

PRE-DESIGN INVESTIGATION REPORT

WORK ASSIGNMENT C007622-12

COLD SPRING FORMER MGP SITE VILLAGE OF COLD SPRING

SITE NO. 340026 PUTNAM (C), NY

Prepared for: NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 625 Broadway, Albany, New York

Joseph Martens, Commissioner

DIVISION OF ENVIRONMENTAL REMEDIATION REMEDIAL BUREAU B

> **URS Corporation** 257 West Genesee Street, Suite 400 Buffalo, New York 14202

> > September 2014

PRE-DESIGN INVESTIGATION REPORT

FOR THE COLD SPRING FORMER MGP SITE VILLAGE OF COLD SPRING, PUTNAM COUNTY, NEW YORK SITE ID #340026

PREPARED FOR:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL REMEDIATION REMEDIAL BUREAU E, SECTION A

PREPARED BY:

URS CORPORATION 257 WEST GENESEE ST., SUITE 400 BUFFALO, NEW YORK 14202

SEPTEMBER 2014

TABLE OF CONTENTS

Page No.

1.0	INTR	ODUCTION	1-1
	1.1	Scope	1-1
	1.2	Soil Clean-up Objectives (SCOs)	1-1
2.0	DESC	CRIPTION OF FIELD ACTIVITIES	2-1
	2.1	Geophysical Investigation	2-1
	2.2	Collection of Analytical Samples	2-2
	2.3	Waste Characterization Sample	2-2
	2.4	Slug Testing	2-2
3.0	RESU	JLTS OF FIELD ACTIVITIES	3-1
	3.1	Soil Analytical Results for Contamination Delineation	3-1
	3.2	Waste Characterization	3-2
	3.3	Geophysical Investigation	3-2
	3.4	Slug Testing	3-2
	3.5	Disposal of Investigation-Derived Waste (IDW)	3-3
4.0	DESI	GN PARAMETERS	4-1
	4.1	Waste Characterization	4-1
	4.2	Revised Limits of Excavation	4-1

TABLES

Table 1	Soil Boring	and Sampling	Results	Summary

Table 2Slug Test Results

FIGURES

- Figure 1 URS 2014 Site Investigation Plan
- Figure 2 Pre-Design Investigation Results

APPENDICES

- Appendix A URS Field Notes
- Appendix B PDI Photographs
- Appendix C Boring Logs
- Appendix D Soil Analytical Results Tables
- Appendix E Data Usability Summary Report
- Appendix F Geophysical Survey Report
- Appendix G Slug Test Results and Calculations
- Appendix H Analytical Results and Manifests for Disposal of IDW

1.0 INTRODUCTION

1.1 <u>Scope</u>

URS has been tasked to design the remediation for the Cold Spring Former MGP site under Work Assignment Number D007622-12 by the New York Department of Environmental Conservation (NYSDEC). The February 2010 Record of Decision (ROD) for the site states that the remedial program should include pre-design investigations (PDIs) as necessary to confirm site conditions. Figure 1 shows the existing site conditions.

One PDI was performed in October 2013. In February 2014, URS provided the NYSDEC with a pre-design investigation report (PDIR) detailing results of that investigation that pertain to the required extent of excavation and the location of any buried MGP structures (gas holder and foundations).

This report presents the results of the second-round PDI, which results from a change in the scope of the design to now include demolition of the Boat House on the site. The objectives of this PDI are the following:

- To obtain information to redefine the required limits of excavation of the MGP contaminated soils that result from that increase in the extent of the remediation.
- To perform a geophysical investigation to help locate buried structures throughout the area of remedial excavation.
- To perform slug tests on the existing wells in order to estimate the hydraulic conductivity of the upper water-bearing strata.

This PDI included also the collection and analysis of geotechnical samples. The results of those analyses will be discussed in a separate report.

1.2 <u>Soil Clean-up Objectives (SCOs)</u>

The soil clean-up objectives (SCOs) identified in the ROD and as modified (described above), include the removal and off-site disposal of the following materials:

• Remaining buried MGP structures

- All soil under and east of the boat club building and south of New Street that
 - o contains visible coal tar, or
 - is contaminated with 500 ppm or more total polycyclic aromatic hydrocarbons (PAHs).

The SCOs include also the removal, to the extent practicable, of soil that exceeds the restricted residential clean-up criteria of Part 375-6.

2.0 DESCRIPTION OF FIELD ACTIVITIES

Pre-design investigation activities discussed in this report include the following:

- Performance of a geophysical investigation to locate buried structures in the drilling and excavation area.
- Soil borings and collection of analytical samples to determine and refine the limits of excavation.
- Collection of an analytical sample for waste characterization.
- Slug testing of existing monitoring wells to determine the hydraulic properties of the water-bearing strata.

Field activity locations are shown on Figure 1. URS's field notes and selected photographs of investigation activities are contained in Appendices A and B.

2.1 Geophysical Investigation

On April 14, 2014, Radar Solutions Incorporated (RSI) of Waltham, Mass. performed a geophysical survey of the site. A detailed report of the results is included as Appendix D. The purpose of the survey was to identify underground obstructions and utilities that could interfere with the drilling program of this PDI, as well as with the subsequent remedial excavation.

The investigation was performed using ground-penetrating radar (GPR) and electro-magnetic induction (EMI).

In all, three areas were investigated: Area 1, which is an approximately 75 by 25 foot area located west of the boat house's reinforced concrete apron/patio; Area 2, which is located generally north of the boat house, in the parking lot area, and immediately adjacent to New Street; and Area 3, an approximate 75 by 90 foot area located immediately east of the building, in the east parking lot. These areas are shown on Figure 1.

2.2 Collection of Analytical Samples

Between April 14, 2014 and April 28, 2014, site drilling activities were conducted by Associated Environmental Services, Ltd., under contract to NYSDEC call-out contractor EnviroTrac, Ltd. Seventeen borings were completed using a track-mounted Geoprobe[®] 7782 DT. Field activities were supervised full-time by a URS geologist.

Logs of the completed borings are contained in Appendix C.

A total of twenty samples (plus one field duplicate) were collected from 14 of those borings. The samples were sent to Test America Laboratories, Inc., a NYSDEC Call-Out Laboratory, for analysis for MGP-related contaminants [i.e., benzene, toluene, ethyl benzene, xylene (BTEX) and polycyclic aromatic hydrocarbons (PAHs)]. BTEX was analyzed according to Method 8260C and PAHs were analyzed according to Method 8270D.

Boring locations were recorded by URS using a hand-held Trimble GeoXH global positioning system unit.

2.3 <u>Waste Characterization Sample</u>

On April 16, 2014, one soil sample was collected from boring WC for analysis for waste characterization parameters. The boring log is included in Appendix C. The boring was located in a suspected contamination source area. At that location, the sample was collected from the interval from 5 to 6 feet below grade, which exhibited dark brown to black color and a coal tar odor.

2.4 Slug Testing

Between April 14 and April 18, 2014, URS slug-tested 6 of the monitoring wells on site: GW 1 through GW-5, installed in 2008 by Dvirka and Bartilucci; and MW-A, installed within the Boat House in 2012 by Groundwater and Environmental Services, Inc. (GES). Two additional wells were identified in the scope of work for this PDI, but were not tested. MW-B, located inside the boat house, did not have sufficient depth of water for testing, and MW-1, located just north of the boat house, was too narrow (³/₄-inch diameter) for testing.

The slug tests were performed as both rising- and falling-head tests. Data was collected using a Rugged Reader[®] hand-held data logger, with Win-Situ Mobile software and an In-Situ Level Troll 700[®] pressure

transducer. After opening the well and collecting the depth to water and depth to bottom, a solid 1.50-inch diameter, 2-foot long slug was positioned just above the water table. For the falling head test, the slug was smoothly and rapidly lowered to a depth below the original water table. After the water table returned to static level, the slug was removed for the rising head test. The test was considered complete after the water reached static level again.

3.0 **RESULTS OF FIELD ACTIVITIES**

3.1 Soil Analytical Results for Contamination Delineation

Twenty soil samples were collected for chemical analysis from the 14 locations shown on Figure 1. A summary of the borings and sampled intervals is presented in Table 1. The soil cleanup objectives (SCOs) for this project are detailed in Section 1.2 of this PDIR.

	Total Depth of Completed	Sampled	Project Soil C				
Boring Identifier	Boring (ft. below grade)	Intervals (ft. below grade)	Exceedance of 6 NYCRR 375.6 Criteria?	Greater than 500 ppm Total PAHs?	Visual Evidence of Coal Tar?	Exceeds SCOs?	
GP-1	6.5	5 to 6.5	Yes	no	no	Yes	
GP-2	5.8	5 to 5.4	Yes	no	no	Yes	
GP-3	5.9	0.5 to 2	Yes	no	no	Yes	
GP-3B	20.2	11 to 12	no	no	no	no	
GP-4B	29.0	10 to 11 12 to 13	no no	no no	Black stain, Blebs in water	Yes	
GP-5	11.0	6 to 7 10 to 11	Yes Yes	Yes Yes	no	Yes	
GP-6	25.0	10 to 11 12 to 13	no no	no no	no	no	
GP-7	26.0	5 to 6	no	no	no	no	
GP-8	10.0	6 to 7	Yes	Yes	no	Yes	
GP-9	35.2	10 to 11 15 to 16	Yes no	no no	Blebs in water	Yes	
GP-10	28.0	10 to 12 13 to 14	no no	no no	Blebs	Yes	
GP-11	10.0	5 to 6	no	no	Blebs	Yes	
GP-11C	25.0	10 to 12	Yes	no	no	no	
GT-1	34.5	8 to 9 14 to 15	no no	no no	no	no	

Table 1 Soil Boring and Sampling Results Summary

J:\Projects\11176853\Deliverables\2014 Field Work\Round 2 Hydrogeologic PDIR\Hydrogeologic PDIR - REV.docx

Appendix D presents the analytical results for the samples as compared to 6 NYCRR Subpart 375-6 Remedial Program Soil Cleanup Objectives for restricted residential use.

Figure 2 shows the results of the soil boring program as presented in Table 1. Figure 2 shows that there is a cluster of sample points that exceed SCOs at the southwest corner of the boat house. During this pre-design investigation, nearby residents informed URS field personnel that oils had been stored and spilled in that general area.

Appendix E contains URS's Data Usability Summary Report (DUSR) for the analytical sample results.

3.2 <u>Waste Characterization</u>

As shown in Appendix D, sample WC did not exceed any of the RCRA Hazardous waste characteristics (corrosively, ignitability, reactivity, or TCLP).

3.3 Geophysical Investigation

A detailed report of the results of the geophysical results is included as Appendix F. The materials identified below grade, including 5 suspected buried pipes, utilities, and other structures, are shown on Figure 2.

The most significant result of this survey, however, is that the large ring foundation, determined in the Site Investigation/Remedial Alternatives Report (Dvirka and Bartilucci, 2009) to be in the northeast corner of the parking lot and partially on the adjacent residential property, was determined to be actually located approximately 35 feet southwest of that location. As a result, the small extension in the east (residential) limits of excavation, intended to encircle that foundation, is no longer necessary. The limits of excavation in that reach have been revised accordingly, as shown on Figure 2.

3.4 <u>Slug Testing</u>

The data collected during the slug testing of the 6 monitoring wells was analyzed using AQTESOLV ver. 3.50 software and the Bouwer and Rice method for unconfined aquifers. The coefficient of permeability was calculated for the upper strata of the site, above bedrock and any

confining clay layer. The results are presented in Table 2, and the calculations are contained in Appendix E.

Table 2

Slug Test Results

Well	Hydraulic Conductivity					
ID	(1)	(2)	(1)	[cm/sec]	(1)	
	$FH^{(1)}$	$RH^{(2)}$	$FH^{(1)}$	RH ⁽²⁾	$FH^{(1)}$	Geometric Mean
MW-A	6.35x10 ⁻³	5.73×10^{-3}				6.03×10^{-3}
GW-01	2.41x10 ⁻⁴	2.11×10^{-4}				2.25×10^{-4}
GW-02	1.77×10^{-3}	1.22×10^{-3}	1.56×10^{-3}	1.47×10^{-3}		1.49×10^{-3}
GW-03	9.97x10 ⁻⁴	1.27×10^{-3}	2.34×10^{-3}	1.72×10^{-3}		1.50×10^{-3}
GW-04	5.59x10 ⁻⁴	5.59x10 ⁻⁴	6.32×10^{-4}		4.49×10^{-4}	5.46×10^{-4}
GW-05	8.54x10 ⁻⁴	2.12×10^{-3}	2.85x10 ⁻³	3.11x10 ⁻³		2.00×10^{-3}

Notes:

(1) FH: Falling Head Test

(2) RH: Rising Head Test

3.5 Disposal of Investigation-Derived Waste (IDW)

This PDI generated 11 drums of drill cuttings and 2 drums of decontamination water. The NYSDEC callout contractor responsible for the site, EnviroTrac, Ltd., facilitated the transportation and disposal of the IDW. On April 18th, 2014, they sampled the solid IDW for waste characterization parameters and polychlorinated biphenyls (PCBs). On April 29th, 2014, they sampled the liquid IDW for waste characterization parameters, PCBs, reactive cyanide, and mercury. The analyses were performed by Test America Laboratories, Inc.

On May 19, 2014, all 13 drums were removed from site and shipped to Republic Environmental Systems in Hatfield, PA.

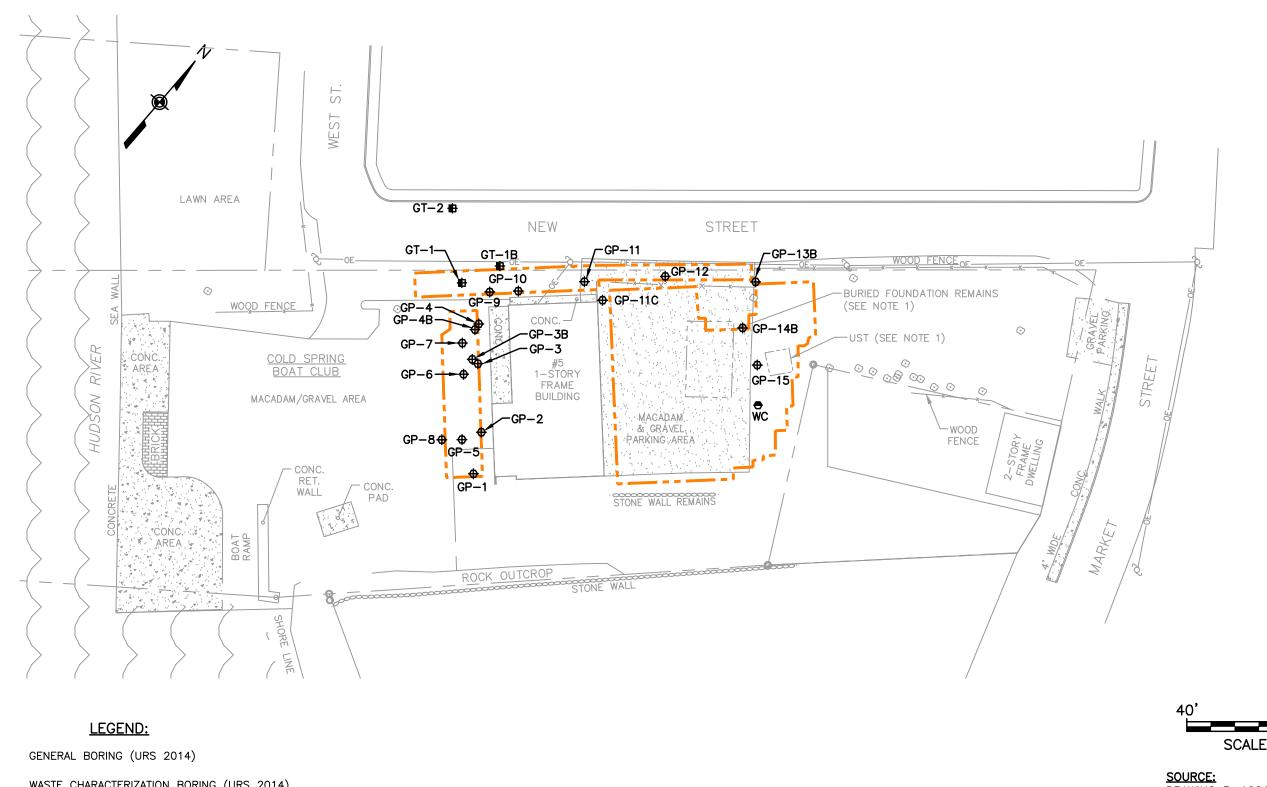
Analytical results and transportation manifests are included in Appendix H.

4.0 DESIGN PARAMETERS

4.1 Waste Characterization

The results of the waste characterization of sample WC indicate that non-hazardous waste disposal facilities may be able to accept the soil excavated from the site.

4.2 <u>Revised Limits of Excavation</u>


This second round pre-design investigation has resulted in the following revisions to the limits of excavation presented in the previous PDI Soil Boring Program report (URS, Feb. 2014). The basis of these revisions can be seen on Figure 2.

• North Side: Sample GP-9 showed exceedances of Commercial Re-Use criteria, total PAHs greater than 500 ppm, as well as visual evidence of coal tar. Sample GP-11 showed exceedances of unrestricted use criteria for VOCs.

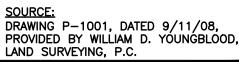
Since that wall of the excavation will likely be braced, so that post-excavation confirmatory samples will not be able to be collected, the limit of excavation along the northern boundary will be established close to the property line so as to capture as much as possible of any contamination that may be located to the north of boring GP-9. (Note that because that wall will be braced, the northern boundary of the excavation limits defined in the February 2104 URS report have been moved about 5 feet north, in line with the limit defined here. This will eliminate the "jog" in the wall that would have been necessary, as well as resulting in a more conservative design.)

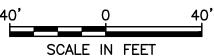
• East Side: URS's geophysical survey has shown that the ring foundation for the large gas holder tank is located to the southwest of the location that has been shown in all previous reports. Thus, the small eastward extension ("jog") in the limits of excavation there (along which borings X-08 and X-09 from the URS October 2013 investigation are located), intended to encircle that foundation, is no longer necessary. The limits of excavation in that reach have been revised accordingly.

- South Side: The boundary of the excavation area along the south will extend to the outside edge of the Boat House foundation, beyond which a bedrock outcrop will prevent any further excavation.
- West Side: Samples GT-1, GP-6, and GP-7 bound the required limits of excavation along the northwest edge of the project. The southwest edge was not defined, however. Sample GP-8 shows exceedances of Commercial re-use criteria as well as concentrations of total PAHs in excess of 500 ppm. Thus the boundary of the excavation area is shown to allow a buffer on the outside of that boring, and attainment of clean-up objectives there will be confirmed during remediation by post-excavation samples.

- WASTE CHARACTERIZATION BORING (URS 2014) WC 🗢
- GEOTECHNICAL BORING (URS 2014) AT WHICH CONTAMINATION DELINEATION SAMPLE COLLECTED GT-1 🖶 (SEE NOTE 2) BOUNDARY OF GEOPHYSICAL INVESTIGATION (URS 2014)

BURIED FOUNDATION REMAINS AND UST (SEE NOTE 1)


- NOTES:
- 1. THE LOCATION OF THE BURIED FOUNDATION REMAINS AND UST ARE TAKEN FROM THE FINAL SITE INVESTIGATION/REMEDIAL ALTERNATIVES REPORT (DVIRKA AND BARTILUCCI, OCTOBER 2009)
- 2. THE RESULTS OF GEOTECHNICAL BORINGS AND BORINGS TO LOCATE THE TOP OF BEDROCK ARE DISCUSSED IN THE PREDESIGN GEOTECHNICAL SUMMARY REPORT (URS 2014)


GP-1⊕

URS

FIGURE 1

URS 2014 SITE INVESTIGATION PLAN

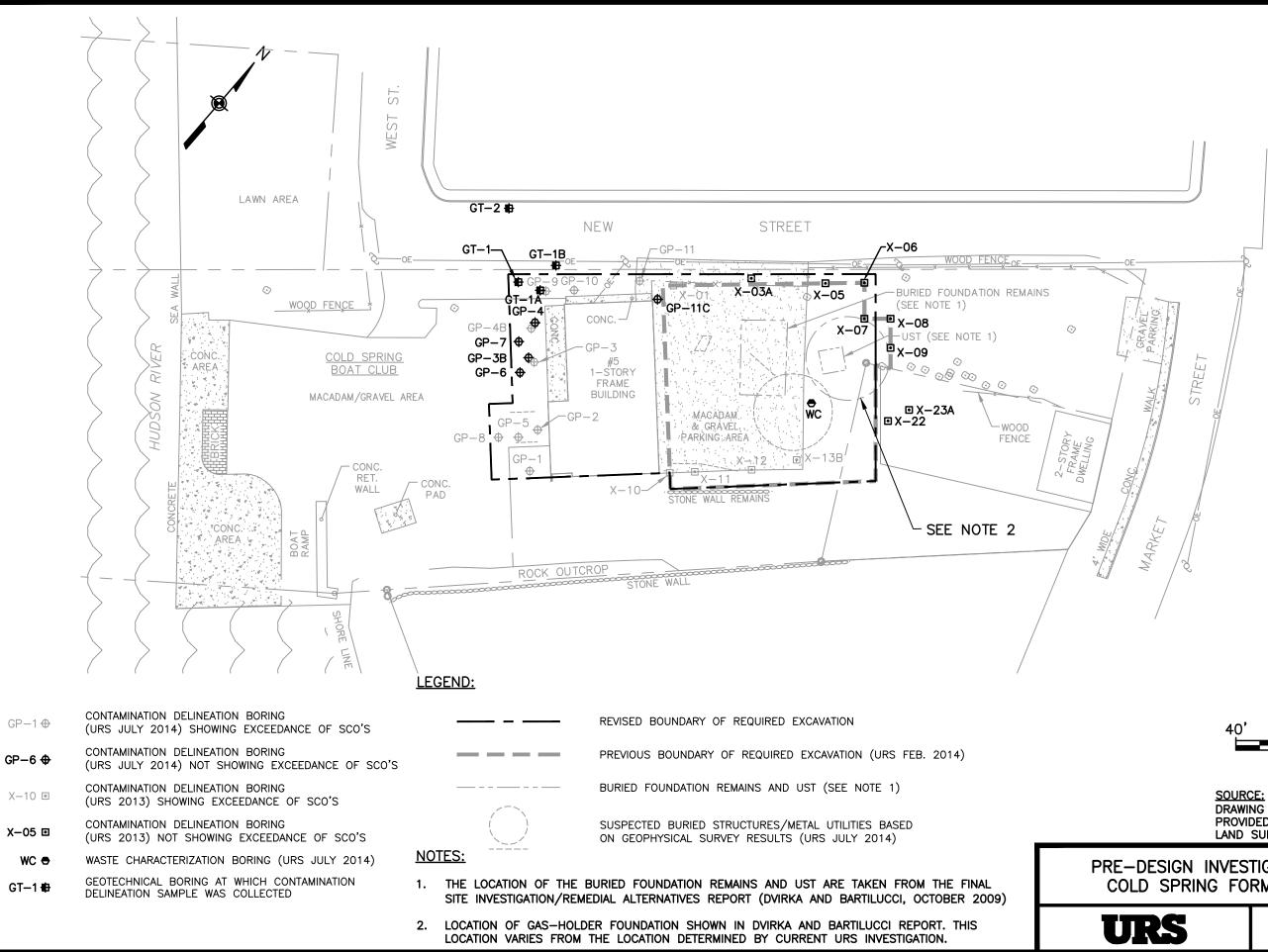
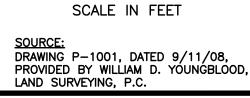
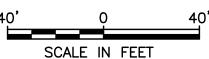




FIGURE 2

PRE-DESIGN INVESTIGATION RESULTS COLD SPRING FORMER MGP SITE

APPENDIX A

URS FIELD NOTES

J:\Projects\11176853\Deliverables\2014 Field Work\Round 2 Hydrogeologic PDIR\Hydrogeologic PDIR - REV.docx

Location Cold Spring NY Date 4/14/14 Location Cold Spring, NY Date Wighty Project/Client Cold Spr. 1 NYSDEC Project / Client Cold Opring NYSDEC Weather . Sunny , 65-70° 0815 - Setup CAMP Station House Hase 07.00 - Tim IFKerich (URS) onsite onsite offsit New St Personnel - Chuck Dusel (URS) 800 1715 Parking Steven Sissing (EnviroTrak) 920 1630 1 Startion farce -Gauin Zello (EnviroTink) 920 (630 GP-7 \$ 6A-4 John Veiss (Associated) 8:0 1615 Bost Kensley Noria (Associated) 830 1615 Parking 1to use Dorig (Rida-Sol.) 730 1400 GP-3 Lot - TI begin to Mark geoprobe location 0 will blend our original locations + GP-2 locations requested by Vic Gauten (URS) GP-1 Om - Environce contracted Associated Orilling Pine H CAMP Station - PiD-Sauto 5359 to perform the geoprove & sectechnical Dust Trak - Sing # 17784 borehdes on site. 0730 Dorig (Radar Solution) pasite, will perform geophysical survey of work apr, 845 - Associated Drilling on site al GPR + Magnetics (USing Em-GI) John Veiss + Keysley Noria 0800 Chick Dusel (URS) onsik, review boring - 50 our Soope of work locations 0920 - EnviroTrac onsite - Calibrate RID meters, MultiRAE Plus Steve Sussman + Gauin Zollo # 10324 Pio Gas Essbutyles) - 100pm Actual - 99.3 - wentourscope EnviroTrac was # 05359 Pio Gas (Isibotylen) - Kopp Adad -98.7 under the impression they were HOZZ729 MULLIRAE PLUS CO (50) 49 H25 10pm)10 hand clearing all geoprobe points LEL (50%) 49 Voc (00) 99 - told them there was no had clearing 0, (18%) 18.2%

Location Cold Spring, NY Date 4/14/14 Project/Client Cold Spring NYSDEC at any locations 930 - Held Tailget soferty neeting il Associated + EnviroTrac 945 - Start to geoprobe @ GP-1, drillers Using 7782 DT Geoprobe Rug, EnviroTrac is in charge of IOW, URS will collect samples from select geoprobe locations for MGP contamination + also look for depth to clay & Boebock. 1000 - Breathing zone of (GP-1) - collected sample @ GP-1 (5-6.5') Refusal @ 6.5, we clay 1020 - GP-2 Brathing Zone of · collected 5mple @ GP-2 (5-5.4) Refusal @ 5'9", No elay 1030 - GP-3, Lit refusal @ 5'10" collected supe @ 6.P-3(0.5-2') - moved I west of original laction + hit refusil @ 7'9" (GP-3A) 1045 Geoprobing stopped, Environce saying its their policy to hand clear all locations. - Chuck on phone u/ NYSDEC -(Mille Mason, Dave Chiusand) + Envirotrae

Location Cold Spring NY Date 4/1/14 Project / Client Cold Spring NISDEC (Self bother) to discuss the need for hand clearing 1200- Doria continues to survey area Suys GPR is not go thing good Repetration but Magnetic Em.Col is aurking good. 1205- Bentinee drilling 1245 - Drilled GP-3B Z'N of GP-3A - Refusile 20'3" - Gilty day 10-20'3" -collected sample GP-3B (11-12) 1330- Hit refusil @ 6P-4@ 8'3" - moved 2'5 + drove down to (GP-4A) 1400- Dorig offate 29.5, no samples collected 1420- Moved I wast of GP-4A + drove days again, collecting sample - hit refusile 29' - silty cky 10-25 · collected Samples From 10-11 + 12-13 1525- collected snyp & @ GP-7 (5-6) 1530 - Chuck & Stere offsite to see building inspector in regards to location of geotechnical point (1) located on North side of Newstin Siderate

Location Cold Spring, NY Date 4/14/14 Location Cold Spring, My Date ... 4/15/14 11 Project / Client Cold Spring NYSDEC NYSDEC Project / Client Cold Spring 1600 - Drilled GP-7 to 26 (Refusal) Weather - Clady, Rany ~60° - 5,1+4 cky 10-25' (No recovery 25-26') 0700 - Tim I'kouich prsite -1615- Asso. offs.k Personnel onsite affsite Chuck Dusel - URS Victor CARDOZA - EnviroTrac 1630 - Of Steve seturn 900 1645 - Enviro Trak offsite 1545 730 - CD said that the grassy were is John Veiss - Associated 800 marty Amoscato Hersty Dociae - Associated 800 1530 in a right of way + we will be 800 1530 ask to drill there - Calibrate neters - All geoprobe Samples will be sent Cal Gas Actual to Test America for BTEX (8260 c) #10324 PiD 100ppm (Iso.) 99.6 ppm PAH (8270D) + Moisture Englysis #05359 PID 100 ppm (Esc.) 98.9 ppm 1700 - TI + CD off site HORITA MULLIRAE CO 50 ppm 50 ppm LEL 50% 48% 02 18%. 18.2%. 1+25 10ppm 10ppm Iso but lere 100ppm 99ppm 0730- Setup CAMP New 51 Ist B o Ferce - Parking 6Pg GP-10 Boat House GP-6 0 6. P.80 6. P-50

Cold Spring, NY Date 4/15/14 13 Location Cold Spring M Date 4/15/17 Location Project/Client Cold Spring NYSDEC Project / Client _____ Cold Spring NySDEC CAMP Station - PID- Pine # - 05359 deain their outdrive from the boarts Dust Trak - P. ne # - 17784 in the area of GP-5 + GP-6 1025 - Finished GP-8, Refuse 10' 815- Held Talgate staty meeting 125 - Bigin drilling C G.P.-G - Shen & slight pet odor from 840- Still Laving LAMP/CLEAR Serson G-7, more contamination from problems of the PiDs the boaters draining their out drives - Drilles start to mix grow for Dust Tink - 0.016 mg/m3 845 - Breathing Zon Clear boreholds in main lot in front of Boat house 900 - Chuck Disel onsite 1100 - Start GP-9 930 - Drilled GP-6 to 25, but after 1200 - Lunch Brack going back down the hole, couldn't 1245 - Return towork Bet past 23', simething may have 1320 - Finished GP-9 collapsed in the hole. CD said twy - Refusal @ 35'3" site good + to move on. Collected samples from 10-11 + - collected sample from 10-11 (slight sheer on water & slight pet ador) & from 15-16', Sty clay found 15-25 1445- Finish G.P-10, Refusal @ 5 12-13 - clay from 10.20' upon 1st attempt, moved 2'w, 1000 - Finished GP-5, Refusal @ 11' refusal @ 28' on 2nd a tempt - Collected simples @ 10-12 + 13-14 edlected sample from 6-7 + 10-11. - silty clay 10-28' sheen & pet odor from 6.5 7 1450 - Associated dropped off drill - more to GP-8 rig to use for the gestechnical pts. - CD spoke of Steve (Boat Dock) stated that sometimes guys

Location Lold Spring, NY Date 4/15/14 Location _____ Cold Spring, NY Date 4/15/14 15 Project/Client Cold Spring WYSDEC Project / Client Cold Spr. 27 NYSDEC - parked Rig in back lot Weather 1530 - Associated off site 0700 - Tin Ifkevice ansite 1545 - EnviroTrak offs.te. Personne 1 choite offs to - Prepare to perform sly tests Chuck Dusel - URS 820 1900 on wells Ma - A +MW - B inside Victor Cardoza - Envirating 730 1630 the building Jon Veiss - Associated 300 1600 Sumuel Martinez - Asso. 800 1600 1600 1645 - Finished the slog Test on MW. A 800 Kensley Norian - Asso. - There was insufficient head in Ryan Jersen - Asso. 800 1600 MW-B + was unable to be tested Marty Anoscalo - Asso. 800 1600 - offsite - Calibrate Meters Cal Gas Actual #10324 Pio 100 ppm (Iso) 98.8 ppm #05359 PID 100pm (Iso) 97.3 pp # 022729 MULLIRAE CO 50 ppm 45 ppm LEL 50%. 50% 02 18% 18:2% 125 10ppm 9 ppm I 50. 100 ppm 99ppn 0730- Setup CAMP D- CAMP Hoose 1º New 5+ GP-11 OF-K - GP-Parking GP-BO 17 0 Pas King Bort Parking 150 Dwind Loux WCQ

Location Cold Spring, NY Date 4/16/14 Date 4/15/14 Location Cold Spring in NYSDEC Project / Client Cold Spring Project / Client Cold Spring NSDEC - for Geotech borings, will collect CAMP Station - Pine # 05355 - PIO 0730 - Victor Cardera onsite - Environtral Continuous 55 Samples From 0-20 ther every 5" there after. 800. Deillers onsite, Held Tallgate setety 1000 - Hit Refusale GP-11BC 7' more meeting, Geoprobe will continue environmental 3 east + 1' south of original location Sampling C GP 11 & Bedrock boreholds, - collected sample from GT-1 from Orill Rig will use 41/4 HSA to perform 8-9 for analysis (BTEX, Moisture, PAH) geotechnical drilling @ GT-1. URS comunicated w/ Associated last weekend & told them to bring equipment for and rotary of 19017 - Drill rig is having problems al heaving in the bore hole, bure have keeps collapsing + filling in, Dullers Keep trying to to collect a rock core (WX Size), However, the dilles did not bring that equipment clear out bore hole al water 830 - Greeprobe Starts sampling @ GP-11, 1007 - Collected Sumple C GP-11 & From (5-6) R: (Dietrich D-120) begins to setup 1030 - collected sumple @ GP-110 From (10-12') collected Field Puplicate @ GP-115 on GT-1 on the south side of New St. - Victor & Kensley begin to hard clear GT-2 from 10-12', FD-041614 \$ 920 - GT-2 was had deared to 48", water 1100 - Geoprobe lost Maurocore Sampler Kept collapsing the lide, CD said to stop at GP-11 C @ 20-25, will more on to bedrock botchdes that e 48' do not require sampling. 925 Geoprobe rods were getting Kinked by a 1130 - Drill Rig crew is mixing Revent bouldor @ 10'e GP-11, will move Z'west to try & seal the hole to keep it 948 - Geoprobe hit refusal @ GP-11A. @ 5, will move 2' west & 1' worth from collapsing. 950 Drill Rig drilled to 8', collected 55 to

Cold Spring, NY Date 4/14/14 Date 4/16/14 Location Cold Spring, NY Location _ NYSDEC Project / Client Cold Spring Project / Client Cold Spring NYSDEC 1135 - Geoprobe hit refusal @ GP-120 256" 1418 TI & CD called Vic Gatan of UPS in Cleveland (Credechnical engineer) 1205- Hit refusal @ 6P-13 @ 66" will to describe the borehole, Vic move 2 west. 1215- Hit refusal @ 7' @ GP-13A, will would like to drill another borehole 5' from GT-1 & collect Shelpy Tubes move 2 E of original location From 16-18 + 22-24, we need 1230- GP-13B-Hitrefusale 96", will For SB-05, Stopped + more to 6P-14 at least 18" recovery 1430 - Crew Starts to grout GT-1 1223 - collected surple from GT-1 From 1445 - Collected a Waste Characterization Sumple from 5-6 in the WC 14-15' for analysis 1306 Hit refusal @ GP-14 @ 5', will more borchole, Probe crew used dial Tube liness to collect the sample, sample 3 wast will be analyzed for TCLP VOCS, Semi, 1316 - Hit refusile GP-14AC76", will nove Metals, PCBs, Cyanide, SulFide, Pest, Here 3 west (all TELP RERA), however limited 1330- Hit refusale GP-14 Be 10'4", will volume was collected. move to GP-15 1355 - Hit refusale GP-15 @ 11', will - All samples (Environmental, waste Char. + Drom IOto) will be brought back more 3'W to Buffalo &, URS, including the 1415- Hit REFUSALC GP-15AC 5', WILL She lby Tubes. move to waste Characterization borehole 1600 - Crew Menbers Frished growting & · - Drill Rig hit Bedrock refusal @ patching all Geoprobe boreholes + 6.7-1 GT-1 C ~ 34.5', found silty - Asso. offsite clay from 14-27 1630 - Enviro Trak offsite, cont. Slug Testing

Location Cold Spring, NY Date 4/11/14 Location Cold Spring, NY Date 4/17/14 Project/Client Cold Spring NOSDEC Project / Client Cold Spring 12750EC CAMP Station PIP Pine # 05359 Weather - Sunny -50' Dust Trak # 17784 0700- Tim IfKoul onsik 0800 - Associated onsite (Fym, marty) Onsite offsite Personnel 0730 - Environme Onsite (Victor) Victor Cardora - EnviroTrak 730 - Start running Slug Tests For on site Ryon Jersen - Associated 800 wells Murty Anosciated 800 Theid Tails ate safety meeting - Calibrate Meters Cal Gas Actual - 815- Drillers brought equipment for Mud Drilling & rack coring # 10324 PID 100 ppm (ISO) 983 # 05359 P.D 100 ppm (ISO) 99.5. - Prillers Legin to setup on GT-1(ST) # 022729 MultiRAE CO 50 ppm 49 ppm - 5' east of original GT-1 location LEL 50% 49% 915 - Drikers begin to drill @ GT-1 (ST) 0, 18/. 18.31 930- At MO' Augers are hitting 12, 5 10 pm 9 pm Boulders & pushing the aragers to the Iso 100 gpm 100 ppm side will have to move 5' 0730 set-p CAMP Have House Gway to try again D-CAMP Station - Victor begins Lendeleaving 2nd Lole New St. 2 Farbe - Parking 0 for GT-2 1000 - hig moved S' F (10' from original GT-1) GT-1 - Puz to using the model ub, Driller said he couldn't get to close to other hole because it may come up through other hole - Begin drilling again. 2

Date 4/17/14 Location __ Cold Spring, NY Date 4/17/14 Location Cold Spring, NY NYSDEC Project / Client Cold Spring NODEC Project / Client _____ Cold Spring_ 1-1-10 - Pulled out the Shelby Tube from 1050- Drillers driller to 10' & set casing 18-20' but had No Recovery to 10', set up mud tub and are - Spoke and S. Michabe, C. Dusel, + now mixing mud of the water for seal, Vic Gartim (URS-cloudand) Vic stated 1200 - Samuel Martinez (Asso.) orsite to he fo to try again @ 20-22', asked if - Talked of Scott McCabe (URS) about the drillers had a piston sampler prigress of drilling, Scott will talk to but hyan was it sure if they did or not. John (Associated) to discuss how to speed 1515 - Drilles try pushing nother Shelly op drilling from 20-22' -lunch brack 1550 - Rulled up 2 3rd a Hempt at 1230- Return to work Shelby Tube from 20-22, got 7" - Driller said that using Augers to act of recovery, not erough for as casing for coring would not work breache geotechnical test they would not be able to hold a seal of - Ryan said they will borrow a Water would run up to ground surface pipton sampler for tomorrow will continue to use mud story 1615 - Dr. Ilers cleaned up, will leave -Victor will collect a sample for Rig on correct hole. IDW from the drums & send it. - TI continue to sho test to Test Ameria for analysis 1630 - Victor offsite 1307 - Asso. Starts to drive 1st Shelly 1730-TI offsite from 16-18' 1340 - D.d not get any recovery on 1st Shally - instructed the driller to try again 18-20' 1400 - Drove down to 18 & pushed a shelly From 18-20'

Research and the second s

LELSV. 47%. Source fill of casing to solit 0,18%. 179% Hzs 10,000 100,000 I SO 100,000 100,000 I SO 100,000 100,000 Alter pt a Shelly Tube w/ the Pister a Herpt a Shelly Tube w/ the Pister a Herpt a Shelly Tube w/ the Pister Sampler Source Vides of think the sample Lawrence dues of the stay in the sample Wow St New St Force Riving O GT-1B Source a House a factor of the shelly the sample Protein a the shelly the sample Source of a theory of the stay in the sample River of the stay in the sample Protein of the shelly the stay in the sample Protein was public of the shelly the shelly the sample Protein of the shelly the shelly the sample Protein was public of the shelly the shelly the sample Protein was in the shelly the shelly the shelly the shell of the shelly the shell of the shell	Location $C = [a] = \frac{1}{2} \frac$			Location <u>Cold Spring</u> , NY Date <u>4/18/19</u> Project/Client <u>Cold Spring</u> NYSDEC
0720- Tim Edward onsite Provel Steven Smith Enviroliant 720 1815 Ryan Jusia Associated 0.020 1815 Ryan Jusia Associated 0.020 1815 Marty Annualo Associated 0.020 1815 Hozzy Moll. CHE Co Supen 50 pc Eccision 40 1815 Differ 100 pp 100	Weather - Partly Sun	y. 55°	•	- Stopped She test Gw-03. TIDAL Had
Personal Unsite official influence, will continue she Steven Smith Envirotrak 720 (195 Ryan Jusci - Associated ensite Marty Anarcho - Associated ensite Marty - Anarcho - Associated ens			· ·	
Steven Smith Environek 730 (815 Ryen Jusci - Associated 0.32) (815 Marty Anarcelo - Associated 0.32) (815 - Calibrate rules Calass Actual + 05355 PiD (10 jun (Eso) 99.1 pr Ho22729 Moll. 2415 CC 50.23) 50.21 HO22729 Moll. 2415 CC 50.23) 50.21 CC 50.237 50.21 Ho22729 Moll. 2415 CC 50.237 50.21 CC 50.237 50.21 Ho2 186 17.97 Ho2 100ppn 100ppn CC 50.27 Ho2 22, will new Aterpt a Stelly Tuse w/ He Piste Sample From 22 - 24 Ho22 -			te officite	tidal influence, will continue slug
Marty Americalo +ssicilited GOCE 1875 - Calibrate relaters <u>Class</u> <u>Actual</u> + 05357 PiD (14 jun (250) 49.1 pp. + 05357 PiD (14 jun (250) 49.1 pp. + 022729 Mullight Co 50 pp. + 1027 Mullight Co 5				tests throwclast the day
Mady Americal Hossic inter Gold Gold IPS - Calibrate releters <u>Class</u> <u>Actual</u> #05355 PiD <u>100 (mon (250) 19.1 pp. #022727 Mullight Co 50 pin 50 pin <u>50 pin</u> <u>50 pin} <u>50 pin</u> <u>50 pin} <u>50 pin</u> <u>50 pin} <u>50 pin</u> <u>50 pin} <u>50 pin</u> <u>50 pin</u> <u>50 pin} <u>50 </u></u></u></u></u></u></u>				0800 - Associated easite
- Cullbrate ruters <u>Cultas</u> <u>Actual</u> + Cullbrate ruters <u>Cultas</u> <u>Actual</u> + 05355 <u>PiD</u> <u>Inc. inn. (Eso)</u> <u>99.1</u> <u>Par</u> + 022729 <u>Mull. GHE</u> <u>Co. 50.221</u> <u>50.221</u> + 022729 <u>Mull. GHE</u> <u>Co. 50.221</u> <u>50.221</u> + 022729 <u>Mull. GHE</u> <u>Co. 50.221</u> <u>50.221</u> <u>Co. 186.</u> <u>17.97</u> <u>BS7-</u> <u>Lawrace bad</u> <u>drillers pot in</u> <u>Co. 186.</u> <u>17.97</u> <u>down to clay</u> <u>Hzb. 106000</u> <u>1000000</u> <u>GT-18</u> <u>G21-</u> <u>Drillers</u> <u>drilled to 222</u> , <u>unill new</u> <u>Tortop CAMP</u> <u>PiD-05557</u> , <u>Oust Trk-17189</u> <u>Cawrace</u> <u>duesn 'f think the surgete</u> <u>New St</u> <u>Masse</u> <u>ID Station</u> <u>Masse</u> <u>New St</u> <u>Co. 50.257</u> <u>Co. 118</u> <u>Co. 1280</u> <u>Co. 218</u> <u>Co. 218 <u>Co. 218</u> <u>Co. 218</u> <u>Co. 218 <u>Co</u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u>				From Jeisen, Marty Amoscato
- Calibrate reters <u>CalBas</u> <u>Actual</u> #05355 PiD (2000) 1991 pm #022729 Mill. CHE CO 500,227 5002 #022729 Mill. CHE CO 500,227 5002 #022729 Mill. CHE CO 500,227 5002 ECCSIF. 477. Some fit of casing to sul it 02.187. 17.97. down to clay H2S 10,600 100,227 921 Drillus drilled to 22°, will new I SO 1000000 1000000 Attack onsik - Storen Snith - Schop CANP PiD-05357, Ocst Trik-12189 House House New St 1030 - 2nd attempt using Pister Sample Social Mass of the Starper Social of the Starper St				820- Pro Ziver arrives onside w/ the
#05355 PiD Inc pen (Eso) 99.1 pp. #022728 Mull. CHE CC 50,200 50 pp. EECSS. 477. 50 pp. 857- Lowrace had drillers polyin CECSS. 477. 50 more fil of casing to soul it 02.187. 1797 down to clay H25 10,600 10,000 gp. P30- Enviroticationsite - Store Snith Schup CARP P10-05357, Out Tick-17189 House D Station New St Concernence of Sould and Store Stay in the sample Participated in a conference on 1	- Calibrate Meters	<u>C1045</u>	Actual	Piston Sampler, Lawrence Moretti +
#022729 Mull. CAFE CC 50,220 50,220 LEC 50%. 47%. 50 more file of casing to sull it 02,18%. 17.9% down to clay H25 10,600 10,277 921- Drillus drilled to 22°, will new I 50 100,000 100,000 a Heapt a Shelly Tube w/ the Pister 0730- EnviroTrak onsik - Storen Snith Schop CARV P10-05307, Oust Trk-17189 - Lawrence duesn 't think the Supple House Hause Alass New St 1030 - 2nd alternation for Stary in the Scaple Participated in a conferme in 1	#05359 PID			La Jrace Moreti (Jr. + Sr.)
LEC 55/ 477/ 5 more ft of casing to sul it 0,187. 1797 down to clay H2S 10 gran 10,000 I SO 100 ppm 100 ppm 921 - Drillers drilled to 22°, will new I SO 100 ppm 100 ppm a Herpt a Shelly Tube w/ the Pister 2730 - EnviroTrak onsik - Storen Snith - Store CANP P1D-05307, Oust Trak-17184 House House House Will work, to believes the clay is the New St I Station D France Pixture of GT-1B France River of GT-1B - Revenie of GT-1B - Revenie of Law on the shall y the shall y - Cauced of the shall y in the scape of the shall y - Station D Station D - Stat	1022729 Mult. CAF			
02/8%. 17.9% H2S 10 ppm 10 pm ISO 100ppm 100ppm OCPPM Alter pt a Shelly Tube w/ the Piston a Herpt a Shelly Tube w/ the Piston Sampler From 22 - 24' - Lawrencess aliesn 't think the sample will work, he believes the clay is the all work, he believes the clay is the Solid the output of the Shapler Piston a alterpt using Piston Sampler Piston was public of The and alterpt a shaple of the shapler Piston was public of the shapler and alterpt using Piston Sampler Piston was public of the shapler and alterpt of the sha		LELSO/	47%	
Iso 100ppm 100ppm a Heapt a Shelly Tube w/ the Pishe 2730 - Enviroticate Onsite - Steven Smith - Setup CAMP PiD-05357, Oust Tak - 17784 House House House Will work, to believes the clay is the New St 1030 - 2nd attempt using Pishen Sample Prece Participated in a conference of 1		0, 18%.	17.9%	down to clay
- 2010 CARP PiD-05357, Oust Trik-17184 - 2010 CARP PiD-05357, Oust Trik-17184 House House House Will work, he believes the clay is the supple New St		H2S 10 ppm	10,000	921- Drilles drilled to 22, will now
- Detug CAMP PiD-05359, Oust Trak-17184 House House Will work, to believes the clay is the New St Station Distance Noise to stay in the scape Prece Parking O GT-1B 1030 - 2nd attempt using Piston Sampler Prece Riston O GT-1B		Iso looppm	100 ppm	attempt a Shelly Tube w/ the Piston
- Detup CAMP PiD-05359, Oust Trak-17184 House House Will work, to believes the clay is the New St Station Distance No. Station Sampler Prece Parkins O GT-1B 1030 - 2nd attempt using Piston Sampler Protection was pushed on The sholly material was in the sholly - Caucace ^S duesn 't think the single will work, to believes the clay is the Soft & no. St to stay in the sampler Protection of the sholly - Participated in a conference in 1	730- EnviroTrak onsik	- Storen Smith		Sampler From 22 - 24
New St New St Parking O GT-1B Parking O GT-1B Protein was pushed and the shall y Parking O GT-1B Protein was in the shall y Parking of the shal	- Zetup CAMP P.	10-05359, Oust Tr	-k-17184	- Lawrences does it thigh the sugpler
Face Participated in a conference on 1.	House	House		will work, he believes the clay is to
Face Participated in a conference on 1.		N Station		
Boat - Participated in a conference call	New St		N	1030 - 2nd attempt using Piston Sampler,
Boat -Participated in a conference cal	ence	3041-115		8.5ton was pulled at but no
Perking 130at -Participated in a conterence cal				
	Perking			-Participated in a contense and
P 1 House we chock Dosel, Scott McCabe, Dave Chiusano + Jeff bohlen		(+ou	><	ul ChuckDusel, Scott McCabe, Dave

Date 4/18/14 Location Cold Spring, NY Date 4/18/14 Location Cold Smy My NYSD EC Project/Client Cold Spring Mys DEC Project / Client Cold Spr. 24 Rock Core Notes 275-37.5 about the progress of the project UPS, EnviroTrai & Absociated will Run 1 (6T-1B) discuss how to more forward to Time Deats collect the sected have I saysly Start (27.5') 1302 1035 - 4th attempt @ pushing a Shellby 1312 1 (85) Type w/o. wying the piston sumptor (22-24) 1324 2' (29,5) 1341- Stop to add 2' rod 110- Pulled shelpy Tube from 22-24 + 1335 3' (30.5') 1344- Rosume Received No recovery 1350 4' (31.5') 1120- Spike w/ Church & Scott, will 1359 5' (32.5') Little to no water loss accurred while drill forward to bedrock & set casing coring the 1st 5' Run, seemed to to begin coring. would like a get soft ~ 4.8' (32.3') w/ a 1.44 10 core Sumple. 1227- Drilled to Ledrack C GT-1B @ water loss from 4.8-5 (32.3-32.5) 27.5' - Pulled out Rack core - Recovery - 4.8' RQD-4.8', solid granite w/ pink to - The label on the rock care b.t. green colors, (chlorite, feldspoor), back is subled off (N-series) banding throughout (hornblande) (see Photo 3 0D + 2 ID 1302 Driller set casing to 27.5 & began 2091) No fractures to rock core See next page For Run Z 1359 - Cored to 32.5' (5 into rock), very little water loss, seened to get soft the last ~?" 1455 - festart 2nd as from 232.5-37,5 1527 - Finish 2nd run

.

Date /18/19 29 Date 4/18/14 Location Cold Spr. , NY Location Codd Spring NY NYSOEC NYSDEC Project / Client ______ Cold Spring Project / Client Cold Spring - Fitted borchele Due to settling Rock Core Notes (32.5-37.5) Run Z (GT-1B) the hole will not be finished backfilling. Placed a bucket to Time Depth Restarte 5' (32.5') - losing a lot of mater act as a plug in the top of the 1455 6' (33.5') - Constant flow of water to nod tob borehole + placed a construction 1500 7' (34.5') - 1503-5top to add 5' Rod barrel of several workts over 1510 8' (35.5') the Lole. Caution type was tred 1505 - Resume 1517 9' (36.5') from the face to the barrel & 1524 1527 10' (37.5') back to the ferce. - will seturn on 4/28/14 to - Lost a lot of water during Run 2 finish drilling - URS, Asso. - offsite Approximately ~110 gals lost during 2nd run. 1600 - Pulled sample from coring bit - Asked Steve From the Posthars if uccould - Recovery - 3, ROD - 1-2 leave the R.g in the back lot, Said it belonged Sample came out in Several chunks all to the Hudson House, told drillers to contact < 4" except 1 section which reasonal them, left is arriver 1.25 - A total RQD of 6 05 for the 10 single - Same lithology as Run 1 1615 - Begin clean up 1815 - Area cleaned up, will leave drong + Rig in parking lot behind boathouse . Trende some cerent into bottom of borehole to seal fractures in rock

Location ___ Cold Spring, NY 31 Date 4/28/14 Date 4/28/14 Location Cold Spring, NY Project / Client Cold Spring NYSDERS NYSDEC Project / Client Cold Spring House House Weather Suny ~50° 9 mg 50 DCAMP 0700- Tim Ifkours (UR) onsik Sidewell Personal onsite offite New Street Bob Gimbel EnviroTrac 0700 1615 Parking GT-1. Fyan Serser - Associated 0820 1615 ferre Marty Amoscato Associated 0820 1615 0700- Enviro Trac onsite : Bob Ginbel Beattouse Parking - Calibrate reters W Cal Gaz Actual 100 ppm (Isobolylere) 99 C ppm #05359 210 #10324 PiD 98.9ppm 100ppm #022729 Mull. RAF Plus COSppm - will try again to collect shelly tubos 50 pon LEC 50% from the GT-IC area on the south side 491 02 18% 18.3% of New St. 1+2510ppm 10 Bpm 0820- Associated arrives on site ISO INPPA 99 ppm Ryon Jersen & Marty Amoscoto Dust Traf Calibration · Hold Tailgate Safety Meeting 0730. Setup CAMP Station 0840-Drilles start setting up for P.O- # 05359 arother attempt @ setting a shally Dust Trak - H 17784 C GT-1C, wilkse y'ly HSA + dr. 11 Straight to 16' to a Hempt Shelly 920 - Ricked up parking pass from HUdson House to give to Associated

Location Cold Spr. my Date 4/28/14 Location Cold Spring, NY Date 4/28/14 NYSDEC Project / Client Cald Spring Project / Client Cold Spring NYSDEC to got on their rig for parking in + to bag it up. After the in the back lot behind the boat house Split spon, will try to shelly again 925 - Pro River - Lawrence Morethen onsike w/o the Piston sampler. 1400 - spoke w/ Vie Gruten, Chuk Duseld to drop off fiston sampler 930 Pro River offsik Randy West on progress, Will Keep trying sheller's 1000 - GT-IC (3' east of GT-1), b. + followed by 3" split spon, so if no record, boulder @ 7, tried grinding through it on shellby, should hope fully shill get some but was unsuccessful, trid air ratery ensuccessful 1010 - move 2' west of GT-1 & try again. surt of recoursy from split spoon. Unsure as to why there is no recovery al shelly 5 140 - Pulled up 3's plit spoor from 1020 - Start GT-10 -23-25' (Blaw courds - 7, 8,9,10) 1055 - Drilled to 16 @ GT-1D, prip to (3100 faunts for 21-23 - 9, 11, 7, 8) Receip . Send down shelby tube 7 23-25' 8" Recovery Pocket here fromed or. 1108 - Rushed Shelby Tube from 16-18, W.11 seading - 0.2 tons 1sq Ft, Gray sitty Clay net let it sit to swell inside tuber 1129 - Stort to pull up Shelloy - will collect any clay in 55 in 1135 - 1st attempt - O Recovery plastic bags/saran wrap as undisturbed 1200 - Rushed the Riston Sampler 18-20' as possible 1226- Rulled up Piston Sampler 1420 - Rushed Shelby Tube 25-27 & retracted 1255 - No recovery on attempt of Piston Scapler w/o letting it sit, No Recovery - will try again from 20-22 1435 - used 3'55 25-27 1450-25-27 Blow Counts 5-3-21-32 1317 - Spoke w/ Vic Gautan (URS- Cleveland) Rec - 2' Gray Silly Clay 25-26.6' - suggested using a 3' span to cla Zle. 6-27 - Gray (E-m) Stgravel, wet at my residual over the last interval Pocket Renetrometer - O.1 tons/59 FF

Date 4/29/14 Location Cold Spring, NY Date 4/28/14 Location Cold Spring NY NYSDEC Project / Client Cald Spring Project / Client Cold Spring NYSDEC 1500 - collected the 8" sample (23-25) + Weathor the life sample (25-27), wrapped 0700 - TITEFROUCH ONSILE (URS) offs.te Personnel onsite them in plastic & duct taped the ends. Bob Binbel EnviroTrac 700 - reached the bottom of the clay Ryon Jersen Associated 815 Drillers will start cleaning up Marty Amoscato Associated 815 1530 - Drillers grouted up boreholes, will top 0700 - EnviroTrac onsik - Bob Simber off w/ w/ w/ abatch tomorrow - Calibrate Meters - Spoke w/ Chuck Dusel + Vic Gritant Actual Cal Gas left a message for Randy west, reationed 99.2ppm #05359 PiD 100 ppn (Iso.) the simples collected from 23-25 + 25-27. 100 ppn 99.0 ppz #10324 P.D Will try GT-2 tomorrow on worth side HOL2729 MULTIRAE Plus CO SOPPO 49 pp of New St. In agreenent w/ Vic, UEL 50% 49 % will collect continuous split spoon (2") samples 0, 18%. 18.2% from 4: to Clay (Hand cleared to 4'), when clay is found will try a shelby tube, if H2S 10 ppm 10 ppg 99 pp Iso. 100 pm stelly's don't work, will try 3" split 0730 - Setup Camp Station spoon to get clay samples, will glob your PID # 05359 some clay for politional geotechnical analys Dust Trak # 17784 1615 - drillers off sike will consolidate some water from water drugg into soil GI duns as per chuck dusel 1700 - TI OFFSIK

Date 4/29/14 Location Cold Sprag NY Date 4/29/14 Cold Spring, NY Location ____ Project / Client _____ Cold Spring NYSPEC Project/Client Cold Spring NISDEC House House 1050 - The resident Jowner of 112 Wesk JEASS DCAMP States 5 GT-Z 2/de-2/4 St. case over to ask why we were drilling in their yard. Gave her a NEW Street description of the project and that Chuck Parking + Stove Sussman (Enviro Trac) talked to a Town representative @ the Town Hell in Bogt Cold Spring on 4/14/14. This nuestigation Paking House showed that where we were drilling is 815 - Associated onsite Rya Juse, Marty Amorato purt of a right-a-way and that the will more to GT-2 on worth side Duilding was a Condo but the property belonged to the Condo Asso. Emily of New St., + start split spoor Sampling @ 4' (Handeleword to 4') stated that she owned the Condo t - Held Trilgate satety meeting property land. I gave her the phone 850 - Drillers set up to Decon Auges in backparking lot Number for Chuck to discuss the situation gers - spake w/ chuck Dox1, there was to much 1055- An Enforcement Officer (Joe Baldarza) Decon under to be able to mix it of the Soil. from the Dept. of Consumer Affairs Weights and Measures Trades Licensing Guve Bob Gimbel a cooler + simple bottles to collect a water sample from the already and Registration stop by asking it we were drilling for potable water. for Analysis, told Bub to contact Jeff Explained the project that we will Bitter from EnviroTrac to update him I to have samples analyzed as soon as possible be excalled the Marina erea & not 10:0 - Drillers Set up on GT-2 & start drilling drilling for potable water. Joe said we were good to go it left the site.

Date 4/29/14 Location Cold Spr. og NY Project / Client Cold Spring NYSDEC

· Chuck spoke at Emily over the phone to explain that he spike of the Town and we child not need a permit to drill in the right away. Shored Enly the Tax map to show the Bloch & Lot #'s She said there was a miscommunication It the Town old not advise her of the work being performed. Chuck also spoke w/ he systerding the condo + Association. She asked how long we would be at that location for + asked . I we could make sure it is cleaned up + restored when we were done Chuck also gave her Dave Chevisaro; #. 11-10- Found silty day @ GT-2 ~ 14, will Put a shelly Tube from 16-18' 1210 Recoved Shelby from 16.18 - 10" Rec., Parket Pere - 0.4 tons/19ft 1230 - J'red way, caps I duct take to seal off the Shalby, will bring it back to Bufferlo 1250 Rushed another shelly from 18-20 - Called Chuck, Rady Wist & Vic Gautan to update progress - Shelby Tobe is 3'Dia + 2,5' long

Date 4/29/14 Location Cold Spring, NG NY SDEC Project / Client

1320- Recovered Shelpy From 18-20 13" Rec, Poket Pere. - 0.4 toslog Ft · used wax, caps & duct tape to seal it off, stuffed empty void al piper to take up space 1330 - Drillers pushed another Shelby Tube from 20-22 1400- Recovered Shelby from 20-22' 27" Rec, Pocket Pere. - 0.3 tons/ si FF "used way, caps & duct lape to seal & Stuffed word w/ paper 1420 - Rushed another Shelby 22-24' 1445 - Spoke w/ Chuck D. + Vic. agreed after we collect the 4th Shelby, we will begin to close up the hole, we will not drill to bedrock. 1450 - Recovered Shellby From 22-24 " 9" Rec., Pocket Pere - 0.25 tors/sqFt - Scaled w/ wix, caps + duck tape, used paper to fill void 1500 - Orilles start to clean up 1550 - Drikers start to growt GT-Z - Asked Bob if he was all set w/ the IDW water Sampling

Location Cold Spring At Date 4/29/14 NYSDEC Project / Client Cold Spr. ~9 He said he was all set & that he spake w/ seff Bohler, said he will sad out the samples tomorran 1645 - Drillers steened up site, grouted GT-2, Drillers will leave 2 6:55 of bentonite chips & 1 bag of CETCO Grout, I will return in the Marning to top off the burchde and replace the grass patch that was remarked. - Drilles will return tomorrow around Ipm to pick up the dall rig - Drillers + EnviroTrac offsite 1730 - Menavred inside of Boathouse -14' to the rafters Kitchez - also mensured & skietched ostande utititio as shown on figure, - 13 Druns Total onsite (10-solid, 3-liquid) - TI offoite

Date 4/30/14 Location Cold Spring, NY NYSDE Project / Client Cold Spring weather - Rain -50 0700 Tim Ifkouch onsite - will back fill remainder of burehold after setting from yesterday with CETCO Grat & Bentonite Chips k Hover from the dulles & top it off with the grass plug that was originally cut out up a should 800- Borehole GT-Z backFilled & covered ul grass plug. Took Pics of area. Drillers will arrive avoind Ipm to pic up the drill Rig. EquipoTrac is responsible for the IDW PICKOP - TI cleared up area offsike to Buffalo

APPENDIX B

PDI PHOTOGRAPHS

J:\Projects\11176853\Deliverables\2014 Field Work\Round 2 Hydrogeologic PDIR\Hydrogeologic PDIR - REV.docx

Cold Spring Former MGP Site NYSDEC Site No. 340026

Pre-Design Investigation Report Appendix B July 2014

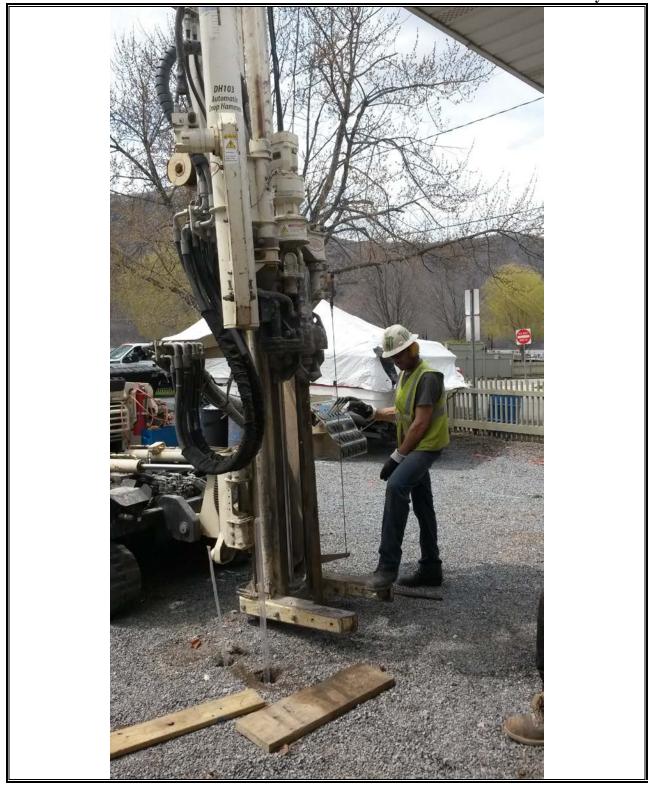


Photo 1: April 14, 2014 Geoprobe at GP-3.

Photo 2: April 14, 2014 Beginning of Geophysical Survey.

Cold Spring Former MGP Site NYSDEC Site No. 340026

Photo 3: April 15, 2014 Geoprobe at GP-9.

Cold Spring Former MGP Site NYSDEC Site No. 340026

Photo 4: April 16, 2014 Setting up to bore GT-1.

Photo 5: April 18, 2014 Drums stored alongside Boat House, also showing proximity of rock outcrop to the back of the Boat House..

Photo 6: April 29, 2014 View of the Boat House from the northwest.

Photo 7: April 29, 2014 Above-ground utilities in front of the Boat House.

APPENDIX C

BORING LOGS

J:\Projects\11176853\Deliverables\2014 Field Work\Round 2 Hydrogeologic PDIR\Hydrogeologic PDIR - REV.docx

			T	JR	S Co	orpora	ation					NG LO	G			
PROJE	CT/PROJE															
			-									STING: 64	0199.688			
								CORE	TUBE							
DATE		1			Түре					DATE STARTED:		14				
	NDWATER:Not Encountered CAS. SAMPLER CORE TUBE GROUND ELEVATION:															
					WT.					DRILLER:	J. Veiss	3				
										GEOLOGIST:	T. lfkov	ich				
	TIME LEVEL TYPE TYPE Macrocore DATE STARTED: $4/14/2014$ Image: line with the line withet with the line withet with the line withet withet with the line															
		UCRD Corporation BORING NO. : GP-1 ROJECT LOCATION: Cold Spring Former MGP Site SHEET: 1 OF 1 WY Ork State Department of Environmental Conservation JOB NO. : 11176853 NORTHING: 941001.593 EASTIM NORTHING: 941001.593 EASTIM TYPE NORTHING: 941001.593 EASTIM ITTER:Not Encountered CAS. SAMPLER CORE TUBE GROUND ELEVATION: Macrocore DATE STARTED: 4/14/2014 UTTYPE Macrocore DATE STARTED: 4/14/2014 UTTYPE Macrocore DATE STARTED: 4/14/2014 MEE: J VPE VIEWED BY: K. Connare WT. DATE STARTED: 4/14/2014 WT. DATE STARTED: 4/14/2014 VIEWED BY: K. Connare ATA SAMPLE REC% COLOR SOIL NO. BIOW FILL: fine sand and gravel FILL 1 <th <<="" colspan="2" td=""></th>														
DEPTH	BORING NO.: GP-1 BORING NO.: GP-1 COLOR TORS Cold Spring Former MGP Site SHEET: 1 OF 1 CONTRACTOR: Associated Environmental Services, LTD NORTHING: 941001.593 EASTING: 640199.688 CONTRACTOR: Associated Environmental Services, LTD NORTHING: 941001.593 EASTING: 640199.688 DATE STARTED: 4/14/2014 IMAGROCORE POKET PENETROMETER READING REVIEWED BY: K. Connare IMAGROCORE SOIL COND IMAGROCORE STRATA REVE FILL: fine sand and gravel FILL SAMPLE REC% SOIL COLOR GRAY															
FEET		Support Corporation BORING NO.: GP-1 T/PROJECT LOCATION: Cold Spring Former MGP Site New York State Department of Environmental Conservation JOB NO.: 11176853 CONTRACTOR: Associated Environmental Services, LTD NORTHING: 941001.593 EASTING: 640199.688 DWATER:Not Encountered CAS. SAMPLER CORE TUBE GROUND ELEVATION: TIME LEVEL TYPE TYPE Macrocore DATE STARTED: 4/14/2014 Image: Interview of Environmental Services, LTD Macrocore DATE STARTED: 4/14/2014 Image: Interview of Environmental Services, LTD Macrocore DATE STARTED: 4/14/2014 Image: Interview of Environmental Services, LTD Macrocore DATE STARTED: 4/14/2014 Image: Interview of Environmental Services, LTD Macrocore DATE STARTED: 4/14/2014 Image: Interview of Environmental Services, Fall GEOLOGIST: T. Ifkovich Image: Interview of Environmental Services, Review of Enview of Enview Services, Review of Enview of Environmenta														
		I		I		<u> </u>		I			I		I			
0	to Gray trace brick at 1.8' some dark brown fine sand from 1.9 to															
_									ne sand a	and gravel						
_	COUNT ROD % HARDNESS HARDNESS HARDNESS FILL: fine sand and gravel Image: trace brick at 1.8' Image: tra															
	1 44 to Gray FILL: fine sand and gravel 1 0.0 1 44 44 1 1 0.0 2 87 Gray FILL: fine sand, some gravel 121 93 93															
	1 44 to Gray FILL: fine sand and gravel 1 0.0 1 44 44 1 1 1.8' some dark brown fine sand from 1.9 to 2.2' 0.0 2 87 Gray FILL: fine sand, some gravel 121 93 Refusal at 6.5 ft bgs on presumed 0															
-	2 87 FILL: fine sand, some gravel 121 93															
-5	2 87 Gray FILL: fine sand, some gravel 121 93 Refusal at 6.5 ft bgs on presumed															
-	2 87 FILL: fine sand, some gravel 121 93 Refusal at 6.5 ft bgs on presumed 93															
_	2 87 FILL: tine sand, some gravel 121 93 93															
_	Image: constraint of the constr															
	NO. COUNT RQD% RQD% ROCK HARDNESS DESCRIPTION DESCRIPTION Image: Second state of the state															
	STRATA SAMPLE REC% SOIL MATERIAL USCS PID REMARKS STRATA No. BLOW COUNT RQD% COLOR COLOR (CONSISTENCY HARDNESS MATERIAL DESCRIPTION USCS PID REMARKS V V RQD% FILL FILL: fine sand and gravel trace brick at 1.8' some dark brown fine sand from 1.9 to 2.2' FILL 0.0 Moist 2 87 Gray FILL: fine sand, some gravel 121 93															
-10 —	1 44 some dark brown fine sand from 1.9 to 2.2' 0.0 2 87 Gray FILL: fine sand, some gravel 121 93 93															
-																
-																
_																
_																
-15 —																
-13																
-																
_																
-																
-																
-20 —																
-25 —																
									5' long, 2	diameter Macrocore	sampler.					
Colle	cted sample	e from 5	to 6.	5' bgs for	BTEX, PA	H, and N	loisture analys	is.								
											BORING NO.	:GP-1				

			U	R		orpora	ntion			TES BORING NO. : GP-2	r Borii	IG LO	G		
PROJE	CT/PROJE	00170								SHEET: 1 OF 1					
							onservation			JOB NO. : 11176853					
	G CONTRA		-							NORTHING: 941016.85	51 EAS	STING: 64	0190.888		
	IDWATER:					CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION					
DATE	TIME	LEVE	1	TYPE	TYPE		Macrocore			DATE STARTED:	4/14/20	14			
					DIA.		2"			DATE FINISHED:	4/14/20	14			
					WT.					DRILLER:	J. Veiss	;			
					FALL					GEOLOGIST:	T. Ifkov	ich			
					*	POCKET P	ENETROMETE	R READIN	G	REVIEWED BY:	K. Conr	nare			
		SA			REC%		SOIL			1					
DEPTH FEET	STRATA	NO.	BLC	w –		COLOR	CONSISTENCY ROCK			MATERIAL SCRIPTION	USCS	PID	REMARKS		
1	COUNT KdD % HARDNESS HARDNESS HARDNESS														
0	XXXX							FILL	ne to mer	tium sand and gravel	FILL	0.0	Moist		
-						Dk		trace b	rick, trace	e shell fragments					
_						Brown									
_		1			32							12.9			
5	5 / FILL: fine to medium sand, oily sheen on														
-5	2 50 Gray water 36.7 Wet														
-	2 50 Gray water 36.7 Wet Refusal at 5.8 ft bgs on presumed Image: Comparison of the second secon														
-	2 50 Gray water 36.7 Wet Refusal at 5.8 ft bgs on presumed Image: Comparison of the second secon														
-	2 50 Gray water 36.7 Wet Image: Refusal at 5.8 ft bgs on presumed														
-															
-10 —															
_															
-															
-15 —															
-															
_															
_															
-20 —															
-															
-															
-															
_															
-25															
COM	MENTS:Bo	ring adva	anced	using a t	rack-mou	nted 7782	2 DT Geoprobe	e rig with	5' lon <u>a</u> , 2	" diameter Macrocore sa	npler.				
							oisture analys		<u> </u>						
										В	ORING NO.	:GP-2			

			T	R	S Co	rnora	ntion					IG LO	G		
		07100								BORING NO. : GF					
	CT/PROJE									SHEET: 1 OF					
			-				onservation			JOB NO. : 111768		TING: 64	0171 110		
	G CONTRA			clated Er	vironmei			0005	TUDE	GROUND ELEVAT		TING: 04	0171.119		
	IDWATER:	1	-			CAS.	SAMPLER	CORE	TUBE	DATE STARTED:	4/14/20	11			
DATE	TIME	LEVE	=L	TYPE	TYPE		Macrocore 2"			DATE STARTED.	4/14/20				
					DIA.		2				J. Veiss				
					WT.					DRILLER: GEOLOGIST:					
					FALL						T. lfkov K. Coni				
					~		ENETROMETE		G	REVIEWED BY:	K. Coni	lare			
DEPTH		SA	AMPLE		REC%				I	MATERIAL		DID			
FEET	STRATA	NO.		LOW -	RQD%		ROCK		DE	SCRIPTION	USCS	PID	REMARKS		
							HARDNESS								
0															
Ŭ						Dk Brown		FILL: fi	ne to me	dium sand, some grav	/el FILL	607	Moist		
						to Gray				0.9 to 1.1' om 1.1 to 1.5'			Wet		
-															
-															
_	2 89 Brown 419 427														
-5	2 89 Brown 427 Refusal at 5.9 ft bgs on presumed 427														
	2 89 Brown 427														
	- XXX 2 09 427 - Refusal at 5.9 ft bgs on presumed														
-															
-															
-10 —															
_															
-															
-															
-15 —															
_															
_															
-20 —															
-															
_															
_															
-25 —		I		1				•							
							2 DT Geoprobe oisture analysi		5' long, 2	diameter Macrocore	sampler.				
	- co campi			90 101	,, , <i>, , , , , , , , , , , , , , , , ,</i>	, and M	- eta o anaryo								
										٦		.0.0.0			
											BORING NO.	:GP-3			

			U	RS	Со	rpora	ation			BORING NO. : GP-3	BB		
PROJE	CT/PROJE	CT LOC	ATION:	Cold Spr	ring Fo	rmer MC	P Site			SHEET: 1 OF 1			
CLIENT	T: New Yo	rk State	Departm	nent of E	nviron	mental (Conservation			JOB NO. : 11176853			
BORIN	G CONTRA	CTOR:	Associat	ed Envir	onmen	tal Serv	ices, LTD			NORTHING: 941037.3	355 EAS	5TING: 64	10168.171
	NDWATER:					CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATIO	N:		
DATE	TIME	LEVI	EL T	YPE	TYPE		Macrocore			DATE STARTED:	4/14/20	14	
					DIA.		2"			DATE FINISHED:	4/14/20	14	
					WT.					DRILLER:	J. Veiss	5	
					FALL					GEOLOGIST:	T. lfkov	ich	
					* F	POCKET	PENETROMETE	R READIN	G	REVIEWED BY:	K. Conr	nare	
		S	AMPLE	RE	EC%		SOIL						
DEPTH FEET	STRATA	NO.	BLOW			COLOR	CONSISTENCY ROCK			MATERIAL SCRIPTION	USCS	PID	REMARK
			COUN		QD%		HARDNESS						
0						Gray Black		FILL: fi	ne to me	dium sand	FILL	0.0	Moist
-						Brown		trace a	sphalt fro	m 0.5 to 1.2'		3.6	-
-													Wet
-		1			60								
_												0.0	
5-											0.11		
	\bigcirc					Gray		Fine to	medium	SAND and GRAVEL	GW		
-	0.0.0.				10							0.0	
-	O	2		· · · · · · · · · · · · · · · · · · ·	40								
-													
o —											CL		-
_								Silty Cl	AY, trace	e gravel odor from 10 to 10.2'	01	9.3	Moist
	: /. : : /. :	3			66			trace w	ood from	12 to 12.8'		0.0	
7												0.0	
-	:												
5 —	(<i>))</i> .												-
-	(<i>'</i> //.							trace w	ood at 16	55'			
-													
_		4			86							0.0	
	: /. : : /. :							trace w	ood at 19)'			
.0 —									oou ut re				
								Refusa	l at 20.2 i	t bgs on presumed			
1								bedroc	K.	J. Freedow			
-													
-													
-													
5													
COM		ring adv	anced us	ing a trac	ck-mou	nted 778	2 DT Geoprobe	e ria with	5' lona 2	" diameter Macrocore sa	ampler		
							Aoisture analys		ong, 2				

				S Ca	orpora	ation			BORING NO. : GP-4	BORI		0
PROJE	CT/PROJE		ATION: Co	old Spring F	ormer M	GP Site			SHEET: 1 OF 1			
CLIENT	: New Yor	k State	Departme	nt of Enviro	nmental	Conservation			JOB NO. : 11176853			
BORING	G CONTRA	CTOR:	Associated	Environme	ntal Serv	ices, LTD			NORTHING: 941050.296	EAS	5TING: 64	10160.562
	DWATER:				CAS.		CORE	TUBE	GROUND ELEVATION:			
DATE	TIME	LEVE				Macrocore			DATE STARTED:	4/14/20	14	
				DIA.		2"			DATE FINISHED:	4/14/20	14	
				WT.					DRILLER:	J. Veiss	3	
				FALL					GEOLOGIST:	T. lfkov	ich	
								G	REVIEWED BY:	K. Conr		
I						SOIL						
DEPTH FEET	STRATA	NO.	MPLE BLOW COUNT	REC%	COLOR	CONSISTENCY ROCK HARDNESS			MATERIAL SCRIPTION	USCS	PID	REMARKS
0		1		50	Brown to Gray Brown		trace w		dium sand, some gravel,	FILL	0.0	Wet
		2		63	Pink to White		Coarse	SAND a	nd GRAVEL	GP	0.0	
-10							Refusa cobble		bgs on presumed			
СОМ	MENTS:Bo	ring adva	anced using	g a track-mo	unted 778	2 DT Geoprob	e rig with	5' long, 2	" diameter Macrocore sam	pler.]
		-			-		-	<u> </u>	-			
									ВО	RING NO.	-GP_4	

			U	RS	Со	rpora	ation			TEST BORING NO. : GP-4B			
ROJE	CT/PROJE	CT LOC	ATION: 0	old Sprin	ig Fo	rmer MC	SP Site			SHEET: 1 OF 2			
LIENT	T: New Yo	rk State	Departm	ent of Env	/iron	mental (Conservation			JOB NO.: 11176853			
30RIN	G CONTRA	CTOR:	Associate	d Enviror	nmen	tal Serv	ices, LTD			NORTHING: 941047.470	EAS	TING: 64	0160.921
	NDWATER:					CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION:			
DATE	TIME	LEVE		(РЕ Т	YPE		Macrocore			DATE STARTED:	4/14/20	14	
					DIA.		2"			DATE FINISHED:	4/14/20	14	
					VT.					DRILLER:	J. Veiss	;	
					ALL					GEOLOGIST:	T. lfkovi	ich	
									<u> </u>	REVIEWED BY:	K. Conr		
						OCKET	PENETROMETE	R READIN	G	REVIEWED BT:		laie	1
EPTH		SA	AMPLE	REC	%		SOIL CONSISTENCY			IATERIAL			
FEET	STRATA	NO.	BLOW COUNT	RQD	0%	COLOR	ROCK HARDNESS		DE	SCRIPTION	USCS	PID	REMARK
	'	1		- 1	I			1					1
0								Boring	advance	to 10' without sampling.			
-								0-10' S	tratigraph	ic profile previously for boring GP-4.			_
-								descibe	ea on log	for boiling GP-4.			Wet
_													
5-													
-													
-													
-													
0 —						Gray		Silty CI	AV som	e wood from 10 to 10.3',	CL		Wet
-	:							some b	lack stair	ning and blebs on water			Moist
_	(//.							from 10) to 11', s	heen on water from 10 to			
	K//.	1		58	3			20				0.0	
	. / /												
-	: /.::/.:												
;													-
-	(<u>'/'/</u> .												
	<												
		2		76	;							0.0	
-	: /.: : /.:	-										010	
-	::/:::/:												
)	K//.												-
	· · · · · · · · · · · · · · · · · · ·												
1	[: /.: ; /.:]	3		84								0.0	
-	::/:://:	5		04	r							0.0	
-	K//.												
5	· / · · · / · ·										C14/		10/-+
								GRAVE	EL, some	fine sand	GW		Wet
-					ļ							•	
0.01		ringe	opood'		m a	atod 770		o ric with	El long O	diamotor Maarcoord	alor		
							2 DT Geoprob X, PAH, and N			diameter Macrocore sam	uer.		
	stea oampi				90			5.5.6.0 0					

			UR	S Co	orpora	ation		TES BORING NO. : GP-4	T BORIN	NG LO	G
			ormer MGP					SHEET: 2 OF 2			
CLIENT	: New York	State I	Department o	of Environr	nental C	onservation		JOB NO. :11176853			i
DEPTH FEET	STRATA	S/ NO.	AMPLE BLOW COUNT	REC %	COLOR	SOIL CONSISTENCY ROCK HARDNESS		MATERIAL	USCS	PID	REMARKS
-	· · · · · · · · · · · · · · · · · · ·	4		43			Fine to medium	SAND, some gravel	SP	0.0	
-30							Refusal at 29 ft l bedrock.	bgs on presumed			
-35 — - - - - -40 —											
- - - -45											
- - -50 -											
- -55 — _ _											
COM Colle	MENTS:Bo	ring adv e from 1	anced using a 0 to 11' and 1	a track-mou 2 to 13' bg	inted 778 s for BTE	2 DT Geoprobe X, PAH, and M	e rig with 5' long, 2 oisture analysis.	" diameter Macrocore sar	mpler.		
								В	ORING NO.	:GP-4B	

			I	JR.	5 Cc	ornora	ntion			TE BORING NO. : GE		NG LO	G		
	CT/PROJE														
							Conservation			SHEET: 1 OF JOB NO. : 111768					
			-							NORTHING: 94100		STING: 64	0186 760		
	G CONTRA				nvironmei	CAS.	SAMPLER	CORE	TUBE	GROUND ELEVAT		511105. 04	0100.709		
DATE	TIME	LEV		TYPE	ТҮРЕ		Macrocore	CORE	TOBE	DATE STARTED:	4/15/20	14			
DATE		LEV	EL	TTPE	DIA.		2"			DATE FINISHED:	4/15/20				
					WT.		2			DRILLER:	J. Veiss				
					FALL					GEOLOGIST:	T. lfkov				
							ENETROMETE			REVIEWED BY:	K. Con	-			
							SOIL		9	REVIEWED BT.			1		
DEPTH	STRATA	S		E LOW	REC%				I	MATERIAL	USCS	PID	REMARKS		
FEET	SIRAIA	NO.			RQD%		ROCK HARDNESS		DE	SCRIPTION	0303		KEWIARKS		
							HARDNESS								
0	xxxxr					Brown		1			. FILL		Moist		
						to Dk Brown		FILL: fi	ne to meo	dium sand, some grav d brick from 1 to 1.2'	/el		IVIOISI		
						Brown			Sprian ari						
		1			34							0.0			
_															
-	Brown to Fine to medium SAND and GRAVEL, Wet														
-5 —	Brown to Fine to medium SAND and GRAVEL, Gw Wet Gray Gray Sheen on water from 6.5 to 7' with slight Gw Wet														
_								sheen	on water	from 6.5 to 7' with slig	jht				
_	0:0:					Black		petrole	um odor	_					
		2			48	Gray						0.0			
_	0.7.0.7.														
-10 —		3			100							0.0	-		
_						Brown		Defuse							
_								bedroc		bgs on presumed					
_															
45															
-15 —															
_															
-															
-															
_															
-20 —															
-															
-															
-25 —															
										" diameter Macrocore	sampler.				
							PAH, and Mois								
											BORING NO.	:GP-5			

			U	RS	Co	orpora	ation			BORING NO.: GP-6	BORIN		G
	CT/PROJE	00170				-				SHEET: 1 OF 1			
							Conservation			JOB NO. : 11176853			
			-								E 4 0		0400 400
	G CONTRA			ted Env	vironmer					NORTHING:941030.306	EAS	TING: 64	0169.489
	NDWATER:	-	1		1	CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION:			
DATE	TIME	LEVE		TYPE	TYPE		Macrocore			DATE STARTED:	4/15/20		
					DIA.		2"			DATE FINISHED:	4/15/20		
					WT.					DRILLER:	J. Veiss		
					FALL					GEOLOGIST:	T. lfkovi		
					*	POCKET F	PENETROMETE	R READIN	G	REVIEWED BY:	K. Conr	nare	_
		SA	AMPLE		REC%		SOIL						
EPTH FEET	STRATA	NO.	BLOW		RQD%	COLOR	CONSISTENCY ROCK			MATERIAL SCRIPTION	USCS	PID	REMARK
			COUN	IT	KQD%		HARDNESS						
		1			18	Brown		FILL: fi	ne to me	dium sand, some gravel	FILL	0.0	Moist
-		2			24			Fine to	medium	SAND and GRAVEL	GW	0.0	Wet
-		3			76	Gray		petrole	um odor	nt sheen on water, from 10 to 11' 11.2 to 11.3' and 12.3'	CL	0.0	Moist *PP - 0.7 tons/sq f
_		4			92			some r to 18.2		and and gravel from 18		0.0	*PP - 0.5 tons/sq f
-		5			80					SAND and GRAVEL	GW	0.0	Wet
							2 DT Geoprob X, PAH, and M			" diameter Macrocore sam	bler.		·
										ВО	RING NO.	:GP-6	

PROJE	CT/PROJE	CTIO		Old Spring F					BORING NO. : GP-7 SHEET: 1 OF 1			
						Conservation			JOB NO. : 11176853			
				d Environme					NORTHING: 941039.799	EVO		0160.598
					CAS.		CORE	TUBE	GROUND ELEVATION:	LAC	STING. 04	100.030
		-				Macrocore	CORE	TUBE	DATE STARTED:	4/14/20	14	
DATE	TIME	LEV	EL TY	PE TYP		2"			DATE STARTED:	4/14/20		
				WT.					DRILLER:	J. Veiss		
				FAL					GEOLOGIST:	T. lfkov		
									REVIEWED BY:	K. Conr		
					I	SOIL			REVIEWED BT.		lare	1
DEPTH	STRATA	S	AMPLE BLOW	REC%	COLOR	CONSISTENCY		r	MATERIAL	USCS	PID	REMARK
FEET		NO.	COUNT	RQD%		ROCK HARDNESS		DE	SCRIPTION	0303	110	
						HARDNESS						
0	XXXXI				Brown					FILL		Moist
_					to Gray				dium sand m 0.5 to 1'			Wolst
					Glay							
		1		54			trace s	nell fragm	nents at 2'		0.0	
	\bigotimes											
-												
5 —	$X \times X \times X$				Brown		Fine to			GW		Wet
-							Fine to	meaium	SAND and GRAVEL			
_	00											
	$O \circ O \circ \circ$	2		30							0.0	
-	0.00.0						Silty C	LAY)			
) ($\Omega_{\overline{\gamma}}$				Gray					CL		Moist
-	: /. : : /. :											
-	: :/::://:						trace w	lood from	12.4 to 12.5'			
_	· · / · · · / ·	3		68							0.0	
	//.											
5												
•												
-	: /. : : /. :						trace w	ood at 17	7.5'			
-	: ./.: : ./.:											
-	::/:::/:	4		100							0.0	
-	Y / /.											
0 —	K//				_							_
	· / · · · / · · /											
	: /.: : /.:]	5		94							0.0	
1	[:/:://:	Ť									0.0	
-	::/:://:						no reco	overy from	n 25 to 26'			
	<i></i>				-		Refusa	l at 26 ft l	bgs on presumed			-
5		6		0			Dedioc	π.				

			TR	S Co	rnors						IG LO	G		
										0 EAS		0100 /60		
				NVIroninei		1	COPE	TUDE			TING. UH	0100.+00		
	T: New York State Department of Environmental Conservation JOB NO. : 11176853 IG CONTRACTOR: Associated Environmental Services, LTD NORTHING:941003.719 EASTING: 640180.460													
DAIL														
						-			-					
										T. lfkovi	ich			
				*1	POCKET P		R READIN	G	REVIEWED BY:	K. Conr	nare			
		SAN		REC%										
DEPTH	STRATA				COLOR					uscs	PID	REMARKS		
FEEI		NU.	COUNT	RQD%		RUCK								
0					to Dk Brown Brown Gray		Fine to sheen of from 6 t	medium on water, to 7'	SAND, some gravel, slight petroleum odor					
	USE Corporation Borino No.: GP-8 PROJECT/PROJECT LOCATION: Cold Spring Former MQP Site SHEET: 1 OF 1 CLEINT: New York State Department of Environmental Conservation JOB NO.: 1178533 BORING CONTRACTOR: Associated Environmental Services, LTD NORTHING: 341003,719 EASTING: 640180.460 GROUNDWATER: St bgs CAS. SAMPLER Corporation JOB NO.: 1179533 DATE TIME LEVEL TYPE TOM Macrocore 4/15/2014 DATE TIME LEVEL TYPE TOM Macrocore 4/15/2014 Construction JOB NO.: 11797 4/15/2014 DATE STARTED: 4/15/2014 Construction FRLL DESCRIPTION USCS PID REMARKS DEFT TIME LEVEL TVP Rec/% COLOR Mastruction USCS PID REMARKS DEFT STRATE SAMPLE Rec/% COLOR SWEETSTERVEY MATERNAL USCS PID REMARKS 0 1 S2 SWEET SWEETSTERVEY Maternal SWE													
									B	ORING NO.	:GP-8			

			UR	S co	orpora	ation			BORING NO. : GP-9	BORI	NG LU	G
PROJE	CT/PROJE	CT LOC	ATION: Col	d Spring F	ormer MC	GP Site			SHEET: 1 OF 2			
CLIENT	F: New Yo	rk State	Departmen	t of Enviro	nmental (Conservation			JOB NO. : 11176853			
			Associated						NORTHING: 941063.352	F۵S	STING: 64	40155.327
	NDWATER:			LINITOTING	CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION:	2,10		
	1		1				CORE	TOBE	DATE STARTED:	4/15/20	11	
DATE	TIME	LEVE	EL TYPE		-	Macrocore 2"			DATE FINISHED:	4/15/20		
				DIA.		Z				J. Veiss		
				WT.					DRILLER:			
				FALL	-				GEOLOGIST:	T. Ifkov		
				*	POCKET I	PENETROMETE	R READIN	G	REVIEWED BY:	K. Con	nare	
DEDTU		SA	AMPLE	REC%		SOIL			MATERIAL			
DEPTH FEET	STRATA	NO.	BLOW COUNT	RQD%	COLOR	CONSISTENCY ROCK HARDNESS	-		ESCRIPTION	USCS	PID	REMARK
				1		10.00						1
0				1	Brown					FILL		Moist
-					to Gray		FILL: T	ne to me	dium sand, some gravel			
					,							
		1		48							0.0	
1												
-												
-5					Brown					GW		Wet
_					Brown		Fine to	medium	SAND and GRAVEL, t petroleum odor in tip of			
	\bigcirc				Crov		sample					
1		2		40	Gray						0.0	
-	$O_{\overline{A}}O_{\overline{A}}$	2		40							0.0	
_												
0												
							Clayey	SILT, sh	een and blebs on water,	ML		
1	т:т:						slight p	etroleum	odor			
-												
-	т:т:	3		20							10.6	
_	±:±:											
5 —							Silty C	LAY, trac	e gravel	CL		Moist *PP - 0.5
-	:								-			tons/sq f
-												
_	K//.	4		80							0.0	
	· / · · / · · /											
7												
0	[: /: : /:]				1		trace v	ood from	20 to 25'			*PP - 0.5
-	(//											tons/sq f
4	K//											
	· / / / . / /	5		100							0.0	
	: /. : : /. :											
1	[://:://:											
5 —	0.0.0.				Brown		Fine 4	medium	SAND and CDAVE	GW		Wet
								meaium	SAND and GRAVEL			
									" diameter Macrocore sam	oler.		
Colle	ected sample	e trom 1	U to 11 and	15 to 16' bg	IS TOT BIE	X, PAH, and M	ioisture a	naiysis.				
									Г			
									BO	RING NO.	:GP-9	

			UR	S ca	orpora	ation		TES BORING NO. : GP-	ST BORIN 9	NG LO	G
			ormer MGP					SHEET: 2 OF 2			
CLIENT	: New York		Department o		nental C	onservation SOIL		JOB NO. :11176853			
DEPTH FEET	STRATA	NO.	AMPLE BLOW COUNT	REC %	COLOR	CONSISTENCY		MATERIAL ESCRIPTION	USCS	PID	REMARKS
		6		48						0.0	
		7		10						0.0	
-33 -	1>(>						Refusal at 35.2 f bedrock.	ft bgs on presumed			
-40 - - -											
-45 - - -											
- -50 - - -											
- -55 —											
COM	MENTS:Bo	ring adv e from 1	anced using a 0 to 11' and 1	a track-mou 5 to 16' bg	Inted 778 s for BTE	32 DT Geoprobe X, PAH, and M	e rig with 5' long, 2 oisture analysis.	" diameter Macrocore s	ampler.		
L									BORING NO.	:GP-9	

			UR	S ca	orpora	ation			TES BORING NO.: GP-10	BORI	NG LO	G
PROJE	CT/PROJE	CT LOC	ATION: Col						SHEET: 1 OF 2			
						Conservation			JOB NO. : 11176853			
			Associated I						NORTHING: 941071.42	7 FAS		0164.076
					CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION		71110 . 04	0104.070
	NDWATER:	-					CORE	TUBE	DATE STARTED:	4/15/20	1.1	
DATE	TIME	LEVE	EL TYPE		<u> </u>	Macrocore						
				DIA.		2"			DATE FINISHED:	4/15/20		
				WT.					DRILLER:	J. Veiss		
				FALL	-				GEOLOGIST:	T. lfkov		
				*	POCKET I	PENETROMETE	R READIN	IG	REVIEWED BY:	K. Conr	nare	
DEDTU		S	AMPLE	REC%		SOIL			MATERIAL			
DEPTH FEET	STRATA	NO.	BLOW	RQD%	COLOR	CONSISTENCY ROCK	-		SCRIPTION	USCS	PID	REMARK
			COUNT	NQD //		HARDNESS						
0					Brown		FILL	ne to me	dium sand, some gravel	FILL		Moist
-					to Dk Brown				alam balla, bollio glavor			
_												
		1		40							0.0	
-												
-5	0.0.0.0				Gray		0.000			GW		Wet
_							Coarse	e SAND a	nd GRAVEL			
		2		20							0.0	
-	0.0.0.0			_								
-	O											
0-					Black					CL		Moist
_	(<u>/ / .</u>						Silty C		10.5', sheen on water			*PP - 0.3
	<i>/</i> /.				Gray) to 11.7				tons/sq f
		3		76	Olay						0.0	
-	: ./. : : ./. :	Ŭ		10							0.0	
-	: ./.: : ./.:											
15 —	(//.				_							*PP - 0.4
	(<i>'</i> //.											tons/sq ft
-	: /. : : /. :											
-	[: //: : //:	4		82							0.0	
_	(<u>/.</u> /.											
20	K											
	. / /											*PP - 0.4 tons/sq f
1	[: /. : : /. :]											
-	[::/:::/:											
-	(<i>./</i> /.	5		86							0.0	
_	K//											
5												
.5 —												*PP - 0.4 tons/sq ft
_	r · / · /	I		I			I			I	I	1013/341
									diameter Macrocore san	npler.		
	ected sampl	e nom 1		13 10 14 Dg	SIULRIF	X, PAH, and M	ioisture a	naiysis.				
									r			
									BC	DRING NO.	:GP-10	

			UR		orpora	ation		TE BORING NO. : GI	ST BORIN	NG LO	G
			Former MGP					SHEET: 2 OF			
CLIENT	: New Yorl	k State I	Department o	of Environr	nental C			JOB NO. :1117685	3		
DEPTH FEET	STRATA	S/ NO.	AMPLE BLOW COUNT	REC %	COLOR	SOIL CONSISTENCY ROCK HARDNESS		MATERIAL ESCRIPTION	USCS	PID	REMARKS
	::/.::/.: :://.:	6		40			Refusal at 28 ft l	bgs on presumed		0.0	
-30							beulock.				
-35											
-40											
-45 — _ _ _											
- -50 — - -											
-55 — _ _											
COM	MENTS:Bo	pring adv e from 1	ranced using a 0 to 12' and 1	a track-mou 3 to 14' bg:	inted 778 s for BTE	2 DT Geoprobe X, PAH, and M	e rig with 5' long, 2 pisture analysis.	" diameter Macrocore	sampler.		
L									BORING NO.	:GP-10	

			τ	JR.	S Co	ornora	ation					NG LO	G
	CT/PROJE	<u></u>								BORING NO. : GP-11			
							Conservation			SHEET: 1 OF 1 JOB NO. : 11176853			
	G CONTRA		-							NORTHING: 941092.40)5 EAS	64 STING: 64	0182.394
	DWATER:					CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION	-		
DATE	TIME	LEVE		TYPE	ТҮРЕ		Macrocore	-		DATE STARTED:	4/16/20	14	
		+			DIA.	+	2"			DATE FINISHED:	4/16/20	14	
			\neg		WT.	+	+			DRILLER:	J. Veiss	3	
		+			FALL	1	1			GEOLOGIST:	T. lfkov	ich	
		+			*	POCKET P	PENETROMETE	R READIN	G	REVIEWED BY:	K. Conr	nare	
		S/		E	REC%		SOIL						
DEPTH FEET	STRATA	NO.	BL	LOW		COLOR	CONSISTENCY ROCK			MATERIAL SCRIPTION	USCS	PID	REMARKS
			cc	DUNT	RQD%		HARDNESS						
0	XXXX					Brown to		FILL: fir	ne to med	dium sand, some gravel	FILL		Moist
-						Gray				andri odine, 22002 (j. 1			Wet
-								trace b	rick at 2'				
		1			46							0.0	
-5	×××												
- v						Gray				SAND and GRAVEL,	GW	Γ	
								dark br	on water, own coat	slight petroleum odor, ing and blebs from 5.4 to			
		2			04			5.6'		5			
	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	2			24							1.1	
-													
-10 —											_		
								Refusa	i at 10 ft l	ogs on presumed cobble			
-15 —													
-													
-20 —													
-20 —													
-													
-													
-25	ļl												
СОМ	MENTS:Bo	ring adv	/ance	d using a	track-mou	inted 7782	2 DT Geoprob	e rig with	5' long, 2'	" diameter Macrocore sa	mpler.		
							isture analysis.						
										В	ORING NO.	:GP-11	

			UR	S co	ornor	ation					NG LO	G
DD	OT/DD	OT : C			-				BORING NO. : GP-1			
			ATION: Col						SHEET: 1 OF 1			
			-			Conservation			JOB NO. : 11176853			
BORING	G CONTRA	CTOR:	Associated	Environme	ntal Serv	ices, LTD			NORTHING: 941091.4		STING: 64	10193.151
GROUN	NDWATER:	1 ft bgs			CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION			
DATE	TIME	LEVE	EL TYPE	Е ТҮРЕ	E	Macrocore			DATE STARTED:	4/16/20		
				DIA.		2"			DATE FINISHED:	4/16/20	14	
				WT.					DRILLER:	J. Veiss	5	
				FALL					GEOLOGIST:	T. lfkov	rich	
				*	POCKET	PENETROMETE	R READIN	G	REVIEWED BY:	K. Con	nare	
		SA	AMPLE	REC%		SOIL						
DEPTH FEET	STRATA	NO.	BLOW		COLOR		, -		MATERIAL SCRIPTION	USCS	PID	REMARK
FEEI		NO.	COUNT	RQD%		ROCK HARDNESS			SCRIPTION			
-5		1		76	Gray		trace g	ravel, little	8.5' e wood from 15 to 20' n 20 to 25', lost oler in borehole	CL	0.0	Moist *PP - 0.7 tons/sq f
		3		0								
							Boring	complete	d at 25 ft bgs.			
					-							
						2 DT Geoprob Moisture analy		5' long, 2	" diameter Macrocore sa	mpler. ORING NO.		

			UR	S co	ornore	ation			TES BORING NO. : GT-1	T BORI	NG LO	G
					-							
			CATION: Cold						SHEET: 1 OF 2			
			e Department						JOB NO. : 11176853			
BORIN	G CONTRA	CTOR	: Associated	Environm	ental Serv	/ices, LTD			NORTHING:941058.6	60 EAS	STING: 64	10144.070
GROUN	IDWATER:	6 ft bg	IS		CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATIO			
DATE	TIME	LE	VEL TYPE	ТҮРЕ	Ξ	Split Spoon			DATE STARTED:	4/16/20		
				DIA.		2"			DATE FINISHED:	4/16/20		
				WT.		140 lbs.			DRILLER:	R. Jens	en	
				FALL	-	30 in.			GEOLOGIST:	T. lfkov	ich	
				*	POCKET F	PENETROMETE	R READIN	G	REVIEWED BY:	K. Con	nare	
			SAMPLE	REC%		SOIL						
DEPTH FEET	STRATA	NO.	BLOW		COLOR	CONSISTENCY ROCK	-		MATERIAL SCRIPTION	USCS	PID	REMARK
		NO.	COUNT	RQD%		HARDNESS						
										1		1
0	\times				Brown	Medium	ASPHA	ALT.		FILL	-	Moist
-		1	11, 6, 8, 10	35		Dense	FILLE	ne to mo	dium sand, some gravel		0.0	
-					-				-			-
-		2	4, 6, 5, 6	0			No rec	overy fror	n 2 to 4'			
_							No rec	overy from	n 4 to 6'	GW		
-5		3	4, 4, 9, 6	0								
-	0.000				Gray	Very Loose	Fine to	medium	SAND and GRAVEL			Wet
-	O = O = O	4	2, 1, 2, 11	45							0.0	
_					_		_					_
		5	0 10 10 10	50		Medium Dense					0.0	
		Э	8, 12, 13, 12	50							0.0	
0	0.0.0				-	Very Dense	No rec	overy fror	n 10 to 12', pushed ston	e		-
-	$\begin{array}{c} \bigcirc \hline \\ \hline \\$	6	50/1.25,,,	0								
-	0				_							-
		7	50/3.25,,,	0			No rec	overy fror	n 12 to 14', pushed ston	e		
			, , , ,	-								
1						Medium Stiff	Silty C	_AY		CL		Moist *PP - 0.4
5 —	::/:://:	8	21, 4, 2, 2	50			-				0.0	tons/sq f
-	· / / .					Soft	-					*PP - 0.5
_	· . ·/ ·/.	9	31, 2, 2, 2	70							0.0	tons/sq ft
	: /. : : /. :	10	40.0.0.0	10								*PP - 0.5 tons/sq f
	: //: : //:	10	18, 2, 2, 3	10			trace w	ood from	17 to 17.1'		0.0	
20	<u> </u>				-		No san		s performed from 20 to			-
-	//.						25'.	iping wa	s periornied from 20 to			
	//											
	. 7 7											
	: /. : : /. :											
1	::/::://:											
25 —	K//				-	Medium Stiff	Silty Cl				<u> </u>	*PP - 0.4
			I	l	1			LAI		I	I	tons/sq f
									SA and 2" split spoon sar	mpler.		
	cted sample Geotechnic		8 to 9' and 14 to	o 15' bgs fo	or BTEX, I	PAH, and Mois	ture analy	/SIS.				
	Geolechini	Jai										
									E	BORING NO.	:GT-1	

			UR	S Co	orpora	ation		TES BORING NO.: GT-1	r Borin	NG LO	G
PROJE	CT: Cold S	Spring	Former MGP		- 1			SHEET: 2 OF 2			
			Department o		nental C	onservation		JOB NO. :11176853			
DEPTH FEET	STRATA		SAMPLE BLOW	REC %	COLOR	SOIL CONSISTENCY ROCK		MATERIAL ESCRIPTION	USCS	PID	REMARKS
		NO.	COUNT	RQD %		HARDNESS		ESCRIPTION			
-	: ·/. : ·/.:	11	32, 5, 1, 5	75			trace wood at 26	5'		0.0	
_		12	47, 24, 22, 16	0		Dense	No recovery from	n 27 to 29' s performed from 29 to	GW		
- -30 —					-	Medium	30'.	·	_		Wet
_		13	8, 10, 11, 13	60		Dense	/ No sampling wa	SAND and GRAVEL	,	0.0	
_		14	35, 50/3.75,, 	25	_	Very Dense	32.5'. Fine to medium	SAND and GRAVEL		0.0	
-35	D=:D=:1						Refusal at 34.5 bedrock.	ft bgs on presumed			
-40											
-45											
-50											
-55 —											
Collec		from 8				h D-120 drill rig PAH, and Moist		6A and 2" split spoon sam	pler.		
								B	ORING NO.	:GT-1	

			UR	LS ca	orpora	ation			BORING NO. : WC	BORI	NG LO	G
PRO.IF	CT/PRO.IF			old Spring F	-				SHEET: 1 OF 1			
						Conservation			JOB NO. : 11176853			
				l Environme					NORTHING:941100.700	FAS	STING: 64	10270.764
	NDWATER:			Environine	CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION:			10210.104
DATE		LEV		PE TYPE		Macrocore	OONL	TODE	DATE STARTED:	4/16/20	14	
DATE				DIA.	-	2"			DATE FINISHED:	4/16/20		
				WT.					DRILLER:	J. Veiss		
				FALI	_				GEOLOGIST:	T. lfkov		
							R READIN	G	REVIEWED BY:	K. Coni	-	
						SOIL						
EPTH	STRATA		AMPLE BLOW	REC%		CONSISTENCY			MATERIAL	USCS	PID	REMARK
FEET		NO.	COUNT	RQD%		ROCK HARDNESS		DE	SCRIPTION			
	<u> </u>			I	1		I					1
0	XXXXI			1	Brown					FILL	1	Moist
_							FILL: fi	ne sand a	and silt, some gravel			
							some b	rick from	1 to 1.2'			
		1		24							0.0	
7												
1												
5 —					-		Eino S		SILT, dark brown to	SM	-	Wet
-							black 1	00% satu	ration from 5 to 5.5', light			
_	<u> </u>						coating from 5		5 to 6', coal tar-like odor			
		2		68							0.0	
1	<u> </u>											
0					-							-
-	0.0.0.0						Eino S		GRAVEL	GW	-	
-									ORAVEL			
_		3		48							0.0	
5 —												
'							Fine S/	AND and	SILT, little gravel	SM		
1	·											
-		4		38							0.0	
-												
-	·											
0							Refusa bedroc		ogs on presumed			
7												
-												
-												
5	l											
								5' long, 2	" diameter Macrocore sam	oler.		
Colle	ected sampl	e from 5	5 to 6' bgs fo			isture analysis		-				
WC	- Waste Cha	aracteriz	zation									

APPENDIX D

SOIL ANALYTICAL RESULTS TABLES

J:\Projects\11176853\Deliverables\2014 Field Work\Round 2 Hydrogeologic PDIR\Hydrogeologic PDIR - REV.docx

Location ID			GP-01	GP-02	GP-03	GP-03B	GP-04B
Sample ID			GP-1 5-6.5	GP-2 5-5.4	GP-3 0.5-2	GP-3B 11-12	GP-4B 10-11
Matrix			Soil	Soil	Soil	Soil	Soil
Depth Interval (f	t)		5.0-6.5	5.0-5.4	0.5-2.0	11.0-12.0	10.0-11.0
Date Sampled	-	-	04/14/14	04/14/14	04/14/14	04/14/14	04/14/14
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Benzene	MG/KG	4.8	0.047 U	0.039 U	0.0055 U	0.0078 U	0.0036 J
Ethylbenzene	MG/KG	41	0.047 U	0.039 U	0.00041 J	0.0078 U	0.0028 J
Toluene	MG/KG	100	0.047 U	0.039 U	0.0055 U	0.0078 U	0.0015 J
Xylene (total)	MG/KG	100	0.019 J	0.017 J	0.011 U	0.016 U	0.11
Total BTEX	MG/KG	-	0.019	0.017	0.00041	ND	0.1179
Semivolatile Organic Compounds							
Acenaphthene	MG/KG	100	1.3	0.24 J	0.51 J	0.15 J	0.18 J
Acenaphthylene	MG/KG	100	1.0	0.30 J	1.0 J	0.015 J	1.4 U
Anthracene	MG/KG	100	6.6	0.90 J	1.8 J	0.076 J	0.090 J
Benzo(a)anthracene	MG/KG	1	5.2	5.2		0.26 U	0.16 J
Benzo(a)pyrene	MG/KG	1	3.5	7.8	29	0.075 J	0.29 J
Benzo(b)fluoranthene	MG/KG	1	4.0			0.063 J	0.11 J
Benzo(g,h,i)perylene	MG/KG	100	1.8	8.3	37	0.072 J	0.15 J
Benzo(k)fluoranthene	MG/KG	3.9	1.8	3.0	9.3	0.027 J	0.038 J
Chrysene	MG/KG	3.9	4.7	5.6	29	0.072 J	0.10 J
Dibenz(a,h)anthracene	MG/KG	0.33	0.65 J	2.4	9.8	0.040 J	1.4 U
Fluoranthene	MG/KG	100	11	4.6	13	0.095 J	0.11 J
Fluorene	MG/KG	100	4.7	0.18 J	0.44 J	0.074 J	0.090 J
Indeno(1,2,3-cd)pyrene	MG/KG	0.5	1.8	6.7		0.060 J	0.078 J
Naphthalene	MG/KG	100	0.77 J	0.36 J	0.99 J	3.1	3.5
Phenanthrene	MG/KG	100	18	3.1	9.4	0.31	0.40 J
Pyrene	MG/KG	100	11	8.5	33	0.23 J	0.21 J
Total Polynuclear Aromatic Hydrocarbons	MG/KG	-	77.82	64.88	244.24	4.459	5.506

*Criteria- 6 NYCRR Part 375.6, Remedial Program Soil Cleanup Objectives, Effective 12/14/06. Protection of Public Health, Restricted Residential.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit.

Location ID			GP-04B	GP-05	GP-05	GP-06	GP-06
Sample ID			GP-4B 12-13	GP-5 6-7	GP-5 10-11	GP-6 10-11	GP-6 12-13
Matrix			Soil	Soil	Soil	Soil	Soil
Depth Interval (f	t)		12.0-13.0	6.0-7.0	10.0-11.0	10.0-11.0	12.0-13.0
Date Sampled			04/14/14	04/15/14	04/15/14	04/15/14	04/15/14
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Benzene	MG/KG	4.8	0.0073 U	0.026 J	0.0061 U	0.080 U	0.0074 U
Ethylbenzene	MG/KG	41	0.0073 U	0.43	0.0012 J	0.11	0.0074 U
Toluene	MG/KG	100	0.0073 U	0.045 J	0.0061 U	0.080 U	0.0074 U
Xylene (total)	MG/KG	100	0.015 U	0.62	0.012 U	0.21	0.026
Total BTEX	MG/KG	-	ND	1.121	0.0012	0.32	0.026
Semivolatile Organic Compounds							
Acenaphthene	MG/KG	100	0.064 J	43	53	0.91	0.0060 J
Acenaphthylene	MG/KG	100	0.027 J	8.7 J	44	0.017 J	0.25 U
Anthracene	MG/KG	100	0.12 J	40	90	0.036 J	0.25 U
Benzo(a)anthracene	MG/KG	1	0.25 U	32 J		0.28 U	0.25 U
Benzo(a)pyrene	MG/KG	1	0.17 J	21 J		0.033 J	0.017 J
Benzo(b)fluoranthene	MG/KG	1	0.13 J	24 J	50	0.035 J	0.029 J
Benzo(g,h,i)perylene	MG/KG	100	0.12 J	11 J	23 J	0.028 J	0.018 J
Benzo(k)fluoranthene	MG/KG	3.9	0.050 J	9.3 J	17 J	0.017 J	0.011 J
Chrysene	MG/KG	3.9	0.23 J	30 J	61	0.042 J	0.021 J
Dibenz(a,h)anthracene	MG/KG	0.33	0.049 J	5.5 J	6.9 J	0.014 J	0.0080 J
Fluoranthene	MG/KG	100	0.22 J	56		0.053 J	0.018 J
Fluorene	MG/KG	100	0.063 J	39	90	0.054 J	0.25 U
Indeno(1,2,3-cd)pyrene	MG/KG	0.5	0.11 J	9.5 J	21 J	0.025 J	0.020 J
Naphthalene	MG/KG	100	0.011 J	70	44	4.4	0.018 J
Phenanthrene	MG/KG	100	0.37		300	0.14 J	0.022 J
Pyrene	MG/KG	100	0.58	55		0.077 J	0.020 J
Total Polynuclear Aromatic Hydrocarbons	MG/KG	-	2.314	594	1,160.9	5.881	0.208

*Criteria- 6 NYCRR Part 375.6, Remedial Program Soil Cleanup Objectives, Effective 12/14/06. Protection of Public Health, Restricted Residential.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit.

Location ID			GP-07	GP-08	GP-09	GP-09	GP-10
Sample ID			GP-7 5-6	GP-8 6-7	GP-9 10-11	GP-9 15-16	GP-10 10-12
Matrix			Soil	Soil	Soil	Soil	Soil
Depth Interval (f	t)		5.0-6.0	6.0-7.0	10.0-11.0	15.0-16.0	10.0-12.0
Date Sampled			04/14/14	04/15/14	04/15/14	04/15/14	04/15/14
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Benzene	MG/KG	4.8	0.0055 U	0.14	0.046 J	0.0075 U	0.0070 U
Ethylbenzene	MG/KG	41	0.0055 U	12	0.96	0.0075 U	0.0070 U
Toluene	MG/KG	100	0.0055 U	0.61	0.16 U	0.0075 U	0.0070 U
Xylene (total)	MG/KG	100	0.011 U	19	1.4	0.015 U	0.014 U
Total BTEX	MG/KG	-	ND	31.75	2.406	ND	ND
Semivolatile Organic Compounds							
Acenaphthene	MG/KG	100	0.0076 J	130	46	0.013 J	0.011 J
Acenaphthylene	MG/KG	100	0.011 J	20 J	4.9 J	0.0029 J	0.24 U
Anthracene	MG/KG	100	0.021 J		29	0.010 J	0.24 U
Benzo(a)anthracene	MG/KG	1	0.19 U	88	25 J	0.016 J	0.0067 J
Benzo(a)pyrene	MG/KG	1	0.13 J	61	18 J	0.10 J	0.054 J
Benzo(b)fluoranthene	MG/KG	1	0.11 J	68	16 J	0.014 J	0.24 U
Benzo(g,h,i)perylene	MG/KG	100	0.16 J	31 J	11 J	0.014 J	0.24 U
Benzo(k)fluoranthene	MG/KG	3.9	0.045 J	21 J	4.4 J	0.26 U	0.24 U
Chrysene	MG/KG	3.9	0.11 J	82	26 J	0.011 J	0.0047 J
Dibenz(a,h)anthracene	MG/KG	0.33	0.052 J	9.2 J	4.3 J	0.26 U	0.0081 J
Fluoranthene	MG/KG	100	0.075 J	160	36	0.013 J	0.24 U
Fluorene	MG/KG	100	0.0057 J	100	29	0.0084 J	0.24 U
Indeno(1,2,3-cd)pyrene	MG/KG	0.5	0.13 J	31 J	8.5 J	0.013 J	0.24 U
Naphthalene	MG/KG	100	0.028 J	300	61	0.055 J	0.13 J
Phenanthrene	MG/KG	100	0.082 J	380		0.034 J	0.0097 J
Pyrene	MG/KG	100	0.27		57	0.020 J	0.0044 J
Total Polynuclear Aromatic Hydrocarbons	MG/KG	-	1.2373	1,751.2	496.1	0.3243	0.2286

*Criteria- 6 NYCRR Part 375.6, Remedial Program Soil Cleanup Objectives, Effective 12/14/06. Protection of Public Health, Restricted Residential.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit.

APPENDIX D SOIL ANALYTICAL RESULTS - APRIL 2014 COLD SPRING FORMER MGP SITE

Location ID			GP-10	GP-11	GP-11	GP-11	GT-01
Sample ID			GP-10 13-14	GP-11 5-6	FD-041614	GP-11 10-12	GT-1 8-9
Matrix			Soil	Soil	Soil	Soil	Soil
Depth Interval (ff	t)		13.0-14.0	5.0-6.0	10.0-12.0	10.0-12.0	8.0-9.0
Date Sampled			04/15/14	04/16/14	04/16/14	04/16/14	04/16/14
Parameter	Units	Criteria*			Field Duplicate (1-1)		
Volatile Organic Compounds							
Benzene	MG/KG	4.8	0.0075 U	0.11 U	0.0048 J	0.092	0.0011 J
Ethylbenzene	MG/KG	41	0.0075 U	0.11 U	0.0074 U	0.91	0.0057 U
Toluene	MG/KG	100	0.0075 U	0.11 U	0.0041 J	0.027 J	0.0013 J
Xylene (total)	MG/KG	100	0.015 U	0.21 U	0.015 U	1.3	0.011 U
Total BTEX	MG/KG	-	ND	ND	0.0089	2.329	0.0024
Semivolatile Organic Compounds							
Acenaphthene	MG/KG	100	0.0050 J	8.1	0.0032 J	3.4	0.086 J
Acenaphthylene	MG/KG	100	0.26 U	1.9 J	0.25 U	0.23 J	0.038 J
Anthracene	MG/KG	100	0.26 U	9.7	0.25 U	0.95 J	0.17 J
Benzo(a)anthracene	MG/KG	1	0.010 J	8.1	0.0091 J	2.8 U	0.36
Benzo(a)pyrene	MG/KG	1	0.099 J	5.9	0.24 J	0.66 J	0.26
Benzo(b)fluoranthene	MG/KG	1	0.26 U	4.1 J	0.25 U	0.75 J	0.25
Benzo(g,h,i)perylene	MG/KG	100	0.26 U	3.4 J	0.0096 J	0.42 J	0.23
Benzo(k)fluoranthene	MG/KG	3.9	0.26 U	1.3 J	0.25 U	2.8 U	0.083 J
Chrysene	MG/KG	3.9	0.0045 J		0.25 U	0.83 J	0.42
Dibenz(a,h)anthracene	MG/KG	0.33	0.26 U	1.0 J	0.25 U	0.15 J	0.064 J
Fluoranthene	MG/KG	100	0.26 U	9.4	0.0038 J	1.2 J	0.50
Fluorene	MG/KG	100	0.26 U	6.9	0.25 U	1.1 J	0.073 J
Indeno(1,2,3-cd)pyrene	MG/KG	0.5	0.26 U	2.3 J	0.25 U	0.34 J	0.18 J
Naphthalene	MG/KG	100	0.049 J	0.63 J	0.0082 J	12	0.025 J
Phenanthrene	MG/KG	100	0.0087 J	37	0.010 J	4.2	0.17 J
Pyrene	MG/KG	100	0.0049 J	24	0.0062 J	2.2 J	1.0
Total Polynuclear Aromatic Hydrocarbons	MG/KG	-	0.1811	131.53	0.2901	28.43	3.909

*Criteria- 6 NYCRR Part 375.6, Remedial Program Soil Cleanup Objectives, Effective 12/14/06. Protection of Public Health, Restricted Residential.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit.

APPENDIX D SOIL ANALYTICAL RESULTS - APRIL 2014 COLD SPRING FORMER MGP SITE

Location ID			GT-01
Sample ID			GT-1 14-15
Matrix			Soil
Depth Interval (ft)			14.0-15.0
Date Sampled			04/16/14
Parameter	Units	Criteria*	
Volatile Organic Compounds			
Benzene	MG/KG	4.8	0.0051 J
Ethylbenzene	MG/KG	41	0.0077 U
Toluene	MG/KG	100	0.0042 J
Xylene (total)	MG/KG	100	0.015 U
Total BTEX	MG/KG	-	0.0093
Semivolatile Organic Compounds			
Acenaphthene	MG/KG	100	0.26 U
Acenaphthylene	MG/KG	100	0.26 U
Anthracene	MG/KG	100	0.26 U
Benzo(a)anthracene	MG/KG	1	0.26 U
Benzo(a)pyrene	MG/KG	1	0.017 J
Benzo(b)fluoranthene	MG/KG	1	0.26 U
Benzo(g,h,i)perylene	MG/KG	100	0.018 J
Benzo(k)fluoranthene	MG/KG	3.9	0.26 U
Chrysene	MG/KG	3.9	0.012 J
Dibenz(a,h)anthracene	MG/KG	0.33	0.26 U
Fluoranthene	MG/KG	100	0.015 J
Fluorene	MG/KG	100	0.26 U
Indeno(1,2,3-cd)pyrene	MG/KG	0.5	0.26 U
Naphthalene	MG/KG	100	0.26 U
Phenanthrene	MG/KG	100	0.029 J
Pyrene	MG/KG	100	0.022 J
Total Polynuclear Aromatic Hydrocarbons	MG/KG	-	0.113

*Criteria- 6 NYCRR Part 375.6, Remedial Program Soil Cleanup Objectives, Effective 12/14/06. Protection of Public Health, Restricted Residential.

Flags assigned during chemistry validation are shown.
Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit.

APPENDIX E

DATA USABILITY SUMMARY REPORT (DUSR)

J:\Projects\11176853\Deliverables\2014 Field Work\Round 2 Hydrogeologic PDIR\Hydrogeologic PDIR - REV.docx

DATA USABILITY SUMMARY REPORT

SOIL SAMPLING COLD SPRING FORMER MGP SITE REMEDIAL DESIGN COLD SPRING, NEW YORK WORK ASSIGNMENT D007622-12 SITE NUMBER 340026

Analyses Performed by:

TESTAMERICA LABORATORIES, INC. AMHERST, NY

Prepared for:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL REMEDIATION

Prepared by:

URS CORPORATION 77 GOODELL STREET BUFFALO, NY 14203

JUNE 2014

TABLE OF CONTENTS

I.	INTRODUCTION	.1
II.	SAMPLE COLLECTION AND ANALYTICAL METHODOLOGIES	.1
III.	DATA VALIDATION	.1
IV.	DATA DELIVERABLE COMPLETENESS	.2
V.	PRESERVATION / SAMPLE RECEIPT / HOLDING TIMES	.2
VI.	NONCONFORMANCES	.2
VII.	SAMPLE RESULTS AND REPORTING	.2

TABLES (Following Text)

Table 1	Validated Soil Sample Analytical Results
Table 2	Waste Characterization Analytical Results

ATTACHMENTS

- Attachment A Validated Form I's
- Attachment B Support Documentation

I. INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared following the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *DER-10 Technical Guidance for Site Investigation and Remediation, Appendix 2B, Guidance for Data Deliverables and the Development of Data Usability Summary Reports,* May 2010. Discussed in this DUSR are analytical data for twenty (20) soil samples plus one field duplicate collected on April 14-16, 2014. The samples were collected in support of the Remedial Design task assigned to URS under NYSDEC Work Assignment D007622-12 for the Cold Spring Former MGP site (Site Number 340026), located in Village of Cold Spring, New York.

II. SAMPLE COLLECTION AND ANALYTICAL METHODOLOGIES

On April 14-16, 2014 twenty (20) soil samples and one field duplicate were collected from soil borings located on the site. The samples were submitted to the NYSDEC Call-Out analytical laboratory - TestAmerica Laboratories, Inc. (TestAmerica) located in Amherst, NY, a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) certified laboratory. The soil samples were analyzed for the volatile organic compounds (VOCs) benzene, toluene, ethylbenzene and xylene (BTEX) following United States Environmental Protection Agency (USEPA) Method 8260C and polycyclic aromatic hydrocarbons (PAHs) by USEPA Method 8270D.

In addition, one solid waste characterization sample was collected on April 16, 2014 for informational purposes only. The results for this waste characterization sample did not undergo data validation, however, they are presented in this DUSR as ancillary information.

III. DATA VALIDATION

A limited data validation consisting of a review of the deliverable completeness, quality control (QC) parameters, and verification of sample results, as required by the DUSR guidance document referenced above, was performed on the samples following the requirements of the analytical methods and the general guidelines presented in the following USEPA Region II documents:

- Validating Volatile Organic Compounds by SW-846 Method 8260B, HW-24, Revision 2, August 2008; and
- Validating Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry, SW-846 Method 8270D, SOP HW-22, Rev. 4, August 2008.

Only QC non-conformances affecting data usability are discussed in this report.

The validated analytical results are presented on Table 1. The waste characterization sample results (un-validated) are presented on Table 2. Copies of the validated laboratory results (i.e., Form I's) are presented in Attachment A. Documentation supporting the qualification of data is presented in Attachment B.

IV. DATA DELIVERABLE COMPLETENESS

Full deliverable data packages (i.e., NYSDEC ASP Category B or equivalent) were provided by the laboratory, and included all reporting forms and raw data necessary to fully evaluate and verify the reported analytical results.

V. PRESERVATION / SAMPLE RECEIPT / HOLDING TIMES

All samples were received by the laboratory intact, properly preserved, and under proper chainof-custody. All samples were analyzed within the required holding times.

VI. NONCONFORMANCES

There were no nonconformances noted during the data validation.

VII. SAMPLE RESULTS AND REPORTING

All quantitation/reporting limits were reported in accordance with method requirements and were adjusted for sample size, moisture content and dilution factors. Results less than the reporting limits were qualified 'J' by the laboratory.

Several sample analyses required dilutions due to the nature of the matrices and/or high levels of target compounds present in the samples. The non-detect results for affected samples are the lowest achievable at the diluted level.

A field duplicate was collected at location GP-11 (10-12). The results between field duplicate FD-041614 and the above referenced parent sample showed poor field/laboratory analytical precision. The parent sample results are several orders of magnitude higher in concentration; as a conservative measure, the parent sample results should be used over the field duplicate results to make project-specific decisions. Note, USEPA Region II does not require data qualification for field duplicate precision.

All sample analyses were found to be compliant with the method criteria. All sample results are usable as reported. URS does not recommend the recollection of any samples at this time.

-2-

Prepared By:	Peter R. Fairbanks, Senior Chemist	A=
Reviewed By:	George E. Kisluk, Senior Chemist	κn.

Date: 6/2 + 14Date: 6/27/14

J:\Projects\11176853\Deliverables\Analytical\2014\Cold Spring April 2014 Soil DUSR.docx

DEFINITIONS OF USEPA DATA QUALIFIERS

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for, but not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be present in the sample.
- D The sample result was reported from a secondary dilution analysis.

Location ID		GP-01	GP-02	GP-03	GP-03B	GP-04B
Sample ID		GP-1 5-6.5	GP-2 5-5.4	GP-3 0.5-2	GP-3B 11-12	GP-4B 10-11
Matrix		Soil	Soil	Soil	Soil	Soil
Depth Interval (ft)		5.0-6.5	5.0-5.4	0.5-2.0	11.0-12.0	10.0-11.0
Date Sampled		04/14/14	04/14/14	04/14/14	04/14/14	04/14/14
Parameter	Units					
Volatile Organic Compounds						
Benzene	MG/KG	0.047 U	0.039 U	0.0055 U	0.0078 U	0.0036 J
Ethylbenzene	MG/KG	0.047 U	0.039 U	0.00041 J	0.0078 U	0.0028 J
Toluene	MG/KG	0.047 U	0.039 U	0.0055 U	0.0078 U	0.0015 J
Xylene (total)	MG/KG	0.019 J	0.017 J	0.011 U	0.016 U	0.11
Total BTEX	MG/KG	0.019	0.017	0.00041	ND	0.1179
Semivolatile Organic Compounds						
Acenaphthene	MG/KG	1.3	0.24 J	0.51 J	0.15 J	0.18 J
Acenaphthylene	MG/KG	1.0	0.30 J	1.0 J	0.015 J	1.4 U
Anthracene	MG/KG	6.6	0.90 J	1.8 J	0.076 J	0.090 J
Benzo(a)anthracene	MG/KG	5.2	5.2	22	0.26 U	0.16 J
Benzo(a)pyrene	MG/KG	3.5	7.8	29	0.075 J	0.29 J
Benzo(b)fluoranthene	MG/KG	4.0	7.7	24	0.063 J	0.11 J
Benzo(g,h,i)perylene	MG/KG	1.8	8.3	37	0.072 J	0.15 J
Benzo(k)fluoranthene	MG/KG	1.8	3.0	9.3	0.027 J	0.038 J
Chrysene	MG/KG	4.7	5.6	29	0.072 J	0.10 J
Dibenz(a,h)anthracene	MG/KG	0.65 J	2.4	9.8	0.040 J	1.4 U
Fluoranthene	MG/KG	11	4.6	13	0.095 J	0.11 J
Fluorene	MG/KG	4.7	0.18 J	0.44 J	0.074 J	0.090 J
Indeno(1,2,3-cd)pyrene	MG/KG	1.8	6.7	24	0.060 J	0.078 J
Naphthalene	MG/KG	0.77 J	0.36 J	0.99 J	3.1	3.5
Phenanthrene	MG/KG	18	3.1	9.4	0.31	0.40 J
Pyrene	MG/KG	11	8.5	33	0.23 J	0.21 J
Total Polynuclear Aromatic Hydrocarbons	MG/KG	77.82	64.88	244.24	4.459	5.506

Flags assigned during chemistry validation are shown,

J - The reported concentration is an estimated value,

U - Not detected above the reported quantitation limit.

Made By: PRF 06/23/2014 Checked By: GEK 06/26/2014

Detection Limits shown are PQL

Location ID		GP-04B	GP-05	GP-05	GP-06	GP-06
Sample ID		GP-4B 12-13	GP-5 6-7	GP-5 10-11	GP-6 10-11	GP-6 12-13
Matrix		Soil	Soil	Soil	Soil	Soil
Depth Interval (ft)		12.0-13.0	6.0-7.0	10.0-11.0	10.0-11.0	12.0-13.0
Date Sampled		04/14/14	04/15/14	04/15/14	04/15/14	04/15/14
Parameter	Units					
Volatile Organic Compounds						
Benzene	MG/KG	0.0073 U	0.026 J	0.0061 U	0.080 U	0.0074 U
Ethylbenzene	MG/KG	0.0073 U	0.43	0.0012 J	0.11	0.0074 U
Toluene	MG/KG	0.0073 U	0.045 J	0.0061 U	0.080 U	0.0074 U
Xylene (total)	MG/KG	0.015 U	0.62	0.012 U	0.21	0.026
Total BTEX	MG/KG	ND	1.121	0.0012	0.32	0.026
Semivolatile Organic Compounds						
Acenaphthene	MG/KG	0.064 J	43	53	0.91	0.0060 J
Acenaphthylene	MG/KG	0.027 J	8.7 J	44	0.017 J	0.25 U
Anthracene	MG/KG	0.12 J	40	90	0.036 J	0.25 U
Benzo(a)anthracene	MG/KG	0.25 U	32 J	65	0.28 U	0.25 U
Benzo(a)pyrene	MG/KG	0.17 J	21 J	46	0.033 J	0.017 J
Benzo(b)fluoranthene	MG/KG	0.13 J	24 J	50	0.035 J	0.029 J
Benzo(g,h,i)perylene	MG/KG	0.12 J	11 J	23 J	0.028 J	0.018 J
Benzo(k)fluoranthene	MG/KG	0.050 J	9.3 J	17 J	0.017 J	0.011 J
Chrysene	MG/KG	0.23 J	30 J	61	0.042 J	0.021 J
Dibenz(a,h)anthracene	MG/KG	0.049 J	5.5 J	6.9 J	0.014 J	0.0080 J
Fluoranthene	MG/KG	0.22 J	56	120	0.053 J	0.018 J
Fluorene	MG/KG	0.063 J	39	90	0.054 J	0.25 U
Indeno(1,2,3-cd)pyrene	MG/KG	0.11 J	9.5 J	21 J	0.025 J	0.020 J
Naphthalene	MG/KG	0.011 J	70	44	4.4	0.018 J
Phenanthrene	MG/KG	0.37	140	300	0.14 J	0.022 J
Pyrene	MG/KG	0.58	55	130	0.077 J	0.020 J
Total Polynuclear Aromatic Hydrocarbons	MG/KG	2.314	594	1,160.9	5.881	0.208

Flags assigned during chemistry validation are shown.

J - The reported concentration is an estimated value.

U - Not detected above the reported quantitation limit.

Made By: PRF 06/23/2014 Checked By: GEK 06/26/2014

Detection Limits shown are PQL

Location ID		GP-07	GP-08	GP-09	GP-09	GP-10
Sample ID		GP-7 5-6	GP-8 6-7	GP-9 10-11	GP-9 15-16	GP-10 10-12
Matrix		Soil	Soil	Soil	Soil	Soil
Depth Interval (ft)		5.0-6.0	6.0-7.0	10.0-11.0	15.0-16.0	10.0-12.0
Date Sampled		04/14/14	04/15/14	04/15/14	04/15/14	04/15/14
Parameter	Units					
Volatile Organic Compounds						
Benzene	MG/KG	0.0055 U	0_14	0.046 J	0.0075 U	0.0070 U
Ethylbenzene	MG/KG	0.0055 U	12	0.96	0.0075 U	0.0070 U
Toluene	MG/KG	0.0055 U	0.61	0.16 U	0.0075 U	0.0070 U
Xylene (total)	MG/KG	0.011 U	19	1.4	0.015 U	0.014 U
Total BTEX	MG/KG	ND	31.75	2.406	ND	ND
Semivolatile Organic Compounds						
Acenaphthene	MG/KG	0.0076 J	130	46	0.013 J	0.011 J
Acenaphthylene	MG/KG	0.011 J	20 J	4.9 J	0.0029 J	0.24 U
Anthracene	MG/KG	0.021 J	110	29	0.010 J	0.24 U
Benzo(a)anthracene	MG/KG	0.19 U	88	25 J	0.016 J	0.0067 J
Benzo(a)pyrene	MG/KG	0.13 J	61	18 J	0.10 J	0.054 J
Benzo(b)fluoranthene	MG/KG	0.11 J	68	16 J	0.014 J	0.24 U
Benzo(g,h,i)perylene	MG/KG	0.16 J	31 J	11 J	0.014 J	0.24 U
Benzo(k)fluoranthene	MG/KG	0.045 J	21 J	4.4 J	0.26 U	0.24 U
Chrysene	MG/KG	0.11 J	82	26 J	0.011 J	0_0047 J
Dibenz(a,h)anthracene	MG/KG	0.052 J	9.2 J	4.3 J	0.26 U	0.0081 J
Fluoranthene	MG/KG	0.075 J	160	36	0.013 J	0.24 U
Fluorene	MG/KG	0.0057 J	100	29	0.0084 J	0.24 U
Indeno(1,2,3-cd)pyrene	MG/KG	0.13 J	31 J	8.5 J	0.013 J	0.24 U
Naphthalene	MG/KG	0.028 J	300	61	0.055 J	0.13 J
Phenanthrene	MG/KG	0.082 J	380	120	0.034 J	0.0097 J
Pyrene	MG/KG	0.27	160	57	0.020 J	0.0044 J
Total Polynuclear Aromatic Hydrocarbons	MG/KG	1.2373	1,751.2	496.1	0.3243	0.2286

Flags assigned during chemistry validation are shown.

J - The reported concentration is an estimated value.

U - Not detected above the reported quantitation limit,

Made By: PRF 06/23/2014 Checked By: GEK 06/26/2014

Detection Limits shown are PQL

3

Location ID		GP-10	GP-11	GP-11	GP-11	GT-01
Sample ID		GP-10 13-14	GP-11 5-6	FD-041614	GP-11 10-12	GT-1 8-9
Matrix		Soil	Soil	Soil	Soil	Soil
Depth Interval (ft)		13.0-14.0	5.0-6.0	10.0-12.0	10.0-12.0	8.0-9.0
Date Sampled		04/15/14	04/16/14	04/16/14	04/16/14	04/16/14
Parameter	Units			Field Duplicate (1-1)		
Volatile Organic Compounds						
Benzene	MG/KG	0.0075 U	0,11 U	0.0048 J	0.092	0.0011 J
Ethylbenzene	MG/KG	0.0075 U	0.11 U	0.0074 U	0.91	0.0057 U
Toluene	MG/KG	0.0075 U	0.11 U	0.0041 J	0.027 J	0.0013 J
Xylene (total)	MG/KG	0.015 U	0.21 U	0.015 U	1.3	0.011 U
Total BTEX	MG/KG	ND	ND	0.0089	2.329	0.0024
Semivolatile Organic Compounds						
Acenaphthene	MG/KG	0.0050 J	8.1	0.0032 J	3.4	0.086 J
Acenaphthylene	MG/KG	0.26 U	1.9 J	0.25 U	0.23 J	0.038 J
Anthracene	MG/KG	0.26 U	9.7	0.25 U	0.95 J	0.17 J
Benzo(a)anthracene	MG/KG	0.010 J	8.1	0.0091 J	2.8 U	0,36
Benzo(a)pyrene	MG/KG	0.099 J	5.9	0.24 J	0.66 J	0.26
Benzo(b)fluoranthene	MG/KG	0.26 U	4.1 J	0.25 U	0.75 J	0.25
Benzo(g,h,i)perylene	MG/KG	0.26 U	3.4 J	0.0096 J	0.42 J	0.23
Benzo(k)fluoranthene	MG/KG	0.26 U	1.3 J	0.25 U	2.8 U	0.083 J
Chrysene	MG/KG	0.0045 J	7.8	0.25 U	0.83 J	0.42
Dibenz(a,h)anthracene	MG/KG	0.26 U	1.0 J	0.25 U	0.15 J	0.064 J
Fluoranthene	MG/KG	0.26 U	9.4	0.0038 J	1.2 J	0.50
Fluorene	MG/KG	0.26 U	6.9	0.25 U	1.1 J	0.073 J
Indeno(1,2,3-cd)pyrene	MG/KG	0.26 U	2.3 J	0.25 U	0.34 J	0.18 J
Naphthalene	MG/KG	0.049 J	0.63 J	0.0082 J	12	0.025 J
Phenanthrene	MG/KG	0.0087 J	37	0.010 J	4.2	0.17 J
Pyrene	MG/KG	0.0049 J	24	0.0062 J	2.2 J	1.0
Total Polynuclear Aromatic Hydrocarbons	MG/KG	0.1811	131.53	0.2901	28.43	3.909

Flags assigned during chemistry validation are shown,

J - The reported concentration is an estimated value,

U - Not detected above the reported quantitation limit,

Made By: PRF 06/23/2014 Checked By: GEK 06/26/2014

Detection Limits shown are PQL

Location ID		GT-01
Sample ID		GT-1 14-15
Matrix	Soil	
Depth Interval (ft)		14.0-15.0
Date Sampled		04/16/14
Parameter	Units	
Volatile Organic Compounds		
Benzene	MG/KG	0.0051 J
Ethylbenzene	MG/KG	0.0077 U
Toluene	MG/KG	0.0042 J
Xylene (total)	MG/KG	0.015 U
Total BTEX	MG/KG	0.0093
Semivolatile Organic Compounds		
Acenaphthene	MG/KG	0.26 U
Acenaphthylene	MG/KG	0.26 U
Anthracene	MG/KG	0.26 U
Benzo(a)anthracene	MG/KG	0.26 U
Benzo(a)pyrene	MG/KG	0.017 J
Benzo(b)fluoranthene	MG/KG	0.26 U
Benzo(g,h,i)perylene	MG/KG	0.018 J
Benzo(k)fluoranthene	MG/KG	0.26 U
Chrysene	MG/KG	0.012 J
Dibenz(a,h)anthracene	MG/KG	0.26 U
Fluoranthene	MG/KG	0.015 J
Fluorene	MG/KG	0.26 U
Indeno(1,2,3-cd)pyrene	MG/KG	0.26 U
Naphthalene	MG/KG	0.26 U
Phenanthrene	MG/KG	0.029 J
Pyrene	MG/KG	0.022 J
Total Polynuclear Aromatic Hydrocarbons	MG/KG	0.113

Flags assigned during chemistry validation are shown.

J - The reported concentration is an estimated value,

U - Not detected above the reported quantitation limit

Made By: PRF 06/23/2014 Checked By: GEK 06/26/2014

Detection Limits shown are PQL

TABLE 2 WASTE CHARACTERIZATION ANALYTICAL RESULTS COLD SPRING FORMER MGP SITE

Location ID		wc
Sample ID	WC 5-6	
Matrix	Soil	
Depth Interval (ft)		5.0-6.0
Date Sampled		04/16/14
Parameter	Units	
TCLP Volatile Organic Compounds		
1,1-Dichloroethene	MG/L	0.010 U
1,2-Dichloroethane	MG/L	0.010 U
Benzene	MG/L	0.11
Carbon tetrachloride	MG/L	0.010 U
Chlorobenzene	MG/L	0.010 U
Chloroform	MG/L	0.010 U
Methyl ethyl ketone (2-Butanone)	MG/L	0.050 U
Tetrachloroethene	MGA	0.010 U
Trichloroethene	MG/L	0.010 U
Vinyl chloride	MG/L	0.010 U
TCLP Semivolatile Organic Compounds		
1,4-Dichlorobenzene	MG/L	0.010 U
2,4,5-Trichlorophenol	MG/L	0.0050 U
2,4,6-Trichlorophenol	MG/L	0.0050 U
2,4-Dinitrotoluene	MG/L	0.0050 U
2-Methylphenol (o-cresol)	MG/L	0.12
3-Methylphenol (m-cresol)	MG/L	0.30
4-Methylphenol (p-cresol)	MG/L	0.30
Hexachlorobenzene	MG/L	0.0050 U
Hexachlorobutadiene	MG/L	0.0050 U
Hexachloroethane	MG/L	0.0050 U
Nitrobenzene	MG/L	0.0050 U
Pentachiorophenol	MG/L	0.010 U

Flags assigned during chemistry validation are shown

J - The reported concentration is an estimated value.

U - Not detected above the reported quantitation limit.

B - Compound detected in an associated laboratory method blank.

Ignitability result is >176 degree F, did not flash.

TABLE 2 WASTE CHARACTERIZATION ANALYTICAL RESULTS COLD SPRING FORMER MGP SITE

Location ID		WC
Sample ID		WC 5-6
Matrix	Soil	
Depth Interval (ft)		5.0-6.0
Date Sampled		04/16/14
Parameter	Units	
TCLP Semivolatile Organic Compounds		
Pyridine	MG/L	0.025 U
TCLP Pesticide Organic Compounds		
Endrin	MG/L	0.0020 U
gamma-BHC (Lindane)	MG/L	0.00059 JB
Heptachlor	MG/L	0.0020 U
Heptachlor epoxide	MG/L	0.0020 U
Methoxychlor	MG/L	0.0020 U
Technical Chlordane	MG/L	0.020 U
Toxaphene	MG/L	0.020 U
TCLP Herbicides		
2,4,5-TP (Silvex)	MG/L	0.0020 U
2,4-D	MG/L	0.0020 U
Polychlorinated Biphenyls		
Aroclor 1016	mg/Kg	0.39 U
Aroclor 1221	mg/Kg	0.39 U
Aroclor 1232	mg/Kg	0.39 U
Aroclor 1242	mg/Kg	0,39 U
Aroclor 1248	mg/Kg	0.39 U
Arocior 1254	mg/Kg	0.39 U
Aroclor 1260	mg/Kg	0.39 U
TCLP Metals		
Arsenic	MG/L	0.0098 J
Barium	MG/L	0.52 B

Flags assigned during chemistry validation are shown.

J - The reported concentration is an estimated value.

U - Not detected above the reported quantitation limit.

B - Compound detected in an associated laboratory method blank.

Ignitability result is >176 degree F, did not flash.

TABLE 2 WASTE CHARACTERIZATION ANALYTICAL RESULTS COLD SPRING FORMER MGP SITE

Location ID		WC
Sample ID	WC 5-6	
Matrix		Soil
Depth Interval (ft)		5.0-6.0
Date Sampled		04/16/14
Parameter	Units	
TCLP Metals		
Cadmium	MG/L	0.00063 J
Chromium	MG/L	0.0014 JB
Lead	MG/L	0.010 U
Mercury	MG/L	0.00020 U
Selenium	MG/L	0.011 J
Silver	MG/L	0.0060 U
RCRA Characteristics		
Corrosivity (pH)	S.U.	10.3
Ignitability	DEG F	176.0 >
Reactive Cyanide	MG/KG	10.0 U
Reactive Sulfide	MG/KG	80.2

Flags assigned during chemistry validation are shown.

J - The reported concentration is an estimated value.

U - Not detected above the reported quantitation limit.

B - Compound detected in an associated laboratory method blank

Ignitabilty result is >176 degree F. did not flash.

ATTACHMENT A VALIDATED FORM I'S

J:\Projects\11176853\Deliverables\Analytical\Cold Spring April 2014 Soil DUSR.docx

Analytical Data

Client Sample ID:	GP-1 5-6.5					
Lab Sample ID: Client Matrix:	480-58380-1 Solid	% Moisture	e: 8.2			Date Sampled: 04/14/2014 1000 Date Received: 04/21/2014 0800
		8260C Volatile Orgar	ic Compounds	s by GC/	MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 04/22/2014 0141 04/21/2014 2340	Analysis Batch: Prep Batch:	480-177297 480-177317		Instrument ID: Lab File ID: Initial Weight/Volum Final Weight/Volum	-
Analyte	DryWt Correcte	d: Y Result (u	g/Kg)	Qualifie	r MDL	RL
Benzene		ND			2.3	47
Toluene		ND			3.6	47
Ethylbenzene		ND			3.2	47
m-Xylene & p-Xyler	ne	19		J	7.9	94
o-Xylene		ND			6.1	47
Xylenes, Total		19		J	7.9	94
Total BTEX		ND			47	94
Surrogate		%Rec		Qualifie	r Acce	ptance Limits
Toluene-d8 (Surr)		100			71 - 1	125
1,2-Dichloroethane-	d4 (Surr)	98	98 64 - 126			126
4-Bromofluorobenzo	ene (Surr)	100			72 - 1	126

Analytical Data

Client Sample ID:	GP-2 5-5.4					
Lab Sample ID:	480-58380-2				Date	e Sampled: 04/14/2014 1020
Client Matrix:	Solid	% Moisture	9.9		Dat	e Received: 04/21/2014 0800
		8260C Volatile Organ	ic Compounds	s by GC/	MS	
Analysis Method:	8260C	Analysis Batch:	480-177297		Instrument ID:	HP5973F
Prep Method:	5035A	Prep Batch:	480-177317		Lab File ID:	F7754.D
Dilution:	1.0				Initial Weight/Volume:	0.72 g
Analysis Date:	04/22/2014 0206				Final Weight/Volume:	5 g
Prep Date:	04/21/2014 2340					
Analyte	DryWt Corrected	i: Y Result (u	g/Kg)	Qualifie	r MDL	RL
Benzene	and all the second s	ND			1.9	39
Toluene		ND			2.9	39
Ethylbenzene		ND			2.7	39
m-Xylene & p-Xyler	ne	9.4		J	6.5	77
o-Xylene		7.9		J	5.0	39
Xylenes, Total		17		J	6.5	77
Total BTEX		ND			39	77
Surrogate		%Rec		Qualifie	r Accepta	ince Limits
Toluene-d8 (Surr)		100			71 - 12	5
1,2-Dichloroethane-	-d4 (Surr)	96			64 - 126	5
4-Bromofluorobenz	ene (Surr)	100			72 - 126	5

Analytical Data

Client Sample ID:	GP-3 0.5-2					
Lab Sample ID:	480-58380-3					e Sampled: 04/14/2014 1030
Client Matrix:	Solid	% Moisture	e: 9.3		Dat	e Received: 04/21/2014 0800
	······································	8260C Volatile Organ	nic Compounds	s by GC/	MS	
Analysis Method:	8260C	Analysis Batch:	480-177297		Instrument ID:	HP5973F
Prep Method:	5035A	Prep Batch:	480-177317		Lab File ID:	F7755.D
Dilution:	1.0				Initial Weight/Volume:	5.01 g
Analysis Date:	04/22/2014 0232				Final Weight/Volume:	5 g
Prep Date:	04/21/2014 2340					
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifie	r MDL	RL
Benzene	and the second	ND			0.27	5.5
Toluene		ND			0.42	5.5
Ethylbenzene		0.41		J	0.38	5.5
m-Xylene & p-Xyler	ne	ND			0.92	11
o-Xylene		ND			0.72	5.5
Xylenes, Totał		ND			0.92	11
Total BTEX		ND			5.5	11
Surrogate		%Rec		Qualifie	r Accepta	ince Limits
Toluene-d8 (Surr)		105			71 - 125	5
1,2-Dichloroethane	-d4 (Surr)	100			64 - 126	3
4-Bromofluorobenz	ene (Surr)	104			72 - 126	5

Client: New York State D.E.C.

Client Sample ID:	GP-3B 11-12						
Lab Sample ID:	480-58380-4		00 4			•	d: 04/14/2014 1245
Client Matrix:	Solid	% Moisture	e: 36.1			Date Receive	d: 04/21/2014 0800
L	ł	3260C Volatile Orgar	nic Compounds	s by GC/I	MS	·	
Analysis Method:	8260C	Analysis Batch:	480-177297		Instrument ID:	HP59	73F
Prep Method:	5035A	Prep Batch:	480-177317		Lab File ID:	F7756	6.D
Dilution:	1.0				Initial Weight/Volu	me: 5.04	g
Analysis Date:	04/22/2014 0258				Final Weight/Volur	me: 5 g	
Prep Date:	04/21/2014 2340						
Analyte	DryWt Corrected: `	r Result (u	g/Kg)	Qualifie	r MDL	F	٦L
Benzene		ND			0.38		7.8
Toluene		ND			0.59	7	7.8
Ethylbenzene		ND			0.54	-	7.8
m-Xylene & p-Xyler	ne	ND			1.3		16
o-Xylene		ND			1.0	ī	7.8
Xylenes, Total		ND			1.3		16
Total BTEX		ND			7.8		16
Surrogate		%Rec		Qualifie	r Acc	ceptance Limit	s
Toluene-d8 (Surr)	a a training and as any or of according to	105			71	- 125	
1,2-Dichloroethane-	-d4 (Surr)	100			64	- 126	
4-Bromofluorobenzo	ene (Surr)	104			72	- 126	

Analytical Data

Client Sample ID:	GP-4B 10-11					
Lab Sample ID: Client Matrix:	480-58380-5 Solid	% Moisture	e: 41.7			Sampled: 04/14/2014 1415 Received: 04/21/2014 0800
		8260C Volatile Organ	nic Compounds	s by GC/	MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 04/22/2014 1440 04/22/2014 0954	Analysis Batch: Prep Batch:	480-177409 480-177426		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	HP5973F F7781.D 5.02 g 5 g
Analyte	DryWt Corrected: `	Y Result (u	g/Kg)	Qualifie	r MDL	RL
Benzene	1	3.6		J	0.42	8.5
Toluene		1.5		J	0.65	8.5
Ethylbenzene		2.8		J	0.59	8.5
m-Xylene & p-Xyler	ne	49			1.4	17
o-Xylene		64			1.1	8.5
Xylenes, Total		110			1.4	17
Total BTEX		120			8.5	17
Surrogate		%Rec		Qualifie	r Accepta	nce Limits
Toluene-d8 (Surr)		100			71 - 125	
1,2-Dichloroethane-	-d4 (Surr)	110			64 - 126	
4-Bromofluorobenze	ene (Surr)	101			72 - 126	

Analytical Data

Client Sample ID:	GP-4B 12-13					
Lab Sample ID:	480-58380-6				Date	e Sampled: 04/14/2014 1420
Client Matrix:	Solid	% Moisture	e: 33.5		Date	e Received: 04/21/2014 0800
		8260C Volatile Organ	nic Compounds	by GC/I	MS	
Analysis Method:	8260C	Analysis Batch:	480-177297		Instrument ID:	HP5973F
Prep Method:	5035A	Prep Batch:	480-177317		Lab File ID:	F7758.D
Dilution:	1.0				Initial Weight/Volume:	5.16 g
Analysis Date:	04/22/2014 0349				Final Weight/Volume:	5 g
Prep Date:	04/21/2014 2340					
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifie	r MDL	RL
Benzene	the second s	ND			0.36	7.3
Toluene		ND			0.55	7.3
Ethylbenzene		ND			0.50	7.3
m-Xylene & p-Xyler	e	ND			1.2	15
o-Xylene		ND			0.95	7.3
Xylenes, Total		ND			1.2	15
Total BTEX		ND			7.3	15
Surrogate		%Rec		Qualifie	r Accepta	ince Limits
Toluene-d8 (Surr)		106			71 - 125	
1,2-Dichloroethane-	d4 (Surr)	106			64 - 126	5
4-Bromofluorobenzo	ene (Surr)	107			72 - 126	5

Analytical Data

Client Sample ID:	GP-7 5-6						
Lab Sample ID: Client Matrix:	480-58380-7 Solid	% Moisture	e: 12.5			•	04/14/2014 1525
	3010		. 12.0				04/21/2014 0800
	8	260C Volatile Organ	ic Compound:	s by GC/	MS		
Analysis Method:	8260C	Analysis Batch:	480-177297		Instrument ID:	HP597	3F
Prep Method:	5035A	Prep Batch:	480-177317		Lab File ID:	F7759.	D
Dilution:	1.0				Initial Weight/Volu	me: 5.17 g	
Analysis Date:	04/22/2014 0415				Final Weight/Volur	ne: 5 g	
Prep Date:	04/21/2014 2340						
Analyte	DryWt Corrected: Y	' Result (u	g/Kg)	Qualifie	r MDL	RI	-
Benzene		ND			0.27	5.	5
Toluene		ND			0.42	5.	5
Ethylbenzene		ND			0.38	5.	5
m-Xylene & p-Xyler	ne	ND			0.93	11	
o-Xylene		ND			0.72	5.	5
Xylenes, Total		ND			0.93	11	
Total BTEX		ND			5.5	11	
Surrogate		%Rec		Qualifie	r Acc	eptance Limits	
Toluene-d8 (Surr)		104			71 -	- 125	
1,2-Dichloroethane-	-d4 (Surr)	104			64	- 126	
4-Bromofluorobenzo	ene (Surr)	105			72 -	- 126	

Analytical Data

Client Sample ID:	GP-6 10-11					
Lab Sample ID:	480-58380-8					Date Sampled: 04/15/2014 085
Client Matrix:	Solid	% Moisture	: 39.6			Date Received: 04/21/2014 080
	8	260C Volatile Orgar	ic Compounds	s by GC/	MS	
Analysis Method:	8260C	Analysis Batch:	480-177297		Instrument ID:	HP5973F
Prep Method:	5035A	Prep Batch:	480-177317		Lab File ID:	F7760.D
Dilution:	1.0				Initial Weight/Volu	me: 0.52 g
Analysis Date:	04/22/2014 0441				Final Weight/Volur	ne: 5 g
Prep Date:	04/21/2014 2340					
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifie	r MDL	RL
Benzene		ND			3.9	80
Toluene		ND			6.0	80
Ethylbenzene		110			5.5	80
m-Xylene & p-Xyler	าย	67		J	13	160
o-Xylene		140			10	80
Xylenes, Total		210			13	160
Total BTEX		320			80	160
Surrogate		%Rec		Qualifie	r Acc	eptance Limits
Toluene-d8 (Surr)		102			71	- 125
1,2-Dichloroethane	-d4 (Surr)	96			64	- 126
4-Bromofluorobenz	ene (Surr)	102			72	- 126

Analytical Data

Client Sample ID:	GP-6 12-13					
Lab Sample ID:	480-58380-9				Date	e Sampled: 04/15/2014 0900
Client Matrix:	Solid	% Moisture	e: 32.8		Date	e Received: 04/21/2014 0800
		8260C Volatile Organ	nic Compounds	s by GC/	MS	
Analysis Method:	8260C	Analysis Batch:	480-177297		Instrument ID:	HP5973F
Prep Method:	5035A	Prep Batch:	480-177317		Lab File ID:	F7761.D
Dilution:	1.0				Initial Weight/Volume:	5.02 g
Analysis Date:	04/22/2014 0506				Final Weight/Volume:	5 g
Prep Date:	04/21/2014 2340					
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifie	r MDL	RL
Benzene		ND			0.36	7.4
Toluene		ND			0.56	7.4
Ethylbenzene		ND			0.51	7.4
m-Xylene & p-Xyler	1e	7.6		J	1.2	15
o-Xylene		18			0.97	7.4
Xylenes, Total		26			1.2	15
Total BTEX		26			7.4	15
Surrogate		%Rec		Qualifie	r Accepta	nce Limits
Toluene-d8 (Surr)		103			71 - 125	
1,2-Dichloroethane	-d4 (Surr)	102			64 - 126	5
4-Bromofluorobenze	ene (Surr)	105			72 - 126	ì

Analytical Data

Client Sample ID:	GP-5 6-7					
Lab Sample ID: Client Matrix:	480-58380-10 Solid	% Moisture	e: 11.1			e Sampled: 04/15/2014 0955 e Received: 04/21/2014 0800
						e Received. 04/21/2014 0800
		8260C Volatile Organ	ic Compounds	s by GC/	MS	
Analysis Method:	8260C	Analysis Batch:	480-177571		Instrument ID:	HP5973G
Prep Method:	5035A	Prep Batch:	480-177543		Lab File ID:	G29669.D
Dilution:	1.0				Initial Weight/Volume:	5.03 g
Analysis Date:	04/23/2014 0330				Final Weight/Volume:	10 mL
Prep Date:	04/22/2014 1808					
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifie	r MDL	RL
Benzene	· · · · · · · · · · · · · · · · · · ·	26		J	21	110
Toluene		45		J	30	110
Ethylbenzene		430			33	110
m-Xylene & p-Xyler	e	270			62	220
o-Xylene		350			15	110
Xylenes, Total		620			19	220
Total BTEX		1100			110	220
Surrogate		%Rec		Qualifie	r Accepta	ince Limits
Toluene-d8 (Surr)		104			50 - 149	
1,2-Dichloroethane-	d4 (Surr)	103			53 - 146	3
4-Bromofluorobenz	ene (Surr)	108			49 - 148	1

Analytical Data

Client Sample ID:	GP-5 10-11					
Lab Sample ID: Client Matrix:	480-58380-11 Solid	% Moisture	e: 17.4			e Sampled: 04/15/2014 1000 e Received: 04/21/2014 0800
	82	260C Volatile Organ	ic Compounds	s by GC/	MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 04/22/2014 0532 04/21/2014 2340	Analysis Batch: Prep Batch:	480-177297 480-177317		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	HP5973F F7762.D 5 g 5 g
Analyte Benzene	DryWt Corrected: Y	Result (u	g/Kg)	Qualifie	r MDL 0.30	RL 6.1
Toluene Ethylbenzene m-Xylene & p-Xylen o-Xylene Xylenes, Total	e	ND 1.2 ND ND ND		IJ	0.46 0.42 1.0 0.79 1.0	6.1 6.1 12 6.1 12
Total BTEX Surrogate Toluene-d8 (Surr) 1,2-Dichloroethane- 4-Bromofluorobenze		ND %Rec 103 102 106	ter for determine the Arran	Qualifie	6.1 r Accept 71 - 12 64 - 12 72 - 12	6

Analytical Data

Client Sample ID:	GP-8 6-7					
Lab Sample ID: Client Matrix:	480-58380-12 Solid	% Moisture	: 16.0			e Sampled: 04/15/2014 1020 e Received: 04/21/2014 0800
	8	260C Volatile Organ	ic Compounds	s by GC/I	MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 04/23/2014 0353 04/22/2014 1808	Analysis Batch: Prep Batch:	480-177571 480-177543		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	HP5973G G29670.D 4.28 g 10 mL
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifie	r MDL	RL
Benzene		140			26	140
Toluene		610			37	140
Ethylbenzene		12000			40	140
m-Xylene & p-Xyler	e	12000			77	280
o-Xylene		7200			18	140
Xylenes, Total		19000			23	280
Total BTEX		32000			140	280
Surrogate		%Rec		Qualifie	r Accept	ance Limits
Toluene-d8 (Surr)		99			50 - 14	9
1,2-Dichloroethane-	-d4 (Surr)	102			53 - 14	5
4-Bromofluorobenz		109			49 - 14	В

Analytical Data

Client Sample ID:	GP-9 10-11					
Lab Sample ID: Client Matrix:	480-58380-13 Solid	% Moisture	: 40.2			te Sampled: 04/15/2014 1120 te Received: 04/21/2014 0800
	82	260C Volatile Organ	ic Compounds	s by GC/	MS	· · · · · · · · · · · · · · · · · · ·
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 04/23/2014 0416 04/22/2014 1808	Analysis Batch: Prep Batch:	480-177571 480-177543		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	•
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xyler o-Xylene Xylenes, Total Total BTEX	DryWt Corrected: Y	Result (ug 46 ND 960 480 890 1400 2400	ı/Kg)	Qualifie J	er MDL 30 42 46 87 20 26 160	RL 160 160 320 160 320 320 320
Surrogate Toluene-d8 (Surr) 1,2-Dichloroethane- 4-Bromofluorobenzo		%Rec 122 117 129		Qualifie	er Accept 50 - 14 53 - 14 49 - 14	6

Analytical Data

Client Sample ID:	GP-9 15-16					
Lab Sample ID: Client Matrix:	480-58380-14 Solid	% Moisture	e: 34.4			Date Sampled: 04/15/2014 1130 Date Received: 04/21/2014 0800
		8260C Volatile Organ	nic Compounds	s by GC/I	WS	
Analysis Method: Prep Method:	8260C 5035A	Analysis Batch: Prep Batch:	480-177297 480-177317		Instrument ID: Lab File ID:	HP5973F F7763.D
Dilution:	1.0	пер расн.	400-177317		Initial Weight/Volum	e: 5.1 g
Analysis Date: Prep Date:	04/22/2014 0558 04/21/2014 2340				Final Weight/Volum	e: 5 g
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifie	r MDL	RL
Benzene		ND			0.37	7.5
Toluene		ND			0.57	7.5
Ethylbenzene		ND			0.52	7.5
m-Xylene & p-Xyler	e	ND			1.3	15
o-Xylene		ND			0.98	7.5
Xylenes, Total		ND			1.3	15
Total BTEX		ND			7.5	15
Surrogate		%Rec		Qualifie	r Acce	ptance Limits
Toluene-d8 (Surr)		105			71 -	125
1,2-Dichloroethane-	d4 (Surr)	101			64 -	126
4-Bromofluorobenzo	ene (Surr)	106			72 -	126

Analytical Data

Client Sample ID:	GP-10 10-12					
Lab Sample ID:	480-58380-15				Date	Sampled: 04/15/2014 1410
Client Matrix:	Solid	% Moisture	e: 30.2		Date	Received: 04/21/2014 0800
		8260C Volatile Orgai	nic Compounds	s by GC/	MS	
Analysis Method:	8260C	Analysis Batch:	480-177297		Instrument ID:	HP5973F
Prep Method:	5035A	Prep Batch:	480-177317		Lab File ID:	F7764.D
Dilution:	1.0				Initial Weight/Volume:	5.13 g
Analysis Date:	04/22/2014 0624				Final Weight/Volume:	5 g
Prep Date:	04/21/2014 2340				-	-
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifie	r MDL	RL
Benzene		ND			0.34	7.0
Toluene		ND			0.53	7.0
Ethylbenzene		ND			0.48	7.0
m-Xylene & p-Xyler	ne	ND			1.2	14
o-Xylene		ND			0.91	7.0
Xylenes, Total		ND			1.2	14
Total BTEX		ND			7.0	14
Surrogate		%Rec		Qualifie	r Accepta	nce Limits
Toluene-d8 (Surr)	· · · · · · · · · · · · · · · · · · ·	104			71 - 125	
1,2-Dichloroethane	-d4 (Surr)	103			64 - 126	
4-Bromofluorobenz	ene (Surr)	106			72 - 126	

Analytical Data

Client Sample ID:	GP-10 13-14					
Lab Sample ID:	480-58380-16				Date	Sampled: 04/15/2014 1415
Client Matrix:	Solid	% Moisture	e: 34.2		Date	e Received: 04/21/2014 0800
		8260C Volatile Orgar	nic Compounds b	y GC/MS		
Analysis Method:	8260C	Analysis Batch:	480-177297	Instru	ment ID:	HP5973F
Prep Method:	5035A	Prep Batch:	480-177317	Lab Fi	ile ID:	F7765.D
Dilution:	1.0			Initial	Weight/Volume:	5.05 g
Analysis Date:	04/22/2014 0649			Final \	Veight/Volume:	5 g
Prep Date:	04/21/2014 2340					
Analyte	DryWt Corrected	: Y Result (u	g/Kg) C	Jualifier	MDL	RL
Benzene		ND			0.37	7.5
Toluene		ND			0.57	7.5
Ethylbenzene		ND			0.52	7.5
m-Xylene & p-Xyler	e	ND			1.3	15
o-Xylene		ND			0.98	7.5
Xylenes, Total		ND			1.3	15
Total BTEX		ND			7.5	15
Surrogate		%Rec	C	Qualifier	Accepta	nce Limits
Toluene-d8 (Surr)		105			71 - 125	
1,2-Dichloroethane-	d4 (Surr)	105			64 - 126	i
4-Bromofluorobenz	ene (Surr)	104			72 - 126	i

Client: New York State D.E.C.

Client Sample ID:	GP-11 5-6					
Lab Sample ID: Client Matrix:	480-58380-17 Solid	% Moisture	e: 13.1			Pate Sampled: 04/16/2014 1007 Date Received: 04/21/2014 0800
	· · · · · · · · · · · · · · · · · · ·	8260C Volatile Organ	nic Compounds	s by GC/I	MS	· · · · · · · · · · · · · · · · · · ·
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 04/23/2014 0439 04/22/2014 1808	Analysis Batch: Prep Batch:	480-177571 480-177543		Instrument ID: Lab File ID: Initial Weight/Volum Final Weight/Volume	=
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifie	r MDL	RL
Benzene		ND			20	110
Toluene		ND			28	110
Ethylbenzene		ND			31	110
m-Xylene & p-Xyler	ne	ND			59	210
o-Xylene		ND			14	110
Xylenes, Total		ND			18	210
Total BTEX		ND			110	210
Surrogate		%Rec		Qualifie	r Acce	ptance Limits
Toluene-d8 (Surr)	· · · · · · · · · · · · · · · · · · ·	106			50 - 1	149
1,2-Dichloroethane	-d4 (Surr)	96			53 - 1	146
4-Bromofluorobenz	ene (Surr)	111			49 - 1	148

Client: New York State D.E.C.

Client Sample ID:	GP-11 10-12					
Lab Sample ID: Client Matrix:	480-58380-18 Solid	% Moisture	e: 40.1			e Sampled: 04/16/2014 1030 e Received: 04/21/2014 0800
		8260C Volatile Organ	nic Compounds	by GC/I	MS	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260C 5035A 1.0 04/22/2014 0715 04/21/2014 2340	Analysis Batch: Prep Batch:	480-177297 480-177317		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	HP5973F F7766.D 0.66 g 5 g
Analyte	DryWt Correcte	d: Y Result (u	g/Kg)	Qualifie	r MDL	RL
Benzene	the second second second term in the second s	92			3.1	63
Toluene		27		J	4.8	63
Ethylbenzene		910			4.4	63
m-Xylene & p-Xyler	e	570			11	130
o-Xylene		720			8.3	63
Xylenes, Total		1300			11	130
Total BTEX		2300			63	130
Surrogate		%Rec		Qualifie	r Accepta	nce Limits
Toluene-d8 (Surr)	and a product of the second seco	99			71 - 125	
1,2-Dichloroethane	-d4 (Surr)	99			64 - 126	i
4-Bromofluorobenz	ene (Surr)	100			72 - 126	i

Client: New York State D.E.C.

Client Sample ID:	FD-041614 GP-	-11 (10-12)]			
Lab Sample ID:	480-58380-19				Date	e Sampled: 04/16/2014 0000
Client Matrix:	Solid	% Moisture	e: 33.1		Dat	e Received: 04/21/2014 0800
		8260C Volatile Organ	nic Compounds	s by GC/	MS	
Analysis Method:	8260C	Analysis Batch:	480-177297		Instrument ID:	HP5973F
Prep Method:	5035A	Prep Batch:	480-177317		Lab File ID:	F7767.D
Dilution:	1.0				Initial Weight/Volume:	5.04 g
Analysis Date:	04/22/2014 0741				Final Weight/Volume:	5 g
Prep Date:	04/21/2014 2340					
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifie	r MDL	RL
Benzene		4.8		J	0.36	7.4
Toluene		4.1		J	0.56	7.4
Ethylbenzene		ND			0.51	7.4
m-Xylene & p-Xyler	e	ND			1.2	15
o-Xylene		ND			0.97	7.4
Xylenes, Total		ND			1.2	15
Total BTEX		8.9		J	7.4	15
Surrogate		%Rec		Qualifie	r Accepta	ance Limits
Toluene-d8 (Surr)		105	the second second second		71 - 12	2
1,2-Dichloroethane-	-d4 (Surr)	107			64 - 126	3
4-Bromofluorobenz	ene (Surr)	107			72 - 126	3

Analytical Data

Client Sample ID:	GT-1 8-9					
Lab Sample ID: Client Matrix:	480-58380-20 Solid	% Moisture	e: 12.2			e Sampled: 04/16/2014 1000 te Received: 04/21/2014 0800
		78 WOISTON	5. 12.2		Da	le Received: 04/21/2014 0600
	8	260C Volatile Organ	nic Compounds	s by GC/	MS	
Analysis Method:	8260C	Analysis Batch:	480-177409		Instrument ID:	HP5973F
Prep Method:	5035A	Prep Batch:	480-177426		Lab File ID:	F7783.D
Dilution:	1.0				Initial Weight/Volume:	5.02 g
Analysis Date:	04/22/2014 1532				Final Weight/Volume:	5 g
Prep Date:	04/22/2014 0954				-	-
Analyte	DryWt Corrected: \	Result (u	g/Kg)	Qualifie	r MDL	RL
Benzene		1.1		J	0.28	5.7
Toluene		1.3		J	0.43	5.7
Ethylbenzene		ND			0.39	5.7
m-Xylene & p-Xyler	ne	ND			0.95	11
o-Xylene		ND			0.74	5.7
Xylenes, Total		ND			0.95	11
Total BTEX		ND			5.7	11
Surrogate		%Rec		Qualifie	r Accept	ance Limits
Toluene-d8 (Surr)		103			71 - 12	5
1,2-Dichloroethane-	-d4 (Surr)	104			64 - 12	6
4-Bromofluorobenzo	ene (Surr)	104			72 - 12	6

Analytical Data

Client Sample ID:	GT-1 14-15					
Lab Sample ID:	480-58380-21	0/ 14 · · ·	05.0			Date Sampled: 04/16/2014 122
Client Matrix:	Solid	% Moisture	: 35.6			Date Received: 04/21/2014 080
	8	260C Volatile Organ	ic Compounds	s by GC/I	MS	
Analysis Method:	8260C	Analysis Batch:	480-177297		Instrument ID:	HP5973F
Prep Method:	5035A	Prep Batch:	480-177317		Lab File ID:	F7769.D
Dilution:	1.0				Initial Weight/Volum	ne: 5.05 g
Analysis Date:	04/22/2014 0859				Final Weight/Volum	e: 5 g
Prep Date:	04/21/2014 2340					
Analyte	DryWt Corrected: \	Result (u	g/Kg)	Qualifie	r MDL	RL
Benzene		5.1		J	0.38	7.7
Toluene		4.2		J	0.58	7.7
Ethylbenzene		ND			0.53	7.7
m-Xylene & p-Xyler	ne	ND			1.3	15
o-Xylene		ND			1.0	7.7
Xylenes, Total		ND			1.3	15
Total BTEX		9.3		J	7.7	15
Surrogate		%Rec		Qualifie	r Acce	eptance Limits
Toluene-d8 (Surr)		105			71 -	125
1,2-Dichloroethane-	-d4 (Surr)	103			64 -	126
4-Bromofluorobenzo	ene (Surr)	106			72 -	126

Analytical Data

Client Sample ID:	GP-1 5-6.5					
Lab Sample ID: Client Matrix:	480-58380-1 Solid	% Moisture	e: 8.2			Date Sampled: 04/14/2014 1000 Date Received: 04/21/2014 0800
· · ·	82	70D Semivolatile Or	ganic Compou	nds (GC/	MS)	
Analysis Method:	8270D	Analysis Batch:	480-178188		Instrument ID:	HP5973X
Prep Method:	3550C	Prep Batch:	480-177927		Lab File ID:	X00891818.D
Dilution:	5.0				Initial Weight/Volur	ne: +30.15 g
Analysis Date:	04/25/2014 1727				Final Weight/Volun	
Prep Date:	04/24/2014 0806				Injection Volume:	1 uL
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifier	MDL	RL
Acenaphthene	· · · · · · · · · · · · · · · · · · ·	1300			11	920
Acenaphthylene		1000			7.5	920
Anthracene		6600			23	920
Benzo[a]anthracene	3	5200			16	920
Benzo[a]pyrene		3500			22	920
Benzo[b]fluoranther	ne	4000			18	920
Benzo[g,h,i]perylen	e	1800			11	920
Benzo[k]fluoranther	າຍ	1800			10	920
Chrysene		4700			9.2	920
Dibenz(a,h)anthrac	ene	650		J	11	920
Fluoranthene		11000			13	920
Fluorene		4700			21	920
Indeno[1,2,3-cd]pyr	ene	1800			25	920
Naphthalene		770		J	15	920
Phenanthrene		18000			19	920
Pyrene		11000			5.9	920
Surrogate		%Rec		Qualifier	Acc	eptance Limits
2-Fluorobiphenyl		94			37 -	120
Nitrobenzene-d5 (S	um)	85			34 -	132
p-Terphenyl-d14 (S	urr)	115			65 -	153

Analytical Data

Client Sample ID:	GP-2 5-5.4					
Lab Sample ID: Client Matrix:	480-58380-2 Solid	% Moisture	e: 9.9			Pate Sampled: 04/14/2014 1020 Date Received: 04/21/2014 0800
	8	3270D Semivolatile Or	ganic Compou	inds (GC/MS	5)	
Analysis Method:	8270D	Analysis Batch:	480-178188	In	strument ID:	HP5973X
Prep Method:	3550C	Prep Batch:	480-177927	La	b File ID:	X00891819.D
Dilution:	10			Ini	tial Weight/Volum	e: +30.03 g
Analysis Date:	04/25/2014 1750			Fi	nal Weight/Volum	e: 1 mL
Prep Date:	04/24/2014 0806				ection Volume:	1 uL
Analyte	DryWt Corrected	: Y Result (u	a/Ka)	Qualifier	MDL	RL
Acenaphthene	a	240	o o,	J	22	1900
Acenaphthylene		300		J	15	1900
Anthracene		900		J	48	1900
Benzo[a]anthracen	е	5200			32	1900
Benzo[a]pyrene		7800			45	1900
Benzo[b]fluoranthe	ne	7700			36	1900
Benzo[g,h,i]perylen	e	8300			22	1900
Benzo[k]fluoranthe	ne	3000			21	1900
Chrysene		5600			19	1900
Dibenz(a,h)anthrac	ene	2400			22	1900
Fluoranthene		4600			27	1900
Fluorene		180		J	43	1900
Indeno[1,2,3-cd]pyr	rene	6700			52	1900
Naphthalene		360		J	31	1900
Phenanthrene		3100			39	1900
Pyrene		8500			12	1900
Surrogate		%Rec		Qualifier	Acce	ptance Limits
2-Fluorobiphenyl		90	9-		37 -	120
Nitrobenzene-d5 (S	Surr)	80			34 -	132
p-Terphenyl-d14 (S	Surr)	104			65 -	153

Analytical Data

Client Sample ID:	GP-3 0.5-2					
Lab Sample ID:	480-58380-3					Date Sampled: 04/14/2014 1030
Client Matrix:	Solid	% Moisture	e: 9.3		ſ	Date Received: 04/21/2014 0800
· · · ·		8270D Semivolatile Or	ganic Compou	nds (GC/M	IS)	· · · · · · · · · · · · · · · · · · ·
Analysis Method:	8270D	Analysis Batch:	480-178458	Ir	nstrument ID:	HP5973X
Prep Method:	3550C	Prep Batch:	480-177927	L	ab File ID:	X00891871.D
Dilution:	40			Ir	nitial Weight/Volum	e: +30.61 g
Analysis Date:	04/26/2014 1843			F	inal Weight/Volum	e: 1 mL
Prep Date:	04/24/2014 0806			Ir	njection Volume:	1 uL
Analyte	DryWt Corrected	d: Y Result (u	ıq/Kq)	Qualifier	MDL	RL
Acenaphthene	a an	510	And the second sec	J second second	86	7400
Acenaphthylene		1000		J	60	7400
Anthracene		1800		J	190	7400
Benzo[a]anthracene)	22000			130	7400
Benzo[a]pyrene		29000			180	7400
Benzo[b]fluoranther	ne	24000			140	7400
Benzo[g,h,i]perylen	e	37000			88	7400
Benzo[k]fluoranther		9300			80	7400
Chrysene		29000			73	7400
Dibenz(a,h)anthrac	ene	9800			86	7400
Fluoranthene		13000			110	7400
Fluorene		440		J	170	7400
Indeno[1,2,3-cd]pyr	ene	24000			200	7400
Naphthalene		990		J	120	7400
Phenanthrene		9400			150	7400
Pyrene		33000			47	7400
Surrogate		%Rec		Qualifier	Acce	ptance Limits
2-Fluorobiphenyl		104			37 -	120
Nitrobenzene-d5 (S	um)	88			34 -	132
p-Terphenyl-d14 (S	•	123			65 -	153

Analytical Data

Client Sample ID:	GP-3B 11-12				
Lab Sample ID: Client Matrix:	480-58380-4 Solid	% Moisture:	36.1		Date Sampled: 04/14/2014 1245 Date Received: 04/21/2014 0800
<u></u>		8270D Semivolatile Org	anic Compounds	(GC/MS)	
Analysis Method:	8270D	Analysis Batch:	480-178188	Instrument ID:	HP5973X
Prep Method:	3550C	Prep Batch:	480-177927	Lab File ID:	X00891821.D
Dilution:	1.0			Initial Weight/Vo	
Analysis Date:	04/25/2014 1838			Final Weight/Vo	U U
Prep Date:	04/24/2014 0806			Injection Volume	
Analyte	DryWt Corrected		37	alifier MDL	RL
Acenaphthene		150	J	3.0	260
Acenaphthylene		15	J	2.1	260
Anthracene		76	J	6.6	260
Benzo[a]anthracene	•	ND		4.5	260
Benzo[a]pyrene		75	J	6.2	260
Benzo[b]fluoranther	e	63	J	5.0	260
Benzo[g,h,i]perylend	e	72	J	3.1	260
Benzo[k]fluoranther	e	27	J	2.8	260
Chrysene		72	J	2.6	260
Dibenz(a,h)anthrace	ene	40	J	3.0	260
Fluoranthene		95	J	3.8	260
Fluorene		74	J	6.0	260
indeno[1,2,3-cd]pyre	ene	60	Ŀ	7.2	260
Naphthalene		3100		4.3	260
Phenanthrene		310		5.4	260
Pyrene		230	L	1.7	260
Surrogate		%Rec	Qua	alifier A	Acceptance Limits
2-Fluorobiphenyl		86		3,000,000,000,000,000	7 - 120
Nitrobenzene-d5 (S	urr)	76		-	4 - 132
p-Terphenyl-d14 (Si		121		-	5 - 153

Analytical Data

Client Sample ID:	GP-4B 10-11					
Lab Sample ID:	480-58380-5				D	ate Sampled: 04/14/2014 1415
Client Matrix:	Solid	% Moisture	% Moisture: 41.7		C	Date Received: 04/21/2014 0800
		8270D Semivolatile Or	ganic Compou	nds (GC/MS)	• • • •	
Analysis Method:	8270D	Analysis Batch:	480-178458	Inst	rument ID:	HP5973X
Prep Method:	3550C	Prep Batch:	480-177927	Lab	File ID:	X00891872.D
Dilution:	5.0	•		Initia	al Weight/Volum	
Analysis Date:	04/26/2014 1906				al Weight/Volume	0
Prep Date:	04/24/2014 0806				ction Volume:	1 uL
· · · · · · · · ·						
Analyte	DryWt Corrected	t: Y Result (u	g/Kg)	Qualifier	MDL	RL
Acenaphthene		180		J	17	1400
Acenaphthylene		ND			12	1400
Anthracene		90		J	37	1400
Benzo[a]anthracene	9	160		J	25	1400
Benzo[a]pyrene		290		J	35	1400
Benzo[b]fluoranther	ne	110		J	28	1400
Benzo[g,h,i]perylen	e	150		J	17	1400
Benzo[k]fluoranther	ne	38		J	16	1400
Chrysene		100		J	14	1400
Dibenz(a,h)anthrac	ene	ND			17	1400
Fluoranthene		110		J	21	1400
Fluorene		90		J	33	1400
Indeno[1,2,3-cd]pyr	ene	78		J	40	1400
Naphthalene		3500			24	1400
Phenanthrene		400		J	30	1400
Pyrene		210		J	9.3	1400
Surrogate		%Rec		Qualifier	Acce	ptance Limits
2-Fluorobiphenyl		92			37 - 1	120
Nitrobenzene-d5 (S	urr)	76			34 - 1	132
p-Terphenyl-d14 (S	urr)	107			65 - 1	153

Analytical Data

Client Sample ID:	GP-4B 12-13					
Lab Sample ID: Client Matrix:	480-58380-6 Solid	% Moisture	: 33.5			ate Sampled: 04/14/2014 1420 ate Received: 04/21/2014 0800
		8270D Semivolatile Org	ganic Compou	nds (GC/M	S)	
Analysis Method:	8270D	Analysis Batch:	480-178188	Ir	strument ID:	HP5973X
Prep Method:	3550C	Prep Batch:	480-177927	L	ab File ID:	X00891823.D
Dilution:	1.0	·		ir	nitial Weight/Volume	: +30.91 g
Analysis Date:	04/25/2014 1924				inal Weight/Volume	•
Prep Date:	04/24/2014 0806				jection Volume:	1 uL
Analyte	DryWt Corrected	d: Y Result (ug	y/Ka)	Qualifier	MDL	RL
Acenaphthene	Diywi Coneciev	64	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	J	2.9	250
Acenaphthylene		27		J	2.9	250
Anthracene		120		J	6.3	250
Benzo[a]anthracene		ND		J	4.3	250
Benzo[a]pyrene	•	170		J	5.9	250
Benzo[b]fluoranthen	IC.	130		J	4.8	250
Benzo[g,h,i]perylene		120		J	3.0	250
Benzo[k]fluoranthen		50		J	2.7	250
Chrysene	-	230		J	2.5	250
Dibenz(a,h)anthrace	ene	49		J	2.9	250
Fluoranthene		220		J	3.6	250
Fluorene		63		J	5.7	250
Indeno[1,2,3-cd]pyre	ene	110		J	6.8	250
Naphthalene		11		J	4.1	250
Phenanthrene		370			5.2	250
Pyrene		580			1.6	250
Surrogate		%Rec		Qualifier	Accep	tance Limits
2-Fluorobiphenyl		92			37 - 1	20
Nitrobenzene-d5 (S	um)	82			34 - 1	32
p-Terphenyl-d14 (Si	, (nu	130			65 - 1	53

Analytical Data

Client Sample ID:	GP-7 5-6					
Lab Sample ID: Client Matrix:	480-58380-7 Solid	% Moisture	e: 12.5			Date Sampled: 04/14/2014 1525 Date Received: 04/21/2014 0800
		8270D Semivolatile Or	ganic Compoun	ds (GC/I	MS)	
Analysis Method:	8270D	Analysis Batch:	480-178188	I	nstrument ID:	HP5973X
Prep Method:	3550C	Prep Batch:	480-177927	t	_ab File ID:	X00891826.D
Dilution:	1.0			I	nitial Weight/Volun	ne: +30.49 g
Analysis Date:	04/25/2014 2035			F	-inal Weight/Volum	ie: 1 mL
Prep Date:	04/24/2014 0806			I	njection Volume:	1 uL
Analyte	DryWt Corrected	d: Y Result (u	g/Kg)	Qualifier	MDL	RL
Acenaphthene		7.6		J	2.2	190
Acenaphthylene		11		J	1.6	190
Anthracene		21		J	4.9	190
Benzo[a]anthracene	•	ND			3.3	190
Benzo[a]pyrene		130		J	4.6	190
Benzo[b]fluoranther	ne	110		J	3.7	190
Benzo[g,h,i]perylen	9	160		J	2.3	190
Benzo[k]fluoranther	e	45		J	2.1	190
Chrysene		110		J	1.9	190
Dibenz(a,h)anthrac	ene	52		J	2.2	190
Fluoranthene		75		J	2.8	190
Fluorene		5.7		J	4.4	190
Indeno[1,2,3-cd]pyr	ene	130		J	5.3	190
Naphthalene		28		J	3.2	190
Phenanthrene		82		J	4.0	190
Pyrene		270			1.2	190
Surrogate		%Rec		Qualifier	Acc	eptance Limits
2-Fluorobiphenyl		90			37 -	120
Nitrobenzene-d5 (S	urr)	78			34 -	132
p-Terphenyl-d14 (S	urr)	129			65 -	153

Analytical Data

Client Sample ID:	GP-6 10-11					
Lab Sample ID: Client Matrix:	480-58380-8 Solid	% Moisture	e: 39.6			te Sampled: 04/15/2014 0850 te Received: 04/21/2014 0800
	8	270D Semivolatile Or	ganic Compou	nds (GC/	MS)	
Analysis Method:	8270D	Analysis Batch:	480-178458		Instrument ID:	HP5973X
Prep Method:	3550C	Prep Batch:	480-177927		Lab File ID:	X00891858.D
Dilution:	1.0				Initial Weight/Volume	: +30.07 g
Analysis Date:	04/26/2014 1342				Final Weight/Volume:	
Prep Date:	04/24/2014 0806				Injection Volume:	1 uL
Analyte	DryWt Corrected	Y Result (u	g/Kg)	Qualifier	MDL	RL
Acenaphthene		910			3.3	280
Acenaphthylene		17		J	2.3	280
Anthracene		36		J	7.1	280
Benzo[a]anthracene	9	ND			4.8	280
Benzo[a]pyrene		33		J	6.7	280
Benzo[b]fluoranther	ne	35		J	5.4	280
Benzo[g,h,i]perylen		28		J	3.3	280
Benzo[k]fluoranther	ne	17		J	3.1	280
Chrysene		42		J	2.8	280
Dibenz(a,h)anthrac	ene	14		J	3.3	280
Fluoranthene		53		J	4.0	280
Fluorene		54		J	6.4	280
Indeno[1,2,3-cd]pyr	ene	25		J	7.7	280
Naphthalene		4400			4.6	280
Phenanthrene		140		J	5.9	280
Pyrene		77		J	1.8	280
Surrogate		%Rec		Qualifier	Accep	tance Limits
2-Fluorobiphenyl	serve a second a second server and second	79			37 - 12	20
Nitrobenzene-d5 (S	urr)	66			34 - 13	32
p-Terphenyl-d14 (S	urr)	96			65 - 19	53

Analytical Data

Client Sample ID:	GP-6 12-13					
Lab Sample ID:	480-58380-9	0/ 1 4 · · ·	66 6			ate Sampled: 04/15/2014 0900
Client Matrix:	Solid	% Moisture	9: 32.8		D	ate Received: 04/21/2014 0800
	8:	270D Semivolatile Or	ganic Compou	nds (GC/MS)	
Analysis Method:	8270D	Analysis Batch:	480-178458	Ins	trument ID:	HP5973X
Prep Method:	3550C	Prep Batch:	480-177927	Lat	o File ID:	X00891859.D
Dilution:	1.0			Init	ial Weight/Volume	e: +30.62 g
Analysis Date:	04/26/2014 1405				al Weight/Volume	
Prep Date:	04/24/2014 0806				ection Volume:	1 uL
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifier	MDL	RL
Acenaphthene		6.0		J	2.9	250
Acenaphthylene		ND			2.0	250
Anthracene		ND			6.3	250
Benzo[a]anthracene)	ND			4.3	250
Benzo[a]pyrene		17		J	5.9	250
Benzo[b]fluoranther	ne	29		J	4.8	250
Benzo[g,h,i]perylene	9	18		J	3.0	250
Benzo[k]fluoranther	e	11		J	2.7	250
Chrysene		21		J	2.5	250
Dibenz(a,h)anthrace	ene	8.0		J	2.9	250
Fluoranthene		18		J	3.6	250
Fluorene		ND			5.7	250
Indeno[1,2,3-cd]pyre	ene	20		J	6.8	250
Naphthalene		18		J	4.1	250
Phenanthrene		22		J	5.2	250
Pyrene		20		J	1.6	250
Surrogate		%Rec		Qualifier	Accep	tance Limits
2-Fluorobiphenyl		87			37 - 1	20
Nitrobenzene-d5 (S	um)	73			34 - 1	32
p-Terphenyl-d14 (Se	um)	93			65 - 1	53

Analytical Data

Client Sample ID:	GP-5 6-7							
Lab Sample ID:	480-58380-10					Da	ite Sampled: 04/15/2014	0955
Client Matrix:	Solid	%	6 Moisture:	11.1		Da	te Received: 04/21/2014 0800	
· · · ·		8270D Semiv	olatile Orga	nic Compou	nds (GC/M	S)		
Analysis Method:	8270D	Analysis	Batch:	480-178458	In	strument ID:	HP5973X	
Prep Method:	3550C	Prep Ba	tch:	480-177927	L	ab File ID:	X00891860.D	
Dilution:	200	•			In	itial Weight/Volume	: +30.31 g	
Analysis Date:	04/26/2014 1428					inal Weight/Volume:	•	
Prep Date:	04/24/2014 0806					jection Volume:	1 uL	
Analyte	DryWt Cor	rected: Y	Result (ug/k	(a)	Qualifier	MDL	RL	
Acenaphthene			43000			440	38000	
Acenaphthylene			8700		J	310	38000	
Anthracene			40000		•	960	38000	
Benzo[a]anthracene	9		32000		J	650	38000	
Benzo[a]pyrene			21000		J	910	38000	
Benzo[b]fluoranther	ne		24000		J	730	38000	
Benzo[g,h,i]perylen	е		11000		J	450	38000	
Benzo[k]fluoranther	ne		9300		J	410	38000	
Chrysene			30000		J	380	38000	
Dibenz(a,h)anthrac	ene		5500		J	440	38000	
Fluoranthene			56000			540	38000	
Fluorene			39000			870	38000	
Indeno[1,2,3-cd]pyr	ene		9500		J	1000	38000	
Naphthalene			70000			630	38000	
Phenanthrene			140000			790	38000	
Pyrene			55000			240	38000	
Surrogate			%Rec		Qualifier	Accep	tance Limits	
2-Fluorobiphenyl	0.9499 - 2549 - 2749 - 2749 - 2740 - 2740 - 2740 - 2740 - 2740 - 2740 - 2740 - 2740 - 2740 - 2740 - 2740 - 2740		87			37 - 12	20	
Nitrobenzene-d5 (S	urr)		69			34 - 13	32	
p-Terphenyl-d14 (S	um)		97			65 - 15	53	

Analytical Data

Client Sample ID:	GP-5 10-11					
Lab Sample ID: Client Matrix:	480-58380-11 Solid	% Moisture	e: 17.4			ate Sampled: 04/15/2014 1000 ate Received: 04/21/2014 0800
	8	270D Semivolatile Or	ganic Compou	nds (GC/I	VIS)	
Analysis Method:	8270D	Analysis Batch:	480-178458	i	instrument ID:	HP5973X
Prep Method:	3550C	Prep Batch:	480-177927	1	Lab File ID:	X00891861.D
Dilution:	200			I	nitial Weight/Volume	: +30.08 g
Analysis Date:	04/26/2014 1451				Final Weight/Volume	: 1 mL
Prep Date:	04/24/2014 0806			I	njection Volume:	1 uL
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifier	MDL	RL
Acenaphthene		53000			480	41000
Acenaphthylene		44000			330	41000
Anthracene		90000			1000	41000
Benzo[a]anthracene	9	65000			700	41000
Benzo[a]pyrene		46000			980	41000
Benzo[b]fluoranther	ne	50000			790	41000
Benzo[g,h,i]perylen	e	23000		J	490	41000
Benzo[k]fluoranther	ne	17000		J	450	41000
Chrysene		61000			410	41000
Dibenz(a,h)anthrac	ene	6900		J	480	41000
Fluoranthene		120000			590	41000
Fluorene		90000			940	41000
Indeno[1,2,3-cd]pyr	ene	21000		J	1100	41000
Naphthalene		44000			680	41000
Phenanthrene		300000			860	41000
Pyrene		130000			260	41000
Surrogate		%Rec		Qualifier	Accep	tance Limits
2-Fluorobiphenyl		127		х	37 - 1	20
Nitrobenzene-d5 (S	urr)	104			34 - 1	32
p-Terphenyl-d14 (S	urr)	121			65 - 1	53

Analytical Data

Client Sample ID:	GP-8 6-7					
Lab Sample ID:	480-58380-12				I	Date Sampled: 04/15/2014 1020
Client Matrix:	Solid	% Moisture:	16.0		l	Date Received: 04/21/2014 0800
	82	70D Semivolatile Orga	anic Compou	nds (GC/N	IS)	
Analysis Method:	8270D	Analysis Batch:	480-178458	Ir	nstrument ID:	HP5973X
Prep Method:	3550C	Prep Batch:	480-177927	L	ab File ID:	X00891862.D
Dilution:	200			Ir	nitial Weight/Volun	ne: +30.43 g
Analysis Date:	04/26/2014 1514			F	inal Weight/Volum	ne: 1 mL
Prep Date:	04/24/2014 0806				njection Volume:	1 uL
Analyte	DryWt Corrected: `	Y Result (ug/	Kg)	Qualifier	MDL	RL
Acenaphthene		130000			470	40000
Acenaphthylene		20000		J	320	40000
Anthracene		110000			1000	40000
Benzo[a]anthracene	3	88000			680	40000
Benzo[a]pyrene		61000			950	40000
Benzo[b]fluoranther	ne	68000			770	40000
Benzo[g,h,i]perylene	e	31000		J	480	40000
Benzo[k]fluoranthen	e	21000		J	440	40000
Chrysene		82000			400	40000
Dibenz(a,h)anthrace	ene	9200		J	470	40000
Fluoranthene		160000			570	40000
Fluorene		100000			910	40000
Indeno[1,2,3-cd]pyre	ene	31000		J	1100	40000
Naphthalene		300000			660	40000
Phenanthrene		380000			830	40000
Pyrene		160000			260	40000
Surrogate		%Rec		Qualifier	Acc	eptance Limits
2-Fluorobiphenyl		88			37 -	120
Nitrobenzene-d5 (S	urr)	93			34 -	132
p-Terphenyl-d14 (Se	urr)	106			65 -	153

Analytical Data

Client Sample ID: Lab Sample ID: Client Matrix:	GP-9 10-11 480-58380-13 Solid	% Moisture	e: 40.2			Date Sampled: 04/15/2014 112 Date Received: 04/21/2014 080
	82	70D Semivolatile Or	ganic Compou	nds (GC/	MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270D 3550C 100 04/26/2014 1537 04/24/2014 0806	Analysis Batch: Prep Batch:	480-178458 480-177927		Instrument ID: Lab File ID: Initial Weight/Volu Final Weight/Volu Injection Volume:	•
Analyte	DryWt Corrected: Y	' Result (u	a/Ka)	Qualifier	MDL	RL
Acenaphthene		46000	5 <i>5</i> ,		330	28000
Acenaphthylene		4900		J	230	28000
Anthracene		29000		-	720	28000
Benzo[a]anthracene	e	25000		J	490	28000
Benzo[a]pyrene		18000		J	680	28000
Benzo[b]fluoranther	ne	16000		J	550	28000
Benzo[g,h,i]perylen		11000		J	340	28000
Benzo[k]fluoranther	ne	4400		J	310	28000
Chrysene		26000		J	280	28000
Dibenz(a,h)anthrac	ene	4300		J	330	28000
Fluoranthene		36000			410	28000
Fluorene		29000			650	28000
Indeno[1,2,3-cd]pyr	ene	8500		J	780	28000
Naphthalene		61000			470	28000
Phenanthrene		120000			590	28000
Pyrene		57000			180	28000
Surrogate		%Rec		Qualifier	- Ac	ceptance Limits
2-Fluorobiphenyl		121		Х	37	- 120
Nitrobenzene-d5 (S	um)	94			34	- 132
p-Terphenyl-d14 (S	um)	105			65	- 153

Analytical Data

Client Sample ID:	GP-9 15-16					
Lab Sample ID: Client Matrix:	480-58380-14 Solid	% Moisture	e: 34.4			te Sampled: 04/15/2014 1130 te Received: 04/21/2014 0800
		8270D Semivolatile Or	ganic Compou	nds (GC/I	MS)	-
Analysis Method:	8270D	Analysis Batch:	480-178458	I	nstrument ID:	HP5973X
Prep Method:	3550C	Prep Batch:	480-177927	I	ab File ID:	X00891864.D
Dilution:	1.0			1	nitial Weight/Volume:	+30.04 g
Analysis Date:	04/26/2014 1601			1	Final Weight/Volume:	1 mL
Prep Date:	04/24/2014 0806			1	njection Volume:	1 uL
Analyte	DryWt Corrected	d: Y Result (u	g/Kg)	Qualifier	MDL	RL
Acenaphthene		13		J	3.0	260
Acenaphthylene		2.9		J	2.1	260
Anthracene		10		J	6.6	260
Benzo[a]anthracene	9	16		J	4.4	260
Benzo[a]pyrene		100		J	6.2	260
Benzo[b]fluoranther	ne	14		J	5.0	260
Benzo[g,h,i]perylen	e	14		J	3.1	260
Benzo[k]fluoranther	ne	ND			2.8	260
Chrysene		11		J	2.6	260
Dibenz(a,h)anthrac	ene	ND			3.0	260
Fluoranthene		13		J	3.7	260
Fluorene		8.4		J	5.9	260
Indeno[1,2,3-cd]pyr	ene	13		J	7.1	260
Naphthalene		55		J	4.3	260
Phenanthrene		34		J	5.4	260
Pyrene		20		J	1.7	260
Surrogate		%Rec		Qualifier	Accept	ance Limits
2-Fluorobiphenyl		91			37 - 12	20
Nitrobenzene-d5 (S	urr)	76			34 - 13	32
p-Terphenyl-d14 (S	urr)	101			65 - 15	53

Analytical Data

Client Sample ID:	GP-10 10-12					
Lab Sample ID:	480-58380-15				C	ate Sampled: 04/15/2014 1410
Client Matrix:	Solid	% Moisture	: 30.2		C	Date Received: 04/21/2014 0800
		8270D Semivolatile Org	ganic Compou	nds (GC/MS))	
Analysis Method:	8270D	Analysis Batch:	480-178458	Inst	trument ID:	HP5973X
Prep Method:	3550C	Prep Batch:	480-177927	Lab	File ID:	X00891865.D
Dilution:	1.0			Initi	al Weight/Volum	e: +30.42 g
Analysis Date:	04/26/2014 1624				al Weight/Volume	
Prep Date:	04/24/2014 0806				ction Volume:	1 uL
Analyte	DryWt Corrected	d: Y Result (ug	g/Kg)	Qualifier	MDL	RL
Acenaphthene	A CONTRACTOR OF	11		J	2.8	240
Acenaphthylene		ND			2.0	240
Anthracene		ND			6.1	240
Benzo[a]anthracene	•	6.7		J	4.1	240
Benzo[a]pyrene		54		J	5.7	240
Benzo[b]fluoranther	e	ND			4.6	240
Benzo[g,h,i]perylene	9	ND			2.9	240
Benzo[k]fluoranther	e	ND			2.6	240
Chrysene		4.7		J	2.4	240
Dibenz(a,h)anthrace	ene	8.1		J	2.8	240
Fluoranthene		ND			3.5	240
Fluorene		ND			5.5	240
Indeno[1,2,3-cd]pyre	ene	ND			6.6	240
Naphthalene		130		J	4.0	240
Phenanthrene		9.7		J	5.0	240
Pyrene		4.4		J	1.5	240
Surrogate		%Rec		Qualifier	Acce	ptance Limits
2-Fluorobiphenyl		95			37 - 1	120
Nitrobenzene-d5 (S		80			34 - 1	132
p-Terphenyl-d14 (St	urr)	108			65 - 1	153

Analytical Data

Client Sample ID:	GP-10 13-14					
Lab Sample ID:	480-58380-16				E	Date Sampled: 04/15/2014 1415
Client Matrix:	Solid	% Moisture	:: 34.2		C	Date Received: 04/21/2014 0800
	82	70D Semivolatile Or	ganic Compou	nds (GC/MS)	
Analysis Method:	8270D	Analysis Batch:	480-178458	Ins	trument ID:	HP5973X
Prep Method:	3550C	Prep Batch:	480-177927	Lal	b File ID:	X00891866.D
Dilution:	1.0	•		Init	ial Weight/Volum	ie: +30.35 g
Analysis Date:	04/26/2014 1647				al Weight/Volum	_
Prep Date:	04/24/2014 0806				ection Volume:	1 uL
Trop Date.	04/24/2014 0000			n ge	solion volume.	
Analyte	DryWt Corrected: \	Y Result (u	g/Kg)	Qualifier	MDL	RL
Acenaphthene	(1) I. LONG the second contraction of the	5.0		J	3.0	260
Acenaphthylene		ND			2.1	260
Anthracene		ND			6.5	260
Benzo[a]anthracene	9	10		J	4.4	260
Benzo[a]pyrene		99		J	6.1	260
Benzo[b]fluoranther	ne	ND			4.9	260
Benzo[g,h,i]perylen	e	ND			3.0	260
Benzo[k]fluoranther	ne	ND			2.8	260
Chrysene		4.5		J	2.5	260
Dibenz(a,h)anthrac	ene	ND			3.0	260
Fluoranthene		ND			3.7	260
Fluorene		ND			5.8	260
Indeno[1,2,3-cd]pyr	ene	ND			7.0	260
Naphthalene		49		J	4.2	260
Phenanthrene		8.7		J	5.3	260
Pyrene		4.9		J	1.6	260
Surrogate		%Rec		Qualifier	Acce	eptance Limits
2-Fluorobiphenyl	(1), (1), (1), (1), (1), (1), (1), (1),	90			37 -	120
Nitrobenzene-d5 (S	urr)	77			34 -	132
p-Terphenyl-d14 (S	urr)	107			65 - 1	153

Analytical Data

Client Sample ID:	GP-11 5-6					
Lab Sample ID:	480-58380-17				Da	ate Sampled: 04/16/2014 1007
Client Matrix:	Solid	% Moisture	e: 13.1		Da	ate Received: 04/21/2014 0800
<u> </u>		8270D Semivolatile Or	ganic Compou	nds (GC/MS)	
Analysis Method:	8270D	Analysis Batch:	480-178458	Inst	trument ID:	HP5973X
Prep Method:	3550C	Prep Batch:	480-177927	Lat	File ID:	X00891867.D
Dilution:	25	•		Initi	al Weight/Volume	: +30.14 g
Analysis Date:	04/26/2014 1710				al Weight/Volume	•
Prep Date:	04/24/2014 0806				ction Volume:	1 uL.
Analista		d. V. Desuit (v.	-11/-)	Qualifier	MDL	RL
Analyte	DryWt Corrected	states of the state of the stat	g/ng)	Quaimer		
Acenaphthene		8100			57 40	4900
Acenaphthylene Anthracene		1900 9700		J	40 120	4900 4900
		9700 8100			83	4900
Benzo[a]anthracene	3	5900			63 120	4900
Benzo[a]pyrene Benzo[b]fluoranther		4100			94	4900
• •		3400		1 J	58	4900
Benzo[g,h,i]perylen		1300		J	53	4900
Benzo[k]fluoranther	le	7800		J	48	4900
Chrysene		1000			40 57	4900
Dibenz(a,h)anthrace Fluoranthene	ene	9400		J	57 70	4900
Fluorene		6900			110	4900
Indeno[1,2,3-cd]pyr	222	2300		J	130	4900
Naphthalene	ene	630		J	80	4900
Phenanthrene		37000		5	100	4900
Pyrene		24000			31	4900
Surrogate		%Rec		Qualifier	Accep	otance Limits
2-Fluorobiphenyl		60			37 - 1	20
Nitrobenzene-d5 (S	urr)	44			34 - 1	32
p-Terphenyl-d14 (S	-	62		х	65 - 1	53

Analytical Data

Client Sample ID: Lab Sample ID:	GP-11 10-12 480-58380-18				Date	e Sampled: 04/16/2014 1030
Client Matrix:	Solid	% Moisture	e: 40.1			e Received: 04/21/2014 0800
		8270D Semivolatile Or	ganic Compou	nds (GC/MS)	
Analysis Method:	8270D	Analysis Batch:	480-178458	Ins	trument ID:	HP5973X
Prep Method:	3550C	Prep Batch:	480-177927	Lal	o File ID:	X00891868.D
Dilution:	10	•		Init	ial Weight/Volume:	+30.24 g
Analysis Date:	04/26/2014 1733			Fin	al Weight/Volume:	1 mL
Prep Date:	04/24/2014 0806				ection Volume:	1 uL
Analyte	DryWt Corrected	d: Y Result (u	a/Ka)	Qualifier	MDL	RL
Acenaphthene		3400	3. 37		33	2800
Acenaphthylene		230		J	23	2800
Anthracene		950		J	72	2800
Benzo[a]anthracene	9	ND			48	2800
Benzo[a]pyrene		660		J	67	2800
Benzo[b]fluoranther	ne	750		J	54	2800
Benzo[g,h,i]perylen	e	420		J	34	2800
Benzo[k]fluoranther	ne	ND			31	2800
Chrysene		830		J	28	2800
Dibenz(a,h)anthrac	ene	150		J	33	2800
Fluoranthene		1200		J	41	2800
Fluorene		1100		J	64	2800
Indeno[1,2,3-cd]pyr	ene	340		J	77	2800
Naphthalene		12000			47	2800
Phenanthrene		4200			59	2800
Pyrene		2200		J	18	2800
Surrogate		%Rec		Qualifier	Accepta	ince Limits
2-Fluorobiphenyl		86			37 - 120)
Nitrobenzene-d5 (S	ium)	73			34 - 132	2
p-Terphenyl-d14 (S	um)	95			65 - 153	3

Analytical Data

Job Number: 480-58380-1

Client: New York State D.E.C.

Client Sample ID:	FD-041614	GP-11 (10-12)]					
Lab Sample ID: Client Matrix:	480-58380-19 Solid	% Moisture	e: 33.1			Date Sampled: 04/16/201 Date Received: 04/21/201	
		8270D Semivolatile Or	ganic Compou	nds (GC/	MS)		
Analysis Method:	8270D	Analysis Batch:	480-178458		Instrument ID:	HP5973X	
Prep Method:	3550C	Prep Batch:	480-177927		Lab File ID:	X00891869.D	
Dilution:	1.0	·			Initial Weight/Volu	ime: +30.31 g	
Analysis Date:	04/26/2014 1756				Final Weight/Volu	-	
Prep Date:	04/24/2014 0806				Injection Volume:	1 uL	
Analyte	DryWt Correct	ted: Y Result (u	g/Kg)	Qualifier	MDL	RL	
Acenaphthene	· · · · · · · · · · · · · · · · · · ·	3.2		J	2.9	250	
Acenaphthylene		ND			2.0	250	
Anthracene		ND			6.4	250	
Benzo[a]anthracene	e	9.1		J	4.3	250	
Benzo[a]pyrene		240		J	6.0	250	
Benzo[b]fluoranther	ne	ND			4.8	250	
Benzo[g,h,i]perylen	e	9.6		J	3.0	250	
Benzo[k]fluoranther	ne	ND			2.7	250	
Chrysene		ND			2.5	250	
Dibenz(a,h)anthrac	ene	ND			2.9	250	
Fluoranthene		3.8		J	3.6	250	
Fluorene		ND			5.8	250	
Indeno[1,2,3-cd]pyr	ene	ND			6.9	250	
Naphthalene		8.2		J	4.2	250	
Phenanthrene		10		J	5.2	250	
Pyrene		6.2		J	1.6	250	
Surrogate		%Rec		Qualifier	r Ac	ceptance Limits	
2-Fluorobiphenyl		88			37	- 120	
Nitrobenzene-d5 (S	urr)	75			34	- 132	
p-Terphenyl-d14 (S	urr)	105			65	- 153	

Analytical Data

Client Sample ID:	GT-1 8-9					
Lab Sample ID:	480-58380-20					Date Sampled: 04/16/2014 1000
Client Matrix:	Solid	% Moistur	re: 12.2			Date Received: 04/21/2014 0800
		8270D Semivolatile O	rganic Compou	nds (GC/I	WS)	
Analysis Method:	8270D	Analysis Batch:	480-178458	1	Instrument ID:	HP5973X
Prep Method:	3550C	Prep Batch:	480-177927	1	Lab File ID:	X00891870.D
Dilution:	1.0			1	Initial Weight/Volun	ne: +30.49 g
Analysis Date:	04/26/2014 1820				Final Weight/Volum	ne: 1 mL
Prep Date:	04/24/2014 0806			I	Injection Volume:	1 uL
Analyte	DryWt Correcte	ed: Y Result (ug/Kg)	Qualifier	MDL	RL
Acenaphthene		86		J	2.2	190
Acenaphthylene		38		J	1.5	190
Anthracene		170		J	4.8	190
Benzo[a]anthracene		360			3.3	190
Benzo[a]pyrene		260			4.6	190
Benzo[b]fluoranther	ne	250			3.7	190
Benzo[g,h,i]perylen		230			2.3	190
Benzo[k]fluoranther	e	83		J	2.1	190
Chrysene		420			1.9	190
Dibenz(a,h)anthrac	ene	64		J	2.2	190
Fluoranthene		500			2.7	190
Fluorene		73		J	4.4	190
Indeno[1,2,3-cd]pyr	ene	180		J	5.2	190
Naphthalene		25		J	3.1	190
Phenanthrene		170		J	4.0	190
Pyrene		1000			1.2	190
Surrogate		%Rec		Qualifier	Acc	eptance Limits
2-Fluorobiphenyl		91			37 -	120
Nitrobenzene-d5 (S	urr)	76			34 -	132
p-Terphenyl-d14 (S	urr)	106			65 -	153

Analytical Data

Client Sample ID:	GT-1 14-15						
Lab Sample ID:	480-58380-21				۵	ate Sampled: 04/16/2014	1223
Client Matrix:	Solid	% Moisture	e: 35.6		E	ate Received: 04/21/2014	0800
	8	3270D Semivolatile Or	ganic Compou	nds (GC/MS))		
Analysis Method:	8270D	Analysis Batch:	480-178336	Inst	rument ID:	HP5973V	
Prep Method:	3550C	Prep Batch:	480-177931	Lab	File ID:	V9819.D	
Dilution:	1.0			Initi	al Weight/Volum	e: +30.75 g	
Analysis Date:	04/26/2014 0454				al Weight/Volum	•	
Prep Date:	04/24/2014 0811				ction Volume:	1 uL	
Analyte	DryWt Corrected	: Y Result (u	g/Kg)	Qualifier	MDL	RL	
Acenaphthene		ND			3.0	260	- 355
Acenaphthylene		ND			2.1	260	
Anthracene		ND			6.5	260	
Benzo[a]anthracene	9	ND			4.4	260	
Benzo[a]pyrene		17		J	6.2	260	
Benzo[b]fluoranther	ne	ND			5.0	260	
Benzo[g,h,i]perylen	e	18		J	3.1	260	
Benzo[k]fluoranther	ne	ND			2.8	260	
Chrysene		12		J	2.6	260	
Dibenz(a,h)anthrac	ene	ND			3.0	260	
Fluoranthene		15		J	3.7	260	
Fluorene		ND			5.9	260	
Indeno[1,2,3-cd]pyr	ene	ND			7.1	260	
Naphthalene		ND			4.3	260	
Phenanthrene		29		J	5.4	260	
Pyrene		22		J	1.7	260	
Surrogate		%Rec		Qualifier	Acce	ptance Limits	
2-Fluorobiphenyl		100			37 -	120	
Nitrobenzene-d5 (S	iurr)	90			34 -	132	
p-Terphenyl-d14 (S	un)	110			65 -	153	

ATTACHMENT B

SUPPORT DOCUMENTATION

J:\Projects\11176853\Deliverables\Analytical\Cold Spring April 2014 Soil DUSR.docx

URS	1007 A	COOLER of	s onra) fol no" g g h(in feet) h(in feet) h(LIELD DEPT ENDIN DEPT BEGIN	N, 5 65	2, 5-5-4	N, 0.5 2	1/ 1/	1 01 72	12 13	Nº 10 11	N, 12 13	N, 213	460	N, 10 11	N, 6 7		LH LH - HAZARDOUS LIQUID WASTE ER LF - FLOATING/FHEE PRODUCT ON GW TABLE DC	(# - SEQUENTIAL NUMBER (FROM 1 TO 8) TO ACCOMMODATE MULTIPLE SAMPLES IN A SINGLE DAY)	TRUCTIONS	questions contact	A Kisher C	7/6-856-5636	
		ol Theand preservative																WO - OCEAN WATER WS - SURFACE WATER WQ - WATER FIELD OC	NTIAL NUMBER (FROM 1 TO	TIME SPECIAL INSTRUCTIONS	Lo.	George		2.9,3,5 th
0012	nteios	onté	Lear 2 Fw	2 o 7	112	2 1 1	2 / /	1 1 2	1/2	1/2	2 / /	2 / /	1 2	2 1 1	2 / /	1 1 2	. M	WL - LEACHATE GS - SOIL GAS WC - DRILLING WATER			1/2/	DAIE		52
			L NO,# OF		50 4 2	50 4	50 4	50 4 3	50 4	50 4	S.	50 1	50 2	So V	se y	50 Y	5 4 2	WG - GROUND WATER SO - SOIL DC - DRILL CUTTINGS	N# - NORMAL ENVIRONMENTAL SAMPLE MS# - MATRIX SPIKE	BY (SIGNATURE)		FOH LAB BY (SIGNATURE)	les	
Y RECORD	re Le Spring	7	NO.:	SAMPLEID	5-6.5	5-5.4	0.5-2	21-11	8 10-11	3 12-13	5-6	10-11	12-13	6-2	10-11	6-2	1			RECEIVED	(NC 1	HECEIVED	Distribution: Original accompanies shipment, copy to coordinator field files	
	SITE NAME Color		AIRBILL NO.	COMP/ GRAB	G GP-1	6 6 2.2	6 62-3	6 GP-3B	6 6848		G 6P-7	6 6P-6	6 60-6	6 69-5	6 6P-5	G 6 P-8	. ^		RB# - RINSE BLANK E FR# - FIELD REPLICATE	DATE TIME		DATE TIME	ment, copy to c	
of Custody	0003	I an I Rane	- O.	TIME	1000	102000	1030	1245		~	15-25 (850 (500	955 (0	1020	1120	1200	TB# - TRIP BLANK SD# - MATRIX SPIKE DUPLICATE	SNATURE)			ompanies shipi	
480-58380 Chain of Custody	3		、 <u>μ</u>	t DATE	4/14/14	4/14/14	4/14/14	2 4/14/14	-114/14	4/14/14	-1/14/14	4/15/14	4/15/14	4/15/12	4/15/14	4/15/14	+1/12/101			RELINQUISHED BY (SIGNATURE)	flored	RELINQUI&HED BY (SIGNATURE)	n: Original acc	1/CofCR/GCM
U	PROJECT NO.	SAMPLERS (PRINTIS	DELIVER	LOCATION	68-1	69-2	66-3	GP-3 B	R.P. 43	GP-48	68-7	60.6	62-6	GP-5	62-5	628	6-9	MATHDX	SAMPLE TYPE CODES	RELINOUI	Tim	RELINQU	Distributio	URSF-075C/1 OF 1/ColCR/GCM

i

I

ļ

.....

2

Page 1021 of 1023

14

	URS	LAB Test America	COOLER / of 2	OL NO"# (IN FEET) ING	ntago Ending	N, 5 10	N, 012	N 13 14	N. 56	N, 10 12	<u>1</u>	N, & 9	2 14 15	LP RCRA	mited Valore	LH - HAZARDOUS LIQUID WASTE LF - FLOATINGFREE PRODUCT ON GW TABLE	(* - SEQUENTIAL NUMBER (FROM 1 TO 9) TO ACCOMMODATE MULTIPLE SAMPLES IN A SINGLE DAY)	CTIONS	questions contact	56-563	
+1d ' ??!!~	1447	15 57	ans 🕅											₽ V	7	WO - OCEAN WATER WS - SURFACE WATER WQ - WATER FIELD QC	NUMBER (FROM 1 TO 9) TO	SPECIAL INSTRUCTIONS	For gu	7/6-8	
	00077	2 27 1 27 2 Hl 2 S Hl	∧ Sintermerand	د باجر د باجر د باحر د باحر	°4 °4		_ / /	/ /	///	1 1		/ /	~ ~	12		W LEACHATE GS - SOIL GAS WC - DRILLING WATER		- DATE TIME			1.9 33 W
				NINERS	CONT	30 4 2	50 4 2	30 4 2	50 4 2	5 4 05	50 4 2	50 4 2	50 4 2	50 3 -		WG - GROUND WATER SO - SOIL DC - DRUL CUTTINGS		(signature)	FOR LAB BY (SIGNATURE)	S	
	Y RECOR	LA SOCIAL	-	NO.:	SAMPLEID	-9 15-16	21-01 0	0 13-14	1 5-6	11 10-12	FD-04/614	1 8-9	1 14-15	5-6		SL - SLUDGE SL - SLUDGE WP - DRINKING WATER WW - WASTE WATER DC - I		RECEIVED BY	RECEIVED	coordinator field files	
	CUSTODY	SITE NAME	there of	cff airbirt no.:	COMP/ GRAB	6 GP-	G GP-10	G GP-10	6 GP-11	5 BP-	G FD-	G GT-	5 GT-	G WC			ļ	DATE TIME	╀┼┼─	hipment, copy to	
		3.0003	INT/SIGNATURE)	Deop	DATE TIME	113/14 1130	HISHY 1410	15/14 1415	4/10/1 1007	4/16/14 1030	alletr -	116/m 1000	4/10/11/223	1 11		A - AMBIENT AIR SE - SEDIMENT SH - HAZARDOUS SOLID WASTE	TB# - TRIP BLANK SD# - MATRIX SPIKE DUPLICATE) BY (SIGNATURE)	BY (SIGNATURE)	Distribution: Original accompanies shipment, copy to coordinator	BCM
	CHAIN OF	PROJECT NO.	SAMPLERS (PRINT/SIGNATURE)	DELIVERY SERVICE:	LOCATION	GP-9 41		GP-10 4		/	Field Dup.	6T-1	1-12 023	50		MATRIX CODES	1		RELINQUISHED BY (SIGNATURE)		URSF-075C/1 OF 1/ColiCR/GCM

:

!

Job Narrative 480-58380-1

Receipt

The samples were received on 4/21/2014 8:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 2.9° C and 3.3° C.

GC/MS VOA

Method(s) 8260C: Reported analyte concentrations in the following sample(s) are below 200ug/kg and may be biased low due to the sample(s) not being collected according to 5035-L/5035A-L low-level specifications: FD-041614 (480-58380-19), GP-1 5-6.5 (480-58380-1), GP-10 10-12 (480-58380-15), GP-10 13-14 (480-58380-16), GP-11 10-12 (480-58380-18), GP-2 5-5.4 (480-58380-2), GP-3 0.5-2 (480-58380-3), GP-3B 11-12 (480-58380-4), GP-4B 12-13 (480-58380-6), GP-5 10-11 (480-58380-11), GP-6 10-11 (480-58380-8), GP-6 12-13 (480-58380-9), GP-7 5-6 (480-58380-7), GP-9 15-16 (480-58380-14), GT-1 14-15 (480-58380-21).

Method(s) 8260C: The following sample(s) was analyzed at approximately 0.5 gram due to the nature of the sample matrix: GP-1 5-6.5 (480-58380-1), GP-11 10-12 (480-58380-18), GP-2 5-5.4 (480-58380-2), GP-6 10-11 (480-58380-8). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: Reported analyte concentrations in the following sample(s) are below 200ug/kg and may be biased low due to the sample(s) not being collected according to 5035-L/5035A-L low-level specifications: (480-58380-20 MS), (480-58380-20 MSD), GP-4B 10-11 (480-58380-5), GT-1 8-9 (480-58380-20).

Method(s) 8260C: The following sample(s) was analyzed medium level to bring the concentration of target analytes within the calibration range: GP-5 6-7 (480-58380-10), GP-8 6-7 (480-58380-12), GP-9 10-11 (480-58380-13). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The following sample(s) was analyzed medium level due to the nature of the sample matrix: GP-11 5-6 (480-58380-17). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

GC/MS Semi VOA

Method(s) 8270D: The following samples were diluted due to the nature of the sample matrix: GP-1 5-6.5 (480-58380-1), GP-2 5-5.4 (480-58380-2). Elevated reporting limits (RLs) are provided.

Method(s) 8270D: The following samples were diluted due to the nature of the sample matrix: GP-11 5-6 (480-58380-17), GP-3 0.5-2 (480-58380-3), GP-5 10-11 (480-58380-11), GP-5 6-7 (480-58380-10), GP-8 6-7 (480-58380-12), GP-9 10-11 (480-58380-13). As such, surrogate recoveries are below the calibration range or are not reported, and elevated reporting limits (RLs) are provided.

Method(s) 8270D: The following sample was diluted due to the nature of the sample matrix: GP-4B 10-11 (480-58380-5). Elevated reporting limits (RLs) are provided.

Method(s) 8270D: The following sample(s) was diluted due to the nature of the sample matrix: GP-11 10-12 (480-58380-18). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

APPENDIX F

GEOPHYSICAL SURVEY REPORT

J:\Projects\11176853\Deliverables\2014 Field Work\Round 2 Hydrogeologic PDIR\Hydrogeologic PDIR - REV.docx

April 30, 2014

Mr. Chuck Dusel Mr. George Kisluk URS Corporation, Inc. 257 West Genessee Street 4th Floor Buffalo, NY 14203

Via Email: chuck.dusel@urs.com, george.kisluk@urs.com

Re: Report on Borehole Clearance and Utility Survey Former MGP Site 5 New Street Cold Spring, New York RSI Job no: 114-020

Dear Gentlemen,

Please find attached our finalized GPR, and EM induction (EMI) interpretations for the abovereferenced Cold Spring, New York site, investigated on April 14, 2014. The area around the current building, belonging to the Cold Spring Yacht Club, was investigated using GPR, EM-61, and EM induction (EMI). The purpose of this investigation was to locate possible utilities on the site so the boreholes may be drilled successfully. In all, three areas were investigated around the building: Area 1, which is an approximately 75 by 25 foot area located west of the building's reinforced concrete apron/patio, Area 2, which is located northwest (Area 2A), north, and northeast (Area 2A) of the building, in the parking lot area and immediately adjacent to New Street, and Area 3, an approximate 75 by 90 foot area located immediately east of the building, in the east parking lot. RSI's finalized figures and interpretation are presented on the attached figures. Thank you again for the opportunity to work with URS Corporation.

RESULTS

GPR signal penetration was typically no greater than 5 feet below grade, although deeper investigative depths were achieved in the areas furthest away from the road, toward the bedrock outcrops and grass areas. Figure 1 shows contoured EM-61 results, while Figure 2 presents our interpreted results from the visual inspection of the 3D GPR volume. Figure 3 is a composite of all three methods. Key results are highlighted below, in Table 1, and on the attached figures.

• Figure 1, contoured EM-61 results, indicate that there could be two small pipes emanating from the west side of the building parallel to 43N, from 5W to about 12.5W, and parallel to 56N, from 5W to 15W. While none of the six proposed boring locations were near these

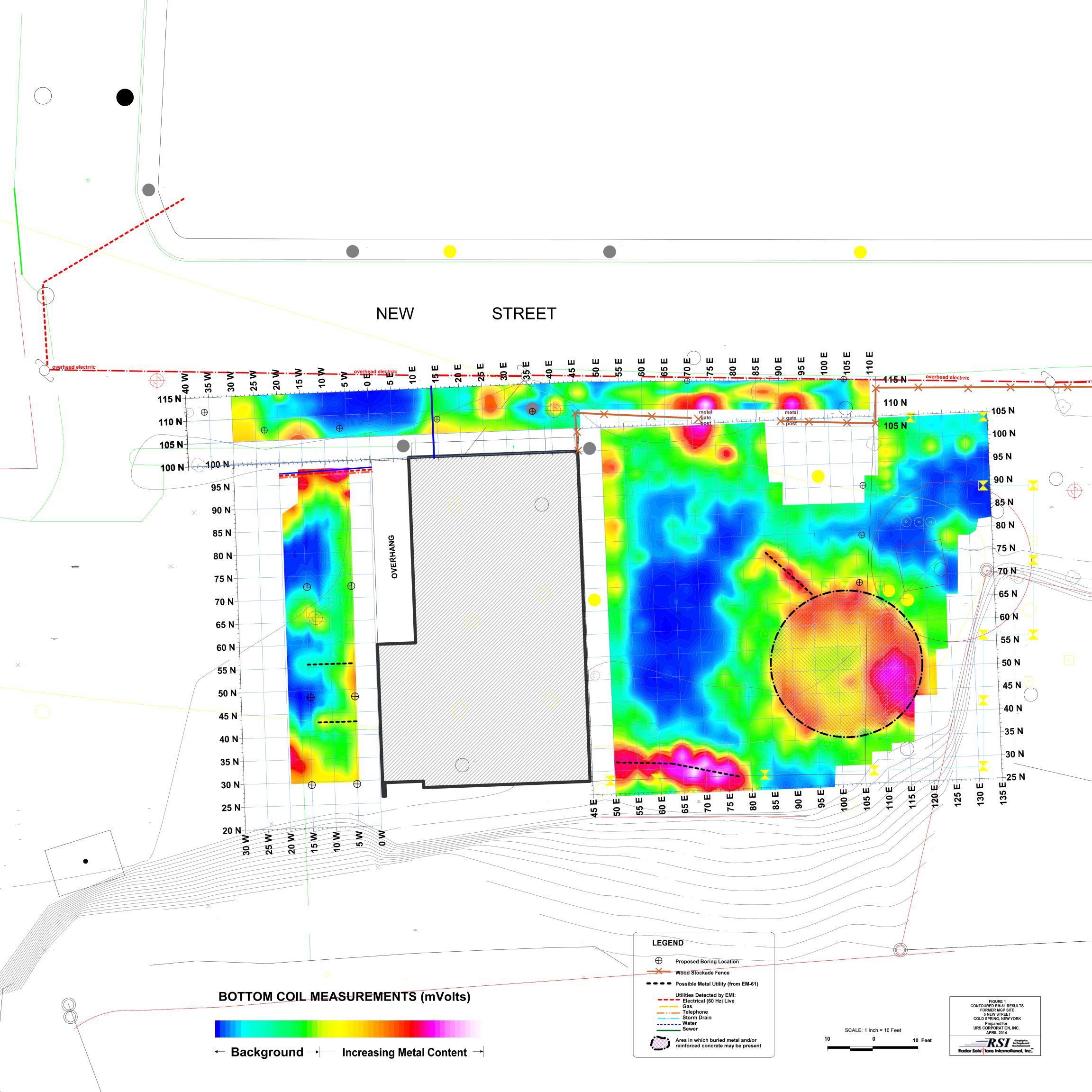
51 Riverview Avenue, Waltham, MA 02453-3819 (781) 736-0550 - (781) 736-0004 (fax) radar-solutions.com possible pipes/pipe fragments, the proposed boring at 5W, 72.5N was moved slightly (2 feet north) to avoid a possible obstruction observed in the GPR data (Figures 2 and 3).

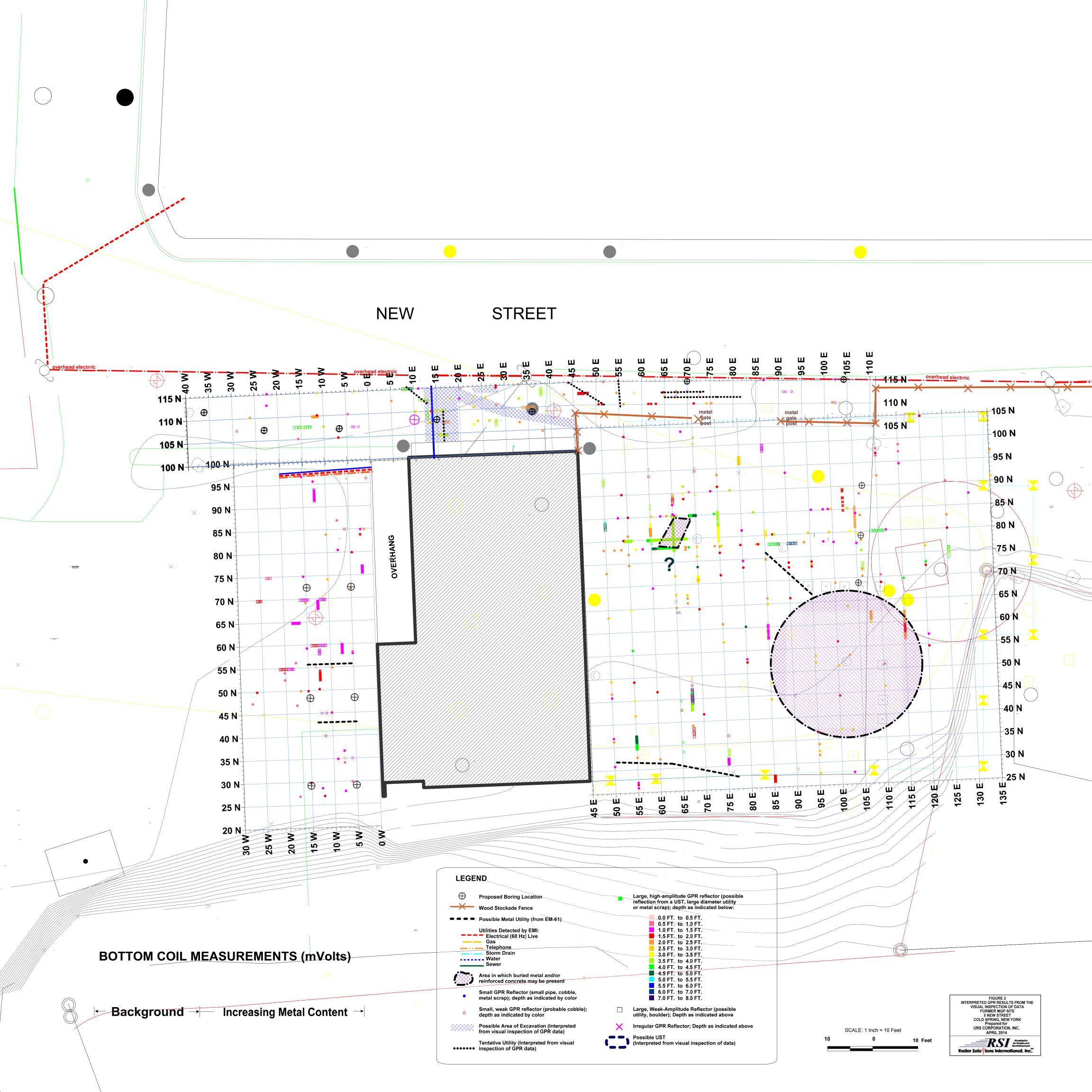
- The large EM-61 anomaly observed north of 95N in Area 1 (west of building) is attributed to a boat, located west of 20W and to a large propane AST. However, RSI personnel used EM induction to clamp onto a water spigot located outside of the building and a sink inside the building, and used the 60 hz and radio frequency receiver of our Radio Detection RD8000 unit, to trace out the water, telecommunications, and electrical lines as they serviced the boat docking area. These three utilities appear to be in the same trench, and within a foot of one another, trending roughly parallel between 97N and 98N (Figure 1).
- The EM-61 anomaly observed in Area 2/2A, located northwest of the building between 25W and 30W, and from 105N to 115N, is attributed to a parked car (Figure 1). Likewise, we believe that the anomaly located near 16W and 105N, is attributed to an above ground metal.
- EM-61 located the general area in which the water and sewer are located: between 12E and 17E, trending perpendicular to RSI's survey grid from New Street and into the building. RSI's interpretation was later verified when RSI personnel clamped onto the sink and traced out the induced signal using EMI, the position of which is shown on Figures 1 through 3 approximately parallel to 14E, and a representative from the Cold Spring Water and Sewer Department confirmed RSI's mark out. Neither RSI nor the Water and Sewer Department were able to locate the sewer utility. However, based on RSI's GPR and EM-61 results, an area of excavation appears to extend up to 19E, suggesting that the sewer utility line is east of the water line, possibly parallel to 16.5 to 17E (Figures 2 and 3). Because of the proximity of the proposed boring to the water line, RSI recommended that the boring be relocated to about 10E and 108N.
- The source of the EM anomaly between 25E and 30E, from about 108N to 115N, observed on Figure 1, is unknown. No GPR reflections from a significantly sized target were observed coincident with the EM anomaly, although the area does appear to have been excavated (Figures 2 and 3).
- The EM anomaly at 41E and 110N is attributed to the existing monitoring well, while the large EM anomalies observed near 73E and 93E are attributed to the metal gate posts from the wood stockade fence (Figure 1).
- Two high-amplitude EM anomalies are observed in Area 3, west of the building. One is attributed to a utility, which appears to trend from about 32N, 50E to 62.5E, 31N, to about 77E, 28N (Figure 1). The second anomalous area appears circular, centered around 102E and 50N, and could feasibly correspond to a former foundation/pad or footprint to a large AST. The diameter of this anomalous area is approximately 30 feet. We also observe a linear EM anomaly trending from it to the northwest, from about 66N, 95E to 76N, 85E (Figure 1). No significant GPR target was observed in this area (Figures 2 and 3), suggesting a target or targets not within the resolution limits of the GPR (i.e. too shallow or too deep).
- GPR signal did not reveal the location of water, sewer, and/or gas services present in the sidewalk across the street. However, one electrical service was detected using EMI, as plotted on Figures 1 through 3.

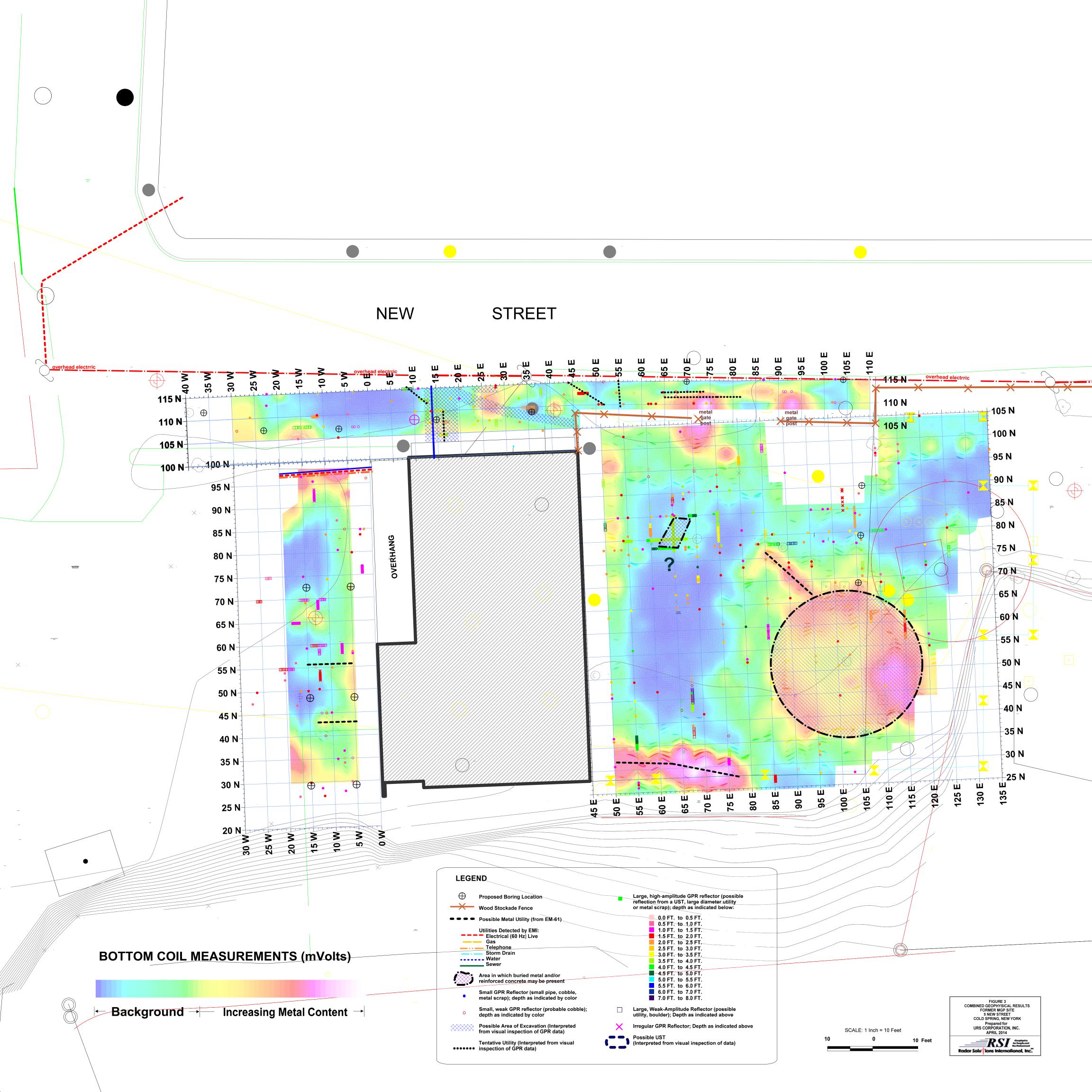
51 Riverview Avenue, Waltham, MA 02453-3819 (781) 736-0550 - (781) 736-0004 (fax) radar-solutions.com

TABLE 1

Proposed Boring Location at:	Recommended Location	Comments
5W, 29N	N/A	DRILLERS BEGAN BEFORE GEOPHYSICS COMPLETE
5W, 48N	N/A	Looks OK. Small metal scraps nearby
5W, 72N	N/A	Looks OK.
15W, 29N	N/A	Looks OK.
15W, 48N	N/A	Looks OK.
15W, 72N	N/A	Looks OK.
36W, 111N	N/A	Looks OK.
23W, 107N	N/A	Looks OK.
6W, 107N	N/A	Looks OK.
<mark>15E, 108N</mark>	<mark>10E, 108N</mark>	Proposed located in the water-sewer trench, too close to water line.
70.5E, 115N	N/A	Looks OK.
105E, 114N	N/A	Looks OK.
106.5E, 90N	N/A	Looks OK.
106E, 78N	N/A	Looks OK.
105.5E, 68N	N/A	Looks OK.


Please drill with caution as not all utilities may have been detected in the field. We appreciate this opportunity to work with URS Corporation, Inc. again. Please call should you have any inquiries regarding this or future assignments.


Sincerely, RADAR SOLUTIONS INTERNATIONAL


Doria L Kutwees

Doria L. Kutrubes, M.Sc., P.G. President and Sr. Geophysicist

51 Riverview Avenue, Waltham, MA 02453-3819 (781) 736-0550 - (781) 736-0004 (fax) radar-solutions.com

APPENDIX G

SLUG TEST RESULTS AND CALCULATIONS

J:\Projects\11176853\Deliverables\2014 Field Work\Round 2 Hydrogeologic PDIR\Hydrogeologic PDIR - REV.docx

			11011	oonsti dotte	on Botano				
Well	Formation	Scree	en Length		Radii		Aquifer	Depth from	Aquifer Top
ID		Total	Submerged	Screen (*)	Ca	Casing		to Top of	to Bottom
			-		Actual	Actual Equivalent		Screen	of Screen
		L _e	L _{e-sub}	r _w	r _c	r _{c-eq} (**)	Н	d	L _w
		[ft]	[ft]	[in]	[in]	[in]	[ft]	[ft]	[ft]
MW-A	Overburden	9.0	8.69	1.50	1.00	1.17	8.69	-0.31	8.69
MW-B	Overburden	4.0	2.06	1.50	1.00	1.17	2.56	-1.94	2.06
GW-01	Overburden	10.0	10.00	1.40	1.00	1.00	10.69	0.69	10.69
GW-02	Overburden	10.0	9.68	1.40	1.00	1.13	9.68	-0.32	9.68
GW-03	Overburden	10.0	9.96	1.40	1.00	1.13	9.96	-0.04	9.96
GW-04	Overburden	10.0	10.00	1.40	1.00	1.00	10.44	0.44	10.44
GW-05	Overburden	10.0	10.00	1.40	1.00	1.00	10.13	0.13	10.13

Cold Spring - Slug Tests Well Construction Details

Notes:

(*) - sand pack (overburden wells); GW- series wells consisted of prepack screens (2.8" diameter)

(**) -
$$r_{c-eq} = [(1 - n) r_c^2 + n r_w^2]^{1/2}$$
 if $L_{e-sub} < L_e$

$$r_{c-eq} = r_{c}$$

if $L_{e-sub} = L_e$

NM - not measured

N/A - not applicable

Assumptions:

(1) AQTESOLV ver. 3.50 was used for slug test analyses.

(2) Sandpack porosity of 0.3 was used for wells that were not fully submerged during testing.

(3) Bouwer and Rice (1976) solution was used for unconfined aquifers.

(4) Formulas and parameters used for this slug test analysis can be found in: Bouwer, H., 1989. The Bouwer and Rice slug test--an update, Ground Water, vol. 27, no. 3, pp. 304-309.

Summary of Results Cold Spring Slug Tests

Well	Hydraulic Conductivity [cm/sec]							
ID	FH	RH	FH2	RH2	FH3	N(**)	Mean (***)	
MW-A	6.35E-03	5.73E-03	NA	NA	NA	2	6.03E-03	
MW-B	NA	NA	NA	NA	NA	0	NA	
GW-01	2.41E-04	2.11E-04	NA	NA	NA	2	2.25E-04	
GW-02	1.77E-03	1.22E-03	1.56E-03	1.47E-03	NA	4	1.49E-03	
GW-03	9.97E-04	1.27E-03	2.34E-03	1.72E-03	NA	4	1.50E-03	
GW-04	5.59E-04	5.59E-04	6.32E-04	NA	4.49E-04	4	5.46E-04	
GW-05	8.54E-04	2.12E-03	2.85E-03	3.11E-03	NA	4	2.00E-03	

(**) - number of valid tests

(***) - geometric mean

FH - Falling Head test

RH - Rising Head test

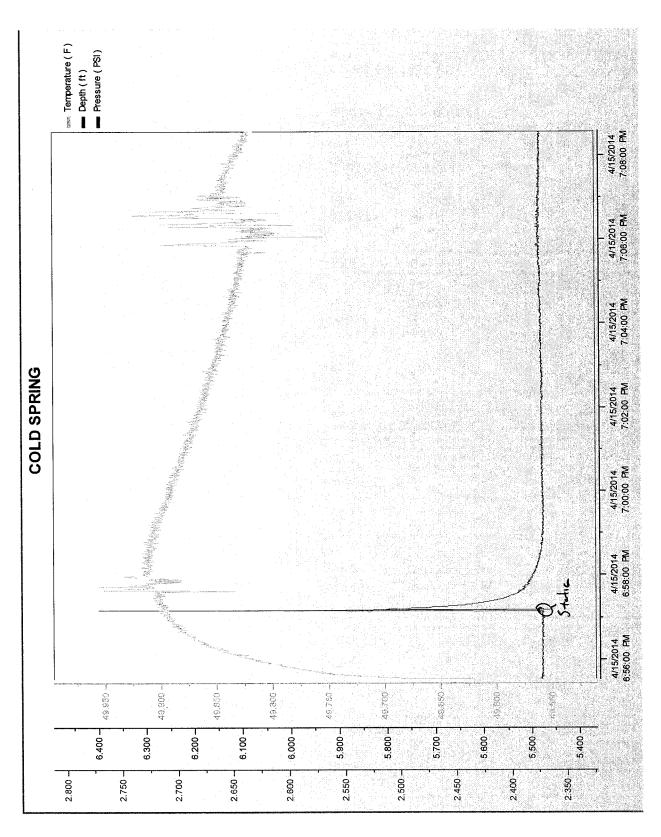
Note:

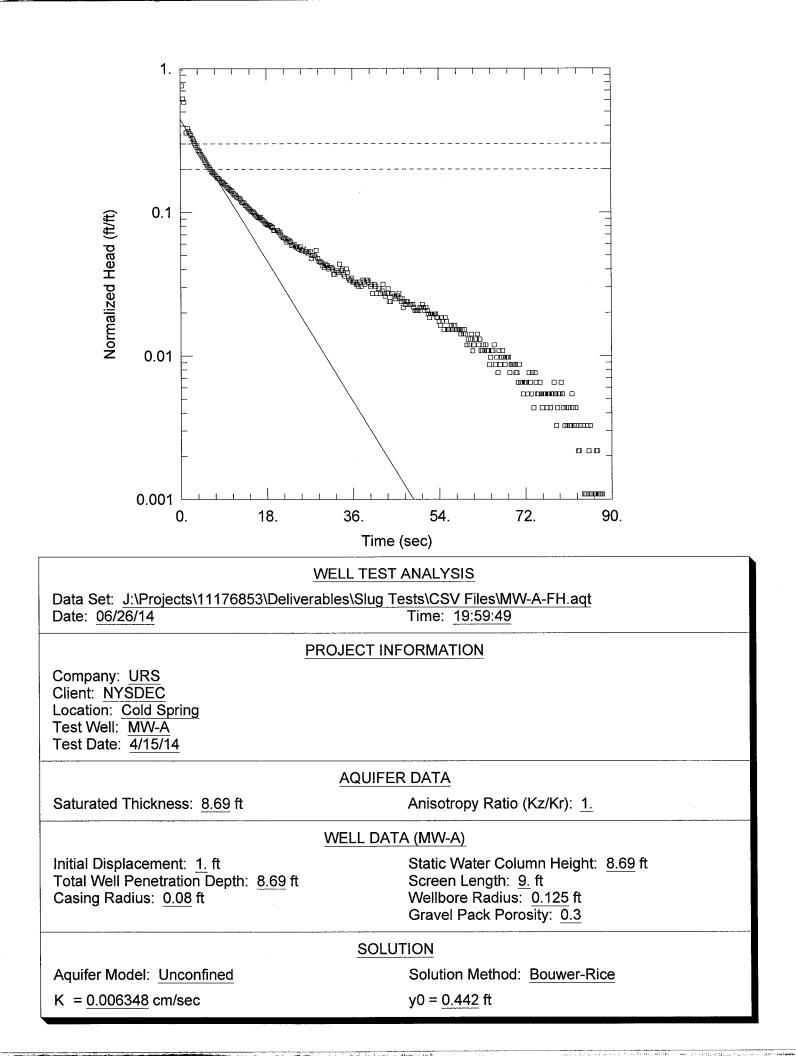
-For all graphs, normalized head is defined as H(t)/Ho, where H(t) is the displacement measured at time t and Ho is the initial displacement at time t=0.

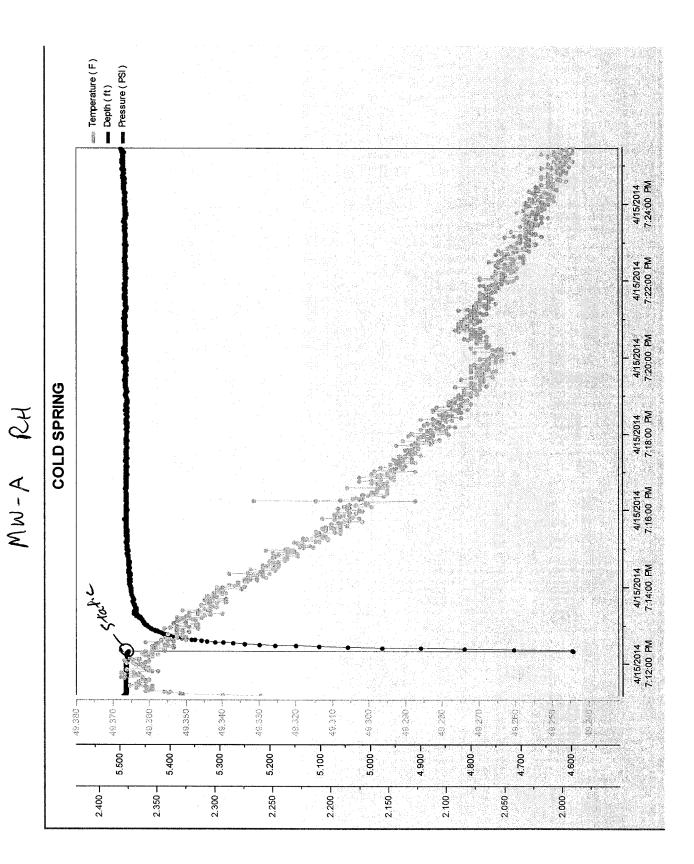
-Results that are bold and italicized are considered invalid (see Data Useability sheet).

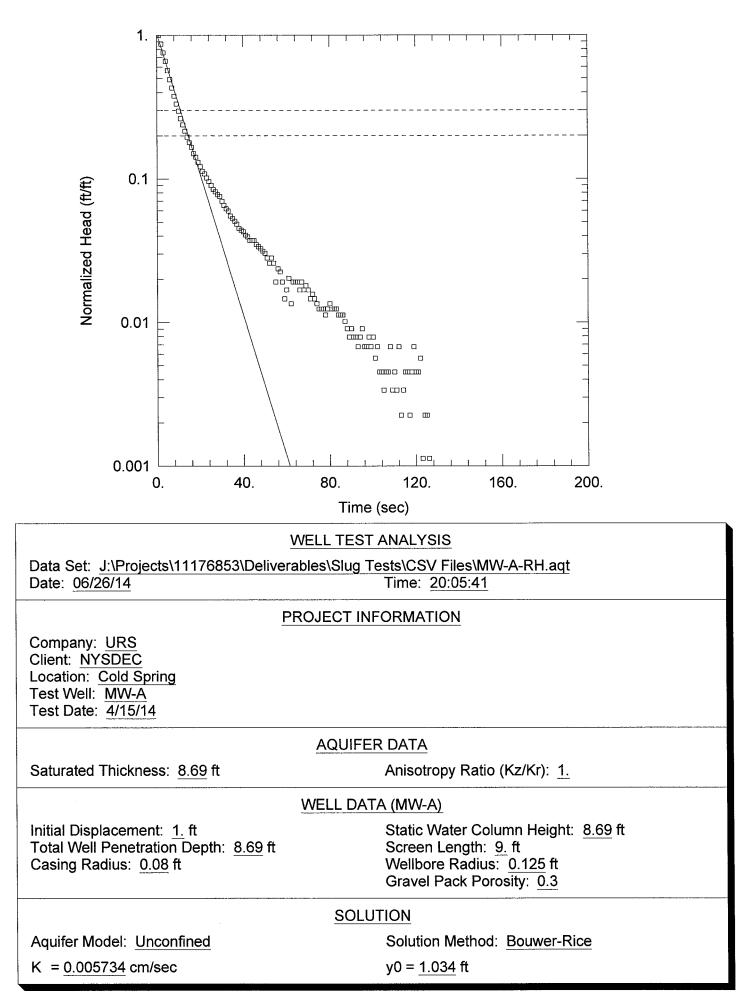
-While the geometric mean for both the falling and rising head tests are given, it is understood that the rising head tests more accurately describe the overall hydraulic characteristics of the aquifer. (See attached reference, *The Bouwer and Rice Slug Test - An Update*)

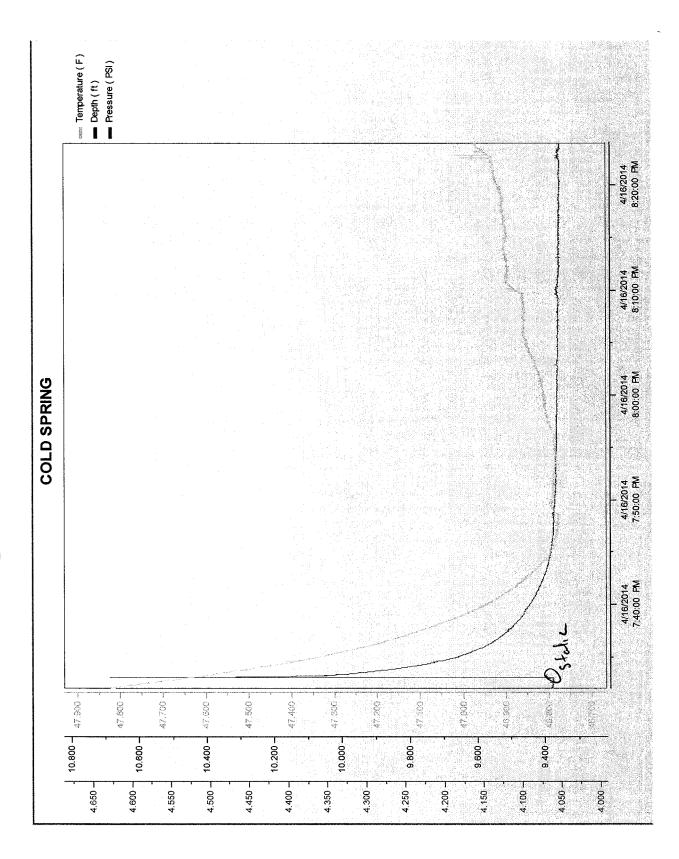
J:\Projects\11176853\Deliverables\Slug Tests\ColdSprings- slugtest summary - results

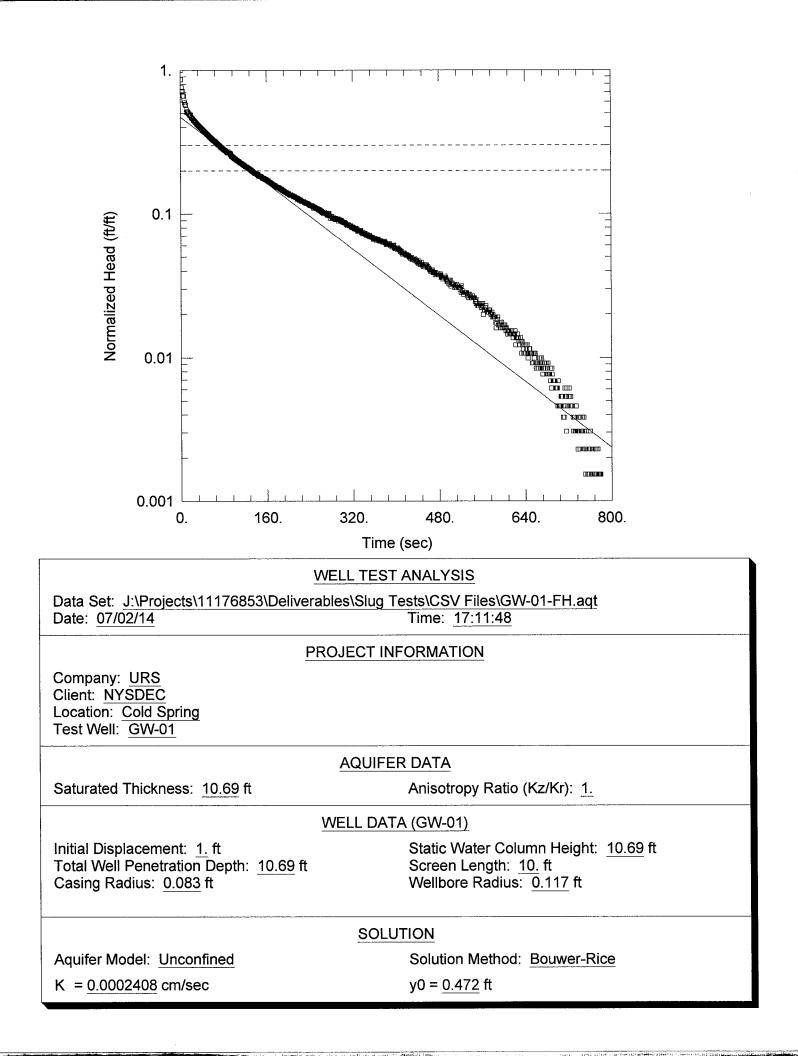

Well	Remarks								
ID	FH	RH	FH2	RH2	FH3				
MW-A	ок	ок	NA	NA	NA				
MW-B ¹	NA	NA	NA	NA	NA				
GW-01	ок	ок	NA	NA	NA				
GW-02	ок	ок	ок	ок	NA				
GW-03 ²	ок	ок	ок	ок	NA				
GW-04 ²	ок	ок	ок	NA	ок				
GW-05	ок	ок	ок	ок	NA				

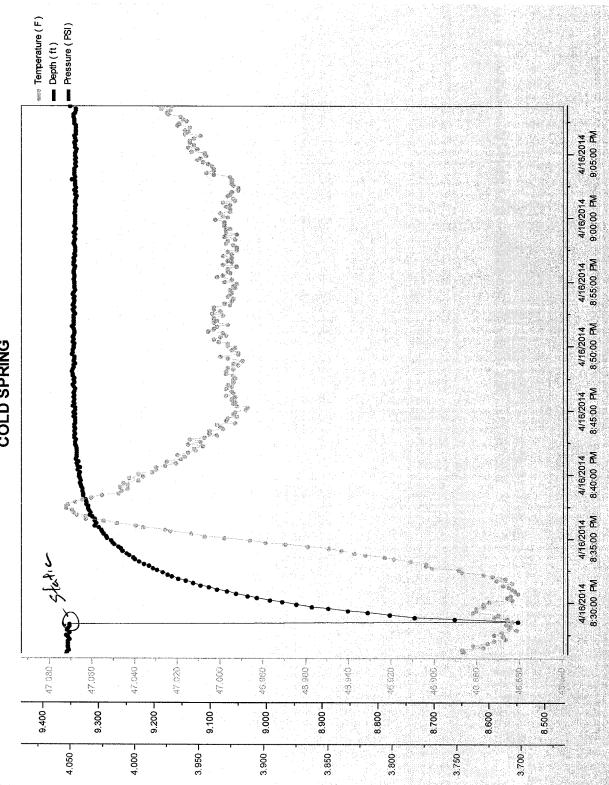

Cold Spring - Slug Tests Useability of Data

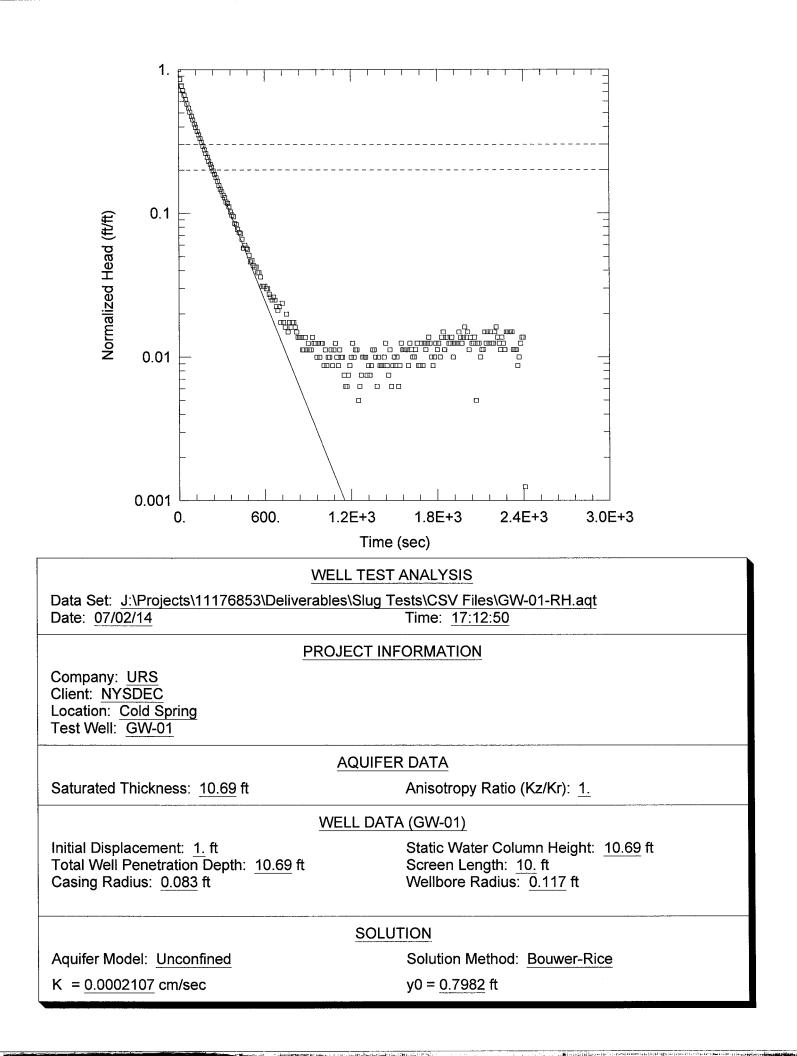

Notes:

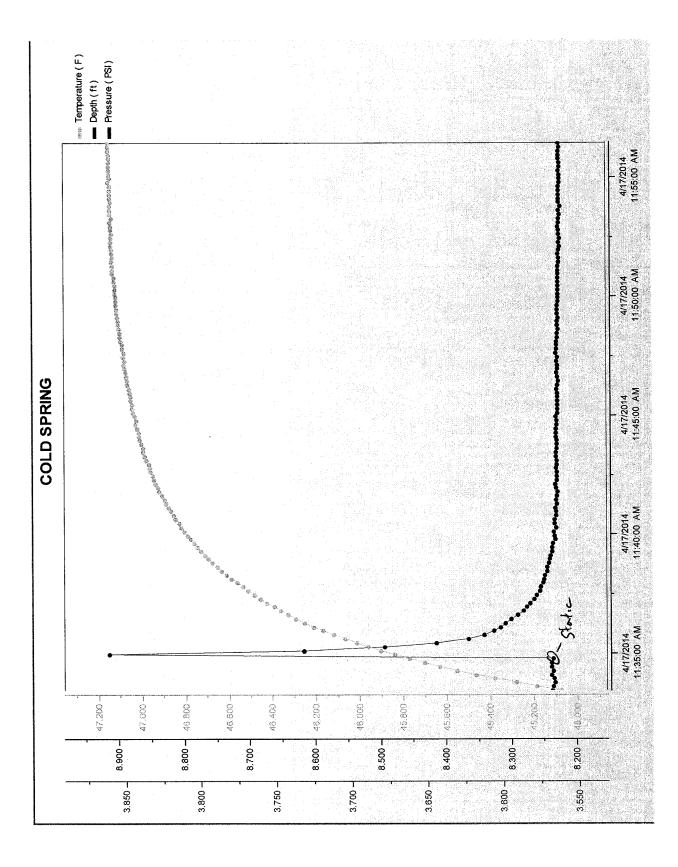

- 1: Water level insufficient, no tests conducted.
- 2: Water level appears to be tidally influenced. Tests analyzed but results may be affected.

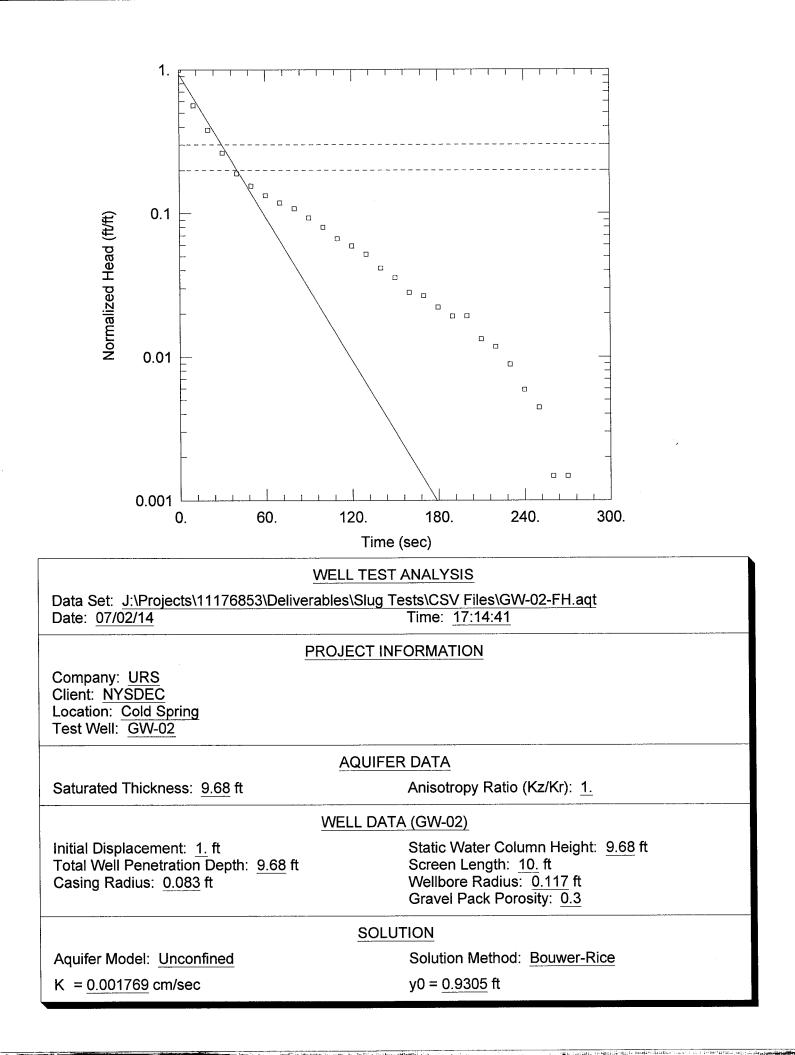


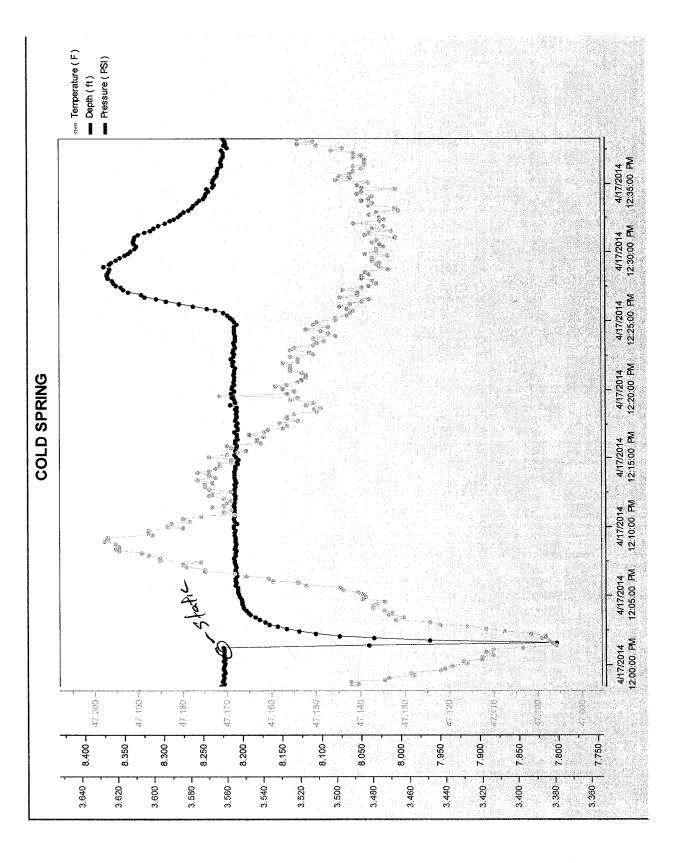


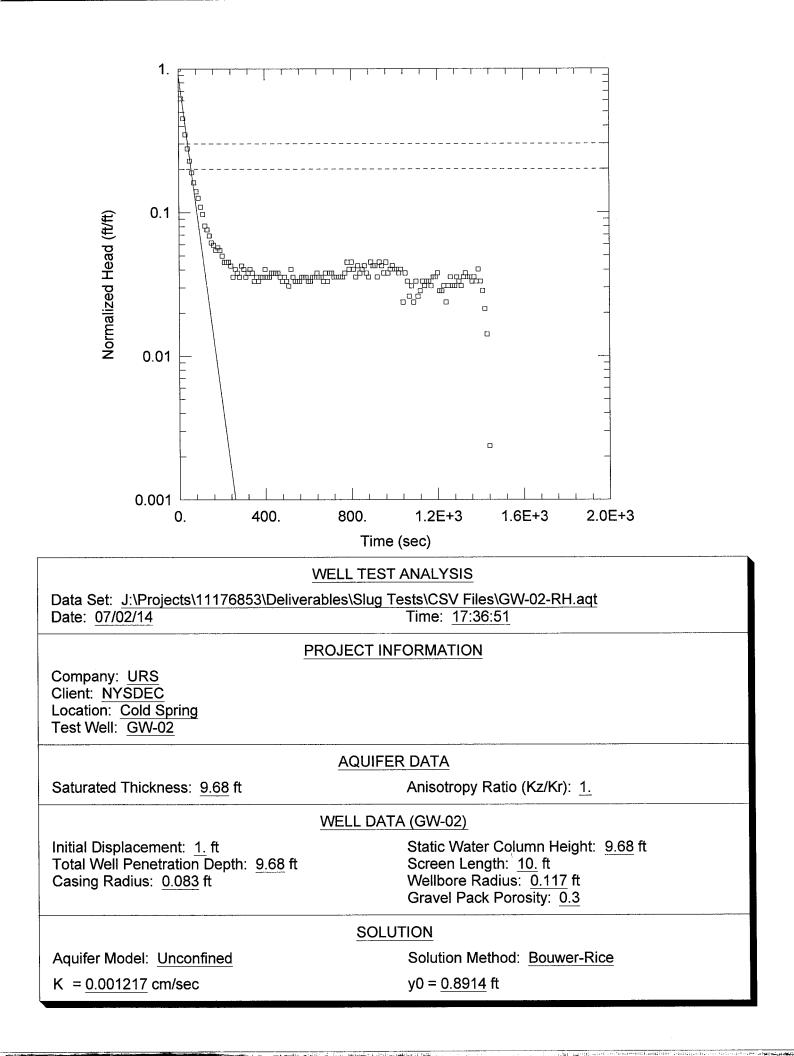


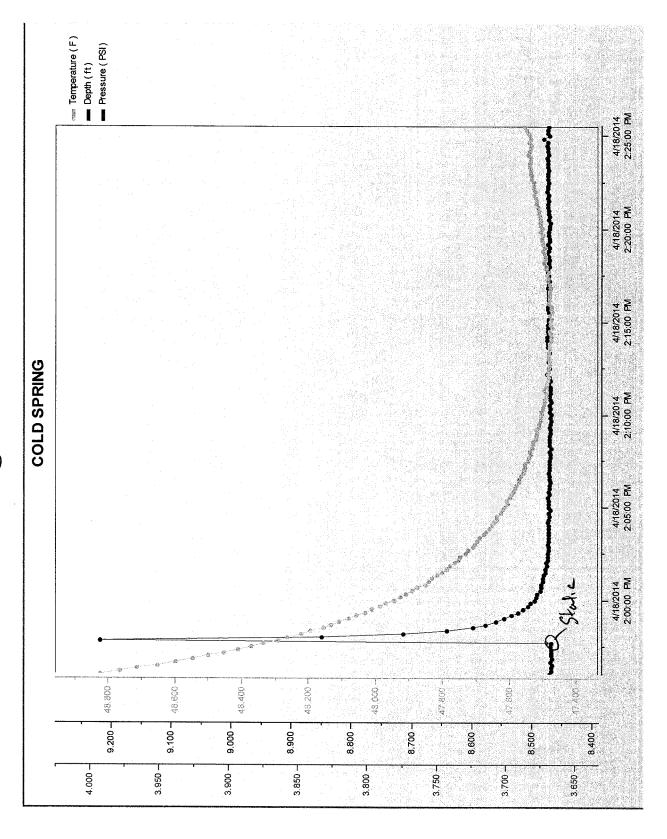


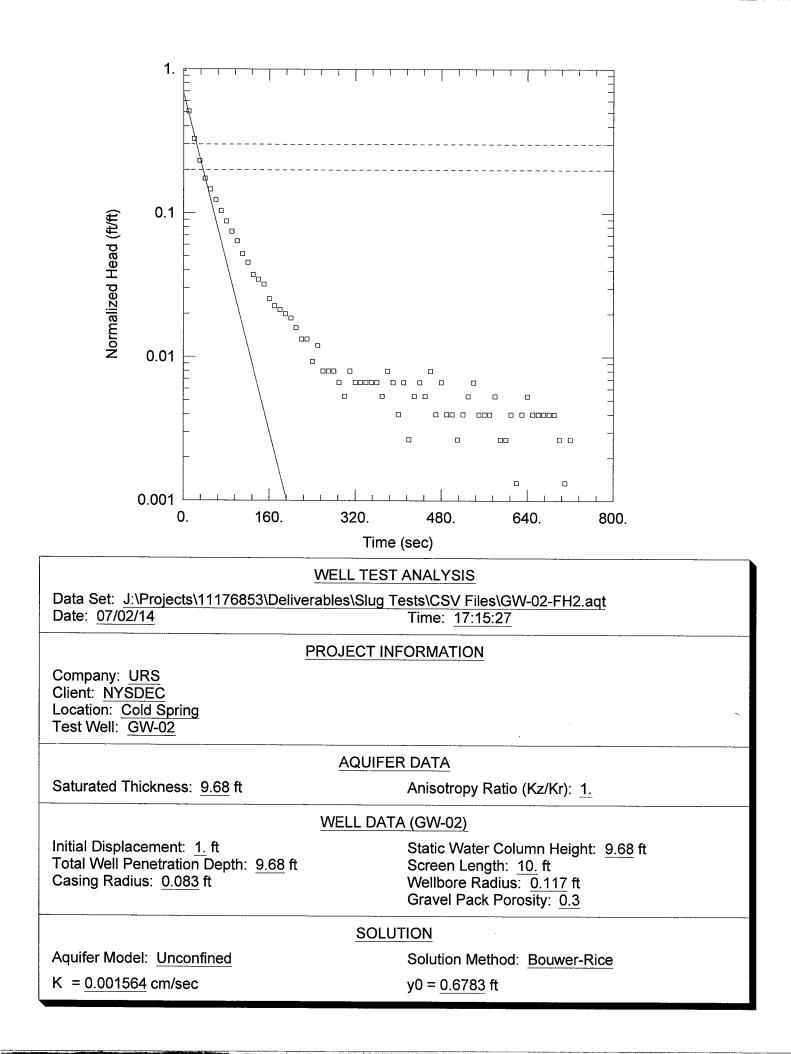


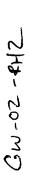

GW-01-RH COLDSPRING

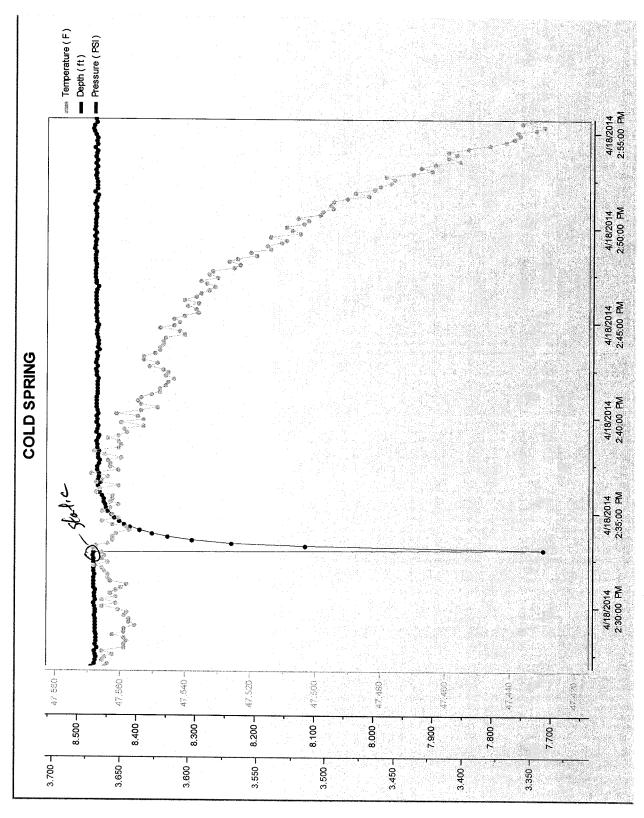


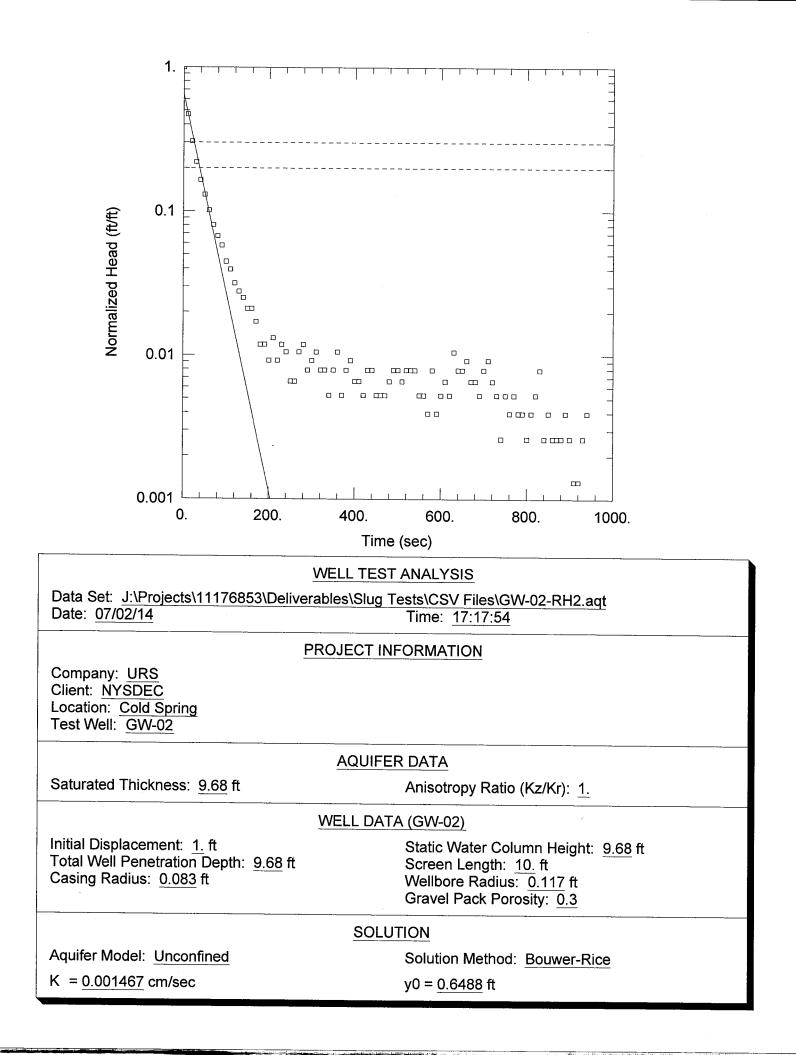

Gw-02-FH



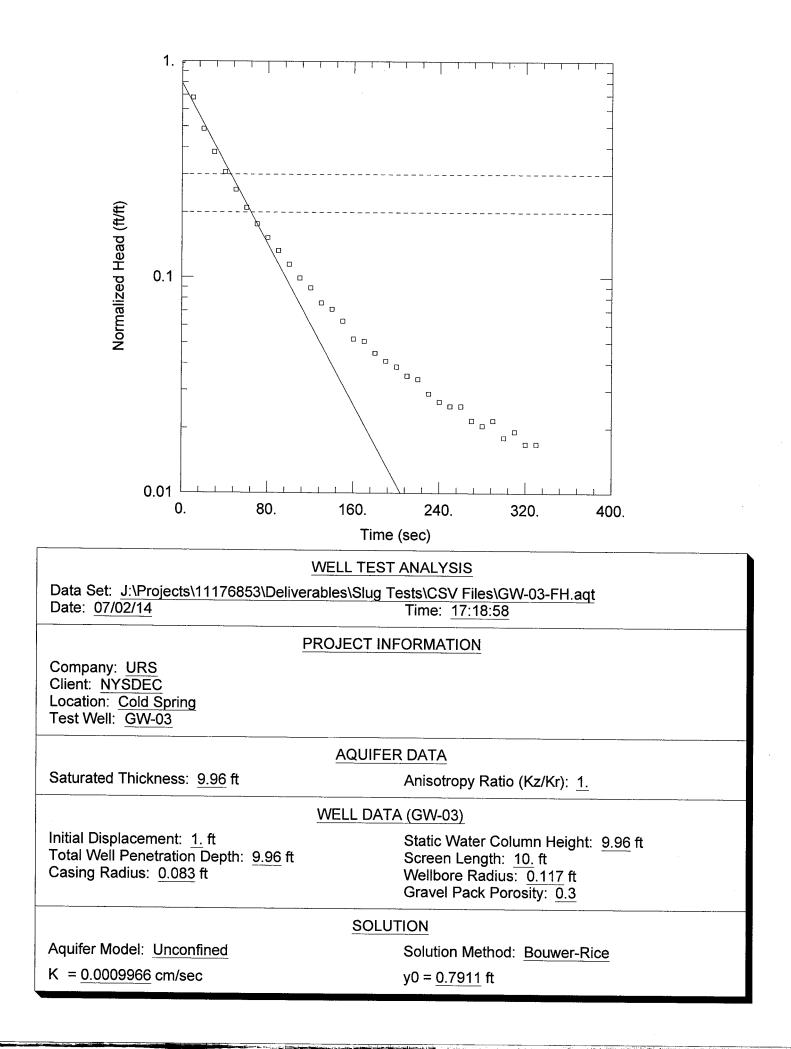

GW-02-RH

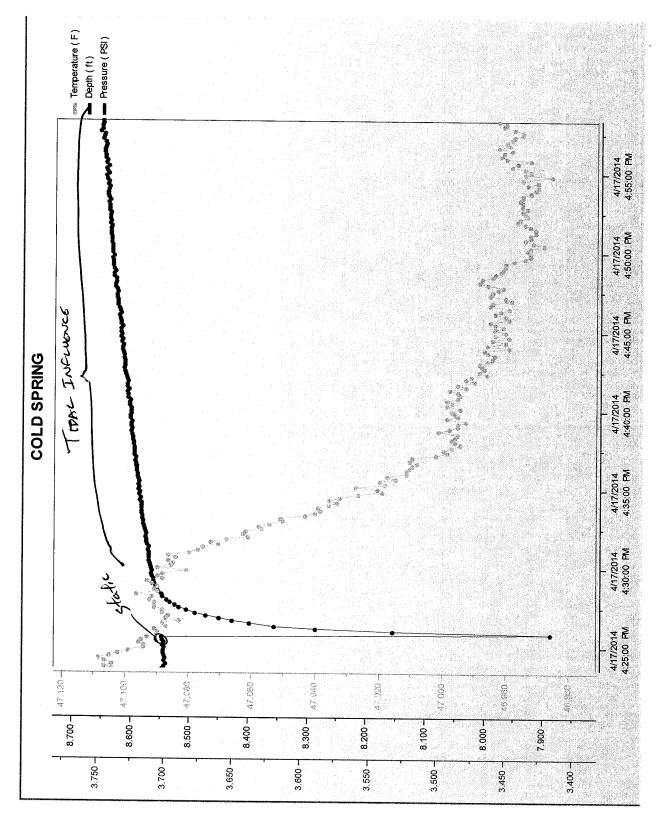


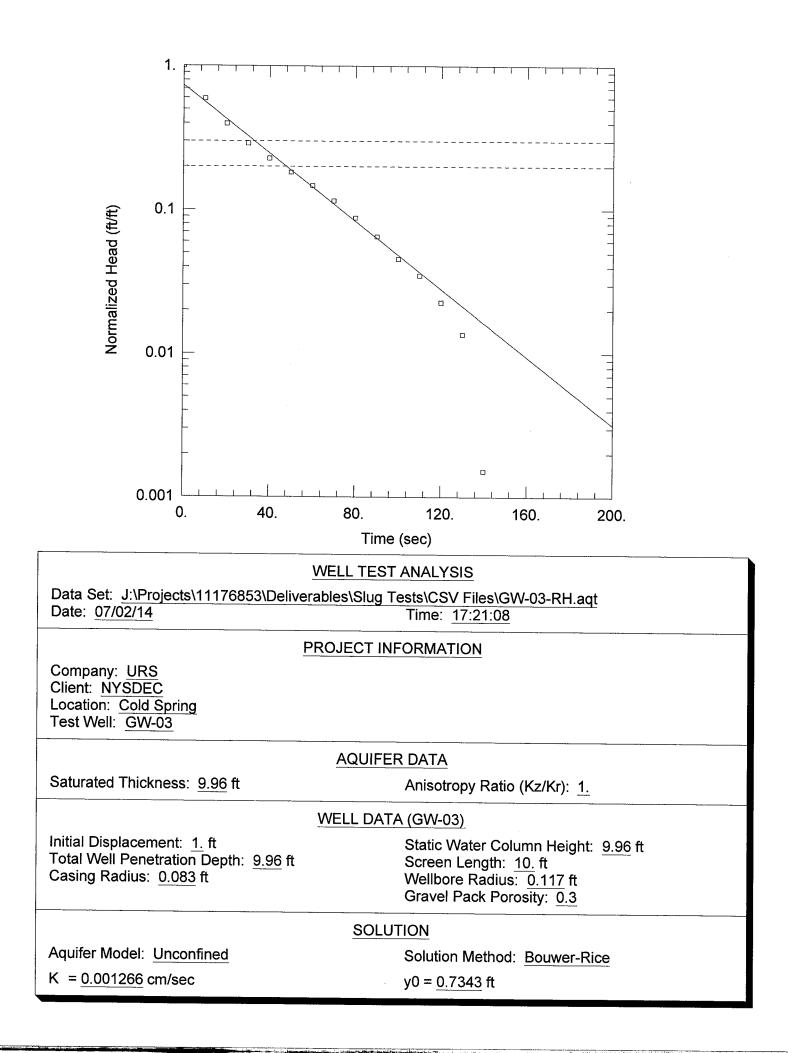


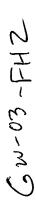

GW-02-FH2

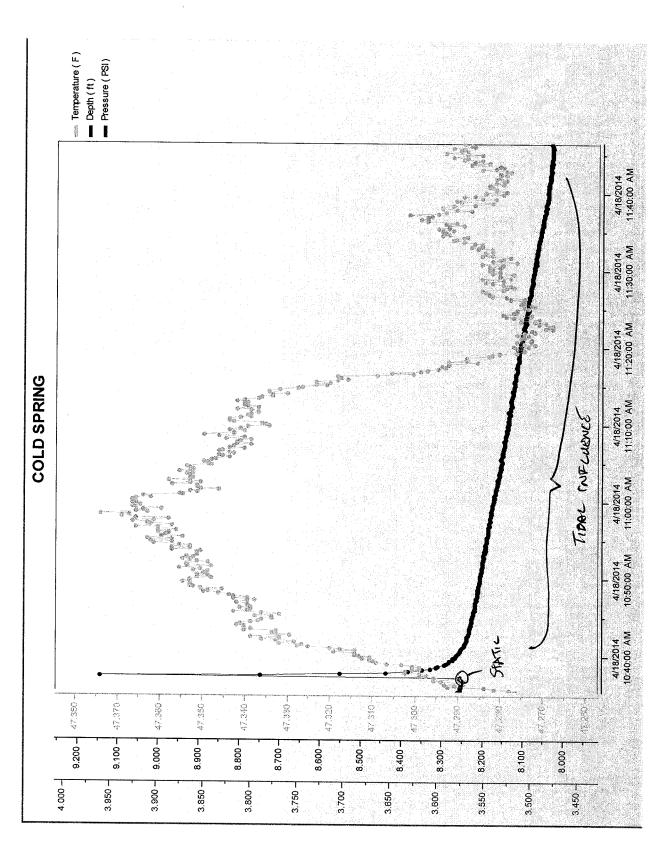


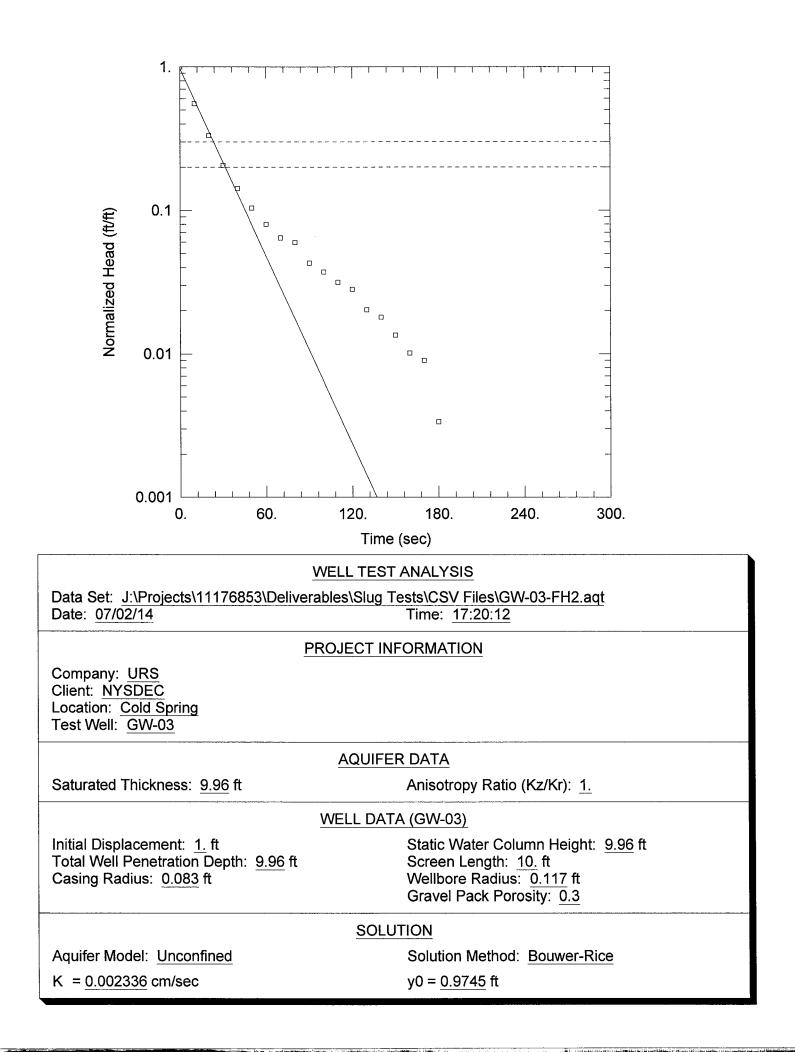




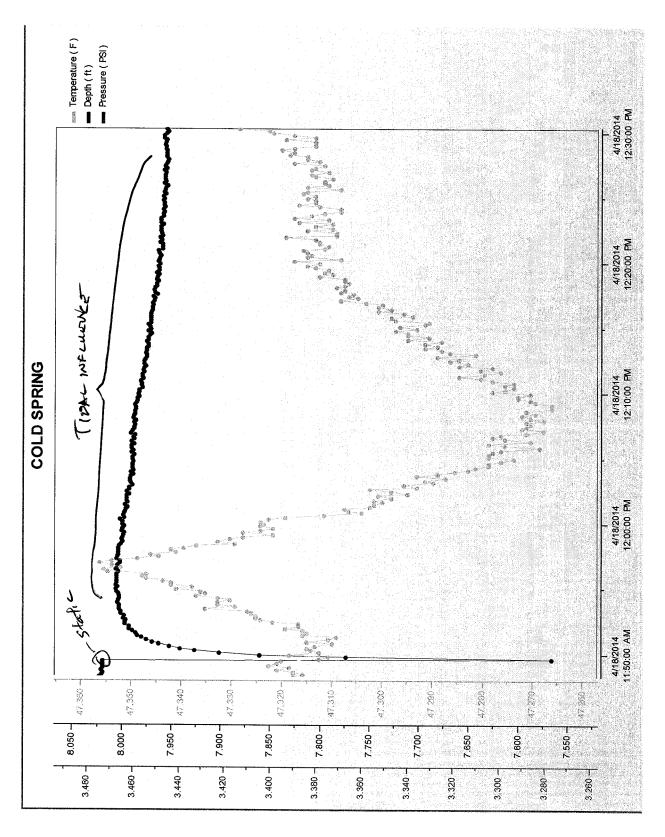

~

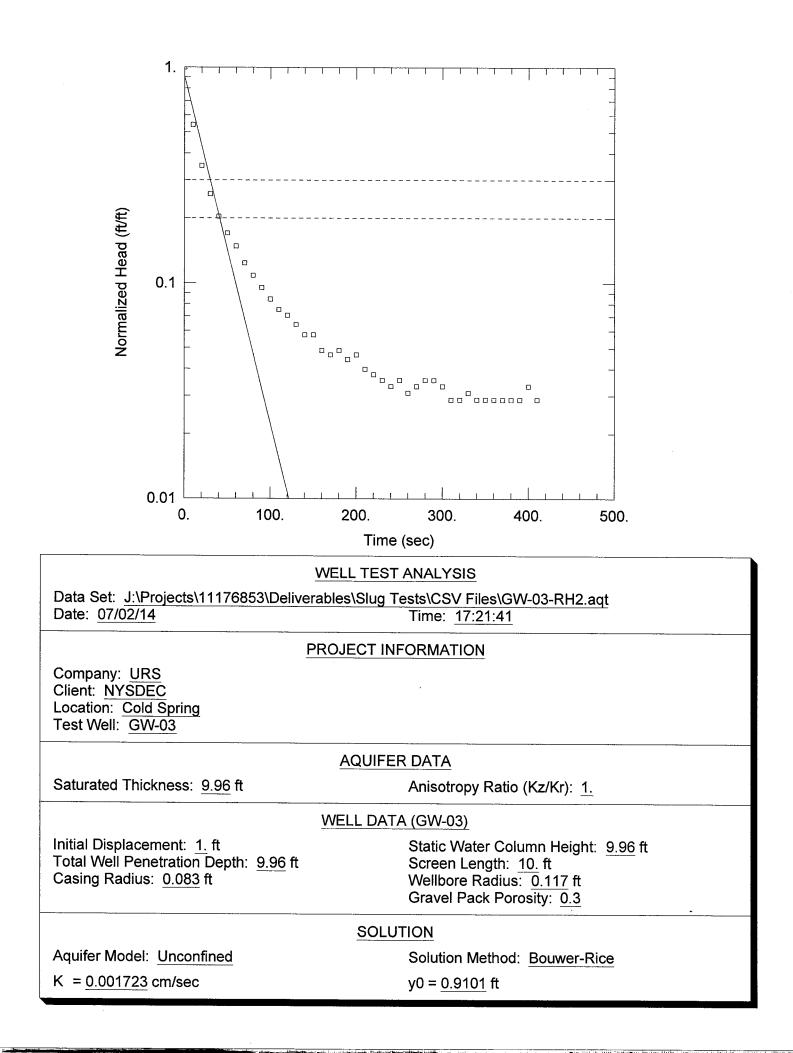


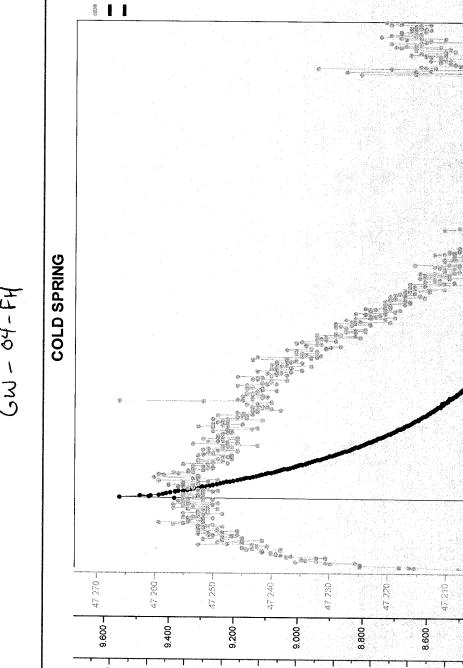


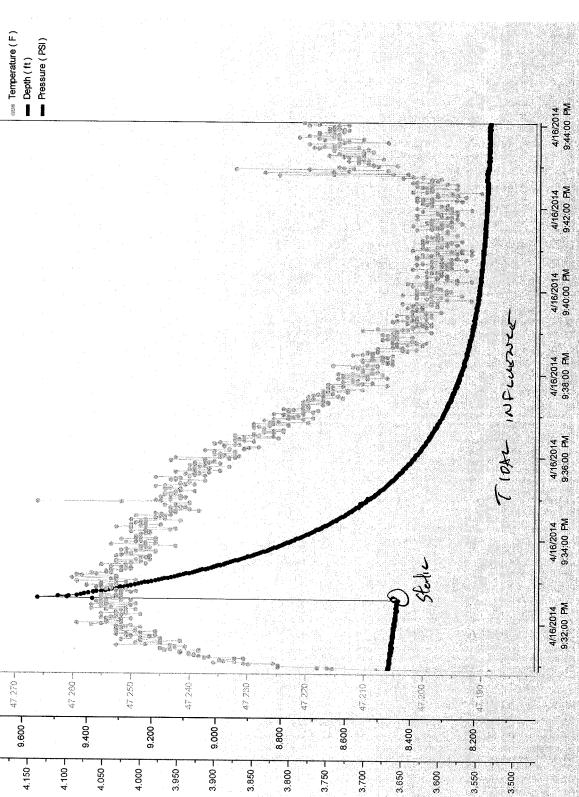


.

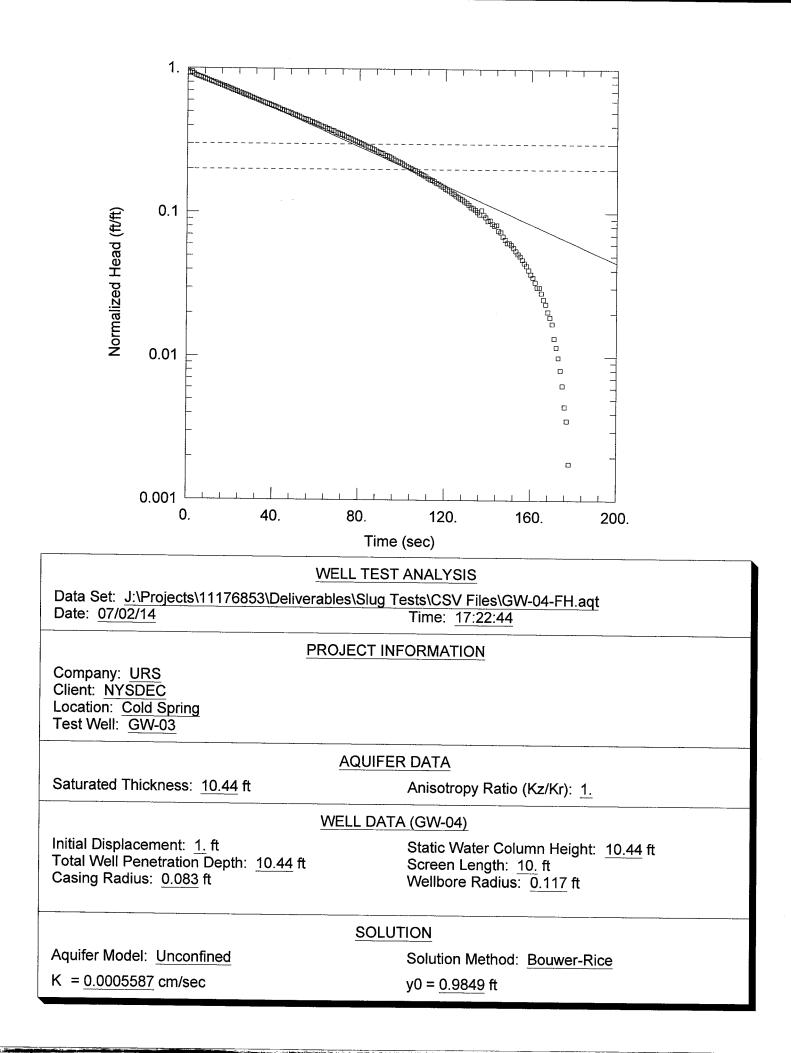


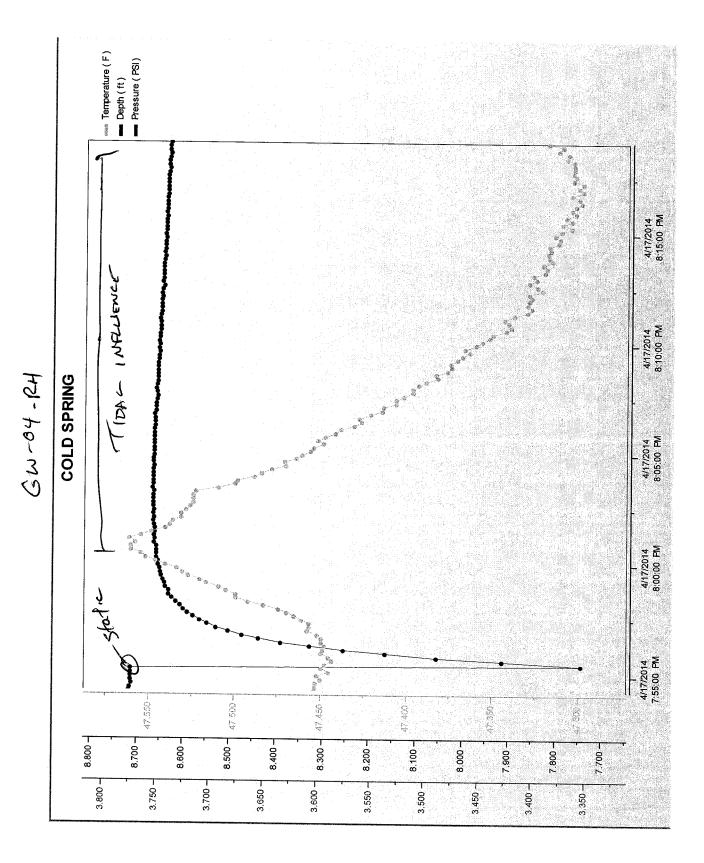


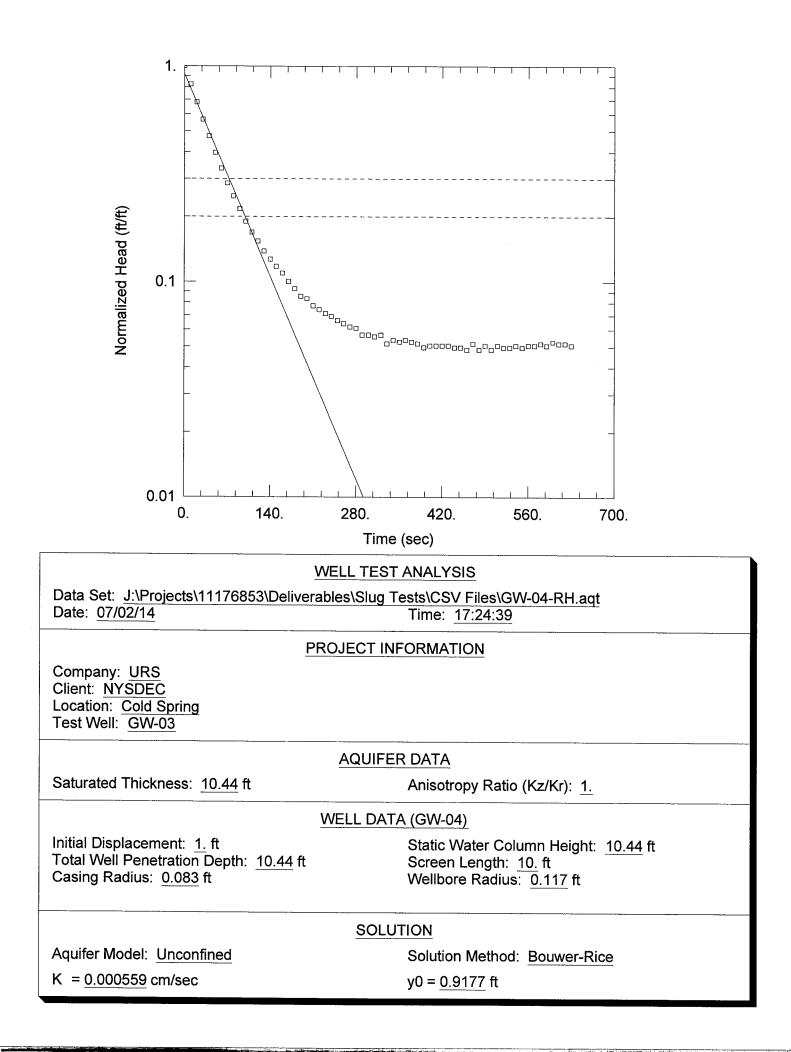


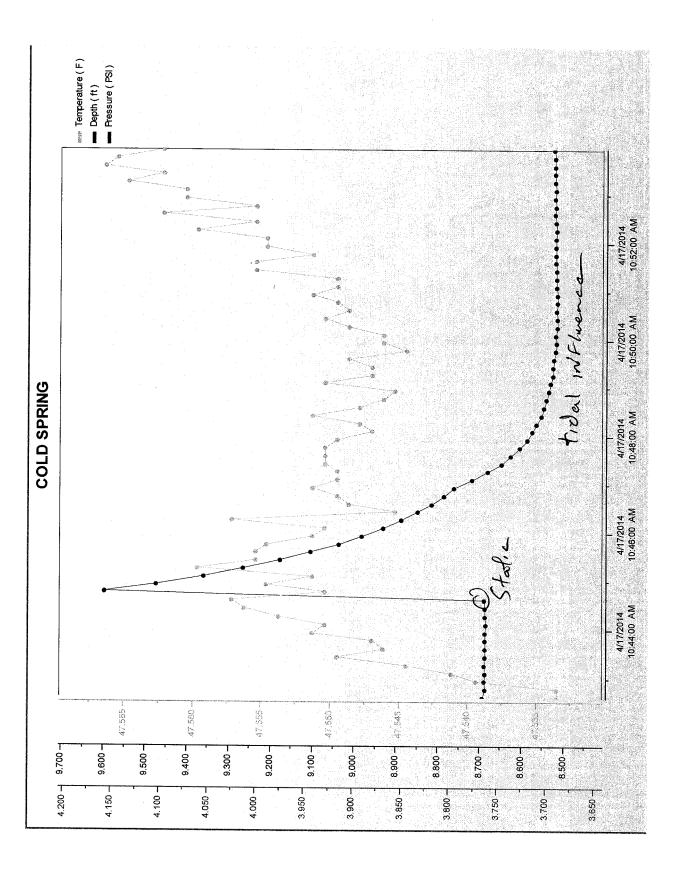


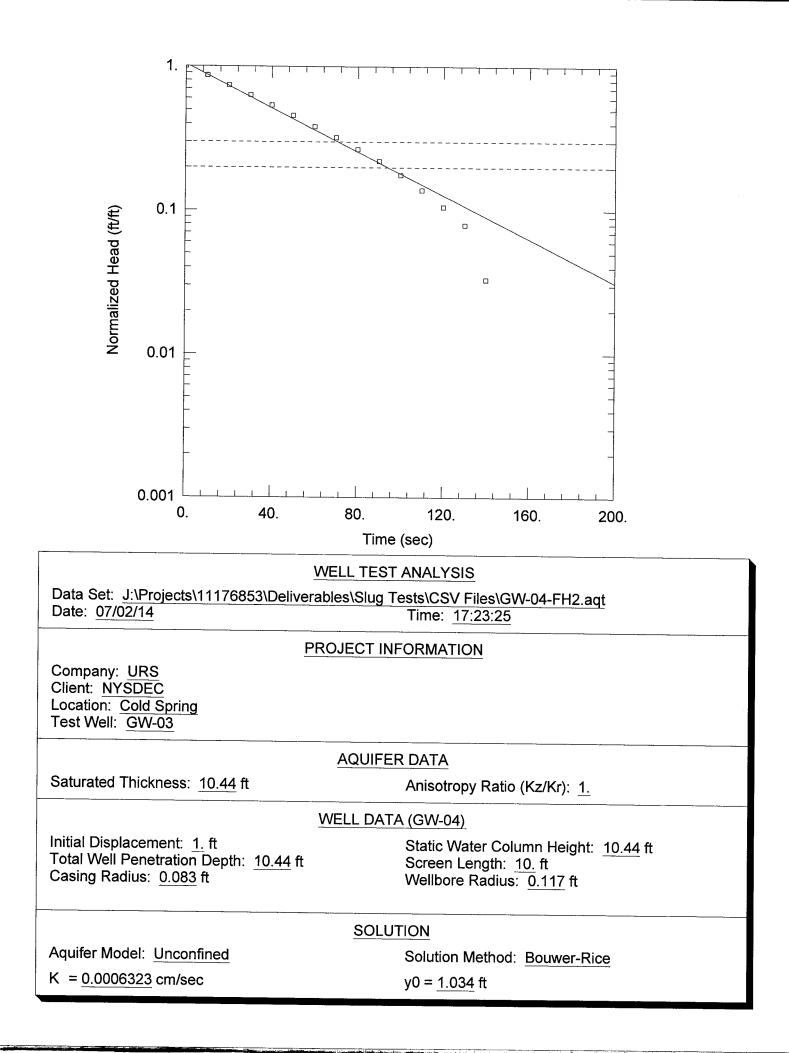
GW-03-RH2

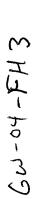


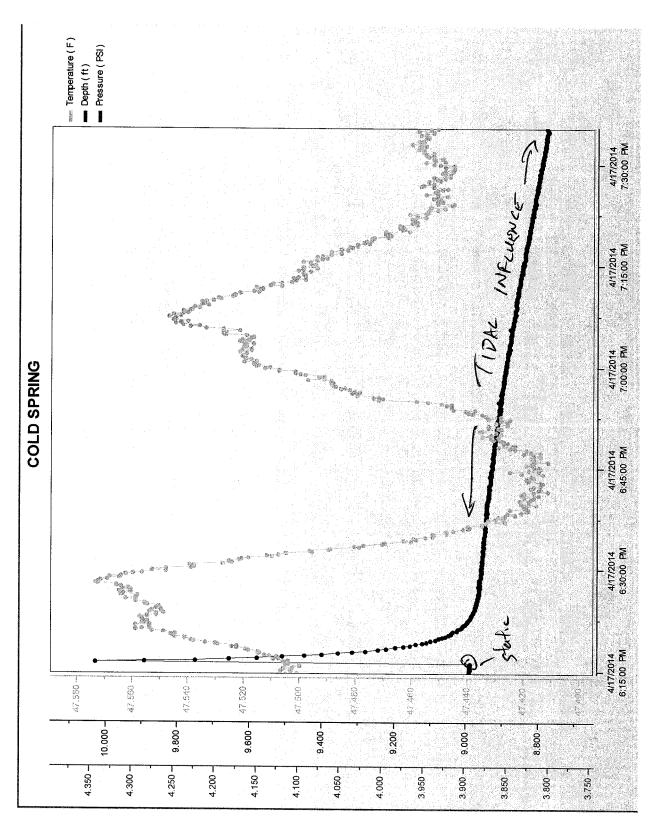


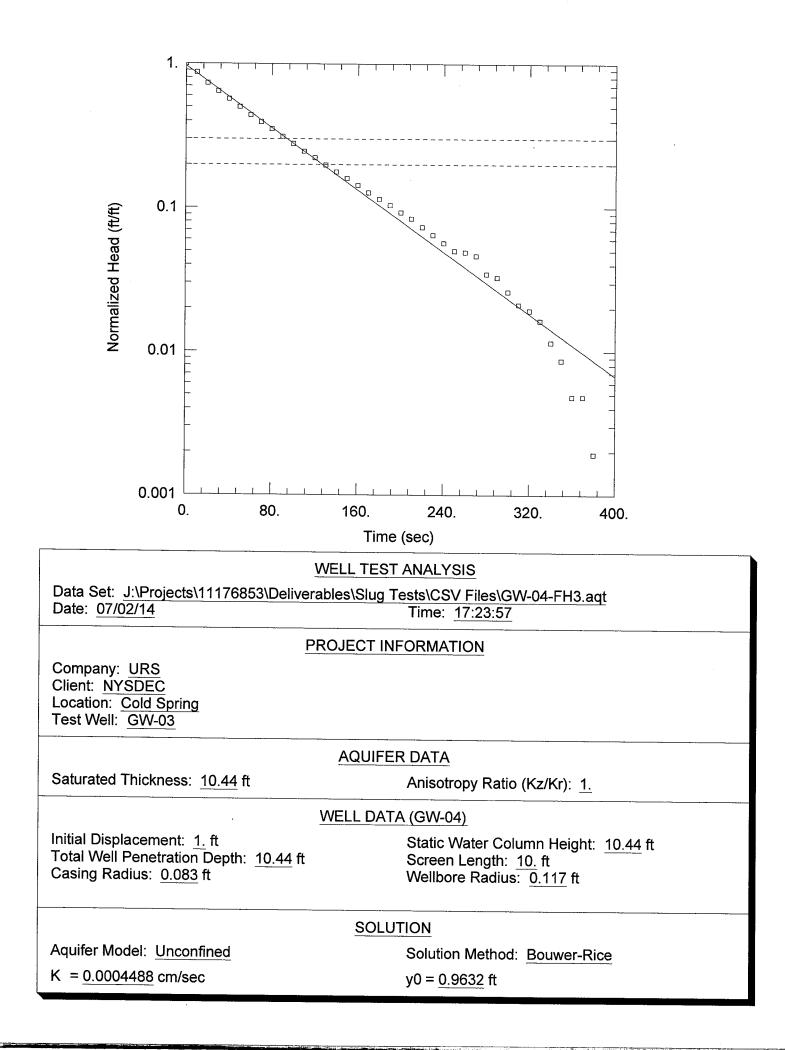


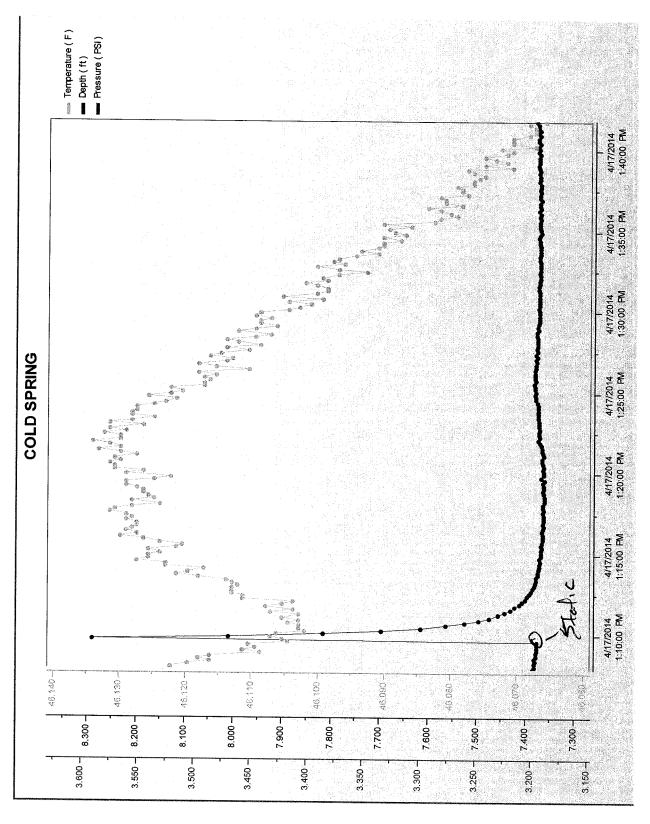

Gw - 04-FH

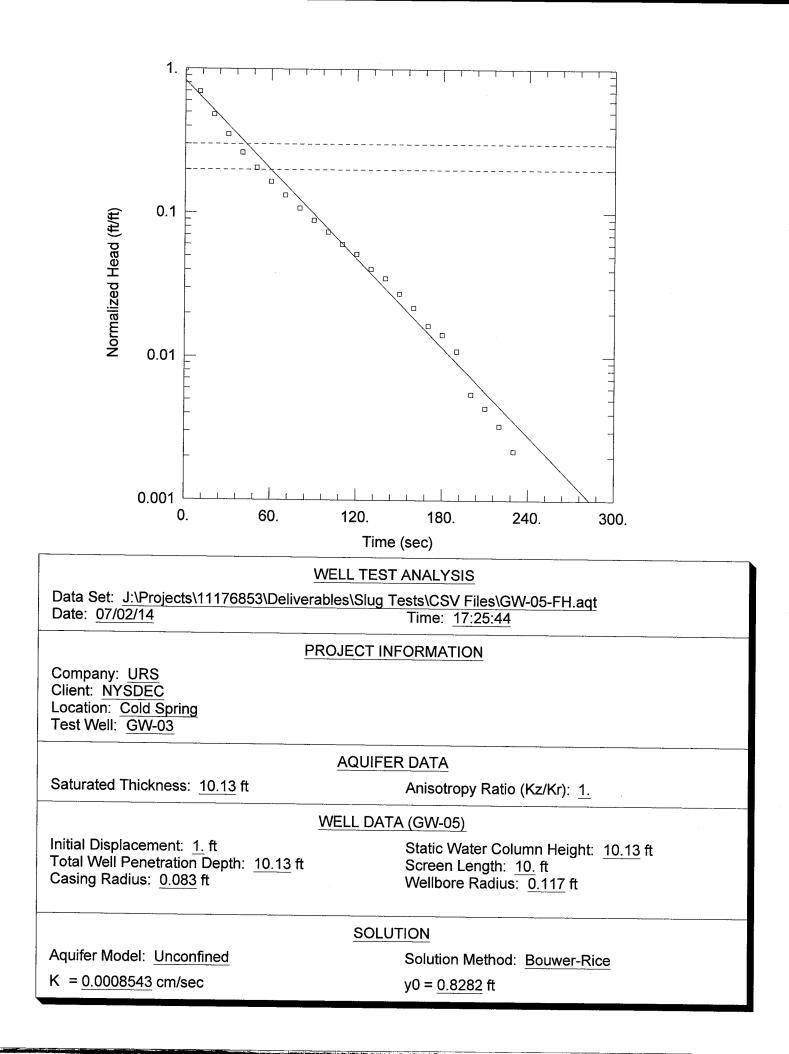




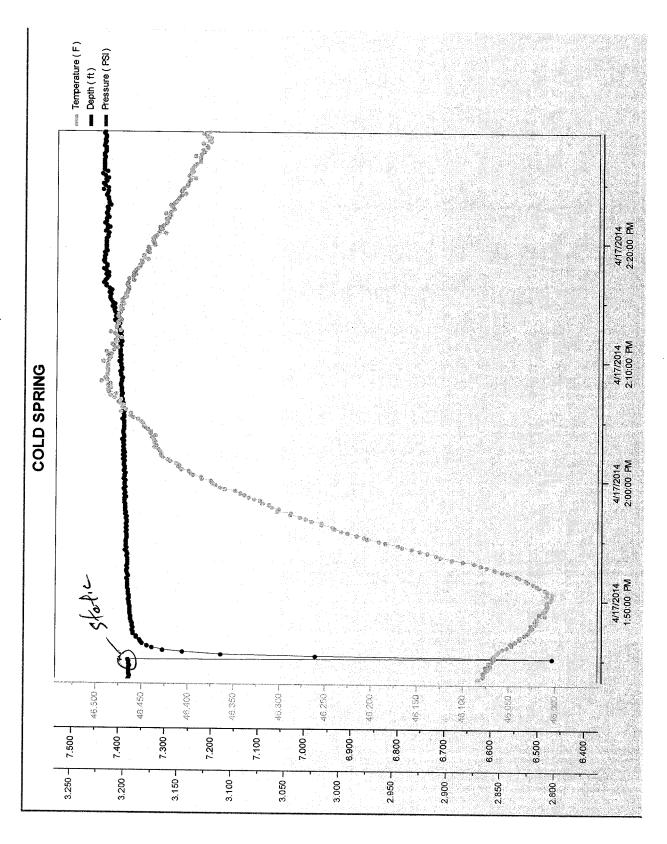


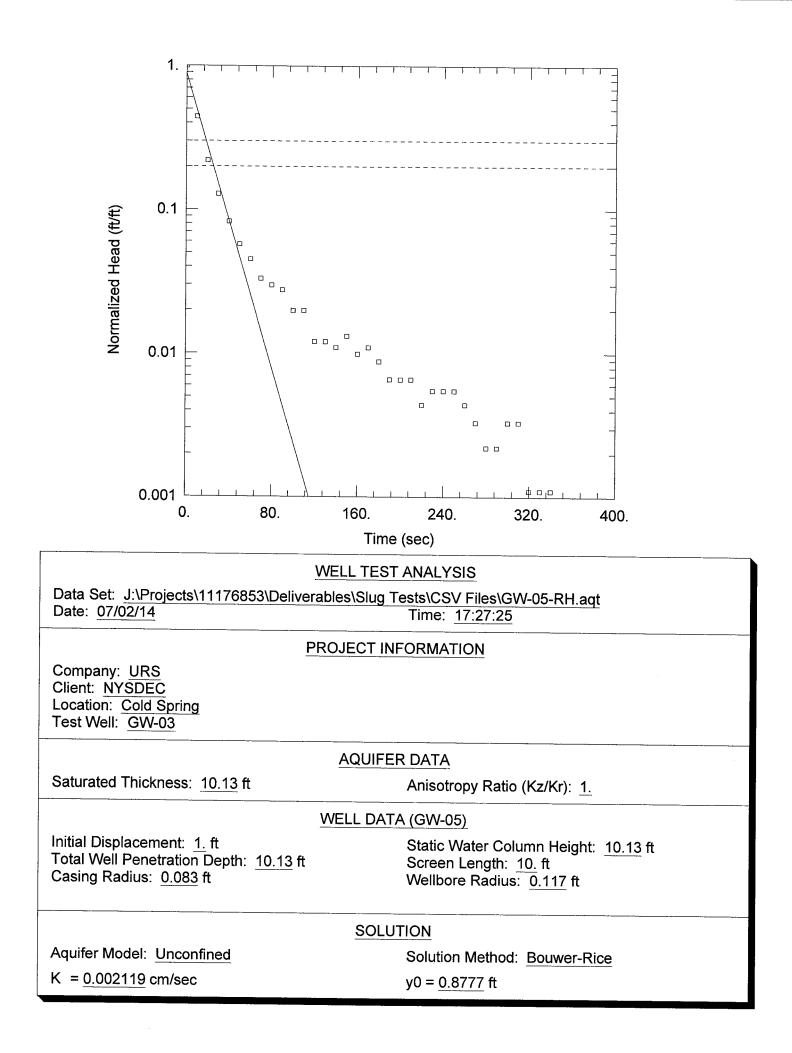

GW-04-FHZ

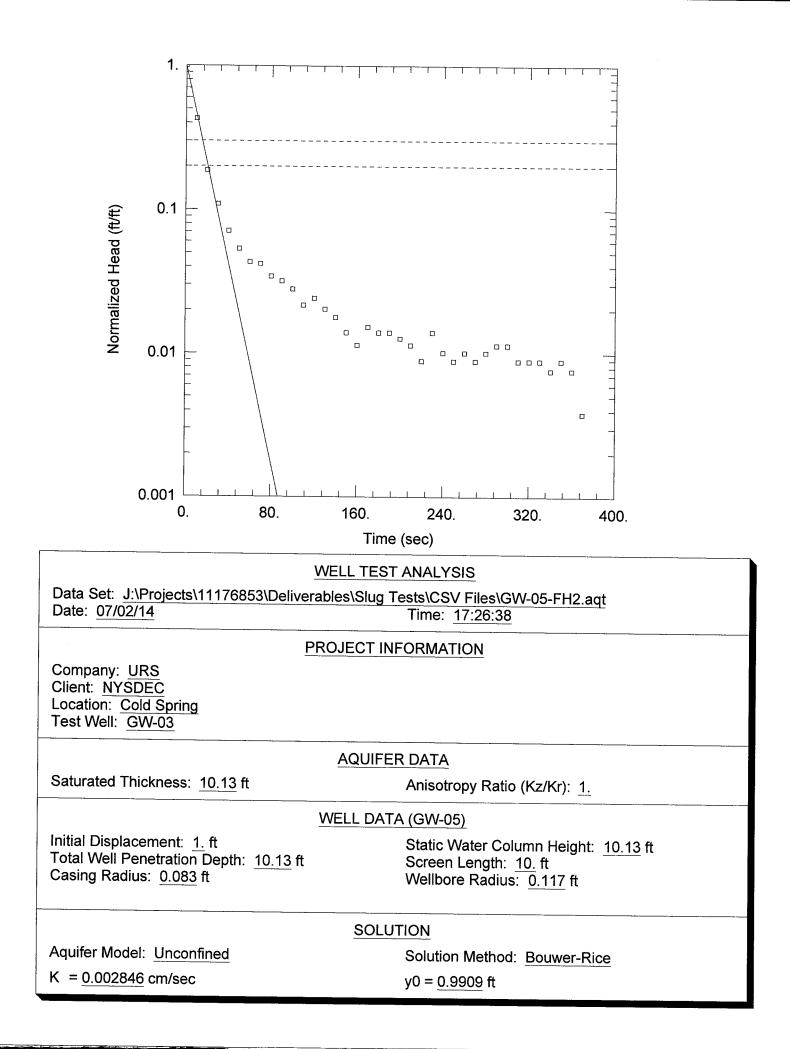


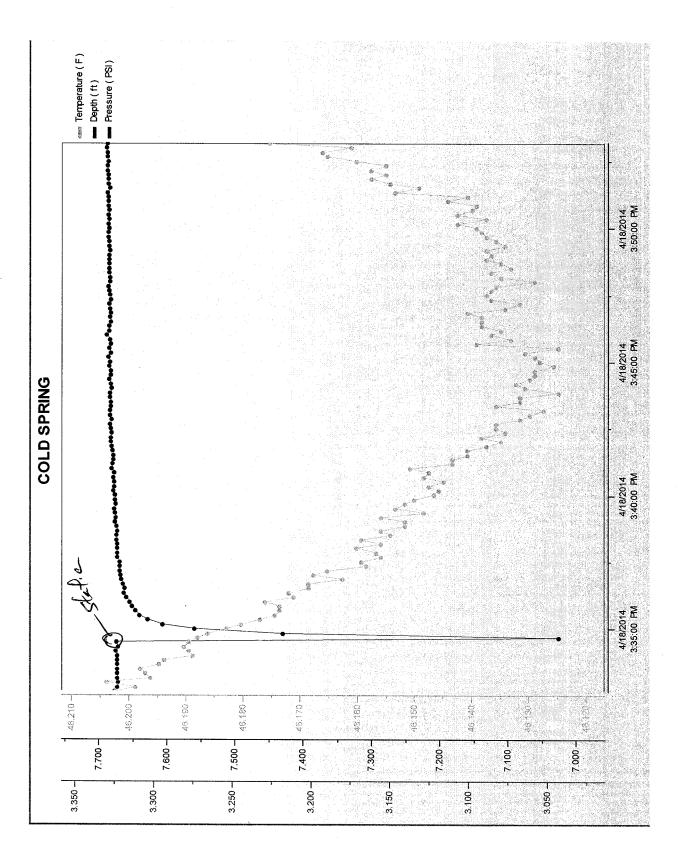


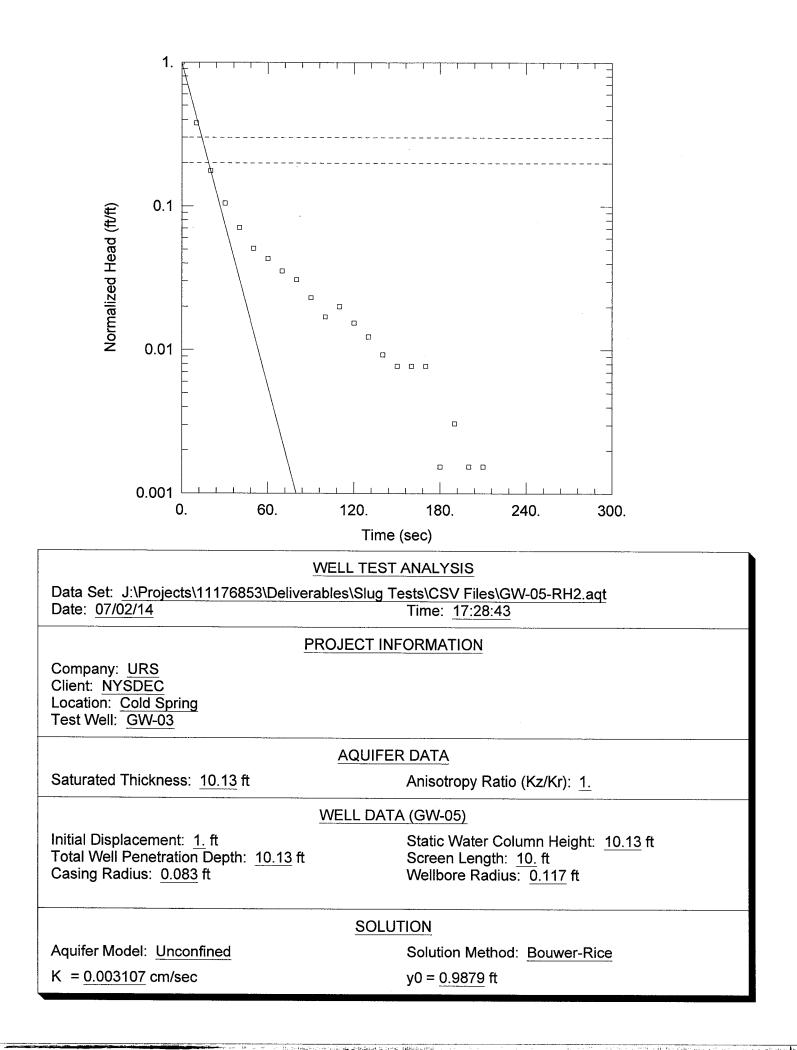










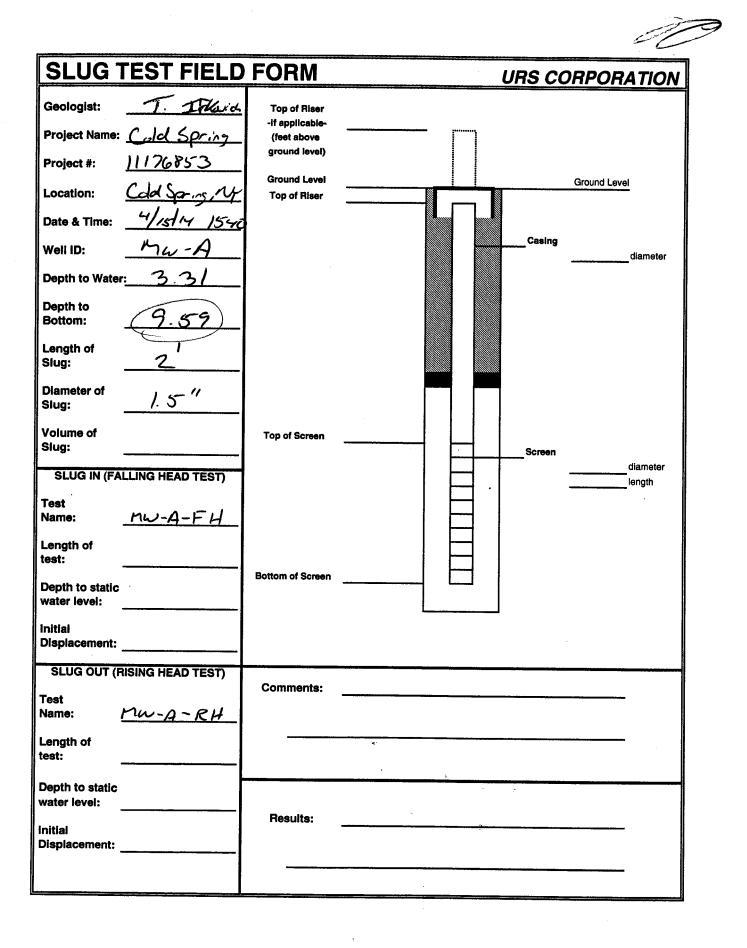

•

GW-05-PHZ

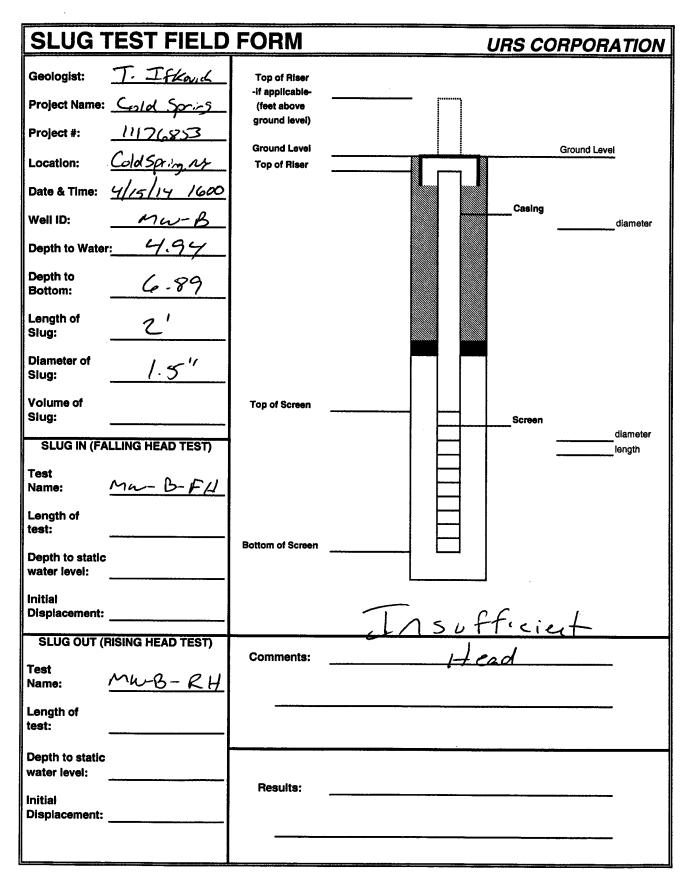
Soil Boring/Monitoring Well Completion Log ID NO.SB-A/MW-A

Groundwater & Environmental Services, Inc.

			tal Services, li		J.SB-A/MI	
					Regulatory Case #	340026
		old Spring, N	des des	Job #: 1102342		lgr: David Chiusano
		·	GES	Project Mgr: Paul Lindell	Permit #: NA	
ng Compan Operator:	y: ADT Marty		Compl	etion Date: 10/4/12 g Method: Direct Push	Split Spoon/Acetate Sle Split Spoon/Acetate Sle Soil Classification Syste Field Screening: PID 10	eve Length: 5 ft. em: USCS/Burmister
e Elevation Depth: (12 al Depth: 1 Depth to W Depth to W	fbg 2 fbg Vater: ~5 fb Vater: 3.20 f		Boreho Well D Riser L Screen	ble Diameter: 3 in. biameter: 2 in. ength: 3 ft. Slot Size: 0.01 in. 9 (1)	Top of Bentonite Seal: Type of Seal: Bentonit Top of Sand: 2 fbg Sand Type: #1 Sand Well Material Type: So Top of Grout: NA	0.5 fbg e Chips
Sample	Recovery	Field Screen	Blow Counts	Geologic Description	Commer	nts Well
		1	1 50			Completion
(feet)	(inches)					Detail
						· · · ·
0-0.5' 0.5'-2'		0.0		SW: Medium to coarse s	and and	Manway Well Pad Well
2'-3' 3'-5'		0.0		SW: Medium to coarse s gravel, red-brown, and d SW: Medium to coarse s	and and ry.	Cap Concrete Cap Bentonite Seal
5'-10'	13 in.	8.4	No Bow Counts Recorded			 PVC Riser Riser Sandpack 10 slot screen
10'-12'	24 in.	10.2		SW: Medium to coarse sa gravel, dark brown, and w REFUSAL	Laboratory Sample SB-A (10-12 fbg)	
	ress: 5 N nty: Puti cd By: Ching Compan Deprator: Rig Type: (dide: NA e Elevation Depth: 12 al Depth: 12 Depth to W Depth to W Depth to W Sample Interval (feet) 0-0.5' 0.5'-2' 2'-3' 3'-5' 5'-10'	0-0.5' 0.5'-2' 2'-3' 3'-5' 5'-10' 13 in.	hty: Putnam rd By: Christina Anelio ng Company: ADT Deperator: Marty Rig Type: 6620 DT - Geoprobe Ide: NA e Elevation: -653 ft. Depth: 12 fbg Depth: 1000 Sample Recovery Interval (inches) 1 6000 0.0.0 1 2'-3' 0.0 3'-5' 0.0 5'-10' 13 in. 8.4	ress: 5 New St., Cold Spring, NY GES aty: Putnam GES aty: Putnam Date D at Dig Company: ADT Company Operator: Marty Drillin Sig Type: 6620 DT - Geoprobe Sampli ade: NA Longit be: Depth: 12 fbg Depth: Water: 3.20 fbg Sample Recovery Field Screen Interval (inches) 1 6000 1 600 1 50 0.0 0.0 1 6000 3'-5' 0.0 Image: Streem Stree	ress: 5 New St., Cold Spring, NY rty: Putnam GES Job #: 1102342 GES Project Mgr: Paul Lindell Date Drilled: 10/4/12 Completion Date: 10/4/12 Co	ress: 5 New St., Cold Spring, NY GES Job #: 1102342 Regulatory Case M d By: Christina Anelio Date Drilled: 10/4/12 Split Spoor/Acetae Sle g Compary: Marty Completion Date: 10/4/12 Split Spoor/Acetae Sle Sampling Method: Direct Push Soil Classification Syst Split Spoor/Acetae Sle Jopartor: Marty Drilling Method: Macro Core Field Screening: PID H Ude: NA Elevation: -653 ft. Dongitude: NA Top of Seal: Bentoint Depth to Water: -5 fbg Screen Slot Size; 0.01 la. Type of Seal: Bentoint Sample Recovery Field Screen Screen Slot Size; 0.01 la. Type of Seal: Bentoint Sample Recovery Field Screen Blow Counts Geologic Description Commer (feet) (inches) 1 6000 1 50 SW: Medium to coarse sand and gravel, red-brown, and dry. 5'-10' 13 in. 8.4 Base SW: Medium to coarse sand and gravel, dark brown, and wet. Sample gravel, dark brown, and wet. Sample gravel, dark brown, and wet. Sample gravel, dark brown, and wet.


Proportions Used:	Notes;	Blow Count Per	tration Resistance:	Symbols:
Trace = <5%	NA = not available; fbg. = feet below grade	Consistency (M&C)		Apparent Water Level
Few = 5-10%	in. = inches; ft.= feet; ppm.= parts per million	<2 = Very Soft	0-4 = Very Loose	
Little = 10-20%	Soil Lithologies based on field observations only.	2-4 = Soft 4-8 = Medium	4-10 = Loose	Lab Sample Location
Some = $20-30\%$ Adjective = $30-40\%$	General Text here, site specific	8-15 = Stiff	10-30 = Medium	
And = $>40\%$	General Text II, details	15-30 = Very Stiff	30-50 = Dense	
2310 - 24070		>30 = Hard	>50 = Very Dense	SB-A/MW-A p. 1 of 1

GES Soil Boring/Monitoring Well Completion Log


Groundwater & Environmental Services, Inc.

ID NO.SB-B2/MW-B

Sivunuwale		ronmental 5	ervices, in	IC.	1D 1\0.5D-D2/1\1 \V-B				
Project: Cold Sp				: NYSD		Regulate	ory Case #: 3	40026	
Address: 5 New		Spring, NY	GES J	ob #: 11	102342		-	David Chiusano	
County: Putnam			GES F	Project N	Mgr: Paul Lindell	Permit #			
Logged By: Christin			Date Dr	illed: 10/	4/12	Split Spoo	n/Acetate Sleeve	Diameter: 2 in.	
Drilling Company: A Drill Operator: Mart					: 10/4/12	Split Spoo	n/Acetate Sleeve	Length: 5 ft.	
Drill Rig Type: 6620		be			Direct Push i: Macro Core	Soil Classi	ification System:	USCS/Burmister	
Lattitude: NA Longitude: N								eV Lamp (ppm)	
Surface Elevation: 6.			Borehold	e Diamete		Type of Se	ntonite Seal: 0.5 al: Bentonite C		
Total Depth: 7.5 fbg Refusal Depth: 7.5 fb				ameter: 2 angth: 3 i		Top of San	id: 2 fbg	-	
Initial Depth to Water	-			Slot Size:		Sand Type Well Mate	:: #1 Sand rial Type: Sched		
Static Depth to Water	: 3.89 fbg			Length: 4		Top of Gr		IUIC 40 F ¥C	
- I I		1	low Counts		Geologic Description		Comments	Well	
Interval		(ppm)						Completion	
(feet) (feet) (ir	nches)	1 500	1 50					Detail	
						<u> </u>	1		
0-0.5'			A				·····		
					ASPHALT: Building f	loor.		Manway Well	
0.5'-2'	0.0			T T	SM: Fine sand and si	ilt with gravel		Pad	
-					brown, and dry.			Well Cap	
							-	Concrete	
								Cap Bentonite	
2'-3'	0.0				·			Seal	
	0.0				SM: Fine sand and si	It with gravel,		PVC Riser	
					brown, and dry.				
3'-5'			- North Contraction	hihih					
3-5	0.0		No Blow Counts Rec	hilit	SM: Fine sand and si	It with gravel,			
			8		dark brown, and mois	it.		Y	
			The second	i i i i					
			Rec						
			orded	hilih				- Sandpack	
5			4 !						
5'-7.5' 12	in. 151				SW: Coarse sand and	gravel, wet	Laboratory Sample	EX - 10 slot screen	
					and black with noted s	sheen.	SB-B2 (5-7.5	screen	
							fbg)		
1									
			\downarrow	/ F	REFUSAL			-	
		, <u>, , , , , , , , , , , , , , , , , , </u>				1		- I	
Proportions Used:	Notes;				Blow Count Pent	ration Resistance		alar	
Trace = $<5\%$	NA = not av	ailable; fbg. = fee			Consistency (M&C)	Density (G		ols: ent Water Level 🛛 🗯	
Few = 5-10%		ft.= feet; ppm.=			<2 = Very Soft	0-4 = Very L	oose Lab C		
Little = $10-20\%$		gies based on field	observations only	/.	2-4 = Soft 4-8 = Medium	4-10 = Loose		ample Location 🔀	
Some = 70.40%	Ganaval Tam	those stars in							
Some = $20-30\%$ djective = $30-40\%$ And = $>40\%$	General Text General Text	t here, site specific			8-15 = Stiff 15-30 = Very Stiff	10-30 = Media30-50 = Dens			

Υ.

·

DONE

SLUG TEST FIELD	FORM	URS CORPORATION
Geologist: <u>I. Illovich</u> Project Name: <u>Cold Spring</u> Project #: <u>11176853</u> Location: <u>Cold Spring</u> , M Date & Time: <u>4/16/14 16</u>	Top of Riser -if applicable- (feet above ground level) Ground Level Top of Riser	Ground Level
Length of $2'$ Diameter of $1.5''$ Volume of Slug: SLUG IN (FALLING HEAD TEST) Test $Gw-oy-Flt$ Length of test:	Top of Screen	Screen diameter length
Depth to static water level: Initial Displacement: SLUG OUT (RISING HEAD TEST) Test Name: GW-04 - RH Length of test:	Comments:	
Depth to static water level: Initial Displacement:	Results:	

50

SLUG TEST FIELD	FORM	URS CORPORATION
Geologist: <u>T. IFKouch</u> Project Name: <u>Cold Spring</u> Project #: <u>11176 853</u> Location: <u>Lold Spring</u>	Top of Riser -if applicable- (feet above ground level) Ground Level	Casing
SLUG OUT (RISING HEAD TEST) Test Name: (<u>、</u> <u>い-0 こ、 </u> <i>RH</i> Length of test: Depth to static water level: Initial Displacement:	Comments:	٠

1

-

•

SLUG TEST FIELD	<u>D FORM</u>	URS CORPORATION
Geologist: <u>7. I.F.Kovici</u>	Top of Riser -if applicable-	Transducer left in overright From Tidal Run
Project Name: <u>Cold Sprins</u>	(feet above	
Project #:6 853	ground level)	
Location: <u>Cold Sprix</u> , W	Ground Level	Ground Level
Date & Time: <u>4/17/14</u>	4/17/14 1724	18/19/13/
Well ID: <u>Gw-03</u>	GW-03 (Tidal)	G - 03 diameter
Depth to Water: 2-04	2.53	2 63
Depth to Bottom: <u>12-7.1</u>	•	
Length of Slug: 2		
Diameter of Siug: 1.5"		
Volume of Slug:	Top of Screen	Screen
SLUG IN (FALLING HEAD TEST)	1	diameter length
Test Name: <u>GW-03-FH</u>	GW-03-TIDAL	GED-03-FHZ
Length of test:	Bottom of Screen	
Depth to static water level:	Bulkhead Time	
Initial Displacement:	4.05 1735	
SLUG OUT (RISING HEAD TEST)	4.37 0722 (4/18/14)
Test Name: $G_{\omega} \cdot \partial S \cdot \mathcal{R} H$	Comments:	GW-03-RHZ
Length of test:		
Depth to static water level:		
Initial Displacement:	Results:	

SLUG TEST FIELD FORM URS CORPORATION see difference Transducer sat in well Sor 1hr before start in depth IFKarch **Geologist:** Top of Riser -if applicableold Spring **Project Name:** (feet above ground level) Project #: **Ground Level** Ground Level So-, he My Location: Top of Riser 1511 1415 4/17/14 Date & Time: 871 0715 Casing n'S Well ID: 16) GW-4 diameter 6 1.78 Depth to Water: 56 1 Depth to 11.91 41 Bottom: Length of 2' 2 Slug: 1.5" 1.511 **Diameter of** I 5 Slug: Volume of Top of Screen Slug: Screen diameter **SLUG IN (FALLING HEAD TEST)** length Test GW-4-FHZ GW-4-FH 9~ 4 FH3 Name: Length of test: **Bottom of Screen** Depth to static water level: Initial **Displacement:** SLUG OUT (RISING HEAD TEST) **Comments:** Test GW-4- RHZ GW-4-RH3 GW-4-RH Name: Length of test: Depth to static water level: **Results:** Initial **Displacement:** .

ريحث

SLUG	TEST FIELD) FORM	URS CORPORATION
Project #: Location: Date & Time: Well ID: Depth to Wate Depth to Bottom: Length of Slug: Diameter of Slug: Volume of Slug:	<u>ک</u> <u>ا.5</u> ALLING HEAD TEST) (سی-05-F-H	-if applicable- (feet above ground level) Ground Level Top of Riser 4/18/14 + 202 Gw - 05 1.84 2^{1} 1.84 Top of Screen	Ground Level Ground Level Giameter Giameter Giameter Iength
Test	RISING HEAD TEST)	Соттептя: Gw -05 ⁻ -RH Z	

į

sampling equipment was decontaminated between sampling locations in accordance with the work plan. Soil probe locations were staked/marked and surveyed, as detailed in Section 2.9.

2.4 Monitoring Well Installation and Development

Following the soil sampling program, five shallow permanent groundwater monitoring wells (GW-01 through GW-05) were installed to characterize potential groundwater impacts. The well locations are depicted on Drawing 1.

The wells were installed in unconsolidated sediment using a Geoprobe track-mounted all-terrain vehicle (ATV) Model 6610 DT. Given the depth to groundwater is approximately 2 to 4 feet within the study area, all monitoring wells were installed to a depth of approximately 12 feet. Each well was completed with a 10 foot length of 2-inch PVC pre-packed well screen and a locking flush-mount manhole cover.

Each well was installed by advancing 3.5-inch outer diameter probe rods to the desired depth with a disposable drive point. After reaching the desired depth, the pre-assembled well screen and PVC riser pipe were installed inside the probe rods. After setting the well, the probe rods were retracted from the ground and a 1 to 2-foot layer of fine sand was placed above the pre-packed well screen prior to installing a 2-foot bentonite seal. A locking flush-mounted well cover was grouted in place to complete the well.

All installed monitoring wells were developed by pumping for 2 hours, or until the turbidity of the groundwater achieved a reading of 50 NTUs (nephelometric turbidity units) or less. Well development was supplemented by measurements of field parameters, including temperature, pH and specific conductance. Development continued until the field parameters stabilized for a minimum of three consecutive readings of 10 percent variability or less.

Drill cuttings were not generated with the use of the direct push well installation technique. Purge water generated during well development was placed in 55-gallon drums for characterization and proper off-site disposal, as discussed in Section 2.8. All non-dedicated

TABLE 3-1

 v_{ij}

Village of Cold Spring Cold Spring Former Manufactured Gas Plant Site Site investigation

WATER LEVEL MEASUREMENTS AND GROUNDWATER ELEVATIONS

r V Version Version

		September 22, 2008	r 22, 2008			October 2, 2008	- 2, 2008			October 20, 2008	20, 2008			November 19, 2008	r 19, 2008	
Well #	TOC Elevation (ft msl)	Depth to Bottom (ft)	Depth to Water (ft)	Water Elevation (ft msi)	TOC Elevation (ft msl)	Depth to Bottom (ft)	Depth to Water (ft)	Water Elevation (ft msl)	TOC Elevation (ft msl)	Depth to Bottom (ft)	Depth to Water (ft)	Water Elevation (ft msl)	TOC Elevation (ft msl)	Depth to Bottom (ft)	Depth to Water (ft)	Water Elevation (ft msl)
GW-01	6.82	12.12	2.58	4.24	6.82	12.13	2.64	4.18	6.82	12.13	2.61	4.21	6.82	12.13	2.27	4.55
GW-02	6.04	11.85	3.54	2.50	6.04	11.84	3.13	2.91	6.04	11.84	3.16	2.88	6.04	11.84	3.36	2.68
GW-03	5.04	12	3.51	1.53	5.04	12.02	3.01	2.03	5.04	12.02	1.75	3.29	5.04	12.02	3.48	1.56
GW-04	4.31	11.88	2.77	1.54	4.31	12	2.25	2.06	4.31	12	1.12	3.19	4.31	12	2.7	1.61
GW-05	5.26	11.89	2.92	2.34	5.26	11.7	2.48	2.78	5.26	11.7	2.36	2.90	5.26	11.7	2.76	2.50
MW-01	6.37	5.5	N/A	NA	6.37	5.46	2.7	3.67	6.37	5.46	2.81	3.56	6.37	5.46	2.69	3.68
PIER BENCHMARK	5.54	NIA	5.65	-0.11	5.54	NA	5.23	0.31	5.54	MM	1.20	4.34	5.54	NA	5.8	-0.26

NOTES: Measurements collected in feet below top of casing MSL: Mean Sea Level TOC: Top of Well Casing NVA: Not Measured

.

10/8/2009

{

The Bouwer and Rice Slug Test – An Update^{*}

by Herman Bouwer^b

ABSTRACT

The Bouwer and Rice slug test was developed to measure aquifer hydraulic conductivity around boreholes (production, monitoring, or test wells). The wells can be partially penetrating and partially screened, perforated, or otherwise open. The slug test can be based on quickly withdrawing a volume of water from the well and measuring the subsequent rate of rise of the water level in the well, or by adding a slug of water and measuring the subsequent rate of fall of the water level in the well. While originally developed for unconfined aquifers, the method can also be used for confined or stratified aquifers if the top of the screen or perforated section is some distance below the upper confining layer. Anomalies ("double straight line effect") sometimes observed in the measured rate of rise of the water level in the well are attributed to drainage of a gravel pack or developed zone around the well following lowering of the water level. The effect of this drainage can be eliminated by ignoring the early data points and using the second straight line portion in the data plot for calculation of hydraulic conductivity. The method is applicable to any diameter and depth of the borehole, provided that the dimensions of the system are covered by the ranges for which the geometry factor Re has been worked out. The smaller the diameter of the hole, however, the more vulnerable the results will be to aquifer heterogeneities and to inaccuracies in estimating effective well diameters. Computer programs for rapid processing of the field data have been developed.

Received December 1986, revised August 1988, accepted September 1988.

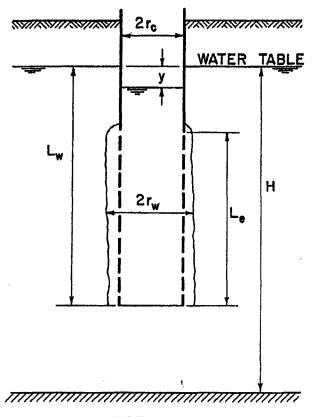
Discussion open until November 1, 1989.

INTRODUCTION

The slug test developed by Bouwer and Rice (1976) permits the measurement of saturated hydraulic conductivity (K) of aquifer materials with a single well. The method consists of quickly lowering or raising the water level in a well or borehole from equilibrium and measuring its subsequent rate of rise or fall, respectively. The method was designed to measure K of the aquifer around the screen or otherwise open portion of the well for fully or partially penetrating wells in unconfined aquifers. Because of its simplicity, the Bouwer and Rice slug test has become a frequently used tool in ground-water investigations. This paper addresses some of the experiences obtained with the method, including the validity of falling level tests, use of the method in confined aquifers, effect of draining gravel packs on the rise of the water level, effect of hole diameter, and computer processing of field data.

METHODOLOGY

Geometry and symbols of a slug-tested well are shown in Figure 1. The rate of flow of ground water into the well when the water level in the well is a distance y lower than the static ground-water table around the well is calculated with the Thiem equation as


$$Q = 2\pi K L_e \frac{y}{\ln(R_e/r_w)}$$
(1)

where Q = volume rate of flow into well; K = hydraulic conductivity of aquifer around well; L_e = length of screened, perforated, or otherwise open section of well; y = vertical difference between water level inside well and static water table outside

Vol. 27, No. 3-GROUND WATER-May-June 1989

^aContribution of the U.S. Department of Agriculture, Agricultural Research Service.

^bLaboratory Director, U.S. Water Conservation Laboratory, Phoenix, Arizona 85040.

IMPERMEABLE

Fig. 1. Geometry and symbols for slug test on partially penetrating, partially screened well in unconfined aquifer with gravel pack and/or developed zone around screen.

well; R_e = effective radial distance over which y is dissipated; and r_w = radial distance of undisturbed portion of aquifer from centerline.

Values of R_e were determined with an electrical resistance network analog for different values of r_w , L_e , L_w , and H (see Figure 1 for meaning of geometry symbols). The value of r_w is the radius of the screened or open section of the well plus the thickness of a sand or gravel pack and/or of the developed zone around the well. Thus, r_w is the radial distance from the center of the well to normal K of the aquifer. Because the thickness of the developed zone is almost never known, the tendency is to ignore it and take only gravel or sand packs into account.

The rate of rise dy/dt of the water level in the well after the water level has been quickly lowered some distance is

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -\frac{Q}{\pi r_{\mathrm{c}}^2} \tag{2}$$

where r_c is the radius of the casing or other section of the well where the rise of the water level is measured. If the water level rises in the screened or open section of the well with a gravel pack around it, the thickness and porosity of the gravel envelope should be taken into account when calculating the equivalent value of r_c for the rising water level. This calculation is based on the total free-water surface area in the well and sand or gravel pack, calculated as $\pi r_c^2 + \pi (r_w^2 - r_c^2)n$, where n is the porosity, and $r_w - r_c$ is the thickness of the envelope. The equivalent radius of a circle giving this total area is then calculated as $[(1 - n)r_c^2 + nr_w^2]^{\frac{14}{2}}$. For example, if the radius of the screen or perforated casing is 20 cm and there is 8 cm gravel pack with a porosity of 30 percent, r_c should be taken as 25.9 cm, while r_w is 28 cm.

Solving equation (2) for Q, equating the resulting expression to equation (1), integrating, and solving for K yields

$$K = \frac{r_c^2 \ln(R_e/r_w)}{2L_c} \frac{1}{t} \ln \frac{y_0}{y_t}$$
(3)

where $y_0 = y$ at time zero; and $y_t = y$ at time t.

The results of the analog analyses to evaluate R_e for various system geometries were expressed in terms of the dimensionless ratio $\ln (R_e/r_w)$. The data could be fitted into two equations, one for the case where $L_w < H$, and one where $L_w = H$. The resulting equations were, respectively,

$$\ln \frac{R_{e}}{r_{w}} = \left[\frac{1.1}{\ln (L_{w}/r_{w})} + \frac{A + B \ln [(H - L_{w})/r_{w}]}{L_{e}/r_{w}} \right]^{-1} (4)$$

and
$$\ln \frac{R_{e}}{r_{w}} = \left[\frac{1.1}{\ln (L_{w}/r_{w})} + \frac{C}{L_{e}/r_{w}} \right]^{-1} (5)$$

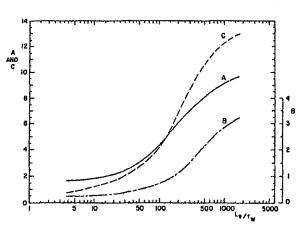


Fig. 2. Dimensionless parameters A, B, and C as a function of L_e/r_w for calculation of In (R_e/r_w).

where A, B, and C are dimensionless numbers plotted in Figure 2 as a function of L_e/r_w .

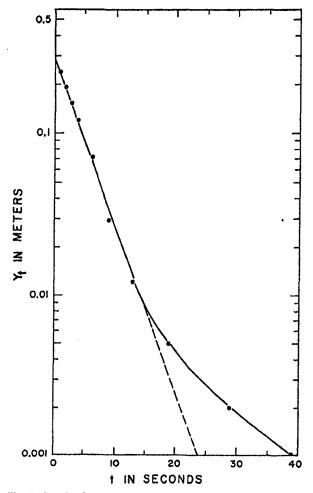


Fig. 3. Graph of log y_t versus t for slug test on well in Salt River Bed, 27th Avenue, Phoenix, Arizona.

Because y and t are the only variables in equation (3), a plot of $\ln y_t$ versus t must show a straight line. Thus, instead of calculating K on the basis of two measurements of y and t (y_0 at t = 0 and y_t at t), a number of y and t measurements can be taken and $\left[\ln(y_0/y_t)\right]/t$ determined as the slope of the best-fitting line through the y versus t points on semilogarithmic paper (Figure 3). The straight line through the data points can also be used to select two values of y, namely, y_0 and y_1 , along with the time interval t between them for substitution into equation (3). Because drawdown of the ground-water table around the well becomes increasingly significant as the test progresses, the points as in Figure 3 begin to deviate from the straight line for large t and small y. Thus, only the straight line portion of the data points should be used to evaluate $[\ln(y_0/y_t)]/t$ for calculation of K with equation (3).

The slug test can be used on production wells, test wells, observation wells, and monitoring wells. Objectives for the measurements include characterization of aquifer hydraulic conductivity for modeling, ground-water recharge studies, and ground-water pollution studies. The method is particularly useful in ground-water contamination studies because the slug test can be carried out on the same wells used for ground-water quality monitoring. Also, combining the resulting values of hydraulic conductivity with the porosity of the aquifer and slopes of the ground-water table or piezometric surface permits the prediction of porewater velocities and, hence, the rate of movement of pollution plumes and transport of contaminants. The slug test can also be useful in determining vertical distribution of hydraulic conductivities in an aquifer system and other spatial variability of hydraulic conductivity in studies of macrodispersion and movement of contaminants.

Over the years, a number of questions and comments about the slug test have been received. These questions and comments are addressed in the following sections.

DOUBLE STRAIGHT LINE EFFECT

Users of the slug test have observed that when plotting log y_t versus t as in Figure 3, they sometimes get a double straight line as shown schematically in Figure 4. The first part (AB) is straight and steep, whereas the next part (BC) is straight and less steep. Then, at point C, the points begin their expected deviation from the straight line as

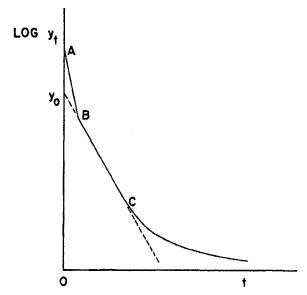


Fig. 4. Schematic of double straight line effect.

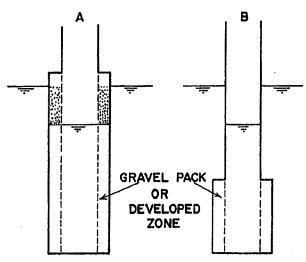


Fig. 5. Slug test for borehole with ground-water level below (A), and above (B) top of screen or perforated section.

the drawdown around the hole becomes significant relative to y_t . The first straight line portion in Figure 4 is probably due to a highly permeable zone around the well (gravel pack or developed zone), which quickly sends water into the well immediately after the water level in the well has been lowered (Figure 5A). Then, when the water level in the permeable zone around the well has drained to the water level in the well itself, the flow into the well slows down and the points begin to form a second, less steep, straight line (BC in Figure 4). This second straight line is more indicative of the flow from the undisturbed aquifer into the well. Hence, segment BC should be used in calculating K of the aquifer with equation (3). In the original 1976 article, gravel envelopes or developed zones were assumed to drain at the same rate as the water level in the borehole when it is lowered for the slug test, i.e., essentially instantaneously. However, some gravel packs or developed zones apparently are not permeable enough to give such instantaneous drainage.

If the ground-water table is above the screened or open section of the borehole, and the water level in the hole is not lowered so far that it drops below the top of the open section (Figure 5B), the gravel envelope or developed zone around the open section cannot drain. The inflow into the hole then is immediately controlled by the aquifer, and the double straight line effect should not occur. If it still occurs, it could indicate leakage around the casing or grouting above the gravel pack.

Where the double straight line is due to a gravel pack around the well, the effective well

radius rw should be taken as the radial distance from the center of the well to the outer surface of the gravel pack. Where the double straight line is due to a naturally developed zone around the well, rw is harder to evaluate and an "intelligent" estimate must be made. It may also be possible to estimate r_w from the value of y at point B in Figure 4. Considering the volume of water in the well between y_A and y_B in Figure 4 to be due to the drainage of the gravel pack or developed zone, and knowing or estimating the drainable porosity of the gravel pack or developed zone, the radial extent of this zone can be calculated for evaluation of rw. Capillary fringe effects do not have to be considered, since the capillary fringe was also present in the pack or in the developed zone before the water level was lowered. Because the rising water level in the hole during the slug test will also fill up the drained pore space of the gravel pack or developed zone, the value of r_c in the equation for calculation of K should be adjusted to take this effect into account, as discussed earlier in this article.

Conceivably, a well could have a gravel pack surrounded by a less permeable developed zone before the original aquifer material is reached. This could lead to a triple straight line effect, with an intermediate straight line portion at point B, or a curved transition zone at B if the hydraulic conductivity of the developed zone gradually decreases until K of the original aquifer material is reached. By the same token, portion AB in Figure 4 could also be curved if the hydraulic conductivity of the gravel pack or developed zone immediately around the well decreases with radial distance from the well.

FALLING WATER LEVEL TEST

The slug test was developed for a rising water level in the borehole, as obtained by quick removal of a certain volume or slug of water. This can be achieved by bailing, (quick) pumping, or by immersing a section of pipe filled with sand or other ballast and closed with caps on both ends, or other submersible object, in the borehole, letting the water level in the borehole return to equilibrium, and quickly removing the submerged object. The question is often raised: can the method also be used when a volume of water is quickly added to the hole and the subsequent rate of fall of the water level in the hole is measured for calculation of K? The answer is yes, provided that the equilibrium water level is above the screened or open section of the borehole (Figures 1 and 5B). In this

corresponding values of t are read from the graph. The natural logarithm of the ratio y_0/y_t is then taken and divided by the difference between the two values of t. For example, Figure 3 shows that at y is 0.28 m and 0.001 m, t is 0 and 24 seconds, respectively. This yields

1/t $\ln(y_0/y_t) = 1/24 \ln(0.28/0.001) = 0.23$ m/sec. If 1/t $\ln(y_0/y_t)$ is calculated from the slope of the curve, the number of log cycles on the vertical scale between the two points is divided by the time increment and multiplied by 2.3 to convert to natural logarithm. For example, Figure 3 shows that the straight line from $y_0 = 0.28$ m to $y_t = 0.001$ m covers 2.4 log cycles. The time increment between the two points is again 24 seconds, yielding 1/t $\ln(y_0/y_t) = 2.3 \times 2.4/24 = 0.23$ m/sec, which is the same as calculated earlier. Because of different coordinate scales in plots of log y versus t, the value of 1/t $\ln(y_0/y_t)$ cannot be taken as the actual slope of the straight line portion!

ESTIMATING RATE OF RISE OR FALL OF WATER LEVEL IN WELL

If the water level in a slug-tested well rises or falls at a relatively slow rate, simple water-level measuring devices and a stop watch may be all that is needed to do the test. Fast-moving water levels, however, require the use of a pressure transducer and a fast-acting x-y plotter. To get some idea about the rate of water-level movement that can be expected in a slug-tested well and what equipment to use, equation (3) can be solved for t and $\ln(y_0/y_t)$ can be taken as $\ln 10$ to calculate the time $t_{90\%}$ required for the water level in the well to rise or fall 90% of the initial lowering or raising, respectively, of the water level in the well. This yields the equation

$$t_{90\%} = 1.15 \frac{r_c^2}{KL_e} \ln \frac{R_e}{r_w}$$
 (6)

where K must be taken as the estimated or expected value of K of the aquifer. Equation (6) yields values of t that are 22 times greater than the t values calculated by the $t_{90\%}$ equation in the original article (Bouwer and Rice, 1976), where $\ln(y_0/y_t)$ was erroneously taken as $\ln 0.9$, thus yielding the time required for only 10% of the water-level rise or fall to occur.

COMPUTER PROGRAMS

Where the Bouwer and Rice slug test is routinely used, time for calculating K with equation (3) is saved by developing a computer program in which values of L_e/r_w are stored for direct calculation of $\ln(R_e/r_w)$ and K from the field data. Such programs have been developed by several users (see, for example, Pandit and Miner, 1986; and Kemblowski and Klein, 1988). Also, a number of users have designed forms for easy and systematic recording of field data.

REFERENCES

- Bouwer, H. and R. C. Rice. 1976. A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resources Research. v. 12, pp. 423-428.
- Kemblowski, M. W. and C. L. Klein. 1988. An automated numerical evaluation of slug test data. Ground Water. v. 26, pp. 435-438.
- Pandit, N. S. and R. F. Miner. 1986. Interpretation of slug test data. Ground Water. v. 24, pp. 743-749.

* * * *

Herman Bouwer received B.S. and M.S. degrees in 1949 and 1952 in Drainage, Reclamation, and Irrigation from the National Agricultural University at Wageningen, The Netherlands, and a Pb.D. degree in 1955 in Soil and Water Management from Cornell University, New York. He was associated with the Agricultural Engineering Department of Auburn University, Alabama, from 1955 to 1959, before joining the U.S. Water Conservation Laboratory in Phoenix, Arizona, where he became Director in 1972. In 1970, he also was appointed Adjunct Professor at Arizona State University in Tempe where he taught Ground-Water Hydrology in the Geology and Civil Engineering Departments. He is also an Adjunct Professor at the University of Arizona in Tucson.

APPENDIX H

ANALYTICAL RESULTS AND MANIFESTS FOR DISPOSAL OF IDW

J:\Projects\11176853\Deliverables\2014 Field Work\Round 2 Hydrogeologic PDIR\Hydrogeologic PDIR - REV.docx

Pies	NON-H		DOUS WA	STE M	ANIF	EST	182458	11.25
	NON-HAZARDOUS 1. General WASTE MANIFEST	or's US EPA ID I	No. CESQG			Manifest Document No		2. Page 1 of 1
	3 Generators Name and Mailing Address NYSDEC-DER 625 Broadway, 12th Floor					Cold Sp	ing MPG-5 New S	Street
112	Albany, NY 12233 4. Generator's Phone (518) 402-9814						ring, NY 10518	
1	5. Transporter 1 Company Name Metro Environmental Contracti 7. Transporter 2 Company Name	6. ng 1 8.	US EPAID N NYROO(US EPAID N	134	957	A. State Trans B. Transporte C. State Trans	1 Phone (631)	884-1880
11:	Bughbly Emysles Lithes	~p)[1	PAD PAD	ele1381		D. Transporte	r 2 Phone	
11	Republic Environmental Systems 2869 Sandstone Drive	3				F. Facility's Pl	-	
14:	Hatfield, PA 19440		PAD085	690		ontainers	(215) 822-899 13. Total	15 14. Ugit
<u> </u>	* Non Hazardous		•		No.	Туре	Quantity	WL/Vol,
<u> </u>	Non-DOT Regulated Material (Decon Water)	•			2	Om	110	6
GENE	^b Non Hazardous Non-DOT Regulated Material (Drill Cuttings)				n	Om	4325	ρ
R A T O	с.					•	•	
R/	d.	T.		•				
J F	G. Additional Descriptions for Materials Listed Above			 · .	ļ	H. Handling Co	des for Wastes Listed Above	1
11								
JE								
	15. Special Handling Instructions and Additional Information 11a) 640569							•
11-	11b) 639834 Doc# 171323-14			·				
	16. GENERATOR'S CERTIFICATION: L bereby cardly that the con	tenis of this ship	ment are fully and account	ately described	and are in a	all respects	7.77.71	ET E
1.5.1	 GENERATOR'S CERTIFICATION: I hereby certify that the con in proper condition for transport. The materials described on this 	s manifest are no	ot subject to locieral haze	ardous wasta reg	julations.		· <i>.</i>	Date
//r	PrintedTyped Name James Uhrsham As Aren't 17. Transporter 1 Acknowledgement of Receipt of Materials	Ľ	Signature	ber	K		Month S	Day Year 1919
TRANSPORTE	Printed/Typed Nume Lanes Uhch 18. Transporter 2 Acknowledgement of Receipt of Materials		Signature	le	er	· ·	Month S	Day Year
R T E R	Printed/Typed Name MUNSSA B DULAN		Signature	LB	Q	¢	Monith	Day Year
F A C	19. Discrepancy Indication Space		·	Δ				
- L - T Y	20. Facility Owner or Operator; Certification of receipt of the waste	materials covered	d by this mainifest, excep	n a holed inte	m 19.			Dâta Payn Ylar
F-14	© 2002 LABELI [©] IASTER [®] (800) 621-5808 www.labelmaster.co	m	PRIMITED O	ON RECYCLED PAPER G SOYBEAN INK	e sov	NITE INIC		Rev. 3/05

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-58374-1 Client Project/Site: Cold Spring MGP #340026

For:

New York State D.E.C. 625 Broadway 11th Floor Albany, New York 12233-3256

Attn: Mr. Dave Chiusano

Joeph V. Giacomogra

Authorized for release by: 4/30/2014 2:39:54 PM Joe Giacomazza, Project Management Assistant II joe.giacomazza@testamericainc.com

Designee for

Judy Stone, Senior Project Manager (484)685-0868 judy.stone@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: New York State D.E.C. Project/Site: Cold Spring MGP #340026

> I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Joseph V. Giacomage

Joe Giacomazza Project Management Assistant II 4/30/2014 2:39:54 PM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	9
QC Sample Results	11
QC Association Summary	18
Lab Chronicle	21
Certification Summary	22
Method Summary	24
Sample Summary	25
Chain of Custody	26
Receipt Checklists	32

Client: New York State D.E.C. Project/Site: Cold Spring MGP #340026

Qualifiers

Metals

Weldis		
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5
В	Compound was found in the blank and sample.	J

Glossary

Qualifiers		3
Metals		Λ
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	5
В	Compound was found in the blank and sample.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	8
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	9
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	13
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Job ID: 480-58374-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-58374-1

Receipt

The samples were received on 4/19/2014 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.9° C.

GC/MS VOA

Method(s) 8260C: The following samples were diluted due to the nature of the TCLP sample matrix: (LB 480-177492/1-A), IDW1 (480-58374-1). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method(s) 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with batch 177934.

Method(s) 3550C: The following sample: IDW1 (480-58374-1) were decanted prior to preparation.

No other analytical or quality issues were noted.

Client Sample ID: IDW1

Lab Sample ID: 480-58374-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Arsenic	0.0085	J	0.50	0.0032	mg/L	1	6010C	TCLP
Barium	0.46	JB	10.0	0.00067	mg/L	1	6010C	TCLP
Cadmium	0.0040	J	0.10	0.00066	mg/L	1	6010C	TCLP
Chromium	0.0033	J	0.50	0.0022	mg/L	1	6010C	TCLP
Lead	0.17	J	0.50	0.0019	mg/L	1	6010C	TCLP
Sulfide, Reactive	120		10.0	0.57	mg/Kg	1	9034	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac D	Method	Prep Type
Flashpoint	>176.0		50.0	50.0	Degrees F	1	1010A	Total/NA
pH	6.90		0.100	0.100	SU	1	9045D	Total/NA

RL

0.010

0.050

0.010

0.010

0.010

0.010

0.010

0.010

MDL Unit

0.0021 mg/L

0.013 mg/L

0.0041 mg/L

0.0027 mg/L

0.0075 mg/L

0.0034 mg/L

0.0036 mg/L

0.0046 mg/L

D

Prepared

04/24/14 08:18

04/24/14 08:18

Method: 8260C - Volatile Organic Compounds by GC/MS - TCLP

Result Qualifier

ND

ND

ND

ND

ND

ND

ND

ND

Client Sample ID: IDW1

Date Collected: 04/18/14 10:00

Date Received: 04/19/14 09:00

Analyte

Benzene

1,2-Dichloroethane

2-Butanone (MEK)

Carbon tetrachloride

Chlorobenzene

Tetrachloroethene

Trichloroethene

2-Fluorobiphenyl 2-Fluorophenol (Surr) Nitrobenzene-d5 (Surr) p-Terphenyl-d14 (Surr)

Phenol-d5 (Surr)

Chloroform

Lab Sample ID: 480-58374-1

Analyzed

04/23/14 21:57

04/23/14 21:57

04/23/14 21:57

04/23/14 21:57

04/23/14 21:57

04/23/14 21:57

04/23/14 21:57

04/23/14 21:57

Matrix: Solid

Dil Fac

10

10

10

10

10

10

10

10

6

			0.010	0.0010	<u>g</u> , _			0 11 201 11 21101	
Vinyl chloride	ND		0.010	0.0090	mg/L			04/23/14 21:57	10
1,1-Dichloroethene	ND		0.010	0.0029	mg/L			04/23/14 21:57	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		66 - 137					04/23/14 21:57	10
4-Bromofluorobenzene (Surr)	102		73 - 120					04/23/14 21:57	10
Toluene-d8 (Surr)	102		71 - 126					04/23/14 21:57	10
Dibromofluoromethane (Surr)	102		60 - 140					04/23/14 21:57	10
Method: 8270D - Semivolatile	Organic Compou	inds (GC/M	S) - TCLP						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.010	0.00046	mg/L		04/24/14 08:18	04/25/14 13:48	1
2,4-Dinitrotoluene	ND		0.0050	0.00045	mg/L		04/24/14 08:18	04/25/14 13:48	1
2,4,5-Trichlorophenol	ND		0.0050	0.00048	mg/L		04/24/14 08:18	04/25/14 13:48	1
2,4,6-Trichlorophenol	ND		0.0050	0.00061	mg/L		04/24/14 08:18	04/25/14 13:48	1
2-Methylphenol	ND		0.0050	0.00040	mg/L		04/24/14 08:18	04/25/14 13:48	1
3-Methylphenol	ND		0.010	0.00040	mg/L		04/24/14 08:18	04/25/14 13:48	1
4-Methylphenol	ND		0.010	0.00036	mg/L		04/24/14 08:18	04/25/14 13:48	1
Hexachlorobenzene	ND		0.0050	0.00051	mg/L		04/24/14 08:18	04/25/14 13:48	1
Hexachlorobutadiene	ND		0.0050	0.00068	mg/L		04/24/14 08:18	04/25/14 13:48	1
Hexachloroethane	ND		0.0050	0.00059	mg/L		04/24/14 08:18	04/25/14 13:48	1
Nitrobenzene	ND		0.0050	0.00029	mg/L		04/24/14 08:18	04/25/14 13:48	1
Pentachlorophenol	ND		0.010	0.0022	mg/L		04/24/14 08:18	04/25/14 13:48	1
Pyridine	ND		0.025	0.00041	mg/L		04/24/14 08:18	04/25/14 13:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	105		52 - 132				04/24/14 08:18	04/25/14 13:48	1
2-Fluorobiphenyl	91		48 - 120				04/24/14 08:18	04/25/14 13:48	1
2-Fluorophenol (Surr)	50		20 - 120				04/24/14 08:18	04/25/14 13:48	1
Nitrobenzene-d5 (Surr)	85		46 - 120				04/24/14 08:18	04/25/14 13:48	1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

114

32

Analyte	Result C	Qualifier	RL MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	0.	34 0.066	mg/Kg	<u></u>	04/21/14 11:26	04/22/14 18:55	1
PCB-1221	ND	0.	34 0.066	mg/Kg	⇔	04/21/14 11:26	04/22/14 18:55	1
PCB-1232	ND	0.	34 0.066	mg/Kg	₽	04/21/14 11:26	04/22/14 18:55	1
PCB-1242	ND	0.	34 0.066	mg/Kg	¢	04/21/14 11:26	04/22/14 18:55	1
PCB-1248	ND	0.	34 0.066	mg/Kg	⇔	04/21/14 11:26	04/22/14 18:55	1
PCB-1254	ND	0.	34 0.16	mg/Kg	⇔	04/21/14 11:26	04/22/14 18:55	1
PCB-1260	ND	0.	34 0.16	mg/Kg	¢	04/21/14 11:26	04/22/14 18:55	1

67 - 150

16 - 120

TestAmerica Buffalo

04/25/14 13:48

04/25/14 13:48

1

1

Page 7 of 32

Lab Sample ID: 480-58374-1

Date Collected: 04/18/14 10:00 Date Received: 04/19/14 09:00

Client Sample ID: IDW1

Matrix: Solid
Percent Solids: 64.5

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	103		46 - 175				04/21/14 11:26	04/22/14 18:55	1
DCB Decachlorobiphenyl	141		47 - 176				04/21/14 11:26	04/22/14 18:55	1
Method: 6010C - Metals (ICP)	·								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0085	J	0.50	0.0032	mg/L		04/25/14 10:31	04/28/14 10:21	1
Barium	0.46	JB	10.0	0.00067	mg/L		04/25/14 10:31	04/28/14 10:21	1
Cadmium	0.0040	J	0.10	0.00066	mg/L		04/25/14 10:31	04/28/14 10:21	1
Chromium	0.0033	J	0.50	0.0022	mg/L		04/25/14 10:31	04/28/14 10:21	1
Lead	0.17	J	0.50	0.0019	mg/L		04/25/14 10:31	04/28/14 10:21	1
Selenium	ND		0.25	0.0041	mg/L		04/25/14 10:31	04/28/14 10:21	1
Silver	ND		0.50	0.0022	mg/L		04/25/14 10:31	04/28/14 10:21	1
- Method: 7470A - TCLP Mercu	urv - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		04/23/14 12:15	04/23/14 15:09	1
-									
General Chemistry									
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
-	Result ND	Qualifier	RL		Unit mg/Kg	_ D	Prepared 04/28/14 05:30	Analyzed 04/30/14 00:12	Dil Fac
Analyte		Qualifier		0.0030	mg/Kg	_ D	·		Dil Fac 1 1
Analyte Cyanide, Reactive	ND 120	Qualifier Qualifier	10.0	0.0030 0.57	mg/Kg	D	04/28/14 05:30	04/30/14 00:12	Dil Fac 1 1 Dil Fac
Analyte Cyanide, Reactive Sulfide, Reactive	ND 120	Qualifier	10.0 10.0	0.0030 0.57 RL	mg/Kg mg/Kg Unit		04/28/14 05:30 04/24/14 08:27	04/30/14 00:12 04/24/14 13:00	1

Prep Type: Total/NA

Matrix: Solid						Prep Type: Total/NA
_				Percent Su	rrogate Recovery (A	Acceptance Limits)
		12DCE	BFB	TOL	DBFM	
Lab Sample ID	Client Sample ID	(66-137)	(73-120)	(71-126)	(60-140)	
LCS 480-177836/6	Lab Control Sample	100	100	102	105	
MB 480-177836/7	Method Blank	103	103	104	105	
Surrogate Legend						
12DCE = 1,2-Dichloro	ethane-d4 (Surr)					
BFB = 4-Bromofluorob	enzene (Surr)					
TOL = Toluene-d8 (Su	ırr)					
DBFM = Dibromofluor	omethane (Surr)					

Method: 8260C - Volatile Organic Compounds by GC/MS

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Percent Surrogate Recovery (Acceptance Limits) 12DCE BFB TOL DBFM (66-137) (73-120) (71-126) (60-140) Lab Sample ID **Client Sample ID** 480-58374-1 IDW1 103 102 102 102 LB 480-177492/1-A Method Blank 103 100 101 102 Surrogate Legend 12DCE = 1,2-Dichloroethane-d4 (Surr) BFB = 4-Bromofluorobenzene (Surr) TOL = Toluene-d8 (Surr) DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid

		Percent Surrogate Recovery (Acceptance Limits)								
		ТВР	FBP	2FP	NBZ	ТРН	PHL			
Lab Sample ID	Client Sample ID	(52-132)	(48-120)	(20-120)	(46-120)	(67-150)	(16-120)			
LCS 480-177934/2-A	Lab Control Sample	90	84	46	73	92	31			
LCSD 480-177934/3-A	Lab Control Sample Dup	97	90	48	77	96	32			
MB 480-177934/1-A	Method Blank	76	75	43	69	91	29			
Surrogate Legend										
TBP = 2,4,6-Tribromoph	enol (Surr)									
FBP = 2-Fluorobiphenyl										

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

TPH = p-Terphenyl-d14 (Surr)

PHL = Phenol-d5 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: TCLP Percent Surrogate Recovery (Acceptance Limits) TBP FBP 2FP NBZ трн PHL (52-132) (48-120) (20 - 120)(46-120) (67-150) (16-120) Lab Sample ID **Client Sample ID** 480-58374-1 IDW1 50 85 114 32 105 91 LB 480-177430/1-D Method Blank 92 84 46 73 106 32

TestAmerica Buffalo

Prep Type: Total/NA

7

Client: New York State D.E.C. Project/Site: Cold Spring MGP #340026

Prep Type: Total/NA

5
7
8
9

Surrogate Legend

ean egate legena	
TBP = 2,4,6-Tribromophenol (Surr)	
FBP = 2-Fluorobiphenyl	
2FP = 2-Fluorophenol (Surr)	
NBZ = Nitrobenzene-d5 (Surr)	
TPH = p-Terphenyl-d14 (Surr)	
PHL = Phenol-d5 (Surr)	

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		TCX2	DCB2	
Lab Sample ID	Client Sample ID	(46-175)	(47-176)	
480-58374-1	IDW1	103	141	
LCS 480-177189/2-A	Lab Control Sample	120	132	
MB 480-177189/1-A	Method Blank	108	117	

Surrogate Legend

TCX = Tetrachloro-m-xylene DCB = DCB Decachlorobiphenyl

TestAmerica Buffalo

Lab Sample ID: MB 480-177836/7

Analysis Batch: 177836

Matrix: Solid

1,2-Dichloroethane

2-Butanone (MEK)

Carbon tetrachloride

Chlorobenzene

Tetrachloroethene

1,1-Dichloroethene

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Trichloroethene

Vinyl chloride

Surrogate

Chloroform

Analyte

Benzene

Client Sample ID: Method Blank

Analyzed

04/23/14 19:34

04/23/14 19:34

04/23/14 19:34

04/23/14 19:34

04/23/14 19:34

04/23/14 19:34

04/23/14 19:34

04/23/14 19:34

Client Sample ID: Lab Control Sample

04/23/14 19:34

Client Sample ID: Method Blank

Prep Type: TCLP

Prep Type: Total/NA

Prep Type: Total/NA

Dil Fac

1

1

1

1

1

1

1

5

8

04/23/14 19:34	1	
04/23/14 19:34	1	
Amalymod	Dil Coo	
Analyzed	Dil Fac	
Analyzed 04/23/14 19:34	Dil Fac	
	Dil Fac 1 1	1

Lab Sample ID: LCS 480-177836/6 Matrix: Solid Analysis Batch: 177836

	Spike	LCS LCS				%Rec.
Analyte	Added	Result Qualif	ier Unit	D	%Rec	Limits
1,2-Dichloroethane	0.0250	0.0230	mg/L		92	75 - 127
Benzene	0.0250	0.0237	mg/L		95	71 - 124
Chlorobenzene	0.0250	0.0233	mg/L		93	72 - 120
Tetrachloroethene	0.0250	0.0224	mg/L		90	74 _ 122
Trichloroethene	0.0250	0.0235	mg/L		94	74 - 123
1,1-Dichloroethene	0.0250	0.0222	mg/L		89	58 ₋ 121

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		66 - 137
4-Bromofluorobenzene (Surr)	100		73 - 120
Toluene-d8 (Surr)	102		71 - 126
Dibromofluoromethane (Surr)	105		60 - 140

Lab Sample ID: LB 480-177492/1-A Matrix: Solid Analysis Batch: 177836

LB LB Result Qualifier MDL Unit Dil Fac Analyte RL D Prepared Analyzed 1,2-Dichloroethane ND 0.010 0.0021 mg/L 04/23/14 21:15 10 04/23/14 21:15 2-Butanone (MEK) ND 0.050 0.013 mg/L 10 Benzene ND 0.010 0.0041 mg/L 04/23/14 21:15 10 Carbon tetrachloride ND 0.010 0.0027 mg/L 04/23/14 21:15 10 Chlorobenzene ND 0.010 0.0075 mg/L 04/23/14 21:15 10 Chloroform ND 0.010 0.0034 mg/L 04/23/14 21:15 10 Tetrachloroethene ND 0.010 0.0036 mg/L 04/23/14 21:15 10

TestAmerica Buffalo

,	Jai	lihie	Resul

RL

0.0010

0.0050

0.0010

0.0010

0.0010

0.0010

0.0010

0.0010

0.0010

0.0010

Limits

66 - 137

73 - 120

71 - 126

60 - 140

MDL Unit

0.00021 mg/L

0.00041 mg/L

0.00027 mg/L

0.00075 mg/L

0.00034 mg/L

0.00036 mg/L

0.00046 mg/L

0.00090 mg/L

0.00029 mg/L

0.0013 mg/L

D

Prepared

Prepared

Method: 8260C - Volatile Organic Compounds by GC/MS

MB MB Result Qualifier

ND

103 103

104

105

%Recovery

MB MB Qualifier

Client Sample ID: Method Blank

Prep Type: Total/NA

5

8

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LB 480-177492/1-A								ample ID: Metho		
Matrix: Solid Analysis Batch: 177836								Prep Type	e: TCLP	
	LB	LB								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Trichloroethene	ND		0.010	0.0046	mg/L			04/23/14 21:15	10	
Vinyl chloride	ND		0.010	0.0090	mg/L			04/23/14 21:15	10	
1,1-Dichloroethene	ND		0.010	0.0029	mg/L			04/23/14 21:15	10	
	LB	LB								
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	103		66 - 137			-		04/23/14 21:15	10	
4-Bromofluorobenzene (Surr)	100		73 - 120					04/23/14 21:15	10	
Toluene-d8 (Surr)	101		71 - 126					04/23/14 21:15	10	
Dibromofluoromethane (Surr)	102		60 - 140					04/23/14 21:15	10	

Lab Sample ID: MB 480-177934/1-A Matrix: Solid Analysis Batch: 178188

Analysis Batch: 178188								Prep Batch:	177934
	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.0025	0.00012	mg/L		04/24/14 08:18	04/25/14 11:03	1
2,4-Dinitrotoluene	ND		0.0013	0.00011	mg/L		04/24/14 08:18	04/25/14 11:03	1
2,4,5-Trichlorophenol	ND		0.0013	0.00012	mg/L		04/24/14 08:18	04/25/14 11:03	1
2,4,6-Trichlorophenol	ND		0.0013	0.00015	mg/L		04/24/14 08:18	04/25/14 11:03	1
2-Methylphenol	ND		0.0013	0.00010	mg/L		04/24/14 08:18	04/25/14 11:03	1
3-Methylphenol	ND		0.0025	0.00010	mg/L		04/24/14 08:18	04/25/14 11:03	1
4-Methylphenol	ND		0.0025	0.000090	mg/L		04/24/14 08:18	04/25/14 11:03	1
Hexachlorobenzene	ND		0.0013	0.00013	mg/L		04/24/14 08:18	04/25/14 11:03	1
Hexachlorobutadiene	ND		0.0013	0.00017	mg/L		04/24/14 08:18	04/25/14 11:03	1
Hexachloroethane	ND		0.0013	0.00015	mg/L		04/24/14 08:18	04/25/14 11:03	1
Nitrobenzene	ND		0.0013	0.000073	mg/L		04/24/14 08:18	04/25/14 11:03	1
Pentachlorophenol	ND		0.0025	0.00055	mg/L		04/24/14 08:18	04/25/14 11:03	1
Pyridine	ND		0.0063	0.00010	mg/L		04/24/14 08:18	04/25/14 11:03	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	76		52 - 132	04/24/14 08:18	04/25/14 11:03	1
2-Fluorobiphenyl	75		48 - 120	04/24/14 08:18	04/25/14 11:03	1
2-Fluorophenol (Surr)	43		20 - 120	04/24/14 08:18	04/25/14 11:03	1
Nitrobenzene-d5 (Surr)	69		46 - 120	04/24/14 08:18	04/25/14 11:03	1
p-Terphenyl-d14 (Surr)	91		67 - 150	04/24/14 08:18	04/25/14 11:03	1
Phenol-d5 (Surr)	29		16 - 120	04/24/14 08:18	04/25/14 11:03	1

MB MB

Lab Sample ID: LCS 480-177934/2-A Matrix: Solid Analysis Batch: 178188

Analysis Batch: 178188							Prep I	Batch: 177934
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dichlorobenzene	0.0500	0.0278		mg/L		56	32 - 120	
2,4-Dinitrotoluene	0.0500	0.0461		mg/L		92	65 - 154	
Hexachloroethane	0.0500	0.0247		mg/L		49	14 _ 101	

TestAmerica Buffalo

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Nitrobenzene-d5 (Surr)

p-Terphenyl-d14 (Surr)

Phenol-d5 (Surr)

Pentachlorophenol

QC Sample Results

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

73

92

31

Lab Sample ID: LCS 480-17	7934/2-A						Client	Sample	ID: Lab Control Sample
Matrix: Solid									Prep Type: Total/NA
Analysis Batch: 178188									Prep Batch: 177934
			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Pentachlorophenol			0.100	0.0884		mg/L		88	39 - 136
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
2,4,6-Tribromophenol (Surr)	90		52 - 132						
2-Fluorobiphenyl	84		48 - 120						
2-Fluorophenol (Surr)	46		20 - 120						

Г	_									
	Lab Sample ID: LCSD 480-177934/3-A				CI	ient Sam	ple ID: I	Lab Contro	ol Samp	le Dup
	Matrix: Solid							Prep 1	Type: To	tal/NA
	Analysis Batch: 178188							Prep	Batch: 1	77934
		Spike	LCSD	LCSD				%Rec.		RPD
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	1,4-Dichlorobenzene	0.0500	0.0280		mg/L		56	32 - 120	1	36
	2,4-Dinitrotoluene	0.0500	0.0486		mg/L		97	65 - 154	5	20
	Hexachloroethane	0.0500	0.0243		mg/L		49	14 - 101	1	46

0.0907

mg/L

91

39 - 136

Client Sample ID: Method Blank

3

Prep Type: TCLP Prep Batch: 177934

37

46 - 120

67 - 150

16 - 120

0.100

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	97		52 - 132
2-Fluorobiphenyl	90		48 - 120
2-Fluorophenol (Surr)	48		20 - 120
Nitrobenzene-d5 (Surr)	77		46 - 120
p-Terphenyl-d14 (Surr)	96		67 - 150
Phenol-d5 (Surr)	32		16 - 120

Lab Sample ID: LB 480-177430/1-D Matrix: Solid Analysis Batch: 178188

L	3 LB							
Analyte Resu	t Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene N	<u> </u>	0.010	0.00046	mg/L		04/24/14 08:18	04/25/14 12:14	1
2,4-Dinitrotoluene N)	0.0050	0.00045	mg/L		04/24/14 08:18	04/25/14 12:14	1
2,4,5-Trichlorophenol N)	0.0050	0.00048	mg/L		04/24/14 08:18	04/25/14 12:14	1
2,4,6-Trichlorophenol N)	0.0050	0.00061	mg/L		04/24/14 08:18	04/25/14 12:14	1
2-Methylphenol N)	0.0050	0.00040	mg/L		04/24/14 08:18	04/25/14 12:14	1
3-Methylphenol N)	0.010	0.00040	mg/L		04/24/14 08:18	04/25/14 12:14	1
4-Methylphenol N)	0.010	0.00036	mg/L		04/24/14 08:18	04/25/14 12:14	1
Hexachlorobenzene N)	0.0050	0.00051	mg/L		04/24/14 08:18	04/25/14 12:14	1
Hexachlorobutadiene N)	0.0050	0.00068	mg/L		04/24/14 08:18	04/25/14 12:14	1
Hexachloroethane N)	0.0050	0.00059	mg/L		04/24/14 08:18	04/25/14 12:14	1
Nitrobenzene N)	0.0050	0.00029	mg/L		04/24/14 08:18	04/25/14 12:14	1
Pentachlorophenol N)	0.010	0.0022	mg/L		04/24/14 08:18	04/25/14 12:14	1
Pyridine N)	0.025	0.00041	mg/L		04/24/14 08:18	04/25/14 12:14	1

TestAmerica Buffalo

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

04/21/14 11:26 04/22/14 11:46

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

1

/latrix: Solid Analysis Batch: 178188					Prep Type Prep Batch:	
	LB	LB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
,4,6-Tribromophenol (Surr)	92		52 - 132	04/24/14 08:18	04/25/14 12:14	1
-Fluorobiphenyl	84		48 - 120	04/24/14 08:18	04/25/14 12:14	1
-Fluorophenol (Surr)	46		20 - 120	04/24/14 08:18	04/25/14 12:14	1
litrobenzene-d5 (Surr)	73		46 - 120	04/24/14 08:18	04/25/14 12:14	1
-Terphenyl-d14 (Surr)	106		67 - 150	04/24/14 08:18	04/25/14 12:14	1
Phenol-d5 (Surr)	32		16 - 120	04/24/14 08:18	04/25/14 12:14	1
ethod: 8082A - Polychlo	rinated Biphen	yls (PCBs)	by Gas Chromatog	raphy		

QC Sample Results

Matrix: Solid Analysis Batch: 177351								Prep Type: T Prep Batch:	
	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.18	0.036	mg/Kg		04/21/14 11:26	04/22/14 11:46	1
PCB-1221	ND		0.18	0.036	mg/Kg		04/21/14 11:26	04/22/14 11:46	1
PCB-1232	ND		0.18	0.036	mg/Kg		04/21/14 11:26	04/22/14 11:46	1
PCB-1242	ND		0.18	0.036	mg/Kg		04/21/14 11:26	04/22/14 11:46	1
PCB-1248	ND		0.18	0.036	mg/Kg		04/21/14 11:26	04/22/14 11:46	1
PCB-1254	ND		0.18	0.087	mg/Kg		04/21/14 11:26	04/22/14 11:46	1
PCB-1260	ND		0.18	0.087	mg/Kg		04/21/14 11:26	04/22/14 11:46	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	108		46 _ 175				04/21/14 11:26	04/22/14 11:46	1

Lab Sample ID: LCS 480-177189/2-A
Matrix: Solid
Analysis Batch: 177351

DCB Decachlorobiphenyl

Analysis Batch: 177351									Prep	Batch: 177189
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016			2.46	3.23		mg/Kg		131	51 _ 185	
PCB-1260			2.46	3.58		mg/Kg		145	61 - 184	
	LCS	LCS								

47 - 176

	205	200	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	120		46 - 175
DCB Decachlorobiphenyl	132		47 _ 176

117

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 240-127935/2-A Matrix: Solid Analysis Batch: 128208	МВ	МВ					Client Sa	mple ID: Metho Prep Type: T Prep Batch:	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.50	0.0032	mg/L		04/25/14 10:31	04/28/14 10:13	1
Barium	ND		10.0	0.00067	mg/L		04/25/14 10:31	04/28/14 10:13	1

TestAmerica Buffalo

RL

0.10

MDL Unit

0.00066 mg/L

D

Prepared

04/25/14 10:31

MB MB

ND

Result Qualifier

Lab Sample ID: MB 240-127935/2-A

Matrix: Solid

Analyte

Cadmium

Analysis Batch: 128208

Method: 6010C - Metals (ICP) (Continued)

Client Sample ID: Method Blank

Analyzed

04/28/14 10:13

Prep Type: Total/NA Prep Batch: 127935

Prep Type: TCLP Prep Batch: 127935

Dil Fac

1

8

Chromium	ND	0.50	0.	0022 mg/L		04/2	5/14 10:31	04/28/14 10:13	1
Lead	ND	0.50	0.0	0019 mg/L		04/2	5/14 10:31	04/28/14 10:13	1
Selenium	ND	0.25	0.0	0041 mg/L		04/2	5/14 10:31	04/28/14 10:13	1
Silver	ND	0.50	0.	0022 mg/L		04/2	5/14 10:31	04/28/14 10:13	1
Lab Sample ID: LCS 240-127935/3-A						Client	Sample	ID: Lab Contro	ol Sample
Matrix: Solid								Prep Type:	Total/NA
Analysis Batch: 128208								Prep Batc	h: 127935
	Spik	е	LCS	LCS				%Rec.	
Analyte	Adde	d	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	2.0	0	2.06		mg/L		103	50 - 150	
Barium	2.0	0	1.93	J	mg/L		97	50 - 150	
Cadmium	0.050	0	0.0499	J	mg/L		100	50 - 150	
Chromium	0.20	0	0.194	J	mg/L		97	50 ₋ 150	
Lead	0.50	0	0.482	J	mg/L		96	50 - 150	
Selenium	2.0	0	2.06		mg/L		103	50 - 150	
Silver	0.050	0	0.0544	J	mg/L		109	50 ₋ 150	
Lab Sample ID: LB 240-127885/1-B							Client Sa	ample ID: Meth	od Blank

Lab Sample ID: LB 240-Matrix: Solid Analysis Batch: 128208

LB LB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 0.50 ND 0.0032 mg/L 04/25/14 10:31 04/28/14 10:08 Arsenic 1 Barium 0.00161 10.0 0.00067 mg/L 04/25/14 10:31 04/28/14 10:08 J 1 0.00066 mg/L Cadmium ND 0.10 04/25/14 10:31 04/28/14 10:08 1 Chromium ND 0.50 0.0022 mg/L 04/25/14 10:31 04/28/14 10:08 1 04/25/14 10:31 Lead ND 0.50 0.0019 mg/L 04/28/14 10:08 1 Selenium ND 0.25 0.0041 mg/L 04/25/14 10:31 04/28/14 10:08 1 Silver ND 0.50 0.0022 mg/L 04/25/14 10:31 04/28/14 10:08 1

Method: 7470A - TCLP Mercury

Lab Sample ID: MB 480-177739/2-A Matrix: Solid Analysis Batch: 177938	МВ	МВ							Client Sa	mple ID: Metho Prep Type: 1 Prep Batch	Fotal/NA
Analyte	Result	Qualifier	RL		MDL U	nit	D	Р	repared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00	0012 m	g/L		04/2	3/14 12:15	04/23/14 15:02	1
Lab Sample ID: LCS 480-177739/3-A							c	Client	Sample I	D: Lab Control	Sample
Matrix: Solid										Prep Type: 1	Fotal/NA
Analysis Batch: 177938										Prep Batch	: 177739
-			Spike	LCS	LCS					%Rec.	
Analyte			Added	Result	Qualifie	r Unit		D	%Rec	Limits	
Mercury			0.00668	0.00703		mg/L			105	80 - 120	

1

8

Method: 7470A - TCLP Mercury (Continued) Lab Sample ID: LB 480-177430/1-C **Client Sample ID: Method Blank** Matrix: Solid Prep Type: TCLP Analysis Batch: 177938 Prep Batch: 177739 LB LB Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Analyte 0.000128 J 0.00020 0.00012 mg/L 04/23/14 12:15 04/23/14 15:00 Mercury

Method: 1010A - Ignitability, Pensky-Martens Closed Cup Method

Lab Sample ID: LCS 480-177522/1 Matrix: Solid	1					C	Client	t Sampl	le ID: Lab Control S Prep Type: To	
Analysis Batch: 177522			Spike	1.00	LCS				%Rec.	
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	
Flashpoint			81.0	80.00		Degrees F		99	97.5 - 102.	
-									5	
- Lab Sample ID: 480-58374-1 DU									Client Sample ID): IDW1
Matrix: Solid									Prep Type: To	
Analysis Batch: 177522										
	Sample	Sample		DU	DU					RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D		RPD	Limit
Flashpoint	>176.0		· ·	>176.0		Degrees F			NC	10

Method: 9012 - Cyanide, Reactive

Lab Sample ID: MB 480-178651/1-A											Client Sa	mple ID: Meth	od Blank
Matrix: Solid												Prep Type:	Total/NA
Analysis Batch: 179218												Prep Batch	: 178651
-	МВ	МВ											
Analyte	Result	Qualifier		RL		MDL	Unit		D	Pr	epared	Analyzed	Dil Fac
Cyanide, Reactive	ND			10.0	0.	0030	mg/Kg			04/28	3/14 05:30	04/30/14 00:12	1
Lab Sample ID: LCS 480-178651/2-A									Cli	ient	Sample	ID: Lab Contro	Sample
Matrix: Solid												Prep Type:	Total/NA
Analysis Batch: 179218												Prep Batch	: 178651
-			Spike		LCS	LCS						%Rec.	
			Added		Result	Quali	ifier	Unit		D	%Rec	Limits	
Analyte													

Method: 9034 - Sulfide, Reactive

Lab Sample ID: MB 480-178001/1-A Matrix: Solid Analysis Batch: 178093	MD	MD					Client Sa	mple ID: Metho Prep Type: T Prep Batch:	otal/NA
		МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfide, Reactive	ND		10.0	0.57	mg/Kg		04/24/14 08:27	04/24/14 13:00	1

TestAmerica Buffalo

Method: 9034 - Sulfide, Reactive (Continued)

Lab Sample ID: LCS 480-178001/2-A Matrix: Solid Analysis Batch: 178093		Spike	LCS	LCS		Client	: Sample	e ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 178001 %Rec.
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits
Sulfide, Reactive		1000	701.3		mg/Kg		70	10 - 100
Lab Sample ID: 480-58374-1 DU								Client Sample ID: IDW1
Matrix: Solid								Prep Type: Total/NA
Analysis Batch: 178093								Prep Batch: 178001
	Sample		DU	DU				RPD
Analyte Resul	Qualifier		Result	Qualifier	Unit	D		RPD Limit
Sulfide, Reactive 12			120.3		mg/Kg			0.02 20

TestAmerica Buffalo

Method Blank

9

GC/MS VOA

Leach Batch: 177492

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-58374-1	IDW1	TCLP	Solid	1311	
LB 480-177492/1-A	Method Blank	TCLP	Solid	1311	
Analysis Batch: 1778	36				
		Bron Type	Matrix	Mathad	Prop Batch
Lab Sample ID	Client Sample ID	Prep Type	Matrix Solid	Method 8260C	Prep Batch
		Prep Type TCLP TCLP	Matrix Solid Solid	Method 8260C 8260C	Prep Batch 177492 177492

Total/NA

Solid

8260C

GC/MS Semi VOA

MB 480-177836/7

Leach Batch: 177430

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-58374-1	IDW1	TCLP	Solid	1311	
LB 480-177430/1-D	Method Blank	TCLP	Solid	1311	
Prop Potch: 177024					

Prep Batch: 177934

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-58374-1	IDW1	TCLP	Solid	3510C	177430
LB 480-177430/1-D	Method Blank	TCLP	Solid	3510C	177430
LCS 480-177934/2-A	Lab Control Sample	Total/NA	Solid	3510C	
LCSD 480-177934/3-A	Lab Control Sample Dup	Total/NA	Solid	3510C	
MB 480-177934/1-A	Method Blank	Total/NA	Solid	3510C	

Analysis Batch: 178188

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-58374-1	IDW1	TCLP	Solid	8270D	177934
LB 480-177430/1-D	Method Blank	TCLP	Solid	8270D	177934
LCS 480-177934/2-A	Lab Control Sample	Total/NA	Solid	8270D	177934
LCSD 480-177934/3-A	Lab Control Sample Dup	Total/NA	Solid	8270D	177934
MB 480-177934/1-A	Method Blank	Total/NA	Solid	8270D	177934

GC Semi VOA

Prep Batch: 177189

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-58374-1	IDW1	Total/NA	Solid	3550C	
LCS 480-177189/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-177189/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 177351

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-58374-1	IDW1	Total/NA	Solid	8082A	177189
LCS 480-177189/2-A	Lab Control Sample	Total/NA	Solid	8082A	177189
MB 480-177189/1-A	Method Blank	Total/NA	Solid	8082A	177189

N/	oto	
IVI	ela	IIS

Leach Batch: 127885

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-58374-1		TCLP	Solid	1311	
LB 240-127885/1-B	Method Blank	TCLP	Solid	1311	
LB 240-127 005/1-B		TOLF	Solid	1311	
rep Batch: 127935					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batc
480-58374-1	IDW1	TCLP	Solid	3010A	12788
LB 240-127885/1-B	Method Blank	TCLP	Solid	3010A	12788
LCS 240-127935/3-A	Lab Control Sample	Total/NA	Solid	3010A	
MB 240-127935/2-A	Method Blank	Total/NA	Solid	3010A	
nalysis Batch: 12820	8				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-58374-1	IDW1	TCLP	Solid	6010C	12793
LB 240-127885/1-B	Method Blank	TCLP	Solid	6010C	12793
LCS 240-127935/3-A	Lab Control Sample	Total/NA	Solid	6010C	12793
MB 240-127935/2-A	Method Blank	Total/NA	Solid	6010C	12793
each Batch: 177430					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
480-58374-1	IDW1	TCLP	Solid	1311	
LB 480-177430/1-C	Method Blank	TCLP	Solid	1311	
rep Batch: 177739					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
480-58374-1	IDW1	TCLP	Solid	7470A	17743
LB 480-177430/1-C	Method Blank	TCLP	Solid	7470A	17743
LCS 480-177739/3-A	Lab Control Sample	Total/NA	Solid	7470A	
MB 480-177739/2-A	Method Blank	Total/NA	Solid	7470A	
nalysis Batch: 17793	8				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-58374-1	IDW1	TCLP	Solid	7470A	17773
LB 480-177430/1-C	Method Blank	TCLP	Solid	7470A	17773
LCS 480-177739/3-A	Lab Control Sample	Total/NA	Solid	7470A	17773
MB 480-177739/2-A	Method Blank	Total/NA	Solid	7470A	17773
General Chemistry	1				
nalysis Batch: 17733					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
480-58374-1	IDW1	Total/NA	Solid	9045D	
LCS 480-177330/1	Lab Control Sample	Total/NA	Solid	9045D	
nalysis Batch: 17752	2				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
480-58374-1	IDW1	Total/NA	Solid	1010A	
			Calid	1010A	
480-58374-1 DU	IDW1	Total/NA	Solid	TUTUA	

General Chemistry (Continued)

Analy	vsis	Batch:	177651
Alla	313	Duton.	111001

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-58374-1	IDW1	Total/NA	Solid	Moisture	
rep Batch: 178001					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-58374-1	IDW1	Total/NA	Solid	7.3.4	
480-58374-1 DU	IDW1	Total/NA	Solid	7.3.4	
LCS 480-178001/2-A	Lab Control Sample	Total/NA	Solid	7.3.4	
MB 480-178001/1-A	Method Blank	Total/NA	Solid	7.3.4	
Analysis Batch: 17809	3				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-58374-1	IDW1	Total/NA	Solid	9034	17800
480-58374-1 DU	IDW1	Total/NA	Solid	9034	17800
LCS 480-178001/2-A	Lab Control Sample	Total/NA	Solid	9034	17800
MB 480-178001/1-A	Method Blank	Total/NA	Solid	9034	178001
Prep Batch: 178651					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-58374-1	IDW1	Total/NA	Solid	7.3.3	
LCS 480-178651/2-A	Lab Control Sample	Total/NA	Solid	7.3.3	
MB 480-178651/1-A	Method Blank	Total/NA	Solid	7.3.3	
analysis Batch: 17921	8				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-58374-1	IDW1	Total/NA	Solid	9012	178651
LCS 480-178651/2-A	Lab Control Sample	Total/NA	Solid	9012	178651
MB 480-178651/1-A	Method Blank	Total/NA	Solid	9012	17865 ⁻

Lab Sample ID: 480-58374-1 Matrix: Solid

10

Client Sample ID: IDW1 Date Collected: 04/18/14 10:00 Date Received: 04/19/14 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			177492	04/22/14 13:11	MRB	TAL BUF
TCLP	Analysis	8260C		10	177836	04/23/14 21:57	NMD1	TAL BUF
TCLP	Leach	1311			177430	04/22/14 09:59	MRB	TAL BUF
TCLP	Prep	3510C			177934	04/24/14 08:18	MCZ	TAL BUF
CLP	Analysis	8270D		1	178188	04/25/14 13:48	ANM	TAL BUF
otal/NA	Prep	3550C			177189	04/21/14 11:26	CAM	TAL BUF
Total/NA	Analysis	8082A		1	177351	04/22/14 18:55	JMM	TAL BUF
FCLP	Leach	1311			127885	04/24/14 16:50	DRJ	TAL CAN
CLP	Prep	3010A			127935	04/25/14 10:31	DEE	TAL CAN
TCLP	Analysis	6010C		1	128208	04/28/14 10:21	KLC	TAL CAN
CLP	Leach	1311			177430	04/22/14 09:59	MRB	TAL BUF
CLP	Prep	7470A			177739	04/23/14 12:15	EHD	TAL BUF
CLP	Analysis	7470A		1	177938	04/23/14 15:09	LRK	TAL BUF
Total/NA	Analysis	1010A		1	177522	04/22/14 09:20	RP	TAL BUF
Total/NA	Prep	7.3.3			178651	04/28/14 05:30	LAW	TAL BUF
「otal/NA	Analysis	9012		1	179218	04/30/14 00:12	LAW	TAL BUF
otal/NA	Prep	7.3.4			178001	04/24/14 08:27	NCH	TAL BUF
otal/NA	Analysis	9034		1	178093	04/24/14 13:00	NCH	TAL BUF
otal/NA	Analysis	9045D		1	177330	04/21/14 22:09	KS	TAL BUF
otal/NA	Analysis	Moisture		1	177651	04/23/14 08:34	ZJR	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Client: New York State D.E.C. Project/Site: Cold Spring MGP #340026

TestAmerica Job ID: 480-58374-1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Arkansas DEQ	State Program	6	88-0686	07-06-14
California	State Program	9	1169CA	09-30-14
Connecticut	State Program	1	PH-0568	09-30-14
Florida	NELAP	4	E87672	06-30-14
Georgia	State Program	4	N/A	03-31-15
llinois	NELAP	5	200003	09-30-14
owa	State Program	7	374	03-01-15
ansas	NELAP	7	E-10187	01-31-15 *
Kentucky (DW)	State Program	4	90029	12-31-14
Kentucky (UST)	State Program	4	30	03-31-15
ouisiana	NELAP	6	02031	06-30-14
laine	State Program	1	NY00044	12-04-14
laryland	State Program	3	294	03-31-15
assachusetts	State Program	1	M-NY044	06-30-14
lichigan	State Program	5	9937	03-31-15
innesota	NELAP	5	036-999-337	12-31-14
ew Hampshire	NELAP	1	2337	11-17-14
ew Jersey	NELAP	2	NY455	06-30-14
w York	NELAP	2	10026	03-31-15
orth Dakota	State Program	8	R-176	03-31-14 *
dahoma	State Program	6	9421	08-31-14
regon	NELAP	10	NY200003	06-09-14
ennsylvania	NELAP	3	68-00281	07-31-14
hode Island	State Program	1	LAO00328	12-30-14
ennessee	State Program	4	TN02970	03-31-15
exas	NELAP	6	T104704412-11-2	07-31-14
SDA	Federal		P330-11-00386	11-22-14
rginia	NELAP	3	460185	09-14-14
ashington	State Program	10	C784	02-10-15
/est Virginia DEP	State Program	3	252	05-31-14
Visconsin	State Program	5	998310390	08-31-14

Laboratory: TestAmerica Canton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	NELAP	9	01144CA	06-30-14 *
Connecticut	State Program	1	PH-0590	12-31-14
Florida	NELAP	4	E87225	06-30-14 *
Georgia	State Program	4	N/A	06-30-14 *
Illinois	NELAP	5	200004	07-31-14 *
Kansas	NELAP	7	E-10336	01-31-15
Kentucky (UST)	State Program	4	58	06-30-14 *
L-A-B	DoD ELAP		L2315	07-18-16
Minnesota	NELAP	5	039-999-348	12-31-14
Nevada	State Program	9	OH-000482008A	07-31-14 *
New Jersey	NELAP	2	OH001	06-30-14 *
New York	NELAP	2	10975	03-31-15
Ohio VAP	State Program	5	CL0024	10-31-15
Pennsylvania	NELAP	3	68-00340	08-31-14

* Expired certification is currently pending renewal and is considered valid.

Certification Summary

Laboratory: TestAmerica Canton (Continued)

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Texas	NELAP	6		08-31-14
USDA	Federal		P330-13-00319	11-26-16
Virginia	NELAP	3	460175	09-14-14
Washington	State Program	10	C971	01-12-15
West Virginia DEP	State Program	3	210	12-31-14
Wisconsin	State Program	5	999518190	08-31-14

Method Summary

Client: New York State D.E.C. Project/Site: Cold Spring MGP #340026

1	
5	
8	
9	
12	
13	

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL CAN
7470A	TCLP Mercury	SW846	TAL BUF
1010A	Ignitability, Pensky-Martens Closed Cup Method	SW846	TAL BUF
9012	Cyanide, Reactive	SW846	TAL BUF
9034	Sulfide, Reactive	SW846	TAL BUF
9045D	pH	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Sample Summary

Client: New York State D.E.C. Project/Site: Cold Spring MGP #340026

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-58374-1	IDW1	Solid	04/18/14 10:00	04/19/14 09:00

TestAmerica Connecticut				
128 Long Hill Cross Road	Chair	Chain of Custody Record	I GSIAI TEIICC	
Sheiton, CT 06484 Phone (203) 929-8140 Fax (203) 929-8142			THE LEADER IN ENVIRONMENTAL TESTING	N U
Client Contact:	Field Sampler: Stellen Smith	TAT Required (business days):	Lab PM/Contact: COC Number.	coc Number:20876
Company: Company	15.0		Lab Job Number (Lab Use Only): Page of	
Address 5 OLD NOLK RN	E-Mail:	Deliverable Type (Report/EDD):	8	ing
City, State, Zip.	PO#:	Sample Disposal: [] Return to Client [] Disposal by Lab	I] Yes [] No Cooler Temperatures (Lab Use Only):	
Phone:	-# OM	[] Archive forMonths (A fee may be assessed if samples are contined for honce than 1 month)		
Email:	Project #:	Tetalineu foi poliger utan Titoriuri) State Regulatory QC Criteria	st if more space is need	
Project Name/Site Location (State): ColD SPT: Ng PMR mg P NY	SSOW#:	Requirements:	CLP	i in an
and a state of the second state of the second state of the second s	alestAntercal trems and contracts where	No. of Containers/Preservatives	<u>Stu</u>	Comments
Field Sample Identification (Containers for each sample may be combined on one line)	Collection Matrix Time Aq=Aqueous, S=Solid, MS/ MSD Collection (24+Hour w=/waste/Oil, MS/ MSD Date Clock) 0=Other (Yes or No)	Оţµeı Suyec/NaOH HCL HCC HXSO4 H2SO4 Cupreserved	ars vocs hs svocs rs metals TS characterissia	
			* *	
Sual 2	H1814 10:00 AM			-
R 3 amber Bortler	Alishy (U: Infim	>	-	
)				
				ı,
Relinquished by: Sin Fr	Date/Time: VIISIN 14,15 Company	in Receivedor Al	wet childly 1415 company	R
Reprovisional Dr. + Dannad	Date/Thie: Company		9/14 0900	BUGE
Relinquished by:	Date/Time: Company		Date/Time:	
Comments: 2014		20	# 2,2	
DISTRIBUTION: WHITE - Stays with the Samples; CANARY - Returned to Client with Report, PINK - Field Copy TAL-0015 (8609)	- Returned to Client with Report, PINK - Field Co		Field Sampling / Shipping Instructions and Laboratory Sample Receipt Policy included on Reverse Side of COC	Reverse Side of COC

Δ

TestAmerica Laboratories, Inc.

CHAIN OF CUSTODY AND RECEIVING DOCUMENTS

480-58374 Chain of Custody

				-1 e 12			، •			·**	Celle,				 *	(h		;	 	 							
TestAmerica The leader of entregonkentry test ng	COC No: 480-15976 1	Page:		Preservation Codes:			F - MeOH R - Na25.5503	- H - Ascorbic Acid I - Ice J - DI Water	K - EDTA L - EDA	Other:	oʻrodmili is	Special Instructions/Note:									tained longer than 1 month) Archive For Months			Y 0920 TA CAN	Company	Company	
2.2,1.6	Carrier Tracking No(s):		dilested			· · · · · · · · · · · · · · · · · · ·					•									 ·····	assessed if samples are retai Disposal Bv Lab		Method of Shipment	1) Date Time.	Dáte/Time:	Date/Time:	emarks:
Chain of Custody Record	dy L	E-Mait: judy.stone@testamericainc.com	Analvsis Reginested))		<u> </u>		<							Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon	Special Instructions/QC Requirements:			Received by:	Received by:	Cooler Temperature(s) °C and Other Remarks:
Chain of C	Leb PM: Stone, Judy L	E-Mait: judy.stone									Matrix (w=water, S=solid, C=wasteriod, H	ei H	Solid		 						<u> </u>	ري ال	Time:	700 TANOUTA	Company	Company	
				quested:	ed (days):						Sample	Time	/	Eastern			 		 	 			Date:	2-14 1	-		
	Sampler:	Phone:		Due Date Requested: 4/29/2014	TAT Requested (days):	<u>.</u>	₩04	# OM	Project #: 48006513	SSOW#:		Sample Date	4/18/14		 		 		 					~ \	Date/Time:	Date/Time:	
TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991	Client Information (Sub Contract Lab)	Client Contact Shipping/Receiving	company: TestAmerica Laboratories, Inc.	Address: 4101 Shuffel Street NW,	City: North Canton	State, Zip: OH, 44720	Phone: 330-497-9396(Tel) 330-497-0772(Fax)	Email:	Project Name: Cold Spring MGP #340026	Sfte:		Sample Identification - Client ID (Lab ID)	IDW1 (480-58377-1)								Possible Hazard Identification Unconfirmed	Deliverable Requested: I, II, IV, Other (specify)	Empty Kit Relinquished by:	Reinforce Will and Will and	Reinquished by:		Custody Seals Intact [™] @ ⁴ tstody Seal No.: △ Yes △ No / 4

5

A line 100 - QQ

14

TestAmerica Canton Sample Receipt Form/Narrative	Login #: 480-58374
Canton Facility we are not been also been also been also been also been also been also	
Client TBA BUFFalo Site Name	Cooler unpacked by:
Cooler Received on $\frac{4/23}{14}$ Opened on $\frac{4}{23}$	14 alery Burs
FedEx: 1 st Grd (Exp)) UPS FAS Stetson Client Drop Off TestAn	nerica Courier Other
TestAmerica Cooler # Foam Box Client Cooler Box	Other Multiple
Packing material used Bubble Wrap Foam Plastic Bag None	e Other
COOLANT: Wet Ice Blue Ice Dry Ice Water Nor	e
1. Cooler-temperature upon receipt	
	rected Cooler Temp°C
	ected Cooler Temp°C Z See Multiple ected Cooler Temp°C Cooler Form
	rected Cooler Temp. C Cooler Form
2. Were custody seals on the outside of the cooler(s)? If Yes Quantity	
-Were custody seals on the outside of the cooler(s). If it is quantity -Were custody seals on the outside of the cooler(s) signed & dated?	Tes No NA
-Were custody seals on the bottle(s)?	Yes (No
3. Shippers' packing slip attached to the cooler(s)?	(Yes) No
4. Did custody papers accompany the sample(s)?	(Tes) No
5. Were the custody papers relinquished & signed in the appropriate place?	Mes No
 Did all bottles arrive in good condition (Unbroken)? Could all bottle labels be reconciled with the COC? 	Yes No
 Were correct bottle(s) used for the test(s) indicated? 	Ves No
 Sufficient quantity received to perform indicated analyses? 	Ves No
10. Were sample(s) at the correct pH upon receipt?	Yes No. NO pH Strip Lot# <u>HC391902</u>
11. Were VOAs on the COC?	Yes the
12. Were air bubbles >6 mm in any VOA vials?	Yes No Sta
13. Was a trip blank present in the cooler(s)?	Yes No.
Contacted PM Date by	via Verbal Voice Mail Other
concerning	
14. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	Samples processed by:
	TB
15. SAMPLE CONDITION	
	ommended holding time had expired.
Sample(s)	were received in a broken container.
Sample(s)were received with	bubble >6 mm in diameter. (Notify PM)
16. SAMPLE PRESERVATION	
Sample(s)	were further preserved in the laboratory.
Time preserved: Preservative(s) added/Lot number(s):	were futurer preserved in the laboratory.

1

No. 1. 28 Chamarachadan - Increasan an a pana a

0

14

÷

•c A 2, : 5800	2 212 100	

C:\Users\livengoodc\AppData\Local\Microsoft\Windows\Temporary Internet Files\OLKD16\WI-NC-099-031813 Cooler Receipt Form_page 2 - Multiple Coolers.doc Revision 3, 3/18/13 rls 1

14

Client: New York State D.E.C.

Login Number: 58374 List Number: 1

Creator: Kolb, Chris M

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	No: Analyses are listed on COC; individual samples are not designated Spec Analy
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	False	no labels present on containers
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	envirotrac
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

List Source: TestAmerica Buffalo

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-58999-1 Client Project/Site: Cold Spring MGP #340026

For:

New York State D.E.C. 625 Broadway 11th Floor Albany, New York 12233-3256

Attn: Mr. Dave Chiusano

Joeph V. Giacomogra

Authorized for release by: 5/8/2014 12:01:55 PM Joe Giacomazza, Project Management Assistant II joe.giacomazza@testamericainc.com

Designee for

Judy Stone, Senior Project Manager (484)685-0868 judy.stone@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: New York State D.E.C. Project/Site: Cold Spring MGP #340026

> I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Joseph V. Giacomage

Joe Giacomazza Project Management Assistant II 5/8/2014 12:01:55 PM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	9
QC Sample Results	11
QC Association Summary	17
Lab Chronicle	20
Certification Summary	21
Method Summary	22
Sample Summary	23
Chain of Custody	24
Receipt Checklists	25

3

Qualifiers	Q	ual	lifie	rs
------------	---	-----	-------	----

GC/MS Semi VOA

GC/MS Semi		
Qualifier	Qualifier Description	
*	LCS or LCSD exceeds the control limits	5
GC Semi VOA	ι	
Qualifier	Qualifier Description	
х	Surrogate is outside control limits	
Metals		
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	8
General Chem	nistry	0
Qualifier	Qualifier Description	9
Н	Sample was prepped or analyzed beyond the specified holding time	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CNF	Contains no Free Liquid	13
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
	Minimum detectable activity	

/011	i oloni i loovoly
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Job ID: 480-58999-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-58999-1

Receipt

The samples were received on 5/1/2014 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.9° C.

Except:

The Trip blank was cancelled by the client on 5/1/14.

Total mercury was cancelled as directed by the client on 5/1/14; only TCLP mercury is needed.

GC/MS VOA

Method(s) 8260C: The following volatiles sample(s) was diluted due to foaming at the time of purging during the original sample analysis: IDW Water (480-58999-1). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

GC/MS Semi VOA

Method(s) 8270D: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 480-180246 recovered outside control limits for several analytes. These analytes were biased high in the LCS/LCSD and were not detected in the associated samples; therefore, the data have been reported.

No other analytical or quality issues were noted.

GC Semi VOA

Method(s) 8082A: Surrogate recovery for the following samples was outside control limits: IDW Water (480-58999-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8082A: All primary data is reported from the ZB-5 column.

No other analytical or quality issues were noted.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method(s) 9040C, SM 4500 H+ B: The following sample(s) was received outside of holding time: IDW Water (480-58999-1).

No other analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Lab Sample ID: 480-58999-1

Client Sample ID: IDW Water

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.0068	J	0.015	0.0056	mg/L	1	_	6010C	TCLP
Barium	0.053		0.0020	0.00070	mg/L	1		6010C	TCLP
Chromium	0.012		0.0040	0.0010	mg/L	1		6010C	TCLP
Lead	0.011		0.010	0.0030	mg/L	1		6010C	TCLP
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Flashpoint	>176.0		50.0	50.0	Degrees F	1	_	1010A	Total/NA
pН	8.07	Н	0.100	0.100	SU	1		9040C	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample ID: IDW Water

Date Collected: 04/29/14 10:30 Date Received: 05/01/14 09:00

Lab Sample ID: 480-58999-1

Matrix: Water

5 6

Method: 8260C - Volatile Orga Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	ND		0.0040	0.00084	mg/L			05/02/14 16:12	
2-Butanone (MEK)	ND		0.020	0.0053	mg/L			05/02/14 16:12	2
Benzene	ND		0.0040	0.0016	mg/L			05/02/14 16:12	2
Carbon tetrachloride	ND		0.0040	0.0011	mg/L			05/02/14 16:12	۷
Chlorobenzene	ND		0.0040	0.0030	mg/L			05/02/14 16:12	4
Chloroform	ND		0.0040	0.0014	mg/L			05/02/14 16:12	4
Tetrachloroethene	ND		0.0040	0.0014	mg/L			05/02/14 16:12	۷
Trichloroethene	ND		0.0040	0.0018	mg/L			05/02/14 16:12	4
Vinyl chloride	ND		0.0040	0.0036	mg/L			05/02/14 16:12	2
1,1-Dichloroethene	ND		0.0040	0.0012	mg/L			05/02/14 16:12	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	97		66 - 137					05/02/14 16:12	
4-Bromofluorobenzene (Surr)	103		73 - 120					05/02/14 16:12	4
Toluene-d8 (Surr)	104		71 - 126					05/02/14 16:12	4
Dibromofluoromethane (Surr)	98		60 - 140					05/02/14 16:12	4
Method: 8270D - Semivolatile	Organic Compou	nds (GC/M	S) - TCLP						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.010	0.00046	mg/L		05/06/14 06:13	05/07/14 11:05	1
2,4-Dinitrotoluene	ND		0.0050	0.00045	mg/L		05/06/14 06:13	05/07/14 11:05	1
2,4,5-Trichlorophenol	ND		0.0050	0.00048	mg/L		05/06/14 06:13	05/07/14 11:05	1
2,4,6-Trichlorophenol	ND		0.0050	0.00061	mg/L		05/06/14 06:13	05/07/14 11:05	1
2-Methylphenol	ND		0.0050	0.00040	mg/L		05/06/14 06:13	05/07/14 11:05	1
3-Methylphenol	ND	*	0.010	0.00040	mg/L		05/06/14 06:13	05/07/14 11:05	1
4-Methylphenol	ND	*	0.010	0.00036	mg/L		05/06/14 06:13	05/07/14 11:05	1
Hexachlorobenzene	ND		0.0050	0.00051	mg/L		05/06/14 06:13	05/07/14 11:05	1
Hexachlorobutadiene	ND		0.0050	0.00068	mg/L		05/06/14 06:13	05/07/14 11:05	1
Hexachloroethane	ND		0.0050	0.00059	mg/L		05/06/14 06:13	05/07/14 11:05	1
Nitrobenzene	ND		0.0050	0.00029	mg/L		05/06/14 06:13	05/07/14 11:05	1
Pentachlorophenol	ND		0.010	0.0022	mg/L		05/06/14 06:13	05/07/14 11:05	1
Pyridine	ND		0.025	0.00041	mg/L		05/06/14 06:13	05/07/14 11:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	99		52 - 132				05/06/14 06:13	05/07/14 11:05	1
	99		48 - 120				05/06/14 06:13	05/07/14 11:05	1
2-Fluorobiphenyl	50		20 - 120				05/06/14 06:13	05/07/14 11:05	1
	50								
2-Fluorophenol (Surr)	91		46 - 120				05/06/14 06:13	05/07/14 11:05	ĩ
2-Fluorobiphenyl 2-Fluorophenol (Surr) Nitrobenzene-d5 (Surr) p-Terphenyl-d14 (Surr)			46 - 120 67 - 150				05/06/14 06:13 05/06/14 06:13	05/07/14 11:05 05/07/14 11:05	1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result Q	Qualifier F	L MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	0.4	6 0.16	ug/L		05/02/14 06:36	05/03/14 21:35	1
PCB-1221	ND	0.4	6 0.16	ug/L		05/02/14 06:36	05/03/14 21:35	1
PCB-1232	ND	0.4	6 0.16	ug/L		05/02/14 06:36	05/03/14 21:35	1
PCB-1242	ND	0.4	6 0.16	ug/L		05/02/14 06:36	05/03/14 21:35	1
PCB-1248	ND	0.4	6 0.16	ug/L		05/02/14 06:36	05/03/14 21:35	1
PCB-1254	ND	0.4	6 0.23	ug/L		05/02/14 06:36	05/03/14 21:35	1
PCB-1260	ND	0.4	6 0.23	ug/L		05/02/14 06:36	05/03/14 21:35	1

Lab Sample ID: 480-58999-1

Matrix: Water

5

6

Client Sample ID: IDW Water

Date Collected: 04/29/14 10:30 Date Received: 05/01/14 09:00

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	43		23 - 127			05/02/14 06:36	05/03/14 21:35	1
Tetrachloro-m-xylene	55		23 - 127			05/02/14 06:36	05/03/14 21:35	1
DCB Decachlorobiphenyl	10	X	19 - 126			05/02/14 06:36	05/03/14 21:35	1
DCB Decachlorobiphenyl	12	X	19 - 126			05/02/14 06:36	05/03/14 21:35	1
Method: 6010C - Metals (ICP)	- TCLP							
Analyte	Result	Qualifier	RL	MDL U	nit D	Prepared	Analyzed	Dil Fac

Method: 7470A - Mercury (CVAA) Analyte	- TCLP Result Qualifier	RL	MDL U	Jnit	D Prepared	Analyzed	Dil Fac
Silver	ND	0.0060	0.0017 m	ng/L	05/02/14 10:25	05/03/14 11:51	1
Selenium	ND	0.025	0.0087 m	ng/L	05/02/14 10:25	05/03/14 11:51	1
Lead	0.011	0.010	0.0030 m	ng/L	05/02/14 10:25	05/03/14 11:51	1
Chromium	0.012	0.0040	0.0010 m	ng/L	05/02/14 10:25	05/03/14 11:51	1
Cadmium	ND	0.0020	0.00050 m	ng/L	05/02/14 10:25	05/03/14 11:51	1
Barium	0.053	0.0020	0.00070 m	ng/L	05/02/14 10:25	05/03/14 11:51	1
Arsenic	0.0068 J	0.015	0.0056 m	ng/L	05/02/14 10:25	05/03/14 11:51	1

Mercury	ND		0.00020	0.00012	mg/L		05/05/14 08:00	05/05/14 11:01	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Reactive	ND		10.0	0.0030	mg/L		05/02/14 00:50	05/05/14 06:25	1
Sulfide, Reactive	ND		10.0	0.57	mg/L		05/02/14 00:50	05/05/14 09:30	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Flashpoint	>176.0		50.0	50.0	Degrees F			05/02/14 09:29	1
рН	8.07	н	0.100	0.100	SU			05/05/14 10:49	1

Prep Type: Total/NA

latrix: Water						Prep Type: Total/N/
-				Percent Su	rogate Recovery (Ac	ceptance Limits)
		12DCE	BFB	TOL	DBFM	
Lab Sample ID	Client Sample ID	(66-137)	(73-120)	(71-126)	(60-140)	
LCS 480-179640/5	Lab Control Sample	96	108	103	100	
MB 480-179640/7	Method Blank	94	107	104	100	
Surrogate Legend						
12DCE = 1,2-Dichloro	()					
BFB = 4-Bromofluorob	penzene (Surr)					
TOL = Toluene-d8 (Su	ırr)					
DBFM = Dibromofluor	omethane (Surr)					

Method: 8260C - Volatile Organic Compounds by GC/MS

Method: 8260C - Volatile Organic Compounds by GC/MS

				Percent Sur	rogate Recovery (Ac	cceptance Limits)
		12DCE	BFB	TOL	DBFM	
Lab Sample ID	Client Sample ID	(66-137)	(73-120)	(71-126)	(60-140)	
480-58999-1	IDW Water	97	103	104	98	
Surrogate Legend						
12DCE = 1,2-Dichlor	oethane-d4 (Surr)					
BFB = 4-Bromofluor	obenzene (Surr)					
TOL = Toluene-d8 (S	Surr)					
DBFM = Dibromofluc	vromethane (Surr)					

Method: 8270D - Semivolatile Organic Compounds (GC/MS) Materia Mater

		Percent Surrogate Recovery (Acceptance Limits)								
		ТВР	FBP	2FP	NBZ	TPH	PHL			
ab Sample ID	Client Sample ID	(52-132)	(48-120)	(20-120)	(46-120)	(67-150)	(16-120)			
CS 480-180246/2-A	Lab Control Sample	87	88	44	82	99	33			
CSD 480-180246/3-A	Lab Control Sample Dup	92	93	48	88	100	37			
/IB 480-180246/1-A	Method Blank	80	89	46	86	101	35			

TBP = 2,4,6-Tribromophenol (Surr) FBP = 2-Fluorobiphenyl 2FP = 2-Fluorophenol (Surr) NBZ = Nitrobenzene-d5 (Surr) TPH = p-Terphenyl-d14 (Surr)

PHL = Phenol-d5 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS) Matrix: Water

Prep Type: TCLP Percent Surrogate Recovery (Acceptance Limits) твр FBP 2FP трн NBZ PHL Lab Sample ID **Client Sample ID** (52-132) (48-120) (20-120) (46-120) (67-150) (16-120) 480-58999-1 IDW Water 99 99 50 91 93 35 Surrogate Legend TBP = 2,4,6-Tribromophenol (Surr)

Client: New York State D.E.C.

Project/Site: Cold Spring MGP #340026

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

TPH = p-Terphenyl-d14 (Surr)

PHL = Phenol-d5 (Surr)

Matrix: Water

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Prep Type: Total/NA

	Percent Surrogate Recovery (Acceptance Limits)								
		TCX1	TCX2	DCB1	DCB2				
Lab Sample ID	Client Sample ID	(23-127)	(23-127)	(19-126)	(19-126)				
480-58999-1	IDW Water	43	55	10 X	12 X				
LCS 480-179588/2-A	Lab Control Sample	96	117	56	74				
MB 480-179588/1-A	Method Blank	95	122	69	77				

Surrogate Legend

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

RL

0.0010

0.0050

0.0010

0.0010

0.0010

0.0010

0.0010

0.0010

0.0010

0.0010

Limits

66 - 137

73 - 120

71 - 126

60 - 140

MDL Unit

0.00021 mg/L

0.0013 mg/L

0.00041 mg/L

0.00027 mg/L

0.00075 mg/L

0.00034 mg/L

0.00036 mg/L

0.00046 mg/L

0.00090 mg/L

0.00029 mg/L

D

Prepared

Prepared

Lab Sample ID: MB 480-179640/7

Matrix: Water

1,2-Dichloroethane

2-Butanone (MEK)

Carbon tetrachloride

Chlorobenzene

Tetrachloroethene

1,1-Dichloroethene

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Trichloroethene

Vinyl chloride

Surrogate

Chloroform

Analyte

Benzene

Analysis Batch: 179640

Method: 8260C - Volatile Organic Compounds by GC/MS

MB MB Result Qualifier

ND

94

107

104

100

%Recovery

MB MB

Qualifier

Analyzed

05/02/14 11:25

05/02/14 11:25

05/02/14 11:25

05/02/14 11:25

05/02/14 11:25

05/02/14 11:25

05/02/14 11:25

05/02/14 11:25

05/02/14 11:25

05/02/14 11:25

Analyzed

05/02/14 11:25

05/02/14 11:25

05/02/14 11:25

05/02/14 11:25

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

5

Client Sample ID: Method Blank Prep Type: Total/NA Dil Fac

1

1

1

1

1

1

1

1

1

1

0	
9	
13	

Lab Sample ID: LCS 480-179640/5 Matrix: Water Analysis Batch: 179640

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dichloroethane	0.0250	0.0239		mg/L		96	75 _ 127	
Benzene	0.0250	0.0237		mg/L		95	71 - 124	
Chlorobenzene	0.0250	0.0242		mg/L		97	72 _ 120	
Tetrachloroethene	0.0250	0.0252		mg/L		101	74 ₋ 122	
Trichloroethene	0.0250	0.0242		mg/L		97	74 _ 123	
1.1-Dichloroethene	0.0250	0.0234		mg/L		94	58 ₋ 121	

	LCS LCS					
Surrogate	%Recovery	Qualifier	Limits			
1,2-Dichloroethane-d4 (Surr)	96		66 - 137			
4-Bromofluorobenzene (Surr)	108		73 - 120			
Toluene-d8 (Surr)	103		71 - 126			
Dibromofluoromethane (Surr)	100		60 - 140			

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-180246/1-A Matrix: Water Analysis Batch: 180427	МВ	мв					Client Sa	mple ID: Metho Prep Type: T Prep Batch:	otal/NA
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.0025	0.00012	mg/L		05/06/14 06:13	05/07/14 04:36	1
2,4-Dinitrotoluene	ND		0.0013	0.00011	mg/L		05/06/14 06:13	05/07/14 04:36	1
2,4,5-Trichlorophenol	ND		0.0013	0.00012	mg/L		05/06/14 06:13	05/07/14 04:36	1
2,4,6-Trichlorophenol	ND		0.0013	0.00015	mg/L		05/06/14 06:13	05/07/14 04:36	1
2-Methylphenol	ND		0.0013	0.00010	mg/L		05/06/14 06:13	05/07/14 04:36	1

Lab Sample ID: MB 480-180246/1-	Α							Client Sa	mple ID: Metho	
Matrix: Water									Prep Type: 1	otal/NA
Analysis Batch: 180427		з мв							Prep Batch:	: 180246
Analyte		t Qualifier	RL	MD	L Unit		D	Prepared	Analyzed	Dil Fac
3-Methylphenol	N		0.0025	0.0001				5/06/14 06:13	05/07/14 04:36	1
4-Methylphenol	N		0.0025	0.00009	0 mg/L		05	5/06/14 06:13	05/07/14 04:36	1
Hexachlorobenzene	N	C	0.0013	0.0001	3 mg/L		05	5/06/14 06:13	05/07/14 04:36	1
Hexachlorobutadiene	N	C	0.0013	0.0001	7 mg/L		05	5/06/14 06:13	05/07/14 04:36	1
Hexachloroethane	N)	0.0013	0.0001	5 mg/L		05	5/06/14 06:13	05/07/14 04:36	1
Nitrobenzene	N	C	0.0013	0.00007	3 mg/L		05	5/06/14 06:13	05/07/14 04:36	1
Pentachlorophenol	N	C	0.0025	0.0005	5 mg/L		05	5/06/14 06:13	05/07/14 04:36	1
Pyridine	NI)	0.0063		0 mg/L			5/06/14 06:13	05/07/14 04:36	1
	М	3 <i>MB</i>								
Surrogate	%Recover	y Qualifier	Limits					Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	8	0	52 - 132				0	5/06/14 06:13	05/07/14 04:36	1
2-Fluorobiphenyl	8	9	48 - 120				0	5/06/14 06:13	05/07/14 04:36	1
2-Fluorophenol (Surr)	4	6	20 - 120				0	5/06/14 06:13	05/07/14 04:36	1
Nitrobenzene-d5 (Surr)	8	6	46 - 120				0	5/06/14 06:13	05/07/14 04:36	1
p-Terphenyl-d14 (Surr)	10	1	67 - 150				0	5/06/14 06:13	05/07/14 04:36	1
Phenol-d5 (Surr)	3	5	16 - 120				0	5/06/14 06:13	05/07/14 04:36	1
Lab Sample ID: LCS 480-180246/2	-Δ						Clie	nt Sample I	ID: Lab Control	Sample
Matrix: Water							one	in oumpion	Prep Type: 1	
Analysis Batch: 180427									Prep Batch:	
			Spike	LCS LC	s				%Rec.	100240
Analyte			Added	Result Qu	alifier	Unit	[D %Rec	Limits	
1,4-Dichlorobenzene			0.0500	0.0289		mg/L		58	32 - 120	
2,4-Dinitrotoluene			0.0500	0.0517		mg/L		103	65 - 154	
Hexachloroethane			0.0500	0.0266		mg/L		53	14 - 101	
Pentachlorophenol			0.100	0.0816		mg/L		82	39 - 136	
	LCS LC	S								
Surrogate	%Recovery Qu	alifier	Limits							
2,4,6-Tribromophenol (Surr)	87		52 - 132							
2-Fluorobiphenyl	88		48 - 120							
2-Fluorophenol (Surr)	44		20 - 120							
Nitrobenzene-d5 (Surr)	82		46 - 120							
p-Terphenyl-d14 (Surr)	99		67 _ 150							

Lab Sample ID: LCSD 480-180246/3-A Matrix: Water Analysis Batch: 180427

Phenol-d5 (Surr)

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Pren Batch: 180246

Analysis Batch: 180427							Prepi	Batch: 1	80246
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dichlorobenzene	0.0500	0.0309		mg/L		62	32 - 120	7	36
2,4-Dinitrotoluene	0.0500	0.0557		mg/L		111	65 - 154	8	20
Hexachloroethane	0.0500	0.0261		mg/L		52	14 _ 101	2	46
Pentachlorophenol	0.100	0.0845		mg/L		85	39 - 136	4	37

16 - 120

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	92		52 - 132

33

Prep Type: Total/NA

Prep Batch: 180246

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-180246/3-A Matrix: Water

Analysis Batch: 180427

	LCSD		
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	93		48 - 120
2-Fluorophenol (Surr)	48		20 - 120
Nitrobenzene-d5 (Surr)	88		46 - 120
p-Terphenyl-d14 (Surr)	100		67 _ 150
Phenol-d5 (Surr)	37		16 - 120

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-179588 Matrix: Water Analysis Batch: 179873	B/1-A						Client Sa	mple ID: Metho Prep Type: T Prep Batch:	otal/NA
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.50	0.18	ug/L		05/02/14 06:36	05/03/14 17:05	1
PCB-1221	ND		0.50	0.18	ug/L		05/02/14 06:36	05/03/14 17:05	1
PCB-1232	ND		0.50	0.18	ug/L		05/02/14 06:36	05/03/14 17:05	1
PCB-1242	ND		0.50	0.18	ug/L		05/02/14 06:36	05/03/14 17:05	1
PCB-1248	ND		0.50	0.18	ug/L		05/02/14 06:36	05/03/14 17:05	1
PCB-1254	ND		0.50	0.25	ug/L		05/02/14 06:36	05/03/14 17:05	1
PCB-1260	ND		0.50	0.25	ug/L		05/02/14 06:36	05/03/14 17:05	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	95		23 - 127				05/02/14 06:36	05/03/14 17:05	1
Tetrachloro-m-xylene	122		23 - 127				05/02/14 06:36	05/03/14 17:05	1
DCB Decachlorobiphenyl	69		19 - 126				05/02/14 06:36	05/03/14 17:05	1
DCB Decachlorobiphenyl	77		19 - 126				05/02/14 06:36	05/03/14 17:05	1

Lab Sample ID: LCS 480-179588/2-A Matrix: Water

Matrix: Water Analysis Batch: 179873									Prep Type: Total/NA Prep Batch: 179588
			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
PCB-1016			4.00	3.67		ug/L		92	51 - 137
PCB-1260			4.00	4.48		ug/L		112	45 - 139
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
Tetrachloro-m-xylene	96		23 - 127						
Tetrachloro-m-xylene	117		23 - 127						
DCB Decachlorobiphenyl	56		19 - 126						
DCB Decachlorobiphenyl	74		19 - 126						

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-179696/1-A Matrix: Water

Analysis Batch: 180131

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		05/02/14 10:25	05/03/14 11:31	1
Barium	ND		0.0020	0.00070	mg/L		05/02/14 10:25	05/03/14 11:31	1
Cadmium	ND		0.0020	0.00050	mg/L		05/02/14 10:25	05/03/14 11:31	1
Chromium	ND		0.0040	0.0010	mg/L		05/02/14 10:25	05/03/14 11:31	1
Lead	ND		0.010	0.0030	mg/L		05/02/14 10:25	05/03/14 11:31	1
Selenium	ND		0.025	0.0087	mg/L		05/02/14 10:25	05/03/14 11:31	1
Silver	ND		0.0060	0.0017	mg/L		05/02/14 10:25	05/03/14 11:31	1

Lab Sample ID: LCS 480-179696/2-A

Matrix: Water

Analysis Batch: 180131							Prep I	Batch: 179696
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	1.00	1.01		mg/L		101	80 - 120	
Barium	1.00	1.00		mg/L		100	80 - 120	
Cadmium	1.00	0.999		mg/L		100	80 - 120	
Chromium	1.00	1.03		mg/L		103	80 - 120	
Lead	1.00	1.00		mg/L		100	80 - 120	
Selenium	1.00	0.998		mg/L		100	80 - 120	
Silver	1.00	0.996		mg/L		100	80 - 120	

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-179758/1-A												Client Sa	ample ID: Meth	od Blank
Matrix: Water													Prep Type:	Total/NA
Analysis Batch: 180154													Prep Batch	n: 179758
		MB	MB											
Analyte	Re	esult	Qualifier		RL		MDL	Unit		D	P	repared	Analyzed	Dil Fac
Mercury		ND		0	.00020	0.0	0012	mg/L			05/0	5/14 08:00	05/05/14 10:56	1
Lab Sample ID: LCS 480-179758/2-A										CI	ient	Sample	ID: Lab Contro	I Sample
Matrix: Water													Prep Type:	Total/NA
Analysis Batch: 180154													Prep Batch	n: 179758
				Spike		LCS	LCS						%Rec.	
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits	
Mercury				0.00667		0.00695			mg/L		_	104	80 - 120	
Lab Sample ID: 480-58999-1 MS												Clien	t Sample ID: ID	W Water
Matrix: Water													Prep Ty	pe: TCLP
Analysis Batch: 180154													Prep Batch	n: 179758
-	Sample	Sam	ole	Spike		MS	MS						%Rec.	
Analyte	Result	Qual	ifier	Added		Result	Qual	ifier	Unit		D	%Rec	Limits	
Mercury	ND			0.00667		0.00702			mg/L		_	105	75 - 125	

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 179696

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

8

5

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: 480-58999-1 MSD Matrix: Water								Clie		ep Type:	TCLP
Analysis Batch: 180154										Batch: 1	
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	ND		0.00667	0.00690		mg/L		103	75 - 125	2	20

Method: 1010A - Ignitability, Pensky-Martens Closed Cup Method

Lab Sample ID: LCS 480-179815/1 Matrix: Water	I					C	lient	Sampi	le ID: Lab Co Prep T	ontrol Sa ype: To	
Analysis Batch: 179815			Spike	LCS	LCS				%Rec.		
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
Flashpoint			81.0	80.00		Degrees F		99	97.5 - 102.		
-									5		
Lab Sample ID: 480-58999-1 DU								Clie	ent Sample I	D: IDW	Water
Matrix: Water									Prep T	ype: To	tal/NA
Analysis Batch: 179815											
	Sample 3	Sample		DU	DU						RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Limit
Flashpoint	>176.0			>176.0		Degrees F				NC	10

Method: 9012 - Cyanide, Reactive

Lab Sample ID: MB 480-179770/1-A Matrix: Water Analysis Batch: 180033	МВ	мв									Client S		Method Type: To Batch: '	otal/NA
Analyte		Qualifier		RL		MDL	Unit		D	Р	repared	Analy	zed	Dil Fac
Cyanide, Reactive	ND			10.0	0.	0030	mg/L			05/0	2/14 00:50	05/05/14	06:25	1
Lab Sample ID: LCS 480-179770/2-A Matrix: Water Analysis Batch: 180033			Spike		LCS	LCS			CI	lient	Sample		ontrol S Type: To Batch: '	otal/NA
Analyte			Added		Result			Unit		D	%Rec	Limits		
Cyanide, Reactive			1000		303.8			mg/L		_	30	10 - 100		
Lab Sample ID: LCSD 480-179770/3-A Matrix: Water Analysis Batch: 180033								CI	ient	Sam	iple ID: L		ol Samp Type: To Batch: [/]	tal/NA
			Spike		LCSD	LCS	D					%Rec.		RPD
Analyte			Added		Result	Qual	lifier	Unit		D	%Rec	Limits	RPD	Limit
Cyanide, Reactive			1000		298.8			mg/L		_	30	10 - 100	2	20

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 179766 5 repared Analyzed Dil Fac

Method:	9034	- Sulfide.	Reactive

Lab Sample ID: MB 480-179766/1-A

· · · · · · · · · · · · · · · · · · ·														
Matrix: Water												Prep Ty	ype: To	tal/NA
Analysis Batch: 180094												Prep E	Batch: 1	79766
-	МВ	МВ												
Analyte	Result	Qualifier		RL		MDL	Unit		D	P	repared	Analyz	ed	Dil Fac
Sulfide, Reactive	ND			10.0		0.57	mg/L		_	05/0	2/14 00:50	05/05/14 0)9:30	1
Lab Sample ID: LCS 480-179766/2-A									С	lient	Sample	ID: Lab Co	ontrol S	ample
Matrix: Water												Prep T	ype: To	tal/NA
Analysis Batch: 180094												Prep E	Batch: 1	79766
-			Spike		LCS	LCS						%Rec.		
Analyte			Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Sulfide, Reactive			1000		761.4			mg/L		_	76	10 - 100		
Lab Sample ID: LCSD 480-179766/3-A								CI	ient	Sam	ple ID: L	ab Contro	I Samp	le Dup
Matrix: Water											-	Prep T	ype: To	tal/NA
Analysis Batch: 180094												Prep E	Batch: 1	79766
-			Spike		LCSD	LCS	D					%Rec.		RPD
Analyte			Added		Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	Limit
Sulfide, Reactive			1000		801.5			mg/L			80	10 - 100	5	20
					20110						50		Ũ	_

Method

8260C

8260C

8260C

Method

1311

Prep Batch

Prep Batch

179685

9 10 11 12 13

15

Lab Sample ID	Client Sample ID
480-58999-1	IDW Water
LCS 480-179640/5	Lab Control Sample
MB 480-179640/7	Method Blank
Leach Batch: 179685	
Lab Sample ID	Client Sample ID

IDW Water

GC/MS Semi VOA

480-58999-1

GC/MS VOA

Analysis Batch: 179640

Leach Batch: 179668

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-58999-1	IDW Water	TCLP	Water	1311	
Prep Batch: 180246					

Prep Type TCLP

Total/NA

Total/NA

Prep Type

TCLP

Matrix

Water

Water

Water

Matrix

Water

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-58999-1	IDW Water	TCLP	Water	3510C	179668
LCS 480-180246/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 480-180246/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	
MB 480-180246/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 180427

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-58999-1	IDW Water	TCLP	Water	8270D	180246
LCS 480-180246/2-A	Lab Control Sample	Total/NA	Water	8270D	180246
LCSD 480-180246/3-A	Lab Control Sample Dup	Total/NA	Water	8270D	180246
MB 480-180246/1-A	Method Blank	Total/NA	Water	8270D	180246

GC Semi VOA

Prep Batch: 179588

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-58999-1	IDW Water	Total/NA	Water	3510C	
LCS 480-179588/2-A	Lab Control Sample	Total/NA	Water	3510C	
MB 480-179588/1-A	Method Blank	Total/NA	Water	3510C	
nalysis Batch: 17987					
	3 Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
nalysis Batch: 17987 Lab Sample ID 480-58999-1		Prep Type Total/NA	Matrix Water	Method	Prep Batch 179588
Lab Sample ID	Client Sample ID				

Metals

Leach Batch: 179668

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-58999-1	IDW Water	TCLP	Water	1311	
480-58999-1 MS	IDW Water	TCLP	Water	1311	
480-58999-1 MSD	IDW Water	TCLP	Water	1311	

Metals (Continued

Prep Batch: 179696

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-58999-1	IDW Water	TCLP	Water	3010A	179668
LCS 480-179696/2-A	Lab Control Sample	Total/NA	Water	3010A	
MB 480-179696/1-A	Method Blank	Total/NA	Water	3010A	
Prep Batch: 179758	off the second to be	Dava Tana	N - 4-1	M -44 - 4	Deve Detail
	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
Lab Sample ID	Client Sample ID IDW Water	Prep Type TCLP	Matrix Water	<u>Method</u> 7470A	Prep Batch 179668
Lab Sample ID 480-58999-1	·				
Tep Batch: 179758 Lab Sample ID 480-58999-1 480-58999-1 MS 480-58999-1 MSD	IDW Water	TCLP	Water	7470A	179668

Analysis Batch: 180131

Method Blank

MB 480-179758/1-A

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
480-58999-1	IDW Water	TCLP	Water	6010C	179696	
LCS 480-179696/2-A	Lab Control Sample	Total/NA	Water	6010C	179696	
MB 480-179696/1-A	Method Blank	Total/NA	Water	6010C	179696	
Analysis Patch: 19015						

Total/NA

Water

7470A

Analysis Batch: 180154

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-58999-1	IDW Water	TCLP	Water	7470A	179758
480-58999-1 MS	IDW Water	TCLP	Water	7470A	179758
480-58999-1 MSD	IDW Water	TCLP	Water	7470A	179758
LCS 480-179758/2-A	Lab Control Sample	Total/NA	Water	7470A	179758
MB 480-179758/1-A	Method Blank	Total/NA	Water	7470A	179758

General Chemistry

Prep Batch: 179766

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-58999-1	IDW Water	Total/NA	Water	7.3.4	
LCS 480-179766/2-A	Lab Control Sample	Total/NA	Water	7.3.4	
LCSD 480-179766/3-A	Lab Control Sample Dup	Total/NA	Water	7.3.4	
MB 480-179766/1-A	Method Blank	Total/NA	Water	7.3.4	

Prep Batch: 179770

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-58999-1	IDW Water	Total/NA	Water	7.3.3	
LCS 480-179770/2-A	Lab Control Sample	Total/NA	Water	7.3.3	
LCSD 480-179770/3-A	Lab Control Sample Dup	Total/NA	Water	7.3.3	
MB 480-179770/1-A	Method Blank	Total/NA	Water	7.3.3	

Analysis Batch: 179815

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-58999-1	IDW Water	Total/NA	Water	1010A	
480-58999-1 DU	IDW Water	Total/NA	Water	1010A	
LCS 480-179815/1	Lab Control Sample	Total/NA	Water	1010A	

QC Association Summary

General Chemistry (Continued) Analysis Batch: 180033

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
IDW Water	Total/NA	Water	9012	179770
Lab Control Sample	Total/NA	Water	9012	179770
Lab Control Sample Dup	Total/NA	Water	9012	179770
Method Blank	Total/NA	Water	9012	179770
	Deres Trees	Madaia	M - 411	Dura Detek
Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
Client Sample ID	Prep Type Total/NA	Matrix Water	Method 9034	Prep Batch 179766
	· · ·			
IDW Water	Total/NA	Water	9034	179766
	IDW Water Lab Control Sample Lab Control Sample Dup	IDW Water Total/NA Lab Control Sample Total/NA Lab Control Sample Dup Total/NA	IDW Water Total/NA Water Lab Control Sample Total/NA Water Lab Control Sample Dup Total/NA Water	IDW WaterTotal/NAWater9012Lab Control SampleTotal/NAWater9012Lab Control Sample DupTotal/NAWater9012

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-58999-1	IDW Water	Total/NA	Water	9040C	
LCS 480-180095/1	Lab Control Sample	Total/NA	Water	9040C	

Lab Sample ID: 480-58999-1 Matrix: Water 5 6 7 8 9

10

Client Sample ID: IDW Water Date Collected: 04/29/14 10:30

Date Received: 05/01/14 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			179685	05/02/14 09:39	MRB	TAL BUF
CLP	Analysis	8260C		4	179640	05/02/14 16:12	TRB	TAL BUF
TCLP	Leach	1311			179668	05/02/14 09:03	MRB	TAL BUF
TCLP	Prep	3510C			180246	05/06/14 06:13	MCZ	TAL BUF
TCLP	Analysis	8270D		1	180427	05/07/14 11:05	HTL	TAL BUF
Total/NA	Prep	3510C			179588	05/02/14 06:36	JLS	TAL BUF
Total/NA	Analysis	8082A		1	179873	05/03/14 21:35	JMM	TAL BUF
TCLP	Leach	1311			179668	05/02/14 09:03	MRB	TAL BUF
TCLP	Prep	3010A			179696	05/02/14 10:25	EHD	TAL BUF
TCLP	Analysis	6010C		1	180131	05/03/14 11:51		TAL BUF
TCLP	Leach	1311			179668	05/02/14 09:03	MRB	TAL BUF
TCLP	Prep	7470A			179758	05/05/14 08:00	EHD	TAL BUF
TCLP	Analysis	7470A		1	180154	05/05/14 11:01	LRK	TAL BUF
Total/NA	Analysis	1010A		1	179815	05/02/14 09:29	RP	TAL BUF
Total/NA	Prep	7.3.3			179770	05/02/14 00:50	LAW	TAL BUF
Total/NA	Analysis	9012		1	180033	05/05/14 06:25	LAW	TAL BUF
Fotal/NA	Prep	7.3.4			179766	05/02/14 00:50	LAW	TAL BUF
Total/NA	Analysis	9034		1	180094	05/05/14 09:30	LAW	TAL BUF
Fotal/NA	Analysis	9040C		1	180095	05/05/14 10:49	VAJ	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: New York State D.E.C. Project/Site: Cold Spring MGP #340026

TestAmerica Job ID: 480-58999-1

	Laboratory	: TestAmerica	Buffalo
--	------------	---------------	---------

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Arkansas DEQ	State Program	6	88-0686	07-06-14
California	State Program	9	1169CA	09-30-14
Connecticut	State Program	1	PH-0568	09-30-14
Florida	NELAP	4	E87672	06-30-14
Georgia	State Program	4	N/A	03-31-15
Illinois	NELAP	5	200003	09-30-14
lowa	State Program	7	374	03-01-15
Kansas	NELAP	7	E-10187	01-31-15 *
Kentucky (DW)	State Program	4	90029	12-31-14
Kentucky (UST)	State Program	4	30	03-31-15
Louisiana	NELAP	6	02031	06-30-14
Maine	State Program	1	NY00044	12-04-14
Maryland	State Program	3	294	03-31-15
Massachusetts	State Program	1	M-NY044	06-30-14
Michigan	State Program	5	9937	03-31-15
Minnesota	NELAP	5	036-999-337	12-31-14
New Hampshire	NELAP	1	2337	11-17-14
New Jersey	NELAP	2	NY455	06-30-14
New York	NELAP	2	10026	03-31-15
North Dakota	State Program	8	R-176	03-31-14 *
Oklahoma	State Program	6	9421	08-31-14
Oregon	NELAP	10	NY200003	06-09-14
Pennsylvania	NELAP	3	68-00281	07-31-14
Rhode Island	State Program	1	LAO00328	12-30-14
Tennessee	State Program	4	TN02970	03-31-15
Texas	NELAP	6	T104704412-11-2	07-31-14
USDA	Federal		P330-11-00386	11-22-14
Virginia	NELAP	3	460185	09-14-14
Washington	State Program	10	C784	02-10-15
West Virginia DEP	State Program	3	252	05-31-14
Wisconsin	State Program	5	998310390	08-31-14

* Expired certification is currently pending renewal and is considered valid.

Method Summary

Client: New York State D.E.C. Project/Site: Cold Spring MGP #340026

lethod	Method Description	Protocol	Laboratory
260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
010C	Metals (ICP)	SW846	TAL BUF
470A	Mercury (CVAA)	SW846	TAL BUF
010A	Ignitability, Pensky-Martens Closed Cup Method	SW846	TAL BUF
012	Cyanide, Reactive	SW846	TAL BUF
034	Sulfide, Reactive	SW846	TAL BUF
040C	рН	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: New York State D.E.C. Project/Site: Cold Spring MGP #340026

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-58999-1	IDW Water	Water	04/29/14 10:30	05/01/14 09:00

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298	Chain	of Custody Record	Test America
Client Information	Bob bimbel - Enviroiter	Lao PM: Stone, Judy L	COC No: 480-48700-12942.1
Client Contact. Mr. George Kisluk	c0 (E-Mail: judy.stone@te	Page: Page 1 of 1
Company: URS Corporation	C		Job #:
Accress: 257 W. Genesee Street	Due Date Requested:	480-58999 Chain of Custody	Preservation Coc A - HCL
City: Buffalo	TAT Requested (days): , 쇼스 쇼(C		
State, Zip: NY, 14203			D - NUTC ACID P - NAZO45 E - NAHSO4 Q - NA2SO3 F - MeOH R - NA2S2303
Phone: 518-402-9814(Tel)	PO#. Callout 121210		G - Amchlor H - Ascorbic Acid
Emait: george.kisluk@urs.com	# OM	ο, (οΝ)	J - Di Water K - EDTA
Project Name: Cold Spring MGP #340026	rr Project # 48006513	s Idfiles Idfiles	L - EDA
		(ŚD () emivol letals l olatile shint	of oc Other:
	Sample	2 2 2 2 2 2 2 2 2 2 2 2 2 2	edmuVilisio
Sample Identification	Sample Date Time G=grab) BT-TISSUM, A-AIT	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
IDGO Weter	/		
**			
ant	Doison B Conknown Radiological	essed if samples are i osal By Lab	etained longer than 1 monut) Archive ForMonths
		Requirements:	
Empty Kit Relinquished by:	Date:	Time:	
Reinquished by	Date Tyre . II S Company	T (Received by Act , Dates meeting)	- MM / as /1/ 2/
Relinguistication	5/14/1381<	N DA	14 0900 Duch
1	Dáte/Timp: / Company	Received by:	Company
Custody Seals Intact: Custody Seal No.:		Cooler Temperature(s) °C and Other Remarks.	, 54)
		7 8 9 10 11 12 13 14 15	1 2 3 4 5 6

--

÷

--- -

Client: New York State D.E.C.

Login Number: 58999 List Number: 1

Creator: Wienke, Robert K

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

List Source: TestAmerica Buffalo