

2020 SITE MANAGEMENT REPORT

COLD SPRING MGP SITE VILLAGE OF COLD SPRING, NEW YORK 10516

NYSDEC Site No. 340026 Work Assignment No. D009812-04.05

Prepared for:

Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12233

Prepared by:

TABLE OF CONTENTS

SECT	TON	PAGE
Execu	tive Summary	iv
1.0	Introduction	1
2.0	Site Management and Monitoring Activities	2
3.0	Groundwater Monitoring Summary	3
3.1	Groundwater Gauging	3
3.2	Groundwater Sampling	3
3.3	Groundwater Analysis and Results	4
4.0	Conclusions and Recommendations	6
4.1	Conclusions	6
4.2	Recommendations	6
5.0	Future Site Activities	8

TABLE OF CONTENTS (Continued)

LIST OF FIGURES

Figure 1	Site Location	Map
----------	---------------	-----

Figure 2 Groundwater Monitoring Map – October 6, 2020

LIST OF TABLES

Table 1	Summary of Depth to Water Measurements and Groundwater Elevations
Table 2	Summary of Groundwater Analytical Results (October 2020)

LIST OF APPENDICES

Appendix A	Site History, Custodial Record, and Monitoring Well Summary
Appendix B	Site Inspection Forms and Daily Field Reports
Appendix C	Groundwater Sampling Logs – October 2020
Appendix D	Laboratory Analytical Summary Report – Groundwater, October 2020
Appendix E	Data Usability Summary Reports – Groundwater, October 2020

ACRONYMS AND ABBREVIATIONS

AMSL Above Mean Sea Level

ASP-B Analytical Services Protocol – Category B Deliverables BTEX Benzene, Toluene, Ethylbenzene, and total Xylenes

COC Contaminant of Concern

DER Department of Environmental Remediation

DTW Depth to Water

DUSRs Data Usability Summary Reports

EC Engineering Control

EDD Electronic Data Deliverable EE Environmental Easement

Eurofins/TestAmerica Eurofins/TestAmerica Laboratories of Amherst, New York

Ft. bgs Feet Below Ground Surface

IC Institutional Control

IHWDS Inactive Hazardous Waste Disposal Site

μg/LMGPManufactured Gas Plantng/LNanograms per Liter

NYSDEC New York State Department of Environmental Conservation

PAHS Polycyclic Aromatic Hydrocarbons
PFAS Per- and Polyfluoroalkyl Substances

PRR Periodic Review Report

QAPP Quality Assurance Project Plan
QA/QC Quality Assurance/Quality Control

RA Remedial Action ROD Record of Decision

SCG Standards, Criteria, and Guidance

SMP Site Management Plan
SMR Site Management Report
TRC TRC Engineers, Inc.

USEPA United States Environmental Protection Agency

WA Work Assignment

Executive Summary

Category	Summary/Results
Site Classification	The Site is currently classified as a Class 4 IHWDS.
Site Management Plan	The SMP is dated February 2019.
Required Site Management Activities	One site inspection and one groundwater sampling event is required annually or at a frequency determined by the NYSDEC.
Engineering Control	Cover system and site monitoring wells.
Institutional Control	An Environmental Easement is in place on the Site which includes: Groundwater Use Restriction, Soil Management Plan, Cover System, Land-use Restriction, Building Use Restriction Monitoring Plan, Site Management Plan, and an IC/EC Plan.
Certification/Reporting Period	Per the February 2019 SMP, a PRR and IC/EC Certification for the period dated March 2013 to July 2018 was submitted by URS Corporation to the NYSDEC on August 30, 2018 and was approved on December 18, 2018. The frequency of Site PRRs is every three years with the next periodic review and certification due in August 2021. Annual SMRs are required by the SMP.
Prior PRR/SMR Recommendations	The December 2018 PRR was not available for review during this reporting period. However, the February 2019 SMP recommended that downgradient monitoring well GW-03 be reinstalled if it could not be located during future groundwater sampling events.
Site Management Activities	A field inspection was completed on September 8, 2020 to determine the status of the Site and associated monitoring wells. One round of groundwater level measurements and sampling was completed on October 6, 2020. Groundwater samples collected from five of the six monitoring wells were submitted for laboratory analysis of BTEX, PAHs, and PFAS. Monitoring well GW-03 could not be located during the field event.
Significant Findings or Concerns	Monitoring well GW-03 could not be located during the September 8, 2020 inspection and is suspected to be under the parking lot gravel cover.
Recommendations	The frequency of groundwater monitoring activities should be reduced from annually to biennially.
	Downgradient monitoring well GW-03 should be reinstalled to determine the presence/absence of BTEX and PAH contamination at this location.
	The SMP requirement for all groundwater samples to be analyzed for PFAS should be discontinued.
	The frequency of PRRs should be reduced from every 3 years to every 4 years.
	The frequency of SMRs should be reduced from annually to biennially. During reporting years where both a SMR and PRR are required, a SMR will not be submitted.

1.0 Introduction

This Site Management Report (SMR) has been prepared for the Cold Spring Manufactured Gas Plant (MGP) Site (referred to as "the Site") and covers the period February 27, 2020, through December 31, 2020. This SMR was prepared in accordance with the New York State Department of Environmental Conservation (NYSDEC or the "Department") Division of Environmental Remediation (DER) Work Assignment (WA) No. D009812-04.05 Notice to Proceed dated February 27, 2020, the NYSDEC-approved Scope of Work dated July 20, 2020, (WA No. D009812-04.05) and NYSDEC DER-10, Technical Guidance for Site Investigation and Remediation (DER-10). A Site summary and applicable remedial program information are summarized below.

Site Information							
Site Name:	Cold Spring MGP	NYSDEC Site No:	340026				
Site Location:	5 New Street, Cold Spring, New York, 10516	Remedial Program:	State Superfund Program				
Site Type:	Commercial (Active marina)	Classification:	04				
Parcel Identification(s):	48.12-1-51, Putnam County Tax Mapping	Parcel Acreage / EE Acreage:	1.667/0.977				
Selected Remedy:	Excavation of impacted soil	Site COC(s):	BTEXPAHs				
Current Remedial Program Phase:	Post RA Site Monitoring; Site Management	Institutional Controls:	ROD (2010)EE (2013)SMP (2019)				
Post-Remediation Monitoring and Sampling Frequency:	Annual Groundwater Monitoring and Site Inspection	Engineering Controls:	Cover systemMonitoring wells				
Monitoring Locations:	Groundwater monitoring wells (6)	Required Reporting	Annual				

Site Location and Groundwater Monitoring maps are provided on **Figures 1** and **2**, respectively. A detailed Site history, including the dates and descriptions of significant events, and a Custodial Record detailing known and available Site reports, are included in **Appendix A**.

2.0 Site Management and Monitoring Activities

On September 8, 2020, an annual site inspection was completed to document general site conditions and evaluate the status of the groundwater monitoring wells. The site inspection forms can be found in **Appendix B**. On October 6, 2020, TRC completed groundwater sampling activities on five of the six monitoring wells. Monitoring well GW-03 could not be located during the two field events, and therefore, a groundwater sample was not collected.

The February 2019 Site Management Plan (SMP) specifies the following routine Site activities:

- Annual Site inspection of the cover system and monitoring wells. Inspections should also be conducted following an emergency event, such as natural disasters.
- Annual groundwater monitoring for benzene, toluene, ethylbenzene, and xylenes (BTEX) by United States Environmental Protection Agency (USEPA) Method 8260, polycyclic aromatic hydrocarbons (PAHs) by USEPA Method 8270, and per- and polyfluoroalkyl substances (PFAS) by USEPA Method 537 modified.

A summary of TRC's September and October 2020 site management field activities can be found in the table below.

	Summary of 2020 Site Management Activities September 8 and October 6, 2020									
Site Management Activity	Summary of Results	Maintenance/Corrective Measure								
Site wide inspection (September 8, 2020)	Four of six monitoring wells were located, with GW-03 and GW-07 unable to be located. GW-07 was believed to be located under materials in the boat launch storage area. All located wells and applicable Site cover were noted to be in good condition.	No routine maintenance or corrective measures needed at this time.								
Groundwater gauging and sampling (October 6, 2020)	Five of the six monitoring wells were sampled by TRC. Monitoring well GW-03 was not located and is believed to be under the gravel cover. All collected groundwater samples were submitted to Eurofins/TestAmerica for analysis of BTEX, PAHs, and PFAS by USEPA Methods 8260, 8270, and 537 modified, respectively.	No routine maintenance or corrective measures needed at this time.								

3.0 Groundwater Monitoring Summary

3.1 Groundwater Gauging

On October 6, 2020, all located monitoring wells were gauged for depth to groundwater (DTW) to determine potentiometric surface information and evaluate potential groundwater flow directions. A summary of the Site hydrogeologic conditions can be found in the table below.

October 2020 Hydrogeologic Summary							
Number of Gauged Wells	Monitoring Wells per Unit						
5	5						
	Overburden Grou	indwater Elevation Range					
	Lowest groundwater elevation: 2.03 feet AMSL (GW-04) Highest groundwater elevation: 4.61 feet AMSL (GW-01)						
Inferred Overburden Groundwater Flow Direction							
	Southwest						

Notes:

AMSL – Above Mean Sea Level.

The groundwater gauging and elevation measurements can be found on **Table 1**. Site groundwater flow directions are presented on **Figure 2**.

3.2 Groundwater Sampling

On October 6, 2020, groundwater samples were collected from five monitoring wells (GW-01, GW-04, GW-05, GW-06, and GW-07) utilizing USEPA low-flow sampling techniques. Groundwater sampling logs can be found in **Appendix C**.

All five groundwater samples, in addition to standard quality assurance/quality control (QA/QC) samples collected at the frequencies specified in TRC's July 2020 Generic Quality Assurance Project Plan (QAPP), were submitted to the NYSDEC Callout laboratory, Eurofins/TestAmerica Laboratories of Amherst, New York (Eurofins/TestAmerica), for the analysis of BTEX, PAHs, and PFAS by USEPA Methods 8260, 8270, and 537 modified, respectively.

A summary of the monitoring well construction details and applicable October 2020 groundwater sampling information is presented in the table below:

	Summary of Groundwater Monitoring and Sampling Activities October 6, 2020								
	Monitoring Well Details				2020 Groundwater Sampling Event				
Well ID	Latitude Longitude		Screen zone (ft. bgs)	DTW (ft. below TOC)	SMP Analytes	Notes			
GW-01	41° 24' 56.961" N	73° 57' 35.232" W	2 - 12	2.40	BTEX, PAHs, PFAS				
GW-03	41° 24' 54.987" N	73° 57' 37.811" W	2 - 12	NA	NA	Unable to locate			
GW-04	41° 24' 55.457" N	73° 57' 38.295" W	2 - 12	2.28	BTEX, PAHs, PFAS				
GW-05	41° 24' 55.872" N	73° 57' 37.472" W	2 - 12	2.60	BTEX, PAHs, PFAS				
GW-06	41° 24' 55.923" N	73° 57' 37.254" W	3 - 12	3.06	BTEX, PAHs, PFAS				
GW-07	41° 24' 55.255" N	73° 57' 36.725" W	3 - 12	3.02	BTEX, PAHs, PFAS				

Notes:

BTEX – Benzene, toluene, ethylbenzene, and xylenes.

DTW – Depth to water.

ft. below TOC - Feet below top of casing.

ft. bgs - Feet below ground surface.

ID – Identification.

NA – Not available.

PAHs - Polycyclic aromatic hydrocarbons.

PFAS – Per- and polyfluoroalkyl substances.

SMP – Site Management Plan

A table with well construction details is additionally provided in **Appendix A**.

3.3 Groundwater Analysis and Results

Groundwater analytical data for BTEX, PAHs, and PFAS can be found in **Table 2**. The laboratory analytical summary report and data usability summary reports (DUSRs) (for the associated analytical services protocol Category B (ASP-B) laboratory reports) can be found in **Appendices D** and **E**, respectively. Detected compounds exceeding their respective NYSDEC Class GA or Guidance Values for each well are illustrated on **Figure 2**. A summary of the October 2020 groundwater analytical results for selected parameters which exceeded the respective Class GA or Guidance Values is below:

Exceedance Summary of Laboratory Analytical Results in Groundwater October 6, 2020								
Constituent Class GA Value* Concentration Range Location with Highest Detection Class GA V								
	BTEX (μg/L)							
		No Class GA Exceedances						
		PAHs (μg/L)						
Acenaphthene	20	ND – 35	GW-07	2/5				
Benzo(a)anthracene	0.002	ND – 0.48 J	GW-07	1/5				
Benzo(b)fluoranthene	0.002	ND – 0.34 J	GW-07	1/5				
Chrysene	Chrysene 0.002 ND – 0.33 J GW-07 1/5							
PFAS (ng/L)								
Perfluorooctanoic acid (PFOA)	10**	ND – 13	GW-01 & GW-06	2/5				

Notes:

 $BTEX-Benzene,\,toluene,\,ethylbenzene,\,and\,\,xylenes.$

 $J-Estimated\ value.$

ND - Not detected above the specified quantitation limit.

ng/L - Nanograms per liter.

PAHs – Polycyclic aromatic hydrocarbons.

PFAS – Per- and polyfluoroalkyl substances.

 $\mu g/L - Micrograms per liter.$

^{* -} NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water, June 1998 with the April 2000 Addendum.

^{** -} Guidelines for Sampling and Analysis of PFAS, NYSDEC Part 375 Remedial Programs, October 2020.

4.0 Conclusions and Recommendations

The following conclusions and recommendations are based on the findings of the site management activities completed during this reporting period, as well as a review of information obtained from prior reports.

4.1 Conclusions

• Compliance with the Record of Decision (ROD) and SMP: Site and groundwater use are consistent with the restrictions set forth in the ROD and SMP. Site inspections, site inspection reports, groundwater monitoring reports and PRRs are currently completed at the frequency specified in the February 2019 SMP. The ICs operated as intended during this reporting period.

• Performance and Effectiveness:

- o BTEX compounds were either not detected above laboratory quantitation limits or were detected at concentrations below Class GA Values for all collected groundwater samples.
- A number of PAH compounds exceeded Class GA Values in monitoring wells GW-04 and GW-07. Upon review of the historical groundwater data set presented in the February 2019 SMP, PAH concentrations in these two monitoring wells have increased slightly since the last monitoring event in July 2018.
- One PFAS compound, perfluorooctanoic acid (PFOA), exceeded the Guidance Value of 10 nanograms per liter (ng/L), as found in the *October 2020 Sampling, Analysis, and Assessment of PFAS Under NYSDEC's Part 375 Remedial Programs*, in monitoring wells GW-01 (13 ng/L) and GW-06 (13 ng/L). Upon review of the historical groundwater data set presented in the February 2019 SMP, current PFOA concentrations within these two monitoring wells are similar to those detected in July 2018.
- **Protectiveness:** The remedy continued to be protective of human health and the environment during this reporting period.

4.2 Recommendations

- It is recommended that Site inspections continue annually and following severe weather events (as needed) to certify that the ICs/ECs are functioning as intended. A site inspection report should be completed following each inspection event.
- It is recommended that the groundwater monitoring frequency be reduced from annually (next scheduled for Q4 2021) to biennially (proposed for Q4 2022).
- The requirement to analyze groundwater samples for PFAS should be discontinued. The recent minor exceedances of PFOA found monitoring wells GW-01 and GW-06 are similar to those detected in July 2018. Additionally, PFAS compounds were either not detected above laboratory quantitation limits or were detected at concentrations below their respective Guidance Values in remaining downgradient monitoring wells (GW-04, GW-05, and GW-07). Based on the known historical use of the Site, it is unclear if the PFAS detections are related to the Site.

- It is recommended that monitoring well GW-03 be replaced to determine the presence/absence of BTEX and PAH contamination. This location represents the furthest on-Site downgradient monitoring well prior to the groundwater discharge to the Hudson River. It is recommended that completion of this activity be concurrent with the next scheduled groundwater sampling event.
- It is recommended that the SMR requirement be reduced from an annual to biennial basis. During reporting years where both a SMR and PRR are required, a SMR will not be submitted.
- The frequency of PRRs should be reduced from every 3 years to every 4 years. It is recommended that the certification period for the next PRR covers the reporting period between August 1, 2018 and December 31, 2022.
- The SMP should be revised to reflect the above changes/modifications if the changes are acceptable to the NYSDEC.

5.0 Future Site Activities

Based on the recommendations provided above in **Section 4.2**, the following site management activities will be completed during the current PRR reporting period (August 2018 to December 2022):

- Site Inspections Annual (next scheduled: Q4 2021 and Q4 2022)
- Groundwater Sampling Biennial (next scheduled: Q4 2022)
- GW-03 Replacement (next scheduled: Q4 2022)
- SMR Biennial (no next scheduled submission during current PRR reporting period)
- PRR Every 4 years (next scheduled: Q4 2022)

TABLES

TRC ENGINEERS, INC. AUGUST 2021

Table 1

Summary of Depth to Water Measurements and Groundwater Elevations

Cold Spring MGP Site (Site No. 340026) Village of Cold Spring, NY

Well ID	Screened Formation	TOC Elevation (feet AMSL)	Gauge Date	Depth to Water (feet below TOC)	Depth to Bottom (feet below TOC)	Groundwater Elev. (feet AMSL)	
GW-01	Overburden	7.01	10/6/2020	2.40	12.00	4.61	
GW-03*	Overburden	5.04	10/6/2020	Unable to Locate			
GW-04	Overburden	4.31	10/6/2020	2.28	11.78	2.03	
GW-05	Overburden	4.96	10/6/2020	2.60	9.20	2.36	
GW-06	Overburden	5.34	10/6/2020	3.06	11.78	2.28	
GW-07	Overburden	5.31	10/6/2020	3.02	11.20	2.29	

Notes

Elev. : Elevation.

AMSL : Above Mean Sea Level.

ID : Identification.
TOC : Top of Casing.

Table 2

Summary of Groundwater Analytical Results (October 2020)

Cold Spring MGP Site (Site No. 340026)

Village of Cold Spring, NY

	Sample	Location:	GW-1	GW-4	GW-5	G'	W-6	GW-7
		ple Name:	GW-01	GW-04	GW-05	GW-06	DUP	GW-07
	Lab S	ample ID:	480-176138-3	480-176138-4	480-176138-2	480-176138-1	480-176138-6	480-176138-5
	Sar	nple Date:	10/06/2020	10/06/2020	10/06/2020	10/06/2020	10/06/2020	10/06/2020
Analyte	Unit	GWQS*					Field Dup	
VOCs								
Benzene	ug/L	1	1.0 U	1.0 U	2.0 U	2.0 U	2.0 U	0.94 J
Toluene	ug/L	5	1.0 U	1.0 U	2.0 U	2.0 U	2.0 U	1.0 U
Ethylbenzene	ug/L	5	1.0 U	1.0 U	2.0 U	2.0 U	2.0 U	0.78 J
m,p-Xylene	ug/L	5	2.0 U	2.0 U	4.0 U	4.0 U	4.0 U	2.0 U
o-Xylene	ug/L	5	1.0 U	1.2	2.0 U	2.0 U	2.0 U	1.0 U
Xylenes, total	ug/L	5	2.0 U	1.2 J	4.0 U	4.0 U	4.0 U	2.0 U
Total BTEX	ug/L	NC	2.0 U	1.2 J	4.0 U	4.0 U	4.0 U	1.7 J
PAHs								•
Acenaphthene	ug/L	20	5.0 U	33	4.7 J	14	11	35
Acenaphthylene	ug/L	NC	5.0 U	3.8 J				
Anthracene	ug/L	50	5.0 U	1.8 J	5.0 U	1.1 J	0.96 J	0.97 J
Benzo(a)anthracene	ug/L	0.002	5.0 U	0.48 J				
Benzo(a)pyrene	ug/L	ND	5.0 U					
Benzo(b)fluoranthene	ug/L	0.002	5.0 U	0.34 J				
Benzo(g,h,i)perylene	ug/L	NC	5.0 U					
Benzo(k)fluoranthene	ug/L	0.002	5.0 U					
Chrysene	ug/L	0.002	5.0 U	0.33 J				
Dibenz(a,h)anthracene	ug/L	NC	5.0 U					
Fluoranthene	ug/L	50	5.0 U	1.3 J	5.0 U	1.9 J	1.4 J	6.1
Fluorene	ug/L	50	5.0 U	6.7	5.0 U	0.85 J	0.92 J	14
Indeno(1,2,3-cd)pyrene	ug/L	0.002	5.0 U					
Naphthalene	ug/L	10	5.0 U					
Phenanthrene	ug/L	50	5.0 U	6.1	5.0 U	5.0 U	0.50 J	5.0 U
Pyrene	ug/L	50	5.0 U	1.4 J	5.0 U	2.6 J	1.8 J	3.5 J
PFAS	-8-							
Perfluorobutanoic acid (PFBA)	ng/L	100**	6.1	8.7	22	15	14	29
Perfluoropentanoic acid (PFPeA)	ng/L	100**	8.1	5.7	6.2	5.2	5.2	3.0
Perfluorohexanoic acid (PFHxA)	ng/L	100**	7.7	4.2	5.7	3.6	3.6	1.9
Perfluoroheptanoic acid (PFHpA)	ng/L	100**	5.2	2.8	2.8	3.0	2.7	1.1 J
Perfluoroctanoic acid (PFOA)	ng/L	10**	13	9.8	7.4	13	12	2.2
Perfluorononanoic acid (PFNA)	ng/L	100**	0.58 J	0.69 J	0.86 J	1.9	2.5	0.28 J
Perfluorodecanoic acid (PFDA)	ng/L	100**	1.7 U	1.9 U	0.72 J	1.8 U	1.8 U	1.8 U
Perfluoroundecanoic acid (PFUnA)	ng/L	100**	1.7 U	1.9 U	1.8 U	1.8 U	1.8 U	1.8 U
Perfluorododecanoic acid (PFDoA)	ng/L	100**	1.7 U	1.9 U	1.8 U	1.8 U	1.8 U	1.8 U
Perfluorotridecanoic acid (PFTriA)	ng/L	100**	1.7 U	1.9 U	1.8 U	1.8 U	1.8 U	1.8 U
Perfluorotetradecanoic acid (PFTeA)	ng/L	100**	1.7 U	1.9 U	1.8 U	1.8 U	1.8 U	1.8 U
Perfluorobutanesulfonic acid (PFBS)	ng/L	100**	6.4	7.6	4.3	10	12	2.1
Perfluorohexanesulfonic acid (PFHxS)	ng/L	100**	6.1	3.6	3.2	3.5	3.4	1.7 J
Perfluoroheptanesulfonic acid (PFHpS)	ng/L	100**	0.24 J	1.9 U	1.8 U	0.20 J	0.17 J	1.7 J
Perfluorodecanesulfonic acid (PFDS)	ng/L	100**	1.7 U	1.9 U	1.8 U	1.8 U	1.8 U	1.8 U
Perfluorooctanesulfonic acid (PFOS)	ng/L	100**	8.5	6.9	5.5 J	8.3	8.1	1.5 J
Perfluorooctane Sulfonamide (PFOSA)	ng/L	100**	1.7 U	1.9 U	1.8 U	1.8 U	1.8 U	1.3 J
2-(N-methyl perfluorooctanesulfonamido) acetic acid (N-MeFOSAA)		100**	4.4 U	4.6 U	4.5 U	4.5 U	4.4 U	4.5 U
N-Ethyl-N-((heptadecafluorooctyl)sulphonyl) glycine (N-EtFOSAA)	ng/L	100**	4.4 U	4.6 U	4.5 U	4.5 U	4.4 U	4.5 U
6:2 Perfluorooctane Sulfonate (6:2 FTS)	ng/L	100**						
	ng/L			4.6 U	4.5 U	12 J	20 J	
8:2 Perfluorodecane Sulfonate (8:2 FTS)	ng/L	100**	1.7 U	1.9 U	1.8 U	1.8 U	1.8 U	1.8 U
Total PFAS	ng/L	500**	61.9 J	50.0 J	58.7 J	75.7 J	83.7 J	42.8 J

Table 2

Summary of Groundwater Analytical Results (October 2020)

Cold Spring MGP Site (Site No. 340026) Village of Cold Spring, NY

Notes:

BTEX - Benzene, Toluene, Ethylbenzene, Xylenes.

GWQS - Groundwater Quality Standard.

J - Estimated value.

NC - No NYSDEC standards exist for this analyte.

ng/L - nanograms per liter.

PAHs - Polycyclic Aromatic Hydrocarbons.

PFAS - Per- and Polyfluoroalkyl Substances.

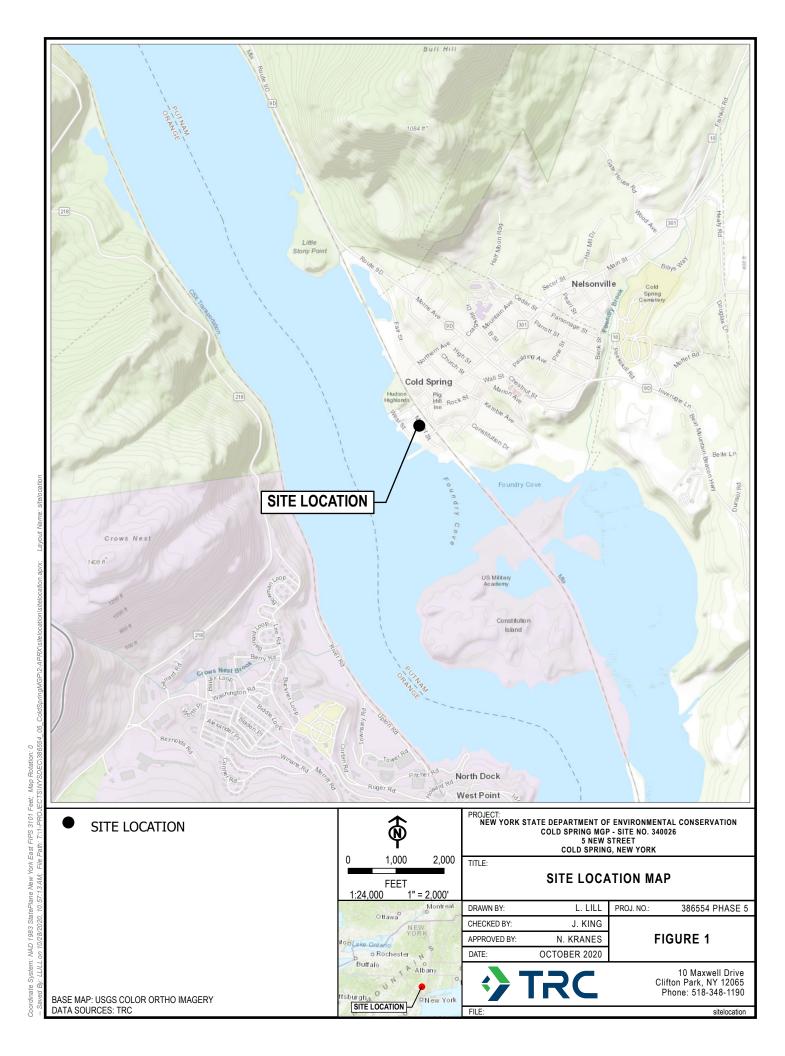
U - Analyte was not detected at specified quantitation limit.

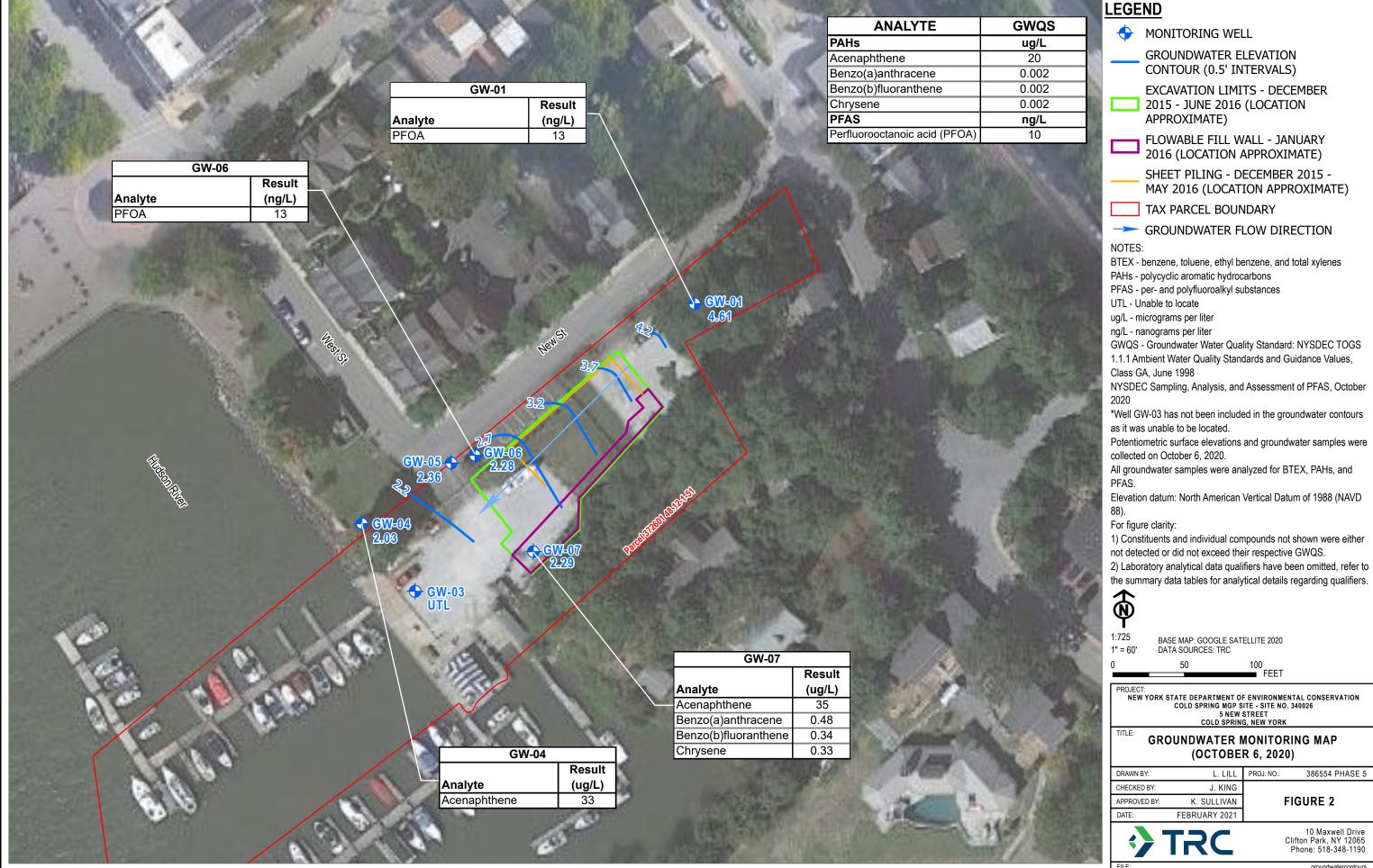
ug/L - micrograms per liter.

VOCs - Volatile Organic Compounds.

* - NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA water, June 1998 with the April 2000 Addendum.

** - Guidelines for Sampling and Analysis of PFAS, NYSDEC Part 375 Remedial Programs, October 2020.


Bold - concentration exceeds the listed NYSDEC standard, guidance, or screening value.



FIGURES

TRC ENGINEERS, INC. AUGUST 2021

groundwat

APPENDIX A

SITE HISTORY, CUSTODIAL RECORD, AND MONITORING WELL SUMMARY

TRC ENGINEERS, INC. AUGUST 2021

CUSTODIAL RECORD

PERTINENT SITE DOCUMENTS

COLD SPRING MGP (NYSDEC SITE NO. 340026)

New York State Department of Environmental Conservation, Preliminary Site Assessment, June 2005.

New York State Department of Environmental Conservation, Site Characterization Report, July 2005.

Dvirka and Bartilucci, Site Investigation/Remedial Alternatives Report, October 2009.

New York State Department of Environmental Conservation, Record of Decision, February 2010.

New York State Department of Environmental Conservation and Village of Cold Spring, *Environmental Easement*, January 2013.

Groundwater and Environmental Services, Inc., Site Characterization Report, 2013

URS Corporation, Pre-Design Investigation Soil Boring Program Report, February 2014.

URS Corporation, Design Analysis Report, April 2015.

URS Corporation, Pre-Design Investigation Report, September 2014.

URS Corporation, Pre-Design Geotechnical Summary Report, September 2014.

URS Corporation, Final Engineering Report, September 2017.

URS Corporation, Site Management Plan, February 2019.

SITE HISTORY

COLD SPRING MGP SITE (NYSDEC SITE NO. 340026)

<u>Date</u>	<u>Description</u>
Mid-to late 1800's	The Site operated as a manufactured gas plant (MGP), which used a "coal carbonization" process which involved heating of coal in a closed vessel with minimal air contact, converting the coal to coke, releasing a combustible gas and was piped into the surrounding community for lighting, heating, and cooking purposes. The principal waste product was coal tar, which is a dark brown to black liquid with an odor similar to driveway sealer.
1887	The earliest available fire insurance map for the site is dated 1887. This map states that the retort building was vacant, which indicates that the plant was no longer operating at that time.
February 2005	A shallow archaeological excavation at One Main Street (the former lumber yard, across the street from the MGP site) encountered black-stained soil. This was reported to the New York State Department of Environmental Conservation (NYSDEC) as a petroleum spill (Spill #04-12054). An environmental contractor was hired by the site owner at One Main Street to investigate the suspected spill. Soil samples were collected from the four archaeological test pits and also from four new soil boring locations on the One Main Street site and submitted for laboratory analysis.
May 2005	A site characterization investigation was conducted by the NYSDEC. Eleven soil borings were completed, and three of these borings were completed as monitoring wells. Five soil samples and three groundwater samples were collected and analyzed for site-related contamination.
June 2005	The June 2005 Preliminary Site Assessment Report confirmed the existence of the former MGP Site and recommended a full Remedial Investigation to fully characterize the nature and extent of contamination at the site
June 2006	The small area of contamination on the lumber yard property was remediated under NYSDEC oversight in June of 2006. All MGP related contamination was excavated and transported off-site for treatment/disposal. Confirmation samples did not detect any remaining chemicals in the sidewalls or bottom of the excavation. The property was subsequently redeveloped for residential use.
April 2007	The Village of Cold Spring applied for admittance into the Environmental Restoration Program (ERP), and on August 9, 2007, their application was approved. The Remedial Investigation and alternatives analysis were carried out by the Village under this program.
August 2007	The Village of Cold Spring entered a State Assistance Contract (SAC) with the NYSDEC to remediate the Site (SAC No. C303647).
2008 and 2014	Geophysical surveys were performed to locate and identify subsurface structures related to the MGP. These surveys located a 35-foot diameter concrete subsurface structure identified as the foundation of a former gas holder tanks. The surveys also

identified a rectangular structure (approximately 20 feet by 30 feet), believed to be the foundation of the former MGP generator house.

April 2009

The results of the Dvirka and Bartilucci Site Investigation confirmed that only soil and groundwater were targeted for remediation. Total BTEX concentrations in the subsurface soil ranged from non-detect to 1,286 parts per million (ppm). The highest PAH and BTEX levels were in the area of the subsurface coal tar impacts.

February 2010

The Record of Decision (ROD) for the Site was signed that specified the removal of soil in the source area located east of the boat club building, removal of subsurface MGP structures, and disposal of all excavated materials off site at a permitted facility.

April 2013

A Subsurface Investigation Report (GES, April 2013) documented the October 2012 field activities. GES installed six soil borings to estimated depths of 12 feet below ground surface. Two of the borings were converted to monitoring wells. One soil sample from each boring was submitted for chemical analysis. Every soil sample had at least one Restricted Residential exceedance for PAHs. Total PAH concentrations in soil ranged from 14.9 ppm to 556 ppm. There were no BTEX exceedances in the soil samples. Groundwater samples were collected from four existing monitoring wells (GW-01, GW-02, GW-04, and GW-05). The results showed an exceedance of groundwater quality for organic compounds only at GW-04.

October 2013

The NYSDEC agreed to the request by the Village of Cold Spring that the selected remedy presented in the ROD be expanded to include demolition of the boat club building to maximize the safe removal of coal tar in the subsurface.

2014

The results of the 2014 URS Site Investigation showed total PAH concentrations ranging from non-detect to 3,822 ppm.

October 2015 -August 2016 Remediation was performed on the Site that consisted of the following:

- Demolition and offsite disposal of the boat club building;
- Relocation of existing utilities;
- Installation of sheet piling, which was left in place;
- Installation of temporary containment structure (TCS) and vapor management system (VMS);
- Excavation and offsite disposal of 8,990 tons of contaminated soil and debris;
- The average depth of excavation was 12 feet below ground surface;
- Disposal of contaminated soil and debris at the City of Albany Waste Solid Waste Management Facility (4,805 tons) and EMSI of New York, Inc. (4,185 tons);
- Collection of post-excavation documentation samples;
- Placement of a demarcation barrier consisting of non-woven geotextile fabric;
- Backfill the excavation with 6,858 tons of clean soil, and No. 2 and No. 4 stone:
- Placement of 540 cubic yards of flowable fill; and
- Restoration of the Site with 6,120 square feet of seeded area 10,910 square feet of gravel parking area.

New York State Department of Environmental Conservation Cold Spring MGP (Site No. 340026) - Village of Cold Spring, NY **Monitoring Well Construction Summary**

				Total			Screen		E	levation (fee	et AMSL)		Loc	cation
	Installation	Well Dia.		Depth		Top	Bottom	Length	Casing	Ground	Sc	reen		
Well ID	Date	(inches)	Well Material	(feet bgs)	Well Location	(feet bgs)	(feet bgs)	(feet)	Top	Surface	Top	Bottom	Latitude	Longitude
GW-01	10/2/2008	2	PVC	12.0	Upgradient	2.00	12.00	10.00	6.82	7.01	4.70	-5.30	41° 24' 56.961" N	73° 57' 35.232" W
GW-03	10/2/2008	2	PVC	12.0	Downgradient	2.00	12.00	10.00	5.04	5.36	3.00	-7.00	41° 24' 54.987" N	73° 57' 37.811" W
GW-04	10/2/2008	2	PVC	12.0	Downgradient	2.00	12.00	10.00	4.32	4.65	2.50	-7.60	41° 24' 55.457" N	73° 57' 38.295" W
GW-05	10/2/2008	2	PVC	12.0	Downgradient	2.00	12.00	10.00	4.96	5.36	3.40	-6.60	41° 24' 55.872" N	73° 57' 37.472" W
GW-06	8/4/2016	2	PVC	12.5	Downgradient	3.00	12.00	9.00	5.34	5.68	2.70	-6.30	41° 24' 55.923" N	73° 57' 37.254" W
GW-07	8/4/2016	2	PVC	12.25	Downgradient	3.00	12.00	9.00	5.31	5.82	2.80	-6.20	41° 24' 55.255" N	73° 57' 36.725" W

Notes AMSL : above mean sea level. feet bgs : feet below ground surface.

PVC : polyvinyl chloride.

WA No. D009812-04.05 Page 1 of 1

APPENDIX B

SITE INSPECTION FORMS AND DAILY FIELD REPORTS

TRC ENGINEERS, INC. AUGUST 2021

NYSDEC

Division of Environmental Remediation

NYSDEC Contract No. D009812

Superintendent: Andrew Fishman

NYSDEC PM: Brianna Scharf

Consultant PM: Justin King

Consultant Site Inspectors: Andrew

Fishman and Lexi Lill

Weather Conditions							
General Description	Clear	AM	Clear	PM			
Temperature	40's	AM	60's	PM			
Wind	2-5 mph	AM	2-5 mph	PM			

Health & Safety

If any box below is checked "Yes", provide explanation under "Health & Safety Comments".

Were there any changes to the Health & Safety Plan?	*Yes	No X	NA
Were there any exceedances of the perimeter air monitoring reported on this date?	*Yes	No X	NA
Were there any nuisance issues reported/observed on this date?	*Yes	No X	NA

Health & Safety Comments

No injuries or accidents to note. Main concerns include: Fast moving waters, uneven ground, and slips, trips and falls.

Summary of Work Performed	Arrived at site:	08:00	Departed Site:	15:30
---------------------------	------------------	-------	----------------	-------

TRC arrived on site and gauged/sampled monitoring wells GW-01, GW-04, GW-05, GW-06, and GW-07. GW-03 could not be located and is believed to be under the parking area gravel cover. TRC left site following completion of groundwater sampling activities.

Equipment/Material Tracking

If any box below is checked "Yes", provide explanation under "Material Tracking Comments".

Were there any vehicles which did not display proper D.O.T numbers and placards?	*Yes	No X	NA
Were there any vehicles which were not tarped?	* Yes	No X	NA
Were there any vehicles which were not decontaminated prior to exiting the work site?	* Yes	Nο	NA X

Personnel and Equipment

Individual	Company	Trade	Total Hours
Andrew Fishman	TRC	Contractor	7.5
Lexie Lill	TRC	Contractor	7.5

Report No. 01 Cold Spring MGP - NYSDEC Site No. 340026 Date: 10/06/2020

Equipment Description	on		Contractor/Vendor		Quantity	Use	ed
MiniRAE 3000			1	6			
Horiba U-52 Peri Pump Interface Probe			1	6			
Peri Pump			1	6			
Interface Probe			Pine Services Pine Services		1	6	
Schonstedt GA52 CX Magne	etometer		Pine Services		1	6	
Material Description	Imported/ Delivered to Site	Exported off Site	Waste Profile (If Applicable)	Source of Facility (If	r Disposal Applicable)	Daily Loads	Daily Weigh (tons)*
	1					+	

Report No. 01 Cold Spring MGP - NYSDEC Site No. 340026 Date: 10/06/2020

Equipment/Material Tracking Comments:							
Visitors to Site							
Name	Re	presenting		Exclusion/CRZ Zone			
			Yes	No			
			Yes	No			
			Yes	No			
			Yes	No			
			Yes	No			
			Yes	No			
			Yes	No			
			Yes	No			
			Yes	No			
Site Representatives							
Name		Representing					
Project Schedule Comments							
•							
Issues Pending							
-							
Interaction with Public, Property Ov	wners, Media, et	ic.					
, ,	,						

Include (insert) figures with markups showing location of work and job progress

Site Photographs (Descriptions Below) TRC sampling GW-04. Photo of GW-01. Photo of GW-07 buried under gravel. Date: 10/06/2020 Site Inspector(s): Andrew Fishman

DAILY HEALTH CHECKLIST

Is social distancing being practiced?	Yes ⊠	No □
Is the tail gate safety meeting held outdoors?	Yes ⊠	No □
Are remote/call in job meetings being held in lieu of meeting in person where possible?	Yes ⊠	No □
Were personal protective gloves, masks, and eye protection being used?	Yes ⊠	No □
Are sanitizing wipes, wash stations or spray available?	Yes ⊠	No □
Have any workers/visitors been excluded based on close contact with individuals diagnosed with COVID-19, have recently traveled to restricted areas or countries, or are symptomatic (fever, chills, cough/shortness of breath)?	Yes □	No ⊠
Comments:		

REMEDIAL ACTIVITIES AT PROPERTIES

Have anyone at this location been tested and confirmed to have COVID-19?	Yes □	No ⊠
2. Is anyone at this location isolated or quarantined for COVID-19?	Yes □	No ⊠
3. Has anyone at this location had contact with anyone known to have COVID-19 in the past 14 days?	Yes □	No ⊠
4. Does anyone at this location have any symptoms of a respiratory infection (e.g., cough, sore throat, fever, or shortness of breath)?	Yes □	No ⊠
5. Does the Department and its contractors have your permission to enter the property at this time?	Yes □	No ⊠
 If Yes to <u>any</u> of 1-4 above: If it is <u>not</u> critical that service/entry be carried out immediately and can be postponed until the risk of COVID-19 is lower, or can be accomplished remotely/without entry, postpone or conduct service without entry. If it <u>is</u> critical that service/entry be carried out immediately, advise occupants that as a precaution and for our own protection, project personnel will be donning appropriate PPE* (including respiratory protection) - and do so prior to entry. 	Yes □	No 🗆
<u>Comments:</u>		

NUISANCE CHECKLIST

Report No. 01 Cold Spring MGP - NYSDEC Site No. 340026 Date: 10/06/2020

Were there any community complaints related to work on this date?	Yes □	No ⊠	N/A□
Were there any odors detected on this date?	Yes □	No ⊠	N/A□
Was noise outside specification and/or above background on this date?	Yes □	No ⊠	N/A□
Were vibration readings outside specification and/or above background on this date?	Yes □	No □	N/A⊠
Any visible dust observed beyond the work perimeter on this date?	Yes □	No ⊠	N/A□
Any visible contrast (turbidity) beyond engineering controls observed on this date?	Yes □	No ⊠	N/A□
Was turbidity checked at the Montauk Highway outfall?	AM □	РМ□	N/A⊠
Were any property owners NOT provided advance notice for work performed on this property on this date?	Yes □	No □	N/A⊠
Was the temporary fabric structure closed at the end of the day?	Yes □	No □	N/A⊠
Has Contractor failed to protect all foundations and structures adjacent to and adjoining the site which are affected by the excavations or other operations connected with performance of the Work?	Yes □	No □	N/A⊠
If yes, has Contractor been notified?	Yes □	No □	N/A□
<u>Comments:</u>			

GENERAL INFORMATION

Date:	9/8/2020		Inspector:	Lexie Lill	
Weather:	Clear, sunny		Signature:	Lyce Kill	
Temperature:	70's		Company:	TRC	
Season	(circle one):	Winter	Spring	Summer	Fall

SITE INSPECTION LOG SHEET*

SITE INSPECT	ION LOC	5 SHEET*		
Evidence of Site-Wide Disturbance(s)	Yes No	Description of Disturbance(s)		
Evidence of Surface Soil Disturbance(s)	Yes	Description of Disturbance(s)		
Evidence of Excavation	Yes No	Description of Excavation		
Evidence of Building Construction	Yes No	Description of Building Construction		
Evidence of Change in Site Use	Yes No	Description of New/Additional Site Use		
Comments:				
	l			

^{*} If answering Yes, attach map showing locations and any other information as required.

WELL INSPECTION LOG SHEET (provide for each well inspected)

Well ID: GW-		-01 Time:			9:15		
Area	Item Inspected		Description of Condition (attach additional sheet if needed)		Additional Maintenance Needed?		Inspector's Initials
Casing and collar		In good condition.		Yes / No		LL	
Exterior Well label		Well label missing.		Yes/ No		LL	
Lock and Cover			Cover in good condition. Lock is missing.		Yes/No		LL
Well cap		cap	In good condition.		Ye	es/No	LL
Interior	Well r			mount cover. over in good	Ye	es / No	LL
Annular space			In good condition.		Ye	es / No	LL
Comments:							

WELL INSPECTION LOG SHEET (provide for each well inspected)

Well ID: GW-		-04 Time:			9:30		
Area	Item Inspect		Description of Condition (attach additional sheet if needed)		Additional Maintenance Needed?		Inspector's Initials
	Casing and collar		In good condition.		Yes / No		LL
Exterior	Exterior Well label		Well label missing.		Yes/No		LL
Loc			Cover in good condition. Lock is missing.		Yes/ No		LL
Well cap		ар	In good condition.		Ye	es/No	LL
Interior	Well ris	ser	No riser - flush mount cover. Flush mount cover in good condition.		Yo	es/No	LL
Annular space			In good condition.		Ye	es / No	LL
Comments:							

WELL INSPECTION LOG SHEET (provide for each well inspected)

Well ID: GW-		05 Time:			10:00			
Area	Item Inspect		Description of Condition (attach additional sheet if needed)		Additional Maintenance Needed?		Inspector's Initials	
Casing and collar		In good condition.		Yes / No		LL		
Exterior	Exterior Well label		Well label missing.		Yes/ No		LL	
	Lock a Cove		Cover in good condition. Lock missing.	is	Yes/No		LL	
Well cap		ap	In good condition.		Yes /No		LL	
Interior	Well ri	ser	No riser - flush mount cover. Flush mount cover in good condition.		Ye	es/No	LL	
Annular space		In good condition.		Ye	es/No	LL		
Comments:								

COLD SPRING MGP SITE NYSDEC SITE NO. 340026 INSPECTION FORM

WELL INSPECTION LOG SHEET (provide for each well inspected)

Well II	D:	GW-	06	Time:		9:45	
Area	Item Inspec		(attach addi	of Condition tional sheet if ded)	Maiı	ditional ntenance eeded?	Inspector's Initials
	Casing colla		In good condi	tion.	Ye	es/No	LL
Exterior	Well la	bel	Well label mis	sing.	Yo	es/ No	LL
	Lock a Cove		Cover in satisfa condition. Lock missing.	•	Ye	es/No	LL
	Well c	ap	In good conditi	ion.	Ye	es/No	LL
Interior	Well ri	ser	No riser - flush Flush mount co satisfactory cor	ver in	Yo	es / 🚺	LL
	Annul space		In good condition.			es / No	LL
Comments:							

APPENDIX C

GROUNDWATER SAMPLING LOGS – OCTOBER 2020

TRC ENGINEERS, INC. AUGUST 2021

				LOW	FLOW GRO	OUNDWA	ATER SAMP	LING RECO	RD		
	PROJECT NA	ME		Cold Spring MGP		L	OCATION ID GW-01		ATE 10/6/2	020]
	PROJECT NU	MBER		386554.0000.0000		S	FART TIME		D TIME		
	SAMPLE ID				IPLE TIME	S	11:00 ITE NAME/NUMBE	R PA	12:2 .GE	.5	
			GW-01		12:20	L	340026	5	1 OF	1	WELL INTECRITY
WELL DIAM	IETER (INCH	ES)	1 X	2 4	6	8	OTHER			CAP	WELL INTEGRITY YES NO N/A X
TUBING ID	(INCHES)	[1/8 X	1/4 3/8	1/2	5/8	OTHER			CASING LOCKED	$\frac{\frac{X}{X}}{\frac{X}{X}} = \frac{\frac{X}{X}}{\frac{X}{X}}$
MEASUREM	IENT POINT (MP)	TOP OI	FRISER (TOR)	X TOP OF CASI	NG (TOC)	OTHER			COLLAR	<u>X</u> <u>X</u>
INITIAL I (BMP)	DTW	2.4	FT	FINAL DTW (BMP)	3.23		ROT. CASING FICKUP (AGS)	-	FT	TOC/TOR DIFFERENCE	- FT
WELL DE (BMP)	ЕРТН	12	FT	SCREEN LENGTH	10		ID MBIENT AIR	0.0	PPM	REFILL TIMER SETTING	SEC -
WATER COLUMN	i	9.6	FT	DRAWDOWN VOLUME	0.140	GAL M	ID WELL IOUTH	0.0	PPM	DISCHARGE TIMER SETTIN	NG SEC
CALCUL: GAL/VOI		1.57	GAL	(final DTW - initial DTW TOTAL VOL. PURGED	4.88	GAL T	RAWDOWN/ OTAL PURGED			PRESSURE TO PUMP	- PSI
	well diameter sq			(mL per minute X total m		•					
TIME	DTW (F)		PURGE RATE	TEMP. (°C)	SP. CONDUCTANO		DISS. O ₂ (mg/L)	TURBIDITY (nti	ı) REDOX (mv)	PUMP INTAKE	COLD TO TTO
3-5 Minutes	0.0-0.33 ft Dra		(mL/min)	(+/- 3 degrees)	(mS/cm) (+/- 3%)	(+/- 0.1 uni		(+/- 10% <10 ntu		DEPTH (ft)	COMMENTS
11:00	BEGIN P	URGI	NG	_				1		1	T
11:15	3.44		250	19.72	1.13	6.11	8.27	68.6	6	10	
11:20	4.39		250	19.68	1.12	6.12	5.03	61.7	12	10	
11:25	2.85		250	20.38	1.10	6.02	5.67	52.1	24	10	
11:30	2.50		250	21.07	1.04	6.30	8.88	39.7	22	10	
11:35	2.43		250	21.32	0.695	6.57	11.66	19.6	12	10	
11:40	2.40		250	21.41	0.469	6.70	12.55	13.1	7	10	
11:45	2.42		250	21.49	0.47	6.81	13.40	12.2	4	10	
12:00	3.44		250	20.17	1.11	6.22	5.58	42.6	41	10	
12:05	3.21		250	20.19	1.12	6.25	4.17	34.5	39	10	
12:10	3.26		250	20.09	1.12	6.20	3.62	22.9	42	10	
12:15	3.23		250	20.00	1.12	6.17	3.66	17.4	45	10	(m. 10 I = 10)
		F	INAL STABIL	IZED FIELD PARA	METERS (to app	propriate sig	nificant figures[S]	F])		pH: nearest tenth (ex.	x. 3333 = 3330, 0.696 = 0.696) 5.53 = 5.5)
				20	1.12	6.2	3.7	17.4	45	DO: nearest tenth (ex. TURB: 3 SF max, nea ORP: 2 SF (44.1 = 44	arest tenth (6.19 = 6.2, 101 = 101)
EQUIPMENT	TYPE OF PUMI			DECON FLUIDS USED		TURD	NG/PUMP/BLADDER M	ATERIALS		F	EQUIPMENT USED
	TALTIC IERSIBLE	_		LIQUINOX DEIONIZED WATER		N TUBING N TUBING	S. S	TEEL PUMP MATERL C PUMP MATERIAL	AL	X WL METE	ER Heron MiniRAE 3000
BLAD				POTABLE WATER	TEFLON	LINED TUBING	GE GE	OPROBE SCREEN		X WQ METI	ER Horiba U-52
WATT				NITRIC ACID HEXANE	X HDPE T		OT	LON BLADDER HER			ETER Horiba U-52 Pine Peri Pump
OTHE OTHE				METHANOL OTHER	OTHER OTHER			HER HER		OTHER FILTERS	NO. TYPE
	CAL PARAME				FIELD	PRES		VOLUME	SAMPLE	QC	SAMPLE BOTTLE ID
х	BTEX	RAMETI	ZK.	METHOD NUMB 8260	FILTERE No	D M HCl		REQUIRED C	COLLECTED	COLLECTED	NUMBERS See COC
-	PAHs			8270	No	None) ml Ye			See COC See COC
Λ	PFAS			537 mod.	No	None		0 ml Ye			See COC
A											34 606
				•							
				·						·	<u> </u>
PURGE OB PURGE WA	SERVATIONS TER	YES	NO	NUMBER OF GALLON	S 4.88	,	SKETCH/NOTES				
CONTAINE NO-PURGE	RIZED	YES	X NO	GENERATED If yes, purged approximately							
UTILIZED					nL for this sample location						
Sampler Sign	nature:	Jill		Print Name:	Lexie Lill						

11/16/2020

				LOW	FLOW GRO	OUNDW	ATER SAN	APL1	ING RECO	RD		
	PROJECT NAM	ИE		Cold Spring MGP		I	LOCATION ID		DA			
	PROJECT NUM	MBER		386554.0000.0000		5	GV START TIME	W-04	EN	10/6/2 D TIME	020	
	SAMPLE ID				IPLE TIME	-	12 SITE NAME/NUM	2:35	PA	13:3	0	
	SAMILE ID		GW-04	SILI	13:25			0026		l OF	1	
WELL DIAM	IETER (INCHES	S)	1 X	2 4	6	8	OTHER				CAP	WELL INTEGRITY YES NO N/A
TUBING ID	(INCHES)	Į.	1/8 X	1/4 3/8	1/2	5/8	OTHER				CASING	<u>X</u> <u> </u>
MEASUREM	ENT POINT (M	IP)	TOP OI	FRISER (TOR)	X TOP OF CASIN	NG (TOC)	OTHER				LOCKED COLLAR	<u>X</u> <u>X</u>
INITIAL I (BMP)	DTW	2.28	FT	FINAL DTW (BMP)	2.32		PROT. CASING STICKUP (AGS)		-	FT	TOC/TOR DIFFERENCE	- FT
WELL DE (BMP)	ЕРТН	11.78	8 FT	SCREEN LENGTH	10		PID AMBIENT AIR		0.0	PPM	REFILL TIMER SETTING	SEC -
WATER COLUMN	i	9.5	FT	DRAWDOWN VOLUME	0.007	GAL N	PID WELL MOUTH		32.2	PPM	DISCHARGE TIMER SETTIN	NG SEC
CALCUL: GAL/VOI		1.56	GAL	(final DTW - initial DTW TOTAL VOL. PURGED	X well diam. squared	I	DRAWDOWN/ FOTAL PURGED				PRESSURE TO PUMP	- PSI
(column X	well diameter squa		0.041)	(mL per minute X total m	ē	mL)						
				LIZATION CRITERIA (AS LISTED IN THE SP. CONDUCTANO	Έ	Digg o ((T.)	Trin propriet.	nepow()	DV D CD D VIII - VVII	
TIME 3-5 Minutes	DTW (FT) 0.0-0.33 ft Draw		PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	(mS/cm) (+/- 3%)	pH (units (+/- 0.1 un			TURBIDITY (ntu (+/- 10% <10 ntu		PUMP INTAKE DEPTH (ft)	COMMENTS
12:35	BEGIN PU	JRGI	NG									
12:45	2.79		250	20.72	1.89	6.44	7.56		9.5	-165	8	
12:50	2.48		250	20.89	1.92	6.43	2.25		28.3	-167	8	
12:55	2.45		250	20.96	1.93	6.44	1.80		30.1	-168	8	
13:00	2.45		250	21.05	1.93	6.44	1.45		24.0	-169	8	
13:05	2.42		250	21.07	1.93	6.43	1.27		21.7	-170	8	
13:10	2.35		250	21.15	1.93	6.44	1.17		19.9	-171	8	
13:15	2.32		250	21.18	1.93	6.44	1.09		18.7	-172	8	
13:20	2.32		250	21.24	1.94	6.44	1.07		18.3	-172	8	
		F	INAL STARII	IZED FIELD PARA	METERS (to any	aranriate sie	mificant figure	e[SFI)			TEMP.: nearest degre	e (ex. 10.1 = 10) 5. 3333 = 3330, 0.696 = 0.696)
			i vite o i i i bi	21	1.94	6.4	1.1	3[S1])	18.3	-170	pH: nearest tenth (ex. DO: nearest tenth (ex.	5.53 = 5.5)
EQUIPMENT	DOCUMENTAT	TION		21	1.94	0.4	1.1		16.5	-170	ORP: 2 SF (44.1 = 44	rest tenth (6.19 = 6.2, 101 = 101) , 191 = 190)
	TYPE OF PUMP TALTIC			DECON FLUIDS USED LIQUINOX	X SILICON	<u>TUBI</u> N TUBING	ING/PUMP/BLADDE		<u>ERIALS</u> EL PUMP MATERIA	ī.		EQUIPMENT USED ER Heron
	IERSIBLE			DEIONIZED WATER POTABLE WATER	TEFLON	N TUBING N LINED TUBIN	ıc 🔲	PVC PU	UMP MATERIAL ROBE SCREEN			MiniRAE 3000
			🖂	NITRIC ACID	X HDPE T	UBING		TEFLO	ON BLADDER		X TURB. MI	ETER Horiba U-52
WATT OTHE				HEXANE METHANOL	LDPE TU OTHER	UBING		OTHER			X PUMP OTHER	Pine Peri Pump
OTHE	R			OTHE <u>R</u>	OTHER			OTHER			FILTERS	NO. TYPE
ANALYTIC	CAL PARAMETI PARA	ERS AMETE	ER	METHOD NUMB	ER FIELD		SERVATION METHOD			SAMPLE OLLECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
X	BTEX			8260	No	HCl		25 m	nl Ye	S		See COC
X	PAHs			8270	No	None		250 m	nl Ye	S		See COC
X	PFAS			537 mod.	No	None		250 m	nl Ye	S		See COC
								_				
PURGE OB	SERVATIONS						SKETCH/NOT	ES				
PURGE WA CONTAINE	_	/ES	NO X	NUMBER OF GALLON GENERATED	S 2.93	3						
NO-PURGE UTILIZED	METHOD Y	ÆS	NO	If yes, purged approximately to sampling or	1 standing volume prior nL for this sample location							
	. 1	п	_ 		<u> </u>							
Sampler Sign	nature: Lijil	, fill	(Print Name:	Lexie Lill							

11/16/2020

					LC)W F	LOW GR	OUNDV	VA'	TER SAMPL	ING REC	CORD					
	PROJECT	NAME			Cold Spring MGl)			LOC	CATION ID GW-05		DATE	10/6/20	020			
	PROJECT	NUMBER			386554.0000.0	000			STA	ART TIME 9:50		END TI	ME 10:4	5			
	SAMPLE II	D	GW-	-05	\$	SAMPL	E TIME 10:40		SIT	E NAME/NUMBER 340026		PAGE 1	OF	1			
WELL DIAM	IETER (INC	CHES)		Х	2	4	6	8		OTHER					WELL I YES	INTEGRITY S NO N/A	
			1/8			3/8	1/2	5/8		OTHER			-	CAP CASING	X		
TUBING ID (T (MP)	1/6	_	F RISER (TOR)		TOP OF CAS			OTHER				LOCKED COLLAR	X	X	
INITIAL I	DTW	2.6	5	FT	FINAL DTW (BMP)		3.35	FT		OT. CASING CKUP (AGS)	-	FT		TOC/TOR DIFFERENCE		- F7	Γ
WELL DE (BMP)	ЕРТН	9.2	2	FT	SCREEN LENGTH		10	FT	PID AM	BIENT AIR	0.0	PPM	I	REFILL TIMER SETTING	₹	- SE	С
WATER COLUMN		6.6	5	FT	DRAWDOWN VOLUME		0.123	GAL		WELL UTH	3.4	PPM		DISCHARGE TIMER SETTIN	NG	- SE	c
CALCUL GAL/VOI		1.08		GAL	(final DTW - initial I TOTAL VOL. PURGED	OTW X	well diam. squar 2.93	GAL		AWDOWN/ FAL PURGED			-]	PRESSURE TO PUMP		- PS	SI
	well diameter	r squared X		O. I.C.	(mL per minute X to	al minu	tes X 0.00026 ga			ETCNGED	ļL			1010		1	<u> </u>
					LIZATION CRITER		LISTED IN TH CONDUCTAN	ICE									
TIME 3-5 Minutes	DTW 0.0-0.33 ft l			E RATE /min)	TEMP. (°C) (+/- 3 degrees)		(mS/cm) (+/- 3%)	pH (un (+/- 0.1 u		DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (+/- 10% <10		EDOX (mv) (+/- 10 mv)	PUMP INTAKE DEPTH (ft)		COMMENTS	
9:50	BEGIN	N PURGI	NG		_					1							
9:55	3.9			250	23.83		0.503	6.77		3.29	76.0		-140	8			
10:00	3.9	90	2	250	23.92		0.755	6.54		1.73	39.2		-162	8	<u> </u>		
10:05	3.7			250	24.35		1.06	6.65		1.39	40.6		-182	8			
10:10	3.7	79	2	250	24.37		0.704	6.55		1.40	37.4		-154	8			
10:15	3.4			250	24.16		0.974	6.72		1.20	33.4		-191	8			
10:20	3.3			250	24.20		1.09	6.75		1.15	31.5		-196	8			
10:25	3.3			250	24.28		1.20	6.76		1.53	29.2		-200	8	-		
10:35	3.3			250	24.48		1.31	6.78		1.12	25.9		-202	8			
		F	INAL S	STABIL	IZED FIELD PA	RAM	ETERS (to a	opropriate s	igni	ficant figures[SF])			TEMP.: nearest degre COND.: 3 SF max (ex	x. 3333 = 333		
					24		1.31	6.8		1.1	25.9		-200	pH: nearest tenth (ex. DO: nearest tenth (ex. TURB: 3 SF max, nea ORP: 2 SF (44.1 = 44	3.51 = 3.5) arest tenth (6	5.19 = 6.2, 101 = 101)	
EQUIPMENT	DOCUMEN	TATION			I.			<u> </u>		1	1			ORP: 2 Sr (44.1 = 44	, 191 = 190))	
	TYPE OF PU TALTIC	JMP_			DECON FLUIDS USEE LIQUINOX	<u>)</u>	X SILICO	<u>TU</u> ON TUBING	BING	/PUMP/BLADDER MA	<u>TERIALS</u> EEL PUMP MATE	ERIAL.			EQUIPMEN ER Hero		
SUBM	IERSIBLE				DEIONIZED WATER		TEFLO	N TUBING		PVC	PUMP MATERIA			X PID	MiniRAE	3000	
BLAD	DER				POTABLE WATER NITRIC ACID			ON LINED TUB TUBING	ING		PROBE SCREEN ON BLADDER			X WQ METI X TURB. MI		iba U-52 Horiba U-52	
WATT					HEXANE		LDPE	TUBING		OTH					Pine Peri I	Pump	
OTHE OTHE			_		METHANOL OTHE <u>R</u>		OTHE			OTH				FILTERS	NO.	TYPE	
ANALYTIC	CAL PARAN						FIELI) PR	ESE	RVATION V	OLUME	SAM	PLE	QC		SAMPLE BOTTLE II	D
Х	BTEX	PARAMET	ER		METHOD NU 8260	MBER	FILTER	ED	ME	THOD RE	QUIRED	COLLE		COLLECTED		NUMBERS	,
	PAHs				8270		No No	HCl None		251		Yes				COC	—
Α.	PFAS				537 mod.		No	None		250		Yes				COC	
X	1173				337 mod.		110	1000				103			See	COC	
					-		_	<u> </u>							. —		
	anni -				-												
PURGE OB PURGE WA		NS YES	NO		NUMBER OF GAL	ONS			S	SKETCH/NOTES							
CONTAINE		140	X]	GENERATED	20110	2.9	93									
NO-PURGE UTILIZED	METHOD	YES	NO	_	If yes, purged approxim to sampling or		anding volume prio or this sample loca										
	.0	, V-, ,															
Sampler Sign	nature: J	n pull			Print Name:	Lex	ie Lill										
Checked By:	Justin King				Date:	1/16/20	20										

				LOW	FLOW GRO	OUNDWA	TER SAMPL	ING RECO	RD		
	PROJECT NA	AME		Cold Spring MGP		LO	OCATION ID	DA			
	PROJECT NU	UMBER				ST	GW-06 CART TIME	EN	10/6/20 D TIME	020	
	SAMPLE ID			386554.0000.0000	IPLE TIME	Cr.	8:40 FE NAME/NUMBER	PAG	9:25	5	
	SAMPLE ID		GW-06	SAN	9:25	51	340026	rA	l OF	1	
WELL DIAM	IETER (INCH	(ES)	1 X	2 4	6	8	OTHER			CAP	WELL INTEGRITY YES NO N/A
TUBING ID	(INCHES)	[1/8 X	1/4 3/8	1/2	5/8	OTHER			CASING	<u>X</u> <u> </u>
MEASUREM	ENT POINT ((MP)	TOP O	F RISER (TOR)	X TOP OF CASIN	NG (TOC)	OTHER			LOCKED COLLAR	<u>X</u> <u>X</u>
INITIAL I (BMP)	DTW	3.06	FT	FINAL DTW (BMP)	3.12		OT. CASING TICKUP (AGS)	-	FT	TOC/TOR DIFFERENCE	- FT
WELL DE (BMP)	ЕРТН	11.78	8 FT	SCREEN LENGTH	9	FT AM	D MBIENT AIR	0.0	PPM	REFILL TIMER SETTING	SEC SEC
WATER COLUMN		8.72	FT	DRAWDOWN VOLUME	0.010	GAL M	D WELL OUTH	6.2	PPM	DISCHARGE TIMER SETTIN	NG SEC
CALCUL: GAL/VOI		1.43	GAL	(final DTW - initial DTW TOTAL VOL. PURGED	X well diam. squared	DI	RAWDOWN/ DTAL PURGED			PRESSURE TO PUMP	- PSI
	well diameter so	quared X		(mL per minute X total m	ninutes X 0.00026 gal/r						
				LIZATION CRITERIA (AS LISTED IN THE SP. CONDUCTANO	E	DISC O (/I)	Transparent ()	nenow()	n. n. m. n. m w. n.	
TIME 3-5 Minutes	DTW (F 0.0-0.33 ft Dra		PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	(mS/cm) (+/- 3%)	pH (units) (+/- 0.1 units	DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (ntu) (+/- 10% <10 ntu)	REDOX (mv) (+/- 10 mv)	PUMP INTAKE DEPTH (ft)	COMMENTS
8:40	BEGIN F	PURGI	NG								
8:45	3.09		250	22.80	1.47	6.25	4.50	11.2	-120	10	
8:50	3.13		250	23.60	1.47	6.31	2.82	1.4	-140	10	
8:55	3.15		250	23.21	1.48	6.42	2.55	0	-149	10	
9:00	3.13		250	23.04	1.48	6.41	2.30	0	-148	10	
9:05	3.11		250	23.30	1.47	6.40	2.02	0	-148	10	
9:10	3.12		250	23.31	1.48	6.40	1.88	0	-147	10	
9:15	3.12		250	23.42	1.49	6.40	1.90	0	-146	10	
9:20	3.12		250	23.48	1.49	6.40	2.02	0	-146	10	
		E	INIAI CTABII	IZED FIELD DADA	METERS (4		'C' C' ICE	<u> </u>		TEMP.: nearest degre	
		F.	INAL STABII	LIZED FIELD PARA		1	T	1		pH: nearest tenth (ex.: DO: nearest tenth (ex.:	
EQUIPMENT	DOCUMENTA	ATION		23	1.49	6.4	2.0	0	-150	TURB: 3 SF max, nea ORP: 2 SF (44.1 = 44	rest tenth (6.19 = 6.2, 101 = 101) , 191 = 190)
	TYPE OF PUM			DECON FLUIDS USED			G/PUMP/BLADDER MA		_		EQUIPMENT USED
	TALTIC ERSIBLE			LIQUINOX DEIONIZED WATER		N TUBING I TUBING	PVC	EEL PUMP MATERIA PUMP MATERIAL	L	X PID	ER Heron MiniRAE 3000
BLAD	DER			POTABLE WATER NITRIC ACID	X HDPE TO	LINED TUBING UBING		PROBE SCREEN ON BLADDER		X WQ METI X TURB. MI	
WATT				HEXANE	LDPE TU		OTH	ER		X PUMP	Pine Peri Pump
OTHE OTHE				METHANOL OTHER	OTHER OTHER		OTHI			OTHER FILTERS	NO. TYPE
ANALYTIC	CAL PARAME		- n	METHOD MIR (D	FIELD	PRES	ERVATION V	OLUME	SAMPLE	QC	SAMPLE BOTTLE ID
Х	BTEX	RAMETI	EK	METHOD NUMB 8260	FILTEREI No	D M HCl	ETHOD RE		OLLECTED	COLLECTED Dup, MS/MSD	NUMBERS See COC
-	PAHs			8270	No	None	250			Dup, MS/MSD	
Λ	PFAS			537 mod.	No	None	250			Dup, MS/MSD	See COC
X						_				- 17	See COC
\vdash				-							
H				-							-
PURGE OB	SERVATIONS	S YES	NO	NUMBER OF GALLON	IS.		SKETCH/NOTES				
CONTAINE	RIZED		X	GENERATED	2.60						
NO-PURGE UTILIZED	METHOD	YES	NO	If yes, purged approximately to sampling or	1 standing volume prior mL for this sample location						
Sampler Sign	nature: Lijil	Lill		Print Name:	Lexie Lill						

11/16/2020

				LOW	FLOW GR	OUNDW	ATER SAM	PLING R	ECOR	D		
	PROJECT NA	AME		Cold Spring MGP		Ī	LOCATION ID	. 07	DATE	10/6/20	220	
	PROJECT NU	UMBER		386554.0000.0000		5	GW START TIME		END T	ГІМЕ		
	SAMPLE ID				IPLE TIME	5	13: SITE NAME/NUMI		PAGE	14:50	0	
			GW-07		14:45		340	026		1 OF	1	
WELL DIAM	IETER (INCH	ES)	1 X	2 4	6	8	OTHER				CAP	WELL INTEGRITY YES NO N/A
TUBING ID	(INCHES)	[1/8 X	1/4 3/8	1/2	5/8	OTHER				CASING LOCKED	<u>X</u> <u></u>
MEASUREM	IENT POINT ((MP)	TOP OI	RISER (TOR)	X TOP OF CASI	NG (TOC)	OTHER				COLLAR	<u>x</u> <u>x</u>
INITIAL I (BMP)	DTW	3.02	FT	FINAL DTW (BMP)	6.74		PROT. CASING STICKUP (AGS)	-	I	T	TOC/TOR DIFFERENCE	- FT
WELL DE (BMP)	ЕРТН	11.2	FT	SCREEN LENGTH	9		PID AMBIENT AIR	0.0	PI	PM	REFILL TIMER SETTING	- SEC
WATER COLUMN	ı	8.18	FT	DRAWDOWN VOLUME	0.610	GAL !	PID WELL MOUTH	8.3	PI	PM	DISCHARGE TIMER SETTIN	NG SEC
CALCUL GAL/VOI		1.34	GAL	(final DTW - initial DTW TOTAL VOL. PURGED	4.23	GAL T	DRAWDOWN/ FOTAL PURGED				PRESSURE TO PUMP	- PSI
	well diameter so	•		(mL per minute X total m								
TIME	DTW (F		PURGE RATE	TEMP. (°C)	SP. CONDUCTANO		s) DISS. O ₂ (mg	/L) TURBIDI	ΓV (ntu)	REDOX (mv)	PUMP INTAKE	
3-5 Minutes	0.0-0.33 ft Dra		(mL/min)	(+/- 3 degrees)	(mS/cm) (+/- 3%)	(+/- 0.1 un		(+/- 10% ·		(+/- 10 mv)	DEPTH (ft)	COMMENTS
13:40	BEGIN P	PURGI	NG									
13:55	5.00		250	21.82	0.734	6.87	12.93	19.	4	-64	8	
14:00	5.62		250	21.52	0.755	6.91	6.12	13.	5	-63	8	
14:05	5.62		250	21.98	0.765	7.02	9.24	21.	4	-86	8	
14:10	5.61		250	22.18	0.774	7.07	9.98	30.	7	-110	8	
14:15	6.75		250	21.54	0.803	7.02	7.01	54.	1	-147	8	
14:20	6.74		250	21.68	0.809	7.00	7.67	52.	4	-145	8	
14:25	6.74		250	21.75	0.812	6.99	8.26	50.	2	-144	8	
14:30	6.72		250	22.34	0.809	7.08	9.80	39.	1	-148	8	
14:35	6.74		250	22.72	0.810	7.13	11.04	26.	2	-151	8	
14:40	6.74		250	22.88	0.812	7.16	11.54	16.		-153	8	
14:45	6.74		250	22.96	0.813	7.17	11.64	16.	3	-155	8 TEMP.: nearest degre	
		F	INAL STABIL	IZED FIELD PARA	METERS (to app	propriate sig	gnificant figures	[SF])	-		COND.: 3 SF max (ex pH: nearest tenth (ex. DO: nearest tenth (ex.	
				23	0.813	7.2	11.6	16.	3	-160		rest tenth (6.19 = 6.2, 101 = 101)
	TYPE OF PUMI			DECON FLUIDS USED			ING/PUMP/BLADDEF					EQUIPMENT USED
	TALTIC IERSIBLE			LIQUINOX DEIONIZED WATER		N TUBING N TUBING		S. STEEL PUMP M PVC PUMP MATE				ER Heron MiniRAE 3000
BLAD				POTABLE WATER	TEFLO	N LINED TUBIN		GEOPROBE SCRE			X WQ METI	ER Horiba U-52
WATT	TERA			NITRIC ACID HEXANE	X HDPE T LDPE T			FEFLON BLADDE OTHER	R		X TURB. MI X PUMP	ETER Horiba U-52 Pine Peri Pump
OTHE OTHE				METHANOL	OTHER			OTHER			OTHER	NO TYPE
	CAL PARAME	TERS		OTHE <u>R</u>	OTHER			OTHER_			FILTERS	NO. TYPE
		RAMETI	ΞR	METHOD NUMB	ER FIELD FILTERE		SERVATION METHOD	VOLUME REQUIRED		MPLE LECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
X	BTEX			8260	No	HCl		25 ml	Yes			See COC
X	PAHs			8270	No	None		250 ml	Yes			See COC
X	PFAS			537 mod.	No	None		250 ml	Yes			See COC
PURGE OR	SERVATIONS	S					SKETCH/NOTE	s				
PURGE WA	TER	YES	NO X	NUMBER OF GALLON GENERATED	S 4.23	3						
NO-PURGE		YES	NO	If yes, purged approximately								
UTILIZED				to sampling or	nL for this sample location	on.						
Sampler Sign	nature: Lijil	Lill		Print Name:	Lexie Lill							

11/16/2020

APPENDIX D

LABORATORY ANALYTICAL SUMMARY REPORT GROUNDWATER, OCTOBER 2020

TRC ENGINEERS, INC. AUGUST 2021

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-176138-1

Client Project/Site: SMP B - Cold Spring MGP

For:

New York State D.E.C. 625 Broadway Division of Environmental Remediation Albany, New York 12233-7014

Attn: Brianna Scharf

Judy Stone

Authorized for release by: 10/16/2020 5:08:45 PM

Judy Stone, Senior Project Manager (484)685-0868

Judy.Stone@Eurofinset.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

9

10

12

16

15

16

2

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Judystone

Judy Stone Senior Project Manager 10/16/2020 5:08:45 PM 6

9

10

19

13

15

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	7
Client Sample Results	10
Surrogate Summary	22
Isotope Dilution Summary	23
QC Sample Results	25
QC Association Summary	33
Lab Chronicle	35
Certification Summary	37
Method Summary	38
Sample Summary	39
Chain of Custody	40
Field Data Sheets	42
Receipt Checklists	43

3

4

6

۶ R

9

11

12

14

46

Definitions/Glossary

Client: New York State D.E.C. Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

Qualifier	Qualifier Description
-----------	-----------------------

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

LCMS

Qualifier	Qualifier Description
*5	Isotope dilution analyte is outside acceptance limits.
F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits
1	Value is EMPC (estimated maximum possible concentration).
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit

ML Minimum Level (Dioxin) MPN MQL

Most Probable Number Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent Positive / Present POS **Practical Quantitation Limit** PQL

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

10/16/2020

Case Narrative

Client: New York State D.E.C.

Project/Site: SMP B - Cold Spring MGP

Job ID: 480-176138-1

Job ID: 480-176138-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-176138-1

Receipt

The samples were received on 10/8/2020 8:00 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.6° C.

Receipt Exceptions

The container label for the following samples did not match the information listed on the Chain-of-Custody (COC): GW-06 (480-176138-1), GW-06 MS (480-176138-1[MS]) and GW-06 MSD (480-176138-1[MSD]). Sample 1, 1 MS and 1 MSD plastic 250 mL unpreserved containers (2 per sample) have time 920 but COC lists time as 925. Samples were logged in and labeled according to time on COC.

The following samples have dicoloration: GW-06 (480-176138-1), GW-06 MS (480-176138-1[MS]), GW-06 MSD (480-176138-1[MSD]), GW-05 (480-176138-2), GW-04 (480-176138-4) and DUP (480-176138-6).

GC/MS VOA

Method 8260C: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: GW-06 (480-176138-1), GW-06 MS (480-176138-1[MS]), GW-06 MSD (480-176138-1[MSD]), GW-05 (480-176138-2) and DUP (480-176138-6). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Method 537 (modified): The matrix (MS) recoveries for Perfluorobutanoic acid (PFBA) of preparation batch 320-420118 and analytical batch 320-421022 were outside control limits. Sample matrix interferences are suspected because the associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) recoveries were within acceptance limits.

Method 537 (modified): The matrix spike duplicate (MSD) precision for Perfluorotridecanoic acid (PFTriA) of preparation batch 320-420118 and analytical batch 320-421022 was outside control limits. Sample matrix interferences are suspected because the associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) precision was within acceptance limits.

Method 537 (modified): The "I" qualifier means the transition mass ratio for the indicated analyte(s) was outside of the established ratio limits. The qualitative identification of the analyte(s) has/have some degree of uncertainty. However, analyst judgement was used to positively identify the analyte(s). GW-06 (480-176138-1), GW-06 MSD (480-176138-1[MSD]) and GW-05 (480-176138-2),

Method 537 (modified): Isotope Dilution Analyte (IDA) recovery is above the method recommended limit for M2-6:2 FTS and M2-8:2 FTS in the following sample: GW-05 (480-176138-2). Quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated IDA recoveries.

Method 537 (modified): Isotope Dilution Analyte (IDA) recovery is above the method recommended limit for M2-6:2 FTS in the following samples: GW-04 (480-176138-4) and GW-07 (480-176138-5). Quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated IDA recoveries.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3535: The following samples were yellow prior to extraction: GW-06 (480-176138-1), GW-06 MS (480-176138-1[MS]), GW-06 MSD (480-176138-1[MSD]), GW-05 (480-176138-2), GW-04 (480-176138-4) and DUP (480-176138-6).

Method 3535: The following samples contained a thin layer of sediment at the bottom of the bottle prior to extraction: GW-05

Case Narrative

Client: New York State D.E.C.

Project/Site: SMP B - Cold Spring MGP

Job ID: 480-176138-1

Job ID: 480-176138-1 (Continued)

Laboratory: Eurofins TestAmerica, Buffalo (Continued)

(480-176138-2), GW-04 (480-176138-4), GW-07 (480-176138-5) and DUP (480-176138-6).

Method 3535: The following samples contained floating particulates in the sample bottle prior to extraction: GW-06 (480-176138-1), GW-06 MS (480-176138-1[MS]) and GW-06 MSD (480-176138-1[MSD]).

Method 3535: The following samples are light yellow after extraction/final volume: GW-06 (480-176138-1), GW-06 MS (480-176138-1[MS]), GW-06 MSD (480-176138-1[MSD]), GW-05 (480-176138-2), GW-04 (480-176138-4), GW-07 (480-176138-5) and DUP (480-176138-6).

 $No \ additional \ analytical \ or \ quality \ issues \ were \ noted, \ other \ than \ those \ described \ above \ or \ in \ the \ Definitions/Glossary \ page.$

4

_

7

8

46

11

12

14

16

Client: New York State D.E.C. Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

Client Sample ID: GW-06

Lab Sample ID: 480-176138-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	14		5.0	0.41	ug/L	1	_	8270D	Total/NA
Anthracene	1.1	J	5.0	0.28	ug/L	1		8270D	Total/NA
Fluoranthene	1.9	J	5.0	0.40	ug/L	1		8270D	Total/NA
Fluorene	0.85	J	5.0	0.36	ug/L	1		8270D	Total/NA
Pyrene	2.6	J	5.0	0.34	ug/L	1		8270D	Total/NA
Perfluoropentanoic acid (PFPeA)	5.3	J	18	4.4	ng/L	10		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	7.8	J	18	2.2	ng/L	10		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	11	J	18	7.6	ng/L	10		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	2.6	J	18	2.4	ng/L	10		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	11	J	18	1.8	ng/L	10		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	8.3	JI	18	4.8	ng/L	10		537 (modified)	Total/NA

Client Sample ID: GW-05

Lab Sample ID: 480-176138-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac [Method	Prep Type
Acenaphthene	4.7	J –	5.0	0.41	ug/L		8270D	Total/NA
Perfluorobutanoic acid (PFBA)	22		4.5	2.1	ng/L	1	537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	6.2		1.8	0.44	ng/L	1	537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	5.7		1.8	0.52	ng/L	1	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	2.8		1.8	0.22	ng/L	1	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	7.4		1.8	0.76	ng/L	1	537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	0.86	J	1.8	0.24	ng/L	1	537 (modified)	Total/NA
Perfluorodecanoic acid (PFDA)	0.72	J	1.8	0.28	ng/L	1	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	4.3		1.8	0.18	ng/L	1	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	3.2		1.8	0.51	ng/L	1	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	5.5	1	1.8	0.48	ng/L	1	537 (modified)	Total/NA

Client Sample ID: GW-01

Lab Sample ID: 480-176138-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	6.1		4.4	2.1	ng/L	1	_	537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	8.1		1.7	0.43	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	7.7		1.7	0.51	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	5.2		1.7	0.22	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	13		1.7	0.74	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	0.58	J	1.7	0.24	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	6.4		1.7	0.17	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	6.1		1.7	0.50	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanesulfonic Acid (PFHpS)	0.24	J	1.7	0.17	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	8.5		1.7	0.47	ng/L	1		537 (modified)	Total/NA

Client Sample ID: GW-04

Lab Sample ID: 480-176138-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
o-Xylene	1.2		1.0	0.76	ug/L		_	8260C	Total/NA
Xylenes, Total	1.2	J	2.0	0.66	ug/L	1		8260C	Total/NA
Total BTEX	1.2	J	2.0	1.0	ug/L	1		8260C	Total/NA
Acenaphthene	33		5.0	0.41	ug/L	1		8270D	Total/NA
Anthracene	1.8	J	5.0	0.28	ug/L	1		8270D	Total/NA
Fluoranthene	1.3	J	5.0	0.40	ug/L	1		8270D	Total/NA
Fluorene	6.7		5.0	0.36	ug/L	1		8270D	Total/NA
Phenanthrene	6.1		5.0	0.44	ug/L	1		8270D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

Page 7 of 44

2

3

L

8

4 0

111

13

16

17

10/16/2020

Client: New York State D.E.C. Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

Client Sample ID: GW-04 (Continued)

Lab Sample ID: 480-176138-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Pyrene	1.4	J	5.0	0.34	ug/L	1	_	8270D	Total/NA
Perfluorobutanoic acid (PFBA)	8.7		4.6	2.2	ng/L	1		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	5.7		1.9	0.45	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	4.2		1.9	0.54	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	2.8		1.9	0.23	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	9.8		1.9	0.79	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	0.69	J	1.9	0.25	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	7.6		1.9	0.19	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	3.6		1.9	0.53	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	6.9		1.9	0.50	ng/L	1		537 (modified)	Total/NA

Client Sample ID: GW-07

Lab Sample ID: 480-176138-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	0.94	J	1.0	0.41	ug/L	1	_	8260C	Total/NA
Ethylbenzene	0.78	J	1.0	0.74	ug/L	1		8260C	Total/NA
Total BTEX	1.7	J	2.0	1.0	ug/L	1		8260C	Total/NA
Acenaphthene	35		5.0	0.41	ug/L	1		8270D	Total/NA
Acenaphthylene	3.8	J	5.0	0.38	ug/L	1		8270D	Total/NA
Anthracene	0.97	J	5.0	0.28	ug/L	1		8270D	Total/NA
Benzo[a]anthracene	0.48	J	5.0	0.36	ug/L	1		8270D	Total/NA
Benzo[b]fluoranthene	0.34	J	5.0	0.34	ug/L	1		8270D	Total/NA
Chrysene	0.33	J	5.0	0.33	ug/L	1		8270D	Total/NA
Fluoranthene	6.1		5.0	0.40	ug/L	1		8270D	Total/NA
Fluorene	14		5.0	0.36	ug/L	1		8270D	Total/NA
Pyrene	3.5	J	5.0	0.34	ug/L	1		8270D	Total/NA
Perfluorobutanoic acid (PFBA)	29		4.5	2.2	ng/L	1		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	3.0		1.8	0.44	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	1.9		1.8	0.53	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.1	J	1.8	0.23	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	2.2		1.8	0.77	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	0.28	J	1.8	0.24	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	2.1		1.8	0.18	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.7	J	1.8	0.52	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.5	J	1.8	0.49	ng/L	1		537 (modified)	Total/NA

Client Sample ID: DUP

Lab Sample ID: 480-176138-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	11		5.0	0.41	ug/L	1	_	8270D	Total/NA
Anthracene	0.96	J	5.0	0.28	ug/L	1		8270D	Total/NA
Fluoranthene	1.4	J	5.0	0.40	ug/L	1		8270D	Total/NA
Fluorene	0.92	J	5.0	0.36	ug/L	1		8270D	Total/NA
Phenanthrene	0.50	J	5.0	0.44	ug/L	1		8270D	Total/NA
Pyrene	1.8	J	5.0	0.34	ug/L	1		8270D	Total/NA
Perfluoropentanoic acid (PFPeA)	5.6	J	18	4.3	ng/L	10		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	6.7	J	18	2.2	ng/L	10		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	13	J	18	7.5	ng/L	10		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	14	J	18	1.8	ng/L	10		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	8.9	J	18	4.8	ng/L	10		537 (modified)	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

10/16/2020

Page 8 of 44

9

-

5

7

9

10

12

4 4

15

Detection Summary

Client: New York State D.E.C. Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

Client Sample ID: Trip Blank

Lab Sample ID: 480-176138-7

No Detections.

4

5

6

8

4.0

11

13

14

16

Client: New York State D.E.C. Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

Client Sample ID: GW-06 Date Collected: 10/06/20 09:25

Date Received: 10/08/20 08:00

Dibromofluoromethane (Surr)

p-Terphenyl-d14 (Surr)

Lab Sample ID: 480-176138-1

10/14/20 17:44

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		2.0	0.82	ug/L			10/14/20 17:44	2
Toluene	ND		2.0	1.0	ug/L			10/14/20 17:44	2
Ethylbenzene	ND		2.0	1.5	ug/L			10/14/20 17:44	2
m-Xylene & p-Xylene	ND		4.0	1.3	ug/L			10/14/20 17:44	2
o-Xylene	ND		2.0	1.5	ug/L			10/14/20 17:44	2
Xylenes, Total	ND		4.0	1.3	ug/L			10/14/20 17:44	2
Total BTEX	ND		4.0	2.0	ug/L			10/14/20 17:44	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		80 - 120			=		10/14/20 17:44	2
1,2-Dichloroethane-d4 (Surr)	97		77 - 120					10/14/20 17:44	2
4-Bromofluorobenzene (Surr)	99		73 - 120					10/14/20 17:44	2

75 - 123

99

82

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	14		5.0	0.41	ug/L		10/09/20 15:24	10/13/20 20:18	1
Acenaphthylene	ND		5.0	0.38	ug/L		10/09/20 15:24	10/13/20 20:18	1
Anthracene	1.1	J	5.0	0.28	ug/L		10/09/20 15:24	10/13/20 20:18	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		10/09/20 15:24	10/13/20 20:18	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		10/09/20 15:24	10/13/20 20:18	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		10/09/20 15:24	10/13/20 20:18	1
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		10/09/20 15:24	10/13/20 20:18	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		10/09/20 15:24	10/13/20 20:18	1
Chrysene	ND		5.0	0.33	ug/L		10/09/20 15:24	10/13/20 20:18	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		10/09/20 15:24	10/13/20 20:18	1
Fluoranthene	1.9	J	5.0	0.40	ug/L		10/09/20 15:24	10/13/20 20:18	1
Fluorene	0.85	J	5.0	0.36	ug/L		10/09/20 15:24	10/13/20 20:18	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		10/09/20 15:24	10/13/20 20:18	1
Naphthalene	ND		5.0	0.76	ug/L		10/09/20 15:24	10/13/20 20:18	1
Phenanthrene	ND		5.0	0.44	ug/L		10/09/20 15:24	10/13/20 20:18	1
Pyrene	2.6	J	5.0	0.34	ug/L		10/09/20 15:24	10/13/20 20:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	95		48 - 120				10/09/20 15:24	10/13/20 20:18	1
Nitrobenzene-d5 (Surr)	95		46 - 120				10/09/20 15:24	10/13/20 20:18	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND	F1	45	21	ng/L		10/09/20 04:07	10/12/20 15:29	10
Perfluoropentanoic acid (PFPeA)	5.3	J	18	4.4	ng/L		10/09/20 04:07	10/12/20 15:29	10
Perfluorohexanoic acid (PFHxA)	ND		18	5.2	ng/L		10/09/20 04:07	10/12/20 15:29	10
Perfluoroheptanoic acid (PFHpA)	7.8	J	18	2.2	ng/L		10/09/20 04:07	10/12/20 15:29	10
Perfluorooctanoic acid (PFOA)	11	J	18	7.6	ng/L		10/09/20 04:07	10/12/20 15:29	10
Perfluorononanoic acid (PFNA)	2.6	J	18	2.4	ng/L		10/09/20 04:07	10/12/20 15:29	10
Perfluorodecanoic acid (PFDA)	ND		18	2.8	ng/L		10/09/20 04:07	10/12/20 15:29	10
Perfluoroundecanoic acid (PFUnA)	ND		18	9.8	ng/L		10/09/20 04:07	10/12/20 15:29	10
Perfluorododecanoic acid (PFDoA)	ND		18	4.9	ng/L		10/09/20 04:07	10/12/20 15:29	10
Perfluorotridecanoic acid (PFTriA)	ND	F2	18	12	ng/L		10/09/20 04:07	10/12/20 15:29	10

60 - 148

Eurofins TestAmerica, Buffalo

10/09/20 15:24 10/13/20 20:18

Page 10 of 44

Client: New York State D.E.C. Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

Client Sample ID: GW-06

Lab Sample ID: 480-176138-1

Date Collected: 10/06/20 09:25 **Matrix: Water** Date Received: 10/08/20 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorotetradecanoic acid (PFTeA)	ND		18	6.5	ng/L		10/09/20 04:07	10/12/20 15:29	10
Perfluorobutanesulfonic acid (PFBS)	11	J	18	1.8	ng/L		10/09/20 04:07	10/12/20 15:29	10
Perfluorohexanesulfonic acid (PFHxS)	ND		18	5.1	ng/L		10/09/20 04:07	10/12/20 15:29	10
Perfluoroheptanesulfonic Acid (PFHpS)	ND		18	1.7	ng/L		10/09/20 04:07	10/12/20 15:29	10
Perfluorooctanesulfonic acid (PFOS)	8.3	JI	18	4.8	ng/L		10/09/20 04:07	10/12/20 15:29	10
Perfluorodecanesulfonic acid (PFDS)	ND		18	2.8	ng/L		10/09/20 04:07	10/12/20 15:29	10
Perfluorooctanesulfonamide (FOSA)	ND		18	8.7	ng/L		10/09/20 04:07	10/12/20 15:29	10
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		45	11	ng/L		10/09/20 04:07	10/12/20 15:29	10
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		45	12	ng/L		10/09/20 04:07	10/12/20 15:29	10
6:2 FTS	ND		45	22	ng/L		10/09/20 04:07	10/12/20 15:29	10
8:2 FTS	ND		18	4.1	ng/L		10/09/20 04:07	10/12/20 15:29	10
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	68		25 - 150				10/09/20 04:07	10/12/20 15:29	10
13C5 PFPeA	79		25 - 150				10/09/20 04:07	10/12/20 15:29	10
13C2 PFHxA	80		25 - 150				10/09/20 04:07	10/12/20 15:29	10
13C4 PFHpA	85		25 - 150				10/09/20 04:07	10/12/20 15:29	10
13C4 PFOA	102		25 - 150				10/09/20 04:07	10/12/20 15:29	10
13C5 PFNA	91		25 - 150				10/09/20 04:07	10/12/20 15:29	10
13C2 PFDA	85		25 - 150				10/09/20 04:07	10/12/20 15:29	10
13C2 PFUnA	88		25 - 150				10/09/20 04:07	10/12/20 15:29	10
13C2 PFDoA	90		25 - 150				10/09/20 04:07	10/12/20 15:29	10
13C2 PFTeDA	57		25 - 150				10/09/20 04:07	10/12/20 15:29	10
13C3 PFBS	81		25 - 150				10/09/20 04:07	10/12/20 15:29	10
18O2 PFHxS	86		25 - 150				10/09/20 04:07	10/12/20 15:29	10
13C4 PFOS	93		25 - 150				10/09/20 04:07	10/12/20 15:29	10
13C8 FOSA	79		25 - 150				10/09/20 04:07	10/12/20 15:29	10
d3-NMeFOSAA	87		25 - 150				10/09/20 04:07	10/12/20 15:29	10
d5-NEtFOSAA	101		25 - 150				10/09/20 04:07	10/12/20 15:29	10
M2-6:2 FTS	139		25 - 150				10/09/20 04:07	10/12/20 15:29	10
M2-8:2 FTS	118		25 - 150				10/09/20 04:07	10/12/20 15:29	10

Client Sample ID: GW-05 Lab Sample ID: 480-176138-2

Date Collected: 10/06/20 10:40 Date Received: 10/08/20 08:00

Method: 8260C - Volatile Organic Compounds by GC/MS Dil Fac Analyte Result Qualifier MDL Unit RL D Prepared Analyzed Benzene ND 2.0 0.82 ug/L 10/14/20 18:07 2 Toluene ND 2.0 1.0 ug/L 10/14/20 18:07 2 ND Ethylbenzene 2.0 1.5 ug/L 10/14/20 18:07 2 ND 4.0 10/14/20 18:07 m-Xylene & p-Xylene 1.3 ug/L 2 ND 2.0 o-Xylene 1.5 ug/L 10/14/20 18:07 Xylenes, Total ND 4.0 10/14/20 18:07 2 1.3 ug/L Total BTEX ND 10/14/20 18:07 4.0 2.0 ug/L

Eurofins TestAmerica, Buffalo

Page 11 of 44

Matrix: Water

Client: New York State D.E.C. Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

Surrogate

Toluene-d8 (Surr)

Client Sample ID: GW-05 Lab Sample ID: 480-176138-2

%Recovery Qualifier

101

Date Collected: 10/06/20 10:40 Matrix: Water Date Received: 10/08/20 08:00

Limits

80 - 120

1,2-Dichloroethane-d4 (Surr)	97		77 - 120					10/14/20 18:07	2
4-Bromofluorobenzene (Surr)	102		73 - 120					10/14/20 18:07	2
Dibromofluoromethane (Surr)	102		75 - 123					10/14/20 18:07	2
- Method: 8270D - Semivolatile	Organic Compou	nds (GC/MS	3)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	4.7	J	5.0	0.41	ug/L		10/09/20 15:24	10/13/20 20:47	1
Acenaphthylene	ND		5.0	0.38	ug/L		10/09/20 15:24	10/13/20 20:47	1
Anthracene	ND		5.0	0.28	ug/L		10/09/20 15:24	10/13/20 20:47	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		10/09/20 15:24	10/13/20 20:47	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		10/09/20 15:24	10/13/20 20:47	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		10/09/20 15:24	10/13/20 20:47	1
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		10/09/20 15:24	10/13/20 20:47	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		10/09/20 15:24	10/13/20 20:47	1
Chrysene	ND		5.0	0.33	ug/L		10/09/20 15:24	10/13/20 20:47	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		10/09/20 15:24	10/13/20 20:47	1
Fluoranthene	ND		5.0	0.40	ug/L		10/09/20 15:24	10/13/20 20:47	1
Fluorene	ND		5.0	0.36	ug/L		10/09/20 15:24	10/13/20 20:47	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		10/09/20 15:24	10/13/20 20:47	1
Naphthalene	ND		5.0	0.76	ug/L		10/09/20 15:24	10/13/20 20:47	1
Phenanthrene	ND		5.0	0.44	ug/L		10/09/20 15:24	10/13/20 20:47	1
Pyrene	ND		5.0	0.34	ug/L		10/09/20 15:24	10/13/20 20:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	95		48 - 120				10/09/20 15:24	10/13/20 20:47	1
Nitrobenzene-d5 (Surr)	94		46 - 120				10/09/20 15:24	10/13/20 20:47	1
p-Terphenyl-d14 (Surr)	75		60 - 148				10/09/20 15:24	10/13/20 20:47	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	22		4.5	2.1	ng/L		10/09/20 04:07	10/10/20 05:12	1
Perfluoropentanoic acid (PFPeA)	6.2		1.8	0.44	ng/L		10/09/20 04:07	10/10/20 05:12	1
Perfluorohexanoic acid (PFHxA)	5.7		1.8	0.52	ng/L		10/09/20 04:07	10/10/20 05:12	1
Perfluoroheptanoic acid (PFHpA)	2.8		1.8	0.22	ng/L		10/09/20 04:07	10/10/20 05:12	1
Perfluorooctanoic acid (PFOA)	7.4		1.8	0.76	ng/L		10/09/20 04:07	10/10/20 05:12	1
Perfluorononanoic acid (PFNA)	0.86	J	1.8	0.24	ng/L		10/09/20 04:07	10/10/20 05:12	1
Perfluorodecanoic acid (PFDA)	0.72	J	1.8	0.28	ng/L		10/09/20 04:07	10/10/20 05:12	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.98	ng/L		10/09/20 04:07	10/10/20 05:12	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49	ng/L		10/09/20 04:07	10/10/20 05:12	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		10/09/20 04:07	10/10/20 05:12	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.65	ng/L		10/09/20 04:07	10/10/20 05:12	1
Perfluorobutanesulfonic acid (PFBS)	4.3		1.8	0.18	ng/L		10/09/20 04:07	10/10/20 05:12	1
Perfluorohexanesulfonic acid (PFHxS)	3.2		1.8	0.51	ng/L		10/09/20 04:07	10/10/20 05:12	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8	0.17	ng/L		10/09/20 04:07	10/10/20 05:12	1
Perfluorooctanesulfonic acid (PFOS)	5.5	I	1.8	0.48	ng/L		10/09/20 04:07	10/10/20 05:12	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.8	0.29	ng/L		10/09/20 04:07	10/10/20 05:12	1
Perfluorooctanesulfonamide (FOSA)	ND		1.8	0.87	ng/L		10/09/20 04:07	10/10/20 05:12	1

Eurofins TestAmerica, Buffalo

Page 12 of 44

Dil Fac

Analyzed

10/14/20 18:07

Prepared

Client: New York State D.E.C. Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

Client Sample ID: GW-05

Lab Sample ID: 480-176138-2

Date Collected: 10/06/20 10:40 Matrix: Water Date Received: 10/08/20 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-methylperfluorooctanesulfonamidoa	ND		4.5	1.1	ng/L		10/09/20 04:07	10/10/20 05:12	1
cetic acid (NMeFOSAA)									
N-ethylperfluorooctanesulfonamidoac	ND		4.5	1.2	ng/L		10/09/20 04:07	10/10/20 05:12	1
etic acid (NEtFOSAA)									
6:2 FTS	ND		4.5	2.2	ng/L		10/09/20 04:07	10/10/20 05:12	1
8:2 FTS	ND		1.8	0.41	ng/L		10/09/20 04:07	10/10/20 05:12	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	43		25 - 150				10/09/20 04:07	10/10/20 05:12	1
13C5 PFPeA	62		25 - 150				10/09/20 04:07	10/10/20 05:12	1
13C2 PFHxA	75		25 - 150				10/09/20 04:07	10/10/20 05:12	1
13C4 PFHpA	93		25 - 150				10/09/20 04:07	10/10/20 05:12	1
13C4 PFOA	97		25 - 150				10/09/20 04:07	10/10/20 05:12	1
13C5 PFNA	93		25 - 150				10/09/20 04:07	10/10/20 05:12	1
13C2 PFDA	97		25 - 150				10/09/20 04:07	10/10/20 05:12	1
13C2 PFUnA	112		25 - 150				10/09/20 04:07	10/10/20 05:12	1
13C2 PFDoA	108		25 - 150				10/09/20 04:07	10/10/20 05:12	1
13C2 PFTeDA	99		25 - 150				10/09/20 04:07	10/10/20 05:12	1
13C3 PFBS	92		25 - 150				10/09/20 04:07	10/10/20 05:12	1
18O2 PFHxS	110		25 - 150				10/09/20 04:07	10/10/20 05:12	1
13C4 PFOS	110		25 - 150				10/09/20 04:07	10/10/20 05:12	1
13C8 FOSA	82		25 - 150				10/09/20 04:07	10/10/20 05:12	1
d3-NMeFOSAA	88		25 - 150				10/09/20 04:07	10/10/20 05:12	1
d5-NEtFOSAA	106		25 - 150				10/09/20 04:07	10/10/20 05:12	1
M2-6:2 FTS	265	*5	25 - 150				10/09/20 04:07	10/10/20 05:12	1
M2-8:2 FTS	239	*5	25 - 150				10/09/20 04:07	10/10/20 05:12	1

Lab Sample ID: 480-176138-3 **Client Sample ID: GW-01**

Date Collected: 10/06/20 12:20 Matrix: Water Date Received: 10/08/20 08:00

Method: 8260C - Volatile Orga	ethod: 8260C - Volatile Organic Compounds by GC/MS									
Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Benzene	ND ND	1.0	0.41	ug/L			10/14/20 18:30	1		
Toluene	ND	1.0	0.51	ug/L			10/14/20 18:30	1		
Ethylbenzene	ND	1.0	0.74	ug/L			10/14/20 18:30	1		
m-Xylene & p-Xylene	ND	2.0	0.66	ug/L			10/14/20 18:30	1		
o-Xylene	ND	1.0	0.76	ug/L			10/14/20 18:30	1		
Xylenes, Total	ND	2.0	0.66	ug/L			10/14/20 18:30	1		
Total BTEX	ND	2.0	1.0	ug/L			10/14/20 18:30	1		

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		80 - 120		10/14/20 18:30	1
1,2-Dichloroethane-d4 (Surr)	97		77 - 120		10/14/20 18:30	1
4-Bromofluorobenzene (Surr)	99		73 - 120		10/14/20 18:30	1
Dibromofluoromethane (Surr)	100		75 - 123		10/14/20 18:30	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND ND	5.0	0.41	ug/L		10/09/20 15:24	10/13/20 21:17	1
Acenaphthylene	ND	5.0	0.38	ug/L		10/09/20 15:24	10/13/20 21:17	1
Anthracene	ND	5.0	0.28	ua/l		10/09/20 15:24	10/13/20 21:17	1

Eurofins TestAmerica, Buffalo

Page 13 of 44

Client: New York State D.E.C. Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

Client Sample ID: GW-01

Date Received: 10/08/20 08:00

Lab Sample ID: 480-176138-3 Date Collected: 10/06/20 12:20

Matrix: Water

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued) Result Qualifier MDL Unit Prepared Analyzed Dil Fac Benzo[a]anthracene ND 5.0 0.36 ug/L 10/09/20 15:24 10/13/20 21:17 Benzo[a]pyrene ND 5.0 0.47 ug/L 10/09/20 15:24 10/13/20 21:17 Benzo[b]fluoranthene ND 5.0 0.34 ug/L 10/09/20 15:24 10/13/20 21:17 ND 5.0 10/09/20 15:24 10/13/20 21:17 Benzo[g,h,i]perylene 0.35 ug/L Benzo[k]fluoranthene ND 5.0 10/09/20 15:24 10/13/20 21:17 0.73 ug/L Chrysene ND 5.0 0.33 ug/L 10/09/20 15:24 10/13/20 21:17 Dibenz(a,h)anthracene ND 5.0 0.42 ug/L 10/09/20 15:24 10/13/20 21:17 Fluoranthene ND 5.0 0.40 ug/L 10/09/20 15:24 10/13/20 21:17 Fluorene ND 5.0 0.36 ug/L 10/09/20 15:24 10/13/20 21:17 Indeno[1,2,3-cd]pyrene ND 5.0 0.47 ug/L 10/09/20 15:24 10/13/20 21:17 Naphthalene ND 5.0 0.76 ug/L 10/09/20 15:24 10/13/20 21:17 Phenanthrene ND 5.0 0.44 ug/L 10/09/20 15:24 10/13/20 21:17 Pyrene ND 5.0 0.34 ug/L 10/09/20 15:24 10/13/20 21:17 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 2-Fluorobiphenyl 96 48 - 120 10/09/20 15:24 10/13/20 21:17 Nitrobenzene-d5 (Surr) 94 46 - 120 10/09/20 15:24 10/13/20 21:17 p-Terphenyl-d14 (Surr) 97 60 - 148 10/09/20 15:24 10/13/20 21:17

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	6.1		4.4	2.1	ng/L		10/09/20 04:07	10/10/20 05:21	1
Perfluoropentanoic acid (PFPeA)	8.1		1.7	0.43	ng/L		10/09/20 04:07	10/10/20 05:21	1
Perfluorohexanoic acid (PFHxA)	7.7		1.7	0.51	ng/L		10/09/20 04:07	10/10/20 05:21	1
Perfluoroheptanoic acid (PFHpA)	5.2		1.7	0.22	ng/L		10/09/20 04:07	10/10/20 05:21	1
Perfluorooctanoic acid (PFOA)	13		1.7	0.74	ng/L		10/09/20 04:07	10/10/20 05:21	1
Perfluorononanoic acid (PFNA)	0.58	J	1.7	0.24	ng/L		10/09/20 04:07	10/10/20 05:21	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.27	ng/L		10/09/20 04:07	10/10/20 05:21	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.96	ng/L		10/09/20 04:07	10/10/20 05:21	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.48	ng/L		10/09/20 04:07	10/10/20 05:21	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		10/09/20 04:07	10/10/20 05:21	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.64	ng/L		10/09/20 04:07	10/10/20 05:21	1
Perfluorobutanesulfonic acid (PFBS)	6.4		1.7	0.17	ng/L		10/09/20 04:07	10/10/20 05:21	1
Perfluorohexanesulfonic acid (PFHxS)	6.1		1.7	0.50	ng/L		10/09/20 04:07	10/10/20 05:21	1
Perfluoroheptanesulfonic Acid (PFHpS)	0.24	J	1.7	0.17	ng/L		10/09/20 04:07	10/10/20 05:21	1
Perfluorooctanesulfonic acid (PFOS)	8.5		1.7	0.47	ng/L		10/09/20 04:07	10/10/20 05:21	
Perfluorodecanesulfonic acid (PFDS)	ND		1.7	0.28	ng/L		10/09/20 04:07	10/10/20 05:21	1
Perfluorooctanesulfonamide (FOSA)	ND		1.7	0.86	ng/L		10/09/20 04:07	10/10/20 05:21	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.4	1.0	ng/L		10/09/20 04:07	10/10/20 05:21	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.4	1.1	ng/L		10/09/20 04:07	10/10/20 05:21	1
6:2 FTS	ND		4.4	2.2	ng/L		10/09/20 04:07	10/10/20 05:21	1
8:2 FTS	ND		1.7	0.40	ng/L		10/09/20 04:07	10/10/20 05:21	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	72		25 - 150				10/09/20 04:07	10/10/20 05:21	1
13C5 PFPeA	86		25 _ 150				10/09/20 04:07	10/10/20 05:21	1

Eurofins TestAmerica, Buffalo

Page 14 of 44

Client: New York State D.E.C. Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

Client Sample ID: GW-01 Lab Sample ID: 480-176138-3

Date Collected: 10/06/20 12:20 Matrix: Water
Date Received: 10/08/20 08:00

Isotope Dilution	%Recovery (Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	93		25 - 150	10/09/20 04:07	10/10/20 05:21	1
13C4 PFHpA	96		25 - 150	10/09/20 04:07	10/10/20 05:21	1
13C4 PFOA	101		25 - 150	10/09/20 04:07	10/10/20 05:21	1
13C5 PFNA	104		25 - 150	10/09/20 04:07	10/10/20 05:21	1
13C2 PFDA	87		25 - 150	10/09/20 04:07	10/10/20 05:21	1
13C2 PFUnA	90		25 - 150	10/09/20 04:07	10/10/20 05:21	1
13C2 PFDoA	85		25 - 150	10/09/20 04:07	10/10/20 05:21	1
13C2 PFTeDA	91		25 - 150	10/09/20 04:07	10/10/20 05:21	1
13C3 PFBS	85		25 - 150	10/09/20 04:07	10/10/20 05:21	1
1802 PFHxS	89		25 - 150	10/09/20 04:07	10/10/20 05:21	1
13C4 PFOS	94		25 - 150	10/09/20 04:07	10/10/20 05:21	1
13C8 FOSA	81		25 - 150	10/09/20 04:07	10/10/20 05:21	1
d3-NMeFOSAA	83		25 - 150	10/09/20 04:07	10/10/20 05:21	1
d5-NEtFOSAA	91		25 - 150	10/09/20 04:07	10/10/20 05:21	1
M2-6:2 FTS	109		25 - 150	10/09/20 04:07	10/10/20 05:21	1
M2-8:2 FTS	101		25 - 150	10/09/20 04:07	10/10/20 05:21	1

Client Sample ID: GW-04 Lab Sample ID: 480-176138-4

Date Collected: 10/06/20 13:25 Matrix: Water

Date Received: 10/08/20 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.41	ug/L			10/14/20 18:53	1
Toluene	ND		1.0	0.51	ug/L			10/14/20 18:53	1
Ethylbenzene	ND		1.0	0.74	ug/L			10/14/20 18:53	1
m-Xylene & p-Xylene	ND		2.0	0.66	ug/L			10/14/20 18:53	1
o-Xylene	1.2		1.0	0.76	ug/L			10/14/20 18:53	1
Xylenes, Total	1.2	J	2.0	0.66	ug/L			10/14/20 18:53	1
Total BTEX	1.2	J	2.0	1.0	ug/L			10/14/20 18:53	1

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101	80 - 120		10/14/20 18:53	1
1,2-Dichloroethane-d4 (Surr)	113	77 - 120		10/14/20 18:53	1
4-Bromofluorobenzene (Surr)	99	73 - 120		10/14/20 18:53	1
Dibromofluoromethane (Surr)	100	75 _ 123		10/14/20 18:53	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	33		5.0	0.41	ug/L		10/09/20 15:24	10/13/20 21:47	1
Acenaphthylene	ND		5.0	0.38	ug/L		10/09/20 15:24	10/13/20 21:47	1
Anthracene	1.8	J	5.0	0.28	ug/L		10/09/20 15:24	10/13/20 21:47	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		10/09/20 15:24	10/13/20 21:47	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		10/09/20 15:24	10/13/20 21:47	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		10/09/20 15:24	10/13/20 21:47	1
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		10/09/20 15:24	10/13/20 21:47	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		10/09/20 15:24	10/13/20 21:47	1
Chrysene	ND		5.0	0.33	ug/L		10/09/20 15:24	10/13/20 21:47	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		10/09/20 15:24	10/13/20 21:47	1
Fluoranthene	1.3	J	5.0	0.40	ug/L		10/09/20 15:24	10/13/20 21:47	1

Eurofins TestAmerica, Buffalo

Page 15 of 44

2

3

5

7

9

11

11

15

Client: New York State D.E.C. Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

Client Sample ID: GW-04 Date Collected: 10/06/20 13:25

Date Received: 10/08/20 08:00

Lab Sample ID: 480-176138-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluorene	6.7		5.0	0.36	ug/L		10/09/20 15:24	10/13/20 21:47	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		10/09/20 15:24	10/13/20 21:47	1
Naphthalene	ND		5.0	0.76	ug/L		10/09/20 15:24	10/13/20 21:47	1
Phenanthrene	6.1		5.0	0.44	ug/L		10/09/20 15:24	10/13/20 21:47	1
Pyrene	1.4	J	5.0	0.34	ug/L		10/09/20 15:24	10/13/20 21:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	99		48 - 120				10/09/20 15:24	10/13/20 21:47	1
Nitrobenzene-d5 (Surr)	97		46 - 120				10/09/20 15:24	10/13/20 21:47	1
p-Terphenyl-d14 (Surr)	78		60 ₋ 148				10/09/20 15:24	10/13/20 21:47	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	8.7		4.6	2.2	ng/L		10/09/20 04:07	10/10/20 05:30	1
Perfluoropentanoic acid (PFPeA)	5.7		1.9	0.45	ng/L		10/09/20 04:07	10/10/20 05:30	1
Perfluorohexanoic acid (PFHxA)	4.2		1.9	0.54	ng/L		10/09/20 04:07	10/10/20 05:30	1
Perfluoroheptanoic acid (PFHpA)	2.8		1.9	0.23	ng/L		10/09/20 04:07	10/10/20 05:30	1
Perfluorooctanoic acid (PFOA)	9.8		1.9	0.79	ng/L		10/09/20 04:07	10/10/20 05:30	1
Perfluorononanoic acid (PFNA)	0.69	J	1.9	0.25	ng/L		10/09/20 04:07	10/10/20 05:30	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.29	ng/L		10/09/20 04:07	10/10/20 05:30	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.0	ng/L		10/09/20 04:07	10/10/20 05:30	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.51	ng/L		10/09/20 04:07	10/10/20 05:30	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng/L		10/09/20 04:07	10/10/20 05:30	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.68	ng/L		10/09/20 04:07	10/10/20 05:30	1
Perfluorobutanesulfonic acid (PFBS)	7.6		1.9	0.19	ng/L		10/09/20 04:07	10/10/20 05:30	1
Perfluorohexanesulfonic acid (PFHxS)	3.6		1.9	0.53	ng/L		10/09/20 04:07	10/10/20 05:30	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.9	0.18	ng/L		10/09/20 04:07	10/10/20 05:30	1
Perfluorooctanesulfonic acid (PFOS)	6.9		1.9	0.50	ng/L		10/09/20 04:07	10/10/20 05:30	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.9	0.30	ng/L		10/09/20 04:07	10/10/20 05:30	1
Perfluorooctanesulfonamide (FOSA)	ND		1.9	0.91	ng/L		10/09/20 04:07	10/10/20 05:30	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.6	1.1	ng/L		10/09/20 04:07	10/10/20 05:30	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.6	1.2	ng/L		10/09/20 04:07	10/10/20 05:30	1
6:2 FTS	ND		4.6	2.3	ng/L		10/09/20 04:07	10/10/20 05:30	1
8:2 FTS	ND		1.9	0.43	ng/L		10/09/20 04:07	10/10/20 05:30	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	55		25 - 150				10/09/20 04:07	10/10/20 05:30	

isotope bilation	7011CCCVCIY G	guanner Ennies	rrepared	Analyzea	Diriac
13C4 PFBA	55	25 - 150	10/09/20 04:07	10/10/20 05:30	1
13C5 PFPeA	72	25 - 150	10/09/20 04:07	10/10/20 05:30	1
13C2 PFHxA	80	25 - 150	10/09/20 04:07	10/10/20 05:30	1
13C4 PFHpA	95	25 - 150	10/09/20 04:07	10/10/20 05:30	1
13C4 PFOA	90	25 - 150	10/09/20 04:07	10/10/20 05:30	1
13C5 PFNA	102	25 - 150	10/09/20 04:07	10/10/20 05:30	1
13C2 PFDA	88	25 - 150	10/09/20 04:07	10/10/20 05:30	1
13C2 PFUnA	101	25 - 150	10/09/20 04:07	10/10/20 05:30	1
13C2 PFDoA	90	25 - 150	10/09/20 04:07	10/10/20 05:30	1
13C2 PFTeDA	68	25 - 150	10/09/20 04:07	10/10/20 05:30	1

Eurofins TestAmerica, Buffalo

Page 16 of 44

J

6

8

4.0

11

1 1

15

Client: New York State D.E.C. Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

Client Sample ID: GW-04 Lab Sample ID: 480-176138-4

Date Collected: 10/06/20 13:25

Date Received: 10/08/20 08:00

Matrix: Water

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C3 PFBS	81	25 - 150	10/09/20 04:07	10/10/20 05:30	1
18O2 PFHxS	92	25 - 150	10/09/20 04:07	10/10/20 05:30	1
13C4 PFOS	90	25 - 150	10/09/20 04:07	10/10/20 05:30	1
13C8 FOSA	80	25 - 150	10/09/20 04:07	10/10/20 05:30	1
d3-NMeFOSAA	81	25 - 150	10/09/20 04:07	10/10/20 05:30	1
d5-NEtFOSAA	92	25 - 150	10/09/20 04:07	10/10/20 05:30	1
M2-6:2 FTS	165 *5	25 - 150	10/09/20 04:07	10/10/20 05:30	1
M2-8:2 FTS	133	25 - 150	10/09/20 04:07	10/10/20 05:30	1

Client Sample ID: GW-07 Lab Sample ID: 480-176138-5

Date Collected: 10/06/20 14:45 Matrix: Water

Date Received: 10/08/20 08:00

Method: 8260C - Volatile Organic Compounds by GC/MS

motifica. ozobo volatilo orgal	ino compoundo a	y comine							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.94	J	1.0	0.41	ug/L			10/14/20 19:16	1
Toluene	ND		1.0	0.51	ug/L			10/14/20 19:16	1
Ethylbenzene	0.78	J	1.0	0.74	ug/L			10/14/20 19:16	1
m-Xylene & p-Xylene	ND		2.0	0.66	ug/L			10/14/20 19:16	1
o-Xylene	ND		1.0	0.76	ug/L			10/14/20 19:16	1
Xylenes, Total	ND		2.0	0.66	ug/L			10/14/20 19:16	1
Total BTEX	1.7	J	2.0	1.0	ug/L			10/14/20 19:16	1

Surrogate	%Recovery	Qualifier	Limits	Prepare	d Analyzed	Dil Fac
Toluene-d8 (Surr)	99		80 - 120		10/14/20 19:16	1
1,2-Dichloroethane-d4 (Surr)	101		77 - 120		10/14/20 19:16	1
4-Bromofluorobenzene (Surr)	99		73 - 120		10/14/20 19:16	1
Dibromofluoromethane (Surr)	98		75 - 123		10/14/20 19:16	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	35		5.0	0.41	ug/L		10/09/20 15:24	10/13/20 22:17	1
Acenaphthylene	3.8	J	5.0	0.38	ug/L		10/09/20 15:24	10/13/20 22:17	1
Anthracene	0.97	J	5.0	0.28	ug/L		10/09/20 15:24	10/13/20 22:17	1
Benzo[a]anthracene	0.48	J	5.0	0.36	ug/L		10/09/20 15:24	10/13/20 22:17	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		10/09/20 15:24	10/13/20 22:17	1
Benzo[b]fluoranthene	0.34	J	5.0	0.34	ug/L		10/09/20 15:24	10/13/20 22:17	1
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		10/09/20 15:24	10/13/20 22:17	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		10/09/20 15:24	10/13/20 22:17	1
Chrysene	0.33	J	5.0	0.33	ug/L		10/09/20 15:24	10/13/20 22:17	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		10/09/20 15:24	10/13/20 22:17	1
Fluoranthene	6.1		5.0	0.40	ug/L		10/09/20 15:24	10/13/20 22:17	1
Fluorene	14		5.0	0.36	ug/L		10/09/20 15:24	10/13/20 22:17	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		10/09/20 15:24	10/13/20 22:17	1
Naphthalene	ND		5.0	0.76	ug/L		10/09/20 15:24	10/13/20 22:17	1
Phenanthrene	ND		5.0	0.44	ug/L		10/09/20 15:24	10/13/20 22:17	1
Pyrene	3.5		5.0	0.34	ug/L		10/09/20 15:24	10/13/20 22:17	1

Surrogate	76Recovery Quantier	LIIIIII	Prepareu	Allalyzeu	DII Fac
2-Fluorobiphenyl	97	48 - 120	10/09/20 15:24	10/13/20 22:17	1
Nitrobenzene-d5 (Surr)	95	46 - 120	10/09/20 15:24	10/13/20 22:17	1

Eurofins TestAmerica, Buffalo

Page 17 of 44

5

3

5

7

9

10

12

14

15

Client: New York State D.E.C. Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

Surrogate

(PFBS)

Perfluorohexanesulfonic acid

p-Terphenyl-d14 (Surr)

Client Sample ID: GW-07 Lab Sample ID: 480-176138-5

Date Collected: 10/06/20 14:45

Date Received: 10/08/20 08:00

Matrix: Water

%Recovery Qualifier

1.7 J

81

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	29		4.5	2.2	ng/L		10/09/20 04:07	10/10/20 05:39	1
Perfluoropentanoic acid (PFPeA)	3.0		1.8	0.44	ng/L		10/09/20 04:07	10/10/20 05:39	1
Perfluorohexanoic acid (PFHxA)	1.9		1.8	0.53	ng/L		10/09/20 04:07	10/10/20 05:39	1
Perfluoroheptanoic acid (PFHpA)	1.1		1.8	0.23	ng/L		10/09/20 04:07	10/10/20 05:39	1

Limits

60 - 148

Perfluorooctanoic acid (PFOA)	2.2	1.8	0.77 ng/L	10/09/20 04:07	10/10/20 05:39	
Perfluorononanoic acid (PFNA)	0.28 J	1.8	0.24 ng/L	10/09/20 04:07	10/10/20 05:39	
Perfluorodecanoic acid (PFDA)	ND	1.8	0.28 ng/L	10/09/20 04:07	10/10/20 05:39	
Perfluoroundecanoic acid (PFUnA)	ND	1.8	1.0 ng/L	10/09/20 04:07	10/10/20 05:39	
Perfluorododecanoic acid (PFDoA)	ND	1.8	0.50 ng/L	10/09/20 04:07	10/10/20 05:39	
Perfluorotridecanoic acid (PFTriA)	ND	1.8	1.2 ng/L	10/09/20 04:07	10/10/20 05:39	
Perfluorotetradecanoic acid (PFTeA)	ND	1.8	0.66 ng/L	10/09/20 04:07	10/10/20 05:39	
Perfluorobutanesulfonic acid	2.1	1.8	0.18 ng/l	10/09/20 04:07	10/10/20 05:39	

0.52 ng/L

(PFHxS)						
Perfluoroheptanesulfonic Acid	ND	1.8	0.17 ng/L	10/09/20 04:07	10/10/20 05:39	
(PFHpS)						
Perfluorooctanesulfonic acid	1.5 J	1.8	0.49 ng/L	10/09/20 04:07	10/10/20 05:39	
(PFOS)						
Perfluorodecanesulfonic acid (PFDS)	ND	1.8	0.29 ng/L	10/09/20 04:07	10/10/20 05:39	
Perfluorooctanesulfonamide (FOSA)	ND	1.8	0.89 ng/L	10/09/20 04:07	10/10/20 05:39	
N-methylperfluorooctanesulfonamidoa	ND	4.5	1.1 ng/L	10/09/20 04:07	10/10/20 05:39	
cetic acid (NMeFOSAA)						
N-ethylperfluorooctanesulfonamidoac	ND	4.5	1.2 ng/L	10/09/20 04:07	10/10/20 05:39	
etic acid (NEtFOSAA)						
6:2 FTS	ND	4.5	2.3 ng/L	10/09/20 04:07	10/10/20 05:39	

				10/10/20 05:39	
Isotope Dilution	%Recovery (Qualifier Limits	Prepared	Analyzed	Dil Fac
13C4 PFBA	68	25 - 150	10/09/20 04:07	10/10/20 05:39	1
13C5 PFPeA	79	25 - 150	10/09/20 04:07	10/10/20 05:39	1
13C2 PFHxA	83	25 - 150	10/09/20 04:07	10/10/20 05:39	1
13C4 PFHpA	91	25 - 150	10/09/20 04:07	10/10/20 05:39	1
13C4 PFOA	100	25 - 150	10/09/20 04:07	10/10/20 05:39	1
13C5 PFNA	107	25 - 150	10/09/20 04:07	10/10/20 05:39	1
13C2 PFDA	83	25 - 150	10/09/20 04:07	10/10/20 05:39	1
13C2 PFUnA	86	25 - 150	10/09/20 04:07	10/10/20 05:39	1
13C2 PFDoA	59	25 - 150	10/09/20 04:07	10/10/20 05:39	1
13C2 PFTeDA	72	25 - 150	10/09/20 04:07	10/10/20 05:39	1
13C3 PFBS	79	25 - 150	10/09/20 04:07	10/10/20 05:39	1
1802 PFHxS	88	25 - 150	10/09/20 04:07	10/10/20 05:39	1
13C4 PFOS	85	25 - 150	10/09/20 04:07	10/10/20 05:39	1
13C8 FOSA	79	25 - 150	10/09/20 04:07	10/10/20 05:39	1
d3-NMeFOSAA	78	25 - 150	10/09/20 04:07	10/10/20 05:39	1
d5-NEtFOSAA	90	25 - 150	10/09/20 04:07	10/10/20 05:39	1
M2-6:2 FTS	161 3	*5 25 - 150	10/09/20 04:07	10/10/20 05:39	1
M2-8:2 FTS	128	25 _ 150	10/09/20 04:07	10/10/20 05:39	1

Eurofins TestAmerica, Buffalo

Page 18 of 44

S

3

6

Dil Fac

Analyzed

10/13/20 22:17

10/10/20 05:39

Prepared

10/09/20 15:24

10/09/20 04:07

<u>۾</u>

10

11

13

15

Client: New York State D.E.C. Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

Client Sample ID: DUP

Lab Sample ID: 480-176138-6

Matrix: Water

Date Collected: 10/06/20 11:15 Date Received: 10/08/20 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	MD		2.0	0.82	ug/L			10/14/20 19:38	2
Toluene	ND		2.0	1.0	ug/L			10/14/20 19:38	2
Ethylbenzene	ND		2.0	1.5	ug/L			10/14/20 19:38	2
m-Xylene & p-Xylene	ND		4.0	1.3	ug/L			10/14/20 19:38	2
o-Xylene	ND		2.0	1.5	ug/L			10/14/20 19:38	2
Xylenes, Total	ND		4.0	1.3	ug/L			10/14/20 19:38	2
Total BTEX	ND		4.0	2.0	ug/L			10/14/20 19:38	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	103		80 - 120					10/14/20 19:38	2
1,2-Dichloroethane-d4 (Surr)	104		77 - 120					10/14/20 19:38	2
4-Bromofluorobenzene (Surr)	104		73 - 120					10/14/20 19:38	2
Dibromofluoromethane (Surr)	101		75 - 123					10/14/20 19:38	2
Method: 8270D - Semivolatile	Organic Compou	nds (GC/MS	S)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	11		5.0	0.41	ug/L		10/09/20 15:24	10/13/20 22:46	1
Acenaphthylene	ND		5.0	0.38	ug/L		10/09/20 15:24	10/13/20 22:46	1
Anthracene	0.96	J	5.0	0.28	ug/L		10/09/20 15:24	10/13/20 22:46	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		10/09/20 15:24	10/13/20 22:46	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	11		5.0	0.41	ug/L		10/09/20 15:24	10/13/20 22:46	1
Acenaphthylene	ND		5.0	0.38	ug/L		10/09/20 15:24	10/13/20 22:46	1
Anthracene	0.96	J	5.0	0.28	ug/L		10/09/20 15:24	10/13/20 22:46	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		10/09/20 15:24	10/13/20 22:46	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		10/09/20 15:24	10/13/20 22:46	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		10/09/20 15:24	10/13/20 22:46	1
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		10/09/20 15:24	10/13/20 22:46	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		10/09/20 15:24	10/13/20 22:46	1
Chrysene	ND		5.0	0.33	ug/L		10/09/20 15:24	10/13/20 22:46	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		10/09/20 15:24	10/13/20 22:46	1
Fluoranthene	1.4	J	5.0	0.40	ug/L		10/09/20 15:24	10/13/20 22:46	1
Fluorene	0.92	J	5.0	0.36	ug/L		10/09/20 15:24	10/13/20 22:46	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		10/09/20 15:24	10/13/20 22:46	1
Naphthalene	ND		5.0	0.76	ug/L		10/09/20 15:24	10/13/20 22:46	1
Phenanthrene	0.50	J	5.0	0.44	ug/L		10/09/20 15:24	10/13/20 22:46	1
Pyrene	1.8	J	5.0	0.34	ug/L		10/09/20 15:24	10/13/20 22:46	1

Surrogate	%Recovery	Qualifier	Limits	Prepare	ed Analyze	d Dil Fac
2-Fluorobiphenyl	98		48 - 120	10/09/20 1	5:24 10/13/20 22	2:46 1
Nitrobenzene-d5 (Surr)	98		46 - 120	10/09/20 1	5:24 10/13/20 22	2:46 1
p-Terphenyl-d14 (Surr)	79		60 - 148	10/09/20 1	5:24 10/13/20 22	2:46 1

Method: 537 (modified) - Fluorinate	•					_	_		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		44	21	ng/L		10/09/20 04:07	10/12/20 15:56	10
Perfluoropentanoic acid (PFPeA)	5.6	J	18	4.3	ng/L		10/09/20 04:07	10/12/20 15:56	10
Perfluorohexanoic acid (PFHxA)	ND		18	5.1	ng/L		10/09/20 04:07	10/12/20 15:56	10
Perfluoroheptanoic acid (PFHpA)	6.7	J	18	2.2	ng/L		10/09/20 04:07	10/12/20 15:56	10
Perfluorooctanoic acid (PFOA)	13	J	18	7.5	ng/L		10/09/20 04:07	10/12/20 15:56	10
Perfluorononanoic acid (PFNA)	ND		18	2.4	ng/L		10/09/20 04:07	10/12/20 15:56	10
Perfluorodecanoic acid (PFDA)	ND		18	2.7	ng/L		10/09/20 04:07	10/12/20 15:56	10
Perfluoroundecanoic acid (PFUnA)	ND		18	9.7	ng/L		10/09/20 04:07	10/12/20 15:56	10
Perfluorododecanoic acid (PFDoA)	ND		18	4.9	ng/L		10/09/20 04:07	10/12/20 15:56	10
Perfluorotridecanoic acid (PFTriA)	ND		18	12	ng/L		10/09/20 04:07	10/12/20 15:56	10

Eurofins TestAmerica, Buffalo

6

8

10

12

14

15

Client: New York State D.E.C. Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

Client Sample ID: DUP

Lab Sample ID: 480-176138-6

Matrix: Water

Date Collected: 10/06/20 11:15 Date Received: 10/08/20 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorotetradecanoic acid (PFTeA)	ND		18	6.5	ng/L		10/09/20 04:07	10/12/20 15:56	10
Perfluorobutanesulfonic acid (PFBS)	14	J	18	1.8	ng/L		10/09/20 04:07	10/12/20 15:56	10
Perfluorohexanesulfonic acid (PFHxS)	ND		18	5.0	ng/L		10/09/20 04:07	10/12/20 15:56	10
Perfluoroheptanesulfonic Acid (PFHpS)	ND		18	1.7	ng/L		10/09/20 04:07	10/12/20 15:56	10
Perfluorooctanesulfonic acid (PFOS)	8.9	J	18	4.8	ng/L		10/09/20 04:07	10/12/20 15:56	10
Perfluorodecanesulfonic acid (PFDS)	ND		18	2.8	ng/L		10/09/20 04:07	10/12/20 15:56	10
Perfluorooctanesulfonamide (FOSA)	ND		18	8.7	ng/L		10/09/20 04:07	10/12/20 15:56	10
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		44	11	ng/L		10/09/20 04:07	10/12/20 15:56	10
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		44	12	ng/L		10/09/20 04:07	10/12/20 15:56	10
6:2 FTS	ND		44	22	ng/L		10/09/20 04:07	10/12/20 15:56	10
8:2 FTS	ND		18	4.1	ng/L		10/09/20 04:07	10/12/20 15:56	10
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C4 PFBA	64		25 - 150				10/09/20 04:07	10/12/20 15:56	10
13C5 PFPeA	76		25 - 150				10/09/20 04:07	10/12/20 15:56	10
13C2 PFHxA	78		25 - 150				10/09/20 04:07	10/12/20 15:56	1
13C4 PFHpA	90		25 - 150				10/09/20 04:07	10/12/20 15:56	1
13C4 PFOA	89		25 - 150				10/09/20 04:07	10/12/20 15:56	1
13C5 PFNA	97		25 - 150				10/09/20 04:07	10/12/20 15:56	10
13C2 PFDA	84		25 - 150				10/09/20 04:07	10/12/20 15:56	10
13C2 PFUnA	88		25 - 150				10/09/20 04:07	10/12/20 15:56	10
13C2 PFDoA	84		25 - 150				10/09/20 04:07	10/12/20 15:56	10
13C2 PFTeDA	57		25 - 150				10/09/20 04:07	10/12/20 15:56	10
13C3 PFBS	79		25 - 150				10/09/20 04:07	10/12/20 15:56	10
1802 PFHxS	86		25 - 150				10/09/20 04:07	10/12/20 15:56	10
13C4 PFOS	87		25 - 150				10/09/20 04:07	10/12/20 15:56	10
13C8 FOSA	77		25 - 150				10/09/20 04:07	10/12/20 15:56	10
d3-NMeFOSAA	86		25 - 150				10/09/20 04:07	10/12/20 15:56	10
d5-NEtFOSAA	95		25 - 150				10/09/20 04:07	10/12/20 15:56	10
M2-6:2 FTS	141		25 - 150				10/09/20 04:07	10/12/20 15:56	10
M2-8:2 FTS	115		25 - 150				10/09/20 04:07	10/12/20 15:56	10

Client Sample ID: Trip Blank

Date Collected: 10/06/20 00:00

Date Received: 10/08/20 08:00

Lab Sample ID: 480-176138-7

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND	1.0	0.41	ug/L			10/14/20 20:01	1
Toluene	ND	1.0	0.51	ug/L			10/14/20 20:01	1
Ethylbenzene	ND	1.0	0.74	ug/L			10/14/20 20:01	1
m-Xylene & p-Xylene	ND	2.0	0.66	ug/L			10/14/20 20:01	1
o-Xylene	ND	1.0	0.76	ug/L			10/14/20 20:01	1
Xylenes, Total	ND	2.0	0.66	ug/L			10/14/20 20:01	1
Total BTEX	ND	2.0	1.0	ug/L			10/14/20 20:01	1

Eurofins TestAmerica, Buffalo

Page 20 of 44

2

3

5

7

9

11

13

15

Client: New York State D.E.C. Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

Client Sample ID: Trip Blank

Lab Sample ID: 480-176138-7

Date Collected: 10/06/20 00:00 Matrix: Water
Date Received: 10/08/20 08:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100	80 - 120		10/14/20 20:01	1
1,2-Dichloroethane-d4 (Surr)	101	77 - 120		10/14/20 20:01	1
4-Bromofluorobenzene (Surr)	99	73 - 120		10/14/20 20:01	1
Dibromofluoromethane (Surr)	98	75 - 123		10/14/20 20:01	1

4

5

ŏ

10

12

14

16

Surrogate Summary

Client: New York State D.E.C. Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Sui	rrogate Reco
		TOL	DCA	BFB	DBFM
Lab Sample ID	Client Sample ID	(80-120)	(77-120)	(73-120)	(75-123)
480-176138-1	GW-06	102	97	99	99
480-176138-1 MS	GW-06 MS	97	99	97	97
480-176138-1 MSD	GW-06 MSD	99	97	99	105
480-176138-2	GW-05	101	97	102	102
480-176138-3	GW-01	101	97	99	100
480-176138-4	GW-04	101	113	99	100
480-176138-5	GW-07	99	101	99	98
480-176138-6	DUP	103	104	104	101
480-176138-7	Trip Blank	100	101	99	98
LCS 480-553834/5	Lab Control Sample	99	100	100	101
MB 480-553834/7	Method Blank	105	95	100	98

Surrogate Legend

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

				Percent Surrog	ate Recovery (Acceptance Limits
		FBP	NBZ	TPHd14	
Lab Sample ID	Client Sample ID	(48-120)	(46-120)	(60-148)	
480-176138-1	GW-06	95	95	82	
480-176138-1 MS	GW-06 MS	96	93	69	
480-176138-1 MSD	GW-06 MSD	95	92	73	
480-176138-2	GW-05	95	94	75	
480-176138-3	GW-01	96	94	97	
480-176138-4	GW-04	99	97	78	
480-176138-5	GW-07	97	95	81	
480-176138-6	DUP	98	98	79	
LCS 480-553306/2-A	Lab Control Sample	93	89	104	
MB 480-553306/1-A	Method Blank	95	95	108	

Surrogate Legend

FBP = 2-Fluorobiphenyl

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

2

4

5

7

9

11

12

4 5

16

Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

Client: New York State D.E.C.

Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Water Prep Type: Total/NA

				ercent Isotop		• `	•	,	
		PFBA	PFPeA	PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
480-176138-1	GW-06	68	79	80	85	102	91	85	88
480-176138-1 MS	GW-06 MS	63	76	78	82	98	96	88	89
480-176138-1 MSD	GW-06 MSD	67	78	82	90	94	101	88	81
480-176138-2	GW-05	43	62	75	93	97	93	97	112
480-176138-3	GW-01	72	86	93	96	101	104	87	90
480-176138-4	GW-04	55	72	80	95	90	102	88	101
480-176138-5	GW-07	68	79	83	91	100	107	83	86
480-176138-6	DUP	64	76	78	90	89	97	84	88
LCS 320-420118/2-A	Lab Control Sample	84	90	87	91	94	85	79	82
MB 320-420118/1-A	Method Blank	85	88	89	88	104	99	84	99
			Р	ercent Isotop	e Dilution Re	covery (Acc	eptance Lim	its)	
		PFDoA	PFTDA	C3PFBS	PFHxS	PFOS	PFOSA	d3NMFOS	d5NEFOS
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
480-176138-1	GW-06	90	57	81	86	93	79	87	101
480-176138-1 MS	GW-06 MS	82	57	78	82	86	74	87	90
480-176138-1 MSD	GW-06 MSD	76	61	80	86	91	76	91	97
480-176138-2	GW-05	108	99	92	110	110	82	88	106
480-176138-3	GW-01	85	91	85	89	94	81	83	91
480-176138-4	GW-04	90	68	81	92	90	80	81	92
480-176138-5	GW-07	59	72	79	88	85	79	78	90
480-176138-6	DUP	84	57	79	86	87	77	86	95
LCS 320-420118/2-A	Lab Control Sample	96	99	86	87	88	81	95	95
MB 320-420118/1-A	Method Blank	91	90	85	91	91	77	88	96
			Р	ercent Isotop	e Dilution Re	covery (Acc	eptance Limi	its)	
		M262FTS	M282FTS						
Lab Sample ID	Client Sample ID	(25-150)	(25-150)						
480-176138-1	GW-06	139	118						
480-176138-1 MS	GW-06 MS	127	120						
480-176138-1 MSD	GW-06 MSD	138	127						
480-176138-2	GW-05	265 *5	239 *5						
480-176138-3	GW-01	109	101						
480-176138-4	GW-04	165 *5	133						
480-176138-5	GW-07	161 *5	128						
480-176138-6	DUP	141	115						
LCS 320-420118/2-A	Lab Control Sample	100	97						
MB 320-420118/1-A	Method Blank	104	103						
Surrogate Legend									
Juniogale Legenu									

Surrogate	Legend
-----------	--------

PFBA = 13C4 PFBA

PFPeA = 13C5 PFPeA

PFHxA = 13C2 PFHxA

C4PFHA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA

PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA

PFDoA = 13C2 PFDoA

PFTDA = 13C2 PFTeDA

C3PFBS = 13C3 PFBS

Eurofins TestAmerica, Buffalo

Page 23 of 44

Isotope Dilution Summary

Client: New York State D.E.C.

M282FTS = M2-8:2 FTS

Project/Site: SMP B - Cold Spring MGP

PFHxS = 1802 PFHxS
PFOS = 13C4 PFOS
PFOSA = 13C8 FOSA
d3NMFOS = d3-NMeFOSAA
d5NEFOS = d5-NEtFOSAA
M262FTS = M2-6:2 FTS

Job ID: 480-176138-1

3

5

7

8

10

13

15

16

Client: New York State D.E.C.

Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-553834/7

Matrix: Water Analysis Batch: 553834 Client Sample ID: Method Blank
Prep Type: Total/NA

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	0.41	ug/L			10/14/20 12:45	1
Toluene	ND		1.0	0.51	ug/L			10/14/20 12:45	1
Ethylbenzene	ND		1.0	0.74	ug/L			10/14/20 12:45	1
m-Xylene & p-Xylene	ND		2.0	0.66	ug/L			10/14/20 12:45	1
o-Xylene	ND		1.0	0.76	ug/L			10/14/20 12:45	1
Xylenes, Total	ND		2.0	0.66	ug/L			10/14/20 12:45	1
Total BTEX	ND		2.0	1.0	ug/L			10/14/20 12:45	1

	MB	MB					
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	105		80 - 120	_		10/14/20 12:45	1
1,2-Dichloroethane-d4 (Surr)	95		77 - 120			10/14/20 12:45	1
4-Bromofluorobenzene (Surr)	100		73 - 120			10/14/20 12:45	1
Dibromofluoromethane (Surr)	98		75 - 123			10/14/20 12:45	1

Lab Sample ID: LCS 480-553834/5

Matrix: Water

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Batch: 553834

LCS LCS Spike %Rec. Added Result Qualifier Limits Analyte %Rec Unit Benzene 25.0 23.3 93 71 - 124 ug/L Toluene 25.0 23.5 94 80 - 122 ug/L 25.0 Ethylbenzene 23.4 ug/L 94 77 - 123 m-Xylene & p-Xylene 25.0 22.5 ug/L 90 76 - 122 o-Xylene 25.0 23.8 ug/L 95 76 - 122

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		80 - 120
1,2-Dichloroethane-d4 (Surr)	100		77 - 120
4-Bromofluorobenzene (Surr)	100		73 - 120
Dibromofluoromethane (Surr)	101		75 - 123

Lab Sample ID: 480-176138-1 MS

Matrix: Water

Client Sample ID: GW-06 MS

Prep Type: Total/NA

Analysis Batch: 553834

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		50.0	49.1		ug/L		98	71 - 124	
Toluene	ND		50.0	49.2		ug/L		98	80 - 122	
Ethylbenzene	ND		50.0	50.2		ug/L		100	77 - 123	
m-Xylene & p-Xylene	ND		50.0	48.1		ug/L		96	76 - 122	
o-Xylene	ND		50.0	49.1		ug/L		98	76 - 122	

	MS MS	
Surrogate %F	Recovery Qualifi	fier Limits
Toluene-d8 (Surr)	97	80 - 120
1,2-Dichloroethane-d4 (Surr)	99	77 - 120
4-Bromofluorobenzene (Surr)	97	73 - 120
Dibromofluoromethane (Surr)	97	75 - 123

Eurofins TestAmerica, Buffalo

Page 25 of 44

5

6

8

10

11

12

14

15

Client: New York State D.E.C. Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-176138-1 MSD

Matrix: Water

Analysis Batch: 553834

Client Sample ID: GW-06 MSD Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		50.0	49.2		ug/L		98	71 - 124	0	13
Toluene	ND		50.0	47.8		ug/L		96	80 - 122	3	15
Ethylbenzene	ND		50.0	49.6		ug/L		99	77 - 123	1	15
m-Xylene & p-Xylene	ND		50.0	48.4		ug/L		97	76 - 122	1	16
o-Xylene	ND		50.0	50.3		ug/L		101	76 - 122	2	16

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		80 - 120
1,2-Dichloroethane-d4 (Surr)	97		77 - 120
4-Bromofluorobenzene (Surr)	99		73 - 120
Dibromofluoromethane (Surr)	105		75 - 123

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-553306/1-A

Matrix: Water

Analysis Batch: 553672

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 553306

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		5.0	0.41	ug/L		10/09/20 15:24	10/13/20 18:18	1
Acenaphthylene	ND		5.0	0.38	ug/L		10/09/20 15:24	10/13/20 18:18	1
Anthracene	ND		5.0	0.28	ug/L		10/09/20 15:24	10/13/20 18:18	1
Benzo[a]anthracene	ND		5.0	0.36	ug/L		10/09/20 15:24	10/13/20 18:18	1
Benzo[a]pyrene	ND		5.0	0.47	ug/L		10/09/20 15:24	10/13/20 18:18	1
Benzo[b]fluoranthene	ND		5.0	0.34	ug/L		10/09/20 15:24	10/13/20 18:18	1
Benzo[g,h,i]perylene	ND		5.0	0.35	ug/L		10/09/20 15:24	10/13/20 18:18	1
Benzo[k]fluoranthene	ND		5.0	0.73	ug/L		10/09/20 15:24	10/13/20 18:18	1
Chrysene	ND		5.0	0.33	ug/L		10/09/20 15:24	10/13/20 18:18	1
Dibenz(a,h)anthracene	ND		5.0	0.42	ug/L		10/09/20 15:24	10/13/20 18:18	1
Fluoranthene	ND		5.0	0.40	ug/L		10/09/20 15:24	10/13/20 18:18	1
Fluorene	ND		5.0	0.36	ug/L		10/09/20 15:24	10/13/20 18:18	1
Indeno[1,2,3-cd]pyrene	ND		5.0	0.47	ug/L		10/09/20 15:24	10/13/20 18:18	1
Naphthalene	ND		5.0	0.76	ug/L		10/09/20 15:24	10/13/20 18:18	1
Phenanthrene	ND		5.0	0.44	ug/L		10/09/20 15:24	10/13/20 18:18	1
Pyrene	ND		5.0	0.34	ug/L		10/09/20 15:24	10/13/20 18:18	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	95		48 - 120	10/09/20 15:24	10/13/20 18:18	1
Nitrobenzene-d5 (Surr)	95		46 - 120	10/09/20 15:24	10/13/20 18:18	1
p-Terphenyl-d14 (Surr)	108		60 - 148	10/09/20 15:24	10/13/20 18:18	1

Lab Sample ID: LCS 480-553306/2-A

Matrix: Water

Analysis Batch: 553672

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 553306

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	32.0	28.0		ug/L		87	60 - 120	
Acenaphthylene	32.0	29.5		ug/L		92	63 - 120	

Eurofins TestAmerica, Buffalo

Page 26 of 44

Client: New York State D.E.C.

Job ID: 480-176138-1 Project/Site: SMP B - Cold Spring MGP

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-553306/2-A

Matrix: Water

Analysis Batch: 553672

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 553306

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Anthracene	32.0	29.6		ug/L		92	67 _ 120	
Benzo[a]anthracene	32.0	30.8		ug/L		96	70 - 121	
Benzo[a]pyrene	32.0	31.5		ug/L		99	60 - 123	
Benzo[b]fluoranthene	32.0	32.7		ug/L		102	66 - 126	
Benzo[g,h,i]perylene	32.0	32.6		ug/L		102	66 - 150	
Benzo[k]fluoranthene	32.0	33.4		ug/L		104	65 _ 124	
Chrysene	32.0	30.6		ug/L		96	69 - 120	
Dibenz(a,h)anthracene	32.0	33.3		ug/L		104	65 _ 135	
Fluoranthene	32.0	32.2		ug/L		101	69 - 126	
Fluorene	32.0	28.8		ug/L		90	66 - 120	
Indeno[1,2,3-cd]pyrene	32.0	32.6		ug/L		102	69 - 146	
Naphthalene	32.0	27.4		ug/L		86	57 - 120	
Phenanthrene	32.0	30.4		ug/L		95	68 - 120	
Pyrene	32.0	32.0		ug/L		100	70 - 125	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	93		48 - 120
Nitrobenzene-d5 (Surr)	89		46 - 120
p-Terphenyl-d14 (Surr)	104		60 - 148

Lab Sample ID: 480-176138-1 MS

Matrix: Water

Analysis Batch: 553672

Client Sample ID: GW-06 MS

Prep Type: Total/NA Prep Batch: 553306

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	14		32.0	41.7		ug/L		87	48 - 120	
Acenaphthylene	ND		32.0	30.5		ug/L		95	63 _ 120	
Anthracene	1.1	J	32.0	30.2		ug/L		91	65 - 122	
Benzo[a]anthracene	ND		32.0	27.1		ug/L		85	43 - 124	
Benzo[a]pyrene	ND		32.0	25.3		ug/L		79	23 _ 125	
Benzo[b]fluoranthene	ND		32.0	25.0		ug/L		78	27 ₋ 127	
Benzo[g,h,i]perylene	ND		32.0	25.4		ug/L		79	16 - 147	
Benzo[k]fluoranthene	ND		32.0	25.2		ug/L		79	20 - 124	
Chrysene	ND		32.0	26.1		ug/L		81	44 - 122	
Dibenz(a,h)anthracene	ND		32.0	25.4		ug/L		79	16 - 139	
Fluoranthene	1.9	J	32.0	32.0		ug/L		94	63 _ 129	
Fluorene	0.85	J	32.0	30.9		ug/L		94	62 _ 120	
Indeno[1,2,3-cd]pyrene	ND		32.0	25.4		ug/L		79	16 - 140	
Naphthalene	ND		32.0	28.6		ug/L		89	45 - 120	
Phenanthrene	ND		32.0	30.8		ug/L		96	65 - 122	
Pyrene	2.6	J	32.0	31.4		ug/L		90	58 - 128	

MS MS

Surrogate	%Recovery Qualifier	Limits
2-Fluorobiphenyl	96	48 - 120
Nitrobenzene-d5 (Surr)	93	46 - 120
p-Terphenyl-d14 (Surr)	69	60 - 148

Eurofins TestAmerica, Buffalo

Page 27 of 44

Client: New York State D.E.C. Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-176138-1 MSD

Matrix: Water

Analysis Batch: 553672

Client Sample ID: GW-06 MSD

Prep Type: Total/NA

Prep Batch: 553306

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	14		32.0	41.1		ug/L		85	48 - 120	2	24
Acenaphthylene	ND		32.0	31.6		ug/L		99	63 - 120	4	18
Anthracene	1.1	J	32.0	31.3		ug/L		94	65 - 122	4	15
Benzo[a]anthracene	ND		32.0	28.2		ug/L		88	43 - 124	4	15
Benzo[a]pyrene	ND		32.0	25.8		ug/L		81	23 - 125	2	15
Benzo[b]fluoranthene	ND		32.0	25.7		ug/L		80	27 - 127	3	15
Benzo[g,h,i]perylene	ND		32.0	26.3		ug/L		82	16 - 147	3	15
Benzo[k]fluoranthene	ND		32.0	25.6		ug/L		80	20 - 124	2	22
Chrysene	ND		32.0	27.6		ug/L		86	44 - 122	6	15
Dibenz(a,h)anthracene	ND		32.0	26.4		ug/L		82	16 - 139	4	15
Fluoranthene	1.9	J	32.0	32.9		ug/L		97	63 - 129	3	15
Fluorene	0.85	J	32.0	31.2		ug/L		95	62 - 120	1	15
Indeno[1,2,3-cd]pyrene	ND		32.0	25.7		ug/L		80	16 - 140	1	15
Naphthalene	ND		32.0	28.5		ug/L		89	45 - 120	0	29
Phenanthrene	ND		32.0	31.2		ug/L		97	65 - 122	1	15
Pyrene	2.6	J	32.0	32.9		ug/L		94	58 - 128	5	19

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	95		48 - 120
Nitrobenzene-d5 (Surr)	92		46 - 120
p-Terphenyl-d14 (Surr)	73		60 - 148

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 320-420118/1-A

Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 420118

nalysis Batch: 420740								Prep Batch: 420118	
	MB	B MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		5.0	2.4	ng/L		10/09/20 04:07	10/10/20 04:26	1
Perfluoropentanoic acid (PFPeA)	ND		2.0	0.49	ng/L		10/09/20 04:07	10/10/20 04:26	1
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58	ng/L		10/09/20 04:07	10/10/20 04:26	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.25	ng/L		10/09/20 04:07	10/10/20 04:26	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.85	ng/L		10/09/20 04:07	10/10/20 04:26	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		10/09/20 04:07	10/10/20 04:26	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L		10/09/20 04:07	10/10/20 04:26	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		10/09/20 04:07	10/10/20 04:26	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L		10/09/20 04:07	10/10/20 04:26	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		10/09/20 04:07	10/10/20 04:26	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.73	ng/L		10/09/20 04:07	10/10/20 04:26	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20	ng/L		10/09/20 04:07	10/10/20 04:26	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.57	ng/L		10/09/20 04:07	10/10/20 04:26	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		2.0	0.19	ng/L		10/09/20 04:07	10/10/20 04:26	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.54	ng/L		10/09/20 04:07	10/10/20 04:26	1
Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.32	ng/L		10/09/20 04:07	10/10/20 04:26	1
Perfluorooctanesulfonamide (FOSA)	ND		2.0	0.98	ng/L		10/09/20 04:07	10/10/20 04:26	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.0	1.2	ng/L		10/09/20 04:07	10/10/20 04:26	1

Eurofins TestAmerica, Buffalo

Page 28 of 44

Ė

7

9

11

13

-

16

17

10/16/2020

Client: New York State D.E.C.

MB MB

Job ID: 480-176138-1 Project/Site: SMP B - Cold Spring MGP

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: MB 320-420118/1-A

Matrix: Water

Analysis Batch: 420740

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 420118

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-ethylperfluorooctanesulfonamidoac	ND		5.0	1.3	ng/L		10/09/20 04:07	10/10/20 04:26	1
etic acid (NEtFOSAA)									
6:2 FTS	ND		5.0	2.5	ng/L		10/09/20 04:07	10/10/20 04:26	1
8:2 FTS	ND		2.0	0.46	ng/L		10/09/20 04:07	10/10/20 04:26	1
	MB	MB							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	85		25 - 150				10/09/20 04:07	10/10/20 04:26	1
13C5 PFPeA	88		25 - 150				10/09/20 04:07	10/10/20 04:26	1
13C2 PFHxA	89		25 - 150				10/09/20 04:07	10/10/20 04:26	1
13C4 PFHpA	88		25 - 150				10/09/20 04:07	10/10/20 04:26	1
13C4 PFOA	104		25 - 150				10/09/20 04:07	10/10/20 04:26	1
13C5 PFNA	99		25 - 150				10/09/20 04:07	10/10/20 04:26	1
13C2 PFDA	84		25 - 150				10/09/20 04:07	10/10/20 04:26	1
13C2 PFUnA	99		25 - 150				10/09/20 04:07	10/10/20 04:26	1
13C2 PFDoA	91		25 - 150				10/09/20 04:07	10/10/20 04:26	1
13C2 PFTeDA	90		25 - 150				10/09/20 04:07	10/10/20 04:26	1
13C3 PFBS	85		25 - 150				10/09/20 04:07	10/10/20 04:26	1
1802 PFHxS	91		25 - 150				10/09/20 04:07	10/10/20 04:26	1
13C4 PFOS	91		25 - 150				10/09/20 04:07	10/10/20 04:26	1
13C8 FOSA	77		25 - 150				10/09/20 04:07	10/10/20 04:26	1
d3-NMeFOSAA	88		25 - 150				10/09/20 04:07	10/10/20 04:26	1
d5-NEtFOSAA	96		25 - 150				10/09/20 04:07	10/10/20 04:26	1
M2-6:2 FTS	104		25 - 150				10/09/20 04:07	10/10/20 04:26	1
M2-8:2 FTS	103		25 - 150				10/09/20 04:07	10/10/20 04:26	1

Lab Sample ID: LCS 320-420118/2-A

Matrix: Water

Analysis Batch: 420740

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 420118

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
40.0	44.2		ng/L		111	76 - 136	
40.0	38.5		ng/L		96	71 - 131	
40.0	42.5		ng/L		106	73 - 133	
40.0	45.4		ng/L		114	72 - 132	
40.0	40.2		ng/L		100	70 - 130	
40.0	50.5		ng/L		126	75 ₋ 135	
40.0	44.6		ng/L		112	76 ₋ 136	
40.0	47.6		ng/L		119	68 - 128	
40.0	41.5		ng/L		104	71 - 131	
40.0	43.8		ng/L		110	71 - 131	
40.0	34.3		ng/L		86	70 - 130	
35.4	37.3		ng/L		105	67 ₋ 127	
36.4	36.3		ng/L		100	59 _ 119	
38.1	40.7		ng/L		107	76 - 136	
	Added 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 35.4	Added Result 40.0 44.2 40.0 38.5 40.0 42.5 40.0 45.4 40.0 50.5 40.0 44.6 40.0 47.6 40.0 43.8 40.0 34.3 35.4 37.3 36.4 36.3	Added Result Qualifier 40.0 44.2 40.0 38.5 40.0 42.5 40.0 45.4 40.0 50.5 40.0 44.6 40.0 47.6 40.0 43.8 40.0 34.3 35.4 37.3 36.4 36.3	Added Result Qualifier Unit 40.0 44.2 ng/L 40.0 38.5 ng/L 40.0 42.5 ng/L 40.0 45.4 ng/L 40.0 50.5 ng/L 40.0 44.6 ng/L 40.0 47.6 ng/L 40.0 43.8 ng/L 40.0 34.3 ng/L 35.4 37.3 ng/L 36.4 36.3 ng/L	Added Result Qualifier Unit D 40.0 44.2 ng/L ng/L 40.0 38.5 ng/L ng/L 40.0 42.5 ng/L ng/L 40.0 40.2 ng/L ng/L 40.0 50.5 ng/L ng/L 40.0 47.6 ng/L ng/L 40.0 43.8 ng/L 40.0 34.3 ng/L 35.4 37.3 ng/L 36.4 36.3 ng/L	Added Result Qualifier Unit D %Rec 40.0 44.2 ng/L 111 40.0 38.5 ng/L 96 40.0 42.5 ng/L 106 40.0 45.4 ng/L 114 40.0 40.2 ng/L 100 40.0 50.5 ng/L 126 40.0 44.6 ng/L 112 40.0 47.6 ng/L 119 40.0 43.8 ng/L 104 40.0 34.3 ng/L 105 35.4 37.3 ng/L 105 36.4 36.3 ng/L 100	Spike LCS LCS Unit D %Rec. Limits 40.0 44.2 ng/L 111 76 - 136 40.0 38.5 ng/L 96 71 - 131 40.0 42.5 ng/L 106 73 - 133 40.0 45.4 ng/L 114 72 - 132 40.0 40.2 ng/L 100 70 - 130 40.0 50.5 ng/L 126 75 - 135 40.0 44.6 ng/L 112 76 - 136 40.0 47.6 ng/L 119 68 - 128 40.0 43.8 ng/L 104 71 - 131 40.0 43.8 ng/L 100 71 - 131 40.0 34.3 ng/L 10 71 - 131 40.0 36.4 37.3 ng/L 10 71 - 131 40.0 50.5 10 10 71 - 131 10 71 - 131 40.0 50.5 10 10

Eurofins TestAmerica, Buffalo

Page 29 of 44

Client: New York State D.E.C. Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-420118/2-A			Client Sample ID: Lab Control Sample
Matrix: Water			Prep Type: Total/NA
Analysis Batch: 420740			Prep Batch: 420118
	Spike	LCS LCS	%Rec.

	Opino						701100.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorooctanesulfonic acid	37.1	39.9		ng/L		107	70 - 130	
(PFOS)								
Perfluorodecanesulfonic acid	38.6	42.2		ng/L		109	71 - 131	
(PFDS)								
Perfluorooctanesulfonamide	40.0	45.4		ng/L		114	73 - 133	
(FOSA)								
N-methylperfluorooctanesulfona	40.0	42.2		ng/L		106	76 - 136	
midoacetic acid (NMeFOSAA)								
N-ethylperfluorooctanesulfonami	40.0	42.3		ng/L		106	76 - 136	
doacetic acid (NEtFOSAA)								
6:2 FTS	37.9	38.5		ng/L		102	59 - 175	
8:2 FTS	38.3	41.6		ng/L		109	75 - 135	
100	2 102							

8:2 FTS			38.3
	LCS	LCS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFBA	84		25 - 150
13C5 PFPeA	90		25 - 150
13C2 PFHxA	87		25 - 150
13C4 PFHpA	91		25 - 150
13C4 PFOA	94		25 - 150
13C5 PFNA	85		25 - 150
13C2 PFDA	79		25 - 150
13C2 PFUnA	82		25 - 150
13C2 PFDoA	96		25 - 150
13C2 PFTeDA	99		25 - 150
13C3 PFBS	86		25 - 150
1802 PFHxS	87		25 - 150
13C4 PFOS	88		25 _ 150

81

95

95

100

97

Lab Sample ID: 480-176138-1 MS

Matrix: Water

13C8 FOSA

d3-NMeFOSAA

d5-NEtFOSAA

M2-6:2 FTS

M2-8:2 FTS

Analysis Batch: 421022

Client Sample ID: GW-06 MS
Prep Type: Total/NA
Prep Batch: 420118

•	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorobutanoic acid (PFBA)	ND	F1	35.3	49.8	F1	ng/L		141	76 - 136	
Perfluoropentanoic acid (PFPeA)	5.3	J	35.3	37.4		ng/L		91	71 _ 131	
Perfluorohexanoic acid (PFHxA)	ND		35.3	40.3		ng/L		114	73 - 133	
Perfluoroheptanoic acid (PFHpA)	7.8	J	35.3	42.0		ng/L		97	72 - 132	
Perfluorooctanoic acid (PFOA)	11	J	35.3	44.4		ng/L		94	70 - 130	
Perfluorononanoic acid (PFNA)	2.6	J	35.3	37.6		ng/L		99	75 ₋ 135	
Perfluorodecanoic acid (PFDA)	ND		35.3	40.3		ng/L		114	76 - 136	
Perfluoroundecanoic acid (PFUnA)	ND		35.3	34.6		ng/L		98	68 - 128	
Perfluorododecanoic acid (PFDoA)	ND		35.3	35.4		ng/L		100	71 - 131	
Perfluorotridecanoic acid (PFTriA)	ND	F2	35.3	26.5		ng/L		75	71 - 131	

25 _ 150

25 - 150

25 - 150

25 - 150

25 - 150

Eurofins TestAmerica, Buffalo

Page 30 of 44

3

6

10

12

4.4

. .

Client: New York State D.E.C. Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: 480-176138-1 MS

Matrix: Water

Analysis Batch: 421022

Client Sample ID: GW-06 MS Prep Type: Total/NA

Prep Batch: 420118

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorotetradecanoic acid (PFTeA)	ND		35.3	37.1		ng/L		105	70 - 130	
Perfluorobutanesulfonic acid (PFBS)	11	J	31.2	44.0		ng/L		107	67 - 127	
Perfluorohexanesulfonic acid (PFHxS)	ND		32.1	33.7		ng/L		105	59 - 119	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		33.6	34.7		ng/L		103	76 - 136	
Perfluorooctanesulfonic acid (PFOS)	8.3	JI	32.8	43.2		ng/L		107	70 - 130	
Perfluorodecanesulfonic acid (PFDS)	ND		34.0	29.8		ng/L		87	71 - 131	
Perfluorooctanesulfonamide (FOSA)	ND		35.3	39.4		ng/L		112	73 - 133	
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	ND		35.3	37.2	J	ng/L		105	76 - 136	
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	ND		35.3	33.0	J	ng/L		93	76 - 136	
6:2 FTS	ND		33.5	45.6		ng/L		136	59 ₋ 175	
8:2 FTS	ND		33.8	35.9		ng/L		106	75 - 135	
	MS	MS								
Isotope Dilution	%Recovery	Qualifier	Limits							

13C4 PFBA 63 25 _ 150 13C5 PFPeA 76 25 - 150 13C2 PFHxA 78 25 - 150 13C4 PFHpA 82 25 - 150 13C4 PFOA 98 25 - 150 13C5 PFNA 96 25 - 150 13C2 PFDA 88 25 - 150 13C2 PFUnA 89 25 - 150 13C2 PFDoA 25 - 150 82 25 - 150 13C2 PFTeDA 57 13C3 PFBS 78 25 - 150 1802 PFHxS 25 - 150 82 13C4 PFOS 86 25 - 150 13C8 FOSA 74 25 - 150 d3-NMeFOSAA 87 25 - 150 d5-NEtFOSAA 25 - 150 90

127

120

Lab Sample ID: 480-176138-1 MSD

Matrix: Water

M2-6:2 FTS

M2-8:2 FTS

Analysis Batch: 421022

Client Sa	mple I	D: G	N-06	MSD
	Dron	Tuno	. Tota	I/NI A

Prep Type: Total/NA

Prep Batch:	420118
Rec.	RPD

, and the second											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorobutanoic acid (PFBA)	ND	F1	36.2	49.0		ng/L		135	76 - 136	2	30
Perfluoropentanoic acid (PFPeA)	5.3	J	36.2	38.1		ng/L		90	71 - 131	2	30
Perfluorohexanoic acid (PFHxA)	ND		36.2	39.7		ng/L		110	73 - 133	2	30
Perfluoroheptanoic acid (PFHpA)	7.8	J	36.2	44.0		ng/L		100	72 - 132	4	30
Perfluorooctanoic acid (PFOA)	11	J	36.2	50.3		ng/L		108	70 - 130	12	30

25 _ 150

25 - 150

Eurofins TestAmerica, Buffalo

Page 31 of 44

QC Sample Results

Client: New York State D.E.C. Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

midoacetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonami

doacetic acid (NEtFOSAA)

6:2 FTS

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: 480-176138-1	MSD							Client	Sample ID): GW-06	MSD	
Matrix: Water									Prep 1	Type: To	tal/NA	
Analysis Batch: 421022									Prep	Batch: 4	20118	
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	ı
Perfluorononanoic acid (PFNA)	2.6	J	36.2	35.5		ng/L		91	75 - 135	6	30	
Perfluorodecanoic acid (PFDA)	ND		36.2	35.0		ng/L		97	76 - 136	14	30	
Perfluoroundecanoic acid (PFUnA)	ND		36.2	37.3		ng/L		103	68 - 128	7	30	
Perfluorododecanoic acid (PFDoA)	ND		36.2	37.1		ng/L		103	71 ₋ 131	5	30	
Perfluorotridecanoic acid (PFTriA)	ND	F2	36.2	37.1	IF2	ng/L		102	71 ₋ 131	33	30	i
Perfluorotetradecanoic acid (PFTeA)	ND		36.2	34.9		ng/L		97	70 - 130	6	30	
Perfluorobutanesulfonic acid (PFBS)	11	J	32.0	46.4		ng/L		112	67 - 127	5	30	
Perfluorohexanesulfonic acid (PFHxS)	ND		32.9	35.3		ng/L		107	59 - 119	5	30	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		34.5	35.5		ng/L		103	76 - 136	2	30	
Perfluorooctanesulfonic acid (PFOS)	8.3	JI	33.6	41.2		ng/L		98	70 - 130	5	30	
Perfluorodecanesulfonic acid (PFDS)	ND		34.9	30.4		ng/L		87	71 ₋ 131	2	30	
Perfluorooctanesulfonamide (FOSA)	ND		36.2	38.4		ng/L		106	73 - 133	2	30	
N-methylperfluorooctanesulfona	ND		36.2	36.0	J	ng/L		99	76 - 136	3	30	

36.2

34.3

33.5 J

41.3 J

34.4

ng/L

ng/L

ng/L

8:2 FTS	ND		34.7
	MSD	MSD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFBA	67		25 - 150
13C5 PFPeA	78		25 - 150
13C2 PFHxA	82		25 - 150
13C4 PFHpA	90		25 - 150
13C4 PFOA	94		25 - 150
13C5 PFNA	101		25 - 150
13C2 PFDA	88		25 - 150
13C2 PFUnA	81		25 - 150
13C2 PFDoA	76		25 - 150
13C2 PFTeDA	61		25 - 150
13C3 PFBS	80		25 - 150
1802 PFHxS	86		25 - 150
13C4 PFOS	91		25 - 150
13C8 FOSA	76		25 - 150
d3-NMeFOSAA	91		25 - 150
d5-NEtFOSAA	97		25 - 150
M2-6:2 FTS	138		25 - 150
M2-8:2 FTS	127		25 - 150

ND

ND

93

120

76 - 136

59 - 175

75 - 135

10

QC Association Summary

Client: New York State D.E.C. Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

GC/MS VOA

Analysis Batch: 553834

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-176138-1	GW-06	Total/NA	Water	8260C	
480-176138-2	GW-05	Total/NA	Water	8260C	
480-176138-3	GW-01	Total/NA	Water	8260C	
480-176138-4	GW-04	Total/NA	Water	8260C	
480-176138-5	GW-07	Total/NA	Water	8260C	
480-176138-6	DUP	Total/NA	Water	8260C	
480-176138-7	Trip Blank	Total/NA	Water	8260C	
MB 480-553834/7	Method Blank	Total/NA	Water	8260C	
LCS 480-553834/5	Lab Control Sample	Total/NA	Water	8260C	
480-176138-1 MS	GW-06 MS	Total/NA	Water	8260C	
480-176138-1 MSD	GW-06 MSD	Total/NA	Water	8260C	

GC/MS Semi VOA

Prep Batch: 553306

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-176138-1	GW-06	Total/NA	Water	3510C	
480-176138-2	GW-05	Total/NA	Water	3510C	
480-176138-3	GW-01	Total/NA	Water	3510C	
480-176138-4	GW-04	Total/NA	Water	3510C	
480-176138-5	GW-07	Total/NA	Water	3510C	
480-176138-6	DUP	Total/NA	Water	3510C	
MB 480-553306/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-553306/2-A	Lab Control Sample	Total/NA	Water	3510C	
480-176138-1 MS	GW-06 MS	Total/NA	Water	3510C	
480-176138-1 MSD	GW-06 MSD	Total/NA	Water	3510C	

Analysis Batch: 553672

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-176138-1	GW-06	Total/NA	Water	8270D	553306
480-176138-2	GW-05	Total/NA	Water	8270D	553306
480-176138-3	GW-01	Total/NA	Water	8270D	553306
480-176138-4	GW-04	Total/NA	Water	8270D	553306
480-176138-5	GW-07	Total/NA	Water	8270D	553306
480-176138-6	DUP	Total/NA	Water	8270D	553306
MB 480-553306/1-A	Method Blank	Total/NA	Water	8270D	553306
LCS 480-553306/2-A	Lab Control Sample	Total/NA	Water	8270D	553306
480-176138-1 MS	GW-06 MS	Total/NA	Water	8270D	553306
480-176138-1 MSD	GW-06 MSD	Total/NA	Water	8270D	553306

LCMS

Prep Batch: 420118

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-176138-1	GW-06	Total/NA	Water	3535	
480-176138-2	GW-05	Total/NA	Water	3535	
480-176138-3	GW-01	Total/NA	Water	3535	
480-176138-4	GW-04	Total/NA	Water	3535	
480-176138-5	GW-07	Total/NA	Water	3535	
480-176138-6	DUP	Total/NA	Water	3535	
MB 320-420118/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-420118/2-A	Lab Control Sample	Total/NA	Water	3535	

Eurofins TestAmerica, Buffalo

QC Association Summary

Client: New York State D.E.C. Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

LCMS (Continued)

Prep Batch: 420118 (Continued)

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	480-176138-1 MS	GW-06 MS	Total/NA	Water	3535	
ı	480-176138-1 MSD	GW-06 MSD	Total/NA	Water	3535	

Analysis Batch: 420740

Γ	011 10 1 10				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-176138-2	GW-05	Total/NA	Water	537 (modified)	420118
480-176138-3	GW-01	Total/NA	Water	537 (modified)	420118
480-176138-4	GW-04	Total/NA	Water	537 (modified)	420118
480-176138-5	GW-07	Total/NA	Water	537 (modified)	420118
MB 320-420118/1-A	Method Blank	Total/NA	Water	537 (modified)	420118
LCS 320-420118/2-A	Lab Control Sample	Total/NA	Water	537 (modified)	420118

Analysis Batch: 421022

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-176138-1	GW-06	Total/NA	Water	537 (modified)	420118
480-176138-6	DUP	Total/NA	Water	537 (modified)	420118
480-176138-1 MS	GW-06 MS	Total/NA	Water	537 (modified)	420118
480-176138-1 MSD	GW-06 MSD	Total/NA	Water	537 (modified)	420118

Lab Chronicle

Client: New York State D.E.C. Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

Client Sample ID: GW-06

Date Collected: 10/06/20 09:25 Date Received: 10/08/20 08:00 Lab Sample ID: 480-176138-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			553834	10/14/20 17:44	AMM	TAL BUF
Total/NA	Prep	3510C			553306	10/09/20 15:24	ATG	TAL BUF
Total/NA	Analysis	8270D		1	553672	10/13/20 20:18	JMM	TAL BUF
Total/NA	Prep	3535			420118	10/09/20 04:07	EG	TAL SAC
Total/NA	Analysis	537 (modified)		10	421022	10/12/20 15:29	K1S	TAL SAC

Client Sample ID: GW-05

Date Collected: 10/06/20 10:40 Date Received: 10/08/20 08:00

Lab Sample ID: 480-176138-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		2	553834	10/14/20 18:07	AMM	TAL BUF
Total/NA	Prep	3510C			553306	10/09/20 15:24	ATG	TAL BUF
Total/NA	Analysis	8270D		1	553672	10/13/20 20:47	JMM	TAL BUF
Total/NA	Prep	3535			420118	10/09/20 04:07	EG	TAL SAC
Total/NA	Analysis	537 (modified)		1	420740	10/10/20 05:12	D1R	TAL SAC

Client Sample ID: GW-01

Date Collected: 10/06/20 12:20

Date Received: 10/08/20 08:00

Lab Sample ID: 480-176138-3

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	553834	10/14/20 18:30	AMM	TAL BUF
Total/NA	Prep	3510C			553306	10/09/20 15:24	ATG	TAL BUF
Total/NA	Analysis	8270D		1	553672	10/13/20 21:17	JMM	TAL BUF
Total/NA	Prep	3535			420118	10/09/20 04:07	EG	TAL SAC
Total/NA	Analysis	537 (modified)		1	420740	10/10/20 05:21	D1R	TAL SAC

Client Sample ID: GW-04

Date Collected: 10/06/20 13:25

Date Received: 10/08/20 08:00

Lab Sample ID: 480-176138-4

Lab Sample ID: 480-176138-5

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			553834	10/14/20 18:53	AMM	TAL BUF
Total/NA	Prep	3510C			553306	10/09/20 15:24	ATG	TAL BUF
Total/NA	Analysis	8270D		1	553672	10/13/20 21:47	JMM	TAL BUF
Total/NA	Prep	3535			420118	10/09/20 04:07	EG	TAL SAC
Total/NA	Analysis	537 (modified)		1	420740	10/10/20 05:30	D1R	TAL SAC

Client Sample ID: GW-07

Date Collected: 10/06/20 14:45

Date Received: 10/08/20 08:00

Dilution	Batch	Prepared			
Factor	Number	or Analyzed	Analyst	Lab	
1	553834	10/14/20 19:16	AMM	TAL BUF	_

Batch Batch Method Prep Type Type Run Total/NA Analysis 8260C

Eurofins TestAmerica, Buffalo

Page 35 of 44

10/16/2020

Matrix: Water

Lab Chronicle

Client: New York State D.E.C. Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

Client Sample ID: GW-07

Lab Sample ID: 480-176138-5

Matrix: Water

Date Collected: 10/06/20 14:45 Date Received: 10/08/20 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			553306	10/09/20 15:24	ATG	TAL BUF
Total/NA	Analysis	8270D		1	553672	10/13/20 22:17	JMM	TAL BUF
Total/NA	Prep	3535			420118	10/09/20 04:07	EG	TAL SAC
Total/NA	Analysis	537 (modified)		1	420740	10/10/20 05:39	D1R	TAL SAC

Client Sample ID: DUP

Lab Sample ID: 480-176138-6

Matrix: Water

Date Collected: 10/06/20 11:15 Date Received: 10/08/20 08:00

Dilution Batch Batch Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA 8260C 553834 10/14/20 19:38 AMM TAL BUF Analysis Total/NA Prep 3510C 553306 10/09/20 15:24 ATG TAL BUF Total/NA Analysis 8270D 553672 10/13/20 22:46 JMM TAL BUF 1 Total/NA 3535 TAL SAC Prep 420118 10/09/20 04:07 EG

10

421022

10/12/20 15:56

K1S

Client Sample ID: Trip Blank

Analysis

Lab Sample ID: 480-176138-7

TAL SAC

Matrix: Water

Date Collected: 10/06/20 00:00 Date Received: 10/08/20 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	553834	10/14/20 20:01	AMM	TAL BUF

Laboratory References:

Total/NA

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

537 (modified)

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Eurofins TestAmerica, Buffalo

3

4

O

R

10

12

14

15

Accreditation/Certification Summary

Client: New York State D.E.C. Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

537 (modified)

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Da
New York	NI	ELAP	10026	04-01-21
• •	•	ut the laboratory is not certif	ied by the governing authority. This list m	ay include analytes
The following analytes a the agency does not off Analysis Method	•	ut the laboratory is not certif Matrix	ied by the governing authority. This list m Analyte	ay include analytes

Laboratory: Eurofins TestAmerica, Sacramento

3535

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	P	Program	Identification Number	Expiration Date
New York	N	NELAP	11666	04-01-21
The following analytes the agency does not of	• '	out the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
537 (modified)	3535	Water	6:2 FTS	
537 (modified)	3535	Water	8:2 FTS	
537 (modified)	3535	Water	N-ethylperfluorooctanesulfona acid (NEtFOSAA)	midoacetic

537 (modified)	3535	Water	8:2 FTS
537 (modified)	3535	Water	N-ethylperfluorooctanesulfonamidoacetic
			acid (NEtFOSAA)
537 (modified)	3535	Water	N-methylperfluorooctanesulfonamidoacetic
			acid (NMeFOSAA)
537 (modified)	3535	Water	Perfluorobutanesulfonic acid (PFBS)
537 (modified)	3535	Water	Perfluorobutanoic acid (PFBA)
537 (modified)	3535	Water	Perfluorodecanesulfonic acid (PFDS)
537 (modified)	3535	Water	Perfluorodecanoic acid (PFDA)
537 (modified)	3535	Water	Perfluorododecanoic acid (PFDoA)
537 (modified)	3535	Water	Perfluoroheptanesulfonic Acid (PFHpS)
537 (modified)	3535	Water	Perfluoroheptanoic acid (PFHpA)
537 (modified)	3535	Water	Perfluorohexanesulfonic acid (PFHxS)
537 (modified)	3535	Water	Perfluorohexanoic acid (PFHxA)
537 (modified)	3535	Water	Perfluorononanoic acid (PFNA)
537 (modified)	3535	Water	Perfluorooctanesulfonamide (FOSA)
537 (modified)	3535	Water	Perfluorooctanesulfonic acid (PFOS)
537 (modified)	3535	Water	Perfluorooctanoic acid (PFOA)
537 (modified)	3535	Water	Perfluoropentanoic acid (PFPeA)
537 (modified)	3535	Water	Perfluorotetradecanoic acid (PFTeA)
537 (modified)	3535	Water	Perfluorotridecanoic acid (PFTriA)

Water

Perfluoroundecanoic acid (PFUnA)

Method Summary

Client: New York State D.E.C.

Project/Site: SMP B - Cold Spring MGP

Job ID: 480-176138-1

Method	Method Description	Protocol	Laboratory
3260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
537 (modified)	Fluorinated Alkyl Substances	EPA	TAL SAC
510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	TAL BUF
3535	Solid-Phase Extraction (SPE)	SW846	TAL SAC
5030C	Purge and Trap	SW846	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

6

Л

6

10

11

13

14

16

Sample Summary

Client: New York State D.E.C. Job ID: 480-176138-1

Project/Site: SMP B - Cold Spring MGP

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-176138-1	GW-06	Water	10/06/20 09:25	10/08/20 08:00	
480-176138-2	GW-05	Water	10/06/20 10:40	10/08/20 08:00	
480-176138-3	GW-01	Water	10/06/20 12:20	10/08/20 08:00	
480-176138-4	GW-04	Water	10/06/20 13:25	10/08/20 08:00	
480-176138-5	GW-07	Water	10/06/20 14:45	10/08/20 08:00	
480-176138-6	DUP	Water	10/06/20 11:15	10/08/20 08:00	
480-176138-7	Trip Blank	Water	10/06/20 00:00	10/08/20 08:00	

1

9

10

13

14

16

N - None
O - AsNaO2
P - Na2O4S
Q - Na2SAO3
R - Na2SAO3
S - H2SO4
T - TSP Dodecahydrate Ver. 01/16/2019 Special Instructions/Note: U - Acetone V - MCAA W - pH 4-5 Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont COC No: 480-151288-33469.1 reservation Codes E - NaHSO4 F - MeOH G - Amchlor H - Ascorbic Acid 1+70 0800 Page: Page 1 of 1 I - Ice J - DI Water K - EDTA L - EDA 480-176138 Chain of Custody # 50 Date/Time: 10/10/20 Total Number of containers Date/Time: Method of Shipment: Carrier Tracking No(s) Analysis Requested Cooler Temperature(s) °C and Other Remarks Special Instructions/QC Requirements: Lab PM: Stone, Judy L E-Mail: Judy.Stone@Eurofinset.com Received by: S270D - PAH Semivolatiles X X × × × X × PFAS, Standard List (21 Analytes) ON 10 SEY) GSM/SM myothe Field Filtered Sample (Yes or No) Company Preservation Code: Water Water Water Water Water Water Water Water Water Matrix Company conpany Radiological Type (C=comp, G=grab) ににこ 8Lh8 -1ha -815 Sample 0 9 0 0 0 1440 Sample 0401 1220 A Kishman + 1115 JAK! 1325 925 Date: Unknown 10/7/2.0 Date/Time: TAT Requested (days): CallOut SMP1215 Due Date Requested: Sample Date 10/6/20 10/0/01 02/9/01 10/6/20 10/11/01 01/9/0 Project #: 48022480 SSOW#: WO#: SMP1215 Poison B Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) BLANK Custody Seal No.: Mes Possible Hazard Identification
Non-Hazard Flammable Hook TRC Environmental Corporation 3/4-06 PU-MO 7,100 0-Mc 10-20 Empty Kit Relinquished by: 10 Maxwell Drive Suite 200 Custody Seals Intact: △ Yes △ No SMP B - Cold Spring MGP king@trccompanies.com Sample Identification Client Information 3 9 linquished by: linquished by: nquished by: Mr. Justin King State, Zip: NY, 12065 Clifton Park

seurofins | Environment Testing

Chain of Custody Record

Albany

Eurofins TestAmerica, Buffalo

Phone: 716-691-2600 Fax: 716-691-7991

Amherst, NY 14228-2298

10 Hazelwood Drive

#224

2

3

4

7

10

12

14 15

16

17

Client Information	MAN STORY	* MM	ニンニ	Ston	Stone, Judy L			_		480-151288-33469.1	1.69.1
Client Contact: Mr. Justin King	Phone: 518 -	しかっ	8478	Judy.	Stone@	E-Mail: Judy.Stone@Eurofinset.com	et.com			Page: Page 1 of 1	
Company: TRC Environmental Corporation							Analysis Requested	quested		Job #:	
Address:	Due Date Requested:	ed:								Preservation Codes:	les:
TO MAXWEL DIVE SUITE ZOO	TAT Requested (d	(days):								A - HCL B - NaOH	M - Hexane N - None
Cultoring Falk State, Zip.	514	1 hadred				(5				C - Zn Acetate D - Nitric Acid	0 - AsNaO2 P - Na2O4S
NY, 12055 Phone:	PO#:	0				eal/yres				F - MeOH	R - Na2S203
	CallOut SMP1215	115				n A				H - Ascorbic Acid	T - TSP Dodecahydrat
Email: jking@trccompanies.com	WO#: SMP1215				(oN	17) 151			3.4		U - Acetone V - MCAA
Project Name: SMP B - Cold Spring MGP	Project #: 48022480				10 Se	מפנמ ר	selits		ionis.	140	W - pH 4-5 Z - other (specify)
Site: (U) 5, AND MGP	SSOW#:				N) ası		slovime			Other:	
Sample Identification	Sample Date	Sample	Sample Type (C=comp, G=grab)	Matrix (w=water, S=solid, O=waste/oil, BT=Tissue, A=Air)	Field Filtered MSM myohed	A44 - A01_049	2 HA9 - G0128		redmuN lstoT		Special Instructions/Note:
cample definitions		X	0	Preservation Code:	X	8 <	8 Z				at detablishate.
90-100	10/6/70	925	0	Water	×	+	+				
13 M-05	(0) 16 (70	040)	9	, Water	-	×	· · ·			0.0	
	- 1 -	1220	0	Water		×	×				
HO 183		1325	C,	Water	•	×	*				
5-30	2 2 101	MAIS	. 0	Water		×	, , , , , , , , , , , , , , , , , , ,				
DAP	(10)(0)	1115	9	Water		×	· · · ×			294	
TRIP BLANK				Water	4	×					
				Water		/					
		111	1	Water			/				
/							/		480-176138 CI	480-176138 Chain of Custody	
/			1								-
Possible Hazard Identification Non-Hazard Elammable Skin Intiant Po	Poison B Unknown		Radiological		Samp	le Disp	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon	assessed if san	amples are retain	etained longer than 1	month)
ested: I, II, III, IV, Other (specify)					Speci	al Instru	Requirem	nts:			
Empty Kit Relinquished by:		Date:			Time:			Method of Shipment	Shipment:		
Relinquished by: Little MM	Date/Time:	07-41		Company	- R	Received by	Level		Date/Time: 120	0 1440	Company
Relinquished by Land	Date/Time:	1	700	Company	2 (Received by	4	A	Date/Time:	3450 5	Company Company
Relinquished by:	Date/Time: /			Company	R	Received by	2		Date/Time:		Company
Custody Seals Intact Custody Seal No.:	248083				ŏ	oler Temp	Cooler Temperature(s) °C and Other Remarks.	emarks:	0	>00	
as on who arebound on to	12										Ver: 01/16/2019

eurofins Environment Testing America

Chain of Custody Record

#224

10 Hazelwood Drive Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

Eurofins TestAmerica, Buffalo Albany

Job:

Sacramento Sample Receiving Notes

Environment Testing TestAmerica

Tracking #: 1891 4486 7867

SO / FO / SAT / 2-Day / Ground / UPS / CDO / Courier GSO / OnTrac / Goldstreak / USPS / Other

Therm. ID: L-67 Corr. Factor:	1 + 1 - 1	WIA	(°C	Notes:			
Therm. ID: Corr. Factor:	(+/-)	1	_ 0	Smole 1, 2, 4, 6			
Ice Wet Gel	Othe	r		Jan 4 1, 2, 4, 6			_
Cooler Custody Seal: 124 608	3					-	
Cooler ID:							
Cooler ID: *C Correct	+	17					_
Temp Observed: 6 C Correct	ted:	1-1	_°C				_
From: Temp Blank D Samp	ole D	•					
Opening/Processing The Shipment	Yes	No	NA				
Cooler compromised/tampered with?	D	D	0				-
Cooler Temperature is acceptable?	9						
		1.00					
Initials: Date: 8	06.	1 9					
							_
Unpacking/Labeling The Samples	Yes	No	NA				
CoC is complete w/o discrepancies?	Ø	D	D				_
Samples compromised/tampered with?		P	D				-
Sample containers have legible labels?	D	0	D				
Sample custody seal?	D		P				
Containers are not broken or leaking?	D	D	D				_
Sample date/times are provided?	Ø	D					
Appropriate containers are used?	Ø	D	D	Trizma Lot #(s):			_
Sample bottles are completely filled?	Ø		D				
Sample preservatives verified?	D	D	P				-
Samples w/o discrepancies?	D	B	D	-		7	-
Zero headspace?*		D	P				
Alkalinity has no headspace?	D		Ø	Login Completion	Yes	No	NA
Perchlorate has headspace?	0	D	ø	Receipt Temperature on COC? Samples received within hold time?	D D	0	0
(Methods 314, 331, 6850)		D	D	NCM Filed?	B	D	D
Multiphasic samples are not present?	B			Log Release checked in TALS?	P	D	D
*Containers requiring zero headspace have no headspace	e, or bubb	ole < 6 mi	n (1/4°)				

IITACORPICORPIQAIQA_FACILITIESISACRAMENTO-QAIDOCUMENT-MANAGEMENTVFORMSIQA-812 SAMPLE RECEIVING NOTES.DOC

QA-812 TGT 6/11/2020

Login Sample Receipt Checklist

Client: New York State D.E.C. Job Number: 480-176138-1

Login Number: 176138 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Sabuda, Brendan D

	_	
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.6 #1 ICE
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	TRC
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

2

5

6

8

10

40

13

15

1 (

Login Sample Receipt Checklist

Client: New York State D.E.C. Job Number: 480-176138-1

Login Number: 176138 List Source: Eurofins TestAmerica, Sacramento

List Number: 2 List Creation: 10/08/20 07:25 PM

Creator: Her, David A		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	1246083
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.7c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Refer to Job Narrative for details.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

_

0

9

10

12

14

16

APPENDIX E

DATA USABILITY SUMMARY REPORTS GROUNDWATER, OCTOBER 2020

TRC ENGINEERS, INC. AUGUST 2021

Data Usability Summary Report

Site: SMP B - Cold Spring MGP

Laboratory: Eurofins TestAmerica Buffalo – Amherst, NY

SDG No.: 480-176138-1

Parameters: Volatile Organic Compounds (VOCs): Benzene, Toluene, Ethylbenzene, and

Xylenes (collectively, BTEX); Polycyclic Aromatic Hydrocarbons (PAHs)

Data Reviewer: Amy Bass/TRC **Peer Reviewer:** Elizabeth Denly/TRC **Date:** October 28, 2020

Samples Reviewed and Evaluation Summary

6 / Groundwater: GW-01, GW-04, GW-05, GW-06, GW-07, DUP1

¹ Field duplicate for GW-06

1 / Trip Blank Trip Blank

The above-listed samples were collected on October 6, 2020 and were analyzed for the following parameters:

- BTEX by SW-846 Method 8260C
- PAHs by SW-846 Method 8270D

The data validation was performed in accordance with *USEPA National Functional Guidelines for Organic Superfund Methods Data Review (EPA-540-R-017-002)*, January 2017, modified for the SW-846 methodologies utilized.

The data were evaluated based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness
- Holding Times and Sample Preservation
- Initial and Continuing Calibrations
- * Blanks
- Surrogate Recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Internal Standards
- Laboratory Control Sample (LCS) Results
- Field Duplicate Results
 - Sample Results and Reported Quantitation Limits (QLs)
- Target Compound Identification
- * All criteria were met.

Overall Evaluation of Data and Potential Usability Issues

All results are usable for project objectives. Qualifications applied to the data as a result of sampling error were not required. Qualifications applied to the data as a result of analytical error are discussed below.

 Potential uncertainty exists for select BTEX and PAH results that were below the lowest calibration standard and QL. These results were qualified as estimated (J) in the associated samples. These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.

Data Completeness

The data package was a complete Level IV data deliverable package, with the exception that the laboratory did not report LCS and MS/MSD percent recoveries (%Rs), relative percent differences (RPDs), or laboratory acceptance criteria for total xylenes on the summary forms. The %Rs and RPDs were calculated during validation, and the laboratory acceptance limits were provided by the laboratory; no validation actions were taken on this basis.

Discrepancies noted in the laboratory report are discussed below.

- The laboratory Job Narrative noted that the sample collection time on container labels for GW-06 and the associated MS/MSD samples did not match the collection time recorded on the chain of custody (COC) form; collection times for these samples were entered based on the COC information. No validation action was required on this basis.
- The raw data reports for the PAH analyses state the calibration date as 09-Oct-2020; however, the associated calibration was performed on 29-Sep-2020, based on the initial calibration report provided in the laboratory report. The sample result recalculations were consistent with the 29-Sep-2020 calibration data; therefore, the calibration date stated on the raw data sheets appears to be an error. No validation action was required on this basis.

Holding Times and Sample Preservation

All holding time and sample preservation method criteria were met for the BTEX and PAH analyses.

Initial and Continuing Calibrations

All correlation coefficients, percent relative standard deviations, and relative response factors were within the method acceptance criteria in the initial calibrations associated with the BTEX and PAH analyses. The percent differences or percent drifts met the acceptance criteria in the associated continuing calibration standards for the BTEX and PAH analyses.

Blanks

Target analytes were not detected in the laboratory method blanks for the BTEX and PAH analyses. BTEX were not detected in the trip blank.

Surrogate Recoveries

The surrogate %Rs met the laboratory acceptance criteria in the BTEX and PAH analyses.

MS/MSD Results

MS/MSD analyses were performed on sample GW-06 for BTEX and PAHs. The MS/MSD %Rs and RPDs met the laboratory acceptance criteria.

Internal Standards

All internal standards met the method acceptance criteria in the BTEX and PAH analyses.

LCS Results

All criteria were met in the LCSs in the BTEX and PAH analyses.

Field Duplicate Results

The field duplicate pair GW-06 and DUP was submitted with this sample set. All BTEX parameters were nondetect in both samples; therefore, results were in acceptable agreement. Positive PAH results were <5× the QL; therefore, the RPD is not applicable, and the field duplicate precision evaluation was based on the absolute differences (AbsDs) between the results. In one case, one sample was nondetect (ND) and the other was a positive result; the AbsD is not calculable (NC) in this case, but criteria were met since the positive result was ≤2×QL. The following table summarizes the analytes that were detected in the field duplicate pair, the calculated AbsD values, and the resulting validation actions. Criteria were met for all detected analytes; therefore, no validation actions were required.

Analyte	QL (µg/L)	GW-06 (μg/L)	DUP (µg/L)	AbsD (µg/L)	Criteria	Validation Action
Acenaphthene	5.0	14	11	3	AbsD ≤ QL	_
Anthracene	5.0	1.1 J	0.96 J	0.14	AbsD ≤ QL	_
Fluoranthene	5.0	1.9 J	1.4 J	0.5	AbsD ≤ QL	_
Fluorene	5.0	0.85 J	0.92 J	0.07	AbsD ≤ QL	_
Phenanthrene	5.0	ND	0.50 J	NC	Detect ≤ 2×QL	_
Pyrene	5.0	2.6 J	1.8 J	0.8	AbsD ≤ QL	_
-: Criteria met; no validation action required						

Sample Results and Reported QLs

Select BTEX and PAH results were reported below the lowest calibration standard level and QL. These results were qualified as estimated (J) by the laboratory.

Sample calculations were spot-checked; there were no errors noted.

Dilutions (2-fold) were performed for the BTEX analyses of samples GW-05, GW-06, and DUP due to sample foaming in the initial sample analysis. The laboratory narrative also noted that these samples exhibited discoloration. No dilutions were performed in the remaining BTEX analyses or in the PAH analyses for this sample set.

Target Compound Identification

All criteria were met for the BTEX and PAH analyses.

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-176138-1 SDG No.: Client Sample ID: GW-06 Lab Sample ID: 480-176138-1 Matrix: Water Lab File ID: S2755.D Date Collected: 10/06/2020 09:25 Analysis Method: 8260C Sample wt/vol: 5(mL) Date Analyzed: 10/14/2020 17:44 Dilution Factor: 2 Soil Aliquot Vol: Soil Extract Vol.: GC Column: ZB-624 (20) ID: 0.18(mm) Level: (low/med) Low % Moisture: ____ Analysis Batch No.: 553834 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	ND		2.0	0.82
108-88-3	Toluene	ND		2.0	1.0
100-41-4	Ethylbenzene	ND		2.0	1.5
179601-23-1	m-Xylene & p-Xylene	ND		4.0	1.3
95-47-6	o-Xylene	ND		2.0	1.5
1330-20-7	Xylenes, Total	ND		4.0	1.3
STL00431	Total BTEX	ND		4.0	2.0

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	102		80-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		77-120
460-00-4	4-Bromofluorobenzene (Surr)	99		73-120
1868-53-7	Dibromofluoromethane (Surr)	99		75-123

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-176138-1 SDG No.: Client Sample ID: GW-05 Lab Sample ID: 480-176138-2 Matrix: Water Lab File ID: S2756.D Date Collected: 10/06/2020 10:40 Analysis Method: 8260C Sample wt/vol: 5(mL) Date Analyzed: 10/14/2020 18:07 Dilution Factor: 2 Soil Aliquot Vol: Soil Extract Vol.: GC Column: ZB-624 (20) ID: 0.18(mm) Level: (low/med) Low % Moisture: ____ Analysis Batch No.: 553834 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	ND		2.0	0.82
108-88-3	Toluene	ND		2.0	1.0
100-41-4	Ethylbenzene	ND		2.0	1.5
179601-23-1	m-Xylene & p-Xylene	ND		4.0	1.3
95-47-6	o-Xylene	ND		2.0	1.5
1330-20-7	Xylenes, Total	ND		4.0	1.3
STL00431	Total BTEX	ND		4.0	2.0

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	101		80-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		77-120
460-00-4	4-Bromofluorobenzene (Surr)	102		73-120
1868-53-7	Dibromofluoromethane (Surr)	102		75-123

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-176138-1 SDG No.: Client Sample ID: GW-01 Lab Sample ID: 480-176138-3 Matrix: Water Lab File ID: S2757.D Date Collected: 10/06/2020 12:20 Analysis Method: 8260C Sample wt/vol: 5(mL) Date Analyzed: 10/14/2020 18:30 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: _____ GC Column: <u>ZB-624 (20)</u> ID: <u>0.18 (mm)</u> % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 553834 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	ND		1.0	0.41
108-88-3	Toluene	ND		1.0	0.51
100-41-4	Ethylbenzene	ND		1.0	0.74
179601-23-1	m-Xylene & p-Xylene	ND		2.0	0.66
95-47-6	o-Xylene	ND		1.0	0.76
1330-20-7	Xylenes, Total	ND		2.0	0.66
STL00431	Total BTEX	ND		2.0	1.0

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	101		80-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		77-120
460-00-4	4-Bromofluorobenzene (Surr)	99		73-120
1868-53-7	Dibromofluoromethane (Surr)	100		75-123

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-176138-1 SDG No.: Client Sample ID: GW-04 Lab Sample ID: 480-176138-4 Matrix: Water Lab File ID: S2758.D Date Collected: 10/06/2020 13:25 Analysis Method: 8260C Sample wt/vol: 5(mL) Date Analyzed: 10/14/2020 18:53 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: ZB-624 (20) ID: 0.18(mm) ____ Level: (low/med) Low % Moisture: ____ Analysis Batch No.: 553834 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	ND		1.0	0.41
108-88-3	Toluene	ND		1.0	0.51
100-41-4	Ethylbenzene	ND		1.0	0.74
179601-23-1	m-Xylene & p-Xylene	ND		2.0	0.66
95-47-6	o-Xylene	1.2		1.0	0.76
1330-20-7	Xylenes, Total	1.2	J	2.0	0.66
STL00431	Total BTEX	1.2	J	2.0	1.0

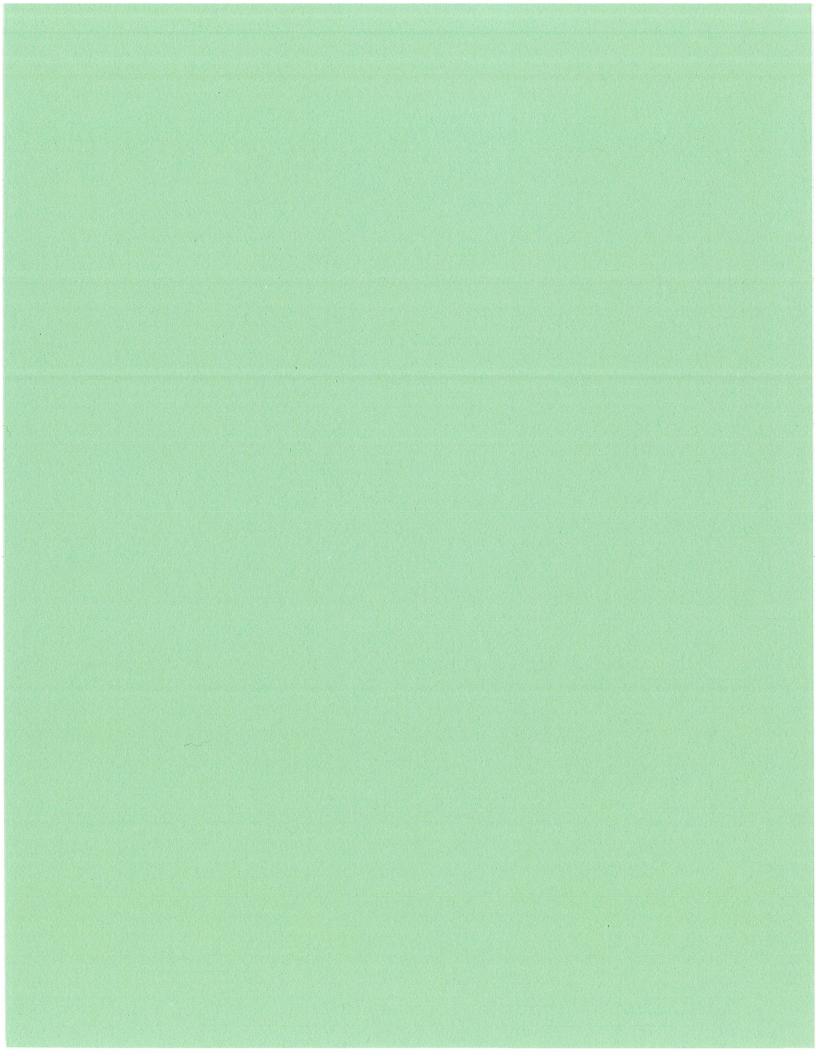
CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	101		80-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	113		77-120
460-00-4	4-Bromofluorobenzene (Surr)	99		73-120
1868-53-7	Dibromofluoromethane (Surr)	100		75-123

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-176138-1 SDG No.: Client Sample ID: GW-07 Lab Sample ID: 480-176138-5 Matrix: Water Lab File ID: S2759.D Date Collected: 10/06/2020 14:45 Analysis Method: 8260C Sample wt/vol: 5(mL) Date Analyzed: 10/14/2020 19:16 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: _____ GC Column: <u>ZB-624 (20)</u> ID: <u>0.18 (mm)</u> % Moisture: Level: (low/med) Low Analysis Batch No.: 553834 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	0.94	J	1.0	0.41
108-88-3	Toluene	ND		1.0	0.51
100-41-4	Ethylbenzene	0.78	J	1.0	0.74
179601-23-1	m-Xylene & p-Xylene	ND		2.0	0.66
95-47-6	o-Xylene	ND		1.0	0.76
1330-20-7	Xylenes, Total	ND		2.0	0.66
STL00431	Total BTEX	1.7	J	2.0	1.0

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	99		80-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	101		77-120
460-00-4	4-Bromofluorobenzene (Surr)	99		73-120
1868-53-7	Dibromofluoromethane (Surr)	98		75-123

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-176138-1				
SDG No.:					
Client Sample ID: DUP	Lab Sample ID: 480-176138-6				
Matrix: Water	Lab File ID: S2760.D				
Analysis Method: 8260C	Date Collected: 10/06/2020 11:15				
Sample wt/vol: 5(mL)	Date Analyzed: 10/14/2020 19:38				
Soil Aliquot Vol:	Dilution Factor: 2				
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 553834	Units: ug/L				


CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	ND		2.0	0.82
108-88-3	Toluene	ND		2.0	1.0
100-41-4	Ethylbenzene	ND		2.0	1.5
179601-23-1	m-Xylene & p-Xylene	ND		4.0	1.3
95-47-6	o-Xylene	ND		2.0	1.5
1330-20-7	Xylenes, Total	ND		4.0	1.3
STL00431	Total BTEX	ND		4.0	2.0

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	103		80-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	104		77-120
460-00-4	4-Bromofluorobenzene (Surr)	104		73-120
1868-53-7	Dibromofluoromethane (Surr)	101		75-123

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-176138-1 SDG No.: Client Sample ID: Trip Blank Lab Sample ID: 480-176138-7 Matrix: Water Lab File ID: S2761.D Analysis Method: 8260C Date Collected: 10/06/2020 00:00 Sample wt/vol: 5(mL) Date Analyzed: 10/14/2020 20:01 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: _____ GC Column: <u>ZB-624 (20)</u> ID: <u>0.18 (mm)</u> % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 553834 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	ND		1.0	0.41
108-88-3	Toluene	ND		1.0	0.51
100-41-4	Ethylbenzene	ND		1.0	0.74
179601-23-1	m-Xylene & p-Xylene	ND		2.0	0.66
95-47-6	o-Xylene	ND		1.0	0.76
1330-20-7	Xylenes, Total	ND		2.0	0.66
STL00431	Total BTEX	ND		2.0	1.0

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	100		80-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	101		77-120
460-00-4	4-Bromofluorobenzene (Surr)	99		73-120
1868-53-7	Dibromofluoromethane (Surr)	98		75-123

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-176138-1

SDG No.:

Client Sample ID: GW-06 Lab Sample ID: 480-176138-1

Matrix: Water Lab File ID: Y02819105.D

Analysis Method: 8270D Date Collected: 10/06/2020 09:25

Extract. Method: 3510C Date Extracted: 10/09/2020 15:24

Sample wt/vol: 250 (mL) Date Analyzed: 10/13/2020 20:18

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: _____ GPC Cleanup:(Y/N) N____

Analysis Batch No.: 553672 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
83-32-9	Acenaphthene	14		5.0	0.41
208-96-8	Acenaphthylene	ND		5.0	0.38
120-12-7	Anthracene	1.1	J	5.0	0.28
56-55-3	Benzo[a]anthracene	ND		5.0	0.36
50-32-8	Benzo[a]pyrene	ND		5.0	0.47
205-99-2	Benzo[b]fluoranthene	ND		5.0	0.34
191-24-2	Benzo[g,h,i]perylene	ND		5.0	0.35
207-08-9	Benzo[k]fluoranthene	ND		5.0	0.73
218-01-9	Chrysene	ND		5.0	0.33
53-70-3	Dibenz(a,h)anthracene	ND		5.0	0.42
206-44-0	Fluoranthene	1.9	J	5.0	0.40
86-73-7	Fluorene	0.85	J	5.0	0.36
193-39-5	Indeno[1,2,3-cd]pyrene	ND		5.0	0.47
91-20-3	Naphthalene	ND		5.0	0.76
85-01-8	Phenanthrene	ND		5.0	0.44
129-00-0	Pyrene	2.6	J	5.0	0.34

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl	95		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	95		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	82		60-148

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-176138-1

SDG No.:

Client Sample ID: GW-05 Lab Sample ID: 480-176138-2

Matrix: Water Lab File ID: Y02819106.D

Analysis Method: 8270D Date Collected: 10/06/2020 10:40

Extract. Method: 3510C Date Extracted: 10/09/2020 15:24

Sample wt/vol: 250 (mL) Date Analyzed: 10/13/2020 20:47

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 553672 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
83-32-9	Acenaphthene	4.7	J	5.0	0.41
208-96-8	Acenaphthylene	ND		5.0	0.38
120-12-7	Anthracene	ND		5.0	0.28
56-55-3	Benzo[a]anthracene	ND		5.0	0.36
50-32-8	Benzo[a]pyrene	ND		5.0	0.47
205-99-2	Benzo[b]fluoranthene	ND		5.0	0.34
191-24-2	Benzo[g,h,i]perylene	ND		5.0	0.35
207-08-9	Benzo[k]fluoranthene	ND		5.0	0.73
218-01-9	Chrysene	ND		5.0	0.33
53-70-3	Dibenz(a,h)anthracene	ND		5.0	0.42
206-44-0	Fluoranthene	ND		5.0	0.40
86-73-7	Fluorene	ND		5.0	0.36
193-39-5	Indeno[1,2,3-cd]pyrene	ND		5.0	0.47
91-20-3	Naphthalene	ND		5.0	0.76
85-01-8	Phenanthrene	ND		5.0	0.44
129-00-0	Pyrene	ND		5.0	0.34

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl	95		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	94		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	75		60-148

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-176138-1 SDG No.: Client Sample ID: GW-01 Lab Sample ID: 480-176138-3 Matrix: Water Lab File ID: Y02819107.D Analysis Method: 8270D Date Collected: 10/06/2020 12:20 Extract. Method: 3510C Date Extracted: 10/09/2020 15:24 Sample wt/vol: 250(mL) Date Analyzed: 10/13/2020 21:17 Con. Extract Vol.: 1(mL) Dilution Factor: 1 Injection Volume: 2(uL) Level: (low/med) Low

GPC Cleanup:(Y/N) N

Analysis Batch No.: 553672 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
83-32-9	Acenaphthene	ND		5.0	0.41
208-96-8	Acenaphthylene	ND		5.0	0.38
120-12-7	Anthracene	ND		5.0	0.28
56-55-3	Benzo[a]anthracene	ND		5.0	0.36
50-32-8	Benzo[a]pyrene	ND		5.0	0.47
205-99-2	Benzo[b]fluoranthene	ND		5.0	0.34
191-24-2	Benzo[g,h,i]perylene	ND		5.0	0.35
207-08-9	Benzo[k]fluoranthene	ND		5.0	0.73
218-01-9	Chrysene	ND		5.0	0.33
53-70-3	Dibenz(a,h)anthracene	ND		5.0	0.42
206-44-0	Fluoranthene	ND		5.0	0.40
86-73-7	Fluorene	ND		5.0	0.36
193-39-5	Indeno[1,2,3-cd]pyrene	ND		5.0	0.47
91-20-3	Naphthalene	ND		5.0	0.76
85-01-8	Phenanthrene	ND		5.0	0.44
129-00-0	Pyrene	ND		5.0	0.34

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl	96		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	94		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	97		60-148

% Moisture:

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-176138-1

SDG No.:

Client Sample ID: GW-04 Lab Sample ID: 480-176138-4

Matrix: Water Lab File ID: Y02819108.D

Analysis Method: 8270D Date Collected: 10/06/2020 13:25

Extract. Method: 3510C Date Extracted: 10/09/2020 15:24

Sample wt/vol: 250 (mL) Date Analyzed: 10/13/2020 21:47

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 553672 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
83-32-9	Acenaphthene	33		5.0	0.41
208-96-8	Acenaphthylene	ND		5.0	0.38
120-12-7	Anthracene	1.8	J	5.0	0.28
56-55-3	Benzo[a]anthracene	ND		5.0	0.36
50-32-8	Benzo[a]pyrene	ND		5.0	0.47
205-99-2	Benzo[b]fluoranthene	ND		5.0	0.34
191-24-2	Benzo[g,h,i]perylene	ND		5.0	0.35
207-08-9	Benzo[k]fluoranthene	ND		5.0	0.73
218-01-9	Chrysene	ND		5.0	0.33
53-70-3	Dibenz(a,h)anthracene	ND		5.0	0.42
206-44-0	Fluoranthene	1.3	J	5.0	0.40
86-73-7	Fluorene	6.7		5.0	0.36
193-39-5	Indeno[1,2,3-cd]pyrene	ND		5.0	0.47
91-20-3	Naphthalene	ND		5.0	0.76
85-01-8	Phenanthrene	6.1		5.0	0.44
129-00-0	Pyrene	1.4	J	5.0	0.34

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl	99		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	97		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	78		60-148

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-176138-1

SDG No.:

Client Sample ID: GW-07 Lab Sample ID: 480-176138-5

Matrix: Water Lab File ID: Y02819109.D

Analysis Method: 8270D Date Collected: 10/06/2020 14:45

Extract. Method: 3510C Date Extracted: 10/09/2020 15:24

Sample wt/vol: 250 (mL) Date Analyzed: 10/13/2020 22:17

Con. Extract Vol.: 1 (mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 553672 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
83-32-9	Acenaphthene	35		5.0	0.41
208-96-8	Acenaphthylene	3.8	J	5.0	0.38
120-12-7	Anthracene	0.97	J	5.0	0.28
56-55-3	Benzo[a]anthracene	0.48	J	5.0	0.36
50-32-8	Benzo[a]pyrene	ND		5.0	0.47
205-99-2	Benzo[b]fluoranthene	0.34	J	5.0	0.34
191-24-2	Benzo[g,h,i]perylene	ND		5.0	0.35
207-08-9	Benzo[k]fluoranthene	ND		5.0	0.73
218-01-9	Chrysene	0.33	J	5.0	0.33
53-70-3	Dibenz(a,h)anthracene	ND		5.0	0.42
206-44-0	Fluoranthene	6.1		5.0	0.40
86-73-7	Fluorene	14		5.0	0.36
193-39-5	Indeno[1,2,3-cd]pyrene	ND		5.0	0.47
91-20-3	Naphthalene	ND		5.0	0.76
85-01-8	Phenanthrene	ND		5.0	0.44
129-00-0	Pyrene	3.5	J	5.0	0.34

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl	97		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	95		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	81		60-148

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-176138-1 SDG No.: Lab Sample ID: 480-176138-6 Client Sample ID: DUP Matrix: Water Lab File ID: Y02819110.D Analysis Method: 8270D Date Collected: 10/06/2020 11:15 Date Extracted: 10/09/2020 15:24 Extract. Method: 3510C Sample wt/vol: 250(mL) Date Analyzed: 10/13/2020 22:46 Con. Extract Vol.: 1(mL) Dilution Factor: 1 Injection Volume: 2(uL) Level: (low/med) Low

GPC Cleanup:(Y/N) N

Analysis Batch No.: 553672 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
83-32-9	Acenaphthene	11		5.0	0.41
208-96-8	Acenaphthylene	ND		5.0	0.38
120-12-7	Anthracene	0.96	J	5.0	0.28
56-55-3	Benzo[a]anthracene	ND		5.0	0.36
50-32-8	Benzo[a]pyrene	ND		5.0	0.47
205-99-2	Benzo[b]fluoranthene	ND		5.0	0.34
191-24-2	Benzo[g,h,i]perylene	ND		5.0	0.35
207-08-9	Benzo[k]fluoranthene	ND		5.0	0.73
218-01-9	Chrysene	ND		5.0	0.33
53-70-3	Dibenz(a,h)anthracene	ND		5.0	0.42
206-44-0	Fluoranthene	1.4	J	5.0	0.40
86-73-7	Fluorene	0.92	J	5.0	0.36
193-39-5	Indeno[1,2,3-cd]pyrene	ND		5.0	0.47
91-20-3	Naphthalene	ND		5.0	0.76
85-01-8	Phenanthrene	0.50	J	5.0	0.44
129-00-0	Pyrene	1.8	J	5.0	0.34

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl	98		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	98		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	79		60-148

% Moisture:

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-176138-1 SDG No.: Client Sample ID: GW-06 Lab Sample ID: 480-176138-1 Matrix: Water Lab File ID: S2755.D Date Collected: 10/06/2020 09:25 Analysis Method: 8260C Sample wt/vol: 5(mL) Date Analyzed: 10/14/2020 17:44 Dilution Factor: 2 Soil Aliquot Vol: Soil Extract Vol.: GC Column: ZB-624 (20) ID: 0.18(mm) Level: (low/med) Low % Moisture: ____ Analysis Batch No.: 553834 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	ND		2.0	0.82
108-88-3	Toluene	ND		2.0	1.0
100-41-4	Ethylbenzene	ND		2.0	1.5
179601-23-1	m-Xylene & p-Xylene	ND		4.0	1.3
95-47-6	o-Xylene	ND		2.0	1.5
1330-20-7	Xylenes, Total	ND		4.0	1.3
STL00431	Total BTEX	ND		4.0	2.0

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	102		80-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		77-120
460-00-4	4-Bromofluorobenzene (Surr)	99		73-120
1868-53-7	Dibromofluoromethane (Surr)	99		75-123

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-176138-1			
SDG No.:				
Client Sample ID: GW-05	Lab Sample ID: 480-176138-2			
Matrix: Water	Lab File ID: S2756.D			
Analysis Method: 8260C	Date Collected: 10/06/2020 10:40			
Sample wt/vol: 5(mL)	Date Analyzed: 10/14/2020 18:07			
Soil Aliquot Vol:	Dilution Factor: 2			
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 553834	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	ND		2.0	0.82
108-88-3	Toluene	ND		2.0	1.0
100-41-4	Ethylbenzene	ND		2.0	1.5
179601-23-1	m-Xylene & p-Xylene	ND		4.0	1.3
95-47-6	o-Xylene	ND		2.0	1.5
1330-20-7	Xylenes, Total	ND		4.0	1.3
STL00431	Total BTEX	ND		4.0	2.0

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	101		80-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		77-120
460-00-4	4-Bromofluorobenzene (Surr)	102		73-120
1868-53-7	Dibromofluoromethane (Surr)	102		75-123

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-176138-1 SDG No.: Client Sample ID: GW-01 Lab Sample ID: 480-176138-3 Matrix: Water Lab File ID: S2757.D Date Collected: 10/06/2020 12:20 Analysis Method: 8260C Sample wt/vol: 5(mL) Date Analyzed: 10/14/2020 18:30 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: _____ GC Column: <u>ZB-624 (20)</u> ID: <u>0.18 (mm)</u> % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 553834 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	ND		1.0	0.41
108-88-3	Toluene	ND		1.0	0.51
100-41-4	Ethylbenzene	ND		1.0	0.74
179601-23-1	m-Xylene & p-Xylene	ND		2.0	0.66
95-47-6	o-Xylene	ND		1.0	0.76
1330-20-7	Xylenes, Total	ND		2.0	0.66
STL00431	Total BTEX	ND		2.0	1.0

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	101		80-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	97		77-120
460-00-4	4-Bromofluorobenzene (Surr)	99		73-120
1868-53-7	Dibromofluoromethane (Surr)	100		75-123

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-176138-1 SDG No.: Client Sample ID: GW-04 Lab Sample ID: 480-176138-4 Matrix: Water Lab File ID: S2758.D Date Collected: 10/06/2020 13:25 Analysis Method: 8260C Sample wt/vol: 5(mL) Date Analyzed: 10/14/2020 18:53 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: ZB-624 (20) ID: 0.18(mm) ____ Level: (low/med) Low % Moisture: ____ Analysis Batch No.: 553834 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	ND		1.0	0.41
108-88-3	Toluene	ND		1.0	0.51
100-41-4	Ethylbenzene	ND		1.0	0.74
179601-23-1	m-Xylene & p-Xylene	ND		2.0	0.66
95-47-6	o-Xylene	1.2		1.0	0.76
1330-20-7	Xylenes, Total	1.2	J	2.0	0.66
STL00431	Total BTEX	1.2	J	2.0	1.0

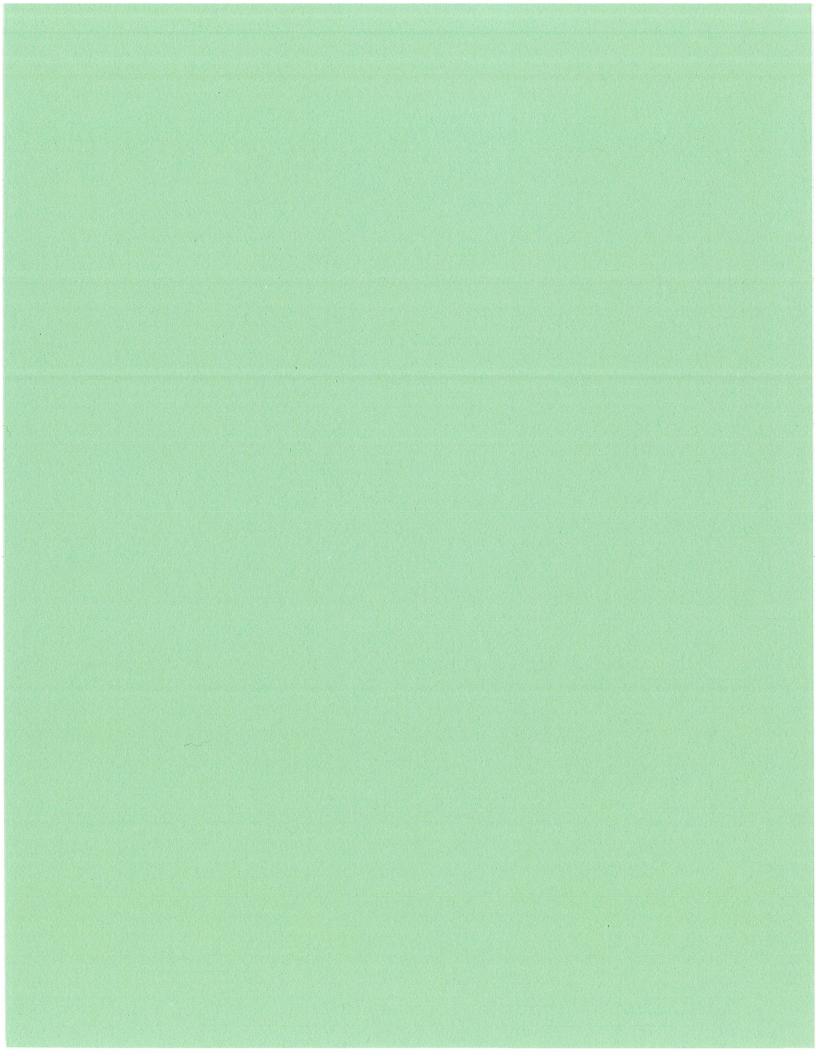
CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	101		80-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	113		77-120
460-00-4	4-Bromofluorobenzene (Surr)	99		73-120
1868-53-7	Dibromofluoromethane (Surr)	100		75-123

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-176138-1 SDG No.: Client Sample ID: GW-07 Lab Sample ID: 480-176138-5 Matrix: Water Lab File ID: S2759.D Date Collected: 10/06/2020 14:45 Analysis Method: 8260C Sample wt/vol: 5(mL) Date Analyzed: 10/14/2020 19:16 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: _____ GC Column: <u>ZB-624 (20)</u> ID: <u>0.18 (mm)</u> % Moisture: Level: (low/med) Low Analysis Batch No.: 553834 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	0.94	J	1.0	0.41
108-88-3	Toluene	ND		1.0	0.51
100-41-4	Ethylbenzene	0.78	J	1.0	0.74
179601-23-1	m-Xylene & p-Xylene	ND		2.0	0.66
95-47-6	o-Xylene	ND		1.0	0.76
1330-20-7	Xylenes, Total	ND		2.0	0.66
STL00431	Total BTEX	1.7	J	2.0	1.0

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	99		80-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	101		77-120
460-00-4	4-Bromofluorobenzene (Surr)	99		73-120
1868-53-7	Dibromofluoromethane (Surr)	98		75-123

Lab Name: Eurofins TestAmerica, Buffalo	Job No.: 480-176138-1			
SDG No.:				
Client Sample ID: DUP	Lab Sample ID: 480-176138-6			
Matrix: Water	Lab File ID: S2760.D			
Analysis Method: 8260C	Date Collected: 10/06/2020 11:15			
Sample wt/vol: 5(mL)	Date Analyzed: 10/14/2020 19:38			
Soil Aliquot Vol:	Dilution Factor: 2			
Soil Extract Vol.:	GC Column: ZB-624 (20) ID: 0.18(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 553834	Units: ug/L			


CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	ND		2.0	0.82
108-88-3	Toluene	ND		2.0	1.0
100-41-4	Ethylbenzene	ND		2.0	1.5
179601-23-1	m-Xylene & p-Xylene	ND		4.0	1.3
95-47-6	o-Xylene	ND		2.0	1.5
1330-20-7	Xylenes, Total	ND		4.0	1.3
STL00431	Total BTEX	ND		4.0	2.0

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	103		80-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	104		77-120
460-00-4	4-Bromofluorobenzene (Surr)	104		73-120
1868-53-7	Dibromofluoromethane (Surr)	101		75-123

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-176138-1 SDG No.: Client Sample ID: Trip Blank Lab Sample ID: 480-176138-7 Matrix: Water Lab File ID: S2761.D Analysis Method: 8260C Date Collected: 10/06/2020 00:00 Sample wt/vol: 5(mL) Date Analyzed: 10/14/2020 20:01 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: _____ GC Column: <u>ZB-624 (20)</u> ID: <u>0.18 (mm)</u> % Moisture: _____ Level: (low/med) Low Analysis Batch No.: 553834 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-43-2	Benzene	ND		1.0	0.41
108-88-3	Toluene	ND		1.0	0.51
100-41-4	Ethylbenzene	ND		1.0	0.74
179601-23-1	m-Xylene & p-Xylene	ND		2.0	0.66
95-47-6	o-Xylene	ND		1.0	0.76
1330-20-7	Xylenes, Total	ND		2.0	0.66
STL00431	Total BTEX	ND		2.0	1.0

CAS NO.	SURROGATE	%REC	Q	LIMITS
2037-26-5	Toluene-d8 (Surr)	100		80-120
17060-07-0	1,2-Dichloroethane-d4 (Surr)	101		77-120
460-00-4	4-Bromofluorobenzene (Surr)	99		73-120
1868-53-7	Dibromofluoromethane (Surr)	98		75-123

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-176138-1

SDG No.:

Client Sample ID: GW-06 Lab Sample ID: 480-176138-1

Matrix: Water Lab File ID: Y02819105.D

Analysis Method: 8270D Date Collected: 10/06/2020 09:25

Extract. Method: 3510C Date Extracted: 10/09/2020 15:24

Sample wt/vol: 250 (mL) Date Analyzed: 10/13/2020 20:18

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: _____ GPC Cleanup:(Y/N) N____

Analysis Batch No.: 553672 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
83-32-9	Acenaphthene	14		5.0	0.41
208-96-8	Acenaphthylene	ND		5.0	0.38
120-12-7	Anthracene	1.1	J	5.0	0.28
56-55-3	Benzo[a]anthracene	ND		5.0	0.36
50-32-8	Benzo[a]pyrene	ND		5.0	0.47
205-99-2	Benzo[b]fluoranthene	ND		5.0	0.34
191-24-2	Benzo[g,h,i]perylene	ND		5.0	0.35
207-08-9	Benzo[k]fluoranthene	ND		5.0	0.73
218-01-9	Chrysene	ND		5.0	0.33
53-70-3	Dibenz(a,h)anthracene	ND		5.0	0.42
206-44-0	Fluoranthene	1.9	J	5.0	0.40
86-73-7	Fluorene	0.85	J	5.0	0.36
193-39-5	Indeno[1,2,3-cd]pyrene	ND		5.0	0.47
91-20-3	Naphthalene	ND		5.0	0.76
85-01-8	Phenanthrene	ND		5.0	0.44
129-00-0	Pyrene	2.6	J	5.0	0.34

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl	95		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	95		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	82		60-148

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-176138-1

SDG No.:

Client Sample ID: GW-05 Lab Sample ID: 480-176138-2

Matrix: Water Lab File ID: Y02819106.D

Analysis Method: 8270D Date Collected: 10/06/2020 10:40

Extract. Method: 3510C Date Extracted: 10/09/2020 15:24

Sample wt/vol: 250 (mL) Date Analyzed: 10/13/2020 20:47

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 553672 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
83-32-9	Acenaphthene	4.7	J	5.0	0.41
208-96-8	Acenaphthylene	ND		5.0	0.38
120-12-7	Anthracene	ND		5.0	0.28
56-55-3	Benzo[a]anthracene	ND		5.0	0.36
50-32-8	Benzo[a]pyrene	ND		5.0	0.47
205-99-2	Benzo[b]fluoranthene	ND		5.0	0.34
191-24-2	Benzo[g,h,i]perylene	ND		5.0	0.35
207-08-9	Benzo[k]fluoranthene	ND		5.0	0.73
218-01-9	Chrysene	ND		5.0	0.33
53-70-3	Dibenz(a,h)anthracene	ND		5.0	0.42
206-44-0	Fluoranthene	ND		5.0	0.40
86-73-7	Fluorene	ND		5.0	0.36
193-39-5	Indeno[1,2,3-cd]pyrene	ND		5.0	0.47
91-20-3	Naphthalene	ND		5.0	0.76
85-01-8	Phenanthrene	ND		5.0	0.44
129-00-0	Pyrene	ND		5.0	0.34

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl	95		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	94		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	75		60-148

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-176138-1 SDG No.: Client Sample ID: GW-01 Lab Sample ID: 480-176138-3 Matrix: Water Lab File ID: Y02819107.D Analysis Method: 8270D Date Collected: 10/06/2020 12:20 Extract. Method: 3510C Date Extracted: 10/09/2020 15:24 Sample wt/vol: 250(mL) Date Analyzed: 10/13/2020 21:17 Con. Extract Vol.: 1(mL) Dilution Factor: 1 Injection Volume: 2(uL) Level: (low/med) Low

GPC Cleanup:(Y/N) N

Analysis Batch No.: 553672 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
83-32-9	Acenaphthene	ND		5.0	0.41
208-96-8	Acenaphthylene	ND		5.0	0.38
120-12-7	Anthracene	ND		5.0	0.28
56-55-3	Benzo[a]anthracene	ND		5.0	0.36
50-32-8	Benzo[a]pyrene	ND		5.0	0.47
205-99-2	Benzo[b]fluoranthene	ND		5.0	0.34
191-24-2	Benzo[g,h,i]perylene	ND		5.0	0.35
207-08-9	Benzo[k]fluoranthene	ND		5.0	0.73
218-01-9	Chrysene	ND		5.0	0.33
53-70-3	Dibenz(a,h)anthracene	ND		5.0	0.42
206-44-0	Fluoranthene	ND		5.0	0.40
86-73-7	Fluorene	ND		5.0	0.36
193-39-5	Indeno[1,2,3-cd]pyrene	ND		5.0	0.47
91-20-3	Naphthalene	ND		5.0	0.76
85-01-8	Phenanthrene	ND		5.0	0.44
129-00-0	Pyrene	ND		5.0	0.34

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl	96		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	94		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	97		60-148

% Moisture:

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-176138-1

SDG No.:

Client Sample ID: GW-04 Lab Sample ID: 480-176138-4

Matrix: Water Lab File ID: Y02819108.D

Analysis Method: 8270D Date Collected: 10/06/2020 13:25

Extract. Method: 3510C Date Extracted: 10/09/2020 15:24

Sample wt/vol: 250 (mL) Date Analyzed: 10/13/2020 21:47

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 553672 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
83-32-9	Acenaphthene	33		5.0	0.41
208-96-8	Acenaphthylene	ND		5.0	0.38
120-12-7	Anthracene	1.8	J	5.0	0.28
56-55-3	Benzo[a]anthracene	ND		5.0	0.36
50-32-8	Benzo[a]pyrene	ND		5.0	0.47
205-99-2	Benzo[b]fluoranthene	ND		5.0	0.34
191-24-2	Benzo[g,h,i]perylene	ND		5.0	0.35
207-08-9	Benzo[k]fluoranthene	ND		5.0	0.73
218-01-9	Chrysene	ND		5.0	0.33
53-70-3	Dibenz(a,h)anthracene	ND		5.0	0.42
206-44-0	Fluoranthene	1.3	J	5.0	0.40
86-73-7	Fluorene	6.7		5.0	0.36
193-39-5	Indeno[1,2,3-cd]pyrene	ND		5.0	0.47
91-20-3	Naphthalene	ND		5.0	0.76
85-01-8	Phenanthrene	6.1		5.0	0.44
129-00-0	Pyrene	1.4	J	5.0	0.34

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl	99		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	97		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	78		60-148

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-176138-1

SDG No.:

Client Sample ID: GW-07 Lab Sample ID: 480-176138-5

Matrix: Water Lab File ID: Y02819109.D

Analysis Method: 8270D Date Collected: 10/06/2020 14:45

Extract. Method: 3510C Date Extracted: 10/09/2020 15:24

Sample wt/vol: 250 (mL) Date Analyzed: 10/13/2020 22:17

Con. Extract Vol.: 1 (mL) Dilution Factor: 1

Injection Volume: 2(uL) Level: (low/med) Low

% Moisture: GPC Cleanup:(Y/N) N

Analysis Batch No.: 553672 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
83-32-9	Acenaphthene	35		5.0	0.41
208-96-8	Acenaphthylene	3.8	J	5.0	0.38
120-12-7	Anthracene	0.97	J	5.0	0.28
56-55-3	Benzo[a]anthracene	0.48	J	5.0	0.36
50-32-8	Benzo[a]pyrene	ND		5.0	0.47
205-99-2	Benzo[b]fluoranthene	0.34	J	5.0	0.34
191-24-2	Benzo[g,h,i]perylene	ND		5.0	0.35
207-08-9	Benzo[k]fluoranthene	ND		5.0	0.73
218-01-9	Chrysene	0.33	J	5.0	0.33
53-70-3	Dibenz(a,h)anthracene	ND		5.0	0.42
206-44-0	Fluoranthene	6.1		5.0	0.40
86-73-7	Fluorene	14		5.0	0.36
193-39-5	Indeno[1,2,3-cd]pyrene	ND		5.0	0.47
91-20-3	Naphthalene	ND		5.0	0.76
85-01-8	Phenanthrene	ND		5.0	0.44
129-00-0	Pyrene	3.5	J	5.0	0.34

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl	97		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	95		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	81		60-148

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Buffalo Job No.: 480-176138-1 SDG No.: Lab Sample ID: 480-176138-6 Client Sample ID: DUP Matrix: Water Lab File ID: Y02819110.D Analysis Method: 8270D Date Collected: 10/06/2020 11:15 Date Extracted: 10/09/2020 15:24 Extract. Method: 3510C Sample wt/vol: 250(mL) Date Analyzed: 10/13/2020 22:46 Con. Extract Vol.: 1(mL) Dilution Factor: 1 Injection Volume: 2(uL) Level: (low/med) Low

GPC Cleanup: (Y/N) N

Analysis Batch No.: 553672 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
83-32-9	Acenaphthene	11		5.0	0.41
208-96-8	Acenaphthylene	ND		5.0	0.38
120-12-7	Anthracene	0.96	J	5.0	0.28
56-55-3	Benzo[a]anthracene	ND		5.0	0.36
50-32-8	Benzo[a]pyrene	ND		5.0	0.47
205-99-2	Benzo[b]fluoranthene	ND		5.0	0.34
191-24-2	Benzo[g,h,i]perylene	ND		5.0	0.35
207-08-9	Benzo[k]fluoranthene	ND		5.0	0.73
218-01-9	Chrysene	ND		5.0	0.33
53-70-3	Dibenz(a,h)anthracene	ND		5.0	0.42
206-44-0	Fluoranthene	1.4	J	5.0	0.40
86-73-7	Fluorene	0.92	J	5.0	0.36
193-39-5	Indeno[1,2,3-cd]pyrene	ND		5.0	0.47
91-20-3	Naphthalene	ND		5.0	0.76
85-01-8	Phenanthrene	0.50	J	5.0	0.44
129-00-0	Pyrene	1.8	J	5.0	0.34

CAS NO.	SURROGATE	%REC	Q	LIMITS
321-60-8	2-Fluorobiphenyl	98		48-120
4165-60-0	Nitrobenzene-d5 (Surr)	98		46-120
1718-51-0	p-Terphenyl-d14 (Surr)	79		60-148

% Moisture:

QC Nonconformances

-not applicable to this SDG

Data Usability Summary Report

Site: SMP B - Cold Spring MGP

Laboratory: Eurofins TestAmerica – Sacramento, CA

SDG No.: 480-176138-1

Parameters: Per- and Poly-fluoroalkyl Substances (PFAS)

Data Reviewer:Kristen Morin/TRCPeer Reviewer:Elizabeth Denly/TRCDate:November 4, 2020

Samples Reviewed and Evaluation Summary

6 Groundwater Samples: GW-01, GW-04, GW-05, GW-06, GW-07, DUP1

¹ Field duplicate for GW-06

The above-listed groundwater samples were collected on October 6, 2020 and were analyzed for PFAS (21 target analytes) based on EPA Method 537.1 (modified) using Eurofins TestAmerica – Sacramento, CA standard operating procedure (SOP) WS-LC-0025, revision 3.8, effective date 09/23/19.

The data validation was performed in accordance with the following guidance, modified for the methodology utilized:

- USEPA National Functional Guidelines for High Resolution Superfund Methods Data Review (EPA-542-B-16-001), April 2016
- USEPA Data Review and Validation Guidelines for Perfluoroalkyl Substances Analyzed Using EPA Method 537 (EPA 910-R-18-001), November 2018
- New York State Department of Environmental Conservation Data Review Guidelines for Analysis of PFAS in Non-Potable Water and Solids, October 2020

The data were evaluated based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness
- Holding Times and Sample Preservation
- Initial and Continuing Calibrations
- * Blanks
 - Isotopically Labeled Surrogate Results
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Control Sample (LCS) Results
- Internal Standards
 - Field Duplicate Results
 - Sample Results and Reported Quantitation Limits (QLs)
 - Target Compound Identification
- * All criteria were met.

Overall Evaluation of Data and Potential Usability Issues

All results are usable for project objectives. There were no qualifications applied to the data

because of sampling error. Qualifications applied to the data because of analytical error are discussed below.

- Potential uncertainty exists for select PFAS results that were below the lowest calibration standard and QL. These results were qualified as estimated (J) in the associated samples.
 These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.
- The positive results for 6:2 FTS were qualified as estimated (J) in samples GW-06 and DUP due to high isotopically labeled surrogate recoveries and field duplicate variability.
 These results can be used for project objectives as estimated values, which may have a minor impact on the data usability.
- The positive result for PFOS in sample GW-05 was qualified as estimated (J) due to the
 ratio between the two precursor/product ion transitions being outside the acceptance
 limits. This result can be used for project objectives as an estimated value, which may
 have a minor impact on the data usability.

Data Completeness

The data package was a complete Level IV data deliverable with the following exception. The sample receipt checklists were missing. The laboratory was contacted during validation and provided a revised report to correct this issue.

The laboratory was also contacted during validation to clarify why samples GW-06 and DUP were reported from diluted analyses in the original report. The revised Level IV data deliverable received on November 3, 2020 should be used for project objectives as results for GW-06 and DUP were reported from the undiluted analyses and qualified accordingly throughout this report.

In addition, the laboratory Job Narrative noted that the sample collection time on the container labels for sample GW-06 and the associated MS/MSD samples did not match the collection time recorded on the chain of custody (COC) form; collection times for these samples were entered based on the COC information. No validation action was required on this basis.

Holding Times and Sample Preservation

All holding time and sample preservation criteria were met.

Initial and Continuing Calibrations

The percent relative standard deviations were within the method acceptance criteria in the initial calibrations. The percent differences met the method acceptance criteria in the continuing calibration standards associated with the samples in this data set.

Blanks

PFAS compounds were not detected in the laboratory method blank.

Isotopically Labeled Surrogate Results

Eighteen isotopically labeled surrogates were spiked into the samples prior to extraction for

isotope dilution quantitation. The following table summarizes the isotopically labeled surrogate percent recoveries (%Rs) that did not meet the acceptance criteria and the resulting validation actions.

Sample ID	M2-6:2 FTS (%R)	M2-8:2 FTS (%R)	%R Limits	Validation Action
GW-05	265	239		0 15 5 0 5 7 0 1 0 0 5 7 0 1 0 0 0 5 7 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GW-04	165	-		Qualification was not required since 6:2 FTS and/or 8:2 FTS were not detected in the listed samples.
GW-07	161	-		1 To were not detected in the listed samples.
GW-06	208	186	25-150	The positive results for 6:2 FTS were qualified as estimated (J) in samples GW-06 and DUP.
DUP	223	191		Qualification was not required based on the high %Rs of M2-8:2 FTS since 8:2 FTS was not detected in samples GW-06 and DUP.
-: Met criteria]			

MS/MSD Results

MS/MSD analyses were performed on sample GW-06. All %Rs and relative percent differences (RPDs) were within the laboratory acceptance criteria.

LCS Results

The LCS %Rs were within the laboratory acceptance criteria.

Internal Standards

One isotopically labeled internal standard, 13C2 PFOA, was added to each sample prior to injection to monitor for ion suppression/enhancement at the instrument level. The %Rs were within the laboratory acceptance limits of 50-150%.

Field Duplicate Results

Samples GW-06 and DUP were submitted as the field duplicate pair with this sample set. The following table summarizes the RPDs of the detected results and the validation actions.

Analyte	QL(s) (ng/L)	GW-06 (ng/L)	DUP (ng/L)	RPD (%)	Validation Action
PFBA	4.5/4.4	15	14	6.9	
PFPeA	1.8	5.2	5.2	0	
PFHxA	1.8	3.6	3.6	0	
PFHpA	1.8	3.0	2.7	10.5	
PFOA	1.8	13	12	8.0	None
PFNA	1.8	1.9	2.5	27.3	None
PFBS	1.8	10	12	18.2	
PFHxS	1.8	3.5	3.4	2.9	
PFHpS	1.8	0.20 J	0.17 J	16.2	
PFOS	1.8	8.3	8.1	2.4	
6:2 FTS	4.5/4.4	12	20	50	The positive results for 6:2 FTS were qualified as estimated (J) in samples GW-06 and DUP.

Criteria:

- When both results are > 2x the QL, RPDs must be ≤ 30%.
- When one or both results are < 2x the QL, absolute difference must be < the QL.

Sample Results and Reported Quantitation Limits

Sample calculations were spot-checked; there were no errors noted.

Select PFAS results were reported below the lowest calibration standard level and QL. These results were qualified as estimated (J) in the associated samples by the laboratory.

There were no dilutions performed on the samples in this data set.

The laboratory narrative also noted the following:

- Samples GW-04, GW-05, GW-06, and DUP exhibited a yellow color prior to extraction.
- Samples GW-04, GW-05, GW-07, and DUP contained a thin layer of sediment at the bottom of the bottle prior to extraction.
- Sample GW-06 contained floating particulates in the sample bottle prior to extraction.
- Samples GW-04, GW-05, GW-06, GW-07, and DUP exhibited a light yellow color after extraction and final volume.

Target Compound Identification

Extracted ion chromatograms were reviewed to verify the target compound identifications. The laboratory manually integrated several peaks to ensure the inclusion of linear and branched isomers for PFOA, PFOS, NEtFOSAA, NMeFOSAA, and/or PFHxS; and/or to ensure proper integration of all PFAS.

Two precursor/product ion transitions were used for identification for all compounds except for PFBA, PFPeA, PFOSA, NMeFOSAA, NEtFOSAA, 6:2 FTS, and 8:2 FTS which only used one precursor/product ion transition for identification.

The following table summarizes the ratio between the two precursor/product ion transitions for detected results that did not meet the laboratory acceptance criteria and the validation actions.

Sample ID	Compound	Ratio	Ratio QC Limits	Validation Actions
GW-05	PFOS	7.75	2.43-7.29	The positive result for PFOS in sample GW-05 was qualified as estimated (J).

QUALIFIED FORM 1s

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 480-176138-1

SDG No.:

Client Sample ID: GW-06 Lab Sample ID: 480-176138-1

Matrix: Water Lab File ID: 2020.10.09_A18_PFC_B_037.d

Analysis Method: 537 (modified) Date Collected: 10/06/2020 09:25

Extraction Method: 3535 Date Extracted: 10/09/2020 04:07

Sample wt/vol: 280.8(mL) Date Analyzed: 10/10/2020 04:45

Con. Extract Vol.: 10.0(mL) Dilution Factor: 1

Injection Volume: 20(uL) GC Column: Gemini C18 3x50 ID: 3(mm)

% Moisture: GPC Cleanup: (Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	15		4.5	2.1
2706-90-3	Perfluoropentanoic acid (PFPeA)	5.2		1.8	0.44
307-24-4	Perfluorohexanoic acid (PFHxA)	3.6		1.8	0.52
375-85-9	Perfluoroheptanoic acid (PFHpA)	3.0		1.8	0.22
335-67-1	Perfluorooctanoic acid (PFOA)	13		1.8	0.76
375-95-1	Perfluorononanoic acid (PFNA)	1.9		1.8	0.24
335-76-2	Perfluorodecanoic acid (PFDA)	ND		1.8	0.28
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.98
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.65
375-73-5	Perfluorobutanesulfonic acid (PFBS)	10		1.8	0.18
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	3.5		1.8	0.51
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.20	J	1.8	0.17
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	8.3		1.8	0.48
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.8	0.28
754-91-6	Perfluorooctanesulfonamide (FOSA)	ND		1.8	0.87
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		4.5	1.1
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		4.5	1.2
27619-97-2	6:2 FTS	12	J	4.5	2.2
39108-34-4	8:2 FTS	ND		1.8	0.41

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 480-176138-1

SDG No.:

Client Sample ID: GW-05 Lab Sample ID: 480-176138-2

Matrix: Water Lab File ID: 2020.10.09_A18_PFC_B_040.d

Analysis Method: 537 (modified) Date Collected: 10/06/2020 10:40

Extraction Method: 3535 Date Extracted: 10/09/2020 04:07

Sample wt/vol: 280.2(mL) Date Analyzed: 10/10/2020 05:12

Con. Extract Vol.: 10.0(mL) Dilution Factor: 1

Injection Volume: 20(uL) GC Column: Gemini C18 3x50 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	22		4.5	2.1
2706-90-3	Perfluoropentanoic acid (PFPeA)	6.2		1.8	0.44
307-24-4	Perfluorohexanoic acid (PFHxA)	5.7		1.8	0.52
375-85-9	Perfluoroheptanoic acid (PFHpA)	2.8		1.8	0.22
335-67-1	Perfluorooctanoic acid (PFOA)	7.4		1.8	0.76
375-95-1	Perfluorononanoic acid (PFNA)	0.86	J	1.8	0.24
335-76-2	Perfluorodecanoic acid (PFDA)	0.72	J	1.8	0.28
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.98
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.65
375-73-5	Perfluorobutanesulfonic acid (PFBS)	4.3		1.8	0.18
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	3.2		1.8	0.51
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8	0.17
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	5.5	-I J	1.8	0.48
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.8	0.29
754-91-6	Perfluorooctanesulfonamide (FOSA)	ND		1.8	0.87
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		4.5	1.1
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		4.5	1.2
27619-97-2	6:2 FTS	ND		4.5	2.2
39108-34-4	8:2 FTS	ND		1.8	0.41

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 480-176138-1

SDG No.:

Client Sample ID: GW-01 Lab Sample ID: 480-176138-3

Matrix: Water Lab File ID: 2020.10.09_A18_PFC_B_041.d

Analysis Method: 537 (modified) Date Collected: 10/06/2020 12:20

Extraction Method: 3535 Date Extracted: 10/09/2020 04:07

Sample wt/vol: 285.8(mL) Date Analyzed: 10/10/2020 05:21

Con. Extract Vol.: 10.0 (mL) Dilution Factor: 1

Injection Volume: 20(uL) GC Column: Gemini C18 3x50 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	6.1		4.4	2.1
2706-90-3	Perfluoropentanoic acid (PFPeA)	8.1		1.7	0.43
307-24-4	Perfluorohexanoic acid (PFHxA)	7.7		1.7	0.51
375-85-9	Perfluoroheptanoic acid (PFHpA)	5.2		1.7	0.22
335-67-1	Perfluorooctanoic acid (PFOA)	13		1.7	0.74
375-95-1	Perfluorononanoic acid (PFNA)	0.58	J	1.7	0.24
335-76-2	Perfluorodecanoic acid (PFDA)	ND		1.7	0.27
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.96
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.7	0.48
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.64
375-73-5	Perfluorobutanesulfonic acid (PFBS)	6.4		1.7	0.17
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	6.1		1.7	0.50
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.24	J	1.7	0.17
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	8.5		1.7	0.47
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.7	0.28
754-91-6	Perfluorooctanesulfonamide (FOSA)	ND		1.7	0.86
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		4.4	1.0
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		4.4	1.1
27619-97-2	6:2 FTS	ND		4.4	2.2
39108-34-4	8:2 FTS	ND		1.7	0.40

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 480-176138-1

SDG No.:

Client Sample ID: GW-04 Lab Sample ID: 480-176138-4

Matrix: Water Lab File ID: 2020.10.09_A18_PFC_B_042.d

Analysis Method: 537 (modified) Date Collected: 10/06/2020 13:25

Extraction Method: 3535 Date Extracted: 10/09/2020 04:07

Sample wt/vol: 269.8(mL) Date Analyzed: 10/10/2020 05:30

Con. Extract Vol.: 10.0(mL) Dilution Factor: 1

Injection Volume: 20(uL) GC Column: Gemini C18 3x50 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	8.7		4.6	2.2
2706-90-3	Perfluoropentanoic acid (PFPeA)	5.7		1.9	0.45
307-24-4	Perfluorohexanoic acid (PFHxA)	4.2		1.9	0.54
375-85-9	Perfluoroheptanoic acid (PFHpA)	2.8		1.9	0.23
335-67-1	Perfluorooctanoic acid (PFOA)	9.8		1.9	0.79
375-95-1	Perfluorononanoic acid (PFNA)	0.69	J	1.9	0.25
335-76-2	Perfluorodecanoic acid (PFDA)	ND		1.9	0.29
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.0
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.9	0.51
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.68
375-73-5	Perfluorobutanesulfonic acid (PFBS)	7.6		1.9	0.19
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	3.6		1.9	0.53
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.9	0.18
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	6.9		1.9	0.50
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.9	0.30
754-91-6	Perfluorooctanesulfonamide (FOSA)	ND		1.9	0.91
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		4.6	1.1
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		4.6	1.2
27619-97-2	6:2 FTS	ND		4.6	2.3
39108-34-4	8:2 FTS	ND		1.9	0.43

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 480-176138-1

SDG No.:

Client Sample ID: GW-07 Lab Sample ID: 480-176138-5

Matrix: Water Lab File ID: 2020.10.09_A18_PFC_B_043.d

Analysis Method: 537 (modified) Date Collected: 10/06/2020 14:45

Extraction Method: 3535 Date Extracted: 10/09/2020 04:07

Sample wt/vol: 276.1(mL) Date Analyzed: 10/10/2020 05:39

Con. Extract Vol.: 10.0 (mL) Dilution Factor: 1

Injection Volume: 20(uL) GC Column: Gemini C18 3x50 ID: 3(mm)

% Moisture: GPC Cleanup:(Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	29		4.5	2.2
2706-90-3	Perfluoropentanoic acid (PFPeA)	3.0		1.8	0.44
307-24-4	Perfluorohexanoic acid (PFHxA)	1.9		1.8	0.53
375-85-9	Perfluoroheptanoic acid (PFHpA)	1.1	J	1.8	0.23
335-67-1	Perfluorooctanoic acid (PFOA)	2.2		1.8	0.77
375-95-1	Perfluorononanoic acid (PFNA)	0.28	J	1.8	0.24
335-76-2	Perfluorodecanoic acid (PFDA)	ND		1.8	0.28
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.8	1.0
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.8	0.50
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.66
375-73-5	Perfluorobutanesulfonic acid (PFBS)	2.1		1.8	0.18
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	1.7	J	1.8	0.52
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8	0.17
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	1.5	J	1.8	0.49
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.8	0.29
754-91-6	Perfluorooctanesulfonamide (FOSA)	ND		1.8	0.89
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		4.5	1.1
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		4.5	1.2
27619-97-2	6:2 FTS	ND		4.5	2.3
39108-34-4	8:2 FTS	ND		1.8	0.42

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 480-176138-1

SDG No.:

Client Sample ID: DUP Lab Sample ID: 480-176138-6

Matrix: Water Lab File ID: 2020.10.09_A18_PFC_B_044.d

Analysis Method: 537 (modified) Date Collected: 10/06/2020 11:15

Extraction Method: 3535 Date Extracted: 10/09/2020 04:07

Sample wt/vol: 282.2(mL) Date Analyzed: 10/10/2020 05:48

Con. Extract Vol.: 10.0(mL) Dilution Factor: 1

Injection Volume: 20(uL) GC Column: Gemini C18 3x50 ID: 3(mm)

% Moisture: GPC Cleanup: (Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	14		4.4	2.1
2706-90-3	Perfluoropentanoic acid (PFPeA)	5.2		1.8	0.43
307-24-4	Perfluorohexanoic acid (PFHxA)	3.6		1.8	0.51
375-85-9	Perfluoroheptanoic acid (PFHpA)	2.7		1.8	0.22
335-67-1	Perfluorooctanoic acid (PFOA)	12		1.8	0.75
375-95-1	Perfluorononanoic acid (PFNA)	2.5		1.8	0.24
335-76-2	Perfluorodecanoic acid (PFDA)	ND		1.8	0.27
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.97
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49
72629-94-8	Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.65
375-73-5	Perfluorobutanesulfonic acid (PFBS)	12		1.8	0.18
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	3.4		1.8	0.50
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.17	J	1.8	0.17
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	8.1		1.8	0.48
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.8	0.28
754-91-6	Perfluorooctanesulfonamide (FOSA)	ND		1.8	0.87
2355-31-9	N-methylperfluorooctanesulfonamidoac etic acid (NMeFOSAA)	ND		4.4	1.1
2991-50-6	N-ethylperfluorooctanesulfonamidoace tic acid (NEtFOSAA)	ND		4.4	1.2
27619-97-2	6:2 FTS	20	J	4.4	2.2
39108-34-4	8:2 FTS	ND		1.8	0.41

QC NONCONFORMANCE DOCUMENTATION

FORM II LCMS SURROGATE RECOVERY

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 480-176138-1

SDG No.:

Matrix: Water Level: Low

GC Column (1): Gemini C18 ID: 3 (mm)

Client Sample ID	Lab Sample ID	PFBA #	PFPeA #	C3PFBS #	PFHxA #	C4PFHA #	PFHxS	# <mark>M262FTS</mark> #	PFOA
GW-06	480-176138-1	36	63	86	76	87	104	208 *5	93
GW-05	480-176138-2	43	62	92	75	93	110	265) *5	97
GW-01	480-176138-3	72	86	85	93	96	89	109	101
GW-04	480-176138-4	55	72	81	80	95	92	(<mark>165</mark>) *5	90
GW-07	480-176138-5	68	79	79	83	91	88	(<mark>161</mark>) *5	100
DUP	480-176138-6	35	64	89	77	98	109	(223) *5	101
	MB 320-420118/1-A	85	88	85	89	88	91	104	104
	LCS 320-420118/2-A	84	90	86	87	91	87	100	94
GW-06 MS MS	480-176138-1 MS	34	60	82	74	88	95	190 *5	103
GW-06 MSD MSD	480-176138-1 MSD	37	64	86	77	94	100	200 *5	98

	QC LIMITS
PFBA = 13C4 PFBA	25-150
PFPeA = 13C5 PFPeA	25-150
C3PFBS = 13C3 PFBS	25-150
PFHxA = 13C2 PFHxA	25-150
PFHxS = 1802 PFHxS	25-150
C4PFHA = 13C4 PFHpA	25-150
M262FTS = M2-6:2 FTS	25-150
PFOA = 13C4 PFOA	25-150

 $\ensuremath{\text{\#}}$ Column to be used to flag recovery values

FORM II 537 (modified)

FORM II LCMS SURROGATE RECOVERY

Lab Name: Eurofins TestAmerica, Sacramento Job No.: 480-176138-1

SDG No.:

Matrix: Water Level: Low

GC Column (1): <u>Gemini C18</u> ID: <u>3</u> (mm)

Client Sample ID	Lab Sample ID	PFOS #	PFNA #	PFOSA #	#M282FTS#	PFDA 🗧	d3NMFOS#	PFUnA	#d5NEFOS =
GW-06	480-176138-1	102	103	91	186 *5	91	102	114	112
GW-05	480-176138-2	110	93	82	239 *5	97	88	112	106
GW-01	480-176138-3	94	104	81	101	87	83	90	91
GW-04	480-176138-4	90	102	80	133	88	81	101	92
GW-07	480-176138-5	85	107	79	128	83	78	86	90
DUP	480-176138-6	111	99	97	191 *5	120	109	121	117
	MB 320-420118/1-A	91	99	77	103	84	88	99	96
	LCS 320-420118/2-A	88	85	81	97	79	95	82	95
GW-06 MS MS	480-176138-1 MS	98	96	89	163 *5	88	95	101	99
GW-06 MSD MSD	480-176138-1 MSD	104	100	90	166 *5	88	100	92	106

	QC LIMITS
PFOS = 13C4 PFOS	25-150
PFNA = 13C5 PFNA	25-150
PFOSA = 13C8 FOSA	25-150
M282FTS = M2-8:2 FTS	25-150
PFDA = 13C2 PFDA	25-150
d3NMFOS = d3-NMeFOSAA	25-150
PFUnA = 13C2 PFUnA	25-150
d5NEFOS = d5-NEtFOSAA	25-150

 $\ensuremath{\text{\#}}$ Column to be used to flag recovery values

FORM II 537 (modified)

Report Date: 12-Oct-2020 11:42:24 Chrom Revision: 2.3 08-Oct-2020 16:36:14

Data File: \\chromfs\Sacramento\ChromData\A18\20201011-105155.b\2020.10.09_A18_PFC_B_040.d

Ratio Calibration: CCV Sample: \\chromfs\Sacramento\ChromData\A18\20201011-105155.b\2020.10.09_A18_PFC_B_034.d

Ratio Calibration: C	CV Sar	mpie: \\d	cnromts	Sacrame	ento\ChromDat	:a\A 18\2020	01011-105155.b\202	0.10.09_	A 18_P	FC_B_034.a
Signal	RT	EXP RT	DLT RT	REL RT	Response	Amount ng/ml	Ratio(Limits)	%Rec	S/N	Flags
D 20 M2-6:2 FTS 429.00 > 81.00	3.880	3.887	-0.007	0.994	4835225	6.29	GW-05	265	128	
21 6:2 FTS 427.00 > 407.00	3.880	3.887	-0.007	1.000	126238	0.0276			93.9	
D 25 13C4 PFOA 417.00 > 372.00	3.905	3.903	0.002	1.000	11182149	2.43		97.0	6648	
* 23 13C2 PFOA 415.00 > 370.00 22 Perfluorooctar			0.002		12206801	2.50			6818	M
413.00 > 369.00 413.00 > 169.00 D 27 13C4 PFOS	3.905	3.903	0.002 0.002		1038452 386712	0.2067	Target=2.95 2.69(1.48-4.43)		11.9 121	M M
503.00 > 80.00			-0.006	1.093	3809023	2.62		110	121	
29 Perfluorooctar 499.00 > 80.00 499.00 > 99.00	4.142	4.276	-0.134 -0.006		272409 35159	0.1543	Target=4.86 (7.75(2.43-7.29)		3.5 5.3	RM RM M
D 30 13C5 PFNA 468.00 > 423.00			-0.006	1.098	9550967	2.32		92.8	5033	
31 Perfluoronona 463.00 > 419.00 463.00 > 169.00	4.286	4.292	-0.006 -0.006		90439 10878	0.0240	Target=8.38 8.31(4.19-12.57)		2.3 7.4	M M
D 33 13C8 FOSA 506.00 > 78.00			0.002	1.182	5109919	2.05		81.9	8974	
34 Perfluorooctar 498.00 > 78.00			0.002	1 000	11884	0.006555			27.7	
D 39 13C2 PFDA 515.00 > 470.00			0.002		10423558	2.43		97.3	9618	
D 38 M2-8:2 FTS 529.00 > 81.00	4.643	4.650	-0.007	1.189	5692892	5.73		239	273	
36 8:2 FTS 527.00 > 507.00	4.643	4.650	-0.007	1.000	9015	0.002151			43.0	
37 Perfluorodeca 513.00 > 469.00			-0.007	1 000	81733	0 0202	Target=9.72		3.2	
513.00 > 169.00	4.652		0.002		7287	0.0202	11.22(4.86-14.59)		7.9	
D 40 d3-NMeFOS		4.811	-0.006	1.231	4570836	2.20		87.9	2791	
41 NMeFOSAA 570.00 > 419.00		4.811	0.004	1.002	8200	0.005903			11.1	
	4.960		-0.007	1.270	11557899	2.80		112	13464	
45 Perfluorounde 563.00 > 519.00			-0.007	1 000	28097	0 007750	Target=7.89		2.6	
563.00 > 169.00			0.007		4030	0.007730	6.97(3.94-11.83)		4.7	
D 44 d5-NEtFOSA							,			
589.00 > 419.00	4.970	4.977	-0.007	1.273	5639047	2.66		106	3034	
46 NEtFOSA 584.00 > 419.00	4.980	4.977	0.003	1.002	10545 Page 438 of	0.006524 882			28.6	