

PERIODIC REVIEW REPORT (August 1, 2019 – October 31, 2020)

TOWN OF RAMAPO LANDFILL SITE 250 TORNE VALLEY ROAD HILLBURN, ROCKLAND COUNTY, NEW YORK

NYSDEC SITE NUMBER #344004; USEPA CERCLIS ID NYD000511493

Prepared for:

Town of Ramapo 237 Route 59 Suffern, New York 10901

and

Town of Ramapo Department of Public Works 16 Pioneer Avenue P.O. Box 446 Tallman, New York 10982-0446

Prepared by:

Sterling Environmental Engineering, P.C. 24 Wade Road
Latham, New York 12110

November 19, 2020

"Serving our clients and the environment since 1993"

PERIODIC REVIEW REPORT (August 1, 2019 – October 31, 2020)

TOWN OF RAMAPO LANDFILL SITE 250 TORNE VALLEY ROAD HILLBURN, ROCKLAND COUNTY, NEW YORK

NYSDEC SITE NUMBER #344004; USEPA CERCLIS ID NYD000511493

Table of Contents

			<u>Page</u>
CERT	TIFICAT	TION	iii
EXEC	CUTIVE	SUMMARY	1
1.0	INTR	ODUCTION	2
	1.1	Summary of Site History	2
	1.2	Effectiveness of the Remedial Program and Compliance	3
	1.3	Recommendations	3
2.0	OVE	RVIEW	3
3.0	PERF	ORMANCE, EFFECTIVENESS, AND PROTECTIVENESS	4
	3.1	Air Quality	4
	3.2	Groundwater Monitoring	5
		3.2.1 Groundwater Flow	5
		3.2.2 Groundwater Analytical Results	5
		3.2.3 Concentration vs. Time Trends	6
		3.2.4 Offsite Private Drinking Water Supplies / Offsite Public Water Supplies	8
		3.2.5 Emerging Contaminants (1,4-Dioxane and Perfluorinated Compounds) in	Select
		Onsite and Offsite Groundwater Samples	8
	3.3	Leachate Quality	8
4.0	INST	ITUTIONAL/ENGINEERING CONTROL PLAN COMPLIANCE	9
	4.1	Institutional Controls	9
	4.2	Engineering Controls	10
		4.2.1 Landfill Cover System	10
		4.2.2 Leachate Collection System	
		4.2.3 Groundwater Extraction Wells	11
		4.2.4 Surface Water Runoff Features and Drainage Swales	
		4.2.5 Groundwater Monitoring Wells	
	4.3	IC/EC Certification	13
5.0	MON	ITORING PLAN COMPLIANCE	13
	5.1	Air Quality Monitoring	
	5.2	Groundwater Monitoring	13
	5.3	Leachate Monitoring	13
6.0	OPER	RATION AND MAINTENANCE PLAN COMPLIANCE	14

#20010

7.0 CONC	CLUSIONS AND RECOMMENDATIONS15
	<u>Figures</u>
Figure 1	Site Location Map
Figure 2	Property Features Map
Figure 3	Groundwater Monitoring Wells and Air Quality Monitoring Locations
Figure 4	Surface Water Drainage and Erosion Control Features with Photograph Locations
Figure 5	Shallow Overburden Aquifer Groundwater Elevation Contours - October 5, 2020
Figure 6	Bedrock Aquifer Groundwater Elevation Contours - October 5, 2020
Figure 7	Leachate Collection System - Extraction Wells and Lift Stations Locations
	<u>Tables</u>
Table 1	Summary of Air Monitoring Results (10/5/2020 - 10/8/2020)
Table 2	Summary of Analytical Parameters and Method References
Table 3	Summary of Field Parameter Measurements (10/5/2020 - 10/8/2020)
Table 4	Summary of Groundwater Analytical Results (10/5/2020 - 10/8/2020)
Table 5	Summary of Analytical Results for Downgradient Drinking Water Supply Wells
	(10/6/2020)
Table 6	Summary of Historical Groundwater Quality Results - Aluminum
Table 7	Summary of Historical Groundwater Quality Results - Beryllium
Table 8	Summary of Historical Groundwater Quality Results - Cadmium
Table 9	Summary of Historical Groundwater Quality Results - Copper
Table 10	Summary of Historical Groundwater Quality Results - Antimony
Table 11	Summary of Historical Groundwater Quality Results - Arsenic
Table 12	Summary of Historical Groundwater Quality Results - Chromium
Table 13	Summary of Historical Groundwater Quality Results - Iron
Table 14	Summary of Historical Groundwater Quality Results - Lead
Table 15	Summary of Historical Groundwater Quality Results - Magnesium
Table 16	Summary of Historical Groundwater Quality Results - Manganese
Table 17	Summary of Historical Groundwater Quality Results - Nickel
Table 18	Summary of Historical Groundwater Quality Results - Sodium
Table 19	Summary of Historical Groundwater Quality Results - Thallium
Table 20	Summary of Ramapo Landfill Extraction Volumes
Table 21	Summary of 2019/2020 and Historical Leachate / Groundwater Analytical Results
	Appendices
Appendix A	Inspection Checklist and Institutional and Engineering Controls Evaluation Form

Appendix A	inspection Checklist and institutional and Engineering Controls Evaluation Form
Appendix B	NYSDEC Institutional and Engineering Controls Certification Form
Appendix C	Photograph Log
Appendix D	Laboratory Analytical Results - Groundwater
Appendix E	Laboratory Analytical Results - Leachate / Groundwater

CERTIFICATION

I, Andrew M. Millspaugh, P.E., certify that I am a New York State registered professional engineer and that this Periodic Review Report (PRR) was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the Division of Environmental Remediation (DER) Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in accordance with the DER-approved work plan and any DER-approved modifications.

ah Milyan	11/19/2020
Andrew M. Millspaugh, P.E.	Date

EXECUTIVE SUMMARY

The Town of Ramapo Landfill (Landfill), located at 250 Torne Valley Road in the Village of Hillburn, Town of Ramapo, Rockland County, New York (refer to Figure 1), is a Superfund National Priorities List (NPL) site and is regulated by the United States Environmental Protection Agency (USEPA), CERCLIS ID NYD000511493. The Landfill property is also registered as a New York State Class 4 Inactive Hazardous Waste Disposal Site, Registry No. 344004.

The Landfill was placed on the NPL in September 1983. The USEPA issued a Record of Decision (ROD) dated March 31, 1992, which was modified in December 1997 by Explanation of Significant Difference (ESD).

Between 1980 and 1988, the NYSDEC and the Town of Ramapo entered into four (4) Orders on Consent phasing out Landfill operations, constructing a surface water and groundwater diversion system and a leachate collection and transport system, and conducting a Remedial Investigation and Feasibility Study (RI/FS). The leachate collection system was constructed along the downgradient edge of the Landfill from 1984 to 1985. Leachate has been discharged to the Rockland County Sewer District (RCSD) No. 1 Western Ramapo Treatment Plant since 1996.

The selected remedies for the Landfill include Institutional Controls (IC) through a Declaration of Covenants and Restrictions that restricts disturbance of the Landfill cover and places restrictions on site use and offsite groundwater use restrictions, and onsite Engineering Controls (EC) provided by the Landfill cover and leachate collection systems, groundwater containment, fencing and access controls, air and water quality monitoring, and regular inspections and maintenance activities. The Covenant of Restrictions and Environmental Easements were filed with the Rockland County Clerk on August 28, 2012 and October 10, 2012. Post-closure air and water quality monitoring, leachate removal, and inspections and maintenance at the Landfill have been provided by the Town of Ramapo since 1999. A Site Management Plan (SMP) incorporates the Institutional/Engineering Control (IC/EC) Plan, the Inspection and Monitoring Plan, and the Operation and Maintenance Plan to provide for the continual post-closure monitoring and maintenance of the Landfill.

An annual Periodic Review Report (PRR) is required to document site management activities outlined in the SMP. This PRR covers the period August 1, 2019 to October 31, 2020.

The remedial program implemented at the Landfill has been successful in meeting the remedial objectives set forth in the RODs. Leachate generation and contaminant migration through groundwater has reduced. The Landfill cover prevents contamination of surface runoff and direct human/animal contact with waste. and Landfill gas migration/buildup is effectively controlled.

Based on the results of activities performed from August 2019 through October 2020, no changes to the approved SMP are recommended. The requirements for discontinuing site management have not been met. As such, continued compliance with the approved SMP is recommended.

1.0 INTRODUCTION

The Town of Ramapo Landfill (Landfill), located at 250 Torne Valley Road in the Village of Hillburn, Town of Ramapo, Rockland County, New York (refer to Figure 1), is a Superfund National Priorities List (NPL) site and is regulated by the United States Environmental Protection Agency (USEPA), CERCLIS ID NYD000511493. The Landfill property is also registered as a New York State Class 4 Inactive Hazardous Waste Disposal Site, Registry No. 344004.

The Landfill was placed on the NPL in September 1983. The USEPA issued a Record of Decision (ROD) dated March 31, 1992, which was modified in December 1997 by Explanation of Significant Difference (ESD).

The Landfill encompasses 86.07 acres owned by the Town of Ramapo and is located east of Torne Valley Road and immediately west/southwest of Baler Boulevard (refer to Figure 2). The Baler Building, which is actively accepting waste, is located on Baler Boulevard and is adjacent to the Landfill to the northeast. The highest elevation is located on the eastern most edge of the site, and the Landfill slopes downward in a westerly direction towards Torne Brook. The lowest elevation is located along the southwestern edge of the site. Stone and concrete drainage ditches are present along the perimeter of the Landfill. Several stone drainage channels and swales are connected to four (4) main stone drainage downchutes that drain into the western perimeter drainage ditch of the Landfill. The site is covered with suitable shallow rooted vegetation with no evidence of erosion. Some deeper rooted vegetation is present in select drainage structures across the Landfill. The Landfill is surrounded by perimeter fencing and can only be accessed through an access gate at the northeast edge of the Landfill adjacent to Baler Boulevard.

The Landfill stages compost windrows on the east edge of the property and contains a shooting range for the Town of Ramapo Police Department. The Landfill is mowed regularly to prevent deep rooted vegetation that may damage the cover; however, portions of the Landfill are not mowed due to the presence of Timber Rattlesnake habitats.

An annual Periodic Review Report (PRR) is required to document site management activities outlined in the Site Management Plan (SMP). This PRR covers the period August 1, 2019 to October 31, 2020 and includes the 2020 Post-Closure Monitoring (PCM) event conducted on October 5 to October 8, 2020. A Landfill inspection, air monitoring, leachate monitoring, groundwater monitoring, and an evaluation of institutional controls (IC) and engineering controls (EC) was completed in support of the 2020 PCM event.

1.1 Summary of Site History

The Landfill is located at the western base of the Ramapo Mountains on Torne Valley Road and consists of two major lobes commonly known as the north and south lobes. Landfill slopes range from three (3) to thirty-three (33) percent. Property features are presented in Figure 2.

Prior to landfilling operations in the 1950s and 1960s, portions of the property were excavated for gravel. In 1971, the Town was permitted by the Rockland County Department of Health (RCDOH) to operate a sanitary landfill. Under various operators, municipal solid waste (MSW) was accepted until 1984, and construction and demolition (C&D) debris was accepted until 1989. Substances reportedly disposed at the Landfill include industrial and sewer sludge, municipal refuse, asbestos, C&D debris, yard debris, paint sludge (presumably from an automotive plant), and liquid waste (reportedly from a paper company).

The Landfill was placed on the NPL in September 1983. Between 1980 and 1988, the NYSDEC and the

Town of Ramapo entered into four (4) Orders on Consent phasing out Landfill operations, constructing a surface water and groundwater diversion system and a leachate collection and transport system, and conducting a Remedial Investigation and Feasibility Study (RI/FS). The leachate collection system was constructed along the downgradient edge of the Landfill from 1984 to 1985. Initially, collected leachate was conveyed by pumps and lift stations to a wastewater treatment pond in the southwest corner of the Landfill property. After aeration and settling, treated water was discharged to the Ramapo River. Since 1996, leachate has been discharged to the Rockland County Sewer District (RCSD) No. 1 Western Ramapo Treatment Plant.

In 1998, the Town of Ramapo subdivided the sections of the Landfill property used for the transfer facility, scale house, and leachate storage tank. The transfer facility and scale house properties were sold to the Rockland County Solid Waste Management Authority (RCSWMA) and the leachate storage tank property was sold to the RCSD.

The selected remedies for the Landfill include Institutional Controls (IC) through a Declaration of Covenants and Restrictions that restricts disturbance of the Landfill cover and places restrictions on site use and offsite groundwater use restrictions, and onsite Engineering Controls (EC) provided by the Landfill cover and leachate collection systems, groundwater containment, fencing and access controls, air and water quality monitoring, and regular inspections and maintenance activities. The Covenant of Restrictions and Environmental Easements were filed with the Rockland County Clerk on August 28, 2012 and October 10, 2012. Post-closure water and air quality monitoring, leachate removal, and inspections and maintenance at the Landfill have been provided by the Town of Ramapo since 1999. An existing SMP incorporates the Institutional/Engineering Control (IC/EC) Plan, the Inspection and Monitoring Plan, and the Operation and Maintenance Plan to provide for the continual post-closure monitoring and maintenance of the Landfill.

1.2 **Effectiveness of the Remedial Program and Compliance**

The remedial program implemented at the Landfill has been successful in meeting the remedial objectives set forth in the RODs. Leachate generation and contaminant migration through groundwater has reduced. The Landfill cover prevents contamination of surface runoff, prevents direct human/animal contact with waste, and effectively controls Landfill gas migration/buildup.

1.3 Recommendations

Based on the results of activities performed from August 1, 2019 to October 31, 2020, no changes to the approved SMP are recommended. The requirements for discontinuing site management have not been met.

2.0 **OVERVIEW**

The following information was collected in support of the Landfill PCM:

The Annual PCM Landfill inspection was performed by Sterling Environmental Engineering, P.C. (STERLING) on October 7, 2020. Site Location and Property Features Maps are provided as Figures 1 and 2. The 2020 Landfill inspection documents the physical integrity and stability of the Landfill cover system and assesses the condition and capability of existing surface water drainage and erosion control features. An Inspection Checklist and Institutional and Engineering Control Evaluation Form are provided in Appendix A. The NYSDEC Institutional and Engineering Controls Certification Form is provided in Appendix B. A photograph log documenting observations during the Annual Landfill inspection is provided in Appendix C.

- The 2020 air quality monitoring event was conducted October 5 to October 7, 2020. Air monitoring locations are shown on Figure 3 and results are summarized on Table 1.
- Groundwater samples were collected from monitoring wells 1-OS, 2-OS, 3-OS/I, 4-OS, 7-OS, 8-OS, 8-I, 8-R, 9-OS, 9-I, 9-R, 10-OS, 10-I, 10-R, UP-OS, UP-I, UP-R, private water supply wells PW-1 and PW-2, and public water supply wells SVWC-93, SVWC-94, SVWC-95, and SVWC-96. Well locations are shown on Figure 3. The groundwater samples were analyzed for parameters listed in Table 2. A summary of field parameter measurements and analytical results for each well is summarized in Tables 3, 4, and 5. Analytical laboratory reports are provided in Appendix D. In addition, static water level readings were obtained at all of the sampled monitoring wells and monitoring wells 1-I, 1-R, 2I, 2-R, 3-R, 4-I, 4-R, 5-OS, 5-I, 5-R, 6-I, 6-R, 7-I, and 7-R.
- In accordance with the NYSDEC letter dated June 12, 2019 requesting that select groundwater samples be analyzed for additional emerging contaminants (per- and polyfluoroalkyl substances (PFAS) & 1,4-Dioxane), additional samples were collected from the upgradient monitoring well cluster (UP-OS, UP-I, and UP-R), the two (2) most downgradient sentinel well clusters (9-OS, 9-I, 9-R and 10-OS, 10-I, and 10-R), and two (2) of the public water supply wells (SVWC-94 and SVWC-95). The subject groundwater samples were collected at the same time as the PCM groundwater monitoring event.
- Historical data for select parameters (aluminum, beryllium, cadmium, copper, antimony, arsenic, chromium, iron, lead, magnesium, manganese, nickel, sodium, and thallium) requested by the NYSDEC and USEPA are provided in Tables 6 through 19.
- Reported discharge volumes pumped from the groundwater/leachate extraction wells, located on the downgradient side of the Landfill, to the RCSD No. 1 Western Ramapo Treatment Plant were provided by the Town of Ramapo and is included in Table 20.
- Analytical results from 2009 through the 2020 sampling event for leachate/groundwater pumped to the Western Ramapo Treatment Plant are summarized in Table 21, and analytical reports are provided in Appendix E.

3.0 PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS

The Landfill has been subject to a SMP since March 1999. The SMP provides for regular site inspections, air, groundwater, and leachate monitoring, leachate collection and management, mowing, and Landfill gas management.

3.1 Air Quality

Air quality monitoring consisted of measuring concentrations of explosive gas (measured in percent of lower explosive limit (%LEL)), hydrogen sulfide (H₂S), and volatile organic compounds (VOC) in the headspace of each monitoring well, leachate manhole A-5, lift stations A-10 and W-20, and within the ambient breathing zone inside the Baler Building and along the Landfill perimeter at designated locations shown on Figure 3. Air quality monitoring results are summarized in Table 1. Explosive gas and H₂S measurements were obtained with a QRAE multi-gas monitor, and VOC measurements were obtained with a miniRAE 3000 photoionization detector (PID). The presence of VOCs, H₂S, and explosive gas were not detected in the breathing zone inside the Baler Building or along the Landfill perimeter sampling locations

(Table 1). The presence of explosive gas was detected within manhole A5 (16% LEL) and Lift Station A-10 (21% LEL). The air quality monitoring survey for explosive gas, H₂S, and VOCs indicated the Landfill is in compliance with the requirements set forth in 6 NYCRR 360-2.15(k)(4) and 2.17(f) (effective prior to November 4, 2017).

3.2 Groundwater Monitoring

3.2.1 Groundwater Flow

Depth to water measurements were obtained at or near the Landfill perimeter to determine groundwater elevations in the shallow overburden and bedrock aquifer systems. Groundwater flow direction in the overburden aquifer is to the northwest and/or west towards Torne Brook (Figure 5). Groundwater flow direction in the bedrock aquifer is similar (Figure 6). The bedrock groundwater elevation data for monitoring well 6-R was not utilized as the measured elevation was not consistent with historical data. A well integrity assessment, including re-surveying the measuring point, will be completed in 2021. Groundwater gradients are similar in both aquifer systems and downward vertical gradients are noted throughout the Landfill perimeter, except at monitoring well clusters UP, 7-OS/7-I, 8, 9, and 10, which were observed to be slight (7-OS/7-I and 8) to moderately (UP, 9, and 10) upward. These vertical gradients are consistent with historical trends.

3.2.2 Groundwater Analytical Results

All samples were analyzed by Alpha Analytical, located in Westborough, Massachusetts, following established methodologies and protocols. A copy of the analytical reports, prepared in accordance with NYSDEC Analytical Services Protocol (ASP) Category A reporting requirements, are provided in Appendix D.

Static water level and water quality field parameters (temperature, specific conductivity, pH, and oxidation-reduction potential (ORP)) were measured in the field and are presented on Table 3. The summary of the 2020 PCM groundwater analytical results are provided on Tables 4 and 5. A duplicate sample was collected from bedrock monitoring well 9-R and is labeled as "DUP10052020".

Analytical results for monitoring well samples are compared to the NYSDEC Division of Water Technical and Operational Guidance Series 1.1.1 (TOGS 1.1.1), Ambient Water Quality Standards and Guidance Values (June 2004). No site-related VOCs were detected at any of the shallow overburden monitoring wells (UP-OS, 1-OS, 2-OS, 3-OS/I, 4-OS, 7-OS, 8-OS, 9-OS, and 10-OS), intermediate overburden monitoring wells (UP-I, 3-OS/I, 8-I, 9-I, and 10-I) or bedrock monitoring wells (UP-R, 8-R, 9-R, and 10-R). Analytical results for the drinking water supply well samples indicate that there are no reported USEPA MCL and NYSDOH Part 5 exceedances at the public water supply wells or private drinking water supply wells.

TOGS 1.1.1 exceedances were observed at six (6) shallow overburden monitoring wells (1-OS, 2-OS, 3-OS/I, 4-OS, 7-OS, and 8-OS), three (3) intermediate overburden monitoring wells (3-OS/I, 8-I, and 9-I), and two (2) downgradient bedrock monitoring wells (8-R and 9-R). A detailed summary of reported parameter exceedances is provided below.

Reported concentrations for the following parameters exceed the applicable water quality standard:

Parameter Exceeding Water Quality Standard (TOGS 1.1.1)	NYS Groundwater Standard	1-08	2-OS	3-OS/I	4-OS	7-OS	8-OS	8-I	8-R	9-I	9-R
Antimony	0.003						0.00354J				
Chromium	0.05	0.318	0.094	3.19	0.106	0.573	0.06122		0.05239		
Iron	0.3**	9.66	1.05	13.6	1.18	5.31	0.552	9.63	1.56	0.305	0.533
Magnesium	35								66.8		
Manganese	0.3**	13	0.026	1.5	0.463	0.586	0.1835	3.479	0.5774		1.137
Nickel	0.1			0.711							
Selenium	0.01	0.013									
Sodium	20	112	24.8	60.8	51.8		26.3	91.4	71.5	26.1	50
Thallium	0.0005	0.015J		0.005J		0.004J					

^{** =} The standard for the sum of iron and manganese is 0.5 mg/L.

3.2.3 Concentration vs. Time Trends

Historical data summary tables are provided in Tables 6 through 19 for select inorganic parameters (aluminum, antimony, arsenic, beryllium, cadmium, chromium, copper, iron, lead, magnesium, manganese, nickel, sodium, and thallium) that have exceeded water quality standards or guidance values. Concentration versus time plots are also provided in Tables 6 through 19 to enable data trend analysis. The concentration trends over time for parameters with TOGS exceedances reported for this event are presented in plots shown in Tables 10, 12, 13, 15, 16, 17, and 18 and are summarized below:

Antimony (Table 10)

The following monitoring wells exceeded the TOGS 1.1.1 standard for antimony (3 μ g/L or 0.003 mg/L): 8-OS, which is the first exceedance for antimony at this monitoring location.

Chromium (Table 12)

The following monitoring wells exceeded the TOGS 1.1.1 standard for chromium (50 μ g/L or 0.05 mg/L): 1-OS, 2-OS, 3-OS/I, 4-OS, 7-OS, 8-OS, and 8-R.

Monitoring wells 1-OS, 2-OS, 3-OS/I, 4-OS, 7-OS, and 8-OS show data trendlines that are generally consistent with a slight apparent increasing trend, while the trendline for monitoring well 2-OS shows a slight apparent decreasing trend. This is the first exceedance for chromium at monitoring well 8-R.

Iron (Table 13)

The following monitoring wells exceeded the TOGS 1.1.1 standard for iron (300 μ g/L or 0.3 mg/L): 1-OS, 2-OS , 3-OS/I, 4-OS, 7-OS , 8-OS, 8-I, 8-R, 9-I, and 9-R.

J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is approximate.

Monitoring wells 3-OS/I and 9-R show as being stable over time. The data trendlines for these two (2) monitoring points were removed from their respective iron concentration trend over time graph due to the poor fit of the correlation coefficient with each respective trendline. The following monitoring wells show a decreasing trend over time: 1-OS, 2-OS, 4-OS, 7-OS, 8-OS, 8-I, 8-R, and 9-I.

Magnesium (Table 15)

Monitoring well 8-R exceeded the TOGS 1.1.1 standard for magnesium (35,000 µg/L or 35 mg/L). The magnesium concentration in well 8-R is slightly increasing over time.

Manganese (Table 16)

The following monitoring wells exceeded the TOGS 1.1.1 standard for manganese (300 μ g/L or 0.3 mg/L): 1-OS, 3-OS/I, 4-OS, 7-OS, 8-I, 8-R, and 9-R. Monitoring wells 3-OS/I, 4-OS, 7-OS, and 8-R show a decreasing trend over time while manganese in groundwater at monitoring wells 1-OS and 8-I are apparently increasing over time although a poor fit was observed. Historical manganese results at 9-R also exhibits a recent decreasing trend over time although a poor fit was observed.

Nickel (Table 17)

The following monitoring wells exceeded the TOGS 1.1.1 standard for nickel (100 μ g/L or 0.1 mg/L): 3-OS/I, which shows a slightly increasing trend over the last five (5) years although a poor fit was observed. The data trendline was removed from its nickel concentration trend over time graph due to the poor fit of the correlation coefficient.

Sodium (Table 18)

The following monitoring wells exceeded the TOGS 1.1.1 standard for sodium $(20,000 \,\mu\text{g/L} \text{ or } 20 \,\text{mg/L})$: 1-OS, 2-OS, 3-OS/I, 4-OS, 8-OS, 8-I, 8-R, 9-I, and 9-R. The following monitoring wells show an increasing trend over time: 1-OS, 3-OS/I, 4-OS, 8-OS, 8-I, and 9-R. Monitoring well 8-R shows a decreasing trend over time for sodium.

There are no NYSDOH drinking water quality standard or designated limits for sodium. Water containing more than 20 mg/L of sodium should not be used for drinking by people on severely restricted sodium diets. Water containing more than 270 mg/L of sodium should not be used for drinking by people on moderately restricted sodium diets. The onsite and offsite monitoring wells are not used as a drinking water supply source.

Sodium is included on the USEPA's Drinking Water Contaminant Candidate List (CCL). The CCL is a list of contaminants which, at the time of publication, are not subject to any proposed or promulgated National Primary Drinking Water Regulation (NPDWR), are known or anticipated to occur in public water systems, and may require regulations under the Safe Drinking Water Act (SDWA).

Thallium (Table 19)

The following monitoring wells exceeded the TOGS 1.1.1 standard for thallium (0.5 μ g/L or 0.0005 mg/L): 1-OS, 3-OS/I, and 7-OS. Monitoring wells 1-OS, 3-OS/I, and 7-OS all show a decreasing trend over time for thallium. This is the third exceedance for thallium at monitoring wells 1-OS and 3-OS/I. This is the second exceedance for thallium at monitoring well 7-OS.

3.2.4 Offsite Private Drinking Water Supplies / Offsite Public Water Supplies

Groundwater from PW-1 and PW-2 is used as a private drinking water supply, and groundwater from SVWC-93, SVWC-94, SVWC-95, and SVWC-96 are used as a public water supply. Analytical results for these private and municipal drinking water supply wells are compared to the NYSDOH 10 NYCRR Part 5 MCLs and the USEPA MCLs for Primary Drinking Water Regulations. No exceedances of NYSDOH or USEPA MCLs were noted at the private water supply wells or public water supply wells (refer to Table 5 and Appendix D).

The sodium results at the private water supply wells are below the Applicable or Relevant and Appropriate Requirements (ARAR) standard of 20 mg/L while sodium results for the public water supply wells SVWC-93, SVWC-94, SVWC-95, and SVWC-96 exceed 20 mg/L. The public water supply wells have historically exceeded the ARAR for sodium and are increasing over time.

3.2.5 Emerging Contaminants (1,4-Dioxane and Perfluorinated Compounds) in Select Onsite and Offsite Groundwater Samples

1,4-Dioxane

Groundwater samples were collected for 1,4-Dioxane analysis from nine (9) monitoring wells UP-OS, UP-I, UP-R, 9-OS, 9-I, 9-R, 10-OS, 10-I, and 10-R and two (2) public water supply wells (SVWC-94 and SVWC-95). The NYSDEC emerging contaminant screening level for 1,4-Dioxane in groundwater is 35 µg/L. On August 26, 2020, NYS adopted new drinking water standards for Public Water Supplies that set maximum contaminant levels (MCLs) of 1 part per billion (1 ppb or 1 µg/L) for 1,4-dioxane. 1,4-Dioxane was not detected above the laboratory method detection limit (MDL) in groundwater samples collected from monitoring wells UP-OS, UP-I, UP-R, 9-OS, 9-I, 10-OS, 10-I, 10-R, and public water supply well SVWC-94 (Tables 4 and 5). 1,4-Dioxane was detected at 2.69 µg/L and 0.412 µg/L in groundwater sampled from monitoring well 9-R and public water supply well SVWC-95, respectively (Tables 4 and 5).

Per and Polyfluoroalkyl Substances (PFAS)

Groundwater samples were collected for PFAS compound analysis from nine (9) monitoring wells UP-OS, UP-I, UP-R, 9-OS, 9-I, 9-R, 10-OS, 10-I, and 10-R and two (2) public water supply wells (SVWC-94 and SVWC-95). The NYSDEC screening level is 100 nanograms per liter (ng/L) for PFOA and PFOS, 100 ng/L for any other individual PFAS compound, and 500 ng/L for the total concentration for all PFAS compounds. On August 26, 2020, NYS adopted new drinking water standards for Public Water Supplies that set a MCL of 10 parts per trillion (10 ppt or 10 nanograms per liter ng/L) each for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). The groundwater sampled from onsite and offsite monitoring wells, as part of the annual groundwater monitoring program, is not used as a drinking water supply source. Results for PFAS compounds in groundwater are provided in Tables 4 and 5. PFAS compounds were not detected at levels exceeding any of the NYSDEC screening levels in any groundwater sample analyzed. The NYSDOH MCL for PFOA in drinking water and PFOS in drinking water were not exceeded at public water supply wells SVWC-94 and SVWC-95.

3.3 Leachate Quality

The September 18, 2019 and February 19, 2020 analytical results for leachate/groundwater are summarized in Table 21 and are generally consistent with previous results. Leachate water quality is characterized by detectable to elevated concentrations of leachate indicators such as ammonia, COD, chloride, hardness, nitrate, sulfate, TDS, and TKN and inorganic parameters, including boron, cadmium, copper, manganese,

and zinc. Inorganic parameters that were not detected include antimony, arsenic, beryllium, chromium, lead, mercury, molybdenum, nickel, selenium, silver, and thallium.

4.0 INSTITUTIONAL/ENGINEERING CONTROL PLAN COMPLIANCE

The multiple institutional and engineering controls for the Landfill implemented by the RODs and documented in the SMP continue to be in place and performing as designed. These controls were reviewed and evaluated through this PRR.

4.1 Institutional Controls

Institutional Controls (IC) include restrictions on the use of real property that limits human and environmental exposure, restricts the use of groundwater, provides notice to potential owners, operators, or members of the public, or prevents actions that would interfere with the effectiveness of the remedial program or with the effectiveness and/or integrity of operation, maintenance, or monitoring activities at or pertaining to the Landfill property.

ICs may include, but are not limited to environmental easements, deed restrictions, discharge permits, site security (other than fencing), local permits, Orders on Consent/decrees, zoning restrictions, hazardous waste site registry, deed notice, groundwater use restrictions, condemnation of property, and public health advisories.

The Covenant of Restrictions and Environmental Easements were filed with the Rockland County Clerk on August 28, 2012 and October 10, 2012. The Environmental Easements stay with the property in perpetuity to provide an effective and enforceable means of encouraging the reuse and redevelopment of the property in a manner determined to be safe for a specific use, while ensuring the performance of operation, maintenance, and/or monitoring requirements, and to ensure the potential restriction of future uses of the land that are consistent with the ROD.

The following restrictions apply to the Landfill property (Parcel 39.19-1-3):

- There shall be no construction, use, or occupancy that results in a disturbance or excavation that threatens the integrity of the engineering controls (EC) described in Section 4.2, or which results in unacceptable human exposure to contaminated soils.
- The Owner shall not disturb, remove, or otherwise interfere with the installation, use, operation, and maintenance of ECs described in Section 4.2 unless a written waiver is obtained from the USEPA and NYSDEC for each occasion.
- The Owner shall prohibit land use from ever being used for purposes other than commercial/industrial use without the express written waiver by the USEPA and NYSDEC.
- The Owner shall prohibit the use of underlying groundwater, without rendering it safe for drinking water or industrial purposes, as appropriate, unless the user first obtains permission to do so from the USEPA and NYSDEC. This restriction also applies to Parcel 39.19-1-3.1, owned by RCSD No. 1, and Parcels 39.19-1-4 and 39.19-1-5, owned by RCSWMA.
- The Owner shall provide an annual certification (see Section 2.3 of the SMP) prepared by a Professional Engineer or environmental professional acceptable to the USEPA and NYSDEC. The

certification will document in-place ICs and ECs are unchanged from the previous certification, comply with the current SMP and have not been impaired.

- The Owner shall continue to implement and maintain the ICs and ECs identified in the SMP unless permission to discontinue such controls is granted from the USEPA and NYSDEC. This requirement also applies to Parcel 39.19-1-3.1, owned by RCSD No. 1, and Parcels 39.19-1-4 and 39.19-1-5, owned by RCSWMA.
- All ICs and ECs shall be binding for present and all future owners. Any conveyance of the Landfill property or portions of the Landfill property are subject to the ICs and ECs.

4.2 Engineering Controls

Engineering Controls (EC) may include physical barriers or methods to actively or passively contain, stabilize, or monitor contamination, restrict the movement of contamination to ensure the long-term effectiveness of the remedial program, or eliminate potential exposure pathways to contamination.

The ECs for the Ramapo Landfill to control the source of contamination and the generation of contaminated leachate include:

- A Landfill cover consisting of layers of fill material, gas venting system, an impermeable membrane, and protective soil cover.
- Active groundwater extraction wells to supplement the existing leachate collection system.
- Leachate collection system for offsite treatment.
- Drainage swales to collect and divert surface water runoff downgradient of sections of the impermeable membrane installed on the Landfill slopes (Figure 4).
- Site security fencing to reduce trespassers on the Landfill property.

4.2.1 Landfill Cover System

Major components of the final cover system are a geomembrane barrier, secondary cushion geotextile, barrier protection soil layer, and a topsoil layer with vegetation.

The geomembrane barrier overlies the secondary cushion geotextile layer, which overlies the prepared existing subgrade, thereby covering the existing refuse mass and residual contaminated soil. The geomembrane barrier is overlain by another secondary cushion geotextile and a layer of 12 inches of low permeability barrier protection soil. The barrier protection soil layer is overlain by a 6-inch topsoil layer and seeded to minimize soil loss. The Landfill slopes are graded to provide proper drainage with slopes ranging from 3 to 33%.

Installation of the Landfill cover system minimizes infiltration of precipitation to wastes and the resultant generation of leachate and prevents the release of previously disposed wastes. The cover system is regularly inspected by the Town of Ramapo to evaluate its performance and assess the following physical condition elements: settlement and erosion of Landfill cover, vegetative growth, slope stability, damage due to presence of vector populations over or near Landfill cover (i.e., burrow holes), monitoring well and Landfill

gas vent integrity, presence or absence of leachate outbreaks, surface water drainage structures, site fencing, gates, and access roads, and evidence of trespassing.

A completed Inspection Checklist and Institutional and Engineering Control Evaluation Form from the annual site inspection completed on October 7, 2020 is provided in Appendix A. The Landfill cover was observed to be in good condition with no evidence of surface water ponding, leachate discharges, or ironstained soils. The perimeter fence is currently intact and functioning as designed. The Landfill appears secure, stable, and the Landfill cover was observed to be well maintained and remains in good condition. No evidence of settlement, erosion, or damage due to active vector populations was observed and the overall physical integrity of the Landfill is in good condition.

The stormwater drainage system appeared to be functioning as designed. Overgrown vegetation is present in many of the drainage channels along the perimeter of the Landfill (see Photographs 1, 3, 7, 11, 13, 15, 21, and 23, Appendix C). The Landfill downchutes are in acceptable condition although some deeper rooted vegetation is present within select sections of the Landfill drainage structures, as identified on the Landfill Inspection Form (Appendix A), and should be maintained.

Two (2) damaged gas vents and two (2) angled gas vents (see Photographs 4, 5, 6, and 8; Appendix C) were observed across the Landfill. Overgrown vegetation was observed surrounding several gas vents. The subject gas vents should be repaired and overgrown vegetation should be removed as part of standard maintenance as described in the Site Management Plan (SMP). The concrete collar for the manhole cover at MH E-6 is damaged (Figure 7 and Photograph 2, Appendix C). Although the manhole was functioning as designed the concrete collar should be repaired. No additional actions or special maintenance is required for the Landfill cover system at this time beyond the regular ongoing post-closure care.

4.2.2 Leachate Collection System

All leachate collected from the leachate collection system flows by gravity to the adjacent RCSD No. 1 pump station and then the leachate/groundwater is pumped to the Western Ramapo Sewage Treatment Plant. The leachate collection/transfer system is designed and constructed to operate automatically. Extraction well and lift station locations are provided in Figure 7.

Individual pump controls are as follows:

- 1. Extraction Wells Water Level Sensors
- 2. Lift Station and Pump Pit Pumps Floats with mercury switches sensing actual water levels (Inactive).

4.2.3 Groundwater Extraction Wells

The groundwater extraction wells are pumped to contain the contaminant plume that migrates from the Landfill. The groundwater extraction wells are located on the western side of the Landfill along Torne Valley Road between monitoring well clusters MW-3 and MW-8. The layout of the extraction well system is approximately 700 feet in length. Three (3) extraction wells (W-5, W-6, and W-7) are approximately 20 feet deep and screened in dense sand and partially into the upper two (2) feet of bedrock. The remaining extraction wells (W-1 through W-4) are deeper, ranging from 38 to 51 feet in depth and are screened in dense sand and partially into upper ten feet of bedrock (see Figure 7 for locations).

The Town hired a consultant, Roberge Electric (Roberge), to install a flow meter on Extraction Well W-3 to serve as a prototype. Installation was completed at the end of May 2016. After evaluation, the flow meter performance was determined to be satisfactory and the Town contracted with Roberge to equip the remaining extraction wells with similar flow meters. Roberge completed installation of six (6) flow meters at lift station A-7 and W-20 and extraction wells W-1, W-2, W-4, and W-7 in mid-November 2016. Installation of flow meters at extraction wells W-5 and W-6 were installed in May 2017. The leachate collection system is located along the perimeter of the waste mass. The perimeter leachate collection system continues to function as designed.

The operation of extraction well W-1 was impacted due to faulty controller board and transducer between August 2019 and early June 2020. The new controller board and transducer at W-1 were acquired from a new manufacturer as the former units were deemed obsolete. Functionality for extraction wells W-1 through W-7 were briefly affected for a few days in late December 2019 due to a break in the power lines on Torne Valley Road. Extraction wells W-2 and W-3 experienced electrical problems between March 3, 2020 and April 2, 2020 as the minor electrical repairs were delayed due to retirement of key personnel and the lack of availability of other DPW staff due to Executive Orders being put-in-place regarding the COVID-19 pandemic.

Annual leachate/groundwater volumes pumped from the Landfill to the Western Ramapo Sewage Treatment Plant between 1995 and September 30, 2020 are summarized in Table 20. The total leachate/groundwater removed from the Landfill during this reporting period is 13,109,095 gallons: 8,342,290 gallons January 1, 2020 through October 31, 2020 and 4,766,805 gallons from August 1, 2019 through December 31, 2019. Removed leachate/groundwater was directed through a force main to the Western Ramapo Sewage Treatment Plant for treatment. For comparison, the total leachate/groundwater removed from the Landfill in 2019 was 14,079,593 gallons and the volume of leachate/groundwater pumped from the Landfill extraction wells between 2009 and 2019 has averaged 13,637,111 gallons per year. Four (4) of the last five (5) years have had annual volume removals above the most recent ten (10) year average while the 2019 extraction well discharge volume was 3.24% higher than the most recent ten (10) year average.

4.2.4 Surface Water Runoff Features and Drainage Swales

Surface water runoff features are located on and around the Landfill property (Figure 4). Terraces and riprap downchutes on the Landfill waste mass direct stormwater runoff to the Landfill perimeter drainage ditches successfully preventing the occurrence of standing water on the Landfill. The surface water runoff is directed into perimeter drainage ditches into drainage basins to reduce particulates and sediment before it ultimately enters into the Torne Brook. These surface water runoff features are checked routinely by the Town of Ramapo for sediment buildup, overgrowth of vegetation, overflow of drainage ditches or basins, improper drainage of terraces and downchutes, and sloughing of the Landfill cover. Based on the observed conditions during the Annual Landfill Site Inspection, no corrective measures are needed for the surface water management features.

Drainage swales collect diverted surface water runoff (Figure 4). Two (2) swales are located on the north lobe and two (2) swales are located on the south lobe of the Landfill. These swales divert runoff into wetlands, a retention pond, and Torne Brook.

4.2.5 Groundwater Monitoring Wells

Existing groundwater monitoring wells are located along the upgradient, crossgradient, and downgradient perimeter of the Landfill waste mass. The wells are used to monitor groundwater quality around the Landfill

property. Monitoring wells are routinely checked for sediment buildup using depth to bottom measurements and the integrity of the outer casing, lid, and lock. These monitoring wells are sampled every fifth quarter for 6 NYCRR Part 360 Baseline Parameters for indication of contamination by the Landfill waste mass.

Overall, the monitoring well network is functioning as designed and the Town of Ramapo will continue the approved annual monitoring program.

4.3 IC/EC Certification

As required by DER-10, Section 6.3(a), the completed and signed NYSDEC IE/EC Certification Form is provided as Appendix B. All ICs/ECs are in place and functioning as designed.

5.0 MONITORING PLAN COMPLIANCE

The Landfill was granted a post-closure monitoring variance by the NYSDEC on October 27, 2003, reducing the monitoring frequency to once every year with the monitoring event being rotated to the next quarter for each year. Monitoring includes collection of groundwater and leachate samples for analysis of 6 NYCRR Part 360 Baseline parameters, as well as water level measurements from select monitoring wells and air quality monitoring. Monitoring wells and sample locations are shown on Figure 3. The following sections describe the monitoring requirements for air, groundwater, and leachate quality.

5.1 Air Quality Monitoring

Air quality monitoring includes field measurements of explosive gas, H₂S, and VOC concentrations in the headspaces of each monitoring well, leachate manhole A-5, lift stations A-10 and W-20, and ambient breathing space at the Baler Building and along the Landfill perimeter at designated locations (Figure 3). Results of the air quality monitoring are described in Section 3.1.

The air quality monitoring program meets the remedial objectives to evaluate the effectiveness of the selected remedy by providing a direct means to determine if Landfill gases are prevented from migration and buildup. The Town of Ramapo will continue air quality monitoring according to the approved SMP.

5.2 Groundwater Monitoring

The current groundwater monitoring program consists of sampling eight (8) "OS" monitoring wells, one (1) OS/I monitoring well, three (3) downgradient "I" monitoring wells, three (3) downgradient "R" monitoring wells, two (2) private water supply wells, and four (4) public municipal water supply wells. A new monitoring well cluster (UP-OS, UP-I, and UP-R) was installed in 2016 to determine natural upgradient groundwater conditions. Static depth to water measurements are collected from locations shown on Figure 3 to determine groundwater flow patterns.

Overall, the groundwater monitoring program meets the remedial objectives by providing suitable means to determine the effectiveness of the selected remedy. The Town of Ramapo will continue groundwater monitoring according to the approved SMP.

5.3 Leachate Monitoring

Through June 2011, leachate and groundwater from the Landfill extraction well network were pumped to the Rockland County Sewer Treatment Plant located at 4 Route 340, Orangeburg, New York. Starting in

June 2011, leachate/groundwater collected by the Landfill extraction wells has been pumped to the RCSD No. 1 Western Ramapo Treatment Plant in Hillburn, New York. Analytical testing of the Landfill leachate/groundwater occurs on a biannual basis from a manhole located upstream of the discharge to the leachate wet well.

Analytical results from August 20, 2009 through February 19, 2020 are summarized in Table 21. Reported parameter concentrations are compared with Maximum Concentration Limits set by RCSD No. 1 Western Ramapo Treatment Plant. There are no limit exceedances for any of the listed parameters between August 20, 2009 and February 19, 2020.

Leachate/groundwater extracted from the Landfill and discharged to the RCSD No. 1 Western Ramapo Treatment Plant meets the industrial permit requirements for samples collected from August 20, 2009 through February 19, 2020. Sampling of the discharge from the Landfill will continue on a semi-annual basis.

6.0 OPERATION AND MAINTENANCE PLAN COMPLIANCE

The Operation and Maintenance (O&M) Plan for the Landfill, outlined in the SMP, consists of the following components:

- Repair, if necessary, of the Landfill cover system in accordance with approved specification materials and methods;
- Annual mowing of the vegetated cover system;
- Investigation of landfill cover system for evidence of sloughing, cracks, settlement, erosion and deposition, stressed vegetation, and undesirable vegetation;
- Vector control;
- Integrity assessment of the gas venting system;
- Investigation of gas odors;
- Snow plowing and upkeep of the perimeter access road;
- Collection, removal, and disposal of leachate;
- Preventative maintenance of leachate pumps;
- Repair or replacement, if necessary, of monitoring wells; and,
- Annual or more frequent clearing of drainage swales, ditches, and downchutes.

Between August 1, 2019 and October 31, 2020, the following O&M activities were performed:

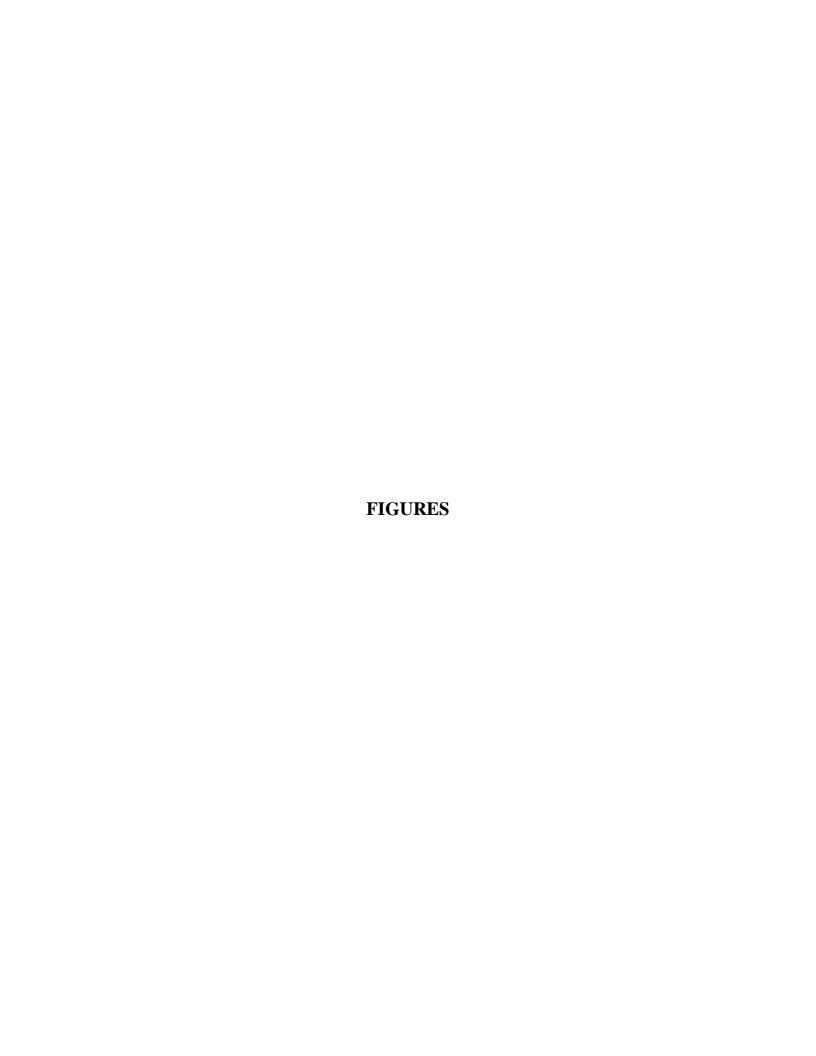
- Routine and annual inspections of the Landfill cover system, surface water drainage features, monitoring wells, leachate collection system, and the Landfill property;
- Mowing of the Landfill cover system;
- Regular leachate removal from onsite extraction wells for treatment at RCSD No. 1;
- Integrity assessment of the monitoring network; and,
- Air, groundwater, and leachate quality monitoring.

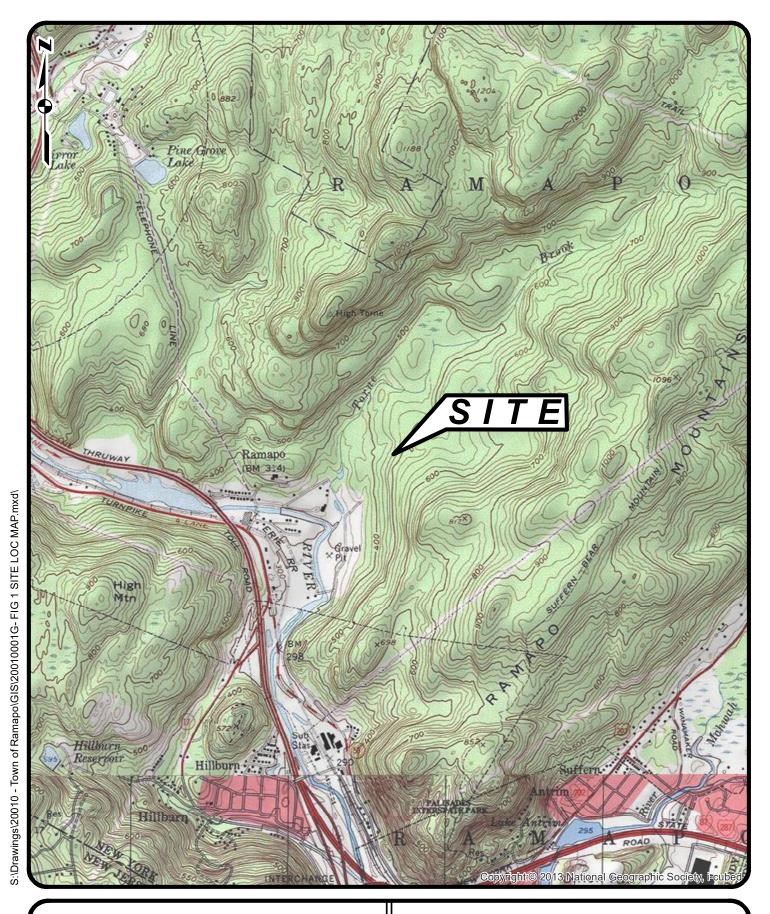
Operation and maintenance of the property continues to protect human health and the overall integrity of the Landfill. There were no deficiencies in complying with the O&M Plan between the August 1, 2019 and October 31, 2020 reporting period. The components of the remedy subject to O&M requirements (Landfill cover, gas venting, leachate collection, and surface water management) are functioning as designed.

Regular inspections performed by Town of Ramapo personnel continue to show compliance with the remedy determined for the Landfill.

7.0 CONCLUSIONS AND RECOMMENDATIONS

The Landfill continues to comply with the required activities set forth in the SMP for this reporting period. The ICs and ECs implemented at the site continue to function as designed. The environmental monitoring plan for the Landfill is ongoing and remains in accordance with the approved variance granted by the NYSDEC in 2003. The Town of Ramapo will continue to perform regular inspections to maintain the integrity of the Landfill and surrounding property to protect human health and the environment.


The following conclusions are made based on observations and analytical results collected during the reporting period of August 1, 2019 to October 31, 2020:

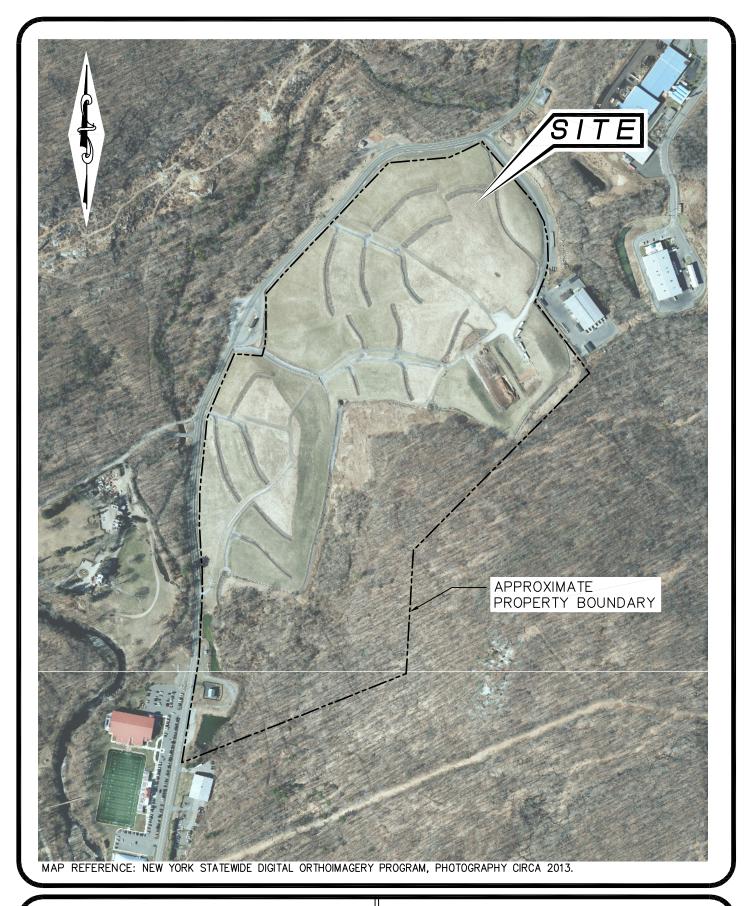

- The Landfill appears secure and stable, and the Landfill cover is intact with no evidence of stressed vegetation, leachate discharges, or damage due to settlement or active vectors.
- Two (2) damaged gas vents and two (2) angled gas vents were observed at the Landfill. Overgrown vegetation was also occasionally observed surrounding several gas vents. Vegetative growth is present along some sections of the Landfill's perimeter drainage structures and should be maintained.
- The concrete collar for the manhole cover at MH E-6 is damaged but is functioning as designed.
- The October 7, 2020 air quality monitoring survey for explosive gas, H₂S, and VOCs indicated the Landfill is in compliance with the requirements set forth in 6 NYCRR 360-2.15(k)(4) and 2.17(f) (effective prior to 11/4/17).
- The bedrock groundwater elevation obtained from monitoring well 6-R was not utilized as the measured elevation was not consistent with historical data.
- Groundwater flow direction in the overburden and bedrock aquifer systems is to the northwest and/or west towards Torne Brook. Groundwater gradients are similar in both aquifer systems and downward vertical gradients are noted throughout the Landfill perimeter, except at monitoring well clusters UP, 7-OS/7-I, 8, 9 and 10, which were observed to be slight (7-OS/7-I and 8) to moderately (UP, 9, and 10) upward. These vertical gradients are consistent with historical trends.
- No site-related VOCs were detected in groundwater at or above the respective laboratory MDLs.
- No exceedances of USEPA MCLs were noted at the private water supply wells or public water supply wells. The ARAR for sodium was exceeded at all sampled public water supply wells (SVWC-93, SVWC-94, SVWC-95, and SVWC-96), which is consistent with historical results.
- Applicable TOGS 1.1.1 standards were exceeded for antimony, chromium, iron, manganese, magnesium, nickel, selenium, sodium, and thallium at one or more monitoring wells.

- Historical trends are relatively consistent with the 2020 PCM analytical results. This was the fourth sampling event to include the newly installed upgradient monitoring well cluster (UP-OS, UP-I and UP-R).
- No NYSDEC-1,4-Dioxane screening levels were exceeded in any groundwater sample analyzed for 1,4-Dioxane.
- No NYSDEC-PFAS screening levels were exceeded in any groundwater sample analyzed for PFAS compounds.
- The volume of leachate/groundwater pumped from Landfill extraction wells to the RCSD No. 1 Western Ramapo Treatment Plant during this reporting period was 13.11 million gallons and has averaged slightly greater than 13.63 million gallons per year from 2009 through 2019.
- There were no reported discharge limit exceedances for the leachate/groundwater extracted from the Landfill and pumped to the RCSD No. 1 Western Ramapo Treatment Plant.

The following recommendations are made based on analytical results and observations during the reporting period:

- The damaged gas vents should be repaired and overgrown vegetation should be removed as part of standard maintenance as described in the Site Management Plan (SMP).
- The damaged concrete collar for the manhole cover at MH E-6 should be repaired.
- A well integrity assessment of bedrock monitoring well MW-6R, including re-surveying the measuring point, will be completed in 2021 to ensure groundwater elevation data is accurate.
- Monitoring is recommended to continue in accordance with the SMP requirements.

Sterling Environmental Engineering, P.C. 24 Wade Road • Latham, New York 12110


SITE LOCATION MAP
TOWN OF RAMAPO LANDFILL

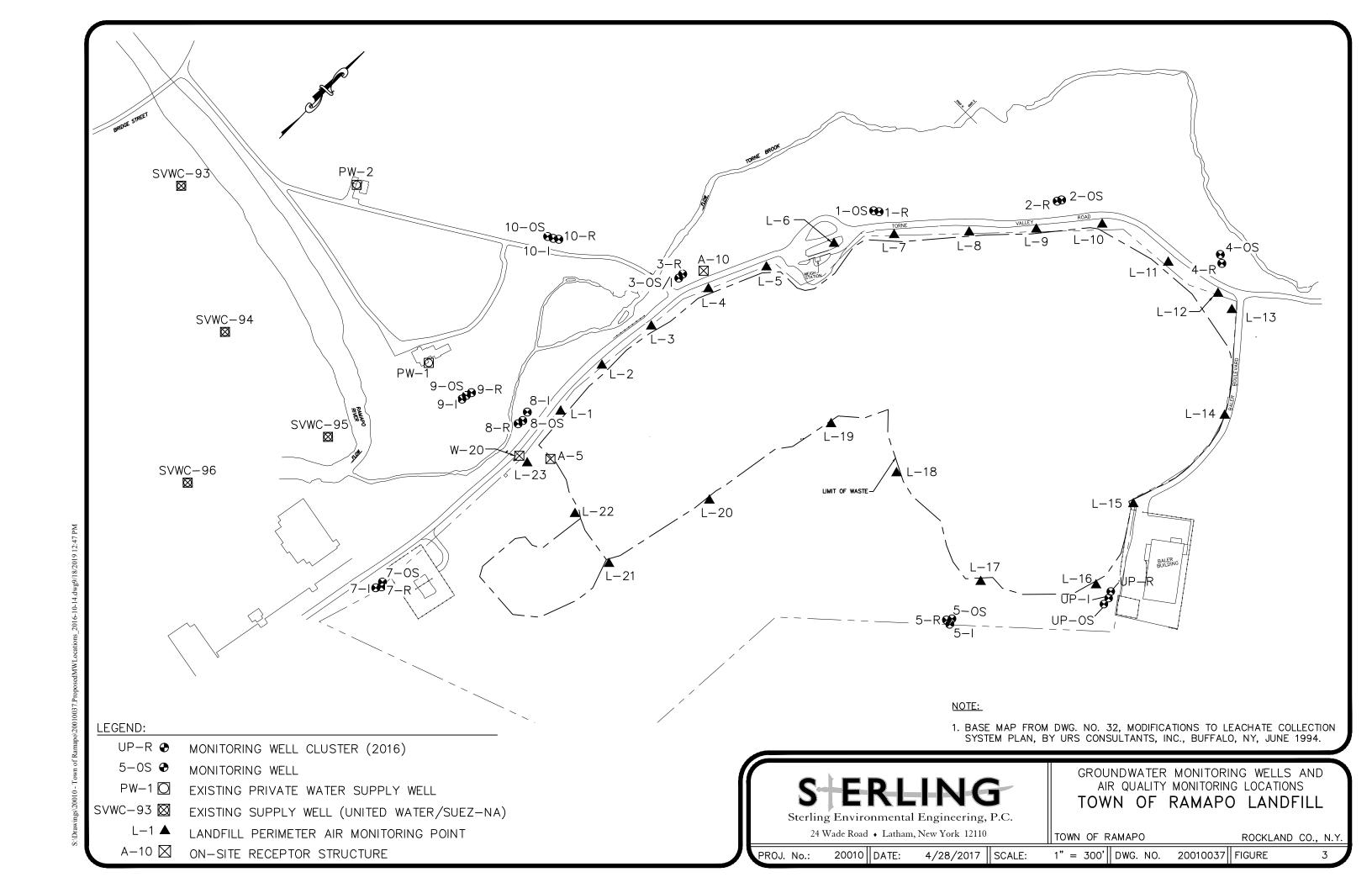
TOWN OF RAMAPO

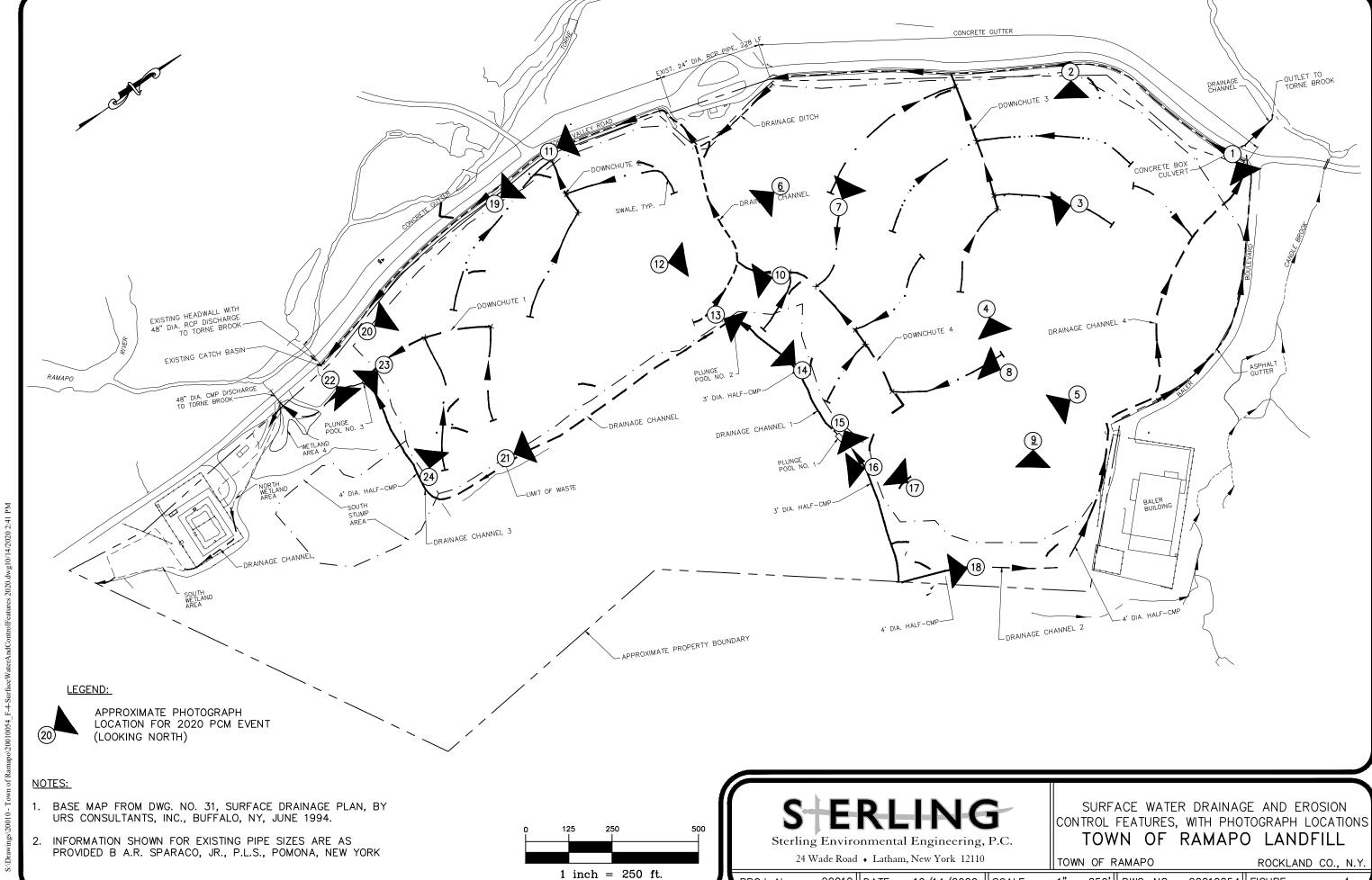
ROCKLAND CO., NY

FIGURE

PROJ.NO. 20010 DATE: 10/14/2020 SCALE: 1 " = 2,000 ' DWG.NO. 20010001G

Sterling Environmental Engineering, P.C.

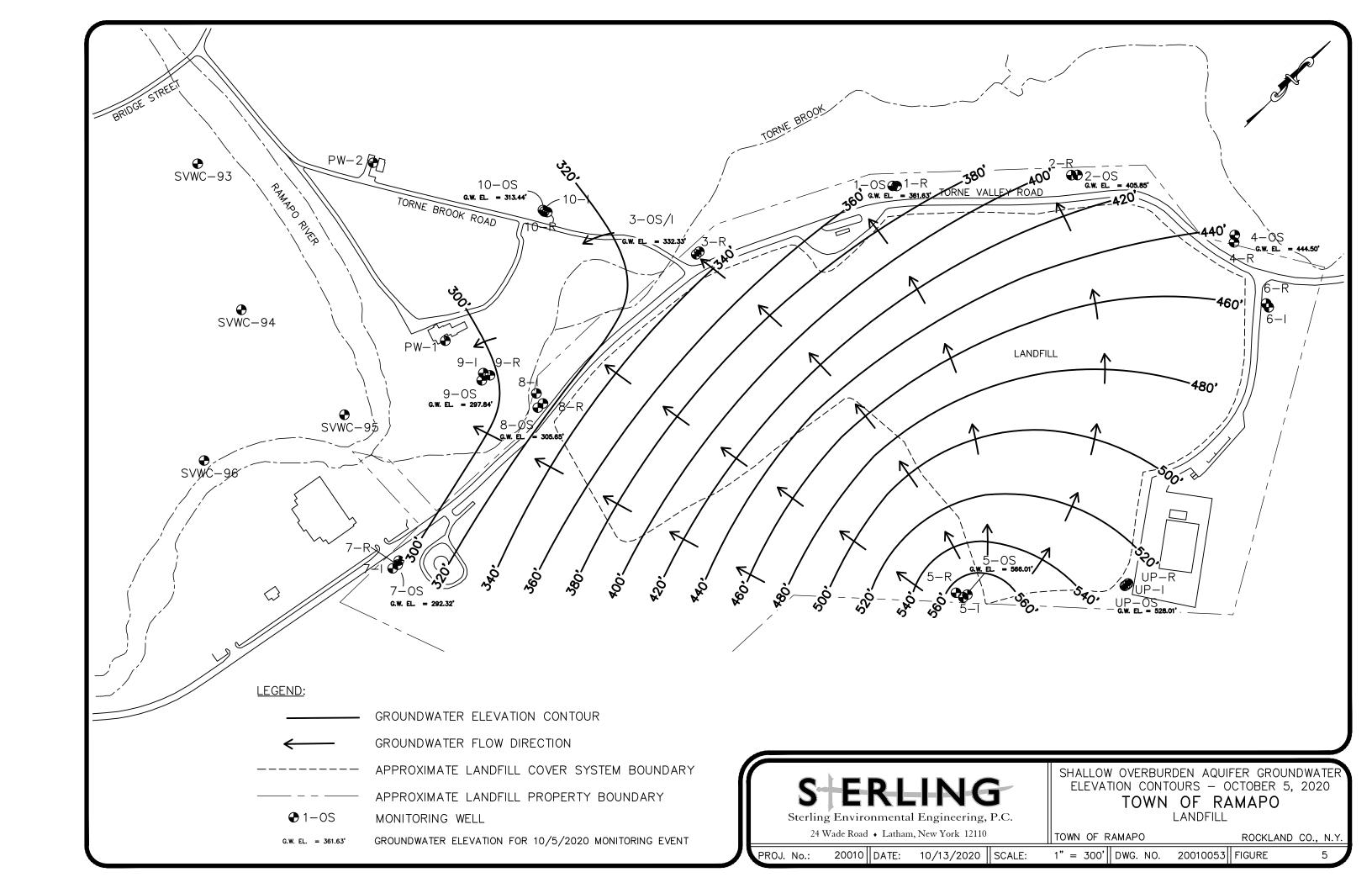

24 Wade Road • Latham, New York 12110


PROPERTY FEATURES
TOWN OF RAMAPO
LANDFILL

TOWN OF RAMAPO

ROCKLAND CO., N.Y.

PROJ. No.: 20010 DATE: 6/24/14 SCALE: 1" = 500' DWG. NO. 20010036 FIGURE



PROJ. No.:

20010 DATE: 10/14/2020 SCALE:

1" = 250' DWG. NO. 20010054 FIGURE

ß Ramapo\20010052_F of S: \Drawings\20010

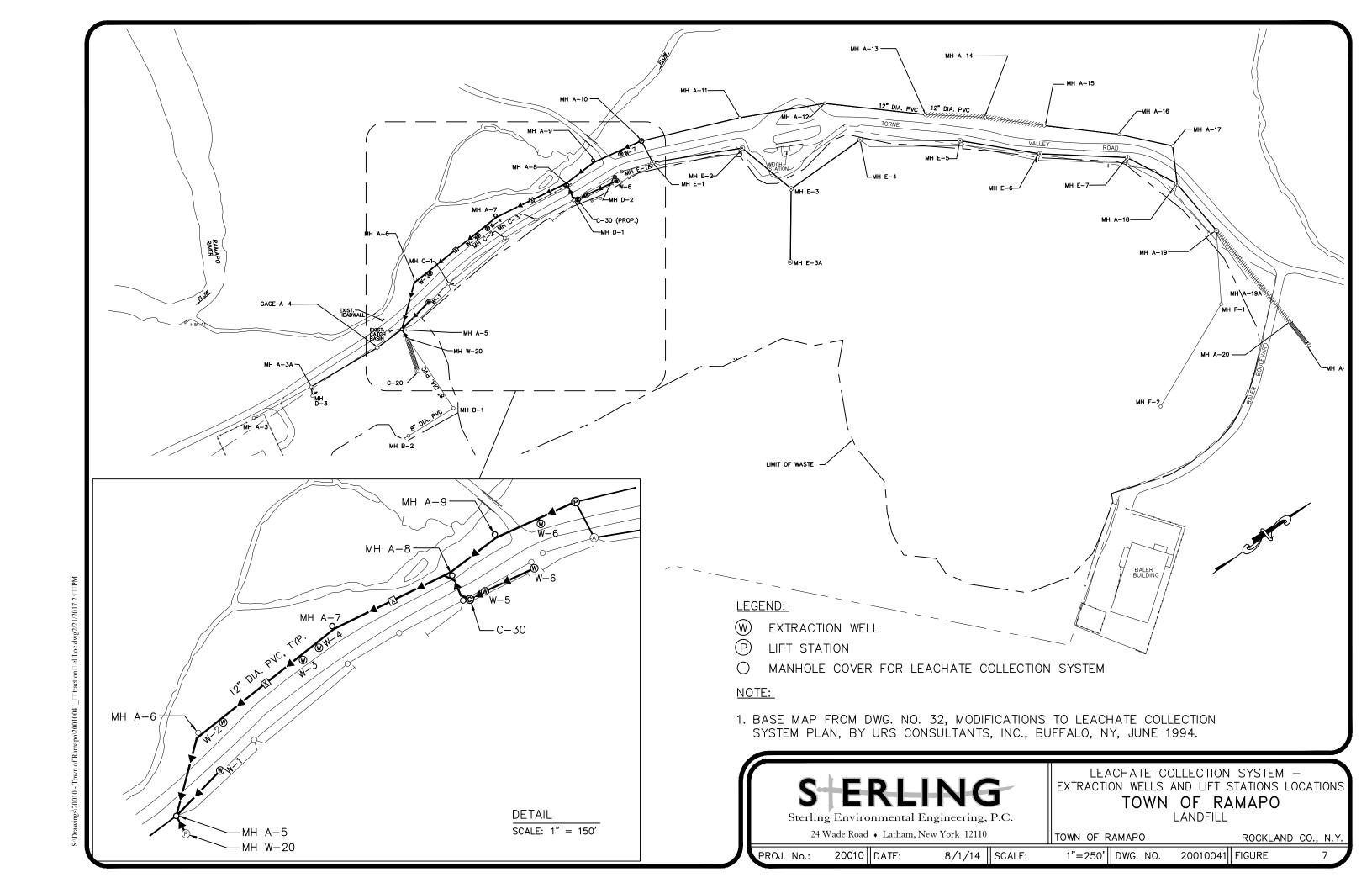


TABLE 1 Page 1 of 1

Summary of Air Monitoring Results (10/5/2020 - 10/8/2020) Town of Ramapo Landfill

Monitoring	LEL Reading	H ₂ S Reading	VOC Reading
Location (1)	(% LEL)	(ppm)	(ppm)
Monitoring Wells:			
1-OS	0.0%	0.0	0.0
1-R	0.0%	0.0	0.0
2-OS	0.0%	0.0	0.0
2-R	0.0%	0.0	0.0
3-OS/I	0.0%	0.0	0.0
3-R	0.0%	0.0	0.0
4-OS	0.0%	0.0	0.0
4-I	0.0%	0.0	0.0
4-R	0.0%	0.0	0.0
5-OS	0.0%	0.0	0.0
5-R	0.0%	0.0	0.0
6-I	0.0%	0.0	0.0
6-R	0.0%	0.0	0.0
7-OS	0.0%	0.0	0.0
7-I	0.0%	0.0	0.0
7-R	0.0%	0.0	0.0
8-OS	0.0%	0.0	0.0
8-I	0.0%	0.0	0.0
8-R	0.0%	0.0	0.0
9-OS	0.0%	0.0	0.0
9-I	0.0%	0.0	0.0
9-R	0.0%	0.0	0.0
10-OS	0.0%	0.0	0.0
10-I	0.0%	0.0	0.0
10-R	0.0%	0.0	0.0
UP-OS	0.0%	0.0	0.0
UP-I	0.0%	0.0	0.0
UP-R	0.0%	0.0	0.0
Baler Building (Breathing Zone, North Corner)	0.0%	0.0	0.0
Baler Building (Breathing Zone, East Corner)	0.0%	0.0	0.0
Baler Building (Breathing Zone, South Corner)	0.0%	0.0	0.0
Baler Building (Breathing Zone, West Corner)	0.0%	0.0	0.0
Manhole A-5	16.0%	0.0	0.0
Lift Station A-10	21.0%	0.0	0.0
Lift Station W-20	0.0%	0.0	0.0
Landfill Perimeter (Breathing Zone, L1 through L23)	0.0%	0.0	0.0

NOTES:

LEL = Lower Explosive Limit

 $H_2S = Hydrogen Sulfide$

VOCs = Volatile Organic Compounds measured using Multi-RAE meter.

ppm = parts per million

⁽¹⁾ See Figure 3 for Air Monitoring Locations

Table 2Page 1 of 1

Summary of Analytical Parameters and Method References Town of Ramapo Landfill

<u>Parameter</u>	Document/Method No.	<u>Reference</u>
Specific Conductance	120.1	1
Temperature	170.1	1
Static Water Level		
Floaters or Sinkers		
рН	150.1	1
Eh	D1498	2
Field Observations		
TKN	351.3	1
COD	5220D	1
Alkalinity	2320B	1
Hardness as CaCO ₃	130.1	1
Site Related Volatiles*:		
1, 1-Dichloroethane	624.1	1
Vinyl Chloride	624.1	1
Benzene	624.1	1
Chlorobenzene	624.1	1
	NYSDEC ASP (USEPA	
TAL Metals**	200.7/USEPA 200.8/USEPA	1
	245.1/USEPA 522)	_
1,4-Dioxane	8270D-SIM	3
PFAS	134 / Modified 537	4

References:

- 1. New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) 9/89, 12/91 Revisions.
- 2. American Society for Testing & Materials, ASTM, 1989.
- 3. USEPA Health Advisory Level (HAL) for 1,4 Dioxane in drinking water (35 µg/L).
- 4. NYSDEC DER, Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS), October 2020.
- --- Parameters will be measured by Field Personnel or Reference is not available.

Notes:

^{*} Revised in Accordance with the NYSDEC's October 27, 2003 post-closure monitoring variance approval.

^{**} Laboratory reporting limits (RL) must be equal to or less than the applicable water quality standard. Specifically, the RL for Antimony must be $3.0 \,\mu\text{g/L}$ or less and for Thallium must be $0.5 \,\mu\text{g/L}$ or less.

Summary of Field Parameter Measurements (10/5/2020- 10/8/2020) Town of Ramapo Landfill

Param	eter	Static Water Level ¹	Specific Conductivity	Temperature	pН	ORP	Turbidity
Unit	S	feet	mS/cm	degrees C	pH Units	mV	NTU
Title 6 Part 703.5 Grou	ındwater Standard				6.5 <ph< 8.5<="" th=""><th></th><th>5.0</th></ph<>		5.0
Well Sample ID	Date						
1-08	10/8/2020	17.58	0.924	13.4	6.33	44.7	42.85
1-I	10/5/2020	16.42					
1-R	10/5/2020	18.92					
2-OS	10/8/2020	16.89	0.671	14.2	6.83	58.6	32.32
2-I	10/5/2020	18.86					
2-R	10/5/2020	20.28					
3-OS/I	10/8/2020	13.44	0.825	15.3	6.43	103.2	97.67
3-R	10/5/2020	13.43					
4-OS	10/8/2020	7.92	0.739	13.4	6.38	86.3	27.27
4-I	10/5/2020	11.79					
4-R	10/5/2020	9.79					
5-OS	10/5/2020	18.86					
5-I	10/5/2020	20.15					
5-R	10/5/2020	31.53					
6-I	10/5/2020	18.09					
6-R	10/5/2020	30.45					
7-OS	10/8/2020	17.11	0.329	13.1	6.33	129.6	62.75
7-I	10/5/2020	16.34					
7-R	10/5/2020	16.98					
8-OS	10/7/2020	14.56	0.327	13.8	6.18	112.8	10.05
8-I	10/7/2020	15.45	0.933	12.7	6.56	-22.3	52.63
8-R	10/7/2020	14.24	1.186	13.1	6.97	125.7	9.30
9-OS	10/6/2020	10.16	0.079	15.6	6.03	182.1	1.61
9-I	10/6/2020	12.19	0.176	15.2	5.92	162.7	6.49
9-R	10/5/2020	13.70	0.567	12.2	6.57	74.5	5.37
10-OS	10/6/2020	18.58	0.037	11.4	5.19	280.1	8.31
10-I	10/6/2020	17.28	0.095	9.7	6.35	168.1	4.04
10-R	10/6/2020	16.32	0.089	11.2	6.27	170.8	6.78
UP-OS	10/5/2020	10.88	0.211	13.6	8.13	114.9	5.32
UP-I	10/5/2020	9.94	0.166	13.0	8.15	130.5	257.09
UP-R	10/5/2020	0.34	0.120	13.9	7.73	115.6	4.82
PW-1	10/6/2020		0.149	11.9	6.66	142.9	0.12
PW-2	10/6/2020		0.243	11.9	6.82	158.0	1.78
SVWC-93	10/6/2020		0.622	15.3	6.24	250.8	0.10
SVWC-94	10/6/2020		0.615	16.1	6.74	149.0	1.16
SVWC-95	10/6/2020		0.567	15.5	6.83	150.4	1.03
SVWC-96	10/6/2020		0.575	15.3	6.79	144.8	3.69

NOTES:

Value in **BOLD** indicates an exceedance of applicable water quality standard or guidance value.

 $^{^{\}rm 1}{\rm Measured}$ from the top of the PVC or stainless steel well casing to water surface.

² Monitoring Well UP-R has artesian well characteristics. The static water level was exactly at the measuring point elevation.

⁻⁻⁻ Denotes no standard or not measured.

ANALYTE	NY-AWQS	NYSDEC- PFAS	UP-OS 10/5/2020	UP-I 10/5/2020	UP-R 10/5/2020	1-OS 10/8/2020	2-OS 10/8/2020	3-OS/I 10/8/2020	4-OS 10/8/2020	7-OS 10/8/2020	8-OS 10/7/2020	8-I 10/7/2020
LEACHATE INDICATOR PARAMETERS, mg/L												
Alkalinity, Total			102	72	42	351	296	249	123	120	108	305
Chemical Oxygen Demand			2.7 U	2.7 U	5.2 J	19	38	86	2.8 J	26	2.7 U	5.2 J
Hardness			95.6	74.2	45.2	223	284	250	215	128	94	259
Total Kjeldahl Nitrogen			0.215 J	0.183 J	0.343	0.434	1.51	0.766	0.226 J	0.319	0.324	3.53
VOLATILE ORGANIC COMPOUNDS, µg/L			V	0.200	0.00.00	*****	- 10 -		******	****	****	
1,1-Dichloroethane	5		0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U
Benzene	1		0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U
Chlorobenzene	5		0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U
Vinyl Chloride	2		0.07 U	0.07 U	0.07 U	0.07 U	0.07 U	0.07 U	0.07 U	0.07 U	0.07 U	0.07 U
Total VOCs			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4 DIOXANE, μg/L												
1,4-Dioxane		35	0.0326 U	0.0326 U	0.0326 U	NS	NS	NS	NS	NS	NS	NS
PERFLUORINATED ALKYL ACIDS, ng/L												
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)		100	1.05 U	1.1 U	1.11 U	NS	NS	NS	NS	NS	NS	NS
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)		100	1.16 U	1.21 U	1.22 U	NS	NS	NS	NS	NS	NS	NS
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)		100	0.698 U	0.733 U	0.736 U	NS	NS	NS	NS	NS	NS	NS
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)		100	0.562 U	0.59 U	0.593 U	NS	NS	NS	NS	NS	NS	NS
Perfluorobutanesulfonic Acid (PFBS)		100	0.206 U	0.217 U	0.218 U	NS	NS	NS	NS	NS	NS	NS
Perfluorobutanoic Acid (PFBA)		100	0.403 J	0.372 U	0.373 U	NS	NS	NS	NS	NS	NS	NS
Perfluorodecanesulfonic Acid (PFDS)		100	0.85 U	0.893 U	0.897 U	NS	NS	NS	NS	NS	NS	NS
Perfluorodecanoic Acid (PFDA)		100	0.264 U	0.277 U	0.278 U	NS	NS	NS	NS	NS	NS	NS
Perfluorododecanoic Acid (PFDoA)		100	0.323 U	0.339 U	0.34 U	NS	NS	NS	NS	NS	NS	NS
Perfluoroheptanesulfonic Acid (PFHpS)		100	0.597 U	0.627 U	0.63 U	NS	NS	NS	NS	NS	NS	NS
Perfluoroheptanoic Acid (PFHpA)		100	0.302 J	0.205 U	0.206 U	NS	NS	NS	NS	NS	NS	NS
Perfluorohexanesulfonic Acid (PFHxS)		100	0.326 U	0.343 U	0.344 U	NS	NS	NS	NS	NS	NS	NS
Perfluorohexanoic Acid (PFHxA)		100	0.462 J	0.302 J	0.359 J	NS	NS	NS	NS	NS	NS	NS
Perfluorononanoic Acid (PFNA)		100	0.302 J	0.284 U	0.286 U	NS	NS	NS	NS	NS	NS	NS
Perfluorooctanesulfonamide (FOSA)		100	0.503 U	0.529 U	0.531 U	NS	NS	NS	NS	NS	NS	NS
Perfluorooctanesulfonic Acid (PFOS)		10	0.437 U	0.459 U	0.461 U	NS	NS	NS	NS	NS	NS	NS
Perfluorooctanoic Acid (PFOA)		10	2.73	0.215 U	0.216 U	NS	NS	NS	NS	NS	NS	NS
Perfluoropentanoic Acid (PFPeA)		100	0.344 U	0.361 U	0.362 U	NS	NS	NS	NS	NS	NS	NS
Perfluorotetradecanoic Acid (PFTA)		100	0.215 U	0.226 U	0.227 U	NS	NS	NS	NS	NS	NS	NS
Perfluorotridecanoic Acid (PFTrDA)		100	0.284 U	0.298 U	0.299 U	NS	NS	NS	NS	NS	NS	NS
Perfluoroundecanoic Acid (PFUnA)		100	0.226 U	0.237 U	0.238 U	NS	NS	NS	NS	NS	NS	NS
PFAS, Total		500	4.199 J	0.302 J	0.359 J	NS	NS	NS	NS	NS	NS	NS

Notes:

NY-AWQS: New York T.O.G.S. 1.1,1. Ambient Water Quality Standards criteria reflects all addendum to criteria through June 2004.

NYSDEC-PFAS: Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS), October 2020 / USEPA Health Advisory Level (HAL) for 1,4 Dioxane in drinking water (35 µg/L).

Bold = Value indicates reported concentration exceeds applicable water quality standards.

^{*} Duplicate groundwater sample collected from bedrock monitoring well 9-R

^{** =} The standard for the sum of iron and manganese is 0.5 mg/L.

⁻⁻⁻ Denotes no applicable water quality standard.

U = Analyte was not detected at or above laboratory method detection limit.

ND = Not Detected and No available Method Detection Limit (MDL) for this analyte.

⁽a) = The laboratory Method Detection Limit (MDL) was higher thant the NYTOGS 1.1.1. Groundwater Quality Standard.

F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.

J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is approximate.

NS = Not sampled.

ANALYTE	NY-AWQS	NYSDEC- PFAS	8-R	9-OS	9-I	9-R	DUP10052020	10-OS	10-I	10-R	EB10052020	FB10052020	EB10062020
		ITAS	10/7/2020	10/6/2020	10/6/2020	10/6/2020	10/5/2020	10/6/2020	10/6/2020	10/6/2020	10/5/2020	10/5/2020	10/6/2020
LEACHATE INDICATOR PARAMETERS, mg/L													
Alkalinity, Total			514	14.4	28.8	128	130	ND	24.9	24.2	NS	NS	NS
Chemical Oxygen Demand			7.5 J	2.7 U	2.7 U	2.7 U	2.8 J	2.7 U	2.7 U	2.7 U	NS	NS	NS
Hardness			533	20.1	26.3	137	139	7.92	32.8	29.6	NS	NS	NS
Total Kjeldahl Nitrogen			0.508	0.139 J	0.165 J	0.832	0.872	0.152 J	0.239 J	0.129 J	NS	NS	NS
VOLATILE ORGANIC COMPOUNDS, μg/L													
1,1-Dichloroethane	5		0.7 U	0.7 U	0.7 U	0.7 U	NS	NS	NS				
Benzene	1		0.16 U	0.16 U	0.16 U	0.16 U	NS	NS	NS				
Chlorobenzene	5		0.7 U	0.7 U	0.7 U	0.7 U	NS	NS	NS				
Vinyl Chloride	2		0.07 U	0.07 U	0.07 U	0.07 U	NS	NS	NS				
Total VOCs			ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS
1,4 DIOXANE, μg/L													
1,4-Dioxane		0.35	NS	0.0326 U	0.0326 U	2.69	2.76	0.0326 U	0.0326 U	0.0326 U	NS	NS	NS
PERFLUORINATED ALKYL ACIDS, ng/L													
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)		100	NS	1.11 U	1.05 U	1.11 U	1.07 U	1.05 U	1.12 U	1.07 U	1.15 U	1.11 U	1.15 U
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)		100	NS	1.22 U	1.15 U	1.22 U	1.18 U	1.16 U	1.23 U	1.18 U	1.26 U	1.22 U	1.26 U
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)		100	NS	0.734 U	0.694 U	0.737 U	0.711 U	0.698 U	0.74 U	0.712 U	0.76 U	0.734 U	0.763 U
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)		100	NS	0.592 U	0.559 U	0.594 U	0.573 U	0.562 U	0.597 U	0.574 U	0.613 U	0.592 U	0.615 U
Perfluorobutanesulfonic Acid (PFBS)		100	NS	1.14 J	3.54	4	3.49	0.207 U	0.219 U	0.211 U	0.225 U	0.217 U	0.226 U
Perfluorobutanoic Acid (PFBA)		100	NS	2.62	4.68	41.6	41.9	0.354 U	0.376 U	0.361 U	0.386 U	0.372 U	0.387 U
Perfluorodecanesulfonic Acid (PFDS)		100	NS	0.895 U	0.846 U	0.898 U	0.867 U	0.851 U	0.902 U	0.868 U	0.927 U	0.895 U	0.93 U
Perfluorodecanoic Acid (PFDA)		100	NS	0.278 U	0.414 J	0.279 U	0.269 U	0.264 U	0.28 U	0.269 U	0.287 U	0.278 U	0.288 U
Perfluorododecanoic Acid (PFDoA)		100	NS	0.34 U	0.321 U	0.341 U	0.329 U	0.323 U	0.342 U	0.329 U	0.352 U	0.34 U	0.353 U
Perfluoroheptanesulfonic Acid (PFHpS)		100	NS	0.628 U	0.594 U	0.631 U	0.609 U	0.597 U	0.634 U	0.609 U	0.65 U	0.628 U	0.653 U
Perfluoroheptanoic Acid (PFHpA)		100	NS	1.17 J	2.83	5.7	5.72	0.196 U	0.207 U	0.199 U	0.213 U	0.206 U	0.214 U
Perfluorohexanesulfonic Acid (PFHxS)		100	NS	0.5 J	0.331 J	2.22 F	2.23	0.326 U	0.346 U	0.333 U	0.356 U	0.343 U	0.357 U
Perfluorohexanoic Acid (PFHxA)		100	NS	1.32 J	3.04	9.41	9.52	0.33 J	0.324 J	0.34 J	0.374 J	0.332 J	0.395 J
Perfluorononanoic Acid (PFNA)		100	NS	0.913 J	1.12 J	23	23.4	0.271 U	0.287 U	0.276 U	0.295 U	0.285 U	0.296 U
Perfluorooctanesulfonamide (FOSA)		100	NS	0.53 U	0.5 U	0.532 U	0.513 U	0.504 U	0.534 U	0.513 U	0.548 U	0.53 U	0.55 U
Perfluorooctanesulfonic Acid (PFOS)		10	NS	3.56	4.13	5.36 F	5.71 F	0.438 U	0.464 U	0.446 U	0.476 U	0.46 U	0.478 U
Perfluorooctanoic Acid (PFOA)		10	NS	8.66	7.03	9.85	9.56	0.205 U	0.217 U	0.209 U	0.223 U	0.215 U	0.224 U
Perfluoropentanoic Acid (PFPeA)		100	NS	0.46 J	2.94	9.24	9.04	0.344 U	0.365 U	0.35 U	0.374 U	0.362 U	0.376 U
Perfluorotetradecanoic Acid (PFTA)		100	NS	0.226 U	0.214 U	0.227 U		0.215 U	0.228 U	0.22 U	0.234 U	0.226 U	0.235 U
Perfluorotridecanoic Acid (PFTrDA)		100	NS	0.299 U	0.282 U	0.3 U	0.29 U	0.284 U	0.301 U	0.29 U	0.309 U	0.299 U	0.31 U
Perfluoroundecanoic Acid (PFUnA)		100	NS	0.237 U	0.224 U	0.238 U	0.23 U	0.226 U	0.239 U	0.23 U	0.246 U	0.237 U	0.247 U
PFAS, Total		500	NS	20.343 J	30.055 J	110.38	110.57	0.33 J	0.324 J	0.34 J	0.374 J	0.332 J	0.395 J

Notes:

NY-AWQS: New York T.O.G.S. 1.1,1. Ambient Water Quality Standards criteria reflects all addendum to criteria through June 2004.

NYSDEC-PFAS: Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS), October 2020 / USEPA Health Advisory Level (HAL) for 1,4 Dioxane in drinking water (0.35 μ g/L). **Bold** = Value indicates reported concentration exceeds applicable water quality standards.

^{*} Duplicate groundwater sample collected from bedrock monitoring well 9-R

^{** =} The standard for the sum of iron and manganese is 0.5 mg/L.

⁻⁻⁻ Denotes no applicable water quality standard.

U = Analyte was not detected at or above laboratory method detection limit.

ND = Not Detected and No available Method Detection Limit (MDL) for this analyte.

⁽a) = The laboratory Method Detection Limit (MDL) was higher thant the NYTOGS 1.1.1. Groundwater Quality Standard.

F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.

J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is approximate.

NS = Not sampled.

ANALYTE	NY-AWQS	NYSDEC- PFAS	UP-OS	UP-I	UP-R	1-OS	2-OS	3-OS/I	4-OS	7-OS	8-OS	8-I
		ITAS	10/5/2020	10/5/2020	10/5/2020	10/8/2020	10/8/2020	10/8/2020	10/8/2020	10/8/2020	10/7/2020	10/7/2020
TOTAL METALS, mg/L												
Aluminum			0.0454	0.0955	0.00424 J	0.133	0.108	0.975	0.055 J	1.82	0.0216	0.004 J
Antimony	0.003		0.00042 U	0.00194 J	0.00042 U	$0.007~\mathrm{U}^{\mathrm{a}}$	$0.007~\mathrm{U}^{\mathrm{a}}$	$0.007~\mathrm{U}^{\mathrm{a}}$	$0.007 \mathrm{U}^{\mathrm{a}}$	$0.007~\mathrm{U}^{\mathrm{a}}$	0.00354 J	0.00042 U
Arsenic	0.025		0.00035 J	0.00041 J	0.00016 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.00022 J	0.00447
Barium	1		0.00286	0.00608	0.0024	0.049	0.046	0.034	0.016	0.04	0.0078	0.03446
Beryllium	0.003		0.0001 U	0.0001 U	0.0001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.0001 U	0.0001 U
Cadmium	0.005		0.00005 U	0.00005 U	0.00005 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.00005 U	0.00005 U
Calcium			28.8	22.5	12.6	65.5	95.2	81.4	56.2	36.5	24.6	66.6
Chromium	0.05		0.00132	0.02597	0.00201	0.318	0.094	3.19	0.106	0.573	0.06122	0.00104
Cobalt			0.00016 U	0.00048 J	0.00016 U	0.007 J	0.002 U	0.008 J	0.002 U	0.046	0.00029 J	0.00631
Copper	0.2		0.00057 J	0.00146	0.00038 U	0.003 J	0.02	0.018	0.002 U	0.012	0.00161	0.00038 U
Iron	0.3**		0.062	0.266	0.0254 J	9.66	1.05	13.6	1.18	5.31	0.552	9.63
Lead	0.025		0.00034 U	0.00034 U	0.00034 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.00034 U	0.00034 U
Magnesium	35		7.2	4.84	3.77	14.5	11.2	11.3	18	8.95	6.62	18.4
Manganese	0.3**		0.00157	0.00561	0.00077 J	13	0.026	1.5	0.463	0.586	0.1835	3.479
Mercury	0.0007		0.00009 U	0.00009 U	0.00009 U	0.00009 U	0.00009 U	0.00009 U	0.00009 U	0.00009 U	0.00009 U	0.00009 U
Nickel	0.1		0.00055 U	0.01049	0.00093 J	0.05	0.025 J	0.711	0.064	0.011 J	0.01766	0.00665
Potassium			0.758	0.53	0.583	2.36 J	10.5	3.91	1.94 J	3.8	1.55	8.46
Selenium	0.01		0.00173 U	0.00173 U	0.00173 U	0.013	0.004 U	0.004 U	0.004 U	0.004 U	0.00173 U	0.00173 U
Silver	0.05		0.00016 U	0.00016 U	0.00016 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.00016 U	0.00016 U
Sodium	20		4.06	3.68	4.49	112	24.8	60.8	51.8	12	26.3	91.4
Thallium	0.0005		0.00014 U	0.00021 J	0.00014 U	0.015 J	$0.003~\mathrm{U^a}$	0.005 J	$0.003~\mathrm{U^a}$	0.004 J	0.00045 J	0.00034 J
Vanadium			0.00157 U	0.00273 J	0.00157 U	0.002 U	0.002 U	0.012	0.002 U	0.007 J	0.00157 U	0.00157 U
Zinc	2		0.00341 U	0.00341 U	0.00341 U	0.003 J	0.003 J	0.009 J	0.006 J	0.007 J	0.00341 U	0.00341 U

Notes:

NY-AWQS: New York T.O.G.S. 1.1,1. Ambient Water Quality Standards criteria reflects all addendum to criteria through June 2004.

Bold = Value indicates reported concentration exceeds applicable water quality standards.

^{*} Duplicate groundwater sample collected from bedrock monitoring well 9-R

^{** =} The standard for the sum of iron and manganese is 0.5 mg/L.

⁻⁻⁻ Denotes no applicable water quality standard.

U = Analyte was not detected at or above laboratory method detection limit.

ND = Not Detected and No available Method Detection Limit (MDL) for this analyte.

⁽a) = The laboratory Method Detection Limit (MDL) was higher thant the NYTOGS 1.1.1. Groundwater Quality Standard.

J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is approximate.

F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.

NS = Not sampled.

ANALYTE	NY-AWQS	NYSDEC- PFAS	8-R	9-OS	9-I	9-R	DUP10052020	10-OS	10-I	10-R	FB10052020	EB10052020	EB10062020
		ITAS	10/7/2020	10/6/2020	10/6/2020	10/6/2020	10/5/2020	10/6/2020	10/6/2020	10/6/2020	10/5/2020	10/5/2020	10/6/2020
TOTAL METALS, mg/L													
Aluminum			0.016	0.0073 J	0.0201	0.00918 J	0.015	0.359	0.016	0.0636	NS	NS	NS
Antimony	0.003		0.00048 J	0.00042 U	0.00042 U	0.00074 J	0.00202 J	0.00042 U	0.00042 U	0.00042 U	NS	NS	NS
Arsenic	0.025		0.00067	0.00016 U	0.00016 U	0.00046 J	0.00056	0.00021 J	0.00016 U	0.00016 U	NS	NS	NS
Barium	1		0.01437	0.00465	0.00991	0.0158	0.01667	0.0079	0.00117	0.0041	NS	NS	NS
Beryllium	0.003		0.0001 U	0.00014 J	0.0001 U	0.0001 U	NS	NS	NS				
Cadmium	0.005		0.00029	0.00005 U	0.00005 U	0.00045	0.00047	0.00005 U	0.00005 U	0.00005 U	NS	NS	NS
Calcium			136	5.94	7.9	41.1	40.6	2.68	9.52	9.32	NS	NS	NS
Chromium	0.05		0.05239	0.00081 J	0.0468	0.00355	0.00361	0.00031 J	0.00034 J	0.02904	NS	NS	NS
Cobalt			0.00439	0.00016 U	0.00016 U	0.00112	0.00122	0.00029 J	0.00016 U	0.00134	NS	NS	NS
Copper	0.2		0.00402	0.0004 J	0.00081 J	0.00191	0.00165	0.00099 J	0.00038 U	0.00154	NS	NS	NS
Iron	0.3**		1.56	0.026 J	0.305	0.533	0.606	0.181	0.039 J	0.151	NS	NS	NS
Lead	0.025		0.00227	0.00034 U	0.00034 U	0.00034 U	0.00034 U	0.00034 U	0.00034 U	0.00125	NS	NS	NS
Magnesium	35		66.8	1.46	1.94	10.1	9.89	0.495	2.81	1.97	NS	NS	NS
Manganese	0.3**		0.5774	0.00063 J	0.00587	1.137	1.189	0.02056	0.00047 J	0.02264	NS	NS	NS
Mercury	0.0007		0.00009 U	0.00009 U	0.00009 U	0.00009 U	NS	NS	NS				
Nickel	0.1		0.02297	0.00055 U	0.00077 J	0.08511	0.08383	0.00072 J	0.00055 U	0.00592	NS	NS	NS
Potassium			2.8	0.712	1.08	10.2	9.96	0.371	0.832	0.72	NS	NS	NS
Selenium	0.01		0.00173 U	0.00173 U	0.00173 U	0.00173 U	NS	NS	NS				
Silver	0.05		0.00016 U	0.00016 U	0.00016 U	0.00016 U	NS	NS	NS				
Sodium	20		71.5	6.12	26.1	50	48.8	2.3	4.23	4.28	NS	NS	NS
Thallium	0.0005		0.00021 J	0.00014 U	0.00014 U	0.00014 U	0.00018 J	0.00014 U	0.00027 J	0.00016 J	NS	NS	NS
Vanadium			0.00157 U	0.00157 U	0.00157 U	0.00157 U	NS	NS	NS				
Zinc	2		0.00726 J	0.00341 U	0.00341 U	0.00341 U	0.00341 U	0.00341 U	0.00341 U	0.00341 U	NS	NS	NS

Notes:

NY-AWQS: New York T.O.G.S. 1.1,1. Ambient Water Quality Standards criteria reflects all addendum to criteria through June 2004.

Bold = Value indicates reported concentration exceeds applicable water quality standards.

^{*} Duplicate groundwater sample collected from bedrock monitoring well 9-R

^{** =} The standard for the sum of iron and manganese is 0.5 mg/L.

⁻⁻⁻ Denotes no applicable water quality standard.

U = Analyte was not detected at or above laboratory method detection limit.

ND = Not Detected and No available Method Detection Limit (MDL) for this analyte.

⁽a) = The laboratory Method Detection Limit (MDL) was higher thant the NYTOGS 1.1.1. Groundwater Quality Standard.

J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is approximate.

F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.

NS = Not sampled.

TABLE 5

Summary of Analytical Results for Downgradient Drinking Water Supply Wells (10/6/2020) Town of Ramapo Landfill, Hillburn, New York

ANALYTE	NY- AWQS (1)		NYSDEC-PFAS	PW-1	PW-2	SVWC-93	SVWC-94	SVWC-95	SVWC-96
LEACHATE INDICATOR PARAMETERS, mg/L		<u>l</u>							
Alkalinity, Total				26.6	68.4	63	64.8	68.7	59.3
Chemical Oxygen Demand				2.8 J	2.7 U	2.7 U	2.8 J	2.7 U	2.7 U
Hardness				26.1	92.5	101	97.9	94.1	2.01
Nitrogen, Total Kjeldahl				0.152 J	0.281 J	0.095 J	0.118 J	0.15 J	0.182 J
VOLATILE ORGANIC COMPOUNDS, μg/L									
1,1-Dichloroethane	5			0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U
Benzene	1	5		0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U
Chlorobenzene	5	100		0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U
Vinyl chloride	2	2		0.07 U	0.07 U	0.07 U	0.07 U	0.07 U	0.07 U
Total VOCs				ND	ND	ND	ND	ND	ND
1,4 DIOXANE, µg/L	ĺ	/ 1***	25	NC	NC	NC	0.0326 U	0.412	NS
1,4-Dioxane PERFLUORINATED ALKYL ACIDS (PFAS), ng/L		/ 1 4.4.4.	35	NS	NS	NS	0.0326 U	0.412	NS
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)			100	NS	NS	NS	1.08 U	1.04 U	NS
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)			100	NS	NS	NS	1.08 U	1.04 U	NS
N-Ethyl Perfluorooctanesulfonamidoacetic Acid			100	110	115	145	1.17 0	1.13 C	110
(NEtFOSAA)			100	NS	NS	NS	0.72 U	0.692 U	NS
N-Methyl Perfluorooctanesulfonamidoacetic Acid				~	- 12	- ,2	2 0	2.272 0	- 12
(NMeFOSAA)			100	NS	NS	NS	0.58 U	0.558 U	NS
Perfluorobutanesulfonic Acid (PFBS)			100	NS	NS	NS	1.9	3.04	NS
Perfluorobutanoic Acid (PFBA)			100	NS	NS	NS	2.53	5.72	NS
Perfluorodecanesulfonic Acid (PFDS)			100	NS	NS	NS	0.877 U	0.844 U	NS
Perfluorodecanoic Acid (PFDA)			100	NS	NS	NS	0.379 J	0.413 J	NS
Perfluorododecanoic Acid (PFDoA)			100	NS	NS	NS	0.333 U	0.32 U	NS
Perfluoroheptanesulfonic Acid (PFHpS)			100	NS	NS	NS	0.616 U	0.592 U	NS
Perfluoroheptanoic Acid (PFHpA)			100	NS	NS	NS	1.68 J	2.21	NS
Perfluorohexanesulfonic Acid (PFHxS)			100	NS	NS	NS	0.759 J	0.971 J	NS
Perfluorohexanoic Acid (PFHxA)			100	NS NS	NS	NS	4.6	4.56 8.95	NS
Perfluorononanoic Acid (PFNA) Perfluorooctanesulfonamide (FOSA)			100 100	NS NS	NS NS	NS NS	2.14 0.519 U	8.95 0.499 U	NS NS
Perfluorooctanesulfonic Acid (PFOS)		/10****	100	NS NS	NS NS	NS NS	3.38	3.95	NS NS
Perfluorooctanoic Acid (PFOA)		/10****	10	NS	NS	NS	3.87	5.67	NS
Perfluoropentanoic Acid (PFPeA)			100	NS	NS	NS	4.86	4.88	NS
Perfluorotetradecanoic Acid (PFTA)			100	NS	NS	NS	0.222 U		NS
Perfluorotridecanoic Acid (PFTrDA)			100	NS	NS	NS	0.293 U		NS
Perfluoroundecanoic Acid (PFUnA)			100	NS	NS	NS	0.233 U	0.589 J	NS
PFAS, Total			500	NS	NS	NS	26.098	40.953	NS
TOTAL METALS, mg/L	1								
Aluminum		0.05-0.2**		0.00327 U	0.00327 U	0.00327 U	0.00327 U		0.00327 U
Antimony	0.006	0.006		0.00042 U	0.00042 U	0.00042 U	0.00042 U	0.00042 U	0.00042 U
Arsenic	0.01	0.01		0.00016 U	0.00016 U	0.00016 U	0.00016 U	0.00016 U	0.00016 U
Barium Portellium	2.0 0.004	2.0		0.00526 0.0001 U	0.0014 0.0001 U	0.01387	0.0198	0.01889 0.0001 U	0.0121
Beryllium Cadmium	0.004	0.004 0.005		0.0001 U 0.00005 U	0.0001 U 0.00005 U	0.0001 U 0.00005 U	0.0001 U 0.00005 U	0.0001 U 0.00005 U	0.0001 U 0.00005 U
Cadmium Calcium		0.005		7.76	34.2	31.7	29.9	29.8	26.8
Chromium		0.1		0.00035 J	0.00017 U	0.00018 J	0.00017 U	0.00027 J	0.0004 J
Cobalt				0.00033 J	0.00017 U	0.00016 U	0.00017 U	0.00027 J	0.0004 J 0.00016 U
Copper		1.3		0.03185	0.00851	0.00339	0.0033	0.0205	0.00673
Iron		0.3**		0.0291 J	0.0467 J	0.0191 U	0.0191 U	0.0191 U	0.03 J
Lead		0.015		0.00071 J	0.00034 U	0.00034 U	0.00034 U	0.00063 J	0.00034 U
Magnesium				2.07	3.81	8.06	7.89	7.76	7.07
Manganese	0.3*	0.05**		0.00049 J	0.00049 J	0.00044 U	0.00075 J	0.0627	0.00044 U
Mercury	0.002	0.002		0.00009 U	0.00009 U	0.00009 U	0.00009 U	0.00009 U	0.00009 U
Nickel				0.00055 U	0.00055 U	0.00055 U	0.0006 J	0.00107 J	0.00059 J
Potassium				0.947	1.1	2.65	2.41	2.6	2.01
Selenium	0.05	0.05		0.00173 U	0.00173 U	0.00173 U	0.00173 U	0.00173 U	0.00173 U
Silver	0.1	0.1**		0.00016 U	0.00016 U	0.00016 U	0.00016 U	0.00016 U	0.00016 U
Sodium	4	4		17.6	8.38	80.1	82.9	73.4	74
Thallium	0.002	0.002		0.00014 U	0.00014 U	0.00014 U	0.00014 U	0.00014 U	0.00014 U
Vanadium Zinc	5.0	5.0**		0.00157 U 0.01602	0.00157 U 0.01255	0.00157 U 0.00397 J	0.00157 U 0.00541 J	0.00157 U 0.03337	0.00157 U 0.01186

Bold = Value indicates reported concentration exceeds applicable water quality standards.

J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is approximate.

ND = Not DetectedNS = Not Sampled.

^{(1):} NY-AWQS: New York T.O.G.S. 1.1.1. Ambient Water Quality Standards criteria reflects all addendum to criteria through June 2004.

^{(2):} NYSDOH Part 5: NYSDOH Part 5, SubPart 5-1 Public Water Supply Standards: MCLs Tables 1 - 7; Effective October 1, 2007 / USEPA MCLs: USEPA - Primary Drinking Water Standards

 $^{^{(3)}:} NYSDEC: Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS), October 2020 / USEPA Health Advisory Level (HAL) for 1,4 Dioxane in drinking water (35 <math>\mu$ g/L).

^{(4):} While there is no Maximum Contaminant Level (MCL) for Sodium, people on severly restricted Sodium diets should consult with the County Health Department for guidance if reported Sodium concentration is higher than 20 mg/L.

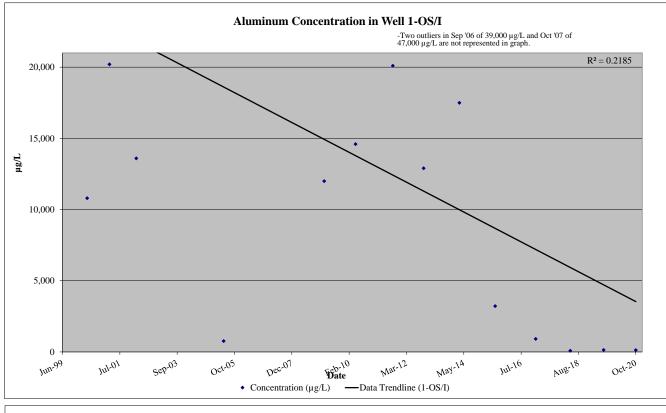
U = Analyte was not detected at or above the laboratory method detection limit.

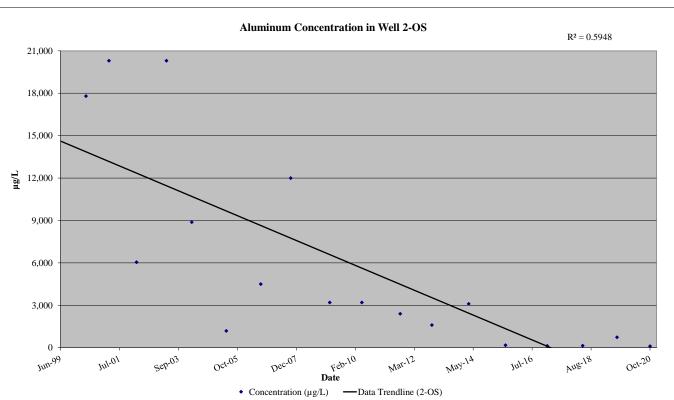
^{*} = The standard for the sum of iron and manganese is 0.5 mg/L. ** = USEPA Secondary Drinking Water Standard. This standard is associated with aesthetic characteristics of the sample and not adverse health effects.

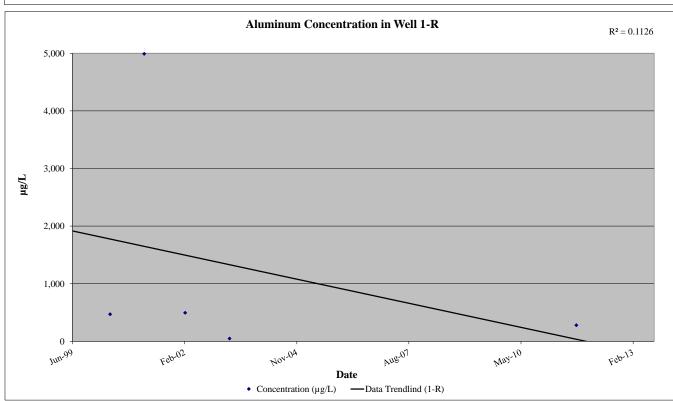
^{*** =} NYSDOH MCL for 1,4-Dioxane in drinking water is 1 μ g/L or 1 parts per billion (ppb). **** = NYSDOH MCL for PFOS and PFOA in drinking water is 10 ng/L or 1 parts per trillion (ppt).

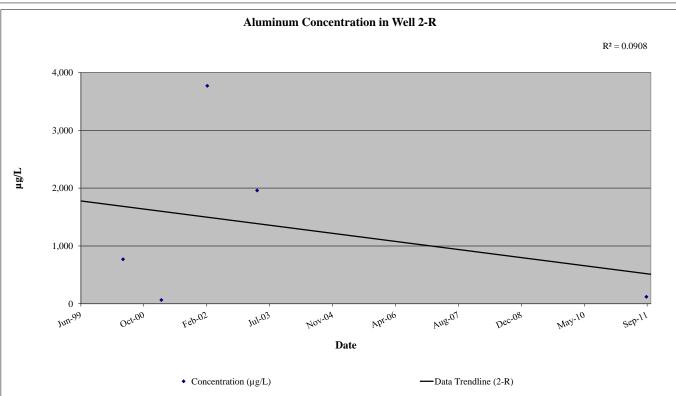
⁻⁻⁻ Denotes no applicable water quality standard.

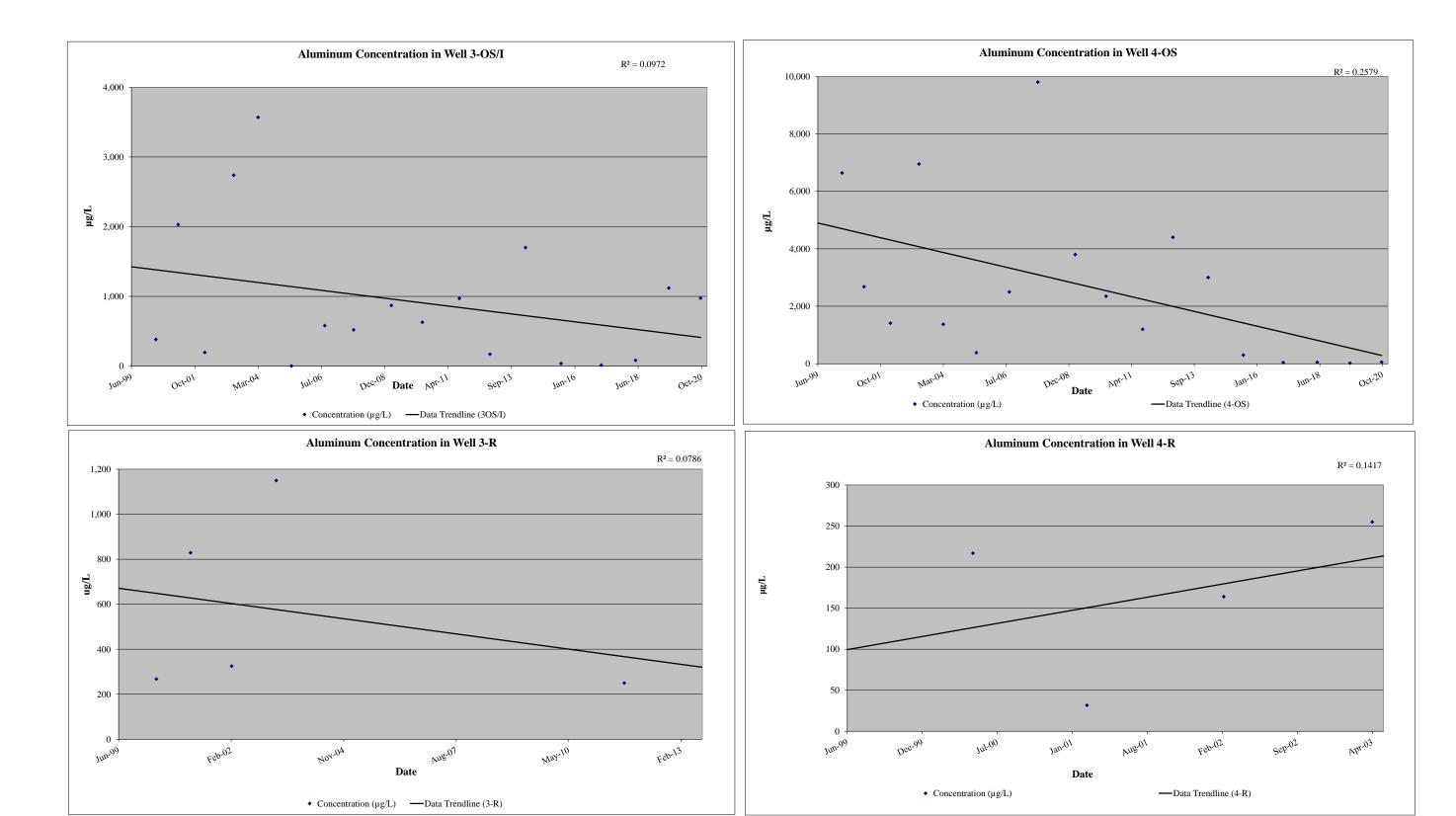
Well ID	Well 1-OS/I	Well 1-R	Well 2-OS	Well 2-R	Well 3-OS/I	Well 3-R	Well 4-OS	Well 4-R	Well 5-OS	Well 5-I	Well 5-R	Well 7-OS	Well 7-R	Well 8-OS	Well 8-I	Well 8-R	Well 9-OS	Well 9-I	Well 9-R	Well 10-OS	Well 10-I	Well 10-R	Well UP-OS	Well UP-I	Well UP-R	PW-1	PW-2	SVWC-93	SVWC-94	SVWC-95	SVWC-96
DATE																															
Jun-99	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	45	147	15	183	306	47	NA	NA	NA	NA	NA	NA	30	26	36	29	24	26
Sep-99 May-00	NA	NA 470	NA	NA 770	NA 202	NA 269	6.640	NA 217	30.800	NA	2.900	2.810	NA 121 D	50 B	1.270	62 B	1.300	NA 1 440	NA 212	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA 100	< 9.8	NA 100	NA 100	NA 10.8
Sep-00	10,800 NA	470 NA	17,800	770 NA	382 NA	268 NA	0,040 N A	217 NA	30,800 NA	NA NA	2,900 NA	2,810 NA	121 B	JU B NA	1,270 NA	02 B	1,500 NA	1,440 NA	212 NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	< 9.8	< 9.8	< 9.8	< 9.8	< 9.8	< 9.8 NA
Dec-00	NA NA	NA NA	NΔ	NΔ	NA NA	NA NA	NΔ	NΔ	NΔ	NA NA	NA NA	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NA NA	NA NA	NΔ	NA NA	NΔ	NΔ	NA NA	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NA NA
Jan-01	NA.	NA	NA NA	NA	NA	NA.	NA NA	NA	NA NA	NA	NA.	NA	NA	NA	NA.	NA.	NA	NA NA	NA.	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA.	NA	NA.	NA
Mar-01	20.200	4.990	20.300	66 B	2.030	829	2.680	32 B	15.400	NA	483	2.790 N	62 B.N	591 N	17.600 N	483 N	2.310 N	12.700 N	368 N	NA.	NA NA	NA	NA	NA NA	NA.	< 10.4	< 10.4	<10.4	113 B	237	150 B
Jul-01	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA.	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA.	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA
Oct-01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mar-02	13,600	495	6,050	3,770	195 B	325	1,410	164 B	NA	4,150	6,210	4,440	15 U	1,020	1,470	22 B	487	1,010	< 14.9	NA	NA	NA	NA	NA	NA	< 14.9	< 14.9	< 14.9	< 14.9	< 14.9	< 14.9
Jul-02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Oct-02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Apr-03	NA	49 B	20,300	1,960	2,740	1,150	6,950	255	NA	1,350	1,110	1,240	NA	149 B	6,820	54 B	968	2,120	36 B	NA	NA	NA	NA	NA	NA	< 15.8	< 15.8	< 15.8	< 15.8	< 15.8	< 15.8
Mar-04	NA	NA	8,880	NA	3,570	NA	1,370	NA	98,800	NA	NA	25,000	NA	48 B	7,040	< 18.2	311	965	286	NA	NA	NA	NA	NA	NA	< 18.2	< 18.2	< 18.2	< 18.2	< 18.2	< 18.2
Jun-05	765	NA	1,190	NA	< 10.4	NA	386	NA	NA	247	NA	1,520	NA	735	184 B	< 10.4	291	173 B	27 B	NA	NA	NA	NA	NA	NA	< 10.4	< 10.4	< 10.4	< 10.4	< 10.4	< 10.4
Sep-06	39,000	NA	4,500	NA	580	NA	2,500	NA	230,000	NA	NA	11,000	NA	140	8,700	1,200	1,000	12,000	73	NA	NA	NA	NA	NA	NA	76	67	63	56	37	14
Oct-07	47,000	NA	12,000	NA	520	NA	9,800	NA	370	NA	NA	7,900	NA	89	10,000	66	4,000	21,000	140	NA	NA	NA	NA	NA	NA	< 50	< 50	< 50	< 50	< 50	< 50
Mar-09	12,000	NA	3,200	NA	870	NA	3,800	NA	65,000	NA	NA	4,000	NA	< 100	8,300	< 100	3,900	13,000	< 100	NA	NA	NA	NA	NA	NA	< 100	< 100	< 100	NA	< 100	< 100
May-10	14,600	NA	3,200	NA	629	NA	2,350	NA	115,000	NA	NA	15,000	NA	< 200	5,970	< 200	2,430	18,300	495	NA	NA	NA	NA	NA	NA	< 200	< 200	< 200	NA	< 105	< 200
Sep-11	20,100	280	2,400	120 J	970	250	1,200	NA	42,500	1,100	19,900	12,800	NA	110 J	<200	<200	3,500	21,900	<200	NA	NA	NA	NA	NA	NA	<200	<200	<200	<200	NA	NA
Nov-12	12,900	NA	1,600	NA	170 J	NA	4,400	NA	42,000	NA	NA	8,700	NA	< 200	230	< 200	520	< 200	< 200	NA	NA	NA	NA	NA	NA	< 200	< 200	< 200	< 200	< 200	NA
Mar-14	17,500	NA	3,100	NA	1,700	NA	3,000	NA	36,300	NA	NA	17,800	NA	ND	180 J	ND	1,800	ND	ND	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND
Nov-14	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<100 U	1,580	2,590	NA	NA	NA	NA	NA	NA	NA	NA	NA
Jul-15	3,220	NA	176	NA	36	NA	304	NA	6,580	NA	NA	723	NA	9.9 J	18	2 J	750	8 J	8 J	608	240	90	NA	NA	NA	< 20	< 20	<20	< 20	< 20	< 20
Jan-17	915	NA	131	NA	13	NA	38	NA	NA	NA	NA	29	NA	17	9 J	11	9 J	15	11	390	12	40	159	120	131	< 3	< 3 J	10	< 3	< 3	4 J
May-18	85	NA	140	NA	83.5	NA	50.2	NA	NA	NA	NA	58.2	NA	7.9 J	9.3 J	7.3 J	19.8	17.3	71	448	92	418	122	1,540	5 J	10 U	10 U	10 U	10 U	10 U	10 U
Jul-19	141	NA	735	NA	1,120.0	NA	18.4	NA	NA	NA	NA	111.0	NA	4.9 J	3.3 U	3.3 U	40.8	7.0 J	25	262	38	35	699	42	23	3 U	4 J	3 U	3 U	3 U	3 U
Oct-20	133	NA	108	NA	975	NA	55 J	NA	NA	NA	NA	1,820	NA	21.6	4 J	16	7.3 J	20.1	9.18 J	359	16	63.6	45.4	96	4.24 J	3.27 U	3.27 U	3.27 U	3.27 U	3.27 U	3.27 U

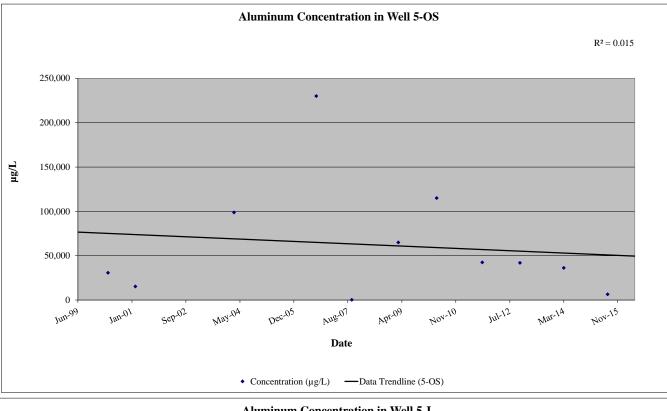

ARAR Standard = None Listed; USEPA Secondary MCL = 50 - 200 µg/L; and, PART 5 MCL = Not Available
ARAR = Applicable or Relevant and Appropriate Requirement: NYSDEC T.O.G.S. 1.1.1 Ambient Water-Quality Standards and Guidance Values and Groundwater Effluent Limitations (June 2004).
MCL = Maximum Contaminant Level: USEPA National Primary Drinking Water Regulations.
Values in BOLD indicate the reported concentration is greater than the ARAR for the groundwater monitoring wells or Secondary MCL/MCL for the private and municipal drinking water wells water quality standard. NA = Not Analyzed

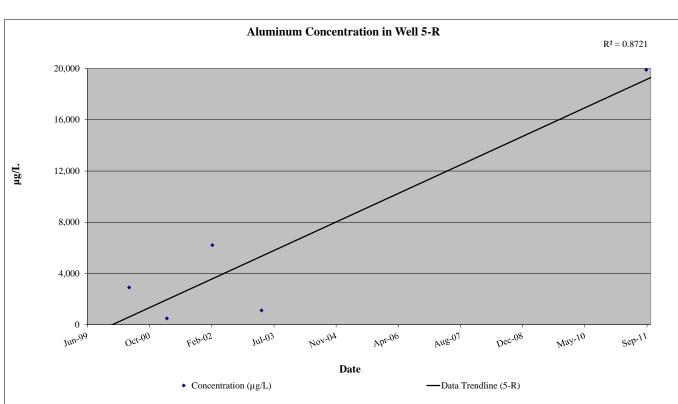

< = The compound was analyzed for but not detected at the laboratory detection limit listed.

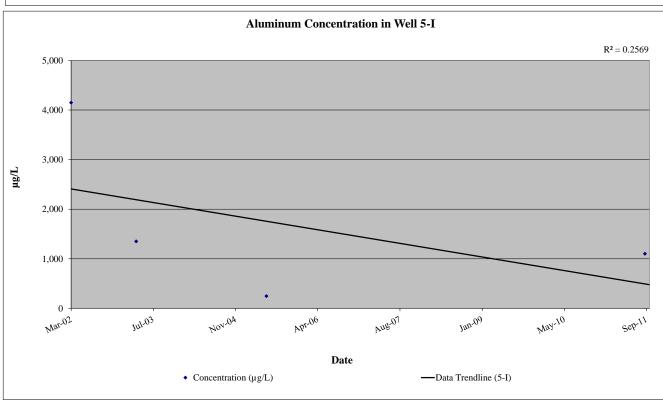

Laboratory Qualifier Definitions

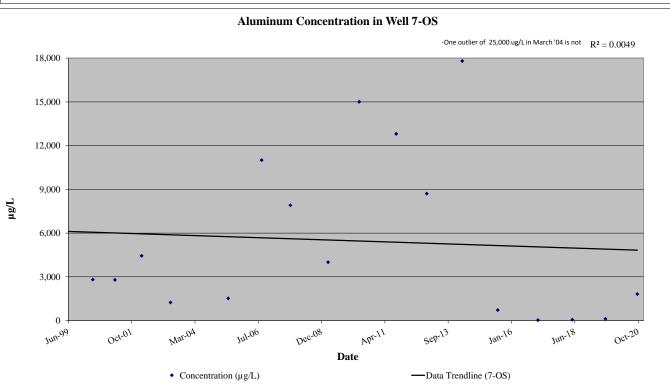

ND or U = Not Detected $B = \mbox{The analyte was detected above the reporting limit in the associated method blank.} \label{eq:basic_potential}$

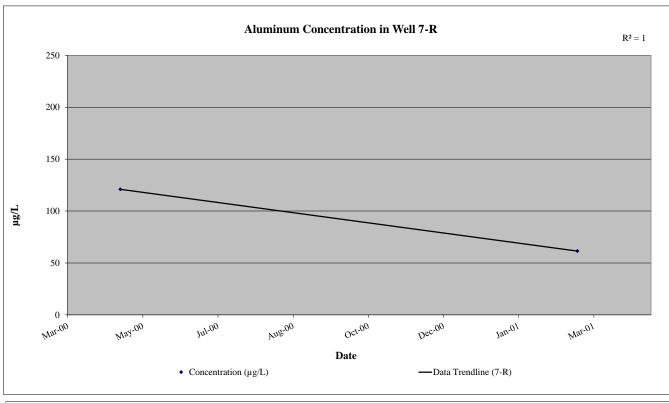

3 = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.
N = Spiked sample recovery not within control limits.

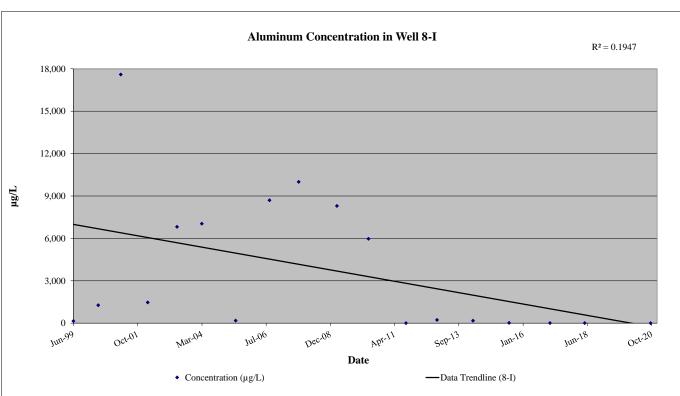


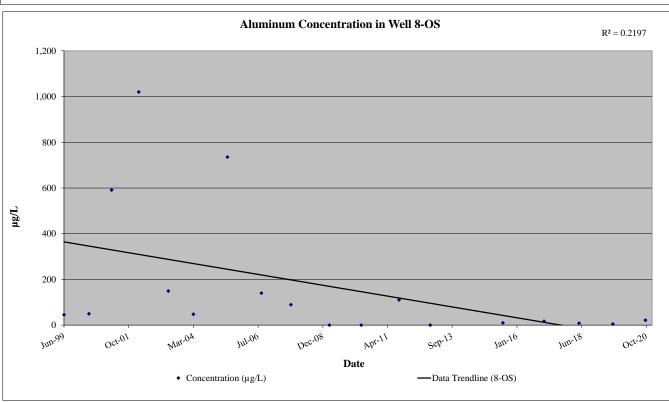


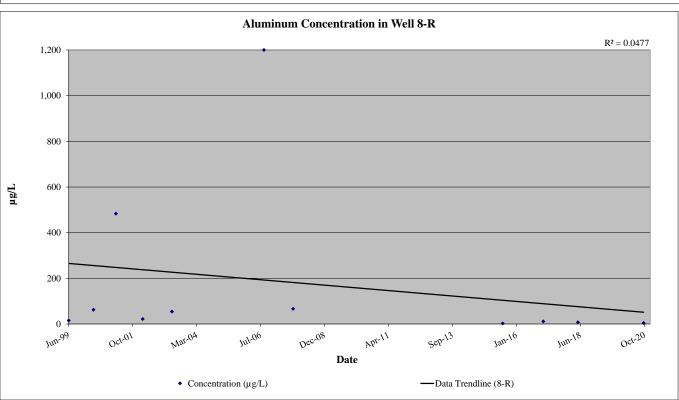


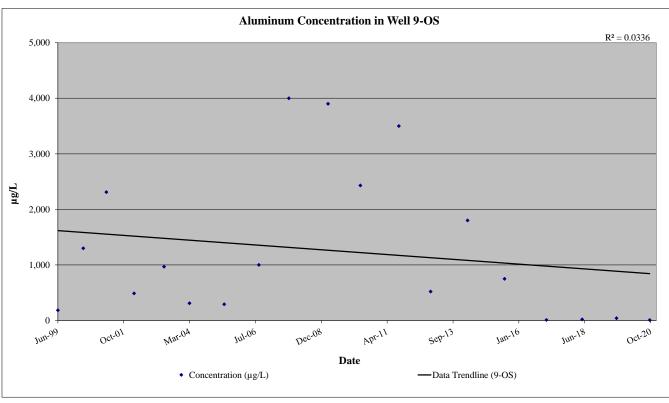


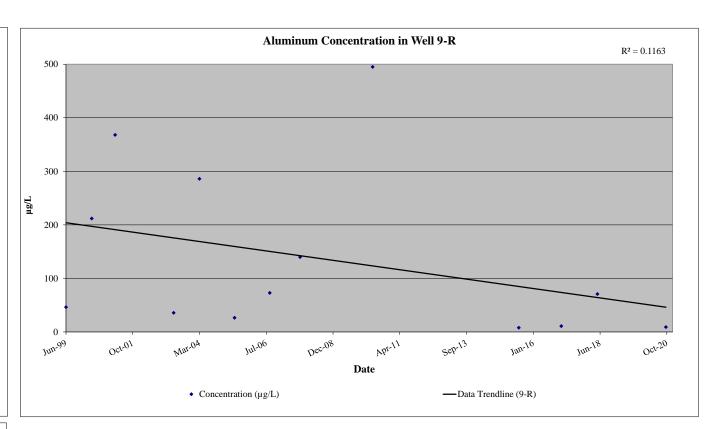


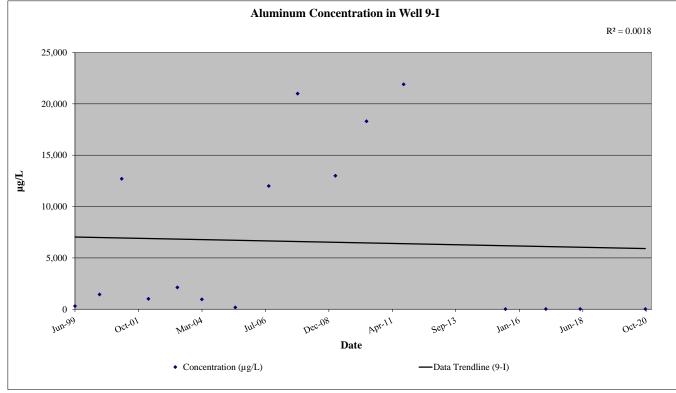












Well ID	Well 1-OS/I	Well 1-R	Well 2-OS	Well 2-R Well 3-OS/I	Well 3-R	Well 4-OS	Well 4-R	Well 5-OS	Well 5-I	Well 5-R	Well 7-OS	Well 7-R	Well 8-OS	Well 8-I	Well 8-R	Well 9-OS	Well 9-I	Well 9-R	Well 10-OS Well 10-I	Well 10-R	UP-OS	UP-I	UP-R	Well PW-1	Well PW-2	SVWC-93	SVWC-94	SVWC-95	SVWC-96
DATE																													
Jun-99	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	1.1	ND	1.4	1.3	1.4	1.3	NA NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND
Sep-99	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
May-00	0.31 B	< 0.1	0.83 B	< 0.1 < 0.1	< 0.1	0.36 B	< 0.1	1.5 B	NA	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	NA NA	NA	NA	NA	NA	< 0.1	< 0.1	0.39 B	< 0.1	< 0.1	< 0.1
Sep-00	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dec-00	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Jan-01	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mar-01	1.1 B	0.26 B	0.88 B	< 0.2	< 0.2	< 0.2	< 0.2	0.97 B	NA	0.52 B	0.24 B	< 0.2	0.32 B	1.1 B	< 0.2	0.42 B	1.2 B	0.87 B	NA NA	NA	NA	NA	NA	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Jul-01	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Oct-01	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mar-02	1.2 B	< 0.35	0.44 B	< 0.35 < 0.35	< 0.35	< 0.35	< 0.35	NA	< 0.35	< 0.35	< 0.35	< 0.35	< 0.35	< 0.35	< 0.35	< 0.35	< 0.35	< 0.35	NA NA	NA	NA	NA	NA	< 0.35	< 0.35	< 0.35	< 0.35	< 0.35	< 0.35
Jul-02	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Oct-02	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Apr-03	NA	< 0.2	1 B	< 0.2 < 0.2	< 0.2	0.38 B	< 0.2	NA	< 0.2	< 0.2	< 0.2	NA	< 0.2	0.41 B	< 0.2	< 0.2	< 0.2	< 0.2	NA NA	NA	NA	NA	NA	< 0.2	0.25 B	< 0.2	< 0.2	< 0.2	< 0.2
Mar-04	NA	NA	0.5 B	NA < 0.3	NA	< 0.4	NA	4.9	NA	NA	< 0.3	NA	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	NA NA	NA	NA	NA	NA	0.38 B	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Jun-05	< 0.4	NA	< 0.4	NA < 0.4	NA	< 0.4	NA	NA	< 0.4	NA	< 0.4	NA	0.51 B	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	NA NA	NA	NA	NA	NA	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Sep-06	2.2 J	NA	0.44 J	NA 0.23 J	NA	0.43 J	NA		NA	NA	0.73 J	NA	0.16 J	0.66 J	0.28 J	0.14 J	0.77 J	< 1	NA NA	NA	NA	NA	NA	< 3	0.12 J	0.14 J	< 3	< 3	< 3
Oct-07	2.6 J	NA	0.66 J	NA 0.1 J	NA	0.6 J	NA		NA	NA	0.51 J	NA	< 3	0.67 J	< 3	0.34 J	1.2 J	0.1 J	NA NA	NA	NA	NA	NA	< 3	< 3	< 3	< 3	< 3	< 3
Mar-09	0.61 J	NA	< 3	NA < 3	NA	< 3	NA		NA	NA	0.24 J	NA	< 3	0.46 J	< 3	0.25 J	0.71 J	< 3	NA NA	NA	NA	NA	NA	< 3	< 3	< 3	NA	< 3	< 3
May-10	0.7 J	NA	0.2 J	NA < 2	NA	0.2 J	NA		NA	NA	0.7 J	NA	< 2	0.4 J	< 2	< 2	0.9 J	< 2	NA NA	NA	NA	NA	NA	< 2	< 2	< 2	NA	< 2	< 2
Sep-11	0.94 J	< 2	< 2	< 2 < 2	< 2	< 2	NA		< 2	1.4 J	0.6 J	NA	< 2	< 2	< 2	< 2	1.8 J	< 2	NA NA	NA	NA	NA	NA	< 2	< 2	< 2	< 2	NA	NA
Nov-12	0.67 J	NA	<2	NA < 2	NA	<2	NA		NA	NA	0.47 J	NA	< 2	< 2	< 2	< 2	< 2	< 2	NA NA	NA	NA	NA	NA	< 2	< 2	< 2	< 2	< 2	NA
Mar-14	0.48 J	NA	<2	NA <2		<2	NA				0.56 J	NA	< 2	< 2	< 2	< 2	< 2	<2	NA NA	NA	NA	NA	NA	< 2	< 2	< 2	< 2	< 2	< 2
Nov-14	NA	NA	NA	NA NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	<0.1 <0.1	0.21 J	NA	NA	NA	NA	NA	NA	NA	NA	NA
Jul-15	<0.21 J	NA	<0.2	NA <0.2	NA	<0.2	NA		NA	NA	<0.2	NA	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2 <0.2	<0.2	NA	NA	NA	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Jan-17	0.1 U	NA	0.1 U	NA 0.1 U	NA	0.1 U	NA		NA	NA	0.1 U	NA	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 J 0.1 U	0.1 U	0.1 U	NA	0.1 U	NA	0.1 U	NA	0.1 U	NA	0.1 U
May-18	0.5 U	NA	0.5 U	NA 0.5 U	NA	0.5 U	NA		NA	NA	0.5 U	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.13 J 0.5 U	0.5 U	0.5 U	NA	0.5 U	NA	0.5 U	NA	0.5 U	NA	0.5 U
Jul-19	0.1 U	NA	0.1 U	NA 0.1 U	NA	0.1 U	NA	NA	NA	NA	0.1 U	NA	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.12 J 0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Oct-20	1 U	NA	1 U	NA 1 U	NA	1 U	NA	NA	NA	NA	1 U	NA	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.14 J 0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U

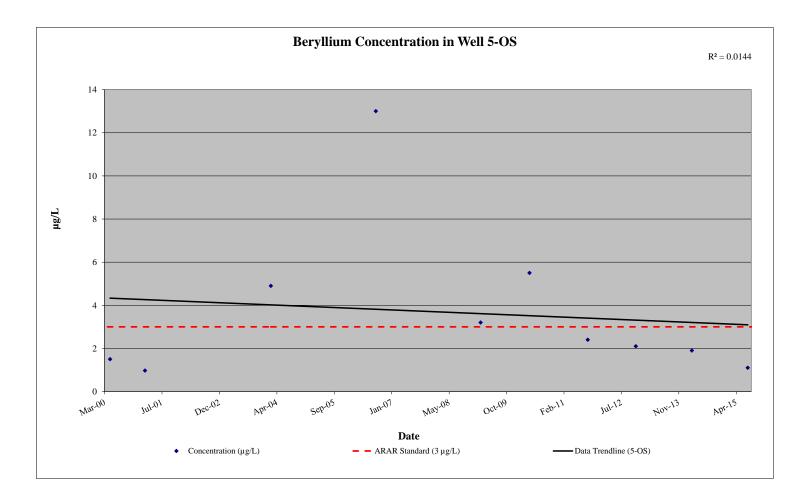
Notes:

ARAR Standard = 3 μ g/L; USEPA MCL = 4 μ g/L; and, PART 5 MCL = 4 μ g/L

 $ARAR = Applicable \ or \ Relevant \ and \ Appropriate \ Requirement: \ NYSDEC\ T.O.G.S.\ 1.1.1\ Ambient\ Water-Quality\ Standards\ and\ Guidance\ Values\ and\ Groundwater\ Effluent\ Limitations\ (June\ 2004).$

MCL = Maximum Contaminant Level: USEPA National Primary Drinking Water Regulations.

Values in **BOLD** indicate the reported concentration is greater than the ARAR for the groundwater monitoring wells or MCL for the private and municipal drinking water wells water quality standard. NA = Not Analyzed


< = The compound was analyzed for but not detected at the listed laboratory detection limit.

Laboratory Qualifier Definitions

ND or U = Not Detected

 $\boldsymbol{B} = \boldsymbol{T} \boldsymbol{h} \boldsymbol{e}$ analyte was detected above the reporting limit in the associated method blank.

J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.

Well ID	Well 1-OS/I	Well 1-R	Well 2-OS	Well 2-R	Well 3-OS/I	Well 3-R	Well 4-OS	Well 4-R	Well 5-OS	Well 5-I	Well 5-R	Well 7-OS	Well 7-R	Well 8-OS	Well 8-I	Well 8-R	Well 9-OS	Well 9-I	Well 9-R	Well 10-OS	Well 10-I	Well 10-R	UP-OS	UP-I	UP-R	Well PW-1	Well PW-2	SVWC-93	SVWC-94	SVWC-95	SVWC-96
DATE																															
Jun-99	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	1.3	3	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND
Sep-99	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	3.8	24.2	NA	NA	NA	NA	NA	NA	ND	ND	NA	NA	NA	NA
May-00	0.92 B	0.61 B	2.4	< 0.4	< 0.4	< 0.4	0.45 B	< 0.4	1.3 B	NA	1.4 B	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	9.4	NA	NA	NA	NA	NA	NA	< 0.4	< 0.4	0.61 B	< 0.4	< 0.4	< 0.4
Sep-00	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 6.2	< 3.1	< 3.1	< 3.1	< 3.1	< 3.1	NA	NA	NA	NA	NA	NA	< 3.1	< 3.1	< 3.1	< 3.1	< 3.1	< 3.1
Dec-00	< 3.1	< 3.1	< 3.1	< 3.1	< 3.1	< 3.1	< 3.1	< 3.1	3.4 B	NA	< 3.1	< 3.1	< 3.1	< 3.1	< 3.1	< 3.1 NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 3.1	< 3.1	< 3.1	< 3.1	< 3.1
Jan-01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.81 B	< 0.3	0.88 B	NA	NA	NA	NA	NA	NA	< 3	NA	NA	NA	NA	NA
Mar-01	1.2 B	< 0.3	1.3 B	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	0.31 B	NA	0.42 B	< 0.3	< 0.3	0.4 B	1.2 B	0.35 B	0.42 B	0.9 B	1.7 B	NA	NA	NA	NA	NA	NA	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Jul-01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.91 B	0.68 B	< 0.3	< 0.3	< 0.3	0.37 B	NA	NA	NA	NA	NA	NA	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Oct-01	< 0.3	< 0.3	1.1 B	0.36 B	< 0.3	< 0.3	< 0.3	< 0.3	NA	0.84 B	< 0.3	0.37 B	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	NA	NA	NA	NA	NA	NA	< 0.3	< 0.3	NA	NA	NA	NA
Mar-02	< 0.26	< 0.26	< 0.26	0.66 B	< 0.26	< 0.26	< 0.26	< 0.26	NA	< 0.26	0.45 B	< 0.26	< 0.26	< 0.26	< 0.26	< 0.26	< 0.26	< 0.26	< 0.26	NA	NA	NA	NA	NA	NA	< 0.26	< 0.26	< 0.26	< 0.26	< 0.26	< 0.26
Jul-02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	NA	NA	NA	NA	NA	NA	< 0.48	< 0.48	< 0.48	2.4 B	< 0.48	< 0.48
Oct-02	< 0.48	1.5 B	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	NA	< 0.48	< 0.48	< 0.48	NA	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	NA	NA	NA	NA	NA	NA	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48	< 0.48
Apr-03	NA	< 0.3	1.7 B	< 0.3	1.2 B	< 0.3	0.33 B	< 0.3	NA	< 0.3	< 0.3	< 0.3	NA	< 0.3	0.55 B	< 0.3	< 0.3	< 0.3	< 0.3	NA	NA	NA	NA	NA	NA	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Mar-04	NA	NA	< 0.4	NA	0.58	NA	< 0.4	NA	< 0.4	NA	NA	2.1 B	NA	0.42 B	< 0.4	< 0.4	< 0.4	< 0.4	0.9 B	NA	NA	NA	NA	NA	NA	0.88 B	< 0.4	< 0.4	0.52 B	< 0.4	< 0.4
Jun-05	< 0.8	NA	< 0.8	NA	1.6 B	NA	< 0.8	NA	NA	< 0.8	NA	< 0.8 N	NA	< 0.8 N	< 0.8 N	< 0.8 N	< 0.8 N	< 0.8 N	< 0.8 N	NA	NA	NA	NA	NA	NA	< 0.8 N	< 0.8 N	< 0.8 N	< 0.8 N	< 0.8 N	< 0.8 N
Sep-06	4.3	NA	1.6	NA	3.2	NA	2.2	NA	11	NA	NA	1	NA	0.92 J	1.5	1.2	0.67 J	0.73 J	0.53 J	NA	NA	NA	NA	NA	NA	0.53 J	0.62 J	0.59 J	< 1	< 1	< 1
Oct-07	< 1	NA	< 1	NA	< 1	NA	< 1	NA	< 1	NA	NA	< 1	NA	< 1	< 1	< 1	< 1	< 1	< 1	NA	NA	NA	NA	NA	NA	< 1	< 1	< 1	< 1	< 1	< 1
Mar-09	< 5	NA	< 5	NA	< 5	NA	< 5	NA	< 5	NA	NA	< 5	NA	< 5	< 5	< 5	< 5	< 5	< 5	NA	NA	NA	NA	NA	NA	< 5	< 5	< 5	NA	< 5	< 5
May-10	< 1	NA	< 1	NA	< 1	NA	< 1	NA	< 5 D02	NA	NA	< 1	NA	< 1	< 1	< 1	< 1	< 1	< 1	NA	NA	NA	NA	NA	NA	< 1	< 1	< 1	NA	< 1	< 1
Sep-11	0.67 J	< 1	< 1	< 1	0.47 J	0.61 J	< 1	NA	0.42 J	< 1	2.2	< 1	NA	< 1	< 1	< 1	< 1	< 1	< 1	NA	NA	NA	NA	NA	NA	< 1	< 1	< 1	< 1	NA	NA
Nov-12	<1	NA	< 1	NA	<1	NA	< 1	NA	0.69	NA	NA	< 1	NA	< 1	< 1	< 1	< 1	< 1	< 1	NA	NA	NA	NA	NA	NA	< 1	< 1	< 1	< 1	< 1	NA
Mar-14	0.66 J	NA	< 1	NA	< 1	NA	< 1	NA	< 1	NA	NA	< 1	NA	< 1	< 1	< 1	< 1	< 1	< 1	NA	NA	NA	NA	NA	NA	< 1	<1	<1	<1	<1	<1
Nov-14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2	< 2	< 2	NA	NA	NA	NA	NA	NA	NA	NA	NA
Jul-15	0.29	NA	0.1 J	NA	0.1 U	NA	0.1 U	NA	0.4	NA	NA	0.1 J	NA	0.1 U	0.1 U	0.1 U	0.4	0.1 U	0.1 J	0.1 J	0.1 U	0.1 U	NA	NA	NA	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Jan-17	0.3	NA	0.1 U	NA	0.1 U	NA	0.1 U	NA	NA	NA	NA	0.1 U	NA	0.1 U	0.1 U	0.1 J	0.18 J	0.18 J	0.6	0.1 J	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
May-18	0.2 U	NA	0.2 U	NA	0.12 J	NA	0.2 U	NA	NA	NA	NA	0.2 U	NA	0.2 U	0.2 U	0.22 J	0.2 U	0.2 U	0.3	0.48	0.12 J	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Jul-19	0.14 J	NA	0.05 U	NA	0.17 J	NA	0.05 U	NA	NA	NA	NA	0.05 U	NA	0.08 J	0.05 U	0.22 J	0.32	0.05 U	0.71	0.05 U	0.05 U	0.17 J	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
Oct-20	1 U	NA	1 U	NA	1 U	NA	1 U	NA	NA	NA	NA	1 U	NA	0.05 U	0.05 U	0.29	0.05 U	0.05 U	0.45	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U

Notes

ARAR Standard = 5 μ g/L; USEPA MCL = 5 μ g/L; and, Part 5 MCL = 5 μ g/L

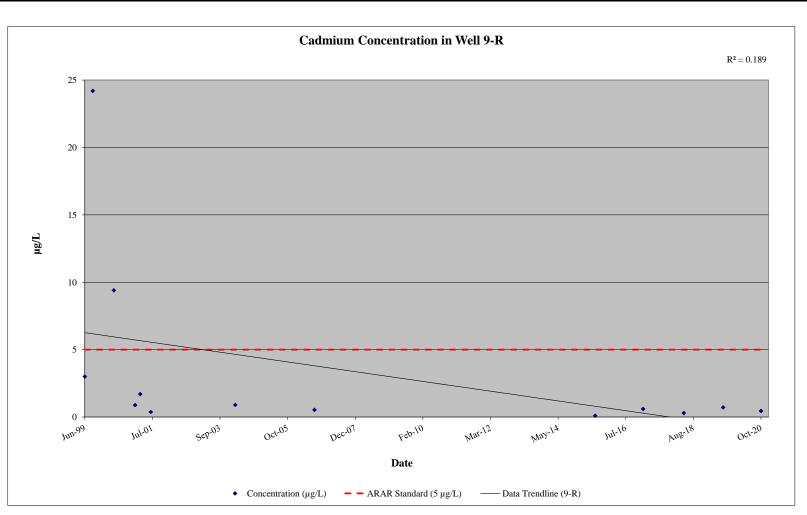
ARAR = Applicable or Relevant and Appropriate Requirement: NYSDEC T.O.G.S. 1.1.1 Ambient Water-Quality Standards and Guidance Values and Groundwater Effluent Limitations (June 2004).

MCL = Maximum Contaminant Level: USEPA National Primary Drinking Water Regulations.

Values in **BOLD** indicate the reported concentration is greater than the ARAR for the groundwater monitoring wells or MCL for the private and municipal drinking water wells water quality standard. NA = Not Analyzed

< = The compound was analyzed for but not detected at the laboratory detection limit listed.

Laboratory Qualifier Definitions


ND or U = Not Detected

 $\boldsymbol{B}=\boldsymbol{The}$ analyte was detected above the reporting limit in the associated method blank.

D02 = Dilution required due to sample matrix effects.

J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.

N = Spiked sample recovery not within control limits.

Well ID	Well 1-OS/I	Well 1-R	Well 2-OS	Well 2-R	Well 3-OS/I	Well 3-R	Well 4-OS	Well 4-R	Well 5-OS	Well 5-I	Well 5-R	Well 7-OS	Well 7-R	Well 8-OS	Well 8-I	Well 8-R	Well 9-OS	Well 9-I	Well 9-R	Well 10-OS	Well 10-I	Well 10-R	UP-OS	UP-I	UP-R	Well PW-1	Well PW-2	SVWC-93	SVWC-94	SVWC-95	SVWC-96
DATE																															
Jun-99	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	12	37.2	12.7	9.5	10	12.8	NA	NA	NA	NA	NA	NA	97.2	29.1	25.8	32.3	25.8	29.1
Sep-99	104	10.6	23.4	ND	7.8	23.8	79.8	17.3	NA	6	10.1 B	34.5	5.8	7.2	18.2	23.5	ND	8.7	19.1	NA	NA	NA	NA	NA	NA	39.7	7.5	NA	NA	NA	NA
May-00	68	6.8 B	56.9	6.3 B	13.5 B	5.2 B	19.1 B	< 2	53.9	NA	9.2 B	10.8 B	4.4 B	2.1 B	3.4 B	5.4 B	< 2	3.1 B	3.9 B	NA	NA	NA	NA	NA	NA	99.1	18.6 B	3.1 B	5.6 B	3.5 B	4 B
Sep-00	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.1 B	18.5 B	22.9 B	< 2.1	3.4 B	5 B	NA	NA	NA	NA	NA	NA	173	39.6	3.2 B	4.9 B	< 2.1	5.1 B
Dec-00	49.3	5 B	45.1	15.4 B	10 B	8.2 B	15.8 B	3.5 B	142	NA	6.6 B	24.5 B	4.9 B	11.7 B	30.4	26.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	19.4 B	10.3 B	7.1 B	7 B	17.8 B
Jan-01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6.3 B	3.4 B	2.7 B	NA	NA	NA	NA	NA	NA	52.7	NA	NA	NA	NA	NA
Mar-01	75	36.9	57.3	< 1.6	10.2 B	4.6 B	8.3 B	< 1.6	26.2	NA	3.2 B	8 B	< 1.6	5.3 B	53.8	29.9	4.3 B	29.5	3.1 B	NA	NA	NA	NA	NA	NA	59.1	7.2 B	1.7 B	7 B	4.2 B	2.8 B
Jul-01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.3 B	20.3 B	9.5 B	2.4 B	3.4 B	4.3 B	NA	NA	NA	NA	NA	NA	53.6	21.3 B	3.9 B	4.1 B	2.7 B	4 B
Oct-01	22.2 B	15.4 B	39	1.9 B	8 B	2.4 B	5.2 B	3.4 B	NA	21.8 B	5.6 B	25.9	7.1 B	5.9 B	< 1.6	4.6 B	8.9 B	4 B	< 1.6	NA	NA	NA	NA	NA	NA	64.9	80.6	NA	NA	NA	NA
Mar-02	47.4	17.1 B	16.5 B	19.2 B	5 B	< 3	< 3	< 3	NA	5 B	23.9 B	7.8 B	< 3	< 3	< 3	< 3	< 3	< 3	< 3	NA	NA	NA	NA	NA	NA	57.6	17.8 B	< 3	3.6 B	6.8 B	8.2 B
Jul-02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 6.9	15.8 B	8.1 B	< 6.9	< 6.9	< 6.9	NA	NA	NA	NA	NA	NA	121	13 B	< 6.9	< 6.9	< 6.9	< 6.9
Oct-02	86.3	20.4 B	83.4	< 6.9	31.6	8.8 B	45.4	< 6.9	NA	< 6.9	< 6.9	39.5	NA	12.9 B	14.1 B	22 B	< 6.9	< 6.9	< 6.9	NA	NA	NA	NA	NA	NA	50.6	18.4 B	< 6.9	< 6.9	7.9 B	< 6.9
Apr-03	NA	3.6 B	55.3	11.3 B	59.9	5.3 B	17.6 B	3.1 B	NA	4.2 B	5.6 B	4.4 B	NA	3 B	18.6 B	4.6 B	< 2.8	5.3 B	< 2.8	NA	NA	NA	NA	NA	NA	58.7	13.9 B	6.4 B	4.4 B	4 B	3.6 B
Mar-04	NA	NA	25.4	NA	13.7 B	NA	7.4 B	NA	183	NA	NA	51.6	NA	1.7 B	14.2 B	1.8 B	< 1.6	2.8 B	2.2 B	NA	NA	NA	NA	NA	NA	59.5	17.4 B	10.6 B	9.8 B	5.6 B	5.4 B
Jun-05	25.9	NA	15.9 B	NA	51.8	NA	4.2 B	NA	NA	2.9 B	NA	5.2 B	NA	32.1	< 1.2	3 B	< 1.2	< 1.2	< 1.2	NA	NA	NA	NA	NA	NA	83.4	197	3.9 B	5.4 B	3 B	3.9 B
Sep-06	130	NA	15	NA	69	NA	10	NA	500	NA	NA	28	NA	2 J	23	84	3.6 J	27	< 10	NA	NA	NA	NA	NA	NA	69	50	7.6 J	7 J	6.1 J	6.8 J
Oct-07	140	NA	35	NA	27	NA	23	NA	< 10	NA	NA	18	NA	< 10	29	2.9 J	14	44	< 10	NA	NA	NA	NA	NA	NA	60	200	8 J	12	4.4 J	4.3 J
Mar-09	33	NA	21	NA	44	NA	11	NA	110	NA	NA	10	NA	11	27	5 J	16	27	< 10	NA	NA	NA	NA	NA	NA	100	61	3.9 J	NA	5.4 J	6.3 J
May-10	57.6	NA	36	NA	21.1	NA	7.4 J	NA	202	NA	NA	30.9	NA	1.7 J	12.4	< 10 J	7.2 J	33 B	< 10	NA	NA	NA	NA	NA	NA.	117	53.4	19.3	NA	11.2	8.5 J
Sep-11	160	15	34	1.8 J	200	34	4.2 J	NA	72	2.9 J	53	32	NA	9.2 J	< 10	< 10	6.7 J	48	< 10	NA	NA	NA	NA	NA	. NA	87	16	4.6 J	3.9 J	NA	NA
Nov-12	48	NA	11	NA NA	55	NA	14	NA NA	85	NA	NA	27	NA	ND	ND 2.4.F	ND	ND	ND	ND	NA	NA NA	NA	NA NA	NA	NA NA	250	26	3.1 J	5.4 J	4.1	NA 0.1 I
Mar-14	90	NA NA	34	NA NA	28	NA NA	12	NA NA	66 NA	NA	NA	39	NA NA		2.4 J	4 J	3.8 J	ND NA	ND	NA . 5	NA . 5	NA 221	NA NA	NA	NA NA	160	63 NA	7.9 J	8 J	11	8.1 J
Nov-14	NA	NA NA	NA 5.2	NA NA	4.7	NA NA	NA 2.4	NA NA	NA	NA NA	NA NA	20 20	NA NA	NA 2.0	NA o 2	NA 001	NA 4	NA c0.2	NA 0.2 I	< 5	< 5	331	NA NA	NA NA	NA NA	111	NA 24	NA 9.22	7.52	NA 2.5	7.66
Jul-15 Jan-17	95.26 42.9	NA NA	5.2 11.9	NA NA	5.4	NA NA	3.4	NA NA	37.6	NA NA	NA NA	2.3	NA NA	2.8	<0.3	0.8 J	0.5 J	<0.3 0.8 J	0.3 J 1.7	1.5	0.96 J	2.9	13.4	2 9	2 1	91.8	24 55.6	8.32	7.52 4.9	2.5 5.3	7.66
						NA NA	0.9 J	NA NA	INA NTA					3.8	0.6 J	Z.1								20.29	3.1		55.6	9.8			6.01
May-18	4.60	NA	11.32	NA NA	32.48	NA	0.88 J	NA NA	NA	NA	NA	1.01	NA NA	1 U	1 U	5.1	1 U	0.58 J	1.81	1.23	0.93 J	4.61	0.51 J	20.28		320.20	52.88	2.79	4.63	5.10	6.01
Jul-19	4.55	NA NA	3.15	NA NA	59	NA	0.85 J	NA NA	NA NA	NA	NA	1.43	NA	1.34	0.38 U	1.66	7.54	0.84 J	2.42	1.06	1.02	2.67	7.00	0.97 J	0.75 J	60.62	23.32	3.39	3.13	4.30	2.62
Oct-20	3 J	NA	20	NA	18	NA	2 U	NA	NA	NA	NA	12	NA	1.61	0.38 U	4.02	0.4 J	0.81 J	1.91	0.99 J	0.38 U	1.54	0.57 J	1.46	0.38 U	31.85	8.51	3.39	3.3	20.5	6.73

Notes:

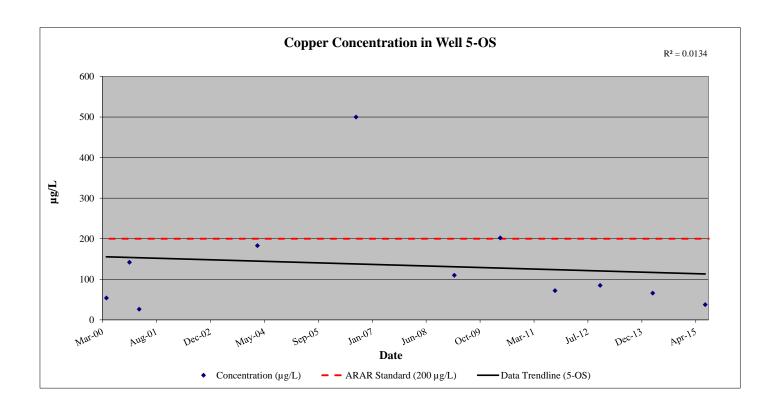
ARAR Standard = 200 μ g/L; MCL Guidance = 1,000 μ g/L*; and, Part 5 MCL = Not Available

ARAR = Applicable or Relevant and Appropriate Requirement: NYSDEC T.O.G.S. 1.1.1 Ambient Water-Quality Standards and Guidance Values and Groundwater Effluent Limitations (June 2004).

MCL = Maximum Contaminant Level: USEPA National Primary Drinking Water Regulations.

Values in **BOLD** indicate the reported concentration is greater than the ARAR for the groundwater monitoring wells or MCL for the private and municipal drinking water wells water quality standard. NA = Not Analyzed

< = The compound was analyzed for but not detected at the laboratory detection limit listed.


Laboratory Qualifier Definitions

* USEPA National Secondary Drinking Water Regulation

ND or U = Not Detected

B = The analyte was detected above the reporting limit in the associated method blank.

J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.

Well ID	Well 1-OS	Well 1-R	Well 2-OS	Well 2-R	Well 3-OS/I	Well 3-R	Well 4-OS	Well 4-R	Well 5-OS	Well 5-I	Well 5-R	Well 7-OS	Well 7-R	Well 8-OS	Well 8-I	Well 8-R	Well 9-OS	Well 9-I	Well 9-R	Well 10-OS	Well 10-I	Well-10R	UP-OS	UP-I	UP-R	Well PW-1	Well PW-2	SVWC-93	SVWC-94	SVWC-95	SVWC-96
DATE				1																					1						
Jun-99	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND
Sep-99	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	ND	ND	NA	NA	NA	NA
May-00	29.1 B	< 3.4	< 3.4	< 3.4	4.8 B	< 3.4	< 3.4	< 3.4	< 3.4	NA	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4	NA	NA	NA	NA	NA	NA	NA	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4
Sep-00	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 11.0	< 5.5	< 5.5	< 5.5	< 5.5	NA	NA	NA	NA	NA	NA	NA	< 5.5	< 5.5	< 5.5	< 5.5	< 5.5	< 5.5
Dec-00	< 5.5	< 5.5	< 5.5 N	< 5.5	8.2 B, N	< 5.5 N	< 5.5 N	< 5.5 N	< 5.5 N	NA	< 5.5 N	< 5.5 N	< 5.5 N	< 5.5 N	< 5.5 N	< 5.5 N	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 5.5 N	< 5.5 N	< 5.5 N	< 5.5 N	< 5.5 N
Jan-01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 4.7	< 4.7	NA	NA	NA	NA	NA	NA	NA	< 4.7	NA	NA	NA	NA	NA
Mar-01	< 4.7 Site V	< 4.7	< 4.7	< 4.7	9.5 B, N	< 4.7	< 4.7	< 4.7	< 4.7	NA	< 4.7	< 4.7	< 4.7	< 4.7	< 4.7	< 4.7	< 4.7	< 4.7	NA	NA	NA	NA	NA	NA	NA	< 4.7	< 4.7	< 4.7	< 4.7	< 4.7	< 4.7
Jul-01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 4.7	< 4.7	< 4.7	< 4.7	< 4.7	NA	NA	NA	NA	NA	NA	NA	< 4.7	< 4.7	< 4.7	< 4.7	< 4.7	< 4.7
Oct-01	< 4.7	< 4.7	< 4.7	< 4.7	9.4 B	< 4.7	< 4.7	< 4.7	NA	< 4.7	< 4.7	< 4.7	< 4.7	< 4.7	< 4.7	< 4.7	< 4.7	< 4.7	NA	NA	NA	NA	NA	NA	NA	< 4.7	< 4.7	NA	NA	NA	NA
Mar-02	12.7 B	10.5 B	14 B	13.8 B	15.1 B	11.9 B	< 7.4	9.7 B	NA	< 7.4	< 7.4	13.2 B	13 B	< 7.4	10.9 B	12 B	< 7.4	< 7.4	NA	NA	NA	NA	NA	NA	NA	< 7.4	9.3 B	8 B	11.4 B	< 7.4	< 7.4
Jul-02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 5.3	< 5.3	< 5.3	< 5.3	< 5.3	NA	NA	NA	NA	NA	NA	NA	< 5.3	< 5.3	8.1 B	< 5.3	< 5.3	< 5.3
Oct-02	15 B,N	5.6 B, N	33 B, N	< 5.3 N	25.4 B, N	5.5 B, N	< 5.3 N	< 5.3 N	NA	< 5.3 N	< 5.3 N	< 5.3 N	NA	< 5.3 N	< 5.3 N	6.3 B, N	< 5.3 N	< 5.3 N	NA	NA	NA	NA	NA	NA	NA	< 5.3 N	< 5.3 N	17.2 B, N	5.5 B, N	< 5.3 N	< 5.3 N
Apr-03	NA	< 5	< 5	< 5	77.6	< 5	< 5	< 5	NA	< 5	< 5	< 5	NA	< 5	< 5	< 5	< 5	< 5	NA	NA	NA	NA	NA	NA	NA	< 5	9.3 B	< 5	< 5	< 5	< 5
Mar-04	NA	NA	< 7.1	NA	< 5.8	NA	< 7.1	NA	< 7.1	NA	NA	< 5.8	NA	< 5.8	< 5.8	< 5.8	< 5.8	< 5.8	NA	NA	NA	NA	NA	NA	NA	< 5.8	< 5.8	< 5.8	< 5.8	< 5.8	< 5.8
Jun-05	< 0.12	NA	< 0.12	NA	< 0.12	NA	< 0.12	NA	NA	< 0.12	NA	< 0.12	NA	0.13 B	< 0.12	< 0.12	0.15 B	< 0.12	NA	NA	NA	NA	NA	NA	NA	< 0.12	< 0.12	0.14 B	< 0.12	< 0.12	< 0.12
Sep-06	<3	NA	< 3	NA	< 3	NA	< 3	NA	< 3	NA	NA	< 3	NA	< 3	< 3	< 3	< 3	< 3	NA	NA	NA	NA	NA	NA	NA	< 3	< 3	< 3	< 3	< 3	< 3
Oct-07	9.6	NA	2.4 J	NA	8.4	NA	1.8 J	NA	< 3	NA	NA	< 3	NA	< 3	< 3	< 3	2 J	< 3	NA	NA	NA	NA	NA	NA	NA	< 3	< 3	< 3	< 3	< 3	< 3
Mar-09	<60	NA	< 60	NA	< 60	NA	< 60	NA	< 60	NA	NA	< 60	NA	< 60	< 60	< 60	< 60	< 60	NA	NA	NA	NA	NA	NA	. NA	< 60	< 60	< 60	NA	< 60	< 60
May-10	3.8	NA	< 3	NA	< 3	NA	< 3	NA	< 5 D14	NA	NA	< 3	NA	< 3	< 3	< 3	< 3	< 3	NA	NA	NA	NA	NA	NA	NA	< 3	< 3	< 3	NA	< 3	< 3
Sep-11	8.3	0.67 J	0.4 J	< 3	0.82 J	< 15	0.24 J	NA	< 3	< 3	0.41 J	0.2 J	NA	< 3	< 3	< 3	0.15 J	<15	NA	NA	NA	NA	NA	NA	NA	< 3	< 3	< 3	< 3	NA	NA
Nov-12	3.0	NA	0.3 J	NA	< 3	NA	< 3	NA	< 3	NA	NA	< 3	NA	< 3	< 3	< 3	0.24 J	< 3	NA	NA	NA	NA	NA	NA	NA	< 3	< 3	< 3	< 3	< 3	NA
Mar-14	< 3	NA	< 3	NA	< 3	NA	< 3	NA	< 3	NA	NA	< 3	NA	< 3	< 3	< 3	< 3	< 3	NA	NA	NA	NA	NA	NA	NA	< 3	< 3	< 3	< 3	< 3	< 3
Nov-14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<2.3	<2.3	<2.3	NA	NA	NA	NA	NA	NA	NA	NA	NA
Jul-15	4.01	NA	0.1 J	NA	0.1 J	NA	0.1 U	NA	0.1 U	NA	NA	0.1 J	NA	0.1 J	0.1 U	0.1 J	0.1 J	0.1 U	NA	0.1 J	0.1 J	0.9 J	NA	NA	. NA	0.1 U	0.14 J	0.14 J	0.32 J	0.16 J	0.11 J
Jan-17	2.3 J	NA	0.6 J	NA	0.6 J	NA	0.4 U	NA	NA	NA	NA	0.5 J	NA	0.7 J	1.2 J	0.9 J	0.4 U	0.4 U	NA	0.4 U	0.4 U	0.7 J	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.7 J	0.4 U	0.4 U	0.4 U
May-18	1.31 J	NA	1.0 J	NA	0.56 J	NA	4 U	NA	NA	NA	NA	4 U	NA	4 U	4 U	4 U	0.77 J	1.13 J	1.54 J	0.43 J	4.5 U	4 U	1.16 J	0.43 J	3.82 J	0.81 J	0.59 J	0.94 J	0.65 J	0.58 J	0.43 J
Jul-19	1.08 J	NA	0.4 U	NA	0.42 U	NA	0.42 U	NA	NA	NA	NA	0.42 U	NA	0.42 U	0.42 U	0.42 U	2.48 J	1.03 J	0.8 J	0.42 U	0.42 U	1.4 J	0.42 U	0.42 U	1.72 J	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U
Oct-20	7 U	NA	7 U	NA	7 U	NA	7 U	NA	NA	NA	NA	7 U	NA	3.54 J	0.42 U	0.48 J	0.42 U	0.42 U	0.74 J	0.42 U	0.42 U	0.42 U	0.42 U	1.94 J	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U

Notes:

ARAR Standard = 3 $\mu g/L$; USEPA MCL = 6 $\mu g/L$; and, Part 5 MCL = 6 $\mu g/L$

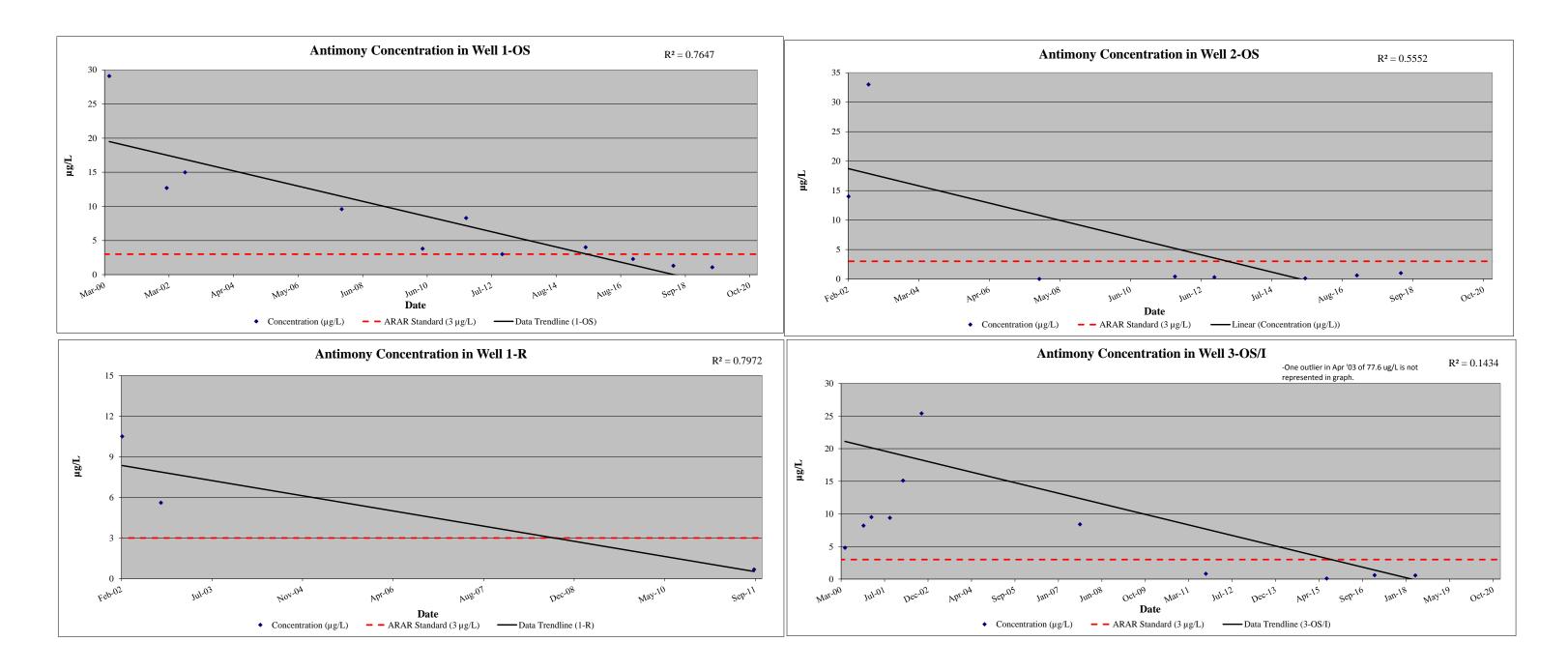
ARAR = Applicable or Relevant and Appropriate Requirement: NYSDEC T.O.G.S. 1.1.1 Ambient Water-Quality Standards and Guidance Values and Groundwater Effluent Limitations (June 2004).

MCL = Maximum Contaminant Level: USEPA National Primary Drinking Water Regulations.

Values in BOLD indicate the reported concentration is greater than the ARAR for the groundwater monitoring wells or MCL for the private and municipal drinking water wells water quality standard.

NA = Not Analyzed

< = The compound was analyzed for but not detected at the laboratory detection limit listed.


Laboratory Qualifier Definitions

ND or U = Not Detected

B = The analyte was detected above the reporting limit in the associated method blank.

J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.

 $N = Spiked \ sample \ recovery \ not \ within \ control \ limits.$

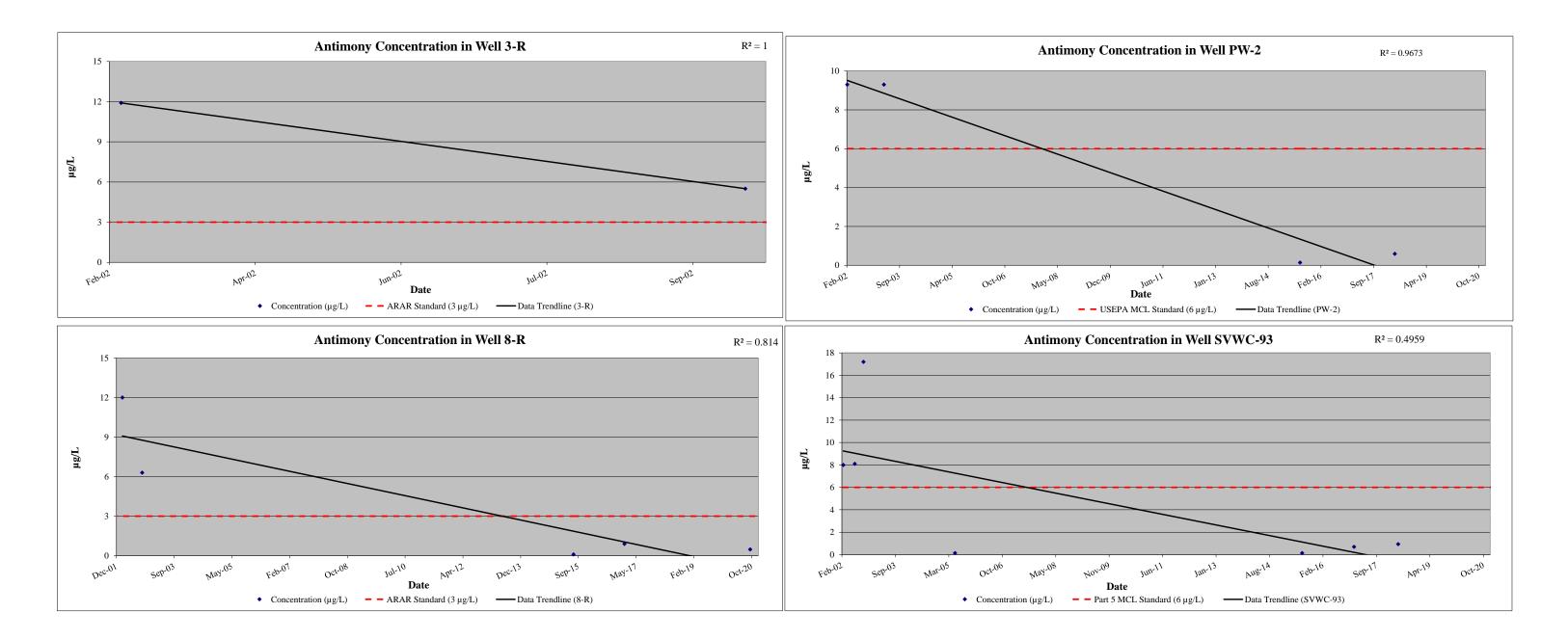
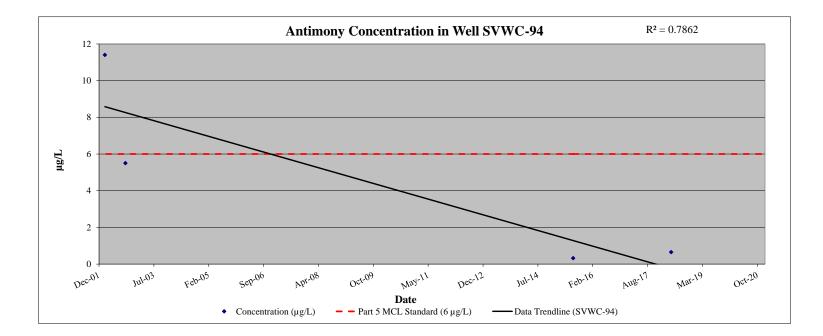



 Table 10

Well ID	Well 1-OS	Well 1-R	Well 2-OS	Well 2-R	Well 3-OS/I	Well 3-R	Well 4-OS	Well 4-R	Well 5-OS	Well 5-I	Well 5-R	Well 7-OS	Well 7-R	Well 8-OS	Well 8-I	Well 8-R	Well 9-OS	Well 9-I	Well 9-R	Well 10-OS	Well 10-I	Well 10-R	UP-OS	UP-I	UP-R	Well PW-1	Well PW-2	SVWC-93	SVWC-94	SVWC-95	SVWC-96
DATE																															
Jun-99	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	11.7	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	9.7	7.1	ND	ND	ND	ND
Sep-99	11.4	ND	ND	ND	ND	7.9	8.5	ND	NA	ND	ND	ND	ND	ND	ND	6.2	ND	ND	ND	NA	NA	NA	NA	NA	NA	ND	ND	NA	NA	NA	NA
May-00	7.3 B	< 2.6	6.6 B	< 2.6	< 2.6	< 2.6	< 2.6	< 2.6	3.2 B	NA	< 2.6	< 2.6	< 2.6	< 2.6	6.6 B	< 2.6	< 2.6	< 2.6	< 2.6	NA	NA	NA	NA	NA	NA	< 2.6	< 2.6	< 2.6	< 2.6	< 2.6	< 2.6
Sep-00	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	13.9 B	11.8	< 1.8	< 1.8	< 1.8	7.7 B	NA	NA	NA	NA	NA	NA	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Dec-00	11.8	< 1.8	9.4 B	< 1.8	< 1.8	< 1.8	< 1.8	3.3 B	16.8	NA	< 1.8	3.4 B	< 1.8	2.6 B	10 B	< 1.8	NA	NA	NA	. NA	NA	NA	NA	NA	NA	NA	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Jan-01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2.2	< 2.2	3 B	NA	NA	NA	NA	NA	NA	< 2.2	NA	NA	NA	NA	NA
Mar-01	13.5	3.7 B	10.5	< 2.2	< 2.2	< 2.2	2.6 B	< 2.2	3.9 B	NA	< 2.2	< 2.2	< 2.2	2.6 B	13.4	< 2.2	< 2.2	5.8 B	6.3 B	NA	NA	NA	NA	NA	NA	< 2.2	< 2.2	< 2.2	< 2.2	< 2.2	< 2.2
Jul-01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2.2	10.5	< 2.2	< 2.2	< 2.2	3.7 B	NA	NA	NA	NA	NA	NA	< 2.2	< 2.2	< 2.2	< 2.2	< 2.2	< 2.2
Oct-01	5.9 B	2.6 B	8.4 B	< 2.2	< 2.2	< 2.2	< 2.2	< 2.2	NA	2.7 B	< 2.2	2.6 B	< 2.2	2.4 B	6.9 B	< 2.2	< 2.2	< 2.2	4 B	NA	NA	NA	NA	NA	NA	< 2.2	< 2.2	NA	NA	NA	NA
Mar-02	9.1 B	< 2.6	< 2.6	< 2.6	< 2.6	< 2.6	< 2.6	< 2.6	NA	< 2.6	< 2.6	< 2.6	< 2.6	< 2.6	9.7 B	3.4 B	< 2.6	< 2.6	< 2.6	NA	NA	NA	NA	NA	NA	< 2.6	< 2.6	< 2.6	< 2.6	< 2.6	< 2.6
Jul-02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.9 B	10.2	2.7 B	< 2.6	< 2.6	5.5 B	NA	NA	NA	NA	NA	NA	< 2.6	< 2.6	< 2.6	< 2.6	< 2.6	< 2.6
Oct-02	91.3	4 B	13.3	< 2.6	< 2.6	< 2.6	7.5 B	< 2.6	NA	< 2.6	< 2.6	5.2 B	NA	< 2.6	5.2 B	< 2.6	< 2.6	< 2.6	< 2.6	NA	NA	NA	NA	NA	NA	< 2.6	< 2.6	< 2.6	< 2.6	< 2.6	< 2.6
Apr-03	NA	< 2.4	10.3	< 2.4	5.4 B	< 2.4	4 B	4.4 B	NA	< 2.4	< 2.4	< 2.4	NA	< 2.4	7.5 B	< 2.4	< 2.4	< 2.4	3.7 B	NA	NA	NA	NA	NA	NA	< 2.4	2.7	< 2.4	< 2.4	< 2.4	< 2.4
Mar-04	NA	NA	7.4 B	NA	< 1.9	NA	< 2.7	NA	30.4	NA	NA	9.8 B	NA	< 1.9	8.9 B	< 1.9	< 1.9	< 1.9	3.4 B	NA	NA	NA	NA	NA	NA	5.6 B	< 1.9	< 1.9	2.9 B	< 1.9	< 1.9
Jun-05	8.1 B	NA	4 B	NA	< 3.1	NA	< 3.1 N	NA	NA	< 3.1	NA	3.1 N	NA	3.7 B, N	8.6 B, N	< 3.1 N	< 3.1 N	< 3.1 N	< 3.1 N	NA	NA	NA	NA	NA	NA	< 3.1 N	< 3.1 N	4.2 B, N	< 3.1 N	< 3.1 N	< 3.1 N
Sep-06	43	NA	2.8 J	NA	6.9	NA	2.8 J	NA	33	NA	NA	4.7 J	NA	< 5	26	3.1 J	< 5	4.5 J	5.9	NA	NA	NA	NA	NA	NA	< 5	< 5	1.2 J	< 5	2 J	1.3 J
Oct-07	31	NA	6.2	NA	< 5	NA	< 5	NA	< 5	NA	NA	< 5	NA	< 5	15	< 5	4.2 J	4.4 J	6.1	NA	NA	NA	NA	NA	NA	< 5	< 5	< 5	< 5	< 5	< 5
Mar-09	7.1 J	NA	< 10	NA	< 10	NA	< 10	NA	9.8 J	NA	NA	< 10	NA	< 10	12	< 10	< 10	< 10	5.7 J	NA	NA	NA	NA	NA	NA	< 100	< 10	< 10	NA	< 10	< 10
May-10	11.2	NA	< 10	NA	< 10	NA	< 10	NA	15.5	NA	NA	< 10	NA	< 10	10.1	< 10	< 10	< 10	8.4 J	NA	NA	NA	NA	NA	NA	< 10	< 10	< 10	NA	< 10	< 10
Sep-11	40	< 10	< 10	< 10	53	7.3 J	< 10	NA	9.5 J	< 10	< 10	< 10	NA	< 10	6.1 J	< 10	< 10	7.6 J	7.9 J	NA	NA	NA	NA	NA	NA	< 10	< 10	< 10	< 10	NA	NA
Nov-12	18	NA	< 10	NA	15	NA	9.8 J	NA	9.3 J	NA	NA	8.8 J	NA	< 10	12	< 10	< 10	< 10	< 10	NA	NA	NA	NA	NA	NA	< 10	< 10	< 10	< 10	< 10	NA
Mar-14	14		< 10	NA	< 10	NA	< 10	NA	6.7 J	NA	NA	9.3 J	NA	< 10	11	< 10	< 10	< 10	< 10	NA	NA	NA	NA	NA	NA	< 10	< 10	< 10	< 10	< 10	< 10
Nov-14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 10	< 10	< 10	NA	NA	NA	NA	NA	NA	NA	NA	NA
Jul-15	7.32	NA	0.7	NA	0.3 J	NA	0.7	NA	3.1	NA	NA	1	NA	0.4 J	6.8	0.6	1	0.1 U	3.8	0.2 J	0.2 J	0.2 J	NA	NA	NA	0.2 U	0.2 U	0.2 U	0.2 U	0.22 J	0.2 U
Jan-17	3.1	NA	1	NA	0.2 U	NA	0.2 J	NA	NA	NA	NA	0.2 J	NA	0.2 J	3.8	0.6	0.2 U	0.2 U	0.6	0.4 J	0.2 U	0.2 U	0.3 J	0.47 J	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 J	0.2 U
May-18	0.51	NA	1.22	NA	0.87	NA	0.18 J	NA	NA	NA	NA	0.5 U	NA	0.5 U	4.32	0.28 J	0.5 U	0.5 U	23.54	0.5 U	0.5 U	0.5 U	0.58	0.42 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Jul-19	1.38	NA	1.91	NA	1.48	NA	0.16 U	NA	NA	NA	NA	0.35 J	NA	0.17 J	4.54	0.34 J	0.39 J	0.16 U	1.42	0.36 J	0.16 U	0.16 U	0.5	0.45 J	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U
Oct-20	2 U	NA	2 U	NA	2 U	NA	2 U	NA	NA	NA	NA	2 U	NA	0.22 J	4.47	0.67	0.16 U	0.16 U	0.46 J	0.21 J	0.16 U	0.16 U	0.35 J	0.41 J	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U

Notes:

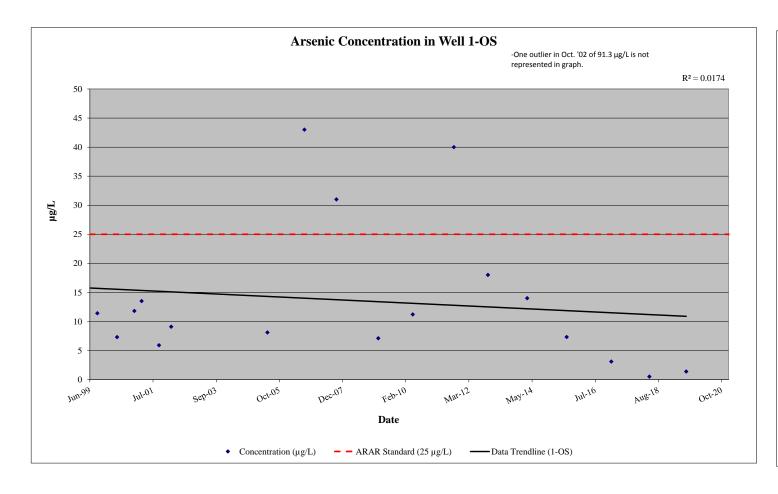
ARAR Standard = 25 $\mu g/L;$ USEPA MCL = 10 $\mu g/L;$ and, Part 5 MCL = 10 $\mu g/L$

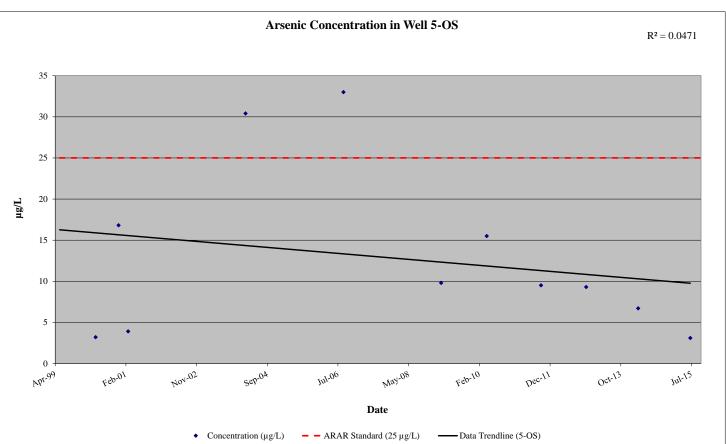
ARAR = Applicable or Relevant and Appropriate Requirement: NYSDEC T.O.G.S. 1.1.1 Ambient Water-Quality Standards and Guidance Values and Groundwater Effluent Limitations (June 2004).

 $MCL = Maximum \ Contaminant \ Level: \ USEPA \ National \ Primary \ Drinking \ Water \ Regulations.$

Values in **BOLD** indicate the reported concentration is greater than the ARAR for the groundwater monitoring wells or MCL for the private and municipal drinking water wells water quality standard. NA = Not Analyzed

< = The compound was analyzed for but not detected at the laboratory detection limit listed.


<u>Laboratory Qualifier Definitions</u>


ND or U = Not Detected

 $\boldsymbol{B} = \boldsymbol{The}$ analyte was detected above the reporting limit in the associated method blank.

J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.

 $N = Spiked \ sample \ recovery \ not \ within \ control \ limits.$

Well ID	Well 1-OS	Well 1-R	Well 2-OS	Well 2-R	Well 3-OS/I	Well 3-R	Well 4-OS	Well 4-R	Well 5-OS	Well 5-I	Well 5-R	Well 7-OS	Well 7-R	Well 8-OS	Well 8-I	Well 8-R	Well 9-OS	Well 9-I	Well 9-R	Well 10-OS	Well 10-I	Well 10-R	UP-OS	UP-I	UP-R	Well PW-1	Well PW-2	SVWC-93	SVWC-94	SVWC-95	SVWC-96
DATE																															
Jun-99	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	20.2	56.8	2	1.1	6.8	15	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND
Sep-99	1850	73.4	285	ND	321	75.7	87.7	ND	NA	10.6	2.7	59.2	ND	31	ND	ND	ND	ND	47.3	NA	NA	NA	NA	NA	NA	ND	ND	NA	NA	NA	NA
May-00	2100	58.6	415	4 B	687	51.2	36.8	< 0.5	69.3	NA	14.7	200	< 0.5	30.1	10	1.1 B	34.5	10.8	3 B	NA	NA	NA	NA	NA	NA	0.75 B	< 0.5	< 0.5	0.53 B	< 0.5	< 0.5
Sep-00	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	16.9 B	17.3	2.2 B	7.4 B	5 B	1.6 B	NA	NA	NA	NA	NA	NA	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Dec-00	405	9.8 B	120	4.7 B	453	213	17.9	< 0.9	165	NA	7.2 B	34.7	< 0.9	8.8 B	22.9	3.6 B	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.9	1.4 B	< 0.9	< 0.9	< 0.9
Jan-01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	20.1	4.1 B	2.4 B	NA	NA	NA	NA	NA	NA	< 0.9	NA	NA	NA	NA	NA
Mar-01	253	119	128	< 0.9	522	124	13.2	< 0.9	38.6	NA	3.9 B	51.9	< 0.9	25.8	49.9	7.7 B	17	28.8	4.1 B	NA	NA	NA	NA	NA	NA	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Jul-01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6.55 B	19.9	5.56 B	< 0.9	2.35 B	1.12 B	NA	NA	NA	NA	NA	NA	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Oct-01	20.6	47.1	87.1	3.9 B	467	12.7	4 B	2.2 B	NA	3.3 B	3.3 B	48.4	2.3 B	20.6	2.3 B	3.9 B	17.4	1.2 B	1.9 B	NA	NA	NA	NA	NA	NA	1.2 B	1.8 B	NA	NA	NA	NA
Mar-02	60.1	10.2	35.6	9.6 B	257	33.5	8.7 B	< 0.83	NA	10.5	24.6	22.1	< 0.83	16.4	4.8 B	1.2 B	12.5	2.4 B	< 0.83	NA	NA	NA	NA	NA	NA	< 0.83	< 0.83	< 0.83	< 0.83	< 0.83	< 0.83
Jul-02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.7 B	9.5 B	1.7 B	5.2 B	3.8 B	< 0.83	NA	NA	NA	NA	NA	NA	< 0.83	< 0.83	< 0.83	< 0.83	< 0.83	< 0.83
Oct-02	386 E	82.9 E	2040 E	4.6 B, E	1,400 E	31.2 E	35 E	1.3 B, E	NA	1.2 B, E	9.9 B, E	108 E	NA	33.8 E	9.5 B, E	6.1 B, E	9.7 B, E	< 0.83 E	< 0.83 E	NA	NA	NA	NA	NA	NA	< 0.83 E	< 0.83 E	< 0.83	< 0.83	< 0.83	< 0.83
Apr-03	NA	< 0.8	89.8	4.8 B	4,250	86.8	17.9	< 0.8	NA	5.6 B	5.6 B	36	NA	10.4	15.5	< 0.8	19.2	4.2 B	< 0.8	NA	NA	NA	NA	NA	NA	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
Mar-04	NA	NA	87.1	NA	816	NA	9.4 B	NA	237	NA	NA	133	NA	10.3	19.4	2 B	10.4	2.8 B	2.6 B	NA	NA	NA	NA	NA	NA	1.3 B	1.5 B	1.4 B	1.9 B	1.5 B	1.2 B
Jun-05	31.4	NA	101	NA	2,020	NA	56.7	NA	NA	5.6 B	NA	5.7 B	NA	29.6	3.3 B	2.5 B	2.4 B	1.4 B	1.9 B	NA	NA	NA	NA	NA	NA	< 0.9	< 0.9	< 0.9	0.93 B	< 0.9	0.94 B
Sep-06	2,400	NA	120	NA	7,200	NA	1300	NA	690	NA	NA	87	NA	140	30	42	55	36	4.1 J	NA	NA	NA	NA	NA	NA	2.7 J	2.8 J	3.2 J	2 J	< 10	< 10
Oct-07	530	NA	250	NA	3,400	NA	270	NA	32	NA	NA	96	NA	85	41	11	330	150	4.3 J	NA	NA	NA	NA	NA	NA	< 10	< 10	< 10	< 10	< 10	< 10
Mar-09	140	NA	480	NA	3,900	NA	230	NA	170	NA	NA	61	NA	680	27	11	300	38	< 10	NA	NA	NA	NA	NA	NA	< 10	< 10	< 10	NA	< 10	< 10
May-10	1,990	NA 0=0	722	NA NA	2,570	NA • saa	522	NA	278	NA	NA 02	158	NA	152	14	< 4	176	53.9	2.5 J	NA	NA	NA	NA	NA	NA	< 4	< 4	< 4	NA	< 4	< 4
Sep-11 Nov-12	11,100 2,400	970 NA	1000 280	2.7 J	29,700 4,100	2600 NA	290 1700	NA NA	120	11 NA	93 NA	480 230	NA NA	1500 140	< 4 2.9 J	< 4	100	380 2.6 J	< 4	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	< 4	< 4	< 4	< 4	NA < 4	NA NA
	5,200			NA NA	2,800		540		96			300		85		ND			ND.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND	ND	< 4 ND	× 4	× 4 ND	NA
Mar-14 Nov-14	5,200 NA	NA NA	1100 NA	NA NA	2,800 NA	NA NA	540 NA	NA NA	96 NA	NA NA	NA NA	300 NA	NA NA	85 NA	3.7 J NA	NA NA	290 NA	11 NA	NA NA	2 U	2 U	3.3 J	NA NA	NA NA	NA NA	ND NA	NA NA	ND NA	ND NA	NA NA	ND NA
Jul-15	6,604	NA NA	62.2	NA NA	229	NA NA	132.9	NA NA	40.6	NA NA	NA NA	254.2	NA NA	230.4	2.8	2.4	56.7	2.5	2.4	2.4	1.5 J	7.9	NA NA	NA NA	NA NA	0.27 J	0.24 J	0.21 J	0.54 J	2 U	0.23 J
Jan-17	1,259	NA NA	229.2	NA NA	595	NA NA	210	NA NA	40.0 NA	NA NA	NA NA	131.5	NA NA	296.7	2.7	19.2	3.7	36.8	13	0.4 J	1.9	5.2	2	2	3.3	0.27 J	0.24 J	1.3	1.3	0.4 J	0.23 J
May-18	60.24	NA NA	10.30	NA NA	3,375	NA NA	156.6	NA NA	NA NA	NA NA	NA NA	18.74	NA NA	3.77	0.88 J	1.01	4.0	44.67	46.0	0.4 J	0.71 J	181.1	0.59 J	11.38	1.21	0.30 J	0.22 J	0.31 J	0.23 J	0.4 J	0.40 J
Jul-19	308.30	NA NA	2.29	NA NA	8,580	NA NA	73.5	NA NA	NA NA	NA	NA NA	16.42	NA	12.7	0.64 J	45.65	12.0	15.42	5.5	0.17 U	0.26 J	11.4	2.53	1.94	7.32	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.18 J
Oct-20	318	NA	94.0	NA	3,190	NA	106	NA	NA	NA	NA	573	NA	61.22	1.04	52.39	0.81 J	46.8	3.55	0.31 J	0.34 J	29.04	1.32	25.97	2.01	0.35 J	0.17 U	0.18 J	0.17 U	0.27 J	0.40 J

Notes

ARAR Standard = 50 μ g/L; USEPA MCL = 100 μ g/L; and, Part 5 MCL = 100 μ g/L

ARAR = Applicable or Relevant and Appropriate Requirement: NYSDEC T.O.G.S. 1.1.1 Ambient Water-Quality Standards and Guidance Values and Groundwater Effluent Limitations (June 2004).

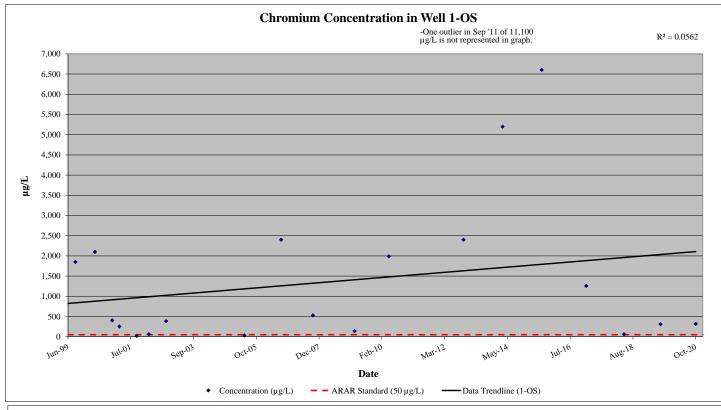
 $MCL = Maximum\ Contaminant\ Level:\ USEPA\ National\ Primary\ Drinking\ Water\ Regulations.$

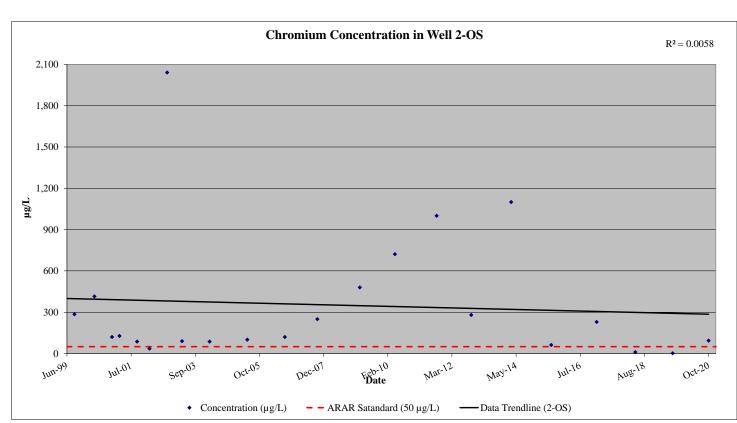
Values in **BOLD** indicate the reported concentration is greater than the ARAR for the groundwater monitoring wells or MCL for the private and municipal drinking water wells water quality standard.

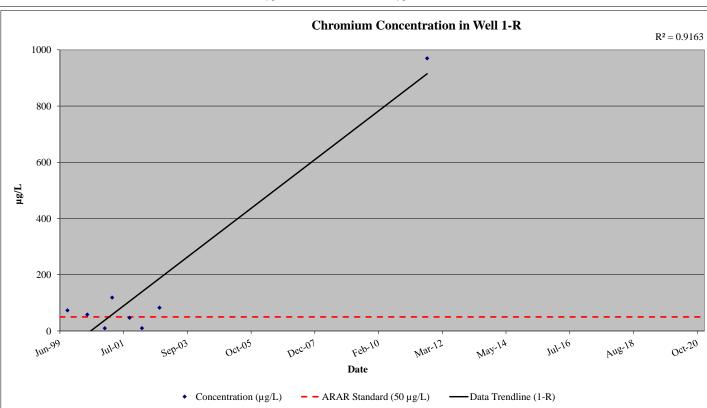
NA = Not Analyzed

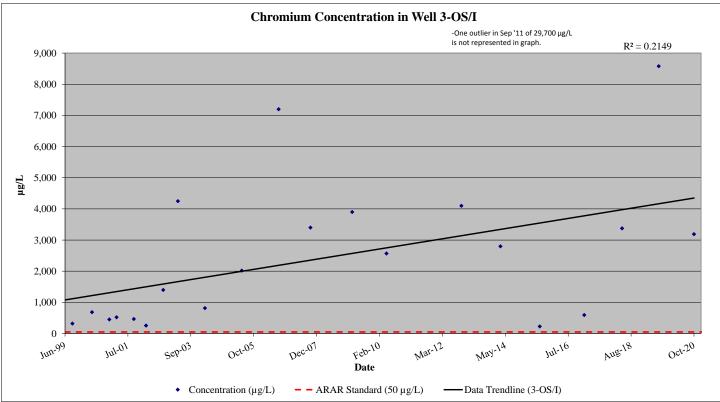
< = The compound was analyzed for but not detected at the laboratory detection limit listed.

Laboratory Qualifier Definitions

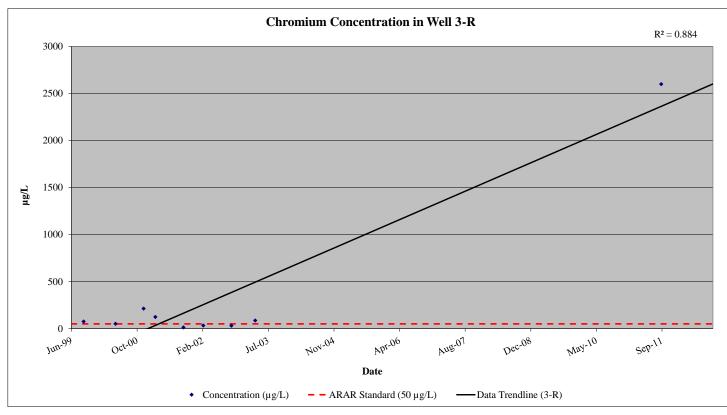

ND or U = Not Detected

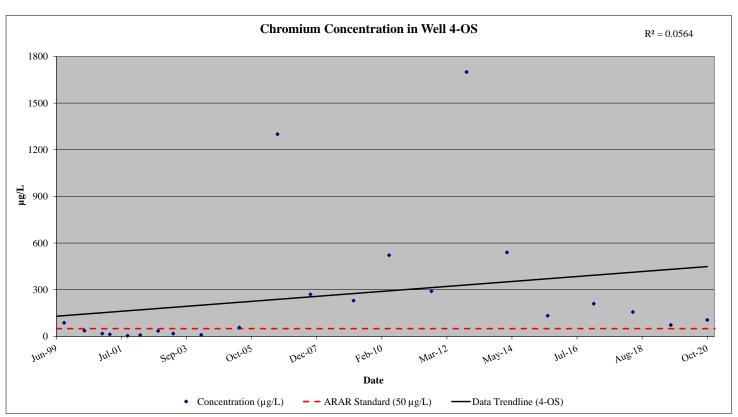

 $B=\mbox{\it The}$ analyte was detected above the reporting limit in the associated method blank.

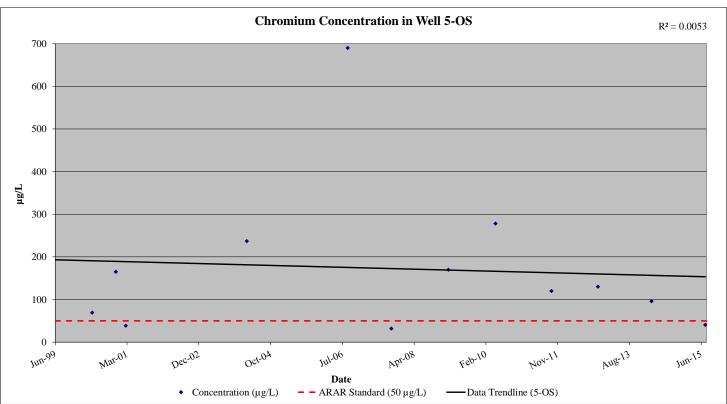

 $E = \mbox{Indicates an estimated value because of the possible presence of interference.} \label{eq:entropy}$

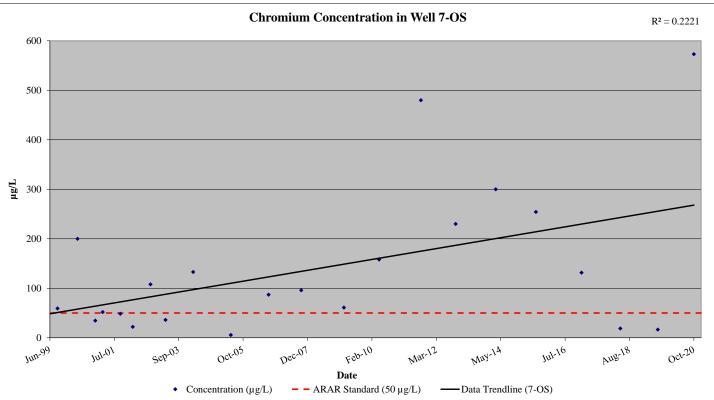

J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.

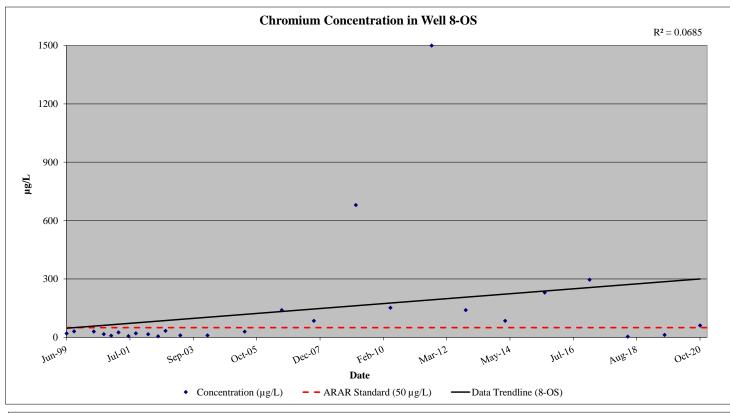
Table~12 Summary of Historical Groundwater Quality Results - Chromium (µg/L) Town~of~Ramapo~Landfill

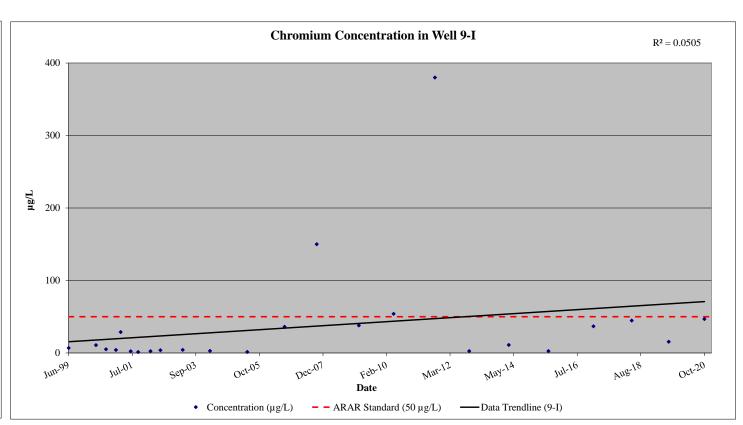


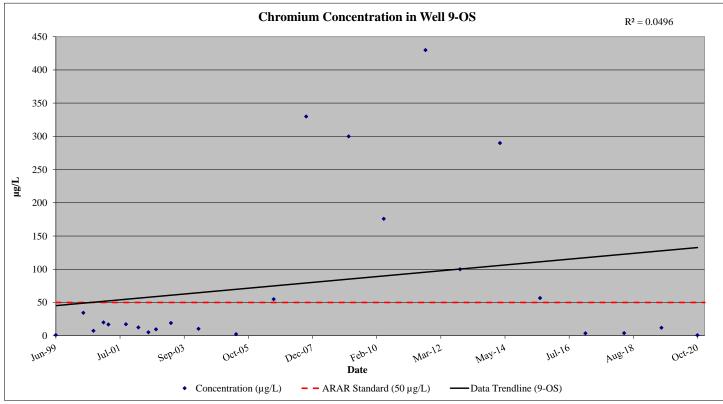







Table~12 Summary of Historical Groundwater Quality Results - Chromium (µg/L) Town~of~Ramapo~Landfill





Well ID	Well 1-OS	Well 1-R	Well 2-OS	Well 2-R	Well 3-OS/I	Well 3-R	Well 4-OS	Well 4-R	Well 5-OS	Well 5-I	Well 5-R	Well 7-OS	Well 7-R	Well 8-OS	Well 8-I	Well 8-R	Well 9-OS	Well 9-I	Well 9-R	Well 10-OS	Well 10-I	Well 10-R	UP-OS	UP-I	UP-R	Well PW-1	Well PW-2	SVWC-93	SVWC-94	SVWC-95	SVWC-96
DATE																															
Jun-99	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	473	19,100	1,140	515	949	4,360	NA	NA	NA	NA	NA	NA	163	114	169	83	90	68
Sep-99	76,200	1,420	6,910	2,640	1,990	8,770	50,200	7,500	NA	700	40	11,300	ND	747	4,270	5,260	198	ND	3,110	NA	NA	NA	NA	NA	NA	ND	ND	NA	NA	NA	NA
May-00	40,500	867	32,900	1,790	3,310	1,610	16,300	5,900	41,500	NA	5,000	4,300	128	1,200	9,870	1,180	1,880	2,820	1,340	NA	NA	NA	NA	NA	NA	18 B	59 B	9 B	4 B	23 B	5 B
Sep-00	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	8,900	22,900	2,230	2,230	3,920	9,110	NA	NA	NA	NA	NA	NA	< 2.8	37 B	4 B	< 2.8	< 2.8	< 2.8
Dec-00	43,800 E	990 E	32,800 E	1,440 E	3,620 E	3,020 E	11,300 E	7,240 E	101,000 E	NA	2,370 E	12,400 E	310 E	4,450 E	26,400 E	2,580 E	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	62 B,E	37 B,E	21 B,E	14 B,E	53 B,E
Jan-01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2,640	2,570	8,280	NA	NA	NA	NA	NA	NA	5 B	NA	NA	NA	NA	NA
Mar-01	54,100	15,700	37,700	337	5,810	4,400	7,690	4,220	22,800	NA	826	4,170 N	213	6,020 N	47,600 N	2,500 N	3,660 N	24,000 N	8,080 E	NA	NA	NA	NA	NA	NA	15 B	11 B	62 B	22 B	25 B	28 B
Jul-01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2,460	27,600	1,680	< 2.8	2,350	8,320	NA	NA	NA	NA	NA	NA	561	26 B	29 B	7 B	103	19 B
Oct-01	16,400 E	6,260 E	24,500 E	299	4,090 E	1,140 E	1,760 E	3,850 E	NA	186 E	96 E	10,400 E	22 B,E	4,600 E	6,560 E	1,770 E	3,780 E	145 E	8,150 E	NA	NA	NA	NA	NA	NA	16 B	59 B,E	NA	NA	NA	NA
Mar-02	35,200	1,330	10,500	6,830	1,810	2,020	4,310	3,250	NA	5,490	10,300	6,790	73	3,060	16,700	2,110	896	2,000	5,980	NA	NA	NA	NA	NA	NA	8 B	36 B	< 4.5	11 B	13 B	< 4.5
Jul-02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3,540 *	16,700 *	1,580 *	789 *	3,290 *	7,110 *	NA	NA	NA	NA	NA	NA	8 *B	17 *B	19 B	< 6.6	9 B	< 6.6
Oct-02	127,000 E	41,600 E	48,200 E	1,760 E	30,800 E	13,300 E	32,800 E	4,520 E	NA	61 E	1,230 E	21,200 E	NA	6,600 E	17,600 E	1,490 E	500 E	40 B,E	6,140 E	NA	NA	NA	NA	NA	NA	24 B,E	33 B,E	939 E	53 B,E	91 E	11 B,E
Apr-03	NA	374	40,700	2,550	31,800	4,830	14,100	6,250	NA	1,910	1,760	1,850	NA	2,490	21,400	969	1,600	3,710	5,720	NA	NA	NA	NA	NA	NA	9 B	25 B	24 B	20 B	56 B	7 B
Mar-04	NA	NA	14,700	NA	12,900	NA	3,050	NA	150,000	NA	NA	38,500	NA	1,030	29,700	1,160	506	1,630	4,890	NA	NA	NA	NA	NA	NA	20 B	28 B	203	30 B	157	< 16.8
Jun-05	54,200 N	NA	144 N	NA	60,500 N	NA	1,230	NA	NA	124 N	NA	1,310	NA	3,150	13,900	751	453	318	6,430	NA	NA	NA	NA	NA	NA	19 B	115	14 B	8	17 B	< 7.7
Sep-06	120,000	NA	12,000	NA	77,000	NA	12,000	NA	410,000	NA	NA	17,000	NA	1,200	43,000	4,700	1,600	24,000	7,000	NA	NA	NA	NA	NA	NA	15 J	34 J	21 J	< 50	260	< 50
Oct-07	160,000	NA	31,000	NA	25,000	NA	24,000	NA	850	NA	NA	13,000	NA	780	39,000	1,300	6,300	41,000	8,500	NA	NA	NA	NA	NA	NA	17 J	130	46 J	12 J	76	< 50
Mar-09	38,000	NA	12,000	NA	30,000	NA	10,000	NA	110,000	NA	NA	5,800	NA	3,800	33,000	1,300	7,800	23,000	9,400	NA	NA	NA	NA	NA	NA	12 J	140	29 J	NA	33 J	16 J
May-10	44,100 B	NA	22,700	NA	24,000 B	NA	6,830	NA	176,000	NA	NA	19,300 B	NA	1,070 B	27,000 B	563 B	4,640 B	30,300 B	12,500 B	NA	NA	NA	NA	NA	NA	23 B,J	71 B	< 50	NA	30 B,J	598 B
Sep-11	82,000	8,600 B	16,000	260	158,000	18,000	3,500	NA	66,500	1,300	28,100 B	19,300	NA	6,500	12,600 B	350 B	7,500 B	40,100 B	7,300 B	NA	NA	NA	NA	NA	NA	28 B,J	80 B	140 B	90 B	NA	NA
Nov-12	45,200	NA	6,600	NA	34,800	NA	18,500	NA	68,500	NA	NA	14,300	NA	950	15,800	300	1,300	75	5,400	NA	NA	NA	NA	NA	NA	55	250	< 50	< 50	< 50	NA
Mar-14	66,000		17,900	NA	16,600	NA	-,	NA	53,500	NA	NA	24,500	NA	540	14,400	210	3,700	100	6,800	NA	NA	NA	NA	NA	NA	34 J	110	ND	ND	ND	ND
Nov-14	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	114	997	2,010	NA	NA	NA	NA	NA	NA	NA	NA	NA
Jul-15	53,600	NA	,	NA	2,750	NA	,	NA	7,800	NA	NA	5,570	NA	1,280	11,600	311	1,760	23 J	9,270	273	331	85	NA	NA	NA	30 J	90	<20	<20	480	<20
Jan-17	10,400	NA	3,670	NA	8,560	NA	,	NA NA	NA	NA	NA	806	NA	2,140	9,520	373	42 J	241	968	186	22 J	111	219	165	463	48 J	66	34 J	47 J	104	76
May-18	533	NA	324	NA	25,200	NA	, .	NA NA	NA NA	NA	NA	265	NA	56.4	10,200	294	66.9	347	22,800	275	133	765	435	3,230	55.3	193	148	36.2 J	50 U	21.7 J	19.7 J
Jul-19	7,150	NA	- / -	NA	. ,	NA NA		NA NA	NA NA	NA	NA	348	NA NA	240.0	8,930	195	270.0	113	1,650	19 J	95	78	1,150	106	200.0	21 J	32 J	19.1 U	54	54.0	19.1 U
Oct-20	9,660	NA	1,050	NA	13,600	NA	1,180	NA	NA	NA	NA	5,310	NA	552	9,630	1,560	26 J	305	533	181	39 J	151	62	266	25 J	29.1 J	46.7 J	19.1 U	19.1 U	19.1 U	30 J

Notes:

ARAR Standard = 300 μ g/L; USEPA Secondary MCL = Not Available; and, Part 5 MCL = 300 μ g/L

ARAR = Applicable or Relevant and Appropriate Requirement: NYSDEC T.O.G.S. 1.1.1 Ambient Water-Quality Standards and Guidance Values and Groundwater Effluent Limitations (June 2004).

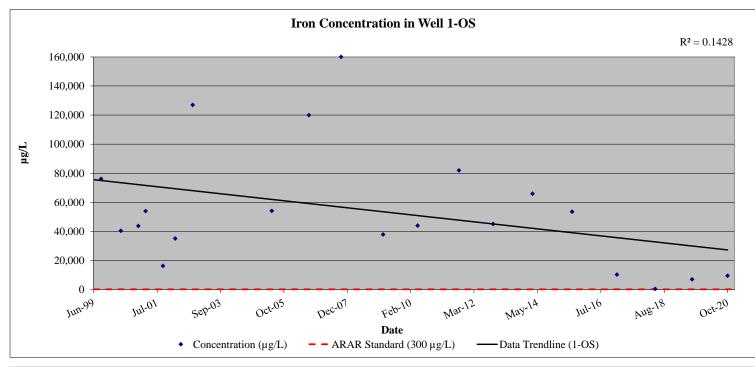
MCL = Maximum Contaminant Level: USEPA National Primary Drinking Water Regulations.

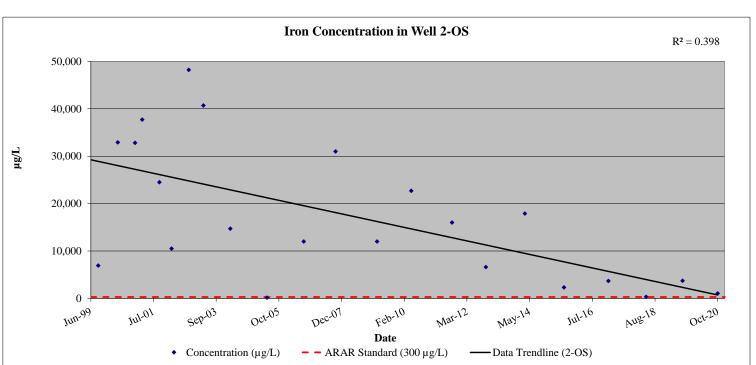
Values in **BOLD** indicate the reported concentration is greater than the ARAR for the groundwater monitoring wells or MCL for the private and municipal drinking water wells water quality standard.

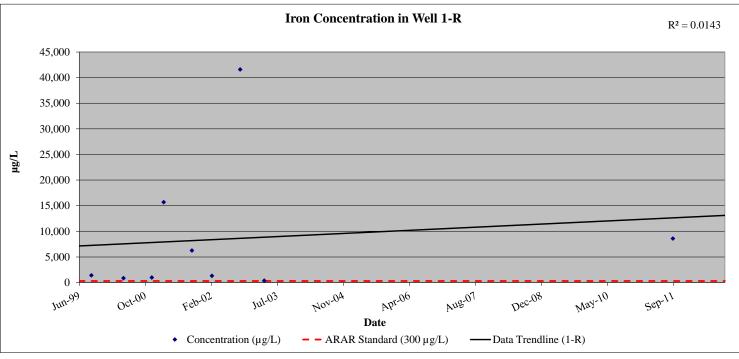
NA = Not Analyzed

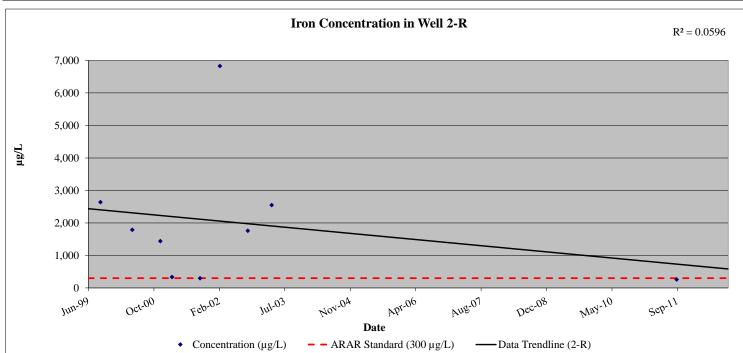
< = The compound was analyzed for but not detected at the laboratory detection limit listed.

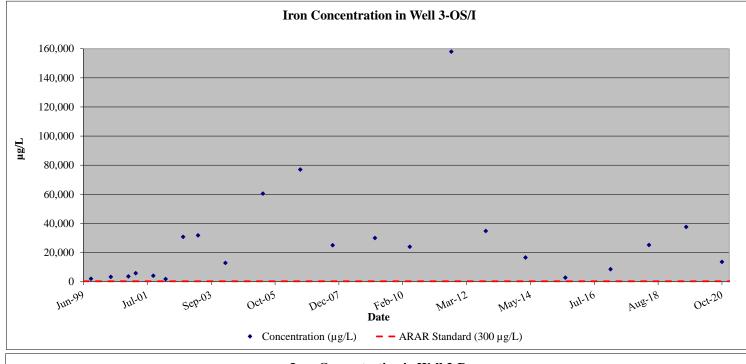
Laboratory Qualifier Definitions

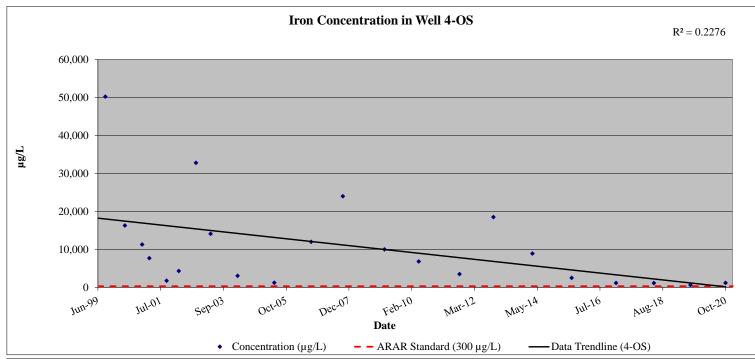

ND or U = Not Detected

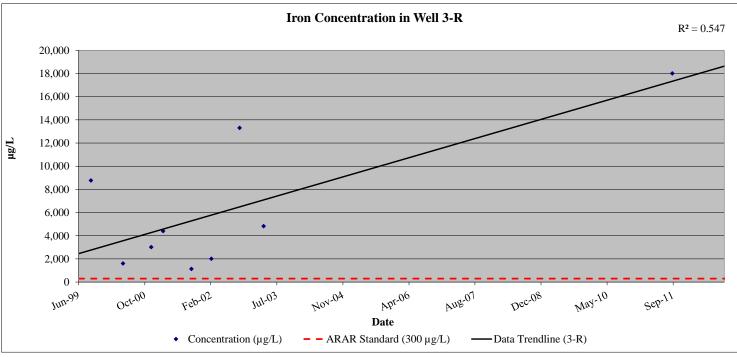

 $B=\mbox{\it The}$ analyte was detected above the reporting limit in the associated method blank.

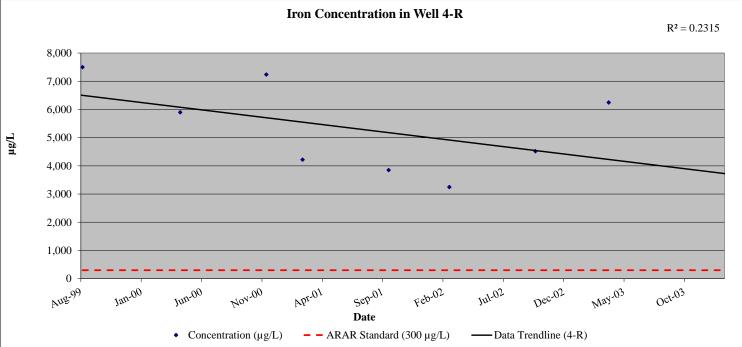

 $E = Indicates \ an \ estimated \ value \ because \ of \ the \ possible \ presence \ of \ interference.$

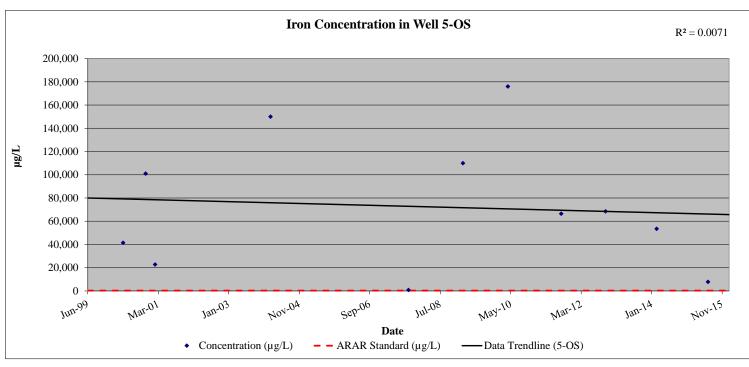

J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.

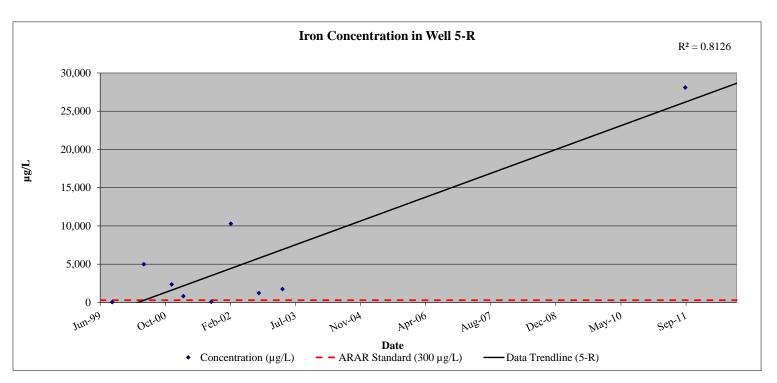

 $N = Spiked \ sample \ recovery \ not \ within \ control \ limits.$

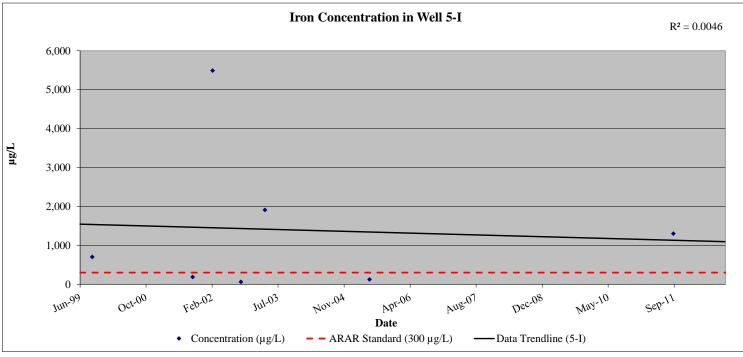


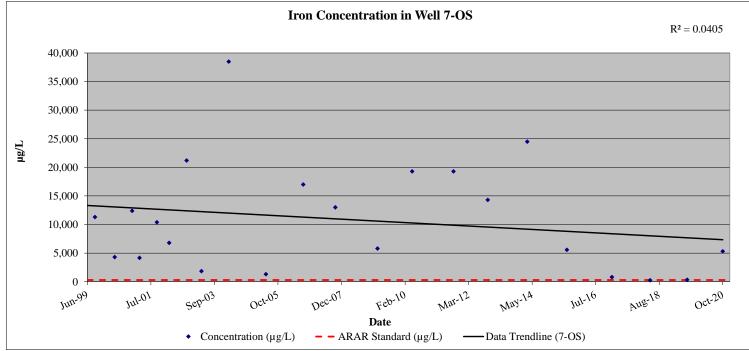


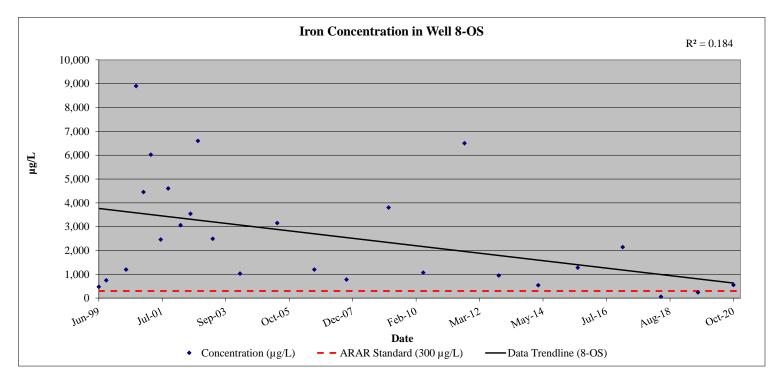


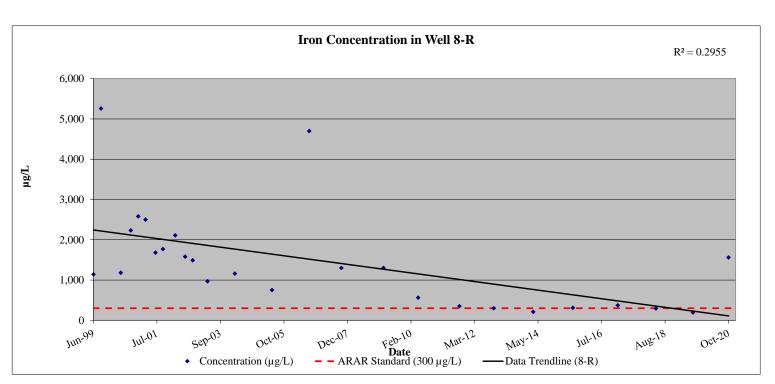


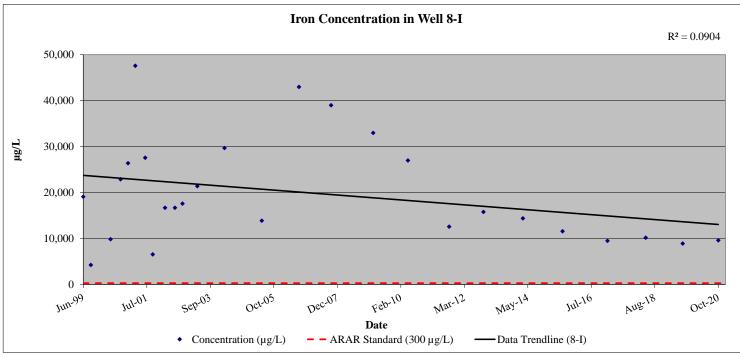


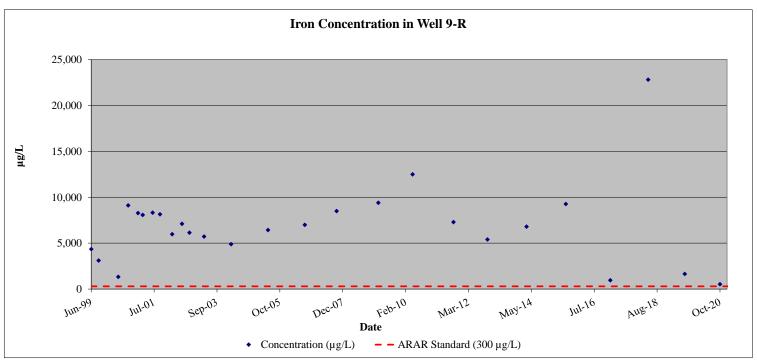


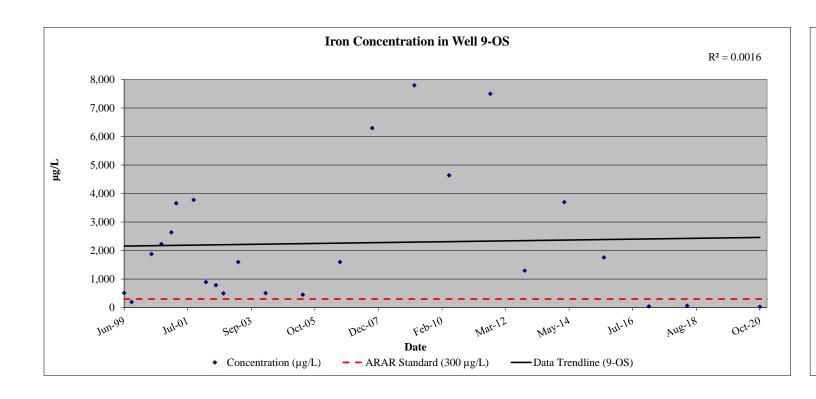


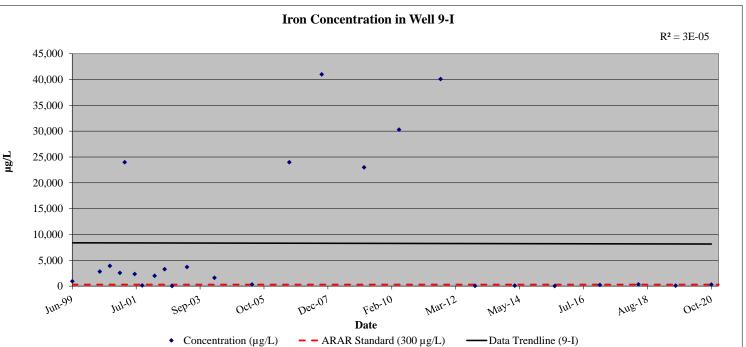












Well ID	Well 1-OS	Well 1-R	Well 2-OS	Well 2-R	Well 3-OS/I	Well 3-R	Well 4-OS	Well 4-R	Well 5-OS	Well 5-I	Well 5-R	Well 7-OS	Well 7-R	Well 8-OS	Well 8-I	Well 8-R	Well 9-OS	Well 9-I	Well 9-R	Well 10-OS	Well 10-I	Well 10-R	UP-OS	UP-I	UP-R	Well PW-1	Well PW-2	SVWC-93	SVWC-94	SVWC-95	SVWC-96
DATE																															
Jun-99	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	5.5	2.5	ND	ND	NE	NA NA	NA	NA	NA	NA	NA	2.5	ND	2.7	ND	ND	ND
Sep-99	10.1	ND	4	ND	ND	ND	12.3	ND	NA	ND	ND	4.9	ND	ND	ND	10.8	ND	ND	NE	NA NA	NA	NA	NA	NA	NA	ND	ND	NA	NA	NA	NA
May-00	5.8	< 1.5	38	< 1.5	< 1.5	1.8 B	2.3 B	< 1.5	5.4	NA	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	1.8 B	2.3 B	NA	NA	NA	NA	NA	NA	6.8	2.3 B	2.3 B	< 1.5	< 1.5	< 1.5
Sep-00	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 3.4	4.8	4.4	2.6 B	1.9 B	< 1.7	NA	NA	NA	NA	NA	NA	8.9	5.1	2.8 B	2.5 B	< 1.7	2 B
Dec-00	6.6	< 1.7	32.2	< 1.7	< 1.7	2 B	< 1.7	2.4 B	17.6	NA	< 1.7	5.7	< 1.7	< 1.7	3.6	< 1.7	NA	NA	. NA	NA NA	NA	NA	NA	NA	NA	NA	< 1.7	< 1.7	< 1.7	< 1.7	< 1.7
Jan-01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.3	< 2	< 2	NA	NA	NA	NA	NA	NA	4.1	NA	NA	NA	NA	NA
Mar-01	14.3	5.1	45.9	2.5 B	5.3	4.7	3.2	2.6 B	5.9	NA	3.9	< 2	< 2	< 2	6.8	< 2	< 2	4.6	2.2 B	NA	NA	NA	NA	NA	NA	2.3 B	< 2	< 2	< 2	< 2	< 2
Jul-01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2	33	< 2	6	< 2	< 2	NA	NA	NA	NA	NA	NA	< 2	< 2	< 2	< 2	< 2	< 2
Oct-01	5 B	2.2 B	25.2	< 2	< 2	< 2	< 2	< 2	NA	< 2	< 2	7.1	< 2	< 2	< 2	2.2	< 2	< 2	< 2	NA	NA	NA	NA	NA	NA	2.9 B	4 B	NA	NA	NA	NA
Mar-02	8.6	3.3 B	10	4.8 B	< 2.9	< 2.9	< 2.9	< 2.9 N	NA	< 2.9	3 B	< 2.9	< 2.9	< 2.9	< 2.9	< 2.9	< 2.9	< 2.9	< 2.9	NA	NA	NA	NA	NA	NA	< 2.9	< 2.9	< 2.9	< 2.9	< 2.9	< 2.9
Jul-02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2.9	< 2.9	< 2.9	< 2.9	< 2.9	< 2.9	NA	NA	NA	NA	NA	NA	< 2.9	< 2.9	< 2.9	< 2.9	< 2.9	< 2.9
Oct-02	10.3 N	4.8 B,N	31.3 N	< 2.9 N	3.9 B,N	4.2 B,N	7.1 N	< 2.9	NA	< 2.9 N	< 2.9 N	7.2 N	NA	< 2.9 N	< 2.9 N	< 2.9 N	< 2.9 N	< 2.9 N	< 2.9 N	NA	NA	NA	NA	NA	NA	3.5 B,N	< 2.9 N	< 2.9 N	< 2.9 N	< 2.9 N	< 2.9 N
Apr-03	NA	< 2.2	41.1	< 2.2	6.7	< 2.2	2.6 B	2.3 B	NA	< 2.2	< 2.2	< 2.2	NA	< 2.2	3.5 B	3 B	< 2.2	< 2.2	< 2.2	NA	NA	NA	NA	NA	NA	5.2	2.3 B	< 2.2	< 2.2	< 2.2	< 2.2
Mar-04	NA	NA	18.3 N	NA	2.2 B	NA	7.7 N	NA	34 N	NA	NA	12.8	NA	< 1.1	3	< 1.1	< 1.1	< 1.1	< 1.1	NA	NA	NA	NA	NA	NA	4.9	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1
Jun-05	5.8	NA	7.6	NA	3.1	NA	< 1.9	NA	NA	< 1.9	NA	2.5 B	NA	< 1.9	< 1.9	3.5	< 1.9	< 1.9	< 1.9	NA	NA	NA	NA	NA	NA	< 1.9	< 1.9	2 B	< 1.9	< 1.9	< 1.9
Sep-06	94	NA	9.1	NA	1.1 J	NA	1.2 J	NA	67	NA	NA	6.3	NA	< 5	3.5 J	4 J	1 J	3.5 J	< 5	NA	NA	NA	NA	NA	NA	< 5	2.1 J	< 5	< 5	< 5	< 5
Oct-07	44	NA	22	NA	< 5	NA	4.2 J	NA	< 5	NA	NA	< 5	NA	< 5	< 5	< 5	6.1	4.6 J	< 5	NA	NA	NA	NA	NA	NA	< 5	< 5	< 5	< 5	< 5	< 5
Mar-09	6.3 J	NA	5.7 J	NA	< 10	NA	< 10	NA	12	NA	NA	< 10	NA	< 10	< 10	< 10	< 10	< 10	< 10	NA	NA	NA	NA	NA	NA	< 10	< 10	< 10	NA	< 10	< 10
May-10	18.3	NA	4.9 J	NA	< 5	NA	< 5	NA	23.3	NA	NA	6	NA	< 5	< 5	< 5	< 5	3.6 J	< 5	NA	NA	NA	NA		NA		< 5	< 5	NA	< 5	< 5
Sep-11	43	3.2 J	4.6 J	< 5	< 5	5.3	< 5	NA	16	< 5	19	6.9	NA	< 5	< 5	< 5	5	14	< 5	NA	NA	NA	NA		NA		< 5	< 5	< 5	NA	NA
Nov-12	20	NA	< 5	NA	< 5	NA	< 5	NA	11	NA	NA	3.3 J	NA	< 5	< 5	< 5	< 5	< 5	< 5	NA	NA	NA	NA		NA		< 5	< 5	< 5	< 5	NA
Mar-14	25 NA	NA NA	4.9 J	NA	ND	NA	ND	NA NA	7.8	NA NA	NA NA	9.4	NA NA	ND	ND	ND	3.5 J	ND		NA NA	NA 2.4	NA -2.4	NA		NA NA		ND	ND	ND	ND	ND
Nov-14	NA 10.55	NA NA	NA	NA	NA 0.1 II	NA	NA 0.7 L	NA NA	NA 4	NA NA	NA NA	NA 1.2	NA NA	NA NA	NA 0.1 II	NA 0.1 II	NA 1.6	NA 0.1 H			<3.4	<3.4	NA		NA NA		0.41 I	NA 0.2 H	NA 0.70 I	NA	0.49 J
Jul-15 Jan-17	2.6	NA NA	1.1 0.6 J	NA NA	0.1 U 0.3 U	NA NA	0.7 J 0.3 U	NA NA	4 NA	NA NA	NA NA	1.3 0.3 U	NA NA	0.1 U 0.3 U	0.1 U 0.3 U	0.1 U 0.5 J	1.6 0.3 U	0.1 U 0.3 U	0.2 J 0.3 U	0.2 J	0.7 J 0.3 U	0.1 U 0.5 J	0.3 U	0.3 U	0.3 U	7.83	0.41 J	0.2 U 0.3 U	0.78 J 0.3 U	0.26 J 0.3 U	0.49 J 0.4 J
May-18	2.6 1.0 U	NA NA	0.6 J 0.51 J	NA NA	1.0 U	NA NA	1.0 U	NA NA	NA NA	NA NA	NA NA	1.0 U	NA NA	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.63	0.3 U 1.0 U	1.0 U	0.5 J	1.0 U		1.0 U	5.09	0.9 J 3.94	1.0 U	1.0 U	0.3 U 0.38 J	1.0 U
Jul-19	2.3	NA NA	2.69	NA NA	1.0	NA NA	1.0 U	NA NA	NA NA	NA NA	NA NA	0.6 J	NA NA	0.3 U	0.3 U	0.3 J	1.0 U	0.3 U	0.34 U	0.3 U	0.3 U	3.95	1.0 U	0.84 J	0.3 U	0.53 J	5.13	0.3 U	0.3 U	0.34 U	0.3 U
Oct-20	3 U	NA NA	3 U	NA NA	3 U	NA NA	3 II	NA NA	NA NA	NA NA	NA NA	3 U	NA NA	0.3 U	0.3 U	2.27	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	1.25	0.34 U	0.34 U	0.34 U	0.33 J 0.71 J	0.34 U	0.34 U	0.34 U	0.63 J	0.34 U

Notes:

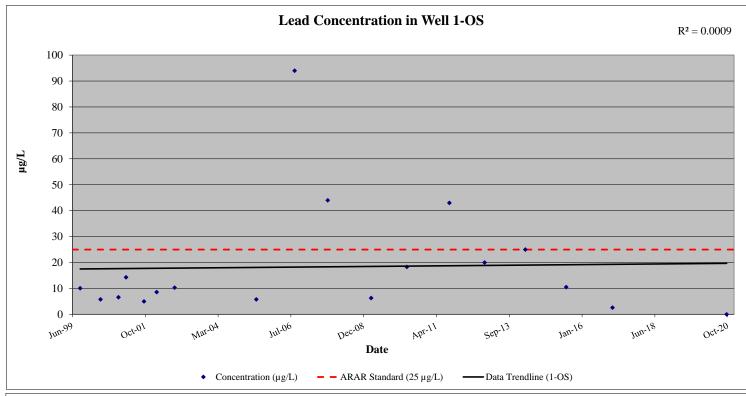
ARAR Standard = $25 \mu g/L$; USEPA MCL = $15 \mu g/L$; and, PART 5 MCL = Not Available

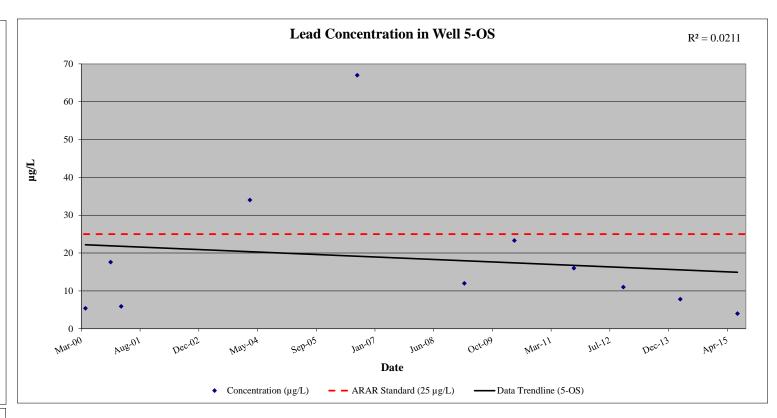
ARAR = Applicable or Relevant and Appropriate Requirement: NYSDEC T.O.G.S. 1.1.1 Ambient Water-Quality Standards and Guidance Values and Groundwater Effluent Limitations (June 2004).

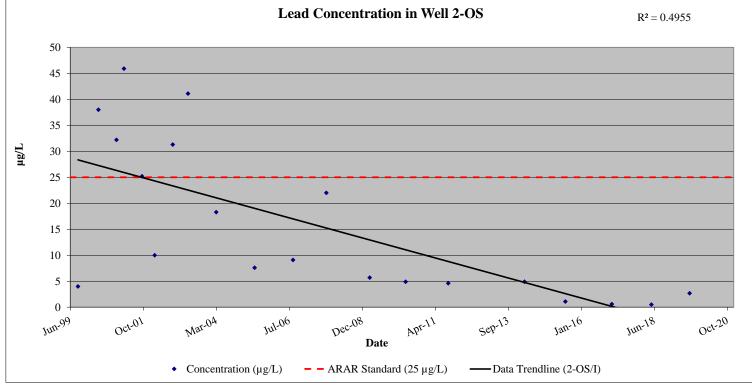
MCL = Maximum Contaminant Level: USEPA National Primary Drinking Water Regulations.

Values in **BOLD** indicate the reported concentration is greater than the ARAR for the groundwater monitoring wells or MCL for the private and municipal drinking water wells water quality standard. NA = Not Analyzed

< = The compound was analyzed for but not detected at the laboratory detection limit listed.


Laboratory Qualifier Definitions


ND or U = Not Detected


B = The analyte was detected above the reporting limit in the associated method blank.

J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.

 $N = Spiked \ sample \ recovery \ not \ within \ control \ limits.$

Well ID	Well 1-OS	Well 1-R	Well 2-OS	Well 2-R	Well 3-OS/I	Well 3-R	Well 4-OS	Well 4-R	Well 5-OS	Well 5-I	Well 5-R	Well 7-OS	Well 7-R	Well 8-OS	Well 8-I	Well 8-R	Well 9-OS	Well 9-I	Well 9-R	Well 10-OS	Well 10-I	Well 10-R	UP-OS	UP-I	UP-R	Well PW-1	Well PW-2	SVWC-93	SVWC-94	SVWC-95	SVWC-96
DATE																															
Jun-99	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3,470	4,870	32,900	3,110	3,040	3,720	NA	NA	NA	NA	NA	NA	2,290	5,310	4,190	4,940	5,010	5,350
Sep-99	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N/	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	7	NA	NA	NA	NA
May-00	21,700	20,300	27,700	15,500	14,100	24,500	8,310	18,800	10,100	NA	5,850	12,100	17,600	1,490 B	6,100	32,900	1,760 B	2,050 B	6,160	NA	NA	NA	NA	NA	NA	2,780 B	4,260 B	3,780 B	4,400 B	4,990 B	5,330
Sep-00	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N/	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dec-00	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N/	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Jan-01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N/	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mar-01	24,100	16,200	29,500	12,100	14,800	18,200	6,240	15,800	6,570	NA	4,500 B	13,600	17,800	5,250	30,300	39,300	2,090 B	5,640	9,850	NA	NA	NA	NA	NA	NA	2,780 B	4,190 B	6,120	6,360	6,830	5,550
Jul-01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N/	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Oct-01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N/	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mar-02	23,100	6,730	23,500	12,900	16,600	18,000	6,500	14,800	NA	6,670	7,060	12,500	13,900	3,100	17,300	38,900	2,160	4,170	8,460	NA	NA	NA	NA	NA	NA	4,340	4,510	8,880	9,230	6,480	7,840
Jul-02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N/	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Oct-02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N/	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Apr-03	NA	19,600	25,100	12,900	15,400	18,000	9,080	16,400	NA	5,570	4,740 B	8,230	NA	4,390 B	18,900	39,500	1,990 B	2,940 B	7,460	NA	NA	NA	NA	NA	NA	3,960 B	4,000 B	5,060	5,890	5,300	5,480
Mar-04	NA	NA	21,000	NA	13,200	NA	18,500	NA	32,100	NA	NA	11,600	NA	8,750	34,100	41,000	1,420 B	1,530 B	5,850	NA	NA	NA	NA	NA	NA	2,680 B	4,230 B	5,900	6,760	5,790	5,230
Jun-05	14,000	NA	15,600	NA	10,700	NA	17,100	NA	NA	4,510 B	NA	11,500	NA	2,950 B	31,000	43,000	1,950 B	2,230 B	8,520	NA	NA	NA	NA	NA	NA	5,070	2,320 B	6,170	6,520	6,030	6,250
Sep-06	28,000	NA	18,000	NA	13,000	NA	18,000	NA	80,000	NA	NA	9,800	NA	4,200	21,000	44,000	2,000	5,100	8,300	NA	NA	NA	NA	NA	NA	2,700	3,200	5,200	5,300	5,100	4,900
Oct-07	30,000	NA	22,000	NA	14,000	NA	20,000	NA	4,600	NA	NA	10,000	NA	5,100	18,000	39,000	2,500	7,900	9,300	NA	NA	NA	NA	NA	NA	2,300	2,400	6,100	5,900	6,500	5,800
Mar-09	20,000	NA	18,000		12,000	NA	11,000	NA	21,000	NA		12,000	NA	.,	16,000	40,000	3,300	5,900	11,000	NA	NA	NA	NA	NA	NA	2,800	2,900	5,900	NA	6,700	6,300
May-10	22,600	NA	14,800	NA	11,200	NA	15,000	NA	36,500	NA	NA	13,500	NA	5,770	23,600	40,700	2,490	6,300	13,700	NA	NA	NA	NA	NA	NA	4,160	3,430	4,560	NA	5,530	5,240
Sep-11	16,200	20,300	14,600	14,700	9,700	16,000	14,600	NA	13,500	5,100	12,800	8,000	NA	.,	16,900	41,400	2,600	7,600	10,000	NA	NA	NA		NA	NA	10,100	2,900	3,800	3,600	NA	NA
Nov-12	14,500	NA	16,100		10,500	NA	12,200	NA	14,700	NA		13,100	NA	,	23,300	42,900	1,400	1,900	9,000	NA	NA	NA	NA	NA	NA	2,500	3,200	3,900	4,100	6,700	NA
Mar-14	17,600	NA	18,100		12,500	NA	12,400	NA	12,700	NA	NA	,		4,600	29,300	43,300	2,200	1,600	10,400	NA	NA	NA	NA	NA	NA	2,300	2,500	7,500	8,000	8,200	7,300
Nov-14	NA 12 coo	NA	NA 10.000	NA	NA 12.700	NA	NA 17 200	NA NA	NA 5.510	NA	NA		NA		NA 20.100	NA	NA NA	NA 2 400	NA 12 200	2,640	4,380	922	NA NA	NA	NA	NA 1 coo	NA NA	NA	NA NA	NA 5 200	NA
Jul-15	13,600	NA	18,800	NA NA	,	NA	,	NA NA	5,710	NA	NA NA	0,000	NA	,	28,100	41,500	3,350	2,490	13,200	568	2,860	2,270	NA 6 770	NA	NA	4,600	3,400	5,500	5,400	5,200	6,900
Jan-17	11,100	NA NA	17,600		12,400	NA NA	,	NA NA	NA NA	NA NA	NA NA	.,	NA NA	,	5,120	47,400	2,070	1,530	13,200	618	2,500	1,870	6,770	4,430	3,390	2,390	2,580	7,240	6,380	6,620	7,210
May-18	16,700	NA NA	16,700		11,300	NA NA	,	NA NA	NA NA	NA NA		10,700		1,300	29,000	43,000	1,600	3,460	9,520	711	2,130	2,320	1,260	4,860	3,780	4,740	2,200	4,620	5,360	5,830	6,290 5,460
Jul-19 Oct-20	17,400 14,500	NA NA	18,200 11,200		10,600	NA NA	35,900 18,000	NA NA	NA NA	INA NA	NA NA	10,700 8,950	NA NA	11,200 6,620	27,800 18,400	45,400 66,800	1,480	1,600 1,940	7,500 10,100	428	2,720 2,810	2,020 1.970	8,130 7,200	4,580 4.840	3,550 3,770	3,180 2.070	3,260 3,810	5,840 8.060	6,190 7.890	5,520 7,760	7,070

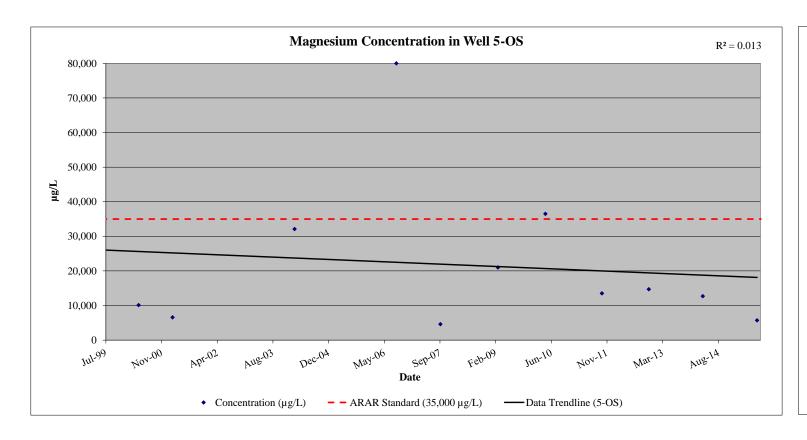
Notes:

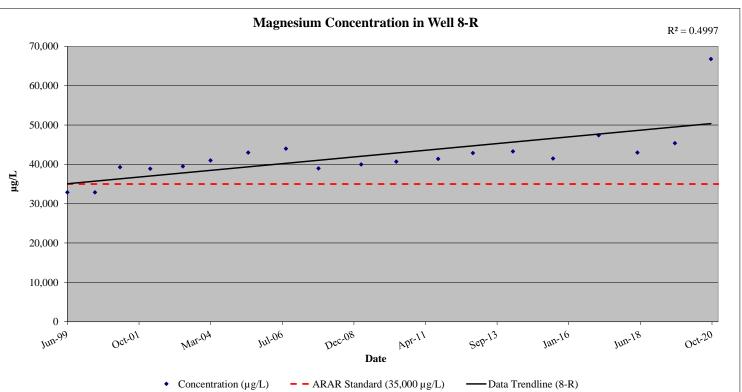
 $ARAR\ Guidance\ Value = 35,000\ \mu g/L;\ USEPA\ MCL = Not\ Available; and, Part\ 5\ MCL = Not\ Available$

 $ARAR = Applicable \ or \ Relevant \ and \ Appropriate \ Requirement: \ NYSDEC \ T.O.G.S. \ 1.1.1 \ Ambient \ Water-Quality \ Standards \ and \ Guidance \ Values \ and \ Groundwater \ Effluent \ Limitations \ (June \ 2004).$

MCL = Maximum Contaminant Level: USEPA National Primary Drinking Water Regulations.

Values in **BOLD** indicate the reported concentration is greater than the ARAR for the groundwater monitoring wells or MCL for the private and municipal drinking water wells water quality standard.


NA = Not Analyzed


< = The compound was analyzed for but not detected at the laboratory detection limit listed.

Laboratory Qualifier Definitions

ND or U = Not Detected

B = The analyte was detected above the reporting limit in the associated method blank.

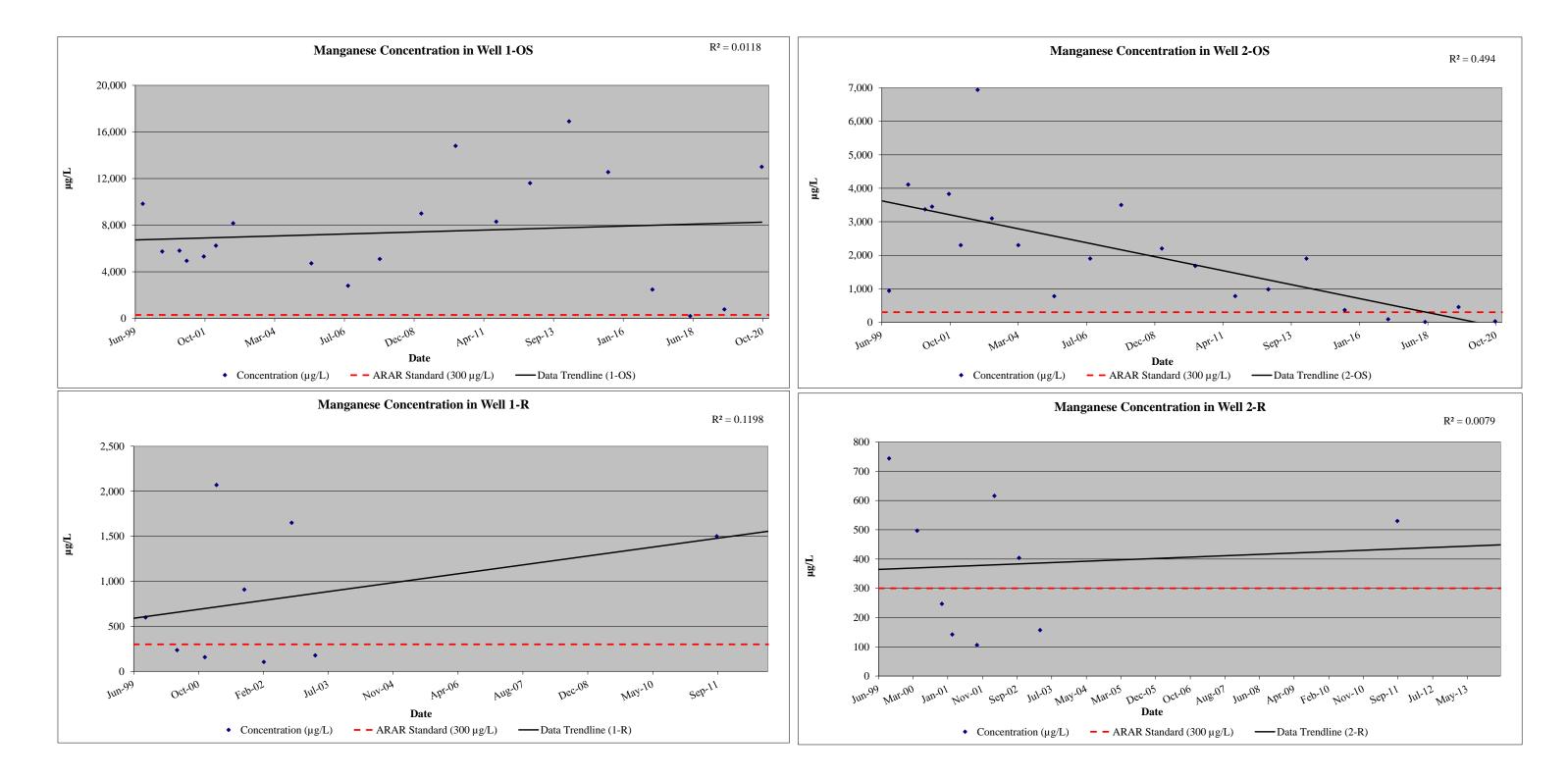
Well ID	Well 1-OS	Well 1-R	Well 2-OS	Well 2-R	Well 3-OS/I	Well 3-R	Well 4-OS	Well 4-R	Well 5-OS	Well 5-I We	ell 5-R Well 7-	OS Well 7-R	Well 8-OS	Well 8-I	Well 8-R	Well 9-OS	Well 9-I	Well 9-R	Well 10-OS	Well 10-I	Well 10-R	UP-OS	UP-I	UP-R V	Well PW-1	Well PW-2	SVWC-93	SVWC-94	SVWC-95	SVWC-96
DATE																														
Jun-99	NA	NA	NA	NA	NA	NA	. NA	NA NA	NA	NA	NA	NA NA	1,400	1,050	1,900	15	18	1,620	NA	NA	NA	NA	NA	NA	2	7	3	4	41	2
Sep-99	9,830	599	936	744	577	15,100	1,720	1,180	NA	27	1 755	99	860	1,570	2,780	12	5	1,320	NA	NA	NA	NA	NA	NA	ND	ND	NA	NA	NA	NA
May-00	5,740	236	4,110	497	5,720	14,200	1,340	1,320	533	NA	69 305	257	525	789	2,640	40	109	1,500	NA	NA	NA	NA	NA	NA	1 B	2 B	0 B	4 B	40	< 0.2
Sep-00	NA	NA	NA	NA	NA	NA	. NA	NA NA	NA	NA	NA	NA NA	3,820	2,810	2,390	55	67	3,020	NA	NA	NA	NA	NA	NA	1 B	3 B	2 B	7 B	50	< 0.7
Dec-00	5,810	158	3,370	247	5,070	13,100	1,930	1,240	1,080	NA	33 1,270	360	2,410	2,560	2,120	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4 B	< 0.7	10 B	48	< 0.7
Jan-01	NA	NA	NA	NA	NA	NA	. NA	NA NA	NA	NA	NA	NA NA	. NA	NA NA	NA	59	49	3,100	NA	NA	NA	NA	NA	NA	1 B	NA	NA	NA	NA	NA
Mar-01	4,940	2,070	3,450	142	3,750	10,400	440	1,040	323	NA	13 B 638	N 379 N	6,760 N	3,430	2,250 N	93 N	561 N	2,860 N	NA	NA	NA	NA	NA	NA	14 B	6 B	2 B	5 B	50	< 0.6
Jul-01	NA	NA	NA	NA	NA	NA	. NA		NA	NA	NA	NA NA	5,800	2,990 N	2,640	< 0.6	38	2,960	NA	NA	NA	NA	NA	NA	4 B	2 B	< 0.6	3 B	143	< 0.6
Oct-01	5,310	909	3,830	106	2,040	12,700	839	1,070	NA		2.2 668	375	6,340	1,760	2,060	78	5 B	3,080	NA	NA	NA	NA	NA	NA < 2	2.2	5 B	NA	NA	NA	NA
Mar-02	6,240	104	2,300	616	2,800	9,950	759	1,110	NA	132	154 592	292	1,620	3,670	1,930	25	45	2,490	NA	NA	NA	NA	NA	NA < 1	1.4	6 B	< 1.4	7 B	68	< 1.4
Jul-02	NA	NA	NA	NA	NA	NA	. NA	1 1111	NA	NA	NA	NA NA	3,390	2,390	2,160	19	76	2,740	NA	NA	NA	NA	NA	NA < 1		7 B	< 1.9	5 B	77	< 1.9
Oct-02	8,160 E	1,650 E	6,940 E	404 E	13,400 E	19,400 E	3,790 E	953 E	NA		22 E 1,730	E NA	6,950 E	2,980 E	1,980 E	11 E	4 B,E	2,880 E	NA	NA	NA	NA	NA	NA	2 B,E	3 B,E	7 B	< 1.9	62	3 B
Apr-03	NA	177	3,100	157	24,800	12,100	620	1,180	NA	64	30 124	NA	894	3,140	2,050	36	52	2,630	NA	NA	NA	NA	NA	NA < (4 B	< 0.8	6 B	80	< 0.8
Mar-04	NA	NA	2,300	NA	7,200	NA	338	NA	<i>/</i> ····	NA	NA 2,140	NA	1,590	4,650	2,150	4 B	19	1,980	NA	NA	NA	NA	NA	NA < (< 0.9	< 0.9	3 B	88	< 0.9
Jun-05	4,720	NA	778	NA	6,450	NA	700	NA		14	NA 222	NA	691	3,090	2,190	28	12	2,730	NA	NA	NA	NA	NA	NA < 2	2.1	< 2.1	< 2.1	7 B	86	< 2.1
Sep-06	2,800	NA	1,900	NA	,,=00	NA	860	NA	-,	NA	NA 1,300	NA	. 110	1,900	2,200	51	290	2,800	NA	NA	NA	NA	NA	NA	1 J	1 J	1 J	3 J	25 J	< 50
Oct-07	5,100	NA	3,500	NA	4,400	NA	2,700	NA		NA	NA 920	NA	2,000	2,200	1,900	140	560	2,900	NA	NA	NA	NA	NA	NA < 5		6 J	< 50	4 J	96	< 50
Mar-09	9,000	NA	2,200	NA	14,000	NA	400	NA	-,	NA	NA 450	NA	610	3,100	1,900	150	290	3,700	NA	NA	NA	NA	NA	NA < 5	50	2 J	< 50	NA	140	< 50
May-10	14,800 B	NA	1,680	NA 520 P	2,460 B	NA	. 223	NA	2,230	NA 26 D	NA 1,710	B NA	399 B	4,590 B	1,960 B	90 B	392 B	4,030 B	NA	NA	NA	NA	NA	NA	1 J,B	3 B	0 J,B	NA 2 LD	110 B	22 B
Sep-11	8,300 B	1,500 B	780 B	530 B	4,500 B	41,400 B	160 B	NA		26 B	640 B 1,200	B NA	700 B	3,500 B	2,100 B	110 B	590 B	2,700 B	NA	NA NA	NA	NA	NA	NA	2 J,B	2 J,B	2 J,B	2 J,B	NA	NA
Nov-12	11,600 B 16,900 B	NA	980 B 1,900 B	NA	2,800 B 2,900 B	NA	560 B	NA		NA NA	NA 1,400	B NA	280 B	3,500 B	2,000 B 1,900 B	19 B	4 B	2,300 B	NA	NA	NA	NA NA	NA	NA	1 J,B	3 J,B	1 J,B	1 J,B	200 B	NA ND
Mar-14 Nov-14	16,900 B	NA NA	1,900 B	NA NA	2,900 B	NA NA	. 740 B	NA NA		NA NA	NA 1,500	NA NA	100 B	3,300 B	1,900 B	51 NA	4 NA	3,100	26	NA 20	190	NA NA	NA NA	NA NA	2 J	41 N/A	ND NA	ND NA	130	ND NA
Jul-15	12.550	NA NA	363	NA NA	271		. 276	NA NA		NA NA	NA 173	NA NA	170	2.560	2.162	47	32 NA	4.458	33	29	190	NA NA	NA NA	NA O	NA NA	<2		<2	1 910	- NA
Jui-15 Jan-17	2,479	NA NA	87	INA NA	520	NA NA	276	NA NA		INA NA	NA 1/3	NA NA	. 178	2,560 1,558	2,162	47	34	1,659	22	8	16	15	11	NA <2	1	<2 1 I	<2	<2 1 I	1,810 68	<0.4
May-18	198.8	NA NA	9.1	NA NA	1,121	NA NA		NA NA		NA NA	NA 42.18	NA NA	1.43	3,720	2,422	1.35	26.18	2,948	28.64	3.02	36.08	80.5	159.7	0.98 J	2.38	2.34	0.75 J	1.0 U	42.09	1.0 U
Jul-19	772.3	NA NA	453.6	NA NA	3,728	NA NA	211.90	NA NA		NA NA	NA 74.51	INA NA	2,318	3,198	127	9.03	33.12	1,450	24.76	1.06	18.07	39.2	2.4	7.03	1.01	1.71	0.73 J 0.63 J	1.0 0	43.06	0.5 J
Oct-20	13.000	NA NA	26.0	NA NA	1,500	NA NA		NA NA		NA NA	NA 74.31 NA 586	NA NA		3,479	577.4	9.03 0.63 J	5.87	1,450	20.56	0.47 J	22.64	1.57	5.61	0.77 J	0.49 J	0.49 J	0.63 J 0.44 U	0.75 J	62.70	0.5 J 0.44 U

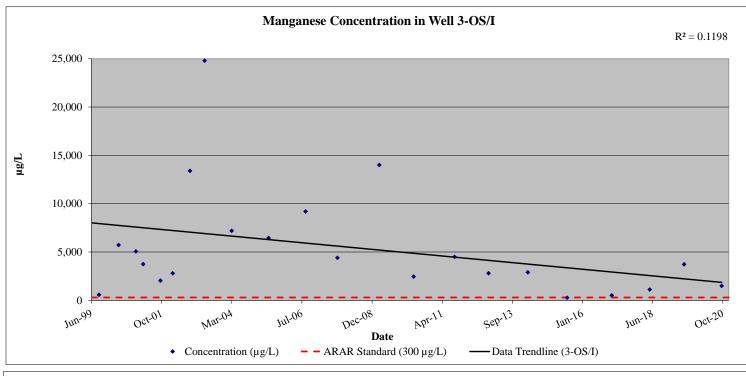
Notes:

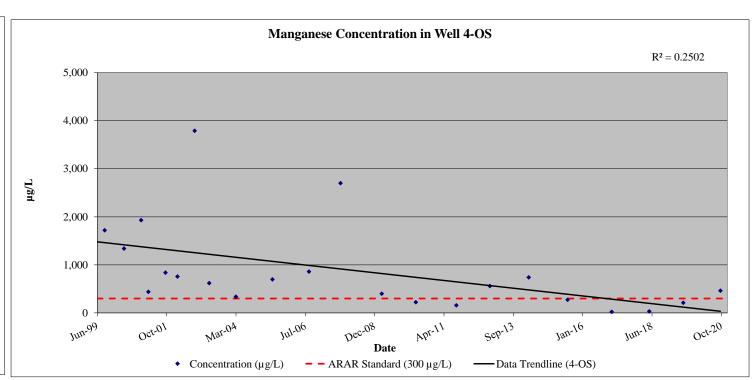
ARAR Standard = 300 μ g/L; USEPA Secondary MCL = Not Available; and, Part 5 MCL = 300 μ g/L

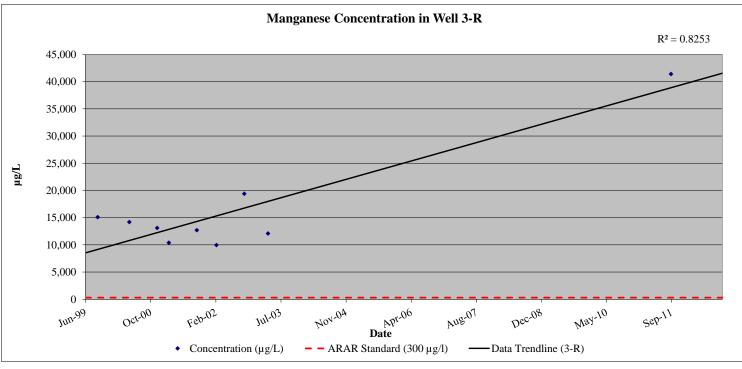
ARAR = Applicable or Relevant and Appropriate Requirement: NYSDEC T.O.G.S. 1.1.1 Ambient Water-Quality Standards and Guidance Values and Groundwater Effluent Limitations (June 2004).

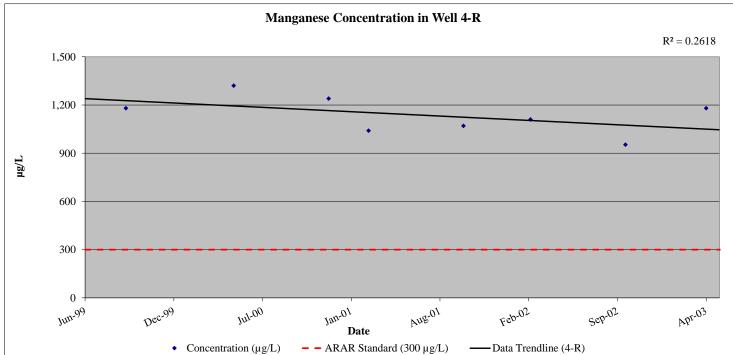
MCL = Maximum Contaminant Level: USEPA National Primary Drinking Water Regulations.

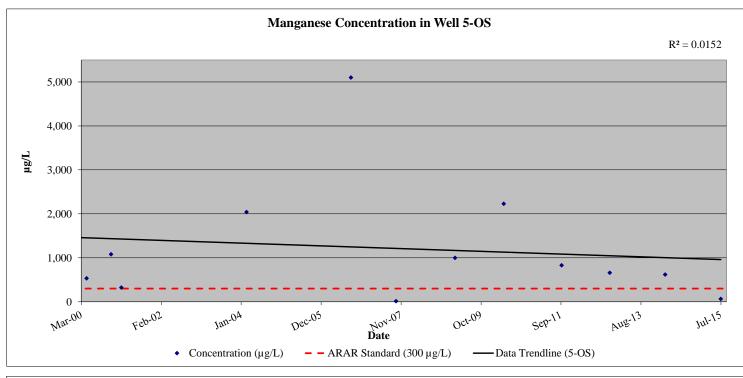

Values in **BOLD** indicate the reported concentration is greater than the ARAR for the groundwater monitoring wells or MCL for the private and municipal drinking water wells water quality standard. NA = Not Analyzed

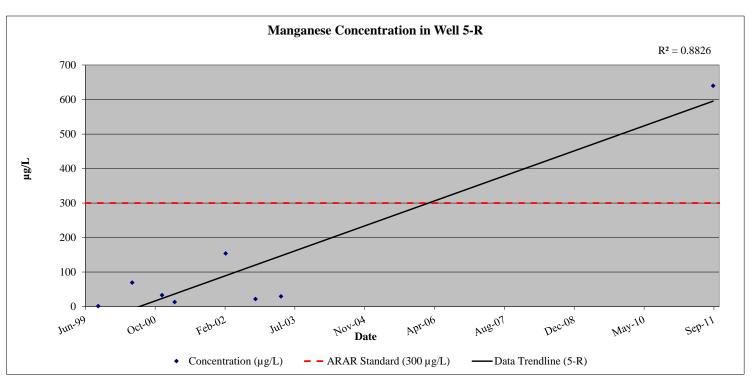

< = The compound was analyzed for but not detected at the laboratory detection limit listed.

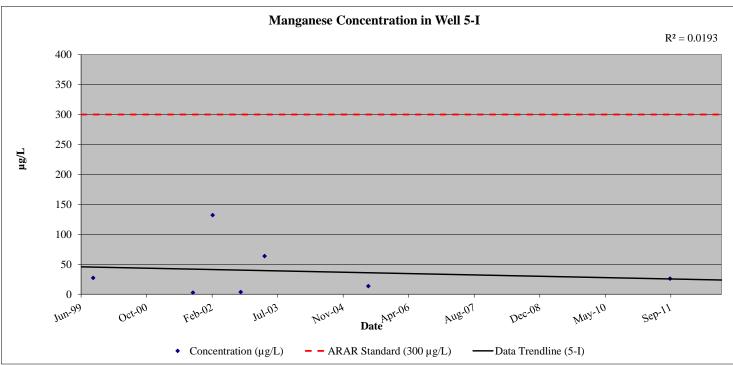

<u>Laboratory Qualifier Definitions</u>

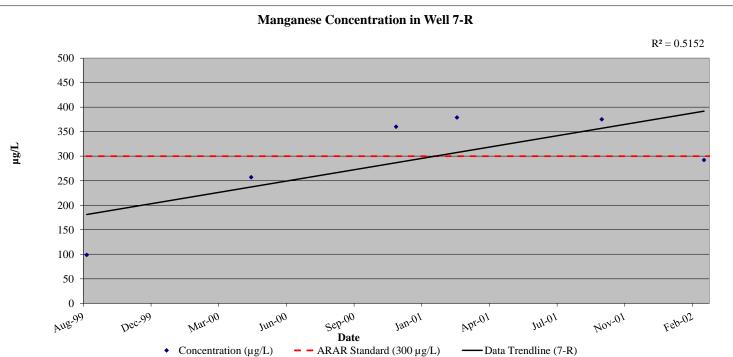

ND or U = Not Detected

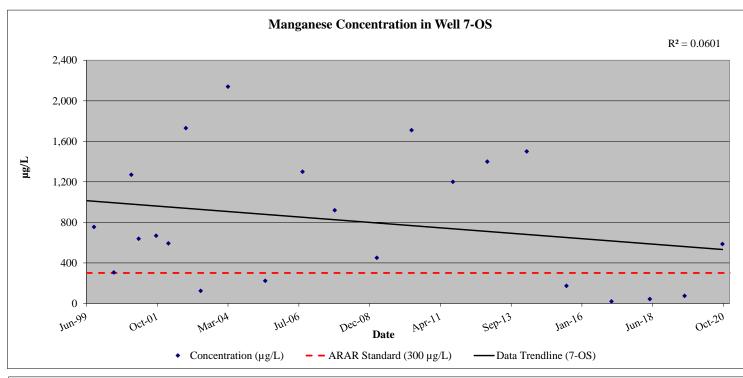

- B = The analyte was detected above the reporting limit in the associated method blank.
- E = Indicates an estimated value because of the possible presence of interference.
- J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.
- N = Spiked sample recovery not within control limits.

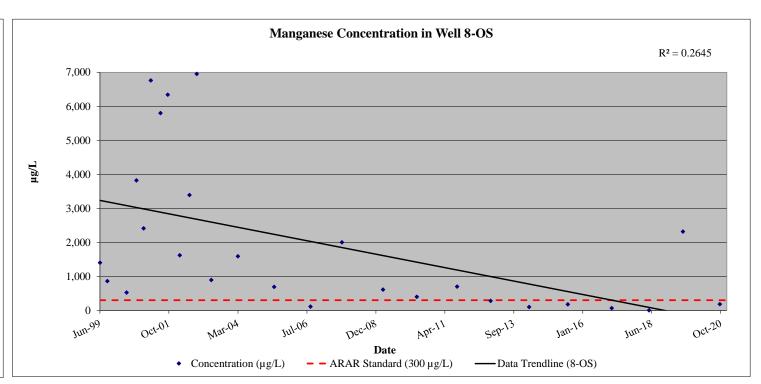


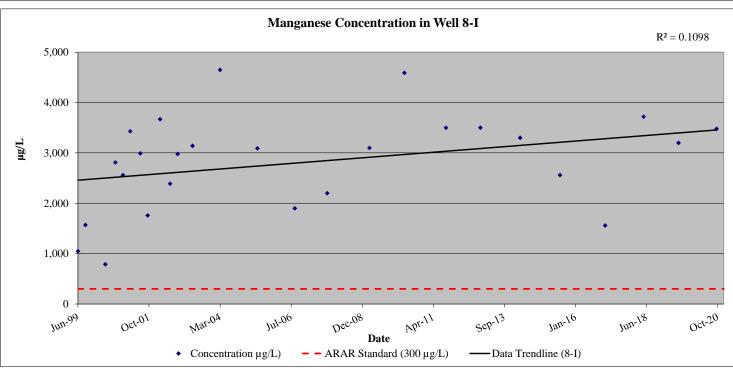


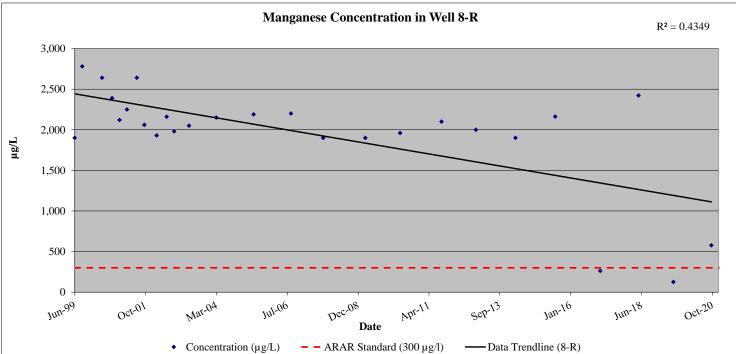


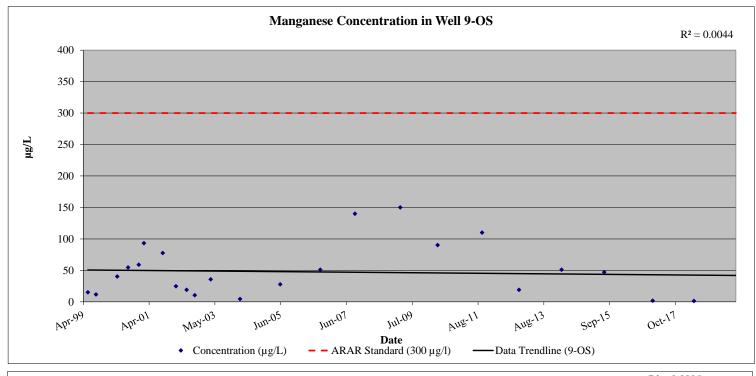


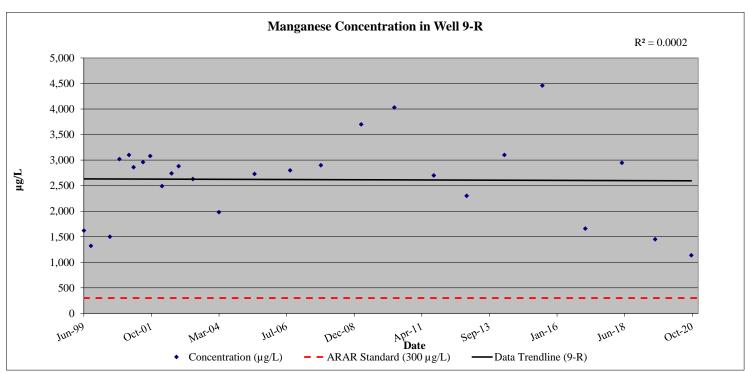


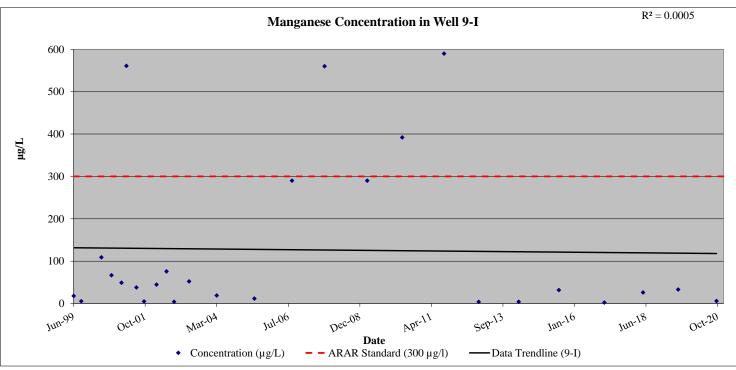


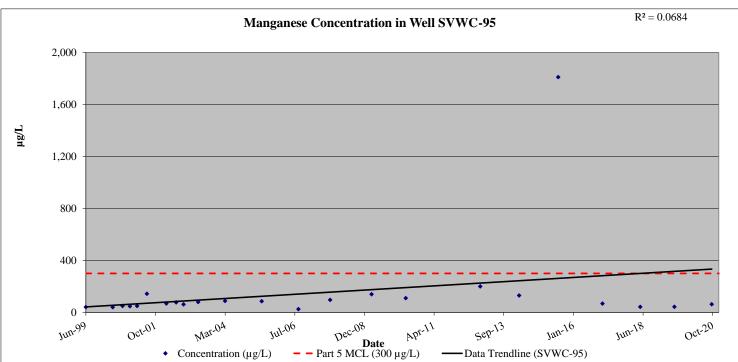












Well ID	Well 1-OS	Well 1-R	Well 2-OS	Well 2-R	Well 3-OS/I	Well 3-R	Well 4-OS	Well 4-R	Well 5-OS	Well 5-I	Well 5-R	Well 7-OS	Well 7-R	Well 8-OS	Well 8-I	Well 8-R	Well 9-OS	Well 9-I	Well 9-R	Well 10-OS	Well 10-I	Well 10-R	UP-OS	UP-I	UP-R	Well PW-1	Well PW-2	SVWC-93	SVWC-94	SVWC-95	SVWC-96
DATE																															
Jun-99	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	1.1	34	15.7	ND	2.2	6.6	NA	NA	NA	NA	NA	NA	1.1	1.2	2.7	4.1	3.3	3.8
Sep-99	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
May-00	140	16.2 B	215	4.1 B	156	73.7	22.4 B	1.5 B	35 B	NA	8.2 B	9.4 B	1.9 B	2.2 B	5.9 B	16.2 B	2.4 B	4.6 B	3.7 B	NA	NA	NA	NA	NA	NA	< 1.1	< 1.1	2.6 B	< 1.1	< 1.1	1.3 B
Sep-00	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dec-00	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Jan-01	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mar-01	82.4	27.7 B	116	< 1.7	68.7	28.2 B	8.8 B	1.9 B	19.5 B	NA	2.3 B	10.3 B	2.2 B	19.4 B	40.4	22.6 B	4.7 B	18.2 B	5.7 B	NA	NA	NA	NA	NA	NA	< 1.7	< 1.7	< 1.7	< 1.7	< 1.7	< 1.7
Jul-01	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Oct-01	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mar-02	28.8 B	38.2 B	34.9 B	9.5 B	128	8.6 B	5.4 B	< 2.8	NA	5 B	11.7 B	8.6 B	< 2.8	11.1 B	7 B	20.9 B	< 2.8	< 2.8	< 2.8	NA	NA	NA	NA	NA	NA	< 2.8	< 2.8	< 2.8	< 2.8	< 2.8	< 2.8
Jul-02	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Oct-02	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Apr-03	NA	2.2 B	108	3.9 B	932	5.1 B	14.8 B	< 1.9	NA	2.7 B	2.1 B	3.5 B	NA	6.8 B	14.3 B	15 B	< 1.9	< 2.7 B	< 1.9	NA	NA	NA	NA	NA	NA	< 1.9	< 1.9	< 1.9	< 1.9	2.9 B	< 1.9
Mar-04	NA	NA	56.8	NA	434	NA	7.3 B	NA	132 E	NA	NA	41.8	NA	7.9 B	29.4 B	15 B	< 1.7	< 1.7	< 1.7	NA	NA	NA	NA	NA	NA	< 1.7	< 1.7	42.7	< 1.7	1.9 B	< 1.7
Jun-05	9.2 B	NA	52.1	NA	1,460	NA	87.8	NA	NA	< 2.3	NA	< 2.3	NA	61.9	15.6 B	11.5 B	< 2.3	< 2.3	< 2.3	NA	NA	NA	NA	NA	NA	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3
Sep-06	270	NA	80	NA	1,300	NA	40 J	NA	370	NA	NA	26 J	NA	5.8 J	20 J	36 J	6.7 J	18 J	1.8 J	NA	NA	NA	NA	NA	NA	50	< 50	< 50	< 50	1.4 J	< 50
Oct-07	750	NA	150	NA	730	NA	68	NA	14 J	NA	NA	26 J	NA	14 J	24 J	15 J	34 J	31 J	3.2 J	NA	NA	NA	NA	NA	NA	< 50	7 J	5.5 J	< 50	1.2 J	< 50
Mar-09	640	NA	490	NA	810	NA	44 J	NA	89	NA	NA	11 J	NA	17 J	18 J	15 J	28 J	19 J	2.5 J	NA	NA	NA	NA	NA	NA	< 50	< 50	< 50	NA	< 50	< 50
May-10	527	NA	236	NA	492	NA	61.5	NA	147	NA	NA	28.5	NA	10.3	13.7	10.6	13.4	23.4	3.4 J	NA	NA	NA	NA	NA	NA	< 10	< 10	< 10	NA	< 10	7.5 J
Sep-11	880	130	410	4.3 J	1,600	260	34	NA	56	4.4 J	61	37	NA	28	6 J	10	20	32	2.9 J	NA	NA	NA	NA	NA	NA	< 10	< 10	< 10	<10	NA	NA
Nov-12	180	NA	170	NA	650	NA		NA		NA	NA	29	NA	11	12	10	7.2 J	< 10	2.9 J	NA	NA	NA	NA	NA	NA	< 10	< 10	< 10	< 10	< 10	NA
Mar-14	440	NA	240	NA	400	NA	<u> </u>	NA		NA	NA	36	NA	5.9 J	13	11	15	ND	2 J	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	6.7 J
Nov-14	NA	NA	NA	NA	NA	NA		. NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. < 4	4.1 J	89.1	NA	NA	NA	NA	NA	NA	NA	NA	NA
Jul-15	405.7	NA	152.6	NA		NA		NA		NA	NA	7.6	NA	12.9	13.8	14.4	3.4	3.6	3.9	3.6	2.2	14.8	NA	NA	NA	0.5 J	0.6 J	0.54 J	0.9 J	4.99	0.158
Jan-17	622.5	NA	249.7	NA	302.9	NA	07.0	NA	NA	NA	NA	2.8	NA	49	1.6 J	9.8	0.6 U	1.9 J	7.6	0.8 J	1.8 J	69.1	1.4 J	1.5 J	2.5	0.6 U	0.7 J	2	1.3 J	1.8 J	0.7 J
May-18	166.5	NA	6.48	NA	390.8		23.04	NA	NA	NA	NA	0.98 J	NA	0.88 J	8.57	11.75	2.0 U	2.49	15.83	0.88 J	1.0 J	101.4	1.36 J	154.3	2.0 U	2.0 U	1.59 J	2.0 U	2.0 U	0.62 J	2.0 U
Jul-19	42.78	NA	3.26	NA	1,044	NA	51.96	NA N	NA	NA NA	NA NA	0.8 J	NA NA	68.92	8.98	9.17	1.9 J	1.01 J	4.72	0.61 J	0.6 U	13.6	1.95 J	8.31	5.6	0.6 U	1.24 J	0.6 U	0.6 J	0.55 U	0.6 U
Oct-20	50	NA	25 J	NA	711	NA	64	NA	NA	NA	NA	11 J	NA	17.66	6.65	22.97	0.55 U	0.77 J	85.11	0.72 J	0.55 U	5.9	0.55 U	10.49	0.93 J	0.55 U	0.55 U	0.55 U	0.6 J	1.07 J	0.59 J

Notes:

ARAR Standard = $100 \mu g/L$; USEPA MCL = Not Available; and, Part 5 MCL = Not Available

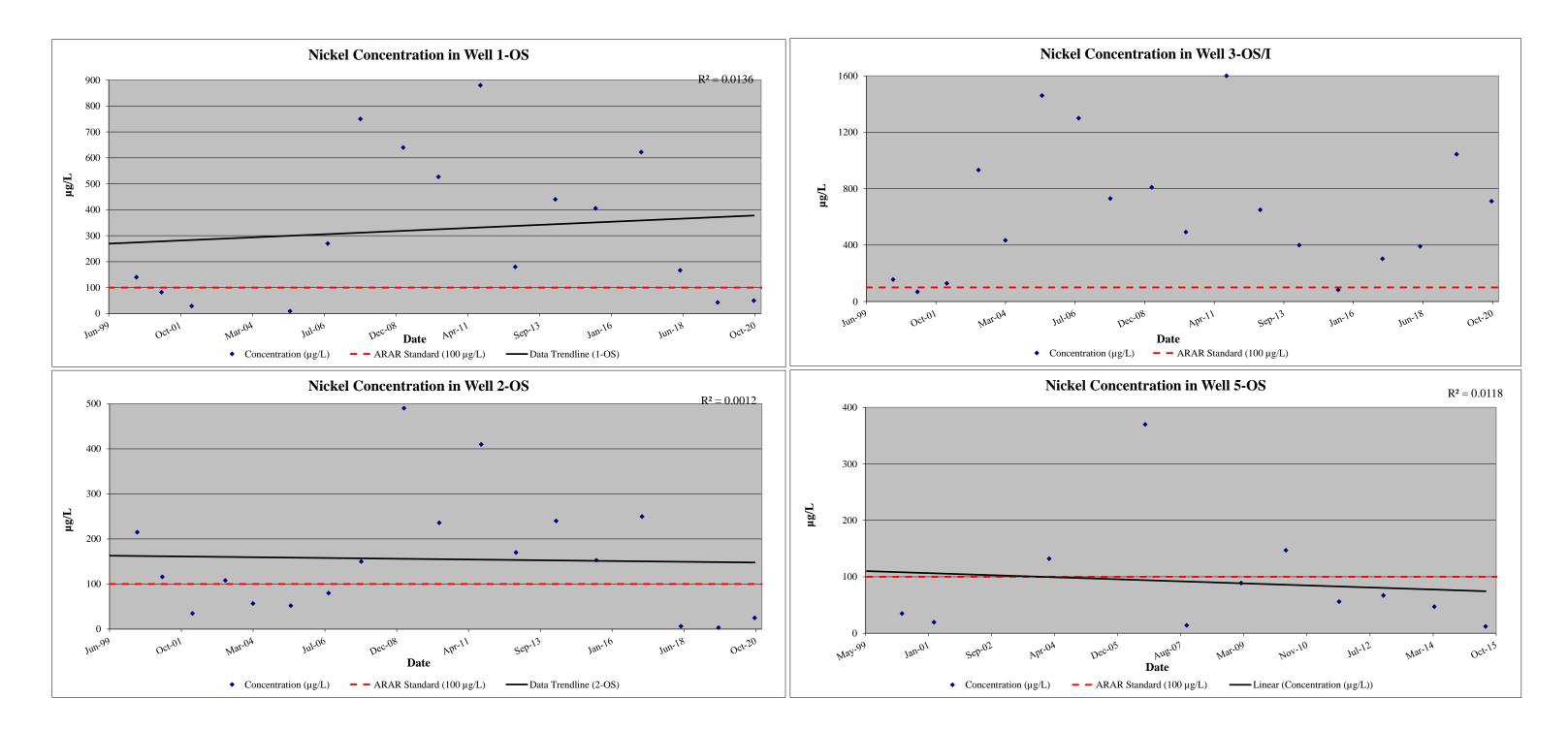
ARAR = Applicable or Relevant and Appropriate Requirement: NYSDEC T.O.G.S. 1.1.1 Ambient Water-Quality Standards and Guidance Values and Groundwater Effluent Limitations (June 2004).

MCL = Maximum Contaminant Level: USEPA National Primary Drinking Water Regulations.

Values in **BOLD** indicate the reported concentration is greater than the ARAR for the groundwater monitoring wells or MCL for the private and municipal drinking water wells water quality standard.

NA = Not Analyzed

< = The compound was analyzed for but not detected at the laboratory detection limit listed.


Laboratory Qualifier Definitions

ND or U = Not Detected

 $B = The \ analyte \ was \ detected \ above \ the \ reporting \ limit \ in \ the \ associated \ method \ blank.$

E = Indicates an estimated value because of the possible presence of interference.

J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.

Well ID	Well 1-OS	Well 1-R	Well 2-OS	Well 2-R	Well 3-OS/I	Well 3-R	Well 4-OS	Well 4-R	Wall 5 OC	Wall 5 I	Well 5-R	W-11.7 OC	Well 7-R	Well 8-OS	Well 8-I	Wall 0 D	Well 9-OS	Well 9-I	Well 9-R	W-II 10 OS	Well 10-I	Well 10-R	UP-OS	UP-I	UP-R	Well PW-1	Well PW-2	SVWC-93	SVWC-94	SVWC-95	SVWC-96
DATE	Well I-OS	Well 1-K	Well 2-OS	Well 2-K	Well 5-05/1	Well 5-K	Well 4-03	Well 4-K	Well 5-OS	Well 5-I	Well 3-R	Well 7-OS	Well /-R	Well 8-OS	Well 6-1	Well 8-R	Well 9-03	Well 9-1	Well 9-K	Well 10-OS	Well 10-1	Well 10-K	UP-03	Ur-I	UP-K	Well PW-1	Well PW-2	3 V W C-93	3 V W C-94	3 V W C-93	3 V W C-96
Jun-99	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.980	16,100	43,400	5,500	5.610	13,100	NΛ	NA	NA	NA	NA	NΑ	4.300	13,200	31.600	33,400	32,900	30,400
	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	4,560 NA	10,100 NA	43,400 NA	3,300 NA	3,010 NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	4,500 NA	13,200 NA	31,000 NA	33,400 NA	32,900 NA	30,400 NA
Sep-99	36,400	29,000	9,960	10.100	41,600	43,300	30,500	13.800	5,530		4.480	19.800	13.900	3.480 B	15,000	71,100	5,080	4.400 B	14.300	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	5,430	9,110	31,400	32,500	28,800	35.900
May-00	30,400 NA	NA	9,900 NA	10,100 NA	11,000 NA			13,800 NA		NA NA	1,460 NA	19,800 NA	,	3,460 B NA	13,000 NA	71,100 NA	3,080 NA	,	, , , , , ,	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	5,430 NA	9,110 NA	31,400 NA	32,300 NA	28,800 NA	33,900
Sep-00 Dec-00	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Jan-01	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.
Mar-01	42,100	19.100	9,460	7.760	38,700	34,900	24.100	13,700	4.770 B	NA NA		16,900	11,300	14.200	90,500	52,400	3.670 B	4.950 B	27.500	NA.	NA NA	NA NA	NA NA	NA NA	NA.	6.130	9,330	36.000	38,700	38,500	35,200
Jul-01	42,100 NA	15,100 NA	ν.400	7,700 NA	NA	NA	NA	NA	4,770 B NA	NA NA	3,740 B NA	10,500 NA	NA	14,200 NA	70,500 NA	32,400 NA	3,070 B NA	4,550 B NA	, , , , ,	NΔ	NA NA	NA NA	NA NA	NA NA	NA NA	0,130 NA),330 NA	30,000 NA	38,700 NA	ΝΔ	
Oct-01	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NΔ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Mar-02	47,800	69,500	9.450	7.240	29,800	32,300	23,500	9.780		4.480	4.860	12,500	10,500	5,150	56,200	74,400	5,120	6.060	22,200	NΔ	NA NA	NA NA	NA NA	NA NA	NΔ	7.160	8.720	56.000 E	48.900 E	41.900 E	43.500 E
Jul-02	NA	NA	NA NA	NA	NA	NA	NA NA),760 NA	NA NA	NA	NA	12,500 NA	NA	NA NA	NA	74,400 NA	NA	NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	0,720 NA	NA	NA	11,700 E NA	43,500 E NA
Oct-02	NA	NA	NA NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA NA	NA NA	NA NA	NA NA		NA.	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
Apr-03		24,200	7,130	7,670	31,500	38,000	26,200	12,900	NA		4,190 B	13,100	NA		46,500	52,200	4,530 B	5.830	20,600	NA NA	NA	NA NA	NA NA	NA	NA	8.690	9,000	39,800	43,000	34,700	4,040
Mar-04	NA	NA	11.000		22,600 E	NA	54,600	,	8,870	NA	NA		NA	17.100 E	110,000 E	47.300 E	3.220 B.E	3,690 B	14.600 E	NA	NA	NA	NA	NA	NA	5.410 E	7.730 E	33,800 E	35,600 E	27.700 E	30,100 E
Jun-05	37,100 E	NA	8,680 E	NA	29,100 E	NA	20,300	NA		2,880 B,E	NA	9,190	NA	8,400	124,000	42,200	4,160 B	5,530	22,500	NA	NA	NA	NA	NA	NA	11,500	5,400	44,100	42,300	41,700	47,400
Sep-06	62,000	NA	11,000	NA	29,000	NA	33,000	NA	14,000	NA	NA	7,000	NA	28,000	73,000	46,000	5	9,400	28,000	NA	NA	NA	NA	NA	NA	14,000	7,400	52,000	47,000	36,000	47,000
Oct-07	76,000	NA	12,000	NA	23,000	NA	24,000	NA	4,100	NA	NA	7,700	NA	15,000	55,000	48,000	7,200	9,800	35,000	NA	NA	NA	NA	NA	NA	12,000	6,100	60,000	52,000	53,000	56,000
Mar-09	97,000	NA	11,000	NA	36,000	NA	48,000	NA	8,100	NA	NA	9,700	NA	41,000	50,000	42,000	8,300	15,000	44,000	NA	NA	NA	NA	NA	NA	12,000	7,400	52,000	NA	49,000	54,000
May-10	111,000	NA	9,300	NA	36,900	NA	47,900	NA	8,000	NA	NA	11,700	NA	30,700	75,600	41,400	8,200	14,200	59,300	NA	NA	NA	NA	NA	NA	18,600	8,600	41,600	NA	47,200	48,600
Sep-11	101,000	23,900 B	10,900	9,700	57,200	59,000	60,200	NA	7,300	4,600	6,200 B	12,500	NA	19,800	56,800 B	34,600 B	11,200 B	17,100 B	48,900 B	NA	NA	NA	NA	NA	NA	68,500 B	6,900 B	45,600 B	40,400 B	NA	NA
Nov-12	102,000	NA	13,100	NA	36,300	NA	64,500	NA	7,300	NA	NA	15,900	NA	10,800	97,900	37,800	9,800	11,400	45,500	NA	NA	NA	NA	NA	NA	32,500	6,800	45,100	45,900	42,500	NA
Mar-14	117,000 B	NA	10,500 B	NA	35,300	NA	71,900	NA	7,000	NA		14,900	NA	24,500 B	91,800 B	37,800	5,500	13,000	37,600	NA	NA	NA	NA	NA	NA	25,600 B	7,200	54,100 B	50,100 B	48,600 B	56,100 B
Nov-14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	5,740	17,800	3,220	NA	NA	NA	NA	NA	NA	NA	NA	NA
Jul-15	118,000	NA	15,100	NA	20,500	NA	35,600	NA	4,090	NA	NA	15,800	NA	31,000	122,000	42,800	9,770	9,960	47,200	2,150	4,210	6,950	NA	NA	NA	35,000	7,900	58,000	66,000	61,000	64,000
Jan-17	103,000	NA	14,000	NA	25,900	NA	84,700	NA	NA	NA	NA	14,600	NA	18,000	29,200	39,700	5,810	19,300	50,400	2,230	3,780	5,520	3,580	3,820	4,030	19,800	6,410	63,000	56,400	56,100	59,700
May-18	73,300	NA	34,700	NA	29,900	NA	67,100	NA	NA	NA	NA	11,100	NA	6,840	59,400	35,900	4,660	31,500	43,200	2,560	3,340	5,270	24,800	4,060	4,720	40,700	6,370	44,800	49,400	46,000	57,300
Jul-19	115,000	NA	133,000	NA	52,100	NA	93,500	NA	NA	NA	NA	14,900	NA	52,400	96,800	42,000	6,700	9,680	39,600	2,090	3,910	4,410	3,870	3,590	4,380	37,900	7,080	58,200	61,300	55,600	62,900
Oct-20	112,000	NA	24,800	NA	60,800	NA	51,800	NA	NA	NA	NA	12,000	NA	26,300	91,400	71,500	6,120	26,100	50,000	2,300	4,230	4,280	4,060	3,680	4,490	17,600	8,380	80,100	82,900	73,400	74,000

Notes

ARAR Standard = 20,000 μ g/L; USEPA MCL = Not Available; and, Part 5 MCL = (1)

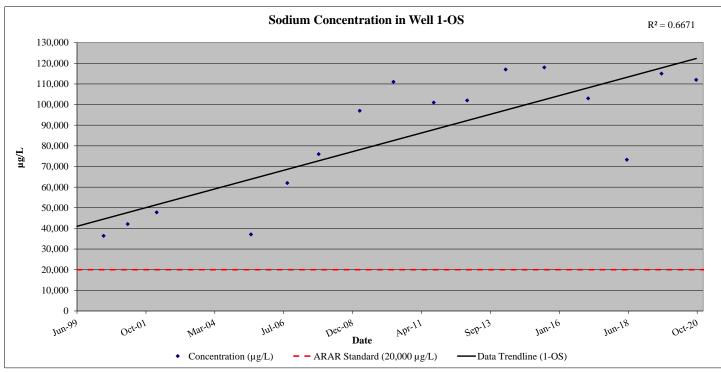
 $^{(1)}$ While there is no Part 5 MCL for sodium, people on severely restricted diets should consult with the County Health Department for guidance if the reported sodium concentration is higher than 20,000 mg/L.

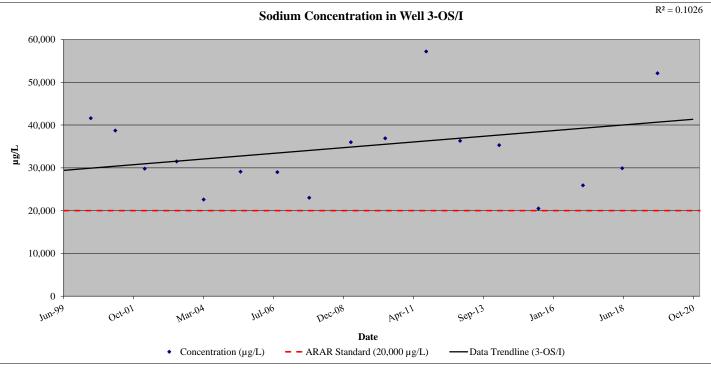
Values in BOLD indicate the reported concentration is greater than the ARAR for the groundwater monitoring wells or MCL for the private and municipal drinking water wells water quality standard.

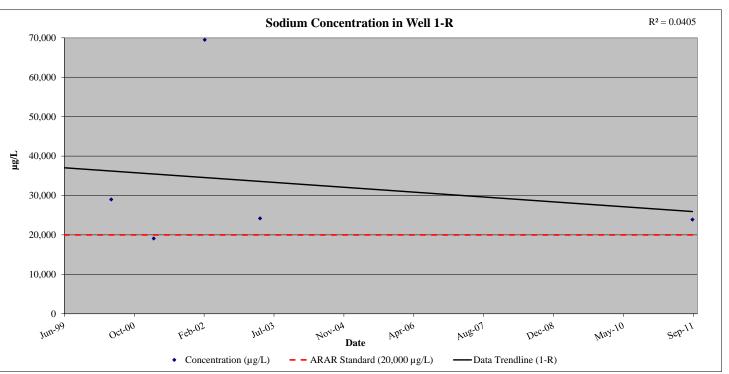
NA = Not Analyzed

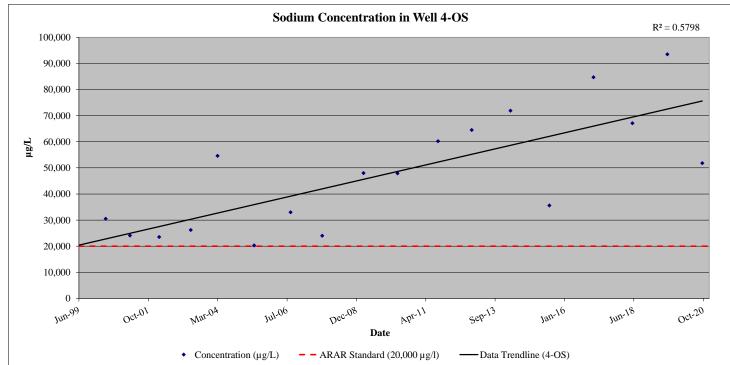
< = The compound was analyzed for but not detected at the laboratory detection limit listed.

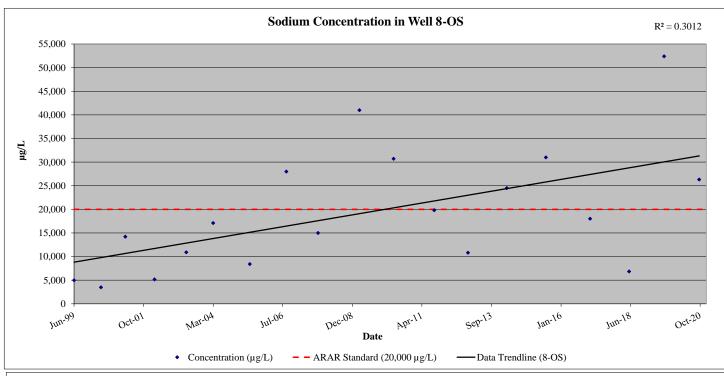
 $ARAR = Applicable \ or \ Relevant \ and \ Appropriate \ Requirement: \ NYSDEC \ T.O.G.S. \ 1.1.1 \ Ambient \ Water-Quality \ Standards \ and \ Guidance \ Values \ and \ Groundwater \ Effluent \ Limitations \ (June 2004).$

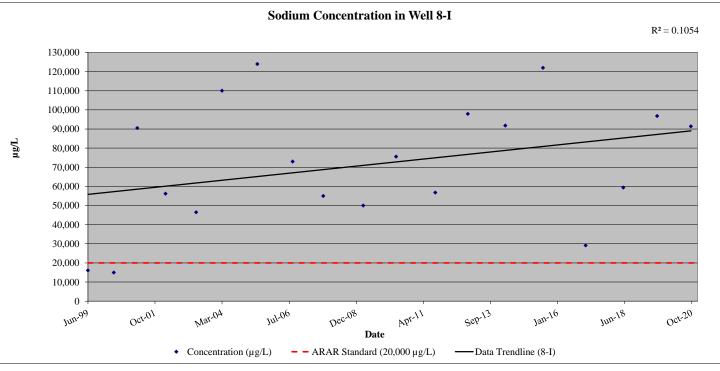

MCL = Maximum Contaminant Level: USEPA National Primary Drinking Water Regulations.

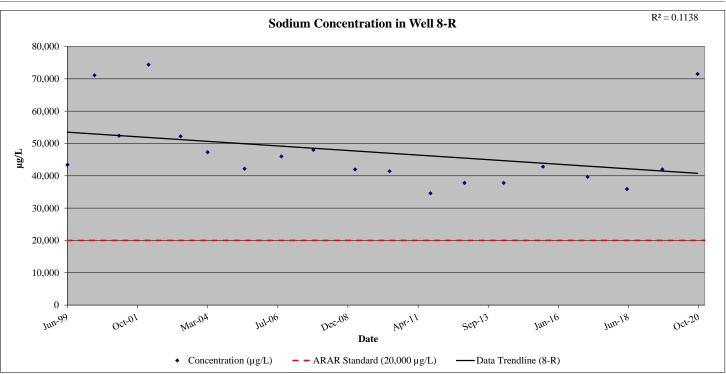

Laboratory Qualifier Definitions

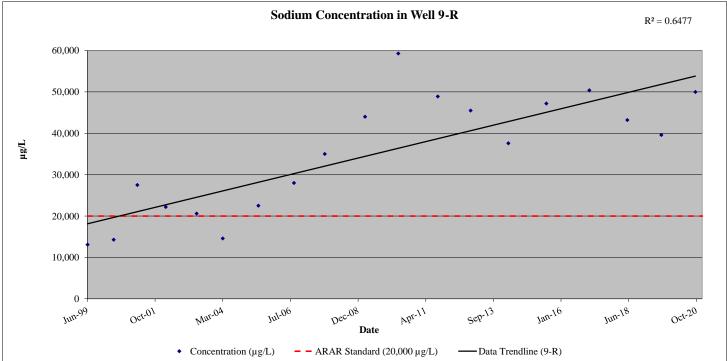

B = The analyte was detected above the reporting limit in the associated method blank.

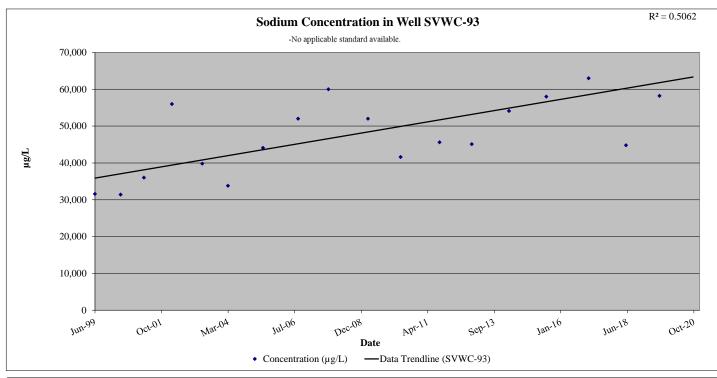

 $E = \\ Indicates \ an \ estimated \ value \ because \ of \ the \ possible \ presence \ of \ interference.$

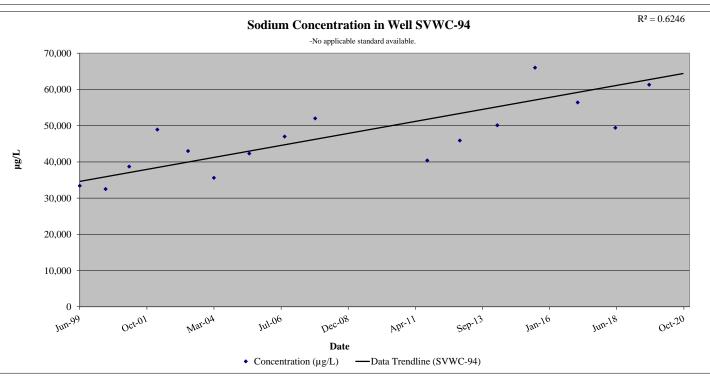

ND or U = Not Detected

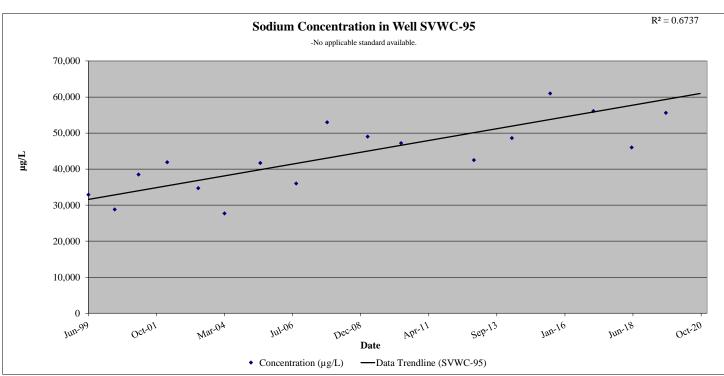


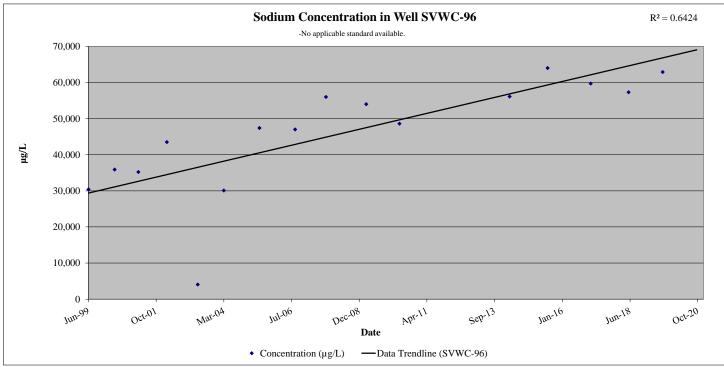












Well ID	Well 1-OS	Well 1-R	Well 2-OS	Well 2-R	Well 3-OS/I	Well 3-R	Well 4-OS	Well 4-R	Well 5-OS	Well 5-I	Well 5-R	Well 7-OS	Well 7-R	Well 8-OS	Well 8-I	Well 8-R	Well 9-OS	Well 9-I	Well 9-R	Well 10-OS	Well 10-I	Well 10-R	UP-OS	UP-I	UP-R	Well PW-1	Well PW-2	SVWC-93	SVWC-94	SVWC-95	SVWC-96
DATE																															
Jun-99	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	7.2
Sep-99	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
May-00	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	NA	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	NA	NA	NA	NA	NA	NA	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3	< 2.3
Sep-00	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dec-00	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Jan-01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mar-01	< 2.7	< 2.7	< 2.7	< 2.7	< 2.7	< 2.7	< 2.7	< 2.7	4.8 B	NA	22.8	< 2.7	< 2.7	< 2.7	< 2.7	< 2.7	< 2.7	< 2.7	< 2.7	NA	NA	NA	NA	NA	NA	< 2.7	< 2.7	< 2.7	< 2.7	< 2.7	< 2.7
Jul-01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Oct-01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mar-02	< 3.6	< 3.6	< 3.6	< 3.6	< 3.6	< 3.6	< 3.6	< 3.6	NA	< 3.6	< 3.6	< 3.6	< 3.6	< 3.6	< 3.6	< 3.6	< 3.6	4.4 B	< 3.6	NA	NA	NA	NA	NA	NA	< 3.6	< 3.6	4.4 B	< 3.6	< 3.6	< 3.6
Jul-02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Oct-02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Apr-03	NA	< 3.5	4.8 B	< 3.5	< 3.5	< 3.5	< 3.5	< 3.5	NA	4.1 B	< 3.5	< 3.5	NA	< 3.5	< 3.5	< 3.5	< 3.5	< 3.5	< 3.5	NA	NA	NA	NA	NA	NA	4.1 B	< 3.5	< 3.5	< 3.5	< 3.5	< 3.5
Mar-04	NA	NA	< 2.8	NA	< 3.3	NA	5.4 B	NA	< 2.8	NA	NA	< 3.3	NA	< 3.3	< 3.3	< 3.3	< 3.3	< 3.3	< 3.3	NA	NA	NA	NA	NA	NA	< 3.3	< 3.3	< 3.3	< 3.3	< 3.3	< 3.3
Jun-05	10.4	NA	5.3 B	NA	12.7	NA	< 2.9 N	NA	NA	5.1 B	NA	< 2.9 N	NA	< 2.9 N	4.6 B,N	4.6 B,N	< 2.9 N	< 2.9 N	< 2.9 N	NA	NA	NA	NA	NA	NA	< 2.9 N	< 2.9 N	< 2.9 N	< 2.9 N	< 2.9 N	< 2.9 N
Sep-06	20	NA	16	NA	16	NA	24	NA	7.8 J	NA	NA	7.6 J	NA	9.8 J	12	9.4 J	< 10	< 10	< 10	NA	NA	NA	NA	NA	NA	< 10	8.8 J	7.6 J	< 10	< 10	< 10
Oct-07	9.9 J	NA	< 10	NA	< 10	NA	< 10	NA	< 10	NA	NA	< 10	NA	< 10	< 10	< 10	< 10	< 10	< 10	NA	NA	NA	NA	NA	NA	< 10	< 10	< 10	< 10	< 10	< 10
Mar-09	< 20	NA	< 20	NA	< 40	NA	< 20	NA	< 20	NA	NA	< 20	NA	< 20	< 20	< 20	< 20	< 20	< 20	NA	NA	NA	NA	NA	NA	< 20	< 20	< 20	NA	< 10	< 20
May-10	< 0.5	NA	< 0.5	NA	0.5 J	NA	< 0.5 J	NA	< 2.5 D14	NA	NA	< 0.5	NA	< 0.5	< 0.5 J	< 0.5 J	< 0.5	< 0.5	< 0.5	NA	NA	NA	NA	NA	NA	< 0.5	< 0.5	< 0.5	NA	< 0.5	< 0.5
Sep-11	0.2 J	0.18 J	0.029 J	0.11 J	0.011 J	0.47 J	0.14 J	NA	0.32 J	0.02 J	0.18 J	0.2 J	NA	< 0.5	0.28 J	0.3 J	0.19 J	0.6 J	0.28 J	NA	NA	NA	NA	NA	NA	0.31 J	0.22 J	0.29 J	0.26 J	NA	NA
Nov-12	0.13 J	NA	0.035 J	NA	< 0.5	NA	0.051 J	NA	0.44 J	NA	NA	0.21 J	NA	< 0.5	< 0.5	< 0.5	0.014 J	< 0.5	< 0.5	NA	NA	NA	NA	NA	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA
Mar-14	0.098 J	NA	0.043 J	NA	0.024 J	NA	0.04	NA	0.39 J	NA		0.25 J	NA	ND	ND	ND	0.022 J	ND	ND	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND
Nov-14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.5	< 0.5	< 0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA
Jul-15	0.06 J	NA	< 0.1	NA	< 0.1	NA	< 0.1	NA	< 0.1	NA	NA	< 0.1	NA	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	NA	NA	NA	< 0.03	< 0.03	< 0.03	< 0.03	0.06 J	< 0.03
Jan-17	< 0.1	NA	< 0.1	NA	< 0.1	NA	< 0.1	NA	NA	NA	NA	< 0.1	NA	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
May-18	0.5 U	NA	0.5 U	NA	0.5 U	NA	0.5 U	NA	NA	NA	NA	< 0.5	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Jul-19	0.14 U	NA	0.14 U	NA	0.14 U	NA	0.14 U	NA	NA	NA	NA	0.14 U	NA	0.14 U	0.14 U	0.14 U	0.14 U	0.37 J	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U
Oct-20	15 J	NA	3 U	NA	5 J	NA	3 U	NA	NA	NA	NA	4 J	NA	0.45 J	0.34 J	0.21 J	0.14 U	0.14 U	0.14 U	0.14 U	0.27 J	0.16 J	0.14 U	0.21 J	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U

Notes:

ARAR Standard = 0.5 μ g/L; USEPA MCL = 2 μ g/L; and, Part 5 MCL = 2 μ g/L

ARAR = Applicable or Relevant and Appropriate Requirement: NYSDEC T.O.G.S. 1.1.1 Ambient Water-Quality Standards and Guidance Values and Groundwater Effluent Limitations (June 2004).

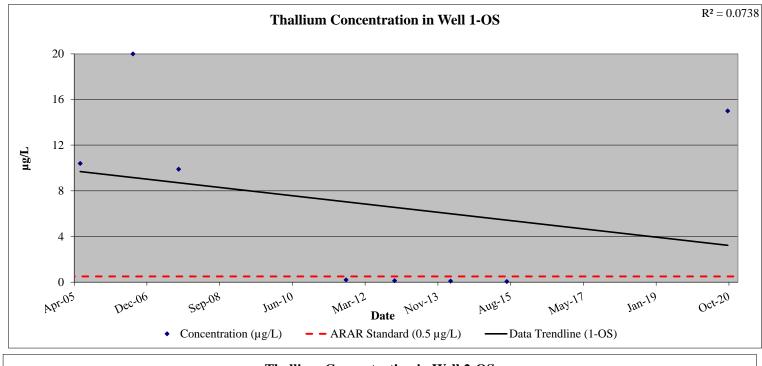
MCL = Maximum Contaminant Level: USEPA National Primary Drinking Water Regulations.

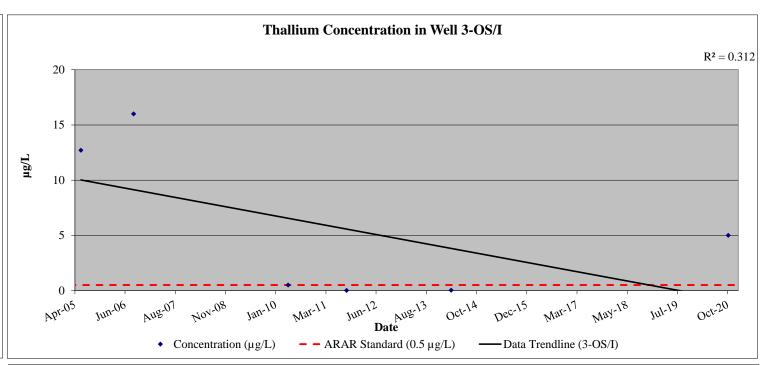
Values in **BOLD** indicate the reported concentration is greater than the ARAR for the groundwater monitoring wells or MCL for the private and municipal drinking water wells water quality standard.

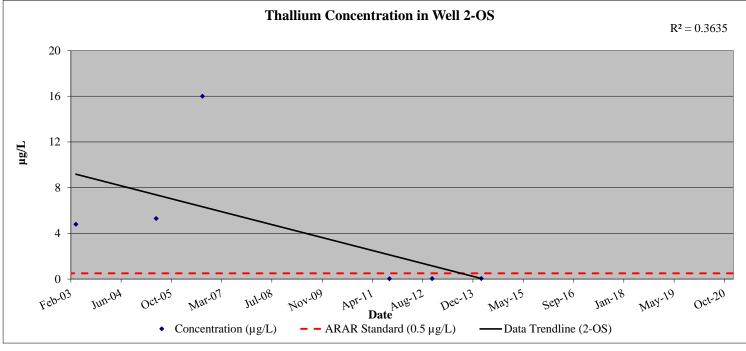
< = The compound was analyzed for but not detected at the laboratory detection limit listed.

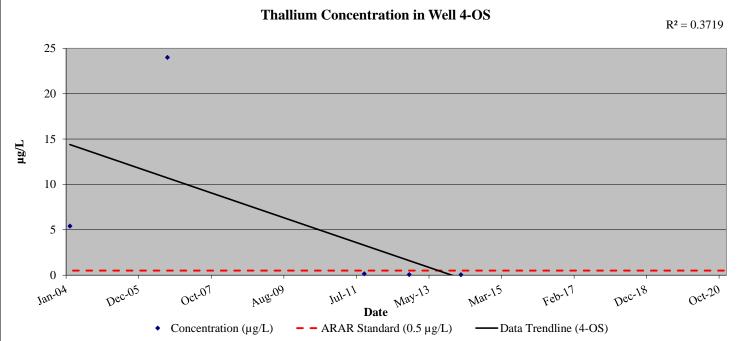
Laboratory Qualifier Definitions

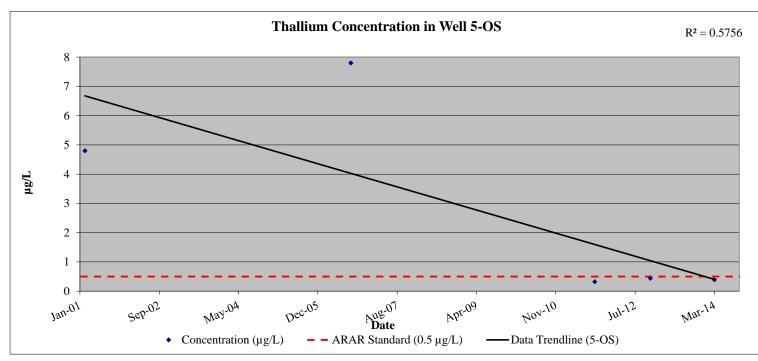
ND or U = Not Detected

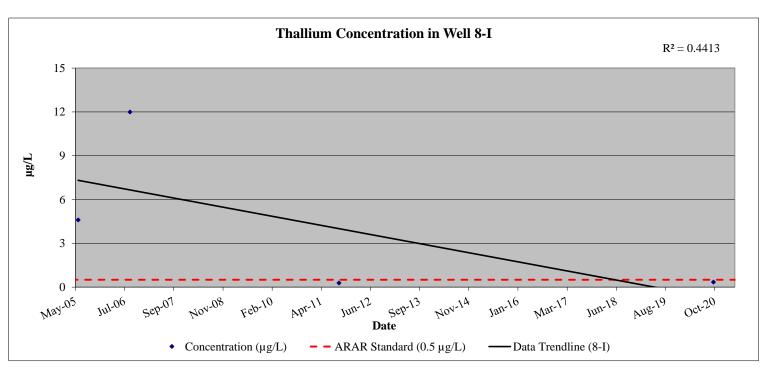

B = The analyte was detected above the reporting limit in the associated method blank.

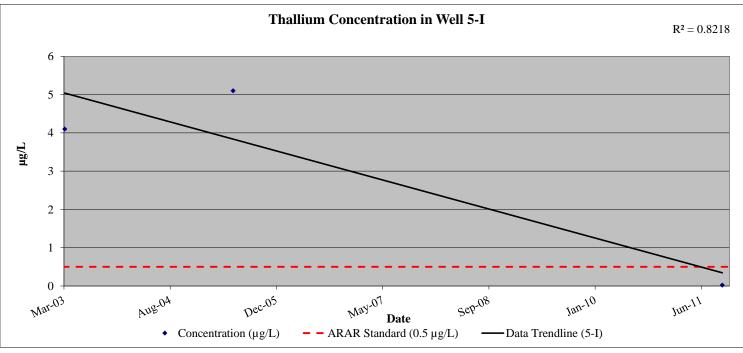

D14 = Dilution required due to high concentration of dissolved solids known to cause failure of routine quality control. Analytical method recommends a five-fold dilution for samples that contain greater than 2,000 mg/L of total solids.

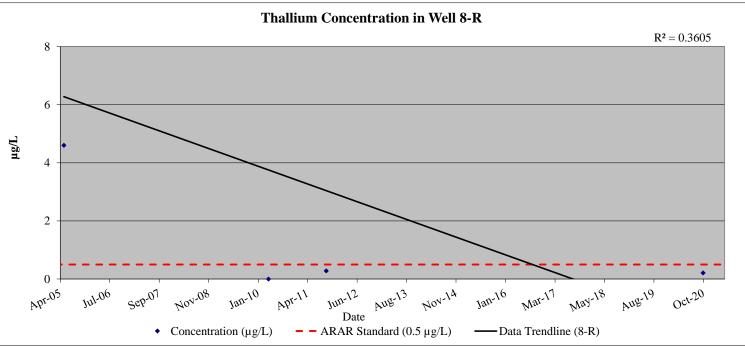

J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.

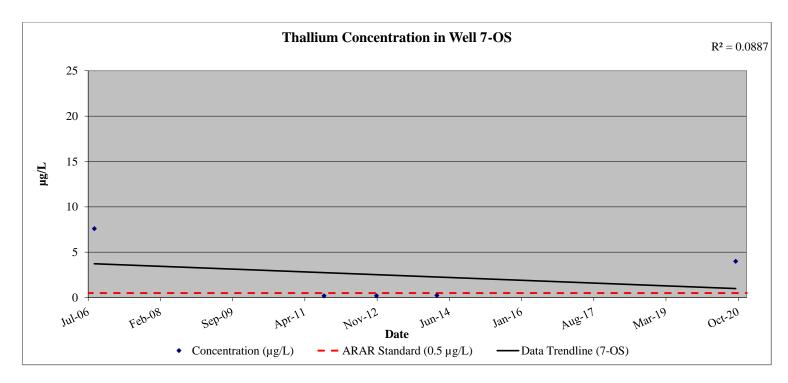

 $N = \mbox{Spiked sample recovery not within control limits.}$


Table 19









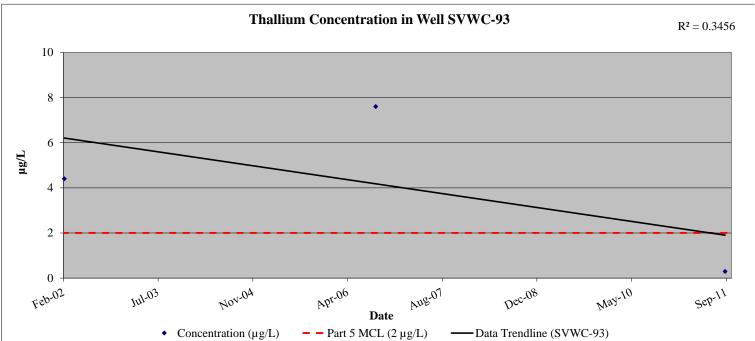


TABLE 20

Volume of Leachate/Groundwater Pumped from Landfill Extraction Wells to RCSD #1 POTW

Town of Ramapo Landfill, Hillburn, New York

Year	Gallons
1995	20,553,200
1996	21,851,062
1997 (1)	22,888,055
1998 (1)	22,888,055
1999	7,280,848
2000	17,234,622
2001	12,328,217
2002	13,576,560
2003	18,415,267
2004	13,827,647
2005	18,285,355
2006	14,391,820
2007	11,671,388
2008	11,929,369
2009	13,692,046
2010	8,955,114
2011	9,763,081
2012	13,345,000
2013	18,202,000
2014	13,254,000
2015	14,591,000
2016	11,314,000
2017	17,811,125
2018	15,001,258
2019	14,079,593
2020	8,342,290*

⁽¹⁾ Flow meter or totalizer did not function - no data available therefore values are based on previous records

Note: The volumes for 1997, 1998, and 2018 are estimated. No data was recorded in 1997 and 1998 due to malfunctioning equipment. *Readings through September 30, 2020

TABLE 21

Summary of 2019/2020 and Historical Leachate / Groundwater Analytical Results Rockland County Sewer District #1 - Western Ramapo Treatment Plant Sample Location : Manhole Immediately Upstream of Wet Well

Parameter	Maximum Concentration	Units	8/20 & 21/09	01/13/10	5/19 & 20/10	1/26/11	7/20/11	3/14/12	5/17/12	8/22/12	7/25/13	1/23/14	05/15/14	07/10/14	01/14/15	04/16/15	07/08/15	02/24/16	06/08/16	09/21/16	05/17/17	09/20/17	11/29/17	04/25/18	07/25/18	10/17/18	05/15/19	09/18/19	02/19/20
pH		S.U.					6.8	6.8	6.8	6.5	8.2	7.7	7.1	7.3	7.6	7.5	7.3	7.2	8.2	7.2	7.3	6.8	6.4	6.5	6.8	7.2	6.4	6.9	6.45
Phosphorous (Total)	-	ppm	0.41	1.32	0.02 U	0.13	0.07	0.185	0.105	0.03 U	0.198	3.74	0.264	0.05 U	0.05 U	0.05 U	0.054	0.05 U	0.601	0.238	0.894	1.73	0.862	0.106	1.05	0.546	3.92	0.351	0.85
Chloride	-	ppm	160	180	130	200	257	123	92.6	90.8	148	4010	136	218	97.4	263	201	267	165	294	194	177	201	180	70.1	163	123	311	161
Ammonia	-	ppm	520	340	1.8	1 U	2.3	0.645	0.821	2.03	0.1 U	1260	0.1 U	0.1 U	0.7	0.1 U	0.128	0.422	0.1 U	1.72	0.1 U	5.24	2.07	0.21	0.22	2.27	0.28	0.06	0.17
BOD	_(1)	ppm	30	100	2	4	6	4	2	2	1	39	2	9	12	3	4	3	2	12	13	3	3	7	24	15	2	1	1.5
COD	-	ppm	161	576	35	43	55	52	20	9		2600	30	56	47	27	110	62	30	42	76	41	88	86	300	39	35	41	32
Suspended Solids	_(2)	ppm	24	74	5	2	20	7	3	6	6	72	6	6	4	5	7	16	4	4	18	12	4	13	14	19	2	1.0 U	1.0 U
TKN	-	ppm	530	380	2.2	1 U	3.4	1.47	1.59	4.06	1.02	1500	0.64	1.03	2.25	0.35	0.35	1.61	0.41	3.23	2.82	79.5	2.49	0.61	1.02	2.84	0.48	0.21	0.37
Total Dissolved Solids	-	ppm	2,300	950	480	720	1,500	504	312	366	504	958	511	628	322	694	740	756	624	976	594	567	660	631	360	590	470	890	540
O&G Non-Polar	25	ppm	1.4 U	1.4 U	1.4 U	5 U	0.6 U	6.30											5 U	5 U	5 U	5 U	1.7 U	5 U	1.5 U	1.7 U	1.9 U	4.0 U	4.0 U
Antimony	-	ppm	0.1	0.11	0.09	0.098	0.111	0.0792 B	0.0966 B	0.0725 B	0.200	0.1	0.068	0.096	0.05 U	0.08	0.08	0.05	0.08	0.11	0.001 U	0.001 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.02 U
Arsenic	0.25	ppm	0.727	0.783	0.744	0.87	0.428	1.35	0.823	1,160	0.508	0.025 U	0.703	0.64	0.572	0.261	0.575	4.73	0.395	0.211	0.002 U	0.003	0.002	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.01 U
Beryllium	-	ppm	0.005 U	0.005 U	0.005 U	0.015 U	010000	0.002 U	0.002 U	0.002 U	0.001	0.001 U	0.001	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.002	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.004 U
Boron	1.0	ppm	0.004 U	0.007	0.004 U	0.01 U	0.0035 U	0.002	0.002	0.002	0.001 U	0.002	0.001	0.004	0.001 U	0.001 U	0.003	0.009	0.001 U	0.001 U	0.10	0.11	0.11	0.09	0.1	0.03 U	0.09	0.12	0.22
Cadmimm	0.07	ppm	0.001 U	0.001 U	0.001 U	0.005 U	0.0000	0.001 U	0.000116 B	0.000106 B	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.003	0.01	0.005	0.003 B	0.001 U	0.001 U	0.001 U	0.009	0.001 U	0.002 U
Chromium	0.6	ppm	0.001 U	0.001 U	0.001 U	0.002 U		0.004 U	0.004 U	0.008	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.009	0.003 B	0.009	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.005 U
Copper	1.0	ppm	0.001 U	0.004	0.001 U	0.005 U		0.011 U	0.016 B	0.011 U	0.025 U	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.023	0.019	0.01 U	0.01 U	0.013	0.032	0.01 U	0.01 U	0.01 U
Lead	1.0	ppm	0.018	0.085	0.002 U	0.025 U	0.200	0.015	0.024	0.01 U	0.010 U	0.067	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.023	0.01 U	0.01 U	0.074	0.067	0.068	0.016 U	0.016 U	0.016 U	0.016 U	0.016 U	0.0082
Manganese	-	ppm	0.002 U	0.002 U	0.002 U	0.01 U	0.00000	0.044	0.015 U	0.032 B	0.016 U	0.016 U	0.038 B	0.027 B	0.058	0.059	0.028 B	0.063	0.03 B	0.094	0.542	0.943	0.656	0.411	0.226	1.31	0.383	0.08	0.27
Mercury Molybdenum	0.05	ppm	0.0002 U 0.003	0.008 U	0.0002 U 0.002	0.0002 U 0.005 U	0.00007 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U 0.025 U	0.001 U	0.001 U	0.001 U 0.031	0.001 U	0.001 U	0.001 U 0.059	0.001 U 0.061	0.001 U	0.001 U 0.003 U	0.001 U 0.003 U	0.001 U 0.003 U	0.001 U	0.001 U 0.003 U	0.001 U 0.003 U	0.001 U 0.003 U	0.001 U 0.003 U	0.0002 U 0.02 U
Molybdenum	1.0	ppm	0.003 0.001 U	0.01	0.002 0.001 U	0.000	0.0082 0.0012 U	0.016 B	0.038 0.01 U	0.01 U	0.025 U 0.010 U	0.025 U	0.074 0.01 U	0.025 U	0.031 0.01 U	0.047 0.01 U	0.025 U 0.01 U	0.059 0.01 U	0.061 0.01 U	0.07 0.01 U	0.003 U 0.055	0.003 U 0.051	0.003 U	0.003 U 0.01 U	0.003 U	0.003 U	0.003 U	0.003 U 0.087	0.02 U
Selenium	0.1	ppm	0.001 U	0.001 0.025 U	0.001 U	0.01 U	0.000	0.01 U	0.01 U	0.01 U	0.010 U	0.01 C	0.01 0	0.01 U	0.01 U	0.01 0	0.01 0	0.042 B	0.01 U	0.01 U	0.033 0.001 II	0.001 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.087 0.005 II	0.02 U
Silver	2.3	ppm	0.003 0	0.023 0	0.003	0.003 U	010000	0.03 0	0.033 0	0.033 0	0.033 U	0.039 B	0.073 0.01 U	0.03 0	0.03 0	0.033	0.061 0.01 U	0.042 B	0.03 0	0.03 U	0.001 U	0.001 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U	0.02 U
Thallium	2.3	11	0.01 U	0.01 U	0.003	0.023 U	01111	0.004	0.004	0.023	0.002	0.001	0.002	0.003	0.001 U	0.004	0.001	0.002	0.001 U	0.001 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.02 U
Zinc	3.0	ppm	0.01 U	0.01 U	0.01 U	0.01 U	0.000.0	0.0024 B	0.0019 B	0.0027 B	0.00240 B	0.05 U	0.05	0.05 U	0.001 U	0.004 0.005 U	0.005 U	0.002 0.005 U	0.001 U	0.001 U	0.059	0.052	0.035 U	0.01 U	0.16	0.04	0.019	0.01 U	0.02 U
Cyanide Total	1.0	ppm	0.02	0.01 U	0.01 U		0.00498 U	0.0024 B	0.001 U	0.0027 B	0.00240 B	0.057	0.01 U	0.01 U	0.005 U	0.003 U	0.003 U	0.003 U	0.01 U	0.003 U	0.037	0.032	0.030 U	0.005 U	0.005 U	0.04 0.01 U	0.002 U	0.013	0.02 U
Cyanide Free	0.1	ppm	0.02	(3)	0.01 U	0.005	0.00458 U	0.01 C	0.01 0	0.01 0	0.01 0	0.057	0.01 C	0.01 0	0.01 0	0.01 C	0.01 0	0.01 C	0.01 0	0.01 C	0.01 U	0.01 U	0.01 U	0.005 0	0.005 C	0.01 C	0.002 0	0.015	0.01 0
Cyanide, Amenable	0.1	ppm	0.01	(3)	0.01 0	0.003	0.00408 0	0.01 U	0.01 U	0.010 U	0.01 U	0.010 U	0.01 U	0.01 U	0.01 U	0.01 II	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.05 0	0.01 U	0.010 U	0.010 U	0.005 U	0.012	0.01 U
Phenol	2.25	ppm	0.03 U	0.015 U	0.015 U	0.015 U		0.01 U	0.01 U	0.010 U	0.01 U	0.010 C	0.01 U	0.01 U	0.01 U	0.01 C	0.01 C	0.01 B	0.01 U	0.01 C	0.01 U	0.01 U	0.015 U	0.01 U	0.063	0.015 U	0.005 U	0.012 0.015 U	0.01 U
																													0.015 0

- Notes:

 B = The analyte was detected above the reporting limit in the associated method blank.

 J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value.

 U = Reported at concentration less than indicated reporting limit.

 (1) A surcharge will apply if BOD is > 250 ppm

 (2) A surcharge will apply if Suspended Solids is > 300 ppm

 (3) Could not report free Cyanide due to matrix interference

 (4) Exchading metals, Phenol and Cyandes

 (5) Does not include: Acrolein, Acrylonitrile, Benzidine, Parachlorometa cresol, 1, 2-diphenylhydrazine, 4-chlorophenyl phenyl ether, 4-bromophenyl phenyl ether, Methyl chloride, Methyl bromide, 4, 6-dinitro-o-cresol ND = Not Detected.

APPENDIX A

INSPECTION CHECKLIST AND INSTITUTIONAL AND ENGINEERING CONTROLS EVALUATION FORM

Inspection Checklist and Institutional and Engineering Controls Evaluation Form Town of Ramapo Landfill 250 Torne Valley Road, Hillburn, New York

Date: <u>10/7/2020</u>

Inspected By: Paul Scholar and Christopher Ogden – Sterling Environmental Engineering, P.C.

I and Cill Duam autor I tam	Condition:	(Check applic	able items)	Dam oules
Landfill Property Item	Acceptable	Not Acceptable	Not Present	Remarks
1. Vegetative Cover	X			Good condition – No problems noted.
 Surface Water Drainage Structures (Swales, Downchutes, Channels, Plunge Pools, Outfalls to Torne Brook). 		X		Overgrown vegetation is present in many of the drainage channels along the perimeter of the Landfill (see Photographs 1, 3, 7, 11, 13, 15, 21, and 23). Landfill downchutes are in acceptable condition.
a. Sediment Build-Up in Drainage Structures	X			Good condition – No problems noted.
b. Pooling or Ponding	X			Three (3) plunge pools (Plunge Pool No.'s 1, 2 and 3) are part of the drainage system but are not on the Landfill cover (see Figure 4).
c. Slope Integrity	X			
d. Overall Adequacy	X			
e. Concrete Lining	X			Good condition – No problems noted.
f. Gabion Lining	X			
g. Corrugated Metal Pipe (CMP) Lining		X		
3. Access Road	X			
4. Landfill Cover System	X			
a. Erosion Damage	X			
b. Leachate Seeps			X	Good condition – No problems noted.
c. Settlement			X	
d. Stone Aprons	X		•	

Landfill Property Item	Condition:	(Check applic	able items)	Remarks
	Acceptable	Not Acceptable	Not Present	
5. Gabion Retaining Walls	X			
a. Structural	X			Good condition - No problems noted.
b. Drainage Media Behind Wall	X			
6. Fence and Gates	X			Good condition - No problems noted.
7. Slope Stability	X			
a. Landfill	X			Good condition - No problems noted.
b. Mountain Side	X			
8. Gas Vents		X		Two (2) damaged gas vents and two (2) angled gas vents (see Photographs
a. Are Openings Unobstructed?	X			4, 5, 6, and 8) were observed across the Landfill. Overgrown vegetation was
b. Pipe Condition	X			observed surrounding several gas vents.
9. Burrow Holes			X	No active burrow holes were observed.

Other	Yes	No
Obtain Groundwater Extraction Well Operation Period	X	
Records and Maintenance Records for Current Year	71	

Comments:

Damaged concrete collar for manhole cover for leachate collection system observed at MH E-6 (see Photograph 2).

APPENDIX B

NYSDEC INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICATION FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Si	Site Details te No. 344004	Box 1	
Sit	e Name Ramapo Town Landfill		
Cit Cc	e Address: Torne Valley Road Zip Code: 10901 y/Town: Ramapo unty: Rockland e Acreage: 80.000		
Re	porting Period: August 1, 2019 to October 31, 2020		
		YES	NO
1.	Is the information above correct?	X	
	NO, include handwritten above or on a separate sheet.		
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?	-	X
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		X
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		Χ
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.		
5.	Is the site currently undergoing development?	_	X
		Boy 2	
		Box 2	
6.	Is the current site use consistent with the use(s) listed below? Commercial and Industrial	YES X	NO
7.	Are all ICs/ECs in place and functioning as designed?	x	Ξ
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below ar DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	nd	
A C	corrective Measures Work Plan must be submitted along with this form to address the	ese issu	ies.
Sia	nature of Owner, Remedial Party or Designated Representative Date		

SITE NO. 344004 Box 3

Description of Institutional Controls

<u>Parcel</u>

Owner

39.19-1-3

Town of Ramapo

Institutional Control

Monitoring Plan

O&M Plan

Ground Water Use Restriction

Landuse Restriction Soil Management Plan Site Management Plan IC/EC Plan

Land use is restricted to commercial/industrial.

Groundwater use is restricted.

39.19-1-3.1

Rockland County Sewer District No. 1

Ground Water Use Restriction

Site Management Plan

Groundwater Wells for drinking water shall not be used or installed on any portion of the Ramapo Landfill

Site

39.19-1-4

Rockland County Solid Waste Mgmt Auth.

Ground Water Use Restriction

Site Management Plan

Groiundwater wells for drinking water shall not be installed or used on any portion of the Ramapo Landfill

Site

39.19-1-5

Rockland County Solid waste Mgmt Auth

Ground Water Use Restriction

Site Management Plan

Groundwater wells for drinking water shall not be installed or used on any portion of the Ramapo Landfill Site.

Box 4

Description of Engineering Controls

Parcel Parcel

Engineering Control

39.19-1-3

Cover System Leachate Collection Fencing/Access Control Groundwater Containment

Leachate Collection System Landfill Cover and Gas Venting

Groundwater Containment System (including extraction wells)

Fencing around the capped area

Monitoring Well Network

R	ΛY	5

Periodic Review Report (PRR) Certification Statements

engineering practices; and the information presented is accurate and compete.

1.	I certify by checking "YES" below that:
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
	 to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted

YES NO

X .

- If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional
 or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the
 following statements are true:
 - (a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
 - (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment:
 - (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
 - (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
 - (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.

YES

Χ

IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.

A Corrective Measures Work Plan must be submitted along with this form to address these issues.

Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. 344004

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I Edward P. Dzurinko (Town of Ramapo, Director of Public Works) at 16 Pioneer Avenue, Tallman, NY 10982,

am certifying as Designated Representative (Owner) for the Site named in the Site Details Section of this form.

Signature of Owner, Remedial Party or Designated Representative

Rendering Certification

11/02/2020

Date

IC/EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I, Andrew M. Millspaugh, P.E., at 24 Wade Road, Latham, NY 12205, am certifying as a Professional Engineer for the Town of Ramapo (Owner).

ah Mayor

Signature of Professional Engineer, for the Owner Remedial Party, Rendering Certification

11/19/2020

Date

APPENDIX C PHOTOGRAPH LOG

Photograph 1: View of slightly overgrown vegetation in the drainage channel along the northern perimeter of the Landfill, looking east-southeast.

Photograph 1: View of damaged upper portion of the concrete drainage vault (MH E-6) near the northern perimeter of the Landfill, looking southeast.

Photograph 2: View of well-established cover system and minor overgrown vegetation in drainage feature in the northern portion of the Landfill, looking southwest.

Photograph 3: View of leaning gas vent in the north central portion of the Landfill, looking southeast.

Photograph 4: View of leaning gas vent to the north of the firearms training building, looking south.

Photograph 5: View of damaged gas vent near the midwestern perimeter of the Landfill, looking south.

Photograph 7: View of slightly overgrown vegetation in drainage feature in east-central portion of the Landfill, looking northwest.

Photograph 8: View of damaged gas vent near the mideastern perimeter of the Landfill, looking southwest.

Photograph 6: View of shooting range along the mideastern perimeter of the Landfill, looking southeast.

Photograph 7: View of well-maintained cover system along the southeastern perimeter of the Landfill, looking southwest.

Photograph 8: View slightly overgrown vegetation in the drainage ditch along the southwestern perimeter of the Landfill, looking north-northeast.

Photograph 9: View of well-maintained cover system in the central portion of the Landfill, looking northeast.

Photograph 10: View of overgrown vegetation in drainage feature along mideastern perimeter of the Landfill, looking east-northeast.

Photograph 14: View of well-maintained drainage chute along the mideastern perimeter of the Landfill, looking west-southwest.

Photograph 1511: View of overgrown vegetation in drainage swale along the mideastern perimeter of the Landfill, looking east.

Photograph 1612: View of debris build-up in drainage swale along the mideastern perimeter of the Landfill, looking southeast.

Photograph 1713: View of well-maintained cover system along the mideastern perimeter of the Landfill, looking west-southwest.

Photograph 1814: View of debris build-up in drainage swale along the northeastern perimeter of the Landfill, looking southwest.

Photograph 1915: View of well-maintained gabion retaining walls along the southwestern perimeter of the Landfill, looking north.

Photograph 2016: View of recently mowed cover system along the southwestern perimeter of the Landfill, looking north.

Photograph 2117: View of overgrown vegetation in drainage swale along the southeastern perimeter of the Landfill, looking north-northeast.

Photograph 2218: View of Lift Station W-20 in the southwestern portion of the Landfill, looking east.

Photograph 2319: View of overgrown vegetation in drainage feature along the southern perimeter of the Landfill, looking south.

Photograph 2420: View of well-maintained cover system along the southern perimeter of the Landfill, looking west-northwest.

APPENDIX D LABORATORY ANALYTICAL RESULTS - GROUNDWATER

www.alphalab.com

Alpha Analytical

Laboratory Code: 11148

SDG Number: L2042334

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Table of Contents

Nev	v York ASP Category A Data Deliverable Package	
	Table of Contents	2
	Sample ID Cross Reference	3
	SDG Narrative	4
	Data Qualifier Definitions	6
	Instrument Information	9
	Sample Log-in Sheet	12
	Lims COC (LN01)	13
	External Chain of Custody	15
	Organics Analysis	16
	Volatiles Data	17
	Volatiles Sample Data	18
	Form 1 - Organics	19
	Metals Analysis	28
	Inorganic Data (ICP Analysis)	29
	Form 1 - Inorganics	30
	Inorganic Data (ICPMS Analysis)	36
	Form 1 - Inorganics	37
	Inorganic Data (Mercury Analysis)	43
	Form 1 - Inorganics	44
	Wet Chemistry Analysis	50
	TKN Analysis	51
	Results	52
	Form 1 - Inorganics	53
	COD Analysis	60
	Results	61
	Form 1 - Inorganics	62
	Alkalinity Analysis	69
	Results	70
	Form 1 - Inorganics	71

Project Name: TOWN OF RAMAPO LF

Lab Number: L2042334 Project Number: Report Date: 10/12/20 20010, TASK 200

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2042334-01	9-R	WATER	HILLBURN, NY	10/05/20 17:00	10/05/20
L2042334-02	TB10052020	TRIP BLANK (AQUEOUS)	HILLBURN, NY	10/05/20 00:00	10/05/20
L2042334-03	UP-OS	WATER	HILLBURN, NY	10/05/20 15:35	10/05/20
L2042334-04	UP-I	WATER	HILLBURN, NY	10/05/20 14:00	10/05/20
L2042334-05	UP-R	WATER	HILLBURN, NY	10/05/20 14:50	10/05/20
L2042334-08	DUP10052020	WATER	HILLBURN, NY	10/05/20 00:00	10/05/20

Project Name:TOWN OF RAMAPO LFLab Number:L2042334Project Number:20010, TASK 200Report Date:10/12/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:TOWN OF RAMAPO LFLab Number:L2042334Project Number:20010, TASK 200Report Date:10/12/20

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

The analysis of 1,4-Dioxane and PFAS will be issued under separate cover.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature: M 2 WA

Report Date: 10/12/20

Title: Technical Director/Representative

Project Name: Lab Number: TOWN OF RAMAPO LF **Project Number:** 20010, TASK 200 **Report Date:** 10/12/20

GLOSSARY

Acronvms

EDL.

LCSD

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

 Laboratory Control Sample Duplicate: Refer to LCS. LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.) - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The

LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers Project Name:TOWN OF RAMAPO LFLab Number:L2042334Project Number:20010, TASK 200Report Date:10/12/20

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries

Report Format: DU Report with 'J' Qualifiers

Project Name:TOWN OF RAMAPO LFLab Number:L2042334Project Number:20010, TASK 200Report Date:10/12/20

Data Qualifiers

when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Volatile Organics Instruments

Volatile Organics:

Instrument: Agilent 7890 GC/5975C MSD Columns (length x ID x df): Trap: Supelco K Trap (VOACARB 3000) RTX-VMS 20m x 0.18mm x 1um Concentrator: EST Encon (or equivalent) RTX-VMS 30m x 0.25mm x 1.4um Autosampler: EST Centurion (or equivalent) RTX-502.2 40m x 0.18mm x 1um

Purge time: 11 min

Volatile Organics: VPH

Instrument: Agilent 6890 (or equivalent) Column Type: Restek RTX 502.2 Trap: Supelco K Trap (VOACARB 3000) Column Length: 105 Meters

Concentrator: EST Encon (or equivalent) df: 3.00 um Autosampler: EST Centurion (or equivalent) ID: 0.53mm

Volatile Organics: PIANO

Instrument: Agilent 7890 GC/5975C MSD Column Type: DB-VRX Trap: Supelco K Trap (VOACARB 3000) Column Length: 60 Meters

Concentrator: Tekmar Velocity / EST Encon df: 1.40 um Autosampler: Varian Archon / EST Centurion ID: 0.25 mm Purge time: 11 min Desorb: 1 min

Volatile Organics: Dissolved Gas

Instrument: Agilent 7890 (or equivalent) with FID/TCD

Column Type: Haysep S Column Column Length: 2 Meters packed (100/200 mesh)

Autosampler: LEAP Headspace Purge time: 0.6 min

Volatile Organics in Air Instruments

Volatile Organics in Air:

Instruments: Agilent 6890 GC / 5975 MSD Shimadzu QP2010-SE / QP2020

Concentrator: Entech 7100A or 7200 Column Type: Restek RTX-1 Column Length: 60 Meters Autosampler: Entech 7016CA or 7016D

df: 1.00 um

ID: 0.25 mm or 0.32 mm

Trap 1: Glass Bead: manufacturer-Entech: 20 cm packing material Trap 2: Tenax: manufacturer-Entech: 20 cm packing material

Semivolatile Organics Instruments - Westborough

Semivolatile Organics (Acid/Base/Neutral Extractables):

Instrument: Agilent 5973N MSD Injection volume: 1 ul;2 uL LVI

Column Type: Restek RXI-5SILMS df: 0.32 um
Column Length: 30 Meters ID: 0.25 mm

Polynuclear Aromatic Hydrocarbons by 8270 SIM:

Instrument: Agilent 5973 MSD Injection volume: 1 ul;2 uL LVI

Column Type: Restek RXI-5SILMS df: 0.25 um
Column Length: 30 Meters ID: 0.25 mm

Pesticides/PCB/Herbicides:

Instrument: Agilent 6890 w/Dual Micro ECDs Injection Volume: 1uL

Column A: Restek RTX-CL/STX-CL df: 0.32
Column B: Restek RTX/STX-CLPPesticide II df: 0.25
Column Length: 30 Meters ID: 0.32 mm

Petroleum/EPH:

Instrument: Agilent 6890 w/FID / HP 5890 w/ FID Injection Volume: 1uL

Column: Restek RTX 5 df: 0.25

Column Length: 30 Meters

ID: 0.32 mm

Semivolatile Organic Instruments - Mansfield

Semivolatile Organics (ALK-PAH Extractables):

Instrument: Agilent 5973N / 5975 MSD Injection volume: 1 ul

Column Type: ZB-5 df: 0.25 um
Column Length: 60 Meters ID: 0.25 mm

Semivolatile Organics (8270):

Instrument: Agilent 5973N / 5975 MSD Injection volume: 2 ul

Column Type: ZB-Semivolatiles df: 0.25 um
Column Length: 30 Meters ID: 0.25 mm

Semivolatile Organics (8270 SIM):

Instrument: Agilent 5973N / 5975 MSD Injection volume: 3 ul

Column Type: ZB-5 df: 0.25 um
Column Length: 30 Meters ID: 0.25 mm

<u>Semivolatile Organics (1,4-Dioxane):</u>

Instrument: Agilent 5973N / 5975 / 5977 MSD Injection volume: 3 ul Column Type: RTX-5 df: 0.25um, 0.18 um ID: 0.25um, 0.18 mm

Semivolatile Organics (209 Congener):

Instrument: Agilent 5973N / 5975 MSD

Column Type: RTX-5, RTX-PCB

Column Length: 60 Meters

Injection volume: 3 ul df: 0.25um, 0.18 um ID: 0.25um, 0.18 mm

Semivolatile Organics (8081):

Instrument: Agilent 6890 / 7890 Injection volume: 1 ul

Column Type: RTX-5 / RTX-CLP II df: 0.25 um Column Length: 60 Meters ID: 0.25 mm

Semivolatile Organics (8082):

Instrument: Agilent 6890 w/Dual Micro ECDs Injection Volume: 1uL

Column A: Restek RTX-CL/STX-CL df: 0.32 Column B: Restek RTX/STX-CLPPesticide II df: 0.25 Column Length: 30 Meters ID: 0.32 mm

<u>Semivolatile Organics (SHC Extractables):</u>

Instrument: Agilent 6890 Injection volume: 1 ul

Column Type: RTX-5 df: 0.25 um
Column Length: 60 Meters ID: 0.25 mm

Sample Delivery Group Summary

Alpha Job Number: L2042334 Received: 05-OCT-2020 Reviewer: Kim L. Bailey

Account Name : Sterling Environmental Engineering

Project Number : 20010, TASK 200
Project Name : TOWN OF RAMAPO LF

Delivery Information

Samples Delivered By: Alpha Courier

Chain of Custody : Present

Cooler Information

Cooler Seal/Seal# Preservation Temperature(°C) Additional Information

A Absent/ Ice 2.7 B Absent/ Ice 6.0

Condition Information

1) All samples on COC received?

2) Extra samples received?

3) Are there any sample container discrepancies?

4) Are there any discrepancies between sample labels & COC? NO

5) Are samples in appropriate containers for requested analysis? YES

6) Are samples properly preserved for requested analysis? YES

7) Are samples within holding time for requested analysis? YES

8) All sampling equipment returned?

Volatile Organics/VPH

1) Reagent Water Vials Frozen by Client?

ALPHA ANALYTICAL LABORATORIES, INC. LOGIN CHAIN OF CUSTODY REPORT Oct 12 2020, 04:25 pm

Login Number: L2042334

Account: STERLINGENV Sterling Environmental EngineeringProject: 20010, TASK 200

Received: 050CT20 Due Date: 120CT20

Sample #	Client ID	Received:	050CT20 D	oue Date:	120CT20	Mat	PR Collected
L2042334-01		ASP-A Package Due	nate: 10/12/	20	1 SO 050	OCT20	17:00
ALK-T-2320, A 6020T, CA-602	ASP-A,COD-41 20T,CD-6020T)-LOW,HARDT,NYTCI	L-8260,TAL-602)T,CU-6020T,FE	20T,AG-602 2-6020T,H0	G-T,K-60207	MG-6	6020T,BA-6020T,BE- 020T,MN-6020T,NA-6020T,
L2042334-02		Package Due Date	. 10/12/20		1 SO 050	CT20	00:00
NYTCL-8260	ISIC DUIIC	rackage Due Date	:· 10/12/20				
L2042334-03		Package Due Date	. 10/12/20		1 S0 050	CT20	15:35
ALK-T-2320,C 6020T,CD-602	COD-410-LOW, 20T,CO-6020T	HARDT,NYTCL-8260,	TAL-6020T,AG- T,FE-6020T,HG	G-T,K-6020	OT,MG-60201		BA-6020T,BE-6020T,CA- 020T,NA-6020T,NI-6020T,
L2042334-04					1 SO 050		
L2042334-04	MS L2042334	-04 MSD 8260 repo	ort lsit built	: Package	e Due Date:	10/1	2/20
6020T,CA-602	20T,CD-6020T		T,CU-6020T,FE	-6020т,но	G-T,K-60201	7,MG-6	-6020T,BA-6020T,BE- 020T,MN-6020T,NA-6020T,
L2042334-05	0				1 S0 050	CT20	14:50
8260 report	lsit built	Package Due Date	e: 10/12/20				
6020T,CD-602	20T,CO-6020T		T,FE-6020T,HG	G-T,K-6020	OT,MG-60201		BA-6020T,BE-6020T,CA- 020T,NA-6020T,NI-6020T,

Page 1

ALPHA ANALYTICAL LABORATORIES, INC. LOGIN CHAIN OF CUSTODY REPORT Oct 12 2020, 04:25 pm

Login Number: L2042334

Account: STERLINGENV Sterling Environmental EngineeringProject: 20010, TASK 200

Received: 050CT20 Due Date: 120CT20

Sample # Client ID Mat PR Collected

L2042334-08 DUP10052020 1 SO 05OCT20 00:00

8260 report lsit built Package Due Date: 10/12/20

ALK-T-2320, COD-410-LOW, HARDT, NYTCL-8260, TAL-6020T, AG-6020T, AL-6020T, AS-6020T, BA-6020T, BE-6020T, CA-6020T, CD-6020T, CO-6020T, CR-6020T, CU-6020T, FE-6020T, HG-T, K-6020T, MG-6020T, MN-6020T, NA-6020T, NI-6020T,

PB-6020T, PREPT, SB-6020T, SE-6020T, TL-6020T, V-6020T, ZN-6020T, TKN-4500

Page 2

Logged By: Melissa Deyo

Address: 24 Wade R Latham, NY 12110 Phone: 518-456-49 Fax: 518-456-35	d 00	Project # (Use Project name as P Project Manager: M ALPHAQuote #: Turn-Around Time Standar	Town of Ran + 1160 cs 20010, Task Project #)	napo LF NY 200 Ulian S			Deliving Regularity Regularity Control	in I erable ASP- EQuil Other latory NY TO AWQ NY Re NY Un	A S (1 F Requi DGS Standa estricted	ile) P - B remer	to	r <u>P</u>	S (4 F	ile) t 1,4	ALPHA Job # / 2042334 Billing Information Same as Client Info PO# Dio Fare Only Disposal Site Information Please identify below location of applicable disposal facilities. Disposal Facility: NJ NY	,
Email:		Rush (only if pre approved	d) [_]	# of Days	5;		_=		Sewer [)ischar	ge			_	Other. NA	
These samples have be							ANA	YSIS	_		_	_	_	_	Sample Filtration	0
Mark . W. II. apris Please specify Metals	esterlingen	risen Mental. Co	m rt 360 7	Basclin	metal	s List	TCL-VOCs 8260	TKN-4500	A2-1,4-DIOXANE-SIM	A2-NY-527-ISOTOPE	T-Alkalinity-SM 2320	COD-410.4	TAL Metals *		☐ Done ☐ Lab to do Preservation ☐ Lab to do (Please Specify below)	a - Bott
ALPHA Lab ID	Sa	mple ID	Colle	ection	Sample	Sampler's	ż		1-7	12-N	Į.		_			i
(Lab Use Only)	- 37		Date	Time	Matrix	Initials			-	q.	ं				Sample Specific Comments	e
42334-01	9-R		10-5-202	1700	GW	PW5	\times	\times	X	\times	\times	\times	\geq			10
-02	HES THIS	052020		-	LW		\times									2
-04	UP-I	MS		1405	G-63		\times	\times	\times	\times	\times	X	×			i O
-04	UP-	LMSD		1410	GW		\times	\times	\times	\times	\times	×	X			10
-03	UP-OS			1535	GW		×	\times	\times	X	X	\times	×			10
-04	UP-I			1400	GW		\times	\times	\times	X	X	\times	\times			10
-05	UP-R			1450	GW		×	\times	×	\times	\times	\times	\times			10
-66	SMANGER EBI	0052028		1245	LW			1		\times	Ø	2	PE			2
-07	SWARD FBIC	052020		1240	LW					×						1
-08	STAND 95 DUP	10052620	1	-	GW	4	×	\times	X	×	\times	×	X	*		ic
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification Mansfield: Certification				tainer Type	V B	P D		P A	P	P	P		Please print clearly, legibly and completely. Samples on not be logged in and turnaround time clock will records.	can
F = MeOH	C = Cube	Relinquished	By:	Date	/Time	(6)	Recei		_			_	/Time		start until any ambiguities a	
$G = NaHSO_4$ $H = Na_2S_2O_3$ K/E = Zn Ac/NaOH O = Other Form No: 01-25 (rev. 30-Se	O = Other E = Encore D = BOD Bottle	She Day	سلور	10-5-10	20 17 0C	emp		_	-04	/10	10/	r	50	30	resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA TERMS & CONDITIONS.	s

Organics

Volatiles Data

Volatiles Sample Data

Client : Sterling Environmental Engineering

Project Name : TOWN OF RAMAPO LF

Lab ID : L2042334-01

Client ID : 9-R

Sample Location : HILLBURN, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : VE201007A10

Sample Amount : 10 ml Level : LOW

Extract Volume (MeOH): N/A

Lab Number : L2042334

Project Number : 20010, TASK 200
Date Collected : 10/05/20 17:00

Date Received : 10/05/20

Date Analyzed : 10/07/20 10:40

: RTX-502.2

Dilution Factor : 1
Analyst : JMT
Instrument ID : ELAINE

%Solids : N/A Injection Volume : N/A

GC Column

			ug/L				
CAS NO.	Parameter	Results	RL	MDL	Qualifier		
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U		
108-90-7	Chlorobenzene	ND	2.5	0.70	U		
71-43-2	Benzene	ND	0.50	0.16	U		
75-01-4	Vinyl chloride	ND	1.0	0.07	U		

Client : Sterling Environmental Engineering

Project Name : TOWN OF RAMAPO LF
Lab ID : L2042334-02
Client ID : TB10052020
Sample Location : HILLBURN, NY
Sample Matrix : Trip Blank (aqueous)

Analytical Method : 1,8260C Lab File ID : VE201007A09

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2042334

Project Number : 20010, TASK 200

Date Collected : 10/05/20 00:00

Date Received : 10/05/20

Date Analyzed : 10/07/20 10:18

Dilution Factor : 1
Analyst : JMT
Instrument ID : ELAINE
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

Parameter		ug/L				
	Results	RL	MDL	Qualifier		
1,1-Dichloroethane	ND	2.5	0.70	U		
Chlorobenzene	ND	2.5	0.70	U		
Benzene	ND	0.50	0.16	U		
Vinyl chloride	ND	1.0	0.07	U		
	1,1-Dichloroethane Chlorobenzene Benzene	1,1-Dichloroethane ND Chlorobenzene ND Benzene ND	Parameter Results RL 1,1-Dichloroethane ND 2.5 Chlorobenzene ND 2.5 Benzene ND 0.50	Parameter Results RL MDL 1,1-Dichloroethane ND 2.5 0.70 Chlorobenzene ND 2.5 0.70 Benzene ND 0.50 0.16	Parameter Results RL MDL Qualifier 1,1-Dichloroethane ND 2.5 0.70 U Chlorobenzene ND 2.5 0.70 U Benzene ND 0.50 0.16 U	

Client : Sterling Environmental Engineering

Project Name : TOWN OF RAMAPO LF Lab ID : L2042334-03

Client ID : UP-OS
Sample Location : HILLBURN, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : VE201007A11

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2042334

Project Number : 20010, TASK 200
Date Collected : 10/05/20 15:35

Date Received : 10/05/20
Date Analyzed : 10/07/20 11

Date Analyzed : 10/07/20 11:01 Dilution Factor : 1

Analyst : JMT Instrument ID : ELAINE GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

		ug/L		
Parameter	Results	RL	MDL	Qualifier
1,1-Dichloroethane	ND	2.5	0.70	U
Chlorobenzene	ND	2.5	0.70	U
Benzene	ND	0.50	0.16	U
Vinyl chloride	ND	1.0	0.07	U
	1,1-Dichloroethane Chlorobenzene Benzene	1,1-Dichloroethane ND Chlorobenzene ND Benzene ND	1,1-Dichloroethane ND 2.5 Chlorobenzene ND 2.5 Benzene ND 0.50	1,1-Dichloroethane ND 2.5 0.70 Chlorobenzene ND 2.5 0.70 Benzene ND 0.50 0.16

Client : Sterling Environmental Engineering

Project Name : TOWN OF RAMAPO LF

Lab ID : L2042334-04

Client ID : UP-I

Sample Location : HILLBURN, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05201009A22

Sample Amount : 10 ml Level : LOW

Extract Volume (MeOH): N/A

Lab Number : L2042334

Project Number : 20010, TASK 200
Date Collected : 10/05/20 14:00

Date Received : 10/05/20

Date Analyzed : 10/09/20 16:10

Dilution Factor : 1
Analyst : LAC
Instrument ID : VOA1

Instrument ID : VOA105 GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

Parameter		ug/L				
	Results	RL	MDL	Qualifier		
1,1-Dichloroethane	ND	2.5	0.70	U		
Chlorobenzene	ND	2.5	0.70	U		
Benzene	ND	0.50	0.16	U		
Vinyl chloride	ND	1.0	0.07	U		
	1,1-Dichloroethane Chlorobenzene Benzene	1,1-Dichloroethane ND Chlorobenzene ND Benzene ND	Parameter Results RL 1,1-Dichloroethane ND 2.5 Chlorobenzene ND 2.5 Benzene ND 0.50	Parameter Results RL MDL 1,1-Dichloroethane ND 2.5 0.70 Chlorobenzene ND 2.5 0.70 Benzene ND 0.50 0.16	Parameter Results RL MDL Qualifier 1,1-Dichloroethane ND 2.5 0.70 U Chlorobenzene ND 2.5 0.70 U Benzene ND 0.50 0.16 U	

Client : Sterling Environmental Engineering

Project Name : TOWN OF RAMAPO LF

Lab ID : L2042334-05 Client ID : UP-R

Sample Location : HILLBURN, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : VG201007A15

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2042334

Project Number : 20010, TASK 200
Date Collected : 10/05/20 14:50

Date Received : 10/05/20

Date Analyzed : 10/07/20 15:22

Dilution Factor : 1
Analyst : AJK
Instrument ID : GONZO

GC Column : RTX-502.2 %Solids : N/A

Injection Volume: N/A

			ug/L				
CAS NO.	Parameter	Results	RL	MDL	Qualifier		
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U		
108-90-7	Chlorobenzene	ND	2.5	0.70	U		
71-43-2	Benzene	ND	0.50	0.16	U		
75-01-4	Vinyl chloride	ND	1.0	0.07	U		

Client : Sterling Environmental Engineering

Project Name : TOWN OF RAMAPO LF
Lab ID : L2042334-08
Client ID : DUP10052020
Sample Location : HILLBURN, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : VG201007A16
Sample Amount : 10 ml

Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2042334

Project Number : 20010, TASK 200 Date Collected : 10/05/20 00:00

Date Received : 10/05/20

Date Analyzed : 10/07/20 15:48

Dilution Factor : 1
Analyst : AJK
Instrument ID : GONZO
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

Parameter		ug/L				
	Results	RL	MDL	Qualifier		
1,1-Dichloroethane	ND	2.5	0.70	U		
Chlorobenzene	ND	2.5	0.70	U		
Benzene	ND	0.50	0.16	U		
Vinyl chloride	ND	1.0	0.07	U		
	1,1-Dichloroethane Chlorobenzene Benzene	1,1-Dichloroethane ND Chlorobenzene ND Benzene ND	Parameter Results RL 1,1-Dichloroethane ND 2.5 Chlorobenzene ND 2.5 Benzene ND 0.50	Parameter Results RL MDL 1,1-Dichloroethane ND 2.5 0.70 Chlorobenzene ND 2.5 0.70 Benzene ND 0.50 0.16	Parameter Results RL MDL Qualifier 1,1-Dichloroethane ND 2.5 0.70 U Chlorobenzene ND 2.5 0.70 U Benzene ND 0.50 0.16 U	

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1419489-5
Client ID : WG1419489-5BLANK Date Collected : NA

Sample Location : Date Analyzed : 10/07/20 08:50

Sample Matrix : WATER **Dilution Factor** : 1 **Analytical Method** : NLK : 1,8260C Analyst Lab File ID : VE201007A05 Instrument ID : ELAINE GC Column : RTX-502.2 Sample Amount : 10 ml

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U	
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
71-43-2	Benzene	ND	0.50	0.16	U	
75-01-4	Vinyl chloride	ND	1.0	0.07	U	

Client : Sterling Environmental Engineering Lab Number

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1419528-5
Client ID : WG1419528-5BLANK Date Collected : NA

Sample Location : Date Analyzed : 10/07/20 11:08

Sample Matrix : WATER **Dilution Factor** : 1 **Analytical Method** : 1,8260C Analyst : NLK : GONZO Lab File ID : VG201007A05 Instrument ID GC Column : RTX-502.2 Sample Amount : 10 ml

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

		ug/L				
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U	
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
71-43-2	Benzene	ND	0.50	0.16	U	
75-01-4	Vinyl chloride	ND	1.0	0.07	U	

: L2042334

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1420463-5
Client ID : WG1420463-5BLANK Date Collected : NA

Sample Location : Date Analyzed : 10/09/20 09:34

Sample Matrix : WATER **Dilution Factor** : 1 **Analytical Method** : PD : 1,8260C Analyst : VOA105 Lab File ID : V05201009A05 Instrument ID GC Column : RTX-502.2 Sample Amount : 10 ml

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

		<u></u>				
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U	
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
71-43-2	Benzene	ND	0.50	0.16	U	
75-01-4	Vinyl chloride	ND	1.0	0.07	U	

Metals

Inorganic Data (ICP Analysis)

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF **Project Number** : 20010, TASK 200 Lab ID : L2042334-01 **Date Collected** : 10/05/20 17:00

Client ID : 9-R

: 10/05/20 **Date Received** Sample Location : HILLBURN, NY Date Analyzed : 10/12/20 13:30

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,6010D Analyst : PS Lab File ID : 101220.txt_icap.txt Instrument ID : TRACE5

%Solids Sample Amount : 50ml : N/A Digestion Method : EPA 3005A **Date Digested** : 10/08/20

mg/l Results RL MDL Qualifier CAS NO. **Parameter** NONE Hardness 137 0.660 NA

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042334-03 Date Collected : 10/05/20 15:35

Client ID : UP-OS Date Received : 10/05/20 Sample Location : HILLBURN, NY Date Analyzed : 10/12/20 13:35

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,6010D Analyst : PS

Lab File ID: 101220.txt_icap.txtInstrument ID: TRACE5Sample Amount: 50ml%Solids: N/ADigestion Method: EPA 3005ADate Digested: 10/08/20

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 NONE
 Hardness
 95.6
 0.660
 NA

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF **Project Number** : 20010, TASK 200 Lab ID : L2042334-04 **Date Collected** : 10/05/20 14:00

Client ID : UP-I

Date Received : 10/05/20 Sample Location : HILLBURN, NY Date Analyzed : 10/12/20 13:12

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,6010D Analyst : PS Lab File ID : 101220.txt_icap.txt Instrument ID

: TRACE5 %Solids Sample Amount : 50ml : N/A Digestion Method : EPA 3005A **Date Digested** : 10/08/20

mg/l Results RL MDL Qualifier CAS NO. **Parameter** NONE Hardness 74.2 0.660 NA

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042334-05 Date Collected : 10/05/20 14:50

Client ID : UP-R Date Received : 10/05/20 Sample Location : HILLBURN, NY Date Analyzed : 10/12/20 13:39

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,6010D Analyst : PS

Lab File ID: 101220.txt_icap.txtInstrument ID: TRACE5Sample Amount: 50ml%Solids: N/ADigestion Method: EPA 3005ADate Digested: 10/08/20

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 NONE
 Hardness
 45.2
 0.660
 NA

Client : Sterling Environmental Engineering Lab Number : L2042334

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042334-08
 Date Collected
 : 10/05/20 00:00

 Client ID
 : DUP10052020
 Date Received
 : 10/05/20

Sample Location : HILLBURN, NY Date Analyzed : 10/12/20 13:58

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,6010D Analyst : PS

Lab File ID: 101220.txt_icap.txtInstrument ID: TRACE5Sample Amount: 50ml%Solids: N/ADigestion Method: EPA 3005ADate Digested: 10/08/20

CAS NO. Parameter Results RL MDL Qualifier

NONE Hardness 139 0.660 NA

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1419331-1 Date Collected : NA Client ID : WG1419331-1BLANK Date Received : NA

Sample Location : Date Analyzed : 10/12/20 13:03

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,6010D Analyst : PS

Lab File ID: 101220.txt_icap.txtInstrument ID: TRACE5Sample Amount: 50ml%Solids: N/ADigestion Method: EPA 3005ADate Digested: 10/08/20

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 NONE
 Hardness
 ND
 0.660
 NA
 U

Inorganic Data (ICPMS Analysis)

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042334-01 **Date Collected** : 10/05/20 17:00 **Date Received**

Client ID : 9-R

: 10/05/20 Sample Location : HILLBURN, NY Date Analyzed : 10/09/20 08:42

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,6020B Analyst : AM Lab File ID : WG1420097.pdf Instrument ID : ICPMSQ2

%Solids : N/A Sample Amount : 50ml Digestion Method : EPA 3005A **Date Digested** : 10/08/20

		mg/l				
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
7429-90-5	Aluminum, Total	0.00918	0.0100	0.00327	J	
7440-36-0	Antimony, Total	0.00074	0.00400	0.00042	J	
7440-38-2	Arsenic, Total	0.00046	0.00050	0.00016	J	
7440-39-3	Barium, Total	0.01580	0.00050	0.00017		
7440-41-7	Beryllium, Total	ND	0.00050	0.00010	U	
7440-43-9	Cadmium, Total	0.00045	0.00020	0.00005		
7440-70-2	Calcium, Total	41.1	0.100	0.0394		
7440-47-3	Chromium, Total	0.00355	0.00100	0.00017		
7440-48-4	Cobalt, Total	0.00112	0.00050	0.00016		
7440-50-8	Copper, Total	0.00191	0.00100	0.00038		
7439-89-6	Iron, Total	0.533	0.0500	0.0191		
7439-92-1	Lead, Total	ND	0.00100	0.00034	U	
7439-95-4	Magnesium, Total	10.1	0.0700	0.0242		
7439-96-5	Manganese, Total	1.137	0.00100	0.00044		
7440-02-0	Nickel, Total	0.08511	0.00200	0.00055		
7440-09-7	Potassium, Total	10.2	0.100	0.0309		
7782-49-2	Selenium, Total	ND	0.00500	0.00173	U	
7440-22-4	Silver, Total	ND	0.00040	0.00016	U	
7440-23-5	Sodium, Total	50.0	0.100	0.0293		
7440-28-0	Thallium, Total	ND	0.00050	0.00014	U	
7440-62-2	Vanadium, Total	ND	0.00500	0.00157	U	
7440-66-6	Zinc, Total	ND	0.01000	0.00341	U	

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042334-03 Date Collected : 10/05/20 15:35

Client ID : UP-OS Date Received : 10/05/20 Sample Location : HILLBURN, NY Date Analyzed : 10/09/20 08:47

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,6020B Analyst : AM

Lab File ID: WG1420097.pdfInstrument ID: ICPMSQ2Sample Amount: 50ml%Solids: N/ADigestion Method: EPA 3005ADate Digested: 10/08/20

mg/l Results RL MDL CAS NO. Qualifier **Parameter** 7429-90-5 Aluminum, Total 0.0454 0.0100 0.00327 7440-36-0 Antimony, Total ND 0.00400 0.00042 U 7440-38-2 Arsenic, Total 0.00035 0.00050 0.00016 J 7440-39-3 Barium, Total 0.00286 0.00050 0.00017 7440-41-7 0.00010 U Beryllium, Total ND 0.00050 0.00020 U 7440-43-9 Cadmium, Total ND 0.00005 7440-70-2 Calcium, Total 28.8 0.100 0.0394 7440-47-3 Chromium, Total 0.00132 0.00100 0.00017 7440-48-4 0.00050 0.00016 Cobalt, Total ND 7440-50-8 Copper, Total 0.00057 0.00100 0.00038 J 7439-89-6 Iron, Total 0.0620 0.0500 0.0191 U 7439-92-1 Lead, Total ND 0.00100 0.00034 7439-95-4 Magnesium, Total 7.20 0.0700 0.0242 7439-96-5 Manganese, Total 0.00157 0.00100 0.00044 0.00200 7440-02-0 Nickel, Total ND 0.00055 U 7440-09-7 Potassium, Total 0.758 0.100 0.0309 7782-49-2 Selenium, Total ND 0.00500 0.00173 U 7440-22-4 ND 0.00040 0.00016 U Silver, Total 7440-23-5 Sodium, Total 4.06 0.100 0.0293 7440-28-0 Thallium, Total ND 0.00050 0.00014 U 7440-62-2 Vanadium, Total ND 0.00500 0.00157 U 7440-66-6 Zinc, Total ND 0.01000 0.00341 U

Client : Sterling Environmental Engineering Lab Number : L2042334

: TOWN OF RAMAPO LF : 20010, TASK 200 **Project Name Project Number** Lab ID : L2042334-04 **Date Collected** : 10/05/20 14:00

Client ID : UP-I

Date Received : 10/05/20 Sample Location : HILLBURN, NY Date Analyzed : 10/09/20 08:37

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,6020B Analyst : AM Lab File ID : WG1420097.pdf Instrument ID : ICPMSQ2

%Solids : N/A Sample Amount : 50ml Digestion Method : EPA 3005A **Date Digested** : 10/08/20

			mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
7429-90-5	Aluminum, Total	0.0955	0.0100	0.00327		
7440-36-0	Antimony, Total	0.00194	0.00400	0.00042	J	
7440-38-2	Arsenic, Total	0.00041	0.00050	0.00016	J	
7440-39-3	Barium, Total	0.00608	0.00050	0.00017		
7440-41-7	Beryllium, Total	ND	0.00050	0.00010	U	
7440-43-9	Cadmium, Total	ND	0.00020	0.00005	U	
7440-70-2	Calcium, Total	22.5	0.100	0.0394		
7440-47-3	Chromium, Total	0.02597	0.00100	0.00017		
7440-48-4	Cobalt, Total	0.00048	0.00050	0.00016	J	
7440-50-8	Copper, Total	0.00146	0.00100	0.00038		
7439-89-6	Iron, Total	0.266	0.0500	0.0191		
7439-92-1	Lead, Total	ND	0.00100	0.00034	U	
7439-95-4	Magnesium, Total	4.84	0.0700	0.0242		
7439-96-5	Manganese, Total	0.00561	0.00100	0.00044		
7440-02-0	Nickel, Total	0.01049	0.00200	0.00055		
7440-09-7	Potassium, Total	0.530	0.100	0.0309		
7782-49-2	Selenium, Total	ND	0.00500	0.00173	U	
7440-22-4	Silver, Total	ND	0.00040	0.00016	U	
7440-23-5	Sodium, Total	3.68	0.100	0.0293		
7440-28-0	Thallium, Total	0.00021	0.00050	0.00014	J	
7440-62-2	Vanadium, Total	0.00273	0.00500	0.00157	J	
7440-66-6	Zinc, Total	ND	0.01000	0.00341	U	

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042334-05 Date Collected : 10/05/20 14:50

Client ID : UP-R Date Received : 10/05/20 Sample Location : HILLBURN, NY Date Analyzed : 10/09/20 08:52

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,6020B Analyst : AM

Lab File ID: WG1420097.pdfInstrument ID: ICPMSQ2Sample Amount: 50ml%Solids: N/ADigestion Method: EPA 3005ADate Digested: 10/08/20

			mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
7429-90-5	Aluminum, Total	0.00424	0.0100	0.00327	J	
7440-36-0	Antimony, Total	ND	0.00400	0.00042	U	
7440-38-2	Arsenic, Total	ND	0.00050	0.00016	U	
7440-39-3	Barium, Total	0.00240	0.00050	0.00017		
7440-41-7	Beryllium, Total	ND	0.00050	0.00010	U	
7440-43-9	Cadmium, Total	ND	0.00020	0.00005	U	
7440-70-2	Calcium, Total	12.6	0.100	0.0394		
7440-47-3	Chromium, Total	0.00201	0.00100	0.00017		
7440-48-4	Cobalt, Total	ND	0.00050	0.00016	U	
7440-50-8	Copper, Total	ND	0.00100	0.00038	U	
7439-89-6	Iron, Total	0.0254	0.0500	0.0191	J	
7439-92-1	Lead, Total	ND	0.00100	0.00034	U	
7439-95-4	Magnesium, Total	3.77	0.0700	0.0242		
7439-96-5	Manganese, Total	0.00077	0.00100	0.00044	J	
7440-02-0	Nickel, Total	0.00093	0.00200	0.00055	J	
7440-09-7	Potassium, Total	0.583	0.100	0.0309		
7782-49-2	Selenium, Total	ND	0.00500	0.00173	U	
7440-22-4	Silver, Total	ND	0.00040	0.00016	U	
7440-23-5	Sodium, Total	4.49	0.100	0.0293		
7440-28-0	Thallium, Total	ND	0.00050	0.00014	U	
7440-62-2	Vanadium, Total	ND	0.00500	0.00157	U	
7440-66-6	Zinc, Total	ND	0.01000	0.00341	U	

Client : Sterling Environmental Engineering Lab Number : L2042334

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042334-08
 Date Collected
 : 10/05/20 00:00

 Client ID
 : DUP10052020
 Date Received
 : 10/05/20

Sample Location : HILLBURN, NY Date Analyzed : 10/09/20 09:23
Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 1,6020B Analyst : AM
Lab File ID : WG1420097.pdf Instrument ID : ICPMSQ2

Sample Amount : 50ml %Solids : N/A
Digestion Method : EPA 3005A Date Digested : 10/08/20

			mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
7429-90-5	Aluminum, Total	0.0150	0.0100	0.00327		
7440-36-0	Antimony, Total	0.00202	0.00400	0.00042	J	
7440-38-2	Arsenic, Total	0.00056	0.00050	0.00016		
7440-39-3	Barium, Total	0.01667	0.00050	0.00017		
7440-41-7	Beryllium, Total	ND	0.00050	0.00010	U	
7440-43-9	Cadmium, Total	0.00047	0.00020	0.00005		
7440-70-2	Calcium, Total	40.6	0.100	0.0394		
7440-47-3	Chromium, Total	0.00361	0.00100	0.00017		
7440-48-4	Cobalt, Total	0.00122	0.00050	0.00016		
7440-50-8	Copper, Total	0.00165	0.00100	0.00038		
7439-89-6	Iron, Total	0.606	0.0500	0.0191		
7439-92-1	Lead, Total	ND	0.00100	0.00034	U	
7439-95-4	Magnesium, Total	9.89	0.0700	0.0242		
7439-96-5	Manganese, Total	1.189	0.00100	0.00044		
7440-02-0	Nickel, Total	0.08383	0.00200	0.00055		
7440-09-7	Potassium, Total	9.96	0.100	0.0309		
7782-49-2	Selenium, Total	ND	0.00500	0.00173	U	
7440-22-4	Silver, Total	ND	0.00040	0.00016	U	
7440-23-5	Sodium, Total	48.8	0.100	0.0293		
7440-28-0	Thallium, Total	0.00018	0.00050	0.00014	J	
7440-62-2	Vanadium, Total	ND	0.00500	0.00157	U	
7440-66-6	Zinc, Total	ND	0.01000	0.00341	U	

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1419340-1 Date Collected : NA Client ID : WG1419340-1BLANK Date Received : NA

Sample Location : Date Analyzed : 10/09/20 08:12

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,6020B Analyst : AM
Lab File ID : WG1420097.pdf Instrument ID : ICPMSQ2

Sample Amount : 50ml %Solids : N/A
Digestion Method : EPA 3005A Date Digested : 10/08/20

			mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
			0.0400			
7429-90-5	Aluminum, Total	ND	0.0100	0.00327	U	
7440-36-0	Antimony, Total	ND	0.00400	0.00042	U	
7440-38-2	Arsenic, Total	ND	0.00050	0.00016	U	
7440-39-3	Barium, Total	ND	0.00050	0.00017	U	
7440-41-7	Beryllium, Total	ND	0.00050	0.00010	U	
7440-43-9	Cadmium, Total	ND	0.00020	0.00005	U	
7440-70-2	Calcium, Total	ND	0.100	0.0394	U	
7440-47-3	Chromium, Total	ND	0.00100	0.00017	U	
7440-48-4	Cobalt, Total	ND	0.00050	0.00016	U	
7440-50-8	Copper, Total	ND	0.00100	0.00038	U	
7439-89-6	Iron, Total	ND	0.0500	0.0191	U	
7439-92-1	Lead, Total	ND	0.00100	0.00034	U	
7439-95-4	Magnesium, Total	ND	0.0700	0.0242	U	
7439-96-5	Manganese, Total	ND	0.00100	0.00044	U	
7440-02-0	Nickel, Total	ND	0.00200	0.00055	U	
7440-09-7	Potassium, Total	ND	0.100	0.0309	U	
7782-49-2	Selenium, Total	ND	0.00500	0.00173	U	
7440-22-4	Silver, Total	ND	0.00040	0.00016	U	
7440-23-5	Sodium, Total	ND	0.100	0.0293	U	
7440-28-0	Thallium, Total	ND	0.00050	0.00014	U	
7440-62-2	Vanadium, Total	ND	0.00500	0.00157	U	
7440-66-6	Zinc, Total	ND	0.01000	0.00341	U	

Inorganic Data (Mercury Analysis)

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF **Project Number** : 20010, TASK 200 Lab ID : L2042334-01 **Date Collected** : 10/05/20 17:00

Client ID : 9-R

: 10/05/20 **Date Received** Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 11:52

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,7470A Analyst : EW Lab File ID : HG100820A Instrument ID : FIMS4 %Solids Sample Amount : 25ml : N/A Digestion Method : EPA 7470A **Date Digested** : 10/08/20

mg/l Results RL MDL Qualifier CAS NO. Parameter 7439-97-6 Mercury, Total ND 0.00020 0.00009 U

Client : Sterling Environmental Engineering Lab Number : L2042334

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042334-03
 Date Collected
 : 10/05/20 15:35

 Client ID
 : UP-OS
 Date Received
 : 10/05/20

Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 11:54

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,7470A Analyst : EW Lab File ID : HG100820A Instrument ID : FIMS4 %Solids Sample Amount : 25ml : N/A Digestion Method : EPA 7470A **Date Digested** : 10/08/20

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042334-04 Date Collected : 10/05/20 14:00

Client ID : UP-I Date Received : 10/05/20

Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 11:45 Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 1,7470A Analyst : EW
Lab File ID : HG100820A Instrument ID : FIMS4
Sample Amount : 25ml %Solids : N/A
Digestion Method : EPA 7470A Date Digested : 10/08/20

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042334-05 Date Collected : 10/05/20 14:50

Client ID : UP-R Date Received : 10/05/20

Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 11:56

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,7470A Analyst : EW Lab File ID : HG100820A Instrument ID : FIMS4 %Solids Sample Amount : 25ml : N/A Digestion Method : EPA 7470A **Date Digested** : 10/08/20

Client : Sterling Environmental Engineering Lab Number : L2042334

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042334-08
 Date Collected
 : 10/05/20 00:00

 Client ID
 : DUP10052020
 Date Received
 : 10/05/20

 Sample Location
 : HILLBURN, NY
 Date Analyzed
 : 10/08/20 11:58

Sample Matrix **Dilution Factor** : WATER : 1 Analytical Method : 1,7470A Analyst : EW Lab File ID : HG100820A Instrument ID : FIMS4 %Solids Sample Amount : 25ml : N/A Digestion Method : EPA 7470A **Date Digested** : 10/08/20

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1419342-1 Date Collected : NA Client ID : WG1419342-1BLANK Date Received : NA

Sample Location : Date Analyzed : 10/08/20 11:32

Sample Matrix **Dilution Factor** : WATER : 1 Analytical Method : 1,7470A Analyst : EW Lab File ID : HG100820A Instrument ID : FIMS4 %Solids Sample Amount : 25ml : N/A Digestion Method : EPA 7470A **Date Digested** : 10/08/20

Wet Chemistry

Total Kjeldahl Nitrogen Analysis

Results

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF : 20010, TASK 200 **Project Number** Lab ID : L2042334-01 **Date Collected** : 10/05/20 17:00

Client ID : 9-R

: 10/05/20 **Date Received** Sample Location : HILLBURN, NY Date Analyzed : 10/07/20 19:34

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 121,4500NH3-H Analyst : AT Lab File ID : NH320201007-B Instrument ID : LACHAT

%Solids Sample Amount : N/A Digestion Method: **Date Digested** : 10/06/20

mg/l Results RL MDL CAS NO. **Parameter** Qualifier NONE Nitrogen, Total Kjeldahl 0.832 0.300 0.066

Client : Sterling Environmental Engineering Lab Number : L2042334

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042334-03
 Date Collected
 : 10/05/20 15:35

 Client ID
 : UP-OS
 Date Received
 : 10/05/20

Sample Location : HILLBURN, NY Date Analyzed : 10/07/20 19:35

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 121,4500NH3-H Analyst : AT

Lab File ID: NH320201007-BInstrument ID: LACHATSample Amount: %Solids: N/ADigestion Method: Date Digested: 10/06/20

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 NONE
 Nitrogen, Total Kjeldahl
 0.215
 0.300
 0.066
 J

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042334-04 Date Collected : 10/05/20 14:00

Client ID : UP-I Date Received : 10/05/20

Sample Location : HILLBURN, NY Date Analyzed : 10/07/20 19:36

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 121,4500NH3-H Analyst : AT
Lab File ID : NH320201007-B Instrument ID : LACHAT

Sample Amount : %Solids : N/A
Digestion Method : Date Digested : 10/06/20

CAS NO. Parameter Results RL MDL Qualifier

NONE Nitrogen, Total Kjeldahl 0.183 0.300 0.066 J

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042334-05 Date Collected : 10/05/20 14:50

Client ID : UP-R Date Received : 10/05/20 Sample Location : HILLBURN, NY Date Analyzed : 10/07/20 1

Sample Location : HILLBURN, NY Date Analyzed : 10/07/20 19:39
Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 121,4500NH3-H Analyst : AT
Lab File ID : NH320201007-B Instrument ID : LACHAT
Sample Amount : %Solids : N/A

Digestion Method : %50ilds : N/A Digestion Method : Date Digested : 10/06/20

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 NONE
 Nitrogen, Total Kjeldahl
 0.343
 0.300
 0.066

Client : Sterling Environmental Engineering Lab Number : L2042334

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042334-08
 Date Collected
 : 10/05/20 00:00

 Client ID
 : DUP10052020
 Date Received
 : 10/05/20

Sample Location : HILLBURN, NY Date Analyzed : 10/07/20 19:40

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 121,4500NH3-H Analyst : AT
Lab File ID : NH320201007-B Instrument ID : LAC

Lab File ID: NH320201007-BInstrument ID: LACHATSample Amount: %Solids: N/ADigestion Method: Date Digested: 10/06/20

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 NONE
 Nitrogen, Total Kjeldahl
 0.872
 0.300
 0.066

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1418683-1 Date Collected : NA Client ID : WG1418683-1BLANK Date Received : NA

Sample Location : WG1418683-1BLANK Date Received : NA

Sample Location : Date Analyzed : 10/07/20 19:31

Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 121,4500NH3-H Analyst : AT
Lab File ID : NH320201007-B Instrument ID : LACHAT
Sample Amount : %Solids : N/A

Digestion Method : Date Digested : 10/06/20

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 NONE
 Nitrogen, Total Kjeldahl
 0.112
 0.300
 0.022
 J

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200
Lab ID Date Collected : 10/05/20 14:00

Client ID : UP-IDUP Date Received : 10/05/20

Sample Location : Date Analyzed : 10/07/20 19:38 Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 121,4500NH3-H Analyst : AT
Lab File ID : NH320201007-B Instrument ID : LACHAT
Sample Amount : %Solids : N/A

Digestion Method : Date Digested : 10/06/20

CAS NO. Parameter Results RL MDL Qualifier

NONE Nitrogen, Total Kjeldahl 0.209 0.300 0.066 J

Chemical Oxygen Demand Analysis

Results

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200
Lab ID Date Collected : 10/05/20 17:00

Client ID : 9-R Date Received : 10/05/20 Sample Location : HILLBURN, NY Date Analyzed : 10/07/20 21:12

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1419440.csv Instrument ID : GENSYS10VI

			mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
COD	Chemical Oxygen Demand	ND	10	2.7	U	

Client : Sterling Environmental Engineering Lab Number : L2042334

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042334-03
 Date Collected
 : 10/05/20 15:35

 Client ID
 : UP-OS
 Date Received
 : 10/05/20

Sample Location : HILLBURN, NY Date Analyzed : 10/07/20 21:13 Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1419440.csv Instrument ID : GENSYS10VI

			mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
COD	Chemical Oxygen Demand	ND	10	2.7	U	

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200
Lab ID Date Collected : 10/05/20 14:00

Client ID : UP-I Date Received : 10/05/20 Sample Location : HILLBURN, NY Date Analyzed : 10/07/20 21:13

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1419440.csv Instrument ID : GENSYS10VI

Sample Amount : %Solids : N/A
Digestion Method : Date Digested : 10/07/20

CAS NO. Parameter Results RL MDL Qualifier

COD Chemical Oxygen Demand ND 10 2.7 U

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200
Lab ID Date Collected : 10/05/20 14:50

Client ID : UP-R Date Received : 10/05/20 Sample Location : HILLBURN, NY Date Analyzed : 10/07/20 21:13

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1419440.csv Instrument ID : GENSYS10VI

			mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
000	Ohamical Outron Damand	5.0	10	0.7		
COD	Chemical Oxygen Demand	5.2	10	2.7	J	

Client : Sterling Environmental Engineering Lab Number : L2042334

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042334-08
 Date Collected
 : 10/05/20 00:00

 Client ID
 : DUP10052020
 Date Received
 : 10/05/20

 Sample Location
 : HILLBURN, NY
 Date Analyzed
 : 10/07/20 21:13

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1419440.csv Instrument ID : GENSYS10VI

			mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
COD	Chemical Owner Demand	0.0	10	0.7		
СОБ	Chemical Oxygen Demand	2.8	10	2.7	J	

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1419440-1 Date Collected : NA Client ID : WG1419440-1BLANK Date Received : NA

Sample Location : Date Analyzed : 10/07/20 21:12

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1419440.csv Instrument ID : GENSYS10VI

			mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
COD	Chemical Oxygen Demand	ND	10	2.7	U	

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200
Lab ID : WG1419440-4 Date Collected : 10/05/20 14:00
Client ID : UP-IDUP Date Received : 10/05/20

Sample Location : Date Analyzed : 10/05/20 11:15

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 44,410.4 Analyst : tlh

Lab File ID : WG1419440.csv Instrument ID : GENSYS10VI

			mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
COD	Chemical Oxygen Demand	ND	10	2.7	U	

Alkalinity Analysis

Results

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF : 20010, TASK 200 **Project Number** Lab ID : L2042334-01 **Date Collected** : 10/05/20 17:00 **Date Received**

: 9-R Client ID

: 10/05/20 Sample Location : HILLBURN, NY Date Analyzed : 10/07/20 11:58

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 121,2320B Analyst : BR Lab File ID : WG1418554.csv Instrument ID

%Solids Sample Amount : N/A

Digestion Method: **Date Digested**

			mg CaCO3/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
471-34-1	Alkalinity, Total	128.	2.00	NA	

Client : Sterling Environmental Engineering Lab Number : L2042334

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042334-03
 Date Collected
 : 10/05/20 15:35

 Client ID
 : UP-OS
 Date Received
 : 10/05/20

Sample Location : HILLBURN, NY Date Analyzed : 10/07/20 11:58

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 121,2320B Analyst : BR

Lab File ID : WG1418554.csv Instrument ID : Sample Amount : %Solids : N/A

Digestion Method : Date Digested :

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 471-34-1
 Alkalinity, Total
 102.
 2.00
 NA

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042334-04 Date Collected : 10/05/20 14:00

Client ID : UP-I Date Received : 10/05/20

Sample Location : HILLBURN, NY Date Analyzed : 10/07/20 11:58 Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 121,2320B Analyst : BR
Lab File ID : WG1418554.csv Instrument ID :

Sample Amount : %Solids : N/A

Digestion Method : Date Digested

		mg CaCO3/L				
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
471-34-1	Alkalinity, Total	72.0	2.00	NA		

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF **Project Number** : 20010, TASK 200 Lab ID : L2042334-05 **Date Collected** : 10/05/20 14:50

: UP-R : 10/05/20 **Client ID Date Received** Sample Location : HILLBURN, NY **Date Analyzed** : 10/07/20 11:58

Sample Matrix : WATER **Dilution Factor** : 1

Analytical Method : 121,2320B **Analyst** : BR Lab File ID : WG1418554.csv Instrument ID

%Solids Sample Amount : N/A

Digestion Method: **Date Digested** :

mg CaCO3/L Results RL MDL CAS NO. **Parameter** Qualifier 471-34-1 Alkalinity, Total 42.0 2.00 NA

Client : Sterling Environmental Engineering Lab Number : L2042334

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042334-08
 Date Collected
 : 10/05/20 00:00

 Client ID
 : DUP10052020
 Date Received
 : 10/05/20

Sample Location : HILLBURN, NY Date Analyzed : 10/07/20 11:58

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 121,2320B Analyst : BR
Lab File ID : WG1418554.csv Instrument ID :

Sample Amount : %Solids : N/A

Digestion Method : Date Digested :

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 471-34-1
 Alkalinity, Total
 130.
 2.00
 NA

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1418554-1 Date Collected : NA Client ID : WG1418554-1BLANK Date Received : NA

Sample Location : Date Analyzed : 10/07/20 11:58

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 121,2320B Analyst : BR
Lab File ID : WG1418554.csv Instrument ID :

Sample Amount : %Solids : N/A

Digestion Method : Date Digested :

		mg CaCO3/L	
CAS NO.	Parameter	Results RL MDL Qualifier	
471-34-1	Alkalinity, Total	ND 2.00 NA U	

Client : Sterling Environmental Engineering Lab Number : L2042334

Project Name : TOWN OF RAMAPO LF **Project Number** : 20010, TASK 200 Lab ID : WG1418554-3 **Date Collected** : 10/05/20 14:00

: UP-IDUP : 10/05/20 **Client ID Date Received** Sample Location **Date Analyzed** : 10/07/20 11:58

Sample Matrix **Dilution Factor** : WATER : 1 Analytical Method : 121,2320B : BR

Analyst Lab File ID : WG1418554.csv Instrument ID

%Solids Sample Amount : N/A :

Digestion Method: **Date Digested**

mg CaCO3/L Results RL MDL CAS NO. **Parameter** Qualifier 471-34-1 Alkalinity, Total 71.0 2.00 NA

ANALYTICAL REPORT

Lab Number: L2042977

Client: Sterling Environmental Engineering

24 Wade Road Latham, NY 12110

ATTN: Mark Williams
Phone: (518) 456-4900

Project Name: TOWN OF RAMAPO

Project Number: 20010, TASK 200

Report Date: 10/19/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: TOWN OF RAMAPO **Project Number:** 20010, TASK 200

Lab Number: L2042977 **Report Date:** 10/19/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2042977-01	9-R	WATER	HILLBURN, NY	10/05/20 17:00	10/05/20
L2042977-02	UP-OS	WATER	HILLBURN, NY	10/05/20 15:35	10/05/20
L2042977-03	UP-I	WATER	HILLBURN, NY	10/05/20 14:00	10/05/20
L2042977-04	UP-R	WATER	HILLBURN, NY	10/05/20 14:50	10/05/20
L2042977-05	EB10052020	WATER	HILLBURN, NY	10/05/20 12:45	10/05/20
L2042977-06	FB10052020	FIELD BLANK	HILLBURN, NY	10/05/20 12:40	10/05/20
L2042977-07	DUP10052020	WATER	HILLBURN, NY	10/05/20 00:00	10/05/20

Project Name:TOWN OF RAMAPOLab Number:L2042977Project Number:20010, TASK 200Report Date:10/19/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:TOWN OF RAMAPOLab Number:L2042977Project Number:20010, TASK 200Report Date:10/19/20

Case Narrative (continued)

Report Submission

October 19, 2020: Final Report.

October 12, 2020: Preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Juan & Med Susan O' Neil

Title: Technical Director/Representative Date: 10/19/20

ORGANICS

SEMIVOLATILES

10/05/20 17:00

Date Collected:

Project Name: Lab Number: TOWN OF RAMAPO L2042977

Project Number: Report Date: 20010, TASK 200 10/19/20

SAMPLE RESULTS

Lab ID: L2042977-01

Client ID: Date Received: 10/05/20 9-R

Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 10/08/20 08:00 Analytical Method: 1,8270D-SIM Analytical Date: 10/09/20 13:26

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mansfield Lab						
1,4-Dioxane	2690		ng/l	139	31.4	1
Surrogate			% Recovery	Qualifier		eptance iteria
1,4-Dioxane-d8			43		1	15-110

Project Name: Lab Number: TOWN OF RAMAPO L2042977

Project Number: Report Date: 20010, TASK 200 10/19/20

SAMPLE RESULTS

Lab ID: L2042977-01 Date Collected: 10/05/20 17:00

Date Received: Client ID: 9-R 10/05/20 Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: ALPHA 23528 Matrix: Water

Extraction Date: 10/15/20 13:45 Analytical Method: 134,LCMSMS-ID Analytical Date:

Analyst: JW

10/16/20 15:40

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	41.6		ng/l	1.83	0.374	1
Perfluoropentanoic Acid (PFPeA)	9.24		ng/l	1.83	0.363	1
Perfluorobutanesulfonic Acid (PFBS)	4.00		ng/l	1.83	0.218	1
Perfluorohexanoic Acid (PFHxA)	9.41		ng/l	1.83	0.301	1
Perfluoroheptanoic Acid (PFHpA)	5.70		ng/l	1.83	0.206	1
Perfluorohexanesulfonic Acid (PFHxS)	2.22	F	ng/l	1.83	0.345	1
Perfluorooctanoic Acid (PFOA)	9.85		ng/l	1.83	0.216	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.83	1.22	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.83	0.631	1
Perfluorononanoic Acid (PFNA)	23.0		ng/l	1.83	0.286	1
Perfluorooctanesulfonic Acid (PFOS)	5.36	F	ng/l	1.83	0.462	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.83	0.279	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.83	1.11	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.83	0.594	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.83	0.238	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.83	0.898	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.83	0.532	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.83	0.737	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.83	0.341	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.83	0.300	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.83	0.227	1
PFOA/PFOS, Total	15.2		ng/l	1.83	0.216	1

Project Name: TOWN OF RAMAPO Lab Number: L2042977

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

SAMPLE RESULTS

Lab ID: L2042977-01 Date Collected: 10/05/20 17:00

Client ID: 9-R Date Received: 10/05/20 Sample Location: HILLBURN, NY Field Prep: Not Specified

Campio Education.

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	70	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	79	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	86	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	68	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	70	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	97	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	71	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	83	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	74	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	91	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	68	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	66	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	30	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	67	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	23	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	38	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	61	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	55	33-143

Project Name: TOWN OF RAMAPO Lab Number: L2042977

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

SAMPLE RESULTS

Lab ID: L2042977-02 Date Collected: 10/05/20 15:35

Client ID: UP-OS Date Received: 10/05/20 Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 10/08/20 08:00
Analytical Date: 10/09/20 13:57

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Ma	nsfield Lab					
1,4-Dioxane	ND		ng/l	144	32.6	1
Surrogate			% Recovery	Qualifier		eptance riteria
1,4-Dioxane-d8			45			15-110

Project Name: TOWN OF RAMAPO Lab Number: L2042977

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

SAMPLE RESULTS

Lab ID: L2042977-02 Date Collected: 10/05/20 15:35

Client ID: UP-OS Date Received: 10/05/20 Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 10/15/20 13:45
Analytical Date: 10/16/20 15:56

Analyst: JW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	0.403	J	ng/l	1.74	0.354	1
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	1.74	0.344	1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.74	0.206	1
Perfluorohexanoic Acid (PFHxA)	0.462	J	ng/l	1.74	0.285	1
Perfluoroheptanoic Acid (PFHpA)	0.302	J	ng/l	1.74	0.195	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.74	0.326	1
Perfluorooctanoic Acid (PFOA)	2.73		ng/l	1.74	0.205	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.74	1.16	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.74	0.597	1
Perfluorononanoic Acid (PFNA)	0.302	J	ng/l	1.74	0.271	1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.74	0.437	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.74	0.264	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.74	1.05	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.74	0.562	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.74	0.226	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.74	0.850	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.74	0.503	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.74	0.698	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.74	0.323	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.74	0.284	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.74	0.215	1
PFOA/PFOS, Total	2.73		ng/l	1.74	0.205	1

Project Name: TOWN OF RAMAPO Lab Number: L2042977

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

SAMPLE RESULTS

Lab ID: L2042977-02 Date Collected: 10/05/20 15:35

Client ID: UP-OS Date Received: 10/05/20 Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	89	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	105	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	92	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	91	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	90	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	96	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	91	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	59	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	93	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	92	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	88	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	68	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	57	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	89	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	31	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	76	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	77	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	63	33-143

Project Name: TOWN OF RAMAPO Lab Number: L2042977

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

SAMPLE RESULTS

Lab ID: L2042977-03 Date Collected: 10/05/20 14:00

Client ID: UP-I Date Received: 10/05/20 Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 10/08/20 08:00
Analytical Date: 10/09/20 14:28

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mans	field Lab					
1,4-Dioxane	ND		ng/l	144	32.6	1
Surrogate			% Recovery	Qualifier		eptance riteria
1,4-Dioxane-d8			39			15-110

Project Name: Lab Number: TOWN OF RAMAPO L2042977

Project Number: Report Date: 20010, TASK 200 10/19/20

SAMPLE RESULTS

Lab ID: L2042977-03 Date Collected: 10/05/20 14:00

Date Received: Client ID: UP-I 10/05/20 Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: ALPHA 23528 Matrix: Water

Extraction Date: 10/15/20 13:45 Analytical Method: 134,LCMSMS-ID Analytical Date:

Analyst: JW

10/16/20 16:13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	ND		ng/l	1.82	0.372	1
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	1.82	0.361	1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.82	0.217	1
Perfluorohexanoic Acid (PFHxA)	0.302	J	ng/l	1.82	0.299	1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.82	0.205	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.82	0.343	1
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.82	0.215	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.82	1.21	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.82	0.627	1
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.82	0.284	1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.82	0.459	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.82	0.277	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.82	1.10	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.82	0.590	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.82	0.237	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.82	0.893	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.82	0.529	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.82	0.733	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.82	0.339	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.82	0.298	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.82	0.226	1
PFOA/PFOS, Total	ND		ng/l	1.82	0.215	1

Project Name: TOWN OF RAMAPO Lab Number: L2042977

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

SAMPLE RESULTS

Lab ID: L2042977-03 Date Collected: 10/05/20 14:00

Client ID: UP-I Date Received: 10/05/20 Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	84	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	101	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	88	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	86	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	84	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	93	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	86	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	58	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	90	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	85	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	81	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	61	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	53	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	80	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	27	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	60	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	72	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	63	33-143

Project Name: TOWN OF RAMAPO Lab Number: L2042977

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

SAMPLE RESULTS

Lab ID: L2042977-04 Date Collected: 10/05/20 14:50

Client ID: UP-R Date Received: 10/05/20 Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 10/08/20 08:00
Analytical Date: 10/09/20 16:05

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mansfield La	ab					
1,4-Dioxane	ND		ng/l	144	32.6	1
Surrogate			% Recovery	Qualifier		eptance riteria
1,4-Dioxane-d8			42			15-110

Project Name: Lab Number: TOWN OF RAMAPO L2042977

Project Number: Report Date: 20010, TASK 200 10/19/20

SAMPLE RESULTS

Lab ID: L2042977-04 Date Collected: 10/05/20 14:50

Date Received: 10/05/20 Client ID: UP-R Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: ALPHA 23528 Matrix: Water

Extraction Date: 10/15/20 13:45 Analytical Method: 134,LCMSMS-ID Analytical Date:

Analyst: JW

10/16/20 17:03

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	ND		ng/l	1.83	0.373	1
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	1.83	0.362	1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.83	0.218	1
Perfluorohexanoic Acid (PFHxA)	0.359	J	ng/l	1.83	0.300	1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.83	0.206	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.83	0.344	1
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.83	0.216	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.83	1.22	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.83	0.630	1
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.83	0.286	1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.83	0.461	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.83	0.278	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.83	1.11	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.83	0.593	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.83	0.238	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.83	0.897	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.83	0.531	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.83	0.736	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.83	0.340	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.83	0.299	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.83	0.227	1
PFOA/PFOS, Total	ND		ng/l	1.83	0.216	1

Project Name: TOWN OF RAMAPO Lab Number: L2042977

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

SAMPLE RESULTS

Lab ID: L2042977-04 Date Collected: 10/05/20 14:50

Client ID: UP-R Date Received: 10/05/20 Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	85	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	100	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	85	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	84	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	84	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	92	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	85	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	60	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	83	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	78	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	76	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	56	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	45	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	80	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	24	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	69	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	71	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	61	33-143

Project Name: TOWN OF RAMAPO Lab Number: L2042977

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

SAMPLE RESULTS

Lab ID: L2042977-05 Date Collected: 10/05/20 12:45

Client ID: EB10052020 Date Received: 10/05/20 Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 10/15/20 13:45

Analyst: JW

10/16/20 17:19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab							
Perfluorobutanoic Acid (PFBA)	ND		ng/l	1.89	0.386	1	
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	1.89	0.374	1	
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.89	0.225	1	
Perfluorohexanoic Acid (PFHxA)	0.374	J	ng/l	1.89	0.310	1	
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.89	0.213	1	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.89	0.356	1	
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.89	0.223	1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.89	1.26	1	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.89	0.650	1	
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.89	0.295	1	
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.89	0.476	1	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.89	0.287	1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.89	1.15	1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.89	0.613	1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.89	0.246	1	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.89	0.927	1	
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.89	0.548	1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.89	0.760	1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.89	0.352	1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.89	0.309	1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.89	0.234	1	
PFOA/PFOS, Total	ND		ng/l	1.89	0.223	1	

Project Name: TOWN OF RAMAPO Lab Number: L2042977

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

SAMPLE RESULTS

Lab ID: L2042977-05 Date Collected: 10/05/20 12:45

Client ID: EB10052020 Date Received: 10/05/20 Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	83	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	102	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	84	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	81	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	81	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	90	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	83	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	56	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	82	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	81	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	79	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	64	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	59	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	83	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	51	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	60	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	74	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	61	33-143

Project Name: TOWN OF RAMAPO Lab Number: L2042977

Project Number: 20010, TASK 200 Report Date: 10/19/20

SAMPLE RESULTS

Lab ID:L2042977-06Date Collected:10/05/20 12:40Client ID:FB10052020Date Received:10/05/20Sample Location:HILLBURN, NYField Prep:Not Specified

Sample Depth:

Matrix: Field Blank Extraction Method: ALPHA 23528
Analytical Method: 134,LCMSMS-ID Extraction Date: 10/15/20 13:45

Analytical Date: 10/16/20 17:36 Analyst: JW

Result Qualifier Units RL MDL **Dilution Factor Parameter** Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Perfluorobutanoic Acid (PFBA) ND 1.83 0.372 1 ng/l Perfluoropentanoic Acid (PFPeA) ND 1.83 0.362 ng/l Perfluorobutanesulfonic Acid (PFBS) ND 1.83 0.217 1 ng/l J Perfluorohexanoic Acid (PFHxA) 0.332 ng/l 1.83 0.299 1 Perfluoroheptanoic Acid (PFHpA) ND ng/l 1.83 0.206 1 Perfluorohexanesulfonic Acid (PFHxS) ND ng/l 1.83 0.343 1 Perfluorooctanoic Acid (PFOA) ND 0.215 1.83 1 ng/l 1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS) ND 1.83 1.22 1 ng/l Perfluoroheptanesulfonic Acid (PFHpS) ND ng/l 1.83 0.628 1 Perfluorononanoic Acid (PFNA) ND 1.83 0.285 1 ng/l Perfluorooctanesulfonic Acid (PFOS) ND 1.83 0.460 1 ng/l Perfluorodecanoic Acid (PFDA) ND 0.278 ng/l 1.83 1 1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS) ND 1.83 1.11 1 ng/l N-Methyl Perfluorooctanesulfonamidoacetic Acid ND 1.83 0.592 1 ng/l (NMeFÓSAA) Perfluoroundecanoic Acid (PFUnA) ND 1.83 0.237 1 ng/l Perfluorodecanesulfonic Acid (PFDS) ND 1.83 0.895 1 ng/l Perfluorooctanesulfonamide (FOSA) ND 1 ng/l 1.83 0.530 N-Ethyl Perfluorooctanesulfonamidoacetic Acid ND 1.83 0.734 1 ng/l (NEtFOSAA) ND 1 Perfluorododecanoic Acid (PFDoA) 1.83 0.340 ng/l Perfluorotridecanoic Acid (PFTrDA) ND 1.83 0.299 1 ng/l Perfluorotetradecanoic Acid (PFTA) ND 1.83 0.226 1 ng/l ND PFOA/PFOS, Total 1.83 0.215 1 ng/l

Project Name: TOWN OF RAMAPO Lab Number: L2042977

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

SAMPLE RESULTS

Lab ID: L2042977-06 Date Collected: 10/05/20 12:40

Client ID: FB10052020 Date Received: 10/05/20 Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	84	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	101	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	83	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	80	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	81	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	89	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	82	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	55	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	81	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	84	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	81	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	62	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	59	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	85	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	50	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	62	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	77	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	64	33-143

Project Name: Lab Number: TOWN OF RAMAPO L2042977

Project Number: Report Date: 20010, TASK 200 10/19/20

SAMPLE RESULTS

Lab ID: L2042977-07 Date Collected: 10/05/20 00:00 Date Received: Client ID: 10/05/20 DUP10052020 Sample Location: Field Prep: HILLBURN, NY Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 10/08/20 08:00 Analytical Method: 1,8270D-SIM Analytical Date:

Analyst: PS

10/09/20 16:37

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mans	field Lab					
1,4-Dioxane	2760		ng/l	139	31.4	1
Surrogate			% Recovery	Qualifier		eptance riteria
1,4-Dioxane-d8			44			15-110

Project Name: Lab Number: TOWN OF RAMAPO L2042977

Project Number: Report Date: 20010, TASK 200 10/19/20

SAMPLE RESULTS

Lab ID: L2042977-07 Date Collected: 10/05/20 00:00

Date Received: Client ID: 10/05/20 DUP10052020 Sample Location: Field Prep: HILLBURN, NY Not Specified

Sample Depth:

Extraction Method: ALPHA 23528 Matrix: Water

Extraction Date: 10/15/20 13:45 Analytical Method: 134,LCMSMS-ID Analytical Date:

Analyst: JW

10/16/20 17:52

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab								
Perfluorobutanoic Acid (PFBA)	41.9		ng/l	1.77	0.361	1		
Perfluoropentanoic Acid (PFPeA)	9.04		ng/l	1.77	0.350	1		
Perfluorobutanesulfonic Acid (PFBS)	3.49		ng/l	1.77	0.210	1		
Perfluorohexanoic Acid (PFHxA)	9.52		ng/l	1.77	0.290	1		
Perfluoroheptanoic Acid (PFHpA)	5.72		ng/l	1.77	0.199	1		
Perfluorohexanesulfonic Acid (PFHxS)	2.23		ng/l	1.77	0.333	1		
Perfluorooctanoic Acid (PFOA)	9.56		ng/l	1.77	0.209	1		
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.77	1.18	1		
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.77	0.609	1		
Perfluorononanoic Acid (PFNA)	23.4		ng/l	1.77	0.276	1		
Perfluorooctanesulfonic Acid (PFOS)	5.71	F	ng/l	1.77	0.446	1		
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.77	0.269	1		
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.77	1.07	1		
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.77	0.573	1		
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.77	0.230	1		
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.77	0.867	1		
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.77	0.513	1		
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.77	0.711	1		
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.77	0.329	1		
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.77	0.290	1		
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.77	0.219	1		
PFOA/PFOS, Total	15.3		ng/l	1.77	0.209	1		

Project Name: TOWN OF RAMAPO Lab Number: L2042977

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

SAMPLE RESULTS

Lab ID: L2042977-07 Date Collected: 10/05/20 00:00

Client ID: DUP10052020 Date Received: 10/05/20 Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	65	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	72	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	83	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	64	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	68	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	96	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	66	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	78	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	67	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	84	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	67	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	63	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	39	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	69	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	19	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	44	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	65	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	58	33-143

Project Name: TOWN OF RAMAPO Lab Number: L2042977

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 10/09/20 11:06 Extraction Date: 10/08/20 08:00

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	
1,4 Dioxane by 8270D-SIM -	Mansfield Lab for s	ample(s):	01-04,07	Batch:	WG1419924-1	
1,4-Dioxane	ND		ng/l	150	33.9	

Surrogate %Recovery Qualifier Criteria

1,4-Dioxane-d8 42 15-110

L2042977

Project Name: TOWN OF RAMAPO

Project Number: Report Date: 20010, TASK 200

10/19/20

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 134,LCMSMS-ID Extraction Method: ALPHA 23528 Analytical Date: 10/16/20 13:43 10/15/20 13:45 **Extraction Date:**

Analyst: JW

Parameter	Result	Qualifier	Units	RL	MDL	
Perfluorinated Alkyl Acids by Isotope	Dilution - I	Mansfield	Lab for sa	ample(s): 01-07	Batch:	WG1422452-1
Perfluorobutanoic Acid (PFBA)	ND		ng/l	2.00	0.408	
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.00	0.396	
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00	0.238	
Perfluorohexanoic Acid (PFHxA)	0.416	J	ng/l	2.00	0.328	
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00	0.225	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00	0.376	
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00	0.236	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	l ND		ng/l	2.00	1.33	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.00	0.688	
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00	0.312	
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00	0.504	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00	0.304	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	d ND		ng/l	2.00	1.21	
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	c ND		ng/l	2.00	0.648	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00	0.260	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	2.00	0.980	
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	2.00	0.580	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	2.00	0.804	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00	0.372	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00	0.327	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00	0.248	
PFOA/PFOS, Total	ND		ng/l	2.00	0.236	

Project Name: TOWN OF RAMAPO Lab Number: L2042977

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

Method Blank Analysis
Batch Quality Control

Analytical Method: 134,LCMSMS-ID Extraction Method: ALPHA 23528
Analytical Date: 10/16/20 13:43 Extraction Date: 10/15/20 13:45

Analyst: JW

Parameter Result Qualifier Units RL MDL

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab for sample(s): 01-07 Batch: WG1422452-1

		Acceptance
Surrogate (Extracted Internal Standard)	%Recovery	Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	86	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	107	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	86	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	84	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	81	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	89	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	87	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	68	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	97	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	94	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	86	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	69	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	65	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	90	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	45	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	71	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	82	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	68	33-143

Lab Control Sample Analysis Batch Quality Control

Project Name: TOWN OF RAMAPO

Project Number:

20010, TASK 200

Lab Number:

L2042977

Report Date:

10/19/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	' Qual	%Recovery Limits	RPD	PPD mits
1,4 Dioxane by 8270D-SIM - Mansfield Lab	Associated sample(s): 01-04,07	7 Batch: V	WG1419924-2	WG1419924-3		
1,4-Dioxane	105		102		40-140	3	30

Surrogate	LCS	LCSD	Acceptance
	%Recovery Q	ual %Recovery	Qual Criteria
1,4-Dioxane-d8	44	47	15-110

Lab Control Sample Analysis Batch Quality Control

Project Name: TOWN OF RAMAPO

Project Number: 20010, TASK 200

Lab Number: L2042977

Report Date: 10/19/20

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfield Lab	Associated sample(s): 01-0	7 Batch: WG1422452-2 W	/G1422452-3	
Perfluorobutanoic Acid (PFBA)	109	116	67-148	6	30
Perfluoropentanoic Acid (PFPeA)	103	110	63-161	7	30
Perfluorobutanesulfonic Acid (PFBS)	94	101	65-157	7	30
Perfluorohexanoic Acid (PFHxA)	107	115	69-168	7	30
Perfluoroheptanoic Acid (PFHpA)	108	114	58-159	5	30
Perfluorohexanesulfonic Acid (PFHxS)	107	111	69-177	4	30
Perfluorooctanoic Acid (PFOA)	106	112	63-159	6	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	118	133	49-187	12	30
Perfluoroheptanesulfonic Acid (PFHpS)	105	110	61-179	5	30
Perfluorononanoic Acid (PFNA)	101	111	68-171	9	30
Perfluorooctanesulfonic Acid (PFOS)	114	117	52-151	3	30
Perfluorodecanoic Acid (PFDA)	106	112	63-171	6	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	124	127	56-173	2	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	111	108	60-166	3	30
Perfluoroundecanoic Acid (PFUnA)	107	120	60-153	11	30
Perfluorodecanesulfonic Acid (PFDS)	124	121	38-156	2	30
Perfluorooctanesulfonamide (FOSA)	109	115	46-170	5	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	113	119	45-170	5	30
Perfluorododecanoic Acid (PFDoA)	116	125	67-153	7	30
Perfluorotridecanoic Acid (PFTrDA)	124	125	48-158	1	30
Perfluorotetradecanoic Acid (PFTA)	118	118	59-182	0	30

Lab Control Sample Analysis Batch Quality Control

Project Name: TOWN OF RAMAPO

20010, TASK 200

Project Number:

WN OF RAMAPO

Lab Number:

L2042977

Report Date:

10/19/20

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01-07 Batch: WG1422452-2 WG1422452-3

Surrogate (Extracted Internal Standard)	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
- <u> </u>	-					_
Perfluoro[13C4]Butanoic Acid (MPFBA)	87		86		2-156	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	106		102		16-173	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	88		91		31-159	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	87		84		21-145	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	84		82		30-139	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	90		92		47-153	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	89		87		36-149	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	64		64		1-244	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	100		94		34-146	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	90		95		42-146	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	88		86		38-144	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	66		72		7-170	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	63		67		1-181	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	91		85		40-144	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	55		61		1-87	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	68		71		23-146	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	81		80		24-161	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	69		68		33-143	

Matrix Spike Analysis Batch Quality Control

42

Project Name:TOWN OF RAMAPOProject Number:20010, TASK 200

Lab Number:

L2042977

Report Date:

15-110

10/19/20

Parameter	Native Sample	MS Added	MS Found	MS %Recove	ery Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits	
1,4 Dioxane by 8270D-SIM UP-I	- Mansfield Lab	Associated	sample(s): (01-04,07 Q	C Batch ID:	WG141992	24-4 WG14199	24-5	QC Sample:	L20429	77-03	Client ID:	
1,4-Dioxane	ND	4630	4940	107		5040	105		40-140	2		30	
Surrogate			% 1	MS Recovery	Qualifier	% Red	MSD covery Qual	ifier	Accept Crite				

46

1,4-Dioxane-d8

Matrix Spike Analysis Batch Quality Control

Project Name:TOWN OF RAMAPOProject Number:20010, TASK 200

Lab Number:

L2042977

Report Date:

10/19/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by Is Client ID: UP-I	sotope Dilution	- Mansfield	Lab Associ	ated sample(s):	01-07	QC Batch	ID: WG142245	2-4 WG1422452-5	QC S	ample: L	2042977-03
Perfluorobutanoic Acid (PFBA)	ND	35.6	40.0	112		40.7	113	67-148	2		30
Perfluoropentanoic Acid (PFPeA)	ND	35.6	39.6	111		40.4	112	63-161	2		30
Perfluorobutanesulfonic Acid (PFBS)	ND	31.6	32.4	102		33.0	103	65-157	2		30
Perfluorohexanoic Acid (PFHxA)	0.302J	35.6	39.6	110		41.2	113	69-168	4		30
Perfluoroheptanoic Acid (PFHpA)	ND	35.6	39.3	110		40.2	112	58-159	2		30
Perfluorohexanesulfonic Acid (PFHxS)	ND	32.6	35.3F	108		36.3	110	69-177	3		30
Perfluorooctanoic Acid (PFOA)	ND	35.6	39.8	112		40.8	113	63-159	2		30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	33.9	42.3F	125		41.7	121	49-187	1		30
Perfluoroheptanesulfonic Acid (PFHpS)	ND	33.9	37.4	110		39.8	116	61-179	6		30
Perfluorononanoic Acid (PFNA)	ND	35.6	39.8	112		40.2	112	68-171	1		30
Perfluorooctanesulfonic Acid (PFOS)	ND	33.1	39.9F	121		40.6F	121	52-151	2		30
Perfluorodecanoic Acid (PFDA)	ND	35.6	38.9	109		38.8	108	63-171	0		30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	34.2	44.1F	129		45.7F	132	56-173	4		30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	35.6	42.7	120		43.2	120	60-166	1		30
Perfluoroundecanoic Acid (PFUnA)	ND	35.6	40.2	113		40.5	112	60-153	1		30
Perfluorodecanesulfonic Acid (PFDS)	ND	34.3	42.3	123		43.1	124	38-156	2		30
Perfluorooctanesulfonamide (FOSA)	ND	35.6	40.0	112		40.5F	112	46-170	1		30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	35.6	42.4	119		45.6	126	45-170	7		30
Perfluorododecanoic Acid (PFDoA)	ND	35.6	42.6	120		40.9	113	67-153	4		30
Perfluorotridecanoic Acid (PFTrDA)	ND	35.6	43.5	122		43.7	121	48-158	0		30
Perfluorotetradecanoic Acid (PFTA)	ND	35.6	40.7	114		41.2	114	59-182	1		30

Matrix Spike Analysis Batch Quality Control

Project Name:TOWN OF RAMAPOProject Number:20010, TASK 200

Lab Number:

L2042977

Report Date:

10/19/20

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01-07 QC Batch ID: WG1422452-4 WG1422452-5 QC Sample: L2042977-03 Client ID: UP-I

	MS	5	M:	SD	Acceptance	
Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	62		59		7-170	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	63		59		1-244	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	64		59		23-146	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	58		53		1-181	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	87		80		40-144	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	86		79		38-144	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	91		81		21-145	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	89		80		30-139	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	96		91		47-153	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	79		72		24-161	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	68		61		33-143	
Perfluoro[13C4]Butanoic Acid (MPFBA)	89		82		2-156	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	106		98		16-173	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	41		33		1-87	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	90		84		42-146	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	91		82		36-149	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	91		85		34-146	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	92		86		31-159	

Project Name: TOWN OF RAMAPO Lab Number: L2042977 Project Number: 20010, TASK 200

Report Date: 10/19/20

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent В Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2042977-01D	Plastic 250ml unpreserved	В	NA		6.0	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2042977-01E	Plastic 250ml unpreserved	В	NA		6.0	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2042977-01I	Amber 250ml unpreserved	Α	7	7	2.7	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2042977-01J	Amber 250ml unpreserved	NA	NA			Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2042977-02D	2 Plastic/1 Plastic/1 H20 Plastic	В	NA		6.0	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2042977-02E	2 Plastic/1 Plastic/1 H20 Plastic	В	NA		6.0	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2042977-02I	Amber 250ml unpreserved	Α	7	7	2.7	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2042977-02J	Amber 250ml unpreserved	NA	NA			Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2042977-03D	2 Plastic/1 Plastic/1 H20 Plastic	В	NA		6.0	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2042977-03D1	2 Plastic/1 Plastic/1 H20 Plastic	В	NA		6.0	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2042977-03D2	2 Plastic/1 Plastic/1 H20 Plastic	В	NA		6.0	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2042977-03E	2 Plastic/1 Plastic/1 H20 Plastic	В	NA		6.0	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2042977-03E1	2 Plastic/1 Plastic/1 H20 Plastic	В	NA		6.0	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2042977-03E2	2 Plastic/1 Plastic/1 H20 Plastic	В	NA		6.0	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2042977-03I	Amber 250ml unpreserved	Α	7	7	2.7	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2042977-03I1	Amber 250ml unpreserved	Α	7	7	2.7	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2042977-03I2	Amber 250ml unpreserved	Α	7	7	2.7	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2042977-03J	Amber 250ml unpreserved	NA	NA			Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2042977-03J1	Amber 250ml unpreserved	NA	NA			Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2042977-03J2	Amber 250ml unpreserved	NA	NA			Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2042977-04D	2 Plastic/1 Plastic/1 H20 Plastic	В	NA		6.0	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2042977-04E	2 Plastic/1 Plastic/1 H20 Plastic	В	NA		6.0	Υ	Absent		A2-NY-537-ISOTOPE(14)

Lab Number: L2042977

Report Date: 10/19/20

Project Name:TOWN OF RAMAPOProject Number:20010, TASK 200

Container Information				Initial	Final	Temp			Frozen	
	Container ID	Container Type	Cooler	рH	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L2042977-04I	Amber 250ml unpreserved	Α	7	7	2.7	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
	L2042977-04J	Amber 250ml unpreserved	NA	NA			Υ	Absent		A2-1,4-DIOXANE-SIM(7)
	L2042977-05D	2 Plastic/1 Plastic/1 H20 Plastic	В	NA		6.0	Υ	Absent		A2-NY-537-ISOTOPE(14)
	L2042977-05E	2 Plastic/1 Plastic/1 H20 Plastic	В	NA		6.0	Υ	Absent		A2-NY-537-ISOTOPE(14)
	L2042977-06D	2 Plastic/1 Plastic/1 H20 Plastic	В	NA		6.0	Υ	Absent		A2-NY-537-ISOTOPE(14)
	L2042977-07D	2 Plastic/1 Plastic/1 H20 Plastic	В	NA		6.0	Υ	Absent		A2-NY-537-ISOTOPE(14)
	L2042977-07E	2 Plastic/1 Plastic/1 H20 Plastic	В	NA		6.0	Υ	Absent		A2-NY-537-ISOTOPE(14)
	L2042977-07I	Amber 250ml unpreserved	Α	7	7	2.7	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
	L2042977-07J	Amber 250ml unpreserved	Α	7	7	2.7	Υ	Absent		A2-1,4-DIOXANE-SIM(7)

Serial_No:10192013:29 **Lab Number:** L2042

Project Name:TOWN OF RAMAPOLab Number:L2042977Project Number:20010, TASK 200Report Date:10/19/20

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PFNA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroheptanoic Acid	PFHpA	375-85-9
Perfluorohexanoic Acid	PFHxA	307-24-4
Perfluoropentanoic Acid	PFPeA	2706-90-3
Perfluorobutanoic Acid	PFBA	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
FLUOROTELOMERS		
1H,1H,2H,2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
1H,1H,2H,2H-Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
1H,1H,2H,2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	4:2FTS	757124-72-4
PERFLUOROALKANE SULFONAMIDES (FASAs)		
Perfluorooctanesulfonamide	FOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1
PERFLUOROETHER SULFONIC ACIDS (PFESAs)		
Perfluoro(2-Ethoxyethane)Sulfonic Acid	PFEESA	113507-82-7
PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)		
Perfluoro-3-Methoxypropanoic Acid	PFMPA	377-73-1
Perfluoro-4-Methoxybutanoic Acid	PFMBA	863090-89-5
Nonafluoro-3,6-Dioxaheptanoic Acid	NFDHA	151772-58-6
		131712 30-0

Project Name: Lab Number: TOWN OF RAMAPO L2042977 **Project Number:** 20010, TASK 200 **Report Date:** 10/19/20

GLOSSARY

Acronyms

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any

> adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Project Name:TOWN OF RAMAPOLab Number:L2042977Project Number:20010, TASK 200Report Date:10/19/20

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Project Name:TOWN OF RAMAPOLab Number:L2042977Project Number:20010, TASK 200Report Date:10/19/20

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Project Name:TOWN OF RAMAPOLab Number:L2042977Project Number:20010, TASK 200Report Date:10/19/20

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS) using Isotope Dilution. Alpha SOP 23528.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:10192013:29

ID No.:17873 Revision 17

Published Date: 4/28/2020 9:42:21 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

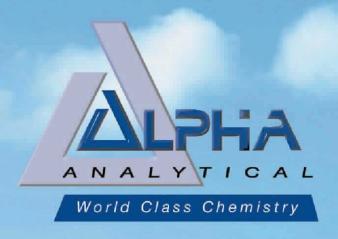
Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Aq, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Aq, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.


EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

R.	NEW YORK	Service Centers Mahwah, NJ 07430: 35 White	ev Rd. Suite 5		Page	1		Date	Rec'd	1		1	77		Control of
ДІРНА	CHAIN OF CUSTODY	Albany, NY 12205: 14 Walker ! Tonawanda, NY 14150: 275 Ca	V/ay	05	of	i		in L			01	5/	20)	ALPHA Job#
Westborough, MA 01681	Mansfield, MA 02048	Project Information			NE SIN	O NES	Deliv	erable	5			71.			Billing Information
8 Walkup Dr. TEL: 508-896-9220	320 Forbes Blvd TEL: 508-822-9300	Project Name:	Town of Ran	napo LF			X	ASP-	A			ASP	-B		Same as Client Info
FAX: 508-898-9193	FAX: 508-822-3288		tillbor				17		S (1 F	ile)	П	EQu	IS (4 F	ile)	PO#
Client Information	STATE OF LAND	Project #	20010, Task				12				4	0	FAS	+14	Dioxane Only
- PROBERT OF THE STREET	wirenmental Engineer	r (Use Project name as P	Transfer of the last of the la	200			Name and Address of the Owner, where	-	Requi						Disposal Site Information
Address: 24 Wade R				11.2			- parameter	NY TO		emei	<u>"</u> —	NV P	art 375		
	Ku .	ALPHAQuote #:	ark wi	HIGHS			16		Standar	rete.	H	NYC			Please identify below location of applicable disposal facilities.
Latham, NY 12110	200	THE RESIDENCE OF THE PARTY OF T	N. HALLES	100.5	No. of Contract of		H		stricted			Other			
Phone: 518-456-49		Turn-Around Time	. 157		of the same		18					Other			Disposal Facility:
Fax: 518-456-35	532	Standar		Due Date					restrict						П ил Пил
Email:		Rush (only if pre approved	0) [# of Days	5.		\sqcup		Sewer D	lischar	ge				Other NA
These samples have be							ANAL	YSIS	_		_	_			Sample Filtration
Other project specific									≥	ដ្ឋា	0		4		Done
Mask. W. 11. 9145	esterlingen	visen mental.co	<u>1</u>				9260		A2-1,4-DIOXANE-SIM	42-NY-527-ISOTOPE	2320	Ш	1		t.ab to do
	V						S	8	Z	SO	S	Đ.	Metals		Preservation Lab to do
Please specify Metals	OF TAL.	* Pa	rt 360 7	Baseline	metal	s List	Š	KN-4500	ğ	27-1	-Alkalinity-SM	COD-410.4			
] ပ	¥	0-4	γ-5	<u>_</u>	8	ΣÌ		(Please Specify balow)
ALPHA Lab ID	C.	ample ID	Colle	ection	Sample	Sampler's	Įξ		2-1.	2-N	4		-		
(Lab Use Only)	36		Date	Time	Matrix	Initials	-		8	<		1			Sample Specific Comments
42551-01	9-R		10-5-202	1700	60	FWS	×	\times	X	X	\times		\mathbb{K}		i lu
-02	HES TBIC	052020			LW		×								6
-03 -04	UP-I			1405	G-W		\times	\times	\times	\times	×	×	×		ic
		IMSD		1410	GW		><	X	X	$\stackrel{\rightarrow}{\sim}$	V	\sim	X		10
	UP-OS			1535	GW		×	×	X	\Rightarrow		×	\forall		ic
-03 -04	UP-I			1400	GW		X	\leq	>	7	₹	\triangleright	\Diamond		10
0.4	UP-R			1450	GW			Q					₩	\vdash	10
-05		0053030		1245	LW			0540	283	\Rightarrow	95-2		res		6
-06		053030	1	1240			-	-		\ominus			AC.		9
-07		10053020-		10.0	EW		~			\Leftrightarrow			\vee	-03	100
Preservative Code:	Container Code		No. MARRIE	_	1000	_								-	lic
A = None	P = Plastic	Westboro: Certification			Cont	ainer Type									Please print clearly, legibly
B = HCI C = HNO ₃	A = Amber Glass V = Vial	Mansfield: Certification	No: MA015				V	Р	Α	Р	Р	Р	Р	\vdash	and completely, Samples ca
D = H ₂ SO ₃	G = Glass				P	reservative									not be logged in and
E = NaOH	B = Bacteria Cup						В	D	Α	A	A	D	C		turnaround time clock will no start until any ambiguities are
F = MeOH G = NaHSO₄	C = Cube O = Olher	Relinquished	i By:	Date	/Time		Receiv	red By		_		Date	/Time		resolved. BY EXECUTING
H = Na ₂ S ₂ O ₃	E = Encore	Par De	-		20 1400	em	(Fig.)	PE.	-025	1	10	11	0.0	15	THIS COC, THE CLIENT
K/E = Zn Ac/NaOH	O = BOD Bottle	Unio Agri	206-	10/5	12011:00	23G	_	20	1	110	1/5/	20	20:	30	HAS READ AND AGREES
O = Other		gal BA	101	5/202	3,55	ma	nun	nine	ml		10/	5/20	23	55	TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.
Form No. 01-25 (rev. 30-Se	ept-2013)	0		/		110			95			1000	-		

www.alphalab.com

Alpha Analytical

Laboratory Code: 11148

SDG Number: L2042612

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Table of Contents

New	York ASP Category A Data Deliverable Package	1
	Table of Contents	2
	Sample ID Cross Reference	3
	SDG Narrative	4
	Data Qualifier Definitions	6
	Instrument Information	9
	Sample Log-in Sheet	12
	Lims COC (LN01)	13
	External Chain of Custody	16
	Organics Analysis	18
	Volatiles Data	19
	Volatiles Sample Data	20
	Form 1 - Organics	21
	Metals Analysis	35
	Inorganic Data (ICP Analysis)	36
	Form 1 - Inorganics	37
	Inorganic Data (ICPMS Analysis)	50
	Form 1 - Inorganics	51
	Inorganic Data (Mercury Analysis)	63
	Form 1 - Inorganics	64
	Wet Chemistry Analysis	76
	TKN Analysis	77
	Results	78
	Form 1 - Inorganics	79
	COD Analysis	92
	Results	93
	Form 1 - Inorganics	94
	Alkalinity Analysis	107
	Results	108
	Form 1 - Inorganics	109

Project Name: TOWN OF RAMAPO LF

Project Number: 20010, TASK 200

 Lab Number:
 L2042612

 Report Date:
 10/13/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2042612-01	SVWC-96	WATER	HILLBURN, NY	10/06/20 09:55	10/06/20
L2042612-02	PW-1	WATER	HILLBURN, NY	10/06/20 12:50	10/06/20
L2042612-03	PW-2	WATER	HILLBURN, NY	10/06/20 13:20	10/06/20
L2042612-04	SVWC-93	WATER	HILLBURN, NY	10/06/20 09:15	10/06/20
L2042612-05	SVWC-95	WATER	HILLBURN, NY	10/06/20 10:15	10/06/20
L2042612-06	SVWC-94	WATER	HILLBURN, NY	10/06/20 09:30	10/06/20
L2042612-07	10-OS	WATER	HILLBURN, NY	10/06/20 16:10	10/06/20
L2042612-08	10-l	WATER	HILLBURN, NY	10/06/20 15:10	10/06/20
L2042612-09	10-R	WATER	HILLBURN, NY	10/06/20 14:10	10/06/20
L2042612-10	9-OS	WATER	HILLBURN, NY	10/06/20 11:15	10/06/20
L2042612-11	9-1	WATER	HILLBURN, NY	10/06/20 12:15	10/06/20
L2042612-13	TB10062020	TRIP BLANK (AQUEOUS)	HILLBURN, NY	10/06/20 00:00	10/06/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

The results of the 1,4-DIOXANE-SIM and 537-ISOTOPE analyses will be issued under separate cover.

Total Metals

The WG1419605-3 MS recovery, performed on L2042612-01, is outside the acceptance criteria for hardness (224%). A post digestion spike was performed and yielded unacceptable recoveries for hardness (218%). The serial dilution recovery was not acceptable; therefore, this element fails the matrix test and the result reported in the native sample should be considered estimated.

The WG1419605-4 Laboratory Duplicate RPD for hardness (191%), performed on L2042612-01, is outside the acceptance criteria. The elevated RPD has been attributed to the non-homogeneous nature of the native sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature: Cattlin Walliehu Report Date: 10/13/20

Title: Technical Director/Representative

GLOSSARY

Acronyms

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

of I Aris using Solid-I hase whereextraction (SI WIE

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries

Data Qualifiers

when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Volatile Organics Instruments

Volatile Organics:

Instrument: Agilent 7890 GC/5975C MSD
Trap: Supelco K Trap (VOACARB 3000)
Concentrator: EST Encon (or equivalent)
Autosampler: EST Centurion (or equivalent)

Columns (length x ID x df):
RTX-VMS 20m x 0.18mm x 1um
RTX-VMS 30m x 0.25mm x 1.4um
RTX-502.2 40m x 0.18mm x 1um

Purge time: 11 min

Volatile Organics: VPH

Instrument: Agilent 6890 (or equivalent) Column Type: Restek RTX 502.2 Trap: Supelco K Trap (VOACARB 3000) Column Length: 105 Meters

Concentrator: EST Encon (or equivalent) df: 3.00 um Autosampler: EST Centurion (or equivalent) ID: 0.53mm

Volatile Organics: PIANO

Instrument: Agilent 7890 GC/5975C MSD Trap: Supelco K Trap (VOACARB 3000) Concentrator: Tekmar Velocity / EST Encon

Autosampler: Varian Archon / EST Centurion

Purge time: 11 min

Volatile Organics: Dissolved Gas

Instrument: Agilent 7890 (or equivalent) with FID/TCD

Column Type: Haysep S Column Column Length: 2 Meters packed

Column Type: DB-VRX

df: 1.40 um

ID: 0.25 mm

Desorb: 1 min

Column Length: 60 Meters

(100/200 mesh)

Autosampler: LEAP Headspace Purge time: 0.6 min

Volatile Organics in Air Instruments

Volatile Organics in Air:

Instruments: Agilent 6890 GC / 5975 MSD Shimadzu QP2010-SE / QP2020

Concentrator: Entech 7100A or 7200 Column Type: Restek RTX-1 Autosampler: Entech 7016CA or 7016D Column Length: 60 Meters

df: 1.00 um

ID: 0.25 mm or 0.32 mm

Trap 1: Glass Bead: manufacturer-Entech: 20 cm packing material

Trap 2: Tenax: manufacturer-Entech: 20 cm packing material

Semivolatile Organics Instruments - Westborough

Semivolatile Organics (Acid/Base/Neutral Extractables):

Instrument: Agilent 5973N MSD Injection volume: 1 ul;2 uL LVI

Column Type: Restek RXI-5SILMS df: 0.32 um
Column Length: 30 Meters ID: 0.25 mm

Polynuclear Aromatic Hydrocarbons by 8270 SIM:

Instrument: Agilent 5973 MSD Injection volume: 1 ul;2 uL LVI

Column Type: Restek RXI-5SILMS df: 0.25 um
Column Length: 30 Meters ID: 0.25 mm

Pesticides/PCB/Herbicides:

Instrument: Agilent 6890 w/Dual Micro ECDs Injection Volume: 1uL

Column A: Restek RTX-CL/STX-CL df: 0.32
Column B: Restek RTX/STX-CLPPesticide II df: 0.25
Column Length: 30 Meters ID: 0.32 mm

Petroleum/EPH:

Instrument: Agilent 6890 w/FID / HP 5890 w/ FID Injection Volume: 1uL

Column: Restek RTX 5 df: 0.25

Column Length: 30 Meters

ID: 0.32 mm

Semivolatile Organic Instruments - Mansfield

<u>Semivolatile Organics (ALK-PAH Extractables):</u>

Instrument: Agilent 5973N / 5975 MSD Injection volume: 1 ul

Column Type: ZB-5 df: 0.25 um
Column Length: 60 Meters ID: 0.25 mm

Semivolatile Organics (8270):

Instrument: Agilent 5973N / 5975 MSD Injection volume: 2 ul

Column Type: ZB-Semivolatiles df: 0.25 um
Column Length: 30 Meters ID: 0.25 mm

Semivolatile Organics (8270 SIM):

Instrument: Agilent 5973N / 5975 MSD Injection volume: 3 ul

Column Type: ZB-5 df: 0.25 um
Column Length: 30 Meters ID: 0.25 mm

<u>Semivolatile Organics (1,4-Dioxane):</u>

Instrument: Agilent 5973N / 5975 / 5977 MSD Injection volume: 3 ul Column Type: RTX-5 df: 0.25um, 0.18 um ID: 0.25um, 0.18 mm

Semivolatile Organics (209 Congener):

Instrument: Agilent 5973N / 5975 MSD

Column Type: RTX-5, RTX-PCB

Column Length: 60 Meters

Injection volume: 3 ul df: 0.25um, 0.18 um ID: 0.25um, 0.18 mm

Semivolatile Organics (8081):

Instrument: Agilent 6890 / 7890 Injection volume: 1 ul

Column Type: RTX-5 / RTX-CLP II df: 0.25 um Column Length: 60 Meters ID: 0.25 mm

Semivolatile Organics (8082):

Instrument: Agilent 6890 w/Dual Micro ECDs Injection Volume: 1uL

Column A: Restek RTX-CL/STX-CL df: 0.32 Column B: Restek RTX/STX-CLPPesticide II df: 0.25 Column Length: 30 Meters ID: 0.32 mm

<u>Semivolatile Organics (SHC Extractables):</u>

Instrument: Agilent 6890 Injection volume: 1 ul

Column Type: RTX-5 df: 0.25 um
Column Length: 60 Meters ID: 0.25 mm

Sample Delivery Group Summary

Alpha Job Number : L2042612 Received : 06-OCT-2020 Reviewer : Richard Scott

Account Name : Sterling Environmental Engineering

Project Number : 20010, TASK 200
Project Name : TOWN OF RAMAPO LF

Delivery Information

Samples Delivered By: Alpha Courier

Chain of Custody : Present

Cooler Information

Cooler	Seal/Seal#	Preservation	Temperature(°C)	Additional Information
Α	Absent/	Ice	5.1	
В	Absent/	Ice	3.6	
С	Absent/	Ice	3.5	

Condition Information

1) All samples on COC received?	YES
2) Extra samples received?	NO
3) Are there any sample container discrepancies?	NO

4) Are there any discrepancies between sample labels & COC? NO

5) Are samples in appropriate containers for requested analysis? YES

6) Are samples properly preserved for requested analysis? YES

7) Are samples within holding time for requested analysis? YES

8) All sampling equipment returned?

Volatile Organics/VPH

1) Reagent Water Vials Frozen by Client?

ALPHA ANALYTICAL LABORATORIES, INC. LOGIN CHAIN OF CUSTODY REPORT Oct 13 2020, 03:58 pm

Login Number: L2042612

Account: STERLINGENV Sterling Environmental EngineeringProject: 20010, TASK 200

Received: 060CT20 Due Date: 130CT20

Sample #	Client ID	Received: U60CT20	Due Date: 130		PR Collected
L2042612-01 8260 report		ASP-A Package Due Date: 10/1	_	S0 060CT20	09:55
6020T,CA-602	20T,CD-6020T	0-LOW,HARDT,NYTCL-8260,TAL-6, ,CO-6020T,CR-6020T,CU-6020T, ,SB-6020T,SE-6020T,TL-6020T,	FE-6020T, HG-T,	K-6020T,MG-6	
L2042612-02 8260 report		Package Due Date: 10/13/20	1	S0 060CT20	12:50
6020T,CD-602	20T,CO-6020T	HARDT,NYTCL-8260,TAL-6020T,F ,CR-6020T,CU-6020T,FE-6020T, ,SE-6020T,TL-6020T,V-6020T,2	HG-T, K-6020T, M	G-6020T,MN-6	
L2042612-03		Darles Dua Data : 10/12/20	1	S0 060CT20	13:20
ALK-T-2320,0 6020T,CD-602	COD-410-LOW, 20T,CO-6020T	Package Due Date: 10/13/20 HARDT,NYTCL-8260,TAL-6020T,A ,CR-6020T,CU-6020T,FE-6020T, ,SE-6020T,TL-6020T,V-6020T,2	HG-T, K-6020T, M	G-6020T,MN-6	·
L2042612-04		Daglaga Dua Data: 10/12/20	1	S0 060CT20	09:15
ALK-T-2320,0 6020T,CD-602	COD-410-LOW, 20T,CO-6020T	Package Due Date: 10/13/20 HARDT,NYTCL-8260,TAL-6020T,A ,CR-6020T,CU-6020T,FE-6020T, ,SE-6020T,TL-6020T,V-6020T,2	HG-T, K-6020T, M	G-6020T,MN-6	•
L2042612-05 8260 report	21	Package Due Date: 10/13/20	1	S0 060CT20	10:15

Page 1

ALPHA ANALYTICAL LABORATORIES, INC. LOGIN CHAIN OF CUSTODY REPORT Oct 13 2020, 03:58 pm

Login Number: L2042612

Account: STERLINGENV Sterling Environmental EngineeringProject: 20010, TASK 200

Received: 060CT20 Due Date: 130CT20

Sample # Client ID Mat PR Collected

ALK-T-2320, COD-410-LOW, HARDT, NYTCL-8260, TAL-6020T, AG-6020T, AL-6020T, AS-6020T, BA-6020T, BE-6020T, CA-6020T, CD-6020T, CO-6020T, CC-6020T, C

PB-6020T, PREPT, SB-6020T, SE-6020T, TL-6020T, V-6020T, ZN-6020T, TKN-4500

L2042612-06 SVWC-94 1 S0 06OCT20 09:30

8260 report lsit built Package Due Date: 10/13/20

ALK-T-2320, COD-410-LOW, HARDT, NYTCL-8260, TAL-6020T, AG-6020T, AL-6020T, AS-6020T, BA-6020T, BE-6020T, CA-6020T, CD-6020T, CO-6020T, CR-6020T, CU-6020T, FE-6020T, HG-T, K-6020T, MG-6020T, MN-6020T, NA-6020T, NI-6020T, PB-6020T, PREPT, SB-6020T, SE-6020T, TL-6020T, V-6020T, ZN-6020T, TKN-4500

L2042612-07 10-OS 1 S0 060CT20 16:10

8260 report lsit built Package Due Date: 10/13/20

ALK-T-2320, COD-410-LOW, HARDT, NYTCL-8260, TAL-6020T, AG-6020T, AL-6020T, AS-6020T, BA-6020T, BE-6020T, CA-6020T, CD-6020T, CO-6020T, CR-6020T, CU-6020T, FE-6020T, HG-T, K-6020T, MG-6020T, MN-6020T, NA-6020T, NI-6020T, PB-6020T, PREPT, SB-6020T, SE-6020T, TL-6020T, V-6020T, ZN-6020T, TKN-4500

L2042612-08 10-I 1 S0 060CT20 15:10

8260 report lsit built Package Due Date: 10/13/20

ALK-T-2320, COD-410-LOW, HARDT, NYTCL-8260, TAL-6020T, AG-6020T, AL-6020T, AS-6020T, BA-6020T, BE-6020T, CA-6020T, CD-6020T, CO-6020T, CC-6020T, CU-6020T, FE-6020T, HG-T, K-6020T, MG-6020T, MN-6020T, NA-6020T, NI-6020T, PB-6020T, PREPT, SB-6020T, SE-6020T, TL-6020T, V-6020T, ZN-6020T, TKN-4500

L2042612-09 10-R 1 S0 06OCT20 14:10

8260 report lsit built Package Due Date: 10/13/20

ALK-T-2320, COD-410-LOW, HARDT, NYTCL-8260, TAL-6020T, AG-6020T, AL-6020T, AS-6020T, BA-6020T, BE-6020T, CA-6020T, CD-6020T, CO-6020T, CR-6020T, CU-6020T, FE-6020T, HG-T, K-6020T, MG-6020T, MN-6020T, NA-6020T, NI-6020T, PB-6020T, PREPT, SB-6020T, SE-6020T, TL-6020T, V-6020T, ZN-6020T, TKN-4500

ALPHA ANALYTICAL LABORATORIES, INC. LOGIN CHAIN OF CUSTODY REPORT Oct 13 2020, 03:58 pm

Login Number: L2042612

Account: STERLINGENV Sterling Environmental EngineeringProject: 20010, TASK 200

Received: 060CT20 Due Date: 130CT20

Sample # Client ID Mat PR Collected

L2042612-10 9-OS 1 SO 06OCT20 11:15

8260 report lsit built Package Due Date: 10/13/20

 $\begin{array}{l} {\rm ALK-T-2320\,,COD-410-LOW\,,HARDT\,,NYTCL-8260\,,TAL-6020T\,,AG-6020T\,,AL-6020T\,,AS-6020T\,,BA-6020T\,,BE-6020T\,,CA-6020T\,,CD-6020T\,,CD-6020T\,,CD-6020T\,,CD-6020T\,,CD-6020T\,,NA-6020T\,,NL-6020T\,,$

PB-6020T, PREPT, SB-6020T, SE-6020T, TL-6020T, V-6020T, ZN-6020T, TKN-4500

L2042612-11 9-1 1 S0 06OCT20 12:15

8260 report lsit built Package Due Date: 10/13/20

ALK-T-2320, COD-410-LOW, HARDT, NYTCL-8260, TAL-6020T, AG-6020T, AL-6020T, AS-6020T, BA-6020T, BE-6020T, CA-6020T, CD-6020T, CO-6020T, CC-6020T, CU-6020T, FE-6020T, HG-T, K-6020T, MG-6020T, MN-6020T, NA-6020T, NI-6020T, PB-6020T, PREPT, SB-6020T, SE-6020T, TL-6020T, V-6020T, ZN-6020T, TKN-4500

L2042612-13 TB10062020 1 SO 06OCT20 00:00

8260 report lsit built Package Due Date: 10/13/20

NYTCI-8260

Page 3

Logged By: Melissa Deyo

Дірна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Co	Vay	05	Page	f 2		Date in	Rec'	dla	16	10	20		ALPHA JOB#42612		
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information	AVAILES IN		19 (Ent)		Deliv	erable	s	8 90	CAU				Billing Information		
TEL: 508-898-9220	TEL: 508-822-9300	Project Name:	Town of Ran	napo LF			X	ASP.	-A			ASP.	В		Same as Client Info		
FAX: 508-898-9193	FAX: 508-822-3288	Project Location:	Ilburn, 1	NY				EQui	S (1 F	ile)		EQui	S (4 F	ile)	PO W		
Client Information		Project #	20010, Task				X	Othe	r As	P-B	for	PF	A5-	14-	DIOXANE ONLY		
Client: Sterling Er	nvironmental Engineeri	(Use Project name as Pr	roject #)							ireme					Disposal Site Information		
Address: 24 Wade F	Rd	Project Manager: Ma	ck will	iams			X	NY TO	ogs			NY Pa	art 375		Please identify below location of		
Latham, NY 12110		ALPHAQuote #:						AWQ	Standa	ards		NY C	P-51		applicable disposal facilities.		
Phone: 518-456-4	900	Turn-Around Time	19 20	1000	W. STETT	78 - 378		NY R	estricte	d Use		Other			Disposal Facility:		
Fax: 518-456-3	532	Standard	X	Due Date:				NY U	nrestric	ted Use					□ NJ □ NY		
Email:		Rush (only if pre approved)		# of Days:			\Box	NYC	Seweri	Dischar	ge				Other: NA		
These samples have b	een previously analyze	ed by Alpha					ANA	LYSIS	18						Sample Filtration		
Other project specific Mark. William Please specify Metals	is a sterlinge	nents: nvison mental.		Base line	. Metal	s LIST	CL-VOCs 8260	TKN-4500	A2-1,4-DIOXANE-SIM	A2-NY-537-ISOTOPE	T-Alkalinity-SM 2320	COD-410.4	Handmess &		Done Lab to do Preservation Lab to do (Please Specify below)		
ALPHA Lab ID	Co.	mple ID	Colle	ection	Sample	Sampler's	ξ	22.	7.	2-N	¥	_	I		10 10 10 10 10 10 10 10 10 10 10 10 10 1		
(Lab Use Only)	Sa	inple to	Date	Time	Matrix	Initials	-		Ä	8	-				Sample Specific Comments		
04261201	SVWC-96		10-6-2020	955	DW	PWS	X	×			X	X	X				
107	PW-1			1250	DW		X	X			X	\times	X				
-03.	PW-2			1320	DW		X	X			\sim	\sim	X				
yo.	SVWC	C-93		915	DW		X	X	1		×	×	X				
695		C-95		1015	DW		X	\sim	X	X	X	X	X		1		
-06	BES SYW	2- 94		930	DW		X	X	X	X	X	V	X		l l		
,07	THE LOSS ANK	0-05		1610	GW		X	X		X	X	\Rightarrow	X		i		
20	Equiphica Blank	10-I		1510	GW		X	>	∇		X	V	X		i i		
.04	10	-R		1410	GW		X	\times	X	X		S	S.		1		
10	9-	05		1115	GW	1	X					$\overline{\mathbf{x}}$	X	Red	i i		
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other	Westboro: Certification N Mansfield: Certification N Relinquished	lo: MA015	Date/	F	reservative	V B	P D ved By	A A	P A		P D	P C		Please print clearly, legibly and completely. Samples canot be logged in and turnaround time clock will not start until any ambiguities all resolved. BY EXECUTING		
G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other Form No: 01-25 (rev. 30-Se	E = Encore D = BOD Bottle	July AA	L 10/	19-6-203	3130 3130	111 20 11		in.	_			20	20%	00	THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA' TERMS & CONDITIONS.		

Дігна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Vay	05	Page	2	1		Rec'o	4/	20	6	20		ALPHA JAD#04261																				
Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	Mansfield, MA 02046 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Information Project Name:	Town of Ran	napo LF	The last of the		4	ASP-	A	26.0		ASP-	В	7 2	Billing Information Same as Client Info																				
	250 0000 000 2000	Project Location:	illburn					EQui	S (1 F	ile)		EQui	S (4 Fi	le)	PO# CANE ONLY																				
Client Information		Project #	20010, Task	200			X	Othe	ASP	-B	for	PH	t3 +	64	DICKANE Only																				
Client: Sterling Env	vironmental Engineeri	(Use Project name as P	roject #)				Regul	latory	Requi	ireme	nt			35	Disposal Site Information																				
Address: 24 Wade Ro	d	Project Manager: May	ckwill	iams			X	NY TO	OGS			NY Pa	art 375		Please identify below location of																				
Latham, NY 12110		ALPHAQuote #:						AWQ	Standa	ards		NY C	P-51		applicable disposal facilities.																				
Phone: 518-456-49	00	Turn-Around Time						NY Re	estricte	d Use		Other			Disposal Facility:																				
Fax: 518-456-35	32	Standard	X	Due Date				NY Ur	restric	ted Us	В				□ NJ □ NY																				
Email:		Rush (only if pre approved) 🗆	# of Days				NYC S	Sewer I	Dischar	rge				Other: NA																				
These samples have be	en previously analyze	ed by Alpha					ANAL	YSIS							Sample Filtration																				
Other project specific										П		T			Done																				
Please specify Metals		* Part 360	Base.	line M	10/2/5		TCL-VOCs 8260	TKN-4500	A2-1,4 DIOXANE-SIM	A2-NY-537-Isotope	T-Alkalinity-SM 2320	COD-410.4	TAL Metals *		Lab to do Preservation Lab to do (Please Specify below)																				
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Date	Time	Sample Matrix	Sampler's Initials	ž		A2-1	A2	4-T		,		Sample Specific Comments																				
11: 4125M	9-I		10-6-2020	1215	GW	PWS	\sim	>	×	V	V	V	V																						
		62030		1050	LW	PWS						1																							
		62020		-	LW	7000					-	1																							
	Marie 1 1 1 1 C C	,0,00,00	*	N. 200-200	LW					+	\vdash	1																							
	THE STATE OF THE S		+	-		/			_	-	-		1																						
			_					_	-	-	-																								
	8405			Q	100			_		10																									
				A				_	16	1		-	-																						
	RECO								W		₩	-	-																						
	P055							/			_																								
	e Eas																																		
A = None B = HCl	Container Code P = Plastic A = Amber Glass	Westboro: Certification No: MA935 Mansfield: Certification No: MA015			Container Type		Container Ty		Container T		Container Ty		Container Ty		Container Ty		Container Ty		Container Ty		Container Ty		Container Ty		Container T		v	Р	А	Р	Р	Р	Р		Please print clearly, legibly and completely. Samples ca
D = H ₂ SO ₄ E = NaOH	V = Vial G = Glass B = Bacteria Cup				F	reservative	В	D	А	Α	A	D	С		not be logged in and turnaround time clock will no start until any ambiguities a																				
G = NaHSO ₄ H = Na ₂ S ₂ O ₃	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished	By:	Date:		93/1	Receiv	ved By	AA	5	10/6	bo	201	00	resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES																				
O = Other Form No: 01-25 /rev. 30-Ser	nt 2013)	of ago Th	10	10/50 5	20	1420		0	ases		-	- (3	TO BE BOUND BY ALPHA TERMS & CONDITIONS.																				

Organics

Volatiles Data

Volatiles Sample Data

Client : Sterling Environmental Engineering

Project Name : TOWN OF RAMAPO LF Lab ID : L2042612-01

Client ID : SVWC-96 Sample Location : HILLBURN, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : VG201008A21

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2042612 Project Number : 20010, TASK 200

Date Collected : 10/06/20 09:55

Date Received : 10/06/20
Date Analyzed : 10/08/20 16:27

Dilution Factor : 1
Analyst : AJK
Instrument ID : GONZO
GC Column : RTX-502.2

%Solids : N/A
Injection Volume : N/A

CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
108-90-7	Chlorobenzene	ND	2.5	0.70	U
71-43-2	Benzene	ND	0.50	0.16	U
75-01-4	Vinyl chloride	ND	1.0	0.07	U

Client : Sterling Environmental Engineering

Project Name : TOWN OF RAMAPO LF Lab ID

: L2042612-02 Client ID : PW-1

Sample Location : HILLBURN, NY

Sample Matrix : WATER **Analytical Method** : 1,8260C : VG201008A22 Lab File ID

Sample Amount : 10 ml Level : LOW

Extract Volume (MeOH): N/A

Lab Number : L2042612

Project Number : 20010, TASK 200 Date Collected : 10/06/20 12:50

Date Received : 10/06/20

Date Analyzed : 10/08/20 16:53

Dilution Factor : 1 : AJK Analyst : GONZO Instrument ID

GC Column : RTX-502.2 %Solids : N/A

Injection Volume: N/A

NO.	Parameter	Results	RL	MDL	Qualifier	
4-3	1,1-Dichloroethane	ND	2.5	0.70	U	
90-7	Chlorobenzene	ND	2.5	0.70	U	
3-2	Benzene	ND	0.50	0.16	U	
1-4	Vinyl chloride	ND	1.0	0.07	U	
1-4	Vinyl chloride	ND	1.0	0.07		U

Client : Sterling Environmental Engineering

Project Name : TOWN OF RAMAPO LF Lab ID : L2042612-03

Client ID : PW-2

Sample Location : HILLBURN, NY Sample Matrix : WATER

Analytical Method : 1,8260C Lab File ID : VG201008A23

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2042612

Project Number : 20010, TASK 200
Date Collected : 10/06/20 13:20

Date Received : 10/06/20

Date Analyzed : 10/08/20 17:18

Dilution Factor : 1
Analyst : AJK
Instrument ID : GONZO
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
108-90-7	Chlorobenzene	ND	2.5	0.70	U
71-43-2	Benzene	ND	0.50	0.16	U
75-01-4	Vinyl chloride	ND	1.0	0.07	U

Client : Sterling Environmental Engineering

Project Name : TOWN OF RAMAPO LF
Lab ID : L2042612-04
Client ID : SVWC-93
Sample Location : HILLBURN, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : VG201008A24

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2042612

Project Number : 20010, TASK 200

Date Collected : 10/06/20 09:15

Date Received : 10/06/20

Date Analyzed : 10/08/20 17:43

Dilution Factor : 1
Analyst : AJK
Instrument ID : GONZO
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

NO.	Parameter	Results	RL	MDL	Qualifier	
4-3	1,1-Dichloroethane	ND	2.5	0.70	U	
90-7	Chlorobenzene	ND	2.5	0.70	U	
3-2	Benzene	ND	0.50	0.16	U	
1-4	Vinyl chloride	ND	1.0	0.07	U	
1-4	Vinyl chloride	ND	1.0	0.07		U

Client : Sterling Environmental Engineering

Project Name : TOWN OF RAMAPO LF
Lab ID : L2042612-05
Client ID : SVWC-95
Sample Location : HILLBURN, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : VE201008A14

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2042612

Project Number : 20010, TASK 200

Date Collected : 10/06/20 10:15

Date Received : 10/06/20

Date Analyzed : 10/08/20 14:35

Dilution Factor : 1
Analyst : LAC
Instrument ID : ELAINE
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

Parameter	Results	RL	MDL	Qualifier	
1,1-Dichloroethane	ND	2.5	0.70	U	
Chlorobenzene	ND	2.5	0.70	U	
Benzene	ND	0.50	0.16	U	
Vinyl chloride	ND	1.0	0.07	U	
	1,1-Dichloroethane Chlorobenzene Benzene	1,1-Dichloroethane ND Chlorobenzene ND Benzene ND	1,1-Dichloroethane ND 2.5 Chlorobenzene ND 2.5 Benzene ND 0.50	Parameter Results RL MDL 1,1-Dichloroethane ND 2.5 0.70 Chlorobenzene ND 2.5 0.70 Benzene ND 0.50 0.16	Parameter Results RL MDL Qualifier 1,1-Dichloroethane ND 2.5 0.70 U Chlorobenzene ND 2.5 0.70 U Benzene ND 0.50 0.16 U

Client : Sterling Environmental Engineering

Project Name : TOWN OF RAMAPO LF
Lab ID : L2042612-06
Client ID : SVWC-94
Sample Location : HILLBURN, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : VE201008A15

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2042612

Project Number : 20010, TASK 200

Date Collected : 10/06/20 09:30

Date Received : 10/06/20

Date Analyzed : 10/08/20 14:56

Dilution Factor : 1
Analyst : LAC
Instrument ID : ELAINE
GC Column : RTX-502.2

		ug/L			
Parameter	Results	RL	MDL	Qualifier	
1,1-Dichloroethane	ND	2.5	0.70	U	
Chlorobenzene	ND	2.5	0.70	U	
Benzene	ND	0.50	0.16	U	
Vinyl chloride	ND	1.0	0.07	U	
	1,1-Dichloroethane Chlorobenzene Benzene	1,1-Dichloroethane ND Chlorobenzene ND Benzene ND	Parameter Results RL 1,1-Dichloroethane ND 2.5 Chlorobenzene ND 2.5 Benzene ND 0.50	Parameter Results RL MDL 1,1-Dichloroethane ND 2.5 0.70 Chlorobenzene ND 2.5 0.70 Benzene ND 0.50 0.16	Parameter Results RL MDL Qualifier 1,1-Dichloroethane ND 2.5 0.70 U Chlorobenzene ND 2.5 0.70 U Benzene ND 0.50 0.16 U

Client : Sterling Environmental Engineering

Project Name : TOWN OF RAMAPO LF Lab ID : L2042612-07

Client ID : 10-OS

Sample Location : HILLBURN, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : VE201008A16

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2042612

Project Number : 20010, TASK 200
Date Collected : 10/06/20 16:10

Date Received : 10/06/20

Date Analyzed : 10/08/20 15:18 Dilution Factor : 1

Analyst : LAC
Instrument ID : ELAINE
GC Column : RTX-502.2

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U	
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
71-43-2	Benzene	ND	0.50	0.16	U	
75-01-4	Vinyl chloride	ND	1.0	0.07	U	

Client : Sterling Environmental Engineering

Project Name : TOWN OF RAMAPO LF

Lab ID : L2042612-08

Client ID : 10-I

Sample Location : HILLBURN, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : VE201008A17

Sample Amount : 10 ml Level : LOW

Extract Volume (MeOH): N/A

Lab Number : L2042612

Project Number : 20010, TASK 200 Date Collected : 10/06/20 15:10

Date Received : 10/06/20

Date Analyzed : 10/08/20 15:40 Dilution Factor : 1

Analyst : LAC Instrument ID : ELAINE GC Column : RTX-502.2

		ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
108-90-7	Chlorobenzene	ND	2.5	0.70	U
71-43-2	Benzene	ND	0.50	0.16	U
75-01-4	Vinyl chloride	ND	1.0	0.07	U

Client : Sterling Environmental Engineering

Project Name : TOWN OF RAMAPO LF

Lab ID : L2042612-09

Client ID : 10-R Sample Location : HILLBURN, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : VE201008A18

Sample Amount : 10 ml Level : LOW

Extract Volume (MeOH): N/A

Lab Number : L2042612

Project Number : 20010, TASK 200
Date Collected : 10/06/20 14:10

Date Received : 10/06/20

Date Analyzed : 10/08/20 16:02

Dilution Factor : 1
Analyst : LAC
Instrument ID : ELAINE

GC Column : RTX-502.2 %Solids : N/A

Injection Volume: N/A

		ug/L		
Parameter	Results	RL	MDL	Qualifier
1,1-Dichloroethane	ND	2.5	0.70	U
Chlorobenzene	ND	2.5	0.70	U
Benzene	ND	0.50	0.16	U
Vinyl chloride	ND	1.0	0.07	U
	1,1-Dichloroethane Chlorobenzene Benzene	1,1-Dichloroethane ND Chlorobenzene ND Benzene ND	1,1-Dichloroethane ND 2.5 Chlorobenzene ND 2.5 Benzene ND 0.50	1,1-Dichloroethane ND 2.5 0.70 Chlorobenzene ND 2.5 0.70 Benzene ND 0.50 0.16

Client : Sterling Environmental Engineering

Project Name : TOWN OF RAMAPO LF Lab ID : L2042612-10

Client ID : 9-OS

Commission : 9-05

Sample Location : HILLBURN, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : VE201008A19

Sample Amount : 10 ml Level : LOW

Extract Volume (MeOH) : N/A

Lab Number : L2042612

Project Number : 20010, TASK 200

Date Collected : 10/06/20 11:15
Date Received : 10/06/20

Date Analyzed : 10/08/20 16:24

Dilution Factor : 1
Analyst : AJK

Instrument ID : ELAINE GC Column : RTX-502.2

		ug/L			
Parameter	Results	RL	MDL	Qualifier	
1,1-Dichloroethane	ND	2.5	0.70	U	
Chlorobenzene	ND	2.5	0.70	U	
Benzene	ND	0.50	0.16	U	
Vinyl chloride	ND	1.0	0.07	U	
	1,1-Dichloroethane Chlorobenzene Benzene	1,1-Dichloroethane ND Chlorobenzene ND Benzene ND	Parameter Results RL 1,1-Dichloroethane ND 2.5 Chlorobenzene ND 2.5 Benzene ND 0.50	Parameter Results RL MDL 1,1-Dichloroethane ND 2.5 0.70 Chlorobenzene ND 2.5 0.70 Benzene ND 0.50 0.16	

Client : Sterling Environmental Engineering

Project Name : TOWN OF RAMAPO LF

Lab ID : L2042612-11

Client ID : 9-1

Sample Location : HILLBURN, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : VE201008A20

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2042612

Project Number : 20010, TASK 200
Date Collected : 10/06/20 12:15

Date Received : 10/06/20

Date Analyzed : 10/08/20 16:46

Dilution Factor : 1
Analyst : AJK
Instrument ID : ELAINE

GC Column : RTX-502.2 %Solids : N/A

Injection Volume: N/A

		ug/L			
Parameter	Results	RL	MDL	Qualifier	
1,1-Dichloroethane	ND	2.5	0.70	U	
Chlorobenzene	ND	2.5	0.70	U	
Benzene	ND	0.50	0.16	U	
Vinyl chloride	ND	1.0	0.07	U	
	1,1-Dichloroethane Chlorobenzene Benzene	1,1-Dichloroethane ND Chlorobenzene ND Benzene ND	Parameter Results RL 1,1-Dichloroethane ND 2.5 Chlorobenzene ND 2.5 Benzene ND 0.50	Parameter Results RL MDL 1,1-Dichloroethane ND 2.5 0.70 Chlorobenzene ND 2.5 0.70 Benzene ND 0.50 0.16	Parameter Results RL MDL Qualifier 1,1-Dichloroethane ND 2.5 0.70 U Chlorobenzene ND 2.5 0.70 U Benzene ND 0.50 0.16 U

Client : Sterling Environmental Engineering

Project Name : TOWN OF RAMAPO LF
Lab ID : L2042612-13
Client ID : TB10062020
Sample Location : HILLBURN, NY
Sample Matrix : Trip Blank (aqueous)

Analytical Method : 1,8260C Lab File ID : VG201008A20

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2042612

Project Number : 20010, TASK 200 Date Collected : 10/06/20 00:00

Date Received : 10/06/20

Date Analyzed : 10/08/20 16:01 Dilution Factor : 1

Analyst : AJK
Instrument ID : GONZO
GC Column : RTX-502.2

		ug/L			
Parameter	Results	RL	MDL	Qualifier	
1,1-Dichloroethane	ND	2.5	0.70	U	
Chlorobenzene	ND	2.5	0.70	U	
Benzene	ND	0.50	0.16	U	
Vinyl chloride	ND	1.0	0.07	U	
	1,1-Dichloroethane Chlorobenzene Benzene	1,1-Dichloroethane ND Chlorobenzene ND Benzene ND	Parameter Results RL 1,1-Dichloroethane ND 2.5 Chlorobenzene ND 2.5 Benzene ND 0.50	Parameter Results RL MDL 1,1-Dichloroethane ND 2.5 0.70 Chlorobenzene ND 2.5 0.70 Benzene ND 0.50 0.16	Parameter Results RL MDL Qualifier 1,1-Dichloroethane ND 2.5 0.70 U Chlorobenzene ND 2.5 0.70 U Benzene ND 0.50 0.16 U

Client : Sterling Environmental Engineering Lab Number

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1419793-5 Date Collected : NA Client ID : WG1419793-5BLANK Date Received : NA

Sample Location : Date Analyzed : 10/08/20 09:38

Sample Matrix : WATER **Dilution Factor** : 1 **Analytical Method** : PD : 1,8260C Analyst : GONZO Lab File ID : VG201008A05 Instrument ID GC Column : RTX-502.2 Sample Amount : 10 ml

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

			ug/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U	
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
71-43-2	Benzene	ND	0.50	0.16	U	
75-01-4	Vinyl chloride	ND	1.0	0.07	U	

: L2042612

Client : Sterling Environmental Engineering Lab Number

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1420186-5
Client ID : WG1420186-5BLANK Date Received : NA

Sample Location : Date Analyzed : 10/08/20 11:18

Sample Matrix **Dilution Factor** : WATER : 1 **Analytical Method** : 1,8260C Analyst : PD Lab File ID : VE201008A05 Instrument ID : ELAINE Sample Amount : 10 ml GC Column : RTX-502.2

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

ug/L CAS NO. Results RL MDL Qualifier **Parameter** 75-34-3 1,1-Dichloroethane ND 2.5 0.70 U 108-90-7 Chlorobenzene ND 2.5 0.70 U 71-43-2 Benzene ND 0.50 0.16 U Vinyl chloride ND U 75-01-4 1.0 0.07

: L2042612

Metals

Inorganic Data (ICP Analysis)

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042612-01
 Date Collected
 : 10/06/20 09:55

 Client ID
 : SVWC-96
 Date Received
 : 10/06/20

Sample Location : HILLBURN, NY Date Analyzed : 10/12/20 14:47

Sample Matrix: WATERDilution Factor: 1Analytical Method: 1,6010DAnalyst: GDLab File ID: 101220.txt_icap.txtInstrument ID: TRACE6

Sample Amount : 50ml %Solids : N/A
Digestion Method : EPA 3005A Date Digested : 10/08/20

CAS NO. Parameter Results RL MDL Qualifier

NONE Hardness 2.01 0.660 NA

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042612-02 Date Collected : 10/06/20 12:50

Client ID : PW-1 Date Received : 10/06/20

Sample Location : HILLBURN, NY Date Analyzed : 10/12/20 15:16

Sample Matrix: WATERDilution Factor: 1Analytical Method: 1,6010DAnalyst: GDLab File ID: 101220.txt_icap.txtInstrument ID: TRACE6Sample Amount: 50ml%Solids: N/A

Digestion Method : EPA 3005A Date Digested : 10/08/20

CAS NO. Parameter Results RL MDL Qualifier

NONE Hardness 26.1 0.660 NA

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042612-03 Date Collected : 10/06/20 13:20

Client ID : PW-2 Date Received : 10/06/20

Sample Location : HILLBURN, NY Date Analyzed : 10/12/20 15:42
Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,6010D Analyst : GD

Lab File ID: 101220.txt_icap.txtInstrument ID: TRACE6Sample Amount: 50ml%Solids: N/ADigestion Method: EPA 3005ADate Digested: 10/08/20

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 NONE
 Hardness
 92.5
 0.660
 NA

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042612-04
 Date Collected
 : 10/06/20 09:15

 Client ID
 : SVWC-93
 Date Received
 : 10/06/20

Sample Location : HILLBURN, NY Date Analyzed : 10/12/20 15:47
Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,6010D Analyst : GD

Digestion Method : EPA 3005A Date Digested : 10/08/20

			mg/l		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
NONE	Hardness	101	0.660	NA	

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042612-05
 Date Collected
 : 10/06/20 10:15

 Client ID
 : SVWC-95
 Date Received
 : 10/06/20

 Sample Location
 : HILLBURN, NY
 Date Analyzed
 : 10/12/20 15:51

Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 1,6010D Analyst : GD

Lab File ID : 101220.txt_icap.txt Instrument ID : TRACE6

Sample Amount : 50ml %Solids : N/A

Digestion Method : EPA 3005A Date Digested : 10/08/20

CAS NO. Parameter Farameter Results RL MDL Qualifier

NONE Hardness 94.1 0.660 NA

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042612-06
 Date Collected
 : 10/06/20 09:30

 Client ID
 : SVWC-94
 Date Received
 : 10/06/20

Sample Location : HILLBURN, NY Date Analyzed : 10/06/20 : 10/12/20 15:56

Sample Matrix: WATERDilution Factor: 1Analytical Method: 1,6010DAnalyst: GDLab File ID: 101220.txt_icap.txtInstrument ID: TRACE6

Sample Amount : 50ml %Solids : N/A
Digestion Method : EPA 3005A Date Digested : 10/08/20

 CAS NO.
 Parameter
 mg/l
 Results
 RL
 MDL
 Qualifier

 NONE
 Hardness
 97.9
 0.660
 NA

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200
Lab ID Date Collected : 10/06/20 16:10

Client ID : 10-OS Date Received : 10/06/20 Sample Location : HILLBURN, NY Date Analyzed : 10/12/20 16:05

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,6010D Analyst : GD
Lab File ID : 101220.txt_icap.txt Instrument ID : TRACE6
Sample Amount : 50ml %Solids : N/A

Digestion Method : EPA 3005A Date Digested : 10/08/20

CAS NO. Parameter Results RL MDL Qualifier

NONE Hardness 7.92 0.660 NA

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042612-08 Date Collected : 10/06/20 15:10

Client ID : 10-I Date Received : 10/06/20

Sample Location : HILLBURN, NY Date Analyzed : 10/12/20 16:10

Sample Matrix: WATERDilution Factor: 1Analytical Method: 1,6010DAnalyst: GDLab File ID: 101220.txt_icap.txtInstrument ID: TRACE6Sample Amount: 50ml%Solids: N/A

Digestion Method : EPA 3005A Date Digested : 10/08/20

CAS NO. Parameter Results RL MDL Qualifier

NONE Hardness 32.8 0.660 NA

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042612-09 Date Collected : 10/06/20 14:10

Client ID : 10-R Date Received : 10/06/20 Sample Location : HILLBURN, NY Date Analyzed : 10/12/20 16:14

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,6010D Analyst : GD
Lab File ID : 101220.txt_icap.txt Instrument ID : TRACE6

Sample Amount : 50ml %Solids : N/A
Digestion Method : EPA 3005A Date Digested : 10/08/20

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 NONE
 Hardness
 29.6
 0.660
 NA

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042612-10 Date Collected : 10/06/20 11:15

Client ID : 9-OS Date Received : 10/06/20

Sample Location : HILLBURN, NY Date Analyzed : 10/12/20 16:19
Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 1,6010D Analyst : GD
Lab File ID : 101220.txt_icap.txt Instrument ID : TRACE6
Sample Amount : 50ml %Solids : N/A

Digestion Method : EPA 3005A Date Digested : 10/08/20

CAS NO. Parameter Results RL MDL Qualifier

NONE Hardness 20.1 0.660 NA

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF **Project Number** : 20010, TASK 200 Lab ID : L2042612-11 **Date Collected** : 10/06/20 12:15 **Date Received** : 10/06/20

Client ID : 9-1

Sample Location : HILLBURN, NY Date Analyzed : 10/12/20 16:33

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,6010D Analyst : GD Lab File ID : 101220.txt_icap.txt Instrument ID : TRACE6 %Solids Sample Amount : 50ml : N/A

Digestion Method : EPA 3005A **Date Digested** : 10/08/20

mg/l Results RL MDL Qualifier CAS NO. **Parameter** NONE Hardness 26.3 0.660 NA

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Number : 20010, TASK 200 **Project Name** : TOWN OF RAMAPO LF

Lab ID : WG1419605-1 **Date Collected** : NA Client ID : WG1419605-1BLANK **Date Received** : NA

Sample Location : Date Analyzed : 10/12/20 14:19

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,6010D Analyst : GD Lab File ID : 101220.txt_icap.txt Instrument ID : TRACE6 %Solids Sample Amount : 50ml : N/A

: 10/08/20

Digestion Method : EPA 3005A **Date Digested**

		mg/l
CAS NO.	Parameter	Results RL MDL Qualifier
NONE	Hawdoos	ND 0.000 NA II
NONE	Hardness	ND 0.660 NA U

Date Analyzed

: 10/12/20 14:56

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200
Lab ID : WG1419605-4 Date Collected : 10/06/20 09:55
Client ID : SVWC-96DUP Date Received : 10/06/20

Sample Location :

Sample Matrix: WATERDilution Factor: 1Analytical Method: 1,6010DAnalyst: GDLab File ID: 101220.txt_icap.txtInstrument ID: TRACE6Sample Amount: 50ml%Solids: N/A

Digestion Method : EPA 3005A Date Digested : 10/08/20

CAS NO. Parameter Results RL MDL Qualifier

NONE Hardness 88.8 0.660 NA

Inorganic Data (ICPMS Analysis)

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042612-01
 Date Collected
 : 10/06/20 09:55

 Client ID
 : SVWC-96
 Date Received
 : 10/06/20

Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 19:36

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,6020B **Analyst** : AM Lab File ID : WG1419622.pdf Instrument ID **ICPMSQ** : Sample Amount : 50ml %Solids N/A : : 10/08/20 Digestion Method : EPA 3005A **Date Digested**

mg/l Results RL MDL CAS NO. Qualifier **Parameter** 7429-90-5 Aluminum, Total ND 0.0100 0.00327 U 7440-36-0 Antimony, Total ND 0.00400 0.00042 U 7440-38-2 Arsenic, Total ND 0.00050 0.00016 U 7440-39-3 Barium, Total 0.01210 0.00050 0.00017 7440-41-7 0.00010 U Beryllium, Total ND 0.00050 0.00020 U 7440-43-9 Cadmium, Total ND 0.00005 7440-70-2 26.8 0.100 0.0394 Calcium, Total 7440-47-3 Chromium, Total 0.00040 0.00100 0.00017 J 7440-48-4 0.00050 0.00016 Cobalt, Total ND 7440-50-8 Copper, Total 0.00673 0.00100 0.00038 7439-89-6 Iron, Total 0.0300 0.0800 0.0191 J U 7439-92-1 Lead, Total ND 0.00034 0.00100 7439-95-4 Magnesium, Total 7.07 0.0700 0.0242 7439-96-5 0.00044 U Manganese, Total ND 0.00100 0.00200 7440-02-0 Nickel, Total 0.00059 0.00055 J 7440-09-7 Potassium, Total 2.01 0.100 0.0309 7782-49-2 Selenium, Total ND 0.00500 0.00173 U 7440-22-4 0.00040 0.00016 U Silver, Total ND 7440-23-5 Sodium, Total 74.0 0.100 0.0293 7440-28-0 Thallium, Total ND 0.00100 0.00014 U 7440-62-2 Vanadium, Total ND 0.00500 0.00157 U 7440-66-6 Zinc, Total 0.01186 0.01000 0.00341

Client : Sterling Environmental Engineering Lab Number : L2042612

: TOWN OF RAMAPO LF **Project Name** Project Number : 20010, TASK 200 Lab ID : L2042612-02 **Date Collected** : 10/06/20 12:50

Client ID : PW-1

: 10/06/20 **Date Received** Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 19:41

Sample Matrix **Dilution Factor** : WATER : 1 Analytical Method : 1,6020B Analyst : AM Lab File ID : WG1419622.pdf Instrument ID : ICPMSQ : N/A Sample Amount : 50ml %Solids

Digestion Method : EPA 3005A **Date Digested** : 10/08/20

		mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier
7429-90-5	Aluminum, Total	ND	0.0100	0.00327	U
7440-36-0	Antimony, Total	ND	0.00400	0.00042	U
7440-38-2	Arsenic, Total	ND	0.00050	0.00016	U
7440-39-3	Barium, Total	0.00526	0.00050	0.00017	
7440-41-7	Beryllium, Total	ND	0.00050	0.00010	U
7440-43-9	Cadmium, Total	ND	0.00020	0.00005	U
7440-70-2	Calcium, Total	7.76	0.100	0.0394	
7440-47-3	Chromium, Total	0.00035	0.00100	0.00017	J
7440-48-4	Cobalt, Total	ND	0.00050	0.00016	U
7440-50-8	Copper, Total	0.03185	0.00100	0.00038	
7439-89-6	Iron, Total	0.0291	0.0800	0.0191	J
7439-92-1	Lead, Total	0.00071	0.00100	0.00034	J
7439-95-4	Magnesium, Total	2.07	0.0700	0.0242	
7439-96-5	Manganese, Total	0.00049	0.00100	0.00044	J
7440-02-0	Nickel, Total	ND	0.00200	0.00055	U
7440-09-7	Potassium, Total	0.947	0.100	0.0309	
7782-49-2	Selenium, Total	ND	0.00500	0.00173	U
7440-22-4	Silver, Total	ND	0.00040	0.00016	U
7440-23-5	Sodium, Total	17.6	0.100	0.0293	
7440-28-0	Thallium, Total	ND	0.00100	0.00014	U
7440-62-2	Vanadium, Total	ND	0.00500	0.00157	U
7440-66-6	Zinc, Total	0.01602	0.01000	0.00341	

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042612-03 Date Collected : 10/06/20 13:20

Client ID : PW-2 Date Received : 10/06/20

Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 19:46 Sample Matrix : WATER Dilution Factor : 1

Digestion Method : EPA 3005A Date Digested : 10/08/20

		mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier
7429-90-5	Aluminum, Total	ND	0.0100	0.00327	U
7440-36-0	Antimony, Total	ND	0.00400	0.00042	U
7440-38-2	Arsenic, Total	ND	0.00050	0.00016	U
7440-39-3	Barium, Total	0.00140	0.00050	0.00017	
7440-41-7	Beryllium, Total	ND	0.00050	0.00010	U
7440-43-9	Cadmium, Total	ND	0.00020	0.00005	U
7440-70-2	Calcium, Total	34.2	0.100	0.0394	
7440-47-3	Chromium, Total	ND	0.00100	0.00017	U
7440-48-4	Cobalt, Total	ND	0.00050	0.00016	U
7440-50-8	Copper, Total	0.00851	0.00100	0.00038	
7439-89-6	Iron, Total	0.0467	0.0800	0.0191	J
7439-92-1	Lead, Total	ND	0.00100	0.00034	U
7439-95-4	Magnesium, Total	3.81	0.0700	0.0242	
7439-96-5	Manganese, Total	0.00049	0.00100	0.00044	J
7440-02-0	Nickel, Total	ND	0.00200	0.00055	U
7440-09-7	Potassium, Total	1.10	0.100	0.0309	
7782-49-2	Selenium, Total	ND	0.00500	0.00173	U
7440-22-4	Silver, Total	ND	0.00040	0.00016	U
7440-23-5	Sodium, Total	8.38	0.100	0.0293	
7440-28-0	Thallium, Total	ND	0.00100	0.00014	U
7440-62-2	Vanadium, Total	ND	0.00500	0.00157	U
7440-66-6	Zinc, Total	0.01255	0.01000	0.00341	

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042612-04
 Date Collected
 : 10/06/20 09:15

 Client ID
 : SVWC-93
 Date Received
 : 10/06/20

Client ID : SVWC-93 Date Received : 10/06/20 Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 19:51

Sample Matrix: WATERDilution Factor: 1Analytical Method: 1,6020BAnalyst: AMLab File ID: WG1419622.pdfInstrument ID: ICPMSQSample Amount: 50ml%Solids: N/A

CAS NO.	Parameter	Results	RL	MDL	Qualifier
7429-90-5	Aluminum, Total	ND	0.0100	0.00327	U
7440-36-0	Antimony, Total	ND	0.00400	0.00042	U
7440-38-2	Arsenic, Total	ND	0.00050	0.00016	U
7440-39-3	Barium, Total	0.01387	0.00050	0.00017	
7440-41-7	Beryllium, Total	ND	0.00050	0.00010	U
7440-43-9	Cadmium, Total	ND	0.00020	0.00005	U
7440-70-2	Calcium, Total	31.7	0.100	0.0394	
7440-47-3	Chromium, Total	0.00018	0.00100	0.00017	J
7440-48-4	Cobalt, Total	ND	0.00050	0.00016	U
7440-50-8	Copper, Total	0.00339	0.00100	0.00038	
7439-89-6	Iron, Total	ND	0.0800	0.0191	U
7439-92-1	Lead, Total	ND	0.00100	0.00034	U
7439-95-4	Magnesium, Total	8.06	0.0700	0.0242	
7439-96-5	Manganese, Total	ND	0.00100	0.00044	U
7440-02-0	Nickel, Total	ND	0.00200	0.00055	U
7440-09-7	Potassium, Total	2.65	0.100	0.0309	
7782-49-2	Selenium, Total	ND	0.00500	0.00173	U
7440-22-4	Silver, Total	ND	0.00040	0.00016	U
7440-23-5	Sodium, Total	80.1	0.100	0.0293	
7440-28-0	Thallium, Total	ND	0.00100	0.00014	U
7440-62-2	Vanadium, Total	ND	0.00500	0.00157	U
7440-66-6	Zinc, Total	0.00397	0.01000	0.00341	J

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042612-05
 Date Collected
 : 10/06/20 10:15

 Client ID
 : SVWC-95
 Date Received
 : 10/06/20

Client ID : SVWC-95 Date Received : 10/06/20 Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 19:56

Sample Matrix: WATERDilution Factor: 1Analytical Method: 1,6020BAnalyst: AMLab File ID: WG1419622.pdfInstrument ID: ICPMSQSample Amount: 50ml%Solids: N/A

Digestion Method : EPA 3005A Date Digested : 10/08/20

CAS NO.	Parameter	Results	RL	MDL	Qualifier
7429-90-5	Aluminum, Total	ND	0.0100	0.00327	U
7440-36-0	Antimony, Total	ND	0.00400	0.00042	U
7440-38-2	Arsenic, Total	ND	0.00050	0.00016	U
7440-39-3	Barium, Total	0.01889	0.00050	0.00017	
7440-41-7	Beryllium, Total	ND	0.00050	0.00010	U
7440-43-9	Cadmium, Total	ND	0.00020	0.00005	U
7440-70-2	Calcium, Total	29.8	0.100	0.0394	
7440-47-3	Chromium, Total	0.00027	0.00100	0.00017	J
7440-48-4	Cobalt, Total	ND	0.00050	0.00016	U
7440-50-8	Copper, Total	0.02050	0.00100	0.00038	
7439-89-6	Iron, Total	ND	0.0800	0.0191	U
7439-92-1	Lead, Total	0.00063	0.00100	0.00034	J
7439-95-4	Magnesium, Total	7.76	0.0700	0.0242	
7439-96-5	Manganese, Total	0.06270	0.00100	0.00044	
7440-02-0	Nickel, Total	0.00107	0.00200	0.00055	J
7440-09-7	Potassium, Total	2.60	0.100	0.0309	
7782-49-2	Selenium, Total	ND	0.00500	0.00173	U
7440-22-4	Silver, Total	ND	0.00040	0.00016	U
7440-23-5	Sodium, Total	73.4	0.100	0.0293	
7440-28-0	Thallium, Total	ND	0.00100	0.00014	U
7440-62-2	Vanadium, Total	ND	0.00500	0.00157	U
7440-66-6	Zinc, Total	0.03337	0.01000	0.00341	

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042612-06
 Date Collected
 : 10/06/20 09:30

 Client ID
 : SVWC-94
 Date Received
 : 10/06/20

Client ID : SVWC-94 Date Received : 10/06/20 Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 20:01

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,6020B Analyst : AM
Lab File ID : WG1419622.pdf Instrument ID : ICPMSQ
Sample Amount : 50ml %Solids : N/A

Digestion Method : EPA 3005A Date Digested : 10/08/20

			mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
7429-90-5	Aluminum, Total	ND	0.0100	0.00327	U	
7440-36-0	Antimony, Total	ND	0.00400	0.00042	U	
7440-38-2	Arsenic, Total	ND	0.00050	0.00016	U	
7440-39-3	Barium, Total	0.01980	0.00050	0.00017		
7440-41-7	Beryllium, Total	ND	0.00050	0.00010	U	
7440-43-9	Cadmium, Total	ND	0.00020	0.00005	U	
7440-70-2	Calcium, Total	29.9	0.100	0.0394		
7440-47-3	Chromium, Total	ND	0.00100	0.00017	U	
7440-48-4	Cobalt, Total	ND	0.00050	0.00016	U	
7440-50-8	Copper, Total	0.00330	0.00100	0.00038		
7439-89-6	Iron, Total	ND	0.0800	0.0191	U	
7439-92-1	Lead, Total	ND	0.00100	0.00034	U	
7439-95-4	Magnesium, Total	7.89	0.0700	0.0242		
7439-96-5	Manganese, Total	0.00075	0.00100	0.00044	J	
7440-02-0	Nickel, Total	0.00060	0.00200	0.00055	J	
7440-09-7	Potassium, Total	2.41	0.100	0.0309		
7782-49-2	Selenium, Total	ND	0.00500	0.00173	U	
7440-22-4	Silver, Total	ND	0.00040	0.00016	U	
7440-23-5	Sodium, Total	82.9	0.100	0.0293		
7440-28-0	Thallium, Total	ND	0.00100	0.00014	U	
7440-62-2	Vanadium, Total	ND	0.00500	0.00157	U	
7440-66-6	Zinc, Total	0.00541	0.01000	0.00341	J	

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042612-07 Date Collected : 10/06/20 16:10

Client ID : 10-OS Date Received : 10/06/20 Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 20:06

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,6020B Analyst : AM
Lab File ID : WG1419622.pdf Instrument ID : ICPMSQ
Sample Amount : 50ml %Solids : N/A

Digestion Method : EPA 3005A Solids : N/A

Date Digested : 10/08/20

			mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
7429-90-5	Aluminum, Total	0.359	0.0100	0.00327		
7440-36-0	Antimony, Total	ND	0.00400	0.00042	U	
7440-38-2	Arsenic, Total	0.00021	0.00050	0.00016	J	
7440-39-3	Barium, Total	0.00790	0.00050	0.00017		
7440-41-7	Beryllium, Total	0.00014	0.00050	0.00010	J	
7440-43-9	Cadmium, Total	ND	0.00020	0.00005	U	
7440-70-2	Calcium, Total	2.68	0.100	0.0394		
7440-47-3	Chromium, Total	0.00031	0.00100	0.00017	J	
7440-48-4	Cobalt, Total	0.00029	0.00050	0.00016	J	
7440-50-8	Copper, Total	0.00099	0.00100	0.00038	J	
7439-89-6	Iron, Total	0.181	0.0800	0.0191		
7439-92-1	Lead, Total	ND	0.00100	0.00034	U	
7439-95-4	Magnesium, Total	0.495	0.0700	0.0242		
7439-96-5	Manganese, Total	0.02056	0.00100	0.00044		
7440-02-0	Nickel, Total	0.00072	0.00200	0.00055	J	
7440-09-7	Potassium, Total	0.371	0.100	0.0309		
7782-49-2	Selenium, Total	ND	0.00500	0.00173	U	
7440-22-4	Silver, Total	ND	0.00040	0.00016	U	
7440-23-5	Sodium, Total	2.30	0.100	0.0293		
7440-28-0	Thallium, Total	ND	0.00100	0.00014	U	
7440-62-2	Vanadium, Total	ND	0.00500	0.00157	U	
7440-66-6	Zinc, Total	ND	0.01000	0.00341	U	

Client : Sterling Environmental Engineering Lab Number : L2042612

: TOWN OF RAMAPO LF **Project Name** Project Number : 20010, TASK 200 Lab ID : L2042612-08 **Date Collected** : 10/06/20 15:10

Client ID : 10-I

: 10/06/20 **Date Received** Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 20:21

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,6020B Analyst : AM Lab File ID : WG1419622.pdf Instrument ID : ICPMSQ : 50ml : N/A Sample Amount %Solids

Digestion Method : EPA 3005A **Date Digested** : 10/08/20

		mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier
7429-90-5	Aluminum, Total	0.0160	0.0100	0.00327	
7440-36-0	Antimony, Total	ND	0.00400	0.00042	U
7440-38-2	Arsenic, Total	ND	0.00050	0.00016	U
7440-39-3	Barium, Total	0.00117	0.00050	0.00017	
7440-41-7	Beryllium, Total	ND	0.00050	0.00010	U
7440-43-9	Cadmium, Total	ND	0.00020	0.00005	U
7440-70-2	Calcium, Total	9.52	0.100	0.0394	
7440-47-3	Chromium, Total	0.00034	0.00100	0.00017	J
7440-48-4	Cobalt, Total	ND	0.00050	0.00016	U
7440-50-8	Copper, Total	ND	0.00100	0.00038	U
7439-89-6	Iron, Total	0.0390	0.0800	0.0191	J
7439-92-1	Lead, Total	ND	0.00100	0.00034	U
7439-95-4	Magnesium, Total	2.81	0.0700	0.0242	
7439-96-5	Manganese, Total	0.00047	0.00100	0.00044	J
7440-02-0	Nickel, Total	ND	0.00200	0.00055	U
7440-09-7	Potassium, Total	0.832	0.100	0.0309	
7782-49-2	Selenium, Total	ND	0.00500	0.00173	U
7440-22-4	Silver, Total	ND	0.00040	0.00016	U
7440-23-5	Sodium, Total	4.23	0.100	0.0293	
7440-28-0	Thallium, Total	0.00027	0.00100	0.00014	J
7440-62-2	Vanadium, Total	ND	0.00500	0.00157	U
7440-66-6	Zinc, Total	ND	0.01000	0.00341	U

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042612-09 Date Collected : 10/06/20 14:10

Client ID : 10-R Date Received : 10/06/20

Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 20:26 Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 1,6020B Analyst : AM
Lab File ID : WG1419622.pdf Instrument ID : ICPMSQ
Sample Amount : 50ml %Solids : N/A

mg/l Results RL MDL CAS NO. Qualifier **Parameter** 7429-90-5 Aluminum, Total 0.0636 0.0100 0.00327 7440-36-0 Antimony, Total ND 0.00400 0.00042 U 7440-38-2 Arsenic, Total ND 0.00050 0.00016 U 7440-39-3 Barium, Total 0.00410 0.00050 0.00017 7440-41-7 0.00010 U Beryllium, Total ND 0.00050 0.00020 U 7440-43-9 Cadmium, Total ND 0.00005 7440-70-2 9.32 0.100 0.0394 Calcium, Total 7440-47-3 Chromium, Total 0.02904 0.00100 0.00017 7440-48-4 0.00050 0.00016 Cobalt, Total 0.00134 7440-50-8 Copper, Total 0.00154 0.00100 0.00038 7439-89-6 Iron, Total 0.151 0.0800 0.0191 7439-92-1 Lead, Total 0.00125 0.00034 0.00100 7439-95-4 Magnesium, Total 1.97 0.0700 0.0242 7439-96-5 0.00100 Manganese, Total 0.02264 0.00044 7440-02-0 Nickel, Total 0.00592 0.00200 0.00055 7440-09-7 Potassium, Total 0.720 0.100 0.0309 7782-49-2 Selenium, Total ND 0.00500 0.00173 U 7440-22-4 ND 0.00040 0.00016 U Silver, Total 7440-23-5 Sodium, Total 4.28 0.100 0.0293 7440-28-0 Thallium, Total 0.00016 0.00050 0.00014 J 7440-62-2 Vanadium, Total ND 0.00500 0.00157 U 7440-66-6 Zinc, Total ND 0.01000 0.00341 U

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042612-10 Date Collected : 10/06/20 11:15

Client ID : 9-OS Date Received : 10/06/20

Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 20:31 Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 1,6020B Analyst : AM
Lab File ID : WG1419622.pdf Instrument ID : ICPMSQ
Sample Amount : 50ml %Solids : N/A

Digestion Method : EPA 3005A Date Digested : 10/08/20

			mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
7429-90-5	Aluminum, Total	0.00730	0.0100	0.00327	J	
7440-36-0	Antimony, Total	ND	0.00400	0.00042	U	
7440-38-2	Arsenic, Total	ND	0.00050	0.00016	U	
7440-39-3	Barium, Total	0.00465	0.00050	0.00017		
7440-41-7	Beryllium, Total	ND	0.00050	0.00010	U	
7440-43-9	Cadmium, Total	ND	0.00020	0.00005	U	
7440-70-2	Calcium, Total	5.94	0.100	0.0394		
7440-47-3	Chromium, Total	0.00081	0.00100	0.00017	J	
7440-48-4	Cobalt, Total	ND	0.00050	0.00016	U	
7440-50-8	Copper, Total	0.00040	0.00100	0.00038	J	
7439-89-6	Iron, Total	0.0260	0.0800	0.0191	J	
7439-92-1	Lead, Total	ND	0.00100	0.00034	U	
7439-95-4	Magnesium, Total	1.46	0.0700	0.0242		
7439-96-5	Manganese, Total	0.00063	0.00100	0.00044	J	
7440-02-0	Nickel, Total	ND	0.00200	0.00055	U	
7440-09-7	Potassium, Total	0.712	0.100	0.0309		
7782-49-2	Selenium, Total	ND	0.00500	0.00173	U	
7440-22-4	Silver, Total	ND	0.00040	0.00016	U	
7440-23-5	Sodium, Total	6.12	0.100	0.0293		
7440-28-0	Thallium, Total	ND	0.00100	0.00014	U	
7440-62-2	Vanadium, Total	ND	0.00500	0.00157	U	
7440-66-6	Zinc, Total	ND	0.01000	0.00341	U	

Date Received

Client : Sterling Environmental Engineering Lab Number : L2042612

: TOWN OF RAMAPO LF **Project Name** Project Number : 20010, TASK 200 Lab ID : L2042612-11 **Date Collected** : 10/06/20 12:15

Client ID : 9-1

: 10/06/20 Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 20:36

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,6020B Analyst : AM Lab File ID : WG1419622.pdf Instrument ID : ICPMSQ : 50ml : N/A Sample Amount %Solids

Digestion Method : EPA 3005A **Date Digested** : 10/08/20

		mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier
7429-90-5	Aluminum, Total	0.0201	0.0100	0.00327	
7440-36-0	Antimony, Total	ND	0.00400	0.00042	U
7440-38-2	Arsenic, Total	ND	0.00050	0.00016	U
7440-39-3	Barium, Total	0.00991	0.00050	0.00017	
7440-41-7	Beryllium, Total	ND	0.00050	0.00010	U
7440-43-9	Cadmium, Total	ND	0.00020	0.00005	U
7440-70-2	Calcium, Total	7.90	0.100	0.0394	
7440-47-3	Chromium, Total	0.04680	0.00100	0.00017	
7440-48-4	Cobalt, Total	ND	0.00050	0.00016	U
7440-50-8	Copper, Total	0.00081	0.00100	0.00038	J
7439-89-6	Iron, Total	0.305	0.0800	0.0191	
7439-92-1	Lead, Total	ND	0.00100	0.00034	U
7439-95-4	Magnesium, Total	1.94	0.0700	0.0242	
7439-96-5	Manganese, Total	0.00587	0.00100	0.00044	
7440-02-0	Nickel, Total	0.00077	0.00200	0.00055	J
7440-09-7	Potassium, Total	1.08	0.100	0.0309	
7782-49-2	Selenium, Total	ND	0.00500	0.00173	U
7440-22-4	Silver, Total	ND	0.00040	0.00016	U
7440-23-5	Sodium, Total	26.1	0.100	0.0293	
7440-28-0	Thallium, Total	ND	0.00100	0.00014	U
7440-62-2	Vanadium, Total	ND	0.00500	0.00157	U
7440-66-6	Zinc, Total	ND	0.01000	0.00341	U

mg/l

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1419377-1 Date Collected : NA Client ID : WG1419377-1BLANK Date Received : NA

Sample Location : Date Analyzed : 10/08/20 18:22

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,6020B Analyst : AM
Lab File ID : WG1419622.pdf Instrument ID : ICPMSQ
Sample Amount : 50ml %Solids : N/A

Digestion Method : EPA 3005A Date Digested : 10/08/20

			mg/i		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
7429-90-5	Aluminum, Total	ND	0.0100	0.00327	U
7440-36-0	Antimony, Total	ND	0.00400	0.00042	U
7440-38-2	Arsenic, Total	ND	0.00050	0.00016	U
7440-39-3	Barium, Total	ND	0.00050	0.00017	U
7440-41-7	Beryllium, Total	ND	0.00050	0.00010	U
7440-43-9	Cadmium, Total	ND	0.00020	0.00005	U
7440-70-2	Calcium, Total	ND	0.100	0.0394	U
7440-47-3	Chromium, Total	ND	0.00100	0.00017	U
7440-48-4	Cobalt, Total	ND	0.00050	0.00016	U
7440-50-8	Copper, Total	ND	0.00100	0.00038	U
7439-89-6	Iron, Total	ND	0.0800	0.0191	U
7439-92-1	Lead, Total	ND	0.00100	0.00034	U
7439-95-4	Magnesium, Total	ND	0.0700	0.0242	U
7439-96-5	Manganese, Total	ND	0.00100	0.00044	U
7440-02-0	Nickel, Total	ND	0.00200	0.00055	U
7440-09-7	Potassium, Total	ND	0.100	0.0309	U
7782-49-2	Selenium, Total	ND	0.00500	0.00173	U
7440-22-4	Silver, Total	ND	0.00040	0.00016	U
7440-23-5	Sodium, Total	ND	0.100	0.0293	U
7440-28-0	Thallium, Total	ND	0.00100	0.00014	U
7440-62-2	Vanadium, Total	ND	0.00500	0.00157	U
7440-66-6	Zinc, Total	ND	0.01000	0.00341	U

Inorganic Data (Mercury Analysis)

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042612-01
 Date Collected
 : 10/06/20 09:55

 Client ID
 : SVWC-96
 Date Received
 : 10/06/20

 Sample Location
 : HILLBURN, NY
 Date Analyzed
 : 10/08/20 12:01

Sample Matrix **Dilution Factor** : WATER : 1 Analytical Method : 1,7470A Analyst : EW Lab File ID : HG100820A Instrument ID : FIMS4 %Solids Sample Amount : 25ml : N/A Digestion Method : EPA 7470A **Date Digested** : 10/08/20

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200
Lab ID Date Collected : 10/06/20 12:50

Client ID : PW-1 Date Received : 10/06/20

Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 12:03
Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,7470A Analyst : EW

Lab File ID : HG100820A Instrument ID : FIMS4
Sample Amount : 25ml %Solids : N/A
Digestion Method : EPA 7470A Date Digested : 10/08/20

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042612-03 Date Collected : 10/06/20 13:20

Client ID : PW-2 Date Received : 10/06/20 Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 12:10

Sample Matrix **Dilution Factor** : WATER : 1 Analytical Method : 1,7470A Analyst : EW Lab File ID : HG100820A Instrument ID : FIMS4 %Solids Sample Amount : 25ml : N/A Digestion Method : EPA 7470A **Date Digested** : 10/08/20

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042612-04
 Date Collected
 : 10/06/20 09:15

 Client ID
 : SVWC-93
 Date Received
 : 10/06/20

 Sample Location
 : HILLBURN, NY
 Date Analyzed
 : 10/08/20 12:12

Sample Matrix **Dilution Factor** : WATER : 1 Analytical Method : 1,7470A Analyst : EW Lab File ID : HG100820A Instrument ID : FIMS4 %Solids Sample Amount : 25ml : N/A Digestion Method : EPA 7470A **Date Digested** : 10/08/20

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042612-05
 Date Collected
 : 10/06/20 10:15

 Client ID
 : SVWC-95
 Date Received
 : 10/06/20

 Sample Location
 : HILLBURN, NY
 Date Analyzed
 : 10/08/20 12:14

Sample Matrix **Dilution Factor** : WATER : 1 Analytical Method : 1,7470A Analyst : EW Lab File ID : HG100820A Instrument ID : FIMS4 Sample Amount : 25ml %Solids : N/A Digestion Method : EPA 7470A **Date Digested** : 10/08/20

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042612-06
 Date Collected
 : 10/06/20 09:30

 Client ID
 : SVWC-94
 Date Received
 : 10/06/20

 Sample Location
 : HILLBURN, NY
 Date Analyzed
 : 10/08/20 12:17

Sample Matrix **Dilution Factor** : WATER : 1 Analytical Method : 1,7470A Analyst : EW Lab File ID : HG100820A Instrument ID : FIMS4 Sample Amount : 25ml %Solids : N/A Digestion Method : EPA 7470A **Date Digested** : 10/08/20

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200
Lab ID Date Collected : 10/06/20 16:10

Client ID : 10-OS Date Received : 10/06/20 Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 12:19

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,7470A Analyst : EW Lab File ID : HG100820A Instrument ID : FIMS4 %Solids Sample Amount : 25ml : N/A Digestion Method : EPA 7470A **Date Digested** : 10/08/20

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200
Lab ID Date Collected : 10/06/20 15:10

Client ID : 10-I Date Received : 10/06/20 Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 12:21

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,7470A Analyst : EW Lab File ID : HG100820A Instrument ID : FIMS4 %Solids Sample Amount : 25ml : N/A Digestion Method : EPA 7470A **Date Digested** : 10/08/20

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042612-09 Date Collected : 10/06/20 14:10

Client ID : 10-R Date Received : 10/06/20

Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 12:24
Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,7470A Analyst : EW

Analytical Method : 1,7470A Analyst : EW
Lab File ID : HG100820A Instrument ID : FIMS4
Sample Amount : 25ml %Solids : N/A
Digestion Method : EPA 7470A Date Digested : 10/08/20

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042612-10 Date Collected : 10/06/20 11:15

Client ID : 9-OS Date Received : 10/06/20

Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 12:26
Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 1,7470A Analyst : EW
Lab File ID : HG100820A Instrument ID : FIMS4
Sample Amount : 25ml %Solids : N/A
Digestion Method : EPA 7470A Date Digested : 10/08/20

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200
Lab ID Date Collected : 10/06/20 12:15

Client ID : 9-1 Date Received : 10/06/20

Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 12:28

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,7470A Analyst : EW Lab File ID : HG100820A Instrument ID : FIMS4 %Solids Sample Amount : 25ml : N/A Digestion Method : EPA 7470A **Date Digested** : 10/08/20

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1419342-1 Date Collected : NA Client ID : WG1419342-1BLANK Date Received : NA

Sample Location : Date Analyzed : 10/08/20 11:32

Sample Matrix **Dilution Factor** : WATER : 1 Analytical Method : 1,7470A Analyst : EW Lab File ID : HG100820A Instrument ID : FIMS4 Sample Amount : 25ml %Solids : N/A Digestion Method : EPA 7470A **Date Digested** : 10/08/20

Wet Chemistry

Total Kjeldahl Nitrogen Analysis

Results

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042612-01
 Date Collected
 : 10/06/20 09:55

 Client ID
 : SVWC-96
 Date Received
 : 10/06/20

Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 18:41 Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 121,4500NH3-H Analyst : AT
Lab File ID : NH320201008-A Instrument ID : LACHAT
Sample Amount : %Solids : N/A

Digestion Method : Date Digested : 10/08/20

CAS NO. Parameter Results RL MDL Qualifier

NONE Nitrogen, Total Kjeldahl 0.182 0.300 0.066 J

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042612-02 Date Collected : 10/06/20 12:50

Client ID : PW-1 Date Received : 10/06/20

Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 18:42 Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 121,4500NH3-H Analyst : AT
Lab File ID : NH320201008-A Instrument ID : LACHAT

Sample Amount : %Solids : N/A
Digestion Method : Date Digested : 10/08/20

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 NONE
 Nitrogen, Total Kjeldahl
 0.152
 0.300
 0.066
 J

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042612-03 Date Collected : 10/06/20 13:20

Client ID : PW-2 Date Received : 10/06/20

Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 18:43 Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 121,4500NH3-H Analyst : AT
Lab File ID : NH320201008-A Instrument ID : LACHAT

Sample Amount : %Solids : N/A
Digestion Method : Date Digested : 10/08/20

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 NONE
 Nitrogen, Total Kjeldahl
 0.281
 0.300
 0.066
 J

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042612-04
 Date Collected
 : 10/06/20 09:15

 Client ID
 : SVWC-93
 Date Received
 : 10/06/20

Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 18:45

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 121,4500NH3-H Analyst : AT
Lab File ID : NH320201008-A Instrument ID : LAC

Lab File ID: NH320201008-AInstrument ID: LACHATSample Amount: %Solids: N/ADigestion Method: Date Digested: 10/08/20

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 NONE
 Nitrogen, Total Kjeldahl
 0.095
 0.300
 0.066
 J

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042612-05
 Date Collected
 : 10/06/20 10:15

 Client ID
 : SVWC-95
 Date Received
 : 10/06/20

Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 18:47
Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 121,4500NH3-H Analyst : AT
Lab File ID : NH320201008-A Instrument ID : LACHAT

Sample Amount : %Solids : N/A
Digestion Method : Date Digested : 10/08/20

 CAS NO.
 Parameter
 mg/l
 Results
 RL
 MDL
 Qualifier

 NONE
 Nitrogen, Total Kjeldahl
 0.150
 0.300
 0.066
 J

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042612-06
 Date Collected
 : 10/06/20 09:30

 Client ID
 : SVWC-94
 Date Received
 : 10/06/20

Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 18:48

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 121,4500NH3-H Analyst : AT
Lab File ID : NH320201008-A Instrument ID : LACHAT

Sample Amount : %Solids : N/A
Digestion Method : Date Digested : 10/08/20

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 NONE
 Nitrogen, Total Kjeldahl
 0.118
 0.300
 0.066
 J

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200
Lab ID Date Collected : 10/06/20 16:10

Client ID : 10-OS Date Received : 10/06/20 Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 18:49

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 121,4500NH3-H Analyst : AT
Lab File ID : NH320201008-A Instrument ID : LAC

Lab File ID: NH320201008-AInstrument ID: LACHATSample Amount: %Solids: N/ADigestion Method: Date Digested: 10/08/20

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 NONE
 Nitrogen, Total Kjeldahl
 0.152
 0.300
 0.066
 J

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF : 20010, TASK 200 **Project Number** Lab ID : L2042612-08 **Date Collected** : 10/06/20 15:10

: 10-I Client ID

: 10/06/20 **Date Received** Sample Location : HILLBURN, NY **Date Analyzed** : 10/08/20 18:49

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 121,4500NH3-H Analyst : AT Lab File ID : NH320201008-A Instrument ID : LACHAT

%Solids Sample Amount : N/A Digestion Method: **Date Digested** : 10/08/20

mg/l Results RL MDL CAS NO. **Parameter** Qualifier NONE Nitrogen, Total Kjeldahl 0.239 0.300 0.066 J

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF : 20010, TASK 200 **Project Number** Lab ID : L2042612-09 **Date Collected** : 10/06/20 14:10 : 10/06/20

Client ID : 10-R **Date Received**

Sample Location : HILLBURN, NY **Date Analyzed** : 10/08/20 18:53 : WATER

Sample Matrix **Dilution Factor** : 1 Analytical Method : 121,4500NH3-H Analyst : AT Lab File ID : NH320201008-A Instrument ID : LACHAT

%Solids Sample Amount : N/A Digestion Method: **Date Digested** : 10/08/20

mg/l Results RL MDL CAS NO. **Parameter** Qualifier NONE Nitrogen, Total Kjeldahl 0.129 0.300 0.066 J

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200
Lab ID Date Collected : 10/06/20 11:15

Client ID : 9-OS Date Received : 10/06/20 Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 18:54

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 121,4500NH3-H Analyst : AT

Lab File ID: NH320201008-AInstrument ID: LACHATSample Amount: %Solids: N/ADigestion Method: Date Digested: 10/08/20

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 NONE
 Nitrogen, Total Kjeldahl
 0.139
 0.300
 0.066
 J

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF : 20010, TASK 200 **Project Number** Lab ID : L2042612-11 **Date Collected** : 10/06/20 12:15 : 10/06/20

Client ID : 9-1 **Date Received**

Sample Location : HILLBURN, NY **Date Analyzed** : 10/08/20 18:55

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 121,4500NH3-H Analyst : AT Lab File ID : NH320201008-A Instrument ID : LACHAT %Solids : N/A

Sample Amount Digestion Method: **Date Digested** : 10/08/20

mg/l Results RL MDL CAS NO. **Parameter** Qualifier NONE Nitrogen, Total Kjeldahl 0.165 0.300 0.066 J

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF **Project Number** : 20010, TASK 200

Lab ID : WG1419655-1 **Date Collected** : NA : WG1419655-1BLANK Client ID **Date Received** : NA

Sample Location **Date Analyzed** : 10/08/20 18:32

Sample Matrix **Dilution Factor** : WATER : 1 Analytical Method : 121,4500NH3-H Analyst : AT

Lab File ID : NH320201008-A Instrument ID : LACHAT Sample Amount %Solids : N/A

Digestion Method: **Date Digested** : 10/08/20

mg/l Results RL MDL CAS NO. **Parameter** Qualifier NONE Nitrogen, Total Kjeldahl 0.137 0.300 0.022 J

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200
Lab ID Date Collected : 10/06/20 13:20

Client ID : PW-2DUP Date Received : 10/06/20

Sample Location : Date Analyzed : 10/08/20 18:44
Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 121,4500NH3-H Analyst : AT
Lab File ID : NH320201008-A Instrument ID : LACHAT
Sample Amount : %Solids : N/A

Digestion Method: %50lids: N/A Digestion Method: Date Digested: 10/08/20

CAS NO. Parameter Results RL MDL Qualifier

NONE Nitrogen, Total Kjeldahl 0.171 0.300 0.066 J

Chemical Oxygen Demand Analysis

Results

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042612-01
 Date Collected
 : 10/06/20 09:55

 Client ID
 : SVWC-96
 Date Received
 : 10/06/20

 Sample Location
 : HILLBURN, NY
 Date Analyzed
 : 10/07/20 21:13

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1419440.csv Instrument ID : GENSYS10VI Sample Amount : %Solids : N/A
Digestion Method : Date Digested : 10/07/20

CAS NO. Parameter Results RL MDL Qualifier

COD Chemical Oxygen Demand ND 10 2.7 U

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042612-02
 Date Collected
 : 10/06/20 12:50

 Client ID
 : PW-1
 Date Received
 : 10/06/20

Sample Location : HILLBURN, NY Date Received : 10/06/20 : 10/07/20 21:13

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1419440.csv Instrument ID : GENSYS10VI Sample Amount : %Solids : N/A

Sample Amount : %Solids : N/A
Digestion Method : Date Digested : 10/07/20

			mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
COD	Chemical Oxygen Demand	2.8	10	2.7		
	Chemical Oxygen Demand	2.0	10	2.1	J	

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042612-03
 Date Collected
 : 10/06/20 13:20

 Client ID
 : PW-2
 Date Received
 : 10/06/20

Sample Location : HILLBURN, NY Date Analyzed : 10/07/20 21:13

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1419440.csv Instrument ID : GENSYS10VI

Sample Amount : %Solids : N/A
Digestion Method : Date Digested : 10/07/20

			mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
COD	Chemical Oxygen Demand	ND	10	2.7	U	

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042612-04
 Date Collected
 : 10/06/20 09:15

 Client ID
 : SVWC-93
 Date Received
 : 10/06/20

 Sample Location
 : HILLBURN, NY
 Date Analyzed
 : 10/07/20 21:14

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1419440.csv Instrument ID : GENSYS10VI Sample Amount : %Solids : N/A

Digestion Method : %50lids : N/A Digestion Method : Date Digested : 10/07/20

			mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
000	Observiced Overson Bornand	ND	10	0.7		
COD	Chemical Oxygen Demand	ND	10	2.7	U	

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042612-05
 Date Collected
 : 10/06/20 10:15

 Client ID
 : SVWC-95
 Date Received
 : 10/06/20

 Sample Location
 : HILLBURN, NY
 Date Analyzed
 : 10/07/20 21:14

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1419440.csv Instrument ID : GENSYS10VI Sample Amount : %Solids : N/A

Digestion Method : Date Digested : 10/07/20

			mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
COD	Chemical Oxygen Demand	ND	10	2.7	U	

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042612-06
 Date Collected
 : 10/06/20 09:30

 Client ID
 : SVWC-94
 Date Received
 : 10/06/20

 Sample Location
 : HILLBURN, NY
 Date Analyzed
 : 10/07/20 21:14

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1419440.csv Instrument ID : GENSYS10VI

		mg/l	
CAS NO.	Parameter	Results RL MDL	Qualifier
COD	Chemical Oxygen Demand	2.8 10 2.7	J

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042612-07
 Date Collected
 : 10/06/20 16:10

 Client ID
 : 10-OS
 Date Received
 : 10/06/20

Sample Location : HILLBURN, NY Date Analyzed : 10/07/20 21:14 Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1419440.csv Instrument ID : GENSYS10VI Sample Amount : %Solids : N/A

			mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
COD	Chamical Owner Damand	ND	10	0.7		
COD	Chemical Oxygen Demand	ND	10	2.7	<u> </u>	

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200
Lab ID Date Collected : 10/06/20 15:10

Client ID : 10-I Date Received : 10/06/20 Sample Location : HILLBURN, NY Date Analyzed : 10/07/20 21:14

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1419440.csv Instrument ID : GENSYS10VI

			mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
000	Ohamiaal Ourman Damand	ND	10	0.7		
COD	Chemical Oxygen Demand	ND	10	2.7	U	

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042612-09
 Date Collected
 : 10/06/20 14:10

 Client ID
 : 10-R
 Date Received
 : 10/06/20

Sample Location : HILLBURN, NY Date Analyzed : 10/07/20 21:14

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1419440.csv Instrument ID : GENSYS10VI

Sample Amount : %Solids : N/A
Digestion Method : Date Digested : 10/07/20

CAS NO. Parameter Results RL MDL Qualifier

COD Chemical Oxygen Demand ND 10 2.7 U

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042612-10
 Date Collected
 : 10/06/20 11:15

 Client ID
 : 9-OS
 Date Received
 : 10/06/20

Sample Location : HILLBURN, NY Date Analyzed : 10/06/20 21:15

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1419440.csv Instrument ID : GENSYS10VI

			mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
COD	Chemical Oxygen Demand	ND	10	2.7	U	

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200
Lab ID Date Collected : 10/06/20 12:15

Client ID : 9-1 Date Received : 10/06/20 Sample Location : HILLBURN, NY Date Analyzed : 10/07/20 21:15

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1419440.csv Instrument ID : GENSYS10VI

			mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
COD	Chemical Oxygen Demand	ND	10	2.7	U	

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1419440-1 Date Collected : NA Client ID : WG1419440-1BLANK Date Received : NA

Sample Location : Date Analyzed : 10/07/20 21:12

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1419440.csv Instrument ID : GENSYS10VI

			mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
COD	Chemical Oxygen Demand	ND	10	2.7	U	

Date Analyzed

: 10/07/20 21:15

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : WG1419440-4
 Date Collected
 : 10/05/20 14:00

 Client ID
 : WG1419440-4 DUP
 Date Received
 : 10/05/20

Sample Location :

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 44,410.4 Analyst : tlh

Lab File ID : WG1419440.csv Instrument ID : GENSYS10VI

			mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
COD	Chemical Oxygen Demand	ND	10	2.7	U	

Alkalinity Analysis

Results

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF : 20010, TASK 200 **Project Number** Lab ID : L2042612-01 **Date Collected** : 10/06/20 09:55 : 10/06/20 **Client ID** : SVWC-96 **Date Received**

Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 08:14 : WATER **Dilution Factor** : 1

Sample Matrix Analytical Method : 121,2320B Analyst : BR Lab File ID : WG1419658.csv Instrument ID

%Solids Sample Amount : N/A

Digestion Method: **Date Digested**

		mg	mg CaCO3/L		
CAS NO.	Parameter	Results	RL MDL	Qualifier	
474 04 4	Alles limites Tatal	50.0	00 NA		
471-34-1	Alkalinity, Total	59.3 2	.00 NA		

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042612-02 Date Collected : 10/06/20 12:50

Client ID : PW-1 Date Received : 10/06/20 Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 08:14

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 121 2320B Analyst : BR

Analytical Method : 121,2320B Analyst : BR Lab File ID : WG1419658.csv Instrument ID :

Sample Amount : %Solids : N/A

Digestion Method : Date Digested

		mg CaCO3/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier
471-34-1	Alkalinity, Total	26.6	2.00	NA	

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF : 20010, TASK 200 **Project Number** Lab ID : L2042612-03 **Date Collected** : 10/06/20 13:20

: 10/06/20 Client ID : PW-2 **Date Received** Sample Location : HILLBURN, NY **Date Analyzed** : 10/08/20 08:14

Sample Matrix **Dilution Factor** : WATER : 1 Analytical Method : 121,2320B **Analyst** : BR

Lab File ID : WG1419658.csv Instrument ID

%Solids Sample Amount : N/A Digestion Method: **Date Digested** :

mg CaCO3/L Results RL MDL CAS NO. **Parameter** Qualifier 471-34-1 Alkalinity, Total 68.4 2.00 NA

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF : 20010, TASK 200 **Project Number** Lab ID : L2042612-04 **Date Collected** : 10/06/20 09:15 : 10/06/20 **Client ID** : SVWC-93 **Date Received** Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 08:14

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 121,2320B Analyst : BR

Lab File ID : WG1419658.csv Instrument ID

%Solids Sample Amount : N/A Digestion Method: **Date Digested**

			mg CaCO3/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
471-34-1	Alkalinity, Total	63.0	2.00	NA		

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF : 20010, TASK 200 **Project Number** Lab ID : L2042612-05 **Date Collected** : 10/06/20 10:15 : 10/06/20 **Client ID** : SVWC-95 **Date Received**

Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 08:14 : WATER **Dilution Factor** : 1

Sample Matrix Analytical Method : 121,2320B Analyst : BR Lab File ID : WG1419658.csv Instrument ID

%Solids Sample Amount : N/A

Digestion Method: **Date Digested**

		mg CaCO3/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier
474 04 4	Alles Bedre Teach	co 7	0.00		
471-34-1	Alkalinity, Total	68.7	2.00	NA	

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042612-06
 Date Collected
 : 10/06/20 09:30

 Client ID
 : SVWC-94
 Date Received
 : 10/06/20

Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 08:14

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 121,2320B Analyst : BR
Lab File ID : WG1419658.csv Instrument ID :

Sample Amount : %Solids : N/A

Digestion Method : Date Digested :

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 471-34-1
 Alkalinity, Total
 64.8
 2.00
 NA

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042612-07
 Date Collected
 : 10/06/20 16:10

 Client ID
 : 10-OS
 Date Received
 : 10/06/20

Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 08:14

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 121,2320B Analyst : BR
Lab File ID : WG1419795.csv Instrument ID :

Sample Amount : %Solids : N/A

Digestion Method : Date Digested :

		mg CaCO3/L	
CAS NO.	Parameter	Results RL MDL Qualifier	
471-34-1	Alkalinity, Total	ND 2.00 NA U	

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF : 20010, TASK 200 **Project Number** Lab ID : L2042612-08 **Date Collected** : 10/06/20 15:10

: 10-I **Client ID**

: 10/06/20 **Date Received** Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 08:14

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 121,2320B Analyst : BR Lab File ID : WG1419795.csv Instrument ID

%Solids Sample Amount : N/A

Digestion Method: **Date Digested**

		mg CaCO3/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier
471-34-1	Alkalinity, Total	24.9	2.00	NA	

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF : 20010, TASK 200 **Project Number** Lab ID : L2042612-09 **Date Collected** : 10/06/20 14:10

: 10-R : 10/06/20 **Client ID Date Received** Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 08:14

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 121,2320B Analyst : BR

Lab File ID : WG1419795.csv Instrument ID

%Solids Sample Amount : N/A

Digestion Method: **Date Digested**

		mg CaCO3/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier
471-34-1	Alkalinity, Total	24.2	2.00	NA	

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID Date Collected : 10/06/20 11:15

Client ID : 9-OS Date Received : 10/06/20 Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 08:14

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 121,2320B Analyst : BR

Lab File ID : WG1419795.csv Instrument ID : Sample Amount : %Solids : N/A

Digestion Method : Date Digested :

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 471-34-1
 Alkalinity, Total
 14.4
 2.00
 NA

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF : 20010, TASK 200 **Project Number** Lab ID : L2042612-11 **Date Collected** : 10/06/20 12:15

: 9-1 : 10/06/20 **Client ID Date Received** Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 08:14

Sample Matrix : WATER **Dilution Factor** : 1 : BR

Analytical Method : 121,2320B Analyst Lab File ID : WG1419795.csv Instrument ID

%Solids Sample Amount : N/A

Digestion Method: **Date Digested**

			mg CaCO3/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
471-34-1	Alkalinity, Total	28.8	2.00	NA	

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1419658-1 Date Collected : NA Client ID : WG1419658-1BLANK Date Received : NA

Sample Location : Date Analyzed : 10/08/20 08:14

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 121,2320B Analyst : BR
Lab File ID : WG1419658.csv Instrument ID :

Sample Amount : %Solids : N/A

Digestion Method : Date Digested

		mg CaCO3/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier
471-34-1	Alkalinity, Total	ND	2.00	NA	U

Client : Sterling Environmental Engineering Lab Number : L2042612

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : WG1419658-3
 Date Collected
 : 10/07/20 10:00

 Client ID
 : WG1419658-3 DUP
 Date Received
 : 10/07/20

Sample Location : Date Analyzed : 10/08/20 08:14

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 121,2320B Analyst : BR

Lab File ID : WG1419658.csv Instrument ID : Sample Amount : %Solids : N/A

Digestion Method : Date Digested :

			mg CaCO3/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
471-34-1	Alkalinity, Total	44.8	2.00	NA	

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1419795-1 Date Collected : NA Client ID : WG1419795-1BLANK Date Received : NA

Sample Location : Date Analyzed : 10/08/20 08:14

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 121,2320B Analyst : BR
Lab File ID : WG1419795.csv Instrument ID :

Sample Amount : %Solids : N/A

Digestion Method : Date Digested :

 CAS NO.
 Parameter
 mg CaCO3/L Results
 MDL
 Qualifier

 471-34-1
 Alkalinity, Total
 ND 2.00 NA U
 U

Client : Sterling Environmental Engineering Lab Number : L2042612

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200
Lab ID : WG1419795-3 Date Collected : 10/06/20 16:10
Client ID : 10-OSDUP Date Received : 10/06/20

Sample Location : 10-OSDUP Date Received : 10/06/20 Date Analyzed : 10/08/20 08:14

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 121,2320B Analyst : BR
Lab File ID : WG1419795.csv Instrument ID :

Lab File ID : WG1419795.csv Instrument ID : Sample Amount : %Solids : N/A

Digestion Method : Date Digested :

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 471-34-1
 Alkalinity, Total
 ND
 2.00
 NA
 U

www.alphalab.com

Alpha Analytical

Laboratory Code: 11148

SDG Number: L2042866

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Table of Contents

New York ASP Category A Data Deliverable Package	1
Table of Contents	
Sample ID Cross Reference	3
SDG Narrative	4
Data Qualifier Definitions	6
Instrument Information	
Sample Log-in Sheet	
Lims COC (LN01)	
External Chain of Custody	
Organics Analysis	
Volatiles Data	
Volatiles Sample Data	17
Form 1 - Organics	
Metals Analysis	
Inorganic Data (ICP Analysis)	
Form 1 - Inorganics	
Inorganic Data (ICPMS Analysis)	31
Form 1 - Inorganics	
Inorganic Data (Mercury Analysis)	
Form 1 - Inorganics	
Wet Chemistry Analysis	
TKN Analysis	
Results	45
Form 1 - Inorganics	46
COD Analysis	
Results	
Form 1 - Inorganics	53
Alkalinity Analysis	
Results	
Form 1 - Inorganics	60

Project Name: TOWN OF RAMAPO LF

Lab Number: L2042866 Project Number: Report Date: 10/14/20 20010, TASK 200

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2042866-01	8-I	WATER	HILLBURN, NY	10/07/20 14:00	10/07/20
L2042866-02	8-R	WATER	HILLBURN, NY	10/07/20 14:40	10/07/20
L2042866-03	8-0S	WATER	HILLBURN, NY	10/07/20 16:05	10/07/20
L2042866-04	TB10072020	WATER	HILLBURN, NY	10/07/20 00:00	10/07/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Total Metals

The WG1420226-3 MS recoveries for iron (67%), manganese (0%), and sodium (0%), performed on L2042866-01, do not apply because the sample concentrations are greater than four times the spike amounts added.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature: Michelle M. Mowie Report Date: 10/14/20

Title: Technical Director/Representative

GLOSSARY

Acronyms

EMPC

EPA

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.
- Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

TEO

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries

Report Format: DU Report with 'J' Qualifiers

Data Qualifiers

when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Volatile Organics Instruments

Volatile Organics:

Instrument: Agilent 7890 GC/5975C MSD
Trap: Supelco K Trap (VOACARB 3000)
Concentrator: EST Encon (or equivalent)
Autosampler: EST Centurion (or equivalent)

Columns (length x ID x df):
RTX-VMS 20m x 0.18mm x 1um
RTX-VMS 30m x 0.25mm x 1.4um
RTX-502.2 40m x 0.18mm x 1um

Purge time: 11 min

Volatile Organics: VPH

Instrument: Agilent 6890 (or equivalent)

Column Type: Restek RTX 502.2

Column Length: 105 Meters

Concentrator: EST Encon (or equivalent)

Column Type: Restek RTX 502.2

Column Length: 105 Meters

df: 3.00 um

Concentrator: EST Encon (or equivalent) df: 3.00 um Autosampler: EST Centurion (or equivalent) ID: 0.53mm

Volatile Organics: PIANO

Instrument: Agilent 7890 GC/5975C MSD Trap: Supelco K Trap (VOACARB 3000) Concentrator: Tekmar Velocity / EST Encon

Autosampler: Varian Archon / EST Centurion

Purge time: 11 min

Volatile Organics: Dissolved Gas

Instrument: Agilent 7890 (or equivalent) with FID/TCD

Column Type: Haysep S Column Column Length: 2 Meters packed

Column Type: DB-VRX

df: 1.40 um

ID: 0.25 mm

Desorb: 1 min

Column Length: 60 Meters

(100/200 mesh)

Autosampler: LEAP Headspace Purge time: 0.6 min

Volatile Organics in Air Instruments

Volatile Organics in Air:

Instruments: Agilent 6890 GC / 5975 MSD Shimadzu QP2010-SE / QP2020

Concentrator: Entech 7100A or 7200 Column Type: Restek RTX-1 Autosampler: Entech 7016CA or 7016D Column Length: 60 Meters

df: 1.00 um

ID: 0.25 mm or 0.32 mm

Trap 1: Glass Bead: manufacturer-Entech: 20 cm packing material

Trap 2: Tenax: manufacturer-Entech: 20 cm packing material

Semivolatile Organics Instruments - Westborough

Semivolatile Organics (Acid/Base/Neutral Extractables):

Instrument: Agilent 5973N MSD Injection volume: 1 ul;2 uL LVI

Column Type: Restek RXI-5SILMS df: 0.32 um
Column Length: 30 Meters ID: 0.25 mm

Polynuclear Aromatic Hydrocarbons by 8270 SIM:

Instrument: Agilent 5973 MSD Injection volume: 1 ul;2 uL LVI

Column Type: Restek RXI-5SILMS df: 0.25 um
Column Length: 30 Meters ID: 0.25 mm

Pesticides/PCB/Herbicides:

Instrument: Agilent 6890 w/Dual Micro ECDs Injection Volume: 1uL

Column A: Restek RTX-CL/STX-CL df: 0.32
Column B: Restek RTX/STX-CLPPesticide II df: 0.25
Column Length: 30 Meters ID: 0.32 mm

Petroleum/EPH:

Instrument: Agilent 6890 w/FID / HP 5890 w/ FID Injection Volume: 1uL

Column: Restek RTX 5 df: 0.25

Column Length: 30 Meters

ID: 0.32 mm

Semivolatile Organic Instruments - Mansfield

Semivolatile Organics (ALK-PAH Extractables):

Instrument: Agilent 5973N / 5975 MSD Injection volume: 1 ul

Column Type: ZB-5 df: 0.25 um
Column Length: 60 Meters ID: 0.25 mm

Semivolatile Organics (8270):

Instrument: Agilent 5973N / 5975 MSD Injection volume: 2 ul

Column Type: ZB-Semivolatiles df: 0.25 um
Column Length: 30 Meters ID: 0.25 mm

Semivolatile Organics (8270 SIM):

Instrument: Agilent 5973N / 5975 MSD Injection volume: 3 ul

Column Type: ZB-5 df: 0.25 um
Column Length: 30 Meters ID: 0.25 mm

<u>Semivolatile Organics (1,4-Dioxane):</u>

Instrument: Agilent 5973N / 5975 / 5977 MSD Injection volume: 3 ul Column Type: RTX-5 df: 0.25um, 0.18 um ID: 0.25um, 0.18 mm

Semivolatile Organics (209 Congener):

Instrument: Agilent 5973N / 5975 MSD

Column Type: RTX-5, RTX-PCB

Column Length: 60 Meters

Injection volume: 3 ul df: 0.25um, 0.18 um ID: 0.25um, 0.18 mm

Semivolatile Organics (8081):

Instrument: Agilent 6890 / 7890 Injection volume: 1 ul

Column Type: RTX-5 / RTX-CLP II df: 0.25 um Column Length: 60 Meters ID: 0.25 mm

Semivolatile Organics (8082):

Instrument: Agilent 6890 w/Dual Micro ECDs Injection Volume: 1uL

Column A: Restek RTX-CL/STX-CL df: 0.32 Column B: Restek RTX/STX-CLPPesticide II df: 0.25 Column Length: 30 Meters ID: 0.32 mm

<u>Semivolatile Organics (SHC Extractables):</u>

Instrument: Agilent 6890 Injection volume: 1 ul

Column Type: RTX-5 df: 0.25 um
Column Length: 60 Meters ID: 0.25 mm

Sample Delivery Group Summary

Alpha Job Number : L2042866 Received : 07-OCT-2020 Reviewer : Chris Tebeau

Account Name : Sterling Environmental Engineering

Project Number : 20010, TASK 200
Project Name : TOWN OF RAMAPO LF

Delivery Information

Samples Delivered By: Alpha Courier

Chain of Custody : Present

Cooler Information

Cooler Seal/Seal# Preservation Temperature(°C) Additional Information

A Absent/ Ice 2.9

Condition Information

1) All samples on COC received?

2) Extra samples received?

3) Are there any sample container discrepancies?

4) Are there any discrepancies between sample labels & COC? NO

5) Are samples in appropriate containers for requested analysis? YES

6) Are samples properly preserved for requested analysis? YES

7) Are samples within holding time for requested analysis? YES

8) All sampling equipment returned?

Volatile Organics/VPH

1) Reagent Water Vials Frozen by Client?

ALPHA ANALYTICAL LABORATORIES, INC. LOGIN CHAIN OF CUSTODY REPORT Oct 14 2020, 11:51 am

Login Number: L2042866

Account: STERLINGENV Sterling Environmental EngineeringProject: 20010, TASK 200

Received: 070CT20 Due Date: 140CT20

Sample # Client ID Mat PR Collected L2042866-01 8-I 1 S0 07OCT20 14:00 8260 report list built ASP-A Package Due Date: 10/14/20 ALK-T-2320, ASP-A, COD-410-LOW, HARDT, NYTCL-8260-R2, TAL-6020T, AG-6020T, AL-6020T, AS-6020T, BA-6020T, BE-6020T, CA-6020T, CD-6020T, CO-6020T, CR-6020T, CU-6020T, FE-6020T, HG-T, K-6020T, MG-6020T, MN-6020T, NA-6020T, NI-6020T, PB-6020T, PREPT, SB-6020T, SE-6020T, TL-6020T, V-6020T, ZN-6020T, TKN-4500 L2042866-02 8-R 1 S0 07OCT20 14:40 8260 report list built Package Due Date: 10/14/20 ALK-T-2320, COD-410-LOW, HARDT, NYTCL-8260-R2, TAL-6020T, AG-6020T, AL-6020T, AS-6020T, BA-6020T, BE-6020T, CA-6020T, CD-6020T, CO-6020T, CR-6020T, CU-6020T, FE-6020T, HG-T, K-6020T, MG-6020T, MN-6020T, NA-6020T, NI-6020T, PB-6020T, PREPT, SB-6020T, SE-6020T, TL-6020T, V-6020T, ZN-6020T, TKN-4500 L2042866-03 8-0S 1 S0 07OCT20 16:05 8260 report list built Package Due Date: 10/14/20 ALK-T-2320, COD-410-LOW, HARDT, NYTCL-8260-R2, TAL-6020T, AG-6020T, AL-6020T, AS-6020T, BA-6020T, BE-6020T, CA-6020T, CD-6020T, CO-6020T, CR-6020T, CU-6020T, FE-6020T, HG-T, K-6020T, MG-6020T, MN-6020T, NA-6020T, NI-6020T, PB-6020T, PREPT, SB-6020T, SE-6020T, TL-6020T, V-6020T, ZN-6020T, TKN-4500 L2042866-04 TB10072020 1 S0 07OCT20 00:00

8260 report list built Package Due Date: 10/14/20

NYTCL-8260-R2

Page 1

Logged By: Melissa Deyo

Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo	Vay	05	Page of	-		Date F in L	ab	10	7/2	0			L20428UV				
8 Walkup Dr.	320 Forbes Blvd	Project Information	MANUAL		(1 to) 1 to (1 to)	STATE OF THE PARTY.		rables				Rin.			Billing Information				
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3268		whof		po h	-	-	ASP-A				ASP-B		1.	Same as Client Info				
· ANTONIO PROPERTO	a Vocasiliani		Ilburn,				-	EQuis	(1 Fi	le)	Ш	EQuIS	(4 File)	P	0#				
Client Information			o Tas	K 200				Other	State		W =	-	-		4 14-14 TOBE - W				
Client: Sterling 1		(Use Project name as Project name)					1	latory f		remen	-			D	Disposal Site Information				
Address: 24 Wac	ge Rd	Project Manager: Mc	rkWill	iams			-	NY TO		SE 6		NY Part		100	Please identify below location of pplicable disposal facilities.				
(=:=1::	E1 110 m	ALPHAQuote #:					_ =	AWQ S				NY CP-	51						
Control of the Contro	56-4900	Turn-Around Time		STATE OF THE PARTY OF	17.00		=	NY Res				Other		P	Disposal Facility:				
Fax:		Standard		Due Date:				NY Unr						L	□ N1 □ NY				
Email:		Rush (only if pre approved) []	# of Days:			_=	NYC S	ewer D	ischarg	je				Other:				
These samples have be							ANAL	YSIS						s	Sample Filtration	T			
Please specify Metals	ns@sterlin	ig environme	ntel.c.		ine M	etc.15	8200	200	Alkalinily Sm 3330	4.014-00	METALSA			P	Done Lab to do Preservation	t a l B			
							32 2			7 3 7		35 7 25			0	Please Specify below)	o t		
ALPHA Lab ID	Co	imple ID Coll		Collection Sample Sampler's T Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z		7 5 30 E	7 2 3 B		7 2 3 0 3		₹N	N. N.	Z ZN	TAL					1
(Lab Use Only)	Sar	npie ID	Date	Time	Matrix	Initials	3.	FF	1 1 0	FF	トレト					Sample Specific Comments	l e		
428610-01	8-I		10-7-2030	1400	G-W	PUS	\times	X	×	×	×					G			
702	8-R			1440	GW	i	×	$\stackrel{\frown}{\sim}$		5	X			\neg		6			
703	8-05	5		1605	GW			$\stackrel{\leftarrow}{\sim}$			×			7		6			
704	TB1007		1	-	LW	1					- \	\neg		\dashv		a			
			V						\neg			\rightarrow		1					
			27.000						\neg							_			
	7		ALVIS)					\neg	\dashv		3		_	\dashv		_			
			Arra							Ry	50	_		+		_			
				77								\neg	-	\rightarrow		-			
									\neg		\rightarrow	\rightarrow	-	+		_			
A = None B = HCI C = HNO ₃	Container Code P = Plastic A = Amber Glass V = Vial G = Glass	Westboro: Certification N Mansfield: Certification N				tainer Type	V	P	P	P	P				Please print clearly, legibly and completely. Samples control be logged in and turnaround time clock will n	ar			
E = NaOH	B = Bacteria Cup				0.50	reservative	B	D	A	D	6				start until any ambiguities a				
100011	C = Cube O = Other	Relinquished	Ву:	Date/	Time	0	Regeiv	ed By:		M		Date/I	ime		resolved. BY EXECUTING				
H = Na ₂ S ₂ O ₃	E = Encore D = BOD Bottle	Bu maye	lla i	10-7-2030		Street	11	Re	P	la	10/	000	201	7	THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA TERMS & CONDITIONS.				
Form No: 01-25 HC (rev. 30	0-Sept-2013)													\neg	(See reverse side.)				

Organics

Volatiles Data

Volatiles Sample Data

Client : Sterling Environmental Engineering

Project Name : TOWN OF RAMAPO LF

Lab ID : L2042866-01

Client ID : 8-I

Sample Location : HILLBURN, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05201011A07

Sample Amount : 10 ml Level : LOW

Level : LOW Extract Volume (MeOH) : N/A

Lab Number : L2042866

Project Number : 20010, TASK 200
Date Collected : 10/07/20 14:00

Date Received : 10/07/20

Date Analyzed : 10/11/20 17:47

: RTX-502.2

Dilution Factor : 1 Analyst : AJK Instrument ID : VOA105

%Solids : N/A

Injection Volume: N/A

GC Column

CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U	
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
71-43-2	Benzene	ND	0.50	0.16	U	
75-01-4	Vinyl chloride	ND	1.0	0.07	U	

Client : Sterling Environmental Engineering

Project Name : TOWN OF RAMAPO LF

Lab ID : L2042866-02

Client ID : 8-R

Sample Location : HILLBURN, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05201011A08

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Injection Volume: N/A

Lab Number

Dilution Factor

Analyst

: L2042866

Project Number : 20010, TASK 200

Date Collected : 10/07/20 14:40

Date Analyzed : 10/11/20 18:10

: 1

: AJK

Date Received : 10/07/20

		<u></u>				
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U	
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
71-43-2	Benzene	ND	0.50	0.16	U	
75-01-4	Vinyl chloride	ND	1.0	0.07	U	

Client : Sterling Environmental Engineering

Project Name : TOWN OF RAMAPO LF Lab ID : L2042866-03

Lab ID . L2042000-0

Client ID : 8-0S

Sample Location : HILLBURN, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05201011A09

Sample Amount : 10 ml Level : LOW

Extract Volume (MeOH): N/A

Lab Number : L2042866

Project Number : 20010, TASK 200
Date Collected : 10/07/20 16:05

Date Received : 10/07/20

Date Analyzed : 10/11/20 18:33

Dilution Factor : 1 Analyst : AJK

Instrument ID : VOA105 GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U	
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
71-43-2	Benzene	ND	0.50	0.16	U	
75-01-4	Vinyl chloride	ND	1.0	0.07	U	

Client : Sterling Environmental Engineering

Project Name : TOWN OF RAMAPO LF
Lab ID : L2042866-04
Client ID : TB10072020
Sample Location : HILLBURN, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05201009A16

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2042866

Project Number : 20010, TASK 200

Date Collected : 10/07/20 00:00

Date Received : 10/07/20

Date Analyzed : 10/09/20 13:50

Dilution Factor : 1
Analyst : LAC
Instrument ID : VOA105
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

		<u></u>				
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U	
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
71-43-2	Benzene	ND	0.50	0.16	U	
75-01-4	Vinyl chloride	ND	1.0	0.07	U	

Client : Sterling Environmental Engineering Lab Number : L2042866

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1420463-5
Client ID : WG1420463-5BLANK Date Collected : NA

Sample Location : Date Analyzed : 10/09/20 09:34

Sample Matrix : WATER **Dilution Factor** : 1 **Analytical Method** : 1,8260C Analyst : PD : VOA105 : V05201009A05 Lab File ID Instrument ID GC Column : RTX-502.2 Sample Amount : 10 ml

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U	
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
71-43-2	Benzene	ND	0.50	0.16	U	
75-01-4	Vinyl chloride	ND	1.0	0.07	U	

Client : Sterling Environmental Engineering Lab Number : L2042866

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1421151-5 Date Collected : NA Client ID : WG1421151-5BLANK Date Received : NA

Sample Location : Date Analyzed : 10/11/20 17:00

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,8260C Analyst : AJK
Lab File ID : V05201011A05 Instrument ID : V0A105
Sample Amount : 10 ml GC Column : RTX-502.2

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U	
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
71-43-2	Benzene	ND	0.50	0.16	U	
75-01-4	Vinyl chloride	ND	1.0	0.07	U	

Metals

Inorganic Data (ICP Analysis)

Client : Sterling Environmental Engineering Lab Number : L2042866

Project Name : TOWN OF RAMAPO LF : 20010, TASK 200 **Project Number** Lab ID : L2042866-01 **Date Collected** : 10/07/20 14:00

Client ID : 8-I

: 10/07/20 **Date Received** Sample Location : HILLBURN, NY Date Analyzed : 10/12/20 19:01

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,6010D Analyst : BV Lab File ID : WG1420940.pdf Instrument ID : TRACE7 %Solids Sample Amount : 50ml : N/A

Digestion Method : EPA 3005A **Date Digested** : 10/09/20

mg/l Results RL MDL Qualifier CAS NO. **Parameter** NONE Hardness 259 0.660 NA

Client : Sterling Environmental Engineering Lab Number : L2042866

Project Name : TOWN OF RAMAPO LF **Project Number** : 20010, TASK 200 Lab ID : L2042866-02 **Date Collected** : 10/07/20 14:40 : 10/07/20 **Date Received**

Client ID : 8-R

Sample Location : HILLBURN, NY Date Analyzed : 10/12/20 19:19

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,6010D Analyst : BV Lab File ID : WG1420940.pdf Instrument ID : TRACE7 %Solids Sample Amount : 50ml : N/A Digestion Method : EPA 3005A **Date Digested** : 10/09/20

mg/l Results RL MDL Qualifier CAS NO. **Parameter** NONE Hardness 533 0.660 NA

Client : Sterling Environmental Engineering Lab Number : L2042866

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042866-03 Date Collected : 10/07/20 16:05

Client ID : 8-0S Date Received : 10/07/20 Sample Location : HILLBURN, NY Date Analyzed : 10/12/20 19:24

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,6010D Analyst : BV

Lab File ID: WG1420940.pdfInstrument ID: TRACE7Sample Amount: 50ml%Solids: N/ADigestion Method: EPA 3005ADate Digested: 10/09/20

 CAS NO.
 Parameter
 mg/l
 Results
 RL
 MDL
 Qualifier

 NONE
 Hardness
 94.0
 0.660
 NA

Client : Sterling Environmental Engineering Lab Number : L2042866

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1420224-1 Date Collected : NA Client ID : WG1420224-1BLANK Date Received : NA

Sample Location : Date Analyzed : 10/12/20 17:52

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,6010D Analyst : BV

Lab File ID: WG1420940.pdfInstrument ID: TRACE7Sample Amount: 50ml%Solids: N/ADigestion Method: EPA 3005ADate Digested: 10/09/20

 CAS NO.
 Parameter
 mg/l
 Results
 RL
 MDL
 Qualifier

 NONE
 Hardness
 ND
 0.660
 NA
 U

Client : Sterling Environmental Engineering Lab Number : L2042866

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : WG1420224-4 Date Collected : 10/07/20 14:00

Client ID : 8-IDUP Date Received : 10/07/20

Sample Location : Date Analyzed : 10/12/20 19:10 Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 1,6010D Analyst : BV

Lab File ID : WG1420940.pdf Instrument ID : TRACE7

Sample Amount : 50ml %Solids : N/A

Digestion Method : EPA 3005A Date Digested : 10/09/20

CAS NO. Parameter English RL MDL Qualifier

NONE Hardness 258. 0.660 NA

Inorganic Data (ICPMS Analysis)

Date Received

Client : Sterling Environmental Engineering Lab Number : L2042866

: TOWN OF RAMAPO LF **Project Name** Project Number : 20010, TASK 200 Lab ID : L2042866-01 **Date Collected** : 10/07/20 14:00

Client ID : 8-I

: 10/07/20 Sample Location : HILLBURN, NY Date Analyzed : 10/12/20 10:08

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,6020B Analyst : AM Lab File ID : WG1420872.pdf Instrument ID : ICPMSQ : 50ml : N/A Sample Amount %Solids

Digestion Method : EPA 3005A **Date Digested** : 10/09/20

CAS NO.	Parameter	Results	RL	MDL	Qualifier
7429-90-5	Aluminum, Total	0.00400	0.0100	0.00327	J
7440-36-0	Antimony, Total	ND	0.00400	0.00042	U
7440-38-2	Arsenic, Total	0.00447	0.00050	0.00016	
7440-39-3	Barium, Total	0.03446	0.00050	0.00017	
7440-41-7	Beryllium, Total	ND	0.00050	0.00010	U
7440-43-9	Cadmium, Total	ND	0.00020	0.00005	U
7440-70-2	Calcium, Total	66.6	0.100	0.0394	
7440-47-3	Chromium, Total	0.00104	0.00100	0.00017	
7440-48-4	Cobalt, Total	0.00631	0.00050	0.00016	
7440-50-8	Copper, Total	ND	0.00100	0.00038	U
7439-89-6	Iron, Total	9.63	0.0500	0.0191	
7439-92-1	Lead, Total	ND	0.00100	0.00034	U
7439-95-4	Magnesium, Total	18.4	0.0700	0.0242	
7439-96-5	Manganese, Total	3.479	0.00100	0.00044	
7440-02-0	Nickel, Total	0.00665	0.00200	0.00055	
7440-09-7	Potassium, Total	8.46	0.100	0.0309	
7782-49-2	Selenium, Total	ND	0.00500	0.00173	U
7440-22-4	Silver, Total	ND	0.00040	0.00016	U
7440-23-5	Sodium, Total	91.4	0.100	0.0293	
7440-28-0	Thallium, Total	0.00034	0.00100	0.00014	J
7440-62-2	Vanadium, Total	ND	0.00500	0.00157	U
7440-66-6	Zinc, Total	ND	0.01000	0.00341	U

Client : Sterling Environmental Engineering Lab Number : L2042866

Project Name : TOWN OF RAMAPO LF **Project Number** : 20010, TASK 200 Lab ID : L2042866-02 **Date Collected** : 10/07/20 14:40 **Date Received** : 10/07/20

Client ID : 8-R

Sample Location : HILLBURN, NY Date Analyzed : 10/12/20 10:13

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,6020B Analyst : AM Lab File ID : WG1420872.pdf Instrument ID : ICPMSQ : 50ml %Solids : N/A Sample Amount

Digestion Method : EPA 3005A **Date Digested** : 10/09/20

		mg/l				
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
7429-90-5	Aluminum, Total	0.0160	0.0100	0.00327		
7440-36-0	Antimony, Total	0.00048	0.00400	0.00042	J	
7440-38-2	Arsenic, Total	0.00067	0.00050	0.00016		
7440-39-3	Barium, Total	0.01437	0.00050	0.00017		
7440-41-7	Beryllium, Total	ND	0.00050	0.00010	U	
7440-43-9	Cadmium, Total	0.00029	0.00020	0.00005		
7440-70-2	Calcium, Total	136.	0.100	0.0394		
7440-47-3	Chromium, Total	0.05239	0.00100	0.00017		
7440-48-4	Cobalt, Total	0.00439	0.00050	0.00016		
7440-50-8	Copper, Total	0.00402	0.00100	0.00038		
7439-89-6	Iron, Total	1.56	0.0500	0.0191		
7439-92-1	Lead, Total	0.00227	0.00100	0.00034		
7439-95-4	Magnesium, Total	66.8	0.0700	0.0242		
7439-96-5	Manganese, Total	0.5774	0.00100	0.00044		
7440-02-0	Nickel, Total	0.02297	0.00200	0.00055		
7440-09-7	Potassium, Total	2.80	0.100	0.0309		
7782-49-2	Selenium, Total	ND	0.00500	0.00173	U	
7440-22-4	Silver, Total	ND	0.00040	0.00016	U	
7440-23-5	Sodium, Total	71.5	0.100	0.0293		
7440-28-0	Thallium, Total	0.00021	0.00100	0.00014	J	
7440-62-2	Vanadium, Total	ND	0.00500	0.00157	U	
7440-66-6	Zinc, Total	0.00726	0.01000	0.00341	J	

mg/l

: L2042866 Client : Sterling Environmental Engineering Lab Number

Project Name : TOWN OF RAMAPO LF **Project Number** 20010, TASK 200 Lab ID : L2042866-03 **Date Collected** : 10/07/20 16:05

Client ID : 8-0S

Date Received : 10/07/20 Sample Location : HILLBURN, NY Date Analyzed : 10/12/20 11:02

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,6020B **Analyst** : AM Lab File ID : WG1420872.pdf Instrument ID : ICPMSQ Sample Amount : 50ml %Solids N/A :

: 10/09/20 Digestion Method : EPA 3005A **Date Digested**

Results RL MDL CAS NO. Qualifier **Parameter** 7429-90-5 Aluminum, Total 0.0216 0.0100 0.00327 7440-36-0 Antimony, Total 0.00354 0.00400 0.00042 J 7440-38-2 Arsenic, Total 0.00022 0.00050 0.00016 J 7440-39-3 Barium, Total 0.00780 0.00050 0.00017 7440-41-7 0.00010 U Beryllium, Total ND 0.00050 0.00020 U 7440-43-9 Cadmium, Total ND 0.00005 7440-70-2 0.100 0.0394 Calcium, Total 24.6 7440-47-3 Chromium, Total 0.06122 0.00100 0.00017 7440-48-4 0.00050 0.00016 Cobalt, Total 0.00029 7440-50-8 Copper, Total 0.00161 0.00100 0.00038 7439-89-6 Iron, Total 0.552 0.0500 0.0191 U 7439-92-1 Lead, Total ND 0.00100 0.00034 7439-95-4 Magnesium, Total 6.62 0.0700 0.0242 7439-96-5 0.00100 Manganese, Total 0.1835 0.00044 0.00200 7440-02-0 Nickel, Total 0.01766 0.00055 7440-09-7 Potassium, Total 1.55 0.100 0.0309 7782-49-2 Selenium, Total ND 0.00500 0.00173 U 7440-22-4 ND 0.00040 0.00016 U Silver, Total 7440-23-5 Sodium, Total 26.3 0.100 0.0293 7440-28-0 Thallium, Total 0.00045 0.00100 0.00014 J 7440-62-2 Vanadium, Total ND 0.00500 0.00157 U 7440-66-6 Zinc, Total ND 0.01000 0.00341 U

Client : Sterling Environmental Engineering Lab Number : L2042866

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1420226-1 Date Collected : NA Client ID : WG1420226-1BLANK Date Received : NA

Sample Location : Date Analyzed : 10/12/20 09:43

Sample Matrix: WATERDilution Factor: 1Analytical Method: 1,6020BAnalyst: AMLab File ID: WG1420872.pdfInstrument ID: ICPMSQSample Amount: 50ml%Solids: N/A

Digestion Method : EPA 3005A Date Digested : 10/09/20

		mg/l					
CAS NO.	Parameter	Results	RL	MDL	Qualifier		
7429-90-5	Aluminum, Total	ND	0.0100	0.00327	U		
7440-36-0	Antimony, Total	ND	0.00400	0.00042	U		
7440-38-2	Arsenic, Total	ND	0.00050	0.00016	U		
7440-39-3	Barium, Total	ND	0.00050	0.00017	U		
7440-41-7	Beryllium, Total	ND	0.00050	0.00010	U		
7440-43-9	Cadmium, Total	ND	0.00020	0.00005	U		
7440-70-2	Calcium, Total	ND	0.100	0.0394	U		
7440-47-3	Chromium, Total	ND	0.00100	0.00017	U		
7440-48-4	Cobalt, Total	ND	0.00050	0.00016	U		
7440-50-8	Copper, Total	ND	0.00100	0.00038	U		
7439-89-6	Iron, Total	ND	0.0500	0.0191	U		
7439-92-1	Lead, Total	ND	0.00100	0.00034	U		
7439-95-4	Magnesium, Total	ND	0.0700	0.0242	U		
7439-96-5	Manganese, Total	ND	0.00100	0.00044	U		
7440-02-0	Nickel, Total	ND	0.00200	0.00055	U		
7440-09-7	Potassium, Total	ND	0.100	0.0309	U		
7782-49-2	Selenium, Total	ND	0.00500	0.00173	U		
7440-22-4	Silver, Total	ND	0.00040	0.00016	U		
7440-23-5	Sodium, Total	ND	0.100	0.0293	U		
7440-28-0	Thallium, Total	0.00026	0.00100	0.00014	J		
7440-62-2	Vanadium, Total	ND	0.00500	0.00157	U		
7440-66-6	Zinc, Total	ND	0.01000	0.00341	U		

Client : Sterling Environmental Engineering Lab Number : L2042866

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200
Lab ID : WG1420226-4 Date Collected : 10/07/20 14:00

Client ID : 8-IDUP Date Received : 10/07/20 Sample Location : Date Analyzed : 10/12/20 10:03

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,6020B Analyst : AM

Lab File ID: WG1420872.pdfInstrument ID: ICPMSQSample Amount: 50ml%Solids: N/ADigestion Method: EPA 3005ADate Digested: 10/09/20

			mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
7429-90-5	Aluminum, Total	0.00515	0.0100	0.003	J	
7440-36-0	Antimony, Total	0.00070	0.00400	0.0004	J	
7440-38-2	Arsenic, Total	0.00476	0.00050	0.0002		
7440-39-3	Barium, Total	0.03308	0.00050	0.0002		
7440-41-7	Beryllium, Total	ND	0.00050	0.0001	U	
7440-43-9	Cadmium, Total	ND	0.00020	0.0001	U	
7440-70-2	Calcium, Total	69.2	0.100	0.039		
7440-47-3	Chromium, Total	0.00126	0.00100	0.0002		
7440-48-4	Cobalt, Total	0.00631	0.00050	0.0002		
7440-50-8	Copper, Total	ND	0.00100	0.0004	U	
7439-89-6	Iron, Total	9.82	0.0500	0.019		
7439-92-1	Lead, Total	ND	0.00100	0.0003	U	
7439-95-4	Magnesium, Total	18.6	0.0700	0.024		
7439-96-5	Manganese, Total	3.104	0.00100	0.0004		
7440-02-0	Nickel, Total	0.00665	0.00200	0.0006		
7440-09-7	Potassium, Total	8.72	0.100	0.031		
7782-49-2	Selenium, Total	ND	0.00500	0.002	U	
7440-22-4	Silver, Total	ND	0.00040	0.0002	U	
7440-23-5	Sodium, Total	78.2	0.100	0.029		
7440-28-0	Thallium, Total	0.00091	0.00100	0.0001	J	
7440-62-2	Vanadium, Total	ND	0.00500	0.0016	U	
7440-66-6	Zinc, Total	ND	0.01000	0.0034	U	

Inorganic Data (Mercury Analysis)

Client : Sterling Environmental Engineering Lab Number : L2042866

Project Name : TOWN OF RAMAPO LF : 20010, TASK 200 **Project Number** Lab ID : L2042866-01 **Date Collected** : 10/07/20 14:00

Client ID : 8-I

: 10/07/20 **Date Received** Sample Location : HILLBURN, NY Date Analyzed : 10/09/20 19:15

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,7470A Analyst : AL Lab File ID : WG1420344 Instrument ID : FIMS4 Sample Amount : 25ml %Solids : N/A Digestion Method : EPA 7470A **Date Digested** : 10/09/20

mg/l Results RL MDL CAS NO. Parameter Qualifier 7439-97-6 Mercury, Total ND 0.00020 0.00009 U

Client : Sterling Environmental Engineering Lab Number : L2042866

: TOWN OF RAMAPO LF : 20010, TASK 200 **Project Name Project Number** Lab ID : L2042866-02 **Date Collected** : 10/07/20 14:40 : 10/07/20 **Date Received**

Client ID : 8-R

Sample Location : HILLBURN, NY Date Analyzed : 10/09/20 18:56

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,7470A Analyst : AL Lab File ID : WG1420344 Instrument ID : FIMS4 Sample Amount : 25ml %Solids : N/A Digestion Method : EPA 7470A **Date Digested** : 10/09/20

mg/l Results RL MDL CAS NO. Parameter Qualifier 7439-97-6 Mercury, Total ND 0.00020 0.00009 U

Client : Sterling Environmental Engineering Lab Number : L2042866

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042866-03 Date Collected : 10/07/20 16:05

Client ID : 8-0S Date Received : 10/07/20

Sample Location : HILLBURN, NY Date Analyzed : 10/09/20 19:17

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,7470A Analyst : AL Lab File ID : WG1420344 Instrument ID : FIMS4 Sample Amount : 25ml %Solids : N/A Digestion Method : EPA 7470A **Date Digested** : 10/09/20

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 7439-97-6
 Mercury, Total
 ND
 0.00020
 0.00009
 U

Client : Sterling Environmental Engineering Lab Number : L2042866

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1420228-1 Date Collected : NA Client ID : WG1420228-1BLANK Date Received : NA

Sample Location : Date Analyzed : 10/09/20 18:47

Sample Matrix **Dilution Factor** : WATER : 1 Analytical Method : 1,7470A Analyst : AL Lab File ID : WG1420344 Instrument ID : FIMS4 : N/A Sample Amount : 25ml %Solids Digestion Method : EPA 7470A **Date Digested** : 10/09/20

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 7439-97-6
 Mercury, Total
 ND
 0.00020
 0.00009
 U

Client : Sterling Environmental Engineering Lab Number : L2042866

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200
Lab ID : WG1420228-4 Date Collected : 10/07/20 14:40
Client ID : 8-RDUP Date Received : 10/07/20

Client ID : 8-RDUP Date Received : 10/07/20 Sample Location : Date Analyzed : 10/09/20 19:01

Sample Matrix **Dilution Factor** : WATER : 1 Analytical Method : 1,7470A Analyst : AL Lab File ID : WG1420344 Instrument ID : FIMS4 Sample Amount : 25ml %Solids : N/A Digestion Method : EPA 7470A **Date Digested** : 10/09/20

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 7439-97-6
 Mercury, Total
 ND
 0.00020
 0.0001
 U

Wet Chemistry

Total Kjeldahl Nitrogen Analysis

Results

Form 1 **WETCHEM**

Client : Sterling Environmental Engineering Lab Number : L2042866

Project Name : TOWN OF RAMAPO LF : 20010, TASK 200 **Project Number** Lab ID : L2042866-01 **Date Collected** : 10/07/20 14:00 **Date Received**

Client ID : 8-I

: 10/07/20 Sample Location : HILLBURN, NY Date Analyzed : 10/09/20 22:05

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 121,4500NH3-H Analyst : AT Lab File ID : NH320201009-E Instrument ID : LACHAT

%Solids Sample Amount : N/A Digestion Method: **Date Digested** : 10/08/20

mg/l Results RL MDL CAS NO. **Parameter** Qualifier NONE Nitrogen, Total Kjeldahl 3.53 0.300 --

Client : Sterling Environmental Engineering Lab Number : L2042866

Project Name : TOWN OF RAMAPO LF : 20010, TASK 200 **Project Number** Lab ID : L2042866-02 **Date Collected** : 10/07/20 14:40 : 10/07/20 **Date Received**

Client ID : 8-R

Sample Location : HILLBURN, NY Date Analyzed : 10/09/20 22:06

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 121,4500NH3-H Analyst : AT Lab File ID : NH320201009-E Instrument ID : LACHAT %Solids Sample Amount : N/A

Digestion Method: **Date Digested** : 10/08/20

mg/l Results RL MDL CAS NO. **Parameter** Qualifier NONE Nitrogen, Total Kjeldahl 0.508 0.300 --

Client : Sterling Environmental Engineering Lab Number : L2042866

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042866-03 Date Collected : 10/07/20 16:05

Client ID : 8-0S Date Received : 10/07/20

Sample Location : HILLBURN, NY Date Analyzed : 10/09/20 22:07 Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 121,4500NH3-H Analyst : AT
Lab File ID : NH320201009-E Instrument ID : LACHAT
Sample Amount : %Solids : N/A

Sample Amount : %Solids : N/A
Digestion Method : Date Digested : 10/08/20

CAS NO. Parameter Results RL MDL Qualifier

NONE Nitrogen, Total Kjeldahl 0.324 0.300 --

Client : Sterling Environmental Engineering Lab Number : L2042866

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1419785-1 Date Collected : NA Client ID : WG1419785-1BLANK Date Received : NA

Sample Location : Date Analyzed : 10/09/20 21:51

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 121,4500NH3-H Analyst : AT

Lab File ID : NH320201009-E Instrument ID : LACHAT Sample Amount : %Solids : N/A

Digestion Method : Date Digested : 10/08/20

CAS NO. Parameter Results RL MDL Qualifier

NONE Nitrogen, Total Kjeldahl ND 0.300 -- U

Client : Sterling Environmental Engineering Lab Number : L2042866

Project Name : TOWN OF RAMAPO LF : 20010, TASK 200 **Project Number** Lab ID : WG1419785-4 **Date Collected** : 10/07/20 14:00 : WG1419785-4 DUP Client ID **Date Received** : 10/07/20

Sample Location

Date Analyzed : 10/09/20 22:10 Sample Matrix **Dilution Factor** : WATER : 1

Analytical Method : 121,4500NH3-H Analyst : AT Lab File ID : NH320201009-E2 Instrument ID : LACHAT Sample Amount %Solids : N/A Digestion Method: **Date Digested** : 10/08/20

mg/l Results RL MDL CAS NO. **Parameter** Qualifier NONE Nitrogen, Total Kjeldahl ND 0.300 U --

Chemical Oxygen Demand Analysis

Results

Client : Sterling Environmental Engineering Lab Number : L2042866

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042866-01 **Date Collected** : 10/07/20 14:00 : 10/07/20 **Date Received**

: 8-I Client ID

Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 20:39

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1419898.csv Instrument ID : GENSYS10VI

%Solids Sample Amount : N/A Digestion Method: **Date Digested** : 10/08/20

			mg/l				
CAS NO.	Parameter	Results	RL	MDL	Qualifier		
000	Observiced Occurrent Democrat	ND	40				
COD	Chemical Oxygen Demand	ND	10	-	U		

Client : Sterling Environmental Engineering Lab Number : L2042866

Project Name : TOWN OF RAMAPO LF **Project Number** : 20010, TASK 200 Lab ID : L2042866-02 **Date Collected** : 10/07/20 14:40 : 10/07/20 **Date Received**

Client ID : 8-R

Sample Location : HILLBURN, NY **Date Analyzed** : 10/08/20 20:40

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1419898.csv Instrument ID : GENSYS10VI

%Solids Sample Amount : N/A Digestion Method: **Date Digested** : 10/08/20

mg/l Results RL MDL CAS NO. **Parameter** Qualifier COD **Chemical Oxygen Demand** ND 10 U

Client : Sterling Environmental Engineering Lab Number : L2042866

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2042866-03
 Date Collected
 : 10/07/20 16:05

 Client ID
 : 8-0S
 Date Received
 : 10/07/20

Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 20:40

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1419898.csv Instrument ID : GENSYS10VI

Sample Amount : %Solids : N/A
Digestion Method : Date Digested : 10/08/20

CAS NO. Parameter Results RL MDL Qualifier

COD Chemical Oxygen Demand ND 10 -- U

Client : Sterling Environmental Engineering Lab Number : L2042866

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1419898-1 Date Collected : NA Client ID : WG1419898-1BLANK Date Received : NA

Sample Location : Date Analyzed : 10/08/20 20:37

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1419898.csv Instrument ID : GENSYS10VI

Sample Amount : %Solids : N/A
Digestion Method : Date Digested : 10/08/20

CAS NO. Parameter Results RL MDL Qualifier

COD Chemical Oxygen Demand ND 10 -- U

Date Analyzed

: 10/08/20 20:41

Client : Sterling Environmental Engineering Lab Number : L2042866

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : WG1419898-4
 Date Collected
 : 10/07/20 12:50

 Client ID
 : WG1419898-4 DUP
 Date Received
 : 10/07/20

Sample Location :

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1419898.csv Instrument ID : GENSYS10VI

Sample Amount : %Solids : N/A
Digestion Method : Date Digested : 10/08/20

CAS NO.	Parameter	Results	RL	MDL	Qualifier	
COD	Chemical Oxygen Demand	ND	10		U	

Alkalinity Analysis

Results

Client : Sterling Environmental Engineering Lab Number : L2042866

: TOWN OF RAMAPO LF **Project Name** : 20010, TASK 200 **Project Number** Lab ID : L2042866-01 **Date Collected** : 10/07/20 14:00 : 10/07/20 **Date Received**

: 8-I **Client ID**

Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 08:14

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 121,2320B Analyst : BR Lab File ID : WG1419795.csv Instrument ID

%Solids Sample Amount : N/A

Digestion Method: **Date Digested**

			03/L		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
4=4.04.4	AH 17 %				
471-34-1	Alkalinity, Total	305.	2.00	NA	

Client : Sterling Environmental Engineering Lab Number : L2042866

Project Name : TOWN OF RAMAPO LF : 20010, TASK 200 **Project Number** Lab ID : L2042866-02 **Date Collected** : 10/07/20 14:40 : 10/07/20 **Date Received**

Client ID : 8-R

Sample Location : HILLBURN, NY **Date Analyzed** : 10/08/20 08:14

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 121,2320B **Analyst** : BR Lab File ID : WG1419795.csv Instrument ID

Sample Amount %Solids : N/A :

Digestion Method: **Date Digested**

mg CaCO3/L Results RL MDL CAS NO. **Parameter** Qualifier 471-34-1 Alkalinity, Total 514. 2.00 NA

Client : Sterling Environmental Engineering Lab Number : L2042866

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2042866-03 Date Collected : 10/07/20 16:05

Client ID : 8-0S Date Received : 10/07/20 Sample Location : HILLBURN, NY Date Analyzed : 10/08/20 08:14

Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 121,2320B Analyst : BR
Lab File ID : WG1419795.csv Instrument ID :

Sample Amount : %Solids : N/A

Digestion Method : Date Digested :

CAS NO. Parameter Results RL MDL Qualifier

471-34-1 Alkalinity, Total 108. 2.00 NA

Client : Sterling Environmental Engineering Lab Number : L2042866

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1419795-1 Date Collected : NA Client ID : WG1419795-1BLANK Date Received : NA

Sample Location : Date Analyzed : 10/08/20 08:14

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 121,2320B Analyst : BR
Lab File ID : WG1419795.csv Instrument ID :

Sample Amount : %Solids : N/A

Digestion Method : Date Digested :

CAS NO. Parameter Equation (CAS NO. Parameter Results RL MDL Qualifier (CAS NO. ND 2.00 NA U

Date Analyzed

: 10/08/20 08:14

Client : Sterling Environmental Engineering Lab Number : L2042866

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : WG1419795-3
 Date Collected
 : 10/06/20 16:10

 Client ID
 : WG1419795-3 DUP
 Date Received
 : 10/06/20

Sample Location :

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 121,2320B Analyst : BR
Lab File ID : WG1419795.csv Instrument ID :

Sample Amount : %Solids : N/A

Digestion Method : Date Digested

			mg CaCO3/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
471-34-1	Alkalinity, Total	ND	2.00	NA	U	

ANALYTICAL REPORT

Lab Number: L2042996

Client: Sterling Environmental Engineering

24 Wade Road Latham, NY 12110

ATTN: Mark Williams
Phone: (518) 456-4900

Project Name: TOWN OF RAMAPO

Project Number: 20010, TASK 200

Report Date: 10/19/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: TOWN OF RAMAPO **Project Number:** 20010, TASK 200

 Lab Number:
 L2042996

 Report Date:
 10/19/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2042996-01	SVWC-95	WATER	HILLBURN, NY	10/06/20 10:15	10/06/20
L2042996-02	SVWC-94	WATER	HILLBURN, NY	10/06/20 09:30	10/06/20
L2042996-03	10-OS	WATER	HILLBURN, NY	10/06/20 16:10	10/06/20
L2042996-04	10-I	WATER	HILLBURN, NY	10/06/20 15:10	10/06/20
L2042996-05	10-R	WATER	HILLBURN, NY	10/06/20 14:10	10/06/20
L2042996-06	9-OS	WATER	HILLBURN, NY	10/06/20 11:15	10/06/20
L2042996-07	9-1	WATER	HILLBURN, NY	10/06/20 12:15	10/06/20
L2042996-08	EB10062020	WATER	HILLBURN, NY	10/06/20 10:50	10/06/20

Project Name:TOWN OF RAMAPOLab Number:L2042996Project Number:20010, TASK 200Report Date:10/19/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:TOWN OF RAMAPOLab Number:L2042996Project Number:20010, TASK 200Report Date:10/19/20

Case Narrative (continued)

Report Submission

October 19, 2020: Final report.

October 14, 2020: Preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Juan & Med Susan O' Neil

Title: Technical Director/Representative Date: 10/19/20

ORGANICS

SEMIVOLATILES

Project Name: TOWN OF RAMAPO Lab Number: L2042996

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

SAMPLE RESULTS

Lab ID: Date Collected: 10/06/20 10:15

Client ID: SVWC-95 Date Received: 10/06/20 Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 10/13/20 09:15
Analytical Date: 10/14/20 12:16

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mansfield I	_ab					
1,4-Dioxane	412.		ng/l	144	32.6	1
Surrogate			% Recovery	Qualifier		eptance riteria
1,4-Dioxane-d8			49		,	15-110

Project Name: Lab Number: TOWN OF RAMAPO L2042996

Project Number: Report Date: 20010, TASK 200 10/19/20

SAMPLE RESULTS

Lab ID: L2042996-01 Date Collected: 10/06/20 10:15

Date Received: Client ID: SVWC-95 10/06/20 Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: ALPHA 23528 Matrix: Water

Extraction Date: 10/14/20 16:45 Analytical Method: 134,LCMSMS-ID Analytical Date:

Analyst: RS

10/15/20 21:43

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilut	ion - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	5.72		ng/l	1.72	0.351	1
Perfluoropentanoic Acid (PFPeA)	4.88		ng/l	1.72	0.341	1
Perfluorobutanesulfonic Acid (PFBS)	3.04		ng/l	1.72	0.205	1
Perfluorohexanoic Acid (PFHxA)	4.56		ng/l	1.72	0.282	1
Perfluoroheptanoic Acid (PFHpA)	2.21		ng/l	1.72	0.194	1
Perfluorohexanesulfonic Acid (PFHxS)	0.971	J	ng/l	1.72	0.324	1
Perfluorooctanoic Acid (PFOA)	5.67		ng/l	1.72	0.203	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.72	1.15	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.72	0.592	1
Perfluorononanoic Acid (PFNA)	8.95		ng/l	1.72	0.269	1
Perfluorooctanesulfonic Acid (PFOS)	3.95		ng/l	1.72	0.434	1
Perfluorodecanoic Acid (PFDA)	0.413	J	ng/l	1.72	0.262	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.72	1.04	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.72	0.558	1
Perfluoroundecanoic Acid (PFUnA)	0.589	J	ng/l	1.72	0.224	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.72	0.844	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.72	0.499	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.72	0.692	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.72	0.320	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.72	0.282	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.72	0.214	1
PFOA/PFOS, Total	9.62		ng/l	1.72	0.203	1

Project Name: TOWN OF RAMAPO Lab Number: L2042996

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

SAMPLE RESULTS

Lab ID: L2042996-01 Date Collected: 10/06/20 10:15

Client ID: SVWC-95 Date Received: 10/06/20 Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	90	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	116	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	106	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	80	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	86	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	124	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	91	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	76	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	109	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	121	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	98	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	120	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	57	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	114	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	13	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	63	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	109	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	115	33-143

Project Name: TOWN OF RAMAPO Lab Number: L2042996

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

SAMPLE RESULTS

 Lab ID:
 L2042996-02
 Date Collected:
 10/06/20 09:30

 Client ID:
 SVWC-94
 Date Received:
 10/06/20

Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 10/13/20 09:15
Analytical Date: 10/14/20 12:38

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mansfield Lab)					
1,4-Dioxane	ND		ng/l	144	32.6	1
Surrogate			% Recovery	Qualifier		ptance iteria
1,4-Dioxane-d8			51		1	5-110

Project Name: Lab Number: TOWN OF RAMAPO L2042996

Project Number: Report Date: 20010, TASK 200 10/19/20

SAMPLE RESULTS

Lab ID: L2042996-02 Date Collected: 10/06/20 09:30

Date Received: Client ID: SVWC-94 10/06/20 Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: ALPHA 23528 Matrix: Water

Extraction Date: 10/14/20 16:45 Analytical Method: 134,LCMSMS-ID Analytical Date:

Analyst: RS

10/15/20 21:59

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	2.53		ng/l	1.79	0.365	1
Perfluoropentanoic Acid (PFPeA)	4.86		ng/l	1.79	0.354	1
Perfluorobutanesulfonic Acid (PFBS)	1.90		ng/l	1.79	0.213	1
Perfluorohexanoic Acid (PFHxA)	4.60		ng/l	1.79	0.294	1
Perfluoroheptanoic Acid (PFHpA)	1.68	J	ng/l	1.79	0.202	1
Perfluorohexanesulfonic Acid (PFHxS)	0.759	J	ng/l	1.79	0.336	1
Perfluorooctanoic Acid (PFOA)	3.87		ng/l	1.79	0.211	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.79	1.19	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.79	0.616	1
Perfluorononanoic Acid (PFNA)	2.14		ng/l	1.79	0.279	1
Perfluorooctanesulfonic Acid (PFOS)	3.38		ng/l	1.79	0.451	1
Perfluorodecanoic Acid (PFDA)	0.379	J	ng/l	1.79	0.272	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.79	1.08	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.79	0.580	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.79	0.233	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.79	0.877	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.79	0.519	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.79	0.720	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.79	0.333	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.79	0.293	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.79	0.222	1
PFOA/PFOS, Total	7.25		ng/l	1.79	0.211	1

Project Name: TOWN OF RAMAPO Lab Number: L2042996

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

SAMPLE RESULTS

Lab ID: L2042996-02 Date Collected: 10/06/20 09:30

Client ID: SVWC-94 Date Received: 10/06/20 Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	85		2-156	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	112		16-173	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	104		31-159	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	76		21-145	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	82		30-139	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	118		47-153	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	87		36-149	
H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	66		1-244	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	107		34-146	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	115		42-146	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	91		38-144	
H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	101		7-170	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	56		1-181	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	112		40-144	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	17		1-87	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	64		23-146	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	102		24-161	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	115		33-143	

Project Name: TOWN OF RAMAPO Lab Number: L2042996

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

SAMPLE RESULTS

Lab ID: L2042996-03 Date Collected: 10/06/20 16:10

Client ID: 10-OS Date Received: 10/06/20 Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 10/13/20 09:15
Analytical Date: 10/14/20 13:23

Analyst: PS

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Ma	nsfield Lab				
1,4-Dioxane	ND	ng/l	144	32.6	1
Surrogate		% Recovery	Qualifier		eptance riteria
1.4-Dioxane-d8		46			15-110

Project Name: TOWN OF RAMAPO Lab Number: L2042996

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

SAMPLE RESULTS

Lab ID: L2042996-03 Date Collected: 10/06/20 16:10

Client ID: 10-OS Date Received: 10/06/20 Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 10/14/20 16:45
Analytical Date: 10/15/20 22:16

Analyst: RS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab						
Perfluorobutanoic Acid (PFBA)	ND		ng/l	1.74	0.354	1
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	1.74	0.344	1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.74	0.207	1
Perfluorohexanoic Acid (PFHxA)	0.330	J	ng/l	1.74	0.285	1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.74	0.196	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.74	0.326	1
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.74	0.205	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.74	1.16	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.74	0.597	1
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.74	0.271	1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.74	0.438	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.74	0.264	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.74	1.05	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.74	0.562	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.74	0.226	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.74	0.851	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.74	0.504	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.74	0.698	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.74	0.323	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.74	0.284	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.74	0.215	1
PFOA/PFOS, Total	ND		ng/l	1.74	0.205	1

Project Name: TOWN OF RAMAPO Lab Number: L2042996

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

SAMPLE RESULTS

Lab ID: L2042996-03 Date Collected: 10/06/20 16:10

Client ID: 10-OS Date Received: 10/06/20 Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Acceptance overy Qualifier Criteria
2-156
2 16-173
2 31-159
21-145
30-139
0 47-153
36-149
1-244
6 34-146
0 42-146
38-144
7-170
1-181
6 40-144
2 1-87
23-146
0 24-161
33-143
,

Project Name: Lab Number: TOWN OF RAMAPO L2042996

Project Number: Report Date: 20010, TASK 200 10/19/20

SAMPLE RESULTS

Lab ID: L2042996-04 Date Collected: 10/06/20 15:10

Client ID: Date Received: 10-I 10/06/20

Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 10/13/20 09:15 Analytical Method: 1,8270D-SIM Analytical Date: 10/14/20 13:45

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mans	sfield Lab					
1,4-Dioxane	ND		ng/l	144	32.6	1
Surrogate			% Recovery	Qualifier		eptance riteria
1,4-Dioxane-d8			48			15-110

Project Name: Lab Number: TOWN OF RAMAPO L2042996

Project Number: Report Date: 20010, TASK 200 10/19/20

SAMPLE RESULTS

Lab ID: L2042996-04 Date Collected: 10/06/20 15:10

Date Received: Client ID: 10-I 10/06/20 Sample Location: HILLBURN, NY Field Prep:

Not Specified

Sample Depth:

Extraction Method: ALPHA 23528 Matrix: Water

Extraction Date: 10/14/20 16:45 Analytical Method: 134,LCMSMS-ID Analytical Date:

Analyst: RS

10/15/20 22:32

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	ND		ng/l	1.84	0.376	1
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	1.84	0.365	1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.84	0.219	1
Perfluorohexanoic Acid (PFHxA)	0.324	J	ng/l	1.84	0.302	1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.84	0.207	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.84	0.346	1
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.84	0.217	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.84	1.23	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.84	0.634	1
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.84	0.287	1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.84	0.464	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.84	0.280	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.84	1.12	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.84	0.597	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.84	0.239	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.84	0.902	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.84	0.534	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.84	0.740	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.84	0.342	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.84	0.301	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.84	0.228	1
PFOA/PFOS, Total	ND		ng/l	1.84	0.217	1

Project Name: TOWN OF RAMAPO Lab Number: L2042996

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

SAMPLE RESULTS

Lab ID: L2042996-04 Date Collected: 10/06/20 15:10

Client ID: 10-I Date Received: 10/06/20

Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	84	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	120	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	111	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	79	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	84	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	109	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	92	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	69	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	114	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	119	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	98	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	95	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	64	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	123	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	15	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	69	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	113	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	118	33-143

Project Name: TOWN OF RAMAPO Lab Number: L2042996

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

SAMPLE RESULTS

Lab ID: L2042996-05 Date Collected: 10/06/20 14:10

Client ID: 10-R Date Received: 10/06/20 Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 10/13/20 09:15
Analytical Date: 10/14/20 14:08

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mansfield Lab						
1,4-Dioxane	ND		ng/l	144	32.6	1
Surrogate			% Recovery	Qualifier		ptance iteria
1,4-Dioxane-d8			47		1	5-110

Project Name: Lab Number: TOWN OF RAMAPO L2042996

Project Number: Report Date: 20010, TASK 200 10/19/20

SAMPLE RESULTS

Lab ID: L2042996-05 Date Collected: 10/06/20 14:10

Date Received: Client ID: 10/06/20 10-R Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: ALPHA 23528 Matrix: Water

Extraction Date: 10/14/20 16:45 Analytical Method: 134,LCMSMS-ID Analytical Date:

Analyst: RS

10/15/20 22:49

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab									
Perfluorobutanoic Acid (PFBA)	ND		ng/l	1.77	0.361	1			
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	1.77	0.350	1			
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.77	0.211	1			
Perfluorohexanoic Acid (PFHxA)	0.340	J	ng/l	1.77	0.290	1			
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.77	0.199	1			
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.77	0.333	1			
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.77	0.209	1			
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.77	1.18	1			
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.77	0.609	1			
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.77	0.276	1			
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.77	0.446	1			
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.77	0.269	1			
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.77	1.07	1			
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.77	0.574	1			
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.77	0.230	1			
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.77	0.868	1			
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.77	0.513	1			
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.77	0.712	1			
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.77	0.329	1			
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.77	0.290	1			
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.77	0.220	1			
PFOA/PFOS, Total	ND		ng/l	1.77	0.209	1			

Project Name: TOWN OF RAMAPO Lab Number: L2042996

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

SAMPLE RESULTS

Lab ID: L2042996-05 Date Collected: 10/06/20 14:10

Client ID: 10-R Date Received: 10/06/20 Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

rfluoro[13C4]Butanoic Acid (MPFBA) rfluoro[13C5]Pentanoic Acid (M5PFPEA) rfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS) rfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA) rfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA) rfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS) rfluoro[13C8]Octanoic Acid (M8PFOA) ,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) rfluoro[13C9]Nonanoic Acid (M9PFNA) rfluoro[13C8]Octanesulfonic Acid (M8PFOS) rfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) ,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	90 126 110 81 87 115 93 68	2-19 16-1 31-1 21-1 30-1 47-1 36-1	173 159 145 139
rfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS) rfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA) rfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA) rfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS) rfluoro[13C8]Octanoic Acid (M8PFOA) rfluoro[13C9]Nonanoic Acid (M9PFNA) rfluoro[13C9]Nonanoic Acid (M9PFNA) rfluoro[13C8]Octanesulfonic Acid (M8PFOS) rfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) rfluoro[1,2,3,4,5,6-13C6]Decanesulfonic Acid (M2-8:2FTS)	110 81 87 115 93	31-1 21-1 30-1 47-1 36-1	1159 1145 1139 1153
rfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA) rfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA) rfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS) rfluoro[13C8]Octanoic Acid (M8PFOA) ,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) rfluoro[13C9]Nonanoic Acid (M9PFNA) rfluoro[13C8]Octanesulfonic Acid (M8PFOS) rfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) ,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	81 87 115 93	21-1 30-1 47-1 36-1	145 139 153
rfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA) rfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS) rfluoro[13C8]Octanoic Acid (M8PFOA) 1,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) rfluoro[13C9]Nonanoic Acid (M9PFNA) rfluoro[13C8]Octanesulfonic Acid (M8PFOS) rfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 1,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	87 115 93	30-1 47-1 36-1	139 153
rfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS) rfluoro[13C8]Octanoic Acid (M8PFOA) ,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) rfluoro[13C9]Nonanoic Acid (M9PFNA) rfluoro[13C8]Octanesulfonic Acid (M8PFOS) rfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) ,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	115 93	47-1 36-1	153
rfluoro[13C8]Octanoic Acid (M8PFOA) 1,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) rfluoro[13C9]Nonanoic Acid (M9PFNA) rfluoro[13C8]Octanesulfonic Acid (M8PFOS) rfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 1,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	93	36-1	
,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) rfluoro[13C9]Nonanoic Acid (M9PFNA) rfluoro[13C8]Octanesulfonic Acid (M8PFOS) rfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) ,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)			149
rfluoro[13C9]Nonanoic Acid (M9PFNA) rfluoro[13C8]Octanesulfonic Acid (M8PFOS) rfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) ,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	68		-
rfluoro[13C8]Octanesulfonic Acid (M8PFOS) rfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) ,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)		1-24	244
rfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) ,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	116	34-1	146
,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	114	42-1	146
	95	38-1	144
Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	97	7-17	70
· · · · · · · · · · · · · · · · · · ·	52	1-18	81
rfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	113	40-1	144
rfluoro[13C8]Octanesulfonamide (M8FOSA)	28	1-8	87
Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	81	23-1	146
rfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	115	24-1	161
rfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)			

Project Name: TOWN OF RAMAPO Lab Number: L2042996

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

SAMPLE RESULTS

Lab ID: L2042996-06 Date Collected: 10/06/20 11:15

Client ID: 9-OS Date Received: 10/06/20 Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 10/13/20 09:15
Analytical Date: 10/14/20 14:30

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mansfield Lab						
1,4-Dioxane	ND		ng/l	144	32.6	1
Surrogate			% Recovery	Qualifier		ptance iteria
1,4-Dioxane-d8			54		1	5-110

Project Name: Lab Number: TOWN OF RAMAPO L2042996

Project Number: Report Date: 20010, TASK 200 10/19/20

SAMPLE RESULTS

Lab ID: L2042996-06 Date Collected: 10/06/20 11:15

Date Received: Client ID: 9-OS 10/06/20 Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: ALPHA 23528 Matrix: Water

Extraction Date: 10/14/20 16:45 Analytical Method: 134,LCMSMS-ID Analytical Date:

Analyst: RS

10/15/20 23:05

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab										
Perfluorobutanoic Acid (PFBA)	2.62		ng/l	1.83	0.373	1				
Perfluoropentanoic Acid (PFPeA)	0.460	J	ng/l	1.83	0.362	1				
Perfluorobutanesulfonic Acid (PFBS)	1.14	J	ng/l	1.83	0.217	1				
Perfluorohexanoic Acid (PFHxA)	1.32	J	ng/l	1.83	0.300	1				
Perfluoroheptanoic Acid (PFHpA)	1.17	J	ng/l	1.83	0.206	1				
Perfluorohexanesulfonic Acid (PFHxS)	0.500	J	ng/l	1.83	0.343	1				
Perfluorooctanoic Acid (PFOA)	8.66		ng/l	1.83	0.216	1				
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.83	1.22	1				
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.83	0.628	1				
Perfluorononanoic Acid (PFNA)	0.913	J	ng/l	1.83	0.285	1				
Perfluorooctanesulfonic Acid (PFOS)	3.56		ng/l	1.83	0.460	1				
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.83	0.278	1				
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.83	1.11	1				
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.83	0.592	1				
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.83	0.237	1				
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.83	0.895	1				
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.83	0.530	1				
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.83	0.734	1				
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.83	0.340	1				
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.83	0.299	1				
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.83	0.226	1				
PFOA/PFOS, Total	12.2		ng/l	1.83	0.216	1				

Project Name: TOWN OF RAMAPO Lab Number: L2042996

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

SAMPLE RESULTS

Lab ID: L2042996-06 Date Collected: 10/06/20 11:15

Client ID: 9-OS Date Received: 10/06/20 Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	88		2-156	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	123		16-173	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	113		31-159	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	72		21-145	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	77		30-139	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	118		47-153	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	93		36-149	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	77		1-244	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	98		34-146	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	120		42-146	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	95		38-144	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	96		7-170	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	52		1-181	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	121		40-144	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	21		1-87	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	75		23-146	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	114		24-161	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	122		33-143	

Lab Number: **Project Name:** TOWN OF RAMAPO L2042996

Project Number: Report Date: 20010, TASK 200 10/19/20

SAMPLE RESULTS

Lab ID: L2042996-07 Date Collected: 10/06/20 12:15

Client ID: Date Received: 9-1 10/06/20

Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 10/13/20 09:15 Analytical Method: 1,8270D-SIM Analytical Date: 10/14/20 14:53

Analyst: PS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mansfield Lab						
1,4-Dioxane	ND		ng/l	144	32.6	1
Surrogate			% Recovery	Qualifier		ptance iteria
1,4-Dioxane-d8			47		1	5-110

Project Name: TOWN OF RAMAPO Lab Number: L2042996

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

SAMPLE RESULTS

Lab ID: L2042996-07 Date Collected: 10/06/20 12:15

Client ID: 9-1 Date Received: 10/06/20

Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 10/14/20 16:45
Analytical Date: 10/15/20 23:22

Analyst: RS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	4.68		ng/l	1.73	0.352	1
Perfluoropentanoic Acid (PFPeA)	2.94		ng/l	1.73	0.342	1
Perfluorobutanesulfonic Acid (PFBS)	3.54		ng/l	1.73	0.205	1
Perfluorohexanoic Acid (PFHxA)	3.04		ng/l	1.73	0.283	1
Perfluoroheptanoic Acid (PFHpA)	2.83		ng/l	1.73	0.194	1
Perfluorohexanesulfonic Acid (PFHxS)	0.331	J	ng/l	1.73	0.324	1
Perfluorooctanoic Acid (PFOA)	7.03		ng/l	1.73	0.204	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.73	1.15	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.73	0.594	1
Perfluorononanoic Acid (PFNA)	1.12	J	ng/l	1.73	0.269	1
Perfluorooctanesulfonic Acid (PFOS)	4.13		ng/l	1.73	0.435	1
Perfluorodecanoic Acid (PFDA)	0.414	J	ng/l	1.73	0.262	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.73	1.05	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.73	0.559	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.73	0.224	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.73	0.846	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.73	0.500	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.73	0.694	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.73	0.321	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.73	0.282	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.73	0.214	1
PFOA/PFOS, Total	11.2		ng/l	1.73	0.204	1

Project Name: TOWN OF RAMAPO Lab Number: L2042996

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

SAMPLE RESULTS

Lab ID: L2042996-07 Date Collected: 10/06/20 12:15

Client ID: 9-1 Date Received: 10/06/20

Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	95		2-156	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	135		16-173	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	112		31-159	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	74		21-145	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	78		30-139	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	125		47-153	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	100		36-149	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	77		1-244	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	102		34-146	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	121		42-146	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	102		38-144	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	114		7-170	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	74		1-181	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	133		40-144	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	27		1-87	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	118		23-146	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	126		24-161	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	113		33-143	

Project Name: Lab Number: TOWN OF RAMAPO L2042996

Project Number: Report Date: 20010, TASK 200 10/19/20

SAMPLE RESULTS

Lab ID: L2042996-08 Date Collected: 10/06/20 10:50

Date Received: Client ID: 10/06/20 EB10062020 Sample Location: Field Prep: HILLBURN, NY Not Specified

Sample Depth:

Extraction Method: ALPHA 23528 Matrix: Water

Extraction Date: 10/14/20 16:45 Analytical Method: 134,LCMSMS-ID Analytical Date:

Analyst: RS

10/15/20 23:39

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab									
Perfluorobutanoic Acid (PFBA)	ND		ng/l	1.90	0.387	1			
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	1.90	0.376	1			
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.90	0.226	1			
Perfluorohexanoic Acid (PFHxA)	0.395	J	ng/l	1.90	0.311	1			
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.90	0.214	1			
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.90	0.357	1			
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.90	0.224	1			
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.90	1.26	1			
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.90	0.653	1			
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.90	0.296	1			
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.90	0.478	1			
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.90	0.288	1			
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.90	1.15	1			
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.90	0.615	1			
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.90	0.247	1			
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.90	0.930	1			
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.90	0.550	1			
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.90	0.763	1			
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.90	0.353	1			
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.90	0.310	1			
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.90	0.235	1			
PFOA/PFOS, Total	ND		ng/l	1.90	0.224	1			

Project Name: TOWN OF RAMAPO Lab Number: L2042996

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

SAMPLE RESULTS

Lab ID: L2042996-08 Date Collected: 10/06/20 10:50

Client ID: EB10062020 Date Received: 10/06/20 Sample Location: HILLBURN, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	117	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	160	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	113	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	106	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	108	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	116	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	113	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	69	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	130	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	116	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	113	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	96	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	88	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	128	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	48	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	98	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	128	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	121	33-143

Project Name: TOWN OF RAMAPO Lab Number: L2042996

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 10/14/20 08:44 Extraction Date: 10/13/20 09:15

Analyst: PS

ParameterResultQualifierUnitsRLMDL1,4 Dioxane by 8270D-SIM - Mansfield Lab for sample(s):01-07Batch:WG1421384-11,4-DioxaneNDng/l15033.9

Surrogate %Recovery Qualifier Criteria

1,4-Dioxane-d8 46 15-110

Project Name: TOWN OF RAMAPO

Project Number: 20010, TASK 200

Lab Number:

Report Date:

L2042996

10/19/20

Method Blank Analysis Batch Quality Control

Analytical Method: 134,LCMSMS-ID Analytical Date: 10/15/20 18:07

Analyst: RS

Extraction Method: ALPHA 23528 Extraction Date: 10/14/20 16:45

Extraction Date: 10/14/20 16:45

Parameter	Result	Qualifier	Units	RL	MDL	
Perfluorinated Alkyl Acids by Isotope	Dilution - I	Mansfield	Lab for s	sample(s):	01-08 Batch:	WG1422105-1
Perfluorobutanoic Acid (PFBA)	ND		ng/l	2.00	0.408	
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.00	0.396	
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00	0.238	
Perfluorohexanoic Acid (PFHxA)	0.352	J	ng/l	2.00	0.328	
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00	0.225	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00	0.376	
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00	0.236	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	2.00	1.33	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.00	0.688	
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00	0.312	
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00	0.504	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00	0.304	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	d ND		ng/l	2.00	1.21	
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	c ND		ng/l	2.00	0.648	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00	0.260	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	2.00	0.980	
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	2.00	0.580	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	2.00	0.804	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00	0.372	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00	0.327	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00	0.248	
PFOA/PFOS, Total	ND		ng/l	2.00	0.236	

Project Name: TOWN OF RAMAPO Lab Number: L2042996

Project Number: 20010, TASK 200 **Report Date:** 10/19/20

Method Blank Analysis
Batch Quality Control

Analytical Method: 134,LCMSMS-ID Extraction Method: ALPHA 23528
Analytical Date: 10/15/20 18:07 Extraction Date: 10/14/20 16:45

Analyst: RS

Parameter Result Qualifier Units RL MDL

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab for sample(s): 01-08 Batch: WG1422105-1

Surrogate (Extracted Internal Standard)	%Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	116	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	156	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	108	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	99	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	106	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	108	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	116	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	87	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	133	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	116	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	111	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	130	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	84	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	131	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	64	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	111	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	124	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	124	33-143

Lab Control Sample Analysis Batch Quality Control

Project Name: TOWN OF RAMAPO

Lab Number:

L2042996

Project Number: 20010, TASK 200 Report Date:

10/19/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
1,4 Dioxane by 8270D-SIM - Mansfield Lab	Associated sample	e(s): 01-07	Batch: WG142	1384-2	WG1421384-3			
1,4-Dioxane	94		97		40-140	3		30

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qu	ual %Recovery Qu	ual Criteria
1,4-Dioxane-d8	50	50	15-110

Lab Control Sample Analysis Batch Quality Control

Project Name: TOWN OF RAMAPO

Project Number: 20010, TASK 200

Lab Number: L2042996

Report Date: 10/19/20

rameter	LCS %Recovery	LCSI Qual %Recov		%Recovery Limits	RPD	Qual	RPD Limits
rfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated sample(s):	01-08 Batch:	WG1422105-2	WG1422105-3		
Perfluorobutanoic Acid (PFBA)	99	100		67-148	1		30
Perfluoropentanoic Acid (PFPeA)	98	101		63-161	3		30
Perfluorobutanesulfonic Acid (PFBS)	94	98		65-157	4		30
Perfluorohexanoic Acid (PFHxA)	101	102		69-168	1		30
Perfluoroheptanoic Acid (PFHpA)	100	101		58-159	1		30
Perfluorohexanesulfonic Acid (PFHxS)	79	79		69-177	0		30
Perfluorooctanoic Acid (PFOA)	99	100		63-159	1		30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	98	102		49-187	4		30
Perfluoroheptanesulfonic Acid (PFHpS)	86	91		61-179	6		30
Perfluorononanoic Acid (PFNA)	99	100		68-171	1		30
Perfluorooctanesulfonic Acid (PFOS)	96	98		52-151	2		30
Perfluorodecanoic Acid (PFDA)	99	103		63-171	4		30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	104	104		56-173	0		30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	106	105		60-166	1		30
Perfluoroundecanoic Acid (PFUnA)	95	94		60-153	1		30
Perfluorodecanesulfonic Acid (PFDS)	114	120		38-156	5		30
Perfluorooctanesulfonamide (FOSA)	99	99		46-170	0		30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	108	112		45-170	4		30
Perfluorododecanoic Acid (PFDoA)	91	94		67-153	3		30
Perfluorotridecanoic Acid (PFTrDA)	105	115		48-158	9		30
Perfluorotetradecanoic Acid (PFTA)	97	102		59-182	5		30

Lab Control Sample Analysis Batch Quality Control

Project Name: TOWN OF RAMAPO

Project Number:

20010, TASK 200

Lab Number:

L2042996

Report Date:

10/19/20

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01-08 Batch: WG1422105-2 WG1422105-3

0	LCS		LCSD	0 1	Acceptance
Surrogate (Extracted Internal Standard)	%Recovery	Qual	%Recovery	Qual	Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	118		118		2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	155		156		16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	109		106		31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	101		100		21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	107		108		30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	111		108		47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	117		115		36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	95		99		1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	136		133		34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	120		115		42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	117		117		38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	142		133		7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	102		103		1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	137		138		40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	62		70		1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	112		122		23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	138		132		24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	136		133		33-143

Project Name: TOWN OF RAMAPO **Lab Number:** L2042996 Project Number: 20010, TASK 200

Report Date: 10/19/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

В Absent С Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2042996-01A	Plastic 250ml unpreserved	В	NA		3.6	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2042996-01B	Plastic 250ml unpreserved	В	NA		3.6	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2042996-01C	Amber 250ml unpreserved	С	7	7	3.5	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2042996-01D	Amber 250ml unpreserved	С	7	7	3.5	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2042996-02A	Plastic 250ml unpreserved	В	NA		3.6	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2042996-02B	Plastic 250ml unpreserved	В	NA		3.6	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2042996-02C	Amber 250ml unpreserved	С	7	7	3.5	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2042996-02D	Amber 250ml unpreserved	С	7	7	3.5	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2042996-03A	Plastic 250ml unpreserved	В	NA		3.6	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2042996-03B	Plastic 250ml unpreserved	В	NA		3.6	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2042996-03C	Amber 250ml unpreserved	С	7	7	3.5	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2042996-03D	Amber 250ml unpreserved	С	7	7	3.5	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2042996-04A	Plastic 250ml unpreserved	В	NA		3.6	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2042996-04B	Plastic 250ml unpreserved	В	NA		3.6	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2042996-04C	Amber 250ml unpreserved	С	7	7	3.5	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2042996-04D	Amber 250ml unpreserved	С	7	7	3.5	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2042996-05A	Plastic 250ml unpreserved	В	NA		3.6	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2042996-05B	Plastic 250ml unpreserved	В	NA		3.6	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2042996-05C	Amber 250ml unpreserved	С	7	7	3.5	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2042996-05D	Amber 250ml unpreserved	С	7	7	3.5	Υ	Absent		A2-1,4-DIOXANE-SIM(7)
L2042996-06A	Plastic 250ml unpreserved	В	NA		3.6	Υ	Absent		A2-NY-537-ISOTOPE(14)
L2042996-06B	Plastic 250ml unpreserved	В	NA		3.6	Υ	Absent		A2-NY-537-ISOTOPE(14)

Lab Number: L2042996

Report Date: 10/19/20

Project Name: TOWN OF RAMAPOProject Number: 20010, TASK 200

Container Info	rmation		Initial	Final	Temp			Frozen			
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)		
L2042996-06C	Amber 250ml unpreserved	С	7	7	3.5	Υ	Absent		A2-1,4-DIOXANE-SIM(7)		
L2042996-06D	Amber 250ml unpreserved	С	7	7	3.5	Υ	Absent		A2-1,4-DIOXANE-SIM(7)		
L2042996-07A	Plastic 250ml unpreserved	В	NA		3.6	Υ	Absent		A2-NY-537-ISOTOPE(14)		
L2042996-07B	Plastic 250ml unpreserved	В	NA		3.6	Υ	Absent		A2-NY-537-ISOTOPE(14)		
L2042996-07C	Amber 250ml unpreserved	С	7	7	3.5	Υ	Absent		A2-1,4-DIOXANE-SIM(7)		
L2042996-07D	Amber 250ml unpreserved	С	7	7	3.5	Υ	Absent		A2-1,4-DIOXANE-SIM(7)		
L2042996-08A	Plastic 250ml unpreserved	В	NA		3.6	Υ	Absent		A2-NY-537-ISOTOPE(14)		
L2042996-08B	Plastic 250ml unpreserved	В	NA		3.6	Υ	Absent		A2-NY-537-ISOTOPE(14)		

Serial_No:10192016:59 **Lab Number:** L2042996

Report Date: 10/19/20

Project Name: TOWN OF RAMAPO **Project Number:** 20010, TASK 200

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PFNA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroheptanoic Acid	PFHpA	375-85-9
Perfluorohexanoic Acid	PFHxA	307-24-4
Perfluoropentanoic Acid	PFPeA	2706-90-3
Perfluorobutanoic Acid	PFBA	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
FLUOROTELOMERS		
1H,1H,2H,2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
1H,1H,2H,2H-Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
1H,1H,2H,2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	4:2FTS	757124-72-4
PERFLUOROALKANE SULFONAMIDES (FASAs)		
Perfluorooctanesulfonamide	FOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1
PERFLUOROETHER SULFONIC ACIDS (PFESAs)		
Perfluoro(2-Ethoxyethane)Sulfonic Acid	PFEESA	113507-82-7
PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)		
	DEMDA	377-73-1
Perfluoro-3-Methoxypropanoic Acid	PFMPA	311-13-1
Perfluoro-3-Methoxypropanoic Acid Perfluoro-4-Methoxybutanoic Acid	PFMBA	863090-89-5

Project Name:TOWN OF RAMAPOLab Number:L2042996Project Number:20010, TASK 200Report Date:10/19/20

GLOSSARY

Acronyms

EDL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCI) for the method and/or preserve. All TICs are qualitatively identified and reported as estimated an experimental concentrations.

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Project Name:TOWN OF RAMAPOLab Number:L2042996Project Number:20010, TASK 200Report Date:10/19/20

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Project Name:TOWN OF RAMAPOLab Number:L2042996Project Number:20010, TASK 200Report Date:10/19/20

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Project Name: TOWN OF RAMAPO Lab Number: L2042996
Project Number: 20010, TASK 200 Report Date: 10/19/20

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS) using Isotope Dilution. Alpha SOP 23528.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:10192016:59

ID No.:17873 Revision 17

Published Date: 4/28/2020 9:42:21 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

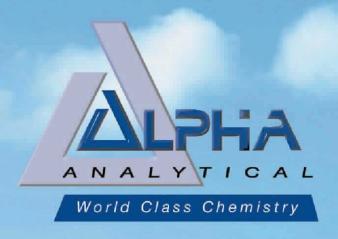
EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.


SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

															L/2042996 kb 10/	8/2
	NEW YORK	Service Contors Mahwah, NJ 07430: 35 Whitne	y Rd, Suite 6		Page	1		Date	Rec'd						· Walley Blog	
ДІРНА	CHAIN OF CUSTODY	Albany, NY 12205: 14 Walker I Tonawanda, NY 14150: 275 Co	-	05	0	1			Lab	10	1/6	5/6	10		ALPHA Job# 426	1
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information	DUSTE TON	MAN DO	D. Can		Deliv	erable				100		No.	Billing Information	
TEL: 508-898-9220	TEL: \$08-822-9300	Project Name:	Town of Ran	napo LF			X	ASP	-A			ASP	-B		Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	The state of the s	Ilbura, I				_		IS (1 F	ile)		EQui		/oli	PO#	
Client Information	N THE PARTY OF	Project #	20010, Task	Str. Stranger			_		1000		-					
- Alternative Control of the Control	deservatel Facility of		The second second	200		_						PI	ND.	17-	DIOXANE ONLY	
		(Use Project name as P		Caracter Control			_	The same of	Requi	remer	it				Disposal Site Information	
Address: 24 Wade Ro	đ	Project Manager: Mg	ch will	lams			_ X	NY T					ari 375		Please identity below location o	
Latham, NY 12110		ALPHAQuote #:						AWQ	Standa	rds		NY CI	P-51		applicable disposal facilities.	
Phone: 518-456-49	00	Turn-Around Time		003.10				NY R	estricted	d Use		Other			Disposal Facility	
Fax: 518-456-35	32	Standar	d 🔀	Due Date:				NY U	restrict	ed Use					☐ NJ ☐ NY	
Email:		Rush (only if pre approved	5)	# of Days:				NYC	Sewer D	Dischar	ge				Other. NA	
These samples have be	en previously analyze	ed by Alpha					ANA	LYSIS							Sample Filtration	
Other project specific	requirements/comm	ents:					-	Т			Г.	Τ.	Τ.	$\overline{}$	Done	- 0
Mark.William Please specify Metals		nvison nuntal.		Base line	Metal	S 415 T	CL-VOCs 8260	TKN-4500	A2-1,4-DIOXANE-SIM	A2-NY-537-ISOTOPE	F-Alkalinity-SM 2320	COD-410.4	TAL Motals *		Lab to do Preservation Lab to do (Please Specify below)	Bot
ALPHA Lab ID	9	mple ID	Colle	ection	Sample	Sampler's	ĮŞ		<u> </u>	2-N	₹		E			
(Lab Use Only)	34	mple ID	Date	Time	Matrix	Initials	1	l	₹	₹.	μ-				Sample Specific Comments	0
0126201	SVWC-96		10-6-2012	955	DW	PWS	×	V			\mathbf{x}	1	' ×			6
	PW-1			1250	DW	1	X	₩				15				6
	PW-2			1320	DW			10				+	10	1		6
The second secon	THE RESERVE AND ADDRESS OF THE PARTY OF THE	2-93		915	DW		1	t C	+			+	10	-	,	6
12007 01	-	C-95		1015			\odot	+					ю	+		10
000	/	2 - 94	1	930	DW			HQ.	Θ	\odot		X	10	-		_
	-			1000	DW		X	\leftarrow			\odot	K	\Leftrightarrow	-		10
04 + 3		0-05		1610	GW	\vdash		K	\sim	\sim	$\stackrel{\sim}{\sim}$		\star	_		10
731		10-I	-	1510	GW		X		\times	\geq	\sim	X	\times			.0
-05 -06		-R		1410	GW		X	\times	X	\times	\searrow	XX	\times	_		10
(11)		05	4	1115	GW	+	X	\times	\times	\times	\times	\triangleright	\times	Res		10
A = Nane B = HCI C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vlal G = Glass B = Bacteria Cup	Westboro: Certification N Mansfield: Certification N				tainer Type	IV	P	A	P	P	P	Р		Please print clearly, legib and completely. Samples not be logged in and turnaround time clock wil	s can
F = MeOH	C = Cube	Relinquished	Relinquished By: Date/Tin		Time			_	r			-	Timo		start until any ambiguities	
Q = 118B11004	O = Other E = Encore	12 11 STORY	Relinquished By: Date/T			10-20 111						IESUIVEG DI LALCOTTAG				
1 - 14020203	D = BOD Bottle	KAR 01	1/ //	10-6-200		any	10	-74	4	4					THIS COC. THE CLIENT HAS READ AND AGREE	
O = Officer		Jun A	10/	0/20 2	3:30	Kevri	0 90	un			16/6/20 23:30			: 20	TO BE BOUND BY ALPI	
	200						U								TERMS & CONDITIONS	
Form Na: 01-25 (rev. 30-Sep	11-2013)					1										

*o426	ALPHA Jpb#)	20	6/	0/1		Rec'd ab	ate F in L	E		2	Page of	5	у	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205; 14 Walker W Tonawands, NY 14160; 275 Co	NEW YORK CHAIN OF CUSTODY	Дірна
(ME) - 100	Billing Informati	-	В	ASP-		300		ables	Delive		Šķ.		ano I F	Town of Ran	Project Information Project Name:	Manelield, MA 02046 320 Forbes Blvd TEL: 508 822-9300	1boraugh, MA 01561 6 Walkup Dr. TEL: 508-698-9220
						ile)	(1 F	Quis		\neg				il burn		FAX: 508-822-3288	FAX: 508-898-9193
conly	DICKANE	- 64	45 4	PFF	4	-B	ASP	Other	X	\dashv			2200000	20010, Task	Project #		ent Information
Information	Disposal Site In				il.	remer	Requi	tory	Regul	7			200	The same of the sa	(Use Project name as Pr	ironmontal Engineeri	- Committee of the Comm
notes in the comment	Treation and the second		ad 375	NY Pa				Y TO		−*					Project Manager: May		ess: 24 Wade Rd
	Please identify be applicable disposa				\Box	rrie	tanda		-	\dashv			ams	CWIII	ALPHAQuote #:		am, NY 12110
	Disposal Facility:			Other			tricted					NEW O		Land Street	THE PROPERTY OF THE PARTY OF TH	20	
NY		ľ		Other		ed Use						N. Carrier		×	Turn-Around Time Standard		e: 518-456-490
_	□ NJ												Due Date:		Rush (only if pre approved	32	518-456-353
NA NA	Other:	_			ge	Dischan	ewer L	_	<u> </u>	-			# of Days:				it:
ation	Sample Fillrati		_	_		_		SIS	ANAL	_!						en previously analyz requirements/comm	
0	Done Lab to do Preservation Lab to do		TAL Metals +	COD-410.4	T-Alkalinity-SM 2320	A2-NY-537-isotope	A2-1.4 DIOXANE-SIM	000t-NW	CL-VOCs 8260		List	+ 1s			lingenvironw * Part 360	ms@ster	•
	Sample Specific		1		T-AK	A2-h	A2-1,4		X		Sample	Sample Matrix	Time	Coli	mple ID	Sa	ALPHA Lab ID Lab Use Only)
		=	V	X	V	V	X	\times	S	5	Pw	GW	1215	10-6-2020		1955 9-I	11-6125
	İ			-		\Diamond		\rightarrow			PW	LW	1050	1	062030		13
		\vdash	-		-	\sim			\checkmark	_		LW	-		62020		73
				\vdash	-			\neg		1		cu		-	/	Coco	
	1		1							-						gas ·	
		+					_			\rightarrow		0	-		6	8/05	
						10			-	-		10/	Q.		8	-	
		\vdash	\vdash	\vdash	1	A	6		-	\rightarrow	_		-		X/		
	1	\vdash	\vdash	-	-		4		-	\rightarrow	_			_		(C)	
	1	\vdash	\vdash	-	-	-		4		\rightarrow	_			/		1055	
	1	-	+	1						_							
nt clearly, legi etely. Sample	Please print	Ш	Р	P	P	Р	A	,	v		tainer Ty	Con			Westboro: Certification N Mansfield: Certification N	Container Code P = Plastic A = Amber Glass	one I
time cłock w			C	D	A	A	A		В		reservat	۶				V = Viat G = Glass 8 = Bacteria Cup	SO. (
any ambiguitie BY EXECUTII			e/Time	Date			-		Receiv	F		Time	Date/	v:	Relinquished	C = Cube	eOH
	THIS COC.	-	20	-	VOLA	1	24	-/			92	100			Ped beer	O = Olher E = Encore	011001
	HAS READ	2:3:3	20 7	16/7	10	Č	zu	L	W	in	4	3/30		L 10	Jale A	D = BOO Bottle	Zn Ac/NaOH
D	HAS READ	233	20.	16/2	101	5	211	J	D	an.	4		16/20 2	L 10	Jalv A	D = BOO Bottle	a,5,0,

www.alphalab.com

Alpha Analytical

Laboratory Code: 11148

SDG Number: L2043214

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Table of Contents

New	York ASP Category A Data Deliverable Package	1
	Table of Contents	2
	Sample ID Cross Reference	3
	SDG Narrative	4
	Data Qualifier Definitions	6
	Instrument Information	9
	Sample Log-in Sheet	12
	Lims COC (LN01)	13
	External Chain of Custody	15
	Organics Analysis	16
	Volatiles Data	17
	Volatiles Sample Data	18
	Form 1 - Organics	19
	Metals Analysis	26
	Inorganic Data (ICP Analysis)	27
	Form 1 - Inorganics	28
	Inorganic Data (Mercury Analysis)	35
	Form 1 - Inorganics	36
	Wet Chemistry Analysis	43
	TKN Analysis	44
	Results	45
	Form 1 - Inorganics	46
	COD Analysis	53
	Results	54
	Form 1 - Inorganics	55
	Alkalinity Analysis	62
	Results	63
	Form 1 Inorganies	6/

Project Name: TOWN OF RAMAPO LF

Project Number: 20010, TASK 200 Report Date:

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2043214-01	1-OS	WATER	HILLBURN, NY	10/08/20 11:55	10/08/20
L2043214-02	2-OS	WATER	HILLBURN, NY	10/08/20 10:45	10/08/20
L2043214-03	3-OS/1	WATER	HILLBURN, NY	10/08/20 14:20	10/08/20
L2043214-04	4-OS	WATER	HILLBURN, NY	10/08/20 09:40	10/08/20
L2043214-05	7-OS	WATER	HILLBURN, NY	10/08/20 16:10	10/08/20
L2043214-06	TB10082020	WATER	HILLBURN, NY	10/08/20 00:00	10/08/20

Lab Number:

L2043214

10/15/20

Project Name:TOWN OF RAMAPO LFLab Number:L2043214Project Number:20010, TASK 200Report Date:10/15/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:TOWN OF RAMAPO LFLab Number:L2043214Project Number:20010, TASK 200Report Date:10/15/20

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature: Melissa Sturgis

Report Date: 10/15/20

Title: Technical Director/Representative

Project Name: Lab Number: TOWN OF RAMAPO LF L2043214 **Project Number:** 20010, TASK 200 **Report Date:** 10/15/20

GLOSSARY

Acronvms

EDL.

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes. LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Project Name:TOWN OF RAMAPO LFLab Number:L2043214Project Number:20010, TASK 200Report Date:10/15/20

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries

Project Name:TOWN OF RAMAPO LFLab Number:L2043214Project Number:20010, TASK 200Report Date:10/15/20

Data Qualifiers

when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Volatile Organics Instruments

Volatile Organics:

Instrument: Agilent 7890 GC/5975C MSD Columns (length x ID x df): Trap: Supelco K Trap (VOACARB 3000) RTX-VMS 20m x 0.18mm x 1um Concentrator: EST Encon (or equivalent) RTX-VMS 30m x 0.25mm x 1.4um Autosampler: EST Centurion (or equivalent) RTX-502.2 40m x 0.18mm x 1um

Purge time: 11 min

Volatile Organics: VPH

Instrument: Agilent 6890 (or equivalent) Column Type: Restek RTX 502.2 Trap: Supelco K Trap (VOACARB 3000) Column Length: 105 Meters

Concentrator: EST Encon (or equivalent) df: 3.00 um Autosampler: EST Centurion (or equivalent) ID: 0.53mm

Volatile Organics: PIANO

Instrument: Agilent 7890 GC/5975C MSD Column Type: DB-VRX Trap: Supelco K Trap (VOACARB 3000) Column Length: 60 Meters

Concentrator: Tekmar Velocity / EST Encon df: 1.40 um Autosampler: Varian Archon / EST Centurion ID: 0.25 mm Purge time: 11 min Desorb: 1 min

Volatile Organics: Dissolved Gas

Instrument: Agilent 7890 (or equivalent) with FID/TCD

Column Type: Haysep S Column Column Length: 2 Meters packed (100/200 mesh)

Autosampler: LEAP Headspace Purge time: 0.6 min

Volatile Organics in Air Instruments

Volatile Organics in Air:

Instruments: Agilent 6890 GC / 5975 MSD Shimadzu QP2010-SE / QP2020

Concentrator: Entech 7100A or 7200 Column Type: Restek RTX-1 Column Length: 60 Meters Autosampler: Entech 7016CA or 7016D

df: 1.00 um

ID: 0.25 mm or 0.32 mm

Trap 1: Glass Bead: manufacturer-Entech: 20 cm packing material Trap 2: Tenax: manufacturer-Entech: 20 cm packing material

Semivolatile Organics Instruments - Westborough

<u>Semivolatile Organics (Acid/Base/Neutral Extractables):</u>

Instrument: Agilent 5973N MSD Injection volume: 1 ul;2 uL LVI

Column Type: Restek RXI-5SILMS df: 0.32 um
Column Length: 30 Meters ID: 0.25 mm

Polynuclear Aromatic Hydrocarbons by 8270 SIM:

Instrument: Agilent 5973 MSD Injection volume: 1 ul;2 uL LVI

Column Type: Restek RXI-5SILMS df: 0.25 um
Column Length: 30 Meters ID: 0.25 mm

Pesticides/PCB/Herbicides:

Instrument: Agilent 6890 w/Dual Micro ECDs Injection Volume: 1uL

Column A: Restek RTX-CL/STX-CL df: 0.32
Column B: Restek RTX/STX-CLPPesticide II df: 0.25
Column Length: 30 Meters ID: 0.32 mm

Petroleum/EPH:

Instrument: Agilent 6890 w/FID / HP 5890 w/ FID Injection Volume: 1uL

Column: Restek RTX 5 df: 0.25

Column Length: 30 Meters

ID: 0.32 mm

Semivolatile Organic Instruments - Mansfield

<u>Semivolatile Organics (ALK-PAH Extractables):</u>

Instrument: Agilent 5973N / 5975 MSD Injection volume: 1 ul

Column Type: ZB-5 df: 0.25 um
Column Length: 60 Meters ID: 0.25 mm

Semivolatile Organics (8270):

Instrument: Agilent 5973N / 5975 MSD Injection volume: 2 ul

Column Type: ZB-Semivolatiles df: 0.25 um
Column Length: 30 Meters ID: 0.25 mm

Semivolatile Organics (8270 SIM):

Instrument: Agilent 5973N / 5975 MSD Injection volume: 3 ul

Column Type: ZB-5 df: 0.25 um
Column Length: 30 Meters ID: 0.25 mm

<u>Semivolatile Organics (1,4-Dioxane):</u>

Instrument: Agilent 5973N / 5975 / 5977 MSD Injection volume: 3 ul Column Type: RTX-5 df: 0.25um, 0.18 um ID: 0.25um, 0.18 mm

<u>Semivolatile Organics (209 Congener):</u>

Instrument: Agilent 5973N / 5975 MSD

Column Type: RTX-5, RTX-PCB

Column Length: 60 Meters

Injection volume: 3 ul df: 0.25um, 0.18 um ID: 0.25um, 0.18 mm

Semivolatile Organics (8081):

Instrument: Agilent 6890 / 7890 Injection volume: 1 ul

Column Type: RTX-5 / RTX-CLP II df: 0.25 um Column Length: 60 Meters ID: 0.25 mm

Semivolatile Organics (8082):

Instrument: Agilent 6890 w/Dual Micro ECDs Injection Volume: 1uL

Column A: Restek RTX-CL/STX-CL df: 0.32 Column B: Restek RTX/STX-CLPPesticide II df: 0.25 Column Length: 30 Meters ID: 0.32 mm

<u>Semivolatile Organics (SHC Extractables):</u>

Instrument: Agilent 6890 Injection volume: 1 ul

Column Type: RTX-5 df: 0.25 um
Column Length: 60 Meters ID: 0.25 mm

Sample Delivery Group Summary

Alpha Job Number: L2043214 Received: 08-OCT-2020 Reviewer: Chris Tebeau

Account Name : Sterling Environmental Engineering

Project Number : 20010, TASK 200
Project Name : TOWN OF RAMAPO LF

Delivery Information

Samples Delivered By: Alpha Courier

Chain of Custody : Present

Cooler Information

Cooler Seal/Seal# Preservation Temperature(°C) Additional Information

A Absent/ Ice 3.6

Condition Information

1) All samples on COC received?

2) Extra samples received?

3) Are there any sample container discrepancies?

4) Are there any discrepancies between sample labels & COC? NO

5) Are samples in appropriate containers for requested analysis? YES

6) Are samples properly preserved for requested analysis? YES

7) Are samples within holding time for requested analysis? YES

8) All sampling equipment returned?

Volatile Organics/VPH

1) Reagent Water Vials Frozen by Client?

ALPHA ANALYTICAL LABORATORIES, INC. LOGIN CHAIN OF CUSTODY REPORT Oct 15 2020, 04:57 pm

Login Number: L2043214

Account: STERLINGENV Sterling Environmental EngineeringProject: 20010, TASK 200

Received: 080CT20 Due Date: 150CT20

Sample #	Client ID	Received: 080CT20	Due Date: 150CT20	Mat PR Collected
L2043214-01		1 1 202 110 2		80CT20 11:55
-				Package Due Date: 10/15/20
•	•	•		,BA-TI,BE-TI,CA-TI,CD-TI,CO- TI,SE-TI,TL-TI,V-TI,ZN-TI,TKN-
L2043214-02	2-OS		1 S0 0	8OCT20 10:45
Report list	built for 8260	1,1-DCA, VC, Benzene	e, Chlorobenzene) Pack	age Due Date: 10/15/20
	·			,BE-TI,CA-TI,CD-TI,CO-TI,CR- TI,TL-TI,V-TI,ZN-TI,TKN-4500
L2043214-03 Report list		[1,1-DCA, VC, Benzene	1 S0 0 e, Chlorobenzene) Pack	80CT20 14:20 age Due Date: 10/15/20
	•	·		,BE-TI,CA-TI,CD-TI,CO-TI,CR- TI,TL-TI,V-TI,ZN-TI,TKN-4500
L2043214-04	4-0S		1 S0 0	80CT20 09:40
Report list	built for 8260	1,1-DCA, VC, Benzene	e, Chlorobenzene) Pack	age Due Date: 10/15/20
				,BE-TI,CA-TI,CD-TI,CO-TI,CR- TI,TL-TI,V-TI,ZN-TI,TKN-4500
L2043214-05	7-0S		1 S0 0	80CT20 16:10
Report list	built for 8260 (1,1-DCA, VC, Benzene	e, Chlorobenzene) Pack	age Due Date: 10/15/20
·				,BE-TI,CA-TI,CD-TI,CO-TI,CR- TI,TL-TI,V-TI,ZN-TI,TKN-4500
L2043214-06	TB10082020		1 S0 0	80CT20 00:00
Report list	built for 8260	1,1-DCA, VC, Benzene	e, Chlorobenzene) Pack	age Due Date: 10/15/20

Page 1

ALPHA ANALYTICAL LABORATORIES, INC. LOGIN CHAIN OF CUSTODY REPORT Oct 15 2020, 04:57 pm

Login Number: L2043214

Account: STERLINGENV Sterling Environmental EngineeringProject: 20010, TASK 200

Received: 080CT20 Due Date: 150CT20

Sample # Client ID Mat PR Collected

NYTCL-8260-R2

Page 2

Logged By: Melissa Deyo

Διρна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Co	lay	5	Page		- 0	ate Re		00	1/20		2LPHA JOB # 22043211
Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Information Project Name: Project Location:	Town of Ram		,		10000	rables ASP-A EQuIS (1			ASP-	3 1154	Billing Information Same as Client Info
Client Information Client: Sterling Env Address: 24 Wade Ro Latham, NY 12110 Phone: 518-456-49 Fax: 518-456-35 Email:	d 00	Project # r (Use Project name as Project Manager: Model of the Pr	20010, Task roject#)		5		Regul	Other atory Re NY TOGS AWQ Star NY Restrict NY Unres	ndards ted Use ricted Us		NY Pa NY CF Other		Disposal Site Information Please identify below location of applicable disposal facilities. Disposal Facility: NJ NY Other: NA Sample Filtration
These samples have be Other project specific Mark.williams Please specify Metals	requirements/comm	nents:	_	#15 Li	pecific inyl Ch nzene st	VOCS loride,	-1 ≃ I	TKN-4500	AZHINGGZEBBtopo-	-Alkalinity-SM 2320	COD-410.4	TAL Metais **	Done Lab to do Preservation Lab to do (Please Specify below)
ALPHA Lab ID (Lab Use Only)		ample ID	Date	Time	Sample Matrix	Sampler's Initials	ž	*	*	A-T		X	Sample Specific Comments
15214 ~01 02 63 64 05 06	1-0S 2-0S 3-0S/I 4-0S 7-0S 8000 TB10	083030		1045	6W 6W 6W 6W	-	XXXXX	X	CHA CHA	XXX X			() () () ()
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Westboro: Certification Mansfield: Certification Relinquished	No: MA015		/Time /857		B Receiv	P A D A ed By:	P A	P A /C	18/	P C e/Time	Please print clearly, legibly and completely. Samples canot be logged in and turnaround time clock will no start until any ambiguities ar resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA

Organics

Volatiles Data

Volatiles Sample Data

Client : Sterling Environmental Engineering

Project Name : TOWN OF RAMAPO LF

Lab ID : L2043214-01

Client ID : 1-OS

Sample Location : HILLBURN, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05201013A13

Sample Amount : 10 ml Level : LOW

Extract Volume (MeOH): N/A

Lab Number : L2043214

Project Number : 20010, TASK 200

Date Collected : 10/08/20 11:55
Date Received : 10/08/20

Date Analyzed : 10/13/20 11:41

Dilution Factor : 1
Analyst : PD

Instrument ID : VOA105 GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
108-90-7	Chlorobenzene	ND	2.5	0.70	U
71-43-2	Benzene	ND	0.50	0.16	U
75-01-4	Vinyl chloride	ND	1.0	0.07	U

Client : Sterling Environmental Engineering

Project Name : TOWN OF RAMAPO LF

Lab ID : L2043214-02

Client ID : 2-OS

Sample Location : HILLBURN, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05201013A14

Sample Amount : 10 ml Level : LOW

Extract Volume (MeOH) : N/A

Lab Number : L2043214

Project Number : 20010, TASK 200

Date Collected : 10/08/20 10:45
Date Received : 10/08/20

Date Analyzed : 10/13/20 12:04

Dilution Factor : 1
Analyst : PD
Instrument ID : VOA10

Instrument ID : VOA105 GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

CAS NO.	Parameter	Results	RL	MDL	Qualifier
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U
108-90-7	Chlorobenzene	ND	2.5	0.70	U
71-43-2	Benzene	ND	0.50	0.16	U
75-01-4	Vinyl chloride	ND	1.0	0.07	U

Client : Sterling Environmental Engineering

Project Name : TOWN OF RAMAPO LF Lab ID : L2043214-03

Client ID : 3-OS/1

Sample Location : HILLBURN, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05201013A15

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2043214

Project Number : 20010, TASK 200 Date Collected : 10/08/20 14:20

Date Received : 10/08/20

Date Analyzed : 10/13/20 12:27 Dilution Factor : 1

Dilution Factor : 1
Analyst : PD
Instrument ID : VOA105
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

ug/L CAS NO. Results RL MDL Qualifier **Parameter** 75-34-3 1,1-Dichloroethane ND 2.5 0.70 U 108-90-7 Chlorobenzene ND 2.5 0.70 U 71-43-2 Benzene ND 0.50 0.16 U Vinyl chloride ND U 75-01-4 1.0 0.07

Client : Sterling Environmental Engineering

Project Name : TOWN OF RAMAPO LF

Lab ID : L2043214-04

Client ID : 4-OS

Sample Location : HILLBURN, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05201013A16

Sample Amount : 10 ml

Level : LOW Extract Volume (MeOH) : N/A

Lab Number : L2043214

Project Number : 20010, TASK 200
Date Collected : 10/08/20 09:40

Date Received : 10/08/20

Date Analyzed : 10/13/20 12:51

Dilution Factor : 1 Analyst : LA

Analyst : LAC Instrument ID : VOA105 GC Column : RTX-502.2

GC Column : RTX-%Solids : N/A Injection Volume : N/A

			ug/L				
CAS NO.	Parameter	Results	RL	MDL	Qualifier		
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U		
108-90-7	Chlorobenzene	ND	2.5	0.70	U		
71-43-2	Benzene	ND	0.50	0.16	U		
75-01-4	Vinyl chloride	ND	1.0	0.07	U		

Client : Sterling Environmental Engineering

Project Name : TOWN OF RAMAPO LF

Lab ID : L2043214-05 Client ID : 7-OS

Sample Location : HILLBURN, NY

Sample Matrix : WATER
Analytical Method : 1,8260C

Lab File ID : V05201013A17 Sample Amount : 10 ml

Level : LOW Extract Volume (MeOH) : N/A

Lab Number : L2043214

Project Number : 20010, TASK 200
Date Collected : 10/08/20 16:10

Date Collected : 10/08/20 16: Date Received : 10/08/20

Date Analyzed : 10/13/20 13:14

: RTX-502.2

Dilution Factor : 1
Analyst : LAC
Instrument ID : VOA105

%Solids : N/A Injection Volume : N/A

GC Column

CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U	
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
71-43-2	Benzene	ND	0.50	0.16	U	
75-01-4	Vinyl chloride	ND	1.0	0.07	U	

Client : Sterling Environmental Engineering

Project Name : TOWN OF RAMAPO LF
Lab ID : L2043214-06
Client ID : TB10082020
Sample Location : HILLBURN, NY

Sample Matrix : WATER
Analytical Method : 1,8260C
Lab File ID : V05201013A12

Sample Amount : 10 ml Level : LOW Extract Volume (MeOH) : N/A Lab Number : L2043214

Project Number : 20010, TASK 200
Date Collected : 10/08/20 00:00
Date Received : 10/08/20

Date Analyzed : 10/13/20 11:17

Dilution Factor : 1
Analyst : PD
Instrument ID : VOA105
GC Column : RTX-502.2

%Solids : N/A Injection Volume : N/A

Parameter	Results	RL	MDL	Qualifier	
1,1-Dichloroethane	ND	2.5	0.70	U	
Chlorobenzene	ND	2.5	0.70	U	
Benzene	ND	0.50	0.16	U	
Vinyl chloride	ND	1.0	0.07	U	
	1,1-Dichloroethane Chlorobenzene Benzene	1,1-Dichloroethane ND Chlorobenzene ND Benzene ND	1,1-Dichloroethane ND 2.5 Chlorobenzene ND 2.5 Benzene ND 0.50	Parameter Results RL MDL 1,1-Dichloroethane ND 2.5 0.70 Chlorobenzene ND 2.5 0.70 Benzene ND 0.50 0.16	Parameter Results RL MDL Qualifier 1,1-Dichloroethane ND 2.5 0.70 U Chlorobenzene ND 2.5 0.70 U Benzene ND 0.50 0.16 U

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1421467-5
Client ID : WG1421467-5BLANK Date Received : NA

Sample Location : Date Analyzed : 10/13/20 08:35

Sample Matrix : WATER **Dilution Factor** : 1 **Analytical Method** : 1,8260C Analyst : PD : VOA105 Lab File ID : V05201013A05 Instrument ID GC Column : RTX-502.2 Sample Amount : 10 ml

Level : LOW %Solids : N/A Extract Volume (MeOH) : N/A Injection Volume : N/A

CAS NO.	Parameter	Results	RL	MDL	Qualifier	
75-34-3	1,1-Dichloroethane	ND	2.5	0.70	U	
108-90-7	Chlorobenzene	ND	2.5	0.70	U	
71-43-2	Benzene	ND	0.50	0.16	U	
75-01-4	Vinyl chloride	ND	1.0	0.07	U	

Metals

Inorganic Data (ICP Analysis)

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2043214-02 Date Collected : 10/08/20 10:45

Client ID : 2-OS Date Received : 10/08/20

Sample Location : HILLBURN, NY Date Analyzed : 10/14/20 18:52 Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 1,6010D Analyst : BV
Lab File ID : WG1421911.pdf Instrument ID : TRACE6
Sample Amount : 50ml %Solids : N/A

			mg/l		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
NONE	Hardness	284	0.660	NA	
7429-90-5	Aluminum, Total	0.108	0.100	0.032	
7440-36-0	Antimony, Total	ND	0.050	0.007	U
7440-38-2	Arsenic, Total	ND	0.005	0.002	U
7440-39-3	Barium, Total	0.046	0.010	0.002	
7440-41-7	Beryllium, Total	ND	0.005	0.001	U
7440-43-9	Cadmium, Total	ND	0.005	0.001	U
7440-70-2	Calcium, Total	95.2	0.100	0.035	
7440-47-3	Chromium, Total	0.094	0.010	0.002	
7440-48-4	Cobalt, Total	ND	0.020	0.002	U
7440-50-8	Copper, Total	0.020	0.010	0.002	
7439-89-6	Iron, Total	1.05	0.050	0.009	
7439-92-1	Lead, Total	ND	0.010	0.003	U
7439-95-4	Magnesium, Total	11.2	0.100	0.015	
7439-96-5	Manganese, Total	0.026	0.010	0.002	
7440-02-0	Nickel, Total	0.025	0.025	0.002	J
7440-09-7	Potassium, Total	10.5	2.50	0.237	
7782-49-2	Selenium, Total	ND	0.010	0.004	U
7440-22-4	Silver, Total	ND	0.007	0.003	U
7440-23-5	Sodium, Total	24.8	2.00	0.120	
7440-28-0	Thallium, Total	ND	0.020	0.003	U
7440-62-2	Vanadium, Total	ND	0.010	0.002	U
7440-66-6	Zinc, Total	0.003	0.050	0.002	J

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2043214-03 Date Collected : 10/08/20 14:20

Client ID : 3-OS/1 Date Received : 10/08/20 Sample Location : HILLBURN, NY Date Analyzed : 10/14/20 18:57

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,6010D Analyst : BV
Lab File ID : WG1421911.pdf Instrument ID : TRACE6
Sample Amount : 50ml %Solids : N/A

			mg/l		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
NONE	Hardness	250	0.660	NA	
7429-90-5	Aluminum, Total	0.975	0.100	0.032	
7440-36-0	Antimony, Total	ND	0.050	0.007	U
7440-38-2	Arsenic, Total	ND	0.005	0.002	U
7440-39-3	Barium, Total	0.034	0.010	0.002	
7440-41-7	Beryllium, Total	ND	0.005	0.001	U
7440-43-9	Cadmium, Total	ND	0.005	0.001	U
7440-70-2	Calcium, Total	81.4	0.100	0.035	
7440-47-3	Chromium, Total	3.19	0.010	0.002	
7440-48-4	Cobalt, Total	0.008	0.020	0.002	J
7440-50-8	Copper, Total	0.018	0.010	0.002	
7439-89-6	Iron, Total	13.6	0.050	0.009	
7439-92-1	Lead, Total	ND	0.010	0.003	U
7439-95-4	Magnesium, Total	11.3	0.100	0.015	
7439-96-5	Manganese, Total	1.50	0.010	0.002	
7440-02-0	Nickel, Total	0.711	0.025	0.002	
7440-09-7	Potassium, Total	3.91	2.50	0.237	
7782-49-2	Selenium, Total	ND	0.010	0.004	U
7440-22-4	Silver, Total	ND	0.007	0.003	U
7440-23-5	Sodium, Total	60.8	2.00	0.120	
7440-28-0	Thallium, Total	0.005	0.020	0.003	J
7440-62-2	Vanadium, Total	0.012	0.010	0.002	
7440-66-6	Zinc, Total	0.009	0.050	0.002	J

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2043214-04 Date Collected : 10/08/20 09:40

Client ID : 4-OS Date Received : 10/08/20

Sample Location : HILLBURN, NY Date Analyzed : 10/14/20 19:02 Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 1,6010D Analyst : BV
Lab File ID : WG1421911.pdf Instrument ID : TRACE6
Sample Amount : 50ml %Solids : N/A

			mg/l		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
NONE	Hardness	215	0.660	NA	
7429-90-5	Aluminum, Total	0.055	0.100	0.032	J
7440-36-0	Antimony, Total	ND	0.050	0.007	U
7440-38-2	Arsenic, Total	ND	0.005	0.002	U
7440-39-3	Barium, Total	0.016	0.010	0.002	
7440-41-7	Beryllium, Total	ND	0.005	0.001	U
7440-43-9	Cadmium, Total	ND	0.005	0.001	U
7440-70-2	Calcium, Total	56.2	0.100	0.035	
7440-47-3	Chromium, Total	0.106	0.010	0.002	
7440-48-4	Cobalt, Total	ND	0.020	0.002	U
7440-50-8	Copper, Total	ND	0.010	0.002	U
7439-89-6	Iron, Total	1.18	0.050	0.009	
7439-92-1	Lead, Total	ND	0.010	0.003	U
7439-95-4	Magnesium, Total	18.0	0.100	0.015	
7439-96-5	Manganese, Total	0.463	0.010	0.002	
7440-02-0	Nickel, Total	0.064	0.025	0.002	
7440-09-7	Potassium, Total	1.94	2.50	0.237	J
7782-49-2	Selenium, Total	ND	0.010	0.004	U
7440-22-4	Silver, Total	ND	0.007	0.003	U
7440-23-5	Sodium, Total	51.8	2.00	0.120	
7440-28-0	Thallium, Total	ND	0.020	0.003	U
7440-62-2	Vanadium, Total	ND	0.010	0.002	U
7440-66-6	Zinc, Total	0.006	0.050	0.002	J

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2043214-05 Date Collected : 10/08/20 16:10

Client ID : 7-OS Date Received : 10/08/20

Sample Location : HILLBURN, NY Date Analyzed : 10/14/20 23:08 Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 1,6010D Analyst : BV
Lab File ID : WG1421911.pdf Instrument ID : TRACE6
Sample Amount : 50ml %Solids : N/A

			mg/l		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
NONE	Handara	400	0.000		
NONE	Hardness	128	0.660	NA	
7429-90-5	Aluminum, Total	1.82	0.100	0.032	
7440-36-0	Antimony, Total	ND	0.050	0.007	U
7440-38-2	Arsenic, Total	ND	0.005	0.002	U
7440-39-3	Barium, Total	0.040	0.010	0.002	
7440-41-7	Beryllium, Total	ND	0.005	0.001	U
7440-43-9	Cadmium, Total	ND	0.005	0.001	U
7440-70-2	Calcium, Total	36.5	0.100	0.035	
7440-47-3	Chromium, Total	0.573	0.010	0.002	
7440-48-4	Cobalt, Total	0.046	0.020	0.002	
7440-50-8	Copper, Total	0.012	0.010	0.002	
7439-89-6	Iron, Total	5.31	0.050	0.009	
7439-92-1	Lead, Total	ND	0.010	0.003	U
7439-95-4	Magnesium, Total	8.95	0.100	0.015	
7439-96-5	Manganese, Total	0.586	0.010	0.002	
7440-02-0	Nickel, Total	0.011	0.025	0.002	J
7440-09-7	Potassium, Total	3.80	2.50	0.237	
7782-49-2	Selenium, Total	ND	0.010	0.004	U
7440-22-4	Silver, Total	ND	0.007	0.003	U
7440-23-5	Sodium, Total	12.0	2.00	0.120	
7440-28-0	Thallium, Total	0.004	0.020	0.003	J
7440-62-2	Vanadium, Total	0.007	0.010	0.002	J
7440-66-6	Zinc, Total	0.007	0.050	0.002	J

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1421045-1 Date Collected : NA Client ID : WG1421045-1BLANK Date Received : NA

Arsenic, Total

Sample Location : Date Analyzed : 10/14/20 17:31

Sample Matrix **Dilution Factor** : WATER : 1 Analytical Method : 1,6010D Analyst : BV Lab File ID : WG1421911.pdf Instrument ID : TRACE6 Sample Amount : 50ml %Solids : N/A Digestion Method : EPA 3005A **Date Digested** : 10/12/20

CAS NO. Parameter Results RL MDL Qualifier

ND

0.005

0.002

U

7440-38-2

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1421045-1 Date Collected : NA Client ID : WG1421045-1BLANK Date Received : NA

Sample Location : Date Analyzed : 10/14/20 15:17

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,6010D Analyst : BV
Lab File ID : wg1421896.pdf Instrument ID : TRACE4
Sample Amount : 50ml %Solids : N/A

			mg/l		
CAS NO.	Parameter	Results	RL	MDL	Qualifier
NONE	Hardness	ND	0.660	NA	U
7429-90-5	Aluminum, Total	ND	0.100	0.032	U
7440-36-0	Antimony, Total	ND	0.050	0.007	U
7440-39-3	Barium, Total	ND	0.010	0.002	U
7440-41-7	Beryllium, Total	ND	0.005	0.001	U
7440-43-9	Cadmium, Total	ND	0.005	0.001	U
7440-70-2	Calcium, Total	ND	0.100	0.035	U
7440-47-3	Chromium, Total	ND	0.010	0.002	U
7440-48-4	Cobalt, Total	ND	0.020	0.002	U
7440-50-8	Copper, Total	ND	0.010	0.002	U
7439-89-6	Iron, Total	ND	0.050	0.009	U
7439-92-1	Lead, Total	ND	0.010	0.003	U
7439-95-4	Magnesium, Total	ND	0.100	0.015	U
7439-96-5	Manganese, Total	ND	0.010	0.002	U
7440-02-0	Nickel, Total	ND	0.025	0.002	U
7440-09-7	Potassium, Total	ND	2.50	0.237	U
7782-49-2	Selenium, Total	ND	0.010	0.004	U
7440-22-4	Silver, Total	ND	0.007	0.003	U
7440-23-5	Sodium, Total	ND	2.00	0.120	U
7440-28-0	Thallium, Total	ND	0.020	0.003	U
7440-62-2	Vanadium, Total	ND	0.010	0.002	U
7440-66-6	Zinc, Total	ND	0.050	0.002	U

Date Analyzed

: 10/14/20 15:34

Client : Sterling Environmental Engineering Lab Number : L2043214

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : WG1421045-4
 Date Collected
 : 10/07/20 10:45

 Client ID
 : WG1421045-4 DUP
 Date Received
 : 10/07/20

Sample Location :

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,6010D Analyst : BV
Lab File ID : wg1421896.pdf Instrument ID : TRACE4
Sample Amount : 50ml %Solids : N/A

		mg/l
CAS NO.	Parameter	Results RL MDL Qualifier
7439-89-6	Iron, Total	0.045 0.050 0.009 J
7433-03-0	iioii, iotai	0.045 0.050 0.009 0

Inorganic Data (Mercury Analysis)

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2043214-01 Date Collected : 10/08/20 11:55

Client ID : 1-OS Date Received : 10/08/20

Sample Location : HILLBURN, NY Date Analyzed : 10/13/20 10:42 Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 1,7470A Analyst : EW
Lab File ID : WG1421335 Instrument ID : FIMS4
Sample Amount : 25ml %Solids : N/A
Digestion Method : EPA 7470A Date Digested : 10/12/20

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200
Lab ID : L2043214-02 Date Collected : 10/08/20 10:45
Client ID : 2-OS Date Received : 10/08/20

Client ID : 2-OS Date Received : 10/08/20 Sample Location : HILLBURN, NY Date Analyzed : 10/13/20 10:51

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,7470A Analyst : EW Lab File ID : WG1421335 Instrument ID : FIMS4 %Solids Sample Amount : 25ml : N/A Digestion Method : EPA 7470A **Date Digested** : 10/12/20

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200
Lab ID Date Collected : 10/08/20 14:20

Client ID : 3-OS/1 Date Received : 10/08/20 Sample Location : HILLBURN, NY Date Analyzed : 10/13/20 10:58

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,7470A Analyst : EW Lab File ID : WG1421335 Instrument ID : FIMS4 Sample Amount : 25ml %Solids : N/A Digestion Method : EPA 7470A **Date Digested** : 10/12/20

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200
Lab ID Date Collected : 10/08/20 09:40

Client ID : 4-OS Date Received : 10/08/20 Sample Location : HILLBURN, NY Date Analyzed : 10/13/20 11:00

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 1,7470A Analyst : EW
Lab File ID : WG1421335 Instrument ID : FIMS4
Sample Amount : 25ml %Solids : N/A

Digestion Method : EPA 7470A Date Digested : 10/12/20

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2043214-05 Date Collected : 10/08/20 16:10

Client ID : 7-OS Date Received : 10/08/20 Sample Location : HILLBURN, NY Date Analyzed : 10/13/20 11:02

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 1,7470A Analyst : EW Lab File ID : WG1421335 Instrument ID : FIMS4 %Solids Sample Amount : 25ml : N/A Digestion Method : EPA 7470A **Date Digested** : 10/12/20

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1421047-1 Date Collected : NA Client ID : WG1421047-1BLANK Date Received : NA

Sample Location : Date Analyzed : 10/13/20 11:05

Sample Matrix **Dilution Factor** : WATER : 1 Analytical Method : 1,7470A Analyst : EW Lab File ID : WG1421335 Instrument ID : FIMS4 : N/A Sample Amount : 25ml %Solids Digestion Method : EPA 7470A **Date Digested** : 10/12/20

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200
Lab ID Date Collected : 10/08/20 11:55

Client ID : 1-OSDUP Date Received : 10/08/20 Sample Location : Date Analyzed : 10/13/20 10:46

Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 1,7470A Analyst : EW
Lab File ID : WG1421335 Instrument ID : FIMS4
Sample Amount : 25ml %Solids : N/A
Digestion Method : EPA 7470A Date Digested : 10/12/20

Wet Chemistry

Total Kjeldahl Nitrogen Analysis

Results

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF : 20010, TASK 200 **Project Number** Lab ID : L2043214-01 **Date Collected** : 10/08/20 11:55 **Date Received**

: 1-OS Client ID

: 10/08/20 Sample Location : HILLBURN, NY Date Analyzed : 10/13/20 21:01

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 121,4500NH3-H Analyst : AT Lab File ID : NH320201013-D Instrument ID : LACHAT

Sample Amount %Solids : N/A Digestion Method: **Date Digested** : 10/12/20

mg/l Results RL MDL CAS NO. **Parameter** Qualifier NONE Nitrogen, Total Kjeldahl 0.434 0.300 0.066

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF : 20010, TASK 200 **Project Number** Lab ID : L2043214-02 **Date Collected** : 10/08/20 10:45

: 10/08/20 Client ID : 2-OS **Date Received**

Sample Location : HILLBURN, NY Date Analyzed : 10/13/20 21:02 Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 121,4500NH3-H Analyst : AT

Lab File ID : NH320201013-D Instrument ID : LACHAT %Solids Sample Amount : N/A

Digestion Method: **Date Digested** : 10/12/20

mg/l Results RL MDL CAS NO. **Parameter** Qualifier NONE Nitrogen, Total Kjeldahl 1.51 0.300 0.066

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2043214-03 Date Collected : 10/08/20 14:20

Client ID : 3-OS/1 Date Received : 10/08/20 Sample Location : HILLBURN, NY Date Analyzed : 10/13/20 21:03

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 121,4500NH3-H Analyst : AT
Lab File ID : NH320201013-D Instrument ID : LACHAT

Sample Amount : %Solids : N/A
Digestion Method : Date Digested : 10/12/20

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 NONE
 Nitrogen, Total Kjeldahl
 0.766
 0.300
 0.066

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200
Lab ID Date Collected : 10/08/20 09:40

Client ID : 4-OS Date Received : 10/08/20 Sample Location : HILLBURN, NY Date Analyzed : 10/13/20 21:04

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 121.4500NH3-H Analyst : AT

Analytical Method : 121,4500NH3-H Analyst : AT
Lab File ID : NH320201013-D Instrument ID : LACHAT
Sample Amount : %Solids : N/A

Digestion Method : Date Digested : 10/12/20

CAS NO. Parameter Results RL MDL Qualifier

NONE Nitrogen, Total Kjeldahl 0.226 0.300 0.066 J

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2043214-05 Date Collected : 10/08/20 16:10

Client ID : 7-OS Date Received : 10/08/20

Sample Location : HILLBURN, NY Date Analyzed : 10/13/20 21:05 Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 121,4500NH3-H Analyst : AT
Lab File ID : NH320201013-D Instrument ID : LACHAT
Sample Amount : %Solids : N/A

Digestion Method : Date Digested : 10/12/20

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 NONE
 Nitrogen, Total Kjeldahl
 0.319
 0.300
 0.066

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1420977-1 Date Collected : NA Client ID : WG1420977-1BLANK Date Received : NA

Sample Location : Date Analyzed : 10/13/20 20:36

Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 121,4500NH3-H Analyst : AT
Lab File ID : NH320201013-D Instrument ID : LACHAT
Sample Amount : %Solids : N/A

Digestion Method : Date Digested : 10/12/20

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 NONE
 Nitrogen, Total Kjeldahl
 ND
 0.300
 0.022
 U

Client : Sterling Environmental Engineering Lab Number : L2043214

: TOWN OF RAMAPO LF : 20010, TASK 200 **Project Name Project Number** Lab ID : WG1420977-3 **Date Collected** : 10/07/20 10:30 Client ID : WG1420977-3 DUP **Date Received** : 10/08/20

Sample Location

Date Analyzed : 10/13/20 20:57 Sample Matrix **Dilution Factor** : WATER : 1

Analytical Method : 121,4500NH3-H Analyst : AT Lab File ID : NH320201013-D Instrument ID : LACHAT Sample Amount %Solids : N/A

Digestion Method: **Date Digested** : 10/12/20

mg/l Results RL MDL CAS NO. **Parameter** Qualifier NONE Nitrogen, Total Kjeldahl 0.924 0.300 0.066

Chemical Oxygen Demand Analysis

Results

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200
Lab ID Date Collected : 10/08/20 11:55

Client ID : 1-OS Date Received : 10/08/20 Sample Location : HILLBURN, NY Date Analyzed : 10/12/20 20:35

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1421150.csv Instrument ID : GENSYS10VI

CAS NO.	Parameter	Results	RL	MDL	Qualifier
000	0	40	40		
COD	Chemical Oxygen Demand	19.	10	2.7	

Client : Sterling Environmental Engineering Lab Number : L2043214

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2043214-02
 Date Collected
 : 10/08/20 10:45

 Client ID
 : 2-OS
 Date Received
 : 10/08/20

Sample Location : HILLBURN, NY Date Analyzed : 10/06/20

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1421150.csv Instrument ID : GENSYS10VI

			mg/l			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
000	0		40			
COD	Chemical Oxygen Demand	38.	10	2.7		

Client : Sterling Environmental Engineering Lab Number : L2043214

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : L2043214-03
 Date Collected
 : 10/08/20 14:20

 Client ID
 : 3-OS/1
 Date Received
 : 10/08/20

Sample Location : HILLBURN, NY Date Analyzed : 10/12/20 20:36

Sample Matrix : WATER Dilution Factor : 4
Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1421150.csv Instrument ID : GENSYS10VI

Sample Amount : %Solids : N/A
Digestion Method : Date Digested : 10/12/20

CAS NO. Parameter Results RL MDL Qualifier

COD Chemical Oxygen Demand 86. 40 11.

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200
Lab ID Date Collected : 10/08/20 09:40

Client ID : 4-OS Date Received : 10/08/20 Sample Location : HILLBURN, NY Date Analyzed : 10/12/20 20:36

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1421150.csv Instrument ID : GENSYS10VI

		mg/l				
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
COD	Chemical Oxygen Demand	2.8	10	2.7	J	

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200
Lab ID Date Collected : 10/08/20 16:10

Client ID : 7-OS Date Received : 10/08/20 Sample Location : HILLBURN, NY Date Analyzed : 10/12/20 20:36

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1421150.csv Instrument ID : GENSYS10VI

CAS NO.	Parameter	Results	RL	MDL	Qualifier
000	Observiced Occurry Demand	00	40	0.7	
COD	Chemical Oxygen Demand	26.	10	2.7	

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1421150-1 Date Collected : NA Client ID : WG1421150-1BLANK Date Received : NA

Sample Location : Date Analyzed : 10/12/20 20:32

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1421150.csv Instrument ID : GENSYS10VI

		mg/l				
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
COD	Chemical Oxygen Demand	ND	10	2.7	U	

Date Analyzed

: 10/12/20 20:37

Client : Sterling Environmental Engineering Lab Number : L2043214

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : WG1421150-4
 Date Collected
 : 10/07/20 09:15

 Client ID
 : WG1421150-4 DUP
 Date Received
 : 10/07/20

Sample Location :

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 44,410.4 Analyst : TLH

Lab File ID : WG1421150.csv Instrument ID : GENSYS10VI

		mg/l				
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
COD	Chemical Oxygen Demand	9.8	10	2.7	J	

Alkalinity Analysis

Results

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF **Project Number** : 20010, TASK 200 Lab ID : L2043214-01 **Date Collected** : 10/08/20 11:55

: 1-OS : 10/08/20 **Client ID Date Received** Sample Location : HILLBURN, NY Date Analyzed : 10/09/20 09:26

Sample Matrix : WATER **Dilution Factor** : 1 Analytical Method : 121,2320B : BR/JB

Analyst Lab File ID : WG1420159.csv Instrument ID

%Solids Sample Amount : N/A

Digestion Method: **Date Digested**

			mg CaCO3/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier	
474 04 4	Alles Berley Todal	054	0.00			
471-34-1	Alkalinity, Total	351.	2.00	NA		

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2043214-02 Date Collected : 10/08/20 10:45

Client ID : 2-OS Date Received : 10/08/20

Sample Location : HILLBURN, NY Date Analyzed : 10/09/20 09:26 Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 121,2320B Analyst : BR/JB

Lab File ID : WG1420159.csv Instrument ID : Sample Amount : %Solids : N/A

Digestion Method : Date Digested :

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 471-34-1
 Alkalinity, Total
 296.
 2.00
 NA

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF : 20010, TASK 200 **Project Number** Lab ID : L2043214-03 **Date Collected** : 10/08/20 14:20

: 3-OS/1 : 10/08/20 Client ID **Date Received** Sample Location : HILLBURN, NY Date Analyzed : 10/09/20 09:26

Sample Matrix : WATER **Dilution Factor** : 1

Analytical Method : 121,2320B Analyst : BR/JB Lab File ID : WG1420159.csv Instrument ID

%Solids Sample Amount : N/A

Digestion Method: **Date Digested**

		mg CaCO3/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier
471-34-1	Alkalinity, Total	249.	2.00	NA	

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2043214-04 Date Collected : 10/08/20 09:40

Client ID : 4-OS Date Received : 10/08/20 Sample Location : HILLBURN, NY Date Analyzed : 10/09/20 09:26

Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 121,2320B Analyst : BR/JB

Lab File ID : WG1420159.csv Instrument ID : Sample Amount : %Solids : N/A

Digestion Method : Date Digested :

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 471-34-1
 Alkalinity, Total
 123.
 2.00
 NA

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200 Lab ID : L2043214-05 Date Collected : 10/08/20 16:10

Client ID : 7-OS Date Received : 10/08/20 Sample Location : HILLBURN, NY Date Analyzed : 10/09/20 0

Sample Location : HILLBURN, NY Date Analyzed : 10/09/20 09:26 Sample Matrix : WATER Dilution Factor : 1

Analytical Method : 121,2320B Analyst : BR/JB

Lab File ID : WG1420159.csv Instrument ID : Sample Amount : %Solids : N/A

Digestion Method : Date Digested :

 CAS NO.
 Parameter
 Results
 RL
 MDL
 Qualifier

 471-34-1
 Alkalinity, Total
 120.
 2.00
 NA

Client : Sterling Environmental Engineering Lab Number : L2043214

Project Name : TOWN OF RAMAPO LF Project Number : 20010, TASK 200

Lab ID : WG1420159-1 Date Collected : NA Client ID : WG1420159-1BLANK Date Received : NA

Sample Location : Date Analyzed : 10/09/20 09:26

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 121,2320B Analyst : BR/JB

Lab File ID : WG1420159.csv Instrument ID :

Sample Amount : %Solids : N/A

Digestion Method : Date Digested

		m	mg CaCO3/L			
CAS NO.	Parameter	Results	RL MDL	Qualifier		
474 04 4	Alles limites Tatal	ND (
471-34-1	Alkalinity, Total	ND 2	2.00 NA	U		

Date Analyzed

: 10/09/20 09:26

Client : Sterling Environmental Engineering Lab Number : L2043214

 Project Name
 : TOWN OF RAMAPO LF
 Project Number
 : 20010, TASK 200

 Lab ID
 : WG1420159-3
 Date Collected
 : 10/08/20 10:00

 Client ID
 : WG1420159-3 DUP
 Date Received
 : 10/08/20

Sample Location :

Sample Matrix : WATER Dilution Factor : 1
Analytical Method : 121,2320B Analyst : BR/JBL

Analytical Method : 121,2320B Analyst : BR/JE
Lab File ID : WG1420159.csv Instrument ID :

Sample Amount : %Solids : N/A

Digestion Method : Date Digested

		mg CaCO3/L			
CAS NO.	Parameter	Results	RL	MDL	Qualifier
471-34-1	Alkalinity, Total	119.	2.00	NA	

APPENDIX E

LABORATORY ANALYTICAL RESULTS - LEACHATE / GROUNDWATER

ROCKLAND COUNTY SEWER DISTRICT #1

4 Route 340 Orangeburg, New York 10962 Phone: (845) 365-6111 Fax: (845) 365-6686 RCSD@co.rockland.ny.us

George Hoehmann

Chairman

Dianne T. Philipps, P.E.

Executive Director

October 28, 2019

Michael Sadowski, PE Deputy Director Town of Ramapo, DPW Pioneer Avenue Tallman, N.Y. 10982 TOWN OF RAMAPO

OCT 31 2019

DEPARTMENT OF PUBLIÇ WORKS

Re:

Wastewater Analysis Report/s - 2019

Dear Mr. Sadowski:

Enclosed is the analysis report/s for the sample/s collected from your facility on September 18, 2019. The sampling is conducted to comply with the requirements of the Wastewater Discharge Permit and the Pretreatment Program. The charges for such services as deemed applicable by the District will be billed to you in the early part of 2020.

Should you have any questions or need additional information please call this office.

Very truly yours

Joan Roth

Compliance Administrator

Encl

CC:

D. T. Philipps, PE

M.R. Saber, PE

File:

Ramapo Landfill (P) - 2019

Reader

ROCKLAND COUNTY SEWER DISTRICT NO. 1

4 Route 340 Orangeburg, N.Y. 10962

PRETREATMENT PROGRAM - SAMPLE ANALYSIS REPORT

REPORT FOR:

RAMAPO LANDFILL, HILBURN, NY

LOCATION SAMPLED:

Manhole Immediately Upstream of Wetwell

MATRIX: Water

DATE SAMPLED: 09/18/19

Sample ID: IS-190918-RLF

r-				
PARAMETER	RESULTS	DATE OF ANALYSIS	ANALYST INITIALS	METHOD AS PER 40CFR
pН	6.9	09/18/19	GA	SM 4500-H-B
BIOCHEMICAL OXYGEN DEMAND (mg/L)	1	09/24/19	GA	SM 5210 B
CHEMCAL OXYGEN DEMAND (mg/L)	41	09/19/19	SH	SM 5220 D
TOTAL SUSPENDED SOLIDS (mg/L)	<1.0	09/19/19	SH	SM 2540 D
Other Analyses	See Attached			

I certify under penalty of law that the documents and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

October 28, 2019

Linda Hoffman

Laboratory Director

NYSDOH ID No. 10447

No. of pages in this report:

<u>11</u>

ROCKLAND COUNTY SEWER DISTRICT #1 4 RTE 340 ORANGEBURG, NY 19962

CEAIN OF CUSTODY DOCUMENT

NOTE. IF "NO" ICE IS CIRCLED OR SAMPLES ARE NOT COLLECTED & PRESENTED IN PROPER CONTAINERS, NOTIFY LAB DIRECTOR INAMEDIATELY. RE-SAMPLE UNLESS INSTRUCTED OTHERWISE BY LAB DIRECTOR AND RECORD. SUCH IN "COMMENTS" SPACE BELOW. MINOGNA W. HOAM × DHENOF. 4.03 × CAVAIDE (AFOH) LOLYT EHEE × Boffer 7 Reading: __ × - Expired: 8/14/2020) 96% ANALYST: 110 BA 200 BA TIME TIME × NXV (H₂SO₃) × VINOMIVV × × STORIOTH. (FONTO) METALS BOD, COD, TSS × (Permit No. 9 Metals (16) to be analyzed are B, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Hg, Mo, Ni, Se, Ag, Tl, Zn × SEMI-ANNUAL PLASTIC TOTAL # VOLUME
OR OF NEEDED
GLASS BOTTLES mL 1000 1000 1000 1000 1000 1000 250 500 200 200 200 200 250 4 TIME: 1st Q 55 HAV Said FOOD HY Buffer 10 Reading: 1000 Y Singe: 9 -~ (1 ù Glass COMP. PLASTIC COMP. PLASTIC PLASTIC COMP. PLASTIC PLASTIC PLASTIC PLASTIC PLASTIC AMBER AMBER AMBER Glass Amber Glass DATE GRAB COMP. COMP. COMP. COMP. GRAB GRAB GRAB GRAB GRAB GRAB TYPE RAMAPO LANDFILL, Hillburn If a violation; the sample collected should be brought back to the Lab for pH check. 6.80 21.6 CC) *****NOTE: If the collected sample is not within the range of 5.0-11.0 SU. Minhole immediately upstream of wetwell near road SAMPLE INFORMATION -RLF 띥 SAMPLES IN PROPER CONTAINERS? Circle YES 97 NO PH CALIERATION DATE: 18 4/7/Phot 4/18/ ICE IN SAMPLE COOLER? Circle (WES) or NO SAMPLER'S SIGNATURE ANNESS A SAMPLE/S RECEIVED BY: 199 Temp. 0C Done By. Notify the Discharger immediately. SAMPLE/S RELINQUISHED BY: 11. [[Mph 10:3/4 TIME Name of Person Notified: SAMPLE IB NO. IS-LOCATION SAMPLED: FACILITY SAMPLED: 9/17/19 9/18/19 COMMENTS: DATE

COMPOSITE

START END

VOC5, EPA 624,

×

Revised: 8/30/2019

Sanuad; 12/7/2000

HWMy DesembativePiCos FormiveRamapa Landfill COCartaclpac

×

CERTIFICATION

Client Name: Rockland County Sewer District #1	Date of Report:	10/15/19
4 Route 340	AAT Project Numbers	036499
Orangeburg NV 10962	Client Project Name:	RC190918
	Sampled by:	Rockland County Sewer District #L
	Matrix:	Non-Potable Water
	Date Received:	09/18/19

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the systems, or those persons directly responsible for gathering the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George Stancu

Technical Director

Samples Summary

Client Name: Rockland County Sewer District #1	Date of Reports	10/15/19
4 Route 340	AAT Project Number:	036499
Orangeburg, NY 10962	Client Project Name:	RC190918
	Sampled by:	Rockland County Sewer District #1
	Matrix	Non-Potable Water
	Date Received:	09/18/19

Paranater	<u>Lab</u> Sample ID	<u>Cliënt</u> Sample ID	Sampling Method	Sampling <u>Date/Time</u>
Metals	WW-96082-1	TS-190918+RLF	Composite	09/18/19 11:11-10:31
Chloride (CI)	WW-96082-2	1.5-190916-RLF	Composite	09/18/19 10:11-10:31
Tatal Dissolved Salids (TDS)	WW-96082-3	15-190918-RLF	Composite	09/18/19 11:11-10:31
Ammonto os N	WW-96082-4	T5-190 918-R LF	Composite	09/18/19 11:11-10:31
Kjeldahl Nitrogen	WW-96082-5	IS-190918-RLF	Composite	09/18/19 11:11-10:31
Phosphorus Total	WW-96082-6	15-190918-RLP	Composite	09/18/19 11:11-10:31
Cyanide, Amenabla	ww-96082-7	15-190918-RLP	Grab	09/18/19
Cyanide Total	WW-96082-7	IS-190918-RLF	Grab	09/18/19
Formaldehyde	WW-96082-8	IS-190918-RLF	E rab	09/18/19
Semivolatile Organic Compounds (SVOC)	WW-96082-9	IS-190918-RLF	S rab	G9/18/19
Pesticides/PCBs	WW-9608Z-10	TS-190918-RLP	Grab	69/18/19
Phenols	WW-96082-11	15-190918-RLF	G reb	09/18/19
Oil & Grease	WW-96082-12	15-190918-RLF	Grab	09/18/19
Total Petroleum Hydrocarbons (TPH)	WW-96082-12	TS-190918-BLF	. Grab	09/18/19
Volatile Organic Compounds (VOC)		IS-190918-RUF	Ĝrab	09/18/19

Reviewed and approved by:

George Stancu Technical Director

Page 3 of 9

Client Name:	Rockland County Sewer District #1	Date of Reports	16/15/19
	4 Route 340	AAT Project Number:	036499
	Orangeburg, NY 10962	Client Project Name:	RC190918
		Sampled by:	Rockland County Sewer District #1
		Sampling Date:	09/18/19:
	TO THE RESIDENCE OF THE PROPERTY OF THE PROPER	Motrixa	Non-Potable Water
		Date Received:	09/18/19

Parameter	<u>Lab</u> Sample ID	Client Sample ID	Result	Unit	RLS	Date of Analysis	<u>Analyst</u>	Method
Metals	WW-96082-1	TS-190918-RLF	See Table #5	mg/L		<u> </u>		i de la companya de l
Chloride (Cf.)*	MM-36085-5	IS-190918-RLF	311	mg/L	15.0*	09/23/19		SM 19 4590CLE-11
Total Dissolved Solids (TDS)*	WW-96082-3	15-190918-PLF	890	mg/L	10*	09/23/19	<u> </u>	SM 2540C-11
Ammonio as N [†]	WW-96082-4	15-190918-RLF	0.06	mg/L	0,05*	09/25/19		EPA 3501
Kjeldohl Nitrogen*	WW-96082-5	15-190918-RLF	15.0	mg/L	0.10*	09/24/19	*	EPA 351.1
Phosphorus Total*	WW-96082-6	15-190918-RLF	0.351	mg/L	0.010*	09/25/19	*	SM 4500PE-J1
Cyanide, Amenable**	WW-96082-7	15-190918-RLF	0.012	mg/L	0.0050**	09/30/19	100	SM 4500CN 6-2011
Total Cyonide**	WW-96082-7	15-190918-RLF	0.013	nig/L	0.0020**	09/27/19	**	KELADA-01
Formsidehyde*	WW-96082-8	L5-190918-RLF	See Attached Report	ug/L			•	
Semivolatile Organic Compounds (SVOC)	WW-96082-9	15-190918-ALF	See Yoble #2 & 3	ug/L		*	Ø. Stancu	EPA 625
Pesticides/PCBs	WW-9608Z-10	15-190918-RLF	See Table #4	ug/L			6. Stancu	EPA 608
Phenola*	WW-96082-11	15-1909(8-RLP	ND	mg/L	0.015*	09/23/19	*	EPA:420.4
Oll & Gregse**	WW-96082-12	15-190918-RLF	1/0	rig/L	4(0**	09/25/19	-	EPA 1664B
Total Petroleum Hydrogarbons (TPH)*	WW-96082-12	15-190918-RLF	ND	mg/L	4.0**	09/25/19	**	EPA 1664B
Valatile Organic Compounds (VOC)	WW-96082-13	15-190918-RLF	See Table #1	ug/L	*	.*	G. Stancu	EPA 624

^{*}Analysis was performed by Phoenix Environmental Laboratories Inc., 587 East Middle Turnpike, P.O. Box 370, Manchester, CT 06040.

Reviewed and approved by:

George Stancu

Technical Director

Page 4 of 9

NY Lab Registration #11301
*RL/PQL = Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation)
*ND = Not Detected, BRL = Below Reporting Limit

^{**}Analysis was performed ALS Environmental, 301 Fulling Mill Road, Middletown, PA 17057, NY Lab Certification No. NY 11759

^{**}RDL - Reporting Detection Limit

^{**}ND - Not Detected - indicates that the analyte was Not Detected at the RDL

L= The recovery of the Laboratory Control Sample (LCS) associated to this analyte was outside of the established control limits

Table 1: VOLATILE ORGANICS DATA SHEET Method: EPA 624

Client Name:	Rockland County Sewer District #1	Date/Time Sampled:	09/18/19
Client Sample ID:	IS-190918-RLF	Date Analyzed:	10/01/19
Lab Sample ID.	WW-96082-13	Preparation Method:	EPA 624
AAT Project No.:	036499	Dilution Factor:	26.77.70

Compound Name	LOD	Result	Compound Name	LOD	Result
	(uo/L)	(ug/L)		(ug/L)	(uq/L)
Benzene	0.41	ND	1,1-dichloroethene	0,88	ND
Bromodichloramethane	0.25	ND	trans-1,2-dichloraethene	0.81	ND
Bromoform	0.57	ND	1,2-Dichloropropone	0.42	ND
Bromomethane	0,55	ND	cis-1,3-dichloropropene	0,59	ND :
Carbon tetrachloride	0,67	ND	trans-1,3-dichloropropene	0,53	NO
Chlorobenzene	0.35	ND	Dichlorafluoramethane	0.61	ND
Chloroethane	0.39	NO	Ethylbenzene	0.28	ND
2-chloraethylvinyl ether	0.26	ND	Methylene chloride	0.46	ND
Chloroform	0.34	4.41 J	1,1,2,2-Tetrachloraethane	0,48	ND
Chloromethane	0.68	ND	Tetrachloraethene	0.64	ND
Dibromochloromethane	0,59	ND	Tollyene	0,53	ND
1,2-dichlorobenzene	0.42	ND	1,1,1-trichloroethane	0.47	ND
1,3-dichlorobenzene	0.41	ND	1,1,2-trichloroethane	0,64	ND
1,4 dich orobenzene	0.42	ND	Trichloroethene	0.33	ND
1,1-dichloroethane	0,51	ND	Trichlorofluoromethane	0,47	ND
1.2-dichloroethane	0.32	ND	Vinyl chloride	0,50	ND

LOD = Limit of Detection

A result of "ND" indicates that the analyte was Not Detected at the Limit of Detection

"J" indicates a value that is greater than LOD but less than the lowest calibration standard and the result is an estimated value

"D" = Diluted: "B" = Compound also found in the Lab Blank

Reviewed and approved by:

George Stancu **Technical Director**

Page 5 of 9

Table 2: Semivolatile Organic Compounds (Base Neutral Extractables) Method: EPA 625

Client Name:	Rockland County Sewer District #1	Date/Time Sampled:	09/16/19
Client Sample ID:	TS-190918-RLF	Date Extracted:	09/24/19
Lab Sample ID:	WW-96082-9	Extraction Method:	EPA 625
AAT Project No.:	036499	Date Analyzed:	10/09/19
Sample Size:	1 liter	pHI .	A1
Motrix:	Non-Potable Water	Dilution Factor:	

Compound Name	LOD	Result	Compound Name	LOD	Resulf
	(ug/L)	(J) (D)		(ug/L)	(us/L)
Acenaphthere	1,18	NO	Diethyiphthalate	0.91	0.93 J
Acenophthylens	1.07	ND	Dimethylphthalate	1,20	ND
Anthracene _	1,44	ND	2,4-Dinitrotoluene	0.88	ND
Benzidine	1.33	ND	Z,6-Dinitrotoluene	133	ND
Benzo(a)anthracene	0.97	ND	Di-n-octylphthalate	0,77	ND
Benzo[b]Fluoranthene	1.28	I ND	Fluoranthene	0.75	ND
Benzo[d]pyrene	1.24	MD	Fluorene	1,17	ND
Benzo(a,h,I)perylene	0.98	ND	Hexachlarobenzene	1.04	ND
Benzo[k]fluoranthene	1.23	ND .	Hexachlorobutadiene	1,16	ND
Bis[2-chloroethoxy]methane	1,42	ND	Hexachlorocyclopentadiene	1,94	ND
Bis[Z-chloroethyl]ether	1.25	ND	Hexachlarpethane	0.85	Nb
Bis[2-chloroisopropy[jether	0.97	ND	Indenol[1,2,3-ed]pyrene	0.80	ND
Bis[2-ethylhexyl]phtholate	0.29	1.86 J	Isopharene	1.43	ND
4-Bramophenyl-phenylether	1.05	NO	N-Nitrosodi-n-propylamine	1.23	No
Butylbenzylphthalate	0.85	ND	N-Nitrosodimethylamine	131	ND
2-chloronophthalene	1.30	ND I	N-Nitrosodiphenylomine	121	ND
4-Chlorophenyl-phenylether	0.96	ND I	Naphthalene	0.95	NID
Chrysene	1.25	ND	Nitrobenzere	1.10	NO
Di-n-Butylphthalate	1.01	1.38 J	Phananthrene	1.31	ND
3,3'-Dichlorobenzidine	1.14	NO	By enc.	1.13	ND
Dibenzola hjanthracene	0.84	ND	1,2,4-Trichlorobenzene	1.21	ND

LOD = Limit of Detection

A result of "ND" indicates that the analyte was Not Detected at the Limit of Detection

"J" indicates a value that is greater than LOD but less than the lowest calibration standard and the result is an estimated value "D" = Diluted; "B" = Compound also found in the Lab Blank

Reviewed and approved by:

George Francu

Technical Director

Page 6 of 9

Table 3: Semivolatile Organic Compounds (Acid Extractables)
Method: EPA 625

Client Name:	Rockland County Sewer District #1	Date/Time Sampled:	09/18/19
Client Sample ID:	TS-190918-RLF	Date Extracted:	09/24/19
Lab Sample ID.:	WW-96082-9	Extraction Method:	EPA 625
AAT Project No:	036499	Date Analyzed:	10/09/19
Sample Size:	I littet	pH	
Matrix:	Non-Potable Water	Dilution Factors	

Compound Name	LOD (ug/L)	Result (uq/l)	Compound Name	LOD (ug/l)	Result (ug/l)
4-Chloro-3-Methylphenol	1.52	NO.	2-Nitrophenol	0.94	ND
2-Chlorophenol	1.01	ND	4-Nitrophenol	1.82	No
2,4-Dichlorophenol	1.50	ND	Pentachlorophenol	1,87	ND ·
2,4-Dimethylphenal	1.31	NO	Phenol	1.39	ND
4,6-Dinitro-2-methylphenol	0.83	ND	2,4,6-Trichlorophenol	1,62	ND
2,4-Dinitrophenal	1,74	ND			

LOD = Limit of Detection

A result of "ND" indicates that the analyte was Not Detected at the Limit of Detection

"J" indicates a value that is greater than LOD but less than the lowest calibration standard and the result is an estimated value "B" = Compound also found in the Lob Blank

Reviewed and approved by:

George Stancu

Technical Director

Table 4: Pesticides and PCB's Method: EPA 608

		•	
Client Name:	Rockland County Sewer District #1	Date/Time Sampled	09/18/19
Client Sample ID:	TS-190918-RLF	Date Extracted:	69/24/19
Lab Sample ID.:	WW-96082-10	Extraction Method:	EPA 608
AAT Project No.:	036499	Date Analyzed:	10/11/19
Sample Size:	liter	pH ² :	5,0-9,0
Matrix:	Nan-Potable Water	Dilution Factor:	1

Compound Name	LOD	Result	Compound Name	LOD	Result
	(uq/L)	(ug/L)		(úg/Ľ)	(ug/L)
Aldrin	0.20	ND	Endrin	0,10	NB
Alpha-BHC	0.10	ND	Endrin aldehyde	0.20	NĐ
Beta-BHC	0.10	ND	Heptachlor	0.19	, ND
Gamma-BHC (Lindane)	0.10	ND	Heptachlor Epoxide	0 10	ND .
Delta-BHC	0.20	ND	Toxaphene	0.72	ND
Chlordone	0.72	ND	Methoxychlor	0.20	ND
4, 4 DDD	0.20	ND	PCB-1016	0.40	ND
4.4-DOE	0.10	ND	PCB-1221	0.88	ND
4,4-DDT	0.30	ND	PCB-1232	0.88	ND
Dieldrin	0.10	NO	PCB-1242	0,81	ND
Alpha-Endosulfan	0.10	ND .	PCB-1248	0.79	ND
Beta-Endosulfan	0.10	ND	PCB-1254	0.88	ND
Endosulfan sulfate	0.20	NO	PCB-1260	0.20	ND

LOD = Limit of Detection

A result of "ND" indicates that the analyte was Not Detected at the Limit of Detection
"I" indicates a value that is greater than LOD but less than the lowest calibration standard and the result is an estimated value

"D" = Diluted: "B" = Compound also found in the Lab Blank

Reviewed and approved by:

George Stancu Technical Director

Page 8 of 9

ANALYTICAL REPORT NYS DOH LABORATORY ID NO: 11713

Table 5: METALS

Parameter	<u>Lab</u> Somple 10	Client Sample ID	Result	Unit	RLS	Date of Analysis	Analyzt	Method
Antimony (5b)*	WW-96082-1	15-190918-RLF	ND	mg/l	0:003*	09/25/19	A.	EPA 200.7
Ársenic (As)*	WW-96082-1	IS-190918-RLF	ND	mg/l	0.002*	09/25/19		EPA 200.7
Beryllium (Be)*	WW-96082-1	I\$-190918-RLF	ND	mg/l	0.001*	09/25/19	-	EPA 200.7
Boron (B)*	WW-96082+1	TS-190918-RLF	0.12	mg/l	0.030*	09/25/19	1.4	EPA 200.7
Cadmium (Cd)	WW-96082-1	IS-190918-RLF	NID	mg/ **	0,001	10/08/19	G. Stancu	SM 3111 B
Chramium (Cr)	WW-96082-1	TS-190918-RLF	1,10	mg/l**	0.011	09/24/19	G. Stancu	SM 31LL B
Gopper (Cu)	WW-96082-1	I5-190918-RLF	ND	mg/l	0.010	09/24/19	6. Stancu	SM 3111 B
Lead (Pb)	WW-96082-1	T5-190918-RLF	NID	mg/l ⁴ *	0.0t6	09/26/19	G, Stancu	SM 3111 B
Manganese (Mn)	WW-96082-1	TS-190918-RLF	0.080	mg/1	0.025	10/01/19	G. Stance	5M 3111 B
Mercury (Hg)	WW-96082-1	T5-190918-RLF	Nb	mg/l	0,001	10/04/19	G. Stancu	EPA 245.1
Tatal Mercury Digestion	MM-86085-1	IS-190918-RLF	Completed	•		10/04/19	6. Stancu	EPA 245.1
Molybdenum (Ma)*	WW-96082-1	15-190918-RLF	ND	mg/l	0.003*	09/25/19	_{1,1} (24)	EPA 200,7
Nickel (Ni)	WW-96082-1	ES-190918-RLF	0,087	mg/l**	0,010	09/25/19	6. Stancu	SM 3111 B
Selenium (Se)*	WW-96082-1	TS-190918-RLF	NO.	mg/l	0.005*	09/25/19	-	EPA 200.7
Silver (Ag)	WW-96082-1	IS-190918-RLF	ND	mg/l	0.010	10/08/19	6. Stancu	5M 3111 B
Thallium (FI)	WW-96082-1	IS-190918-RLF	ND	mg/I***	0.033	10/08/19	6. Stancu	SM 3111 B
Zine (Zn)	WW-96082-1	15-190918-PLF	NO.	mg/l	0.010	09/24/19	6. Stoneu	5M 3111 B
Total Metals Digestion	WW-96082-1	15-190918-RLF	Completed			09/23/19	6. Stancu	EPA 200.2

RLs = Laboratory Reporting/Quantitation Limit

When "*" is present immediately following the "RLs" units, the "RLs" is the Method Detection Limit (MDL).

A result of "ND" indicates the concentration of the analyte tested was either not detected or below the RLs

"B" indicates a value that is than MDL but: than laboratory quantitation limit

Reviewed and approved by:

George Stancy **Technical Director**

Page 9 of 9

^{*}Analyses were performed by Phoenix Environmental Laboratories Inc., 587 East Middle Turnpike, P.O. Box 370, Manchester, CT 06040. NY Lab Registration #11301

^{*}RL/PQL = Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation)

^{*}ND = Not Detected, BRL = Below Reporting Limit RDL

^{*}Total Metals Digestion was completed on 09/23/19

CHAIN OF CUSTUBY

PAGE OF

37 Ramland Rosd Orangeburg, NY 10962 Tel: 201-404-7461 Fax: 845-818-3593 NELAP CERTIFIED, NY LABID: 11713, NJDEP LABID, NY 100

> Advanced Analytical Technologies Inc

Ammonia, TXW, Total phosphoreka Ca. Pb.Mn. 45, Mo. W. S. 14, T1, 2 m+25(1) B, Sb, A, B, Q, C. ۽ (ھ Formal de Ayde, Smi voletila, 3 Phenols, Oùt-Groes, Try FREED ANALYSIS CHANIS - TACO + Frae FOR LABORATORY (USE OM) PRESERVATION ANAL YSIS REQUESTED SPECIAL INSTRUCTIONS ooler Temp, upon *** Pest Caces SAMPLE TEMP Rec'd on too? AMPLE DE Chlorides, TAS の発 Unpreserved Ascorbio/HCI Vials NaOHIZn Acetale # 7 F. Na S.O. Resk S, ZS DATE DATE DATE яантс N. A. C. (183) OST MATRIX COURS DIN DRINGING WATER, OIN: GROUND MATER, WIN: NON POTABLE WATER, SIN: SOIL, SL. SLUDGE, SOIL NON SOIL SOLID, O. OTHER *094 n N i)h Copar ON NONE V N 10131 3 0) **3**60 U 44 80100 /B A 140 RC I GOD IS 3 > X × × * Χ£ Comp > بد. ٠. RECEIVED BY (PAMIL) RECEIVED BY Print igi igi ITHE BUSH Clant Furchase Order No: MARK Signature: EG. Clear Project Number: Munt Project Name: roject Mgr. Name: COLLECTION Send Invalce to: AT Project No. REPORT FORMATIC, I RESULTS ONLY [] IN REDUCED [] RESCTRONIC DATA DELIVERABLES TURNAROUND TIME, A I STANDARD 2 WEEKS [] RUSH, LABORATORY APPROVAL REQUIRED Start 6//8//6 Ò 4 Routs 340 Omensebury NY 10962 Rockland County Swer District #1 CATE DATE TOWER. Wat Tribator LASCAPLE Contact Lings Approx 1200-1005-348 - 305-1002L R DO LIFFERE 17 140 - 8160 67 - 21 anuer's Signeture. Sampler's MemerAffillation; (Print) NE ROMED BY PAIN TELINGUISHED BY (Print)

White - Original

Yallow - Laboratory Copy

Pink - Client Copy

ROCKLAND COUNTY SEWER DISTRICT NO. 1

4 Route 340

Orangeburg, New York 10962 Phone: (845) 365-6111 Fax: (845) 365-6686 RCSD@co.rockland.ny.us

George Hoehmann

Chairman

Michael R. Saber, P.E.

Assistant Director/Acting Executive Director

March 30, 2020

Michael Sadowski, PE Deputy Director Town of Ramapo, DPW Pioneer Avenue Tallman, N.Y. 10982

TOWN OF RAMAPO

APR 1 6 2020

DEPARTMENT OF PUBLIC WORKS

Re:

Wastewater Analysis Report/s - 2020

Dear Mr. Sadowski:

Enclosed is the analysis report/s for the sample/s collected from your facility on February 19, 2020. The sampling is conducted to comply with the requirements of the Wastewater Discharge Permit and the Pretreatment Program. The charges for such services as deemed applicable by the District will be billed to you in the early part of 2021.

Should you have any questions or need additional information please call this office.

Very truly yours

Joan Roth

Compliance Administrator

Encl

dear &

CC:

M.R. Saber, PE

File:

Ramapo Landfill (P) - 2020

Reader

ROCKLAND COUNTY SEWER DISTRICT NO. 1 4 Route 340

Orangeburg, N.Y. 10962

PRETREATMENT PROGRAM - SAMPLE ANALYSIS REPORT

REPORT FOR:

RAMAPO LANDFILL, HILBURN, NY

LOCATION SAMPLED:

Manhole Immediately Upstream of Wetwell

MATRIX: Water

DATE SAMPLED: 2/19/2020

Sample ID: IS-200219-RLF

PARAMETER	RESULTS	DATE OF ANALYSIS	ANALYST INITIALS	METHOD AS PER 40CFR
рН	6.45	02/19/2020	SH	SM 4500-H-B
BIOCHEMICAL OXYGEN DEMAND (mg/L)	1.5	02/25/2020	SH	SM 5210 B
CHEMCAL OXYGEN DEMAND (mg/L)	32	02/25/2020	ВС	SM 5220 D
TOTAL SUSPENDED SOLIDS (mg/L)	<1.0	02/20/2020	ВС	SM 2540 D
Other Analyses	See Attached			·

I certify under penalty of law that the documents and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

March 20, 2020

Linda Hoffman

Laboratory Director

NYSDOH ID No. 10447

No. of pages in this report:

<u>13</u>

SAMPLES RECEIVED BY: HANGE AND MANAGEMENT	SAMPLES RELINQUISHED BY: SUMMING MANUAL STATES	NOTE. IF "NO" ICE IS CIRCLED OR SAMPLES ARENOTS COLLECTED & PRESERVED IN PROPERCONTAINERS, NOTHY LAB DIRECTOR MAKEDIATELY. RE-SAMPLE UNLESS INSTRUCTED OTHERWISE BY LAB DIRECTOR AND RECORD SUCH IN "COMMENTS" SPACE BELOW.	SAMPLES IN PROPER CONTAINERS? Craik YES or NO	ICE IN SAMPLE COOLER? Circle YIS or NO												•	2/11/20	*	AT I CANDES	Notify the Discharger immediately, Name of Person Notified Name of Person Notified If a violation; the sample collected should be brought back to the Lab for pH check. PH	range of 5 0 - 1	pH CALIBRATION DATE: 1st $\frac{\mathcal{L}[i \ 8] \ \mathcal{D}}{\mathcal{D}_{and}} \frac{\mathcal{L}[i \ 9] \ \mathcal{D}}{\mathcal{L}[i \ 9]} \frac{\mathcal{L}[i \ 9]}{\mathcal{L}[i \ 9]} \frac{\mathcal{L}[i \ 9]}{\mathcal{L}$	D FORMA (YY - MM - D)	EXCILITY SAMPLED: RAMAPO LANDFILL, Hillburn LOCATION SAMPLED: Manhold immediately unitered of warvest near made	
DATE:	DATE:	RVED IN P	GRAB	GRAB	GRAB	GRAB	GRAB	GRAB	GRAB	COMP.	COMP.	COMP.	COMP.	COMP.	COMP.	COMP.		TYPE		*		TIME: 1st 7'00'A 2			
في	7	ROPERICO CORD SUC	Glass Amber		Glass Vial	AMBER	AMBER	AMBER	PLASTIC	PLASTIC	PLASTIC	PLASTIC	PLASTIC	PLASTIC	PLASTIC	PLASTIC		OR GLASS	PLASTI			05/20	1		CHAIN
-2	101)	VTAINERS, H IN "COM	4	ĸ	2	<u> </u>	1.	, i	1	C H	CI III	C 1,		C ·1	2 1	1		OF BOTTLES				2nd 7:00A Stope:		(Permit No.	CHAIN OF CUSTODY DOCUMENT
12020	120	NOTIFY LA	1000	1000	40	250	1000	1000	100	500	500	. 500	500	500	250	1000		NEEDED ES	# VOLUN			80		(Permit No. 9	орд удс
20	`	B DIREC				·										×		8	B	BOD, COD, TSS				t No.	DOCUMEN
		TORA										·			X			<u>.</u>		MET		ANALY		9 -	₽,
ν,											·			×						, wit(U1)		ANALYST: 1st		100 m	
		TELLE											×		·					CHLORIDES (unpreserved		4		Expired:	
•		RE SA										×						-		AMMONIA (H,SO ₄)]	2nd			
Ħ		HIEN	<u> </u>								×				-			0.	+	TKN (H2SOd)		1		/14	
EME	TIME	OME.	Ŀ							×										T.Phosphorons (Hisos)	4]			8/14/2020	÷
		SMISS	i						×			.]				1				TOTAL PR]],	Sit Buffer 1 Reading:		j, Š	
·		TRUC						. M ;						1					_	TOTAL, FREE CYANIDE (NaOH)	111				
		0 A		 			×					\dashv		\dashv	\dashv	\dashv			+	Formaldeliyde (none)	7	7.00			
3	0	изен					_		_	_				4		<u> </u>			_	PHENOL (H ₂ SO ₄)	1 '		 I		
10:30 Am	0:30 A	W.S.E.B	<u> </u>		\dashv	×					_	.		\Box		·····		<u>.</u>	_	Oll and Grease, TPH	$\downarrow \mid$		l		
<u>(</u> 5)	40	Bril			×				_	_		_		4) 		VOCS, EPA 624	$\downarrow \mid$				
\$	T	CHAILC:		×						,										7(1) 4-					
_,	1000	CTOR A	X		Ī							Ī		T	$\overline{}$				\int	PCB's a	,				
'	000000 0000000000000000000000000000000	W.	!	I	. I			1		!			!		. !					(unpreserved)			-		

Samples Summary

Client Name: Rockland County Sewer District #1	Date of Report:	03/16/20
4 Route 340	AAT Project Number:	037018
Orangeburg, NY 10962	Client Project Name:	RC200219
	Sampled by:	Rockland County Sewer District #1
	Matrix:	Non-Potable Water
	Date/Time Received:	02/19/20 15:22

Parameter	<u>Lab</u> Sample ID	Glient Sample ID	Sampling Method	Sampling Date/Time
Metals	WW-98285-1	15-200219-RLF	Composite	02/19/20 11:10-08:36
Chloride (Cl')	WW-98285-2	IS-200219-RLF	Composite	02/19/20 11:10-08:36
Total Dissolved Solids (TDS)	WW-98285-3	15-200219-RLF	Composite	02/19/20 11:10-08:36
Ammonia as N	WW-98285-4	IS-200219-RLF	Composite	02/19/20 11:10-08:36
Kjeldahl Nitrogen	WW-98285-5	IS-200219-RLF	Composite	02/19/20 11:10-08:36
Phosphorus Total	WW-98285-6	T5-200219-RLF	Composite	02/19/20 11:10-08:36
Cyanide, Amenable	WW-98285-7	I5-200219-RLF	Grab	02/19/20
Cyanide, Total	WW-98285-7	I5-200219-RLF	- Grab	02/19/20
Formaldehyde	WW-98285-8	IS-200219-RLF	Grab	02/19/20
Semivolatile Organic Compounds (SVOC)	WW-98285-9	TS-200219-RLF	Grab	02/19/20
Pesticides/PCBs	WW-98285-10	IS-200219-RLF	Grab	02/19/20
Phenols	WW-98285-11	15-200219-RLF	Grab	02/19/20
Oil & Grease	WW-98285-12	IS-200219-RLF	Grab	02/19/20
Total Petroleum Hydrocarbons (TPH)	WW-98285-12	IS-200219-RLF	Grab	02/19/20
Volatile Organic Compounds (VOC)	WW-98285-13	IS-200219-RLF	Grab	02/19/20

Reviewed and approved by:

Slava Kogan, Designee for

George Stancu **Technical Director**

37 Ramland Road, Orangeburg, New York 10962 Tel: 800-259-9532, 201-484-7461 Fax: 845-818-3593 E-mail: aat@aatec.com

ANALYTICAL REPORT

NYS DOH LABORATORY ID NO: 11713

Client Name: Rockland Cour	ity Sewer District #1	Date of Report:	03/16/20
4 Route 340		AAT Project Number:	037018
Orangeburg, h	IY 10962	Client Project Name:	RC200219
		Sampled by:	Rockland County Sewer District #1
		Sampling Date:	02/19/20
		Matrix:	Non-Potable Water
	See Auto-1	Date/Time Received:	02/19/20 15:22

	*O************************************							
Porometer:	<u>Lob</u> Sample ID	<u>Client</u> Sample ID	Result	Unit	RLs	Date of Analysis	Analyst	Method
Metals	WW-98285-1	15-200219-RLF	See Table #1	mg/L	*	-	-	**
Chloride (Cl')*	WW-98285-2	IS-200219-RLF	161	mg/L	6.0*	02/20/20	 .	SM 19 4500CLE-11
Total Dissolved Solids	WW-98285-3	15-200219-RLF	540	mg/L	20*	02/24/20	+	SM 2540C-11
Ammonio as Nº	WW-98285-4	15-200219-RLF	0.17	mg/L	0.05*	02/22/20	-	EPA 350.1
Kjeldahi Nitrogen*	WW-98285-5	IS-200219-RLF	0.37	mg/L	0.10*	02/25/20	÷	EPA 351.1
Phosphorus Total*	WW-98285-6	IS-200219-RLF	0.850	mg/L	0.010*	02/21/20	-	SM 4500PE-11
Cyanide, Amenable**	WW-98285-7	IS-200219-RLF	ND ¹	mg/L	0.010**	02/27/20	-	SM 4500CN 6-2011
Total Cyanide**	WW-98285-7	IS-200219-RLF	ND	mg/L	0.010**	02/27/20	•	EPA 335.4
Formaldehyde*	WW-98285-8	IS-200219-RLF	See Attached Report	ug/L	•	*	*	; →
Semivolatile Organic Compounds (SVOC)**	WW-98285-9	TS-200219-RLF	See Attached Report	ug/L	=			EPA 625.1
Pesticides/PCBs***	WW-98285-10	15-200219-RLF	See Attached Report	ug/L	-	-		EPA 608.3
Phenois*	WW-98285-11	IS-200219-RLF	NO	mg/L	0.015*	02/24/20	- .	EPA 420.4
Oil & Grease**	WW-98285-12	IS-200219-RLF	ND	mg/L	4.0**	02/26/20	*	EPA 1664B
Total Petroleum Hydrocarbons (TPH)*	WW-98285-12	IS-200219-RLF	ND	mg/L	4.0**	02/26/20		EPA 1664B
Volatile Organic Compounds (VOC)***	WW-98285-13	IS-200219-RLF	See Attached Report	ug/L	-	*	-	EPA 624.1

^{*}Analysis was performed by Phoenix Environmental Laboratories Inc., 587 East Middle Turnpike, P.O. Box 370; Manchester, CT 06040.

NY Lab Registration #11301

^{*}RL/PQL = Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation)

[&]quot;ND = Not Detected, BRL = Below Reporting Limit

^{**}Analysis was performed by ALS Environmental, 301 Fulling Mill Road, Middletown, PA 17057, NY Lab Certification No. NY 11759

^{**}RDL - Reporting Detection Limit

^{**}ND - Not Detected - indicates that the analyte was Not Detected at the RDL

^{**1 =} The QC sample type LC5 for method 335/4500/9012B was outside the control limits for analyte Cyanide Amenable. The % Recovery was reported as 42.4 and the control limits were 90 to 110.

ANALYTICAL REPORT NYS DOH LABORATORY ID NO: 11713

*** Analysis was performed by Pace Analytical, 575 Broad Hollow Road, Melville, NY 11747. NY Certification #10478

Reviewed and approved by:

Slava Kogan, Designee for George Stancu Technical Director

ANALYTICAL REPORT NYS DOH LABORATORY ID NO: 11713

Table 1: METALS*

Parameter	<u>Lab</u> Sample ID	Client Sample ID	Result	Unit	RDL	Date of Analysis	Analyst	Method
Antimony (Sb)	WW-98285-1	I5-200219-RLF	ND	mg/l	0.020	02/25/20	*	EPA 200.7
Arsenic (As)	WW-98285-1	IS-200219-RLF	ND	mg/l	0.010	02/25/20	-	EPA 200,7
Beryllium (Be)	WW-98285-1	I5-200219-RLF	ND	mg/l	0,0040	02/25/20		EPA 200.7
Boron (B)	WW-98285-1	I5-200219-RLF	0,22	mg/l	0,10	02/25/20	-	EPA 200.7
Cadmium (Cd)	WW-98285-1	I5-200219-RLF	ND	mg/l	0.0020	02/25/20		EPA 200.7
Chromium (Cr)	WW-98285-1	I5-200219-RLF	ND	mg/i	0.0050	02/25/20	-	EPA 200,7
Copper (Cu)	WW-98285-1	IS-200219-RLF	ND	mg/l	0.010	02/25/20		EPA 200.7
Lead (Pb)	WW-98285-1	I5-200219-RLF	0,0082	mg/l	0.0060	02/25/20		EPA 200.7
Manganese (Mn)	WW-98285-1	IS-200219-RLF	0.27	mg/l	0.0050	02/25/20	. =:	EPA 200.7
Mercury (Hg)	WW-98285-1	I5-200219-RLF	ND	mg/l	0.00020	02/22/20	÷	EPA 245.1
Molybdenum (Mo)	WW-98285-1	TS-200219-RLF	ND	. mg/l	0.020	02/25/20	-	EPA 200.7
Nickel (Ni)	WW-98285-1	IS-200219-RLF	ND	mg/l	0.020	02/25/20	•	EPA 200.7
Selenium (Se)	WW-98285-1	I5-200219-RLF	ND	mg/l	0.020	02/25/20	*	EPA 200.7
Silver (Ag)	WW-98285-1	TS-200219-RLF	NĎ	mg/l	0.0040	02/25/20	-	EPA 200,7
Thallium (TI)	WW-98285-1	IS-200219-RLF	ND	mg/l	0.020	02/25/20	•	EPA 200.7
Zinc (Zn)	WW-98285-1	I5-200219-RLF	ND	mg/l	0,020	02/25/20	+	EPA 200.7

^{*}Analyses were performed by ALS Environmental, 301 Fulling Mill Road, Middletown, PA 17057, NY Lab Certification No. NY 11759

Reviewed and approved by:

Slava Kogan, Designee for

George Stancu

Technical Director

Page 6 of 6

^{*}RDL - Reporting Detection Limit

^{*}ND - Not Detected - indicates that the analyte was Not Detected at the RDL

^{*}Sample was prepared by EPA 200.7 on 02/23/20 and for EPA 2451 on 02/22/20

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

February 26, 2020

FOR:

Attn: Slava Kogan

Advanced Analytical Technologies, Inc.

37 Ramland Road Orangeburg, NY 10962

Sample Information

Matrix:

WASTE WATER

Location Code:

ADV-ANA

Rush Request:

Standard

.aboratory Data

Custody Information

В

Collected by:

Received by:

Analyzed by:

Date

Time

02/19/20

8:36

02/20/20 16:16

SDG ID: GCF35484 Phoenix ID: CF35484

Project ID:

Client ID:

P.O.#:

WW-98285-11

RL/

Parameter Result

PQL

Units

Dilution

see "By" below

Date/Time

Bv

Reference

< 0.015 0.015 1 E420.4 mg/L **Phenolics** 02/24/20 07:52

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

February 26, 2020

Reviewed and Released by: Kathleen Cressia, QA/QC Officer

301 Fulling Mill Road - Middletown, PA 17057 - Phone: 717-944-5541 - Fax: 717-944-1430 - www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3087807 WW SV,CN,OG

Lab ID: Sample ID: 3087807003

WW-98285-9

Date Collected: 2/19/2020 08:36

Matrix:

Water

Date Received: 2/20/2020 19:45

Gampie ID. 1111-30203-3				- Date 11000110	d. E/20/2020 10.				
Parameters	Results Fla	g Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
SEMIVOLATILES			•						
Acenaphthene	ND .	ug/L	1.5	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
Acenaphthylene	ND	ug/L	1.5	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
Anthracene	ND	ug/L	1.5	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
Benzidine	ND	ug/L	4.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
Benzo(a)anthracene	ND	ug/L	1.5	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
Benzo(a)pyrene	ND	ug/L	1.5	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
Benzo(b)fluoranthene	ND	ug/L	1.5	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
Benzo(g,h,i)perylene	ND	ug/L	1.5	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
Benzo(k)fluoranthene	ND ·	ug/L	1.5	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
4-Bromophenyl-phenylether	ND	'ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
Butylbenzylphthalate	ND	ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	A
4-Chloro-3-methylphenol	ND	ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α .
bis(2-Chloroethoxy)methane	ND	ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
bis(2-Chloroethyl)ether	ND	ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
bis(2-Chloroisopropyl)ether	ND	ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
2-Chloronaphthalene	ND	ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	ĊGS	Α
2-Chlorophenol	ND	ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
4-Chlorophenyl-phenylether	ND	ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	·CGS	Α
Chrysene	ND	ug/L	1.5	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α .
Di-n-Butylphthalate	ND	ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
Di-n-Octylphthalate	ND	ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
Dibenzo(a,h)anthracene	ND	ug/L	1.5	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α .
3,3-Dichlorobenzidine	ND	ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
2,4-Dichlorophenol	ND	ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
Diethylphthalate	ND	ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
2,4-Dimethylphenol	ND	ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
Dimethylphthalate	ND	ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
2,4-Dinitrophenol	ND	ug/L	6.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
2,4-Dinitrotoluene	ND	ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
2,6-Dinitrotoluene	ND	ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
1,2-Diphenylhydrazine	ND	ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
bis(2-Ethylhexyl)phthalate	ND	ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
Fluoranthene	ND	ug/L	1.5	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α .
Fluorene	ND	ug/L	1.5	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
Hexachlorobenzene	ND	ug/L	3 .1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
Hexachlorobutadiene	ND	ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α
Hexachlorocyclopentadiene	ND	ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

301 Fulling Mill Road - Middletown, PA 17057 - Phone: 717-944-5541 - Fax: 717-944-1430 - www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DOD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3087807 WW SV,CN,OG

Lab ID:

3087807003

Sample ID: WW-98285-9

Date Collected: 2/19/2020 08:36

Matrix:

Water

Date Received: 2/20/2020 19:45

Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	
Hexachloroethane	ND		ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α	
Indeno(1,2,3-cd)pyrene	ND		ug/L	1.5	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α	
Isophorone	ND		ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α	
2-Methyl-4,6-dinitrophenol	ND		ug/L	6.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α	
Naphthalene	ND		ug/L	1.5	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α	
Nitrobenzene	ND		ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α	
2-Nitrophenol	ND		ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α	
4-Nitrophenol	ND		ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α	•
N-Nitrosodi-n-butylamine	ND		ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α	
N-Nitrosodiethylamine	NĎ		ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α	
N-Nitrosodimethylamine	ND		ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α	
N-Nitroso-di-n-propylamine	ND		ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α	
N-Nitrosodiphenylamine	ND -		ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α	
N-Nitrosopyrrolidine '	ND		ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α	
Pentachlorobenzene	ND		ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α	
Pentachlorophenol	ND		ug/L	6.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α	
Phenanthrene	ND		ug/L	1.5	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α	
Phenol	ND		ug/L	8.2	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α .	
Pyrene	ND		ug/L	1.5	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α	
1,2,4,5-Tetrachlorobenzene	ND		ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α	
1,2,4-Trichlorobenzene	ND	•	ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α	
2,4,5-Trichlorophenol	ND		ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α	
2,4,6-Trichlorophenol	ND		ug/L	3.1	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α	
Surrogate Recoveries	Results	Flag	Units	Limits	Method	Prepared	Ву	Analyzed	Ву	Cntr	
2,4,6-Tribromophenol (S)	56		%	47 - 128	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α	
2-Fluorobiphenyl (S)	56.2		%	52 - 118	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α	
2-Fluorophenol (S)	46		%	20 - 87	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α	
Nitrobenzene-d5 (S)	71.9		%	27 - 139	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α	
Phenol-d5 (S)	33.6		%	10 - 81	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α	
Terphenyl-d14 (S)	80.1		%	46 - 133	EPA 625.1	2/26/20 11:45	MXL	2/27/20 14:58	CGS	Α	

Vanessa M. Badman

Mrs. Vanessa N Badman Project Coordinator

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3087807 - 3/2/2020

Page 10 of 21

ANALYTICAL RESULTS

Project:

524/624/608 2/20

Pace Project No.:

70122697

Sample: WW-98285-13	Lab ID: 70	122697006	Collected: 02/19/2	20 08:36	Received: (02/21/20 18:10	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
624.1 Volatile Organics	Analytical Me	thod: EPA 62	4.1					
Benzene	<1.0	.ug/L	1.0	1		02/22/20 16:5	1 71-43-2	
Bromodichloromethane	<1.0	ug/L	1.0	1		02/22/20 16:5	1 75-27-4	
Bromoform	<1.0	ug/L	1.0	1		02/22/20 16:5	1 75-25-2	
Bromomethane	<1.0	ug/L	1.0	1		02/22/20 16:5	1 74-83-9	
Carbon tetrachloride	<1.0	ug/L	1.0	1		02/22/20 16:5		
Chlorobenzene	<1.0	ug/L	1.0	1		02/22/20 16:5	1 108-90-7	
Chloroethane	<1.0	ug/L	1.0	1		02/22/20 16:5	1 75-00-3	
2-Chloroethylvinyl ether	<1.0	ug/L	1.0	1		02/22/20 16:5	1 110-75-8	
Chloroform	<1.0	ug/L	1.0	1		02/22/20 16:5	1 67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		02/22/20 16:5	1 74-87-3	
Dibromochloromethane	<1.0	ug/L	1.0	1		02/22/20 16:5	1 124-48-1	
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		02/22/20 16:5	1 95-50-1	
1,3-Dichlorobenzene	<1.0	ug/L	1.0	1		02/22/20 16:5	1 541-73-1	
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		02/22/20 16:51	1 106-46-7	
Dichlorodifluoromethane	<1.0	ug/L	1.0	1 .		02/22/20 16:5	1 75-71-8	CL,L2
1,1-Dichloroethane	<1.0	ug/L	1.0	1		02/22/20 16:5	75-34-3	
1,2-Dichloroethane	<1.0	ug/L	1.0	1	•	02/22/20 16:5	1 107-06-2	
1,1-Dichloroethene	<1.0	ug/L	1.0	1		02/22/20 16:5	75-35-4	
cis-1,2-Dichloroethene	<1.0	ug/L	1.0	1		02/22/20 16:51	156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		02/22/20 16:51	156-60-5	
1,2-Dichloropropane	<1.0	ug/L	1.0	1		02/22/20 16:51	78-87-5	
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		02/22/20 16:51	10061-01-5	
rans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		02/22/20 16:51	10061-02-6	
Ethylbenzene	<1.0	ug/L	1.0	1		02/22/20 16:51	100-41-4	
Methylene Chloride	<1.0	ug/L	1.0	1		02/22/20 16:51	75-09-2	
1,1,2,2-Tetrachtoroethane	<1.0	ug/L	1.0	1		02/22/20 16:51	79-34-5	
Tetrachloroethene	<1.0	ug/L	1.0	1		02/22/20 16:51	127-18-4	L2
Toluene	<1.0	ug/L	1.0	1		02/22/20 16:51	108-88-3	
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		02/22/20 16:51	71-55-6	
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		02/22/20 16:51	79-00-5	
Frichloroethene	<1.0	ug/L	1.0	1		02/22/20 16:51	79-01-6	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		02/22/20 16:51		
/inyl chloride	<1.0	ug/L	1.0	1		02/22/20 16:51		
(ylene (Total)	<1.0	ug/L	1.0	1		02/22/20 16:51		
Surrogates		•					•	
4-Bromofluorobenzene (S)	102	%	79-124	1	•	02/22/20 16:51	460-00-4	
Toluene-d8 (S)	102	%	69-127	1		02/22/20 16:51	2037-26-5	
1,2-Dichloroethane-d4 (S)	106	%	68-153	1		02/22/20 16:51	17060-07-0	

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project:

524/624/608 2/20

Pace Project No.: 70122697

Date: 03/05/2020 06:06 PM

Sample: WW-98285-10	Lab ID:	70122697007	Collected: 02/19/	20 08:36	Received: 02	2/21/20 18:10	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
608.3 GCSV PCB	Analytical M	Method: EPA 60	8.3 Preparation Me	ethod: EP	A 608.3			
PCB-1016 (Aroclor 1016)	<1.0	ug/L	1.0	1	02/24/20 14:56	02/25/20 18:13	12674-11-2	
PCB-1221 (Aroclor 1221)	<1.0	ug/L	1.0	1	02/24/20 14:56	02/25/20 18:13	11104-28-2	
PCB-1232 (Aroclor 1232)	<1.0	ug/L	1.0	1	02/24/20 14:56	02/25/20 18:13	11141-16-5	
PCB-1242 (Aroclor 1242)	<1.0	ug/L	1.0	1	02/24/20 14:56	02/25/20 18:13	53469-21-9	
PCB-1248 (Aroclor 1248)	<1.0	ug/L	1.0	1	02/24/20 14:56	02/25/20 18:13	12672-29-6	
PCB-1254 (Aroclor 1254)	<1.0	ug/L	1.0	1	02/24/20 14:56	02/25/20 18:13	11097-69-1	
PCB-1260 (Aroclor 1260)	<1.0		1.0	1	02/24/20 14:56	02/25/20 18:13	11096-82-5	
Surrogates		-						
Tetrachloro-m-xylene (S)	71	%	30-150	1	02/24/20 14:56	02/25/20 18:13	877-09-8	
Decachlorobiphenyl (S)	76	%	30-150	1	02/24/20 14:56	02/25/20 18:13	2051-24-3	
608.3 GCSV Pesticides	Analytical M	1ethod: EPA 60	8.3 Preparation Me	thod: EP	A 608.3			
Aldrin	<0.050	ug/L	0.050	1	02/24/20 14:57	02/26/20 20:59	309-00-2	
alpha-BHC	<0.050	ug/L	0.050	1	02/24/20 14:57	02/26/20 20:59	319-84-6	
beta-BHC	<0.050	ug/L	0.050	1	02/24/20 14:57	02/26/20 20:59	319-85-7	
delta-BHC	<0.050	ug/L	0.050	1	02/24/20 14:57	02/26/20 20:59	319-86-8	
gamma-BHC (Lindane)	<0.050	ug/L	0.050	1	02/24/20 14:57	02/26/20 20:59	58-89-9	
Chlordane (Technical)	<1.0	ug/L	1.0	1	02/24/20 14:57	02/26/20 20:59	57-74-9	
4,4'-DDD	<0.10	ug/L	0.10	1	02/24/20 14:57	02/26/20 20:59	72-54-8	
4,4'-DDE	<0.10	ug/L	0.10	1	02/24/20 14:57	02/26/20 20:59	72-55-9	
4,4'-DDT	<0.10	ug/L	0.10	1	02/24/20 14:57	02/26/20 20:59	50-29-3	
Dieldrin	<0.10	ug/L	0.10	1	02/24/20 14:57	02/26/20 20:59	60-57-1	
Endosulfan I	<0.050	ug/L	0.050	1	02/24/20 14:57	02/26/20 20:59	959-98-8	
Endosulfan II	<0.10	ug/L	0.10	1	02/24/20 14:57	02/26/20 20:59	33213-65-9	
Endosulfan sulfate	<0.10	ug/L	0.10	1	02/24/20 14:57	02/26/20 20:59	1031-07-8	
Endrin	<0.10	ug/L	0.10	1	02/24/20 14:57	02/26/20 20:59	72-20-8	
Endrin aldehyde	<0.10	ug/L	0.10	1	02/24/20 14:57	02/26/20 20:59	7421-93-4	
Heptachlor	<0.050	ug/L	0.050	1	02/24/20 14:57			
Heptachlor epoxide	<0.050	ug/L	0.050	1	02/24/20 14:57			
Methoxychlor	<0.50	ug/L	0.50	1	02/24/20 14:57			
Toxaphene	<5.0	ug/L	5.0	1	02/24/20 14:57			
Surrogates		3	0.0					
Tetrachloro-m-xylene (S)	66	%	30-150	1	02/24/20 14:57	02/26/20 20:59	877-09-8	
Decachlorobiphenyl (S)	62	%	30-150	1	02/24/20 14:57	02/26/20 20:59	2051-24-3	

CERTIFICATION

Client Name: Rockland County Sewer District #1	Date of Report:	· · · · · · · · · · · · · · · · · · ·					
4 Route 340	AAT Project Number:						
Orangeburg, NY 10962	Client Project Name:	RC200219					
	Sampled by:	Rockland County Sewer District #1					
	Matrix:	Non-Potable Water					
	Date/Time Received:	02/19/20 15:22					

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the systems, or those persons directly responsible for gathering the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Slava Kogan, Designee for

George Stancu

Technical Director

CHAIN OF CUSTUDY

PAGE C OF

37 Ramland Road Orangaburg, NY 10962 Tel: 201-484-7461 Fax: 845-818-3593

NELAP CERTIFIED, NY LAB ID: 11713, NJDEP LAB ID: NY100

Advanced Analytical Technologies Inc.

Cogpany Name:

TORILABORATORY/USE ONLY	2+4+(Impreserved 6-81, 6,81, 6-81, 6-81)	HO vals	4 HSO, 62 +/	NaOHZn Acetate	Na.S.O.	AAARIA	HOSH SANSACA ANSACA PERIODE	metals (w) BSb As. Bo (A. Cr.	CL. D. Mn. He, Mohi, Se. Ac TL	Chleridus Tos	Primaria, TKN. total object	Total + Free Cuencie	Formaldehyde, Somi volatiles	PCB's Risticioles	Menols, as Green, TAH	Vocis	THER		DAXE		TIME: AMP SAMPLE TEMP:		THEFT AMPRING THE TANK NO.	pon receipt at fo	TIME: AM PW Rec's on loa? Why	
Glent Project Name: RC2002.19	Client Project Number: $AC2002.19$	Project Marne:	Sand francisco to:	יייי פיייי פייי	AA1 Project No: 03-7018	COMPETITION	Fird comp grab MATRIX 10/19/4, 22 7 7 G 9	4 11:10A 8:36A x mu/6 1		Z X	×	×	×		7	<u>ال</u>	GTABLE WATER, SW. SOIL, SL. SLUDGE, SOL. NON SOIL SOLID, O: OTHER	REQUIRED	ELIVERABLES RECEIVED BY (Point)	2000	1 Dr. mrs. agranding	1 W RECEIVED BY (PAINT) S. COGUL	De du Pal Signature:	RECEIVED BY (Print):	AM PM Signature:	Yellow - Laboratory Copy Pink - Client Copy
ROCKLOND COUNTY Sucritistrict#1	4 Rout 340 Orangebur NY109112	Contact Name: Linda Hoffman	7011-02 845-365-6626	Sampler's Numer Affiliation: (Print)		SAMPLE LOCATION / TELL DO		IS-200219-RLF 11111-18285 A19200	(21-1)								MATRIX CODER; DW; DRINKING WATER, GW; GROUND, WATER, WW; NON PDTABLE	TURNARQUIND TIME: 19 1 STANDARD 2 WEEKS [] RUSH, LABORATORY APPROVAL REQUIRED	O C TOWNED IT DELECTRONIC DATES	See Land Court of Cou	XIII		22C TRIKE 322		Signature;	White - Original