

Elkins-Sinn, Inc. • Lederle Laboratories • A.H. Robins Company, Inc. • Lederle-Praxis Biologicals • Wyeth-Ayerst Laboratories

P.O. Box 8299, Philadelphia, PA 19101-8299 . (610) 688-4400

Division of American Home Products Corporation

April 26, 2001

Mr. Paul Patel **Environmental Engineer** New York Department of Environmental Conservation Division of Solid and Hazardous Materials 50 Wolf Road Albany, NY 12233-7252

Subject:

Draft Three Year CMS Groundwater Sampling Plan Wyeth-Ayerst Pharmaceuticals Pearl River, NY

MAY - 2 2001

BUREAU OF RADIATION & HAZARDOUS SITE MANAGEM DIVISION OF SOLID & HAZARDOUS MATERIALS

Dear Mr. Patel:

Enclosed are three copies of subject Plan. This Plan has been prepared as per discussions with you, Mr. Kaminski and Mr. And Mr. Gronwald during our October 13, 2000 meeting in Albany and during subsequent telephone conversations.

The draft Three Year CMS Groundwater Monitoring Plan has been designed to address the following issues discussed during our 10/13/00 meeting:

- The need for time series data verifying that natural attenuation of contaminants is on-going and that levels are continuing to decrease such that all NYSDEC groundwater standards are, or will, eventually be met.
- The need to verify that active R&D Sewers are not sources that are contributing to groundwater deficiencies.
- The need to monitor VOC levels in groundwater at the southwestern boundary of the site.

Paul, I believe the enclosed Plan will satisfy these objectives; if you concur, please let us know and we will issue a Final Plan and initiate field work A.S.A.P.

Sincerely,

Ed Helmig Principal Project Engineer

Attachment

- CC: P. Alexandro M. Kontaxis M. Katz
- L. Cordone S. Rossello R. Constable

LTH-763

THREE-YEAR CMS GROUNDWATER SAMPLING WYETH-AYERST LABORATORIES FACILITY PEARL-RIVER, NEW YORK

PREPARED FOR:

280 King of Prussia Road St. Davids, PA 19087

PREPARED BY:

PARSONS ENGINEERING SCIENCE, INC.

290 Elwood Davis Road, Suite 312 Liverpool, New York 13088 (315) 451-9560 Fax (315) 451-9570

APRIL 2001

P:\737053\WP\37053R03COVER.DOC

THREE-YEAR CMS GROUNDWATER SAMPLING WYETH-AYERST LABORATORIES FACILITY PEARL RIVER, NEW YORK

Prepared For:

Wyeth-Ayerst Laboratories

280 King of Prussia Road St. Davids, PA 19087

Prepared By:

PARSONS ENGINEERING SCIENCE, INC.

290 Elwood Davis Road, Suite 312 Liverpool, New York 13088 Phone: (315) 451-9560 Fax: (315) 451-9570

April 2001

TABLE OF CONTENTS

SECTION 1 INTRODUCTION1-1
1.1 PURPOSE
SECTION 2 SCOPE OF WORK
2.1 OBJECTIVES
2.2 MONITORING WELL INSTALLATIONS
2.3 GROUNDWATER SAMPLING AND REPORTING FREQUENCY
SECTION 3 REFERENCES

LIST OF TABLES

TABLE 1	GROUNDWATER	ANALYTICAL	RESULTS	FROM 199	96 RFI	
TABLE 2	GROUNDWATER	SAMPLING LO	OCATIONS	••••••		

LIST OF FIGURES

FIGURE 1	SITE LOCATION MAP	1-4
FIGURE 2	SAMPLE LOCATION MAP	1-5

APPENDIX A - FIELD SAMPLING PLAN	A-1
A.1 MONITORING WELL INSTALLATIONS	A-1
A.2 GROUNDWATER SAMPLING AND ANALYSIS	A-1
A.3 QA/QC PROGRAM	A-2
APPENDIX B - BORING LOGS AND MONITORING WELL CONSTRUCTION DETAILS	B-1

SECTION 1

INTRODUCTION

1.1 PURPOSE

The three-year groundwater monitoring program is being implemented as a corrective measures study (CMS) to evaluate any remaining groundwater impacts from the Pearl River facility in accordance to an agreement made between Wyeth-Ayerst and New York State Department of Environmental Conservation (NYSDEC) at a meeting conducted on October 11th, 2000. The purpose of this three-year groundwater monitoring plan is to monitor volatile organic compounds in shallow and deep groundwater in the southwestern portion of the Wyeth-Ayerst facility, Pearl River New York (Figure 1.1).

In 1995 and 1996, a RCRA Facilities Investigation (RFI) was conducted at the Pearl River Facility. A portion of this investigation focused on the Wastewater Treatment Plant (SWMU 34), Former Solvent Burn Pit (SWMU 62) and Landfills 1 and 2 (SWMUs 47 and 48. The results from this study indicated VOCs in groundwater adjacent to, and downgradient from these four areas (see Table 1). A Post Sewer System Rehabilitation Subsurface Investigation (PSSRSI) was also conducted to evaluate the integrity of the research and development sewers (SWMU 33) at the Pearl River facility. Groundwater results from this investigation identified low levels of acetone (62 ug/L) and chloroform (12 ug/L) above regulatory criteria at one location (GW-99-64) downgradient of Segment 2 of the research and development sewers.

In 1998, the extent and probable impacts of VOCs in groundwater downgradient of SWMU 62 and at the southern property boundary were evaluated using the USEPA BIOSCREEN¹ Model (USEPA, 1996). Using worst-case, conservative assumptions, such as an "infinite" source volume and 8-year half life, the modeling indicated that only Vinyl Chloride would have any potential to reach the site boundary. In 1999, Parsons ES conducted a natural attenuation evaluation in the vicinity of the former solvent burn pit (SWMU 62) to verify the modeling results. Analytical data from that investigation revealed the number of VOCs had declined from 11 to 7. In addition, VOC concentrations in and around the burn pit had declined dramatically (e.g. Vinyl Chloride declined from 77 to 5 ug/L). Conclusions from this report indicated that the greatly reduced VOC levels at all sampling locations could be attributed to a limited source volume and extensive and rapid natural attenuation. Therefore, the actual potential for VOCs to reach the site boundary was considered to be very low.

¹ BIOSCREEN is an analytical solute transport model based on the Domenico (1987) equation. The model is programmed using the Microsoft[®] Excel spreadsheet, and was developed for the Air Force Center for Environmental Excellence (AFCEE) Technology Transfer Division at Brooks Air Force Base by Groundwater Services, Inc., Houston, Texas. BIOSCREEN can simulate advection, dispersion, and adsorption. The model is also designed to simulate biodegradation by both aerobic and anaerobic reactions.

An evaluation of the nearby landfill areas using the BIOSCREEN Model was not performed due to the extremely low concentrations (3 J to 7 J ug/L) of ethenes dectected in groundwater samples downgradient from the landfills.

TABLE 1GROUNDWATER ANALYTICAL RESULTS FROM 1996 RFI

		LANDFILL	51&2		FORMER SOLVENT BURNING PIT				
COMPOUND	DETECTIONS CONCENTRATION RANGE (WELLS)/ (ug/l) SAMPLES				DETECTIONS (WELLS)/ SAMPLES	CONCENTRATION RANGE (ug/l)			
1,1,1-Trichloroethane	1/19		1.6 J		1/4		11 J		
1,1-Dichloroethane	7/19	2.7 J	to	27	3/4	10	to	80	
1,1-Dichloroethene	1/19		1.75 J		1/4		5 J		
1,2-Dichloroethene	2/19	1.04 J	to	13.2 J	0/4		ND		
1,2-Dichloroethane	1/19	1.89 J	to	2.09 J	1/4	14 J			
2-Hexanone	5/19	1.25 J	to	23 J	0/4		ND		
4-Methyl-2-Pentanone	1/19	7 J		General Contraction of Contraction	0/4	ND			
Acetone	4/19	6 J	to	12 J	1/4	31J			
Benzene	10/19	1.01 J	to	51.2	2/4	6	to	8.9	
Carbon disulfide	2/19	5.4 J	to	12 J	0/4		ND		
Chlorobenzene	2/19	3.5 J	to	4.19 J	0/4		ND		
Chloroform	4/19	1.3 J	to	18.6	1/4		2 J		
Methylene chloride	8/19	1.8 J	to	17 J	1/4		8 J		
Tetrachloroethane	0.19		ND		3/4	4.1 J	to	61 J	
Tetrachloroethene	2/19	2.8 J	to	3.8 J	0/4	ND			
Toluene	4/19	1.2 J	to	19.8 J	0/4	ND			
Trichloroethene	4/9	1.1 J	to	37.1	2/4	1.9 J	to	60 J	
Vinyl chloride	0/19		ND		2/4	4.2 J	to	60 J	
Xylenes (total)	2/19	1.06 J	to	7.2 J	0/4		ND		

\\SYRFS01\PROJECTS\737053\WP\37053R03.DOC April 23, 2001 PARSONS ENGINEERING SCIENCE, INC.

H:\GRAPHICS\729310\sitloc.ds4 (page 1)

1.	BOLDED	WELL	LOCATIONS	ARE	THOSE	TO	8E	SAMPLED.

	MONITORING WELL LUCATION
⊕ EPT P-1	PIEZOMETER- 2" METAL PIPE LOCATION
🔶 rm-888	MONITORING WELL LOCATION
	PROPOSED MONITORING WELL LOCATION
1 m	

SECTION 2

SCOPE OF WORK

2.1 OBJECTIVES

The primary scope of this work involves the installation and sampling of two shallow monitoring wells, sampling eight shallow monitoring wells, and sampling one deep production well and one deep monitoring well in the southwestern section of the Wyeth-Ayerst facility, Pearl River New York (see Table 2.1 for sampling locations and rationale).

The objectives of the groundwater monitoring are to:

- 1) Outline a sentinel monitoring system near the southern boundary of the Pearl River facility,
- 2) Continue to monitor shallow and deep groundwater in the area, and
- 3) Continue to evaluate the attenuation of VOCs in groundwater.

2.2 MONITORING WELL INSTALLATION

Two shallow monitoring wells will be installed at the Pearl River facility to assess any possible impacts remaining from the research and development sewers. (Figure 2). Details of the monitoring well installations are presented in Appendix A. Installation of these wells was deemed necessary due to groundwater results from the PSSRSI in April 2000. The first well will be installed east of Waste Water Treatment Plant (WWTP) and downgradient from the eastern portion of Segment 3 of the research and development sewers (MW-01-1). The second well will be installed near the northeast corner of the intersection between Lederle Road and Harvey Way (MW-01-2). This location is downgradient from Segment 2 of the research and development sewers as well as the low levels of acetone (62 ug/L) and chloroform (12 ug/L) outlined in the groundwater results from the PSSRSI.

2.3 GROUNDWATER SAMPLING AND REPORTING FREQUENCY

Groundwater samples will be collected quarterly for the first year and analyzed for TCL VOCs. Sampling procedures and analyses are presented in Appendix A. Analytical results will be available 30 days after the data have been received. A quarterly sampling report will be submitted to NYSDEC approximately one month after the sample results are received.

At the end of each year of sampling, an annual summary report will be prepared. The summary report will contain the analytical data from the previous year (e.g., for the first year, the four rounds of sampling). In addition, the report will contain a summary of groundwater quality trends since the start of groundwater monitoring and recommendations for sampling frequency and locations for the following year. An evaluation of the natural attenuation of VOCs will also be included in the annual report based on results from the sampling during the fourth quarter of

each year. The summary report for the third year will identify the need for continued monitoring and contain appropriate recommendations.

TABLE 2 GROUNDWATER SAMPLING LOCATIONS

WELL NUMBER	ANALYSES	SAMPLING RATIONALE	DEPTH TO WATER (TOC)	DEPTH TO BOTTOM (TOC)
MW-4	VOC	Upgradient of Landfill 1 and Landfill 2	9.15 ft	30.2 ft (Grade)
MW-5	VOC	Downgradient of Landfill 1 and Landfill 2	5.10 ft	22.0 ft (Grade)
80-16	VOC	Upgradient or Background Well	21.02 ft	72.32 ft
96-13	VOC	Downgradient of Waste Water Treatment Plant, replaces 82-12	16.69 ft	32.2 ft
96-14	VOC	Downgradient of Waste Water Treatment Plant, replaces 82-14	15.43 ft	34.3 ft
82-15	VOC	Upgradient of Waste Water Treatment Plant/ Downgradient of R&D Sewers	39.04 ft	57.4 ft
MW-99A	VOC	Downgradient Property Boundary	2.5 ft	18.0 ft
MW-99B	VOC	Downgradient Centerline Well	2.10 ft	16.5 ft
PW-66T	VOC	Deep Production Well	~7.0 ft	400 ft (Grade)
83-2	VOC	Deep Monitoring Well at Southern Boundary	2.5 ft	501.5 ft
MW-01-1	VOC	Shallow Monitoring Well Downgradient of R&D Sewers	TBD	TBD
MW-01-2	VOC	Shallow Monitoring Well Downgradient of R&D Sewers	TBD	TBD

Note: Samples collected during the fourth quarter of the year will also be analyzed for natural attenuation parameters including: ferric and ferrous iron, nitrate, sulfate, chloride and total organic carbon (TOC).

SECTION 3 REFERENCES

- Domenico, P.A. 1987. "An Analytical Model for Multidimensional Transport of a Decaying Contaminant Species". Journal of Hydrology, 91 (1987) 49-58.
- Leggette, Brashears, & Graham, Inc. *Water Elevation Map April 25, 1988.* Leggette, Brashears, & Graham, Inc, Wilton, CT.
- Lyman, W.J., Reehl, W.F. and Rosenblatt, D.H., 1982, Handbook of Chemical Property Estimation Methods, McGraw-Hill, Inc., NewYork, N.Y.
- Macay, Donald, Wan Ying Shiu and Kuo Ching Ma. 1992. Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals. Lewis Publishers, Chelsea, Michigan.
- Parsons ES. 1996a. Data Validation Report for Samples Collected 8/2.4/95 Through 10/27/95 SWMUs 5, 13, 14, 18-22, 34, 46, 47, 55 and AOC-A. Parsons Engineering Science, Inc., Liverpool, New York.
- Parsons ES. 1996b. *Data Validation Report for Samples Collected 1/23/96 Through 1/26/96* SWMUs 34, 46, 47, and 55. Parsons Engineering Science, Inc., Liverpool, New York.
- Parsons ES. 1996c. Data Validation Report for Samples Collected 4/30/96 Through 5/2/96. Parsons Engineering Science, Inc., Liverpool, New York.
- Parsons ES. 1996d. Data Validation Report for Samples Collected 7/30/96 Through 8/1/96. Parsons Engineering Science, Inc., Liverpool, New York.
- Parsons ES. 1996e. RCRA Facilities Assessment/investigation Report For The RCRA Corrective Action Program, Lederle Laboratories Facility, Pearl Kiver, New York. Parsons Engineering Science, Inc., Liverpool, New York.
- Parsons ES. 1998. Letter Report: RCRA Corrective Action at Lederle Laboratories, Pearl River, NY - Bioscreen Modeling Results. May 1998, Parsons Engineering Science, Inc., Liverpool, New York.
- Parsons ES. 2000. Letter Report: Former solvent burn pt (SWMU 62) Ash Layer Characterization Report Pearl River, New York. March 2000, Parsons Engineering Science, Inc., Liverpool, New York.
- Parsons ES. 2000. Letter Report: Former solvent burn pit (SWMU 62) Natural Attenuation Evaluation Report Pearl River, New York. October, 2000, Parsons Engineering Science, Inc., Liverpool, New York.

SECTION 3 REFERENCES (CONTINUED)

- USEPA. 1996. BIOSCREEN Natural Attenuation Decision Support System. EPA/600/R-96/087. National Risk Management Research Laboratory, Office of Research and Development, USRPA, Cincinnati, Ohio.
- USEPA. 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water. EPA/600/R-98/128. Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.
- USEPA, 2000. BIOCHLOR Natural Attenuation Decision Support System User's Manual Version 1.0. EPA/600/R-00/008. Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.

DRAFT

APPENDIX A FIELD SAMPLING PLAN

A-1

A.1 MONITORING WELL INSTALLATIONS

Based on water level measurements, the monitoring well borings will be advanced with 4.25-inch diameter or larger hollow stem augers to a depth of approximately 50 feet at MW-01-1 and 20 feet at MW-01-2. Split-spoon samples will be collected continuously from the ground surface to the bottom of the boring. Split-spoon sampling will be conducted in accordance with ASTM Specification D-1586-84 for standard penetration test and split barrel sampling. After collecting each sample, the borehole will be drilled to a depth equal to the top of the next sampling interval. Soil samples retrieved from the borehole will be visually described. The descriptions will be in accordance with the Unified Soil Classification System (USCS). Soil samples will be immediately screened for the evolution of organic vapors with a photoionization detector (PID). The cuttings will be staged next to the borehole for disposal.

Monitoring wells will be constructed with 2-inch inside diameter, threaded, flush-joint, schedule 40 PVC casings and screens. Screens will be 10 feet long with 0.01-inch slot openings. Each well will have a locking j-plug on the top of the riser to prevent any contamination from entering from the surface. The annulus will be backfilled with silica sand of the appropriate size (Morie No. 0 or finer) to a minimum height of 2 feet above the top of the screen. Auger flights will be withdrawn as sand is poured in a manner that will minimize hole collapse and bridging. A bentonite seal at least 2 feet thick will be added and allowed to hydrate for at least one hour. The remainder of the annular space will be filled with cement/bentonite grout. Each well will have a cement pad and 3-foot locking well pipe or standard flush mount. After the wells have been installed, each will be developed by removing water until three consecutive pH, temperature, and conductivity readings are within 20% of each other, or turbidity is less than 50 NTUs.

Monitoring well locations were chosen after review and analysis of groundwater flow maps. Sources for these maps included the RCRA Facilities Assessment completed by Parsons ES in 1997 and groundwater flow maps by Leggette, Brashears & Graham, Inc. completed in 1988 for the American Cyanamid Company.

A.2 GROUNDWATER SAMPLING AND ANALYSES

Prior to the initial sampling event, the integrity of each of the wells to be sampled will be assessed. A detailed inspection/inventory of the existing groundwater monitoring wells will be performed to determine their usability for subsequent hydraulic and groundwater quality testing. The well inspection will entail:

- 1) Visual inspection to confirm above-grade well integrity;
- 2) Verification of well security;
- 3) Well depth measurement to verify that the well casing and screen are intact below grade and to estimate the amount of siltation within the well; and
- 4) Pumping the well to estimate yield and efficiency.

At the completion of the inspection, repairs and or replacements of critical wells will be performed. All well repairs will be completed by a licensed well drilling contractor, and will meet New York's monitoring well requirements. In the event that a critical well is irrevocably damaged, the original well will be properly abandoned and replaced by a new well.

Groundwater samples and water levels from each of the wells will be collected to outline VOC concentrations in the southwestern portion of the Pearl River facility (Table 1). The wells proposed for this monitoring plan include wells upgradient of the Landfills (MW-4), downgradient of the Landfills (MW-5, PW-66G), downgradient of the wastewater treatment plant (82-12 and 82-14), upgradient of the wastewater treatment plant and downgradient of the research and development sewers (82-15), downgradient near the southern boundary of the facility (MW-99A and 83-2), downgradient centerline well (MW-99B), downgradient of the research and development sewers (MW-01-1 and MW-01-2) and a background location (80-16). Samples from these wells are intended to assess groundwater quality in the shallow and deep zones of the aquifer in the southwestern portion of the facility.

Each well will be purged of a minimum of three times the volume of water in the casing, or until the well has gone dry twice (Table 1). Purging will be completed with a centrifugal pump, a submersible pump, or a HDPE dedicated bailer with dedicated polyethylene rope. All purge water will be contained and sent to the on-site wastewater treatment plant pending on preapproval by the facilities manager. The pH, temperature, conductivity, and turbidity measurements will be recorded before the sample is collected. All equipment used down-hole will be dedicated to that well or decontaminated before and between uses with an alconox wash and tap water rinse. All groundwater samples will be collected using dedicated HDPE bailers and dedicated polyethylene rope.

During the fourth quarter of each year, additional analyses will be conducted to assess the biodegredation parameters in groundwater. These additional analyses include ferric and ferrous iron by field Hach kit, nitrate by EPA Method 300.0, sulfate by EPA Method 300.0, chloride by EPA Method 300.0, and Total Organic Carbon by EPA 415.1.

All field activities (sample collection and well installation) will fello w the health and safety protocols outlined in the "Health and Safety Plan (HASP)" (submitted to the NYSDEC, 1995).

A.3 QA/QC PROGRAM

Field duplicate and matrix spike/matrix spike duplicate (MS/MSD) samples will be collected to evaluate the reproducibility of the sampling and laboratory analysis methods. Field duplicates and MS/MSD samples will be submitted at a rate of one each for every 20 regular samples submitted, or one each per seven days, whichever was more frequent. False sample identification (ID) numbers will be used to identify field duplicates to the laboratory. The actual field duplicate ID (i.e. the sample it was a duplicate of) will be recorded in the field book. The MS/MSD samples will be labeled as such for the laboratory. The field cluplicate and MS/MSD samples will be analyzed for the same list of parameters as the corresponding field samples in the sample delivery group.

Trip blanks consist of 40-milliliter (ml) aliquets of analyte-free water and empty sample bottles supplied by the laboratory. The trip blanks will be returned with the filled sample bottles to the laboratory. The purpose of the trip blank samples is to ensure that no VOC crosscontamination occurred during transport and sample handling. The trip blanks will be analyzed for TCL VOCs only.

Sample Chain-of-Custody (COCs) logs and custody seals will be used for all sample shipments. These logs and custody seals are used to ensure that sample integrity is not compromised during shipment. Shipment particulars, such as samples submitted, analyses requested, and sampling responsibility will be recorded on the COCs. The field team will retain one copy of the COC while the laboratory received the remaining two copies for internal use.

All analyses will be conducted using NYSDEC Analytical Services Protocol (ASP) dated September 1989 with December 1991 and September 1993 revisions. All analytical work will be performed by a laboratory approved by the New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) for all categories of solid and hazardous waste. Chemical and physical analyses not covered by ASP procedures will be conducted using procedures specified in the Quality Assurance Project Plan (QAPP). Sample custody, laboratory procedures and other QA/QC requirements will be performed in accordance with the specifications in the QAPP.

All analytical results will undergo full data validation using USEPA functional guidelines (USEPA, 1994), other USEPA guidance documents, and the provisions of the NYSDEC ASP.

All data generated during the sampling activities will be stored and managed using Accesstm database software. Following data validation, the master database will be updated to reflect any changes as a result of data validation. These changes will include concentration changes, where appropriate, and removal, addition, and/or changes to data qualifiers. All data used in this report will be taken from the updated master database to ensure that only current, validated analytical results are used. The database will also be used to store and retrieve water level data to produce tables, hydrographs, and water level contour maps.

					PARSONS ENGINEERING SCIENCE	BORING/ MW-4				
Contractor	: PARR	ATT-WO	LFF, INC.		DRILLING RECORD	WELL N	0.			
Driller:	GLEN	N LANSIN	G			-				
Inspector: ERIC A. FELTER					PROJECT NAME LEDERLE LABORATORIES, PEARL RIVER, NY	Sheet 1 of 2				
Rig Type:	INGE	RSOL-RA	ND 8300		PROJECT NUMBER 728069.01000	Location De	scription	WEST OF (1&:		
						LANDI	TLL, EL	OGE OF MAIN ACCESS		
G	ROUNDW	ATEROBS	ERVATIO	NS	Wester OFFAD (ADEC CALV	ROAD	(PAVEL	D).		
Water					Weather CLEAR, oo DEG, CALM	San Site	PLAN			
Date					Date/Time Start 8/31/951215	000 010	4 1611			
Time						1				
Meas.					Date/Time Finish 8/31/95 1530					
From										
PID	Sample	Sample	Percent	Blow	MATERIAL	USCS	GEO	COMMENTS		
Reading	LD.	Depth	Recovery	Cts	IDENTIFICATION	CLASSIF.	LOG			
		0								
								DUE TO UNDER		
					0.0 to 1.5' Gray organic rich SILT and FC. SAND, some cobbles, dry.	OL		GROUND		
		2						OTILITIES,		
		2						WAS HAND		
					1.5 to 4.0' Composted materaial with possible a little ash, moist	OL		DUG.		
		4]					
0.0			25	4						
				5	4.0 to 6.0' Gray SILT, some wood (black) fragments and chips, little fc. sand,	ML				
				4	possibly other organic materials (compost mixed with soil ?), moist.					
		6		4						
0.0			25	4						
				10	6.0 to 8.0' Gray-green FC. SAND, little f. gravel, little silt, moist.	SW				
				16						
		8		19						
0.0			60	16	8.0 to 9.0° Brown FC. SAND, little silt,moist.	SW		SAMPLE		
				12				DETWEEN		
		10		0	0.0 to 11.0 Prover E. M. SAND little sile moint	SW		AND 12 0' FOR		
0.0		10	50	9	55 IO ITA DIOWE P M. STEAD, IERE SE, HOR.	011		TCL/TAL		
0.0				11				ANALYSIS.		
				11						
		12		8						
0.0			20	8						
				6						
				5	11.0 to 16.5' Brown FC. SAND, trace to little silt, trace fc. gravel, moist to wet.	SW				
		14		7						
0.0			40	5				SAMPLE		
				6				COLLECTED		
				15				BETWEEN 14.0		
		16	50	9				AND 16.0' FOR		
0.0			50	10				THANAT VEL		
				10	16.5 to 18.0' Red-brown E-C. SAND some silt trace f - c gravel moist to wet	SM		SAMPLE		
		18		12	Elard, most in orara, someon, and t- gard, most in wet	UIVI		COLLECTED		
0.0			75	20				BETWEEN 16.0		
				22	18.0 to 20.0' Red-brown silty FC. SAND, trace f. gravel, moist to wet.	SM		AND 20.0' FOR		
				22	- Note occ. thin (<0.17) zones of more silt than sand.			GRAIN SIZE		
		20		24				ANALYSIS.		
					COMMENTS					
	\$5	= SPLIT SPO	N							
	A = /	UGER CUT	TINGS							
		C = CORED	1							

Contractor: PARRATT-WOLFF, INC.			LFF. INC.		PARSONS ENGINEERING SCIENCE	BORING/ MW-4 WELL NO.			
Driller:	GLEN	IN LANSIN	IG	-					
Inspector:	ERIC	A. FELTEI	R	-	PROJECT NAME LEDERLE LABORATORIES, PEARL RIVER, NY	Sheet 2	of	2	
Rig Type:	INGE	RSOL-RA	ND 8300	-	PROJECT NUMBER 728068/9.01000	Location De	scription:		
				-				11110 1045	
G	ROUNDW	ATER OB	SERVATIO	NS					
Water					Weather	LOCATION	PLAN		
Level						See Site	Plan		
Date					Date/Time Start	4			
Time									
Meas.					Date/Time Finish	-			
From				101			T		
PID	Sample	Sample	Percent	Blow	MATERIAL	USCS	GEO	COMMENTS	
Reading	1.1/.	20	Recovery	CB	IDENTIFICATION	CLASSIP.	LOG		
0.0		20	100	50/0.2					
			100						
		22			20.0 to 23.5' Red-brown SILT, some fc. sand, trace to little clay, v. hard, moist.	ML			
0.0			0	50/0					
		24							
0.0			<0.1	50/<0.1					
		26							
0.0		20	0	60/0.1	23.5 to 30.2° Redweathered bedrock Passaic Formation. No good camples				
					recovered, based on a few rock chins and augering				
				·					
		28							
0.0			0	60/0.1					
				•					
		30							
0.0			10	100/0.2	END OF BORING MW-4 AT 30.2', INSTALL MONITORING WELL.				
		20							
		34							
		36							
		38							
		40							
	1						-		
		اي	ł			<u></u>			
					COMMENTS				
	SS =	= SPLIT SPOO	NC						
	A = A	UGER CUTT	INGS						
		C = CORED							

					PARSONS ENGINEERING SCIENCE	BORING	/	MW-5	
Contractor	PARR	ATT-WOI	FF, INC.		DRILLING RECORD	WELL N	D .		
Willer.	GLEN	N LANSIN	G						
nspector:	spector: ERICA. FELTER				PROJECT NAME LEDERLE LABORATORIES, PEARL RIVER, NY	Sheet 1 of 2			
tig Type:	INGE	RSOL-RA	ND 8300		PROJECT NUMBER 728069.01000	Location De	scription	SOUTH OF	
						LANDFI	L, WES	T OF MW-13A/B,	
G	ROUNDW	ATEROBS	ERVATION	VS		EASTOP	FORME	ER SOLV. BURN PT	
Vater					Weather OVERCAST, LIGHT RAIN, 68 DEG., CALM	LOCATION	PLAN		
evel						See Site	Plan		
Date					Date/Time Start 9/13/95 1343	-			
Time									
deas.					Date/Ime Finish 9/13/95 1515	-			
from	Cample	Comple	Barret	101-	MATURIAI	11808	GRO	001000000	
PID	Sample	Danat	Percent	BIOW	IDENTIFICATION	USCS	GEO	COMMENTS	
kenang	LD.	Depta	Recovery	CB	IDENIIPICATION	CLASSIF.	100		
		0	75	8					
			15	8					
				50	0.0 to 3.0° Brown SILT, some fc. sand, trace fc. gravel, fill, dry,	ML			
		2							
-			42	14					
				31					
				12	3.0 to 4.0' Black cindery pavement/blacktop type fill material, dry.				
		4		50/0.1					
-			70	7				COLLECT	
				6	4.0 to 6.0° Brown SILT, little organics (tree branches, grass, etc.), little fc. sand,	ML		SAMPLE	
				6	trace fc. gravel, moist.			BETWEEN 4.	
		6		6				AND 6.0' FOR	
-			70	8	6.0 to 7.0' Trash fill of burnt material, broken glass, and plastic.			TCL/TAL	
				3				ANALYSIS.	
				4	7.0 to 8.0° Brown SILT, little organics (tree branches, grass, etc.), moist.	ML			
		8		4					
-	-		50	1					
				2		i iii			
		10		1	0.0 to 11.0 Gray PC. SAMD, some to sury, date L-C gravel, wet.	SM			
		10	10	10					
			10	25					
				26					
		12		20					
-			70	21	11.0 to 14.0' Brown F. SAND, little silt, moist to wet.	sw			
				24					
				25					
		14		36					
-			80	11					
				8					
				7					
		16		6					
-			80	4	14.0 to 19.0° Brown FC. SAND, little silt, trace fc. gravel, wet.	SW			
				7					
				6					
		18		7					
-			75	3					
				4					
				4	19.0 to 24.0' Brown silty FM. SAND, wet.	SM			
		20		6					

BORING/ MW-5 WELL NO.				
Sheet 2 of 2				
OMMENTS				
ECT				
WEEN 180				
26.0' FOR				
INSIZE				
LYSIS.				
ECT				
PLE				
WEEN 22.0				
24.0' FOR				
TOC, & pH				
LYSIS.				

72 DANBUI WILTON, C	RY RO	A D 897	PAGE 1 OF 1 PAGES
0 co-Contrion	TINOT. NEMO WALTI		ownes Lederle Laboratories
Fill consisting of sand, very fine			Pearl River, New Yo
to medium, gray; silt, black,			WELL No. 80-38B (MW-//A)
organic; glass fragments, amber;			DATE August 29, 1980
slight fill odor	10	10	Company Raymond International
Fill consisting of sand, very fine			Daniame Standard rotary (wate
to medium, gray; silt, black,			SAMPLING Wash
organic. Slight fill odor	6	16	SAMPLES BY David Scott
Fill consisting of sand, fine to			Pourt Grade
coarse, brown: bones: some clay,			CLEVATION 15.78 feet
yellow brown	2	18	casing 2 inch PVC
Fill consisting of sand, very fine to			SCREEM- TIMCO PVC
medium, grav: silt, black, organic	2	20	pure 2 inch sur Ma .020
Fill consisting of silt, vellow			15-20 feet
brown mixed with possible fermen-			PUNPING TEST-
tation cake		20+	Bussetsen
			STATIC WATER 7 39 Foot
			LEVEL
			Yield-
			REMARKON
			of gravel pack is 1 foot
			is overlain by 1 foot
• •	-		bentonite seal.

WELL I	_0(G	OWNER American Cyanamid Company
.EGGETTE, BRASHEARS	& G	RAHA	M, INC. Lederle Laboratories Div.
CONSULTING GROUND-WA	TER GI	EOLOGI	878
72 DANBURY I	ROAD		WELL NO. 02-12
WILTON, CT. O	8897		DATE 9/17/82 PAGE 1 OF 1 PAGES
	FADM	1 10	DESCRIPTION
Lecation Pearl River	0	2	(SS): Blows: 2, 2, 5, 12, Soil consisting of
New York			sand, fine to coarse with clay, light brown;
DATE B/30/82			little gravel, fine to medium.
DHILLING COMPANY Kendrick Drilling	2	10	(SS): Blows: 17, 20, 26, sampled interval 5 to
Standard Rotary			6.5 feet. Sand, medium to very coarse, with
Sauferne Split-spoon (55)			clay, reddish-brown; some gravel, fine to
SAMPLES David Scott			medium.
serestuce Grade	10	23	(SS): Blows: 20, 27, SO/3", sampled interval 10
elevation 19.25 feet			to 11.25 feet. Sand, very fine to fine and
WELL CONSTRUCTION			
TTPEPVC			clay, light brown; some gravel, fine to
BIAM 2" BLOT NO. 10			medium.
20'-30'			(SS): Blows: 42, 46, 73, sampled interval 15 tr
size Fine Gravel			16.5 feet.
CABING 2"			(SS): Blows: 94, 100/4", sampled interval 20
PEVELOPMENT_Flushed with			to 20.8 feet.
clean water	23	28.75	(SS): Blows: 32, 39, 41, sampled interval 25
9/7/82			to 25 5 fact ciller alar matrice human
PATE			(unthered hadrock suffered)
STATIC WATER 10 201 (mont			(weathered bedrock surface).
top of	28.7		blitstone, reddish-brown.
LEVEL Casing (TOC)			
Slug injection			
AtHABES: Stickup = 2.35'			
			· · ·

]

]

]

]

]

]

]

]

]

]

]

]

]

j

]

1

]

EGGETTE, BRASHEAR	5 & G	RAHA	M, INC. Lederle Laboratories Div.
CONSULTING GROUND-W 72 DANBURY	ROAD	EOLOG	WELL NO. 82-14
	DEPTH	IR FEET	DATE 9/17/82 PAGE 1 OF 4 PAGEB
Pearl River	FROM	1	(SS): Hammer Blows: 4, 6, Topsoil.
New York	1	3	(SS): Blows: 13, 18, sampled interval 1 to 2
-ATE 9/7/82			feet. Sand, fine and silt, yellow-brown;
SAULING Kendrick Drilling			· little clay; little gravel, fine to medium.
BRILLING Standard Rotary	3	8	(SS): Blows: 24, 17, 11, sampled interval 5 to
SAMPLING Split-Spoon (SS)			6.5 feet. Sand, fine to medium with clay,
TANPLES David Scott			yellow-brown; some gravel, fine to medium.
ALFENENCE Grade	8	24	(SS): Blows: 12, 12, 13, sampled interval 10
stavation 11.09 feet			to 11.5 feet. Sand, medium to coarse; some
SCREER PVC		1	gravel, fine to medium; little clay,
2" 20 0148 20			yellow-brown.
22.45-32.35'	14: '	18	(SS): Blows: 32, 45, 63, sampled interval 15
GRAVEL PACFIDE Gravel			to 16.5 feet. Sand, medium, reddish-brown;
2* PVC			trace silt.
Flushed with	18	23	(SS): Blows (300 1b Hammer): 22, 28, 29,
clean water			sampled interval 20 to 21.5 feet. Sand,
Pupting 1587 9/9/82			fine to medium; some clay, reddish-brown;
PARATION JE DOUL			little gravel, fine.
STATIC WATERS 31' (TOC)	23	26	(SS): Blows (300 1b Hammer) 52, sampled interval
Pumping wath DC)			25 to 25.5 feet. Sand, medium to coarse;
Slug injection			little clay, light reddish-brown; little
Stick up = 2.77'			gravel, fine to medium.
	26	29	Silty Clay, reddish-brown.
	29	30.25	(SS): Blows: 105/3" sampled interval 30 to
	1		30.25 feet. Sand, very fine to fine some

]

]

T

]

]

OWNER American Cyanamid Company, Lederle Laboratories Division

•

•

WELL NO. 82-14

٠

-.

]

]

]

1

PAGE 2 OF 2 PAGEB

DCPTH 1	N FEET	DESCRIPTION
FROM	10	
		clay, reddish brown; trace gravel, fine.
30,25	32.45	Arkose, medium to fine-grained, reddish brown.
		•
		·
Ī		

•. •	WELL	0	6	OWNER American Cyanamid Company
EGGE	TTE, BRASHEARS	6 & GF	RAHAN	M. INC. Lederle Laboratories Division
COM	SULTING GROUND-WA	TER GE	OLOGI	ST8
	72 DANBURY	ROAD		WELL NO. 82-15
	WILTON, CT.	06897		DATE 9/17/82 PAGE 1 OF 2 PAGES
		FROM	TO	DESCRIPTION
LOCATION	Pearl River,	0	2	(SS): Hammer Blows: 1, 5, 9, 8. Topsoil, very
_	New York			fine sand and clay, brown; little gravel,
MATE COMPLETED_	8/27/82			fine to medium.
SHILING	Kendrick Drilling	2	10	(SS): Hammer Blows: 20, 23, 20, sampled interval
	Standard Rotary			5 to 6.5 feet. Sand, fine to medium and
	Split-spoon (SS)			clay, brown; trace fine to medium gravel.
INPLES	David Scott	10	25.5	(SS): Blows: 73, 44, 39, sampled interval 10 to
HIERERCE	Grade			11.5 feet. Sand, very fine to fine and
ILEVATION	60.41 feet			clay, light brown; little gravel, fine to
SCREEN TYPE	PVC			medium.
BIAN 2	BLOT NO. 10			(SS): Blows: 35, 28, 25, sampled interval 15
	45'-55'			to 16.5 feet.
BRAVEL PAG	Fine Gravel			(SS): Blows: 63, 60/3", sampled interval 20 to
CA3100	2"			20.75 feet.
DEVELOPME	Flushed with			(SS): Blows: 117/6", sampled interval 25 to
_	clean water			25.5 feet.
PATE	09/07/82	25.5	35	(SS): Blows: 80, 50/2", sampled interval 30 to
BURATIO	hour			30.6 feet. Rock flour consisting of sand,
STATIC W LEVEL	39.04' (TOC)			very fine to fine and clay, gray-brown;
PUMPING LEVEL	top of casing water(TOC)			little fine gravel.
TIELD	Slug injection	35	45	(SS): Blows: 68, 85, 50/3" sampled interval 35
HUARES:	Very dense, clayey			to 36.25 feet. Rock flour consisting of
	logdement till - note abbreviated			sand, very fine to fine and clay, gray-
_	Hammer drives. Stickup = 2.40'.			brown; some fine to medium gravel.

OWNER

٠

• :

American Cyanamid Company, Lederle Laboratories Division

:GC

82-15 WELL NO.

PAGE 2 OF 2 PAGES

C

DEPTH	IN FEET	DESCRIPTION
FROM	TO	
		(SS): Blows: 103/6" sampled interval 40 to 40.5 feet.
45	51.2	(SS): Blows: 112/5" sampled interval 45 to 45.4 feet. Rock flour,
		consisting of sand, very fine to fine and clay, gray-brown; som
		gravel, fine to coarse.
		(SS): Blows: 45, 71, 50/2" sampled interval 50 to 51.2 feet.
51.2	55	Siltstone, reddish brown.
		•
		· · ·

	-	

					PARSONS ENGINEERING SCIENCE	BORING/ MW-15			
Contractor	PARR	ATT-WOI	LFF, INC.		DRILLING RECORD	WELL NO	D .		
Driller:	GLEN	N LANSIN	G						
Inspector:	ERIC	A. FELTER	NID 8200		PROJECT NAME LEDERLE LABORATORIES, FEARL RIVER, NY	I ocation De	OI		
Rig Type:	INGE	KSUL-KA	ND 8300		PROJECT NUMBER 72009,01000	OF FORM	AER SO	LVENT BURN PIT.	
G	ROUNDW	ATEROBS	ERVATIO	NS					
Water					Weather OVERCAST, LIGHT RAIN, 68 DEG., CALM	LOCATION	PLAN		
Level						See Site	Plan		
Date					Date/Time Start 9/13/95 0720	-			
Meas					Date/Time Finish 9/13/95 0950				
From						1			
FID	Sample	Sample	Percent	Blow	MATERIAL	USCS	GEO	COMMENTS	
Reading	I.D.	Depth	Recovery	Cts	IDENTIFICATION	CLASSIF.	LOG		
		0	100					NOSAMPLES	
0.0			100	50/0 3	0.0 to 0.5' Gray SIL1, compost dry.	ML.		COLLECTED	
				50/015	pieces (fill), dry.			FROM MW-15	
		2						FOR LAB.	
0.0			85	12	-			ANALYSIS.	
				27					
		4		20	1.5 to 5.0° Brown SiL 1, some i. – c. sand, trace i. – c. gravel, moist.	ML			
0.0			100	14					
				23					
				27					
		6		34	=				
0.0			100	25	-				
				31	5.0 to 10.0' Gray SILT, some fc. sand, trace fc. gravel, moist.	ML			
		8		37					
0.0			100	18				4	
				21	-				
		10		36	-				
0.0		10	100	42					
			100	50/0.3	3				
		12	<u> </u>		=				
0.0			1980	19					
				52	10.0 to 15.5' Brown SILT, some fc. sand, trace fc. gravel, moist.	ML			
		14		52	-				
0.0			100	39					
				50/0.3	3				
	ļ				4				
0.0		16	100	47	15 Sto 17 St Drown STIT some fire and waits and his in the	147			
0.0			100	50/0.3	15.5 to 17.5' brown SLL1, some 1c. sand, moist, several stringers o wet 1c. sand.	ML			
					-				
		18			- -				
0.0			100	44	-				
				50/0.2	2 17.5 to 22.0' Brown FC. SAND, little to some silt, wet.	SW/SM			
		20			4				
	1								
	•	·		·	COMMENTS			1	
	SS	= SPLIT SPC	OON						
	A = ,	AUGER CUT	TINGS						
		C = COREL	>						

Contractor	: PARR	ATT-WO	LFF, INC.		PARSONS ENGINEERING SCIENCE DRILLING RECORD	BORING/ MW-15 WELL NO.		MW-15		
Driller.	etor: ERIC A. FELTER									
Inspector:	ERIC	A. FELTER	2		PROJECT NAME LEDERLE LABORATORIES, PEARL RIVER, NY	Sheet 2 of 2				
Rig Type:	INGE	RSOL-RA	ND 8300		PROJECT NUMBER 728068/9.01000	728068/9.01000 Location Description:				
G	GROUNDWATER OBSERVATIONS			1S						
Water					Weather	LOCATION	PLAN			
Level					See Site Plan		Plan	1		
Date					Date/Time Start					
Time										
Meas.					Date/Time Finish					
From	-									
PID	Sample	Sample	Percent	Blow	MATERIAL	USCS	GEO	COMMENTS		
Reading	I.D.	Depth	Recovery	Cts	IDENTIFICATION	CLASSIF.	LOG			
0.0		20	100	49	=					
0.0			100	00	17.5 to 22.0° Brown E - C SAND little to some silt wet	SW/SM				
					17.5 10 22.0 ROWLT. C. SELVE, INC. 10 8010 801, WOL	0 11/0112				
		22			-					
					END OF BORING MW-15 AT 22.0°, INSTALL MONITORING WELL.					
]					
		24								
					_					
		26								
					-					
					-					
					-					
		28								
					-					
					-					
		30			-					
		50								
					1					
		32			1					
					=					
-										
		34								
					-					
		36								
					-					
		-								
		20			-					
		38								
		40								
		10								
	1						<u></u>			
					COMMENTS					
	55	= SPLIT SPC	OON							
	A =	AUGER CUT	TINGS							
	-	C = COREI	>							

					PARSONS ENGINEERING SCIENCE	BORING	1	MW-16		
Contractor	: PARR	ATT-WO	LFF, INC.		DRILLING RECORD	WELL NO	D .			
Driller.	GLEN	N LANSIN	G							
Inspector:	ERIC	A. FELTER	2		PROJECT NAME LEDERLE LABORATORIES, PEARL RIVER, NY	Location Description: DOWNGRADIENT				
Rig Type:	INGE.	RSOL-RA	ND 8300		PROJECT NUMBER 728069.01000	OF FORM	SCRIPTION	: DOWNGRADIENT		
-	POINTW	UNDWATER OBSERVATIONS				SOUTH	FMW	17 WELL DAID		
Water	ater ater and a second se		15	Weather OVERCAST. 72 DEG. CALM	LOCATION	PLAN	TO WELL TAIK.			
Level						See Site Plan				
Date					Date/Time Start 9/14/95 1732					
Time						1				
Mcas.					Date/Time Finish 9/14/95 1830					
From					•					
PID	Sample	Sample	Percent	Blow	MATERIAL	USCS	GEO	COMMENTS		
Reading	I.D.	Depth	Recovery	Cts	IDENTIFICATION	CLASSIF.	LOG			
		0								
0.0			15	3	0.0 to 1.0° Gray SILT compost, dry.	OL		NOSAMPLES		
			·	4	10 to 2 0° Plack hurst dabrie dass fill dry			FROM MW-16		
		2		5	1.5 w 2.5 Inter ou in debits, grass, int, et y.			FOR LAB.		
0.0			40	7				ANALYSIS.		
				7	2.0 to 4.0' Brown SILT, little fc. sand, trace fc. gravel, trace organic fragments	ML				
				8	(roots), fill, dry to moist.					
		4		6						
0.0			60	9	4.0 to 4.5' Brown F. SAND, trace silt, native, dry.	SP				
				8						
				6						
		6		10	4.5 to 7.0° Brown FC. SAND, trace f. gravel, trace silt, dry.	SW				
0.0			60	20						
				13						
		8		13						
0.0			25	13	7.0 to 10.0' Rusty brown FC. SAND and F. GRAVEL, trace to little silt, moist.	sw				
			•	13						
				13						
		10		8						
0.0			70	9						
				10						
				12						
		12		11	10.0 to 13.5' Brown FC. SAND and F. GRAVEL, little silt, moist to wet.	SW				
0.0			70	10						
				9						
		14		3	13 5 to 14 0' Brown E -C SAND trace to little silt wat	sw				
0.0			40	8		011				
				12						
				11						
		16		11						
0.0			10	9	14.0 to 19.0' Gray FC. SAND, trace to little silt, wet.	SW				
				9						
				50/0.4						
		18								
					END OF BORING MW-16 AT 19.0°, MONITORING WELL INSTALLED.					
		20								
			1		CONDUCTO					
		SPI TT COA	ON							
	33 A = 4	UGERCIT	INGS							
		C = CORED								

72 DANBURY WILTON, CT.	ROAD 08897		WELL NO. South Test Well (0) <]
	DEPTH	IN FEET	BESCRIPTION
	FROM	TO	
Approximately 20	0	1	Fill (very coarse gravel).
yards northwest of			
Monitor Well 81-1	4	5	Sand, coarse to very coarse, gray.
Tupo 15, 1983	5	10	and some to some array have and array and
Rinbrand Well			Sand, Coarse to very coarse, brown and gray and
Drilling Co., Inc.			very fine to fine brown and gray gravel.
0-50' Mud Rotary			Very rais to raise brown and gray graver.
50-500' Air Rotary	10	15	Sand, coarse to very coarse, gray and brown and
90			
Ditch/Airlift		·	very fine to fine gray and brown gravel.
Jeffrey Lennox	15	20	Sand, coarse to very coarse, brown and gray and
set Grade	•		very fine to fine brown and gray gravel;
Approximately -8 feet			some cobbles.
ITAUCTION			
None None	20	22	Sand, medium to very coarse, brown and gray and
BLOT BO.			very fine to fine brown and gray gravel.
	22	25	Sand, fine to very coarse, brown and gray and
11 PACK			very fine to fine brown and gray gravel;
50.0' of 8-inch-			some red shale; little cobbles.
Rawhiding	25	27	Sand, very fine to coarse, gray and red shale.
	27	30	Sandstone, fine to medium, red; some red shale;
June 20-21, 1983			little very fine to coarse mixed color
30 hours			gravel.
the WATER 2.50 feet	30	35	Shale, red; trace of red sandstone; little mixed
THE WATER 127 feet			color cobbles.
300 gpm	35	40	Shale, red; trace of fine to medium red sand-
a/ Includes 18 inches			stone; trace of mixed color cobbles.
above grade.	40	45	Shale, red; some fine to medium red sandstone;
b/ From top of casing.	.		little mixed color cobbles.
	45	50	Sandstone, fine to medium, red and red shale;

mouthe soluterstate, icall hiver, New York

(83-2)

And .

WELL NO.

OWNER

...

3

Lub Lub Lub

South Test Well

PAGE 2 OF 4 PAGE

DEPTH IN FEET		DESCRIPTION
FROM	10	
50	56	Shale, red; trace of fine to medium red sandstone.
56	59	Sandstone, fine to medium, red; trace of red shale.
59	62	Shale, red; trace of fine to medium red sandstone.
62	70	Sandstone, fine to medium, conglomeratic, red; little red shale.
70	71	Gravel, coarse, mixed color.
71	90	Conglomerate, red; little red shale.
90	100	Conglomerate, red; trace of red shale.
100	109	Shale, red and fine to medium red sandstone.
109	110	Sandstone, fine to medium, red; some red shale; trace of fine to mediu
		white sandstone.
110	120	Sandstone, fine to medium, conglomeratic, red; trace of red shale.
120	130	Sandstone, fine to medium, conglomeratic, red; trace of red shale; tra
		of fine to medium white sandstone.
130	140	Sandstone, fine to medium, conglomeratic, red; little red shale; trace
		of coarse mixed color gravel.
140	160	Conglomerate; red; trace of red shale.
160	185	Conglomerate, red and white; trace of red shale.
185	190	Sandstone, fine to medium, red; trace of red shale.
190	195	Sandstone, fine to medium, red; some red shale.
195	200	Sandstone, fine to medium, red; trace of fine to medium white sandston
200	210	Conglomerate, red and white.
210	220	Sandstone, fine to medium, conglomeratic, red; little red shale.
220	225	Conglomerate, red and white.
225	235	Sandstone, fine to medium, conglomeratic, red; little red shale; trace
		of fine to medium white sandstone.

· ..

,

0	WN	F	R	

Lederle Laboratories, Pearl River, New York

South Test Well

(83-2)

WELL NO

PAGE 3 OF 4 PAGES

DEPTH	IN PEET	BESCRIPTION
FROM	TO	
235	243	Sandstone, fine to medium, conglomeratic, red; trace of red shale.
243	246	Conglomerate, red and white; trace of red shale.
246	250	Sandstone, fine to medium, red; little red shale.
250	252	Sandstone, fine to medium, red.
252	260	Sandstone, fine to medium, conglomeratic, red; little red shale; trace
		of fine to medium white sandstone.
260	268	Sandstone, fine to medium, red.
268	270	Sandstone, fine to medium, conglomeratic, red; trace of red shale.
270	273	Conglomerate, red and white and red shale.
273	280	Sandstone, fine to medium, conglomeratic, red and some white; trace of
		red shale.
280	287	Conglomerate, red and white.
287	290	Sandstone, fine to medium, slightly conglomeratic, red.
290	300	Sandstone, fine to medium, conglomeratic, red. ()
300	305	Conglomerate, red and white.
305	310	Sandstone, fine to medium, conglomeratic, red; some red shale.
310	325	Sandstone, fine to medium, conglomeratic, red.
325	343	Sandstone, fine to medium, slightly conglomeratic, red; little red
		shale; trace of fine to medium white sandstone.
343	352	Shale, red; little fine to medium conglomeratic red and white sandstone.
352	360	Sandstone, fine to medium, slightly conglomeratic, red; some red shale.
360	370	Sandstone, fine to medium, conglomeratic, red; some red shale.
370	400	Conglomerate, red and white; little red shale.
400	410	Sandstone, fine to medium, conglomeratic, red; trace of red shale.

medium 2. :; tr? trace

-PAG

<u>lstone</u>

race

WELL N	0	South Test Well (83-2) PAGE 4 OF 4								
DEPTH IN FROM	FEET TO	DESCRIPTION								
410	430	Sandstone, fine to medium, conglomeratic, red; some red shale; little								
		fine to medium white sandstone.								
430	440	Sandstone, fine to medium, conglomeratic, red and red shale.								
440	450	Conglomerate, red and white; little red shale.								
450	460	Sandstone, fine to medium, red; some red shale.								
460	470	Sandstone, fine to medium, red; trace of red shale.								
470	485	Sandstone, fine to medium, red.								
485	500	Sandstone, fine to medium, red; trace of red shale.								
		3 .								
	-+-									
·										
		(7								

. '

UNLE:

.

... -----.

Contractor SID					PARSONS ENGINEERING SCIENCE, INC.	BORING/ Sheet 1 of 1				
Contra	ctor:	SJB		-	DRILLING RECORD	WELL NO. MW-99A				
Driller:		Tom Fa	arrell	-		Location Description:				
Inspect	or:	Ed Ash	ton	-	PROJECT NAME: Wyeth-Ayerst SWMU Investigation	Located in the sou	thern end of			
Rig Typ)e:	CME-A	TV	-	PROJECT NUMBER: 737053.01000	the swamp area.				
GROI	INDWAT	ER OB	SERVA	TIONS		Location Plan				
Water		DICOD			Weather: Clear and cool, mid 30's.					
Level	2.5 ft				Constant Constant Cool, Inte 50 51		ĩ			
Date	1/12/00				Date/Time Start: December 14, 1999 9:30 a.m.	See Site Plan				
Time	0821		1							
Meas.					Date/Time Finish: December 14, 1999 11:00 a.m.					
From	TOC									
Sample	Sample	SPT	%	FID	FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC	COMMENTS			
Depth	LD.		Rec.	(ppm)						
+3										
+2										
.1							Locking J-plug on			
+1							inner walt			
0			-		•					
		6	50	-			Gand			
1		8	1							
		9			(0-5) Light to dark brown fine to medium Sand some silt little fine					
2		7			gravel, wet (SM/SC)					
		5	40		Contract (annual)		Bentonite Chios			
3		5								
-		8								
4		10					2-inch ID PVC Rise			
		12	55				_			
5		14								
		12					Morie # 00			
6		16			(5-15) Light brown medium Sand, some fine gravel, trace silt, wet.		Filler Sand			
		17	25		(SM/SC)					
7		16								
		17								
8		19								
		24	30				2-inch ID PVC			
9		15					0.01 Slot Well			
10		19					Screen (5 - 15')			
10		22	10							
11		24	40							
11		23								
12		20								
14		10	20							
13		18	20							
15		24								
14		26		\vdash						
15							PVC and can			
					i andre and an and an and an and an and an					
16		1			Well terminated at 15 ft.					
17										
18										
					COMMENTS:					
	SAMPLIN	G METH	OD		All FID breathing zone readings were 0.0 ppm.					
	SS = SPLIT	SPOON								
	A = AUGE	R CUTTI	NGS							
	C = COREI	0		_						

Contractor: SIB					PARSONS ENGINEERING SCIENCE, INC.	BORING/ Sheet 1 of 1 WELL NO MW-998				
Drillor		Mike I	anigan	-	DAILLING RECORD	Location Description: Located in the swamp area north of MW-09A				
Inenect		Ed Ach	emgan	-	PRO IFCT NAME. Wyeth Averst SWMI Investigation					
Dia Ter		CME.	TV	-	PDO FECT NI MIRED. 737053 01000					
Ing Typ		CNIL-P	11.	-	TROJECT NONDER. 15/055/1000	MW-77A.				
GROI	NDWAT	ER OB	SERVA	TIONS		Location Plan				
Water	Water			T	Weather: Raining, mid 30's.					
Level	2.10 8				Training, and or the		Ĩ			
Date	1/12/00				Date/Time Start: January 11, 2000 1:05 p.m.	See Site Plan				
Time	0831									
Meas.			1		Date/Time Finish: January 11, 2000 3:30 p.m.					
From	TOC									
Sample	Sample	SPT	96	FID	FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC	COMMENTS			
Depth	LD.		Rec.	(ppm)						
+3										
+2										
							Locking J-plug on			
+1							inner wall			
0										
		A					Grout			
1		A			(0-5) Brown to gray fine Sand, some silt, wet. (SM/SC)	11 12				
-		A					Bentonite Chips			
2		A								
2		A								
3		A					2-inch ID PVC Riser			
1		A								
4		A								
5		A								
5		A								
6		A			(5.13.5) Grav fine Sand some silt trace fine gravel wat (SM/SC)		Moris # 00			
		A			(5-15.5) Oray The Said, some sin, date the graver, wet. (SIM/SC)		Filler Sand			
7		A								
		A								
8		A								
		A					2.inch ID PVC			
9		A					0.01 Sict Well			
		A					Screen (3.5 - 13.5')			
10		Α								
		Α								
11		Α								
		Α								
12		Α					•			
		A								
13		A								
		A					PVC end cap			
14										
15					Well terminated at 13.5 ft.					
15		-								
16										
10		-								
17		-								
17		-								
18										
					COMMENTS					
	SAMDI IN	C METE	(OD							
	SS = SDI T	SPOON			No STD machines upon collected	and the state of t				
	A = Alige	RCUTT	NGS		TO THE MARINER WERE CONCERNA.	·····				
	C = CORFI	D				······				

WELLLOG LEGGETTE, BRASHEARS & GRAHAM, INC.

CONSULTING GROUND-WATER GEOLOGISTS 72 DANBURY ROAD

WILTON, C	T. 00	897	PAGE 1 OF 2 PAGES
0 Discour nos	Tatas Tatas		Lederle Laboratories
Top soil (no sample)	2	2	
Sand, brown, fine to medium;			Pearl River, NY
and silt (no sample)	2	. 4	WELL No. 80-16
Sand, very coarse to medium.			DATE 8/13/80
brown; gravel, fine to medium			Balline Raymond International
silt	5	9	Booline std. rotary (revert)
Sand, very coarse to medium;			Sampling Wash (W)
brown: gravel, fine to medium	;		Samples John Naso & T. Hughe
silt	5	14	Rereasuras Grade
Sand, medium to very coarse,			ELEVATION 51.92 feet
brown; trace silt	6	20	2 inch PVC
Till (?), consisting of clay,			Scassas Timco PVC
light brown; silt; gravel,			2 inch .020
fine to coarse; sand, very			64.3-69.3 feet
coarse to medium	1.5	21.5	Putering Test- September 24, 1980
Till (?), consisting of clay,			Bunarran 2 minutes
light brown; silt; gravel.			Brane Warm 21.02 feet
fine to coarse; sand, very	•		Putter 65 foot
coarse to medium	8.5	30	
Sand, very coarse to medium,	ł I		Ver o garions in 50 seconds
brown; trace silt	4	34	Asuante Chick up = 2.02
Till, consisting of clay, brown;	• 0		Stick up = 3.02
and sand, very fine, brown;	•		above top of screen and
some gravel; little silt	6	40	bentonite seal.
Till, consisting of sand, brown,			•
fine to medium: some clay.			
brown	5	45	
	-	-15	1

GGETTE, BRASHEARS	& G	M, INC. Lederie Laboratories Div							
72 DANBURY I	ROAD	EULUG	WELL NO						
WILTON, CT. 0	DEPTH	IN FEET	DATE 9/17/82 PAGE 1 OF 1 PAGE						
Pearl River	FROM	то 0.5	(SS): Blows: 2,Topsoil						
New York	0.5	3	(SS): Blows: 5, 3, 7, sampled interval 0.5 to						
a 9/3/82			2 feet. Till consisting of sand, fine to						
Kendrick Drilling			coarse and clay, yellow-brown; little						
mine Standard Rotary			gravel, fine to medium.						
THUS Split-spoon (SS)	3	7.5	(SS): Blows: 13, 21, 21, sampled interval 5 t						
nto David Scott			6.5 feet. Sand, fine to medium, light						
ntuce Grade			reddish-brown; trace silt; trace gravel,						
46.61 feet			fine to medium.						
	7.5	14	(SS): Blows: 80/4", sampled interval 10 to						
2" BLOT NO. 20			10.3 feet. No recovery. Sand, fine to						
9-19			medium; some clay, reddish-brown; some						
HITEL PACE Fine Gravel			gravel, fine to medium.						
Lising 2" PVC	14	9.25	(SS): Blows: 100/3", sampled interval 15 to						
Flushed with			15.25 feet. No recovery.						
clean water			Siltstone, reddish-brown						
Pad TEST 9/8/82									
waaroon hour			۶						
ITATIC WATER 11.14" (TOC)									
WWPING WATEOP of casing (TOC)									
musSlug injection									
Stick up = 2.42'									

CONSULTING GROUND	WATE RO	A D	DGISTS
BERCHARTER WILLION, C	THERE BE		Lederle Laboratories
Sand, very fine to medium, brown;			
with clay	5	50	Lecanon Pearl River, NY
Sand, very fine, brown; some silt			WELL No. 80-16
trace clay, brown	5	55	DATE COMPLETED
Till, weathered, consisting of			Dauline Company
clay, brown.; little .	•		Dallame Misthoo
sand, brown, fine to coarse:			SANFLING METHOD
trace gravel, fine	5	60	SANPLES BT
Till (weathered) consisting of			REFERENCE
sand, medium to coarse, brown;			ELEVATION OF & PA
some clay	5	.65	Castrage
Rock chips, gray to red, sub-		_	8casmi-
angular, some very fine sand:			DIAMA BLOT NO
silt; clay	5	70	SETTING
			PURPING TESTA
		•	Dusation
			STATIC WATER
			LEVEL
			Time
			RenAnce
			•
	-		

.

TABLE 3.2 GROUNDWATER ELEVATION DATA

RCRA CORRECTIVE ACTION - LEDERLE FACILITY - PEARL RIVER, NEW YORK

SWMU 34 - WASTEWATER TREATMENT PLANT

			9/20/95		9/26/95		10/26/95		1/25/96		1/25/96		4/29-5/1/96		4/30-5/2/96		8/11/96		10/30/96	
WELL NO.	MP ELEV. (PLANT DATUM)	MP ELEV. (NGVD 1929)	DEPTH (FT)	ELEV. (FT)	DEPTH (FT)	ELEV. (FT)														
82-12	21.54	269.44	16.56	252.88			14.12	255.32	10.41	259.03	10.58	258.86	9.82	259.62	10.02	259.42	DEST.	-	11.56	257.88
82-14	13.65	261.55	13.42	248.13	11.62	249.93	11.68	249.87	9.08	252.47	9.08	252.47	8.07	253.48	8.13	253.42	DEST.	-	9.28	252.27
82-15	62.83	310.73	45.64	265.09	44.75	265.98	44.71	266.02	40.38	270.35	40.51	270.22	35.12	275.61	35.82	274.91	36.82	273.91	NA	-

SWMUs 47 and 48 - LANDFILLS 1 and 2

			10/2:	3-25/95	10/2	-28/95	1/22	-25/96	1/25	-26/96	4/29	-5/1/96	4/30	5/2/96	7/29	-8/1/96
WELL NO.	MP ELEV, (PLANT DATUM)	MP ELEY. (NGYD 1929)	DEPTH (FT)	ELEV. (FT)	DEPTH (FT)	ELEV. (FT)	DEPTH (FT)	ELEV. (FT)								
MW-1	15.20	263.10	6.44	256.66	6.54	256.56	4.85	258.25	4.88	258.22	3.89	259.21	3.78	259.32	5.49	257.61
MW-2	19.28	267.18	7.45	259.73	7.31	259.87	5.00	262.18	5.48	261.70	4.44	26 2.74	4.25	262.93	5.29	261.89
MW-3	23.85	271.75	9.12	262.63	6 ,91	264.84	7.80	263.95	6.98	264.77	5.55	266.20	5.43	266.32	6.98	264.77
MW-4	26.23	274.13	12.28	261.85	12.30	261.83	9.90	264.23	9,15	264.98	5.35	268.78	5.13	269.00	7.44	266.69
MW-5	6.11	254.01	6.33	247.68	6.19	247.82	5.10	248.91	5.22	248,79	4.90	249.11	4.97	249.04	5.57	248.44
MW-6	30.31	278.21	23.25	254.96	23.23	254.98	21.40	256.81	21.92	256.29	21.84	256.37	20.81	257.40	21.23	256.98
MW-7	29.98	277.88	20.28	257.60	20.44	257.44	18.20	259.68	18.84	259.04	17.20	260.68	17.45	260.43	17.35	260.53
MW-8	35.04	282.94	23.56	259.38	23.72	259.22	21.80	261.14	21.88	261.06	20.31	262.63	20.49	262.45	20.73	262.21
MW-9	31.32	279.22	17.85	261.37	18.10	261.12	15.70	263,52	15.96	263.26	14.28	264.94	14.51	264.71	15.22	264.00
MW-12	21.43	269.33	6.89	262.44	6.85	262.48	6.50	262.83	6.16	263.17	4.45	264.88	4.17	265.16	4.91	264.42
MW-13A	7.18	255.08	7.02	248.06	7.10	247.98	6.70	248.38	6.45	248.63	6.23	248.85	6.25	248.83	6.54	248.54
MW-13B	7.09	254.99	6.69	248.30	6.80	248.19	5,50	249.49	6.56	248.43	4.95	250.04	5.00	249.99	5,56	249.43
MW-14	25.85	273.75	12.70	261.05	12.60	261.15	9.85	263.90	9,67	264.08	6.16	267.59	6.03	267.72	7.78	265.97
80-35B	17.55	265.45	10.03	255.42	10.10	255.35	8.15	257.30	8.62	256.83	7.56	257.89	7.65	257.80	7.67	257.78
80-35C	18.60	266.50	11.12	255.38	11.07	255.43	9.69	256.81	9.74	256.76	8.65	257.85	8.70	257.80	8.68	257.82
80-36C	20.14	268.04	7.43	260.61	7.63	260.41	4.75	263.29	5.55	262.49	4.42	263.62	4.40	263.64	4.95	263.09
80-38B	15.90	263.80	8.54	255.26	8.49	255.31	6.50	257.30	7.13	256.67	5.72	258.08	6.06	257.74	DEST.	
83-2 (MW-1	15) 		FLOWING		FLOWING		FLOWING		FLOWING		FLOWING		FLOWING	i	FLOWING	

SWMU 62 - FORMER SOLVENT BURN PIT

				9/2	5/95	9/2	6/95	10/	26/95	10/	27/95	10/31/95	
WEL	L NO.	MP ELEV. (PLANT DATUM)	MP ELEV. (NGVD 1929)	DEPTH (FT)	ELEV. (FT)								
MW-1	15	17.54	265.44			12.08	253.36	9.45	255.99	9.47	255.97	8.51	256.93
MW-1	16	8.65	256.55	11.24	245.31			8.74	247.81	8,86	247.69	8.01	248.54
MW-1	17A	9.01	256.91	9.81	247.10			6.69	250.22	6.89	250.02	6.26	250.65
MW-1	17B	9.01	256.91	7.15	249.76	7.03	249.88	5.14	251.77	5.18	251.73	4.52	252.39

(1) Plant elevations are 247.9 feet below NGVD 1929.