From:	Robert Zimmer
То:	Spellman, John (DEC)
Cc:	David Gussack
Subject:	Re: Former Grant Hardware Site, indoor air report
Date:	Thursday, December 3, 2020 4:10:35 PM
Attachments:	Final Former Grant Hardwarer 344031 March 2020 Indoor Air Sampling Report 12-3-20- no lab package.pdf Former Grant Hardware 344031 March 2020 Indoor Air Sampling Lab Data Package.pdf

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Hello John,

The revised indoor air sampling report which includes the modifications you requested is attached. Following up on the recommendations in this report, the three SSDS blower fans scheduled to be replaced were changed out in October. The joint and crack sealing is still pending due to the storage tenant's continued and heavy use of the space.

Bob

On 9/25/2020 8:37 AM, Spellman, John (DEC) wrote:

03 December 2020

John Spellman, P.E. Division of Environmental Remediation New York State Department of Environmental Conservation Remedial Bureau C, 11th Floor 625 Broadway Albany, NY 12233-7014 Phone (518) 402-9662

Re: <u>March 2020 Indoor Air Sampling Report</u> <u>44 High Street</u> Former Grant Hardware Site - West Nyack, NY Site Number 344031.

Dear Mr. Spellman:

Pursuant to the NYSDEC's request, Geovation and Gussack Realty conducted follow-up testing of the indoor air quality in March 2020 to evaluate changes in site conditions since previous testing. The results of the February 2019 indoor air sampling were reported in Geovation's *May 2019 Follow-Up Indoor Air Sampling Report*. In February 2019, the indoor air quality did not meet the NYSDOH recommended values for TCE at several sampling locations. The 2019 report identified floor expansion joints as a possible pathway of indoor air intrusion and recommended that the floor joints and cracks be inspected and repaired. In a conference call with the NYSDEC and NYSDOH, on 23 October 2019, Gussack Realty agreed to undertake the project of sealing the floor cracks and expansion joints in the building.

Use of the building is currently divided, primarily by two separate tenants (The General Bearing Corporation and Clancy-Cullens Storage Company, Inc.), and a portion of the building is unoccupied. Access was arranged in the General Bearing Company portion of the building and a contractor was identified who started work on January 6, 2020 grinding out and cleaning the expansion joints before repairing and sealing the joints and cracks. The extensive system of expansion joints in the floor totaling several thousand feet was completed in the General Bearing portion of the building on March 6, 2020. Subsequently the small room, ground level bay door access area, labeled as Area 7 in the Clancy-Cullens portion of the building was also completed. Clancy-Cullen's uses their leased space for storage/warehousing. Around mid-March, at the time when access was being sought to continue the inspection and repair of floor expansion joints, Clancy-Cullen had most of their leased space in use for client storage prohibiting access to continuous lengths of expansion joints. Discussions with Clancy-Cullen's management indicated that the space was scheduled to be vacated, within the following few weeks and continuation of the expansion joint sealing was postponed until the space was cleared. Clearing of the space and continuation of the joint and crack sealing had not been restarted as the end of the heating season approached and on March 28, 2020 the indoor air sampling was conducted, with the expansion joint sealing completed in the General Bearing portion of the building and not

conducted in the Clancy-Cullen's portion of the building, with the exception of the small room Area 7.

As may be expected, the results of the 2020 indoor air sampling show distinct results in the two portions of the building where joint sealing was conducted and where it was not conducted. In general there was continued overall improvement to indoor air quality; however, the majority of the sampling locations still exhibit trichloroethene concentrations above the New York State Department of Health, air quality guidelines. This report includes a description of (i) the updated building walk-through, (ii) the results of measuring the vacuum within the eleven Sub-Slab Depressurization Systems (SSDS) and the vacuum created by these system beneath the building at numerous locations, (iii) the weather data for the day samples were collected and the preceding day, (iv) verification of the operation of the sub-slab depressurization system, (v) a description of the collection of a set of ten indoor air samples and two outdoor control air samples, and (vi) a discussion of the results of the data collected.

1.0) Background. The facility is owned by the Gussack Realty Company. Formerly this entire site and building was occupied by the Grant Hardware Company (Grant Hardware) who operated it from approximately 1957 to 1990. The site is located at 44 High Street in West Nyack, NY on the south side of NYS Route 59 (Figure 1). Investigations conducted at this site have indicated the presence of petroleum hydrocarbons and chlorinated compounds in site soil and groundwater. Geovation's *July 2008 Vapor Intrusion Survey Report* described the initial VIS testing conducted at the facility and the installation of a sub-slab depressurization (SSD) system in a limited portion of the building. Geovation's 2013 Vapor Intrusion Retesting and Mitigation *Report* includes additional indoor air testing results and a description of the expansion of the SSD system to include all portions of the facility where vapor intrusion testing indicated that mitigation is required. The January 2017 Follow-up Indoor Air Sampling report included a description of the indoor air sampling and results of samples collected in January 2017, the *Revised March 2018 Follow-Up Indoor Air Sampling Report*, contains the results of sampling conducted in Karch 2018, and the May 2019 Follow-Up Indoor Air Sampling Report, contains the results of sampling conducted in February 2019.

As discussed briefly above, the building has been divided and currently there are two tenants leasing the majority of the space within this building, and some remaining unoccupied space. The division of space is shown on Figure 2 using different color shading for the two principle tenants. The General Bearing Corporation (General Bearing), occupies most of the front office space and the front portion of the warehouse space. General Bearing conducts testing, shipping and warehousing of ball bearings. On Figure 2, General Bearing occupies the spaces labeled "Front Office Space",1,2,3, and 6. The second tenant is the Clancy-Cullen Storage Company (Clancy-Cullen), a moving and storage company, who utilize the rear portion of the building for warehousing and storage of various materials, typically office equipment. On Figure 2, the space occupied by Clancy-Cullen is labeled 5, 7 and 8. Area number 4, as well as a portion of the front office space are unoccupied. None of the contaminants of interest of indoor air intrusion

(tetrachloroethene, trichloroethene, or dichloroethene) are documented as being used in their daily operation by either General Bearing or Clancy-Cullen since their occupation of the facility.

2.0) Building Walk Through. Geovation conducted a modified building walk through on March 13th 2020 to update the existing building walk-through field notes, review potential background sources of volatile organic compounds, confirm that all the SSD system fans were operational, and measure the sub-slab vacuum in the General Bearing portion of the building where the crack and joint sealing program had been completed. A copy of the updated walk-through filed notes is included as Attachment A to this report.

During the walk through, Geovation compared the list of chemicals and materials compiled in 2018 and 2019 with products observed during the 2020 walk-through, and no significant changes were noted. A copy of the list of chemicals used at General Bearing is included in Appendix A. Clancy-Cullen stated that they do not store any hazardous or liquid materials at this location for either themselves or for their clients.

As Shown on Figure 2, most of the interior of this facility is unobstructed open space. Some of the rooms created by partitioned space for offices, labs, and storage, have small localized HVAC systems installed, but the HVAC units obtain their air supplies from the larger area that they are constructed within (Figure 2). In addition, the approximate locations of the individual natural gas, ceiling mounted, space heater units are noted on Figure 3. The locations of the eleven SSD systems installed at the facility are shown on Figure 4. A comparison of the vacuum measured in each of the SSD systems in March 2020 to the vacuum readings at the time of system instillation in March 2012 is provided on Table 1. As shown on this table, the SSD systems completed. However, a small drop in system vacuum was noted in some of the SSD systems, on the order of 0.1 inches of water, and a drop in vacuum on 0.4 inches of water was observed in System 3, which is installed in the small basement area.

The eleven SSD Systems combine to create a negative pressure below the building slab, collect contaminants that may be present in the sub-slab air, and vent that air above the building roof line. To evaluate the effectiveness of this system, in addition to measuring the vacuum present in each of the SSD systems, Geovation also measured the vacuum created in the sub-slab air space below the building slab. In coordination with the NYSDEC, 22 locations were selected to measure the sub-slab vacuum and these locations are provided on Figure 4. Sub-slab vacuum readings were collected in all areas where the joint and crack sealing had been completed, which accounts for 16 of the 22 locations. The results of these vacuum measurements are shown on Table 2 along with nearby sub-slab vacuum reading collected at the time of system installation in 2012. As shown on Table 2, sub-slab vacuum readings in March 2020 were greater or equal to the 2012 initial measurements in all but two locations; (i) sampling location 14, in the unoccupied office space (Area 4), and (ii) sampling location 18 in General Bearing area 6, also know as the "Reject Room".

Crack and joint sealing had not been completed in the unoccupied office area, Area 4, as the office space has an adhesive fastened carpet which prevents inspection of the underlying floor. This area is unoccupied and has been for many years. Accordingly, NYSDEC permitted this room to be excluded from the indoor air surveys conducted prior to 2019. It has been included in the 2019 and 2020 indoor air sampling events in order to evaluate the indoor air quality and the performance of the SSD system, in preparation for the eventual reoccupation of area 4.

The "Reject Room", Area 6, is a large storage room, sectioned off from General Bearing's main floor area by three walls and thick plastic curtains. The curtains were installed to save energy as this room has limited access, is unoccupied and unheated.

3.0) Weather Data. Atmospheric pressure and temperature measurement during the sampling period, 28 March 2020, and the preceding 24 hours, 27 March 2020 were acquired from the nearest reporting station to the site from Weather Underground at http://www.wunderground.com/. The weather data for these two days is provided in Attachment B.

The weather on 27 March 2020 was seasonally warm (average temperature $54^{\circ}F$) with no precipitation that day. The barometric pressure was recorded to be steady in the morning and slowly rising during the remainder of the day. On the day of sampling, 28 March 2020, the weather was cooler (average temperature $45^{\circ}F$), with no precipitation. The barometric pressure on the day of sampling was fairly steady over the day, slowly increasing then decreasing. Indoor air temperatures ranged from approximately $64^{\circ}F$ to $68^{\circ}F$ at all indoor air sampling locations during the sampling activities.

4.0) Indoor Air Sampling. Indoor air samples were collected at each of the ten locations shown on Figure 2, typically at a height of approximately three feet above the building slab. Indoor air samples were collected into laboratory prepared 1-liter Suma-Canisters over an approximately eight hour time period. After the air samples were collected, each was identified on and shipped under chain of custody documentation to Centek Laboratories, LLC. of Syracuse, NY (NYSDOH Cert.# 11830) for VOC analysis via EPA Method TO-15. Prior to initiating sample collection, a hand-held PID instrument was used to screen the ambient indoor air quality and the readings were collected in a log. A copy of the indoor air sampling log and copies of photographs of each sampling location are included as Attachment C to this report.

5.0) Outdoor Air Sampling. Two outdoor air samples were collected. The first was collected at the intake location of one of the roof-top HVAC units located above the front office area (Figure 2), and the second was collected approximately three feet above ground level on the up wind side of the building, which, on the day of sampling, was to the east of the building. As with the indoor samples, outdoor air samples were collected into laboratory prepared 1-liter Suma-Canisters over an eight hour time period. After the outdoor air samples were collected, each of

these samples was also labeled and shipped along with the other samples under chain of custody documentation to Centek Laboratories, LLC. of Syracuse, NY (NYSDOH Cert.# 11830) for VOC analysis via EPA Method TO-15. The outdoor air samples are also included in the photos and logs included in Attachment C to this report.

6.0) Results. The results of the follow-up indoor air testing performed on 28 March 2020 are summarized on Table 3. Historical sampling at this site has documented that the contaminant of concern in indoor air is trichloroethene (TCE), and the results of the analyses of TCE in the indoor air are summarized in graphical format and shown along side previous indoor air sampling data on Figure 2. A copy of the original laboratory data is provided in Attachment D.

As shown on Table 3, relatively low levels (less than 32 ug/m³) of several volatile organic compounds (VOCs) were reported in the indoor air. Contaminants reported in the indoor air at a concentration greater than 2 ug/m³ included: acetone, 2-Butanone, chloroform, ethyl acetate, freon 11, freon 12, isopropyl alcohol, toluene, and trichloroethene (TCE),. The only chloroethene compound reported at concentrations greater than 2 ug/m³ is TCE which was reported at a maximum concentration of 12 ug/m³ at location 614 (Area 7).

In the General Bearing controlled portion of the facility, The concentration of TCE was below the NYSDOH recommended guidelines of 2 ug/m³ in the office area, and basement (Area 3)(Figure 2). The greatest concentration of TCE was measured in the "Reject Room", Area 6, at 6 ug/m³, and the concentration TCE in the majority of the General Bearing space was 3.2 ug/m³.

In the Clancy-Cullen controlled portion of the facility, the greatest concentration of TCE was measured in the small overhead-door room (Area 7) at 12 ug/m³, and the TCE concentration in the main portions of this space were measured at 3.6 ug/m³ and 4.2 ug/m³ respectively, Figure 2.

In the unoccupied portion of the facility Area 4, the TCE concentration was measured at 4.1 ug/m³, representing a significant decrease relative to the TCE concentration measured in 2019 at 28 ug/m³.

7.0) Quality Assurance / Quality Control. Geovation reviewed the Centek sampling data and prepared a Data User Summary Report (DUSR), a copy of which is provided as Attachment E. The DUSR indicates that all ambient air samples were analyzed following EPA method TO-15 protocols. The laboratory maintained appropriate minimum detection levels for all samples, and all holding times were met by the laboratory. The correct data qualifiers were applied in the report and the data on Geovation's summary tables matched the raw data results. Overall, the data as reported is acceptable for use.

There were only two small anomalies with this indoor air data set. The first was that the canister at sampling location 607 was misidentified on the chain of custody as canister 607, when in fact,

the canister was number 207. This problem was corrected on the chain of custody and the correction was applied throughout the data report. The second was that the final vacuum in the sampling canisters was above the recommended vacuum of 5 inches of water vacuum. The laboratory indicated that adequate sample volume had been collected at each sampling location to analyze the data at the required detection levels and that the higher than ideal vacuum levels had no negative impacts on sample analysis. In previous years sampling, Geovation had had problems with the vacuum in sampling canisters dropping to zero inches of water over the sampling interval. To insure that this problem was not encountered again, Geovation requested that the laboratory set the sampling canister regulators to collect the air samples over a longer interval than the actual eight hour sample collection interval. The sampling canister regulators were provided by the laboratory set to collect samples over a ten hour interval. Samples were then collected over an eight hour time period, which resulted in the greater than recommended vacuum readings at the completion of the eight hour sampling interval.

8.0) Operation of the SSD Systems. Prior to the sampling collection date, Geovation inspected the eleven SSD systems on March 13th ,2020 and confirmed that all SSD system were operational. The vacuum reading at each SSD System was observed again on the day of sampling and those readings are presented Table 1. The signed inspection logs from 28 March 2020, indicating that all the components of the SSD systems were operational prior to the sampling event, are included in Attachment C.

Table 1 includes the March 2020 SSD System vacuum gauge readings and the vacuum gauge readings for the prior 6 months. This table also includes the vacuum gauge reading from March 2012, when the SSD system was originally installed and certified.

9.0) Discussion. The results of the 2020 indoor air sampling show continued improvement relative to the historical sampling results. The joint and crack sealing effort completed in the General Bearing portion of the facility resulted in direct improvements in the SSD System vacuum readings and the sub-slab vacuum measurements. These improvements in the performance of the SSD System translated into improvements in the overall indoor air quality. Where joint and crack sealing has been completed the majority of the facility is now very close to attaining the recommended TCE guidance value of 2 ug/m³.

In the Clancy-Cullen's portion of the building where joint and crack sealing has not been completed, indoor air TCE concentrations were similar to historical values, and some showed slight increases in the TCE concentration relative to historical values. Gussack Realty and Geovation intend to complete the joint and crack sealing in the Clancy-Cullen's portion of the building prior to the start of the 2020/2021 heating season on October 15, 2020.

The joint and crack sealing process was initiated on 6 January 2020 in the General Bearing controlled portion of the facility, where it was completed in mid-March. The joint and crack sealing was subsequently temporarily suspended in March due to the presence of Clancy-

Cullen's inventory of stored items blocking access to significant lengths of the joint and crack features. While waiting for Clancy-Cullen to clear adequate floor space, corona-virus restrictions were implemented at the facility which prohibited the presence of non-employees within the building, and therefore the immediate resumption of the work. More recently, as lifting these restrictions is being considered, scheduling for the continuation of the joint and crack sealing will be resumed. It is anticipated that when the joint and crack sealing process is completed throughout the facility, significant improvements to indoor air quality will also be observed in the Clancy-Cullen's portion of the building.

To assess the performance of the Sub-Slab Depressurization Systems, measurements were collected of the vacuum present in each of the eleven SSD Systems and compared to the vacuum measured in these systems when the they were installed and certified in 2012. Table 1 which includes the 2012 initial measurements and a comparison to the 2020 data indicates that a drop in SSD system vacuum measurements was observed in systems 3, 6, 7, 8, and 10.

In addition to measuring the vacuum present in the SSD Systems, Geovation also measured the vacuum that these systems create in the sub-slab air. As briefly discussed above, Geovation collected sub-slab vacuum measurements in the General Bearing portion of the building where joint and crack sealing has been completed. These measurements are provided on Table 2 and sampling locations on Figure 4. As shown on this table, the vacuum created by the SSD Systems in 2020 exceeded the initial vacuum measurements in all but one location, which was one of two sampling points in Area 6, the "Reject Room".

The greatest concentration of TCE in the General Bearing controlled portion of the building was measured in Area 6 at 6.0 ug/m³. In this area, the SSD System vacuum was observed to have decreased approximately 16% relative to the initial vacuum reported, and one of two sub-slab vacuum measurements was below the initial reported value. Based on these observations the system fan for SSDS Area 6 will be replaced and the system and sub-slab vacuum was also observed in the basement area (Area 3); however, in this space the TCE concentration has always been less than 2 ug/m³. A drop in SSD System vacuum was observed in system 10 relative to the initial 2012 value; however, the sub-slab vacuum measurements show large improvements relative to the 2012 installation values. As the joint and crack sealing improvements in this area create additional sub-slab vacuum relative to the installation values, even at a slightly decreased SSD System vacuum, no modifications, beyond the joint and crack sealing already completed, are proposed for this system.

The primary purpose of the sub-slab vacuum measurements is to assist in the evaluation of the SSD System performance and help ascertain if additional system improvements, beyond the joint and crack sealing program, could further improve the indoor air quality. As joint and crack sealing was not completed in the Clancy-Cullen portion of the building, sub-slab vacuum measurements have also not been collected. These measurements will be made after the joint and crack sealing is completed, however, Geovation proposes to proactively replace the fans in SSD Systems 7, and 8, where SSD System vacuums showed slight decreases in system

vacuum relative to the 2012 installation values (Table 1). It is anticipated that replacing these system fans will result in increased sub-slab vacuum and improvements to the indoor air quality.

In the unoccupied office area, Area 4, a significant decrease in the TCE concentration was observed in 2020 relative to 2019 (Figure 2). The indoor air TCE concentration remains above the NYSDOH recommended guidelines, and one of the two sub-slab vacuum measurements collected in this area was below the initial 2012 value. The SSD System vacuum remained at a similar value to the initial 2012 value and it is not clear if fan replacement will resolve the sub-slab vacuum deficiency. As this area is unoccupied and there are no immediate plans for the area to be occupied, no addition activities are currently proposed in Area 4.

Further discussion is also warranted regarding the use of the different areas within the building. In the General Bearing controlled portion of the building, the indoor air TCE concentration in the office area and basement area are below the NYSDOH recommended guidelines and the majority of the facility has an indoor air TCE concentration of 3.2 ug/m³, slightly above the NYSDOH recommended value of 2 ug/m³. The exception to these observations is Area 6, the "Reject Room" where the TCE concentration was measured at 6 ug/m³. The "Reject Room" however, is basically unoccupied storage space. This space is walled on three sides and the fourth side is separated from the main floor area with thick plastic sheeting. The space is unoccupied and unheated, the plastic sheeting is used to save energy costs. This area is used for long term storage of equipment, chemical storage, and storage for the floor cleaning machine, water recycling system. The area also has a metal scissor gate in front of the plastic screening, to further restrict access.

The Clancy-Cullen portion of the facility is also regularly unoccupied. Clancy-Cullen estimates that they have one or two employees at the facility from one to four days per week; but typically on the order of one day per week. Occasionally, when stored items either arrive at or are removed from their storage space, they also have crews of up to nine employees at the facility for the time period required to load or unload their trucks. The Clancy-Cullen's space is not occupied 8 hours a day, five days per week, but is variable and much less. As an aside, the infrequent occupancy of the space by Clancy-Cullen employees contributes to the complications arranging access to this space by a joint and crack sealing crew.

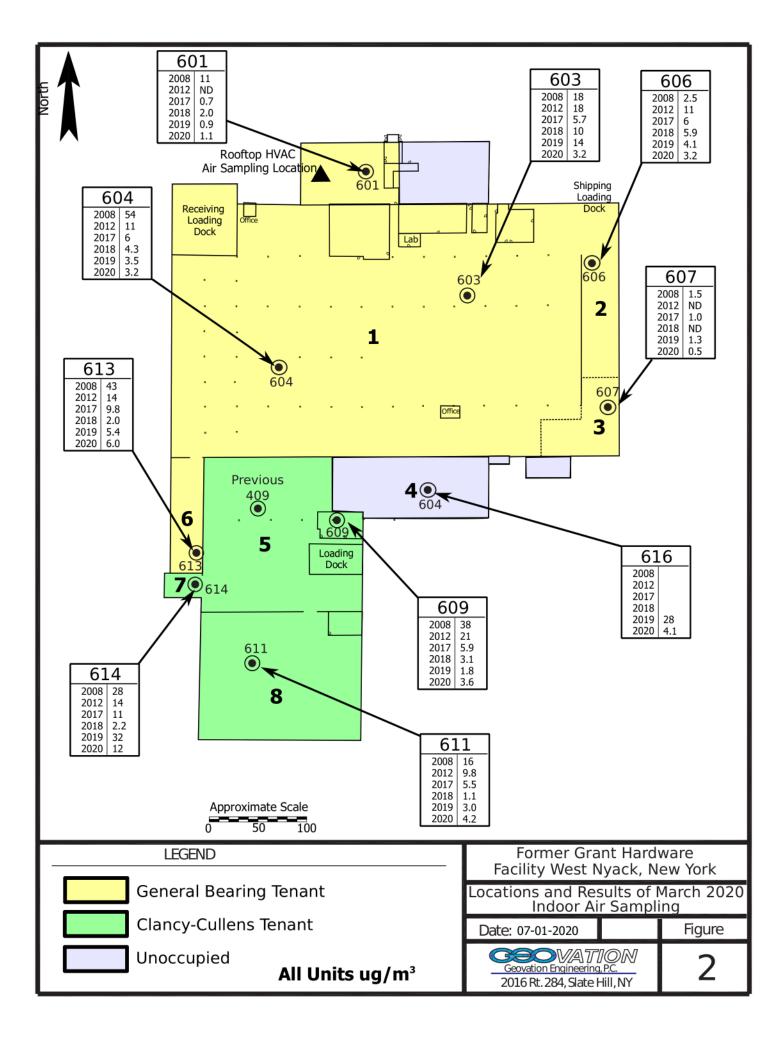
To continue to monitor the effects of the planed updates and improvements to the subslab depressurization system, it is recommended that indoor air sampling be repeated during the next heating season. To be consistent with the historical indoor air sampling, the air sampling should be conducted between January and March. In addition, measurement of the subslab vacuum in the Clancy-Cullen's portion of the building should be completed to assess the impact of the proposed system improvements in this portion of the building.

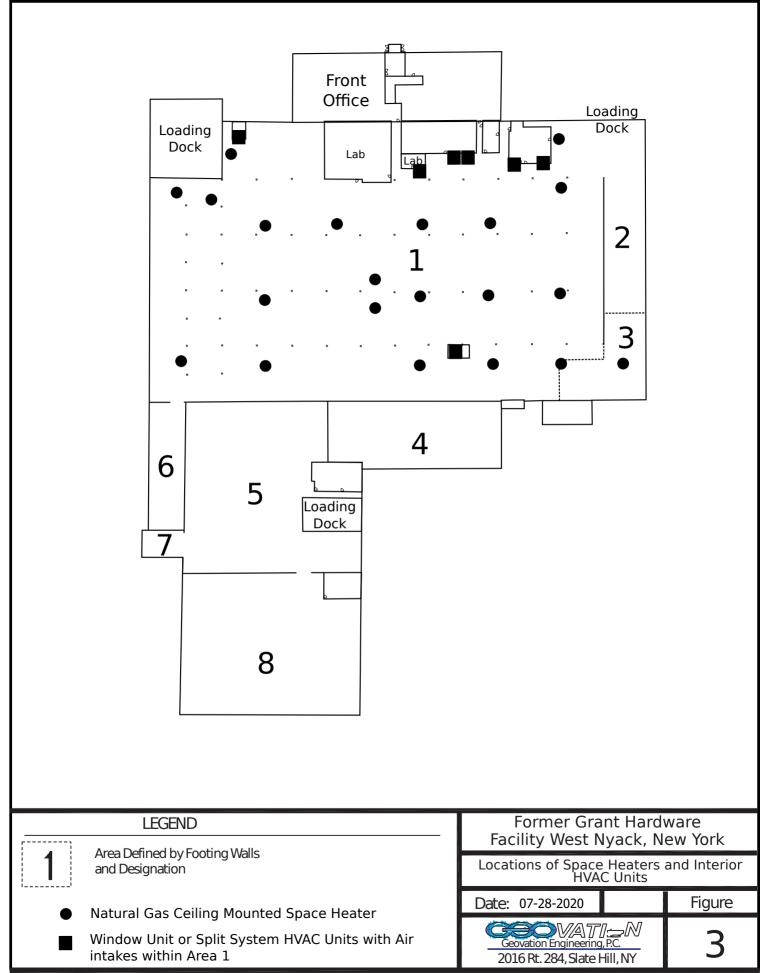
In summary, improvements to the indoor air quality were observed in the General Bearing portion of the facility where joint and crack sealing has been completed. Joint and crack sealing has not been conducted in the majority of the Clancy-Cullen space, and this effort has been delayed by several factors including access restrictions imposed in response to corona virus. As

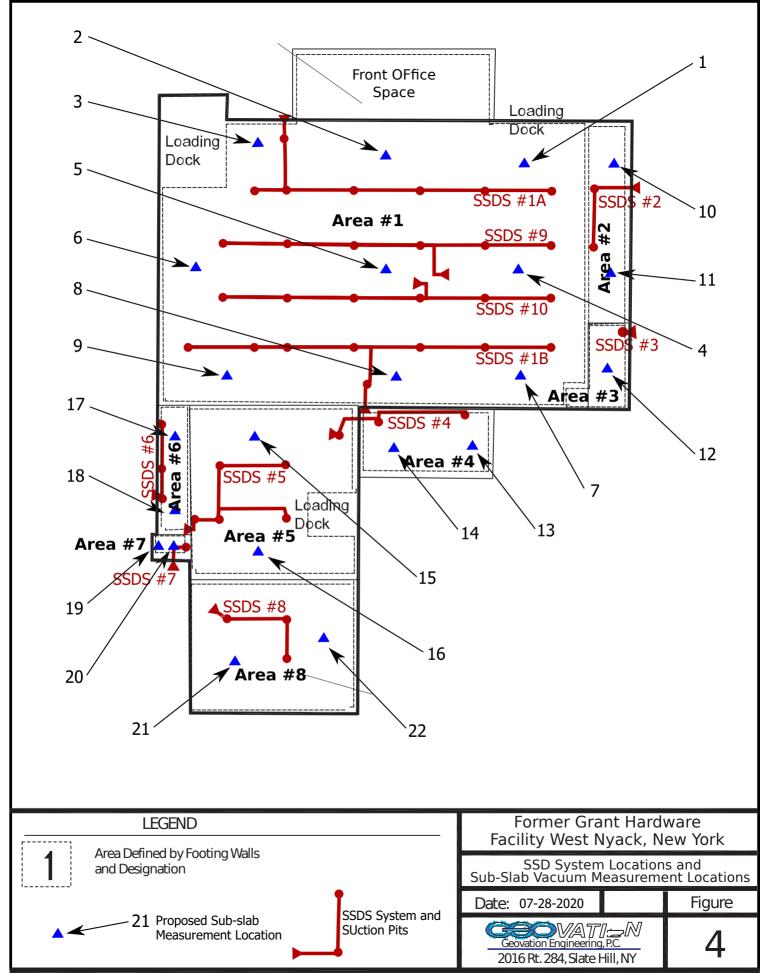
restrictions are lifted, joint and crack sealing will be continued and sub-slab measurements will be collected. Based on the data collected on indoor air quality, SSD System vacuum measurements, and sub-slab system measurements, the fan in Area 6, the "Reject Room" will be replaced in the General Bearing portion of the facility. Although a similar data set is not yet available for the Clancy-Cullen portion of the building, based on data collected to date, two fans will also be replaced in that portion of the facility at locations 7 and 8. An additional round of indoor air sampling is proposed to be conducted in the winter of 2021 to further evaluate the updates and system improvements described in this document.

Geovation appreciates the cooperation and assistance that has been provided by the NYSDEC on this project. If you need any additional information, please do not hesitate to contact me by phone at (845)-820-2344 or by e-mail at rzimmer@geovation.com.

Sincerely,


Robert Zimmer, P.G., P.E. Vice-President


Cc: David Gussack, Gussack Realty


Page 9 of 9

Figures

Tables

Table 1 – Comparison of 3/28/20 SSD System Vacuum Measurements to Original 3/28/2012 SSD System Measurements

Former Grant Hardware Facility – 44 High Street, West Nyack, NYSDEC# - 344031 Geovation Engineering, P.C.

SSD System No. (See Figure 4)	03/28/12 (inches H2O)	09/11/19 (inches H2O)	10/29/19 (inches H2O)	12/10/19 (inches H2O)	01/24/20 (inches H2O)	02/20/20 (inches H2O)	03/28/20 (inches H2O)	Notes:
	-	Gen	eral Bearir	g Controll	ed Areas			
1A	7.8	5.0	5.0	5.0	10.0	10.4	11.0	
1B	8.9	8.0	7.4	6.4	7.4	9.6	10.0	
2	1.8	2.1	2.1	2.1	2.1	2.1	2.1	
3	2.0	1.7	1.6	1.3	1.3	1.3	1.3	Basement - **
6	1.3	1.2	1.1	1.2	1.0	1.0	1.1	Reject Room - **
9	6.4	7.8	5.0	5.6	10.4	11.0	12.0	
10	19.0	13.0	13.0	13.0	17.0	17.0	17.0	
			Und	occupied				
4	2.3	2.4	2.8	*	2.4	2.4	2.4	
		Clan	cy-Cullen	s Control	ed Areas			
5	7.0	7.4	5.6	5.0	8.6	8.8	9.2	
7	1.8	1.2	1.2	1.2	1.1	1.4	1.4	Small Room - **
8	1.4	1.1	1.0	1.2	1.1	1.1	1.1	**

Notes:

* System Gauge not accessible to be Read

** System Being Evaluated for blower replacement

Table 2 – Comparison of 3/13/20 Sub-Slab Vacuum Measurements to Most Proximate Original 3/28/2012 Measurement

Former Grant Hardware Facility – 44 High Street, West Nyack, NYSDEC# - 344031 Geovation Engineering, P.C.

March 2020	March 2020	March 2012	March 2012
Sampling Location	Sub-Slab Vacuum	Nearest Sampling Location	Sub-Slab Vacuum
(See Figure 1)	Measurement (inches H2O)		Measurement (inches H2O)
1	1.376	29	0.012
2	2.333	27	0.084
3	1.502	22	0.097
4	1.849	19	0.061
5	3.966	21	0.124
6	0.360	22	0.097
7	0.083	19	0.061
8	3.083	16	0.019
9	0.054	17	0.013
10	0.231	24	0.042
11	8.570	20	0.048
12	0.593	NA	NA
13	0.083	10	0.024
14	0.012	10	0.024
15	NS	13.0	0.008
16	NS	8	0.157
17	0.148	14	0.025
18	0.104	6	0.160
19	NS	NA	NA
20	NS	NA	NA
21	NS	4	0.119
22	NS	2	0.012

Notes:

NS Not Sampled – Area Expansion Joint/Crack Sealing Not Yet Completed NA Not Applicable – Area Not Previously Sampled

TABLE 3 – Vapor Intrusion Sampling Results – Indoor Air 44 High Street, West Nyack, NY 03/28/2020 Former Grant Hardware Site, West Nyack, NY - Site # 344031 Geovation Engineering, P.C.

Parameter Detected	IA-601 (ug/m³)	IA-603 (ug/m³)	IA-604 (ug/m3)	IA-606 (ug/m³)	IA-607 (ug/m³)	IA-609 (ug/m³)	IA-611 (ug/m ³)	IA-613 (ug/m³)	IA-614 (ug/m ³)	IA-616 (ug/m³)	Roof-top HVAC 2020 (ug/m ³)	Outdoor Upwind 2020 (ug/m ³)	NYSDOH 1997 Home Database Indoor Air Mean	EPA 1988 National Indoor Air Mean	Detection Limit (ug/m^3)
Acetone	12	17.0	21	17	9.5	32.0	31.0	20	27	9	15	12		19	7.10
Allyl chloride	ND	ND	ND	ND	ND	ND			0.47						
Benzene	0.57	0.73	0.73	0.80	0.48	0.73	0.67	0.67	0.73	0.57	0.48	0.45	4.6	16	0.48
Benzyl Chloride	ND	ND	ND	ND	ND	ND			0.86						
Bromodichloromethane Bromoform	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	2.7 2.7	0.1 ND	1.00 1.60						
Bromomethane	ND	ND	ND	ND	ND	ND	0.6		0.58						
2-Butanone (methyl ethyl keytone)	1.00	1.5	1.6	1.8	0.83 J	4.2	1.70	1.20	1.4	1.1	0.9	0.74 J		27	0.88
1,3-butadiene	ND	ND	ND	ND	ND	ND			0.33						
Carbon Disulfide	0.34 J	0.56	0.47	0.53	ND	0.44 J	ND	ND	ND	ND	ND	ND			0.47
Carbon Tetrachloride**	0.63	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.63	0.57	0.57	2.2	2.5	0.19
Chlorobezene	ND	ND	ND	ND	ND	ND	2.0	0.2	0.69						
Chloroethane	ND	ND	ND	ND	ND	ND	2.8		0.40						
Chloroform Chloromethane (methyl chloride)	ND 0.81	0.63 J 0.83	1.1 0.85	0.59 J 0.72	ND 0.8	ND 0.8	ND 0.76	7.8 0.78	ND 0.83	ND 0.8	ND 0.81	ND 0.83	1.1	4.1	0.73
Cyclohexane	1.2	0.03 ND	ND	1.0	0.8	ND	1.0	0.76	0.03	0.0	1.0	0.83 0.48 J			0.52
Dibromochloromethane	ND	ND	ND	ND	ND	ND	2.7	ND	1.30						
1,2-Dibromoethane	ND	ND	ND	ND	ND	ND		0.01	1.20						
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	2.0	0.4	0.90						
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	2.1		0.61						
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	2.1	0.4	0.61						
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	0.7	79	0.16						
trans 1,2-Dichloroethene	ND	ND 0.24	ND 0.20	ND 0.00	ND	ND 0.46	ND 0.40	ND 0.50	ND 1.10	ND ND	ND	ND	4.5		0.59
cis 1,2-Dichloroethene 1,3-Dicholobenzene	ND ND	0.24 ND	0.20 ND	0.20 ND	ND ND	0.16 ND	0.40 ND	0.59 ND	1.10 ND	ND	ND ND	ND ND	2.0 2.1	 24	0.16
1,4-Dicholobenzene	ND	ND	ND	ND	ND	ND	9.2	24	0.90						
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	2.1		0.69						
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	2.2		0.68						
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	2.2		0.68						
1,4-Dioxane	ND	ND	ND	ND	ND	ND			1.10						
Ethylbenzene	ND	ND	ND	0.48 J	ND	ND	ND	ND	ND	ND	ND	ND	3.2	13	0.65
Ethyl Acetate	1.10	2.2	2.5	2.9	ND	0.47 J	0.8	0.7	1.1	ND	0.5	ND			0.54
4-Ethyltoluene Freon 11	ND 1.50	ND 1.5	ND 1.5	ND 1.5	ND 1.2	ND 4.2	ND 1.4	ND 1.4	ND 1.5	ND 16.0	ND 1.3	ND 1.2	2.1		0.74
Freon 113	1.50 ND	ND	ND	ND	ND	4.2 ND	ND	ND	ND	ND	ND	ND	1.0		1.10
Freon 114	ND	ND	ND	ND	ND	ND			1.00						
Freon 12	2.40	2.4	2.3	2.2	2.3	2.5	2.3	2.4	2.3	2.9	2.3	2.4	0.8		0.74
Heptane	0.57 J	1.3	1.1	1.3	ND	0.9	1.5	1.2	ND	ND	0.49 J	ND		5.2	0.81
Hexachloro-1,3-butadiene	ND	ND	ND	ND	ND	ND	1.2		1.60						
Hexane	0.49 J	0.9	0.92	0.99	ND	0.6	0.9	0.7	1.0	ND	ND	ND		2.0	0.53
Isopropyl alcohol	7.1	4.2	3.7	3.6	1.7	20.0	4.1	3.4	ND	2.6	6.4	1.3			0.37
Methyl Butyl Ketone Methyl Isobutyl Ketone	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND			1.20 1.20						
Methylene Chloride	0.69	0.69	0.7	0.7	0.63	0.69	0.6	0.7	0.59	0.6	0.6	0.6	13		0.52
MTBE (Methyl-tert-butyl-ether)	ND	ND	ND	ND	ND	ND			0.54						
Propylene	ND	ND	ND	ND	ND	ND			0.26						
Styrene	ND	ND	ND	ND	ND	ND	2.2	6.0	0.64						
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	1.9	0.1	1.00						
Tetrachloroethene (PCE)**	1.0	0.75 J	0.75 J	0.75 J	ND	1.4	0.75 J	1.1	2.0	1.8	ND	ND	5	21	1.00
Tetrahydrofuran (THF) Toluene	ND 1.10	ND 2.3	ND 1.8	ND 2.1	ND 0.57	ND 1.50	ND 1.3	ND 1.5	ND 1.5	ND 0.6	ND 1.10	ND 0.45 J		 ND	0.44
1,1,1-Trichloroethane**	1.10 ND	Z.3 ND	1.8 ND	Z.1 ND	0.57 ND	1.50 ND	1.3 ND	1.5 ND	1.5 ND	0.6 ND	1.10 ND	0.45 J ND	9.2	270	0.57
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	1.7		0.82						
Trichloroethene (TCE)**	1.10	3.2	3.2	3.2	0.54	3.6	4.2	6.0	12.0	4.1	0.81	ND	2.2	7.2	0.02
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	2.3		1.10						
1,2,4-Trimethylbenzene	0.7	1.3	1.3	1.3	ND	0.54 J	ND	0.9	0.69 J	ND	ND	ND	6.3	2.8	0.74
1,3,5-Trimethylbenzene	ND	0.54 J	0.64 J	0.64 J	ND	0.54 J	ND	ND	ND	ND	ND	ND	3.0	4.5	0.74
2,2,4-trimethylpentane	ND	0.61 J	0.56 J	0.65 J	ND	ND	0.51 J	0.51 J	0.61 J	ND	ND	ND			0.70
m,p-Xylene	0.74 J	1.7	1.6	1.8	ND	0.87 J	1.2 J	1.2 J	0.96 J	ND	ND	ND	7.4	39	1.30
O-Xylene Vinyl Acetate	ND ND	0.9 ND	0.8 ND	0.91 ND	ND ND	ND ND	0.52 J ND	0.48 J ND	ND ND	ND ND	ND ND	ND ND	3.7	12	0.65 0.53
Vinyl Acetate Vinyl Bromide	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND			0.53						
Vinyl Chloride	ND	ND	ND	ND	ND	ND	0.7		0.00						
Total VOCs	35	47	50	48	20	77	56	55	57	41	32	20	138	579	0.10
					0.54	5.16	5.35	7.69	15.10	5.90	0.81				-

HD Not detected above the method detection limits.
 Parameter not included in comparative background concentration databases.
 ** Parameter specified in NYSDOH Decision Matrices

Attachment A

Industrial

Church

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Robe	rt Zimmer		Date/Time I	Prepared _	3/13/2020
Preparer's Affiliation Co	nsultant		Phone No	(845) 69	97-5100
Purpose of Investigation	Indoor Air Inst	rusion Surve	ey		
1. OCCUPANT:					
Interviewed: Y / N					
Last Name: Azevedo		First Name: _	Richard		
Address: General Bear	ing, 44 High St	reet West N	yack, NY 1099	4	
County: Rockland					
Home Phone:	Offic	ce Phone: (84	45) 535-8418		
Number of Occupants/pers					
2. OWNER OR LANDLO Interviewed: YN					
Last Name:					
Address:					
County:					
Home Phone:	Offi	ce Phone:			
3. BUILDING CHARAC	TERISTICS				
Type of Building: (Circle	appropriate respon	nse)			
Residential	School	Commerc	ial/Multi-use		

Other:

Industrial

Church

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Robe	ert Zimmer		Date/Time	Prepared _	3/13/2020
Preparer's Affiliation <u>Co</u>	onsultant		Phone No	(845) 69	7-5100
Purpose of Investigation	Indoor Air Instr	rusion Survey	/		
1. OCCUPANT:					
Interviewed: Y / N					
Last Name: Rutenburg	<u> </u>	First Name:	Tyler		
Address: Clancy-Culle	n, 44-A High Str	eet West Nya	ack, NY 1099	4	
County: Rockland					
Home Phone:	Offic	e Phone: (607) 437-0788		
Number of Occupants/pers	sons at this locatior	n_2A	ge of Occupan	ts <u>35</u>	
2. OWNER OR LANDLO Interviewed: YN	ORD: (Check if sa	ame as occupar	nt)		
Last Name:]	First Name:			
Address:					
County:					
Home Phone:	Offic	ce Phone:			
3. BUILDING CHARAC	TERISTICS				
Type of Building: (Circle	appropriate respon	nse)			
Residential	School	Commercia	al/Multi-use		

Other:

If the property is residential, type? (Circle appropriate response)

Ranch	2-Family	3-Family
Raised Ranch	Split Level	Colonial
Cape Cod	Contemporary	Mobile Home
Duplex	Apartment House	Townhouses/Condos
Modular	Log Home	Other:

If multiple units, how many? _____

If the property is commercial, type?

	General Bearing - Warehousing, Inspection, Shipping, Receiving of Ball Bearings
Business Type(s)	Clancy-Cullen - Storage of Office, Library, and Electronics

Ν

Does	it	include	residences	(i.e.,	multi-use)?	Y
				(,		-

If yes, how many? _____

Other characteristics:

Number of floors 1	
--------------------	--

Is the building insulated Y N

Building age_	Approx.	. 60 year	ſS
How air tight?	Tight	Average	Not Tight

4. AIRFLOW

Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:

Airflow between floors

Airflow near source

Outdoor air infiltration

Infiltration into air ducts

3

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construction:	wood frame	concrete	stone	brick
b. Basement type:	full	crawlspace	slab	other Partial (5%
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with	
e. Concrete floor:	unsealed	sealed	sealed with	
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with	
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partially finish	ned
j. Sump present?	Y/V			
k. Water in sump?	N / not applicable			
Basement/Lowest level depth belo	w grade: 10'	(feet)		

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

Existing sump is sealed and basement area has a sub-slab depressurization system installed

as part of the vapor mitigation measures installed at this facility

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply – note primary)

Hot air circulation Space Heaters Electric baseboard	Heat p Stream Wood	radiation	Hot water baseboard Radiant floor Outdoor wood boiler	Other Steam
The primary type of fuel used	ł is:			
Natural Gas Electric Wood	Fuel O Propar Coal		Kerosene Solar	
Domestic hot water tank fuel	ed by:			
Boiler/furnace located in:	Basement	Outdoors	Main Floor	Other
Air conditioning:	Central Air	Window units	Open Windows	None
Roof mou	unted units for	r office area, v	varehouse area unit	s use interior air

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

7. OCCUPAN	NCY					
Is basement/lo	Almost Never					
Level	General Use of Each	<u>Floor (e.g., fa</u>	milyroom, bedro	oom, laundry	v, workshop, storage)	
Basement	Unoccupied Stora	ge				
1 st Floor	Offices, warehousing, storage					
2 nd Floor	Offices					
3 rd Floor	None					
4 th Floor						

8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

a. Is there an attached garage?	(N) Loading Docks
b. Does the garage have a separate heating unit?	Y / N / NA
c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)	Y / N / NA Please specify
d. Has the building ever had a fire?	2016 Office electrical fire YN When?
e. Is a kerosene or unvented gas space heater present?	Y Where?
f. Is there a workshop or hobby/craft area?	Y / N Where & Type?
g. Is there smoking in the building?	Y N How frequently?
h. Have cleaning products been used recently?	Y / N When & Type?
i. Have cosmetic products been used recently?	Y / N When & Type?

5 j. Has painting/staining been done in the last 6 mon	ths? YN	February 2	llen painted office in 2020 nen?
k. Is there new carpet, drapes or other textiles?	Y / N		nen?
l. Have air fresheners been used recently?	Y / N	When & Typ	e?
m. Is there a kitchen exhaust fan?	Y / N	If yes, where	vented?
n. Is there a bathroom exhaust fan?	Y / N	If yes, where	vented?
o. Is there a clothes dryer?	Y / N	If yes, is it ve	ented outside? Y / N
p. Has there been a pesticide application?	Y / N	When & Typ	e?
Are there odors in the building? I fyes, please describe:	YN	Hydrocarb	on odor
Do any of the building occupants use solvents at work (e.g., chemical manufacturing or laboratory, auto mechan boiler mechanic, pesticide application, cosmetologist		shop, painting	g, fuel oil delivery,
If yes, what types of solvents are used?			
If yes, are their clothes washed at work?	Y / N		
Do any of the building occupants regularly use or wor response)	k at a dry-clea	ning service?	(Circle appropriate
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or le Yes, work at a dry-cleaning service	ess)	No Unknown	
Is there a radon mitigation system for the building/str Is the system active or passive? Active/assive	uctur ?Y/)	Date of Insta	llation: March 2012
9. WATER AND SEWAGE			
Water Supply: Public Water Drilled Well	Driven Well	Dug Well	Other:
Sewage Disposal: Public Sewer Septic Tank	Leach Field	Dry Well	Other:
10. RELOCATION INFORMATION (for oil spill resi	idential emerge	ency)	
a. Provide reasons why relocation is recommended	1:		
b. Residents choose to: remain in home relocate	to friends/fami	ly reloc	ate to hotel/motel
c. Responsibility for costs associated with reimbur	sement explair	ned? Y / N	1
d. Relocation package provided and explained to 1	esidents?	Y / N	1

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: Mini Ray-3000

List specific products found in the residence that have the potential to affect indoor air quality.

<u> </u>						
Location	Product Description	Size (units)	Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
	See attached Table					
4						

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Attachment 1 - MSDS LIST

PRODUST NAME	MANUFACTURER	PID Reading (PPM)	USE
LMX (LX41) Grease	Castrol	<4.5	Mobil Grease Table
Keldri – Area 6	Ashland (NE Products Co.)	30-80	Bearing Inspection Machines
Isopar M – Area 6	Exxon USA	31-42	Bearing Inspection Machines
Ferracote 5856 – Area 6	Quaker Chemical	10-12	Bearing Inspection Machines
Emgard EPS Transmission Fluid	Emgard	<4.5	Maintenance of Engineering Machines
Valvoline AT4 Transmission Fluid	Valvoline	<4.5	Maintenance of Engineering Machines
Dextron VI Synthetic	Valvoline	<4.5	Maintenance of Engineering Machines
Krytox GPL 240 & GPL 20 Grease	Dupont	<4.5	Maintenance of Engineering Machines
Mobil DTE 21 Hydraulic Oil	Mobil	<4.5	Maintenance of Engineering Machines
Mobil DTE 24 Hydraulic Oil	Mobil	<4.5	Maintenance of Engineering Machines
5% Hydrogen Peroxide	FMC Corporation	<4.5	3D Printer
ATF-94-A	Phillips 66 Lubricants	<4.5	Maintenance of Engineering Machines
Heavy Duty Cleaner & Degreaser	Safety-Kleen	<4.5	General Cleaning
Astro-Clean HD	Monroe Fluid Technology	<4.5	General Cleaning
Tec464S Superb Purple	ECP Incorporated	<4.5	Floor Cleaning Machines
Polyurethane	Andrews	<4.5	Maintenance of Engineering Machines
CFX-2	Lectroetch	<4.5	Maintenance of Engineering Machines
Triadine 10	Arch	<4.5	Maintenance of Engineering Machines
Armakleen M-GC	Armakleen	<4.5	Maintenance of Engineering Machines
Shellsol (Naphtha)	Shell	<4.5	Maintenance of Engineering Machines

PRODUST NAME	MANUFACTURER	PID Reading (PPM)	USE
Gadus S2 High Speed Coupling Grease	Shell	<4.5	Maintenance of Engineering Machines
R-100 Coolant	Hangsterfers	<4.5	Maintenance of Engineering Machines
Waste Hydraulic Fluid		<4.5	Maintenance of Engineering Machines
Brakleen - Non-Chlorinated	CRC	<4.5	Not Used
Heavy Duty Silicon Lubricant	CRC	<4.5	Not Used
Power Lubricant	CRC	<4.5	Not Used
BOT 248 Plus	Castrol	<4.5	Maintenance of Engineering Machines
BOT 252BL	Castrol	<4.5	Maintenance of Engineering Machines
Zep - TKO	ZepInc	<4.5	Maintenance of Engineering Machines
Kleen-Strip Acetone	W.M. Barr	<4.5	Maintenance of Engineering Machines
Acetone (2-propanone)	W.M. Barr	<4.5	Maintenance of Engineering Machines
Kleen-Strip Brush Cleaner	W.M. Barr	<4.5	Maintenance
AW 46 Hydraulic Oil	Gulf	<4.5	Maintenance of Engineering Machines
General Purpose Cleaner	Safety-Kleen	<4.5	Maintenance of Engineering Machines
Magnaflux Mineral Oil	Magnaflux	<4.5	Maintenance of Engineering Machines

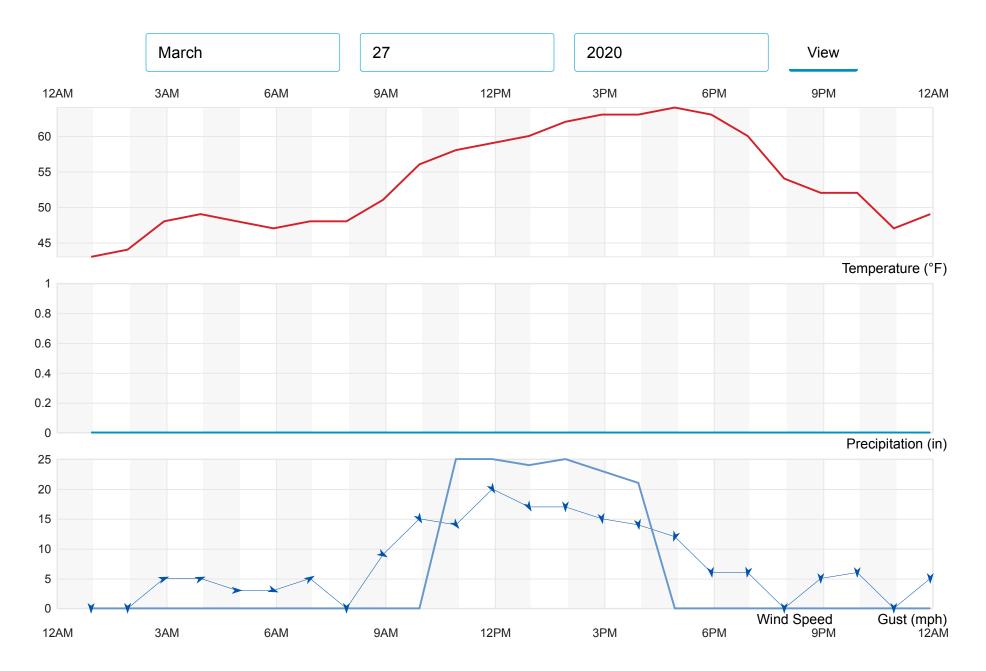
Notes: Background PID readings in Chemical Storage Area and most of the warehouse space = 4.5 ppm, PID readings collected from immediate proximity to containers as they were stored, either open or closed. Bulk packaged bearings in exhibited PID readings of 60-to-175 ppm inside their packaging.

Attachment B

Search Locations

 \star

Recent Cities West Nyack, NY (weather/us/ny/west-nyack/41.10,-73.97)


41.04 °N, 73.76 °W

Harrison, NY Weather History \bigstar \bigstar $\stackrel{45^{\circ}}{\longrightarrow}$ WESTCHESTER COUNTY AIRPORT STATION (/WEATHER/US/NY/HARRISON /KHPN?CM_VEN=LOCALWX_PWSDASH) | CHANGE \checkmark

HISTORY (/HISTORY/DAILY/US/NY/HARRISON/KHPN)

- TODAY (/WEATHER/US/NY/HARRISON/KHPN)
- HOURLY (/HOURLY/US/NY/HARRISON/KHPN)
- 10-DAY (/FORECAST/US/NY/HARRISON/KHPN)
- CALENDAR (/CALENDAR/US/NY/HARRISON/KHPN)
- HISTORY (/HISTORY/DAILY/US/NY/HARRISON/KHPN)
- WUNDERMAP (/WUNDERMAP?LAT=41.04&LON=-73.76)

		<u>Monthly</u>
Daily (/history	Weekly (/history	(/history
/daily/us/ny	/weekly/us/ny	/monthly/us/ny
/harrison	<u>/harrison</u>	/harrison
/KHPN/date	/KHPN/date	/KHPN/date
/2020-3-27)	<u>/2020-3-27)</u>	<u>/2020-3)</u>

Summary

Temperature (°F)	Actual	Historic Avg.	Record	
High Temp	64	51	81	
Low Temp	43	33	19	
Day Average Temp	53.67	42	-	
Precipitation (Inches)	Actual	Historic Avg.	Record	
Precipitation (past 24 hours from 04:56:00)	0.00	0.17	-	
Dew Point (° F)	Actual	Historic Avg.	Record	
Dew Point	30.96	-	-	
High	42	-	-	
Low	19	-	-	
Average	30.96	-	-	
Wind (MPH)	Actual	Historic Avg.	Record	
Max Wind Speed	20	-	-	
Visibility	10	-	-	
Sea Level Pressure (Hg)	Actual	Historic Avg.	Record	
Sea Level Pressure	29.59	-	-	
Astronomy	Day Length	Rise	Set	•

Temperature (° F)	Actual	Historic Avg.	Record	
Actual Time	12h 28m	6:47 AM	7:15 PM	
Civil Twilight		6:19 AM	7:43 PM	
Nautical Twilight		5:47 AM	8:15 PM	
Astronomical Twilight		5:13 AM	8:49 PM	
Moon: waxing crescent		8:34 AM	10:28 PM	

Daily Observations

Time	Temperature	Dew Point	Humidity	Wind	Wind Speed	Wind Gust	Pressure	Precip.	Condition
12:56 AM	43 °F	39 °F	86 %	CALM	0 mph	0 mph	29.32 in	0.0 in	Fair
1:56 AM	44 °F	40 °F	85 %	CALM	0 mph	0 mph	29.31 in	0.0 in	Fair
2:56 AM	48 °F	40 °F	74 %	WSW	5 mph	0 mph	29.30 in	0.0 in	Cloudy
3:56 AM	49 °F	40 °F	71 %	WSW	5 mph	0 mph	29.28 in	0.0 in	Mostly Cloudy
4:56 AM	48 °F	40 °F	74 %	W	3 mph	0 mph	29.28 in	0.0 in	Fair
5:56 AM	47 °F	40 °F	77 %	WNW	3 mph	0 mph	29.27 in	0.0 in	Cloudy
6:56 AM	48 °F	41 °F	77 %	WSW	5 mph	0 mph	29.29 in	0.0 in	Mostly Cloudy
7:56 AM	48 °F	42 °F	80 %	CALM	0 mph	0 mph	29.29 in	0.0 in	Mostly Cloudy
8:56 AM	51 °F	41 °F	68 %	WNW	9 mph	0 mph	29.32 in	0.0 in	Partly Cloudy
9:56 AM	56 °F	41 °F	57 %	NNW	15 mph	0 mph	29.33 in	0.0 in	Fair
10:56 AM	58 °F	38 °F	47 %	NW	14 mph	25 mph	29.36 in	0.0 in	Fair
11:56 AM	59 °F	29 °F	32 %	NNW	20 mph	25 mph	29.37 in	0.0 in	Fair

Time	Temperature	Dew Point	Humidity	Wind	Wind Speed	Wind Gust	Pressure	Precip.	Condition
12:56 PM	60 °F	27 °F	28 %	NNW	17 mph	24 mph	29.37 in	0.0 in	Fair
1:56 PM	62 °F	23 °F	22 %	Ν	17 mph	25 mph	29.38 in	0.0 in	Fair
2:56 PM	63 °F	26 °F	25 %	Ν	15 mph	23 mph	29.37 in	0.0 in	Fair
3:56 PM	63 °F	23 °F	22 %	Ν	14 mph	21 mph	29.38 in	0.0 in	Fair
4:56 PM	64 °F	22 °F	20 %	NNE	12 mph	0 mph	29.38 in	0.0 in	Fair
5:56 PM	63 °F	22 °F	21 %	Ν	6 mph	0 mph	29.40 in	0.0 in	Fair
6:56 PM	60 °F	19 °F	20 %	Ν	6 mph	0 mph	29.45 in	0.0 in	Fair
7:56 PM	54 °F	23 °F	30 %	CALM	0 mph	0 mph	29.47 in	0.0 in	Fair
8:56 PM	52 °F	23 °F	32 %	Ν	5 mph	0 mph	29.52 in	0.0 in	Fair
9:56 PM	52 °F	20 °F	28 %	Ν	6 mph	0 mph	29.55 in	0.0 in	Fair
10:56 PM	47 °F	23 °F	39 %	CALM	0 mph	0 mph	29.57 in	0.0 in	Fair
11:56 PM	49 °F	21 °F	33 %	Ν	5 mph	0 mph	29.59 in	0.0 in	Fair

Our Apps (/download)

About Us (/about/our-company)

Contact (/about/contact-us)

Careers (http://ibm.biz/BdH3av)

PWS Network (/pws/overview)

WunderMap (/wundermap)

Feedback & Support (https://www.wunderground.com/feedback)

Terms of Use (/company/legal)

Privacy Policy (/company/privacy-policy)

AdChoices (/company/ad-choices)

Ad Partners (/company/ad-partners)

Analytics Partners (/company/analytics-partners)

(https://www.essentialaccessibility.com/the-weather-channel?utm_source=theweatherchannelhomepage&utm_medium=iconlarge& utm_term=eachannelpage&utm_content=header&utm_campaign=theweatherchannel)

We recognize our responsibility to use data and technology for good. Take control of your data.

Privacy Settings (/privacy-settings) Review My Advertising Settings (/privacy-settings#do-not-sell) Data Rights (/data-rights)

Powered by the IBM Cloud (https://www.ibm.com/cloud/)

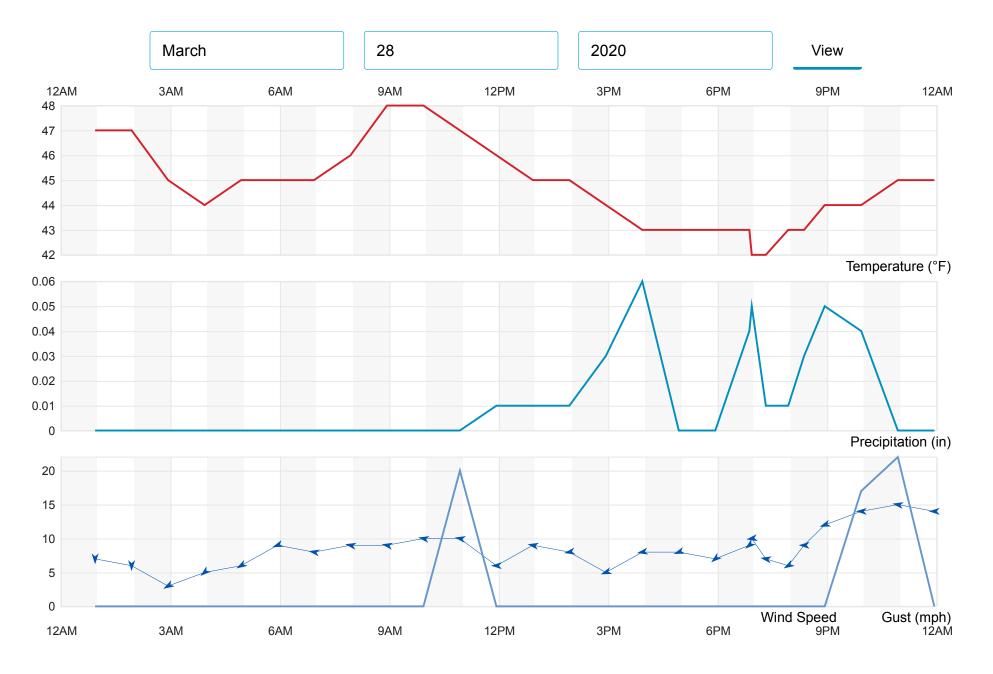
_		
	_	
		/

© Copyright TWC Product and Technology LLC 2014, 2020

Search Locations

★ 『

Recent Cities West Nyack, NY (weather/us/ny/west-nyack/41.10,-73.97)


41.04 °N, 73.76 °W

HISTORY (/HISTORY/DAILY/US/NY/HARRISON/KHPN)

- TODAY (/WEATHER/US/NY/HARRISON/KHPN)
- HOURLY (/HOURLY/US/NY/HARRISON/KHPN)
- 10-DAY (/FORECAST/US/NY/HARRISON/KHPN)
- CALENDAR (/CALENDAR/US/NY/HARRISON/KHPN)
- HISTORY (/HISTORY/DAILY/US/NY/HARRISON/KHPN)
- WUNDERMAP (/WUNDERMAP?LAT=41.04&LON=-73.76)

		Monthly
Daily (/history	Weekly (/history	<u>(/history</u>
/daily/us/ny	/weekly/us/ny	/monthly/us/ny
/harrison	/harrison	/harrison
/KHPN/date	/KHPN/date	/KHPN/date
/2020-3-28)	<u>/2020-3-28)</u>	<u>/2020-3)</u>

Summary

Temperature (° F)	Actual	Historic Avg.	Record	•
High Temp	48	51	80	
Low Temp	42	33	19	
Day Average Temp	44.7	42	-	
Precipitation (Inches)	Actual	Historic Avg.	Record	
Precipitation (past 24 hours from 04:56:00)	0.00	0.16	-	
Dew Point (° F)	Actual	Historic Avg.	Record	
Dew Point	32.41	-	-	
High	43	-	-	
Low	21	-	-	
Average	32.41	-	-	
Wind (MPH)	Actual	Historic Avg.	Record	
Max Wind Speed	15	-	-	
Visibility	10	-	-	
Sea Level Pressure (Hg)	Actual	Historic Avg.	Record	
Sea Level Pressure	29.67	-	-	
Astronomy	Day Length	Rise	Set	•

Temperature (° F)	Actual	Historic Avg.	Record	
Actual Time	12h 31m	6:45 AM	7:16 PM	
Civil Twilight		6:17 AM	7:44 PM	
Nautical Twilight		5:45 AM	8:17 PM	
Astronomical Twilight		5:11 AM	8:50 PM	
Moon: waxing crescent		9:02 AM	11:29 PM	

Daily Observations

Time	Temperature	Dew Point	Humidity	Wind	Wind Speed	Wind Gust	Pressure	Precip.	Condition
12:56 AM	47 °F	21 °F	36 %	Ν	7 mph	0 mph	29.59 in	0.0 in	Fair
1:56 AM	47 °F	22 °F	37 %	Ν	6 mph	0 mph	29.60 in	0.0 in	Fair
2:56 AM	45 °F	22 °F	40 %	ENE	3 mph	0 mph	29.61 in	0.0 in	Fair
3:56 AM	44 °F	21 °F	40 %	NE	5 mph	0 mph	29.59 in	0.0 in	Fair
4:56 AM	45 °F	23 °F	42 %	ENE	6 mph	0 mph	29.59 in	0.0 in	Fair
5:56 AM	45 °F	23 °F	42 %	ENE	9 mph	0 mph	29.62 in	0.0 in	Fair
6:56 AM	45 °F	24 °F	44 %	E	8 mph	0 mph	29.61 in	0.0 in	Mostly Cloudy
7:56 AM	46 °F	24 °F	42 %	E	9 mph	0 mph	29.62 in	0.0 in	Fair
8:56 AM	48 °F	24 °F	39 %	E	9 mph	0 mph	29.65 in	0.0 in	Fair
9:56 AM	48 °F	23 °F	37 %	E	10 mph	0 mph	29.65 in	0.0 in	Cloudy
10:56 AM	47 °F	24 °F	41 %	E	10 mph	20 mph	29.64 in	0.0 in	Cloudy
11:56 AM	46 °F	32 °F	58 %	E	6 mph	0 mph	29.67 in	0.0 in	Light Rain

Time	Temperature	Dew Point	Humidity	Wind	Wind Speed	Wind Gust	Pressure	Precip.	Condition
12:56 PM	45 °F	35 °F	68 %	E	9 mph	0 mph	29.64 in	0.0 in	Light Rain
1:56 PM	45 °F	35 °F	68 %	E	8 mph	0 mph	29.64 in	0.0 in	Light Rain
2:56 PM	44 °F	37 °F	76 %	ENE	5 mph	0 mph	29.63 in	0.0 in	Light Rain
3:56 PM	43 °F	38 °F	82 %	E	8 mph	0 mph	29.59 in	0.1 in	Mostly Cloudy
4:56 PM	43 °F	38 °F	82 %	ENE	8 mph	0 mph	29.57 in	0.0 in	Cloudy
5:56 PM	43 °F	37 °F	80 %	NE	7 mph	0 mph	29.59 in	0.0 in	Mostly Cloudy
6:52 PM	43 °F	39 °F	87 %	NE	9 mph	0 mph	29.59 in	0.0 in	Rain
6:56 PM	42 °F	39 °F	89 %	E	10 mph	0 mph	29.59 in	0.1 in	Rain
7:19 PM	42 °F	40 °F	92 %	E	7 mph	0 mph	29.59 in	0.0 in	Light Rain
7:56 PM	43 °F	41 °F	93 %	ENE	6 mph	0 mph	29.59 in	0.0 in	Light Rain
8:22 PM	43 °F	42 °F	97 %	E	9 mph	0 mph	29.59 in	0.0 in	Light Rain
8:56 PM	44 °F	43 °F	96 %	ENE	12 mph	0 mph	29.59 in	0.1 in	Light Rain
9:56 PM	44 °F	42 °F	93 %	E	14 mph	17 mph	29.58 in	0.0 in	Light Rain
10:56 PM	45 °F	43 °F	93 %	E	15 mph	22 mph	29.55 in	0.0 in	Light Rain
11:56 PM	45 °F	43 °F	93 %	E	14 mph	0 mph	29.55 in	0.0 in	Light Rain

Our Apps (/download)

About Us (/about/our-company)

Contact (/about/contact-us)

Careers (http://ibm.biz/BdH3av)

PWS Network (/pws/overview)

WunderMap (/wundermap)

Feedback & Support (https://www.wunderground.com/feedback)

Terms of Use (/company/legal)

Privacy Policy (/company/privacy-policy)

AdChoices (/company/ad-choices)

Ad Partners (/company/ad-partners)

Analytics Partners (/company/analytics-partners)

(https://www.essentialaccessibility.com/the-weather-channel?utm_source=theweatherchannelhomepage&utm_medium=iconlarge& utm_term=eachannelpage&utm_content=header&utm_campaign=theweatherchannel)

We recognize our responsibility to use data and technology for good. Take control of your data.

Privacy Settings (/privacy-settings) Review My Advertising Settings (/privacy-settings#do-not-sell) Data Rights (/data-rights)

Powered by the IBM Cloud (https://www.ibm.com/cloud/)

© Copyright TWC Product and Technology LLC 2014, 2020

Attachment C

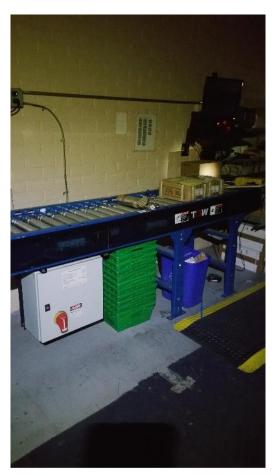
Sub-Slab Depressurization System Inspection Form

Site: Former Grant Hardware Site Sjte ID# 344031	
Date: $3/28/20$ Time: $08:c0 \rightarrow 09:15$	
Reason for Inspection: (e.g. Annual , system repair, etc.):	
Sub-Slab Depressurization System (SSDS) 1A: Operational: Vac: 1 Leaks noted in piping: No SSDS labels In-place:	
No air intakes installed within 10 feet of SSDS exhaust:	
Leaks noted in piping: SSDS labels In-place: No air intakes installed within 10 feet of SSDS exhaust:	
Sub-Slab Depressurization System (SSDS) 6: Operational:Vac:L Leaks noted in piping:N ø SSDS labels In-place:	
No air intakes installed within 10 feet of SSDS exhaust:	
No air intakes installed within 10 feet of SSDS exhaust:	
No air intakes installed within 10 feet of SSDS exhaust:	
No air intakes installed within 10 feet of SSDS exhaust:	_
Leaks noted in piping:O o SSDS labels in-place: No air intakes installed within 10 feet of SSDS exhaust:	-

I hereby certify that the above SSDSs installed at this site are operational and that required system repairs have been completed.

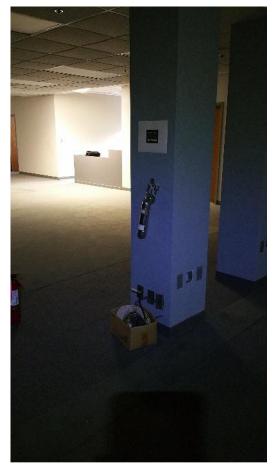
Name: mm Date: Signature: Manze Title:_

Sub-Slab Soil Gas Sampling	g and Indoor Air Sar	npling Log
Date: B 28 20 Location Time of Start of Test: 08=00 Summa	n: 609	
Time of Start of Test: 08-00 Summa	Canister Vac Reading:	730
Tracer Gas Testing (Pass/Fail): E Time Test Stopped:5-5-4 Summa	Background PID Reading:	0.2
Time Test Stopped:5:54 Summ	a Canister Vac Reading:	8
Date: $3/28/20$ Location Time of Start of Test: $08:03$ Summa Tracer Gas Testing (Pass/Fail):	n. (1U	U
Time of Start of Test: (18:03 Summa	Canister Vac Reading	730
Tracer Gas Testing (Pass/Fail):	Background PID Reading:	0.2
Summaria Summaria Summaria	a Canister Vac Reading:	
Date: $3/28/20$ Location Time of Start of Test: $08 \div 08$ Summa Tracer Gas Testing (Pass/Fail):	(1)	11
Time of Start of Test: $O(X)$ Location	n: <u>611</u>	>30
Tracer Gas Testing (Pass/Fail):	Background PID Reading:	0.2
Time Test Stopped:S:Summa	a Canister Vac Reading:	10
Date: 3/26/2	C	-10
Date: $3/28/20$ Time of Start of Test: $08:/5$ Tracer Gas Testing (Pass/Fail):	$\frac{n!}{Conjection V} = \frac{607}{D}$	20
Tracer Gas Testing (Pass/Fail): E	Canister Vac Reading:	150
Time Test Stopped: 6-1 Summa	a Canister Vac Reading:	0.2
	/	-1a
Date: $3/28/20$ Time of Start of Test: $08=23$ Tracer Gas Testing (Pass/Fail):	n: 66	
Tracer Gas Testing (Page/Fail)	Canister Vac Reading:	30
Tracer Gas Testing (Pass/Fail): E Time Test Stopped:6 - 18 Summa	ackground PID Reading.	2
	a Callister vac Reading:	<u> </u>
Date: $3/28/20$ Locatio Time of Start of Test: $08-25$ Summa	n:606	
Time of Start of Test: 08-25 Summa	Canister Vac Reading:	30
Tracer Gas Testing (Pass/Fail):	ackground PID Reading:	1.9
	Canister Vac Reading:	-7
Date: 3/28/20 Locatio	n: <u>603</u>	•
	Canister Vac Reading:	>30
	ackground PID Reading:	2.5
Time Test Stopped: <u><u><u></u><u><u></u><u><u></u><u></u><u></u><u><u></u><u></u><u><u></u><u></u><u></u><u><u></u></u><u></u><u></u><u></u><u></u></u></u></u></u></u></u>	Canister Vac Reading:	10
Data: 2/07/20	PCL INAC	
Date: $3/28/20$ Location Time of Start of Test: $08=39$ Summa	n: Koltop HVAC	2020
	Canister Vac Reading:ackground PID Reading:	130
	Canister Vac Reading:	0.5
	. Cumbion vac reading,	
Date: $3/28/20$ Location Time of Start of Test: $08=47$ Summa	n: 60	
	Canister Vac Reading:	>30
Tracer Gas Testing (Pass/Fail): B	ackground PID Reading:	0.7
Time Test Stopped:6:40Summa	Canister Vac Reading:	<u> </u>
		1


Sub-Slab Soil Gas Sampling and Indoor Air Sampling Log

,	
Date: 3/28/20	Location: 604
Time of Start of Test: 08:5	Summa Canister Vac Reading: 730
Tracer Gas Testing (Pass/Fail):	- Background PID Reading:
Time Test Stopped:6:54	Summa Canister Vac Reading:
Date: 3/28/20	Location:613
Time of Start of Test: 08:59	Summa Canister Vac Reading: > 30
Tracer Gas Testing (Pass/Fail):	— Background PID Reading:
Time Test Stopped: 16:55	Summa Canister Vac Reading:
a laclas	
Date: $3/38/20$ Time of Start of Test: 09311	Location: Outdoor Upwind
	Summa Canister Vac Reading:
Tracer Gas Testing (Pass/Fail):	- Background PID Reading: 0.2
Time Test Stopped: 7:08	_Summa Canister Vac Reading:5
Date:	Location:
Time of Start of Test:	Summa Canister Vac Reading:
	Background PID Reading:
	Summa Canister Vac Reading:
Date:	Location:
Time of Start of Test:	Summa Canister Vac Reading:
Tracer Gas Testing (Pass/Fail):	Background PID Reading:
Time Test Stopped:	_Summa Canister Vac Reading:
	T 24 200
Date:	Location: Summa Canister Vac Reading:
Time of Start of Test:	
	Background PID Reading: Summa Canister Vac Reading:
Time Test Stopped:	_ Summa Camster vac Reading
Deter	Location:
Date:	Summa Canister Vac Reading:
Time of Start of Test	Background PID Reading:
Time Test Stopped:	Summa Canister Vac Reading:
Time Test Stopped.	
Date:	Location:
Time of Start of Test	Summa Canister Vac Reading:
Tracer Gas Testing (Pass/Fail):	Background PID Reading:
Time Test Stopped:	Summa Canister Vac Reading:
	T
Date:	Location:
Time of Start of Tost:	Summa Canister Vac Reading:
Tracer Gas Testing (Pass/Fail):	Background PID Reading:
Time Test Stopped:	Summa Canister Vac Reading:





Roof Top HVAC

616

Outdoor Upwind

Attachment D

Attachment E

Laboratory Data Validation Form

Laboratory Case Number: <u>CQ04002</u>
Date Sampled:
Date Sample(s) Received by Laboratory: 4/1/20
Media Sampled: Air Thoor
Field Sampling Method: I Har Same Commisters
Oversight Agency:
Laboratory Utilized and Certification Number: Caulek - 11830
Reporting Package Required:
Was chain of custody included in data package & completed correctly:
Were requested methods and QA/QC performed by lab:
Were holding times exceeded:
Were all data values within instrument calibration ranges:
Are all data reporting forms complete for all samples submitted including sample dilution
data and sample cleanup procedures?
Were any problems encountered during the analytical process reported by the laboratory?

I have reviewed the above referenced laboratory data package and by my signature below, state that Geovation's Data Validation procedures have been followed and the data complies with Geovation's Data Validation Criteria.

Signed:

20 Date:

Notes (detailed information regarding responses above, as necessary):

BURNE 607 6.5 Chot

Project No:	Grm2 2020	Screener		Oate:	4/28/20
Project Name:		Reviewer:	RLZ.	Date:	4125/26
SDG/Package:	Center Cao	MORQ			117

MODULE A: COMPLETENESS AND HOLDING TIME CHECKLIST

1.0 Chain-of-Custody					Y	N	N/A
1.1 Are all Chain-of-Custody (COC) forms included in dat	la package?			X.		
1.2 Were COC forms property	signed and dated?				TY I		1
1.3 Was sample container temp	erature recorded on COC f	orm (or other) by laboratory?					X
1.4 Is the recorded temperature	within control limits (4°C	12°C) Temperature				;	X
Comments:							
· · · · · · · · · · · · · · · · · · ·							
						• • •	
2.0 Completeness Check	· · · · · · · · · · · · · · · · · · ·				Y.	N	N/A
2.1 Is a case narrative present a	nd doos it describe analytic	al problems, discrepancies and	1 corrective actions ?		X		
2.2 Are all required summary fi	orms present (see attached	ist) ?			X		
2.3 Are data present for all sam	ples listed on COC form ?				X		
2.4 Are all required raw data se (Preliminary Check Only; c	etions present (see attached letailed review of data will	l list) ? be conducted in Module B Ch	ecklist)		X		
Comments:		· · · · · · · · · · · · · · · · · · ·				•	-4
:							
							·····
3.0 Holding Times/Prese	rvation (Technical C	riteria CRF40; QU	APP; Other)	Y	N	N/A
3.1 Were all samples properly p	meserved?						X
3.2 Complete the Holding Time	s Table?				X		
Comments:							÷
Holding Times Table							
Table	Parameter	Complete		Location			
Sample Index				• •••••••••••••••••••••••••••••••••••••			
Holding Times Table (list);						• • •••	
Volatiles	X	Yes		· ·····	· · · · · · · · · · · · · · · · · · ·		
Semivolatiles	····						
Pest/PCBs							• • • • • • • • •
Metals		· · · · · · · · · · · · · · · · · · ·			· .		
Dioxins/Forans			•••				
Conventionals	· · · · · · · · · · · · · · · · · · ·						
PAH-8270SIM		·····					
Herbicides							
TBT/Krone	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		·····	··· · · · · · · · · · · · · · · · · ·		
Phthalates-525.2							
Fueis						· · ·	
Phenois	···		<u> </u>				
		·····					

Parameter/Method: Data Validation Criteria Table:

	Project No:	<u> </u>		Screener:	· · · · · · · · · · · · · · · · · · ·	Date:
	Project Name:	Girm	2020	Reviewer:	RL2	Date: 4/28/2
	SDG/Package:	L Cent	1 -468	2002-	2004002	
MODULE B: TECHNIC Module B-1 (Summ Module B-2 (Summ L0 Technical Holding times a L1 Is Module A Checklist Complete?	aries of sample aries of calibrat nd Sample Handl	results; ac ion; instru ing	curacy; p mentatio	recision; n perform	blanks)	bound ID)
1.2 Are all holding times within the te No Outliers;see attact 1.3 Are all cooler temperatures within	shed Holding Times Wo	rksheet or dat:	APP;other_ a package;	ec below		
No Outliers;see atta	ched Holding Times We	orksheet or dat	a package:	see below		
Comments: Data judged as not	significantly affected by	outliers; no q	ualifiers assig	ned.		
······	·····					··
· · · -						
	····					
			·			
	······	·· ··, <u></u>		····		
				<i></i>		
			····			
				· -·· · · · · · · · · · · · · · · · · ·		
						·
.0 Surrogates/Labeled Comp	ounds		· ····			
2.1 Are all recovered values within the		y Form or data	package; s	e below	<u>.</u>	
Comments: No positive results;		A company of a company of the second se	THE RECEIPTION OF A DESCRIPTION OF A DESCRIPANTE A DESCRIPANTE A DESCRIPANTE A DESCRIPTION OF A DESCRIPTIONO		···· ·································	<u></u>
	ed: one outlier per fracti		······································		··· · <u></u>	
				· · · · · · · · · · · · · · · · · · ·	· · · - · · · · · · · · · · · · · · · ·	
·····	-					· · · · · · · · · · · · · · · · · · ·
					1.1	
······					· · · · · · · · · · · · · · · · · · ·	······································
······		·····	·····	···· <u>······</u> ······	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	·····	······	······	····	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
······		······		······································	· · · · · · · · · · · · · · · · · · ·	
			· · · · · · · · · · · · · · · · · · ·	······	···	
			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·			······································		

Project No:		Screener:	· · · · · · · · · · · · · · · · · · ·	Date:	, 1	
Project Name:	Lacont 20	20 Reviewer:	RLZ	Date:	y/28/2	0
SDG/Package:	Ciratek	200400a	·····		11 1	

3.0 Method/Field Blank	Y	N	N/A
3.1 Are Method Balnks from contamination? No Outliers;see attached Blank Summary Form or data package;see below		X	
3.2 Are there any trip/equipment/filed blanks included in the data package ?		X	
3.3 Are the trip/equipment/filed blanks free from contamination? No Outliers;see attached Blank Summary Form or data package:see below			X
Comments: K No positive results in associated samples: no action required for method / trip / equip / other			•••••••
10X action level established for common lab cont.; 5X action levels for others			
·····	<u></u>		
4.0 Laboratory Control Samples 4.1 Argall %R-values within the control limits?	Y	<u>।</u> स	N/A
No Outliers;see attached Summary Form or data package:see below	\times		
4.2 Are all RPD values within control limits ? No Outliers;see attached Summary Form or data package;see below			$\boldsymbol{\chi}$
Comments for LCS: X. No positive results associated samples; no qualifiers as all outliers wree >UCL (high bias)			·
		·	
		· .	
C Davformer Combert			
5.0 Performance Evaluation 5.1 Was PE/SRM sample(s) analyzed?	- <u>Y</u>	Ň	N/A
5.2 Are all values within control limits ?	·····		
No Outliers;see below			X
Comments:No qualifiers assigned based on PE/SRM outliers.	· · · · · · · · · · · · · · · · · · ·		
	····· · · · · · · · · · · · · · · · ·		
		· <u>-</u>	
	·		

	SDG/Package:	Contel 2) Reviewer:			17
	1		··· ·····			
6.0 Matrix Spike/Matrix Sp	nike Duplicate or San	ple and Lab Dupli	cates		Ŷ	
6.1 Are all %R-values within control	ol limits?					
6.2 Arc all RPD values within cont	attached MS/MSD Summar	y Form of data package;	see below			
No Outliers;see a	attached MS/MSD Summary	y Form or data package; _	_see below			
Comments:No positive re	sults in parent sample; no q	ualifiers as all outliers we	ere >UCL (high bia	IS)		
····				·····		
	······································				·····	
					· · · · · · · · · · · · · · · · · · ·	•.
7.0 Field Dunlicate - Rield Du	nlicate Sample ID(s)		·····			
7.0 Field Duplicate Field Du	and analyzed ?					
7.2 Are all RPD values within cont	rol limits ?					
No Outliers:see :			age;see below			
Comments:No qualifiers	assigned based on field dup	licate outliers	· ···			
		· ·				
······································						
· · · · · · · · · · · · · · · · · · ·		- · · · · · · · · · · · · · · · · · · ·				
		- · · · · · · · · · · · · · · · · · · ·		·····	·····	
8 fi Sample Possilts			· · · · · · · · · · · · · · · · · · ·	·····		
· · · · · · · · · · · · · · · · · · ·	s on the client requested targ		e OAP for list		Ť	
8.1 Are there results for all analytos	s on the client requested targ	get compound list(s)? Se	e QAP for list		X	
· · · · · · · · · · · · · · · · · · ·	s on the client requested targ project ?	get compound list(s)? Se	e QAP for list		X	
8.1 Are there results for all analytes8.2a Were TICs requested for this p8.2b If "yes" were TICs reported as	s on the cliens requested targ roject ? s required ?	get compound list(s)? Se	e QAP for list		X	
 8.1 Are there results for all analytes 8.2a Were TICs requested for this p 8.2b If "yes" were TICs reported as 8.3 Are reporting limits and sample 	s on the client requested targ project ? s required ? results adjusted for sample	get compound list(s) ? Se	e QAP for list		×	
8.1 Are there results for all analytes8.2a Were TICs requested for this p8.2b If "yes" were TICs reported as	s on the client requested targ project ? a required ? results adjusted for sample the appropriate basis ?	get compound list(s) ? Se size, %moisture (solid sa 	e QAP for list		×	
 8.2a Werc TICs requested for this p 8.2b If "yes" were TICs reported as 8.3 Are reporting limits and sample 8.4 Are concentrations reported on 	s on the client requested targ project ? s required ? results adjusted for sample the appropriate basis ? oject specific or method spe	get compound list(s) ? Se size, %moisture (solid sa Dry weight: We cific limits ?	e QAP for list imple), etc. ? et weight		×	
 8.1 Are there results for all analytes 8.2a Were TICs requested for this p 8.2b If "yes" were TICs reported as 8.3 Are reporting limits and sample 8.4 Are concentrations reported on 8.5 Do the detection limits meet pro- 	s on the client requested targ project ? s required ? results adjusted for sample the appropriate basis ? oject specific or method spe	get compound list(s) ? Se size, %moisture (solid sa Dry weight: We cific limits ?	e QAP for list imple), etc. ? et weight		×	
 8.1 Are there results for all analytes 8.2a Were TICs requested for this p 8.2b If "yes" were TICs reported as 8.3 Are reporting limits and sample 8.4 Are concentrations reported on 8.5 Do the detection limits meet pro- 	s on the client requested targ project ? s required ? results adjusted for sample the appropriate basis ? oject specific or method spe	get compound list(s) ? Se size, %moisture (solid sa Dry weight: We cific limits ?	e QAP for list imple), etc. ? et weight		×	
 8.1 Are there results for all analytes 8.2a Were TICs requested for this p 8.2b If "yes" were TICs reported as 8.3 Are reporting limits and sample 8.4 Are concentrations reported on 8.5 Do the detection limits meet pro- 	s on the client requested targ project ? s required ? results adjusted for sample the appropriate basis ? oject specific or method spe	get compound list(s) ? Se size, %moisture (solid sa Dry weight: We cific limits ?	e QAP for list imple), etc. ? et weight		×	
 8.1 Are there results for all analytes 8.2a Were TICs requested for this p 8.2b If "yes" were TICs reported as 8.3 Are reporting limits and sample 8.4 Are concentrations reported on 8.5 Do the detection limits meet pro- 	s on the client requested targ project ? s required ? results adjusted for sample the appropriate basis ? oject specific or method spe	get compound list(s) ? Se size, %moisture (solid sa Dry weight: We cific limits ?	e QAP for list mple), etc. ? et weight		×	
 8.1 Are there results for all analytes 8.2a Were TICs requested for this p 8.2b If "yes" were TICs reported as 8.3 Are reporting limits and sample 8.4 Are concentrations reported on 8.5 Do the detection limits meet pro- 	s on the client requested targ project ? s required ? results adjusted for sample the appropriate basis ? oject specific or method spe	get compound list(s) ? Se size, %moisture (solid sa Dry weight: We cific limits ?	e QAP for list mple), etc. ? et weight		×	
8.1 Are there results for all analytes 8.2a Were TICs requested for this p 8.2b If "yes" were TICs reported as 8.3 Are reporting limits and sample 8.4 Are concentrations reported on 8.5 Do the detection limits meet pri Comments:Quality TIC "N	s on the client requested targ project ? s required ? results adjusted for sample the appropriate basis ? oject specific or method spe i) ²¹ unless already qualified	get compound list(s) ? Se size, %moisture (solid sa Dry weight: We cific limits ?	e QAP for list mple), etc. ? et weight		X	
 8.1 Are there results for all analytes 8.2a Were TICs requested for this p 8.2b If "yes" were TICs reported as 8.3 Are reporting limits and sample 8.4 Are concentrations reported on 8.5 Do the detection limits meet pro- 	s on the client requested targ project ? s required ? results adjusted for sample the appropriate basis ? oject specific or method spe i) ²¹ unless already qualified	get compound list(s) ? Se size, %moisture (solid sa Dry weight: We cific limits ?	e QAP for list mple), etc. ? et weight		×	
8.1 Are there results for all analytes 8.2a Were TICs requested for this p 8.2b If "yes" were TICs reported as 8.3 Are reporting limits and sample 8.4 Are concentrations reported on 8.5 Do the detection limits meet pri Comments:Quality TIC "N	s on the client requested targ project ? s required ? results adjusted for sample the appropriate basis ? oject specific or method spe i) ²¹ unless already qualified	get compound list(s) ? Se size, %moisture (solid sa Dry weight: We cific limits ?	e QAP for list mple), etc. ? et weight		× ×	
8.1 Are there results for all analytes 8.2a Were TICs requested for this p 8.2b If "yes" were TICs reported as 8.3 Are reporting limits and sample 8.4 Are concentrations reported on 8.5 Do the detection limits meet pri Comments:Quality TIC "N	s on the client requested targ project ? s required ? results adjusted for sample the appropriate basis ? oject specific or method spe i) ²¹ unless already qualified	get compound list(s) ? Se size, %moisture (solid sa Dry weight: We cific limits ?	e QAP for list mple), etc. ? et weight		X	
8.1 Are there results for all analytes 8.2a Were TICs requested for this p 8.2b If "yes" were TICs reported as 8.3 Are reporting limits and sample 8.4 Are concentrations reported on 8.5 Do the detection limits meet pri Comments:Quality TIC "N	s on the client requested targ project ? s required ? results adjusted for sample the appropriate basis ? oject specific or method spe i) ²¹ unless already qualified	get compound list(s) ? Se size, %moisture (solid sa Dry weight: We cific limits ?	e QAP for list mple), etc. ? et weight		×	
8.1 Are there results for all analytes 8.2a Were TICs requested for this p 8.2b If "yes" were TICs reported as 8.3 Are reporting limits and sample 8.4 Are concentrations reported on 8.5 Do the detection limits meet pri Comments:Quality TIC "N	s on the client requested targ project ? s required ? results adjusted for sample the appropriate basis ? oject specific or method spe i) ²¹ unless already qualified	get compound list(s) ? Se size, %moisture (solid sa Dry weight: We cific limits ?	e QAP for list mple), etc. ? et weight			
8.1 Are there results for all analytes 8.2a Were TICs requested for this p 8.2b If "yes" were TICs reported as 8.3 Are reporting limits and sample 8.4 Are concentrations reported on 8.5 Do the detection limits meet pri Comments:Quality TIC "N	s on the client requested targ project ? s required ? results adjusted for sample the appropriate basis ? oject specific or method spe i) ²¹ unless already qualified	get compound list(s) ? Se size, %moisture (solid sa Dry weight: We cific limits ?	e QAP for list mple), etc. ? et weight		×	
 8.1 Are there results for all analytes 8.2a Were TICs requested for this p 8.2b If "yes" were TICs reported as 8.3 Are reporting limits and sample 8.4 Are concentrations reported on 8.5 Do the detection limits meet price Comments:Quality TIC "N 	s on the client requested targ project ? s required ? results adjusted for sample the appropriate basis ? oject specific or method spe i) ²¹ unless already qualified	get compound list(s) ? Se size, %moisture (solid sa Dry weight: We cific limits ?	e QAP for list mple), etc. ? et weight			

Centek Laboratories, LLC

Centek Laboratories TO-15 Package Review CheckList

	Center	Laboratories 10-15 Pa	скаде кеч	View CheckList	
C. S.	Client:	Geovation Engineering	Project:	Grant Hardware SDG:	C2004002
`				1/m-m	
				<u>YES</u> <u>NO</u>	<u>NA</u>
Analytical Results		Present and Complete			
TIC's Present		Present and Complete			\checkmark
		Holdin Times Met		<u> </u>	
Comments:					
Chain of Custody		Present and Complete		<u> </u>	
Surrogate		Present and Complete			
		Recoveries within Limits		······································	
		Sample(s) reanalyzed			$\overline{\checkmark}$
Internal Standards		Present and Complete			
Recovery		Recoveries within Limits		\mathbf{x} —	
		Sample(s) reanalyzed		······	$\overline{\checkmark}$
Comments:					
				·	
Lab Control Sample		Present and Complete		/	
(LCS)		Recoveries within Limits			
Lab Control Sample Du	be	Present and Complete		./	
(LCSD)		Recoveries within Limits		\checkmark	
MS/MSD		Present and Complete			
		Recoveries within Limits			<u>~</u>
Comments: N	o M	slms>			
Sample Raw Data		Present and Complete			
		Spectra present		<u> </u>	**********
Comments:		······································			

Centek Laboratories, LLC

Centek Laboratories TO-15 Package Review CheckList

Cantek Loboratories	Client:	Geovation Engineering	Project:	Grant Hardware	SDG:	C2004002
and the second s						
Standards Data				YES	<u>s no</u>	<u>NA</u>
Intial Calibration		Present and Complete		J	r	
		Calibration meets criteria			<u> </u>	
Continuing Calibratio	n	Present and Complete		~	<u> </u>	
		Calibration meets criteria		\checkmark	•	
Standards Raw Data		Present and Complete		_		**********
Comments:						
Raw Quality Control	Data					
Tune Criteria Report		Present and Complete		\checkmark	*	
Method Blank Data		MB Results <pql< td=""><td></td><td></td><td>/</td><td></td></pql<>			/	
		Associated results flagged "	8"			
LCS Sample Data		Present and Complete		×		
LCSD Sample Data		Present and Complete		~		
MS/MSD Sample Data	à	Present and Complete		_		$\overline{\checkmark}$
Comments: No	ms/m	<u>5</u>]				
Logbooks						
Injection Log				./	*	
Standards Log				<u>v</u>	$\sim -$	
Can Cleaning Log					< _	
Calculation Sheet				<u>×</u>		
IDL's				\checkmark		
Canister Order Form				\checkmark	• 	
Sample Tracking Forn	n			\checkmark	<u> </u>	
Additional Comments	*					
footion from	With	1 Dell.	D a+-	4/15/20		
Section Supervisor:	$\frac{\omega - \alpha}{1}$		Date	1.0-1	<i>.</i>	
QC Supervisor:	hu	CIP & LICE	Date	" <u> 4[/5-</u> [Page 2	of 380

ASP CAT B DELIVERABLE PACKAGE Table of Contents

1. Package Review Check List

2. Case Narrative a. Corrective actions

3. Sample Summary Form

4. Sample Tracking Form

5. Bottle Order

6. Analytical Results

a. Form 1

- 7. Quality Control Summary
- a. Qc Summary Report
- b. IS Summary Report
- c. MB Summary Report
- d. LCS Summary Report
- e. MSD Summary Report
- f. DL's
- g. Colculation

8. Sample Data

a. Form I (if requested) TIC's b. Quantitation Report with Spectra

9. Standards Data

- a. Initial Calibration with Quant Report
- b. Continuing Calibration with Quant Report

10. Raw Data

- a. Tuning Data
- 11. Raw QC Data
 - a. Method Blank
 - b. LCS
 - c. MS/MSD

12. Log Books

- a. Injection Log Book
- b. Standards Log Book
- c. QC Canister Log Book

ENTEK LABORATORIES, LLC

 143 Midler Park Drive * Syracuse, NY 13206

 Phone (315) 431-9730 * Emergency 24/7 (315) 416-2752

 NYSDOH ELAP
 Certificate No. 11830

Analytical Report

Bob Zimmer Geovation Engineering, Inc. 2016 Route 284, PO BOX 513 Slate Hill, NY 10973 Tuesday, April 07, 2020 Order No.: C2004002

TEL: (845) 697-5100 FAX RE: Grant Hardware

Dear Bob Zimmer:

Centek Laboratories, LLC received 12 sample(s) on 4/1/2020 for the analyses presented in the following report.

I certify that this data package is in compliance with the terms and conditions of the Contract, both technically and for completeness. Release of the data contained in this hardcopy data package and/or in the computer readable data submitted has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Centek Laboratories performs all analyses according to EPA, NIOSH or OSHA-approved analytical methods. Centek Laboratories is dedicated to providing quality analyses and exceptional customer service. All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the case narrative. All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

We do our best to make our reporting format clear and understandable and hope you are thoroughly satisfied with our services. Please contact your client service representative at (315) 431-9730 or myself, if you would like any additional information regarding this report.

Thank you for using Centek Laboratories. This report can not be reproduced except in its entirety, without prior written authorization.

Sincerely,

Will All.

William Dobbin Lead Technical Director

Disclaimer: The test results and procedures utilized, and laboratory interpretations of the data obtained by Centek as contained in this report are believed by Centek to be accurate and reliable

for sample(s) tested. In accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of Centek for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages. ELAP does not offer certification for the following parameters by this method at present time, they are: 4-ethyltoluene, ethyl acetate, propylene, Tetrahydrofuran, 4-PCH, sulfur derived and silcon series compounds.

Centek Laboratories, LLC Terms and Conditions

Sample Submission

All samples sent to Centek Laboratories should be accompanied by our Request for Analysis Form or Chain of Custody Form. A Chain of Custody will be provided with each order shipped for all sampling events, or if needed, one is available at our website www.CentekLabs.com. Samples received after 3:00pm are considered to be a part of the next day's business.

Sample Media

Samples can be collected in an canister or a Tedlar bag. Depending on your analytical needs, Centek Laboratories may receive a bulk, liquid, soil or other matrix sample for headspace analysis.

Blanks

Every sample is run with a surrogate or tracer compound at a pre-established concentration. The surrogate compound run with each sample is used as a standard to measure the performance of each run of the instrument. If required, a Minican can be provided containing nitrogen to be run as a trip blank with your samples.

Sampling Equipment

Centek Laboratories will be happy to provide the canisters to carry-out your sampling event at no charge. The necessary accessories, such as regulators, tubing or personal sampling belts, are also provided to meet your sampling needs. The customer is responsible for all shipping charges to the client's destination and return shipping to the laboratory. Client assumes all responsibility for lost, stolen and any damages of equipment.

Turn Around time (TAT)

Centek Laboratories will provide results to its clients in one business-week by 6:00pm EST after receipt of samples. For example, if samples are received on a Monday they are due on the following Monday by 6:00pm EST. Results are faxed or emailed to the requested location indicated on the Chain of Custody. Non-routine analysis may require more than the one business-week turnaround time. Please confirm non-routine sample turnaround times.

Reporting

Results are emailed or faxed at no additional charge. A hard copy of the result report is mailed within 24 hours of the faxing or emailing of your results. Cat "B" like packages are within 3-4 weeks from time of analysis. Standard Electronic Disk Deliverables (EDD) is also available at no additional charge.

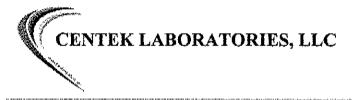
Payment Terms

Payment for all purchases shall be due within 30 days from date of invoice. The client agrees to pay a finance charge of 1.5% per month on the overdue balance and cost of collection, including attorney fees, if collection proceedings are necessary. You must have a completed credit

application on file to extend credit. Purchase orders or checks information must be submitted for us to release results

Rush Turnaround Samples

Expedited turn around times is available. Please confirm rush turnaround times with Client Services before submitting samples.


Applicable Surcharges for Rush Turnaround Samples: Same day TAT = 200% Next business day TAT by Noon = 150% Next business day TAT by 6:00pm = 100% Second business day TAT by 6:00pm = 75% Third business day TAT by 6:00pm = 50% Fourth business day TAT by 6:00pm = 35% Fifth business day = Standard

Statement of Confidentiality

Centek Laboratories, LLC is aware of the importance of the confidentiality of results to many of our clients. Your name and data will be held in the strictest of confidence. We will not accept business that may constitute a conflict of interest. We commonly sign Confidential Nondisclosure Agreements with clients prior to beginning work. All research, results and reports will be kept strictly confidential. Secrecy Agreements and Disclosure Statements will be signed for the client if so specified. Results will be provided only to the addressee specified on the Chain of Custody Form submitted with the samples unless law requires release. Written permission is required from the addressee to release results to any other party.

Limitation on Liability

Centek Laboratories, LLC warrants the test results to be accurate to the methodology and sample type for each sample submitted to Centek Laboratories, LLC. In no event shall Centek Laboratories, LLC be liable for direct, indirect, special, punitive, incidental, exemplary or consequential damages, or any damages whatsoever, even if Centek Laboratories, LLC has been previously advised of the possibility of such damages whether in an action under contract, negligence, or any other theory, arising out of or in connection with the use, inability to use or performance of the information, services, products and materials available from the laboratory or this site. These limitations shall apply notwithstanding any failure of essential purpose of any limited remedy. Because some jurisdictions do not allow limitations on how long an implied warranty lasts, or the exclusion or limitation of liability for consequential or incidental damages, the above limitations may not apply to you. This is a comprehensive limitation of liability that applies to all damages of any kind, including (without limitation) compensatory, direct, indirect or consequential damages, loss of data, income or profit and or loss of or damage to property and claims of third parties.

Date: 13-Apr-20

CLIENT:Geovation Engineering, Inc.Project:Grant HardwareLab Order:C2004002

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Centek Laboratories, LLC SOP TS-80

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the corrective action report(s). All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

NYSDEC ASP samples:

Canisters should be evacuated to a reading of less than or equal to 50 millitorr prior to shipment to sampling personnel. The vacuum in the canister will be field checked prior to sampling, and must read 28" of Hg (\pm 2", vacuum, absolute) before a sample can be collected. After the sample has been collected, the pressure of the canister will be read and recorded again, and must be 5" of Hg (\pm 1", vacuum, absolute) for the sample to be valid. Once received at the laboratory, the canister vacuum should be confirmed to be 5" of Hg, \pm 1". Please record and report the pressure/vacuum of received canisters on the sample receipt paperwork. A pressure/vacuum reading should also be taken just prior to the withdrawal of sample from the canister, and recorded on the sample preparation log sheet. All regulators are calibrated to meet these requirements before they leave the laboratory. However, due to environmental conditions and use of the equipment Centek can not guarantee that this criteria can always be achieved.

	Centek Labs - Chain of Custody	ain of Custody	Site Name: Growt L	the column to the column	Detection Limit	Report Level
Contact Laboration	•				56nahu	
merel function of the second s						
1	Syracuse, NY 13200					
/	315-431-973U www.Conteki ake rom	Vapor Intrusion & IAQ			1406 + 12 MS	
TAT (Check Rush IAT Due		1	Company:		
B ;	Surcharge %	7 997	mmed	Check Here If Same:		
5 Business Days 4 Brisiness Dave	2 %	Report to:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Invoice to:	ų V	
3 Business Davs	20%	City State Zip 2016	1.1.7KY	City State Zin	7	
2 Business Days	75%		1.1			
Next Uay by 5pm		Email: rzywyner @	q	Email.		
Next Liay by Noori *Same Day	200%	Phone: R45-820	(الته <i>ا</i> / 1/ 201	Phone:		
* For Same and Next Day TAT Please Notify Lab	r Please Notify Lab	Canister Regulator	Analysis Request	Field Vacuum	Labs Vacuum**	Comments
Sample ID	Date Sampled	ber		Start / Stop	RecVIAnalysis	
601	 3/38/20 	351 44	70-15	>30 / 9	- 77 -	
6 03	/ /	360 380		>30 / 10	- 30	
७०५		54 372		>30 / 11	- 8 -	
506 2		1352 435		30 - 7	- 41	
409	542	tog.		>30 13		
609		157	1-0-15	-	1 t.	
611		02	-	730 10	- 80	
613		0111 निर्ण		01 1 054	8	
614		534 387		730 / 11	- 0-	
616		a <i>o</i> o 436		30 8	- 9 -	
Rootton HUAC	ସୁଖ ହ	524 386		222 - 10-	- 9 -	ALS CAN 1180
Jutacr Unin	2020 V	239 38	>	730,5	- 3 -	
				1	-	
				••		
					4	
				•••		
				1		
					, 1	
Chain of Custody	Print Name	Signature		Date/Time	Cethier: CIRCLE ONE FedEx UPS Pickuol	: ONE PickuofDropoff
Janipica ny.	100 A mmo			Patrie a		
WRelinquished by:	KY LIMMA			ac at D artal	TPOTLAB USE UNLY	0007
Qanakiant at Lah hur	I have a full the			<pre>%</pre> %		

. 7

***Chain of Custody must be completed in Juli. Lack of any nussing information will affect your Lurn Around Linus (LAJ) *** By signing Centek Labs Chain of Custody, you are accepting Centek Labs Terms and Conditions listed on the reverse side.

Centek Laboratories, LLC

	RIES, LLC		:	Sample Re	ceipt Checklist
Client Name GEOVATION			Date and Tim	e Receive	4/1/2020
Work Order Numbe C2004002	211		Received by	DH	
Checklist completed by	Data 4/1/	2020	Reviewed by	Low D	4/1/20
Matrix:	Carrier name	FedEx Ground			
Shipping container/cooler in good condition?		Yes 🔽	No 🗌	Not Presen	
Custody seals intact on shippping container/cool	er?	Yes 🗆	No 🗌	Not Presen	\mathbf{M}
Custody seals intact on sample bottles?		Yes 🗔	No 🗆	Not Presen	
Chain of custody present?		Yes 🔽	No 🗀		
COC signed when relinquished and received?		Yes 🗹	Νο		
COC agrees with sample labels?		Yes 🗌	No 🔽		۰
COC completely filled out?		Yes 📈	No 🗔		
Sample containers intact?		Yes 🗹	No 🗔		
Sufficient sample volume for indicated test?		Yes 🗹	No 🗀		
All samples received within holding time?		Yes 🗹	No 🗀		
Container/Temp Blank temperature in complianc	e7	Yes 🔀	No 🗔		
Water - VOA vials have zero headspace?	No VOA vials subr	nitted 🔽	Yes 🗌	No 🗔	
Water - pH acceptable upon receipt?		Yes 🗍	No 🗹		
	Adjusted?	Che	cked b		_
Any No and/or NA (not applicable) response mus	st be detailed in the c	omments section			97 ULLE VERN TALE THE THE STOP THE UNIT OF 11
Client contacted	Date contacted:	18476-196-1976-1990-1996-1996-1996-1996-1996-1996-199	Perso	on contacted	
Contacted by:	Regarding:				1
Comments: Wrigh Canis Really Canister number	to numb				
			<u>* *</u>		
really canister numbe	<u>~~~~~~</u>				
Corrective Action <u>Changed</u>	- <u>-</u>	**************************************		97 1989 - 2009 - 2009 - 2009 - 2009 - 2009 1990 - 2009 - 2009 - 2009 - 2009 - 2009 - 2009 - 2009 - 2009 - 2009 - 2009 - 2009 - 2009 - 2009 - 2009 - 2009 -	
AN//	QC'd	IBy: W>),	{	DATE: 4/15/20

Date: 13-Apr-20

CLIENT: Project: Lab Order:	Geovation Engineering, Inc. Grant Hardware C2004002		Work Order S	Sample Summary
Lab Sample ID C2004002-001A	Client Sample ID 601	Tag Number 351,447	Collection Date 3/28/2020	Date Received 4/1/2020
C2004002-002A	603	360,380	3/28/2020	4/1/2020
C2004002-003A	604	544,372	3/28/2020	4/1/2020
C2004002-004A	606	352,435	3/28/2020	4/1/2020
C2004002-005A	607	207,388	3/28/2020	4/1/2020
C2004002-006A	609	157,374	3/28/2020	4/1/2020
C2004002-007A	611	130,375	3/28/2020	4/1/2020

CLIENT: Project: Lab Order:	Geovation Engineering, Inc. Grant Hardware C2004002	anna ann an 1 an 1 an 1 an 1 an 1 an 1	Work Order	Sample Summary
Lab Sample ID C2004002-008A	Client Sample ID 613	Tag Number 354,440	Collection Date 3/28/2020	Date Received 4/1/2020
C2004002-009A	614	539,387	3/28/2020	4/1/2020
C2004002-010A	616	200,436	3/28/2020	4/1/2020
C2004002-011A	Roof Top HVAC 2020	1180,386	3/28/2020	4/1/2020
C2004002-012A	Outdoor Upwind 2020	239,381	3/28/2020	4/1/2020

.....

13-Apr-20

Lab Order:	C2004002					
Client:	Geovation Engineering, Inc.	Inc.			DATES REPORT	
Project:	Grant Hardware					
Sample ID	Client Sample 1D	Collection Date	Matrix	Test Name	TCLP Date Prep Date A	Analysis Date
C2004002-001A	601	3/28/2020	Air	lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1.1DCE		4/1/2020
				lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		4/1/2020
C2004002-002A	603			lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		4/1/2020
				lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		4/2/2020
C2004002-003A	604			lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		4/1/2020
				lug/m3 w/ 0.2ug/MB CT-TCE-VC-DCE- 1,1DCE		4/2/2020
C2004002-004A	606			lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		4/1/2020
				lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		4/2/2020
C2004002-005A	607			lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		4/1/2020
				lug/m3 w/ 0.2ug/M3 CT+TCE-VC-DCE- 1,1DCE		4/2/2020
C2094002-006A	609			lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		4/2/2020
				lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		4/1/2020
C2004002-007A	611			lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		4/2/2020
				lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		4/1/2020
C2004002-008A	613			lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		4/1/2020
				lug/m3 w/ 0.2ug/M5 CT-TCE-VC-DCE- 1,1DCE		4/2/2020
C2004002-009A	614			lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		4/1/2020
				lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		472/20
C2004002-010A	616			lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		4/1/2020
				lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		4/2/2020

Page 1 of 2

Centek Laboratories, LLC

13-Ap

Lab Order:	C2004002						
Client:	Geovation Engineering, Inc.	ng, Inc.			DATI	DATES REPORT	L
Project:	Grant Hardware						
Sample JD	Client Sample ID	Collection Date	Matrix	Test Name	TCLP Date Prep Date	Prep Date	Analysis Date
C2004002-011A	Roof Top HVAC 2020	3/28/2020	Air	lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE			4/1/2020
				lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE			4/2/2020
C2004002-012A	Outdoor Upwind 2020			lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE			4/2/2020
				lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- I,IDCE			4/1/2/02/0

CANISTER ORDER

CENTEK LABORATORIES, LLC Air Quality Testing...It's a Gas 143 Midler Park Drive * Syracuse, NY 13206 TEL: 315-431-9730 * FAX: 315-431-9731

8294

13-Apr-20

Company:	Geovation Engineering, Inc.	Submitted By:		
Contact: Address:	Bob Zimmer 2016 Route 284, PO BOX 513	MadeBy: DH		
	Slate Hill, NY 10973	Ship Date: 3/16/2020		
Phone:	845 697-5100	VIA: UPS - Ground		
Quote ID:	0	Due Date: 3/19/2020		
Project:				
PO:				
Bottle Code	Bottle Type	TEST(s)	QTY	
MC1000CC	1L Mini-Can	1ug/m3 w/ 0.2ug/M3 CT-TCE-VC-DC	10	
Can / Reg ID	Description			
93	1L Mini-Can - 1109 VI			
130	1L Mini-Can - 1078 VI			
1 5 7	1L Mini-Can - 1127 VI			
200	1L Mini-Can - 1155 VI			
207	1L Mini-Can - 1162 VI			
239	1L Mini-Can - 1171 Vi			
351	1L Mini-Can - 1300 VI			
352	1L Mini-Can - 1301 Vi			
353	1L Mini-Can - 1302 Vi			
354	1L Mini-Can - 1303 VI			
360	1L Mini-Can - 1309 VI			
372	Time-Set Reg - 746 VI			
374	Time-Set Reg - 748 VI			
375	Time-Set Reg - 749 VI			
380	Time-Set Reg - 754 VI			
381	Time-Set Reg - 755 VI			
382	Time-Set Reg - 756 VI			
386	Time-Set Reg - 760 VI			
387	Time-Set Reg - 761 VI			
388	Time-Set Reg - 762 VI			
394	Time-Set Reg - 773 VI			
397	Time-Set Reg - 776 VI			
435	Time-Set Reg - 814 VI			
436	Time-Set Reg - 815 VI			
439	Time-Set Reg - 818 VI			
440	Time-Set Reg - 819 VI			
447	Time-Set Reg - 826 VI			
539	1L Mini-Can - 107 VI			
544	1L Mini-Can - 112 VI			
1180	1L Mini-Can - 1244 VI			
1184 1191	1L Mini-Can - 1248 VI 1L Mini-Can - 1259 VI			

SHIPPED TO:

Company:	Geovation Engineering, Inc.	Submitted By:	<u>.</u>	
Contact: Address:	Bob Zimmer 2016 Route 284, PO BOX 513	MadeBy:	DH	
	Slate Hill, NY 10973	Ship Date:		
Phone:	845 697-5100	ViA:	UPS - Ground	
Quote ID: Project: PO:	0	Due Date:	3/19/2020	
Bottle Code	Bottle Type	TEST(s)	QTY	

Comments: (16) 1L @ 11 Hours. WAC 030920 A-G

Page 15 of 380

Centek Laboratories, LLC

.

GC/MS VOLATILES-WHOLE AIR

.

.

.

METHOD TO-15

ANALYTICAL RESULTS

,

Page 16 of 380

.

Centek Laboratories, LLC -----CLIENT: Client Sample ID: 601 Geovation Engineering, Inc. Lab Order: C2004002 **Tag Number: 351,447** Collection Date: 3/28/2020 **Project:** Grant Hardware Matrix: AIR Lab ID: C2004002-001A Analyses Result DL **Oual Units** DF Date Analyzed FIELD PARAMETERS FLD Analyst: Lab Vacuum In -7 "Hg 4/1/2020 Lab Vacuum Out -30 "Hg 4/1/2020 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE **TO-15** Analyst: RJP 1,1,1-Trichloroethane < 0.15 0.15 ppbV 1 4/1/2020 1:45:00 PM 1,1,2,2-Tetrachloroethane < 0.15 0.15 ppbV 1 4/1/2020 1:45:00 PM 1,1,2-Trichloroethane < 0.15 0.15 ppbV 1 4/1/2020 1:45:00 PM 1.1-Dichloroethane < 0.15 0.15 1 opbV 4/1/2020 1:45:00 PM 1,1-Dichloroethene < 0.040 0.040 ppbV 1 4/1/2020 1:45:00 PM 1,2,4-Trichlorobenzene < 0.15 0.15 1 ppbV 4/1/2020 1:45:00 PM 1,2,4-Trimethylbenzene 0,15 0.15 ppbV 1 4/1/2020 1:45:00 PM 1,2-Dibromoethane < 0.15 0.15 1 opbV 4/1/2020 1:45:00 PM 1,2-Dichlorobenzene < 0.15 0.15 1 4/1/2020 1:45:00 PM Vdqq 1,2-Dichloroethane < 0.15 0.15 ppbV 1 4/1/2020 1:45:00 PM 1,2-Dichloropropane < 0.15 0.15 ppbV 1 4/1/2020 1:45:00 PM 1.3.5-Trimethylbenzene < 0.15 0.15 **V**dqq 1 4/1/2020 1:45:00 PM 1,3-butadiene < 0.15 0.15 vdqq 1 4/1/2020 1:45:00 PM 1,3-Dichlorobenzene < 0.15 1 0.15 ppbV 4/1/2020 1:45:00 PM 1,4-Dichlorobenzene < 0.15 0.15 Vdqq 1 4/1/2020 1:45:00 PM 1,4-Dioxane < 0.30 0.30 1 Vdqq 4/1/2020 1:45:00 PM 2,2,4-trimethylpentane < 0.15 0.15 **∨**dqq 1 4/1/2020 1:45:00 PM 4-ethyltoluene < 0.15 0.15 ppbV 1 4/1/2020 1:45:00 PM Acetone 5.2 3.0 ppbV 10 4/1/2020 11:57:00 PM Allyt chloride 1 < 0.15 0.15 ppbV 4/1/2020 1:45:00 PM Benzene 0.18 0.15 1 4/1/2020 1:45:00 PM ppbV **Benzyl** chloride < 0.15 0.15 ppbV 1 4/1/2020 1:45:00 PM Bromodichloromethane < 0.15 0.15 ppbV 1 4/1/2020 1:45:00 PM Bromoform < 0.15 0.15 ppbV 1 4/1/2020 1:45:00 PM Bromomethane < 0.15 0.15 1 ppbV 4/1/2020 1:45:00 PM Carbon disulfide 0.11 0.15 J ppbV 1 4/1/2020 1:45:00 PM Carbon tetrachloride 0.030 1 0.10 ppbV 4/1/2020 1:45:00 PM Chlorobenzene < 0.15 0.15 ppbV 1 4/1/2020 1:45:00 PM < 0.15 Chloroethane 0.15 1 ppbV 4/1/2020 1:45:00 PM Chloroform < 0.15 0.15 ppbV 1 4/1/2020 1:45:00 PM Chloromethane 0.39 0.15 1 ppbV 4/1/2020 1:45:00 PM cis-1,2-Dichloroethene < 0.040 0.040 ppbV 1 4/1/2020 1:45:00 PM cis-1,3-Dichloropropene < 0.15 0.15 ppbV 1 4/1/2020 1:45:00 PM Cyclohexane 0.34 0.15 ppbV 1 4/1/2020 1:45:00 PM Dibromochloromethane 1 < 0,15 0.15 ppbV 4/1/2020 1:45:00 PM Ethyi acetate 0.30 0.15 ppbV 1 4/1/2020 1:45:00 PM **Qualifiers:**

SC Sub-Contracted

> в Analyte detected in the associated Method Blank

14 Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

s Spike Recovery outside accepted recovery limits Results reported are not blank corrected

É Estimated Value above quantitation range

J Analyte detected below quantitation limit.

ND Not Detected at the Limit of Detection

Detection Limit

DL

Page 1 of 24

Page 17 of 380

• 1		
CLIENT:	Geovation Engineering, Inc.	Client Sample ID: 601
Lab Order:	C2004002	Tag Number: 351,447
Project:	Grant Hardware	Collection Date: 3/28/2020
Lab ID:	C2004002-001A	Matrix: AIR

Analyses	Result	DL	Quai	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	то	-15			Analyst: RJF
Ethylbenzene	< 0.15	0.15		ppbV	1	4/1/2020 1:45:00 PM
Freon 11	0.27	0.15		ppbV	1	4/1/2020 1:45:00 PM
Freon 113	< 0.15	0.15		ppbV	1	4/1/2020 1:45:00 PM
Freon 114	< 0.15	0.15		ppbV	1	4/1/2020 1:45:00 PM
Freon 12	0.49	0.15		vdqq	1	4/1/2020 1:45:00 PM
Heptane	0.14	0.15	J	ppbV	1	4/1/2020 1:45:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		ppbV	1	4/1/2020 1:45:00 PM
Hexane	0.14	0.15	J	ppbV	1	4/1/2020 1:45:00 PM
Isopropyl alcohol	2.9	1.5		ppbV	10	4/1/2020 11:57:00 PM
m&p-Xylene	0.17	0.30	Ł	ppbV	1	4/1/2020 1:45:00 PM
Methyl Butyl Ketone	< 0.30	0.30		opbV	1	4/1/2020 1:45:00 PM
Methyl Ethyl Ketone	0.35	0.30		ppbV	1	4/1/2020 1:45:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		ppbV	1	4/1/2020 1:45:00 PM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	4/1/2020 1:45:00 PM
Methylene chloride	0.20	0.15		ppbV	1	4/1/2020 1:45:00 PM
o-Xylene	< 0.15	0.15		ppbV	1	4/1/2020 1:45:00 PM
Propylene	< 0.15	0.15		ppbV	1	4/1/2020 1:45:00 PM
Styrene	< 0.15	0.15		vdqq	1	4/1/2020 1:45:00 PM
Tetrachloroethylene	0.15	0.15		ppbV	1	4/1/2020 1:45:00 PM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	4/1/2020 1:45:00 PM
Toluene	0.28	0.15		opbV	1	4/1/2020 1:45:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	4/1/2020 1:45:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	4/1/2020 1:45:00 PM
Trichloroethene	0.20	0.030		ppbV	1	4/1/2020 1:45:00 PM
Vinyl acetate	< 0.15	0.15		ppbV	1	4/1/2020 1:45:00 PM
Vinyl Bromide	< 0.15	0.15		ppbV	1	4/1/2020 1:45:00 PM
Vinyl chloride	< 0.040	0.040		ppb∨	1	4/1/2020 1:45:00 PM
Surr: Bromofluorobenzene	94.0	70-130		%REC	1	4/1/2020 1:45:00 PM

Qualifiers:	\mathbf{SC}	Sub-Contracted		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	Ε	Estimated Value above quantitation range	
	Ы	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	ĴΝ	Non-routine analyte, Quantitation estimated.	ND	Not Detected at the Limit of Detection	T C C C C C C C C C C
	S	Spike Recovery outside accepted recovery limits	DL.	Detection Limit	Page 2 of 24

Date: 10-Apr-20

1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 19							
CLIENT:	Geovation Engineering, Inc.	Client Sample ID: 601					
Lab Order:	C2004002	Tag Number: 351,447					
Project:	Grant Hardware	Collection Date: 3/28/2020					
Lab ID:	C2004002-001A	Matrix: AIR					

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	тс	-15			Analyst: RJ
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/1/2020 1:45:00 PM
1,1,2,2-Tetrachioroethane	< 1.0	1.0		ug/m3	1	4/1/2020 1:45:00 PM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/1/2020 1:45:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/1/2020 1:45:00 PM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	4/1/2020 1:45:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/1/2020 1:45:00 PM
1,2,4-Trimethylbenzene	0.74	0.74		ug/m3	1	4/1/2020 1:45:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/1/2020 1:45:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/1/2020 1:45:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/1/2020 1:45:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/1/2020 1:45:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	4/1/2020 1:45:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/1/2020 1:45:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/1/2020 1:45:00 PM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/1/2020 1:45:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	4/1/2020 1:45:00 PM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	4/1/2020 1:45:00 PM
4-ethyltoluene	< 0.74	0,74		ug/m3	1	4/1/2020 1:45:00 PM
Acetone	12	7.1		ug/m3	10	4/1/2020 11:57:00 PM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/1/2020 1:45:00 PM
Benzene	0.57	0.48		ug/m3	1	4/1/2020 1:45:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/1/2020 1:45:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/1/2020 1:45:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	4/1/2020 1:45:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	4/1/2020 1:45:00 PM
Carbon disulfide	0.34	0.47		ug/m3	1	4/1/2020 1:45:00 PM
Carbon tetrachloride	0.63	0.19		ug/m3	1	4/1/2020 1:45:00 PM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/1/2020 1:45:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	4/1/2020 1:45:00 PM
Chloroform	< 0.73	0.73		ug/m3	T	4/1/2020 1:45:00 PM
Chloromethane	0.81	0.31		ug/m3	1	4/1/2020 1:45:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	4/1/2020 1:45:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/1/2020 1:45:00 PM
Cyclohexane	1.2	0.52		ug/m3	1	4/1/2020 1:45:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/1/2020 1:45:00 PM
Ethyl acetate	1.1	0.54		ug/m3	1	4/1/2020 1:45:00 PM
Ethylbenzene	< 0.65	0.65		ug/m3	1	4/1/2020 1:45:00 PM
Freon 11	1.5	0.84		ug/m3	1	4/1/2020 1:45:00 PM
Freon 113	< 1.1	1.1		ug/m3	1	4/1/2020 1:45:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	4/1/2020 1:45:00 PM

> в Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded н

JN Non-routine analyte. Quantitation estimated.

s Spike Recovery outside accepted recovery limits

Results reported are not blank corrected .

Е Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

DL Detection Limit

Page 1 of 24

		an a	
CLIENT:	Geovation Engineering, Inc.	Client Sample 1D:	601
Lab Order:	C2004002	Tag Number:	351,447
Project:	Grant Hardware	Collection Date:	3/28/2020
Lab ID:	C2004002-001A	Matrix:	AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
UG/M3 W/ 0.2UG/M3 CT-TCE-V0	-DCE-1,1DCE	тс)-15			Analyst: RJP
Freon 12	2.4	0.74		ug/m3	1	4/1/2020 1:45:00 PM
Heptane	0.57	0.61	J	ug/m3	1	4/1/2020 1:45:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/1/2020 1:45:00 PM
Hexane	0.49	0.53	J	ug/m3	1	4/1/2020 1:45:00 PM
isopropyl alcohol	7.1	3.7		ug/m3	10	4/1/2020 11:57:00 PM
m&p-Xylene	0.74	1.3	J	ug/m3	1	4/1/2020 1:45:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/1/2020 1:45:00 PM
Methyl Ethyl Ketone	1.0	0.88		ug/m3	1	4/1/2020 1:45:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	4/1/2020 1:45:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/1/2020 1:45:00 PM
Methylene chloride	0.69	0.52		ug/m3	1	4/1/2020 1:45:00 PM
o-Xylene	< 0.65	0.65		ug/m3	1	4/1/2020 1:45:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/1/2020 1:45:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/1/2020 1:45:00 PM
Tetrachloroethylene	1.0	1.0		ug/m3	1	4/1/2020 1:45:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/1/2020 1:45:00 PM
Toluene	1.1	0.57		ug/m3	1	4/1/2020 1:45:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/1/2020 1:45:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/1/2020 1:45:00 PM
Trichloroethene	1.1	0.16		ug/m3	1	4/1/2020 1:45:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/1/2020 1:45:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/1/2020 1:45:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/1/2020 1:45:00 PM

Qualifiers:	\mathbf{SC}	Sub-Contracted		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	3	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated,	ND	Not Detected at the Limit of Detection	
S		Spike Recovery outside accepted recovery limits	DL	Detection Limit	Page 2 of 24

Date: 10-Apr-20

Ləb Vacuum in -8 "Hg Ləb Vacuum Out -30 "Hg		360,380 3/28/2020	ample ID: Number: tion Date: Matrix:	Tag l				ıg, inc.	Geovation Engineer C2004002 Grant Hardware C2004002-002A	CLIENT: Lab Order: Project: Lab ID:
Lab Vacuum In 8 "Hg Lab Vacuum Out -30 "Hg 11.2.171/rhiloroethane < 0.15 0.15 ppbV 1 1,1.2.17tracholroethane < 0.15 0.15 ppbV 1 1,1.2.17tracholroethane < 0.15 0.15 ppbV 1 1,1.2.17tracholroethane < 0.15 0.15 ppbV 1 1,1.2.Tritacholroethane < 0.16 0.16 ppbV 1 1,1.2.Tritacholroethane < 0.15 0.15 ppbV 1 1,2.4-Tritachoroethane < 0.15 0.15 ppbV 1 1,2.4-Tritachoroethane < 0.15 0.15 ppbV 1 1,2.4-Tritachoroethane < 0.15 0.15 ppbV 1 1,2.4-Tritachtybenzene 0.15 0.15 ppbV 1 1,2.4-Tritachtybenzene < 0.15 0.15 ppbV 1 1,2-Dichloroethane < 0.15 0.15 ppbV 1 1,2-Dichlorobenzene < 0.15 0.15 ppbV	Date Analyzed	DF		Units	Qual	L	DL	Result		analyses
Lab Vacuum Out -30 "Hg tUG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE TO-15 TO-15 1 1,1,1-Trichloroethane < 0.15	Analyst:				,D	FL	F		ETERS	IELD PARAME
UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE TO-15 1,1,1-Trichloroethane < 0.15	4/1/2020	4								Ləb Vacuum in
1.1.1-Trichloroethane < 0.15	4/1/2020	4		"Hg				-30	ut	Lab Vacuum Out
1,1,2,2-Tetrachloroethane < 0.15	Analyst: RJF				-15	то	т	E-1,1DCE	UG/M3 CT-TCE-VC-DC	UG/M3 W/ 0.2L
1.1.2-Trichloroethane < 0.15	4/1/2020 2:32:00 PM	1 4		ppbV		,15	0.15			
1.1.2-Trichloroethane < 0.15	4/1/2020 2:32:00 PM	1 4		ppbV		.15	0.15	< 0.15	loroethane	1,1,2,2-Tetrachic
1.1-Dichloroethane < 0.15	4/1/2020 2:32:00 PM	1 4				.15	0.15	< 0.15	thane	1,1,2-Trichloroet
1.1-Dichloroethene < 0.040	4/1/2020 2:32:00 PM	1 4				.15	0.15	< 0.15	ane	1,1-Dichloroetha
1.2.4-Trichlorobenzene < 0.15	4/1/2020 2:32:00 PM							< 0.040		
1,2,4-Trimethylbenzene 0.27 0.15 ppbV 1 1,2-Dibromoethane < 0.15	4/1/2020 2:32:00 PM								enzene	1,2,4-Trichlorobe
1,2-Dibromethane < 0.15	4/1/2020 2:32:00 PM									
1,2-Dichlorobenzene < 0.15	4/1/2020 2:32:00 PM	1 4						< 0.15		•
1,2-Dichloroethane < 0.15	4/1/2020 2:32:00 PM	1 4				15	0,15	< 0.15	zene	1,2-Dichlorobenz
1,2-Dichloropropane < 0.15	4/1/2020 2:32:00 PM	1 4						< 0.15	ane	1,2-Dichloroetha
1,3,5-Trimethylbenzene 0.11 0.15 J ppbV 1 1,3-butadiene < 0.15	4/1/2020 2:32:00 PM	1 4						< 0.15	pane	1,2-Dichloroprop
1,3-butadiene < 0.15	4/1/2020 2:32:00 PM				J			0.11		
1,3-Dichlorobenzene < 0.15	4/1/2020 2:32:00 PM					,15	0,15	< 0.15		1,3-butadiene
1,4-Dichlorobenzene < 0.15	4/1/2020 2:32:00 PM	1 4						< 0.15	zene	1,3-Dichlorobenz
1,4-Dioxane < 0.30	4/1/2020 2:32:00 PM							< 0.15	zene	1,4-Dichlorobenz
2.2.4-trimethylpentane 0.13 0.15 J ppbV 1 4-ethyltoluene < 0.15	4/1/2020 2:32:00 PM							< 0.30		1,4-Dioxane
4-ethyltoluene < 0.15 0.15 ppbV 1 Acetone 7.0 3.0 ppbV 10 Allyl chloride < 0.15	4/1/2020 2:32:00 PM			• •	J				entane	2,2,4-trimethylpe
Acetone 7.0 3.0 ppbV 10 Allyl chloride < 0.15	4/1/2020 2:32:00 PM									* -
Aliyi chloride < 0.15 0.15 ppbV 1 Benzene 0.23 0.15 ppbV 1 Benzene < 0.15	4/2/2020 12:43:00 AM							7.0		Acetone
Benzene 0.23 0.15 ppbV 1 Benzyl chloride < 0.15	4/1/2020 2:32:00 PM							< 0.15		Allyl chloride
Benzyl chloride < 0.15 0.15 ppbV 1 Bromodichloromethane < 0.15	4/1/2020 2:32:00 PM									Benzene
Bromodichloromethane < 0.15 0.15 ppbV 1 Bromoform < 0.15	4/1/2020 2:32:00 PM									Benzyl chloride
Bromoform < 0.15 0.15 ppbV 1 Bromomethane < 0.15	4/1/2020 2:32:00 PM								tethane	-
Bromomethane < 0.15 0.15 ppbV 1 Carbon disulfide 0.18 0.15 ppbV 1 Carbon disulfide 0.090 0.030 ppbV 1 Carbon tetrachloride 0.090 0.030 ppbV 1 Chlorobenzene < 0.15	4/1/2020 2:32:00 PM									Bromoform
Carbon disulfide 0.18 0.15 ppbV 1 Carbon tetrachloride 0.090 0.030 ppbV 1 Chlorobenzene < 0.15	4/1/2020 2:32:00 PM									Bromomethane
Carbon tetrachloride 0.090 0.030 ppbV 1 Chlorobenzene < 0.15	4/1/2020 2:32:00 PM)	Carbon disulfide
Chlorobenzene < 0.15 0.15 ppbV 1 Chloroethane < 0.15	4/1/2020 2:32:00 PM								oride	Carbon tetrachior
Chloroethane < 0.15 0.15 ppbV 1 Chloroform 0.13 0.15 J ppbV 1 Chloromethane 0.40 0.15 ppbV 1 Chloromethane 0.40 0.15 ppbV 1 cis-1,2-Dichloroethane 0.060 0.040 ppbV 1 cis-1,3-Dichloropropene < 0.15	4/1/2020 2:32:00 PM									Chlorobenzene
Chloroform 0.13 0.15 J ppbV 1 Chloromethane 0.40 0.15 ppbV 1 cis-1,2-Dichloroethene 0.060 0.040 ppbV 1 cis-1,3-Dichloropropene < 0.15	4/1/2020 2:32:00 PM									
Chloromethane 0.40 0.15 ppbV 1 cis-1,2-Dichloroethene 0.060 0.040 ppbV 1 cis-1,3-Dichloropropene < 0.15	4/1/2020 2:32:00 PM				J					
cis-1,2-Dichloroethene 0.060 0.040 ppbV 1 cis-1,3-Dichloropropene < 0.15	4/1/2020 2:32:00 PM				-					
cis-1,3-Dichloropropene < 0.15 0.15 ppbV 1	4/1/2020 2:32:00 PM								ethene	
	4/1/2020 2:32:00 PM									-
	4/1/2020 2:32:00 PM									
Dibromochloromethane < 0.15 0.15 ppbV 1	4/1/2020 2:32:00 PM								tethane	•
Ethyl acetate 0.61 0.15 ppbV 1	4/1/2020 2:32:00 PM			••						

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits ND Not Detected at the Limit of Detection DL Detection Limit

Page 3 of 24

CLIENT:	Geovation Engineering, Inc.	Client Sample ID:	603
Lab Order:	C2004002	Tag Number:	360,380
Project:	Grant Hardware	Collection Date:	3/28/2020
Lab ID:	C2004002-002A	Matrix:	AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	то	-15			Analyst: RJF
Ethylbenzene	< 0.15	0.15		ppbV	1	4/1/2020 2:32:00 PM
Freon 11	0.27	0.15		ppbV	1	4/1/2020 2:32:00 PM
Freon 113	< 0.15	0.15		ppbV	1	4/1/2020 2:32:00 PM
Freon 114	< 0.15	0,15		ppbV	1	4/1/2020 2:32:00 PM
Freon 12	0.48	0,15		ppbV	1	4/1/2020 2:32:00 PM
Heptane	0.32	0.15		ppbV	1	4/1/2020 2:32:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		P¢bV	1	4/1/2020 2:32:00 PM
Hexane	0.25	0.15		ppbV	1	4/1/2020 2:32:00 PM
Isopropyl alcohol	1.7	0.15		ppbV	1	4/1/2020 2:32:00 PM
m&p-Xylene	0.39	0.30		ppbV	1	4/1/2020 2:32:00 PM
Methyl Butyl Ketone	< 0.30	0.30		opbV	1	4/1/2020 2:32:00 PM
Methyl Ethyl Ketone	0.51	0.30		ppb∨	1	4/1/2020 2:32:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		ppb∨	1	4/1/2020 2:32:00 PM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	4/1/2020 2:32:00 PM
Methylene chloride	0.20	0.15		ppbV	1	4/1/2020 2:32:00 PM
o-Xylene	0.20	0.15		ppbV	1	4/1/2020 2:32:00 PM
Propylene	< 0.15	0.15		ppbV	1	4/1/2020 2:32:00 PM
Styrene	< 0.15	0.15		ppbV	1	4/1/2020 2:32:00 PM
Tetrachioroethylene	0.11	0.15	J	ppbV	1	4/1/2020 2:32:00 PM
Tetrahydrofuran	< 0.15	0.15		opbV	1	4/1/2020 2:32:00 PM
Toluene	0.62	0.15		ppb∨	1	4/1/2020 2:32:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	4/1/2020 2:32:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	4/1/2020 2:32:00 PM
Trichloroethene	0.60	0.030		ppbV	1	4/1/2020 2:32:00 PM
Vinyl acetate	< 0.15	0,15		ppbV	1	4/1/2020 2:32:00 PM
Vinyl Bromide	< 0.15	0.15		ppbV	1	4/1/2020 2:32:00 PM
Vinyl chloride	< 0.040	0.040		ppbV	1	4/1/2020 2:32:00 PM
Surr: Bromofluorobenzene	108	70-130		%REC	1	4/1/2020 2:32:00 PM

		••••••••••••••••••••••••••••••••••••••			
Qualiflers:	\mathbf{SC}	Sub-Contracted		Results reported are not blank corrected	
	₿	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range	
	H	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte, Quantitation estimated.	ND	Not Detected at the Limit of Detection	D
	S	Spike Recovery outside accepted recovery limits	DL	Detection Limit	Page 4 of 24
	JN	Non-routine analyte. Quantitation estimated.		Not Detected at the Limit of Detection	Page 4 of 24

Date: 10-Apr-20

Analyses		Result	ÐŁ	Qual	Units	DF	Date Analyzed
Lab ID:	C2004002-002A				Matrix:	AIR	
Project:	Grant Hardware				Collection Date:	3/28/202	20
Lab Order:	C2004002				Tag Number:	360,380	
CLIENT:	Geovation Engineering,	lnc.		C	lient Sample ID:	603	

UG/M3 W/ 0.2UG/M3 CT-TCE-V(C-DCE-1,1DCE	TO	-15			Analyst: RJ
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/1/2020 2:32:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	4/1/2020 2:32:00 PM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/1/2020 2:32:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/1/2020 2:32:00 PM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	4/1/2020 2:32:00 PM
1,2,4-Trichlorobenzene	< 1.1	1,1		ug/m3	1	4/1/2020 2:32:00 PM
1,2,4-Trimethylbenzene	1.3	0.74		ug/m3	1	4/1/2020 2:32:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/1/2020 2:32:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/1/2020 2:32:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/1/2020 2:32:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/1/2020 2:32:00 PM
1,3,5-Trimethylbenzene	0.54	0.74	J	ug/m3	1	4/1/2020 2:32:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/1/2020 2:32:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/1/2020 2:32:00 PM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/1/2020 2:32:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	4/1/2020 2:32:00 PM
2,2,4-trimethylpentane	0.61	0.70	J	ug/m3	1	4/1/2020 2:32:00 PM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	4/1/2020 2:32:00 PM
Acetone	17	7.1		ug/m3	10	4/2/2020 12:43:00 AM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/1/2020 2:32:00 PM
Benzene	0.73	0.48		ug/m3	1	4/1/2020 2:32:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/1/2020 2:32:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/1/2020 2:32:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	4/1/2020 2:32:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	4/1/2020 2:32:00 PM
Carbon disulfide	0.56	0.47		ug/m3	1	4/1/2020 2:32:00 PM
Carbon tetrachloride	0.57	0.19		ug/m3	1	4/1/2020 2:32:00 PM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/1/2020 2:32:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	4/1/2020 2:32:00 PM
Chloroform	0.63	0.73	J	ug/m3	1	4/1/2020 2:32:00 PM
Chloromethane	0.83	0.31		ug/m3	1	4/1/2020 2:32:00 PM
cis-1,2-Dichloroethene	0.24	0.16		ug/m3	1	4/1/2020 2:32:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/1/2020 2:32:00 PM
Cyclohexane	< 0.52	0.52		ug/m3	1	4/1/2020 2:32:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/1/2020 2:32:00 PM
Ethyl acetate	2.2	0.54		ug/m3	1	4/1/2020 2:32:00 PM
≣thylbenzene	< 0.65	0.65		ug/m3	1	4/1/2020 2:32:00 PM
Freon 11	1.5	0.84		ug/m3	1	4/1/2020 2:32:00 PM
Freon 113	< 1.1	1.1		ug/m3	1	4/1/2020 2:32:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	4/1/2020 2:32:00 PM

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- $J\!N$ Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Detection Limit

JCI.

Page 3 of 24

Date: 10-Apr-20

CLIENT:	Geovation Engineering, Inc.	Client Sample ID: 603					
Lab Order:	C2004002	Tag Number: 360,380					
Project:	Grant Hardware	Collection Date: 3/28/2020					
Lab ID:	C2004002-002A	Matrix: AIR					

Anałyses	Result	DL	Qual	Units	ÐF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15				Analyst: RJP
Freon 12	2.4	0.74		ug/m3	1	4/1/2020 2:32:00 PM
Heptane	1.3	0.61		ug/m3	1	4/1/2020 2:32:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/1/2020 2:32:00 PM
Hexane	0.88	0.53		ug/m3	1	4/1/2020 2:32:00 PM
Isopropyl alcohol	4.2	0.37		ug/m3	1	4/1/2020 2:32:00 PM
m&p-Xylene	1,7	1.3		ug/m3	1	4/1/2020 2:32:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/1/2020 2:32:00 PM
Methyl Ethyl Ketone	1.5	0.88		ug/m3	1	4/1/2020 2:32:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	4/1/2020 2:32:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/1/2020 2:32:00 PM
Methylene chloride	0.69	0.52		ug/m3	1	4/1/2020 2:32:00 PM
o-Xylene	0.87	0.65		ug/m3	1	4/1/2020 2:32:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/1/2020 2:32:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/1/2020 2:32:00 PM
Tetrachioroethylene	0.75	1.0	J	ug/m3	1	4/1/2020 2:32:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/1/2020 2:32:00 PM
Toluene	2.3	0.57		ug/m3	1	4/1/2020 2:32:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/1/2020 2:32:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/1/2020 2:32:00 PM
Trichloroethene	3.2	0.16		ug/m3	1	4/1/2020 2:32:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/1/2020 2:32:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/1/2020 2:32:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/1/2020 2:32:00 PM

					r
Qualifiers:	SC	Sub-Contracted		Results reported are not blank corrected	
	Э	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range	
	н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	њ
	s	Spike Recovery outside accepted recovery limits	DL	Detection Limit	Page 4 of 24

Date: 10-Apr-20

CLIENT:		Geovation Engineering	ng, Inc.		C	lient Sample ID:	604	
Lab Order:		C2004002				Tag Number:	544,31	72
Project:		Grant Hardware				Collection Date:	3/28/2	020
Lab ID:		C2004002-003A				Matrix:	AIR	
Analyses			Result	DL	Qual	Units	DF	Date Analyzed
		ERS		F	LD			Analyst:
Lab Vacuum			-8			"Hg		4/1/2020
Lab Vacuum	Out		-30			"Hg		4/1/2020
UG/M3 W/ 0).2UC	G/M3 CT-TCE-VC-DCE	-1.1DCE	тс)-15			Analyst: RJF
1,1,1-Trichlo:			< 0,15	0.15		ppbV	1	4/1/2020 3:20:00 PM
1,1,2,2-Tetra	chlore	oethane	< 0.15	0.15		ppbV	1	4/1/2020 3:20:00 PM
1,1,2-Trichlo	roetha	ane	< 0.15	0.15		opbV	1	4/1/2020 3:20:00 PM
1,1-Dichloroe	ethane	÷	< 0.15	0,15		ppbV	1	4/1/2020 3:20:00 PM
1,1-Dichloroe	othen	3	< 0.040	0.040		opbV	1	4/1/2020 3:20:00 PM
1,2,4-Trichlo			< 0.15	0.15		ppb∨	1	4/1/2020 3:20:00 PM
1,2,4-Trimeti	nylber	zene	0.26	0.15		ppbV	1	4/1/2020 3:20:00 PM
1,2-Dibromo	ethan	8	< 0.15	0.15		Vdqq	1	4/1/2020 3:20:00 PM
1,2-Dichlorot	enze	ne	< 0.15	0.15		ppbV	1	4/1/2020 3:20:00 PM
1,2-Dichloroe	athane	3	< 0.15	0.15		ppbV	1	4/1/2020 3:20:00 PM
1,2-Dichlorop	ropa	he	< 0.15	0.15		ppbV	1	4/1/2020 3:20:00 PM
1,3,5-Trimeth	tylber	32010	0.13	0.15	J	ppbV	1	4/1/2020 3:20:00 PM
1,3-butadien	ė		< 0.15	0.15		ppbV	1	4/1/2020 3:20:00 PM
1,3-Dichlorot	oenzø	ne	< 0.15	0.15		ppbV	1	4/1/2020 3:20:00 PM
1,4-Dichlorot	enze	ne	< 0.15	0.15		Vdqq	1	4/1/2020 3:20:00 PM
1,4-Dioxane			< 0.30	0.30		ppbV	1	4/1/2020 3:20:00 PM
2,2,4-trimeth	ylpeni	ane	0.12	0.15	J	ppbV	1	4/1/2020 3:20:00 PM
4-ethyltoluen	e		< 0.15	0.15		Vdqq	1	4/1/2020 3:20:00 PM
Acetone			8.9	3.0		ppbV	10	4/2/2020 1:29:00 AM
Allyl chloride			< 0.15	0.15		ppbV	1	4/1/2020 3:20:00 PM
Benzene			0.23	0.15		ppbV	1	4/1/2020 3:20:00 PM
Benzyl chlori	de		< 0.15	0.15		opbV	1	4/1/2020 3:20:00 PM
Bromodichlo	omet	hane	< 0.15	0.15		ppbV	1	4/1/2020 3:20:00 PM
Bromoform			< 0.15	0.15		ppbV	1	4/1/2020 3:20:00 PM
Bromometha	ne		< 0.15	0.15		ppbV	1	4/1/2020 3:20:00 PM
Carbon disuli	lide		0,15	0.15		ppbV	1	4/1/2020 3:20:00 PM
Carbon tetrad	chloric	je	0.090	0.030		ppbV	1	4/1/2020 3:20:00 PM
Chlorobenzea	ne		< 0.15	0.15		ppbV	1	4/1/2020 3:20:00 PM
Chloroethane			< 0.15	0.15		ppbV	1	4/1/2020 3:20:00 PM
Chloroform			0.23	0.15		Vdqq	1	4/1/2020 3:20:00 PM
Chlorometha	ne		0.41	0.15		ppbV	1	4/1/2020 3:20:00 PM
cis-1,2-Dichle	proeth	ene	0.050	0.040		Vdqq	1	4/1/2020 3:20:00 PM
cis-1,3-Dichle	bropro	pene	< 0.15	0.15		ppbV	1	4/1/2020 3:20:00 PM
Cyclohexane			< 0.15	0.15		ppbV	1	4/1/2020 3:20:00 PM
Dibromochior	romet	hane	< 0.15	0.15		ppbV	1	4/1/2020 3:20:00 PM
Ethyl acetate			0.69	0.15		ppbV	1	4/1/2020 3:20:00 PM
Qualifiers:	SC	Sub-Contracted			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	. Results reported a		lank corrected
,	в	Analyte detected in the as	sociated Method B	ank		E Estimated Value		
			tion or analysis exe				below qu	

JN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits S

ND Not Detected at the Limit of Detection DL Detection Limit

Page 5 of 24

CLIENT:	Geovation Engineering, Inc.	Client Sample ID: 604					
Lab Order:	C2004002	Tag Number: 544,372					
Project:	Grant Hardware	Collection Date: 3/28/2020					
Lab ID:	C2004002-003A	Matrix: AIR					

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO	-15			Analyst: RJF
Ethylbenzene	< 0.15	0.15	;	Vdqq	1	4/1/2020 3:20:00 PM
Freon 11	0.26	0.15	ţ	ppbV	1	4/1/2020 3:20:00 PM
Freon 113	< 0.15	0.15	5	ppbV	1	4/1/2020 3:20:00 PM
Freon 114	< 0.15	0.15	F	opbV	1	4/1/2020 3:20:00 PM
Freon 12	0.46	0.15	f	ppbV	1	4/1/2020 3:20:00 PM
Heptane	0.28	0.15	F	opbV	1	4/1/2020 3:20:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15	ŧ	opbV	1	4/1/2020 3:20:00 PM
Hexane	0.26	0.15	F	opbV	1	4/1/2020 3:20:00 PM
Isopropyl alcohol	1.5	0.15	Ĺ	opbV	1	4/1/2020 3:20:00 PM
m&p-Xylene	0.38	0.30	F	opbV	1	4/1/2020 3:20:00 PM
Methyi Butyi Ketone	< 0.30	0.30	Į	opbV	1	4/1/2020 3:20:00 PM
Methyl Ethyl Ketone	0.53	0.30	f	Vdqc	1	4/1/2020 3:20:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30	ţ	vdqc	1	4/1/2020 3:20:00 PM
Methyl tert-butyl ether	< 0.15	0.15	\$	Vdqc	1	4/1/2020 3:20:00 PM
Methylene chloride	0.20	0.15	F	эрbV	1	4/1/2020 3:20:00 PM
o-Xylene	0.18	0.15	r,	opbV	1	4/1/2020 3:20:00 PM
Propylene	< 0.15	0.15	p	Vdqc	1	4/1/2020 3:20:00 PM
Styrene	< 0.15	0.15	F	opbV	1	4/1/2020 3:20:00 PM
Tetrachloroethylene	0.11	0.15	J p	vdqc	1	4/1/2020 3:20:00 PM
Tetrahydrofuran	< 0.15	0.15	ĸ	opbV	1	4/1/2020 3:20:00 PM
Toluene	0.48	0.15	F	opbV	1	4/1/2020 3:20:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	ţ	Vdqc	1	4/1/2020 3:20:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15	ţ	Vdqc	1	4/1/2020 3:20:00 PM
Trichloroethene	0.59	0.030	F	Vdqc	1	4/1/2020 3:20:00 PM
Vinyl acetate	< 0.15	0.15	۶	opbV	1	4/1/2020 3:20:00 PM
Vinył Bromide	< 0.15	0.15	F	Vdqo	1	4/1/2020 3:20:00 PM
Vinyl chloride	< 0.040	0.040	F	opbV	1	4/1/2020 3:20:00 PM
Surr: Bromofluorobenzene	100	70-130	ġ	%REC	1	4/1/2020 3:20:00 PM

		11/3/5 /A/* 4/6/A * 1/*			
Qualifiers:	SC	Sub-Contracted		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range	
	н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND		
	S	Spike Recovery outside accepted recovery limits	DL	Detection Limit	Page 6 of 24

Date: 10-Apr-20

CLIENT:	Geovation Engineering, Inc.	Client Sample ID:	604				
Lab Order:	C2004002	Tag Number:	544,372				
Project:	Grant Hardware	Collection Date:	3/28/2020				
Lab ID:	C2004002-003A	Matrix:	AIR				

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15				Analyst: RJF
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/1/2020 3:20:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	4/1/2020 3:20:00 PM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/1/2020 3:20:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/1/2020 3:20:00 PM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	4/1/2020 3:20:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/1/2020 3:20:00 PM
1,2,4-Trimethylbenzene	1.3	0.74		ug/m3	1	4/1/2020 3:20:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/1/2020 3:20:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/1/2020 3:20:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/1/2020 3:20:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/1/2020 3:20:00 PM
1,3,5-Trimethylbenzene	0.64	0.74	J	ug/m3	1	4/1/2020 3:20:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/1/2020 3:20:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/1/2020 3:20:00 PM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/1/2020 3:20:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	4/1/2020 3:20:00 PM
2,2,4-trimethylpentane	0.56	0.70	J	ug/m3	1	4/1/2020 3:20:00 PM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	4/1/2020 3:20:00 PM
Acetone	21	7.1		ug/m3	10	4/2/2020 1:29:00 AM
Allyl chioride	< 0.47	0.47		ug/m3	1	4/1/2020 3:20:00 PM
Benzene	0.73	0.48		ug/m3	1	4/1/2020 3:20:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/1/2020 3:20:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/1/2020 3:20:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	4/1/2020 3:20:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	4/1/2020 3:20:00 PM
Carbon disulfide	0.47	0.47		ug/m3	1	4/1/2020 3:20:00 PM
Carbon tetrachloride	0.57	0.19		ug/m3	1	4/1/2020 3:20:00 PM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/1/2020 3:20:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	4/1/2020 3:20:00 PM
Chloroform	1.1	0.73		ug/m3	1	4/1/2020 3:20:00 PM
Chioromethane	0.85	0.31		ug/m3	1	4/1/2020 3:20:00 PM
cis-1,2-Dichloroethene	0.20	0.16		ug/m3	1	4/1/2020 3:20:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/1/2020 3:20:00 PM
Cyclohexane	< 0.52	0.52		ug/m3	1	4/1/2020 3:20:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/1/2020 3:20:00 PM
Ethyl acetate	2.5	0.54		ug/m3	1	4/1/2020 3:20:00 PM
Ethylbenzene	< 0.65	0.65		ug/m3	1	4/1/2020 3:20:00 PM
Freon 11	1.5	0.84		ug/m3	1	4/1/2020 3:20:00 PM
Freon 113	< 1.1	1.1		ug/m3	1	4/1/2020 3:20:00 PM
Freon 114	< 1.0	1.0		ug/m3	, 1	4/1/2020 3:20:00 PM

Qualifiers: SC Sub-Contracted

- ₿ Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected .
- Ε Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection DL Detection Limit

Page 5 of 24

	9 ° 30, 1 m / m / m / m / m / m / m / m / m / m		and a second		
CLIENT:	Geovation Engineering, Inc.	Client Sample ID:	604		
Lab Order:	C2004002	Tag Number:	544,372		
Project:	Grant Hardware	Collection Date:	3/28/2020		
Lab ID:	C2004002-003A	Matrix:	AIR		

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-15				Analyst: RJP
Freen 12	2.3	0.74		ug/m3	1	4/1/2020 3:20:00 PM
Heptane	1.1	0.61		ug/m3	1	4/1/2020 3:20:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/1/2020 3:20:00 PM
Hexane	0.92	0.53		ug/m3	1	4/1/2020 3:20:00 PM
Isopropyl alcohol	3.7	0.37		ug/m3	1	4/1/2020 3:20:00 PM
m&p-Xylene	1.6	1.3		ug/m3	1	4/1/2020 3:20:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/1/2020 3:20:00 PM
Methyl Ethyl Ketone	1.6	0.88		ug/m3	1	4/1/2020 3:20:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	4/1/2020 3:20:00 PM
Methyl tert-butyl ether	< 0.54	0,54		ug/m3	1	4/1/2020 3:20:00 PM
Methylene chloride	0.69	0.52		ug/m3	1	4/1/2020 3:20:00 PM
o-Xylene	0.78	0.65		ug/m3	1	4/1/2020 3:20:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/1/2020 3:20:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/1/2020 3:20:00 PM
Tetrachloroethylene	0.75	1.0	J	ug/m3	1	4/1/2020 3:20:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/1/2020 3:20:00 PM
Toluene	1.8	0.57		ug/m3	1	4/1/2020 3:20:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/1/2020 3:20:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/1/2020 3:20:00 PM
Trichloroethene	3.2	0.16		ug/m3	1	4/1/2020 3:20:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/1/2020 3:20:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/1/2020 3:20:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/1/2020 3:20:00 PM

Qualifiers:	SC	Sub-Contracted	,	Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	Е	Estimated Value above quantitation range	
	н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	ЛV	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	
	S	Spike Recovery outside accepted recovery limits	DL	Detection Limit	Page 6 of 24

s

Spike Recovery outside accepted recovery limits

Date: 10-Apr-20

CLIENT:		Geovation Engineeri	ng, Inc.			lient Sample l	D: 606	
Lab Order:		C2004002				Tag Numb	er: 352,4	35
Project:		Grant Hardware				Collection Da	te: 3/28/2	2020
Lab ID:		C2004002-004A				Matr	ix: AIR	
Analyses		th fact from any one of the same of the fact of the same fact and the same same same same same	Result	DL	Qual	Units	DF	Date Analyzed
FIELD PAR	AMEI	TERS		F	LD			Analyst:
Lab Vacuun	n in		-7			"Hg		4/1/2020
Lab Vacuun	n Out		-30			"Hg		4/1/2020
1UG/M3 W/	0.2U	G/M3 CT-TCE-VC-DC	E-1,1DCE	тс)-15			Analyst: RJP
1,1,1-Trichk	proeth	ânê	< 0.1 5	0.15		ppbV	1	4/1/2020 4:07:00 PM
1,1,2,2-Tetra	achlor	roethane	< 0.15	0.15		ppbV	1	4/1/2020 4:07:00 PM
1,1,2-Trichic	proeth	ane	< 0.15	0.15		ppbV	1	4/1/2020 4:07:00 PM
1,1-Dichioro	ethan	e	< 0.15	0.15		ppbV	1	4/1/2020 4:07:00 PM
1,1-Dichloro	ethen	e	< 0.040	0.040		ppbV	1	4/1/2020 4:07:00 PM
1,2,4-Trichle	orober	izene	< 0.15	0.15		ppb∨	1	4/1/2020 4:07:00 PM
1,2,4-Trimet	thylbe	nzene	0.27	0.15		ppbV	1	4/1/2020 4:07:00 PM
1,2-Dibromo	bethan	e	< 0.15	0.15		ppbV	1	4/1/2020 4:07:00 PM
1,2-Dichloro	benze	ine	< 0.15	0.15		ppbV	1	4/1/2020 4:07:00 PM
1,2-Dichloro	ethan	e	< 0.15	0.15		ppbV	1	4/1/2020 4:07:00 PM
1,2-Dichloro	propa	ne	< 0.15	0.15		ppbV	1	4/1/2020 4:07:00 PM
1,3,5-Trimet	hylbe	nzene	0.13	0.15	J	ppbV	1	4/1/2020 4:07:00 PM
1,3-butadien	10		< 0.15	0.15		ppbV	1	4/1/2020 4:07:00 PM
1,3-Dichloro	benze	100	< 0.15	0.15		Vdqq	1	4/1/2020 4:07:00 PM
1,4-Dichloro	benze	ene	< 0.15	0.15		ppbV	1	4/1/2020 4:07:00 PM
1,4-Dioxane			< 0.30	0.30		opbV	1	4/1/2020 4:07:00 PM
2,2,4-trimetr	hylpen	tano	0.14	0.15	J	ppbV	1	4/1/2020 4:07:00 PM
4-ethyitoluer			< 0.15	0.15		ppbV	1	4/1/2020 4:07:00 PM
Acetone			7.2	3.0		ppbV	10	4/2/2020 2:15:00 AM
Ally! chloride	•		< 0.15	0,15		Vdqq	1	4/1/2020 4:07:00 PM
Benzene			0.25	0.15		ppbV	1	4/1/2020 4:07:00 PM
Benzyl chlor	ide		< 0.15	0.15		ppbV	1	4/1/2020 4:07:00 PM
Bromodichic		thane	< 0.15	0.15		ppbV	1	4/1/2020 4:07:00 PM
Bromoform			< 0.15	0.15		ppbV	1	4/1/2020 4:07:00 PM
Bromometha	але		< 0.15	0.15		ppbV	1	4/1/2020 4:07:00 PM
Carbon disu			0.17	0.15		ppbV	1	4/1/2020 4:07:00 PM
Carbon tetra		de	0.090	0.030		ppbV	1	4/1/2020 4:07:00 PM
Chlorobenze			< 0.15	0.15		ppbV	1	4/1/2020 4:07:00 PM
Chloroethan			< 0.15	0.15		ppbV	1	4/1/2020 4:07:00 PM
Chloroform	0		0.12	0.15	J	ppbV	1	4/1/2020 4:07:00 PM
Chlorometha	ane		0.35	0.15	Ŷ	ppbV	1	4/1/2020 4:07:00 PM
cis-1,2-Dichl		hene	0.050	0.040		ppbV	1	4/1/2020 4:07:00 PM
cis-1,2-Dichl			< 0.15	0.15		ppbV	, 1	4/1/2020 4:07:00 PM
Cyclohexane		~p~	0.30	0.15		ppov	1	4/1/2020 4:07:00 PM
Dibromochloromethane		thane	< 0.15	0.15		ppov ppbV	1	4/1/2020 4:07:00 PM
Ethyl acetate		u let 10	< 0.80	0.15		ppov ppbV	1	4/1/2020 4:07:00 PM
miny average	•		0.00	0.15		hhna		
Qualificrs:	sc	Sub-Contracted				. Results repor	ted are not b	lank corrected
	B	Analyte detected in the as	sociated Method B	lank				uantitation range
	Н	Holding times for prepara					-	uantitation fimit
	JN	Non-routine analyte. Qua	•		ינ	ND Not Detected		of Detection
		Pailes D.						Page 7 of

DL Detection Limit

Page 7 of 24

Date: 10-Apr-20

Analyses		Result	ÐL		Units	DF	Date Analyzed
Lab ID:	C2004002-004A				Matrix:		
Project:	Grant Hardware				Collection Date:	3/28/202	0
Lab Order:	C2004002				Tag Number:	352,435	
CLIENT:	Geovation Engineering,	Inc.		C	lient Sample ID:	606	

Analyses	Result	ÐL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	E TO-15				Analyst: RJP
Ethylbenzene	0.11	0.15	J	ppb∨	1	4/1/2020 4:07:00 PM
Freon 11	0.26	0.15		ppbV	1	4/1/2020 4:07:00 PM
Freon 113	< 0.15	0.15		ppbV	1	4/1/2020 4:07:00 PM
Freon 114	< 0.15	0.15		ppbV	1	4/1/2020 4:07:00 PM
Freon 12	0.44	0.15		ppbV	1	4/1/2020 4:07:00 PM
Heptane	0.31	0.15		ppbV	1	4/1/2020 4:07:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		ppbV	1	4/1/2020 4:07:00 PM
Hexane	0.28	0.15		ppbV	1	4/1/2020 4:07:00 PM
Isopropyl alcohol	1.5	0.15		ppbV	1	4/1/2020 4:07:00 PM
m&p-Xylene	0.42	0.30		ppbV	1	4/1/2020 4:07:00 PM
Methyl Butyl Ketone	< 0.30	0.30		pøb∨	1	4/1/2020 4:07:00 PM
Methyl Ethyl Ketone	0.60	0.30		ppb∨	1	4/1/2020 4:07:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		ppbV	1	4/1/2020 4:07:00 PM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	4/1/2020 4:07:00 PM
Methylene chloride	0.19	0.15		ppb∨	1	4/1/2020 4:07:00 PM
o-Xylene	0.21	0.15		ppbV	1	4/1/2020 4:07:00 PM
Propylene	< 0.15	0.15		ppbV	1	4/1/2020 4:07:00 PM
Styrene	< 0.15	0.15		ppbV	1	4/1/2020 4:07:00 PM
Tetrachloroethylene	0.11	0.15	J	ppbV	1	4/1/2020 4:07:00 PM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	4/1/2020 4:07:00 PM
Toluene	0.56	0.15		opbV	1	4/1/2020 4:07:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	4/1/2020 4:07:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	4/1/2020 4:07:00 PM
Trichloroethene	0.59	0.030		ppbV	1	4/1/2020 4:07:00 PM
Vinyt acetate	< 0.15	0.15		ppbV	1	4/1/2020 4:07:00 PM
Vinyl Bromide	< 0.15	0.15		opbV	1	4/1/2020 4:07:00 PM
Vinyl chloride	< 0.040	0.040		ppbV	1	4/1/2020 4:07:00 PM
Surr: Bromofluorobenzene	103	70-130		%REC	1	4/1/2020 4:07:00 PM

Qualifiers:	SC	Sub-Contracted		Results reported are not blank corrected
	в	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range
	н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit
	JN	Non-routine analyte. Quantitation estimated,	ND	Not Detected at the Limit of Detection
	S	Spike Recovery outside accepted recovery limits	DL	Detection Limit Page 8 of 24

Date: 10-Apr-20

			na an an ann an an an an an an ann an an
CLIENT:	Geovation Engineering, Inc.	Client Sample ID:	606
Lab Order:	C2004002	Tag Number:	352,435
Project:	Grant Hardware	Collection Date:	3/28/2020
Lab ID:	C2004002-004A	Matrix:	AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed	
1UG/M3 W/ 0.2UG/M3 CT-TCE-V	C-DCE-1,1DCE	тс	-15			Analyst: RJF	
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/1/2020 4:07:00 PM	
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	4/1/2020 4:07:00 PM	
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/1/2020 4:07:00 PM	
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/1/2020 4:07:00 PM	
1,1-Dichloroethene	< 0.16	0.16		ug/m3	4	4/1/2020 4:07:00 PM	
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/1/2020 4:07:00 PM	
1,2,4-Trimethylbenzene	1.3	0.74		ug/m3	1	4/1/2020 4:07:00 PM	
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/1/2020 4:07:00 PM	
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/1/2020 4:07:00 PM	
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/1/2020 4:07:00 PM	
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/1/2020 4:07:00 PM	
1,3,5-Trimethylbenzene	0.64	0.74	J	ug/m3	1	4/1/2020 4:07:00 PM	
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/1/2020 4:07:00 PM	
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/1/2020 4:07:00 PM	
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/1/2020 4:07:00 PM	
1,4-Dioxane	< 1.1	1.1		ug/m3	1	4/1/2020 4:07:00 PM	
2,2,4-trimethylpentane	0.65	0.70	J	ug/m3	1	4/1/2020 4:07:00 PM	
4-ethyltoluene	< 0.74	0.74		ug/m3	1	4/1/2020 4:07:00 PM	
Acetone	17	7,1		ug/m3	10	4/2/2020 2:15:00 AM	
Allyl chloride	< 0.47	0.47		ug/m3	1	4/1/2020 4:07:00 PM	
Benzene	0.80	0,48		ug/m3	1	4/1/2020 4:07:00 PM	
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/1/2020 4:07:00 PM	
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/1/2020 4:07:00 PM	
Bromoform	< 1.6	1.6		ug/m3	1	4/1/2020 4:07:00 PM	
Bromomethane	< 0.58	0.58		ug/m3	1	4/1/2020 4:07:00 PM	
Carbon disulfide	0.53	0.47		ug/m3	1	4/1/2020 4:07:00 PM	
Carbon tetrachioride	0.57	0.19		ug/m3	1	4/1/2020 4:07:00 PM	
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/1/2020 4:07:00 PM	
Chloroethane	< 0.40	0.40		ug/m3	1	4/1/2020 4:07:00 PM	
Chloroform	0,59	0.73	J	ug/m3	, 1	4/1/2020 4:07:00 PM	
Chloromethane	0.72	0.31	v	ug/m3	1	4/1/2020 4:07:00 PM	
cis-1,2-Dichloroethene	0.20	0.16		ug/m3	1	4/1/2020 4:07:00 PM	
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/1/2020 4:07:00 PM	
Cyclohexane	1.0	0.52		ug/m3	1	4/1/2020 4:07:00 PM	
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/1/2020 4:07:00 PM	
Ethyl acetate	2.9	0.54		ug/m3	, 1	4/1/2020 4:07:00 PM	
Ethylbenzene	0.48	0.65	J	ug/m3	4	4/1/2020 4:07:00 PM	
Freon 11	1.5	0.84	u.	ug/m3	1	4/1/2020 4:07:00 PM	
Freon 113	< 1.1	1.1		ug/m3	1	4/1/2020 4:07:00 PM	
Freon 114	< 1.0	1.0		ug/m3	1	4/1/2020 4:07:00 PM	

В Analyte detected in the associated Method Blank

- н Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.

Ş Spike Recovery outside accepted recovery limits

- Е Estimated Value above quantitation range
- J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection ÐL Detection Limit

Page 7 of 24

Analyses		Result	DL	+ -	Units	DF	Date Analyzed
Lab ID:	C2004002-004A				Matrix:	AIR	
Project:	Grant Hardware				Collection Date:	3/28/2020)
Lab Order:	C2004002				Tag Number:	352,435	
CLIENT:	Geovation Engineering,	Inc.		C	lient Sample ID:	606	
					1996 - J. San Maria, 1997 - 1996 - San anna a' an		

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
UG/M3 W/ 0.2UG/M3 CT-TCE-VC	DCE-1,1DCE	TO-15				Analyst: RJF
Freon 12	2,2	0.74		ug/m3	1	4/1/2020 4:07:00 PM
Heptane	1.3	0.61		ug/m3	1	4/1/2020 4:07:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/1/2020 4:07:00 PM
Hexane	0.99	0.53		ug/m3	1	4/1/2020 4:07:00 PM
Isopropyl alcohol	3.6	0.37		ug/m3	1	4/1/2020 4:07:00 PM
m&p-Xylene	1.8	1.3		ug/m3	1	4/1/2020 4:07:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/1/2020 4:07:00 PM
Methyl Ethyl Ketone	1.8	0.88		ug/m3	1	4/1/2020 4:07:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	4/1/2020 4:07:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/1/2020 4:07:00 PM
Methylene chloride	0.66	0.52		ug/m3	1	4/1/2020 4:07:00 PM
o-Xylene	0.91	0.65		ug/m3	1	4/1/2020 4:07:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/1/2020 4:07:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/1/2020 4:07:00 PM
Tetrachloroethylene	0.75	1.0	J	ug/m3	1	4/1/2020 4:07:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	t	4/1/2020 4:07:00 PM
Toluene	2.1	0.57		ug/m3	1	4/1/2020 4:07:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/1/2020 4:07:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/1/2020 4:07:00 PM
Trichloroethene	3.2	0.16		ug/m3	t	4/1/2020 4:07:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/1/2020 4:07:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/1/2020 4:07:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/1/2020 4:07:00 PM

Qualifiers;	SC B	Sub-Contracted Analyte detected in the associated Method Blank	Ę	Results reported are not blank corrected Estimated Value above quantitation range	ana ana ama taon taon taon taon taon taon taon tao
	н л s	Holding times for preparation or analysis exceeded Non-routine analyte. Quantitation estimated. Spike Recovery outside accepted recovery limits	ר כוא נוס	Analyte detected below quantitation limit Not Detected at the Limit of Detection Detection Limit	Page 8 of 24

Date: 13-Apr-20

CLIENT:	Geovation Enginceria	ıg, Inc.		Client Sam	pie ID:	607	
Lab Order:	C2004002			Tag Ni	mber:	207,38	38
Project:	Grant Hardware			Collection	Date:	3/28/2	020
Lab ID:	C2004002-005A			N	Aatrix:	AIR	
Analyses		Result	ÐL	Qual Units		DF	Date Analyzed
FIELD PARAM	ETERS		F	_D			Analyst:
Lab Vacuum In		-9		"Hg			4/1/2020
Lab Vacuum Or	ut	-30		"Hg			4/1/2020
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	E-1,1DCE	то	-15			Analyst: RJI
1,1,1-Trichloroe	thane	< 0.15	0.15	ppbV		1	4/1/2020 4:55:00 PM
1,1,2,2-Tetrach	loroethane	< 0.15	0.15	ppbV		1	4/1/2020 4:55:00 PM
1,1,2-Trichloroe	thane	< 0.15	0.15	ppbV		1	4/1/2020 4:55:00 PM
1,1-Dichloroetha	ane	< 0.15	0.15	ppbV		1	4/1/2020 4:55:00 PM
1,1-Dichloroethe	ene	< 0.040	0.040	ppbV		1	4/1/2020 4:55:00 PM
1,2,4-Trichlorob	enzene	< 0.15	0.15	Vdqq		1	4/1/2020 4:55:00 PM
1,2,4-Trimethylt	benzene	< 0.15	0.15	ppbV		1	4/1/2020 4:55:00 PM
1,2-Dibromoeth	ane	< 0.15	0.15	Vdqq		1	4/1/2020 4:55:00 PM
1,2-Dichloroben	izene	< 0.15	0.15	ppbV		1	4/1/2020 4:55:00 PM
1,2-Dichloroeth	ene	< 0.15	0.15	Vđqq		1	4/1/2020 4:55:00 PM
1,2-Dichloropro	pane	< 0.15	0.15	ppbV		1	4/1/2020 4:55:00 PM
1,3,5-Trimethylt	penzene	< 0.15	0.15	Vdqq		1	4/1/2020 4:55:00 PM
1,3-butadiene		< 0.15	0.15	ppb∨		1	4/1/2020 4:55:00 PM
1,3-Dichloroben	zene	< 0.15	0.15	₽ddđ		1	4/1/2020 4:55:00 PM
1,4-Dichloroben	izene	< 0.15	0.15	ppb∨		1	4/1/2020 4:55:00 PM
1,4-Dioxane		< 0.30	0.30	ppbV		1	4/1/2020 4:55:00 PM
2,2,4-trimethylp	entane	< 0.15	0.15	vdqq		1	4/1/2020 4:55:00 PM
4-ethyltoluene		< 0.15	0.15	ppbV		1	4/1/2020 4:55:00 PM
Acetone		4.0	3.0	ppbV		10	4/2/2020 3:00:00 AM
Allyl chloride		< 0.15	0.15	ppbV		1	4/1/2020 4:55:00 PM
Benzene		0.15	0.15	ppbV		1	4/1/2020 4:55:00 PM
Benzyl chloride		< 0.15	0.15	ppb∨		1	4/1/2020 4:55:00 PM
Bromodichloron	nethane	< 0.15	0.15	ppb∨		1	4/1/2020 4:55:00 PM
Bromoform		< 0.15	0.15	ppbV		1	4/1/2020 4:55:00 PM
Bromomethane		< 0.15	0.15	ppbV		1	4/1/2020 4:55:00 PM
Carbon disulfide	•	< 0.15	0.15	ppbV		1	4/1/2020 4:55:00 PM
Carbon tetrachie	orīde	0.090	0.030	ppbV		1	4/1/2020 4:55:00 PM
Chlorobenzene		< 0.15	0.15	ppb∨		1	4/1/2020 4:55:00 PM
Chloroethane		< 0,15	0.15	ppbV		1	4/1/2020 4:55:00 PM
Chloroform		< 0.15	0.15	ppbV		1	4/1/2020 4:55:00 PM
Chloromethane		0.38	0.15	ppbV		1	4/1/2020 4:55:00 PM
cis-1,2-Dichloro	ethene	< 0.040	0.040	ppbV		1	4/1/2020 4:55:00 PM
cis-1,3-Dichloro	propene	< 0.15	0.15	ppbV		1	4/1/2020 4:55:00 PM
Cyclohexane		0.20	0.15	ppbV		1	4/1/2020 4:55:00 PM
Dibromochloron	nethane	< 0.15	0.15	ppbV		1	4/1/2020 4:55:00 PM
Ethyl acetate		< 0.15	0.15	ppb∨		1	4/1/2020 4:55:00 PM

Qualifiers: SC Sub-Contracted

ender andere andere

11.6.0

ومعي ومستوحات ستردي ساردي

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Detection Limit

DL.

			1				
CLIENT:	Geovation Engineering, Inc.	Client Sample ID:	607				
Lab Order:	C2004002	Tag Number:	207,388				
Project:	Grant Hardware	Collection Date:	3/28/2020				
Lab ID:	C2004002-005A	Matrix:	AIR				

Analyses	Result	ÐL	Qual	Units	DF	Date Analyzed
IUG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	то)-15			Analyst: RJF
Ethylbenzene	< 0.15	0.15		ppbV	1	4/1/2020 4:55:00 PM
Freon 11	0.21	0.15		ppbV	1	4/1/2020 4:55:00 PM
Freon 113	< 0.15	0.15		ppbV	1	4/1/2020 4:55:00 PM
Freon 114	< 0.15	0.15		ppbV	1	4/1/2020 4:55:00 PM
Freon 12	0.46	0.15		opbV	1	4/1/2020 4:55:00 PM
Heptane	< 0.15	0.15		ppbV	1	4/1/2020 4:55:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		ppbV	1	4/1/2020 4:55:00 PM
Hexane	< 0.15	0.15		ppbV	1	4/1/2020 4:55:00 PM
Isopropyl alcohol	0.68	0.15		ppbV	1	4/1/2020 4:55:00 PM
m&p-Xylene	< 0.30	0.30		ppbV	1	4/1/2020 4:55:00 PM
Methyl Butyl Ketone	< 0.30	0.30		ppb∨	1	4/1/2020 4:55:00 PM
Methyl Ethyl Ketone	0.28	0.30	J	ppbV	1	4/1/2020 4:55:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		ppb∨	1	4/1/2020 4:55:00 PM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	4/1/2020 4:55:00 PM
Methylene chloride	0.18	0.15		ppbV	1	4/1/2020 4:55:00 PM
o-Xylene	< 0.15	0.15		ppbV	1	4/1/2020 4:55:00 PM
Propylene	< 0.15	0.15		ppbV	1	4/1/2020 4:55:00 PM
Styrene	< 0.15	0.15		ppbV	1	4/1/2020 4:55:00 PM
Tetrachloroethylene	< 0.15	0.15		ppbV	1	4/1/2020 4:55:00 PM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	4/1/2020 4:55:00 PM
Toluene	0.15	0.15		ppbV	1	4/1/2020 4:55:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	4/1/2020 4:55:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	4/1/2020 4:55:00 PM
Trichloroethene	0.10	0.030		ppbV	1	4/1/2020 4:55:00 PM
Vinyl acetate	< 0.15	0.15		ppbV	1	4/1/2020 4:55:00 PM
Vinyl Bromide	< 0.15	0.15		ppbV	1	4/1/2020 4:55:00 PM
Vinyl chloride	< 0.040	0.040		ppbV	1	4/1/2020 4:55:00 PM
Surr: Bromofluorobenzene	83.0	70-130		%REC	1	4/1/2020 4:55:00 PM

21-221-0000-0000-0000-0000-000-000-000-0		· · · · · · · · · · · · · · · · · · ·			an a
Qualifiers: S	С	Sub-Contracted		Results reported are not blank corrected	
i	В	Analyte detected in the associated Method Blank	Е	Estimated Value above quantitation range	c
1	ł	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	it
J	N	Non-routine analyte. Quantitation estimated,	ND	Not Detected at the Limit of Detection	D 10.004
:	ŝ	Spike Recovery outside accepted recovery limits	DL	Detection Limit	Page 10 of 24

Date: 13-Apr-20

CLIENT:	Geovation Engineering, Inc.	Client Sample ID:	
Lab Order:	C2004002	Tag Number:	207,388
Project:	Grant Hardware	Collection Date:	3/28/2020
Lab ID:	C2004002-005A	Matrix:	AIR
an construction and a final conductions to the order of the second states			

Analyses	Result	DL	Qual Units	DF	Date Analyzed
UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	то	15		Analyst: RJF
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/1/2020 4:55:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	4/1/2020 4:55:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	4/1/2020 4:55:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/1/2020 4:55:00 PM
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	4/1/2020 4:55:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	4/1/2020 4:55:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	ug/m3	1	4/1/2020 4:55:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	4/1/2020 4:55:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/1/2020 4:55:00 PM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	4/1/2020 4:55:00 PM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	4/1/2020 4:55:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	4/1/2020 4:55:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	1	4/1/2020 4:55:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/1/2020 4:55:00 PM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/1/2020 4:55:00 PM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	4/1/2020 4:55:00 PM
2,2,4-trimethylpentane	< 0.70	0,70	ug/m3	1	4/1/2020 4:55:00 PM
4-ethyltoluene	< 0.74	0.74	ug/m3	1	4/1/2020 4:55:00 PM
Acetone	9.5	7,1	ug/m3	10	4/2/2020 3:00:00 AM
Allyi chloride	< 0.47	0.47	ug/m3	1	4/1/2020 4:55:00 PM
Benzene	0.48	0.48	ug/m3	1	4/1/2020 4:55:00 PM
Benzyl chloride	< 0.86	0.86	ug/m3	1	4/1/2020 4:55:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	4/1/2020 4:55:00 PM
Bromoform	< 1.6	1,6	ug/m3	1	4/1/2020 4:55:00 PM
Bromomethane	< 0.58	0.58	ug/m3	1	4/1/2020 4:55:00 PM
Carbon disulfide	< 0.47	0.47	ug/m3	1	4/1/2020 4:55:00 PM
Carbon tetrachloride	0.57	0.19	ug/m3	1	4/1/2020 4:55:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	4/1/2020 4:55:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/1/2020 4:55:00 PM
Chloroform	< 0.73	0.73	ug/m3	1	4/1/2020 4:55:00 PM
Chloromethane	0.78	0.31	ug/m3	1	4/1/2020 4:55:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	4/1/2020 4:55:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/1/2020 4:55:00 PM
Cyclohexane	0.69	0.52	ug/m3	1	4/1/2020 4:55:00 PM
Dibromochloromethane	< 1,3	1,3	ug/m3	1	4/1/2020 4:55:00 PM
Ethyl acetate	< 0.54	0.54	ug/m3	1	4/1/2020 4:55:00 PM
Ethylbenzene	< 0.65	0.65	ug/m3	1	4/1/2020 4:55:00 PM
Freon 11	1,2	0.84	ug/m3	1	4/1/2020 4:55:00 PM
Freon 113	< 1.1	1.1	ug/m3	1	4/1/2020 4:55:00 PM
Freon 114	< 1.0	1.0	ug/m3	1	4/1/2020 4:55:00 PM

- в Analyte detected in the associated Method Blank
 - Н Holding times for preparation or analysis exceeded
 - JN Non-routine analyte. Quantitation estimated.
 - Spike Recovery outside accepted recovery limits S

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- Not Detected at the Limit of Detection ND

Detection Limit

ÐŁ

Page 35 of 380

Page 9 of 24

	04002-005A	Matrix:	AIR	
www.ala.a.a.a.				
Project: Gran	it Hardware	Collection Date:	3/28/2020)
Lab Order: C200	04002	Tag Number:	207,388	
CLIENT: Geov	vation Engineering, Inc.	Client Sample ID:	607	

Analyses	Result	ÐL	Qual	Units	DF	Date Analyzed
UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TC	-15			Analyst: RJF
Freon 12	2.3	0.74		ug/m3	1	4/1/2020 4:55:00 PM
Heptane	< 0.61	0.61		ug/m3	1	4/1/2020 4:55:00 PM
Hexachioro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/1/2020 4:55:00 PM
Hexane	< 0.53	0.53		ug/m3	1	4/1/2020 4:55:00 PM
isopropyl alcohol	1.7	0.37		ug/m3	1	4/1/2020 4:55:00 PM
m&p-Xylene	< 1.3	1.3		ug/m3	1	4/1/2020 4:55:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/1/2020 4:55:00 PM
Methyl Ethyl Ketone	0.83	0.88	J	ug/m3	1	4/1/2020 4:55:00 PM
Methyl isobutyl Ketone	< 1.2	1.2		ug/m3	1	4/1/2020 4:55:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/1/2020 4:55:00 PM
Methylene chloride	0.63	0.52		ug/m3	1	4/1/2020 4:55:00 PM
o-Xylene	< 0.65	0.65		ug/m3	1	4/1/2020 4:55:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/1/2020 4:55:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/1/2020 4:55:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	4/1/2020 4:55:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/1/2020 4:55:00 PM
Toluene	0.57	0.57		ug/m3	1	4/1/2020 4:55:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/1/2020 4:55:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/1/2020 4:55:00 PM
Trichloroethene	0.54	0.16		ug/m3	1	4/1/2020 4:55:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/1/2020 4:55:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/1/2020 4:55:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/1/2020 4:55:00 PM

Qualifiers:	SC	Sub-Contracted		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation rang	e
	н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	t
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	D 10 50
	S	Spike Recovery outside accepted recovery limits	DL,	Detection Limit	Page 10 of 2

Date: 10-Apr-20

CLIENT: Lab Order:	Geovation Engineerin C2004002	ng, Inc.			lient Sample ID: Tag Number:	609	74
Project:	Grant Hardware				Collection Date:	3/28/2	020
Lab ID:	C2004002-006A				Matrix:	AIR	
Analyses	an a	Result	DL	Qual	Units	DF	Date Analyzed
FIELD PARAM	ETERS		F	LD			Analyst:
Lab Vacuum In		-7			"Hg		4/1/2020
Lab Vacuum Ou	ıt	-30			"Hg		4/1/2020
UG/M3 W/ 0.21	UG/M3 CT-TCE-VC-DCE	-1.1DCE	тс)-15			Analyst: RJI
1,1,1-Trichloroet		< 0.15	0.15		ppbV	1	4/1/2020 5:42:00 PM
1,1,2,2-Tetrachi	oroethane	< 0.15	0.15		ppbV	1	4/1/2020 5:42:00 PM
1,1,2-Trichloroe	thane	< 0.15	0.15		ppbV	1	4/1/2020 5:42:00 PM
1,1-Dichloroetha	ine	< 0.15	0.15		ppbV	1	4/1/2020 5:42:00 PM
1,1-Dichloroethe	ene	< 0.040	0.040		ppbV	1	4/1/2020 5:42:00 PM
1,2,4-Trichlorob	enzene	< 0.15	0.15		ppbV	1	4/1/2020 5:42:00 PM
1,2,4-Trimethylb	enzene	0.11	0.15	J	ppbV	1	4/1/2020 5:42:00 PM
1,2-Dibromoetha	ane	< 0.15	0.15		ppb∨	T	4/1/2020 5:42:00 PM
1,2-Dichloroben:	zene	< 0.15	0.15		ppbV	1	4/1/2020 5:42:00 PM
1,2-Dichloroetha	ine	< 0.15	0.15		ppbV	1	4/1/2020 5:42:00 PM
1,2-Dichloroprop)an e	< 0.15	0.15		ppbV	1	4/1/2020 5:42:00 PM
1,3,5-Trimethylb	enzene	0.11	0,15	J	vdqq	1	4/1/2020 5:42:00 PM
1,3-butadiene		< 0.15	0.15		ppbV	1	4/1/2020 5:42:00 PM
1,3-Dichlorobenz	zene	< 0.15	0.15		ppbV	1	4/1/2020 5:42:00 PM
1,4-Dichloroben:	zene	< 0.15	0.15		ppb∨	1	4/1/2020 5:42:00 PM
1.4-Dioxane		< 0.30	0.30		ppb∨	1	4/1/2020 5:42:00 PM
2,2,4-trimethylpe	entane	< 0.15	0.15		ppbV	1	4/1/2020 5:42:00 PM
4-ethyltoluene		< 0.15	0.15		ppbV	1	4/1/2020 5:42:00 PM
Acetone		13	3.0		ppbV	10	4/2/2020 3:46:00 AM
Allyl chloride		< 0.15	0.15		ppbV	1	4/1/2020 5:42:00 PM
Benzene		0.23	0.15		ppbV	1	4/1/2020 5:42:00 PM
Benzyl chloride		< 0.15	0.15		Vdqq	1	4/1/2020 5:42:00 PM
Bromodichlorom	ethane	< 0.15	0.15		ppbV	1	4/1/2020 5:42:00 PM
Bromoform		< 0.15	0.15		Vdqq	1	4/1/2020 5:42:00 PM
Bromomethane		< 0.15	0.15		Vdqq	1	4/1/2020 5:42:00 PM
Carbon disulfide		0.14	0.15	J	ppbV	1	4/1/2020 5:42:00 PM
Carbon tetrachio	ride	0.090	0.030		ppbV	1	4/1/2020 5:42:00 PM
Chlorobenzene		< 0.15	0.15		Vdqq	1	4/1/2020 5:42:00 PM
Chloroethane		< 0.15	0.15		ppbV	1	4/1/2020 5:42:00 PM
Chloroform		< 0.15	0.15		ppbV	1	4/1/2020 5:42:00 PM
Chloromethane		0.40	0.15		ppbV	1	4/1/2020 5:42:00 PM
cis-1,2-Dichloroe		0.040	0.040		ppbV	1	4/1/2020 5:42:00 PM
cis-1,3-Dichlorop	ropene	< 0.15	0.15		ppbV	1	4/1/2020 5:42:00 PM
Cyclohexane		< 0.15	0.15		- F	1	4/1/2020 5:42:00 PM
Dibromochlorom	ethane	< 0.15	0.15		· · · ·	1	4/1/2020 5:42:00 PM
Ethyl acetate		0.13	0.15	J	ppbV	1	4/1/2020 5:42:00 PM

- в
- Analyte detected in the associated Method Blank H
- Holding times for preparation or analysis exceeded JN
- Non-routine analyte. Quantitation estimated,
- S Spike Recovery outside accepted recovery limits

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

DL Detection Limit

Analyses		Result		Oual	Thits	DF	Date Analyzed
Lab ID:	C2004002-006A				Matrix:		
Project:	Grant Hardware				Collection Date:	3/28/2020)
Lab Order:	C2004002				Tag Number:	157,374	
CLIENT:	Geovation Engineering, I	ъ.		C	lient Sample ID:	609	
			Far Amman a summary bar in 1974		/// / · · ·		

Analyses	Result	DL	Qual	Units	DF	Date Analyzed	
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15				Analyst: RJP	
Éthylbenzene	< 0.15	0.15		ppbV	1	4/1/2020 5:42:00 PM	
Freon 11	0.74	0.15		ppb∨	1	4/1/2020 5:42:00 PM	
Freon 113	< 0.15	0.15		ppbV	1	4/1/2020 5:42:00 PM	
Freon 114	< 0.15	0.15		ppbV	1	4/1/2020 5:42:00 PM	
Freon 12	0.50	0,15		Vdqq	1	4/1/2020 5:42:00 PM	
Heptane	0.21	0.15		ppbV	1	4/1/2020 5:42:00 PM	
Hexachloro-1,3-butadiene	< 0.15	0.15		ppbV	1	4/1/2020 5:42:00 PM	
Hexane	0.16	0.15		ppbV	1	4/1/2020 5:42:00 PM	
isopropyl alcohol	8.1	1.5		ppbV	10	4/2/2020 3:46:00 AM	
m&p-Xylene	0.20	0.30	J	ppbV	1	4/1/2020 5:42:00 PM	
Methyl Butyl Ketone	< 0.30	0.30		ppbV	1	4/1/2020 5:42:00 PM	
Methyl Ethyl Ketone	1.4	0.30		Vaqq	1	4/1/2020 5:42:00 PM	
Methyl Isobutyl Ketone	< 0.30	0.30		ppbV	1	4/1/2020 5:42:00 PM	
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	4/1/2020 5:42:00 PM	
Methylene chloride	0.20	0.15		ppbV	1	4/1/2020 5:42:00 PM	
o-Xylene	< 0.15	0.15		ppbV	1	4/1/2020 5:42:00 PM	
Propylene	< 0.15	0.15		ppbV	1	4/1/2020 5:42:00 PM	
Styrene	< 0.15	0.15		ppbV	1	4/1/2020 5:42:00 PM	
Tetrachloroethylene	0.20	0.15		ppbV	1	4/1/2020 5:42:00 PM	
Tetrahydrofuran	< 0.15	0.15		ppb∨	1	4/1/2020 5:42:00 PM	
Toluene	0.39	0.15		ppbV	1	4/1/2020 5:42:00 PM	
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	4/1/2020 5:42:00 PM	
trans-1,3-Dichloropropene	< 0.15	0.15		opbV	1	4/1/2020 5:42:00 PM	
Trichloroethene	0.67	0.030		ppbV	1	4/1/2020 5:42:00 PM	
Vinyl acetate	< 0.15	0.15		ppbV	1	4/1/2020 5:42:00 PM	
Vinyl Bromide	< 0.15	0.15		ppbV	1	4/1/2020 5:42:00 PM	
Vinyl chloride	< 0.040	0.040		ppbV	1	4/1/2020 5:42:00 PM	
Surr: Bromofluorobenzene	92.0	70-130		%REC	1	4/1/2020 5:42:00 PM	

Qualifiers:	SC	Sub-Contracted		Results reported are not blank corrected
	B	Analyte detected in the associated Method Blank	£	Estimated Value above quantitation range
	н	Holding times for preparation or analysis exceeded	3	Analyte detected below quantitation limit
	JN	Non-routine analyte, Quantitation estimated.	ND	Not Detected at the Limit of Detection
	S	Spike Recovery outside accepted recovery limits	DL	Detection Limit Page 12 of 24

Date: 10-Apr-20

CLIENT:	Geovation Engineering, In			 lient Sample ID:		
Lab Order:	C2004002			Tag Number:	157,374	
Project:	Grant Hardware			Collection Date:	3/28/2020	0
Lab ID:	C2004002-006A			Matrix:	AIR	
Analyses		Result	DL	 Units	DF	Date Analyzed

Anaryses	- ACSUIL	\$ 7 %	Quai	Units	Dr	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V	C-DCE-1,1DCE	TC)-15			Analyst: RJI
1,1,1-Trichloroethane	< 0.82	0.82	-	ug/m3	1	4/1/2020 5:42:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	4/1/2020 5:42:00 PM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/1/2020 5:42:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/1/2020 5:42:00 PM
1,1-Dichloroethene	< 0.16	0,16		ug/m3	1	4/1/2020 5:42:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/1/2020 5:42:00 PM
1,2,4-Trimethylbenzene	0.54	0.74	J	ug/m3	1	4/1/2020 5:42:00 PM
1.2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/1/2020 5:42:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/1/2020 5:42:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/1/2020 5:42:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/1/2020 5:42:00 PM
1,3,5-Trimethylbenzene	0.54	0.74	J	ug/m3	1	4/1/2020 5:42:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/1/2020 5:42:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/1/2020 5:42:00 PM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/1/2020 5:42:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	4/1/2020 5:42:00 PM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	4/1/2020 5:42:00 PM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	4/1/2020 5:42:00 PM
Acetone	32	7.1		ug/m3	10	4/2/2020 3:46:00 AM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/1/2020 5:42:00 PM
Benzene	0.73	0.48		ug/m3	1	4/1/2020 5:42:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/1/2020 5:42:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/1/2020 5:42:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	4/1/2020 5:42:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	4/1/2020 5:42:00 PM
Carbon disulfide	0.44	0.47	J	ug/m3	1	4/1/2020 5:42:00 PM
Carbon tetrachloride	0.57	0.19		ug/m3	1	4/1/2020 5:42:00 PM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/1/2020 5:42:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	4/1/2020 5:42:00 PM
Chloroform	< 0.73	0.73		ug/m3	1	4/1/2020 5:42:00 PM
Chloromethane	0.83	0.31		ug/m3	1	4/1/2020 5:42:00 PM
cis-1,2-Dichloroethene	0.16	0.16		ug/m3	1	4/1/2020 5:42:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/1/2020 5:42:00 PM
Cyclohexane	< 0.52	0.52		ug/m3	1	4/1/2020 5:42:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/1/2020 5:42:00 PM
Ethyl acetate	0.47	0.54	J	ug/m3	1	4/1/2020 5:42:00 PM
Ethylbenzene	< 0.65	0.65		ug/m3	1	4/1/2020 5:42:00 PM
Freon 11	4.2	0.84		ug/m3	1	4/1/2020 5:42:00 PM
Freon 113	< 1.1	1.1		ug/m3	1	4/1/2020 5:42:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	4/1/2020 5:42:00 PM

- Sub-Contracted SC
 - в Analyte detected in the associated Method Blank
 - H Holding times for preparation or analysis exceeded
 - JN Non-routine analyte. Quantitation estimated.
 - s Spike Recovery outside accepted recovery limits

- E Estimated Value above quantitation range
 - Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

DL Detection Limit

J

Page 11 of 24

		анан андар уулуу алаан алаа Туууууууууууууууууууууууууууууууууу			
CLIENT:	Geovation Engineering, Inc.	Client Sample ID:			
Lab Order:	C2004002	Tag Number:	157,374		
Project:	Grant Hardware	Collection Date:	3/28/2020		
Lab ID:	C2004002-006A	Matrix:	AIR		

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE)-15			Analyst: RJF
Freon 12	2.5	0.74		ug/m3	1	4/1/2020 5:42:00 PM
Heptane	0.86	0.61		ug/m3	1	4/1/2020 5:42:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	t	4/1/2020 5:42:00 PM
Hexane	0.56	0.53		ug/m3	1	4/1/2020 5:42:00 PM
isopropyl alcohol	20	3.7		ug/m3	10	4/2/2020 3:46:00 AM
m&p-Xyiene	0.87	1.3	J	ug/m3	1	4/1/2020 5:42:00 PM
Methyl Butyl Ketone	< 1,2	1.2		ug/m3	1	4/1/2020 5:42:00 PM
Methyl Ethyl Ketone	4.2	0.88		ug/m3	1	4/1/2020 5:42:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	4/1/2020 5:42:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/1/2020 5:42:00 PM
Methylene chloride	0.69	0.52		ug/m3	1	4/1/2020 5:42:00 PM
o-Xylene	< 0.65	0.65		ug/m3	1	4/1/2020 5:42:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/1/2020 5:42:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/1/2020 5:42:00 PM
Tetrachloroethylene	1.4	1.0		ug/m3	1	4/1/2020 5:42:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/1/2020 5:42:00 PM
Toluene	1.5	0.57		ug/m3	1	4/1/2020 5:42:00 PM
trans-1,2-Dichloroethene	< 0.59	0,59		ug/m3	1	4/1/2020 5:42:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/1/2020 5:42:00 PM
Trichloroethene	3.6	0.16		ug/m3	1	4/1/2020 5:42:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/1/2020 5:42:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/1/2020 5:42:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/1/2020 5:42:00 PM

Qualifiers:	SC	Sub-Contracted		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation rang	c
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	ŧ
	JN	Non-routine analyte. Quantitation estimated,	ND	Not Detected at the Limit of Detection	
	\$	Spike Recovery outside accepted recovery limits	DL	Detection Limit	Page 12 of 24

```
Date: 10-Apr-20
```

Lab Order:			g, Inc.			Client Sample ID:		
Trainate		C2004002				Tag Number:	130,37	75
Project:		Grant Hardware				Collection Date:	3/28/2	020
.ab ID:		C2004002-007A				Matrix:	AIR	
Anałyses			Result	DL	Quai	Units	DF	Date Analyzed
IELD PARAM		ERS		F	LD			Analyst:
Lab Vacuum I			-8			"Hg		4/1/2020
Lab Vacuum (Qut		-30			"Hg		4/1/2020
UG/M3 W/ 0.	200	M3 CT-TCE-VC-DCE	-1,1DCE	тс	0-15			Analyst: RJf
1,1,1-Trichlord	betha	ne	< 0.15	0.15		vdqq	1	4/1/2020 6:29:00 PM
1,1,2,2-Tetrac	hlore	ethane	< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
1,1,2-Trichlord	oetha	ne	< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
1,1-Dichloroet	hane	•	< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
1,1-Dichloroet	hene		< 0.040	0.040		ppbV	1	4/1/2020 6:29:00 PM
1,2,4-Trichlord			< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
1,2,4-Trimethy	/lben	zene	< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
1,2-Dibromoet	thane	•	< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
1,2-Dichlorobe	enzer	1e	< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
1,2-Dichloroet	hane	•	< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
1,2-Dichloropr	opan	ė	< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
1,3,5-Trimethy	-		< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
1,3-butadiene			< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
1,3-Dichlorobe	enzer	1@	< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
1,4-Dichlorobe			< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
1.4-Dioxane			< 0,30	0.30		ppbV	1	4/1/2020 6:29:00 PM
2,2,4-trimethyl	lpent	ane	0.11	0.15	J	opbV	1	4/1/2020 6:29:00 PM
4-ethyltoluene			< 0.15	0.15	_	ppbV	1	4/1/2020 6:29:00 PM
Acetone			13	3.0		ppb∨	10	4/2/2020 4:32:00 AM
Allyl chloride			< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
Benzene			0.21	0.15		ppbV	1	4/1/2020 6:29:00 PM
Benzyl chlorid	e		< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
Bromodichloro		ane	< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
Bromoform			< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
Bromomethan	a		< 0.15	0.15		ppbV	4	4/1/2020 6:29:00 PM
Carbon disulfic			< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
Carbon tetrach		A	0.090	0.030		ppbV	1	4/1/2020 6:29:00 PM
Chlorobenzene		¢.	< 0.15	0.15		pp6V pp6V		4/1/2020 6:29:00 PM
Chloroethane	•		< 0.15	0.15			1	4/1/2020 6:29:00 PM
Chloroform			< 0.15	0.15		opbV ppbV	4	4/1/2020 6:29:00 PM
Chloromethan	A			0.15		ppbV pbbV	1	4/1/2020 6:29:00 PM
			0.15		ppbV ppbV	1	4/1/2020 6:29:00 PM	
cis-1,2-Dichloroethene 0.10			0.040			1 1	4/1/2020 6:29:00 PM	
cis-1,3-Dichloropropene < 0.15 Cyclobarana 0.20					ppbV ppbV	1		
Cyclohexane 0.29 Dibromochloromethane < 0.15		< 0.15	0.15 0.15		ppbV	1	4/1/2020 6:29:00 PM 4/1/2020 6:29:00 PM	
Ethyl acetate	A T 182()	(p) ((p)	< 0.15 0.22	0.15		ppb∨ ppb∨	1	4/1/2020 6:29:00 PM 4/1/2020 6:29:00 PM
`	er-	Sub Contract-1		nin van de ferste en de ferste kender	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			nan maria an a' Maria (1990) a taona anna an an an anna an anna an an an a
Jualifiers:	SC	Sub-Contracted		t -		. Results reported a		
	B H	Analyte detected in the ass Holding times for preparati				 E Estimated Value : J Analyte detected 	-	—

JN Non-routine analyte. Quantitation estimated.

- S Spike Recovery outside accepted recovery limits
- J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

DL Detection Limit

Page 13 of 24

CLIENT:	Geovation Engineering, Inc.	Client Sample ID:	
Lab Order:	C2004002	Tag Number:	130,375
Project:	Grant Hardware	Collection Date:	3/28/2020
Lab ID:	C2004002-007A	Matrix:	AIR
		1997 Procession and Alaska Procession and Alaska and Alaska and Alaska and Alaska and Alaska and Alaska and Al	

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE)-15			Analyst: RJF
Ethylbenzene	< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
Freon 11	0.25	0.15		ppbV	1	4/1/2020 6:29:00 PM
Freon 113	< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
Freen 114	< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
Freon 12	0.46	0.15		ppbV	1	4/1/2020 6:29:00 PM
Heptane	0.37	0.15		ppbV	1	4/1/2020 6:29:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		Vdqq	t	4/1/2020 6:29:00 PM
Hexane	0.25	0.15		ppb∨	1	4/1/2020 6:29:00 PM
Isopropyl alcohol	1.7	0.15		ppbV	1	4/1/2020 6:29:00 PM
m&p-Xylene	0.28	0.30	J	ppbV	1	4/1/2020 6:29:00 PM
Methyl Butyl Ketone	< 0.30	0.30		ppbV	1	4/1/2020 6:29:00 PM
Methyl Ethyl Ketone	0.58	0.30		ppbV	1	4/1/2020 6:29:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		ppoV	1	4/1/2020 6:29:00 PM
Methyi tert-butyl ether	< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
Methylene chloride	0.16	0.15		ppbV	1	4/1/2020 6:29:00 PM
o-Xylene	0.12	0.15	J	ppbV	1	4/1/2020 6:29:00 PM
Propylene	< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
Styrene	< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
Tetrachloroethylene	0.11	0.15	J	ppbV	1	4/1/2020 6:29:00 PM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
Toluene	0.34	0.15		ppbV	1	4/1/2020 6:29:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
Trichloroethene	0.79	0.030		ppbV	1	4/1/2020 6:29:00 PM
Vinyl acetate	< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
Vinyl Bromide	< 0.15	0.15		ppbV	1	4/1/2020 6:29:00 PM
Vinyl chloride	< 0.040	0.040		opoV	1	4/1/2020 6:29:00 PM
Surr: Bromofluorobenzene	84.0	70-130		%REC	1	4/1/2020 6:29:00 PM

Qualifiers;	SC	Sub-Contracted	,	Results reported are not blank corrected	
	B	Analyte detected in the associated Method Blank	Е	Estimated Value above quantitation range	
	Ħ	Holding times for preparation or analysis exceeded	ļ	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	
	S	Spike Recovery outside accepted recovery limits	DL	Detection Limit	Page 14 of 24

Date: 10-Apr-20

CLIENT:	Geovation Engineering, Inc.	Client Sample 1D:	611			
Lab Order:	C2004002	Tag Number:	130,375			
Project:	Grant Hardware	Collection Date:	3/28/2020			
Lab ID:	C2004002-007A	Matrix:	AIR			
	······································					

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
IUG/M3 W/ 0.2UG/M3 CT-TCE-V	C-DCE-1,1DCE	тс	-15			Analyst: RJI
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/1/2020 6:29:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	4/1/2020 6:29:00 PM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/1/2020 6:29:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/1/2020 6:29:00 PM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	4/1/2020 5:29:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/1/2020 6:29:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74		ug/m3	1	4/1/2020 6:29:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/1/2020 6:29:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/1/2020 6:29:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/1/2020 6:29:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/1/2020 6:29:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	4/1/2020 6:29:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/1/2020 6:29:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/1/2020 6:29:00 PM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/1/2020 6:29:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	4/1/2020 6:29:00 PM
2,2,4-trimethylpentane	0.51	0.70	j	ug/m3	1	4/1/2020 6:29:00 PM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	4/1/2020 6:29:00 PM
Acetone	31	7.1		ug/m3	10	4/2/2020 4:32:00 AM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/1/2020 6:29:00 PM
Benzene	0.67	0.48		ug/m3	1	4/1/2020 6:29:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/1/2020 6:29:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/1/2020 6:29:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	4/1/2020 6:29:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	4/1/2020 6:29:00 PM
Carbon disulfide	< 0,47	0.47		ug/m3	1	4/1/2020 6:29:00 PM
Carbon tetrachloride	0.57	0.19		ug/m3	1	4/1/2020 6:29:00 PM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/1/2020 6:29:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	4/1/2020 6:29:00 PM
Chloroform	< 0.73	0.73		ug/m3	1	4/1/2020 6:29:00 PM
Chloromethane	0.76	0.31		ug/m3	1	4/1/2020 6:29:00 PM
cis-1,2-Dichloroethene	0.40	0.16		ug/m3	1	4/1/2020 6:29:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/1/2020 6:29:00 PM
Cyclohexane	1.0	0.52		ug/m3	1	4/1/2020 6:29:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/1/2020 6:29:00 PM
Ethyl acetate	0.79	0.54		ug/m3	1	4/1/2020 6:29:00 PM
Ethylbenzene	< 0.65	0.65		ug/m3	1	4/1/2020 6:29:00 PM
Freon 11	1.4	0.84		ug/m3	1	4/1/2020 6:29:00 PM
Freon 113	< 1.1	1.1		ug/m3	1	4/1/2020 6:29:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	4/1/2020 6:29:00 PM

- в Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- \mathbf{s} Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected .
- Ë Estimated Value above quantitation range
- Analyte detected below quantitation limit ì
- ND Not Detected at the Limit of Detection

Detection Limit

DL

CLIENT:	Geovation Engineering, Inc.	Client Sample ID: 611					
Lab Order:	C2004002	Tag Number: 130,375					
Project:	Grant Hardware	Collection Date: 3/28/2020					
Lab 1D:	C2004002-007A	Matrix: AIR					

Analyses	Result	DL	Quai	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE)-15			Analyst: RJF
Freon 12	2.3	0.74		ug/m3	1	4/1/2020 6:29:00 PM
Heptane	1.5	0.61		ug/m3	1	4/1/2020 6:29:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/1/2020 6:29:00 PM
Hexane	0.88	0.53		ug/m3	1	4/1/2020 6:29:00 PM
Isopropyl alcohol	4.1	0.37		ug/m3	1	4/1/2020 6:29:00 PM
m&p-Xylene	1.2	1.3	J	ug/m3	1	4/1/2020 6:29:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/1/2020 6:29:00 PM
Methyl Ethyl Ketone	1.7	0.88		ug/m3	1	4/1/2020 6:29:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	4/1/2020 6:29:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/1/2020 6:29:00 PM
Methylene chloride	0.56	0.52		ug/m3	1	4/1/2020 6:29:00 PM
o-Xylene	0.52	0.65	J	ug/m3	1	4/1/2020 6;29:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/1/2020 6:29:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/1/2020 6:29:00 PM
Tetrachloroethylene	0.75	1.0	J	ug/m3	1	4/1/2020 6:29:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/1/2020 6:29:00 PM
Toluene	1.3	Ö.57		ug/m3	1	4/1/2020 6:29:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/1/2020 6:29:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/1/2020 6:29:00 PM
Trichloroethene	4.2	0.16		ug/m3	1	4/1/2020 6:29:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/1/2020 6:29:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	7	4/1/2020 6:29:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/1/2020 6:29:00 PM

Qualifiers:	SÇ	Sub-Contracted		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range	3
	н	Holding times for preparation or analysis exceeded	j	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	
	S	Spike Recovery outside accepted recovery limits	DL	Detection Limit	Page 14 of 24

Date: 10-Apr-20

CLIENT:	Geovation Engineerin	ig, Inc.		C	lient Sample ID:	613	
Lab Order:	C2004002				Tag Number:	354,4/	40
Project:	Grant Hardware				Collection Date:	3/28/2	2020
Lab ID:	C2004002-008A				Matrix:	AIR	
Analyses		Result	DL	Qual	Units	DF	Date Analyzed
	ETERS		F	LD			Analyst:
Lab Vacuum In		-8			"Hg		4/1/2020
Lab Vacuum Ou	ət	-30			"Hg		4/1/2020
UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	тс	-15			Analyst: RJI
1,1,1-Trichloroa	thane	< 0.15	0.15		Vdqq	1	4/1/2020 7:17:00 PM
1,1,2,2-Tetrachi	oroethane	< 0.15	0.15		ppbV	1	4/1/2020 7:17:00 PM
1,1,2-Trichloroe	thane	< 0.15	0.15		ppbV	1	4/1/2020 7:17:00 PM
1,1-Dichloroetha	ine	< 0.15	0.15		ppbV	1	4/1/2020 7:17:00 PM
1,1-Dichloroethe	aue	< 0.040	0.040		opbV	1	4/1/2020 7:17:00 PM
1,2,4-Trichlorob	enzene	< 0.15	0.15		ppb∨	1	4/1/2020 7:17:00 PM
1,2,4-Trimethylb	enzene	0.18	0.15		ppbV	1	4/1/2020 7:17:00 PM
1,2-Dibromoetha	aue	< 0.15	0.15		ppbV	1	4/1/2020 7:17:00 PM
1,2-Dichloroben	zene	< 0.15	0.15		ppbV	1	4/1/2020 7:17:00 PM
1,2-Dichloroetha	inø	< 0.15	0.15		ppbV	1	4/1/2020 7:17:00 PM
1,2-Dichloroprop	ane	< 0.15	0.15		ppbV	1	4/1/2020 7:17:00 PM
1,3,5-Trimethylb	enzene	< 0.15	0.15		ppbV	1	4/1/2020 7:17:00 PM
1,3-butadiene		< 0.15	0.15		Vdqq	1	4/1/2020 7:17:00 PM
1,3-Dichloroben:	zene	< 0.15	0.15		ppbV	1	4/1/2020 7:17:00 PM
1,4-Dichloroben:	zene	< 0.15	0.15		opbV	1	4/1/2020 7:17:00 PM
1,4-Dioxane		< 0.30	0.30		opbV	1	4/1/2020 7:17:00 PM
2,2,4-trimethylpe	entane	0.11	0.15	ł	ppbV	1	4/1/2020 7:17:00 PM
4-ethyltoluene		< 0.15	0.15		ppbV	1	4/1/2020 7:17:00 PM
Acetone		8.6	3.0		ppbV	10	4/2/2020 5:18:00 AM
Ally! chloride		< 0.15	0.15		ppbV	1	4/1/2020 7:17:00 PM
Benzene		0.21	0.15		ppbV	1	4/1/2020 7:17:00 PM
Benzyl chloride		< 0.15	0.15		ppbV	1	4/1/2020 7:17:00 PM
Bromodichlorom	ethane	< 0.15	0.15		Vdqq	1	4/1/2020 7:17:00 PM
Bromoform		< 0.15	0.15		ppbV	1	4/1/2020 7:17:00 PM
Bromomethane		< 0.15	0.15		ppbV	1	4/1/2020 7:17:00 PM
Carbon disuifide		< 0.15	0.15		ppbV	1	4/1/2020 7:17:00 PM
Carbon tetrachic		0.090	0.030		ppbV	1	4/1/2020 7:17:00 PM
Chlorobenzene		< 0.15	0.15		ppbV	1	4/1/2020 7:17:00 PM
Chloroethane		< 0.15	0.15		ppbV	1	4/1/2020 7:17:00 PM
Chloroform		1.6	0.15		ppbV	1	4/1/2020 7:17:00 PM
Chloromethane		0.38	0.15		ppbV	1	4/1/2020 7:17:00 PM
		0.15	0.040		ppbV	1	4/1/2020 7:17:00 PM
cis-1,3-Dichlorop		< 0.15	0.15		ppbV	1	4/1/2020 7:17:00 PM
Cyclohexane		0.26	0.15		ppbV	1	4/1/2020 7:17:00 PM
Dibromochlorom	ethane	< 0.15	0.15		ppov ppbV	1	4/1/2020 7:17:00 PM
Ethyl acetate		0.19	0.15		ppbV	1	4/1/2020 7:17:00 PM

- 8 Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated,
- 8 Spike Recovery outside accepted recovery limits
- E Estimated Value above quantitation range
- Analyte detected below quantitation limit ţ
- ND Not Detected at the Limit of Detection

DL Detection Limit

Page 15 of 24

CLIENT:	Geovation Engineering, Inc.	Client Sample ID:	613
Lab Order:	C2004002	Tag Number:	354,440
Project:	Grant Hardware	Collection Date:	3/28/2020
Lab ID:	C2004002-008A	Matrix:	AIR

Analyses	Result	DL	Qual	Units	DF	Data Analyzad
Anaryses	ixesuit.	****	Quai	oans	Dr	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	тс	-15			Analyst: RJF
Ethylbenzene	< 0.15	0.15		ppbV	1	4/1/2020 7:17:00 PM
Freon 11	0.25	0.15		ppbV	1	4/1/2020 7:17:00 PM
Freon 113	< 0.15	0.15		ррь∨	1	4/1/2020 7:17:00 PM
Freon 114	< 0.15	0.15		ppb∨	1	4/1/2020 7:17:00 PM
Freon 12	0.48	0.15		ppbV	1	4/1/2020 7:17:00 PM
Heptane	0.30	0.15		ppb∨	1	4/1/2020 7:17:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		ppbV	1	4/1/2020 7:17:00 PM
Hexane	0.21	0.15		ppbV	1	4/1/2020 7:17:00 PM
Isopropyl alcohol	1.4	0.15		ppbV	1	4/1/2020 7:17:00 PM
m&p-Xylene	0.27	0.30	J	ppbV	1	4/1/2020 7:17:00 PM
Methyl Butyl Ketone	< 0.30	0.30		ppb∨	1	4/1/2020 7:17:00 PM
Methyl Ethyl Ketone	0.41	0.30		opbV	1	4/1/2020 7:17:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		ppbV	1	4/1/2020 7:17:00 PM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	4/1/2020 7:17:00 PM
Methylene chloride	0.21	0.15		ppbV	1	4/1/2020 7:17:00 PM
o-Xylene	0.11	0.15	J	ppbV	1	4/1/2020 7:17:00 PM
Propylene	< 0.15	0.15		ppbV	1	4/1/2020 7:17:00 PM
Styrene	< 0.15	0.15		ppbV	1	4/1/2020 7:17:00 PM
Tetrachloroethylene	0.16	0.15		opbV	1	4/1/2020 7:17:00 PM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	4/1/2020 7:17:00 PM
Toluene	0.41	0.15		ppbV	1	4/1/2020 7:17:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	4/1/2020 7:17:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	4/1/2020 7:17:00 PM
Trichloroethene	1.1	0.030		ppbV	1	4/1/2020 7:17:00 PM
Vinyl acetate	< 0.15	0.15		ppbV	1	4/1/2020 7:17:00 PM
Vinyl Bromide	< 0.15	0.15		ppbV	1	4/1/2020 7:17:00 PM
Vinyl chloride	< 0.040	0.040		ppbV	1	4/1/2020 7:17:00 PM
Surr: Bromofluorobenzene	89.0	70-130		%REC	1	4/1/2020 7:17:00 PM

Qualifiers:	sc	Sub-Contracted		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range	
	н	Holding times for preparation or analysis exceeded	Ĵ	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	
	S	Spike Recovery outside accepted recovery limits	DŁ	Detection Limit Page 16 o	F 24

Date: 10-Apr-20

CLIENT:	Geovation Engineering, Inc.	Client Sample 1D:	
Lab Order:	C2004002	Tag Number:	354,440
Project:	Grant Hardware	Collection Date:	3/28/2020
Lab ID:	C2004002-008A	Matrix:	AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
UG/M3 W/ 0.2UG/M3 CT-TCE-VC-	DCE-1,1DCE	тс	-15			Analyst: RJF
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/1/2020 7:17:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	4/1/2020 7:17:00 PM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/1/2020 7:17:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/1/2020 7:17:00 PM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	4/1/2020 7:17:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/1/2020 7:17:00 PM
1,2,4-Trimethylbenzene	0.88	0.74		ug/m3	1	4/1/2020 7:17:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/1/2020 7:17:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/1/2020 7:17:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/1/2020 7:17:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/1/2020 7:17:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	4/1/2020 7:17:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/1/2020 7:17:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/1/2020 7:17:00 PM
1.4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/1/2020 7:17:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	4/1/2020 7:17:00 PM
2,2,4-trimethylpentane	0.51	0.70	J	ug/m3	1	4/1/2020 7:17:00 PM
4-ethyltoluene	< 0.74	0,74		ug/m3	1	4/1/2020 7:17:00 PM
Acetone	20	7.1		ug/m3	10	4/2/2020 5:18:00 AM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/1/2020 7:17:00 PM
Benzene	0.67	0.48		ug/m3	1	4/1/2020 7:17:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/1/2020 7:17:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/1/2020 7:17:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	4/1/2020 7:17:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	4/1/2020 7:17:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	1	4/1/2020 7:17:00 PM
Carbon tetrachloride	0.57	0.19		ug/m3	1	4/1/2020 7:17:00 PM
Chlorobenzene	< 0.69	0,69		ug/m3	1	4/1/2020 7:17:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	4/1/2020 7:17:00 PM
Chloroform	7.8	0.73		ug/m3	1	4/1/2020 7:17:00 PM
Chloromethane	0.78	0.31		ug/m3	1	4/1/2020 7:17:00 PM
cis-1,2-Dichloroethene	0,59	0.16		ug/m3	1	4/1/2020 7:17:00 PM
cis-1,3-Dichtoropropene	< 0.68	0.68		ug/m3	1	4/1/2020 7:17:00 PM
Cyclohexane	0.69	0.52		ug/m3	1	4/1/2020 7:17:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/1/2020 7:17:00 PM
Ethyl acetate	0.68	0.54		ug/m3	1	4/1/2020 7:17:00 PM
Ethylbenzene	< 0.65	0.65		ug/m3	1	4/1/2020 7:17:00 PM
Freon 11	1.4	0.84		ug/m3	1	4/1/2020 7:17:00 PM
Freon 113	< 1.1	1.3		ug/m3	1	4/1/2020 7:17:00 PM
Freon 114	< 1,0	1.0		ug/m3	1	4/1/2020 7:17:00 PM

- В Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- ŝ Spike Recovery outside accepted recovery limits

- Estimated Value above quantitation range Ε
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Detection Limit

DL

Page 15 of 24

Analyses	Rec	Qual finite	TS E	Data Analyzad
Lab ID:	C2004002-008A	Matrix:	AIR	
Project:	Grant Hardware	Collection Date:	3/28/2020)
Lab Order:	C2004002	Tag Number:	354,440	
CLIENT:	Geovation Engineering, Inc.	Client Sample ID:		

Analyses	Result	DL	Qual	Units	ÐF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15			********	Analyst: RJP
Freon 12	2.4	0.74		ug/m3	1	4/1/2020 7:17:00 PM
Heptane	1.2	0.61		ug/m3	1	4/1/2020 7:17:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/1/2020 7:17:00 PM
Hexane	0.74	0.53		ug/m3	1	4/1/2020 7:17:00 PM
Isopropyl alcohol	3.4	0.37		ug/m3	1	4/1/2020 7:17:00 PM
m&p-Xylene	1.2	1.3	J	ug/m3	1	4/1/2020 7:17:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/1/2020 7:17:00 PM
Methyl Ethyl Ketone	1.2	0.88		ug/m3	1	4/1/2020 7:17:00 PM
Methyi Isobutyi Ketone	< 1.2	1.2		ug/m3	1	4/1/2020 7:17:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/1/2020 7:17:00 PM
Methylene chloride	0.73	0.52		ug/m3	1	4/1/2020 7:17:00 PM
o-Xylene	0.48	0.65	J	ug/m3	1	4/1/2020 7:17:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/1/2020 7:17:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/1/2020 7:17:00 PM
Tetrachloroethylene	1.1	1.0		ug/m3	1	4/1/2020 7:17:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/1/2020 7:17:00 PM
Toluene	1.5	0.57		ug/m3	1	4/1/2020 7:17:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/1/2020 7:17:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/1/2020 7:17:00 PM
Trichloroethene	6.0	0.16		ug/m3	1	4/1/2020 7:17:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/1/2020 7:17:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/1/2020 7:17:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/1/2020 7:17:00 PM

Qualifiers:	SC	Sub-Contracted		Results reported are not blank corrected	
	B	Analyte detected in the associated Method Blank	Е	Estimated Value above quantitation rang	C
	н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	:
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	
	S	Spike Recovery outside accepted recovery limits	DL	Detection Limit	Page 16 of 24

Centek Laboratories, LLC Date: 10-Apr-20 CLIENT: Geovation Engineering, Inc. Client Sample ID: 614 C2004002 Lab Order: Tag Number: 539,387 **Project:** Grant Hardware Collection Date: 3/28/2020 Lab ID: C2004002-009A Matrix: AIR Analyses Result DL **Oual Units** DF Date Analyzed FIELD PARAMETERS FLD Analyst: Lab Vacuum In -6 "Ha 4/1/2020 Lab Vacuum Out -30 "Hg 4/1/2020 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE TO-15 Analyst: RJP 1,1,1-Trichloroethane < 0.15 0.15 ppbV 1 4/1/2020 8:04:00 PM 1,1,2,2-Tetrachloroethane < 0.15 0.15 ppbV 1 4/1/2020 8:04:00 PM 1,1,2-Trichloroethane < 0.15 0.15 Vdqq 1 4/1/2020 8:04:00 PM 1.1-Dichloroethane < 0.15 0.15 ppbV 1 4/1/2020 8:04:00 PM 1,1-Dichloroethene < 0.040 0.040 vdqq 1 4/1/2020 8:04:00 PM 1,2,4-Trichlorobenzene < 0.15 0.15 ppbV 1 4/1/2020 8:04:00 PM 1,2,4-Trimethylbenzene 0.14 0.15 J opbV 1 4/1/2020 8:04:00 PM 1,2-Dibromoethane < 0.15 0.15 1 Vdqq 4/1/2020 8:04:00 PM 1,2-Dichlorobenzene < 0.15 0.15 ppbV 1 4/1/2020 8:04:00 PM 1,2-Dichloroethane < 0.15 0.15 ppbV 1 4/1/2020 8:04:00 PM 1,2-Dichloropropane < 0.15 0.15 Vdqq 1 4/1/2020 8:04:00 PM 1,3,5-Trimethylbenzene < 0.15 0.15 ppbV 1 4/1/2020 8:04:00 PM 1.3-butadiene < 0.15 0.15 1 ppbV 4/1/2020 8:04:00 PM 1,3-Dichlorobenzene < 0.15 0.15 ppbV 1 4/1/2020 8:04:00 PM 1,4-Dichlorobenzene < 0.15 0.15 ppbV 1 4/1/2020 8:04:00 PM 1,4-Dioxane < 0.30 0.30 ppbV 1 4/1/2020 8:04:00 PM 2,2,4-trimethvipentane 0.13 0.15 J ppbV 1 4/1/2020 8:04:00 PM 4-ethyltoluene < 0.15 0.15 ppbV 1 4/1/2020 8:04:00 PM Acetone 11 3.0 ppbV 10 4/2/2020 6:04:00 AM Acetone 11 0.30 ppbV 1 4/1/2020 8:04:00 PM Allyl chloride < 0.15 0.15 ppbV 1 4/1/2020 8:04:00 PM Benzene 0.23 0.15ppbV 1 4/1/2020 8:04:00 PM Benzyl chloride < 0.15 0.15 ppbV 1 4/1/2020 8:04:00 PM Bromodichloromethane < 0.15 0.15 ppbV 1 4/1/2020 8:04:00 PM Bromoform < 0.15 0.15 1 ppbV 4/1/2020 8:04:00 PM Bromomethane < 0.15 0.15 ppbV 1 4/1/2020 8:04:00 PM Carbon disulfide < 0.15 0.15 ppbV 1 4/1/2020 8:04:00 PM Carbon tetrachioride 0.090 0.030 Vdag 1 4/1/2020 8:04:00 PM Chlorobenzene < 0.15 0.15 Vdqq 1 4/1/2020 8:04:00 PM Chloroethane < 0.15 0.15 ppbV 1 4/1/2020 8:04:00 PM Chloroform < 0.15 0.15 ppbV 1 4/1/2020 8:04:00 PM Chloromethane 0.40 0.15 1 ppb∨ 4/1/2020 8:04:00 PM cis-1.2-Dichloroethene 0.29 0.040 ppbV 1 4/1/2020 8:04:00 PM cis-1,3-Dichloropropene < 0.15 0.15 ppbV 1 4/1/2020 8:04:00 PM Cyclohexane 0.27 0.15 ppbV 1 4/1/2020 8:04:00 PM Dibromochloromethane < 0.15 0.15 ppbV 4/1/2020 8:04:00 PM 1

SC Sub-Contracted

- в Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected .
- Е Estimated Value above quantitation range
 - Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Detection Limit

Page 17 of 24

J

DL

Qualifiers:

CLIENT:	Geovation Engineering, Inc.	Client Sample ID: 614			
Lab Order:	C2004002	Tag Number: 539,387			
Project:	Grant Hardware	Collection Date: 3/28/2020			
Lab ID:	C2004002-009A	Matrix: AIR			

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15				Analyst: RJF
Ethyl acetate	0.30	0.15		ppbV	1	4/1/2020 8:04:00 PM
Ethylbenzene	< 0.15	0.15		ppbV	1	4/1/2020 8:04:00 PM
Freon 11	0.27	0.15		ppbV	1	4/1/2020 8:04:00 PM
Freon 113	< 0.15	0.15		ppbV	1	4/1/2020 8:04:00 PM
Freen 114	< 0.15	0.15		ppbV	1	4/1/2020 8:04:00 PM
Freon 12	0.47	0.15		ppbV	1	4/1/2020 8:04:00 PM
Heptane	< 0.15	0.15		ppbV	1	4/1/2020 8:04:00 PM
Hexachloro-1,3-butadlene	< 0.15	0.15		ppbV	1	4/1/2020 8:04:00 PM
Hexane	0.27	0.15		ppbV	1	4/1/2020 8:04:00 PM
Isopropyl alcohol	< 0.15	0.15		ppbV	1	4/1/2020 8:04:00 PM
m&p-Xylene	0.22	0.30		ppbV	1	4/1/2020 8:04:00 PM
Methyl Butyl Ketone	< 0.30	0.30		ppbV	1	4/1/2020 8:04:00 PM
Methyl Ethyl Ketone	0.48	0.30		ppbV	1	4/1/2020 8:04:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		ppbV	1	4/1/2020 8:04:00 PM
Methyl tert-butyl other	< 0.15	0.15		ppbV	1	4/1/2020 8:04:00 PM
Methylene chloride	0.17	0.15		ppbV	1	4/1/2020 8:04:00 PM
o-Xylene	< 0.15	0.15		ppbV	1	4/1/2020 8:04:00 PM
Propylene	< 0.15	0.15		ppbV	1	4/1/2020 8:04:00 PM
Styrene	< 0.15	0.15		ppbV	1	4/1/2020 8:04:00 PM
Tetrachloroethylene	0.29	0.15		ppbV	1	4/1/2020 8:04:00 PM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	4/1/2020 8:04:00 PM
Toluene	0.39	0.15		ppbV	1	4/1/2020 8:04:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	4/1/2020 8:04:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	4/1/2020 8:04:00 PM
Trichloroethene	2.3	0.30		ppbV	10	4/2/2020 6:04:00 AM
Vinyl acetate	< 0.15	0.15		ppbV	1	4/1/2020 8:04:00 PM
Vinyl Bromide	< 0.15	0.15		ppbV	1	4/1/2020 8:04:00 PM
Vinyl chloride	< 0.040	0.040		ppbV	1	4/1/2020 8:04:00 PM
Surr: Bromofluorobenzene	92.0	70-130		%REC	1	4/1/2020 8:04:00 PM

Qualifiers:	SC	Sub-Contracted		Results reported are not blank corrected
	в	Analyte detected in the associated Method Blank	Е	Estimated Value above quantitation range
	н	Holding times for preparation or analysis exceeded	j	Analyte detected below quantitation limit
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection
S	S	Spike Recovery outside accepted recovery limits	DL	Detection Limit Page 18 of 24

Date: 10-Apr-20

CLIENT:	Geovation Engineering, Inc.	Client Sample 1D:	614				
Lab Order:	C2004002	Tag Number:	539,387				
Project:	Grant Hardware	Collection Date:	3/28/2020				
Lab ID:	C2004002-009A	Matrix:	AIR				
			······································				

Anałyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-D	CE-1,1DCE	то	-15			Analyst: RJF
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/1/2020 8:04:00 PM
1,1,2,2-Tetrachioroethane	< 1.0	1.0		ug/m3	1	4/1/2020 8:04:00 PM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/1/2020 8:04:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/1/2020 8:04:00 PM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	4/1/2020 8:04:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/1/2020 8:04:00 PM
1,2,4-Trimethylbenzene	0.69	0.74	J	ug/m3	1	4/1/2020 8:04:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/1/2020 8:04:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/1/2020 8:04:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/1/2020 8:04:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/1/2020 8:04:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	4/1/2020 8:04:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/1/2020 8:04:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/1/2020 8:04:00 PM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/1/2020 8:04:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	4/1/2020 8:04:00 PM
2,2,4-trimethylpentane	0.61	0.70	J	ug/m3	1	4/1/2020 8:04:00 PM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	4/1/2020 8:04:00 PM
Acetone	27	7.1		ug/m3	10	4/2/2020 6:04:00 AM
Acetone	27	0.71		ug/m3	1	4/1/2020 8:04:00 PM
Aliyi chloride	< 0.47	0.47		ug/m3	1	4/1/2020 8:04:00 PM
Benzene	0.73	0.48		ug/m3	1	4/1/2020 8:04:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/1/2020 8:04:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/1/2020 8:04:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	4/1/2020 8:04:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	4/1/2020 8:04:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	1	4/1/2020 8:04:00 PM
Carbon tetrachloride	0.57	0.19		ug/m3	1	4/1/2020 8:04:00 PM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/1/2020 8:04:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	4/1/2020 8:04:00 PM
Chloroform	< 0.73	0.73		ug/m3	1	4/1/2020 8:04:00 PM
Chloromethane	0.83	0.31		ug/m3	1	4/1/2020 8:04:00 PM
cis-1,2-Dichloroethene	1.1	0.16		ug/m3	1	4/1/2020 8:04:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/1/2020 8:04:00 PM
Cyclohexane	0.93	0.52		ug/m3	1	4/1/2020 8:04:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/1/2020 8:04:00 PM
Ethyl acetate	1,1	0.54		ug/m3	1	4/1/2020 8:04:00 PM
Ethylbenzene	< 0.65	0.65		ug/m3	1	4/1/2020 8:04:00 PM
Freon 11	1.5	0.84		ug/m3	1	4/1/2020 8:04:00 PM
Freon 113	< 1.1	1.1		ug/m3	1	4/1/2020 8:04:00 PM

в

- Analyte detected in the associated Method Blank ŀł
- Holding times for preparation or analysis exceeded JN Non-routine analyte. Quantitation estimated.
- s
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Estimated Value above quantitation range E J
 - Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection Page 17 of 24

DL Detection Limit

Date: 10-Apr-20

Analyses		Result	Ð1.	Onal	¥7_34_	nr	Date Analyzed
Lab ID:	C2004002-009A				Matrix:	AIR	
Project:	Grant Hardware				Collection Date:	3/28/2020)
Lab Order:	C2004002				Tag Number:	539,387	
CLIENT:	Geovation Engineering, I				lient Sample ID:		
						a na ga y agus ag y sanna a sa y sa	

Analyses	Result	ÐL	DL Qual U		DF	Date Analyzed	
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	тс)-15			Analyst: RJF	
Freon 114	< 1.0	1.0		ug/m3	1	4/1/2020 8:04:00 PM	
Freon 12	2.3	0.74		ug/m3	1	4/1/2020 8:04:00 PM	
Heptane	< 0.61	0.61		ug/m3	1	4/1/2020 8:04:00 PM	
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/1/2020 8:04:00 PM	
Hexane	0.95	0.53		ug/m3	1	4/1/2020 8:04:00 PM	
Isopropyl alcohol	< 0.37	0.37		ug/m3	1	4/1/2020 8:04:00 PM	
m&p-Xylene	0.96	1,3	J	ug/m3	1	4/1/2020 8:04:00 PM	
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/1/2020 8:04:00 PM	
Methyl Ethyl Ketone	1.4	0.88		ug/m3	1	4/1/2020 8:04:00 PM	
Methyi Isobutyi Ketone	< 1.2	1.2		ug/m3	1	4/1/2020 8:04:00 PM	
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/1/2020 8:04:00 PM	
Methylene chloride	0.59	0.52		ug/m3	1	4/1/2020 8:04:00 PM	
o-Xylene	< 0.65	0.65		ug/m3	1	4/1/2020 8:04:00 PM	
Propylene	< 0.26	0.26		ug/m3	1	4/1/2020 8:04:00 PM	
Styrene	< 0.64	0.64		ug/m3	1	4/1/2020 8:04:00 PM	
Tetrachloroethylene	2.0	1.0		ug/m3	1	4/1/2020 8:04:00 PM	
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/1/2020 8:04:00 PM	
Toluene	1.5	0.57		ug/m3	1	4/1/2020 8:04:00 PM	
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/1/2020 8:04:00 PM	
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/1/2020 8:04:00 PM	
Trichloroethene	12	1.6		ug/m3	10	4/2/2020 6:04:00 AM	
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/1/2020 8:04:00 PM	
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/1/2020 8:04:00 PM	
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/1/2020 8:04:00 PM	

Qualifiers:	SC	Sub-Contracted		Results reported are not blank corrected	
	B	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range	8
	Ħ	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	Ļ
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	
	S	Spike Recovery outside accepted recovery limits	DL	Detection Limit	Page 18 of 24

Date: 10-Apr-20

CLIENT:	Geovation Engineerir	ng, Inc.		С	lient Sample ID:	616	
Lab Order:	C2004002	-			Tag Number:		6
Project:	Grant Hardware				Collection Date:		
Lab ID:	C2004002-010A				Matrix:		•
		T D		I			
Analyses		Result	DL	Qual	Units	ÐF	Date Analyzed
FIELD PARAME	ETERS		F	LD			Analyst:
Lab Vacuum In		-6			"Hg		4/1/2020
Lab Vacuum Ou	it .	-30			"Hg		4/1/2020
UG/M3 W/ 0.24	UG/M3 CT-TCE-VC-DCE	-1,1DCE	тс)-15			Analyst: RJI
1,1,1-Trichloroet	thane	< 0.15	0.15		ppbV	1	4/1/2020 8:51:00 PM
1,1,2,2-Tetrachi	oroethane	< 0.15	0.15		ppbV	1	4/1/2020 8:51:00 PM
1,1,2-Trichloroet	thane	< 0.15	0.15		ppbV	1	4/1/2020 8:51:00 PM
1,1-Dichloroetha	ne	< 0.15	0.15		ppbV	1	4/1/2020 8:51:00 PM
1,1-Dichloroethe	ene	< 0.040	0.040		ppbV	1	4/1/2020 8:51:00 PM
1,2,4-Trichlorobe	enzeno	< 0.15	0.15		ppb∨	1	4/1/2020 8:51:00 PM
1,2,4-Trimethylb	enzene	< 0.15	0.15		ppbV	1	4/1/2020 8:51:00 PM
1,2-Dibromoetha	me	< 0.15	0.15		ppbV	1	4/1/2020 8:51:00 PM
1,2-Dichloroben:	zene	< 0.15	0.15		ppbV	1	4/1/2020 8:51:00 PM
1,2-Dichloroetha	ine	< 0.15	0.15		ppbV	1	4/1/2020 8:51:00 PM
1,2-Dichloroprop	ane	< 0.15	0.15		ppbV	1	4/1/2020 8:51:00 PM
1,3,5-Trimethylbenzene		< 0.15	0.15		vdqq	1	4/1/2020 8:51:00 PM
1,3-butadiene		< 0.15	0.15		ppbV	1	4/1/2020 8:51:00 PM
1,3-Dichlorobenz	zene	< 0.15	0.15		opbV	1	4/1/2020 8:51:00 PM
1,4-Dichlorobenz	zene	< 0.15	0.15		ppbV	1	4/1/2020 8:51:00 PM
1,4-Dioxane		< 0.30	0.30		ppbV	1	4/1/2020 8:51:00 PM
2,2,4-trimethylpe	intane	< 0.15	0.15		ppbV	1	4/1/2020 8:51:00 PM
4-ethyltoluene		< 0.15	0.15		ppbV	1	4/1/2020 8:51:00 PM
Acetone		3.7	3.0		ppbV	10	4/2/2020 6:49:00 AM
Allyl chloride		< 0,15	0.15		ppbV	1	4/1/2020 8:51:00 PM
Benzene		0.18	0.15		ppbV	1	4/1/2020 8:51:00 PM
Benzyl chloride		< 0.15	0.15		ppbV	1	4/1/2020 8:51:00 PM
Bromodichlorom	ethane	< 0.15	0.15		ppbV	1	4/1/2020 8:51:00 PM
Bromoform		< 0.15	0.15		ppbV ppbV	1	4/1/2020 8:51:00 PM
Bromomethane		< 0.15	0.15		ppbV	, 1	4/1/2020 8:51:00 PM
Carbon disulfide		< 0.15	0.15		ppbV	1	4/1/2020 8:51:00 PM
Carbon tetrachio	ride	0.10	0.030		ppbV	1	4/1/2020 8:51:00 PM
Chlorobenzene		< 0.15	0.15		ppbV ppbV	1	4/1/2020 8:51:00 PM
Chloroethane		< 0.15	0.15			1	4/1/2020 8:51:00 PM
Chloroform		< 0.15	0.15		ppbV	1	4/1/2020 8:51:00 PM
Chloromethane		0.37	0.15		ppbv ppbV	י 1	4/1/2020 8:51:00 PM
cis-1,2-Dichloroe	thene	< 0.040	0.040		ppbV ppbV	1	4/1/2020 8:51:00 PM
cis-1,3-Dichlorop		< 0.15	0.15			1	
Cyclohexane	· • • • • • • • • • • • • • •	0.15	0.15		••		4/1/2020 8:51:00 PM
Dibromochlorome	athane	< 0.15				1	4/1/2020 8:51:00 PM
Ethyl acetate	and that the	< 0.15	0.15 0.15			1 1	4/1/2020 8:51:00 PM 4/1/2020 8:51:00 PM

SC Sub-Contracted

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

DL Detection Limit

.

Page 19 of 24

CLIENT;	Geovation Engineering, Inc.	Client Sample ID:	
Lab Order:	C2004002	Tag Number:	200,436
Project:	Grant Hardware	Collection Date:	3/28/2020
Lab ID:	C2004002-010A	Matrix:	AIR

Analyses	Result	DL	Qual Unit	ts DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15			Analyst: RJI
Ethylbenzene	< 0.15	0.15	ppb∿	/ 1	4/1/2020 8:51:00 PM
Freon 11	2.9	1.5	ppb∖	/ 10	4/2/2020 6:49:00 AM
Freon 113	< 0.15	0.15	ppb∿	/ 1	4/1/2020 8:51:00 PM
Freon 114	< 0.15	0.15	ppb∿	/ 1	4/1/2020 8:51:00 PM
Freon 12	0.58	0.15	ppb√	/ 1	4/1/2020 8:51:00 PM
Heptane	< 0.15	0.15	ppb∿	/ 1	4/1/2020 8:51:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15	ppb√	/ 1	4/1/2020 8:51:00 PM
Hexane	< 0.15	0.15	ppb∿	/ 1	4/1/2020 8:51:00 PM
Isopropyl alcohol	1.1	0.15	ppb∨	/ 1	4/1/2020 8:51:00 PM
m&p-Xylene	< 0.30	0.30	ppbV	/ 1	4/1/2020 8:51:00 PM
Methyl Butyl Ketone	< 0.30	0.30	ppbV	/ 1	4/1/2020 8:51:00 PM
Methyl Ethyl Ketone	0.38	0.30	ppbV	/ 1	4/1/2020 8:51:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30	ppb∨	/ 1	4/1/2020 8:51:00 PM
Methyl tert-butyl ether	< 0.15	0.15	рры∨	′ 1	4/1/2020 8:51:00 PM
Methylene chloride	0.16	0.15	ppbV	1	4/1/2020 8:51:00 PM
o-Xylene	< 0.15	0.15	ppb∨	/ 1	4/1/2020 8:51:00 PM
Propylene	< 0.15	0.15	ppbV	′ 1	4/1/2020 8:51:00 PM
Styrene	< 0.15	0.15	ppbV	' 1	4/1/2020 8:51:00 PM
Tetrachloroethylene	0.27	0.15	ppbV	' 1	4/1/2020 8:51:00 PM
Tetrahydrofuran	< 0.15	0.15	ppbV	′ 1	4/1/2020 8:51:00 PM
Toluene	0.16	0.15	ppbV	' 1	4/1/2020 8:51:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	′ 1	4/1/2020 8:51:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	4/1/2020 8:51:00 PM
Trichloroethene	0.76	0.030	ppb∨	' i	4/1/2020 8:51:00 PM
Vinyl acetate	< 0.15	0.15	ppbV	1	4/1/2020 8:51:00 PM
Vinyl Bromide	< 0.15	0.15	pobV		4/1/2020 8:51:00 PM
Vinyl chloride	< 0.040	0.040	ppbV	1	4/1/2020 8:51:00 PM
Surr: Bromofluorobenzene	89.0	70-130	%RE		4/1/2020 8:51:00 PM

Qualifiers:	SC	Sub-Contracted		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range	e
	Н	Holding times for preparation or analysis exceeded	j	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	* ** ***
	S	Spike Recovery outside accepted recovery limits	DL	Detection Limit	Page 20 of 24

Date: 10-Apr-20

ang na ana ang pagagan pagagan na sa			
CLIENT:	Geovation Engineering, Inc.	Client Sample ID:	616
Lab Order:	C2004002	Tag Number:	200,436
Project:	Grant Hardware	Collection Date:	3/28/2020
Lab ID:	C2004002-010A	Matrix:	AIR

Analyses	Result	DL	Qual Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VO	-DCE-1,1DCE	TO	15		Analyst: RJ
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/1/2020 8:51:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	4/1/2020 8:51:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	4/1/2020 8:51:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/1/2020 8:51:00 PM
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	4/1/2020 8:51:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	4/1/2020 8:51:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	ug/m3	1	4/1/2020 8:51:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	4/1/2020 8:51:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/1/2020 8:51:00 PM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	4/1/2020 8:51:00 PM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	4/1/2020 8:51:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	4/1/2020 8:51:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	1	4/1/2020 8:51:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/1/2020 8:51:00 PM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/1/2020 8:51:00 PM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	4/1/2020 8:51:00 PM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	4/1/2020 8:51:00 PM
4-ethyltoluene	< 0.74	0.74	ug/m3	1	4/1/2020 8:51:00 PM
Acetone	8.8	7.1	ug/m3	10	4/2/2020 6:49:00 AM
Allyl chloride	< 0.47	0.47	ug/m3	1	4/1/2020 8:51:00 PM
Benzene	0.57	0.48	ug/m3	1	4/1/2020 8:51:00 PM
Benzyl chloride	< 0.86	0.86	ug/m3	1	4/1/2020 8:51:00 PM
Bromodichloromethane	< 1,0	1.0	ug/m3	1	4/1/2020 8:51:00 PM
Bromoform	< 1.6	1,6	ug/m3	1	4/1/2020 8:51:00 PM
Bromomethane	< 0.58	0.58	ug/m3	1	4/1/2020 8:51:00 PM
Carbon disulfide	< 0.47	0.47	ug/m3	1	4/1/2020 8:51:00 PM
Carbon tetrachloride	0.63	0.19	ug/m3	1	4/1/2020 8:51:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	4/1/2020 8:51:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/1/2020 8:51:00 PM
Chloroform	< 0.73	0.73	ug/m3	1	4/1/2020 8:51:00 PM
Chloromethane	0.76	0.31	ug/m3	1	4/1/2020 8:51:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	4/1/2020 8:51:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/1/2020 8:51:00 PM
Cyclohexane	0.86	0.52	ug/m3	1	4/1/2020 8:51:00 PM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	4/1/2020 8:51:00 PM
Ethyl acetate	< 0.54	0.54	ug/m3	1	4/1/2020 8:51:00 PM
Ethylbenzene	< 0.65	0.65	ug/m3	1	4/1/2020 8:51:00 PM
Freon 11	16	8.4	ug/m3	10	4/2/2020 6:49:00 AM
Freen 113	< 1.1	1.1	ug/m3	1	4/1/2020 8:51:00 PM
Freon 114	< 1.0	1.0	ug/m3		4/1/2020 8:51:00 PM

- в Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- s Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected .
- Ε Estimated Value above quantitation range J
 - Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Detection Limit

DL

Page 19 of 24

			· · · · · · · · · · · · · · · · · · ·
CLIENT:	Geovation Engineering, Inc.	Client Sample ID:	616
Lab Order:	C2004002	Tag Number:	200,436
Project:	Grant Hardware	Collection Date:	3/28/2020
Lab ID:	C2004002-010A	Matrix:	AIR

Analyses	Result	DL	Qual Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	TO-	15		Analyst: RJP	
Freen 12	2.9	0.74	ug/m3	1	4/1/2020 8:51:00 PM
Heptane	< 0.61	0.61	ug/m3	1	4/1/2020 8:51:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	4/1/2020 8:51:00 PM
Hexane	< 0.53	0.53	ug/m3	1	4/1/2020 8:51:00 PM
Isopropyl alcohol	2.6	0.37	ug/m3	1	4/1/2020 8:51:00 PM
m&p-Xylene	< 1.3	1.3	ug/m3	1	4/1/2020 8:51:00 PM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	4/1/2020 8:51:00 PM
Methyl Ethyl Ketone	1.1	0.88	ug/m3	1	4/1/2020 8:51:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	4/1/2020 8:51:00 PM
Methyl tert-butyl ether	< 0.54	0.54	ug/m3	1	4/1/2020 8:51:00 PM
Methylene chloride	0.56	0.52	ug/m3	1	4/1/2020 8:51:00 PM
o-Xylene	< 0.65	0.65	ug/m3	1	4/1/2020 8:51:00 PM
Propylene	< 0.26	0.26	ug/m3	1	4/1/2020 8:51:00 PM
Styrene	< 0.64	0.64	ug/m3	1	4/1/2020 8:51:00 PM
Tetrachloroethylene	1.8	1.0	ug/m3	1	4/1/2020 8:51:00 PM
Tetrahydrofuran	< 0.44	Ö.44	ug/m3	1	4/1/2020 8:51:00 PM
Toluene	0.60	0.57	ug/m3	1	4/1/2020 8:51:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/1/2020 8:51:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/1/2020 8:51:00 PM
Trichloroethene	4.1	0.16	ug/m3	1	4/1/2020 8:51:00 PM
Vinyl acetate	< 0.53	0.53	ug/m3	1	4/1/2020 8:51:00 PM
Vinyl Bromide	< 0.66	0.66	ug/m3	1	4/1/2020 8:51:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/1/2020 8:51:00 PM

Qualifiers:	SC	Sub-Contracted		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	£	Estimated Value above quantitation rang	e
	£Ί	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	l
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	
	S	Spike Recovery outside accepted recovery limits	DL	Detection Limit	Page 20 of 24

Date: 10-Apr-20

CLIENT: Lab Order:	Geovation Engineerii C2004002	ng, Inc.		C	lient Sample ID: Tag Number:		-
					Collection Date:		
Project:	Grant Hardware						.020
Lab ID:	C2004002-011A				Matrix:	AIK	
Analyses		Result	DL	Qual	Units	DF	Date Analyzed
FIELD PARAMI	ETERS		F	LD			Analyst:
Lab Vacuum In		-6			"Hg		4/1/2020
Lab Vacuum Qu	ut	-30			"Hg		4/1/2020
UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCI	5-1,1DCE	тс	-15			Analyst: RJI
1,1,1-Trichloroe	thane	< 0.15	0,15		opbV	1	4/1/2020 9:38:00 PM
1,1,2,2-Tetrachi	oroethane	< 0.15	0.15		V dqq	1	4/1/2020 9:38:00 PM
1,1,2-Trichloroe	thane	< 0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
1,1-Dichloroetha	aue	< 0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
1,1-Dichloroethe	ène	< 0.040	0.040		ppbV	1	4/1/2020 9:38:00 PM
1,2,4-Trichlorob	enzene	< 0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
1,2,4-Trimethylb	Denzene	< 0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
1,2-Dibromoeth:	ane	< 0,15	0.15		ppbV	1	4/1/2020 9:38:00 PM
1,2-Dichloroben	zene	< 0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
1,2-Dichloroethe	ane	< 0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
1,2-Dichloroprop	oane	< 0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
1,3,5-Trimethylb	enzene	< 0.15	0.15		Vdqq	1	4/1/2020 9:38:00 PM
1,3-butadiene		< 0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
1,3-Dichloroben	zene	< 0.15	0.15		Vdqq	1	4/1/2020 9:38:00 PM
1,4-Dichloroben	zene	< 0.15	0.15		Vdqq	1	4/1/2020 9:38:00 PM
1,4-Dioxane		< 0.30	0.30		Vdqq	1	4/1/2020 9:38:00 PM
2,2,4-trimethylpe	entane	< 0.15	0.15		₽¢¢	1	4/1/2020 9:38:00 PM
4-ethyltoluene		< 0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
Acetone		6.2	3.0		ppbV	10	4/2/2020 7:35:00 AM
Allyl chloride		< 0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
Benzene		0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
Benzyl chloride		< 0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
Bromodichlorom	nethane	< 0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
Bromoform		< 0.15	0.15		ppb∨	1	4/1/2020 9:38:00 PM
Bromomethane		< 0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
Carbon disulfide	1	< 0.15	0.15		₽₽₽V	1	4/1/2020 9:38:00 PM
Carbon tetrachic	pride	0.090	0.030		ppbV	1	4/1/2020 9:38:00 PM
Chlorobenzene		< 0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
Chloroethane		< 0.15	0.15		ppb∨	1	4/1/2020 9:38:00 PM
Chloroform		< 0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
Chloromethane		0.39	0.15		ppbV	1	4/1/2020 9:38:00 PM
cis-1,2-Dichloroe		< 0.040	0.040		ppbV	1	4/1/2020 9:38:00 PM
cls-1,3-Dichlorop	oropene	< 0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
Cyclohexane		0.28	0.15		ppbV	1	4/1/2020 9:38:00 PM
Dibromochlorom	ethane	< 0.15	0.15		Vdqq	1	4/1/2020 9:38:00 PM
Ethyl acetate		0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM

Qualifiers: SC Sub-Contracted

- в Analyte detected in the associated Method Blank
- н Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected .
- Ē Estimated Value above quantitation range
- Analyte detected below quantitation limit ì
- NÐ Not Detected at the Limit of Detection Page 21 of 24

Detection Limit

DL

CLIENT:	Geovation Engineering, Inc.	Client Sample ID: Roof Top HVAC 2020
Lab Order:	C2004002	Tag Number: 1180,386
Project:	Grant Hardware	Collection Date: 3/28/2020
Lab ID:	C2004002-011A	Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE			TO-15			Analyst: RJF
Ethylbenzene	< 0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
Freon 11	0.24	0.15		ppbV	1	4/1/2020 9:38:00 PM
Freon 113	< 0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
Freon 114	< 0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
Freon 12	0.47	0.15		ppbV	1	4/1/2020 9:38:00 PM
Heptane	0.12	0.15	J	ppb∨	1	4/1/2020 9:38:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
Hexane	< 0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
Isopropyl alcohol	2.6	1.5		ppbV	10	4/2/2020 7:35:00 AM
m&p-Xylene	< 0.30	0.30		ppbV	1	4/1/2020 9:38:00 PM
Methyl Butyl Ketone	< 0.30	0.30		ppb∨	1	4/1/2020 9:38:00 PM
Methyl Ethyl Ketone	0.32	0.30		ppbV	1	4/1/2020 9:38:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		ppbV	1	4/1/2020 9:38:00 PM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
Methylene chloride	0.17	0.15		ppbV	1	4/1/2020 9:38:00 PM
o-Xylene	< 0.15	0.15		opbV	1	4/1/2020 9:38:00 PM
Propylene	< 0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
Styrene	< 0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
Tetrachloroethylene	< 0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
Toluene	0.28	0.15		ppb∨	1	4/1/2020 9:38:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		ppb∨	1	4/1/2020 9:38:00 PM
Trichloroethene	0.15	0.030		ppbV	1	4/1/2020 9:38:00 PM
Vinyl acetate	< 0.15	0.15		ppb∨	1	4/1/2020 9:38:00 PM
Vinyl Bromide	< 0.15	0.15		ppbV	1	4/1/2020 9:38:00 PM
Vinyl chloride	< 0.040	0.040		ppbV	1	4/1/2020 9:38:00 PM
Surr: Bromofluorobenzene	90.0	70-130		%REC	1	4/1/2020 9:38:00 PM

Qualifiers:	\mathbf{SC}	Sub-Contracted		Results reported are not blank corrected	
	В	Analyte detected in the associated Method Blank	Е	Estimated Value above quantitation rang	2
H JN	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit		
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	5 55 754
	S	Spike Recovery outside accepted recovery limits	DL	Detection Limit	Page 22 of 24

Date: 10-Apr-20

CLIENT:	Geovation Engineering, Inc.	Client Sample ID:	Roof Top HVAC 2020
Lab Order:	C2004002	Tag Number:	1180,386
Project:	Grant Hardware	Collection Date:	3/28/2020
Lab ID:	C2004002-011A	Matrix:	AIR
·····	······································		

Analyses	Result	<u> </u>	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-	DCE-1,1DCE	то	-15			Analyst: RJI
1,1,1-Trichloroethane	< 0.82	0.82	t	ug/m3	1	4/1/2020 9:38:00 PM
1.1.2,2-Tetrachloroethane	< 1.0	1.0	ı	ug/m3	1	4/1/2020 9:38:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ı	ug/m3	1	4/1/2020 9:38:00 PM
1,1-Dichloroethane	< 0.61	0.61	L L	ug/m3	1	4/1/2020 9:38:00 PM
1,1-Dichloroethene	< 0.16	0.16	L.	ug/m3	1	4/1/2020 9:38:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/1/2020 9:38:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	ŧ	ug/m3	1	4/1/2020 9:38:00 PM
1,2-Dibromoethane	< 1.2	1.2	ι	ug/m3	1	4/1/2020 9:38:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	L.	Jg/m3	1	4/1/2020 9:38:00 PM
1,2-Dichloroethane	< 0.61	0.61	L	ug/m3	1	4/1/2020 9:38:00 PM
1,2-Dichloropropane	< 0.69	0.69	L	_ Jg/m3	1	4/1/2020 9:38:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ι	ig/m3	1	4/1/2020 9:38:00 PM
1,3-butadiene	< 0.33	0.33		Jg/m3	1	4/1/2020 9:38:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/1/2020 9:38:00 PM
1,4-Dichlorobenzene	< 0.90	0.90		ig/m3	1	4/1/2020 9:38:00 PM
1,4-Dioxane	< 1.1	1.1		ig/m3	1	4/1/2020 9:38:00 PM
2,2,4-trimethylpentane	< 0.70	0.70		ig/m3	1	4/1/2020 9:38:00 PM
4-ethyltoluene	< 0,74	0.74		ig/m3	1	4/1/2020 9:38:00 PM
Acetone	15	7.1		ig/m3	10	4/2/2020 7:35:00 AM
Allyl chloride	< 0.47	0.47		ig/m3	1	4/1/2020 9:38:00 PM
Benzene	0.48	0.48		ig/m3	1	4/1/2020 9:38:00 PM
Benzyl chloride	< 0.86	0.86		ig/m3	1	4/1/2020 9:38:00 PM
Bromodichloromethane	< 1.0	1.0		ig/m3	1	4/1/2020 9:38:00 PM
Bromoform	< 1.6	1.6		ig/m3	1	4/1/2020 9:38:00 PM
Bromomethane	< 0.58	0.58		ig/m3	1	4/1/2020 9:38:00 PM
Carbon disulfide	< 0.47	0.47		ig/m3	1	4/1/2020 9:38:00 PM
Carbon tetrachloride	0.57	0.19		ig/m3	1	4/1/2020 9:38:00 PM
Chlorobenzene	< 0.69	0.69		ig/m3	1	4/1/2020 9:38:00 PM
Chloroethane	< 0.40	0.40		g/m3	1	4/1/2020 9:38:00 PM
Chloroform	< 0.73	0.73		g/m3	1	4/1/2020 9:38:00 PM
Chloromethane	0.81	0.31		g/m3	1	4/1/2020 9:38:00 PM
cls-1,2-Dichloroethene	< 0.16	0.16		g/m3	1	4/1/2020 9:38:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		g/m3	1	4/1/2020 9:38:00 PM
Cyclohexane	0.96	0.52		g/m3	1	4/1/2020 9:38:00 PM
Dibromochloromethane	< 1.3	1.3		g/m3	1	4/1/2020 9:38:00 PM
Ethyl acetate	0.54	0.54		g/m3	1	4/1/2020 9:38:00 PM
Ethylbenzene	< 0.65	0.65		g/m3	1	4/1/2020 9:38:00 PM
Freon 11	1.3	0.84		g/m3	1	4/1/2020 9:38:00 PM
Freon 113	< 1.1	1.1		g/m3	1	4/1/2020 9:38:00 PM
Freon 114	< 1.0	1.0		g/m3	1	4/1/2020 9:38:00 PM

- Analyte detected in the associated Method Blank в
- н Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- \$ Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected .
- E Estimated Value above quantitation range

ł

DU

- Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Detection Limit

Page 21 of 24

Date: 10-Apr-20

CLIENT:	Geovation Engineering, Inc.	Client Sample ID:	Roof Top HVAC 2020
Lab Order:	C2004002	Tag Number:	1180,386
Project:	Grant Hardware	Collection Date:	3/28/2020
Lab ID:	C2004002-011A	Matrix:	AIR

Analyses	Result	ĎŁ	Quai	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-15			Analyst: RJF	
Freon 12	2.3	0.74		ug/m3	1	4/1/2020 9:38:00 PM
Heptane	0.49	0.61	ţ,	ug/m3	1	4/1/2020 9:38:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.8		ug/m3	1	4/1/2020 9:38:00 PM
Hexane	< 0.53	0.53		ug/m3	1	4/1/2020 9:38:00 PM
Isopropyl alcohol	6.4	3.7		ug/m3	10	4/2/2020 7:35:00 AM
m&p-Xylene	< 1.3	1.3		ug/m3	1	4/1/2020 9:38:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/1/2020 9:38:00 PM
Methył Ethyl Ketone	0.94	0.88		ug/m3	1	4/1/2020 9:38:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	4/1/2020 9:38:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/1/2020 9:38:00 PM
Methylene chloride	0.59	0.52		ug/m3	1	4/1/2020 9:38:00 PM
o-Xylenø	< 0.65	0.65		ug/m3	1	4/1/2020 9:38:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/1/2020 9:38:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/1/2020 9:38:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	4/1/2020 9:38:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/1/2020 9:38:00 PM
Toluene	1.1	0.57		ug/m3	1	4/1/2020 9:38:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/1/2020 9:38:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/1/2020 9:38:00 PM
Trichloroethene	0.81	0.16		vg/m3	1	4/1/2020 9:38:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/1/2020 9:38:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/1/2020 9:38:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/1/2020 9:38:00 PM

Qualifiers:	SC	Sub-Contracted		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	Ε	Estimated Value above quantitation range	:
	н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	
	s	Spike Recovery outside accepted recovery limits	DL	Detection Limit	Page 22 of 24

Date: 10-Apr-20

CLIENT:	Geovation Engineering	ig, inc.		C	lient Sample ID:		
Lab Order:	C2004002				Tag Number:	239,3	81
Project:	Grant Hardware				Collection Date:	3/28/2	2020
Lab ID:	C2004002-012A				Matrix:	AIR	
Anałyses		Result	DL	Qual	Units	ÐF	Date Analyzed
FIELD PARAM	ETERS		F	LD			Analyst:
Lab Vacuum In		-3			"Hg		4/1/2020
Lab Vacuum Ot	.it	-30			"Hg		4/1/2020
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	тс	-15			Analyst: RJI
1,1,1-Trichloroe		< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
1,1,2,2-Tetrachl	oroethane	< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
1,1,2-Trichloroe	thane	< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
1,1-Dichloroeth:	ane	< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
1,1-Dichloroethe	ene	< 0.040	0.040		ppb∨	1	4/1/2020 10:25:00 PM
1,2,4-Trichlorob	enzene	< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
1,2,4-Trimethylt	benzene	< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
1,2-Dibromoeth	ane	< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
1,2-Dichloroben	zene	< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
1,2-Dichloroetha	ane	< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
1,2-Dichloroprop	pane	< 0.15	0.15		Vdqq	1	4/1/2020 10:25:00 PM
1,3,5-Trimethylt	enzene	< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
1,3-butadiene		< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
1,3-Dichloroben	zene	< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
1,4-Dichloroben	zene	< 0.15	Q.15		ppbV	1	4/1/2020 10:25:00 PM
1,4-Dioxane		< 0.30	0.30		ppbV	1	4/1/2020 10:25:00 PM
2,2,4-trimethylp	entane	< 0.15	0,15		ppbV	1	4/1/2020 10:25:00 PM
4-ethyitoluene		< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
Acetone		5.1	3.0		ppbV	10	4/2/2020 8:21:00 AM
Allyl chloride		< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
Benzene		0.14	0.15	t	ppbV	1	4/1/2020 10:25:00 PM
Benzyl chloride		< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
Bromodichlorom	ethane	< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
Bromoform		< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
Bromomethane		< 0.15	0.15		ppb∨	1	4/1/2020 10:25:00 PM
Carbon disulfide)	< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
Carbon tetrachic	oride	0.090	0.030		ppbV	1	4/1/2020 10:25:00 PM
Chlorobenzene		< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
Chloroethane		< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
Chloroform		< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
Chloromethane		0.40	0.15		ppbV	1	4/1/2020 10:25:00 PM
cis-1,2-Dichloroe	ethene	< 0.040	0.040		ppbV	1	4/1/2020 10:25:00 PM
cis-1,3-Dichlorop		< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
Cyclohexane		0.14	0.15	J	ppbV	1	4/1/2020 10:25:00 PM
Dibromochlorom	ethane	< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
Ethyl acetate		< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM

Qualifiers: SC

- Sub-Contracted
 - в Analyte detected in the associated Method Blank
 - н Holding times for preparation or analysis exceeded
 - JN Non-routine analyte. Quantitation estimated.
 - S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- E Estimated Value above quantitation range J
 - Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection Page 23 of 24

Detection Limit

.

DL,

CLIENT:		Client Sample ID:	Outdoor Upwind 2020
Lab Order:	C2004002	Tag Number:	239,381
Project:	Grant Hardware	Collection Date:	3/28/2020
Lab ID:	C2004002-012A	Matrix:	AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	DCE TO-15				Analyst: RJP
Ethylbenzene	< 0.15	0.15		ppb∨	1	4/1/2020 10:25:00 PM
Freon 11	0.22	0.15		ppbV	1	4/1/2020 10:25:00 PM
Freon 113	< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
Freon 114	< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
Freon 12	0.48	0.15		ppbV	1	4/1/2020 10:25:00 PM
Heptane	< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		opbV	1	4/1/2020 10:25:00 PM
Hexane	< 0.15	0.15		ppb∨	1	4/1/2020 10:25:00 PM
isopropyl alcohol	0.54	0.15		ppbV	1	4/1/2020 10:25:00 PM
m&p-Xylene	< 0.30	0.30		ppbV	1	4/1/2020 10:25:00 PM
Methyl Butyl Ketone	< 0.30	0.30		ppb∨	1	4/1/2020 10:25:00 PM
Methyl Ethyl Ketone	0.25	0.30	J	Vdqq	1	4/1/2020 10:25:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		ppbV	1	4/1/2020 10:25:00 PM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
Methylene chloride	0.17	0.15		ppb∨	1	4/1/2020 10:25:00 PM
o-Xylene	< 0.15	0.15		ppbV	+	4/1/2020 10:25:00 PM
Propylene	< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
Styrene	< 0.15	0.15		ppb∨	1	4/1/2020 10:25:00 PM
Tetrachloroethylene	< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
Toluene	0.12	0.15	Ł	ppb∨	1	4/1/2020 10:25:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		ppb∨	1	4/1/2020 10:25:00 PM
Trichloroethene	< 0.030	0.030		ppbV	1	4/1/2020 10:25:00 PM
Vinyl acetate	< 0.15	0.15		ppb∨	1	4/1/2020 10:25:00 PM
Vinyl Bromide	< 0.15	0.15		ppbV	1	4/1/2020 10:25:00 PM
Vinyl chloride	< 0.040	0.040		ppbV	1	4/1/2020 10:25:00 PM
Surr: Bromofluorobenzene	82.0	70-130		%REC	1	4/1/2020 10:25:00 PM

Qualifiers:	SÇ	Sub-Contracted		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	Е	Estimated Value above quantitation range	3
	н	Holding times for preparation or analysis exceeded)	Analyte detected below quantitation limit	:
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	n
	S	Spike Recovery outside accepted recovery limits	ÐŁ	Detection Limit	Page 24 of 24

Date: 10-Apr-20

and a second state of the	• // // // // // // // // // // // // //		
CLIENT:	Geovation Engineering, Inc.	Client Sample ID:	Outdoor Upwind 2020
Lab Order:	C2004002	Tag Number:	239,381
Project:	Grant Hardware	Collection Date:	3/28/2020
Lab ID:	C2004002-012A	Matrix:	AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
IUG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	то	-15			Analyst: RJF
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/1/2020 10:25:00 PM
1,1,2,2-Tetrachioroethane	< 1.0	1.0		ug/m3	1	4/1/2020 10:25:00 PM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/1/2020 10:25:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/1/2020 10:25:00 PM
1.1-Dichloroethene	< 0.16	0.16		ug/m3	1	4/1/2020 10:25:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/1/2020 10:25:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74		ug/m3	1	4/1/2020 10:25:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/1/2020 10:25:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/1/2020 10:25:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/1/2020 10:25:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/1/2020 10:25:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	4/1/2020 10:25:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/1/2020 10:25:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/1/2020 10:25:00 PM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/1/2020 10:25:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	4/1/2020 10:25:00 PM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	4/1/2020 10:25:00 PM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	4/1/2020 10:25:00 PM
Acetone	12	7.1		ug/m3	10	4/2/2020 8:21:00 AM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/1/2020 10:25:00 PM
Benzene	0.45	0.48	J	ug/m3	1	4/1/2020 10:25:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/1/2020 10:25:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/1/2020 10:25:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	4/1/2020 10:25:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	4/1/2020 10:25:00 PM
Carbon disulfide	< 0,47	0.47		ug/m3	1	4/1/2020 10:25:00 PM
Carbon tetrachloride	0.67	0.19		ug/m3	1	4/1/2020 10:25:00 PM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/1/2020 10:25:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	4/1/2020 10:25:00 PM
Chloroform	< 0.73	0.73		ug/m3	1	4/1/2020 10:25:00 PM
Chloromethane	0.83	0.31		ug/m3	1	4/1/2020 10:25:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	4/1/2020 10:25:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/1/2020 10:25:00 PM
Cyclohexane	0.48	0.52	J	ug/m3	1	4/1/2020 10:25:00 PM
Dibromochloromethane	< 1.3	1.3	•	ug/m3	1	4/1/2020 10:25:00 PM
Ethyl acetate	< 0.54	0.54		ug/m3	1	4/1/2020 10:25:00 PM
Ethylbenzene	< 0.65	0.65		ug/m3	1	4/1/2020 10:25:00 PM
Freon 11	1.2	0.84		ug/m3	1	4/1/2020 10:25:00 PM
Freon 113	< 1,1	1,1		ug/m3	1	4/1/2020 10:25:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	4/1/2020 10:25:00 PM

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection DL Detection Limit

Page 23 of 24

Lab Order: C2004002 Tag Number: 239,381 Project: Grant Hardware Collection Date: 3/28/2020 Lab ID: C2004002-012A Matrix: AIR	CLIENT:	Geovation Engineering, Inc.		Outdoor Upwind 2020
	Lab Order:	C2004002	Tag Number:	239,381
Lab ID: C2004002-012A Matrix: AIR	Project:	Grant Hardware	Collection Date:	3/28/2020
	Lab ID:	C2004002-012A	Matrix:	AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
UG/M3 W/ 0.2UG/M3 CT-TCE-V0	-DCE-1,1DCE	TC	-15			Analyst: RJF
Freon 12	2.4	0.74		ug/m3	1	4/1/2020 10:25:00 PM
Heptane	< 0.61	0.61		ug/m3	1	4/1/2020 10:25:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/1/2020 10:25:00 PM
Нехале	< 0.53	0.53		ug/m3	1	4/1/2020 10:25:00 PM
Isopropyl alcohol	1.3	0.37		ug/m3	1	4/1/2020 10:25:00 PM
m&p-Xylene	< 1.3	1.3		ug/m3	1	4/1/2020 10:25:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/1/2020 10:25:00 PM
Methyl Ethyl Ketone	0.74	88.0	J	ug/m3	1	4/1/2020 10:25:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	4/1/2020 10:25:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/1/2020 10:25:00 PM
Methylene chloride	0.59	0.52		ug/m3	1	4/1/2020 10:25:00 PM
o-Xylene	< 0.65	0.65		ug/m3	1	4/1/2020 10:25:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/1/2020 10:25:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/1/2020 10:25:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	4/1/2020 10:25:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/1/2020 10:25:00 PM
Toluene	0.45	0.67	J	ug/m3	1	4/1/2020 10:25:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/1/2020 10:25:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/1/2020 10:25:00 PM
Trichloroethene	< 0.16	0.16		ug/m3	1	4/1/2020 10:25:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/1/2020 10:25:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/1/2020 10:25:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/1/2020 10:25:00 PM

					./
Qualifiers:	SC	Sub-Contracted		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	£	Estimated Value above quantitation range	I
	н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated,	ND	Not Detected at the Limit of Detection	
	S	Spike Recovery outside accepted recovery limits	DL	Detection Limit	Page 24 of 24

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

QUALITY CONTROL SUMMARY

Page 65 of 380

۰.

Date: 10-Apr-20

QC SUMMARY REPORT SURROGATE RECOVERIES

CLIENT: Work Order: Project: Test No:	Geovation Engineering C2004002 Grant Hardware TO-15	, Inc. Matrix: A
Sample ID	BR4FBZ	
ALCS1UG-040120	115	
ALCS1UGD-04012	0 112	
AMB1UG-040120	71.0	
C2004002-001A	94.0	
C2004002-002A	108	
C2004002-003A	100	
C2004002-004A	103	
C2004002-005A	83.0	
C2004002-006A	92.0	
C2004002-007A	84.0	
C2004002-008A	89.0	
C2004002-009A	92.0	
C2004002-010A	89.0	
C2004002-011A	90.0	
C2004002-012A	82.0	

	\eronym	- 11	Surrogate	QC Limits
в	BR4FBZ	=	Bromofluorobenzene	70-130
ł				
<u>}</u>	* Surroga	te	recovery outside acceptance limit	

1

Centek Laboratories, LLC GC/MS QA-QC Check Report

Tune File : C:\HPCHEM\1\DATA\AR040102.D Tune Time : 1 Apr 2020 11:10 am

Daily Calibration File : C:\HPCHEM\1\DATA\AR040102.D

			(BFB)		(IS1) 30959	(IS: 1039:		IS3) 7313
File	Sample				≥rnal		Response	8
	ALCS1UG-04012		115	 	33185	1120		4676
AR040104.D	AMB1UG-040120		71	 	31973	1020	72 9	1076
AR040105.D	C2004002-001A		94	 	31936	1092(58 10	6245
AR040106.D	C2004002-002A		108	 	37738	1311.	74 13	0331
AR040107.D	C2004002-003A		100	 4	41144	1467	52 14	4661
AR040108.D	C2004002-004A		103	 	42676	1525:	21 14	3799
AR040109.D	C2004002-005A		83		11051	14579	93 13	4806
AR040110.D	C2004002-006A		92	 	39234	1462	32 13	8843
AR040111.D	C2004002-007A		84	 	38484	14459	58 13	8867
AR040112.D	C2004002-008A		89	 	37401	13990	51 13	3248
AR040113.D	C2004002-009A		92	 	37819	14139	0 12	6752
AR040114.D	C2004002-010A		89		36639	1303:	19 12	4873
AR040115.D	C2004002-011A		90	 	36110	12760	0 12	2253
AR040116.D	C2004002-012A		82	 :	37055	13217	79 12	3125
AR040117.D	ALCS1UGD-0401	20	112	 	36538	1314(50 11	7792
AR040118.D	C2004002-001A	10X	74	 	34373	11493	L1 9	7735
AR040119.D	C2004002-002A	10X	75		32514	10903	31 9	4988
AR040120.D	C2004002-003A	10x	72	 3	35204	11378	37 9	8911
AR040121.D	C2004002-004A	lox	79	 	33876	11293	31 10	0598
AR040122.D	C2004002-005A	10X	75	 	33995	11343	10	0214
AR040123.D	C2004002-006A	lox	74	3	32288	10668	35 9	4853
AR040124.D	C2004002-007A	10x	71	 	31309	10112	26 9	2772
AR040125.D	C2004002-008A	10x	73	 2	29759	9388	30 8	6755
AR040126.D	C2004002-009A	10X	72	 <u>-</u>	30583	9735	57 8	6110
AR040127.D	C2004002-010A	10X	71	 ****	29646	9109	51 8	2246
AR040128.D	C2004002-011A	10X	76		28948	9337	75 8	4269
AR040129.D	C2004002-012A	10X	74	 #	29303	9062	21 8	0597

t - fails 24hr time check * - fails criteria

Created: Fri Apr 10 08:43:33 2020 MSD #1/

					ANALYT	ICAL QC SUN	ANALYTICAL QC SUMMARY REPORT
CLIENT: Geovation	Geovation Engineering, Inc.						
Luer:							
Froject: Ofani Hardware	dware					TestCode: 0	0.20_NYS
Sample ID: AMB1UG-040120	SampType: MBLK	TestCode: 0.20_NYS	0.20_NYS	Units: ppbV	Prep Date:		RunNo: 16233
Client ID: ZZZZ	Batch ID: R16233	TestNo: TO-15	TO-15		Analysis Date:	4/1/2020	SeqNo: 184714
Analyte	Result	POLS	SPK value	SPK Ref Val	%REC LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit Qual
1,1,1-Trichloroethane	< 0.15	0.15					
1,1,2,2-Tetrachioroethane	< 0.15	0.15					
1, 1, 2-Trichloroethane	< 0.15	0.15					
1,1-Dichloroethane	< 0.15	0.15					
1,1-Dichloroethene	< 0.040	0.040					
1,2,4-Trichlorobenzene	< 0.15	0.15					
1,2,4-Trimethytbenzene	< 0.15	0.15					
1,2-Dibromoethane	< 0.15	0.15					
1,2-Dichlorobenzene	< 0,15	0.15					
1,2-Dichloroethane	< 0.15	0.15					
1,2-Dichloropropane	< 0.15	0.15					
1,3,5-Trimethylbenzene	< 0.15	0.15					
1,3-butadiene	< 0.15	0.15					
1,3-Dichlorobenzene	< 0.15	0.15					
f,4-Dichlorobenzene	< 0.15	0.15					
1,4-Dioxane	< 0.30	0.30					
2,2,4-trimethylpentane	< 0.15	0.15					
4-ethylloluene	< 0.15	0.15					
Acelone	< 0.30	0:30					
Ailyl chloride	< 0.15	0.15					
Benzene	< 0.15	0,15					
Benzyl chloride	< 0.15	0,15					
Bromodichloromethane	< 0.15	0.15					
Bromoform	< 0.15	0.15					
Bromonethane	< 0.15	0.15					
Qualifiers: Results repor	Results reported are not blank corrected		E Estimate	Estimated Value above quantitation range	ation range	H Holding times for	Holding times for preparation or analysis exceeded
	Analyte detected below quantitation limit	Z.	ND Not Det	Not Detected at the Limit of Detection	stection	R RPD outside accep	RPD outside accepted recovery limits
S Spike Recov	Spike Recovery outside accepted recovery limits		DL Detection Linnit	a Limit			Dras 1 of 3
							5 · · · · · · · · · · · · · · · · · · ·

Date: 10-Apr-20

CENTEK LABORATORIES, LLC

Centek Laboratories, LLC

D: AMB1U D: AMB1U ZZZZ ZZZZZ ZZZZZ ZZZZZ ZZZZZ ZZZZZ ZZZZ	Work Order:	C2004007																																																																																																																																																																																																																																	
D. Matrice-dot10 Samptype MBLK TextCole: 23, MS Units: ppV Fep Delits: Kulve: 41200 Septo: 16:13 1 22222 ExtA1D: rete23 TestCole: 23, MS Units: ppV RepOrter Septo: 16:13 6 22222 ExtA1D: rete23 TestCole: 23, MS Units: ppV RepOrter Septo: 16:13 6 2030 0.03 0.03 0.03 Septo: 10:14 Septo: 16:14 6 0.03 0.03 0.03 Septo: 10:14 Septo: 16:14 Septo: 16:14 6 0.03 0.03 0.03 10:15 Septo: 16:14 Septo: 16:14 6 0.03 0.03 0.03 10:15 Septo: 16:14 Septo: 16:14 6 0.03 0.03 0.03 10:15 Septo: 16:16 Septo: 16:16 6 0.04 0.05 0.05 0.05 10:16 Septo: 16:17 6 0.05 0.05 0.05 0.05 10:16 Septo: 16:16 6 0.05 0.05 0.05	Project:	Grant Hard	ware							SVN_020																																																																																																																																																																																																																									
Instruction Tender Filling	amola ID: AUD:	611C 040470	Construct MDI V																																																																																																																																																																																																																																
N ZZZ2 Bank ID: Risk: T0-15 Ambysis Date: 4/12.00 Seqler: 164/14 Riskin ID: Final POL SYK rathe SYK rath SYK rath <t< th=""><th>anipe to And</th><th>171040-001</th><th>Samprype. MBLA</th><th>restuode</th><th>0.20</th><th></th><th>Pre</th><th>ep Dale:</th><th></th><th>RunNo: 16233</th><th></th></t<>	anipe to And	171040-001	Samprype. MBLA	restuode	0.20		Pre	ep Dale:		RunNo: 16233																																																																																																																																																																																																																									
Read POL SYN Charle Model SYN Charle Model SYN Charle SY		ы	Batch ID: R16233	TestNo	: 70-15		Analys		/2020	SegNo: 184714																																																																																																																																																																																																																									
Statifie < 0.15 0.15 etractionide < 0.15	Analyte		Result	PQL	SPK val						Qual																																																																																																																																																																																																																								
etrachloride < 0.03	Carbon disulfide		< 0.15	0.15																																																																																																																																																																																																																															
Anciente < 0.15 0.15 hane <	arbon tetrachlori	kte	< 0.030	0:030																																																																																																																																																																																																																															
Mate < 015 0.15 m < 0.15	Chlorobenzene		< 0.15	0,15																																																																																																																																																																																																																															
mm < 0.15 0.15 Relatione < 0.16	Chloroethane		< 0.15	0.15																																																																																																																																																																																																																															
effane < 0.15 0.15 Kickinorentenen < 0.00	Chloroform		< 0.15	0.15																																																																																																																																																																																																																															
Schlorroethene < 0.040 0.045 0.15	Chloromethane		< 0.15	0.15																																																																																																																																																																																																																															
Bickloropropene < 0.15 0.15 wane < 0.15	is-1,2-Dichloroet	hene	< 0.040	0.040																																																																																																																																																																																																																															
date < 0.15 0.15 chloromethane < 0.15	is-1,3-Dichloropr	opene	< 0.15	0.15																																																																																																																																																																																																																															
chloromethane < 0.15 015 bitte < 0.15	Cyclohexane		< 0.15	0.15																																																																																																																																																																																																																															
diate < 0.15 0.15 zene < 0.15	ibromochlorome	thane	< 0.15	0.15																																																																																																																																																																																																																															
Zene < 0.15 0.15 13 < 0.15	Ethyl acetate		< 0.15	0.15																																																																																																																																																																																																																															
1 < 0.15	thylbenzene		< 0.15	0.15																																																																																																																																																																																																																															
3 < 0.15	Freon 11		< 0.15	0.15																																																																																																																																																																																																																															
14 < 0.15	Freon 113		< 0.15	0.15																																																																																																																																																																																																																															
Cr0-1,3-butadiene < 0.15 0.15 Pro-1,3-butadiene < 0.15	Freon 114		< 0.15	0.15								$\begin{tabular}{ c c c c } & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.10 & 0.30 &$	Freon 12		< 0.15	0.15								$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Heplane		< 0.15	0.15								1 alcohol <0.15	exachloro-1,3-bu	utadiene	< 0.15	0.15								I alcohol < 0.15	Нехале		< 0.15	0.15								ene < 0.30 0.30 utyl Ketone < 0.30	isopropyl alcohol		< 0.15	0.15								utyl Katone< 0.300.30thyl Katone< 0.30	m&p-Xylene		< 0.30	0.30								Ihyl Ketone < 0.30	ethyi Butyl Keto	lie	< 0.30	0.30								coburtyl Ketone< 0.300.30ert-burtyl ether< 0.15	ethyl Ethyl Ketor	e E	< 0.30	0.30								ert-buryl either< 0.150.15ie chloride< 0.15	ethyi isobutyi Ke	stone	< 0.30	0:30								te chloride < 0.15	ethyl tert-butyl e	ther	< 0.15	0.15								e < 0.15	ethylene chloridi	Ð	< 0.15	0.15								e < 0.15	o-Xylene		< 0.15	0.15								 < 0.15 or oethylene < 0.15 o.15 <lio.15< li=""></lio.15<>	Propylene		< 0.15	0.15								 < 0.15 0.15 0.15 Securits reported are not blank corrected E Estimated Value above quantitation range Analyte detected below quantitation limit ND Not Detected at the Limit of Detection R 	Styrene		< 0.15	0.15								 < 0.15 0.15 <	etrachioroethyler	ie Ie	< 0.15	0.15								Results reported are not blank corrected E Estimated Value above quantitation range H Analyte detected below quantitation limit ND Not Detected at the Limit of Detection R	Telrahydrofuran		< 0.15	0.15									Qualifiers:	Results report Analysis defect	ed are not blank corrected			simated Value above quantit	ation range	Ξ.	1	preparation or analysis excee	led		~ *					I DEECECO AT THE FILMET OF TH	election	×		pted necovery lamits	
Freon 114		< 0.15	0.15																																																																																																																																																																																																																																
$\begin{tabular}{ c c c c } & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.15 & 0.10 & 0.30 &$	Freon 12		< 0.15	0.15																																																																																																																																																																																																																															
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Heplane		< 0.15	0.15																																																																																																																																																																																																																															
1 alcohol <0.15	exachloro-1,3-bu	utadiene	< 0.15	0.15																																																																																																																																																																																																																															
I alcohol < 0.15	Нехале		< 0.15	0.15																																																																																																																																																																																																																															
ene < 0.30 0.30 utyl Ketone < 0.30	isopropyl alcohol		< 0.15	0.15																																																																																																																																																																																																																															
utyl Katone< 0.300.30thyl Katone< 0.30	m&p-Xylene		< 0.30	0.30																																																																																																																																																																																																																															
Ihyl Ketone < 0.30	ethyi Butyl Keto	lie	< 0.30	0.30																																																																																																																																																																																																																															
coburtyl Ketone< 0.300.30ert-burtyl ether< 0.15	ethyl Ethyl Ketor	e E	< 0.30	0.30																																																																																																																																																																																																																															
ert-buryl either< 0.150.15ie chloride< 0.15	ethyi isobutyi Ke	stone	< 0.30	0:30																																																																																																																																																																																																																															
te chloride < 0.15	ethyl tert-butyl e	ther	< 0.15	0.15																																																																																																																																																																																																																															
e < 0.15	ethylene chloridi	Ð	< 0.15	0.15																																																																																																																																																																																																																															
e < 0.15	o-Xylene		< 0.15	0.15																																																																																																																																																																																																																															
 < 0.15 or oethylene < 0.15 o.15 <lio.15< li=""></lio.15<>	Propylene		< 0.15	0.15																																																																																																																																																																																																																															
 < 0.15 0.15 0.15 Securits reported are not blank corrected E Estimated Value above quantitation range Analyte detected below quantitation limit ND Not Detected at the Limit of Detection R 	Styrene		< 0.15	0.15																																																																																																																																																																																																																															
 < 0.15 0.15 <	etrachioroethyler	ie Ie	< 0.15	0.15																																																																																																																																																																																																																															
Results reported are not blank corrected E Estimated Value above quantitation range H Analyte detected below quantitation limit ND Not Detected at the Limit of Detection R	Telrahydrofuran		< 0.15	0.15																																																																																																																																																																																																																															
	Qualifiers:	Results report Analysis defect	ed are not blank corrected			simated Value above quantit	ation range	Ξ.	1	preparation or analysis excee	led																																																																																																																																																																																																																								
	~ *					I DEECECO AT THE FILMET OF TH	election	×		pted necovery lamits																																																																																																																																																																																																																									

CLIENT:	Geovation	Geovation Engineering, Inc.										
Work Order:	C2004002	L										
Project:	Grant Hardware	ware							TestCode: 0.20_NYS	SXN_02.		
Sample ID: AMB1UG-040120	JG-040120	SampType: MBLK	TestCot	TestCode: 0.20_NYS	Units: ppbV		Prep Date:	ite:		RunNo: 16233	33	
Client ID: ZZZZ		Batch ID: R16233	Test	TestNo: TO-15		વ	Analysis Date: 4/1/2020	te: 4/1/2	020	SeqNo: 184714	1714	
Analyte		Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimît	HighLimi	%REC LowLinit HighLimit RPD Ref Val	0.47%	RPDLimit	Quai
Toluene		< 0.15	0.15									
trans-1,2-Dichloroethene	thene	< 0,15	0.15									
trans-1,3-Dichloropropene	anagon	< 0.15	0.15									
Trichloroethene		< 0.030	0:030									
Vinył acetate		< 0.15	0.15									
Vinyl Bromide		< 0.15	0.15									
Vinyl chloride		< 0,040	0.040									
Vinyl chloride		< 0.040	0.040									

	2	
	Ľ,	
	ENTEK LABORATORIES,]	
	RI	
	õ	
	ΥJ	
	X	
	B	
	ΓA	
	N.	
	E	
k	2	<i>i</i> the second
	E	Ì
	·····	Start Land

ANALYTICAL QC SUMMARY REPORT

/	
CLIENT:	Geovation Engineering, Inc.
Work Order:	C2004002
Project:	Grant Hardware
Comple ID: AI Co	Commin ID: 41 CO4410 Add400 Committee 1 00

Project: Grant Hardware	lware						Test	TestCode: 0.	0.20_NYS		
Sample ID: ALCS1UG-040120	SampType: LCS	TestCod	TestCode: 0.20_NYS	Units: ppbV		Prep Date	e.		RunNo: 16233		
Client ID: ZZZZ	Batch ID: R16233	TestN	TestNo: TO-15			Analysis Date:	e: 4/1/2020		SeqNo: 184715		
Anafyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RP	RPD Ref Val	%RPD RPDLimil	nit Qual	ij.
1,1,1-Trichloroethane	1.170	0.15	-	D	117	6	130]
1,1,2,2-Tetrachloroethane	1.230	0.15	٠	0	123	20	130				
1,1,2-Trichloroethane	1.240	0.15	Ţ	0	124	50	130				
t,1-Dichloroethane	1.130	0.15	~ ~~	o	113	70	130				
1,1-Dichloroethene	1.070	0.040	~	Ģ	107	70	130				
1,2,4-Trichlorobenzene	1.090	0.15	-	0	109	70	130				
t,2,4-Trimethylbenzene	1.080	0.15	~~	0	108	10	130				
1,2-Dibromoethane	1.180	0.15		0	118	02	130				
1,2-Dichlorobenzene	1.270	0.15	~ ~	0	127	02	130				
1,2-Dichloroethane	1.070	0.15	*-	0	107	22	130				
1,2-Dichloropropane	1.240	0.15	*	0	124	<u>7</u> 0	130				
1,3,5-Trimethylbenzene	1.250	0.15	+	0	125	70	130				
1,3-butadiene	0.9900	0.15	-	0	0.66	70	130				
1,3-Dichlorobenzene	1.280	0,15	-	Ö	128	70	130				
1,4-Dichlorobenzene	1.280	0.15	-	Ö	128	70	130				
1,4-Dioxane	1.230	0.30	-	0	123	20	130				
2,2,4-trimethylpentane	1.200	0.15	د	D	120	02	130				
4-ethyttoluene	1.200	0.15	***	Q	120	20	130				
Acetone	1.210	0:30	.	0	121	70	130				
Ally! chloride	1.060	0.15	***	0	106	70	130				
Benzene	1.200	0.15		0	120	70	130				
Benzyl chloride	1.180	0.15	•••	0	118	70	130				
Bromodichloromethane	1.180	0.15		0	118	70	130				
Bromoform	1.040	0.15	-	0	104	70	130				
Bromomethane	1.050	0.15		0	105	20	130				
Qualifiers: Results report	Results reported are not blank corrected		E Estimat	Estimated Vatue above quantitation range	itation rang	e.	H Hold	ing times for p	Holding times for preparation or analysis exceeded	ceeded	
	Analyte detected below quantitation limit			Not Detected at the Limit of Detection	Detection		R RPD	outside accept	RPD outside accepted recovery limits		
S Spike Recove	Spike Recovery outside accepted recovery limits	imits	DL Detection	Detection Limit						Page I of 5	l of 5

Project: Grant Hardware Sample ID: ALCS1UG-040120 SampType: LCS Client ID: ZZZZ Batch ID: R16233 Client ID: ZZZZ Batch ID: R16233 Analyte Result Carbon disulfide 1.100 Chlorobenzene 1.140 Chlorobenzene 1.140 Chlorobenzene 1.140 Chlorobenzene 1.160 Cyclohexane 1.160 <		TestCode: 0.20_NYS TestNo: T0-15 PQL SPK value 0.15 11 0.15 11 0.15 11 0.15 11 0.15 11 0.15 11 0.15 0.11	Units: SPK Ref V	Ana Ana 110 111 111 111 111 111 110 110 110 11	Prep Date: Analysis Date: LowLimit Hi 70 70 70 70 70 70 70	TestCode: 41/2020 41/2020 130 130 130 130 130 130 130 130 130 13	0.20_NYS RunNo: 16233 SeqNo: 184715 %RPD RPDLimit Qual
940120	52 ₩ 8 2	Code: 0.20_NYS sstNo: TO-15 SPK value	S S S S S S S S S S S S S S S S S S S		Prep Date: itysis Date: w/Limit Hi 70 70 70 70 70 70 70	4 411/2020 130 130 130 130 130 130 130 130 130	16233 184715 PD RPDLimit
		NI I	SPK Ref Val	,	lysis Date: wulimit Hi 70 70 70 70 70 70 70 70	4/1/2020 130 130 130 130 130 130 130 130 130	DLimit
			SPK Ref Val			1	RPDLimit
Carbon disulfide Carbon tetrachforide Chlorobenzene Chlorotethane Chloromethane Chloropropene cis-1, 3-Dichloropropene cis-1, 3-Dichloropropene cis-1, 3-Dichloropropene cis-1, 3-Dichloropropene Ethyl acetate Ethyl acetate Ethyl acetate Freon 11 Freon 11	Ç Ö			110 111 111 112 110 110 110	2222222222	<u>85</u> 85 85 85 85 85 85 85 85 85 85 85 85 85	
Carbon tetrachtoride Chlorobenzene Chlorobethane Chloromethane Chloromethane cis-1, 3-Dichloropropene cis-1, 3-Dichloropropene cis-1, 3-Dichloropropene Cyclohexane Dibromochtoromethane Ethył acetate Ethył acetate Ethył acetate Freon 11 Freon 11				121 111 121 121 121 121 121	222222222	<u>6</u> 6 6 6 6 6 6 6 6 6 6	
Chlorobenzene Chlorofinane Chloroform Chloromethane cis-1, 3-Dichloroptene cis-1, 3-Dichloropropene cis-1, 3-Dichloropropene Cyclohexane Dibromochloromethane Ethyl acetate Ethyl acetate Ethyl acetate Freon 11 Freon 11	0		••••••	111 115 105 110 110 110	2222222	26 57 56 55 55 55 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 5	
Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene cyclohexane Cyclohexane Dibromochloromethane Ethył acetate Ethył acetate Ethył acetate Freon 11 Freon 11	5	* * * * * * * * * * *	• • • • • • • • • •	115 111 121 121 118	222222	130 130 130 130 130	
Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene cyclohexane Cyclohexane Cyclohexane Ethyl acetate Ethyl acetate Ethyl acetate Freon 11 Freon 11	8	** ** ** ** ** ** **		111 105 127 118 110	88888	130 130 130	
Chloromethane cis-1,3-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Ethył acetate Ethył benzene Freon 11 Freon 11	0	*	000000	105 107 118 118	8888	130 130 130	
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Ethył acetate Ethył benzene Freon 11 Freon 11	0			107 121 118	02 02 02	130 130 130	
cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Ethyl acetate Ethylbenzene Freon 11 Freon 11			0000	121 118 110	02 02	130 130	
Cyclohexane Dibromochloromethane Ethyl acetate Freon 11 Freon 11		<pre></pre>	000	118 110	70	130	
Dibromochloromethane Ethyl acetale Freon 11 Fraan 113			0 0	110	5		
Ethyl acetate Ethylbenzene Freon 11 Frann 113			o		70	130	
Ethylbenzene Freon 11 Freon 113				105	70	130	
Freon 11 Freon 113		•	0	111	02	130	
Frann 113	1.090 0.15		0	109	02	130	
	1.160 0.15	\	0	116	22	130	
Freon 114	1.070 0.15	** -	0	107	2	130	
Freon 12	1.080 0.15	÷	0	108	20	130	
Heptane	1,220 0.15	÷**	Ö	122	70	130	
Hexachloro-1,3-butadiene	1.180 0.15	-	0	118	70	130	
Hexane	1.130 0.15	-	a	113	70	130	
Isopropyl alcohol	1.110 0.15	•	Q	111	70	130	
m&p-Xylene	2.420 0.30	CV	0	121	70	130	
Methyl Butyl Ketone	1.150 0.30		Ģ	115	70	130	
	0.9900 0.30	-	0	99.0	2	130	
Methyl Isobutyl Kelone	1.060 0.30	-	0	106	02	130	
Methyl tert-butyl ether	1.020 0.15	1	0	102	70	130	
Methykene chloride	1.090 0.15	~~	0	109	70	130	
o-Xylene	1.240 0.15	4	0	124	20	130	
Propyiene	1.140 0.15	***	0	14	70	130	
Styrene		4 m	0	125	70	130	
Tetrachioroethylene	1.180 0.15	*	0	118	70	130	
Tetrahydrofuran	1.080 0.15	* **	0	108	70	130	
Qualifiers: Results reported are not blank corrected 1 Analyte detected bolow curavitation limit	corrected articum finate	E Estima ND Met Pe	Estimated Value above quantitation range	ation range		H Holding times for	Holding times for preparation or analysis exceeded
	uateral menet		access at the Land of DA	CICCI (08			KFLU OUESIDE ACUEPTED TECOPERY RETRIES
5 Spike Recovery outside accepted recovery jimits	ed redovery limits	DL Detecti	Detection Limit				Page 2 of 5

TestCode: 0.20_NYS Units: pbV Prep Date: TestNo: To-15 Analysis Date: Analysis Date: PQL SPK value SPK Ref Val %REC LowLimit Hg 0.15 1 0 114 70 70 0.15 1 0 114 70 70 0.15 1 0 114 70 70 0.15 1 0 114 70 70 0.15 1 0 111 70 70 0.15 1 0 110 70 70 0.15 1 0 111 70 70 0.16 1 0 111 70 70 0.15 1 0 111 70 70 0.16 1 0 111 70 70 0.16 1 0 111 70 70 0.15 1 0<	TestCode: 0.20_NYS Units: ppbV Prep Date: Arafysis Date:
T. ALCS1UG-040120 SampType: TestVool: Outline Dirty Prep Date: ZZZZZ Batch ID: Result POL SYK value SYK KeV val Result Hop ZZZZZ Batch ID: Result POL SYK value SYK KeV val Result Hop ZZZZZ Batch ID: Result 0.15 TestVo: 1 0 114 Z Dichtonorthene 1.110 0.15 1 0 114 Z Dichtonorthene 1.110 0.15 1 0 114 Z Dichtonorthene 1.100 0.15 1 0 110 Z Dichtonorthene 1.100 0.15 1 0 110 Z Dichtonorthene 1.100 0.15 1 0 110 Z Dict Statch 1 0 110 7 0 70 Dict Statch 1 0 110 7 1	Odds: O.Z.OL
ZZZZ Batch ID: Result POL. SertNe: Tools Analysis Date: Analysis Date: Result 015 1 0 114 70 Dichloroeftene 1140 015 1 0 114 70 Dichloroeftene 1110 015 1 0 114 70 Dichloroeftene 1110 015 1 0 111 70 Dichloroeftene 1110 015 1 0 111 70 Dichloroeftene 1100 015 1 0 111 70 Dichloroeftene 1100 015 1 0 110 70 Dichloroeftene 1100 015 1 0 111 70 ALCS1UGD-040120 SampType: LCSD TestNo: 70 70 Dichloroeftene 1110 0.55 1 0 111 70 ZZZZ Batch ID: RestNote LSN 144 <th>strict Analysis Analysis Analysis SeqNo: 184715 SeqNo: 184715 SPK value SPK RetVal %REC LowLinnit HighLinnit RPD RetVal %RPD RPDLinnit 1 0 114 70 130 %RPD RPDLinnit 1 0 111 70 130 %RPD RPDLinnit 1 0 111 70 130 %RPD RPDLinnit 1 0 111 70 130 1 0 110 70 130 <</th>	strict Analysis Analysis Analysis SeqNo: 184715 SeqNo: 184715 SPK value SPK RetVal %REC LowLinnit HighLinnit RPD RetVal %RPD RPDLinnit 1 0 114 70 130 %RPD RPDLinnit 1 0 111 70 130 %RPD RPDLinnit 1 0 111 70 130 %RPD RPDLinnit 1 0 111 70 130 1 0 110 70 130 <
Result PQL SPK reture SPK Ret Val %REC LowLimit Hit Dichonochtene 1140 0.15 1 0 114 70 Dichonochtene 1110 0.15 1 0 111 70 Dichonochtene 1110 0.15 1 0 111 70 Dichonochtene 1100 0.15 1 0 111 70 Dichonopropene 1100 0.15 1 0 111 70 Dichonopropene 1100 0.15 1 0 111 70 Dichonopropene 1.100 0.040 1 0 110 70 Dice 1.100 0.15 FestVoct Dichonopropene 111 111 111 ZZZZZ Batch IC IcestNo: TO-15 Anatysis Date: IcesNo IcesNo ZZZZZ Batch IC 100 0.111 70 111 70 Dicethare 1110 0.15 <td>SPK value SPK Ref Val %REC LowLinit HghLinit RPD Ref Val %RPD RPDLinit 1 0 114 70 130 %RPD RPDLinit 1 0 111 70 130 130 %RPD RPDLinit 1 0 111 70 130 130 130 130 1 0 110 70 130 130 130 130 1 0 110 70 130 130 130 141 100 130 141 100 130 141 100 141 100 141 100 141 100 141 100 141 100 141 100 141 100 141 100 141 100 141 100 141 100 141 100 141 100 141 100 141 100 141 100 141 100 141 100 141</td>	SPK value SPK Ref Val %REC LowLinit HghLinit RPD Ref Val %RPD RPDLinit 1 0 114 70 130 %RPD RPDLinit 1 0 111 70 130 130 %RPD RPDLinit 1 0 111 70 130 130 130 130 1 0 110 70 130 130 130 130 1 0 110 70 130 130 130 141 100 130 141 100 130 141 100 141 100 141 100 141 100 141 100 141 100 141 100 141 100 141 100 141 100 141 100 141 100 141 100 141 100 141 100 141 100 141 100 141 100 141 100 141
1.140 0.15 1 0 144 70 Dichloroperlee 1.080 0.15 1 0 109 70 Dichloroproperle 1.100 0.15 1 0 129 70 Dichloroproperle 1.100 0.15 1 0 129 70 Dichloroproperle 1.100 0.15 1 0 110 70 Dichloroproperle 1.100 0.15 1 0 110 70 LicstudD-040120 SampType: LCSD 1.5100 0.040 1 0 111 0 114 LicstudD-040120 SampType: LCSD TestKio: TO-15 Analysis Date: Analysis Date: ZZZZZ Balch ID: Ricc33 TestKio: TO-15 Analysis Date: Analysis Date: ZZZZZ Balch ID: Ricc33 TestKio: TO-15 Analysis Date: Analysis Date: ZZZZZ Balch ID: Ricc33 TestKio: TO-15 Analysis Date: Analysis Date: ZZZZZ Balch ID: Ricc34 Picpi	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Ochlonoethene 1.090 0.15 1 0 101 70 Dichlonoethene 1.110 0.15 1 0 97.0 70 Dichlonoethene 1.110 0.15 1 0 97.0 70 Dichlonoethene 1.100 0.15 1 0 97.0 70 Dichlonoptopene 1.100 0.15 1 0 97.0 70 Dichlonoptopene 1.100 0.15 1 0 97.0 70 Dichlonoptopene 1.100 0.040 1 0 97.0 70 Dichlonoptopene 1.100 0.040 1 0 97.0 70 Dichlonoptopene 1.110 0.15 71 70 70 ZZZZ Balch ID: Ric233 TestKort TO-15 1 70 70 ZZZZ Balch ID: Ric233 1 70 71 70 Dicoethane 1.110 0.15 71 70 70	1 0 100 100 130 1 0 111 70 130 1 0 110 70 130 1 0 97.0 70 130 1 0 110 70 130 1 0 110 70 130 1 0 110 70 130 1 0 110 70 130 stNo: T0-15 Analysis Date: 4/1/2020 Service: 184716 SPK value SPK Ref Val %REC LowLinit HighLinit RPD Ref Val %RPD RPD Initi SPK value SPK Ref Val %REC LowLinit RPD Ref Val %RPD RPD Init SPR value SPK Ref Val %RPC 130 1.17 5.26 30 I 0 114 70 130 1.13 0.8817 30 I 0 114 70 130 1.13 0.867
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
	1 0 129 70 130 1 0 97.0 70 130 1 0 110 70 130 1 0 110 70 130 1 0 110 70 130 1 0 110 70 130 SPK value SPK Ref Val %REC LowInit RINo: 16233 SINo: T0-15 Analysis Date: 4112020 SeqNo: 18416 SPK value SPK Ref Val %REC LowInit RID SPK value SPK Ref Val %REC LowInit RID RUNo: 16233 SPK value SPK Ref Val %REC LowInit RID RUNo: 16233 SPK value SPK Ref Val %REC LowInit RID RUNo: 16233 SPK value SPK Ref Val %REC LowInit RID RUNo: 16233 SPK value SPK value 111 70 130 1.17 5.26 30
Ite 0.3700 0.15 1 0 97.0 70 ide 1,100 0.040 1 0 110 70 ide 1,100 0,040 1 0 110 70 ide 1,100 0,040 1 0 110 70 ite 2000 1 1 0 110 70 22222 Batch ID: R16233 TestCode: 0.20_MYS Units: ppbV Prep Date: 22222 Batch ID: R16233 TestCode: 0.20_MYS 0 111 70 22222 Batch ID: R16233 TestCode: 0.20_MYS 0.74 Analysis Date: 22222 Batch ID: R16233 TestCode: 0.20_MYS 0.74 70 2000 0.15 1 0 111 70 1 0.15 1 0 114 70 1 0.15 1 0 114 70 1 0.15 1 0 114 70	1 0 97.0 70 130 1 0 110 70 130 1 0 110 70 130 1 0 110 70 130 code: 0.20_MVS Units: ppbV $Frep Date:$ RunNo: code: 0.20_MVS Units: ppbV $Frep Date:$ $A112020$ SeqNo: 184716 sNo: TO-15 Analysis Date: 4112020 SeqNo: 184716 30 sNo: TO-15 Analysis Date: 4112020 SeqNo: 184716 30 sNo: TO-17 70 130 1.17 5.26 30 sNo: 141 70 130 1.17 5.26 30 1 0 111 70 130 1.17 5.26 30 1 1 70 130 1.16 30 30 1 1 70 130
Ide 1100 015 1 0 110 70 ide 1<100 0040 1 0 110 70 ide 1<100 0040 1 0 110 70 ide 1 0 1 0 110 70 ide 22222 Batch ID: Rfe233 TestNo: 10-15 Analysis Date: Z2222 Batch ID: Rfe233 TestNo: TO-15 Analysis Date: Discontentane 1.110 D.15 T D D D D D Intor	1 0 110 70 130 11 0 110 70 130 11 0 110 70 130 110 110 70 130 110 110 70 130 110 110 70 130 SeqNo: 14216 110 111 70 130 1117 526 30 11 0 111 70 130 1.17 5.26 30 11 0 111 70 130 1.17 5.26 30 11 0 111 70 130 1.17 5.26 30 11 0 111 70 130 1.17 5.26 30 11 0 111 70 130 1.17 5.26 30 11 0 111 70 130 1.13
def1.1000.040101070ct.CS1UGD-040120SampType:LCSDTestCode:0.20_LWSUnits:ppbVPrep Date:ZZZZEatch ID:R16233TestKode:0.151011170ZZZZEatch ID:R1623TestCode:0.151011170ZZZZEatch ID:R1623TestKode:0.151011170ZZZZEatch ID:11100.151011170CODERtane1.1100.151011470Inschlonethane1.1400.151011470Inschlonethane1.1400.151011470Inschlonethane1.1400.151011470Inschlonethane1.1400.151011470Inschlonethane1.1400.151011770Inschlonethane1.1600.151011770Inschlonethane1.1600.151011770Inschlonethane1.1600.151011770Inschlonethane1.1600.151011770Inschlonethane1.1600.151011770Inschlonethane1.1600.151011770Inschlonethane1.1600.1510116	1 0 110 70 130 code: 0.2.0_MYS Units: ppbV Frep Date: RunNo: 15233 siNo: TO-15 Analysis Date: 4/12020 SeqNo: 184716 siNo: TO-15 Analysis Date: 4/12020 SeqNo: 184716 siNo: TO-15 Analysis Date: 4/12020 SeqNo: 184716 SPK value SPK Ref Val %REC LowLinit HighLinit RPD Ref Val %RPD RPDLinit 1 0 111 70 130 1.17 5.26 30 1 0 114 70 130 1.23 5.00 30 1 0 114 70 130 1.23 5.00 30 1 0 111 70 130 1.23 5.00 30 1 0 111 70 130 1.23 5.07 30 1 1 0 111<
CALCSTUGE-040120 SampType: LCSD TestCode: C.20_MYS Units: ppbV Prep Date: ZZZZZ Batch IU: R16233 TestNo: TO-15 Analysis Date: ZZZZZ Batch IU: R16233 TestNo: TO-15 Analysis Date: Result POL SYK Ref Value SYK Ref Value Madysis Date: Result 1.110 0.15 1 0 111 70 Ionoethane 1.110 0.15 1 0 114 70 Ionoethane 1.140 0.15 1 0 114 70 Ionoethane 1.140 0.15 1 0 114 70 Inschloroethane 1.140 0.15 1 0 114 70 Ionoethane 1.140 0.15 1 0 111 70 Ionoethane 1.140 0.15 1 0 114 70 Ionoethane 1.140 0.15 1 0 111 70 Ionoethane 1.110 0.15 1 0	Code: C.20_MVS Units: ppbV Prep Date: RunNo: 16233 SINC: TO-15 Analysis Date: 4112020 SeqNo: 184716 SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit 1 0 111 70 130 1.17 5.26 30 1 0 111 70 130 1.17 5.26 30 1 0 111 70 130 1.17 5.26 30 1 0 111 70 130 1.23 5.00 30 1 0 114 70 130 1.24 8.40 30 1 0 111 70 130 1.18 0.6811 30 1 0 111 70 130 1.18 0.74 30 1 1 0 1.17 70 1.24 31 31
ZZZZZ Batch ID: R16233 TestNo: TO-15 Analysis Date: Result POL SPK Ref Val &REC LowLinhi Hig Ioroethane 1.110 0.15 1 0 117 70 Ioroethane 1.110 0.15 1 0 117 70 Ioroethane 1.110 0.15 1 0 114 70 Ioroethane 1.140 0.15 1 0 114 70 Ioroethane 1.140 0.15 1 0 114 70 Ioroethane 1.140 0.15 1 0 114 70 Ioroethane 1.160 0.15 1 0 114 70 Ioroethane 1.170 0.15 1 0 114 70 Ioroethane 1.160 0.15 1 0 117 70 Ioroethane 1.170 0.15 1 0 117 70 Iorobanzene	Item Analysis Date: 4112020 SeqNo: 184716 SPK value SPK Ref Val %RPD No. 184716 1 0 111 70 130 1.17 5.26 30 1 0 111 70 130 1.17 5.26 30 1 0 111 70 130 1.17 5.26 30 1 0 111 70 130 1.17 5.26 30 1 0 114 70 130 1.17 5.26 30 1 0 114 70 130 1.17 5.26 30 1 0 111 70 130 1.17 5.24 30 1 0 111 70 130 1.18 30 30 1 0 111 70 130 1.16 30 30 1 0 10 10 10
Result POL SPK ref Value SPK Ref Val KREC LowLimit Introchhane 1.110 0.15 1 0 111 70 Introchhane 1.170 0.15 1 0 111 70 Introchhane 1.170 0.15 1 0 111 70 Introchhane 1.170 0.15 1 0 114 70 Introchhane 1.140 0.15 1 0 114 70 oethane 1.160 0.15 1 0 114 70 ofthane 1.170 0.15 1 0 117 70	SPK value SPK Ref Val %REC LowLimit HighLinit RPD Ref Val %RPD RPDLimit 1 0 111 70 130 1.17 5.26 30 1 0 114 70 130 1.17 5.26 30 1 0 114 70 130 1.23 5.00 30 1 0 114 70 130 1.13 0.881 30 1 0 114 70 130 1.13 0.881 30 1 0 111 70 130 1.13 0.881 30 1 0 111 70 130 1.16 30 30 1 0 111 70 130 1.18 0.881 30 1 0 111 70 130 1.18 0.881 30 1 1 0 110 70 130 1.24 30
Ioroethane 1.110 0.15 1 0 111 rarchloroethane 1.170 0.15 1 0 111 rarchloroethane 1.170 0.15 1 0 111 loroethane 1.140 0.15 1 0 114 loroethane 1.140 0.15 1 0 114 oethane 1.140 0.15 1 0 114 oethane 1.160 0.161 1 0 117 oethane 1.160 0.15 1 0 117 ootharee 1.170 0.15 1 0 117 ootharee 1.170 0.15 1 0 117 obtoharzene 1.170 0.15 1 0 117 ootharee 1.170 0.15 1 0 117 ootharsene 1.100 0.15 1 0 120 ootharzene 1.200 0.15	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
irachloroethane 1.170 0.15 1 0 117 loroethane 1.140 0.15 1 0 114 loroethane 1.140 0.15 1 0 114 oethane 1.140 0.15 1 0 114 oethane 1.140 0.15 1 0 114 oethane 1.160 0.040 1 0 114 oethane 1.160 0.15 1 0 111 oothane 1.170 0.15 1 0 117 obschare 1.170 0.15 1 0 117 obschare 1.170 0.15 1 0 117 obschare 1.170 0.15 1 0 126 opschare 1.160 0.15 1 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
oethane 1.140 0.15 1 0 114 oethane 1.160 0.040 1 0 116 oethane 1.160 0.040 1 0 116 lorobenzene 1.100 0.15 1 0 111 otethane 1.110 0.15 1 0 111 otethane 1.170 0.15 1 0 111 obenzene 1.200 0.15 1 0 111 obenzene 1.190 0.15 1 0 112 obenzene 1.200 0.15 1 0 112 obenzene 1.190 0.15 1 0 124 obenzene 1.190 0.15 1 0 124 obenzene 1.190 0.15 1 0 124 obenzene 1.190 0.15 1 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
celhene 1.150 0.040 1 0 116 lorobenzene 1.090 0.15 1 0 109 ethylbenzene 1.110 0.15 1 0 111 oethane 1.170 0.15 1 0 111 oethane 1.170 0.15 1 0 117 obenzene 1.200 0.15 1 0 112 obenzene 1.190 0.15 1 0 120 opropane 1.190 0.15 1 0 122 obenzene 1.200 0.15 1 0 122 orethane 1.190 0.15 1 0 122 obenzene 1.200 0.15 1 0 122 ene 1.200 0.15 1 0 122 off 0 0.15 1 0 122 ene 1.200 0.15 1 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
ethylbenzene 1.110 0.15 1 0 111 oelhane 1.170 0.15 1 0 117 obenzene 1.170 0.15 1 0 120 obenzene 1.200 0.15 1 0 120 obenzene 1.040 0.15 1 0 149 opropane 1.190 0.15 1 0 120 opropane 1.220 0.15 1 0 122 opropane 1.240 0.15 1 0 124 obenzene 1.240 0.15 1 0 124 obenzene 1.190 0.15 1 0 124 obenzene 1.190 0.15 1 0 124 obenzene 1.160 0.15 1 0 124 obenzene 1.190 0.15 1 0 124 obenzene 1.160 0.15 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Interface 1.170 0.15 1 0 117 obenizene 1.200 0.15 1 0 120 obenizene 1.200 0.15 1 0 120 opropane 1.190 0.15 1 0 120 opropane 1.190 0.15 1 0 122 opropane 1.200 0.15 1 0 122 sthylbenzene 1.220 0.15 1 0 122 obenzene 1.240 0.15 1 0 124 obenzene 1.190 0.15 1 0 136 obenzene 1.190 0.30 1 0 149 e 1.190 0.15 1 0 146 e 1.160 0.15 1 0 149 e 1.190 0.15 1 0 146 e 1.190 0.15 1 0 <t< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td></t<>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
obserzene 1.200 0.15 1 0 120 oethane 1.040 0.15 1 0 10 120 optopane 1.190 0.15 1 0 119 optopane 1.190 0.15 1 0 119 optopane 1.220 0.15 1 0 122 ethylbenzene 1.220 0.15 1 0 122 obenzene 1.240 0.15 1 0 124 obenzene 1.280 0.15 1 0 128 obenzene 1.190 0.15 1 0 116 e 1.190 0.15 1 0 116 e 1.160 0.15 1 0 116 e 1.160 0.15 1 0 116 e 1.190 0.15 1 0 116 e 1.160 0.15 1 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
oethane 1.040 0.15 1 0 104 opropane 1.190 0.15 1 0 119 opropane 1.190 0.15 1 0 119 opropane 1.220 0.15 1 0 122 ethylbenzene 1.220 0.15 1 0 124 obenzene 1.240 0.15 1 0 124 obenzene 1.280 0.15 1 0 128 obenzene 1.190 0.15 1 0 119 e 1.160 0.15 1 0 119 ihylpentane 1.160 0.15 1 0 119 ene 1.160 0.15 1 0 119 ene 1.190 0.15 1 0 119 reaction tante 1.190 0.15 1 0 119	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
opropane 1.190 0.15 1 0 119 ethylbenzene 1.220 0.15 1 0 122 ethylbenzene 1.220 0.15 1 0 122 ethylbenzene 1.240 0.15 1 0 94.0 obenzene 1.240 0.15 1 0 124 obenzene 1.240 0.15 1 0 124 obenzene 1.190 0.15 1 0 119 e 1.160 0.15 1 0 116 thylpentane 1.160 0.15 1 0 116 ene 1.180 0.15 1 0 116 ene 1.180 0.15 1 0 116 . Results reported are not blank corrected E. Estimated Value above quantitation range	1 0 119 70 130 1.24 4.12 1 0 122 70 130 1.25 2.43 1 0 94.0 70 130 1.25 2.43 1 0 94.0 70 130 1.25 2.43 1 0 124 70 130 1.26 2.43 1 0 124 70 130 1.28 3.17 1 0 128 70 130 1.28 3.17 1 0 119 70 130 1.28 0 1 0 119 70 130 1.23 3.31
ethylbenzene 1.220 0.15 1 0 122 ene 0.9400 0.15 1 0 94.0 obenzene 1.240 0.15 1 0 124 obenzene 1.240 0.15 1 0 124 obenzene 1.240 0.15 1 0 124 obenzene 1.290 0.15 1 0 119 e 1.190 0.30 1 0 116 thylpentane 1.160 0.15 1 0 116 ene 1.190 0.15 1 0 116 ene 1.190 0.15 1 0 116 hylpentane 1.160 0.15 1 0 116 ene 1.180 0.15 1 0 116 ene 1.180 0.15 1 0 116 . Results reported are not blank corrected E Estimated Value above quantitation range	1 0 122 70 130 125 2.43 1 0 94.0 70 130 0.99 5.18 1 0 124 70 130 1.28 3.17 1 0 128 70 130 1.28 3.17 1 0 128 70 130 1.28 3.17 1 0 128 70 130 1.28 3.17
and 0.15 1 0 94.0 0.15 1 0 94.0 0.0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.12 0 12.4 0 12.8 0 119 0 119 0 119 0 119 0 119 0 119 0 116 116 116 116 119 0 1119 0 1119 0 1119 0 1119 0 1119 0 116 116 116 119 0 1119 0 1119 0 1119 0 1119 0 1119 0 1119 0 1119 0 1119 0 1119 0 1119 0 1119 0 119 0 119 0 119 0 119 0 119 0 119 0 119 0 119 0	1 0 94.0 70 130 0.99 5.18 1 0 124 70 130 1.28 3.17 1 0 128 70 130 1.28 0 1 0 119 70 130 1.28 0
oberazene 1.240 0.15 1 0 124 oberazene 1.280 0.15 1 0 128 oberazene 1.280 0.15 1 0 138 e 1.190 0.30 1 0 116 hylpentane 1.160 0.15 1 0 116 ene 1.190 0.15 1 0 116 ene 1.190 0.15 1 0 119 reactive 1.190 0.15 1 0 119 . Results reported arc not blank corrected E E Estimated Value above quantitation range	1 0 124 70 130 1.28 3.17 1 0 128 70 130 1.28 0 1 0 119 70 130 1.28 0 1 0 119 70 130 1.28 0 1 0 119 70 130 1.23 3.31
obenzence 1.280 0.15 1 0 128 e 1.190 0.30 1 0 119 ihylpentane 1.160 0.15 1 0 116 ne 1.160 0.15 1 0 119 ene 1.190 0.15 1 0 119 ene 1.190 0.15 1 0 119 results reported arc not blank corrected E E Estimated Value above quantitation range	1 0 128 70 130 1.28 0 1 0 119 70 130 1.23 3.31
e 1.190 0.30 1 0 119 Itylpentane 1.160 0.15 1 0 116 ene 1.190 0.15 1 0 116 . Results reported arc not blank corrected E Estimated Value above quantitation range	1 0 119 70 130 1.23 3.31
thylpentane 1.160 0.15 1 0 116 ene 1.190 0.15 1 0 119 ene 1.190 0.15 1 0 119 . Results reported arc not blank corrected E E Estimated Value above quantitation range	
ene 1.190 0.15 1 0 119 . Results reported are not blank corrected E Estimated Value above quantitation range	1 0 116
. Results reported arc not blank corrected E	f 0 119
	ł
	Q
S Spike Recovery outside accepted recovery limits DL Detection Limit	DL Detection Limit

Page 73 of 380

Geovation Engineering, Inc.

CLAENT:

C2004002 Work Order:

Project: Grant Hardware	ware						Ť	TestCode: (070 NYS		
Sample ID: ALCS1UGD-040120	SampType: LCSD	TestCo	TestCode: 0.20_NYS	Units: ppbV		Prep Date	i ai		RunNo: 16233	133	
Client ID: 22222	Balch ID: R16233	Test	Testho: TO-15			Analysis Date:	e: 4/1/2020	ġ	SeqNo: 184716	1716	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	Q43%	RPDLimit	Qual
Acetone	1.170	0:30		0	117	2	130	1.21	3.35	99	
Allyl chloride	1.120	0,15	۴.	0	112	70	130	1.06	5.50	8	
Benzene	1.160	0.15	-	0	116	70	130	12	3,39	8	
Benzyl chloride	1,100	0.15	*-	0	110	70	130	1, 18	7.02	8	
Bromodichloromethane	1.090	0.15	***	ð	109	02	130	1.18	7.93	90	
Bromoform	1.000	0.15	Ł	0	100	20	130	1.04	3.92	Ŕ	
Bromomethane	0.9700	0.15	*"	Q	97.0	22	130	1.05	7.92	8	
Carbon disulfide	1.080	0.15	***	0	108	02	130	1.1	1.83	30	
Carbon tetrachloride	1.110	0.030	4	0	111	70	130	1.21	8.62	30	
Chlorobenzene	1.150	0.15	***	0	†15	70	130	1.14	0.873	30	
Chloroethane	1.150	0.15	*"	0	115	20	130	1.15	0	30	
Chloroform	1.080	0.15	*	0	108	70	130	1.11	2.74	30	
Chloromethane	0.9600	0.15	****	Ð	96.0	70	130	1.05	8.96	æ	
cis-1,2-Dichloroethere	1.090	0.040	÷	0	109	20	130	1.07	1.85	99	
cis-1,3-Dichloropropene	1.160	0.15	-	0	116	02	130	1.21	4.22	30	
Cyclohexane	1.180	0.15	٠.	0	118	70	130	1,18	ð	Ř	
Dibromochloromethane	1.060	0.15	•	0	106	70	130	1.1	3.70	30	
Ethyl acetate	1.110	0.15	•	o	11	70	130	1.05	5.56	30	
Ethylbenzene	1.150	0.15	••••	0	115	22	130	1.11	3,54	R	
Freon 11	1.070	0.15	¥	0	107	70	130	1.09	1.85	30	
Freon 113	1,140	0.15	*	0	114	62	130	1.16	1.74	30	
Freon 114	1.010	0.15	**	0	101	70	130	1.07	5.77	ŝ	
Freon 12	1.040	0.15	***	÷	1	2	130	1.08	3.77	30	
Heptane	1.190	0.15	+	o	119	22	130	1.22	2,49	30	
Hexachloro-1,3-butadiene	1.130	0.15	-	0	113	70	130	1.18	4.33	90 30	
Hexane	1.190	0.15	-	¢	119	22	130	1,13	5.17	ĝ	
isopropyl alcohol	1.130	0.15	-	¢	113	70	130	4. 4.	1.79	30	
m&p-Xylene	2.430	0.30	N	Q	122	02	130	2,42	0.412	30	
Methyl Butyl Ketone	1,160	0.30	Ŧ	¢	116	70	130	1.15	0.866	30	
Methyl Ethyl Ketone	1.070	0.30	q en	0	107	20	130	0.99	77.7	30	
Methyl Isobutyl Ketone	1.090	0.30	*	0	109	70	130	1.06	2.79	8	
Qualifiers: Results reported	Results reported are not blank corrected		E Estimat	Estimated Value above quantitation range	tation range		H	Holding times for preparation or analysis exceeded	preparation or as	talysis exceede	2
	Analyte detected below quantitation limit			Not Detected at the Limit of Detection	election			RPD outside accepted recovery limits	pted recovery lim	, sti	
S Spike Recovery	Spike Recovery outside accepted recovery limits	nits	DL Detection	Detection Limit						Pc	Page 4 of 5

Page 4 of 5

Geovation Engineering, Inc. C2004002 Work Order: CLIENT:

Project: Grant Hardware	ware						F	TestCode: 0.20_NYS	120 NYS		
Sample ID: ALCS1UGD-040120	SampType: LCSD	TestCo	TestCode: 0.20 NYS	Units: ppbV		Prep Date:	iii ai		RunNo: 16233	533	
Client ID: ZZZZ	Batch ID: R16233	Test	TestNo: TO-15		-	Analysis Date: 4/1/2020	e: 4/1/202	9	SeqNo: 184716	1716	
Analyte	Result	Pol	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	0da%	RPDLimit	Qual
Methyl tert-butyl ether	1.140	0.15	-	ō	114	92	130	1.02	111	8	
Methylene chloride	1.080	0.15	•	0	108	02	130	1.09	0.922	8	
o-Xylene	1.190	0,15	4	Q	119	70	130	1.24	4.12	30	
Propylene	1.110	0.15	T	0	Ţ	02	130	1.14	2.67	8	
Styrene	1.250	0.15	•	0	125	70	130	1.25	0	æ	
Tetrachioroethylene	1.170	0.15	***	0	117	20	130	1.18	0.851	90	
Tetrahydrofuran	1.120	0.15	*	0	112	70	130	1.08	3.64	30	
Toluene	1.180	0.15	+	Ö	118	22	130	1.14	3.45	30	
Irans-1,2-Dichloroethene	1.120	0.15	-	Ċ	112	70	130	1.09	2.71	90	
trans-1,3-Dichloropropene	1.120	0.15	-	0	112	70	130	1.11	0.897	30	
Trichloroethene	1,240	0.030	•	D	124	20	130	1.29	3.95	30	
Vinyt acetate	1.060	0.15	T	0	106	70	130	0.97	8.87	30	
Vinyl Bromide	1.160	0.15	A	0	116	22	130	1.1	5.31	ġ	
Vinyl chłoride	1.050	0,040		0	105	70	130	Ţ	4.65	30	

Page 5 of 5 Holding times for preparation or analysis exceeded RPD outside accepted recovery limits ж Estimated Value above quantitation range Not Detected at the Limit of Detection Detection Limit а ĝ в Spike Recovery outside accepted recovery limits Analyte detected below quantitation limit Results reported are not blank corrected ŝ ..., , Qualifiers:

Center Laboratories IDL Study

tug/m3 Detection Limit July 2019

Method TO-15 Units=ppb

ompound	Amt	10T #1	IDL #2	IDF#3	1DL #4	40	ġ	101 #7	AVG	StdDev	%Rec	10
Propylene	0.30	0.34	0.34	0.33	0.36	0.37	0.34	0.28	0.34	0.03	112.4%	060.0
Freon 12	0.30	0.34	0.34	0.33	0.37	0.37	0.37	0.28	0.34	0.03	114.3%	0.102
Chloromethane	0.30	0.36	0.36	0.36	0.35	0.37	0.37	0.30	0.35	0.02	117.6%	0.076
Freon 114	0.30	0.34	0.33	0.35	0.39	0.38	0.38	0.28	0.35	0.04	116.7%	0.120
Vinyl Chtoride	0.30	0.36	0.34	0.33	0.38	0.37	0.37	0.28	0.35	0.03	115.7%	0.108
Butane	0.30	0.38	0.33	0.37	0.39	0.38	0.39	0.27	0.36	0.04	119.5%	0.139
1,3-butadiene	0.30	0.33	0.33	0.36	0.38	0.40	0.38	0.34	0,36	0.03	120.0%	0.087
Bromomethane	0.30	0.34	0.38	0.35	0.40	0.41	0.39	0.34	0.37	0.03	124.3%	0.092
Chloroethane	0.30	0.36	0.38	0.37	0.42	0.37	0.41	0.31	0.37	0.04	124.8%	0.113
Ethanol	0.30	0.34	0.34	0.32	0.33	0.32	0.30	0.34	0.33	0.01	109.0%	0.047
Acrolein	0.30	0.31	0.32	0.30	0.35	0.34	0.36	0.26	0.32	0.03	106.7%	0.107
Vinyl Bromide	0.30	0.35	0.32	0.33	0,40	0.33	0.37	0.29	0.34	0.04	113.8%	0.112
Freon 11	0.30	0.38	0.30	0.33	0.35	0.33	0.35	0.32	0.34	0.03	112.4%	0.081
Acetone	0.30	0.38	0.35	0.32	0.30	0.36	0.35	0.26	0.33	0.04	110.5%	0.129
Pentane	0.30	0.34	0.31	0.33	0.36	0.34	0.35	0.27	0.33	0.03	109.5%	0.095
Isopropyi alcohol	0.30	0.38	0.34	0.36	0.35	0.34	0.35	0.33	0.35	0.02	116.7%	0.051
1,1-dichloroethene	0.30	0.30	0.30	0.32	0.35	0.33	0.32	0.25	0.31	0.03	103.3%	0.099
Freon 113	0.30	0.32	0.32	0.32	0.36	0.34	0.36	0.27	0.33	0.03	109.0%	0.097
t-Butyl alcohol	0.30	0.31	0.28	0.30	0.34	0.31	0.31	0.23	0.30	0.03	96.0%	0.108
Methylene chloride	0.30	0.33	0.32	0,32	0.34	0.35	0.35	0.25	0.32	0.03	107.6%	0.108
Allyl chloride	0.30	0.31	0.31	0.30	0.36	0.34	0.33	0.26	0.32	0.03	105.2%	0.101
Carbon disulfide	0.30	0.34	0.32	0.32	0.35	0.34	0.35	0.26	0.33	0.03	108.6%	0.099
trans-1,2-dichloroethene	0:30	0.32	0.31	0.30	0.33	0.34	0.32	0.24	0.31	0.03	102.9%	0.103
methyi tert-butyl ether	0.30	0.28	0.29	0.28	0.31	0.30	0.31	0.23	0.29	0.03	95.2%	0.087
1,1-dichloroethane	0.30	0.31	0.31	0.32	0.35	0.35	0.33	0.25	0.32	0.03	105.7%	0.107
Vinyl acetate	0.30	0.28	0.30	0.28	0.30	0.29	0.30	0.20	0.28	0.04	92.9%	0.112
Methyl Ethyl Ketone	0.30	0.31	0.31	0.30	0.31	0.30	0.31	0.21	0.29	0.04	97.6%	0.116
cis-1,2-dichlorcethene	0.30	0.30	0.30	0.30	0.32	0.30	0.30	0.22	0.29	0.03	97.1%	0.102
Hexane	0.30	0.30	0.29	0.29	0.29	0:30	0.30	0.20	0.28	0.04	93.8%	0.114
Ethy! acetate	0.30	0.29	0.30	0.29	0.29	0.28	0.28	0.20	0.28	0.03	91.9%	0.107
Chloroform	0:30	0.33	0.32	0.32	0.35	0.34	0.34	0.25	0.32	0.03	107.1%	0.105
Tetrahydrofuran	0.30	0.30	0.29	0.31	0.3	0.31	0.32	0.25	0.30	0.02	99.5%	0.074
1,2-dichloroethane	0.30	0.31	0.33	0.31	0.36	0.35	0.35	0.25	0.32	0.04	107.6%	0.119
1,1,1-trichioroethane	0.30	0.33	0.33	0.32	0.39	0.39	0.38	0.28	0.35	0.04	115.2%	0.132
Cyclohexane	0.30	0.30	0.30	0.29	0.31	0.32	0.31	0.23	0.29	0.03	98.1%	0.094
Carbon tetrachloride	0.30	0.29	0.30	0.30	0.35	0.35	0.35	0.26	0.31	0.04	104.8%	0.113
Benzene	0.30	0.31	0.32	0.33	0.36	0.35	0.34	0.26	0.32	0.03	108.1%	0.104
Methyl methacryfate	0.30	0,29	0.30	0,30	0.32	0.30	0.31	0.23	0.29	0.03	97.6%	0.092

Confidential

~~~

|                             |      |        |        |      | July 2019 | July 2019 |       |       |      |        |               | Units=ppb |
|-----------------------------|------|--------|--------|------|-----------|-----------|-------|-------|------|--------|---------------|-----------|
| Compound Compound           | Amt  | IDT #1 | IDL #2 | DL#3 | 1DL#4     | . IDL #5  | IDL # | 10F#7 | AVG  | StdDev | %Rec          | - IDL     |
|                             | 0.30 | 0.31   | 0:30   | 0,30 | 0.34      | 0.32      | 0.33  | 0.22  | 0.30 | 0.04   | 101.0%        | 0.124     |
| 2.2.4-trimethylpentane      | 0.30 | 0.30   | 0.30   | 0.31 | 0.34      | 0.33      | 0,34  | 0.24  | 0.31 | 0.03   | 102.9%        | 0.110     |
|                             | 0.30 | 0.30   | 0.29   | 0.30 | 0.31      | 0.31      | 0.33  | 0.22  | 0,29 | 0.04   | 98.1%         | 0.110     |
|                             | 0,30 | 0.30   | 0.29   | 0.29 | 0.32      | 0.34      | 0.33  | 0.24  | 0.30 | 0.03   | 100.5%        | 0.105     |
|                             | 0.30 | 0.33   | 0.33   | 0.32 | 0.38      | 0.39      | 0.37  | 0.28  | 0.34 | 0.04   | 114.3%        | 0.123     |
|                             | 0.30 | 0.34   | 0.33   | 0.34 | 0.38      | 0.40      | 0.38  | 0.28  | 0.35 | 0.04   | 116.7%        | 0.127     |
|                             | 0.30 | 0.32   | 0.33   | 0.33 | 0.34      | 0.35      | 0.34  | 0.25  | 0.32 | 0.03   | 107.6%        | 0.105     |
| pene                        | 0:30 | 0.33   | 0.33   | 0.33 | 0.34      | 0.34      | 0.32  | 0.24  | 0.32 | 0.04   | 106.2%        | 0.111     |
| 1,1,2-trichloroethane C     | 0.30 | 0.35   | 0.33   | 0.33 | 0.38      | 0.38      | 0.38  | 0.27  | 0.35 | 0.04   | 15.2%         | 0.127     |
|                             | 0.30 | 0.29   | 0.35   | 0.29 | 0.29      | 0.29      | 0.28  | 0.20  | 0.28 | 0.04   | 94.8%         | 0.138     |
|                             | 0.30 | 0.29   | 0.36   | 0.29 | 0.30      | 0.29      | 0.28  | 0.20  | 0.29 | 0.05   | 95.7%         | 0.147     |
| ane                         | 0.30 | 0.30   | 0.36   | 0.31 | 0.35      | 0.34      | 0.35  | 0.26  | 0.32 | 0.04   | 108.1%        | 0.113     |
| Methyl Butyl Ketone 0       | 0.30 | 0.28   | 0.31   | 0.27 | 0.27      | 0.28      | 0,26  | 0.23  | 0.27 | 0.02   | 90,5%         | 0.076     |
|                             | 0.30 | 0.30   | 0.35   | 0.30 | 0.34      | 0.33      | 0.34  | 0.24  | 0.31 | 0.04   | 104.8%        | 0.120     |
| Tetrachloroethylene C       | 0.30 | 0.30   | 0.36   | 0.29 | 0.33      | 0.31      | 0.32  | 0.26  | 0.31 | 0.03   | 103.3%        | 0.099     |
| <u> </u>                    | 0.30 | 0.31   | 0.31   | 0.31 | 0.34      | 0.33      | 0.34  | 0.24  | 0.31 | 0.03   | 103.8%        | 0.108     |
| <u> </u>                    | 0.30 | 0.31   | 0.28   | 0.31 | 0.32      | 0.30      | 0.30  | 0.20  | 0.29 | 0.04   | 96.2%         | 0.129     |
| J                           | 0.60 | 0.60   | 0.55   | 0.58 | 0.62      | 0.61      | 0.60  | 0.40  | 0.57 | 0.08   | 94.3%         | 0,241     |
|                             | 0.30 | 0.30   | 0.27   | 0.22 | 0.31      | 0.30      | 0.31  | 0.21  | 0.27 | 0.04   | 91.4%         | 0.134     |
|                             | 0.30 | 0.29   | 0.30   | 0.25 | 0,32      | 0.30      | 0.32  | 0.21  | 0.28 | 0.04   | <b>64.8</b> % | 0.127     |
| <b>1</b>                    | 0.30 | 0.31   | 0.33   | 0.28 | 0,34      | 0.34      | 0.34  | 0.23  | 0.31 | 0.04   | 103.3%        | 0.131     |
| <b>.</b>                    | 0.30 | 0.30   | 0.31   | 0.25 | 0.33      | 0.34      | 0.33  | 0.22  | 0.30 | 0.05   | 39.0%         | 0,143     |
|                             | 0.30 | 0.23   | 0.27   | 0.22 | 0.31      | 0.30      | 0.30  | 0.20  | 0.26 | 0.04   | 87.1%         | 0.140     |
|                             | 1.00 | 0.88   | 1.03   | 0.89 | 1.08      | 1.06      | 1,09  | 1.08  | 1.02 | 0.09   | 101.6%        | 0.287     |
| 1,1,2,2-tetrachloroethane 0 | 0.30 | 0.30   | 0.35   | 0.30 | 0.37      | 0.35      | 0.36  | 0.25  | 0.33 | 0.04   | 108.6%        | 0,137     |
| ***                         | 0.30 | 0.24   | 0.27   | 0.22 | 0.31      | 0.28      | 0.29  | 0.24  | 0.26 | 0.03   | 88.1%         | 0.101     |
| -                           | 0.30 | 0.26   | 0.32   | 0.25 | 0.33      | 0.29      | 0.34  | 0.24  | 0.29 | 0.04   | 36.7%         | 0.128     |
|                             | 0.30 | 0.23   | 0.28   | 0.22 | 0.31      | 0.28      | 0:30  | 0.21  | 0.26 | 0.04   | 87.1%         | 0.128     |
|                             | 0.30 | 0.24   | 0.28   | 0.24 | 0.32      | 0.32      | 0.31  | 0.20  | 0.27 | 0,05   | 91.0%         | 0.148     |
| ne                          | 0.30 | 0.22   | 0.26   | 0.22 | 0.29      | 0.28      | 0.29  | 0,19  | 0.25 | 0.04   | 83.3%         | 0.126     |
| 1,3-dichlorobenzene 0       | 0.30 | 0.27   | 0.31   | 0.26 | 0.34      | 0.25      | 0.33  | 0.21  | 0.26 | 0.05   | 93.8%         | 0.148     |
| J                           | 0.30 | 0.26   | 0.31   | 0.26 | 0.32      | 0.28      | 0.31  | 0.24  | 0.28 | 0.03   | 94,3%         | 0.097     |
|                             | 0.30 | 0.25   | 0.30   | 0.26 | 0.33      | 0.22      | 0.33  | 0.19  | 0.27 | 0.05   | 89.5%         | 0.170     |
| ne                          | 0.30 | 0.24   | 0.26   | 0.23 | 0.29      | 0.28      | 0.29  | 0.18  | 0.25 | 0.04   | 84.3%         | 0.125     |
|                             | 0.30 | 0.27   | 0.32   | 0.26 | 0.34      | 0.29      | 0.32  | 0.21  | 0.29 | 0.04   | 95.7%         | 0.140     |
| 1,2,4-trichlorobenzene 0    | 0.30 | 0.20   | 0.22   | 0.20 | 0.24      | 0.25      | 0.24  | 0.15  | 0.21 | 0.03   | 71.4%         | 0.109     |
| J                           | 0.30 | 0.20   | 0.23   | 0.19 | 0.24      | 0.26      | 0.25  | 0.13  | 0.21 | 0.05   | 71.4%         | 0.142     |
|                             |      |        |        |      |           |           |       |       |      |        |               |           |

Confidential

ŝ

# GC/MS-Whole Air Calculations

#### Relative Response Factor (RRF)

÷.,

. .....

where: Ax = area of the characteristic ion for the compound being measured
 Ais = area of the characteristic ion for the specific internal standard of the compound being measured
 Cx = concentration of the compound being measured (ppbv)
 Cis = concentration of the internal standard (ppbv)

Percent Relative Standard Deviation (%RSD)

Percent Difference (%D)

% D = <u>(RRFc - mean RRFi) \* 100</u> mean RRFi

where: RRFc = relative response factor from the continuing calibration mean RRFi = mean relative response factor from the initial calibration

#### Sample Calculations

•+

,

.

.

.

.

.

#### GC/MS VOLATILES-WHOLE AIR

1

•

.

.

۰.

#### METHOD TO-15

# SAMPLE DATA

.

.

Page 79 of 380

#### \_\_\_\_\_ C. L Р L ..... d A . . . Fŧ 10 RJP ΡM ΡM PM PM ΡM PM ΡM PM РM ΡM PM РM ΡM ₽M PM PM ΡM 2 PM 0 PM РM PM PM PM PM PM PM PM PM ΡM PM PM PM ΡM Cyclohexane 4/1/2020 1:45:00 PM 0,34 0.15 ppbV 1 Dibromochloromethane < 0.15 0.15 ppbV 1 4/1/2020 1:45:00 PM Ethyl acetate 0.30 0.15 ppbV 1 4/1/2020 1:45:00 PM Qualifiers: $\mathbb{SC}$ Sub-Contracted Results reported are not blank corrected , в Analyte detected in the associated Method Blank Е Estimated Value above quantitation range

н Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

\$ Spike Recovery outside accepted recovery limits

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection Detection Limit DL

Page 1 of 24

Page 80 of 380

| Centek La        | boratories, LLC                                                                                                |          |       |      | Date:                   | 10-Ap  | pr-20                                                                                                           |
|------------------|----------------------------------------------------------------------------------------------------------------|----------|-------|------|-------------------------|--------|-----------------------------------------------------------------------------------------------------------------|
| CLIENT:          | Geovation Engineering                                                                                          | ng, Inc. |       | C    | lient Sample ID:        | 601    | ana ana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny |
| Lab Order:       | C2004002                                                                                                       |          |       |      | Tag Number:             | 351,4  | 47                                                                                                              |
| Project:         | Grant Hardware                                                                                                 |          |       |      | <b>Collection Date:</b> | 3/28/2 | 2020                                                                                                            |
| Lab ID:          | C2004002-001A                                                                                                  |          |       |      | Matrix:                 | AIR    |                                                                                                                 |
| Analyses         | de an d'an 1967 de Charles an Marie de Sel de annan a Marie San Charles de La cel a annan annan a mar anna ann | Result   | DL    | Qual | Units                   | DF     | Date Analyzed                                                                                                   |
| FIELD PARAM      | ETERS                                                                                                          |          | F     | LD   |                         |        | Analyst:                                                                                                        |
| Lab Vacuum In    |                                                                                                                | -7       |       |      | "Hg                     |        | 4/1/2020                                                                                                        |
| Lab Vacuum Q     | ut                                                                                                             | -30      |       |      | "Hg                     |        | 4/1/2020                                                                                                        |
| 1UG/M3 W/ 0.2    | UG/M3 CT-TCE-VC-DCI                                                                                            | E-1,1DCE | тс    | )-15 |                         |        | Analyst:                                                                                                        |
| 1,1,1-Trichloroe | ethane                                                                                                         | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 1:45:00 F                                                                                              |
| 1,1,2,2-Tetrach  | loroethane                                                                                                     | < 0.15   | 0.15  |      | ppb∨                    | 1      | 4/1/2020 1:45:00 F                                                                                              |
| 1,1,2-Trichloroe | ethane                                                                                                         | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 1:45:00 F                                                                                              |
| 1,1-Dichloroeth  | ane                                                                                                            | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 1:45:00 F                                                                                              |
| 1,1-Dichloroeth  | ene                                                                                                            | < 0.040  | 0.040 |      | σρον                    | 1      | 4/1/2020 1:45:00 F                                                                                              |
| 1,2,4-Trichlorok | benzene                                                                                                        | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 1:45:00 F                                                                                              |
| 1,2,4-Trimethyl  | benzene                                                                                                        | 0.15     | 0.15  |      | ppbV                    | 1      | 4/1/2020 1:45:00 F                                                                                              |
| 1,2-Dibromoeth   | lañe                                                                                                           | < 0.15   | 0.15  |      | Vdqq                    | 1      | 4/1/2020 1:45:00 8                                                                                              |
| 1,2-Dichlorober  | izene                                                                                                          | < 0.15   | 0.15  |      | opo∨                    | 1      | 4/1/2020 1:45:00 F                                                                                              |
| 1,2-Dichloroeth  | ane                                                                                                            | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 1:45:00 P                                                                                              |
| 1,2-Dichloropro  | pane                                                                                                           | < 0.15   | 0.15  |      | Vdqq                    | 1      | 4/1/2020 1:45:00 F                                                                                              |
| 1,3,5-Trimethyl  | benzene                                                                                                        | < 0.15   | 0.15  |      | ppb∨                    | 1      | 4/1/2020 1:45:00 F                                                                                              |
| 1,3-butadiene    |                                                                                                                | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 1:45:00 F                                                                                              |
| 1,3-Dichlorober  | nzenø                                                                                                          | < 0.15   | 0.15  |      | Vdqq                    | 1      | 4/1/2020 1:45:00 F                                                                                              |
| 1,4-Dichlorober  | nzene                                                                                                          | < 0.15   | 0.15  |      | ρpbV                    | 1      | 4/1/2020 1:45:00 F                                                                                              |
| 1,4-Dioxane      |                                                                                                                | < 0.30   | 0.30  |      | ppbV                    | 1      | 4/1/2020 1:45:00 F                                                                                              |
| 2,2,4-trimethylp | entane                                                                                                         | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 1:45:00 P                                                                                              |
| 4-ethyitoluene   |                                                                                                                | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 1:45:00 F                                                                                              |
| Acetone          |                                                                                                                | 5.2      | 3.0   |      | ppbV                    | 10     | 4/1/2020 11:57:00                                                                                               |
| Aliyi chloride   |                                                                                                                | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 1:45:00 P                                                                                              |
| Benzene          |                                                                                                                | 0.18     | 0.15  |      | Vdqq                    | 1      | 4/1/2020 1:45:00 F                                                                                              |
| Benzyl chloride  |                                                                                                                | < 0.15   | 0.15  |      | Vdqq                    | 1      | 4/1/2020 1:45:00 F                                                                                              |
| Bromodichioron   | nethane                                                                                                        | < 0.15   | 0.15  |      | Vdqq                    | 1      | 4/1/2020 1:45:00 P                                                                                              |
| Bromoform        |                                                                                                                | < 0.15   | 0.15  |      | Vdqq                    | 1      | 4/1/2020 1:45:00 F                                                                                              |
| Bromomethane     |                                                                                                                | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 1:45:00 F                                                                                              |
| Carbon disulfide |                                                                                                                | 0.11     | 0.15  | 1    | ppbV                    | 1      | 4/1/2020 1:45:00 F                                                                                              |
| Carbon tetrachi  |                                                                                                                | 0.10     | 0.030 |      | Vdqq                    | 1      | 4/1/2020 1:45:00 P                                                                                              |
| Chlorobenzene    |                                                                                                                | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 1:45:00 #                                                                                              |
| Chloroethane     |                                                                                                                | < 0.15   | 0.15  |      | ppb∨                    | 1      | 4/1/2020 1:45:00 F                                                                                              |
| Chloroform       |                                                                                                                | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 1:45:00 8                                                                                              |
| Chloromethane    |                                                                                                                | 0.39     | 0.15  |      | ppbV                    | 1      | 4/1/2020 1:45:00 F                                                                                              |
| cis-1,2-Dichloro |                                                                                                                | < 0.040  | 0.040 |      | ppbV                    | 1      | 4/1/2020 1:45:00 F                                                                                              |
| cis-1,3-Dichloro | propene                                                                                                        | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 1:45:00 F                                                                                              |
| Cyclobeyane      |                                                                                                                | 0.34     | 0.15  |      | nnhV                    | 1      | A/1/2020 1-45-00 9                                                                                              |

| CLIENT:                                                                           | Geovation Engineering, Inc. | Client Sample ID: 601      |
|-----------------------------------------------------------------------------------|-----------------------------|----------------------------|
| Lab Order:                                                                        | C2004002                    | <b>Tag Number:</b> 351,447 |
| Project:                                                                          | Grant Hardware              | Collection Date: 3/28/2020 |
| Lab ID:                                                                           | C2004002-001A               | Matrix: AIR                |
| and a state of the state of the state of the fact means the state of the state of |                             |                            |

| Analyses                     | Result      | DL     | Quai | Units | DF | Date Analyzed        |
|------------------------------|-------------|--------|------|-------|----|----------------------|
| 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC | -DCE-1,1DCE | то     | -15  |       |    | Analyst: RJF         |
| Ethylbenzene                 | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 1:45:00 PM  |
| Freon 11                     | 0.27        | 0.15   |      | ppb∨  | 1  | 4/1/2020 1:45:00 PM  |
| Freon 113                    | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 1:45:00 PM  |
| Freon 114                    | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 1:45:00 PM  |
| Freon 12                     | 0.49        | 0.15   |      | ppbV  | 1  | 4/1/2020 1:45:00 PM  |
| Heptane                      | 0.14        | 0.15   | J    | ppbV  | 1  | 4/1/2020 1:45:00 PM  |
| Hexachloro-1,3-butadiene     | < 0.15      | 0.15   |      | ppb∨  | 1  | 4/1/2020 1:45:00 PM  |
| Hexane                       | 0.14        | 0.15   | J    | ppbV  | 1  | 4/1/2020 1:45:00 PM  |
| isopropyl alcohol            | 2.9         | 1.5    |      | ppbV  | 10 | 4/1/2020 11:57:00 PM |
| m&p-Xylene                   | 0.17        | 0.30   | J    | ppbV  | 1  | 4/1/2020 1:45:00 PM  |
| Methyl Butyl Ketone          | < 0.30      | 0.30   |      | ppbV  | 1  | 4/1/2020 1:45:00 PM  |
| Methyl Ethyl Ketone          | 0.35        | 0.30   |      | ppbV  | 1  | 4/1/2020 1:45:00 PM  |
| Methyl Isobutyl Ketone       | < 0.30      | 0.30   |      | ppbV  | 1  | 4/1/2020 1:45:00 PM  |
| Methyl tert-butyl ether      | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 1:45:00 PM  |
| Methylene chloride           | 0.20        | 0.15   |      | opbV  | 1  | 4/1/2020 1:45:00 PM  |
| o-Xylane                     | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 1:45:00 PM  |
| Propylene                    | < 0.15      | 0.15   |      | opbV  | 1  | 4/1/2020 1:45:00 PM  |
| Styrene                      | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 1:45:00 PM  |
| Tetrachloroethylene          | 0.15        | 0.15   |      | ppbV  | 1  | 4/1/2020 1:45:00 PM  |
| Tetrahydrofuran              | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 1:45:00 PM  |
| Toluene                      | 0.28        | 0.15   |      | ppbV  | 1  | 4/1/2020 1:45:00 PM  |
| trans-1,2-Dichloroethene     | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 1:45:00 PM  |
| trans-1,3-Dichloropropene    | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 1:45:00 PM  |
| Trichloroethene              | 0.20        | 0.030  |      | ppbV  | 1  | 4/1/2020 1:45:00 PM  |
| Vinyl acetate                | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 1:45:00 PM  |
| Vinyl Bromide                | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 1:45:00 PM  |
| Vinyl chloride               | < 0.040     | 0.040  |      | ppbV  | 1  | 4/1/2020 1:45:00 PM  |
| Surr: Bromofluorobenzene     | 94.0        | 70-130 |      | %REC  | 1  | 4/1/2020 1:45:00 PM  |

| Qualifiers: | SC | Sub-Contracted                                     |    | Results reported are not blank corrected  |              |
|-------------|----|----------------------------------------------------|----|-------------------------------------------|--------------|
|             | в  | Analyte detected in the associated Method Blank    | Е  | Estimated Value above quantitation range  |              |
|             | н  | Holding times for preparation or analysis exceeded | J  | Analyte detected below quantitation limit |              |
|             | JN | Non-routine analyte. Quantitation estimated.       | ND | Not Detected at the Limit of Detection    | D            |
|             | S  | Spike Recovery outside accepted recovery limits    | DL | Detection Limit                           | Page 2 of 24 |

Date: 10-Apr-20

| CLIENT:    | Geovation Engineering, Inc.            | Client Sample ID: | 601       |
|------------|----------------------------------------|-------------------|-----------|
| Lab Order: | C2004002                               | Tag Number:       | 351,447   |
| Project:   | Grant Hardware                         | Collection Date:  | 3/28/2020 |
| Lab ID:    | C2004002-001A                          | Matrix:           | AIR       |
|            | ······································ |                   |           |

| Analyses                     | Result     | DL   | Qual | Units | DF | Date Analyzed        |
|------------------------------|------------|------|------|-------|----|----------------------|
| IUG/M3 W/ 0.2UG/M3 CT-TCE-VC | DCE-1,1DCE | тс   | -15  |       |    | Analyst: RJI         |
| 1,1,1-Trichloroethane        | < 0.82     | 0.82 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| 1,1,2,2-Tetrachloroethane    | < 1.0      | 1.0  |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| 1,1,2-Trichloroethane        | < 0.82     | 0.82 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| 1,1-Dichloroethane           | < 0.61     | 0.61 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| 1,1-Dichloroethene           | < 0.16     | 0.16 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| 1,2,4-Trichlorobenzene       | < 1.1      | 1,1  |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| 1,2,4-Trimethylbenzene       | 0.74       | 0.74 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| 1,2-Dibromoethane            | < 1,2      | 1.2  |      | ug/m3 | Ť  | 4/1/2020 1:45:00 PM  |
| 1,2-Dichlorobenzene          | < 0.90     | 0.90 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| 1,2-Dichloroethane           | < 0.61     | 0.61 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| 1,2-Dichloropropane          | < 0.69     | 0.69 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| 1,3,5-Trimethylbenzene       | < 0.74     | 0.74 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| 1,3-butadiene                | < 0.33     | 0.33 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| 1,3-Dichlorobenzene          | < 0.90     | 0.90 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| 1,4-Dichlorobenzene          | < 0.90     | 0.90 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| 1,4-Dioxane                  | < 1.1      | 1.1  |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| 2,2,4-trimethylpentane       | < 0.70     | 0.70 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| 4-ethyltoluene               | < 0.74     | 0.74 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| Acetone                      | 12         | 7.1  |      | ug/m3 | 10 | 4/1/2020 11:57:00 PM |
| Allyl chloride               | < 0.47     | 0.47 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| Benzene                      | 0.57       | 0.48 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| Benzyl chloride              | < 0.86     | 0.86 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| Bromodichloromethane         | < 1.0      | 1.0  |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| Bromoform                    | < 1,6      | 1.6  |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| Bromomethane                 | < 0.58     | 0,58 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| Carbon disulfide             | 0.34       | 0.47 | 3    | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| Carbon tetrachloride         | 0.63       | 0.19 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| Chlorobenzene                | < 0.69     | 0.69 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| Chloroethane                 | < 0.40     | 0.40 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| Chloroform                   | < 0.73     | 0.73 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| Chloromethane                | 0.81       | 0.31 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| cis-1,2-Dichloroethene       | < 0.16     | 0.16 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| cis-1,3-Dichloropropene      | < 0.68     | 0.68 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| Cyclohexane                  | 1.2        | 0.52 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| Dibromochloromethane         | < 1.3      | 1.3  |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| Ethyl acetate                | 1.1        | 0.54 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| Ethylbenzene                 | < 0.65     | 0.65 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| Freon 11                     | 1.5        | 0.84 |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| Freon 113                    | < 1.1      | 1.1  |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |
| Freon 114                    | < 1.0      | 1.0  |      | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |

> в Analyte detected in the associated Method Blank

н Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Estimated Value above quantitation range Е

3 Analyte detected below quantitation limit

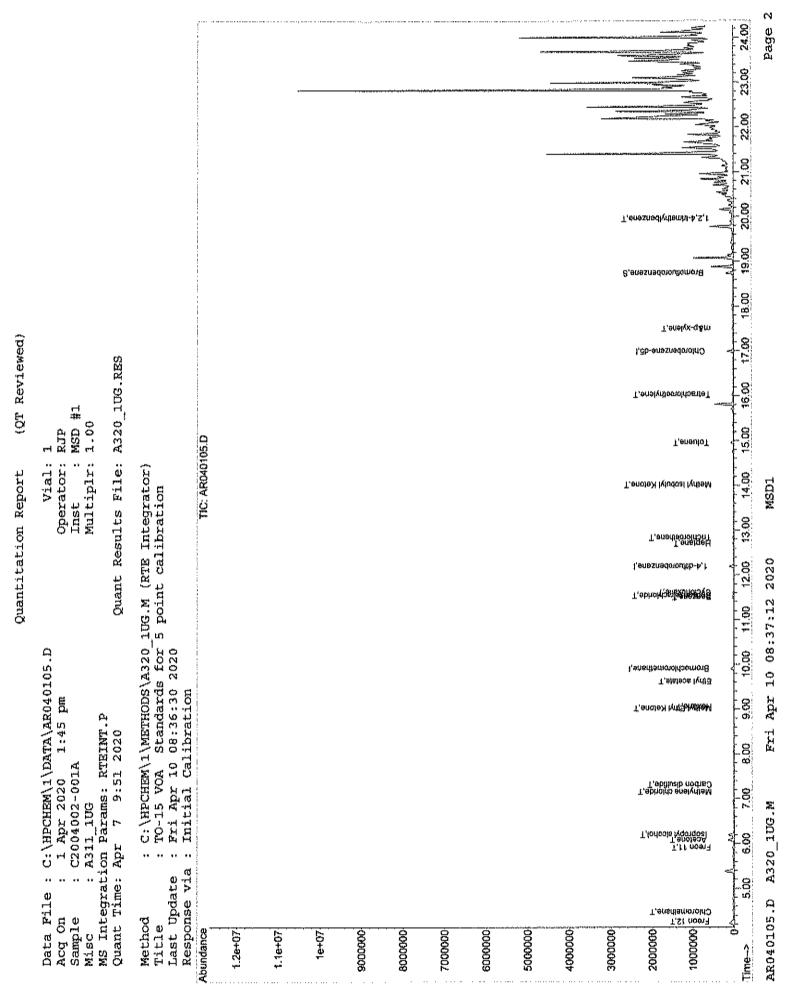
ND Not Detected at the Limit of Detection

Detection Limit

DL

Page 82 of 380

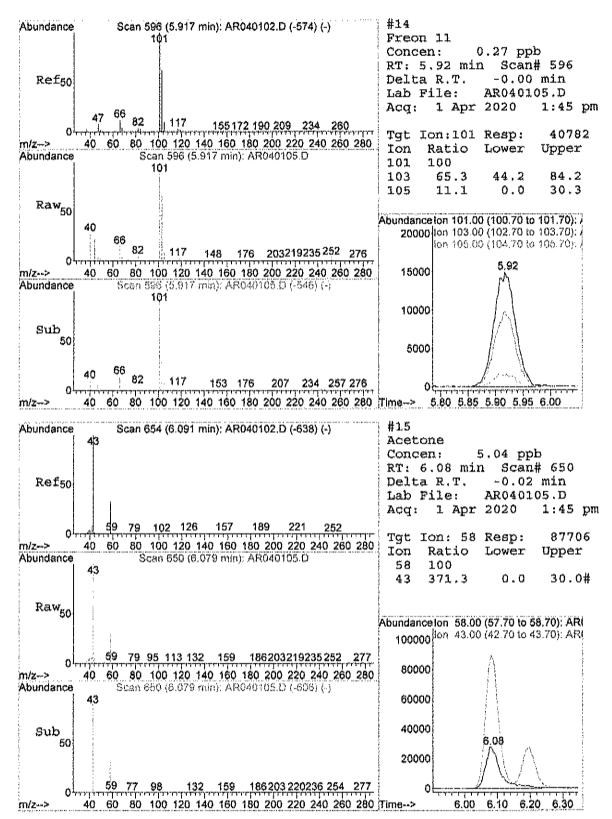
Page 1 of 24

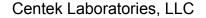

| CLIENT:    | Geovation Engineering, Inc. | Client Sample ID: 601      |
|------------|-----------------------------|----------------------------|
| Lab Order: | C2004002                    | <b>Tag Number: 351,447</b> |
| Project:   | Grant Hardware              | Collection Date: 3/28/2020 |
| Lab ID:    | C2004002-001A               | Matrix: AIR                |
|            |                             |                            |

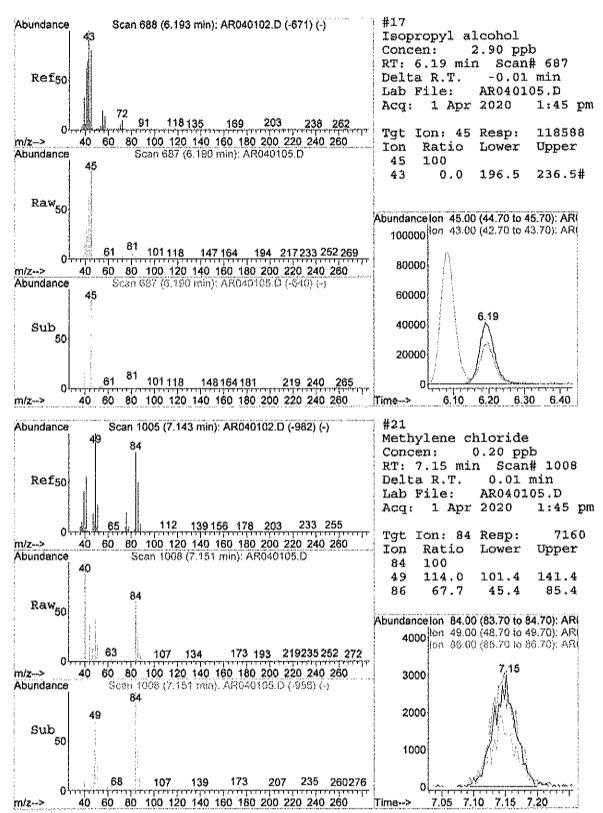
| Analyses                                | Result              | ÐL   | Quai  | Units | DF | Date Analyzed        |  |
|-----------------------------------------|---------------------|------|-------|-------|----|----------------------|--|
| 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE |                     |      | TO-15 |       |    | Analyst: RJP         |  |
| Freon 12                                | 2.4                 | 0.74 |       | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |  |
| Heptane                                 | 0.57                | 0.61 | J     | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |  |
| Hexachloro-1,3-butadiene                | < 1.6               | 1.6  |       | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |  |
| Hexane                                  | 0.49                | 0.53 | J     | սց/m3 | 1  | 4/1/2020 1:45:00 PM  |  |
| isopropyl alcohol                       | 7.1                 | 3.7  |       | ug/m3 | 10 | 4/1/2020 11:57:00 PM |  |
| m&p-Xylene                              | 0.74                | 1.3  | J     | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |  |
| Methyl Butyl Ketone                     | < 1.2               | 1.2  |       | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |  |
| Methyi Ethyi Ketone                     | 1,0                 | 0.88 |       | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |  |
| Methyl Isobutyl Ketone                  | < 1.2               | 1.2  |       | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |  |
| Methyl tert-butyl ether                 | < 0.54              | 0.54 |       | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |  |
| Methylene chloride                      | 0.69                | 0.52 |       | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |  |
| o-Xylene                                | < 0.65              | 0.65 |       | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |  |
| Propylene                               | < 0.26              | 0.26 |       | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |  |
| Styrene                                 | < 0.64              | 0.64 |       | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |  |
| Tetrachloroethylene                     | 1.0                 | 1.0  |       | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |  |
| Tetrahydrofuran                         | < 0.44              | 0.44 |       | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |  |
| Toluene                                 | 1.1                 | 0.57 |       | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |  |
| trans-1,2-Dichloroethene                | < 0.59              | 0.59 |       | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |  |
| trans-1,3-Dichloropropene               | < 0. <del>6</del> 8 | 0.68 |       | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |  |
| Trichloroethene                         | 1.1                 | 0.16 |       | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |  |
| Vinyl acetate                           | < 0.53              | 0.53 |       | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |  |
| Vinyl Bromide                           | < 0.66              | 0.66 |       | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |  |
| Vinyl chloride                          | < 0.10              | 0.10 |       | ug/m3 | 1  | 4/1/2020 1:45:00 PM  |  |


| Qualifiers: | SÇ                                              | Sub-Contracted                                     |                 | Results reported are not blank corrected  |  |
|-------------|-------------------------------------------------|----------------------------------------------------|-----------------|-------------------------------------------|--|
|             | в                                               | Analyte detected in the associated Method Blank    | Е               | Estimated Value above quantitation range  |  |
|             | н                                               | Holding times for preparation or analysis exceeded | j               | Analyte detected below quantitation limit |  |
| NL<br>S     | JN                                              | Non-routine analyte. Quantitation estimated.       | NÐ              | Not Detected at the Limit of Detection    |  |
|             | Spike Recovery outside accepted recovery limits | DL                                                 | Detection Limit | Page 2 of 24                              |  |

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AR040105.D Vial: 1 Acq On : 1 Apr 2020 1:45 pm Sample : C2004002-001A Misc : A311\_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 07 09:26:11 2020 Quant Results File: A320\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A320 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 23 08:34:44 2020 Response via : Initial Calibration DataAcg Meth : 1UG ENT Internal Standards R.T. QIon Response Conc Units Dev(Min) \*\*\*\*\* 1) Bromochloromethane9.90128319361.00ppb0.0035) 1,4-difluorobenzene12.191141092681.00ppb0.0050) Chlorobenzene-d516.991171062451.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.74 95 71326 0.94 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 94.00% Target CompoundsQvalue3) Freon 124.2785692500.49 ppb984) Chloromethane4.4750120680.39 ppb7914) Freon 115.92101407820.27 ppb9815) Acetone6.0858877065.04 ppb#10017) Isopropyl alcohol6.19451185882.90 ppb#121) Methylene chloride7.158471600.20 ppb9523) Carbon disulfide7.3176127710.11 ppb9328) Methyl Ethyl Ketone9.017251280.35 ppb#10030) Hexane9.055756940.14 ppb8631) Ethyl acetate9.6143195470.30 ppb9937) Cyclohexane11.605611591m Cpc0.34 ppb38) Carbon tetrachloride11.5178163640.18 ppb9839) Benzene12.714351080.14 ppb#6844) Trichloroethene12.8413093590.20 ppb999851) Toluene14.9592175950.28 ppb9952) Methyl Isobutyl Ketone14.024356840.10 ppb8856) Tetrachloroethylene16.0216477640.15 ppb9771) 1, 2, 4-trimethylbenzene19.94105184740.15 Target Compounds Qvalue

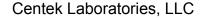

(#) = qualifier out of range (m) = manual integration (+) = signals summed AR040105.D A320\_1UG.M Fri Apr 10 08:37:11 2020 MSD1

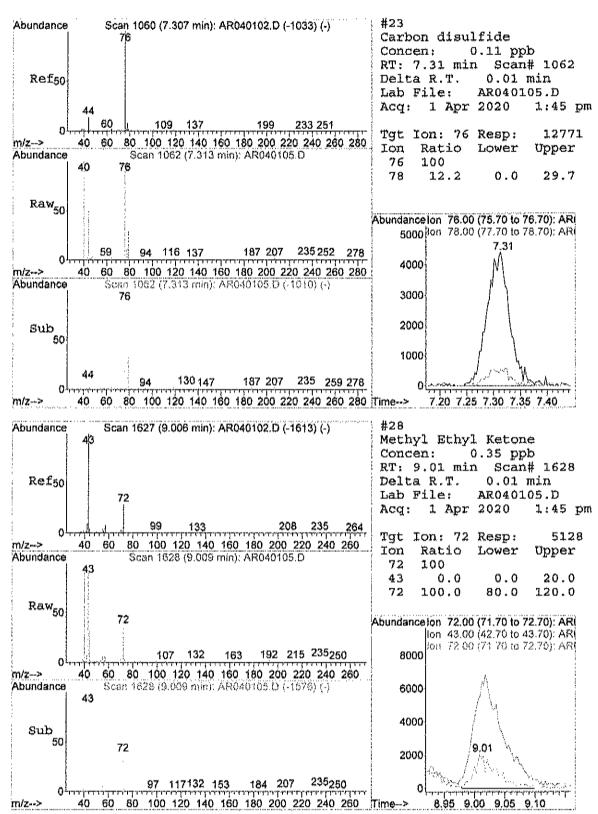


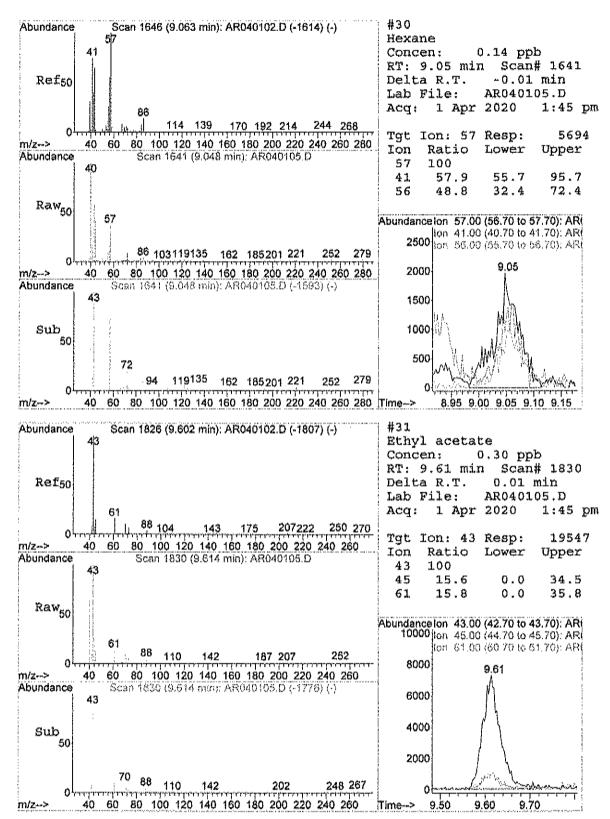


Page 85 of 380



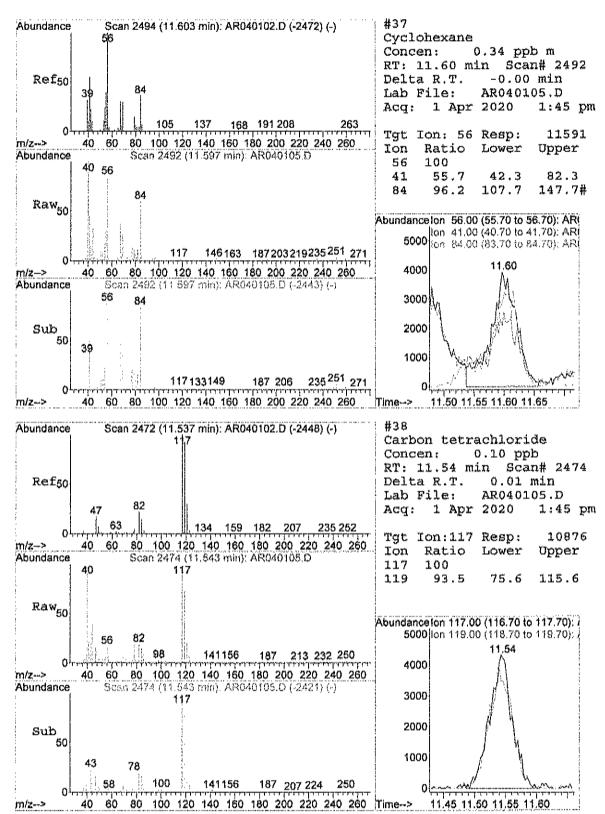
MSD1

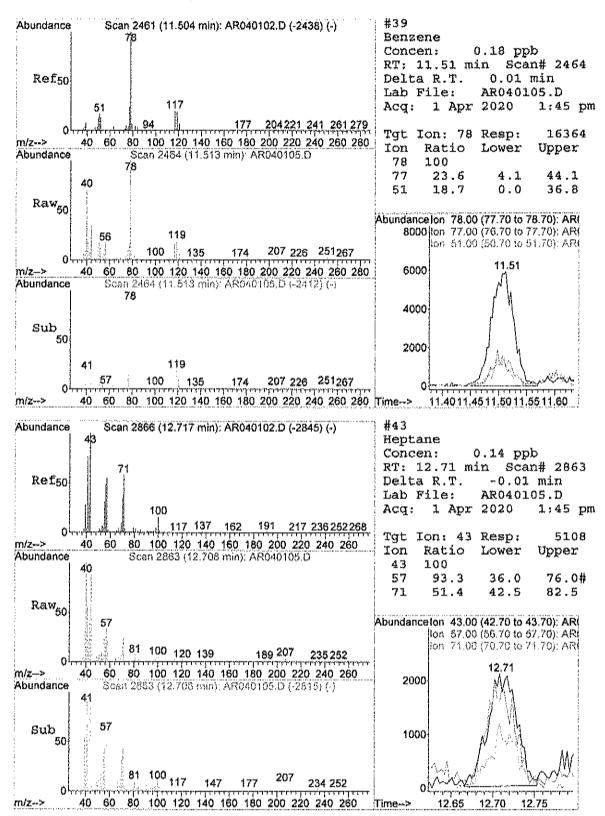


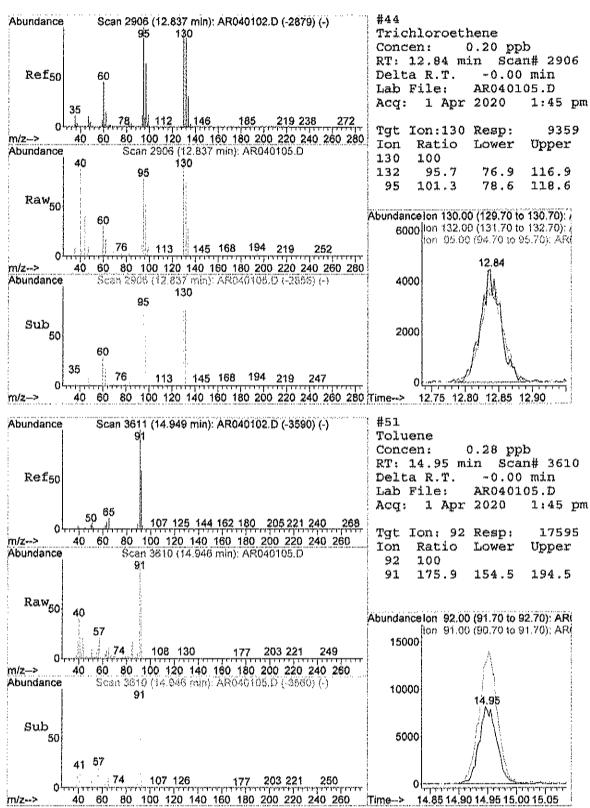




Fri Apr 10 08:37:15 2020

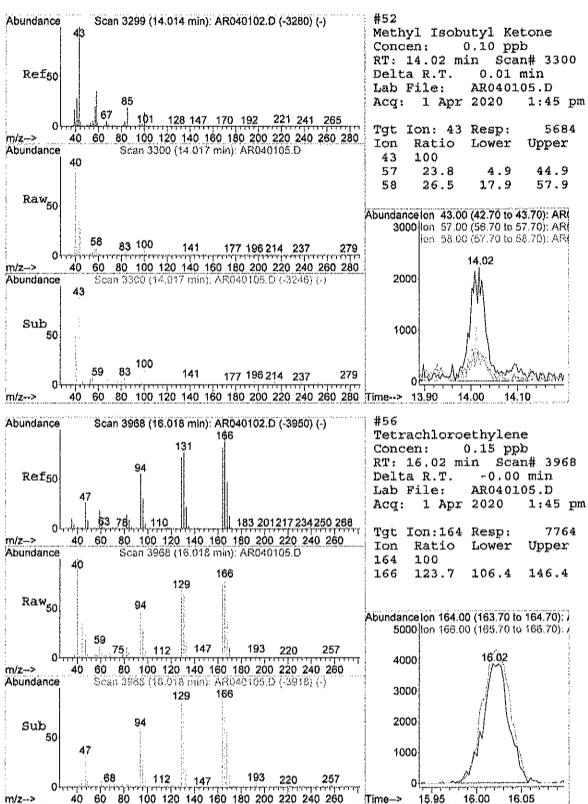

MSD1

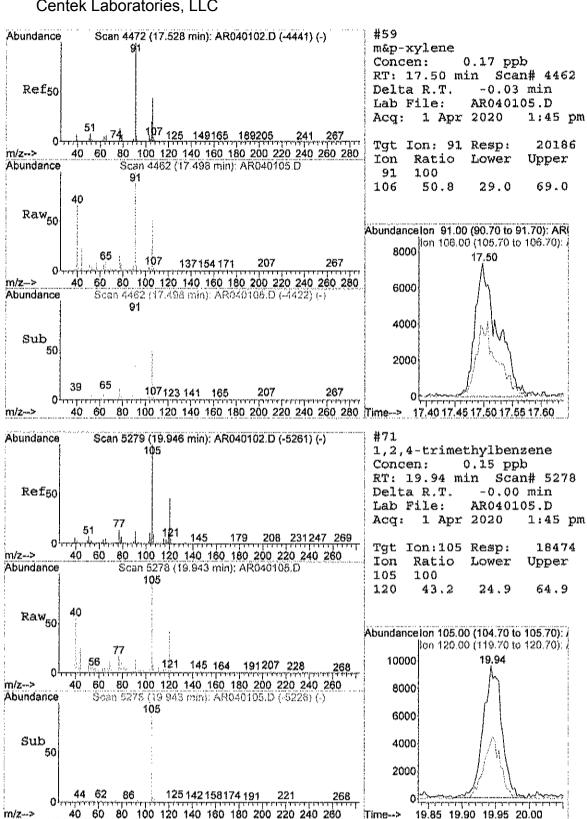




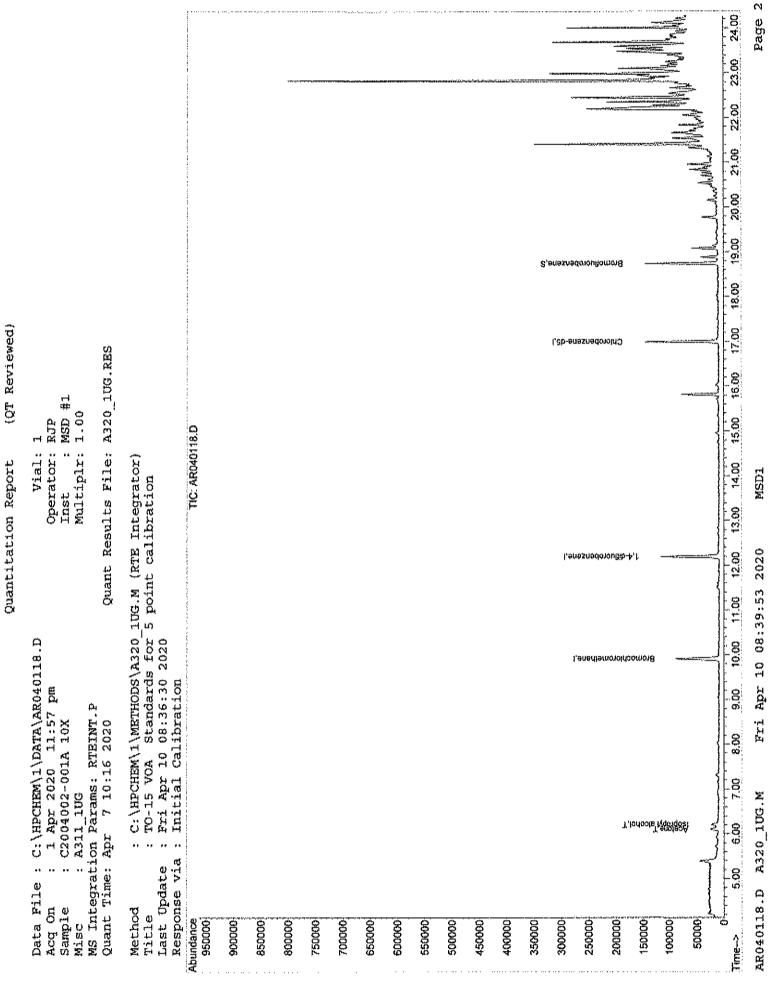




Fri Apr 10 08:37:17 2020



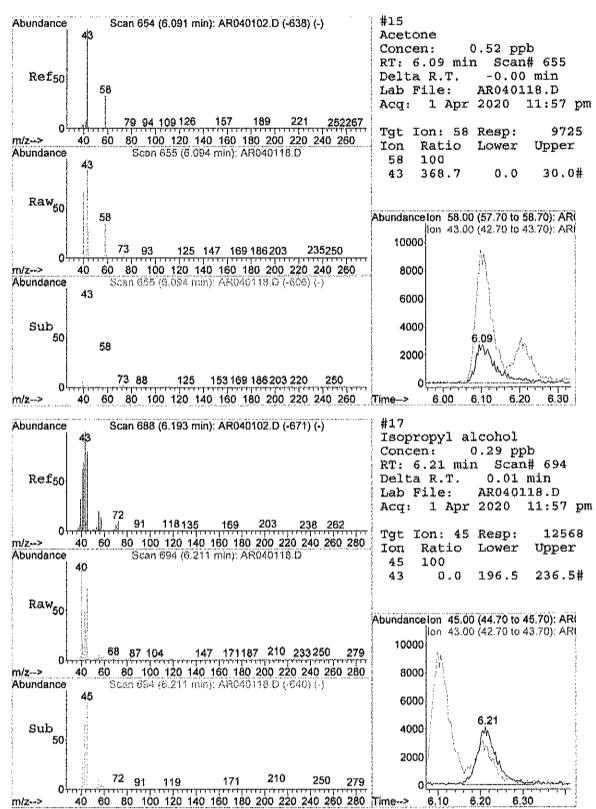










Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AR040118.D Vial: 1 Acq On : 1 Apr 2020 11:57 pm Sample : C2004002-001A 10X Operator: RJP Inst : MSD #1 Misc : A311\_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 07 09:26:24 2020 Quant Results File: A320 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A320 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 23 08:34:44 2020 Response vía : Initial Calibration DataAcq Meth : 1UG\_ENT Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.91128343731.00 ppb0.0035) 1,4-difluorobenzene12.191141149111.00 ppb0.0050) Chlorobenzene-d516.99117977351.00 ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.74 95 51798 0.74 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 74.00% Target Compounds Ovalue 6.09 58 9725 0.52 ppb # 100 6.21 45 12568 0.29 ppb # 1 15) Acetone 15) Acetone 17) Isopropyl alcohol



Page 97 of 380





Date: 10-Apr-20

| CLIENT:           | Geovation Engineerin | ig, Inc. |       | C    | lient Sample ID:        |        |                      |
|-------------------|----------------------|----------|-------|------|-------------------------|--------|----------------------|
| Lab Order:        | C2004002             |          |       |      | Tag Number:             |        |                      |
| Project:          | Grant Hardware       |          |       |      | <b>Collection Date:</b> | 3/28/2 | .020                 |
| Lab ID:           | C2004002-002A        |          |       |      | Matrix:                 | AIR    |                      |
| Analyses          |                      | Result   | DL    | Qual | Units                   | DF     | Date Analyzed        |
| FIELD PARAM       | ETERS                |          | F     | LD   |                         |        | Analyst:             |
| Lab Vacuum In     |                      | -8       |       |      | "Hg                     |        | 4/1/2020             |
| Lab Vacuum Ou     | at .                 | -30      |       |      | "Hg                     |        | 4/1/2020             |
| UG/M3 W/ 0.2      | UG/M3 CT-TCE-VC-DCE  | -1,1DCE  | тс    | -15  |                         |        | Analyst: RJF         |
| 1,1,1-Trichloroe  |                      | < 0.15   | 0.15  |      | Vdqq                    | 1      | 4/1/2020 2:32:00 PM  |
| 1,1,2,2-Tetrachi  | orcethane            | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| 1,1,2-Trichloroe  | thane                | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| 1,1-Dichloroetha  | ane                  | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| 1,1-Dichloroethe  | ne                   | < 0.040  | 0.040 |      | Vdqq                    | 1      | 4/1/2020 2:32:00 PM  |
| 1,2,4-Trichlorob  | enzene               | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| 1,2,4-Trimethylt  | enzene               | 0.27     | 0.15  |      | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| 1,2-Dibromoeth    | ane                  | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| 1,2-Dichloroben   | zene                 | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| 1,2-Dichloroetha  | ine                  | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| 1,2-Dichloroprop  | bane                 | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| 1,3,5-Trimethylt  | enzene               | 0.11     | 0.15  | J    | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| 1,3-butadiene     |                      | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| 1,3-Dichloroben   | zene                 | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| 1,4-Dichloroben   | zene                 | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| 1,4-Dioxane       |                      | < 0.30   | 0.30  |      | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| 2,2,4-trimethylpe | entane               | 0.13     | 0.15  | J    | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| 4-ethyltoluene    |                      | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| Acetone           |                      | 7.0      | 3.0   |      | ppbV                    | 10     | 4/2/2020 12:43:00 AM |
| Allyl chloride    |                      | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| Benzene           |                      | 0.23     | 0.15  |      | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| Benzyl chloride   |                      | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| Bromodichlorom    | ethane               | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| Bromoform         |                      | < 0.15   | 0.15  |      | opbV                    | 1      | 4/1/2020 2:32:00 PM  |
| Bromomethane      |                      | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| Carbon disulfide  |                      | 0.18     | 0.15  |      | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| Carbon tetrachic  | pride                | 0.090    | 0.030 |      | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| Chlorobenzene     |                      | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| Chloroethane      |                      | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| Chloroform        |                      | 0.13     | 0.15  | Ĵ    | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| Chloromethane     |                      | 0.40     | 0.15  |      | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| cis-1,2-Dichloroe | sthene               | 0.060    | 0.040 |      | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| cis-1,3-Dichlorog | propene              | < 0.15   | 0.15  |      | ppb∨                    | 1      | 4/1/2020 2:32:00 PM  |
| Cyclohexane       |                      | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| Dibromochlorom    | ethane               | < 0.15   | 0.15  |      | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |
| Ethyl acetate     |                      | 0.61     | 0.15  |      | ppbV                    | 1      | 4/1/2020 2:32:00 PM  |

- Analyte detected in the associated Method Blank ₿
- Н Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- s Spike Recovery outside accepted recovery limits

- Estimated Value above quantitation range E
- Analyte detected below quantitation limit Ĵ
- ND Not Detected at the Limit of Detection

DL Detection Limit

Page 3 of 24

Date: 10-Apr-20

| CLIENT:    | Geovation Engineering, Inc. | Client Sample 1D: 603      |
|------------|-----------------------------|----------------------------|
| Lab Order: | C2004002                    | <b>Tag Number: 360,380</b> |
| Project:   | Grant Hardware              | Collection Date: 3/28/2020 |
| Lab ID:    | C2004002-002A               | Matrix: AiR                |
|            |                             |                            |

| Analyses                     | Result      | DL     | Qual | Units | $\mathbf{DF}$ | Date Analyzed       |
|------------------------------|-------------|--------|------|-------|---------------|---------------------|
| 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC | -DCE-1,1DCE | то     | -15  |       |               | Analyst: RJF        |
| Ethylbenzene                 | < 0.15      | 0.15   |      | ppbV  | 1             | 4/1/2020 2:32:00 PM |
| Freon 11                     | 0.27        | 0,15   |      | ppbV  | 1             | 4/1/2020 2:32:00 PM |
| Freon 113                    | < 0.15      | 0.15   |      | ppbV  | 1             | 4/1/2020 2:32:00 PM |
| Freon 114                    | < 0.15      | 0.15   |      | ppbV  | 1             | 4/1/2020 2:32:00 PM |
| Freon 12                     | 0.48        | 0.15   |      | opbV  | 1             | 4/1/2020 2:32:00 PM |
| Heptane                      | 0.32        | 0.15   |      | ppbV  | 1             | 4/1/2020 2:32:00 PM |
| Hexachloro-1,3-butadiene     | < 0.15      | 0.15   |      | opbV  | 1             | 4/1/2020 2:32:00 PM |
| Нехале                       | 0.25        | 0.15   |      | ppbV  | 1             | 4/1/2020 2:32:00 PM |
| Isopropyl alcohol            | 1.7         | 0.15   |      | ppbV  | 1             | 4/1/2020 2:32:00 PM |
| m&p-Xylene                   | 0.39        | 0.30   |      | ppbV  | 1             | 4/1/2020 2:32:00 PM |
| Methyl Butyl Ketone          | < 0.30      | 0.30   |      | ppbV  | 1             | 4/1/2020 2:32:00 PM |
| Methyl Ethyl Ketone          | 0.61        | 0.30   |      | ppbV  | 1             | 4/1/2020 2:32:00 PM |
| Methyl Isobutyl Ketone       | < 0.30      | 0.30   |      | ppbV  | 1             | 4/1/2020 2:32:00 PM |
| Methyl tert-butyl ether      | < 0.15      | 0.15   |      | opbV  | 1             | 4/1/2020 2:32:00 PM |
| Methylene chloride           | 0.20        | 0.15   |      | ppbV  | 1             | 4/1/2020 2:32:00 PM |
| o-Xylene                     | 0.20        | 0.15   |      | ppbV  | 1             | 4/1/2020 2:32:00 PM |
| Propylene                    | < 0.15      | 0.15   |      | ppbV  | 1             | 4/1/2020 2:32:00 PM |
| Styrene                      | < 0.15      | 0.15   |      | ppbV  | 1             | 4/1/2020 2:32:00 PM |
| Tetrachioroethylene          | 0.11        | 0.15   | 3    | ppbV  | 1             | 4/1/2020 2:32:00 PM |
| Tetrahydrofuran              | < 0.15      | 0.15   |      | ppbV  | 1             | 4/1/2020 2:32:00 PM |
| Toluene                      | 0.62        | 0.15   |      | ppbV  | 1             | 4/1/2020 2:32:00 PM |
| trans-1,2-Dichloroethene     | < 0.15      | 0.15   |      | ppbV  | 1             | 4/1/2020 2:32:00 PM |
| trans-1,3-Dichloropropene    | < 0.15      | 0.15   |      | ppbV  | 1             | 4/1/2020 2:32:00 PM |
| Trichloroethene              | 0.60        | 0.030  |      | ppbV  | 1             | 4/1/2020 2:32:00 PM |
| Vinyl acetate                | < 0.15      | 0.15   |      | ppbV  | 1             | 4/1/2020 2:32:00 PM |
| Vinyt Bromide                | < 0.15      | 0.15   |      | ppbV  | 1             | 4/1/2020 2:32:00 PM |
| Vinyl chloride               | < 0.040     | 0.040  |      | ppbV  | 1             | 4/1/2020 2:32:00 PM |
| Surr: Bromofluorobenzene     | 108         | 70-130 |      | %REC  | 1             | 4/1/2020 2:32:00 PM |

| Qualifiers: | SC | Sub-Contracted                                     | -  | Results reported are not blank corrected  |              |
|-------------|----|----------------------------------------------------|----|-------------------------------------------|--------------|
|             | в  | Analyte detected in the associated Method Blank    | Е  | Estimated Value above quantitation range  |              |
|             | H  | Holding times for preparation or analysis exceeded | J  | Analyte detected below quantitation limit |              |
|             | JN | Non-routine analyte. Quantitation estimated.       | NÐ | Not Detected at the Limit of Detection    |              |
|             | S  | Spike Recovery outside accepted recovery limits    | DL | Detection Limit                           | Page 4 of 24 |
|             |    |                                                    |    |                                           |              |

Date: 10-Apr-20

| ······································ | an an an ann an an an ann an ann ann an |                   | an an ann an Arlanda ann an Arlanda ann an Ann an Arlanda. A' Ar ann an Ann an Ann an Ann an Ann an Ann an Arl |
|----------------------------------------|-----------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------|
| CLIENT:                                | Geovation Engineering, Inc.             | Client Sample ID: | 603                                                                                                            |
| Lab Order:                             | C2004002                                | Tag Number:       | 360,380                                                                                                        |
| Project:                               | Grant Hardware                          | Collection Date:  | 3/28/2020                                                                                                      |
| Lab ID:                                | C2004002-002A                           | Matrix:           | AIR                                                                                                            |
|                                        |                                         |                   |                                                                                                                |

| Analyses                     | Result     | DL   | Qual | Units | DF | Date Analyzed        |
|------------------------------|------------|------|------|-------|----|----------------------|
| 1UG/M3 W/ 0.2UG/M3 CT-TCE-V0 | DCE-1,1DCE | то   | -15  |       |    | Analyst: RJI         |
| 1,1,1-Trichloroethane        | < 0.82     | 0.82 |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| 1,1,2,2-Tetrachloroethane    | < 1.0      | 1.0  |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| 1,1,2-Trichloroethane        | < 0.82     | 0.82 |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| 1,1-Dichloroethane           | < 0.61     | 0.61 |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| 1,1-Dichloroethene           | < 0.16     | 0.16 |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| 1,2,4-Trichlorobenzene       | < 1.1      | 1.1  |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| 1,2,4-Trimethylbenzene       | 1.3        | 0.74 |      | ug/m3 | 4  | 4/1/2020 2:32:00 PM  |
| 1,2-Dibromoethane            | < 1.2      | 1.2  |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| 1,2-Dichlorobenzene          | < 0.90     | 0.90 |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| 1,2-Dichloroethane           | < 0.61     | 0.61 |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| 1,2-Dichloropropane          | < 0.69     | 0.69 |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| 1,3,5-Trimethylbenzene       | 0.54       | 0.74 | J    | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| 1,3-butadiene                | < 0.33     | 0.33 |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| 1,3-Dichlorobenzene          | < 0.90     | 0.90 |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| 1,4-Dichlorobenzene          | < 0.90     | 0.90 |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| 1,4-Dioxane                  | < 1.1      | 1.1  |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| 2,2,4-trimethylpentane       | 0.61       | 0.70 | Ĵ    | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| 4-ethyltoluene               | < 0.74     | 0.74 |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| Acetone                      | 17         | 7.1  |      | ug/m3 | 10 | 4/2/2020 12:43:00 AM |
| Allyl chloride               | < 0.47     | 0.47 |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| Benzene                      | 0.73       | 0.48 |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| Benzyl chloride              | < 0.86     | 0.86 |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| Bromodichloromethane         | < 1.0      | 1.0  |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| Bromoform                    | < 1.6      | 1.6  |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| Bromomethane                 | < 0.58     | 0.58 |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| Carbon disulfide             | 0.56       | 0.47 |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| Carbon tetrachloride         | 0.57       | 0.19 |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| Chlorobenzene                | < 0.69     | 0.69 |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| Chloroethane                 | < 0.40     | 0.40 |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| Chloroform                   | 0.63       | 0.73 | J    | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| Chloromethane                | 0.83       | 0.31 |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| cis-1,2-Dichloroethene       | 0.24       | 0.16 |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| cis-1,3-Dichloropropene      | < 0.68     | 0.68 |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| Cyclohexane                  | < 0.52     | 0.52 |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| Dibromochloromethane         | < 1.3      | 1.3  |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| Ethyl acetate                | 2.2        | 0.54 |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| Ethylbenzene                 | < 0.65     | 0.65 |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| Freon 11                     | 1.5        | 0.84 |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| Freon 113                    | < 1.1      | 1.1  |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |
| Freon 114                    | < 1.0      | 1.0  |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM  |

в Analyte detected in the associated Method Blank

н Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits E Estimated Value above quantitation range

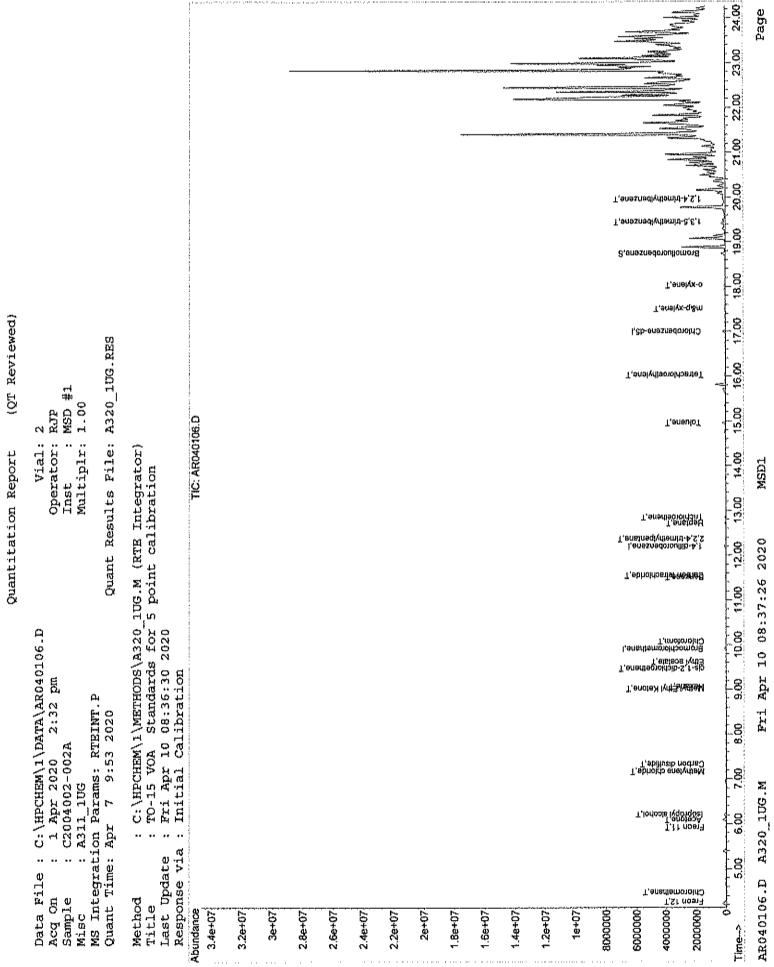
j Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

DL Detection Limit

Page 3 of 24

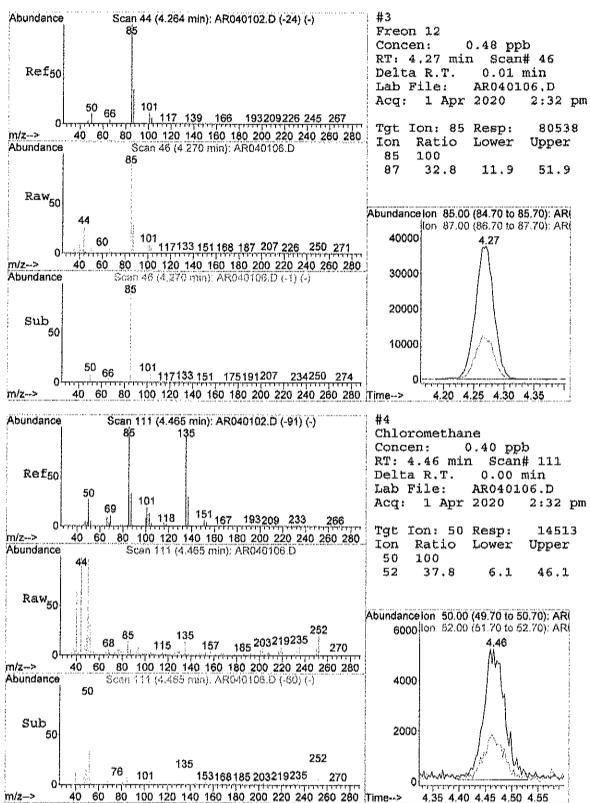
Date: 10-Apr-20


|            | . No.75                     |                   |           |
|------------|-----------------------------|-------------------|-----------|
| CLIENT:    | Geovation Engineering, Inc. | Client Sample 1D: | 603       |
| Lab Order: | C2004002                    | Tag Number:       | 360,380   |
| Project:   | Grant Hardware              | Collection Date:  | 3/28/2020 |
| Lab ID:    | C2004002-002A               | Matrix:           | AIR       |
|            |                             |                   |           |

| Analyses                                | Result | DL    | Qual | Units | DF | Date Analyzed       |
|-----------------------------------------|--------|-------|------|-------|----|---------------------|
| 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE |        | TO-15 |      |       |    | Analyst: RJF        |
| Freon 12                                | 2.4    | 0.74  |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM |
| Heptane                                 | 1.3    | 0.61  |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM |
| Hexachloro-1,3-butadiene                | < 1.6  | 1.6   |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM |
| Hexane                                  | 0.88   | 0.53  |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM |
| Isopropyl alcohol                       | 4.2    | 0.37  |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM |
| m&p-Xylene                              | 1.7    | 1.3   |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM |
| Methyl Butyl Ketone                     | < 1.2  | 1.2   |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM |
| Methyl Ethyl Ketone                     | 1.5    | 0.88  |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM |
| Methyl Isobutyl Ketone                  | < 1.2  | 1.2   |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM |
| Methyl tert-butyl ether                 | < 0.54 | 0.54  |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM |
| Methylene chloride                      | 0.69   | 0.52  |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM |
| o-Xylene                                | 0.87   | 0.65  |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM |
| Propylene                               | < 0.26 | 0.26  |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM |
| Styrene                                 | < 0.64 | 0.64  |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM |
| Tetrachloroethylene                     | 0.75   | 1.0   | J    | ug/m3 | 1  | 4/1/2020 2:32:00 PM |
| Tetrahydrofuran                         | < 0.44 | 0.44  |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM |
| Toluene                                 | 2.3    | 0.57  |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM |
| trans-1,2-Dichloroethene                | < 0.59 | 0,59  |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM |
| trans-1,3-Dichloropropene               | < 0.68 | 0.68  |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM |
| Trichloroethene                         | 3.2    | 0.16  |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM |
| Vinyl acetate                           | < 0.53 | 0.53  |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM |
| Vinyl Bromide                           | < 0.66 | 0.66  |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM |
| Vinyl chloride                          | < 0.10 | 0.10  |      | ug/m3 | 1  | 4/1/2020 2:32:00 PM |

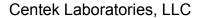
| Qualifiers: | SC | Sub-Contracted                                     |    | Results reported are not blank corrected  | de           |
|-------------|----|----------------------------------------------------|----|-------------------------------------------|--------------|
|             | в  | Analyte detected in the associated Method Blank    | Е  | Estimated Value above quantitation range  |              |
|             | н  | Holding times for preparation or analysis exceeded | J  | Analyte detected below quantitation limit |              |
|             | JN | Non-routine analyte, Quantitation estimated.       | ND | Not Detected at the Limit of Detection    |              |
|             | S  | Spike Recovery outside accepted recovery limits    | DL | Detection Limit                           | Page 4 of 24 |
|             |    |                                                    |    |                                           |              |

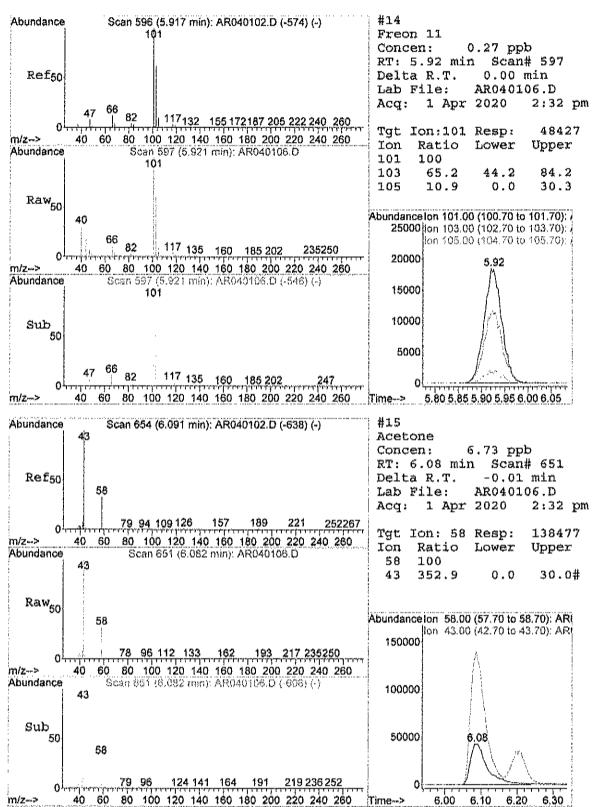

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AR040106.D Vial: 2 Acq On : 1 Apr 2020 2:32 pm Operator: RJP Sample : C2004002-002A Misc : A311\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 07 09:26:12 2020 Quant Results File: A320\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 23 08:34:44 2020 Response via : Initial Calibration DataAcq Meth : 1UG ENT R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.91128377381.00 ppb0.0035) 1,4-difluorobenzene12.201141311741.00 ppb0.0050) Chlorobenzene-d517.001171303311.00 ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.74 95 100810 1.08 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 108.00% Qvalue3) Freen 124.2785605380.48ppb984) Chloromethane4.4650145130.40ppb7714) Freen 115.92101484270.27ppb9915) Acetone6.08581364776.73ppb#10017) Isopropyl alcohol6.2045826591.71ppb#121) Methylene chloride7.158486560.20ppb#10023) Carbon disulfide7.3276238340.18ppb10029) cis-1,2-dichloroethene9.0657123120.25ppb#30) Hexane9.0657123120.25ppb9531) Ethyl acetate9.6143479850.61ppb9632) Chloroform10.0783148890.13ppb9738) Carbon tetrachloride11.5517119850.999639) Benzene11.5178252540.23ppb#44) Trichloroethene12.8413033080.60ppb9856) Tetrachloroethylene16.0216470900.11ppb10059m&\_rele17.5091554880.39ppb9663) O-xylene18.0391335350.20ppb985713.5-trimethylbenzene19.9410540437< Target Compounds Qvalue


(#) = qualifier out of range (m) = manual integration (+) = signals summed AR040106.D A320\_1UG.M Fri Apr 10 08:37:25 2020 MSD1



Page 104 of 380


N

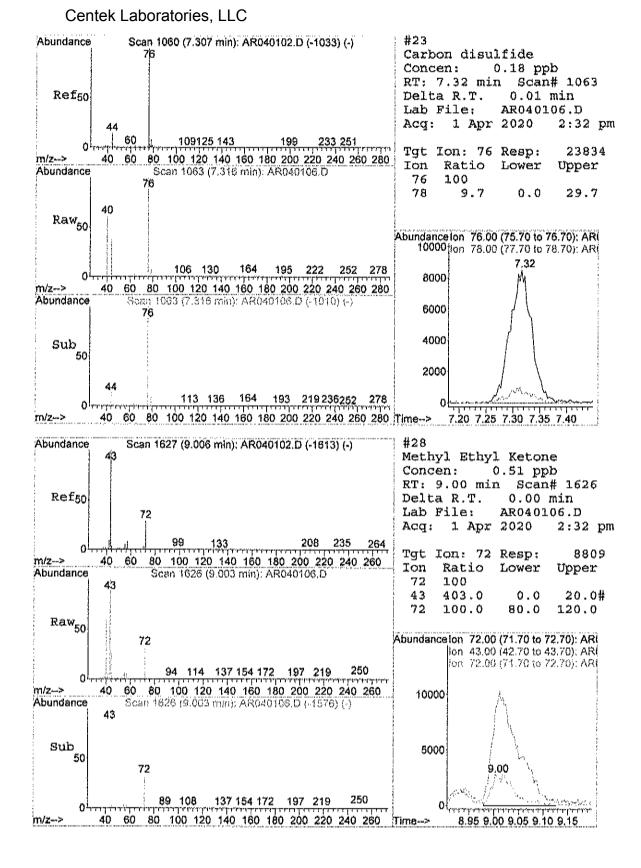




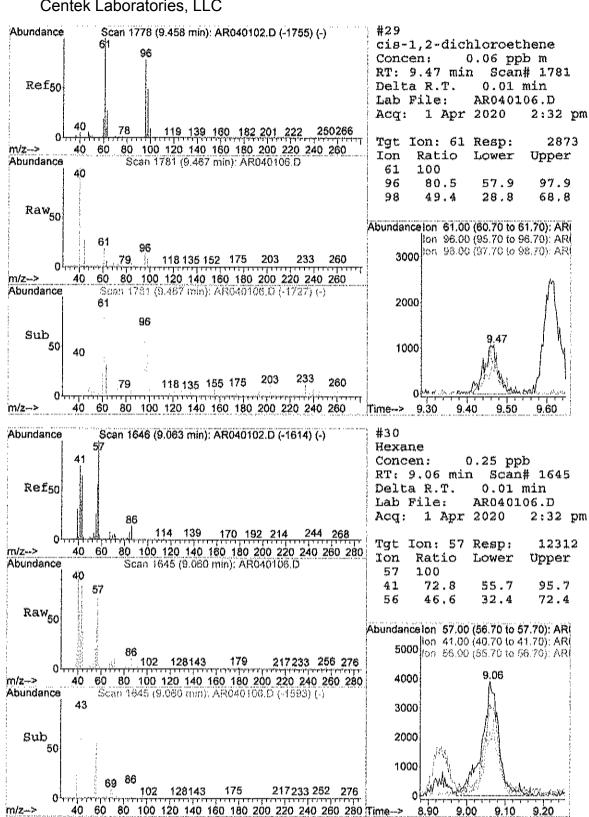

lUG.M Fri

Fri Apr 10 08:37:27 2020





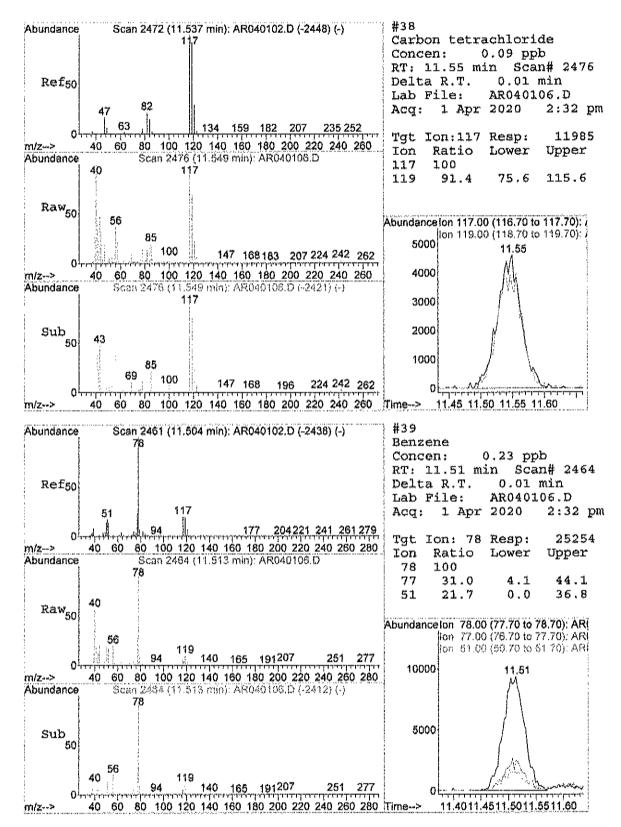

UG.M Fri


Fri Apr 10 08:37:29 2020



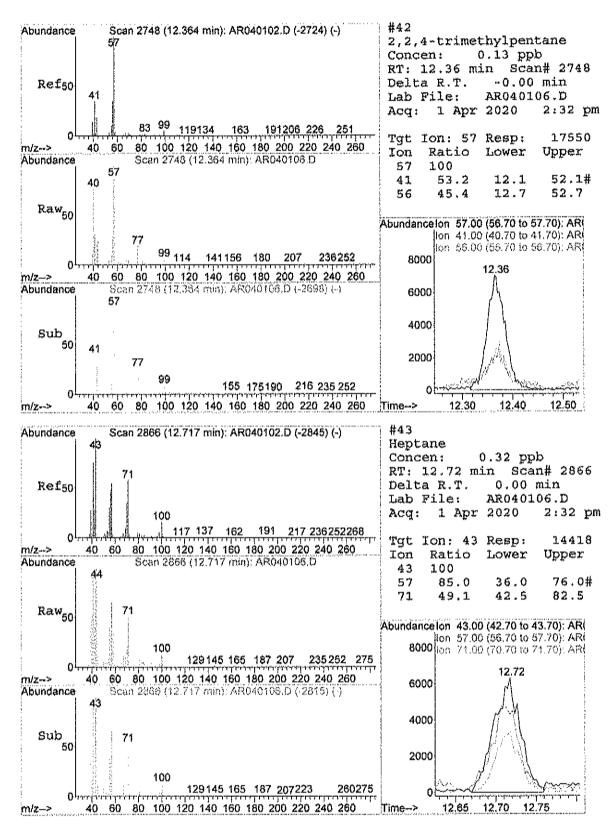


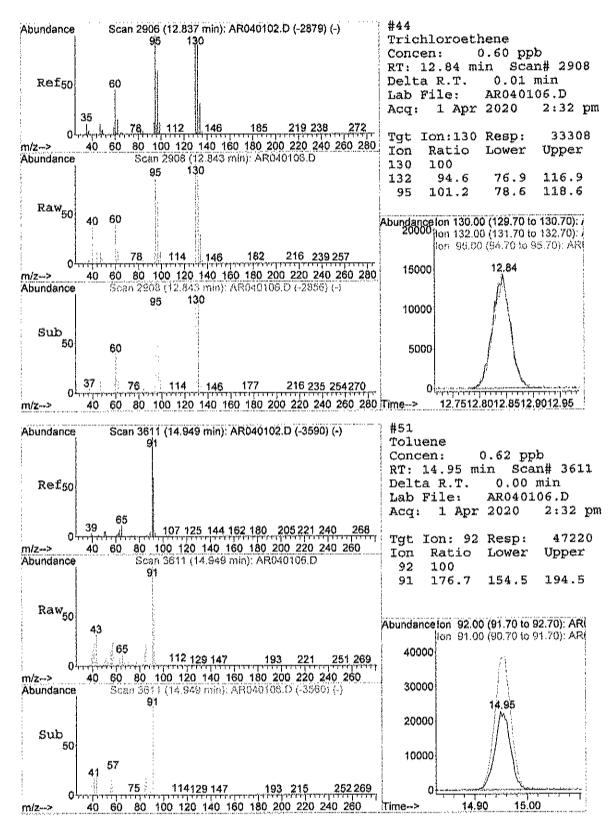





Fri Apr 10 08:37:31 2020

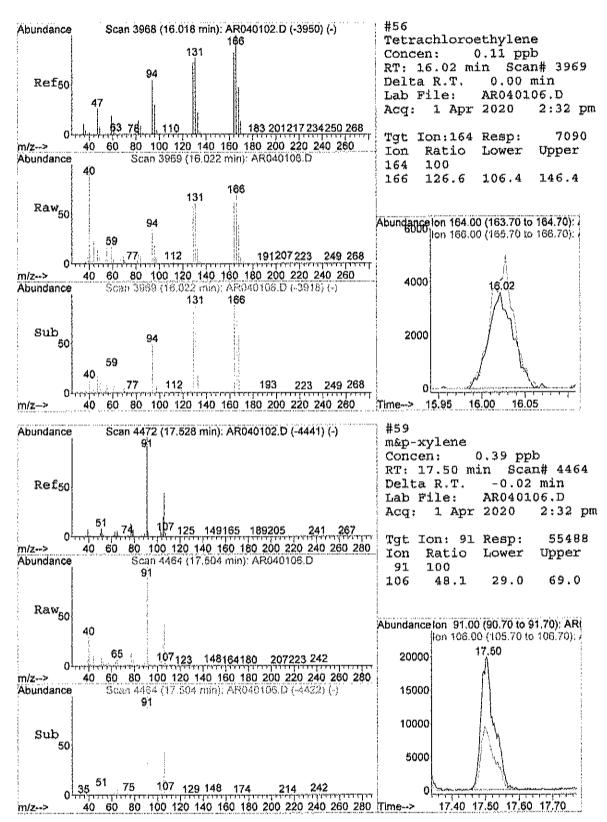




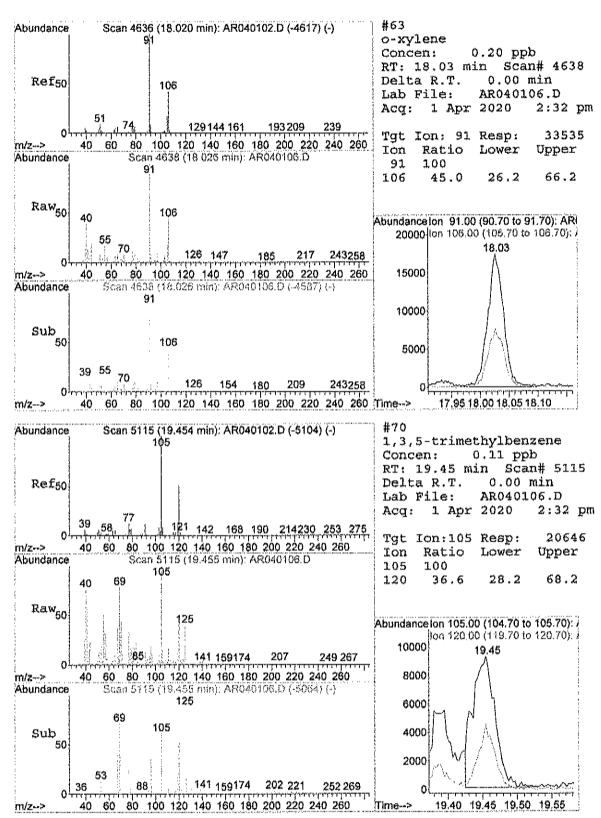



MSD1

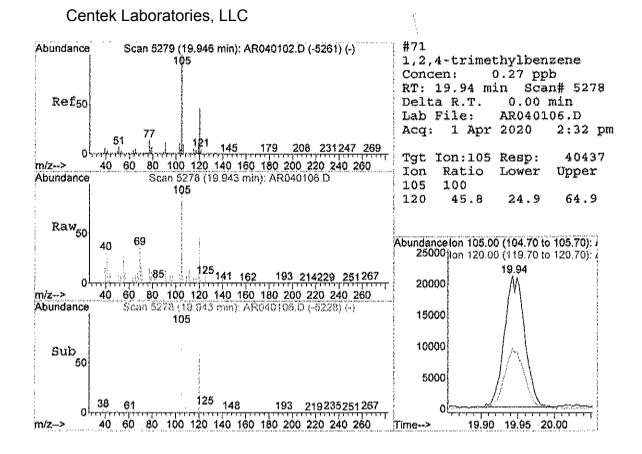

Page 111 of 380



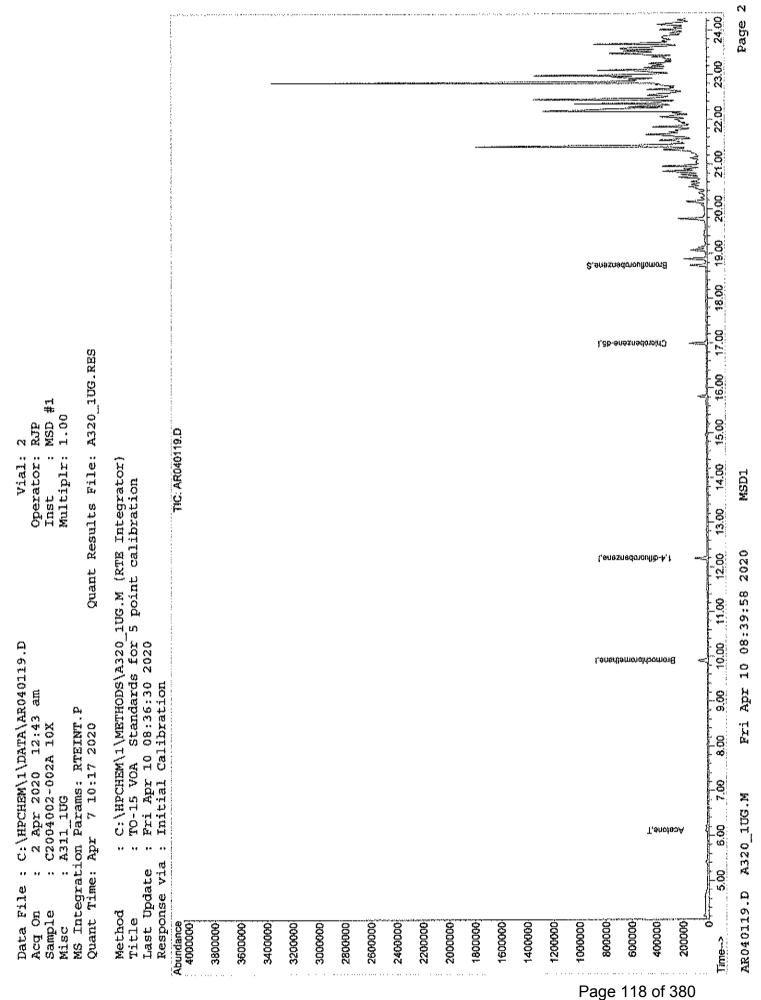


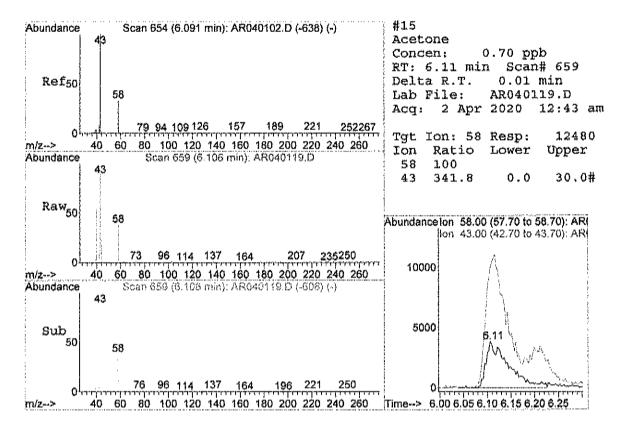

Page 113 of 380






Page 114 of 380




Page 115 of 380



Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AR040119.D Vial: 2 Acq On : 2 Apr 2020 12:43 am Operator: RJP Sample : C2004002-002A 10X Misc : A311\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 07 09:26:25 2020 Quant Results File: A320\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 23 08:34:44 2020 Response via : Initial Calibration DataAcq Meth : 1UG\_ENT R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.91128325141.00 ppb0.0035) 1,4-difluorobenzene12.191141090311.00 ppb0.0050) Chlorobenzene-d517.00117949881.00 ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.74 95 51131 0.75 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 75.00% Qvalue Target Compounds 6.11 58 12480 0.70 ppb # 100 15) Acetone





#### Date: 10-Apr-20

| CLIENT:            | Geovation Engineering | ng, Inc. |       | C    | lient Sample ID: | 604 |                     |
|--------------------|-----------------------|----------|-------|------|------------------|-----|---------------------|
| Lab Order:         | C2004002              | <b>.</b> |       |      | Tag Number:      |     | 12                  |
| Project:           | Grant Hardware        |          |       |      | Collection Date: | -   |                     |
| Lab ID:            |                       |          |       |      | Matrix:          |     | 020                 |
|                    | C2004002-003A         |          |       |      | watrix:          | AIR |                     |
| Analyses           |                       | Result   | ÐL    | Qual | Units            | DF  | Date Analyzed       |
| FIELD PARAME       | TERS                  |          | F     | LD   |                  |     | Analyst:            |
| Lab Vacuum In      |                       | -8       |       |      | "Hg              |     | 4/1/2020            |
| Lab Vacuum Ou      | t                     | -30      |       |      | "Hg              |     | 4/1/2020            |
| 1UG/M3 W/ 0.2L     | JG/M3 CT-TCE-VC-DCE   | E-1,1DCE | то    | -15  |                  |     | Analyst: RJF        |
| 1,1,1-Trichloroet  | hane                  | < 0.15   | 0.15  |      | ppbV             | 1   | 4/1/2020 3:20:00 PM |
| 1,1,2,2-Tetrachic  | proethane             | < 0.15   | 0,15  |      | ppbV             | 1   | 4/1/2020 3:20:00 PM |
| 1,1,2-Trichloroet  | hane                  | < 0.15   | 0.15  |      | ppbV             | 1   | 4/1/2020 3:20:00 PM |
| 1,1-Dichloroetha   | ne                    | < 0.15   | 0.15  |      | ppbV             | 1   | 4/1/2020 3:20:00 PM |
| 1,1-Dichloroethe   | ne                    | < 0.040  | 0.040 |      | ppbV             | 1   | 4/1/2020 3:20:00 PM |
| 1,2,4-Trichlorobe  | enzene                | < 0.15   | 0.15  |      | ppbV             | 1   | 4/1/2020 3:20:00 PM |
| 1,2,4-Trimethylbe  | enzene                | 0.26     | 0.15  |      | ppbV             | 1   | 4/1/2020 3:20:00 PM |
| 1,2-Dibromoetha    | nė                    | < 0.15   | 0.15  |      | ppbV             | 1   | 4/1/2020 3:20:00 PM |
| 1,2-Dichlorobenz   | ene                   | < 0.15   | 0.15  |      | ppbV             | 1   | 4/1/2020 3:20:00 PM |
| 1,2-Dichloroetha   | ne                    | < 0.15   | 0.15  |      | ppbV             | 1   | 4/1/2020 3:20:00 PM |
| 1,2-Dichloroprop   | ane                   | < 0.15   | 0.15  |      | ppbV             | 1   | 4/1/2020 3:20:00 PM |
| 1,3,5-Trimethylbe  | anzene                | 0.13     | 0.15  | J    | ppbV             | 1   | 4/1/2020 3:20:00 PM |
| 1,3-butadiene      |                       | < 0.15   | 0.15  |      | ppbV             | 1   | 4/1/2020 3:20:00 PM |
| 1,3-Dichlorobenz   | enø                   | < 0.15   | 0.15  |      | Vđqq             | 1   | 4/1/2020 3:20:00 PM |
| 1,4-Dichlorobenz   | ene                   | < 0.15   | 0.15  |      | ppbV             | 1   | 4/1/2020 3:20:00 PM |
| 1.4-Dioxane        |                       | < 0.30   | 0.30  |      | ppbV             | 1   | 4/1/2020 3:20:00 PM |
| 2,2,4-trimethylpe  | ntane                 | 0.12     | 0.15  | Ĵ    | ρpbV             | 1   | 4/1/2020 3:20:00 PM |
| 4-ethyltoluene     |                       | < 0.15   | 0.15  |      | ppbV             | 1   | 4/1/2020 3:20:00 PM |
| Acetone            |                       | 8.9      | 3.0   |      | Vdqq             | 10  | 4/2/2020 1:29:00 AM |
| Aliyi chloride     |                       | < 0.15   | 0.15  |      | ppbV             | 1   | 4/1/2020 3:20:00 PM |
| Benzenø            |                       | 0.23     | 0.15  |      | ppbV             | 1   | 4/1/2020 3:20:00 PM |
| Benzyl chloride    |                       | < 0.15   | 0.15  |      |                  | 1   | 4/1/2020 3:20:00 PM |
| Bromodichlorome    | ethane                | < 0.15   | 0.15  |      | ppbV             | 1   | 4/1/2020 3:20:00 PM |
| Bromoform          |                       | < 0.15   | 0.15  |      | ppbV             | 1   | 4/1/2020 3:20:00 PM |
| Bromomethane       |                       | < 0.15   | 0.15  |      | ppbV             | 1   | 4/1/2020 3:20:00 PM |
| Carbon disulfide   |                       | 0.15     | 0.15  |      | ppbV             | 1   | 4/1/2020 3:20:00 PM |
| Carbon tetrachior  | ide                   | 0.090    | 0.030 |      |                  | 1   | 4/1/2020 3:20:00 PM |
| Chlorobenzene      |                       | < 0.15   | 0.15  |      |                  | 1   | 4/1/2020 3:20:00 PM |
| Chloroethane       |                       | < 0.15   | 0.15  |      | ppbV             | 1   | 4/1/2020 3:20:00 PM |
| Chloroform         |                       | 0.23     | 0.15  |      | ppbV             | 1   | 4/1/2020 3:20:00 PM |
| Chloromethane      |                       | 0.41     | 0.15  |      |                  | 1   | 4/1/2020 3:20:00 PM |
| cis-1,2-Dichloroet | hene                  | 0.050    | 0.040 |      |                  | 1   | 4/1/2020 3:20:00 PM |
| cis-1,3-Dichloropr | opene                 | < 0.15   | 0.15  |      |                  | 1   | 4/1/2020 3:20:00 PM |
| Cyclohexane        |                       | < 0.15   | 0.15  |      |                  | 1   | 4/1/2020 3:20:00 PM |
| Dibromochlorome    | thane                 | < 0.15   | 0.15  |      |                  | 1   | 4/1/2020 3:20:00 PM |
| Ethyl acetate      |                       | 0.69     | 0.15  |      |                  | 1   | 4/1/2020 3:20:00 PM |

Qualifiers: SC Sub-Contracted

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Detection Limit

DL

Page 5 of 24

Date: 10-Apr-20

| - |
|---|

| Analyses                                | Result  | DL               | Qual  | Units | DF | Date Analyzed       |
|-----------------------------------------|---------|------------------|-------|-------|----|---------------------|
| 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1.1DCE |         | то               | TO-15 |       |    | Analyst: RJF        |
| Ethylbenzene                            | < 0.15  | 0.15             |       | ppbV  | 1  | 4/1/2020 3:20:00 PM |
| Freon 11                                | 0.26    | 0.1 <del>5</del> |       | ppbV  | 1  | 4/1/2020 3:20:00 PM |
| Freon 113                               | < 0.15  | 0.15             |       | ppbV  | 1  | 4/1/2020 3:20:00 PM |
| Freon 114                               | < 0.15  | 0.15             |       | ppbV  | 1  | 4/1/2020 3:20:00 PM |
| Freon 12                                | 0.46    | 0.15             |       | ppb∨  | 1  | 4/1/2020 3:20:00 PM |
| Heptane                                 | 0.28    | 0.15             |       | ppbV  | 1  | 4/1/2020 3:20:00 PM |
| Hexachloro-1,3-butadiene                | < 0.15  | 0,15             |       | ppbV  | 1  | 4/1/2020 3:20:00 PM |
| Hexane                                  | 0.26    | 0.15             |       | ppb∨  | 1  | 4/1/2020 3:20:00 PM |
| isopropyl alcohol                       | 1.5     | 0.15             |       | ppbV  | 1  | 4/1/2020 3:20:00 PM |
| m&p-Xylene                              | 0.38    | 0.30             |       | ppbV  | 1  | 4/1/2020 3:20:00 PM |
| Methyl Butyl Ketone                     | < 0.30  | 0.30             |       | ppbV  | 1  | 4/1/2020 3:20:00 PM |
| Methyl Ethyl Ketone                     | 0.53    | 0.30             |       | ppbV  | 1  | 4/1/2020 3:20:00 PM |
| Methyl Isobutyl Ketone                  | < 0.30  | 0.30             |       | ppbV  | 1  | 4/1/2020 3:20:00 PM |
| Methyl tert-butyl ether                 | < 0.15  | 0.15             |       | ppbV  | 1  | 4/1/2020 3:20:00 PM |
| Methylene chloride                      | 0.20    | 0.15             |       | ppb∨  | 1  | 4/1/2020 3:20:00 PM |
| o-Xylene                                | 0.18    | 0.15             |       | ppbV  | 1  | 4/1/2020 3:20:00 PM |
| Propylene                               | < 0.15  | 0.15             |       | ppbV  | 1  | 4/1/2020 3:20:00 PM |
| Styrene                                 | < 0.15  | 0.15             |       | ppbV  | 1  | 4/1/2020 3:20:00 PM |
| Tetrachioroethylene                     | 0.11    | 0.15             | J     | ppbV  | 1  | 4/1/2020 3:20:00 PM |
| Tetrahydrofuran                         | < 0.15  | 0.15             |       | ₽pbV  | 1  | 4/1/2020 3:20:00 PM |
| Toluene                                 | 0.48    | 0.15             |       | ppbV  | 1  | 4/1/2020 3:20:00 PM |
| trans-1,2-Dichloroethene                | < 0.15  | 0.15             |       | ppbV  | 1  | 4/1/2020 3:20:00 PM |
| trans-1,3-Dichloropropene               | < 0,15  | 0.15             |       | ppbV  | 1  | 4/1/2020 3:20:00 PM |
| Trichloroethene                         | 0.59    | 0.030            |       | ppbV  | 1  | 4/1/2020 3:20:00 PM |
| Vinyl acetate                           | < 0.15  | 0.15             |       | ppbV  | 1  | 4/1/2020 3:20:00 PM |
| Vinyl Bromide                           | < 0.15  | 0.15             |       | opbV  | 1  | 4/1/2020 3:20:00 PM |
| Vinyl chloride                          | < 0.040 | 0.040            |       | ppbV  | 1  | 4/1/2020 3:20:00 PM |
| Surr: Bromofluorobenzene                | 100     | 70-130           |       | %REC  | 1  | 4/1/2020 3:20:00 PM |

| Qualifiers: | SC                                                | Sub-Contracted                                     |    | Results reported are not blank corrected  |              |
|-------------|---------------------------------------------------|----------------------------------------------------|----|-------------------------------------------|--------------|
|             | в                                                 | Analyte detected in the associated Method Blank    | Ę  | Estimated Value above quantitation range  |              |
|             | Ħ                                                 | Holding times for preparation or analysis exceeded | J  | Analyte detected below quantitation limit |              |
|             | JN                                                | Non-routine analyte. Quantitation estimated.       | ND | Not Detected at the Limit of Detection    |              |
|             | S Spike Recovery outside accepted recovery limits |                                                    | DL | Detection Limit                           | Page 6 of 24 |

Date: 10-Apr-20

| CLIENT:           | Geovation Engineerir | ig, Inc. |      | C    | lient Sample ID: | 604   |                     |
|-------------------|----------------------|----------|------|------|------------------|-------|---------------------|
| Lab Order:        | C2004002             | _        |      |      | Tag Number:      | 544,3 | 72                  |
| Project:          | Grant Hardware       |          |      |      | Collection Date: |       |                     |
| Lab ID:           | C2004002-003A        |          |      |      | Matrix:          |       |                     |
| Analyses          |                      | Result   | ÐL   | Qual | Units            | DF    | Date Analyzed       |
| UG/M3 W/ 0.2      | UG/M3 CT-TCE-VC-DCE  | -1.1DCE  | то   | -15  |                  |       | Analyst: RJF        |
| 1.1.1-Trichloroe  |                      | < 0.82   | 0.82 |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| 1,1,2,2-Tetrach   | loroethane           | < 1.0    | 1.0  |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| 1,1,2-Trichloroe  | thane                | < 0.82   | 0.82 |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| 1,1-Dichloroeth   | ane                  | < 0.61   | 0.61 |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| 1,1-Dichloroethe  | ene                  | < 0.16   | 0.16 |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| 1,2,4-Trichlorob  | enzene               | < 1,1    | 1.1  |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| 1,2,4-Trimethylt  | benzene              | 1.3      | 0.74 |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| 1,2-Dibromoeth    | ane                  | < 1.2    | 1.2  |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| 1,2-Dichloroben   | izene                | < 0.90   | 0.90 |      | ug/m3            | 7     | 4/1/2020 3:20:00 PM |
| 1,2-Dichloroeth   | ane                  | < 0.61   | 0.61 |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| 1,2-Dichloropro   | pane                 | < 0.69   | 0.69 |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| 1,3,5-Trimethylt  | penzene              | 0.64     | 0.74 | 3    | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| 1,3-butadiene     |                      | < 0.33   | 0.33 |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| 1,3-Dichloroben   | zene                 | < 0.90   | 0.90 |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| 1,4-Dichloroben   | zene                 | < 0.90   | 0.90 |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| 1,4-Dioxane       |                      | < 1.1    | 1.1  |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| 2,2,4-trimethylp  | entane               | 0.56     | 0.70 | J    | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| 4-ethyltoluene    |                      | < 0.74   | 0.74 |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| Acetone           |                      | 21       | 7.1  |      | ug/m3            | 10    | 4/2/2020 1:29:00 AM |
| Allyl chloride    |                      | < 0.47   | 0.47 |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| Benzene           |                      | 0.73     | 0.48 |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| Benzyl chloride   |                      | < 0.86   | 0.86 |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| Bromodichlorom    | nethane              | < 1.0    | 1.0  |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| Bromoform         |                      | < 1.6    | 1.6  |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| Bromomethane      |                      | < 0.58   | 0.58 |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| Carbon disulfide  |                      | 0.47     | 0.47 |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| Carbon tetrachic  | oride                | 0.57     | 0.19 |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| Chlorobenzene     |                      | < 0.69   | 0.69 |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| Chloroethane      |                      | < 0.40   | 0.40 |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| Chioroform        |                      | 1.1      | 0.73 |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| Chloromethane     |                      | 0.85     | 0.31 |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| cis-1,2-Dichlorod |                      | 0.20     | 0.16 |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| cis-1,3-Dichloroj | propene              | < 0.68   | 0.68 |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| Cyclohexane       |                      | < 0.52   | 0.52 |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| Dibromochlorom    | nethane              | < 1.3    | 1.3  |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| Ethyl acetate     |                      | 2.5      | 0.54 |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| Ethylbenzene      |                      | < 0.65   | 0.65 |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| Freon 11          |                      | 1,5      | 0.84 |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| Freon 113         |                      | < 1.1    | 1.1  |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |
| Freon 114         |                      | < 1.0    | 1.0  |      | ug/m3            | 1     | 4/1/2020 3:20:00 PM |

Qualifiers: SC Sub-Contracted

- в Analyte detected in the associated Method Blank
- н Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected .

- Е Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection DLDetection Limit

Page 5 of 24

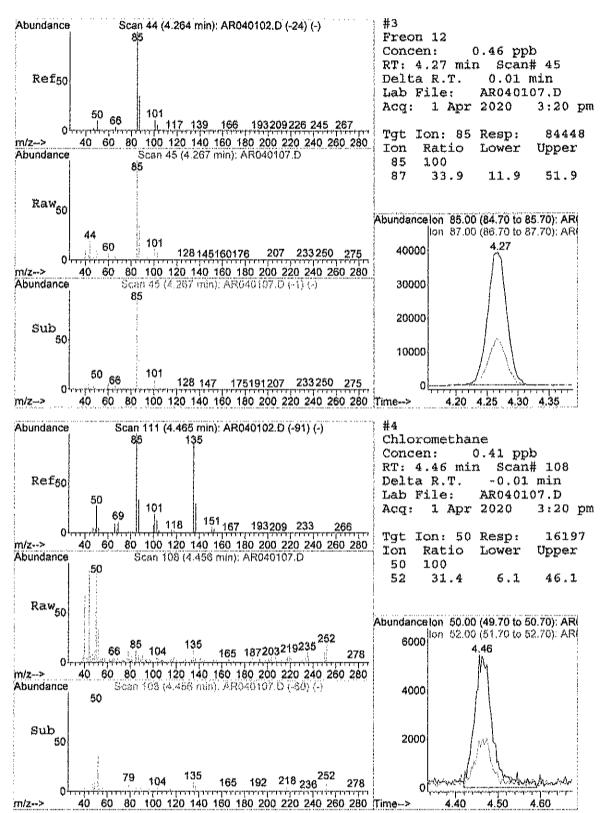
Page 122 of 380

Date: 10-Apr-20

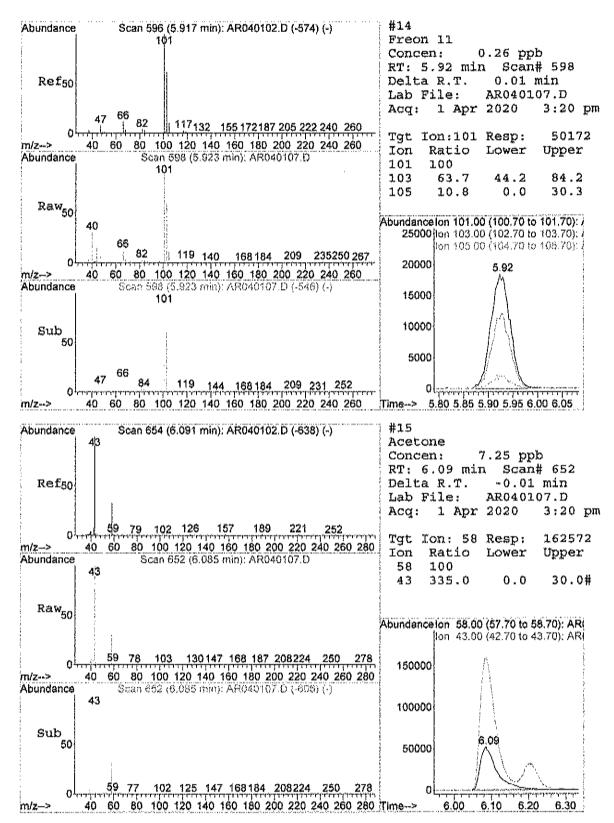
| Analyses   |                       | Result  | <br>Oual | Units                   | nr        | Date Analyzed |
|------------|-----------------------|---------|----------|-------------------------|-----------|---------------|
| Lab ID:    | C2004002-003A         |         |          | Matrix:                 | AIR       |               |
| Project:   | Grant Hardware        |         |          | <b>Collection Date:</b> | 3/28/2020 | Ő             |
| Lab Order: | C2004002              |         |          | Tag Number:             | 544,372   |               |
| CLIENT:    | Geovation Engineering | ;, Inc. | C        | lient Sample ID:        | 604       |               |
| ·          |                       |         | <br>     |                         |           |               |

| Analyses                               | Result | t DL Qual Units DF Dat |   | Date Analyzed |   |                     |
|----------------------------------------|--------|------------------------|---|---------------|---|---------------------|
| UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE |        | TO-15                  |   |               |   | Analyst: RJF        |
| Freon 12                               | 2.3    | 0.74                   |   | ug/m3         | 1 | 4/1/2020 3:20:00 PM |
| Heptane                                | 1.1    | 0.61                   |   | ug/m3         | 1 | 4/1/2020 3:20:00 PM |
| Hexachloro-1,3-butadiene               | < 1.6  | 1.6                    |   | ug/m3         | 1 | 4/1/2020 3:20:00 PM |
| Hexane                                 | 0.92   | 0.53                   |   | ug/m3         | 1 | 4/1/2020 3:20:00 PM |
| Isopropyl alcohol                      | 3.7    | 0.37                   |   | ug/m3         | 1 | 4/1/2020 3:20:00 PM |
| m&p-Xylene                             | 1,6    | 1.3                    |   | ug/m3         | 1 | 4/1/2020 3:20:00 PM |
| Methyl Butyl Ketone                    | < 1.2  | 1.2                    |   | ug/m3         | 1 | 4/1/2020 3:20:00 PM |
| Methyl Ethyl Ketone                    | 1.6    | 0.88                   |   | ug/m3         | 1 | 4/1/2020 3:20:00 PM |
| Methyi Isobutyi Ketone                 | < 1.2  | 1.2                    |   | ug/m3         | 1 | 4/1/2020 3:20:00 PM |
| Methyl tert-butyl ether                | < 0.54 | 0,54                   |   | ug/m3         | 1 | 4/1/2020 3:20:00 PM |
| Methylene chloride                     | 0.69   | 0.52                   |   | ug/m3         | 1 | 4/1/2020 3:20:00 PM |
| o-Xylene                               | 0.78   | 0.65                   |   | ug/m3         | 1 | 4/1/2020 3:20:00 PM |
| Propylene                              | < 0.28 | 0.26                   |   | ug/m3         | 1 | 4/1/2020 3:20:00 PM |
| Styrene                                | < 0.64 | 0.64                   |   | ug/m3         | 1 | 4/1/2020 3:20:00 PM |
| Tetrachloroethylene                    | 0.75   | 1.0                    | 3 | ug/m3         | 1 | 4/1/2020 3:20:00 PM |
| Tetrahydrofuran                        | < 0.44 | 0.44                   |   | ug/m3         | 1 | 4/1/2020 3:20:00 PM |
| Toluene                                | 1.8    | 0.57                   |   | ug/m3         | 1 | 4/1/2020 3:20:00 PM |
| trans-1,2-Dichloroethene               | < 0.59 | 0.59                   |   | vg/m3         | 1 | 4/1/2020 3:20:00 PM |
| trans-1,3-Dichloropropene              | < 0.68 | 0.68                   |   | ug/m3         | 1 | 4/1/2020 3:20:00 PM |
| Trichloroethene                        | 3.2    | 0.16                   |   | ug/m3         | 1 | 4/1/2020 3:20:00 PM |
| Vinyl acetate                          | < 0.53 | 0.53                   |   | ug/m3         | 1 | 4/1/2020 3:20:00 PM |
| Vinyl Bromide                          | < 0.66 | 0.66                   |   | ug/m3         | 1 | 4/1/2020 3:20:00 PM |
| Vinyl chloride                         | < 0.10 | 0.10                   |   | ug/m3         | 1 | 4/1/2020 3:20:00 PM |

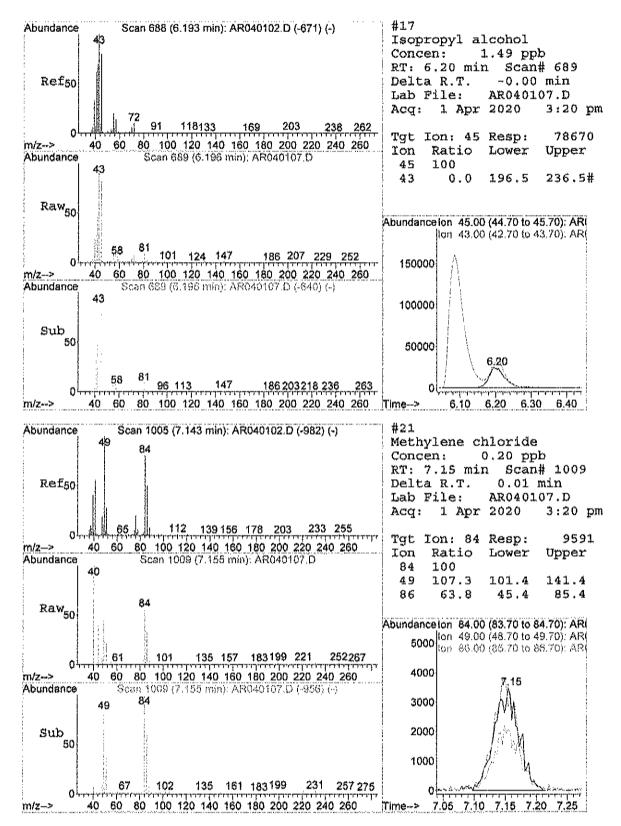
| Qualifiers: | SC | Sub-Contracted                                     |    | Results reported are not blank corrected  |              |
|-------------|----|----------------------------------------------------|----|-------------------------------------------|--------------|
|             | в  | Analyte detected in the associated Method Blank    | е  | Estimated Value above quantitation range  |              |
|             | И  | Holding times for preparation or analysis exceeded | J  | Analyte detected below quantitation limit |              |
|             | JN | Non-routine analyte. Quantitation estimated.       | ND | Not Detected at the Limit of Detection    |              |
|             | S  | Spike Recovery outside accepted recovery limits    | DL | Detection Limit                           | Page 6 of 24 |


| Centek Laboratories, LL                                                                                                                                                                                                                                             | С                 |             |                                  |                         |                    |         |           |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|----------------------------------|-------------------------|--------------------|---------|-----------|--|
|                                                                                                                                                                                                                                                                     | Quantitat:        | ion Rej     | port (Q                          | T Review                | wed)               |         |           |  |
| Data File : C:\HPCHEM\1\DATA\<br>Acq On : 1 Apr 2020 3:2<br>Sample : C2004002-003A<br>Misc : A311_1UG<br>MS Integration Params: RTEINT<br>Ouant Time: Apr 07 09:26:13 2                                                                                             | 0 pm              |             | Mu                               | st :<br>ltiplr:         | RJP<br>MSD<br>1.0( | )       | J.RES     |  |
| Quant Time: Apr 07 09:26:13 2020<br>Quant Method : C:\HPCHEM\1\METHODS\A320_1UG.M (RTE Integrator)<br>Title : TO-15 VOA Standards for 5 point calibration<br>Last Update : Mon Mar 23 08:34:44 2020<br>Response via : Initial Calibration<br>DataAcq Meth : 1UG_ENT |                   |             |                                  |                         |                    |         |           |  |
| Internal Standards                                                                                                                                                                                                                                                  | R.T.              | QIon        | Response                         | Conc U                  | nits               | Dev     | (Min)     |  |
| 1) Bromochloromethane<br>35) 1,4-difluorobenzene<br>50) Chlorobenzene-d5                                                                                                                                                                                            | 9,90              | 128         | 41144                            | 1.00                    | dqq                |         | 0.00      |  |
| System Monitoring Compounds<br>65) Bromofluorobenzene<br>Spiked Amount 1.000                                                                                                                                                                                        | 18.74<br>Range 70 | 95<br>- 130 | 104194<br>Recove                 | 1.00<br>ry =            | ppb<br>100         | .00%    | 0.00      |  |
| Target Compounds                                                                                                                                                                                                                                                    |                   |             |                                  |                         |                    | Qva     | alue      |  |
| 3) Freon 12<br>4) Chloromethane                                                                                                                                                                                                                                     | 4,27              | 85          | 84448                            | 0.46<br>0.41<br>0.26    | ppb                |         | 96        |  |
| 4) Chloromethane                                                                                                                                                                                                                                                    | 4.46              | 50          | 16197                            | 0.41                    | ppp                |         | 90        |  |
|                                                                                                                                                                                                                                                                     | 5.92              | 101         | 50172                            | 0.20                    | ppo                | 44      | 99<br>100 |  |
| 15) Acetone                                                                                                                                                                                                                                                         | 6.09              | 28          | 1023/2                           | 1.49                    | ppp                | **<br># | 100       |  |
| 1) Methylene chloride                                                                                                                                                                                                                                               | 0.20              | 41)<br>Q/   | 05070<br>0507                    | 0.20                    | nnh                | π       | 91        |  |
| 17) Isopropyl alcohol<br>21) Methylene chloride<br>23) Carbon disulfide                                                                                                                                                                                             | 7.31              | 76          | 162572<br>78670<br>9591<br>21322 | 0.15                    | ppb                |         | 97        |  |
| 28) Methyl Ethyl Ketone                                                                                                                                                                                                                                             | 9.01              | 72          | 9921                             | 0.53                    | dad                | #       |           |  |
| 29) cis-1.2-dichloroethene                                                                                                                                                                                                                                          | 9.46              | 61          | 9921<br>2972<br>13784            | 0.05                    | daa                | .,      | 92        |  |
| 29) cis-1,2-dichloroethene<br>30) Hexane                                                                                                                                                                                                                            | 9.06              | 57          | 13784                            | 0.26                    | dqq                | #       | 78        |  |
| 31) Ethyl acetate                                                                                                                                                                                                                                                   | 9.60              | 43          | 59165                            | 0.69                    | daa                |         | 99        |  |
| 32) Chloroform                                                                                                                                                                                                                                                      | 10.07             | 83          | 27373                            | 0.23                    | ppb                |         | 99        |  |
| 38) Carpon tetrachioride                                                                                                                                                                                                                                            | 11.54             | 117         | 27373<br>12466<br>27926          | 0.09                    | dqq                |         | 100       |  |
| 39) Benzene                                                                                                                                                                                                                                                         | 11.51             | 78          | 27926                            | 0.23                    | ppb                |         | 97        |  |
| <pre>42) 2,2,4-trimethylpentane</pre>                                                                                                                                                                                                                               | 12,37             | 57          | 19293                            | 0.12                    | ppb                |         | 74        |  |
| 43) Heptane                                                                                                                                                                                                                                                         | 12.71             | 43          | 14082                            | 0.28                    | ppb                | #       | 72        |  |
| 44) Trichloroethene                                                                                                                                                                                                                                                 | 12.84             | 130         | 36710                            | 0.59                    |                    |         | 99        |  |
| 51) Toluene                                                                                                                                                                                                                                                         | 14.95             | 92          | 40840                            | 0.48                    |                    |         | 99        |  |
| 56) Tetrachloroethylene                                                                                                                                                                                                                                             | 16.03             | 164         | 8080                             | 0.11                    |                    |         | 99        |  |
| 59) m&p-xylene                                                                                                                                                                                                                                                      | 17.50             | 91<br>01    | 59508                            | 0.38                    |                    |         | 99        |  |
| 63) o-xylene                                                                                                                                                                                                                                                        | 18.03             | 91          | 34974                            | 0.18                    |                    |         | 100       |  |
| 70) 1,3,5-trimethylbenzene<br>71) 1,2,4-trimethylbenzene                                                                                                                                                                                                            | 19,45             | 105<br>105  | 25368m<br>43244                  | <b>€}</b> ~0.13<br>0.26 |                    |         | 100       |  |
| 71) 1,2,4-trimethylbenzene                                                                                                                                                                                                                                          | 19.95             | 100         | *24**                            | V.20                    | PPD                |         | 2.00      |  |

(#) = qualifier out of range (m) = manual integration (+) = signals summed AR040107.D A320\_1UG.M Fri Apr 10 08:37:41 2020 MSD1

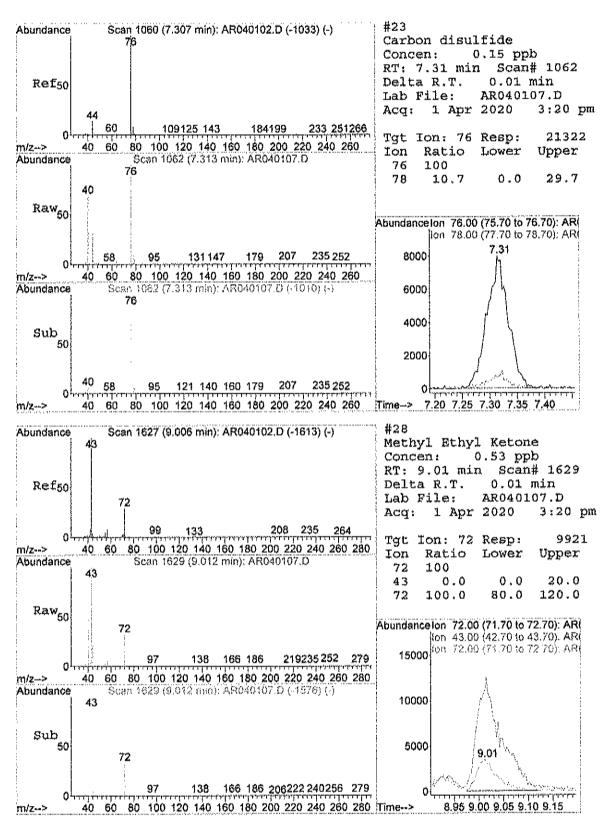

Page 124 of 380

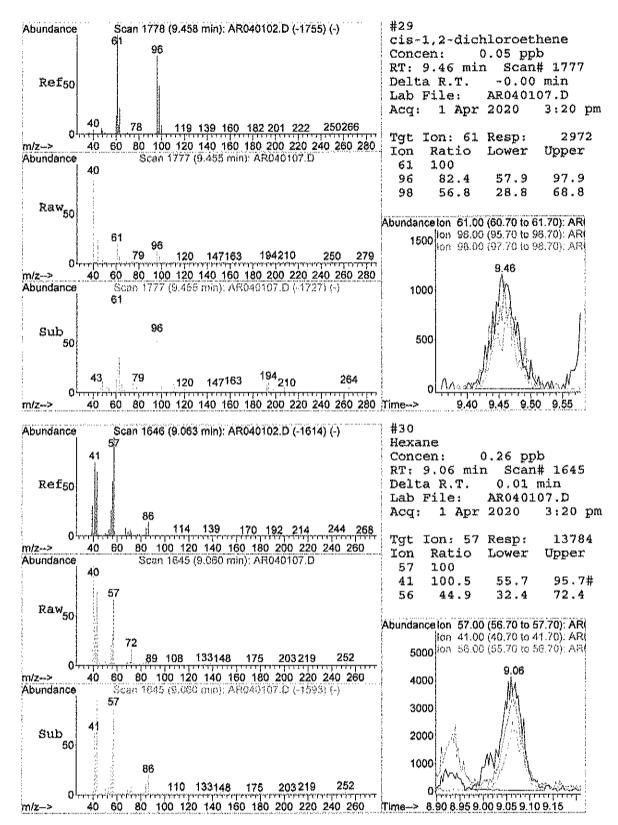
|                                                                                  |                                                                                                        | >               |          |         |                     |                | ••••••• |         |                   |         |                 |                  |                        |                 |                                          |        |                                                   |                                               | ···· ·· ····                           |                           | 18             | 0<br>N     |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------|----------|---------|---------------------|----------------|---------|---------|-------------------|---------|-----------------|------------------|------------------------|-----------------|------------------------------------------|--------|---------------------------------------------------|-----------------------------------------------|----------------------------------------|---------------------------|----------------|------------|
|                                                                                  |                                                                                                        |                 |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        |                                                   |                                               | -                                      |                           | 24.00          | Page       |
|                                                                                  |                                                                                                        |                 |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        |                                                   |                                               |                                        |                           | 23.00          |            |
|                                                                                  |                                                                                                        |                 |          |         |                     |                |         |         |                   |         | 235236688989997 | 2002/01/01/02/02 | 1047.LX 5.PX 171799    |                 | an a |        |                                                   | Marine Parameter                              |                                        | -                         |                |            |
|                                                                                  |                                                                                                        |                 |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        |                                                   | 7.00000                                       |                                        |                           | 22.00          |            |
|                                                                                  |                                                                                                        |                 |          |         |                     |                |         |         |                   |         |                 |                  | NANALAS (SING) XI SIST | 12120410-1122-1 |                                          |        | -<br>Markan (************************************ |                                               |                                        | <u></u>                   |                |            |
|                                                                                  |                                                                                                        |                 |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        |                                                   |                                               |                                        |                           | 21.00          |            |
|                                                                                  |                                                                                                        |                 |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        | 1'80                                              | əzuəqifu                                      | กอเมเล-                                |                           | 50.08          |            |
|                                                                                  |                                                                                                        |                 |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        |                                                   | өзпедіүі                                      |                                        |                           | *              |            |
|                                                                                  |                                                                                                        | ,<br>,<br>,     |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        | <b>C</b> <sup>1</sup> 21                          | 19711970                                      |                                        | anaranan (1972)<br>ta 167 | 10.00          |            |
|                                                                                  |                                                                                                        |                 |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        | 5 0                                               | ieznedo                                       | AND BOW                                | ~~a                       | 10             |            |
|                                                                                  |                                                                                                        |                 |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        |                                                   |                                               | T,ana                                  |                           | 18.00          |            |
|                                                                                  |                                                                                                        |                 |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        |                                                   | i<br>sp-eua)                                  | retektor<br>zvenov                     |                           | 17.00          |            |
| RES                                                                              |                                                                                                        |                 |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        |                                                   | , <b>,</b> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                        | ,,,,,                     | 4              |            |
| :1<br>106.RES                                                                    |                                                                                                        |                 |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        | L                                                 | (analynt)                                     | edvoida                                | ⊭19T                      | 6.00           |            |
|                                                                                  |                                                                                                        |                 |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        |                                                   |                                               |                                        |                           |                |            |
| 3<br>RJP<br>MSD<br>1.00<br>1.00<br>A320                                          |                                                                                                        | 07.0            |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        |                                                   |                                               | Т,еле                                  | nloΤ                      | 15.00          |            |
| Vial:<br>ator:<br>iplr:<br>File:                                                 | or)                                                                                                    | TIC: AR040107.D |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        |                                                   |                                               |                                        |                           | 14.00          | ਚ          |
|                                                                                  | Integrator                                                                                             | C: AF           |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        |                                                   |                                               |                                        |                           | Ţ.             | MSD1       |
| Oper<br>Inst<br>Mult:<br>Want Results                                            | Integrat<br>ibration                                                                                   | F               |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        |                                                   | 1'510                                         | μισοιό                                 | istri i                   | 13.00          |            |
| ke si                                                                            |                                                                                                        |                 |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        | T,e                                               | ueiuedi/                                      | (ritemint<br>7, ent<br>ordenne         |                           | 1: 1           | 0          |
| at                                                                               | (RTE<br>t cal                                                                                          |                 |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        | ſ                                                 | 609206                                        | denoutifi                              | h.b. r                    | 12.00          | 2020       |
| Quai                                                                             | x. ic                                                                                                  |                 |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        | Ţ                                                 | , abroirt                                     | w.Tag We                               | 細胞質                       | g              | 42         |
|                                                                                  | 10G.<br>5 po                                                                                           |                 |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        |                                                   |                                               |                                        |                           | 11.00          | 10 08:37:  |
| 0.7                                                                              | A320<br>5 for<br>2020                                                                                  |                 |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        | 6 <sup>1</sup> 1                                  | លេខព្រទល                                      | 1,00000<br>1,00000                     | uojų")                    | 10.00          | 08         |
| 010                                                                              | a<br>ds<br>1<br>2<br>(A<br>2<br>(A<br>2<br>(A)                                                         |                 |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        |                                                   | าวอานออา                                      |                                        |                           | ]- ₩<br>       |            |
| TA\AR04<br>3:20 pm<br>INT.P<br>020                                               | C:\HPCHEM\1\METHODS\A320<br>TO-15 VOA Standards for<br>Fri Apr 10 08:36:30 2020<br>Initial Calibration |                 |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        | -                                                 | F,enoteX                                      | (think)                                | RELEASE IN                | - 86           | Apr        |
| ATA\A<br>3:20<br>*EINT.<br>2020                                                  | MET<br>Stan<br>8:3<br>bra                                                                              |                 |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        |                                                   |                                               |                                        |                           |                |            |
| \DATA\<br>3:2<br>3A<br>RTEINT<br>4 2020                                          | M/1/<br>M/1/<br>Cali                                                                                   |                 |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        |                                                   |                                               |                                        |                           | 8.00           | 104        |
| M/1/1<br>020<br>003<br>003<br>                                                   | HPCHER<br>L5 VO2<br>Apr 3<br>cial (                                                                    |                 |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        |                                                   | T.abirol<br>T.abi                             | ព ៤ខ្មែរ<br>ខ្មែរ ខ្មែរ<br>ខ្មែរ ខ្មែរ | လျာ့ရက္လ<br>လျားခဲ့သူ     | 7,00           |            |
| HPCHEM<br>Apr 202<br>04002-0<br>1_10G<br>Params:<br>Params:                      | C:\HPCHEM<br>TO-15 VOA<br>Fri Apr 1<br>Initial C                                                       |                 |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        |                                                   |                                               |                                        |                           | }. r⊷<br>-     | G.M        |
|                                                                                  |                                                                                                        |                 |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        |                                                   | T,Jorlo                                       | าร.<br>1.11                            | noen<br>Ričel             | 2-00<br>9-1-1- | A320_1UG.M |
| C:\<br>1<br>C20<br>A31<br>Apr                                                    |                                                                                                        |                 |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        |                                                   |                                               |                                        |                           | 4              | 432(       |
| a File : C:\<br>[ On : 1<br>pple : C2(<br>c : A31<br>integration<br>ut Time: Apr | d<br>Update<br>Mise vi                                                                                 |                 |          |         |                     |                |         |         |                   |         |                 |                  |                        |                 |                                          |        |                                                   |                                               |                                        |                           | 2.00           |            |
| r File<br>on<br>ole<br>ole<br>integra                                            | npc <sup>c</sup> d                                                                                     | a               | <u>-</u> |         |                     | and Tanada and |         |         | ··· <u>·</u> ···· |         | <u> </u>        |                  |                        |                 |                                          |        |                                                   |                                               | Т,S: г<br>івпаніс                      | notrio<br>notrio          |                | 07.1       |
| Data F<br>Acq On<br>Sample<br>Misc<br>MS Int<br>Quant                            | Method<br>Title<br>Last Upd                                                                            | Abundance       | 1.8e+07  | 1.7e+07 | .6 <del>e+</del> 07 | .5e+07         | 4e+07   | 1.3e+07 | 1.2e+07           | 1.1e+07 | 1e+07           | 0000006          | 800000                 | 7000000         | 6000009                                  | 500000 | 400000                                            | 3000000                                       | 2000000                                | 1000000                   |                | AR040107.D |
| UKNZZO                                                                           | ZHJX                                                                                                   | Abur            | 7        |         | <b>4</b>            | **             | -ferm   |         |                   |         |                 |                  |                        |                 | <b>3</b> 3                               |        | 49                                                | 30                                            | 20                                     | \$                        | Time           | ARC        |






Page 3

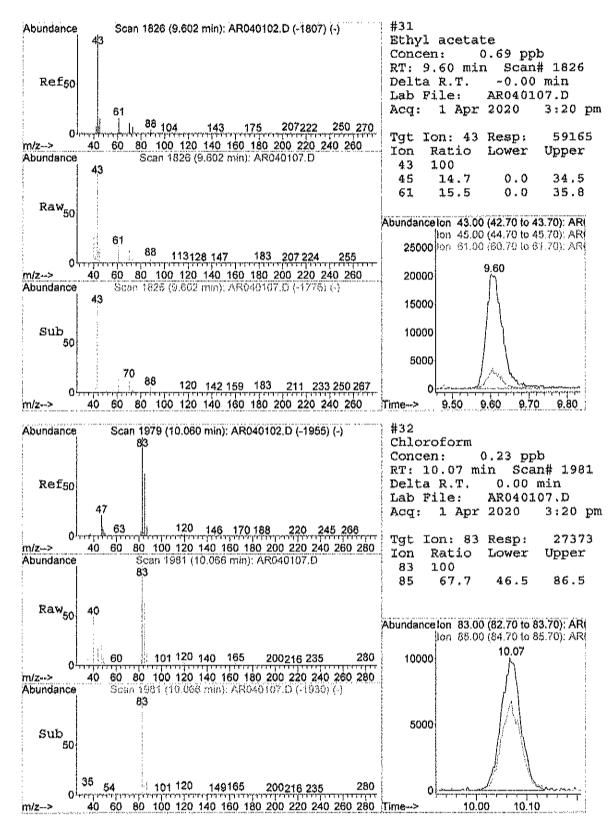




AR040107.D A320\_1UG.M Fri Apr 10 08:37:44 2020



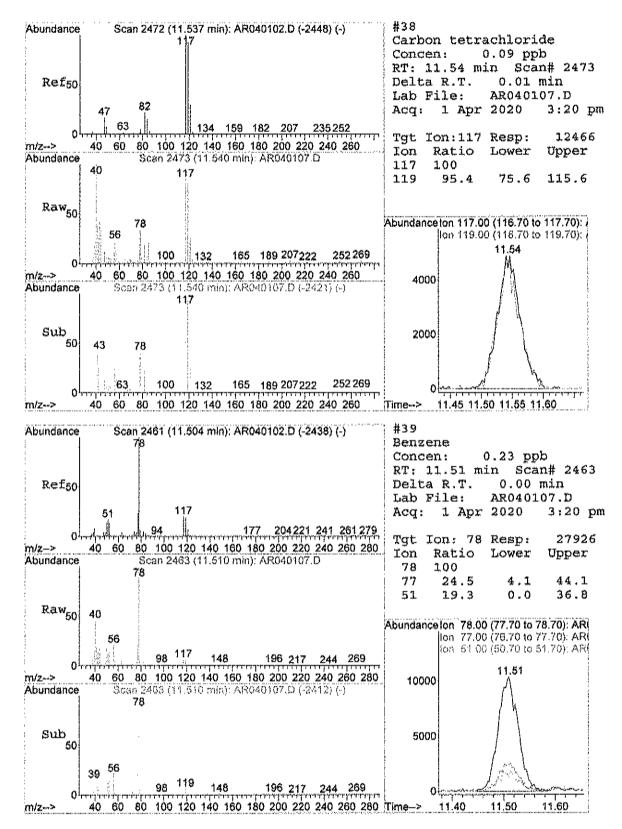
Page 128 of 380



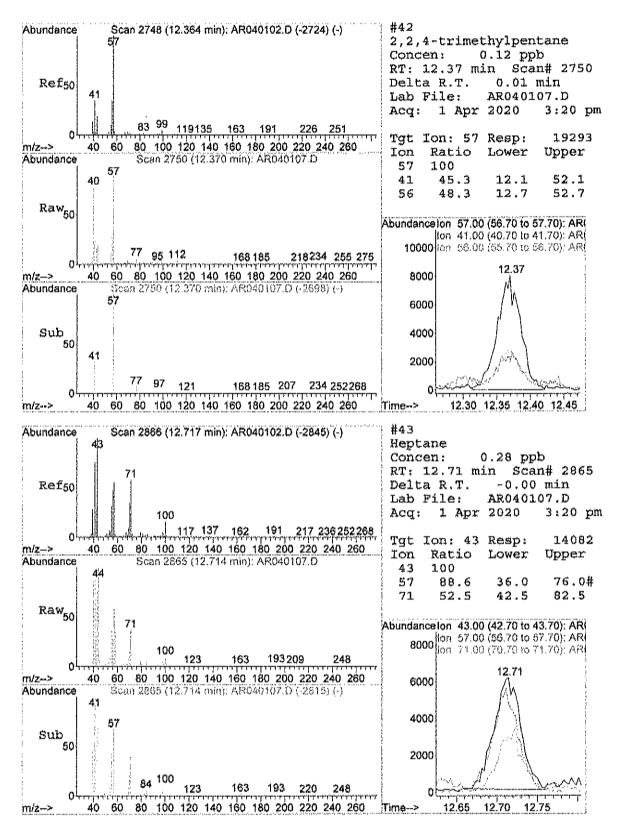


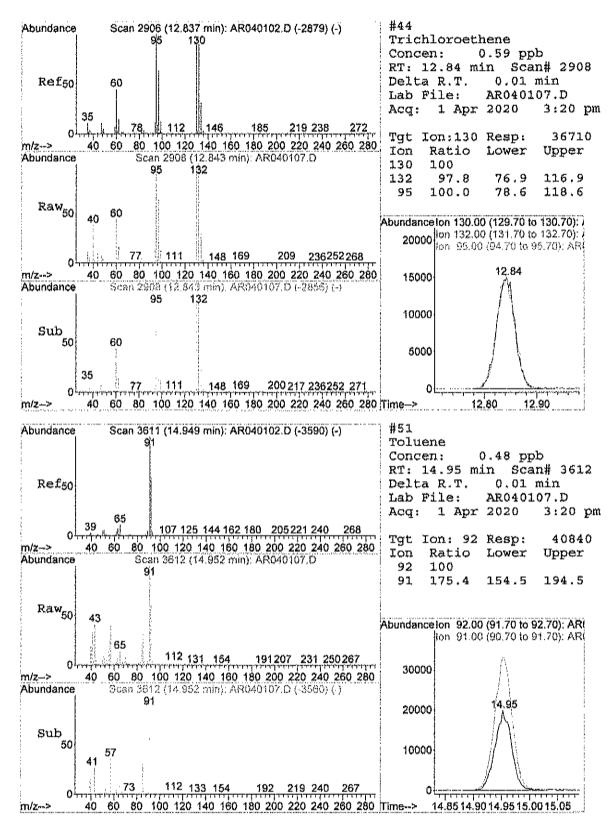


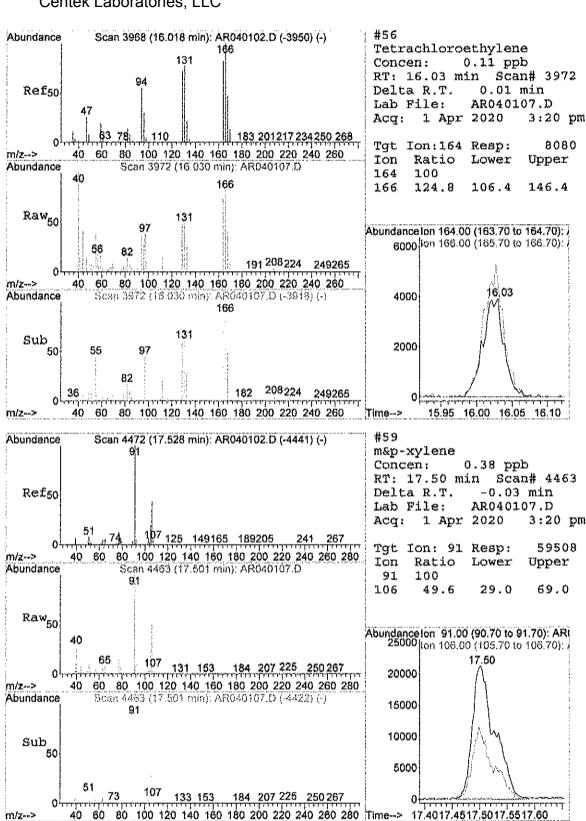

Fri Apr 10 08:37:47 2020


MSD1

Page 130 of 380



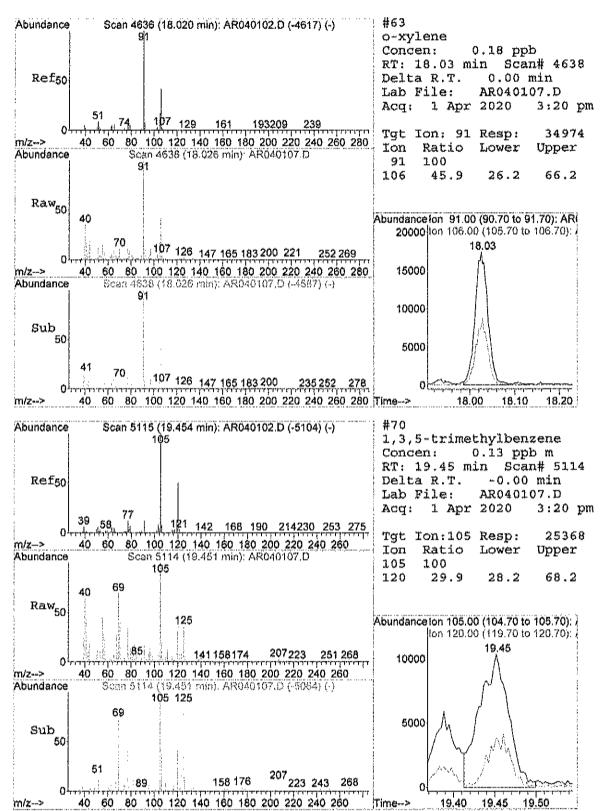


21 of 200

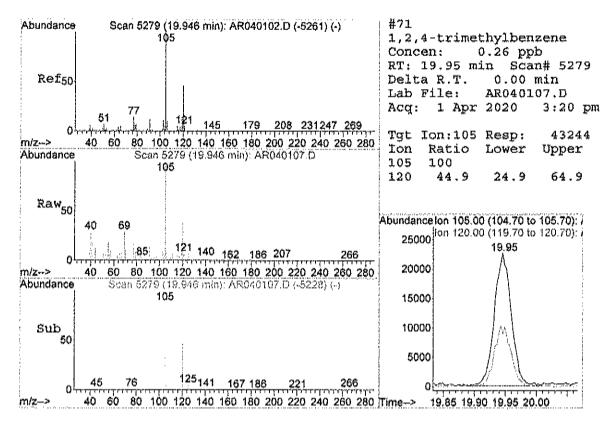

Page 131 of 380



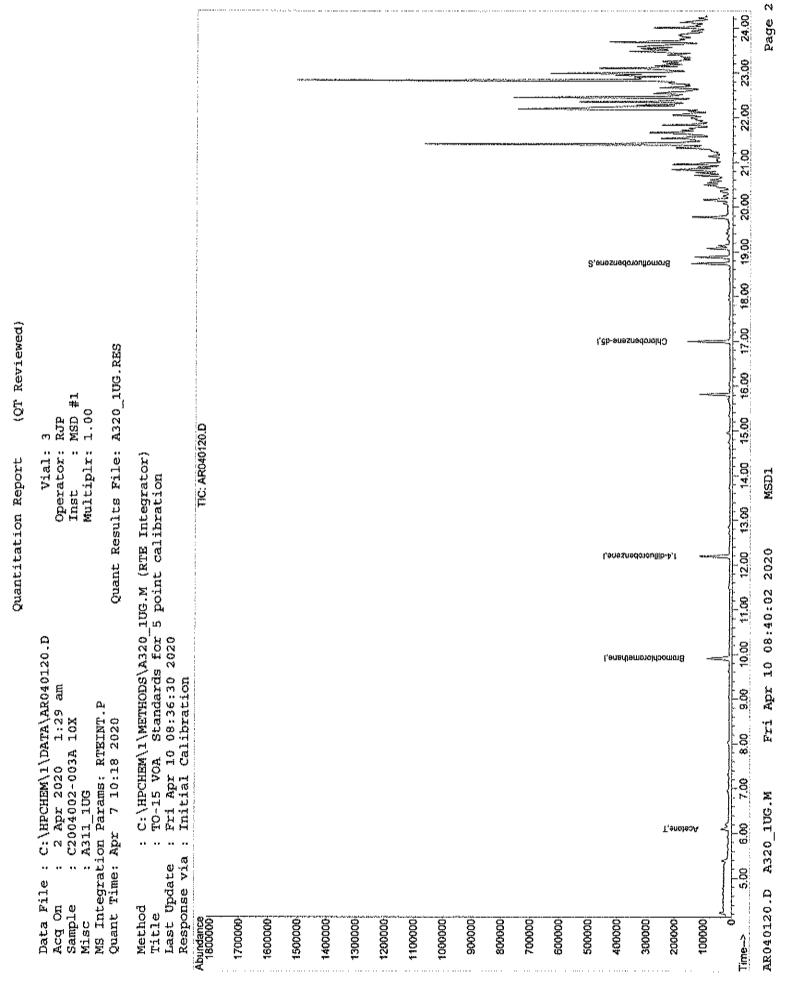
Page 132 of 380



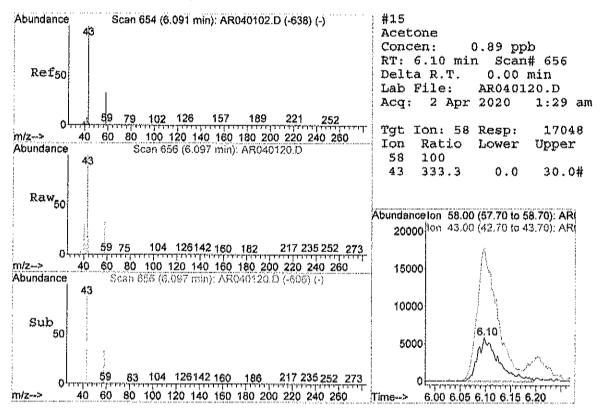



MSD1


Page 12








Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AR040120.D Vial: 3 Acq On : 2 Apr 2020 1:29 am Operator: RJP Sample : C2004002-003A 10X Misc : A311\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 07 09:26:26 2020 Quant Results File: A320\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 23 08:34:44 2020 Response via : Initial Calibration DataAcq Meth : 1UG\_ENT Internal Standards R.T. QION Response Conc Units Dev(Min) \_\_\_\_\_\_ 1) Bromochloromethane9.91128352041.00 ppb0.0035) 1,4-difluorobenzene12.191141137871.00 ppb0.0050) Chlorobenzene-d517.00117989111.00 ppb0.00 System Monitoring Compounds 18.74 95 51387 0.72 ppb 65) Bromofluorobenzene 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 72.00% Target Compounds Qvalue 6.10 58 17048 0.89 ppb # 100 15) Acetone



Page 139 of 380



Date: 10-Apr-20

| CLIENT:         |                                       | ering, Inc.                                                                                                  |       | _    | lient Sample ID:   | ~~~        |                     |
|-----------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------|-------|------|--------------------|------------|---------------------|
| ab Order:       | C2004002                              | , Ç,                                                                                                         |       |      | Tag Number:        |            | 5                   |
| Project:        | Grant Hardware                        |                                                                                                              |       |      | Collection Date:   |            |                     |
| -               |                                       |                                                                                                              |       |      | Matrix:            |            | F — F               |
| Lab ID:         | C2004002-004A                         |                                                                                                              |       |      |                    | , unc      |                     |
| Analyses        |                                       | Result                                                                                                       | ÐL    | Qual | Units              | ÐF         | Date Analyzed       |
|                 | METERS                                |                                                                                                              | F     | LD   |                    |            | Analyst:            |
| Lab Vacuum I    | In                                    | -7                                                                                                           |       |      | "Hg                |            | 4/1/2020            |
| Lab Vacuum (    | Out                                   | -30                                                                                                          |       |      | "Hg                |            | 4/1/2020            |
| UG/M3 W/ 0.     | 2UG/M3 CT-TCE-VC-                     | DCE-1,1DCE                                                                                                   | то    | )-15 |                    |            | Analyst: RJF        |
| 1,1,1-Trichlor  | oethane                               | < 0.15                                                                                                       | 0.15  |      | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| 1,1,2,2-Tetrac  | chloroethane                          | < 0.15                                                                                                       | 0.15  |      | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| 1,1,2-Trichlord | bethane                               | < 0.15                                                                                                       | 0.15  |      | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| 1,1-Dichloroet  | thane                                 | < 0.15                                                                                                       | 0.15  |      | ррbV               | 1          | 4/1/2020 4:07:00 PM |
| 1,1-Dichloroet  |                                       | < 0.040                                                                                                      | 0.040 |      | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| 1,2,4-Trichlord | obenzene                              | < 0.15                                                                                                       | 0.15  |      | çpbV               | 1          | 4/1/2020 4:07:00 PM |
| 1,2,4-Trimethy  |                                       | 0.27                                                                                                         | 0.15  |      | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| 1,2-Dibromoe    |                                       | < 0.15                                                                                                       | 0.15  |      | ppb∨               | 1          | 4/1/2020 4:07:00 PM |
| 1,2-Dichlorob   |                                       | < 0.15                                                                                                       | 0.15  |      | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| 1,2-Dichloroet  | thane                                 | < 0.15                                                                                                       | 0.15  |      | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| 1,2-Dichloropi  | ropane                                | < 0.15                                                                                                       | 0,15  |      | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| 1,3,5-Trimethy  | ylbenzene                             | 0.13                                                                                                         | 0.15  | J    | Vdqq               | 1          | 4/1/2020 4:07:00 PM |
| 1,3 butadiene   |                                       | < 0.15                                                                                                       | 0.15  |      | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| 1,3-Dichlorob   | enzene                                | < 0.15                                                                                                       | 0.15  |      | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| 1,4-Dichlorob   | enzene                                | < 0.15                                                                                                       | 0.15  |      | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| 1,4-Dioxane     |                                       | < 0.30                                                                                                       | 0.30  |      | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| 2,2,4-trimethy  | ipentane                              | 0.14                                                                                                         | 0.15  | J    | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| 4-ethyltoluene  |                                       | < 0.15                                                                                                       | 0.15  |      | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| Acetone         |                                       | 7.2                                                                                                          | 3.0   |      | ppbV               | 10         | 4/2/2020 2:15:00 AM |
| Allyl chloride  |                                       | < 0.15                                                                                                       | 0.15  |      | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| Benzene         |                                       | 0.25                                                                                                         | 0.15  |      | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| Benzyl chlorid  | e                                     | < 0.15                                                                                                       | 0.15  |      | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| Bromodichloro   |                                       | < 0.15                                                                                                       | 0.15  |      | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| Bromoform       |                                       | < 0.15                                                                                                       | 0.15  |      | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| Bromomethan     | 1e                                    | < 0.15                                                                                                       | 0.15  |      | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| Carbon disulfi  |                                       | 0.17                                                                                                         | 0.15  |      | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| Carbon tetrac   |                                       | 0.090                                                                                                        | 0.030 |      | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| Chlorobenzen    |                                       | < 0.15                                                                                                       | 0.15  |      | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| Chloroethane    |                                       | < 0.15                                                                                                       | 0,15  |      | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| Chloroform      |                                       | 0.12                                                                                                         | 0.15  | J    | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| Chloromethan    | 18                                    | 0.35                                                                                                         | 0.15  | ·    | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| cis-1,2-Dichlo  |                                       | 0.050                                                                                                        | 0.040 |      | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| cis-1,3-Dichlo  |                                       | < 0.15                                                                                                       | 0.15  |      | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| Cyclohexane     | · · · · · · · · · · · · · · · · · · · | 0.30                                                                                                         | 0.15  |      | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| Dibromochlon    | omethane                              | < 0.15                                                                                                       | 0.15  |      | ppb∨               | 1          | 4/1/2020 4:07:00 PM |
| Ethyl acetate   |                                       | 0.80                                                                                                         | 0.15  |      | ppbV               | 1          | 4/1/2020 4:07:00 PM |
| Qualifiers:     | SC Sub-Contracted                     | n an ar an ann an ann an fa bh' an fa chuirte a' chuir a chuir an tha an |       |      | . Results reported | are not bi | ank corrected       |
|                 | SC Sub-Contracted                     |                                                                                                              |       |      | . Acsuns reported  | are not of | an conveted         |
| Quanners:       |                                       | he associated Method B                                                                                       | lamb. |      | E Estimated Value  | ahour      | entitation man      |

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

ND Not Detected at the Limit of Detection DL Detection Limit

Page 7 of 24

Date: 10-Apr-20

| CLIENT:    | Geovation Engineering                    | g, Inc. |    | C | lient Sample ID:        | 606      |               |
|------------|------------------------------------------|---------|----|---|-------------------------|----------|---------------|
| Lab Order: | C2004002                                 |         |    |   | Tag Number:             | 352,435  |               |
| Project:   | Grant Hardware                           |         |    |   | <b>Collection Date:</b> | 3/28/202 | )             |
| Lab ID:    | C2004002-004A                            |         |    |   | Matrix:                 | AIR      |               |
| Analyses   | an a | Result  | DL |   | Units                   | DF       | Date Analyzed |

| Analyses                     | Result     | DL     | Qual | Units | DF | Date Analyzed       |
|------------------------------|------------|--------|------|-------|----|---------------------|
| 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC | DCE-1,1DCE | TC     | -15  |       |    | Analyst: RJF        |
| Ethylbenzene                 | 0.11       | 0.15   | Ļ    | ppbV  | 1  | 4/1/2020 4:07:00 PM |
| Freon 11                     | 0.26       | 0.15   |      | ppbV  | 1  | 4/1/2020 4:07:00 PM |
| Freon 113                    | < 0.15     | 0.15   |      | ppbV  | 1  | 4/1/2020 4:07:00 PM |
| Freon 114                    | < 0.15     | 0.15   |      | ppbV  | 1  | 4/1/2020 4:07:00 PM |
| Freon 12                     | 0.44       | 0.15   |      | ppbV  | 1  | 4/1/2020 4:07:00 PM |
| Heptane                      | 0.31       | 0.15   |      | ppbV  | 1  | 4/1/2020 4:07:00 PM |
| Hexachloro-1,3-butadiene     | < 0.15     | 0.15   |      | ppbV  | 1  | 4/1/2020 4:07:00 PM |
| Hexane                       | 0.28       | 0.15   |      | ppbV  | 1  | 4/1/2020 4:07:00 PM |
| isopropyl alcohol            | 1.5        | 0.15   |      | ppbV  | 1  | 4/1/2020 4:07:00 PM |
| m&p-Xylene                   | 0.42       | 0.30   |      | ppbV  | 1  | 4/1/2020 4:07:00 PM |
| Methyl Butyl Ketone          | < 0.30     | 0.30   |      | ppb∨  | 1  | 4/1/2020 4:07:00 PM |
| Methyl Ethyl Ketone          | 0.60       | 0.30   |      | ppbV  | 1  | 4/1/2020 4:07:00 PM |
| Methyi Isobutyi Ketone       | < 0.30     | 0.30   |      | ppbV  | 1  | 4/1/2020 4:07:00 PM |
| Methyl tert-butyl ether      | < 0.15     | 0.15   |      | ppb∨  | 1  | 4/1/2020 4:07:00 PM |
| Methylene chloride           | 0.19       | 0.15   |      | ppbV  | 1  | 4/1/2020 4:07:00 PM |
| o-Xylene                     | 0.21       | 0.15   |      | ppbV  | 1  | 4/1/2020 4:07:00 PM |
| Propylene                    | < 0.15     | 0.15   |      | ppbV  | 1  | 4/1/2020 4:07:00 PM |
| Styrene                      | < 0.15     | 0.15   |      | ppbV  | 1  | 4/1/2020 4:07:00 PM |
| Tetrachloroethylene          | 0.11       | 0.15   | J    | ppbV  | 1  | 4/1/2020 4:07:00 PM |
| Tetrahydrofuran              | < 0.15     | 0.15   |      | ppbV  | 1  | 4/1/2020 4:07:00 PM |
| Toluene                      | 0.56       | 0.15   |      | ppbV  | 1  | 4/1/2020 4:07:00 PM |
| trans-1,2-Dichloroethene     | < 0.15     | 0.15   |      | ppbV  | 1  | 4/1/2020 4:07:00 PM |
| trans-1,3-Dichloropropene    | < 0.15     | 0.15   |      | ppbV  | 1  | 4/1/2020 4:07:00 PM |
| Trichloroethene              | 0.59       | 0.030  |      | ppb∨  | 1  | 4/1/2020 4:07:00 PM |
| Vinyl acetate                | < 0.15     | 0.15   |      | ppbV  | 1  | 4/1/2020 4:07:00 PM |
| Vinyl Bromide                | < 0.15     | 0.15   |      | ppbV  | 1  | 4/1/2020 4:07:00 PM |
| Vinyl chloride               | < 0.040    | 0.040  |      | ppbV  | 1  | 4/1/2020 4:07:00 PM |
| Surr: Bromofluorobenzene     | 103        | 70-130 |      | %REC  | 1  | 4/1/2020 4:07:00 PM |

| Qualifiers: | $\mathbf{SC}$ | Sub-Contracted                                     | ,  | Results reported are not blank corrected  |              |
|-------------|---------------|----------------------------------------------------|----|-------------------------------------------|--------------|
|             | в             | Analyte detected in the associated Method Blank    | E  | Estimated Value above quantitation range  |              |
|             | н             | Holding times for preparation or analysis exceeded | j  | Analyte detected below quantitation limit |              |
|             | JN            | Non-routine analyte. Quantitation estimated.       | ND | Not Detected at the Limit of Detection    | -            |
|             | S             | Spike Recovery outside accepted recovery limits    | DL | Detection Limit                           | Page 8 of 24 |

Date: 10-Apr-20

| CLIENT:          | Geovation Engineering | ng, Inc. |      | Ċ    | lient Sample ID:        | 606    |                     |
|------------------|-----------------------|----------|------|------|-------------------------|--------|---------------------|
| Lab Order:       | C2004002              |          |      |      | Tag Number:             | 352,43 | 35                  |
| Project:         | Grant Hardware        |          |      |      | <b>Collection Date:</b> | 3/28/2 | 020                 |
| Lab ID:          | C2004002-004A         |          |      |      | Matrix:                 | AIR    |                     |
| Analyses         |                       | Result   | DL   | Qual | Units                   | DF     | Date Analyzed       |
| 1UG/M3 W/ 0.2    | UG/M3 CT-TCE-VC-DCE   | E-1,1DCE | тс   | )-15 |                         |        | Analyst: RJF        |
| 1,1,1-Trichloroe | ithane                | < 0.82   | 0.82 |      | ug/m3                   | 1      | 4/1/2020 4:07:00 PM |
| 1,1,2,2-Tetrach  | loroethane            | < 1.0    | 1.0  |      | ug/m3                   | 1      | 4/1/2020 4:07:00 PM |
|                  |                       |          |      |      |                         |        |                     |

| 1,1,2-Trichloroethane         | < 0.82              | 0.82 |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
|-------------------------------|---------------------|------|---|--------------|------------------|---------------------|
| 1,1-Dichloroethane            | < 0.61              | 0.61 |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| 1,1-Dichloroethene            | < 0.16              | 0.16 |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| 1,2,4-Trichlorobenzene        | < 1.1               | 1.1  |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| 1,2,4-Trimethylbenzene        | 1.3                 | 0.74 |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| 1,2-Dibromoethane             | < 1.2               | 1.2  |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| 1,2-Dichlorobenzene           | < 0.90              | 0.90 |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| 1,2-Dichloroethane            | < 0.61              | 0.61 |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| 1,2-Dichloropropane           | < 0. <del>6</del> 9 | 0.69 |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| 1,3,5-Trimethylbenzene        | 0.64                | 0.74 | J | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| 1,3-butadiene                 | < 0.33              | 0.33 |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| 1,3-Dichtorobenzene           | < 0.90              | 0.90 |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| 1,4-Dichlorobenzene           | < 0.90              | 0.90 |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| 1,4-Dioxane                   | < 1.1               | 1.1  |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| 2,2,4-trimethylpentane        | 0.65                | 0.70 | J | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| 4-ethyltoluene                | < 0.74              | 0.74 |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| Acetone                       | 17                  | 7.1  |   | ug/m3        | 10               | 4/2/2020 2:15:00 AM |
| Allyl chloride                | < 0.47              | 0.47 |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| Benzene                       | 0.80                | 0.48 |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| Benzyl chloride               | < 0.86              | 0.86 |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| Bromodichloromethane          | < 1.0               | 1.0  |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| Bromoform                     | < 1.6               | 1.6  |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| Bromomethane                  | < 0.58              | 0.58 |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| Carbon disulfide              | 0.53                | 0.47 |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| Carbon tetrachloride          | 0.57                | 0.19 |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| Chlorobenzene                 | < 0.69              | 0.69 |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| Chloroethane                  | < 0.40              | 0.40 |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| Chloroform                    | 0.59                | 0.73 | J | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| Chloromethane                 | 0.72                | 0.31 |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| cis-1,2-Dichloroethene        | 0.20                | 0.16 |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| cis-1,3-Dichloropropene       | < 0.68              | 0.68 |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| Cyclohexane                   | 1.0                 | 0.52 |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| Dibromochloromethane          | < 1.3               | 1.3  |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| Ethyl acetate                 | 2.9                 | 0.54 |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| Ethylbenzene                  | 0.48                | 0.65 | J | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| Freon 11                      | 1.5                 | 0.84 |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| Freon 113                     | < 1.1               | 1.1  |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| Freon 114                     | < 1.0               | 1.0  |   | ug/m3        | 1                | 4/1/2020 4:07:00 PM |
| Qualifiers: SC Sub-Contracted |                     |      |   | . Results re | ported are not b | lank corrected      |

- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

- Е Estimated Value above quantitation range
- ì Analyte detected below quantitation limit

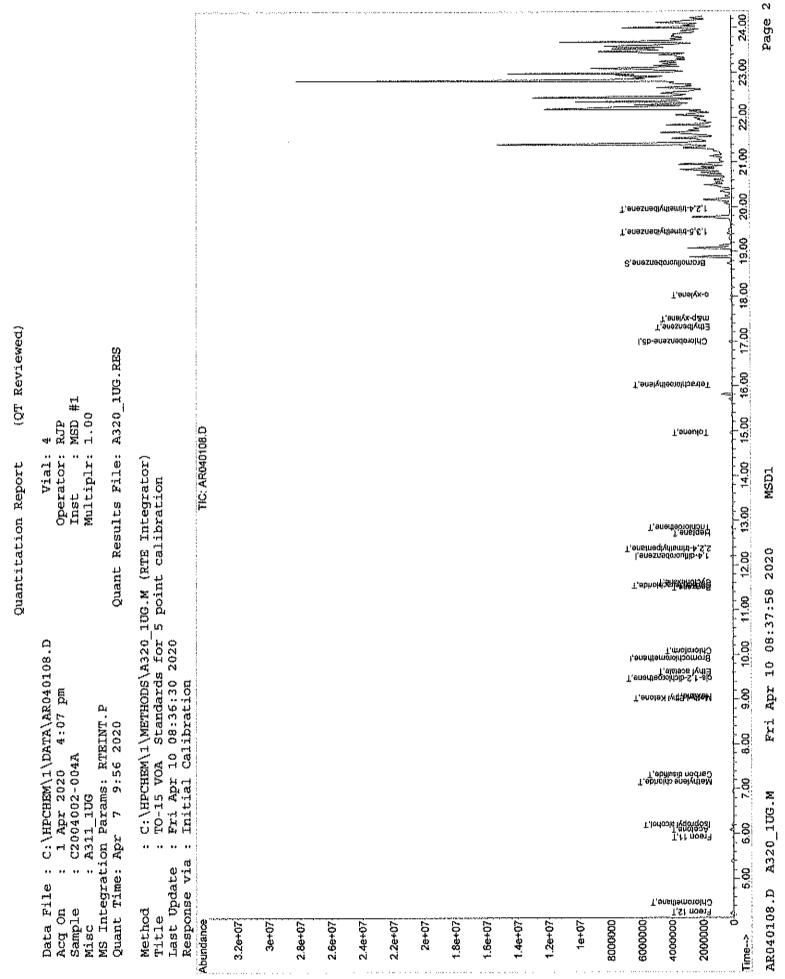
Detection Limit

DL

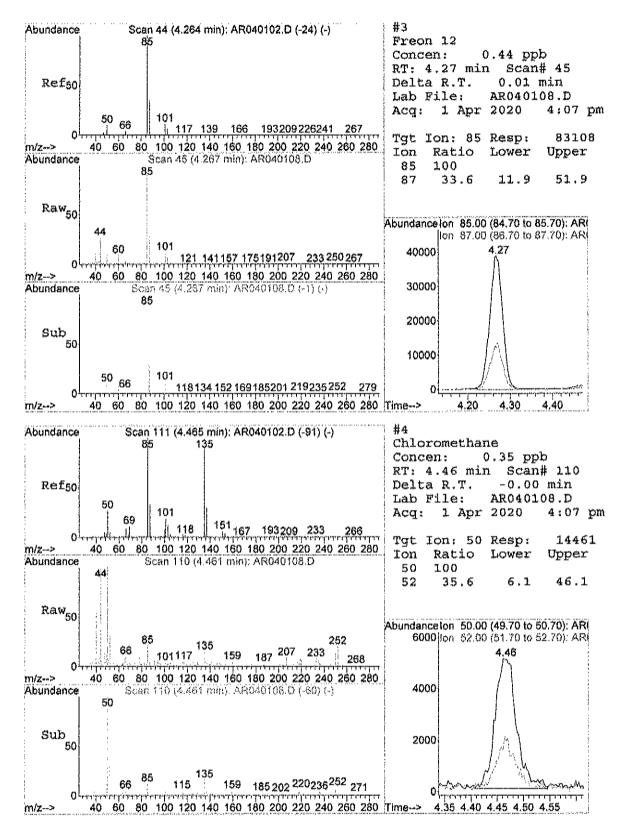
ND Not Detected at the Limit of Detection

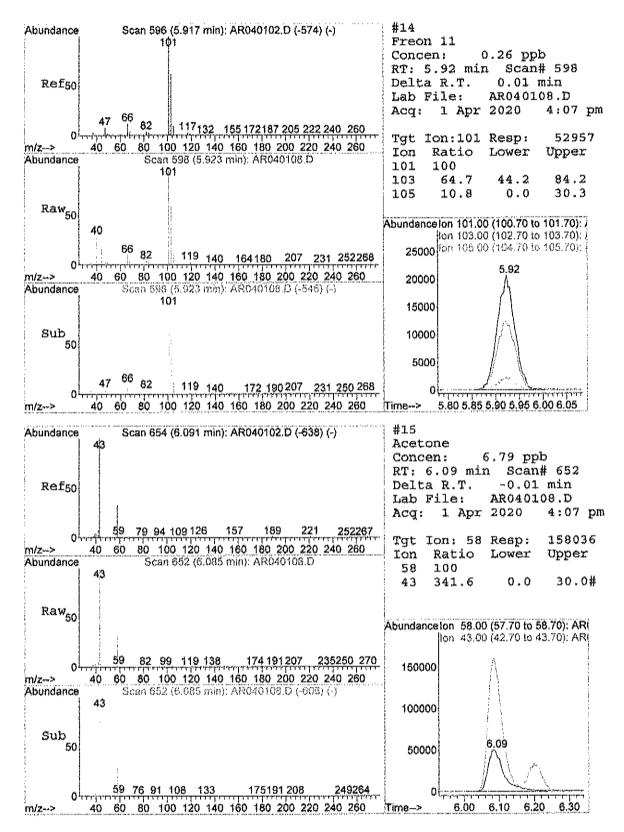
Date: 10-Apr-20

| Analyses   | α δια δια τη πορογιατική το ποιο το πορογιατικό το πορογιατικό το πορογιατικό το πορογιατικό το πορογιατικό το<br>Το πορογιατικό πορογιατικό πορογιατικό το πορογιατικό το πορογιατικό πορογιατικό πορογιατικό το πορογιατικό το π | Result | DL | Oual |                  |                                     | Date Analyzed                                                                                            |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|------|------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------|
| Lab ID:    | C2004002-004A                                                                                                                                                                                                                      |        |    |      | Matrix:          |                                     |                                                                                                          |
| Project:   | Grant Hardware                                                                                                                                                                                                                     |        |    |      | Collection Date: | 3/28/2020                           | )                                                                                                        |
| Lab Order: | C2004002                                                                                                                                                                                                                           |        |    |      | Tag Number:      | 352,435                             |                                                                                                          |
| CLIENT:    | Geovation Engineering, I                                                                                                                                                                                                           |        |    |      | lient Sample ID: |                                     |                                                                                                          |
|            |                                                                                                                                                                                                                                    |        |    |      |                  | and the second second second second | Pro VP Parchash and annual a Saffarabana anna 2009 an 2009 an 2014 anna anna anna anna anna anna anna an |


| Analyses                    | Result     | DL   | Qual | Units | DF | Date Analyzed       |
|-----------------------------|------------|------|------|-------|----|---------------------|
| UG/M3 W/ 0.2UG/M3 CT-TCE-VC | DCE-1,1DCE | то   | -15  |       |    | Analyst: RJP        |
| Freon 12                    | 2.2        | 0.74 |      | ug/m3 | 1  | 4/1/2020 4:07:00 PM |
| Heptane                     | 1.3        | 0.61 |      | ug/m3 | 1  | 4/1/2020 4:07:00 PM |
| Hexachloro-1,3-butadiene    | < 1.6      | 1.6  |      | ug/m3 | 1  | 4/1/2020 4:07:00 PM |
| Hexane                      | 0.99       | 0.53 |      | ug/m3 | 1  | 4/1/2020 4:07:00 PM |
| Isopropyl alcohol           | 3,6        | 0.37 |      | ug/m3 | 1  | 4/1/2020 4:07:00 PM |
| m&p-Xylene                  | 1.8        | 1.3  |      | ug/m3 | 1  | 4/1/2020 4:07:00 PM |
| Methyl Butyl Ketone         | < 1.2      | 1.2  |      | ug/m3 | 1  | 4/1/2020 4:07:00 PM |
| Methyl Ethyl Ketone         | 1.8        | 0.88 |      | ug/m3 | 1  | 4/1/2020 4:07:00 PM |
| Methyl Isobutyl Ketone      | < 1.2      | 1.2  |      | ug/m3 | 1  | 4/1/2020 4:07:00 PM |
| Methyl tert-butyl ether     | < 0.54     | 0.54 |      | ug/m3 | 1  | 4/1/2020 4:07:00 PM |
| Methylene chloride          | 0.66       | 0.52 |      | ug/m3 | 1  | 4/1/2020 4:07:00 PM |
| o-Xylene                    | 0.91       | 0.65 |      | ug/m3 | 1  | 4/1/2020 4:07:00 PM |
| Propylene                   | < 0.26     | 0.26 |      | ug/m3 | 1  | 4/1/2020 4:07:00 PM |
| Styrenø                     | < 0.64     | 0.64 |      | ug/m3 | 1  | 4/1/2020 4:07:00 PM |
| Tetrachloroethylene         | 0.75       | 1.0  | ť    | ug/m3 | 1  | 4/1/2020 4:07:00 PM |
| Tetrahydrofuran             | < 0.44     | 0.44 |      | ug/m3 | 1  | 4/1/2020 4:07:00 PM |
| Toluene                     | 2.1        | 0.57 |      | ug/m3 | 1  | 4/1/2020 4:07:00 PM |
| trans-1,2-Dichloroethene    | < 0.59     | 0.59 |      | ug/m3 | 1  | 4/1/2020 4:07:00 PM |
| trans-1,3-Dichloropropene   | < 0.68     | 0.68 |      | ug/m3 | 1  | 4/1/2020 4:07:00 PM |
| Trichloroethene             | 3.2        | 0.16 |      | ug/m3 | 1  | 4/1/2020 4:07:00 PM |
| Vinyl acetate               | < 0.53     | 0.53 |      | ug/m3 | 1  | 4/1/2020 4:07:00 PM |
| Vinyl Bromide               | < 0.66     | 0.66 |      | ug/m3 | 1  | 4/1/2020 4:07:00 PM |
| Vinyl chloride              | < 0.10     | 0.10 |      | ug/m3 | 1  | 4/1/2020 4:07:00 PM |

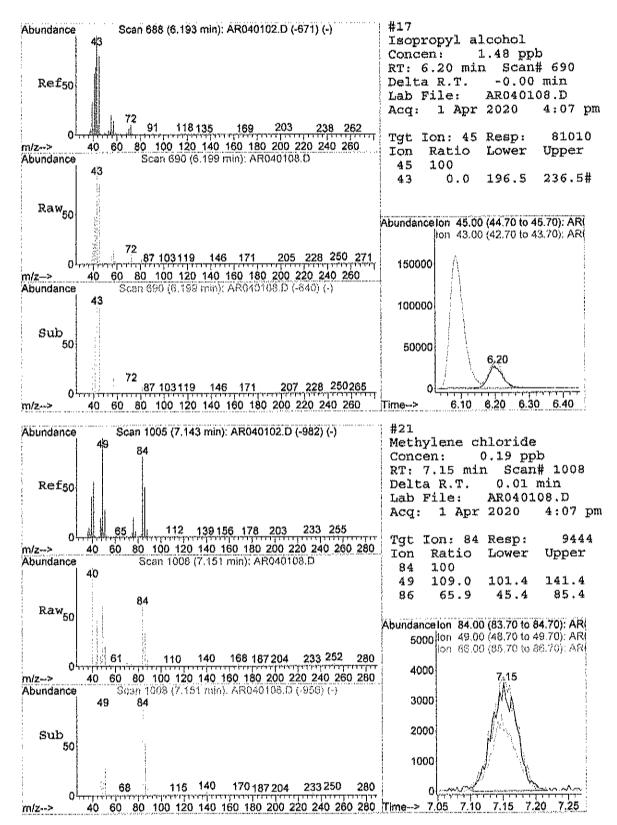
| Qualifiers: | SC | Sub-Contracted                                     |    | Results reported are not blank corrected  |              |
|-------------|----|----------------------------------------------------|----|-------------------------------------------|--------------|
|             | ₿  | Analyte detected in the associated Method Blank    | Е  | Estimated Value above quantitation range  |              |
|             | н  | Holding times for preparation or analysis exceeded | j  | Analyte detected below quantitation limit |              |
|             | JN | Non-routine analyte. Quantitation estimated.       | ND | Not Detected at the Limit of Detection    |              |
|             | \$ | Spike Recovery outside accepted recovery limits    | DL | Detection Limit                           | Page 8 of 24 |


| Centek Laboratories, LL                                                                                                                                                                                                                                      | С                                     |             |                   |               |                                  |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------|-------------------|---------------|----------------------------------|------------|
|                                                                                                                                                                                                                                                              | Quantitati                            | ion Rej     | port (QT          | Review        | ed)                              |            |
| Data File : C:\HPCHEM\1\DATA\<br>Acq On : 1 Apr 2020 4:0<br>Sample : C2004002-004A<br>Misc : A311_1UG<br>MS Integration Params: RTEINT<br>Quant Time: Apr 07 09:26:14 2                                                                                      | יז pm<br>P                            |             | Mul               | t :<br>tiplr: | MSD #<br>1.00                    |            |
| Quant Method : C:\HPCHEM\1\ME<br>Title : TO-15 VOA Sta<br>Last Update : Mon Mar 23 08:<br>Response via : Initial Calibr<br>DataAcq Meth : 1UG_ENT                                                                                                            | ndards for <sup>-</sup><br>34:44 2020 |             |                   |               |                                  |            |
| Internal Standards                                                                                                                                                                                                                                           | R.T.                                  | QION        | Response          | Conc Un       | its D                            | ev(Min)    |
| 1) Bromochloromethane<br>35) 1,4-difluorobenzene<br>50) Chlorobenzene-d5                                                                                                                                                                                     | 9.91                                  | 128         | 42676             | 1.00          | daa                              | 0.00       |
| System Monitoring Compounds<br>65) Bromofluorobenzene<br>Spiked Amount 1.000                                                                                                                                                                                 | 18.74<br>Range 70                     | 95<br>- 130 | 106435<br>Recover | 1.03<br>y =   | ppb<br>103.0                     | 0.00<br>0% |
| Target Compounds                                                                                                                                                                                                                                             |                                       |             |                   |               |                                  | Qvalue     |
| Target Compounds<br>3) Freon 12<br>4) Chloromethane<br>14) Freon 11<br>15) Acetone<br>17) Isopropyl alcohol<br>21) Methylene chloride<br>23) Carbon disulfide<br>20) Methyl Ethyl Katene                                                                     | 4.27                                  | 85          | 83108             | 0.44          | dqq                              | 97         |
| 4) Chloromethane                                                                                                                                                                                                                                             | 4.46                                  | 50          | 14461             | 0.35          | qqq                              | 81         |
| 14) Freon 11                                                                                                                                                                                                                                                 | 5.92                                  | 101         | 52957             | 0.26          | ddđ                              |            |
| 15) Acetone                                                                                                                                                                                                                                                  | 6.09                                  | 58          | 158036            | 5.79          | ppp                              | # 100      |
| 17) Isopropyi alconol                                                                                                                                                                                                                                        | ÷.∡∪                                  | 45          | 81010             | 1.40<br>A 10  | ppo                              | # <u>1</u> |
| 21) Metnylene chioride                                                                                                                                                                                                                                       | 7.15                                  | 84<br>74    | 9444              | 0.17          | ppo<br>ppo                       | 100        |
| 23) Carbon disuilide                                                                                                                                                                                                                                         | 9 02                                  | 70          | 24930             | 0,17          | 2020<br>2020                     | # 100      |
| <ol> <li>Methylene chloride</li> <li>Carbon disulfide</li> <li>Methyl Ethyl Ketone</li> <li>cis-1,2-dichloroethene</li> <li>Hexane</li> <li>Ethyl acetate</li> <li>Chloroform</li> <li>Cyclohexane</li> <li>Carbon tetrachloride</li> <li>Benzene</li> </ol> | 9 47                                  | 61          | 2919              | 0.05          | 550<br>555                       | 83         |
| 30 Heyane                                                                                                                                                                                                                                                    | 9.06                                  | 57          | 15620             | 0.28          | ppb                              | 91         |
| 31) Ethyl acetate                                                                                                                                                                                                                                            | 9.60                                  | 43          | 71166             | 0.80          | dďď                              | 99         |
| 32) Chloroform                                                                                                                                                                                                                                               | 10.08                                 | 83          | 15253             | 0.12          | dqq                              | 95         |
| 37) Cvclohexane                                                                                                                                                                                                                                              | 11.61                                 | 56          | 14442             | 0.30          | dqq                              | # 58       |
| 38) Carbon tetrachloride                                                                                                                                                                                                                                     | 11.55                                 | 117         | 12616             | 0.09          | dqq                              | 100        |
| 39) Benzene                                                                                                                                                                                                                                                  | 11.50                                 | 78          | 32064             | 0.25          | ppb                              | 96         |
| 42) 2,2,4-trimethylpentane                                                                                                                                                                                                                                   | 12.37                                 | 57          | 22808             | 0.14          | ppp                              | 80         |
| 43) Heptane                                                                                                                                                                                                                                                  | 12.71                                 | 43          | 16142             | 0.31          |                                  | # 65       |
| 44) Trichloroethene                                                                                                                                                                                                                                          | 12.84                                 | 130         | 37667             | 0.59          | ppb                              | 99         |
| 51) Toluene                                                                                                                                                                                                                                                  | 14.95                                 | 92          | 47086             | 0.56          | $\mathbf{p}\mathbf{p}\mathbf{b}$ | 98         |
| 56) Tetrachloroethylene                                                                                                                                                                                                                                      | 16.02                                 | 164         | 7933              | 0.11          |                                  | 97         |
| 58) Ethylbenzene                                                                                                                                                                                                                                             | 17.32                                 | 91          | 20482             | 0.11          |                                  | 96         |
| 59) m&p-xylene                                                                                                                                                                                                                                               | 17.50                                 | 91          | 65576             | 0.42          |                                  | 97         |
| 63) o-xylene                                                                                                                                                                                                                                                 | 18.03                                 | 91          | 39695             | 0.21          | ppp                              | 98         |
| 70) 1,3,5-trimethylbenzene                                                                                                                                                                                                                                   | 19.45                                 | 105         | 27018m 🕰          | 0.13<br>0.27  |                                  | 99         |
| 71) 1,2,4-trimethylbenzene                                                                                                                                                                                                                                   | 19.94                                 | 105         | 45122             | 0.27          | 552                              | 22         |

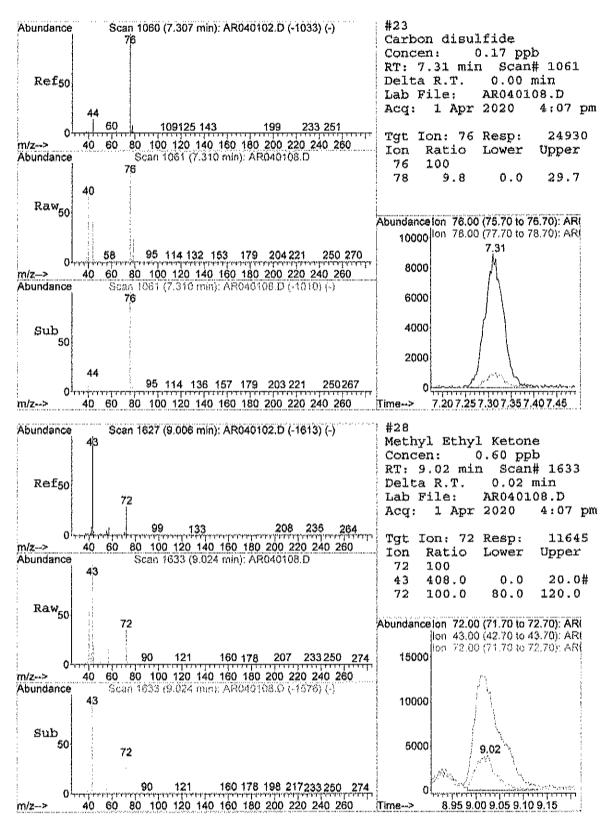

(#) = qualifier out of range (m) = manual integration (+) = signals summed AR040108.D A320\_1UG.M Fri Apr 10 08:37:57 2020 MSD1

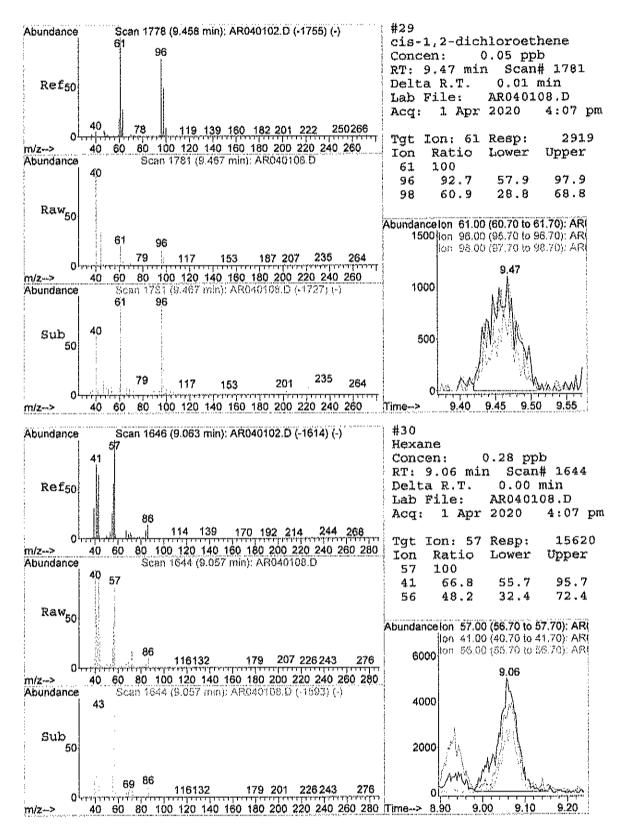
Page 145 of 380

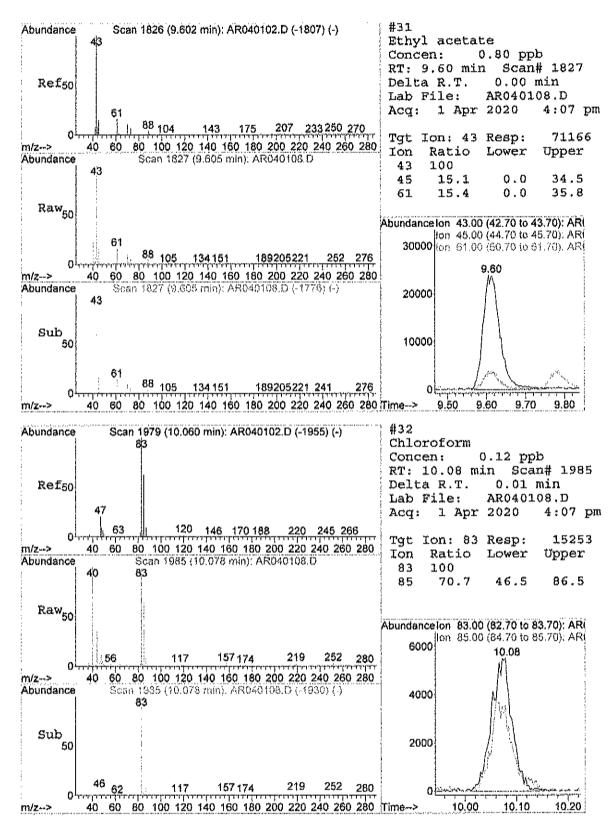


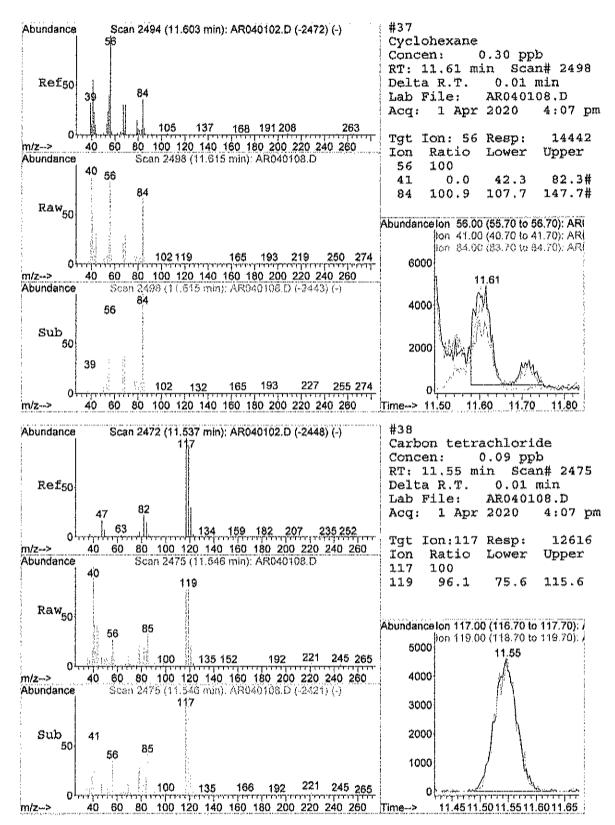

Page 146 of 380

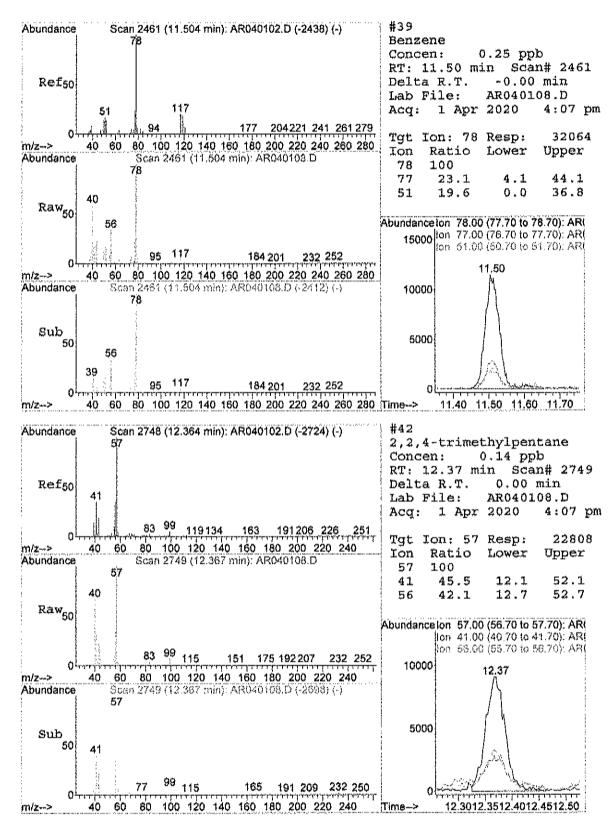




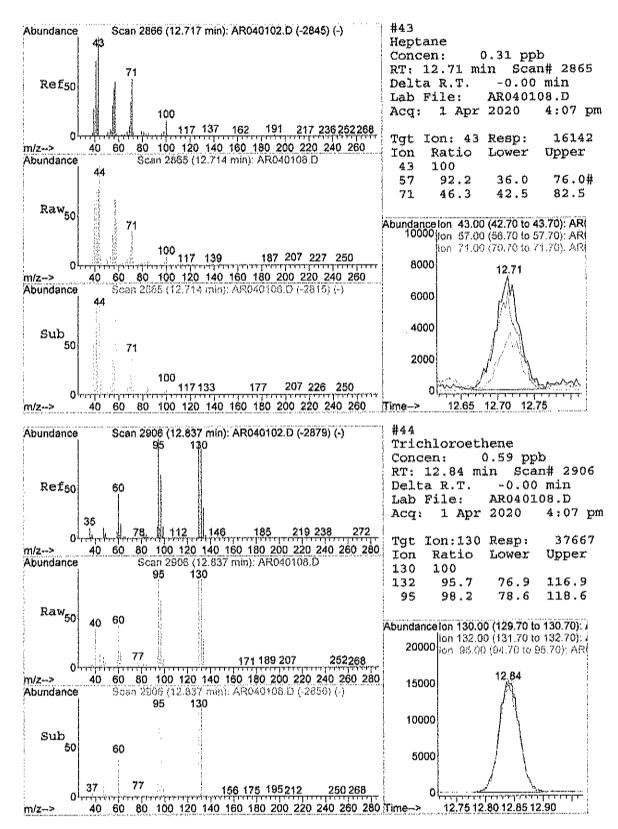


MSDI

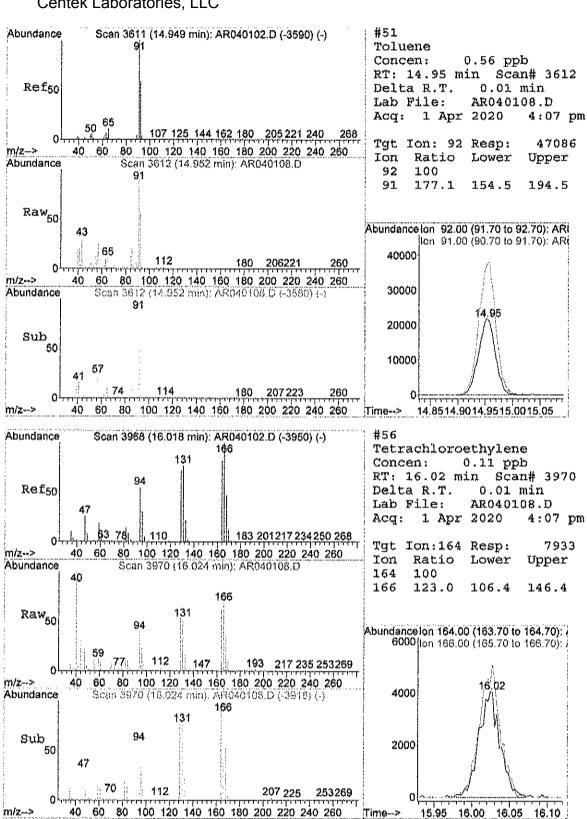

Page 148 of 380

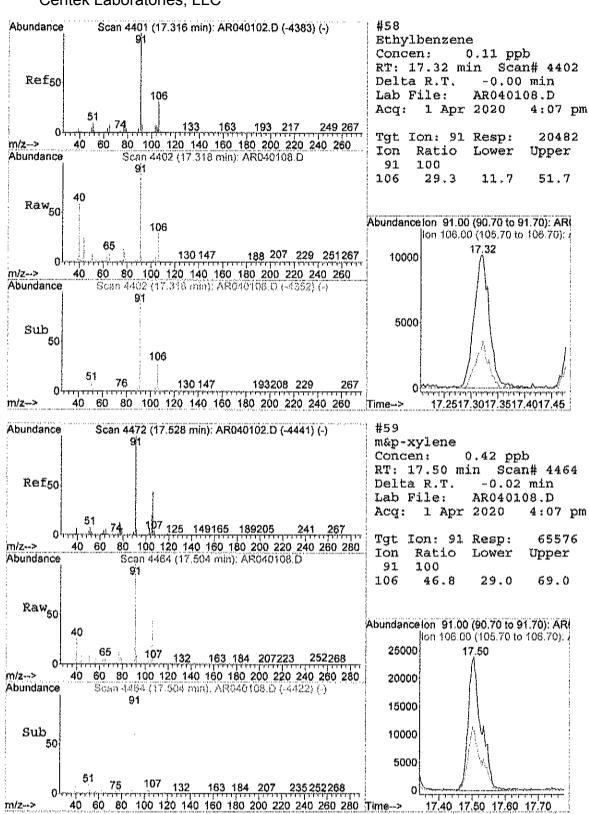




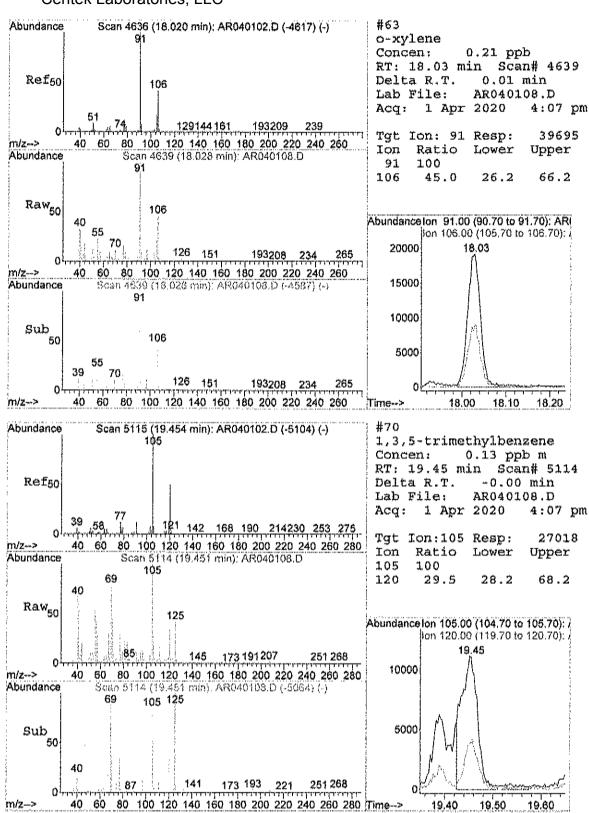



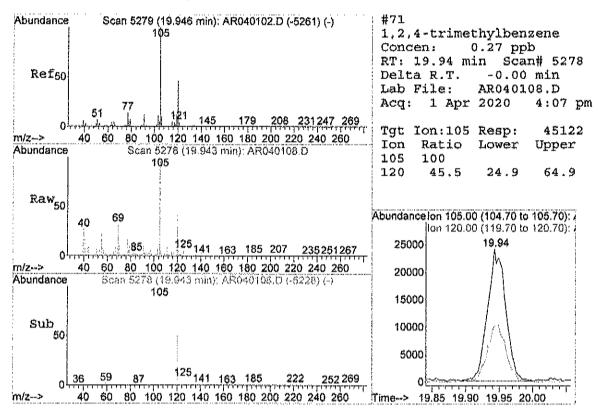



Page 154 of 380





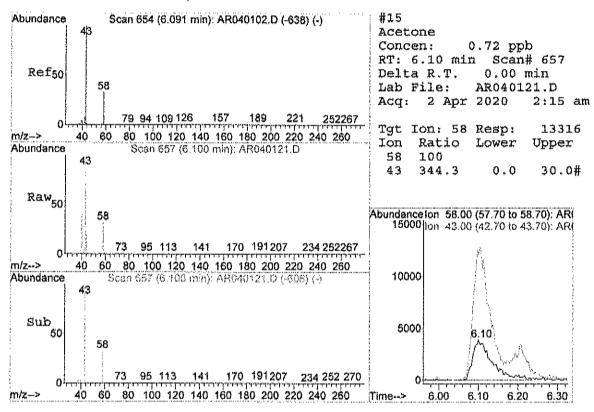




Fri Apr 10 08:38:09 2020

Page 13



Fri Apr 10 08:38:10 2020






Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AR040121.D Vial: 4 Acq On : 2 Apr 2020 2:15 am Operator: RJP Sample : C2004002-004A 10X Misc : A311\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 07 09:26:27 2020 Quant Results File: A320\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 23 08:34:44 2020 Response via : Initial Calibration DataAcq Meth : 1UG ENT Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.90128338761.00ppb0.0035) 1,4-difluorobenzene12.191141129311.00ppb0.0050) Chlorobenzene-d517.001171005981.00ppb0.00 System Monitoring Compounds65) Bromofluorobenzene18.7495570570.79 ppb0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 79.00% Target Compounds Qvalue 6.10 58 13316 0.72 ppb # 100 15) Acetone

|                                                                                                                                                                                                                                                      |                                                                                                                                                                       | 23.00 24.00<br>Page 2   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                                                                                                                                                                                                                                                      |                                                                                                                                                                       | 22.00                   |
|                                                                                                                                                                                                                                                      |                                                                                                                                                                       | 21 00 2                 |
|                                                                                                                                                                                                                                                      |                                                                                                                                                                       | 20.00 21                |
|                                                                                                                                                                                                                                                      |                                                                                                                                                                       | 19.00 20                |
|                                                                                                                                                                                                                                                      | S.artsznadorouflomora                                                                                                                                                 | 18.00                   |
|                                                                                                                                                                                                                                                      | رائنەرەDenzene-d5,)<br>تېرىمىت (رائىەرەDenzene-d5,)                                                                                                                   | 00                      |
| 1<br>1UG.RES                                                                                                                                                                                                                                         |                                                                                                                                                                       | 6.00 17                 |
| 4<br>RJP<br>MSD #1<br>1.00<br>A320_1U                                                                                                                                                                                                                |                                                                                                                                                                       | 5.00 16                 |
|                                                                                                                                                                                                                                                      | TIC: AR040121.D                                                                                                                                                       | 0                       |
| Vial<br>Operator<br>Inst<br>Multiplr<br>sults File<br>Integrator<br>ibration                                                                                                                                                                         | AC AC                                                                                                                                                                 | 00 14 00<br>MSD1        |
| ង អ ម្ត                                                                                                                                                                                                                                              | i.enosnedonoufib-e, h ———                                                                                                                                             | 200 13.00               |
| iant<br>r (R                                                                                                                                                                                                                                         |                                                                                                                                                                       | <b>1</b>                |
| ក្តីស                                                                                                                                                                                                                                                |                                                                                                                                                                       | 10 08:40:06             |
| 40121.D<br>m<br>DS\A320_<br>rds for<br>30 2020<br>on                                                                                                                                                                                                 | t,enertiernorohitomora                                                                                                                                                | r 10 1                  |
| \DATA\AR04012<br>2:15 am<br>4A 10X<br>RTEINT.P<br>8 2020<br>2020<br>201 METHODS\P<br>0 Standards<br>10 08:36:30 2<br>Calibration                                                                                                                     |                                                                                                                                                                       | Rri Apr                 |
| C:\HPCHEM\1\DATA\AR040121.D<br>2 Apr 2020 2:15 am<br>C2004002-004A 10X<br>A311_1UG<br>on Params: RTEINT.P<br>Apr 7 10:18 2020<br>: C:\HPCHEM\1\METHODS\A320<br>: TO-15 VOA Standards for<br>: Fri Apr 10 08:36:30 2020<br>: Fri Apr 10 08:36:30 2020 |                                                                                                                                                                       | 8                       |
| C:\HPCHEM\1\D<br>2 Apr 2020<br>C2004002-004A<br>A311_1UG<br>A311_1UG<br>ON Params: RT<br>Apr 7 10:18 7<br>: C:\HPCHEM\7<br>: TO-15 VOA<br>: Fri Apr 10<br>: Fri Apr 10                                                                               |                                                                                                                                                                       | 0 7.00                  |
| C:\<br>Apr A31<br>Apr                                                                                                                                                                                                                                |                                                                                                                                                                       | 0 6.00 7.<br>A320_1UG.M |
| <u>ୁ</u> ଜୁନ ମ <sub>ି</sub> ନ                                                                                                                                                                                                                        |                                                                                                                                                                       | -0-                     |
| Data File<br>Acq On<br>Sample<br>Misc<br>MS Integr<br>Quant Tim<br>Method<br>Title<br>Last Upda<br>Response                                                                                                                                          | Abundance<br>3400000<br>32000000<br>32000000<br>2800000<br>2800000<br>1800000<br>1800000<br>1800000<br>1800000<br>1000000<br>8000000<br>8000000<br>8000000<br>8000000 | Tme->                   |

Page 161 of 380



Date: 13-Apr-20

| CLIENT:          | Geovation Engineering                 | ng. Inc. |       | C    | lient Sample ID: | 607 |                     |
|------------------|---------------------------------------|----------|-------|------|------------------|-----|---------------------|
| Lab Order:       | C2004002                              |          |       |      | Tag Number:      |     | 88                  |
| Project:         | Grant Hardware                        |          |       |      | Collection Date: |     |                     |
| -                | C2004002-005A                         |          |       |      | Matrix:          |     |                     |
| Lab ID:          | C2004002-003A                         |          |       |      |                  |     |                     |
| Analyses         |                                       | Result   | DL    | Qual | Units            | DF  | Date Analyzed       |
| FIELD PARAM      | ETERS                                 |          | F     | LD   |                  |     | Analyst:            |
| Lab Vacuum In    | i i i i i i i i i i i i i i i i i i i | -9       |       |      | "Hg              |     | 4/1/2020            |
| Lab Vacuum O     | ut                                    | -30      |       |      | "Hg              |     | 4/1/2020            |
| 1UG/M3 W/ 0.2    | UG/M3 CT-TCE-VC-DCE                   | E-1.1DCE | тс    | )-15 |                  |     | Analyst: RJF        |
| 1,1,1-Trichloroe | ethane                                | < 0.15   | 0.15  |      | ppbV             | 1   | 4/1/2020 4:55:00 PM |
| 1,1,2,2-Tetrach  | loroethane                            | < 0.15   | 0.15  |      | ppbV             | 1   | 4/1/2020 4:55:00 PM |
| 1,1,2-Trichloroe | sthane                                | < 0.15   | 0.15  |      | ppbV             | 1   | 4/1/2020 4:55:00 PM |
| 1,1-Dichloroeth  | ane                                   | < 0.15   | 0.15  |      | ppbV             | 1   | 4/1/2020 4:55:00 PM |
| 1,1-Dichloroeth  | ene                                   | < 0.040  | 0.040 |      | ppbV             | 1   | 4/1/2020 4:55:00 PM |
| 1,2,4-Trichlorot | benzene                               | < 0.15   | 0.15  |      | ppbV             | 1   | 4/1/2020 4:55:00 PM |
| 1,2,4-Trimethyl  | benzene                               | < 0.15   | 0.15  |      | ppbV             | 1   | 4/1/2020 4:55:00 PM |
| 1,2-Dibromoeth   | ane                                   | < 0.15   | 0.15  |      | ppbV             | 1   | 4/1/2020 4:55:00 PM |
| 1,2-Dichlorober  | nzene                                 | < 0.15   | 0.15  |      | opbV             | 1   | 4/1/2020 4:55:00 PM |
| 1,2-Dichloroeth  | ane                                   | < 0.15   | 0.15  |      | ppbV             | 1   | 4/1/2020 4:55:00 PM |
| 1,2-Dichloropro  | pane                                  | < 0.15   | 0.15  |      | ppbV             | 1   | 4/1/2020 4:55:00 PM |
| 1,3,5-Trimethyi  | benzene                               | < 0.15   | 0.15  |      | ppbV             | 1   | 4/1/2020 4:55:00 PM |
| 1,3-butadiene    |                                       | < 0.15   | 0.15  |      | ppbV             | 1   | 4/1/2020 4:55:00 PM |
| 1,3-Dichlorober  | nzene                                 | < 0.15   | 0.15  |      | ppbV             | 1   | 4/1/2020 4:55:00 PM |
| 1,4-Dichlorober  | nzene                                 | < 0.15   | 0.15  |      | vdqq             | 1   | 4/1/2020 4:55:00 PM |

| 1,3-Dichlorobenzene     | < 0.15  | 0.15  | ppov | 1  | 4/1/2020 4:55:00 PM |
|-------------------------|---------|-------|------|----|---------------------|
| 1,4-Dichlorobenzene     | < 0.15  | 0.15  | ppbV | 1  | 4/1/2020 4:55:00 PM |
| 1,4-Dioxane             | < 0.30  | 0.30  | ppbV | 1  | 4/1/2020 4:55:00 PM |
| 2,2,4-trimethylpentane  | < 0.15  | 0.15  | ppb∨ | 1  | 4/1/2020 4:55:00 PM |
| 4-ethyitoluene          | < 0.15  | 0.15  | ppbV | 1  | 4/1/2020 4:55:00 PM |
| Acetone                 | 4.0     | 3.0   | ppb∨ | 10 | 4/2/2020 3:00:00 AM |
| Allyl chloride          | < 0.15  | 0.15  | ppbV | 1  | 4/1/2020 4:55:00 PM |
| Benzene                 | 0.15    | 0.15  | ppb∨ | 1  | 4/1/2020 4:55:00 PM |
| Benzyl chloride         | < 0.15  | 0.15  | ppbV | 1  | 4/1/2020 4:55:00 PM |
| Bromodichloromethane    | < 0.15  | 0.15  | ppbV | 1  | 4/1/2020 4:55:00 PM |
| Bromoform               | < 0.15  | 0.15  | ppb∨ | 1  | 4/1/2020 4:55:00 PM |
| Bromomethane            | < 0.15  | 0.15  | ppbV | 1  | 4/1/2020 4:55:00 PM |
| Carbon disulfide        | < 0.15  | 0.15  | ppbV | 1  | 4/1/2020 4:55:00 PM |
| Carbon tetrachloride    | 0.090   | 0.030 | ppbV | 1  | 4/1/2020 4:55:00 PM |
| Chlorobenzene           | < 0.15  | 0.15  | Vdqq | 1  | 4/1/2020 4:55:00 PM |
| Chloroethane            | < 0.15  | 0.15  | ppbV | 1  | 4/1/2020 4:55:00 PM |
| Chloroform              | < 0.15  | 0.15  | ppbV | 1  | 4/1/2020 4:55:00 PM |
| Chloromethane           | 0.38    | 0.15  | ppbV | 1  | 4/1/2020 4:55:00 PM |
| cis-1,2-Dichloroethene  | < 0.040 | 0.040 | Vdqq | 1  | 4/1/2020 4:55:00 PM |
| cis-1,3-Dichloropropene | < 0.15  | 0.15  | ppbV | 1  | 4/1/2020 4:55:00 PM |
| Cyclohexane             | 0.20    | 0.15  | ppbV | 1  | 4/1/2020 4:55:00 PM |
| Dibromochtoromethane    | < 0.15  | 0.15  | ppbV | 1  | 4/1/2020 4:55:00 PM |
| Ethyl acetate           | < 0.15  | 0.15  | ppbV | 1  | 4/1/2020 4:55:00 PM |
|                         |         |       |      |    |                     |

Qualifiers: SC

- Sub-Contracted
- в Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- Л Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits S
- Results reported are not blank corrected .

- Ê Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection Detection Limit DĹ

Page 9 of 24

Date: 13-Apr-20

.

| CLIENT:    | Geovation Engineering, Inc. | Client Sample ID: | 607       |
|------------|-----------------------------|-------------------|-----------|
| Lab Order: | C2004002                    | Tag Number:       | 207,388   |
| Project:   | Grant Hardware              | Collection Date:  | 3/28/2020 |
| Lab ID:    | C2004002-005A               | Matrix:           | AIR       |

| Analyses                     | Result      | DL               | Qual Units | DF | Date Analyzed       |
|------------------------------|-------------|------------------|------------|----|---------------------|
| IUG/M3 W/ 0.2UG/M3 CT-TCE-VC | -DCE-1,1DCE | TO-              | 15         |    | Analyst: RJH        |
| Ethylbanzene                 | < 0.15      | 0.15             | ppbV       | 1  | 4/1/2020 4:55:00 PM |
| Freon 11                     | 0.21        | 0.15             | ppbV       | 1  | 4/1/2020 4:55:00 PM |
| Freen 113                    | < 0.15      | 0.15             | ppbV       | 1  | 4/1/2020 4:55:00 PM |
| Freon 114                    | < 0.15      | 0.15             | ppbV       | 1  | 4/1/2020 4:55:00 PM |
| Freon 12                     | 0.46        | 0.15             | ppbV       | 1  | 4/1/2020 4:55:00 PM |
| Heptanø                      | < 0.15      | 0.15             | ppbV       | 1  | 4/1/2020 4:55:00 PM |
| Hexachloro-1,3-butadiene     | < 0.15      | 0.15             | ppb∨       | 1  | 4/1/2020 4:55:00 PM |
| Hexane                       | < 0.15      | 0.15             | ppbV       | 1  | 4/1/2020 4:55:00 PM |
| isopropyl alcohol            | 0.68        | 0.15             | ppbV       | 1  | 4/1/2020 4:55:00 PM |
| m&p-Xylene                   | < 0.30      | 0.30             | ppbV       | 1  | 4/1/2020 4:55:00 PM |
| Methyl Bulyl Ketone          | < 0.30      | 0.30             | ppbV       | 1  | 4/1/2020 4:55:00 PM |
| Methyl Ethyl Ketone          | 0.28        | 0.30             | J ppbV     | 1  | 4/1/2020 4:55:00 PM |
| Methyl isobutyl Ketone       | < 0.30      | 0.30             | ppbV       | 1  | 4/1/2020 4:55:00 PM |
| Methyl tert-butyl ether      | < 0.15      | 0.15             | ppbV       | t  | 4/1/2020 4:55:00 PM |
| Methylene chloride           | 0.18        | 0.1 <del>5</del> | ppbV       | 1  | 4/1/2020 4:55:00 PM |
| o-Xylene                     | < 0.15      | 0.15             | ppbV       | 1  | 4/1/2020 4:55:00 PM |
| Propylene                    | < 0.15      | 0.15             | ppbV       | 1  | 4/1/2020 4:55:00 PM |
| Styrene                      | < 0.15      | 0.15             | ppbV       | 1  | 4/1/2020 4:55:00 PM |
| Tetrachloroethylene          | < 0.15      | 0.15             | ppbV       | 1  | 4/1/2020 4:55:00 PM |
| Tetrahydrofuran              | < 0.15      | 0.15             | ppbV       | 1  | 4/1/2020 4:55:00 PM |
| Toluene                      | 0.15        | 0.15             | ррьУ       | 1  | 4/1/2020 4:55:00 PM |
| trans-1,2-Dichloroethene     | < 0.15      | 0.15             | ppbV       | 1  | 4/1/2020 4:55:00 PM |
| trans-1,3-Dichloropropene    | < 0.15      | 0.15             | ppbV       | 1  | 4/1/2020 4:55:00 PM |
| Trichloroelhene              | 0.10        | 0.030            | ppbV       | 1  | 4/1/2020 4:55:00 PM |
| Vinyl acetate                | < 0.15      | 0.15             | ppbV       | t  | 4/1/2020 4:55:00 PM |
| Vinyl Bromide                | < 0,15      | 0.15             | ррь∨       | f  | 4/1/2020 4:55:00 PM |
| Vinyl chloride               | < 0.040     | 0.040            | ppbV       | 1  | 4/1/2020 4:55:00 PM |
| Surr: Bromofluorobanzena     | 83.0        | 70-130           | %REC       | 1  | 4/1/2020 4:55:00 PM |

| Qualifiers: | SC                                              | Sub-Contracted                                     |                 | Results reported are not blank corrected    | -%.441   |
|-------------|-------------------------------------------------|----------------------------------------------------|-----------------|---------------------------------------------|----------|
| -           | ₿                                               | Analyte detected in the associated Method Blank    | Ε               | Estimated Value above quantitation rang     | je       |
|             | н                                               | Holding times for preparation or analysis exceeded | J               | J Analyte detected below quantitation limit |          |
|             | JN                                              | Non-routine analyte. Quantitation estimated.       | ND              | Not Detected at the Limit of Detection      | D 10 001 |
| s           | Spike Recovery outside accepted recovery limits | DL                                                 | Detection Limit | Page 10 of 24                               |          |

Date: 13-Apr-20

| CLIENT:    | Geovation Engineering, Inc. | Client Sample ID: 6 | 607        |
|------------|-----------------------------|---------------------|------------|
| Lab Order: | C2004002                    | Tag Number: 2       | :07,388    |
| Project:   | Grant Hardware              | Collection Date: 3  | /28/2020   |
| Lab ID:    | C2004002-005A               | Matrix: A           | <b>NIR</b> |

| Analyses                     | Result       | DL   | Qual Un | its DF | Date Analyzed       |
|------------------------------|--------------|------|---------|--------|---------------------|
| 1UG/M3 W/ 0.2UG/M3 CT-TCE-V0 | C-DCE-1,1DCE | то   | -15     |        | Analyst: RJI        |
| 1,1,1-Trichloroethane        | < 0.82       | 0.82 | ug/i    | n3 1   | 4/1/2020 4:55:00 PM |
| 1,1,2,2-Tetrachloroethane    | < 1.0        | 1.0  | ugh     | n3 1   | 4/1/2020 4:55:00 PM |
| 1,1,2-Trichloroethane        | < 0.82       | 0.82 | ugh     | n3 1   | 4/1/2020 4:55:00 PM |
| 1,1-Dichloroethane           | < 0.61       | 0.61 | ug/i    | n3 1   | 4/1/2020 4:55:00 PM |
| 1,1-Dichloroethene           | < 0.16       | 0.16 | ug/i    | n3 1   | 4/1/2020 4:55:00 PM |
| 1,2,4-Trichlorobenzene       | < 1.1        | 1.1  | ug/(    | ກ3 1   | 4/1/2020 4:55:00 PM |
| 1,2,4-Trimethylbenzene       | < 0.74       | 0.74 | ug/i    | n3 1   | 4/1/2020 4:55:00 PM |
| 1,2-Dibromoethane            | < 1.2        | 1.2  | ug/i    | ກ3 1   | 4/1/2020 4:55:00 PM |
| 1,2-Dichlorobenzene          | < 0.90       | 0.90 | មព្វ/   | n3 1   | 4/1/2020 4:55:00 PM |
| 1,2-Dichloroethane           | < 0.61       | 0.61 | ug/i    | m3 1   | 4/1/2020 4:55:00 PM |
| 1,2-Dichloropropane          | < 0.69       | 0,69 | ug/a    | n3 1   | 4/1/2020 4:55:00 PM |
| 1,3,5-Trimethylbenzene       | < 0.74       | 0.74 | ugh     | n3 1   | 4/1/2020 4:55:00 PM |
| 1,3-butadiene                | < 0.33       | 0.33 | ug/     | n3 1   | 4/1/2020 4:55:00 PM |
| 1,3-Dichlorobenzene          | < 0.90       | 0.90 | ug/i    | n3 1   | 4/1/2020 4:55:00 PM |
| 1,4-Dichlorobenzene          | < 0.90       | 0.90 | ugh     | n3 1   | 4/1/2020 4:55:00 PM |
| 1,4-Dloxane                  | < 1.1        | 1.1  | ug/i    | n3 1   | 4/1/2020 4:55:00 PM |
| 2,2,4-trimethylpentane       | < 0.70       | 0.70 | ug/i    | n3 1   | 4/1/2020 4:55:00 PM |
| 4-ethyltoluene               | < 0.74       | 0.74 | ug/i    | n3 1   | 4/1/2020 4:55:00 PM |
| Acetone                      | 9.5          | 7.1  | បព្វ/   | n3 10  | 4/2/2020 3:00:00 AM |
| Aliyi chloride               | < 0.47       | 0.47 | ug/i    | דו 1   | 4/1/2020 4:55:00 PM |
| Benzene                      | 0.48         | 0.48 | ug/     | n3 1   | 4/1/2020 4:55:00 PM |
| Benzyl chloride              | < 0.86       | 0.86 | ug/i    | n3 1   | 4/1/2020 4:55:00 PM |
| Bromodichloromethane         | < 1.0        | 1.0  | ug/     | n3 1   | 4/1/2020 4:55:00 PM |
| Bromoform                    | < 1.6        | 1,6  | ug/     | n3 1   | 4/1/2020 4:55:00 PM |
| Bromomethane                 | < 0.58       | 0.58 | ug/     | ກ3 1   | 4/1/2020 4:55:00 PM |
| Carbon disulfide             | < 0.47       | 0.47 | ug/     | ກ3 1   | 4/1/2020 4:55:00 PM |
| Carbon tetrachloride         | 0.57         | 0.19 | ug/     | n3 1   | 4/1/2020 4:55:00 PM |
| Chlorobenzene                | < 0.69       | 0.69 | ug/     | m3 1   | 4/1/2020 4:55:00 PM |
| Chloroethane                 | < 0.40       | 0.40 | ug/     | ກ3 1   | 4/1/2020 4:55:00 PM |
| Chloroform                   | < 0.73       | 0.73 | ug/a    | m3 1   | 4/1/2020 4:55:00 PM |
| Chloromethane                | 0.78         | 0.31 | ug/     | ກ3 1   | 4/1/2020 4:55:00 PM |
| cis-1,2-Dichloroethene       | < 0.16       | 0.16 | ug/     |        | 4/1/2020 4:55:00 PM |
| cis-1,3-Dichloropropene      | < 0.68       | 0.68 | นg/     |        | 4/1/2020 4:55:00 PM |
| Cyclohexane                  | 0.69         | 0.52 | ug/     |        | 4/1/2020 4:55:00 PM |
| Dibromochloromethane         | < 1.3        | 1.3  | ug/     |        | 4/1/2020 4:55:00 PM |
| Ethyl acetate                | < 0.54       | 0.54 | ug/     |        | 4/1/2020 4:55:00 PM |
| Ethylbenzene                 | < 0.65       | 0.65 | ug/     |        | 4/1/2020 4:55:00 PM |
| Freon 11                     | 1.2          | 0.84 | ug/     |        | 4/1/2020 4:55:00 PM |
| Freon 113                    | < 1.1        | 1.1  | μg/     |        | 4/1/2020 4:55:00 PM |
| Freon 114                    | < 1.0        | 1.0  | ug/     |        | 4/1/2020 4:55:00 PM |

Qualifiers:

- Analyte detected in the associated Method Blank ₿
- H Holding times for preparation or analysis exceeded
- JŇ Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- Estimated Value above quantitation range Е
- Analyte detected below quantitation limit J

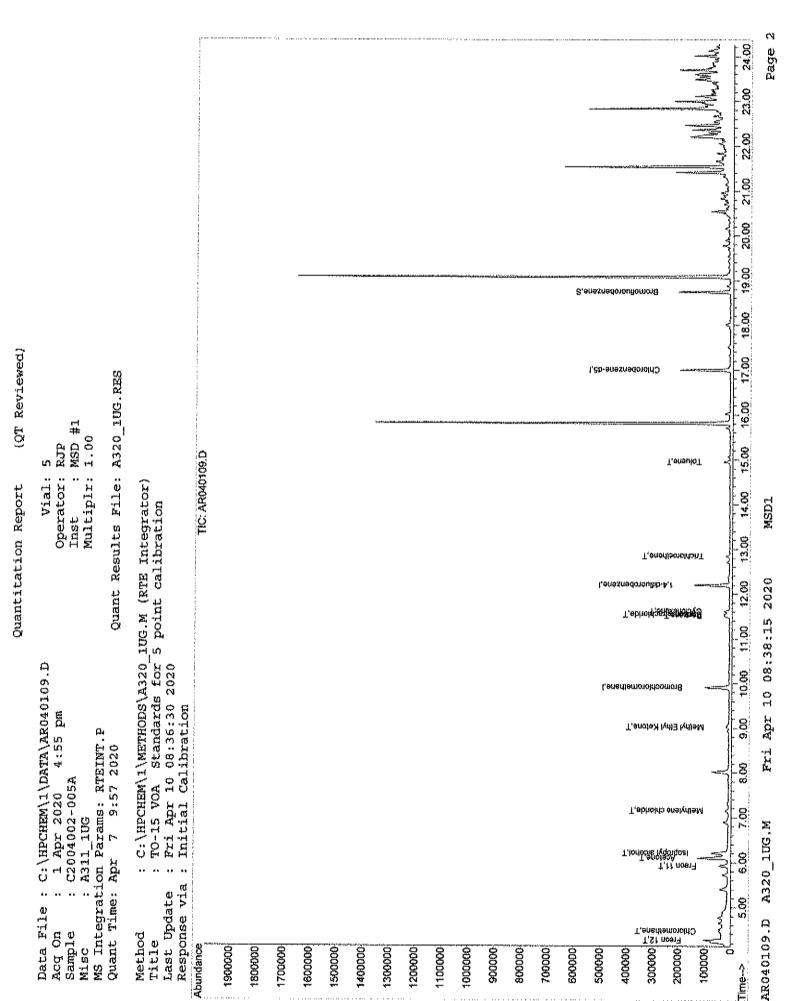
÷

DL Detection Limit

ND Not Detected at the Limit of Detection

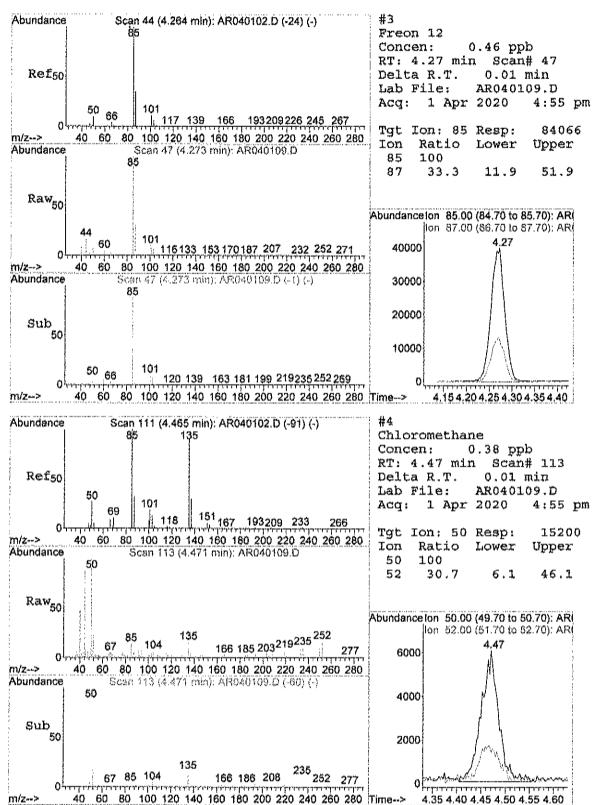
SC Sub-Contracted

Date: 13-Apr-20

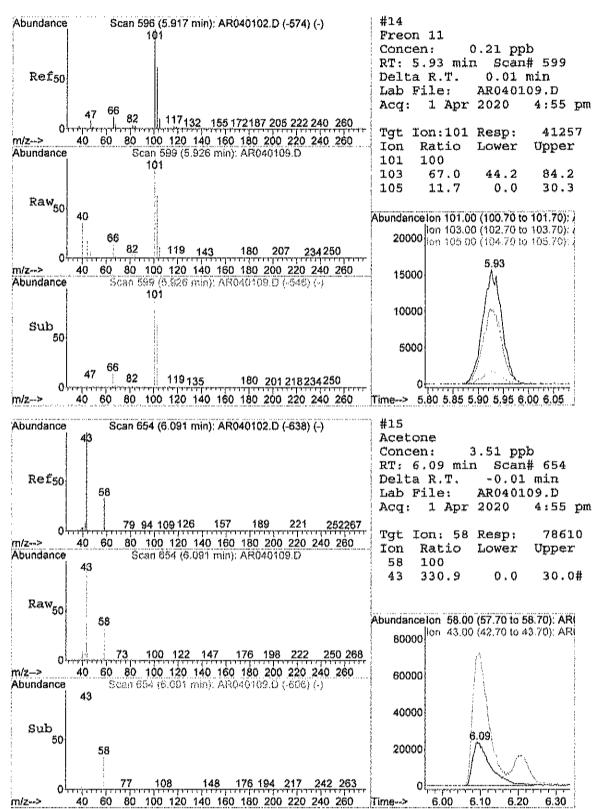

|            |                             |                   | A STATE OF A |
|------------|-----------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------|
| CLIENT:    | Geovation Engineering, Inc. | Client Sample ID: | 607                                                                                                             |
| Lab Order: | C2004002                    | Tag Number:       | 207,388                                                                                                         |
| Project:   | Grant Hardware              | Collection Date:  | 3/28/2020                                                                                                       |
| Lab ID:    | C2004002-005A               | Matrix:           | AIR                                                                                                             |
|            |                             |                   |                                                                                                                 |

| Analyses                                | Result | DL    | Qual | Units | DF | Date Analyzed       |
|-----------------------------------------|--------|-------|------|-------|----|---------------------|
| 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE |        | TO-15 |      |       |    | Analyst: RJP        |
| Freon 12                                | 2.3    | 0.74  |      | ug/m3 | 1  | 4/1/2020 4:55:00 PM |
| Heptane                                 | < 0.61 | 0.61  |      | ug/m3 | 1  | 4/1/2020 4:55:00 PM |
| Hexachloro-1,3-butadiene                | < 1.6  | 1.6   |      | ug/m3 | 1  | 4/1/2020 4:55:00 PM |
| Hexane                                  | < 0.53 | 0.53  |      | ug/m3 | 1  | 4/1/2020 4:55:00 PM |
| isopropyl alcohol                       | 1.7    | 0.37  |      | ug/m3 | 1  | 4/1/2020 4:55:00 PM |
| m&p-Xylene                              | < 1.3  | 1.3   |      | ug/m3 | 1  | 4/1/2020 4:55:00 PM |
| Methyl Butyl Ketone                     | < 1.2  | 1.2   |      | ug/m3 | 1  | 4/1/2020 4:55:00 PM |
| Methyl Ethyl Ketone                     | 0.83   | 0.88  | J    | ug/m3 | 1  | 4/1/2020 4:55:00 PM |
| Methyl isobutyl Ketone                  | < 1.2  | 1.2   |      | ug/m3 | 1  | 4/1/2020 4:55:00 PM |
| Methyl tert-butyl ether                 | < 0.54 | 0.54  |      | ug/m3 | 1  | 4/1/2020 4:55:00 PM |
| Methylene chloride                      | 0.63   | 0.52  |      | ug/m3 | 1  | 4/1/2020 4:55:00 PM |
| o-Xylene                                | < 0.65 | 0.65  |      | ug/m3 | 1  | 4/1/2020 4:55:00 PM |
| Propylene                               | < 0.26 | 0.26  |      | ug/m3 | 1  | 4/1/2020 4:55:00 PM |
| Styrene                                 | < 0.64 | 0.64  |      | ug/m3 | 4  | 4/1/2020 4:55:00 PM |
| Tetrachloroethylene                     | < 1.0  | 1.0   |      | ug/m3 | 1  | 4/1/2020 4:55:00 PM |
| Tetrahydrofuran                         | < 0.44 | 0.44  |      | ug/m3 | 1  | 4/1/2020 4:55:00 PM |
| Toluene                                 | 0.57   | 0.57  |      | ug/m3 | 1  | 4/1/2020 4:55:00 PM |
| trans-1,2-Dichloroethene                | < 0.59 | 0.59  |      | ug/m3 | 1  | 4/1/2020 4:55:00 PM |
| trans-1,3-Dichloropropene               | < 0.68 | 0.68  |      | ug/m3 | 1  | 4/1/2020 4:55:00 PM |
| Trichloroethene                         | 0.54   | 0.16  |      | ug/m3 | 1  | 4/1/2020 4:55:00 PM |
| Vinyl acetate                           | < 0.53 | 0.53  |      | ug/m3 | 1  | 4/1/2020 4:55:00 PM |
| Vinyl Bromide                           | < 0.66 | 0.66  |      | ug/m3 | 1  | 4/1/2020 4:55:00 PM |
| Vinyt chloride                          | < 0.10 | 0.10  |      | ug/m3 | 1  | 4/1/2020 4:55:00 PM |

|             |    | ······································             |    |                                          |               |
|-------------|----|----------------------------------------------------|----|------------------------------------------|---------------|
| Qualifiers: | SC | Sub-Contracted                                     |    | Results reported are not blank corrected |               |
|             | в  | Analyte detected in the associated Method Blank    | Ε  | Estimated Value above quantitation rang  | <u>s</u> e    |
|             | н  | Holding times for preparation or analysis exceeded | J  | Analyte detected below quantitation lim  | it            |
|             | N  | Non-routine analyte. Quantitation estimated.       | ND | Not Detected at the Limit of Detection   | Dece 10 -624  |
| S           |    | Spike Recovery outside accepted recovery limits    | DL | Detection Limit                          | Page 10 of 24 |
|             |    |                                                    |    |                                          |               |

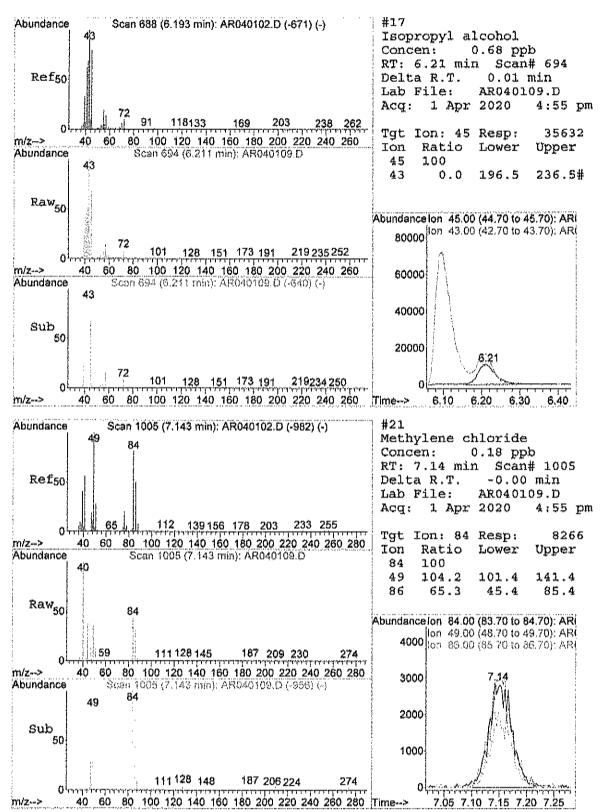

Page 166 of 380

| Centek Laboratories, LL                                                                                                                                                                                                         | C <sub>Quantitat</sub> | ion Rej           | port (Q                   | T Review                                       | wed)               |       |           |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|---------------------------|------------------------------------------------|--------------------|-------|-----------|--|
| Data File : C:\HPCHEM\l\DATA\<br>Acq On : 1 Apr 2020 4:5<br>Sample : C2004002~005A<br>Misc : A311_1UG<br>MS Integration Params: RTEINT<br>Quant Time: Apr 07 09:26:15 2                                                         | 55 pm<br>5.P           |                   | In:<br>Mul                | Vial:<br>erator:<br>st :<br>ltiplr:<br>s File: | RJP<br>MSD<br>1.00 | ••••• | J.RES     |  |
| Quant Method : C:\HPCHEM\1\METHODS\A320_1UG.M (RTE Integrator)<br>Title : TO-15 VOA Standards for 5 point calibration<br>Last Update : Mon Mar 23 08:34:44 2020<br>Response via : Initial Calibration<br>DataAcq Meth : 1UG_ENT |                        |                   |                           |                                                |                    |       |           |  |
| Internal Standards                                                                                                                                                                                                              | R.T.                   | QION              | Response                  | Conc U                                         | nits               | Dev   | (Min)     |  |
| 1) Bromochloromethane<br>35) 1,4-difluorobenzene<br>50) Chlorobenzene-d5                                                                                                                                                        | 9.91<br>12.20<br>17.00 | 128<br>114<br>117 | 41051<br>145793<br>134806 | 1.00<br>1.00<br>1.00                           | dqq                |       | 0.00      |  |
| System Monitoring Compounds<br>65) Bromofluorobenzene<br>Spiked Amount 1.000                                                                                                                                                    | 18.74<br>Range 70      | 95<br>- 130       | 80506<br>Recover          | 0.83<br>ry =                                   | ррb<br>83.         | 00%   | 0.00      |  |
| Target Compounds                                                                                                                                                                                                                |                        |                   |                           |                                                |                    | Qva   | alue      |  |
| 3) Freon 12                                                                                                                                                                                                                     | 4.27                   | 85                |                           |                                                | ppb                | -     | 98        |  |
| 4) Chloromethane                                                                                                                                                                                                                | 4.47                   | 50                | 15200                     |                                                |                    |       | 91        |  |
| 14) Freon 11                                                                                                                                                                                                                    | 5.93                   | 101               | 41257                     | 0.21                                           | ppb                |       | 96        |  |
| 15) Acetone<br>17) Isopropyl alcohol                                                                                                                                                                                            | 6.09<br>6.21           | 58                |                           | 3.51                                           |                    |       | 100       |  |
| 21) Methylene chloride                                                                                                                                                                                                          | 6.21<br>7.14           | 45                | 35632<br>8266             | 0.68                                           |                    |       | 1         |  |
| 28) Methyl Ethyl Ketone                                                                                                                                                                                                         | 9 00                   | 04<br>70          | 8200<br>5330              | $0.18 \\ 0.28$                                 |                    |       | 90<br>100 |  |
| 37) Cvclohexane                                                                                                                                                                                                                 | 11.61                  | 56                | 9341                      | 0.20                                           | 100h               | ¥1    | 89        |  |
| 37) Cyclohexane<br>38) Carbon tetrachloride                                                                                                                                                                                     | 11.54                  | 117               | 12999                     | 0.09                                           | ppb                |       | 99        |  |
| 39) Benzene                                                                                                                                                                                                                     |                        |                   | 18097                     |                                                | ppb                |       | 90        |  |
| 44) Trichloroethene                                                                                                                                                                                                             |                        |                   | 6197<br>11511             |                                                |                    |       |           |  |
| 51) Toluene                                                                                                                                                                                                                     | 14.95                  | 92                | 11511                     | 0.15                                           |                    |       |           |  |



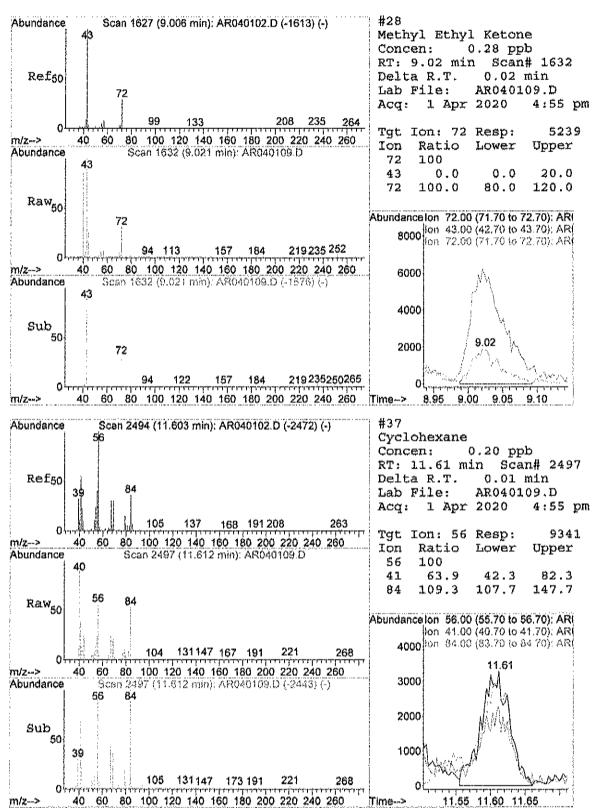

Page 168 of 380





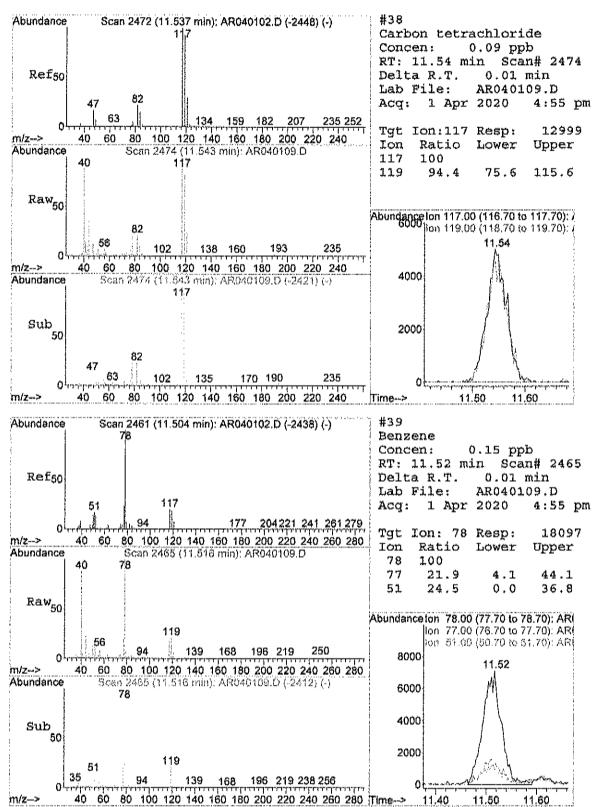




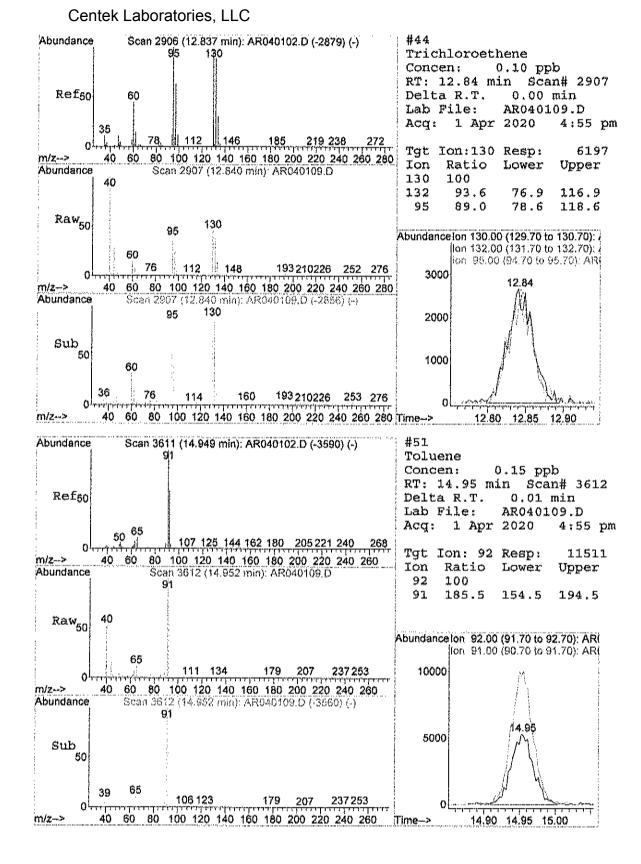


MSDl



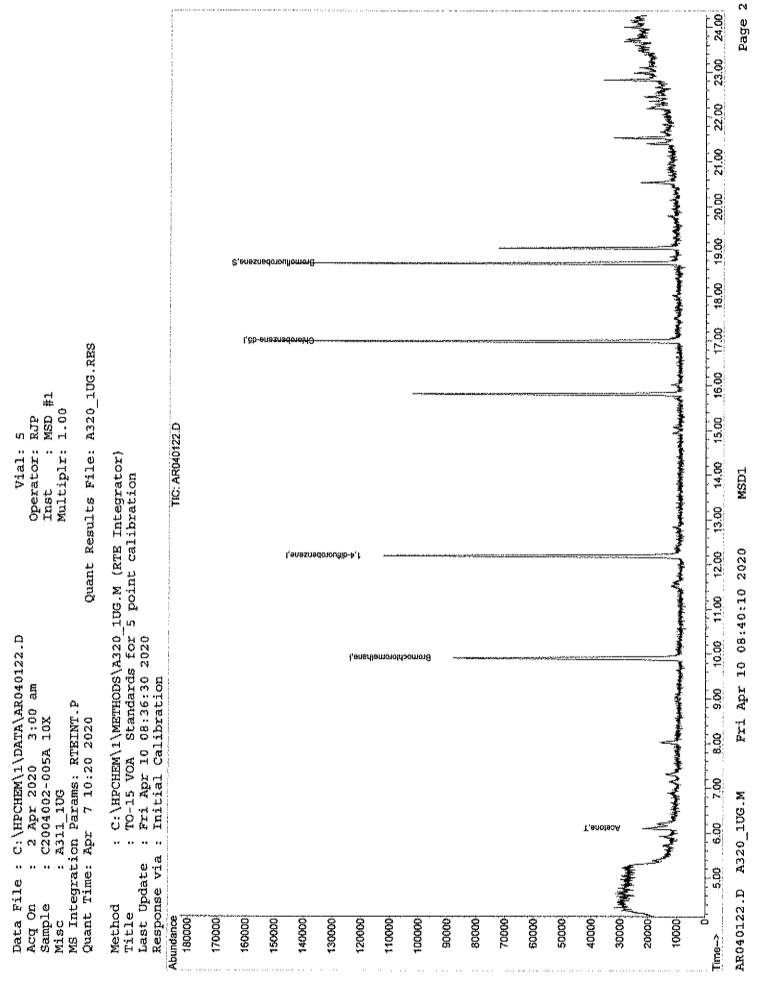



MSDl

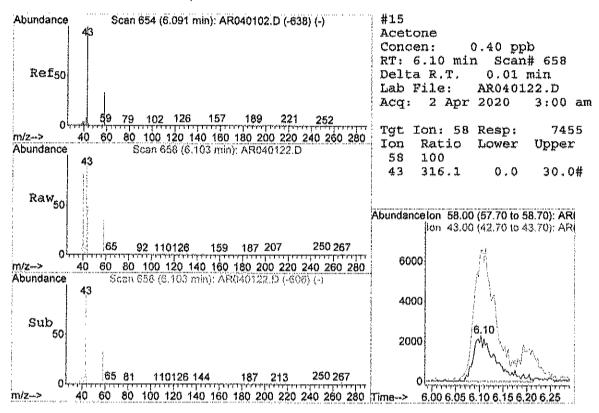





AR040109.D A320\_1UG.M







Page 7



Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AR040122.D Vial: 5 Acq On : 2 Apr 2020 3:00 am Sample : C2004002-005A 10X Misc : A311\_1UG **Operator:** RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 07 09:26:28 2020 Quant Results File: A320 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 23 08:34:44 2020 Response via : Initial Calibration DataAcq Meth : 1UG ENT Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.90128339951.00ppb0.005) 1,4-difluorobenzene12.191141134721.00ppb0.0060) Chlorobenzene-d517.001171002141.00ppb0.00 35) 1,4-difluorobenzene 50) Chlorobenzene-d5 System Monitoring Compounds 18.74 95 53883 0.75 ppb 65) Bromofluorobenzene 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 75.00% Target Compounds Qvalue 6.10 58 7455 0.40 ppb  $\overline{\#}$  100 15) Acetone



Page 176 of 380



Date: 10-Apr-20

| MET<br>In<br>Out | C2004002<br>Grant Hardware<br>C2004002-006A                                                                                               | Result                                                                                                                                                                                                                                      |                          |                                                                    | Tag Nur<br>Collection I                                                      |                                                                                                                                                         |                                                                                                                                                        |                                                                                             |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| In<br>Out        | C2004002-006A                                                                                                                             | Result                                                                                                                                                                                                                                      |                          |                                                                    | Collection I                                                                 | Date:                                                                                                                                                   | 3/28/20                                                                                                                                                | 170                                                                                         |
| In<br>Out        | C2004002-006A                                                                                                                             | Result                                                                                                                                                                                                                                      |                          |                                                                    |                                                                              |                                                                                                                                                         |                                                                                                                                                        | J20                                                                                         |
| In<br>Out        | 1999 Martin Andrew Martin Verder Standards and an an an anna ann an an an an an an an                                                     | Result                                                                                                                                                                                                                                      |                          |                                                                    | Ma                                                                           | trix:                                                                                                                                                   | AIR                                                                                                                                                    |                                                                                             |
| In<br>Out        |                                                                                                                                           |                                                                                                                                                                                                                                             | DL                       | Qual                                                               | Units                                                                        |                                                                                                                                                         | DF                                                                                                                                                     | Date Analyzed                                                                               |
| Out              | ERS                                                                                                                                       |                                                                                                                                                                                                                                             | F                        | LD                                                                 |                                                                              |                                                                                                                                                         |                                                                                                                                                        | Analyst:                                                                                    |
|                  |                                                                                                                                           | -7                                                                                                                                                                                                                                          | -                        |                                                                    | "Hg                                                                          |                                                                                                                                                         |                                                                                                                                                        | 4/1/2020                                                                                    |
| 2110             |                                                                                                                                           | -30                                                                                                                                                                                                                                         |                          |                                                                    | "Hg                                                                          |                                                                                                                                                         |                                                                                                                                                        | 4/1/2020                                                                                    |
|                  | M3 CT-TCE-VC-DCE                                                                                                                          | 1.1DCE                                                                                                                                                                                                                                      | тс                       | )-15                                                               |                                                                              |                                                                                                                                                         |                                                                                                                                                        | Analyst: RJP                                                                                |
| oetha            |                                                                                                                                           | < 0.15                                                                                                                                                                                                                                      | 0.15                     |                                                                    | ppbV                                                                         |                                                                                                                                                         | 1                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
| chlore           | oethane                                                                                                                                   | < 0.15                                                                                                                                                                                                                                      | 0.15                     |                                                                    | ppbV                                                                         |                                                                                                                                                         | 1                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
| oetha            |                                                                                                                                           | < 0.15                                                                                                                                                                                                                                      | 0.15                     |                                                                    | ppbV                                                                         |                                                                                                                                                         | 1                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
| thane            |                                                                                                                                           | < 0.15                                                                                                                                                                                                                                      | 0.15                     |                                                                    | ppbV                                                                         |                                                                                                                                                         | 1                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
| thene            |                                                                                                                                           | < 0.040                                                                                                                                                                                                                                     | 0.040                    |                                                                    | ppbV                                                                         |                                                                                                                                                         | 1                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
|                  |                                                                                                                                           |                                                                                                                                                                                                                                             |                          |                                                                    |                                                                              |                                                                                                                                                         | 1                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
|                  |                                                                                                                                           |                                                                                                                                                                                                                                             |                          | L.                                                                 |                                                                              |                                                                                                                                                         | 1                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
| •                |                                                                                                                                           |                                                                                                                                                                                                                                             |                          | •                                                                  |                                                                              |                                                                                                                                                         | 1                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
|                  |                                                                                                                                           |                                                                                                                                                                                                                                             |                          |                                                                    |                                                                              |                                                                                                                                                         | 1                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
|                  |                                                                                                                                           |                                                                                                                                                                                                                                             |                          |                                                                    |                                                                              |                                                                                                                                                         | 4                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
|                  |                                                                                                                                           |                                                                                                                                                                                                                                             |                          |                                                                    |                                                                              |                                                                                                                                                         | •                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
|                  |                                                                                                                                           |                                                                                                                                                                                                                                             |                          | 1                                                                  | • •                                                                          |                                                                                                                                                         |                                                                                                                                                        | 4/1/2020 5:42:00 PM                                                                         |
| -                | 20110                                                                                                                                     |                                                                                                                                                                                                                                             |                          |                                                                    |                                                                              |                                                                                                                                                         | •                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
|                  | ne                                                                                                                                        |                                                                                                                                                                                                                                             |                          |                                                                    |                                                                              |                                                                                                                                                         | -                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
|                  |                                                                                                                                           |                                                                                                                                                                                                                                             |                          |                                                                    |                                                                              |                                                                                                                                                         | ۰<br>۱                                                                                                                                                 | 4/1/2020 5:42:00 PM                                                                         |
| ense:            |                                                                                                                                           |                                                                                                                                                                                                                                             |                          |                                                                    |                                                                              |                                                                                                                                                         | •                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
| deeet            | <b>ADC</b>                                                                                                                                |                                                                                                                                                                                                                                             |                          |                                                                    |                                                                              |                                                                                                                                                         |                                                                                                                                                        |                                                                                             |
|                  | ane                                                                                                                                       |                                                                                                                                                                                                                                             |                          |                                                                    |                                                                              |                                                                                                                                                         | •                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
| 2                |                                                                                                                                           |                                                                                                                                                                                                                                             |                          |                                                                    |                                                                              |                                                                                                                                                         | -                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
|                  |                                                                                                                                           |                                                                                                                                                                                                                                             |                          |                                                                    | ••                                                                           |                                                                                                                                                         |                                                                                                                                                        | 4/2/2020 3:46:00 AM                                                                         |
|                  |                                                                                                                                           |                                                                                                                                                                                                                                             |                          |                                                                    |                                                                              |                                                                                                                                                         |                                                                                                                                                        | 4/1/2020 5:42:00 PM                                                                         |
| -                |                                                                                                                                           |                                                                                                                                                                                                                                             |                          |                                                                    |                                                                              |                                                                                                                                                         |                                                                                                                                                        | 4/1/2020 5:42:00 PM                                                                         |
|                  | h =                                                                                                                                       |                                                                                                                                                                                                                                             |                          |                                                                    |                                                                              |                                                                                                                                                         | 1                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
| omeu             | nane                                                                                                                                      |                                                                                                                                                                                                                                             |                          |                                                                    |                                                                              |                                                                                                                                                         | 1                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
|                  |                                                                                                                                           |                                                                                                                                                                                                                                             |                          |                                                                    |                                                                              |                                                                                                                                                         | 1                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
| ne .             |                                                                                                                                           |                                                                                                                                                                                                                                             |                          |                                                                    |                                                                              |                                                                                                                                                         | 1                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
|                  |                                                                                                                                           |                                                                                                                                                                                                                                             |                          | J                                                                  |                                                                              |                                                                                                                                                         | 1                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
|                  | e                                                                                                                                         |                                                                                                                                                                                                                                             |                          |                                                                    |                                                                              |                                                                                                                                                         | 1                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
|                  |                                                                                                                                           |                                                                                                                                                                                                                                             |                          |                                                                    |                                                                              |                                                                                                                                                         | 1                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
|                  |                                                                                                                                           |                                                                                                                                                                                                                                             |                          |                                                                    |                                                                              |                                                                                                                                                         | 1                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
|                  |                                                                                                                                           |                                                                                                                                                                                                                                             |                          |                                                                    |                                                                              |                                                                                                                                                         | 1                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
| 16               |                                                                                                                                           |                                                                                                                                                                                                                                             |                          |                                                                    |                                                                              |                                                                                                                                                         | 1                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
|                  |                                                                                                                                           | 0.040                                                                                                                                                                                                                                       | 0.040                    |                                                                    | ppb∨                                                                         |                                                                                                                                                         | 1                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
| ropro            | pene                                                                                                                                      | < 0.15                                                                                                                                                                                                                                      | 0.15                     |                                                                    | ppbV                                                                         |                                                                                                                                                         | 1                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
| Cyclohexane      |                                                                                                                                           | < 0.15                                                                                                                                                                                                                                      | 0.15                     |                                                                    | ppbV                                                                         |                                                                                                                                                         | 1                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
| ometi            | hane                                                                                                                                      | < 0.15                                                                                                                                                                                                                                      | 0.15                     | .1                                                                 | ppbV<br>ppbV                                                                 |                                                                                                                                                         | 1                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
|                  |                                                                                                                                           | 0.13                                                                                                                                                                                                                                        | U.15                     | J                                                                  |                                                                              |                                                                                                                                                         | 1                                                                                                                                                      | 4/1/2020 5:42:00 PM                                                                         |
| SC               | Sub-Contracted                                                                                                                            | Mintart X dust 1 You                                                                                                                                                                                                                        | ant:                     |                                                                    | •                                                                            |                                                                                                                                                         |                                                                                                                                                        |                                                                                             |
|                  | -                                                                                                                                         |                                                                                                                                                                                                                                             |                          |                                                                    |                                                                              |                                                                                                                                                         | -                                                                                                                                                      | -                                                                                           |
|                  |                                                                                                                                           | -                                                                                                                                                                                                                                           | eeded                    |                                                                    |                                                                              |                                                                                                                                                         |                                                                                                                                                        |                                                                                             |
|                  |                                                                                                                                           |                                                                                                                                                                                                                                             |                          |                                                                    |                                                                              |                                                                                                                                                         | te Limit o                                                                                                                                             | of Detection<br>Page 11 of                                                                  |
|                  | ylber<br>than<br>enze<br>than<br>ropar<br>ylben<br>enze<br>enze<br>enze<br>le<br>comet<br>horic<br>e<br>e<br>comet<br>horic<br>e<br>comet | enzene<br>enzene<br>Ilpentane<br>e<br>le<br>pomethane<br>de<br>hloride<br>e<br>roethene<br>ropropene<br>omethane<br>SC Sub-Contracted<br>B Analyte detected in the asso<br>H Holding times for preparatio<br>JN Non-routine analyte. Quanti | ylbenzene0.11thane< 0.15 | ylbenzene         0.11         0.15           thane         < 0.15 | ylbenzene         0,11         0,15         J           thane         < 0,15 | obsenzene         < 0.15         0.15         ppbV           ylbenzene         0.11         0.15         J         ppbV           enzene         < 0.15 | oblemzene         < 0.15         0.15         ppbV           ylbenzene         0.11         0.15         J         ppbV           thane         < 0.15 | oblenzene         < 0.15         0.15         ppbV         1           thane         < 0.15 |

Date: 10-Apr-20

| CLIENT:          | LIENT: Geovation Engineering, Inc. |          |      | C    | lient Sample ID: | 609   |                     |
|------------------|------------------------------------|----------|------|------|------------------|-------|---------------------|
| Lab Order:       | C2004002                           |          |      |      | Tag Number:      | 157,3 | 74                  |
| Project:         | Grant Hardware                     |          |      |      | Collection Date: | 3/28/ | 2020                |
| Lab ID:          | C2004002-006A                      |          |      |      | Matrix:          | AIR   |                     |
| Analyses         |                                    | Result   | DL   | Qual | Units            | DF    | Date Analyzed       |
| 1UG/M3 W/ 0.2    | UG/M3 CT-TCE-VC-DO                 | E-1,1DCE | тс   | )-15 |                  |       | Analyst: RJF        |
| Ethylbenzene     |                                    | < 0.15   | 0.15 |      | ppbV             | 1     | 4/1/2020 5:42:00 PM |
| Freon 11         |                                    | 0.74     | 0.15 |      | ppbV             | 1     | 4/1/2020 5:42:00 PM |
| Freon 113        |                                    | < 0.15   | 0.15 |      | ppbV             | 1     | 4/1/2020 5:42:00 PM |
| Freon 114        |                                    | < 0.15   | 0.15 |      | ppbV             | 1     | 4/1/2020 5:42:00 PM |
| Freon 12         |                                    | 0.50     | 0.15 |      | ppbV             | 1     | 4/1/2020 5:42:00 PM |
| Heptane          |                                    | 0.21     | 0.15 |      | ppbV             | 1     | 4/1/2020 5:42:00 PM |
| Hexachloro-1,3-  | -butadiene                         | < 0.15   | 0,15 |      | ppbV             | 1     | 4/1/2020 5:42:00 PM |
| Hexane           |                                    | 0.16     | 0.15 |      | ppbV             | 1     | 4/1/2020 5:42:00 PM |
| Isopropyl alcoho | oł                                 | 8.1      | 1.5  |      | ppbV             | 10    | 4/2/2020 3:46:00 AM |
| m&p-Xylene       |                                    | 0.20     | 0.30 | J    | Vdqo             | 1     | 4/1/2020 5·42·00 PM |

| Hexachioro-1,3-buladiene  | < 0.15  | 0.15   | ppbV   | 1  | 4/1/2020 5:42:00 PM |
|---------------------------|---------|--------|--------|----|---------------------|
| Hexane                    | 0.16    | 0.15   | opbV   | 1  | 4/1/2020 5:42:00 PM |
| isopropyl alcohol         | 8.1     | 1.5    | ppbV   | 10 | 4/2/2020 3:46:00 AM |
| m&p-Xylene                | 0.20    | 0.30   | J ppbV | 1  | 4/1/2020 5:42:00 PM |
| Methyl Butyl Ketone       | < 0.30  | 0.30   | ppbV   | 1  | 4/1/2020 5:42:00 PM |
| Methyl Ethyl Ketone       | 1.4     | 0.30   | ppbV   | 1  | 4/1/2020 5:42:00 PM |
| Methyl Isobutyl Ketone    | < 0.30  | 0.30   | ppbV   | 1  | 4/1/2020 5:42:00 PM |
| Methyl tert-butyl ether   | < 0.15  | 0.15   | ppbV   | 1  | 4/1/2020 5:42:00 PM |
| Methylene chloride        | 0.20    | 0.15   | opbV   | 1  | 4/1/2020 5:42:00 PM |
| o-Xylene                  | < 0.15  | 0,15   | ppb∨   | 1  | 4/1/2020 5:42:00 PM |
| Propylene                 | < 0.15  | 0.15   | Vdqq   | 1  | 4/1/2020 5:42:00 PM |
| Styrene                   | < 0.15  | 0.15   | ppbV   | 1  | 4/1/2020 5:42:00 PM |
| Tetrachioroethylene       | 0.20    | 0.15   | ppbV   | 1  | 4/1/2020 5:42:00 PM |
| Tetrahydrofuran           | < 0.15  | 0.15   | ppbV   | 1  | 4/1/2020 5:42:00 PM |
| Toluene                   | 0.39    | 0.15   | ppbV   | 1  | 4/1/2020 5:42:00 PM |
| trans-1,2-Dichloroethene  | < 0.15  | 0.15   | Vdqq   | 1  | 4/1/2020 5:42:00 PM |
| trans-1,3-Dichloropropene | < 0.15  | 0.15   | ppbV   | 1  | 4/1/2020 5:42:00 PM |
| Trichloroethene           | 0.67    | 0.030  | ppbV   | 1  | 4/1/2020 5:42:00 PM |
| Vinyl acetate             | < 0.15  | 0.15   | ppbV   | 1  | 4/1/2020 5:42:00 PM |
| Vinyl Bromide             | < 0.15  | 0,15   | ppbV   | 1  | 4/1/2020 5:42:00 PM |
| Vinyl chloride            | < 0.040 | 0.040  | ppbV   | 1  | 4/1/2020 5:42:00 PM |
| Surr: Bromofluorobenzene  | 92.0    | 70-130 | %REC   | 1  | 4/1/2020 5:42:00 PM |
|                           |         |        |        |    |                     |

| Qualifiers: | SC | Sub-Contracted                                     |     | Results reported are not blank corrected  |               |
|-------------|----|----------------------------------------------------|-----|-------------------------------------------|---------------|
|             | в  | Analyte detected in the associated Method Blank    | æ   | Estimated Value above quantitation rang   | e             |
|             | Н  | Holding times for preparation or analysis exceeded | J   | Analyte detected below quantitation limit | t.            |
|             | JN | Non-routine analyte, Quantitation estimated.       | ND  | Not Detected at the Limit of Detection    |               |
| S           | S  | Spike Recovery outside accepted recovery limits    | DL. | Detection Limit                           | Page 12 of 24 |

Date: 10-Apr-20

| Analyses                              |                        | Result | DL | Qual | Units                   | DF       | Date Analyzed |
|---------------------------------------|------------------------|--------|----|------|-------------------------|----------|---------------|
| Lab ID:                               | C2004002-006A          |        |    |      | Matrix:                 | AIR      |               |
| Project:                              | Grant Hardware         |        |    |      | <b>Collection Date:</b> | 3/28/202 | 0             |
| Lab Order:                            | C2004002               |        |    |      | Tag Number:             | 157,374  |               |
| CLIENT:                               | Geovation Engineering, |        |    |      | lient Sample ID:        |          |               |
| · · · · · · · · · · · · · · · · · · · |                        |        |    |      |                         |          |               |

| Anaiyses                      | Result     | DL   | Quar | Units | DF     | Date Analyzed       |
|-------------------------------|------------|------|------|-------|--------|---------------------|
| 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC- | DCE-1,1DCE | тс   | )-15 |       |        | Analyst: RJI        |
| 1,1,1-Trichloroethane         | < 0.82     | 0.82 |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| 1,1,2,2-Tetrachioroethane     | < 1.0      | 1.0  |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| 1,1,2-Trichloroethane         | < 0.82     | 0.82 |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| 1,1-Dichloroethane            | < 0.61     | 0.61 |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| 1,1-Dichloroethene            | < 0.16     | 0.16 |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| 1.2.4-Trichlorobenzene        | < 1.1      | 1.1  |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| 1,2,4-Trimethylbenzene        | 0.54       | 0.74 | Ŀ    | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| 1,2-Dibromoethane             | < 1.2      | 1.2  |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| 1,2-Dichlorobenzene           | < 0.90     | 0.90 |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| 1,2-Dichloroethane            | < 0.61     | 0.61 |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| 1,2-Dichtoropropane           | < 0.69     | 0.69 |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| 1,3,5-Trimethylbenzene        | 0.54       | 0.74 | J.   | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| 1,3-butadiene                 | < 0.33     | 0.33 |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| 1,3-Dichlorobenzene           | < 0.90     | 0.90 |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| 1,4-Dichlorobenzene           | < 0.90     | 0.90 |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| 1,4-Dioxane                   | < 1.1      | 1.1  |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| 2,2,4-trimethylpentane        | < 0.70     | 0.70 |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| 4-ethyltoluene                | < 0.74     | 0.74 |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| Acetone                       | 32         | 7.1  |      | ug/m3 | 10     | 4/2/2020 3:46:00 AM |
| Allyl chloride                | < 0.47     | 0.47 |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| Benzene                       | 0.73       | 0.48 |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| Benzyl chloride               | < 0.86     | 0.86 |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| Bromodichloromethane          | < 1.0      | 1.0  |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| Bromoform                     | < 1.6      | 1.6  |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| Bromomethane                  | < 0.58     | 0.58 |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| Carbon disulfide              | 0.44       | 0.47 | 3    | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| Carbon tetrachloride          | 0.57       | 0.19 |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| Chlorobenzene                 | < 0.69     | 0.69 |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| Chloroethane                  | < 0.40     | 0.40 |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| Chloroform                    | < 0.73     | 0.73 |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| Chloromethane                 | 0.83       | 0.31 |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| cis-1,2-Dichloroethene        | 0.16       | 0.16 |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| cis-1,3-Dichloropropene       | < 0.68     | 0.68 |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| Cyclohexane                   | < 0.52     | 0.52 |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| Dibromochloromethane          | < 1.3      | 1.3  |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| Ethyl acetate                 | 0.47       | 0.54 | J    | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| Ethylbenzene                  | < 0.65     | 0.65 |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| Freon 11                      | 4.2        | 0.84 |      | ug/m3 | ,<br>1 | 4/1/2020 5:42:00 PM |
| Freon 113                     | < 1.1      | 1.1  |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |
| Freon 114                     | < 1.0      | 1.0  |      | ug/m3 | 1      | 4/1/2020 5:42:00 PM |

В Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated,

s Spike Recovery outside accepted recovery limits Е Estimated Value above quantitation range J

Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection Detection Limit DL

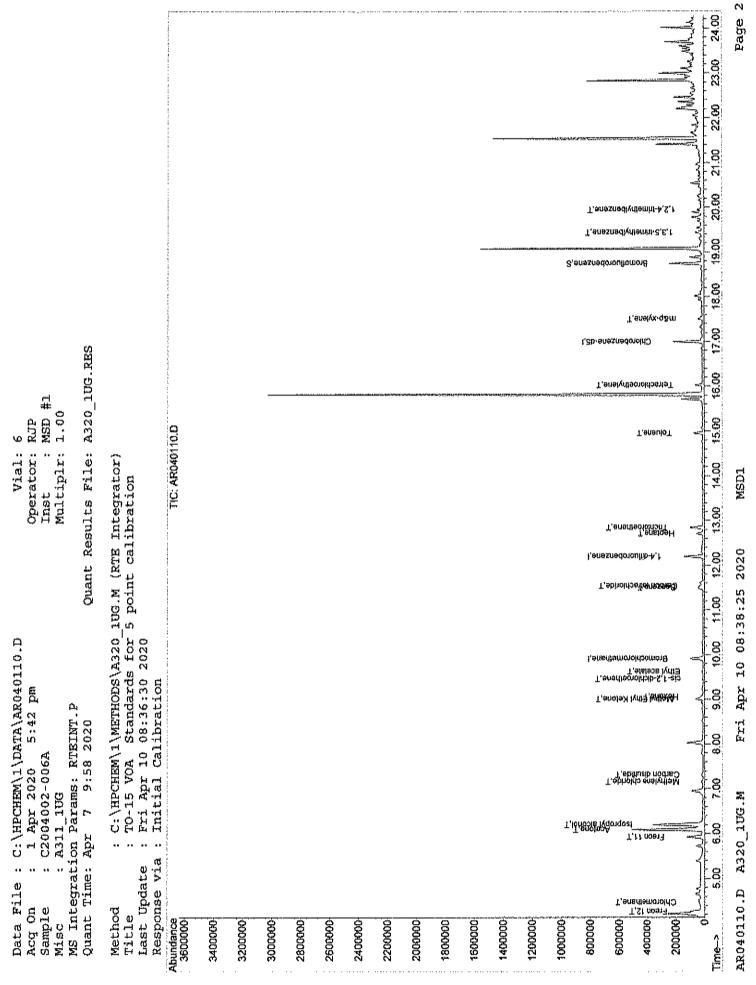
Page 11 of 24

Page 180 of 380

Date: 10-Apr-20

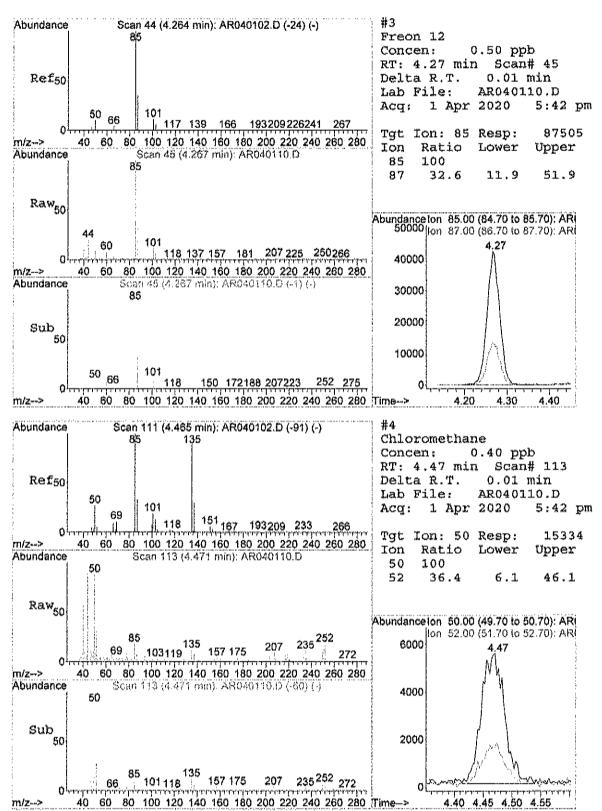
| CLIENT:    | Geovation Engineering, Inc. | Client Sample 1D: | 609       |
|------------|-----------------------------|-------------------|-----------|
| Lab Order: | C2004002                    | Tag Number:       | 157,374   |
| Project:   | Grant Hardware              | Collection Date:  | 3/28/2020 |
| Lab ID:    | C2004002-006A               | Matrix:           | AIR       |
|            |                             |                   |           |

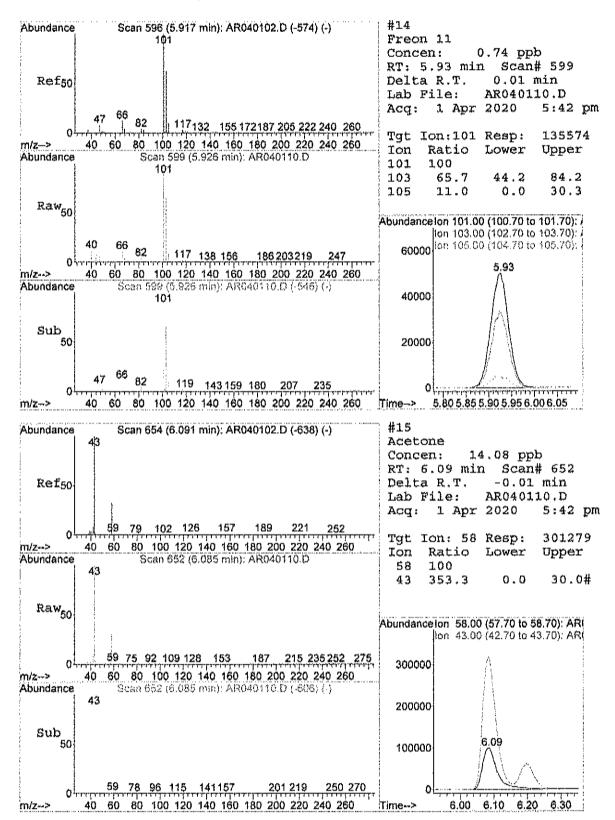
| Analyses                                | Result | DL    | Qual | Units | DF | Date Analyzed       |  |
|-----------------------------------------|--------|-------|------|-------|----|---------------------|--|
| 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE |        | TO-15 |      |       |    | Analyst: RJF        |  |
| Freon 12                                | 2.5    | 0.74  |      | ug/m3 | 1  | 4/1/2020 5:42:00 PM |  |
| Heptane                                 | 0.86   | 0.61  |      | ug/m3 | 1  | 4/1/2020 5:42:00 PM |  |
| Hexachloro-1,3-butadlene                | < 1.6  | 1,6   |      | ug/m3 | 1  | 4/1/2020 5:42:00 PM |  |
| Hexane                                  | 0.56   | 0.53  |      | ug/m3 | 1  | 4/1/2020 5:42:00 PM |  |
| Isopropyl alcohol                       | 20     | 3.7   |      | ug/m3 | 10 | 4/2/2020 3:46:00 AM |  |
| m&p-Xylene                              | 0.87   | 1.3   | J    | ug/m3 | 1  | 4/1/2020 5:42:00 PM |  |
| Methyl Butyl Ketone                     | < 1.2  | 1.2   |      | ug/m3 | 1  | 4/1/2020 5:42:00 PM |  |
| Methyl Ethyl Ketone                     | 4,2    | 0.88  |      | ug/m3 | 1  | 4/1/2020 5:42:00 PM |  |
| Methyl Isobutyl Ketone                  | < 1.2  | 1.2   |      | ug/m3 | 1  | 4/1/2020 5:42:00 PM |  |
| Methyl tert-butyl ether                 | < 0.54 | 0.54  |      | ug/m3 | 1  | 4/1/2020 5:42:00 PM |  |
| Methylene chloride                      | 0.69   | 0,52  |      | ug/m3 | 1  | 4/1/2020 5:42:00 PM |  |
| o-Xylene                                | < 0.65 | 0.65  |      | ug/m3 | 1  | 4/1/2020 5:42:00 PM |  |
| Propylene                               | < 0.26 | 0.26  |      | ug/m3 | 1  | 4/1/2020 5:42:00 PM |  |
| Styrene                                 | < 0.64 | 0.64  |      | ug/m3 | 1  | 4/1/2020 5:42:00 PM |  |
| Tetrachloroethylene                     | 1.4    | 1.0   |      | ug/m3 | 1  | 4/1/2020 5:42:00 PM |  |
| Tetrahydrofuran                         | < 0.44 | 0.44  |      | ug/m3 | 1  | 4/1/2020 5:42:00 PM |  |
| Toluene                                 | 1.5    | 0.57  |      | ug/m3 | 1  | 4/1/2020 5:42:00 PM |  |
| trans-1,2-Dichloroethene                | < 0.59 | 0.59  |      | ug/m3 | 1  | 4/1/2020 5:42:00 PM |  |
| trans-1,3-Dichloropropene               | < 0.68 | 0.68  |      | ug/m3 | 1  | 4/1/2020 5:42:00 PM |  |
| Trichloroethene                         | 3.6    | 0,16  |      | ug/m3 | 1  | 4/1/2020 5:42:00 PM |  |
| Vinyl acetate                           | < 0.53 | 0.53  |      | ug/m3 | 1  | 4/1/2020 5:42:00 PM |  |
| Vinyl Bromide                           | < 0.66 | 0.66  |      | ug/m3 | 1  | 4/1/2020 5:42:00 PM |  |
| Vinyl chloride                          | < 0.10 | 0.10  |      | ug/m3 | 1  | 4/1/2020 5:42:00 PM |  |


| Qualifiers: | $\mathbf{SC}$ | Sub-Contracted                                     |    | Results reported are not blank corrected  |               |
|-------------|---------------|----------------------------------------------------|----|-------------------------------------------|---------------|
|             | В             | Analyte detected in the associated Method Blank    | £  | Estimated Value above quantitation range  | c             |
|             | н             | Holding times for preparation or analysis exceeded | Ĵ  | Analyte detected below quantitation limit | :             |
|             | JN            | Non-routine analyte. Quantitation estimated.       | ND | Not Detected at the Limit of Detection    |               |
|             | S             | Spike Recovery outside accepted recovery limits    | DL | Detection Limit                           | Page 12 of 24 |

Page 12 of 24

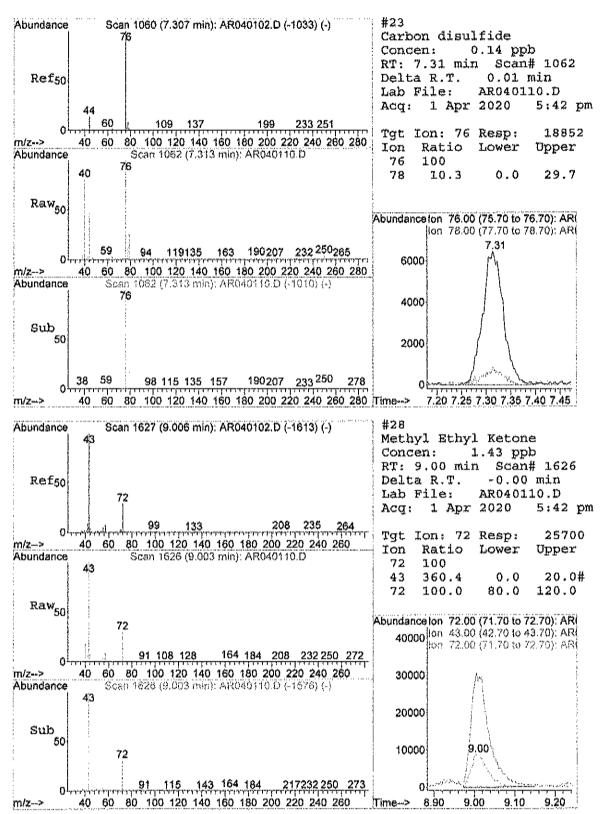
.....

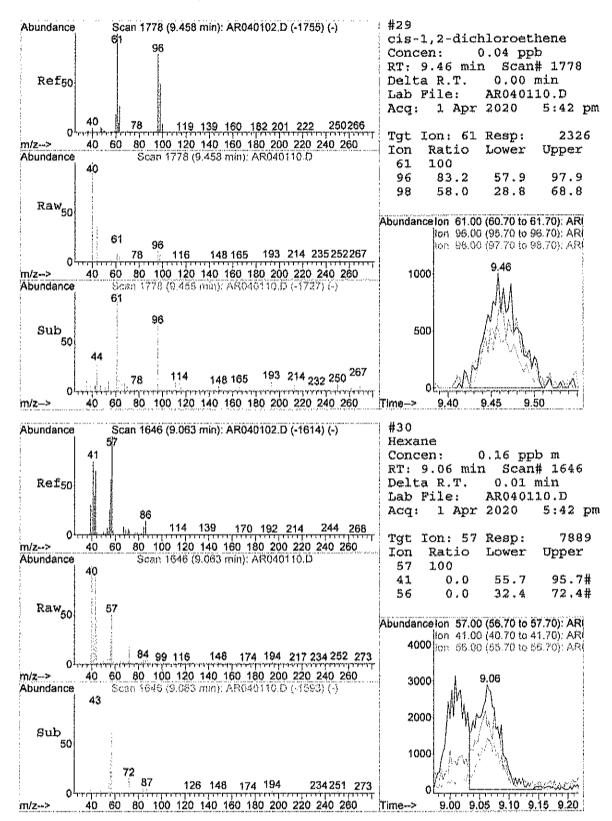

| Centek Laboratories, LLC                                                                                                                                                                                                                  |                        |                   |                                                     |                                                |                    |             |                      |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|-----------------------------------------------------|------------------------------------------------|--------------------|-------------|----------------------|--|--|
|                                                                                                                                                                                                                                           | Quantitati             | ion Rej           | port (Q'                                            | r Review                                       | ved)               |             |                      |  |  |
| Data File : C:\HPCHEM\1\DATA\2<br>Acq On : 1 Apr 2020 5:42<br>Sample : C2004002-006A<br>Misc : A311_1UG<br>MS Integration Params: RTEINT<br>Quant Time: Apr 07 09:26:16 20                                                                | 2 pm                   | Qua               | In.<br>Mu                                           | Vial:<br>erator:<br>st :<br>ltiplr;<br>s File: | RJP<br>MSD<br>1.00 |             | RES                  |  |  |
| Quant Method : C:\HPCHEM\1\METHODS\A320_1UG.M (RTE Integrator)<br>Title : TO-15 VOA Standards for 5 point calibration<br>Last Update : Mon Mar 23 08:34:44 2020<br>Response via : Initial Calibration<br>DataAcq Meth : 1UG_ENT           |                        |                   |                                                     |                                                |                    |             |                      |  |  |
| Internal Standards                                                                                                                                                                                                                        |                        |                   |                                                     |                                                |                    |             |                      |  |  |
| 1) Bromochloromethane<br>35) 1,4-difluorobenzene<br>50) Chlorobenzene-d5                                                                                                                                                                  | 9.91<br>12.19<br>17.00 | 128<br>114<br>117 | 39234<br>146232<br>138843                           | 1.00<br>1.00<br>1.00                           | ppb<br>ppb<br>ppb  | (<br>(<br>( | 0.01<br>0.00<br>0.00 |  |  |
| System Monitoring Compounds<br>65) Bromofluorobenzene<br>Spiked Amount 1.000                                                                                                                                                              | 18.74                  |                   | 91464<br>Recove:                                    |                                                |                    |             | 0.00                 |  |  |
| Target Compounds                                                                                                                                                                                                                          |                        |                   |                                                     |                                                |                    | Qva.        |                      |  |  |
| 3) Freon 12<br>4) Chloromethane<br>14) Freon 11                                                                                                                                                                                           | 4.27                   | 85                |                                                     | 0.50                                           | ppb                |             | 99                   |  |  |
| 4) Chioromethane<br>14) Freon 11                                                                                                                                                                                                          | 4.47<br>5.93           | 50<br>101         | 15334                                               | 0.40                                           | oqq                |             | 80<br>98             |  |  |
|                                                                                                                                                                                                                                           |                        | 58                | 135574<br>301279                                    | 14.08                                          | ppb                | #           | 100                  |  |  |
| 15) Acetone<br>17) Isopropyl alcohol<br>21) Methylene chloride                                                                                                                                                                            | 6.19                   |                   | 476206                                              | 9.48                                           | dqq                | #           | 1                    |  |  |
| 21) Methylene chloride                                                                                                                                                                                                                    | 6.19<br>7.15           | 84                | 476206<br>8868                                      | 0.20                                           | dqq                |             | 90                   |  |  |
| 23) Carbon disulfide<br>28) Methyl Ethyl Ketone                                                                                                                                                                                           | 7.31                   | 76                | 18852                                               | 0.14                                           | nnb                |             | 98                   |  |  |
| 28) Methyl Ethyl Ketone                                                                                                                                                                                                                   | 9.00                   | 72                | 18852<br>25700<br>2326<br>7889m x<br>10509<br>12234 | 1.43                                           | ppb                | #           | 100                  |  |  |
| 29) cis-1,2-dichloroethene                                                                                                                                                                                                                | 9.46                   | 61                | 2326                                                | 0.04                                           |                    |             | 91                   |  |  |
| 30) Hexane<br>31) Ethyl acetate<br>38) Carbon tetrachloride                                                                                                                                                                               | 9.06                   | 57                | 7889m 🖈                                             | Sp 0.16                                        | ppp                |             | 95                   |  |  |
| 38) Carbon tetrachloride                                                                                                                                                                                                                  | 9.62<br>11.55          | 43                | 10009                                               | 0.13                                           |                    |             | 98                   |  |  |
| 39) Banyana                                                                                                                                                                                                                               | 13 51                  | 78                | 28324                                               | 0.23                                           |                    |             | 98                   |  |  |
| 43) Heptane                                                                                                                                                                                                                               | 12.71                  | 43                | 10350                                               | 0.21                                           |                    |             | 52                   |  |  |
| 44) Trichloroethene                                                                                                                                                                                                                       | 12.85                  | 130               | 28324<br>10350<br>41058<br>32037<br>13990           | 0.67                                           |                    |             | 99                   |  |  |
| 51) Toluene                                                                                                                                                                                                                               | 14,96                  | 92                | 32037                                               | 0.39                                           |                    |             | 99                   |  |  |
| 56) Tetrachloroethylene                                                                                                                                                                                                                   | 16.02                  | 164               | 13990                                               | 0.20                                           | ppb                |             | 98                   |  |  |
| 59) m&p-xylene                                                                                                                                                                                                                            | 17.50                  | 91                | 29805                                               | 0.20                                           | dqq                |             | 97                   |  |  |
| <ul> <li>38) Carbon tetrachioride</li> <li>39) Benzene</li> <li>43) Heptane</li> <li>44) Trichloroethene</li> <li>51) Toluene</li> <li>56) Tetrachloroethylene</li> <li>59) m&amp;p-xylene</li> <li>70) 1,3,5-trimethylbenzene</li> </ul> | 19.43                  | 105               | 21467m 🖌                                            | $\sim 0.11$                                    | ppb                |             | 06                   |  |  |
| 71) 1,2,4-trimethylbenzene                                                                                                                                                                                                                | 19.95                  | 105               | 17719                                               | 0.11                                           | ದರ್ಧ               |             | 96                   |  |  |


(#) = qualifier out of range (m) = manual integration (+) = signals summed AR040110.D A320\_1UG.M Fri Apr 10 08:38:24 2020 MSD1



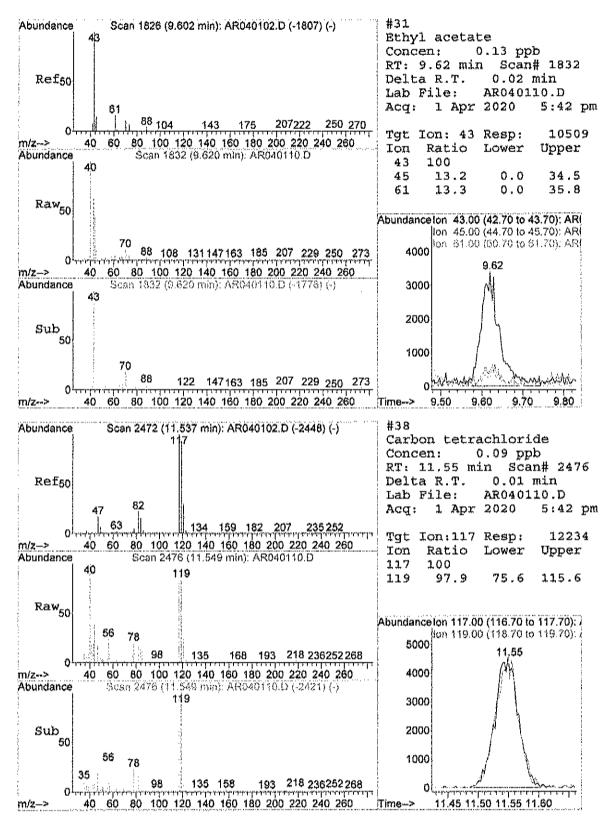

Page 183 of 380





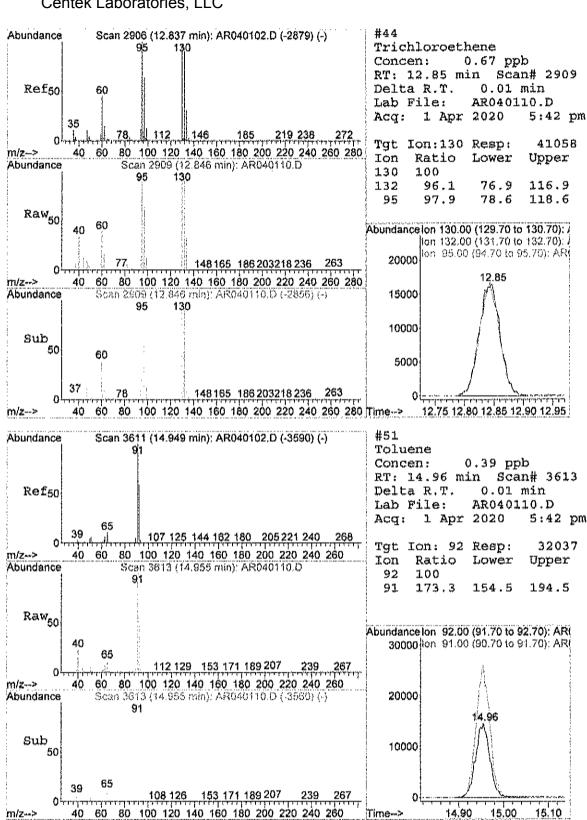


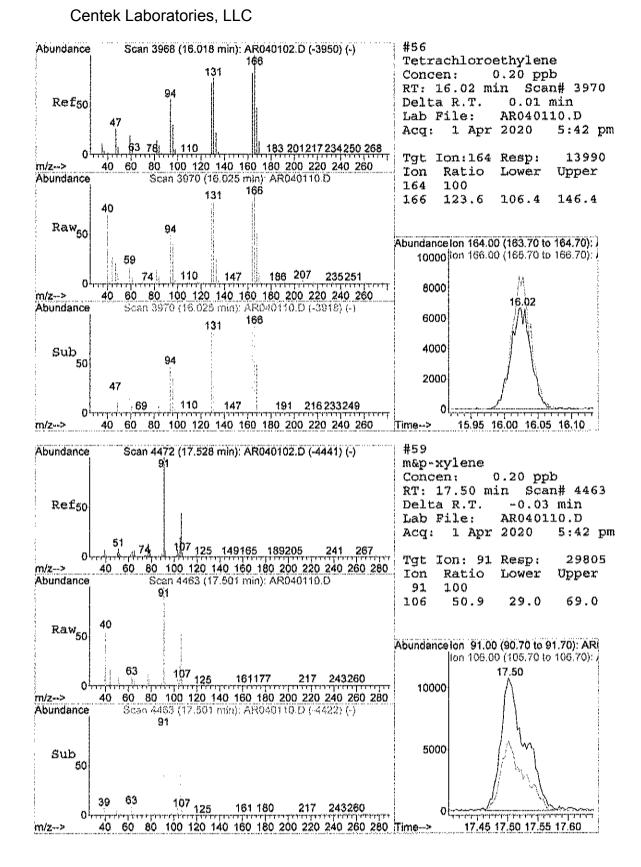










AR040110.D A320\_1UG.M


Page 7

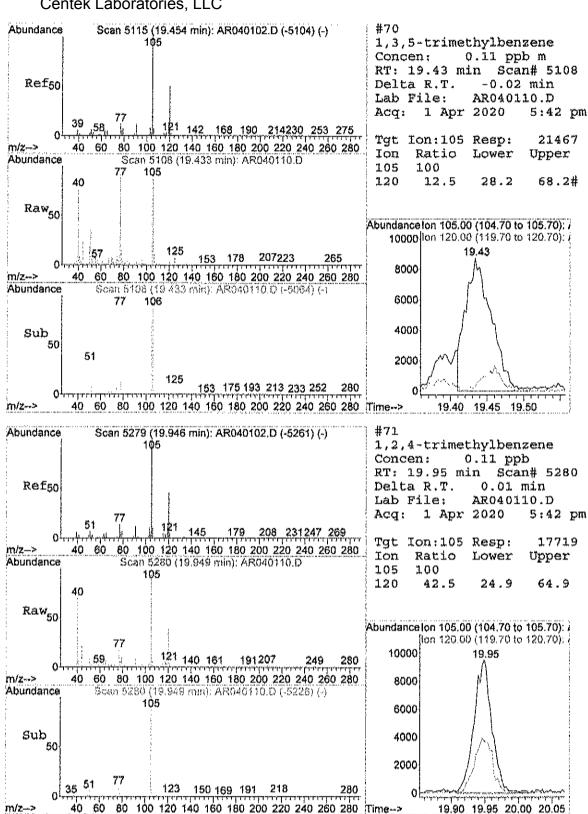


Page 8

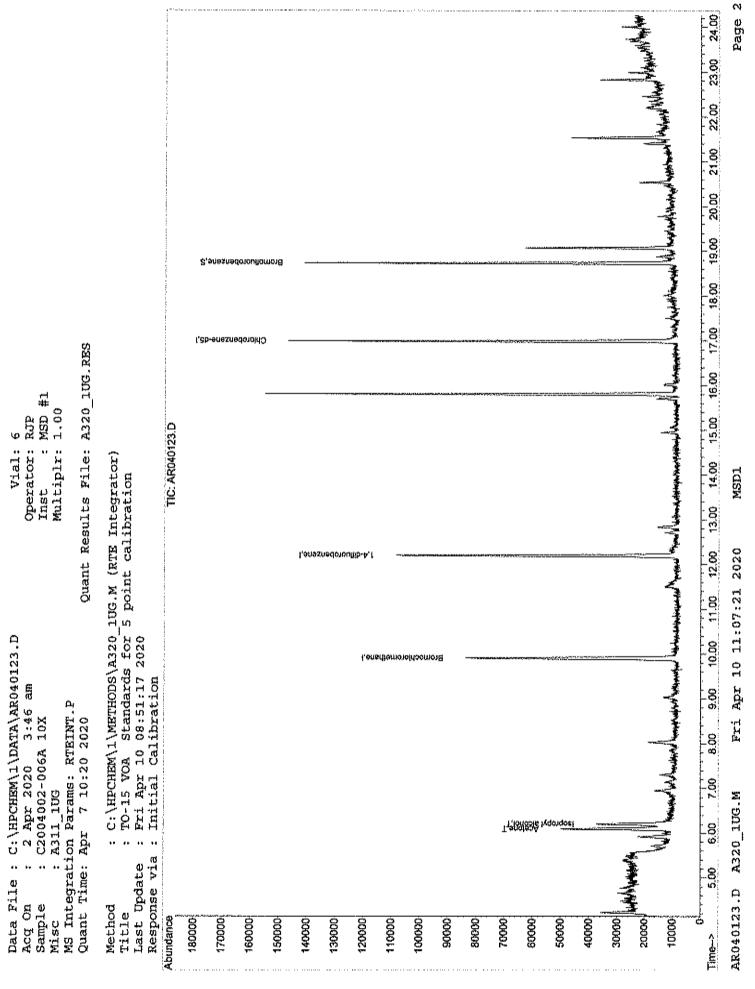




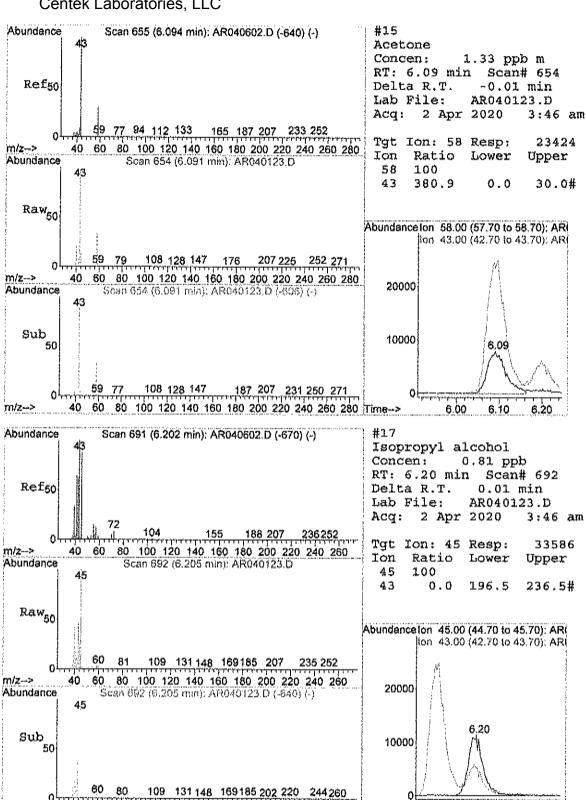



#### AR040110.D A320\_1UG.M

Fri Apr 10 08:38:34 2020


MSD1

Page 11


Page 192 of 380



Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AR040123.D Vial: 6 Acq On : 2 Apr 2020 3:46 am Sample : C2004002-006A 10X Misc : A311\_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 07 09:26:29 2020 Quant Results File: A320\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 23 08:34:44 2020 Response via : Initial Calibration DataAcq Meth : 1UG ENT Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.91128322881.00ppb0.0035) 1,4-difluorobenzene12.191141066851.00ppb0.0050) Chlorobenzene-d516.99117948531.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.74 95 50097 0.74 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 74.00% Target Compounds Qvalue 15) Acetone 6.09 58 23424m KOp 1.33 ppb 17) Isopropyl alcohol 6.20 33586 0.81 ppb # 45 1



Page 195 of 380



40 60

m/z-->

Time-->

6.10

6.20

6.30

6.40

80 100 120 140 160 180 200 220 240 260

Date: 10-Apr-20

| CLIENT;           | Geovation Engineerin | ig, Inc. |                  | C    | lient Sample ID: | 611    |                     |  |
|-------------------|----------------------|----------|------------------|------|------------------|--------|---------------------|--|
| Lab Order:        | C2004002             |          |                  |      | Tag Number:      | 130,31 | 75                  |  |
| Project:          | Grant Hardware       |          |                  |      | Collection Date: | 3/28/2 | 020                 |  |
| Lab ID:           | C2004002-007A        |          |                  |      | Matrix:          | : AIR  |                     |  |
| Analyses          |                      | Result   | DL               | Qual | Units            | DF     | Date Analyzed       |  |
| FIELD PARAMI      | ETERS                |          | F                | LD   |                  |        | Analyst:            |  |
| Lab Vacuum In     |                      | -8       |                  |      | "Hg              |        | 4/1/2020            |  |
| Lab Vacuum Ou     | ut                   | -30      |                  |      | "Нд              |        | 4/1/2020            |  |
| IUG/M3 W/ 0.2     | UG/M3 CT-TCE-VC-DCE  | -1,1DCE  | то               | -15  |                  |        | Analyst: RJI        |  |
| 1,1,1-Trichloroe  | thane                | < 0.15   | 0.15             |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| 1,1,2,2-Tetrachi  | oroethane            | < 0.15   | 0.15             |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| 1,1,2-Trichloroe  | thane                | < 0.15   | 0.15             |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| 1,1-Dichloroetha  | ane                  | < 0.15   | 0.15             |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| 1,1-Dichloroethe  | ene                  | < 0.040  | 0.040            |      | ppb∨             | 1      | 4/1/2020 6:29:00 PM |  |
| 1,2,4-Trichlorob  | enzene               | < 0.15   | 0.15             |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| 1,2,4-Trimethylt  | benzene              | < 0.15   | 0.15             |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| 1,2-Dibromoetha   | ane                  | < 0.15   | 0.15             |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| 1,2-Dichloroben   | zene                 | < 0.15   | 0.15             |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| 1,2-Dichloroetha  | ane                  | < 0.15   | 0.15             |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| 1,2-Dichloroprop  | bane                 | < 0.15   | 0.15             |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| 1,3,5-Trimethylb  | penzene              | < 0.15   | 0.15             |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| 1,3-butadiene     |                      | < 0.15   | 0.15             |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| 1,3-Dichloroben   | zene                 | < 0.15   | 0.15             |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| 1,4-Dichloroben   | zene                 | < 0.15   | 0.15             |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| 1,4-Dioxane       |                      | < 0.30   | 0.30             |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| 2,2,4-trimethylpe | entane               | 0.11     | 0.15             | J    | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| 4-ethyitoluene    |                      | < 0.15   | 0.15             |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| Acetone           |                      | 13       | 3.0              |      | ppbV             | 10     | 4/2/2020 4:32:00 AM |  |
| Allyl chloride    |                      | < 0.15   | 0.15             |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| Benzene           |                      | 0.21     | 0.15             |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| Benzyl chloride   |                      | < 0.15   | 0.15             |      | ppb∨             | 1      | 4/1/2020 6:29:00 PM |  |
| Bromodichlorom    | ethane               | < 0.15   | 0.15             |      | ppb∨             | 1      | 4/1/2020 6:29:00 PM |  |
| Bromoform         |                      | < 0.15   | 0.15             |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| Bromomethane      |                      | < 0.15   | 0.15             |      | ppb∨             | 1      | 4/1/2020 6:29:00 PM |  |
| Carbon disulfide  | 1                    | < 0,15   | 0.15             |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| Carbon tetrachic  | oride                | 0.090    | 0.030            |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| Chlorobenzene     |                      | < 0.15   | 0.15             |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| Chloroethane      |                      | < 0.15   | 0.15             |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| Chloroform        |                      | < 0.15   | 0.15             |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| Chloromethane     |                      | 0.37     | 0.15             |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| cis-1,2-Dichloroe |                      | 0.10     | 0.040            |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| cis-1,3-Dichlorop | propene              | < 0.15   | 0.15             |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| Cyclohexane       |                      | 0.29     | 0.1 <del>5</del> |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| Dibromochlorom    | ethane               | < 0.15   | 0.15             |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |
| Ethyl acetate     |                      | 0.22     | 0.15             |      | ppbV             | 1      | 4/1/2020 6:29:00 PM |  |

Qualifiers:

- SC Sub-Contracted
- $\boldsymbol{B} = \boldsymbol{A} \text{nalyte detected in the associated Method Blank}$
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

DL Detection Limit

Date: 10-Apr-20

| CLIENT:    | Geovation Engineering, Inc. | Client Sample ID: |           |
|------------|-----------------------------|-------------------|-----------|
| Lab Order: | C2004002                    | Tag Number:       | 130,375   |
| Project:   | Grant Hardware              | Collection Date:  | 3/28/2020 |
| Lab ID:    | C2004002-007A               | Matrix:           | AIR       |

| Analyses                     | Result      | DL     | Qual | Units | DF | Date Analyzed       |
|------------------------------|-------------|--------|------|-------|----|---------------------|
| 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC | -DCE-1,1DCE | тс     | )-15 |       |    | Analyst: RJF        |
| Ethylbenzene                 | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 6:29:00 PM |
| Freon 11                     | 0.25        | 0.15   |      | ppbV  | 1  | 4/1/2020 6:29:00 PM |
| Freon 113                    | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 6:29:00 PM |
| Freon 114                    | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 6:29:00 PM |
| Freon 12                     | 0.46        | 0.15   |      | ppbV  | 1  | 4/1/2020 6:29:00 PM |
| Heptane                      | 0.37        | 0.15   |      | ppb∨  | 1  | 4/1/2020 6:29:00 PM |
| Hexachloro-1,3-butadiene     | < 0.15      | 0.15   |      | opoV  | 1  | 4/1/2020 6:29:00 PM |
| Hexane                       | 0.25        | 0.15   |      | Vdqq  | 1  | 4/1/2020 6:29:00 PM |
| Isopropyl alcohol            | 1.7         | 0.15   |      | ppbV  | 1  | 4/1/2020 6:29:00 PM |
| m&p-Xylene                   | 0.28        | 0.30   | J    | ppbV  | 1  | 4/1/2020 6:29:00 PM |
| Methyl Butyl Ketone          | < 0.30      | 0.30   |      | ppbV  | 1  | 4/1/2020 6:29:00 PM |
| Methyl Ethyl Ketone          | 0.58        | 0.30   |      | ppbV  | 1  | 4/1/2020 6:29:00 PM |
| Methyl Isobutyl Ketone       | < 0.30      | 0.30   |      | ppbV  | 1  | 4/1/2020 6:29:00 PM |
| Methyl tert-butyl ether      | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 6:29:00 PM |
| Methylene chloride           | 0.16        | 0.15   |      | ppbV  | 1  | 4/1/2020 6:29:00 PM |
| o-Xylene                     | 0.12        | 0.15   | J    | ppbV  | 1  | 4/1/2020 6:29:00 PM |
| Propylene                    | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 6:29:00 PM |
| Styrene                      | < 0.15      | 0.15   |      | ppb∨  | 1  | 4/1/2020 6:29:00 PM |
| Tetrachloroethylene          | 0.11        | 0.15   | J    | ppbV  | 1  | 4/1/2020 6:29:00 PM |
| Tetrahydrofuran              | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 6:29:00 PM |
| Toluene                      | 0.34        | 0.15   |      | ppbV  | 1  | 4/1/2020 6:29:00 PM |
| trans-1,2-Dichloroethene     | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 6:29:00 PM |
| trans-1,3-Dichloropropene    | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 6:29:00 PM |
| Trichloroethene              | 0.79        | 0.030  |      | ppbV  | 1  | 4/1/2020 6:29:00 PM |
| Vinyl acetate                | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 6:29:00 PM |
| Vinyl Bromide                | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 6:29:00 PM |
| Vinyl chloride               | < 0.040     | 0.040  |      | ppbV  | 1  | 4/1/2020 6:29:00 PM |
| Surr: Bromofluorobenzene     | 84.0        | 70-130 |      | %REC  | 1  | 4/1/2020 6:29:00 PM |

| Qualifiers: | SC | Sub-Contracted                                     | ,  | Results reported are not blank corrected  |               |
|-------------|----|----------------------------------------------------|----|-------------------------------------------|---------------|
|             | в  | Analyte detected in the associated Method Blank    | Е  | Estimated Value above quantitation rang   | e             |
|             | И  | Folding times for preparation or analysis exceeded | J  | Analyte detected below quantitation limit | L             |
|             | JN | Non-routine analyte, Quantitation estimated.       | ND | Not Detected at the Limit of Detection    |               |
|             | S  | Spike Recovery outside accepted recovery limits    | DL | Detection Limit                           | Page 14 of 24 |

Date: 10-Apr-20

| Anolysee   |                       | Decuit  | DI                                            | 0.00 | Theside                 | DE       | <b>N</b> -4- 4-+13 |
|------------|-----------------------|---------|-----------------------------------------------|------|-------------------------|----------|--------------------|
| Lab ID:    | C2004002-007A         |         |                                               |      | Matrix:                 | AIR      |                    |
| Project:   | Grant Hardware        |         |                                               |      | <b>Collection Date:</b> | 3/28/202 | 20                 |
| Lab Order: | C2004002              |         |                                               |      | Tag Number:             | 130,375  |                    |
| CLIENT:    | Geovation Engineering | g, Inc. |                                               | C    | lient Sample ID:        | 611      |                    |
|            |                       |         | 17 19 9771 58 cc <sup>2</sup> cc - constant a |      |                         |          |                    |

| Analyses                     | Result      | DL   | Qual | Units | DF | Date Analyzed       |
|------------------------------|-------------|------|------|-------|----|---------------------|
| 1UG/M3 W/ 0.2UG/M3 CT-TCE-V0 | -DCE-1,1DCE | тс   | -15  |       |    | Analyst: RJF        |
| 1,1,1-Trichloroethane        | < 0.82      | 0.82 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| 1,1,2,2-Tetrachloroethane    | < 1.0       | 1.0  |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| 1,1,2-Trichloroethane        | < 0.82      | 0.82 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| 1,1-Dichloroethane           | < 0.61      | 0.61 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| 1,1-Dichloroethene           | < 0.16      | 0.16 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| 1,2,4-Trichlorobenzene       | < 1.1       | 1.1  |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| 1,2,4-Trimethylbenzene       | < 0.74      | 0.74 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| 1,2-Dibromoethane            | < 1.2       | 1.2  |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| 1,2-Dichlorobenzene          | < 0.90      | 0.90 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| 1,2-Dichloroethane           | < 0.61      | 0.61 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| 1,2-Dichloropropane          | < 0.69      | 0.69 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| 1,3,5-Trimethylbenzene       | < 0.74      | 0.74 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| 1,3-butadiene                | < 0.33      | 0.33 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| 1,3-Dichlorobenzene          | < 0.90      | 0.90 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| 1,4-Dichlorobenzene          | < 0.90      | 0.90 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| 1.4-Dioxane                  | < 1.1       | 1.1  |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| 2,2,4-trimethylpentane       | 0.51        | 0.70 | J    | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| 4-ethyltoluene               | < 0.74      | 0.74 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Acetone                      | 31          | 7.1  |      | ug/m3 | 10 | 4/2/2020 4:32:00 AM |
| Allyl chloride               | < 0.47      | 0.47 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Benzene                      | 0.67        | 0.48 |      | ug/m3 | 1  | 4/1/2020 5:29:00 PM |
| Benzyl chloride              | < 0.86      | 0.86 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Bromodichloromethane         | < 1.0       | 1.0  |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Bromoform                    | < 1.6       | 1.6  |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Bromomethane                 | < 0.58      | 0.58 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Carbon disulfide             | < 0.47      | 0.47 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Carbon tetrachloride         | 0.57        | 0.19 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Chlorobenzene                | < 0.69      | 0.69 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Chloroethane                 | < 0.40      | 0.40 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Chloroform                   | < 0.73      | 0.73 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Chloromethane                | 0.76        | 0.31 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| cis-1,2-Dichloroethene       | 0.40        | 0.16 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| cis-1,3-Dichloropropene      | < 0.68      | 0.68 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Cyclohexane                  | 1.0         | 0.52 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Dibromochloromethane         | < 1.3       | 1.3  |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Ethyl acetate                | 0.79        | 0.54 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Ethylbenzene                 | < 0.65      | 0.65 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Freon 11                     | 1.4         | 0.84 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Freon 113                    | < 1.1       | 1.1  |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Freon 114                    | < 1.0       | 1.0  |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |

Analyte detected in the associated Method Blank В

Н Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated,

S Spike Recovery outside accepted recovery limits Е Estimated Value above quantitation range j

Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

DL Detection Limit

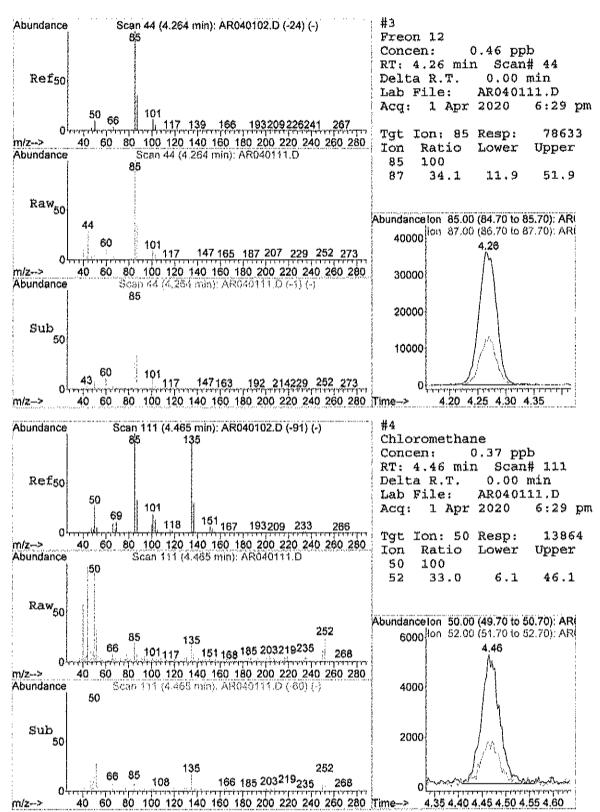
Page 13 of 24

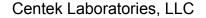
Date: 10-Apr-20

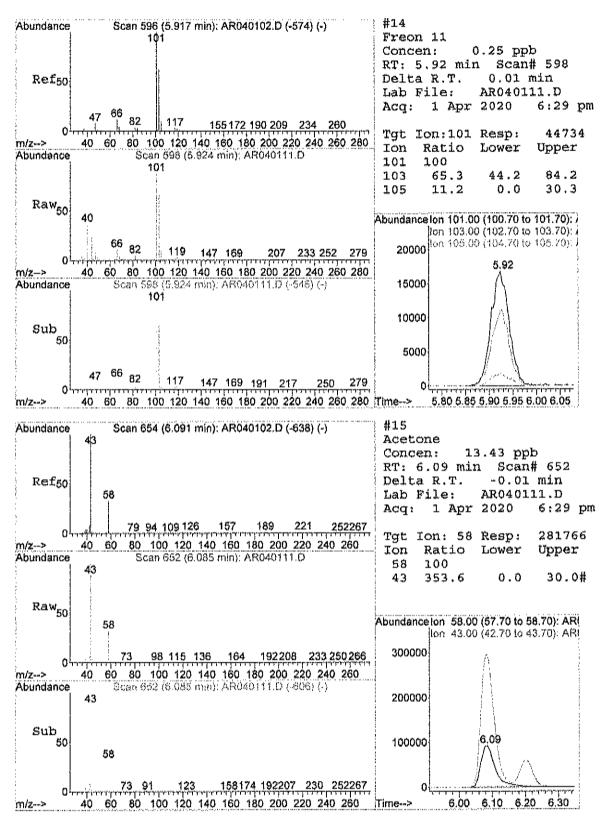
| Analyses   | 02004002-007A             | Result | DL | Oual                                     | Units                   | DF      | Date Analyzed |
|------------|---------------------------|--------|----|------------------------------------------|-------------------------|---------|---------------|
| Lab ID:    | C2004002-007A             |        |    |                                          | Matrix:                 | AIR     |               |
| Project:   | Grant Hardware            |        |    |                                          | <b>Collection Date:</b> | 3/28/20 | 20            |
| Lab Order: | C2004002                  |        |    |                                          | Tag Number:             | 130,37  | 5             |
| CLIENT:    | Geovation Engineering, In | nc.    |    | C                                        | lient Sample ID:        | 611     |               |
|            |                           |        |    | an a |                         |         |               |

| Analyses                     | Result     | DL   | Qual | Units | DF | Date Analyzed       |
|------------------------------|------------|------|------|-------|----|---------------------|
| 1UG/M3 W/ 0.2UG/M3 CT-TCE-V0 | DCE-1,1DCE | то   | -15  |       |    | Analyst: RJP        |
| Freon 12                     | 2.3        | 0.74 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Heptane                      | 1.5        | 0.61 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Hexachloro-1,3-butadiene     | < 1.6      | 1.6  |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Hexane                       | 0.88       | 0.53 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Isopropyl alcohol            | 4.1        | 0.37 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| m&p-Xylene                   | 1.2        | 1.3  | J    | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Methyl Butyl Ketone          | < 1.2      | 1.2  |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Methyl Ethyl Ketone          | 1.7        | 0.88 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Methyl Isobutył Ketone       | < 1.2      | 1.2  |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Methyi tert-butyl ether      | < 0.54     | 0.54 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Methylene chloride           | 0.56       | 0.52 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| o-Xylene                     | 0.52       | 0.65 | J    | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Propylene                    | < 0.26     | 0.26 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Styrene                      | < 0.64     | 0.64 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Tetrachloroethylene          | 0.75       | 1.0  | Ĵ    | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Tetrahydrofuran              | < 0.44     | 0.44 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Toluene                      | 1.3        | 0.57 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| trans-1,2-Dichloroethene     | < 0.59     | 0.59 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| trans-1,3-Dichloropropene    | < 0.68     | 0.68 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Trichloroethene              | 4.2        | 0.16 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Vinyl acetate                | < 0.53     | 0.53 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Vinyl Bromide                | < 0.66     | 0.66 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |
| Vinyl chloride               | < 0.10     | 0.10 |      | ug/m3 | 1  | 4/1/2020 6:29:00 PM |

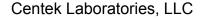
| Qualifiers: | SC | Sub-Contracted                                     | ,   | Results reported are not blank corrected  |               |
|-------------|----|----------------------------------------------------|-----|-------------------------------------------|---------------|
|             | в  | Analyte detected in the associated Method Blank    | E   | Estimated Value above quantitation rang   | C             |
|             | 14 | Holding times for preparation or analysis exceeded | J   | Analyte detected below quantitation limit |               |
|             | JN | Non-routine analyte. Quantitation estimated.       | ND  | Not Detected at the Limit of Detection    |               |
|             | s  | Spike Recovery outside accepted recovery limits    | DL. | Detection Limit                           | Page 14 of 24 |

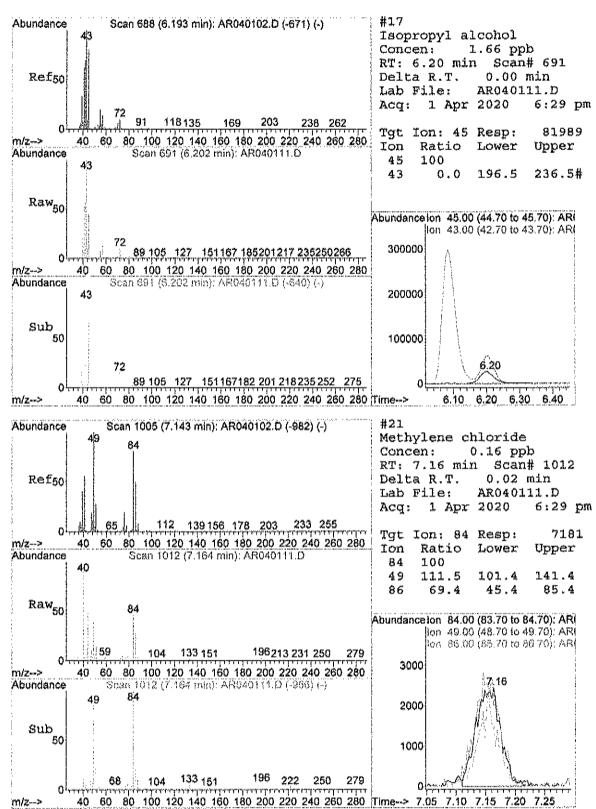

| Centek Laboratories, LL                                                                                                                                                                                                                                                                      | C                              |                                                                                                                                              |                                                                     |                                                 |                    |        |                       |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------|--------------------|--------|-----------------------|--|--|--|
|                                                                                                                                                                                                                                                                                              | Quantitati                     | ion Rej                                                                                                                                      | port (C                                                             | T Review                                        | ved)               |        |                       |  |  |  |
| Data File : C:\HPCHEM\1\DATA\A<br>Acq On : 1 Apr 2020 6:29<br>Sample : C2004002-007A<br>Misc : A311_1UG<br>MS Integration Params: RTEINT,<br>Quant Time: Apr 07 09:26:17 20                                                                                                                  | , p                            | Qui                                                                                                                                          | In<br>Mu                                                            | Vial:<br>perator:<br>st :<br>ltiplr:<br>s File: | RJP<br>MSD<br>1.00 |        | res                   |  |  |  |
| Quant Method : C:\HPCHEM\1\METHODS\A320_1UG.M (RTE Integrator)<br>Title : TO-15 VOA Standards for 5 point calibration<br>Last Update : Mon Mar 23 08:34:44 2020<br>Response via : Initial Calibration<br>DataAcq Meth : 1UG_ENT<br>Internal Standards R.T. QIon Response Conc Units Dev(Min) |                                |                                                                                                                                              |                                                                     |                                                 |                    |        |                       |  |  |  |
| Internal Standards                                                                                                                                                                                                                                                                           |                                |                                                                                                                                              |                                                                     |                                                 |                    |        |                       |  |  |  |
| 1) Bromochloromethane<br>35) 1,4-difluorobenzene<br>50) Chlorobenzene-d5                                                                                                                                                                                                                     | 9.91<br>12.20<br>17.00         | 128<br>114<br>117                                                                                                                            | 38484<br>144558<br>138867                                           | 1.00<br>1.00<br>1.00                            | ppb<br>ppb         |        | 1.00<br>).00<br>).00  |  |  |  |
| System Monitoring Compounds<br>65) Bromofluorobenzene<br>Spiked Amount 1.000                                                                                                                                                                                                                 |                                |                                                                                                                                              | 83980<br>Recove                                                     |                                                 |                    |        | 0.00                  |  |  |  |
| Target Compounds<br>3) Freon 12<br>4) Chloromethane                                                                                                                                                                                                                                          | 4.26<br>4.46                   | 85<br>50                                                                                                                                     | 78633<br>13864                                                      | 0.46<br>0.37                                    | ppb<br>ppb         | Qval   | 96                    |  |  |  |
| 14) Freen 11<br>15) Acetone<br>17) Isopronyl alcohol                                                                                                                                                                                                                                         | 4.46<br>5.92<br>6.09<br>6.20   | <b><u><u><u></u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></b> | 7 M I 7 M M                                                         | 0.25<br>13.43<br>1.66                           | dqq<br>dqq<br>dqq  | #<br># | 1                     |  |  |  |
| 21) Methylene chloride<br>28) Methyl Ethyl Ketone<br>29) cis-1,2-dichloroethene                                                                                                                                                                                                              | 9.01                           | 84<br>72<br>61                                                                                                                               | 81989<br>7181<br>10117<br>5027<br>12316<br>17574                    | 0.16<br>0.58<br>0.10                            | ppb<br>dqq<br>ppb  | #      | 92<br>100<br>94<br>79 |  |  |  |
| 30) Hexane<br>31) Ethyl acetate<br>37) Cyclohexane<br>38) Carbon tetrachloride                                                                                                                                                                                                               | 9.07<br>9.61<br>11.61<br>11.55 | 57<br>43<br>56<br>137                                                                                                                        | 17574<br>13440m<br>11991                                            | 0.25<br>0.22<br>()<br>0.29<br>0.09              | ppp                | #      | 93<br>93              |  |  |  |
| 39) Benzene<br>42) 2,2,4-trimethylpentane<br>43) Heptane                                                                                                                                                                                                                                     | 11.51<br>12.38                 | 78<br>57                                                                                                                                     | 24970<br>16862<br>18217<br>48208                                    | 0.21<br>0.11<br>0.37                            | ppb<br>ppb         |        | 96<br>72<br>47        |  |  |  |
| 43) heptane<br>44) Trichloroethene<br>51) Toluene<br>56) Tetrachloroethylene                                                                                                                                                                                                                 | 12.84<br>14.96<br>16.03        | 130<br>92<br>164                                                                                                                             | 24970<br>16862<br>18217<br>48208<br>27949<br>7332<br>42882<br>21506 | 0.79<br>0.34<br>0.11                            | dqq<br>dqq         |        | 97<br>100<br>99       |  |  |  |
| 58) map-xylene<br>63) o-xylene                                                                                                                                                                                                                                                               | 17.50<br>18.03                 | 91<br>91                                                                                                                                     | 42882<br>21506                                                      | 0.28                                            | dqq                |        | 99<br>95              |  |  |  |

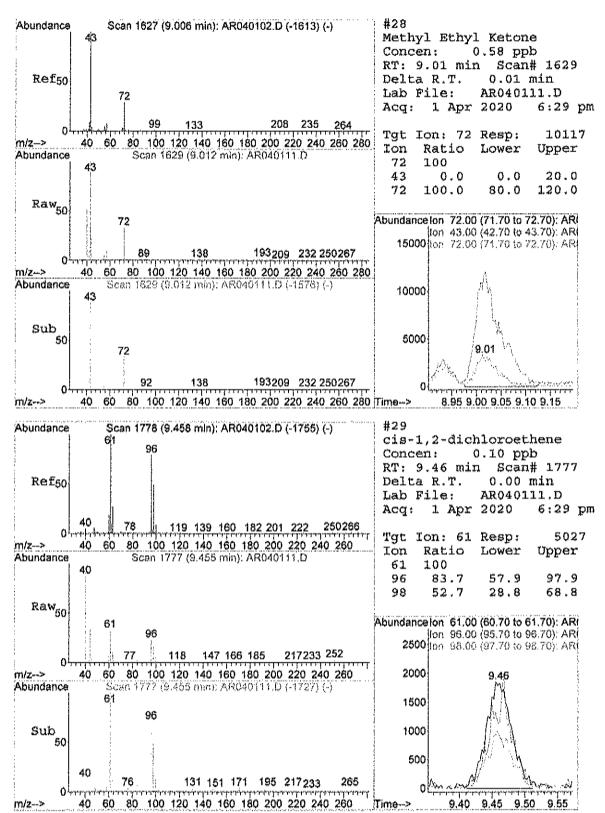

(#) = qualifier out of range (m) = manual integration (+) = signals summed AR040111.D A320\_1UG.M Fri Apr 10 08:38:38 2020 MSD1

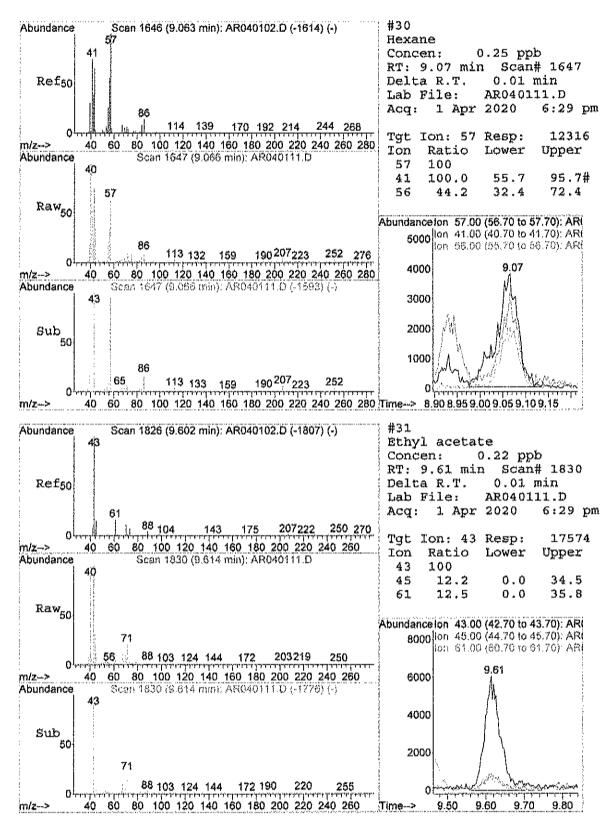

|                                                                                                                                       |                                                                                                        | ······             |         |         | 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - | 2912 - 1 <sup>91</sup> 0000 m |       |                          |         |                                                           |                    |                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ţ           | 24.00  | je 2        |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------|---------|---------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|-------|--------------------------|---------|-----------------------------------------------------------|--------------------|---------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|-------------|
|                                                                                                                                       |                                                                                                        |                    |         |         |                                                                                                                 |                               |       |                          |         |                                                           |                    |                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |        | Page        |
|                                                                                                                                       |                                                                                                        |                    |         |         |                                                                                                                 |                               |       |                          |         |                                                           |                    |                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ł           | 23.00  |             |
|                                                                                                                                       |                                                                                                        |                    |         |         |                                                                                                                 |                               |       |                          |         |                                                           |                    |                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | 22.00  |             |
|                                                                                                                                       |                                                                                                        |                    |         |         |                                                                                                                 |                               |       |                          |         |                                                           |                    |                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | خلين        | 21.00  |             |
|                                                                                                                                       |                                                                                                        |                    |         |         |                                                                                                                 |                               |       |                          |         |                                                           |                    |                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ł           | 20.00  |             |
|                                                                                                                                       |                                                                                                        |                    |         |         |                                                                                                                 |                               |       |                          |         |                                                           |                    |                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +<br>ا      | 1      |             |
|                                                                                                                                       |                                                                                                        |                    |         |         |                                                                                                                 |                               |       |                          |         |                                                           |                    |                           |        | 2,enecnedorouliorgong                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - لېزې      | 19.00  |             |
|                                                                                                                                       |                                                                                                        |                    |         |         |                                                                                                                 |                               |       |                          |         |                                                           |                    |                           |        | T.ensiyx-o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ł           | 18.00  |             |
|                                                                                                                                       |                                                                                                        |                    |         |         |                                                                                                                 |                               |       |                          |         |                                                           |                    |                           |        | l,ðb-ensansdorota≎<br>T,ensiγx-q&m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r<br>L      | 8      |             |
| RES.                                                                                                                                  |                                                                                                        |                    |         |         |                                                                                                                 |                               |       |                          |         |                                                           |                    |                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <br>-<br>-  | 44     |             |
| #1.<br>1UG.RES                                                                                                                        |                                                                                                        |                    |         | _       |                                                                                                                 |                               |       | يغير معردانية والارتمالي |         | 17.7940 <b>4</b> 4 10 10 10 10 10 10 10 10 10 10 10 10 10 | 11.774717-020-76-7 | (مىلەر روپ ويلار مىلەر) ب |        | Τ,οιοίχητουοίησειτο)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | 16.00  |             |
| 7<br>RJP<br>MSD<br>1.00<br>1.00                                                                                                       |                                                                                                        | 0.111.D            |         |         |                                                                                                                 |                               |       |                          |         |                                                           |                    |                           |        | T,eneutoT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 15.00  |             |
| Vial:<br>Operator:<br>Inst :<br>Multiplr:<br>Its File:                                                                                | ator)<br>on                                                                                            | TIC: AR040111.D    |         |         |                                                                                                                 |                               |       |                          |         |                                                           |                    |                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | د.<br>ا     | 14.00  | <b>MSD1</b> |
| via<br>Operato<br>Inst<br>Multipl<br>Results Fil                                                                                      | Integrator<br>ibration                                                                                 | UL<br>L            |         |         |                                                                                                                 |                               |       |                          |         |                                                           |                    |                           |        | T,enexcebi<br>T,enexcebi<br>T,enexcebitoid:bit1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | 13.00  | 2.          |
|                                                                                                                                       | (RTE ]<br>t call                                                                                       |                    |         |         |                                                                                                                 |                               |       |                          |         |                                                           |                    |                           |        | l,enesnedoroui)(b.4,1<br>T,enstroqiy(tisinin-4,5,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ļ           | 12.00  | 2020        |
| Quant                                                                                                                                 | <b>#</b>                                                                                               |                    |         |         |                                                                                                                 |                               |       |                          |         |                                                           |                    |                           |        | T.ebholf38提奖的分别转号                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | :      | _           |
|                                                                                                                                       |                                                                                                        |                    |         |         |                                                                                                                 |                               |       |                          |         |                                                           |                    |                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | 11.00  | 08:38:39    |
|                                                                                                                                       | A320<br>5 for<br>2020                                                                                  |                    |         |         |                                                                                                                 |                               |       |                          |         |                                                           |                    |                           |        | T,enertleorolitions,5,2,4±2<br>Ethyt aceteter,T<br>Bromochtornolitionethenet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 10.00  | 10 0        |
| 20401<br>pm                                                                                                                           | loDS/<br>lards<br>5:30                                                                                 |                    |         |         |                                                                                                                 |                               |       |                          |         |                                                           |                    |                           |        | T,enertheorehicities, r.s.c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ļ           | 006    | Apr         |
| C:\HPCHEM\1\DATA\AR040111.D<br>1 Apr 2020 6:29 pm<br>C2004002-007A<br>A311_1UG<br>A311_1UG<br>On Params: RTEINT.P<br>Apr 7 10:00 2020 | C:\HPCHEM\1\METHODS\A320<br>TO-15 VOA Standards for<br>Fri Apr 10 08:36:30 2020<br>Initial Calibration |                    |         |         |                                                                                                                 |                               |       |                          |         |                                                           |                    |                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -<br>-<br>- | 8.00   | Fri 1       |
| EEM\1\D)<br>2020<br>2-007A<br>16<br>ms: RT<br>10:00 :1                                                                                | L Cal<br>L Cal                                                                                         |                    |         |         |                                                                                                                 |                               |       |                          |         |                                                           |                    |                           |        | T,ebhoka อกอเงก์เรลฟ์                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | -8     |             |
| (HPCHEM/1<br>Apr 2020<br>004002-00<br>01110<br>Params: 1<br>Params: 1                                                                 | C:\HPCHEM<br>TO-15 VOA<br>Fri Apr 1<br>Initial C                                                       |                    |         |         |                                                                                                                 |                               |       |                          |         |                                                           |                    |                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4           | -2     | M.Đ         |
| C:\HPCHEM\1\D<br>1 Apr 2020<br>C2004002-007A<br>A311_1UG<br>A311_1UG<br>On Params: RT<br>Apr 7 10:00                                  |                                                                                                        |                    |         |         |                                                                                                                 |                               |       |                          |         |                                                           |                    |                           |        | Freon 11,1<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tangan<br>Tang<br>Tang | 4           | 6.00   | A320_1UG.M  |
|                                                                                                                                       | ate<br>via                                                                                             |                    |         |         |                                                                                                                 |                               |       |                          |         |                                                           |                    |                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ē           | 2.00   | A32         |
| File :<br>Dn :<br>le :<br>itegrat                                                                                                     | od<br>Update<br>Nnse vi                                                                                |                    |         |         |                                                                                                                 |                               |       |                          |         |                                                           |                    |                           |        | T,St roon∃<br>T,enertiernotoitt⊅                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | . un   | 1.D         |
| Data F<br>Acq On<br>Sample<br>Misc<br>MS Int<br>Quant                                                                                 | Method<br>Title<br>Last Upda<br>Response                                                               | Abundance<br>3e+07 | 2.8e+07 | 2.6e+07 | 2.4e+07                                                                                                         | 2.2e+07                       | 2e+07 | 1.8e+07                  | 1.6e+07 | 1.4e+07                                                   | 1.2e+07            | 1e+07                     | 800000 | 6000000<br>4000000<br>2000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | Time-> | AR040111    |

Page 202 of 380

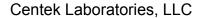


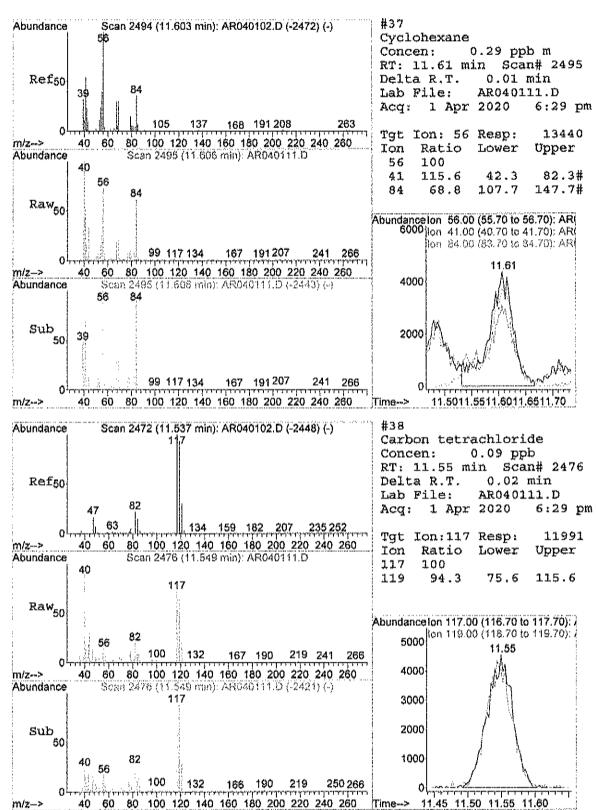



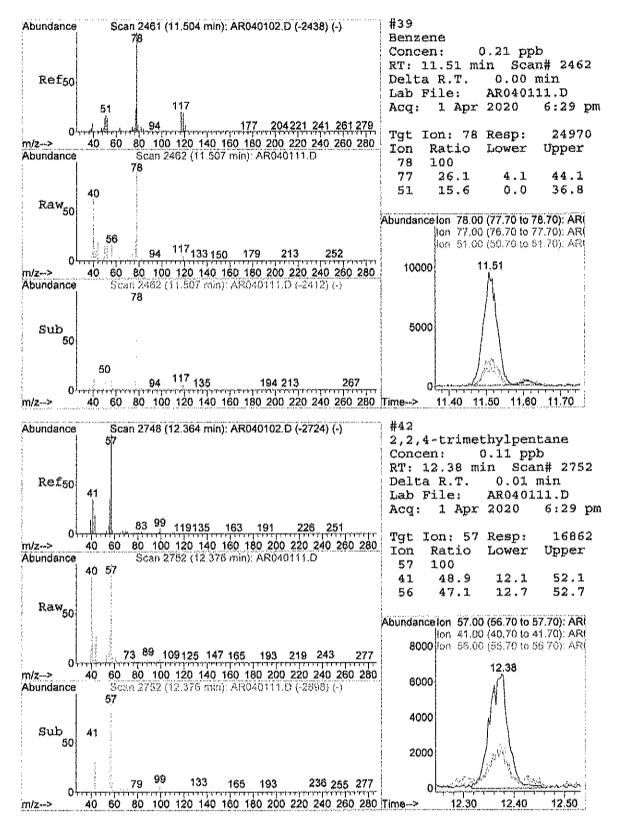

Fri Apr 10 08:38:41 2020

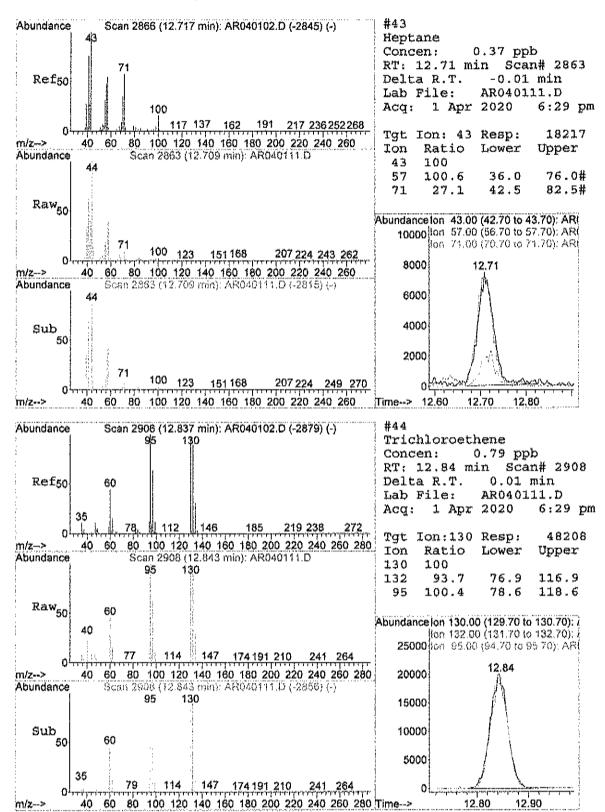


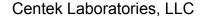



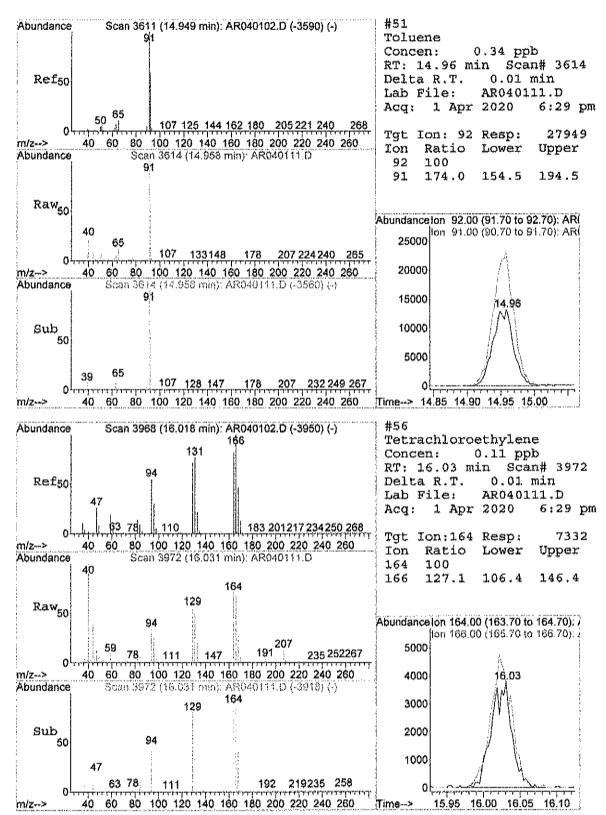






AR040111.D A320\_1UG.M

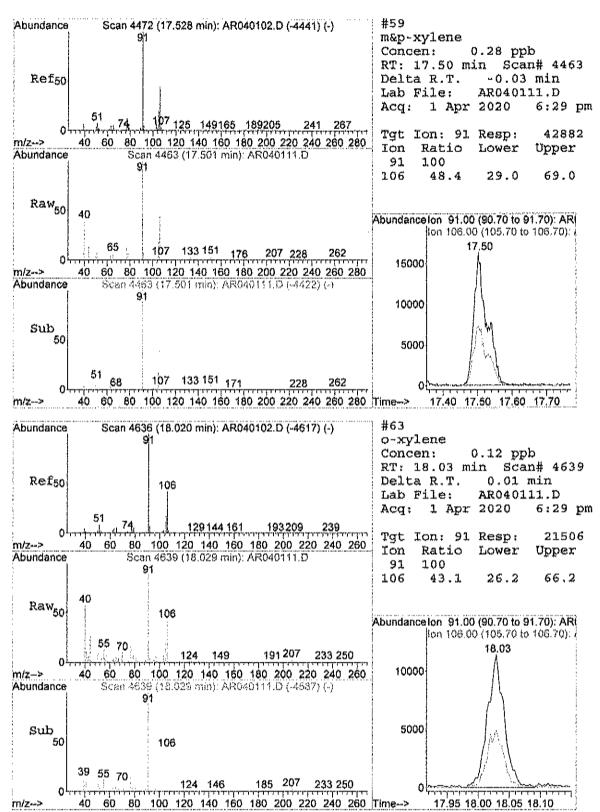




Fri Apr 10 08:38:45 2020

Page 8



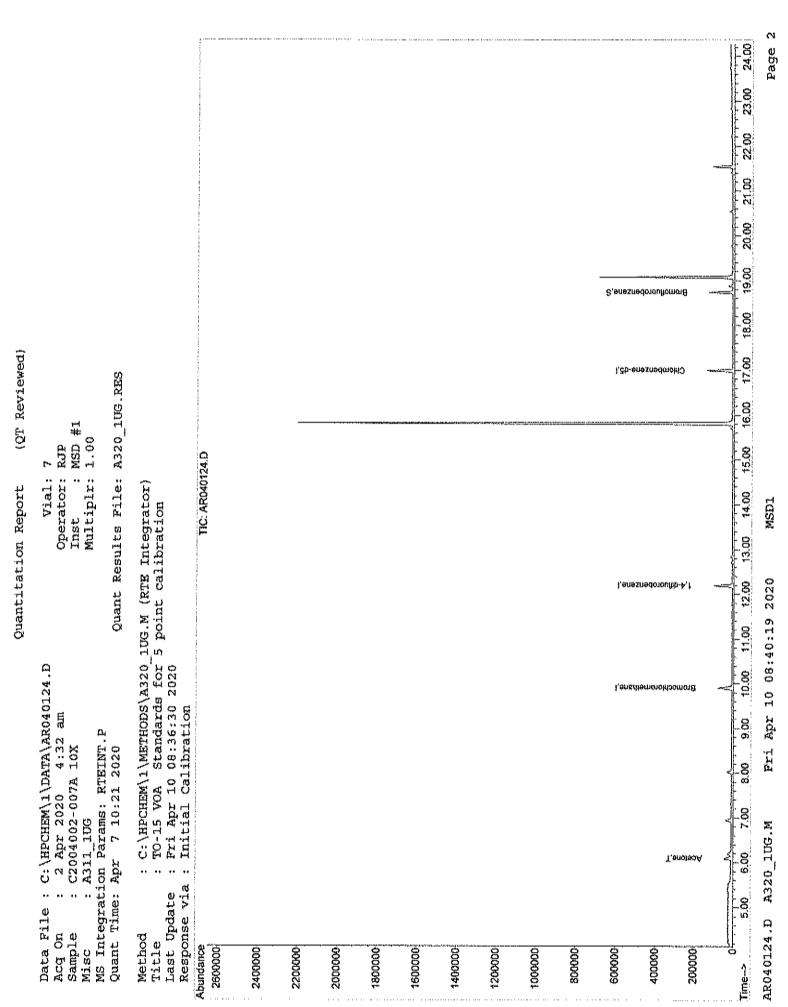




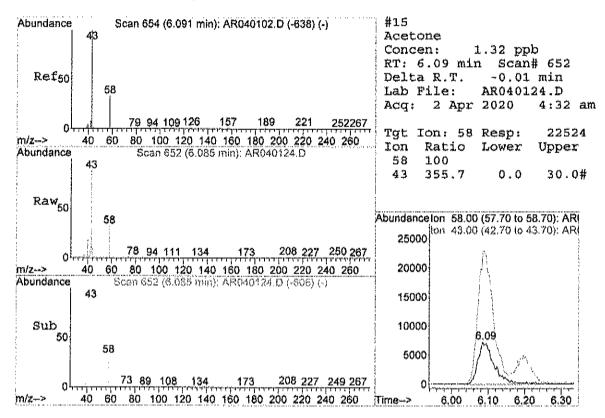



Page 211 of 380






Fri Apr 10 08:38:50 2020


MSD1

Page 212 of 380

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AR040124.D Vial: 7 Acq On : 2 Apr 2020 4:32 am Operator: RJP Sample : C2004002-007A 10X Misc : A311\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 07 09:26:30 2020 Quant Results File: A320\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A320 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 23 08:34:44 2020 Response via : Initial Calibration DataAcq Meth : 1UG\_ENT Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.90128313091.00ppb0.0035) 1,4-difluorobenzene12.191141011261.00ppb0.0050) Chlorobenzene-d516.99117927721.00ppb0.00 System Monitoring Compounds 55) Bromofluorobenzene 18.74 95 47464 0.71 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 71.00% 65) Bromofluorobenzene 0.00 Target Compounds Qvalue 6.09 58 22524 1.32 ppb # 100 15) Acetone



Page 214 of 380



### Date: 10-Apr-20 Centek Laboratories, LLC 1997 Mahadan ang mangkan kanangkanan ang mangkanan ang mangkanan ang manangkan kanangkan kanangkan kanang mang CLIENT: Geovation Engineering, Inc. Client Sample ID: 613 Lab Order: C2004002 Tag Number: 354,440 Collection Date: 3/28/2020 **Project:** Grant Hardware Matrix: AIR Lab ID: C2004002-008A Analyses Result DL Qual Units DF **Date Analyzed** FIELD PARAMETERS FLD Analyst: Lab Vacuum In -8 "Hg 4/1/2020 Lab Vacuum Out -30 "Ha 4/1/2020 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE TO-15 Analyst: RJP ppbV 1,1,1-Trichloroethane < 0.15 0.15 4/1/2020 7:17:00 PM 1 1,1,2,2-Tetrachloroethane < 0.15 0.15 ppbV 4/1/2020 7:17:00 PM 1 1,1,2-Trichloroethane < 0.15 0,15 4/1/2020 7:17:00 PM ppbV 1 1,1-Dichloroethane < 0.15 0.15 ppbV 1 4/1/2020 7:17:00 PM 1.1-Dichloroethene < 0.040 0.040 4/1/2020 7:17:00 PM Vdqq 1 1,2,4-Trichlorobenzene < 0.15 0.15 ppbV 1 4/1/2020 7:17:00 PM 1.2.4-Trimethylbenzene 0.18 0.15 1 4/1/2020 7:17:00 PM ppbV 1,2-Dibromoethane < 0.15 0.15 ppbV 1 4/1/2020 7:17:00 PM 1.2-Dichtorobenzene < 0.15 0.15 opbV 1 4/1/2020 7:17:00 PM 1,2-Dichloroethane < 0.15 0.15 1 Vdqq 4/1/2020 7:17:00 PM 1,2-Dichloropropane < 0.15 0.15 1 4/1/2020 7:17:00 PM ppbV 1,3,5-Trimethylbenzene < 0.15 0.15 Vdog 1 4/1/2020 7:17:00 PM 1.3-butadiene 0.15 < 0.15 ppbV 1 4/1/2020 7:17:00 PM 1,3-Dichlorobenzene < 0.15 0.15 Vdqq 1 4/1/2020 7:17:00 PM 1.4-Dichlorobenzene < 0.15 0.15 1 vaqq 4/1/2020 7:17:00 PM 1,4-Dioxane < 0.30 0.30 opbV 1 4/1/2020 7:17:00 PM 2,2,4-trimethylpentane 0.11 0.15 1 J Vdqq 4/1/2020 7:17:00 PM 4-ethyltoluene < 0.15 0.15 vdqq 1 4/1/2020 7:17:00 PM Acetone 8.6 3.0 ppbV 10 4/2/2020 5:18:00 AM Allyl chloride < 0.15 0.15 ppbV 1 4/1/2020 7:17:00 PM Benzene 0.21 0.15 ppbV 1 4/1/2020 7:17:00 PM Benzyl chloride < 0.15 0.15 ppbV 1 4/1/2020 7:17:00 PM Bromodichloromethane < 0.15 0.15 ppbV 1 4/1/2020 7:17:00 PM Bromoform < 0.15 0.15 ppbV 1 4/1/2020 7:17:00 PM Bromomethane < 0.15 0.15 ppbV 1 4/1/2020 7:17:00 PM Carbon disulfide < 0.15 0.15 1 4/1/2020 7:17:00 PM ppbV Carbon tetrachloride 0.090 0.030 ppbV 1 4/1/2020 7:17:00 PM Chlorobenzene < 0.15 0.15 1 ppb∨ 4/1/2020 7:17:00 PM Chloroethane < 0.15 0.15 1 ppbV 4/1/2020 7:17:00 PM Chloroform 1.6 0.15 ρpbV 1 4/1/2020 7:17:00 PM Chloromethane 0.38 0.15 1 ppbV 4/1/2020 7:17:00 PM cis-1,2-Dichloroethene 0.15 0.040 ppbV 1 4/1/2020 7:17:00 PM cis-1,3-Dichloropropene < 0.15 0.15 ppbV 1 4/1/2020 7:17:00 PM Cyclohexane 0.26 0.15 ppbV 1 4/1/2020 7:17:00 PM Dibromochloromethane < 0.15 0.15 ppbV 1 4/1/2020 7:17:00 PM Ethyl acetate 0.19 0.15 ppbV 1 4/1/2020 7:17:00 PM

### SC Sub-Contracted

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

DL Detection Limit

Page 15 of 24

Date: 10-Apr-20

| CLIENT:    | Geovation Engineering, Inc. | Client Sample ID: 613      |
|------------|-----------------------------|----------------------------|
| Lab Order: | C2004002                    | <b>Tag Number:</b> 354,440 |
| Project:   | Grant Hardware              | Collection Date: 3/28/2020 |
| Lab ID:    | C2004002-008A               | Matrix: AIR                |

| Analyses                                | Result  | sult DL Qual Units |   | Units | DF | Date Analyzed       |  |
|-----------------------------------------|---------|--------------------|---|-------|----|---------------------|--|
| 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE |         | TO-15              |   |       |    | Analyst: RJF        |  |
| Ethylbenzene                            | < 0.15  | 0.15               |   | ppbV  | 1  | 4/1/2020 7:17:00 PM |  |
| Freon 11                                | 0.25    | 0.15               |   | ppbV  | 1  | 4/1/2020 7:17:00 PM |  |
| Freon 113                               | < 0.15  | 0.15               |   | ppbV  | 1  | 4/1/2020 7:17:00 PM |  |
| Freon 114                               | < 0.15  | 0.15               |   | ppbV  | 1  | 4/1/2020 7:17:00 PM |  |
| Freon 12                                | 0.48    | 0.15               |   | ppbV  | 1  | 4/1/2020 7:17:00 PM |  |
| Heptane                                 | 0.30    | 0.15               |   | ppbV  | 1  | 4/1/2020 7:17:00 PM |  |
| Hexachloro-1,3-butadiene                | < 0.15  | 0.15               |   | ppbV  | t  | 4/1/2020 7:17:00 PM |  |
| Hexane                                  | 0.21    | 0.15               |   | ppbV  | 1  | 4/1/2020 7:17:00 PM |  |
| Isopropyl alcohol                       | 1.4     | 0.15               |   | ppbV  | 1  | 4/1/2020 7:17:00 PM |  |
| m&p-Xylene                              | 0.27    | 0.30               | J | ppbV  | 1  | 4/1/2020 7:17:00 PM |  |
| Methyl Butyl Ketone                     | < 0.30  | 0.30               |   | ppbV  | 1  | 4/1/2020 7:17:00 PM |  |
| Methyl Ethyl Ketone                     | 0.41    | 0.30               |   | ppbV  | 1  | 4/1/2020 7:17:00 PM |  |
| Methyl Isobutyl Ketone                  | < 0.30  | 0,30               |   | ppbV  | 1  | 4/1/2020 7:17:00 PM |  |
| Methyl tert-butyl ether                 | < 0.15  | 0.15               |   | ppbV  | 1  | 4/1/2020 7:17:00 PM |  |
| Methylene chloride                      | 0.21    | 0.15               |   | ppbV  | 1  | 4/1/2020 7:17:00 PM |  |
| o-Xylene                                | 0.11    | 0.15               | J | ppbV  | 1  | 4/1/2020 7:17:00 PM |  |
| Propylene                               | < 0.15  | 0.15               |   | ppbV  | 1  | 4/1/2020 7:17:00 PM |  |
| Styrene                                 | < 0.15  | 0.15               |   | ppbV  | 1  | 4/1/2020 7:17:00 PM |  |
| Tetrachloroethylene                     | 0.16    | 0,15               |   | ppbV  | 1  | 4/1/2020 7:17:00 PM |  |
| Tetrahydrofuran                         | < 0.15  | 0.15               |   | ppbV  | 1  | 4/1/2020 7:17:00 PM |  |
| Toluene                                 | 0.41    | 0.15               |   | ppbV  | 1  | 4/1/2020 7:17:00 PM |  |
| trans-1,2-Dichloroethene                | < 0.15  | 0.15               |   | ppbV  | 1  | 4/1/2020 7:17:00 PM |  |
| trans-1,3-Dichloropropene               | < 0.15  | 0.15               |   | ppb∨  | 1  | 4/1/2020 7:17:00 PM |  |
| Trichloroethene                         | 1.1     | 0.030              |   | Vdqq  | 1  | 4/1/2020 7:17:00 PM |  |
| Vinyl acetate                           | < 0.15  | 0,15               |   | ppbV  | 1  | 4/1/2020 7:17:00 PM |  |
| Vinyl Bromide                           | < 0.15  | 0.15               |   | ppbV  | 1  | 4/1/2020 7:17:00 PM |  |
| Vinyl chloride                          | < 0.040 | 0.040              |   | ₽pbV  | 1  | 4/1/2020 7:17:00 PM |  |
| Surr: Bromofluorobenzene                | 89.0    | 70-130             |   | %REC  | 1  | 4/1/2020 7:17:00 PM |  |

|             |     |                                                    |     | n noome hot only one construction of the first of the formation of the first of the |               |  |
|-------------|-----|----------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|
| Qualifiers: | \$Ç | Sub-Contracted                                     |     | Results reported are not blank corrected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |  |
|             | в   | Analyte detected in the associated Method Blank    | E   | Estimated Value above quantitation rang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | c             |  |
|             | H   | Holding times for preparation or analysis exceeded | J   | Analyte detected below quantitation limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |  |
|             | JN  | Non-routine analyte. Quantitation estimated.       | ND  | Not Detected at the Limit of Detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n 17 no.      |  |
| S           | S   | Spike Recovery outside accepted recovery limits    | DI. | Detection Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page 16 of 24 |  |
|             |     |                                                    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |

### Contak Laboratorias IIC

Date: 10-4nr-20

| Centek Laboratories, LLC |                      |          |      |      | <b>Date:</b> 10-Apr-20 |     |                     |  |
|--------------------------|----------------------|----------|------|------|------------------------|-----|---------------------|--|
| CLIENT;                  | Geovation Engineerin | ng, Inc. |      | (    | Client Sample ID:      | 613 |                     |  |
| Lab Order;               | C2004002             |          |      |      | Tag Number:            |     | 40                  |  |
| Project:                 | Grant Hardware       |          |      |      | Collection Date:       |     |                     |  |
| Lab ID:                  | C2004002-008A        |          |      |      | Matrix:                |     |                     |  |
| Analyses                 |                      | Result   | DL   | Qual | Units                  | DF  | Date Analyzed       |  |
| 1UG/M3 W/ 0.2            | UG/M3 CT-TCE-VC-DCE  | E-1,1DCE | тс   | )-15 |                        |     | Analyst: RJF        |  |
| 1,1,1-Trichloroe         | ethane               | < 0.82   | 0.82 |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| 1,1,2,2-Tetrach          | loroethane           | < 1.0    | 1.0  |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| 1,1,2-Trichloroe         | othane               | < 0.82   | 0.82 |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| 1,1-Dichloroeth          | ane                  | < 0.61   | 0.61 |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| 1,1-Dichloroeth          | ene                  | < 0.16   | 0.16 |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| 1,2,4-Trichlorob         | penzene              | < 1.1    | 1.1  |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| 1,2,4-Trimethyl          | benzene              | 0.88     | 0.74 |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| 1,2-Dibromoeth           | ane                  | < 1.2    | 1.2  |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| 1,2-Dichlorober          | nzene                | < 0.90   | 0.90 |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| 1,2-Dichloroeth          | ane                  | < 0.61   | 0.61 |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| 1,2-Dichloropro          | pane                 | < 0.69   | 0.69 |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| 1,3,5-Trimethyll         | benzene              | < 0.74   | 0.74 |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| 1,3-butadiene            |                      | < 0.33   | 0.33 |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| 1,3-Dichlorober          | izene                | < 0.90   | 0.90 |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| 1,4-Dichlorober          | zene                 | < 0.90   | 0.90 |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| 1,4-Dioxane              |                      | < 1.1    | 1,1  |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| 2,2,4-trimethylp         | entane               | 0.51     | 0.70 | J    | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| 4-ethyltoluene           |                      | < 0.74   | 0.74 |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| Acetone                  |                      | 20       | 7.1  |      | ug/m3                  | 10  | 4/2/2020 5:18:00 AM |  |
| Allyl chloride           |                      | < 0.47   | 0.47 |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| Benzene                  |                      | 0.67     | 0.48 |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| Benzyl chloride          |                      | < 0.86   | 0.86 |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| Bromodichloron           |                      | < 1.0    | 1.0  |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| Bromoform                |                      | < 1.6    | 1.6  |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| Bromomethane             |                      | < 0.58   | 0.58 |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| Carbon disulfide         |                      | < 0.47   | 0.47 |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| Carbon tetrachioride     |                      | 0.57     | 0.19 |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| Chlorobenzene            |                      | < 0.69   | 0.69 |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| Chloroethane             |                      | < 0.40   | 0.40 |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| Chloroform               |                      | 7.8      | 0.73 |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| Chloromethane            |                      | 0.78     | 0.31 |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| cis-1,2-Dichloro         |                      | 0,59     | 0.16 |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| cis-1,3-Dichloro         |                      | < 0.68   | 0.68 |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |
| Cyclohexane              | h                    | 0.89     | 0.52 |      | ug/m3                  |     | 4/1/2020 7:17:00 PM |  |
| Dibromochlorom           | nethana              | < 1,3    |      |      |                        | 1   |                     |  |
| Sisterio Choron          | 12114114             | ч I.Э    | 1.3  |      | ug/m3                  | 1   | 4/1/2020 7:17:00 PM |  |

Qualifiers: SCSub-Contracted

Ethyl acetate

Ethylbenzene

Freon 11

Freon 113

Freon 114

₿

Analyte detected in the associated Method Blank

0.68

1.4

< 0.65

< 1.1

< 1.0

0.54

0.65

0.84

1.1

1.0

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

J

Н Holding times for preparation or analysis exceeded

JN Non-routine analyte, Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected .

1

1

1

1

1

Е Estimated Value above quantitation range

Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection DL Detection Limit

Page 15 of 24

Page 218 of 380

4/1/2020 7:17:00 PM

Date: 10-Apr-20

| CLIENT:    | Geovation Engineering, Inc. | Client Sample ID: |           |
|------------|-----------------------------|-------------------|-----------|
| Lab Order: | C2004002                    | Tag Number:       | 354,440   |
| Project:   | Grant Hardware              | Collection Date:  | 3/28/2020 |
| Lab ID:    | C2004002-008A               | Matrix:           | AIR       |
|            |                             |                   |           |

| Analyses                                | ses Result |       | Qual | Units | DF           | Date Analyzed       |  |
|-----------------------------------------|------------|-------|------|-------|--------------|---------------------|--|
| 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE |            | TO-15 |      |       | Analyst: RJP |                     |  |
| Freon 12                                | 2.4        | 0.74  |      | ug/m3 | 1            | 4/1/2020 7:17:00 PM |  |
| Heptane                                 | 1.2        | 0.61  |      | ug/m3 | 1            | 4/1/2020 7:17:00 PM |  |
| Hexachioro-1,3-butadiene                | < 1.6      | 1.6   |      | ug/m3 | 1            | 4/1/2020 7:17:00 PM |  |
| Hexane                                  | 0.74       | 0.53  |      | ug/m3 | 1            | 4/1/2020 7:17:00 PM |  |
| Isopropyl alcohol                       | 3.4        | 0.37  |      | ug/m3 | 1            | 4/1/2020 7:17:00 PM |  |
| m&p-Xylene                              | 1.2        | 1.3   | t,   | ug/m3 | 1            | 4/1/2020 7:17:00 PM |  |
| Methyl Butyl Ketone                     | < 1.2      | 1.2   |      | ug/m3 | 1            | 4/1/2020 7:17:00 PM |  |
| Methyl Ethyl Ketone                     | 1.2        | 0.88  |      | ug/m3 | 1            | 4/1/2020 7:17:00 PM |  |
| Methyl Isobutyl Ketone                  | < 1.2      | 1.2   |      | ug/m3 | 1            | 4/1/2020 7:17:00 PM |  |
| Methyl tert-butyl ether                 | < 0.54     | 0.54  |      | ug/m3 | 1            | 4/1/2020 7:17:00 PM |  |
| Methylene chloride                      | 0.73       | 0.52  |      | ug/m3 | 1            | 4/1/2020 7:17:00 PM |  |
| o-Xylene                                | 0.48       | 0.65  | J    | ug/m3 | 1            | 4/1/2020 7:17:00 PM |  |
| Propylene                               | < 0.26     | 0.26  |      | ug/m3 | 1            | 4/1/2020 7:17:00 PM |  |
| Styrene                                 | < 0.64     | 0.64  |      | ug/m3 | 1            | 4/1/2020 7:17:00 PM |  |
| Tetrachloroethylene                     | 1.1        | 1.0   |      | ug/m3 | 1            | 4/1/2020 7:17:00 PM |  |
| Tetrahydrofuran                         | < 0.44     | 0.44  |      | ug/m3 | 1            | 4/1/2020 7:17:00 PM |  |
| Toluene                                 | 1.5        | 0.57  |      | ug/m3 | 1            | 4/1/2020 7:17:00 PM |  |
| trans-1,2-Dichloroethene                | < 0.59     | 0.59  |      | ug/m3 | 1            | 4/1/2020 7:17:00 PM |  |
| trans-1,3-Dichloropropene               | < 0.68     | 0.68  |      | ug/m3 | 1            | 4/1/2020 7:17:00 PM |  |
| Trichloroethene                         | 6.0        | 0.16  |      | ug/m3 | 1            | 4/1/2020 7:17:00 PM |  |
| Vinyl acetate                           | < 0.53     | 0.53  |      | ug/m3 | 1            | 4/1/2020 7:17:00 PM |  |
| Vinyl Bromide                           | < 0.66     | 0.66  |      | ug/m3 | 1            | 4/1/2020 7:17:00 PM |  |
| Vinyl chloride                          | < 0.10     | 0.10  |      | ug/m3 | 1            | 4/1/2020 7:17:00 PM |  |

| Qualifiers: | SC | Sub-Contracted                                                                           |    | Results reported are not blank corrected  |               |
|-------------|----|------------------------------------------------------------------------------------------|----|-------------------------------------------|---------------|
|             | в  | Analyte detected in the associated Method Blank                                          | E  | Estimated Value above quantitation rang   | c             |
|             | Ił | Holding times for preparation or analysis exceeded J Analyte detected below quantitation |    | Analyte detected below quantitation limit | L             |
|             | JN | Non-routine analyte, Quantitation estimated,                                             | ND | Not Detected at the Limit of Detection    | D 44 004      |
|             | S  | Spike Recovery outside accepted recovery limits                                          | DL | Detection Limit                           | Page 16 of 24 |
|             |    |                                                                                          |    |                                           |               |

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AR040112.D Vial: 8 Acq On : 1 Apr 2020 7:17 pm Sample : C2004002-008A Misc : A311\_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 07 09:26:18 2020 Quant Results File: A320\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 23 08:34:44 2020 Response via : Initial Calibration DataAcq Meth : 1UG ENT Internal Standards R.T. QIon Response Conc Units Dev(Min) -----1) Bromochloromethane9.90128374011.00ppb0.0035) 1,4-difluorobenzene12.201141399611.00ppb0.0050) Chlorobenzene-d517.001171332481.00ppb0.00 System Monitoring Compounds65) Bromofluorobenzene18.7495848830.89 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 89.00% 

 Qvalue

 3) Freon 12
 4.27
 85
 79601
 0.48
 ppb
 98

 4) Chloromethane
 4.46
 50
 13610
 0.38
 ppb
 77

 14) Freon 11
 5.93
 101
 44050
 0.25
 ppb
 97

 15) Acetone
 6.09
 58
 186393
 9.14
 ppb
 #
 100

 17) Isopropyl alcohol
 6.20
 45
 67072
 1.40
 ppb
 #
 100

 17) Isopropyl alcohol
 6.20
 45
 67072
 1.40
 ppb
 #
 100

 17) Isopropyl alcohol
 6.20
 45
 67072
 1.40
 ppb
 #
 100

 17) Isopropyl alcohol
 6.20
 45
 67072
 1.40
 ppb
 #
 100

 29) cis-1,2-dichloroethene
 9.03
 72
 7032
 0.41
 ppb
 #
 100

 29) cis-1,2-dichloroethene
 9.62
 43
 14454
 0.19
 ppb
 96

 31) Ethyl acetate
 9.62
 43
 14454
 0.19
 ppb
 95

 3 

 32)
 Chloroform
 10.07
 83
 175418
 1.59
 ppb
 99

 37)
 Cyclohexane
 11.61
 56
 11444m
 0.26
 ppb

 38)
 Carbon tetrachloride
 11.55
 117
 11849
 0.09
 ppb
 96

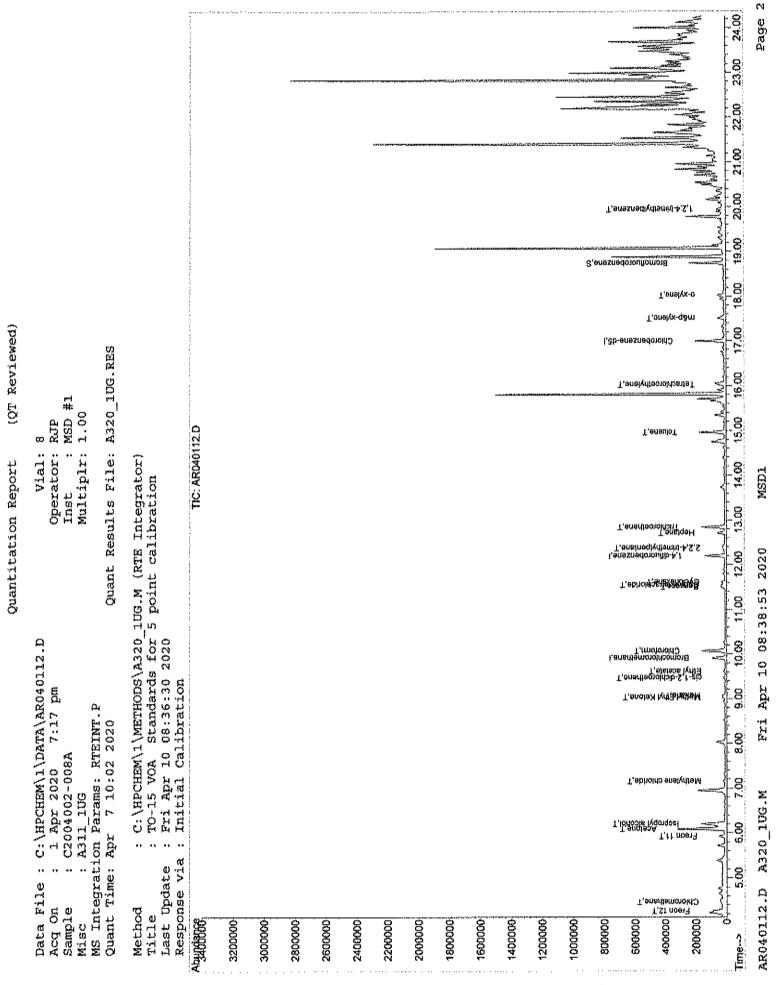
 39)
 Benzene
 11.51
 78
 24741
 0.21
 ppb
 100

 42)
 2,2,4-trimethylpentane
 12.37
 57
 16243
 0.11
 ppb
 74

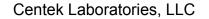
 43)
 Heptane
 12.71
 43
 14077
 0.30
 ppb
 #67

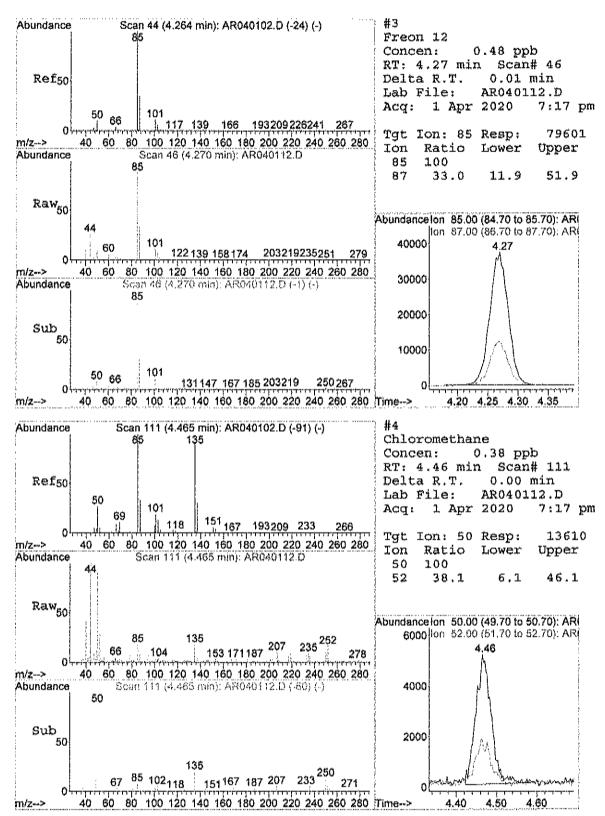
 44)
 Trichloroethene
 12.84
 130
 65401
 1.11
 ppb
 97

 51)
 Toluene
 14.96
 92
 31651
 0.41
 ppb
 98

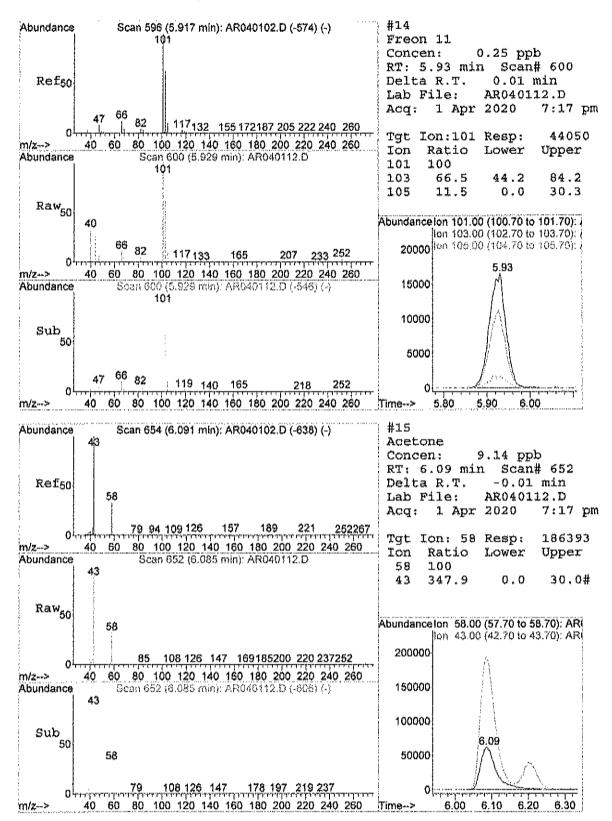

 56)
 Tetrachloroethylene
 16.02
 164
 10738
 0.16
 ppb
 98

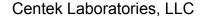
 59)
 m&p-xylene
 17.50
 91
 39465
 0.27
 ppb
 98

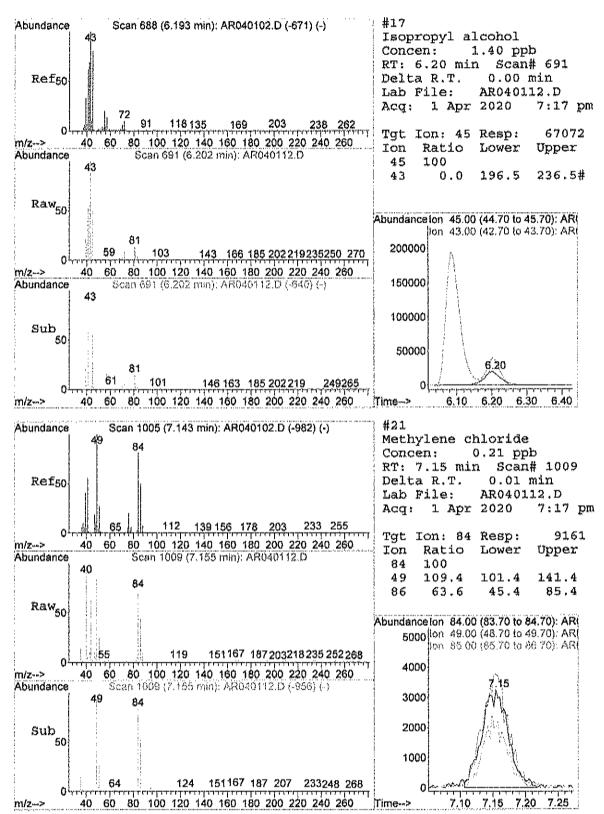

 63)
 o-xylene
 18.03
 91
 18658
 0.11
 ppb
 98


 71)

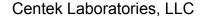
(#) = qualifier out of range (m) = manual integration (+) = signals summed AR040112.D A320\_1UG.M Fri Apr 10 08:38:52 2020 MSD1

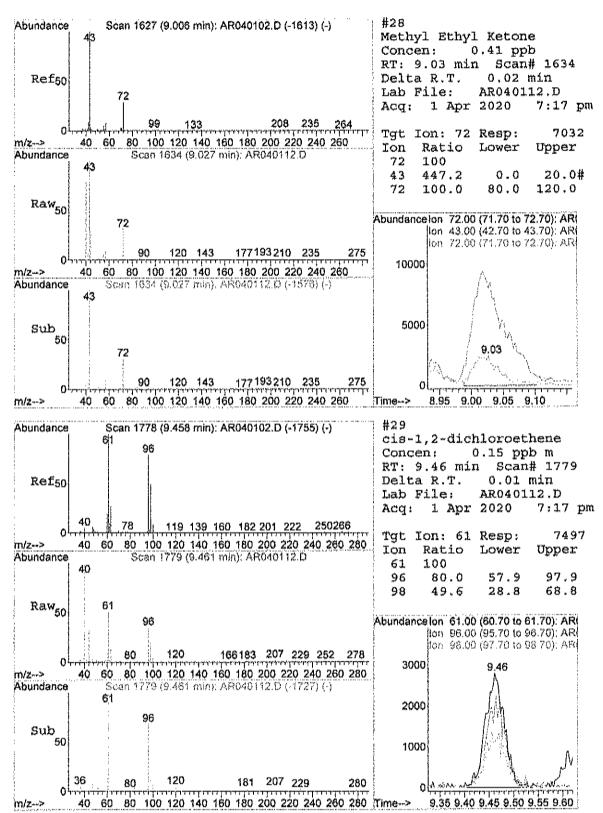


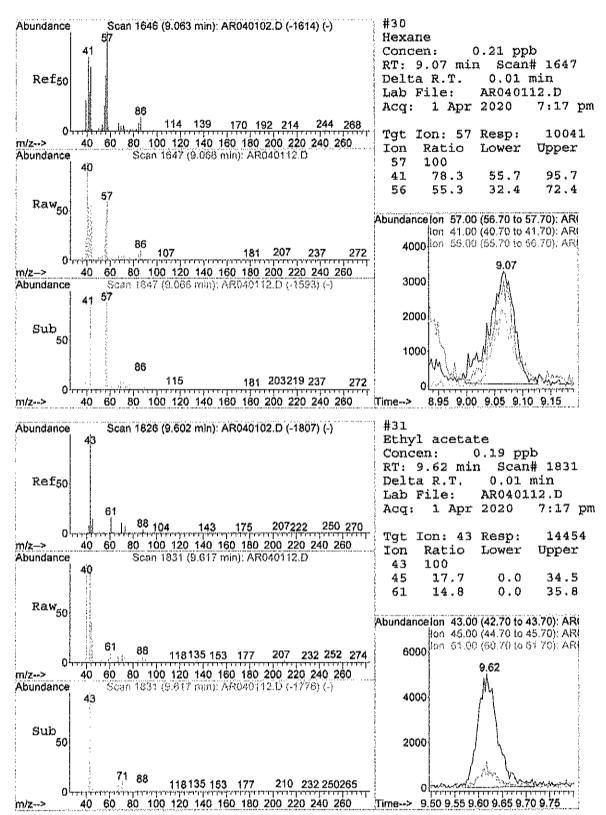


Page 221 of 380





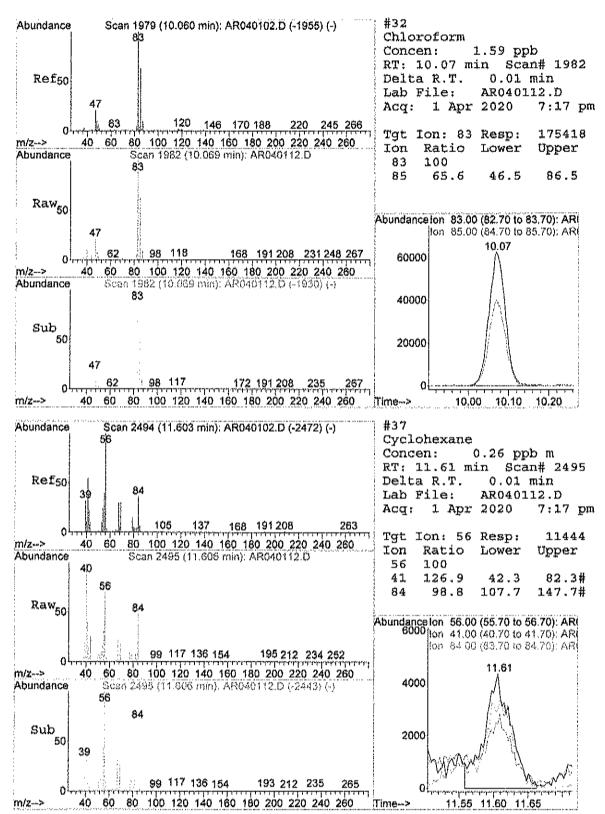


Page 3

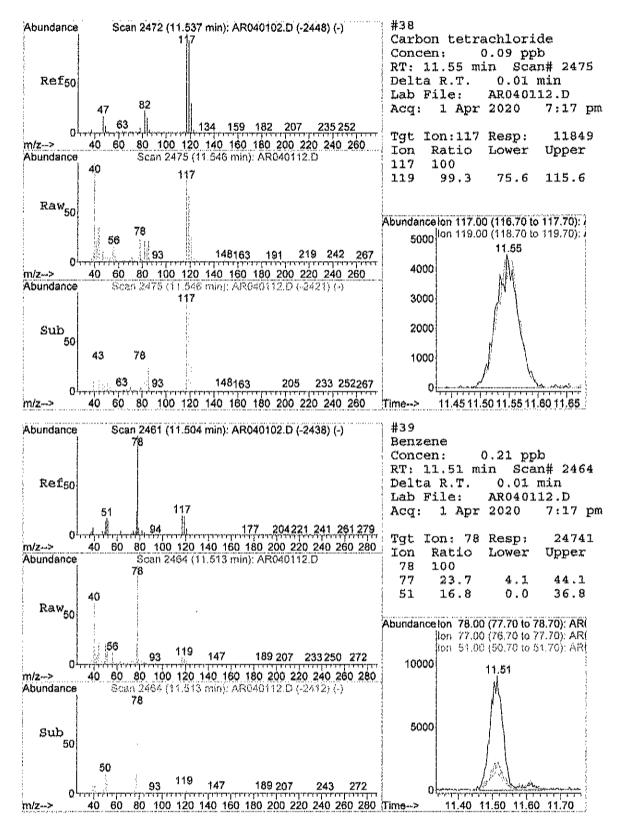


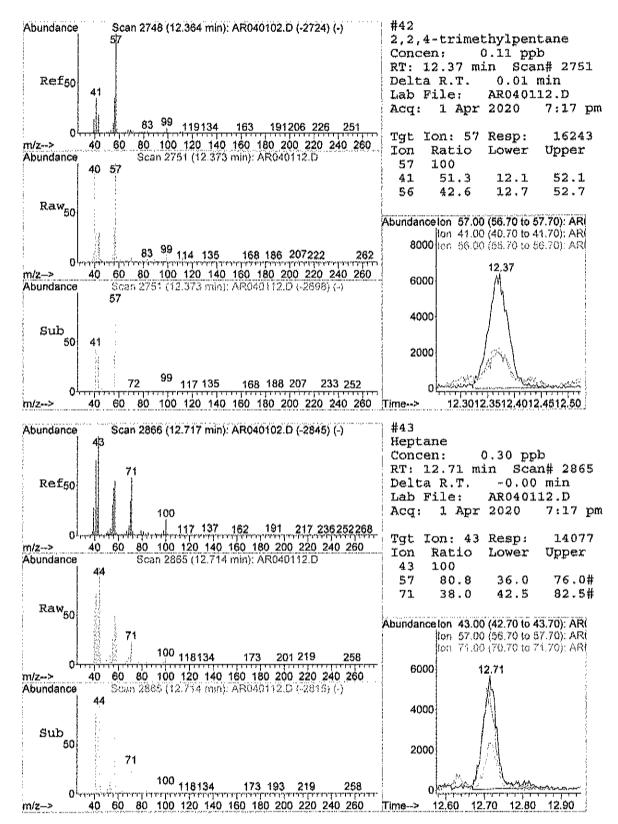





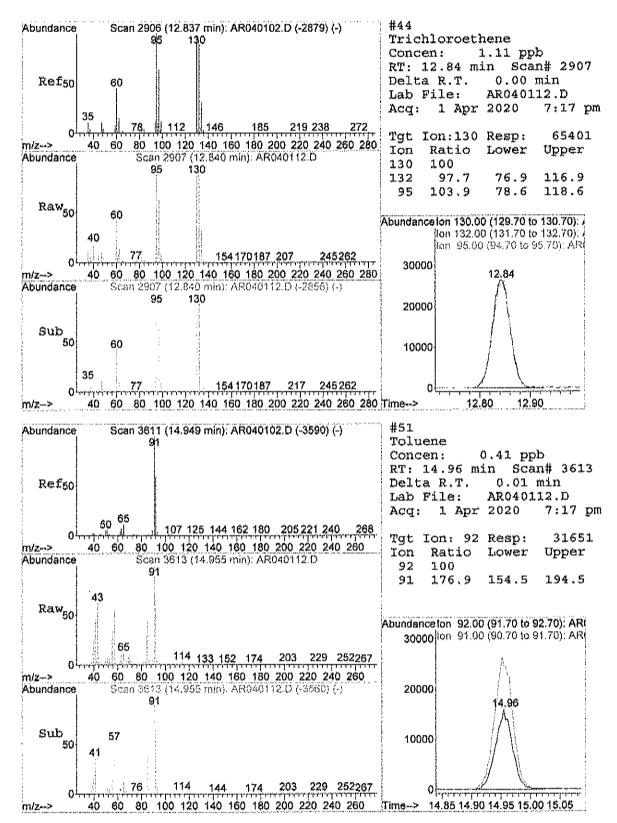

Page 5



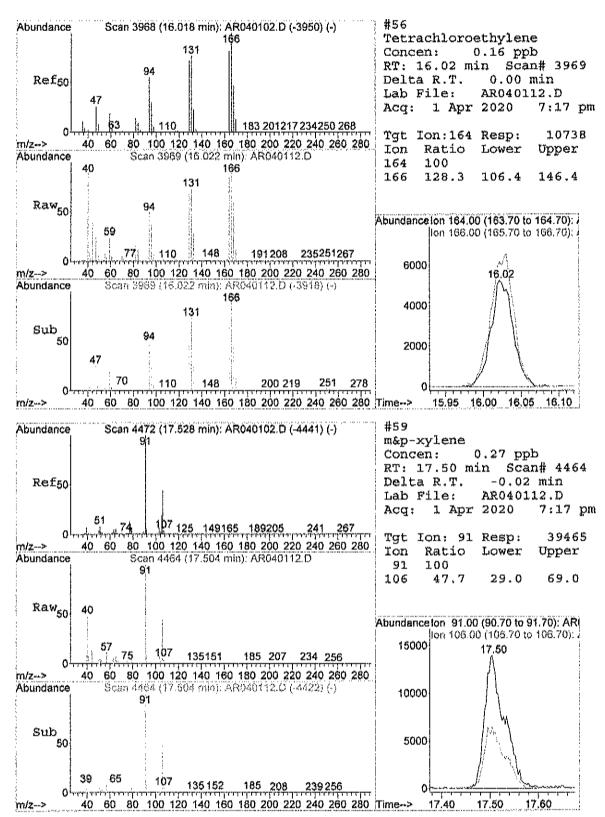

Fri Apr 10 08:38:58 2020

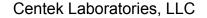


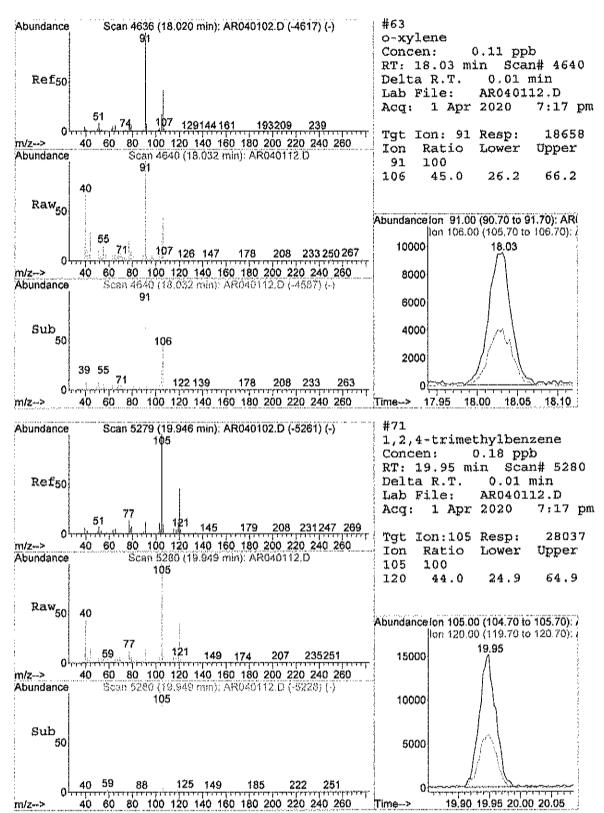






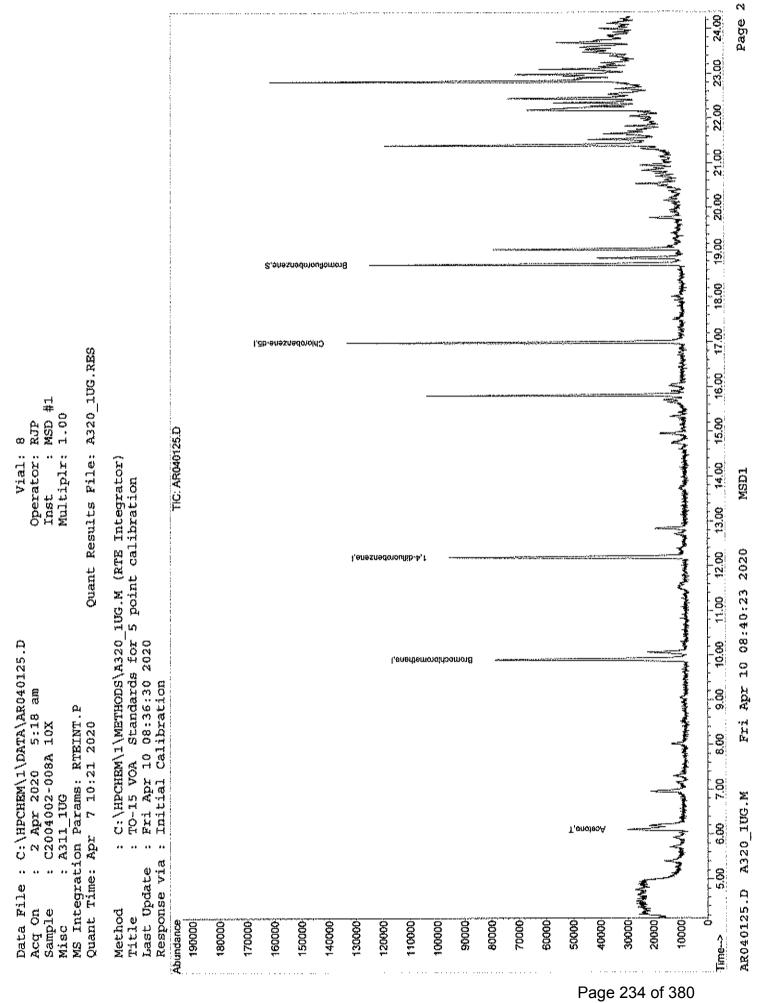


Page 229 of 380

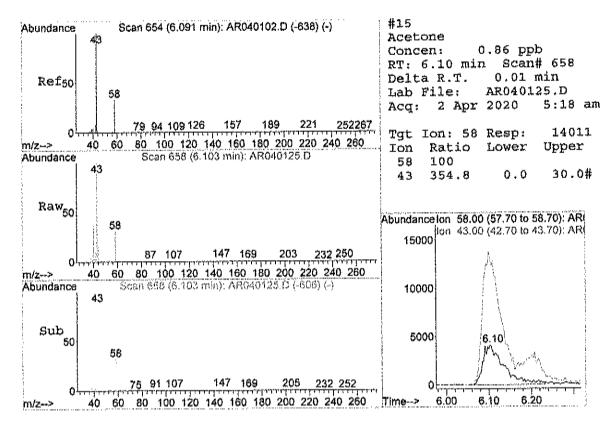




AR040112.D A320\_1UG.M

Page 11








MSDl

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AR040125.D Acq On : 2 Apr 2020 5:18 am Sample : C2004002-008A 10X Misc : A311\_1UG Vial: 8 Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 07 09:26:31 2020 Quant Results File: A320\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 23 08:34:44 2020 Response via : Initial Calibration DataAcq Meth : 1UG ENT Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.90128297591.00ppb0.0035) 1.4-difluorobenzene12.19114938801.00ppb0.0050) Chlorobenzene-d516.99117867551.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.74 95 45586m 《 0.73 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 73.00% Target Compounds 15) Acetone Qvalue 6.10 58 14011 0.86 ppb # 100





| CLIENT:                       | Geovation Engineerin | g, Inc. |       | c    | lient Sample ID: | 614     |                      |
|-------------------------------|----------------------|---------|-------|------|------------------|---------|----------------------|
| Lab Order:                    | C2004002             |         |       |      | Tag Number:      | 539,387 | 7                    |
| Project:                      | Grant Hardware       |         |       |      | Collection Date: | •       |                      |
| Lab ID:                       | C2004002-009A        |         |       |      | Matrix:          |         |                      |
| Analyses                      |                      | Result  | DL    | Oual | Units            | DF      | Date Analyzed        |
|                               |                      |         |       |      |                  |         |                      |
| FIELD PARAMI<br>Lab Vacuum In | ELERS                | -6      | F     | LD   | "Hg              |         | Analyst:<br>4/1/2020 |
| Lab Vacuum Or                 | at                   | -30     |       |      | "Hg              |         | 4/1/2020             |
| LUG/M3 W/ 0.2i                | UG/M3 CT-TCE-VC-DCE  |         | тс    | )-15 |                  |         | Analyst: RJI         |
| 1,1,1-Trichloroe              |                      | < 0.15  | 0.15  |      | opbV             | 1       | 4/1/2020 8:04:00 PM  |
| 1,1,2,2-Tetrachl              |                      | < 0.15  | 0.15  |      | ppbV             | 1       | 4/1/2020 8:04:00 PM  |
| 1,1,2-Trichloroe              |                      | < 0,15  | 0.15  |      | ppbV             | 1       | 4/1/2020 8:04:00 PM  |
| 1,1-Dichloroetha              |                      | < 0.15  | 0.15  |      | Vdqq             | 1       | 4/1/2020 8:04:00 PM  |
| 1,1-Dichloroethe              |                      | < 0.040 | 0.040 |      | Vdqq             | ,<br>1  | 4/1/2020 8:04:00 PM  |
| 1,2,4-Trichlorob              |                      | < 0.15  | 0.15  |      | ppbV             | 1       | 4/1/2020 8:04:00 PM  |
| 1,2,4-Trimethylb              |                      | 0.14    | 0.15  | J    | ppbV             | 1       | 4/1/2020 8:04:00 PM  |
| 1,2-Dibromoeth;               |                      | < 0.15  | 0.15  | -    | ppbV             | 1       | 4/1/2020 8:04:00 PM  |
| 1,2-Dichloroben               |                      | < 0.15  | 0.15  |      | ppbV             | 1       | 4/1/2020 8:04:00 PM  |
| 1,2-Dichloroetha              | ine                  | < 0.15  | 0.15  |      | ppbV             | 1       | 4/1/2020 8:04:00 PM  |
| 1,2-Dichloroprop              | ane                  | < 0.15  | 0.15  |      | ppb∨             | 1       | 4/1/2020 8:04:00 PM  |
| 1,3,5-Trimethylb              | enzene               | < 0.15  | 0.15  |      | ppbV             | 1       | 4/1/2020 8:04:00 PM  |
| 1,3-butadiene                 |                      | < 0.15  | 0.15  |      | ppbV             | 1       | 4/1/2020 8:04:00 PM  |
| 1,3-Dichloroben:              | zene                 | < 0.15  | 0.15  |      | ppbV             | 1       | 4/1/2020 8:04:00 PM  |
| 1,4-Dichloroben:              | zene                 | < 0.15  | 0.15  |      | ppbV             | 1       | 4/1/2020 8:04:00 PM  |
| 1,4-Dioxane                   |                      | < 0.30  | 0.30  |      | ppbV             | 1       | 4/1/2020 8:04:00 PM  |
| 2,2,4-trimethylpe             | entane               | 0.13    | 0.15  | ÷    | ppbV             | 1       | 4/1/2020 8:04:00 PM  |
| 4-ethyltoluene                |                      | < 0.15  | 0.15  |      | ppbV             | 1       | 4/1/2020 8:04:00 PM  |
| Acetone                       |                      | 11      | 3.0   |      | ppbV             | 10      | 4/2/2020 6:04:00 AM  |
| Acetone                       |                      | 11      | 0.30  |      | ppbV             | 1       | 4/1/2020 8:04:00 PM  |
| Allyl chloride                |                      | < 0.15  | 0.15  |      | ppb∨             | 1       | 4/1/2020 8:04:00 PM  |
| Benzene                       |                      | 0.23    | 0.15  |      | ₽pbV             | 1       | 4/1/2020 8:04:00 PM  |
| Benzyl chloride               |                      | < 0.15  | 0.15  |      | ppbV             | 1       | 4/1/2020 8:04:00 PM  |
| Bromodichlorom                | ethane               | < 0.15  | 0.15  |      | ppbV             | 1       | 4/1/2020 8:04:00 PM  |
| Bromoform                     |                      | < 0.15  | 0.15  |      | ppbV             | 1       | 4/1/2020 8:04:00 PM  |
| Bromomethane                  |                      | < 0.15  | 0.15  |      | ppbV             | 1       | 4/1/2020 8:04:00 PM  |
| Carbon disulfide              |                      | < 0.15  | 0.15  |      | Pddd             | 1       | 4/1/2020 8:04:00 PM  |
| Carbon tetrachio              | ride                 | 0.090   | 0.030 |      | ppbV             | 1       | 4/1/2020 8:04:00 PM  |
| Chlorobenzene                 |                      | < 0.15  | 0.15  |      | ppbV             | 1       | 4/1/2020 8:04:00 PM  |
| Chloroethane                  |                      | < 0.15  | 0.15  |      | ppb∨             | 1       | 4/1/2020 8:04:00 PM  |
| Chloroform                    |                      | < 0,15  | 0.15  |      | ¢pbV             | 1       | 4/1/2020 8:04:00 PM  |
| Chloromethane                 |                      | 0,40    | 0.15  |      | ₽¢¢V             | 1       | 4/1/2020 8:04:00 PM  |
| cis-1,2-Dichloroe             |                      | 0.29    | 0.040 |      | ppbV             | 1       | 4/1/2020 8:04:00 PM  |
| cis-1,3-Dichlorop             | ropene               | < 0.15  | 0.15  |      | ppbV             | 1       | 4/1/2020 8:04:00 PM  |
| Cyclohexane                   |                      | 0.27    | 0.15  |      | ppbV             | Ť       | 4/1/2020 8:04:00 PM  |
| Dibromochlorom                | ethane               | < 0.15  | 0.15  |      | ppbV             | 1       | 4/1/2020 8:04:00 PM  |

#### SC Sub-Contracted

Qualifiers:

- ${\bf B}$  Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

DL Detection Limit

.

#### Page 236 of 380

Date: 10-Apr-20

| CLIENT:    | Geovation Engineering, Inc. | Client Sample ID: |                                                                                                                 |
|------------|-----------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------|
| Lab Order: | C2004002                    | Tag Number:       | 539,387                                                                                                         |
| Project:   | Grant Hardware              | Collection Date:  | 3/28/2020                                                                                                       |
| Lab ID:    | C2004002-009A               | Matrix:           | AIR                                                                                                             |
|            |                             |                   | and the state of the terms of the state of the |

| Anaiyses                     | Result      | DL     | Qual | Units | DF | Date Analyzed       |
|------------------------------|-------------|--------|------|-------|----|---------------------|
| IUG/M3 W/ 0.2UG/M3 CT-TCE-VC | -DCE-1,1DCE | TO-15  |      |       |    | Analyst: RJF        |
| Ethyl acetate                | 0.30        | 0.15   |      | ppbV  | 1  | 4/1/2020 8:04:00 PM |
| Ethylbenzene                 | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 8:04:00 PM |
| Freon 11                     | 0.27        | 0.15   |      | ppbV  | 1  | 4/1/2020 8:04:00 PM |
| Freon 113                    | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 8:04:00 PM |
| Freon 114                    | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 8:04:00 PM |
| Freon 12                     | 0.47        | 0.15   |      | ppbV  | 1  | 4/1/2020 8:04:00 PM |
| Heptane                      | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 8:04:00 PM |
| Hexachloro-1,3-butadiene     | < 0.15      | 0.15   |      | ppbV  | t  | 4/1/2020 8:04:00 PM |
| Hexane                       | 0.27        | 0.15   |      | ppbV  | 1  | 4/1/2020 8:04:00 PM |
| Isopropyl alcohol            | < 0.15      | 0.15   |      | vdqq  | 1  | 4/1/2020 8:04:00 PM |
| m&p-Xylene                   | 0.22        | 0.30   | J    | ppbV  | 1  | 4/1/2020 8:04:00 PM |
| Methyl Butyl Ketone          | < 0.30      | 0.30   |      | ppbV  | 1  | 4/1/2020 8:04:00 PM |
| Methyl Ethyl Ketone          | 0.48        | 0,30   |      | ppbV  | 1  | 4/1/2020 8:04:00 PM |
| Methyl Isobutyl Ketone       | < 0.30      | 0.30   |      | ppbV  | 1  | 4/1/2020 8:04:00 PM |
| Methyl tert-butyl ether      | < 0.15      | 0,15   |      | ppbV  | 1  | 4/1/2020 8:04:00 PM |
| Methylene chloride           | 0.17        | 0.15   |      | ppbV  | 1  | 4/1/2020 8:04:00 PM |
| o-Xylene                     | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 8:04:00 PM |
| Propylene                    | < 0.15      | 0.15   |      | ppbV  | ť  | 4/1/2020 8:04:00 PM |
| Styrene                      | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 8:04:00 PM |
| Tetrachloroethylene          | 0.29        | 0.15   |      | ppbV  | 1  | 4/1/2020 8:04:00 PM |
| Tetrahydrofuran              | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 8:04:00 PM |
| Toluene                      | 0.39        | 0.15   |      | ppb∨  | 1  | 4/1/2020 8:04:00 PM |
| trans-1,2-Dichloroethene     | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 8:04:00 PM |
| trans-1,3-Dichloropropene    | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 8:04:00 PM |
| Trichloroethene              | 2.3         | 0.30   |      | ppb∨  | 10 | 4/2/2020 6:04:00 AM |
| Vinyl acetate                | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 8:04:00 PM |
| Vinyl Bromide                | < 0.15      | 0.15   |      | ppbV  | 1  | 4/1/2020 8:04:00 PM |
| Vinyl chloride               | < 0.040     | 0.040  |      | ppbV  | 1  | 4/1/2020 8:04:00 PM |
| Surr: Bromofluorobenzene     | 92.0        | 70-130 |      | %REC  | 1  | 4/1/2020 8:04:00 PM |

| Qualifiers: | SC | Sub-Contracted                                     |    | Results reported are not blank corrected  |               |
|-------------|----|----------------------------------------------------|----|-------------------------------------------|---------------|
|             | В  | Analyte detected in the associated Method Blank    | E  | Estimated Value above quantitation rang   | ¢             |
|             | н  | Holding times for preparation or analysis exceeded | 3  | Analyte detected below quantitation limit | t             |
|             | JN | Non-routine analyte. Quantitation estimated.       | ND | Not Detected at the Limit of Detection    |               |
|             | S  | Spike Recovery outside accepted recovery limits    | DL | Detection Limit                           | Page 18 of 24 |

Date: 10-Apr-20

|            | ана кана стада на протоко на протоко и протоко и протоко на протоко на кана на протоко на протоко и на протоко<br>17 г. Ала Алананието по протоко и протоко<br>17 г. Ала Алананието по протоко и протоко |                          |           |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------|
| CLIENT:    | Geovation Engineering, Inc.                                                                                                                                                                                                                                                                                                                          | <b>Client Sample ID:</b> | 614       |
| Lab Order: | C2004002                                                                                                                                                                                                                                                                                                                                             | Tag Number:              | 539,387   |
| Project:   | Grant Hardware                                                                                                                                                                                                                                                                                                                                       | Collection Date:         | 3/28/2020 |
| Lab ID:    | C2004002-009A                                                                                                                                                                                                                                                                                                                                        | Matrix:                  | AIR       |
|            | *P11. /                                                                                                                                                                                                                                                                                                                                              |                          |           |

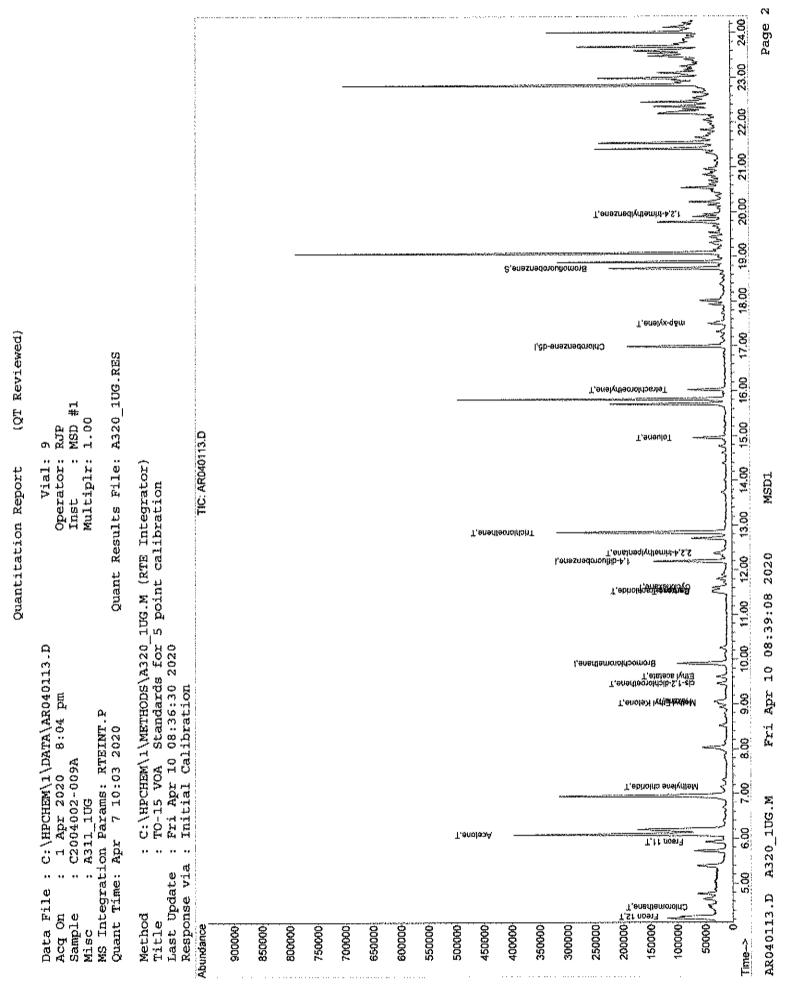
| Analyses                     | Result     | DL   | Qual | Units | DF | Date Analyzed       |
|------------------------------|------------|------|------|-------|----|---------------------|
| 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC | DCE-1,1DCE | то   | -15  |       |    | Analyst: RJI        |
| 1,1,1-Trichloroethane        | < 0.82     | 0.82 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| 1,1,2,2-Tetrachloroethane    | < 1.0      | 1.0  |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| 1,1,2-Trichloroethane        | < 0.82     | 0.82 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| 1,1-Dichloroethane           | < 0.61     | 0.61 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| 1,1-Dichloroethene           | < 0.16     | 0.16 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| 1,2,4-Trichlorobenzene       | < 1.1      | 1.1  |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| 1,2,4-Trimethylbenzene       | 0.69       | 0.74 | J    | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| 1,2-Dibromoethane            | < 1.2      | 1.2  |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| 1,2-Dichlorobenzene          | < 0.90     | 0.90 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| 1,2-Dichloroethane           | < 0.61     | 0.61 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| 1,2-Dichloropropane          | < 0.69     | 0.69 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| 1,3,5-Trimethylbenzene       | < 0.74     | 0.74 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| 1,3-butadiene                | < 0.33     | 0.33 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| 1,3-Dichlorobenzene          | < 0.90     | 0.90 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| 1,4-Dichlorobenzene          | < 0.90     | 0.90 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| 1,4-Dioxane                  | < 1.1      | 1.1  |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| 2,2,4-trimethylpentane       | 0.61       | 0.70 | J    | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| 4-ethyltoluene               | < 0.74     | 0.74 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Acetone                      | 27         | 7.1  |      | ug/m3 | 10 | 4/2/2020 6:04:00 AM |
| Acetone                      | 27         | 0.71 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Allyl chloride               | < 0.47     | 0.47 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Benzene                      | 0.73       | 0.48 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Benzyl chloride              | < 0.86     | 0.86 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Bromodichloromethane         | < 1.0      | 1.0  |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Bromoform                    | < 1.6      | 1.6  |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Bromomethane                 | < 0.58     | 0.58 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Carbon disulfide             | < 0.47     | 0.47 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Carbon tetrachioride         | 0.57       | 0.19 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Chlorobenzene                | < 0.69     | 0.69 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Chloroethane                 | < 0.40     | 0.40 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Chloroform                   | < 0.73     | 0.73 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Chloromethane                | 0.83       | 0.31 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| cis-1,2-Dichloroethene       | 1.1        | 0.16 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| cis-1,3-Dichloropropene      | < 0.68     | 0.68 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Cyclohexane                  | 0.93       | 0.52 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Dibromochloromethane         | < 1.3      | 1.3  |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Ethyl acetate                | 1.1        | 0.54 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Ethylbenzene                 | < 0.65     | 0.65 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Freon 11                     | 1.5        | 0.84 |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Freon 113                    | < 1.1      | 1.1  |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |

- в Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

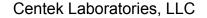
DL Detection Limit

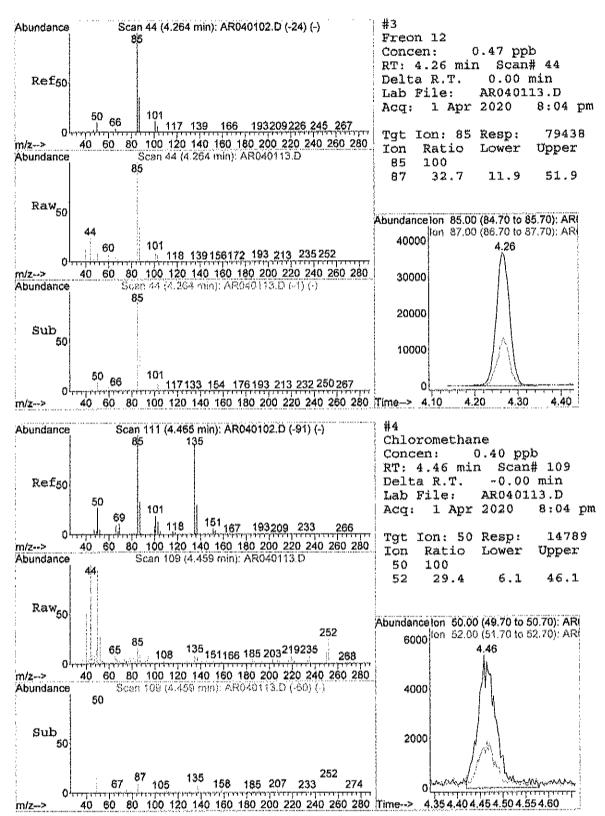
Page 17 of 24

Date: 10-Apr-20


|            | a a na sa ay yayaya ya sa kasa na manana na manana na manana na manana na pasa 1937 na sa sa manana na manana<br>Manana Ana Anana na manana manana manana |                                        |           |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------|
| CLIENT:    | Geovation Engineering, Inc.                                                                                                                                                                                                     | Client Sample ID:                      |           |
| Lab Order: | C2004002                                                                                                                                                                                                                        | Tag Number:                            | 539,387   |
| Project:   | Grant Hardware                                                                                                                                                                                                                  | Collection Date:                       | 3/28/2020 |
| Lab ID:    | C2004002-009A                                                                                                                                                                                                                   | Matrix:                                | AIR       |
|            |                                                                                                                                                                                                                                 | ······································ |           |

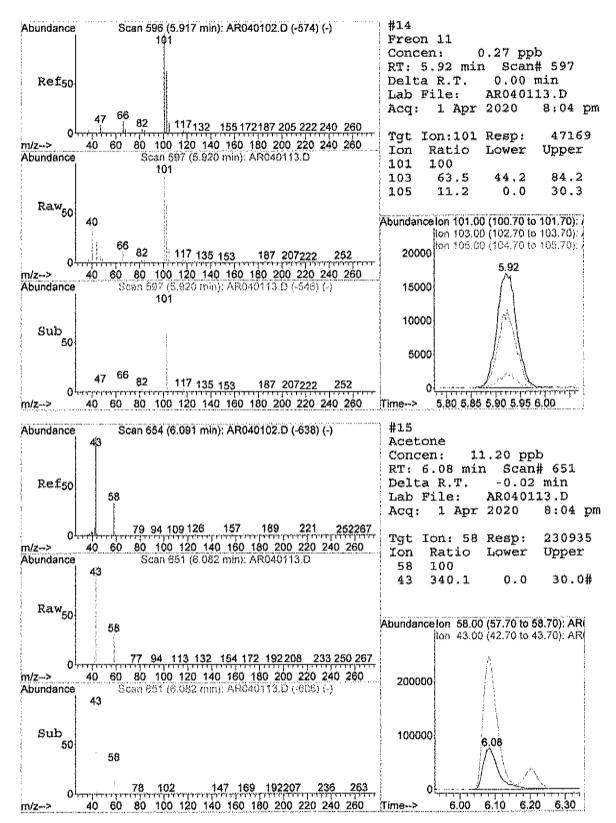
| Analyses                     | Result      | ÐL    | Qual | Units | DF | Date Analyzed       |
|------------------------------|-------------|-------|------|-------|----|---------------------|
| 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC | -DCE-1,1DCE | TO-15 |      |       |    | Analyst: RJF        |
| Freon 114                    | < 1.0       | 1.0   |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Freon 12                     | 2.3         | 0.74  |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Heptane                      | < 0.61      | 0.61  |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Hexachloro-1,3-butadiene     | < 1.6       | 1.6   |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Hexane                       | 0.95        | 0.53  |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| isopropyl alcohol            | < 0.37      | 0.37  |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| m&p-Xylene                   | 0.96        | 1.3   | J    | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Methyl Butyl Ketone          | < 1.2       | 1.2   |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Methyl Ethyl Ketone          | 1.4         | 0.88  |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Methyl Isobutyl Ketone       | < 1.2       | 1.2   |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Methyl tert-butyl ether      | < 0.54      | 0.54  |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Methylene chloride           | 0.59        | 0.52  |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| o-Xylene                     | < 0.65      | 0.65  |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Propylene                    | < 0.26      | 0.26  |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Styrene                      | < 0.64      | 0.64  |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Tetrachioroethylene          | 2.0         | 1.0   |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Tetrahydrofuran              | < 0.44      | 0.44  |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Toluene                      | 1.5         | 0.57  |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| trans-1,2-Dichloroethene     | < 0.59      | 0.59  |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| trans-1,3-Dichloropropene    | < 0.68      | 0.68  |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Trichloroethene              | 12          | 1.6   |      | ug/m3 | 10 | 4/2/2020 6:04:00 AM |
| Vinyl acetate                | < 0.53      | 0.53  |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Vinyl Bromide                | < 0.66      | 0.66  |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |
| Vinyl chloride               | < 0.10      | 0.10  |      | ug/m3 | 1  | 4/1/2020 8:04:00 PM |


| Qualifiers: | SC | Sub-Contracted                                     |    | Results reported are not blank corrected  |               |
|-------------|----|----------------------------------------------------|----|-------------------------------------------|---------------|
|             | в  | Analyte detected in the associated Method Blank    | в  | Estimated Value above quantitation range  | 2             |
|             | н  | Holding times for preparation or analysis exceeded | J  | Analyte detected below quantitation limit |               |
|             | JN | Non-routine analyte. Quantitation estimated.       | ND | Not Detected at the Limit of Detection    |               |
|             | \$ | Spike Recovery outside accepted recovery limits    | DL | Detection Limit                           | Page 18 of 24 |
|             |    |                                                    |    |                                           |               |

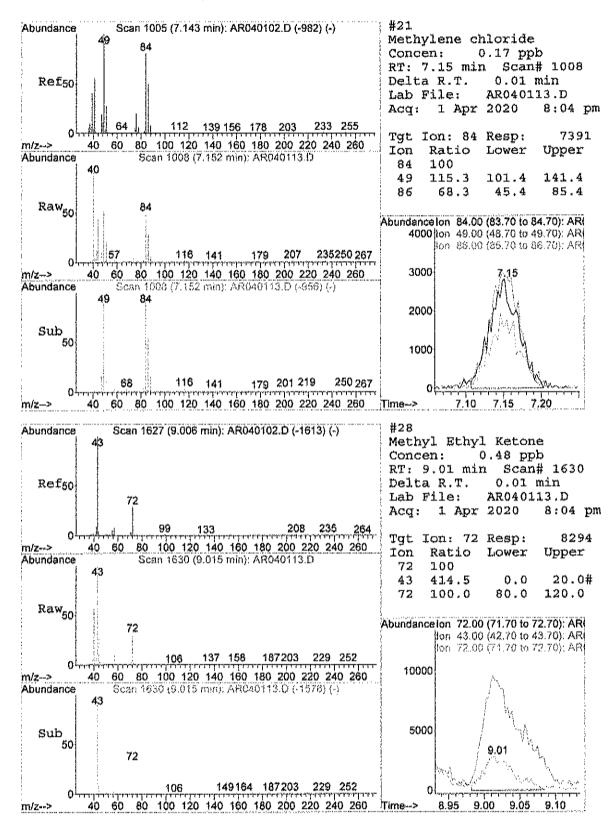

| Centek Laboratories, LL                                                                                                                                                                                                                                                                                 | С                       |                   |                                                              |                                                |                    |      |                      |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------|--------------------------------------------------------------|------------------------------------------------|--------------------|------|----------------------|--|--|
|                                                                                                                                                                                                                                                                                                         | Quantitati              | ion Rej           | port (Q                                                      | T Review                                       | red)               |      |                      |  |  |
| Data File : C:\HPCHEM\1\DATA\A<br>Acq On : 1 Apr 2020 8:04<br>Sample : C2004002-009A<br>Misc : A311_1UG<br>MS Integration Params: RTEINT<br>Quant Time: Apr 07 09:26:19 20                                                                                                                              | 4 pm                    | Qua               | In<br>Mu                                                     | Vial:<br>erator:<br>st :<br>ltiplr:<br>s File: | RJP<br>MSD<br>1.00 |      | <b>J.RES</b>         |  |  |
| Quant Method : C:\HPCHEM\1\METHODS\A320_1UG.M (RTE Integrator)<br>Title : TO-15 VOA Standards for 5 point calibration<br>Last Update : Mon Mar 23 08:34:44 2020<br>Response via : Initial Calibration<br>DataAcq Meth : 1UG_ENT                                                                         |                         |                   |                                                              |                                                |                    |      |                      |  |  |
| Internal Standards                                                                                                                                                                                                                                                                                      | R.T.                    | QIon              | Response                                                     | Conc Ur                                        | iits               | Dev  | (Min)                |  |  |
| 1) Bromochloromethane<br>35) 1,4-difluorobenzene<br>50) Chlorobenzene-d5                                                                                                                                                                                                                                | 9.91<br>12.20<br>17.00  | 128<br>114<br>117 | 37819<br>141390<br>126752                                    | 1.00<br>1.00<br>1.00                           | ppb<br>ppb<br>ppb  |      | 0.00<br>0.00<br>0.00 |  |  |
| System Monitoring Compounds<br>65) Bromofluorobenzene<br>Spiked Amount 1.000                                                                                                                                                                                                                            | 18.74                   | 95<br>- 130       | 83417<br>Recove                                              | 0.92<br>ry =                                   | ррb<br>92.         | 00%  | 0.00                 |  |  |
| Weweet Companyede                                                                                                                                                                                                                                                                                       |                         |                   |                                                              |                                                |                    | 0177 | alue                 |  |  |
| Target Compounds<br>3) Freon 12<br>4) Chloromethane<br>14) Freon 11<br>15) Acetone                                                                                                                                                                                                                      | 4.26<br>4.46<br>5.92    | 85<br>50<br>101   | 79438<br>14789<br>47169                                      | 0.47<br>0.40<br>0.27                           | dqq<br>dqq<br>dqq  | 240  | 99<br>94<br>99       |  |  |
| 15) Acetone                                                                                                                                                                                                                                                                                             | 6.08                    | 58                | 230935                                                       | 11.20                                          | ppb                | #    | 100<br>95            |  |  |
| 21) Methylene chloride<br>28) Methyl Ethyl Ketone<br>29) cis-1.2-dichloroethene                                                                                                                                                                                                                         | 9.01<br>9.46            | 84<br>72<br>61    | 8294<br>15017                                                | 0.48                                           | dqq<br>dqq         | Ħ    | 100<br>95            |  |  |
| 30) Hexane<br>31) Ethyl acetate<br>37) Cyclobeyane                                                                                                                                                                                                                                                      | 9.06<br>9.62            | 57<br>43<br>56    | 13041<br>23473<br>12003m                                     | 0.27<br>0.30                                   | ppb<br>ppb<br>ppb  | #    | 72<br>99             |  |  |
| <ul> <li>15) Acetone</li> <li>21) Methylene chloride</li> <li>28) Methyl Ethyl Ketone</li> <li>29) cis-1,2-dichloroethene</li> <li>30) Hexane</li> <li>31) Ethyl acetate</li> <li>37) Cyclohexane</li> <li>38) Carbon tetrachloride</li> <li>39) Benzene</li> <li>42) 2,2,4-trimethylpentane</li> </ul> | 11.54<br>11.51<br>12.37 | 117<br>78<br>57   | 11853<br>26685<br>20180                                      | 0.09<br>0.23<br>0.13                           | dqq<br>dqq<br>ppb  |      | 98<br>98<br>85       |  |  |
| 44) Trichloroethene<br>51) Toluene<br>56) Tetrachloroethylene<br>59) m&p-xylene                                                                                                                                                                                                                         | 12.84<br>14.96<br>16.02 | 130<br>92<br>164  | 20180<br>20180<br>133132<br>29255<br>18466<br>29891<br>19962 | 2.23<br>0.39<br>0.29                           | dqq<br>dqq<br>qqq  |      | 98<br>97<br>99       |  |  |
| 59) m&p-xylene<br>71) 1,2,4-trimethylbenzene                                                                                                                                                                                                                                                            | 17.50<br>19.95          | 91<br>105         | 29891<br>19962                                               | 0.22<br>0.14                                   | ppb<br>ppb         |      | 98<br>99             |  |  |

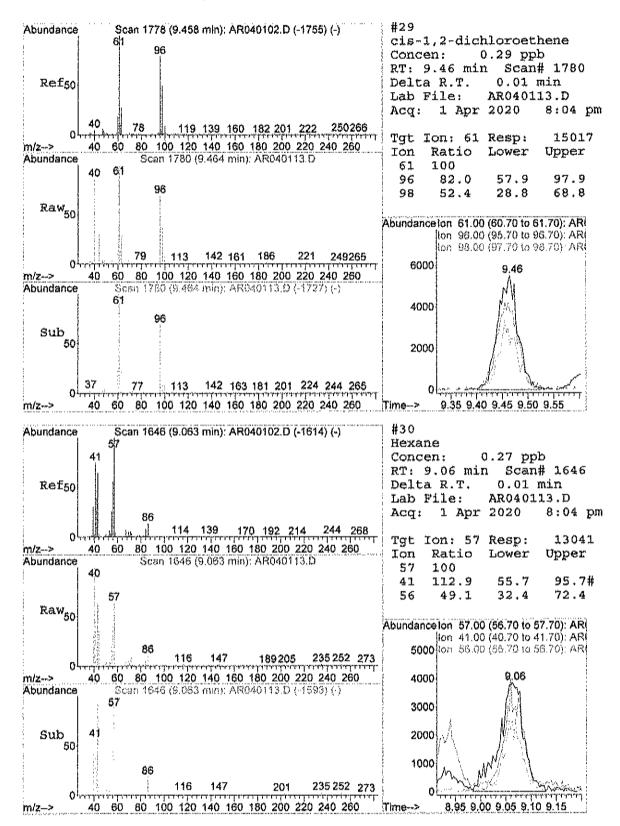
(#) = qualifier out of range (m) = manual integration (+) = signals summed AR040113.D A320\_1UG.M Fri Apr 10 08:39:07 2020 MSD1

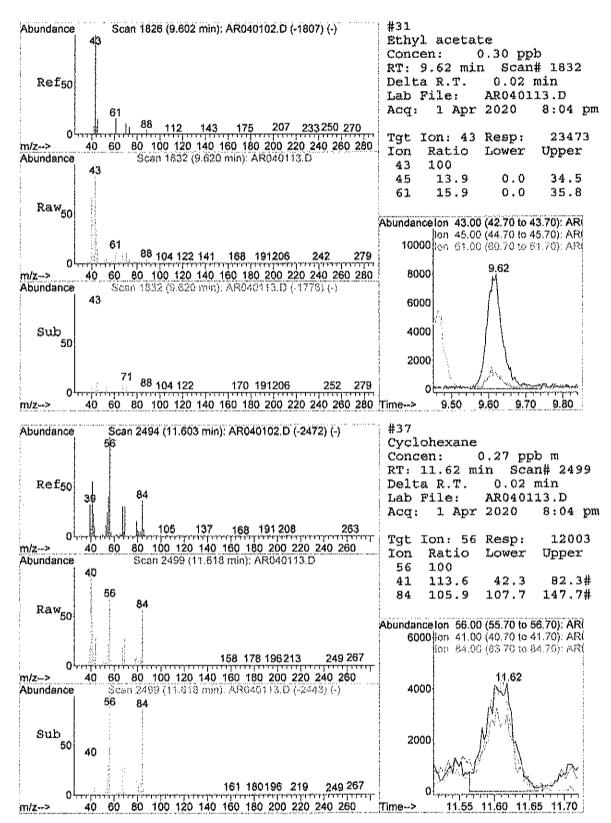


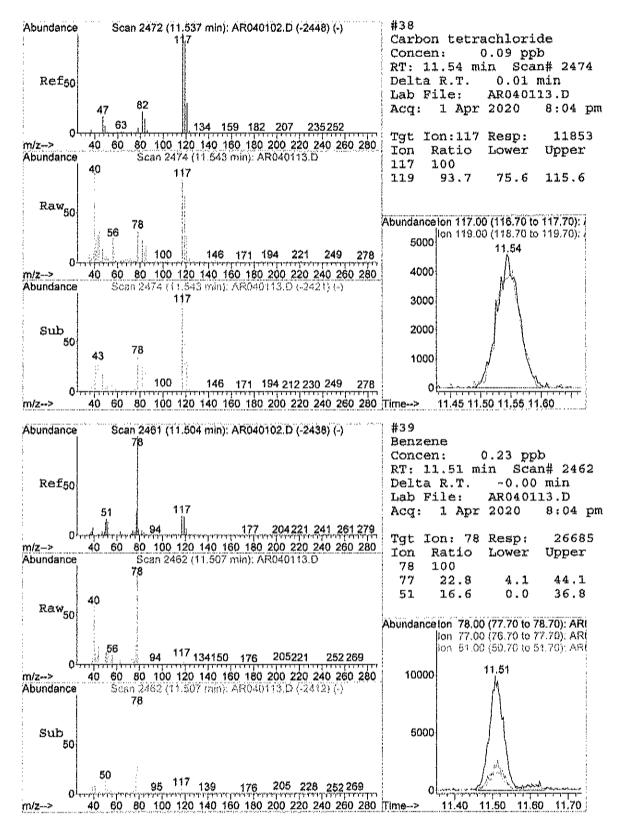

Page 241 of 380



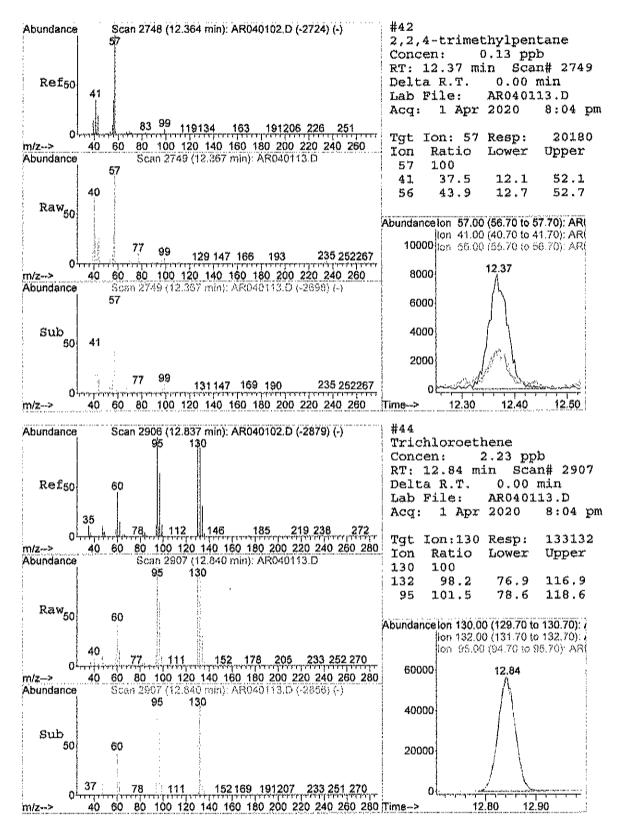


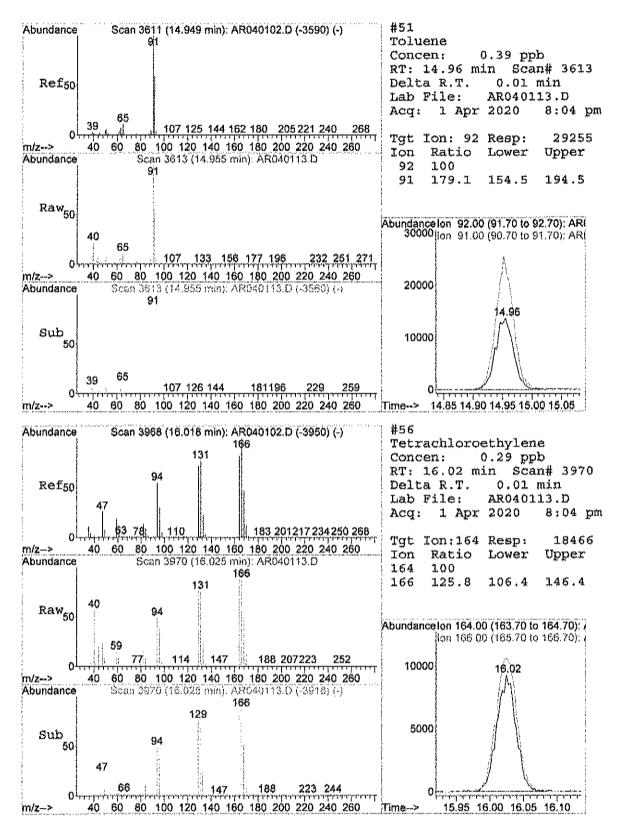


AR040113.D A320 1UG.M Fri Apr 10 08:39:09 2020

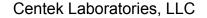

MSD1

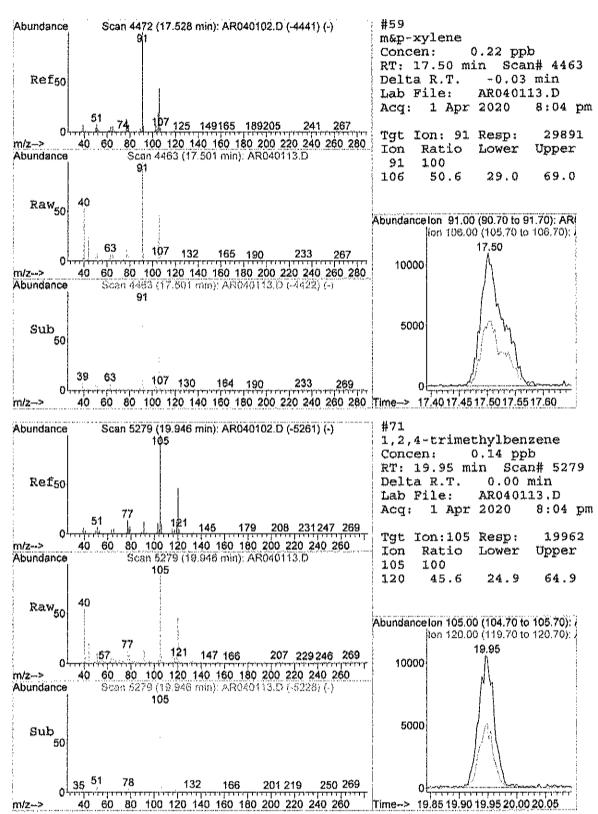



Page 243 of 380



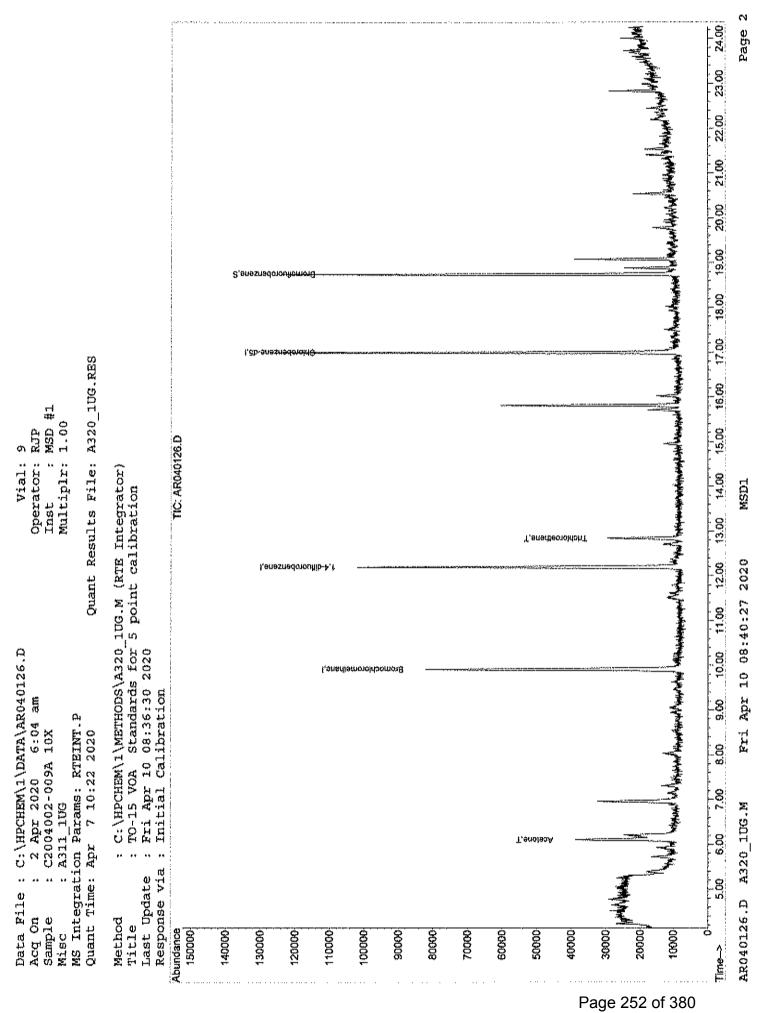



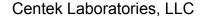

Page 247 of 380

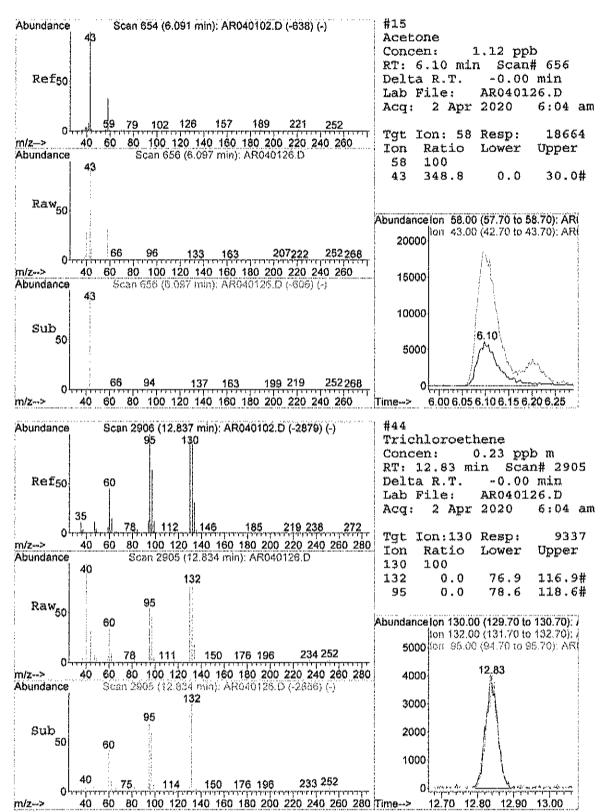










Page 250 of 380


Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AR040126.D Vial: 9 Acq On : 2 Apr 2020 6:04 am Sample : C2004002-009A 10X Misc : A311\_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 07 09:26:32 2020 Quant Results File: A320 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 23 08:34:44 2020 Response via : Initial Calibration DataAcg Meth : 1UG ENT R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.91128305831.00ppb0.0035) 1,4-difluorobenzene12.19114973571.00ppb0.0050) Chlorobenzene-d516.99117861101.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.74 95 44489 0.72 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 72.00% Target Compounds Qvalue 

 15) Acetone
 6.10
 58
 18664
 1.12 ppb #
 100

 44) Trichloroethene
 12.83
 130
 9337m ஆம் 0.23 ppb







Page 3

```
Date: 10-Apr-20
```

| CLIENT:                                                                                                        | Geovation Engineerir | ig, Inc. |       | C    | lient Sample ID: |        | - <i>*</i>          |
|----------------------------------------------------------------------------------------------------------------|----------------------|----------|-------|------|------------------|--------|---------------------|
| Lab Order:                                                                                                     | C2004002             |          |       |      | Tag Number:      |        |                     |
| Project:                                                                                                       | Grant Hardware       |          |       |      | Collection Date: | 3/28/2 | 2020                |
| Lab ID:                                                                                                        | C2004002-010A        |          |       |      | Matrix:          | AIR    |                     |
| Analyses                                                                                                       |                      | Result   | DL    | Qual | Units            | DF     | Date Analyzed       |
| IELD PARAM                                                                                                     | ETERS                |          | FL    | ,D   |                  |        | Analyst:            |
| Lab Vacuum In                                                                                                  |                      | -6       |       |      | "Hg              |        | 4/1/2020            |
| Lab Vacuum O                                                                                                   | ut                   | -30      |       |      | "Hg              |        | 4/1/2020            |
| UG/M3 W/ 0.2                                                                                                   | UG/M3 CT-TCE-VC-DCE  | 5-1,1DCE | TO    | -15  |                  |        | Analyst: RJI        |
| 1,1,1-Trichloroe                                                                                               | ethane               | < 0.15   | 0.15  |      | ppb∨             | 1      | 4/1/2020 8:51:00 PM |
| 1,1,2,2-Tetrach                                                                                                | loroethane           | < 0.15   | 0.15  |      | ppbV             | 1      | 4/1/2020 8:51:00 PM |
| 1,1,2-Trichloroe                                                                                               | ethane               | < 0.15   | 0.15  |      | ppb∨             | 1      | 4/1/2020 8:51:00 PM |
| 1,1-Dichloroeth                                                                                                | але                  | < 0.15   | 0.15  |      | ppbV             | 1      | 4/1/2020 8:51:00 PM |
| 1,1-Dichloroeth                                                                                                | еле                  | < 0.040  | 0.040 |      | ppb∨             | 1      | 4/1/2020 8:51:00 PM |
| 1,2,4-Trichlorob                                                                                               | enzene               | < 0.15   | 0.15  |      | ppb∨             | 1      | 4/1/2020 8:51:00 PM |
| 1,2,4-Trimethyli                                                                                               | benzene              | < 0.15   | 0.15  |      | ppbV             | 1      | 4/1/2020 8:51:00 PM |
| 1,2-Dibromoeth                                                                                                 | ane                  | < 0.15   | 0.15  |      | ppb∨             | 1      | 4/1/2020 8:51:00 PM |
| 1,2-Dichlorober                                                                                                | zene                 | < 0.15   | 0.15  |      | ppbV             | 1      | 4/1/2020 8:51:00 PM |
| 1,2-Dichloroeth                                                                                                | ane                  | < 0.15   | 0.15  |      | ppbV             | 1      | 4/1/2020 8:51:00 PM |
| 1,2-Dichloropro                                                                                                | pane                 | < 0.15   | 0.15  |      | ppb∨             | 1      | 4/1/2020 8:51:00 PM |
| 1,3,5-Trimethyll                                                                                               | benzene              | < 0.15   | 0.15  |      | ppbV             | 1      | 4/1/2020 8:51:00 PM |
| 1,3-butadiene                                                                                                  |                      | < 0.15   | 0.15  |      | ppb∨             | 1      | 4/1/2020 8:51:00 PM |
| 1,3-Dichlorober                                                                                                | zene                 | < 0.15   | 0.15  |      | ppbV             | 1      | 4/1/2020 8:51:00 PM |
| 1,4-Dichlorober                                                                                                | izene                | < 0.15   | 0.15  |      | ppb∨             | 1      | 4/1/2020 8:51:00 PM |
| 1,4-Dioxane                                                                                                    |                      | < 0.30   | 0.30  |      | ppb∨             | 1      | 4/1/2020 8:51:00 PM |
| 2,2,4-trimethylp                                                                                               | entane               | < 0.15   | 0.15  |      | ppbV             | 1      | 4/1/2020 8:51:00 PM |
| 4-ethyitoluene                                                                                                 |                      | < 0.15   | 0.15  |      | ppbV             | 1      | 4/1/2020 8:51:00 PM |
| Acetone                                                                                                        |                      | 3.7      | 3.0   |      | ppb∨             | 10     | 4/2/2020 6:49:00 AM |
| Allyl chloride                                                                                                 |                      | < 0.15   | 0.15  |      | ppbV             | 1      | 4/1/2020 8:51:00 PM |
| Senzene                                                                                                        |                      | 0.18     | 0.15  |      | ppbV             | 1      | 4/1/2020 8:51:00 PM |
| Benzyl chloride                                                                                                |                      | < 0.15   | 0.15  |      | рръ∨             | 1      | 4/1/2020 8:51:00 PM |
| Bromodichloron                                                                                                 | nethanø              | < 0.15   | 0.15  |      | ppbV             | 1      | 4/1/2020 8:51:00 PM |
| Bromoform                                                                                                      |                      | < 0.15   | 0.15  |      | ppbV             | 1      | 4/1/2020 8:51:00 PM |
| Bromomethane                                                                                                   |                      | < 0.15   | 0.15  |      | ppb∨             | 1      | 4/1/2020 8:51:00 PM |
| Carbon disulfide                                                                                               | 3                    | < 0.15   | 0.15  |      | ppbV             | 1      | 4/1/2020 8:51:00 PM |
| Carbon tetrachi                                                                                                | oride                | 0.10     | 0.030 |      | ppbV             | 1      | 4/1/2020 8:51:00 PM |
| Chlorobenzene                                                                                                  |                      | < 0.15   | 0.15  |      | ppbV             | 1      | 4/1/2020 8:51:00 PM |
| Chloroethane                                                                                                   |                      | < 0.15   | 0.15  |      | ppbV             | 1      | 4/1/2020 8:51:00 PM |
| Chloroform                                                                                                     |                      | < 0.15   | 0,15  |      | ppb∨             | 1      | 4/1/2020 8:51:00 PM |
| Chloromethane                                                                                                  |                      | 0.37     | 0.15  |      | ppbV             | 1      | 4/1/2020 8:51:00 PM |
| cis-1,2-Dichloro                                                                                               | ethene               | < 0.040  | 0.040 |      | ppbV             | 1      | 4/1/2020 8:51:00 PM |
| cls-1,3-Dichlora                                                                                               |                      | < 0.15   | 0.15  |      | ppbV             | 1      | 4/1/2020 8:51:00 PM |
| Cyclohexane                                                                                                    |                      | 0.25     | 0.15  |      | ppbV             | 1      | 4/1/2020 8:51:00 PM |
| Dibromochloron                                                                                                 | nethane              | < 0.15   | 0.15  |      | ppb∨             | 1      | 4/1/2020 8:51:00 PM |
| Ethyl acetate                                                                                                  |                      | < 0.15   | 0.15  |      | ppbV             | 1      | 4/1/2020 8:51:00 PM |
| ente el colori el se construir construir el colori de la construir de la construir de la construir de la const |                      |          |       |      |                  |        |                     |

Н Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits S

Analyte detected below quantitation limit J

ND Not Detected at the Limit of Detection

DL Detection Limit

Date: 10-Apr-20

| CLIENT:    | Geovation Engineering, | Inc.   |    | ( | Client Sample ID:       | 616     |               |
|------------|------------------------|--------|----|---|-------------------------|---------|---------------|
| Lab Order: | C2004002               |        |    |   | Tag Number:             | 200,436 | 5             |
| Project:   | Grant Hardware         |        |    |   | <b>Collection Date:</b> | 3/28/20 | 20            |
| Lab ID:    | C2004002-010A          |        |    |   | Matrix:                 | AIR     |               |
| Analyses   |                        | Result | DL |   | Units                   | DF      | Date Analyzed |

| 1                            |            | ~~~ ~  |      |    | source assumption   |
|------------------------------|------------|--------|------|----|---------------------|
| IUG/M3 W/ 0.2UG/M3 CT-TCE-VC | DCE-1,1DCE | TO-15  | ;    |    | Analyst: RJf        |
| Ethylbenzene                 | < 0.15     | 0.15   | ppbV | 1  | 4/1/2020 8:51:00 PM |
| Freon 11                     | 2.9        | 1.5    | ppb∨ | 10 | 4/2/2020 6:49:00 AM |
| Freon 113                    | < 0.15     | 0.15   | ppbV | 1  | 4/1/2020 8:51:00 PM |
| Freon 114                    | < 0.15     | 0.15   | ppbV | 1  | 4/1/2020 8:51:00 PM |
| Freon 12                     | 0.58       | 0.15   | ppbV | 1  | 4/1/2020 8:51:00 PM |
| Heptane                      | < 0.15     | 0.15   | opbV | 1  | 4/1/2020 8:51:00 PM |
| Hexachloro-1,3-butadiene     | < 0.15     | 0.15   | ppbV | 1  | 4/1/2020 8:51:00 PM |
| Hexane                       | < 0.15     | 0.15   | ppbV | 1  | 4/1/2020 8:51:00 PM |
| isopropyl alcohol            | 1.1        | 0.15   | ppb∨ | 1  | 4/1/2020 8:51:00 PM |
| m&p-Xylene                   | < 0.30     | 0.30   | ppbV | 1  | 4/1/2020 8:51:00 PM |
| Methyl Butyl Ketone          | < 0.30     | 0.30   | ppbV | 1  | 4/1/2020 8:51:00 PM |
| Methyl Ethyl Ketone          | 0.38       | 0.30   | ppbV | 1  | 4/1/2020 8:51:00 PM |
| Methyl Isobutyl Ketone       | < 0.30     | 0.30   | ppbV | 1  | 4/1/2020 8:51:00 PM |
| Methyl tert-butyl ether      | < 0.15     | 0.15   | ppbV | 1  | 4/1/2020 8:51:00 PM |
| Methylene chloride           | 0.16       | 0.15   | ppbV | 1  | 4/1/2020 8:51:00 PM |
| o-Xyiene                     | < 0.15     | 0.15   | Vaqq | 1  | 4/1/2020 8:51:00 PM |
| Propylene                    | < 0.15     | 0.15   | ppbV | 1  | 4/1/2020 8:51:00 PM |
| Styrene                      | < 0.15     | 0.15   | ppbV | 1  | 4/1/2020 8:51:00 PM |
| Tetrachloroethylene          | 0.27       | 0.15   | ppbV | 1  | 4/1/2020 8:51:00 PM |
| Tetrahydrofuran              | < 0.15     | 0.15   | ppbV | 1  | 4/1/2020 8:51:00 PM |
| Toluene                      | 0.16       | 0.15   | ppb∨ | 1  | 4/1/2020 8:51:00 PM |
| trans-1,2-Dichloroethene     | < 0.15     | 0.15   | ppbV | 1  | 4/1/2020 8:51:00 PM |
| trans-1,3-Dichloropropene    | < 0.15     | 0.15   | ppbV | 1  | 4/1/2020 8:51:00 PM |
| Trichloroethene              | 0.76       | 0.030  | ppbV | 1  | 4/1/2020 8:51:00 PM |
| Vinyl acetate                | < 0.15     | 0.15   | opbV | 1  | 4/1/2020 8:51:00 PM |
| Vinyl Bromide                | < 0.15     | 0.15   | ppbV | 1  | 4/1/2020 8:51:00 PM |
| Vinyl chloride               | < 0.040    | 0.040  | Vdqq | 1  | 4/1/2020 8:51:00 PM |
| Sum Bromofluorobenzene       | 89.0       | 70-130 | %REC | ٦  | 4/1/2020 8:51:00 PM |

| Qualifiers: | sc                                              | Sub-Contracted                                     | ,                   | Results reported are not blank corrected  |  |
|-------------|-------------------------------------------------|----------------------------------------------------|---------------------|-------------------------------------------|--|
|             | B                                               | Analyte detected in the associated Method Blank    | Е                   | Estimated Value above quantitation range  |  |
|             | н                                               | Holding times for preparation or analysis exceeded | j                   | Analyte detected below quantitation limit |  |
|             | JN                                              | Non-routine analyte. Quantitation estimated.       | ND                  | Not Detected at the Limit of Detection    |  |
| S           | Spike Recovery outside accepted recovery limits | ÐŁ                                                 | Detection Limit Pag | ge 20 of 24                               |  |

Date: 10-Apr-20

| CLIENT:                                | Geovation Engineering, Inc.            | Client Sample ID: | 616       |
|----------------------------------------|----------------------------------------|-------------------|-----------|
| Lab Order:                             | C2004002                               | Tag Number:       | 200,436   |
| Project:                               | Grant Hardware                         | Collection Date:  | 3/28/2020 |
| Lab ID:                                | C2004002-010A                          | Matrix:           | AIR       |
| ······································ | ······································ |                   |           |

| Analyses                    | Result       | DL   | Qual | Units | DF     | Date Analyzed       |  |
|-----------------------------|--------------|------|------|-------|--------|---------------------|--|
| 1UG/M3 W/ 0.2UG/M3 CT-TCE-V | C-DCE-1,1DCE | тс   | -15  |       |        | Analyst: RJI        |  |
| 1,1,1-Trichloroethane       | < 0.82       | 0.82 |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| 1,1,2,2-Tetrachloroethane   | < 1.0        | 1.0  |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| 1,1,2-Trichloroethane       | < 0.82       | 0.82 |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| 1,1-Dichloroethane          | < 0.61       | 0.61 |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| 1,1-Dichloroethene          | < 0.16       | 0.16 |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| 1,2,4-Trichlorobenzene      | < 1.1        | 1.1  |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| 1,2,4-Trimethylbenzene      | < 0.74       | 0.74 |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| 1,2-Dibromoethane           | < 1.2        | 1.2  |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| 1,2-Dichlorobenzene         | < 0.90       | 0.90 |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| 1,2-Dichloroethane          | < 0.61       | 0.61 |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| 1,2-Dichloropropane         | < 0.69       | 0.69 |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| 1,3,5-Trimethylbenzene      | < 0.74       | 0.74 |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| 1,3-butadiene               | < 0.33       | 0.33 |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| 1,3-Dichlorobenzene         | < 0.90       | 0.90 |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| 1,4-Dichlorobenzene         | < 0.90       | 0.90 |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| 1,4-Dioxane                 | < 1.1        | 1.1  |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| 2,2,4-trimethylpentane      | < 0.70       | 0.70 |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| 4-ethyltoluene              | < 0.74       | 0.74 |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| Acetone                     | 8.8          | 7.1  |      | ug/m3 | 10     | 4/2/2020 6:49:00 AM |  |
| Allyl chloride              | < 0.47       | 0.47 |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| Benzene                     | 0.57         | 0.48 |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| Benzyl chloride             | < 0.86       | 0.86 |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| Bromodichloromethane        | < 1.0        | 1,0  |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| Bromoform                   | < 1.6        | 1.6  |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| Bromomethane                | < 0.58       | 0.58 |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| Carbon disulfide            | < 0.47       | 0.47 |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| Carbon tetrachloride        | 0.63         | 0.19 |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| Chlorobenzene               | < 0.69       | 0.69 |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| Chloroethane                | < 0.40       | 0.40 |      | ug/m3 | ,<br>1 | 4/1/2020 8:51:00 PM |  |
| Chloroform                  | < 0.73       | 0,73 |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| Chloromethane               | 0.76         | 0.31 |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| cis-1,2-Dichloroethene      | < 0.16       | 0.16 |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| cis-1,3-Dichloropropene     | < 0.68       | 0.68 |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| Cyclohexane                 | 0.86         | 0.52 |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| Dibromochloromethane        | < 1.3        | 1.3  |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| Ethyl acetate               | < 0.54       | 0.54 |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| Ethylbenzene                | < 0.65       | 0.65 |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| Freon 11                    | 16           | 8.4  |      | ug/m3 | 10     | 4/2/2020 6:49:00 AM |  |
| Freon 113                   | < 1.1        | 1.1  |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |
| Freen 114                   | < 1.0        | 1.0  |      | ug/m3 | 1      | 4/1/2020 8:51:00 PM |  |

- в Analyte detected in the associated Method Blank
- н Holding times for preparation or analysis exceeded
- IN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

- Estimated Value above quantitation range Ε
- Analyte detected below quantitation limit J

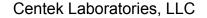
ND Not Detected at the Limit of Detection

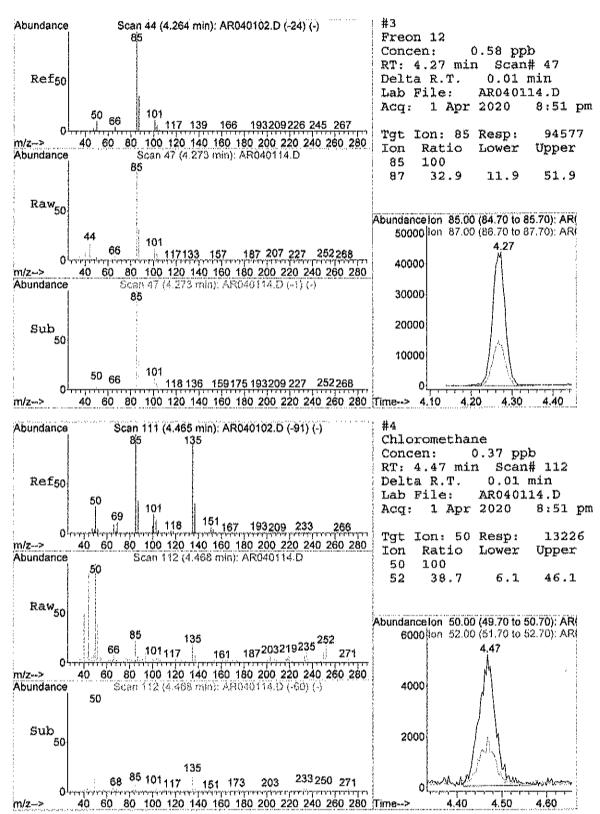
DL Detection Limit

Page 19 of 24

Date: 10-Apr-20

| Analyses                                                                                                        | ου το ποιοδού το την το | Result | DL | Qual | Units            | DF       | Date Analyzed                                                                                     |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------|----|------|------------------|----------|---------------------------------------------------------------------------------------------------|
| Lab ID:                                                                                                         | C2004002-010A                                               |        |    |      | Matrix:          | AIR      |                                                                                                   |
| Project:                                                                                                        | Grant Hardware                                              |        |    |      | Collection Date: | 3/28/202 | 0                                                                                                 |
| Lab Order:                                                                                                      | C2004002                                                    |        |    |      | Tag Number:      | 200,436  |                                                                                                   |
| CLIENT:                                                                                                         | Geovation Engineering,                                      | Inc.   |    | ¢    | lient Sample ID: | 616      |                                                                                                   |
| a 160 (161 mar 160 mar 17 m | r                                                           |        |    |      |                  |          | na an ann an an an an ann an ann an 1746 a' bha a' bhairte an |


| Analyses                                | Result | DL    | Qual | Units | DF | Date Analyzed       |
|-----------------------------------------|--------|-------|------|-------|----|---------------------|
| 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE |        | TO-15 |      |       |    | Analyst: RJF        |
| Freon 12                                | 2.9    | 0.74  |      | ug/m3 | 1  | 4/1/2020 8:51:00 PM |
| Heptane                                 | < 0.61 | 0.61  |      | ug/m3 | 1  | 4/1/2020 8:51:00 PM |
| Hexachloro-1,3-butadiene                | < 1.6  | 1.6   |      | ug/m3 | 1  | 4/1/2020 8:51:00 PM |
| Hexane                                  | < 0.53 | 0.53  |      | ug/m3 | 1  | 4/1/2020 8:51:00 PM |
| Isopropyl alcohol                       | 2.6    | 0.37  |      | ug/m3 | 1  | 4/1/2020 8:51:00 PM |
| m&p-Xylene                              | < 1.3  | 1.3   |      | ug/m3 | 1  | 4/1/2020 8:51:00 PM |
| Mathyl Butyl Ketone                     | < 1.2  | 1.2   |      | ug/m3 | 1  | 4/1/2020 8:51:00 PM |
| Methyl Ethyl Ketone                     | 1.1    | 0.88  |      | ug/m3 | 1  | 4/1/2020 8:51:00 PM |
| Methyl Isobutyl Ketone                  | < 1.2  | 1.2   |      | ug/m3 | 1  | 4/1/2020 8:51:00 PM |
| Methyl tert-butyl ether                 | < 0.54 | 0.54  |      | ug/m3 | 1  | 4/1/2020 8:51:00 PM |
| Methylene chloride                      | 0.56   | 0.52  |      | ug/m3 | 1  | 4/1/2020 8:51:00 PM |
| o-Xylene                                | < 0.65 | 0.65  |      | ug/m3 | 1  | 4/1/2020 8:51:00 PM |
| Propylene                               | < 0.26 | 0.26  |      | ug/m3 | 1  | 4/1/2020 8:51:00 PM |
| Styrene                                 | < 0.64 | 0.64  |      | ug/m3 | 1  | 4/1/2020 8:51:00 PM |
| Tetrachloroethylene                     | 1.8    | 1.0   |      | ug/m3 | 1  | 4/1/2020 8:51:00 PM |
| Tetrahydrofuran                         | < 0.44 | 0.44  |      | ug/m3 | 1  | 4/1/2020 8:51:00 PM |
| Toluene                                 | 0.60   | 0.57  |      | ug/m3 | 1  | 4/1/2020 8:51:00 PM |
| trans-1,2-Dichloroethene                | < 0.59 | 0.59  |      | ug/m3 | 1  | 4/1/2020 8:51:00 PM |
| trans-1,3-Dichloropropene               | < 0.68 | 0.68  |      | ug/m3 | 1  | 4/1/2020 8:51:00 PM |
| Trichloroethene                         | 4.1    | 0.16  |      | ug/m3 | 1  | 4/1/2020 8:51:00 PM |
| Vinyl acetate                           | < 0.53 | 0.53  |      | ug/m3 | 1  | 4/1/2020 8:51:00 PM |
| Vinyl Bromide                           | < 0.66 | 0.66  |      | ug/m3 | 1  | 4/1/2020 8:51:00 PM |
| Vinyl chloride                          | < 0.10 | 0.10  |      | ug/m3 | 1  | 4/1/2020 8:51:00 PM |

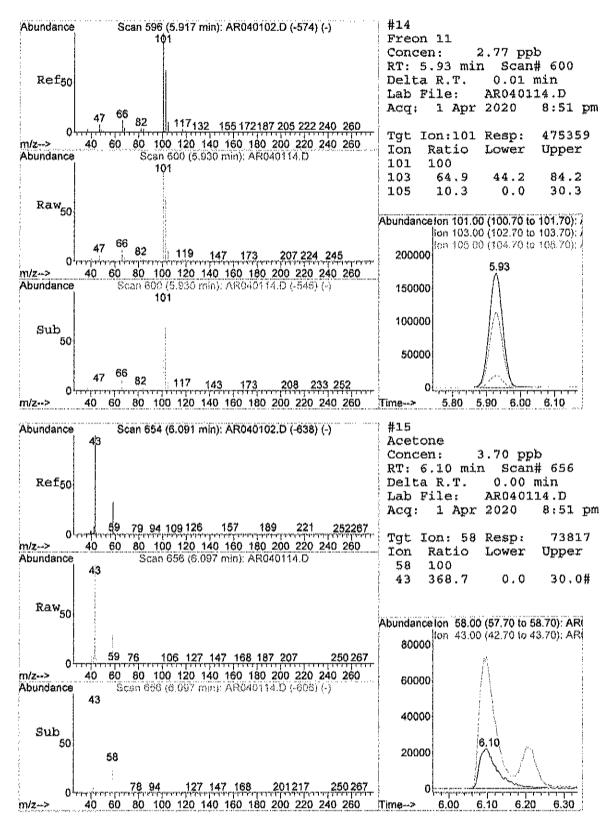

| Qualifiers: | SC | Sub-Contracted                                     |    | Results reported are not blank corrected  |
|-------------|----|----------------------------------------------------|----|-------------------------------------------|
|             | в  | Analyte detected in the associated Method Blank    | E  | Estimated Value above quantitation range  |
|             | н  | Holding times for preparation or analysis exceeded | J  | Analyte detected below quantitation limit |
|             | ИL | Non-routine analyte. Quantitation estimated.       | ND | Not Detected at the Limit of Detection    |
| S           |    | Spike Recovery outside accepted recovery limits    | DL | Detection Limit Page 20 of 24             |

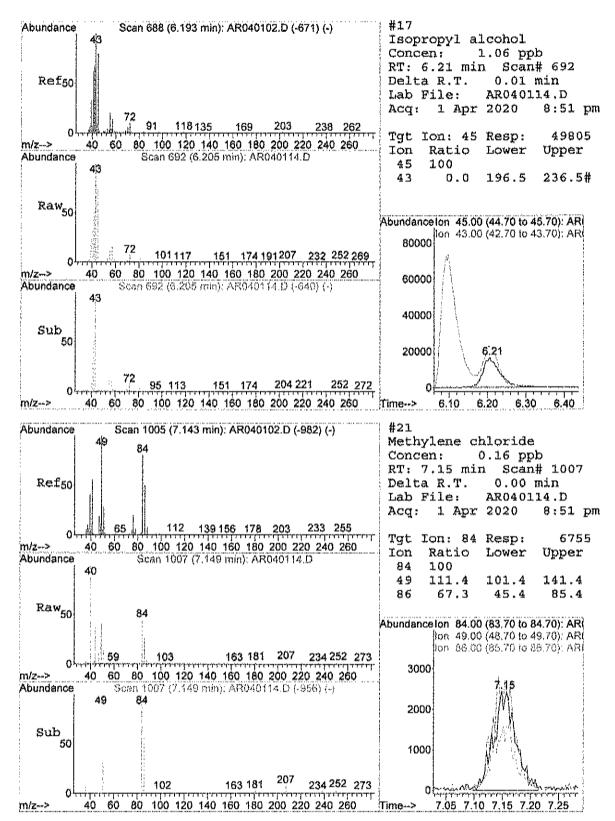
| Centek Laboratories, LLC                                                                                                                                                                                                        |                   |          |                                          |                                     |                                  |      |          |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|------------------------------------------|-------------------------------------|----------------------------------|------|----------|--|
|                                                                                                                                                                                                                                 | Quantitati        | lon Rep  | port (QT                                 | Review                              | (ed)                             |      |          |  |
| Data File : C:\HPCHEM\1\DATA\A<br>Acq On : 1 Apr 2020 8:51<br>Sample : C2004002-010A<br>Misc : A311_1UG<br>MS Integration Params: RTEINT.                                                                                       | L pm              |          | Inst<br>Mult                             | Vial:<br>rator:<br>:<br>:<br>:iplr: | RJP<br>MSD<br>1.00               | ł    |          |  |
| Quant Time: Apr 07 09:26:20 20                                                                                                                                                                                                  | 20                | Qua      | ant Results                              | File:                               | A320                             | _100 | .RES     |  |
| Quant Method : C:\HPCHEM\1\METHODS\A320_1UG.M (RTE Integrator)<br>Title : TO-15 VOA Standards for 5 point calibration<br>Last Update : Mon Mar 23 08:34:44 2020<br>Response via : Initial Calibration<br>DataAcq Meth : 1UG_ENT |                   |          |                                          |                                     |                                  |      |          |  |
| Internal Standards                                                                                                                                                                                                              | R.T.              | QION     | Response (                               | Conc Ur                             | nits                             | Dev  | (Min)    |  |
| <ol> <li>Bromochloromethane</li> <li>35) 1,4-difluorobenzene</li> <li>50) Chlorobenzene-d5</li> </ol>                                                                                                                           | 9.91              | 128      | 36639                                    | 1.00                                | ppb<br>ppb                       |      | 0.00     |  |
| System Monitoring Compounds<br>65) Bromofluorobenzene<br>Spiked Amount 1.000                                                                                                                                                    | 18.74<br>Range 70 |          | 79445<br>Recovery                        |                                     |                                  |      | 0.00     |  |
| Target Compounds                                                                                                                                                                                                                |                   |          |                                          |                                     |                                  | ÖVä  | alue     |  |
| $3\overline{)}$ Freen 12                                                                                                                                                                                                        | 4.27              | 85       | 94577                                    | 0.58                                | $\mathbf{p}\mathbf{p}\mathbf{b}$ | -    | 98       |  |
| 4) Chloromethane                                                                                                                                                                                                                | 4.47              | 50       | 13226                                    | 0.37                                | ppb                              |      | 75       |  |
| 14) Freon 11                                                                                                                                                                                                                    | 5.93              | 101      | 475359<br>73817<br>49805<br>6755<br>6435 | 2.77                                | ppb                              |      | 99       |  |
| 15) Acetone                                                                                                                                                                                                                     | 6.10              | 58       | 73817                                    | 3.70                                | aqq                              | 祥    | 100<br>1 |  |
| 17) Isopropyl alcohol<br>21) Methylene chloride                                                                                                                                                                                 | 6.21              | 45       | 49805                                    | 1.06                                | ppp                              | Ŧ    | 93<br>   |  |
| 21) Methylene Chloride                                                                                                                                                                                                          | /.15              | 84<br>20 | 6/25                                     | 0.18                                | ppp                              | щ    | 100      |  |
| 28) Methyl Ethyl Ketone<br>37) Cyclohexane                                                                                                                                                                                      | 9.02              | 14       | 0430<br>10435m en                        | 0.30                                | ppp                              | #    | T00      |  |
| 38) Carbon tetrachloride                                                                                                                                                                                                        | 41 KE             | 117      | 10435m 🖓<br>12128                        | × 0.20                              | ppp                              |      | 100      |  |
| 39) Benzene                                                                                                                                                                                                                     | 11 SI             |          | 19417                                    | 0.19                                | ppb                              |      | 96       |  |
| 44) Trichloroethene                                                                                                                                                                                                             | 12 85             | 130      | 41496                                    | 0.76                                | pph                              |      | 99       |  |
| S1) Toluene                                                                                                                                                                                                                     | 14.95             | 92       | 12128<br>19417<br>41496<br>11460         | 0.16                                | dqq                              |      | 93       |  |
| 56) Tetrachloroethylene                                                                                                                                                                                                         | 16.02             | 164      | 16695                                    | 0.27                                | dqq                              |      | 99       |  |

|                                                                                                                                                                                                                                               |                                            | 35 56 5<br>57 56 5<br>57 56 5<br>57 5<br>57 5<br>57 5<br>57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rage z       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                                                                                                                                                                                                                                               |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | **           |
|                                                                                                                                                                                                                                               |                                            | 88-<br>33-<br>33-<br>54-<br>54-<br>54-<br>54-<br>54-<br>54-<br>54-<br>54-<br>54-<br>54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
|                                                                                                                                                                                                                                               |                                            | 21.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
|                                                                                                                                                                                                                                               |                                            | 20,00<br>20,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
|                                                                                                                                                                                                                                               |                                            | Biomonia Bi<br>Biomonia Biomonia                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
|                                                                                                                                                                                                                                               |                                            | 18.00<br>18.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| Sar                                                                                                                                                                                                                                           |                                            | ر الموموموسودية المراجع المراجع<br>مراجع المراجع ال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| .#1<br>0<br>106.RES                                                                                                                                                                                                                           |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
| l: 10<br>±: RJP<br>: MSD<br>: MSD<br>: 1.00<br>e: A320<br>c)                                                                                                                                                                                  | 40114.D                                    | T,ensuloT - C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
| Vial:<br>Operator:<br>Inst :<br>Multiplr:<br>Sults File:<br>Integrator)<br>ibration                                                                                                                                                           | TIC: AR040114.D                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>I</b> USN |
| Ope<br>Ins<br>Mul<br>Results<br>TE Integ<br>calibrat                                                                                                                                                                                          |                                            | 1,enstreadoroutite-A,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0            |
| uant<br>M (R<br>int                                                                                                                                                                                                                           |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21 2020      |
| .D<br>or_5<br>20_1t                                                                                                                                                                                                                           |                                            | (,arisr/ilomonohomonal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 08:39:21  |
| 040114<br>pm<br>Pm<br>Pm<br>Pm<br>Pm<br>Pm<br>Pm<br>Pm<br>Pm<br>Pm<br>Pm<br>Pm<br>Pm<br>Pm                                                                                                                                                    |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Apr 10       |
| HPCHEM/1\DATA\AR040114.D<br>Apr 2020 8:51 pm<br>04002-010A<br>1_1UG<br>Params: RTEINT.P<br>7 10:07 2020<br>C:\HPCHEM/1\METHODS\A320<br>C:\HPCHEM/1\METHODS\A320<br>TO-15 VOA Standards for<br>Fri Apr 10 08:36:30 2020<br>Initial Calibration |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fri A        |
| HEM/1/D<br>2020<br>JG<br>JG<br>IL0:07<br>10:07<br>HPCHEM/<br>L5 VOA<br>Apr 10                                                                                                                                                                 |                                            | T,ebholito enelvritieM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ξ            |
|                                                                                                                                                                                                                                               |                                            | T. (1 rossia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A320_10G.M   |
| e : :<br>rcati. : :<br>via                                                                                                                                                                                                                    |                                            | ノロシート                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
| area the second                                                                                                                                                                                                                               | 0undance<br>1900000<br>1700000<br>1700000  | 1600000<br>1500000<br>1400000<br>1400000<br>1400000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>1000000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>100000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>100000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AR040114.D   |
| Data<br>Acq<br>Samp<br>Misc<br>Mar<br>Moun<br>Titl<br>Resp<br>Resp                                                                                                                                                                            | Abundance<br>1900000<br>1800000<br>1700000 | 1600<br>1500<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1000<br>1400<br>1000<br>1400<br>1000<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400<br>1400000000 | AROS         |

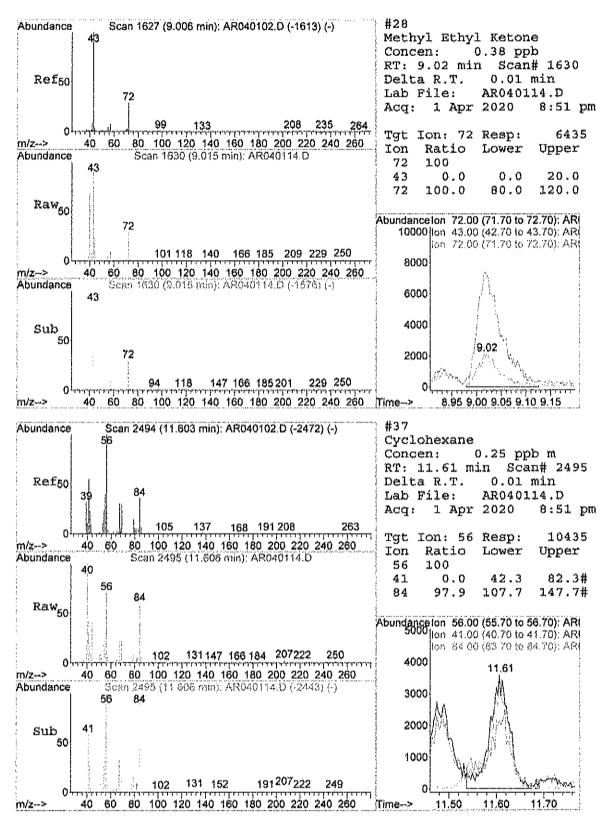
Page 259 of 380

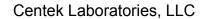


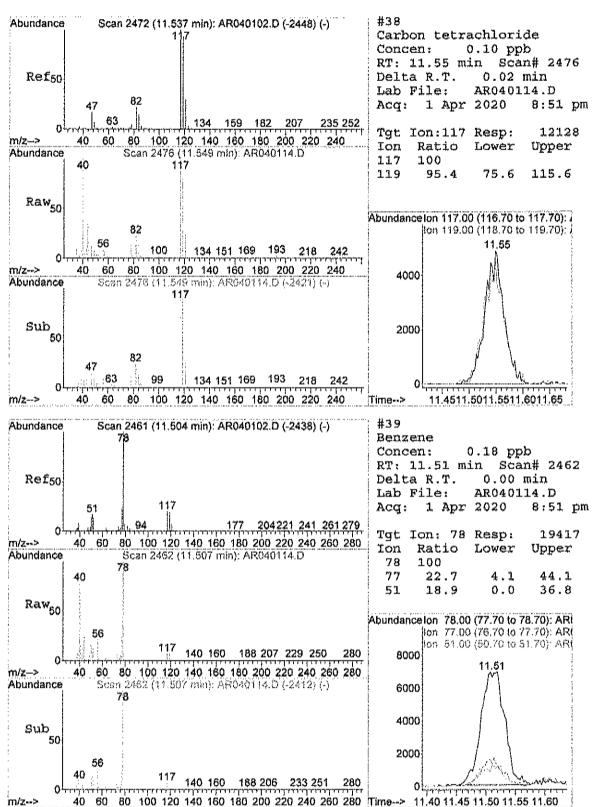




AR040114.D A320\_1UG.M

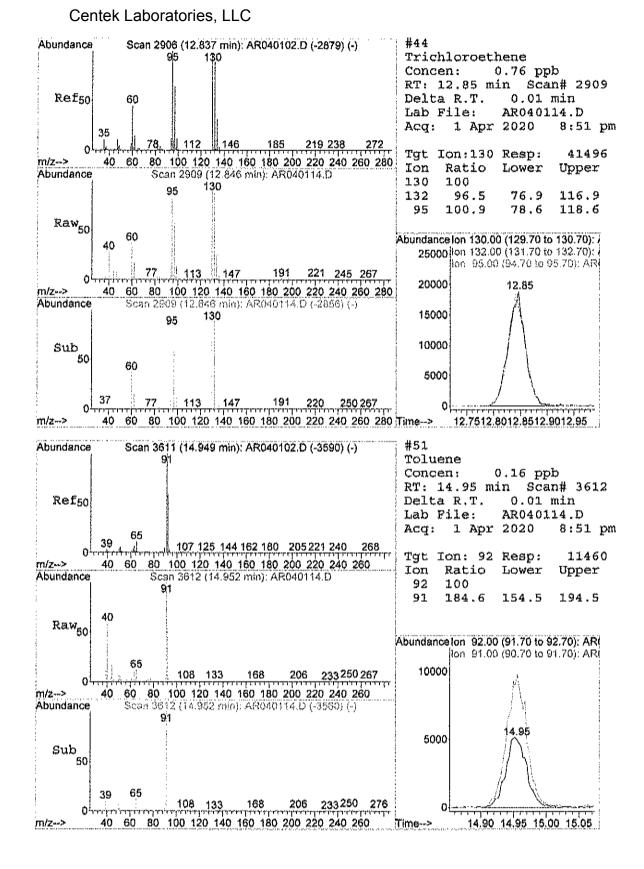
Fri Apr 10 08:39:22 2020

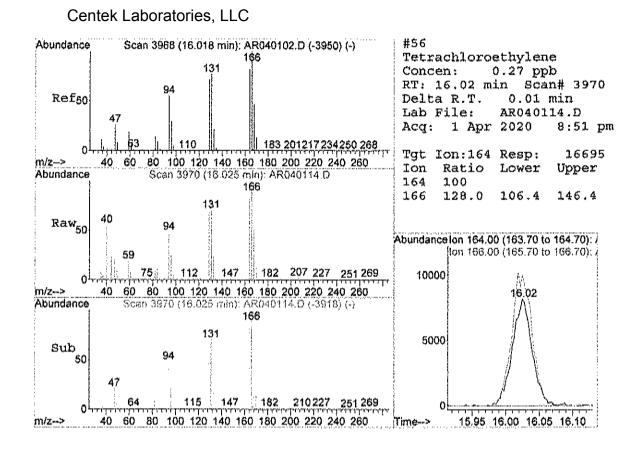

MSD1


Page 3

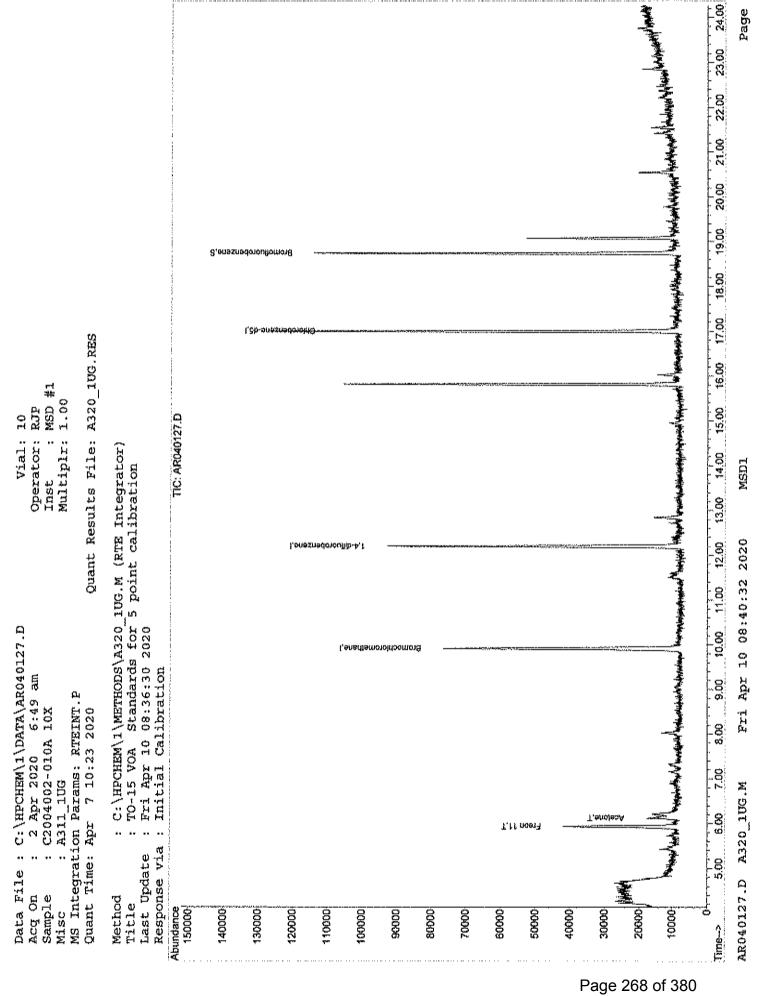






Page 5

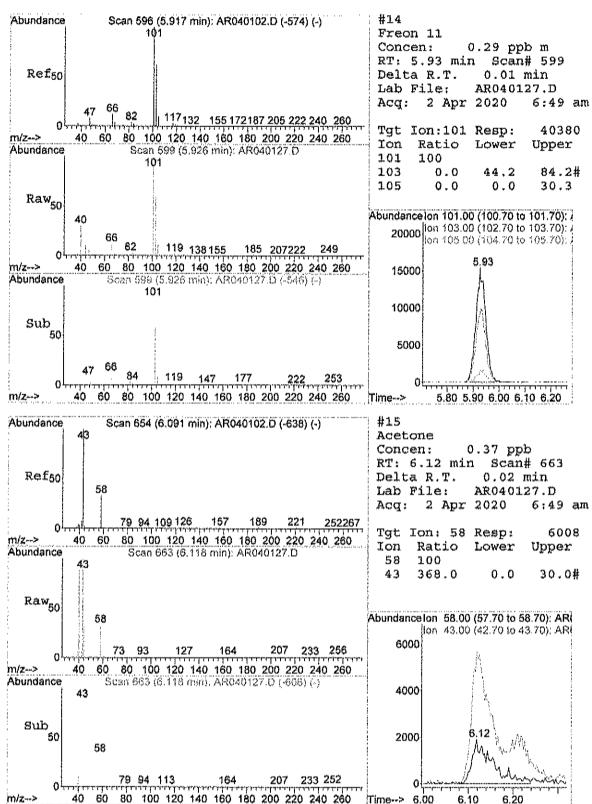





MSDl






Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AR040127.D Vial: 10 Acq On : 2 Apr 2020 6:49 am Operator: RJP Sample : C2004002-010A 10X Misc : A311\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 07 09:26:33 2020 Quant Results File: A320 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 23 08:34:44 2020 Response via : Initial Calibration DataAcq Meth : 1UG ENT R.T. QION Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.91128296461.00ppb0.0135) 1,4-difluorobenzene12.20114910511.00ppb0.0050) Chlorobenzene-d517.00117822461.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.74 95 41762 0.71 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 71.00% Target Compounds 14) Freon 11 Qvalue 5.93 101 40380m 3 0.29 ppb 6.12 58 6008 0.37 ppb # 100 15) Acetone



C)





#### Date: 10-Apr-20 Centek Laboratories, LLC CLIENT: Client Sample ID: Roof Top HVAC 2020 Geovation Engineering, Inc. Tag Number: 1180,386 Lab Order: C2004002 **Project:** Collection Date: 3/28/2020 Grant Hardware C2004002-011A Matrix: AlR Lab ID: $\mathbf{DL}$ Analyses Result **Qual Units** DF Date Analyzed FIELD PARAMETERS FLD Analyst: Lab Vacuum in "Hg 4/1/2020 -6 Lab Vacuum Out -30 "Hg 4/1/2020 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE **TO-15** Analyst: RJP 1,1,1-Trichloroethane < 0.15 4/1/2020 9:38:00 PM 0.15 ppbV 1 < 0.15 4/1/2020 9:38:00 PM 1.1.2.2-Tetrachloroethane 0.15 ppbV 1 1,1,2-Trichloroethane < 0.15 0.15 ppbV 1 4/1/2020 9:38:00 PM 1.1-Dichloroethane < 0.15 0.15 Vđợq 1 4/1/2020 9:38:00 PM 1,1-Dichloroethene < 0.040 0.040 Vdqq 1 4/1/2020 9:38:00 PM 1.2.4-Trichlorobenzene < 0.15 0.15 1 4/1/2020 9:38:00 PM ppbV 1,2,4-Trimethylbenzene < 0.15 0.15 ppbV 1 4/1/2020 9:38:00 PM 1,2-Dibromoethane < 0.15 0.15 ppbV 1 4/1/2020 9:38:00 PM 1,2-Dichlorobenzene < 0.15 0.15 Vdqq 1 4/1/2020 9:38:00 PM 1.2-Dichloroethane < 0.15 0.15 1 ppbV 4/1/2020 9:38:00 PM 1.2-Dichloropropane < 0.15 0.15 Vdqq 1 4/1/2020 9:38:00 PM ppbV 1,3,5-Trimethylbenzene < 0.15 0.15 1 4/1/2020 9:38:00 PM 1,3-butadiene < 0.15 0.15 ppbV 1 4/1/2020 9:38:00 PM 1,3-Dichlorobenzene < 0.15 0.15 1 ppbV 4/1/2020 9:38:00 PM 1,4-Dichlorobenzene < 0.15 0.15 ppbV 1 4/1/2020 9:38:00 PM 1,4-Dioxane < 0.30 0.30 1 ppbV 4/1/2020 9:38:00 PM 2,2,4-trimethylpentane < 0.15 0.15 ppbV 1 4/1/2020 9:38:00 PM 0.15 4-ethyltoluene < 0.15 opbV 1 4/1/2020 9:38:00 PM Acetone 6.2 3.0 ppbV 10 4/2/2020 7:35:00 AM Allyl chloride < 0.15 0.15 ppbV 1 4/1/2020 9:38:00 PM Benzene 0.15 0.15 ppbV 1 4/1/2020 9:38:00 PM **Benzyl chloride** < 0.15 0.15 1 Vdqq 4/1/2020 9:38:00 PM Bromodichloromethane < 0.15 0.15 ppbV 1 4/1/2020 9:38:00 PM Bromoform < 0.15 0.15 ppbV 1 4/1/2020 9:38:00 PM Bromomethane < 0.15 0.15 1 4/1/2020 9:38:00 PM Vdqq Carbon disulfide < 0.15 1 0,15 ppbV 4/1/2020 9:38:00 PM Carbon tetrachloride 0.090 0.030 1 4/1/2020 9:38:00 PM ppbV Chlorobenzene 1 < 0.15 0.15 opo∨ 4/1/2020 9:38:00 PM Chloroethane < 0.15 0.15 ppb∨ 1 4/1/2020 9:38:00 PM Chloroform < 0.15 0.15 vdqq 1 4/1/2020 9:38:00 PM Chloromethane 0.39 0.15 opbV 1 4/1/2020 9:38:00 PM cis-1,2-Dichloroethene < 0.040 0.040 1 4/1/2020 9:38:00 PM ppbV cis-1,3-Dichloropropene < 0.15 0.15 1 4/1/2020 9:38:00 PM ppbV Cyclohexane 0.28 0.15 ppbV 1 4/1/2020 9:38:00 PM Dibromochloromethane 1 < 0.15 0.15 ppbV 4/1/2020 9:38:00 PM Ethyl acetate 0.15 0.15 vdqq 1 4/1/2020 9:38:00 PM

- Qualifiers: SC Sub
- Sub-Contracted
  - B Analyte detected in the associated Method Blank
  - H Holding times for preparation or analysis exceeded
  - JN Non-routine analyte. Quantitation estimated,
  - S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection
  - Detection Limit

DL.

Page 21 of 24

Date: 10-Apr-20

| CLIENT:    | Geovation Engineering, Inc. | Client Sample ID: Roof Top HVAC 2020 |
|------------|-----------------------------|--------------------------------------|
| Lab Order: | C2004002                    | Tag Number: 1180,386                 |
| Project:   | Grant Hardware              | Collection Date: 3/28/2020           |
| Lab ID:    | C2004002-011A               | Matrix: AIR                          |
|            |                             |                                      |

| Analyses                     | Result     | ÐL     | Qual | Units | DF | Date Analyzed       |
|------------------------------|------------|--------|------|-------|----|---------------------|
| 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC | DCE-1,1DCE | TO     | -15  |       |    | Analyst: RJF        |
| Ethylbenzene                 | < 0.15     | 0.15   |      | ppbV  | 1  | 4/1/2020 9:38:00 PM |
| Freon 11                     | 0.24       | 0.15   |      | ррь∨  | 1  | 4/1/2020 9:38:00 PM |
| Freon 113                    | < 0.15     | 0.15   |      | ppbV  | 1  | 4/1/2020 9:38:00 PM |
| Freon 114                    | < 0.15     | 0.15   |      | ppbV  | 1  | 4/1/2020 9:38:00 PM |
| Freon 12                     | 0.47       | 0.15   |      | ppbV  | 1  | 4/1/2020 9:38:00 PM |
| Heptane                      | 0.12       | 0.15   | J    | ppbV  | 1  | 4/1/2020 9:38:00 PM |
| Hexachloro-1,3-butadiene     | < 0.15     | 0.15   |      | ppbV  | 1  | 4/1/2020 9:38:00 PM |
| Hexane                       | < 0.15     | 0.15   |      | ppbV  | 1  | 4/1/2020 9:38:00 PM |
| isopropyi alcohol            | 2.6        | 1.5    |      | ppbV  | 10 | 4/2/2020 7:35:00 AM |
| m&p-Xylene                   | < 0.30     | 0.30   |      | ppbV  | 1  | 4/1/2020 9:38:00 PM |
| Methyl Butyl Ketone          | < 0.30     | 0.30   |      | ppbV  | 1  | 4/1/2020 9:38:00 PM |
| Methyl Ethyl Ketone          | 0.32       | 0.30   |      | ppbV  | 1  | 4/1/2020 9:38:00 PM |
| Methyl Isobutyl Ketone       | < 0.30     | 0.30   |      | ppbV  | 1  | 4/1/2020 9:38:00 PM |
| Methyl tert-butyl ether      | < 0.15     | 0.15   |      | ppbV  | 1  | 4/1/2020 9:38:00 PM |
| Methylene chloride           | 0.17       | 0.15   |      | ppbV  | 1  | 4/1/2020 9:38:00 PM |
| o-Xylene                     | < 0.15     | 0.15   |      | ppbV  | 1  | 4/1/2020 9:38:00 PM |
| Propylene                    | < 0.15     | 0.15   |      | ppb∨  | 1  | 4/1/2020 9:38:00 PM |
| Styrene                      | < 0.15     | 0.15   |      | ppbV  | 1  | 4/1/2020 9:38:00 PM |
| Tetrachloroethylene          | < 0.15     | 0.15   |      | ppbV  | 1  | 4/1/2020 9:38:00 PM |
| Tetrahydrofuran              | < 0.15     | 0.15   |      | ppbV  | 1  | 4/1/2020 9:38:00 PM |
| Toluene                      | 0.28       | 0.15   |      | ppbV  | 1  | 4/1/2020 9:38:00 PM |
| trans-1,2-Dichloroethene     | < 0.15     | 0.15   |      | ppbV  | 1  | 4/1/2020 9:38:00 PM |
| trans-1,3-Dichloropropene    | < 0.15     | 0.15   |      | ppbV  | 1  | 4/1/2020 9:38:00 PM |
| Trichloroethene              | 0.15       | 0.030  |      | ppb∨  | 1  | 4/1/2020 9:38:00 PM |
| Vinyl acetate                | < 0.15     | 0.15   |      | ppbV  | 1  | 4/1/2020 9:38:00 PM |
| Vinyl Bromide                | < 0.15     | 0.15   |      | ppbV  | 1  | 4/1/2020 9:38:00 PM |
| Vinyl chloride               | < 0.040    | 0.040  |      | ppbV  | 1  | 4/1/2020 9:38:00 PM |
| Surr: Bromofluorobenzene     | 90.0       | 70-130 |      | %REC  | 1  | 4/1/2020 9:38:00 PM |

| Qualifiers: | SC | Sub-Contracted                                     |    | Results reported are not blank corrected  |               |
|-------------|----|----------------------------------------------------|----|-------------------------------------------|---------------|
|             | в  | Analyte detected in the associated Method Blank    | Е  | Estimated Value above quantitation rang   | C             |
|             | Н  | Holding times for preparation or analysis exceeded | J  | Analyte detected below quantitation limit | t             |
|             | JN | Non-routine analyte. Quantitation estimated,       | ND | Not Detected at the Limit of Detection    |               |
|             | s  | Spike Recovery outside accepted recovery limits    | DL | Detection Limit                           | Page 22 of 24 |

Date: 10-Apr-20

| CLIENT:    | Geovation Engineering, I | nc.    |    | C    | lient Sample ID:        | Roof To  | р HVAC 2020   |
|------------|--------------------------|--------|----|------|-------------------------|----------|---------------|
| Lab Order: | C2004002                 |        |    |      | Tag Number:             |          | •             |
| Project:   | Grant Hardware           |        |    |      | <b>Collection Date:</b> | 3/28/202 | 20            |
| Lab ID:    | C2004002-011A            |        |    |      | Matrix:                 | AIR      |               |
| Analyses   |                          | Result | DŁ | Qual | Units                   | DF       | Date Analyzed |

| Analyses                     | Result      | DL   | Qual Units | DF | Date Analyzed       |
|------------------------------|-------------|------|------------|----|---------------------|
| 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC | -DCE-1,1DCE | то   | -15        |    | Analyst: RJ         |
| 1,1,1-Trichloroethane        | < 0.82      | 0,82 | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| 1,1,2,2-Tetrachloroethane    | < 1.0       | 1.0  | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| 1,1,2-Trichloroethane        | < 0.82      | 0.82 | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| 1,1-Dichloroethane           | < 0.61      | 0.61 | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| 1,1-Dichloroethene           | < 0.16      | 0.16 | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| 1,2,4-Trichlorobenzene       | < 1.1       | 1.1  | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| 1,2,4-Trimethylbenzene       | < 0.74      | 0.74 | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| 1,2-Dibromoethane            | < 1.2       | 1.2  | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| 1,2-Dichlorobenzene          | < 0.90      | 0.90 | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| 1,2-Dichloroethane           | < 0.61      | 0.61 | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| 1,2-Dichloropropane          | < 0.69      | 0.69 | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| 1,3,5-Trimethylbenzene       | < 0.74      | 0.74 | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| 1,3-butadiene                | < 0.33      | 0.33 | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| 1,3-Dichlorobenzene          | < 0.90      | 0.90 | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| 1,4-Dichlorobenzene          | < 0.90      | 0.90 | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| 1,4-Dioxane                  | < 1.1       | 1.1  | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| 2,2,4-trimethylpentane       | < 0.70      | 0.70 | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| 4-ethyltoluene               | < 0.74      | 0.74 | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| Acetone                      | 15          | 7.1  | ug/m3      | 10 | 4/2/2020 7:35:00 AM |
| Allyl chloride               | < 0.47      | 0.47 | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| Benzene                      | 0.48        | 0.48 | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| Benzyl chloride              | < 0.86      | 0.86 | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| Bromodichloromethane         | < 1.0       | 1.0  | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| Bromoform                    | < 1.6       | 1.6  | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| Bromomethane                 | < 0.58      | 0.58 | ug/m3      | t  | 4/1/2020 9:38:00 PM |
| Carbon disulfide             | < 0.47      | 0.47 | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| Carbon tetrachioride         | 0.57        | 0.19 | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| Chlorobenzene                | < 0.69      | 0.69 | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| Chloroethane                 | < 0.40      | 0.40 | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| Chloroform                   | < 0.73      | 0,73 | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| Chloromethane                | 0.81        | 0.31 | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| cis-1,2-Dichloroethene       | < 0.16      | 0.16 | ug/m3      | 7  | 4/1/2020 9:38:00 PM |
| cis-1,3-Dichloropropene      | < 0.68      | 0.68 | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| Cyclohexane                  | 0.96        | 0.52 | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| Dibromochloromethane         | < 1.3       | 1.3  | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| Ethyl acetate                | 0.54        | 0.54 | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| Ethylbenzene                 | < 0.65      | 0.65 | ug/m3      | "1 | 4/1/2020 9:38:00 PM |
| Freon 11                     | 1.3         | 0.84 | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| Freen 113                    | < 1.1       | 1.1  | ug/m3      | 1  | 4/1/2020 9:38:00 PM |
| Freon 114                    | < 1.0       | 1.0  | ug/m3      | 1  | 4/1/2020 9:38:00 PM |

- B Analyte detected in the associated Method Blank
- ŀI Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

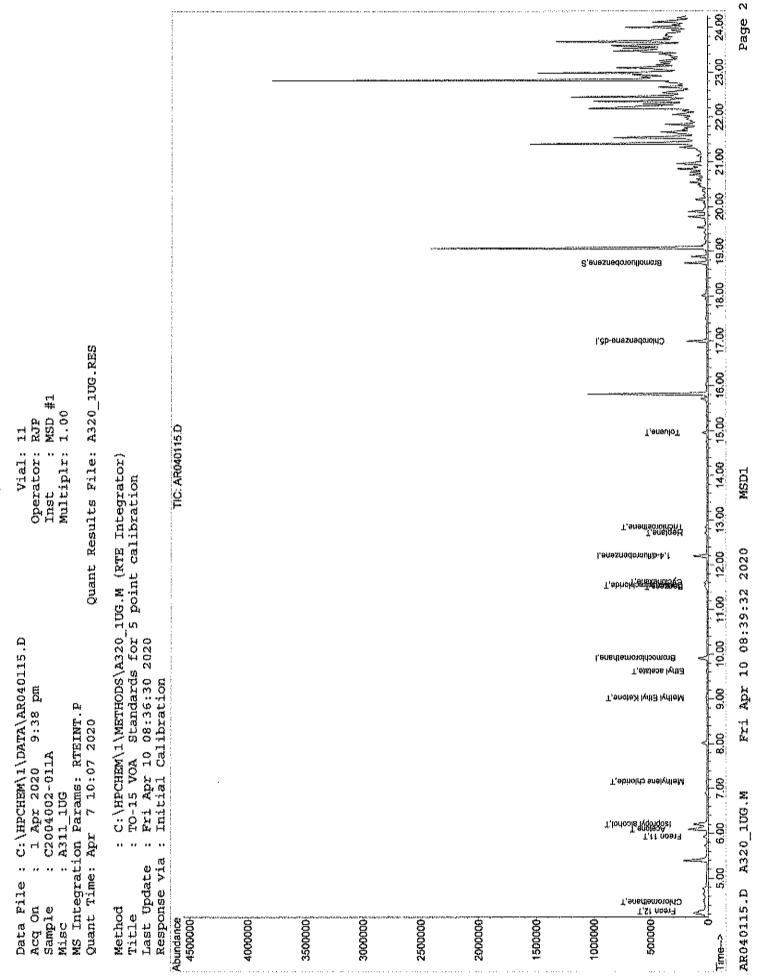
Ε Estimated Value above quantitation range

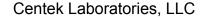
1

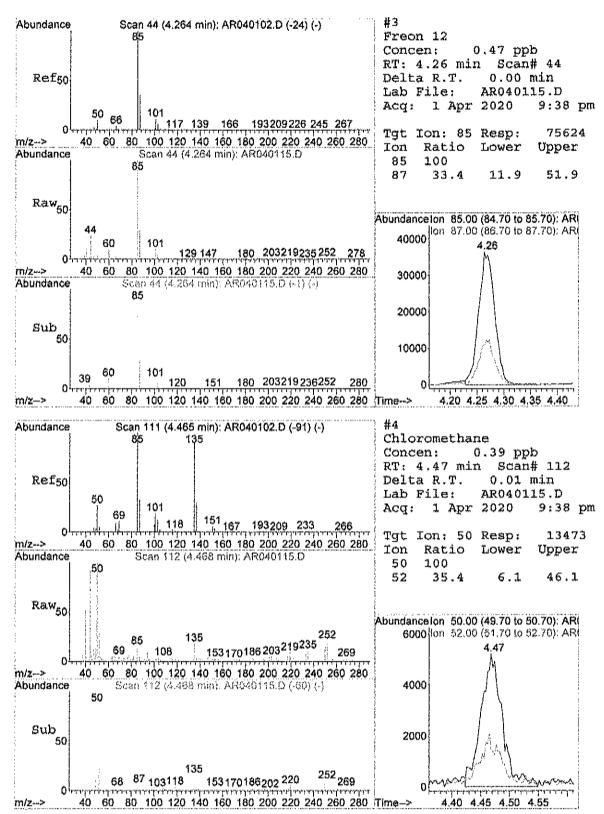
Analyte detected below quantitation limit

Not Detected at the Limit of Detection ND DL Detection Limit

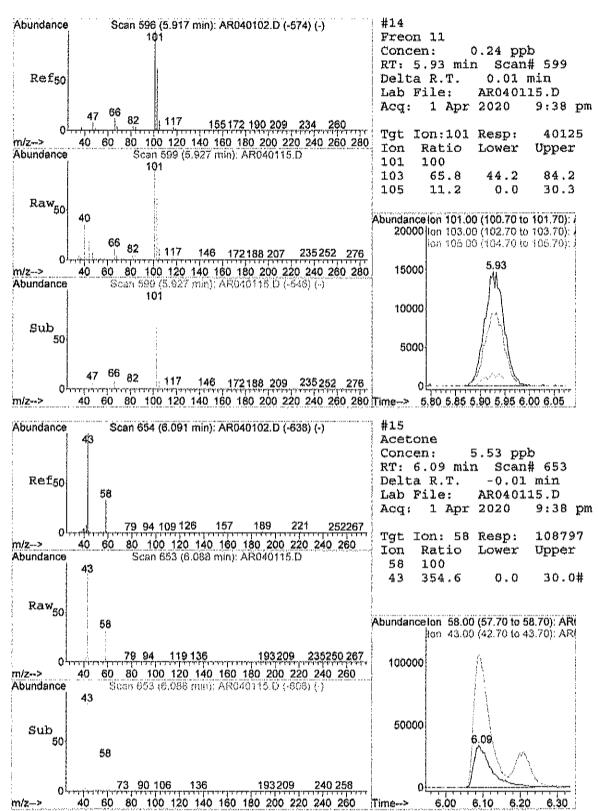
Page 21 of 24

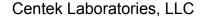

Date: 10-Apr-20

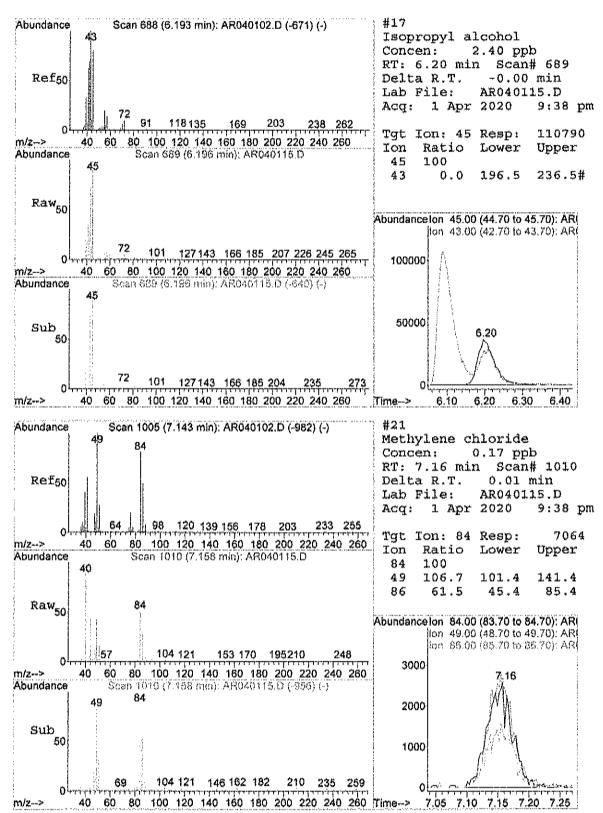

| Analyses   |                           | Result                                                    | ÐL | Oual | Units                   | DF       | Date Analyzed |  |
|------------|---------------------------|-----------------------------------------------------------|----|------|-------------------------|----------|---------------|--|
| Lab ID:    | C2004002-011A             |                                                           |    |      | Matrix:                 | AIR      |               |  |
| Project:   | Grant Hardware            |                                                           |    |      | <b>Collection Date:</b> | 3/28/202 | 0             |  |
| Lab Order: | C2004002                  |                                                           |    |      | Tag Number:             | 1180,386 | 5             |  |
| CLIENT:    | Geovation Engineering, Ir |                                                           |    |      | lient Sample ID:        |          |               |  |
|            |                           | P 9954 PK 12 93 54 56 56 56 56 56 56 56 56 56 56 56 56 56 |    |      |                         |          |               |  |
|            |                           |                                                           |    |      |                         |          |               |  |


| Analyses                     | Result     | ÐL   | Qual | Units | DF | Date Analyzed       |
|------------------------------|------------|------|------|-------|----|---------------------|
| 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC | DCE-1,1DCE | то   | )-15 |       |    | Analyst: RJF        |
| Freon 12                     | 2.3        | 0.74 |      | ug/m3 | 1  | 4/1/2020 9:38:00 PM |
| Heptane                      | 0.49       | 0.61 | J    | ug/m3 | 1  | 4/1/2020 9:38:00 PM |
| Hexachloro-1,3-butadiene     | < 1.6      | 1.6  |      | ug/m3 | 1  | 4/1/2020 9:38:00 PM |
| Hexane                       | < 0.53     | 0.53 |      | ug/m3 | 1  | 4/1/2020 9:38:00 PM |
| Isopropyl alcohol            | 6.4        | 3.7  |      | ug/m3 | 10 | 4/2/2020 7:35:00 AM |
| m&p-Xylene                   | < 1.3      | 1,3  |      | ug/m3 | 1  | 4/1/2020 9:38:00 PM |
| Methyl Butyl Ketone          | < 1.2      | 1.2  |      | ug/m3 | 1  | 4/1/2020 9:38:00 PM |
| Methyl Ethyl Ketone          | 0.94       | 0.88 |      | ug/m3 | 1  | 4/1/2020 9:38:00 PM |
| Methyl Isobutyl Ketone       | < 1.2      | 1,2  |      | ug/m3 | 1  | 4/1/2020 9:36:00 PM |
| Methyl tert-butyl ether      | < 0.54     | 0.54 |      | ug/m3 | 1  | 4/1/2020 9:38:00 PM |
| Methylene chloride           | 0.59       | 0.52 |      | ug/m3 | 1  | 4/1/2020 9:38:00 PM |
| o-Xylene                     | < 0.65     | 0.65 |      | ug/m3 | 1  | 4/1/2020 9:38:00 PM |
| Propylene                    | < 0.26     | 0.26 |      | ug/m3 | 1  | 4/1/2020 9:38:00 PM |
| Styrene                      | < 0.64     | 0.64 |      | ug/m3 | 1  | 4/1/2020 9:38:00 PM |
| Tetrachloroethylene          | < 1.0      | 1.0  |      | ug/m3 | 1  | 4/1/2020 9:38:00 PM |
| Tetrahydrofuran              | < 0.44     | 0.44 |      | ug/m3 | 1  | 4/1/2020 9:38:00 PM |
| Toluene                      | 1.1        | 0.57 |      | ug/m3 | 1  | 4/1/2020 9:38:00 PM |
| trans-1,2-Dichloroethene     | < 0.59     | 0,59 |      | ug/m3 | 1  | 4/1/2020 9:38:00 PM |
| trans-1,3-Dichloropropene    | < 0.68     | 0.68 |      | ug/m3 | 1  | 4/1/2020 9:38:00 PM |
| Trichloroethene              | 0.81       | 0.16 |      | ug/m3 | 1  | 4/1/2020 9:38:00 PM |
| Vinyl acetate                | < 0.53     | 0.53 |      | ug/m3 | 1  | 4/1/2020 9:38:00 PM |
| Vinyl Bromide                | < 0.66     | 0.66 |      | ug/m3 | 1  | 4/1/2020 9:38:00 PM |
| Vinyl chloride               | < 0.10     | 0.10 |      | ug/m3 | 1  | 4/1/2020 9:38:00 PM |

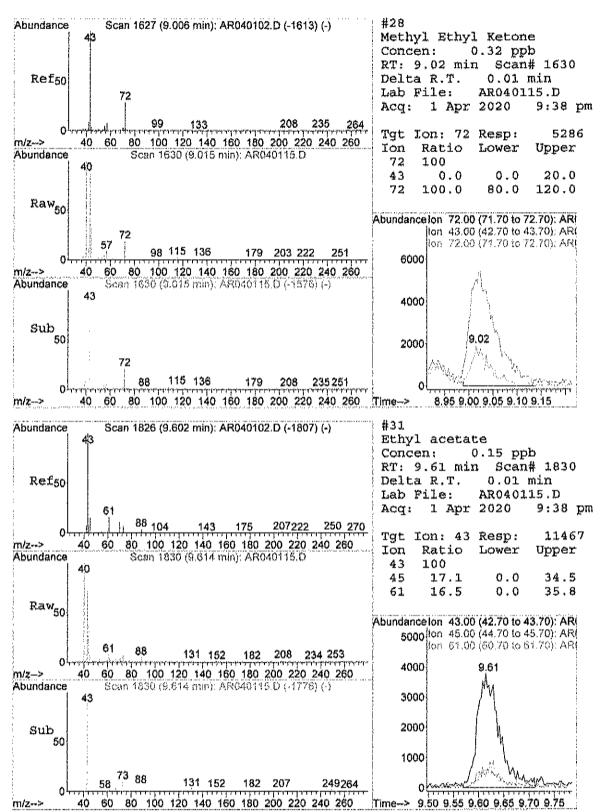
| Qualifiers:                                          | SC                                            | Sub-Contracted                                  |    | Results reported are not blank corrected |               |  |
|------------------------------------------------------|-----------------------------------------------|-------------------------------------------------|----|------------------------------------------|---------------|--|
|                                                      | в                                             | Analyte detected in the associated Method Blank | Е  | Estimated Value above quantitation rang  | c             |  |
| H Holding times for preparation or analysis exceeded |                                               | J Analyte detected below quantitation limit     |    |                                          |               |  |
|                                                      | JN Non-routine analyte. Quantitation estimate |                                                 | ND | Not Detected at the Limit of Detection   |               |  |
|                                                      | \$                                            | Spike Recovery outside accepted recovery limits | DL | Detection Limit                          | Page 22 of 24 |  |

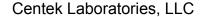

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AR040115.D Vial: 11 Acq On : 1 Apr 2020 9:38 pm Sample : C2004002-011A Misc : A311\_1UG **Operator:** RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 07 09:26:21 2020 Quant Results File: A320\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 23 08:34:44 2020 Response via : Initial Calibration DataAcg Meth : 1UG ENT Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.90128361101.00 ppb0.0035) 1,4-difluorobenzene12.201141276001.00 ppb0.0150) Chlorobenzene-d517.001171222531.00 ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.74 95 78691 0.90 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 90.00% Farget CompoundsQvalue3) Freon 124.2685756240.47ppb974) Chloromethane4.4750134730.39ppb8214) Freon 115.93101401250.24ppb9815) Acetone6.09581087975.53ppb#10017) Isopropyl alcohol6.20451107902.40ppb#121) Methylene chloride7.168470640.17ppb9028) Methyl Ethyl Ketone9.027252860.32ppb#10031) Ethyl acetate9.6143114670.15ppb9637) Cyclohexane11.605611395m0.28ppb9939) Benzene11.5178159530.15ppb9843) Heptane12.714351120.12ppb#44) Trichloroethene12.8413078050.15ppb9651) Toluene14.9692197350.28ppb93 Target Compounds Ovalue

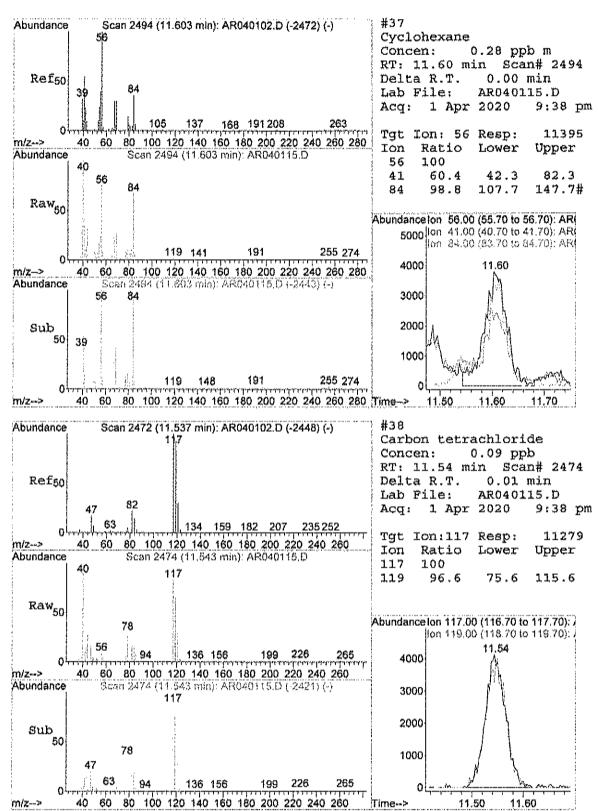


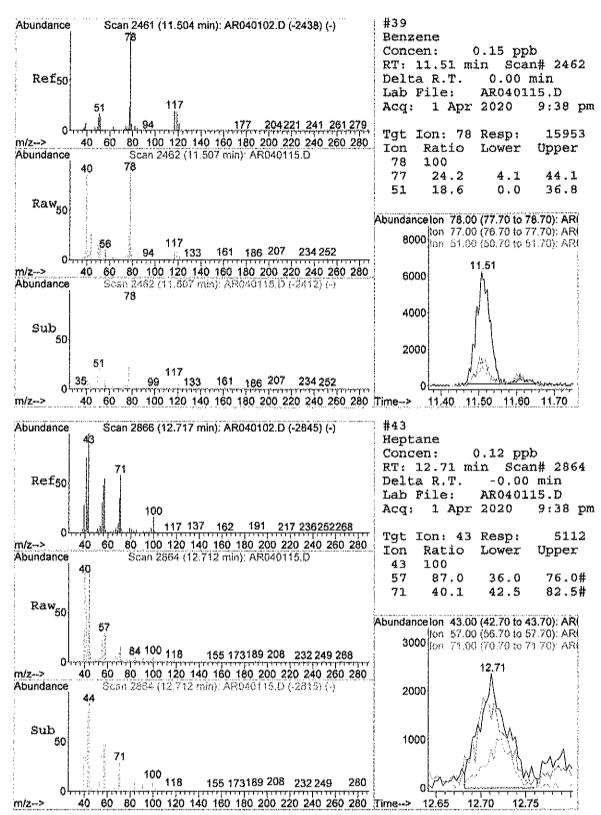


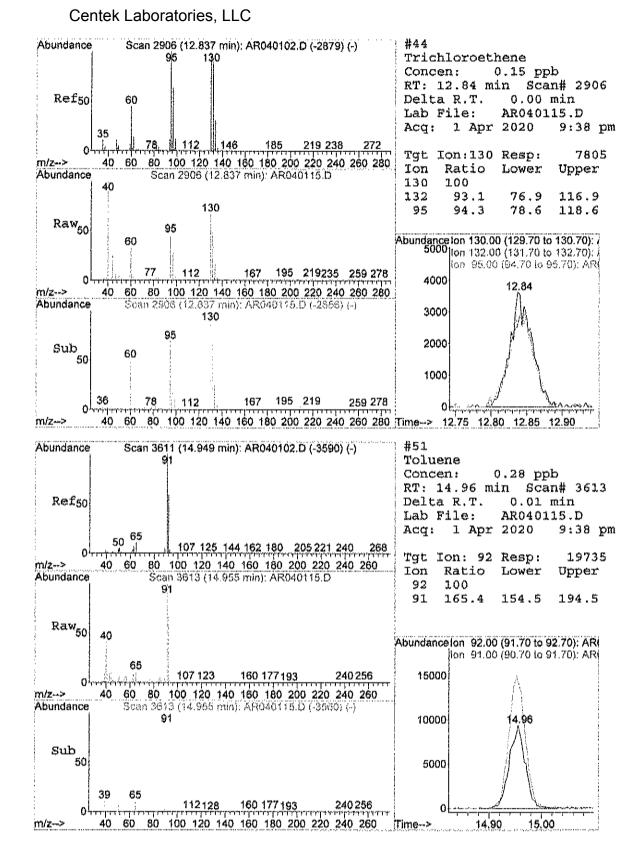









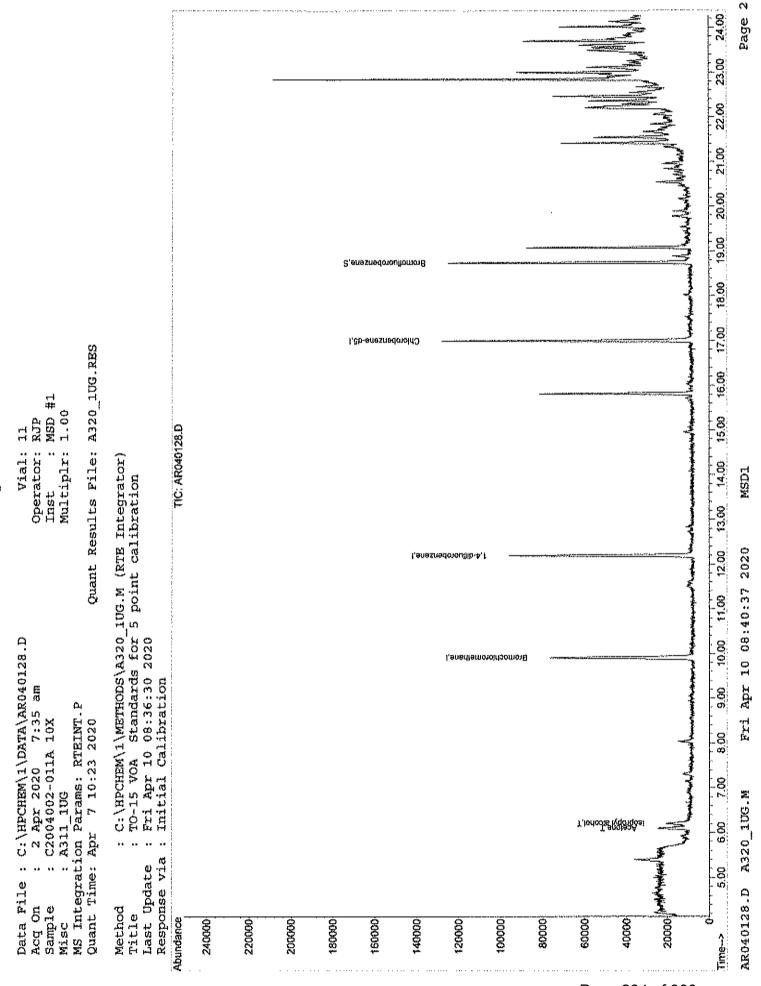




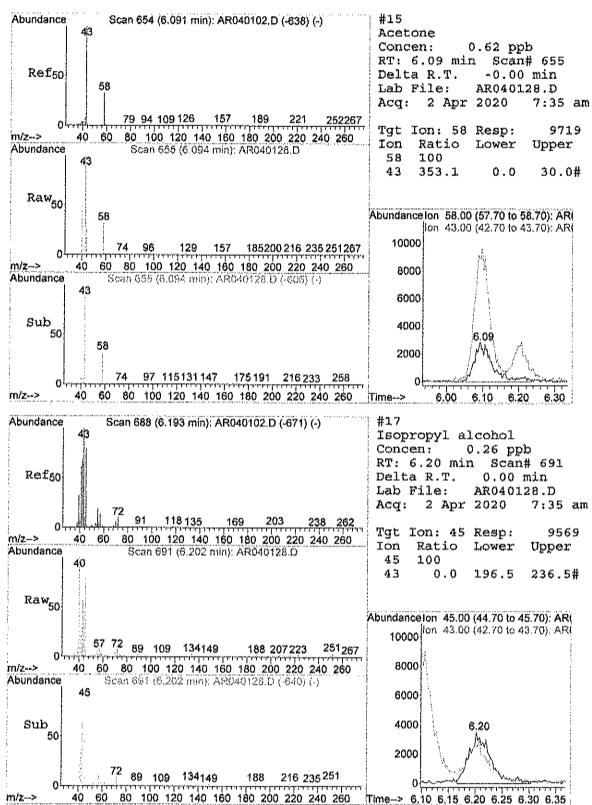

AR040115.D A320\_1UG.M

Fri Apr 10 08:39:38 2020




Fri Apr 10 08:39:39 2020

Page 9


Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AR040128.D Vial: 11 Acq On : 2 Apr 2020 7:35 am Operator: RJP Sample : C2004002-011A 10X Misc : A311\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 07 09:26:34 2020 Quant Results File: A320\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 23 08:34:44 2020 Response via : Initial Calibration DataAcq Meth : 1UG ENT R.T. QION Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.91128289481.00ppb0.0035) 1,4-difluorobenzene12.19114933751.00ppb0.0050) Chlorobenzene-d517.00117842691.00ppb0.01 System Monitoring Compounds 65) Bromofluorobenzene 18.74 95 45707 0.76 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 76.00% Target Compounds 
 Carget Compounds
 Qvalue

 15) Acetone
 6.09
 58
 9719
 0.62
 ppb
 #
 100

 17) Isopropyl alcohol
 6.20
 45
 9569
 0.26
 ppb
 #
 1







Date: 10-Apr-20

| CLIENT:                    |          | Geovation Engineeri        | ng, Inc.                        |              | C    | lient Sample                                                                                                    | e ID: | Outdo    | or Upwind 2020          |
|----------------------------|----------|----------------------------|---------------------------------|--------------|------|-----------------------------------------------------------------------------------------------------------------|-------|----------|-------------------------|
| Lab Order:                 |          | C2004002                   |                                 |              |      | Tag Num                                                                                                         | ber:  | 239,38   | 31                      |
| Project:                   |          | Grant Hardware             |                                 |              |      | Collection D                                                                                                    | )ate: | 3/28/2   | 020                     |
| Lab ID:                    |          | C2004002-012A              |                                 |              |      | Ma                                                                                                              | trix: | AIR      |                         |
| Analyses                   |          |                            | Result                          | DL           | Qual | Units                                                                                                           |       | DF       | Date Analyzed           |
| FIELD PAR                  | A 1457   | 'EDQ                       |                                 | F            | LD   |                                                                                                                 |       |          | Analyst:                |
| Lab Vacuun                 |          | LING                       | -3                              |              | L    | "Hg                                                                                                             |       |          | 4/1/2020                |
| Lab Vacuun                 |          |                            | -30                             |              |      | "Hg                                                                                                             |       |          | 4/1/2020                |
| 1UG/M3 W/                  | 0.216    | G/M3 CT-TCE-VC-DC          | E-1.1DCE                        | тс           | )-15 |                                                                                                                 |       |          | Analyst: RJP            |
| 1,1.1-Trichle              |          |                            | < 0.15                          | 0.15         |      | ppbV                                                                                                            |       | 1        | 4/1/2020 10:25:00 PM    |
| 1,1,2,2-Tetr               |          |                            | < 0.15                          | 0.15         |      | ppbV                                                                                                            |       | 1        | 4/1/2020 10:25:00 PM    |
| 1,1,2-Trichk               |          |                            | < 0.15                          | 0.15         |      | ppbV                                                                                                            |       | 1        | 4/1/2020 10:25:00 PM    |
| 1,1-Dichloro               |          |                            | < 0.15                          | 0.15         |      | ppbV                                                                                                            |       | 1        | 4/1/2020 10:25:00 PM    |
| 1,1-Dichloro               |          |                            | < 0.040                         | 0.040        |      | ppbV                                                                                                            |       | 1        | 4/1/2020 10:25:00 PM    |
| 1,2,4-Trichk               |          |                            | < 0.15                          | 0.15         |      | ppbV<br>ppbV                                                                                                    |       | 4        | 4/1/2020 10:25:00 PM    |
|                            |          |                            |                                 |              |      |                                                                                                                 |       | 1<br>1   | 4/1/2020 10:25:00 PM    |
| 1,2,4-Trime<br>1,2-Dibroma | •        |                            | < 0.15<br>< 0.15                | 0.15<br>0.15 |      | ppbV<br>ppbV                                                                                                    |       | 4        | 4/1/2020 10:25:00 PM    |
| ,                          |          |                            |                                 |              |      |                                                                                                                 |       |          | 4/1/2020 10:25:00 PM    |
| 1,2-Dichloro               |          |                            | < 0.15                          | 0.15         |      | ppbV                                                                                                            |       | 1        |                         |
| 1,2-Dichloro               |          |                            | < 0.15                          | 0.15         |      | ppbV                                                                                                            |       | 4        | 4/1/2020 10:25:00 PM    |
| 1,2-Dichlord               |          |                            | < 0.15                          | 0.15         |      | ppbV                                                                                                            |       | 1        | 4/1/2020 10:25:00 PM    |
| 1,3,5-Trimel               |          | izene                      | < 0.15                          | 0.15         |      | ppbV                                                                                                            |       | 1        | 4/1/2020 10:25:00 PM    |
| 1,3-butadier               |          |                            | < 0.15                          | 0.15         |      | ppbV                                                                                                            |       | 1        | 4/1/2020 10:25:00 PM    |
| 1,3-Dichloro               |          |                            | < 0.15                          | 0.15         |      | ppbV                                                                                                            |       | 1        | 4/1/2020 10:25:00 PM    |
| 1,4-Dichlore               |          | ne                         | < 0.15                          | 0.15         |      | ppb∨                                                                                                            |       | 1        | 4/1/2020 10:25:00 PM    |
| 1,4-Dioxane                |          |                            | < 0.30                          | 0.30         |      | ppbV                                                                                                            |       | 1        | 4/1/2020 10:25:00 PM    |
| 2,2,4-trimet               |          | tane                       | < 0.15                          | 0.15         |      | ppbV                                                                                                            |       | 1        | 4/1/2020 10:25:00 PM    |
| 4-ethyltolue:              | ne       |                            | < 0.15                          | 0.15         |      | ppbV                                                                                                            |       | 1        | 4/1/2020 10:25:00 PM    |
| Acetone                    |          |                            | 5.1                             | 3.0          |      | ppb∨                                                                                                            |       | 10       | 4/2/2020 8:21:00 AM     |
| Allyi chloride             | ė        |                            | < 0.15                          | 0.15         |      | ppbV                                                                                                            |       | 1        | 4/1/2020 10:25:00 PM    |
| Benzene                    |          |                            | 0.14                            | 0.15         | J    | ppbV                                                                                                            |       | 1        | 4/1/2020 10:25:00 PM    |
| Benzyl chlor               | ride     |                            | < 0.15                          | 0.15         |      | ppbV                                                                                                            |       | 1        | 4/1/2020 10:25:00 PM    |
| Bromodichio                | oromet   | hane                       | < 0.15                          | 0.15         |      | ppbV                                                                                                            |       | 1        | 4/1/2020 10:25:00 PM    |
| Bromoform                  |          |                            | < 0.15                          | 0.15         |      | ppbV                                                                                                            |       | 1        | 4/1/2020 10:25:00 PM    |
| Bromometh                  | але      |                            | < 0.15                          | 0.15         |      | ppbV                                                                                                            |       | 1        | 4/1/2020 10:25:00 PM    |
| Carbon disu                | lfide    |                            | < 0.15                          | 0.15         |      | ppbV                                                                                                            |       | 1        | 4/1/2020 10:25:00 PM    |
| Carbon tetra               | achlorid | de l                       | 0.090                           | 0.030        |      | ppbV                                                                                                            |       | 1        | 4/1/2020 10:25:00 PM    |
| Chlorobenze                | ene      |                            | < 0.15                          | 0.15         |      | ppbV                                                                                                            |       | 1        | 4/1/2020 10:25:00 PM    |
| Chloroethan                | 10       |                            | < 0.15                          | 0.15         |      | ppbV                                                                                                            |       | 1        | 4/1/2020 10:25:00 PM    |
| Chloroform                 |          |                            | < 0.15                          | 0.15         |      | ppbV                                                                                                            |       | 1        | 4/1/2020 10:25:00 PM    |
| Chlorometh                 | ane      |                            | 0.40                            | 0.15         |      | ppbV                                                                                                            |       | 1        | 4/1/2020 10:25:00 PM    |
| cis-1,2-Dich               |          | ene                        | < 0.040                         | 0.040        |      | ppbV                                                                                                            |       | 1        | 4/1/2020 10:25:00 PM    |
| cis-1,3-Dich               |          |                            | < 0.15                          | 0.15         |      | ppbV                                                                                                            |       |          | 4/1/2020 10:25:00 PM    |
| Cyclohexan                 |          | 10010                      | 0,14                            | 0.15         | Ŀ    | ppbV                                                                                                            |       | 1        | 4/1/2020 10:25:00 PM    |
| Dibromochic                |          | hana                       | < 0.15                          | 0.15         |      | ppbV                                                                                                            |       |          | 4/1/2020 10:25:00 PM    |
| Ethyl acetat               |          | 11d11C                     | < 0.15                          | 0.15         |      | ppbv<br>ppbV                                                                                                    |       | 1        | 4/1/2020 10:25:00 PM    |
| /\=                        |          | 6.4.0-4                    |                                 |              |      | n har anna an an Anna a |       |          |                         |
| Qualifiers:                | SC       | Sub-Contracted             | and a last and the first of the |              |      | ,                                                                                                               |       |          | lank corrected          |
|                            | B        | Analyte detected in the as |                                 |              |      |                                                                                                                 |       | -        | uantitation range       |
|                            | H        | Holding times for prepara  |                                 | eeded        |      | -                                                                                                               |       | -        | pantitation limit       |
|                            | JN       | Non-routine analyte. Qua   |                                 |              |      |                                                                                                                 |       | ne Limit | of Detection Page 23 of |
|                            | S        | Spike Recovery outside a   | accepted recovery lin           | nits         | 1    | DL Detection I                                                                                                  | Limit |          | 1 420 20 01             |

Date: 10-Apr-20

| CLIENT:    | Geovation Engineering, | Inc.   |    | C    | lient Sample ID:        | Outdoc  | or Upwind 2020 |
|------------|------------------------|--------|----|------|-------------------------|---------|----------------|
| Lab Order: | C2004002               |        |    |      | Tag Number:             | 239,38  | 1              |
| Project:   | Grant Hardware         |        |    |      | <b>Collection Date:</b> | 3/28/20 | 020            |
| Lab ID:    | C2004002-012A          |        |    |      | Matrix:                 | AIR     |                |
| Analyses   |                        | Result | DL | Quai | Units                   | DF      | Date Analyzed  |

|                              | xteduit    | , DD   | Yuar | CIIII3 | Dr | Date Analyzed        |
|------------------------------|------------|--------|------|--------|----|----------------------|
| 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC | DCE-1,1DCE | то     | )-15 |        |    | Analyst: RJP         |
| Ethylbenzene                 | < 0.15     | 0.15   |      | ppbV   | 1  | 4/1/2020 10:25:00 PM |
| Freon 11                     | 0.22       | 0.15   |      | ppbV   | 1  | 4/1/2020 10:25:00 PM |
| Freon 113                    | < 0.15     | 0.15   |      | ppbV   | 1  | 4/1/2020 10:25:00 PM |
| Freon 114                    | < 0.15     | 0.15   |      | ρρbV   | 1  | 4/1/2020 10:25:00 PM |
| Freon 12                     | 0.48       | 0.15   |      | ppbV   | 1  | 4/1/2020 10:25:00 PM |
| Heptane                      | < 0.15     | 0.15   |      | ppbV   | 1  | 4/1/2020 10:25:00 PM |
| Hexachloro-1,3-butadiene     | < 0.15     | 0.15   |      | ppbV   | 1  | 4/1/2020 10:25:00 PM |
| Hexane                       | < 0.15     | 0.15   |      | ppbV   | 1  | 4/1/2020 10:25:00 PM |
| Isopropyl alcohol            | 0.54       | 0.15   |      | ppbV   | 1  | 4/1/2020 10:25:00 PM |
| m&p-Xylene                   | < 0.30     | 0.30   |      | ppbV   | 1  | 4/1/2020 10:25:00 PM |
| Methyl Butyl Ketone          | < 0.30     | 0.30   |      | ppbV   | 1  | 4/1/2020 10:25:00 PM |
| Methyl Ethyl Ketone          | 0.25       | 0.30   | J    | ppbV   | 1  | 4/1/2020 10:25:00 PM |
| Methyl Isobutyl Ketone       | < 0.30     | 0.30   |      | ppbV   | 1  | 4/1/2020 10:25:00 PM |
| Methyl tert-butyl ether      | < 0.15     | 0.15   |      | ppbV   | 1  | 4/1/2020 10:25:00 PM |
| Methylene chloride           | 0.17       | 0.15   |      | ppbV   | 1  | 4/1/2020 10:25:00 PM |
| o-Xylene                     | < 0.15     | 0.15   |      | ppbV   | 1  | 4/1/2020 10:25:00 PM |
| Propylene                    | < 0.15     | 0.15   |      | ppbV   | 1  | 4/1/2020 10:25:00 PM |
| Styrene                      | < 0.15     | 0.15   |      | Vdqq   | 1  | 4/1/2020 10:25:00 PM |
| Tetrachloroethylene          | < 0.15     | 0.15   |      | ppbV   | 1  | 4/1/2020 10:25:00 PM |
| Tetrahydrofuran              | < 0.15     | 0.15   |      | Vdqq   | 1  | 4/1/2020 10:25:00 PM |
| Toluene                      | 0.12       | 0.15   | J    | ppbV   | 1  | 4/1/2020 10:25:00 PM |
| trans-1,2-Dichloroethene     | < 0.15     | 0.15   |      | ppbV   | 1  | 4/1/2020 10:25:00 PM |
| trans-1,3-Dichloropropene    | < 0.15     | 0.15   |      | ppbV   | 1  | 4/1/2020 10:25:00 PM |
| Trichloroethene              | < 0.030    | 0.030  |      | ppbV   | 1  | 4/1/2020 10:25:00 PM |
| Vinyl acetate                | < 0.15     | 0.15   |      | ppbV   | 1  | 4/1/2020 10:25:00 PM |
| Vinyl Bromide                | < 0.15     | 0.15   |      | ppbV   | 1  | 4/1/2020 10:25:00 PM |
| Vinyl chloride               | < 0.040    | 0.040  |      | Vdqq   | 1  | 4/1/2020 10:25:00 PM |
| Surr: Bromofluorobenzene     | 82.0       | 70-130 |      | %REC   | 1  | 4/1/2020 10:25:00 PM |

| Qualifiers: | $\mathbf{sc}$ | Sub-Contracted                                     |    | Results reported are not blank corrected  |               |
|-------------|---------------|----------------------------------------------------|----|-------------------------------------------|---------------|
|             | в             | Analyte detected in the associated Method Blank    | Е  | Estimated Value above quantitation range  | e             |
|             | Н             | Holding times for preparation or analysis exceeded | 3  | Analyte detected below quantitation limit | 1             |
|             | JN            | Non-routine analyte. Quantitation estimated.       | ND | Not Detected at the Limit of Detection    |               |
|             | S             | Spike Recovery outside accepted recovery fimits    | DL | Detection Limit                           | Page 24 of 24 |

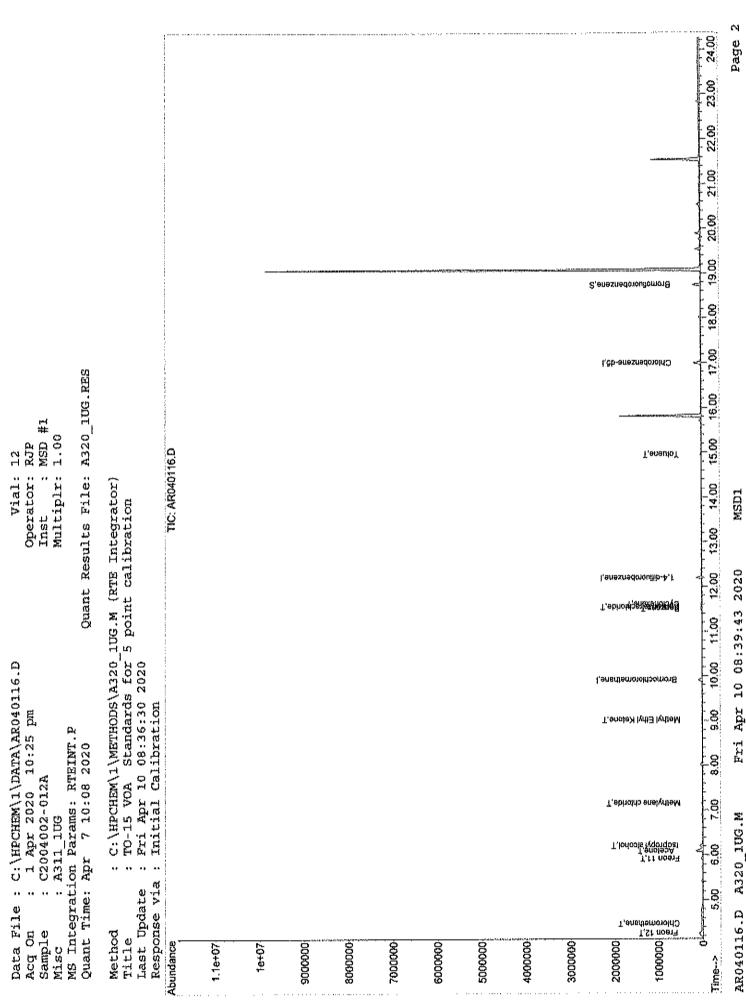
Date: 10-Apr-20

| CLIENT:                    |        | Geovation Engineering                              | ng, Inc.          |      | C    | lient Sample II  | : Outde    | oor Upwind 2020                      |
|----------------------------|--------|----------------------------------------------------|-------------------|------|------|------------------|------------|--------------------------------------|
| Lab Order:                 | :      | C2004002                                           |                   |      |      | Tag Number       | : 239,3    | 81                                   |
| Project:                   |        | Grant Hardware                                     |                   |      |      | Collection Date  |            |                                      |
| Lab 1D:                    |        | C2004002-012A                                      |                   |      |      | Matri            |            |                                      |
| Analyses                   |        | 99995 and an   | Result            | DL   | Qual | Units            | DF         | Date Analyzed                        |
| 1UG/M3 W/                  | 0.20   | G/M3 CT-TCE-VC-DCE                                 | -1 1DCE           | TC   | )-15 |                  |            | Analust: D II                        |
| 1,1,1-Trichle              |        |                                                    | < 0.82            | 0.82 |      | ug/m3            | 1          | Analyst: RJF<br>4/1/2020 10:25:00 PM |
| 1,1,2,2-Tetr               |        |                                                    | < 1.0             | 1.0  |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| 1,1,2-Trichle              | oroeth | hane                                               | < 0.82            | 0.82 |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| 1,1-Dichlord               | ethar  | he                                                 | < 0.61            | 0.61 |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| 1,1-Dichlore               | ether  | ne                                                 | < 0.16            | 0.16 |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| 1,2,4-Trichk               |        |                                                    | < 1.1             | 1.1  |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| 1,2,4-Trime                |        |                                                    | < 0.74            | 0.74 |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| 1,2-Dibromo                | -      |                                                    | < 1.2             | 1.2  |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| 1,2-Dichloro               |        |                                                    | < 0.90            | 0.90 |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| 1,2-Dichloro               |        |                                                    | < 0.61            | 0.61 |      | ug/m3            |            |                                      |
| 1,2-Dichloro               |        |                                                    | < 0.69            | 0.69 |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| 1,3,5-Trimet               |        |                                                    | < 0.74            | 0.33 |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| 1,3-butadier               | -      |                                                    | < 0.33            | 0.33 |      | -                |            | 4/1/2020 10:25:00 PM                 |
| 1,3-Dichloro               |        | PRA                                                | < 0.90            | 0.33 |      | ug/m3            | י          | 4/1/2020 10:25:00 PM                 |
| 1,4-Dichloro               |        |                                                    | < 0.90            | 0.90 |      | ug/m3            | 4          | 4/1/2020 10:25:00 PM                 |
| 1,4-Dioxane                |        | 200                                                | < 1.1             |      |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| 2,2,4-trimeth              |        | nete                                               | < 0.70            | 1.1  |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| 4-ethyltoluer              |        | itone -                                            | < 0.70            | 0.70 |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| Acetone                    | 10     |                                                    |                   | 0.74 |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| Allyl chloride             |        |                                                    | 12                | 7.1  |      | ug/m3            | 10         | 4/2/2020 8:21:00 AM                  |
| Benzene                    | •      |                                                    | < 0.47            | 0.47 |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| Benzyl chlor               | ide    |                                                    | 0.45              | 0.48 | J    | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| Bromodichio                |        | thana                                              | < 0.86            | 0.86 |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| Bromoform                  | 00110  | mane                                               | < 1.0             | 1.0  |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| Bromometha                 |        |                                                    | < 1.6             | 1.6  |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| Carbon disul               |        |                                                    | < 0.58            | 0.58 |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| Carbon tetra               |        | da                                                 | < 0.47            | 0.47 |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
|                            |        | ue                                                 | 0.57              | 0.19 |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| Chlorobenze                |        |                                                    | < 0.69            | 0.69 |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| Chloroethane<br>Chloroform | ÷      |                                                    | < 0.40            | 0.40 |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| Chlorometha                |        |                                                    | < 0.73            | 0.73 |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
|                            |        |                                                    | 0.83              | 0.31 |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| cis-1,2-Dichle             |        |                                                    | < 0.16            | 0.16 |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| cis-1,3-Dichle             |        | sheue                                              | < 0.68            | 0.68 |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| Cyclohexane                |        |                                                    | 0.48              | 0.52 |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| Dibromochio:               |        | nane                                               | < 1.3             | 1,3  |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| Ethyl acetate              |        |                                                    | < 0.54            | 0.54 |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| Ethylbenzene               | 2      |                                                    | < 0.65            | 0.65 |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| Freon 11                   |        |                                                    | 1.2               | 0.84 |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| Freon 113                  |        |                                                    | < 1.1             | 1.1  |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| Freon 114                  |        | 1 (1000) (1) / ( ) ( ) (1000) 1) (100) - ( ) - ( ) | < 1,0             | 1.0  |      | ug/m3            | 1          | 4/1/2020 10:25:00 PM                 |
| Qualifiers:                | SC     | Sub-Contracted                                     |                   |      |      | Results reported | are not bl | ank corrected                        |
|                            | в      | Analyte detected in the asso                       | ciated Method Bla | nk   | B    | -                |            |                                      |
|                            | н      | Holding times for preparation                      |                   |      | j    |                  |            | antitation limit                     |

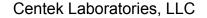
JN Non-routine analyte. Quantitation estimated.

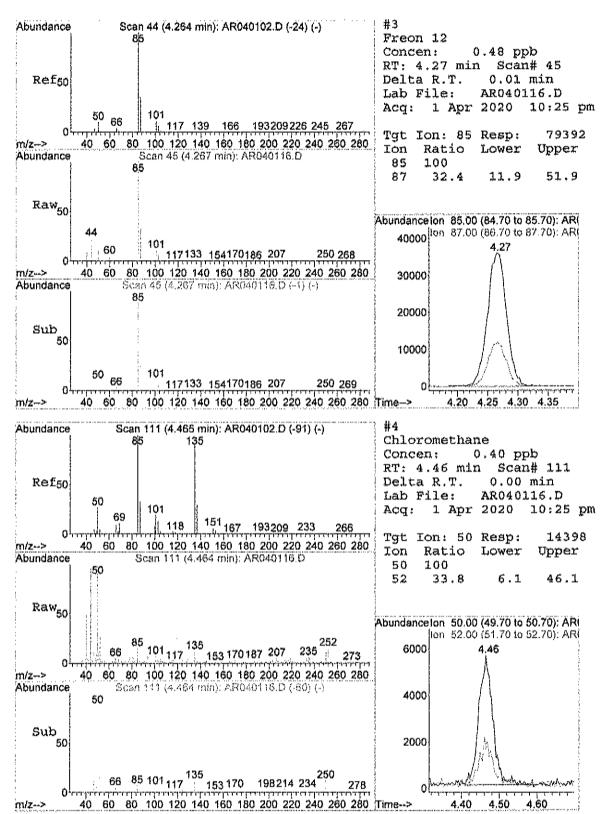
s Spike Recovery outside accepted recovery limits ND Not Detected at the Limit of Detection Page 23 of 24

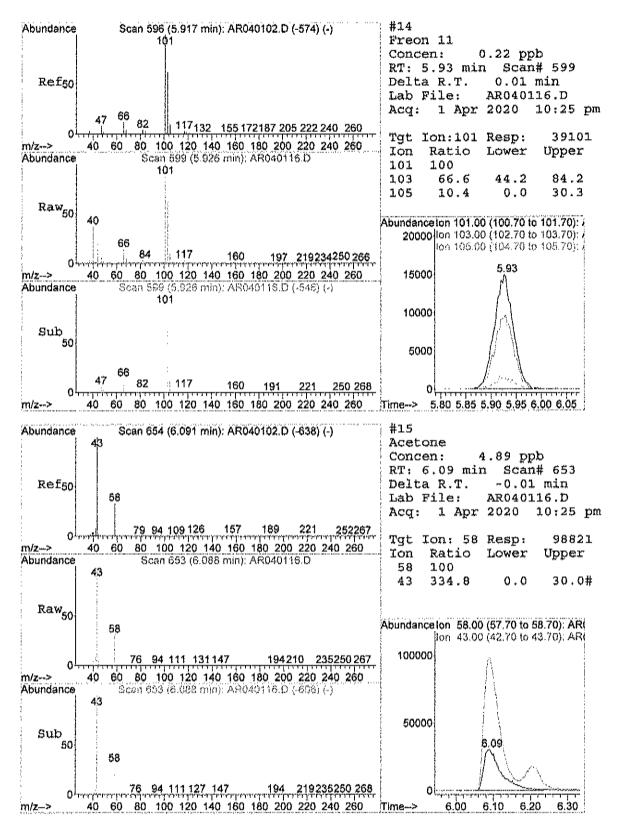
DL Detection Limit


Date: 10-Apr-20

| Project:<br>Lab ID: | C2004002-012A               | Matrix:          |                       |  |
|---------------------|-----------------------------|------------------|-----------------------|--|
| Lab ID:             | C2004002-012A               | <br>Matrix:      | AIR                   |  |
| Lab ID:             | C2004002-012A               |                  | : AIR                 |  |
| Project:            | Grant Hardware              | Collection Date: | : 3/28/2020           |  |
| Lab Order:          | C2004002                    | Tag Number:      | : 239,381             |  |
| CLIENT:             | Geovation Engineering, Inc. |                  | : Outdoor Upwind 2020 |  |


| Anałyses                     | Result     | Result DL Qual Unit |      | Units | DF | Date Analyzed        |  |
|------------------------------|------------|---------------------|------|-------|----|----------------------|--|
| 1UG/M3 W/ 0.2UG/M3 CT-TCE-V0 | DCE-1,1DCE | тс                  | )-15 |       |    | Analyst: RJP         |  |
| Freon 12                     | 2.4        | 0.74                |      | ug/m3 | 1  | 4/1/2020 10:25:00 PM |  |
| Heptane                      | < 0.61     | 0.61                |      | ug/m3 | 1  | 4/1/2020 10:25:00 PM |  |
| Hexachloro-1,3-butadiene     | < 1.6      | 1.6                 |      | ug/m3 | 1  | 4/1/2020 10:25:00 PM |  |
| Hexane                       | < 0.53     | 0.53                |      | ug/m3 | 1  | 4/1/2020 10:25:00 PM |  |
| Isopropyl atcohol            | 1.3        | 0.37                |      | ug/m3 | 1  | 4/1/2020 10:25:00 PM |  |
| m&p-Xylene                   | < 1.3      | 1.3                 |      | ug/m3 | 1  | 4/1/2020 10:25:00 PM |  |
| Methyl Butyl Ketone          | < 1.2      | 1.2                 |      | ug/m3 | 1  | 4/1/2020 10:25:00 PM |  |
| Methyl Ethyl Ketone          | 0.74       | 0.88                | J    | ug/m3 | 1  | 4/1/2020 10:25:00 PM |  |
| Methyl Isobutyl Ketone       | < 1.2      | 1.2                 |      | ug/m3 | 1  | 4/1/2020 10:25:00 PM |  |
| Methyl tert-butyl ether      | < 0.54     | 0.54                |      | ug/m3 | 1  | 4/1/2020 10:25:00 PM |  |
| Methylene chloride           | 0.59       | 0.52                |      | ug/m3 | 1  | 4/1/2020 10:25:00 PM |  |
| o-Xylene                     | < 0.65     | 0,65                |      | ug/m3 | 1  | 4/1/2020 10:25:00 PM |  |
| Propylene                    | < 0.26     | 0.26                |      | ug/m3 | 1  | 4/1/2020 10:25:00 PM |  |
| Styrene                      | < 0.64     | 0.64                |      | ug/m3 | 1  | 4/1/2020 10:25:00 PM |  |
| Tetrachloroethylene          | < 1.0      | 1.0                 |      | ug/m3 | 1  | 4/1/2020 10:25:00 PM |  |
| Tetrahydrofuran              | < 0.44     | 0.44                |      | ug/m3 | 1  | 4/1/2020 10:25:00 PM |  |
| Toluene                      | 0.45       | 0.57                | J    | ug/m3 | 1  | 4/1/2020 10:25:00 PM |  |
| trans-1,2-Dichloroethene     | < 0.59     | 0.59                |      | ug/m3 | 1  | 4/1/2020 10:25:00 PM |  |
| trans-1,3-Dichloropropene    | < 0.68     | 0.68                |      | ug/m3 | 1  | 4/1/2020 10:25:00 PM |  |
| Trichloroethene              | < 0.16     | 0.16                |      | ug/m3 | 1  | 4/1/2020 10:25:00 PM |  |
| Vinyi acetate                | < 0.53     | 0.53                |      | ug/m3 | 1  | 4/1/2020 10:25:00 PM |  |
| Vinyl Bromide                | < 0.66     | 0.66                |      | ug/m3 | 1  | 4/1/2020 10:25:00 PM |  |
| Vinyl chloride               | < 0.10     | 0.10                |      | ug/m3 | 1  | 4/1/2020 10:25:00 PM |  |


| Qualifiers: | SÇ | Sub-Contracted                                     |    | Results reported are not blank corrected  |               |
|-------------|----|----------------------------------------------------|----|-------------------------------------------|---------------|
|             | в  | Analyte detected in the associated Method Blank    | Ē  | Estimated Value above quantitation range  | 3             |
|             | н  | Holding times for preparation or analysis exceeded | J  | Analyte detected below quantitation limit |               |
|             | JN | Non-routine analyte. Quantitation estimated.       | ND | Not Detected at the Limit of Detection    |               |
|             | S  | Spike Recovery outside accepted recovery limits    | ÐL | Detection Limit                           | Page 24 of 24 |

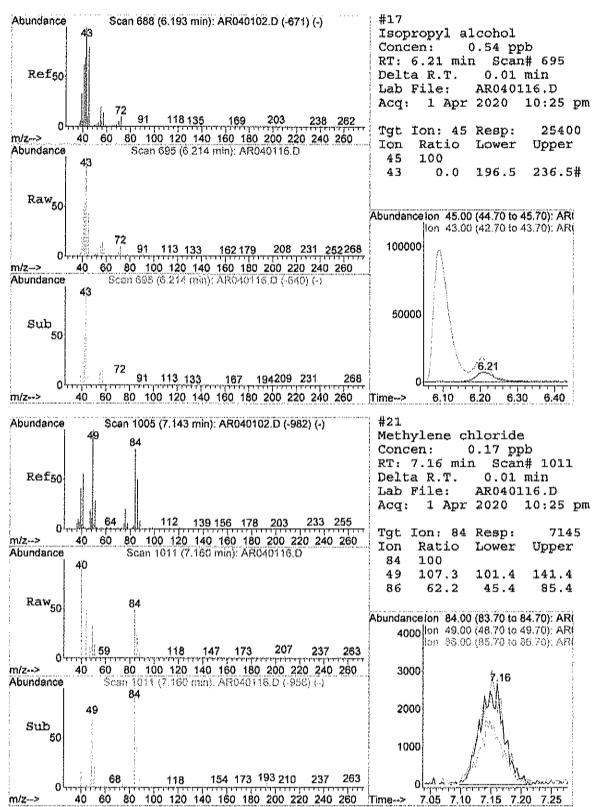

| Centek Laboratories, LLC                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Quantita                                                                                                                                                                                                                                                            | ation Report (QT Reviewed)                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
| Data File : C:\HPCHEM\1\DATA\AR040116<br>Acq On : 1 Apr 2020 10:25 pm<br>Sample : C2004002-012A<br>Misc : A311_1UG<br>MS Integration Params: RTEINT.P<br>Ought Time: Apr 07 09:25:22 2020                                                                           | Operator: RJP<br>Inst : MSD #1<br>Multiplr: 1.00                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| Quant Time: Apr 07 09:26:22 2020<br>Quant Method : C:\HPCHEM\1\METHODS\A320_1UG.M (RTE Integrator)<br>Title : TO-15 VOA Standards for 5 point calibration<br>Last Update : Mon Mar 23 08:34:44 2020<br>Response via : Initial Calibration<br>DataAcq Meth : 1UG_ENT |                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| Internal Standards R.                                                                                                                                                                                                                                               | F. QIon Response Conc Units Dev(Min)                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
| 1) Bromochloromethane9.135) 1,4-difluorobenzene12.150) Chlorobenzene-d517.0System Monitoring Compounds65) Bromofluorobenzene18.1                                                                                                                                    | 91       128       37055       1.00 ppb       0.00         19       114       132179       1.00 ppb       0.00         00       117       123125       1.00 ppb       0.00         74       95       72730       0.82 ppb       0.00                                               |  |  |  |  |  |  |  |  |
| Spiked Amount 1.000 Range                                                                                                                                                                                                                                           | 70 - 130 Recovery = 82.00%                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
| 15) Acetone6.017) Isopropyl alcohol6.021) Methylene chloride7.028) Methyl Ethyl Ketone9.0                                                                                                                                                                           | 16       84       7145       0.17 ppb       90         01       72       4244       0.25 ppb       # 100         50       56       5973       0.14 ppb       # 70         55       117       11363       0.09 ppb       93         51       78       15054       0.14 ppb       97 |  |  |  |  |  |  |  |  |



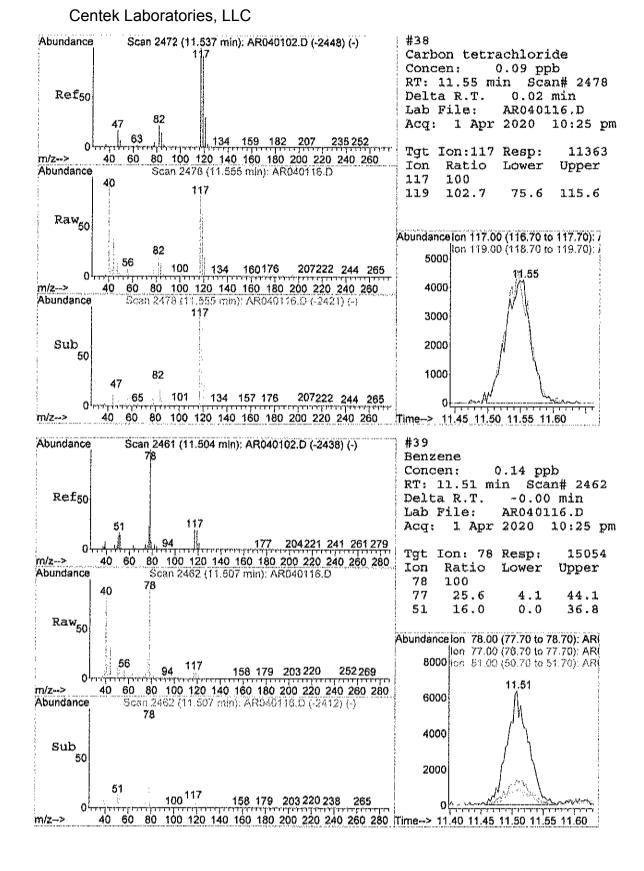
Page 291 of 380





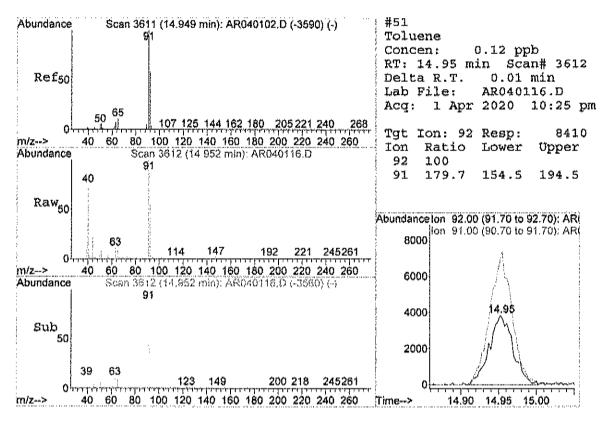




Fri Apr 10 08:39:45 2020

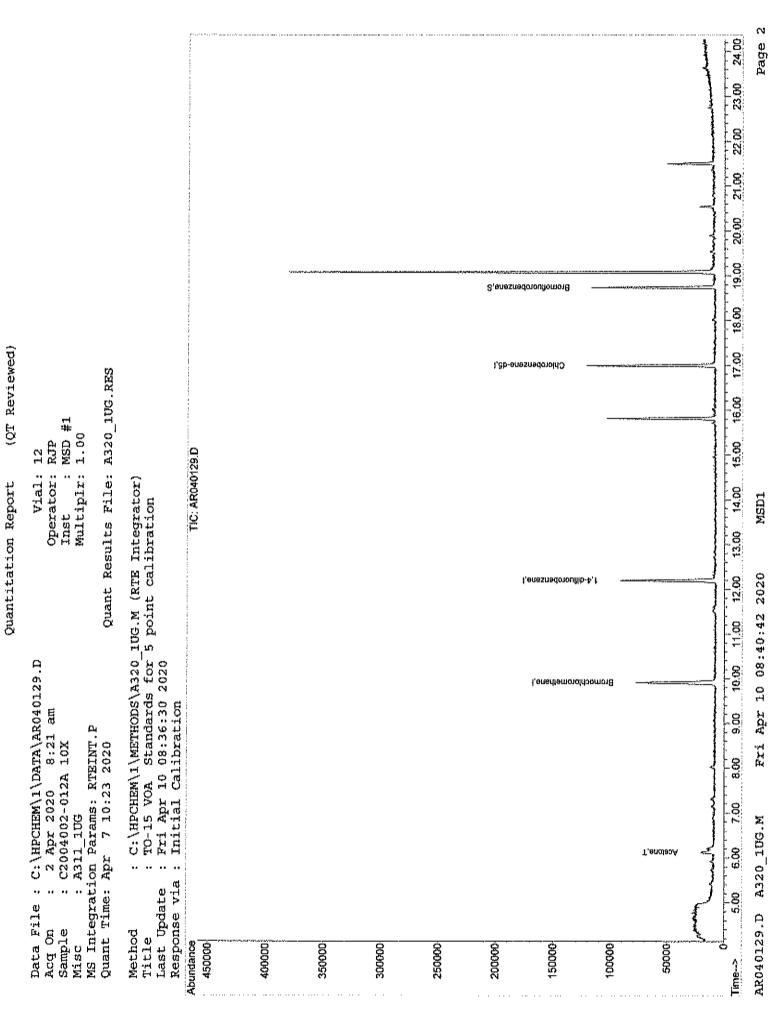

MSD1

Page 293 of 380

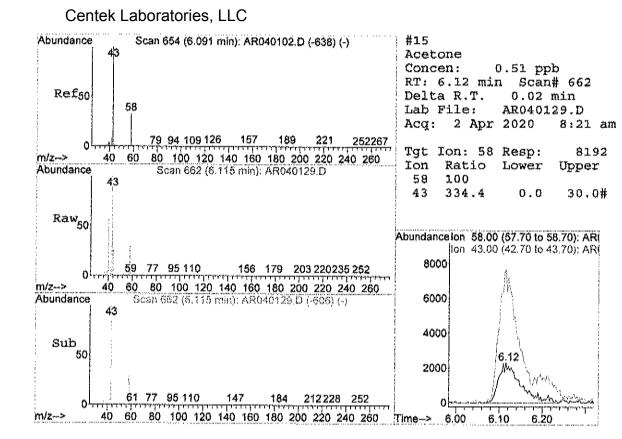







AR040116.D A320\_1UG.M






Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AR040129.D Vial: 12 Acq On : 2 Apr 2020 8:21 am Operator: RJP Sample : C2004002-012A 10X Misc : A311\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 07 09:26:35 2020 Quant Results File: A320\_10G.RES Quant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 23 08:34:44 2020 Response via : Initial Calibration DataAcq Meth : 1UG ENT Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.90128293031.00 ppb0.0035) 1,4-difluorobenzene12.19114906211.00 ppb0.0050) Chlorobenzene-d517.00117805971.00 ppb0.00 System Monitoring Compounds 18.74 95 42859 0.74 ppb 65) Bromofluorobenzene 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 74.00%Target Compounds Qvalue 6.12 58 8192 0.51 ppb # 100 15) Acetone



Page 299 of 380



## GC/MS VOLATILES-WHOLE AIR

#### METHOD TO-15

#### STANDARDS DATA

.

۰

٠

Page 301 of 380

.

.

.

#### GC/MS VOLATILES-WHOLE AIR

,

,

.

•

.

.

## METHOD TO-15

# INITIAL CALIBRATION

Page 302 of 380

|            |              |                                    | Response Factor Report MSD #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
|------------|--------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|            | Meth         |                                    | HEM\1\METHODS\A320_1UG.M (RTE Integrator)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
|            | Titl         | e : TO-15                          | VOA Standards for 5 point calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
|            | Last         | : Update : Fri Ap                  | r 10 08:22:44 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
|            | Resp         | onse via : Initia                  | l Calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
|            | Cali         | bration Files                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
|            | 2.0          | =AR032004.D                        | 1.5 =AR032005.D 1.25 =AR032006.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
|            | 1.0          | =AR032007.D                        | 0.75 #AR032008.D 0.50 =AR032009.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
|            |              | Compound                           | 2.0 1.5 1.25 1.0 0.75 0.50 Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *RSD           |
|            |              |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *****          |
| 1)         | I            | Bromochlorometha                   | neISTDISTD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| 2)         |              | Propylene                          | 0,673 0,704 0,732 0,711 0,712 0,678 0,720<br>4,504 4,566 4,523 4,523 4,451 4,366 4,461<br>0,949 0,934 0,929 0,982 0,969 0,947 0,968<br>3,497 3,502 3,471 3,528 3,429 3,385 3,454<br>0,910 0,923 0,913 0,891 0,903 0,934 0,909<br>0,905 0,929 0,933 1,001 0,960 0,922 0,961                                                                                                                                                                                                                                                                                                                            | 5.99           |
|            | T            | Freon 12                           | 4.504 4.566 4.523 4.523 4.451 4.366 4.461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,77           |
| 4)<br>5)   |              | Ereon 114                          | 3.497 3.502 3.471 3.528 3.429 3.385 3.454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.54           |
| б)<br>б)   |              | Vinyl Chloride                     | 0,910 0,923 0.913 0.891 0.903 0.934 0.909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.47           |
| 7)         | T            | Butane                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.81           |
| 8)         |              | 1,3-butadiene                      | 0.723 0.777 0.766 0.778 0.730 0.784 0.798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.93           |
| 9)         |              | Bromomethane                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.50           |
| 10)<br>11) |              | Ethanol                            | 0.471 0.583 0.563 0.587 0.580 0.585 0.545<br>0.332 0.349 0.367 0.340 0.331 0.331 0.355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 12          |
| 12)        | _            | Acrolein                           | 0.290 0.287 0.288 0.297 0.293 0.285 0.285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.53           |
| 13)        |              | Vinyl Bromide                      | 1.165 1.136 1.139 1.100 1.107 1.091 1.127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.23           |
| 14)        |              | Freon 11                           | 4.810 4.767 4.758 4.738 4.593 4.629 4.692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.30           |
| 15)        |              | Acetone                            | 0.551 0.555 0.555 0.544 0.550 0.538 0.545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.46           |
| 16)<br>17) |              | Fentane<br>Teopropul alcob         | 0.975 1.004 1.015 0.957 0.982 0.925 0.982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3./2           |
| 18)        |              | 1.1-dichloroeth                    | 1.025 $1.054$ $1.061$ $1.035$ $1.035$ $1.023$ $1.023$ $1.033$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.97           |
| 19)        |              | Freon 113                          | 2.821 2.795 2.785 2.778 2.768 2.736 2.758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.26           |
| 20)        |              | t-Butyl alcohol                    | 1.591 1.559 1.549 1.469 1.382 1.464 1.464<br>1.087 1.115 1.114 1.113 1.146 1.083 1.141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.57           |
| 21)        |              | Methylene chlor                    | 1.087 1.115 1.114 1.113 1.146 1.083 1.141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.97           |
| 22)<br>23) |              | Allyl chloride                     | 1.040 1.036 1.044 1.048 1.001 0.915 0.993<br>3.272 3.299 3.381 3.378 3.441 3.382 3.485<br>1.537 1.534 1.542 1.539 1.483 1.477 1.490                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.99<br>7.97   |
| 24)        |              | trans_3.2-dich]                    | 3.272 3.299 3.381 3.378 3.441 3.382 3.483<br>1 537 1 538 1 587 1 539 3 883 1.877 1.490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,96           |
| 25)        |              | methyl tert-but                    | 1.537       1.534       1.542       1.539       1.483       1.477       1.490         2.442       2.360       2.345       2.294       2.168       2.052       2.216         2.068       2.088       2.121       2.098       2.048       2.092       2.058         1.455       1.489       1.485       1.422       1.410       1.313       1.405         0.452       0.456       0.454       0.429       0.406       0.457         1.380       1.416       1.379       1.402       1.366       1.320       1.374         1.461       1.452       1.644       1.418       1.176       1.196       1.294 | 7,54           |
| 26)        |              | 1,1-dichloroeth                    | 2.068 2.088 2.121 2.098 2.048 2.092 2.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,76           |
| 27)        |              | Vinyl acetate                      | 1.455 1.489 1.485 1.422 1.410 1.313 1.405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.19           |
| 28)        |              | Methyl Ethyl Ke                    | 0.462 0.456 0.465 0.454 0.429 0.406 0.457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.00           |
| 29)<br>30) |              | Cis-1,2-dichior                    | 1.380 1.416 1.379 1.402 1.366 1.320 1.374<br>1 Act 1 Act 7 AAA 7 Ate 1 176 7 196 1 294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.01<br>12,70  |
| 31)        |              | Ethyl acetate                      | 2.183 2.192 2.160 2.121 2.036 1.895 2.073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.27           |
| 32)        |              | Chloroform                         | 2.985 2.989 2.998 2.988 2.971 2.858 2.941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.30           |
| 33)        |              | Tetrahydrofuran                    | 0.779 0.746 0.757 0.760 0.689 0.707 0.725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| 34)        | Ť            | 1,2-dichloroeth                    | 1.922 1.886 1.920 1.924 1.896 1.844 1.889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.88           |
| 35)        | I            | 1,4-difluorobenz                   | eneISTD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| 36)        |              | 1,1,1-trichloro                    | 0.893 0.869 0.864 0.852 0.831 0.842 0.856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.55           |
| 37)        |              | Cyclohexane                        | $0.363 \ 0.345 \ 0.343 \ 0.322 \ 0.310 \ 0.290 \ 0.316$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| 38)        |              | Carbon tetrachl                    | 1.043 1.022 1.013 1.007 0.994 1.003 0.963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| 39)<br>40) |              | Benzene<br>Methyl methacry         | 0.889 0.876 0.868 0.840 0.806 0.795 0.831<br>0.337 0.316 0.307 0.288 0.281 0.266 0.292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.31<br>9.84   |
| 41)        |              | 1,4-dioxane                        | 0.220 0.216 0.205 0.194 0.184 0.171 0.188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.28          |
| 42)        |              | 2,2,4-trimethyl                    | 1.178 1.157 1.132 1.075 1.056 0.995 1.067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.90           |
| 43)        | т            | Heptane                            | 0.394 $0.385$ $0.373$ $0.352$ $0.345$ $0.309$ $0.340$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13.41          |
| 44)        |              | Trichloroethene                    | $0.465 \ 0.464 \ 0.462 \ 0.440 \ 0.441 \ 0.440 \ 0.422$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.02          |
| 45)<br>46) |              | 1,2-dichloropro<br>Bromodichlorome | 0,336 0.332 0,323 0.321 0.317 0.317 0.325<br>0,920 0.904 0.889 0.866 0.864 0.874 0.880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $2.93 \\ 2.51$ |
| 40)<br>47) |              | cis-1,3-dichlor                    | 0.591 0.571 0.547 0.537 0.510 0.490 0.519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.41          |
| 48)        |              | trans-1,3-dichl                    | 0.454 0.452 0.430 0.429 0.409 0.380 0.413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| 49)        |              | 1,1,2-trichloro                    | 0.445 0.441 0.437 0.428 0.426 0.415 0.425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.55           |
| 50)        | r            | Chlorobenzene-d5                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| 51)        |              | Toluene                            | 0.673 0.657 0.646 0.598 0.594 0.532 0.585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
|            | -            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| (推)        | <u>∞</u> 011 | t of Range ### N                   | mber of calibration levels exceeded format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ###            |

<sup>(#) =</sup> Out of Range ### Number of calibration levels exceeded format ### A320\_lUG.M Fri Apr 10 08:26:18 2020 MSD1

Response Factor Report MSD #1

|                                                      |                           |                                                                                                                                                                                                                                                                                                                                                         | VOA S<br>10 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tandard<br>8:22:44                                                                                                                                                                                                                                     | s for<br>2020                                                                                                                                                           | 1UG.M<br>5 poin                                                                                                                                                         | (RTE I<br>t cali                                                                                                                                                        | ntegrat<br>bration                                                                                                                                                                                                                              | or)                                                                                                                                                                              |                                                                                                      |
|------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|                                                      | Cali<br>2.0<br>1.0        |                                                                                                                                                                                                                                                                                                                                                         | 1.5<br>).75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                        | 005.D<br>008.D                                                                                                                                                          | 1.25<br>0.50                                                                                                                                                            |                                                                                                                                                                         | 032006.1<br>032009.1                                                                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                      |
|                                                      |                           | Compound                                                                                                                                                                                                                                                                                                                                                | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.5                                                                                                                                                                                                                                                    | 1.25                                                                                                                                                                    | 1.0                                                                                                                                                                     | 0.75                                                                                                                                                                    | 0.50                                                                                                                                                                                                                                            | Avg                                                                                                                                                                              | &RSD                                                                                                 |
| 55555555555555555555555555555555555555               | TTTTTTTTTTTTTTTTTTTTTTTTT | Methyl Isobutyl<br>Dibromochlorome<br>Methyl Butyl Ke<br>1,2-dibromoetha<br>Tetrachloroethy<br>Chlorobenzene<br>Ethylbenzene<br>M&p-xylene<br>Nonane<br>Styrene<br>Bromoform<br>O-xylene<br>Cumene<br>Bromofluorobenz<br>1,1,2,2-tetrach<br>Propylbenzene<br>2-Chlorotoluene<br>4-ethyltoluene<br>1,3,5-trimethyl<br>1,2,4-trimethyl<br>1,3-dichloroben | 1.00<br>0.51<br>0.74<br>0.52<br>0.98<br>1.51<br>1.02<br>1.00<br>1.50<br>1.74<br>0.82<br>1.06<br>0.47<br>0.50<br>1.74<br>0.50<br>1.74<br>0.50<br>1.98<br>1.02<br>1.00<br>1.50<br>1.74<br>0.50<br>1.74<br>0.50<br>1.98<br>1.02<br>1.00<br>1.50<br>1.74<br>0.50<br>1.74<br>0.50<br>1.02<br>1.00<br>1.74<br>0.50<br>1.02<br>1.00<br>1.74<br>0.50<br>1.02<br>1.00<br>1.74<br>0.50<br>1.02<br>1.00<br>1.74<br>0.50<br>1.02<br>1.00<br>1.74<br>0.50<br>1.98<br>1.02<br>1.00<br>1.74<br>0.50<br>1.74<br>0.50<br>1.74<br>0.50<br>1.74<br>0.50<br>1.74<br>0.50<br>1.74<br>0.50<br>1.74<br>0.50<br>1.74<br>0.50<br>1.74<br>0.50<br>1.74<br>0.50<br>1.74<br>0.50<br>1.74<br>0.50<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70 | $\begin{array}{c} 4 & 1,011\\ 9 & 0.473\\ 1 & 0.728\\ 0 & 0.521\\ 7 & 0.986\\ 4 & 1.445\\ 0 & 0.641\\ 1 & 0.986\\ 5 & 0.985\\ 2 & 1.448\\ 3 & 1.634\\ 1 & 0.820\\ 1 & 0.820\\ 1 & 0.820\\ 1 & 0.475\\ 1 & 0.475\\ 1 & 1.632\\ 5 & 1.385\\ \end{array}$ | 0.993<br>0.456<br>0.732<br>0.509<br>0.971<br>1.371<br>1.246<br>0.619<br>0.966<br>0.976<br>1.428<br>1.580<br>0.798<br>1.038<br>0.436<br>0.470<br>1.688<br>1.578<br>1.303 | 0.950<br>0.450<br>0.698<br>0.500<br>0.923<br>1.286<br>1.158<br>0.571<br>0.911<br>0.938<br>1.376<br>1.460<br>0.778<br>1.003<br>0.393<br>0.453<br>1.588<br>1.478<br>1.488 | 0.967<br>0.436<br>0.697<br>0.492<br>0.927<br>1.256<br>1.100<br>0.550<br>0.854<br>0.945<br>1.357<br>0.769<br>0.368<br>0.368<br>0.368<br>0.432<br>1.402<br>1.402<br>1.402 | 0.476<br>0.950<br>0.387<br>0.687<br>0.498<br>0.897<br>1.141<br>0.953<br>0.468<br>0.746<br>0.883<br>1.206<br>1.200<br>0.746<br>1.200<br>0.964<br>0.318<br>0.318<br>0.318<br>0.318<br>0.318<br>0.318<br>0.318<br>0.318<br>0.318<br>0.318<br>0.318 | 0.976<br>0.447<br>0.706<br>0.500<br>0.935<br>1.258<br>1.089<br>0.558<br>0.853<br>0.940<br>1.313<br>1.402<br>0.718<br>1.402<br>0.718<br>1.014<br>0.377<br>1.486<br>1.399<br>1.146 | 8.10<br>2.54<br>3.065<br>4.726<br>14.7861<br>14.86164<br>51.616497<br>195.7705<br>187.056<br>127.056 |
| 73)<br>74)<br>75)<br>75)<br>76)<br>77)<br>78)<br>79) | T<br>T<br>T               | benzyl chloride<br>1,4-dichloroben<br>1,2,3-trimethyl<br>1,2-dichloroben<br>1,2,4-trichloro<br>Naphthalene<br>Hexachloro-1,3-                                                                                                                                                                                                                           | 1.00<br>1.13<br>1.66<br>1.10<br>0.53<br>1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 0.923<br>0 1.052<br>2 1.542<br>3 1.038<br>7 0.434<br>5 0.986                                                                                                                                                                                         | $\begin{array}{c} 0.872 \\ 1.027 \\ 1.503 \\ 1.015 \\ 0.420 \\ 0.900 \end{array}$                                                                                       | 0.805<br>0.964<br>1.374<br>0.958<br>0.375<br>0.800                                                                                                                      | 0.771<br>0.751<br>1.226<br>0.841<br>0.314<br>0.661                                                                                                                      | 0.559<br>0.663<br>1.039<br>0.790<br>0.306<br>0.571<br>0.744                                                                                                                                                                                     | 0.801 1<br>0.875 2<br>1.286 2<br>0.909 1<br>0.373 2<br>0.792 2                                                                                                                   | 17.72<br>21.69<br>21.23<br>15.46<br>22.90<br>27.05<br>6.81                                           |

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AR032004.D Vial: 4 Operator: RJP Acq On : 20 Mar 2020 6:04 pm Sample : A1UG\_2.0 Misc : A311\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 21 09:02:53 2020 Quant Results File: A320\_1UG.RES Ouant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration Title Last Update : Sat Mar 21 09:01:02 2020 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AR032007.D DataAcq Meth : 1UG ENT R.T. QIon Response Conc Units Dev(Min) Internal Standards 

 1) Bromochloromethane
 9.90
 128
 40365
 1.00
 ppb
 0.00

 35) 1,4-difluorobenzene
 12.19
 114
 146150
 1.00
 ppb
 0.00

 50) Chlorobenzene-d5
 16.99
 117
 137131
 1.00
 ppb
 0.00

 System Monitoring Compounds 65) Bromofluorobenzene 18.73 95 113450 1.06 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 106.00% 0.00 
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 106.00%

 Target Compounds
 Qvalue

 2) Propylene
 4.21
 41
 54355
 1.89
 ppb
 90

 3) Freen 12
 4.26
 85
 363605
 1.99
 ppb
 95

 5) Freen 114
 4.46
 85
 282350
 1.98
 ppb
 95

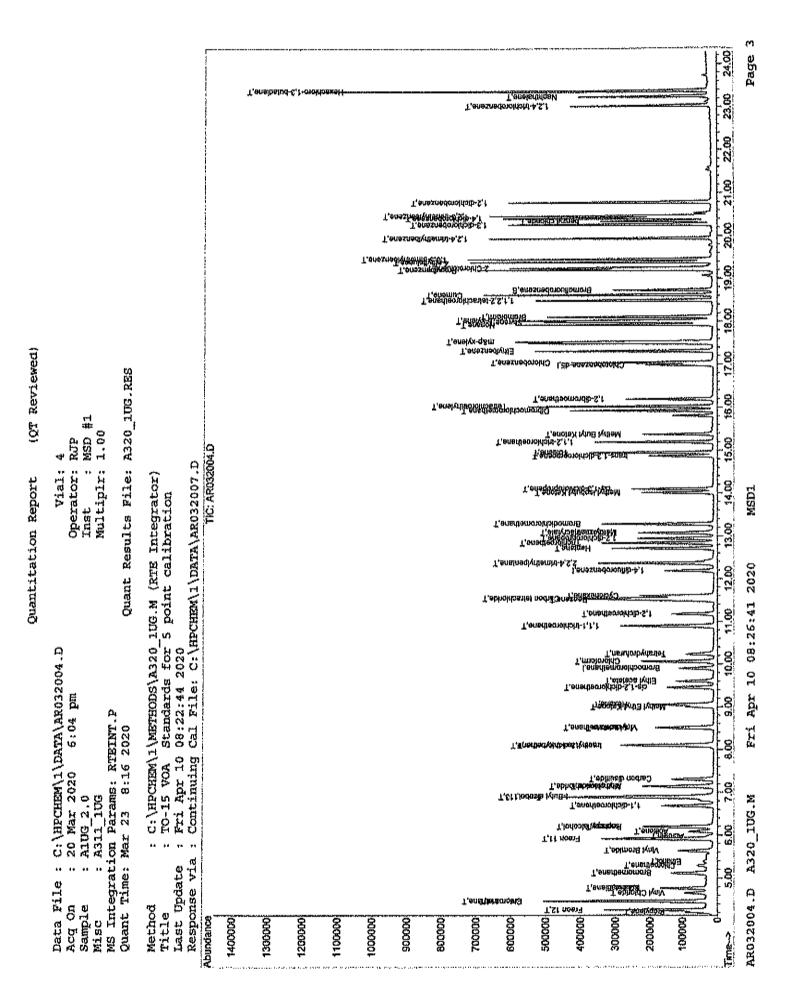
 6) Vinyl Chloride
 4.66
 62
 73492
 2.04
 ppb
 98

 7) Butane
 4.76
 39
 58386
 1.86
 ppb
 98

 9) Bromomethane
 5.29
 64
 3001
 1.60
 ppb
 91

 10) Chloroethane
 5.29
 64
 300481
 2.03
 ppb
 91

 11) Prendide
 5.64
 106
 94081
 2.12
 ppb
 92


 13) Vinyl Bronide
 6.20
 58
 44444
 2.03
 ppb
 43

 11) 10
 591
 101
 38291
 2.03
 ppb
 43
 < Target Compounds 2) Propylene 3) Freon 12 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) Butane Ovalue 

Quantitation Report(QT Reviewed)Data File : C:\HPCHEM\1\DATA\AR032004.DVial: 4Acq On : 20 Mar 2020 6:04 pmOperator: RJPSample : AlUG\_2.0Inst : MSD #1Misc : A311\_1UGMultiplr: 1.00MS Integration Params: RTEINT.PQuant Time: Mar 21 09:02:53 2020Quant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator)Title : TO-15 VOA Standards for 5 point calibrationLast Update : Sat Mar 21 09:01:02 2020Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AR032007.DDataAcq Meth : 1UG\_ENT

|     | Compound                  | R.T.  | QIon | Response | Conc Unit   | Qvalue |
|-----|---------------------------|-------|------|----------|-------------|--------|
|     |                           |       |      |          |             |        |
| 45) | Bromodichloromethane      | 13.28 | 83   | 268913   | 2.12 ppb    | 99     |
| 47) | cis-1,3-dichloropropene   | 14.10 | 75   | 172624   | 2.20 ppb    | 99     |
| 48) | trans-1,3-dichloropropene | 14.87 | 75   | 132615   | 2.11 ppb    | 99     |
| 49) | 1,1,2-trichloroethane     | 15.19 | 97   | 130013   | 2.08 ppb    | 99     |
| 51) | Toluene                   | 14,94 | 92   | 184515   | 2.25 ppb    | 97     |
| 52) | Methyl Isobutyl Ketone    | 14.01 | 43   | 161401   | 2.28 ppb    | 99     |
| 53) | Dibromochloromethane      | 15.93 | 129  | 275423   | 2.12 ppb    | 100    |
| 54) | Methyl Butyl Ketone       | 15.37 | 43   | 142401m  | /) 2.33 ppb |        |
| 55) | 1,2-dibromoethane         | 16.19 | 107  | 203215   | 2.12 ppb    | 98     |
| 56) | Tetrachloroethylene       | 16.02 | 164  | 142580   | 2.08 ppb    | 98     |
| 57) | Chlorobenzene             | 17.04 | 112  | 270703   | 2.14 ppb    | 99     |
| 58) | Ethylbenzene              | 17.31 | 91   | 415296   | 2.35 ppb    | 99     |
| 59) | m&p-xylene                | 17.53 | 91   | 731553   | 4.61 ppb    | 97     |
| 60) | Nonane                    | 17.92 | 43   | 183652   | 2.34 ppb    | 98     |
| 61) | Styrene                   | 17,98 | 104  | 280049   | 2,24 ppb    | 99     |
| 62) | Bromoform                 | 18.11 | 173  | 275733   | 2.14 ppb    | 99     |
| 63) | o-xylene                  | 18.02 | 91   | 411983   | 2.18 ppb    | 97     |
| 64) | Cumene                    | 18.62 | 105  | 478077   | 2.39 ppb    | 99     |
| 66) | 1,1,2,2-tetrachloroethane | 18.49 | 83   | 292494   | 2.13 ppb    | 100    |
| 67) | Propylbenzene             | 19.20 | 120  | 130808   | 2.43 ppb    | 69     |
| 68) | 2-Chlorotoluene           | 19.24 | 126  | 138059   | 2.23 ppb    | # 86   |
| 69) | 4-ethyltoluene            | 19.39 | 105  | 507598   | 2.33 ppb    | 98     |
| 70) | 1,3,5-trimethylbenzene    | 19.45 | 105  | 468078   | 2.31 ppb    | 97     |
| 71) |                           | 19,94 | 105  | 407396   | 2.50 ppb    | 99     |
| 72) | 1.3-dichlorobenzene       | 20.27 | 146  | 298538   | 2.32 ppb    | 99     |
| 73) | benzyl chloride           | 20,34 | 91   | 275580   | 2.50 ppb    | 97     |
| 74) | 1,4-dichlorobenzene       | 20.41 | 146  | 309922   | 2.35 ppb    | 99     |
| 75) | 1,2,3-trimethylbenzene    | 20.46 | 105  | 455862   | 2.42 ppb    | 97     |
| 76) |                           | 20.78 | 146  | 302526   | 2.30 ppb    | 99     |
| 77) | 1,2,4-trichlorobenzene    | 23,03 | 180  | 147151   | 2.86 ppb    | 99     |
| 78) | Naphthalene               | 23.25 | 128  | 322288m  |             |        |
| 79Ì | Hexachloro-1,3-butadiene  | 23.38 | 225  | 243943   | 2.25 ppb    | 90     |
|     | •                         |       |      |          | ÷ •         |        |

(#) = qualifier out of range (m) = manual integration (+) = signals summed AR032004.D A320\_1UG.M Fri Apr 10 08:26:40 2020 MSD1



Quantitation Report (QT Reviewed) Vial: S Data File : C:\HFCHEM\1\DATA\AR032005.D Acq On : 20 Mar 2020 6:53 pm **Operator: RJP** Sample : AlUG 1.50 Misc : A311 LUG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 21 09:02:15 2020 Quant Results File: A320 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A320 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sat Mar 21 09:01:02 2020 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AR032007.D DataAcq Meth : 1UG\_ENT R.T. QION Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.90128404321.00ppb0.0035) 1,4-difluorobenzene12.191141486061.00ppb0.0050) Chlorobenzene-d516.991.71369831.00ppb0.00 System Monitoring Compounds65) Bromofluorobenzene18.74951123411.05ppb0.00Spiked Amount1.000Range70 - 130Recovery=105.00% 

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 = 105.00%

 Target Compounds
 Qvalue

 2) Propylene
 4.20
 41
 42692
 1.48
 ppb
 93

 3) Frecon 12
 4.26
 95
 276922
 1.51
 ppb
 93

 4) Chloromethane
 4.46
 85
 276922
 1.39
 ppb
 95

 5) Vinyl Chloride
 4.66
 62
 55962
 A
 1.39
 ppb

 6) Vinyl Chloride
 5.29
 64
 35477
 1.49
 ppb
 98

 6) L3-butadiene
 5.11
 94
 83721
 1.49
 ppb
 98

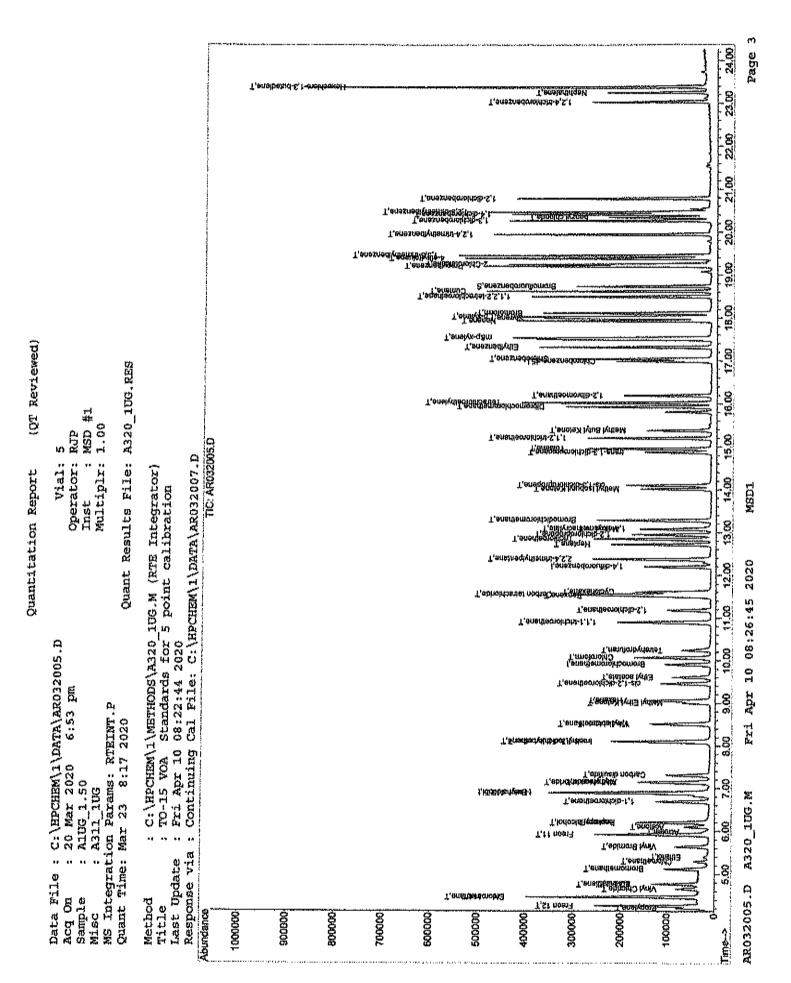
 10) Chlorosthane
 5.29
 64
 35477
 1.49
 ppb
 98

 11) Ethanol
 5.40
 45
 15119
 1.55
 ppb
 97

 13) Vinyl Bromide
 5.64
 106
 68866
 1.55
 ppb
 97

 13) Vinyl Bromide
 6.20
 45
 81456
 1.65
 ppb
 92

 14) Freen 11
 5.91
 101
 28911
 159
 100
 Target Compounds Ovalue ----


(#) = qualifier out of range (m) = manual integration AR032005.D A320\_1UG.M Fri Apr 10 08:26:43 2020 MSD1 Quantitation Report

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AR032005.D Vial: 5 Acq On : 20 Mar 2020 6:53 pm Operator: RJP Sample : AlUG\_1.50 Inst : MSD #1 Misc : A311\_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 21 09:02:15 2020 Quant Results File: A320\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sat Mar 21 09:01:02 2020 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AR032007.D

Response via : Continuing Cal File: C:\HPCHEM\I\DATA\AR032007.D DataAcg Meth : 1UG\_ENT

|     | Compound                  | R.T.  | QION | Response | Conc Unit | Qvalue |
|-----|---------------------------|-------|------|----------|-----------|--------|
|     |                           |       |      |          |           |        |
| 46) | Bromodichloromethane      | 13.28 | 83   | 201513   | 1.57 ppb  | 99     |
| 47) | cis-1,3-dichloropropene   | 14.10 | 75   | 127327   | 1.59 ppb  | 100    |
| 48) | trans-1,3-dichloropropene | 14.87 | 75   | 100842   | 1.58 ppb  | 90     |
| 49) | 1,1,2-trichloroethane     | 15.19 | 97   | 98341    | 1.55 ppb  | 100    |
| 51) | Toluene                   | 14.95 | 92   | 134931   | 1.65 ppb  | 99     |
| 52) | Methyl Isobutyl Ketone    | 14.01 | 43   | 114830   | 1.62 ppb  | 100    |
| 53) | Dibromochloromethane      | 15,93 | 129  | 207659   | 1.60 ppb  | 99     |
| 54) | Methyl Butyl Ketone       | 15.38 | 43   | 97109m 🖉 | 1.59 ppb  |        |
| 55) | 1,2-dibromoethane         | 16.19 | 107  | 149507   | 1.56 ppb  | 99     |
| 56) | Tetrachloroethylene       | 16.02 | 164  | 107029   | 1.56 ppb  | 100    |
| 57) | Chlorobenzene             | 17.04 | 112  | 202635   | 1.60 ppb  | 100    |
| 58) | Ethylbenzene              | 17,31 | 91   | 296828   | 1.69 ppb  | 98     |
| 59) | m&p-xylene                | 17.53 | 91   | 526058   | 3.32 ppb  | 98     |
| 60) | Nonane                    | 17.93 | 43   | 131690   | 1.68 ppb  | 98     |
| 61) | Styrene                   | 17.99 | 104  | 202600   | 1.62 ppb  | 98     |
| 62) | Bromoform                 | 18.11 | 173  | 202344   | 1.57 ppb  | 100    |
| 63) | o-xylene                  | 18.02 | 91   | 297431   | 1.58 ppb  | 98     |
| 64) | Cumene                    | 18.62 | 105  | 335767   | 1.68 ppb  | 99     |
| 66) | 1,1,2,2-tetrachloroethane | 18.49 | 83   | 215868   | 1.57 ppb  | 100    |
| 67) | Propylbenzene             | 19.20 | 120  | 92458    | 1.72 ppb  | 86     |
| 68) | 2-Chlorotoluene           | 19.25 | 126  | 97561    | 1.57 ppb  | # 83   |
| 69) | 4-ethyltoluene            | 19.39 | 105  | 364286   | 1.68 ppb  | 98     |
| 70) | 1,3,5-trimethylbenzene    | 19.45 | 105  | 335430   | 1.66 ppb  | 97     |
| 71) | 1,2,4-trimethylbenzene    | 19.94 | 105  | 284662   | 1,75 ppb  | 98     |
| 72) | 1,3-dichlorobenzene       | 20.27 | 146  | 213660   | 1.66 ppb  | 99     |
| 73) | benzyl chloride           | 20.35 | 91   | 189653   | 1.72 ppb  | 96     |
| 74) | 1,4-dichlorobenzene       | 20.41 | 146  | 216219   | 1.64 ppb  | 98     |
| 75) | 1,2,3-trimethylbenzene    | 20.47 | 105  | 316833   | 1.68 ppb  | 97     |
| 76) | 1,2-dichlorobenzene       | 20.78 | 146  | 213279   | 1.63 ppb  | 100    |
| 77) | 1,2,4-trichlorobenzene    | 23.03 | 180  | 89096    | 1,73 ppb  | 99     |
| 78) | Naphthalene               | 23.25 | 128  | 202549   | 1.85 ppb  | 98     |
| 79) | Hexachloro-1,3-butadiene  | 23.38 | 225  | 173103   | 1.60 ppb  | 90     |
|     |                           |       |      |          |           |        |



Quantitation Report (QT Reviewed) Data File ; C:\HPCHEM\1\DATA\AR032006.D Vial: 6 Acq On : 20 Mar 2020 7:40 pm **Operator:** RJP Sample : A1UG\_1.25 Misc : A311\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 21 09:01:38 2020 Quant Results File: A320\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sat Mar 21 09:01:02 2020 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AR032007.D DataAcq Meth : 1UG\_ENT R.T. QIon Response Cond Units Dev(Min) Internal Standards 1) Bromochloromethane9.90128400691.00ppb0.0035) 1,4-difluorobenzene12.191141493611.00ppb0.0050) Chlorobenzene-d516.991171368001.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.73 95 109138 1.03 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 103.00% 
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 = 103.00%

 Target Compounds
 Qvalue

 2) Propylene
 4.22
 41
 36689
 1.29 ppb
 92

 3) Frecon 12
 4.26
 85
 226564
 1.25 ppb
 99

 4) Chloromethane
 4.46
 60
 173855
 1.23 ppb
 96

 6) Vinyl Chloride
 4.66
 62
 45738
 1.28 ppb
 99

 7) Butane
 4.76
 39
 38390m
 1.23 ppb
 97

 10) Chloroethane
 5.29
 64
 28195
 1.20 ppb
 97

 11) Ethanol
 5.40
 45
 13384
 1.39 ppb
 99

 13) Vinyl Bromide
 5.63
 106
 57057
 1.28 ppb
 98

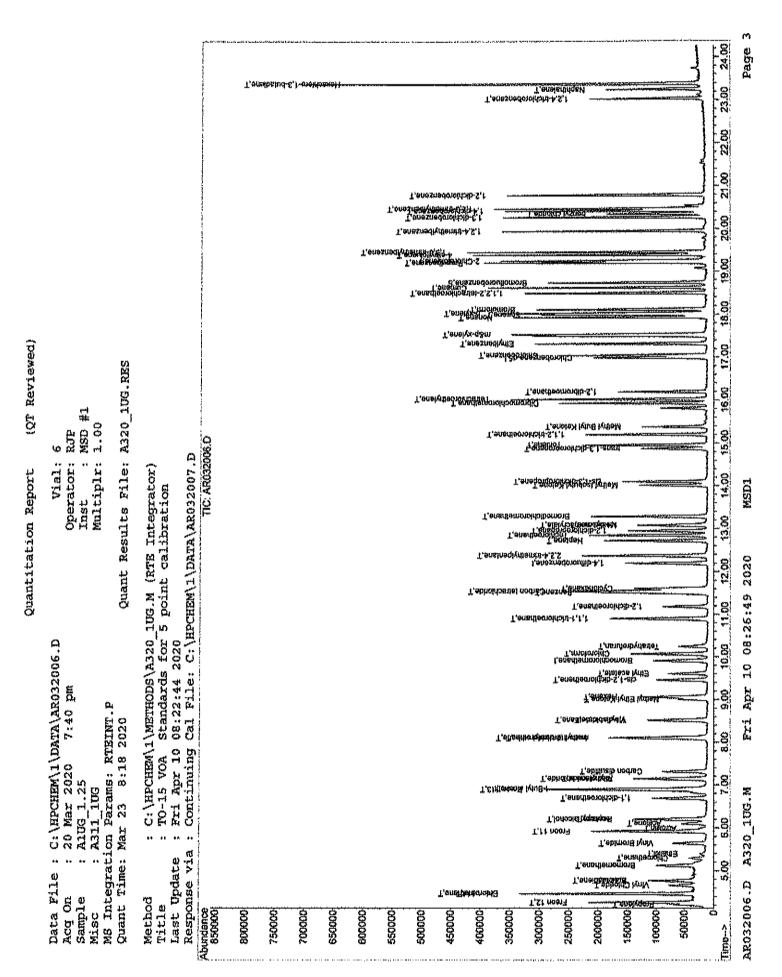
 14) Freen 11
 5.92
 101
 28015
 1.33 ppb
 98

 17) Isogropyl alcohol
 6.21
 42
 50815
 1.32 ppb
 96

 19) Freen 113
 6.89
 101
 139522
 1.25 ppb
 96

 Target Compounds Qvalue 

Quantitation Report (QT Reviewed)


| Data File : C:\HPCHEM\1\DATA\AR03200 | 06.D Vial: 6                     |
|--------------------------------------|----------------------------------|
| Acg On : 20 Mar 2020 7:40 pm         | Operator: RJP                    |
| Sample : AlUG 1.25                   | Inst : MSD #1                    |
| Misc : A311_1UG                      | Multiplr: 1.00                   |
| MS Integration Params: RTEINT, P     | LOUT CALVARY # 100               |
| Quant Time: Mar 21 09:01:38 2020     | Quant Results File: A320_1UG.RES |
| Quant Method ; C:\HPCHEM\1\METHODS\A | 1320_1UG.M (RTE Integrator)      |
| Title : TO-15 VOA Standards          | for 5 point calibration          |
| Last Update : Sat Mar 21 09:01:02 2  | :020                             |
| Response via : Continuing Cal File:  | C:\HPCHEM\1\DATA\AR032007.D      |
| TAPATAN MAPA INTO TATA               |                                  |

Response via : Continui DataAcq Meth : 10G\_ENT

.

| Compound                      | R.T.  | QIon | Response | Conc Unit | Qvalue |
|-------------------------------|-------|------|----------|-----------|--------|
| 46) Bromodichloromethane      | 13.28 | 83   | 165991   | 1.28 ppb  | 98     |
| 47) cis-1,3-dichloropropene   | 14.10 | 75   | 102118   | 1.27 ppb  | 98     |
| 48) trans-1,3-dichloropropene | 14.87 | 75   | 80304    | 1.25 ppb  | 98     |
| 49) 1,1,2-trichloroethane     | 15.19 | 97   | 81635    | 1.28 ppb  | 99     |
| 51) Toluene                   | 14,95 | 92   | 110542   | 1.35 ppb  | 100    |
| 52) Methyl Isobutyl Ketone    | 14.01 | 43   | 91325    | 1.29 ppb  | 97     |
| 53) Dibromochloromethane      | 15.93 | 129  | 169862   | 1.31 ppb  | 100    |
| 54) Methyl Butyl Ketone       | 15.38 | 43   | 77978m A | 1.28 ppb  | 200    |
| 55) 1,2-dibromoethane         | 16.19 | 107  | 125123   | 1.31 ppb  | 99     |
| 56) Tetrachloroethylene       | 16.02 | 164  | 87108    | 1.27 ppb  | 100    |
| 57) Chlorobenzene             | 17 04 | 112  | 165983   | 1.31 ppb  | 100    |
| 58) Ethylbenzene              | 17.32 | 91   | 234448   | 1.33 ppb  | 99     |
| 59) m&p-xylene                | 17.53 | 91   | 426148   | 2.69 ppb  | 97     |
| 60) Nonane                    | 17.93 | 43   | 105790   | 1.35 ppb  | 98     |
| 61) Styrene                   | 17.99 |      | 165101   | 1.33 ppb  | 98     |
| 62) Bromoform                 | 18.11 | 173  | 166940   | 1.30 ppb  | 99     |
| 63) o-xylene                  | 18.02 | 91   | 244173   | 1.30 ppb  | 98     |
| 64) Cumene                    | 18.62 |      | 270109   | 1.35 ppb  | 98     |
| 66) 1,1,2,2-tetrachloroethane | 18.49 |      | 177550   | 1.29 ppb  | 100    |
| 67) Propylbenzene             | 19.21 | 120  | 74526    | 1.39 ppb  | 88     |
| 68) 2-Chlorotoluene           | 19.24 | 126  | 80374    | 1.30 ppb  | # 90   |
| 69) 4-ethyltoluene            | 19.39 | 105  | 288577   | 1.33 ppb  |        |
| 70) 1,3,5-trimethylbenzene    | 19.45 | 105  | 269886   | 1.34 ppb  | 96     |
| 71) 1,2,4-trimethylbenzene    | 19.94 | 105  | 222847   | 1.37 ppb  | 98     |
| 72) 1,3-dichlorobenzene       | 20,27 | 146  | 174162   | 1.35 ppb  | 99     |
| 73) benzyl chloride           | 20.34 | 91   | 149073   | 1.35 ppb  | 97     |
| 74) 1,4-dichlorobenzene       | 20.42 | 146  | 175618   | 1.33 ppb  | 100    |
| 75) 1,2,3-trimethylbenzene    | 20.46 | 105  | 256934   | 1.37 ppb  | 96     |
| 76) 1,2-dichlorobenzene       | 20.78 | 146  | 173606   | 1.33 ppb  | 100    |
| 77) 1,2,4-trichlorobenzene    | 23.03 | 180  | 71841    | 1.40 ppb  | <br>99 |
| 78) Naphthalene               | 23.25 | 128  | 153952   | 1.41 ppb  | 98     |
| 79) Hexachloro-1,3-butadiene  | 23.38 | 225  | 142144   | 1.31 ppb  | 90     |
|                               |       |      |          | FF        |        |

(#) = qualifier out of range (m) = manual integration (+) = signals summed AR032006.D A320\_1UG.M Fri Apr 10 08:26:48 2020 MSD1



Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AR032007.D Vial: 7 Acg On : 20 Mar 2020 8:27 pm **Operator:** RJP Sample : AlUG\_1.0 Misc : A311\_1UG Inst : MSD #1 Multiplr: 1.00 MILTIPIT: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 23 08:18:51 2020 Quant Results File: A320\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sat Mar 21 09:01:02 2020 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AR032007.D DataAcq Meth : 1UG\_ENT R.T. QION Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.90128393851.00ppb0.0035) 1,4-difluorobenzene12.191141502081.00ppb0.0050) Chlorobenzene-d516.991171394251.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.74 95 108476 1.00 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 100.00% 
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 = 100.00%

 Target Compounds
 Qvalue

 2) Propylene
 4.20
 41
 28020
 1.00
 ppb
 86

 3) Freon 12
 4.26
 85
 178133
 1.00
 ppb
 95

 5) Freon 114
 4.46
 85
 138948
 1.00
 ppb
 95

 6) Vinyl Chloride
 4.66
 62
 35085
 1.00
 ppb
 99

 8) 1.3-butadiene
 4.76
 39
 30645
 1.00
 ppb
 99

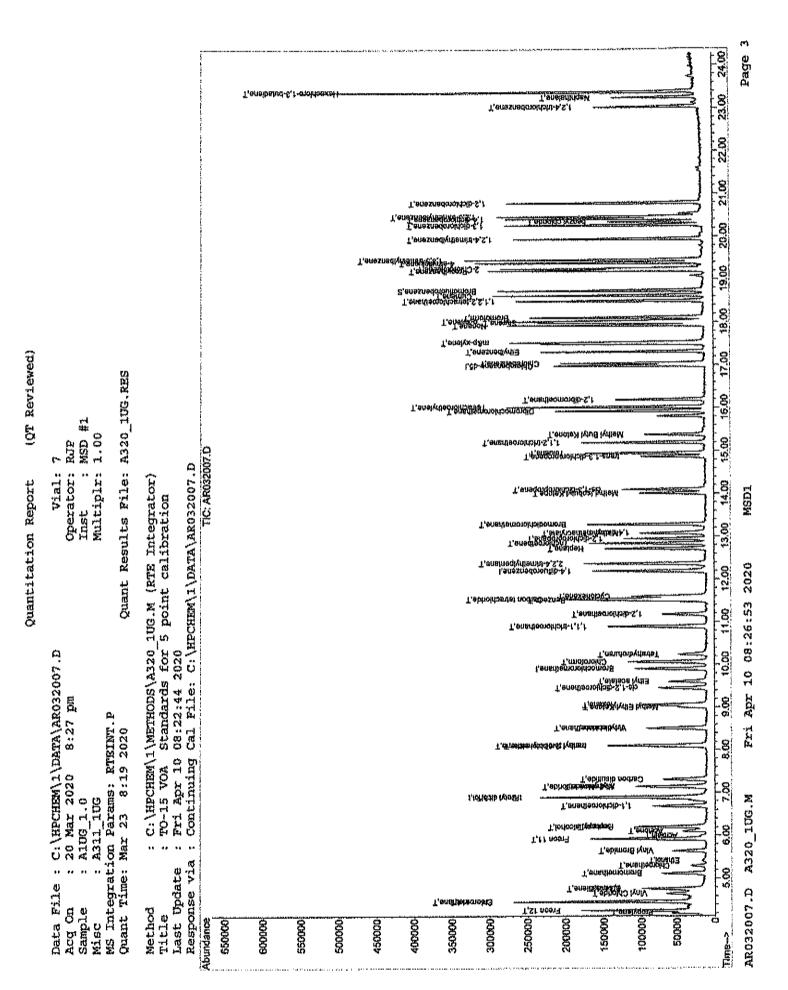
 9) Dromomethane
 5.29
 64
 23130
 1.00
 ppb
 99

 12) Acrolein
 5.99
 56
 11702
 1.00
 ppb
 91

 13) Vinyl Bromide
 5.64
 106
 43325
 1.00
 ppb
 92

 17) Isopropyl alcohol
 6.20
 42
 37679
 1.00
 ppb
 92

 18) Freon 113
 6.89
 101
 109
 pb
 92


 Target Compounds Ovalue 

,

(OT Reviewed) Quantitation Report Vial: 7 Data File : C:\HPCHEM\1\DATA\AR032007.D Operator: RJP Acq On : 20 Mar 2020 8:27 pm Inst : MSD #1 Sample : Alug\_1.0 Misc : A311\_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A320\_1UG.RES Quant Time: Mar 23 08:18:51 2020 Quant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sat Mar 21 09:01:02 2020 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AR032007.D DataAcg Meth : 1UG\_ENT R.T. QION Response Conc Unit Qvalue Compound

|     | Compound                  |       | ***** |           |          |     |
|-----|---------------------------|-------|-------|-----------|----------|-----|
| 46) | Bromodichloromethane      | 13.28 |       | 130032    | 1.00 ppb | 99  |
| 47) | cis-1,3-dichloropropene   | 14.09 |       | 80679     | 1.00 ppb | 99  |
|     | trans-1,3-dichloropropene | 14.87 |       | 64500     | 1.00 ppb | 99  |
| 49) |                           | 15.19 | 97    | 64260     | 1.00 ppb | 100 |
| 51) | Toluene                   | 14.95 | 92    | 83335     | 1.00 ppb | 97  |
| 52) | Methyl Isobutyl Ketone    | 14.01 | 43    | 72126     | 1.00 ppb | 99  |
| 53) | Dibromochloromethane      | 15.92 | 129   | 132406    | 1.00 ppb | 100 |
| 54) | Methyl Butyl Ketone       | 15.37 | 43    | 62690m // | 1.01 ppb |     |
| 55) | 1,2-dibromoethane         | 16.19 | 107   | 97298     | 1.00 ppb | 98  |
| 56) |                           | 16.02 | 164   | 69754     | 1.00 ppb | 100 |
| 57) |                           | 17.04 | 112   | 128754    | 1.00 ppb | 100 |
| 58) |                           | 17.32 | 91    | 179355    | 1.00 ppb | 98  |
| 59) | · _                       | 17.53 | 91    | 323022    | 2.00 ppb | 98  |
| 60) | Nonane                    | 17.93 | 43    | 79661     | 1.00 ppb | 98  |
| 61) | Styrene                   | 17.99 | 104   | 126976    | 1.00 ppb | 98  |
| 62) | Bromoform                 | 18.11 | 173   | 130806    | 1.00 ppb | 99  |
| 63) | o-xylene                  | 18.02 | 91    | 191832    | 1.00 ppb | 98  |
| 64) | Cumene                    | 18.62 | 105   | 203504    | 1.00 ppb | 98  |
| 66) | 1,1,2,2-tetrachloroethane | 18.49 | 83    | 139822    | 1.00 ppb | 99  |
| 67) |                           | 19.20 | 120   | 54834     | 1.00 ppb | 82  |
| 68) |                           | 19.24 | 126   | 63097     | 1.00 ppb | 97  |
|     | 4-ethyltoluene            | 19.38 | 105   | 221398    | 1.00 ppb | 98  |
| 70) | 1,3,5-trimethylbenzene    | 19.45 | 105   | 206004    | 1.00 ppb | 97  |
| 71) | 1,2,4-trimethylbenzene    | 19.94 | 105   | 165671    | I.00 ppb | 100 |
| 72) |                           | 20.27 | 146   | 131078    | 1.00 ppb | 98  |
|     | benzyl chloride           | 20.34 | 91    | 112282    | 1.00 ppb | 96  |
| 74) | 1,4-dichlorobenzene       | 20.42 | 146   | 134355    | 1.00 ppb | 99  |
| 75) | 1,2,3-trimethylbenzene    | 20.47 | 105   | 191514    | 1.00 ppb | 96  |
| 76) | 1,2-dichlorobenzene       | 20.78 | 146   | 133535    | 1.00 ppb | 99  |
| 77) |                           | 23.03 | 180   | 52335     | 1.00 ppb | 99  |
| 78) |                           | 23.25 | 128   | 111570    | 1.00 ppb | 98  |
|     | Hexachloro-1,3-butadiene  | 23.38 | 225   | 110260    | 1.00 ppb | 89  |
| ,   |                           |       |       |           |          |     |

(#) - qualifier out of range (m) = manual integration (+) = signals summed AR032007.D A320\_lUG.M Fri Apr 10 08:26:52 2020 MSD1



(OT Reviewed) Quantitation Report Data File : C:\HPCHEM\1\DATA\AR032008.D Acq On : 20 Mar 2020 9:12 pm Sample : A1UG\_0.75 Misc : A311\_1UG Vial: 8 Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTBINT.P Quant Time: Mar 21 09:03:30 2020 Quant Results File: A320\_1UG.RES Quant Method : C:\HPCHEM\1\MBTHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sat Mar 21 09:01:02 2020 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AR032007.D DataAcg Meth : 1UG\_ENT R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.91128398461.00ppb0.0035) 1,4-difluorobenzene12.191141492071.00ppb0.0050) Chlorobenzene-d516.991171350741.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.73 95 103881 0.99 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 99.00% 

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 = 59.00%

 Target Compounds
 Qvalue

 2) Propylene
 4.22
 41
 21270
 0.75 ppb
 88

 3) Freeon 12
 4.26
 85
 133030
 0.74 ppb
 99

 4) Chloromethane
 4.46
 50
 28949
 0.74 ppb
 99

 5) Freeon 114
 4.47
 85
 102469
 0.72 ppb
 97

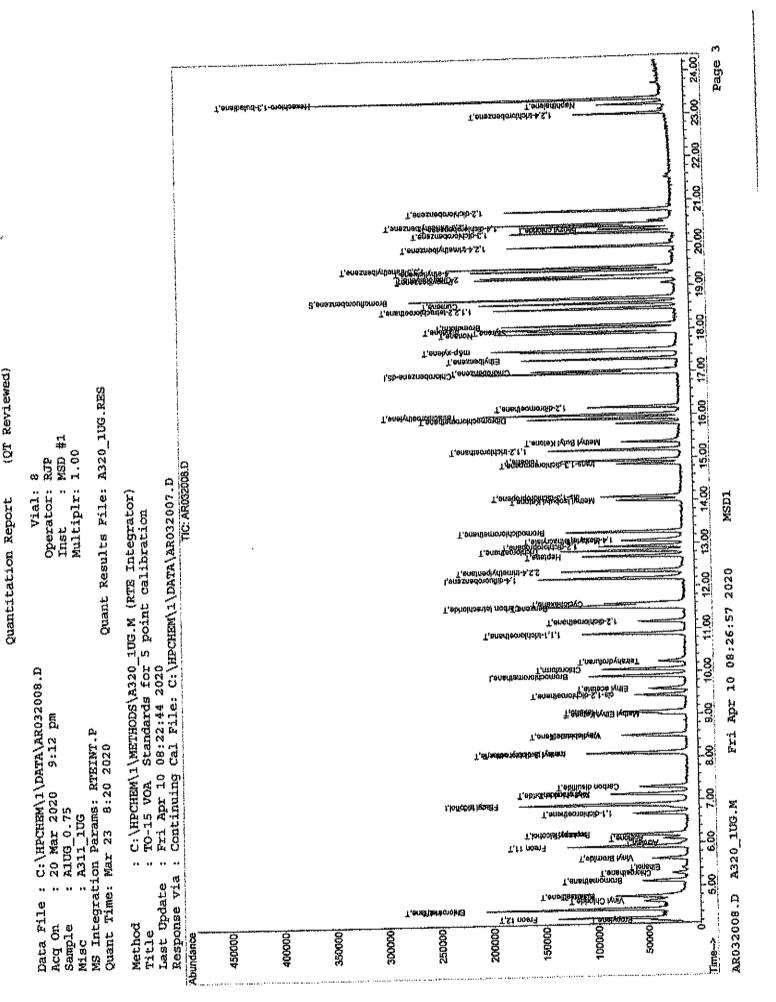
 7) Butane
 4.77
 43
 26897m /
 0.72 ppb
 92

 9) Bromomethane
 5.13
 94
 40827
 0.74 ppb
 92

 10) Chloroethane
 5.03
 64
 17340
 0.74 ppb
 92

 11) Stanol
 5.43
 45
 6913
 0.74 ppb
 98

 12) Acrolein
 5.99
 56
 8768m
 0.74 ppb
 98


 13) Vinyl Bromide
 5.64
 106
 30072
 0.77 ppb
 98

 13) Vinyl Bromide
 5.64
 101
 8221
 0.71 ppb #
 57

 13) Vinyl Bromide
 6.89
 101
 8221
 0.74 ppb
 98
 Qvalue 

| Qì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | antitat                                                                                                                                                        | ion Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | port (Q                                                                                                                                                            | T Reviewed)                                                                                                                                              |                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Data File : C:\HPCHEM\1\DATA\ARG<br>Acq On : 20 Mar 2020 9:12 g<br>Sample : A1UG_0.75<br>Misc : A311_1UG<br>MS Integration Params: RTEINT.P<br>Quant Time: Mar 21 09:03:30 2020<br>Quant Method : C:\HPCHEM\1\METHO                                                                                                                                                                                                                                                                                                                                                                                                       | )32008.D<br>pm<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)                                                       | Qu<br>1UG.M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Op<br>In<br>Mu<br>ant Result<br>( (RTE Inte                                                                                                                        | Vial: 8<br>erator: RJP<br>st : MSD<br>ltiplr: 1.00<br>s File: A320<br>grator)                                                                            | )                                       |
| Title : TO-15 VOA Standa<br>Last Update : Sat Mar 21 09:01:<br>Response via : Continuing Cal Fi<br>DataAcq Meth : 1UG_ENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02 2020                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                    |                                                                                                                                                          |                                         |
| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R.T.                                                                                                                                                           | QIon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                    | Conc Unit                                                                                                                                                | Qvalue                                  |
| <pre>46) Bromodichloromethane<br/>47) cis-1,3-dichloropropene<br/>48) trans-1,3-dichloropropene<br/>49) 1,1,2-trichloroethane<br/>51) Toluene<br/>52) Methyl Isobutyl Ketone<br/>53) Dibromochloromethane<br/>54) Methyl Butyl Ketone<br/>55) 1,2-dibromoethane<br/>56) Tetrachloroethylene<br/>57) Chlorobenzene<br/>58) Ethylbenzene<br/>59) m&amp;p-xylene<br/>60) Nonane<br/>61) Styrene<br/>62) Bromoform<br/>63) o-xylene<br/>64) Cumene<br/>65) 1,1,2,2-tetrachloroethane<br/>67) Propylbenzene<br/>68) 2-Chlorotoluene<br/>69) 4-ethyltoluene<br/>70) 1,3,5-trimethylbenzene<br/>71) 1,2,4-trimethylbenzene</pre> | 13.28<br>14.10<br>14.87<br>15.19<br>14.95<br>14.01<br>15.93<br>15.38<br>16.19<br>16.02<br>17.04<br>17.32<br>17.53<br>17.93<br>17.99<br>18.11<br>18.02<br>18.62 | $\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & &$ | 96735<br>57127<br>45724<br>47702<br>60216<br>50280<br>97935<br>44182<br>70639<br>49857<br>93885<br>127253<br>222943<br>55681<br>86543<br>95734<br>133203<br>137453 | 0.75 ppb<br>0.71 ppb<br>0.71 ppb<br>0.75 ppb<br>0.75 ppb<br>0.75 ppb<br>0.72 ppb<br>0.76 ppb<br>0.76 ppb<br>0.74 ppb<br>0.75 ppb<br>0.75 ppb<br>0.75 ppb | 98<br>99<br>98<br>99<br>99<br>99        |
| <ul> <li>72) 1,3-dichlorobenzene</li> <li>73) benzyl chloride</li> <li>74) 1,4-dichlorobenzene</li> <li>75) 1,2,3-trimethylbenzene</li> <li>76) 1,2-dichlorobenzene</li> <li>77) 1,2,4-trichlorobenzene</li> <li>78) Naphthalene</li> <li>79) Hexachloro-1,3-butadiene</li> </ul>                                                                                                                                                                                                                                                                                                                                         | 20,26<br>20,34<br>20,42<br>20,46<br>20,79<br>23,03<br>23,25<br>23,38                                                                                           | 91<br>146<br>105<br>146<br>180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 85228                                                                                                                                                              | 0.66 ppb                                                                                                                                                 | 99<br>100<br>98<br>97<br>95<br>98<br>91 |

(#) = qualifier out of range (m) = manual integration (+) = signals summed AR032008.D A320\_1UG.M Fri Apr 10 08:26:56 2020 MSD1



Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AR032009.D Vial: 9 Acg On : 20 Mar 2020 9:57 pm Operator: RJP Sample : AlUG\_0.50 Misc : A311\_LUG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 21 09:04:31 2020 Quant Results File: A320\_1UG, RES Quant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sat Mar 21 09:01:02 2020 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AR032007.D DataAcq Meth : 1UG\_ENT Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.90128400261.00ppb0.0035) 1,4-difluorobenzene12.191141458051.00ppb0.0050) Chlorobenzene-d516.991171323581.00ppb0.00 System Monitoring Compounds 55) Bromofluorobenzene 18.74 95 93983 0.91 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 91.00% 0.00 
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 91.00%

 Target Compounds
 Qvalue

 2) Propylene
 4.22
 41
 13574
 0.48 ppb
 98

 3) Frecon 12
 4.26
 85
 87384
 0.48 ppb
 98

 4) Chloromethane
 4.46
 50
 18957
 0.48 ppb
 98

 5) Frecon 114
 4.46
 68
 67736
 0.48 ppb
 97

 7) Butane
 4.76
 39
 15683
 0.50 ppb
 90

 7) Butane
 5.11
 94
 25830
 0.47 ppb
 99

 10) Chloroethane
 5.29
 64
 11710
 0.50 ppb
 99

 12) Acrolein
 5.99
 55
 5706
 0.48 ppb
 95

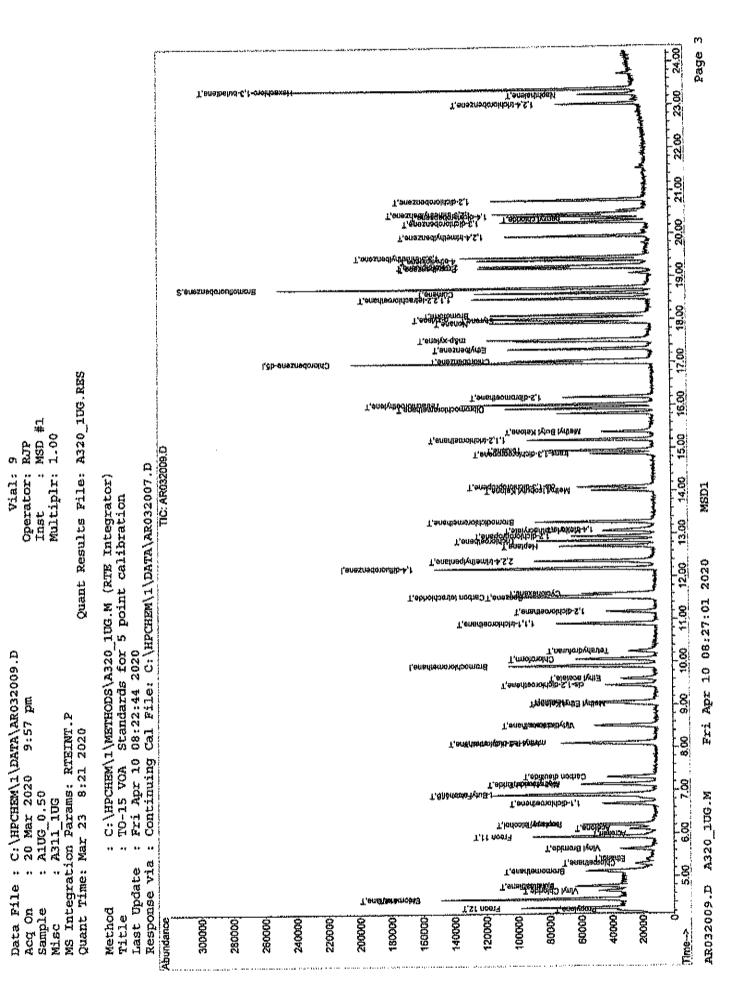
 13) Vinyl Bromide
 5.41
 45
 4623
 0.48 ppb
 95

 13) Vinyl Bromide
 6.19
 42
 18527
 0.48 ppb
 95

 13) Acetone
 6.19
 59
 2633
 0.50 ppb
 97

 <tr Target Compounds

(#) = qualifier out of range (m) = manual integration AR032009.D A320\_1UG.M Fri Apr 10 08:26:59 2020 MSD1


(QT Reviewed) Quantitation Report Data File : C:\HPCHEM\1\DATA\AR032009.D Acq On : 20 Mar 2020 9:57 pm Sample : AlUG\_0.50 Misc : A311\_1UG Vial: 9 Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A320\_1UG.RES Quant Time: Mar 21 09:04:31 2020 Quant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sat Mar 21 09:01:02 2020 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AR032007.D DataAcq Meth : 1UG\_ENT R.T. QIon Response Conc Unit Qvalue Compound 13 28 83 63720 0.50 ppb 100 (c) Examplichianomethene

| - 46) | Bromodichloromethane      | 13.28 | 83  | 63720    | 0.50 ppb  | 7.00 |
|-------|---------------------------|-------|-----|----------|-----------|------|
| 47)   |                           | 14.10 | 75  | 35706    | 0.46 ppb  | 98   |
|       | trans-1,3-dichloropropene | 14.87 | 75  | 27684    | 0.44 ppb  | 98   |
| 49    |                           | 15.19 | 97  | 30288    | 0.49 ppb  | 100  |
| 51)   |                           | 14.95 | 92  | 35222    | 0.45 ppb  | 97   |
| 52)   |                           | 14.01 | 43  | 31501    | 0.46 ppb  | 99   |
| 53    |                           | 15.93 | 129 | 62885    | 0.50 ppb  | 99   |
| 54    |                           | 15.38 | 43  | 25588    | 0.43 ppb  | 97   |
|       | 1,2-dibromoethane         | 16.19 | 107 | 45451    | 0.49 ppb  | 99   |
| 56    |                           | 16.02 | 164 | 32947    | 0.50 ppb  | 100  |
| 57    |                           | 17.04 | 112 | 59388    | 0.49 ppb  | 98   |
| 58    |                           | 17.31 | 91  | 75509    | 0.44 ppb  | 97   |
| 59    |                           | 17.59 | 91  | 126099   | 0.82 ppb  | 98   |
| 60    |                           | 17.93 | 43  | 30966    | 0.41 ppb  | 96   |
| 61    |                           | 17.99 | 104 | 49364    | 0.41 ppb  | 98   |
| 62    |                           | 18.11 | 173 | 58465    | 0.47 ppb  | 99   |
| 63    |                           | 18.02 | 91  | 79820    | 0.44 ppb  | 99   |
| 64    |                           | 18.62 | 105 | 79388    | 0.41 ppb  | 98   |
| 66    | 1,1,2,2-tetrachloroethane | 18.49 | 83  | 63824    | 0.48 ppb  | 100  |
| 67    |                           | 19.21 | 120 | 21037    | 0.40 ppb  | 78   |
| 68    | ) 2-Chlorotoluene         | 19.25 | 126 | 25121    | 0.42 ppb  | 99   |
| 69    | ) 4-ethyltoluene          | 19.39 | 105 | 78806    | dqq 82.0  | 1.00 |
| 70    |                           | 19.45 | 105 | 81192    | 0.42 ppb  | 98   |
| 71    |                           | 19.94 | 105 | 63034    | 0.40  ppb | 98   |
| 72    |                           | 20.27 | 146 | 47045    | 0.38 ppb  | 96   |
| 73    |                           | 20.34 | 91  | 36997m / | 0.35 ppb  |      |
| 74    | ) 1,4-dichlorobenzene     | 20.42 | 146 | 43903    | 0.34 ppb  | 98   |
| 75    |                           | 20.47 | 105 | 68793    | 0.38 ppb  | 97   |
| 76    | ) 1,2-dichlorobenzene     | 20.78 | 146 | 52280    | 0.41 ppb  | 99   |
| 77    |                           | 23.03 | 180 | 20263    | 0.41 ppb  | 99   |
| 78    |                           | 23.24 | 128 | 37771    | 0.36 ppb  | 97   |
| 79    |                           | 23.38 | 225 | 49268    | 0.47 ppb  | 90   |
|       |                           |       |     |          |           |      |

(#) = qualifier out of range (m) = manual integration (+) = signals summed AR032009.D A320\_1UG.M Fri Apr 10 08:27:00 2020 MSD1

(QT Reviewed)

Quantitation Report



(OT Reviewed) Quantitation Report Data File : C:\HPCHEM\1\DATA\AR032010.D Vial: 10 Acq On : 20 Mar 2020 10:41 pm **Operator:** RJP Sample : A1UG\_0.30 Misc : A311\_1UG Inst : MSD #1 Multiplr: 1.00 MISC ASIL\_10G MS Integration Params: RTEINT.P Quant Time: Mar 21 09:05:03 2020 Quant Results File: A320\_10G.RES Quant Method : C:\HPCHEM\1\METHODS\A320 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sat Mar 21 09:01:02 2020 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AR032007.D DataAcq Meth : 1UG\_ENT R.T. QION Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.90128391591.00ppb0.0035) 1,4-difluorobenzene12.191141392391.00ppb0.0050) Chlorobenzene-d516.991171265201.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.73 95 87825 0.89 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 89.00% 
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 89.00%

 2) Propylene
 4.21
 41
 8619
 0.31
 ppb
 73

 3) Frecon 12
 4.26
 85
 51836
 0.29
 ppb
 100

 4) Chloromethane
 4.47
 50
 10933
 0.28
 ppb
 99

 5) Vinyl Chloride
 4.66
 62
 10809
 0.31
 ppb
 49

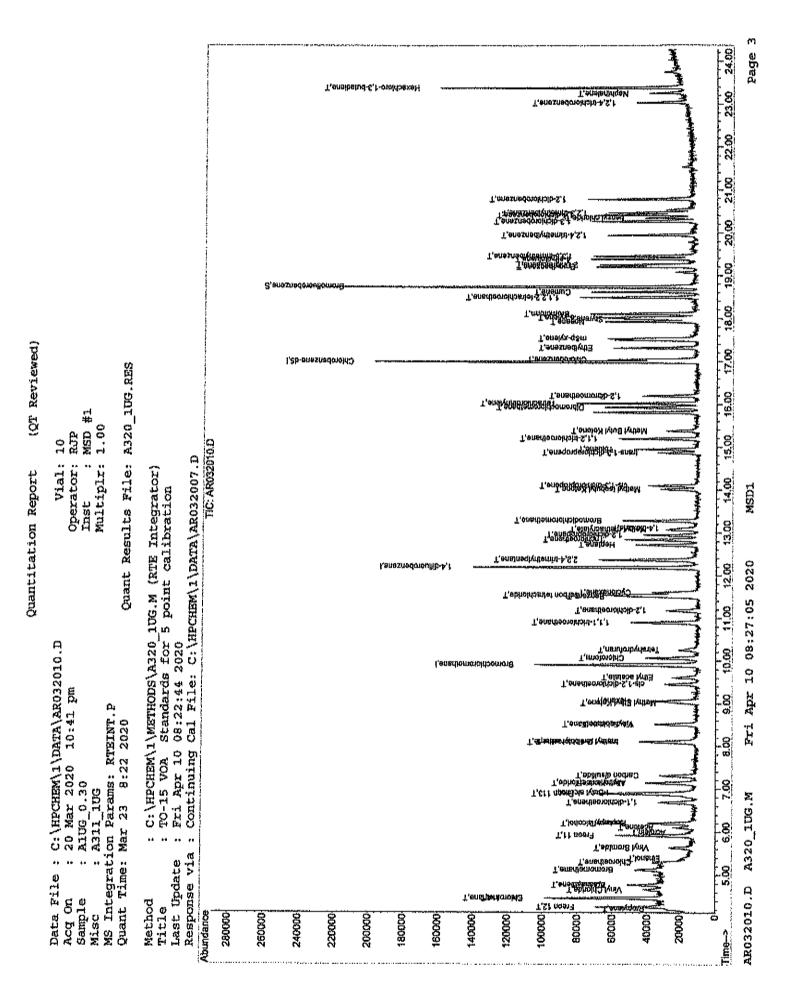
 8) Bromomethane
 5.12
 94
 15478
 0.29
 ppb
 98

 6) Olloroethane
 5.29
 64
 5390
 0.23
 ppb
 42

 11) Ethanol
 5.38
 45
 3097m
 0.31
 ppb
 93

 13) Vinyl Bromide
 5.63
 106
 13340
 0.31
 ppb
 93

 14) Frecon 11
 5.92
 101
 5499
 0.30
 ppb
 40


 15) Frecon 113
 6.88
 101
 32476
 0.31
 ppb
 94

 14) Frecon 11
 592 Target Compounds Ovalue 

(#) = qualifier out of range (m) = manual integration AR032010.D A320\_1UG.M Fri Apr 10 08:27:03 2020 MSD1

| Q                                                                                                                                                                                                                                                                                                                                                                                                            | uantitat                                                                                                 | ion Re                                                 | eport (Q'                                                                       | r Reviewed)                                                                                                                      |                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Data File : C:\HPCHEM\1\DATA\AR(<br>Acq On : 20 Mar 2020 10:41 H<br>Sample : A1UG_0.30<br>Misc : A311_1UG<br>MS Integration Params: RTEINT.P<br>Quant Time: Mar 21 09:05:03 2020                                                                                                                                                                                                                             | 032010.E<br>pm<br>)                                                                                      | Qu                                                     | Opa<br>Ina<br>Mui<br>Nant Resulta                                               | Vial: 10<br>erator: RJP<br>st : MSD<br>ltiplr: 1.0<br>File: A32                                                                  | 0                                              |
| Quant Method : C:\HPCHEM\1\METHO<br>Title : TO-15 VOA Standa<br>Last Update : Sat Mar 21 09:01:<br>Response via : Continuing Cal Fi<br>DataAcq Meth : 1UG_ENT                                                                                                                                                                                                                                                | ards for                                                                                                 | 5 poi                                                  | nt calibrat                                                                     | ion                                                                                                                              |                                                |
| Compound                                                                                                                                                                                                                                                                                                                                                                                                     | R.T.                                                                                                     | QIon                                                   | Response                                                                        | Cone Unit                                                                                                                        | Qvalue                                         |
| <ul> <li>46) Bromodichloromethane</li> <li>47) cis-1,3-dichloropropene</li> <li>48) trans-1,3-dichloropropene</li> <li>49) 1,1,2-trichloroethane</li> <li>51) Toluene</li> <li>52) Methyl Isobutyl Ketone</li> <li>53) Dibromochloromethane</li> <li>54) Methyl Butyl Ketone</li> <li>55) 1,2-dibromoethane</li> <li>56) Tetrachloroethylene</li> <li>57) Chlorobenzene</li> <li>58) Ethylbenzene</li> </ul> | 13.28<br>14.10<br>14.87<br>15.20<br>14.95<br>14.01<br>15.93<br>15.38<br>16.19<br>16.02<br>17.04<br>17.31 | 75<br>97<br>92<br>43<br>129<br>43<br>107<br>164<br>112 | 14109<br>26800<br>18359<br>34979                                                | 0.26 ppb<br>0.27 ppb<br>0.31 ppb<br>0.25 ppb<br>0.30 ppb<br>0.29 ppb<br>0.30 ppb                                                 | 91<br>100<br>94<br>97<br>99<br>99              |
| <pre>59) m&amp;p-xylene 60) Nonane 61) Styrene 62) Bromoform 63) o-xylene 64) Cumene 66) 1,1,2,2-tetrachloroethane 67) Propylbenzene 68) 2-Chlorotoluene</pre>                                                                                                                                                                                                                                               | 17.53<br>17.99<br>17.99<br>18.11<br>18.02<br>18.62<br>18.49<br>19.20                                     | 91<br>43<br>104<br>173<br>91<br>105<br>83<br>120       | 65980<br>17135m<br>26611m<br>34697<br>41036<br>43867<br>38665<br>11801          | 0.45 ppb<br>0.24 ppb<br>0.23 ppb<br>0.29 ppb<br>0.24 ppb<br>0.24 ppb<br>0.24 ppb<br>0.30 ppb<br>0.24 ppb                         | 95<br>95<br>98<br>98<br>100<br>86              |
| <ul> <li>69) 4-ethyltoluene</li> <li>70) 1,3,5-trimethylbenzene</li> <li>71) 1,2,4-trimethylbenzene</li> <li>72) 1,3-dichlorobenzene</li> <li>73) benzyl chloride</li> <li>74) 1,4-dichlorobenzene</li> <li>75) 1,2,3-trimethylbenzene</li> <li>76) 1,2-dichlorobenzene</li> <li>77) 1,2,4-trichlorobenzene</li> <li>78) Naphthalene</li> </ul>                                                              | 19.24<br>19.39<br>19.45<br>19.94<br>20.27<br>20.34<br>20.41<br>20.46<br>20.79<br>23.04<br>23.25          | 105<br>105<br>105<br>146<br>91                         | 47038m<br>44211m<br>33587<br>31234<br>25032<br>29035<br>36588<br>31292<br>11014 | 0.24 ppb<br>0.23 ppb<br>0.24 ppb<br>0.22 ppb<br>0.26 ppb<br>0.25 ppb<br>0.24 ppb<br>0.21 ppb<br>0.26 ppb<br>0.26 ppb<br>0.23 ppb | # 94<br>99<br>98<br>99<br>97<br>93<br>97<br>96 |
| 79) Hexachloro-1,3-butadiene                                                                                                                                                                                                                                                                                                                                                                                 | 23.38                                                                                                    | 225                                                    | 28231                                                                           | 0.23 ppb<br>0.28 ppb                                                                                                             | 90                                             |

(#) = qualifier out of range (m) = manual integration (+) = signals summed AR032010.D A320\_1UG.M Fri Apr 10 08:27:04 2020 MSD1



Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AR032011.D Acq On : 20 Mar 2020 11:26 pm Vial: 11 **Operator: RJP** Sample : AlUG\_0.15 Misc : A311\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 21 09:05:32 2020 Quant Results File: A320\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sat Mar 21 09:01:02 2020 Response via : Continuing Cal File: C:\HFCHEM\1\DATA\AR032007.D DataAcq Meth : 1UG ENT Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.91128386531.00ppb0.0035) 1.4-difluorobenzene12.191141341351.00ppb0.0050) Chlorobenzene-d516.991171196071.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.73 95 79846 0.86 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 86.00% 0.00 

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 = 86.00%

 Target Compounds
 Qvalue

 2) Propylene
 4.22
 41
 4704
 0.17 ppb
 89

 3) Freon 12
 4.26
 85
 25328
 0.14 ppb
 100

 4) Chloromethane
 4.47
 50
 6382
 0.17 ppb
 95

 5) Freon 114
 4.46
 85
 19691
 0.14 ppb
 92

 6) Vinyl Chloride
 4.77
 39
 4960
 0.15 ppb
 93

 7) Butane
 5.13
 94
 7952
 0.15 ppb
 95

 6) Olcoethane
 5.29
 64
 3103
 0.14 ppb
 96

 11) Ethanol
 5.41
 4568
 0.13 ppb
 98

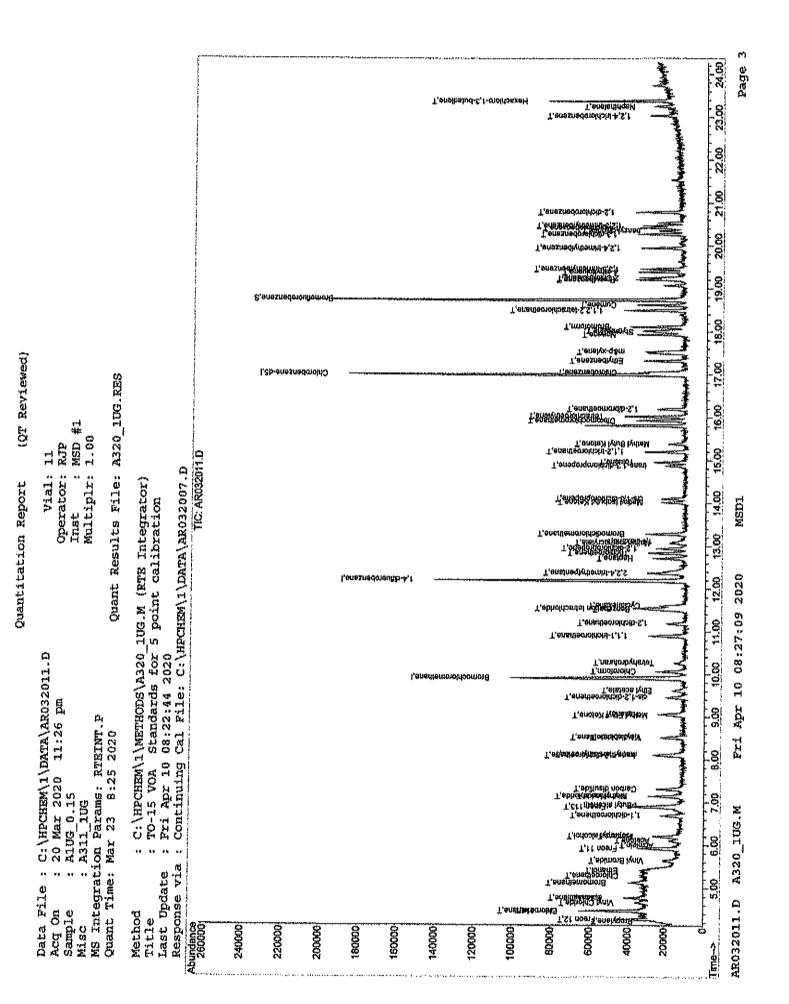
 12) Korolein
 5.92
 101
 25844
 0.14 ppb
 97

 13) Vinyl Bromide
 6.61
 94
 6031
 0.16 ppb
 91

 14) Freon 11
 5.92
 101
 25844
 0.14 ppb
 97

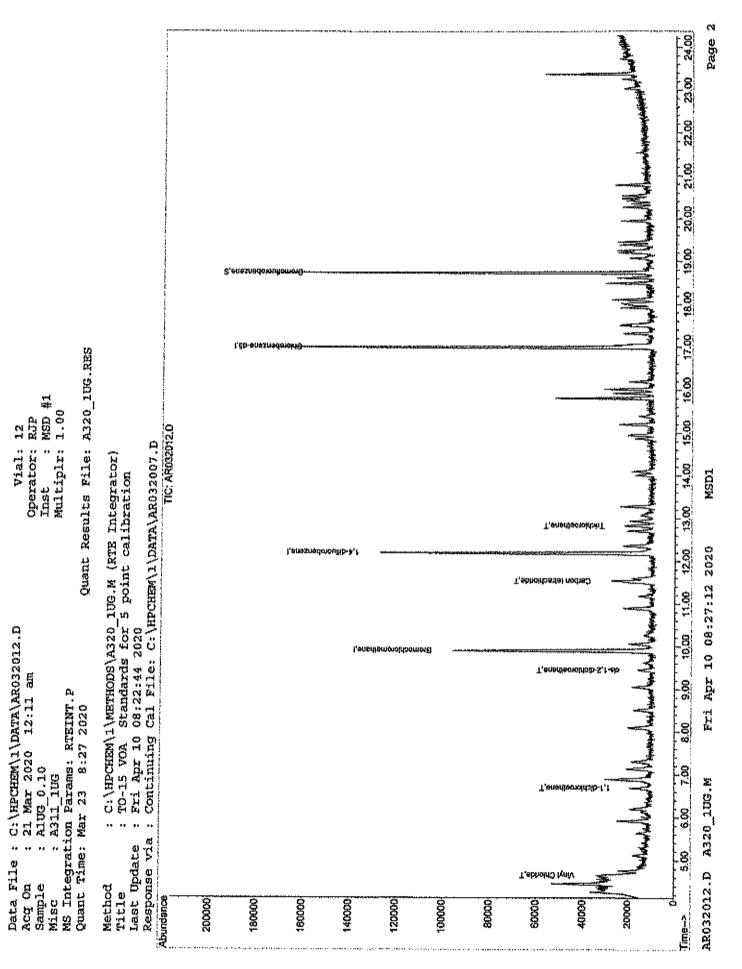
 15) Acetone
 6.11
 58
 8152
 0.17 ppb
 910

 17 Isopropyl alco Qvalue


## (#) = qualifier out of range (m) = manual integration

AR032011.D A320\_1UG.M Fri Apr 10 08:27:07 2020 MSD1

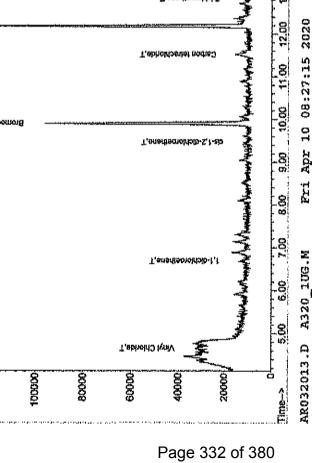
Page 1

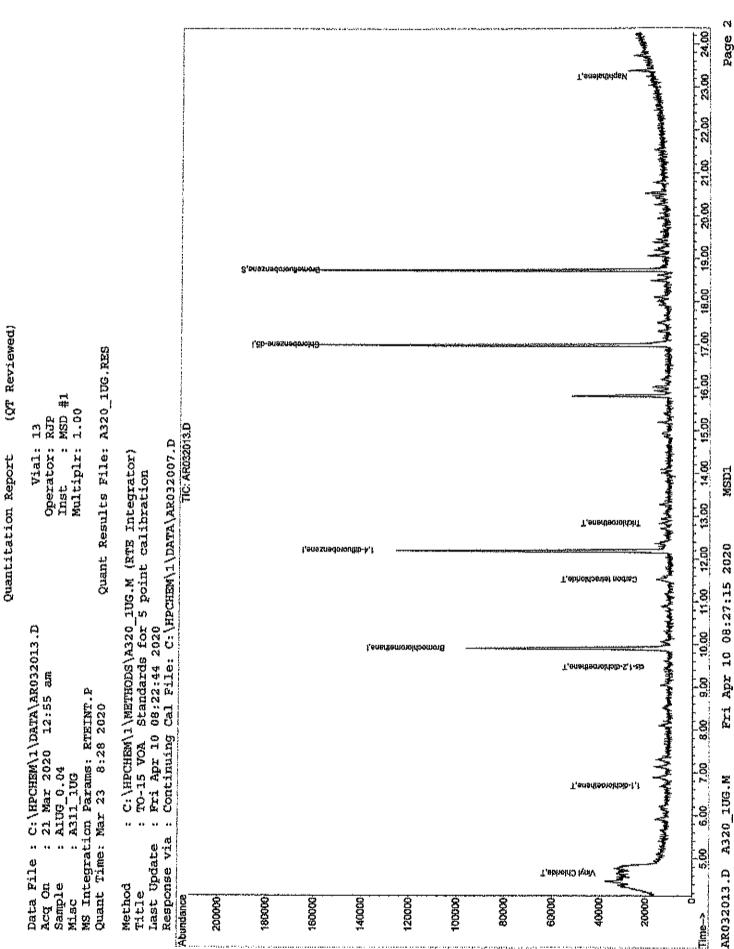

(OT Reviewed) Quantitation Report Vial: 11 Data File : C:\HPCHEM\1\DATA\AR032011.D Acq On : 20 Mar 2020 11:26 pm Sample : AlUG\_0.15 Misc : A311\_1UG **Operator: RJP** Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 21 09:05:32 2020 Quant Results File: A320\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sat Mar 21 09:01:02 2020 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AR032007.D DataAcq Meth : 1UG ENT CompoundR.T. QION ResponseConc UnitQvalue46)Bromodichloromethane13.2863172630.15 ppb9947)cis-1,3-dichloropropene14.097585090.12 ppb9448)trans-1,3-dichloropropene14.877573390.13 ppb9649)1,1,2-trichloroethane15.209777180.13 ppb9651)Toluene14.959264380.12 ppb9752)Methyl Isobutyl Ketone14.014399370.16 ppb9853)Dibromochloromethane15.93129170970.16 ppb9555)1,2-dibromochlane16.021646080.14 ppb9556)Tetrachloroethylene16.0216460080.14 ppb9958)Ethylbenzene17.5391276060.11 ppb10059)m&p-xylene17.92438699m0.13 ppb10061)Styrene17.9310411530m0.11 ppb10062)o-xylene18.0291205689m0.13 ppb7563)o-xylene19.2012047610.10 ppb7564)Cumene19.2512656520.10 ppb7565)4-cthylbenzene19.4510517990m0.10 ppb7566)2-chlorotoluene19.2512656520.11 ppb70)1,3,5-trimethylbenzene19.45 R.T. QIon Response Conc Unit Qvalue Compound 

(#) = qualifier out of range (m) = manual integration (+) = signals summed AR032011.D A320\_1UG.M Fri Apr 10 08:27:08 2020 MSD1

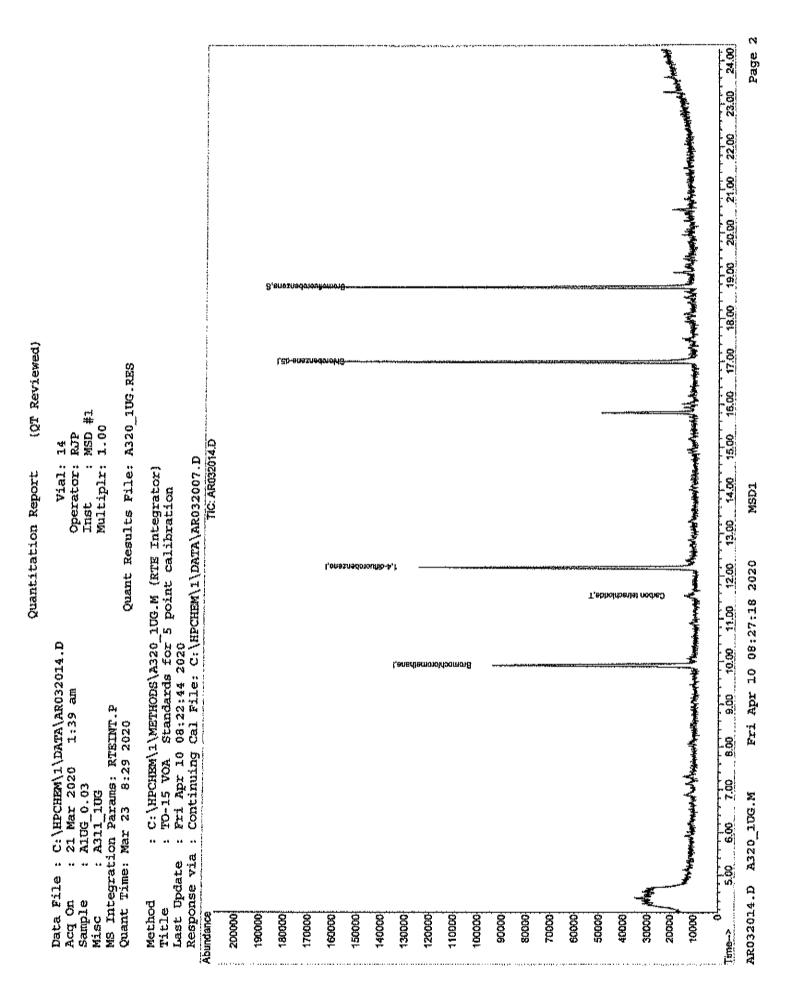


| Quant                                                                                                                                                                                |                                 | eport (QT)                       |                                  |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------|----------------------------------|----------------------|
| Data File : C:\HPCHEM\1\DATA\AR0320<br>Acq On : 21 Mar 2020 12:11 am<br>Sample : A1UG_0.10<br>Misc : A311_1UG<br>MS Integration Params: RTEINT.P<br>Quant Time: Mar 21 09:06:03 2020 |                                 | Mult:                            | iplr: 1.4                        | 0                    |
| Quant Method : C:\HPCHEM\1\METHODS\<br>Title : TO-15 VOA Standards<br>Last Update : Sat Mar 21 09:01:02<br>Response via : Continuing Cal File:<br>DataAcq Meth : 1UG_ENT             | A320_1UG.M<br>for 5 poi<br>2020 | 1 (RTE Integra<br>.nt calibratio | ator)<br>on                      |                      |
| Internal Standards                                                                                                                                                                   | R.T. QION                       | Response Co                      | one Unit:                        | Bev(Min)             |
| 1) Bromochloromethane<br>35) 1,4-difluorobenzene 1<br>50) Chlorobenzene-d5 1                                                                                                         | 9,90 128                        | 36328                            | 1.00 pp                          | 0.00<br>0.00<br>0.00 |
| System Monitoring Compounds<br>65) Bromofluorobenzene 1<br>Spiked Amount 1.000 Range                                                                                                 | .8.73 95<br>: 70 - 130          | 71236m<br>Recovery               | 0.80 pp)<br>= 80                 | 0,00<br>0,00%        |
| Target Compounds<br>6) Vinyl Chloride<br>18) 1,1-dichloroethene<br>29) cis-1,2-dichloroethene<br>38) Carbon tetrachloride<br>1<br>44) Trichloroethene<br>1                           | 6.68 96<br>9.44 61<br>1.53 117  | 3587m /<br>5673m /               | 0.10 ppl<br>0.11 ppl<br>0.10 ppl | ><br>><br>100        |




Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AR032013.D Vial: 13 Acq On : 21 Mar 2020 12:55 am Operator: RJP Sample : AlUG\_0.04 Misc : A311\_1UG Inst ; MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 21 09:06:34 2020 Quant Results File: A320\_10G.RES Quant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sat Mar 21 09:01:02 2020 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AR032007.D DataAcq Meth : 1UG ENT Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Bromochloromethane9.90128364591.00ppb35) 1,4-difluorobenzene12.191141255961.00ppb50) Chlorobenzene-d516.99117111811.00ppb 35) 1,4-difluorobenzene 50) Chlorobenzene-d5 0.00 0.00 1.00 ppb 0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.74 95 67348m 🕴 0.78 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 78.00% Target Compounds Qvalue 6) Vinyl Chloride 1171m 0 0.04 ppb 4.66 6.70 9.47 18) 1,1-dichloroethene 62 1546m 0.04 ppb 96 29) cis-1,2-dichloroethene 1992m 61 0.04 ppb 38) Carbon tetrachloride 11.53 117 0.03 ppb 3402 44) Trichloroethene 87 
 3402
 0.03 ppb


 1790m
 0.03 ppb

 1739m
 0.02 ppb
 12.84 130 78) Naphthalene 23.25 128





|                                                                                                                                                                      | Quantitat                              | ion Rej     | port (QT                  | Revie | wed)              |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------|---------------------------|-------|-------------------|------------|
| Data File : C:\HPCHEM\1\DATA\<br>Acq On : 21 Mar 2020 1:3<br>Sample : AlUG 0.03<br>Misc : A311_1UG<br>MS Integration Params: RTEINT<br>Quant Time: Mar 21 09:07:03 2 | 9 am.                                  |             | Inst                      | iplr: | MSD #<br>1.00     |            |
| Quant Method : C:\HPCHEM\1\ME<br>Title : TO-15 VOA Sta<br>Last Update : Sat Mar 21 09:<br>Response via : Continuing Cal<br>DataAcq Meth : 1UG_ENT                    | ndards for<br>01:02 2020<br>File: C:\1 | 5 poir      | nt calibrati              | on    | o                 |            |
| Internal Standards                                                                                                                                                   | R.T.                                   | QION        | Response C                | one U | nits D            | ev(Min)    |
| 1) Bromochloromethane<br>35) 1,4-difluorobenzene<br>50) Chlorobenzene-d5                                                                                             | 12.19                                  | 114         | 35039<br>118330<br>109216 | 1.00  | ppb<br>ppb<br>ppb | 0.00       |
| System Monitoring Compounds<br>65) Bromofluorobenzene<br>Spiked Amount 1.000                                                                                         | 18.73<br>Range 70                      | 95<br>- 130 | 66173m P<br>Recovery      | 0.78  | ppb<br>78.0       | 0.00<br>0% |
| Target Compounds<br>38) Carbon tetrachloride                                                                                                                         | 11.53                                  |             |                           |       |                   | Qvalue     |



Centek Laboratories, LLC

## GC/MS VOLATILES-WHOLE AIR

## METHOD TO-15

## CALIBRATION VERIFICATION

.

Page 335 of 380

Centek Laboratories, LLC Evaluate Continuing Calibration Report Vial: 2 Data File : C:\HPCHEM\1\DATA\AR040102.D Operator: RJP Acq On : 1 Apr 2020 11:10 am Sample : AlUG\_1.0 Misc : A311\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Fri Apr 10 08:36:30 2020 Response via : Multiple Level Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150% 
 Compound
 AvgRF
 CCRF
 % Dev Area% Dev (mi

 1
 Bromochloromethane
 1.000
 1.000
 0.0
 79
 0.00

 2
 T
 Propylene
 0.720
 0.733
 -1.8
 81
 0.00

 3
 T
 Freon 12
 4.461
 5.034
 -12.8
 87
 0.00

 5
 T
 Freon 114
 3.454
 3.834
 -11.0
 85
 0.00

 6
 T
 Vinyl Chloride
 0.909
 1.039
 -14.3
 92
 0.00

 7
 T
 Butane
 0.961
 0.992
 -3.2
 78
 0.00

 8
 T
 1,3-butadiene
 0.798
 0.758
 5.0
 77
 0.00

 9
 T
 Bromomethane
 1.340
 1.444
 -7.8
 82
 0.00

 11
 T
 Ethanol
 0.285
 0.275
 3.5
 73
 0.00

 12
 T
 Acrolein
 0.285
 0.275
 3.5
 73
 0 AvgRF CCRF %Dev Area% Dev(min) Compound \_\_\_\_\_\_\_ 11 T 12 T 13 T 14 T 15 T 19 T 20 t 21 T 22 T 23 T 24 T 25 T 26 T 27 T 28 T 29 T 30 T 31 T 32 T 33 T 34 T 1,4-difluorobenzene1.0001.0000.0691,1,1-trichloroethane0.8561.043-21.885Cyclohexane0.3160.365-15.578Carbon tetrachloride0.9631.230-27.785Benzene0.8311.012-21.883Methyl methacrylate0.2920.322-10.3771,4-dioxane0.1880.230-22.3822,2,4-trimethylpentane1.0671.290-20.983Heptane0.3400.421-23.883Trichloroethene0.3250.415-27.789Bromodichloromethane0.8801.110-26.189cis-1,3-dichloropropene0.5190.657-26.685trans-1,3-dichloropropene0.4130.483-16.9781,1,2-trichloroethane0.4250.543-27.888 35 I 0.00 36 T 0.00 37 T 0.00 0.00 38 T 39 T 0.00 40 T 0.00 41 T 0.00 42 T 0.00 43 T 0.00 44 T 0.00 0.00 45 T 0.00 46 T 47 T 0.00 48 T 0.00 49 T 0,00

\_\_\_\_\_\_\_\_\_\_

(#) = Out of Range AR040102.D A320\_1UG.M Fri Apr 10 08:42:33 2020 MSD1

|                                                                                                                                                                                                        | Centek Laboratories, LLC                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |                                                                                                                                                                                  |                                                                   |                                                                                                                                                   |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                        | Evaluate                                                                                                                                                                                                                                                                                                                                                                                      | Continuin                                                            | g Calibrat                                                                                                                                                                       | ion Repor                                                         | st                                                                                                                                                |  |  |
| Data File : C:\HPCHEM\1\DATA\AR040102.D<br>Acq On : 1 Apr 2020 11:10 am<br>Sample : A1UG_1.0<br>Misc : A311_1UG<br>MS Integration Params: RTEINT.P                                                     |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                                                                                                                                                                  | Vial<br>Operator<br>Inst<br>Multiple                              | : RJP<br>: MSD #1                                                                                                                                 |  |  |
| Method : C:\HPCHEM\1\METHODS\A320_1UG.M (RTE Integrator)<br>Title : TO-15 VOA Standards for 5 point calibration<br>Last Update : Fri Apr 10 08:36:30 2020<br>Response via : Multiple Level Calibration |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                                                                                                                                                                  |                                                                   |                                                                                                                                                   |  |  |
| Min.<br>Max.                                                                                                                                                                                           | RRF : 0.000 Min. Rel.<br>RRF Dev : 30% Max. Rel.                                                                                                                                                                                                                                                                                                                                              |                                                                      | 50% Max.<br>50%                                                                                                                                                                  | R.T. Dev                                                          | 0.33min                                                                                                                                           |  |  |
|                                                                                                                                                                                                        | Compound                                                                                                                                                                                                                                                                                                                                                                                      | AvgRF                                                                | CCRF                                                                                                                                                                             |                                                                   | cea% Dev(min)                                                                                                                                     |  |  |
| 51 T<br>52 T<br>53 T<br>55 T<br>55 T<br>56 T<br>57 T<br>58 T<br>59 T<br>59 T<br>60 T<br>62 T<br>63 T<br>63 T<br>65 T<br>65 T<br>69 T<br>70 T<br>71 T                                                   | Toluene<br>Methyl Isobutyl Ketone<br>Dibromochloromethane<br>Methyl Butyl Ketone<br>1,2-dibromoethane<br>Tetrachloroethylene<br>Chlorobenzene<br>Ethylbenzene<br>m&p-xylene<br>Nonane<br>Styrene<br>Bromoform<br>o-xylene<br>Cumene<br>Bromofluorobenzene<br>1,1,2,2-tetrachloroethane<br>Propylbenzene<br>2-Chlorotoluene<br>4-ethyltoluene<br>1,3,5-trimethylbenzene<br>1,3-dichlorobenzene | 0.585                                                                | 0.689<br>0.548<br>1.125<br>0.502<br>0.872<br>0.612<br>1.087<br>1.399<br>1.348<br>0.702<br>1.094<br>1.032<br>1.647<br>1.617<br>0.858<br>1.286<br>0.445<br>0.559<br>1.815<br>1.797 | -17.8<br>-4.6<br>-15.3<br>-12.3<br>-23.5<br>-22.4                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                              |  |  |
| 72 T<br>73 T<br>74 T<br>75 T<br>76 T<br>77 T<br>78 T<br>79 T                                                                                                                                           | benzyl chloride<br>1,4-dichlorobenzene<br>1,2,3-trimethylbenzene<br>1,2-dichlorobenzene                                                                                                                                                                                                                                                                                                       | 0.893<br>0.801<br>0.875<br>1.286<br>0.909<br>0.373<br>0.792<br>0.797 | 0.921<br>1.094<br>1.604<br>1.159<br>0.405<br>0.766<br>0.990                                                                                                                      | -28.9<br>-15.0<br>-25.0<br>-24.7<br>-27.5<br>-8.6<br>3.3<br>-24.2 | 80       0.00         79       0.00         81       0.00         84       0.00         75       0.00         67       0.00         87       0.00 |  |  |

\_ \_ \_ \_ \_ \_ \_ \_ \_

------

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AR040102.D Acq On : 1 Apr 2020 11:10 am Vial: 2 Operator: RJP Sample : AlUG\_1.0 Misc : A311\_1UG Inst : MSD #1 MS Integration Params: RTEINT.P Quant Time: Apr 01 11:38:54 2020 Multiplr: 1.00 Quant Results File: A320\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 23 08:34:44 2020 Response via : Initial Calibration DataAcq Meth : 1UG\_ENT Internal Standards R.T. QION Response Conc Units Dev(Min) \_\_\_\_\_\_ 1) Bromochloromethane9.90128309591.00ppb0.0035) 1,4-difluorobenzene12.191141039281.00ppb0.0050) Chlorobenzene-d516.99117973131.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.74 95 83520 1.20 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 120.00% 0.00 

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 = 120.00%

 Target Compounds
 Qvalue

 2) Propylene
 4.21
 41
 22697
 1.02 ppb
 91

 3) Frecon 12
 4.26
 85
 1.33 ppb
 97

 4) Chloromethane
 4.46
 50
 33469
 1.12 ppb
 96

 6) Vinyl Chloride
 4.67
 62
 32162
 1.14 ppb
 93

 7
 Butane
 4.76
 39
 23477
 0.95 ppb
 97

 9) Bromomethane
 5.12
 94
 44699
 1.08 ppb
 99

 10) Chloroethane
 5.29
 64
 19201
 1.14 ppb
 93

 11) Ethanol
 5.39
 45
 8725
 1.11 ppb
 99

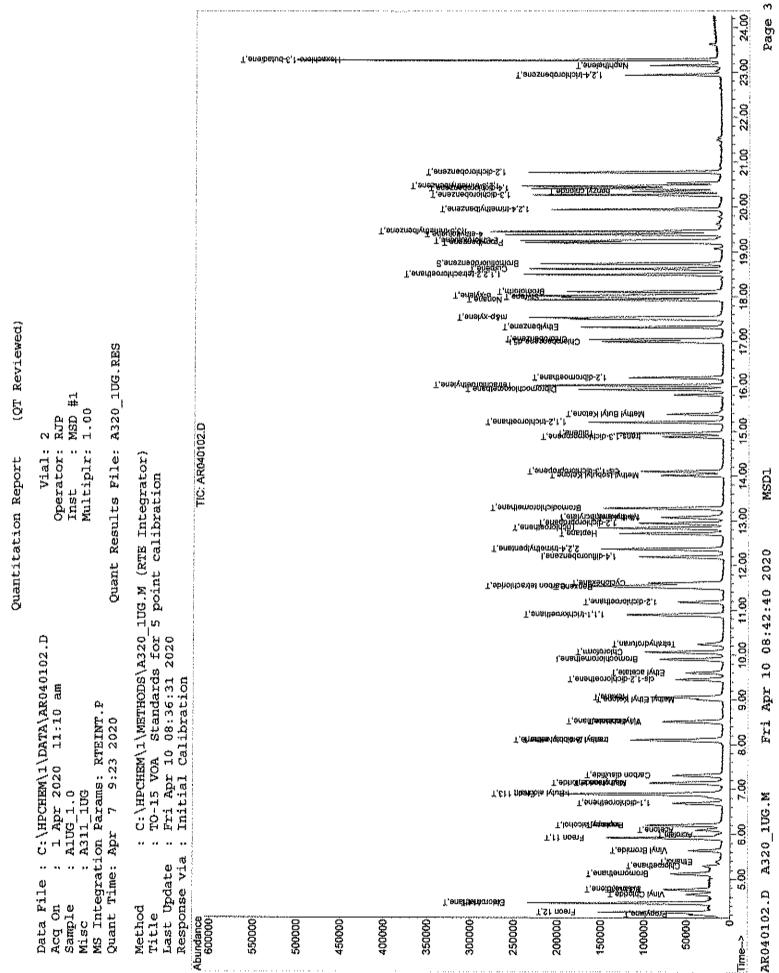
 12) Accolein
 5.99
 56
 6076
 0.97 ppb
 97

 13) Vinyl Bromide
 5.64
 106
 36798
 1.00 ppb
 91

 14) Freon 11
 5.92
 101
 16529
 1.11 ppb
 96

 14) Freon 11
 5.92
 101
 16529
 1.14 ppb
 99

 (#) = qualifier out of range (m) = manual integration


AR040102.D A320\_1UG.M Fri Apr 10 08:42:39 2020 MSD1

Page 1

Centek Laboratories, LLC<br/>Quantitation Report (QT Reviewed)Data File : C:\HPCHEM\1\DATA\AR040102.DVial: 2<br/>Operator: RJP<br/>Inst : MSD #1Acq On : 1 Apr 2020 11:10 amOperator: RJP<br/>Inst : MSD #1Sample : AlUG 1.0Inst : MSD #1<br/>Multiplr: 1.00Misc : A311\_LUGMultiplr: 1.00MS Integration Params: RTEINT.P<br/>Quant Time: Apr 01 11:38:54 2020Quant Results File: A320\_1UG.RESQuant Method : C:\HPCHEM\1\METHODS\A320\_LUG.M (RTE Integrator)<br/>Title : TO-15 VOA Standards for 5 point calibration<br/>Last Update : Mon Mar 23 08:34:44 2020<br/>Response via : Initial Calibration<br/>DataAcq Meth : 1UG\_ENT

|     | Compound                  | R.T.  | QIon | Response C          | onc Unit       | Qvalue |
|-----|---------------------------|-------|------|---------------------|----------------|--------|
| 46) |                           | 13.28 | 83   | 115410              | 1.26 pp        | b 100  |
| 47) |                           | 14.10 | 75   | 68301               | 1.27 pp        |        |
| 48) | T T T                     | 14.87 | 75   | 50184               | 1.17 pp        | b 99   |
| 49) | 1,1,2-trichloroethane     | 15.19 | 97   | 56381m 🖏            | 1.28 pp        | ď      |
| 51) | Toluene                   | 14.95 | 92   | 67016               | 1.18 pp        | b 98   |
| 52) | Methyl Isobutyl Ketone    | 14.01 | 43   | 53359               | 1.05 pp        | b 98   |
| 53) |                           | 15.93 | 129  | 109505              | 1.15 pp        |        |
| 54) |                           | 15.38 | 43   | 48882               | 1.12 pp        |        |
| 55) | 1,2-dibromoethane         | 16.19 | 107  | 84825               | 1.23 pp        | ь 100  |
| 56) | Tetrachloroethylene       | 16.02 | 164  | 59531               | 1.22 pp        |        |
| 57) | Chlorobenzene             | 17.04 | 112  | 105738              | 1.16 pp        | b 99   |
| 58) |                           | 17.32 | 91   | 136165              | 1.11 pp        | b 100  |
|     | m&p-xylene                | 17.53 | 91   | 262429              | 2.48 pp        | b 98   |
| ,   | Nonane                    | 17.93 | 43   | 68360               | 1.26 pp        |        |
| 61) | Styrene                   | 17.99 | 104  | 106438m             | 1.28 pp        | b      |
| 62) | Bromoform                 | 18.11 | 173  | 100402              | 1.10 pp        | b 99   |
| 63) | o-xylene                  | 18.02 | 91   | 160288m 🖘           | )1.25 pp       | b      |
| 64) | Cumene                    | 18.62 | 105  | 157359              | 1.15 pp        | b 99   |
| 66) | 1,1,2,2-tetrachloroethane | 18.50 | 83   | 125152m 🖓           | 1.27 pp        | þ      |
|     | Propylbenzene             | 19.21 | 120  | 43285               | 1.18 pp        | b 77   |
| 68) |                           | 19.25 | 126  | 54373m 🚓            | )1.32 pp       | b      |
| 69) |                           | 19.39 | 105  | 176638              | 1.22 pp        |        |
| 70) | 1,3,5-trimethylbenzene    | 19.45 | 105  | 174849              | 1.28 pp        |        |
| 71) |                           | 19.95 | 105  | 124165              | 1.11 pp        | b 100  |
| 72) | 1,3-dichlorobenzene       | 20,27 | 146  | 111963              | 1.29 pp        | b 99   |
|     | benzyl chloride           | 20.35 | 91   | 89583               | 1.15 pp        | b 99   |
|     | 1,4-dichlorobenzene       | 20.42 | 146  | 106469m <b>////</b> | <b>1.25</b> pp | b      |
| 75) | 1,2,3-trimethylbenzene    | 20.47 | 105  | 156056              | 1.25 pp        | b 99   |
| 76) | 1,2-dichlorobenzene       | 20.78 | 146  | 112798              | 1.28 pp        |        |
| 77) | 1,2,4-trichlorobenzene    | 22,94 | 180  | 39364               | 1.08 pp        | b 97   |
| 78) | Naphthalene               | 23.15 | 128  | 74575               | 0.97 pp        |        |
| 79) | Hexachloro-1,3-butadiene  | 23,28 | 225  | 96354               | 1.24 pp        | b 90   |

(#) = qualifier out of range (m) = manual integration (+) = signals summed AR040102.D A320\_1UG.M Fri Apr 10 08:42:39 2020 MSD1



Centek Laboratories, LLC

. .

r.

.

.

,

· .

## GC/MS VOLATILES-WHOLE AIR

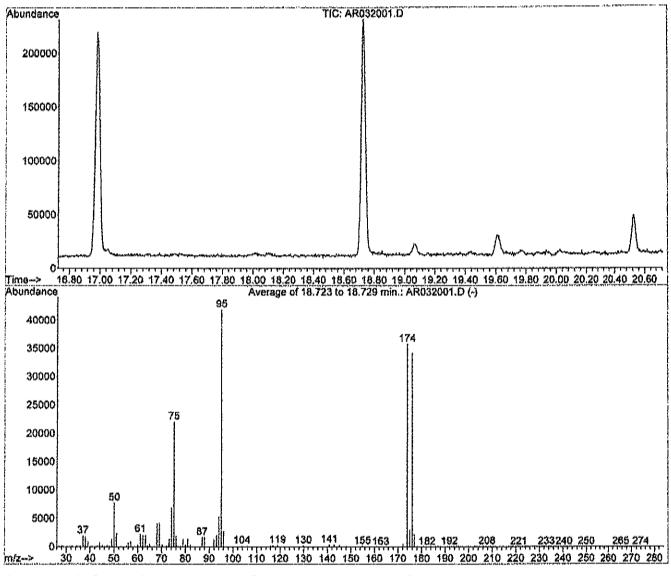
.

,

,

METHOD TO-15

# RAW DATA


,

Page 341 of 380

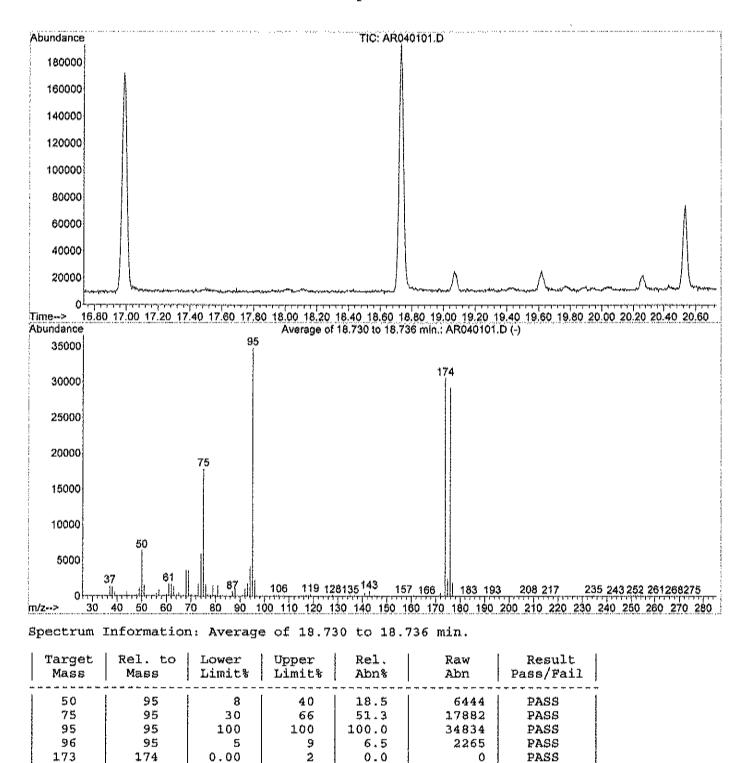
.

.

Data File : C:\HPCHEM\1\DATA\AR032001.D Vial: 1 Acg On : 20 Mar 2020 11:13 am **Operator: RJP** : MSD #1 Inst Sample : BFB1UG Multiplr: 1.00 Misc : A311\_1UG MS Integration Params: RTEINT.P : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Method : TO-15 VOA Standards for 5 point calibration Title



Spectrum Information: Average of 18,723 to 18.729 min.


| Target                                                  | Rel. to                                                 | Lower                                             | Upper                                             | Rel.                                                              | Raw                                                                   | Result                                                       |  |
|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|--|
| Mass                                                    | Mass                                                    | Limit%                                            | Limit%                                            | Abnŧ                                                              | Abn                                                                   | Pass/Fail                                                    |  |
| 50<br>75<br>95<br>96<br>173<br>174<br>175<br>176<br>177 | 95<br>95<br>95<br>174<br>95<br>174<br>174<br>174<br>176 | 8<br>30<br>100<br>5<br>0.00<br>50<br>4<br>95<br>5 | 40<br>66<br>100<br>9<br>2<br>120<br>9<br>101<br>9 | 18.6<br>52.7<br>100.0<br>6.7<br>0.0<br>85.5<br>8.4<br>95.6<br>6.5 | 7790<br>22128<br>41964<br>2794<br>0<br>35877<br>3014<br>34290<br>2241 | PASS<br>PASS<br>PASS<br>PASS<br>PASS<br>PASS<br>PASS<br>PASS |  |

AR032001.D A320\_1UG.M Fri Apr 10 08:26:10 2020 MSD1

BFB

Centek Laboratories, LLC

Data File : C:\HPCHEM\1\DATA\AR040101.D Vial: 1 Operator: RJP Acq On : 1 Apr 2020 10:18 am Sample : BFB1UG Inst : MSD #1 : A311\_1UG Misc Multiplr: 1.00 MS Integration Params: RTEINT.P : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Method Title : TO-15 VOA Standards for 5 point calibration



AR040101.D A320\_1UG.M Fri Apr 10 08:42:27 2020 MSD1

120

101

9

9

87.9

7.7

6.6

95.3

30624

29184

2346

1912

PASS

PASS

PASS

PASS

50

4

5

95

95

174

174

176

174

175

176

177

Page 343 of 380

BFB

Centek Laboratories, LLC

# GC/MS VOLATILES-WHOLE AIR

.

.

METHOD TO-15 RAW QC DATA

.

Page 344 of 380

.....

| and the second se |                       |                                                 |          |                    |                                          | ANAL           | NTICA.         | ANALYTICAL QC SUMMARY REPORT                       | <b>I</b> MARY     | REPOR          | кт        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------|----------|--------------------|------------------------------------------|----------------|----------------|----------------------------------------------------|-------------------|----------------|-----------|
| CLJENT:<br>Work Order:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Geovation<br>C2004002 | Geovation Engineering, Inc.<br>C2004002         |          |                    |                                          |                |                |                                                    |                   |                |           |
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Grant Hardware        | <u>t</u> ware                                   |          |                    |                                          |                |                | TestCode: 0                                        | SYN_02.0          |                |           |
| Sample ID: AMB1UG-040120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1UG-040120            | SampType: MBLK                                  | TestCode | TestCode: 0.20_NVS | Units: ppbV                              | Prep Date:     | Date:          |                                                    | RunNo: 16233      | 33             |           |
| Client ID: ZZZZZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | И                     | Balch ID: R16233                                | Testho   | Testho: TO-15      |                                          | Analysis Date: | Date: 4/1/2020 | 120                                                | SeqNo: 184714     | 714            |           |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | Result                                          | PQL      | SPK value          | SPK Ref Val                              | %REC LowLimit  | it HighLimit   | RPD Ref Vat                                        | %RPD              | RPDLimit       | Qual      |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ane                   | < 0.15                                          | 0.15     |                    |                                          |                |                |                                                    |                   |                |           |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | roethane              | < 0.15                                          | 0.15     |                    |                                          |                |                |                                                    |                   |                |           |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ane                   | < 0.15                                          | 0.15     |                    |                                          |                |                |                                                    |                   |                |           |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | te                    | < 0.15                                          | 0.15     |                    |                                          |                |                |                                                    |                   |                |           |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | le                    | < 0.040                                         | 0.040    |                    |                                          |                |                |                                                    |                   |                |           |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nzene                 | < 0.15                                          | 0.15     |                    |                                          |                |                |                                                    |                   |                |           |
| 1,2,4-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | inzere                | < 0.15                                          | 0.15     |                    |                                          |                |                |                                                    |                   |                |           |
| 1,2-Dibromoethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | le                    | < 0.15                                          | 0.15     |                    |                                          |                |                |                                                    |                   |                |           |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ene                   | < 0.15                                          | 0.15     |                    |                                          |                |                |                                                    |                   |                |           |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ē                     | < 0.15                                          | 0.15     |                    |                                          |                |                |                                                    |                   |                |           |
| 1,2-Dichloropropare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3136                  | < 0.15                                          | 0.15     |                    |                                          |                |                |                                                    |                   |                |           |
| 1,3,5-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nzene                 | < 0.15                                          | 0.15     |                    |                                          |                |                |                                                    |                   |                |           |
| 1,3-butadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | < 0.15                                          | 0.15     |                    |                                          |                |                |                                                    |                   |                |           |
| 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ene                   | < 0.15                                          | 0.15     |                    |                                          |                |                |                                                    |                   |                |           |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ana                   | < 0.15                                          | 0,15     |                    |                                          |                |                |                                                    |                   |                |           |
| 1,4-Dioxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | < 0.30                                          | 0.30     |                    |                                          |                |                |                                                    |                   |                |           |
| 2,2,4-trimethylpentane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ttane                 | < 0.15                                          | 0.15     |                    |                                          |                |                |                                                    |                   |                |           |
| 4-ethylioluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | < 0.15                                          | 0.15     |                    |                                          |                |                |                                                    |                   |                |           |
| Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | < 0.30                                          | 0.30     |                    |                                          |                |                |                                                    |                   |                |           |
| Allyl chioride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | < 0.15                                          | 0.15     |                    |                                          |                |                |                                                    |                   |                |           |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | < 0.15                                          | 0.15     |                    |                                          |                |                |                                                    |                   |                |           |
| Benzyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | < 0,15                                          | 0.15     |                    |                                          |                |                |                                                    |                   |                |           |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | thane                 | < 0.15                                          | 0.15     |                    |                                          |                |                |                                                    |                   |                |           |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | < 0.15                                          | 0.15     |                    |                                          |                |                |                                                    |                   |                |           |
| Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | < 0.15                                          | 0.15     |                    |                                          |                |                |                                                    |                   |                |           |
| Qualifiers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Results repo          | Results reported are not blank corrected        |          | E Estima           | Estimated Value above quantitation range | titation range | H              | Holding times for preparation or analysis exceeded | preparation or a  | nalysis exceed | g         |
| Ĺ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analyte dete          | Analyte detected below quantitation limit       |          | ND Not D           | Not Detected at the Limit of Detection   | Detection      | æ              | RPD outside accepted recovery limits               | pted recovery lin | aits           |           |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | Spike Recovery outside accepted recovery limits | imits    | DL Detect          | Detection Limit                          |                |                |                                                    |                   | đ              | Page I of |

CENTEK LABORATORIES, LLC

Date: 10-Apr-20

Page 1 of 3

| Work Order:                                 | C2004002                                                                                                                |                                              |         |                                      |                                          |                              |             |                   |                                                    |           |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------|--------------------------------------|------------------------------------------|------------------------------|-------------|-------------------|----------------------------------------------------|-----------|
| Project:                                    |                                                                                                                         | ware                                         |         |                                      |                                          |                              | Te          | TestCode: 0       | 0.20_NYS                                           |           |
| Sample ID: AMB1UG-040120<br>Client ID: ZZZZ | B1UG-040120<br>'ZZ                                                                                                      | SampType: MBLK<br>Batch ID: R16233           | TestCod | TestCorie: 0.20_NYS<br>TestNo: TO-15 | Units: ppbV                              | Prep Date:<br>Analysis Date: | e: 4/1/2020 |                   | RunNo: 16233<br>SeqNo: 184714                      |           |
| Analyle                                     |                                                                                                                         | Result                                       | PQL     | SPK value                            | SPK Ref Val                              | %REC LowLimit                | Highlimit F | RPD Ref Val       | %RPD RPDLimit                                      | t<br>Qual |
| Carbon disulfide                            |                                                                                                                         | < 0.15                                       | 0.15    |                                      |                                          |                              |             |                   |                                                    |           |
| Carbon tetrachloride                        | oride                                                                                                                   | < 0.030                                      | 0:030   |                                      |                                          |                              |             |                   |                                                    |           |
| Chlorobenzene                               |                                                                                                                         | < 0.15                                       | 0.15    |                                      |                                          |                              |             |                   |                                                    |           |
| Chioroethane                                |                                                                                                                         | < 0.15                                       | 0.15    |                                      |                                          |                              |             |                   |                                                    |           |
| Chloroform                                  |                                                                                                                         | < 0.15                                       | 0.15    |                                      |                                          |                              |             |                   |                                                    |           |
| Chloromethane                               |                                                                                                                         | < 0.15                                       | 0.15    |                                      |                                          |                              |             |                   |                                                    |           |
| cis-1,2-Dichloroethene                      | ethene                                                                                                                  | < 0.040                                      | 0.040   |                                      |                                          |                              |             |                   |                                                    |           |
| cis-1,3-Dichloropropene                     | propene                                                                                                                 | < 0.15                                       | 0.15    |                                      |                                          |                              |             |                   |                                                    |           |
| Cyclohexane                                 |                                                                                                                         | < 0.15                                       | 0.15    |                                      |                                          |                              |             |                   |                                                    |           |
| Dibromochloromethane                        | nethane                                                                                                                 | < 0.15                                       | 0.15    |                                      |                                          |                              |             |                   |                                                    |           |
| Ethyl acetate                               |                                                                                                                         | < 0.15                                       | 0.15    |                                      |                                          |                              |             |                   |                                                    |           |
| Ethylbenzene                                |                                                                                                                         | < 0.15                                       | 0.15    |                                      |                                          |                              |             |                   |                                                    |           |
| Freon 11                                    |                                                                                                                         | < 0.15                                       | 0.15    |                                      |                                          |                              |             |                   |                                                    |           |
| Freon 113                                   |                                                                                                                         | < 0.15                                       | 0.15    |                                      |                                          |                              |             |                   |                                                    |           |
| Freon 114                                   |                                                                                                                         | < 0.15                                       | 0.15    |                                      |                                          |                              |             |                   |                                                    |           |
| Freon 12                                    |                                                                                                                         | < 0.15                                       | 0.15    |                                      |                                          |                              |             |                   |                                                    |           |
| Heptane                                     |                                                                                                                         | < 0.15                                       | 0.15    |                                      |                                          |                              |             |                   |                                                    |           |
| Hexachloro-1,3-butadiene                    | butadiene                                                                                                               | < 0.15                                       | 0.15    |                                      |                                          |                              |             |                   |                                                    |           |
| Hexane                                      |                                                                                                                         | < 0.15                                       | 0.15    |                                      |                                          |                              |             |                   |                                                    |           |
| Isopropyi alcohol                           | 7                                                                                                                       | < 0.15                                       | 0.15    |                                      |                                          |                              |             |                   |                                                    |           |
| m&p-Xylene                                  |                                                                                                                         | < 0.30                                       | 0:30    |                                      |                                          |                              |             |                   |                                                    |           |
| Methyl Butyl Ketone                         | ione                                                                                                                    | < 0.30                                       | 0:30    |                                      |                                          |                              |             |                   |                                                    |           |
| Methyl Ethyl Ketone                         | one                                                                                                                     | < 0.30                                       | 0:30    |                                      |                                          |                              |             |                   |                                                    |           |
| Methyl Isobutyl Ketone                      | <etone<< td=""><td>&lt; 0.30</td><td>0.30</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></etone<<> | < 0.30                                       | 0.30    |                                      |                                          |                              |             |                   |                                                    |           |
| Methyl tert-butyl ether                     | ether                                                                                                                   | < 0.15                                       | 0.15    |                                      |                                          |                              |             |                   |                                                    |           |
| Methylene chloride                          | ide                                                                                                                     | < 0.15                                       | 0.15    |                                      |                                          |                              |             |                   |                                                    |           |
| o-Xylene                                    |                                                                                                                         | < 0.15                                       | 0.15    |                                      |                                          |                              |             |                   |                                                    |           |
| Propylene                                   |                                                                                                                         | < 0,15                                       | 0.15    |                                      |                                          |                              |             |                   |                                                    |           |
| Styrene                                     |                                                                                                                         | < 0.15                                       | 0.15    |                                      |                                          |                              |             |                   |                                                    |           |
| Tetrachioroethylene                         | ene                                                                                                                     | < 0.15                                       | 0.15    |                                      |                                          |                              |             |                   |                                                    |           |
| Tetrahydrofuran                             |                                                                                                                         | < 0.15                                       | 0.15    |                                      |                                          |                              |             |                   |                                                    |           |
| Qualifiers:                                 |                                                                                                                         | Results reported are not blank corrected     |         | 1                                    | Estimated Value above quantitation range | ion tange                    |             | Iding times for 1 | Holding times for preparation or analysis exceeded | xded      |
|                                             |                                                                                                                         | Analyse were test to low quantitation jisist |         | NU NOT LIK                           | Not Detected at the Limit of Extection   | cciton                       | R RP        | D outside accep   | RPD outside accepted recovery limits               |           |
|                                             |                                                                                                                         | Cuiles Beassian autoide second at the line   |         |                                      |                                          |                              |             |                   |                                                    |           |

CLIENT: 

| CLIENT: Geovation<br>Work Order: C2004002 | Geovation Engineering, Inc.<br>C2004002 |         |                    |             |      |             |                       |          |              |          |      |
|-------------------------------------------|-----------------------------------------|---------|--------------------|-------------|------|-------------|-----------------------|----------|--------------|----------|------|
| Project: Grant Hardware                   | rdware                                  |         |                    |             |      |             | TestCode: 0.20_NYS    | : 0.20 J | SXI          |          |      |
|                                           | SampType: MBLK                          | TestCo  | TestCode: 0.20 NYS | Units: ppbV |      | Prep Date:  | te:                   | Run      | RunNo: 16233 |          |      |
| Client IU: 22222                          | Batch ID: R16233                        | Test    | TestNo: TO-15      |             |      | Analysis Da | le: 4/1/202           |          | 12           | 14       |      |
| Anaryte                                   | Kesul                                   | ba<br>L | SPK value          | SPK Ref Val | %REC | LowLimit    | HighLimit RPD Ref Val |          | %RPD F       | RPDLimit | Quat |
| Toluene                                   | < 0.15                                  | 0.15    |                    |             |      |             |                       |          |              |          |      |
| trans-1,2-Dichloroethene                  | < 0.15                                  | 0.15    |                    |             |      |             |                       |          |              |          |      |
| trans-1,3-Dichloropropene                 | < 0.15                                  | 0.15    |                    |             |      |             |                       |          |              |          |      |
| <b>Frichloroethene</b>                    | < 0.030                                 | 0.030   |                    |             |      |             |                       |          |              |          |      |
| Vinyl acetate                             | < 0.15                                  | 0.15    |                    |             |      |             |                       |          |              |          |      |
| Vinyl Bromide                             | < 0.15                                  | 0.15    |                    |             |      |             |                       |          |              |          |      |
| Vinyl chloride                            | < 0.040                                 | 0.040   |                    |             |      |             |                       |          |              |          |      |
|                                           |                                         |         |                    |             |      |             |                       |          |              |          |      |
|                                           |                                         |         |                    |             |      |             |                       |          |              |          |      |
|                                           |                                         |         |                    |             |      |             |                       |          |              |          |      |

Page 3 of 3

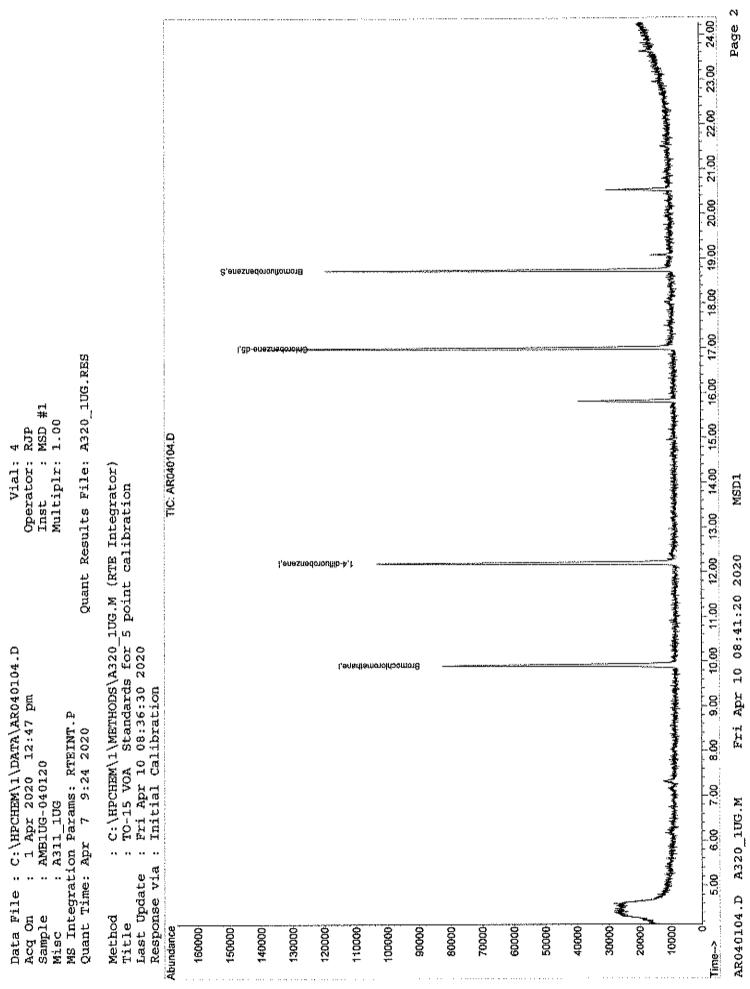
Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

ж ж

Estimated Value above quantitation range

ய


ND Not Detected at the Limit of Detection DL Detection Limit

Results reported are not blank corrected Analyte detected below quantitation limit Spike Recovery outside accepted recovery limits

. -- -- ---

Qualifiers:

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AR040104.D Acq On : 1 Apr 2020 12:47 pm Sample : AMB1UG-040120 Misc : A311\_1UG Vial: 4 Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT,P Quant Time: Apr 01 13:18:49 2020 Quant Results File: A320\_1UG.RES guant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 23 08:34:44 2020 Response via : Initial Calibration DataAcq Meth : 1UG ENT R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.91128319731.00ppb0.0035) 1,4-difluorobenzene12.201141020721.00ppb0.0050) Chlorobenzene-d517.00117910761.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.74 95 46398m XX 0.71 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 71.00% Qvalue Target Compounds



Page 349 of 380

| ENTEK LABORATORIES, LLC |   |
|-------------------------|---|
| ľΑ                      |   |
| )EK                     |   |
| ENJ                     | Ì |
| 0<br>~~:/               |   |
|                         |   |

Sector Sector

ANALYTICAL QC SUMMARY REPORT

Date: 10-Apr-20

| #                         |                |                             |                |
|---------------------------|----------------|-----------------------------|----------------|
| CLIENT:                   | Geovation I    | Geovation Engineering, Inc. |                |
| Work Order:               | C2004002       |                             |                |
| Project:                  | Grant Hardware | ware                        |                |
| Sample ID: ALCS1UG-040120 | 51UG-040120    | SampType: LCS               | TestCode: 0.20 |
| Clent ID- 77777           | r              | Refet ID: Dicoso            | Tookler TO     |

| Sample ID: ALCS111G-040120 | SamnTyne I CS                                   | TestCod | TestCode: 0.20 MVS | i laite: aabt                            |              | Dran Data                  |                       | Duction 42454                                      |
|----------------------------|-------------------------------------------------|---------|--------------------|------------------------------------------|--------------|----------------------------|-----------------------|----------------------------------------------------|
| Client ID: ZZZZ            | Batch ID: R16233                                | Test    | TestNo: TO-15      |                                          |              | Analveis Date <sup>-</sup> | 05020 P               | Control 10233                                      |
|                            |                                                 |         |                    |                                          |              | הואות טוגעיואות            |                       | Sedium 104113                                      |
| Analyte                    | Result                                          | PQL     | SPK value          | SPK Ref Val                              | %REC         | LowLimit H                 | HighLimit RPD Ref Val | %RPD RPDLimit Qual                                 |
| 1,1,1-Trichloroethane      | 1.170                                           | 0.15    | -                  | •                                        | 117          | 10                         | 130                   |                                                    |
| 1,1,2,2-Tetrachloroethane  | 1.230                                           | 0.15    | <b>*</b>           | Q                                        | 123          | 10                         | 130                   |                                                    |
| 1,1,2-Trichloroethane      | 1,240                                           | 0.15    | <b>*</b> **        | 0                                        | 124          | 70                         | 130                   |                                                    |
| 1,1-Dichloroethane         | 1.130                                           | 0.15    | ***                | 0                                        | 113          | 02                         | 130                   |                                                    |
| 1, 1-Dichioroethene        | 1.070                                           | 0.040   |                    | 0                                        | 107          | 2                          | 130                   |                                                    |
| 1,2,4-Trichlorobenzene     | 1.090                                           | 0.15    | *                  | 0                                        | 109          | 70                         | 130                   |                                                    |
| 1,2,4-Trimethylbenzene     | 1.080                                           | 0.15    | ***                | 0                                        | 108          | 70                         | 130                   |                                                    |
| 1,2-Dibromoethane          | 1.180                                           | 0.15    | -                  | 0                                        | 118          | 70                         | 130                   |                                                    |
| 1,2-Dichlorobenzene        | 1.270                                           | 0.15    | ÷                  | 0                                        | 127          | 70                         | 130                   |                                                    |
| 1,2-Dichloroethane         | 1.070                                           | 0.15    | ****               | o                                        | 107          | 70                         | 130                   |                                                    |
| 1,2-Dichloropropane        | 1.240                                           | 0.15    | *                  | 0                                        | 124          | 70                         | 130                   |                                                    |
| 1,3,5-Trimethylbenzene     | 1.250                                           | 0.15    | •                  | 0                                        | 125          | 70                         | 130                   |                                                    |
| 1,3-butadiene              | 0.9900                                          | 0,15    | -                  | ð                                        | 0.66         | 70                         | 130                   |                                                    |
| 1, 3-Dichlorobenzene       | 1.280                                           | 0.15    | -                  | o                                        | 128          | 70                         | 130                   |                                                    |
| 1,4-Dichlorothenzene       | 1.280                                           | 0.15    | -                  | ð                                        | 128          | 70                         | 130                   |                                                    |
| 1,4-Dioxane                | 1.230                                           | 0:30    | -                  | ò                                        | 123          | 70                         | 130                   |                                                    |
| 2,2,4-trimethylpentane     | 1.200                                           | 0.15    | -                  | o                                        | 120          | 70                         | 130                   |                                                    |
| 4-ethyltoluene             | 1.200                                           | 0.15    | •                  | 0                                        | 120          | 70                         | 130                   |                                                    |
| Acetone                    | 1.210                                           | 0.30    | *                  | 0                                        | 121          | 70                         | 130                   |                                                    |
| Allyl chloride             | 1.060                                           | 0.15    | •                  | o                                        | 106          | 70                         | 130                   |                                                    |
| Benzene                    | 1.200                                           | 0.15    | ****               | Ģ                                        | 120          | 70                         | 130                   |                                                    |
| Benzyl chloride            | 1.180                                           | 0.15    | •                  | ¢                                        | 118          | 70                         | 130                   |                                                    |
| Bromodichloromethane       | 1.180                                           | 0.15    | ***                | o                                        | 118          | 70                         | 130                   |                                                    |
| Bromoform                  | 1.040                                           | 0.15    | **                 | ¢                                        | 104          | 70                         | 130                   |                                                    |
| Bromomethane               | 1.050                                           | 0.15    | ***                | 0                                        | 105          | 70                         | 130                   |                                                    |
| Qualifiers: Results report | Results reported are not blank corrected        |         | E Estima           | Estimated Value above quantination range | station rang | 9                          | H Holding times for   | Holding times for preparation or analysis exceeded |
| J Analyte detect           | Analyte detected below quantitation limit       |         | ND Not De          | Not Detected at the Limit of Detection   | Detection    |                            | R RPD outside acce    | RPD outside accepted recovery limits               |
| S Spike Recover            | Spike Recovery outside accepted recovery limits | mits    | Dl. Detecti        | Detection Limit                          |              |                            |                       | Page 1 of 5                                        |
|                            |                                                 |         |                    |                                          |              |                            |                       |                                                    |

TestCode: 0.20\_NYS

| Project: Grant            | Grant Hardware                                  |          |                    |                                          |             |                | TestCode:             | 0.20 NYS                                           |             |
|---------------------------|-------------------------------------------------|----------|--------------------|------------------------------------------|-------------|----------------|-----------------------|----------------------------------------------------|-------------|
| Sample ID: ALCS1UG-040120 | 20 SampType: LCS                                | TestCode | TestCode: 0.20_NYS | Units: ppbV                              |             | Prep Date      | le:                   | RunNo: 16233                                       |             |
| Client ID: ZZZZ           | Batch ID: R16233                                | TestNo   | TestNo: TO-15      |                                          | •           | Analysis Date: | te: 4/1/2020          | SeqNo: 184715                                      |             |
| Analyte                   | Result                                          | PQL      | SPK value          | SPK Ref Val                              | %REC        | LowLimit       | HighLimit RPD Ref Val | %RPD RPDLimit Qual                                 |             |
| Carbon disultide          | 1.100                                           | 0.15     |                    | 0                                        | 110         | 02             | 130                   |                                                    | ]           |
| Carbon tetrachioride      | 1.210                                           | 0.030    |                    | 0                                        | 121         | 2 02           | 130                   |                                                    |             |
| Chlorobenzene             | 1,140                                           | 0.15     | <b>4</b> 10        | 0                                        | 114         | 2              | 130                   |                                                    |             |
| Chloroethane              | 1.150                                           | 0.15     | <b>~~</b>          | 0                                        | 115         | 70             | 130                   |                                                    |             |
| Chloroform                | 1.110                                           | 0.15     | *                  | Ċ                                        | 111         | 20             | 130                   |                                                    |             |
| Chloromethane             | 1.050                                           | 0.15     | *                  | Ċ                                        | 105         | 20             | 130                   |                                                    |             |
| cis-1,2-Dichloroethene    | 1.070                                           | 0.040    | *-                 | Ċ                                        | 107         | 20             | 130                   |                                                    |             |
| cis-1,3-Dichloropropene   | 1.210                                           | 0.15     | Ŧ                  | 0                                        | 121         | 02             | 130                   |                                                    |             |
| Cyclohexane               | 1.180                                           | 0.15     | ~                  | Ģ                                        | 118         | 70             | 130                   |                                                    |             |
| Dibromochioromethane      | 1.100                                           | 0.15     | •                  | 0                                        | 110         | 2              | 130                   |                                                    |             |
| Ethyl acetate             | 1.050                                           | 0.15     | •                  | Q                                        | 105         | 22             | 130                   |                                                    |             |
| Ethylbenzene              | 1.110                                           | 0.15     | •                  | 0                                        | 111         | 5              | 130                   |                                                    |             |
| Freon 11                  | 1.090                                           | 0.15     | ****               | 0                                        | 109         | 02             | 130                   |                                                    |             |
| Freen 113                 | 1.160                                           | 0.15     | •                  | 0                                        | 116         | 2              | 130                   |                                                    |             |
| Freon 114                 | 1.070                                           | 0.15     | <b>4</b>           | 0                                        | 107         | 70             | 130                   |                                                    |             |
| Freon 12                  | 1,080                                           | 0.15     | <b>4</b>           | 0                                        | 108         | 70             | 130                   |                                                    |             |
| Heptane                   | 1.220                                           | 0.15     |                    | 0                                        | 122         | 2              | 130                   |                                                    |             |
| Hexachtoro-1,3-butadiene  | 1.180                                           | 0.15     | *                  | 0                                        | 118         | 20             | 130                   |                                                    |             |
| Hexane                    | 1.130                                           | 0.15     | **                 | o                                        | 113         | 70             | 130                   |                                                    |             |
| isopropyi aicohol         | 1.110                                           | 0.15     | -                  | D                                        | 111         | 70             | 130                   |                                                    |             |
| m&p-Xylene                | 2.420                                           | 0:30     | 2                  | 0                                        | 121         | 70             | 130                   |                                                    |             |
| Methyl Bułyl Ketone       | 1.150                                           | 0.30     | -                  | 0                                        | 115         | 70             | 130                   |                                                    |             |
| Methyl Ethyl Ketone       | 0.9900                                          | 0:30     | ~                  | 0                                        | 0.99        | 70             | 130                   |                                                    |             |
| Methyl Isobutyl Ketone    | 1.060                                           | 0:30     | •                  | 0                                        | 106         | 70             | 130                   |                                                    |             |
| Methyl lert-butyl ether   | 1.020                                           | 0.15     | <u>.</u> .         | 0                                        | 102         | 70             | 130                   |                                                    |             |
| Methylene chloride        | 1.090                                           | 0.15     | ***                | ¢                                        | 109         | 70             | 130                   |                                                    |             |
| o-Xylene                  | 1.240                                           | 0.15     | *                  | Đ                                        | 124         | 8              | 130                   |                                                    |             |
| Propylene                 | 1.140                                           | 0.15     | <b>*</b>           | 0                                        | 114         | 02             | 130                   |                                                    |             |
| Styrene                   | 1.250                                           | 0.15     | ****               | 0                                        | 125         | 70             | 130                   |                                                    |             |
| Tetrachloroethylene       | 1.180                                           | 0.15     | •                  | 0                                        | 118         | 70             | 130                   |                                                    |             |
| Tetrahydrofuran           | 1.080                                           | 0.15     | Ţ                  | 0                                        | 108         | 02             | 130                   |                                                    |             |
|                           | Results reported are not blank corrected        |          |                    | Estimated Value above quantitation range | tation rang |                | Į                     | Holding times for preparation or analysis exceeded |             |
|                           | Analyte detected below quantitation innit       |          |                    | Not Detected at the Limit of Detection   | Detection   |                | R RPD outside acc     | RPD outside accepted recovery limits               |             |
| S Spike Re                | Spike Recovery outside scoepted recovery limits | mits     | DL Detect          | Detection Limit                          |             |                |                       | Dage                                               | Page 2 of 5 |

| CLIENT: Geovation F<br>Work Order: C2004002 | Geovation Engineering, Inc.<br>C2004002         |         |                    |                                          |               |                |             |                                                    |                   |                |             |
|---------------------------------------------|-------------------------------------------------|---------|--------------------|------------------------------------------|---------------|----------------|-------------|----------------------------------------------------|-------------------|----------------|-------------|
| Project: Grant Hardware                     | ware                                            |         |                    |                                          |               |                | [           | TestCode: (                                        | 0.20 NYS          |                |             |
| Sample ID: ALCS1UG-040120                   | SampType: LCS                                   | TestCoc | TestCode: 0.20_NYS | Units: ppbV                              |               | Prep Date      |             |                                                    | RunNo: 16233      | 33             |             |
| Client ID: ZZZZ                             | Batch ID: R16233                                | Testh   | TestNo: TO-15      |                                          |               | Analysis Date: | e: 4/1/2020 | e                                                  | SeqNo: 184715     | 1715           |             |
| Analyte                                     | Result                                          | POL     | SPK value          | SPK Ref Val                              | %REC          | LowLimit       | HighLimit   | RPD Ref Val                                        | QqA%              | RPDLimit       | Qual        |
| Toluene                                     | 1.140                                           | 0.15    | -                  | 0                                        | 114           | 2              | 130         |                                                    |                   |                |             |
| Irans-1,2-Dichloroethene                    | 1.090                                           | 0.15    | ****               | 0                                        | 109           | 70             | 130         |                                                    |                   |                |             |
| trans-1,3-Dichloropropene                   | 1,110                                           | 0.15    | *                  | 0                                        | 111           | 20             | 130         |                                                    |                   |                |             |
| Trichloroethene                             | 1.290                                           | 0.030   | -                  | Ð                                        | 129           | 20             | 130         |                                                    |                   |                |             |
| Vinyl acetate                               | 0.9700                                          | 0.15    | -                  | o                                        | 07.0          | 20             | 130         |                                                    |                   |                |             |
| Vinyl Bromide                               | 1.100                                           | 0.15    | •                  | 0                                        | 110           | 20             | 130         |                                                    |                   |                |             |
| Vinyl chloride                              | 1.100                                           | 0.040   | Ţ                  | Ō                                        | 110           | 70             | 130         |                                                    |                   |                |             |
| Sample ID: ALCS1UGD-040120                  | SampType: LCSD                                  | TestCoo | TestCode: 0.20_NYS | Units: ppbV                              |               | Prep Date:     |             |                                                    | RunNo: 16233      | <b>133</b>     |             |
| Client ID: ZZZZ                             | Batch ID: R16233                                | Testh   | TestNo: TO-15      |                                          |               | Analysis Date: | 8: 4/1/2020 | 0                                                  | SeqNo: 184716     | 1716           |             |
| Analyte                                     | Result                                          | PQL     | SPK value          | SPK Ref Val                              | %REC          | LowLimit       | HighLimit   | RPD Ref Val                                        | 048%              | RPDLimit       | Qual        |
| 1,1,1-Trichloroethane                       | 1.110                                           | 0.15    |                    | 0                                        | 111           | ۶              | 130         | 1.17                                               | 5.26              | 8              | ]           |
| 1,1,2,2-Tetrachioroethane                   | 1.170                                           | 0.15    | <b>4</b> 444       | 0                                        | 117           | 20             | 130         | 1.23                                               | 5.00              | 8              |             |
| 1,1,2-Trichloroethane                       | 1.140                                           | 0.15    | *                  | 0                                        | 114           | 70             | 130         | 1.24                                               | 8.40              | æ              |             |
| 1,1-Dichloroethane                          | 1.140                                           | 0.15    | ÷                  | 0                                        | 114           | 70             | 130         | 1.13                                               | 0.881             | 8              |             |
| 1,1-Dichloroethene                          | 1.160                                           | 0.040   | *                  | Ð                                        | 116           | 70             | 130         | 1.07                                               | 8.07              | 90<br>90       |             |
| 1,2,4-Trichlorobenzene                      | 1.090                                           | 0.15    | -                  | 0                                        | 109           | 70             | 130         | 1.09                                               | 0                 | 30             |             |
| 1,2,4-Trimethylbenzene                      | 1.110                                           | 0.15    | -                  | 0                                        | 111           | 70             | 130         | 1.08                                               | 2.74              | 30             |             |
| 1,2-Dibromoethane                           | 1.170                                           | 0.15    | -                  | D                                        | 117           | 2              | 130         | 1.18                                               | 0.851             | R              |             |
| 1,2-Dichlorobenzene                         | 1.200                                           | 0.15    | -                  | 0                                        | 120           | õ              | 130         | 1.27                                               | 5.67              | 96<br>9        |             |
| 1,2-Dichloroethane                          | 1,040                                           | 0.15    | •                  | 0                                        | 104           | 20             | 130         | 1.07                                               | 2.84              | 8              |             |
| 1,2-Dichloropropane                         | 1.190                                           | 0.15    | -                  | Q                                        | 119           | 20             | 130         | 1.24                                               | 4.12              | 30             |             |
| 1,3,5-Trimethytbenzene                      | 1.220                                           | 0.15    | <b>v</b>           | 0                                        | 122           | 70             | 130         | 1.25                                               | 2.43              | 90             |             |
| 1,3-butadiene                               | 0.9400                                          | 0.15    | <b>4</b> 117       | 0                                        | 94.0          | 70             | 130         | 0.99                                               | 5.18              | æ              |             |
| 1,3-Dichlorobenzene                         | 1,240                                           | 0.15    | ****               | 0                                        | 124           | 20             | 130         | 1.28                                               | 3.17              | 90             |             |
| 1,4-Dichlorobenzene                         | 1.280                                           | 0.15    | <b></b>            | 0                                        | 128           | 70             | 130         | 1.28                                               | 0                 | 30             |             |
| 1,4-Dioxane                                 | 1.190                                           | 0.30    | ***                | 0                                        | 119           | 70             | 130         | 1.23                                               | 3.31              | 8              |             |
| 2,2,4-trimethylpentane                      | 1.160                                           | 0.15    | *                  | 0                                        | 116           | R              | 130         | 1.2                                                | 3.39              | 8              |             |
| 4-ethyltoluene                              | 1.190                                           | 0,15    | <del>~-</del>      | 0                                        | 119           | 70             | 130         | 1.2                                                | 0.837             | 30             |             |
|                                             | Results reported are not blank corrected        |         |                    | Estimated Value above quantitation range | litation rang | 2              |             | Holding times for preparation or analysis exceeded | preparation or a  | nalysis exceed | ed          |
|                                             | Analyte detected below quantitation limit       |         |                    | Not Detected at the Limit of Detection   | Detection     |                | ×           | RPD outside accepted recovery limits               | pted recovery lia | nits           |             |
| S Spike Recover                             | Spike Recovery outside accepted recovery limits | mits    | DI. Detect         | Detection Limit                          |               |                |             |                                                    |                   | e.,            | Page 3 of 5 |
|                                             |                                                 |         |                    |                                          |               |                |             |                                                    |                   |                | ¢           |

Page 352 of 380

Geovation Engineering, Inc. C2004002 Grant Hardware CLIENT:

Work Order: Project:

O TO NVC 5 ů, Ę

| Sample ID: ALCS1UGD-040120 | SampType: LCSD                           | TestCo | TestCode: 0.20 NYS | Units: ppbV                              |              | Prep Date:     |              |                                                    | RunNo: 16233      | 233            |      |
|----------------------------|------------------------------------------|--------|--------------------|------------------------------------------|--------------|----------------|--------------|----------------------------------------------------|-------------------|----------------|------|
| Client ID: ZZZZ            | Batch ID: R16233                         | Test   | TestNo: TO-15      |                                          |              | Analysis Date: | 4/1/2020     | 0                                                  | SeqNo: 184716     | 4716           |      |
| Analyte                    | Result                                   | PQL    | SPK value          | SPK Ref Val                              | %REC         | LowLimit H     | HighLimit    | RPD Ref Val                                        | %RPD              | RPDLimit       | Qual |
| Acetone                    | 1.170                                    | 0:30   | -                  | 0                                        | 117          | 02             | 130          | 1.21                                               | 3.36              | 8              |      |
| Allyl chloride             | 1.120                                    | 0.15   | ****               | 0                                        | 112          | 2              | 130          | 1.06                                               | 5.50              | 30             |      |
| Benzene                    | 1.160                                    | 0.15   | **                 | 0                                        | 116          | 70             | 130          | 1.2                                                | 3.39              | 8              |      |
| Benzyl chloride            | 1.100                                    | 0.15   | 4 <del></del>      | 0                                        | 110          | 70             | 130          | 1.18                                               | 7.02              | ŝ              |      |
| Bromodichloromethane       | 1.090                                    | 0.15   | *                  | 0                                        | 109          | 70             | 130          | 1.18                                               | 7.93              | 8              |      |
| Bromoform                  | 1.000                                    | 0.15   | ***                | ð                                        | 100          | 70             | 130          | 1.04                                               | 3.92              | 30             |      |
| Bromomethane               | 0.9700                                   | 0.15   | *                  | 0                                        | 97.0         | 70             | 130          | 1.05                                               | 7.92              | 30             |      |
| Carbon disulfide           | 1.080                                    | 0.15   | +                  | ð                                        | 106          | 70             | 130          | 1.1                                                | 1.83              | 30             |      |
| Carbon tetrachloride       | 1,110                                    | 0.030  | -                  | ð                                        | 111          | 70             | 130          | 1.21                                               | 8.62              | 30             |      |
| Chlorobenzene              | 1.150                                    | 0.15   | -                  | 0                                        | 115          | 70             | 130          | 1,14                                               | 0.873             | 30             |      |
| Chloroethane               | 1.150                                    | 0.15   | Ţ                  | 0                                        | 115          | 70             | 0 <u>5</u> 1 | 1.15                                               | 0                 | 30             |      |
| Chloroform                 | 1.080                                    | 0.15   | •                  | Q                                        | 108          | 70             | 130          | 1.11                                               | 2.74              | 30             |      |
| Chloromethane              | 0.9600                                   | 0.15   | <b>4</b>           | 0                                        | 96.0         | 02             | 130          | 1.05                                               | 8.96              | 30             |      |
| cis-1,2-Dichloroethene     | 1.090                                    | 0,040  |                    | 0                                        | 109          | 70             | 130          | 1.07                                               | 1.85              | 30             |      |
| cis-1,3-Dichtoropropene    | 1.160                                    | 0.15   | •                  | 0                                        | 116          | 02             | 130          | 1.21                                               | 4.22              | 30             |      |
| Cyclohexane                | 1.180                                    | 0.15   | ţm                 | 0                                        | 118          | 70             | 130          | 1.18                                               | 0                 | 30             |      |
| Dibromochioromethane       | 1.060                                    | 0.15   | ţm                 | 0                                        | 106          | Q2             | 130          | Ţ                                                  | 3.70              | 30             |      |
| Ethyl acetale              | 1.110                                    | 0.15   | *                  | 0                                        | F.           | 70             | 130          | 1.05                                               | 5.56              | 30             |      |
| Ethylbenzene               | 1.150                                    | 0.15   | -                  | 0                                        | 115          | 70             | 130          | 1<br>1<br>1                                        | 3.54              | 30             |      |
| Freen 11                   | 1.070                                    | 0.15   | *                  | 0                                        | 107          | 70             | 130          | 1.09                                               | 1.85              | 30             |      |
| Freon 113                  | 1.140                                    | 0.15   | ÷                  | 0                                        | 114          | 70             | 130          | 1.16                                               | 1.74              | 80             |      |
| Freen 114                  | 1.010                                    | 0.15   | *                  | 0                                        | 101          | 20             | 130          | 1.07                                               | 5.77              | 30             |      |
| Freen 12                   | 1.040                                    | 0.15   | *                  | 0                                        | 104          | 70             | 130          | 1.08                                               | 3,77              | 30             |      |
| Heptane                    | 1.190                                    | 0.15   | *-                 | Ö                                        | 119          | 70             | 130          | 1.22                                               | 2.49              | 8              |      |
| Hexachforo-1,3-butadiene   | 1.130                                    | 0.15   |                    | Ō                                        | 113          | 70             | 130          | 1.18                                               | 4.33              | 30             |      |
| Hexane                     | 1.190                                    | 0.15   | -                  | o                                        | 119          | 70             | 130          | 1.13                                               | 5.17              | 30             |      |
| lsopropyl akcohol          | 1.130                                    | 0.15   | £                  | Ō                                        | 113          | 70             | 130          | 1.11                                               | 1.79              | 30             |      |
| m&p-Xylene                 | 2.430                                    | 0.30   | 7                  | 0                                        | 122          | 70             | 130          | 2.42                                               | 0.412             | 30             |      |
| Methyl Butyl Ketone        | 1.160                                    | 0.30   | -                  | 0                                        | 116          | 70             | 130          | 1.15                                               | 0.866             | æ              |      |
| Methyl Ethyl Ketone        | 1.070                                    | 0:30   | •                  | Ģ                                        | 107          | 70             | 130          | 0.99                                               | 11.1              | 90             |      |
| Methyl Isobutyl Ketone     | 1.090                                    | 0:30   | -                  | o                                        | 109          | 2              | 130          | 1.06                                               | 2.79              | 30             |      |
| Qualifiers: Results report | Results reported are not blank corrected |        |                    | Estimated Value above quantitation range | itation rang | 5              |              | Holding times for preparation or analysis exceeded | preparation or a  | nalysis exceed | 8    |
|                            | Analyte detected below gnanniation time  |        | ND NOT THE         | Not Detected at the Limit of Detection   | Detection    |                | *            | RPD outside accepted recovery limits               | pted recovery lin | Stitt          |      |
|                            |                                          |        |                    |                                          |              |                |              |                                                    |                   |                |      |

Geovation Engineering, Inc. C2004002 **CLIENT:** 

Grant Hards Work Order:

| Project: Grant Hardware    | ware             |         |                    |             |      |              | ţ                       | TestCode: 0.20_NYS | SYN_02.       |          |      |
|----------------------------|------------------|---------|--------------------|-------------|------|--------------|-------------------------|--------------------|---------------|----------|------|
| Sample ID: ALCS1UGD-040120 | SampType: LCSD   | TestCot | TestCode: 0.20_NYS | Units: ppbV |      | Prep Date    |                         |                    | RunNo: 16233  | 233      |      |
| Client ID: ZZZZ            | Batch ID: R16233 | Test    | TestNo: TO-15      |             | đ    | unalysis Dal | Analysis Date: 4/1/2020 |                    | SeqNo: 184716 | 4716     |      |
| Analyte                    | Result           | PQL     | SPK value          | SPK Ref Val | %REC | LowLimit     | HighLimit               | RPD Ref Val        | Одаж          | RPOLIMI  | Qual |
| Methyl tert-butyl ether    | 1.140            | 0.15    | *                  | 0           | 114  | 02           | 130                     | 1.02               | 11.1          | 8        |      |
| Methylene chloride         | 1.080            | 0.15    | -                  | 0           | 108  | 70           | 130                     | 1.09               | 0.922         | œ        |      |
| o-Xylene                   | 1,190            | 0.15    | ۲                  | 0           | 119  | 20           | 130                     | 1.24               | 4,12          | ЭЭ<br>ЭЭ |      |
| Propylene                  | 1.110            | 0.15    | -                  | 0           | 111  | 02           | 130                     | 1.14               | 2.67          | 30       |      |
| Styrene                    | 1.250            | 0.15    | F                  | Ð           | 125  | 20           | 130                     | 1.25               | Ċ             | œ        |      |
| Tetrachtorcethylene        | 1.170            | 0.15    | -                  | Ð           | 117  | 02           | 130                     | 1.18               | 0.851         | 30       |      |
| Tetrahydrofuran            | 1,120            | 0.15    | -                  | 0           | 112  | 70           | 130                     | 1.08               | 3.64          | ġ        |      |
| Toluene                    | 1.180            | 0.15    | -                  | D           | 118  | 70           | 130                     | 1.14               | 3.45          | 30       |      |
| trans-1,2-Dichtoroethene   | 1.120            | 0.15    | •                  | 0           | 112  | 2            | 130                     | 1.09               | 2.71          | 30       |      |
| frans-1,3-Dichloropropene  | 1.120            | 0.15    | <del></del>        | Ģ           | 112  | 70           | 130                     | 1.11               | 0.897         | 30       |      |
| Trichloroethene            | 1.240            | 0.030   | ٣                  | Q           | 124  | 2            | 130                     | 1.29               | 3,95          | 30       |      |
| Vinyl acetate              | 1.060            | 0.15    | ****               | Q           | 106  | 2            | 130                     | 0.97               | 8.87          | 30       |      |
| Vinyl Bromide              | 1.160            | 0.15    | -                  | ¢           | 116  | 70           | 130                     | ÷.                 | 5.31          | 30       |      |
| Vinyl chloride             | 1.050            | 0.040   | ţ                  | ¢           | 105  | 70           | 130                     | 1,1                | 4.65          | 30       |      |
|                            |                  |         |                    |             |      |              |                         |                    |               |          |      |

Page 5 of 5 Holding times for preparation or analysis exceeded RPD outside accepted recovery limits т a Estimated Value above quantitation range Not Detected at the Limit of Detection Detection Limit n g d Spike Recovery outside accepted recovery limits Analyte detected below quantitation limit Results reported are not blank corrected . Qualifiers:

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AR040103.D Acq On : 1 Apr 2020 12:05 pm Sample : ALCS1UG-040120 Misc : A311\_1UG Vial: 3 Operator: RJP Inst : MSD #1 Multiplr: 1.00 MISC : A311\_10G Multipir: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 01 13:18:34 2020 Quant Results File: A320\_10G.RES Quant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 23 08:34:44 2020 Response via : Initial Calibration DataAcq Meth : 1UG ENT Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Bromochloromethane9.91128331851.00 ppb0.0035) 1,4-difluorobenzene12.191141120581.00 ppb0.0050) Chlorobenzene-d516.991171046761.00 ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.74 95 86171 1.15 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 115.00% 

 65) Bromofluorobenzene
 18.74
 95
 86171
 1.15
 ppb
 0.00

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 15.00%

 Target Compounds
 Qvalue

 2) Froopylene
 4.21
 41
 27307
 1.14
 ppb
 91

 3) Freeon 12
 4.26
 85
 160317
 1.08
 ppb
 97

 4) Chloromethane
 4.47
 50
 33630
 1.05
 ppb
 96

 6) Vinyl Chloride
 4.66
 62
 33362
 1.01
 ppb
 98

 7) Butane
 4.76
 43
 32522
 1.02
 ppb
 97

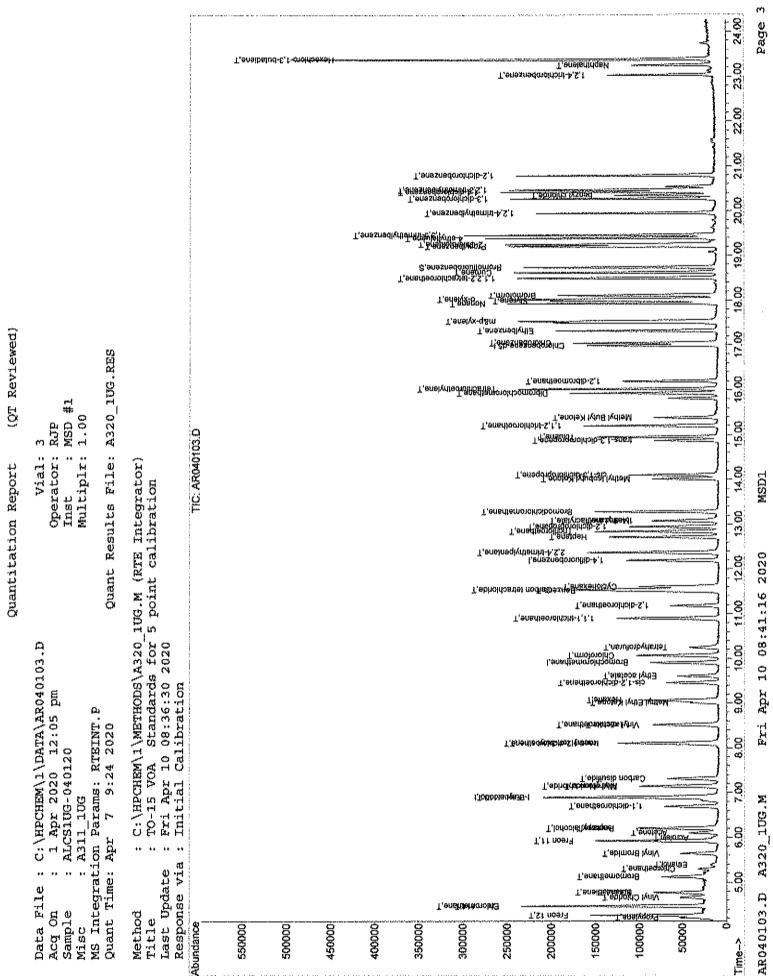
 10) Chloroethane
 5.12
 94
 46673
 1.05
 ppb
 99

 11) Ethanol
 5.40
 45
 10114
 1.20
 ppb
 91

 12) Acrolein
 5.92
 101
 169668
 1.09
 pp
 92

 13) Vinyl Eromide
 6.20
 42
 35976
 1.10
 ppb
 94

 14) Freon 11
 5.92
 101
 105687
 1.01


(#) = qualifier out of range (m) = manual integration AR040103.D A320\_1UG.M Fri Apr 10 08:41:14 2020 MSD1

Page 355 of 380

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AR040103.D Vial: 3 Acq On : 1 Apr 2020 12:05 pm Sample : ALCS1UG-040120 Operator: RJP Inst : MSD #1 Misc : A311\_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 01 13:18:34 2020 Quant Results File: A320\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration Title Last Update : Mon Mar 23 08:34:44 2020 Response via : Initial Calibration DataAcq Meth : 1UG\_ENT

|     | Compound                               | R.T.  | QIon | Response | Conc Unit   | Qvalue    |
|-----|----------------------------------------|-------|------|----------|-------------|-----------|
| 46) | Bromodichloromethane                   | 13.28 | 83   | 116479   | 1.18 ppb    | 99        |
| 47) | cis-1,3-dichloropropene                | 14.10 | 75   | 70474    | 1.21 ppb    | 99        |
| 48) | trans-1,3-dichloropropene              | 14.87 | 75   | 51509    | 1.11 ppb    | 99        |
| 49) | 1,1,2-trichloroethane                  | 15,20 | 97   | 59298    | 1.24 ppb    | 99        |
| 51) | Toluene                                | 14.95 | 92   | 70145    | 1.14  ppb   | 96        |
| 52) | Methyl Isobutyl Ketone                 | 14.01 | 43   | 58034    | 1.06 ppb    | 99        |
| 53) | Dibromochloromethane                   | 15.93 | 129  | 112644   | 1.10 ppb    | 100       |
| 54) | Methyl Butyl Ketone                    | 15.38 | 43   | 53874    | 1.15 ppb    | 99        |
| 55) | 1,2-dibromoethane                      | 16.20 | 107  | 87416    | 1.18 ppb    | 99        |
| 56) | Tetrachloroethylene                    | 16.02 | 164  | 61756    | 1.18 ppb    | 100       |
| 57) | Chlorobenzene                          | 17.05 | 112  | 111396   | 1.14 ppb    | 99        |
| 58) | Ethylbenzene                           | 17.32 | 91   | 146061   | 1.11 ppb    | 98        |
| 59) | m&p-xylene                             | 17.53 |      | 276008   | 2.42 ppb    | 98        |
| 60) | Nonane                                 | 17.93 |      | 70763    | 1.21 ppb    | <u>99</u> |
| 61) | Styrene                                | 17.99 | 104  | 112002   | 1.25 ppb    | 99        |
| 62) | Bromoform                              | 18.11 | 173  | 102430   | 1.04 ppb    | 99        |
| 63) | o-xylene                               | 18.03 | 91   | 170665   | 1.24 ppb    | 99        |
| 64) | Cumene                                 | 18.62 |      | 167607   | 1.14 ppb    | 98        |
| 66) | 1,1,2,2-tetrachloroethane              | 18.50 |      | 130601   | 1.23 ppb    | 98        |
| 67) |                                        | 19.21 |      | 45867    | 1.16 ppb    | 78        |
| 68) |                                        | 19.25 |      | 55267    | 1.24 ppb    | 96        |
| 69) |                                        | 19.39 |      | 186866   | 1.20 ppb    | 100       |
| 70) |                                        | 19.45 | 105  | 183175   | 1.25 ppb    | 98        |
| 71) |                                        | 19.95 |      | 129858   | 1.08 ppb    | 100       |
| 72) |                                        | 20,27 |      | 119771   | 1.28 ppb    | 100       |
| 73) |                                        | 20.35 | 91   | 99135    | 1.18 ppb    | 98        |
| 74) |                                        | 20.42 |      | 117390m  | Ty 1.28 ppb |           |
| 75) | ······································ | 20.47 |      | 162899   | 1.21 ppb    | 98        |
| 76) | •                                      | 20.79 |      | 120530   | 1.27 ppb    | 100       |
| 77) |                                        | 23.03 |      | 42781    | 1.09 ppb    | 97        |
| 78) |                                        | 23.25 |      | 85081    | 1.03 ppb    | 98        |
| 79) | Hexachloro-1,3-butadiene               | 23.38 | 225  | 98166    | 1.18 ppb    | 91        |

(#) = qualifier out of range (m) = manual integration (+) = signals summed AR040103.D A320\_1UG.M Fri Apr 10 08:41:15 2020 MSD1



357 of 290

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AR040117.DVial: 13Acq On : 1 Apr 2020 11:12 pmOperator: RJPSample : ALCS1UGD-040120Inst : MSD #1Misc : A311\_1UGMultiplr: 1.00MS Integration Params: RTEINT.PQuant Time: Apr 07 09:26:23 2020 Quant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 23 08:34:44 2020 Response via : Initial Calibration DataAcq Meth : 1UG ENT Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Bromochloromethane9.91128365381.00ppb0.0035) 1,4-difluorobenzene12.201141314601.00ppb0.0050) Chlorobenzene-d517.001171177921.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.74 95 94637 1.12 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 112.00% 

 65)
 Bromofluorobenzene
 18.74
 95
 94637
 1.12
 ppb
 0.00

 Spiked Amount
 1.000
 Range
 70
 130
 Recovery
 112.00%

 Target Compounds
 Qvalue

 2)
 Propylene
 4.22
 41
 29143
 1.11
 ppb
 95

 3)
 Freon 12
 4.27
 85
 169422
 1.04
 ppb
 97

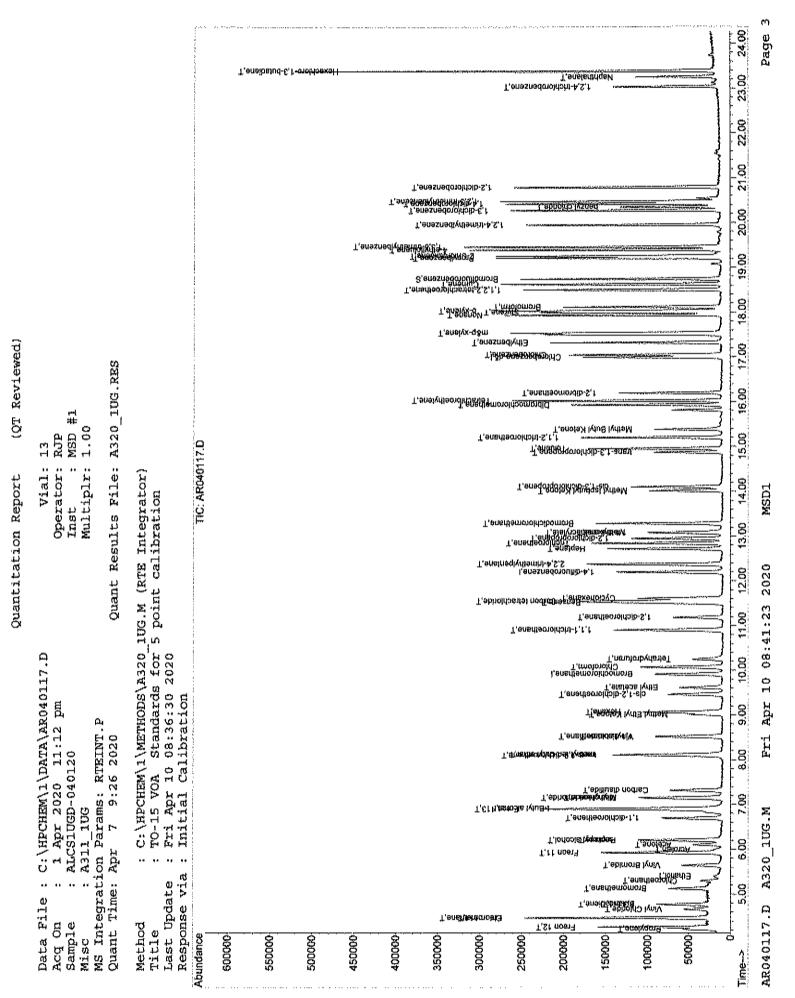
 5)
 Freon 114
 4.47
 85
 127985
 1.01
 ppb
 94

 6)
 Vinyl Chloride
 4.67
 62
 34059
 0.96
 ppb
 97

 7)
 Butane
 4.77
 43
 33530
 0.95
 ppb
 99

 8)
 1.3-butadiene
 5.29
 64
 23011
 1.15
 ppb
 98

 10)
 Chloroethane
 5.29
 64
 2001
 1.02
 ppb
 99


 11
 Broomethane
 5.29
 64
 2001
 1.02
 ppb
 98

 10)
 Choroethane
 5.29
 61
 1000
 1.05
 100
 <td

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AR040117.D Vial: 13 Acq On : 1 Apr 2020 11:12 pm Operator: RJP Sample : ALCS1UGD-040120 Inst : MSD #1 Misc : A311\_1UG Multiplr: 1.00 MS Integration Params: RTEINT.F Quant Time: Apr 07 09:26:23 2020 Quant Results File: A320\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A320\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 23 08:34:44 2020 Response via : Initial Calibration DataAcq Meth : 1UG\_ENT

| #   | Compound                              | R.T.  | QION | Response | Conc Unit | Qvalue |
|-----|---------------------------------------|-------|------|----------|-----------|--------|
| 46) | Bromodichloromethane                  | 13,28 | 83   | 126422   | 1.09 ppb  | 98     |
| 47) | cis-1,3-dichloropropene               | 14.10 | 75   | 78853    | 1.16 ppb  | 99     |
| 48) | trans-1,3-dichloropropene             | 14,87 | 75   | 60621    | 1.12  ppb | 100    |
| 49) | 1,1,2-trichloroethane                 | 15.19 | 97   | 63759    | 1.14 ppb  | 98     |
| 51) | Toluene                               | 14.95 | 92   | 81550    | 1.18 ppb  | 98     |
| 52) | Methyl Isobutyl Ketone                | 14.01 | 43   | 67415    | 1.09 ppb  | 98     |
| 53) | Dibromochloromethane                  | 15.93 | 129  | 122360   | 1.06 ppb  | 99     |
| 54) | Methyl Butyl Ketone                   | 15.38 | 43   | 61232    | 1.16 ppb  | 97     |
| 55) | 1,2-dibromoethane                     | 16.20 | 107  | 97528    | 1.17 ppb  | 99     |
| 56) | Tetrachloroethylene                   | 16.02 | 164  | 69175    | 1.17 ppb  | 99     |
| 57) |                                       | 17.05 | 112  | 126577   | 1.15 ppb  | 98     |
| 58) |                                       | 17.32 | 91   | 170546   | 1.15 ppb  | 99     |
| 59) | m&p-xylene                            | 17.53 | 91   | 311126   | 2.43 ppb  | 97     |
| 60) | Nonane                                | 17.93 | 43   | 81054    | 1.23 ppb  | 99     |
| 61) | Styrene                               | 18.00 | 104  | 125418   | 1,25 ppb  | 98     |
| 62) | Bromoform                             | 18.11 | 173  | 110252   | 1.00 ppb  | 100    |
| 63) | o-xylene                              | 18.03 | 91   | 184334   | 1.19 ppb  | 98     |
| 64) | Cumene                                | 18.62 | 105  | 190364   | 1.15 ppb  | 99     |
| 66) | 1,1,2,2-tetrachloroethane             | 18.50 | 83   | 139886   | 1.17 ppb  | 98     |
| 67) | Propylbenzene                         | 19.21 | 120  | 52076    | 1.17  ppb | 82     |
| 68) | 2-Chlorotoluene                       | 19.25 | 126  | 62852    | 1.26 ppb  | # 93   |
| 69) | 4-ethyltoluene                        | 19.39 | 105  | 208676   | 1.19 ppb  | 100    |
| 70) | 1,3,5-trimethylbenzene                | 19.46 | 105  | 201549   | 1.22 ppb  | 97     |
| 71) | 1,2,4-trimethylbenzene                | 19,95 |      | 150211   | 1.11 ppb  | 100    |
| 72) | 1,3-dichlorobenzene                   | 20.27 |      | 129863   | 1.24 ppb  | 99     |
| 73) |                                       | 20.35 | 91   | 104285   | 1.10 ppb  | 100    |
| 74) |                                       | 20.42 | 146  | 132377   | 1.28  ppb | 99     |
| 75) | 1,2,3-trimethylbenzene                | 20.47 | 105  | 181110   | 1.20 ppb  | 98     |
| 76) | 1,2-dichlorobenzene                   | 20.79 |      | 128475   | 1.20 ppb  | 100    |
| 77) |                                       | 23.04 |      | 48105    | 1.09 ppb  | 99     |
| 78) | · · · · · · · · · · · · · · · · · · · | 23.25 |      | 93621    | 1.00 ppb  | 98     |
| 79) | Hexachloro-1,3-butadiene              | 23.38 | 225  | 106394   | 1.13 ppb  | 92     |

(#) = qualifier out of range (m) = manual integration (+) = signals summed AR040117.D A320\_1UG.M Fri Apr 10 08:41:23 2020 MSD1



Centek Laboratories, LLC

.

•

.

.

#### GC/MS VOLATILES-WHOLE AIR

.

.

#### METHOD TO-15

# INJECTION LOG

•

Page 361 of 380

.

|      |       | Ochick                                  | Laboratori   | C3, LLO               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |
|------|-------|-----------------------------------------|--------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|      |       |                                         |              |                       | Injection I on instrument it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |
|      | -     |                                         |              |                       | Injection Log Instrument #<br>Internal Standard Stock #A310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ······································ |
|      | £,    | Directory:                              | C:\HPCHEM    | N1\DATA               | Internal Standard Stock II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |
|      |       |                                         |              |                       | Standard Stock # <u>\$ 37c</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                      |
|      |       |                                         |              |                       | LCS Stock # A 3 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                                      |
| tine | Vial  | FileName                                | Multiplier   | SampleName            | Miscinfaet: EPA TO-15 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ianiniëčled                            |
| L110 | V IGA | 1 101 101 10                            | manapropriet | camportania           | Minadopiador. El Alsonson.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |
| 004  |       | A-024004 d                              |              | PER/UC                | A044 4110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19 Mar 2020 09:40                      |
| 221  | 1     | Ar031901.d                              |              | BFB1UG                | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
|      | 2     | Ar031902.d                              |              | A1UG                  | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 Mar 2020 10:31                      |
| 223  | 3     | Ar031903.d                              | 1.           | ALCS1UG-031920        | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 Mar 2020 11:19                      |
| 224  | 4     | Ar031904.d                              | 1.           | AMB1UG-031920         | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 Mar 2020 12:01                      |
| 225  | 1     | Ar031905.d                              |              | WAC031920A            | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 Mar 2020 13:01                      |
| 226  | 2     | Ar031906.d                              |              | WAC031920B            | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 Mar 2020 13:46                      |
|      | 3     |                                         |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19 Mar 2020 14:30                      |
| 227  |       | Ar031907.d                              |              | WAC031920C            | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
| 228  | 4     | Ar031908.d                              |              | WAC031920D            | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 Mar 2020 15:15                      |
| 229  | 5     | Ar031909.d                              |              | WAC031920E            | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 Mar 2020 16:00                      |
| 230  | 6     | Ar031910.d                              | 1.           | WAC031920F            | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 Mar 2020 16:44                      |
| 004  |       | A-004044 -4                             |              | 144 00040000          | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40 Mar 0000 47.00                      |
| 231  | 7     | Ar031911.d                              |              | WAC031920G            | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 Mar 2020 17:29                      |
| 232  | 8     | Ar031912.d                              |              | WAC031920H            | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 Mar 2020 18:14                      |
| 233  | 9     | Ar031913.d                              | 1.           | WAC031920I            | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 Mar 2020 18:58                      |
| 234  |       | Ar031914.d                              | 1.           | No MS or GC data pres | ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| 235  | 1     | Ar032001.d                              |              | BFB1UG                | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20 Mar 2020 11:13                      |
|      | ż     | Ar032002.d                              |              | A1UG                  | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20 Mar 2020 12:42                      |
|      |       |                                         |              |                       | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
| 237  | 3     | Ar032003.d                              |              | A1UG                  | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20 Mar 2020 17:14                      |
|      | 4     | Ar032004.d                              |              | A1UG_2.0              | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20 Mar 2020 18:04                      |
| 239  | 5     | Ar032005.d                              | 1.           | A1UG_1.50             | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20 Mar 2020 18:53                      |
| 240  | 6     | Ar032006.d                              | 1.           | A1UG_1.25             | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20 Mar 2020 19:40                      |
|      |       |                                         |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |
| 241  | 7     | Ar032007.d                              |              | A1UG_1.0              | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20 Mar 2020 20:27                      |
| 242  | 8     | Ar032008.d                              |              | A1UG_0.75             | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20 Mar 2020 21:12                      |
| 243  | 9     | Ar032009.d                              | 1.           | A1UG_0.50             | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20 Mar 2020 21:57                      |
| 244  | 10    | Ar032010.d                              |              | A1UG_0.30             | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20 Mar 2020 22:41                      |
| 245  | 11    | Ar032011.d                              |              | A1UG_0.15             | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20 Mar 2020 23:26                      |
| 246  | 12    |                                         |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |
|      |       | Ar032012.d                              |              | A1UG_0.10             | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21 Mar 2020 00:11                      |
| 247  | 13    | Ar032013.d                              | 1.           | A1UG_0.04             | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21 Mar 2020 00:55                      |
| 248  | 14    | Ar032014.d                              |              | A1UG_0.03             | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21 Mar 2020 01:39                      |
| 249  |       | Ar032015.d                              | 1.           | No MS or GC data pres | ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| 250  | 1     | Ar032401.d                              | 1.           | BFB1UG                | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24 Mar 2020 09:42                      |
|      |       |                                         |              |                       | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |
| 251  | 2     | Ar032402.d                              | 1.           | A1UG                  | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24 Mar 2020 10:38                      |
| 252  | 3     | Ar032403.d                              | 1.           | ALCS1UG-032420        | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24 Mar 2020 12:15                      |
| 253  | 4     | Ar032404.d                              | 1.           | AMB1UG-032420         | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24 Mar 2020 12:57                      |
| 254  | 1     | Ar032405.d                              |              | WAC032420A            | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24 Mar 2020 14:09                      |
| 255  | 2     | Ar032406.d                              | 1.           | WAC032420B            | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24 Mar 2020 14:54                      |
| 256  | 3     | Ar032400.d                              |              | WAC032420C            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24 Mar 2020 14:34<br>24 Mar 2020 15:38 |
|      |       |                                         |              |                       | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
| 257  | 4     | Ar032408.d                              | 1.           | WAC032420D            | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24 Mar 2020 16:23                      |
| 258  | 5     | Ar032409.d                              | 1.           | C2003058-002A         | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24 Mar 2020 17:10                      |
| 259  | 6     | Ar032410.d                              | 1.           | C2003058-004A         | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24 Mar 2020 17:57                      |
| 260  | 7     | Ar032411.d                              | 1.           | C2003058-006A         | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24 Mar 2020 18:43                      |
|      |       |                                         |              |                       | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |
| 261  | 8     | Ar032412.d                              | 1.           | C2003058-007A         | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24 Mar 2020 19:30                      |
| 262  | 9     | Ar032413.d                              | 1.           | C2003058-001A         | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24 Mar 2020 20:17                      |
| 263  | 10    | Ar032414.d                              | 1.           | C2003058-003A         | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24 Mar 2020 21:04                      |
| 264  | 11    | Ar032415.d                              | 1.           | C2003058-005A         | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24 Mar 2020 21:51                      |
| 265  | 12    | Ar032416.d                              | 1.           | C2003058-002A 10x     | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24 Mar 2020 22:42                      |
|      |       |                                         |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |
| 266  | 13    | Ar032417.d                              | 1.           | C2003058-004A 10x     | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24 Mar 2020 23:28                      |
| 267  | 14    | Ar032418.d                              |              | C2003058-006A 10x     | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25 Mar 2020 00:13                      |
| 268  | 15    | Ar032419.d                              | 1.           | C2003058-001A 10x     | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25 Mar 2020 00:59                      |
| 269  | 16    | Ar032420.d                              | 1.           | C2003058-003A 10x     | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25 Mar 2020 01:44                      |
| 270  | 17    | Ar032421.d                              | 1.           | C2003058-003A 40x     | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25 Mar 2020 02:28                      |
|      |       |                                         |              |                       | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |
| 271  | 18    | Ar032422.d                              | 1.           | C2003058-005A 10x     | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25 Mar 2020 03:14                      |
| 272  | 19    | Ar032423.d                              | 1.           | ALCS1UGD-032420       | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25 Mar 2020 04:00                      |
| 273  | 20    | Ar032424.d                              | 1.           | C2003058-002A 90x     | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25 Mar 2020 08:06                      |
| 274  | 21    | Ar032425.d                              | 1.           | C2003058-003A 90x     | A311_1UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25 Mar 2020 08:51                      |
| 275  |       | Ar032426.d                              | 1_           | No MS or GC data pres |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |
| 210  |       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ۰-           | no no or oo dala pies | with the second s |                                        |
|      |       |                                         |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |

|                                                |                                                 | Centek                                                                                                                                                 | Laborator                                          | ries, LLC                                                                                                                                                                                                         |               | . н. <b>1</b>                                                                                                                                |                                                                                                                                                                                                                          |
|------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                | C                                               | Directory:                                                                                                                                             | C:\HPCHEM                                          | \1\DATA                                                                                                                                                                                                           | Injection Log | Standard Stock # 437 18                                                                                                                      |                                                                                                                                                                                                                          |
| .ine                                           | Vial                                            | FileName                                                                                                                                               | Multiplier                                         | SampleName                                                                                                                                                                                                        |               | LCS Stock #                                                                                                                                  | Jan. 1999<br>Injected                                                                                                                                                                                                    |
|                                                | 1<br>2<br>3<br>4<br>1<br>2<br>3<br>4<br>5<br>6  | Ar040101.d<br>Ar040102.d<br>Ar040103.d<br>Ar040105.d<br>Ar040105.d<br>Ar040106.d<br>Ar040107.d<br>Ar040108.d<br>Ar040108.d<br>Ar040109.d               | 1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1. | BFB1UG<br>A1UG_1.0<br>ALCS1UG-040120<br>AMB1UG-040120<br>C2004002-001A<br>C2004002-002A<br>C2004002-003A<br>C2004002-004A<br>C2004002-005A<br>C2004002-006A                                                       |               | A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG | 1 Apr 2020 10:18<br>1 Apr 2020 11:10<br>1 Apr 2020 12:05<br>1 Apr 2020 12:47<br>1 Apr 2020 13:45<br>1 Apr 2020 14:32<br>1 Apr 2020 14:32<br>1 Apr 2020 15:20<br>1 Apr 2020 16:07<br>1 Apr 2020 16:55<br>1 Apr 2020 17:42 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0 | 7<br>8<br>9                                     | Ar040111.d<br>Ar040112.d<br>Ar040113.d<br>Ar040114.d<br>Ar040115.d<br>Ar040116.d<br>Ar040116.d<br>Ar040118.d<br>Ar040118.d<br>Ar040119.d<br>Ar040120.d | 1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.             | C2004002-007A<br>C2004002-008A<br>C2004002-009A<br>C2004002-010A<br>C2004002-011A<br>C2004002-012A<br>ALCS1UGD-040120<br>C2004002-001A 10X<br>C2004002-002A 10X<br>C2004002-003A 10X                              |               | A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG | 1 Apr 2020 18:29<br>1 Apr 2020 19:17<br>1 Apr 2020 20:04<br>1 Apr 2020 20:51<br>1 Apr 2020 21:38<br>1 Apr 2020 22:25<br>1 Apr 2020 23:12<br>1 Apr 2020 23:57<br>2 Apr 2020 00:43<br>2 Apr 2020 01:29                     |
| 1234567890                                     | 4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12    | Ar040121.d<br>Ar040122.d<br>Ar040123.d<br>Ar040124.d<br>Ar040125.d<br>Ar040125.d<br>Ar040126.d<br>Ar040127.d<br>Ar040128.d<br>Ar040129.d<br>Ar040130.d | 1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.             | C2004002-004A 10X<br>C2004002-005A 10X<br>C2004002-006A 10X<br>C2004002-007A 10X<br>C2004002-008A 10X<br>C2004002-009A 10X<br>C2004002-010A 10X<br>C2004002-011A 10X<br>C2004002-012A 10X<br>No MS or GC data pre | sent          | A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG                         | 2 Apr 2020 02:15<br>2 Apr 2020 03:00<br>2 Apr 2020 03:46<br>2 Apr 2020 04:32<br>2 Apr 2020 05:18<br>2 Apr 2020 06:04<br>2 Apr 2020 06:49<br>2 Apr 2020 07:35<br>2 Apr 2020 08:21                                         |
| 11 12 13 14 15 16 17 18 19 10                  | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | Ar040301.d<br>Ar040302.d<br>Ar040303.d<br>Ar040305.d<br>Ar040305.d<br>Ar040306.d<br>Ar040307.d<br>Ar040308.d<br>Ar040309.d<br>Ar040310.d               | 1.<br>1.<br>1.<br>1.<br>1.<br>1.                   | BFB1UG<br>A1UG<br>ALCS1UG-040320<br>AMB1UG-040320<br>C<br>CAN<br>CAN<br>CAN<br>CAN<br>CAN                                                                                                                         |               | A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG             | 3 Apr 2020 11:41<br>3 Apr 2020 12:35<br>3 Apr 2020 13:40<br>3 Apr 2020 14:22<br>3 Apr 2020 15:07<br>3 Apr 2020 17:01<br>3 Apr 2020 17:44<br>3 Apr 2020 18:28<br>3 Apr 2020 19:12<br>3 Apr 2020 19:55                     |
| 1234567890                                     | 14<br>15                                        | Ar040311.d<br>Ar040312.d<br>Ar040313.d<br>Ar040314.d<br>Ar040315.d<br>Ar040316.d<br>Ar040317.d<br>Ar040318.d<br>Ar040319.d<br>Ar040320.d               | 1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.             | CAN<br>CAN<br>CAN<br>CAN<br>CAN<br>CAN<br>CAN<br>CAN<br>CAN                                                                                                                                                       |               | A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG             | 3 Apr 2020 20:39<br>3 Apr 2020 21:22<br>3 Apr 2020 22:06<br>3 Apr 2020 22:49<br>3 Apr 2020 23:33<br>4 Apr 2020 00:16<br>4 Apr 2020 01:43<br>4 Apr 2020 01:43<br>4 Apr 2020 02:27<br>4 Apr 2020 03:10                     |
| 12345                                          |                                                 | Ar040321.d<br>Ar040322.d<br>Ar040323.d<br>Ar040324.d<br>Ar040325.d                                                                                     | 1,<br>1,<br>1,<br>1,<br>1,                         | CAN<br>CAN<br>CAN<br>CAN<br>CAN                                                                                                                                                                                   |               | A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG<br>A311_1UG                                                                         | 4 Apr 2020 03:54<br>4 Apr 2020 04:37<br>4 Apr 2020 05:21<br>4 Apr 2020 06:04<br>4 Apr 2020 06:48                                                                                                                         |

Centek Laboratories, LLC

.

4

.

.

.

# GC/MS VOLATILES-WHOLE AIR

.

.

.

.

#### METHOD TO-15

## STANDARDS LOG

.

,

Page 364 of 380

|                                     | Ē                                                                | 5                  | 1        | 1         | 1      | Ţ             | T.               | 1        |        | ]       | T      | 1      | <br>1   | 1                | ]        |         | 1         | 1          | 1             | ~ <u>1</u>    |                | 1        | 1                 |
|-------------------------------------|------------------------------------------------------------------|--------------------|----------|-----------|--------|---------------|------------------|----------|--------|---------|--------|--------|---------|------------------|----------|---------|-----------|------------|---------------|---------------|----------------|----------|-------------------|
|                                     | Chkd hu                                                          |                    |          |           |        |               |                  |          |        |         |        |        |         |                  |          |         |           |            |               |               |                |          |                   |
|                                     | Pren hv                                                          | (1) (1)<br>(1) (1) | )        |           |        |               | 13               | \<br>    |        |         |        |        | +       | -                |          |         |           |            | 5             | \$            | 47             | 13       |                   |
| Xoc                                 | Stock Conc Initial Vol (psia) Finial Vol (psia) Final Conc (ppb) | 20                 | 500      |           | [      |               | , Ç              | )        |        | So      | \۲     | 50     | 0       | 50               | 500      | 25      | 4         |            |               |               |                | 12       |                   |
| GC/MS Calibration Standards Logbook | Finial Vol (psia)                                                | 30                 | 30       | 4         |        |               | 30               |          |        | 30      | 30     | 45     | 30      | 30               | 30       | 30      | ۍ<br>ک    |            |               | 2000051       | ዝራጓ            | 30       | ζ                 |
| alibration Sta                      | Initial Vol (psia)                                               | 1,5                | 1.47     | 5.<br>5   |        | 7             | N,               |          | >      | 0+°     | 3,0    | 0.21   | 3,64    | 1<br>S           | 1.47     | 5       | 0.9       | ener-      | 7             | EUNH1         | ESCH<br>I      | 1.5      |                   |
| GC/MS Ca                            | Stock Conc                                                       | Inda I             | 10-2 ppm | 50 erol   |        |               | 1 ppm            |          | 4      | radyron | Su app |        |         | -<br>1<br>0<br>0 | 10.00 Cm | Scorb   | Scipol    | -          | >             | -flox-        | -1174          | 1 ppm    | •                 |
|                                     | Stock #                                                          | R2573              | AZJA     | A3498     | 93459  | A3520         | Para 1           | Scren    | ARGAR  | A3305   | A3513  | Ascolo | 42574   | ANS 13           | Azera    | A3518   | A3510     | A351)      | RISER         | 出             | DFF            | N3523    |                   |
|                                     | Description                                                      | SULF               | 42S      | ۲<br>۲    | (LIS   | LCS           | I<br>I<br>S<br>I | 57       | ζ,     | HOGH    | SHOGH  | Folm   | SIL     | 501              | HC5      | H255    | ST 13     | <u>^</u> 5 | ۲¢<br>۲       | 201<br>1<br>1 | <u>)<br/>5</u> | H<br>M   |                   |
| 5.)                                 | Descr                                                            | 7015               | 4        | TOIS 1419 |        | ~             | 1012             | <u> </u> |        |         |        |        |         |                  |          | ->)     | TOIS ILLY |            | $\rightarrow$ | 20 H          | PEO H          | 7015     |                   |
| ries, LL(                           | Date Exp                                                         | aliolig            |          |           |        | ->1           | Pilnia           |          |        |         | _      |        |         |                  |          |         |           |            |               | 11/20/202     | 12 103/202     | 12124/19 |                   |
| Centek Laboratories, LLC            | Date Prep                                                        | 12/3/19            |          |           |        | $\rightarrow$ | pilale           |          |        |         |        |        |         |                  |          |         |           |            |               | 11/20/19      | 12/03/19       | 11/11/11 |                   |
| Centek I                            | Std #                                                            | A- 3525            | A- 3506  | A-3507    | A-3508 | A-3559        | A. 3510          | A-351]   | A-3512 | A-3513  | A-3514 | A-3515 | A. 3516 | A-3517           | A-3518   | A. 3519 | A-3580    | A-3521     | A- 3533       | Page          | HZCJZ-M8       | A-3525   | 085<br>0950RM 153 |
|                                     |                                                                  |                    |          |           |        |               |                  |          |        |         |        |        |         |                  |          |         |           |            | Г             | aye           | 300            |          | 200               |

Centek Laboratories, LLC

1 ,e

l anne f

anala a

**MARKED** 

Page #

| Centek ] | Centek Laboratories, LLC | ries, LLC | <b>F</b> \  |                |               | GC/MS Ca      | libration Sta     | GC/MS Calibration Standards Logbook  | ook              |           |         |
|----------|--------------------------|-----------|-------------|----------------|---------------|---------------|-------------------|--------------------------------------|------------------|-----------|---------|
| Std #    | Dạte Prep                | Date Exp  | Description | iption         | Stock #       | Stock Conc    | nitial Vol (psig) | Initial Vol (psig) Finial Vol (psia) | Final Conc (ppb) | Prep by C | Chkd by |
| A-3610   | 2460                     | ملايالة   | TOS         | 517)           | Ragas         | nog 1         | 15                | ЗС<br>С                              | ß                | 1         |         |
| A-3611   |                          |           |             | LCS            | Azezq         | :->           | Ŷ                 | ト                                    | >                |           |         |
| A-3612   |                          |           |             | たっとう           | A3305         | 1.03Ropm      | 1.46              | 30                                   | ما<br>ما         |           |         |
| A-3613   |                          |           |             | YPURS          |               | Some          | 3,0               | 30                                   | را               |           |         |
| A-3614   |                          |           |             |                |               | 10.800m       | )re.0             | 15                                   | 20               |           |         |
| A-365    |                          |           |             |                | h St. A       | 440 005       | 3,34<br>3,0       | 30                                   | 50               |           |         |
| A- 3616  |                          |           |             | SUL            | RUST3         | l pon         | 1.5               | R                                    | ß                |           |         |
| A- 3617  |                          |           | -7<br>-7    | CeH            |               | margal        | 1,47              | 30                                   | 500              |           |         |
| A- 36 18 |                          |           | TOIS ING    | r<br>K         |               | 50 02         | 6.0               | HS                                   | 4                |           |         |
| A. 3619  |                          |           | -           | 533            | A3610         |               |                   |                                      | _                |           |         |
| A-3620   |                          |           | ->          | LCS            | A3611         | マ             | Ŷ                 | 7                                    | 7                |           |         |
| A-362    | 21120                    | 2/7/2/    | 105         | 577) FF-529866 | -539666       | TNES          | ıľ                | 2000 psia                            | 1.0 com          | Ą         |         |
| A-3622   | 214/20                   | 2/18/20   | 7015        | 5<br>H         | P35x3         | I DOM         | 1.5               | 30 3                                 | 50               | (- 3<br>3 |         |
| A-3623   | -                        |           | _           | Sit            | RUCAS         | -             |                   | <i></i>                              |                  |           |         |
| A-3624   |                          |           |             | SI             | 12929         | $\rightarrow$ | رد<br>د           | 4                                    |                  |           |         |
| A-3625   |                          |           |             | Hodh           | A3365         | lias apm      | 1.46              | 30                                   | 50               |           |         |
| A-3626   |                          |           |             | HPOUS          | 4 Pous A36,25 | 50,000        | 3.0               | 30                                   | را               |           |         |
| A-3627   |                          | _         |             | FORM           |               | 10.8ppm       | الاه              | ЧС                                   | 50               |           |         |
| A-3628   |                          |           |             | Slug           | Ras-14        | 444 Ant       | 3.54<br>3.0       | 30                                   | So               |           |         |
| A-3629   |                          |           | ,<br>,      | รมนะ           |               | maal          | ز.ا<br>ز          | 30                                   | ŝ                |           |         |
| A. 3630  | 2                        | 7         | >           | H2S            | AJ572         | 10.2 c.01     | (,47              | 30                                   | 500              | ∖         |         |
| FORM 153 |                          |           |             |                |               | -             |                   | / /                                  |                  |           |         |
|          |                          |           |             |                |               |               |                   | Page # 1/C                           |                  |           |         |

Page 366 of 380

Centek Laboratories, LLC

| Cer                                 | tek                | Lab         | ora      | torie  | es, L    | LC         |            | I                                  | 1                |        |               | r         |           | 1        |               |                | 1       | T        | r             | T         |         |             |          |
|-------------------------------------|--------------------|-------------|----------|--------|----------|------------|------------|------------------------------------|------------------|--------|---------------|-----------|-----------|----------|---------------|----------------|---------|----------|---------------|-----------|---------|-------------|----------|
| Cer                                 | Chkd b             |             |          |        |          |            |            |                                    |                  |        |               |           |           |          |               |                |         |          |               |           |         |             |          |
|                                     | Prep by            | 63          |          |        |          |            | ア          | Ą'n                                | ( <sup>1</sup> 0 | _      |               |           |           |          |               |                |         |          |               | ->        | 63<br>3 | 4           |          |
| ook                                 | Final Conc (ppb)   | 50          | 55       | 500    | τ        | 1          | ا          | LCS                                | SO               |        | ト             | 50        | ۱۵        | So       | 50            | 20             | 506     | 4        |               | نې<br>ارد | S       | <u>}</u>    |          |
| GC/MS Calibration Standards Logbook | Finial Vol (psia)  | 30          | 30       | 30     | ч5<br>Г  |            | ר<br>      | Volu SI SK                         | 30               |        | $\rightarrow$ | 30        | 30        | 45       | 30            | 30             | 30      | Ę        |               | →         | 3ů      | <u>ر</u>    | Page #   |
| libration St                        | Initial Vol (psig) | u st<br>v v | l'S      | L 4.1  | ٥.٩      |            | $\gamma$   | Scorth DEAL                        | li<br>S          |        | 7             | ).ዛሬ      | 3.0       | ודיס     | 3.34<br>3.0   | ۲ <sub>ر</sub> | 1.47    | 6.0      |               | ->        | l.<     | ->          |          |
| GC/MS Ca                            | Stack Conc         |             |          | moural | 50 22    | <b>↓</b> ↓ | $\uparrow$ | loom                               | 1 poor           | · 1    | ・フ            | MOL 120.1 | So rub    | mac 3.01 | 500 000       | Mac 1          | med Eol | 50 00    |               | د-        | lpom    | <u>-</u> -> |          |
|                                     | Stock #            |             | A2573    | And    | A3646    | #3c457     | A3648      | Schen                              | A3513            | (275K  | R3658         | RIJOS     | 4205 A362 | Pro Pro  | SILUX AND AND | 501F 12573     | Aasta   | A3659    | A3660         | A366/     | A3523   | A382/       |          |
|                                     |                    | Ă           |          |        | IS       | Sity       | 521        | LCS                                | ·                | Str    | LLCS          | Hort      | HUL       | FREN     | Siux          | SULF           | HZS     | J_S      | 571           | 5         | Ţ       | STIN        | 4        |
| <i>F</i> \                          | Description        | 6           |          | Ą      | 7015 146 | , <b></b>  | $\uparrow$ | İ.                                 |                  | ,<br>, |               |           |           |          |               |                | ->      | TOIS 146 | - <del></del> | _>        | 10K     | 7           |          |
| ries, LLC                           | Dațe Exp           | 3 3 ac      |          |        |          |            | ۲<br>۲     | 2 al 2                             | كامت مدلما فالق  |        |               |           |           |          |               |                |         |          |               | 7         | 3/17/20 | ->          |          |
| aborato                             | Date Prep          | alastao     | <b>.</b> |        |          |            | الم        | 2 al ác                            | 3300             | -      |               |           |           |          |               |                |         |          |               | -7        | 3 10 20 | う           |          |
| Centek Laboratories, LLC            | Std #              | A- 3622     | A-3653   | A.3654 | A-3655   | A. 3656    | A- 3657    | A- 3658 2 26 20 2 26 20 26 21 7015 | A-3659           | A-3660 | A- 366)       | A-366)    | EJUS-A    | A-3664   | A-3665        | A-3666         | A-3667  | A- 366S  | A-3669        | A-3670    | N-367   | A-317D      | FORM 153 |

Page 367 of 380

河気が普

ak I aboratorios

|                                     | Chkd by                                          |             |                  |              |              |               |           |        |       |             |         |            |            |           |               |                |         |              |           |              |          |              |
|-------------------------------------|--------------------------------------------------|-------------|------------------|--------------|--------------|---------------|-----------|--------|-------|-------------|---------|------------|------------|-----------|---------------|----------------|---------|--------------|-----------|--------------|----------|--------------|
|                                     | Prep by                                          | (In         | ት                | Д<br>Э       |              |               |           |        |       |             |         |            | _          |           | $\rightarrow$ | Д <sub>я</sub> | _       |              |           |              |          | >            |
| ook                                 | Final Conc (ppb)                                 | <u>1</u>    | $\rightarrow$    | 50           | <b>د</b> بير | $\uparrow$    | 50        | ى/     | SO    | ŚD          | 50      | Suo        | 4          |           | ->            | 50             |         | ->           | ŝ         | Ŋ            | Ś        | IJ<br>С      |
| GC/MS Calibration Standards Logbook | Stock Conc [Initial Vol (psig] Finial Vol (psia) | 45          | $\rightarrow$    | 30           |              | $\uparrow$    | 30        | 30     | 45    | 30          | 30      | 30         | μS         |           | 1             | 30             |         | ~            | 30        | 30           | 45       | 30           |
| alibration Sta                      | Initial Vol (psig)                               | 0.9         |                  | ک <b>،</b> ا |              | $\rightarrow$ | 1.46      | 3.0    | 12.0  | 3.34<br>3.0 | 1.5     | [H]        | 6.9        |           | $\checkmark$  | 1.5            |         | _ک<br>ز      | 1.46      | 3.0          | 0.21     | 3:54         |
| GC/MS Ca                            | Stock Conc                                       | Jacob       | 1                | maal         | -<br>-       | Ŷ             | mac 960,1 | Societ |       | 41 945      |         | 10.2 Jom   | S          |           |               | 1 DOM          |         | $\mathbf{a}$ | 1.02 P.D. |              | سرجكه وا | 144 MA       |
|                                     | Stock #                                          | ASCEN       | A 3696           | A35233       | (2)(2)       | A3658         | R3305     | 43699  | Azado | ALES A      | ST265   | AZETA      | તે 3696    | H 3697    | H3698         | A3S23          | A362/   | A3656        | A3305     | <b>JITEA</b> | Algolo   | 5140X A 1574 |
|                                     | ption                                            | (اللاح م    | 504              | ST           | 517          | LCS           | 4PcH      | HEHS   | Form  | SILVX       |         | Hzs        | SI 5       | STD       | كعبا          | I<br>S<br>T    | 57      | LCS          | 4PCH      | HDCHS        | FORM     | كمباك        |
| 6.)                                 | Description                                      | Ters Ide SM | $\hat{\uparrow}$ | 1015         |              |               |           |        |       |             |         | $\uparrow$ | TOISING IS | · <b></b> | $\rightarrow$ | 7/220 TO5/     |         | _            |           |              |          | >            |
| ries, LLC                           | Date Ęxp                                         | 3.24 Act    | Ţ,               | 3/31/20      | ļ            |               |           |        |       |             |         |            |            |           | . ار          | 4              |         |              | *******   |              |          | >            |
| Centek Laboratories, LLC            | Date Prep Date Exp                               | 3mbc        | 4                | 3 Ju lav     | ,            |               |           |        |       |             |         |            |            |           | لم<br>الم     | 3/31/20        | <u></u> |              |           |              |          | Ş            |
| Centek I                            | Std #                                            | A- 3,94     | A-3605           | a-3696       | A-3697       | A-3698        | A-3699    | A-3700 | A-370 | A. 3702     | A- 3703 | А- 3704    | A- 3705    | A. 3706   | A- 3707       | A. 3708        | A- 3709 | A- 3710      | A- 371/   | A. 3712      | A. 37 13 | A- 3714      |

Page 368 of 380

FORM 153

Centek Laboratories, LLC

9

Page#\_

| Centek   | Centek Laboratories, LLC | ies, LL(      | <b>(</b> )  |           |             | GC/MS Ca   | libration Sta                 | GC/MS Calibration Standards Logbook | ook              |         | Ce                           |
|----------|--------------------------|---------------|-------------|-----------|-------------|------------|-------------------------------|-------------------------------------|------------------|---------|------------------------------|
| Std #    | Date Prep                | Date Exp      | Description | ption     | Stock #     | Stack Conc | Stock Conc Initial Vol (psig) | Finial Vol (psia)                   | Final Conc (ppb) | Prep by | Chkd Balu                    |
| CIL & A  | 3[31 20 4/7 20           | 2011          | 101         | よっち       | A2573       | mad        | 1:5                           | 30                                  | So               | 1       |                              |
| A-3716   |                          | -+            | À           | HLS       | ANSTA       | 10.2 ppm   | רא:ו                          | 30                                  | 500              |         | pora                         |
| A-371/   |                          |               | TOIS ING    | SI        | A3708       | 50 pr b    | 6.0                           | HS                                  | -                |         | tori                         |
| A. 3718  |                          |               |             | ££5       | H 3709      | -          |                               |                                     | -                |         | es,                          |
| A. 3719  | $\rightarrow$            | →<br>         | >           | Les       | A 3710      | ->         | >                             | >                                   | 7                |         | ЦLС                          |
| all E.A  | 4720                     | 1 14 200      | 1015        | ΤS        | A3503       | MQ4 1      | ۱.5                           | 30                                  | ß                | 63      |                              |
| A-372    | -                        | _             | -4          | 573       | A362/       |            |                               |                                     |                  |         |                              |
| A. 3722  |                          |               |             | Les       | A3658       | 7          | ->                            | >                                   |                  |         |                              |
| A-3723   |                          |               | -           | 4 PCH     | A3305       | moo feo,   | 1.46                          | 30                                  | 50               |         |                              |
| A-3724   |                          |               |             |           | A3723       | Socab      | 3,0                           | QN<br>NN                            | 2                |         |                              |
| A- 3725  |                          |               |             | FORM      | Alace       | =          | 12.0                          |                                     | ) V              |         |                              |
| A-3726   |                          |               |             | 5   LwX   | Silver Rach | 444 PAD    | 3.34                          | 30                                  | 2                | -       |                              |
| A-3727   |                          |               |             | Sulf Aust | AJ573       | <u>د</u>   | <u>\</u>                      | 30                                  | ; 6              |         |                              |
| A-3728   |                          |               | Ŷ           | H25       | Aasta       | maggi      | 1,47                          | 30                                  |                  |         | i dana ing ka da ta ta ta da |
| A. 3 729 |                          |               | TOISING IS  |           | A3720       | 50.005     | 0.0                           | 4S                                  | 2                | _       | *********                    |
| A-3730   |                          |               |             |           | AZTAI       |            |                               | -                                   | +                |         |                              |
| A-373/   | $\rightarrow$            | $\rightarrow$ |             | 1         | A 3722      |            |                               |                                     |                  |         |                              |
| A.       |                          |               |             | 1         |             |            | ,                             | ,                                   | ,                | >       |                              |
| A-       |                          |               |             |           |             |            |                               |                                     |                  |         |                              |
| А-       |                          |               |             |           |             |            |                               |                                     |                  |         |                              |
| Α-       |                          |               |             |           |             |            |                               |                                     |                  |         |                              |
|          |                          |               |             |           |             |            |                               |                                     |                  |         |                              |

ļ

Page # 101

FORM 153

.

.

,

.

·

.

### GC/MS VOLATILES-WHOLE AIR

•

.

## METHOD TO-15

## CANISTER CLEANING LOG

,

Page 370 of 380

i

| # of Curries   Int & Date Cleaned |     | $\frac{1}{1}$ |    | + 30 | + 10 + | 1, <del>3</del> (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 | + 000 | + 000        | + 30     | + | 351 + 30 + | + 30 | + 30 | + + + + + + + + + + + + + + + + + + + + | + 30 + | 14   + 30 + | + 30 | + 30 | + 30 | + + + + + + + + + + + + + + + + + + + + | 274 × 130 + | +            | + 30 | + 30     |        | 24 |
|-----------------------------------|-----|---------------|----|------|--------|-----------------------------------------------------------|-------|--------------|----------|---|------------|------|------|-----------------------------------------|--------|-------------|------|------|------|-----------------------------------------|-------------|--------------|------|----------|--------|----|
|                                   |     |               |    |      | 7      | 1191                                                      |       |              |          |   | 351        |      |      |                                         | ->     | 14          |      |      |      |                                         | 24          | 4            |      |          | ہ<br>ر |    |
|                                   | Del | 1 20          | 93 | 130  | 360    | 11 84                                                     |       | - <i>m</i> + | <u> </u> |   | 353        | 52   | 239  | Lor                                     | 361    | 281         | 74   |      | 0    |                                         |             | 1<br>5<br>37 |      | イ<br>380 | 2014 × |    |

# Centek Laboratories, LLC

QC Canister Cleaning Logbook

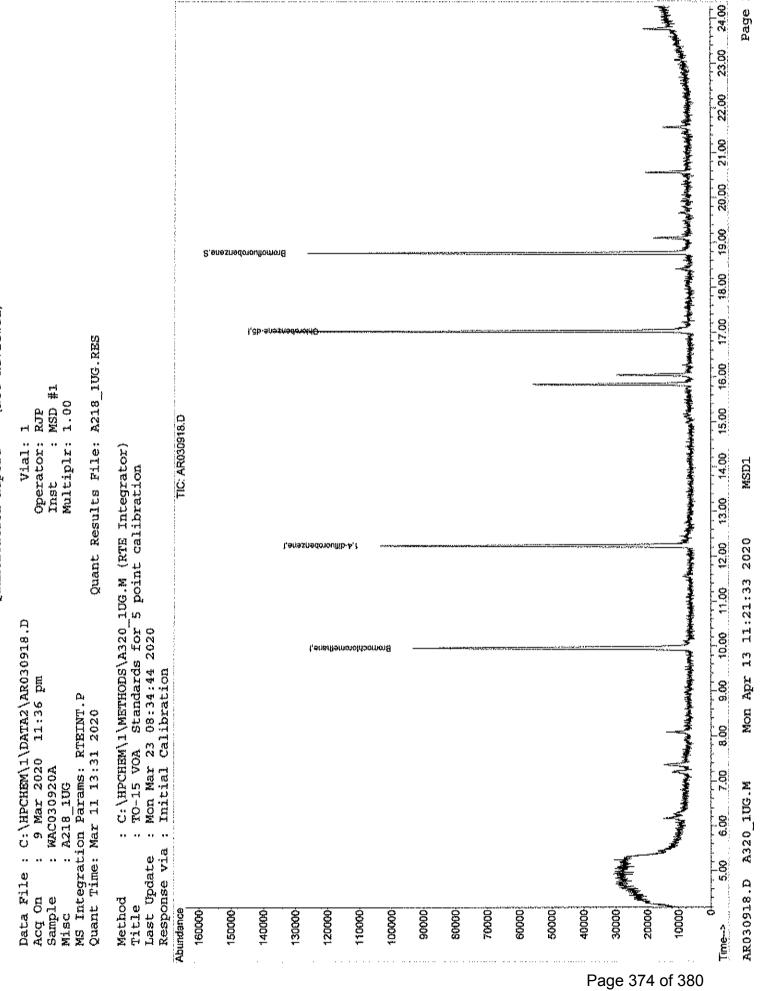
# entek Laboratories, LLC

#### 3/11/20 Leak Test 24hr Int & Date 20 + 30 8 망 + 99 + <del>9</del>8 + + 30 98 + + 30 0E + + 30 + 30 + 30 98 + + 30 + 30 + 30 + 30 е + + 30 8 98 + + 30 98 + 98 + + 30 Detection Limits 1-2-1-20 WACD30720 12 7 **OC Batch Number** 1 # of Cycles Int & Date Cleaned 3/6/20 370 Canister Number | Canister Size | QC Can Number いよく -2 333 01 ✦ nstrument: Entech 3100 J 9 1545 562 मित 155 तू 254 S HSA 335 195 20C 545 164 101 ٩ ح

## Centek Laboratories, LLC

**QC** Canister Cleaning Logbook

**Sentek Laboratories, LLC** 


Page 372 of 380

Form C151

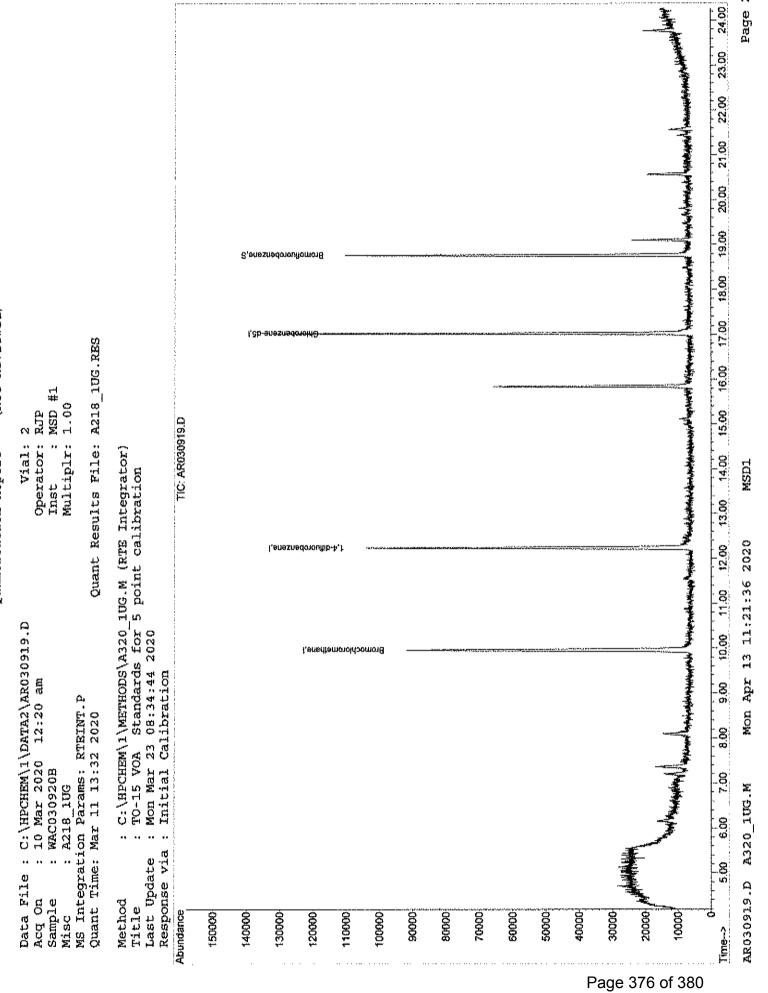
80

Page #\_

Centek Laboratories, LLC Quantitation Report (Not Reviewed) Data File : C:\HPCHEM\1\DATA2\AR030918.D Vial: 1 Acq On : 9 Mar 2020 11:36 pm Sample : WAC030920A Misc : A218\_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 10 06:35:05 2020 Quant Results File: A218\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A218\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Feb 18 17:28:19 2020 Response via : Initial Calibration DataAcq Meth : 1UG ENT Internal Standards R.T. QION Response Conc Units Dev(Min) \_\_\_\_\_\_\_ 1) Bromochloromethane9.96128393391.00 ppb0.0335) 1,4-difluorobenzene12.231141076531.00 ppb0.0250) Chlorobenzene-d517.02117973941.00 ppb0.01 System Monitoring Compounds 65) Bromofluorobenzene 18.77 95 47898m RT 0.71 ppb 0.01 Spiked Amount 1.000 Range 70 - 130 Recovery = 71.00% Ovalue Target Compounds



N


Centek Laboratories, LLC Quantitation Report (Not Reviewed) Data File : C:\HPCHEM\1\DATA2\AR030919.D Vial: 2 Acq On : 10 Mar 2020 12:20 am Sample : WAC030920B Misc : A218\_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 10 06:35:06 2020 Quant Results File: A218 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A218 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Feb 18 17:28:19 2020 Response via : Initial Calibration DataAcq Meth : 1UG ENT R.T. QION Response Conc Units Dev(Min) Internal Standards 

 1) Bromochloromethane
 9.96
 128
 38858
 1.00 ppb
 0.03

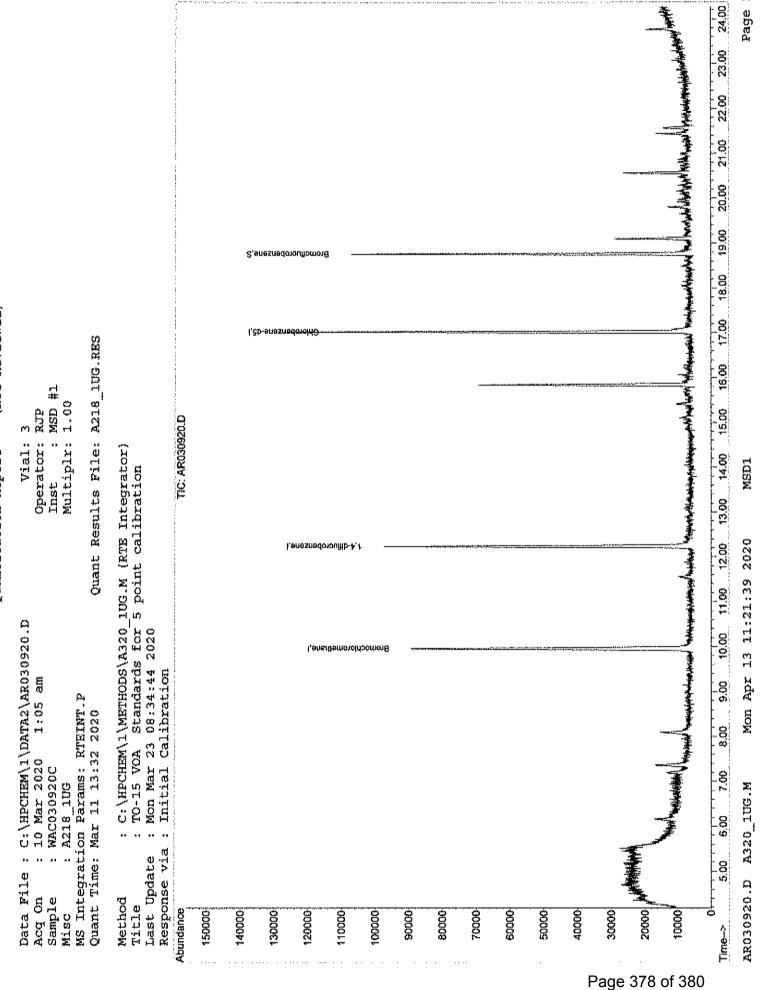
 35) 1,4-difluorobenzene
 12.23
 114
 103995
 1.00 ppb
 0.02

 50) Chlorobenzene-d5
 17.02
 117
 85679m
 1.00 ppb
 0.01

 System Monitoring Compounds 65) Bromofluorobenzene 18.76 95 42008m Ar 0.71 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 71.00% Qvalue Target Compounds

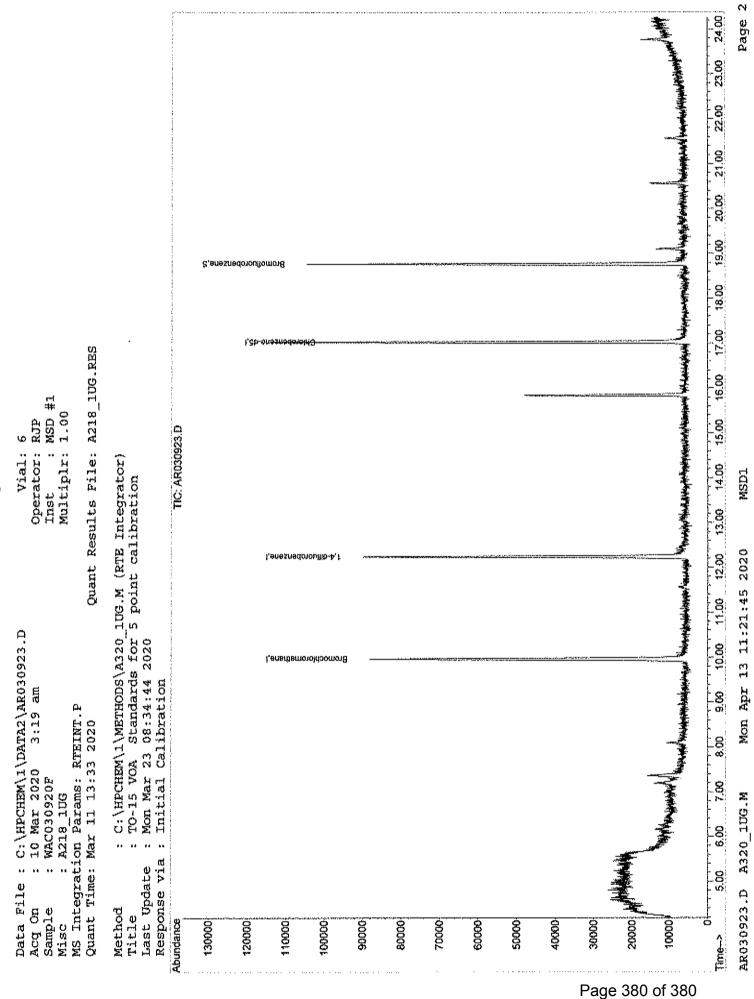


2


Centek Laboratories, LLC Quantitation Report (Not Reviewed) Data File : C:\HPCHEM\1\DATA2\AR030920.D Vial: 3 Acq On : 10 Mar 2020 1:05 am Sample : WAC030920C Misc : A218\_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 10 06:35:07 2020 Quant Results File: A218\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A218\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Feb 18 17:28:19 2020 Response via : Initial Calibration DataAcq Meth : 1UG ENT Internal Standards R.T. QION Response Conc Units Dev(Min) 

 1) Bromochloromethane
 9.95
 128
 37257
 1.00 ppb
 0.02

 35) 1,4-difluorobenzene
 12.23
 114
 98094
 1.00 ppb
 0.02


 50) Chlorobenzene-d5
 17.02
 117
 79761m 松 1.00 ppb
 0.01

 System Monitoring Compounds 65) Bromofluorobenzene 18.76 95 39830m xm 0.72 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 72.00% Target Compounds **Ovalue** 



0

Centek Laboratories, LLC Quantitation Report (Not Reviewed) Data File : C:\HPCHEM\1\DATA2\AR030923.D Vial: 6 Acq On : 10 Mar 2020 3:19 am Sample : WAC030920F Misc : A218\_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 10 06:35:10 2020 Quant Results File: A218\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A218\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Feb 18 17:28:19 2020 Response via : Initial Calibration DataAcq Meth : 1UG ENT Internal Standards R.T. QIon Response Conc Units Dev (Min) \_\_\_\_\_ 1) Bromochloromethane9.95128359061.00ppb0.0335) 1,4-difluorobenzene12.23114902681.00ppb0.0250) Chlorobenzene-d517.0211773762m Asys1.00ppb0.01 System Monitoring Compounds 65) Bromofluorobenzene 18.76 95 36750 0.72 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 72.00% 0.00 Target Compounds Ovalue

