.1	20.0	-29.6*	20.0
tert-Butylbenzene	Ave	2.860	2.524		17.6	20.0	-11.8	20.0
1,2,4-Trimethylbenzene	Ave	3.647	3.157		17.3	20.0	-13.4	20.0
sec-Butylbenzene	Ave	4.655	4.005		17.2	20.0	-14.0	20.0
1,3-Dichlorobenzene	Ave	1.960	1.881	0.6000	19.2	20.0	-4.0	20.0
1,4-Dichlorobenzene	Ave	1.975	1.904	0.5000	19.3	20.0	-3.6	20.0
4-Isopropyltoluene	Ave	3.975	3.536		17.8	20.0	-11.1	20.0
1,2,3-Trimethylbenzene	Ave	3.751	3.252		17.3	20.0	-13.3	20.0
Benzyl chloride	Ave	0.3396	0.3412		20.1	20.0	0.5	50.0
Indan	Ave	1.573	1.558		19.8	20.0	-1.0	20.0
1,2-Dichlorobenzene	Ave	1.955	1.980	0.4000	20.2	20.0	1.2	20.0
p-Diethylbenzene	Ave	2.185	1.996		18.3	20.0	-8.6	20.0
n-Butylbenzene	Ave	2.221	1.983		17.9	20.0	-10.7	20.0
1,2-Dibromo-3-Chloropropane	Ave	0.2072	0.2053	0.0500	19.8	20.0	-1.0	50.0
1,2,4,5-Tetramethylbenzene	Ave	3.747	3.602		19.2	20.0	-3.9	20.0
1,3,5-Trichlorobenzene	Ave	1.868	1.980		21.2	20.0	6.0	20.0
1,2,4-Trichlorobenzene	Ave	1.610	1.707	0.2000	21.2	20.0	6.0	20.0
Hexachlorobutadiene	Ave	0.9400	1.005		21.4	20.0	7.0	20.0
Naphthalene	Ave	3.286	3.433		20.9	20.0	4.5	50.0
1,2,3-Trichlorobenzene	Ave	1.596	1.711		21.4	20.0	7.2	20.0
Dibromofluoromethane (Surr)	Ave	0.3022	0.2981		49.3	50.0	-1.4	20.0

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222216-1

SDG No.:

Lab Sample ID: CCVIS 460-739828/2 Calibration Date: 11/14/2020 05:06

Instrument ID: CVOAMS2 Calib Start Date: 10/15/2020 06:26

GC Column: DB-624 ID: 0.18(mm) Calib End Date: 10/15/2020 11:49

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2-Dichloroethane-d4 (Surr)	Ave	0.2859	0.2966		51.9	50.0	3.8	20.0
Toluene-d8 (Surr)	Ave	1.614	1.535		47.6	50.0	-4.9	20.0
4-Bromofluorobenzene	Ave	0.8901	0.8976		50.4	50.0	0.8	20.0

Report Date: 16-Nov-2020 14:52:18 Chrom Revision: 2.3 12-Nov-2020 21:52:08

Eurofins TestAmerica, Edison Target Compound Quantitation Report

Data File: \\chromfs\Edison\ChromData\CVOAMS2\20201114-120084.b\B65853.D

Lims ID: CCVIS

Client ID:

Sample Type: CCVIS

Inject. Date: 14-Nov-2020 05:06:30 ALS Bottle#: 1 Worklist Smp#: 2

Purge Vol: 5.000 mL Dil. Factor: 1.0000

Sample Info: CCVIS

Misc. Info.: 460-0120084-002

Operator ID: Instrument ID: CVOAMS2

Sublist: chrom-8260S_2*sub8

Method: \\chromfs\Edison\ChromData\CVOAMS2\20201114-120084.b\8260S_2.m

Limit Group: VOA - 8260D Water and Solid

Last Update:16-Nov-2020 14:52:12Calib Date:15-Oct-2020 11:49:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Edison\ChromData\CVOAMS2\20201015-118410.b\B64675.D

Column 1 : DB-624 (0.18 mm) Det: MS SCAN

Process Host: CTX1671

First Level Reviewer: tupayachia Date: 14-Nov-2020 05:32:30

First Level Reviewer: tupayachia	э		D	ate:		14-Nov-202	20 05:32:30		
		RT	Exp RT	Dlt RT			Cal Amt	OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ug/l	ug/l	Flags
3 Dichlorodifluoromethane	85	0.703	0.703	0.000	98	106192	20.0	20.2	
4 Chlorodifluoromethane	51	0.709	0.709	0.000	61	56644	20.0	14.6	M
5 Chloromethane	50	0.776	0.776	0.000	98	128360	20.0	22.0	M
6 Butadiene	54	0.807	0.807	0.000	88	83950	20.0	21.6	
7 Vinyl chloride	62	0.819	0.819	0.000	98	101250	20.0	21.4	
8 Bromomethane	94	0.965	0.965	0.000	99	75187	20.0	23.8	
9 Chloroethane	64	0.996	0.996	0.000	99	52532	20.0	21.3	
10 Dichlorofluoromethane	67	1.099	1.099	0.000	98	139443	20.0	23.6	
11 Trichlorofluoromethane	101	1.130	1.130	0.000	62	125664	20.0	24.9	
12 Pentane	72	1.142	1.142	0.000	95	22547	40.0	44.8	
14 Ethanol	46	1.240	1.240	0.000	48	8552	0.008	763.7	
13 Ethyl ether	59	1.252	1.252	0.000	66	42529	20.0	21.0	
15 2-Methyl-1,3-butadiene	53	1.264	1.264	0.000	95	57843	20.0	21.1	
16 1,2-Dichloro-1,1,2-trifluoroetl	na 117	1.282	1.282	0.000	87	60426	20.0	20.8	
17 1,1,1-Trifluoro-2,2-dichloroet	ha 83	1.319	1.319	0.000	88	90898	20.0	19.2	а
18 Acrolein	56	1.319	1.319	0.000	97	97990	300.0	346.0	
19 1,1-Dichloroethene	96	1.374	1.374	0.000	97	63613	20.0	21.3	
20 112TCTFE	101	1.404	1.404	0.000	84	75122	20.0	22.5	
21 Acetone	43	1.404	1.404	0.000	86	82402	100.0	102.5	
22 Iodomethane	142	1.453	1.453	0.000	97	134807	20.0	21.3	
23 Carbon disulfide	76	1.490	1.490	0.000	99	213239	20.0	17.8	
24 Isopropyl alcohol	45	1.526	1.526	0.000	96	45823	200.0	189.4	M
25 3-Chloro-1-propene	39	1.575	1.575	0.000	94	71888	20.0	18.2	
26 Methyl acetate	43	1.605	1.605	0.000	99	83674	40.0	36.3	
27 Acetonitrile	39	1.618	1.618	0.000	31	34621	200.0	158.6	а
28 Methylene Chloride	84	1.660	1.660	0.000	92	68277	20.0	17.5	
* 29 TBA-d9 (IS)	65	1.727	1.727	0.000	0	279240	1000.0	1000.0	M
30 2-Methyl-2-propanol	59	1.770	1.770	0.000	42	79662	200.0	190.4	
31 Acrylonitrile	53	1.819	1.819	0.000	98	189369	200.0	178.7	
32 trans-1,2-Dichloroethene	96	1.825	1.825	0.000	95	62641	20.0	17.3	
- ,								-	

Page 748 of 6399

SVOC Data Section

Geology

Hydrology

Remediation

Water Supply

QA/QC Review of Method 8270E Semi-Volatiles Data for Eurofins TestAmerica-Edison, Job No: 460-222216-1

3 Soil Samples and 3 Surface Water Samples Collected November 3, 2020

Prepared by: Donald Anné February 8, 2021

Holding Times: Samples were extracted and analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The DFTPP tuning criteria were within control limits.

<u>Initial Calibration</u>: The average RRFs for applicable compounds were above the method minimums and the %RSDs were below the method maximum, as required.

The average RRFs for target compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The RRFs for applicable compounds were above the method minimums, as required. The %Ds for 10 compounds (highlighted yellow on attached FORM VII) were above the method maximum on 11-10-20 (N028551.d). The %Ds for benzaldehyde, 4-nitrophenol, pentachlorophenol, di-n-octyl phthalate, and indeno(1,2,3-cd)pyrene were above the method maximum on 11-11-20 (Z59448.d). No action is taken on fewer than 20% of the compounds with method criteria outside control limits per calibration.

The associated RRFs for target compounds were above the allowable minimum (0.050), as required.

The %Ds for 10 compounds (highlighted yellow on attached FORM VII) were above the allowable maximum (20%) on 11-10-20 (N028551.d). The %Ds for benzaldehyde, 4-nitrophenol, pentachlorophenol, di-n-octyl phthalate, and indeno(1,2,3-cd)pyrene were above the method maximum (20%) on 11-11-20 (Z59448.d). Positive results for these compounds should be considered estimated (J) in associated samples.

<u>Blanks</u>: The analyses of method blanks reported target compounds as not detected.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

<u>Surrogate Recovery</u>: The surrogate recoveries were within control limits for the soil and surface water samples.

<u>Laboratory Control Sample</u>: The relative percent differences (RPDs) for target compounds were below the allowable maximum, but 2 of 2 percent recoveries (%Rs) for 2,4-dinitrophenol were above QC limits for aqueous samples LCS 460-738369/2-A and LCSD 460-738369/3-A. Positive results for 2,4-dinitrophenol should be considered estimated, biased high (J+) in associated aqueous samples.

The %Rs for target compounds were within QC limits, but the RPDs for benzaldehyde and caprolactam were above the allowable maximum for soil samples LCS 460-738890/2-A and LCSD 460-738890/3-A. Positive results for these compounds should be considered estimated (J) in associated soil samples.

<u>Compound ID</u>: Checked compounds and surrogates were within quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

Lab Nam	e: Eurofins TestAme	rica, Edison	Job No.: 460	-222216-1
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID:	N028554.d
Lab ID:	LCS 460-738369/2-A		Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
Phenol	80.0	28.3	35	20-53	
2-Chlorophenol	80.0	61.0	76	57-93	
2-Methylphenol	80.0	56.4	70	45-86	
4-Methylphenol	80.0	52.8	66	37-86	
2-Nitrophenol	80.0	82.5	103	60-126	
2,4-Dimethylphenol	80.0	67.2	84	59-101	
2,4-Dichlorophenol	80.0	73.3	92	65-107	
4-Chloro-3-methylphenol	80.0	72.2	90	60-107	
2,4,6-Trichlorophenol	80.0	76.0	95	64-115	
2,4,5-Trichlorophenol	80.0	74.8	94	64-110	
2,4-Dinitrotoluene	80.0	95.1	119	63-122	
4-Nitrophenol	160	56.7	35	17-61	
4,6-Dinitro-2-methylphenol	160	217	135	69-149	
Pentachlorophenol	160	185	116	57-135	
Bis(2-chloroethyl)ether	80.0	64.4	81	57-112	
N-Nitrosodi-n-propylamine	80.0	68.9	86	60-111	
Hexachloroethane	80.0	24.7	31	27-94	
Nitrobenzene	80.0	76.1	95	67-109	
Isophorone	80.0	72.0	90	64-113	
Naphthalene	80.0	61.4	77	56-99	
4-Chloroaniline	80.0	52.6	66	43-105	
Hexachlorobutadiene	80.0	29.7	37	33-98	
2-Methylnaphthalene	80.0	64.7	81	57-103	
Hexachlorocyclopentadiene	80.0	26.9	34	14-97	
2-Chloronaphthalene	80.0	59.2	74	57-102	
2-Nitroaniline	80.0	67.4	84	54-123	
Dimethyl phthalate	80.0	77.4	97	68-105	
Acenaphthylene	80.0	67.2	84	64-102	
2,6-Dinitrotoluene	80.0	84.4	106	71-118	
3-Nitroaniline	80.0	71.7	90	57-110	
Acenaphthene	80.0	62.0	78		
Dibenzofuran	80.0	69.1	86		
2,4-Dinitrophenol	160	261	163		*
Diethyl phthalate	80.0	76.1	95		
4-Chlorophenyl phenyl ether	80.0	69.5	87		
Fluorene	80.0	70.8	88		
4-Nitroaniline	80.0	78.3	98		
N-Nitrosodiphenylamine	80.0	64.7	81		
4-Bromophenyl phenyl ether	80.0	63.6	80		
Hexachlorobenzene	80.0	68.8	86		
Phenanthrene	80.0	64.9	81		
Anthracene	80.0	64.7	81		

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8270E}$

Lab Nam	e: Eurofins TestAme	erica, Edison	Job No.: 460	-222216-1	
SDG No.	:				
Matrix:	Water	Level: Low	Lab File ID:	N028554.d	
Lab ID:	LCS 460-738369/2-2	Д	Client ID:		

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	8	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	"
Carbazole	80.0	70.3	88	_	
Di-n-butyl phthalate	80.0	68.3	85		
Fluoranthene	80.0	74.2	93		
Pyrene	80.0	58.2	73		
Butyl benzyl phthalate	80.0	65.0	81	63-126	
Benzo[a]anthracene	80.0	65.1	81	71-114	
Chrysene	80.0	65.5	82	74-122	
Bis(2-ethylhexyl) phthalate	80.0	67.6	84	60-135	
Di-n-octyl phthalate	80.0	77.0	96	40-133	
Benzo[b]fluoranthene	80.0	82.3	103	65-113	
Benzo[k]fluoranthene	80.0	77.3	97	66-116	
Benzo[a]pyrene	80.0	73.9	92	67-106	
Indeno[1,2,3-cd]pyrene	80.0	79.1	99	55-139	
Dibenz(a,h)anthracene	80.0	68.7	86	57-144	
Benzo[g,h,i]perylene	80.0	64.9	81	48-145	
1,1'-Biphenyl	80.0	61.5	77	59-102	
Acetophenone	80.0	73.4	92	65-109	
1,4-Dioxane	80.0	35.8	45	29-68	
Benzaldehyde	40.0	33.6	84		
Caprolactam	40.0	13.6	34	10-60	
Atrazine	40.0	40.2	100		
2,2'-oxybis[1-chloropropane]	80.0	53.8	67	38-124	
1,2,4,5-Tetrachlorobenzene	80.0	54.2	68		
2,3,4,6-Tetrachlorophenol	80.0	89.8	112	64-123	
3,3'-Dichlorobenzidine	80.0	58.3	73		
Bis(2-chloroethoxy)methane	80.0	66.5	83	64-114	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8270E}$

Lab Name	e: Eurofins TestAme	rica, Edison	Job No.: 460	-222216-1
SDG No.	:	_		
Matrix:	Solid	Level: Low	Lab File ID:	z59451.d
Lab ID:	LCS 460-738890/2-A		Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	왕	LIMITS	#
COMPOUND	(ug/Kg)	(ug/Kg)	REC	REC	
Phenol	3330	2870	86	63-110	
2-Chlorophenol	3330	2830	85	63-106	
2-Methylphenol	3330	3000	90	63-108	
4-Methylphenol	3330	2700	81	61-108	
2-Nitrophenol	3330	2760	83	64-112	
2,4-Dimethylphenol	3330	2870	86	63-107	
2,4-Dichlorophenol	3330	2870	86	66-113	
4-Chloro-3-methylphenol	3330	2960	89	66-114	
2,4,6-Trichlorophenol	3330	2630	79	63-113	
2,4,5-Trichlorophenol	3330	2670	80	64-112	
2,4-Dinitrotoluene	3330	3020	91	65-124	
4-Nitrophenol	6670	4640	70	47-123	
4,6-Dinitro-2-methylphenol	6670	5210	78	64-129	
Pentachlorophenol	6670	3970	60	44-126	
Bis(2-chloroethyl)ether	3330	2720	82	60-107	
N-Nitrosodi-n-propylamine	3330	2970	89	61-108	
Hexachloroethane	3330	2810	84	61-102	
Nitrobenzene	3330	2940	88	63-110	
Isophorone	3330	2900	87	63-107	
Naphthalene	3330	2730	82	63-106	
4-Chloroaniline	3330	2340	70	20-98	
Hexachlorobutadiene	3330	2700	81	62-109	
2-Methylnaphthalene	3330	2810	84	64-108	
Hexachlorocyclopentadiene	3330	2000	60	22-124	
2-Chloronaphthalene	3330	2720	82	65-109	
2-Nitroaniline	3330	2600	78	59-119	
Dimethyl phthalate	3330	2820	85	65-109	
Acenaphthylene	3330	2840	85	64-108	
2,6-Dinitrotoluene	3330	3010	90	67-121	
3-Nitroaniline	3330	2680	81	31-102	
Acenaphthene	3330	2520	76	53-110	
Dibenzofuran	3330	2860	86	65-108	
2,4-Dinitrophenol	6670	4710	71	37-125	
Diethyl phthalate	3330	2910	87	63-109	
4-Chlorophenyl phenyl ether	3330	2800	84		
Fluorene	3330	2830	85		
4-Nitroaniline	3330	2710	81		
N-Nitrosodiphenylamine	3330	2790	84		
4-Bromophenyl phenyl ether	3330	2610	78		
Hexachlorobenzene	3330	2690	81		
Phenanthrene	3330	2790	84	66-112	
Anthracene	3330	2780	83		

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8270E}$

Lab Nam	e: Eurofins TestAme	erica, Edison	Job No.: 460	-222216-1
SDG No.	:	_		
Matrix:	Solid	Level: Low	Lab File ID:	Z59451.d
Lab ID:	LCS 460-738890/2-A	4	Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(ug/Kg)	(ug/Kg)	REC	REC	
Carbazole	3330	2810	84	64-113	
Di-n-butyl phthalate	3330	2940	88	66-114	
Fluoranthene	3330	2770	83	64-113	
Pyrene	3330	2770	83	71-122	
Butyl benzyl phthalate	3330	2990	90	70-123	
Benzo[a]anthracene	3330	2810	84	67-115	
Chrysene	3330	2770	83	71-122	
Bis(2-ethylhexyl) phthalate	3330	3030	91	69-124	
Di-n-octyl phthalate	3330	3760	113	65-122	
Benzo[b]fluoranthene	3330	3360	101	64-116	
Benzo[k]fluoranthene	3330	3420	102	67-115	
Benzo[a]pyrene	3330	3300	99		
Indeno[1,2,3-cd]pyrene	3330	3730	112	62-121	
Dibenz(a,h)anthracene	3330	3250	97	66-119	
Benzo[g,h,i]perylene	3330	3010	90	61-113	
1,1'-Biphenyl	3330	2730	82	65-110	
Acetophenone	3330	2660	80	61-103	
Benzaldehyde	1330	1490	112	39-113	
Caprolactam	1330	1660	125	59-140	
Atrazine	1330	1700	127	44-145	
2,2'-oxybis[1-chloropropane]	3330	3010	90	49-109	
1,2,4,5-Tetrachlorobenzene	3330	2630	79	64-110	
2,3,4,6-Tetrachlorophenol	3330	2350	70	58-113	
3,3'-Dichlorobenzidine	3330	2020	61	4-119	
Bis(2-chloroethoxy)methane	3330	2760	83	62-107	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8270E}$

Lab Nam	e: Eurofins TestAme	erica, Edison	Job No.: 460-222216-1	
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID: N028555a.d	
Lab ID:	LCSD 460-738369/3	-A	Client ID:	

	SPIKE	LCSD	LCSD	0	QC LI	IMITS	
COMPOUND	ADDED (ug/L)	CONCENTRATION (ug/L)	% REC	% - RPD	RPD	REC	#
Phenol	80.0	29.1	36		30	20-53	
2-Chlorophenol	80.0	62.0	78		30	57-93	
2-Methylphenol	80.0	56.4	71	0	30	45-86	
4-Methylphenol	80.0	52.9	66	0	30	37-86	
2-Nitrophenol	80.0	81.2	102	2	30	60-126	
2,4-Dimethylphenol	80.0	67.0	84	0	30	59-101	
2,4-Dichlorophenol	80.0	74.7	93	2	30	65-107	
4-Chloro-3-methylphenol	80.0	72.1	90	0	30	60-107	
2,4,6-Trichlorophenol	80.0	80.5	101	6	30	64-115	
2,4,5-Trichlorophenol	80.0	78.9	99		30	64-110	
2,4-Dinitrotoluene	80.0	95.3	119		30	63-122	
4-Nitrophenol	160	58.5	37	3	30	17-61	
4-Nitrophenoi 4,6-Dinitro-2-methylphenol	160	223	140	3	30	69-149	
Pentachlorophenol	160	189	118		30	57-135	
Bis(2-chloroethyl)ether	80.0	65.2	82	1	30	57-133	
	80.0	70.8	89	3	30	60-111	
N-Nitrosodi-n-propylamine			31				
Hexachloroethane	80.0	24.9	95	1	30	27-94	
Nitrobenzene	80.0	75.7		1	30	67-109	
Isophorone	80.0	72.6	91	1	30	64-113	
Naphthalene	80.0	60.6	76	1	30	56-99	
4-Chloroaniline	80.0	52.9	66	1	30	43-105	
Hexachlorobutadiene	80.0	29.7	37	0	30	33-98	
2-Methylnaphthalene	80.0	64.9	81	0	30	57-103	
Hexachlorocyclopentadiene	80.0	27.7	35	3	30	14-97	
2-Chloronaphthalene	80.0	58.2	73		30	57-102	
2-Nitroaniline	80.0	66.0	82	2	30	54-123	
Dimethyl phthalate	80.0	76.2	95	2	30	68-105	
Acenaphthylene	80.0	66.3	83		30	64-102	
2,6-Dinitrotoluene	80.0	85.6	107	1	30	71-118	
3-Nitroaniline	80.0	70.4	88		30	57-110	
Acenaphthene	80.0	60.6	76	2	30	54-108	
Dibenzofuran	80.0	68.3	85		30	65-104	
2,4-Dinitrophenol	160	265	166	· I	30	36-150	*
Diethyl phthalate	80.0	75.3	94	1	30	65-105	
4-Chlorophenyl phenyl ether	80.0	69.4	87	0	30	60-113	
Fluorene	80.0	69.5	87	2	30	64-108	
4-Nitroaniline	80.0	78.8	99	1	30	52-122	
N-Nitrosodiphenylamine	80.0	64.3	80	1	30	67-110	
4-Bromophenyl phenyl ether	80.0	64.0	80	1	30	65-115	
Hexachlorobenzene	80.0	69.6	87	1	30	59-129	
Phenanthrene	80.0	65.3	82	1	30	69-108	
Anthracene	80.0	65.2	81	1	30	69-110	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8270E}$

Lab Name	e: Eurofins TestAme	erica, Edison	Job No.: 460-222216-1	
SDG No.:				
Matrix:	Water	Level: Low	Lab File ID: N028555a.d	
Lab ID:	LCSD 460-738369/3-	-А	Client ID:	

	SPIKE ADDED	LCSD CONCENTRATION	LCSD	90	QC LI	MITS	#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	"
Carbazole	80.0	70.8	89	1	30	68-113	
Di-n-butyl phthalate	80.0	68.2	85	0	30	66-113	
Fluoranthene	80.0	75.2	94	1	30	66-116	
Pyrene	80.0	58.6	73	1	30	66-121	
Butyl benzyl phthalate	80.0	65.2	81	0	30	63-126	
Benzo[a]anthracene	80.0	65.0	81	0	30	71-114	
Chrysene	80.0	68.6	86	5	30	74-122	
Bis(2-ethylhexyl) phthalate	80.0	67.6	84	0	30	60-135	
Di-n-octyl phthalate	80.0	75.6	95	2	30	40-133	
Benzo[b]fluoranthene	80.0	75.9	95	8	30	65-113	
Benzo[k]fluoranthene	80.0	80.0	100	3	30	66-116	
Benzo[a]pyrene	80.0	73.4	92	1	30	67-106	
Indeno[1,2,3-cd]pyrene	80.0	65.9	82	18	30	55-139	
Dibenz(a,h)anthracene	80.0	66.3	83	4	30	57-144	
Benzo[g,h,i]perylene	80.0	62.8	79	3	30	48-145	
1,1'-Biphenyl	80.0	60.3	75	2	30	59-102	
Acetophenone	80.0	74.8	93	2	30	65-109	
1,4-Dioxane	80.0	37.0	46	3	30	29-68	
Benzaldehyde	40.0	33.6	84	0	30	47-134	
Caprolactam	40.0	13.3	33	2	30	10-60	
Atrazine	40.0	39.4	98	2	30	10-150	
2,2'-oxybis[1-chloropropane]	80.0	54.1	68	0	30	38-124	
1,2,4,5-Tetrachlorobenzene	80.0	56.7	71	4	30	48-109	
2,3,4,6-Tetrachlorophenol	80.0	89.3	112	1	30	64-123	
3,3'-Dichlorobenzidine	80.0	60.3	75	3	30	59-125	
Bis(2-chloroethoxy)methane	80.0	67.2	84	1	30	64-114	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8270E}$

Lab Nam	e: Eurofins	TestAmerica, Edison	Job No.: 460	-222216-1
SDG No.	:			
Matrix:	Solid	Level: Low	Lab File ID:	z59452.d
Lab ID:	LCSD 460-73	8890/3-A	Client ID:	

	SPIKE	LCSD	LCSD		QC LI	MITS	
COMPOUND	ADDED	CONCENTRATION	% REC	% RPD	RPD	REC	#
Phenol	(ug/Kg) 3330	(ug/Kg) 2840	85	1	30	63-110	
2-Chlorophenol	3330	2790	84	1	30	63-116	
2-Methylphenol	3330	2970	89	1	30	63-108	
4-Methylphenol	3330	2660	80	2	30	61-108	
2-Nitrophenol	3330	2800	84	1	30	64-112	
2,4-Dimethylphenol	3330	2900	87	1	30	63-107	
2,4-Dichlorophenol	3330	2880	86	0	30	66-113	
4-Chloro-3-methylphenol	3330	2990	90	1	30	66-114	
2,4,6-Trichlorophenol	3330	2770	83	5	30	63-113	
		2810	84	5	30	64-112	
2,4,5-Trichlorophenol	3330		1 1		30		
2,4-Dinitrotoluene	3330	3050	91	1		65-124	
4-Nitrophenol	6670	4940	74	6	30	47-123	
4,6-Dinitro-2-methylphenol	6670	5360	80	3	30	64-129	
Pentachlorophenol	6670	4200	63	6	30	44-126	
Bis(2-chloroethyl)ether	3330	2750	83	1	30	60-107	
N-Nitrosodi-n-propylamine	3330	2840	85	4	30	61-108	
Hexachloroethane	3330	2860	86	2	30	61-102	
Nitrobenzene	3330	2820	85	4	30	63-110	
Isophorone	3330	2900	87	0	30	63-107	
Naphthalene	3330	2790	84	2	30	63-106	
4-Chloroaniline	3330	2320	70	1	30	20-98	
Hexachlorobutadiene	3330	2780	83	3	30	62-109	
2-Methylnaphthalene	3330	2860	86	2	30	64-108	
Hexachlorocyclopentadiene	3330	2250	67	12	30	22-124	
2-Chloronaphthalene	3330	2890	87	6	30	65-109	
2-Nitroaniline	3330	2630	79	1	30	59-119	
Dimethyl phthalate	3330	2840	85	1	30	65-109	
Acenaphthylene	3330	2930	88	3	30	64-108	
2,6-Dinitrotoluene	3330	3020	91	0	30	67-121	
3-Nitroaniline	3330	2610	78	3	30	31-102	
Acenaphthene	3330	2570	77	2	30	53-110	
Dibenzofuran	3330	2930	88	2	30	65-108	
2,4-Dinitrophenol	6670	5060	76	7	30	37-125	
Diethyl phthalate	3330	2940	88	1	30	63-109	
4-Chlorophenyl phenyl ether	3330	2920	87	4	30	66-110	
Fluorene	3330	2900	87	2	30	65-109	
4-Nitroaniline	3330	2680	80	1	30	50-110	
N-Nitrosodiphenylamine	3330	2950	89	6	30	67-113	
4-Bromophenyl phenyl ether	3330	2770	83	6	30	67-113	
Hexachlorobenzene	3330	2840	85	5	30	70-119	
Phenanthrene	3330	2940	88	5	30	66-112	
Anthracene	3330	2890	87	4	30	67-114	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8270E}$

Lab Name	e: Eurofins TestAm	merica, Edison	Job No.: 460-	-222216-1	
SDG No.	:				
Matrix:	Solid	Level: Low	Lab File ID:	<u>z59452.d</u>	
Lab ID:	LCSD 460-738890/3	— A	Client ID:		

	SPIKE	LCSD	LCSD		QC LI	IMITS	ш
COMPOUND	ADDED (ug/Kg)	CONCENTRATION (ug/Kg)	% REC	% RPD	RPD	REC	#
Carbazole	3330	2840	85	1	30	64-113	
Di-n-butyl phthalate	3330	2960	89	1	30	66-114	
Fluoranthene	3330	2840	85	2	30	64-113	
Pyrene	3330	3030	91	9	30	71-122	
Butyl benzyl phthalate	3330	3090	93	3	30	70-123	
Benzo[a]anthracene	3330	2900	87	3	30	67-115	
Chrysene	3330	2880	87	4	30	71-122	
Bis(2-ethylhexyl) phthalate	3330	3200	96	5	30	69-124	
Di-n-octyl phthalate	3330	3920	118	4	30	65-122	
Benzo[b]fluoranthene	3330	3390	102	1	30	64-116	
Benzo[k]fluoranthene	3330	3570	107	4	30	67-115	
Benzo[a]pyrene	3330	3340	100	1	30	63-108	
Indeno[1,2,3-cd]pyrene	3330	3770	113	1	30	62-121	
Dibenz(a,h)anthracene	3330	3340	100	3	30	66-119	
Benzo[g,h,i]perylene	3330	3090	93	3	30	61-113	
1,1'-Biphenyl	3330	2890	87	6	30	65-110	
Acetophenone	3330	2650	80	0	30	61-103	
Benzaldehyde	1330	1060	79	34	30	39-113	*1
Caprolactam	1330	1120	84	39	30	59-140	*1
Atrazine	1330	1290	97	27	30	44-145	
2,2'-oxybis[1-chloropropane]	3330	2990	90	1	30	49-109	
1,2,4,5-Tetrachlorobenzene	3330	2750	83	4	30	64-110	
2,3,4,6-Tetrachlorophenol	3330	2480	74	5	30	58-113	
3,3'-Dichlorobenzidine	3330	1970	59	3	30	4-119	
Bis(2-chloroethoxy)methane	3330	2820	85	2	30	62-107	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8270E}$

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222216-1

SDG No.:

Lab Sample ID: CCVIS 460-739058/2 Calibration Date: 11/11/2020 14:59

Instrument ID: CBNAMS11 Calib Start Date: 09/18/2020 06:08

GC Column: Rtxi-5Sil MS ID: 0.25(mm) Calib End Date: 09:17

Lab File ID: Z59448.d Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,4-Dioxane	Ave	0.5430	0.5229		48100	50000	-3.7	20.0
N-Nitrosodimethylamine	Ave	0.8774	0.7985		45500	50000	-9.0	20.0
Pyridine	Ave	1.476	1.217		82500	100000	-17.5	20.0
Benzaldehyde	Ave	1.257	0.7917	0.0100	12600	20000	-37.0*	20.0
Aniline	Ave	2.363	2.366		50100	50000	0.1	20.0
Phenol	Ave	1.979	2.006	0.8000	50700	50000	1.4	20.0
Bis(2-chloroethyl)ether	Ave	1.489	1.507	0.7000	50600	50000	1.2	20.0
2-Chlorophenol	Ave	1.442	1.454	0.8000	50400	50000	0.8	20.0
n-Decane	Ave	2.308	2.598		56300	50000	12.6	20.0
1,3-Dichlorobenzene	Ave	1.595	1.594		50000	50000	-0.0	20.0
1,4-Dichlorobenzene	Ave	1.622	1.649		50800	50000	1.7	20.0
Benzyl alcohol	Ave	0.9563	0.8614		45000	50000	-9.9	20.0
1,2-Dichlorobenzene	Ave	1.525	1.558		51100	50000	2.2	20.0
2,2'-oxybis[1-chloropropane]	Ave	3.094	3.424	0.0100	55300	50000	10.7	20.0
2-Methylphenol	Ave	1.309	1.357	0.7000	51800	50000	3.7	20.0
N-Methylaniline	Ave	2.333	2.332		50000	50000	-0.0	20.0
Acetophenone	Ave	2.206	2.218	0.0100	50300	50000	0.5	20.0
N-Nitrosodi-n-propylamine	Ave	1.165	1.204	0.5000	51700	50000	3.3	20.0
3 & 4 Methylphenol	Ave	1.523	1.365		44800	50000	-10.4	20.0
4-Methylphenol	Ave	1.523	1.365	0.6000	44800	50000	-10.4	20.0
Hexachloroethane	Ave	0.5758	0.6317	0.3000	54900	50000	9.7	20.0
n,n'-Dimethylaniline	Ave	2.195	2.103		47900	50000	-4.2	20.0
Nitrobenzene	Ave	0.7089	0.7230	0.2000	51000	50000	2.0	20.0
Isophorone	Ave	0.7627	0.7900	0.4000	51800	50000	3.6	20.0
2-Nitrophenol	Ave	0.1969	0.2073	0.1000	52600	50000	5.3	20.0
2,4-Dimethylphenol	Ave	0.3228	0.3235	0.2000	50100	50000	0.2	20.0
Bis (2-chloroethoxy) methane	Ave	0.4723	0.4843	0.3000	51300	50000	2.6	20.0
Benzoic acid	Lin2		0.0131		5810	50000	-88.4*	20.0
2,4-Dichlorophenol	Ave	0.3136	0.3206	0.2000	51100	50000	2.2	20.0
1,2,4-Trichlorobenzene	Ave	0.3476	0.3638		52300	50000	4.7	20.0
Naphthalene	Ave	1.077	1.123	0.7000	52100	50000	4.3	20.0
4-Chloroaniline	Ave	0.4617	0.4592	0.0100	49700	50000	-0.5	20.0
Hexachlorobutadiene	Ave	0.2194	0.2250	0.0100	51300	50000	2.5	20.0
Caprolactam	Ave	0.1060	0.1044	0.0100	19700	20000	-1.5	20.0
4-Chloro-3-methylphenol	Ave	0.3375	0.3372	0.2000	50000	50000	-0.1	20.0
2-Methylnaphthalene	Ave	0.7118	0.7329	0.4000	51500	50000	3.0	20.0
1-Methylnaphthalene	Ave	0.6710	0.6875		51200	50000	2.5	20.0
Hexachlorocyclopentadiene	Ave	0.4374	0.3737	0.0500	42700	50000	-14.6	20.0
1,2,4,5-Tetrachlorobenzene	Ave	0.6464	0.6934	0.0100	53600	50000	7.3	20.0
2-tertbutyl-4-methylphenol	Ave	0.4826	0.4822		50000	50000	-0.0	20.0
2,4,6-Trichlorophenol	Ave	0.4429	0.4235	0.2000	47800	50000	-4.4	20.0

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222216-1

SDG No.:

Lab Sample ID: CCVIS 460-739058/2 Calibration Date: 11/11/2020 14:59

Instrument ID: CBNAMS11 Calib Start Date: 09/18/2020 06:08

GC Column: Rtxi-5Sil MS ID: 0.25(mm) Calib End Date: 09:17

Lab File ID: Z59448.d Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
2,4,5-Trichlorophenol	Ave	0.4974	0.4795	0.2000	48200	50000	-3.6	20.0
1,1'-Biphenyl	Ave	1.576	1.644	0.0100	52200	50000	4.4	20.0
2-Chloronaphthalene	Ave	1.247	1.309	0.8000	52500	50000	5.0	20.0
Phenyl ether	Ave	0.8245	0.8513		51600	50000	3.3	20.0
2-Nitroaniline	Ave	0.5684	0.5020	0.0100	44200	50000	-11.7	20.0
1,3-Dimethylnaphthalene	Ave	0.9423	0.999		53000	50000	6.0	20.0
Dimethyl phthalate	Ave	1.527	1.474	0.0100	48300	50000	-3.5	20.0
Coumarin	Ave	0.2771	0.2464		44500	50000	-11.1	20.0
2,6-Dinitrotoluene	Ave	0.3272	0.3322	0.2000	50800	50000	1.5	20.0
Acenaphthylene	Ave	1.901	1.900	0.9000	50000	50000	-0.0	20.0
3-Nitroaniline	Ave	0.5747	0.5640	0.0100	49100	50000	-1.9	20.0
3,5-di-tert-butyl-4-hydroxyt	Ave	1.247	1.262		50600	50000	1.2	20.0
Acenaphthene	Ave	1.289	1.194	0.9000	46300	50000	-7.4	20.0
2,4-Dinitrophenol	Lin2		0.1588	0.0100	82400	100000	-17.6	20.0
4-Nitrophenol	Ave	0.3529	0.2538	0.0100	71900	100000	-28.1*	20.0
Dibenzofuran	Ave	1.779	1.794	0.8000	50400	50000	0.9	20.0
2,4-Dinitrotoluene	Ave	0.4500	0.4412	0.2000	49000	50000	-2.0	20.0
2,3,4,6-Tetrachlorophenol	Ave	0.4218	0.3622	0.0100	42900	50000	-14.1	20.0
Diethyl phthalate	Ave	1.555	1.524	0.0100	49000	50000	-2.0	20.0
Fluorene	Ave	1.488	1.479	0.9000	49700	50000	-0.7	20.0
4-Chlorophenyl phenyl ether	Ave	0.7175	0.7208	0.4000	50200	50000	0.5	20.0
4-Nitroaniline	Ave	0.3667	0.3076	0.0100	41900	50000	-16.1	20.0
4,6-Dinitro-2-methylphenol	Lin2		0.1329	0.0100	93700	100000	-6.3	20.0
N-Nitrosodiphenylamine	Ave	0.5602	0.5620	0.0100	50200	50000	0.3	20.0
1,2-Diphenylhydrazine	Ave	0.8574	0.9403		54800	50000	9.7	20.0
4-Bromophenyl phenyl ether	Ave	0.2460	0.2446	0.1000	49700	50000	-0.6	20.0
Hexachlorobenzene	Ave	0.2711	0.2639	0.1000	48700	50000	-2.7	20.0
Atrazine	Ave	0.2227	0.2325	0.0100	20900	20000	4.4	20.0
Pentachlorophenol	Ave	0.1754	0.1341	0.0500	76500	100000	-23.5*	20.0
Pentachloronitrobenzene	Ave	0.1229	0.1189	0.0100	48400	50000	-3.2	20.0
n-Octadecane	Ave	0.7787	0.9004		57800	50000	15.6	20.0
Phenanthrene	Ave	1.200	1.199	0.7000	49900	50000	-0.1	20.0
Anthracene	Ave	1.253	1.230	0.7000	49100	50000	-1.8	20.0
Carbazole	Ave	1.068	1.021	0.0100	47800	50000	-4.4	20.0
Di-n-butyl phthalate	Ave	1.415	1.372	0.0100	48500	50000	-3.0	20.0
Fluoranthene	Ave	1.316	1.211	0.6000	46000	50000	-8.0	20.0
Benzidine	Ave	0.6496	0.5916		45500	50000	-8.9	20.0
Pyrene	Ave	1.458	1.453	0.6000	49800	50000	-0.3	20.0
Bisphenol-A	Ave	0.6706	0.5956		44400	50000	-11.2	20.0
Butyl benzyl phthalate	Ave	0.6374	0.6622	0.0100	51900	50000	3.9	20.0

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222216-1

SDG No.:

Lab Sample ID: CCVIS 460-739058/2 Calibration Date: 11/11/2020 14:59

Instrument ID: CBNAMS11 Calib Start Date: 09/18/2020 06:08

GC Column: Rtxi-5Sil MS ID: 09:17

Lab File ID: Z59448.d Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
2,3,7,8-TCDD	Ave	0.1706	0.1986		582	500	16.4	20.0
Carbamazepine	Ave	0.5224	0.5936		56800	50000	13.6	20.0
3,3'-Dichlorobenzidine	Ave	0.5154	0.5426	0.0100	52600	50000	5.3	20.0
Benzo[a]anthracene	Ave	1.405	1.352	0.8000	48100	50000	-3.8	20.0
Chrysene	Ave	1.390	1.399	0.7000	50300	50000	0.6	20.0
Bis(2-ethylhexyl) phthalate	Ave	0.9195	0.9740	0.0100	53000	50000	5.9	20.0
Di-n-octyl phthalate	Ave	1.409	1.724	0.0100	61100	50000	22.3*	20.0
Benzo[b]fluoranthene	Ave	1.254	1.427		56900	50000	13.9	20.0
Benzo[k]fluoranthene	Ave	1.256	1.458	0.7000	58100	50000	16.2	20.0
Benzo[a]pyrene	Ave	1.053	1.182	0.7000	56100	50000	12.3	20.0
<pre>Indeno[1,2,3-cd]pyrene</pre>	Ave	1.085	1.503	0.5000	69300	50000	38.6*	20.0
Dibenz(a,h)anthracene	Ave	1.047	1.241	0.4000	59300	50000	18.5	20.0
Benzo[g,h,i]perylene	Ave	1.087	1.207	0.5000	55500	50000	11.0	20.0
2-Fluorophenol (Surr)	Ave	1.357	1.358		50000	50000	0.0	20.0
Phenol-d5 (Surr)	Ave	1.830	1.946		53200	50000	6.4	20.0
Nitrobenzene-d5 (Surr)	Ave	0.4417	0.4959		56100	50000	12.3	20.0
2-Fluorobiphenyl	Ave	1.436	1.653		57600	50000	15.1	20.0
2,4,6-Tribromophenol (Surr)	Ave	0.2482	0.2487		50100	50000	0.2	20.0
Terphenyl-d14 (Surr)	Ave	1.084	1.170		54000	50000	8.0	20.0

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222216-1

SDG No.:

Lab Sample ID: CCVIS 460-738564/2 Calibration Date: 11/10/2020 02:22

Instrument ID: CBNAMS14 Calib Start Date: 07/30/2020 14:57

GC Column: Rtxi-5Sil MS ID: 0.25(mm) Calib End Date: 07/30/2020 17:51

Lab File ID: N028551.d Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,4-Dioxane	Ave	0.5174	0.4507		8710	10000	-12.9	20.0
N-Nitrosodimethylamine	Ave	0.7279	0.6628		9100	10000	-9.0	20.0
Pyridine	Ave	1.223	0.9475		15500	20000	-22.5*	20.0
Benzaldehyde	Ave	1.089	0.5936	0.0100	2180	4000	-45.5*	20.0
Phenol	Ave	1.527	1.614	0.8000	10600	10000	5.7	20.0
Aniline	Ave	1.903	1.859		9770	10000	-2.3	20.0
Bis(2-chloroethyl)ether	Ave	1.288	1.192	0.7000	9250	10000	-7.5	20.0
2-Chlorophenol	Ave	1.321	1.330	0.8000	10100	10000	0.7	20.0
n-Decane	Ave	1.701	1.261		7410	10000	-25.9*	20.0
1,3-Dichlorobenzene	Ave	1.586	1.611		10200	10000	1.6	20.0
1,4-Dichlorobenzene	Ave	1.605	1.644		10200	10000	2.4	20.0
Benzyl alcohol	Ave	0.7641	0.8146		10700	10000	6.6	20.0
1,2-Dichlorobenzene	Ave	1.499	1.546		10300	10000	3.1	20.0
2-Methylphenol	Ave	1.078	1.130	0.7000	10500	10000	4.8	20.0
2,2'-oxybis[1-chloropropane]	Ave	2.020	1.644	0.0100	8140	10000	-18.6	20.0
N-Methylaniline	Ave	1.972	2.010		10200	10000	1.9	20.0
Acetophenone	Ave	1.719	1.784	0.0100	10400	10000	3.8	20.0
N-Nitrosodi-n-propylamine	Ave	0.8887	0.8651	0.5000	9730	10000	-2.7	20.0
3 & 4 Methylphenol	Ave	1.237	1.310		10600	10000	5.9	20.0
4-Methylphenol	Ave	1.237	1.310	0.6000	10600	10000	5.9	20.0
Hexachloroethane	Ave	0.5891	0.5775	0.3000	9800	10000	-2.0	20.0
n,n'-Dimethylaniline	Ave	1.981	1.943		9810	10000	-1.9	20.0
Nitrobenzene	Ave	0.6082	0.6590	0.2000	10800	10000	8.4	20.0
Isophorone	Ave	0.6137	0.6019	0.4000	9810	10000	-1.9	20.0
2-Nitrophenol	Ave	0.1719	0.2104	0.1000	12200	10000	22.4*	20.0
2,4-Dimethylphenol	Ave	0.3027	0.3473	0.2000	11500	10000	14.7	20.0
Bis(2-chloroethoxy)methane	Ave	0.4073	0.4329	0.3000	10600	10000	6.3	20.0
Benzoic acid	Qua		0.2183		18100	10000	80.8*	20.0
2,4-Dichlorophenol	Ave	0.3098	0.3467	0.2000	11200	10000	11.9	20.0
1,2,4-Trichlorobenzene	Ave	0.3637	0.3907		10700	10000	7.4	20.0
Naphthalene	Ave	1.028	1.068	0.7000	10400	10000	3.9	20.0
4-Chloroaniline	Ave	0.4190	0.4381	0.0100	10500	10000	4.6	20.0
Hexachlorobutadiene	Ave	0.2168	0.2507	0.0100	11600	10000	15.7	20.0
Caprolactam	Ave	0.0605	0.0867	0.0100	5730	4000	43.3*	20.0
4-Chloro-3-methylphenol	Ave	0.2582	0.2913	0.2000	11300	10000	12.8	20.0
2-Methylnaphthalene	Ave	0.6926	0.7464	0.4000	10800	10000	7.8	20.0
1-Methylnaphthalene	Ave	0.6470	0.7012		10800	10000	8.4	20.0
Hexachlorocyclopentadiene	Ave	0.5561	0.5962	0.0500	10700	10000	7.2	20.0
1,2,4,5-Tetrachlorobenzene	Ave	0.7689	0.8154	0.0100	10600	10000	6.0	20.0
2-tertbutyl-4-methylphenol	Ave	0.4292	0.4695		10900	10000	9.4	20.0
2,4,6-Trichlorophenol	Ave	0.4482	0.4964	0.2000	11100	10000	10.8	20.0

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222216-1

SDG No.:

Lab Sample ID: CCVIS 460-738564/2 Calibration Date: 11/10/2020 02:22

Instrument ID: CBNAMS14 Calib Start Date: 07/30/2020 14:57

GC Column: Rtxi-5Sil MS ID: 0.25 (mm) Calib End Date: 0.7/30/2020 17:51

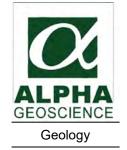
Lab File ID: N028551.d Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
2,4,5-Trichlorophenol	Ave	0.4935	0.5522	0.2000	11200	10000	11.9	20.0
1,1'-Biphenyl	Ave	1.719	1.735	0.0100	10100	10000	0.9	20.0
2-Chloronaphthalene	Ave	1.339	1.358	0.8000	10100	10000	1.4	20.0
Phenyl ether	Ave	0.9108	0.9462		10400	10000	3.9	20.0
2-Nitroaniline	Ave	0.3948	0.3967	0.0100	10000	10000	0.5	20.0
1,3-Dimethylnaphthalene	Ave	1.011	1.052		10400	10000	4.1	20.0
Dimethyl phthalate	Ave	1.322	1.402	0.0100	10600	10000	6.1	20.0
Coumarin	Ave	0.1980	0.2318		11700	10000	17.1	20.0
2,6-Dinitrotoluene	Ave	0.2775	0.3357	0.2000	12100	10000	21.0*	20.0
Acenaphthylene	Ave	1.903	1.923	0.9000	10100	10000	1.1	20.0
3-Nitroaniline	Ave	0.2749	0.3147	0.0100	11400	10000	14.5	20.0
3,5-di-tert-butyl-4-hydroxyt	Ave	1.243	1.346		10800	10000	8.3	20.0
Acenaphthene	Ave	1.275	1.239	0.9000	9720	10000	-2.8	20.0
2,4-Dinitrophenol	Lin2		0.2227	0.0100	38100	20000	90.3*	20.0
4-Nitrophenol	Ave	0.1807	0.2024	0.0100	22400	20000	12.0	20.0
2,4-Dinitrotoluene	Ave	0.3251	0.4291	0.2000	13200	10000	32.0*	20.0
Dibenzofuran	Ave	1.753	1.908	0.8000	10900	10000	8.9	20.0
2,3,4,6-Tetrachlorophenol	Ave	0.3386	0.4469	0.0100	13200	10000	32.0*	20.0
Diethyl phthalate	Ave	1.256	1.312	0.0100	10400	10000	4.5	20.0
Fluorene	Ave	1.349	1.471	0.9000	10900	10000	9.0	20.0
4-Chlorophenyl phenyl ether	Ave	0.6847	0.7809	0.4000	11400	10000	14.1	20.0
4-Nitroaniline	Ave	0.2539	0.3419	0.0100	13500	10000	34.7*	20.0
4,6-Dinitro-2-methylphenol	Ave	0.0917	0.1672	0.0100	36500	20000	82.3*	20.0
N-Nitrosodiphenylamine	Ave	0.6188	0.6423	0.0100	10400	10000	3.8	20.0
1,2-Diphenylhydrazine	Ave	0.8237	0.7279		8840	10000	-11.6	20.0
4-Bromophenyl phenyl ether	Ave	0.2701	0.2830	0.1000	10500	10000	4.8	20.0
Hexachlorobenzene	Ave	0.3069	0.3457	0.1000	11300	10000	12.6	20.0
Atrazine	Ave	0.2062	0.2405	0.0100	4670	4000	16.6	20.0
Pentachlorophenol	Ave	0.1484	0.1958	0.0500	26400	20000	32.0*	20.0
Pentachloronitrobenzene	Ave	0.1044	0.1230	0.0100	11800	10000	17.8	20.0
n-Octadecane	Ave	0.6159	0.4557		7400	10000	-26.0*	20.0
Phenanthrene	Ave	1.167	1.171	0.7000	10000	10000	0.4	20.0
Anthracene	Ave	1.200	1.205	0.7000	10000	10000	0.4	20.0
Carbazole	Ave	0.9440	0.9693	0.0100	10300	10000	2.7	20.0
Di-n-butyl phthalate	Ave	1.136	1.127	0.0100	9920	10000	-0.8	20.0
Fluoranthene	Ave	1.089	1.230	0.6000	11300	10000	13.0	20.0
Benzidine	Ave	0.4620	0.5272		11400	10000	14.1	20.0
Pyrene	Ave	1.758	1.418	0.6000	8070	10000	-19.3	20.0
Bisphenol-A	Ave	0.5469	0.6256		11400	10000	14.4	20.0
Butyl benzyl phthalate	Ave	0.5390	0.4949	0.0100	9180	10000	-8.2	20.0

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222216-1

SDG No.:

Lab Sample ID: CCVIS 460-738564/2 Calibration Date: 11/10/2020 02:22


Instrument ID: CBNAMS14 Calib Start Date: 07/30/2020 14:57

GC Column: Rtxi-5Sil MS ID: 0.25 (mm) Calib End Date: 0.7/30/2020 17:51

Lab File ID: N028551.d Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
2,3,7,8-TCDD	Ave	0.2294	0.2193		95.6	100	-4.4	20.0
Carbamazepine	Ave	0.4393	0.4568		10400	10000	4.0	20.0
3,3'-Dichlorobenzidine	Ave	0.4928	0.5039	0.0100	10200	10000	2.3	20.0
Benzo[a]anthracene	Ave	1.392	1.262	0.8000	9070	10000	-9.3	20.0
Chrysene	Ave	1.323	1.259	0.7000	9520	10000	-4.8	20.0
Bis(2-ethylhexyl) phthalate	Ave	0.7331	0.7049	0.0100	9610	10000	-3.9	20.0
Di-n-octyl phthalate	Ave	1.127	1.254	0.0100	11100	10000	11.3	20.0
Benzo[b]fluoranthene	Ave	1.214	1.343		11100	10000	10.6	20.0
Benzo[k]fluoranthene	Ave	1.258	1.449	0.7000	11500	10000	15.2	20.0
Benzo[a]pyrene	Ave	1.051	1.159	0.7000	11000	10000	10.3	20.0
Indeno[1,2,3-cd]pyrene	Ave	1.326	1.324	0.5000	9990	10000	-0.1	20.0
Dibenz(a,h)anthracene	Ave	1.299	1.292	0.4000	9940	10000	-0.6	20.0
Benzo[g,h,i]perylene	Ave	1.367	1.283	0.5000	9390	10000	-6.1	20.0
2-Fluorophenol (Surr)	Ave	1.259	1.353		10700	10000	7.5	20.0
Phenol-d5 (Surr)	Ave	1.488	1.575		10600	10000	5.9	20.0
Nitrobenzene-d5 (Surr)	Ave	0.3774	0.3911		10400	10000	3.6	20.0
2-Fluorobiphenyl	Ave	1.600	1.787		11200	10000	11.7	20.0
2,4,6-Tribromophenol (Surr)	Ave	0.2313	0.4115		17800	10000	77.9*	20.0
Terphenyl-d14 (Surr)	Ave	1.268	1.154		9100	10000	-9.0	20.0

1,4-Dioxane **Data Section**

Hydrology

QA/QC Review of Method 8270E SIM 1,4-Dioxane Data for Eurofins TestAmerica-Edison, Job No: 460-222216-1

3 Surface Water Samples Collected November 3, 2020

Prepared by: Donald Anné

Remediation February 8, 2021 Water Supply

Holding Times: The samples were extracted and analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The DFTPP tuning criteria were within control limits.

Initial Calibration: The average RRF for 1,4-dioxane was above the allowable minimum (0.010) and the %RSD was below the allowable maximum (30%), as required.

Continuing Calibration: The RRF for 1,4-dioxane was above the allowable minimum (0.010) and the %D was below the allowable maximum (20%), as required.

Blanks: The analysis of the method blank reported 1,4-dioxane as not detected.

Internal Standard Area Summary: The internal standard areas and retention times were within control limits.

Surrogate Recovery: The surrogate recoveries were within control limits for the surface water samples.

Laboratory Control Sample: The percent recoveries for 1,4-dioxane were within QC limits for aqueous samples LCS 460-738693/2-A and LCSD 460-738693/3-A.

Compound ID: Checked surrogates results were within quantitation limits. The analyses of surface water samples reported 1,4-dioxane as not detected.

z:\projects\2021\21600-21620\21600-dec carmel\temp review\460-222216-1.dix.docx

Pesticide Data Section

Hydrology

Remediation

Water Supply

QA/QC Review of Method 8081B Pesticide Data for Eurofins TestAmerica-Edison, Job No. 480-222216-1

3 Soil Samples and 3 Surface Water Samples Collected November 3, 2020

Prepared by: Donald Anné February 8, 2021

Holding Times: Samples were extracted and analyzed within USEPA SW-846 holding times.

Blanks: The analyses of the method blanks reported target pesticides as not detected.

<u>Surrogate Recovery</u>: The surrogate recoveries were within QC limits for the soil and surface water samples on both columns.

<u>Laboratory Control Sample</u>: The relative percent differences for target pesticides were below the allowable maximum and the percent recoveries were within QC limits for aqueous samples LCS 460-738218/2-A and LCSD 460-738218/3-A, and soil samples LCS 460-739629/2-A and LCSD 460-739629/3-A.

<u>Initial Calibration</u>: The %RSDs and average %RSDs for target pesticides were below the allowable maximum (20%), as required.

Continuing Calibration: The %Ds for trans-chlordane and methoxychlor were above the allowable maximum (20%) on 11-11-20 (4P003390.D) for the CLP-2 column. The average %D for toxaphene was above the allowable maximum (20%) on 11-11-20 (4P003392.D) for the CLP-2 column. The %Ds for 4,4'-DDT and methoxychlor were above the allowable maximum (20%) on 11-16-20 (5P945812.D) for the Rtx-CLP column. Positive results for these pesticides should be considered estimated (J) in associated samples.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits on both columns.

<u>DDT/Endrin Breakdown Check</u>: The percent breakdowns were below the allowable maximum (15%) for 4,4'-DDT and endrin, as required.

<u>Pesticide Identification Summary for Single Component Analytes:</u> Checked pesticide and surrogate results were within quantitation limits. The RPDs for dual quantitation of detected pesticides were below the allowable maximum (25%), as required.

<u>Pesticide Identification Summary for Multicomponent Analytes</u>: The analyses of the aqueous and soil samples reported multicomponent pesticides as not detected.

FORM VII PESTICIDES CONTINUING CALIBRATION DATA

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222216-1

SDG No.:

Lab Sample ID: CCVIS 460-738911/3 Calibration Date: 11/11/2020 03:51

Instrument ID: CPESTGC4 Calib Start Date: 10/27/2020 07:52

GC Column: CLP-2 ID: 0.53(mm) Calib End Date: 10/27/2020 08:56

Lab File ID: 4P003390.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC	SPIKE AMOUNT	%D	MAX %D
alpha-BHC	Ave	1.749	1.705		97.5	100	-2.5	20.0
gamma-BHC (Lindane)	Ave	1.591	1.556		97.8	100	-2.2	20.0
beta-BHC	Ave	0.6247	0.6946		111	100	11.2	20.0
delta-BHC	Ave	1.597	1.535		96.1	100	-3.9	20.0
Heptachlor	Ave	1.669	1.650		98.9	100	-1.1	20.0
Aldrin	Ave	1.639	1.583		96.6	100	-3.4	20.0
Heptachlor epoxide	Ave	1.461	1.395		95.5	100	-4.5	20.0
trans-Chlordane	Ave	1.435	1.942		135	100	35.3*	20.0
cis-Chlordane	Ave	1.384	1.254		90.6	100	-9.4	20.0
Endosulfan I	Ave	1.328	1.269		95.5	100	-4.5	20.0
4,4'-DDE	Ave	1.351	1.322		97.8	100	-2.2	20.0
Dieldrin	Ave	1.421	1.364		96.0	100	-4.0	20.0
Endrin	Ave	1.193	1.197		100	100	0.3	20.0
4,4'-DDD	Ave	1.087	1.184		109	100	8.9	20.0
Endosulfan II	Ave	1.109	1.150		104	100	3.7	20.0
4,4'-DDT	Ave	1.057	1.076		102	100	1.8	20.0
Endrin aldehyde	Ave	0.9865	0.9340		94.7	100	-5.3	20.0
Endosulfan sulfate	Ave	1.134	1.151		102	100	1.5	20.0
Methoxychlor	Ave	0.4761	0.6295		132	100	32.2*	20.0
Mirex	Ave	0.8320	0.8286		99.6	100	-0.4	20.0
Endrin ketone	Ave	1.167	1.314		113	100	12.7	20.0
Tetrachloro-m-xylene	Ave	1.148	1.119		97.5	100	-2.5	20.0
DCB Decachlorobiphenyl	Ave	0.7311	0.7619		104	100	4.2	20.0

FORM VII PESTICIDES CONTINUING CALIBRATION DATA

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222216-1

SDG No.:

Lab Sample ID: CCV 460-738911/5 Calibration Date: 11/11/2020 04:23

Instrument ID: CPESTGC4 Calib Start Date: 10/27/2020 11:16

GC Column: CLP-2 ID: 0.53 (mm) Calib End Date: 10/27/2020 12:19

Lab File ID: 4P003392.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Toxaphene Peak 1	Ave	0.0278	0.0313		1130	1000	12.6	20.0
Toxaphene Peak 2	Ave	0.0375	0.0435		1160	1000	16.1	20.0
Toxaphene Peak 3	Ave	0.0620	0.0816		0.500	1000	31.6*	20.0
Toxaphene Peak 4	Ave	0.0368	0.0520		0.500	1000	41.5*	20.0
Toxaphene Peak 5	Ave	0.0291	0.0317		1090	1000	9.1	20.0

Average %D = 22.2%

FORM VII PESTICIDES CONTINUING CALIBRATION DATA

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222216-1

SDG No.:

Lab Sample ID: CCVIS 460-740150/3 Calibration Date: 11/16/2020 04:05

Instrument ID: CPESTGC5 Calib Start Date: 07/15/2020 07:28

GC Column: Rtx-CLP ID: 0.53 (mm) Calib End Date: 07/15/2020 08:27

Lab File ID: 5F945812.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
alpha-BHC	Ave	1.565	1.520		97.2	100	-2.8	20.0
gamma-BHC (Lindane)	Ave	1.470	1.389		94.5	100	-5.5	20.0
beta-BHC	Ave	0.6128	0.6392		104	100	4.3	20.0
delta-BHC	Ave	1.476	1.401		94.9	100	-5.1	20.0
Heptachlor	Ave	1.562	1.313		84.0	100	-16.0	20.0
Aldrin	Ave	1.420	1.298		91.4	100	-8.6	20.0
Heptachlor epoxide	Ave	1.363	1.212		88.9	100	-11.1	20.0
trans-Chlordane	Ave	1.386	1.215		87.6	100	-12.4	20.0
cis-Chlordane	Ave	1.365	1.194		87.5	100	-12.5	20.0
4,4'-DDE	Ave	1.293	1.122		86.7	100	-13.3	20.0
Endosulfan I	Ave	1.302	1.159		89.1	100	-10.9	20.0
Dieldrin	Ave	1.374	1.181		85.9	100	-14.1	20.0
Endrin	Ave	1.378	1.137		82.5	100	-17.5	20.0
4,4'-DDD	Ave	1.142	1.020		89.4	100	-10.6	20.0
Endosulfan II	Ave	1.296	1.140		87.9	100	-12.1	20.0
4,4'-DDT	Ave	1.168	0.7888		67.5	100	-32.5*	20.0
Endrin aldehyde	Ave	1.090	0.9496		87.2	100	-12.8	20.0
Methoxychlor	Ave	0.7163	0.4673		65.2	100	-34.8*	20.0
Mirex	Ave	1.076	0.9178		85.3	100	-14.7	20.0
Endosulfan sulfate	Ave	1.331	1.138		85.5	100	-14.5	20.0
Endrin ketone	Ave	1.423	1.259		88.4	100	-11.6	20.0
Tetrachloro-m-xylene	Ave	1.042	1.054		101	100	1.2	20.0
DCB Decachlorobiphenyl	Ave	1.458	1.403		96.3	100	-3.7	20.0

PCB Data Section

QA/QC Review of Method 8082A PCB Data for Eurofins TestAmerica-Edison, Job No. 460-222216-1

3 Soil Samples and 3 Surface Water Samples Collected November 3, 2020

Prepared by: Donald Anné February 8, 2021

Geology

Hydrology

Remediation

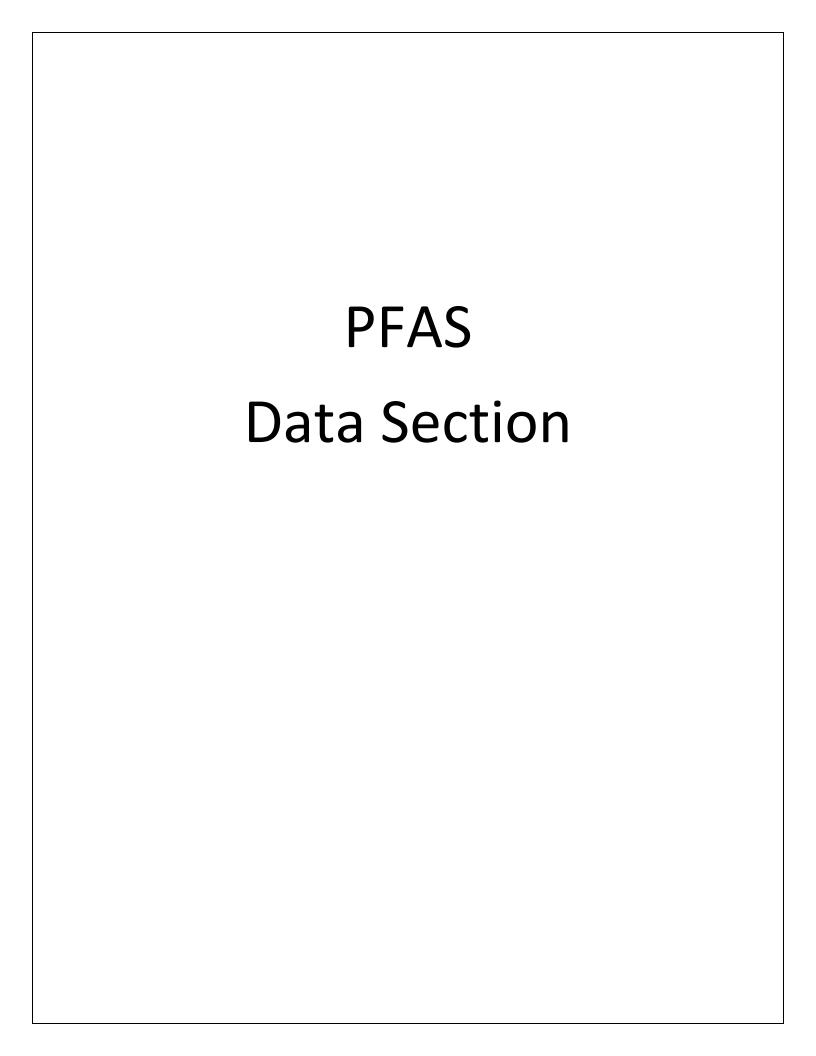
Water Supply

<u>Holding Times</u>: Samples were extracted and analyzed within USEPA SW-846 holding times.

<u>Blanks</u>: The analyses of the method blanks reported target PCBs as not detected.

<u>Surrogate Recovery</u>: The surrogate recoveries were within QC limits for the soil and surface water samples on both columns.

<u>Laboratory Control Sample</u>: The relative percent differences for PCB-1016 and PCB-1260 were below the allowable maximum and the percent recoveries were within QC limits for aqueous samples LCS 460-738219/2-A and LCSD 460-738219/2-A, and soil samples LCS 460-739628/2-A and LCSD 460-739628/3-A.


<u>Initial Calibration</u>: The average %RSDs for target PCBs were below the allowable maximum (20%) on both columns, as required.

<u>Continuing Calibration</u>: The average %Ds for target PCBs were below the allowable maximum (20%) on both columns, as required.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits on both columns.

<u>PCB Identification Summary</u>: Checked surrogates were within GC quantitation limits. The analyses of the soil and surface water samples reported target PCBs as not detected.

z:\projects\2021\21600-21620\21600-dec carmel\temp review\460-222216-1.pcb.docx

Hydrology

Remediation

Water Supply

QA/QC Review of Method 537 (Modified) PFAS Data for Eurofins TestAmerica-Sacramento, Job No: 460-222216-1

3 Soil Samples and 3 Surface Water Samples Collected November 3, 2020

Prepared by: Donald Anné February 8, 2021

Holding Times: Samples were analyzed within USEPA holding times.

<u>Initial Calibration</u>: The %RSDs for applicable PFAS compounds were below the method maximums, as required.

<u>Continuing Calibration</u>: The %Ds for applicable PFAS compounds were below the allowable maximums, as required

Blanks: Method blank MB 320-432465/1-A contained traces of PFBA (0.0736 ug/kg) and PFOS (0.414 ug/kg). Positive results for these PFAS that are below the reporting limit (RL) should be reported as not detected (U) at the reporting limit in associated samples. Positive results for these PFAS that are above the RL and less than ten times the highest blank level should be considered estimated, biased high (J+) in associated samples.

<u>Surrogate Recovery</u>: Two of eighteen surrogate recoveries for soil samples S-1, S-2, and S-3 were above QC limits. Positive results associated with surrogates outside QC limits should be considered estimated (J) in these samples.

Two of eighteen surrogate recoveries for SPLP soil sample S-2 were above QC limits. Positive results associated with surrogates outside QC limits should be considered estimated (J) in SPLP sample S-2.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences for target PFAS were below the allowable maximum, but 2 of 2 percent recoveries (%Rs) for PFUnA and 1 of 2 %Rs for PFDS were above QC limits for soil MS/MSD sample S-1. The positive result for PFUnA should be considered estimated, biased high (J+) in sample S-1.

<u>Laboratory Control Sample</u>: The relative percent differences for target PFAS were below the allowable maximum and the percent recoveries (%Rs) were within QC limits for aqueous samples LCS 320-429840/2-A, LCSD 320-429840/3-A, LCS 320-433241/2-A, and LCSD 320-433241/3-A. The %Rs for target PFAS were within QC limits for soil sample LCS 320-432465/2-A.

Compound ID: Checked compounds and surrogates were within LC quantitation limits.

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-222216-1

SDG No.:

Matrix: Solid Level: Low

GC Column (1): GeminiC18 3 ID: 3 (mm)

Client Sample ID	Lab Sample ID	PFBA #	PFPeA #	C3PFBS #	PFHxA #	C4PFHA #	PFHxS #	M262FTS#	PFOA #
S-1	460-222216-4	81	61	69	90	90	94	258 *5	91
S-2	460-222216-5	73	58	69	88	88	91	248 *5	92
S-3	460-222216-6	83	60	66	77	91	93	246 *5	94
	MB 320-432465/1-A	94	87	86	99	99	90	127	98
	LCS 320-432465/2-A	97	91	94	98	104	97	136	102
S-1 MS	460-222216-4 MS	78	58	66	88	93	96	245 *5	87
S-1 MSD	460-222216-4 MSD	80	58	72	89	96	100	270 *5	94

	QC LIMITS
PFBA = 13C4 PFBA	25-150
PFPeA = 13C5 PFPeA	25-150
C3PFBS = 13C3 PFBS	25-150
PFHxA = 13C2 PFHxA	25-150
PFHxS = 1802 PFHxS	25-150
C4PFHA = 13C4 PFHpA	25-150
M262FTS = M2-6:2 FTS	25-150
PFOA = 13C4 PFOA	25-150

Column to be used to flag recovery values

FORM II 537 (modified)

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-222216-1

SDG No.:

Matrix: Solid Level: Low

GC Column (1): GeminiC18 3 ID: 3 (mm)

Client Sample ID	Lab Sample ID	PFOS #	PFNA #	PFOSA #	#M282FTS#	PFDA #	d3NMFOS#	PFUnA #	d5NEFOS#
S-1	460-222216-4	88	83	64	268 *5	92	79	95	82
S-2	460-222216-5	94	87	69	271 *5	94	87	95	91
S-3	460-222216-6	89	85	68	245 *5	86	75	86	77
	MB 320-432465/1-A	93	97	89	107	94	92	95	102
	LCS 320-432465/2-A	98	97	91	114	93	95	93	102
S-1 MS	460-222216-4 MS	86	82	63	263 *5	96	83	95	84
S-1 MSD	460-222216-4 MSD	93	84	64	277 *5	91	80	102	83

	QC LIMITS
PFOS = 13C4 PFOS	25-150
PFNA = 13C5 PFNA	25-150
PFOSA = 13C8 FOSA	25-150
M282FTS = M2-8:2 FTS	25-150
PFDA = 13C2 PFDA	25-150
d3NMFOS = d3-NMeFOSAA	25-150
PFUnA = 13C2 PFUnA	25-150
d5NEFOS = d5-NEtFOSAA	25-150

 $\ensuremath{\text{\#}}$ Column to be used to flag recovery values

FORM II 537 (modified)

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-222216-1

SDG No.:

Matrix: Solid Level: Low

GC Column (1): GeminiC18 3 ID: 3 (mm)

Client Sample ID	Lab Sample ID	PFDoA #	PFTDA #
S-1	460-222216-4	80	94
S-2	460-222216-5	84	68
S-3	460-222216-6	81	68
	MB 320-432465/1-A	97	101
	LCS 320-432465/2-A	98	101
S-1 MS	460-222216-4 MS	82	81
S-1 MSD	460-222216-4 MSD	82	84

PFDoA = 13C2 PFDoA PFTDA = 13C2 PFTeDA QC LIMITS
25-150
25-150

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-222216-1

SDG No.:

Matrix: Solid (SPLP East) Level: Low

GC Column (1): Gemini C18 ID: 3 (mm)

Client Sample ID	Lab Sample ID	PFBA #	PFPeA #	C3PFBS #	PFHxA #	C4PFHA #	PFHxS #	M262FTS#	PFOA #
S-2	460-222216-5	83	91	96	95	95	110	157 *5	97
S-3	460-222216-6	86	92	90	89	89	103	119	90
	MB 320-433241/1-A	102	107	102	101	99	111	129	105
	LCS 320-433241/2-A	95	98	99	93	89	108	119	94
	LCSD 320-433241/3-A	99	104	98	97	95	109	122	97

	QC LIMITS
PFBA = 13C4 PFBA	25-150
PFPeA = 13C5 PFPeA	25-150
C3PFBS = 13C3 PFBS	25-150
PFHxA = 13C2 PFHxA	25-150
C4PFHA = 13C4 PFHpA	25-150
PFHxS = 1802 PFHxS	25-150
M262FTS = M2-6:2 FTS	25-150
PFOA = 13C4 PFOA	25-150

Column to be used to flag recovery values

FORM II 537 (modified)

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-222216-1

SDG No.:

Matrix: Solid (SPLP East) Level: Low

GC Column (1): <u>Gemini C18</u> ID: <u>3</u> (mm)

Client Sample ID	Lab Sample ID	PFOS #	PFNA #	M282FTS#	PFDA #	PFOSA #	d3NMFOS#	PFUnA #	d5NEFOS#
S-2	460-222216-5	106	91	155 *5	88	102	71	88	96
S-3	460-222216-6	100	82	117	79	90	61	78	86
	MB 320-433241/1-A	109	92	173 *5	99	99	58	75	62
	LCS 320-433241/2-A	109	86	119	92	93	70	91	91
	LCSD 320-433241/3-A	108	90	113	89	96	72	93	90

	QC LIMITS
PFOS = 13C4 PFOS	25-150
PFNA = 13C5 PFNA	25-150
M282FTS = M2-8:2 FTS	25-150
PFDA = 13C2 PFDA	25-150
PFOSA = 13C8 FOSA	25-150
d3NMFOS = d3-NMeFOSAA	25-150
PFUnA = 13C2 PFUnA	25-150
d5NEFOS = d5-NEtFOSAA	25-150

 $\ensuremath{\text{\#}}$ Column to be used to flag recovery values

FORM II 537 (modified)

SDG No.:

Matrix: Solid (SPLP East) Level: Low

GC Column (1): Gemini C18 ID: 3 (mm)

Client Sample ID	Lab Sample ID	PFDoA #	PFTDA #
S-2	460-222216-5	73	51
S-3	460-222216-6	72	57
	MB 320-433241/1-A	45	79
	LCS 320-433241/2-A	76	77
	LCSD 320-433241/3-A	83	85

PFDoA = 13C2 PFDoA PFTDA = 13C2 PFTeDA QC LIMITS
25-150
25-150

FORM III LCMS MATRIX SPIKE RECOVERY

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-222216-1

SDG No.:

Matrix: Solid Level: Low Lab File ID: 2020.11.18_A13_PFC_D_050.d

Lab ID: 460-222216-4 MS Client ID: S-1 MS

	SPIKE	SAMPLE	MS	MS	QC	
	ADDED	CONCENTRATION	_		LIMITS	#
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC	REC	"
Perfluorobutanoic acid (PFBA)	7.94	0.55 J	7.80	91	_	
Perfluoropentanoic acid	7.94	0.48 J	8.93	106		
(PFPeA)	7.54	0.400	0.95	100	05 125	
Perfluorohexanoic acid (PFHxA)	7.94	0.28 J	8.28	101	71-131	
Perfluoroheptanoic acid	7.94	0.23 J	9.00	110		
(PFHpA)	, • 5 1	0.230	3.00	110	, 1 101	
Perfluorooctanoic acid (PFOA)	7.94	0.61 J	9.17	108	72-132	
Perfluorononanoic acid (PFNA)	7.94	0.22 J	9.52	117	73-133	
Perfluorodecanoic acid (PFDA)	7.94	0.30 J	8.43	103	72-132	
Perfluoroundecanoic acid	7.94	0.34 J	11.4	139		
(PFUnA)					, , , , , , ,	
Perfluorododecanoic acid	7.94	0.27 J	9.01	110	71-131	
(PFDoA)						
Perfluorotridecanoic acid	7.94	0.39 J	9.41	114	71-131	
(PFTriA)						
Perfluorotetradecanoic acid	7.94	0.23 J	8.69	107	67-127	
(PFTeA)	7.01	0.77 U	0 04	107	60 100	
Perfluorobutanesulfonic acid (PFBS)	7.01	0.770	8.94	127	69-129	
Perfluorohexanesulfonic acid	7.22	0.81	8.58	108	62-122	
(PFHxS)	1.22	0.01	0.50	100	02-122	
Perfluoroheptanesulfonic Acid	7.55	0.77 U	9.03	120	76-136	
(PFHpS)						
Perfluorooctanesulfonic acid	7.36	5.2	14.3	124	68-141	
(PFOS)						
Perfluorodecanesulfonic acid	7.65	0.77 บ	10.3	135	71-131	F1
(PFDS)						
Perfluorooctanesulfonamide	7.94	0.77 U	9.45	119	77-137	
(FOSA)	7.94	7.7 U	10.2	100	72-132	
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	7.94	7.70	10.3	129	/2-132	
N-ethylperfluorooctanesulfonam	7.94	7.7 U	9.50	120	72-132	
idoacetic acid (NEtFOSAA)	7.54	7.70	9.50	120	72 132	
6:2 FTS	7.52	7.7 U	8.40	112	73-139	
8:2 FTS	7.60	7.7 U	9.09	120		
13C4 PFBA	19.8	16	15.4	78		
13C5 PFPeA	19.8	12	11.6	58		
13C2 PFHxA	19.8	17	17.4	88		
13C4 PFHpA	19.8	17	18.4	93		
13C4 PFOA	19.8	17	17.3	87		
13C5 PFNA	19.8	16	16.2	82	25-150	
13C2 PFDA	19.8	18	19.0	96		
13C2 PFDA 13C2 PFUnA	19.8	18	18.9	95		
13C2 PFDoA	19.8	15	16.3	82	25-150	
13C2 PFTeDA	19.8	18	16.0	81	25-150	

[#] Column to be used to flag recovery and RPD values
FORM III 537 (modified)

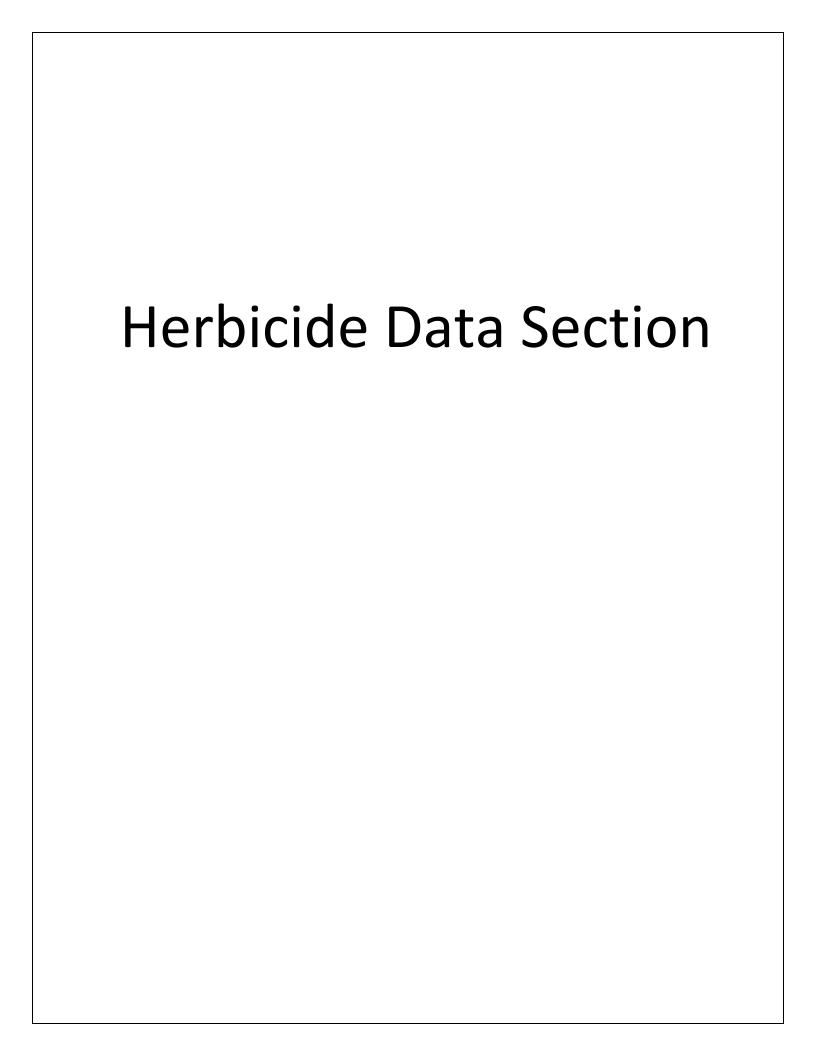
FORM III LCMS MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-222216-1

SDG No.:

Matrix: Solid Level: Low Lab File ID: 2020.11.18_A13_PFC_D_051.d

Lab ID: 460-222216-4 MSD Client ID: S-1 MSD


	SPIKE	MSD	MSD	0	QC LI	IMITS	"
COMPOUND	ADDED (ug/Kg)	CONCENTRATION (ug/Kg)	% REC	% RPD	RPD	REC	#
Perfluorobutanoic acid (PFBA)	7.82	7.34	87	6	30	76-136	
Perfluoropentanoic acid	7.82	9.05	110	1	30	69-129	
(PFPeA)	7.02	7.05	110		30	05 125	
Perfluorohexanoic acid (PFHxA)	7.82	8.24	102	1	30	71-131	
Perfluoroheptanoic acid	7.82	8.90	111	1	30	71-131	
(PFHpA)							
Perfluorooctanoic acid (PFOA)	7.82	8.84	105	4	30	72-132	
Perfluorononanoic acid (PFNA)	7.82	9.14	114	4	30	73-133	
Perfluorodecanoic acid (PFDA)	7.82	8.44	104	0	30	72-132	
Perfluoroundecanoic acid	7.82	10.4	129	9	30	66-126	F1
(PFUnA)							
Perfluorododecanoic acid (PFDoA)	7.82	8.61	107	4	30	71-131	
Perfluorotridecanoic acid	7.82	9.35	115	1	30	71-131	
(PFTriA)	, • 0 2			1			
Perfluorotetradecanoic acid	7.82	9.38	117	8	30	67-127	
(PFTeA)							
Perfluorobutanesulfonic acid (PFBS)	6.91	8.23	119	8	30	69-129	
Perfluorohexanesulfonic acid	7.11	8.50	108	1	30	62-122	
(PFHxS)							
Perfluoroheptanesulfonic Acid	7.44	8.39	113	7	30	76-136	
(PFHpS)							
Perfluorooctanesulfonic acid	7.25	13.8	119	3	30	68-141	
(PFOS)	7 - 4	0.01	1 2 0		2.0	71 101	
Perfluorodecanesulfonic acid (PFDS)	7.54	9.81	130	5	30	71-131	
Perfluorooctanesulfonamide	7.82	9.69	124	3	30	77-137	
(FOSA)	7.02	7.05	127	٦	50	// 13/	
N-methylperfluorooctanesulfona	7.82	9.95	127	3	30	72-132	
midoacetic acid (NMeFOSAA)							
N-ethylperfluorooctanesulfonam	7.82	10.0	128	6	30	72-132	
idoacetic acid (NEtFOSAA)							
6:2 FTS	7.41	7.96	107	5	30	73-139	
8:2 FTS	7.49	8.06	108	I	30	75-135	
13C4 PFBA	19.5	15.6	80			25-150	
13C5 PFPeA	19.5	11.4	58			25-150	
13C2 PFHxA	19.5	17.3	89	I		25-150	
13C4 PFHpA	19.5	18.7	96			25-150	
13C4 PFOA	19.5	18.4	94			25-150	
13C5 PFNA	19.5	16.4	84			25-150	
13C2 PFDA	19.5	17.8	91			25-150	
13C2 PFUnA	19.5	19.9	102			25-150	
13C2 PFDoA	19.5	16.0	82			25-150	
13C2 PFTeDA	19.5	16.3	84			25-150	

[#] Column to be used to flag recovery and RPD values
FORM III 537 (modified)

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-222216-1 SDG No.: Lab Sample ID: MB 320-432465/1-A Client Sample ID: Matrix: Solid Lab File ID: 2020.11.18_A13_PFC_D_045.d Analysis Method: 537 (modified) Date Collected: Date Extracted: 11/17/2020 09:15 Extraction Method: SHAKE Sample wt/vol: 5.00(g) Date Analyzed: 11/19/2020 08:16 Con. Extract Vol.: 10.0(mL) Dilution Factor: 1 Injection Volume: 20(uL) GC Column: GeminiC18 3x100 ID: 3(mm) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 433288 Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.0736	J	0.20	0.028
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.20	U	0.20	0.077
307-24-4	Perfluorohexanoic acid (PFHxA)	0.20	U	0.20	0.042
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.20	U	0.20	0.029
335-67-1	Perfluorooctanoic acid (PFOA)	0.20	U	0.20	0.086
375-95-1	Perfluorononanoic acid (PFNA)	0.20	U	0.20	0.036
335-76-2	Perfluorodecanoic acid (PFDA)	0.20	U	0.20	0.022
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.20	U	0.20	0.036
307-55-1	Perfluorododecanoic acid (PFDoA)	0.20	U	0.20	0.067
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.20	U	0.20	0.051
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.20	U	0.20	0.054
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.20	U	0.20	0.025
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.20	U	0.20	0.031
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.20	Ū	0.20	0.035
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	0.414	J	0.50	0.20
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.20	U	0.20	0.039
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.20	U	0.20	0.082
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	2.0	Ū	2.0	0.39
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	2.0	U	2.0	0.37
27619-97-2	6:2 FTS	2.0	U	2.0	0.15
39108-34-4	8:2 FTS	2.0	U	2.0	0.25

Hydrology

Remediation

Water Supply

QA/QC Review of Method 8151A Herbicide Data for Eurofins TestAmerica-Edison, Job No. 460-222216-1

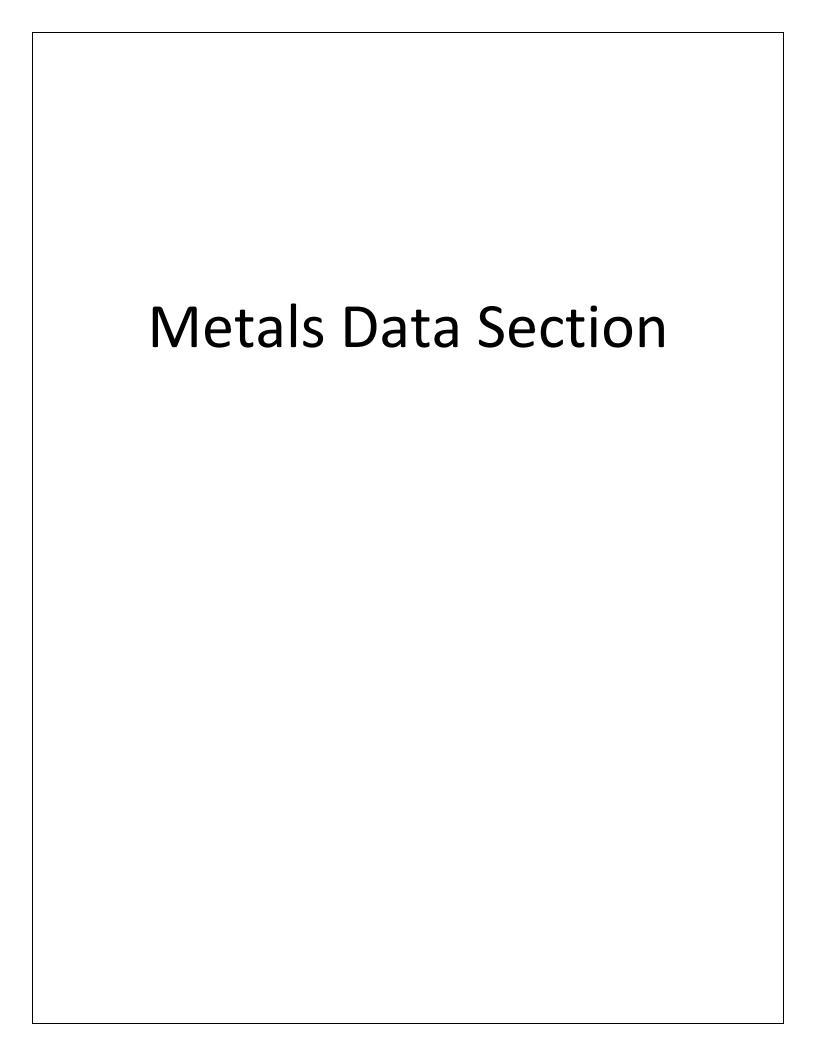
3 Soil Samples and 3 Surface Water Samples Collected November 3, 2020

Prepared by: Donald Anné February 8, 2021

<u>Holding Times</u>: Samples were extracted and analyzed within USEPA SW-846 holding times.

Blanks: The analyses of the method blanks reported target herbicides as not detected.

<u>Surrogate Recovery</u>: The surrogate recoveries were within QC limit for the soil and surface water samples on both columns.


<u>Laboratory Control Sample</u>: The relative percent differences for target herbicides were below the allowable maximum and the percent recoveries were within QC limits for aqueous samples LCS 460-738541/2-A and LCSD 460-738541/3-A, and soil sample LCS 460-738542/2-A and LCSD 460-738542/3-A.

<u>Initial Calibration</u>: The average %RSDs for target herbicides were below the allowable maximum (20%) on both columns, as required.

<u>Continuing Calibration</u>: The average %Ds for target herbicides were below the allowable maximum (20%) on both columns, as required.

<u>PCB Identification Summary</u>: Checked surrogates were within GC quantitation limits. The analyses of the soil and surface water samples reported target herbicides as not detected.

z:\projects\2021\21600-21620\21600-dec carmel\temp review\460-222216-1.her.docx

Hydrology

Remediation

Water Supply

QA/QC Review of TAL Metals Data for Eurofins TestAmerica-Edison, Job No: 480-222216-1

3 Soil Samples and 3 Surface Water Samples Collected November 3, 2020

Prepared by: Donald Anné February 8, 2021

Holding Times: Samples were analyzed within the USEPA SW-846 holding times.

<u>Initial and Continuing Calibration Verification</u>: The percent recoveries for TAL metals were within control limits (90-110% for all metals except Hg, 80-120% for Hg).

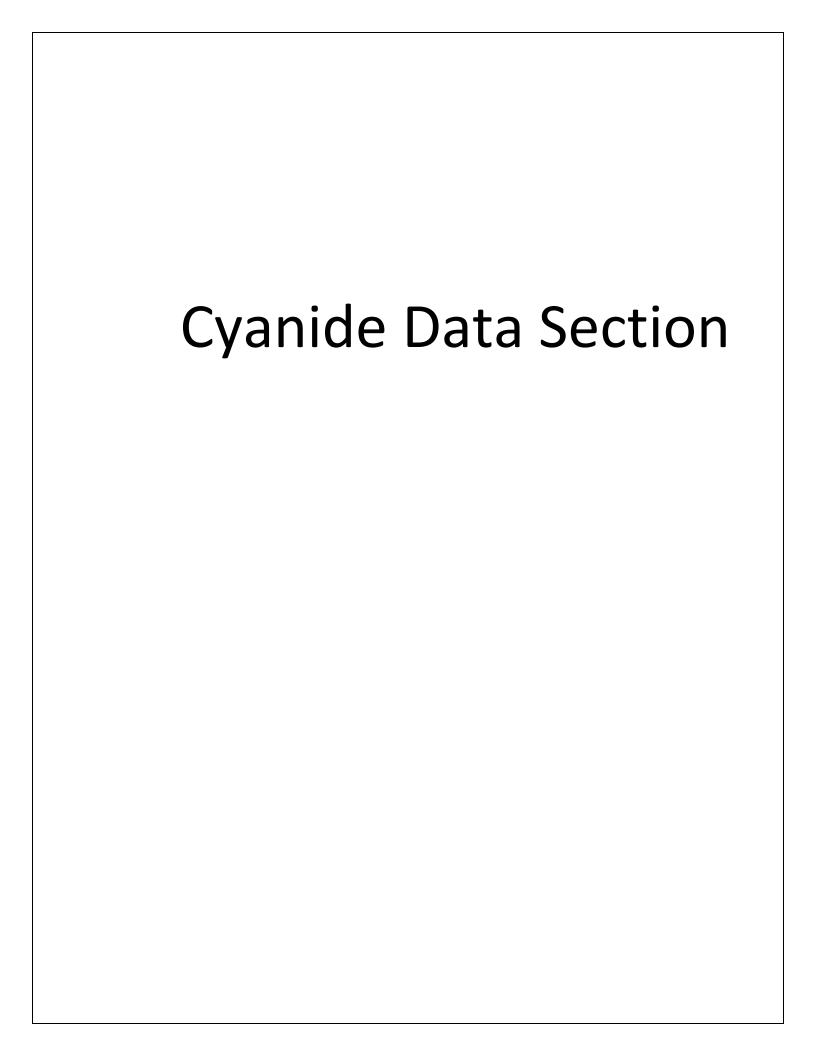
<u>Low Level Initial and Continuing Calibration Verification</u>: The percent recoveries for applicable TAL metals were within laboratory QC limits (70-130% for all metals except Hg).

<u>Blanks</u>: The analyses for initial and continuing calibration, and method blanks reported TAL metals as either not detected or below the reporting limits, as required.

<u>ICP Interference Check Sample</u>: The percent recoveries for applicable TAL metals were within control limits (80-120%).

Spike Sample Recovery: This data was not provided.

<u>Laboratory Duplicates</u>: This data was not provided.


<u>Linear Range Check Standard</u>: The percent recoveries for applicable metals were within QC limits for samples LRC 460-739688/15, LRC 460-739688/18, LRC-738739/12, LRC 460-738739/13, LRC 460-741658/13, and LRC460-741658/15.

<u>Laboratory Control Sample</u>: The recoveries for TAL metals were within control limits for soil samples LCSSRM 460-739444/2-A and LCSSRM 460-740145/11-A. The percent recoveries for TAL metals were within control limits (80-120%) for aqueous sample LCS 460-741239/2-A.

Serial Dilution: This data was not provided.

<u>Instrument Detection Limits</u>: The IDLs were at or below the MRLs, as required.

<u>Percent Solids</u>: The percent solids for soil samples S-1 and S-2 were below 50%, but not below 10%. Positive metals results for samples S-1 and S-2 should be considered estimated (J).

Hydrology

Remediation

Water Supply

QA/QC Review of Total Cyanide Data for Eurofins TestAmerica-Edison, Job No: 460-222216-1

3 Soil Samples and 3 Surface Water Samples Collected November 3, 2020

Prepared by: Donald Anné February 8, 2021

<u>Holding Times</u>: Samples were analyzed within USEPA SW-846 holding times.

<u>Initial and Continuing Calibration Verification</u>: The percent recoveries for total cyanide were within control limits (85-115%).

<u>Blanks</u>: The analyses of initial calibration and continuing calibration blanks reported total cyanide as not detected.

Spike Sample Recovery: This data was not provided

Laboratory Duplicates: This data was not provided.

<u>Laboratory Control Sample</u>: The percent recovery (%R) for total cyanide was within QC limits (38.5-110.2%) for soil sample LCSSRM 460-740055/2-A. The %R for total cyanide was within QC limits (85-115%) for aqueous sample LCS 460-740554/2-A.

 $z:\projects\2021\21600-21620\21600-dec\ carmel\ temp\ review\460-222216-1.tcn.docx$

TOC Data Section

Hydrology

Remediation

Water Supply

QA/QC Review of Total Organic Carbon (TOC) Data for Eurofins TestAmerica-Burlington, Job No: 460-222216-1

2 Soil Samples Collected November 3, 2020

Prepared by: Donald Anné February 8, 2021

<u>Holding Times</u>: Both samples were analyzed outside established holding time. Results for both samples should be considered estimated (J).

<u>Initial and Continuing Calibration Verification</u>: The percent recoveries for TOC were within laboratory QC limits (75-125%).

<u>Blanks</u>: The analysis of the method blank reported TOC as not detected.

Spike Sample Recovery: This data was not provided.

<u>Duplicates</u>: This data was not provided.

<u>Laboratory Control Sample</u>: The percent recovery For TOC was within laboratory QC limits (75-125%) for aqueous sample LCS 200-161381/6.

 $z:\projects\2021\21600-21620\21600-dec\ carmel\ temp\ review\460-222216-1.toc.docx$

Alpha Geoscience: Acronyms and Definitions

Data Validation Acronyms

AA Atomic absorption, flame technique

BHC Hexachlorocyclohexane BFB Bromofluorobenzene

CCB Continuing calibration blank
CCC Calibration check compound
CCV Continuing calibration verification

CN Cyanide

CRDL Contract required detection limit
CRQL Contract required quantitation limit
CVAA Atomic adsorption, cold vapor technique

DCAA 2,4-Dichlophenylacetic acid

DCB Decachlorobiphenyl

DFTPP Decafluorotriphenyl phosphine ECD Electron capture detector

FAA Atomic absorption, furnace technique

FID Flame ionization detector FNP 1-Fluoronaphthalene GC Gas chromatography

GC/MS Gas chromatography/mass spectrometry

GPC Gel permeation chromatography

ICB Initial calibration blank

ICP Inductively coupled plasma-atomic emission spectrometer

ICV Initial calibration verification IDL Instrument detection limit

IS Internal standard

LCS Laboratory control sample

LCS/LCSD Laboratory control sample/laboratory control sample duplicate

MSA Method of standard additions
MS/MSD Matrix spike/matrix spike duplicate

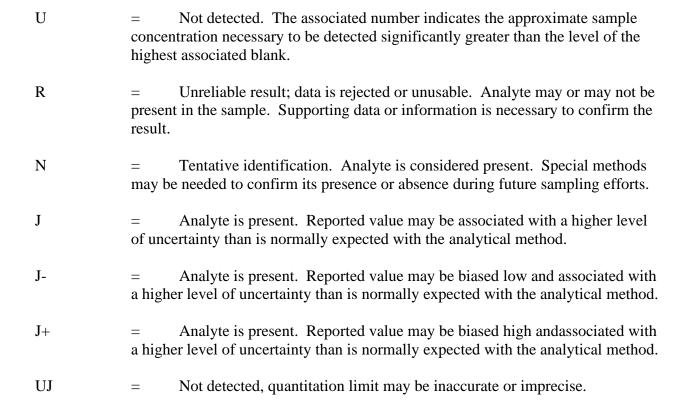
PID Photo ionization detector
PCB Polychlorinated biphenyl
PCDD Polychlorinated dibenzodioxins
PCDF Polychlorinated dibenzofurans

QA Quality assurance QC Quality control RF Response factor

RPD Relative percent difference RRF Relative response factor

RRF(number) Relative response factor at concentration of the number following

RT Retention time


RRT Relative retention time SDG Sample delivery group

SPCC System performance check compound

TCX Tetrachloro-m-xylene %D Percent difference %R Percent recovery

%RSD Percent relative standard deviation

Data Validation Qualifiers Used in the QA/QC Reviews for USEPA Region II

Note: These qualifiers are used for data validation purposes. The data validation qualifiers may differ from the qualifiers that the laboratory assigns to the data. Refer to the laboratory analytical report for the definitions of the laboratory qualifiers.

Data Usability Summary Report for Eurofins TestAmerica-Edison, Burlington, and Sacramento Job No: 460-222961-1

Geology

Hydrology

Remediation

Water Supply

5 Ground Water Samples, 1 Field Duplicate, 1 Soil Sample, 1 Surface Water Sample, and 1 Equipment Blank Collected November 13, 2020

> Prepared by: Donald Anné February 8, 2021

The data package contains the documentation as required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appears legible and complete. The data pack contains the results of volatile, semi-volatile, pesticides, PCBs, herbicides, metals, and total cyanide analyses for 1 soil sample, 1 surface water sample, 4 ground water samples, and 1 field duplicate; and results of PFAS for 1 soil sample, 1 surface water sample, 5 ground water samples, 1 field duplicate, and 1 equipment blank.

The overall performances of the analyses are acceptable. Eurofins TestAmerica-Edison, Burlington, and Sacramento labs did fulfill the requirements of the analytical methods.

The data are acceptable with some issues that are identified in the accompanying data validation reviews. The following data were qualified:

- The positive and "not detected" volatile results for target compounds were qualified as "estimated" (J, UJ respectively) for sample S-4 because the sample was analyzed beyond USEPA SW-846 holding times.
- The positive semi-volatile result for benzaldehyde was qualified as estimated, biased high (J+) in sample S-4 because the percent recovery for benzaldehyde was above QC limits in the associated soil LCS.
- The positive PFAS result for PFOS was qualified as "rejected, unusable" (R) for sample S-4 because the sample was associated with a blank containing an unacceptably high level of PFOS and reported concentration for PFOS was less than 10 times the blank level.
- The "not detected" PCB results for target PCBs were qualified as "estimated" (UJ) for sample SW-4 because 1 of 2 surrogate recoveries was below QC limits, but not below 10% on both columns for the sample.

- The positive re-analyzed PFAS result for PFOS and re-analyzed "not detected" PFAS results for NMeFOSAA, NEtFOSAA, 6:2 FTS, and 8:2 FTS were qualified as "estimated" (J, UJ respectively) for re-analyzed sample S-4 because the sample was re-analyzed beyond USEPA holding times.
- The "no detected" PFAS result for NEtFOSAA was qualified as "estimated" (UJ) in sample S-4 because the percent recovery for NEtFOSAA was below QC limits, but not below 10% in the associated soil LCS.
- The positive PFAS results for PFBA was qualified as "not detected" (U) at the reporting limit for sample S-4 because the sample was associated with a blank containing PFBA and reported concentration for PFBA was below the reporting limit.
- The positive metal results for iron were qualified as "estimated, biased high" (J+) in all 4 ground water samples, the surface water sample, and the field duplicate because the percent recovery for iron was above control limits in the associated aqueous spike sample.
- The positive metal results for zinc were qualified as estimated (J) in samples MW-1A and DUP because the relative percent difference for zinc was above the allowable maximum in the aqueous field duplicate pair MW-1A/DUP.
- The positive metal results for 17 metals were qualified as "estimated" (J) in sample S-4 because the percent solids for the sample was below 50%, but not below 10%.
- The positive result for total cyanide was qualified as "estimated, biased high" (J+) in sample MW-2 because 2 of 2 percent recoveries for total cyanide were above QC limits in the associated aqueous MS/MSD sample.

All data that are not qualified rejected (R) are considered usable with estimated (J, J+, or UJ) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation review.

Qualified Data Section	

!"#\$%&'()*!#&+#,-!%,

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;69<

.(/&'()*!#&012&345677784969

1(%#& ?!!#@%#**9623**.CB 5&9C235 1(%#&+#@#"D#**9623**.4B 5&98235

<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1_	N=#*(=#A	<\$(!JM#A	1"!&L(@
Chloromethane	1.0	U	1.0	0.40	-			11/22/20 16:14	1
Bromomethane	1.0	U	1.0	0.55	ug/L			11/22/20 16:14	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			11/22/20 16:14	1
Chloroethane	1.0	U	1.0	0.32	ug/L			11/22/20 16:14	1
Methylene Chloride	1.0	U	1.0	0.32	ug/L			11/22/20 16:14	1
Acetone	5.0	U	5.0	4.4	ug/L			11/22/20 16:14	1
Carbon disulfide	1.0	U	1.0	0.82	ug/L			11/22/20 16:14	1
Trichlorofluoromethane	1.0	U	1.0	0.32	ug/L			11/22/20 16:14	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			11/22/20 16:14	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			11/22/20 16:14	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			11/22/20 16:14	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			11/22/20 16:14	1
Chloroform	1.0	U	1.0	0.33	ug/L			11/22/20 16:14	1
1,2-Dichloroethane	1.0	U	1.0		ug/L			11/22/20 16:14	1
2-Butanone (MEK)	5.0	U	5.0		ug/L			11/22/20 16:14	1
1,1,1-Trichloroethane	1.0		1.0		ug/L			11/22/20 16:14	1
Carbon tetrachloride	1.0		1.0	0.21	-			11/22/20 16:14	1
Dichlorobromomethane	1.0		1.0	0.34	-			11/22/20 16:14	1
1,2-Dichloropropane	1.0		1.0		ug/L			11/22/20 16:14	1
cis-1,3-Dichloropropene	1.0		1.0	0.22	-			11/22/20 16:14	1
Trichloroethene	1.0		1.0		ug/L			11/22/20 16:14	1
Chlorodibromomethane	1.0		1.0		ug/L			11/22/20 16:14	· · · · · · · · · · · · · · · · · · ·
1,1,2-Trichloroethane	1.0		1.0	0.20	-			11/22/20 16:14	1
Benzene	1.0		1.0	0.20	_			11/22/20 16:14	1
trans-1,3-Dichloropropene	1.0		1.0		ug/L			11/22/20 16:14	
Bromoform	1.0		1.0	0.54	-			11/22/20 16:14	1
4-Methyl-2-pentanone (MIBK)		U *	5.0		ug/L			11/22/20 16:14	1
2-Hexanone		U *	5.0		ug/L ug/L			11/22/20 16:14	
	1.0		5.0 1.0		-			11/22/20 16:14	1
Tetrachloroethene 1,1,2,2-Tetrachloroethane				0.25	-				•
	1.0		1.0		ug/L			11/22/20 16:14	
Toluene	1.0		1.0		ug/L			11/22/20 16:14	1
Chlorobenzene	1.0		1.0		ug/L			11/22/20 16:14	1
Ethylbenzene	1.0		1.0		ug/L			11/22/20 16:14	1
Styrene	1.0		1.0		ug/L			11/22/20 16:14	1
m-Xylene & p-Xylene	1.0		1.0	0.30				11/22/20 16:14	1
o-Xylene	1.0		1.0		ug/L			11/22/20 16:14	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0		1.0		ug/L			11/22/20 16:14	1
Methyl tert-butyl ether	1.0		1.0		ug/L			11/22/20 16:14	1
Cyclohexane	1.0	U	1.0		ug/L			11/22/20 16:14	1
Ethylene Dibromide	1.0		1.0		ug/L			11/22/20 16:14	1
1,3-Dichlorobenzene	1.0	U	1.0		ug/L			11/22/20 16:14	1
1,4-Dichlorobenzene	1.0	U	1.0	0.33	ug/L			11/22/20 16:14	1
1,2-Dichlorobenzene	1.0	U	1.0		ug/L			11/22/20 16:14	1
Dichlorodifluoromethane	1.0	U	1.0	0.31	ug/L			11/22/20 16:14	1
1,2,4-Trichlorobenzene	1.0	U	1.0	0.37	ug/L			11/22/20 16:14	1
1,4-Dioxane	50	U	50	28	ug/L			11/22/20 16:14	1
1,2,3-Trichlorobenzene	1.0	U	1.0	0.36	ug/L			11/22/20 16:14	1
1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.38	ug/L			11/22/20 16:14	1
Chlorobromomethane	1.0	U	1.0	0.41	ug/L			11/22/20 16:14	1

!"#\$%&'()*!#&+#,-!%,

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;69<

.(/&'()*!#&012&345677784969

1(%#& ?!!#@%#**9913.CF** 5&9C235

:(%=">2&(%#=

<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L((
sopropylbenzene	1.0	U	1.0	0.34	ug/L		-	11/22/20 16:14	1
Methyl acetate	5.0	U	5.0	0.79	ug/L			11/22/20 16:14	1
Methylcyclohexane	1.0	U	1.0		ug/L			11/22/20 16:14	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
entatively Identified Compound	None		ug/L				<u> </u>	11/22/20 16:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
,2-Dichloroethane-d4 (Surr)	82		75 - 123					11/22/20 16:14	1
Foluene-d8 (Surr)	104		80 - 120					11/22/20 16:14	1
1-Bromofluorobenzene	101		76 - 120					11/22/20 16:14	1
Dibromofluoromethane (Surr)	84		77 - 124					11/22/20 16:14	1
#%E?A2&F7T5U&'0:&01&6&	'#)"D?!(%"!#	₽&H=I(\$"@	D& ?)*?-\$A	, &F& (0:&	B& 0,?%	%?*#&1"!	-%"?\$S		
<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(
,4-Dioxane	0.20	U	0.20	0.016	ug/L		11/18/20 09:12	11/19/20 13:50	1
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	29		10 - 150				11/18/20 09:12	11/19/20 13:50	1
#%E?A2&F7T5U&6&'#)"D?!(%"!#&H=I(\$'	'@& ?)*?-	\$A,& RK						
:\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(
Phenol	10	U	10	0.29	ug/L		11/19/20 09:29	11/20/20 05:28	1
2-Chlorophenol	10	U	10	0.38	ug/L		11/19/20 09:29	11/20/20 05:28	1
2-Methylphenol	10	U	10	0.67	ug/L		11/19/20 09:29	11/20/20 05:28	1
1-Methylphenol	10	U	10	0.65	ug/L		11/19/20 09:29	11/20/20 05:28	1
2-Nitrophenol	10	U	10	0.75	ug/L		11/19/20 09:29	11/20/20 05:28	1
2,4-Dimethylphenol	10	U	10	0.62	ug/L		11/19/20 09:29	11/20/20 05:28	1
2,4-Dichlorophenol	10	U	10	1.1	ug/L		11/19/20 09:29	11/20/20 05:28	1
1-Chloro-3-methylphenol	10	U	10	0.58	ug/L		11/19/20 09:29	11/20/20 05:28	1
2,4,6-Trichlorophenol	10	U	10	0.86	ug/L		11/19/20 09:29	11/20/20 05:28	1
2,4,5-Trichlorophenol	10	U	10	0.88	ug/L		11/19/20 09:29	11/20/20 05:28	1
2,4-Dinitrotoluene	2.0	U	2.0		ug/L		11/19/20 09:29	11/20/20 05:28	1
1-Nitrophenol	30	U	30		ug/L		11/19/20 09:29	11/20/20 05:28	1
1,6-Dinitro-2-methylphenol	30	U	30		ug/L		11/19/20 09:29	11/20/20 05:28	1
Pentachlorophenol	30	U	30		ug/L		11/19/20 09:29	11/20/20 05:28	1
Bis(2-chloroethyl)ether	1.0		1.0		ug/L		11/19/20 09:29	11/20/20 05:28	1
N-Nitrosodi-n-propylamine	1.0		1.0		ug/L		11/19/20 09:29	11/20/20 05:28	1
Hexachloroethane	2.0		2.0		ug/L		11/19/20 09:29	11/20/20 05:28	1
Vitrobenzene	1.0		1.0		ug/L		11/19/20 09:29	11/20/20 05:28	1
sophorone	10		10		ug/L		11/19/20 09:29	11/20/20 05:28	
Naphthalene	2.0		2.0		ug/L		11/19/20 09:29	11/20/20 05:28	1
I-Chloroaniline	1.0		1.0		ug/L		11/19/20 09:29	11/20/20 05:28	1
Hexachlorobutadiene	2.0		2.0		ug/L ug/L		11/19/20 09:29	11/20/20 05:28	' 1
2-Methylnaphthalene	10		10		ug/L ug/L		11/19/20 09:29	11/20/20 05:28	1
Hexachlorocyclopentadiene	10		10		ug/L ug/L		11/19/20 09:29	11/20/20 05:28	1
2-Chloronaphthalene	10		10		ug/L ug/L		11/19/20 09:29	11/20/20 05:28	
•					ug/L ug/L				
2-Nitroaniline	20		20		_		11/19/20 09:29	11/20/20 05:28	1
Dimethyl phthalate Acenaphthylene	10 10		10		ug/L ug/L		11/19/20 09:29 11/19/20 09:29	11/20/20 05:28 11/20/20 05:28	
								""""""""""""""""""""""""""""""""""""""	1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;69<

.(/&'()*!#&012&345677784969

1(%#&?!!#@%#**993B.CF**5&9C235 1(%#&+#@#"D#**993B.4F**5&98235

:(%=">2&(%#=

Job ID: 460-222961-1

<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(
3-Nitroaniline	20	U	20	1.9	ug/L		11/19/20 09:29	11/20/20 05:28	1
Acenaphthene	10	U	10	1.1	ug/L		11/19/20 09:29	11/20/20 05:28	1
Dibenzofuran	10	U	10	1.1	ug/L		11/19/20 09:29	11/20/20 05:28	1
2,4-Dinitrophenol	30	U	30	2.6	ug/L		11/19/20 09:29	11/20/20 05:28	1
Diethyl phthalate	10	U	10	0.98	ug/L		11/19/20 09:29	11/20/20 05:28	1
4-Chlorophenyl phenyl ether	10	U	10	1.3	-		11/19/20 09:29	11/20/20 05:28	1
Fluorene	10	U	10	0.91	-		11/19/20 09:29	11/20/20 05:28	1
4-Nitroaniline	20	U	20	1.2	ug/L		11/19/20 09:29	11/20/20 05:28	1
N-Nitrosodiphenylamine	10	U	10	0.89	-		11/19/20 09:29	11/20/20 05:28	1
4-Bromophenyl phenyl ether	10	U	10		ug/L		11/19/20 09:29	11/20/20 05:28	1
Hexachlorobenzene	1.0		1.0	0.40			11/19/20 09:29	11/20/20 05:28	1
Phenanthrene	10		10	1.3	-		11/19/20 09:29	11/20/20 05:28	1
Anthracene	10		10	1.3	-		11/19/20 09:29	11/20/20 05:28	1
Carbazole	10		10		ug/L		11/19/20 09:29	11/20/20 05:28	· · · · · · · · · · · · · · · · · · ·
Di-n-butyl phthalate	10		10		ug/L		11/19/20 09:29	11/20/20 05:28	1
Fluoranthene	10		10		ug/L		11/19/20 09:29	11/20/20 05:28	1
Pyrene	10		10		ug/L		11/19/20 09:29	11/20/20 05:28	
Butyl benzyl phthalate	10		10		ug/L		11/19/20 09:29	11/20/20 05:28	1
Benzo[a]anthracene	1.0		1.0	0.59	-		11/19/20 09:29	11/20/20 05:28	1
Chrysene	10		1.0	0.91			11/19/20 09:29	11/20/20 05:28	
Bis(2-ethylhexyl) phthalate	10		10	0.80	•		11/19/20 09:29	11/20/20 05:28	1
Di-n-octyl phthalate	10		10		ug/L		11/19/20 09:29	11/20/20 05:28	,
Benzo[b]fluoranthene	2.0		2.0		ug/L		11/19/20 09:29	11/20/20 05:28	
Benzo[k]fluoranthene	1.0		1.0	0.67	-		11/19/20 09:29	11/20/20 05:28	1
Benzo[a]pyrene	1.0		1.0	0.07	-		11/19/20 09:29	11/20/20 05:28	1
Indeno[1,2,3-cd]pyrene	2.0		2.0		ug/L ug/L		11/19/20 09:29	11/20/20 05:28	
	1.0		1.0		-		11/19/20 09:29	11/20/20 05:28	1
Dibenz(a,h)anthracene	1.0		1.0		ug/L				
Benzo[g,h,i]perylene					ug/L		11/19/20 09:29	11/20/20 05:28	1
1,1'-Biphenyl	10		10		ug/L		11/19/20 09:29	11/20/20 05:28	1
Acetophenone	10		10	2.3	U		11/19/20 09:29	11/20/20 05:28	1
1,4-Dioxane	10		10	1.6			11/19/20 09:29	11/20/20 05:28	1
Benzaldehyde	10		10	2.1	U		11/19/20 09:29	11/20/20 05:28	1
Caprolactam	10		10		ug/L		11/19/20 09:29	11/20/20 05:28	1
Atrazine		U *	10		ug/L		11/19/20 09:29	11/20/20 05:28	1
2,2'-oxybis[1-chloropropane]	10		10		ug/L			11/20/20 05:28	1
1,2,4,5-Tetrachlorobenzene	10		10		ug/L			11/20/20 05:28	1
2,3,4,6-Tetrachlorophenol	10		10		ug/L		11/19/20 09:29	11/20/20 05:28	1
3,3'-Dichlorobenzidine	20		20		ug/L		11/19/20 09:29	11/20/20 05:28	1
Bis(2-chloroethoxy)methane	10	U	10	0.59	ug/L		11/19/20 09:29	11/20/20 05:28	•
Tentatively Identified Compound	Est. Result	Qualifier	Unit	<u>D</u>	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L				11/19/20 09:29	11/20/20 05:28	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	86		46 - 137				11/19/20 09:29	11/20/20 05:28	
Phenol-d5 (Surr)	28		10 - 50				11/19/20 09:29	11/20/20 05:28	
Terphenyl-d14 (Surr)	82		39 - 150				11/19/20 09:29	11/20/20 05:28	
2,4,6-Tribromophenol (Surr)	123		36 - 159				11/19/20 09:29	11/20/20 05:28	
2-Fluorophenol (Surr)	44		18 - 72				11/19/20 09:29	11/20/20 05:28	
2-Fluorobiphenyl	81		42 - 127					11/20/20 05:28	

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;69<

.(/&'()*!#&012&345677784969

Job ID: 460-222961-1

1(%#& ?!!#@%#**99HB.CB**75&9C235 1(%#&+#@#"D#**9933**4**B**75&98235

<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
4,4'-DDD	0.020	U	0.020	0.0060	ug/L		11/18/20 09:44	11/19/20 13:41	1
4,4'-DDE	0.020	U	0.020	0.0020	ug/L		11/18/20 09:44	11/19/20 13:41	1
4,4'-DDT	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 13:41	1
Aldrin	0.020	U	0.020	0.0030	ug/L		11/18/20 09:44	11/19/20 13:41	1
alpha-BHC	0.020	U	0.020	0.0070	ug/L		11/18/20 09:44	11/19/20 13:41	1
beta-BHC	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 13:41	1
Chlordane (technical)	0.50	U	0.50	0.055	ug/L		11/18/20 09:44	11/19/20 13:41	1
delta-BHC	0.020	U	0.020	0.0050	•		11/18/20 09:44	11/19/20 13:41	1
Dieldrin	0.020	U	0.020	0.0030	•		11/18/20 09:44	11/19/20 13:41	1
Endosulfan I	0.020	U	0.020	0.0020			11/18/20 09:44	11/19/20 13:41	1
Endosulfan II	0.020		0.020	0.0040	•			11/19/20 13:41	1
Endosulfan sulfate	0.020		0.020	0.0060	•			11/19/20 13:41	1
Endrin	0.020		0.020	0.0040				11/19/20 13:41	1
Endrin aldehyde	0.020		0.020	0.0080	•			11/19/20 13:41	1
Endrin ketone	0.020		0.020	0.0080	•			11/19/20 13:41	1
gamma-BHC (Lindane)	0.020		0.020	0.012				11/19/20 13:41	
Heptachlor	0.020		0.020	0.0030	•			11/19/20 13:41	1
Heptachlor epoxide	0.020		0.020	0.0050	•			11/19/20 13:41	1
Methoxychlor	0.020		0.020	0.0040				11/19/20 13:41	
Toxaphene	0.50		0.50		ug/L ug/L			11/19/20 13:41	1
тохарпене	0.50	O	0.50	0.11	ug/L		11/10/20 09.44	11/19/20 13.41	'
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl			10 - 132				11/18/20 09:44	11/19/20 13:41	1
DCB Decachlorobiphenyl	43		10 - 132				11/18/20 09:44	11/19/20 13:41	1
Tetrachloro-m-xylene	70		10 - 150				11/18/20 09:44	11/19/20 13:41	1
-									
Tetrachloro-m-xylene	69		10 - 150				11/18/20 09:44	11/19/20 13:41	1
Tetrachloro-m-xylene :#%E?A2&F5K'&6&N?!J@E <\$(!J%#	!?="\$(%#A&V	"*E#\$J!,&R P-(!"Q"#=		((,& E=?))(%?l=(*E O\$"%	.J 1	11/18/20 09:44 N=#*(=#A	11/19/20 13:41 <\$(!JM#A	
:#%E?A2&F5 K 7&6&N?!J@E	!?="\$(%#A&V	P-(!"Q"#=	RN V,S&/J&K		O\$"%				1"!&L(@
.#%E?A2&F5 K7 &6&N?!J@E <\$(!J%#	!?="\$(%# A&V +#,-!%	P-(!"Q"#=	RN V,S&/J&F	:1.	O\$"% ug/L		N=#*(=#A	<\$(!JM#A	1"!&L(@
:#%E?A2&F5F&6&N?!J@E <\$(!J%# Aroclor 1016 Aroclor 1221	!?="\$(%#A&V +#,-!% 0.40	P-(!"Q"#= U	RN V,S&/J&F +. 0.40	: 1 .	O\$"% ug/L ug/L		N=#*(=#A 11/18/20 09:41 11/18/20 09:41	<\$(!JM#A 11/18/20 18:19	1"!&L(@
#%E?A2&F5F&6&N?!J@E <\$(!J%# Aroclor 1016 Aroclor 1221 Aroclor 1232	!?="\$(%# A&V +#,-!% 0.40 0.40	P-(!"Q"#= U U U	**************************************	:1. 0.12 0.12 0.12	O\$"% ug/L ug/L ug/L		N=#*(=#A 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41	<\$(!JM#A 11/18/20 18:19 11/18/20 18:19	1"!&L(@
#%E?A2&F5F&6&N?!J@E <\$(!J%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242	!?="\$(%#A&V +#,-!% 0.40 0.40 0.40	P-(!"Q"#= U U U U	**************************************	21. 0.12 0.12 0.12 0.12	O\$"% ug/L ug/L ug/L ug/L		N=#*(=#A 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41	<\$(!JM#A 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19	1"!&L(@ 1 1
:#%E?A2&F5K&6&N?!J@E <\$(!J%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248	!?="\$(%#A&V +#,-!% 0.40 0.40 0.40	P-(!"Q"#= U U U U U U	+. 0.40 0.40 0.40 0.40	:1. 0.12 0.12 0.12 0.12 0.12	O\$"% ug/L ug/L ug/L ug/L ug/L		N=#*(=#A 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41	<\$(!JM#A 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19	1"!&L(@ 1 1
:#%E?A2&F5F&6&N?!J@E <\$(!J%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	!?="\$(%# A&V +#,-!% 0.40 0.40 0.40 0.40 0.40 0.40	P-(!"Q"#= U U U U U U U	+. 0.40 0.40 0.40 0.40 0.40 0.40 0.40	:1. 0.12 0.12 0.12 0.12 0.12 0.12 0.11	ug/L ug/L ug/L ug/L ug/L ug/L ug/L		N=#*(=#A 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41	<\$(!JM#A 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19	1"!&L(@ 1 1 1 1 1
:#%E?A2&F5F&6&N?!J@E <\$(!J%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	!?="\$(%# A&V +#,-!% 0.40 0.40 0.40 0.40 0.40 0.40	P-(!"Q"#= U U U U U U U U U	+. 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40	:1. 0.12 0.12 0.12 0.12 0.12 0.12 0.11 0.11	O\$"% ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		N=#*(=#A 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41	<\$(!JM#A 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19	1"!&L(@ 1 1 1 1 1 1 1
:#%E?A2&F5F&6&N?!J@E <\$(!J%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor-1262	!?="\$(%#A&V +#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40	P-(!"Q"#= U U U U U U U U U U U	+. 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.	o\$"% ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		N=#*(=#A 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41	<\$(!JM#A 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19	1"!&L(@ 1 1 1 1 1
:#%E?A2&F5F&6&N?!J@E <\$(!J%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor-1262 Aroclor 1268	!?="\$(%# A&V +#,-!% 0.40 0.40 0.40 0.40 0.40 0.40	P-(!"Q"#= U U U U U U U U U U U U U	+. 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.	O\$"% ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		N=#*(=#A 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41	<\$(!JM#A 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19	1"!&L(@ 1 1 1 1 1 1 1
:#%E?A2&F5 ₹ &6&N?!J@E <\$(!J%# Aroclor 1016	!?="\$(%#A&V +#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	P-(!"Q"#= U U U U U U U U U U U U U U U U	**************************************	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.	o\$"% ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		N=#*(=#A 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41	<\$(!JM#A 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19	1"!&L(@ 1 1 1 1 1 1 1 1
##%E?A2&F5F&6&N?!J@E <\$(!J%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor-1262 Aroclor-1268 Polychlorinated biphenyls, Total	!?="\$(%#A&V +#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	P-(!"Q"#= U U U U U U U U U U U U U U U U	**************************************	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.	o\$"% ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		N=#*(=#A 11/18/20 09:41 11/18/20 09:41	<\$(!JM#A 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19	1"!&L(@ 1 1 1 1 1 1 1 1 1
##%E?A2&F5F&6&N?!J@E <\$(!J%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor-1262 Aroclor-1268 Polychlorinated biphenyls, Total Surrogate DCB Decachlorobiphenyl	!?="\$(%#A&V +#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	P-(!"Q"#= U U U U U U U U U U U U U U U U	+. 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.	o\$"% ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		N=#*(=#A 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 Prepared 11/18/20 09:41	<\$(!JM#A 11/18/20 18:19 11/18/20 18:19	1"!&L(@ 1 1 1 1 1 1 1 1 1
:#%E?A2&F5F&6&N?!J@E <\$(!J%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor-1262 Aroclor-1262 Aroclor 1268 Polychlorinated biphenyls, Total Surrogate DCB Decachlorobiphenyl DCB Decachlorobiphenyl	!?="\$(%#A&V +#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	P-(!"Q"#= U U U U U U U U U U U U U U U U	**************************************	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.	o\$"% ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		N=#*(=#A 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 Prepared 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41	<\$(!JM#A 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 Analyzed 11/18/20 18:19	1"!&L(@ 1 1 1 1 1 1 1 1 1
:#%E?A2&F5F&6&N?!J@E <\$(!J%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor-1262 Aroclor-1268 Polychlorinated biphenyls, Total Surrogate DCB Decachlorobiphenyl DCB Decachlorobiphenyl Tetrachloro-m-xylene	!?="\$(%#A&V +#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	P-(!"Q"#= U U U U U U U U U U U U U U U U	+. 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.	o\$"% ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		N=#*(=#A 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 Prepared 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41	<\$(!JM#A 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 Analyzed 11/18/20 18:19 11/18/20 18:19	1"!&L(@
:#%E?A2&F5F&6&N?!J@E <\$(!J%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor-1262 Aroclor 1268 Polychlorinated biphenyls, Total	!?="\$(%#A&V +#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	P-(!"Q"#= U U U U U U U U U U U U U U U U	+. 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.	o\$"% ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		N=#*(=#A 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 Prepared 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41	<\$(!JM#A 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 Analyzed 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19	1"!&L(@
:#%E?A2&F5F&6&N?!J@E <\$(!J%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 Polychlorinated biphenyls, Total Surrogate DCB Decachlorobiphenyl DCB Decachlorobiphenyl Tetrachloro-m-xylene Tetrachloro-m-xylene	!?="\$(%#A&V +#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	P-(!"Q"#= U U U U U U U U U U U U U U U U	+. 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.	:1. 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.	o\$"% ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		N=#*(=#A 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 Prepared 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41	<\$(!JM#A 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 Analyzed 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19	1"!&L(@ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
:#%E?A2&F5F&6&N?!J@E <\$(!J%# Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268 Polychlorinated biphenyls, Total Surrogate DCB Decachlorobiphenyl DCB Decachlorobiphenyl Tetrachloro-m-xylene Tetrachloro-m-xylene Tetrachloro-m-xylene :#%E?A2&F9W&6&X#=/"@'	!?="\$(%#A&V +#,-!% 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.4	P-(!"Q"#= U U U U U U U U U U P-(!"Q"#=	+. 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.	:1. 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0	o\$"% ug/L 1	N=#*(=#A 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41 11/18/20 09:41	<\$(!JM#A 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 Analyzed 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19 11/18/20 18:19	1"!&L(@	

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;69<

.(/&'()*!#&012&345677784969

1(%#& ?!!#@%#**993B**CB 5&9C235

:(%=">2&(%#=

Job ID: 460-222961-1

1(%#&+#@#"D#**99H3**4**B**75&98235

:#%E?A2&F9 W& 6&X#=/"@"A# <\$(!J%#		P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(
2,4,5-T	1.2		1.2	0.12	ug/L		11/17/20 20:26	11/18/20 09:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	66	·	39 - 145				11/17/20 20:26	11/18/20 09:03	1
2,4-Dichlorophenylacetic acid	73		39 - 145				11/17/20 20:26	11/18/20 09:03	1
:#%E?A2&WCT&R)?A"Q"#AS	86811 -8±V 9	119%####/s/c\$ <i>6</i> 6	n#						
<\$(!J%#		P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(
Perfluorobutanoic acid (PFBA)	4.2		4.2	0.95	ng/L		11/20/20 09:01	11/20/20 16:39	1
Perfluoropentanoic acid (PFPeA)	1.7		1.7		ng/L		11/20/20 09:01	11/20/20 16:39	1
Perfluorohexanoic acid (PFHxA)	1.7	U	1.7		ng/L		11/20/20 09:01	11/20/20 16:39	1
Perfluoroheptanoic acid (PFHpA)	1.7	U	1.7		ng/L		11/20/20 09:01	11/20/20 16:39	1
Perfluorooctanoic acid (PFOA)	1.7	U	1.7		ng/L		11/20/20 09:01	11/20/20 16:39	1
Perfluorononanoic acid (PFNA)	1.7		1.7		ng/L		11/20/20 09:01	11/20/20 16:39	1
Perfluorodecanoic acid (PFDA)	1.7		1.7		ng/L			11/20/20 16:39	
Perfluoroundecanoic acid (PFUnA)	1.7		1.7		ng/L		11/20/20 09:01	11/20/20 16:39	1
Perfluorododecanoic acid (PFDoA)	1.7		1.7		ng/L		11/20/20 09:01	11/20/20 16:39	1
Perfluorotridecanoic acid (PFTriA)	1.7		1.7		ng/L			11/20/20 16:39	
Perfluorotetradecanoic acid (PFTeA)	1.7		1.7		ng/L		11/20/20 09:01	11/20/20 16:39	1
Perfluorobutanesulfonic acid (PFBS)	1.7		1.7		ng/L		11/20/20 09:01	11/20/20 16:39	1
Perfluorohexanesulfonic acid (PFHxS)	1.7		1.7		ng/L			11/20/20 16:39	· · · · · · · · · · · · · · · · · · ·
Perfluoroheptanesulfonic Acid	1.7		1.7		ng/L		11/20/20 09:01	11/20/20 16:39	1
(PFHpS)	1.7	O	1.,	0.00	119/12		11/20/20 00:01	11/20/20 10:00	'
Perfluorooctanesulfonic acid (PFOS)	1.7	U	1.7	0.73	ng/L		11/20/20 09:01	11/20/20 16:39	1
Perfluorodecanesulfonic acid (PFDS)	1.7	U	1.7	0.40	ng/L		11/20/20 09:01	11/20/20 16:39	1
Perfluorooctanesulfonamide (PFOSA)	1.7	U	1.7	0.48	ng/L		11/20/20 09:01	11/20/20 16:39	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	4.2	U	4.2	0.66	ng/L		11/20/20 09:01	11/20/20 16:39	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	4.2	U	4.2	0.78	ng/L		11/20/20 09:01	11/20/20 16:39	1
9XZ9XZ7XZ7X6*#=Q!-?=??@%(\$#, \$"@&(@"A&R427S	5[FT	١	4.2	0.60	ng/L		11/20/20 09:01	11/20/20 16:39	1
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	1.7	U	1.7	0.55	ng/L		11/20/20 09:01	11/20/20 16:39	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1802 PFHxS	110		50 - 150				11/20/20 09:01	11/20/20 16:39	1
13C4 PFHpA	104		50 - 150					11/20/20 16:39	1
13C4 PFOA	104		50 - 150					11/20/20 16:39	1
13C4 PFOS	107		50 ₋ 150					11/20/20 16:39	
13C5 PFNA	108		50 - 150					11/20/20 16:39	
13C4 PFBA	81		25 ₋ 150					11/20/20 16:39	
13C2 PFHxA	97		50 - 150					11/20/20 16:39	
13C2 PFDA	107		50 - 150					11/20/20 16:39	
13C2 PFUnA	88		50 - 150					11/20/20 16:39	1
13C2 PFDoA	60		50 - 150					11/20/20 16:39	· · · · · · · · · · · · · · · · · · ·
13C8 FOSA	83		25 - 150					11/20/20 16:39	1
13C5 PFPeA	99		25 - 150 25 - 150					11/20/20 16:39	1
13C2 PFTeDA	56		50 - 150					11/20/20 16:39	
d3-NMeFOSAA	81							11/20/20 16:39	1
d5-NEtFOSAA	71		50 - 150 50 - 150					11/20/20 16:39	
M2-6:2 FTS	111		50 - 150 25 - 150					11/20/20 16:39	1

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;69<

.(/&'()*!#&012&345677784969

1(%#& ?!!#@%#**A9H\$9**CB75&9C235

1(%#&+#@#"D#**A92E99**4B75&98235

:(%=">2&(%#=

Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
M2-8:2 FTS	95		25 - 150				11/20/20 09:01	11/20/20 16:39	1
13C3 PFBS	103		50 - 150				11/20/20 09:01	11/20/20 16:39	1
:#%E?A2&45951&6&:#%(!,	&R0 NS								
<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Silver	10.0	U	10.0	5.8	ug/L		11/22/20 16:15	11/23/20 18:24	1
-)"\$-)</td <td>93855</td> <td></td> <td>200</td> <td>76.9</td> <td>ug/L</td> <td></td> <td>11/22/20 16:15</td> <td>11/23/20 18:24</td> <td>1</td>	93855		200	76.9	ug/L		11/22/20 16:15	11/23/20 18:24	1
Arsenic	15.0	U	15.0	3.3	ug/L		11/22/20 16:15	11/23/20 18:24	1
V(="-)	77F		200	13.2	ug/L		11/22/20 16:15	11/23/20 18:24	1
Beryllium	2.0	U	2.0	0.17	ug/L		11/22/20 16:15	11/23/20 18:24	1
(!@"-)	94W55		5000	152	ug/L		11/22/20 16:15	11/23/20 18:24	1
Cadmium	4.0	U	4.0	0.33	ug/L		11/22/20 16:15	11/23/20 18:24	1
?/(!%	7C[5	1	50.0	2.0	ug/L		11/22/20 16:15	11/23/20 18:24	1
E=?)"-)	C4[F		10.0	5.0	ug/L		11/22/20 16:15	11/23/20 18:24	1
?**#=	953		25.0	6.9	ug/L		11/22/20 16:15	11/23/20 18:24	1
0=?\$	7TT55	J+	150	80.8	ug/L		11/22/20 16:15	11/23/20 18:24	1
N?%(,,"-)	TTF5		5000	142	ug/L		11/22/20 16:15	11/23/20 18:24	1
:(1\$#,"-)	FT35		5000	142	ug/L		11/22/20 16:15	11/23/20 18:24	1
:(\$1(\$#,#	343		15.0	0.76	ug/L		11/22/20 16:15	11/23/20 18:24	1
'?A"-)	C9F55		5000	83.8	ug/L		11/22/20 16:15	11/23/20 18:24	1
]"@Y#!	37[3		40.0	4.1	ug/L		11/22/20 16:15	11/23/20 18:24	1
.#(A	93[5		10.0	2.4	ug/L		11/22/20 16:15	11/23/20 18:24	1
Antimony	20.0	U	20.0	3.7	ug/L		11/22/20 16:15	11/23/20 18:24	1
Selenium	20.0	U	20.0	5.9	ug/L		11/22/20 16:15	11/23/20 18:24	1
Thallium	20.0	U	20.0	4.1	ug/L		11/22/20 16:15	11/23/20 18:24	1
G(\$(A"-)	F9[W	1	50.0	7.2	ug/L		11/22/20 16:15	11/23/20 18:24	1
^"\$@	F8[T	J	30.0	1.2	ug/L		11/22/20 16:15	11/23/20 18:24	1
:#%E?A2&T3 ₹\$ 6&:#=@-=	J& R⊲S								
<\$(!J%#		P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Mercury	0.20	U	0.20	0.091	ug/L		11/25/20 12:43	11/25/20 14:08	1
K#\$#=(!& E#)",%=J									
<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Cyanide, Total	0.010	U	0.010	0.0040	mg/L		11/27/20 09:11	11/27/20 13:13	1

1(%#&+#@#"D#**A92394**B75&98235

1(%#& ?!!#@%#**A92399**CB75&952WW

:#%E?A2&F7451**&38**(%"!#&H=I(\$"@& ?)*?-\$A,&/J&K B:' +. <\$(!J%# +#,-!% P-(!"Q"#= :1. O\$"% N=#*(=#A <\$(!JM#A 1"!&L(@ Chloromethane 1.0 U 1.0 0.40 ug/L 11/22/20 16:40 1 Bromomethane 1.0 U 1.0 0.55 ug/L 11/22/20 16:40 1 Vinyl chloride 1.0 U 1.0 0.17 ug/L 11/22/20 16:40 1 1.0 U Chloroethane 1.0 0.32 ug/L 1 11/22/20 16:40 Methylene Chloride 1.0 U 1.0 0.32 ug/L 11/22/20 16:40 Acetone 5.0 U 5.0 4.4 ug/L 11/22/20 16:40 1 Carbon disulfide 1.0 U 1.0 0.82 ug/L 11/22/20 16:40 1.0 U Trichlorofluoromethane 1.0 0.32 ug/L 11/22/20 16:40 1 1,1-Dichloroethene 1.0 U 1.0 0.26 ug/L 11/22/20 16:40

Eurofins TestAmerica, Edison

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;67

.(/&'()*!#&012&345677784967

1(%#& ?!!#@%#**9935.CB** 5&952WW 1(%#&+#@#"D#**9935.4B** 5&98235 :(%=">2&(%#=

Job ID: 460-222961-1

<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
1,1-Dichloroethane	1.0		1.0	0.26	ug/L		•	11/22/20 16:40	1
trans-1,2-Dichloroethene	1.0	U	1.0		ug/L			11/22/20 16:40	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			11/22/20 16:40	1
Chloroform	1.0	U	1.0		ug/L			11/22/20 16:40	1
1,2-Dichloroethane	1.0	U	1.0		ug/L			11/22/20 16:40	1
2-Butanone (MEK)	5.0	U	5.0		ug/L			11/22/20 16:40	1
1,1,1-Trichloroethane	1.0	U	1.0		ug/L			11/22/20 16:40	1
Carbon tetrachloride	1.0	U	1.0		ug/L			11/22/20 16:40	1
Dichlorobromomethane	1.0	U	1.0		ug/L			11/22/20 16:40	1
1,2-Dichloropropane	1.0	U	1.0		ug/L			11/22/20 16:40	1
cis-1,3-Dichloropropene	1.0	U	1.0		ug/L			11/22/20 16:40	1
Trichloroethene	1.0	U	1.0		ug/L			11/22/20 16:40	1
Chlorodibromomethane	1.0		1.0		ug/L			11/22/20 16:40	1
1,1,2-Trichloroethane	1.0		1.0		ug/L			11/22/20 16:40	1
Benzene	1.0		1.0		ug/L			11/22/20 16:40	1
trans-1,3-Dichloropropene	1.0		1.0		ug/L			11/22/20 16:40	· · · · · · · · · · · · · · · · · · ·
Bromoform	1.0		1.0		ug/L			11/22/20 16:40	1
4-Methyl-2-pentanone (MIBK)		U *	5.0		ug/L			11/22/20 16:40	1
2-Hexanone		U *	5.0		ug/L			11/22/20 16:40	
Tetrachloroethene	1.0		1.0		ug/L			11/22/20 16:40	1
1,1,2,2-Tetrachloroethane	1.0		1.0		ug/L			11/22/20 16:40	1
Toluene	1.0		1.0		ug/L			11/22/20 16:40	
Chlorobenzene	1.0		1.0		ug/L			11/22/20 16:40	1
Ethylbenzene	1.0		1.0		ug/L ug/L			11/22/20 16:40	1
Styrene	1.0		1.0		ug/L			11/22/20 16:40	
m-Xylene & p-Xylene	1.0		1.0		ug/L ug/L			11/22/20 16:40	1
o-Xylene	1.0		1.0		ug/L ug/L			11/22/20 16:40	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0		1.0		ug/L ug/L			11/22/20 16:40	
Methyl tert-butyl ether	1.0		1.0		ug/L ug/L			11/22/20 16:40	1
Cyclohexane	1.0		1.0		ug/L ug/L			11/22/20 16:40	1
Ethylene Dibromide	1.0		1.0		ug/L ug/L			11/22/20 16:40	
1,3-Dichlorobenzene	1.0		1.0		ug/L ug/L			11/22/20 16:40	1
1,4-Dichlorobenzene	1.0		1.0		ug/L ug/L			11/22/20 16:40	1
1.2-Dichlorobenzene	1.0		1.0		ug/L ug/L			11/22/20 16:40	:
Dichlorodifluoromethane	1.0		1.0		ug/L ug/L				1
					-			11/22/20 16:40	•
1,2,4-Trichlorobenzene	1.0		1.0		ug/L			11/22/20 16:40	1
1,4-Dioxane	50		50		ug/L			11/22/20 16:40	1
1,2,3-Trichlorobenzene	1.0		1.0		ug/L			11/22/20 16:40	1
1,2-Dibromo-3-Chloropropane	1.0		1.0		ug/L			11/22/20 16:40	
Chlorobromomethane	1.0		1.0		ug/L			11/22/20 16:40	1
Isopropylbenzene Methyl gestate	1.0		1.0		ug/L			11/22/20 16:40	1
Methyl acetate Methylcyclohexane	5.0 1.0		5.0 1.0		ug/L ug/L			11/22/20 16:40 11/22/20 16:40	1 1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L	<u> </u>				11/22/20 16:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		75 - 123					11/22/20 16:40	1
Toluene-d8 (Surr)	103		80 - 120					11/22/20 16:40	1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;67

N-Nitrosodiphenylamine

Job ID: 460-222961-1

.(/&'()*!#&012&345677784967 :(%=">2&(%#=

1(%#& ?!!#@%#**99H3**CF 5&952WW 1(%#&+#@#"D#@9784F75&98235

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene		Qualifier	76 - 120				Frepareu	11/22/20 16:40	1 DII Fac
Dibromofluoromethane (Surr)	93		77 - 124					11/22/20 16:40	1
//// EQA QQ EET HILD IQ QQ 4 Q QA		1011 1/0110	0.0040.04.6		70.0 00/ 0+		0/11040		
:#%E?A2&F7T5U&'0:&01&68									411101.40
<\$(!J%#	_	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
1,4-Dioxane	0.20		0.20	0.016	ug/L		11/18/20 09:12	11/19/20 14:06	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	32		10 - 150				11/18/20 09:12	11/19/20 14:06	1
:#%E?A2&F7T5U&6&'#)"D?!	(%"!#&H=I(\$"	'@& ?)*?-\$	A,&RK						
<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Phenol	10	U	10	0.29	ug/L		11/19/20 09:29	11/20/20 08:17	1
2-Chlorophenol	10	U	10	0.38	ug/L		11/19/20 09:29	11/20/20 08:17	1
2-Methylphenol	10	U	10		ug/L		11/19/20 09:29	11/20/20 08:17	1
4-Methylphenol	10	U	10	0.65	ug/L		11/19/20 09:29	11/20/20 08:17	1
2-Nitrophenol	10	U	10	0.75	ug/L		11/19/20 09:29	11/20/20 08:17	1
2,4-Dimethylphenol	10	U	10	0.62	ug/L		11/19/20 09:29	11/20/20 08:17	1
2,4-Dichlorophenol	10	U	10	1.1	ug/L		11/19/20 09:29	11/20/20 08:17	1
4-Chloro-3-methylphenol	10	U	10	0.58	ug/L		11/19/20 09:29	11/20/20 08:17	1
2,4,6-Trichlorophenol	10	U	10	0.86	ug/L		11/19/20 09:29	11/20/20 08:17	1
2,4,5-Trichlorophenol	10	U	10	0.88	ug/L		11/19/20 09:29	11/20/20 08:17	1
2,4-Dinitrotoluene	2.0	U	2.0	1.0	ug/L		11/19/20 09:29	11/20/20 08:17	1
4-Nitrophenol	30	U	30	4.0	ug/L		11/19/20 09:29	11/20/20 08:17	1
4,6-Dinitro-2-methylphenol	30	U	30	3.0	ug/L		11/19/20 09:29	11/20/20 08:17	1
Pentachlorophenol	30	U	30	1.4	ug/L		11/19/20 09:29	11/20/20 08:17	1
Bis(2-chloroethyl)ether	1.0	U	1.0	0.63	ug/L		11/19/20 09:29	11/20/20 08:17	1
N-Nitrosodi-n-propylamine	1.0	U	1.0	0.43	ug/L		11/19/20 09:29	11/20/20 08:17	1
Hexachloroethane	2.0	U	2.0	0.80	ug/L		11/19/20 09:29	11/20/20 08:17	1
Nitrobenzene	1.0	U	1.0	0.57	ug/L		11/19/20 09:29	11/20/20 08:17	1
Isophorone	10	U	10	0.80	ug/L		11/19/20 09:29	11/20/20 08:17	1
Naphthalene	2.0	U	2.0	0.54	ug/L		11/19/20 09:29	11/20/20 08:17	1
4-Chloroaniline	1.0	U	1.0	1.9	ug/L		11/19/20 09:29	11/20/20 08:17	1
Hexachlorobutadiene	2.0	U	2.0	0.78	ug/L		11/19/20 09:29	11/20/20 08:17	1
2-Methylnaphthalene	10	U	10	0.53	ug/L		11/19/20 09:29	11/20/20 08:17	1
Hexachlorocyclopentadiene	10	U	10	3.6	ug/L		11/19/20 09:29	11/20/20 08:17	1
2-Chloronaphthalene	10	U	10	1.2	ug/L		11/19/20 09:29	11/20/20 08:17	1
2-Nitroaniline	20	U	20	0.47	ug/L		11/19/20 09:29	11/20/20 08:17	1
Dimethyl phthalate	10	U	10	0.77	ug/L		11/19/20 09:29	11/20/20 08:17	1
Acenaphthylene	10	U	10	0.82	ug/L		11/19/20 09:29	11/20/20 08:17	1
2,6-Dinitrotoluene	2.0	U	2.0	0.83	ug/L		11/19/20 09:29	11/20/20 08:17	1
3-Nitroaniline	20	U	20	1.9	ug/L		11/19/20 09:29	11/20/20 08:17	1
Acenaphthene	10	U	10	1.1	ug/L		11/19/20 09:29	11/20/20 08:17	1
Dibenzofuran	10	U	10	1.1	ug/L		11/19/20 09:29	11/20/20 08:17	1
2,4-Dinitrophenol	30	U	30	2.6	ug/L		11/19/20 09:29	11/20/20 08:17	1
Diethyl phthalate	10	U	10	0.98	ug/L		11/19/20 09:29	11/20/20 08:17	1
4-Chlorophenyl phenyl ether	10	U	10	1.3	ug/L		11/19/20 09:29	11/20/20 08:17	1
Fluorene	10	U	10	0.91	ug/L		11/19/20 09:29	11/20/20 08:17	1
4-Nitroaniline	20	U	20	1.2	ug/L		11/19/20 09:29	11/20/20 08:17	1

11/19/20 09:29 11/20/20 08:17

10

0.89 ug/L

10 U

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;67

.(/&'()*!#&012&345677784967

1(%#& ?!!#@%#**9935.CB**5&952WW 1(%#&+#@#"D#**9935.4B**5&98235

:#%E?A2&F7T5U&6&'#)"D?!(<\$(!J%#	•	P-(!"Q"#=	ΨΑ, αελεί αιτ +.	: Ψ /0 Ψ -π/- :1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
4-Bromophenyl phenyl ether	10	U	10	0.75			11/19/20 09:29	11/20/20 08:17	1 :0:1(0)
Hexachlorobenzene	1.0		1.0		ug/L		11/19/20 09:29	11/20/20 08:17	<mark>'</mark> 1
Phenanthrene	1.0		1.0		ug/L ug/L		11/19/20 09:29	11/20/20 08:17	1
Anthracene	10		10		ug/L ug/L		11/19/20 09:29	11/20/20 08:17	1
Carbazole	10		10		ug/L ug/L		11/19/20 09:29	11/20/20 08:17	<mark>'</mark> 1
	10				_				-
Di-n-butyl phthalate			10		ug/L		11/19/20 09:29	11/20/20 08:17	1
Fluoranthene	10		10		ug/L		11/19/20 09:29	11/20/20 08:17	
Pyrene	10		10		ug/L		11/19/20 09:29	11/20/20 08:17	1
Butyl benzyl phthalate	10		10		ug/L		11/19/20 09:29	11/20/20 08:17	1
Benzo[a]anthracene	1.0		1.0		ug/L		11/19/20 09:29	11/20/20 08:17	
Chrysene	10		10		ug/L		11/19/20 09:29	11/20/20 08:17	1
Bis(2-ethylhexyl) phthalate	10		10		ug/L		11/19/20 09:29	11/20/20 08:17	1
Di-n-octyl phthalate	10		10		ug/L		11/19/20 09:29	11/20/20 08:17	1
Benzo[b]fluoranthene	2.0		2.0		ug/L		11/19/20 09:29	11/20/20 08:17	1
Benzo[k]fluoranthene	1.0		1.0		ug/L		11/19/20 09:29	11/20/20 08:17	1
Benzo[a]pyrene	1.0		1.0		ug/L		11/19/20 09:29	11/20/20 08:17	1
Indeno[1,2,3-cd]pyrene	2.0	U	2.0		ug/L		11/19/20 09:29	11/20/20 08:17	1
Dibenz(a,h)anthracene	1.0	U	1.0		ug/L		11/19/20 09:29	11/20/20 08:17	1
Benzo[g,h,i]perylene	10	U	10	0.70	ug/L		11/19/20 09:29	11/20/20 08:17	1
1,1'-Biphenyl	10	U	10	1.2	ug/L		11/19/20 09:29	11/20/20 08:17	1
Acetophenone	10	U	10	2.3	ug/L		11/19/20 09:29	11/20/20 08:17	1
1,4-Dioxane	10	U	10	1.6	ug/L		11/19/20 09:29	11/20/20 08:17	1
Benzaldehyde	10	U	10	2.1	ug/L		11/19/20 09:29	11/20/20 08:17	1
Caprolactam	10	U	10	2.2	ug/L		11/19/20 09:29	11/20/20 08:17	1
Atrazine	10	U *	10	1.3	ug/L		11/19/20 09:29	11/20/20 08:17	1
2,2'-oxybis[1-chloropropane]	10	U	10	0.63	ug/L		11/19/20 09:29	11/20/20 08:17	1
1,2,4,5-Tetrachlorobenzene	10	U	10	1.2	ug/L		11/19/20 09:29	11/20/20 08:17	1
2,3,4,6-Tetrachlorophenol	10	U	10		ug/L		11/19/20 09:29	11/20/20 08:17	1
3,3'-Dichlorobenzidine	20	U	20		ug/L		11/19/20 09:29	11/20/20 08:17	1
Bis(2-chloroethoxy)methane	10	U	10		ug/L		11/19/20 09:29	11/20/20 08:17	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L	_			11/19/20 09:29	11/20/20 08:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	117		46 - 137				11/19/20 09:29	11/20/20 08:17	1
Phenol-d5 (Surr)	68	X	10 - 50				11/19/20 09:29	11/20/20 08:17	1
Terphenyl-d14 (Surr)	103		39 - 150				11/19/20 09:29	11/20/20 08:17	1
2,4,6-Tribromophenol (Surr)	173	X	36 - 159				11/19/20 09:29	11/20/20 08:17	1
2-Fluorophenol (Surr)	86	X	18 - 72				11/19/20 09:29	11/20/20 08:17	1
2-Fluorobiphenyl	120		42 - 127				11/19/20 09:29	11/20/20 08:17	1
:#%E?A2&F5F9V&6&H=I(\$?@	DE!?="\$#&N	#,%"@"A:	#,&RK S						
<\$(!J%#		P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
4,4'-DDD	0.020		0.020	0.0060			11/18/20 09:44	11/19/20 13:57	1
4,4'-DDE	0.020		0.020	0.0020	-		11/18/20 09:44	11/19/20 13:57	1
4,4'-DDT	0.020		0.020	0.0040	_			11/19/20 13:57	1
Aldrin	0.020		0.020	0.0030				11/19/20 13:57	
	0.020	-	3.020		_				•
alpha-BHC	0.020	U	0.020	0.0070	ua/L		11/18/20 09:44	11/19/20 13:57	1

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;67

.(/&'()*!#&012&345677784967

1(%#& ?!!#@%#**9935.CF**5&952WW 1(%#&+#@#"D#**9935.4F**5&98235

:#%E?A2&F5F9V&6&H=I(\$? <\$(!J%#		P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Chlordane (technical)	0.50		0.50			÷	11/18/20 09:44	11/19/20 13:57	1
delta-BHC	0.020		0.020	0.0050				11/19/20 13:57	1
Dieldrin	0.020		0.020	0.0030	· ·			11/19/20 13:57	1
Endosulfan I	0.020		0.020	0.0020				11/19/20 13:57	
Endosulfan II	0.020		0.020	0.0040	•			11/19/20 13:57	1
Endosulfan sulfate	0.020		0.020	0.0060	•			11/19/20 13:57	1
Endrin	0.020		0.020	0.0040	.			11/19/20 13:57	1
Endrin aldehyde	0.020		0.020	0.0080	•			11/19/20 13:57	1
Endrin ketone	0.020		0.020	0.0080	•			11/19/20 13:57	1
gamma-BHC (Lindane)	0.020		0.020	0.012			11/18/20 09:44	11/19/20 13:57	1
Heptachlor	0.020		0.020	0.0030	-			11/19/20 13:57	1
	0.020		0.020	0.0050	•			11/19/20 13:57	1
Methoxychlor	0.020		0.020	0.0040	.			11/19/20 13:57	1
oxaphene	0.50		0.50		ug/L			11/19/20 13:57	1
Gurrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
CB Decachlorobiphenyl	75		10 - 132				11/18/20 09:44	11/19/20 13:57	1
OCB Decachlorobiphenyl	67		10 - 132				11/18/20 09:44	11/19/20 13:57	1
etrachloro-m-xylene	73		10 - 150				11/18/20 09:44	11/19/20 13:57	1
etrachloro-m-xylene	70		10 - 150				11/18/20 09:44	11/19/20 13:57	1
#%E?A2&F5 ⋉ 7&6&N?!J@E	!?="\$(%#A&V	"*E#\$.J!.&F	RN V.S&/J&k	((& F=?))(%?I=(*EJ				
\$(!J%#	•	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
roclor 1016	0.40	U	0.40	0.12	ug/L	_	11/18/20 09:41	11/18/20 18:35	1
Aroclor 1221	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 18:35	1
Aroclor 1232	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 18:35	1
Aroclor 1242	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 18:35	1
roclor 1248	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 18:35	1
roclor 1254	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 18:35	1
Aroclor 1260	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 18:35	1
roclor-1262	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 18:35	1
roclor 1268	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 18:35	1
olychlorinated biphenyls, Total	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 18:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
OCB Decachlorobiphenyl	92		10 - 150				11/18/20 09:41	11/18/20 18:35	1
OCB Decachlorobiphenyl	85		10 - 150				11/18/20 09:41	11/18/20 18:35	1
Tetrachloro-m-xylene	94		48 - 125				11/18/20 09:41	11/18/20 18:35	1
etrachloro-m-xylene	94		48 - 125				11/18/20 09:41	11/18/20 18:35	1
#%E?A2&F9 W& 6&X#=/"@"	'A#,&RK S								
	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
			1.2	0.13	ug/L		11/17/20 20:26	11/18/20 09:17	1
	1.2	U							
,4-D	1.2 1.2		1.2		ug/L		11/17/20 20:26	11/18/20 09:17	1
,4-D Silvex (2,4,5-TP)		U			ug/L ug/L			11/18/20 09:17 11/18/20 09:17	1
:\$(!J%# 2,4-D Silvex (2,4,5-TP) 2,4,5-T Surrogate	1.2	U U	1.2		-				
2,4-D Gilvex (2,4,5-TP) 2,4,5-T	1.2 1.2	U U	1.2 1.2		-		11/17/20 20:26	11/18/20 09:17	1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;67

.(/&'()*!#&012&345677784967

1(%#& ?!!#@%#**9935.CB**5&952WW 1(%#&+#@#"D#**9935.4B**5&98235

:(%=">2&(%#=

Job ID: 460-222961-1

<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
N#=Q!-?=?/-%(\$?"@&(@"A&RNLV <s< td=""><td>7W</td><td></td><td>4.2</td><td>0.96</td><td>ng/L</td><td></td><td>11/20/20 09:01</td><td>11/20/20 16:47</td><td>1</td></s<>	7W		4.2	0.96	ng/L		11/20/20 09:01	11/20/20 16:47	1
N#=Q!-?=?*#\$%(\$?"@&(@"A&RNLN#<	S W7		1.7	0.92	ng/L		11/20/20 09:01	11/20/20 16:47	1
N#=Q!-?=?E#>(\$?"@&(@"A&RNLX> <s< td=""><td>34</td><td></td><td>1.7</td><td>0.70</td><td>ng/L</td><td></td><td>11/20/20 09:01</td><td>11/20/20 16:47</td><td>1</td></s<>	34		1.7	0.70	ng/L		11/20/20 09:01	11/20/20 16:47	1
N#=Q!-?=?E#*%(\$?"@&(@"A&RNLX*<	S WV	1	1.7	0.39	ng/L		11/20/20 09:01	11/20/20 16:47	1
N#=Q!-?=?\$?\$(\$?"@&(@"A&RNL] <s< td=""><td>99</td><td></td><td>1.7</td><td>0.49</td><td>ng/L</td><td></td><td>11/20/20 09:01</td><td>11/20/20 16:47</td><td>1</td></s<>	99		1.7	0.49	ng/L		11/20/20 09:01	11/20/20 16:47	1
N#=Q!-?=?A#@(\$?"@&(@"A&RNL1 <s< td=""><td>9[8</td><td></td><td>1.7</td><td>0.39</td><td>ng/L</td><td></td><td>11/20/20 09:01</td><td>11/20/20 16:47</td><td>1</td></s<>	9[8		1.7	0.39	ng/L		11/20/20 09:01	11/20/20 16:47	1
Perfluoroundecanoic acid (PFUnA)	1.7	U	1.7	0.62	ng/L		11/20/20 09:01	11/20/20 16:47	1
Perfluorododecanoic acid (PFDoA)	1.7	U	1.7	0.39	ng/L		11/20/20 09:01	11/20/20 16:47	1
Perfluorotridecanoic acid (PFTriA)	1.7	U	1.7	0.37	ng/L		11/20/20 09:01	11/20/20 16:47	1
Perfluorotetradecanoic acid (PFTeA)	1.7	U	1.7	0.50			11/20/20 09:01	11/20/20 16:47	1
N#=Q!-?=?/-%(\$#,-!Q?\$"@&(@"A& RN U 'S	4[W		1.7	0.53	_		11/20/20 09:01	11/20/20 16:47	1
N#=Q!-?=?E#>(\$#,-!Q?\$"@&(@"A& RNIX>'S	F5		1.7	0.57			11/20/20 09:01	11/20/20 16:47	1
N#=Q!-?=?E#*%(\$#,-!Q?\$'8@@"A& RNIX*'S	Т[С		1.7	0.33				11/20/20 16:47	1
N#=Q!-?=??@%(\$#,-!Q?\$"@&(@"A& RNH'S	9W5		1.7	0.74	_			11/20/20 16:47	1
Perfluorodecanesulfonic acid (PFDS)	1.7		1.7	0.41				11/20/20 16:47	
Perfluorooctanesulfonamide (PFOSA)	1.7		1.7	0.48	_			11/20/20 16:47	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	4.2		4.2	0.67				11/20/20 16:47	1
]6#%EJ!*#=Q!-?=??@%(\$#,-!Q?\$()" A?(@#%"@&(@"A&R]U%LH'< <s< td=""><td>9[7</td><td></td><td>4.2</td><td>0.79</td><td></td><td></td><td></td><td>11/20/20 16:47</td><td></td></s<>	9[7		4.2	0.79				11/20/20 16:47	
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	4.2		4.2	0.61				11/20/20 16:47	1
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	1.7		1.7	0.56	ng/L			11/20/20 16:47	1
	Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
18O2 PFHxS	104		50 - 150				11/20/20 09:01	11/20/20 16:47	1
13C4 PFHpA	98		50 - 150					11/20/20 16:47	1
13C4 PFOS	98		50 - 150				11/20/20 09:01	11/20/20 16:47	
13C5 PFNA	100		50 - 150				11/20/20 09:01	11/20/20 16:47	1
13C4 PFBA	62		25 - 150				11/20/20 09:01	11/20/20 16:47	1
13C2 PFHxA	93		50 - 150				11/20/20 09:01	11/20/20 16:47	1
13C2 PFDA	93		50 - 150				11/20/20 09:01	11/20/20 16:47	1
13C2 PFUnA	94		50 - 150				11/20/20 09:01	11/20/20 16:47	1
13C2 PFDoA	98		50 - 150				11/20/20 09:01	11/20/20 16:47	1
13C8 FOSA	87		25 - 150				11/20/20 09:01	11/20/20 16:47	1
13C5 PFPeA	88		25 - 150				11/20/20 09:01	11/20/20 16:47	1
13C2 PFTeDA	95		50 - 150				11/20/20 09:01	11/20/20 16:47	1
d3-NMeFOSAA	90		50 - 150				11/20/20 09:01	11/20/20 16:47	1
d5-NEtFOSAA	96		50 - 150				11/20/20 09:01	11/20/20 16:47	1
M2-6:2 FTS	116		25 - 150				11/20/20 09:01	11/20/20 16:47	1
M2-8:2 FTS	90		25 - 150				11/20/20 09:01	11/20/20 16:47	1
13C3 PFBS	99		50 - 150				11/20/20 09:01	11/20/20 16:47	1
:#%E?A2&WCT&R)?A"Q"#AS&68 <\$(!J%#		(%#/ /%(\$@ P-(!"Q"#=)#, &6&1 . +.	:1.	O\$"%	4	N=#*(=#A	<\$(!JM#A	1"!&L(@
						1			

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;67

.(/&'()*!#&012&345677784967

1(%#& ?!!#@%#**A92599**CB75&952WW 1(%#&+#@#"D#**A9259**4B75&98235

:(%=">2&(%#=

Isotope Dilution	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFOA	105	50 - 150				11/20/20 09:01	11/23/20 17:07	2
:#%E?A2&45951&6&:#%(!	.&R0 NS							
<\$(!J%#	+#,-!% P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L((
Silver	10.0 U	10.0	5.8	ug/L		11/22/20 16:15	11/23/20 18:28	1
-)"\$-)</td <td>W55</td> <td>200</td> <td>76.9</td> <td>ug/L</td> <td></td> <td>11/22/20 16:15</td> <td>11/23/20 18:28</td> <td>1</td>	W55	200	76.9	ug/L		11/22/20 16:15	11/23/20 18:28	1
Arsenic	15.0 U	15.0	3.3	ug/L		11/22/20 16:15	11/23/20 18:28	1
V(="-)	FF[9 \	200	13.2	ug/L		11/22/20 16:15	11/23/20 18:28	1
Beryllium	2.0 U	2.0	0.17	ug/L		11/22/20 16:15	11/23/20 18:28	1
(!@"-)	7FC555	5000	152	ug/L		11/22/20 16:15	11/23/20 18:28	1
Cadmium	4.0 U	4.0	0.33	ug/L		11/22/20 16:15	11/23/20 18:28	1
Cobalt	50.0 U	50.0	2.0	ug/L		11/22/20 16:15	11/23/20 18:28	1
Chromium	10.0 U	10.0	5.0	ug/L		11/22/20 16:15	11/23/20 18:28	1
Copper	25.0 U	25.0	6.9	ug/L		11/22/20 16:15	11/23/20 18:28	1
0=?\$	3FC J+	150	80.8	ug/L		11/22/20 16:15	11/23/20 18:28	1
N?%(,,"-)	9WC55	5000	142	ug/L		11/22/20 16:15	11/23/20 18:28	1
:(1\$#,"-)	4T955	5000	142	ug/L		11/22/20 16:15	11/23/20 18:28	1
:(\$1(\$#,#	FF[F	15.0	0.76	ug/L		11/22/20 16:15	11/23/20 18:28	1
'?A"-)	75C55	5000	83.8	ug/L		11/22/20 16:15	11/23/20 18:28	1
Nickel	40.0 U	40.0	4.1	ug/L		11/22/20 16:15	11/23/20 18:28	1
Lead	10.0 U	10.0	2.4	ug/L		11/22/20 16:15	11/23/20 18:28	1
Antimony	20.0 U	20.0	3.7	ug/L		11/22/20 16:15	11/23/20 18:28	1
Selenium	20.0 U	20.0	5.9	ug/L		11/22/20 16:15	11/23/20 18:28	1
Thallium	20.0 U	20.0	4.1	ug/L		11/22/20 16:15	11/23/20 18:28	1
Vanadium	50.0 U	50.0	7.2	ug/L		11/22/20 16:15	11/23/20 18:28	1
^"\$@	C[T \	30.0	1.2	ug/L		11/22/20 16:15	11/23/20 18:28	1
:#%E?A2&T3T 5 \$6&:#=@-=	:J& R∢S							
<\$(!J%#	+#,-!% P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Mercury	0.20 U	0.20	0.091	ug/L	_	11/25/20 12:43	11/25/20 14:10	1
K#\$#=(!& E#)",%=J								
<\$(!J%#	+#,-!% P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L((
J(\$"A#Z& <u>?</u> %(!	5[55WC\ J+	0.010	0.0040	mg/L		11/27/20 09:11	11/27/20 13:14	1
"#\$%&'()*!#&012&:;60 (%#& ?!!#@%# A935 90CB758					.(/	&'()*!# & 012	2&34567778	3496C

:#%E?A2&F7451 &38 %"!#&H=I(\$"@&	?)*?-\$A	.&/J&K B:'
---	----------	------------

111 /0E 17 (EG) 1 -10 1 GO (70 111	aii i(4 @a i)	. 471,070011	•						
<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Chloromethane	1.0	U	1.0	0.40	ug/L			11/22/20 17:06	1
Bromomethane	1.0	U	1.0	0.55	ug/L			11/22/20 17:06	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			11/22/20 17:06	1
Chloroethane	1.0	U	1.0	0.32	ug/L			11/22/20 17:06	1
Methylene Chloride	1.0	U	1.0	0.32	ug/L			11/22/20 17:06	1
Acetone	5.0	U	5.0	4.4	ug/L			11/22/20 17:06	1
Carbon disulfide	1.0	U	1.0	0.82	ug/L			11/22/20 17:06	1
Trichlorofluoromethane	1.0	U	1.0	0.32	ug/L			11/22/20 17:06	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			11/22/20 17:06	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			11/22/20 17:06	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			11/22/20 17:06	1

Eurofins TestAmerica, Edison

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;6C

.(/&'()*!#&012&34567778496C

:(%=">2&(%#=

1(%#& ?!!#@%#**9933.CE**75&582CW 1(%#&+#@#"D#**9933.4E**75&98235

<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L((
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			11/22/20 17:06	1
Chloroform	1.0	U	1.0	0.33	ug/L			11/22/20 17:06	1
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			11/22/20 17:06	1
2-Butanone (MEK)	5.0	U	5.0	1.9	ug/L			11/22/20 17:06	1
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L			11/22/20 17:06	1
Carbon tetrachloride	1.0	U	1.0	0.21	ug/L			11/22/20 17:06	1
Dichlorobromomethane	1.0	U	1.0	0.34	ug/L			11/22/20 17:06	1
1,2-Dichloropropane	1.0	U	1.0	0.35	ug/L			11/22/20 17:06	1
cis-1,3-Dichloropropene	1.0	U	1.0		ug/L			11/22/20 17:06	1
Trichloroethene	1.0	U	1.0		ug/L			11/22/20 17:06	1
Chlorodibromomethane	1.0	U	1.0		ug/L			11/22/20 17:06	1
1,1,2-Trichloroethane	1.0	U	1.0		ug/L			11/22/20 17:06	1
Benzene	1.0	U	1.0		ug/L			11/22/20 17:06	1
trans-1,3-Dichloropropene	1.0	U	1.0		ug/L			11/22/20 17:06	1
Bromoform	1.0		1.0		ug/L			11/22/20 17:06	1
4-Methyl-2-pentanone (MIBK)		U *	5.0		ug/L			11/22/20 17:06	1
2-Hexanone	5.0		5.0		ug/L			11/22/20 17:06	·
Tetrachloroethene	1.0		1.0		ug/L			11/22/20 17:06	1
1.1.2.2-Tetrachloroethane	1.0	-	1.0		ug/L			11/22/20 17:06	1
Toluene	1.0		1.0		ug/L			11/22/20 17:06	
Chlorobenzene	1.0		1.0		ug/L			11/22/20 17:06	1
Ethylbenzene	1.0		1.0		ug/L			11/22/20 17:06	1
Styrene	1.0		1.0		ug/L			11/22/20 17:06	
m-Xylene & p-Xylene	1.0		1.0		ug/L ug/L			11/22/20 17:06	1
o-Xylene	1.0		1.0		ug/L ug/L			11/22/20 17:06	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0		1.0					11/22/20 17:06	
Methyl tert-butyl ether	1.0		1.0		ug/L			11/22/20 17:06	1
•			1.0		ug/L				-
Cyclohexane	1.0				ug/L			11/22/20 17:06	
Ethylene Dibromide	1.0		1.0		ug/L			11/22/20 17:06	1
1,3-Dichlorobenzene	1.0		1.0		ug/L			11/22/20 17:06	1
1,4-Dichlorobenzene	1.0		1.0		ug/L			11/22/20 17:06	
1,2-Dichlorobenzene	1.0		1.0		ug/L			11/22/20 17:06	1
Dichlorodifluoromethane	1.0		1.0		ug/L			11/22/20 17:06	1
1,2,4-Trichlorobenzene	1.0		1.0		ug/L			11/22/20 17:06	1
1,4-Dioxane	50		50		ug/L			11/22/20 17:06	1
1,2,3-Trichlorobenzene	1.0		1.0		ug/L			11/22/20 17:06	1
1,2-Dibromo-3-Chloropropane	1.0		1.0		ug/L			11/22/20 17:06	1
Chlorobromomethane	1.0	U	1.0		ug/L			11/22/20 17:06	1
Isopropylbenzene	1.0	U	1.0	0.34	ug/L			11/22/20 17:06	1
Methyl acetate	5.0	U	5.0	0.79	ug/L			11/22/20 17:06	1
Methylcyclohexane	1.0	U	1.0	0.71	ug/L			11/22/20 17:06	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					11/22/20 17:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		75 - 123			=		11/22/20 17:06	1
Toluene-d8 (Surr)	103		80 - 120					11/22/20 17:06	1
4-Bromofluorobenzene	104		76 - 120					11/22/20 17:06	1
Dibromofluoromethane (Surr)	91		77 - 124					11/22/20 17:06	1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;6C

.(/&'()*!#&012&34567778496C

1(%#& ?!!#@%#**99H3**CF 5&582CW

:(%=">2&(%#=

Job ID: 460-222961-1

1(%#&+#@#"D#**99H3**4**B**75&98235

<\$(!J%#		P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
9Z361"?>(\$#	5[75		0.20	0.016	ug/L		11/18/20 09:12	11/19/20 14:22	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	32		10 - 150				11/18/20 09:12	11/19/20 14:22	1
.#0/ FO A 20 F7TELLO CO !#\!ID	21/0/ WI#811-1/69	"@0 2*2 f	A OFFICE						
:#%E?A2&F7T5U&6&'#)"D <\$(!J%#		P-(!"Q"#=	A, OID D. +.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Phenol	10		10	0.29		_ <u>-</u>	11/19/20 09:29	11/20/20 06:11	1 :0.2(6
2-Chlorophenol	10		10		ug/L		11/19/20 09:29	11/20/20 06:11	1
2-Methylphenol		U	10		ug/L		11/19/20 09:29	11/20/20 06:11	1
4-Methylphenol			10		ug/L		11/19/20 09:29	11/20/20 06:11	
2-Nitrophenol			10		ug/L		11/19/20 09:29	11/20/20 06:11	1
2,4-Dimethylphenol		U	10		ug/L		11/19/20 09:29	11/20/20 06:11	1
2,4-Dichlorophenol			10	1.1	ug/L		11/19/20 09:29	11/20/20 06:11	
4-Chloro-3-methylphenol		U	10		ug/L		11/19/20 09:29	11/20/20 06:11	1
2,4,6-Trichlorophenol	10		10		ug/L ug/L		11/19/20 09:29	11/20/20 06:11	1
2,4,5-Trichlorophenol	10		10		ug/L		11/19/20 09:29	11/20/20 06:11	
2,4-Dinitrotoluene	2.0		2.0		ug/L		11/19/20 09:29	11/20/20 06:11	1
4-Nitrophenol	30		30		_		11/19/20 09:29	11/20/20 06:11	1
4-Nitrophenol 4,6-Dinitro-2-methylphenol		U	30		ug/L ug/L		11/19/20 09:29	11/20/20 06:11	
Pentachlorophenol		U	30		_				
•	1.0		1.0		ug/L ug/L		11/19/20 09:29 11/19/20 09:29	11/20/20 06:11	1
Bis(2-chloroethyl)ether								11/20/20 06:11	
N-Nitrosodi-n-propylamine	1.0		1.0		ug/L		11/19/20 09:29	11/20/20 06:11	1
Hexachloroethane	2.0		2.0		ug/L		11/19/20 09:29	11/20/20 06:11	1
Nitrobenzene	1.0		1.0		ug/L		11/19/20 09:29	11/20/20 06:11	1
Isophorone	10		10		ug/L		11/19/20 09:29	11/20/20 06:11	1
Naphthalene	2.0		2.0		ug/L		11/19/20 09:29	11/20/20 06:11	1
4-Chloroaniline	1.0		1.0		ug/L		11/19/20 09:29	11/20/20 06:11	1
Hexachlorobutadiene	2.0		2.0		ug/L		11/19/20 09:29	11/20/20 06:11	1
2-Methylnaphthalene	10		10		ug/L		11/19/20 09:29	11/20/20 06:11	1
Hexachlorocyclopentadiene	10		10		ug/L		11/19/20 09:29	11/20/20 06:11	1
2-Chloronaphthalene		U	10		ug/L		11/19/20 09:29	11/20/20 06:11	1
2-Nitroaniline	20		20		ug/L		11/19/20 09:29	11/20/20 06:11	1
Dimethyl phthalate	10		10		ug/L		11/19/20 09:29	11/20/20 06:11	1
Acenaphthylene	10		10		ug/L		11/19/20 09:29	11/20/20 06:11	1
2,6-Dinitrotoluene	2.0	U	2.0	0.83	ug/L		11/19/20 09:29		1
3-Nitroaniline	20	U	20		ug/L		11/19/20 09:29	11/20/20 06:11	1
Acenaphthene	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:11	1
Dibenzofuran	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:11	1
2,4-Dinitrophenol	30	U	30	2.6	ug/L		11/19/20 09:29	11/20/20 06:11	1
Diethyl phthalate	10	U	10	0.98	ug/L		11/19/20 09:29	11/20/20 06:11	1
4-Chlorophenyl phenyl ether	10	U	10	1.3	ug/L		11/19/20 09:29	11/20/20 06:11	1
Fluorene	10	U	10	0.91	ug/L		11/19/20 09:29	11/20/20 06:11	1
4-Nitroaniline	20	U	20	1.2	ug/L		11/19/20 09:29	11/20/20 06:11	1
N-Nitrosodiphenylamine	10	U	10	0.89	ug/L		11/19/20 09:29	11/20/20 06:11	1
4-Bromophenyl phenyl ether	10	U	10	0.75	ug/L		11/19/20 09:29	11/20/20 06:11	1
Hexachlorobenzene	1.0	U	1.0	0.40	ug/L		11/19/20 09:29	11/20/20 06:11	1
Phenanthrene	10	U	10	1.3	ug/L		11/19/20 09:29	11/20/20 06:11	1
Anthracene	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:11	1
Carbazole	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:11	1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;6C

.(/&'()*!#&012&34567778496C

:(%=">2&(%#=

Job ID: 460-222961-1

1(%#& ?!!#@%#**9933.CE**75&582CW 1(%#&+#@#"D#**9933.4E**75&98235

Fluoranthene	<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1		O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Pyrene	Di-n-butyl phthalate	10	U	10	0.	84	ug/L		11/19/20 09:29	11/20/20 06:11	1
Bluby barxyl phthalate	Fluoranthene	10	U	10	0.	84	ug/L		11/19/20 09:29	11/20/20 06:11	1
Benzo calignathracene	Pyrene	10	U	10		1.6	ug/L		11/19/20 09:29	11/20/20 06:11	1
Chrysene	Butyl benzyl phthalate	10	U	10	0.	85	ug/L		11/19/20 09:29	11/20/20 06:11	1
Bis C_e-bry bethy	Benzo[a]anthracene	1.0	U	1.0	0.	59	ug/L		11/19/20 09:29	11/20/20 06:11	1
Di-no-cly phthalate	Chrysene	10	U	10	0.	91	ug/L		11/19/20 09:29	11/20/20 06:11	1
Benzok Denzok D	Bis(2-ethylhexyl) phthalate	10	U	10	0.	80	ug/L		11/19/20 09:29	11/20/20 06:11	1
Benzo Benz	Di-n-octyl phthalate	10	U	10	0.	75	ug/L		11/19/20 09:29	11/20/20 06:11	1
Benzola pyrene	Benzo[b]fluoranthene	2.0	U	2.0	0.	68	ug/L		11/19/20 09:29	11/20/20 06:11	1
Indeno(f)(2,3-cd)pyrene	Benzo[k]fluoranthene	1.0	U	1.0	0.	67	ug/L		11/19/20 09:29	11/20/20 06:11	1
Dibenz(ah,))anthracene	Benzo[a]pyrene	1.0	U	1.0	0.	41	ug/L		11/19/20 09:29	11/20/20 06:11	1
Dibenz(ah,))anthracene	Indeno[1,2,3-cd]pyrene	2.0	U	2.0	0.	94	ug/L		11/19/20 09:29	11/20/20 06:11	1
Benzolgh,i)perylene	Dibenz(a,h)anthracene	1.0	U	1.0			_		11/19/20 09:29	11/20/20 06:11	1
1.1-Biphenyl 10 U 10 10 2.3 ug/L 11/19/20 09:29 11/20/20 06:11 1 1.4-Dioxane 10 U 10 10 2.3 ug/L 11/19/20 09:29 11/20/20 06:11 1 1.4-Dioxane 10 U 10 10 16 ug/L 11/19/20 09:29 11/20/20 06:11 1 1 1.4-Dioxane 10 U 10 10 2.1 ug/L 11/19/20 09:29 11/20/20 06:11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Benzo[g,h,i]perylene	10	U	10			-		11/19/20 09:29	11/20/20 06:11	1
Acetophenone 10 U 10 10 2.3 ug/L 11/19/20 09:29 11/20/20 06:11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,1'-Biphenyl	10	U	10					11/19/20 09:29	11/20/20 06:11	1
1.4-Dioxane	Acetophenone	10	U	10			_		11/19/20 09:29	11/20/20 06:11	1
Benzaldehyde	•	10	U	10					11/19/20 09:29	11/20/20 06:11	1
Caprolactam		10	U	10					11/19/20 09:29	11/20/20 06:11	1
Atrazine 10 U* 10 1.3 ug/L 11/19/20 09:29 11/20/20 06:11 1 1 1 2,2°-oxybis[1-chloropropane] 10 U 10 0.63 ug/L 11/19/20 09:29 11/20/20 06:11 1 1 1 2,24,5-Tetrachlorobenzene 10 U 10 0.75 ug/L 11/19/20 09:29 11/20/20 06:11 1 1 2,3,4.6-Tetrachlorophenol 10 U 10 0.75 ug/L 11/19/20 09:29 11/20/20 06:11 1 1 3,3°-Dichlorobenzidine 20 U 20 1.4 ug/L 11/19/20 09:29 11/20/20 06:11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•										1
10	•										1
1,2,4,5-Tetrachlorobenzene											
2,3,4,6-Tetrachlorophenol 10 U 10 0.75 ug/L 11/19/20 09:29 11/20/20 06:11 1 3.3*Dichlorobenzidine 20 U 20 1.4 ug/L 11/19/20 09:29 11/20/20 06:11 1 18is(2-chloroethoxy)methane 10 U 10 0.59 ug/L 11/19/20 09:29 11/20/20 06:11 1 176 ug/L 11/19/20 09:29 11/20/20 06:11 1							_				1
1.4 3.3 3.3 3.3 3.5							_				1
Bis(2-chloroethoxy)methane											
Tentatively Identified Compound None Ug/L	Bis(2-chloroethoxy)methane						_				1
Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Factor	Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	ı	RT	CAS No.	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr) 100 46 - 137 11/19/20 09:29 11/20/20 06:11 1 1 Phenol-d5 (Surr) 28 10 - 50 11/19/20 09:29 11/20/20 06:11 1 Terphenyl-d14 (Surr) 69 39 - 150 11/19/20 09:29 11/20/20 06:11 1 2.4.6-Tribromophenol (Surr) 130 36 - 159 11/19/20 09:29 11/20/20 06:11 1 2-Fluorophenol (Surr) 43 18 - 72 11/19/20 09:29 11/20/20 06:11 1 2-Fluorobiphenyl 84 42 - 127 11/19/20 09:29 11/20/20 06:11 1 2-Fluorobiphenyl 84 42 - 127 11/19/20 09:29 11/20/20 06:11 1 2-Fluorobiphenyl 84 42 - 127 11/19/20 09:29 11/20/20 06:11 1 2-Fluorobiphenyl 84 42 - 127 11/19/20 09:29 11/20/20 06:11 1 2-Fluorobiphenyl 84 42 - 127 11/19/20 09:29 11/20/20 06:11 1 2-Fluorobiphenyl 84 42 - 127 11/19/20 09:29 11/20/20 06:11 1 2-Fluorobiphenyl 84 12 - 127 11/19/20 09:29 11/20/20 06:11 1 2-Fluorobiphenyl 84 11/19/20 09:29 11/20/20 06:11 1 2-Fluorobiphenyl 84 12 - 127 11/19/20 09:29 11/20/20 06:11 1 2-Fluorobiphenyl 84 12 - 127 11/19/20 09:29 11/20/20 06:11 1 2-Fluorobiphenyl 84 11/19/20 09:14 11/18/20 09:44 11/19/20 14:13 1 1 2-Fluorobiphenyl 84 11/19/20 14:13 1 1 2-Fluorobiphenyl 84 11/19/20 14:13 1 1 2-Fluorobiphenyl 84 12 - 127 11/18/20 09:44 11/19/20 14:13 1 1 2-Fluorobiphenyl 84 11/19/20 14:13 1 1 2-Flu	Tentatively Identified Compound	None		ug/L					11/19/20 09:29	11/20/20 06:11	1
Phenol-d5 (Surr) 28	Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Terphenyl-d14 (Surr) 69 39 - 150 11/19/20 09:29 11/20/20 06:11 1 2,4,6-Tribromophenol (Surr) 130 36 - 159 11/19/20 09:29 11/20/20 06:11 1 2-Fluorophenol (Surr) 43 18 - 72 11/19/20 09:29 11/20/20 06:11 1 2-Fluorophenol (Surr) 84 42 - 127 11/19/20 09:29 11/20/20 06:11 1 2-Fluorophenol (Surr) 84 42 - 127 11/19/20 09:29 11/20/20 06:11 1 2-Fluorophenol (Surr) 84 42 - 127 11/19/20 09:29 11/20/20 06:11 1 2-Fluorophenol (Surr) 84 42 - 127 11/19/20 09:29 11/20/20 06:11 1 2-Fluorophenol (Surr) 84 42 - 127 11/19/20 09:29 11/20/20 06:11 1 2-Fluorophenol (Surr) 84 42 - 127 11/19/20 09:29 11/20/20 06:11 1 2-Fluorophenol (Surr) 85 2-Fluorophenol (Surr)	Nitrobenzene-d5 (Surr)	100		46 - 137					11/19/20 09:29	11/20/20 06:11	1
2,4,6-Tribromophenol (Surr) 130 36-159 11/19/20 09:29 11/20/20 06:11 12-Fluorophenol (Surr) 43 18-72 11/19/20 09:29 11/20/20 06:11 11 2-Fluorobiphenyl 84 42-127 11/19/20 09:29 11/20/20 06:11 11/19/20 09:29 11/20/20 06:11 11/19/20 09:41 11/19/20 09:41 11/19/20 14:13 11/19/20 14:13 11/19/20 14:13 11/19/20 14:13 11/19/20 14:13 11/19/20 14:13 11/19/20 14:13 11/19/20 14:13 11/19/20 14:13 11/19/20 14:13 11/19/20 14:13 11/19/20 14:13 11/19/20 14:13 11/19/20 14:13 11/19/20 14:13 11/19/2	Phenol-d5 (Surr)	28		10 - 50					11/19/20 09:29	11/20/20 06:11	1
2-Fluorophenol (Surr) 2-Fluorobiphenyl 84 42 - 127 11/19/20 09:29 11/20/20 06:11 11 2-Fluorobiphenyl 84 42 - 127 11/19/20 09:29 11/20/20 06:11 11 11/19/20 09:29 11/20/20 06:11 11 11/19/20 09:29 11/20/20 06:11 11 11/19/20 09:29 11/20/20 06:11 11 11/19/20 09:29 11/20/20 06:11 11 11/19/20 09:29 11/20/20 06:11 11 11/19/20 09:29 11/20/20 06:11 11 11/19/20 09:29 11/20/20 06:11 11 11/19/20 09:29 11/20/20 06:11 11 11/19/20 09:29 11/20/20 06:11 11 11/19/20 09:29 11/20/20 06:11 11 11/19/20 09:29 11/20/20 06:11 11 11/18/20 09:29 11/20/20 06:11 11/18/20 09:29 11/20/20 06:11 11/18/20 09:29 11/20/20 06:11 11/18/20 09:29 11/20/20 06:11 11/18/20 09:29 11/20/20 06:11 11/18/20 09:49 11/19/20 14:13 11/18/20 09:44 11/19/20 14:13	Terphenyl-d14 (Surr)	69		39 - 150					11/19/20 09:29	11/20/20 06:11	1
2-Fluorobiphenyl 84 42 - 127 11/19/20 09:29 11/20/20 06:11 1 #%E?A2&F5F9V&6&H=I(\$?@E!?="\$#&N#,%"@"A#,&RK S <\$(!J\\mathred{S}\) \$\\$(!J\\mathred{S}\) \$\}(!J\\mathred{S}\) \$\}(1) \\ \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2,4,6-Tribromophenol (Surr)	130		36 - 159					11/19/20 09:29	11/20/20 06:11	1
#%E?A2&F5F9V&6&H=I(\$?@E!?="\$#&N#,%"@"A#,&RK S <\$(!J%#	2-Fluorophenol (Surr)	43		18 - 72					11/19/20 09:29	11/20/20 06:11	1
<\$(!J%# +#,-!% P-(!"Q"#= +. :1. O\$"% 1 N=#*(=#A <\$(!JM#A) 1"!&L(0 4,4'-DDD 0.020 0.020 0.0060 ug/L 11/18/20 09:44 11/19/20 14:13 1 4,4'-DDE 0.020 0.020 0.0020 ug/L 11/18/20 09:44 11/19/20 14:13 1 4,4'-DDT 0.020 0.020 0.0040 ug/L 11/18/20 09:44 11/19/20 14:13 1 Aldrin 0.020 0.020 0.0070 ug/L 11/18/20 09:44 11/19/20 14:13 1 alpha-BHC 0.020 0.020 0.0070 ug/L 11/18/20 09:44 11/19/20 14:13 1 beta-BHC 0.020 0.020 0.0040 ug/L 11/18/20 09:44 11/19/20 14:13 1 Chlordane (technical) 0.50 0.50 0.055 ug/L 11/18/20 09:44 11/19/20 14:13 1 delta-BHC 0.020 0.020 0.0050 ug/L 11/18/20 09:44 11/19/20 14:13 1 <t< td=""><td>2-Fluorobiphenyl</td><td>84</td><td></td><td>42 - 127</td><td></td><td></td><td></td><td></td><td>11/19/20 09:29</td><td>11/20/20 06:11</td><td>1</td></t<>	2-Fluorobiphenyl	84		42 - 127					11/19/20 09:29	11/20/20 06:11	1
4,4'-DDD 0.020 U 0.020 0.0060 ug/L 11/18/20 09:44 11/19/20 14:13 1 4,4'-DDE 0.020 U 0.020 0.0020 ug/L 11/18/20 09:44 11/19/20 14:13 1 4,4'-DDT 0.020 U 0.020 0.0040 ug/L 11/18/20 09:44 11/19/20 14:13 1 Aldrin 0.020 U 0.020 0.0030 ug/L 11/18/20 09:44 11/19/20 14:13 1 alpha-BHC 0.020 U 0.020 0.0070 ug/L 11/18/20 09:44 11/19/20 14:13 1 beta-BHC 0.020 U 0.50 0.055 ug/L 11/18/20 09:44 11/19/20 14:13 1 Chlordane (technical) 0.50 U 0.050 0.055 ug/L 11/18/20 09:44 11/19/20 14:13 1 delta-BHC 0.020 U 0.020 0.0050 ug/L 11/18/20 09:44 11/19/20 14:13 1 Dieldrin 0.020 U 0.020 0.0030 ug/L 11/18/20 09:44 11/19/20 14:13 1 Endosulfan I	:#%E?A2&F5F9V&6&H=I(\$?@	DE!?="\$#&N	#,%"@"A#	#,&RK S							
4,4'-DDE 0.020 U 0.020 0.0020 ug/L 11/18/20 09:44 11/19/20 14:13 1 4,4'-DDT 0.020 U 0.020 0.0040 ug/L 11/18/20 09:44 11/19/20 14:13 1 Aldrin 0.020 U 0.020 0.0030 ug/L 11/18/20 09:44 11/19/20 14:13 1 alpha-BHC 0.020 U 0.020 0.0070 ug/L 11/18/20 09:44 11/19/20 14:13 1 beta-BHC 0.020 U 0.020 0.0040 ug/L 11/18/20 09:44 11/19/20 14:13 1 Chlordane (technical) 0.50 U 0.50 0.055 ug/L 11/18/20 09:44 11/19/20 14:13 1 delta-BHC 0.020 U 0.020 0.0050 ug/L 11/18/20 09:44 11/19/20 14:13 1 Dieldrin 0.020 U 0.020 0.0030 ug/L 11/18/20 09:44 11/19/20 14:13 1 Endosulfan I 0.020 U 0.020 0.0020 ug/L 11/18/20 09:44 11/19/20 14:13 1	<\$(!J%#							1			1"!&L(@
4,4'-DDT 0.020 U 0.020 0.0040 ug/L 11/18/20 09:44 11/19/20 14:13 1 1 Aldrin 0.020 U 0.020 0.0030 ug/L 11/18/20 09:44 11/19/20 14:13 1 1 alpha-BHC 0.020 U 0.020 0.0070 ug/L 11/18/20 09:44 11/19/20 14:13 1 1 beta-BHC 0.020 U 0.020 0.0040 ug/L 11/18/20 09:44 11/19/20 14:13 1 1 Chlordane (technical) 0.50 U 0.50 0.055 ug/L 11/18/20 09:44 11/19/20 14:13 1 1 delta-BHC 0.020 U 0.020 0.0050 ug/L 11/18/20 09:44 11/19/20 14:13 1 1 Dieldrin 0.020 U 0.020 0.0030 ug/L 11/18/20 09:44 11/19/20 14:13 1 1 Endosulfan I 0.020 U 0.020 0.0020 ug/L 11/18/20 09:44 11/19/20 14:13 1 1	4,4'-DDD						_		11/18/20 09:44		1
Aldrin 0.020 U 0.020 0.0030 ug/L 11/18/20 09:44 11/19/20 14:13 1 alpha-BHC 0.020 U 0.020 0.0070 ug/L 11/18/20 09:44 11/19/20 14:13 1 beta-BHC 0.020 U 0.020 0.0040 ug/L 11/18/20 09:44 11/19/20 14:13 1 Chlordane (technical) 0.50 U 0.50 0.055 ug/L 11/18/20 09:44 11/19/20 14:13 1 delta-BHC 0.020 U 0.020 0.0050 ug/L 11/18/20 09:44 11/19/20 14:13 1 Dieldrin 0.020 U 0.020 0.0030 ug/L 11/18/20 09:44 11/19/20 14:13 1 Endosulfan I 0.020 U 0.020 0.0020 ug/L 11/18/20 09:44 11/19/20 14:13 1	4,4'-DDE										1
alpha-BHC 0.020 U 0.020 0.0070 ug/L 11/18/20 09:44 11/19/20 14:13 1 1 beta-BHC 0.020 U 0.020 0.0040 ug/L 11/18/20 09:44 11/19/20 14:13 1 1 Chlordane (technical) 0.50 U 0.50 0.055 ug/L 11/18/20 09:44 11/19/20 14:13 1 1 delta-BHC 0.020 U 0.020 0.0050 ug/L 11/18/20 09:44 11/19/20 14:13 1 1 Dieldrin 0.020 U 0.020 0.0030 ug/L 11/18/20 09:44 11/19/20 14:13 1 1 Endosulfan I 0.020 U 0.020 0.0020 ug/L 11/18/20 09:44 11/19/20 14:13 1 1	4,4'-DDT	0.020	U	0.020	0.00	40	ug/L		11/18/20 09:44	11/19/20 14:13	1
beta-BHC 0.020 U 0.020 0.0040 ug/L 11/18/20 09:44 11/19/20 14:13 1 Chlordane (technical) 0.50 U 0.50 0.055 ug/L 11/18/20 09:44 11/19/20 14:13 1 delta-BHC 0.020 U 0.020 0.0050 ug/L 11/18/20 09:44 11/19/20 14:13 1 Dieldrin 0.020 U 0.020 0.0030 ug/L 11/18/20 09:44 11/19/20 14:13 1 Endosulfan I 0.020 U 0.020 0.0020 ug/L 11/18/20 09:44 11/19/20 14:13 1	Aldrin	0.020	U	0.020	0.00	30	ug/L		11/18/20 09:44	11/19/20 14:13	1
Chlordane (technical) 0.50 U 0.50 U 0.50 U 0.055 ug/L 11/18/20 09:44 11/19/20 14:13 1 delta-3 U delta-BHC 0.020 U 0.020 U 0.020 ug/L 11/18/20 09:44 11/19/20 14:13 1 Dieldrin Dieldrin 0.020 U 0.020 0.0020 ug/L 11/18/20 09:44 11/19/20 14:13 1 Dieldrin Endosulfan I 0.020 U 0.020 0.0020 ug/L 11/18/20 09:44 11/19/20 14:13 1 Dieldrin	alpha-BHC	0.020	U	0.020			_		11/18/20 09:44	11/19/20 14:13	1
delta-BHC 0.020 U 0.020 0.0050 ug/L 11/18/20 09:44 11/19/20 14:13 1 Dieldrin 0.020 U 0.020 0.0030 ug/L 11/18/20 09:44 11/19/20 14:13 1 Endosulfan I 0.020 U 0.020 0.0020 ug/L 11/18/20 09:44 11/19/20 14:13 1		0.020	U	0.020	0.00	40	ug/L		11/18/20 09:44	11/19/20 14:13	1
Dieldrin 0.020 U		0.020				55	ua/l		11/18/20 00:44	11/10/00 11:10	
Endosulfan I 0.020 U 0.020 0.0020 ug/L 11/18/20 09:44 11/19/20 14:13 1	beta-BHC		U	0.50	0.0	55	ug/L		11/10/20 09.44	11/19/20 14:13	1
Endosulfan I 0.020 U 0.020 0.0020 ug/L 11/18/20 09:44 11/19/20 14:13 1	beta-BHC Chlordane (technical)	0.50									1
	beta-BHC Chlordane (technical) delta-BHC	0.50 0.020	U	0.020	0.00	50	ug/L		11/18/20 09:44	11/19/20 14:13	
	beta-BHC Chlordane (technical) delta-BHC Dieldrin Endosulfan I	0.50 0.020 0.020	U U	0.020 0.020	0.00	50 30	ug/L ug/L		11/18/20 09:44 11/18/20 09:44	11/19/20 14:13 11/19/20 14:13	1

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;6C

.(/&'()*!#&012&34567778496C

:(%=">2&(%#=

1(%#& ?!!#@%#**9033.CB** 5&582CW 1(%#&+#@#"D#**9033.4B** 5&98235

<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Endosulfan sulfate	0.020	U	0.020	0.0060	ug/L		11/18/20 09:44	11/19/20 14:13	1
Endrin	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 14:13	1
Endrin aldehyde	0.020	U	0.020	0.0080	ug/L		11/18/20 09:44	11/19/20 14:13	1
Endrin ketone	0.020	U	0.020	0.0080	ug/L		11/18/20 09:44	11/19/20 14:13	1
gamma-BHC (Lindane)	0.020	U	0.020	0.012			11/18/20 09:44	11/19/20 14:13	1
Heptachlor	0.020	U	0.020	0.0030	-		11/18/20 09:44	11/19/20 14:13	1
Heptachlor epoxide	0.020	U	0.020	0.0050	•		11/18/20 09:44	11/19/20 14:13	1
Methoxychlor	0.020		0.020	0.0040				11/19/20 14:13	1
Toxaphene	0.50		0.50		ug/L			11/19/20 14:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	79		10 - 132				11/18/20 09:44	11/19/20 14:13	1
DCB Decachlorobiphenyl	70		10 - 132				11/18/20 09:44	11/19/20 14:13	1
Tetrachloro-m-xylene	74		10 - 150				11/18/20 09:44	11/19/20 14:13	1
Tetrachloro-m-xylene	74		10 - 150				11/18/20 09:44	11/19/20 14:13	1
:#%E?A2&F5F7&6&N?!J@E!?=	="\$(%#A&V	"*E#\$J!,&F	RN V,S&/J&F	((,& E=?		J			
<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Aroclor 1016	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 18:51	1
Aroclor 1221	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 18:51	1
Aroclor 1232	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 18:51	1
Aroclor 1242	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 18:51	1
Aroclor 1248	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 18:51	1
Aroclor 1254	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 18:51	1
Aroclor 1260	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 18:51	1
Aroclor-1262	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 18:51	1
Aroclor 1268	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 18:51	1
Polychlorinated biphenyls, Total	0.40	U	0.40		ug/L		11/18/20 09:41	11/18/20 18:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	93		10 - 150				11/18/20 09:41	11/18/20 18:51	1
DCB Decachlorobiphenyl	90		10 - 150				11/18/20 09:41	11/18/20 18:51	1
Tetrachloro-m-xylene	89		48 - 125				11/18/20 09:41	11/18/20 18:51	1
Tetrachloro-m-xylene	94		48 - 125				11/18/20 09:41	11/18/20 18:51	1
:#%E?A2&F9 W& 6&X#=/"@"A#	,&RK S								
<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
2,4-D	1.2	U	1.2	0.13	ug/L		11/17/20 20:26	11/18/20 09:30	1
Silvex (2,4,5-TP)	1.2	U	1.2	0.11	ug/L		11/17/20 20:26	11/18/20 09:30	1
2,4,5-T	1.2	U	1.2	0.12	ug/L		11/17/20 20:26	11/18/20 09:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	63		39 - 145				11/17/20 20:26	11/18/20 09:30	1
2,4-Dichlorophenylacetic acid	68		39 - 145				11/17/20 20:26	11/18/20 09:30	1
:#%E?A2&WCT&R)?A"Q"#AS									
<\$(!J%#		P-(!"Q"#=	<u>+.</u>	:1.	O\$"%	_ 1	N=#*(=#A	<\$(!JM#A	1"!&L(@
N#=Q!-?=?/-%(\$?"@&(@"A&RNLV<	S W4	_	4.7	1.1	ng/L	_	11/20/20 09:01	11/20/20 16:55	1
N#=Q!-?=?*#\$%(\$?"@&(@"A&RNLI	N# <s 84<="" td=""><td></td><td>1.9</td><td></td><td>ng/L</td><td></td><td>11/20/20 09:01</td><td>11/20/20 16:55</td><td>1</td></s>		1.9		ng/L		11/20/20 09:01	11/20/20 16:55	1
N#=Q!-?=?E#>(\$?"@&(@"A&RNLX	> <s 955<="" td=""><td></td><td>1.9</td><td>0.78</td><td>ng/L</td><td></td><td>11/20/20 09:01</td><td>11/20/20 16:55</td><td>1</td></s>		1.9	0.78	ng/L		11/20/20 09:01	11/20/20 16:55	1
IN-Q:-:-:Emr (V: @a(@ Aditive)	300		1.0	0.10			11/20/20 00:01		

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;6C

.(/&'()*!#&012&34567778496C

:(%=">2&(%#=

Job ID: 460-222961-1

1(%#& ?!!#@%#**9933.CE**75&582CW 1(%#&+#@#"D#**9933.4E**75&98235

<\$(!J%#	+#,-!%	P-(!"Q"#=	+,	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L((
N#=Q!-?=?\$?\$(\$?"@&(@"A&RNL] <s< td=""><td>4[5</td><td></td><td>1.9</td><td>0.55</td><td>ng/L</td><td></td><td>11/20/20 09:01</td><td>11/20/20 16:55</td><td>1</td></s<>	4[5		1.9	0.55	ng/L		11/20/20 09:01	11/20/20 16:55	1
N#=Q!-?=?A#@(\$?"@&(@"A&RNL1 <s< td=""><td>9[8</td><td></td><td>1.9</td><td>0.43</td><td>ng/L</td><td></td><td>11/20/20 09:01</td><td>11/20/20 16:55</td><td>1</td></s<>	9[8		1.9	0.43	ng/L		11/20/20 09:01	11/20/20 16:55	1
Perfluoroundecanoic acid (PFUnA)	1.9		1.9	0.69	ng/L		11/20/20 09:01	11/20/20 16:55	1
Perfluorododecanoic acid (PFDoA)	1.9	U	1.9	0.43	-		11/20/20 09:01	11/20/20 16:55	1
Perfluorotridecanoic acid (PFTriA)	1.9	U	1.9	0.41	•		11/20/20 09:01	11/20/20 16:55	1
Perfluorotetradecanoic acid (PFTeA)	1.9	U	1.9	0.56			11/20/20 09:01	11/20/20 16:55	1
N#=Q!-?=?/-%(\$#,-!Q?\$"@&(@"A&	F[4		1.9	0.59	-		11/20/20 09:01	11/20/20 16:55	1
RNM'S					Ü				
N#=Q!-?=?E#>(\$#,-!Q?\$"@&(@"A& RNIX>'S	W	3	1.9	0.63	ng/L		11/20/20 09:01	11/20/20 16:55	1
N#=Q!-?=?E#*%(\$#,-!Q?\$'8@@"A& RNIX*'S	C[9		1.9	0.37	ng/L		11/20/20 09:01	11/20/20 16:55	1
N#=Q!-?=??@%(\$#,-!Q?\$"@&(@"A& RNH'S	48		1.9	0.82	ng/L		11/20/20 09:01	11/20/20 16:55	1
Perfluorodecanesulfonic acid (PFDS)	1.9	U	1.9	0.45	ng/L		11/20/20 09:01	11/20/20 16:55	1
Perfluorooctanesulfonamide (PFOSA)	1.9	U	1.9		ng/L		11/20/20 09:01	11/20/20 16:55	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	4.7	U	4.7	0.75			11/20/20 09:01	11/20/20 16:55	1
]6#%EJ!*#=Q!-?=??@%(\$#,-!Q?\$()" A?(@#%"@&(@"A&R]U%LH'< <s< td=""><td>5[FF</td><td>١</td><td>4.7</td><td>0.88</td><td>ng/L</td><td></td><td>11/20/20 09:01</td><td>11/20/20 16:55</td><td>1</td></s<>	5[FF	١	4.7	0.88	ng/L		11/20/20 09:01	11/20/20 16:55	1
9XZ9XZ7XZ7X6*#=Q!-?=??@%(\$#, \$"@&(@"A&R427S	7W	1	4.7	0.68	ng/L		11/20/20 09:01	11/20/20 16:55	1
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	1.9	U	1.9	0.62	ng/L		11/20/20 09:01	11/20/20 16:55	1
Isotope Dilution %	Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
18O2 PFHxS	102		50 - 150				11/20/20 09:01	11/20/20 16:55	1
13C4 PFHpA	96		50 - 150				11/20/20 09:01	11/20/20 16:55	1
13C4 PFOS	101		50 - 150				11/20/20 09:01	11/20/20 16:55	1
13C5 PFNA	101		50 - 150				11/20/20 09:01	11/20/20 16:55	1
13C4 PFBA	51		25 - 150				11/20/20 09:01	11/20/20 16:55	1
13C2 PFHxA	82		50 - 150				11/20/20 09:01	11/20/20 16:55	1
13C2 PFDA	107		50 - 150				11/20/20 09:01	11/20/20 16:55	1
13C2 PFUnA	111		50 ₋ 150				11/20/20 09:01	11/20/20 16:55	1
13C2 PFDoA	117		50 ₋ 150				11/20/20 09:01	11/20/20 16:55	1
13C8 FOSA	88		25 - 150				11/20/20 09:01	11/20/20 16:55	1
13C5 PFPeA	80		25 - 150				11/20/20 09:01	11/20/20 16:55	1
13C2 PFTeDA	115		50 ₋ 150				11/20/20 09:01	11/20/20 16:55	1
d3-NMeFOSAA	98		50 ₋ 150					11/20/20 16:55	1
d5-NEtFOSAA	99		50 - 150					11/20/20 16:55	1
M2-6:2 FTS	119		25 - 150					11/20/20 16:55	1
M2-8:2 FTS	105		25 - 150					11/20/20 16:55	1
	93		50 - 150					11/20/20 16:55	1
13C3 PFBS									
:#%E?A2&WCT&R)?A"Q"#AS&68	&L! -& +Y\$			_				* 4	
13C3 PFBS :#%E?A2&WCT&R)?A"Q"#AS&68 <\$(!J%#	%L! -&‡Y (+#,-!%	9(%## \$%(\$@ P-(!"Q"#=	<u>+.</u> _	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L((
:#%E?A2&WCT&R)?A"Q"#AS&68	%L! -&‡Y (+#,-!%				O\$"% ng/L	1_		<\$(!JM#A 11/23/20 17:16	1"!&L((
:#%E?A2&WCT&R)?A"Q"#AS&68 <\$(!J%# N#=Q!-?=??@%(\$?"@&(@"A&RNLH <s< td=""><td>%L!-&‡Y +#,-!% 485</td><td></td><td><u>+.</u> _</td><td></td><td></td><td> 1_</td><td>11/20/20 09:01 Prepared</td><td></td><td></td></s<>	%L! -&‡Y +#,-!% 485		<u>+.</u> _			1_	11/20/20 09:01 Prepared		

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;6C

.(/&'()*!#&012&34567778496C

1(%#& ?!!#@%#**99339**CB75&582CW

1(%#&+#@#"D#**A923899**4B75&98235

:(%=">2&(%#=

Job ID: 460-222961-1

<\$(!J%#	+#,-!% P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Silver	10.0 U	10.0	5.8	ug/L		11/22/20 16:15	11/23/20 18:33	1
-)"\$-)</td <td>37W</td> <td>200</td> <td>76.9</td> <td>ug/L</td> <td></td> <td>11/22/20 16:15</td> <td>11/23/20 18:33</td> <td>1</td>	37W	200	76.9	ug/L		11/22/20 16:15	11/23/20 18:33	1
Arsenic	15.0 U	15.0	3.3	ug/L		11/22/20 16:15	11/23/20 18:33	1
V(="-)	79T	200	13.2	ug/L		11/22/20 16:15	11/23/20 18:33	1
Beryllium	2.0 U	2.0	0.17	ug/L		11/22/20 16:15	11/23/20 18:33	1
(!@"-)	7WC555	5000	152	ug/L		11/22/20 16:15	11/23/20 18:33	1
(A)"-)	5[44 \	4.0	0.33	ug/L		11/22/20 16:15	11/23/20 18:33	1
?/(!%	C[4 \	50.0	2.0	ug/L		11/22/20 16:15	11/23/20 18:33	1
Chromium	10.0 U	10.0	5.0	ug/L		11/22/20 16:15	11/23/20 18:33	1
?**#=	C8[W	25.0	6.9	ug/L		11/22/20 16:15	11/23/20 18:33	1
0=?\$	W35 J+	150	80.8	ug/L		11/22/20 16:15	11/23/20 18:33	1
N?%(,,"-)	93555	5000	142	ug/L		11/22/20 16:15	11/23/20 18:33	1
:(1\$#,"-)	89955	5000	142	ug/L		11/22/20 16:15	11/23/20 18:33	1
:(\$1(\$#,#	44C5	15.0	0.76	ug/L		11/22/20 16:15	11/23/20 18:33	1
'?A"-)	98355	5000	83.8	ug/L		11/22/20 16:15	11/23/20 18:33	1
]"@Y#!	9C[3 \	40.0	4.1	ug/L		11/22/20 16:15	11/23/20 18:33	1
.#(A	7[W \	10.0	2.4	ug/L		11/22/20 16:15	11/23/20 18:33	1
<\$%")?\$J	73[F	20.0	3.7	ug/L		11/22/20 16:15	11/23/20 18:33	1
Selenium	20.0 U	20.0	5.9	ug/L		11/22/20 16:15	11/23/20 18:33	1
_E(!!"-)	74[C	20.0	4.1	ug/L		11/22/20 16:15	11/23/20 18:33	1
Vanadium	50.0 U	50.0	7.2	ug/L		11/22/20 16:15	11/23/20 18:33	1
^"\$@	7F[C \	30.0	1.2	ug/L		11/22/20 16:15	11/23/20 18:33	1
:#%E?A2&T3T 5 &6&:#=@-=			.4	O#110/		NI_#+/_# A	-6/I IBA#A	411101.76
<\$(!J%#	+#,-!% P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Mercury	0.20 U	0.20	0.091	ug/L		11/25/20 12:43	11/25/20 14:12	1
K#\$#=(!& E#)",%=J								
<\$(!J%#	+#,-!% P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Cyanide, Total	0.010 U	0.010	0.0040	mg/L		11/27/20 09:11	11/27/20 13:15	1

1(%#& ?!!#@%#**9925**9CB75&9W295

1(%#&+#@#"D#**A92399**4B75&98235

<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Chloromethane	1.0	U	1.0	0.40	ug/L			11/22/20 17:32	1
Bromomethane	1.0	U	1.0	0.55	ug/L			11/22/20 17:32	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			11/22/20 17:32	1
Chloroethane	1.0	U	1.0	0.32	ug/L			11/22/20 17:32	1
Methylene Chloride	1.0	U	1.0	0.32	ug/L			11/22/20 17:32	1
Acetone	5.0	U	5.0	4.4	ug/L			11/22/20 17:32	1
Carbon disulfide	1.0	U	1.0	0.82	ug/L			11/22/20 17:32	1
Trichlorofluoromethane	1.0	U	1.0	0.32	ug/L			11/22/20 17:32	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			11/22/20 17:32	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			11/22/20 17:32	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			11/22/20 17:32	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			11/22/20 17:32	1
Chloroform	1.0	U	1.0	0.33	ug/L			11/22/20 17:32	1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;6W

.(/&'()*!#&012&345677784963

Job ID: 460-222961-1

1(%#&?!!#@%#**9023**.CB'5&9W295 :(%=">2&(%#= 1(%#&+#@#"D#**9023**.4B'5&98235

<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L((
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			11/22/20 17:32	1
2-Butanone (MEK)	5.0	U	5.0	1.9	ug/L			11/22/20 17:32	1
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L			11/22/20 17:32	1
Carbon tetrachloride	1.0	U	1.0	0.21	ug/L			11/22/20 17:32	1
Dichlorobromomethane	1.0	U	1.0	0.34	ug/L			11/22/20 17:32	1
1,2-Dichloropropane	1.0	U	1.0	0.35	ug/L			11/22/20 17:32	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			11/22/20 17:32	1
Trichloroethene	1.0	U	1.0	0.31	ug/L			11/22/20 17:32	1
Chlorodibromomethane	1.0	U	1.0	0.28	ug/L			11/22/20 17:32	1
1,1,2-Trichloroethane	1.0	U	1.0		ug/L			11/22/20 17:32	1
Benzene	1.0	U	1.0		ug/L			11/22/20 17:32	1
trans-1,3-Dichloropropene	1.0	U	1.0		ug/L			11/22/20 17:32	1
Bromoform	1.0	U	1.0		ug/L			11/22/20 17:32	1
4-Methyl-2-pentanone (MIBK)		U * F1	5.0		ug/L			11/22/20 17:32	1
2-Hexanone	5.0		5.0		ug/L			11/22/20 17:32	1
Tetrachloroethene	1.0		1.0		ug/L			11/22/20 17:32	1
1,1,2,2-Tetrachloroethane	1.0		1.0		ug/L			11/22/20 17:32	1
Toluene	1.0		1.0		ug/L			11/22/20 17:32	
Chlorobenzene	1.0		1.0		ug/L			11/22/20 17:32	1
Ethylbenzene	1.0		1.0		ug/L			11/22/20 17:32	1
Styrene	1.0		1.0		ug/L			11/22/20 17:32	·
m-Xylene & p-Xylene	1.0		1.0		ug/L			11/22/20 17:32	1
o-Xylene	1.0		1.0		ug/L			11/22/20 17:32	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0		1.0		ug/L			11/22/20 17:32	
Methyl tert-butyl ether	1.0		1.0		ug/L			11/22/20 17:32	1
Cyclohexane	1.0		1.0		ug/L			11/22/20 17:32	1
Ethylene Dibromide	1.0		1.0		ug/L			11/22/20 17:32	
1,3-Dichlorobenzene	1.0		1.0		ug/L			11/22/20 17:32	1
1,4-Dichlorobenzene	1.0		1.0		ug/L			11/22/20 17:32	1
1,2-Dichlorobenzene	1.0		1.0		ug/L ug/L			11/22/20 17:32	
Dichlorodifluoromethane	1.0		1.0		_			11/22/20 17:32	1
1,2,4-Trichlorobenzene	1.0		1.0		ug/L			11/22/20 17:32	1
					ug/L				
1,4-Dioxane 1,2,3-Trichlorobenzene	50 1.0		50 1.0		ug/L			11/22/20 17:32 11/22/20 17:32	1
• •					ug/L				1
1,2-Dibromo-3-Chloropropane	1.0		1.0		ug/L			11/22/20 17:32	۱
Chlorobromomethane	1.0		1.0		ug/L			11/22/20 17:32	1
Isopropylbenzene	1.0		1.0		ug/L			11/22/20 17:32	1
Methyl acetate	5.0		5.0		ug/L			11/22/20 17:32	1
Methylcyclohexane	1.0	U	1.0	0.71	ug/L			11/22/20 17:32	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	<u>D</u>	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					11/22/20 17:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		75 - 123					11/22/20 17:32	1
Toluene-d8 (Surr)	105		80 - 120					11/22/20 17:32	1
4-Bromofluorobenzene	104		76 - 120					11/22/20 17:32	1
Dibromofluoromethane (Surr)	93		77 - 124					11/22/20 17:32	1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;6W

.(/&'()*!#&012&345677784963

Job ID: 460-222961-1

:(%=">2&(%#=

1(%#& ?!!#@%#**9913.CB** 5&9W295 1(%#&+#@#"D#**9933**4B75&98235

<\$(!J%#		P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
1,4-Dioxane	0.20	U	0.20	0.016	ug/L		11/18/20 09:12	11/19/20 14:38	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	27		10 - 150				11/18/20 09:12	11/19/20 14:38	1
:#%E?A2&F7T5U&6&'#)"D1	?!(%"!#&H=I(\$'	'@& ?)*? - \$	A.&RK						
<\$(!J%#		P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Phenol	10	U	10	0.29	ug/L		11/19/20 09:29	11/20/20 00:13	1
2-Chlorophenol	10	U	10	0.38	ug/L		11/19/20 09:29	11/20/20 00:13	1
2-Methylphenol	10	U	10	0.67	ug/L		11/19/20 09:29	11/20/20 00:13	1
4-Methylphenol	10	U	10	0.65	ug/L		11/19/20 09:29	11/20/20 00:13	1
2-Nitrophenol	10	U	10	0.75	ug/L		11/19/20 09:29	11/20/20 00:13	1
2,4-Dimethylphenol	10	U	10	0.62	ug/L		11/19/20 09:29	11/20/20 00:13	1
2,4-Dichlorophenol	10	U	10		ug/L		11/19/20 09:29	11/20/20 00:13	1
4-Chloro-3-methylphenol	10	U	10		ug/L		11/19/20 09:29	11/20/20 00:13	1
2,4,6-Trichlorophenol	10	U	10		ug/L		11/19/20 09:29	11/20/20 00:13	1
2,4,5-Trichlorophenol	10	U	10		ug/L		11/19/20 09:29	11/20/20 00:13	1
2,4-Dinitrotoluene	2.0	U F1	2.0		ug/L		11/19/20 09:29	11/20/20 00:13	1
4-Nitrophenol	30	U	30		ug/L		11/19/20 09:29	11/20/20 00:13	1
4,6-Dinitro-2-methylphenol	30		30		ug/L		11/19/20 09:29	11/20/20 00:13	1
Pentachlorophenol		U	30		ug/L		11/19/20 09:29	11/20/20 00:13	1
Bis(2-chloroethyl)ether	1.0		1.0		ug/L		11/19/20 09:29	11/20/20 00:13	1
N-Nitrosodi-n-propylamine	1.0		1.0		ug/L		11/19/20 09:29	11/20/20 00:13	· · · · · · · · · · · · · · · · · · ·
Hexachloroethane		U	2.0		ug/L		11/19/20 09:29	11/20/20 00:13	1
Nitrobenzene	1.0		1.0		ug/L		11/19/20 09:29	11/20/20 00:13	1
Isophorone			10		ug/L		11/19/20 09:29	11/20/20 00:13	· · · · · · · · · · · · · · · · · · ·
Naphthalene		U	2.0		ug/L		11/19/20 09:29	11/20/20 00:13	1
4-Chloroaniline		U F2	1.0		ug/L		11/19/20 09:29	11/20/20 00:13	1
Hexachlorobutadiene	2.0		2.0		ug/L		11/19/20 09:29	11/20/20 00:13	
	10		10		ug/L		11/19/20 09:29	11/20/20 00:13	1
2-Methylnaphthalene	10		10		ug/L ug/L		11/19/20 09:29		1
Hexachlorocyclopentadiene								11/20/20 00:13	
2-Chloronaphthalene	10		10		ug/L		11/19/20 09:29	11/20/20 00:13	1
2-Nitroaniline	20	U	20		ug/L		11/19/20 09:29	11/20/20 00:13	1
Dimethyl phthalate		U F1	10		ug/L		11/19/20 09:29	11/20/20 00:13	1
Acenaphthylene	10		10		ug/L		11/19/20 09:29		1
2,6-Dinitrotoluene	2.0		2.0		ug/L		11/19/20 09:29		1
3-Nitroaniline	20		20		ug/L		11/19/20 09:29		1
Acenaphthene	10		10		ug/L			11/20/20 00:13	1
Dibenzofuran	10		10		ug/L		11/19/20 09:29	11/20/20 00:13	1
2,4-Dinitrophenol	30		30		ug/L		11/19/20 09:29	11/20/20 00:13	1
Diethyl phthalate		U F1	10		ug/L		11/19/20 09:29	11/20/20 00:13	1
4-Chlorophenyl phenyl ether	10		10		ug/L		11/19/20 09:29	11/20/20 00:13	1
Fluorene	10	U	10		ug/L		11/19/20 09:29	11/20/20 00:13	1
4-Nitroaniline	20		20		ug/L		11/19/20 09:29	11/20/20 00:13	1
N-Nitrosodiphenylamine	10		10		ug/L		11/19/20 09:29	11/20/20 00:13	1
4-Bromophenyl phenyl ether	10	U	10		ug/L		11/19/20 09:29	11/20/20 00:13	1
Hexachlorobenzene	1.0	U	1.0	0.40	ug/L		11/19/20 09:29	11/20/20 00:13	1
Phenanthrene	10	U	10		ug/L		11/19/20 09:29	11/20/20 00:13	1
Anthracene	10	U	10	1.3	ug/L		11/19/20 09:29	11/20/20 00:13	1

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;6W

.(/&'()*!#&012&345677784963

1(%#& ?!!#@%#**9623**.CB 5&9W295 1(%#&+#@#"D#**9623**.4B 5&98235

:#%E?A2&F7T5U&6&'#)"D?!(<\$(!J%#		P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Di-n-butyl phthalate	10		10	0.84			11/19/20 09:29	11/20/20 00:13	1 :&L(@
Fluoranthene	10		10		ug/L		11/19/20 09:29	11/20/20 00:13	1
Pyrene	10		10		ug/L		11/19/20 09:29	11/20/20 00:13	' 1
Butyl benzyl phthalate	10		10		ug/L ug/L		11/19/20 09:29	11/20/20 00:13	1
	1.0		1.0		ug/L ug/L		11/19/20 09:29	11/20/20 00:13	1
Benzo[a]anthracene									
Chrysene	10		10		ug/L		11/19/20 09:29	11/20/20 00:13	1
Bis(2-ethylhexyl) phthalate	10		10		ug/L		11/19/20 09:29	11/20/20 00:13	1
Di-n-octyl phthalate	10		10		ug/L		11/19/20 09:29	11/20/20 00:13	
Benzo[b]fluoranthene		U F1	2.0		ug/L		11/19/20 09:29	11/20/20 00:13	1
Benzo[k]fluoranthene		U F1	1.0		ug/L		11/19/20 09:29	11/20/20 00:13	1
Benzo[a]pyrene		U F1	1.0		ug/L		11/19/20 09:29	11/20/20 00:13	1
Indeno[1,2,3-cd]pyrene	2.0		2.0		ug/L		11/19/20 09:29	11/20/20 00:13	1
Dibenz(a,h)anthracene	1.0		1.0		ug/L	1	11/19/20 09:29	11/20/20 00:13	1
Benzo[g,h,i]perylene	10	U	10		ug/L	1	11/19/20 09:29	11/20/20 00:13	1
1,1'-Biphenyl	10	U	10	1.2	ug/L	1	11/19/20 09:29	11/20/20 00:13	1
Acetophenone	10	U	10	2.3	ug/L	1	11/19/20 09:29	11/20/20 00:13	1
1,4-Dioxane	10	U	10	1.6	ug/L	1	11/19/20 09:29	11/20/20 00:13	1
Benzaldehyde	10	U	10	2.1	ug/L	1	11/19/20 09:29	11/20/20 00:13	1
Caprolactam	10	U	10	2.2	ug/L	1	11/19/20 09:29	11/20/20 00:13	1
Atrazine	10	U F1 *	10	1.3	ug/L	1	11/19/20 09:29	11/20/20 00:13	1
2,2'-oxybis[1-chloropropane]	10	U	10	0.63	ug/L	1	11/19/20 09:29	11/20/20 00:13	1
1,2,4,5-Tetrachlorobenzene	10	U	10	1.2	ug/L	1	11/19/20 09:29	11/20/20 00:13	1
2,3,4,6-Tetrachlorophenol	10	U	10	0.75	ug/L	1	11/19/20 09:29	11/20/20 00:13	1
3,3'-Dichlorobenzidine	20	U F2	20		ug/L	1	11/19/20 09:29	11/20/20 00:13	1
Bis(2-chloroethoxy)methane	10	U	10		ug/L	1	11/19/20 09:29	11/20/20 00:13	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT CAS	No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L				11/19/20 09:29	11/20/20 00:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	93		46 - 137			1	11/19/20 09:29	11/20/20 00:13	1
Phenol-d5 (Surr)	28		10 - 50			1	11/19/20 09:29	11/20/20 00:13	1
Terphenyl-d14 (Surr)	90					1	11/19/20 09:29	11/20/20 00:13	1
	90		39 - 150						
2,4,6-Tribromophenol (Surr)	133		39 ₋ 150 36 ₋ 159				11/19/20 09:29	11/20/20 00:13	1
						1		11/20/20 00:13 11/20/20 00:13	1 1
2,4,6-Tribromophenol (Surr)	133		36 - 159			1	11/19/20 09:29		
2,4,6-Tribromophenol (Surr) 2-Fluorophenol (Surr)	133 46 89	#,%"@" A ;	36 - 159 18 - 72 42 - 127			1	11/19/20 09:29	11/20/20 00:13	
2,4,6-Tribromophenol (Surr) 2-Fluorophenol (Surr) 2-Fluorobiphenyl	133 46 89 DE!?="\$#&N	#,%"@"A; P-(!"Q"#=	36 - 159 18 - 72 42 - 127	:1.	O\$"%	1	11/19/20 09:29	11/20/20 00:13	
2,4,6-Tribromophenol (Surr) 2-Fluorophenol (Surr) 2-Fluorobiphenyl :#%E?A2&F5F9V&6&H=I(\$?@	133 46 89 DE!?="\$#&N	P-(!"Q"#=	36 - 159 18 - 72 42 - 127 #,&RK S	:1. 0.0060		1 1 1	11/19/20 09:29 11/19/20 09:29	11/20/20 00:13 11/20/20 00:13	1
2,4,6-Tribromophenol (Surr) 2-Fluorophenol (Surr) 2-Fluorobiphenyl :#%E?A2&F5F9V&6&H=I(\$?@ <\$(!J%#	133 46 89 DE!?="\$#&N +#,-!%	P-(!"Q"#=	36 - 159 18 - 72 42 - 127 #,&RK S +.		ug/L	1 1 1	11/19/20 09:29 11/19/20 09:29 N=#*(=#A 11/18/20 09:44	11/20/20 00:13 11/20/20 00:13 <\$(!JM#A	1 1 1"!&L(@
2,4,6-Tribromophenol (Surr) 2-Fluorophenol (Surr) 2-Fluorobiphenyl :#%E?A2&F5F9V&6&H=I(\$?@< \$(!J%# 4,4'-DDD	133 46 89 DE!?="\$#&N +#,-!% 0.020	P-(!"Q"#= U	36 - 159 18 - 72 42 - 127 #,&RK S +. 0.020	0.0060 0.0020	ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11/19/20 09:29 11/19/20 09:29 N=#*(=#A 11/18/20 09:44 11/18/20 09:44	11/20/20 00:13 11/20/20 00:13 <\$(IJM#A 11/19/20 12:53	1 1 1"!&L(@ 1
2,4,6-Tribromophenol (Surr) 2-Fluorophenol (Surr) 2-Fluorobiphenyl :#%E?A2&F5F9V&6&H=I(\$?@< \$(!J%# 4,4'-DDD 4,4'-DDE	133 46 89 DE!?="\$#&N +#,-!% 0.020 0.020 0.020	P-(!"Q"#= U U U	36 - 159 18 - 72 42 - 127 #,&RK S +. 0.020 0.020 0.020	0.0060 0.0020 0.0040	ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N=#*(=#A 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44	11/20/20 00:13 11/20/20 00:13 <\$(!JM#A 11/19/20 12:53 11/19/20 12:53	1 1 1"!&L(@ 1 1
2,4,6-Tribromophenol (Surr) 2-Fluorophenol (Surr) 2-Fluorobiphenyl :#%E?A2&F5F9V&6&H=I(\$?@ <\$(!J%# 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin	133 46 89 DE!?="\$#&N +#,-!% 0.020 0.020 0.020 0.020	P-(!"Q"#= U U U	36 - 159 18 - 72 42 - 127 #,&RK S 	0.0060 0.0020 0.0040 0.0030	ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N=#*(=#A 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44	11/20/20 00:13 11/20/20 00:13 <\$(!JM#A 11/19/20 12:53 11/19/20 12:53 11/19/20 12:53 11/19/20 12:53	1 1 1"!&L(@ 1 1 1
2,4,6-Tribromophenol (Surr) 2-Fluorophenol (Surr) 2-Fluorobiphenyl :#%E?A2&F5F9V&6&H=I(\$?@< \$(!J%# 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC	133 46 89 DE!?="\$#&N +#,-!% 0.020 0.020 0.020 0.020 0.020	P-(!"Q"#= U U U U U U	36 - 159 18 - 72 42 - 127 #,&RK S +. 0.020 0.020 0.020 0.020 0.020 0.020	0.0060 0.0020 0.0040 0.0030 0.0070	ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N=#*(=#A 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44	11/20/20 00:13 11/20/20 00:13 <\$(!JM#A 11/19/20 12:53 11/19/20 12:53 11/19/20 12:53 11/19/20 12:53 11/19/20 12:53	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2,4,6-Tribromophenol (Surr) 2-Fluorophenol (Surr) 2-Fluorobiphenyl :#%E?A2&F5F9V&6&H=I(\$?@< \$(!J%# 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC	133 46 89 DE!?="\$#&N +#,-!% 0.020 0.020 0.020 0.020 0.020 0.020	P-(!"Q"#= U U U U U U U	36 - 159 18 - 72 42 - 127 #,&RK S +. 0.020 0.020 0.020 0.020 0.020 0.020 0.020	0.0060 0.0020 0.0040 0.0030 0.0070 0.0040	ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N=#*(=#A 11/18/20 09:29 N=#*(=#A 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44	**Color: 13	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2,4,6-Tribromophenol (Surr) 2-Fluorophenol (Surr) 2-Fluorobiphenyl :#%E?A2&F5F9V&6&H=I(\$?@< \$(!J%# 4,4'-DDD 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical)	133 46 89 DE!?="\$#&N +#,-!% 0.020 0.020 0.020 0.020 0.020 0.020 0.020	P-(!"Q"#= U U U U U U U U U	36 - 159 18 - 72 42 - 127 #,&RK S +. 0.020 0.020 0.020 0.020 0.020 0.020 0.020	0.0060 0.0020 0.0040 0.0030 0.0070 0.0040	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N=#*(=#A 11/18/20 09:29 N=#*(=#A 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44	**(!JM#A** 11/19/20 12:53 11/19/20 12:53 11/19/20 12:53 11/19/20 12:53 11/19/20 12:53 11/19/20 12:53 11/19/20 12:53 11/19/20 12:53	1 1 1"!&L(@ 1 1 1 1 1 1
2,4,6-Tribromophenol (Surr) 2-Fluorophenol (Surr) 2-Fluorobiphenyl :#%E?A2&F5F9V&6&H=I(\$?@< \$(!J%# 4,4'-DDD 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical) delta-BHC	133 46 89 DE!?="\$#&N +#,-!% 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	P-(!"Q"#= U U U U U U U U U U U	36 - 159 18 - 72 42 - 127 #,&RK S 	0.0060 0.0020 0.0040 0.0030 0.0070 0.0040 0.055	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N=#*(=#A 11/18/20 09:29 N=#*(=#A 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44	*\$(!JM#A** 11/19/20 12:53 11/19/20 12:53 11/19/20 12:53 11/19/20 12:53 11/19/20 12:53 11/19/20 12:53 11/19/20 12:53 11/19/20 12:53 11/19/20 12:53 11/19/20 12:53	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2,4,6-Tribromophenol (Surr) 2-Fluorophenol (Surr) 2-Fluorobiphenyl :#%E?A2&F5F9V&6&H=I(\$?@< \$(!J%# 4,4'-DDD 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical)	133 46 89 DE!?="\$#&N +#,-!% 0.020 0.020 0.020 0.020 0.020 0.020 0.020	P-(!"Q"#= U U U U U U U U U U U U U	36 - 159 18 - 72 42 - 127 #,&RK S +. 0.020 0.020 0.020 0.020 0.020 0.020 0.020	0.0060 0.0020 0.0040 0.0030 0.0070 0.0040	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N=#*(=#A 11/18/20 09:29 N=#*(=#A 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44	**(!JM#A** 11/19/20 12:53 11/19/20 12:53 11/19/20 12:53 11/19/20 12:53 11/19/20 12:53 11/19/20 12:53 11/19/20 12:53 11/19/20 12:53	1 1 1"!&L(@ 1 1 1 1 1 1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;6W

.(/&'()*!#&012&345677784963

1(%#& ?!!#@%#**9933.CE** 5&9W295 1(%#&+#@#"D#**9933.4E** 5&98235

:(%=">2&(%#=

Job ID: 460-222961-1

#%E?A2&F5F9V&6&H=I(\$?@ :\$(!J%#		P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Endosulfan sulfate	0.020		0.020	0.0060	ug/L		11/18/20 09:44	11/19/20 12:53	1
Endrin	0.020	U	0.020	0.0040			11/18/20 09:44	11/19/20 12:53	1
Endrin aldehyde	0.020	U	0.020	0.0080	-		11/18/20 09:44	11/19/20 12:53	1
Endrin ketone	0.020		0.020	0.0080	•		11/18/20 09:44	11/19/20 12:53	1
gamma-BHC (Lindane)	0.020	U	0.020	0.012			11/18/20 09:44	11/19/20 12:53	1
Heptachlor	0.020		0.020	0.0030	-		11/18/20 09:44	11/19/20 12:53	1
Heptachlor epoxide	0.020		0.020	0.0050	-			11/19/20 12:53	1
Methoxychlor	0.020	U	0.020	0.0040				11/19/20 12:53	1
Toxaphene	0.50		0.50		ug/L			11/19/20 12:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
OCB Decachlorobiphenyl	72		10 - 132				11/18/20 09:44	11/19/20 12:53	1
DCB Decachlorobiphenyl	65		10 - 132				11/18/20 09:44	11/19/20 12:53	1
「etrachloro-m-xylene	73		10 - 150				11/18/20 09:44	11/19/20 12:53	1
^r etrachloro-m-xylene	73		10 - 150				11/18/20 09:44	11/19/20 12:53	1
#%E?A2&F5 K 7&6&N?!J@E!?=	="\$(%# \&\ \	"*F#\$ II &F	N V S&/ I&	((& F=2	\(%2 =(*F				
:\$(!J%#	•	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Aroclor 1016	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 19:07	1
Aroclor 1221	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 19:07	1
Aroclor 1232	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 19:07	1
Aroclor 1242	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 19:07	1
Aroclor 1248	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 19:07	1
Aroclor 1254	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 19:07	1
Aroclor 1260	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 19:07	1
Aroclor-1262	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 19:07	1
Aroclor 1268	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 19:07	1
Polychlorinated biphenyls, Total	0.40	U	0.40		ug/L		11/18/20 09:41	11/18/20 19:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	87		10 - 150				11/18/20 09:41	11/18/20 19:07	1
DCB Decachlorobiphenyl	84		10 - 150				11/18/20 09:41	11/18/20 19:07	1
Tetrachloro-m-xylene	93		48 - 125				11/18/20 09:41	11/18/20 19:07	1
Tetrachloro-m-xylene	97		48 - 125				11/18/20 09:41	11/18/20 19:07	1
#%E?A2&F9 W& 6&X#=/"@"A#	#,&RK S								
:\$(!J%#		P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
2,4-D	1.2	U	1.2	0.13	ug/L		11/17/20 20:26	11/18/20 09:44	1
Silvex (2,4,5-TP)	1.2	U	1.2	0.11	ug/L		11/17/20 20:26	11/18/20 09:44	1
2,4,5-T	1.2	U	1.2	0.12	ug/L		11/17/20 20:26	11/18/20 09:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
A Distriction of a section of a	66		39 - 145				11/17/20 20:26	11/18/20 09:44	1
2,4-Dichlorophenylacetic acid	70		39 - 145				11/17/20 20:26	11/18/20 09:44	1
2,4-Dicniorophenylacetic acid 2,4-Dichlorophenylacetic acid	72								
		9 (% ## , %(\$@	2#,						
2,4-Dichlorophenylacetic acid	&6&L! -&+Y \$	9(%## %(\$@ P-(!"Q"#=)#, +.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
2,4-Dichlorophenylacetic acid #%E?A2&WCT&R)?A"Q"#AS	&6&L!- & ‡ Y \$ +#,-!%				O\$"% ng/L	1	N=#*(=#A 11/20/20 09:01	<\$(!JM#A 11/20/20 17:04	1"!&L(@
#%E?A2&WCT&R)?A"Q"#AS \$(!J%#	&6&L!- &‡Y \$ +#,-!% <s 4[9<="" td=""><td>P-(!"Q"#=</td><td>+.</td><td>1.0</td><td></td><td> 1</td><td></td><td></td><td></td></s>	P-(!"Q"#=	+.	1.0		1			

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;6W

.(/&'()*!#&012&345677784963

Job ID: 460-222961-1

:(%=">2&(%#=

1(%#& ?!!#@%#**9913.CB** 5&9W295 1(%#&+#@#"D#**9933**4**B**75&98235

#%E?A2&WCT&R)?A"Q"#AS& <\$(!J%#		P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
N#=Q!-?=??@%(\$?"@&(@"A&RNLH	S 7W		1.8	0.89	ng/L		11/20/20 09:01	11/20/20 17:04	1
N#=Q!-?=?\$?\$(\$?"@&(@"A&RNL] <s< td=""><td>7[7</td><td></td><td>1.8</td><td>0.53</td><td>ng/L</td><td></td><td>11/20/20 09:01</td><td>11/20/20 17:04</td><td>1</td></s<>	7[7		1.8	0.53	ng/L		11/20/20 09:01	11/20/20 17:04	1
N#=Q!-?=?A#@(\$?"@&(@"A&RNL1<	.		1.8	0.42	ng/L		11/20/20 09:01	11/20/20 17:04	1
Perfluoroundecanoic acid (PFUnA)	1.8	U	1.8	0.66	ng/L		11/20/20 09:01	11/20/20 17:04	1
Perfluorododecanoic acid (PFDoA)	1.8	U	1.8	0.42	•		11/20/20 09:01	11/20/20 17:04	1
Perfluorotridecanoic acid (PFTriA)	1.8		1.8	0.39				11/20/20 17:04	1
Perfluorotetradecanoic acid (PFTeA)	1.8		1.8	0.54	•			11/20/20 17:04	1
N#=Q!-?=?/-%(\$#,-!Q?\$"@&(@"A& RNM'S	5[FT		1.8	0.57	•			11/20/20 17:04	1
N#=Q!-?=?E#>(\$#,-!Q?\$"@&(@"A& RNIX>'S	C[N	/	1.8	0.61	ng/L		11/20/20 09:01	11/20/20 17:04	1
Perfluoroheptanesulfonic Acid PFHpS)	1.8	U	1.8	0.35	ng/L		11/20/20 09:01	11/20/20 17:04	1
N#=Q!-?=??@%(\$#,-!Q?\$"@&(@"A& RNIH'S	75		1.8	0.79	ng/L		11/20/20 09:01	11/20/20 17:04	1
Perfluorodecanesulfonic acid (PFDS)	1.8	U	1.8	0.44	ng/L		11/20/20 09:01	11/20/20 17:04	1
Perfluorooctanesulfonamide (PFOSA)	1.8		1.8	0.52	-			11/20/20 17:04	1
6)#%EJ!*#=Q!-?=??@%(\$#,-!Q?\$("A?(@#%"@&(@"A&R]:#LH'< <s< td=""><td>5[TF</td><td></td><td>4.5</td><td>0.72</td><td>•</td><td></td><td></td><td>11/20/20 17:04</td><td>1</td></s<>	5[TF		4.5	0.72	•			11/20/20 17:04	1
6#%EJ!*#=Q!-?=??@%(\$#,-!Q?\$()" A?(@#%"@&(@"A&R]U%LH'< <s< td=""><td>9[3</td><td>1</td><td>4.5</td><td>0.85</td><td>ng/L</td><td></td><td>11/20/20 09:01</td><td>11/20/20 17:04</td><td>1</td></s<>	9[3	1	4.5	0.85	ng/L		11/20/20 09:01	11/20/20 17:04	1
9XZ9XZ7XZ7X6*#=Q!-?=??@%(\$#, \$"@&(@"A&R427S	3[7	1	4.5	0.66	ng/L		11/20/20 09:01	11/20/20 17:04	1
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	1.8	U	1.8	0.60	ng/L		11/20/20 09:01	11/20/20 17:04	1
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1802 PFHxS	108		50 - 150				11/20/20 09:01	11/20/20 17:04	1
13C4 PFHpA	98		50 - 150				11/20/20 09:01	11/20/20 17:04	1
3C4 PFOA	106		50 - 150				11/20/20 09:01	11/20/20 17:04	1
13C4 PFOS	104		50 - 150				11/20/20 09:01	11/20/20 17:04	1
13C5 PFNA	107		50 - 150				11/20/20 09:01	11/20/20 17:04	1
13C4 PFBA	71		25 - 150				11/20/20 09:01	11/20/20 17:04	1
13C2 PFHxA	105		50 - 150				11/20/20 09:01	11/20/20 17:04	1
13C2 PFDA	109		50 - 150				11/20/20 09:01	11/20/20 17:04	1
13C2 PFUnA	99		50 - 150				11/20/20 09:01	11/20/20 17:04	1
13C2 PFDoA	92		50 - 150					11/20/20 17:04	1
13C8 FOSA	91		25 - 150					11/20/20 17:04	1
13C5 PFPeA	93		25 - 150					11/20/20 17:04	1
13C2 PFTeDA	88		50 - 150					11/20/20 17:04	
d3-NMeFOSAA	93		50 - 150 50 - 150					11/20/20 17:04	1
H5-NEtFOSAA	93		50 - 150 50 - 150					11/20/20 17:04	1
M2-6:2 FTS	117		25 - 150 25 - 150					11/20/20 17:04	1
M2-8:2 FTS	110		25 - 150 50 - 150					11/20/20 17:04	1
13C3 PFBS	102		50 - 150				11/20/20 09:01	11/20/20 17:04	1
#%E?A2&45951&6&:#%(!,&R0 \$(!J%#		P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Silver	10.0		10.0		ug/L	:		11/23/20 17:23	1
	7C85		200		ug/L			11/23/20 17:23	1
81_1··· 6 _1			200	10.5	44/L		LUCKIKU IU. IU	11/20/20 1/.20	
<b -)"\$-) Arsenic	15.0		15.0		ug/L			11/23/20 17:23	1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;6W

.(/&'()*!#&012&345677784963

1(%#& ?!!#@%#**99253**9CB75&9W295

1(%#&+#@#"D#**A923899**4B75&98235

:(%=">2&(%#=

Job ID: 460-222961-1

<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Beryllium	2.0		2.0	0.17	ug/L		11/22/20 16:15	11/23/20 17:23	1
(!@"-)	4T755		5000	152	ug/L		11/22/20 16:15	11/23/20 17:23	1
Cadmium	4.0 L	J	4.0	0.33	ug/L		11/22/20 16:15	11/23/20 17:23	1
?/(!%	3[T \		50.0	2.0	ug/L		11/22/20 16:15	11/23/20 17:23	1
E=?)"-)	4[7 \		10.0	5.0	ug/L		11/22/20 16:15	11/23/20 17:23	1
Copper	25.0 l	J	25.0	6.9	ug/L		11/22/20 16:15	11/23/20 17:23	1
0=?\$	C5T5 .	J+	150	80.8	ug/L		11/22/20 16:15	11/23/20 17:23	1
N?%(,,"-)	99455		5000	142	ug/L		11/22/20 16:15	11/23/20 17:23	1
:(1\$#,"-)	T435		5000	142	ug/L		11/22/20 16:15	11/23/20 17:23	1
:(\$1(\$#,#	375		15.0	0.76	ug/L		11/22/20 16:15	11/23/20 17:23	1
'?A"-)	W9C5		5000	83.8	ug/L		11/22/20 16:15	11/23/20 17:23	1
]"@Y#!	T[C \		40.0	4.1	ug/L		11/22/20 16:15	11/23/20 17:23	1
.#(A	4[8 \		10.0	2.4	ug/L		11/22/20 16:15	11/23/20 17:23	1
Antimony	20.0 l	J	20.0	3.7	ug/L		11/22/20 16:15	11/23/20 17:23	1
Selenium	20.0 l	J	20.0	5.9	ug/L		11/22/20 16:15	11/23/20 17:23	1
Thallium	20.0 l	J	20.0	4.1	ug/L		11/22/20 16:15	11/23/20 17:23	1
Vanadium	50.0 l	J	50.0	7.2	ug/L		11/22/20 16:15	11/23/20 17:23	1
^"\$@	9C[W/		30.0	1.2	ug/L		11/22/20 16:15	11/23/20 17:23	1
:#%E?A2&T3T 5 &6&:#=@-= .	J& R⊲S								
<\$(!J%#		P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Mercury	0.20	J –	0.20	0.091	ug/L		11/24/20 12:17	11/24/20 13:24	1
K#\$#=(!& E#)",%=J									
<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Cyanide, Total	0.010	J F1	0.010	0.0040	mg/L		11/27/20 09:11	11/27/20 13:16	1

!"#\$%&'()*!#&012&:;64

1(%#& ?!!#@%#**99H3**9CB75&5F275

1(%#&+#@#"D#**A92399**4B75&98235

.(/&'()*!#&012&34567778496W

<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
N#=Q!-?=?/-%(\$?"@&(@"A&RNLV <s< td=""><td>7[4</td><td><u></u></td><td>4.2</td><td>0.96</td><td>ng/L</td><td></td><td>11/20/20 09:01</td><td>11/20/20 17:37</td><td>1</td></s<>	7[4	<u></u>	4.2	0.96	ng/L		11/20/20 09:01	11/20/20 17:37	1
N#=Q!-?=?*#\$%(\$?"@&(@"A&RNLN# <s< td=""><td>7[9</td><td></td><td>1.7</td><td>0.92</td><td>ng/L</td><td></td><td>11/20/20 09:01</td><td>11/20/20 17:37</td><td>1</td></s<>	7[9		1.7	0.92	ng/L		11/20/20 09:01	11/20/20 17:37	1
N#=Q!-?=?E#>(\$?"@&(@"A&RNLX> <s< td=""><td>7[4</td><td></td><td>1.7</td><td>0.70</td><td>ng/L</td><td></td><td>11/20/20 09:01</td><td>11/20/20 17:37</td><td>1</td></s<>	7[4		1.7	0.70	ng/L		11/20/20 09:01	11/20/20 17:37	1
N#=Q!-?=?E#*%(\$?"@&(@"A&RNLX* <s< td=""><td>3[W</td><td></td><td>1.7</td><td>0.39</td><td>ng/L</td><td></td><td>11/20/20 09:01</td><td>11/20/20 17:37</td><td>1</td></s<>	3[W		1.7	0.39	ng/L		11/20/20 09:01	11/20/20 17:37	1
N#=Q!-?=??@%(\$?"@&(@"A&RNLH <s< td=""><td>CW</td><td>1</td><td>1.7</td><td>0.83</td><td>ng/L</td><td></td><td>11/20/20 09:01</td><td>11/20/20 17:37</td><td>1</td></s<>	CW	1	1.7	0.83	ng/L		11/20/20 09:01	11/20/20 17:37	1
N#=Q!-?=?\$?\$(\$?"@&(@"A&RNL] <s< td=""><td>7[5</td><td></td><td>1.7</td><td>0.49</td><td>ng/L</td><td></td><td>11/20/20 09:01</td><td>11/20/20 17:37</td><td>1</td></s<>	7[5		1.7	0.49	ng/L		11/20/20 09:01	11/20/20 17:37	1
N#=Q!-?=?A#@(\$?"@&(@"A&RNL1 <s< td=""><td>5[W9</td><td>1</td><td>1.7</td><td>0.39</td><td>ng/L</td><td></td><td>11/20/20 09:01</td><td>11/20/20 17:37</td><td>1</td></s<>	5[W9	1	1.7	0.39	ng/L		11/20/20 09:01	11/20/20 17:37	1
Perfluoroundecanoic acid (PFUnA)	1.7	U	1.7	0.62	ng/L		11/20/20 09:01	11/20/20 17:37	1
Perfluorododecanoic acid (PFDoA)	1.7	U	1.7	0.39	ng/L		11/20/20 09:01	11/20/20 17:37	1
Perfluorotridecanoic acid (PFTriA)	1.7	U	1.7	0.36	ng/L		11/20/20 09:01	11/20/20 17:37	1
Perfluorotetradecanoic acid (PFTeA)	1.7	U	1.7	0.50	ng/L		11/20/20 09:01	11/20/20 17:37	1
N#=Q!-?=?/-%(\$#,-!Q?\$"@&(@"A& RN L 'S	5[W4	1	1.7	0.53	ng/L		11/20/20 09:01	11/20/20 17:37	1
N#=Q!-?=?E#>(\$#,-!Q?\$"@&(@"A& RNIX>'S	C[8		1.7	0.57	ng/L		11/20/20 09:01	11/20/20 17:37	1
N#=Q!-?=?E#*%(\$#,-!Q?\$"@ % "A& RNIX*'S	5[85	1	1.7	0.33	ng/L		11/20/20 09:01	11/20/20 17:37	1

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&:;64

.(/&'()*!#&012&34567778496W

:(%=">2&(%#=

1(%#&?!!#@%#**99HB**CF 5&5F275 1(%#&+#@#"D#**99HB**4F 5&98235

<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
N#=Q!-?=??@%(\$#,-!Q?\$"@&(@"A& RN H 'S	, 7C	0	1.7	0.74	ng/L		11/20/20 09:01	11/20/20 17:37	1
Perfluorodecanesulfonic acid (PFDS)	1.7	U	1.7	0.41	ng/L		11/20/20 09:01	11/20/20 17:37	1
Perfluorooctanesulfonamide (PFOSA)	1.7	U	1.7	0.48	ng/L		11/20/20 09:01	11/20/20 17:37	1
]6)#%EJ!*#=Q!-?=??@%(\$#,-!Q?\$()"A?(@#%"@&(@"A&R]:#LH'< <s< td=""><td>5[8T</td><td>1</td><td>4.2</td><td>0.67</td><td>ng/L</td><td></td><td>11/20/20 09:01</td><td>11/20/20 17:37</td><td>1</td></s<>	5[8T	1	4.2	0.67	ng/L		11/20/20 09:01	11/20/20 17:37	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	4.2	U	4.2	0.79	ng/L		11/20/20 09:01	11/20/20 17:37	1
9XZ9XZ7XZ7X6*#=Q!-?=??@%(\$#, \$"@&(@"A&R427S	5[47	1	4.2	0.61	ng/L		11/20/20 09:01	11/20/20 17:37	1
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	1.7	U	1.7	0.56	ng/L		11/20/20 09:01	11/20/20 17:37	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1802 PFHxS	106		50 - 150				11/20/20 09:01	11/20/20 17:37	1
13C4 PFHpA	103		50 - 150				11/20/20 09:01	11/20/20 17:37	1
13C4 PFOA	101		50 - 150				11/20/20 09:01	11/20/20 17:37	1
13C4 PFOS	86		50 - 150				11/20/20 09:01	11/20/20 17:37	1
13C5 PFNA	90		50 - 150				11/20/20 09:01	11/20/20 17:37	1
13C4 PFBA	71		25 - 150				11/20/20 09:01	11/20/20 17:37	1
13C2 PFHxA	99		50 - 150				11/20/20 09:01	11/20/20 17:37	1
13C2 PFDA	82		50 - 150				11/20/20 09:01	11/20/20 17:37	1
13C2 PFUnA	84		50 - 150				11/20/20 09:01	11/20/20 17:37	1
13C2 PFDoA	86		50 - 150				11/20/20 09:01	11/20/20 17:37	1
13C8 FOSA	77		25 - 150				11/20/20 09:01	11/20/20 17:37	1
13C5 PFPeA	95		25 - 150				11/20/20 09:01	11/20/20 17:37	1
13C2 PFTeDA	85		50 - 150				11/20/20 09:01	11/20/20 17:37	1
d3-NMeFOSAA	78		50 - 150				11/20/20 09:01	11/20/20 17:37	1
d5-NEtFOSAA	85		50 - 150				11/20/20 09:01	11/20/20 17:37	1
M2-6:2 FTS	110		25 - 150				11/20/20 09:01	11/20/20 17:37	1
M2-8:2 FTS	81		25 - 150				11/20/20 09:01	11/20/20 17:37	1
13C3 PFBS	101		50 - 150				11/20/20 09:01	11/20/20 17:37	1

!"#\$%&'()*!#&012&1ON

.(/&'()*!#&012&345677784964

1(%#& ?!!#@%#**9933.CB**5&55255 1(%#&+#@#"D#**9933.4B**5&98235 :(%=">2&(%#=

<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Chloromethane	1.0	U	1.0	0.40	ug/L			11/22/20 20:08	1
Bromomethane	1.0	U	1.0	0.55	ug/L			11/22/20 20:08	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			11/22/20 20:08	1
Chloroethane	1.0	U	1.0	0.32	ug/L			11/22/20 20:08	1
Methylene Chloride	1.0	U	1.0	0.32	ug/L			11/22/20 20:08	1
Acetone	5.0	U	5.0	4.4	ug/L			11/22/20 20:08	1
Carbon disulfide	1.0	U	1.0	0.82	ug/L			11/22/20 20:08	1
Trichlorofluoromethane	1.0	U	1.0	0.32	ug/L			11/22/20 20:08	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			11/22/20 20:08	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			11/22/20 20:08	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			11/22/20 20:08	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			11/22/20 20:08	1
Chloroform	1.0	U	1.0	0.33	ug/L			11/22/20 20:08	1

Eurofins TestAmerica, Edison

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&1ON

.(/&'()*!#&012&345677784964

1(%#& ?!!#@%#**9918.CB** 5&55255 1(%#&+#@#"D#**9918.4B** 5&98235

<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			11/22/20 20:08	1
2-Butanone (MEK)	5.0	U	5.0	1.9	ug/L			11/22/20 20:08	1
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L			11/22/20 20:08	1
Carbon tetrachloride	1.0	U	1.0	0.21	ug/L			11/22/20 20:08	1
Dichlorobromomethane	1.0	U	1.0	0.34	ug/L			11/22/20 20:08	1
1,2-Dichloropropane	1.0	U	1.0	0.35	ug/L			11/22/20 20:08	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.22	2 ug/L			11/22/20 20:08	1
Trichloroethene	1.0	U	1.0	0.31	ug/L			11/22/20 20:08	1
Chlorodibromomethane	1.0	U	1.0		ug/L			11/22/20 20:08	1
1,1,2-Trichloroethane	1.0	U	1.0		ug/L			11/22/20 20:08	1
Benzene	1.0	U	1.0		ug/L			11/22/20 20:08	1
trans-1,3-Dichloropropene	1.0		1.0		ug/L			11/22/20 20:08	1
Bromoform	1.0		1.0		ug/L			11/22/20 20:08	1
4-Methyl-2-pentanone (MIBK)		U *	5.0		ug/L			11/22/20 20:08	1
2-Hexanone		U *	5.0		ug/L			11/22/20 20:08	· 1
Tetrachloroethene	1.0		1.0		ug/L			11/22/20 20:08	1
1,1,2,2-Tetrachloroethane	1.0		1.0		ug/L ug/L			11/22/20 20:08	1
Toluene	1.0		1.0		ug/L B ug/L			11/22/20 20:08	'
Chlorobenzene	1.0		1.0		ug/L ug/L			11/22/20 20:08	1
Ethylbenzene	1.0		1.0		ug/L ug/L			11/22/20 20:08	1
			1.0		ug/L ug/L				
Styrene S. n. Yulana	1.0 1.0		1.0		_			11/22/20 20:08 11/22/20 20:08	1
m-Xylene & p-Xylene					ug/L				1
o-Xylene	1.0		1.0		ug/L			11/22/20 20:08	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0		1.0		ug/L			11/22/20 20:08	1
Methyl tert-butyl ether	1.0		1.0		2 ug/L			11/22/20 20:08	1
Cyclohexane	1.0		1.0		ug/L			11/22/20 20:08	1
Ethylene Dibromide	1.0		1.0		ug/L			11/22/20 20:08	1
1,3-Dichlorobenzene	1.0		1.0		ug/L			11/22/20 20:08	1
1,4-Dichlorobenzene	1.0		1.0		B ug/L			11/22/20 20:08	1
1,2-Dichlorobenzene	1.0		1.0		ug/L			11/22/20 20:08	1
Dichlorodifluoromethane	1.0	-	1.0		ug/L			11/22/20 20:08	1
1,2,4-Trichlorobenzene	1.0	U	1.0		ug/L			11/22/20 20:08	1
1,4-Dioxane	50	U	50		B ug/L			11/22/20 20:08	1
1,2,3-Trichlorobenzene	1.0	U	1.0		ug/L			11/22/20 20:08	1
1,2-Dibromo-3-Chloropropane	1.0	U	1.0	0.38	B ug/L			11/22/20 20:08	1
Chlorobromomethane	1.0	U	1.0	0.41	ug/L			11/22/20 20:08	1
Isopropylbenzene	1.0	U	1.0	0.34	ug/L			11/22/20 20:08	1
Methyl acetate	5.0	U	5.0	0.79	ug/L			11/22/20 20:08	1
Methylcyclohexane	1.0	U	1.0	0.71	ug/L			11/22/20 20:08	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					11/22/20 20:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		75 - 123			-		11/22/20 20:08	1
Toluene-d8 (Surr)	103		80 - 120					11/22/20 20:08	1
4-Bromofluorobenzene	104		76 - 120					11/22/20 20:08	1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&1ON

.(/&'()*!#&012&345677784964

1(%#& ?!!#@%#**9913.CB** 5&55255 1(%#&+#@#"D#**9913.4B** 5&98235 :(%=">2&(%#=

Job ID: 460-222961-1

#%E?A2&F7T5U&'0:&01&6 <\$(!J%#		P-(!"Q"#=	+.	:1.	3. 0,?%?* O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
1,4-Dioxane	0.20		0.20	0.016			11/18/20 09:12		1
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	35		10 - 150				11/18/20 09:12	11/19/20 15:25	1
#%E?A2&F7T5U&6&'#)"D?!	•	_	A,& R 6						
<\$(!J%#		P-(!"Q"#=	<u>+.</u> _	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Phenol	10		10	0.29	•		11/19/20 09:29	11/20/20 06:32	1
2-Chlorophenol	10		10		ug/L		11/19/20 09:29	11/20/20 06:32	1
2-Methylphenol	10		10		ug/L		11/19/20 09:29	11/20/20 06:32	1
4-Methylphenol	10		10		ug/L		11/19/20 09:29	11/20/20 06:32	1
2-Nitrophenol	10		10		ug/L		11/19/20 09:29	11/20/20 06:32	1
2,4-Dimethylphenol	10	U	10	0.62	ug/L		11/19/20 09:29	11/20/20 06:32	1
2,4-Dichlorophenol		U	10	1.1	J		11/19/20 09:29	11/20/20 06:32	1
4-Chloro-3-methylphenol	10		10		ug/L		11/19/20 09:29	11/20/20 06:32	1
2,4,6-Trichlorophenol	10		10		ug/L		11/19/20 09:29	11/20/20 06:32	1
2,4,5-Trichlorophenol	10		10		ug/L		11/19/20 09:29	11/20/20 06:32	1
2,4-Dinitrotoluene	2.0		2.0	1.0	-		11/19/20 09:29	11/20/20 06:32	1
1-Nitrophenol	30	U	30		ug/L		11/19/20 09:29	11/20/20 06:32	1
1,6-Dinitro-2-methylphenol	30	U	30	3.0	ug/L		11/19/20 09:29	11/20/20 06:32	1
Pentachlorophenol	30	U	30	1.4	ug/L		11/19/20 09:29	11/20/20 06:32	1
Bis(2-chloroethyl)ether	1.0	U	1.0		ug/L		11/19/20 09:29	11/20/20 06:32	1
N-Nitrosodi-n-propylamine	1.0	U	1.0	0.43	ug/L		11/19/20 09:29	11/20/20 06:32	1
Hexachloroethane	2.0	U	2.0	0.80	ug/L		11/19/20 09:29	11/20/20 06:32	1
Nitrobenzene	1.0	U	1.0		ug/L		11/19/20 09:29	11/20/20 06:32	1
sophorone	10	U	10	0.80	ug/L		11/19/20 09:29	11/20/20 06:32	1
Naphthalene	2.0	U	2.0	0.54	ug/L		11/19/20 09:29	11/20/20 06:32	1
l-Chloroaniline	1.0	U	1.0	1.9	ug/L		11/19/20 09:29	11/20/20 06:32	1
Hexachlorobutadiene	2.0	U	2.0	0.78	ug/L		11/19/20 09:29	11/20/20 06:32	1
2-Methylnaphthalene	10	U	10	0.53	ug/L		11/19/20 09:29	11/20/20 06:32	1
Hexachlorocyclopentadiene	10	U	10	3.6	ug/L		11/19/20 09:29	11/20/20 06:32	1
2-Chloronaphthalene	10	U	10	1.2	ug/L		11/19/20 09:29	11/20/20 06:32	1
2-Nitroaniline	20	U	20	0.47	ug/L		11/19/20 09:29	11/20/20 06:32	1
Dimethyl phthalate	10	U	10	0.77	ug/L		11/19/20 09:29	11/20/20 06:32	1
Acenaphthylene	10	U	10	0.82	ug/L		11/19/20 09:29	11/20/20 06:32	1
2,6-Dinitrotoluene	2.0	U	2.0	0.83	ug/L		11/19/20 09:29	11/20/20 06:32	1
3-Nitroaniline	20	U	20	1.9	ug/L		11/19/20 09:29	11/20/20 06:32	1
Acenaphthene	10	U	10	1.1	ug/L		11/19/20 09:29	11/20/20 06:32	1
Dibenzofuran	10	U	10	1.1	ug/L		11/19/20 09:29	11/20/20 06:32	1
2,4-Dinitrophenol	30	U	30	2.6	ug/L		11/19/20 09:29	11/20/20 06:32	1
Diethyl phthalate	10	U	10	0.98	ug/L		11/19/20 09:29	11/20/20 06:32	1
I-Chlorophenyl phenyl ether	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:32	1
luorene	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:32	1
-Nitroaniline	20	U	20	1.2	ug/L		11/19/20 09:29	11/20/20 06:32	1
N-Nitrosodiphenylamine	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:32	1
-Bromophenyl phenyl ether	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:32	1
lexachlorobenzene	1.0	U	1.0		ug/L		11/19/20 09:29	11/20/20 06:32	1
Phenanthrene		U	10		ug/L		11/19/20 09:29	11/20/20 06:32	1
Anthracene		U	10		ug/L		11/19/20 09:29	11/20/20 06:32	1
Carbazole	10		10		ug/L			11/20/20 06:32	1

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&1ON

.(/&'()*!#&012&345677784964

1(%#&?!!#@%#**99HB.CB**5&55255 1(%#&+#@#"D#**99HB.4B**75&98235

:#%E?A2&F7T5U&6&'#)"D?!(<\$(!J%#		P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Di-n-butyl phthalate	10		10	0.84		<u>-</u>	11/19/20 09:29	11/20/20 06:32	1 :&L(@
Fluoranthene	10		10		ug/L		11/19/20 09:29	11/20/20 00:32	1
Pyrene	10		10		ug/L		11/19/20 09:29	11/20/20 06:32	
Butyl benzyl phthalate	10		10		ug/L ug/L		11/19/20 09:29	11/20/20 06:32	1
	1.0		1.0		ug/L ug/L		11/19/20 09:29	11/20/20 06:32	1
Benzo[a]anthracene	1.0							11/20/20 06:32	
Chrysene			10		ug/L		11/19/20 09:29		1
Bis(2-ethylhexyl) phthalate	10		10		ug/L		11/19/20 09:29	11/20/20 06:32	1
Di-n-octyl phthalate	10		10		ug/L		11/19/20 09:29	11/20/20 06:32	1
Benzo[b]fluoranthene	2.0		2.0		ug/L		11/19/20 09:29	11/20/20 06:32	1
Benzo[k]fluoranthene	1.0		1.0		ug/L		11/19/20 09:29	11/20/20 06:32	1
Benzo[a]pyrene	1.0		1.0		ug/L		11/19/20 09:29	11/20/20 06:32	1
Indeno[1,2,3-cd]pyrene	2.0		2.0		ug/L		11/19/20 09:29	11/20/20 06:32	1
Dibenz(a,h)anthracene	1.0		1.0		ug/L		11/19/20 09:29	11/20/20 06:32	1
Benzo[g,h,i]perylene	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:32	1
1,1'-Biphenyl	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:32	1
Acetophenone	10	U	10	2.3	ug/L		11/19/20 09:29	11/20/20 06:32	1
1,4-Dioxane	10	U	10	1.6	ug/L		11/19/20 09:29	11/20/20 06:32	1
Benzaldehyde	10	U	10	2.1	ug/L		11/19/20 09:29	11/20/20 06:32	1
Caprolactam	10	U	10	2.2	ug/L		11/19/20 09:29	11/20/20 06:32	1
Atrazine	10	U *	10	1.3	ug/L		11/19/20 09:29	11/20/20 06:32	1
2,2'-oxybis[1-chloropropane]	10	U	10	0.63	ug/L		11/19/20 09:29	11/20/20 06:32	1
1,2,4,5-Tetrachlorobenzene	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:32	1
2,3,4,6-Tetrachlorophenol	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:32	1
3,3'-Dichlorobenzidine	20	U	20		ug/L		11/19/20 09:29	11/20/20 06:32	1
Bis(2-chloroethoxy)methane	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:32	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L				11/19/20 09:29	11/20/20 06:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	95		46 - 137				11/19/20 09:29	11/20/20 06:32	1
Phenol-d5 (Surr)	31		10 - 50				11/19/20 09:29	11/20/20 06:32	1
Terphenyl-d14 (Surr)	109		39 - 150				11/19/20 09:29	11/20/20 06:32	1
2,4,6-Tribromophenol (Surr)	114		36 - 159				11/19/20 09:29	11/20/20 06:32	1
							11/19/20 09:29	11/20/20 06:32	1
2-Fluorophenol (Surr)	46		18 - 72						
2-Fluorophenol (Surr) 2-Fluorobiphenyl	46 90		18 - 72 42 - 127					11/20/20 06:32	1
2-Fluorobiphenyl	90	#,%"@"A;	42 - 127					11/20/20 06:32	1
, , ,	90 E!?="\$#&N	#,%"@" A ; P-(!"Q"#=	42 - 127	:1.	O\$"%	1		11/20/20 06:32 <\$(!JM#A	1"!&L(@
2-Fluorobiphenyl :#%E?A2&F5F9V&6&H=I(\$?@	90 E!?="\$#&N	P-(!"Q"#=	42 - 127 #,&RK S			1	11/19/20 09:29		1 1"!&L(@ 1
2-Fluorobiphenyl :#%E?A2&F5F9V&6&H=I(\$?@ <\$(!J%#	90 E! ?="\$#&N +#,-!%	P-(!"Q"#=	42 - 127 #,&RK S +. 0.020	0.0060	ug/L	1_	11/19/20 09:29 N=#*(=#A 11/18/20 09:44	<\$(!JM#A 11/19/20 14:29	
2-Fluorobiphenyl :#%E?A2&F5F9V&6&H=I(\$?@ <\$(!J%# 4,4'-DDD 4,4'-DDE	90 E!?="\$#&N +#,-!% 0.020 0.020	P-(!"Q"#= U	#,&RK S +. 0.020 0.020	0.0060 0.0020	ug/L ug/L	1	11/19/20 09:29 N=#*(=#A 11/18/20 09:44 11/18/20 09:44	<\$(!JM#A 11/19/20 14:29 11/19/20 14:29	1
2-Fluorobiphenyl :#%E?A2&F5F9V&6&H=I(\$?@ <\$(!J%# 4,4'-DDD	90 DE!?="\$#&N +#,-!% 0.020 0.020 0.020	P-(!"Q"#= U U	#,&RK S 	0.0060 0.0020 0.0040	ug/L ug/L ug/L	1	N=#*(=#A 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44	<\$(!JM#A 11/19/20 14:29 11/19/20 14:29 11/19/20 14:29	1
2-Fluorobiphenyl :#%E?A2&F5F9V&6&H=I(\$?@< \$(!J%# 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin	90 E!?="\$#&N +#,-!% 0.020 0.020 0.020 0.020	P-(!"Q"#= U U U	42 - 127 #,&RK S +. 0.020 0.020 0.020 0.020	0.0060 0.0020 0.0040 0.0030	ug/L ug/L ug/L ug/L	1	N=#*(=#A 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44	<\$(!JM#A 11/19/20 14:29 11/19/20 14:29 11/19/20 14:29 11/19/20 14:29	1 1 1
2-Fluorobiphenyl :#%E?A2&F5F9V&6&H=I(\$?@< \$(!J%# 4,4'-DDD 4,4'-DDT Aldrin alpha-BHC	90 E!?="\$#&N +#,-!% 0.020 0.020 0.020 0.020 0.020	P-(!"Q"#= U U U U U	#,&RK S +. 0.020 0.020 0.020 0.020 0.020 0.020	0.0060 0.0020 0.0040 0.0030 0.0070	ug/L ug/L ug/L ug/L ug/L	1	N=#*(=#A 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44	<\$(!JM#A 11/19/20 14:29 11/19/20 14:29 11/19/20 14:29 11/19/20 14:29 11/19/20 14:29	1 1 1 1
2-Fluorobiphenyl :#%E?A2&F5F9V&6&H=I(\$?@< \$(!J%# 4,4'-DDD 4,4'-DDT Aldrin alpha-BHC beta-BHC	90 E!?="\$#&N +#,-!% 0.020 0.020 0.020 0.020 0.020 0.020 0.020	P-(!"Q"#= U U U U U U U	#,&RK S +. 0.020 0.020 0.020 0.020 0.020 0.020 0.020	0.0060 0.0020 0.0040 0.0030 0.0070 0.0040	ug/L ug/L ug/L ug/L ug/L ug/L	1	N=#*(=#A 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44	<\$(!JM#A 11/19/20 14:29 11/19/20 14:29 11/19/20 14:29 11/19/20 14:29 11/19/20 14:29	1 1 1 1 1 1
2-Fluorobiphenyl :#%E?A2&F5F9V&6&H=I(\$?@< \$(!J%# 4,4'-DDD 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical)	90 E!?="\$#&N +#,-!% 0.020 0.020 0.020 0.020 0.020 0.020 0.020	P-(!"Q"#= U U U U U U U U U	#,&RK S +. 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	0.0060 0.0020 0.0040 0.0030 0.0070 0.0040	ug/L ug/L ug/L ug/L ug/L ug/L	1	N=#*(=#A 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44	<\$(!JM#A 11/19/20 14:29 11/19/20 14:29 11/19/20 14:29 11/19/20 14:29 11/19/20 14:29 11/19/20 14:29 11/19/20 14:29	1 1 1 1 1 1 1
2-Fluorobiphenyl :#%E?A2&F5F9V&6&H=I(\$?@< \$(!J%# 4,4'-DDD 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical) delta-BHC	90 E!?="\$#&N +#,-!% 0.020 0.020 0.020 0.020 0.020 0.020 0.50 0.020	P-(!"Q"#= U U U U U U U U U U U	#,&RK S +. 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	0.0060 0.0020 0.0040 0.0030 0.0070 0.0040 0.055	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1	N=#*(=#A 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44	<\$(IJM#A 11/19/20 14:29 11/19/20 14:29 11/19/20 14:29 11/19/20 14:29 11/19/20 14:29 11/19/20 14:29 11/19/20 14:29 11/19/20 14:29	1 1 1 1 1 1 1
2-Fluorobiphenyl :#%E?A2&F5F9V&6&H=I(\$?@< \$(!J%# 4,4'-DDD 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical)	90 E!?="\$#&N +#,-!% 0.020 0.020 0.020 0.020 0.020 0.020 0.020	P-(!"Q"#= U U U U U U U U U U U U	#,&RK S +. 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	0.0060 0.0020 0.0040 0.0030 0.0070 0.0040	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1	N=#*(=#A 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44 11/18/20 09:44	<\$(!JM#A 11/19/20 14:29 11/19/20 14:29 11/19/20 14:29 11/19/20 14:29 11/19/20 14:29 11/19/20 14:29 11/19/20 14:29 11/19/20 14:29 11/19/20 14:29	1 1 1 1 1 1 1

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&1ON

.(/&'()*!#&012&345677784964

1(%#& ?!!#@%#**9033**CF**7**5&55255 1(%#&+#@#"D#**9033**4F**7**5&98235

<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Endosulfan sulfate	0.020	U	0.020	0.0060	ug/L		11/18/20 09:44	11/19/20 14:29	1
Endrin	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 14:29	1
Endrin aldehyde	0.020	U	0.020	0.0080	ug/L		11/18/20 09:44	11/19/20 14:29	1
Endrin ketone	0.020	U	0.020	0.0080	ug/L		11/18/20 09:44	11/19/20 14:29	1
gamma-BHC (Lindane)	0.020	U	0.020	0.012	ug/L		11/18/20 09:44	11/19/20 14:29	1
Heptachlor	0.020	U	0.020	0.0030	ug/L		11/18/20 09:44	11/19/20 14:29	1
Heptachlor epoxide	0.020	U	0.020	0.0050	ug/L		11/18/20 09:44	11/19/20 14:29	1
Methoxychlor	0.020	U	0.020	0.0040	ug/L		11/18/20 09:44	11/19/20 14:29	1
Toxaphene	0.50	U	0.50	0.11	ug/L		11/18/20 09:44	11/19/20 14:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	58		10 - 132				11/18/20 09:44	11/19/20 14:29	1
DCB Decachlorobiphenyl	50		10 - 132				11/18/20 09:44	11/19/20 14:29	1
Tetrachloro-m-xylene	75		10 - 150				11/18/20 09:44	11/19/20 14:29	1
Tetrachloro-m-xylene	73		10 - 150				11/18/20 09:44	11/19/20 14:29	1
:#%E?A2&F5 K7 &6&N?!J@E!	?="\$(%#A&V	"*E#\$J!,&F	RN V,S&/J&F	((,& E=?)(%?l=(*E	J			
<\$(!J%#		P-(!"Q"#=	+,	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Aroclor 1016	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 19:22	1
Aroclor 1221	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 19:22	1
Aroclor 1232	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 19:22	1
Aroclor 1242	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 19:22	1
Aroclor 1248	0.40	U	0.40	0.12	ug/L		11/18/20 09:41	11/18/20 19:22	1
Aroclor 1254	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 19:22	1
Aroclor 1260	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 19:22	1
Aroclor-1262	0.40	U	0.40	0.11	ug/L		11/18/20 09:41	11/18/20 19:22	1
Aroclor 1268	0.40	U	0.40		ug/L		11/18/20 09:41	11/18/20 19:22	1
Polychlorinated biphenyls, Total	0.40	U	0.40		ug/L		11/18/20 09:41	11/18/20 19:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	45		10 - 150				11/18/20 09:41	11/18/20 19:22	1
DCB Decachlorobiphenyl	45		10 - 150				11/18/20 09:41	11/18/20 19:22	1
Tetrachloro-m-xylene	66		48 - 125				11/18/20 09:41	11/18/20 19:22	1
Tetrachloro-m-xylene	66		48 - 125				11/18/20 09:41	11/18/20 19:22	1
:#%E?A2&F9 W &6&X#=/"@"/	A#,&RK S								
<\$(!J%#		P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
2,4-D	1.2	U	1.2	0.13	ug/L		11/17/20 20:26	11/18/20 09:58	1
Silvex (2,4,5-TP)	1.2	U	1.2	0.11	ug/L		11/17/20 20:26	11/18/20 09:58	1
2,4,5-T	1.2	U	1.2	0.12	ug/L		11/17/20 20:26	11/18/20 09:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	60		39 - 145				11/17/20 20:26	11/18/20 09:58	1
2,4-Dichlorophenylacetic acid	65		39 - 145				11/17/20 20:26	11/18/20 09:58	1
:#%E?A2&WCT&R)?A"Q"#A	\S&6&L!- & #Y\$!(%# #%(\$@)#,						
<\$(!J%#		P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Perfluorobutanoic acid (PFBA)	4.5	U	4.5	1.0	ng/L		11/20/20 09:01	11/20/20 17:45	1
Perfluoropentanoic acid (PFPeA)	1.8	U	1.8	0.96	ng/L		11/20/20 09:01	11/20/20 17:45	1
, ,	1.8 1.8		1.8 1.8		ng/L ng/L		11/20/20 09:01 11/20/20 09:01	11/20/20 17:45 11/20/20 17:45	1 1

Eurofins TestAmerica, Edison

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&1ON

.(/&'()*!#&012&345677784964

1(%#& ?!!#@%#**99HB.CB** 5&55255 1(%#&+#@#"D#**99HB.4B** 5&98235 :(%=">2&(%#=

<\$(!J%#		P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Perfluorooctanoic acid (PFOA)	1.8	U	1.8	0.87	ng/L		11/20/20 09:01	11/20/20 17:45	1
Perfluorononanoic acid (PFNA)	1.8	U	1.8	0.52	ng/L		11/20/20 09:01	11/20/20 17:45	1
Perfluorodecanoic acid (PFDA)	1.8	U	1.8	0.41	ng/L		11/20/20 09:01	11/20/20 17:45	1
Perfluoroundecanoic acid (PFUnA)	1.8	U	1.8	0.65	ng/L		11/20/20 09:01	11/20/20 17:45	1
Perfluorododecanoic acid (PFDoA)	1.8	U	1.8	0.41	ng/L		11/20/20 09:01	11/20/20 17:45	1
Perfluorotridecanoic acid (PFTriA)	1.8	U	1.8	0.38	ng/L		11/20/20 09:01	11/20/20 17:45	1
Perfluorotetradecanoic acid (PFTeA)	1.8	U	1.8	0.53	ng/L		11/20/20 09:01	11/20/20 17:45	1
Perfluorobutanesulfonic acid (PFBS)	1.8	U	1.8	0.56	ng/L		11/20/20 09:01	11/20/20 17:45	1
Perfluorohexanesulfonic acid (PFHxS)	1.8	U	1.8	0.60	ng/L		11/20/20 09:01	11/20/20 17:45	1
Perfluoroheptanesulfonic Acid	1.8	U	1.8	0.35	ng/L		11/20/20 09:01	11/20/20 17:45	1
Perfluorooctanesulfonic acid (PFOS)	1.8	U	1.8	0.78	ng/L		11/20/20 09:01	11/20/20 17:45	1
Perfluorodecanesulfonic acid (PFDS)	1.8	U	1.8	0.43			11/20/20 09:01	11/20/20 17:45	1
Perfluorooctanesulfonamide (PFOSA)	1.8	U	1.8	0.51	-		11/20/20 09:01	11/20/20 17:45	1
N-methylperfluorooctanesulfonamidoa	4.5	U	4.5	0.70	-		11/20/20 09:01	11/20/20 17:45	1
cetic acid (NMeFOSAA)			-		J				-
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	4.5	U	4.5	0.83	ng/L		11/20/20 09:01	11/20/20 17:45	1
9XZ9XZ7XZ7X6*#=Q!-?=??@%(\$#, \$"@&(@"A&R427S	9[7	1	4.5	0.64	ng/L			11/20/20 17:45	1
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	1.8	U	1.8	0.59	ng/L		11/20/20 09:01	11/20/20 17:45	1
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1802 PFHxS	117		50 - 150				11/20/20 09:01	11/20/20 17:45	1
13C4 PFHpA	105		50 - 150				11/20/20 09:01	11/20/20 17:45	1
13C4 PFOA	103		50 - 150				11/20/20 09:01	11/20/20 17:45	1
13C4 PFOS	106		50 - 150				11/20/20 09:01	11/20/20 17:45	1
13C5 PFNA	105		50 - 150				11/20/20 09:01	11/20/20 17:45	1
13C4 PFBA	84		25 - 150				11/20/20 09:01	11/20/20 17:45	1
13C2 PFHxA	108		50 - 150				11/20/20 09:01	11/20/20 17:45	1
13C2 PFDA	99		50 - 150				11/20/20 09:01	11/20/20 17:45	1
13C2 PFUnA	70		50 - 150				11/20/20 09:01	11/20/20 17:45	1
13C2 PFDoA	57		50 - 150				11/20/20 09:01	11/20/20 17:45	1
13C8 FOSA	76		25 - 150				11/20/20 09:01	11/20/20 17:45	1
13C5 PFPeA	101		25 - 150				11/20/20 09:01	11/20/20 17:45	1
13C2 PFTeDA	52		50 - 150				11/20/20 09:01	11/20/20 17:45	1
d3-NMeFOSAA	69		50 - 150				11/20/20 09:01	11/20/20 17:45	1
d5-NEtFOSAA	67		50 - 150				11/20/20 09:01	11/20/20 17:45	1
M2-6:2 FTS	117		25 - 150				11/20/20 09:01	11/20/20 17:45	1
M2-8:2 FTS	92		25 - 150				11/20/20 09:01	11/20/20 17:45	1
13C3 PFBS	113		50 - 150				11/20/20 09:01	11/20/20 17:45	1
#%E?A2&45951&6&:#%(!,&R(<\$(!J%#		B (I"O"#-	1	:1.	O\$"%	1	N-#*/-#A	<\$(!JM#A	1"!&L(@
Silver	10.0	P-(!"Q"#=	10.0		ug/L	_	N=#*(=#A 11/22/20 16:15	11/23/20 18:45	1 !&L(@
		U			ug/L ug/L				1
-)"\$-)</td <td>94T55</td> <td>11</td> <td>200</td> <td></td> <td>•</td> <td></td> <td></td> <td>11/23/20 18:45</td> <td>1</td>	94T55	11	200		•			11/23/20 18:45	1
Arsenic	15.0		15.0		ug/L			11/23/20 18:45	
V(="-)	7T9		200		ug/L			11/23/20 18:45	1
Beryllium	2.0	U	2.0	0.17	ug/L		11/22/20 16:15	11/23/20 18:45	1
(!@"-)	9FT55		5000	450	ug/L		11/22/20 16:15	11/23/20 18:45	1

Eurofins TestAmerica, Edison

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&1ON

.(/&'()*!#&012&345677784964

:(%=">2&(%#=

Job ID: 460-222961-1

1(%#& ?!!#@%#**A9E899**CB75&55255 1(%#&+#@#"D#**A9E899**4B75&98235

<\$(!J%#	+#,-!% P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
?/(!%	74[9 \	50.0	2.0	ug/L		11/22/20 16:15	11/23/20 18:45	1
E=?)"-)	33[W	10.0	5.0	ug/L		11/22/20 16:15	11/23/20 18:45	1
?**#=	994	25.0	6.9	ug/L		11/22/20 16:15	11/23/20 18:45	1
0=?\$	C9F55 J+	150	80.8	ug/L		11/22/20 16:15	11/23/20 18:45	1
N?%(,,"-)	FFT5	5000	142	ug/L		11/22/20 16:15	11/23/20 18:45	1
:(1\$#,"-)	95955	5000	142	ug/L		11/22/20 16:15	11/23/20 18:45	1
:(\$1(\$#,#	W77	15.0	0.76	ug/L		11/22/20 16:15	11/23/20 18:45	1
'?A"-)	3TC5 \	5000	83.8	ug/L		11/22/20 16:15	11/23/20 18:45	1
]"@Y#!	38[T	40.0	4.1	ug/L		11/22/20 16:15	11/23/20 18:45	1
.#(A	9C[T	10.0	2.4	ug/L		11/22/20 16:15	11/23/20 18:45	1
Antimony	20.0 U	20.0	3.7	ug/L		11/22/20 16:15	11/23/20 18:45	1
Selenium	20.0 U	20.0	5.9	ug/L		11/22/20 16:15	11/23/20 18:45	1
Thallium	20.0 U	20.0	4.1	ug/L		11/22/20 16:15	11/23/20 18:45	1
G(\$(A"-)	F8[3	50.0	7.2	ug/L		11/22/20 16:15	11/23/20 18:45	1
^"\$@	9C4 J	30.0	1.2	ug/L		11/22/20 16:15	11/23/20 18:45	1
:#%E?A2&T3T 5 &6&:#=@-=J	&R∢S							
<\$(!J%#	+#,-!% P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Mercury	0.20 U	0.20	0.091	ug/L		11/25/20 12:43	11/25/20 14:13	1
K#\$#=(!& E#)",%=J								
<\$(!J%#	+#,-!% P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Cyanide, Total	0.010 U	0.010	0.0040	mg/L		11/27/20 09:11	11/27/20 13:22	1

!"#\$%&'()*!#&012&U**\99**9C7575

1(%#& ?!!#@%#**A9289**CB75&942C5 1(%#&+#@#"D#**A9289**4B75&98235 .(/&'()*!#&012&34567778496T

<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Perfluorobutanoic acid (PFBA)	4.2	U	4.2	0.94	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluoropentanoic acid (PFPeA)	1.7	U	1.7	0.90	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluorohexanoic acid (PFHxA)	1.7	U	1.7	0.69	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluoroheptanoic acid (PFHpA)	1.7	U	1.7	0.38	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluorooctanoic acid (PFOA)	1.7	U	1.7	0.82	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluorononanoic acid (PFNA)	1.7	U	1.7	0.48	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluorodecanoic acid (PFDA)	1.7	U	1.7	0.38	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluoroundecanoic acid (PFUnA)	1.7	U	1.7	0.61	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluorododecanoic acid (PFDoA)	1.7	U	1.7	0.38	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluorotridecanoic acid (PFTriA)	1.7	U	1.7	0.36	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluorotetradecanoic acid (PFTeA)	1.7	U	1.7	0.49	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluorobutanesulfonic acid (PFBS)	1.7	U	1.7	0.52	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluorohexanesulfonic acid (PFHxS)	1.7	U	1.7	0.56	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluoroheptanesulfonic Acid (PFHpS)	1.7	U	1.7	0.32	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluorooctanesulfonic acid (PFOS)	1.7	U	1.7	0.72	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluorodecanesulfonic acid (PFDS)	1.7	U	1.7	0.40	ng/L		11/20/20 09:01	11/20/20 17:53	1
Perfluorooctanesulfonamide (PFOSA)	1.7	U	1.7	0.47	ng/L		11/20/20 09:01	11/20/20 17:53	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	4.2	U	4.2	0.66	ng/L		11/20/20 09:01	11/20/20 17:53	1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&U**\99**9C7575

.(/&'()*!#&012&34567778496T

1(%#& ?!!#@%#**9933**CB 5&942C5

1(%#&+#@#"D#**9933**4**B**75&98235

:(%=">2&{%#=

Job ID: 460-222961-1

<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	4.2	U	4.2	0.77	ng/L		11/20/20 09:01	11/20/20 17:53	1
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	4.2	U	4.2	0.60	ng/L		11/20/20 09:01	11/20/20 17:53	1
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	1.7	U	1.7	0.55	ng/L		11/20/20 09:01	11/20/20 17:53	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1802 PFHxS	117		50 - 150				11/20/20 09:01	11/20/20 17:53	1
13C4 PFHpA	108		50 - 150				11/20/20 09:01	11/20/20 17:53	1
13C4 PFOA	105		50 - 150				11/20/20 09:01	11/20/20 17:53	1
13C4 PFOS	114		50 - 150				11/20/20 09:01	11/20/20 17:53	1
13C5 PFNA	105		50 - 150				11/20/20 09:01	11/20/20 17:53	1
13C4 PFBA	119		25 - 150				11/20/20 09:01	11/20/20 17:53	1
13C2 PFHxA	112		50 - 150				11/20/20 09:01	11/20/20 17:53	1
13C2 PFDA	114		50 - 150				11/20/20 09:01	11/20/20 17:53	1
13C2 PFUnA	115		50 - 150				11/20/20 09:01	11/20/20 17:53	1
13C2 PFDoA	111		50 - 150				11/20/20 09:01	11/20/20 17:53	1
13C8 FOSA	77		25 - 150				11/20/20 09:01	11/20/20 17:53	1
13C5 PFPeA	119		25 - 150				11/20/20 09:01	11/20/20 17:53	1
13C2 PFTeDA	96		50 - 150				11/20/20 09:01	11/20/20 17:53	1
d3-NMeFOSAA	107		50 - 150				11/20/20 09:01	11/20/20 17:53	1

50 - 150

25 - 150

25 - 150

50 - 150

105

118

111

118

!"#\$%&'()*!#&012&';63

d5-NEtFOSAA

M2-6:2 FTS

M2-8:2 FTS

13C3 PFBS

1(%#& ?!!#@%#**993B**CB 5&972C5

1(%#&+#@#"D#**9938**4**B**75&98235

.(/&'()*!#&012&34567778496F

11/20/20 09:01 11/20/20 17:53

11/20/20 09:01 11/20/20 17:53

11/20/20 09:01 11/20/20 17:53

11/20/20 09:01 11/20/20 17:53

:(%=">2&(%#=

1

1

<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Chloromethane	1.0	U	1.0	0.40	ug/L			11/22/20 20:34	1
Bromomethane	1.0	U	1.0	0.55	ug/L			11/22/20 20:34	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			11/22/20 20:34	1
Chloroethane	1.0	U	1.0	0.32	ug/L			11/22/20 20:34	1
Methylene Chloride	1.0	U	1.0	0.32	ug/L			11/22/20 20:34	1
Acetone	5.0	U	5.0	4.4	ug/L			11/22/20 20:34	1
Carbon disulfide	1.0	U	1.0	0.82	ug/L			11/22/20 20:34	1
Trichlorofluoromethane	1.0	U	1.0	0.32	ug/L			11/22/20 20:34	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			11/22/20 20:34	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			11/22/20 20:34	1
trans-1,2-Dichloroethene	1.0	U	1.0	0.24	ug/L			11/22/20 20:34	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.22	ug/L			11/22/20 20:34	1
Chloroform	1.0	U	1.0	0.33	ug/L			11/22/20 20:34	1
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			11/22/20 20:34	1
2-Butanone (MEK)	5.0	U	5.0	1.9	ug/L			11/22/20 20:34	1
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L			11/22/20 20:34	1
Carbon tetrachloride	1.0	U	1.0	0.21	ug/L			11/22/20 20:34	1
Dichlorobromomethane	1.0	U	1.0	0.34	ug/L			11/22/20 20:34	1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&';63

.(/&'()*!#&012&34567778496F

Job ID: 460-222961-1

:(%=">2&(%#=

1(%#& ?!!#@%#**993B**CB 5&972C5 1(%#&+#@#"D#**9925**4**F**75&98235

<\$(!J%#	+#,-!%	P-(!"Q"#=	+.		:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
1,2-Dichloropropane	1.0	U	1.0)	0.35	ug/L			11/22/20 20:34	1
cis-1,3-Dichloropropene	1.0	U	1.0)	0.22	ug/L			11/22/20 20:34	1
Trichloroethene	1.0	U	1.0)	0.31	ug/L			11/22/20 20:34	1
Chlorodibromomethane	1.0	U	1.0)	0.28	ug/L			11/22/20 20:34	1
1,1,2-Trichloroethane	1.0	U	1.0)	0.20	ug/L			11/22/20 20:34	1
Benzene	1.0	U	1.0)	0.20	_			11/22/20 20:34	1
trans-1,3-Dichloropropene	1.0	U	1.0)	0.22	ug/L			11/22/20 20:34	1
Bromoform	1.0	U	1.0)	0.54	_			11/22/20 20:34	1
4-Methyl-2-pentanone (MIBK)	5.0	U *	5.0)		ug/L			11/22/20 20:34	1
2-Hexanone	5.0	U *	5.0)		ug/L			11/22/20 20:34	1
Tetrachloroethene	1.0		1.0		0.25				11/22/20 20:34	1
1,1,2,2-Tetrachloroethane	1.0		1.0		0.37	_			11/22/20 20:34	1
Toluene	1.0		1.0		0.38				11/22/20 20:34	
Chlorobenzene	1.0		1.0		0.38	_			11/22/20 20:34	1
Ethylbenzene	1.0		1.0		0.30	_			11/22/20 20:34	1
Styrene	1.0		1.0		0.42	-			11/22/20 20:34	
m-Xylene & p-Xylene	1.0		1.0		0.42	_			11/22/20 20:34	1
o-Xylene	1.0		1.0		0.36	_			11/22/20 20:34	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0		1.0		0.31				11/22/20 20:34	
Methyl tert-butyl ether	1.0		1.0		0.31	-			11/22/20 20:34	1
, ,	1.0		1.0			_				1
Cyclohexane					0.32				11/22/20 20:34	
Ethylene Dibromide	1.0		1.0		0.50	-			11/22/20 20:34	1
1,3-Dichlorobenzene	1.0		1.0		0.34	_			11/22/20 20:34	1
1,4-Dichlorobenzene	1.0		1.0		0.33				11/22/20 20:34	1
1,2-Dichlorobenzene	1.0		1.0		0.21	_			11/22/20 20:34	1
Dichlorodifluoromethane	1.0		1.0		0.31	_			11/22/20 20:34	1
1,2,4-Trichlorobenzene	1.0		1.0		0.37				11/22/20 20:34	1
1,4-Dioxane	50		50			ug/L			11/22/20 20:34	1
1,2,3-Trichlorobenzene	1.0	U	1.0		0.36	-			11/22/20 20:34	1
1,2-Dibromo-3-Chloropropane	1.0	U	1.0)	0.38	ug/L			11/22/20 20:34	1
Chlorobromomethane	1.0		1.0)	0.41	-			11/22/20 20:34	1
Isopropylbenzene	1.0	U	1.0)	0.34	ug/L			11/22/20 20:34	1
Methyl acetate	5.0	U	5.0)	0.79	ug/L			11/22/20 20:34	1
Methylcyclohexane	1.0	U	1.0)	0.71	ug/L			11/22/20 20:34	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	1	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L						11/22/20 20:34	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		75 - 123	-					11/22/20 20:34	1
Toluene-d8 (Surr)	103		80 - 120						11/22/20 20:34	1
4-Bromofluorobenzene	103		76 - 120						11/22/20 20:34	1
Dibromofluoromethane (Surr)	102		77 - 124						11/22/20 20:34	1
:#%E?A2&F7T5U&'0:&01&68			D& ?)*?-\$A	.,8278 K(0:& E		%?*#&1"!·			
<\$(!J%#		P-(!"Q"#=	+.		:1.	O\$"%		N=#*(=#A	<\$(!JM#A	1"!&L(@
1,4-Dioxane	0.20	U	0.20)	0.016	ug/L		11/18/20 09:12	11/19/20 15:41	1
Isotope Dilution	%Recovery	Qualifier	Limits	_				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	27		10 - 150					11/18/20 09:12	11/19/20 15:41	1

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&';63

.(/&'()*!#&012&34567778496F

:(%=">2&(%#=

Job ID: 460-222961-1

1(%#&?!!#@%#**9933.CF**5&972C5 1(%#&+#@#"D#**9933.4F**5&98235

<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L((
Phenol	10	Ū —	10	0.29	ug/L		11/19/20 09:29	11/20/20 06:53	1
2-Chlorophenol	10	U	10	0.38			11/19/20 09:29	11/20/20 06:53	1
2-Methylphenol	10	U	10	0.67	-		11/19/20 09:29	11/20/20 06:53	1
4-Methylphenol	10	U	10	0.65			11/19/20 09:29	11/20/20 06:53	1
2-Nitrophenol	10	U	10	0.75	-		11/19/20 09:29	11/20/20 06:53	1
2,4-Dimethylphenol	10	U	10	0.62	-		11/19/20 09:29	11/20/20 06:53	1
2,4-Dichlorophenol	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:53	1
4-Chloro-3-methylphenol	10		10		ug/L		11/19/20 09:29	11/20/20 06:53	1
2,4,6-Trichlorophenol	10		10	0.86	•		11/19/20 09:29	11/20/20 06:53	1
2,4,5-Trichlorophenol	10		10	0.88			11/19/20 09:29	11/20/20 06:53	1
2,4-Dinitrotoluene	2.0		2.0		ug/L		11/19/20 09:29	11/20/20 06:53	1
4-Nitrophenol	30		30		ug/L		11/19/20 09:29	11/20/20 06:53	
4,6-Dinitro-2-methylphenol		Ü	30		ug/L		11/19/20 09:29	11/20/20 06:53	
Pentachlorophenol	30		30		ug/L		11/19/20 09:29	11/20/20 06:53	1
Bis(2-chloroethyl)ether	1.0		1.0	0.63	•		11/19/20 09:29	11/20/20 06:53	1
N-Nitrosodi-n-propylamine	1.0		1.0	0.03			11/19/20 09:29	11/20/20 06:53	
Hexachloroethane	2.0		2.0	0.43	-		11/19/20 09:29	11/20/20 06:53	1
Vitrobenzene	1.0		1.0		-		11/19/20 09:29	11/20/20 06:53	1
				0.57					
sophorone	10		10	0.80	-		11/19/20 09:29	11/20/20 06:53	1
Naphthalene	2.0		2.0	0.54	-		11/19/20 09:29	11/20/20 06:53	1
l-Chloroaniline	1.0		1.0		ug/L		11/19/20 09:29	11/20/20 06:53	
Hexachlorobutadiene	2.0		2.0		ug/L		11/19/20 09:29	11/20/20 06:53	1
2-Methylnaphthalene	10		10	0.53	-		11/19/20 09:29	11/20/20 06:53	1
Hexachlorocyclopentadiene	10		10		ug/L		11/19/20 09:29	11/20/20 06:53	
2-Chloronaphthalene	10		10		ug/L		11/19/20 09:29	11/20/20 06:53	1
2-Nitroaniline		U	20	0.47	-		11/19/20 09:29	11/20/20 06:53	1
Dimethyl phthalate	10		10	0.77			11/19/20 09:29	11/20/20 06:53	1
Acenaphthylene	10	U	10	0.82	-		11/19/20 09:29	11/20/20 06:53	1
2,6-Dinitrotoluene	2.0	U	2.0	0.83	-		11/19/20 09:29	11/20/20 06:53	1
3-Nitroaniline	20	U	20	1.9	ug/L		11/19/20 09:29	11/20/20 06:53	1
Acenaphthene	10	U	10	1.1	ug/L		11/19/20 09:29	11/20/20 06:53	1
Dibenzofuran	10	U	10	1.1	ug/L		11/19/20 09:29	11/20/20 06:53	1
2,4-Dinitrophenol	30	U	30	2.6	ug/L		11/19/20 09:29	11/20/20 06:53	1
Diethyl phthalate	10	U	10	0.98	ug/L		11/19/20 09:29	11/20/20 06:53	1
1-Chlorophenyl phenyl ether	10	U	10	1.3	ug/L		11/19/20 09:29	11/20/20 06:53	1
luorene	10	U	10	0.91	ug/L		11/19/20 09:29	11/20/20 06:53	1
1-Nitroaniline	20	U	20	1.2	ug/L		11/19/20 09:29	11/20/20 06:53	1
N-Nitrosodiphenylamine	10	U	10	0.89	ug/L		11/19/20 09:29	11/20/20 06:53	1
1-Bromophenyl phenyl ether	10	U	10	0.75	ug/L		11/19/20 09:29	11/20/20 06:53	1
Hexachlorobenzene	1.0	U	1.0	0.40	ug/L		11/19/20 09:29	11/20/20 06:53	1
Phenanthrene	10	U	10	1.3	ug/L		11/19/20 09:29	11/20/20 06:53	1
Anthracene	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:53	1
Carbazole	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:53	1
Di-n-butyl phthalate		U	10		ug/L		11/19/20 09:29	11/20/20 06:53	1
Fluoranthene		U	10		ug/L		11/19/20 09:29	11/20/20 06:53	1
Pyrene	10		10		ug/L		11/19/20 09:29	11/20/20 06:53	
Butyl benzyl phthalate	10		10		ug/L		11/19/20 09:29	11/20/20 06:53	1
Benzo[a]anthracene	1.0		1.0		ug/L		11/19/20 09:29	11/20/20 06:53	1
Chrysene	1.0		10		ug/L ug/L			11/20/20 06:53	

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&';63

.(/&'()*!#&012&34567778496F

1(%#&?!!#@%#**993B.CF**5&972C5 1(%#&+#@#"D#**993B.4F**5&98235

<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L((
Bis(2-ethylhexyl) phthalate	10	U	10	0.80	ug/L		11/19/20 09:29	11/20/20 06:53	1
Di-n-octyl phthalate	10	U	10	0.75	ug/L		11/19/20 09:29	11/20/20 06:53	1
Benzo[b]fluoranthene	2.0	U	2.0	0.68	ug/L		11/19/20 09:29	11/20/20 06:53	1
Benzo[k]fluoranthene	1.0	U	1.0	0.67	ug/L		11/19/20 09:29	11/20/20 06:53	1
Benzo[a]pyrene	1.0	U	1.0	0.41	ug/L		11/19/20 09:29	11/20/20 06:53	1
ndeno[1,2,3-cd]pyrene	2.0	U	2.0	0.94	ug/L		11/19/20 09:29	11/20/20 06:53	1
Dibenz(a,h)anthracene	1.0	U	1.0	0.72	ug/L		11/19/20 09:29	11/20/20 06:53	1
Benzo[g,h,i]perylene	10	U	10	0.70	ug/L		11/19/20 09:29	11/20/20 06:53	1
1,1'-Biphenyl	10	U	10	1.2	ug/L		11/19/20 09:29	11/20/20 06:53	1
Acetophenone	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:53	1
1,4-Dioxane	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:53	1
Benzaldehyde	10	U	10		ug/L		11/19/20 09:29	11/20/20 06:53	1
Caprolactam	10		10		ug/L		11/19/20 09:29	11/20/20 06:53	1
Atrazine		U *	10		ug/L		11/19/20 09:29	11/20/20 06:53	1
2,2'-oxybis[1-chloropropane]	10		10		ug/L		11/19/20 09:29	11/20/20 06:53	· · · · · · · · · · · · · · · · · · ·
1,2,4,5-Tetrachlorobenzene	10		10		ug/L		11/19/20 09:29	11/20/20 06:53	1
2,3,4,6-Tetrachlorophenol	10		10		ug/L		11/19/20 09:29	11/20/20 06:53	1
3,3'-Dichlorobenzidine		 U	20		ug/L		11/19/20 09:29	11/20/20 06:53	
Bis(2-chloroethoxy)methane	10		10		ug/L		11/19/20 09:29	11/20/20 06:53	1
513(2-chiorocthoxy)methane	10	O	10	0.00	ug/L		11/15/20 05:25	11/20/20 00:00	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None	-	ug/L				11/19/20 09:29	11/20/20 06:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	87		46 - 137				11/19/20 09:29	11/20/20 06:53	1
Phenol-d5 (Surr)	24		10 - 50				11/19/20 09:29	11/20/20 06:53	1
Terphenyl-d14 (Surr)	82		39 - 150				11/19/20 09:29	11/20/20 06:53	1
2,4,6-Tribromophenol (Surr)	112		36 - 159				11/19/20 09:29	11/20/20 06:53	1
2-Fluorophenol (Surr)	40		18 - 72				11/19/20 09:29	11/20/20 06:53	1
2-Fluorobiphenyl	77		42 - 127				11/19/20 09:29	11/20/20 06:53	1
:#%E?A2&F5F9V&6&H=I(\$?@	DE!?="\$#&N	#.%"@"A:	#.&RKS						
<\$(!J%#		P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(
,4'-DDD	0.020		0.020	0.0060			11/18/20 14:28	11/19/20 11:45	
1,4'-DDE	0.020		0.020	0.0020	-			11/19/20 11:45	1
1,4'-DDT	0.020	U	0.020	0.0040	•		11/18/20 14:28	11/19/20 11:45	1
Aldrin	0.020		0.020	0.0030	-		11/18/20 14:28	11/19/20 11:45	1
alpha-BHC	0.020		0.020	0.0070	_		11/18/20 14:28	11/19/20 11:45	1
peta-BHC	0.020		0.020	0.0040	_		11/18/20 14:28	11/19/20 11:45	
Chlordane (technical)	0.50		0.50	0.055				11/19/20 11:45	
delta-BHC	0.020		0.020	0.0050	_		11/18/20 14:28	11/19/20 11:45	1
Dieldrin	0.020		0.020	0.0030	_		11/18/20 14:28	11/19/20 11:45	1
Endosulfan I									
	0.020		0.020	0.0020	_		11/18/20 14:28	11/19/20 11:45	1
Endosulfan II	0.020		0.020	0.0040	-		11/18/20 14:28	11/19/20 11:45	1
Endosulfan sulfate	0.020		0.020	0.0060			11/18/20 14:28	11/19/20 11:45	
	0.020	U	0.020	0.0040	ug/L		11/18/20 14:28	11/19/20 11:45	•
Endrin aldehyde	0.020		0.020	0.0080	_		11/18/20 14:28	11/19/20 11:45	1
Endrin aldehyde Endrin ketone	0.020 0.020	U	0.020	0.0080	ug/L		11/18/20 14:28	11/19/20 11:45	1
Endrin aldehyde Endrin ketone gamma-BHC (Lindane)	0.020 0.020 0.020	U	0.020 0.020	0.0080 0.012	ug/L ug/L				
Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) Heptachlor	0.020 0.020	U	0.020	0.0080	ug/L ug/L		11/18/20 14:28	11/19/20 11:45	

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&';63

Perfluorotridecanoic acid (PFTriA)

.(/&'()*!#&012&34567778496F

(%=">2&(%#=

Job ID: 460-222961-1

1(%#& ?!!#@%#**9933**9CB75&972C5 1(%#&+#@#"D#**A9339**4B75&98235

:#%E?A2&F5F9V&6&H=I(\$?@E <\$(!J%#		P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Heptachlor epoxide	0.020		0.020	0.0050	ug/L		11/18/20 14:28	11/19/20 11:45	1
Methoxychlor	0.020	U	0.020	0.0040			11/18/20 14:28	11/19/20 11:45	1
Toxaphene	0.50		0.50		ug/L		11/18/20 14:28	11/19/20 11:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	63		10 - 132				11/18/20 14:28	11/19/20 11:45	1
DCB Decachlorobiphenyl	62		10 - 132				11/18/20 14:28	11/19/20 11:45	1
Tetrachloro-m-xylene	36		10 - 150				11/18/20 14:28	11/19/20 11:45	1
Tetrachloro-m-xylene	31		10 - 150				11/18/20 14:28	11/19/20 11:45	1
:#%E?A2&F5F7&6&N?!J@E!?="	\$(%#A&V	"*E#\$J!,&F	RN V,S&/J&k	⟨(,& E=?)(%?l=(*E	J			
<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Aroclor 1016	0.40	U UJ	0.40	0.12	ug/L		11/18/20 14:29	11/19/20 12:03	1
Aroclor 1221	0.40	U <mark>UJ</mark>	0.40	0.12	ug/L		11/18/20 14:29	11/19/20 12:03	1
Aroclor 1232	0.40	U <mark>UJ</mark>	0.40	0.12	ug/L		11/18/20 14:29	11/19/20 12:03	1
Aroclor 1242	0.40	U <mark>UJ</mark>	0.40	0.12	ug/L		11/18/20 14:29	11/19/20 12:03	1
Aroclor 1248	0.40	U <mark>UJ</mark>	0.40	0.12	ug/L		11/18/20 14:29	11/19/20 12:03	1
Aroclor 1254	0.40	U <mark>UJ</mark>	0.40	0.11	ug/L		11/18/20 14:29	11/19/20 12:03	1
Aroclor 1260	0.40	U UJ	0.40		ug/L		11/18/20 14:29	11/19/20 12:03	1
Aroclor-1262	0.40	U UJ	0.40		ug/L		11/18/20 14:29	11/19/20 12:03	1
Aroclor 1268	0.40	U UJ	0.40	0.11	ug/L		11/18/20 14:29	11/19/20 12:03	1
Polychlorinated biphenyls, Total	0.40	U	0.40		ug/L		11/18/20 14:29	11/19/20 12:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	69		10 - 150				11/18/20 14:29	11/19/20 12:03	1
DCB Decachlorobiphenyl	69		10 - 150				11/18/20 14:29	11/19/20 12:03	1
Tetrachloro-m-xylene	38	X	48 - 125				11/18/20 14:29	11/19/20 12:03	1
Tetrachloro-m-xylene	38	X	48 - 125				11/18/20 14:29	11/19/20 12:03	1
:#%E?A2&F9W &6 &X#=/"@"A#,8	&RK S								
<\$(!J%#		P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
2,4-D	1.2		1.2	0.13	ug/L		11/17/20 20:26	11/18/20 10:11	1
Silvex (2,4,5-TP)	1.2	U	1.2	0.11	ug/L		11/17/20 20:26	11/18/20 10:11	1
2,4,5-T	1.2	U	1.2	0.12	ug/L		11/17/20 20:26	11/18/20 10:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	72		39 - 145				11/17/20 20:26	11/18/20 10:11	1
2,4-Dichlorophenylacetic acid	79		39 - 145				11/17/20 20:26	11/18/20 10:11	1
:#%E?A2&WCT&R)?A"Q"#AS&	6&L!-? ! Y\$	9(%## &(\$@) #,						
<\$(!J%#	+#,-!%	P-(!"Q"#=	+,	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
N#=Q!-?=?/-%(\$?"@&(@"A&RNLV <s< td=""><td>99</td><td></td><td>4.2</td><td>0.96</td><td>ng/L</td><td></td><td>11/20/20 09:01</td><td>11/20/20 18:02</td><td>1</td></s<>	99		4.2	0.96	ng/L		11/20/20 09:01	11/20/20 18:02	1
N#=Q!-?=?*#\$%(\$?"@&(@"A&RNLN#	# <s 9t<="" td=""><td></td><td>1.7</td><td>0.92</td><td>ng/L</td><td></td><td>11/20/20 09:01</td><td>11/20/20 18:02</td><td>1</td></s>		1.7	0.92	ng/L		11/20/20 09:01	11/20/20 18:02	1
N#=Q!-?=?E#>(\$?"@&(@"A&RNLX><	<s 9w<="" td=""><td>1</td><td>1.7</td><td>0.70</td><td>ng/L</td><td></td><td>11/20/20 09:01</td><td>11/20/20 18:02</td><td>1</td></s>	1	1.7	0.70	ng/L		11/20/20 09:01	11/20/20 18:02	1
N#=Q!-?=?E#*%(\$?"@&(@"A&RNLX*	' <s 9c<="" td=""><td></td><td>1.7</td><td>0.39</td><td>ng/L</td><td></td><td>11/20/20 09:01</td><td>11/20/20 18:02</td><td>1</td></s>		1.7	0.39	ng/L		11/20/20 09:01	11/20/20 18:02	1
N#=Q!-?=??@%(\$?"@&(@"A&RNLH-			1.7		ng/L		11/20/20 09:01	11/20/20 18:02	1
N#=Q!-?=?\$?\$(\$?"@&(@"A&RNL] <s< td=""><td>7[5</td><td></td><td>1.7</td><td></td><td>ng/L</td><td></td><td>11/20/20 09:01</td><td>11/20/20 18:02</td><td>1</td></s<>	7[5		1.7		ng/L		11/20/20 09:01	11/20/20 18:02	1
Perfluorodecanoic acid (PFDA)	1.7		1.7		ng/L		11/20/20 09:01	11/20/20 18:02	1
Perfluoroundecanoic acid (PFUnA)	1.7		1.7		ng/L		11/20/20 09:01	11/20/20 18:02	1
Perfluorododecanoic acid (PFDoA)	1.7		1.7		ng/L		11/20/20 09:01	11/20/20 18:02	1
//									

11/20/20 09:01 11/20/20 18:02

1.7

0.36 ng/L

1.7 U

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&';63

.(/&'()*!#&012&34567778496F

:(%=">2&(%#=

Job ID: 460-222961-1

1(%#&?!!#@%#**9933.CE**75&972C5 1(%#&+#@#"D#**9933.4E**75&98235

:#%E?A2&WCT&R)?A"Q"#AS8 <\$(!J%#		P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Perfluorotetradecanoic acid (PFTeA)	1.7	U	1.7	0.50	ng/L		11/20/20 09:01	11/20/20 18:02	1
N#=Q!-?=?/-%(\$#,-!Q?\$"@&(@"A& RN U 'S	7[W	1	1.7	0.53	ng/L		11/20/20 09:01	11/20/20 18:02	1
N#=Q!-?=?E#>(\$#,-!Q?\$"@&(@"A& RNIX>'S	9C		1.7	0.57	ng/L		11/20/20 09:01	11/20/20 18:02	1
N#=Q!-?=?E#*%(\$#,-!Q?\$' % @''A& RNIX*'S	5[T7	1	1.7	0.33	ng/L		11/20/20 09:01	11/20/20 18:02	1
N#=Q!-?=??@%(\$#,-!Q?\$"@&(@"A& RNH'S	9W		1.7	0.74	ng/L		11/20/20 09:01	11/20/20 18:02	1
Perfluorodecanesulfonic acid (PFDS)	1.7	U	1.7	0.41	ng/L		11/20/20 09:01	11/20/20 18:02	1
Perfluorooctanesulfonamide (PFOSA)	1.7	U	1.7	0.48	ng/L		11/20/20 09:01	11/20/20 18:02	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	4.2	U	4.2	0.67	ng/L		11/20/20 09:01	11/20/20 18:02	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	4.2	U	4.2	0.79	ng/L		11/20/20 09:01	11/20/20 18:02	1
1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2)	4.2		4.2	0.61	ng/L		11/20/20 09:01	11/20/20 18:02	1
1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	1.7	U	1.7	0.56	ng/L		11/20/20 09:01	11/20/20 18:02	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1802 PFHxS	112		50 - 150				11/20/20 09:01	11/20/20 18:02	1
13C4 PFHpA	102		50 - 150				11/20/20 09:01	11/20/20 18:02	1
13C4 PFOA	98		50 - 150				11/20/20 09:01	11/20/20 18:02	1
13C4 PFOS	107		50 - 150				11/20/20 09:01	11/20/20 18:02	1
13C5 PFNA	99		50 - 150				11/20/20 09:01	11/20/20 18:02	1
13C4 PFBA	75		25 - 150				11/20/20 09:01	11/20/20 18:02	1
13C2 PFHxA	100		50 - 150				11/20/20 09:01	11/20/20 18:02	1
13C2 PFDA	111		50 - 150				11/20/20 09:01	11/20/20 18:02	1
13C2 PFUnA	113		50 - 150				11/20/20 09:01	11/20/20 18:02	1
13C2 PFDoA	112		50 - 150				11/20/20 09:01	11/20/20 18:02	1
13C8 FOSA	81		25 - 150				11/20/20 09:01	11/20/20 18:02	1
13C5 PFPeA	94		25 - 150				11/20/20 09:01	11/20/20 18:02	1
13C2 PFTeDA	91		50 - 150				11/20/20 09:01	11/20/20 18:02	1
d3-NMeFOSAA	113		50 - 150				11/20/20 09:01	11/20/20 18:02	1
d5-NEtFOSAA	108		50 - 150				11/20/20 09:01	11/20/20 18:02	1
M2-6:2 FTS	121		25 - 150				11/20/20 09:01	11/20/20 18:02	1
M2-8:2 FTS	103		25 - 150				11/20/20 09:01	11/20/20 18:02	1
13C3 PFBS	110		50 - 150				11/20/20 09:01	11/20/20 18:02	1
:#%E?A2&45951&6&:#%(!,&R0 <\$(!J%#		P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Silver	10.0		10.0		ug/L	:		11/23/20 18:49	1
Aluminum	200		200		ug/L			11/23/20 18:49	1
Arsenic	15.0		15.0		ug/L			11/23/20 18:49	1
V(="-)	W9[0		200		ug/L			11/23/20 18:49	
V (− -) Beryllium	2.0		2.0		ug/L			11/23/20 18:49	1
(!@"-)	43955	•	5000		ug/L			11/23/20 18:49	1
Cadmium	4.0		4.0		ug/L			11/23/20 18:49	
Cobalt	50.0		50.0		ug/L			11/23/20 18:49	1
Cobait	10.0		10.0		ug/L ug/L			11/23/20 18:49	1
					44/L		, <u></u> , U. IU. IU	11/20/20 10.43	

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&';63

.(/&'()*!#&012&34567778496F

:(%=">2&(%#=

Job ID: 460-222961-1

1(%#& ?!!#@%#**A92399**CB75&972C5 1(%#&+#@#"D#**A923899**4B75&98235

:#%E?A2&45951&6&:#%(!,&R0 NS&R ?\$%	6"\$-#AS							
<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
0=?\$	7F3	J+	150	80.8	ug/L		11/22/20 16:15	11/23/20 18:49	1
N?%(,,"-)	4785		5000	142	ug/L		11/22/20 16:15	11/23/20 18:49	1
:(1\$#,"-)	9F755		5000	142	ug/L		11/22/20 16:15	11/23/20 18:49	1
:(\$1(\$#,#	7WF		15.0	0.76	ug/L		11/22/20 16:15	11/23/20 18:49	1
'?A"-)	98555		5000	83.8	ug/L		11/22/20 16:15	11/23/20 18:49	1
Nickel	40.0	U	40.0	4.1	ug/L		11/22/20 16:15	11/23/20 18:49	1
Lead	10.0	U	10.0	2.4	ug/L		11/22/20 16:15	11/23/20 18:49	1
Antimony	20.0	U	20.0	3.7	ug/L		11/22/20 16:15	11/23/20 18:49	1
Selenium	20.0	U	20.0	5.9	ug/L		11/22/20 16:15	11/23/20 18:49	1
Thallium	20.0	U	20.0	4.1	ug/L		11/22/20 16:15	11/23/20 18:49	1
Vanadium	50.0	U	50.0	7.2	ug/L		11/22/20 16:15	11/23/20 18:49	1
^"\$@	w[c	1	30.0	1.2	ug/L		11/22/20 16:15	11/23/20 18:49	1
- :#%E?A2&T3T 5 &6&:#=@-	=J& R∢ \$								
<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Mercury	0.20	U	0.20	0.091	ug/L		11/25/20 12:43	11/25/20 14:15	1
K#\$#=(!& E#)",%=J									
<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Cyanide, Total	0.010	U -	0.010	0.0040	mg/L		11/27/20 09:11	11/27/20 13:23	

!"#\$%&'()*!#&012&'63

.(/&'()*!#&012&345677784968

1(%#& ?!!#@%#**A9789**CB75&9723W

:(%=">2&'?!"A

1(%#&+#@#"D#**A923994**B75&98235

N#=@#\$%&'?!"A,2&C

:#%E?A2&F7451& 6& %"!#8	&H=I(\$"@& ?)*	?-\$A,&/J&K	B:'						
<\$(!J%#	+#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
Chloromethane	490	U H H3 UJ	490	200	ug/Kg	*	11/17/20 23:44	11/27/20 14:45	50
Bromomethane	490	U H H3 <mark>UJ</mark>	490	490	ug/Kg	☼	11/17/20 23:44	11/27/20 14:45	50
Vinyl chloride	490	U H H3 <mark>UJ</mark>	490	98	ug/Kg	☼	11/17/20 23:44	11/27/20 14:45	50
Chloroethane	490	U H H3 <mark>UJ</mark>	490	180	ug/Kg	☼	11/17/20 23:44	11/27/20 14:45	50
Methylene Chloride	490	U H H3 <mark>UJ</mark>	490	560	ug/Kg	☼	11/17/20 23:44	11/27/20 14:45	50
Acetone	2400	U H H3 <mark>UJ</mark>	2400	2200	ug/Kg	☼	11/17/20 23:44	11/27/20 14:45	50
Carbon disulfide	490	U H H3 <mark>UJ</mark>	490	330	ug/Kg	☼	11/17/20 23:44	11/27/20 14:45	50
Trichlorofluoromethane	490	U H H3 <mark>UJ</mark>	490	160	ug/Kg	₩	11/17/20 23:44	11/27/20 14:45	50
1,1-Dichloroethene	490	U H H3 <mark>UJ</mark>	490	130	ug/Kg	₩	11/17/20 23:44	11/27/20 14:45	50
1,1-Dichloroethane	490	U H H3 UJ	490	120	ug/Kg	₩	11/17/20 23:44	11/27/20 14:45	50
trans-1,2-Dichloroethene	490	U H H3 <mark>UJ</mark>	490	88	ug/Kg	₩	11/17/20 23:44	11/27/20 14:45	50
cis-1,2-Dichloroethene	490	U H H3 <mark>UJ</mark>	490	170	ug/Kg	₩	11/17/20 23:44	11/27/20 14:45	50
Chloroform	490	U H H3 UJ	490	470	ug/Kg	₩	11/17/20 23:44	11/27/20 14:45	50
1,2-Dichloroethane	490	U H H3 <mark>UJ</mark>	490	120	ug/Kg	₩	11/17/20 23:44	11/27/20 14:45	50
2-Butanone (MEK)	2400	U H H3 <mark>UJ</mark>	2400	1100	ug/Kg	₩	11/17/20 23:44	11/27/20 14:45	50
1,1,1-Trichloroethane	490	U H H3 UJ	490	140	ug/Kg	₩	11/17/20 23:44	11/27/20 14:45	50
Carbon tetrachloride	490	U H H3 UJ	490	160	ug/Kg	₩	11/17/20 23:44	11/27/20 14:45	50
Dichlorobromomethane	490	U H H3 <mark>UJ</mark>	490	73	ug/Kg	₩	11/17/20 23:44	11/27/20 14:45	50
1,2-Dichloropropane	490	U H H3 <mark>UJ</mark>	490	88	ug/Kg	₩	11/17/20 23:44	11/27/20 14:45	50
cis-1,3-Dichloropropene	490	U H H3 UJ	490	110	ug/Kg	☼	11/17/20 23:44	11/27/20 14:45	50
Trichloroethene	490	U H H3 UJ	490	160	ug/Kg	☼	11/17/20 23:44	11/27/20 14:45	50
Chlorodibromomethane	490	U H H3 UJ	490	110	ug/Kg	₽	11/17/20 23:44	11/27/20 14:45	50
1,1,2-Trichloroethane	490	U H H3 UJ	490	39	ug/Kg	₩	11/17/20 23:44	11/27/20 14:45	50

Eurofins TestAmerica, Edison

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'63

.(/&'()*!#&012&345677784968

1(%#& ?!!#@%#**A92599**CB75&9723W 1(%#&+#@#"D#**A9259**4B75&98235

:(%=">2&'?!"A

N#=@#\$%&'?!"A,2&C

:#%E?A2&F7451 &#&("!#&H=</th><th>+#,-!%</th><th>P-(!"Q"#=</th><th>+.</th><th>:1.</th><th>O\$"%</th><th></th><th>N=#*(=#A</th><th><\$(!JM#A</th><th>1"!&L(@</th></tr><tr><td>Benzene</td><td>490</td><td>U H H3 UJ</td><td>490</td><td>99</td><td></td><td></td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>trans-1,3-Dichloropropene</td><td></td><td>U H H3 UJ</td><td>490</td><td>93</td><td>0 0</td><td>₩</td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>Bromoform</td><td></td><td>U H H3 UJ</td><td>490</td><td>88</td><td>0 0</td><td>₩</td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>4-Methyl-2-pentanone (MIBK)</td><td>2400</td><td>U H H3 UJ</td><td>2400</td><td>640</td><td></td><td></td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>2-Hexanone</td><td>2400</td><td>U H H3 UJ</td><td>2400</td><td>550</td><td>ug/Kg</td><td>☼</td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>Tetrachloroethene</td><td>490</td><td>U H H3 UJ</td><td>490</td><td>150</td><td>ug/Kg</td><td>☼</td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>1,1,2,2-Tetrachloroethane</td><td>490</td><td>U H H3 UJ</td><td>490</td><td>93</td><td>ug/Kg</td><td>₩</td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>Toluene</td><td>490</td><td>U H H3 UJ</td><td>490</td><td>120</td><td>ug/Kg</td><td>☼</td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>Chlorobenzene</td><td>490</td><td>U H H3 UJ</td><td>490</td><td>120</td><td>ug/Kg</td><td>☼</td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>Ethylbenzene</td><td>490</td><td>U H H3 UJ</td><td>490</td><td>150</td><td>ug/Kg</td><td>☼</td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>Styrene</td><td>490</td><td>U H H3 UJ</td><td>490</td><td>83</td><td>ug/Kg</td><td>₽</td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>m-Xylene & p-Xylene</td><td>490</td><td>U H H3 <mark>UJ</mark></td><td>490</td><td>140</td><td>ug/Kg</td><td>₩</td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>o-Xylene</td><td>490</td><td>U H H3 <mark>UJ</mark></td><td>490</td><td>160</td><td>ug/Kg</td><td>₩</td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>1,1,2-Trichloro-1,2,2-trifluoroethane</td><td>490</td><td>U H H3 UJ</td><td>490</td><td>170</td><td>ug/Kg</td><td>₩</td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>Methyl tert-butyl ether</td><td>490</td><td>U H H3 <mark>UJ</mark></td><td>490</td><td>250</td><td>ug/Kg</td><td>₩</td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>Cyclohexane</td><td>490</td><td>U H H3 UJ</td><td>490</td><td>130</td><td>ug/Kg</td><td>☼</td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>Ethylene Dibromide</td><td>490</td><td>U H H3 UJ</td><td>490</td><td>93</td><td>ug/Kg</td><td></td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>1,3-Dichlorobenzene</td><td>490</td><td>U H H3 <mark>UJ</mark></td><td>490</td><td>180</td><td>ug/Kg</td><td>₽</td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>1,4-Dichlorobenzene</td><td>490</td><td>U H H3 UJ</td><td>490</td><td>160</td><td>ug/Kg</td><td>₽</td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>1,2-Dichlorobenzene</td><td>490</td><td>U H H3 UJ</td><td>490</td><td>180</td><td>ug/Kg</td><td></td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>Dichlorodifluoromethane</td><td>490</td><td>U H H3 UJ</td><td>490</td><td>150</td><td></td><td>☼</td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>1,2,4-Trichlorobenzene</td><td>490</td><td>U H H3 UJ</td><td>490</td><td>130</td><td></td><td>☼</td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>1,4-Dioxane</td><td>24000</td><td>U H H3 UJ</td><td>24000</td><td>4200</td><td></td><td></td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>1,2,3-Trichlorobenzene</td><td>490</td><td>U H H3 UJ</td><td>490</td><td>170</td><td></td><td>₩</td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>1,2-Dibromo-3-Chloropropane</td><td></td><td>U H H3 UJ</td><td>490</td><td></td><td>ug/Kg</td><td>₩</td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>Chlorobromomethane</td><td></td><td>U H H3 UJ</td><td>490</td><td>150</td><td></td><td></td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>Isopropylbenzene</td><td></td><td>U H H3 UJ</td><td>490</td><td>140</td><td></td><td></td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>:#%EJ!&(@#%(%#</td><td></td><td>X&XCJ</td><td>2400</td><td></td><td>ug/Kg</td><td></td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>Methylcyclohexane</td><td></td><td>H H3 UJ</td><td>490</td><td></td><td>ug/Kg</td><td></td><td></td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>Tantativaly Identified Compayed</td><td>Est. Result</td><td>Oualifia</td><td>l lmi4</td><td>0</td><td>RT</td><td>CAS No.</td><td>Duanavad</td><td>Analysmad</td><td>Dil Foo</td></tr><tr><td>Tentatively Identified Compound Tentatively Identified Compound</td><td></td><td>H H3</td><td>Unit
ug/Kg</td><td><u>D</u></td><td><u> </u></td><td>CAS NO.</td><td>Prepared
11/17/20 23:44</td><td>Analyzed
11/27/20 14:45</td><td>Dil Fac
50</td></tr><tr><td>,</td><td></td><td>r</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>Surrogate</td><td>%Recovery</td><td>Qualifier</td><td>Limits</td><td></td><td></td><td></td><td>Prepared</td><td>Analyzed</td><td>Dil Fac</td></tr><tr><td>1,2-Dichloroethane-d4 (Surr)</td><td>149</td><td></td><td>70 - 150</td><td></td><td></td><td></td><td>11/17/20 23:44</td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>Toluene-d8 (Surr)</td><td>112</td><td></td><td>68 - 148</td><td></td><td></td><td></td><td></td><td>11/27/20 14:45</td><td>50</td></tr><tr><td>4-Bromofluorobenzene Dibromofluoromethane (Surr)</td><td>94
115</td><td></td><td>62 - 150
54 - 150</td><td></td><td></td><td></td><td></td><td>11/27/20 14:45
11/27/20 14:45</td><td>50</td></tr><tr><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td>71777720 20.77</td><td>77720 77.10</td><td>00</td></tr><tr><td>:#%E?A2&F7T5U&6&'#)"D?!('
<\$(!J%#</td><td>•</td><td>'@& ?)*?-
P-(!"Q"#=</td><td>•</td><td>'S
:1.</td><td>O\$"%</td><td>1</td><td>N=#*(=#A</td><td><\$(!JM#A</td><td>1"!&L(@</td></tr><tr><td></td><td>· </td><td></td><td>960</td><td>36</td><td></td><td></td><td>11/18/20 18:42</td><td>11/19/20 08:25</td><td>1 :0:1(6</td></tr><tr><td>NE#\$?!</td><td>9F5</td><td></td><td></td><td></td><td></td><td>₩</td><td></td><td></td><td>1</td></tr><tr><td>2-Chlorophenol</td><td>960</td><td></td><td>960</td><td></td><td>ug/Kg</td><td>‡</td><td></td><td>11/19/20 08:25</td><td>1</td></tr><tr><td>2-Methylphenol</td><td>960</td><td></td><td>960</td><td></td><td>ug/Kg</td><td> .</td><td>11/18/20 18:42</td><td></td><td>1</td></tr><tr><td>4-Methylphenol</td><td>960</td><td></td><td>960</td><td></td><td>ug/Kg</td><td>‡</td><td>11/18/20 18:42</td><td></td><td>1</td></tr><tr><td>2-Nitrophenol</td><td>960</td><td></td><td>960</td><td></td><td>ug/Kg</td><td>☆</td><td></td><td>11/19/20 08:25</td><td>1</td></tr><tr><td>2,4-Dimethylphenol</td><td>960</td><td></td><td>960</td><td></td><td>ug/Kg</td><td></td><td>11/18/20 18:42</td><td></td><td>1</td></tr><tr><td>2,4-Dichlorophenol</td><td>390</td><td></td><td>390</td><td></td><td>ug/Kg</td><td>₩</td><td>11/18/20 18:42</td><td></td><td>1</td></tr><tr><td>4-Chloro-3-methylphenol</td><td>960</td><td></td><td>960</td><td></td><td>ug/Kg</td><td>☼</td><td></td><td>11/19/20 08:25</td><td>1</td></tr><tr><td>2,4,6-Trichlorophenol</td><td>390</td><td>U</td><td>390</td><td>120</td><td>ug/Kg</td><td>☼</td><td>11/18/20 18:42</td><td>11/19/20 08:25</td><td>1</td></tr></tbody></table>

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'63

.(/&'()*!#&012&345677784968

1(%#& ?!!#@%#**99HB.CB**75&9723W

:(%=">2&'?!"A

1(%#&+#@#"D#**9925**4E75&98235

N#=@#\$%&'?!"A,2&C

<\$(!J%#		'@& ?)*?-\$A P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
2,4,5-Trichlorophenol	960		960	98	ug/Kg	— <u>·</u>	11/18/20 18:42	11/19/20 08:25	1
2,4-Dinitrotoluene	200	U	200		ug/Kg		11/18/20 18:42	11/19/20 08:25	1
4-Nitrophenol	2000		2000	160	ug/Kg	₩	11/18/20 18:42	11/19/20 08:25	1
4,6-Dinitro-2-methylphenol	780		780		ug/Kg		11/18/20 18:42	11/19/20 08:25	
Pentachlorophenol	780		780	200	ug/Kg		11/18/20 18:42	11/19/20 08:25	1
Bis(2-chloroethyl)ether	96		96	34			11/18/20 18:42	11/19/20 08:25	1
N-Nitrosodi-n-propylamine	96		96		ug/Kg		11/18/20 18:42		
Hexachloroethane	96		96	33	ug/Kg	~ ☆	11/18/20 18:42	11/19/20 08:25	1
Nitrobenzene	96		96	23	ug/Kg	~ ☆		11/19/20 08:25	1
Isophorone	390		390		ug/Kg		11/18/20 18:42		
(*E%E(!#\$#	F3		960		ug/Kg	☆	11/18/20 18:42		1
4-Chloroaniline	960		960	170	ug/Kg ug/Kg	₩	11/18/20 18:42		1
Hexachlorobutadiene	200		200	21			11/18/20 18:42		
					0 0				•
2-Methylnaphthalene	960		960 960	27 85	ug/Kg	☆	11/18/20 18:42		1
Hexachlorocyclopentadiene	960				ug/Kg	·		11/19/20 08:25	
2-Chloronaphthalene	960		960		ug/Kg		11/18/20 18:42		1
2-Nitroaniline	960		960	36	ug/Kg	‡	11/18/20 18:42		1
Dimethyl phthalate	960		960	220	ug/Kg	<u>.</u> .		11/19/20 08:25	1
Acenaphthylene	960		960		ug/Kg		11/18/20 18:42		1
2,6-Dinitrotoluene	200		200	70	ug/Kg	₩		11/19/20 08:25	1
3-Nitroaniline	960		960	110	ug/Kg	. .	11/18/20 18:42		
Acenaphthene	960		960	28	ug/Kg	☼	11/18/20 18:42		1
Dibenzofuran	960		960	14	ug/Kg	☼		11/19/20 08:25	1
2,4-Dinitrophenol	780	U	780	470	ug/Kg	∴	11/18/20 18:42		1
Diethyl phthalate	960	U	960	14	ug/Kg	₩	11/18/20 18:42	11/19/20 08:25	1
4-Chlorophenyl phenyl ether	960	U	960	34	ug/Kg	₩	11/18/20 18:42	11/19/20 08:25	1
Fluorene	960	U	960	13	ug/Kg	*	11/18/20 18:42	11/19/20 08:25	1
4-Nitroaniline	960	U	960	110	ug/Kg	☼	11/18/20 18:42	11/19/20 08:25	1
N-Nitrosodiphenylamine	960	U	960	79	ug/Kg	₽	11/18/20 18:42	11/19/20 08:25	1
4-Bromophenyl phenyl ether	960	U	960	38	ug/Kg	₩	11/18/20 18:42	11/19/20 08:25	1
Hexachlorobenzene	96	U	96	46	ug/Kg	₩	11/18/20 18:42	11/19/20 08:25	1
Phenanthrene	960	U	960	17	ug/Kg	☼	11/18/20 18:42	11/19/20 08:25	1
Anthracene	960	U	960	29	ug/Kg	₽	11/18/20 18:42	11/19/20 08:25	1
Carbazole	960	U	960	37	ug/Kg	₩	11/18/20 18:42	11/19/20 08:25	1
Di-n-butyl phthalate	960	U	960	36	ug/Kg	₩	11/18/20 18:42	11/19/20 08:25	1
L!-?=(\$%E#\$#	CV	٧١	960	34	ug/Kg	₩	11/18/20 18:42	11/19/20 08:25	1
Pyrene	960	U	960	24	ug/Kg		11/18/20 18:42	11/19/20 08:25	1
Butyl benzyl phthalate	960		960	45	ug/Kg	☼	11/18/20 18:42	11/19/20 08:25	1
V#\$M?`(a(\$%E=(@#\$#	33	\	96	34	ug/Kg	☼	11/18/20 18:42	11/19/20 08:25	1
E=J,#\$#	7F		960		ug/Kg		11/18/20 18:42		1
Bis(2-ethylhexyl) phthalate	960		960	51	ug/Kg	☼			1
Di-n-octyl phthalate	960		960	51	ug/Kg	₩		11/19/20 08:25	1
Benzo[b]fluoranthene	96		96		ug/Kg		11/18/20 18:42		·
Benzo[k]fluoranthene	96		96	19	ug/Kg	☼			1
Benzo[a]pyrene		U *	96	26	ug/Kg	☼		11/19/20 08:25	1
ndeno[1,2,3-cd]pyrene	96		96		ug/Kg	· · · · · · · · · · · · · · · · · · ·	11/18/20 18:42		
Dibenz(a,h)anthracene	96		96		ug/Kg ug/Kg			11/19/20 08:25	1
,	960		960			₩		11/19/20 06.25	1
Benzo[g,h,i]perylene 1,1'-Biphenyl	960		960		ug/Kg ug/Kg		11/18/20 18:42		

Client: New York State D.E.C.

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'63

.(/&'()*!#&012&345677784968

:(%=">2&'?!"A

1(%#& ?!!#@%#**9923**9CB75&9723W 1(%#&+#@#"D#**A92399**4B75&98235

N#=@#\$%&'?!"A,2&C

Job ID: 460-222961-1

<\$(!J%#	?!(%"!#&H=I(\$' +#,-!%	P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
<@#%?*E#\$?\$#	9C5	1	960	47	ug/Kg	<u></u>	11/18/20 18:42	11/19/20 08:25	1
V#\$M(!A#EJA#	TC5	\&b J +	960	160	ug/Kg	₩	11/18/20 18:42	11/19/20 08:25	1
Caprolactam	960	U	960	150	ug/Kg	₽	11/18/20 18:42	11/19/20 08:25	1
Atrazine	390	U *	390	57	ug/Kg	☼	11/18/20 18:42	11/19/20 08:25	1
2,2'-oxybis[1-chloropropane]	960	U	960	17	ug/Kg	☼	11/18/20 18:42	11/19/20 08:25	1
1,2,4,5-Tetrachlorobenzene	960	U	960	30	ug/Kg		11/18/20 18:42	11/19/20 08:25	1
2,3,4,6-Tetrachlorophenol	960	U	960	65	ug/Kg	☼	11/18/20 18:42	11/19/20 08:25	1
3,3'-Dichlorobenzidine	390	U	390	150	ug/Kg	☼	11/18/20 18:42	11/19/20 08:25	1
Bis(2-chloroethoxy)methane	960	U	960	75	ug/Kg		11/18/20 18:42	11/19/20 08:25	1
1,4-Dioxane	290	U	290	84	ug/Kg	₽	11/18/20 18:42	11/19/20 08:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	42		19 - 105				11/18/20 18:42	11/19/20 08:25	1
Phenol-d5 (Surr)	50		26 - 101				11/18/20 18:42	11/19/20 08:25	1
Terphenyl-d14 (Surr)	56		25 - 127				11/18/20 18:42	11/19/20 08:25	1
2,4,6-Tribromophenol (Surr)	51		10 - 123				11/18/20 18:42	11/19/20 08:25	1
2-Fluorophenol (Surr)	55		18 - 106				11/18/20 18:42	11/19/20 08:25	1
2-Fluorobiphenyl	56		25 - 104				11/18/20 18:42	11/19/20 08:25	1
<\$(!J%# 4.4'-DDD	20	P-(!"Q"#= U		: 1. 3.3	O\$"% ug/Kg	<u>1</u>	N=#*(=#A 11/19/20 09:41	<\$(!JM#A 11/20/20 10:35	1"!&L((
4 4'-DDD	20	U	20	3.3	ug/Kg	₽	11/19/20 09:41	11/20/20 10:35	1
•									
4,4'-DDE	20		20		ug/Kg	₩	11/19/20 09:41	11/20/20 10:35	1
4,4'-DDE 4,4'-DDT	20	U	20	3.6	ug/Kg		11/19/20 09:41	11/20/20 10:35	1
4,4'-DDE	20 20	U	20 20	3.6 3.0	ug/Kg ug/Kg		11/19/20 09:41 11/19/20 09:41	11/20/20 10:35 11/20/20 10:35	1 1 1
4,4'-DDE 4,4'-DDT Aldrin alpha-BHC	20 20 5.8	U U U	20 20 5.8	3.6 3.0 2.0	ug/Kg ug/Kg ug/Kg		11/19/20 09:41 11/19/20 09:41 11/19/20 09:41	11/20/20 10:35 11/20/20 10:35 11/20/20 10:35	1 1 1
4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC	20 20 5.8 5.8	U U U U	20 20 5.8 5.8	3.6 3.0 2.0 2.2	ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$	11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41	11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35	1 1 1 1
4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical)	20 20 5.8 5.8 200	U U U U	20 20 5.8 5.8 200	3.6 3.0 2.0 2.2 47	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	ф ф	11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41	11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35	1 1 1 1 1
4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical) delta-BHC	20 20 5.8 5.8 200 5.8	U U U U U	20 20 5.8 5.8 200 5.8	3.6 3.0 2.0 2.2 47 1.2	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	# # #	11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41	11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35	1 1 1 1 1
4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical) delta-BHC Dieldrin	20 20 5.8 5.8 200 5.8 5.8	U U U U U U	20 20 5.8 5.8 200 5.8 5.8	3.6 3.0 2.0 2.2 47 1.2 2.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$	11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41	11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35	1 1 1 1 1 1 1
4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical) delta-BHC Dieldrin Endosulfan I	20 20 5.8 5.8 200 5.8 5.8	U U U U U U	20 20 5.8 5.8 200 5.8 5.8 20	3.6 3.0 2.0 2.2 47 1.2 2.5 3.0	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$ \$	11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41	11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35	1 1 1 1 1 1 1
4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical) delta-BHC Dieldrin Endosulfan I Endosulfan II	20 20 5.8 5.8 200 5.8 5.8 20 20	U U U U U U U U	20 20 5.8 5.8 200 5.8 5.8 20 20	3.6 3.0 2.0 2.2 47 1.2 2.5 3.0 5.0	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$ \$ \$ \$	11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41	11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35	1 1 1 1 1 1 1 1
4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical) delta-BHC Dieldrin Endosulfan I Endosulfan sulfate	20 20 5.8 5.8 200 5.8 5.8 20 20	U U U U U U U U	20 20 5.8 5.8 200 5.8 5.8 20 20	3.6 3.0 2.0 2.2 47 1.2 2.5 3.0 5.0	ug/Kg	***************************************	11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41	11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35	1 1 1 1 1 1 1 1
4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical) delta-BHC Dieldrin Endosulfan I Endosulfan sulfate Endrin	20 20 5.8 5.8 200 5.8 5.8 20 20 20	U U U U U U U U U	20 20 5.8 5.8 200 5.8 5.8 20 20 20	3.6 3.0 2.0 2.2 47 1.2 2.5 3.0 5.0 2.5 2.8	ug/Kg	***************************************	11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41	11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35 11/20/20 10:35	1 1 1 1 1 1 1 1 1
4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical) delta-BHC Dieldrin Endosulfan I Endosulfan sulfate	20 20 5.8 5.8 200 5.8 5.8 20 20 20 20	U U U U U U U U U U	20 20 5.8 5.8 200 5.8 5.8 20 20 20 20 20	3.6 3.0 2.0 2.2 47 1.2 2.5 3.0 5.0 2.5 2.8 4.6	ug/Kg		11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41	11/20/20 10:35 11/20/20 10:35	1 1 1 1 1 1 1 1 1
4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical) delta-BHC Dieldrin Endosulfan I Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone	20 20 5.8 5.8 200 5.8 5.8 20 20 20 20 20 20	U U U U U U U U U U U	20 20 5.8 5.8 200 5.8 5.8 20 20 20 20 20 20 20	3.6 3.0 2.0 2.2 47 1.2 2.5 3.0 5.0 2.5 2.8 4.6 3.8	ug/Kg		11/19/20 09:41 11/19/20 09:41	11/20/20 10:35 11/20/20 10:35	1 1 1 1 1 1 1 1 1 1
4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical) delta-BHC Dieldrin Endosulfan I Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane)	20 20 5.8 5.8 200 5.8 5.8 20 20 20 20	U U U U U U U U U U U	20 20 5.8 5.8 200 5.8 5.8 20 20 20 20 20	3.6 3.0 2.0 2.2 47 1.2 2.5 3.0 5.0 2.5 2.8 4.6 3.8	ug/Kg		11/19/20 09:41 11/19/20 09:41	11/20/20 10:35 11/20/20 10:35	1 1 1 1 1 1 1 1 1 1 1
4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical) delta-BHC Dieldrin Endosulfan I Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane)	20 20 5.8 5.8 200 5.8 5.8 20 20 20 20 20 20		20 20 5.8 5.8 200 5.8 5.8 20 20 20 20 20 20	3.6 3.0 2.0 2.2 47 1.2 2.5 3.0 5.0 2.5 2.8 4.6 3.8 1.8 2.3	ug/Kg		11/19/20 09:41 11/19/20 09:41	11/20/20 10:35 11/20/20 10:35	1 1 1 1 1 1 1 1 1 1 1
4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical) delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) Heptachlor	20 20 5.8 5.8 200 5.8 5.8 20 20 20 20 20 20 20 20 20 20		20 20 5.8 5.8 200 5.8 5.8 20 20 20 20 20 20 20 20 20 20	3.6 3.0 2.0 2.2 47 1.2 2.5 3.0 5.0 2.5 2.8 4.6 3.8 1.8 2.3 2.9	ug/Kg		11/19/20 09:41 11/19/20 09:41	11/20/20 10:35 11/20/20 10:35	1 1 1 1 1 1 1 1 1 1 1 1
4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical) delta-BHC Dieldrin Endosulfan I Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor	20 20 5.8 5.8 200 5.8 5.8 20 20 20 20 20 20 20 20 20 20 20 20		20 20 5.8 5.8 200 5.8 5.8 20 20 20 20 20 20 20 20 20 20	3.6 3.0 2.0 2.2 47 1.2 2.5 3.0 5.0 2.5 2.8 4.6 3.8 1.8 2.3 2.9	ug/Kg		11/19/20 09:41 11/19/20 09:41	11/20/20 10:35 11/20/20 10:35	1 1 1 1 1 1 1 1 1 1 1 1 1
4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical) delta-BHC Dieldrin Endosulfan I Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) Heptachlor epoxide Methoxychlor	20 20 5.8 5.8 200 5.8 5.8 20 20 20 20 20 20 20 20 20 20		20 20 5.8 5.8 200 5.8 5.8 20 20 20 20 20 20 20 20 20 20	3.6 3.0 2.0 2.2 47 1.2 2.5 3.0 5.0 2.5 2.8 4.6 3.8 1.8 2.3 2.9	ug/Kg		11/19/20 09:41 11/19/20 09:41	11/20/20 10:35 11/20/20 10:35	1 1 1 1 1 1 1 1 1 1 1 1 1
4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical) delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin aldehyde Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor Heptachlor Toxaphene Surrogate	20 20 5.8 5.8 200 5.8 5.8 20 20 20 20 20 20 20 20 20 20		20 20 5.8 5.8 200 5.8 5.8 20 20 20 20 20 20 20 20 20 20	3.6 3.0 2.0 2.2 47 1.2 2.5 3.0 5.0 2.5 2.8 4.6 3.8 1.8 2.3 2.9	ug/Kg		11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41	11/20/20 10:35 11/20/20 10:35	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical) delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Toxaphene Surrogate DCB Decachlorobiphenyl	20 20 5.8 5.8 200 5.8 5.8 20 20 20 20 20 20 20 20 20 20 20 20 5.8		20 20 5.8 5.8 200 5.8 5.8 20 20 20 20 20 20 20 20 20 20	3.6 3.0 2.0 2.2 47 1.2 2.5 3.0 5.0 2.5 2.8 4.6 3.8 1.8 2.3 2.9	ug/Kg		11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41 11/19/20 09:41	11/20/20 10:35 11/20/20 10:35	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4,4'-DDE 4,4'-DDT Aldrin alpha-BHC beta-BHC Chlordane (technical) delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin aldehyde Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor Heptachlor Toxaphene Surrogate	20 20 5.8 5.8 200 5.8 5.8 20 20 20 20 20 20 20 20 20 20		20 20 5.8 5.8 200 5.8 5.8 20 20 20 20 20 20 20 20 20 20	3.6 3.0 2.0 2.2 47 1.2 2.5 3.0 5.0 2.5 2.8 4.6 3.8 1.8 2.3 2.9	ug/Kg		11/19/20 09:41 11/19/20 09:41	11/20/20 10:35 11/20/20 10:35	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'63

cetic acid (NMeFOSAA)

.(/&'()*!#&012&345677784968

1(%#& ?!!#@%#**9923**9CB75&9723W 1(%#&+#@#"D#**A9239**4B75&98235 :(%=">2&'?!"A N#=@#\$%&'?!"A,2&C

:#%E?A2&F5F786&N?!J@E!?="\$(%#A&V"*E#\$J!,&RN V,S&/J&K(,& E=?)(%?I=(*EJ O\$"% <\$(!J%# +#,-!% P-(!"Q"#= +. :1. 1 N=#*(=#A <\$(!JM#A 1"!&L(@ Ū 200 Aroclor 1016 200 26 ug/Kg 11/19/20 09:39 11/20/20 12:02 200 Aroclor 1221 200 U ug/Kg 11/19/20 09:39 11/20/20 12:02 1 Aroclor 1232 200 U 200 11/19/20 09:39 11/20/20 12:02 ug/Kg 1 Aroclor 1242 200 U 200 ug/Kg 11/19/20 09:39 11/20/20 12:02 1 Aroclor 1248 200 U 200 ug/Kg 11/19/20 09:39 11/20/20 12:02 1 Aroclor 1254 U 200 11/19/20 09:39 11/20/20 12:02 200 ug/Kg 1 U 200 27 11/20/20 12:02 Aroclor 1260 200 ug/Kg 11/19/20 09:39 11/20/20 12:02 Aroclor-1262 200 U 200 27 ug/Kg 11/19/20 09:39 1 200 11/20/20 12:02 Aroclor 1268 200 U ug/Kg 11/19/20 09:39 1 11/19/20 09:39 11/20/20 12:02 Polychlorinated biphenyls, Total 200 U 200 ug/Kg 1 %Recovery Surrogate Qualifier I imits Prepared Analyzed Dil Fac DCB Decachlorobiphenyl 88 10 - 15011/19/20 09:39 11/20/20 12:02 DCB Decachlorobiphenyl 94 10 - 150 11/19/20 09:39 11/20/20 12:02 1 Tetrachloro-m-xylene 92 58 - 145 11/19/20 09:39 11/20/20 12:02 1 98 58 - 145 11/19/20 09:39 11/20/20 12:02 Tetrachloro-m-xylene 1 :#%E?A2&F9W&6&X#=/"@"A#,&RK S +#,-!% P-(!"Q"#= O\$"% N=#*(=#A <\$(!JM#A <\$(!J%# 1"!&L(@ 2.4-D 97 Ū 97 11/17/20 21:06 11/18/20 12:49 35 ug/Kg 1 Silvex (2,4,5-TP) 97 U 97 ug/Kg 11/17/20 21:06 11/18/20 12:49 1 2,4,5-T 97 U 97 ug/Kg 11/17/20 21:06 11/18/20 12:49 1 Surrogate %Recovery Qualifier I imits Prepared Analyzed Dil Fac 2,4-Dichlorophenylacetic acid 30 - 150 11/17/20 21:06 11/18/20 12:49 78 2,4-Dichlorophenylacetic acid 85 30 - 150 11/17/20 21:06 11/18/20 12:49 1 :#%E?A2&WCT&R)?A"Q"#AS&6&L!-?+Y\$(%##&&(\$@#, <\$(!J%# +#,-!% P-(!"Q"#= + :1. O\$"% N=#*(=#A <\$(!JM#A 1"!&L(@ 0.55 U N#=Q!-?=?/-%(\$?"@&(@"A&RNLV<S 0.55 0.077 ug/Kg 11/24/20 14:27 11/28/20 00:02 11/24/20 14:27 0.55 0.21 ug/Kg 11/28/20 00:02 1 N#=Q!-?=?*#\$%(\$?"@&(@"A&RNLN#<S 5[73 \ 0.12 0.55 11/24/20 14:27 11/28/20 00:02 N#=Q!-?=?E#>(\$?"@&(@"A&RNLX><S 5[77 ug/Kg 1 N#=Q!-?=?E#*%(\$?"@&(@"A&RNLX*<S 5[73 0.55 0.080 ug/Kg 11/24/20 14:27 11/28/20 00:02 1 11/28/20 00:02 N#=Q!-?=??@%(\$?"@&(@"A&RNLH<S 7[8 0.55 0.24 ug/Kg 11/24/20 14:27 1 5[7F \ 0.55 0.099 ug/Kg 11/24/20 14:27 11/28/20 00:02 1 N#=Q!-?=?\$?\$(\$?"@&(@"A&RNL]<S 0.55 0.061 ug/Kg 11/24/20 14:27 11/28/20 00:02 1 N#=Q!-?=?A#@(\$?"@&(@"A&RNL1<S 519T \&0 11/24/20 14:27 11/28/20 00:02 N#=Q!-?=?-\$A#@(\$?"@&(@"A& 0.55 0.099 ug/Kg 1 5[74 \ RNIO\$<S Perfluorododecanoic acid (PFDoA) 0.55 U 0.55 0.18 ug/Kg 11/24/20 14:27 11/28/20 00:02 1 5[75 \ 0.55 0.14 ug/Kg 11/24/20 14:27 11/28/20 00:02 Perfluorotetradecanoic acid (PFTeA) 0.55 U 0.15 0.55 ug/Kg 11/24/20 14:27 11/28/20 00:02 1 Perfluorobutanesulfonic acid (PFBS) 0.55 U 0.55 0.069 ug/Kg 11/24/20 14:27 11/28/20 00:02 1 N#=Q!-?=?E#>(\$#,-!Q?\$"@&(@"A& 5[C4 \ 0.55 0.085 ug/Kg 11/24/20 14:27 11/28/20 00:02 1 RNIX>'S Perfluoroheptanesulfonic Acid 0.55 U 0.55 0.096 ug/Kg 11/24/20 14:27 11/28/20 00:02 (PFHpS) N#=Q!-?=??@%(\$#,-!Q?\$"@&(@"A& 7[7 V&bR 1.4 0.55 ug/Kg 11/24/20 14:27 11/28/20 00:02 1 RNLH'S Perfluorodecanesulfonic acid (PFDS) 0.55 U 0.55 0.11 ug/Kg 11/24/20 14:27 11/28/20 00:02 Perfluorooctanesulfonamide (FOSA) 0.55 U 0.55 0.23 ug/Kg 11/24/20 14:27 11/28/20 00:02 1 N-methylperfluorooctanesulfonamidoa 5.5 U 5.5 ug/Kg 11/24/20 14:27 11/28/20 00:02 1

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'63

.(/&'()*!#&012&345677784968

1(%#& ?!!#@%#**A9389**CB75&9723W

:(%=">2&'?!"A

1(%#&+#@#"D#**A92E99**4B75&98235

N#=@#\$%&'?!"A,2&C

<\$(!J%#		P-(!"Q"#=	@#,&R ?\$%"\$ +	- 77 A3	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L((
N-ethylperfluorooctanesulfonamidoac		U * UJ	5.5		ug/Kg		11/24/20 14:27	11/28/20 00:02	1 .0.2(
etic acid (NEtFOSAA)	0.0		0.0		~g/. \g	-1-	,_ ,,_0	,_0,_0	
6:2 FTS	5.5	U	5.5	0.41	ug/Kg	₩	11/24/20 14:27	11/28/20 00:02	1
8:2 FTS	5.5	U	5.5	0.69	ug/Kg	☼	11/24/20 14:27	11/28/20 00:02	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	61		25 - 150				11/24/20 14:27	11/28/20 00:02	1
13C5 PFPeA	49		25 - 150				11/24/20 14:27	11/28/20 00:02	1
13C2 PFHxA	82		25 - 150				11/24/20 14:27	11/28/20 00:02	1
13C4 PFHpA	84		25 - 150				11/24/20 14:27	11/28/20 00:02	
13C4 PFOA	87		25 - 150				11/24/20 14:27	11/28/20 00:02	1
13C5 PFNA	89		25 - 150				11/24/20 14:27	11/28/20 00:02	1
13C2 PFDA	85		25 - 150				11/24/20 14:27	11/28/20 00:02	1
13C2 PFUnA	88		25 - 150				11/24/20 14:27	11/28/20 00:02	1
13C2 PFDoA	70		25 - 150				11/24/20 14:27	11/28/20 00:02	1
13C2 PFTeDA	62		25 - 150				11/24/20 14:27	11/28/20 00:02	
13C3 PFBS	81		25 - 150				11/24/20 14:27	11/28/20 00:02	1
1802 PFHxS	91		25 - 150				11/24/20 14:27	11/28/20 00:02	1
13C4 PFOS	96		25 - 150				11/24/20 14:27	11/28/20 00:02	
13C8 FOSA	65		25 - 150				11/24/20 14:27	11/28/20 00:02	1
d3-NMeFOSAA	79		25 - 150				11/24/20 14:27	11/28/20 00:02	1
d5-NEtFOSAA	108		25 - 150				11/24/20 14:27	11/28/20 00:02	1
M2-6:2 FTS	282	*5	25 - 150				11/24/20 14:27	11/28/20 00:02	
M2-8:2 FTS	267	*5	25 - 150				11/24/20 14:27	11/28/20 00:02	
A / 10 / 11	" 101		Ɗ#,&6&+U						
`		P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	
N#=Q!-?=??@%(\$#,-!Q?\$"@&(@"A RNLH'S	& 7[9	ΧJ	1.4	0.58	ug/Kg	*	11/30/20 04:07	12/01/20 20:26	,
N#=Q!-?=??@%(\$#,-!Q?\$"@&(@"AdRNLH'S N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	& 7[9 5.8	N H M	1.4 5.8	0.58	ug/Kg	— -	11/30/20 04:07 11/30/20 04:07	12/01/20 20:26 12/01/20 20:26	
<\$(!J%# N#=Q!-?=??@%(\$#,-!Q?\$"@&(@"AdRNLH'S N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac	& 7[9 5.8	ΧJ	1.4	0.58	ug/Kg	— -	11/30/20 04:07	12/01/20 20:26 12/01/20 20:26	
N#=Q!-?=??@%(\$#,-!Q?\$"@&(@"AdRNLH'S N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	\$ 7[9 5.8 5.8	N H M	+. 1.4 5.8 5.8	0.58 1.1 1.1	ug/Kg ug/Kg ug/Kg	# # #	11/30/20 04:07 11/30/20 04:07 11/30/20 04:07	12/01/20 20:26 12/01/20 20:26 12/01/20 20:26	
N#=Q!-?=??@%(\$#,-!Q?\$"@&(@"Ad RNLH'S N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) 6:2 FTS	\$ 7[9 5.8 5.8 5.8	OH M OH M NH M	+. 1.4 5.8 5.8	0.58 1.1 1.1 0.43	ug/Kg ug/Kg ug/Kg	*	11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07	12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26	
N#=Q!-?=??@%(\$#,-!Q?\$"@&(@"AGRNLH'S N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) 6:2 FTS 8:2 FTS	5.8 5.8 5.8 5.8 5.8	0 H M OH	+. 1.4 5.8 5.8 5.8 5.8	0.58 1.1 1.1 0.43	ug/Kg ug/Kg ug/Kg	*	11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07	12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26	1
N#=Q!-?=??@%(\$#,-!Q?\$"@&(@"A@RNLH'S N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA) 6:2 FTS 8:2 FTS Isotope Dilution	\$. 7[9 5.8 5.8 5.8 5.8 5.8 %Recovery	0 H M OH	+. 1.4 5.8 5.8 5.8 5.8 Limits	0.58 1.1 1.1 0.43	ug/Kg ug/Kg ug/Kg	*	11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 <i>Prepared</i>	12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 Analyzed	Dil Fac
N#=Q!-?=??@%(\$#,-!Q?\$"@&(@"AdRNLH'S N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) 6:2 FTS 8:2 FTS Isotope Dilution	\$ 7[9 5.8 5.8 5.8 5.8 5.8 5.8 9%Recovery 95	0 H M OH	+. 1.4 5.8 5.8 5.8 5.8 Limits 25 - 150	0.58 1.1 1.1 0.43	ug/Kg ug/Kg ug/Kg	*	11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 Prepared 11/30/20 04:07	12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 Analyzed 12/01/20 20:26	Dil Fac
N#=Q!-?=??@%(\$#,-!Q?\$"@&(@"AdRNLH'S N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) 6:2 FTS 8:2 FTS Isotope Dilution 13C4 PFOS d3-NMeFOSAA	5.8 5.8 5.8 5.8 5.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	0 H M OH	+. 1.4 5.8 5.8 5.8 5.8 5.8 Limits 25 - 150 25 - 150	0.58 1.1 1.1 0.43	ug/Kg ug/Kg ug/Kg	*	11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 Prepared 11/30/20 04:07 11/30/20 04:07	12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 Analyzed 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26	Dil Fa
N#=Q!-?=??@%(\$#,-!Q?\$"@&(@"AdRNLH'S N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) 6:2 FTS 8:2 FTS Isotope Dilution 13C4 PFOS d3-NMeFOSAA	\$ 7[9 5.8 5.8 5.8 5.8 %Recovery 95 94 104	UHUJUHUJ UHUJ UHUJ Qualifier	+. 1.4 5.8 5.8 5.8 5.8 5.8 Limits 25 - 150 25 - 150	0.58 1.1 1.1 0.43	ug/Kg ug/Kg ug/Kg	*	11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 Prepared 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07	12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 Analyzed 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26	Dil Fa
N#=Q!-?=??@%(\$#,-!Q?\$"@&(@"AdRNLH'S N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA) 6:2 FTS 8:2 FTS 8:2 FTS 8sotope Dilution 13C4 PFOS d3-NMeFOSAA d5-NEtFOSAA M2-6:2 FTS	5.8 5.8 5.8 5.8 %Recovery 95 94 104 270	V J UH UJ UH UJ UH UJ UH UJ Qualifier	+. 1.4 5.8 5.8 5.8 5.8 4.imits 25 - 150 25 - 150 25 - 150 25 - 150	0.58 1.1 1.1 0.43	ug/Kg ug/Kg ug/Kg	*	11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 Prepared 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07	12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 Analyzed 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26	Dil Fa
N#=Q!-?=??@%(\$#,-!Q?\$"@&(@"AdRNLH'S N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA) 6:2 FTS 8:2 FTS 8:2 FTS 8sotope Dilution 13C4 PFOS d3-NMeFOSAA d5-NEtFOSAA M2-6:2 FTS	\$ 7[9 5.8 5.8 5.8 5.8 %Recovery 95 94 104	V J UH UJ UH UJ UH UJ UH UJ Qualifier	+. 1.4 5.8 5.8 5.8 5.8 5.8 Limits 25 - 150 25 - 150	0.58 1.1 1.1 0.43	ug/Kg ug/Kg ug/Kg	*	11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 Prepared 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07	12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 Analyzed 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26	Dil Fa
N#=Q!-?=??@%(\$#,-!Q?\$"@&(@"AdRNLH'S N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) 6:2 FTS 8:2 FTS Isotope Dilution 13C4 PFOS d3-NMeFOSAA	5.8 5.8 5.8 5.8 %Recovery 95 94 104 270 264	V J UH UJ UH UJ UH UJ UH UJ Qualifier	+. 1.4 5.8 5.8 5.8 5.8 4.imits 25 - 150 25 - 150 25 - 150 25 - 150	0.58 1.1 1.1 0.43	ug/Kg ug/Kg ug/Kg	*	11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 Prepared 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07	12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 Analyzed 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26	Dil Fa
N#=Q!-?=??@%(\$#,-!Q?\$"@&(@"AdRNLH'S N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) 6:2 FTS 8:2 FTS Isotope Dilution 13C4 PFOS d3-NMeFOSAA d5-NEtFOSAA M2-6:2 FTS M2-8:2 FTS	5.8 5.8 5.8 5.8 %Recovery 95 94 104 270 264 D NS +#,-!%	X J UH UJ UH UJ UH UJ Qualifier *5 *5 *5	+. 1.4 5.8 5.8 5.8 5.8 Limits 25 - 150 25 - 150 25 - 150 25 - 150 4.	0.58 1.1 1.1 0.43 0.72	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	*	11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 Prepared 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07	12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 Analyzed 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26	Dil Fa
N#=Q!-?=??@%(\$#,-!Q?\$"@&(@"AcRNLH'S N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) 6:2 FTS 8:2 FTS Isotope Dilution 13C4 PFOS d3-NMeFOSAA d5-NEtFOSAA M2-6:2 FTS M2-8:2 FTS ::#%E?A2&45951&6&:#%(!,&R(5.8 5.8 5.8 5.8 %Recovery 95 94 104 270 264	X J UH UJ UH UJ UH UJ Qualifier *5 *5 *5	+. 1.4 5.8 5.8 5.8 5.8 5.8 Limits 25 - 150 25 - 150 25 - 150 25 - 150 25 - 150	0.58 1.1 1.1 0.43 0.72 :1. 3.3	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	* * * * * * * * * * * * * * * * * * *	11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 Prepared 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07	12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 Analyzed 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26	Dil Fac
N#=Q!-?=??@%(\$#,-!Q?\$"@&(@"AcRNLH'S N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) 6:2 FTS 8:2 FTS Isotope Dilution 13C4 PFOS d3-NMeFOSAA d5-NEtFOSAA M2-6:2 FTS M2-8:2 FTS :#%E?A2&45951&6&:#%(!,&R(<<\$(!J%#	5.8 5.8 5.8 5.8 %Recovery 95 94 104 270 264 D NS +#,-!%	X J U H UJ U H UJ U H UJ Qualifier *5 *5 *5	+. 1.4 5.8 5.8 5.8 5.8 Limits 25 - 150 25 - 150 25 - 150 25 - 150 4.	0.58 1.1 1.1 0.43 0.72 :1. 3.3 16.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg mg/Kg	* * * * * * * * * * * * * * * * * * *	11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 Prepared 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07	12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26	Dil Fa
N#=Q!-?=??@%(\$#,-!Q?\$"@&(@"AdRNLH'S N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) 6:2 FTS 8:2 FTS Isotope Dilution 13C4 PFOS d3-NMeFOSAA d5-NEtFOSAA M2-6:2 FTS M2-8:2 FTS ##%E?A2&45951&6&:#%(!,&R(4))	\$ 7[9 5.8 5.8 5.8 \$ 8 **Recovery 95 94 104 270 264 D NS +#,-!% 5.8 4445	X J U H UJ U H UJ U H UJ Qualifier *5 *5 *5	+. 1.4 5.8 5.8 5.8 5.8 25 - 150 25 - 150 25 - 150 25 - 150 25 - 150 4. 5.8	0.58 1.1 1.1 0.43 0.72 :1. 3.3 16.5	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	* * * * * * * * * * * * * * * * * * *	11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 Prepared 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07	12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26	<i>Dil Fa</i>
N#=Q!-?=??@%(\$#,-!Q?\$"@&(@"AdRNLH'S N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) 6:2 FTS 8:2 FTS 8:2 FTS 8sotope Dilution 13C4 PFOS d3-NMeFOSAA d5-NEtFOSAA M2-6:2 FTS M2-8:2 FTS ##%E?A2&45951&6&:#%(!,&R(**),** Silver -)"\$-)</td <td>\$ 7[9 5.8 5.8 5.8 \$ 8 **Recovery 95 94 104 270 264 D NS +#,-!% 5.8 4445</td> <td>X J U H UJ U H UJ U H UJ Qualifier *5 *5 *5 P-(!"Q"#= U J</td> <td>+. 1.4 5.8 5.8 5.8 5.8 Limits 25 - 150 25 - 150 25 - 150 25 - 150 25 - 150 5.8 117</td> <td>0.58 1.1 1.1 0.43 0.72 :1. 3.3 16.5 1.8</td> <td>ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg mg/Kg</td> <td>* * * * * * * * * * * * * * * * * * *</td> <td>11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 Prepared 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 10:12 11/18/20 10:12</td> <td>12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 11/01/20 20:26 11/01/20 20:26 11/01/20 20:26 11/01/20 20:26 11/01/20 20:26</td> <td>Dil Fa</td>	\$ 7[9 5.8 5.8 5.8 \$ 8 **Recovery 95 94 104 270 264 D NS +#,-!% 5.8 4445	X J U H UJ U H UJ U H UJ Qualifier *5 *5 *5 P-(!"Q"#= U J	+. 1.4 5.8 5.8 5.8 5.8 Limits 25 - 150 25 - 150 25 - 150 25 - 150 25 - 150 5.8 117	0.58 1.1 1.1 0.43 0.72 :1. 3.3 16.5 1.8	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg mg/Kg	* * * * * * * * * * * * * * * * * * *	11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 Prepared 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 10:12 11/18/20 10:12	12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 11/01/20 20:26 11/01/20 20:26 11/01/20 20:26 11/01/20 20:26 11/01/20 20:26	Dil Fa
N#=Q!-?=??@%(\$#,-!Q?\$"@&(@"AdRNLH'S N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) 6:2 FTS 8:2 FTS 8:2 FTS 8:6tope Dilution 13C4 PFOS d3-NMeFOSAA d5-NEtFOSAA M2-6:2 FTS M2-8:2 FTS 2:#%E?A2&45951&6&:#%(!,&R(<),% \$(!J%# Silver -)"\$-) <=,#\$"@</td <td>\$. 7[9 5.8 5.8 5.8 5.8 %Recovery 95 94 104 270 264 0 NS +#,-!% 5.8 4445 7[F</td> <td>X J U H UJ U H UJ U H UJ Qualifier *5 *5 *5 1 V H UJ Qualifier</td> <td>+. 1.4 5.8 5.8 5.8 5.8 Limits 25 - 150 25 - 150 25 - 150 25 - 150 25 - 150 25 - 150 25 - 150 28 - 150</td> <td>0.58 1.1 1.1 0.43 0.72 :1. 3.3 16.5 1.8 11.3</td> <td>ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg mg/Kg mg/Kg mg/Kg</td> <td>* * * * * * * * * * * * * * * * * * *</td> <td>11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 Prepared 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 10:12 11/18/20 10:12 11/18/20 10:12</td> <td>12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 11/01/20 20:26 11/01/20 20:26 11/01/20 20:26 11/01/20 20:26 11/01/20 20:26 11/01/20 20:26 11/01/20 20:26</td> <td>1"!&L(</td>	\$. 7[9 5.8 5.8 5.8 5.8 %Recovery 95 94 104 270 264 0 NS +#,-!% 5.8 4445 7[F	X J U H UJ U H UJ U H UJ Qualifier *5 *5 *5 1 V H UJ Qualifier	+. 1.4 5.8 5.8 5.8 5.8 Limits 25 - 150 25 - 150 25 - 150 25 - 150 25 - 150 25 - 150 25 - 150 28 - 150	0.58 1.1 1.1 0.43 0.72 :1. 3.3 16.5 1.8 11.3	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg mg/Kg mg/Kg mg/Kg	* * * * * * * * * * * * * * * * * * *	11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 Prepared 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 10:12 11/18/20 10:12 11/18/20 10:12	12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 11/01/20 20:26 11/01/20 20:26 11/01/20 20:26 11/01/20 20:26 11/01/20 20:26 11/01/20 20:26 11/01/20 20:26	1"!&L(
N#=Q!-?=??@%(\$#,-!Q?\$"@&(@"AdRNLH'S N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) 6:2 FTS 8:2 FTS 8:2 FTS 8sotope Dilution 13C4 PFOS d3-NMeFOSAA d5-NEtFOSAA M2-6:2 FTS M2-8:2 FTS 2:#%E?A2&45951&6&:#%(!,&R(<)!,%# Silver -)"\$-) <=,#\$"@ V(="-)</td <td>\$ 7[9 5.8 5.8 5.8 \$ 8</td> <td>X J U H UJ U H UJ U H UJ Qualifier *5 *5 *5 P-(!"Q"#= U J \ J U</td> <td>+. 1.4 5.8 5.8 5.8 5.8 Limits 25 - 150 25 - 150 25 - 150 25 - 150 25 - 150 25 - 150 25 - 150 25 - 170 25 - 170 25 - 170 25 - 170 25 - 170 25 - 170</td> <td>0.58 1.1 1.1 0.43 0.72 :1. 3.3 16.5 1.8 11.3 0.19</td> <td>ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg</td> <td></td> <td>11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 Prepared 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 10:12 11/18/20 10:12 11/18/20 10:12 11/18/20 10:12</td> <td>12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 11/18/20 21:08 11/18/20 21:08 11/18/20 21:08 11/18/20 21:08 11/18/20 21:08</td> <td>Dil Fa</td>	\$ 7[9 5.8 5.8 5.8 \$ 8	X J U H UJ U H UJ U H UJ Qualifier *5 *5 *5 P-(!"Q"#= U J \ J U	+. 1.4 5.8 5.8 5.8 5.8 Limits 25 - 150 25 - 150 25 - 150 25 - 150 25 - 150 25 - 150 25 - 150 25 - 170 25 - 170 25 - 170 25 - 170 25 - 170 25 - 170	0.58 1.1 1.1 0.43 0.72 :1. 3.3 16.5 1.8 11.3 0.19	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 Prepared 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 04:07 11/30/20 10:12 11/18/20 10:12 11/18/20 10:12 11/18/20 10:12	12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 12/01/20 20:26 11/18/20 21:08 11/18/20 21:08 11/18/20 21:08 11/18/20 21:08 11/18/20 21:08	Dil Fa

Client: New York State D.E.C. Job ID: 460-222961-1

Project/Site: DEC - FAIR STREET LANDFILL SITE: 340021

!"#\$%&'()*!#&012&'63

.(/&'()*!#&012&345677784968

1(%#& ?!!#@%#**9935**9CB75&9723W

1(%#&+#@#"D#**A92399**4B75&98235

:(%=">2&'?!"A N#=@#\$%&'?!"A,2&C

<\$(!J%#	+#,-!% P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
?/(!%	W[F\ J	29.2	1.6	mg/Kg	<u></u>	11/18/20 10:12	11/18/20 21:08	2
E=?)"-)	99[WJ	5.8	4.1	mg/Kg	₩	11/18/20 10:12	11/18/20 21:08	2
?**#=	94[8 J	14.6	3.7	mg/Kg	₩	11/18/20 10:12	11/18/20 21:08	2
0=?\$	9WF55J	87.7	60.2	mg/Kg	₩	11/18/20 10:12	11/18/20 21:08	2
N?%(,,"-)	93T5 \ J	2920	179	mg/Kg	₩	11/18/20 10:12	11/19/20 12:41	2
:(1\$#,"-)	W555 J	2920	198	mg/Kg	₩	11/18/20 10:12	11/18/20 21:08	2
:(\$1(\$#,#	CF5 J	8.8	0.66	mg/Kg	₩	11/18/20 10:12	11/18/20 21:08	2
Sodium	2920 U	2920	254	mg/Kg	₩	11/18/20 10:12	11/19/20 12:41	2
]"@Y#!	97[7 \ J	23.4	1.5	mg/Kg	₽	11/18/20 10:12	11/18/20 21:08	2
.#(A	93[T J	5.8	0.95	mg/Kg	₽	11/18/20 10:12	11/18/20 21:08	2
Antimony	11.7 U	11.7	3.4	mg/Kg	₽	11/18/20 10:12	11/18/20 21:08	2
Selenium	11.7 U	11.7	2.0	mg/Kg	₽	11/18/20 10:12	11/18/20 21:08	2
Thallium	11.7 U	11.7	1.8	mg/Kg	☼	11/18/20 10:12	11/18/20 21:08	2
G(\$(A"-)	93[7 \ J	29.2	2.7	mg/Kg	☼	11/18/20 10:12	11/18/20 21:08	2
^"\$@	975 J	17.5	3.2	mg/Kg	₽	11/18/20 10:12	11/18/20 21:08	2
:#%E?A2&T3T9V&6&:#=@	-=JG							
<\$(!J%#	+#,-!% P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
:#=@-=J	5[535 \ J	0.044	0.010	mg/Kg	-	11/24/20 03:09	11/24/20 07:18	1
K#\$#=(!& E#)",%=J								
<\$(!J%#	+#,-!% P-(!"Q"#=	+.	:1.	O\$"%	1	N=#*(=#A	<\$(!JM#A	1"!&L(@
J(\$"A#Z&_?%(!	9[W	0.70	0.36	mg/Kg		11/27/20 08:25	11/27/20 14:49	1

VOC Data Section

Geology

Hydrology

Remediation

Water Supply

QA/QC Review of Method 8260D Volatiles Data for Eurofins TestAmerica Edison, Job No. 460-222961-1

1 Soil Sample, 1 Surface Water Sample, 4 Ground Water Samples, and 1 Field Duplicate Collected November 13, 2020

Prepared by: Donald Anné February 8, 2021

<u>Holding Times</u>: Sample S-4 was analyzed beyond USEPA SW-846 holding times. Positive and "not detected results for sample S-4 should be considered estimated (J or UJ respectively).

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

<u>Initial Calibration</u>: The average RRFs for applicable compounds were above the method minimums and the %RSDs were below the method maximum, as required.

The average RRFs for target compounds were above the allowable minimum (0.050) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The RRFs for applicable compounds were above the method minimums, as required. The %D for 1,2-dichloroethane was above the method maximum on 11-27-20 (J09498.D). No action is taken on fewer than 20% of the compounds with method criteria outside control limits per calibration.

The associated RRFs for target compounds were above the allowable minimum (0.050), as required.

The %D for 1,2-dichloroethane was above the allowable maximum (20%) on 11-27-20 (J09498.D). Positive results for 1,2-dichloroethane should be considered estimated (J) in associated samples.

Blanks: The analyses of the method blanks reported target compounds as not detected.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

<u>Surrogate Recovery</u>: The surrogate recoveries were within control limits for the soil sample, surface water sample, and ground water samples.

- Matrix Spike/Matrix Spike Duplicate: The relative percent differences for target compounds were below the allowable maximum, but 1 of 2 percent recoveries for 4-methyl-2-pentanone was above QC limits for aqueous MS/MSD sample MW-5. Sample MW-5 reported 4-methyl-2-pentanone as "not detected"; therefore, no action is taken.
- <u>Laboratory Control Sample</u>: The relative percent differences (RPDs) for target compounds were below the allowable maximum, but 2 of 2 percent recoveries (%Rs) for 4-methyl-2-pentanone and 1 of 2 %Rs for 2-hexanone were above QC limits for aqueous samples LCS 460-741805/3 and LCSD 460-741805/4. Positive results for these compounds should be considered estimated, biased high (J+) in associated aqueous samples.

The RPDs for target compounds were below the allowable maximum, but 1 of 2 %Rs for 1,2-dichloroethane was above QC limits for soil samples LCS 460-742890/4 and LCSD 460-742890/5. Positive results for 1,2-dichloroethane should be considered estimated, biased high (J+) in associated soil samples.

- <u>Field Duplicates</u>: The analyses of aqueous field duplicate pair MW-1A/DUP reported target compounds as not detected; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pair were acceptable.
- <u>Compound ID</u>: Checked surrogates were within quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

Lab Name	e: Eurofins TestAme	rica, Edison	Job No.: 460	-222961-1
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID:	066158.D
Lab ID:	LCS 460-741805/3		Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	%	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
Chloromethane	20.0	20.6	103	38-150	
Bromomethane	20.0	17.4	87	10-150	
Vinyl chloride	20.0	20.4	102	61-144	
Chloroethane	20.0	20.8	104	29-150	
Methylene Chloride	20.0	21.1	105	74-127	
Acetone	100	80.7	81	61-134	
Carbon disulfide	20.0	21.0	105	64-138	
Trichlorofluoromethane	20.0	16.6	83	61-140	
1,1-Dichloroethene	20.0	15.7	79	68-133	
1,1-Dichloroethane	20.0	16.8	84	73-130	
trans-1,2-Dichloroethene	20.0	16.2	81	74-126	
cis-1,2-Dichloroethene	20.0	15.7	79	78-121	
Chloroform	20.0	17.3	86	78-125	
1,2-Dichloroethane	20.0	17.1	85	75-121	
2-Butanone (MEK)	100	98.1	98	69-128	
1,1,1-Trichloroethane	20.0	19.5	98	68-128	
Carbon tetrachloride	20.0	20.0	100	56-131	
Dichlorobromomethane	20.0	19.5	97	72-121	
1,2-Dichloropropane	20.0	21.5	107	76-126	
cis-1,3-Dichloropropene	20.0	21.0	105	74-125	
Trichloroethene	20.0	20.6	103	71-121	
Chlorodibromomethane	20.0	20.9	104	58-130	
1,1,2-Trichloroethane	20.0	21.5	107	74-125	
Benzene	20.0	20.0	100	78-126	
trans-1,3-Dichloropropene	20.0	21.0	105	66-127	
Bromoform	20.0	21.3	106	38-144	
4-Methyl-2-pentanone (MIBK)	100	142	142	78-125	*
2-Hexanone	100	141	141	74-127	*
Tetrachloroethene	20.0	19.8	99	70-127	
1,1,2,2-Tetrachloroethane	20.0	21.0	105	63-139	
Toluene	20.0	20.0	100	78-119	
Chlorobenzene	20.0	20.2	101	80-119	
Ethylbenzene	20.0	20.0	100	78-120	
Styrene	20.0	21.1	106	75-127	
m-Xylene & p-Xylene	20.0	20.7	103		
o-Xylene	20.0	20.8	104	78-122	
1,1,2-Trichloro-1,2,2-trifluor	20.0	19.5	98	59-142	
oethane					
Methyl tert-butyl ether	20.0	19.4	97		
Cyclohexane	20.0	20.7	104		
Ethylene Dibromide	20.0	21.3	107		
1,3-Dichlorobenzene	20.0	20.6	103	80-121	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260D}$

Lab Name	e: Eurofins TestAme	erica, Edison	Job No.: 460-2	222961-1
SDG No.:				
Matrix:	Water	Level: Low	Lab File ID: (D66158.D
Lab ID:	LCS 460-741805/3		Client ID:	

	SPIKE ADDED	LCS CONCENTRATION	LCS	QC LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
1,4-Dichlorobenzene	20.0	20.0	100	80-118	
1,2-Dichlorobenzene	20.0	20.9	104	79-122	
Dichlorodifluoromethane	20.0	20.4	102	31-150	
1,2,4-Trichlorobenzene	20.0	23.9	120	64-132	
1,4-Dioxane	400	450	113	70-142	
1,2,3-Trichlorobenzene	20.0	24.4	122	53-144	
1,2-Dibromo-3-Chloropropane	20.0	21.2	106	41-143	
Chlorobromomethane	20.0	17.2	86	73-126	
Isopropylbenzene	20.0	20.8	104	79-125	
Methyl acetate	40.0	31.5	79	70-127	
Methylcyclohexane	20.0	22.4	112	60-139	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260D}$

Lab Name	e: <u>Eurofins</u>	TestAmerica,	Edison	Job No.:	460-	-222961-1
SDG No.	:					
Matrix:	Solid	Leve	l: Medium	Lab File	ID:	J09499.D

| Client ID: | CS 460-742890/4 | Client ID: | | Client ID: | CONCENTRATION | COMPOUND | COMPOUND | Concentration | Compound | Concentration | Compound | Concentration | Conce

ADDED		SPIKE	LCS	LCS	QC	
Chloromethane		ADDED	CONCENTRATION	용	LIMITS	#
Bromomethane	COMPOUND	(ug/Kg)	(ug/Kg)	REC	REC	
Vinyl chloride	Chloromethane	1000	987	99	61-148	
Chloroethane	Bromomethane	1000	937	94	39-150	
Methylene Chloride	Vinyl chloride	1000	858	86	70-134	
Racetone	Chloroethane	1000	1090	109	61-142	
Carbon disulfide	Methylene Chloride	1000	1060	106	74-127	
Trichlorofluoromethane 1000 1020 102 66-133 1,1-Dichloroethene 1000 945 95 72-128 1,1-Dichloroethane 1000 1190 119 79-124 1190 119 79-124 1190 119 79-124 1190 1190 119 79-124 1190 1190 119 79-124 1190 1190 1190 1190 1190 1190 1190 1190 1150 115 80-120 12	Acetone	5000	4920	98	56-127	
1,1-Dichloroethene	Carbon disulfide	1000	1010	101	67-134	
1,1-Dichloroethane	Trichlorofluoromethane	1000	1020	102	66-133	
trans-1,2-Dichloroethene 1000 1020 102 77-127 cis-1,2-Dichloroethene 1000 1030 103 80-120 Chloroform 1000 1150 115 80-120 1,2-Dichloroethane 1000 1230 123 73-120 * 2-Butanone (MEK) 5000 4640 93 73-121 * Carbon tetrachloride 1000 1080 108 68-123 Dichlorobromomethane 1000 1180 118 77-120 1,2-Dichloropropane 1000 1180 118 78-125 cis-1,3-Dichloropropene 1000 1140 114 71-132 Trichloroethene 1000 1070 107 77-120 Chlorodibromomethane 1000 1060 106 74-120 1,1,2-Trichloroethane 1000 1090 109 30-120 trans-1,3-Dichloropropene 1000 1150 115 68-132 Bromoform 1000 950 95 62-12	1,1-Dichloroethene	1000	945	95	72-128	
trans-1,2-Dichloroethene 1000 1020 102 77-127 cis-1,2-Dichloroethene 1000 1030 103 80-120 Chloroform 1000 1150 115 80-120 1,2-Dichloroethane 1000 1230 123 73-120 * 2-Butanone (MEK) 5000 4640 93 73-121 * Carbon tetrachloride 1000 1080 108 68-123 Dichlorobromomethane 1000 1180 118 77-120 1,2-Dichloropropane 1000 1180 118 78-125 cis-1,3-Dichloropropene 1000 1140 114 71-132 Trichloroethene 1000 1070 107 77-120 Chlorodibromomethane 1000 1060 106 74-120 1,1,2-Trichloroethane 1000 1090 109 30-120 trans-1,3-Dichloropropene 1000 1150 115 68-132 Bromoform 1000 950 95 62-12	1,1-Dichloroethane	1000	1190	119	79-124	
cis-1,2-Dichloroethene 1000 1030 103 80-120 Chloroform 1000 1150 115 80-120 1,2-Dichloroethane 1000 1230 123 73-120 * 2-Butanone (MEK) 5000 4640 93 73-120 * 1,1,1-Trichloroethane 1000 1090 109 73-121 * Carbon tetrachloride 1000 1080 108 68-123 *<		1000	1020	102		
Chloroform	cis-1,2-Dichloroethene	1000	1030	103	80-120	
1,2-Dichloroethane	l ·					
2-Butanone (MEK) 5000 4640 93 73-120 1,1,1-Trichloroethane 1000 1090 109 73-121 Carbon tetrachloride 1000 1080 108 68-123 Dichlorobromomethane 1000 1130 113 77-120 1,2-Dichloropropane 1000 1180 118 78-125 cis-1,3-Dichloropropene 1000 1070 107 77-120 Chlorodibromomethane 1000 1070 107 77-120 Chlorodibromomethane 1000 1100 110 74-120 1,1,2-Trichloroethane 1000 1100 110 79-120 Benzene 1000 1090 109 80-120 trans-1,3-Dichloropropene 1000 1150 115 68-132 Bromoform 1000 950 95 62-121 4-Methyl-2-pentanone (MIBK) 5000 5240 105 80-120 2-Hexanone 5000 4800 96 80-121 Tetrachloroethene 1000 1220 122 74-138 Tolu	1,2-Dichloroethane			123		*
1,1,1-Trichloroethane					, i	
Carbon tetrachloride 1000 1080 108 68-123 Dichlorobromomethane 1000 1130 113 77-120 1,2-Dichloropropane 1000 1180 118 78-125 cis-1,3-Dichloropropene 1000 1140 114 71-132 Trichloroethene 1000 1070 107 77-120 Chlorodibromomethane 1000 1060 106 74-120 1,1,2-Trichloroethane 1000 1100 110 79-120 Benzene 1000 1090 109 80-120 trans-1,3-Dichloropropene 1000 1150 115 68-132 Bromoform 1000 950 95 62-121 4-Methyl-2-pentanone (MIBK) 5000 5240 105 80-120 2-Hexanone 5000 4800 96 80-121 Tetrachloroethene 1000 869 87 73-120 1,1,2,2-Tetrachloroethane 1000 1220 122 74-138 Toluene 1000 985 98 80-120 Ethylbenzene 1000 997 100 72-121 Styrene 1000 997 100 72-12						
Dichlorobromomethane 1000 1130 113 77-120 1,2-Dichloropropane 1000 1180 118 78-125 cis-1,3-Dichloropropene 1000 1140 114 71-132 Trichloroethene 1000 1070 107 77-120 Chlorodibromomethane 1000 1060 106 74-120 1,1,2-Trichloroethane 1000 1100 110 79-120 Benzene 1000 1090 109 80-120 trans-1,3-Dichloropropene 1000 1150 115 68-132 Bromoform 1000 950 95 62-121 4-Methyl-2-pentanone (MIBK) 5000 4800 96 80-120 2-Hexanone 5000 4800 96 80-121 Tetrachloroethene 1000 869 87 73-120 1,1,2,2-Tetrachloroethane 1000 985 98 80-120 Ethylbenzene 1000 985 98 80-120 Ethylene & p-Xylene	1 1					
1,2-Dichloropropane 1000 1180 118 78-125 cis-1,3-Dichloropropene 1000 1140 114 71-132 Trichloroethene 1000 1070 107 77-120 Chlorodibromomethane 1000 1060 106 74-120 1,1,2-Trichloroethane 1000 1100 110 79-120 Benzene 1000 1090 109 80-120 trans-1,3-Dichloropropene 1000 1150 115 68-132 Bromoform 1000 950 95 62-121 4-Methyl-2-pentanone (MIBK) 5000 5240 105 80-120 2-Hexanone 5000 4800 96 80-121 Tetrachloroethene 1000 869 87 73-120 1,1,2,2-Tetrachloroethane 1000 1020 102 74-138 Toluene 1000 985 98 80-120 Ethylbenzene 1000 985 98 80-120 Ethylene & p-Xylene 1000 965 97 72-120 o-Xylene 1000 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
cis-1,3-Dichloropropene 1000 1140 114 71-132 Trichloroethene 1000 1070 107 77-120 Chlorodibromomethane 1000 1060 106 74-120 1,1,2-Trichloroethane 1000 1100 110 79-120 Benzene 1000 1090 109 80-120 trans-1,3-Dichloropropene 1000 950 95 62-121 Bromoform 1000 950 95 62-121 4-Methyl-2-pentanone (MIBK) 5000 5240 105 80-120 2-Hexanone 5000 4800 96 80-121 Tetrachloroethene 1000 869 87 73-120 1,1,2,2-Tetrachloroethane 1000 1040 104 80-120 Toluene 1000 985 98 80-120 Ethylbenzene 1000 997 100 72-121 Styrene 1000 994 99 72-120 0-Xylene 1000 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Trichloroethene 1000 1070 107 77-120 Chlorodibromomethane 1000 1060 106 74-120 1, 2-Trichloroethane 1000 1100 1100 79-120 Eenzene 1000 1000 1150 115 68-132 Ethylene Dibromide 1000 1000 1000 1000 1000 1000 1000 10						
Chlorodibromomethane 1000 1060 106 74-120 1,1,2-Trichloroethane 1000 1100 110 79-120 Benzene 1000 1090 109 80-120 trans-1,3-Dichloropropene 1000 1150 115 68-132 Bromoform 1000 950 95 62-121 4-Methyl-2-pentanone (MIBK) 5000 5240 105 80-120 2-Hexanone 5000 4800 96 80-121 Tetrachloroethene 1000 869 87 73-120 1,1,2,2-Tetrachloroethane 1000 1220 122 74-138 Toluene 1000 1040 104 80-120 Chlorobenzene 1000 985 98 80-120 Ethylbenzene 1000 997 100 72-121 Styrene 1000 965 97 72-120 o-Xylene 1000 994 99 72-123 1,1,2-Trichloro-1,2,2-trifluor oethane 1000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1,1,2-Trichloroethane 1000 1100 110 79-120 Benzene 1000 1090 109 80-120 trans-1,3-Dichloropropene 1000 1150 115 68-132 Bromoform 1000 950 95 62-121 4-Methyl-2-pentanone (MIBK) 5000 5240 105 80-120 2-Hexanone 5000 4800 96 80-121 Tetrachloroethene 1000 869 87 73-120 1,1,2,2-Tetrachloroethane 1000 1220 122 74-138 Toluene 1000 985 98 80-120 Ethylbenzene 1000 985 98 80-120 Ethylbenzene 1000 997 100 72-121 Styrene 1000 965 97 72-120 o-Xylene 1000 943 94 63-137 1,1,2-Trichloro-1,2,2-trifluor oethane 1000 943 94 63-137 Octhorane 1000 1200 120 77-125 Cyclohexane 1000 1000						
Benzene 1000 1090 109 80-120 trans-1,3-Dichloropropene 1000 1150 115 68-132 Bromoform 1000 950 95 62-121 4-Methyl-2-pentanone (MIBK) 5000 5240 105 80-120 2-Hexanone 5000 4800 96 80-121 Tetrachloroethene 1000 869 87 73-120 1,1,2,2-Tetrachloroethane 1000 1220 122 74-138 Toluene 1000 1040 104 80-120 Chlorobenzene 1000 985 98 80-120 Ethylbenzene 1000 997 100 72-121 Styrene 1000 997 100 72-121 m-Xylene & p-Xylene 1000 965 97 72-120 o-Xylene 1000 994 99 72-123 1,1,2-Trichloro-1,2,2-trifluor oethane 1000 943 94 63-137 oethane 1000 1200 120 77-125 Cyclohexane 1000 1020						
trans-1,3-Dichloropropene 1000 1150 115 68-132 Bromoform 1000 950 95 62-121 4-Methyl-2-pentanone (MIBK) 5000 5240 105 80-120 2-Hexanone 5000 4800 96 80-121 Tetrachloroethene 1000 869 87 73-120 1,1,2,2-Tetrachloroethane 1000 1220 122 74-138 Toluene 1000 1040 104 80-120 Chlorobenzene 1000 985 98 80-120 Ethylbenzene 1000 997 100 72-121 Styrene 1000 965 97 72-120 o-Xylene & p-Xylene 1000 994 99 72-123 1,1,2-Trichloro-1,2,2-trifluor oethane 1000 943 94 63-137 oethane 1000 1200 120 77-125 Cyclohexane 1000 1020 102 64-132 Ethylene Dibromide 1000 1030 103 80-120						
Bromoform 1000 950 95 62-121 4-Methyl-2-pentanone (MIBK) 5000 5240 105 80-120 2-Hexanone 5000 4800 96 80-121 Tetrachloroethene 1000 869 87 73-120 1,1,2,2-Tetrachloroethane 1000 1220 122 74-138 Toluene 1000 1040 104 80-120 Chlorobenzene 1000 985 98 80-120 Ethylbenzene 1000 997 100 72-121 Styrene 1000 965 97 72-120 o-Xylene 1000 994 99 72-123 1,1,2-Trichloro-1,2,2-trifluor oethane 1000 943 94 63-137 oethane Methyl tert-butyl ether 1000 1200 120 77-125 Cyclohexane 1000 1020 102 64-132 Ethylene Dibromide 1000 1030 103 80-120	trans-1,3-Dichloropropene			115		
4-Methyl-2-pentanone (MIBK) 5000 5240 105 80-120 2-Hexanone 5000 4800 96 80-121 Tetrachloroethene 1000 869 87 73-120 1,1,2,2-Tetrachloroethane 1000 1220 122 74-138 Toluene 1000 1040 104 80-120 Chlorobenzene 1000 985 98 80-120 Ethylbenzene 1000 997 100 72-121 Styrene 1000 965 97 72-120 o-Xylene & p-Xylene 1000 994 99 72-123 1,1,2-Trichloro-1,2,2-trifluor oethane 1000 943 94 63-137 oethane 1000 1000 120 77-125 Cyclohexane 1000 1020 102 64-132 Ethylene Dibromide 1000 1030 103 80-120						
2-Hexanone 5000 4800 96 80-121 Tetrachloroethene 1000 869 87 73-120 1,1,2,2-Tetrachloroethane 1000 1220 122 74-138 Toluene 1000 1040 104 80-120 Chlorobenzene 1000 985 98 80-120 Ethylbenzene 1000 997 100 72-121 Styrene 1000 965 97 72-120 o-Xylene & p-Xylene 1000 994 99 72-123 1,1,2-Trichloro-1,2,2-trifluor oethane 1000 943 94 63-137 oethane 1000 1200 120 77-125 Cyclohexane 1000 1020 102 64-132 Ethylene Dibromide 1000 1030 103 80-120	4-Methyl-2-pentanone (MIBK)			105		
Tetrachloroethene 1000 869 87 73-120 1,1,2,2-Tetrachloroethane 1000 1220 122 74-138 Toluene 1000 1040 104 80-120 Chlorobenzene 1000 985 98 80-120 Ethylbenzene 1000 997 100 72-121 Styrene 1000 1020 102 74-124 m-Xylene & p-Xylene 1000 965 97 72-120 o-Xylene 1000 994 99 72-123 1,1,2-Trichloro-1,2,2-trifluor oethane 1000 943 94 63-137 wethyl tert-butyl ether 1000 1200 120 77-125 Cyclohexane 1000 1020 102 64-132 Ethylene Dibromide 1000 1030 103 80-120				96		
1,1,2,2-Tetrachloroethane 1000 1220 122 74-138 Toluene 1000 1040 104 80-120 Chlorobenzene 1000 985 98 80-120 Ethylbenzene 1000 997 100 72-121 Styrene 1000 1020 102 74-124 m-Xylene & p-Xylene 1000 965 97 72-120 o-Xylene 1000 994 99 72-123 1,1,2-Trichloro-1,2,2-trifluor oethane 1000 943 94 63-137 Methyl tert-butyl ether 1000 1200 120 77-125 Cyclohexane 1000 1020 102 64-132 Ethylene Dibromide 1000 1030 103 80-120	Tetrachloroethene			87		
Toluene 1000 1040 104 80-120 Chlorobenzene 1000 985 98 80-120 Ethylbenzene 1000 997 100 72-121 Styrene 1000 1020 102 74-124 m-Xylene & p-Xylene 1000 965 97 72-120 o-Xylene 1000 994 99 72-123 1,1,2-Trichloro-1,2,2-trifluor oethane 1000 943 94 63-137 Methyl tert-butyl ether 1000 1200 120 77-125 Cyclohexane 1000 1020 102 64-132 Ethylene Dibromide 1000 1030 103 80-120	1,1,2,2-Tetrachloroethane			122	74-138	
Chlorobenzene 1000 985 98 80-120 Ethylbenzene 1000 997 100 72-121 Styrene 1000 1020 102 74-124 m-Xylene & p-Xylene 1000 965 97 72-120 o-Xylene 1000 994 99 72-123 1,1,2-Trichloro-1,2,2-trifluor oethane 1000 943 94 63-137 Methyl tert-butyl ether 1000 1200 120 77-125 Cyclohexane 1000 1020 102 64-132 Ethylene Dibromide 1000 1030 103 80-120						
Ethylbenzene 1000 997 100 72-121 Styrene 1000 1020 102 74-124 m-Xylene & p-Xylene 1000 965 97 72-120 o-Xylene 1000 994 99 72-123 1,1,2-Trichloro-1,2,2-trifluor oethane 1000 943 94 63-137 oethane 1000 1200 120 77-125 Cyclohexane 1000 1020 102 64-132 Ethylene Dibromide 1000 1030 103 80-120	Chlorobenzene					
Styrene 1000 1020 102 74-124 m-Xylene & p-Xylene 1000 965 97 72-120 o-Xylene 1000 994 99 72-123 1,1,2-Trichloro-1,2,2-trifluor oethane 1000 943 94 63-137 Methyl tert-butyl ether 1000 1200 120 77-125 Cyclohexane 1000 1020 102 64-132 Ethylene Dibromide 1000 1030 103 80-120						
m-Xylene & p-Xylene 1000 965 97 72-120 0-Xylene 1000 994 99 72-123 1,1,2-Trichloro-1,2,2-trifluor oethane 1000 943 94 63-137 oethane 1000 1200 120 77-125 Cyclohexane 1000 1020 102 64-132 Ethylene Dibromide 1000 1000 1030 103 80-120						
0-Xylene 1000 994 99 72-123 1,1,2-Trichloro-1,2,2-trifluor oethane 1000 943 94 63-137 Methyl tert-butyl ether 1000 1200 120 77-125 Cyclohexane 1000 1020 102 64-132 Ethylene Dibromide 1000 1030 103 80-120						
1,1,2-Trichloro-1,2,2-trifluor oethane 1000 943 94 63-137 Methyl tert-butyl ether 1000 1200 120 77-125 Cyclohexane 1000 1020 102 64-132 Ethylene Dibromide 1000 1030 103 80-120						
oethane 1000 1200 120 77-125 Cyclohexane 1000 1020 102 64-132 Ethylene Dibromide 1000 1030 103 80-120						
Cyclohexane 1000 1020 102 64-132 Ethylene Dibromide 1000 1030 103 80-120	oethane					
Ethylene Dibromide 1000 1030 103 80-120	Methyl tert-butyl ether	1000	1200	120	77-125	
_	_	1000	1020	102		
1,3-Dichlorobenzene 1000 1010 80-120		1000	1030	103	80-120	
	1,3-Dichlorobenzene	1000	1010	101	80-120	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260D}$

Lab Name	e: Eurofins TestAm	erica, Edison	Job No.: 460-	-222961-1
SDG No.	:			
Matrix:	Solid	Level: Medium	Lab File ID:	J09499.D
Lab ID:	LCS 460-742890/4		Client ID:	

	SPIKE ADDED	LCS CONCENTRATION	LCS %	QC LIMITS	#
COMPOUND	(ug/Kg)	(ug/Kg)	REC	REC	
1,4-Dichlorobenzene	1000	992	99	80-120	
1,2-Dichlorobenzene	1000	994	99	80-120	
Dichlorodifluoromethane	1000	860	86	45-145	
1,2,4-Trichlorobenzene	1000	896	90	70-138	
1,4-Dioxane	20000	22500	112	80-126	
1,2,3-Trichlorobenzene	1000	918	92	70-145	
1,2-Dibromo-3-Chloropropane	1000	964	96	73-131	
Chlorobromomethane	1000	995	99	80-121	
Isopropylbenzene	1000	966	97	67-125	
Methyl acetate	2000	2700	135	65-139	
Methylcyclohexane	1000	874	87	61-136	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260D}$

Lab Name	e: Eurofins TestAme	rica, Edison	Job No.: 460-	-222961-1
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID:	066159.D
Lab ID:	LCSD 460-741805/4		Client ID:	

	SPIKE	LCSD	LCSD		QC L	IMITS	
	ADDED	CONCENTRATION	용	용			#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	
Chloromethane	20.0	20.4	102	1	30	38-150	
Bromomethane	20.0	17.4	87	0	30	10-150	
Vinyl chloride	20.0	20.5	102	0	30	61-144	
Chloroethane	20.0	20.7	104	1	30	29-150	
Methylene Chloride	20.0	21.1	106	0	30	74-127	
Acetone	100	82.9	83	3	30	61-134	
Carbon disulfide	20.0	21.2	106	1	30	64-138	
Trichlorofluoromethane	20.0	17.7	88	6	30	61-140	
1,1-Dichloroethene	20.0	17.0	85	8	30	68-133	
1,1-Dichloroethane	20.0	18.0	90	7	30	73-130	
trans-1,2-Dichloroethene	20.0	17.9	89	9	30	74-126	
cis-1,2-Dichloroethene	20.0	17.1	85	8	30	78-121	
Chloroform	20.0	18.0	90	4	30	78-125	
1,2-Dichloroethane	20.0	18.1	91	6	30	75-121	
2-Butanone (MEK)	100	97.7	98	0	30	69-128	
1,1,1-Trichloroethane	20.0	20.7	104	6	30	68-128	
Carbon tetrachloride	20.0	21.3	106	6	30	56-131	
Dichlorobromomethane	20.0	20.3	102	4	30	72-121	
1,2-Dichloropropane	20.0	21.0	105	2	30	76-126	
cis-1,3-Dichloropropene	20.0	20.9	104	0	30	74-125	
Trichloroethene	20.0	21.0	105	2	30	71-121	
Chlorodibromomethane	20.0	21.2	106	2	30	58-130	
1,1,2-Trichloroethane	20.0	21.1	106	2	30	74-125	
Benzene	20.0	19.8	99	1	30	78-126	
trans-1,3-Dichloropropene	20.0	21.3	107	1	30	66-127	
Bromoform	20.0	21.1	105	1	30	38-144	
4-Methyl-2-pentanone (MIBK)	100	126	126	11	30	78-125	*
2-Hexanone	100	127	127	10	30	74-127	
Tetrachloroethene	20.0	19.9	100	1	30	70-127	
1,1,2,2-Tetrachloroethane	20.0	20.0	100	5	30	63-139	
Toluene	20.0	20.1	100	1	30	78-119	
Chlorobenzene	20.0	20.1	100	1	30	80-119	
Ethylbenzene	20.0	20.1	101	0	30	78-120	
Styrene	20.0	20.8	104	2	30	75-127	
m-Xylene & p-Xylene	20.0	20.2	101		30	78-123	
o-Xylene	20.0	20.6	103		30	78-122	
1,1,2-Trichloro-1,2,2-trifluor	20.0	21.7	109		30	59-142	
oethane							
Methyl tert-butyl ether	20.0	20.0	100	3	30	65-131	
Cyclohexane	20.0	22.1	110	6	30	67-133	
Ethylene Dibromide	20.0	20.7	104	3	30	69-126	
1,3-Dichlorobenzene	20.0	20.7	103	0	30	80-121	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260D}$

Lab Name	e: Eurofins TestAme	rica, Edison	Job No.: 460	-222961-1
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID:	066159.D
Lab ID:	LCSD 460-741805/4		Client ID:	

	SPIKE	LCSD	LCSD	90	QC L1	IMITS	щ
2015		CONCENTRATION		0			#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	
1,4-Dichlorobenzene	20.0	19.8	99	1	30	80-118	
1,2-Dichlorobenzene	20.0	20.6	103	1	30	79-122	
Dichlorodifluoromethane	20.0	21.0	105	3	30	31-150	
1,2,4-Trichlorobenzene	20.0	24.0	120	0	30	64-132	
1,4-Dioxane	400	420	105	7	30	70-142	
1,2,3-Trichlorobenzene	20.0	24.0	120	2	30	53-144	
1,2-Dibromo-3-Chloropropane	20.0	20.6	103	3	30	41-143	
Chlorobromomethane	20.0	17.9	90	4	30	73-126	
Isopropylbenzene	20.0	20.6	103	1	30	79-125	
Methyl acetate	40.0	36.7	92	15	30	70-127	
Methylcyclohexane	20.0	23.2	116	3	30	60-139	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260D}$

N/ - +		-111	T	1 . Ma -14	T - 1-	m: 1 -	TD.	100E00 B
SDG	No.:							
Lab	Name:	Eurofins	TestAmerica,	Edison	Job	No.:	460-	222961-1

Matrix: Solid Level: Medium Lab File ID: J09500.D

Lab ID: LCSD 460-742890/5 Client ID:

	SPIKE ADDED	LCSD CONCENTRATION	LCSD	90	QC LI	MITS	#
COMPOUND	(ug/Kg)	(ug/Kg)	REC	RPD	RPD	REC	#
Chloromethane	1000	1020	102	3	30	61-148	
Bromomethane	1000	1010	101	7	30	39-150	
Vinyl chloride	1000	942	94	9	30	70-134	
Chloroethane	1000	1110	111	1	30	61-142	
Methylene Chloride	1000	1030	103	3	30	74-127	
Acetone	5000	4880	98	1	30	56-127	
Carbon disulfide	1000	1010	101	0	30	67-134	
Trichlorofluoromethane	1000	1060	106	4	30	66-133	
1,1-Dichloroethene	1000	928	93	2	30	72-128	
1,1-Dichloroethane	1000	1190	119	0	30	79-124	
trans-1,2-Dichloroethene	1000	1040	104	2	30	77-127	
cis-1,2-Dichloroethene	1000	1010	101	2	30	80-120	
Chloroform	1000	1110	111	3	30	80-120	
1,2-Dichloroethane	1000	1180	118	4	30	73-120	
2-Butanone (MEK)	5000	4330	87	7	30	73-120	
1,1,1-Trichloroethane	1000	1060	106	2	30	73-121	
Carbon tetrachloride	1000	1040	104	3	30	68-123	
Dichlorobromomethane	1000	1100	110	2	30	77-120	
1,2-Dichloropropane	1000	1140	114	3	30	78-125	
cis-1,3-Dichloropropene	1000	1150	115	1	30	71-132	
Trichloroethene	1000	1040	104	2	30	77-120	
Chlorodibromomethane	1000	1020	102	4	30	74-120	
1,1,2-Trichloroethane	1000	1070	107	2	30	79-120	
Benzene	1000	1040	104	5	30	80-120	
trans-1,3-Dichloropropene	1000	1150	115	0	30	68-132	
Bromoform	1000	910	91	4	30	62-121	
4-Methyl-2-pentanone (MIBK)	5000	5010	100	4	30	80-120	
2-Hexanone	5000	4580	92	5	30	80-121	
Tetrachloroethene	1000	834	83	4	30	73-120	
1,1,2,2-Tetrachloroethane	1000	1130	113	7	30	74-138	
Toluene	1000	1000	100	3	30	80-120	
Chlorobenzene	1000	956	96	3	30	80-120	
Ethylbenzene	1000	971	97	3	30	72-121	
Styrene	1000	988	99		30	74-124	
m-Xylene & p-Xylene	1000	968	97	0	30	72-120	
o-Xylene	1000	962	96		30	72-123	
1,1,2-Trichloro-1,2,2-trifluor	1000	946	95		30	63-137	
oethane	1000			Ĭ		33 137	
Methyl tert-butyl ether	1000	1180	118	2	30	77-125	
Cyclohexane	1000	1000	100		30	64-132	
Ethylene Dibromide	1000	1030	103		30	80-120	
1,3-Dichlorobenzene	1000	961	96		30	80-120	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260D}$

Lab Name	e: Eurofins TestAme	rica, Edison	Job No.: 460	-222961-1
SDG No.	:			
Matrix:	Solid	Level: Medium	Lab File ID:	J09500.D
Lab ID:	LCSD 460-742890/5		Client ID:	

	SPIKE	LCSD	LCSD	0/0	QC L1	IMITS	ш
		CONCENTRATION		Ŭ		_	#
COMPOUND	(ug/Kg)	(ug/Kg)	REC	RPD	RPD	REC	
1,4-Dichlorobenzene	1000	938	94	6	30	80-120	
1,2-Dichlorobenzene	1000	952	95	4	30	80-120	
Dichlorodifluoromethane	1000	913	91	6	30	45-145	
1,2,4-Trichlorobenzene	1000	831	83	8	30	70-138	
1,4-Dioxane	20000	21600	108	4	30	80-126	
1,2,3-Trichlorobenzene	1000	847	85	8	30	70-145	
1,2-Dibromo-3-Chloropropane	1000	900	90	7	30	73-131	
Chlorobromomethane	1000	953	95	4	30	80-121	
Isopropylbenzene	1000	969	97	0	30	67-125	
Methyl acetate	2000	2750	137	2	30	65-139	
Methylcyclohexane	1000	905	91	4	30	61-136	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260D}$

FORM III GC/MS VOA MATRIX SPIKE RECOVERY

Lab Name	e: <u>Eurofins</u>	TestAmerica,	Edison	Job No.:	460-	-222961-1
SDG No.	:					
Matrix:	Water	Leve	l: Low	Lab File	ID:	066182.D

Lab ID: 460-222961-4 MS Client ID: MW-5 MS

	SPIKE	SAMPLE	MS	MS	QC	
	ADDED	CONCENTRATION	CONCENTRATION	용	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC	REC	
Chloromethane	20.0	1.0 U	19.1	96	38-150	
Bromomethane	20.0	1.0 U	13.8	69	10-150	
Vinyl chloride	20.0	1.0 U	19.6	98	61-144	
Chloroethane	20.0	1.0 U	20.7	103	29-150	
Methylene Chloride	20.0	1.0 U	20.0	100	74-127	
Acetone	100	5.0 U	87.0	87	61-134	
Carbon disulfide	20.0	1.0 U	17.7	89	64-138	
Trichlorofluoromethane	20.0	1.0 U	17.7	88	61-140	
1,1-Dichloroethene	20.0	1.0 U	15.9	79	68-133	
1,1-Dichloroethane	20.0	1.0 U	17.5	87	73-130	
trans-1,2-Dichloroethene	20.0	1.0 U	16.8	84	74-126	
cis-1,2-Dichloroethene	20.0	1.0 U	16.4	82	78-121	
Chloroform	20.0	1.0 U	17.9	90	78-125	
1,2-Dichloroethane	20.0	1.0 U	16.9	84	75-121	
2-Butanone (MEK)	100	5.0 U	91.5	92	69-128	
1,1,1-Trichloroethane	20.0	1.0 U	19.0	95	68-128	
Carbon tetrachloride	20.0	1.0 U	19.6	98	56-131	
Dichlorobromomethane	20.0	1.0 U	18.9	95	72-121	
1,2-Dichloropropane	20.0	1.0 U	20.3	102	76-126	
cis-1,3-Dichloropropene	20.0	1.0 U	19.1	95	74-125	
Trichloroethene	20.0	1.0 U	20.0	100	71-121	
Chlorodibromomethane	20.0	1.0 U	20.0	100	58-130	
1,1,2-Trichloroethane	20.0	1.0 U	20.0	100	74-125	
Benzene	20.0	1.0 U	18.9	95	78-126	
trans-1,3-Dichloropropene	20.0	1.0 U	19.0	95	66-127	
Bromoform	20.0	1.0 U	20.1	101	38-144	
4-Methyl-2-pentanone (MIBK)	100	5.0 U	127	127	78-125	F1
2-Hexanone	100	5.0 U	124	124	74-127	
Tetrachloroethene	20.0	1.0 U	21.7	109	70-127	
1,1,2,2-Tetrachloroethane	20.0	1.0 U	19.9	100	63-139	
Toluene	20.0	1.0 U	19.0	95	78-119	
Chlorobenzene	20.0	1.0 U	18.9	94	80-119	
Ethylbenzene	20.0	1.0 U	19.4	97	78-120	
Styrene	20.0	1.0 U		98	75-127	
m-Xylene & p-Xylene	20.0	1.0 U		95		
o-Xylene	20.0	1.0 U		97		
1,1,2-Trichloro-1,2,2-trifluor	20.0	1.0 U	18.0	90	59-142	
oethane			10.5		65 401	
Methyl tert-butyl ether	20.0	1.0 U		98		
Cyclohexane	20.0	1.0 U		99		
Ethylene Dibromide	20.0	1.0 U		101		
1,3-Dichlorobenzene	20.0	1.0 U	19.3	96	80-121	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260D}$

FORM III GC/MS VOA MATRIX SPIKE RECOVERY

Lab Name	e: Eurofins TestAm	nerica, Edison	Job No.: 460-222961-1	
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID: 066182.D	
Lab ID:	460-222961-4 MS		Client ID: MW-5 MS	

	SPIKE	SAMPLE	MS	MS	QC	
	ADDED	CONCENTRATION	CONCENTRATION	용	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC	REC	
1,4-Dichlorobenzene	20.0	1.0 U	18.3	91	80-118	
1,2-Dichlorobenzene	20.0	1.0 U	19.2	96	79-122	
Dichlorodifluoromethane	20.0	1.0 U	19.0	95	31-150	
1,2,4-Trichlorobenzene	20.0	1.0 U	20.9	104	64-132	
1,4-Dioxane	400	50 U	408	102	70-142	
1,2,3-Trichlorobenzene	20.0	1.0 U	21.5	107	53-144	
1,2-Dibromo-3-Chloropropane	20.0	1.0 U	19.2	96	41-143	
Chlorobromomethane	20.0	1.0 U	17.8	89	73-126	
Isopropylbenzene	20.0	1.0 U	19.5	97	79-125	
Methyl acetate	40.0	5.0 U	30.3	76	70-127	
Methylcyclohexane	20.0	1.0 U	20.2	101	60-139	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260D}$

FORM III GC/MS VOA MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: Eurofins TestAmerica, Edison			Job No.: 460-222961-1			
SDG No.	:					
Matrix:	Water	Level: Low	Lab File ID: 066183.D			
Lab ID:	460-222961-4 MSD		Client ID: MW-5 MSD			

	SPIKE MSD MSD			QC LI	IMITS		
	ADDED	CONCENTRATION		8 -			#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	
Chloromethane	20.0	19.8	99	4	30	38-150	
Bromomethane	20.0	16.0	80	15	30	10-150	
Vinyl chloride	20.0	20.8	104	6	30	61-144	
Chloroethane	20.0	21.1	105	2	30	29-150	
Methylene Chloride	20.0	19.8	99	1	30	74-127	
Acetone	100	76.4	76	13	30	61-134	
Carbon disulfide	20.0	18.4	92	4	30	64-138	
Trichlorofluoromethane	20.0	19.3	96	9	30	61-140	
1,1-Dichloroethene	20.0	17.6	88	11	30	68-133	
1,1-Dichloroethane	20.0	18.4	92	5	30	73-130	
trans-1,2-Dichloroethene	20.0	17.6	88	5	30	74-126	
cis-1,2-Dichloroethene	20.0	17.6	88	7	30	78-121	
Chloroform	20.0	18.4	92	3	30	78-125	
1,2-Dichloroethane	20.0	17.8	89	5	30	75-121	
2-Butanone (MEK)	100	93.2	93	2	30	69-128	
1,1,1-Trichloroethane	20.0	20.1	100	6	30	68-128	
Carbon tetrachloride	20.0	20.8	104	6	30	56-131	
Dichlorobromomethane	20.0	19.7	98	4	30	72-121	
1,2-Dichloropropane	20.0	20.8	104	2	30	76-126	
cis-1,3-Dichloropropene	20.0	19.9	99	4	30	74-125	
Trichloroethene	20.0	20.3	101	1	30	71-121	
Chlorodibromomethane	20.0	20.1	100	0	30	58-130	
1,1,2-Trichloroethane	20.0	20.4	102	2	30	74-125	
Benzene	20.0	19.3	96	2	30	78-126	
trans-1,3-Dichloropropene	20.0	19.8	99	4	30	66-127	
Bromoform	20.0	20.3	102	1	30	38-144	
4-Methyl-2-pentanone (MIBK)	100	120	120	6	30	78-125	
2-Hexanone	100	119	119	4	30	74-127	
Tetrachloroethene	20.0	20.3	101	7	30	70-127	
1,1,2,2-Tetrachloroethane	20.0	20.0	100	0	30	63-139	
Toluene	20.0	19.5	97	3	30	78-119	
Chlorobenzene	20.0	19.3	96	2	30	80-119	
Ethylbenzene	20.0	19.6	98	1	30	78-120	
Styrene	20.0	20.0	100	2	30	75-127	
m-Xylene & p-Xylene	20.0	19.2	96		30	78-123	
o-Xylene	20.0	19.3	97	0	30	78-122	
1,1,2-Trichloro-1,2,2-trifluor oethane	20.0	20.0	100	10	30	59-142	
Methyl tert-butyl ether	20.0	19.8	99	0	30	65-131	
Cyclohexane	20.0	20.6	103		30	67-133	
Ethylene Dibromide	20.0	20.3	102		30	69-126	
1,3-Dichlorobenzene	20.0	19.4	97		30	80-121	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260D}$

FORM III GC/MS VOA MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: Eurofins TestAmerica, Edison			Job No.: 460-222961-1					
SDG No.	:							
Matrix:	Water	Level: Low	Lab File ID: 066183.D					
Lab ID:	460-222961-4 MSD		Client ID: MW-5 MSD					

	SPIKE ADDED	MSD	MSD %	0.	QC LIMITS		#
COMPOUND				RPD	RPD	REC	#
1,4-Dichlorobenzene	20.0	18.5	93	1	30	80-118	
1,2-Dichlorobenzene	20.0	19.3	97	1	30	79-122	
Dichlorodifluoromethane	20.0	20.5	103	8	30	31-150	
1,2,4-Trichlorobenzene	20.0	22.2	111	6	30	64-132	
1,4-Dioxane	400	409	102	0	30	70-142	
1,2,3-Trichlorobenzene	20.0	22.7	114	6	30	53-144	
1,2-Dibromo-3-Chloropropane	20.0	19.6	98	2	30	41-143	
Chlorobromomethane	20.0	18.7	93	5	30	73-126	
Isopropylbenzene	20.0	20.0	100	3	30	79-125	
Methyl acetate	40.0	31.0	78	2	30	70-127	
Methylcyclohexane	20.0	21.3	106	5	30	60-139	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8260D}$

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222961-1

SDG No.:

Lab Sample ID: CCVIS 460-742890/3 Calibration Date: 11/27/2020 08:58

Instrument ID: CVOAMS8 Calib Start Date: 10/29/2020 06:29

GC Column: Rtx-624 ID: 0.25 (mm) Calib End Date: 10/29/2020 08:55

Lab File ID: J09498.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	0.2795	0.2418	0.1000	17.3	20.0	-13.5	20.0
Chloromethane	Ave	0.2195	0.2223	0.1000	20.3	20.0	1.3	20.0
Vinyl chloride	Ave	0.2181	0.1992	0.1000	18.3	20.0	-8.7	20.0
Butadiene	Ave	0.2011	0.1675		16.7	20.0	-16.7	20.0
Bromomethane	Ave	0.1207	0.1137	0.1000	18.8	20.0	-5.8	50.0
Chloroethane	Ave	0.1427	0.1628	0.1000	22.8	20.0	14.1	50.0
Dichlorofluoromethane	Ave	0.3670	0.4245		23.1	20.0	15.7	20.0
Trichlorofluoromethane	Ave	0.3202	0.3371	0.1000	21.1	20.0	5.3	20.0
Pentane	Ave	1.428	1.147		32.1	40.0	-19.7	20.0
Ethanol	Ave	0.0459	0.0486		848	800	6.0	50.0
Ethyl ether	Ave	0.1630	0.2004		24.6	20.0	22.9*	20.0
2-Methyl-1,3-butadiene	Ave	0.1829	0.2286		25.0	20.0	25.0*	20.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.2107	0.2002	0.1000	19.0	20.0	-5.0	20.0
Acrolein	Ave	1.209	1.142		37.8	40.0	-5.5	50.0
1,1-Dichloroethene	Ave	0.2002	0.1958	0.1000	19.6	20.0	-2.2	20.0
Acetone	Ave	0.5488	0.5619	0.0500	102	100	2.4	50.0
Iodomethane	QuaF		0.1778		12.6	20.0	-37.2*	20.0
Carbon disulfide	Ave	0.7441	0.7721	0.1000	20.8	20.0	3.8	50.0
Isopropyl alcohol	Ave	0.6486	0.6413		198	200	-1.1	50.0
3-Chloro-1-propene	Ave	0.1329	0.1364		20.5	20.0	2.6	20.0
Methyl acetate	Ave	0.1670	0.1996	0.1000	47.8	40.0	19.6	20.0
Cyclopentene	Ave	0.5661	0.5822		20.6	20.0	2.9	20.0
Acetonitrile	Ave	1.499	1.711		228	200	14.2	20.0
Methylene Chloride	Ave	0.2640	0.2886	0.1000	21.9	20.0	9.3	20.0
2-Methyl-2-propanol	Ave	1.033	0.9856		191	200	-4.6	50.0
Methyl tert-butyl ether	Ave	0.6274	0.7459	0.1000	23.8	20.0	18.9	20.0
trans-1,2-Dichloroethene	Ave	0.2463	0.2652	0.1000	21.5	20.0	7.7	20.0
Acrylonitrile	Ave	4.635	4.212		182	200	-9.1	20.0
Hexane	Ave	0.2720	0.2912		21.4	20.0	7.1	20.0
Isopropyl ether	Ave	0.7570	0.9769		25.8	20.0	29.0*	20.0
1,1-Dichloroethane	Ave	0.4420	0.5254	0.2000	23.8	20.0	18.9	20.0
Vinyl acetate	Ave	0.4608	0.6955		60.4	40.0	50.9*	20.0
2-Chloro-1,3-butadiene	Ave	0.2171	0.2258		20.8	20.0	4.0	20.0
Tert-butyl ethyl ether	Ave	0.6897	0.8470		24.6	20.0	22.8*	20.0
2,2-Dichloropropane	Ave	0.1090	0.1252		23.0	20.0	14.9	20.0
cis-1,2-Dichloroethene	Ave	0.2753	0.2873	0.1000	20.9	20.0	4.4	20.0
2-Butanone (MEK)	Ave	0.2624	0.2397	0.0500	91.4	100	-8.6	50.0
Ethyl acetate	Ave	0.2655	0.2381		35.9	40.0	-10.3	20.0
Methyl acrylate	Ave	0.1973	0.2459		24.9	20.0	24.6*	20.0
Propionitrile	Ave	1.718	1.597		186	200	-7.0	20.0

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222961-1

SDG No.:

Lab Sample ID: CCVIS 460-742890/3 Calibration Date: 11/27/2020 08:58

Instrument ID: CVOAMS8 Calib Start Date: 10/29/2020 06:29

GC Column: Rtx-624 ID: 0.25(mm) Calib End Date: 10/29/2020 08:55

Lab File ID: 09498.D Conc. Units: 09/L Heated Purge: $0.2000 \times 0.2000 \times 0.2000 \times 0.2000 \times 0.2000 \times 0.2000 \times 0.2000 \times 0.2000 \times 0.2000$

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Chlorobromomethane	Ave	0.1385	0.1389		20.0	20.0	0.2	20.0
Tetrahydrofuran	Ave	0.3061	0.2769		36.2	40.0	-9.5	20.0
Methacrylonitrile	Ave	0.0975	0.1174		241	200	20.4*	20.0
Chloroform	Ave	0.4298	0.5047	0.2000	23.5	20.0	17.4	20.0
Cyclohexane	Ave	0.3287	0.3358	0.1000	20.4	20.0	2.2	50.0
1,1,1-Trichloroethane	Ave	0.3552	0.3847	0.1000	21.7	20.0	8.3	20.0
Carbon tetrachloride	Ave	0.2924	0.3163	0.1000	21.6	20.0	8.2	20.0
1,1-Dichloropropene	Ave	0.3259	0.3764		23.1	20.0	15.5	20.0
Isobutyl alcohol	Ave	0.6027	0.5723		475	500	-5.1	50.0
Isooctane	Ave	0.5055	0.5034		19.9	20.0	-0.4	20.0
Benzene	Ave	1.355	1.475	0.5000	21.8	20.0	8.8	20.0
Isopropyl acetate	Ave	0.6019	0.7785		25.9	20.0	29.3*	20.0
Tert-amyl methyl ether	Ave	0.1676	0.2201		26.3	20.0	31.4*	20.0
1,2-Dichloroethane	Ave	0.3094	0.3778	0.1000	24.4	20.0	22.1*	20.0
n-Heptane	Ave	0.1123	0.1173		20.9	20.0	4.5	20.0
n-Butanol	Ave	0.2837	0.2411		425	500	-15.0	50.0
Trichloroethene	Ave	0.2548	0.2686	0.2000	21.1	20.0	5.4	20.0
Methylcyclohexane	Ave	0.3344	0.3023	0.1000	18.1	20.0	-9.6	50.0
Ethyl acrylate	Ave	0.5513	0.6140		22.3	20.0	11.4	20.0
1,2-Dichloropropane	Ave	0.2634	0.3096	0.1000	23.5	20.0	17.5	20.0
Methyl methacrylate	Ave	0.0594	0.0579		39.0	40.0	-2.5	20.0
1,4-Dioxane	Ave	0.996	1.061		426	400	6.5	50.0
Dibromomethane	Ave	0.1714	0.1796		21.0	20.0	4.8	20.0
n-Propyl acetate	Ave	0.3146	0.4139		26.3	20.0	31.5*	20.0
Dichlorobromomethane	Ave	0.3270	0.3725	0.2000	22.8	20.0	13.9	20.0
2-Nitropropane	Ave	2.851	2.752		38.6	40.0	-3.5	20.0
2-Chloroethyl vinyl ether	Ave	0.1578	0.1878		23.9	20.0	19.0	20.0
Epichlorohydrin	Ave	0.2153	0.2226		413	400	3.4	20.0
cis-1,3-Dichloropropene	Ave	0.5447	0.6425	0.2000	23.6	20.0	18.0	50.0
4-Methyl-2-pentanone (MIBK)	Ave	1.936	2.040	0.0500	105	100	5.4	50.0
Toluene	Ave	1.374	1.467	0.4000	21.3	20.0	6.7	20.0
trans-1,3-Dichloropropene	Ave	0.4786	0.5757	0.1000	24.1	20.0	20.3	50.0
Ethyl methacrylate	Ave	0.2764	0.3260		23.6	20.0	17.9	20.0
1,1,2-Trichloroethane	Ave	0.2717	0.3091	0.1000	22.8	20.0	13.8	20.0
Tetrachloroethene	Ave	0.3498	0.3074	0.2000	17.6	20.0	-12.1	20.0
1,3-Dichloropropane	Ave	0.4910	0.5784		23.6	20.0	17.8	20.0
2-Hexanone	Ave	0.7784	0.7448	0.0500	95.7	100	-4.3	50.0
n-Butyl acetate	Ave	0.4227	0.5513		26.1	20.0	30.4*	20.0
Chlorodibromomethane	Ave	0.3310	0.3561	0.1000	21.5	20.0	7.6	50.0
Ethylene Dibromide	Ave	0.3268	0.3465	0.1000	21.2	20.0	6.0	20.0
Chlorobenzene	Ave	0.8680	0.8853	0.5000	20.4	20.0	2.0	20.0

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222961-1

SDG No.:

Lab Sample ID: CCVIS 460-742890/3 Calibration Date: 11/27/2020 08:58

Instrument ID: CVOAMS8 Calib Start Date: 10/29/2020 06:29

GC Column: Rtx-624 ID: 0.25 (mm) Calib End Date: 10/29/2020 08:55

Lab File ID: J09498.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Ethylbenzene	Ave	0.4463	0.4556	0.1000	20.4	20.0	2.1	20.0
1,1,1,2-Tetrachloroethane	Ave	0.3149	0.3184		20.2	20.0	1.1	20.0
m-Xylene & p-Xylene	Ave	0.5447	0.5485	0.1000	20.1	20.0	0.7	20.0
n-Butyl acrylate	Ave	0.2218	0.2484		22.4	20.0	12.0	20.0
o-Xylene	Ave	0.5373	0.5437	0.3000	20.2	20.0	1.2	20.0
Styrene	Ave	0.8981	0.9376	0.3000	20.9	20.0	4.4	20.0
Amyl acetate (mixed isomers)	Ave	0.8797	1.211		27.5	20.0	37.6*	20.0
Bromoform	Ave	0.2357	0.2188	0.1000	18.6	20.0	-7.2	20.0
Isopropylbenzene	Ave	1.252	1.274	0.1000	20.4	20.0	1.8	20.0
Bromobenzene	Ave	0.7464	0.7090		19.0	20.0	-5.0	20.0
1,1,2,2-Tetrachloroethane	Ave	0.7445	0.8720	0.3000	23.4	20.0	17.1	20.0
N-Propylbenzene	Ave	2.809	2.980		21.2	20.0	6.1	20.0
1,2,3-Trichloropropane	Ave	0.1949	0.2183		22.4	20.0	12.0	20.0
trans-1,4-Dichloro-2-butene	Ave	0.1942	0.2584		26.6	20.0	33.0*	20.0
2-Chlorotoluene	Ave	1.983	2.233		22.5	20.0	12.6	20.0
4-Ethyltoluene	Ave	2.329	2.435		20.9	20.0	4.5	20.0
1,3,5-Trimethylbenzene	Ave	2.001	2.051		20.5	20.0	2.5	20.0
4-Chlorotoluene	Ave	1.916	2.103		21.9	20.0	9.7	20.0
Butyl Methacrylate	Ave	0.7498	0.8397		22.4	20.0	12.0	20.0
tert-Butylbenzene	Ave	1.604	1.474		18.4	20.0	-8.1	20.0
1,2,4-Trimethylbenzene	Ave	2.097	2.158		20.6	20.0	2.9	20.0
sec-Butylbenzene	Ave	2.239	2.123		19.0	20.0	-5.2	20.0
1,3-Dichlorobenzene	Ave	1.250	1.243	0.6000	19.9	20.0	-0.5	20.0
4-Isopropyltoluene	Ave	1.926	1.793		18.6	20.0	-6.9	20.0
1,4-Dichlorobenzene	Ave	1.306	1.272	0.5000	19.5	20.0	-2.6	20.0
1,2,3-Trimethylbenzene	Ave	2.244	2.327		20.7	20.0	3.7	20.0
Benzyl chloride	Ave	1.237	1.613		26.1	20.0	30.4	50.0
Indan	Ave	2.248	2.338		20.8	20.0	4.0	20.0
p-Diethylbenzene	Ave	0.9904	0.8944		18.1	20.0	-9.7	20.0
n-Butylbenzene	Ave	0.9551	0.9917		20.8	20.0	3.8	20.0
1,2-Dichlorobenzene	Ave	1.260	1.238	0.4000	19.7	20.0	-1.7	20.0
1,2,4,5-Tetramethylbenzene	Ave	1.878	1.743		18.6	20.0	-7.2	20.0
1,2-Dibromo-3-Chloropropane	Ave	0.1637	0.1548	0.0500	18.9	20.0	-5.4	50.0
1,3,5-Trichlorobenzene	Ave	0.8458	0.6969		16.5	20.0	-17.6	20.0
1,2,4-Trichlorobenzene	Ave	0.7451	0.6651	0.2000	17.9	20.0	-10.7	20.0
Hexachlorobutadiene	Ave	0.2915	0.2375		16.3	20.0	-18.5	20.0
Naphthalene	Ave	1.972	2.058		20.9	20.0	4.4	50.0
1,2,3-Trichlorobenzene	Ave	0.6681	0.5842		17.5	20.0	-12.6	20.0
Dibromofluoromethane (Surr)	Ave	0.2359	0.2304		48.8	50.0	-2.3	20.0
1,2-Dichloroethane-d4 (Surr)	Ave	0.2408	0.2836		58.9	50.0	17.7	20.0
Toluene-d8 (Surr)	Ave	1.122	1.173		52.3	50.0	4.6	20.0

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222961-1

SDG No.:

Lab Sample ID: CCVIS 460-742890/3 Calibration Date: 11/27/2020 08:58

Instrument ID: CVOAMS8 Calib Start Date: 10/29/2020 06:29

GC Column: Rtx-624 ID: 0.25(mm) Calib End Date: 10/29/2020 08:55

Lab File ID: J09498.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
4-Bromofluorobenzene	Ave	0.3708	0.3544		47.8	50.0	-4.4	20.0

SVOC Data Section

Geology

Hydrology

Remediation

Water Supply

QA/QC Review of Method 8270E Semi-Volatiles Data for Eurofins TestAmerica-Edison, Job No: 460-222961-1

1 Soil Sample, 1 Surface Water Sample, 4 Ground Water Samples, and 1 Field Duplicate Collected November 13, 2020

Prepared by: Donald Anné February 8, 2021

Holding Times: Samples were extracted and analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The DFTPP tuning criteria were within control limits.

<u>Initial Calibration</u>: The average RRFs for applicable compounds were above the method minimums and the %RSDs were below the method maximum, as required.

The average RRFs for target compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The RRFs for applicable compounds were above the method minimums, as required. The %Ds for 4 compounds (highlighted yellow on attached FORM VII) were above the method maximum on 11-18-20 (L339718.d). The %Ds for 8 compounds (highlighted yellow on attached FORM VII) were above the method maximum on 11-19-20 (P093595.D). No action is taken on fewer than 20% of the compounds with method criteria outside control limits per calibration.

The associated RRFs for target compounds were above the allowable minimum (0.050), as required.

The %Ds for 4 compounds (highlighted yellow on attached FORM VII) were above the allowable maximum (20%) on 11-18-20 (L339718.d). The %Ds for 8 compounds (highlighted yellow on attached FORM VII) were above the method maximum (20%) on 11-19-20 (P093595.D). Positive results for these compounds should be considered estimated (J) in associated samples.

<u>Blanks</u>: The analyses of method blanks reported target compounds as not detected.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

- <u>Surrogate Recovery</u>: Three of three acid extractable surrogate recoveries for sample MW-2 were above control limits. Positive results for acid extractable compounds should be considered estimated, biased high (J+) in sample MW-2.
- Matrix Spike/Matrix Spike Duplicate: The relative percent differences for 4-chloroaniline and 3,3'-dichlorobenzidine were above the allowable maximum and 1 or 2 of 2 percent recoveries for 7 compounds (highlighted yellow on attached FORM III) were above QC limits for aqueous MS/MSD sample MW-5. Sample MW-5 reported these compounds as "not detected"; therefore, no action is taken.
- <u>Laboratory Control Sample</u>: The relative percent differences (RPDs) for target compounds were below the allowable maximum, but 2 of 2 percent recoveries (%Rs) for atrazine were above QC limits for aqueous samples LCS 460-741112/2-A and LCSD 460-741112/3-A. Positive results for atrazine should be considered estimated, biased high (J+) in associated aqueous samples.
 - The %Rs for benzo(a)pyrene, benzaldehyde, and atrazine were above the QC limits for soil sample LCS 460-740823/2-A. Positive results for these compounds should be considered estimated, biased high (J+) in associated soil samples.
- <u>Field Duplicates</u>: The analyses of aqueous field duplicate pair MW-1A/DUP reported target compounds as not detected; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pair were acceptable.
- <u>Compound ID</u>: Checked compounds and surrogates were within quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

FORM II GC/MS SEMI VOA SURROGATE RECOVERY

Lab	Name:	Eurofins	TestAmerica,	Edison	Job	No.:	460-222961-1	

SDG No.: ____

Matrix: Water Level: Low

GC Column (1): Rtxi-5Sil M ID: 0.25(mm)

Client Sample ID	Lab Sample ID	2FP	#	PHL	#	NBZ	#	FBP	#	TBP	#	TPHL	#
MW-1A	460-222961-1	44		28		86		81		123		82	_
MW-2	460-222961-2	86	Х	68	Х	117		120		173	Х	103	
MW-3	460-222961-3	43		28		100		84		130		69	_
MW-5	460-222961-4	46		28		93		89		133		90	_
DUP	460-222961-6	46		31		95		90		114		109	_
SW-4	460-222961-8	40		24		87		77		112		82	
	MB 460-741112/1-A	41		27		80		69		96		98	
	LCS 460-741112/2-A	43		29		76		70		120		99	
	LCSD 460-741112/3-A	41		28		80		74		123		94	
MW-5 MS	460-222961-4 MS	36		24		77		71		128		86	
MW-5 MSD	460-222961-4 MSD	37		24		79		77		131		84	

	QC LIMITS
2FP = 2-Fluorophenol (Surr)	18-72
PHL = Phenol-d5 (Surr)	10-50
NBZ = Nitrobenzene-d5 (Surr)	46-137
FBP = 2-Fluorobiphenyl	42-127
TBP = 2, 4, 6-Tribromophenol (Surr)	36-159
TPHL = Terphenyl-d14 (Surr)	39-150

 $\ensuremath{\text{\#}}$ Column to be used to flag recovery values

Lab Nam	e: Eurofins TestAme	erica, Edison	Job No.: 460	-222961-1
SDG No.	:			
Matrix:	Solid	Level: Low	Lab File ID:	L339722.d
Lab ID:	LCS 460-740823/2-A	1	Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(ug/Kg)	(ug/Kg)	REC	REC	
Phenol	3330	3250	98	63-110	
2-Chlorophenol	3330	3290	99	63-106	
2-Methylphenol	3330	3100	93	63-108	
4-Methylphenol	3330	2880	86	61-108	
2-Nitrophenol	3330	3350	101	64-112	
2,4-Dimethylphenol	3330	3240	97	63-107	
2,4-Dichlorophenol	3330	3310	99	66-113	
4-Chloro-3-methylphenol	3330	3100	93	66-114	
2,4,6-Trichlorophenol	3330	3750	112	63-113	
2,4,5-Trichlorophenol	3330	3320	99	64-112	
2,4-Dinitrotoluene	3330	3440	103	65-124	
4-Nitrophenol	6670	6230	93	47-123	
4,6-Dinitro-2-methylphenol	6670	6130	92	64-129	
Pentachlorophenol	6670	6890	103	44-126	
Bis (2-chloroethyl) ether	3330	3300	99	60-107	
N-Nitrosodi-n-propylamine	3330	2990	90	61-108	
Hexachloroethane	3330	3190	96	61-102	
Nitrobenzene	3330	3230	97	63-110	
Isophorone	3330	3250	97	63-107	
Naphthalene	3330	3140	94	63-106	
4-Chloroaniline	3330	1870	56	20-98	
Hexachlorobutadiene	3330	3350	101	62-109	
2-Methylnaphthalene	3330	3130	94	64-108	
Hexachlorocyclopentadiene	3330	3540	106	22-124	
2-Chloronaphthalene	3330	3370	101	65-109	
2-Nitroaniline	3330	3050	91	59-119	
Dimethyl phthalate	3330	3230	97	65-109	
Acenaphthylene	3330	3320	99	64-108	
2,6-Dinitrotoluene	3330	3530	106	67-121	
3-Nitroaniline	3330	2550	76	31-102	
Acenaphthene	3330	3250	98	53-110	
Dibenzofuran	3330	3210	96	65-108	
2,4-Dinitrophenol	6670	6220	93	37-125	
Diethyl phthalate	3330	3140	94		
4-Chlorophenyl phenyl ether	3330	3230	97		
Fluorene	3330	3220	97		
4-Nitroaniline	3330	2870	86		
N-Nitrosodiphenylamine	3330	3350	101		
4-Bromophenyl phenyl ether	3330	3410	102		
Hexachlorobenzene	3330	3410	102		
Phenanthrene	3330	3190	96		
Anthracene	3330	3190	96		

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8270E}$

Lab Name	e: Eurofins TestAme	rica, Edison	Job No.: 460	-222961-1
SDG No.	:			
Matrix:	Solid	Level: Low	Lab File ID:	L339722.d
Lab ID:	T.CS 460-740823/2-A		Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	્ર	LIMITS	#
COMPOUND	(ug/Kg)	(ug/Kg)	REC	REC	
Carbazole	3330	3040	91	64-113	
Di-n-butyl phthalate	3330	3210	96	66-114	
Fluoranthene	3330	3060	92	64-113	
Pyrene	3330	3390	102	71-122	
Butyl benzyl phthalate	3330	3370	101	70-123	
Benzo[a]anthracene	3330	3260	98	67-115	
Chrysene	3330	3120	94	71-122	
Bis(2-ethylhexyl) phthalate	3330	3310	99	69-124	
Di-n-octyl phthalate	3330	3800	114	65-122	
Benzo[b]fluoranthene	3330	3680	111	64-116	
Benzo[k]fluoranthene	3330	3820	115	67-115	
Benzo[a]pyrene	3330	3940	118	63-108	*
Indeno[1,2,3-cd]pyrene	3330	3950	118	62-121	
Dibenz(a,h)anthracene	3330	3920	118	66-119	
Benzo[g,h,i]perylene	3330	3530	106	61-113	
1,1'-Biphenyl	3330	3410	102	65-110	
Acetophenone	3330	2730	82	61-103	
Benzaldehyde	1330	1730	130	39-113	*
Caprolactam	1330	1750	132	59-140	
Atrazine	1330	2000	150	44-145	*
2,2'-oxybis[1-chloropropane]	3330	2810	84	49-109	
1,2,4,5-Tetrachlorobenzene	3330	3450	104	64-110	
2,3,4,6-Tetrachlorophenol	3330	3300	99	58-113	
3,3'-Dichlorobenzidine	3330	1940	58	4-119	
Bis(2-chloroethoxy)methane	3330	3090	93	62-107	
1,4-Dioxane	3330	2370	71	31-81	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8270E}$

Lab Nam	e: Eurofins TestAme	erica, Edison	Job No.: 460	-222961-1
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID:	P093611.D
Lab ID:	LCS 460-741112/2-A	1	Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	REC	REC	
Phenol	80.0	29.8	37	20-53	
2-Chlorophenol	80.0	61.7	77	57-93	
2-Methylphenol	80.0	52.6	66	45-86	
4-Methylphenol	80.0	49.6	62	37-86	
2-Nitrophenol	80.0	87.1	109	60-126	
2,4-Dimethylphenol	80.0	61.8	77	59-101	
2,4-Dichlorophenol	80.0	70.3	88	65-107	
4-Chloro-3-methylphenol	80.0	68.9	86	60-107	
2,4,6-Trichlorophenol	80.0	79.6	100	64-115	
2,4,5-Trichlorophenol	80.0	74.6	93	64-110	
2,4-Dinitrotoluene	80.0	95.7	120	63-122	
4-Nitrophenol	160	42.5	27	17-61	
4,6-Dinitro-2-methylphenol	160	184	115	69-149	
Pentachlorophenol	160	148	93	57-135	
Bis(2-chloroethyl)ether	80.0	67.0	84	57-112	
N-Nitrosodi-n-propylamine	80.0	67.9	85	60-111	
Hexachloroethane	80.0	38.3	48	27-94	
Nitrobenzene	80.0	79.3	99	67-109	
Isophorone	80.0	71.3	89	64-113	
Naphthalene	80.0	65.9	82	56-99	
4-Chloroaniline	80.0	60.3	75	43-105	
Hexachlorobutadiene	80.0	36.3	45	33-98	
2-Methylnaphthalene	80.0	65.8	82	57-103	
Hexachlorocyclopentadiene	80.0	41.2	51	14-97	
2-Chloronaphthalene	80.0	64.3	80	57-102	
2-Nitroaniline	80.0	69.2	87	54-123	
Dimethyl phthalate	80.0	78.4	98	68-105	
Acenaphthylene	80.0	68.1	85	64-102	
2,6-Dinitrotoluene	80.0	83.2	104	71-118	
3-Nitroaniline	80.0	71.5	89	57-110	
Acenaphthene	80.0	60.4	76	54-108	
Dibenzofuran	80.0	68.2	85	65-104	
2,4-Dinitrophenol	160	179	112	36-150	
Diethyl phthalate	80.0	78.6	98	65-105	
4-Chlorophenyl phenyl ether	80.0	73.8	92		
Fluorene	80.0	69.4	87		
4-Nitroaniline	80.0	71.9	90		
N-Nitrosodiphenylamine	80.0	67.7	85		
4-Bromophenyl phenyl ether	80.0	78.5	98		
Hexachlorobenzene	80.0	78.8	99		
Phenanthrene	80.0	67.8	85		
Anthracene	80.0	68.1	85		

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8270E}$

Lab Name	e: Eurofins TestAme	rica, Edison	Job No.: 460	-222961-1
SDG No.:	:			
Matrix:	Water	Level: Low	Lab File ID:	P093611.D
Lab ID:	LCS 460-741112/2-A		Client ID:	

SPIKE LCS ADDED CONCENTRATION (ug/L) (ug/L) Carbazole 80.0 67.1	LCS % REC	QC LIMITS REC	#
COMPOUND (ug/L) (ug/L)	REC		#
		DEC	
Carbazole 80 0 67 1	84	REC	
Calbazote 00.0 07.1		68-113	
Di-n-butyl phthalate 80.0 75.9	95	66-113	
Fluoranthene 80.0 71.9	90	66-116	
Pyrene 80.0 70.7	8.8	66-121	
Butyl benzyl phthalate 80.0 83.7	105	63-126	
Benzo[a]anthracene 80.0 71.4	8.9	71-114	
Chrysene 80.0 71.6	8.9	74-122	
Bis(2-ethylhexyl) phthalate 80.0 72.7	91	60-135	
Di-n-octyl phthalate 80.0 76.3	95	40-133	
Benzo[b]fluoranthene 80.0 82.9	104		
Benzo[k]fluoranthene 80.0 84.4	106	66-116	
Benzo[a]pyrene 80.0 83.9	105	67-106	
Indeno[1,2,3-cd]pyrene 80.0 95.3	119	55-139	
Dibenz(a,h)anthracene 80.0 91.9	115	57-144	
Benzo[g,h,i]perylene 80.0 90.1	113	48-145	
1,1'-Biphenyl 80.0 65.1	81	59-102	
Acetophenone 80.0 71.8	90		
Benzaldehyde 40.0 41.9	105	47-134	
Caprolactam 40.0 16.8	42	10-60	
Atrazine 40.0 60.9	152	10-150	*
2,2'-oxybis[1-chloropropane] 80.0 50.8	63	38-124	
1,2,4,5-Tetrachlorobenzene 80.0 61.0	76	48-109	
2,3,4,6-Tetrachlorophenol 80.0 83.4	104		
3,3'-Dichlorobenzidine 80.0 76.2	95		
Bis(2-chloroethoxy)methane 80.0 66.1	83	64-114	
1,4-Dioxane 80.0 34.4	43	29-68	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8270E}$

Lab Name	e: Eurofins TestAme	erica, Edison	Job No.: 460-	-222961-1
SDG No.	:			
Matrix:	Water	Level: Low	Lab File ID:	P093612.D
Lab ID:	LCSD 460-741112/3-	-A	Client ID:	

	SPIKE	LCSD	LCSD	0	QC LI	MITS	
COMPOUND	ADDED	CONCENTRATION		8	DDD	DEC	#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC 20-53	
Phenol	80.0	25.9	32	14	30		
2-Chlorophenol	80.0	58.5	73	5	30	57-93	
2-Methylphenol	80.0	48.8	61	7	30	45-86	
4-Methylphenol	80.0	44.8	56	10	30	37-86	
2-Nitrophenol	80.0	81.6	102	7	30	60-126	
2,4-Dimethylphenol	80.0	59.8	75	3	30	59-101	
2,4-Dichlorophenol	80.0	66.7	83	5	30	65-107	
4-Chloro-3-methylphenol	80.0	64.8	81	6	30	60-107	
2,4,6-Trichlorophenol	80.0	75.5	94	5	30	64-115	
2,4,5-Trichlorophenol	80.0	72.6	91	3	30	64-110	
2,4-Dinitrotoluene	80.0	90.4	113		30	63-122	
4-Nitrophenol	160	40.5	25	5	30	17-61	
4,6-Dinitro-2-methylphenol	160	177	111	4	30	69-149	
Pentachlorophenol	160	132	83	11	30	57-135	
Bis(2-chloroethyl)ether	80.0	63.0	79	6	30	57-112	
N-Nitrosodi-n-propylamine	80.0	65.2	82	4	30	60-111	
Hexachloroethane	80.0	35.8	45	7	30	27-94	
Nitrobenzene	80.0	75.2	94	5	30	67-109	
Isophorone	80.0	67.1	84	6	30	64-113	
Naphthalene	80.0	63.2	79	4	30	56-99	
4-Chloroaniline	80.0	50.5	63	18	30	43-105	
Hexachlorobutadiene	80.0	36.5	46	1	30	33-98	
2-Methylnaphthalene	80.0	60.4	75	9	30	57-103	
Hexachlorocyclopentadiene	80.0	37.9	47	8	30	14-97	
2-Chloronaphthalene	80.0	59.3	74	8	30	57-102	
2-Nitroaniline	80.0	64.6	81	7	30	54-123	
Dimethyl phthalate	80.0	74.5	93	5	30	68-105	
Acenaphthylene	80.0	65.3	82	4	30	64-102	
2,6-Dinitrotoluene	80.0	79.2	99	5	30	71-118	
3-Nitroaniline	80.0	64.9	81	10	30	57-110	
Acenaphthene	80.0	56.2	70	7	30	54-108	
Dibenzofuran	80.0	65.2	82	4	30	65-104	
2,4-Dinitrophenol	160	166	104	7	30	36-150	
Diethyl phthalate	80.0	73.9	92		30	65-105	
4-Chlorophenyl phenyl ether	80.0	67.8	85		30	60-113	
Fluorene	80.0	66.1	83		30	64-108	
4-Nitroaniline	80.0	66.0	83		30	52-122	
N-Nitrosodiphenylamine	80.0	63.1	79		30	67-110	
4-Bromophenyl phenyl ether	80.0	68.9	86		30	65-115	
Hexachlorobenzene	80.0	72.0	90		30	59-129	
Phenanthrene	80.0	63.0	79		30	69-108	
Anthracene	80.0	64.2	80	6	30	69-110	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8270E}$

Lab Name	: Eurofins TestAm	erica, Edison	Job No.: 460-	-222961-1
SDG No.:				
Matrix:	Water	Level: Low	Lab File ID:	P093612.D
Lab ID:	LCSD 460-741112/3	-A	Client ID:	

	SPIKE ADDED	LCSD CONCENTRATION	LCSD	olo	QC LIMITS		#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	11
Carbazole	80.0	62.8	79	7	30	68-113	
Di-n-butyl phthalate	80.0	69.8	87	8	30	66-113	
Fluoranthene	80.0	66.7	83	7	30	66-116	
Pyrene	80.0	63.3	79	11	30	66-121	
Butyl benzyl phthalate	80.0	73.9	92	12	30	63-126	
Benzo[a]anthracene	80.0	64.4	80	10	30	71-114	
Chrysene	80.0	64.9	81	10	30	74-122	
Bis(2-ethylhexyl) phthalate	80.0	66.4	83	9	30	60-135	
Di-n-octyl phthalate	80.0	69.6	87	9	30	40-133	
Benzo[b]fluoranthene	80.0	76.5	96	8	30	65-113	
Benzo[k]fluoranthene	80.0	76.7	96	10	30	66-116	
Benzo[a]pyrene	80.0	76.4	96	9	30	67-106	
Indeno[1,2,3-cd]pyrene	80.0	87.8	110	8	30	55-139	
Dibenz(a,h)anthracene	80.0	83.6	104	10	30	57-144	
Benzo[g,h,i]perylene	80.0	83.4	104	8	30	48-145	
1,1'-Biphenyl	80.0	60.7	76	7	30	59-102	
Acetophenone	80.0	66.5	83	8	30	65-109	
Benzaldehyde	40.0	49.8	124	17	30	47-134	
Caprolactam	40.0	19.1	48	13	30	10-60	
Atrazine	40.0	69.1	173	13	30	10-150	*
2,2'-oxybis[1-chloropropane]	80.0	47.1	59	8	30	38-124	
1,2,4,5-Tetrachlorobenzene	80.0	54.7	68	11	30	48-109	
2,3,4,6-Tetrachlorophenol	80.0	74.8	94	11	30	64-123	
3,3'-Dichlorobenzidine	80.0	64.4	81	17	30	59-125	
Bis(2-chloroethoxy)methane	80.0	61.8	77	7	30	64-114	
1,4-Dioxane	80.0	31.0	39	10	30	29-68	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8270E}$

FORM III GC/MS SEMI VOA MATRIX SPIKE RECOVERY

Lab Name	e: Eurofins TestAm	erica, Edison	Job No.: 460-222961-1		
SDG No.	:				
Matrix:	Water	Level: Low	Lab File ID: P093601.D		
Lab ID:	DID: 460-222961-4 MS		Client ID: MW-5 MS		

	SPIKE	SAMPLE	MS	MS	QC	
	ADDED	CONCENTRATION	CONCENTRATION	용	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC	REC	
Phenol	80.0	10 U	24.9	31		
2-Chlorophenol	80.0	10 U	57.1	71	57-93	
2-Methylphenol	80.0	10 U	50.8	64	45-86	
4-Methylphenol	80.0	10 U	45.7	57		
2-Nitrophenol	80.0	10 U	80.4	101		
2,4-Dimethylphenol	80.0	10 U	62.6	78		
2,4-Dichlorophenol	80.0	10 U	69.2	86		
4-Chloro-3-methylphenol	80.0	10 U	70.7	88	60-107	
2,4,6-Trichlorophenol	80.0	10 U	80.1	100	64-115	
2,4,5-Trichlorophenol	80.0	10 U	79.1	99	64-110	
2,4-Dinitrotoluene	80.0	2.0 U	98.5	123	, i	F1
4-Nitrophenol	160	30 U	43.0	27		
4,6-Dinitro-2-methylphenol	160	30 U	203	127		
Pentachlorophenol	160	30 U	164	102	57-135	
Bis(2-chloroethyl)ether	80.0	1.0 U	64.8	81	57-112	
N-Nitrosodi-n-propylamine	80.0	1.0 U	68.6	86	60-111	
Hexachloroethane	80.0	2.0 U	41.3	52	27-94	
Nitrobenzene	80.0	1.0 U	80.6	101	67-109	
Isophorone	80.0	10 U	72.3	90	64-113	
Naphthalene	80.0	2.0 U	68.2	85	56-99	
4-Chloroaniline	80.0	1.0 U	35.1	44	43-105	
Hexachlorobutadiene	80.0	2.0 U	39.6	49	33-98	
2-Methylnaphthalene	80.0	10 U	66.3	83		
Hexachlorocyclopentadiene	80.0	10 U	42.5	53	14-97	
2-Chloronaphthalene	80.0	10 U	64.6	81	57-102	
2-Nitroaniline	80.0	20 U	70.2	88	54-123	
Dimethyl phthalate	80.0	10 U	82.2	103	68-105	
Acenaphthylene	80.0	10 U	71.8	90	64-102	
2,6-Dinitrotoluene	80.0	2.0 U	88.3	110		
3-Nitroaniline	80.0	20 U	61.3	77		
Acenaphthene	80.0	10 U	62.7	78		
Dibenzofuran	80.0	10 U	73.2	91		
2,4-Dinitrophenol	160	30 U	185	115		
Diethyl phthalate	80.0	10 U	84.2	105	65-105	
4-Chlorophenyl phenyl ether	80.0	10 U	77.7	97		
Fluorene	80.0	10 U	73.2	92		
4-Nitroaniline	80.0	20 U	64.2	80	52-122	
N-Nitrosodiphenylamine	80.0	10 U	72.6	91	67-110	
4-Bromophenyl phenyl ether	80.0	10 U	80.7	101		
Hexachlorobenzene	80.0	1.0 U	83.6	104	59-129	
Phenanthrene	80.0	10 U	74.8	93	69-108	
Anthracene	80.0	10 U	76.2	95	69-110	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8270E}$

FORM III GC/MS SEMI VOA MATRIX SPIKE RECOVERY

Lab Name:	Eurofins TestAmerica,	Edison	Job No.:	460-222961-1
SDG No.:				

Matrix: Water Level: Low Lab File ID: P093601.D

Lab ID: 460-222961-4 MS Client ID: MW-5 MS

	SPIKE	SAMPLE	MS	MS	QC	
	ADDED	CONCENTRATION	CONCENTRATION	용	LIMITS	#
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC	REC	
Carbazole	80.0	10 U	74.6	93	68-113	
Di-n-butyl phthalate	80.0	10 U	82.7	103	66-113	
Fluoranthene	80.0	10 U	79.8	100	66-116	
Pyrene	80.0	10 U	77.5	97	66-121	
Butyl benzyl phthalate	80.0	10 U	84.8	106	63-126	
Benzo[a]anthracene	80.0	1.0 U	77.2	97	71-114	
Chrysene	80.0	10 U	78.4	98	74-122	
Bis(2-ethylhexyl) phthalate	80.0	10 U	76.6	96	60-135	
Di-n-octyl phthalate	80.0	10 U	80.0	100	40-133	
Benzo[b]fluoranthene	80.0	2.0 U	89.1	111	65-113	
Benzo[k]fluoranthene	80.0	1.0 U	91.3	114	66-116	
Benzo[a]pyrene	80.0	1.0 U	89.1	111	67-106	F1
Indeno[1,2,3-cd]pyrene	80.0	2.0 U	99.2	124	55-139	
Dibenz(a,h)anthracene	80.0	1.0 U	95.3	119	57-144	
Benzo[g,h,i]perylene	80.0	10 U	92.6	116	48-145	
1,1'-Biphenyl	80.0	10 U	66.9	84	59-102	
Acetophenone	80.0	10 U	72.0	90	65-109	
1,4-Dioxane	80.0	10 U	28.9	36	29-68	
Benzaldehyde	40.0	10 U	47.9	120	47-134	E
Caprolactam	40.0	10 U	14.5	36	10-60	
Atrazine	40.0	10 U	67.7	169	10-150	E F1
2,2'-oxybis[1-chloropropane]	80.0	10 U	49.4	62	38-124	
1,2,4,5-Tetrachlorobenzene	80.0	10 U	61.5	77	48-109	
2,3,4,6-Tetrachlorophenol	80.0	10 U	84.9	106	64-123	
3,3'-Dichlorobenzidine	80.0	20 U	48.7	61	59-125	
Bis(2-chloroethoxy)methane	80.0	10 U	64.9	81	64-114	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8270E}$

FORM III GC/MS SEMI VOA MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	Euroiins	TestAmerica,	Edison	Job No.:	460-222961-1
SDG No.:					
Matrix: W	ater	Leve	l: Low	Lab File	ID: P093602.D

Lab ID: 460-222961-4 MSD Client ID: MW-5 MSD

	SPIKE	MSD	MSD		QC LI	IMITS	
GOMBOTHE	ADDED	CONCENTRATION		8	222	DEG	#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC 20-53	
Phenol	80.0	24.4	30		30		
2-Chlorophenol	80.0	60.8	76	6	30	57-93	
2-Methylphenol	80.0	50.4	63		30	45-86	
4-Methylphenol	80.0	47.3	59		30	37-86	
2-Nitrophenol	80.0	86.3	108		30	60-126	
2,4-Dimethylphenol	80.0	64.4	81	3	30	59-101	
2,4-Dichlorophenol	80.0	73.3	92	6	30	65-107	
4-Chloro-3-methylphenol	80.0	75.2	94	6	30	60-107	
2,4,6-Trichlorophenol	80.0	87.4	109		30	64-115	
2,4,5-Trichlorophenol	80.0	83.9	105		30	64-110	
2,4-Dinitrotoluene	80.0	110	137		30	63-122	F1
4-Nitrophenol	160	41.7	26		30	17-61	
4,6-Dinitro-2-methylphenol	160	202	126	1	30	69-149	
Pentachlorophenol	160	172	107	5	30	57-135	
Bis(2-chloroethyl)ether	80.0	67.5	84	4	30	57-112	
N-Nitrosodi-n-propylamine	80.0	73.8	92	7	30	60-111	
Hexachloroethane	80.0	46.2	58	11	30	27-94	
Nitrobenzene	80.0	82.8	104	3	30	67-109	
Isophorone	80.0	75.1	94	4	30	64-113	
Naphthalene	80.0	71.4	89	5	30	56-99	
4-Chloroaniline	80.0	49.5	62	34	30	43-105	F2
Hexachlorobutadiene	80.0	48.5	61	20	30	33-98	
2-Methylnaphthalene	80.0	72.9	91	9	30	57-103	
Hexachlorocyclopentadiene	80.0	49.5	62	15	30	14-97	
2-Chloronaphthalene	80.0	70.6	88	9	30	57-102	
2-Nitroaniline	80.0	76.8	96	9	30	54-123	
Dimethyl phthalate	80.0	86.7	108	5	30	68-105	F1
Acenaphthylene	80.0	75.8	95	5	30	64-102	
2,6-Dinitrotoluene	80.0	91.5	114	3	30	71-118	
3-Nitroaniline	80.0	73.9	92	19	30	57-110	
Acenaphthene	80.0	69.6	87	11	30	54-108	
Dibenzofuran	80.0	77.5	97	6	30	65-104	
2,4-Dinitrophenol	160	177	111		30	36-150	
Diethyl phthalate	80.0	87.8	110		30	65-105	F1
4-Chlorophenyl phenyl ether	80.0	82.1	103		30	60-113	
Fluorene	80.0	79.0	99		30	64-108	
4-Nitroaniline	80.0	77.1	96		30	52-122	
N-Nitrosodiphenylamine	80.0	76.5	96		30	67-110	
4-Bromophenyl phenyl ether	80.0	87.0	109		30	65-115	
Hexachlorobenzene	80.0	86.1	103		30	59-129	
Phenanthrene	80.0	77.4	97	3	30	69-108	
Anthracene	80.0	78.5	98	3	30	69-110	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $\mbox{8270E}$

FORM III GC/MS SEMI VOA MATRIX SPIKE DUPLICATE RECOVERY

Lab Nam	e: <u>Eurofins</u>	TestAmerica,	Edison	Job No.:	460-	-222961-1
SDG No.	:					
Matrix:	Water	Leve	l: Low	Lab File	ID:	P093602.D

Lab ID: 460-222961-4 MSD Client ID: MW-5 MSD

	SPIKE ADDED	MSD CONCENTRATION	MSD %	%	QC LI	MITS	#
COMPOUND	(ug/L)	(ug/L)	REC	RPD	RPD	REC	
Carbazole	80.0	76.6	96	3	30	68-113	
Di-n-butyl phthalate	80.0	86.7	108	5	30	66-113	
Fluoranthene	80.0	82.5	103	3	30	66-116	
Pyrene	80.0	80.6	101	4	30	66-121	
Butyl benzyl phthalate	80.0	89.6	112	6	30	63-126	
Benzo[a]anthracene	80.0	80.3	100	4	30	71-114	
Chrysene	80.0	80.1	100	2	30	74-122	
Bis(2-ethylhexyl) phthalate	80.0	80.2	100	5	30	60-135	
Di-n-octyl phthalate	80.0	83.7	105	5	30	40-133	
Benzo[b]fluoranthene	80.0	95.5	119	7	30	65-113	F1
Benzo[k]fluoranthene	80.0	93.9	117	3	30	66-116	F1
Benzo[a]pyrene	80.0	94.5	118	6	30	67-106	F1
Indeno[1,2,3-cd]pyrene	80.0	105	131	5	30	55-139	
Dibenz(a,h)anthracene	80.0	101	126	6	30	57-144	
Benzo[g,h,i]perylene	80.0	96.9	121	5	30	48-145	
1,1'-Biphenyl	80.0	72.5	91	8	30	59-102	
Acetophenone	80.0	74.3	93	3	30	65-109	
1,4-Dioxane	80.0	28.3	35	2	30	29-68	
Benzaldehyde	40.0	51.5	129	7	30	47-134	Ε
Caprolactam	40.0	15.2	38	5	30	10-60	
Atrazine	40.0	75.2	188	11	30	10-150	E F1
2,2'-oxybis[1-chloropropane]	80.0	51.1	64	3	30	38-124	
1,2,4,5-Tetrachlorobenzene	80.0	69.6	87	12	30	48-109	
2,3,4,6-Tetrachlorophenol	80.0	89.2	111	5	30	64-123	
3,3'-Dichlorobenzidine	80.0	74.6	93	42	30	59-125	F2
Bis(2-chloroethoxy)methane	80.0	68.4	85	5	30	64-114	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III $8270\mbox{E}$

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222961-1

SDG No.:

Lab Sample ID: CCVIS 460-740997/2 Calibration Date: 11/18/2020 23:24

Instrument ID: CBNAMS12 Calib Start Date: 11/12/2020 08:38

GC Column: Rtxi-5Sil MS ID: 0.25(mm) Calib End Date: 11:37

Lab File ID: L339718.d Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,4-Dioxane	Ave	0.5122	0.5206		50800	50000	1.7	20.0
N-Nitrosodimethylamine	Ave	0.8363	0.8582		51300	50000	2.6	20.0
Pyridine	Ave	1.418	1.318		92900	100000	-7.1	20.0
Benzaldehyde	Ave	1.139	0.7741	0.0100	13600	20000	- 32.0*	20.0
Phenol	Ave	1.849	1.962	0.8000	53100	50000	6.1	20.0
Aniline	Ave	2.218	2.239		50500	50000	0.9	20.0
Bis(2-chloroethyl)ether	Ave	1.279	1.358	0.7000	53100	50000	6.2	20.0
2-Chlorophenol	Ave	1.398	1.453	0.8000	51900	50000	3.9	20.0
n-Decane	Ave	1.576	1.482		47000	50000	-5.9	20.0
1,3-Dichlorobenzene	Ave	1.577	1.575		49900	50000	-0.1	20.0
1,4-Dichlorobenzene	Ave	1.610	1.602		49800	50000	-0.5	20.0
Benzyl alcohol	Ave	0.9079	0.9101		50100	50000	0.2	20.0
1,2-Dichlorobenzene	Ave	1.539	1.515		49200	50000	-1.5	20.0
2-Methylphenol	Ave	1.270	1.251	0.7000	49200	50000	-1.5	20.0
2,2'-oxybis[1-chloropropane]	Ave	2.167	1.909	0.0100	44100	50000	-11.9	20.0
N-Methylaniline	Ave	2.224	2.115		47500	50000	-4.9	20.0
3 & 4 Methylphenol	Ave	1.495	1.399		46800	50000	-6.4	20.0
4-Methylphenol	Ave	1.495	1.399	0.6000	46800	50000	-6.4	20.0
Acetophenone	Ave	2.098	1.917	0.0100	45700	50000	-8.6	20.0
N-Nitrosodi-n-propylamine	Ave	1.009	1.008	0.5000	50000	50000	-0.0	20.0
Hexachloroethane	Ave	0.5769	0.5921	0.3000	51300	50000	2.6	20.0
Nitrobenzene	Ave	0.6551	0.6800	0.2000	51900	50000	3.8	20.0
n,n'-Dimethylaniline	Ave	2.032	1.955	0.0100	48100	50000	-3.8	20.0
Isophorone	Ave	0.6692	0.6981	0.4000	52200	50000	4.3	20.0
2-Nitrophenol	Ave	0.1921	0.2064	0.1000	53700	50000	7.5	20.0
2,4-Dimethylphenol	Ave	0.3102	0.3258	0.2000	52500	50000	5.0	20.0
Bis(2-chloroethoxy)methane	Ave	0.4205	0.4328	0.3000	51500	50000	2.9	20.0
Benzoic acid	Lin2		0.2051		47800	50000	-4.4	20.0
2,4-Dichlorophenol	Ave	0.2949	0.3175	0.2000	53800	50000	7.7	20.0
1,2,4-Trichlorobenzene	Ave	0.3272	0.3525		53900	50000	7.7	20.0
Naphthalene	Ave	1.033	1.054	0.7000	51000	50000	2.1	20.0
4-Chloroaniline	Ave	0.4504	0.4616	0.0100	51200	50000	2.5	20.0
Hexachlorobutadiene	Ave	0.1898	0.1972	0.0100	51900	50000	3.9	20.0
Caprolactam	Lin2		0.1083	0.0100	22800	20000	14.0	20.0
4-Chloro-3-methylphenol	Ave	0.3090	0.3159	0.2000	51100	50000	2.2	20.0
2-Methylnaphthalene	Ave	0.7090	0.7230	0.4000	51000	50000	2.0	20.0
1-Methylnaphthalene	Ave	0.6665	0.6814		51100	50000	2.2	20.0
1,2,4,5-Tetrachlorobenzene	Ave	0.6196	0.6739	0.0100	54400	50000	8.8	20.0
Hexachlorocyclopentadiene	Ave	0.4502	0.4601	0.0500	51100	50000	2.2	20.0
2-tertbutyl-4-methylphenol	Ave	0.4401	0.4427		50300	50000	0.6	20.0
2,4,6-Trichlorophenol	Ave	0.4048	0.4664	0.2000	57600	50000	15.2	20.0

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222961-1

SDG No.:

Lab Sample ID: CCVIS 460-740997/2 Calibration Date: 11/18/2020 23:24

Instrument ID: CBNAMS12 Calib Start Date: 11/12/2020 08:38

GC Column: Rtxi-5Sil MS ID: 0.25 (mm) Calib End Date: 11/12/2020 11:37

Lab File ID: L339718.d Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
2,4,5-Trichlorophenol	Ave	0.4765	0.4997	0.2000	52400	50000	4.9	20.0
1,1'-Biphenyl	Ave	1.522	1.646	0.0100	54100	50000	8.1	20.0
2-Chloronaphthalene	Ave	1.233	1.300	0.8000	52700	50000	5.4	20.0
Phenyl ether	Ave	0.8084	0.8591		53100	50000	6.3	20.0
2-Nitroaniline	Ave	0.4757	0.4699	0.0100	49400	50000	-1.2	20.0
1,3-Dimethylnaphthalene	Ave	0.9196	1.013		55100	50000	10.2	20.0
Dimethyl phthalate	Ave	1.448	1.463	0.0100	50500	50000	1.0	20.0
Coumarin	Ave	0.2823	0.2641		46800	50000	-6.4	20.0
2,6-Dinitrotoluene	Ave	0.2998	0.3433	0.2000	57300	50000	14.5	20.0
Acenaphthylene	Ave	1.868	1.917	0.9000	51300	50000	2.6	20.0
3-Nitroaniline	Ave	0.3637	0.3820	0.0100	52500	50000	5.0	20.0
3,5-di-tert-butyl-4-hydroxyt	Ave	1.026	1.057		51500	50000	3.0	20.0
Acenaphthene	Ave	1.311	1.371	0.9000	52300	50000	4.6	20.0
2,4-Dinitrophenol	Lin2		0.2210	0.0100	101000	100000	1.2	20.0
4-Nitrophenol	Ave	0.2749	0.2821	0.0100	103000	100000	2.6	20.0
2,4-Dinitrotoluene	Ave	0.4059	0.4596	0.2000	56600	50000	13.2	20.0
Dibenzofuran	Ave	1.766	1.792	0.8000	50700	50000	1.5	20.0
2,3,4,6-Tetrachlorophenol	Ave	0.3729	0.4042	0.0100	54200	50000	8.4	20.0
Diethyl phthalate	Ave	1.470	1.493	0.0100	50800	50000	1.5	20.0
4-Chlorophenyl phenyl ether	Ave	0.6671	0.6868	0.4000	51500	50000	3.0	20.0
Fluorene	Ave	1.386	1.420	0.9000	51200	50000	2.5	20.0
4-Nitroaniline	Ave	0.3886	0.3927	0.0100	50500	50000	1.1	20.0
4,6-Dinitro-2-methylphenol	Lin2		0.1462	0.0100	99800	100000	-0.2	20.0
N-Nitrosodiphenylamine	Ave	0.5392	0.5653	0.0100	52400	50000	4.8	20.0
1,2-Diphenylhydrazine	Ave	0.7844	0.7589		48400	50000	-3.2	20.0
4-Bromophenyl phenyl ether	Ave	0.2280	0.2417	0.1000	53000	50000	6.0	20.0
Hexachlorobenzene	Ave	0.2669	0.2841	0.1000	53200	50000	6.4	20.0
Atrazine	Ave	0.1986	0.2314	0.0100	23300	20000	16.5	20.0
Pentachlorophenol	Ave	0.1661	0.1810	0.0500	109000	100000	8.9	20.0
Pentachloronitrobenzene	Ave	0.1100	0.1125	0.0100	51100	50000	2.2	20.0
n-Octadecane	Ave	0.4815	0.4773		49600	50000	-0.9	20.0
Phenanthrene	Ave	1.142	1.143	0.7000	50100	50000	0.1	20.0
Anthracene	Ave	1.155	1.188	0.7000	51400	50000	2.9	20.0
Carbazole	Ave	1.055	1.074	0.0100	50900	50000	1.8	20.0
Di-n-butyl phthalate	Ave	1.292	1.326	0.0100	51300	50000	2.7	20.0
Fluoranthene	Ave	1.239	1.257	0.6000	50700	50000	1.4	20.0
Benzidine	Ave	0.6999	0.7553		54000	50000	7.9	20.0
Pyrene	Ave	1.352	1.359	0.6000	50300	50000	0.5	20.0
Bisphenol-A	Ave	0.6209	0.6976		56200	50000	12.4	20.0
Butyl benzyl phthalate	Ave	0.5780	0.6086	0.0100	52600	50000	5.3	20.0

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222961-1

SDG No.:

Lab Sample ID: CCVIS 460-740997/2 Calibration Date: 11/18/2020 23:24

Instrument ID: CBNAMS12 Calib Start Date: 11/12/2020 08:38

GC Column: Rtxi-5Sil MS ID: 0.25 (mm) Calib End Date: 11/12/2020 11:37

Lab File ID: L339718.d Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
2,3,7,8-TCDD	Ave	0.1986	0.1939		488	500	-2.4	20.0
Carbamazepine	Lin2		0.5863		49700	50000	-0.6	20.0
3,3'-Dichlorobenzidine	Ave	0.4964	0.5331	0.0100	53700	50000	7.4	20.0
Benzo[a]anthracene	Ave	1.296	1.304	0.8000	50300	50000	0.6	20.0
Chrysene	Ave	1.319	1.298	0.7000	49200	50000	-1.5	20.0
Bis(2-ethylhexyl) phthalate	Ave	0.8506	0.8874	0.0100	52200	50000	4.3	20.0
Di-n-octyl phthalate	Ave	1.158	1.376	0.0100	59400	50000	18.9	20.0
Benzo[b]fluoranthene	Ave	1.086	1.240		57100	50000	14.2	20.0
Benzo[k]fluoranthene	Ave	1.141	1.366	0.7000	59900	50000	19.7	20.0
Benzo[a]pyrene	Ave	0.9056	1.138	0.7000	62800	50000	25.6*	20.0
<pre>Indeno[1,2,3-cd]pyrene</pre>	Ave	1.040	1.321	0.5000	63500	50000	27.0*	20.0
Dibenz(a,h)anthracene	Ave	1.064	1.336	0.4000	62800	50000	25.6*	20.0
Benzo[g,h,i]perylene	Ave	1.186	1.333	0.5000	56200	50000	12.4	20.0
2-Fluorophenol (Surr)	Ave	1.277	1.496		58500	50000	17.1	20.0
Phenol-d5 (Surr)	Ave	1.627	1.882		57800	50000	15.7	20.0
Nitrobenzene-d5 (Surr)	Ave	0.3867	0.4320		55900	50000	11.7	20.0
2-Fluorobiphenyl	Ave	1.417	1.613		56900	50000	13.8	20.0
2,4,6-Tribromophenol (Surr)	Lin2		0.3056		56600	50000	13.2	20.0
Terphenyl-d14 (Surr)	Ave	0.9677	1.075		55600	50000	11.1	20.0

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222961-1

SDG No.:

Lab Sample ID: CCVIS 460-741238/2 Calibration Date: 11/19/2020 22:18

Instrument ID: CBNAMS18 Calib Start Date: 10/30/2020 07:51

GC Column: Rtxi-5Sil MS ID: 0.25 (mm) Calib End Date: 10/30/2020 10:39

Lab File ID: P093595.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,4-Dioxane	Ave	0.6521	0.6093		9340	10000	-6.6	20.0
N-Nitrosodimethylamine	Ave	0.9619	0.8459		8790	10000	-12.1	20.0
Pyridine	Ave	1.552	1.313		16900	20000	-15.4	20.0
Benzaldehyde	Ave	1.313	0.7908	0.0100	2410	4000	-39.8*	20.0
Phenol	Ave	1.846	1.984	0.8000	10700	10000	7.4	20.0
Aniline	Ave	2.326	2.311		9930	10000	-0.7	20.0
Bis(2-chloroethyl)ether	Ave	1.454	1.428	0.7000	9820	10000	-1.8	20.0
2-Chlorophenol	Ave	1.458	1.510	0.8000	10400	10000	3.5	20.0
n-Decane	Ave	1.637	1.188		7260	10000	-27.4*	20.0
1,3-Dichlorobenzene	Ave	1.604	1.628		10100	10000	1.4	20.0
1,4-Dichlorobenzene	Ave	1.596	1.678		10500	10000	5.1	20.0
Benzyl alcohol	Ave	0.9272	0.9281		10000	10000	0.0	20.0
1,2-Dichlorobenzene	Ave	1.514	1.563		10300	10000	3.2	20.0
2-Methylphenol	Ave	1.329	1.342	0.7000	10100	10000	1.0	20.0
2,2'-oxybis[1-chloropropane]	Ave	1.930	1.444	0.0100	7480	10000	-25.2*	20.0
N-Methylaniline	Ave	2.293	2.357		10300	10000	2.8	20.0
Acetophenone	Ave	2.037	2.098	0.0100	10300	10000	3.0	20.0
N-Nitrosodi-n-propylamine	Ave	1.045	1.038	0.5000	9940	10000	-0.6	20.0
3 & 4 Methylphenol	Ave	1.527	1.536		10100	10000	0.6	20.0
4-Methylphenol	Ave	1.520	1.536	0.6000	10100	10000	1.0	20.0
Hexachloroethane	Ave	0.5889	0.6279	0.3000	10700	10000	6.6	20.0
Nitrobenzene	Ave	0.6380	0.7476	0.2000	11700	10000	17.2	20.0
n,n'-Dimethylaniline	Ave	2.209	2.133		9660	10000	-3.4	20.0
Isophorone	Ave	0.7126	0.6726	0.4000	9440	10000	-5.6	20.0
2-Nitrophenol	Ave	0.1654	0.1953	0.1000	11800	10000	18.1	20.0
2,4-Dimethylphenol	Ave	0.3394	0.3241	0.2000	9550	10000	-4.5	20.0
Bis(2-chloroethoxy)methane	Ave	0.4569	0.4254	0.3000	9310	10000	-6.9	20.0
Benzoic acid	Lin2		0.1482		8350	10000	-16.5	20.0
2,4-Dichlorophenol	Ave	0.2894	0.2894	0.2000	10000	10000	-0.0	20.0
1,2,4-Trichlorobenzene	Ave	0.3044	0.3325		10900	10000	9.2	20.0
Naphthalene	Ave	1.069	1.055	0.7000	9870	10000	-1.3	20.0
4-Chloroaniline	Ave	0.4560	0.4547	0.0100	9970	10000	-0.3	20.0
Hexachlorobutadiene	Ave	0.1595	0.1907	0.0100	12000	10000	19.6	20.0
Caprolactam	Ave	0.0895	0.1035	0.0100	4620	4000	15.6	20.0
4-Chloro-3-methylphenol	Ave	0.3188	0.3296	0.2000	10300	10000	3.4	20.0
2-Methylnaphthalene	Ave	0.7211	0.7252	0.4000	10100	10000	0.6	20.0
1-Methylnaphthalene	Ave	0.6635	0.6713		10100	10000	1.2	20.0
Hexachlorocyclopentadiene	Ave	0.3849	0.4365	0.0500	11300	10000	13.4	20.0
1,2,4,5-Tetrachlorobenzene	Ave	0.5442	0.6181	0.0100	11400	10000	13.6	20.0
2-tertbutyl-4-methylphenol	Ave	0.4235	0.4550		10700	10000	7.4	20.0
2,4,6-Trichlorophenol	Ave	0.3547	0.4120	0.2000	11600	10000	16.1	20.0

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222961-1

SDG No.:

Lab Sample ID: CCVIS 460-741238/2 Calibration Date: 11/19/2020 22:18

Instrument ID: CBNAMS18 Calib Start Date: 10/30/2020 07:51

Lab File ID: P093595.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
2,4,5-Trichlorophenol	Ave	0.3910	0.4139	0.2000	10600	10000	5.9	20.0
1,1'-Biphenyl	Ave	1.633	1.628	0.0100	9970	10000	-0.3	20.0
2-Chloronaphthalene	Ave	1.226	1.256	0.8000	10200	10000	2.4	20.0
Phenyl ether	Ave	0.8585	0.8586		10000	10000	0.0	20.0
2-Nitroaniline	Ave	0.4491	0.4503	0.0100	10000	10000	0.3	20.0
1,3-Dimethylnaphthalene	Ave	0.995	1.023		10300	10000	2.8	20.0
Dimethyl phthalate	Ave	1.351	1.465	0.0100	10800	10000	8.4	20.0
Coumarin	Ave	0.2390	0.2386		9980	10000	-0.2	20.0
2,6-Dinitrotoluene	Lin2		0.3379	0.2000	11600	10000	16.4	20.0
Acenaphthylene	Ave	1.909	1.904	0.9000	9970	10000	-0.3	20.0
3-Nitroaniline	Ave	0.3387	0.3691	0.0100	10900	10000	9.0	20.0
3,5-di-tert-butyl-4-hydroxyt	Ave	1.019	1.134		11100	10000	11.3	20.0
Acenaphthene	Ave	1.269	1.195	0.9000	9420	10000	-5.8	20.0
2,4-Dinitrophenol	Lin2		0.1499	0.0100	21700	20000	8.5	20.0
4-Nitrophenol	Ave	0.2645	0.2131	0.0100	16100	20000	-19.4	20.0
2,4-Dinitrotoluene	Ave	0.3449	0.4322	0.2000	12500	10000	25.3*	20.0
Dibenzofuran	Ave	1.687	1.759	0.8000	10400	10000	4.3	20.0
2,3,4,6-Tetrachlorophenol	Ave	0.2783	0.3272	0.0100	11800	10000	17.6	20.0
Diethyl phthalate	Ave	1.382	1.489	0.0100	10800	10000	7.7	20.0
4-Chlorophenyl phenyl ether	Ave	0.6238	0.6863	0.4000	11000	10000	10.0	20.0
Fluorene	Ave	1.353	1.401	0.9000	10400	10000	3.5	20.0
4-Nitroaniline	Ave	0.3506	0.3726	0.0100	10600	10000	6.3	20.0
4,6-Dinitro-2-methylphenol	Ave	0.0979	0.1256	0.0100	25700	20000	28.4*	20.0
N-Nitrosodiphenylamine	Ave	0.6176	0.6065	0.0100	9820	10000	-1.8	20.0
1,2-Diphenylhydrazine	Ave	0.9620	0.8204		8530	10000	-14.7	20.0
4-Bromophenyl phenyl ether	Ave	0.2187	0.2474	0.1000	11300	10000	13.2	20.0
Hexachlorobenzene	Ave	0.2558	0.2938	0.1000	11500	10000	14.8	20.0
Atrazine	Ave	0.1989	0.2536	0.0100	5100	4000	27.5*	20.0
Pentachlorophenol	Ave	0.1345	0.1372	0.0500	20400	20000	2.0	20.0
Pentachloronitrobenzene	Ave	0.0937	0.1190	0.0100	12700	10000	26.9*	20.0
n-Octadecane	Ave	0.6209	0.4778		7690	10000	-23.1*	20.0
Phenanthrene	Ave	1.142	1.133	0.7000	9920	10000	-0.8	20.0
Anthracene	Ave	1.171	1.180	0.7000	10100	10000	0.8	20.0
Carbazole	Ave	1.091	1.039	0.0100	9530	10000	-4.7	20.0
Di-n-butyl phthalate	Ave	1.246	1.332	0.0100	10700	10000	6.9	20.0
Fluoranthene	Ave	1.125	1.163	0.6000	10300	10000	3.4	20.0
Benzidine	Ave	0.6247	0.5614		8990	10000	-10.1	20.0
Pyrene	Ave	1.513	1.518	0.6000	10000	10000	0.3	20.0
Bisphenol-A	Lin2		0.6578		11300	10000	12.7	20.0
Butyl benzyl phthalate	Ave	0.6169	0.6850	0.0100	11100	10000	11.0	20.0

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222961-1

SDG No.:

Lab Sample ID: CCVIS 460-741238/2 Calibration Date: 11/19/2020 22:18

Instrument ID: CBNAMS18 Calib Start Date: 10/30/2020 07:51

Lab File ID: P093595.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
2,3,7,8-TCDD	Ave	0.2424	0.2375		98.0	100	-2.0	20.0
Carbamazepine	Lin2		0.5376		9430	10000	-5.7	20.0
3,3'-Dichlorobenzidine	Ave	0.4782	0.5344	0.0100	11200	10000	11.7	20.0
Benzo[a]anthracene	Ave	1.316	1.310	0.8000	9950	10000	-0.5	20.0
Chrysene	Ave	1.278	1.307	0.7000	10200	10000	2.3	20.0
Bis(2-ethylhexyl) phthalate	Qua		0.9751	0.0100	10000	10000	0.2	20.0
Di-n-octyl phthalate	Lin2		1.507	0.0100	10200	10000	2.1	20.0
Benzo[b]fluoranthene	Ave	1.127	1.278		11300	10000	13.4	20.0
Benzo[k]fluoranthene	Ave	1.167	1.339	0.7000	11500	10000	14.7	20.0
Benzo[a]pyrene	Ave	0.9802	1.140	0.7000	11600	10000	16.3	20.0
<pre>Indeno[1,2,3-cd]pyrene</pre>	Ave	1.028	1.333	0.5000	13000	10000	29.7*	20.0
Dibenz(a,h)anthracene	Ave	1.103	1.406	0.4000	12700	10000	27.5*	20.0
Benzo[g,h,i]perylene	Ave	1.130	1.400	0.5000	12400	10000	23.9*	20.0
2-Fluorophenol (Surr)	Ave	1.459	1.509		10300	10000	3.4	20.0
Phenol-d5 (Surr)	Ave	1.787	1.896		10600	10000	6.1	20.0
Nitrobenzene-d5 (Surr)	Ave	0.4058	0.4177		10300	10000	2.9	20.0
2-Fluorobiphenyl	Ave	1.455	1.594		11000	10000	9.5	20.0
2,4,6-Tribromophenol (Surr)	Ave	0.1877	0.2778		14800	10000	48.0*	20.0
Terphenyl-d14 (Surr)	Ave	1.053	1.212		11500	10000	15.2	20.0

1,4-Dioxane **Data Section**

Geology

Hydrology

Remediation

Water Supply

QA/QC Review of Method 8270E SIM 1,4-Dioxane Data for Eurofins TestAmerica-Edison, Job No: 460-222961-1

1 Surface Water Sample, 4 Ground Water Samples, And 1 Field Duplicate Collected November 13, 2020

Prepared by: Donald Anné February 8, 2021

<u>Holding Times</u>: The samples were extracted and analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The DFTPP tuning criteria were within control limits.

<u>Initial Calibration</u>: The average RRF for 1,4-dioxane was above the allowable minimum (0.010) and the %RSD was below the allowable maximum (30%), as required.

Continuing Calibration: The RRF for 1,4-dioxane was above the allowable minimum (0.010) and the %D was below the allowable maximum (20%), as required.

<u>Blanks</u>: The analysis of the method blank reported 1,4-dioxane as not detected.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

<u>Surrogate Recovery</u>: The surrogate recoveries were within control limits for the surface and ground water samples.

Matrix Spike/Matrix Spike Duplicate: The relative percent difference for 1,4-dioxane was below the allowable maximum and the percent recoveries were within QC limits for aqueous MS/MSD sample MW-5.

<u>Laboratory Control Sample</u>: The percent recoveries for 1,4-dioxane were within QC limits for aqueous samples LCS 460-740807/2-A and LCSD 460-740807/3-A.

<u>Field Duplicates</u>: The analyses of aqueous field duplicate pair MW-1A/DUP reported 1,4-dioxane as not detected; therefore, a valid relative percent difference could not be calculated. The analyses for the field duplicate pair were acceptable.

<u>Compound ID</u>: Checked surrogates results were within quantitation limits. The analyses of surface water samples reported 1,4-dioxane as not detected.

z:\projects\2021\21600-21620\21600-dec carmel\temp review\460-222961-1.dix.docx

Pesticide Data Section

Geology

Hydrology

Remediation

Water Supply

QA/QC Review of Method 8081B Pesticide Data for Eurofins TestAmerica-Edison, Job No. 460-222961-1

1 Soil Sample, 1 Surface Water Sample, 4 Ground Water Samples, and 1 Field Duplicate Collected November 13, 2020

Prepared by: Donald Anné February 8, 2021

<u>Holding Times</u>: Samples were extracted and analyzed within USEPA SW-846 holding times.

<u>Blanks</u>: The analyses of the method blanks reported target pesticides as not detected.

- <u>Surrogate Recovery</u>: The surrogate recoveries were within QC limits for the soil, surface water, and ground water samples on both columns.
- Matrix Spike/Matrix Spike Duplicate: The relative percent differences for target pesticides were below the allowable maximum and the percent recoveries were within QC limits for aqueous MS/MSD sample MW-5.
- <u>Laboratory Control Sample</u>: The relative percent differences for target pesticides were below the allowable maximum and the percent recoveries were within QC limits for aqueous samples LCS 460-740821/2-A, LCSD 460-740821/3-A, LCS 460-740857/2-A, and LCSD 460-740857/3-A, and soil samples LCS 460-741118/2-A and LCSD 460-741118/3-A.
- <u>Field Duplicates</u>: The analyses of aqueous field duplicate pair MW-1A/DUP reported target pesticides as not detected; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pair were acceptable.
- <u>Initial Calibration</u>: The %RSDs and average %RSDs for target pesticides were below the allowable maximum (20%), as required.
- Continuing Calibration: The %D for methoxychlor was above the allowable maximum (20%) on 11-19-20 (4P003627.D) for the CLP-2 column. Positive results for methoxychlor should be considered estimated (J) in associated samples.
- <u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits on both columns.
- <u>DDT/Endrin Breakdown Check</u>: The percent breakdowns were below the allowable maximum (15%) for 4,4'-DDT and endrin, as required.

Page 1 of 2

<u>Pesticide Identification Summary for Single Component Analytes</u>: Checked surrogate results were within quantitation limits. The analyses of the aqueous and soil samples reported single component pesticides as not detected.

<u>Pesticide Identification Summary for Multicomponent Analytes</u>: The analyses of the aqueous and soil samples reported multicomponent pesticides as not detected.

FORM VII PESTICIDES CONTINUING CALIBRATION DATA

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222961-1

SDG No.:

Lab Sample ID: CCVIS 460-741018/3 Calibration Date: 11/19/2020 03:38

Instrument ID: CPESTGC4 Calib Start Date: 10/27/2020 07:52

GC Column: CLP-2 ID: 0.53(mm) Calib End Date: 10/27/2020 08:56

Lab File ID: 4P003627.D Conc. Units: ug/L

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
alpha-BHC	Ave	1.749	1.688		96.5	100	-3.5	20.0
gamma-BHC (Lindane)	Ave	1.591	1.528		96.1	100	-3.9	20.0
beta-BHC	Ave	0.6247	0.6654		107	100	6.5	20.0
delta-BHC	Ave	1.597	1.450		90.8	100	-9.2	20.0
Heptachlor	Ave	1.669	1.622		97.2	100	-2.8	20.0
Aldrin	Ave	1.639	1.578		96.3	100	-3.7	20.0
Heptachlor epoxide	Ave	1.461	1.379		94.4	100	-5.6	20.0
trans-Chlordane	Ave	1.435	1.402		97.7	100	-2.3	20.0
cis-Chlordane	Ave	1.384	1.224		88.4	100	-11.6	20.0
Endosulfan I	Ave	1.328	1.250		94.1	100	-5.9	20.0
4,4'-DDE	Ave	1.351	1.316		97.4	100	-2.6	20.0
Dieldrin	Ave	1.421	1.355		95.3	100	-4.7	20.0
Endrin	Ave	1.193	1.203		101	100	0.8	20.0
4,4'-DDD	Ave	1.087	1.146		105	100	5.4	20.0
Endosulfan II	Ave	1.109	1.167		105	100	5.2	20.0
4,4'-DDT	Ave	1.057	1.071		101	100	1.4	20.0
Endrin aldehyde	Ave	0.9865	0.9332		94.6	100	-5.4	20.0
Endosulfan sulfate	Ave	1.134	1.101		97.1	100	-2.9	20.0
Methoxychlor	Ave	0.4761	0.6023		127	100	26.5*	20.0
Mirex	Ave	0.8320	0.8146		97.9	100	-2.1	20.0
Endrin ketone	Ave	1.167	1.193		102	100	2.3	20.0
Tetrachloro-m-xylene	Ave	1.148	1.103		96.1	100	-3.9	20.0
DCB Decachlorobiphenyl	Ave	0.7311	0.7613		104	100	4.1	20.0

PCB Data Section

Geology

Hydrology

Remediation

Water Supply

QA/QC Review of Method 8082A PCB Data for Eurofins TestAmerica-Edison, Job No. 460-222961-1

1 Soil Sample and 1 Surface Water Sample, 4 Ground Water, and 1 Field Duplicate Collected November 13, 2020

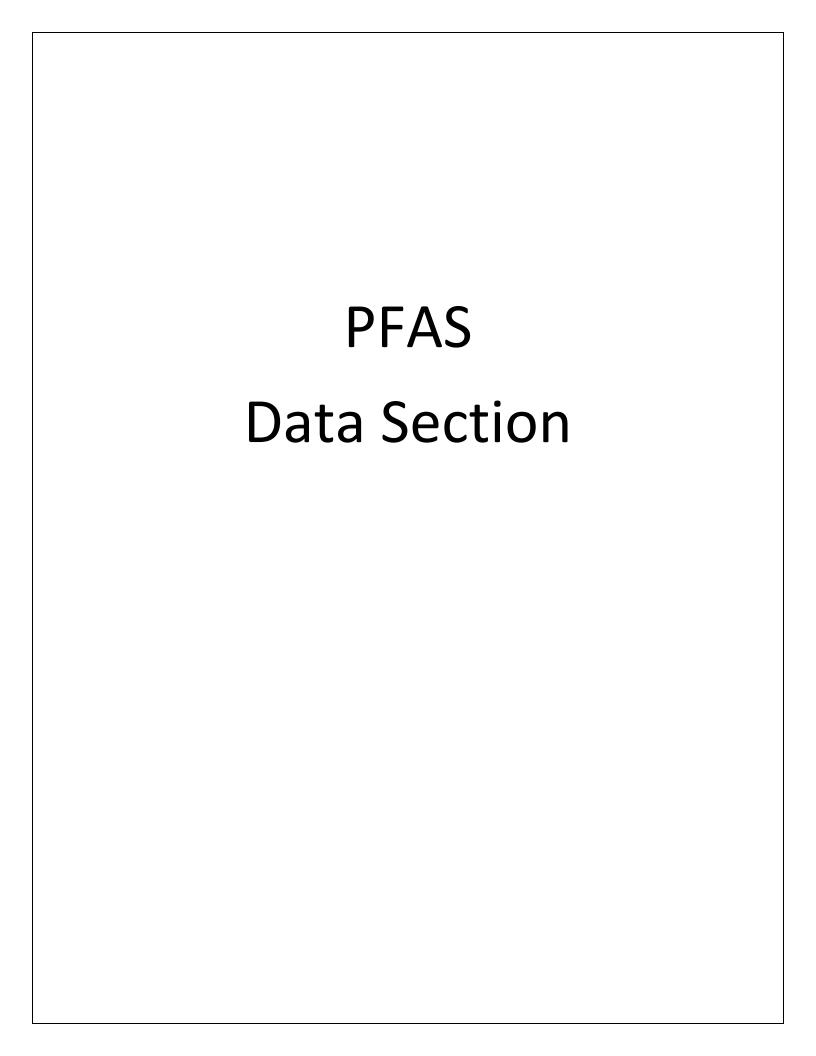
Prepared by: Donald Anné February 8, 2021

<u>Holding Times</u>: Samples were extracted and analyzed within USEPA SW-846 holding times.

Blanks: The analyses of the method blanks reported target PCBs as not detected.

- <u>Surrogate Recovery</u>: One of two surrogate recoveries for sample SW-4 was below QC limits, but not below 10% on both columns. The "not detected" results for sample SW-4 should be considered estimated (UJ).
- Matrix Spike/Matrix Spike Duplicate: The relative percent differences for PCB-1016 and PCB-1260 were below the allowable maximum and the percent recoveries were within QC limits for aqueous MS/MSD sample MW-5.
- <u>Laboratory Control Sample</u>: The relative percent differences for PCB-1016 and PCB-1260 were below the allowable maximum and the percent recoveries were within QC limits for aqueous samples LCS 460-740820/2-A, LCSD 460-740820/3-A, LCS 460-740863/2-A, and LCSD 460-740863/3-A, and soil samples LCS 460-741117/2-A and LCSD 460-741117/3-A.
- <u>Field Duplicates</u>: The analyses of aqueous field duplicate pair MW-1A/DUP reported target PCBs as not detected; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pair were acceptable.
- <u>Initial Calibration</u>: The average %RSDs for target PCBs were below the allowable maximum (20%) on both columns, as required.
- <u>Continuing Calibration</u>: The average %Ds for target PCBs were below the allowable maximum (20%) on both columns, as required.
- <u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits on both columns.
- <u>PCB Identification Summary</u>: Checked surrogates were within GC quantitation limits. The analyses of the soil and surface water samples reported target PCBs as not detected.

 $z:\projects\2021\21600-21620\21600-dec\ carmel\ temp\ review\460-222961-1.pcb.docx$


Lab Nam	e: Eurofins TestAmerica, Edison	Job No.: 460-222961-1
SDG No.	:	
Matrix:	Water	Level: Low

Client Sample ID	Lab Sample ID	TCX1	#	TCX2	#	DCBP1	#	DCBP2	#
MW-1A	460-222961-1	80		77		48		48	
MW-2	460-222961-2	94		94		85		92	
MW-3	460-222961-3	94		89		90		93	
MW-5	460-222961-4	97		93		84		87	
DUP	460-222961-6	66		66		45		45	
SW-4	460-222961-8	38	Х	38	Х	69		69	
	MB 460-740820/1-A	87		88		84		87	
	MB 460-740863/1-A	91		92		88		95	
	LCS 460-740820/2-A	82		83		81		84	
	LCS 460-740863/2-A	40	Х	41	Х	83		87	
	LCSD 460-740820/3-A	86		86		83		87	
	LCSD 460-740863/3-A	40	Х	40	Х	81		84	
MW-5 MS	460-222961-4 MS	86		80		81		82	
MW-5 MSD	460-222961-4 MSD	105		96	\neg	88		87	

TCX = Tetrachloro-m-xylene
DCBP = DCB Decachlorobiphenyl

QC LIMITS 48-125 10-150

 $\ensuremath{\text{\#}}$ Column to be used to flag recovery values

Geology

Hydrology

Remediation

Water Supply

QA/QC Review of Method 537 (Modified) PFAS Data for Eurofins TestAmerica-Burlington & Sacramento Job No: 460-222961-1

1 Soil Sample, 1 Surface Water Sample, 1 Equipment Blank, 5 Ground Water Samples, and 1 Field Duplicate Collected November 13, 2020

> Prepared by: Donald Anné February 8, 2021

- <u>Holding Times</u>: Sample S-4 was re-analyzed beyond USEPA holding times. Positive and "not detected results for sample S-4 should be considered estimated (J or UJ respectively).
- <u>Initial Calibration</u>: The %RSDs for applicable PFAS compounds were below the method maximums, as required.
- <u>Continuing Calibration</u>: The %Ds for applicable PFAS compounds were below the allowable maximums, as required
- Blanks: Method blank MB 320-435252/1-A contained a trace of PFBA (0.0522 ug/kg). Positive results for these PFAS that are below the reporting limit (RL) should be reported as not detected (U) at the reporting limit in associated samples. Positive results for these PFAS that are above the RL and less than ten times the highest blank level should be considered estimated, biased high (J+) in associated samples.

Method blank MB 320-435252/1-A contained an unacceptable level of PFOS (9.20 ug/kg). Results for PFOS that are less than 10 times this blank level should be considered rejected, unusable (R) in associated samples.

- <u>Surrogate Recovery</u>: Two of eighteen surrogate recoveries for soil sample S-4 were above QC limits. Two of five surrogate recoveries for re-analysis of soil sample S-4 were above QC limits. Positive results associated with surrogates outside QC limits should be considered estimated (J) in sample S-4.
- <u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.
- Matrix Spike/Matrix Spike Duplicate: The relative percent differences for target PFAS were below the allowable maximum and the percent recoveries were within QC limits for aqueous MS/MSD sample MW-5 and soil MS/MSD sample S-4.

Page 1 of 2

<u>Laboratory Control Sample</u>: The percent recoveries (%Rs) for target PFAS were within QC limits for aqueous sample LCS 200-161345/2-A and soil sample 320-436644/2-A.

The %R for PFOS was above QC limits for soil sample LCS 320-435252/2-A. Positive results for PFOS should be considered estimated, biased high (J+) in associated soil samples.

The %R for NEtFOSAA was below QC limits, but not below 10% for soil sample LCS 320-435252/2-A. Positive results for NEtFOSAA should be considered estimated, biased low (J-) and "not detected" results estimated (UJ) in associated soil samples.

<u>Field Duplicates</u>: The analyses of aqueous field duplicate pair MW-1A/DUP reported target PFAS as either not detected or below the lowest standard; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pair were acceptable.

<u>Compound ID</u>: Checked compounds and surrogates were within LC quantitation limits.

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-222961-1

SDG No.:

Matrix: Solid Level: Low

GC Column (1): <u>Acquity</u> ID: <u>2.1 (mm)</u>

Client Sample ID	Lab Sample ID	M262FTS#	PFOS #	M282FTS#	d3NMFOS#	d5NEFOS#
S-4 RE	460-222961-9 RE	270 *5	95	264 *5	94	104

	QC LIMITS
M262FTS = M2-6:2 FTS	25-150
PFOS = 13C4 PFOS	25-150
M282FTS = M2-8:2 FTS	25-150
d3NMFOS = d3-NMeFOSAA	25-150
d5NEFOS = d5-NEtFOSAA	25-150

 $\ensuremath{\text{\#}}$ Column to be used to flag recovery values

FORM II 537 (modified)

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-222961-1

SDG No.:

Matrix: Solid Level: Low

GC Column (1): <u>Acquity</u> ID: <u>2.1 (mm)</u>

Client Sample ID	Lab Sample ID	PFBA	#	PFPeA #	C3PFBS #	PFHxA #	C4PFHA #	PFHxS #	M262FTS#	PFOA #
S-4	460-222961-9	61		49	81	82	84	91	282 *5	87
	MB 320-435252/1-A	18	*5	69	86	85	89	91	0.6 *5	99
	LCS 320-435252/2-A	19	*5	70	83	84	87	91	2 *5	103
S-4 MS	460-222961-9 MS	18	*5	58	83	88	84	95	274 *5	88
S-4 MSD	460-222961-9 MSD	46		55	75	74	72	81	211 *5	78

	QC LIMITS
PFBA = 13C4 PFBA	25-150
PFPeA = 13C5 PFPeA	25-150
C3PFBS = 13C3 PFBS	25-150
PFHxA = 13C2 PFHxA	25-150
PFHxS = 1802 PFHxS	25-150
C4PFHA = 13C4 PFHpA	25-150
M262FTS = M2-6:2 FTS	25-150
PFOA = 13C4 PFOA	25-150

 $\ensuremath{\text{\#}}$ Column to be used to flag recovery values

FORM II 537 (modified)

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-222961-1

SDG No.:

Matrix: Solid Level: Low

GC Column (1): Acquity ID: 2.1 (mm)

Client Sample ID	Lab Sample ID	PFOS #	PFNA :	#M282FTS#	PFDA #	PFOSA #	d3NMFOS#	PFUnA	d5NEFOS#
(S-4)	460-222961-9	96	89	267 *5	85	65	79	88	108
	MB 320-435252/1-A	89	88	0.4 *5	89	88	0.3 *5	90	0.3 *5
	LCS 320-435252/2-A	86	89	0.8 *5	86	86	0.2 *5	86	0.3 *5
S-4 MS	460-222961-9 MS	98	96	243 *5	87	74	82	83	100
S-4 MSD	460-222961-9 MSD	82	82	197 *5	74	64	65	76	88

	QC LIMITS
PFOS = 13C4 PFOS	25-150
PFNA = 13C5 PFNA	25-150
M282FTS = M2-8:2 FTS	25-150
PFDA = 13C2 PFDA	25-150
PFOSA = 13C8 FOSA	25-150
d3NMFOS = d3-NMeFOSAA	25-150
PFUnA = 13C2 PFUnA	25-150
d5NEFOS = d5-NEtFOSAA	25-150

 $\ensuremath{\text{\#}}$ Column to be used to flag recovery values

FORM II 537 (modified)

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-2229	961−1	
--	-------	--

SDG No.:

Matrix: Solid Level: Low

GC Column (1): Acquity ID: 2.1 (mm)

Client Sample ID	Lab Sample ID	PFDoA #	PFTDA #
S-4	460-222961-9	70	62
	MB 320-435252/1-A	84	81
	LCS 320-435252/2-A	85	85
S-4 MS	460-222961-9 MS	70	47
S-4 MSD	460-222961-9 MSD	63	41

PFDoA = 13C2 PFDoA PFTDA = 13C2 PFTeDA QC LIMITS 25-150 25-150

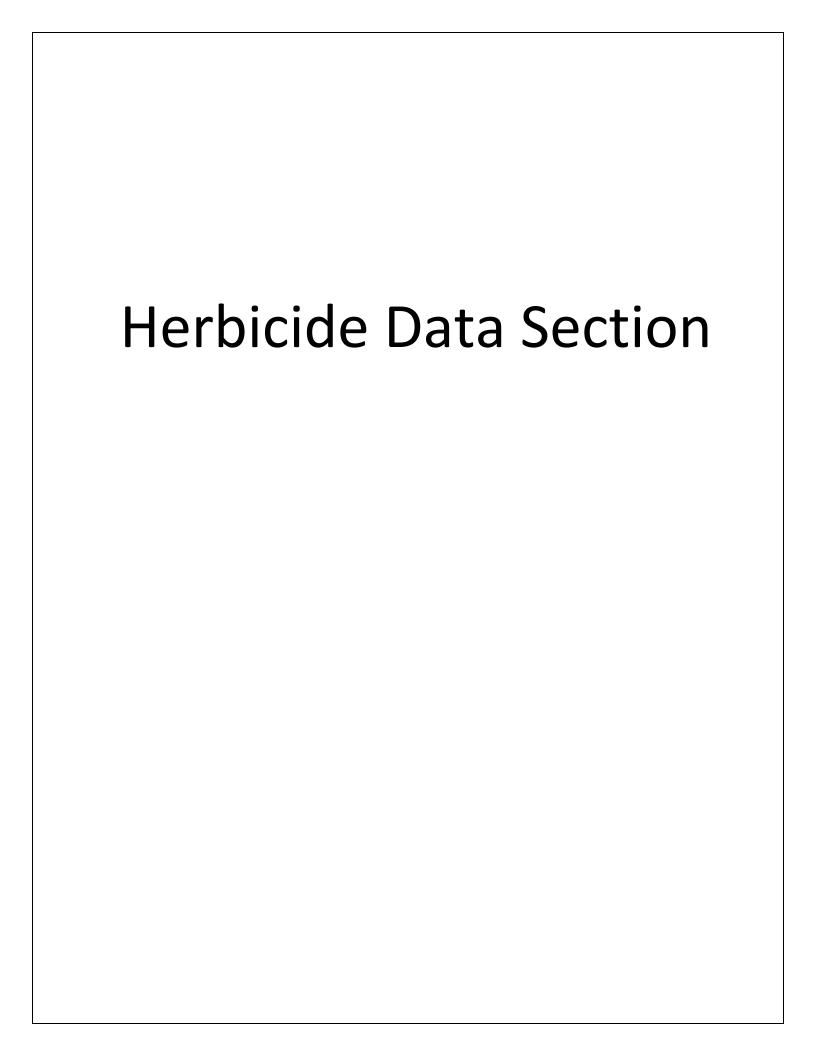
FORM III LCMS LAB CONTROL SAMPLE RECOVERY

Lab Name: Eu:	rofins TestAmeric	a, Sacramento	Job No.:	460-222961-1
---------------	-------------------	---------------	----------	--------------

SDG No.: ____

Matrix: Solid Level: Low Lab File ID: 2020.11.27_A9_PFC_B_008.d

Lab ID: LCS 320-435252/2-A Client ID:


	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(ug/Kg)	(ug/Kg)	REC	REC	
Perfluorobutanoic acid (PFBA)	2.00	2.09	105	76-136	
Perfluoropentanoic acid	2.00	1.78	89		
(PFPeA)	2.00	1.70		03 123	
Perfluorohexanoic acid (PFHxA)	2.00	1.91	96	71-131	
Perfluoroheptanoic acid	2.00	1.96	98		
(PFHpA)	2.00	1.30		, 1 101	
Perfluorooctanoic acid (PFOA)	2.00	1.84	92	72-132	
Perfluorononanoic acid (PFNA)	2.00	2.00	100	73-133	
Perfluorodecanoic acid (PFDA)	2.00	2.09	105		
Perfluoroundecanoic acid	2.00	1.95	98		
(PFUnA)	2.00	1.33		00 120	
Perfluorododecanoic acid	2.00	2.07	104	71-131	
(PFDoA)					
Perfluorotridecanoic acid	2.00	2.00	100	71-131	
(PFTriA)					
Perfluorotetradecanoic acid	2.00	1.87	94	67-127	
(PFTeA)					
Perfluorobutanesulfonic acid	1.77	1.83	104	69-129	
(PFBS)					
Perfluorohexanesulfonic acid	1.82	1.61	89	62-122	
(PFHxS)	1.90	2.12	111	76-136	
Perfluoroheptanesulfonic Acid (PFHpS)	1.90	2.12	111	/6-136	
Perfluorooctanesulfonic acid	1.86	11.1	600	68-141	*
(PFOS)	1.00	11.1		00 141	
Perfluorodecanesulfonic acid	1.93	1.92	99	71-131	
(PFDS)		_,,_			
Perfluorooctanesulfonamide	2.00	2.25	113	77-137	
(FOSA)					
N-methylperfluorooctanesulfona	2.00	1.82 J	91	72-132	
midoacetic acid (NMeFOSAA)					
N-ethylperfluorooctanesulfonam	2.00	1.42 J	71	72-132	*
idoacetic acid (NEtFOSAA)	1 00	0.55	405		
6:2 FTS	1.90	2.55	135		
8:2 FTS	1.92	1.77 J	92		
13C4 PFBA	5.00	0.953	19		
13C5 PFPeA	5.00	3.52	70		
13C2 PFHxA	5.00	4.18	84		
13C4 PFHpA	5.00	4.37	87	25-150	
13C4 PFOA	5.00	5.13	103	25-150	
13C5 PFNA	5.00	4.47	89	25-150	
13C2 PFDA	5.00	4.31	86		
13C2 PFUnA	5.00	4.29	86		
13C2 PFDoA	5.00	4.27	85		
13C2 PFTeDA	5.00	4.23	85		
1002 1110011	3.00	4.23		23 130	

[#] Column to be used to flag recovery and RPD values
FORM III 537 (modified)

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 460-222961-1 SDG No.: Client Sample ID: Lab Sample ID: MB 320-435252/1-A Matrix: Solid Lab File ID: 2020.11.27_A9_PFC_B_007.d Analysis Method: 537 (modified) Date Collected: Date Extracted: 11/24/2020 14:27 Extraction Method: SHAKE Sample wt/vol: 5.00(g) Date Analyzed: 11/27/2020 23:24 Con. Extract Vol.: 10.00(mL) Dilution Factor: 1 Injection Volume: 20(uL) GC Column: Acquity ID: 2.1(mm) % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 436085 Units: ug/Kg

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	0.0522	J	0.20	0.028
2706-90-3	Perfluoropentanoic acid (PFPeA)	0.20	U	0.20	0.077
307-24-4	Perfluorohexanoic acid (PFHxA)	0.20	U	0.20	0.042
375-85-9	Perfluoroheptanoic acid (PFHpA)	0.20	U	0.20	0.029
335-67-1	Perfluorooctanoic acid (PFOA)	0.20	U	0.20	0.086
375-95-1	Perfluorononanoic acid (PFNA)	0.20	U	0.20	0.036
335-76-2	Perfluorodecanoic acid (PFDA)	0.20	U	0.20	0.022
2058-94-8	Perfluoroundecanoic acid (PFUnA)	0.20	U	0.20	0.036
307-55-1	Perfluorododecanoic acid (PFDoA)	0.20	U	0.20	0.067
72629-94-8	Perfluorotridecanoic acid (PFTriA)	0.20	U	0.20	0.051
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.20	U	0.20	0.054
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.20	U	0.20	0.025
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.20	U	0.20	0.031
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.20	Ū	0.20	0.035
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	9.22		0.50	0.20
335-77-3	Perfluorodecanesulfonic acid (PFDS)	0.20	U	0.20	0.039
754-91-6	Perfluorooctanesulfonamide (FOSA)	0.20	U	0.20	0.082
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	2.0	Ū	2.0	0.39
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	2.0	Ū	2.0	0.37
27619-97-2	6:2 FTS	2.0	U	2.0	0.15
39108-34-4	8:2 FTS	2.0	U	2.0	0.25

Geology

Hydrology

Remediation

Water Supply

QA/QC Review of Method 8151A Herbicide Data for Eurofins TestAmerica-Edison, Job No. 460-222961-1

1 Soil Sample, 1 Surface Water Sample, 4, Ground Water Samples, and 1 Field Duplicate Collected November 13, 2020

Prepared by: Donald Anné February 8, 2021

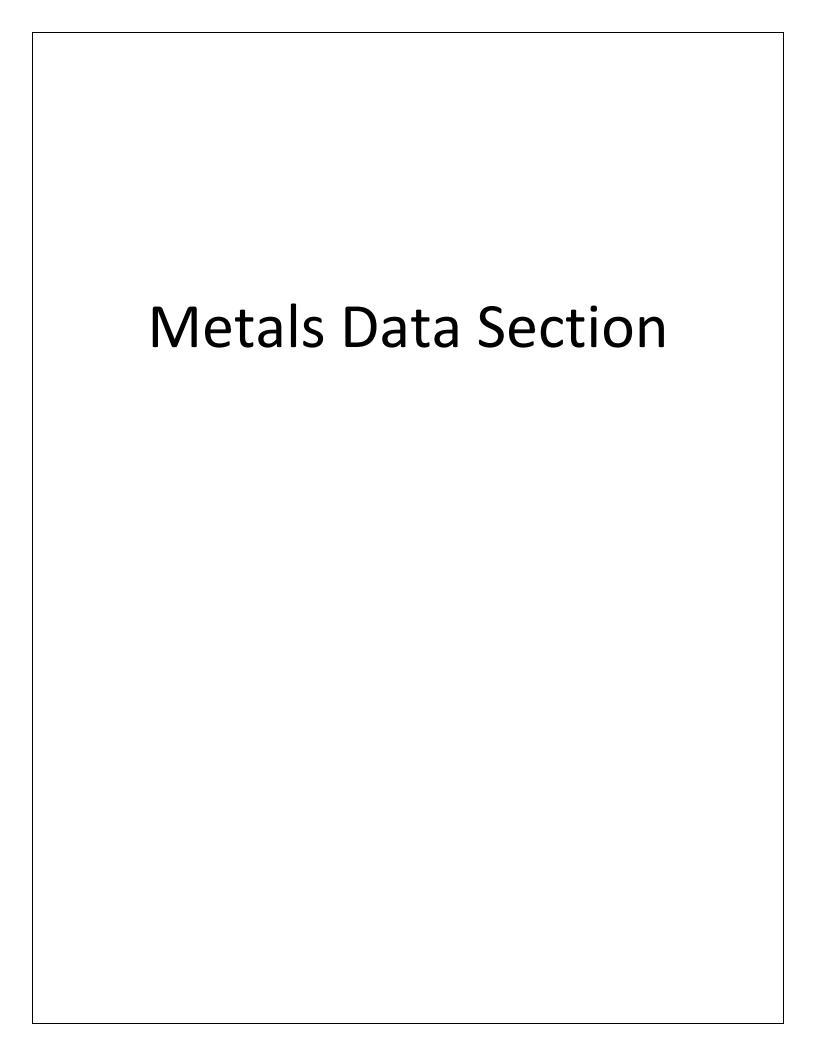
<u>Holding Times</u>: Samples were extracted and analyzed within USEPA SW-846 holding times.

Blanks: The analyses of the method blanks reported target herbicides as not detected.

<u>Surrogate Recovery</u>: The surrogate recoveries were within QC limit for the soil, surface water, and ground water samples on both columns.

<u>Matrix Spike/Matrix Spike Duplicate</u>: The relative percent differences for target herbicides were below the allowable maximum and the percent recoveries were within QC limits for aqueous MS/MSD sample MW-5.

<u>Laboratory Control Sample</u>: The relative percent differences for target herbicides were below the allowable maximum and the percent recoveries were within QC limits for aqueous samples LCS 460-740669/2-A and LCSD 460-740669/3-A, and soil sample LCS 460-740672/2-A and LCSD 460-740672/3-A.


<u>Field Duplicates</u>: The analyses of aqueous field duplicate pair MW-1A/DUP reported target herbicides as not detected; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pair were acceptable.

<u>Initial Calibration</u>: The average %RSDs for target herbicides were below the allowable maximum (20%) on both columns, as required.

<u>Continuing Calibration</u>: The average %Ds for target herbicides were below the allowable maximum (20%) on both columns, as required.

<u>PCB Identification Summary</u>: Checked surrogates were within GC quantitation limits. The analyses of the soil, surface water, and ground water samples reported target herbicides as not detected.

z:\projects\2021\21600-21620\21600-dec carmel\temp review\460-222961-1.her.docx

Geology

Hydrology

Remediation

Water Supply

QA/QC Review of TAL Metals Data for Eurofins TestAmerica-Edison, Job No: 460-222961-1

1 Soil Sample, 1 Surface Water Sample, 4 Ground Water Samples, and 1 Field Duplicate Collected November 13, 2020

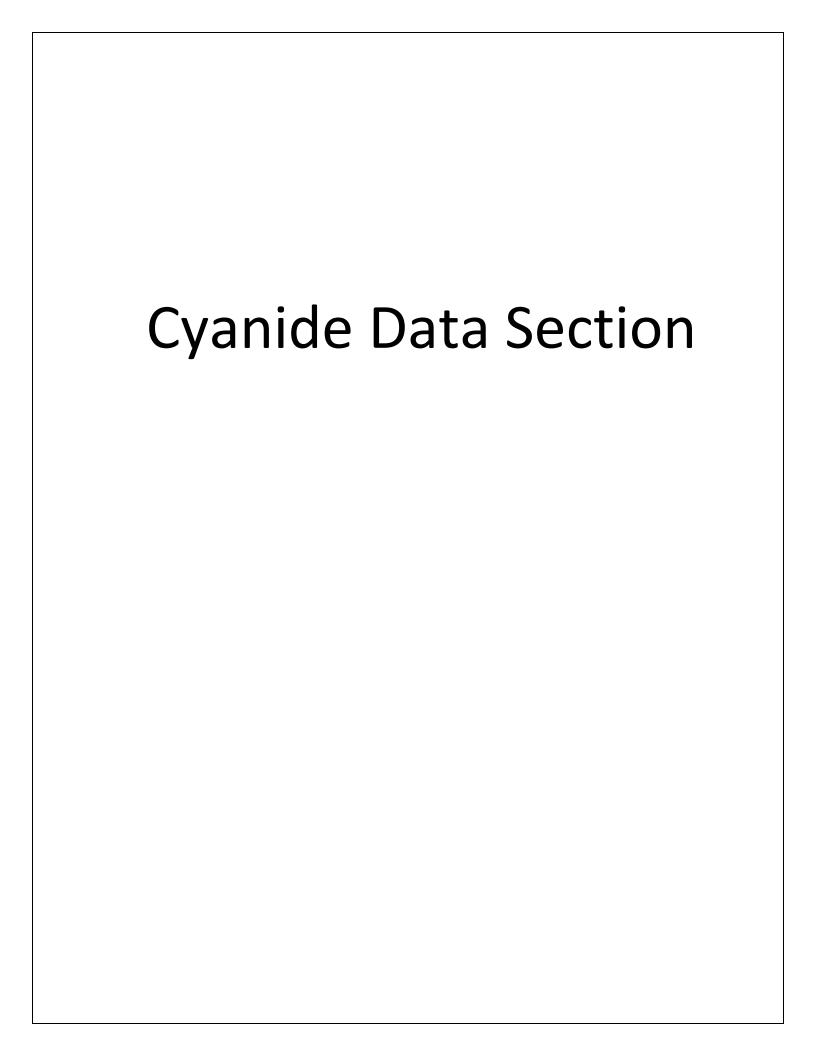
Prepared by: Donald Anné February 8, 2021

- <u>Holding Times</u>: Samples were analyzed within the USEPA SW-846 holding times.
- <u>Initial and Continuing Calibration Verification</u>: The percent recoveries for TAL metals were within control limits (90-110% for all metals except Hg, 80-120% for Hg).
- <u>Blanks</u>: The analyses for initial and continuing calibration, and method blanks reported TAL metals as either not detected or below the reporting limits, as required.
- <u>ICP Interference Check Sample</u>: The percent recoveries for applicable TAL metals were within control limits (80-120%).
- <u>Spike Sample Recovery</u>: The percent recovery for iron were above control limits (75-125%) for aqueous spike sample MW-5. Positive results for iron should be considered estimated, biased high (J+) in associated aqueous samples.
- <u>Laboratory Duplicates</u>: The relative percent differences for applicable metals were below allowable maximum (20%) for aqueous duplicate sample MW-5, as required.
- <u>Field Duplicates</u>: The relative percent difference for zinc was above the allowable maximum (20%) for aqueous field duplicate pair MW-1A/DUP (attached table). Positive results for zinc should be considered estimated (J) in samples MW-1A and DUP.
- <u>Linear Range Check Standard</u>: The percent recoveries for applicable metals were within QC limits for samples LRC 460-740839/14, LRC 460-740839/15, LRC-741136/14, LRC 460-741136/15, LRC 460-742067/14, and LRC460-742067/15.
- <u>Laboratory Control Sample</u>: The recoveries for TAL metals were within control limits for soil samples LCSSRM 460-740829/2-A and LCSSRM 460-742208/11-A. The percent recoveries for TAL metals were within control limits for aqueous samples LCS 460-741864/2-A, LCS 460-742339/2-A, and LCS 460-742636/2-A.

<u>Serial Dilution</u>: The %Ds for applicable metals were below the allowable maximum (10%) for aqueous serial dilution sample MW-5, as required.

<u>Instrument Detection Limits</u>: The IDLs were at or below the MRLs, as required.

<u>Percent Solids</u>: The percent solids for soil sample S-4 was below 50%, but not below 10%. Positive metals results for sample S-4 should be considered estimated (J).


5A-IN MATRIX SPIKE SAMPLE RECOVERY METALS

Client ID: MW-5 MS	Lab ID: 460-222961-4 MS
Lab Name: Eurofins TestAmerica, Edison	Job No.: 460-222961-1
SDG No.:	
Matrix: Water	Concentration Units: ug/L
% Solids:	

Analyte	SSR C	Sample Result (SI	R) C	Spike Added (SA)	%R	Control Limit %R	Q	Method
Silver	54.71	10.0	U	50.0	109	75-125		6010D
Aluminum	4735	2390		2000	117	75-125		6010D
Arsenic	2237	15.0	U	2000	112	75-125		6010D
Barium	2212	109	J	2000	105	75-125		6010D
Beryllium	54.33	2.0	U	50.0	109	75-125		6010D
Calcium	89940	67200		20000	114	75-125		6010D
Cadmium	54.15	4.0	U	50.0	108	75-125		6010D
Cobalt	553.2	4.7	J	500	110	75-125		6010D
Chromium	224.5	6.2	J	200	109	75-125		6010D
Copper	271.4	25.0	U	250	109	75-125		6010D
Iron	4413	3070		1000	134	75-125	F1	6010D
Potassium	32120	11600		20000	103	75-125		6010D
Magnesium	29690	7640		20000	110	75-125		6010D
Manganese	969.8	420		500	110	75-125		6010D
Sodium	26590	5130		20000	107	75-125		6010D
Nickel	540.5	7.3	J	500	107	75-125		6010D
Lead	547.1	6.9	J	500	108	75-125		6010D
Antimony	501.6	20.0	U	500	100	75-125		6010D
Selenium	2190	20.0	U	2000	110	75-125		6010D
Thallium	2131	20.0	U	2000	107	75-125		6010D
Vanadium	557.6	50.0	U	500	112	75-125		6010D
Zinc	551.1	13.5	J	500	108	75-125		6010D
Mercury	1.02	0.20	U	1.00	102	75-125		7470A

SSR = Spiked Sample Result

 $\hbox{\it Calculations are performed before rounding to avoid round-off errors in calculated results.}$

Geology

Hydrology

Remediation

Water Supply

QA/QC Review of Total Cyanide Data for Eurofins TestAmerica-Edison, Job No: 460-222961-1

1 Soil Sample, 1 Surface Water Sample, 4 Ground Water Samples, and 1 Field Duplicate Collected November 13, 2020

Prepared by: Donald Anné February 8, 2021

Holding Times: Samples were analyzed within USEPA SW-846 holding times.

<u>Initial and Continuing Calibration Verification</u>: The percent recoveries for total cyanide were within control limits (85-115%).

<u>Blanks</u>: The analyses of initial calibration and continuing calibration blanks reported total cyanide as not detected.

Spike Sample Recovery: Two of two percent recoveries for total cyanide were above QC limits (90-110%) for aqueous MS/MSD sample MW-5. Positive results for total cyanide should be considered estimated, biased high (J+) in associated aqueous samples.

<u>Laboratory Duplicates</u>: The relative percent difference for total cyanide was below the allowable maximum (20%) for aqueous MS/MSD sample MW-5, as required.

<u>Field Duplicates</u>: The analyses of aqueous field duplicate pair MW-1A/DUP reported total cyanide as not detected; therefore, a valid relative percent difference could not be calculated. The analyses for the field duplicate pair were acceptable.

<u>Laboratory Control Sample</u>: The percent recovery (%R) for total cyanide was within QC limits for aqueous sample LCS 460-742922/2-A. The percent recovery (%R) for total cyanide were within QC limits for soil sample LCSSRM 460-742913/2-A.

z:\projects\2021\21600-21620\21600-dec carmel\temp review\460-222961-1.tcn.docx

5-IN MATRIX SPIKE SAMPLE RECOVERY GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Edison Job No.: 460-222961-1

SDG No.:

Matrix: Water

Method	Lab Sample ID Analyte	Result C Unit	Spike Pct. RPD Amount Rec. Limits RPD Limit	Q
Batch	ID: 742995 Date: 11/27/2020 13:17	Prep Batch: 742922	Date: 11/27/2020 09:11	
9012B	460-222961-4 Cyanide, Total	$0.010~{ m U}~{ m mg/L}$		F1
9012B	460-222961-4 Cyanide, Total MS MW-5	0.242 mg/L	0.200 (121) 90-110	F1

 $\hbox{\it Calculations are performed before rounding to avoid round-off errors in calculated results.}$

5-IN MATRIX SPIKE DUPLICATE SAMPLE RECOVERY GENERAL CHEMISTRY

Lab	Name:	Eurofins	TestAmerica,	Edison	Job No.:	460-222961-1
SDG	No.:					

Matrix: Water

Method Lab Sample ID Analyte	Result C Unit	Spike Pct. RPD Amount Rec. Limits RPD Limit Q
Batch ID: 742995 Date: 11/27/2020 13:18	Prep Batch: 742922	Date: 11/27/2020 09:11
9012B 460-222961-4 Cyanide, Total MSD MW-5	0.237 mg/L	0.200 119 90-110 2 35 F1

Calculations are performed before rounding to avoid round-off errors in calculated results.

Field Duplicate **Calculation Section**

TAL Metals

Calculations for Field Duplicate Relative Percent Difference (RPD) SDG No. 460-222961-1

S2= DUP

<u>Analyte</u>	<u>\$1</u>	<u>\$2</u>	RPD (%)
aluminum	14900	16700	11%
antimony	ND	ND	NC
arsenic	ND	ND	NC
barium	228	271	17%
beryllium	ND	ND	NC
cadmium	ND	ND	NC
calcium	16500	18700	13%
chromium	36.8	44.5	19%
cobalt	23.0	26.1	NC
copper	104	116	11%
iron	27700	31800	14%
lead	14.0	13.7	2%
magnesium	8740	10100	14%
manganese	464	522	12%
mercury	ND	ND	NC
nickel	42.4	49.7	16%
potassium	7780	8870	13%
selenium	ND	ND	NC
silver	ND	ND	NC
sodium	31800	4730	NC
thallium	ND	ND	NC
vanadium	81.5	89.4	9%
zinc	89.7	136	41%

^{*} RPD is above the allowable maximum 20%

S1= MW-1A

Results are in units of ug/L.

Bold numbers were values that below the CRDL.

ND - Not detected.

NC - Not calculated, both results must be above the CRDL for valid RPDs to be calculated.

Alpha Geoscience: Acronyms and Definitions

Data Validation Acronyms

AA Atomic absorption, flame technique

BHC Hexachlorocyclohexane BFB Bromofluorobenzene

CCB Continuing calibration blank
CCC Calibration check compound
CCV Continuing calibration verification

CN Cyanide

CRDL Contract required detection limit
CRQL Contract required quantitation limit
CVAA Atomic adsorption, cold vapor technique

DCAA 2,4-Dichlophenylacetic acid

DCB Decachlorobiphenyl

DFTPP Decafluorotriphenyl phosphine ECD Electron capture detector

FAA Atomic absorption, furnace technique

FID Flame ionization detector FNP 1-Fluoronaphthalene GC Gas chromatography

GC/MS Gas chromatography/mass spectrometry

GPC Gel permeation chromatography

ICB Initial calibration blank

ICP Inductively coupled plasma-atomic emission spectrometer

ICV Initial calibration verification IDL Instrument detection limit

IS Internal standard

LCS Laboratory control sample

LCS/LCSD Laboratory control sample/laboratory control sample duplicate

MSA Method of standard additions
MS/MSD Matrix spike/matrix spike duplicate

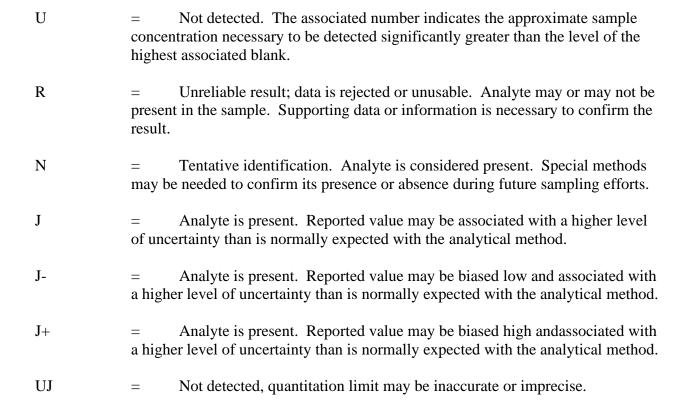
PID Photo ionization detector
PCB Polychlorinated biphenyl
PCDD Polychlorinated dibenzodioxins
PCDF Polychlorinated dibenzofurans

QA Quality assurance QC Quality control RF Response factor

RPD Relative percent difference RRF Relative response factor

RRF(number) Relative response factor at concentration of the number following

RT Retention time


RRT Relative retention time SDG Sample delivery group

SPCC System performance check compound

TCX Tetrachloro-m-xylene %D Percent difference %R Percent recovery

%RSD Percent relative standard deviation

Data Validation Qualifiers Used in the QA/QC Reviews for USEPA Region II

Note: These qualifiers are used for data validation purposes. The data validation qualifiers may differ from the qualifiers that the laboratory assigns to the data. Refer to the laboratory analytical report for the definitions of the laboratory qualifiers.

TAL Metals

Calculations for Field Duplicate Relative Percent Difference (RPD) SDG No. 460-222961-1

S2= DUP

<u>Analyte</u>	<u>\$1</u>	<u>\$2</u>	RPD (%)
aluminum	14900	16700	11%
antimony	ND	ND	NC
arsenic	ND	ND	NC
barium	228	271	17%
beryllium	ND	ND	NC
cadmium	ND	ND	NC
calcium	16500	18700	13%
chromium	36.8	44.5	19%
cobalt	23.0	26.1	NC
copper	104	116	11%
iron	27700	31800	14%
lead	14.0	13.7	2%
magnesium	8740	10100	14%
manganese	464	522	12%
mercury	ND	ND	NC
nickel	42.4	49.7	16%
potassium	7780	8870	13%
selenium	ND	ND	NC
silver	ND	ND	NC
sodium	31800	4730	NC
thallium	ND	ND	NC
vanadium	81.5	89.4	9%
zinc	89.7	136	41%

^{*} RPD is above the allowable maximum 20%

S1= MW-1A

Results are in units of ug/L.

Bold numbers were values that below the CRDL.

ND - Not detected.

NC - Not calculated, both results must be above the CRDL for valid RPDs to be calculated.