Intended for

Division of Environmental Remediation

New York State Department of Environmental Conservation

Document type

Final Report

Date

June 2022

PERIODIC REVIEW REPORT APRIL 2021APRIL 2022 NYSDEC COSCO SITE (ID NO. 3-44-035) SPRING VALLEY, NEW YORK

PERIODIC REVIEW REPORT APRIL 2021-APRIL 2022 NYSDEC COSCO SITE (ID NO. 3-44-035)SPRING VALLEY, NEW YORK

Project name NYSDEC COSCO Site

Project no. **75217**

Recipient Robert Strang, E.I.T.

Division of Environmental Remediation

New York State Department of Environmental Conservation [Name]

Document type Final Report

Version [2]

Date **June 27, 2022**

Prepared by Sarah Travaly, Robert Hornung, P.G.

Checked by **Paul D'Annibale, P.G.**Approved by **Doug Crawford, P.E.**

Ramboll

94 New Karner Road

Suite 106

Albany, NY 12203

USA

T 518-724-7272 F 315-463-7554 https://ramboll.com

CONTENTS

Executi	ve Summary	iii
1.	Introduction	1
1.1	Introduction	1
1.1.1	Site Location and Description	1
1.2	Remedial History	1
1.2.1	Soil Vapor Intrusion Evaluations	4
1.3	Regulatory Requirements and Current Site Status	5
2.	Site Institutional and Engineering Controls	6
2.1	Institutional Controls	6
2.2	Engineering Controls	7
3.	Site Monitoring and Sampling	7
3.1	Annual Site Inspection	7
3.2	Groundwater Monitoring Program	8
3.2.1	Water Level Monitoring	8
3.2.2	Groundwater Quality Sampling	8
3.3	Groundwater Extraction and Treatment System Operations	9
3.3.1	Groundwater Extraction and Treatment System Performance	10
4.	Site Cost Evaluation	10
5.	Certification of Engineering and Institutional Controls	11
6.	Conclusions and Recommendations	11
6.1	Conclusions	11
6.2	Recommendations	11
7.	References	13

i

TABLES

- 3-1 Overburden and Bedrock Monitoring Well Summary
- 3-2 Summary of Water Level Measurements and Groundwater Elevations
- 3-3 Summary of Detected Constituents in Groundwater July 2021
- 3-4 Summary of Detected Constituents in Groundwater March 2022
- 4-1 Site Operational Costs GWE&T System and Site Monitoring, Sampling, and Reporting

FIGURES

- 1-1 Site Location Map
- 1-2 Monitoring and Recovery Well Location Map
- 3-1 Overburden Groundwater Elevation Contour Map July 2021
- 3-2 Bedrock Groundwater Elevation Contour Map July 2021
- 3-3 Overburden Groundwater Elevation Contour Map March 2022
- 3-4 Bedrock Groundwater Elevation Contour Map March 2022
- 3-5 Summary of Overburden Groundwater Analytical Results in 2021/2022
- 3-6 Summary of Bedrock Groundwater Analytical Results in 2021/2022

APPENDICES

- A Summary of Site History
- B Annual Site Inspection and Photographic Log
- C Groundwater Sampling Field Forms
- D Summary of Laboratory Analytical Results
- E Data Usability Summary Reports
- F Concentration Trend Plots of Site Constituents of Concern
- G Quarterly Operating Summary Reports

ATTACHMENTS

1 Engineering Controls – Standby Consultant/Contractor Certification Form

EXECUTIVE SUMMARY

In 1978, the Rockland County Department of Health (RCDOH) identified tetrachloroethene (PCE), trichloroethene (TCE), dichloroethene (DCE), and 1,1,1-trichloroethane (1,1,1-TCA) in the well field operated by the Spring Valley Water Company. The Consolidated Stamp Company (COSCO) Site (the Site) and Continental Plastic Company (CPC) facility were identified as potential sources for the contamination at the former Spring Valley Well Field Site (ID No. 3-44-018). The results of a survey performed by Spring Valley Water Company in 1979 found that the CPC facility was discharging approximately 20 to 30 gallons per minute (gpm) of TCE and PCE contaminated noncontact cooling water into Reach B Diversion. In addition, The COSCO facility was using TCE as part of a vapor degreasing process and discharging the rinse water into Reach B Diversion (Aztech, 2020).

From 1987 to 1990, a Remedial Investigation/Feasibility Study (RI/FS) was performed to evaluate potential source areas for Site-related constituents of concern (COCs), PCE and its associated degradation products TCE, DCE, and vinyl chloride (VC). A Record of Decision (ROD) was issued by the New York State Department of Environmental Conservation (NYSDEC) for the Site in March 1990 and amended in 1999. Remedial actions to address the Site-related COCs were conducted between 1990 and 2010.

In November 2003, a groundwater extraction and treatment (GWE&T) system was placed into operation, consisting of two overburden recovery wells (RW-1S and RW-8S) and one bedrock recovery well (RW-3D). The GWE&T system initially included treatment of extracted groundwater via ultraviolet light and peroxide oxidation. In December 2011, the GWE&T system was redesigned, resulting in replacement of the ultraviolet light and peroxide oxidation treatment with an air stripper. Currently, only bedrock recovery well RW-3D is actively recovering groundwater. Overburden recovery wells RW-1S and RW-8S have been offline since the fall of 2015.

The current Institutional Controls governing the Site include the August 1999 ROD amendment and the 2022 *Site Management Plan* (SMP; Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2022). Adherence to Institutional Controls is discussed within the SMP. The Engineering Controls at the Site consist of the asphalt cap installed over the Tailings Dump Area, a security perimeter fence, the sub-slab depressurization system (SSDS) installed off-Site at 47 Commerce Street, the GWE&T system, and the overburden and bedrock monitoring well network.

Site monitoring and reporting activities are performed by Ramboll, and Operation and Maintenance activities are performed by LaBella Associates (LaBella).

1. INTRODUCTION

1.1 Introduction

This Periodic Review Report (PRR) has been prepared by Ramboll for the New York State Department of Environmental Conservation (NYSDEC) to document the implementation of, and compliance with, Site Management (SM) requirements for the COSCO Site located in Spring Valley, New York, as discussed in the 2022 SMP (Ramboll, 2022). This PRR was prepared in accordance with the Work Assignment (WA) (#D009810-03) submitted to the NYSDEC on June 1, 2020 and approved on June 19, 2020.

This PRR covers the reporting period from April 4, 2021 through April 4, 2022 and summarizes the Site activities performed by Ramboll and Operation and Maintenance (O&M) activities performed by LaBella. The results and a general summary of the O&M activities performed by LaBella are also incorporated in this PRR.

1.1.1 Site Location and Description

The Site is located at 15 West Street, in the village of Spring Valley, Rockland County, New York (**Figure 1-1**). The Site is managed under the New York State Inactive Hazardous Waste Disposal Site Remedial Program administered by NYSDEC (Ramboll, 2020). The Site is listed by the NYSDEC as a Class 4 Inactive Hazardous Waste Disposal Site (ID No. 3-44-035). Class 4 sites are hazardous waste sites that have been properly closed but require continued O&M of remedial systems and/or continued site monitoring.

The Site is the location of the former COSCO facility located at 15 West Street, and the former CPC facility, located at 2 North Cole Avenue, about 200 feet northwest of the former COSCO facility (NYSDEC, 1999). The COSCO property is bound to the east by West Street, to the south by West Central Avenue and to the north by an inactive Conrail line and right-of-way. Industrial and commercial facilities are located on the north side of the right-of-way including the former CPC facility, a communications tower, and the Spring Valley Department of Public Works (DPW) maintenance facility.

A drainage way, known as the Reach B Diversion (**Figure 1-2**) runs between the facilities. The drainage way originates to the southwest and continues to the northeast and discharges into the West Branch of Pascack Brook, east of the Site. The Tailings Dump Area is an approximate 18,750 square-foot, triangular-shaped, and fenced area at the western end of the property. At present, the Tailings Dump Area is the only portion of the original Site that remains within the current Site boundaries as defined by NYSDEC.

1.2 Remedial History

In 1978, the RCDOH identified PCE, TCE, DCE, and 1,1,1-TCA in the well field operated by the Spring Valley Water Company (Aztech, 2020). The COSCO facility and CPC facility were identified as potential sources for the contamination at the former Spring Valley Well Field Site (ID No. 3-44-018). The results of a survey performed by Spring Valley Water Company in 1979 found that the CPC facility was discharging approximately 20 to 30 gpm of TCE and PCE contaminated non-contact cooling water into Reach B Diversion. In addition, The COSCO facility was using TCE as part of a vapor degreasing process and discharging the rinse water into Reach B Diversion. In

1

1980, Reach B Diversion was diverted away from the former Spring Valley Well Field Site into the West Branch of the Pascack Brook. After reconfiguring the discharge for Reach B Diversion, the former waterway was sampled at multiple locations for volatile organic compounds (VOCs) in soil, sediment, and surface water. In addition, semi-volatile organic compounds (SVOCs), pesticides, and polychlorinated biphenyls (PCBs) were identified in the Tailings Dump Area (Aztech, 2016).

From 1987 to 1990, an RI/FS was performed for the Site by GHR Engineering Associates, Inc. The objective of the RI/FS was to evaluate potential source areas for Site-related constituents of concern (COCs), PCE and its associated degradation products TCE, DCE, and VC.

As documented in the RI Report, the former soil source area was located north of the COSCO facility and extended east-west from the east side of bedrock monitoring well GP-4D to east of overburden recovery well RW-1S. The northern extent of source area soil was located south of the Conrail track line that extends east-west north of the COSCO facility. The approximate impacted area of soil was 140-feet long by 40-feet wide (**Figure 1-2**). The maximum historical concentrations of PCE, TCE, and DCE in source area soils were 1.9 parts per million (ppm), 13 ppm, and 2.6 ppm, respectively. Cyanide, cadmium, lead, and zinc were detected in source area soils with maximum concentrations of 28 ppm, 4.2 ppm, 1,140 ppm and 4,120 ppm, respectively. Concentrations of other inorganic constituents detected in source area soils were within background values (Aztech, 2020).

Site-related COCs were not detected in soils within the Tailings Dump Area during the RI. However, several SVOCs including polycyclic aromatic hydrocarbons (PAHs) were detected. The maximum concentrations of PAHs detected were approximately 90 ppm. In addition, pesticides 4,4-DDT and gamma chlordane, and PCBs were detected in one soil sample from the Tailings Dump Area. Inorganic constituents cyanide and cadmium were also detected in the Tailings Dump Area (similar to source area soils).

Sediment samples collected from the former waterway drainage channel (Reach B Diversion) had detected concentrations of PCE, TCE, and DCE with a maximum total VOC concentration of 38.7 ppm in a sediment sample collected from the DPW property (north of the soil source area).

Site-related COCs were detected in overburden groundwater at a maximum total concentration of 24,861 parts per billion (ppb) and in bedrock groundwater at a maximum total concentration of 15,437 ppb.

Following the RI, an FS was performed to identify, screen, and evaluate potential remedial alternatives and a ROD was issued by NYSDEC for the Site in March 1990. The ROD detailed selected remedies to address contamination at the COSCO Site and CPC facility, which included:

- Source area groundwater extraction and treatment by ultraviolet (UV) chemical oxidation and polishing;
- Source area soil and sediment soil vapor extraction (SVE); and,
- Capping of the Tailings Dump Area to prevent human exposure to remaining contaminated soil.

Pursuant to the results of the RI and a petition from the Spring Valley Water Company to delist the Site, the Site boundaries were redefined, the COSCO Site and CPC facility were listed under the New York State Inactive Hazardous Waste Disposal Site Remedial Program, and the former Spring Valley Well Field Site was delisted in December 1990.

Two post-ROD groundwater studies were conducted to evaluate groundwater flow in the bedrock aquifer. The first study was performed in the summer of 1990 by COSCO and Sara Lee Corporation (Sara Lee). The second study, a supplemental RI, was performed in 1992 by COSCO, Sara Lee, and the Spring Valley Water Company. In March of 1996, COSCO and Sara Lee settled with NYSDEC to contribute to past and future costs for remediation of the Site.

A pre-design investigation (PDI) was performed in 1997 and 1998 by Camp Dresser and McKee on behalf of NYSDEC to fill identified data gaps and evaluate the appropriateness of the remedial action recommended in the 1990 ROD. Field investigations performed during the PDI included:

- · Soil and groundwater sampling;
- Aquifer pump testing; and,
- Vapor extraction pilot testing.

Six soil borings were completed in the source area. The soil borings were advanced from eight to twenty feet below grade, depending on location at the Site. Soil samples were collected at four-foot intervals. Fifteen soil samples were collected during the soil boring program. Total VOC concentrations detected in soil ranged from non-detect to 0.726 ppm (approximately one-quarter of the maximum concentration of total VOCs in soil reported during the RI). The soil boring program also identified the presence of low permeability soils in the source area, interbedded with more permeable soils.

The former drainage channel area (Reach B Diversion) could not be sampled during the PDI as the channel had been filled in and a communications tower had been constructed in the area following completion of the 1990 RI. As a result, five soil borings were advanced adjacent to the communications tower. Soil samples were collected at three of the five boring locations and a groundwater sample was collected at one boring location. The detected concentrations of VOCs in soil samples ranged from 0.0012 to 0.0099 ppm. The total VOC concentration detected in the groundwater sample was 1,270 ppb. These results suggested that the total VOC concentrations in overburden groundwater were still elevated near the former drainage channel, and that the total VOC concentration in soil was low.

As part of the PDI, two overburden monitoring wells (GW-1S and GW-4S) and four bedrock monitoring wells (GW-2D, GW-3D, GP-4D, and GW-5D) were installed at the Site and groundwater samples were collected for VOC analysis to compare to previous results. Groundwater sample results collected from the six monitoring wells indicated that VOC concentrations in both the overburden and bedrock had decreased since the RI.

In addition, during the PDI it was noted that an asphalt cap was installed over most of the Tailings Dump Area. This asphalt cap satisfied the capping requirement presented in the 1990 ROD.

 $^{^{1}}$ Sara Lee Corporation previously owned certain assets of the COSCO Site (NYSDEC, 1999).

The 1990 ROD was amended by NYSDEC in August 1999 (1999 ROD amendment). The changes to the 1990 ROD were based on the results of the 1997-1998 PDI which concluded relatively low-level VOC concentrations remained in the soil and sediments at the Site and therefore the effectiveness of the recommended SVE would be limited. In addition, the soil samples collected adjacent to the communications tower constructed near the former drainage channel had VOC detections below NYSDEC Soil Clean-up Objectives (NYSDEC, 2006). As a result, NYSDEC selected the following for the 1999 ROD amendment:

- No further action for source area soils and sediments;
- Extraction of contaminated overburden and bedrock groundwater in the source area and treatment by chemical oxidation and polishing technologies;
- Completion/repair of the existing asphalt cap over the Tailings Dump Area; and,
- Long-term groundwater monitoring to evaluate the effectiveness of both the groundwater extraction and the Tailings Dump Area.

1.2.1 Soil Vapor Intrusion Evaluations

Independent of the 1999 ROD amendment, two soil vapor intrusion (SVI) evaluations were conducted for the Site – one on-Site and the other off-Site. The on-Site SVI evaluation was conducted by Environmental Resources Management, Inc. in January 2006. Six overburden groundwater samples and six soil vapor samples were collected and analyzed for VOCs in the area north of the COSCO facility building and along the Conrail railroad line and right-of-way. Two of the six groundwater samples had detections of Site-related COCs at concentrations less than 100 ppb. Site-related COCs were also detected in soil vapor samples.

Based on the results of the 2006 on-Site SVI evaluation, an off-Site supplemental SVI evaluation was performed to evaluate the residential and commercial area east of the Site. The off-Site SVI evaluation was performed by AECOM from December 2008 through March 2009. The off-Site supplemental SVI evaluation included collection of sub-slab soil gas samples with co-located indoor air samples at residential and commercial properties east of the Site on Commerce Street. The results of the off-Site supplemental SVI evaluation identified concentrations of PCE and TCE in the sub-slab sample collected at 47 Commerce Street in excess of the New York State Department of Health (NYSDOH) soil vapor/indoor air guideline values listed in Matrix A and Matrix B (NYSDOH, 2017). The analytical results for the other properties included in the off-Site supplemental SVI evaluation (35 Commerce Street, 37 Commerce Street, 39 Commerce Street, 41 Commerce Street, 43 Commerce Street, and 45 Commerce Street) had elevated VOC reporting limits, resulting in non-detection of VOCs.

In February 2010, an additional round of SVI sampling was performed to compare to the initial off-Site supplemental SVI results. The results of the additional round of off-Site supplemental SVI sampling indicated that concentrations of PCE and TCE were still present in the sub-slab soil vapor at 47 Commerce Street and Site-related COCs were not detected at the six other properties. Based on the detected concentrations of PCE and TCE in sub-slab soil vapor at 47 Commerce Street, an SSDS was installed to mitigate the sub-slab vapor intrusion to the property. The SSDS at 47 Commerce Street continues to operate with maintenance and inspection activities being performed by HDR Engineering, Inc. of Mahwah, New Jersey.

As recommended by NYSDEC and NYSDOH, a final round of off-Site SVI sampling was performed at 41 Commerce Street, 43 Commerce Street, and 45 Commerce Street in March 2012. The results of the final round of off-Site SVI sampling indicated that no further action or mitigation was warranted. SVI sampling was also proposed for 39 Commerce Street, however, the property owner did not grant access.

A summary of the remedial Site history is provided in **Appendix A**.

1.3 Regulatory Requirements and Current Site Status

As discussed above, the components of the 1990 ROD were amended in August 1999 at the Site. The components of the 1999 ROD amendment include the following:

- No further action for source area soils and sediments;
- Extraction of contaminated overburden and bedrock groundwater in the source area and treatment by chemical oxidation and polishing technologies;
- Completion/repair of the existing asphalt cap over the Tailings Dump Area; and,
- Long-term groundwater monitoring to evaluate the effectiveness of both the groundwater extraction and the Tailings Dump Area.

As discussed above, remedial actions were initiated at the Site beginning in the late 1990's when the Tailings Dump Area was capped with asphalt. In November 2003, the GWE&T system was placed into operation and consists of two overburden recovery wells (RW-1S and RW-8S) and one bedrock recovery well (RW-3D). Recovery wells RW-1S and RW-3D are repurposed monitoring wells, formerly GW-1S and GW-3D. The wells were installed as part of the PDI in December 1997 by American Auger and Ditching, of Constantia, New York (Aztech, 2020).

The GWE&T system initially included treatment of extracted groundwater via UV light and peroxide oxidation. Operational issues resulted in a system shutdown within the first two years of operation. The GWE&T system design was re-evaluated to improve treatment efficiency, reduce costs, and to continue to meet the goals of the 1999 ROD amendment. The GWE&T system redesign was completed in December 2011, and the UV light and peroxide oxidation treatment were replaced by an air stripper.

Since 2011, extracted groundwater has been conveyed via underground piping from the recovery wells to the treatment system shed (see **Figure 1-2**) and is contained in a 1,500-gallon polyethylene batch tank prior to treatment. The extracted groundwater passes through two bag filter units, connected in parallel, prior to treatment in a ShallowTray® model 2341-P air stripper. The air stripper comprises four stripper trays and a sump tank. The air stripper is also equipped with sight tub and alarm switches and gauges connected to a programmable logic controller (PLC) to monitor the operation of the treatment system. Treated groundwater is discharged to Reach B Diversion via underground piping. Reach B Diversion ultimately discharges into Pascack Brook.

Currently only bedrock recovery well RW-3D is actively recovering groundwater. Overburden recovery wells RW-1S and RW-8S have been offline since the fall of 2015.

2. SITE INSTITUTIONAL AND ENGINEERING CONTROLS

The Site is managed under the New York State Inactive Hazardous Waste Disposal Site Remedial Program administered by NYSDEC and is listed by the NYSDEC as a Class 4 Inactive Hazardous Waste Disposal Site (ID No. 3-44-035). Class 4 sites are hazardous waste sites that have been properly closed but, require continued O&M of remedial systems and/or continued site monitoring.

2.1 Institutional Controls

The current Institutional Controls (ICs) governing the Site include the August 1999 ROD amendment and the 2022 SMP. Adherence to ICs is discussed within the SMP prepared by Ramboll (Ramboll, 2022). Adherence to ICs under the SMP include:

- Compliance with the SMP by the owner and remedial party (the remedial party for the purpose of the SMP is the NYSDEC);
- Engineering Controls (ECs), discussed in greater detail below, must be operated or maintained as specified in the SMP;
- ECs at the Site must be inspected at a frequency and manner defined in the SMP;
- Environmental monitoring for public health must be performed as defined in the SMP;
 and,
- Data and information pertinent to management of the Site must be reported at the frequency and in a manner defined in the SMP.

ICs, and Site restrictions, may not be discontinued without amendment to the SMP and approval from the NYSDEC. The following Site restrictions apply:

- The Site may only be used for commercial/industrial use provided that long-term ECs and ICs included in the SMP are employed;
- The Site may not be used for a higher level of use, such as unrestricted or restrictedresidential use, without additional remediation and amendment of the SMP, as approved by the NYSDEC;
- Future activities conducted at the Site that disturb in-situ source soil and/or fill material
 that could contain potential Site-related COCs must be conducted in accordance with the
 SMP;
- The use of groundwater underlying the property is prohibited;
- · Vegetable gardens and farming on the property are prohibited; and,
- A written statement certifying: 1). The ECs and/or ICs employed at the Site are unchanged from the previous certification or that any changes to the ECs and/or ICs were approved by the NYSDEC; and 2). ECs and/or ICs have not been impaired to protect public health and the environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access the Site at any time in order to evaluate the continued maintenance of any and all ECs and/or ICs. The certification shall be submitted annually (or at an alternate time acceptable to NYSDEC) and, will be made by an expert that the NYSDEC finds acceptable.

2.2 Engineering Controls

The ECs at the Site consist of the asphalt cap installed over the Tailings Dump Area, a perimeter security fence, the SSDS installed off-Site at 47 Commerce Street, the GWE&T system, and the overburden and bedrock monitoring well network.

Asphalt Cap

The asphalt cap installed over the Tailings Dump Area during the PDI prevents exposure to impacted soil/solid wastes in the Tailings Dump Area.

Perimeter Security Fence

A perimeter security fence was installed around the Tailings Dump Area and the monitoring well network at the Site to limit access.

Sub-Slab Depressurization System

An SSDS was installed by NYSDEC at a nearby off-Site residence (47 Commerce Street) to minimize exposure to elevated concentrations of VOCs in sub-slab/indoor air at the property and to mitigate future VOC exposure to the public. The SSDS consists of one centrally located system suction point (SSP) that induces air flow through a RadonAway™ model RP-145 fan. The RP-145 fan is mounted on the southwestern exterior of the property. Continued operation of the SSDS is a component of the overall remedial program for the Site.

Groundwater Extraction and Treatment System

As discussed above, the GWE&T system at the Site consists of two overburden recovery wells, one bedrock recovery well, and a four-tray air stripper. Currently only bedrock recovery well RW-3D is actively recovering groundwater. Treated groundwater is discharged to Reach B Diversion via underground piping. Reach B Diversion ultimately discharges into Pascack Brook.

Overburden and Bedrock Monitoring Well Network

The Site includes eight groundwater monitoring and/or recovery wells. Five wells (GW-4S, MW-3, MW-18, RW-1S, and RW-8S) are completed within the overburden and three wells (DW-1, GP-4D, and RW-3D) are completed within the bedrock.

3. SITE MONITORING AND SAMPLING

3.1 Annual Site Inspection

The annual Site inspection for this reporting period was completed on March 22, 2022. The Site inspection included an evaluation of the current condition of the asphalt cap and security fencing at the Tailings Dump Area and other Site conditions, including the presence of vegetative growth and inspection of the perimeter fence for breaks in the linkage or loose poles. The inspection also included an evaluation of the current recovery well and monitoring well network. In addition, presence of debris, trespassing, and indications of vandalism were also observed during the annual Site inspection. A summary of the Site inspection is provided in **Appendix B**.

As shown in **Appendix B**, the asphalt cap over the Tailings Dump Area was observed to be in good condition with no evidence of excessive wear or cracks in the asphalt. The perimeter security fence surrounding the Tailings Dump Area was also in good condition. Vegetative growth was observed along the perimeter security fencing surrounding the Tailings Dump Area. Debris

was also noted along the western edge of Tailings Dump Area. Several large holes in the linkage of the perimeter security fence near the current recovery well and monitoring well network were observed. Debris and evidence of trespassers were observed near overburden recovery well RW-1S, bedrock recovery well RW-3D, overburden monitoring wells MW-18 and GW-4S, and bedrock monitoring well GP-4D. The monitoring wells and recovery well network were observed to be in good to fair condition. The recommended maintenance and corrective actions from the annual Site inspection are presented in Section 6.

3.2 Groundwater Monitoring Program

Groundwater level measurements and groundwater quality samples were collected from the Site monitoring and recovery wells (i.e., MW-3, MW-18, GW-4S, GP-4D, DW-1, RW-1S, RW-3D, and RW-8S) on a semi-annual basis during the reporting period. The first semi-annual sampling event was completed on July 26 and 27, 2021. The second semi-annual sampling event was completed on March 21 and 22, 2022. A summary of the overburden and bedrock monitoring well construction specifications is presented on **Table 3-1**.

3.2.1 Water Level Monitoring

Groundwater level measurements were collected from each of the eight monitoring and recovery wells prior to collection of groundwater quality samples during each semi-annual sampling event. The groundwater level measurements and corresponding groundwater level elevations are presented on **Table 3-2**.

Hydraulic conditions at the Site are illustrated through groundwater contour maps for the overburden and bedrock hydrostratigraphic units. The groundwater contour maps were prepared based on the groundwater level measurements collected during the semi-annual sampling events. The July 2021 and March 2022 overburden groundwater contour maps are shown on **Figure 3-1** and **Figure 3-3**, respectively. The July 2021 and March 2022 bedrock groundwater contour maps are shown on **Figure 3-2** and **Figure 3-4**, respectively.

As shown on **Figure 3-1** and **Figure 3-3**, groundwater flow in the overburden is generally to the north or northeast towards Pascack Brook and does not appear to be under the influence of active bedrock recovery well RW-3D at this time. As shown on **Figure 3-2** and **Figure 3-4**, groundwater flow in the bedrock is generally to the north, with localized flow towards active recovery well RW-3D.

3.2.2 Groundwater Quality Sampling

Semi-annual groundwater samples were collected from the five groundwater monitoring wells and three recovery wells at the Site. In July 2021 and March 2022, monitoring wells GW-4S, MW-3, MW-18, DW-1, and GP-4D and inactive recovery wells RW-1S and RW-8S were purged and sampled utilizing dedicated, disposable bailers. A grab groundwater sample was collected from active recovery well RW-3D at the influent sample tap located in the Site GWE&T shed during the July 2021 event, however a grab sample was not able to be collected during the March 2022 event as the recovery well was not operational.

Field quality assurance/quality control (QA/QC) samples consisted of one blind field duplicate, one matrix spike (MS), one matrix spike duplicate (MSD), and trip blanks for each day of sample collection. Groundwater samples were analyzed for VOCs by USEPA Method 624.1 by Eurofins

TestAmerica of Buffalo, New York and Edison, New Jersey for the July 2021 event and by Contest, a Pace Analytical Laboratory, in East Longmeadow, Massachusetts for the March 2022 event. The groundwater sampling field forms are provided in **Appendix C**.

Detected constituents in groundwater from the July 2021 and March 2022 semi-annual sampling events are presented on **Table 3-3** and **Table 3-4**, respectively. Detected constituents in overburden and bedrock groundwater for the Site-related COCs are also illustrated on **Figure 3-5** and **Figure 3-6**, respectively.²

As presented on **Table 3-3** and illustrated on **Figure 3-5**, Site-related COCs in overburden recovery well RW-8S were detected above the New York State Class GA Standards in July 2021. Total 1,2-DCE was detected at a concentration of 7.7 ppb³, and TCE was detected at a concentration of 10 ppb, each above the Class GA Standards of 5 ppb. Site-related COCs were also detected at overburden monitoring well MW-18 and overburden recovery well RW-1S above New York State Class GA Standards. Total 1,2-DCE and VC were detected, both at estimated concentrations of 17 ppb in MW-18. TCE was detected at a concentration of 6.4 ppb in RW-1S. As presented on **Table 3-3** and illustrated on **Figure 3-6**, PCE was detected in RW-3D at a concentration of 68 ppb, TCE was detected at a concentration of 69 ppb, and total 1,2-DCE was detected at a concentration of 32 ppb, each above the Class GA Standards for these constituents of 5 ppb. The remaining Site-related COCs detected in overburden monitoring and inactive recovery wells were below their Class GA Standards.

As presented on **Table 3-4** and **Figure 3-5**, in March 2022, TCE was detected in RW-8S at a concentration of 8.31 ppb, above the Class GA Standard of 5 ppb. The remaining Site-related COCs detected in overburden and bedrock wells were below their Class GA Standards. Bedrock recovery well RW-3D was unable to be sampled in March 2022.

A summary of the laboratory analytical results is provided in **Appendix D**. Data validation was performed for the July 2021 and March 2022 semi-annual sampling events by Vali-Data of WNY, LLC, located in Fulton, New York. The data usability summary reports (DUSRs) are provided in **Appendix E**.

The detected concentrations of Site-related COCs during this reporting period are consistent with historical results. Historical concentration trend plots of Site-related COCs are provided in **Appendix F**.

3.3 Groundwater Extraction and Treatment System Operations

Operation, maintenance, and repair activities are routinely performed by LaBella to maintain the efficiency of the GWE&T system. The system operated for approximately 204 days during the reporting period, with an average flow rate of approximately 21.5 gpm. Approximately 6,308,094 gallons of groundwater were treated and discharged by the GWE&T system during the reporting period. Maintenance and repair activities performed during the reporting period were documented in the quarterly system monitoring reports prepared by LaBella. The quarterly system monitoring reports are provided in **Appendix G**. A summary of the routine and non-routine activities performed by LaBella during the reporting period are presented below.

² Bromodichloromethane, chloroform, and methylene chloride are not Site-related COCs and are therefore not presented on the figures.

³ For the purposes of this report, the individual Class GA Standard of 5 ppb is used for cis-1,2-dichloroethene and trans-1,2-dichloroethene.

Routine Activities

- · Replacement of bag filter.
- Inspection and cleaning of the air stripper.
- Inspection/replacement of system components (i.e., gauges, valves, blower components).
- Replacement of external lights.

Non-Routine Activities

- During Site visits in September, November, and December 2021, and March 2022, the system was reset as a result of shutdowns.
- During the March 2022 Site visit, the blower was assessed for excess noise.

3.3.1 Groundwater Extraction and Treatment System Performance

Compliance samples were collected each month the GWE&T system was in operation to monitor the effectiveness of the system. Compliance samples serve to document that treatment system discharge limits are maintained. Influent and effluent samples were collected and analyzed for VOCs by USEPA Method 624.1, Total Dissolved Solids (TDS) by Standard Method (SM) 2540C, and pH by USEPA Method 9040C by Eurofins TestAmerica of Buffalo, New York for the April 2021 through November 2021 samples, and Pace Analytical Laboratory, of Melville, New York, for the December 2021 and January 2022 samples. Influent and effluent samples were collected and analyzed for VOCs by USEPA Method 624.1, TDS by SM 2540C, and pH by SM 4500HB by Contest, a Pace Analytical Laboratory, of East Longmeadow, Massachusetts, for the February and March 2022 samples. Site-related COCs were detected below the effluent limitations and monitoring requirements set forth in the September 9, 2020 NYSDEC State Pollutant Discharge Elimination System (SPDES) permit equivalent for the Site (NYSDEC, 2020) during each monthly sampling event.⁴ Groundwater treated by the GWE&T system discharges to Reach B Diversion, ultimately discharging into Pascack Brook. Monthly influent and effluent VOC, TDS, and pH data are presented in **Appendix D**.

As presented in the 2019-2020 PRR (Aztech, 2020), groundwater samples were collected from each Site monitoring and recovery well (with the exception of monitoring well MW-3) and the GWE&T system effluent for per- and polyfluorinated alkyl substances (PFAS) and 1,4-dioxane analyses. Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) were detected in the GWE&T system effluent at concentrations of 11 parts per trillion (ppt) and 18 ppt, respectively. There are currently no state groundwater or surface water standards for PFAS (including PFOS and PFOA). Aa remedial system optimization (RSO) enhanced in-situ bioremediation (EISB) pilot study will be implemented at the Site in 2022. As part of the EISB pilot study, the GWE&T system will be shut down during the pilot study.

4. SITE COST EVALUATION

The Site cost evaluation summarizes the costs for the period of April 1, 2021 through April 1 2022, the approximate reporting period for this PRR.⁵ The costs are itemized by NYSDEC subcontractor (Ramboll and LaBella). The approximate costs are presented on **Table 4-1**.

⁴ The influent samples for RW-3D were incorrectly reported as the effluent samples and the effluent samples reported as influent samples for the December 2021 and February 2022 sampling events.

 $^{^{\}rm 5}$ The Site cost evaluation does not include the RSO EISB pilot study.

Overall, the total estimated cost for Ramboll and LaBella Site activities was \$81,584. Ramboll Site activities included subcontractor coordination, two semi-annual groundwater sampling events, in July 2021 and March 2022, and reporting. LaBella Site activities included the O&M of the GWE&T system, monthly sampling, and reporting.

5. CERTIFICATION OF ENGINEERING AND INSTITUTIONAL CONTROLS

The Institutional and Engineering Controls Certification Form is presented in Attachment 1.

6. CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

During this reporting period, the Tailings Dump Area was observed to be in good condition with no evidence of excessive wear or cracks in the asphalt cover. The perimeter security fence surrounding the Tailings Dump Area was also generally in good condition, however, several large holes in the linkage of the perimeter security fence near the current monitoring and recovery well network were observed, in addition to a damaged section of the perimeter security fence north of West Central Avenue, adjacent to the Tailings Dump Area. In addition, debris was observed along the Tailings Dump Area fence and the near monitoring well network. Evidence of trespassing during this reporting period included a camping tent and a large pile of trash/debris near RW-3D (see **Appendix B**).

The current hydraulic conditions and semi-annual groundwater sampling results show that the GWE&T system is creating a localized bedrock groundwater capture zone near recovery well RW-3D. Overburden groundwater does not appear to be under the influence of the GWE&T system at this time. The detected concentrations of Site-related COCs during this reporting period are consistent with historical results.

The results of the GWE&T system influent and effluent sampling show that the system was effective in removing Site-related COCs from recovered groundwater during the reporting period.

The RSO EISB pilot study will be implemented in 2022 and the results of the pilot study will be reported under separate cover.

6.2 Recommendations

Based on a review of the annual Site inspection, the monitoring and hydraulic data collected in 2021 and 2022, and the requirements of the 1999 ROD amendment, the following recommendations are presented:

- Tailings Dump Area It is recommended that continued monitoring of the vegetative growth along the perimeter security fence and debris along the western portion of the Tailings Dump Area be performed.
- Monitoring and Recovery Well Network It is recommended that the monitoring and recovery wells be equipped with new, keyed-alike locks. This will be completed as part of the RSO EISB pilot study in May 2022.

• Presence of Debris – It is recommended that the debris near RW-1S, RW-3D, MW-18, GW-4S, and GP-4D be disposed of and the area be monitored during future Site activities to identify the presence of new trash/debris.

7. REFERENCES

- Aztech Environmental Technologies, 2016. Site Management Plan Volume I COSCO, Spring Valley, Rockland County, New York. NYSDEC Site No.:3-44-035. Prepared for the New York State Department of Environmental Conservation. January 21, 2016.
- Aztech Environmental Technologies, 2020. *Periodic Review Report COSCO*, Spring Valley, Rockland County, New York. Covering the Time Period from April 4, 2019 through April 4, 2020. NYSDEC Site No.:3-44-035. Prepared for the New York State Department of Environmental Conservation. May 1, 2020.
- New York State Department of Environmental Conservation (NYSDEC), 1998 with all current addendums. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, Division of Water Technical and Operational Guidance Series (1.1.1). June 17, 1998.
- New York State Department of Environmental Conservation (NYSDEC), 1999. *Record of Decision Amendment COSCO/CPC Site*, Spring Valley, Rockland County, New York. NYSDEC Site No.: 3-44-035. August 2, 1999.
- New York State Department of Environmental Conservation (NYSDEC), 2006. 6 NYCRR Part 375, Subpart 375.6: Remedial Program Soil Cleanup Objectives (SCOs). December 14, 2006.
- New York State Department of Environmental Conservation (NYSDEC), 2020. *Memorandum SPDES Permit Equivalent: COSCO.CPC, DER Site ID# 344035*. September 9, 2020.
- New York State Department of Health (NYSDOH), 2017. *Guidance for Evaluating Soil Vapor Intrusion in the State of New York* (October 2006), and Updates May 2017.
- Ramboll, 2020. Schedule 1 Scope of Work Assignment Package for the COSCO Site, Spring Valley, New York. Work Assignment #D009810-03. NYSDEC Site No.:3-44-035. June 1, 2020.
- Ramboll, 2022. *Draft Site Management Plan NYSDEC COSCO Site, 2022*. Spring Valley, Rockland County, New York. NYSDEC Site No.:3-44-035. Prepared for the New York State Department of Environmental Conservation. April 5, 2022.

TABLES

Table 3-1 Overburden and Bedrock Monitoring Well Summary NYSDEC COSCO Site Spring Valley, New York

Well	Geologic Unit	Measuring Point Elevation (ft amsl)	Well Diameter (inches)	Total Depth of Well (ft bmp)	Screen Interval (ft bg)
MW-3	Overburden	98.64	2.0	16.75	?-16.8
MW-18	Overburden	99.32	2.0	23.00	11.0-23.0
GW-4S	Overburden	101.49	2.0	25.00	10.0-25.0
RW-1S	Overburden	101.00	4.0	28.00	10.0-25.0
RW-8S	Overburden	97.74	4.0	25.00	10.0-25.0
DW-1	Bedrock	100.12	4.0	66.00	51.0-61.0 ^a
GP-4D	Bedrock	101.01	2.0	99.00	41.0-99.0
RW-3D	Bedrock	100.54	4.0	102.50	41.0-102.5

- 1. "NYSDEC" designates New York State Department of Environmental Conservation.
- 2. "ft amsl" designates elevations are in feet above mean sea level.
- 3. "ft bmp" designates feet below measuring point.
- 4. "ft bg" designates feet below grade.
- 5. Table modified from April 4, 2019 through April 4, 2020 Periodic Review Report prepared by Aztech Environmental Technologies (Aztech, 2020).
- 6. "a" designates five-foot sump present from 61.0-66.0 feet below grade.
- 7. RW-1S and RW-8S are inactive overburden recovery wells. RW-3D is an active bedrock recovery well.

Table 3-2
Summary of Water Level Measurements and Groundwater Elevations
NYSDEC COSCO Site
Spring Valley, New York

Well	Geologic Unit	Measuring Point Elevation (ft amsl)	Ju	ly 2021	March 2022		
weii			Depth to Water (ft bmp)	Water Level Elevation (ft amsl)	Depth to Water (ft bmp)	Water Level Elevation (ft amsl)	
MW-3	Overburden	98.64	12.13	86.51	11.40	87.24	
MW-18	Overburden	99.32	11.60	87.72	12.71	86.61	
GW-4S	Overburden	101.49	12.74	88.75	13.57	87.92	
RW-1S	Overburden	101.00	13.41	87.59	14.56	86.44	
RW-8S	Overburden	97.74	9.72	88.02	11.44	86.30	
DW-1	Bedrock	100.12	29.28	70.84	28.41	71.71	
GP-4D	Bedrock	101.01	13.37	87.64	13.62	87.39	
RW-3D	Bedrock	100.54	52.44	48.10	50.52	50.02	

- 1. "NYSDEC" designates New York State Department of Environmental Conservation.
- 2. "ft ams!" designates elevations are in feet above mean sea level.
- 3. "ft bmp" designates feet below measuring point.

Table 3-3 Summary of Detected Constituents in Groundwater - July 2021 NYSDEC COSCO Site Spring Valley, New York

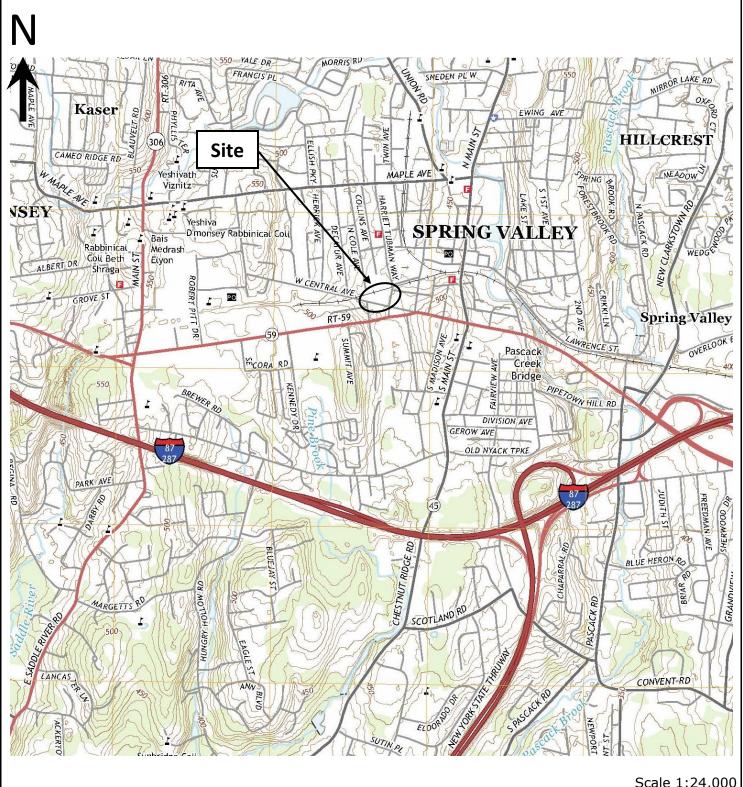
Compounds	NYSDEC TOGs (1.1.1), Class GA Standards and Guidance Values ¹	DW-1 DW-1-072721 7/27/2021	GW-4S GW-4S-072621 7/26/2021	MW-18 MW-18-072621 7/26/2021	RW-1S RW-1S-072721 7/27/2021	RW-3D RW-3D-072721 7/27/2021	RW-8S RW-8S-072721 7/27/2021
1,2-Dichloroethene, Total	5 ²	2.0 U	0.75 JH	17 JH	1.5 J	32	7.7
Chloroform	7	0.37 J	1.0 UJ	1.0 UJ	1.0 U	0.53 J	1.0 U
Tetrachloroethene	5	2.2	1.0 U	0.74 J	0.75 J	68	0.89 J
Trans-1,2-dichloroethene	5	1.0 U	1.0 U	0.33 JH	1.0 U	1.0 U	0.24 J
Trichloroethene	5	1.9	4.5	1.8	6.4	69	10
Vinyl chloride	2	1.0 U	1.0 UJ	17 JH	1.0 U	1.0 U	0.53 J

- 1. Samples analyzed for volatile organic compounds using United States Environmental Protection Agency Method 624.1 by Eurofins TestAmerica in Buffalo, New York and Edison, New Jersey.
- 2. Results are reported in micrograms per liter (μ g/L).
- 3. "NYSDEC" designates New York State Department of Environmental Conservation.
- 4. "TOGS" designates Technical and Operational Guidance Series.
- 5. New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, June 1998, with all current addendums.
- 6. ²To be conservative, the individual Class GA Standard is used for cis-1,2-dichloroethene and trans-1,2-dichloroethene.
- 7. "U" indicates that the compound was not detected at or above the practical quantitation limit shown.
- 8. "J" indicates that the compound was detected at an estimated concentration.
- 9. "UJ" indicates the compound was not detected at the estimated practical quantitation limit shown.
- 10. "JH" indicates that the compound was detected at an estimated concentration, biased high.
- 11. Values that are bold indicate exceedance of criteria.

Table 3-4 Summary of Detected Constituents in Groundwater - March 2022 NYSDEC COSCO Site Spring Valley, New York

Compounds	NYSDEC TOGS (1.1.1), Class GA Standards and Guidance Values ¹	DW-1 DW-1-032122 3/21/2022	GP-4D GP-4D-032122 3/21/2022	DUP-01 DUP-01-032122 3/21/2022	GW-4S GW-4S-032122 3/21/2022	Trip Blank Trip Blank-01-032122 3/21/2022	MW-18 MW-18-032222 3/22/2022	RW-1S RW-1S-032222 3/22/2022	RW-8S RW-8S-032222 3/22/2022	Trip Blank Trip Blank-02-032222 3/22/2022
Bromodichloromethane	50	0.180 U	0.190 J	0.180 U	0.180 U	0.180 U	0.180 U	0.180 U	0.180 U	0.180 U
Chloroform	7	0.390 J	1.07 J	1.04 J	0.168 U	0.168 U	0.168 U	0.168 U	0.168 U	0.168 U
Methylene chloride	5	0.235 U	0.235 U	0.235 U	0.235 U	0.640 J	0.235 U	0.235 U	0.235 U	0.690 J
Tetrachloroethene	5	2.29 J	0.187 UJ	0.187 UJ	0.187 UJ	0.187 UJ	0.187 U	0.960 J	0.800 J	0.187 U
Trichloroethene	5	1.58 J	0.189 U	0.189 U	2.32	0.189 U	0.620 J	3.67	8.31	0.189 U
Vinyl chloride	2	0.208 U	0.208 U	0.208 U	0.208 U	0.208 U	0.260 J	0.208 U	0.670 J	0.208 U

- 1. Samples analyzed for volatile organic compounds using United States Environmental Protection Agency Method 624.1 by Con-test (Pace Analytical Laboratory) of East Longmeadow, Massachusetts.
- 2. Results are reported in micrograms per liter (μ g/L).
- 3. "NYSDEC" designates New York State Department of Environmental Conservation.
- 4. "TOGS" designates Technical and Operational Guidance Series.
- 5. New York State Department of Environmental Conservation, Technical and Operational Guidance Series (1.1.1), Class GA Standards and Guidance Values, June 1998, with all current addendums.
- 6. "U" indicates that the compound was not detected at or above the practical quantitation limit shown.
- 7. "J" indicates that the compound was detected at an estimated concentration.
- 8. "UJ" indicates the compound was not detected at the estimated practical quantitation limit shown.
- 9. Blind duplicate samples are shown immediately after their parent sample.
- 10. Values that are bold indicate exceedance of criteria.


Table 4-1 Site Operational Costs GWE&T System and Site Monitoring, Sampling, and Reporting NYSDEC COSCO Site Spring Valley, New York

Summary of Approximate Costs						
Cost Items	Amount Expended (April 1, 2021 through April 1, 2022)	Percent of Total Cost				
Groundwater Extraction and Treatment System Operation and Maintenance, Monthly Sampling, and Reporting ^a	\$33,928	42%				
Semi-Annual Sampling, Monitoring, and Reporting ^b	\$47,656	58%				

- 1. "GWE&T" designates groundwater extraction and treatment.
- 2. "NYSDEC" designates New York State Department of Environmental Conservation.
- 3. "a" costs include operation, maintenance, monitoring, monthly sampling, and reporting activities incurred by LaBella Associates. Reporting costs include the quarterly system monitoring reports.
- 4. "b" costs include the first and second semi-annual sampling events, the semi-annual post groundwater monitoring report, the 2021/2022 periodic review report and updates to the site management plan. Additional costs associated with subcontractor coordination are also included. Costs do not include the remedial system optimization enhanced in-situ bioremediation pilot study implementation and reporting.

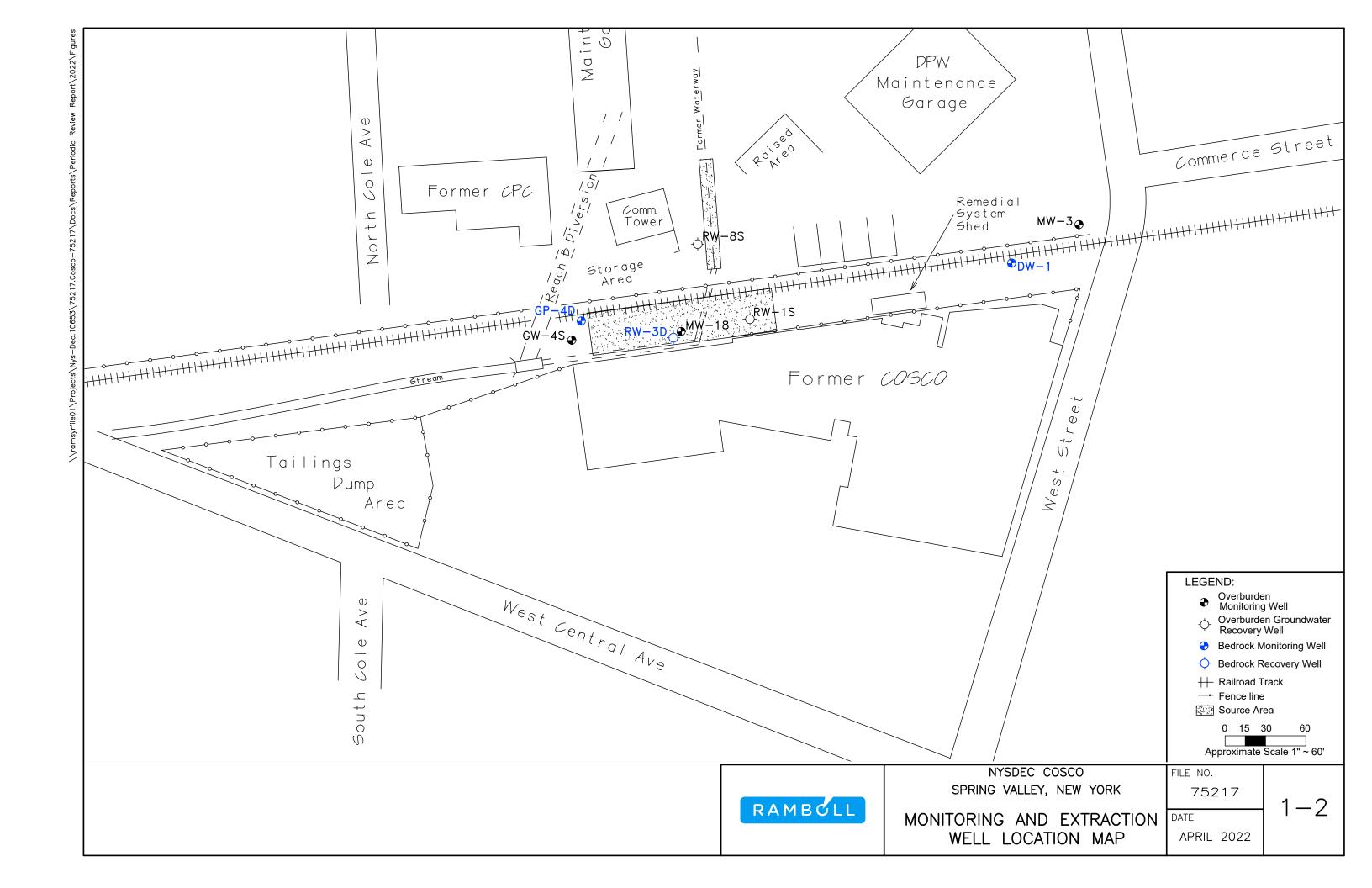
FIGURES

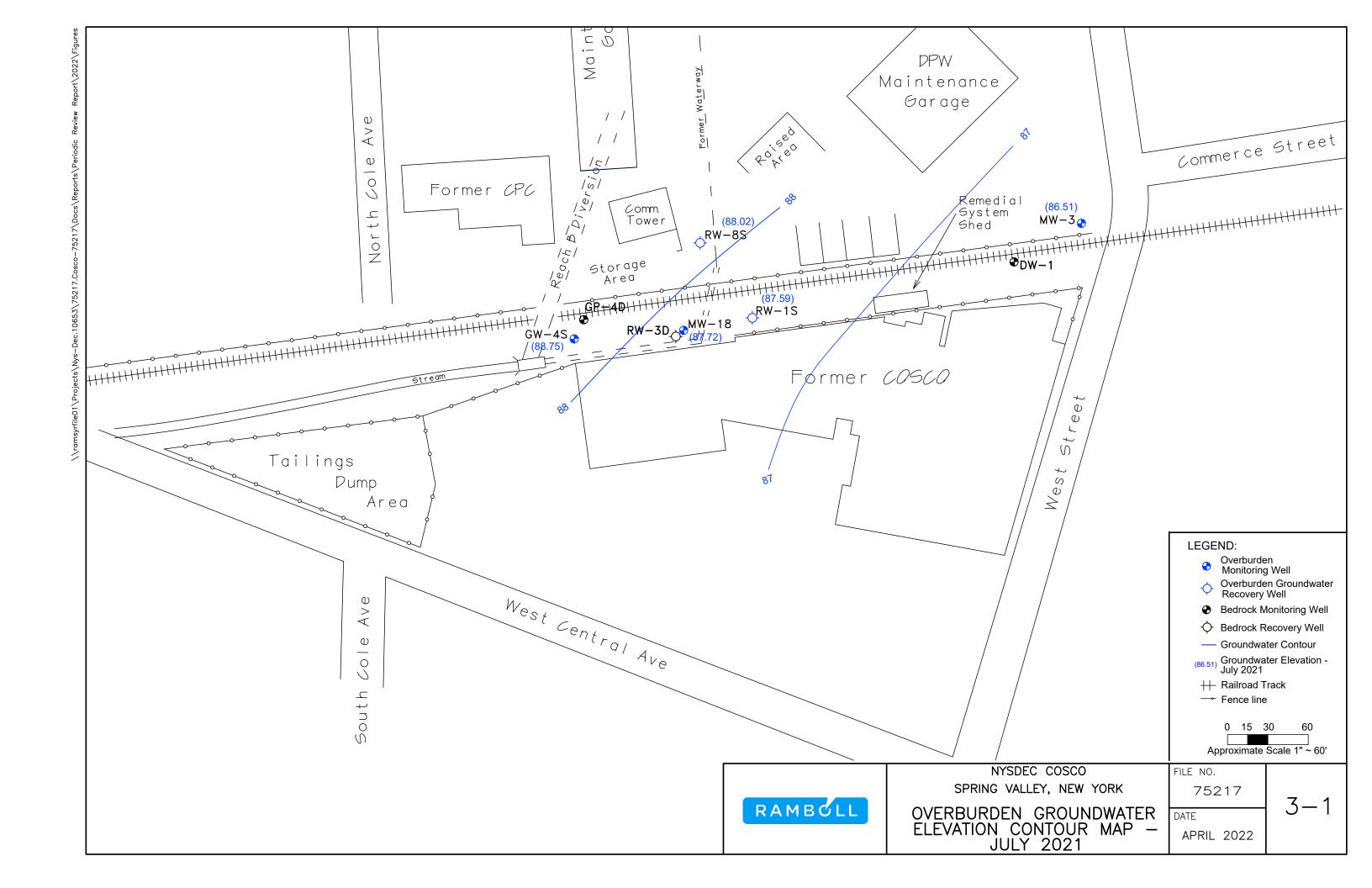
Scale 1:24,000

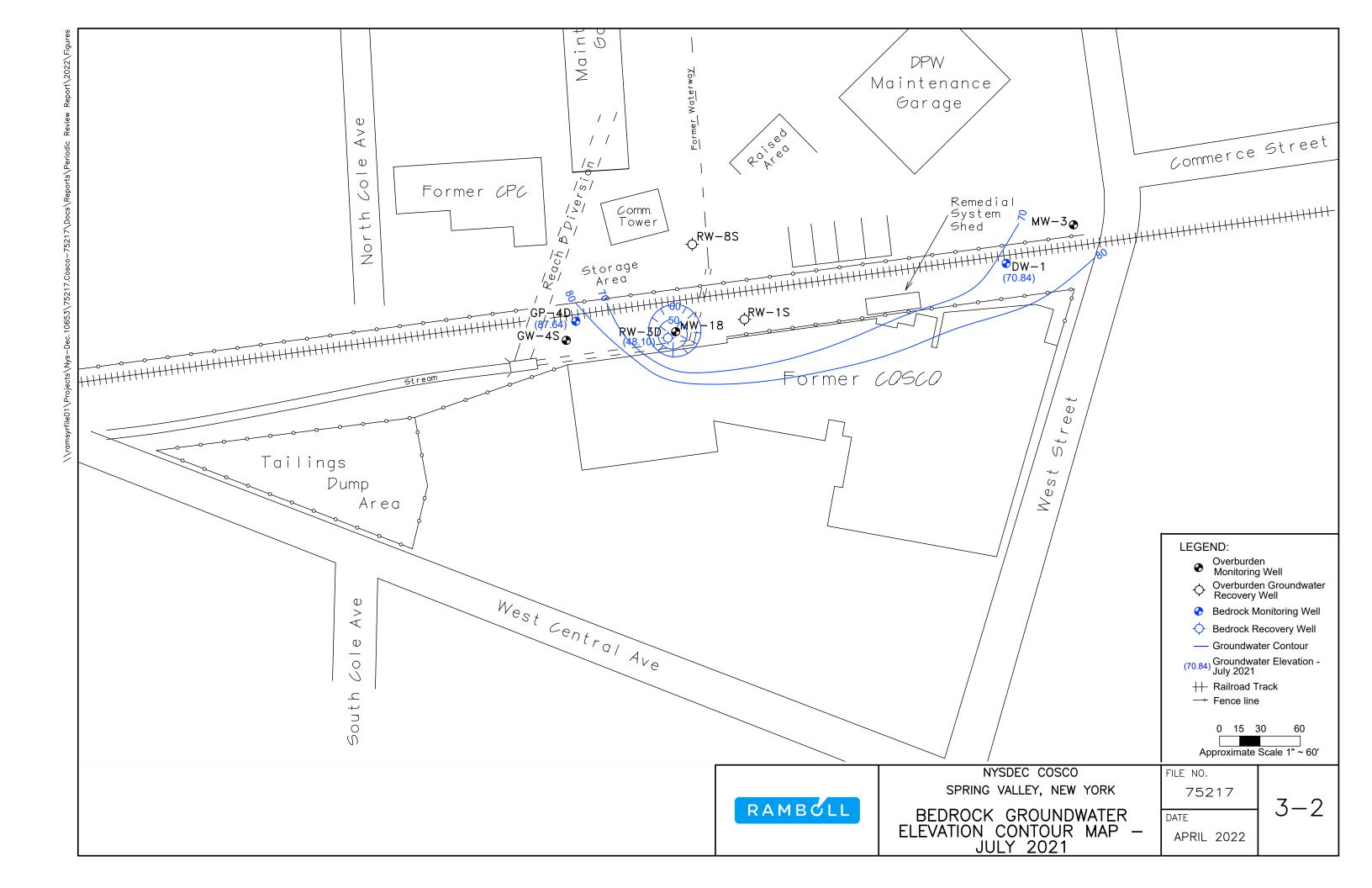
Adapted From: USGS Topographic Quadrangle Map, Park Ridge, New Jersey.

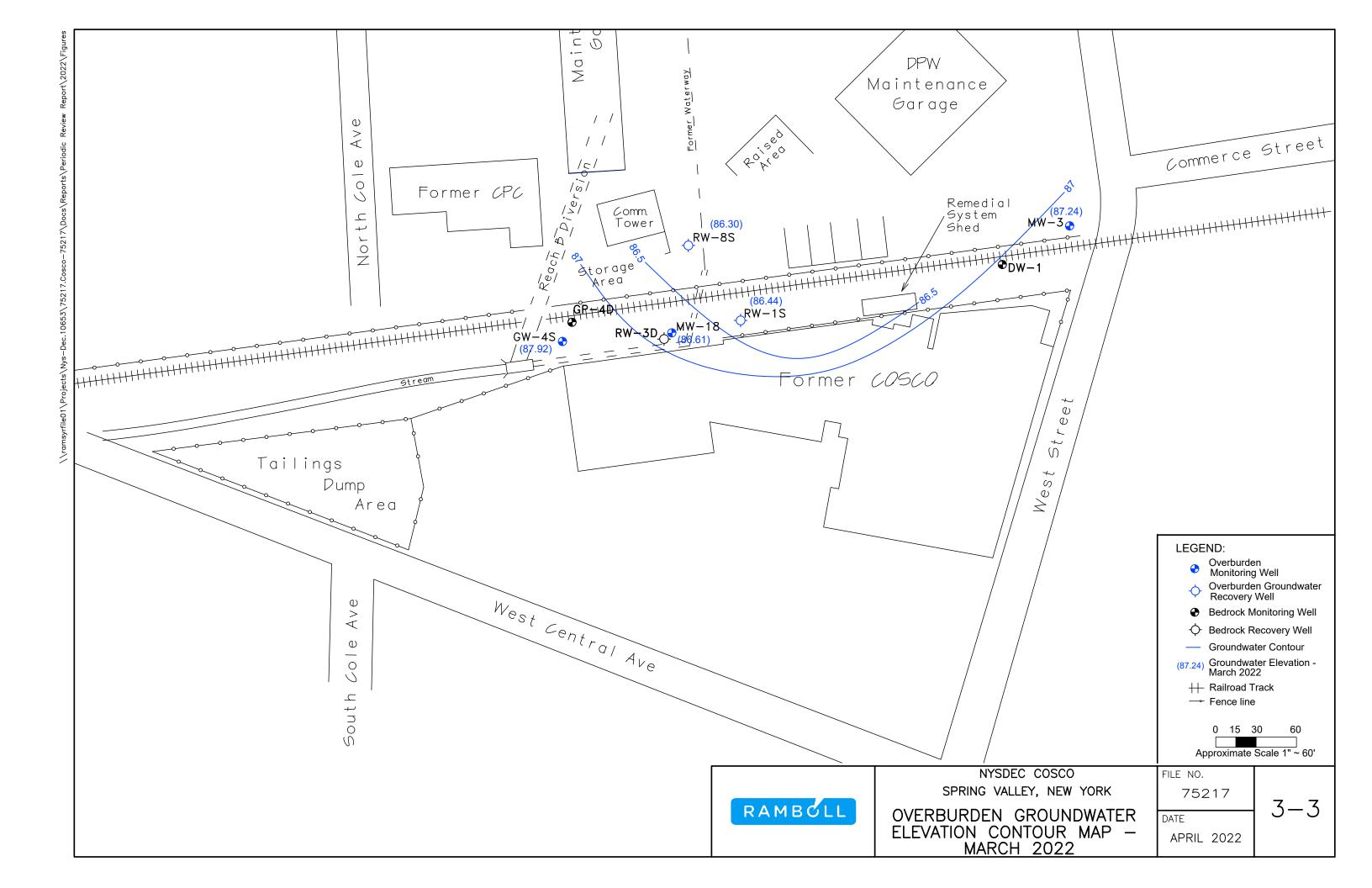
Modified From: Aztech Environmental Technologies,

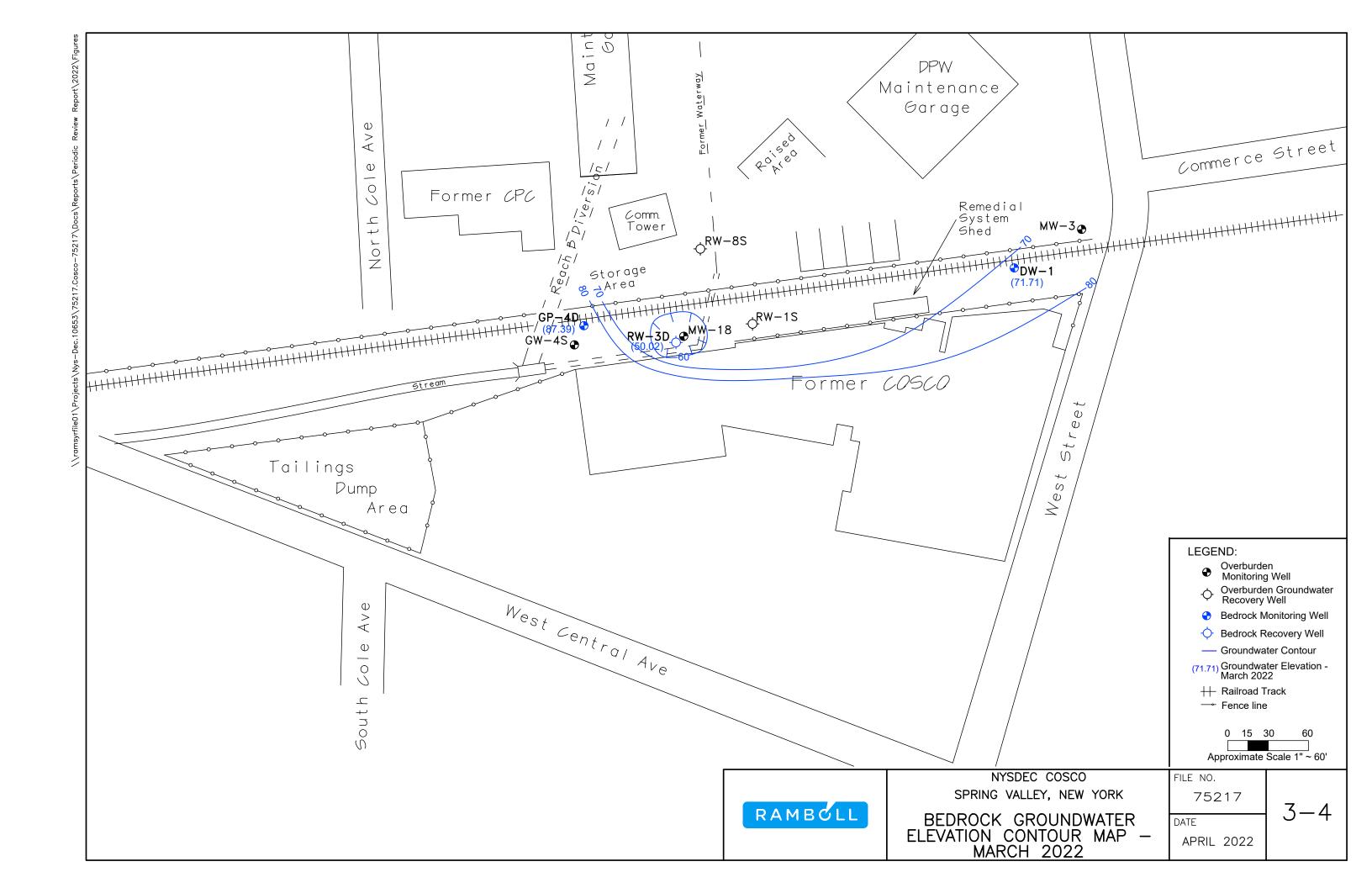
2020.

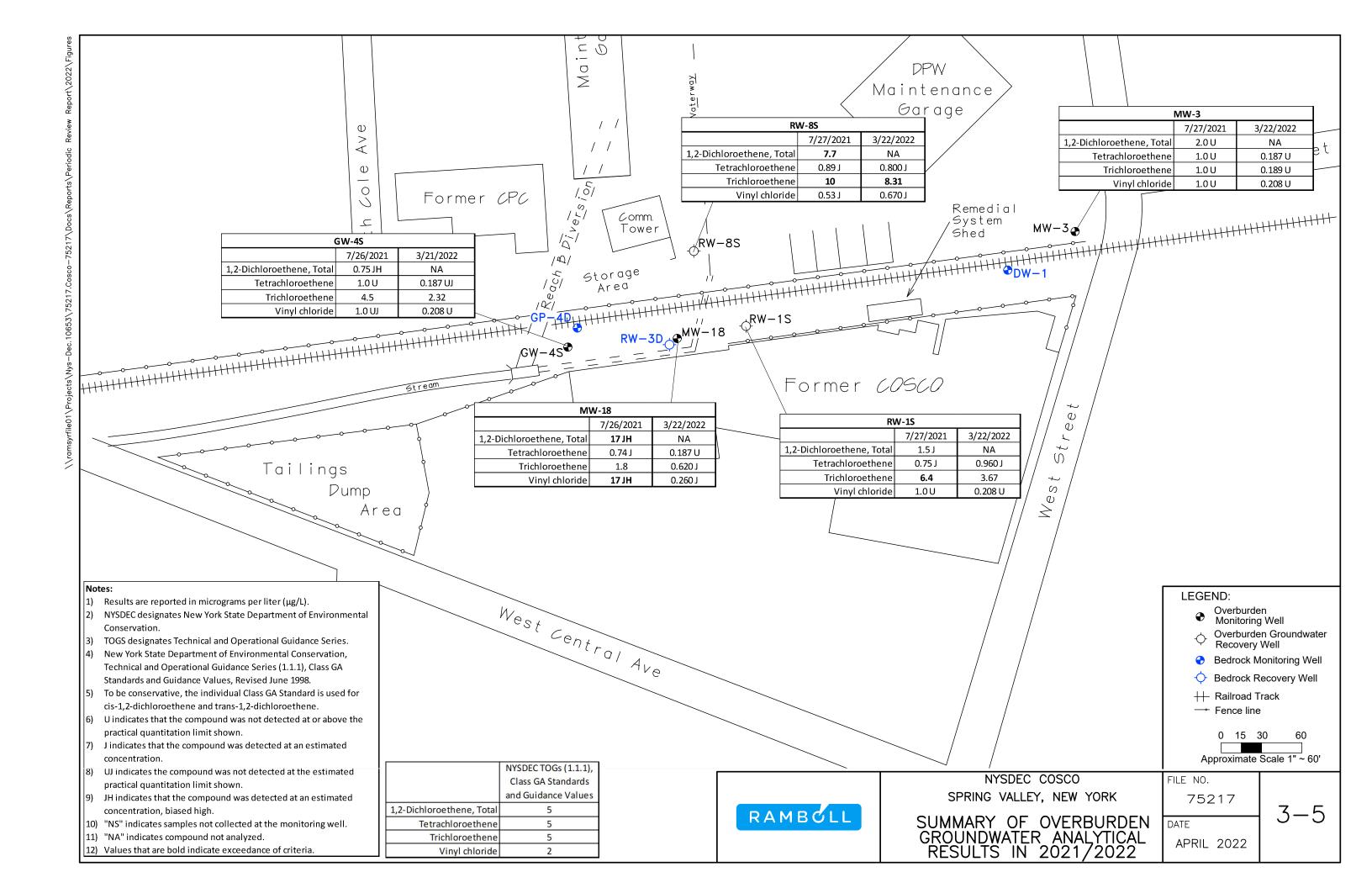

NYSDEC COSCO SITE 15 West Street Spring Valley, New York

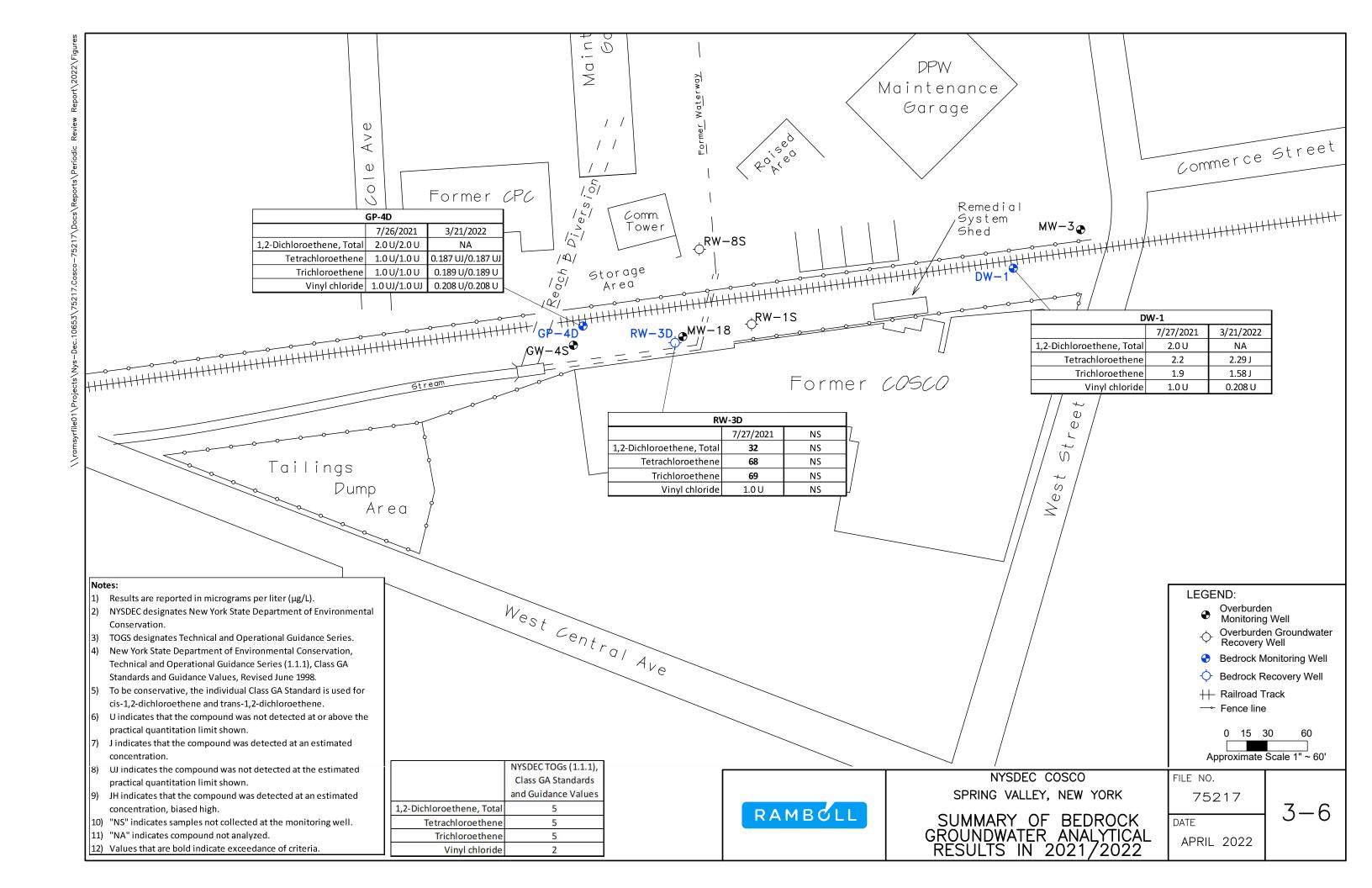

NYSDEC Site ID No. 3-44-035


FIGURE 1-1


Site Location Мар







APPENDICES

APPENDIX A SUMMARY OF SITE HISTORY

Appendix A Summary of Site History

New York State Department of Environmental Conservation (NYSDEC) Consolidated Stamp Company (COSCO) Site (ID No. 3-44-035)

<u>Date</u>	<u>Description</u>
1978	The Rockland County Department of Health (RCDOH) identified tetrachloroethene (PCE), trichloroethene (TCE), dichloroethene (DCE), and 1,1,1-trichloroethane (TCA) in the well field operated by the Spring Valley Water Company. The COSCO Site and Continental Plastic Company (CPC) facility were identified as potential sources to the former Spring Valley Well Field Site (ID No. 3-44-018).
1979	The results of a survey performed by Spring Valley Water Company found that CPC facility was pumping 20 to 30 gallons per minute (gpm) of TCE and PCE contaminated non-contact cooling water into Reach B Diversion. In addition, COSCO facility was using TCE as part of a vapor degreasing process and discharging the rinse water into Reach B Diversion.
1980	Reach B Diversion was diverted away from the former Spring Valley Well Field Site into the West Branch of Pascack Brook.
1987-1990	GHR Engineering Associates, Inc. performed a Remedial Investigation (RI)/Feasibility Study (FS). The RI/FS was performed to evaluate potential source areas for Site-related constituents of concern (COCs) (i.e., PCE, TCE, DCE and vinyl chloride [VC]).
1990	Record of Decision (ROD) issued for the Site in March 1990. The ROD detailed selected remedies to address contamination at the COSCO Site and CPC facility. The selected remedies included:
	 Source area groundwater extraction and treatment by ultraviolet (UV) chemical oxidation and polishing; Source area soil and sediment soil vapor extraction (SVE); and, Capping of the Tailings Dump Area to prevent erosion and disturbance.
1990	The former Spring Valley Well Field Site (ID No. 3-44-018) was delisted in December 1990, and the COSCO Site and CPC facility were listed under the New York State Inactive Hazardous Waste Disposal Site Remedial Program.
1990-1992	Two post-ROD groundwater studies were conducted to evaluate groundwater flow in the bedrock aquifer. The first study was performed in the summer of 1990 by COSCO and Sara Lee Corporation ¹ . The second study, a supplemental RI, was performed in 1992 by COSCO, Sara Lee, and the Spring Valley Water Company.
1997-1998	Pre-design investigation (PDI) performed by Camp Dresser and McKee on behalf of NYSDEC to fill identified gaps and evaluate the appropriateness of the remedial actions recommended in the 1990 ROD. During implementation of the PDI, the Tailings Dump Area asphalt cap was installed that satisfied the capping requirement in the 1990 ROD.
1999	1990 ROD amended in August 1999 based on the results of the PDI. The amended remedies in the 1999 ROD amendment included:
	 No further action for source area soils and sediments;

 1 Sara Lee Corporation previously owned certain assets of the COSCO Site (NYSDEC, 1999).

- Extraction of contaminated overburden and bedrock groundwater in the source area and treatment by chemical oxidation and polishing technologies;
- Completion/repair of the existing asphalt cap over the Tailings Dump Area; and,
- Long-term groundwater monitoring to evaluate the effectiveness of both the groundwater extraction and the Tailings Dump Area.
- 2003 The groundwater extraction and treatment (GWE&T) system placed into operation. The system consists of two overburden recovery wells (RW-1S and RW-8S, now inactive) and one active bedrock recovery well (RW-3D). The GWE&T system included treatment of extracted groundwater via UV light and peroxide oxidation. 2006 On-Site soil vapor intrusion (SVI) evaluation conducted by Environmental Resources Management, Inc. in January 2006. 2008-2009 Off-Site SVI evaluation performed to evaluate the residential and commercial area east of the Site. The off-Site SVI evaluation was performed by AECOM from December 2008 through March 2009. 2010 Additional off-Site SVI evaluation performed in February 2010 to compare the initial results of the samples collected. Based on detected concentrations of PCE and TCE in sub-slab soil vapor at 47 Commerce Street, a sub-slab depressurization system (SSDS) was installed to mitigate the sub-slab vapor intrusion to the property. 2011 GWE&T system design re-evaluated to maximize efficiency, minimize cost, and meet goals of 1999 ROD amendment. Redesign completed in December 2011, replacing UV light and peroxide oxidation treatment with an air stripper.
- A final round of off-Site SVI sampling conducted in March 2012. The final round of off-Site SVI sampling indicated no further action or mitigation was warranted.
- 2020 Ramboll initiates a Remedial System Optimization (RSO) to evaluate the effectiveness of the continued operation of the current GWE&T system contrasted with potential cost-effective remedial alternatives for the Site.

APPENDIX B ANNUAL SITE INSPECTION AND PHOTOGRAPHIC LOG

NYSDEC COSCO SITE INSPECTION PHOTO LOG

Client name: NYSDEC Site location: Spring Valley, NY Project no.: 1940075217.005.016

Photo no. 1

Date: 3/22/2022

Description:

Monitoring well DW-1.

Client name: NYSDEC Site location: Spring Valley, NY Project no.: 1940075217.005.016

Photo no. 2

Date: 3/22/2022

Description:

Monitoring well GP-4D.

Photo no. 3 Date: 3/22/2022

Description:

Monitoring well GW-4S.

Client name: NYSDEC Site location: Spring Valley, NY Project no.: 1940075217.005.016

Photo no. 4 Date: 3/22/2022

Description:

Recovery well RW-3D.

Photo no. 5 Date: 3/22/2022

Description:

Recovery well RW-1S.

Client name: NYSDEC Site location: Spring Valley, NY Project no.: 1940075217.005.016

Photo no. 6 Date: 3/22/2022

Description:

Monitoring well MW-18.

Photo no. 7 Date: 3/22/2022

Description:

Monitoring well MW-3.

Client name: NYSDEC Site location: Spring Valley, NY Project no.: 1940075217.005.016

Photo no. 8 Date: 3/22/2022

Description:

Recovery well RW-8S.

Photo no. 9 Date: 3/22/2022

Description:

Tailings Dump Area cap facing west.

Client name: NYSDEC Site location: Spring Valley, NY Project no.: 1940075217.005.016

Photo no. 10 Date: 3/22/2022

Description:

Tailings Dump Area cap facing east.

Photo no. 11 Date: 3/22/2022

Description:

Tailings Dump Area cap facing north.

Client name: NYSDEC Site location: Spring Valley, NY Project no.: 1940075217.005.016

Photo no. 12 Date: 3/22/2022

Description:

Debris pile near Tailings Dump Area.

Photo no. 13 Date: 3/22/2022

Description:

Site perimeter security fence and entrance gate along eastern edge of Site.

Client name: NYSDEC Site location: Spring Valley, NY Project no.: 1940075217.005.016

Photo no. 14 Date: 3/22/2022

Description:

Security fence in front of north side of COSCO building.

Photo no. 15 Date: 3/22/2022

Description:

Damaged section of perimeter security fence adjacent to COSCO building.

Client name: NYSDEC Site location: Spring Valley, NY Project no.: 1940075217.005.016

Photo no. 16 Date: 3/22/2022

 ${\sf Description:}$

Damaged section of perimeter security fence north of West Central Ave. adjacent to the Tailings Dump Area.

Photo no. 17 Date: 3/22/2022

Description:

Trespasser shelter along railroad tracks on the north side of recovery well RW-3D.

Client name: NYSDEC Site location: Spring Valley, NY Project no.: 1940075217.005.016

Photo no. 18 Date: 3/22/2022

Description:

Trespasser debris pile on west side of recovery well RW-3D.

APPENDIX C GROUNDWATER SAMPLING FIELD FORMS

Groundwater Monitoring Purging and Sampling Form

<u>General</u>	
Well No.: MW-3	
Field Personnel: Charles Bruce, Christopher We	iman
Weather Conditions: 500 Scort	interior in the control of the contr
Physical Condition of Well:	
Equipment used: defeated Spailer.	
Purging Information	
Date: 7/27/21	Measuring Point Elevation: 98.64 ft. amsl
Purging Time: Start: 11:00	Well Diameter: 2.00 in.
Stop: III 30	Total Depth of Well Installed: 16.75 ft. bmp
Volume to be Purged (3 vol.): 2,3 gal.	Total Depth of Well Measured: 17.02 ft. bmp
Volume Purged: gal.	Depth to Water: 13, 28 ft. bmp
Purging Method: Dedicated Bailer	1 Well Volume: 447 X/63 = .77 gal.
Purge Water Disposal Method: Containerize, tra	nsport to, and treat at the remedial shed on-site.
Purge Water Characteristics Color: Dank bown Odor: themical actor Turbidity: high	Presence of NAPL: Slight sheeh Other:
Sampling Information	
Date of Sample Collection: 7/26/21	
Time of Sample Collection:	
Sample Identification: MW-3-022	7.4
Method of Sample Collection: Dedicated Bailer	
Sample Description:	
Containers: 3 x 40ml glass v	oa vials unpreserved
Type of Preservative if any: none, cool 4°C	
Analytical Method Requested: VOCs by USEPA	Nethod 624
	2" well volume multiplier (gallons per foot) = 0.163
<u>Notes</u>	

Groundwater Monitoring Purging and Sampling Form

General				
Well No.: MW-18				
Field Personnel: Charles Bruc	e Christopher We	eiman		
Weather Conditions: 900		Siman.		
Physical Condition of Well:	1001			
Equipment used: Do Lica	Bel Gailer			
Equipment about	por our			
Purging Information				
Date:		Measuring Point Elevation:	99.32	ft. ams
Purging Time: Start:	1430	Well Diameter:	2.00	in.
Stop:	1450	Total Depth of Well Installed:	23	ft. bmp
Volume to be Purged (3 vol.):		Total Depth of Well Measured:	25	ft. bmp
Volume Purged:	7.5 gal.	Depth to Water: ///St		ft. bmp
Purging Method: Dedicated Ba		1 Well Volume: 14.41	X = 2	
		ansport to, and treat at the remedia		
Color: Rele Brown Odor: Stylet organic Turbidity: high		Other:		
Sampling Information				
Date of Sample Collection:	7/26/21			
Time of Sample Collection:	1455			
Sample Identification: MW	-18-072621			
Method of Sample Collection:	Dedicated Bailer			
Sample Description:				
Containers:		oa vials unpreserved		
Type of Preservative if any:	none, cool 4°C			
Analytical Method Requested:	VOCs by USEPA	A Method 624		
		3		
	s per foot) = 0.653	2" well volume multiplier (gallons	per foot) =	0.163
Notes				

Groundwater Monitoring Purging and Sampling Form

COSCO Site Spring Valley, New York

General Well No.: **GW-4S** Field Personnel: Charles Bruce, Christopher Weiman Weather Conditions: 800 Sunny Physical Condition of Well: logiter. Equipment used: Deticutal **Purging Information** Date: 7/26/21 Measuring Point Elevation: 101.49 ft. amsl Start: **Purging Time:** Well Diameter: 4.00 in. Stop: Total Depth of Well Installed: 25 ft. bmp Volume to be Purged (3 vol.): Total Depth of Well Measured: ft. bmp gal. SHE Volume Purged: Depth to Water: ft. bmp gal. Purging Method: Dedicated Bailer 1 Well Volume: X,653 = 1(1,18 gal. Purge Water Disposal Method: Containerize, transport to, and treat at the remedial shed on-site. **Purge Water Characteristics** Color: murker wheat Presence of NAPL: No. Odor: Other: Turbidity: Sampling Information Date of Sample Collection: Time of Sample Collection: Sample Identification: Method of Sample Collection: **Dedicated Bailer** Sample Description: Containers: 3 x 40ml glass voa vials unpreserved Type of Preservative if any: none, cool 4°C Analytical Method Requested: VOCs by USEPA Method 624 4" well volume multiplier (gallons per foot) = 0.653 2" well volume multiplier (gallons per foot) = 0.163 Notes

Groundwater Monitoring Purging and Sampling Form

Well No.: RW-1S	
Field Personnel: Charles Bruce, Christopher W	/eiman
Weather Conditions: 90 + Sun	
Physical Condition of Well:	
Equipment used: Clared Gules	
Purging Information	
Date: 7/27/21	Measuring Point Elevation: 101.00 ft. amsl
Purging Time: Start: 1315	Well Diameter: 4.00 in.
Stop: 1355	Total Depth of Well Installed: 28 ft. bmp
Volume to be Purged (3 vol.): 23.14 gal.	Total Depth of Well Measured: 28.61 ft. bmp
Volume Purged: 25 gal.	Depth to Water: 13.47 ft. bmp
Purging Method: Dedicated Bailer	1 Well Volume: 12.12 X.653 = +653 gal.
Purge Water Disposal Method: Containerize, to	ransport to, and treat at the remedial shed on-site. 7.9
Odor: NON Turbidity: 10N	Other:
Sampling Information	
Date of Sample Collection: 7/27/2/	
Time of Sample Collection:	
Sample Identification: RW-15 - 07272	21
Method of Sample Collection: Dedicated Baile	er
Sample Description:	
Containers: 3 x 40ml glass	voa vials unpreserved
Type of Preservative if any: none, cool 4°C	
Analytical Method Requested: VOCs by USEF	PA Method 624
1 12 12	3 2" well volume multiplier (gallons per foot) = 0.163
<u>Notes</u>	

Groundwater Monitoring Purging and Sampling Form

COSCO Site Spring Valley, New York

General

Well No.: RW-8S	
Field Personnel: Charles Bruce, Christopher We	iman
Weather Conditions: _900+ ,Skno	M
Physical Condition of Well:	
Equipment used:dod rate Pfals	
Purging Information	
Date: 7/21	Measuring Point Elevation: 97.74 ft. amsl
Purging Time: Start: 116	Well Diameter: 4.00 in.
Stop: 1135	Total Depth of Well Installed: 25 ft. bmp
Volume to be Purged (3 vol.): 25,36 gal.	Total Depth of Well Measured: 23,27 ft. bmp
Volume Purged: ~ 26 gal.	Depth to Water: 1(2,77 ft. bmp
Purging Method: Dedicated Bailer	1 Well Volume: 17 15 X 653 = 6,45 gal.
Purge Water Disposal Method: Containerize, tra	nsport to, and treat at the remedial shed on-site.
Color: Color: Color: Turbidity: Color: Color	Presence of NAPL: Other:
Sampling Information Date of Sample Collection: 7/77/71	
Time of Sample Collection:	
Sample Identification: $R(x) = 85 - (777)$	721
Method of Sample Collection: Dedicated Bailer	
Sample Description:	
Containers: 3 x 40ml glass v	oa vials unpreserved
Type of Preservative if any: none, cool 4°C	
Analytical Method Requested: VOCs by USEPA	A Method 624
4" well volume multiplier (gallons per foot) = 0.653	2" well volume multiplier (gallons per foot) = 0.163
Notes	

Groundwater Monitoring Purging and Sampling Form

COSCO Site Spring Valley, New York

General **DW-1** Well No .: Field Personnel: Charles Bruce, Christopher Weiman Weather Conditions: Physical Condition of Well: Equipment used: **Purging Information** Date: 7/77/21 100.12 Measuring Point Elevation: ft. amsl Purging Time: Start: 1315 Well Diameter: 4.00 in. Stop: 1435 Total Depth of Well Installed: 66 ft. bmp Volume to be Purged (3 vol.): Total Depth of Well Measured: ft. bmp Volume Purged: Depth to Water: ft. bmp =24,62 gal. Purging Method: Dedicated Bailer 1 Well Volume: Purge Water Disposal Method: Containerize, transport to, and treat at the remedial shed on-site. **Purge Water Characteristics** Color: Clear Presence of NAPL: Other: Odor: none Turbidity: Sampling Information 7/27/21 Date of Sample Collection: Time of Sample Collection: Sample Identification: 7.67-1-072721 / OW-1-MSD Method of Sample Collection: **Dedicated Bailer** Sample Description: Containers: 3 x 40ml glass voa vials unpreserved Type of Preservative if any: none, cool 4°C VOCs by USEPA Method 624 Analytical Method Requested: 4" well volume multiplier (gallons per foot) = 0.653 2" well volume multiplier (gallons per foot) = 0.163 Notes

Groundwater Monitoring Purging and Sampling Form

General
Well No.: GP-4D Field Personnel: Charles Bruce, Christopher Weiman Weather Conditions: Physical Condition of Well:
Equipment used: <u>dedicated</u> faler
Purging Information
Date: 7/26/21Measuring Point Elevation:100.01ft. amsPurging Time:Start: 1230Well Diameter:2.00inStop: 1405Total Depth of Well Installed:99ft. bmpVolume to be Purged (3 vol.):41gal.Total Depth of Well Measured:78.65ft. bmpVolume Purged:~12gal.Depth to Water:13.36ft. bmpPurging Method:Dedicated Bailer1 Well Volume:85.21X.63 = 13.7cgalPurge Water Disposal Method:Containerize, transport to, and treat at the remedial shed on-site.
Purge Water Characteristics Color: Clear Presence of NAPL: Nove Odor: Nove Turbidity: Very law
Sampling Information T/26/21 Time of Sample Collection: IIID Sample Identification: AP-4D-077671 Dedicated Bailer Sample Description: Containers: 3 x 40ml glass voa vials unpreserved
Type of Preservative if any: none, cool 4°C
Analytical Method Requested: VOCs by USEPA Method 624
4" well volume multiplier (gallons per foot) = 0.653 2" well volume multiplier (gallons per foot) = 0.163 Notes Collected due Control

Groundwater Monitoring Purging and Sampling Form

		•			
G	<u>eneral</u>	ø	8 1		
	Well No.: RW-3D				
561	Field Personnel: Charles Brud	e. Christopher W	eiman @		
	Weather Conditions:				
	Physical Condition of Well:				
	Equipment used: Fine / TC	ilrend Susk	in port		
		3/	V .		
P	urging Information				
	Date: 7/27/21	K	Measuring Point Elevation:	100.54	ft. amsl
	Purging Time: Start:		Well Diameter: 9	6.00	in.
	Stop:		Total Depth of Well Installed:	102.5	ft. bmp
	Volume to be Purged (3 vol.):	gal.	Total Depth of Well Measured:		ft. bmp
	Volume Purged:	gal.	Depth to Water:		ft. bmp
	Purging Method: Dedicated Ba		1 Well Volume:	X =	gal.
	Purge Water Disposal Method:	Containerize, tr	ansport to, and treat at the remedia	al shed on-sit	e.
<u>P</u> ı	Color: Claracteristic Odor: Asha Turbidity: Low	<u>s</u>	Presence of NAPL:Other:	*	
9	impling Information				
30	Date of Sample Collection:	7/27/21			
	Time of Sample Collection:	1040			
	Sample Identification: R(A)		27-1		
	Method of Sample Collection:	Dedicated Baile			
	Sample Description:	Dodiou.ou Duile			
	Containers:	3 x 40ml glass	voa vials unpreserved		
	Type of Preservative if any:	none, cool 4°C	1		
	Analytical Method Requested:	VOCs by USEP	A Method 624		
	•		4.		
	4" well volume multiplier (gallon	s per foot) = 0.653	3 2" well volume multiplier (gallon	s per foot) = (0.163
No	otes				4
			**		

Groundwater Monitoring Purging and Sampling Form

General @ 34412	
Well No.: MW-13 -3	
Field Personnel: SET Weather Conditions: ±45°F , SMn Y	
Physical Condition of Well: Fair	
Equipment used: Dedicated bailer	
Equipment used. Dedicated ballor	
Purging Information	
Date: 3/22/22	Measuring Point Elevation: 98.64 ft. amsl
Purging Time: Start: 0 % 45	Well Diameter: 2.00 in.
Stop: 0355	Total Depth of Well Installed: 16.75 ft. bmp
Volume to be Purged (3 vol.): 2, § 2 gal.	Total Depth of Well Measured: 17.14 ft. bmp
Volume Purged: 2.30 gal.	Depth to Water: 11,40 ft. bmp
Purging Method: Dedicated Bailer	1 Well Volume: 5.74 X 0.163 = 0.94 gal.
Purge Water Disposal Method: Containerize, tra	
Purge Water Characteristics Color: Light Javan Odor: none Turbidity: high	Presence of NAPL: Now Stight Sheen Other:
Sampling Information	
Date of Sample Collection: 3/22/22	
Time of Sample Collection: 0900	
Sample Identification: iNW-3-032222	
Method of Sample Collection: Dedicated Bailer	
Sample Description: Light brown to	mbid slight sheen
	oa vials unpreserved
Type of Preservative if any: none, cool 4°C	
Analytical Method Requested: VOCs by USEP.	A Method 624
	01
4" well volume multiplier (gallons per foot) = 0.653	2" well volume multiplier (gallons per foot) = 0.163
<u>Notes</u>	

Groundwater Monitoring Purging and Sampling Form

<u>General</u>
Well No.: MW-18 Field Personnel: SET Weather Conditions: ±50°F SV04 Physical Condition of Well: Fair Equipment used: Dedicated bailer
Purging Information Date: 3/27/72 Purging Time: Start: 1235 Stop: 13254 Volume to be Purged (3 vol.): 6.03 gal. Volume Purged: 6.00 gal. Purging Method: Dedicated Bailer Purging Method: Containerize, transport to, and treat at the remedial shed on-site.
Purge Water Characteristics Color: Light brown Odor: Start chemica! Turbidity: Moderate high
Date of Sample Collection: Time of Sample Collection: Sample Identification: MW-18-032222 MW-18-032222 MW-18-032222 MW-18-032222 MW-18-032222 MW-18-0322222 MW-18-032222 MW-
Notes * Reging was paused from 1245-1315 due to sik visitor MS/MSD Collected Wheels New bailer

Groundwater Monitoring Purging and Sampling Form

General	
Well No.: Field Personnel: Weather Conditions: Physical Condition of Well: Equipment used: Dedicated bailer	
Purging Information	
Date: 3/21/72 Purging Time: Start: //50 Stop: 1/225 Volume to be Purged (3 vol.): 28.26 gal. Volume Purged: 29 gal. Purging Method: Dedicated Bailer Purge Water Disposal Method: Containerize, tra	Measuring Point Elevation: 101.49 ft. amsl Well Diameter: 4.00 in. Total Depth of Well Installed: 25 ft. bmp Total Depth of Well Measured: 25 ft. bmp Depth to Water: 15 65 ft. bmp 1 Well Volume: 14,43 X 65 = 9,42 gal. Ansport to, and treat at the remedial shed on-site.
Color: pak promo Odor: Turbidity: Anad	Presence of NAPL: Mark
Sampling Information Date of Sample Collection: Time of Sample Collection: Sample Identification: Method of Sample Collection: Sample Description: Containers: 3/21/202 1/230 Dedicated Baile 2	Z
Type of Preservative if any: none, cool 4°C	voa viais uripreserveu
Analytical Method Requested: VOCs by USEP	A Method 624
	3 2" well volume multiplier (gallons per foot) = 0.163
1	

Groundwater Monitoring Purging and Sampling Form

<u>Ge</u>	<u>neral</u>				
	Well No.: Field Personnel: Weather Conditio Physical Conditio		F, sunny		
	Equipment used:				
	Volume Purged:	Start: Stop: ged (3 vol.):	gal.	Measuring Point Elevation: Well Diameter: Total Depth of Well Installed: \$\Total Depth of Well Measured: Depth to Water:	14.50 IL DIIIP
		oosal Method:	Containerize, tr	1 Well Volume: <u>1석 1억</u> ransport to, and treat at the remed	
				Presence of NAPL: Other:	
<u>Sa</u>	mpling Inform Date of Sample O Time of Sample O Sample Identificat Method of Sampl Sample Descripti	Collection: Collection: Ition: <u>R</u> W- e Collection:	3/22/22 1335 15 - 03723 Dedicated Bail		
	Containers: Type of Preserva Analytical Method	tive if any:	none, cool 4°C	voa vials unpreserved PA Method 624	
	4" well volume m tes	ultiplier (gallons	s per foot) = 0.65	53 2" well volume multiplier (gallo	ons per foot) = 0.163

Groundwater Monitoring Purging and Sampling Form

<u>General</u>			
Well No.: RW-8S		<u> </u>	
	24		
	950 3420		
Weather Conditions:			
Physical Condition of Well:	far		
Equipment used: Dedicate	d baller		
Purging Information			
Date: 03/22/2020		Measuring Point Elevation;	97.74 ft. amsl
	art: 8'45 CD	Well Diameter:	4.00 in.
	top: 9:20 910	Total Depth of Well Installed:	25 ft. bmp
Volume to be Purged (3 vol		Total Depth of Well Measured:	23.03 (50ft)ft. bmp
Volume Purged: 23		Depth to Water: 11.44	ft. bmp
Purging Method: Dedicate		1 Well Volume: 28 1/.59	X.655 = 7.56 gal.
Purge Water Disposal Meth	od: Containerize, tran	sport to, and treat at the remedi	al shed on-site.
. a.goa.op.com	g	•	
Purge Water Characteris	stics		
Color: Brown		Presence of NAPL: 120-2	
Odor: nove		Other:	
Turbidity: 6.4		•	
			ē
Ven 12 12 12 12 12 12 12 12 12 12 12 12 12			
Sampling Information			
Date of Sample Collection:	03/77/22		
Time of Sample Collection:			
	RU-85-032222		
Method of Sample Collection			
Sample Description:	light brown		
Containers:		a vials unpreserved	
Type of Preservative if any			
Analytical Method Request	ed: VOCs by USEPA	Method 624	
			. (4) - 0.400
4" well volume multiplier (g	allons per foot) = 0.653	2" well volume multiplier (gallor	ns per foot) = 0.163
Notes			
-			

Groundwater Monitoring Purging and Sampling Form

General	
Well No.: DW-1	
Field Personnel: (FT + CDW	
Weather Conditions: #550F, Sunny	
Physical Condition of Well:	
Equipment used: Dedicated bailer	
Purging Information	
Date: 3-21-22	Measuring Point Elevation: 100.12 ft. amsl
Purging Time: Start: 1430	Well Diameter: 4.00 in.
Stop: 1520	Total Depth of Well Installed: 66 ft. bmp
Volume to be Purged (3 vol.): 69.57 gal.	Total Depth of Well Measured: 64.04 ft. bmp
Volume Purged: 69.50 gal.	Depth to Water: 28.57 ft. bmp
Purging Method: Dedicated Bailer	1 Well Volume: 35.52 X0.653 = 23.19 gal.
Purge Water Disposal Method: Containerize, tra	ansport to, and treat at the remedial shed on-site.
week Albertee and Albertee to a	
Purge Water Characteristics Color: Clear, slightly Cloudy Odor: None Turbidity: 1000	Presence of NAPL:OvulOther:
Sampling Information Date of Sample Collection: Time of Sample Collection: Sample Identification: Dw-1-032122	
Method of Sample Collection: Dedicated Baile	ir
Sample Description:	
	voa vials unpreserved
Type of Preservative if any: none, cool 4°C	
Analytical Method Requested: VOCs by USEP	A Method 624
	3 2" well volume multiplier (gallons per foot) = 0.163
Notes	

Groundwater Monitoring Purging and Sampling Form

General
Well No.: Field Personnel: Weather Conditions: Physical Condition of Well: Equipment used: Dedicated bailer
Purging Information Date: 3 2 2 2
Purge Water Characteristics Color: Claracteristics Odor: Nove Other: Turbidity: 10 J
Date of Sample Collection: Time of Sample Collection: Sample Identification: O - UD - O - O - O - O - O - O - O - O - O -

Groundwater Monitoring Purging and Sampling Form

General	
Well No.: RW-3D	
Field Personnel: SET + CDW	
Weather Conditions: \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
Physical Condition of Well:	in well
Equipment used: Dedicated bailer	
· ·	
Purging Information	
Date: 3/22/22	Measuring Point Elevation: 100.54 ft. amsl
Purging Time: Start:	Well Diameter: 6.00 in.
Stop:	Total Depth of Well Installed: 102.5 ft. bmp
Volume to be Purged (3 vol.): 78.70 gal.	Total Depth of Well Measured: 100.94 ft. bmp
Volume Purged: gal.	Depth to Water:
Purging Method: Dedicated Bailer	1 Well Volume: 50.42 X 0.653= 32.92gal.
Purge Water Disposal Method: Containerize, tra	ansport to, and treat at the remedial shed on-site.
Purge Water Characteristics	
Color:	Presence of NAPL:
Odor:	Other:
Turbidity:	
Sampling Information	
Date of Sample Collection:	
Time of Sample Collection:	
Sample Identification:	
Method of Sample Collection: Dedicated Baile	r
Sample Description:	
	oa vials unpreserved
Type of Preservative if any: none, cool 4°C	
Analytical Method Requested: VOCs by USEP	A Method 624
4" well volume multiplier (gallons per foot) = 0.653	3 2" well volume multiplier (gallons per foot) = 0.163
Notes	
Do not collect DTB in the	the > will get stuck
	O -
well not ourged due to	pump in well.
intell and sounded front	tim ong)

APPENDIX D SUMMARY OF LABORATORY ANALYTICAL RESULTS

Client: New York State D.E.C. Job ID: 480-187661-1 Project/Site: COSCO #344035

Client Sample ID: GW-4S-072621

Lab Sample ID: 480-187661-1

Date Collected: 07/26/21 14:00 **Matrix: Water** Date Received: 07/27/21 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			07/29/21 16:22	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			07/29/21 16:22	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			07/29/21 16:22	1
1,1-Dichloroethane	ND	UJ VJM 4/26/22	1.0	0.26	ug/L			07/29/21 16:22	1
1,1-Dichloroethene	ND	- /	1.0	0.12	ug/L			07/29/21 16:22	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			07/29/21 16:22	1
1,2-Dichloroethane	ND	UJ VJM 4/26	1.0	0.84	ug/L			07/29/21 16:22	1
1,2-Dichloroethene, Total	0.75		2.0	0.44	ug/L			07/29/21 16:22	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			07/29/21 16:22	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			07/29/21 16:22	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			07/29/21 16:22	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			07/29/21 16:22	1
Acrolein	ND		4.0	1.1	ug/L			07/29/21 16:22	1
Acrylonitrile	ND		2.0	0.77	ug/L			07/29/21 16:22	1
Benzene	ND		1.0	0.43	ug/L			07/29/21 16:22	1
Bromoform	ND		1.0	0.54	ug/L			07/29/21 16:22	1
Bromomethane	ND	UJ VJM 4/26/22	1.0	0.45	ug/L			07/29/21 16:22	1
Carbon tetrachloride	ND	- 1	1.0	0.21	ug/L			07/29/21 16:22	1
Chlorobenzene	ND		1.0	0.38	ug/L			07/29/21 16:22	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			07/29/21 16:22	1
Chloroethane	ND	UJ	1.0	0.32	ug/L			07/29/21 16:22	1
Chloroform	ND	UJ VJM _{4/26/22}	1.0	0.33	ug/L			07/29/21 16:22	1
Chloromethane	ND	UJ	1.0	0.43	ug/L			07/29/21 16:22	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			07/29/21 16:22	1
Bromodichloromethane	ND		1.0	0.34	ug/L			07/29/21 16:22	1
Ethylbenzene	ND		1.0	0.30	ug/L			07/29/21 16:22	1
Methylene Chloride	ND		1.0	0.32	ug/L			07/29/21 16:22	1
Tetrachloroethene	ND		1.0	0.25	ug/L			07/29/21 16:22	1
Toluene	ND		1.0	0.38	ug/L			07/29/21 16:22	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			07/29/21 16:22	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			07/29/21 16:22	1
Trichloroethene	4.5		1.0	0.31	ug/L			07/29/21 16:22	1
Vinyl chloride	ND	UJ VJW 4/26/22	1.0	0.34	ug/L			07/29/21 16:22	1
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	133		60 - 140					07/29/21 16:22	1
4-Bromofluorobenzene	95		60 - 140					07/29/21 16:22	1
Toluene-d8 (Surr)	102		60 - 140					07/29/21 16:22	1
Dibromofluoromethane (Surr)	116		60 - 140					07/29/21 16:22	1

Client Sample ID: GP-4D-072621

Lab Sample ID: 480-187661-2 Date Collected: 07/26/21 14:10 **Matrix: Water**

Date Received: 07/27/21 10:00

Method: 624.1 - Volatile Organic Compounds (GC/MS)									
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,1,1-Trichloroethane	ND —	1.0	0.24	ug/L			07/29/21 16:45	1	
1,1,2,2-Tetrachloroethane	ND	1.0	0.37	ug/L			07/29/21 16:45	1	
1,1,2-Trichloroethane	ND	1.0	0.15	ug/L			07/29/21 16:45	1	
1,1-Dichloroethane	ND UJ VS/ 4/26/22	1.0	0.26	ug/L			07/29/21 16:45	1	

Eurofins TestAmerica, Buffalo

07/30/2021

Page 8 of 397

Client: New York State D.E.C. Job ID: 480-187661-1 Project/Site: COSCO #344035

Client Sample ID: GP-4D-072621

Date Received: 07/27/21 10:00

Lab Sample ID: 480-187661-2 Date Collected: 07/26/21 14:10

Matrix: Water

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.0	0.12	ug/L			07/29/21 16:45	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			07/29/21 16:45	1
1,2-Dichloroethane	ND	UJ VJ/ 4/26/22	1.0	0.84	ug/L			07/29/21 16:45	1
1,2-Dichloroethene, Total	ND	.0 4/26/22	2.0	0.44	ug/L			07/29/21 16:45	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			07/29/21 16:45	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			07/29/21 16:45	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			07/29/21 16:45	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			07/29/21 16:45	1
Acrolein	ND		4.0	1.1	ug/L			07/29/21 16:45	1
Acrylonitrile	ND		2.0	0.77	ug/L			07/29/21 16:45	1
Benzene	ND		1.0	0.43	ug/L			07/29/21 16:45	1
Bromoform	ND		1.0	0.54	ug/L			07/29/21 16:45	1
Bromomethane	ND	UJ VJM 4/26/2	1.0	0.45	ug/L			07/29/21 16:45	1
Carbon tetrachloride	ND	9	1.0	0.21	ug/L			07/29/21 16:45	1
Chlorobenzene	ND		1.0	0.38	ug/L			07/29/21 16:45	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			07/29/21 16:45	1
Chloroethane	ND	UJ	1.0	0.32	ug/L			07/29/21 16:45	1
Chloroform	ND	UJ V-Musasa	1.0	0.33	ug/L			07/29/21 16:45	1
Chloromethane	ND	UJ VJ2VJ4/26/22	1.0	0.43	ug/L			07/29/21 16:45	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			07/29/21 16:45	1
Bromodichloromethane	ND		1.0	0.34	ug/L			07/29/21 16:45	1
Ethylbenzene	ND		1.0	0.30	ug/L			07/29/21 16:45	1
Methylene Chloride	ND		1.0	0.32	ug/L			07/29/21 16:45	1
Tetrachloroethene	ND		1.0	0.25	ug/L			07/29/21 16:45	1
Toluene	ND		1.0	0.38	ug/L			07/29/21 16:45	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			07/29/21 16:45	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			07/29/21 16:45	1
Trichloroethene	ND		1.0	0.31	ug/L			07/29/21 16:45	1
Vinyl chloride	ND	UJ /J/ 4/26/22	1.0	0.34	ug/L			07/29/21 16:45	1
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	132		60 - 140					07/29/21 16:45	1
4-Bromofluorobenzene	88		60 - 140					07/29/21 16:45	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	132		60 - 140		07/29/21 16:45	1
4-Bromofluorobenzene	88		60 - 140		07/29/21 16:45	1
Toluene-d8 (Surr)	100		60 - 140		07/29/21 16:45	1
Dibromofluoromethane (Surr)	115		60 - 140		07/29/21 16:45	1

Client Sample ID: MW-18-072621

Date Collected: 07/26/21 14:55 Date Received: 07/27/21 10:00

Lab Sample ID: 480-187661-3

Matrix: Water

Method: 624.1 - Volatile O	ganic Compounds (G	C/MS)
----------------------------	--------------------	-------

Welliou. 624.1 - Volatile Orga	anic Compou	nus (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			07/29/21 17:07	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			07/29/21 17:07	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			07/29/21 17:07	1
1,1-Dichloroethane	ND	UJ VAMAIZEIZZ	1.0	0.26	ug/L			07/29/21 17:07	1
1,1-Dichloroethene	ND	0 4/20/22	1.0	0.12	ug/L			07/29/21 17:07	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			07/29/21 17:07	1
1,2-Dichloroethane	ND	UJ	1.0	0.84	ug/L			07/29/21 17:07	1
1,2-Dichloroethene, Total	17	JH 1/7/1/4/26/22	2.0	0.44	ug/L			07/29/21 17:07	1
	Analyte 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichlorobenzene 1,2-Dichloroethane	Analyte Result 1,1,1-Trichloroethane ND 1,1,2,2-Tetrachloroethane ND 1,1,2-Trichloroethane ND 1,1-Dichloroethane ND 1,1-Dichloroethene ND 1,2-Dichlorobenzene ND 1,2-Dichloroethane ND	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichlorobenzene 1,2-Dichloroethane ND UJ VM 4/26/22 ND UJ VM 4/26/22	Analyte Result Qualifier RL 1,1,1-Trichloroethane ND 1.0 1,1,2,2-Tetrachloroethane ND 1.0 1,1,2-Trichloroethane ND 1.0 1,1-Dichloroethane ND UJ 1,1-Dichloroethane ND 1.0 1,2-Dichlorobenzene ND 1.0 1,2-Dichloroethane ND UJ	Analyte Result 1,1,1-Trichloroethane Qualifier RL MDL 1.0 MDL 0.24 1,1,1-Trichloroethane ND 1.0 0.24 1,1,2,2-Tetrachloroethane ND 1.0 0.37 1,1,2-Trichloroethane ND UJ 1.0 0.15 1,1-Dichloroethane ND UJ 1.0 0.26 1,1-Dichloroethane ND 1.0 0.12 1,2-Dichlorobenzene ND UJ 1.0 0.84 1,2-Dichloroethane ND UJ 1.0 0.84	Analyte Result Qualifier RL MDL Unit 1,1,1-Trichloroethane ND 1.0 0.24 ug/L 1,1,2,2-Tetrachloroethane ND 1.0 0.37 ug/L 1,1,2-Trichloroethane ND 1.0 0.15 ug/L 1,1-Dichloroethane ND UJ 1.0 0.26 ug/L 1,1-Dichloroethane ND 1.0 0.12 ug/L 1,2-Dichlorobenzene ND UJ 1.0 0.84 ug/L 1,2-Dichloroethane ND UJ 1.0 0.84 ug/L	Analyte Result 1,1,1-Trichloroethane Qualifier RL MDL ug/L Unit D 1,1,1-Trichloroethane ND 1.0 0.24 ug/L ug/L 1,1,2,2-Tetrachloroethane ND 1.0 0.37 ug/L 1,1,2-Trichloroethane ND 1.0 0.15 ug/L 1,1-Dichloroethane ND 1.0 0.26 ug/L 1,1-Dichloroethane ND 1.0 0.12 ug/L 1,2-Dichlorobenzene ND 1.0 0.19 ug/L 1,2-Dichloroethane ND UJ 1.0 0.84 ug/L 1,2-Dichloroethane ND UJ 1.0 0.84 ug/L 1,2-Dichloroethane 1.0 1,2-Dichloroethane 1.0 0.84 ug/L 1,2-Dichloroethane 1.0 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-D	Analyte Result 1,1,1-Trichloroethane Qualifier RL MDL ug/L Unit D Prepared 1,1,1-Trichloroethane ND 1.0 0.24 ug/L ug/L 1.1,1,2,2-Tetrachloroethane ND 1.0 0.37 ug/L 1.0 1.0 0.15 ug/L 1.1,1-Dichloroethane ND 1.0 0.26 ug/L 1.1,1-Dichloroethane ND 1.0 0.12 ug/L 1.1,1-Dichloroethane ND 1.0 0.12 ug/L 1.0 0.12 ug/L 1.0 0.12 ug/L 1.0 0.12 ug/L 1.0 0.14 ug/L 1.0 0.84 ug/L 1.0	Analyte Result Qualifier RL MDL Unit D Prepared Analyzed 1,1,1-Trichloroethane ND 1.0 0.24 ug/L 07/29/21 17:07 1,1,2,2-Tetrachloroethane ND 1.0 0.37 ug/L 07/29/21 17:07 1,1,2-Trichloroethane ND 1.0 0.15 ug/L 07/29/21 17:07 1,1-Dichloroethane ND 1.0 0.26 ug/L 07/29/21 17:07 1,2-Dichlorobenzene ND 1.0 0.19 ug/L 07/29/21 17:07 1,2-Dichloroethane ND 1.0 0.84 ug/L 07/29/21 17:07 1,2-Dichloroethane ND 1.0 0.84 ug/L 07/29/21 17:07

Eurofins TestAmerica, Buffalo

Page 9 of 397

Client: New York State D.E.C. Job ID: 480-187661-1 Project/Site: COSCO #344035

Client Sample ID: MW-18-072621

Lab Sample ID: 480-187661-3 Date Collected: 07/26/21 14:55

Matrix: Water

Date Received: 07/27/21 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND		1.0	0.35	ug/L			07/29/21 17:07	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			07/29/21 17:07	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			07/29/21 17:07	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			07/29/21 17:07	1
Acrolein	ND		4.0	1.1	ug/L			07/29/21 17:07	1
Acrylonitrile	ND		2.0	0.77	ug/L			07/29/21 17:07	1
Benzene	ND		1.0	0.43	ug/L			07/29/21 17:07	1
Bromoform	ND		1.0	0.54	ug/L			07/29/21 17:07	1
Bromomethane	ND	UJ VJM4/26/22	1.0	0.45	ug/L			07/29/21 17:07	1
Carbon tetrachloride	ND	10 1120/22	1.0	0.21	ug/L			07/29/21 17:07	1
Chlorobenzene	ND		1.0	0.38	ug/L			07/29/21 17:07	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			07/29/21 17:07	1
Chloroethane	ND	UJ	1.0	0.32	ug/L			07/29/21 17:07	1
Chloroform	ND	UJ VYM	1.0	0.33	ug/L			07/29/21 17:07	1
Chloromethane	ND	UJ ** 1 4/26/22	1.0	0.43	ug/L			07/29/21 17:07	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			07/29/21 17:07	1
Bromodichloromethane	ND		1.0	0.34	ug/L			07/29/21 17:07	1
Ethylbenzene	ND		1.0	0.30	ug/L			07/29/21 17:07	1
Methylene Chloride	ND		1.0	0.32	ug/L			07/29/21 17:07	1
Tetrachloroethene	0.74	J	1.0	0.25	ug/L			07/29/21 17:07	1
Toluene	ND		1.0	0.38	ug/L			07/29/21 17:07	1
trans-1,2-Dichloroethene	0.33	→ JH / M _{4/26/22}	1.0	0.24	ug/L			07/29/21 17:07	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			07/29/21 17:07	1
Trichloroethene	1.8		1.0	0.31	ug/L			07/29/21 17:07	1
Vinyl chloride	17	JH VJM 4/26/22	1.0	0.34	ug/L			07/29/21 17:07	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	DII Fac
1,2-Dichloroethane-d4 (Surr)	151	S1+	60 - 140		07/29/21 17:07	1
4-Bromofluorobenzene	106		60 - 140		07/29/21 17:07	1
Toluene-d8 (Surr)	116		60 - 140		07/29/21 17:07	1
Dibromofluoromethane (Surr)	135		60 - 140		07/29/21 17:07	1

Client Sample ID: DUP-1-072621

Lab Sample ID: 480-187661-4 Date Collected: 07/26/21 00:00 **Matrix: Water**

Date Received: 07/27/21 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			07/29/21 17:30	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			07/29/21 17:30	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			07/29/21 17:30	1
1,1-Dichloroethane	ND	UJ VJM 4/26/22	1.0	0.26	ug/L			07/29/21 17:30	1
1,1-Dichloroethene	ND	VU: 1 4/26/22	1.0	0.12	ug/L			07/29/21 17:30	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			07/29/21 17:30	1
1,2-Dichloroethane	ND	UJ VJ 4/26/22	1.0	0.84	ug/L			07/29/21 17:30	1
1,2-Dichloroethene, Total	ND	V ()* 1/ 4/20/22	2.0	0.44	ug/L			07/29/21 17:30	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			07/29/21 17:30	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			07/29/21 17:30	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			07/29/21 17:30	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			07/29/21 17:30	1

Eurofins TestAmerica, Buffalo

Page 10 of 397

Client: New York State D.E.C. Job ID: 480-187661-1 Project/Site: COSCO #344035

Client Sample ID: DUP-1-072621

Lab Sample ID: 480-187661-4 Date Collected: 07/26/21 00:00

Matrix: Water

Date Received: 07/27/21 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acrolein	ND		4.0	1.1	ug/L			07/29/21 17:30	1
Acrylonitrile	ND		2.0	0.77	ug/L			07/29/21 17:30	1
Benzene	ND		1.0	0.43	ug/L			07/29/21 17:30	1
Bromoform	ND		1.0	0.54	ug/L			07/29/21 17:30	1
Bromomethane	ND	UJ Velu	1.0	0.45	ug/L			07/29/21 17:30	1
Carbon tetrachloride	ND	VJ/V 4/26/22	1.0	0.21	ug/L			07/29/21 17:30	1
Chlorobenzene	ND		1.0	0.38	ug/L			07/29/21 17:30	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			07/29/21 17:30	1
Chloroethane	ND	UJ	1.0	0.32	ug/L			07/29/21 17:30	1
Chloroform	ND	UJ VAN WOOM	1.0	0.33	ug/L			07/29/21 17:30	1
Chloromethane	ND	UJ 1/26/2	1.0	0.43	ug/L			07/29/21 17:30	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			07/29/21 17:30	1
Bromodichloromethane	ND		1.0	0.34	ug/L			07/29/21 17:30	1
Ethylbenzene	ND		1.0	0.30	ug/L			07/29/21 17:30	1
Methylene Chloride	ND		1.0	0.32	ug/L			07/29/21 17:30	1
Tetrachloroethene	ND		1.0	0.25	ug/L			07/29/21 17:30	1
Toluene	ND		1.0	0.38	ug/L			07/29/21 17:30	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			07/29/21 17:30	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			07/29/21 17:30	1
Trichloroethene	ND		1.0	0.31	ug/L			07/29/21 17:30	1
Vinyl chloride	ND	UJ VJM 4/26/22	1.0	0.34	ug/L			07/29/21 17:30	1
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	133		60 - 140			-		07/29/21 17:30	1
4-Bromofluorobenzene	95		60 - 140					07/29/21 17:30	1
Toluene-d8 (Surr)	102		60 - 140					07/29/21 17:30	1
Dibromofluoromethane (Surr)	119		60 - 140					07/29/21 17:30	1

Client Sample ID: TRIP BLANK 072621

Date Collected: 07/26/21 00:00

Lab Sample ID: 480-187661-5

Matrix: Water Date Received: 07/27/21 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			07/29/21 16:00	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			07/29/21 16:00	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			07/29/21 16:00	1
1,1-Dichloroethane	ND	UJ VJM 4/26/22	1.0	0.26	ug/L			07/29/21 16:00	1
1,1-Dichloroethene	ND	10 4/20/22	1.0	0.12	ug/L			07/29/21 16:00	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			07/29/21 16:00	1
1,2-Dichloroethane	ND	UJ A	1.0	0.84	ug/L			07/29/21 16:00	1
1,2-Dichloroethene, Total	ND	VJM 4/26/22	2.0	0.44	ug/L			07/29/21 16:00	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			07/29/21 16:00	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			07/29/21 16:00	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			07/29/21 16:00	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			07/29/21 16:00	1
Acrolein	ND		4.0	1.1	ug/L			07/29/21 16:00	1
Acrylonitrile	ND		2.0	0.77	ug/L			07/29/21 16:00	1
Benzene	ND		1.0	0.43	ug/L			07/29/21 16:00	1
Bromoform	ND		1.0	0.54	ug/L			07/29/21 16:00	1

Eurofins TestAmerica, Buffalo

Page 11 of 397

Client: New York State D.E.C. Job ID: 480-187661-1 Project/Site: COSCO #344035

Client Sample ID: TRIP BLANK 072621

Lab Sample ID: 480-187661-5 Date Collected: 07/26/21 00:00 **Matrix: Water**

Date Received: 07/27/21 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromomethane	ND	UJ VJ 4/26/22	1.0	0.45	ug/L			07/29/21 16:00	1
Carbon tetrachloride	ND	10 4/26/22	1.0	0.21	ug/L			07/29/21 16:00	1
Chlorobenzene	ND		1.0	0.38	ug/L			07/29/21 16:00	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			07/29/21 16:00	1
Chloroethane	ND	UJ	1.0	0.32	ug/L			07/29/21 16:00	1
Chloroform	ND	UJ √JM _{4/26/22}	1.0	0.33	ug/L			07/29/21 16:00	1
Chloromethane	ND	UJ	1.0	0.43	ug/L			07/29/21 16:00	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			07/29/21 16:00	1
Bromodichloromethane	ND		1.0	0.34	ug/L			07/29/21 16:00	1
Ethylbenzene	ND		1.0	0.30	ug/L			07/29/21 16:00	1
Methylene Chloride	ND		1.0	0.32	ug/L			07/29/21 16:00	1
Tetrachloroethene	ND		1.0	0.25	ug/L			07/29/21 16:00	1
Toluene	ND		1.0	0.38	ug/L			07/29/21 16:00	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			07/29/21 16:00	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			07/29/21 16:00	1
Trichloroethene	ND		1.0	0.31	ug/L			07/29/21 16:00	1
Vinyl chloride	ND	UJ /J/ 4/26/22	1.0	0.34	ug/L			07/29/21 16:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	124		60 - 140			·		07/29/21 16:00	1
4-Bromofluorobenzene	86		60 - 140					07/29/21 16:00	1
Toluene-d8 (Surr)	96		60 - 140					07/29/21 16:00	1
Dibromofluoromethane (Surr)	110		60 - 140					07/29/21 16:00	1

Client: New York State D.E.C. Job ID: 460-239698-1 Project/Site: COSCO #344035

Client Sample ID: MW-3-072721

Lab Sample ID: 460-239698-1

Date Collected: 07/27/21 11:35 **Matrix: Water** Date Received: 07/28/21 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L		-	07/29/21 04:29	1
1,1,2,2-Tetrachloroethane	ND	UJ VJW 4/26/2	1.0	0.37	ug/L			07/29/21 04:29	1
1,1,2-Trichloroethane	ND	·	1.0	0.15	ug/L			07/29/21 04:29	1
1,1-Dichloroethane	ND		1.0	0.26	ug/L			07/29/21 04:29	1
1,1-Dichloroethene	ND	UJ VJ/ 4/26/2	1.0	0.12	ug/L			07/29/21 04:29	1
1,2-Dichlorobenzene	ND	10 4/20/2	1.0	0.19	ug/L			07/29/21 04:29	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			07/29/21 04:29	1
1,2-Dichloroethene, Total	ND		2.0	0.44	ug/L			07/29/21 04:29	1
1,2-Dichloropropane	ND	UJ VJM _{4/26/}	1.0	0.35	ug/L			07/29/21 04:29	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			07/29/21 04:29	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			07/29/21 04:29	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			07/29/21 04:29	1
Acrolein	ND		4.0	1.1	ug/L			07/29/21 04:29	1
Acrylonitrile	ND		2.0	0.77	ug/L			07/29/21 04:29	1
Benzene	ND		1.0	0.43	ug/L			07/29/21 04:29	1
Bromoform	ND		1.0	0.54	ug/L			07/29/21 04:29	1
Bromomethane	ND		1.0	0.45	ug/L			07/29/21 04:29	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			07/29/21 04:29	1
Chlorobenzene	ND		1.0	0.38	ug/L			07/29/21 04:29	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			07/29/21 04:29	1
Chloroethane	ND		1.0	0.32	ug/L			07/29/21 04:29	1
Chloroform	ND		1.0	0.33	ug/L			07/29/21 04:29	1
Chloromethane	ND		1.0	0.43	ug/L			07/29/21 04:29	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			07/29/21 04:29	1
Bromodichloromethane	ND	UJ VTM 4/26/2	1.0	0.34	ug/L			07/29/21 04:29	1
Ethylbenzene	ND	4/26/2	² 1.0	0.30	ug/L			07/29/21 04:29	1
Methylene Chloride	ND		1.0	0.32	ug/L			07/29/21 04:29	1
Tetrachloroethene	ND		1.0	0.25	ug/L			07/29/21 04:29	1
Toluene	ND		1.0	0.38	ug/L			07/29/21 04:29	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			07/29/21 04:29	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			07/29/21 04:29	1
Trichloroethene	ND		1.0		ug/L			07/29/21 04:29	1
Vinyl chloride	ND		1.0	0.34	ug/L			07/29/21 04:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		60 - 140			-		07/29/21 04:29	1
4-Bromofluorobenzene	92		60 - 140					07/29/21 04:29	1
Toluene-d8 (Surr)	101		60 - 140					07/29/21 04:29	1
Dibromofluoromethane (Surr)	96		60 - 140					07/29/21 04:29	1

Client Sample ID: RW-8S-072721

Date Collected: 07/27/21 11:40

Date Received: 07/28/21 10:00

Method: 624.1 - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			07/29/21 04:52	1
1,1,2,2-Tetrachloroethane	ND	UJ VJM 4/26/22	1.0	0.37	ug/L			07/29/21 04:52	1
1,1,2-Trichloroethane	ND	I	1.0	0.15	ug/L			07/29/21 04:52	1
1,1-Dichloroethane	ND		1.0	0.26	ug/L			07/29/21 04:52	1

Eurofins TestAmerica, Edison

07/30/2021

Lab Sample ID: 460-239698-2

Matrix: Water

Page 8 of 391

Client: New York State D.E.C. Job ID: 460-239698-1 Project/Site: COSCO #344035

Client Sample ID: RW-8S-072721

Lab Sample ID: 460-239698-2 Date Collected: 07/27/21 11:40

Matrix: Water

Date Received: 07/28/21 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND	UJ VJM 4/26/22	1.0	0.12	ug/L			07/29/21 04:52	1
1,2-Dichlorobenzene	ND	0 4/26/22	1.0	0.19	ug/L			07/29/21 04:52	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			07/29/21 04:52	1
1,2-Dichloroethene, Total	7.7		2.0	0.44	ug/L			07/29/21 04:52	1
1,2-Dichloropropane	ND	UJ VJM 4/26/22	1.0	0.35	ug/L			07/29/21 04:52	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			07/29/21 04:52	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			07/29/21 04:52	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			07/29/21 04:52	1
Acrolein	ND		4.0	1.1	ug/L			07/29/21 04:52	1
Acrylonitrile	ND		2.0	0.77	ug/L			07/29/21 04:52	1
Benzene	ND		1.0	0.43	ug/L			07/29/21 04:52	1
Bromoform	ND		1.0	0.54	ug/L			07/29/21 04:52	1
Bromomethane	ND		1.0	0.45	ug/L			07/29/21 04:52	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			07/29/21 04:52	1
Chlorobenzene	ND		1.0	0.38	ug/L			07/29/21 04:52	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			07/29/21 04:52	1
Chloroethane	ND		1.0	0.32	ug/L			07/29/21 04:52	1
Chloroform	ND		1.0	0.33	ug/L			07/29/21 04:52	1
Chloromethane	ND		1.0	0.43	ug/L			07/29/21 04:52	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			07/29/21 04:52	1
Bromodichloromethane	ND	UJ VJ/ 4/26/22	1.0	0.34	ug/L			07/29/21 04:52	1
Ethylbenzene	ND	*0 4/26/22	1.0	0.30	ug/L			07/29/21 04:52	1
Methylene Chloride	ND		1.0	0.32	ug/L			07/29/21 04:52	1
Tetrachloroethene	0.89	J	1.0	0.25	ug/L			07/29/21 04:52	1
Toluene	ND		1.0	0.38	ug/L			07/29/21 04:52	1
trans-1,2-Dichloroethene	0.24	J	1.0	0.24	ug/L			07/29/21 04:52	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			07/29/21 04:52	1
Trichloroethene	10		1.0	0.31	ug/L			07/29/21 04:52	1
Vinyl chloride	0.53	J	1.0	0.34	ug/L			07/29/21 04:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		60 - 140			•		07/29/21 04:52	1
4-Bromofluorobenzene	90		60 - 140					07/29/21 04:52	1
Toluene-d8 (Surr)	100		60 - 140					07/29/21 04:52	1
Dibromofluoromethane (Surr)	96		60 - 140					07/29/21 04:52	1

Client Sample ID: RW-3D-072721

Lab Sample ID: 460-239698-3 Date Collected: 07/27/21 10:40 **Matrix: Water**

Date Received: 07/28/21 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			07/29/21 06:01	1
1,1,2,2-Tetrachloroethane	ND	UJ √J∜ _{4/26/22}	1.0	0.37	ug/L			07/29/21 06:01	1
1,1,2-Trichloroethane	ND	,	1.0	0.15	ug/L			07/29/21 06:01	1
1,1-Dichloroethane	ND		1.0	0.26	ug/L			07/29/21 06:01	1
1,1-Dichloroethene	ND	UJ /J/M 4/26/22	1.0	0.12	ug/L			07/29/21 06:01	1
1,2-Dichlorobenzene	ND	0 1,25,22	1.0	0.19	ug/L			07/29/21 06:01	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			07/29/21 06:01	1
1,2-Dichloroethene, Total	32		2.0	0.44	ug/L			07/29/21 06:01	1

Eurofins TestAmerica, Edison

07/30/2021 Page 9 of 391

Client: New York State D.E.C. Job ID: 460-239698-1 Project/Site: COSCO #344035

Client Sample ID: RW-3D-072721

Lab Sample ID: 460-239698-3

Date Collected: 07/27/21 10:40 **Matrix: Water** Date Received: 07/28/21 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND	UJ VJM 4/26/	1.0	0.35	ug/L			07/29/21 06:01	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			07/29/21 06:01	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			07/29/21 06:01	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			07/29/21 06:01	1
Acrolein	ND		4.0	1.1	ug/L			07/29/21 06:01	1
Acrylonitrile	ND		2.0	0.77	ug/L			07/29/21 06:01	1
Benzene	ND		1.0	0.43	ug/L			07/29/21 06:01	1
Bromoform	ND		1.0	0.54	ug/L			07/29/21 06:01	1
Bromomethane	ND		1.0	0.45	ug/L			07/29/21 06:01	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			07/29/21 06:01	1
Chlorobenzene	ND		1.0	0.38	ug/L			07/29/21 06:01	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			07/29/21 06:01	1
Chloroethane	ND		1.0	0.32	ug/L			07/29/21 06:01	1
Chloroform	0.53	J	1.0	0.33	ug/L			07/29/21 06:01	1
Chloromethane	ND		1.0	0.43	ug/L			07/29/21 06:01	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			07/29/21 06:01	1
Bromodichloromethane	ND	UJ VJM _{4/26/22}	1.0	0.34	ug/L			07/29/21 06:01	1
Ethylbenzene	ND	- 1/20/22	1.0	0.30	ug/L			07/29/21 06:01	1
Methylene Chloride	ND		1.0	0.32	ug/L			07/29/21 06:01	1
Tetrachloroethene	68		1.0	0.25	ug/L			07/29/21 06:01	1
Toluene	ND		1.0	0.38	ug/L			07/29/21 06:01	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			07/29/21 06:01	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			07/29/21 06:01	1
Trichloroethene	69		1.0	0.31	ug/L			07/29/21 06:01	1
Vinyl chloride	ND		1.0	0.34	ug/L			07/29/21 06:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		60 - 140					07/29/21 06:01	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		60 - 140		07/29/21 06:01	1
4-Bromofluorobenzene	92		60 - 140		07/29/21 06:01	1
Toluene-d8 (Surr)	100		60 - 140		07/29/21 06:01	1
Dibromofluoromethane (Surr)	98		60 - 140		07/29/21 06:01	1

Client Sample ID: RW-1S-072721

Lab Sample ID: 460-239698-4 Date Collected: 07/27/21 14:00 **Matrix: Water** Date Received: 07/28/21 10:00

Method: 624.1 - Volatile Orga	anic Compounds (GC/MS)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND —	1.0	0.24	ug/L			07/29/21 05:15	1
1,1,2,2-Tetrachloroethane	ND UJ / 4/26/22	1.0	0.37	ug/L			07/29/21 05:15	1
1,1,2-Trichloroethane	ND 14/26/22	1.0	0.15	ug/L			07/29/21 05:15	1
1,1-Dichloroethane	ND	1.0	0.26	ug/L			07/29/21 05:15	1
1,1-Dichloroethene	ND UJ 1/2/1/22	1.0	0.12	ug/L			07/29/21 05:15	1
1,2-Dichlorobenzene	ND	1.0	0.19	ug/L			07/29/21 05:15	1
1,2-Dichloroethane	ND	1.0	0.84	ug/L			07/29/21 05:15	1
1,2-Dichloroethene, Total	1.5 J	2.0	0.44	ug/L			07/29/21 05:15	1
1,2-Dichloropropane	ND UJ V 4/26/22	1.0	0.35	ug/L			07/29/21 05:15	1
1,3-Dichlorobenzene	ND	1.0	0.13	ug/L			07/29/21 05:15	1
1,4-Dichlorobenzene	ND	1.0	0.18	ug/L			07/29/21 05:15	1
2-Chloroethyl vinyl ether	ND	1.0	0.91	ug/L			07/29/21 05:15	1

Eurofins TestAmerica, Edison

07/30/2021

Page 10 of 391

Client: New York State D.E.C. Job ID: 460-239698-1 Project/Site: COSCO #344035

Client Sample ID: RW-1S-072721

Lab Sample ID: 460-239698-4

Date Collected: 07/27/21 14:00 **Matrix: Water** Date Received: 07/28/21 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acrolein	ND		4.0	1.1	ug/L			07/29/21 05:15	1
Acrylonitrile	ND		2.0	0.77	ug/L			07/29/21 05:15	1
Benzene	ND		1.0	0.43	ug/L			07/29/21 05:15	1
Bromoform	ND		1.0	0.54	ug/L			07/29/21 05:15	1
Bromomethane	ND		1.0	0.45	ug/L			07/29/21 05:15	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			07/29/21 05:15	1
Chlorobenzene	ND		1.0	0.38	ug/L			07/29/21 05:15	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			07/29/21 05:15	1
Chloroethane	ND		1.0	0.32	ug/L			07/29/21 05:15	1
Chloroform	ND		1.0	0.33	ug/L			07/29/21 05:15	1
Chloromethane	ND		1.0	0.43	ug/L			07/29/21 05:15	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			07/29/21 05:15	1
Bromodichloromethane	ND	UJ √√M 4/26/22	1.0	0.34	ug/L			07/29/21 05:15	1
Ethylbenzene	ND	4/26/22	1.0	0.30	ug/L			07/29/21 05:15	1
Methylene Chloride	ND		1.0	0.32	ug/L			07/29/21 05:15	1
Tetrachloroethene	0.75	J	1.0	0.25	ug/L			07/29/21 05:15	1
Toluene	ND		1.0	0.38	ug/L			07/29/21 05:15	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			07/29/21 05:15	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			07/29/21 05:15	1
Trichloroethene	6.4		1.0	0.31	ug/L			07/29/21 05:15	1
Vinyl chloride	ND		1.0	0.34	ug/L			07/29/21 05:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		60 - 140					07/29/21 05:15	1
4-Bromofluorobenzene	90		60 - 140					07/29/21 05:15	1
Toluene-d8 (Surr)	101		60 - 140					07/29/21 05:15	1
Dibromofluoromethane (Surr)	96		60 - 140					07/29/21 05:15	1

Client Sample ID: DW-1-072721 Lab Sample ID: 460-239698-5

Date Collected: 07/27/21 14:40 Date Received: 07/28/21 10:00

Method: 624.1 - Volatile Organic Compounds (GC/MS) Analyte Result Qualifier RL **MDL** Unit **Prepared** Analyzed Dil Fac D 1,1,1-Trichloroethane ND 1.0 0.24 ug/L 07/29/21 05:38 1,1,2,2-Tetrachloroethane ND 1.0 0.37 ug/L 07/29/21 05:38 1 UJ VJM 4/26/22 ND 1.0 1,1,2-Trichloroethane 0.15 ug/L 07/29/21 05:38 1 1,1-Dichloroethane ND 1.0 0.26 ug/L 07/29/21 05:38 1 ND 1,1-Dichloroethene 1.0 0.12 ug/L 07/29/21 05:38 1 1,2-Dichlorobenzene ND 1.0 0.19 ug/L 07/29/21 05:38 1 1,2-Dichloroethane ND 1.0 0.84 ug/L 07/29/21 05:38 1 ND 2.0 0.44 ug/L 1 1,2-Dichloroethene, Total 07/29/21 05:38 ND 1.0 0.35 ug/L 1,2-Dichloropropane UJ VJM 4/26/22 07/29/21 05:38 1.0 ND 1,3-Dichlorobenzene 0.13 ug/L 07/29/21 05:38 1,4-Dichlorobenzene ND 1.0 0.18 ug/L 07/29/21 05:38 1 2-Chloroethyl vinyl ether ND 1.0 0.91 ug/L 07/29/21 05:38 1 ND Acrolein 4.0 1.1 ug/L 07/29/21 05:38 1 Acrylonitrile ND 2.0 0.77 ug/L 07/29/21 05:38 1 Benzene ND 1.0 0.43 ug/L 07/29/21 05:38 1 Bromoform ND 1.0 0.54 ug/L 07/29/21 05:38

Eurofins TestAmerica, Edison

Page 11 of 391

Matrix: Water

Client: New York State D.E.C. Job ID: 460-239698-1 Project/Site: COSCO #344035

Client Sample ID: DW-1-072721

Lab Sample ID: 460-239698-5

Date Collected: 07/27/21 14:40 **Matrix: Water** Date Received: 07/28/21 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromomethane	ND		1.0	0.45	ug/L			07/29/21 05:38	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			07/29/21 05:38	1
Chlorobenzene	ND		1.0	0.38	ug/L			07/29/21 05:38	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			07/29/21 05:38	1
Chloroethane	ND		1.0	0.32	ug/L			07/29/21 05:38	1
Chloroform	0.37	J	1.0	0.33	ug/L			07/29/21 05:38	1
Chloromethane	ND		1.0	0.43	ug/L			07/29/21 05:38	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			07/29/21 05:38	1
Bromodichloromethane	ND	UJ VJM 4/26/	1.0	0.34	ug/L			07/29/21 05:38	1
Ethylbenzene	ND	0 4/20/	1.0	0.30	ug/L			07/29/21 05:38	1
Methylene Chloride	ND		1.0	0.32	ug/L			07/29/21 05:38	1
Tetrachloroethene	2.2		1.0	0.25	ug/L			07/29/21 05:38	1
Toluene	ND		1.0	0.38	ug/L			07/29/21 05:38	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			07/29/21 05:38	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			07/29/21 05:38	1
Trichloroethene	1.9		1.0	0.31	ug/L			07/29/21 05:38	1
Vinyl chloride	ND		1.0	0.34	ug/L			07/29/21 05:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		60 - 140			-		07/29/21 05:38	1
4-Bromofluorobenzene	88		60 ₋ 140					07/29/21 05:38	1
Toluene-d8 (Surr)	100		60 - 140					07/29/21 05:38	1

60 - 140

Client Sample ID: TripBlank2-072721

Dibromofluoromethane (Surr)

Chlorobenzene

Chlorodibromomethane

Date Collected: 07/27/21 00:00 Date Received: 07/28/21 10:00

96

ND

ND

Method: 624.1 - Volatile Organic Compounds (GC/MS) Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac ND 1,1,1-Trichloroethane 1.0 0.24 ug/L 07/29/21 04:05 1 ND 1,1,2,2-Tetrachloroethane UJ V/M 4/26/22 1.0 0.37 ug/L 07/29/21 04:05 1 1,1,2-Trichloroethane ND 1.0 07/29/21 04:05 0.15 ug/L 1 1,1-Dichloroethane ND 1.0 0.26 ug/L 07/29/21 04:05 1 ND 1,1-Dichloroethene 1.0 0.12 ug/L 07/29/21 04:05 1 1,2-Dichlorobenzene ND 1.0 0.19 ug/L 07/29/21 04:05 1 ND 1.0 1,2-Dichloroethane 0.84 ug/L 07/29/21 04:05 ND 2.0 1,2-Dichloroethene, Total 0.44 ug/L 07/29/21 04:05 1 ND 1,2-Dichloropropane 1.0 0.35 ug/L 07/29/21 04:05 UJ VJM 4/26/22 1,3-Dichlorobenzene ND 1.0 0.13 ug/L 07/29/21 04:05 1 1,4-Dichlorobenzene ND 1.0 0.18 ug/L 07/29/21 04:05 1 ND 2-Chloroethyl vinyl ether 1.0 0.91 ug/L 07/29/21 04:05 1 ND 4.0 Acrolein 1.1 ug/L 07/29/21 04:05 ND Acrylonitrile 2.0 0.77 ug/L 07/29/21 04:05 1 Benzene ND 1.0 0.43 ug/L 07/29/21 04:05 1 ND 0.54 ug/L **Bromoform** 1.0 07/29/21 04:05 Bromomethane ND 1.0 0.45 ug/L 07/29/21 04:05 1 ND 0.21 ug/L Carbon tetrachloride 1.0 07/29/21 04:05 1

1.0

1.0

0.38 ug/L

0.13 ug/L

Type text here Eurofins TestAmerica, Edison

07/29/21 04:05

07/29/21 04:05

1

07/29/21 05:38

Matrix: Water

Lab Sample ID: 460-239698-6

Page 12 of 391 07/30/2021

Client: New York State D.E.C.

Project/Site: COSCO #344035

Job ID: 460-239698-1

Client Sample ID: TripBlank2-072721 Lab Sample ID: 460-239698-6

Date Collected: 07/27/21 00:00 Matrix: Water Date Received: 07/28/21 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroethane	ND		1.0	0.32	ug/L			07/29/21 04:05	1
Chloroform	ND		1.0	0.33	ug/L			07/29/21 04:05	1
Chloromethane	ND		1.0	0.43	ug/L			07/29/21 04:05	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			07/29/21 04:05	1
Bromodichloromethane	ND	UJ , al.	1.0	0.34	ug/L			07/29/21 04:05	1
Ethylbenzene	ND	VJM 4/26/22	1.0	0.30	ug/L			07/29/21 04:05	1
Methylene Chloride	ND		1.0	0.32	ug/L			07/29/21 04:05	1
Tetrachloroethene	ND		1.0	0.25	ug/L			07/29/21 04:05	1
Toluene	ND		1.0	0.38	ug/L			07/29/21 04:05	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			07/29/21 04:05	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			07/29/21 04:05	1
Trichloroethene	ND		1.0	0.31	ug/L			07/29/21 04:05	1
Vinyl chloride	ND		1.0	0.34	ug/L			07/29/21 04:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	toyt horo 110		60 - 140			·		07/29/21 04:05	1
4-Bromofluorobenzene	text here 88		60 - 140					07/29/21 04:05	1
Toluene-d8 (Surr)	101		60 - 140					07/29/21 04:05	1
Dibromofluoromethane (Surr)	95		60 - 140					07/29/21 04:05	1

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: NY Sample Description: Work Order: 22C1442

Date Received: 3/22/2022

Field Sample #: GW-4S-032122 Sampled: 3/21/2022 12:30

Sample ID: 22C1442-01
Sample Matrix: Ground Water

Sample Flags: PR-09

Volatile Organic Compounds by GC/MS

Sumple Flugs. Tit 09				_				Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	< 0.200	1.00	0.200	μg/L	1		624.1	3/23/22	3/23/22 15:21	LBD
Bromodichloromethane	< 0.180	2.00	0.180	μg/L	1		624.1	3/23/22	3/23/22 15:21	LBD
Bromoform	< 0.383	2.00	0.383	μg/L	1		624.1	3/23/22	3/23/22 15:21	LBD
Bromomethane	<1.54	5.00	1.54	μg/L	1	UJ	624.1	3/23/22	3/23/22 15:21	LBD
Carbon Tetrachloride	< 0.165	2.00	0.165	$\mu g/L$	1	VJM 4/26/22	624.1	3/23/22	3/23/22 15:21	LBD
Chlorobenzene	< 0.105	2.00	0.105	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:21	LBD
Chlorodibromomethane	< 0.222	2.00	0.222	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:21	LBD
Chloroethane	< 0.320	2.00	0.320	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:21	LBD
Chloroform	< 0.168	2.00	0.168	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:21	LBD
Chloromethane	< 0.522	2.00	0.522	$\mu g/L$	1	UJ 4/26/22	624.1	3/23/22	3/23/22 15:21	LBD
1,2-Dichlorobenzene	< 0.122	2.00	0.122	$\mu g/L$	1	V () 1 4/26/22	624.1	3/23/22	3/23/22 15:21	LBD
1,3-Dichlorobenzene	< 0.118	2.00	0.118	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:21	LBD
1,4-Dichlorobenzene	< 0.130	2.00	0.130	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:21	LBD
1,2-Dichloroethane	< 0.308	2.00	0.308	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:21	LBD
1,1-Dichloroethane	< 0.142	2.00	0.142	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:21	LBD
1,1-Dichloroethylene	< 0.141	2.00	0.141	$\mu g/L$	1	UJ	624.1	3/23/22	3/23/22 15:21	LBD
trans-1,2-Dichloroethylene	< 0.169	2.00	0.169	$\mu g/L$	1	VJM 4/26/22	624.1	3/23/22	3/23/22 15:21	LBD
1,2-Dichloropropane	< 0.181	2.00	0.181	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:21	LBD
cis-1,3-Dichloropropene	< 0.158	2.00	0.158	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:21	LBD
trans-1,3-Dichloropropene	< 0.168	2.00	0.168	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:21	LBD
Ethylbenzene	< 0.215	2.00	0.215	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:21	LBD
Methyl tert-Butyl Ether (MTBE)	< 0.172	2.00	0.172	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:21	LBD
Methylene Chloride	< 0.235	5.00	0.235	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:21	LBD
1,1,2,2-Tetrachloroethane	< 0.127	2.00	0.127	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:21	LBD
Tetrachloroethylene	< 0.187	2.00	0.187	$\mu g/L$	1	UJ	624.1	3/23/22	3/23/22 15:21	LBD
Toluene	< 0.224	1.00	0.224	$\mu g/L$	1	VJM 4/26/22	624.1	3/23/22	3/23/22 15:21	LBD
1,1,1-Trichloroethane	< 0.169	2.00	0.169	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:21	LBD
1,1,2-Trichloroethane	< 0.183	2.00	0.183	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:21	LBD
Trichloroethylene	2.32	2.00	0.189	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:21	LBD
Trichlorofluoromethane (Freon 11)	< 0.176	2.00	0.176	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:21	LBD
Vinyl Chloride	< 0.208	2.00	0.208	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:21	LBD
m+p Xylene	< 0.459	2.00	0.459	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:21	LBD
o-Xylene	< 0.230	1.00	0.230	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:21	LBD

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	83.0	70-130		3/23/22 15:21
Toluene-d8	89.9	70-130		3/23/22 15:21
4-Bromofluorobenzene	92.8	70-130		3/23/22 15:21

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: NY Sample Description: Work Order: 22C1442

Date Received: 3/22/2022

Field Sample #: GP-4D-032122 Sampled: 3/21/2022 13:10

Sample ID: 22C1442-02
Sample Matrix: Ground Water

Sample Flags: PR-09

Volatile Organic Con	ipounds by	GC/MS
----------------------	------------	-------

Sumple Fings. The G				_				Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	< 0.200	1.00	0.200	μg/L	1		624.1	3/23/22	3/23/22 15:48	LBD
Bromodichloromethane	0.190	2.00	0.180	$\mu g/L$	1	J	624.1	3/23/22	3/23/22 15:48	LBD
Bromoform	< 0.383	2.00	0.383	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:48	LBD
Bromomethane	<1.54	5.00	1.54	$\mu g/L$	1	UJ	624.1	3/23/22	3/23/22 15:48	LBD
Carbon Tetrachloride	< 0.165	2.00	0.165	$\mu g/L$	1	VJ ^M 4/26/22	624.1	3/23/22	3/23/22 15:48	LBD
Chlorobenzene	< 0.105	2.00	0.105	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:48	LBD
Chlorodibromomethane	< 0.222	2.00	0.222	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:48	LBD
Chloroethane	< 0.320	2.00	0.320	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:48	LBD
Chloroform	1.07	2.00	0.168	$\mu g/L$	1	J	624.1	3/23/22	3/23/22 15:48	LBD
Chloromethane	< 0.522	2.00	0.522	$\mu g/L$	1	UJ VJM 4/26/22	624.1	3/23/22	3/23/22 15:48	LBD
1,2-Dichlorobenzene	< 0.122	2.00	0.122	$\mu g/L$	1	[√] √′ 4/26/22	624.1	3/23/22	3/23/22 15:48	LBD
1,3-Dichlorobenzene	< 0.118	2.00	0.118	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:48	LBD
1,4-Dichlorobenzene	< 0.130	2.00	0.130	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:48	LBD
1,2-Dichloroethane	< 0.308	2.00	0.308	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:48	LBD
1,1-Dichloroethane	< 0.142	2.00	0.142	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:48	LBD
1,1-Dichloroethylene	< 0.141	2.00	0.141	$\mu g/L$	1	UJ VJ 4/26/22	624.1	3/23/22	3/23/22 15:48	LBD
trans-1,2-Dichloroethylene	< 0.169	2.00	0.169	$\mu g/L$	1	V J M 4/26/22	624.1	3/23/22	3/23/22 15:48	LBD
1,2-Dichloropropane	< 0.181	2.00	0.181	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:48	LBD
cis-1,3-Dichloropropene	< 0.158	2.00	0.158	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:48	LBD
trans-1,3-Dichloropropene	< 0.168	2.00	0.168	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:48	LBD
Ethylbenzene	< 0.215	2.00	0.215	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:48	LBD
Methyl tert-Butyl Ether (MTBE)	< 0.172	2.00	0.172	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:48	LBD
Methylene Chloride	< 0.235	5.00	0.235	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:48	LBD
1,1,2,2-Tetrachloroethane	< 0.127	2.00	0.127	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:48	LBD
Tetrachloroethylene	< 0.187	2.00	0.187	$\mu g/L$	1	UJ VJW 4/26/22	624.1	3/23/22	3/23/22 15:48	LBD
Toluene	< 0.224	1.00	0.224	$\mu g/L$	1	V () Y 4/26/22	624.1	3/23/22	3/23/22 15:48	LBD
1,1,1-Trichloroethane	< 0.169	2.00	0.169	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:48	LBD
1,1,2-Trichloroethane	< 0.183	2.00	0.183	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:48	LBD
Trichloroethylene	< 0.189	2.00	0.189	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:48	LBD
Trichlorofluoromethane (Freon 11)	< 0.176	2.00	0.176	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:48	LBD
Vinyl Chloride	< 0.208	2.00	0.208	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:48	LBD
m+p Xylene	< 0.459	2.00	0.459	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:48	LBD
o-Xylene	< 0.230	1.00	0.230	$\mu g/L$	1		624.1	3/23/22	3/23/22 15:48	LBD

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	81.8	70-130		3/23/22 15:48
Toluene-d8	89.0	70-130		3/23/22 15:48
4-Bromofluorobenzene	92.8	70-130		3/23/22 15:48

Analyte

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Volatile Organic Compounds by GC/MS

Project Location: NY Sample Description: Work Order: 22C1442

Date Received: 3/22/2022

Field Sample #: DW-1-032122 Sampled: 3/21/2022 15:25

Results

< 0.200

< 0.180

< 0.383

<1.54

< 0.165

< 0.105

< 0.222

< 0.320

0.390

< 0.522

< 0.122

< 0.118

< 0.130

< 0.308

< 0.142

< 0.141

< 0.169

< 0.181

< 0.158

< 0.168

< 0.215

< 0.172

< 0.235

< 0.127

2.29

< 0.224

< 0.169

< 0.183

1.58

< 0.176

< 0.208

< 0.459

RL

1.00

2.00

2.00

5.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

5.00

2.00

2.00

1.00

2.00

2.00

2.00

2.00

2.00

2.00

0.181

0.158

0.168

0.215

0.172

0.235

0.127

0.187

0.224

0.169

0.183

0.189

0.176

0.208

0.459

 $\mu g/L$

 $\mu g/L$

 $\mu g/L$

 $\mu g/L$

 $\mu g/L$

μg/L

 $\mu g/L$

 $\mu g/L$

1

1

1

1

1

1

1

1

Sample ID: 22C1442-03
Sample Matrix: Ground Water

Sample Flags: PR-09

Bromodichloromethane

Benzene

Bromoform

Bromomethane

Chlorobenzene

Chloroethane

Chloroform

Chloromethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichloroethane

1,1-Dichloroethane

1,1-Dichloroethylene

1,2-Dichloropropane

Ethylbenzene

Methylene Chloride

Tetrachloroethylene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichloroethylene

Vinyl Chloride

m+p Xylene

Toluene

1,1,2,2-Tetrachloroethane

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

Methyl tert-Butyl Ether (MTBE)

Trichlorofluoromethane (Freon 11)

trans-1,2-Dichloroethylene

Carbon Tetrachloride

Chlorodibromomethane

DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
0.200	μg/L	1		624.1	3/23/22	3/23/22 16:14	LBD
0.180	μg/L	1		624.1	3/23/22	3/23/22 16:14	LBD
0.383	μg/L	1		624.1	3/23/22	3/23/22 16:14	LBD
1.54	μg/L	1	UJ ,	624.1	3/23/22	3/23/22 16:14	LBD
0.165	μg/L	1	VJM 4/26/22	624.1	3/23/22	3/23/22 16:14	LBD
0.105	μg/L	1		624.1	3/23/22	3/23/22 16:14	LBD
0.222	μg/L	1		624.1	3/23/22	3/23/22 16:14	LBD
0.320	μg/L	1		624.1	3/23/22	3/23/22 16:14	LBD
0.168	μg/L	1	J	624.1	3/23/22	3/23/22 16:14	LBD
0.522	μg/L	1	UJ .	624.1	3/23/22	3/23/22 16:14	LBD
0.122	μg/L	1	VJM 4/26/22	624.1	3/23/22	3/23/22 16:14	LBD
0.118	μg/L	1		624.1	3/23/22	3/23/22 16:14	LBD
0.130	μg/L	1		624.1	3/23/22	3/23/22 16:14	LBD
0.308	μg/L	1		624.1	3/23/22	3/23/22 16:14	LBD
0.142	μg/L	1		624.1	3/23/22	3/23/22 16:14	LBD
0.141	μg/L	1	UJ	624.1	3/23/22	3/23/22 16:14	LBD
0.169	μg/L	1	VJM 4/26/22	624.1	3/23/22	3/23/22 16:14	LBD

624.1

624.1

624.1

624.1

624.1

624.1

624.1

624.1

624.1

624.1

624.1

624.1

624.1

624.1

624.1

3/23/22

3/23/22

3/23/22

3/23/22

3/23/22

3/23/22

3/23/22

3/23/22

3/23/22

3/23/22

3/23/22

3/23/22

3/23/22

3/23/22

3/23/22

3/23/22 16:14

3/23/22 16:14

3/23/22 16:14

3/23/22 16:14

3/23/22 16:14

3/23/22 16:14

3/23/22 16:14

3/23/22 16:14

3/23/22 16:14

3/23/22 16:14

3/23/22 16:14

3/23/22 16:14

3/23/22 16:14

3/23/22 16:14

3/23/22 16:14

LBD

o-Xylene	< 0.230	1.00	0.230	μg/L	1	624.1	3/23/22	3/23/22 16:14	LBD
Surrogates		% Reco	very	Recovery Limits	Flag/Qual				
1,2-Dichloroethane-d4		83.0		70-130				3/23/22 16:14	
Toluene-d8		90.5		70-130				3/23/22 16:14	
4-Bromofluorobenzene		92.1		70-130				3/23/22 16:14	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: NY Sample Description: Work Order: 22C1442

Date Received: 3/22/2022

Field Sample #: DUP-01-032122 Sampled: 3/21/2022 00:00

Sample ID: 22C1442-04 Sample Matrix: Ground Water

Sample Flags: PR-09			Volat	tile Organic Com	pounds by G	SC/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	< 0.200	1.00	0.200	μg/L	1		624.1	3/23/22	3/23/22 16:40	LBD
Bromodichloromethane	< 0.180	2.00	0.180	μg/L	1		624.1	3/23/22	3/23/22 16:40	LBD
Bromoform	< 0.383	2.00	0.383	μg/L	1		624.1	3/23/22	3/23/22 16:40	LBD
Bromomethane	<1.54	5.00	1.54	μg/L	1	UJ ,	624.1	3/23/22	3/23/22 16:40	LBD
Carbon Tetrachloride	< 0.165	2.00	0.165	μg/L	1	UJ VJ 4/26/22	624.1	3/23/22	3/23/22 16:40	LBD
Chlorobenzene	< 0.105	2.00	0.105	μg/L	1		624.1	3/23/22	3/23/22 16:40	LBD
Chlorodibromomethane	< 0.222	2.00	0.222	μg/L	1		624.1	3/23/22	3/23/22 16:40	LBD
Chloroethane	< 0.320	2.00	0.320	μg/L	1		624.1	3/23/22	3/23/22 16:40	LBD
Chloroform	1.04	2.00	0.168	μg/L	1	J	624.1	3/23/22	3/23/22 16:40	LBD
Chloromethane	< 0.522	2.00	0.522	μg/L	1	UJ _{z al} .	624.1	3/23/22	3/23/22 16:40	LBD
1,2-Dichlorobenzene	< 0.122	2.00	0.122	μg/L	1	UJ 14/26/22	624.1	3/23/22	3/23/22 16:40	LBD
1,3-Dichlorobenzene	< 0.118	2.00	0.118	μg/L	1		624.1	3/23/22	3/23/22 16:40	LBD
1,4-Dichlorobenzene	< 0.130	2.00	0.130	μg/L	1		624.1	3/23/22	3/23/22 16:40	LBD
1,2-Dichloroethane	< 0.308	2.00	0.308	μg/L	1		624.1	3/23/22	3/23/22 16:40	LBD
1,1-Dichloroethane	< 0.142	2.00	0.142	μg/L	1		624.1	3/23/22	3/23/22 16:40	LBD
1,1-Dichloroethylene	< 0.141	2.00	0.141	μg/L	1	UJ , ,	624.1	3/23/22	3/23/22 16:40	LBD
trans-1,2-Dichloroethylene	< 0.169	2.00	0.169	μg/L	1	UJ	624.1	3/23/22	3/23/22 16:40	LBD
1,2-Dichloropropane	< 0.181	2.00	0.181	μg/L	1		624.1	3/23/22	3/23/22 16:40	LBD
cis-1,3-Dichloropropene	< 0.158	2.00	0.158	μg/L	1		624.1	3/23/22	3/23/22 16:40	LBD
trans-1,3-Dichloropropene	< 0.168	2.00	0.168	μg/L	1		624.1	3/23/22	3/23/22 16:40	LBD
Ethylbenzene	< 0.215	2.00	0.215	μg/L	1		624.1	3/23/22	3/23/22 16:40	LBD
Methyl tert-Butyl Ether (MTBE)	< 0.172	2.00	0.172	μg/L	1		624.1	3/23/22	3/23/22 16:40	LBD
Methylene Chloride	< 0.235	5.00	0.235	μg/L	1		624.1	3/23/22	3/23/22 16:40	LBD
1,1,2,2-Tetrachloroethane	< 0.127	2.00	0.127	$\mu g/L$	1		624.1	3/23/22	3/23/22 16:40	LBD
Tetrachloroethylene	< 0.187	2.00	0.187	$\mu g/L$	1	UJ VTM 4/26/22	624.1	3/23/22	3/23/22 16:40	LBD
Toluene	< 0.224	1.00	0.224	$\mu g/L$	1	V J/M 4/26/22	624.1	3/23/22	3/23/22 16:40	LBD
1,1,1-Trichloroethane	< 0.169	2.00	0.169	μg/L	1		624.1	3/23/22	3/23/22 16:40	LBD
1,1,2-Trichloroethane	< 0.183	2.00	0.183	μg/L	1		624.1	3/23/22	3/23/22 16:40	LBD
Trichloroethylene	< 0.189	2.00	0.189	μg/L	1		624.1	3/23/22	3/23/22 16:40	LBD
Trichlorofluoromethane (Freon 11)	< 0.176	2.00	0.176	μg/L	1		624.1	3/23/22	3/23/22 16:40	LBD
Vinyl Chloride	< 0.208	2.00	0.208	μg/L	1		624.1	3/23/22	3/23/22 16:40	LBD
m+p Xylene	< 0.459	2.00	0.459	μg/L	1		624.1	3/23/22	3/23/22 16:40	LBD
o-Xylene	< 0.230	1.00	0.230	μg/L	1		624.1	3/23/22	3/23/22 16:40	LBD
Surrogates		% Reco	verv	Recovery Limits	<u> </u>	Flag/Qual				

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	88.5	70-130		3/23/22 16:40
Toluene-d8	82.8	70-130		3/23/22 16:40
4-Bromofluorobenzene	90.7	70-130		3/23/22 16:40

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: NY Sample Description: Work Order: 22C1442

Date Received: 3/22/2022

Field Sample #: Trip Blank-01-032122 Sampled: 3/21/2022 00:00

Sample ID: 22C1442-05
Sample Matrix: Ground Wa

Sample Matrix: Ground Water Sample Flags: PR-08			Volatile	Organic Co	npounds by G	GC/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	< 0.200	1.00	0.200	μg/L	1	-	624.1	3/23/22	3/23/22 14:55	LBD
Bromodichloromethane	< 0.180	2.00	0.180	μg/L	1		624.1	3/23/22	3/23/22 14:55	LBD
Bromoform	< 0.383	2.00	0.383	μg/L	1		624.1	3/23/22	3/23/22 14:55	LBD
Bromomethane	<1.54	5.00	1.54	μg/L	1	UJ , ,	624.1	3/23/22	3/23/22 14:55	LBD
Carbon Tetrachloride	< 0.165	2.00	0.165	μg/L	1	UJ VJM 4/26/22	624.1	3/23/22	3/23/22 14:55	LBD
Chlorobenzene	< 0.105	2.00	0.105	μg/L	1		624.1	3/23/22	3/23/22 14:55	LBD
Chlorodibromomethane	< 0.222	2.00	0.222	μg/L	1		624.1	3/23/22	3/23/22 14:55	LBD
Chloroethane	< 0.320	2.00	0.320	μg/L	1		624.1	3/23/22	3/23/22 14:55	LBD
Chloroform	< 0.168	2.00	0.168	μg/L	1		624.1	3/23/22	3/23/22 14:55	LBD
Chloromethane	< 0.522	2.00	0.522	μg/L	1	UJ	624.1	3/23/22	3/23/22 14:55	LBD
1,2-Dichlorobenzene	< 0.122	2.00	0.122	μg/L	1	UJ VJM 4/26/22	624.1	3/23/22	3/23/22 14:55	LBD
1,3-Dichlorobenzene	< 0.118	2.00	0.118	μg/L	1		624.1	3/23/22	3/23/22 14:55	LBD
1,4-Dichlorobenzene	< 0.130	2.00	0.130	μg/L	1		624.1	3/23/22	3/23/22 14:55	LBD
1,2-Dichloroethane	< 0.308	2.00	0.308	μg/L	1		624.1	3/23/22	3/23/22 14:55	LBD
1,1-Dichloroethane	< 0.142	2.00	0.142	$\mu g/L$	1		624.1	3/23/22	3/23/22 14:55	LBD
1,1-Dichloroethylene	< 0.141	2.00	0.141	$\mu g/L$	1	UJ VJM 4/26/22	624.1	3/23/22	3/23/22 14:55	LBD
trans-1,2-Dichloroethylene	< 0.169	2.00	0.169	$\mu g/L$	1	VU211 4/20/22	624.1	3/23/22	3/23/22 14:55	LBD
1,2-Dichloropropane	< 0.181	2.00	0.181	$\mu g/L$	1		624.1	3/23/22	3/23/22 14:55	LBD
cis-1,3-Dichloropropene	< 0.158	2.00	0.158	$\mu g/L$	1		624.1	3/23/22	3/23/22 14:55	LBD
trans-1,3-Dichloropropene	< 0.168	2.00	0.168	$\mu g/L$	1		624.1	3/23/22	3/23/22 14:55	LBD
Ethylbenzene	< 0.215	2.00	0.215	$\mu g/L$	1		624.1	3/23/22	3/23/22 14:55	LBD
Methyl tert-Butyl Ether (MTBE)	< 0.172	2.00	0.172	$\mu g/L$	1		624.1	3/23/22	3/23/22 14:55	LBD
Methylene Chloride	0.640	5.00	0.235	$\mu g/L$	1	J	624.1	3/23/22	3/23/22 14:55	LBD
1,1,2,2-Tetrachloroethane	< 0.127	2.00	0.127	$\mu g/L$	1		624.1	3/23/22	3/23/22 14:55	LBD
Tetrachloroethylene	< 0.187	2.00	0.187	$\mu g/L$	1	111	624.1	3/23/22	3/23/22 14:55	LBD
Toluene	< 0.224	1.00	0.224	$\mu g/L$	1	VJM 4/26/22	624.1	3/23/22	3/23/22 14:55	LBD
1,1,1-Trichloroethane	< 0.169	2.00	0.169	$\mu g/L$	1	"	624.1	3/23/22	3/23/22 14:55	LBD
1,1,2-Trichloroethane	< 0.183	2.00	0.183	$\mu g/L$	1		624.1	3/23/22	3/23/22 14:55	LBD
Trichloroethylene	< 0.189	2.00	0.189	$\mu g/L$	1		624.1	3/23/22	3/23/22 14:55	LBD
Trichlorofluoromethane (Freon 11)	< 0.176	2.00	0.176	$\mu g/L$	1		624.1	3/23/22	3/23/22 14:55	LBD
Vinyl Chloride	< 0.208	2.00	0.208	$\mu g/L$	1		624.1	3/23/22	3/23/22 14:55	LBD
m+p Xylene	< 0.459	2.00	0.459	$\mu g/L$	1		624.1	3/23/22	3/23/22 14:55	LBD
o-Xylene	< 0.230	1.00	0.230	$\mu g/L$	1		624.1	3/23/22	3/23/22 14:55	LBD

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	85.9	70-130		3/23/22 14:55
Toluene-d8	88.7	70-130		3/23/22 14:55
4-Bromofluorobenzene	92.5	70-130		3/23/22 14:55

3/24/22 15:51

3/24/22 15:51

3/24/22 15:51

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: NY Sample Description: Work Order: 22C1516

Date Received: 3/23/2022

Field Sample #: MW-3-032222 Sampled: 3/22/2022 09:00

Sample ID: 22C1516-01
Sample Matrix: Water

Sample Flags: PR-08

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Toluene-d8

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	< 0.200	1.00	0.200	μg/L	1		624.1	3/24/22	3/24/22 15:51	LBD
Bromodichloromethane	< 0.180	2.00	0.180	μg/L	1		624.1	3/24/22	3/24/22 15:51	LBD
Bromoform	< 0.383	2.00	0.383	μg/L	1		624.1	3/24/22	3/24/22 15:51	LBD
Bromomethane	<1.54	5.00	1.54	μg/L	1	UJ Jest	624.1	3/24/22	3/24/22 15:51	LBD
Carbon Tetrachloride	< 0.165	2.00	0.165	μg/L	1	VJM 4/26/22	624.1	3/24/22	3/24/22 15:51	LBD
Chlorobenzene	< 0.105	2.00	0.105	μg/L	1		624.1	3/24/22	3/24/22 15:51	LBD
Chlorodibromomethane	< 0.222	2.00	0.222	μg/L	1		624.1	3/24/22	3/24/22 15:51	LBD
Chloroethane	< 0.320	2.00	0.320	$\mu g/L$	1		624.1	3/24/22	3/24/22 15:51	LBD
Chloroform	< 0.168	2.00	0.168	$\mu g/L$	1		624.1	3/24/22	3/24/22 15:51	LBD
Chloromethane	< 0.522	2.00	0.522	$\mu g/L$	1	UJ /J/ 4/26/22	624.1	3/24/22	3/24/22 15:51	LBD
1,2-Dichlorobenzene	< 0.122	2.00	0.122	$\mu g/L$	1	70 7 4720/22	624.1	3/24/22	3/24/22 15:51	LBD
1,3-Dichlorobenzene	< 0.118	2.00	0.118	$\mu g/L$	1		624.1	3/24/22	3/24/22 15:51	LBD
1,4-Dichlorobenzene	< 0.130	2.00	0.130	$\mu g/L$	1		624.1	3/24/22	3/24/22 15:51	LBD
1,2-Dichloroethane	< 0.308	2.00	0.308	$\mu g/L$	1		624.1	3/24/22	3/24/22 15:51	LBD
1,1-Dichloroethane	< 0.142	2.00	0.142	$\mu g/L$	1		624.1	3/24/22	3/24/22 15:51	LBD
1,1-Dichloroethylene	< 0.141	2.00	0.141	$\mu g/L$	1		624.1	3/24/22	3/24/22 15:51	LBD
trans-1,2-Dichloroethylene	< 0.169	2.00	0.169	$\mu g/L$	1		624.1	3/24/22	3/24/22 15:51	LBD
1,2-Dichloropropane	< 0.181	2.00	0.181	$\mu g/L$	1		624.1	3/24/22	3/24/22 15:51	LBD
cis-1,3-Dichloropropene	< 0.158	2.00	0.158	$\mu g/L$	1		624.1	3/24/22	3/24/22 15:51	LBD
trans-1,3-Dichloropropene	< 0.168	2.00	0.168	μg/L	1		624.1	3/24/22	3/24/22 15:51	LBD
Ethylbenzene	< 0.215	2.00	0.215	μg/L	1		624.1	3/24/22	3/24/22 15:51	LBD
Methyl tert-Butyl Ether (MTBE)	< 0.172	2.00	0.172	μg/L	1		624.1	3/24/22	3/24/22 15:51	LBD
Methylene Chloride	< 0.235	5.00	0.235	$\mu g/L$	1		624.1	3/24/22	3/24/22 15:51	LBD
1,1,2,2-Tetrachloroethane	< 0.127	2.00	0.127	$\mu g/L$	1		624.1	3/24/22	3/24/22 15:51	LBD
Tetrachloroethylene	< 0.187	2.00	0.187	μg/L	1		624.1	3/24/22	3/24/22 15:51	LBD
Toluene	< 0.224	1.00	0.224	μg/L	1		624.1	3/24/22	3/24/22 15:51	LBD
1,1,1-Trichloroethane	< 0.169	2.00	0.169	μg/L	1		624.1	3/24/22	3/24/22 15:51	LBD
1,1,2-Trichloroethane	< 0.183	2.00	0.183	μg/L	1		624.1	3/24/22	3/24/22 15:51	LBD
Trichloroethylene	< 0.189	2.00	0.189	μg/L	1		624.1	3/24/22	3/24/22 15:51	LBD
Trichlorofluoromethane (Freon 11)	< 0.176	2.00	0.176	μg/L	1		624.1	3/24/22	3/24/22 15:51	LBD
Vinyl Chloride	< 0.208	2.00	0.208	$\mu g/L$	1		624.1	3/24/22	3/24/22 15:51	LBD
m+p Xylene	< 0.459	2.00	0.459	$\mu g/L$	1		624.1	3/24/22	3/24/22 15:51	LBD
o-Xylene	< 0.230	1.00	0.230	$\mu g/L$	1		624.1	3/24/22	3/24/22 15:51	LBD
Surrogates		% Reco	very	Recovery Limits	s	Flag/Qual				-

88.0

90.2

92.8

70-130

70-130

70-130

3/24/22 16:17

3/24/22 16:17

3/24/22 16:17

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: NY Sample Description: Work Order: 22C1516

Date Received: 3/23/2022

Field Sample #: RW-8S-032222 Sampled: 3/22/2022 09:15

Sample ID: 22C1516-02
Sample Matrix: Water

Sample Flags: PR-09

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Toluene-d8

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	< 0.200	1.00	0.200	μg/L	1	-	624.1	3/24/22	3/24/22 16:17	LBD
Bromodichloromethane	< 0.180	2.00	0.180	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:17	LBD
Bromoform	< 0.383	2.00	0.383	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:17	LBD
Bromomethane	<1.54	5.00	1.54	$\mu g/L$	1	UJ /~/	624.1	3/24/22	3/24/22 16:17	LBD
Carbon Tetrachloride	< 0.165	2.00	0.165	$\mu g/L$	1	VJ/ 4/26/22	624.1	3/24/22	3/24/22 16:17	LBD
Chlorobenzene	< 0.105	2.00	0.105	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:17	LBD
Chlorodibromomethane	< 0.222	2.00	0.222	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:17	LBD
Chloroethane	< 0.320	2.00	0.320	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:17	LBD
Chloroform	< 0.168	2.00	0.168	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:17	LBD
Chloromethane	< 0.522	2.00	0.522	$\mu g/L$	1	UJ , Gala	624.1	3/24/22	3/24/22 16:17	LBD
1,2-Dichlorobenzene	< 0.122	2.00	0.122	$\mu g/L$	1	VJM 4/26/22	624.1	3/24/22	3/24/22 16:17	LBD
1,3-Dichlorobenzene	< 0.118	2.00	0.118	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:17	LBD
1,4-Dichlorobenzene	< 0.130	2.00	0.130	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:17	LBD
1,2-Dichloroethane	< 0.308	2.00	0.308	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:17	LBD
1,1-Dichloroethane	< 0.142	2.00	0.142	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:17	LBD
1,1-Dichloroethylene	< 0.141	2.00	0.141	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:17	LBD
trans-1,2-Dichloroethylene	< 0.169	2.00	0.169	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:17	LBD
1,2-Dichloropropane	< 0.181	2.00	0.181	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:17	LBD
cis-1,3-Dichloropropene	< 0.158	2.00	0.158	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:17	LBD
trans-1,3-Dichloropropene	< 0.168	2.00	0.168	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:17	LBD
Ethylbenzene	< 0.215	2.00	0.215	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:17	LBD
Methyl tert-Butyl Ether (MTBE)	< 0.172	2.00	0.172	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:17	LBD
Methylene Chloride	< 0.235	5.00	0.235	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:17	LBD
1,1,2,2-Tetrachloroethane	< 0.127	2.00	0.127	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:17	LBD
Tetrachloroethylene	0.800	2.00	0.187	$\mu g/L$	1	J	624.1	3/24/22	3/24/22 16:17	LBD
Toluene	< 0.224	1.00	0.224	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:17	LBD
1,1,1-Trichloroethane	< 0.169	2.00	0.169	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:17	LBD
1,1,2-Trichloroethane	< 0.183	2.00	0.183	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:17	LBD
Trichloroethylene	8.31	2.00	0.189	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:17	LBD
Trichlorofluoromethane (Freon 11)	< 0.176	2.00	0.176	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:17	LBD
Vinyl Chloride	0.670	2.00	0.208	$\mu g/L$	1	J	624.1	3/24/22	3/24/22 16:17	LBD
m+p Xylene	< 0.459	2.00	0.459	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:17	LBD
o-Xylene	< 0.230	1.00	0.230	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:17	LBD
Surrogates		% Reco	verv	Recovery Limits	<u> </u>	Flag/Qual				

88.0

89.3

91.2

70-130

70-130

70-130

3/24/22 16:43

3/24/22 16:43

3/24/22 16:43

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: NY Sample Description: Work Order: 22C1516

Date Received: 3/23/2022

Field Sample #: RW-1S-032222 Sampled: 3/22/2022 13:35

Sample ID: 22C1516-03
Sample Matrix: Water

Sample Flags: PR-09

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Toluene-d8

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	< 0.200	1.00	0.200	μg/L	1		624.1	3/24/22	3/24/22 16:43	LBD
Bromodichloromethane	< 0.180	2.00	0.180	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:43	LBD
Bromoform	< 0.383	2.00	0.383	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:43	LBD
Bromomethane	<1.54	5.00	1.54	$\mu g/L$	1	UJ /~/M HODIO	624.1	3/24/22	3/24/22 16:43	LBD
Carbon Tetrachloride	< 0.165	2.00	0.165	$\mu g/L$	1	UJ 4/26/22	624.1	3/24/22	3/24/22 16:43	LBD
Chlorobenzene	< 0.105	2.00	0.105	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:43	LBD
Chlorodibromomethane	< 0.222	2.00	0.222	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:43	LBD
Chloroethane	< 0.320	2.00	0.320	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:43	LBD
Chloroform	< 0.168	2.00	0.168	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:43	LBD
Chloromethane	< 0.522	2.00	0.522	$\mu g/L$	1	UJ (al	624.1	3/24/22	3/24/22 16:43	LBD
1,2-Dichlorobenzene	< 0.122	2.00	0.122	$\mu g/L$	1	√JM 4/26/22	624.1	3/24/22	3/24/22 16:43	LBD
1,3-Dichlorobenzene	< 0.118	2.00	0.118	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:43	LBD
1,4-Dichlorobenzene	< 0.130	2.00	0.130	μg/L	1		624.1	3/24/22	3/24/22 16:43	LBD
1,2-Dichloroethane	< 0.308	2.00	0.308	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:43	LBD
1,1-Dichloroethane	< 0.142	2.00	0.142	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:43	LBD
1,1-Dichloroethylene	< 0.141	2.00	0.141	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:43	LBD
trans-1,2-Dichloroethylene	< 0.169	2.00	0.169	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:43	LBD
1,2-Dichloropropane	< 0.181	2.00	0.181	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:43	LBD
cis-1,3-Dichloropropene	< 0.158	2.00	0.158	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:43	LBD
trans-1,3-Dichloropropene	< 0.168	2.00	0.168	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:43	LBD
Ethylbenzene	< 0.215	2.00	0.215	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:43	LBD
Methyl tert-Butyl Ether (MTBE)	< 0.172	2.00	0.172	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:43	LBD
Methylene Chloride	< 0.235	5.00	0.235	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:43	LBD
1,1,2,2-Tetrachloroethane	< 0.127	2.00	0.127	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:43	LBD
Tetrachloroethylene	0.960	2.00	0.187	$\mu g/L$	1	J	624.1	3/24/22	3/24/22 16:43	LBD
Toluene	< 0.224	1.00	0.224	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:43	LBD
1,1,1-Trichloroethane	< 0.169	2.00	0.169	μg/L	1		624.1	3/24/22	3/24/22 16:43	LBD
1,1,2-Trichloroethane	< 0.183	2.00	0.183	μg/L	1		624.1	3/24/22	3/24/22 16:43	LBD
Trichloroethylene	3.67	2.00	0.189	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:43	LBD
Trichlorofluoromethane (Freon 11)	< 0.176	2.00	0.176	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:43	LBD
Vinyl Chloride	< 0.208	2.00	0.208	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:43	LBD
m+p Xylene	< 0.459	2.00	0.459	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:43	LBD
o-Xylene	< 0.230	1.00	0.230	$\mu g/L$	1		624.1	3/24/22	3/24/22 16:43	LBD
Surrogates		% Reco	very	Recovery Limits	i	Flag/Qual				

70-130

70-130

70-130

83.6

88.4

90.1

3/24/22 17:10

3/24/22 17:10

3/24/22 17:10

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: NY Sample Description: Work Order: 22C1516

Date Received: 3/23/2022

Field Sample #: MW-18-032222 Sampled: 3/22/2022 13:35

Sample ID: 22C1516-04
Sample Matrix: Water

Sample Flags: PR-09

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Toluene-d8

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	<0.200	1.00	0.200	μg/L	1	i iig/Quui	624.1	3/24/22	3/24/22 17:10	LBD
Bromodichloromethane	<0.180	2.00	0.180	μg/L	1		624.1	3/24/22	3/24/22 17:10	LBD
Bromoform	<0.383	2.00	0.383	μg/L	1		624.1	3/24/22	3/24/22 17:10	LBD
Bromomethane	<1.54	5.00	1.54	μg/L	1	UJ .		3/24/22	3/24/22 17:10	LBD
Carbon Tetrachloride	< 0.165	2.00	0.165	μg/L	1	UJ VJM 4/26/22	624.1	3/24/22	3/24/22 17:10	LBD
Chlorobenzene	< 0.105	2.00	0.105	μg/L	1		624.1	3/24/22	3/24/22 17:10	LBD
Chlorodibromomethane	< 0.222	2.00	0.222	μg/L	1		624.1	3/24/22	3/24/22 17:10	LBD
Chloroethane	< 0.320	2.00	0.320	μg/L	1		624.1	3/24/22	3/24/22 17:10	LBD
Chloroform	< 0.168	2.00	0.168	μg/L	1		624.1	3/24/22	3/24/22 17:10	LBD
Chloromethane	< 0.522	2.00	0.522	μg/L	1	UJ Vada vasas	624.1	3/24/22	3/24/22 17:10	LBD
1,2-Dichlorobenzene	< 0.122	2.00	0.122	μg/L	1	VJM 4/26/22	624.1	3/24/22	3/24/22 17:10	LBD
1,3-Dichlorobenzene	< 0.118	2.00	0.118	μg/L	1		624.1	3/24/22	3/24/22 17:10	LBD
1,4-Dichlorobenzene	< 0.130	2.00	0.130	μg/L	1		624.1	3/24/22	3/24/22 17:10	LBD
1,2-Dichloroethane	< 0.308	2.00	0.308	μg/L	1		624.1	3/24/22	3/24/22 17:10	LBD
1,1-Dichloroethane	< 0.142	2.00	0.142	μg/L	1		624.1	3/24/22	3/24/22 17:10	LBD
1,1-Dichloroethylene	< 0.141	2.00	0.141	μg/L	1		624.1	3/24/22	3/24/22 17:10	LBD
trans-1,2-Dichloroethylene	< 0.169	2.00	0.169	μg/L	1		624.1	3/24/22	3/24/22 17:10	LBD
1,2-Dichloropropane	< 0.181	2.00	0.181	μg/L	1		624.1	3/24/22	3/24/22 17:10	LBD
cis-1,3-Dichloropropene	< 0.158	2.00	0.158	μg/L	1		624.1	3/24/22	3/24/22 17:10	LBD
trans-1,3-Dichloropropene	< 0.168	2.00	0.168	μg/L	1		624.1	3/24/22	3/24/22 17:10	LBD
Ethylbenzene	< 0.215	2.00	0.215	μg/L	1		624.1	3/24/22	3/24/22 17:10	LBD
Methyl tert-Butyl Ether (MTBE)	< 0.172	2.00	0.172	$\mu g/L$	1		624.1	3/24/22	3/24/22 17:10	LBD
Methylene Chloride	< 0.235	5.00	0.235	$\mu g/L$	1		624.1	3/24/22	3/24/22 17:10	LBD
1,1,2,2-Tetrachloroethane	< 0.127	2.00	0.127	$\mu g/L$	1		624.1	3/24/22	3/24/22 17:10	LBD
Tetrachloroethylene	< 0.187	2.00	0.187	$\mu g/L$	1		624.1	3/24/22	3/24/22 17:10	LBD
Toluene	< 0.224	1.00	0.224	μg/L	1		624.1	3/24/22	3/24/22 17:10	LBD
1,1,1-Trichloroethane	< 0.169	2.00	0.169	$\mu g/L$	1		624.1	3/24/22	3/24/22 17:10	LBD
1,1,2-Trichloroethane	< 0.183	2.00	0.183	$\mu g/L$	1		624.1	3/24/22	3/24/22 17:10	LBD
Trichloroethylene	0.620	2.00	0.189	$\mu g/L$	1	J	624.1	3/24/22	3/24/22 17:10	LBD
Trichlorofluoromethane (Freon 11)	< 0.176	2.00	0.176	μg/L	1		624.1	3/24/22	3/24/22 17:10	LBD
Vinyl Chloride	0.260	2.00	0.208	$\mu g/L$	1	J	624.1	3/24/22	3/24/22 17:10	LBD
m+p Xylene	< 0.459	2.00	0.459	$\mu g/L$	1		624.1	3/24/22	3/24/22 17:10	LBD
o-Xylene	< 0.230	1.00	0.230	$\mu g/L$	1		624.1	3/24/22	3/24/22 17:10	LBD
Surrogates		% Reco	very	Recovery Limit	s	Flag/Qual				

87.3

96.1

91.3

70-130

70-130

70-130

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: NY Sample Description: Work Order: 22C1516

Date Received: 3/23/2022

Field Sample #: Trip Blank-02-032222 Sampled: 3/22/2022 00:00

Sample ID: 22C1516-05
Sample Matrix: Water

Sample Flags: PR-08

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	< 0.200	1.00	0.200	μg/L	1		624.1	3/24/22	3/24/22 12:20	LBD
Bromodichloromethane	< 0.180	2.00	0.180	$\mu g/L$	1		624.1	3/24/22	3/24/22 12:20	LBD
Bromoform	< 0.383	2.00	0.383	$\mu g/L$	1		624.1	3/24/22	3/24/22 12:20	LBD
Bromomethane	<1.54	5.00	1.54	μg/L	1	UJ VJM 4/26/22	624.1	3/24/22	3/24/22 12:20	LBD
Carbon Tetrachloride	< 0.165	2.00	0.165	$\mu g/L$	1	V J/V 4/26/22	624.1	3/24/22	3/24/22 12:20	LBD
Chlorobenzene	< 0.105	2.00	0.105	$\mu g/L$	1		624.1	3/24/22	3/24/22 12:20	LBD
Chlorodibromomethane	< 0.222	2.00	0.222	$\mu g/L$	1		624.1	3/24/22	3/24/22 12:20	LBD
Chloroethane	< 0.320	2.00	0.320	$\mu g/L$	1		624.1	3/24/22	3/24/22 12:20	LBD
Chloroform	< 0.168	2.00	0.168	$\mu g/L$	1		624.1	3/24/22	3/24/22 12:20	LBD
Chloromethane	< 0.522	2.00	0.522	$\mu g/L$	1	UJ VJM 4/26/22	624.1	3/24/22	3/24/22 12:20	LBD
1,2-Dichlorobenzene	< 0.122	2.00	0.122	$\mu g/L$	1	V JN 4/26/22	624.1	3/24/22	3/24/22 12:20	LBD
1,3-Dichlorobenzene	< 0.118	2.00	0.118	$\mu g/L$	1		624.1	3/24/22	3/24/22 12:20	LBD
1,4-Dichlorobenzene	< 0.130	2.00	0.130	$\mu g/L$	1		624.1	3/24/22	3/24/22 12:20	LBD
1,2-Dichloroethane	< 0.308	2.00	0.308	$\mu g/L$	1		624.1	3/24/22	3/24/22 12:20	LBD
1,1-Dichloroethane	< 0.142	2.00	0.142	$\mu g/L$	1		624.1	3/24/22	3/24/22 12:20	LBD
1,1-Dichloroethylene	< 0.141	2.00	0.141	$\mu g/L$	1		624.1	3/24/22	3/24/22 12:20	LBD
trans-1,2-Dichloroethylene	< 0.169	2.00	0.169	$\mu g/L$	1		624.1	3/24/22	3/24/22 12:20	LBD
1,2-Dichloropropane	< 0.181	2.00	0.181	$\mu g/L$	1		624.1	3/24/22	3/24/22 12:20	LBD
cis-1,3-Dichloropropene	< 0.158	2.00	0.158	$\mu g/L$	1		624.1	3/24/22	3/24/22 12:20	LBD
trans-1,3-Dichloropropene	< 0.168	2.00	0.168	$\mu g/L$	1		624.1	3/24/22	3/24/22 12:20	LBD
Ethylbenzene	< 0.215	2.00	0.215	$\mu g/L$	1		624.1	3/24/22	3/24/22 12:20	LBD
Methyl tert-Butyl Ether (MTBE)	< 0.172	2.00	0.172	$\mu g/L$	1		624.1	3/24/22	3/24/22 12:20	LBD
Methylene Chloride	0.690	5.00	0.235	$\mu g/L$	1	J	624.1	3/24/22	3/24/22 12:20	LBD
1,1,2,2-Tetrachloroethane	< 0.127	2.00	0.127	$\mu g/L$	1		624.1	3/24/22	3/24/22 12:20	LBD
Tetrachloroethylene	< 0.187	2.00	0.187	$\mu g/L$	1		624.1	3/24/22	3/24/22 12:20	LBD
Toluene	< 0.224	1.00	0.224	$\mu g/L$	1		624.1	3/24/22	3/24/22 12:20	LBD
1,1,1-Trichloroethane	< 0.169	2.00	0.169	$\mu g/L$	1		624.1	3/24/22	3/24/22 12:20	LBD
1,1,2-Trichloroethane	< 0.183	2.00	0.183	$\mu g/L$	1		624.1	3/24/22	3/24/22 12:20	LBD
Trichloroethylene	< 0.189	2.00	0.189	$\mu g/L$	1		624.1	3/24/22	3/24/22 12:20	LBD
Trichlorofluoromethane (Freon 11)	< 0.176	2.00	0.176	$\mu g/L$	1		624.1	3/24/22	3/24/22 12:20	LBD
Vinyl Chloride	< 0.208	2.00	0.208	$\mu g/L$	1		624.1	3/24/22	3/24/22 12:20	LBD
m+p Xylene	< 0.459	2.00	0.459	$\mu g/L$	1		624.1	3/24/22	3/24/22 12:20	LBD
o-Xylene	< 0.230	1.00	0.230	μg/L	1		624.1	3/24/22	3/24/22 12:20	LBD
Surrogates		% Reco	very	Recovery Limits	1	Flag/Qual				

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	88.1	70-130		3/24/22 12:20
Toluene-d8	90.2	70-130		3/24/22 12:20
4-Bromofluorobenzene	91.8	70-130		3/24/22 12:20

APPENDIX D-1
SUMMARY OF LABORATORY ANALYTICAL RESULTS IN MONTHLY
SAMPLES COLLECTED AT RW-3D

Client: New York State D.E.C. Job ID: 480-182791-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D Lab Sample ID: 480-182791-1

Date Collected: 04/02/21 11:00 Matrix: Water Date Received: 04/03/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		10	0.77	ug/L			04/05/21 14:40	- :
1,1,2,2-Tetrachloroethane	ND		10	0.52	ug/L			04/05/21 14:40	:
1,1,2-Trichloroethane	ND		10	0.96	ug/L			04/05/21 14:40	:
1,1-Dichloroethane	ND		10	1.2	ug/L			04/05/21 14:40	:
1,1-Dichloroethene	ND		10	1.7	ug/L			04/05/21 14:40	:
1,2-Dichlorobenzene	ND		10	0.89	ug/L			04/05/21 14:40	:
1,2-Dichloroethane	ND		10	1.2	ug/L			04/05/21 14:40	:
1,2-Dichloroethene, Total	44		20	6.4	ug/L			04/05/21 14:40	:
1,2-Dichloropropane	ND		10	1.2	ug/L			04/05/21 14:40	:
1,3-Dichlorobenzene	ND		10	1.1	ug/L			04/05/21 14:40	:
1,4-Dichlorobenzene	ND		10	1.0	ug/L			04/05/21 14:40	:
2-Chloroethyl vinyl ether	ND		50	3.7	ug/L			04/05/21 14:40	:
Acrolein	ND		200	35	ug/L			04/05/21 14:40	
Acrylonitrile	ND		100	3.8	ug/L			04/05/21 14:40	:
Benzene	ND		10	1.2	ug/L			04/05/21 14:40	:
Bromodichloromethane	ND		10	1.1	ug/L			04/05/21 14:40	:
Bromoform	ND		10	0.94	ug/L			04/05/21 14:40	:
Bromomethane	ND		10	2.4	ug/L			04/05/21 14:40	:
Carbon tetrachloride	ND		10	1.0	ug/L			04/05/21 14:40	:
Chlorobenzene	ND		10	0.95	ug/L			04/05/21 14:40	:
Chlorodibromomethane	ND		10	0.83	ug/L			04/05/21 14:40	:
Chloroethane	ND		10	1.7	ug/L			04/05/21 14:40	:
Chloroform	ND		10	1.1	ug/L			04/05/21 14:40	:
Chloromethane	ND		10	1.3	ug/L			04/05/21 14:40	:
cis-1,3-Dichloropropene	ND		10	0.66	ug/L			04/05/21 14:40	:
Ethylbenzene	ND		10	0.93	ug/L			04/05/21 14:40	:
Methylene Chloride	ND		10	1.6	ug/L			04/05/21 14:40	:
Tetrachloroethene	97		10	0.68	ug/L			04/05/21 14:40	:
Toluene	ND		10	0.91	ug/L			04/05/21 14:40	:
trans-1,2-Dichloroethene	ND		10	1.2	ug/L			04/05/21 14:40	:
trans-1,3-Dichloropropene	ND		10	0.88	ug/L			04/05/21 14:40	
Trichloroethene	86		10	1.2	ug/L			04/05/21 14:40	:
Vinyl chloride	ND		10	1.5	ug/L			04/05/21 14:40	:
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	101		68 - 130					04/05/21 14:40	
4-Bromofluorobenzene (Surr)	101		76 - 123					04/05/21 14:40	
Dibromofluoromethane (Surr)	106		75 - 123					04/05/21 14:40	
Toluene-d8 (Surr)	101		77 - 120					04/05/21 14:40	

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	617		10.0	4.0	mg/L			04/07/21 03:59	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.45	HE	0.100	0.100	SU			04/05/21 15:55	1
The state of the s									

Eurofins TestAmerica, Buffalo

Page 7 of 19

Client: New York State D.E.C. Job ID: 480-182791-1

Project/Site: COSCO #344035

Client Sample ID: EFFLUENT

Lab Sample ID: 480-182791-2 Date Collected: 04/02/21 11:10

Matrix: Water

Date Received: 04/03/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			04/05/21 12:24	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			04/05/21 12:24	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			04/05/21 12:24	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			04/05/21 12:24	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			04/05/21 12:24	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			04/05/21 12:24	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			04/05/21 12:24	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			04/05/21 12:24	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			04/05/21 12:24	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			04/05/21 12:24	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			04/05/21 12:24	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			04/05/21 12:24	1
Acrolein	ND		100	17	ug/L			04/05/21 12:24	1
Acrylonitrile	ND		50	1.9	ug/L			04/05/21 12:24	1
Benzene	ND		5.0	0.60	ug/L			04/05/21 12:24	1
Bromodichloromethane	ND		5.0	0.54	ug/L			04/05/21 12:24	1
Bromoform	ND		5.0	0.47	ug/L			04/05/21 12:24	1
Bromomethane	ND		5.0	1.2	ug/L			04/05/21 12:24	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			04/05/21 12:24	1
Chlorobenzene	ND		5.0	0.48	ug/L			04/05/21 12:24	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			04/05/21 12:24	1
Chloroethane	ND		5.0	0.87	ug/L			04/05/21 12:24	1
Chloroform	ND		5.0	0.54	ug/L			04/05/21 12:24	1
Chloromethane	ND		5.0	0.64	ug/L			04/05/21 12:24	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			04/05/21 12:24	1
Ethylbenzene	ND		5.0	0.46	ug/L			04/05/21 12:24	1
Methylene Chloride	ND		5.0	0.81	ug/L			04/05/21 12:24	1
Tetrachloroethene	ND		5.0	0.34	ug/L			04/05/21 12:24	1
Toluene	ND		5.0	0.45	ug/L			04/05/21 12:24	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			04/05/21 12:24	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			04/05/21 12:24	1
Trichloroethene	ND		5.0	0.60	ug/L			04/05/21 12:24	1
Vinyl chloride	ND		5.0	0.75	ug/L			04/05/21 12:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		68 - 130			_		04/05/21 12:24	1
4-Bromofluorobenzene (Surr)	100		76 - 123					04/05/21 12:24	1
Dibromofluoromethane (Surr)	104		75 - 123					04/05/21 12:24	1
Toluene-d8 (Surr)	99		77 - 120					04/05/21 12:24	1

_			
Genera	al Ch	emis	trv

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total Dissolved Solids	637		10.0	4.0	mg/L			04/07/21 03:59	1	
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac	
рН	7.86	HF	0.100	0.100	SU			04/05/21 16:01	1	
Temperature	21.3	HF	0.00100	0.00100	Degrees C			04/05/21 16:01	1	

Client: New York State D.E.C. Job ID: 480-184114-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D Date Collected: 05/03/21 10:15

Date Received: 05/04/21 08:00

Lab Sample ID: 480-184114-1

Matrix: Water

Method: 624.1 - Volatile Organic Compounds (GC/MS)
Analysis Bassis Oscillar

Analyte	Result	Qualifier	RL_	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			05/06/21 00:09	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			05/06/21 00:09	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			05/06/21 00:09	1
1,1-Dichloroethane	ND		1.0	0.26	ug/L			05/06/21 00:09	1
1,1-Dichloroethene	ND		1.0	0.12	ug/L			05/06/21 00:09	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			05/06/21 00:09	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			05/06/21 00:09	1
1,2-Dichloroethene, Total	74		2.0	0.44	ug/L			05/06/21 00:09	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			05/06/21 00:09	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			05/06/21 00:09	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			05/06/21 00:09	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			05/06/21 00:09	1
Acrolein	ND		4.0	1.1	ug/L			05/06/21 00:09	1
Acrylonitrile	ND		2.0	0.77	ug/L			05/06/21 00:09	1
Benzene	ND		1.0	0.43	ug/L			05/06/21 00:09	1
Bromoform	ND		1.0	0.54	ug/L			05/06/21 00:09	1
Bromomethane	ND		1.0	0.45	ug/L			05/06/21 00:09	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			05/06/21 00:09	1
Chlorobenzene	ND		1.0	0.38	ug/L			05/06/21 00:09	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			05/06/21 00:09	1
Chloroethane	ND		1.0	0.32	ug/L			05/06/21 00:09	1
Chloroform	0.51	J	1.0	0.33	ug/L			05/06/21 00:09	1
Chloromethane	ND		1.0	0.43	ug/L			05/06/21 00:09	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			05/06/21 00:09	1
Bromodichloromethane	ND		1.0	0.34	ug/L			05/06/21 00:09	1
Ethylbenzene	ND		1.0	0.30	ug/L			05/06/21 00:09	1
Methylene Chloride	0.49	J	1.0	0.32	ug/L			05/06/21 00:09	1
Tetrachloroethene	120		1.0	0.25	ug/L			05/06/21 00:09	1
Toluene	ND		1.0	0.38	ug/L			05/06/21 00:09	1
trans-1,2-Dichloroethene	0.32	J	1.0	0.24	ug/L			05/06/21 00:09	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			05/06/21 00:09	1
Trichloroethene	140		1.0	0.31	ug/L			05/06/21 00:09	1
Vinyl chloride	ND		1.0	0.34	ug/L			05/06/21 00:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	72		60 - 140			_		05/06/21 00:09	1
4-Bromofluorobenzene	70		60 - 140					05/06/21 00:09	1
Toluene-d8 (Surr)	52	S1-	60 - 140					05/06/21 00:09	1

General Oneilistry	Genera	Chemi	istry
--------------------	--------	-------	-------

Dibromofluoromethane (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total Dissolved Solids	624		10.0	4.0	mg/L			05/07/21 11:27	1	
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac	
рН	7.11	HF	0.100	0.100	SU			05/17/21 18:47	1	
Temperature	19.5	HF	0.00100	0.00100	Degrees C			05/17/21 18:47	1	

60 - 140

80

Eurofins TestAmerica, Buffalo

05/06/21 00:09

Page 7 of 24

Client: New York State D.E.C. Job ID: 480-184114-1

Project/Site: COSCO #344035

Client Sample ID: EFFLUENT

Lab Sample ID: 480-184114-2 Date Collected: 05/03/21 10:20

Matrix: Water

Date Received: 05/04/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			05/06/21 10:04	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			05/06/21 10:04	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			05/06/21 10:04	1
1,1-Dichloroethane	ND		1.0	0.26	ug/L			05/06/21 10:04	1
1,1-Dichloroethene	ND		1.0	0.12	ug/L			05/06/21 10:04	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			05/06/21 10:04	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			05/06/21 10:04	1
1,2-Dichloroethene, Total	ND		2.0	0.44	ug/L			05/06/21 10:04	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			05/06/21 10:04	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			05/06/21 10:04	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			05/06/21 10:04	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			05/06/21 10:04	1
Acrolein	ND		4.0	1.1	ug/L			05/06/21 10:04	1
Acrylonitrile	ND		2.0	0.77	ug/L			05/06/21 10:04	1
Benzene	ND		1.0	0.43	ug/L			05/06/21 10:04	1
Bromoform	ND		1.0	0.54	ug/L			05/06/21 10:04	1
Bromomethane	ND		1.0	0.45	ug/L			05/06/21 10:04	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			05/06/21 10:04	1
Chlorobenzene	ND		1.0	0.38	ug/L			05/06/21 10:04	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			05/06/21 10:04	1
Chloroethane	ND		1.0	0.32	ug/L			05/06/21 10:04	1
Chloroform	ND		1.0	0.33	ug/L			05/06/21 10:04	1
Chloromethane	ND		1.0	0.43	ug/L			05/06/21 10:04	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			05/06/21 10:04	1
Bromodichloromethane	ND		1.0	0.34	ug/L			05/06/21 10:04	1
Ethylbenzene	ND		1.0	0.30	ug/L			05/06/21 10:04	1
Methylene Chloride	0.45	J	1.0	0.32	ug/L			05/06/21 10:04	1
Tetrachloroethene	ND		1.0	0.25	ug/L			05/06/21 10:04	1
Toluene	ND		1.0	0.38	ug/L			05/06/21 10:04	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			05/06/21 10:04	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			05/06/21 10:04	1
Trichloroethene	ND		1.0	0.31	ug/L			05/06/21 10:04	1
Vinyl chloride	ND		1.0	0.34	ug/L			05/06/21 10:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		60 - 140			_		05/06/21 10:04	1
4-Bromofluorobenzene	88		60 - 140					05/06/21 10:04	1
Toluene-d8 (Surr)	88		60 - 140					05/06/21 10:04	1
Dibromofluoromethane (Surr)	95		60 - 140					05/06/21 10:04	1

G	Seneral Chemistry		

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	654		10.0	4.0	mg/L			05/07/21 11:27	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.77	HF	0.100	0.100	SU			05/17/21 18:50	1
Temperature	20.5	HF	0.00100	0.00100	Degrees C			05/17/21 18:50	1

Page 8 of 24

Client: New York State D.E.C. Job ID: 480-185715-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D Date Collected: 06/07/21 10:15

Date Received: 06/08/21 08:00

Lab Sample ID: 480-185715-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			06/10/21 13:34	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			06/10/21 13:34	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			06/10/21 13:34	1
1,1-Dichloroethane	ND		1.0	0.26	ug/L			06/10/21 13:34	1
1,1-Dichloroethene	ND		1.0	0.12	ug/L			06/10/21 13:34	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			06/10/21 13:34	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			06/10/21 13:34	1
1,2-Dichloroethene, Total	30		2.0	0.44	ug/L			06/10/21 13:34	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			06/10/21 13:34	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			06/10/21 13:34	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			06/10/21 13:34	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			06/10/21 13:34	1
Acrolein	ND		4.0	1.1	ug/L			06/10/21 13:34	1
Acrylonitrile	ND		2.0	0.77	ug/L			06/10/21 13:34	1
Benzene	ND		1.0	0.43	ug/L			06/10/21 13:34	1
Bromoform	ND		1.0	0.54	ug/L			06/10/21 13:34	1
Bromomethane	ND		1.0	0.45	ug/L			06/10/21 13:34	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			06/10/21 13:34	1
Chlorobenzene	ND		1.0	0.38	ug/L			06/10/21 13:34	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			06/10/21 13:34	1
Chloroethane	ND		1.0	0.32	ug/L			06/10/21 13:34	1
Chloroform	0.69	J	1.0	0.33	ug/L			06/10/21 13:34	1
Chloromethane	ND		1.0	0.43	ug/L			06/10/21 13:34	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			06/10/21 13:34	1
Bromodichloromethane	ND		1.0	0.34	ug/L			06/10/21 13:34	1
Ethylbenzene	ND		1.0	0.30	ug/L			06/10/21 13:34	1
Methylene Chloride	ND		1.0	0.32	ug/L			06/10/21 13:34	1
Tetrachloroethene	46		1.0	0.25	ug/L			06/10/21 13:34	1
Toluene	ND		1.0	0.38				06/10/21 13:34	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			06/10/21 13:34	1

Surrogate	%Recovery	Qualifier	Limits	Prep	ared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	124		60 - 140			06/10/21 13:34	
4-Bromofluorobenzene	90		60 - 140			06/10/21 13:34	1
Toluene-d8 (Surr)	109		60 - 140			06/10/21 13:34	1
Dibromofluoromethane (Surr)	121		60 - 140			06/10/21 13:34	1

1.0

1.0

1.0

0.22 ug/L

0.31 ug/L

0.34 ug/L

ND

64

ND

General	Chemi	stry
---------	-------	------

trans-1,3-Dichloropropene

Trichloroethene

Vinyl chloride

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	695		10.0	4.0	mg/L			06/09/21 13:53	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	6.94	HF	0.100	0.100	SU			06/10/21 10:01	1
Temperature	20.6	HF	0.00100	0.00100	Degrees C			06/10/21 10:01	1

Page 7 of 23

06/10/21 13:34

06/10/21 13:34

06/10/21 13:34

Client: New York State D.E.C. Job ID: 480-185715-1

Project/Site: COSCO #344035

Client Sample ID: Effluent

Lab Sample ID: 480-185715-2

Date Collected: 06/07/21 10:20	Matrix: Water
Date Received: 06/08/21 08:00	
Method: 624.1 - Volatile Organic Compounds (GC/MS)	

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	1.0	0.24	ug/L			06/10/21 13:09	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.37	ug/L			06/10/21 13:09	1
1,1,2-Trichloroethane	ND	1.0	0.15	ug/L			06/10/21 13:09	1
1,1-Dichloroethane	ND	1.0	0.26	ug/L			06/10/21 13:09	1
1,1-Dichloroethene	ND	1.0	0.12	ug/L			06/10/21 13:09	1
1,2-Dichlorobenzene	ND	1.0	0.19	ug/L			06/10/21 13:09	1
1,2-Dichloroethane	ND	1.0	0.84	ug/L			06/10/21 13:09	1
1,2-Dichloroethene, Total	1.2 J	2.0	0.44	ug/L			06/10/21 13:09	1
1,2-Dichloropropane	ND	1.0	0.35	ug/L			06/10/21 13:09	1
1,3-Dichlorobenzene	ND	1.0	0.13	ug/L			06/10/21 13:09	1
1,4-Dichlorobenzene	ND	1.0	0.18	ug/L			06/10/21 13:09	1
2-Chloroethyl vinyl ether	ND	1.0	0.91	ug/L			06/10/21 13:09	1
Acrolein	ND	4.0	1.1	ug/L			06/10/21 13:09	1
Acrylonitrile	ND	2.0	0.77	ug/L			06/10/21 13:09	1
Benzene	ND	1.0	0.43	ug/L			06/10/21 13:09	1
Bromoform	ND	1.0	0.54	ug/L			06/10/21 13:09	1
Bromomethane	ND	1.0	0.45	ug/L			06/10/21 13:09	1
Carbon tetrachloride	ND	1.0	0.21	ug/L			06/10/21 13:09	1
Chlorobenzene	ND	1.0	0.38	ug/L			06/10/21 13:09	1
Chlorodibromomethane	ND	1.0	0.13	ug/L			06/10/21 13:09	1
Chloroethane	ND	1.0	0.32	ug/L			06/10/21 13:09	1
Chloroform	ND	1.0	0.33	ug/L			06/10/21 13:09	1
Chloromethane	ND	1.0	0.43	ug/L			06/10/21 13:09	1
cis-1,3-Dichloropropene	ND	1.0	0.46	ug/L			06/10/21 13:09	1
Bromodichloromethane	ND	1.0	0.34	ug/L			06/10/21 13:09	1
Ethylbenzene	ND	1.0	0.30	ug/L			06/10/21 13:09	1
Methylene Chloride	ND	1.0	0.32				06/10/21 13:09	1
Tetrachloroethene	0.57 J	1.0	0.25	ug/L			06/10/21 13:09	1
Toluene	ND	1.0	0.38	ug/L			06/10/21 13:09	1
trans-1,2-Dichloroethene	ND	1.0	0.24	ug/L			06/10/21 13:09	1
trans-1,3-Dichloropropene	ND	1.0	0.22	ug/L			06/10/21 13:09	1
Trichloroethene	1.2	1.0	0.31	ug/L			06/10/21 13:09	1
Vinyl chloride	ND	1.0	0.34	ug/L			06/10/21 13:09	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	120	60 - 140			-		06/10/21 13:09	1
4-Bromofluorobenzene	84	60 - 140					06/10/21 13:09	1
Toluene-d8 (Surr)	104	60 - 140					06/10/21 13:09	1
Dibromofluoromethane (Surr)	117	60 - 140					06/10/21 13:09	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	120		60 - 140		06/10/21 13:09	1
4-Bromofluorobenzene	84		60 - 140		06/10/21 13:09	1
Toluene-d8 (Surr)	104		60 - 140		06/10/21 13:09	1
Dibromofluoromethane (Surr)	117		60 - 140		06/10/21 13:09	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	689		10.0	4.0	mg/L			06/09/21 13:53	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
рН	7.72	HF	0.100	0.100	SU			06/10/21 10:04	1
Temperature	21.0	HF	0.00100	0.00100	Degrees C			06/10/21 10:04	1

Client: New York State D.E.C.

Job ID: 480-186961-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D

Lab Sample ID: 480-186961-1

Matrix: Water

Date Collected: 07/08/21 11:00 Date Received: 07/09/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			07/10/21 14:58	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			07/10/21 14:58	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			07/10/21 14:58	1
1,1-Dichloroethane	ND		1.0	0.26	ug/L			07/10/21 14:58	1
1,1-Dichloroethene	0.48	J	1.0	0.12	ug/L			07/10/21 14:58	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			07/10/21 14:58	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			07/10/21 14:58	1
1,2-Dichloroethene, Total	62		2.0	0.44	ug/L			07/10/21 14:58	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			07/10/21 14:58	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			07/10/21 14:58	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			07/10/21 14:58	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			07/10/21 14:58	1
Acrolein	ND		4.0	1.1	ug/L			07/10/21 14:58	1
Acrylonitrile	ND		2.0	0.77	ug/L			07/10/21 14:58	1
Benzene	ND		1.0	0.43	ug/L			07/10/21 14:58	1
Bromoform	ND		1.0	0.54	ug/L			07/10/21 14:58	1
Bromomethane	ND		1.0	0.45	ug/L			07/10/21 14:58	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			07/10/21 14:58	1
Chlorobenzene	ND		1.0	0.38	ug/L			07/10/21 14:58	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			07/10/21 14:58	1
Chloroethane	ND		1.0	0.32	ug/L			07/10/21 14:58	1
Chloroform	ND		1.0	0.33	ug/L			07/10/21 14:58	1
Chloromethane	ND		1.0	0.43	ug/L			07/10/21 14:58	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			07/10/21 14:58	1
Bromodichloromethane	ND		1.0	0.34	ug/L			07/10/21 14:58	1
Ethylbenzene	ND		1.0	0.30	ug/L			07/10/21 14:58	1
Methylene Chloride	ND		1.0	0.32	ug/L			07/10/21 14:58	1
Tetrachloroethene	160		1.0	0.25	ug/L			07/10/21 14:58	1
Toluene	ND		1.0	0.38	ug/L			07/10/21 14:58	1
trans-1,2-Dichloroethene	0.31	J	1.0	0.24	ug/L			07/10/21 14:58	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			07/10/21 14:58	1
Trichloroethene	140		1.0	0.31	ug/L			07/10/21 14:58	1
Vinyl chloride	ND		1.0	0.34	ug/L			07/10/21 14:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		60 - 140			-		07/10/21 14:58	1
4-Bromofluorobenzene	103		60 - 140					07/10/21 14:58	1
Toluene-d8 (Surr)	104		60 - 140					07/10/21 14:58	1
Dibromofluoromethane (Surr)	104		60 - 140					07/10/21 14:58	1

_	_			
Gen	eral	Ch	ρmi	strv

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total Dissolved Solids	661		10.0	4.0	mg/L			07/09/21 16:06	1	
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac	
рН	7.41	HF	0.100	0.100	SU			07/09/21 13:09	1	
Temperature	20.2	HF	0.00100	0.00100	Degrees C			07/09/21 13:09	1	

Λ

6

8

10

12

13

14

15

Client: New York State D.E.C. Job ID: 480-186961-1

Project/Site: COSCO #344035

Date Received: 07/09/21 08:00

Dibromofluoromethane (Surr)

Client Sample ID: Effluent Date Collected: 07/08/21 11:10

Lab Sample ID: 480-186961-2

•	Matrix:	Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			07/10/21 14:35	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			07/10/21 14:35	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			07/10/21 14:35	1
1,1-Dichloroethane	ND		1.0	0.26	ug/L			07/10/21 14:35	1
1,1-Dichloroethene	ND		1.0	0.12	ug/L			07/10/21 14:35	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			07/10/21 14:35	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			07/10/21 14:35	1
1,2-Dichloroethene, Total	0.49	J	2.0	0.44	ug/L			07/10/21 14:35	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			07/10/21 14:35	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			07/10/21 14:35	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			07/10/21 14:35	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			07/10/21 14:35	1
Acrolein	ND		4.0	1.1	ug/L			07/10/21 14:35	1
Acrylonitrile	ND		2.0	0.77	ug/L			07/10/21 14:35	1
Benzene	ND		1.0	0.43	ug/L			07/10/21 14:35	1
Bromoform	ND		1.0	0.54	ug/L			07/10/21 14:35	1
Bromomethane	ND		1.0	0.45	ug/L			07/10/21 14:35	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			07/10/21 14:35	1
Chlorobenzene	ND		1.0	0.38	ug/L			07/10/21 14:35	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			07/10/21 14:35	1
Chloroethane	ND		1.0	0.32	ug/L			07/10/21 14:35	1
Chloroform	ND		1.0	0.33	ug/L			07/10/21 14:35	1
Chloromethane	ND		1.0	0.43	ug/L			07/10/21 14:35	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			07/10/21 14:35	1
Bromodichloromethane	ND		1.0	0.34	ug/L			07/10/21 14:35	1
Ethylbenzene	ND		1.0	0.30	ug/L			07/10/21 14:35	1
Methylene Chloride	ND		1.0	0.32	ug/L			07/10/21 14:35	1
Tetrachloroethene	0.27	J	1.0	0.25	ug/L			07/10/21 14:35	1
Toluene	ND		1.0	0.38	ug/L			07/10/21 14:35	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			07/10/21 14:35	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			07/10/21 14:35	1
Trichloroethene	0.38	J	1.0	0.31	ug/L			07/10/21 14:35	1
Vinyl chloride	ND		1.0	0.34	ug/L			07/10/21 14:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	_	60 - 140			-		07/10/21 14:35	1
4-Bromofluorobenzene	99		60 - 140					07/10/21 14:35	1
Toluene-d8 (Surr)	98		60 - 140					07/10/21 14:35	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	649		10.0	4.0	mg/L			07/09/21 16:06	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	8.08	HF	0.100	0.100	SU			07/09/21 13:12	1
Temperature	20.3	HF	0.00100	0.00100	Degrees C			07/09/21 13:12	1

60 - 140

100

07/10/21 14:35

Page 8 of 22

Client: New York State D.E.C. Job ID: 480-186961-1

Project/Site: COSCO #344035

Client Sample ID: Trip Blank

Lab Sample ID: 480-186961-3 Date Collected: 07/08/21 00:00

Matrix: Water

Date Received: 07/09/21 08:00 Method: 624.1 - Volatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			07/10/21 13:27	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			07/10/21 13:27	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			07/10/21 13:27	1
1,1-Dichloroethane	ND		1.0	0.26	ug/L			07/10/21 13:27	1
1,1-Dichloroethene	ND		1.0	0.12	ug/L			07/10/21 13:27	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			07/10/21 13:27	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			07/10/21 13:27	1
1,2-Dichloroethene, Total	ND		2.0	0.44	ug/L			07/10/21 13:27	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			07/10/21 13:27	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			07/10/21 13:27	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			07/10/21 13:27	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			07/10/21 13:27	1
Acrolein	ND		4.0	1.1	ug/L			07/10/21 13:27	1
Acrylonitrile	ND		2.0	0.77	ug/L			07/10/21 13:27	1
Benzene	ND		1.0	0.43	ug/L			07/10/21 13:27	1
Bromoform	ND		1.0	0.54	ug/L			07/10/21 13:27	1
Bromomethane	ND		1.0	0.45	ug/L			07/10/21 13:27	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			07/10/21 13:27	1
Chlorobenzene	ND		1.0	0.38	ug/L			07/10/21 13:27	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			07/10/21 13:27	1
Chloroethane	ND		1.0	0.32	ug/L			07/10/21 13:27	1
Chloroform	ND		1.0	0.33	ug/L			07/10/21 13:27	1
Chloromethane	ND		1.0	0.43	ug/L			07/10/21 13:27	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			07/10/21 13:27	1
Bromodichloromethane	ND		1.0	0.34	ug/L			07/10/21 13:27	1
Ethylbenzene	ND		1.0	0.30	ug/L			07/10/21 13:27	1
Methylene Chloride	ND		1.0	0.32	ug/L			07/10/21 13:27	1
Tetrachloroethene	ND		1.0	0.25	ug/L			07/10/21 13:27	1
Toluene	ND		1.0	0.38	ug/L			07/10/21 13:27	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			07/10/21 13:27	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			07/10/21 13:27	1
Trichloroethene	ND		1.0	0.31	ug/L			07/10/21 13:27	1
Vinyl chloride	ND		1.0	0.34	ug/L			07/10/21 13:27	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		60 - 140		07/10/21 13:27	1
4-Bromofluorobenzene	97		60 - 140		07/10/21 13:27	1
Toluene-d8 (Surr)	99		60 - 140		07/10/21 13:27	1
Dibromofluoromethane (Surr)	100		60 - 140		07/10/21 13:27	1

Client: New York State D.E.C. Job ID: 480-187974-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D Date Collected: 08/04/21 10:40

Date Received: 08/05/21 08:00

General Chemistry

Total Dissolved Solids

Analyte

Analyte

Temperature

Lab Sample ID: 480-187974-1

Matrix: Water

08/06/21 14:20 08/06/21 14:20	
	'
00/00/04 44:00	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
pared Analyzed	Dil Fac
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
08/06/21 14:20	1
<u>=</u>	08/06/21 14:20 08/06/21 14:20 08/06/21 14:20

Eurofins TestAmerica, Buffalo

Analyzed

08/10/21 10:39

Analyzed

08/06/21 13:36

08/06/21 13:36

Prepared

Prepared

D

Page 7 of 22

10.0

RL

0.100

0.00100

MDL Unit

4.0 mg/L

RL Unit

0.00100 Degrees C

0.100 SU

Result Qualifier

Result Qualifier

7.46 HF

20.7 HF

624

G

4

6

8

10

12

14

Dil Fac

Client: New York State D.E.C. Job ID: 480-187974-1

Project/Site: COSCO #344035

Date Received: 08/05/21 08:00

Chlorobenzene

Chloroethane

Chlorodibromomethane

Client Sample ID: Effluent Date Collected: 08/04/21 10:30

Lab Sample ID: 480-187974-2

08/06/21 13:57

08/06/21 13:57

08/06/21 13:57

Matrix: Water

Method: 624.1 - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	*+	1.0	0.24	ug/L			08/06/21 13:57	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			08/06/21 13:57	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			08/06/21 13:57	1
1,1-Dichloroethane	ND	*+	1.0	0.26	ug/L			08/06/21 13:57	1
1,1-Dichloroethene	ND		1.0	0.12	ug/L			08/06/21 13:57	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			08/06/21 13:57	1
1,2-Dichloroethane	ND	*+	1.0	0.84	ug/L			08/06/21 13:57	1
1,2-Dichloroethene, Total	ND		2.0	0.44	ug/L			08/06/21 13:57	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			08/06/21 13:57	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			08/06/21 13:57	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			08/06/21 13:57	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			08/06/21 13:57	1
Acrolein	ND		4.0	1.1	ug/L			08/06/21 13:57	1
Acrylonitrile	ND		2.0	0.77	ug/L			08/06/21 13:57	1
Benzene	ND		1.0	0.43	ug/L			08/06/21 13:57	1
Bromoform	ND		1.0	0.54	ug/L			08/06/21 13:57	1
Bromomethane	ND		1.0	0.45	ug/L			08/06/21 13:57	1
Carbon tetrachloride	ND	*+	1.0	0.21	ug/L			08/06/21 13:57	1

1.0

1.0

1.0

0.38 ug/L

0.13 ug/L

0.32 ug/L

Chloroform	ND	1.0	0.33 ug/L	08/06/21 13:57
Chloromethane	ND	1.0	0.43 ug/L	08/06/21 13:57
cis-1,3-Dichloropropene	ND	1.0	0.46 ug/L	08/06/21 13:57
Bromodichloromethane	ND	1.0	0.34 ug/L	08/06/21 13:57
Ethylbenzene	ND	1.0	0.30 ug/L	08/06/21 13:57
Methylene Chloride	ND	1.0	0.32 ug/L	08/06/21 13:57
Tetrachloroethene	ND	1.0	0.25 ug/L	08/06/21 13:57
Toluene	ND	1.0	0.38 ug/L	08/06/21 13:57
trans-1,2-Dichloroethene	ND	1.0	0.24 ug/L	08/06/21 13:57
trans-1,3-Dichloropropene	ND	1.0	0.22 ug/L	08/06/21 13:57
Trichloroethene	ND	1.0	0.31 ug/L	08/06/21 13:57
Vinyl chloride	ND	1.0	0.34 ug/L	08/06/21 13:57

ND

ND

ND

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	144	S1+	60 - 140		08/06/21 13:57	1
4-Bromofluorobenzene	103		60 - 140		08/06/21 13:57	1
Toluene-d8 (Surr)	101		60 - 140		08/06/21 13:57	1
Dibromofluoromethane (Surr)	127		60 - 140		08/06/21 13:57	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	641		10.0	4.0	mg/L			08/10/21 10:39	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	8.22	HF	0.100	0.100	SU			08/06/21 13:34	1
Temperature	20.9	HF	0.00100	0.00100	Degrees C			08/06/21 13:34	1

Eurofins TestAmerica, Buffalo

3

4

6

8

10

11

13

14

13

8/21/2021

Client: New York State D.E.C.

Job ID: 480-190023-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D Date Collected: 09/22/21 11:35

Lab Sample ID: 480-190023-1

Matrix: Water

Date Received: 09/24/21 08:00	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			09/24/21 14:40	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			09/24/21 14:40	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			09/24/21 14:40	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			09/24/21 14:40	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			09/24/21 14:40	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			09/24/21 14:40	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			09/24/21 14:40	1
1,2-Dichloroethene, Total	36		10	3.2	ug/L			09/24/21 14:40	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			09/24/21 14:40	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			09/24/21 14:40	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			09/24/21 14:40	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			09/24/21 14:40	1
Acrolein	ND		100	17	ug/L			09/24/21 14:40	1
Acrylonitrile	ND		50	1.9	ug/L			09/24/21 14:40	1
Benzene	ND		5.0	0.60	ug/L			09/24/21 14:40	1
Bromodichloromethane	ND		5.0	0.54	ug/L			09/24/21 14:40	1
Bromoform	ND		5.0	0.47	ug/L			09/24/21 14:40	1
Bromomethane	ND		5.0	1.2	ug/L			09/24/21 14:40	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			09/24/21 14:40	1
Chlorobenzene	ND		5.0	0.48	ug/L			09/24/21 14:40	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			09/24/21 14:40	1
Chloroethane	ND		5.0	0.87	ug/L			09/24/21 14:40	1
Chloroform	ND		5.0	0.54	ug/L			09/24/21 14:40	1
Chloromethane	ND		5.0	0.64	ug/L			09/24/21 14:40	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			09/24/21 14:40	1
Ethylbenzene	ND		5.0	0.46	ug/L			09/24/21 14:40	1
Methylene Chloride	ND		5.0	0.81	ug/L			09/24/21 14:40	1
Tetrachloroethene	79		5.0	0.34	ug/L			09/24/21 14:40	1
Toluene	ND		5.0	0.45	ug/L			09/24/21 14:40	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			09/24/21 14:40	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			09/24/21 14:40	1
Trichloroethene	72		5.0	0.60	ug/L			09/24/21 14:40	1
Vinyl chloride	ND		5.0	0.75	ug/L			09/24/21 14:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		68 - 130			_		09/24/21 14:40	1
4-Bromofluorobenzene (Surr)	97		76 - 123					09/24/21 14:40	1
Dibromofluoromethane (Surr)	102		75 ₋ 123					09/24/21 14:40	1

_			
Toluene-d8 (Surr)	100	77 - 120	09/24/21 14:40 1
Dibromofluoromethane (Surr)	102	75 - 123	09/24/21 14:40 1
4-Bromofluorobenzene (Surr)	97	76 - 123	09/24/21 14:40 1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	631		10.0	4.0	mg/L			09/24/21 15:00	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.33	HF	0.100	0.100	SU			09/28/21 15:18	1
Temperature	18.8	HF	0.00100	0.00100	Degrees C			09/28/21 15:18	1

6

4

6

0

10

12

1 1

13

Client: New York State D.E.C. Job ID: 480-190023-1

Project/Site: COSCO #344035

Client Sample ID: Effluent

Lab Sample ID: 480-190023-2 Date Collected: 09/22/21 11:30

Matrix: Water

Date Received: 09/24/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			09/24/21 15:03	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			09/24/21 15:03	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			09/24/21 15:03	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			09/24/21 15:03	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			09/24/21 15:03	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			09/24/21 15:03	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			09/24/21 15:03	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			09/24/21 15:03	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			09/24/21 15:03	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			09/24/21 15:03	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			09/24/21 15:03	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			09/24/21 15:03	1
Acrolein	ND		100	17	ug/L			09/24/21 15:03	1
Acrylonitrile	ND		50	1.9	ug/L			09/24/21 15:03	1
Benzene	ND		5.0	0.60	ug/L			09/24/21 15:03	1
Bromodichloromethane	ND		5.0	0.54	ug/L			09/24/21 15:03	1
Bromoform	ND		5.0	0.47	ug/L			09/24/21 15:03	1
Bromomethane	ND		5.0	1.2	ug/L			09/24/21 15:03	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			09/24/21 15:03	1
Chlorobenzene	ND		5.0	0.48	ug/L			09/24/21 15:03	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			09/24/21 15:03	1
Chloroethane	ND		5.0	0.87	ug/L			09/24/21 15:03	1
Chloroform	ND		5.0	0.54	ug/L			09/24/21 15:03	1
Chloromethane	ND		5.0	0.64	ug/L			09/24/21 15:03	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			09/24/21 15:03	1
Ethylbenzene	ND		5.0	0.46	ug/L			09/24/21 15:03	1
Methylene Chloride	ND		5.0	0.81	ug/L			09/24/21 15:03	1
Tetrachloroethene	ND		5.0	0.34	ug/L			09/24/21 15:03	1
Toluene	ND		5.0	0.45	ug/L			09/24/21 15:03	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			09/24/21 15:03	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			09/24/21 15:03	1
Trichloroethene	ND		5.0	0.60	ug/L			09/24/21 15:03	1
Vinyl chloride	ND		5.0	0.75	ug/L			09/24/21 15:03	1
Surrogate	%Recovery	Qualifier	Limits			=	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		68 - 130				<u> </u>	09/24/21 15:03	1
4-Bromofluorobenzene (Surr)	99		76 - 123					09/24/21 15:03	1
Dibromofluoromethane (Surr)	96		75 - 123					09/24/21 15:03	1
Toluene-d8 (Surr)	100		77 - 120					09/24/21 15:03	1

Genera	Chemi	istry
--------	-------	-------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total Dissolved Solids	656		10.0	4.0	mg/L			09/24/21 15:00	1	
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac	
рН	8.28	HF	0.100	0.100	SU			09/28/21 15:19	1	
Temperature	19.2	HF	0.00100	0.00100	Degrees C			09/28/21 15:19	1	

Eurofins TestAmerica, Buffalo

Page 8 of 20

Client: New York State D.E.C. Job ID: 480-190023-1

Project/Site: COSCO #344035

Date Collected: 09/22/21 00:00

Client Sample ID: TB

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Lab Sample ID: 480-190023-3

Matrix: Water

Date Received: 09/24/21 08:00
Method: 624.1 - Volatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL_	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			09/24/21 15:26	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			09/24/21 15:26	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			09/24/21 15:26	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			09/24/21 15:26	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			09/24/21 15:26	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			09/24/21 15:26	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			09/24/21 15:26	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			09/24/21 15:26	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			09/24/21 15:26	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			09/24/21 15:26	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			09/24/21 15:26	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			09/24/21 15:26	1
Acrolein	ND		100	17	ug/L			09/24/21 15:26	1
Acrylonitrile	ND		50	1.9	ug/L			09/24/21 15:26	1
Benzene	ND		5.0	0.60	ug/L			09/24/21 15:26	1
Bromodichloromethane	ND		5.0	0.54	ug/L			09/24/21 15:26	1
Bromoform	ND		5.0	0.47	ug/L			09/24/21 15:26	1
Bromomethane	ND		5.0	1.2	ug/L			09/24/21 15:26	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			09/24/21 15:26	1
Chlorobenzene	ND		5.0	0.48	ug/L			09/24/21 15:26	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			09/24/21 15:26	1
Chloroethane	ND		5.0	0.87	ug/L			09/24/21 15:26	1
Chloroform	ND		5.0	0.54	ug/L			09/24/21 15:26	1
Chloromethane	ND		5.0	0.64	ug/L			09/24/21 15:26	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			09/24/21 15:26	1
Ethylbenzene	ND		5.0	0.46	ug/L			09/24/21 15:26	1
Methylene Chloride	ND		5.0	0.81	ug/L			09/24/21 15:26	1
Tetrachloroethene	ND		5.0	0.34	ug/L			09/24/21 15:26	1
Toluene	ND		5.0	0.45	ug/L			09/24/21 15:26	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			09/24/21 15:26	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			09/24/21 15:26	1
Trichloroethene	ND		5.0	0.60	ug/L			09/24/21 15:26	1
Vinyl chloride	ND		5.0	0.75	ug/L			09/24/21 15:26	1
Surrogate	%Recovery	Qualifier	Limits			=	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		68 - 130					09/24/21 15:26	1
4-Bromofluorobenzene (Surr)	98		76 - 123					09/24/21 15:26	1

09/24/21 15:26

09/24/21 15:26

75 - 123

77 - 120

99

101

Client: New York State D.E.C. Job ID: 480-190769-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D

Lab Sample ID: 480-190769-1

Matrix: Water

Date Collected: 10/11/21 11:05 Date Received: 10/12/21 08:00

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	5.0	0.39	ug/L			10/12/21 18:37	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			10/12/21 18:37	1
1,1,2-Trichloroethane	ND	5.0	0.48	ug/L			10/12/21 18:37	1
1,1-Dichloroethane	ND	5.0	0.59	ug/L			10/12/21 18:37	1
1,1-Dichloroethene	ND	5.0	0.85	ug/L			10/12/21 18:37	1
1,2-Dichlorobenzene	ND	5.0	0.44	ug/L			10/12/21 18:37	1
1,2-Dichloroethane	ND	5.0	0.60	ug/L			10/12/21 18:37	1
1,2-Dichloroethene, Total	52	10	3.2	ug/L			10/12/21 18:37	1
1,2-Dichloropropane	ND	5.0	0.61	ug/L			10/12/21 18:37	1
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			10/12/21 18:37	1
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			10/12/21 18:37	1
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			10/12/21 18:37	1
Acrolein	ND *+	100	17	ug/L			10/12/21 18:37	1
Acrylonitrile	ND	50	1.9	ug/L			10/12/21 18:37	1
Benzene	ND	5.0	0.60	ug/L			10/12/21 18:37	1
Bromodichloromethane	ND	5.0	0.54	ug/L			10/12/21 18:37	1
Bromoform	ND	5.0	0.47	ug/L			10/12/21 18:37	1
Bromomethane	ND	5.0	1.2	ug/L			10/12/21 18:37	1
Carbon tetrachloride	ND	5.0	0.51	ug/L			10/12/21 18:37	1
Chlorobenzene	ND	5.0	0.48	ug/L			10/12/21 18:37	1
Chlorodibromomethane	ND	5.0	0.41	ug/L			10/12/21 18:37	1
Chloroethane	ND	5.0	0.87	ug/L			10/12/21 18:37	1
Chloroform	ND	5.0	0.54	ug/L			10/12/21 18:37	1
Chloromethane	ND	5.0	0.64	ug/L			10/12/21 18:37	1
cis-1,3-Dichloropropene	ND	5.0	0.33	ug/L			10/12/21 18:37	1
Ethylbenzene	ND	5.0	0.46	ug/L			10/12/21 18:37	1
Methylene Chloride	ND	5.0	0.81	ug/L			10/12/21 18:37	1
Toluene	ND	5.0	0.45	ug/L			10/12/21 18:37	1
trans-1,2-Dichloroethene	ND	5.0		ug/L			10/12/21 18:37	1
trans-1,3-Dichloropropene	ND	5.0	0.44	ug/L			10/12/21 18:37	1
Trichloroethene	96	5.0	0.60	ug/L			10/12/21 18:37	1
Vinyl chloride	ND	5.0		ug/L			10/12/21 18:37	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	68 - 130			-		10/12/21 18:37	1
4-Bromofluorobenzene (Surr)	99	76 - 123					10/12/21 18:37	1
Dibromofluoromethane (Surr)	100	75 ₋ 123					10/12/21 18:37	1

Method: 624.1 - Volatile Organic	Compounds (GC/MS) - DL
----------------------------------	------------------------

Toluene-d8 (Surr)

Analyte

104

Result Qualifier

Tetrachloroethene	83	10	0.68 ug/L		10/13/21 13:53	2
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	68 - 130			10/13/21 13:53	2
4-Bromofluorobenzene (Surr)	99	76 - 123			10/13/21 13:53	2
Dibromofluoromethane (Surr)	100	75 - 123			10/13/21 13:53	2
Toluene-d8 (Surr)	104	77 - 120			10/13/21 13:53	2

RL

MDL Unit

D

Prepared

77 - 120

Eurofins TestAmerica, Buffalo

10/12/21 18:37

Analyzed

Page 7 of 22

Dil Fac

Client: New York State D.E.C. Job ID: 480-190769-1

Project/Site: COSCO #344035

Date Received: 10/12/21 08:00

Client Sample ID: RW-3D Lab Sample ID: 480-190769-1 Date Collected: 10/11/21 11:05

Matrix: Water

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	668		10.0	4.0	mg/L			10/12/21 14:25	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	8.12	HF	0.100	0.100	SU			10/14/21 09:12	1
Temperature	19.7	HF	0.00100	0.00100	Degrees C			10/14/21 09:12	1

Client: New York State D.E.C. Job ID: 480-190769-1

Project/Site: COSCO #344035

Lab Sample ID: 480-190769-2 **Client Sample ID: Effluent**

Matrix: Water

Date Collected: 10/11/21 10:55 Date Received: 10/12/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			10/12/21 19:01	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/12/21 19:01	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/12/21 19:01	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			10/12/21 19:01	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			10/12/21 19:01	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/12/21 19:01	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/12/21 19:01	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			10/12/21 19:01	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/12/21 19:01	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/12/21 19:01	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/12/21 19:01	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/12/21 19:01	1
Acrolein	ND	*+	100	17	ug/L			10/12/21 19:01	1
Acrylonitrile	ND		50	1.9	ug/L			10/12/21 19:01	1
Benzene	ND		5.0	0.60	ug/L			10/12/21 19:01	1
Bromodichloromethane	ND		5.0	0.54	ug/L			10/12/21 19:01	1
Bromoform	ND		5.0	0.47	ug/L			10/12/21 19:01	1
Bromomethane	ND		5.0	1.2	ug/L			10/12/21 19:01	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/12/21 19:01	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/12/21 19:01	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			10/12/21 19:01	•
Chloroethane	ND		5.0	0.87	ug/L			10/12/21 19:01	1
Chloroform	ND		5.0	0.54	ug/L			10/12/21 19:01	•
Chloromethane	ND		5.0	0.64	ug/L			10/12/21 19:01	•
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/12/21 19:01	
Ethylbenzene	ND		5.0	0.46	ug/L			10/12/21 19:01	1
Methylene Chloride	ND		5.0	0.81	ug/L			10/12/21 19:01	1
Tetrachloroethene	ND		5.0	0.34	ug/L			10/12/21 19:01	1
Toluene	ND		5.0	0.45	ug/L			10/12/21 19:01	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			10/12/21 19:01	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/12/21 19:01	
Trichloroethene	ND		5.0	0.60	ug/L			10/12/21 19:01	1
Vinyl chloride	ND		5.0	0.75	ug/L			10/12/21 19:01	1
Surrogate	%Recovery	Qualifier	Limits			=	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		68 - 130					10/12/21 19:01	
4-Bromofluorobenzene (Surr)	100		76 - 123					10/12/21 19:01	1
Dibromofluoromethane (Surr)	101		75 - 123					10/12/21 19:01	1
Toluene-d8 (Surr)	105		77 - 120					10/12/21 19:01	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	679		10.0	4.0	mg/L			10/12/21 14:25	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	8.13	HF *+	0.100	0.100	SU			10/13/21 17:54	1
Temperature	17.2	HE	0.00100	0.00100	Degrees C			10/13/21 17:54	1

Eurofins TestAmerica, Buffalo

Page 9 of 22

Client: New York State D.E.C. Job ID: 480-192049-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D Date Collected: 11/08/21 10:30

Date Received: 11/09/21 08:00

Lab Sample ID: 480-192049-1

Matrix: Water

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			11/09/21 13:27	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			11/09/21 13:27	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			11/09/21 13:27	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			11/09/21 13:27	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			11/09/21 13:27	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			11/09/21 13:27	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			11/09/21 13:27	1
1,2-Dichloroethene, Total	19		10	3.2	ug/L			11/09/21 13:27	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			11/09/21 13:27	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			11/09/21 13:27	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			11/09/21 13:27	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			11/09/21 13:27	1
Acrolein	ND	*+	100	17	ug/L			11/09/21 13:27	1
Acrylonitrile	ND		50	1.9	ug/L			11/09/21 13:27	1
Benzene	ND		5.0	0.60	ug/L			11/09/21 13:27	1
Bromodichloromethane	ND		5.0	0.54	ug/L			11/09/21 13:27	1
Bromoform	ND		5.0	0.47	ug/L			11/09/21 13:27	1
Bromomethane	ND		5.0	1.2	ug/L			11/09/21 13:27	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			11/09/21 13:27	1
Chlorobenzene	ND		5.0	0.48	ug/L			11/09/21 13:27	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			11/09/21 13:27	1
Chloroethane	ND		5.0	0.87	ug/L			11/09/21 13:27	1
Chloroform	ND		5.0	0.54	ug/L			11/09/21 13:27	1
Chloromethane	ND		5.0	0.64	ug/L			11/09/21 13:27	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			11/09/21 13:27	1
Ethylbenzene	ND		5.0	0.46	ug/L			11/09/21 13:27	1
Methylene Chloride	ND		5.0	0.81	ug/L			11/09/21 13:27	1
Tetrachloroethene	47		5.0	0.34	ug/L			11/09/21 13:27	1
Toluene	ND		5.0	0.45	ug/L			11/09/21 13:27	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			11/09/21 13:27	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			11/09/21 13:27	1
Trichloroethene	42		5.0	0.60	ug/L			11/09/21 13:27	1
Vinyl chloride	ND		5.0	0.75	ug/L			11/09/21 13:27	1
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		68 - 130					11/09/21 13:27	1
4-Bromofluorobenzene (Surr)	99		76 - 123					11/09/21 13:27	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzea	DII Fac
1,2-Dichloroethane-d4 (Surr)	97		68 - 130		11/09/21 13:27	1
4-Bromofluorobenzene (Surr)	99		76 - 123		11/09/21 13:27	1
Dibromofluoromethane (Surr)	103		75 - 123		11/09/21 13:27	1
Toluene-d8 (Surr)	104		77 - 120		11/09/21 13:27	1

General Chemistry

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	676		10.0	4.0	mg/L			11/11/21 09:30	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.40	HF	0.100	0.100	SU			11/15/21 11:04	1
Temperature	22.8	HF	0.00100	0.00100	Degrees C			11/15/21 11:04	1

Page 7 of 19

Client: New York State D.E.C. Job ID: 480-192049-1

Project/Site: COSCO #344035

Client Sample ID: EFFLUENT

Lab Sample ID: 480-192049-2 Date Collected: 11/08/21 10:45

Matrix: Water

Date Received: 11/09/21 08:00

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	5.0	0.39	ug/L			11/09/21 13:50	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			11/09/21 13:50	1
1,1,2-Trichloroethane	ND	5.0	0.48	ug/L			11/09/21 13:50	1
1,1-Dichloroethane	ND	5.0	0.59	ug/L			11/09/21 13:50	1
1,1-Dichloroethene	ND	5.0	0.85	ug/L			11/09/21 13:50	1
1,2-Dichlorobenzene	ND	5.0	0.44	ug/L			11/09/21 13:50	1
1,2-Dichloroethane	ND	5.0	0.60	ug/L			11/09/21 13:50	1
1,2-Dichloroethene, Total	ND	10	3.2	ug/L			11/09/21 13:50	1
1,2-Dichloropropane	ND	5.0	0.61	ug/L			11/09/21 13:50	1
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			11/09/21 13:50	1
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			11/09/21 13:50	1
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			11/09/21 13:50	1
Acrolein	ND *+	100	17	ug/L			11/09/21 13:50	1
Acrylonitrile	ND	50	1.9	ug/L			11/09/21 13:50	1
Benzene	ND	5.0	0.60	ug/L			11/09/21 13:50	1
Bromodichloromethane	ND	5.0	0.54	ug/L			11/09/21 13:50	1
Bromoform	ND	5.0	0.47	ug/L			11/09/21 13:50	1
Bromomethane	ND	5.0	1.2	ug/L			11/09/21 13:50	1
Carbon tetrachloride	ND	5.0	0.51	ug/L			11/09/21 13:50	1
Chlorobenzene	ND	5.0	0.48	ug/L			11/09/21 13:50	1
Chlorodibromomethane	ND	5.0	0.41	ug/L			11/09/21 13:50	1
Chloroethane	ND	5.0	0.87	ug/L			11/09/21 13:50	1
Chloroform	ND	5.0	0.54	ug/L			11/09/21 13:50	1
Chloromethane	ND	5.0	0.64	ug/L			11/09/21 13:50	1
cis-1,3-Dichloropropene	ND	5.0	0.33	ug/L			11/09/21 13:50	1
Ethylbenzene	ND	5.0	0.46	ug/L			11/09/21 13:50	1
Methylene Chloride	ND	5.0	0.81	ug/L			11/09/21 13:50	1
Tetrachloroethene	ND	5.0	0.34	ug/L			11/09/21 13:50	1
Toluene	ND	5.0	0.45	ug/L			11/09/21 13:50	1
trans-1,2-Dichloroethene	ND	5.0	0.59	ug/L			11/09/21 13:50	1
trans-1,3-Dichloropropene	ND	5.0	0.44	ug/L			11/09/21 13:50	1
Trichloroethene	ND	5.0	0.60	ug/L			11/09/21 13:50	1
Vinyl chloride	ND	5.0	0.75	ug/L			11/09/21 13:50	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	68 - 130					11/09/21 13:50	1
4-Bromofluorobenzene (Surr)	99	76 - 123					11/09/21 13:50	1
Dibromofluoromethane (Surr)	104	75 - 123					11/09/21 13:50	1
Toluene-d8 (Surr)	102	77 - 120					11/09/21 13:50	1

_	_			_
Gen	ıeral	Ch	em	istrv

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	642		10.0	4.0	mg/L			11/11/21 09:30	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	8.18	HF	0.100	0.100	SU			11/15/21 11:05	1
Temperature	22.9	HE	0.00100	0.00100	Degrees C			11/15/21 11:05	1

Eurofins TestAmerica, Buffalo

Page 8 of 19

ANALYTICAL RESULTS

Project: COSCO #344035 - 12/16

Pace Project No.: 70198509

Date: 12/30/2021 06:44 PM

Bromoform	Sample: RW-3D	Lab ID: 70	198509001	Collected: 12/16/2	21 10:10	Received: 1	2/18/21 10:45 N	Matrix: Water	
Pace Analytical Services - Melville	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Benzene	624.1 Volatile Organics	Analytical Me	thod: EPA 62	4.1					
Bromotichloromethane		Pace Analytic	al Services -	Melville					
Bromotichloromethane	Benzene	<1.0	ua/L	1.0	1		12/21/21 11:53	71-43-2	
Bromnofem			-						M1
Brommethane	Bromoform	<1.0	-	1.0	1		12/21/21 11:53	75-25-2	L2,M0
Carbon tetrachloride <1.0 ug/L 1.0 1 1221/21 11:53 15:33 108:90:7 EQ-32-5 Inchorobenzene <1.0 ug/L 1.0 1 1221/21 11:53 30:90:90:7 EQ-30-5 Inchorobenzene <1.0 ug/L 1.0 1 1221/21 11:53 76:90:3 76:90:3	Bromomethane	<1.0	-	1.0	1		12/21/21 11:53	74-83-9	,
Chlorobenzene	Carbon tetrachloride	<1.0		1.0	1		12/21/21 11:53	56-23-5	L2,M0
Chloroethane	Chlorobenzene	<1.0		1.0	1		12/21/21 11:53	108-90-7	
Chloromethane	Chloroethane	<1.0	_	1.0	1		12/21/21 11:53	75-00-3	
Dibromochloromethane	Chloroform	<1.0	ug/L	1.0	1		12/21/21 11:53	67-66-3	
1,2-Dichlorobenzene <1.0	Chloromethane	<1.0	ug/L	1.0	1		12/21/21 11:53	74-87-3	
1,2-Dichlorobenzene <1.0	Dibromochloromethane	<1.0	-	1.0	1		12/21/21 11:53	124-48-1	M1
1,3-Dichlorobenzene	1,2-Dichlorobenzene	<1.0	-	1.0	1		12/21/21 11:53	95-50-1	
1,4-Dichlorobenzene	1,3-Dichlorobenzene	<1.0	_	1.0	1		12/21/21 11:53	541-73-1	
Dichlorodifluoromethane	1,4-Dichlorobenzene	<1.0	-	1.0	1		12/21/21 11:53	106-46-7	
1,1-Dichloroethane <1.0 ug/L 1.0 1 12/21/21 11:53 75-34-3 1,2-Dichloroethane <1.0 ug/L 1.0 1 12/21/21 11:53 76-34-3 1,1-Dichloroethene <1.0 ug/L 1.0 1 12/21/21 11:53 75-35-4 cis-1,2-Dichloroethene <1.1 ug/L 1.0 1 12/21/21 11:53 76-35-4 cis-1,2-Dichloroethene <1.0 ug/L 1.0 1 12/21/21 11:53 76-36-4 cis-1,2-Dichloropropane <1.0 ug/L 1.0 1 12/21/21 11:53 78-87-5 cis-1,3-Dichloropropane <1.0 ug/L 1.0 1 12/21/21 11:53 78-87-5 trans-1,3-Dichloropropane <1.0 ug/L 1.0 1 12/21/21 11:53 78-87-5 trans-1,3-Dichloropropane <1.0 ug/L 1.0 1 12/21/21 11:53 10061-01-5 trans-1,3-Dichloropropane <1.0 ug/L 1.0 1 12/21/21 11:53 10061-01-5 1 12/21/21 11:53 10061-01-5 1 12/21/21 11:53 10061-01-5 1 1 12/21/21 11:53 100-10-10-10 <td>-</td> <td><1.0</td> <td>-</td> <td>1.0</td> <td>1</td> <td></td> <td>12/21/21 11:53</td> <td>75-71-8</td> <td>v3</td>	-	<1.0	-	1.0	1		12/21/21 11:53	75-71-8	v3
1,2-Dichloroethane	1,1-Dichloroethane	<1.0	-	1.0	1		12/21/21 11:53	75-34-3	
1,1-Dichloroethene <1.0 ug/L 1.0 1 12/21/21 11:53 75-35-4 cis-1,2-Dichloroethene 1.1 ug/L 1.0 1 12/21/21 11:53 75-35-4 cis-1,2-Dichloroethene <1.0 ug/L 1.0 1 12/21/21 11:53 75-35-4 1,2-Dichloropropane <1.0 ug/L 1.0 1 12/21/21 11:53 75-85-5 cis-1,3-Dichloropropene <1.0 ug/L 1.0 1 12/21/21 11:53 75-87-5 cis-1,3-Dichloropropene <1.0 ug/L 1.0 1 12/21/21 11:53 70061-01-6 1 Ethylbenzene <1.0 ug/L 1.0 1 12/21/21 11:53 700-1-6 1 Ethylbenzene <1.0 ug/L 1.0 1 12/21/21 11:53 700-2-1 1 Ethylbenzene <1.0 ug/L 1.0 1 12/21/21 11:53 700-41-4 4 Methylene Chloride <1.0 ug/L 1.0 1 12/21/21 11:53 75-09-2 1,1,2-Trichloroethane <1.0 ug/L 1.0 1 12/21/21 1	1,2-Dichloroethane	<1.0	_	1.0	1		12/21/21 11:53	107-06-2	
cis-1,2-Dichloroethene 1.1 ug/L 1.0 1 12/21/21 11:53 156-59-2 trans-1,2-Dichloroethene <1.0 ug/L 1.0 1 12/21/21 11:53 156-60-5 1,2-Dichloropropane <1.0 ug/L 1.0 1 12/21/21 11:53 78-87-5 cis-1,3-Dichloropropene <1.0 ug/L 1.0 1 12/21/21 11:53 10061-01-5 Ethylbenzene <1.0 ug/L 1.0 1 12/21/21 11:53 10061-02-6 1 Ethylbenzene <1.0 ug/L 1.0 1 12/21/21 11:53 10061-02-6 1 Ethylbenzene <1.0 ug/L 1.0 1 12/21/21 11:53 10061-02-6 1 Ethylbenzene <1.0 ug/L 1.0 1 12/21/21 11:53 10061-02-6 1 Ethylbenzene <1.0 ug/L 1.0 1 12/21/21 11:53 75-09-2 1,1,2-Tethachloroethane <1.0 ug/L 1.0 1 12/21/21 11:53 75-69-2	1,1-Dichloroethene		_						
trans-1,2-Dichloroethene	•	1.1	-	1.0	1		12/21/21 11:53	156-59-2	
1,2-Dichloropropane <1.0 ug/L 1.0 1 12/21/21 11:53 78-87-5 cis-1,3-Dichloropropene <1.0 ug/L 1.0 1 12/21/21 11:53 70-87-5 Ethylbenzene <1.0 ug/L 1.0 1 12/21/21 11:53 10061-02-6 15 Ethylbenzene <1.0 ug/L 1.0 1 12/21/21 11:53 100-41-4 4 Methylene Chloride <1.0 ug/L 1.0 1 12/21/21 11:53 70-02-2 1,12,2-Tetrachloroethane <1.0 ug/L 1.0 1 12/21/21 11:53 70-04-1 4 Interchloroethane <1.0 ug/L 1.0 1 12/21/21 11:53 75-09-2 2 1,1,1-Trichloroethane <1.0 ug/L 1.0 1 12/21/21 11:53 75-09-2 1 1,1,1-Trichloroethane <1.0 ug/L 1.0 1 12/21/21 11:53 70-05-5 1 1,1,2-Trichloroethane <1.0 ug/L 1.0 1 12/21/21 11:53 70-05-5 1 1,1,2-Trichloroethane <1.0 ug/L 1.0 1 12/21/21 11:53 70-01-6	•		-						
cis-1,3-Dichloropropene <1.0 ug/L 1.0 1 12/21/21 11:53 10061-01-5 10061-02-6 Intrans-1,3-Dichloropropene <1.0 ug/L 1.0 1 12/21/21 11:53 10061-02-6 Intrans-1,3-Dichloropropene <1.0 ug/L 1.0 1 12/21/21 11:53 10061-02-6 Intrans-1,3-Dichloropropene <1.0 ug/L 1.0 1 12/21/21 11:53 100-41-4 Intrans-1,3-Dichloropropene <1.0 ug/L 1.0 1 12/21/21 11:53 75-09-2 Intrans-1,3-Dichloropropene <1.0 ug/L 1.0 1 12/21/21 11:53 75-01-4 Intrans-1,3-Dichloropropene Intrans-1,3-Dichloropropene	·								
trans-1,3-Dichloropropene	• •								
Ethylbenzene			_						M1,v3
Methylene Chloride <1.0 ug/L 1.0 1 12/21/21 11:53 75-09-2 1,1,2,2-Tetrachloroethane <1.0			-						, -
1,1,2,2-Tetrachloroethane <1.0			-						
Tetrachloroethene	-		-						
Toluene			_						
1,1,1-Trichloroethane <1.0			_						
1,1,2-Trichloroethane <1.0			-						L2,M0
Trichloroethene 1.0 ug/L 1.0 1 12/21/21 11:53 79-01-6 Trichlorofluoromethane <1.0			-						,0
Trichlorofluoromethane			-						
Vinyl chloride			-						
Xylene (Total) <1.0 ug/L 1.0 1 12/21/21 11:53 1330-20-7 Surrogates 4-Bromofluorobenzene (S) 91 % 80-110 1 12/21/21 11:53 460-00-4 Toluene-d8 (S) 96 % 87-120 1 12/21/21 11:53 2037-26-5 1,2-Dichloroethane-d4 (S) 92 % 76-127 1 12/21/21 11:53 17060-07-0 2540C Total Dissolved Solids Analytical Method: SM22 2540C Pace Analytical Services - Melville Total Dissolved Solids 678 mg/L 20.0 1 12/23/21 15:12 9040 Corrosivity-pH >20% water Analytical Method: EPA 9040C			_						
Surrogates 4-Bromofluorobenzene (S) 91 % 80-110 1 12/21/21 11:53 460-00-4 Toluene-d8 (S) 96 % 87-120 1 12/21/21 11:53 2037-26-5 1,2-Dichloroethane-d4 (S) 92 % 76-127 1 12/21/21 11:53 17060-07-0 2540C Total Dissolved Solids Analytical Method: SM22 2540C Pace Analytical Services - Melville Total Dissolved Solids 678 mg/L 20.0 1 12/23/21 15:12 9040 Corrosivity-pH >20% water Analytical Method: EPA 9040C	-		-						
4-Bromofluorobenzene (S) 91 % 80-110 1 12/21/21 11:53 460-00-4 Toluene-d8 (S) 96 % 87-120 1 12/21/21 11:53 2037-26-5 1,2-Dichloroethane-d4 (S) 92 % 76-127 1 12/21/21 11:53 17060-07-0 2540C Total Dissolved Solids Analytical Method: SM22 2540C Pace Analytical Services - Melville Total Dissolved Solids 678 mg/L 20.0 1 12/23/21 15:12 9040 Corrosivity-pH >20% water Analytical Method: EPA 9040C		1	ug/	1.0	•		12/21/21 11:00	1000 20 7	
Toluene-d8 (S) 96 % 87-120 1 12/21/21 11:53 2037-26-5 1,2-Dichloroethane-d4 (S) 92 % 76-127 1 12/21/21 11:53 17060-07-0 2540C Total Dissolved Solids Analytical Method: SM22 2540C Pace Analytical Services - Melville Total Dissolved Solids 678 mg/L 20.0 1 12/23/21 15:12 9040 Corrosivity-pH >20% water Analytical Method: EPA 9040C		91	%	80-110	1		12/21/21 11:53	460-00-4	
1,2-Dichloroethane-d4 (S) 92 % 76-127 1 12/21/21 11:53 17060-07-0 2540C Total Dissolved Solids Analytical Method: SM22 2540C Pace Analytical Services - Melville Total Dissolved Solids 678 mg/L 20.0 1 12/23/21 15:12 9040 Corrosivity-pH >20% water Analytical Method: EPA 9040C					1				
Pace Analytical Services - Melville Total Dissolved Solids 678 mg/L 20.0 1 12/23/21 15:12 9040 Corrosivity-pH >20% water Analytical Method: EPA 9040C	` ,								
Pace Analytical Services - Melville Total Dissolved Solids 678 mg/L 20.0 1 12/23/21 15:12 9040 Corrosivity-pH >20% water Analytical Method: EPA 9040C	2540C Total Dissolved Solids	Analytical Me	thod: SM22 2	2540C					
9040 Corrosivity-pH >20% water Analytical Method: EPA 9040C	20400 Total Bissolved Collas	-							
,	Total Dissolved Solids	678	mg/L	20.0	1		12/23/21 15:12		
	9040 Corrosivity-pH >20% water	Analytical Me	thod: EPA 90	40C					
	,,	•							
F1.	рН	8.0	Std. Units	0.10	1		12/22/21 13:51		H3,H6, N3

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

(631)694-3040

ANALYTICAL RESULTS

Project: COSCO #344035 - 12/16

Pace Project No.: 70198509

Date: 12/30/2021 06:44 PM

Sample: RW-3D	Lab ID: 70°	198509001	Collected: 12/16/2	21 10:10	Received: 12	2/18/21 10:45 N	Matrix: Water				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual			
9040 Corrosivity-pH >20% water	•	Analytical Method: EPA 9040C Pace Analytical Services - Melville									
Temperature, Water (C)	18.1	deg C	0.10	1		12/22/21 13:51		H3,H6			

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project: COSCO #344035 - 12/16

Pace Project No.: 70198509

Date: 12/30/2021 06:44 PM

Sample: EFFLUENT	Lab ID: 701	98509002	Collected: 12/16/2	21 10:40	Received:	12/18/21 10:45	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
624.1 Volatile Organics	Analytical Met	hod: EPA 62	4.1					
	Pace Analytica	al Services -	Melville					
Benzene	<1.0	ug/L	1.0	1		12/21/21 12:1	2 71-43-2	
Bromodichloromethane	<1.0	ug/L	1.0	1		12/21/21 12:1		
Bromoform	<1.0	ug/L	1.0	1		12/21/21 12:1		L2
Bromomethane	<1.0	ug/L	1.0	1		12/21/21 12:1		
Carbon tetrachloride	<1.0	ug/L	1.0	1		12/21/21 12:1		L2
Chlorobenzene	<1.0	ug/L	1.0	1		12/21/21 12:1		
Chloroethane	<1.0	ug/L	1.0	1		12/21/21 12:1		
Chloroform	<1.0	ug/L	1.0	1		12/21/21 12:1		
Chloromethane	<1.0	ug/L	1.0	1		12/21/21 12:1		
Dibromochloromethane	<1.0	ug/L	1.0	1		12/21/21 12:1		
,2-Dichlorobenzene	<1.0	ug/L	1.0	1		12/21/21 12:1		
1,3-Dichlorobenzene	<1.0	ug/L	1.0	1		12/21/21 12:1		
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		12/21/21 12:1		
Dichlorodifluoromethane	<1.0	ug/L	1.0	1		12/21/21 12:1		v3
1,1-Dichloroethane	<1.0	ug/L	1.0	1		12/21/21 12:1		VO
,2-Dichloroethane	<1.0	ug/L	1.0	1		12/21/21 12:1		
,1-Dichloroethene	<1.0	ug/L	1.0	1		12/21/21 12:1		
is-1,2-Dichloroethene	12.9	ug/L	1.0	1		12/21/21 12:1		
rans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		12/21/21 12:1		
,2-Dichloropropane	<1.0 <1.0	ug/L	1.0	1		12/21/21 12:1		
is-1,3-Dichloropropene	<1.0 <1.0	ug/L ug/L	1.0	1			2 10061-01-5	
rans-1,3-Dichloropropene	<1.0 <1.0	ug/L ug/L	1.0	1			2 10061-01-3	v3
Ethylbenzene	<1.0 <1.0	ug/L	1.0	1		12/21/21 12:1		٧٥
•	<1.0 <1.0	-	1.0	1		12/21/21 12:1		
Methylene Chloride ,1,2,2-Tetrachloroethane	<1.0 <1.0	ug/L	1.0	1		12/21/21 12:1		
etrachloroethene		ug/L		1		12/21/21 12:1		
oluene	40.3 <1.0	ug/L	1.0 1.0	1		12/21/21 12:1		
,1,1-Trichloroethane	<1.0 <1.0	ug/L	1.0	1		12/21/21 12:1		L2
		ug/L		1		12/21/21 12:1		LZ
I,1,2-Trichloroethane Frichloroethene	<1.0 35.1	ug/L	1.0	1				
Trichloroethene		ug/L	1.0	1		12/21/21 12:1		
	<1.0	ug/L	1.0			12/21/21 12:1		
/inyl chloride	<1.0	ug/L	1.0	1 1		12/21/21 12:1		
(ylene (Total)	<1.0	ug/L	1.0	ı		12/21/21 12:1	2 1330-20-7	
Surrogates 1-Bromofluorobenzene (S)	93	%	80-110	1		12/21/21 12:1	2 460-00-4	
Foluene-d8 (S)	99	% %	87-120	1		12/21/21 12:1		
1,2-Dichloroethane-d4 (S)	91	%	76-127	1			2 17060-07-0	
2540C Total Dissolved Solids	Analytical Met	hod: SM22 2	2540C					
	Pace Analytica							
Total Dissolved Solids	692	mg/L	20.0	1		12/23/21 15:1	2	
9040 Corrosivity-pH >20% water	Analytical Met	hod: EPA 90	40C					
	Pace Analytica	al Services -	Melville					
-11	•					40/00/04 45 =	0	По По
Н	7.2	Std. Units	0.10	1		12/22/21 13:5	2	H3,H6, N3

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

(631)694-3040

ANALYTICAL RESULTS

Project: COSCO #344035 - 12/16

Pace Project No.: 70198509

Date: 12/30/2021 06:44 PM

Sample: EFFLUENT	Lab ID: 70	198509002	Collected: 12/16/2	21 10:40	Received: 12	2/18/21 10:45	Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
9040 Corrosivity-pH >20% water	•	Analytical Method: EPA 9040C Pace Analytical Services - Melville							
Temperature, Water (C)	17.4	deg C	0.10	1		12/22/21 13:5	2	H3,H6	

ANALYTICAL RESULTS

Project: COSCO SPILL #344035 - 1/4

Pace Project No.: 70199989

Date: 01/12/2022 08:57 AM

Sample: RAW=3D	Lab ID: 70	199989001	Collected: 01/04/2	22 09:00	Received: (01/06/22 10:20	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
624.1 Volatile Organics	Analytical Me	thod: EPA 624	4.1					
	Pace Analytic	al Services - I	Melville					
Benzene	<1.0	ug/L	1.0	1		01/06/22 19:25	5 71-43-2	
Bromodichloromethane	<1.0	ug/L	1.0	1		01/06/22 19:25	5 75-27-4	
Bromoform	<1.0	ug/L	1.0	1		01/06/22 19:25	75-25-2	
Bromomethane	<1.0	ug/L	1.0	1		01/06/22 19:25	74-83-9	
Carbon tetrachloride	<1.0	ug/L	1.0	1		01/06/22 19:25	5 56-23-5	L2,v3
Chlorobenzene	<1.0	ug/L	1.0	1		01/06/22 19:25	108-90-7	
Chloroethane	<1.0	ug/L	1.0	1		01/06/22 19:25	75-00-3	
Chloroform	<1.0	ug/L	1.0	1		01/06/22 19:25	67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		01/06/22 19:25		
Dibromochloromethane	<1.0	ug/L	1.0	1		01/06/22 19:25		
I.2-Dichlorobenzene	<1.0	ug/L	1.0	1		01/06/22 19:25		
,3-Dichlorobenzene	<1.0	ug/L	1.0	1		01/06/22 19:25		
,4-Dichlorobenzene	<1.0	ug/L	1.0	1		01/06/22 19:25		
Dichlorodifluoromethane	<1.0	ug/L	1.0	1		01/06/22 19:25		v3
,1-Dichloroethane	<1.0	ug/L	1.0	1		01/06/22 19:25		VO
.2-Dichloroethane	<1.0	ug/L	1.0	1		01/06/22 19:25		
,1-Dichloroethene	<1.0	ug/L	1.0	1		01/06/22 19:25		
is-1,2-Dichloroethene	27.2	ug/L	1.0	1		01/06/22 19:25		
rans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		01/06/22 19:25		
,2-Dichloropropane	<1.0 <1.0	ug/L	1.0	1		01/06/22 19:25		
is-1,3-Dichloropropene	<1.0 <1.0	-	1.0	1		01/06/22 19:25		
	<1.0 <1.0	ug/L	1.0	1		01/06/22 19:25		
rans-1,3-Dichloropropene	<1.0 <1.0	ug/L	1.0	1		01/06/22 19:25		
Ethylbenzene Aethylene Chloride	<1.0 <1.0	ug/L		1		01/06/22 19:25		
Methylene Chloride ,1,2,2-Tetrachloroethane	<1.0 <1.0	ug/L	1.0	1		01/06/22 19:25		
etrachloroethene		ug/L	1.0					
	57.6	ug/L	1.0	1 1		01/06/22 19:25		
Toluene	<1.0	ug/L	1.0	1		01/06/22 19:25		
,1,1-Trichloroethane	<1.0	ug/L	1.0			01/06/22 19:25		10
,1,2-Trichloroethane	<1.0	ug/L	1.0	1		01/06/22 19:25		IC
Trichloroethene	59.5	ug/L	1.0	1		01/06/22 19:25		
Frichlorofluoromethane	<1.0	ug/L	1.0	1		01/06/22 19:25		
/inyl chloride	<1.0	ug/L	1.0	1		01/06/22 19:25		
(ylene (Total)	<1.0	ug/L	1.0	1		01/06/22 19:25	1330-20-7	
Surrogates	0.4	0/	00 110	4		04/06/00 40:06	460.00.4	
I-Bromofluorobenzene (S)	84	%	80-110	1		01/06/22 19:25		
Toluene-d8 (S)	100	%	87-120 76-127	1		01/06/22 19:25		
,2-Dichloroethane-d4 (S)	110	%	76-127	1		01/06/22 19:25	0 17060-07-0	
2540C Total Dissolved Solids	Analytical Me Pace Analytic							
otal Dissolved Solids	650	mg/L	20.0	1		01/10/22 12:08	3	
0040 Corrosivity-pH >20% water	•	Analytical Method: EPA 9040C						
	Pace Analytic	aı Services -	Melville					
Н	7.2	Std. Units	0.10	1		01/10/22 12:02	2	H3,H6, N3

(631)694-3040

ANALYTICAL RESULTS

Project: COSCO SPILL #344035 - 1/4

Pace Project No.: 70199989

Date: 01/12/2022 08:57 AM

Sample: RAW=3D	Lab ID: 70°	199989001	Collected: 01/04/2	22 09:00	Received: 01	I/06/22 10:20 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
9040 Corrosivity-pH >20% water	Analytical Me Pace Analytic							
Temperature, Water (C)	22.3	deg C	0.10	1		01/10/22 12:02		H3,H6

ANALYTICAL RESULTS

Project: COSCO SPILL #344035 - 1/4

Pace Project No.: 70199989

Date: 01/12/2022 08:57 AM

Sample: EFFLUENT	Lab ID: 70	199989002	Collected: 01/04/2	22 09:10	Received: (01/06/22 10:20	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
624.1 Volatile Organics	Analytical Me	thod: EPA 62	4.1					
	Pace Analytic	al Services -	Melville					
Benzene	<1.0	ug/L	1.0	1		01/06/22 19:07	71-43-2	
Bromodichloromethane	<1.0	ug/L	1.0	1		01/06/22 19:07	75-27-4	
Bromoform	<1.0	ug/L	1.0	1		01/06/22 19:07	75-25-2	
Bromomethane	<1.0	ug/L	1.0	1		01/06/22 19:07	74-83-9	
Carbon tetrachloride	<1.0	ug/L	1.0	1		01/06/22 19:07	7 56-23-5	L2,v3
Chlorobenzene	<1.0	ug/L	1.0	1		01/06/22 19:07	108-90-7	
Chloroethane	<1.0	ug/L	1.0	1		01/06/22 19:07	75-00-3	
Chloroform	<1.0	ug/L	1.0	1		01/06/22 19:07	67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		01/06/22 19:07		
Dibromochloromethane	<1.0	ug/L	1.0	1		01/06/22 19:07		
I,2-Dichlorobenzene	<1.0	ug/L	1.0	1		01/06/22 19:07		
,3-Dichlorobenzene	<1.0	ug/L	1.0	1		01/06/22 19:07		
,4-Dichlorobenzene	<1.0	ug/L	1.0	1		01/06/22 19:07		
Dichlorodifluoromethane	<1.0	ug/L	1.0	1		01/06/22 19:07		v3
,1-Dichloroethane	<1.0	ug/L	1.0	1		01/06/22 19:07		VO
,2-Dichloroethane	<1.0	ug/L	1.0	1		01/06/22 19:07		
,1-Dichloroethene	<1.0	ug/L	1.0	1		01/06/22 19:07		
sis-1,2-Dichloroethene	1.2	ug/L	1.0	1		01/06/22 19:07		
rans-1,2-Dichloroethene	<1.0	ug/L ug/L	1.0	1		01/06/22 19:07		
,2-Dichloropropane	<1.0 <1.0	ug/L ug/L	1.0	1		01/06/22 19:07		
is-1,3-Dichloropropene	<1.0 <1.0	_	1.0	1		01/06/22 19:07		
	<1.0 <1.0	ug/L	1.0	1		01/06/22 19:07		
rans-1,3-Dichloropropene	<1.0 <1.0	ug/L		1		01/06/22 19:07		
Ethylbenzene Aethylene Chloride		ug/L	1.0					
Methylene Chloride	<1.0	ug/L	1.0	1		01/06/22 19:07		
,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		01/06/22 19:07		
Tetrachloroethene	<1.0	ug/L	1.0	1		01/06/22 19:07		
Toluene	<1.0	ug/L	1.0	1		01/06/22 19:07		
,1,1-Trichloroethane	<1.0	ug/L	1.0	1		01/06/22 19:07		10
,1,2-Trichloroethane	<1.0	ug/L	1.0	1		01/06/22 19:07		IC
Trichloroethene	<1.0	ug/L	1.0	1		01/06/22 19:07		
richlorofluoromethane	<1.0	ug/L	1.0	1		01/06/22 19:07		
/inyl chloride	<1.0	ug/L	1.0	1		01/06/22 19:07		
(ylene (Total)	<1.0	ug/L	1.0	1		01/06/22 19:07	1330-20-7	
Surrogates	00	0/	00.440	4		04/00/00 40 0		
I-Bromofluorobenzene (S)	80	%	80-110	1		01/06/22 19:07		
Foluene-d8 (S)	101	%	87-120	1		01/06/22 19:07		
,2-Dichloroethane-d4 (S)	104	%	76-127	1		01/06/22 19:07	17060-07-0	
2540C Total Dissolved Solids	Analytical Me Pace Analytic							
Total Dissolved Solids	658	mg/L	20.0	1		01/10/22 12:09)	
0040 Corrosivity-pH >20% water	Analytical Me	thod: EPA 90	40C					
	Pace Analytic							
ЬН	8.0	Std. Units	0.10	1		01/10/22 12:02	•	H3,H6
71.1	0.0	Old. UtillS	0.10			01/10/22 12.02	•	N3

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

(631)694-3040

ANALYTICAL RESULTS

Project: COSCO SPILL #344035 - 1/4

Pace Project No.: 70199989

Date: 01/12/2022 08:57 AM

Sample: EFFLUENT	Lab ID: 70	199989002	Collected: 01/04/2	22 09:10	Received: 01	I/06/22 10:20 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
9040 Corrosivity-pH >20% water	Analytical Me Pace Analytic							
Temperature, Water (C)	22.5	deg C	0.10	1		01/10/22 12:02	<u>.</u>	H3,H6

Project Location: COSCO #344035 Sample Description: Work Order: 22B0134

Date Received: 2/2/2022
Field Sample #: RW-3D

Sampled: 2/1/2022 12:00

Sample ID: 22B0134-01
Sample Matrix: Water

Trichloroethylene

Vinyl Chloride

m+p Xylene

o-Xylene

Trichlorofluoromethane (Freon 11)

1.54

< 0.176

< 0.208

< 0.459

< 0.230

2.00

2.00

2.00

2.00

1.00

0.189

0.176

0.208

0.459

0.230

 $\mu g/L$

 $\mu g/L$

μg/L

 $\mu g/L$

μg/L

Sample Flags: PR-10			Volatile	Organic Cor	npounds by G	SC/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	< 0.200	1.00	0.200	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
Bromodichloromethane	< 0.180	2.00	0.180	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
Bromoform	< 0.383	2.00	0.383	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
Bromomethane	<1.54	2.00	1.54	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:37	MFF
Carbon Tetrachloride	< 0.165	2.00	0.165	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:37	MFF
Chlorobenzene	< 0.105	2.00	0.105	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:37	MFF
Chlorodibromomethane	< 0.222	2.00	0.222	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:37	MFF
Chloroethane	< 0.320	2.00	0.320	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:37	MFF
Chloroform	< 0.168	2.00	0.168	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:37	MFF
Chloromethane	< 0.522	2.00	0.522	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:37	MFF
1,2-Dichlorobenzene	< 0.122	2.00	0.122	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:37	MFF
1,3-Dichlorobenzene	< 0.118	2.00	0.118	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:37	MFF
1,4-Dichlorobenzene	< 0.130	2.00	0.130	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:37	MFF
1,2-Dichloroethane	< 0.308	2.00	0.308	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:37	MFF
1,1-Dichloroethane	< 0.142	2.00	0.142	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:37	MFF
1,1-Dichloroethylene	< 0.141	2.00	0.141	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:37	MFF
trans-1,2-Dichloroethylene	< 0.169	2.00	0.169	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:37	MFF
1,2-Dichloropropane	< 0.181	2.00	0.181	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:37	MFF
cis-1,3-Dichloropropene	< 0.158	2.00	0.158	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:37	MFF
trans-1,3-Dichloropropene	< 0.168	2.00	0.168	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:37	MFF
Ethylbenzene	< 0.215	2.00	0.215	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:37	MFF
Methyl tert-Butyl Ether (MTBE)	< 0.172	2.00	0.172	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:37	MFF
Methylene Chloride	< 0.235	5.00	0.235	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:37	MFF
1,1,2,2-Tetrachloroethane	< 0.127	2.00	0.127	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:37	MFF
Tetrachloroethylene	1.17	2.00	0.187	$\mu g/L$	1	J	624.1	2/3/22	2/3/22 16:37	MFF
Toluene	< 0.224	1.00	0.224	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:37	MFF
1,1,1-Trichloroethane	< 0.169	2.00	0.169	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:37	MFF
1,1,2-Trichloroethane	< 0.183	2.00	0.183	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:37	MFF

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	96.4	70-130		2/3/22 16:37
Toluene-d8	107	70-130		2/3/22 16:37
4-Bromofluorobenzene	102	70-130		2/3/22 16:37

J

624.1

624.1

624.1

624.1

624.1

2/3/22

2/3/22

2/3/22

2/3/22

2/3/22

2/3/22 16:37

2/3/22 16:37

2/3/22 16:37

2/3/22 16:37

2/3/22 16:37

MFF

MFF

MFF

MFF

MFF

Project Location: COSCO #344035 Sample Description: Work Order: 22B0134

Date Received: 2/2/2022
Field Sample #: RW-3D

Sampled: 2/1/2022 12:00

Sample ID: 22B0134-01
Sample Matrix: Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
рН @20.8°C		7.2		pH Units	1	H-05	SM21-23 4500 H B	2/2/22	2/2/22 20:20	CB2

Project Location: COSCO #344035 Sample Description: Work Order: 22B0134

Date Received: 2/2/2022
Field Sample #: RW-3D

Sampled: 2/1/2022 12:00

Sample ID: 22B0134-01
Sample Matrix: Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Dissolved)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Total Dissolved Solids	660	10	mg/L	1		SM21-23 2540C	2/7/22	2/7/22 13:10	LL

Project Location: COSCO #344035 Sample Description: Work Order: 22B0134

Date Received: 2/2/2022
Field Sample #: Effluent

Sampled: 2/1/2022 12:05

Sample ID: 22B0134-02
Sample Matrix: Water

Volatile Organic	Compounds by	GC/MS
------------------	--------------	-------

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	<0.200	1.00	0.200	μg/L	1	1 lag/Quai	624.1	2/3/22	2/3/22 16:13	MFF
Bromodichloromethane	< 0.180	2.00	0.180	μg/L μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
Bromoform	< 0.383	2.00	0.383	μg/L μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
Bromomethane	<1.54	2.00	1.54	μg/L μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
Carbon Tetrachloride	< 0.165	2.00	0.165	μg/L μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
Chlorobenzene	<0.105	2.00	0.105	μg/L μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
Chlorodibromomethane	<0.222	2.00	0.222	μg/L μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
Chloroethane	< 0.320	2.00	0.320	μg/L μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
Chloroform	0.550	2.00	0.168	μg/L	1	J	624.1	2/3/22	2/3/22 16:13	MFF
Chloromethane	< 0.522	2.00	0.522	μg/L	1	-	624.1	2/3/22	2/3/22 16:13	MFF
1,2-Dichlorobenzene	< 0.122	2.00	0.122	μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
1,3-Dichlorobenzene	< 0.118	2.00	0.118	μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
1,4-Dichlorobenzene	< 0.130	2.00	0.130	μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
1,2-Dichloroethane	< 0.308	2.00	0.308	μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
1,1-Dichloroethane	< 0.142	2.00	0.142	μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
1,1-Dichloroethylene	< 0.141	2.00	0.141	μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
trans-1,2-Dichloroethylene	< 0.169	2.00	0.169	μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
1,2-Dichloropropane	< 0.181	2.00	0.181	μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
cis-1,3-Dichloropropene	< 0.158	2.00	0.158	μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
trans-1,3-Dichloropropene	< 0.168	2.00	0.168	μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
Ethylbenzene	< 0.215	2.00	0.215	μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
Methyl tert-Butyl Ether (MTBE)	< 0.172	2.00	0.172	μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
Methylene Chloride	< 0.235	5.00	0.235	μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
1,1,2,2-Tetrachloroethane	< 0.127	2.00	0.127	μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
Tetrachloroethylene	57.5	2.00	0.187	μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
Toluene	< 0.224	1.00	0.224	μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
1,1,1-Trichloroethane	< 0.169	2.00	0.169	μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
1,1,2-Trichloroethane	< 0.183	2.00	0.183	μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
Trichloroethylene	54.8	2.00	0.189	μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
Trichlorofluoromethane (Freon 11)	< 0.176	2.00	0.176	μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
Vinyl Chloride	< 0.208	2.00	0.208	μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
m+p Xylene	< 0.459	2.00	0.459	μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
o-Xylene	< 0.230	1.00	0.230	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:13	MFF

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	96.7	70-130		2/3/22 16:13
Toluene-d8	107	70-130		2/3/22 16:13
4-Bromofluorobenzene	103	70-130		2/3/22 16:13

Project Location: COSCO #344035 Sample Description: Work Order: 22B0134

Date Received: 2/2/2022
Field Sample #: Effluent

Sampled: 2/1/2022 12:05

Sample ID: 22B0134-02 Sample Matrix: Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
рН @20°С		8.1		pH Units	1	H-05	SM21-23 4500 H B	2/2/22	2/2/22 20:20	CB2

Project Location: COSCO #344035 Sample Description: Work Order: 22B0134

Date Received: 2/2/2022
Field Sample #: Effluent

Sampled: 2/1/2022 12:05

Sample ID: 22B0134-02 Sample Matrix: Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Dissolved)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Total Dissolved Solids	650	10	mg/L	1		SM21-23 2540C	2/7/22	2/7/22 13:10	LL

Project Location: COSCO Sample Description: Work Order: 22C0450

Date Received: 3/7/2022

Field Sample #: RW-3D

Sampled: 3/7/2022 10:30

Sample ID: 22C0450-01
Sample Matrix: Water

Volatile	Organic	Compounds by	GC/MS
voiauie			

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	<0.200	1.00	0.200	μg/L	1		624.1	3/8/22	3/8/22 13:49	LBD
Bromodichloromethane	< 0.180	2.00	0.180	μg/L	1		624.1	3/8/22	3/8/22 13:49	LBD
Bromoform	< 0.383	2.00	0.383	μg/L	1		624.1	3/8/22	3/8/22 13:49	LBD
Bromomethane	<1.54	5.00	1.54	μg/L	1		624.1	3/8/22	3/8/22 13:49	LBD
Carbon Tetrachloride	< 0.165	2.00	0.165	μg/L	1		624.1	3/8/22	3/8/22 13:49	LBD
Chlorobenzene	< 0.105	2.00	0.105	μg/L	1		624.1	3/8/22	3/8/22 13:49	LBD
Chlorodibromomethane	< 0.222	2.00	0.222	μg/L	1		624.1	3/8/22	3/8/22 13:49	LBD
Chloroethane	< 0.320	2.00	0.320	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
Chloroform	0.720	2.00	0.168	$\mu g/L$	1	J	624.1	3/8/22	3/8/22 13:49	LBD
Chloromethane	< 0.522	2.00	0.522	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
1,2-Dichlorobenzene	< 0.122	2.00	0.122	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
1,3-Dichlorobenzene	< 0.118	2.00	0.118	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
1,4-Dichlorobenzene	< 0.130	2.00	0.130	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
1,2-Dichloroethane	< 0.308	2.00	0.308	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
1,1-Dichloroethane	< 0.142	2.00	0.142	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
1,1-Dichloroethylene	< 0.141	2.00	0.141	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
trans-1,2-Dichloroethylene	< 0.169	2.00	0.169	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
1,2-Dichloropropane	< 0.181	2.00	0.181	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
cis-1,3-Dichloropropene	< 0.158	2.00	0.158	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
trans-1,3-Dichloropropene	< 0.168	2.00	0.168	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
Ethylbenzene	< 0.215	2.00	0.215	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
Methyl tert-Butyl Ether (MTBE)	< 0.172	2.00	0.172	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
Methylene Chloride	< 0.235	5.00	0.235	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
1,1,2,2-Tetrachloroethane	< 0.127	2.00	0.127	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
Tetrachloroethylene	91.8	2.00	0.187	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
Toluene	< 0.224	1.00	0.224	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
1,1,1-Trichloroethane	< 0.169	2.00	0.169	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
1,1,2-Trichloroethane	< 0.183	2.00	0.183	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
Trichloroethylene	86.0	2.00	0.189	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
Trichlorofluoromethane (Freon 11)	< 0.176	2.00	0.176	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
Vinyl Chloride	< 0.208	2.00	0.208	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
m+p Xylene	< 0.459	2.00	0.459	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
o-Xylene	< 0.230	1.00	0.230	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	90.6	70-130		3/8/22 13:49
Toluene-d8	96.0	70-130		3/8/22 13:49
4-Bromofluorobenzene	110	70-130		3/8/22 13:49

Sample Description: Work Order: 22C0450

Project Location: COSCO
Date Received: 3/7/2022
Field Sample #: RW-3D

Sampled: 3/7/2022 10:30

Sample ID: 22C0450-01
Sample Matrix: Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
рН @19°C		7.2		pH Units	1	H-05	SM21-23 4500 H B	3/7/22	3/7/22 20:45	CB2

Sample Description: Work Order: 22C0450

Project Location: COSCO
Date Received: 3/7/2022
Field Sample #: RW-3D

Sampled: 3/7/2022 10:30

Sample ID: 22C0450-01
Sample Matrix: Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Dissolved)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Total Dissolved Solids	600	10	mg/L	1		SM21-23 2540C	3/8/22	3/8/22 13:04	LL

Project Location: COSCO Sample Description: Work Order: 22C0450

Date Received: 3/7/2022

Field Sample #: Effluent

Sampled: 3/7/2022 11:00

Sample ID: 22C0450-02
Sample Matrix: Water

Volatile Organic Compounds by GC/

				J				Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	< 0.200	1.00	0.200	μg/L	1		624.1	3/8/22	3/8/22 13:23	LBD
Bromodichloromethane	< 0.180	2.00	0.180	μg/L	1		624.1	3/8/22	3/8/22 13:23	LBD
Bromoform	< 0.383	2.00	0.383	μg/L	1		624.1	3/8/22	3/8/22 13:23	LBD
Bromomethane	<1.54	5.00	1.54	μg/L	1		624.1	3/8/22	3/8/22 13:23	LBD
Carbon Tetrachloride	< 0.165	2.00	0.165	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
Chlorobenzene	< 0.105	2.00	0.105	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
Chlorodibromomethane	< 0.222	2.00	0.222	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
Chloroethane	< 0.320	2.00	0.320	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
Chloroform	< 0.168	2.00	0.168	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
Chloromethane	< 0.522	2.00	0.522	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
1,2-Dichlorobenzene	< 0.122	2.00	0.122	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
1,3-Dichlorobenzene	< 0.118	2.00	0.118	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
1,4-Dichlorobenzene	< 0.130	2.00	0.130	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
1,2-Dichloroethane	< 0.308	2.00	0.308	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
1,1-Dichloroethane	< 0.142	2.00	0.142	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
1,1-Dichloroethylene	< 0.141	2.00	0.141	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
trans-1,2-Dichloroethylene	< 0.169	2.00	0.169	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
1,2-Dichloropropane	< 0.181	2.00	0.181	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
cis-1,3-Dichloropropene	< 0.158	2.00	0.158	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
trans-1,3-Dichloropropene	< 0.168	2.00	0.168	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
Ethylbenzene	< 0.215	2.00	0.215	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
Methyl tert-Butyl Ether (MTBE)	< 0.172	2.00	0.172	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
Methylene Chloride	< 0.235	5.00	0.235	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
1,1,2,2-Tetrachloroethane	< 0.127	2.00	0.127	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
Tetrachloroethylene	0.270	2.00	0.187	$\mu g/L$	1	J	624.1	3/8/22	3/8/22 13:23	LBD
Toluene	< 0.224	1.00	0.224	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
1,1,1-Trichloroethane	< 0.169	2.00	0.169	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
1,1,2-Trichloroethane	< 0.183	2.00	0.183	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
Trichloroethylene	0.550	2.00	0.189	$\mu g/L$	1	J	624.1	3/8/22	3/8/22 13:23	LBD
Trichlorofluoromethane (Freon 11)	< 0.176	2.00	0.176	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
Vinyl Chloride	< 0.208	2.00	0.208	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
m+p Xylene	< 0.459	2.00	0.459	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
o-Xylene	< 0.230	1.00	0.230	μg/L	1		624.1	3/8/22	3/8/22 13:23	LBD

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	88.9	70-130		3/8/22 13:23
Toluene-d8	90.4	70-130		3/8/22 13:23
4-Bromofluorobenzene	98.9	70-130		3/8/22 13:23

Sample Description: Work Order: 22C0450

Project Location: COSCO
Date Received: 3/7/2022
Field Sample #: Effluent

Sampled: 3/7/2022 11:00

Sample ID: 22C0450-02 Sample Matrix: Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
рН @18.2°C		8.1		pH Units	1	H-05	SM21-23 4500 H B	3/7/22	3/7/22 20:45	CB2

Sample Description: Work Order: 22C0450

Project Location: COSCO
Date Received: 3/7/2022
Field Sample #: Effluent

Sampled: 3/7/2022 11:00

Sample ID: 22C0450-02
Sample Matrix: Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Dissolved)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Total Dissolved Solids	580	10	mg/L	1		SM21-23 2540C	3/8/22	3/8/22 13:04	LL

APPENDIX E DATA USABILITY SUMMARY REPORTS

Data Usability Summary Report

Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

COSCO #344035 Eurofins SDG#480-187661-1 August 9, 2021 Sampling date: 7/26/2021

Prepared by: Jodi Zimmerman Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

DELIVERABLES

This Data Usability Summary Report (DUSR) was prepared by evaluating the analytical data package for Ramboll, Eurofins SDG#480-187661-1, submitted to Vali-Data of WNY, LLC on August 5, 2021. This DUSR has been prepared in general compliance with USEPA National Functional Guidelines(NFG) and NYSDEC Analytical Services Protocols. The laboratory performed the analysis using USEPA method Volatile Organics (624.1).

VOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Internal Standard (IS) Area Performance
- -Surrogate Spike Recoveries
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration
- -GC/MS Performance Check

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use except where qualified below in Surrogate Spike Recoveries and Continuing Calibration.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

Data was not reported to 3 significant figures. This does not affect the usability of the data.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met.

INTERNAL STANDARD (IS)

All criteria were met.

SURROGATE SPIKE RECOVERIES

All criteria were met except the %Rec of 1,2-Dichloroethane-d₄ was outside QC limits, high in all samples and QC except LCS 460-793262/4 and TRIP BLANK 072621 and should be qualified as estimated. Associated target analytes detected in the non-conforming samples and QC should be qualified as estimated high.

METHOD BLANK

All criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

All criteria were met.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

No MS/MSD was acquired for this analysis.

COMPOUND QUANTITATION

All criteria were met.

INITIAL CALIBRATION

All criteria were met.

CONTINUING CALIBRATION

All criteria were met except the %Rec of Chloromethane, Vinyl Chloride, Bromomethane, Chloroethane, 1,1-Dichloroethane, Chloroform and 1,2-Dichloroethane was outside QC limits in CCVIS 460-793262/3. These target analytes should be qualified as estimated in the associated samples, blanks and spikes.

GC/MS PERFORMANCE CHECK

All criteria were met.

Data Usability Summary Report

Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

COSCO #344035 Eurofins SDG#460-239698-1 August 10, 2021 Sampling date: 7/27/2021

Prepared by: Jodi Zimmerman Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

DELIVERABLES

This Data Usability Summary Report (DUSR) was prepared by evaluating the analytical data package for Ramboll, Eurofins SDG#460-239698-1, submitted to Vali-Data of WNY, LLC on August 5, 2021. This DUSR has been prepared in general compliance with USEPA National Functional Guidelines(NFG) and NYSDEC Analytical Services Protocols. The laboratory performed the analysis using USEPA method Volatile Organics (624.1).

VOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Internal Standard (IS) Area Performance
- -Surrogate Spike Recoveries
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration
- -GC/MS Performance Check

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use except where qualified below in Initial Calibration and Continuing Calibration.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

Data was not reported to 3 significant figures. This does not affect the usability of the data.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met.

INTERNAL STANDARD (IS)

All criteria were met.

SURROGATE SPIKE RECOVERIES

All criteria were met.

METHOD BLANK

All criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

No field duplicate was acquired.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

All criteria were met.

COMPOUND QUANTITATION

All criteria were met.

INITIAL CALIBRATION

All criteria were met except the RRF of Bromodichloromethane was outside QC limits in the initial calibration performed on instrument CVOAMS1. The %Rec of 1,1-Dichloroethene was outside QC limits in ICV 460-788529/13. These target analytes should be qualified as estimated in the associated samples, blanks and spikes.

CONTINUING CALIBRATION

All criteria were met except the %Rec of 1,2-Dichloropropane and 1,1,2,2-Tetrachloroethane was outside QC limits in CCVIS 460-793132/4. These target analytes should be qualified as estimated in the associated samples, blanks and spikes.

GC/MS PERFORMANCE CHECK

All criteria were met.

Data Usability Summary Report

Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

COSCO-CO #142773
Con-Test Analytical Laboratory SDG#22C1442
April 21, 2022
Sampling date: 3/21/2022

Prepared by: Jodi Zimmerman Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

DELIVERABLES

This Data Usability Summary Report (DUSR) was prepared by evaluating the analytical data package for Ramboll, project located at COSCO-CO #142773, Con-Test Analytical Laboratory SDG#22C1442-1 submitted to Vali-Data of WNY, LLC on April 12, 2022. This DUSR has been prepared in general compliance with USEPA National Functional Guidelines (NFG) and NYSDEC Analytical Services Protocols. The laboratory performed the analysis using USEPA Method Volatile Organics (624.1).

ID	Sample ID	Laboratory ID
1	GW-4S-032122	22C1442-01
2	GP-4D-032122	22C1442-02
3	DW-1-032122	22C1442-03
4	DUP-01-032122	22C1442-04
5	Trip Blank-01-032122	22C1442-05

VOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Internal Standard (IS) Area Performance
- -Surrogate Spike Recoveries
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration
- -GC/MS Performance Check

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use except where qualified below in Compound Quantitation, Initial Calibration and Continuing Calibration.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met except the pH of the samples was outside QC limits. The samples were analyzed within the 7-day window, so no further action is required.

INTERNAL STANDARD (IS)

All criteria were met.

SURROGATE SPIKE RECOVERIES

All criteria were met.

METHOD BLANK

All criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

All criteria were met except Bromodichloromethane was detected in GP-4D-032122 but was not detected in DUP-01-032122.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

No MS/MSD was acquired.

COMPOUND QUANTITATION

All criteria were met except Methylene chloride was detected above the MDL, below the reporting limit and is qualified as estimated in Trip Blank-01-032122. This target analyte was not detected in the samples, so no further action is required.

INITIAL CALIBRATION

All criteria were met except some target analytes were outside QC limits in the initial calibration verification. These target analytes should be qualified as estimated in the blanks, samples and spikes.

ICV Instrument	Target Analyte	%Rec	Qualifier	Associated Sample
GCMSVOA2	Chloromethane	45.5	UJ/J	B303894-BLK/LCS/LCSD, 1-5
GCMSVOA2	Bromomethane	62.6	UJ/J	B303894-BLK/LCS/LCSD, 1-5

Alternate forms of regression were performed on target analytes in which the %RSD > 20%, with acceptable results.

CONTINUING CALIBRATION

All criteria were met except several target analytes were outside QC limits in the continuing calibrations and should be qualified as estimated in the associated samples, blanks and spikes.

CCal ID	Target Analyte	%D	Qualifier	Associated Sample
S069557-CCV1	1,1-Dichloroethene	20.9	UJ/J	B303894-BLK/LCS/LCSD, 1-5
S069557-CCV1	Tetrachloroethene	24.9	UJ/J	B303894-BLK/LCS/LCSD, 1-5
S069557-CCV1	Chloromethane	-54.1	UJ/J	B303894-BLK/LCS/LCSD, 1-5

GC/MS PERFORMANCE CHECK

All criteria were met.

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

624.1

Qualifications:

PR-08

pH of sample (pH 5) is outside of method specified preservation criteria.

Analyte & Samples(s) Qualified:

22C1442-05[Trip Blank-01-032122]

PR-09

pH of sample (pH 6) is outside of method specified preservation criteria.

Analyte & Samples(s) Qualified:

22C1442-01[GW-4S-032122], 22C1442-02[GW-4D-032122], 22C1442-03[DW-1-032122], 22C1442-04[DUP-01-032122], 22C142-04[DUP-01-032122], 22C142-04[DUP-01-032122], 22C142-04[DUP-01-032122],

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative

Lua Warrengton

Data Usability Summary Report

Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

COSCO-CO #142773
Con-Test Analytical Laboratory SDG#22C1516
April 22, 2022
Sampling date: 3/22/2022

Prepared by: Jodi Zimmerman Vali-Data of WNY, LLC 20 Hickory Grove Spur Fulton, NY 13069

DELIVERABLES

This Data Usability Summary Report (DUSR) was prepared by evaluating the analytical data package for Ramboll, project located at COSCO-CO #142773, Con-Test Analytical Laboratory SDG#22C1516-1 submitted to Vali-Data of WNY, LLC on April 12, 2022. This DUSR has been prepared in general compliance with USEPA National Functional Guidelines (NFG) and NYSDEC Analytical Services Protocols. The laboratory performed the analysis using USEPA Method Volatile Organics (624.1).

ID	Sample ID	Laboratory ID
1	MW-3-032222	22C1516-01
2	RW-8S-032222	22C1516-02
3	RW-1S-032222	22C1516-03
4	MW-18-032222	22C1516-04
5	Trip Blank-02-032222	22C1516-05

VOLATILE ORGANIC COMPOUNDS

The following items/criteria were reviewed for this analytical suite:

- -Data Completeness
- -Narrative and Data Reporting Forms
- -Chain of Custody and Traffic Reports
- -Holding Times
- -Internal Standard (IS) Area Performance
- -Surrogate Spike Recoveries
- -Method Blank
- -Field Duplicate Sample Precision
- -Laboratory Control Samples
- -MS/MSD
- -Compound Quantitation
- -Initial Calibration
- -Continuing Calibration
- -GC/MS Performance Check

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

OVERALL EVALUATION OF DATA AND POTENTIAL USABILITY ISSUES

The data are acceptable for use except where qualified below in Compound Quantitation, Initial Calibration and Continuing Calibration.

DATA COMPLETENESS

All criteria were met.

NARRATIVE AND DATA REPORTING FORMS

All criteria were met.

CHAIN OF CUSTODY AND TRAFFIC REPORTS

All criteria were met.

HOLDING TIMES

All holding times were met except the pH of the samples was outside QC limits. The samples were analyzed within the 7-day window, so no further action is required.

INTERNAL STANDARD (IS)

All criteria were met.

SURROGATE SPIKE RECOVERIES

All criteria were met.

METHOD BLANK

All criteria were met.

FIELD DUPLICATE SAMPLE PRECISION

No field duplicate was acquired.

LABORATORY CONTROL SAMPLES

All criteria were met.

MS/MSD

All criteria were met.

COMPOUND QUANTITATION

All criteria were met except Methylene chloride was detected above the MDL, below the reporting limit and is qualified as estimated in Trip Blank-02-032222. This target analyte was not detected in the samples, so no further action is required.

INITIAL CALIBRATION

All criteria were met except some target analytes were outside QC limits in the initial calibration verification. These target analytes should be qualified as estimated in the blanks, samples and spikes.

ICV Instrument	Target Analyte	%Rec	Qualifier	Associated Sample
GCMSVOA2	Chloromethane	45.5	UJ/J	B303989-BLK/LCS/LCSD, 1-5
GCMSVOA2	Bromomethane	62.6	UJ/J	B303989-BLK/LCS/LCSD, 1-5

Alternate forms of regression were performed on target analytes in which the %RSD > 20%, with acceptable results.

CONTINUING CALIBRATION

All criteria were met except several target analytes were outside QC limits in the continuing calibrations and should be qualified as estimated in the associated samples, blanks and spikes.

CCal ID	Target Analyte	%D	Qualifier	Associated Sample
S069617-CCV1	Bromomethane	105	UJ/J	B303989-BLK/LCS/LCSD, 1-5
S069617-CCV1	Chloromethane	-55.2	UJ/J	B303989-BLK/LCS/LCSD, 1-5

GC/MS PERFORMANCE CHECK

All criteria were met.

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

624.1

Qualifications:

PR-08

pH of sample (pH 5) is outside of method specified preservation criteria.

Analyte & Samples(s) Qualified:

22C1516-01[MW-3-032222], 22C1516-05[Trip Blank-02-032222]

PR-09

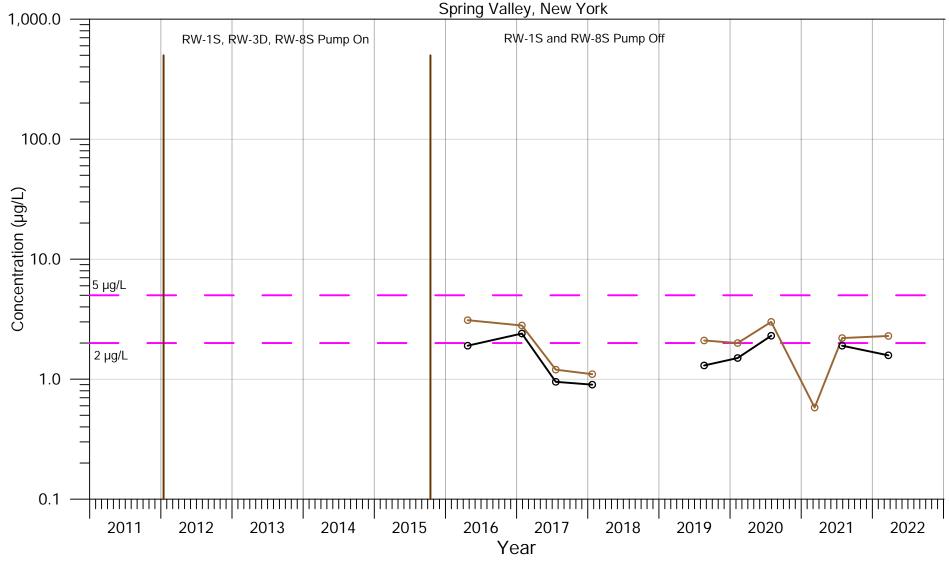
pH of sample (pH 6) is outside of method specified preservation criteria.

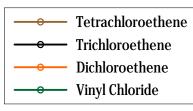
Analyte & Samples(s) Qualified:

22C1516-02[RW-8S-032222], 22C1516-03[RW-1S-032222], 22C1516-04[MW-18-032222], B303989-MS1, B303989-MSD1

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

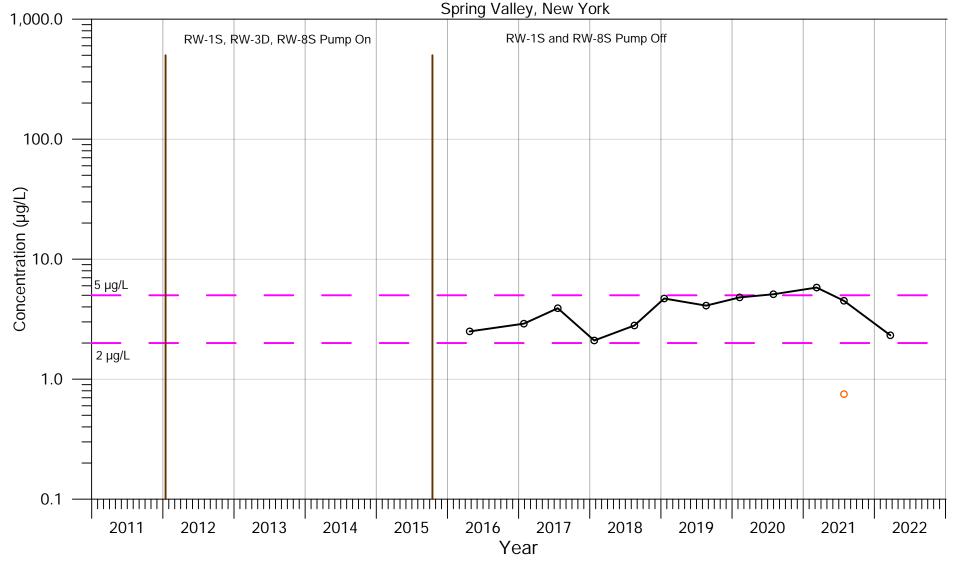

Lisa A. Worthington Technical Representative

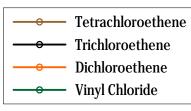

Lua Warrengton

APPENDIX F CONCENTRATION TREND PLOTS OF SITE CONSTITUENTS OF CONCERN

Concentrations of PCE, TCE, DCE, and VC at Monitoring Well DW-1

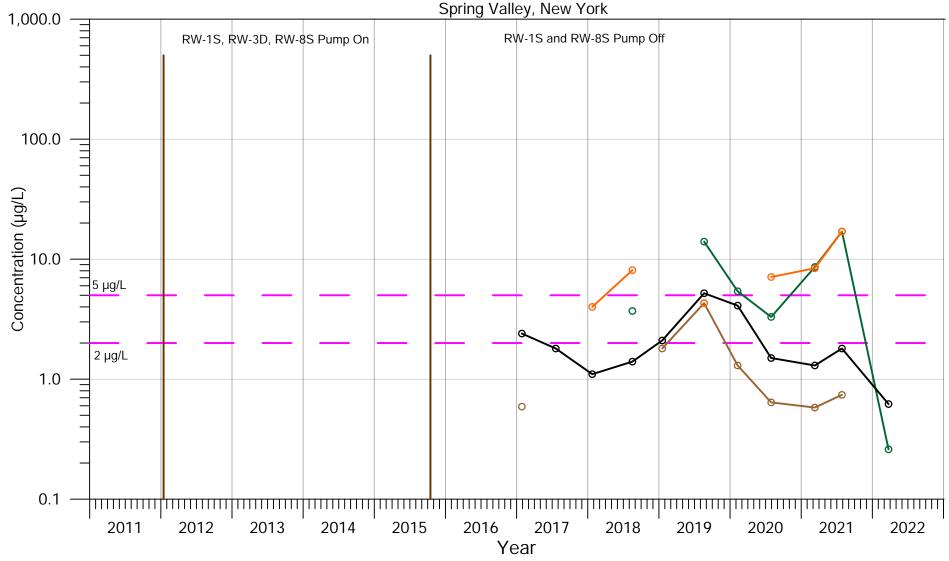
NYSDEC COSCO Site

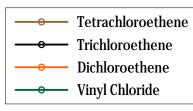



- 1. The sum of cis-1,2-dichloroethene and trans-1,2-dichloroethene is plotted.
- 2. The Class GA Standard of 2 micrograms per liter (ug/L) for vinyl chloride is shown.
- 3. The Class GA Standard of 5 ug/L for tetrachloroethene and trichloroethene is shown.
- 4. To be conservative, the individual Class GA Standard is plotted for cis-1,2-dichloroethene and trans-1,2-dichloroethene, 5 ug/L.
- 5. For clarity, non-detects are not shown.

Concentrations of PCE, TCE, DCE, and VC at Monitoring Well GW-4S

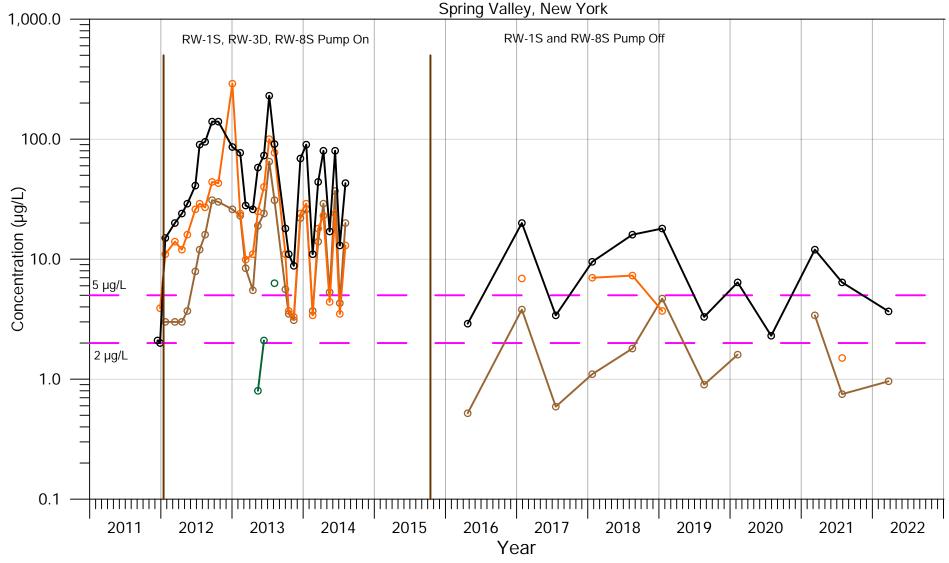
NYSDEC COSCO Site

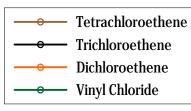



- 1. The sum of cis-1,2-dichloroethene and trans-1,2-dichloroethene is plotted.
- 2. The Class GA Standard of 2 micrograms per liter (ug/L) for vinyl chloride is shown.
- 3. The Class GA Standard of 5 ug/L for tetrachloroethene and trichloroethene is shown.
- 4. To be conservative, the individual Class GA Standard is plotted for cis-1,2-dichloroethene and trans-1,2-dichloroethene, 5 ug/L.
- 5. For clarity, non-detects are not shown.

Concentrations of PCE, TCE, DCE, and VC at Monitoring Well MW-18

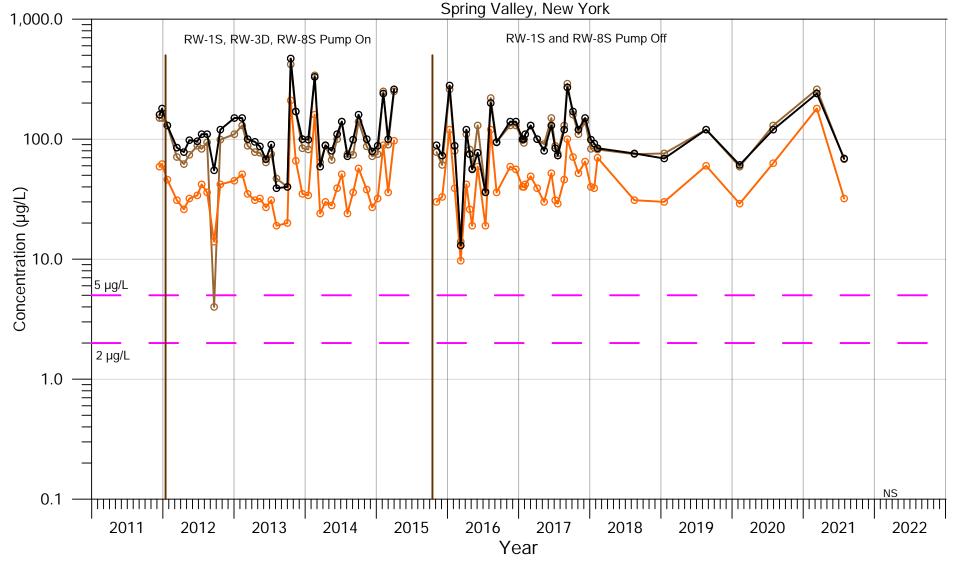
NYSDEC COSCO Site Spring Valley New York

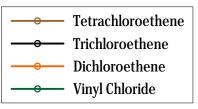



- 1. The sum of cis-1,2-dichloroethene and trans-1,2-dichloroethene is plotted.
- 2. The Class GA Standard of 2 micrograms per liter (ug/L) for vinyl chloride is shown.
- 3. The Class GA Standard of 5 ug/L for tetrachloroethene and trichloroethene is shown.
- 4. To be conservative, the individual Class GA Standard is plotted for cis-1,2-dichloroethene and trans-1,2-dichloroethene, 5 ug/L.
- 5. For clarity, non-detects are not shown.

Concentrations of PCE, TCE, DCE, and VC at Recovery Well RW-1S

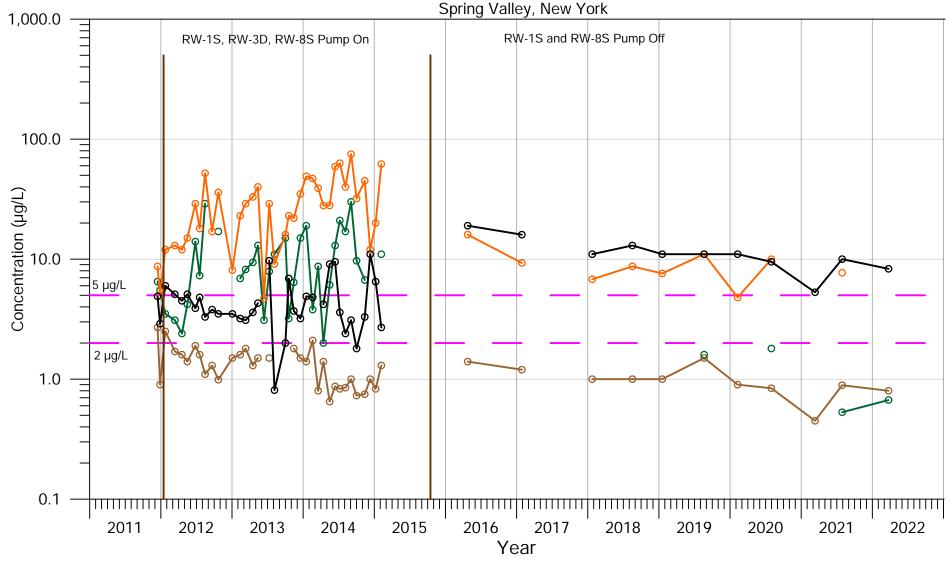
NYSDEC COSCO Site

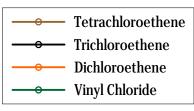



- 1. The sum of cis-1,2-dichloroethene and trans-1,2-dichloroethene is plotted.
- 2. The Class GA Standard of 2 micrograms per liter (ug/L) for vinyl chloride is shown.
- 3. The Class GA Standard of 5 ug/L for tetrachloroethene and trichloroethene is shown.
- 4. To be conservative, the individual Class GA Standard is plotted for cis-1,2-dichloroethene and trans-1,2-dichloroethene, 5 ug/L.
- 5. For clarity, non-detects are not shown.

Concentrations of PCE, TCE, DCE, and VC at Recovery Well RW-3D

NYSDEC COSCO Site Spring Valley New York




- 1. The sum of cis-1,2-dichloroethene and trans-1,2-dichloroethene is plotted.
- 2. The Class GA Standard of 2 micrograms per liter (ug/L) for vinyl chloride is shown.
- 3. The Class GA Standard of 5 ug/L for tetrachloroethene and trichloroethene is shown.
- 4. To be conservative, the individual Class GA Standard is plotted for cis-1,2-dichloroethene and trans-1,2-dichloroethene, 5 ug/L.
- 5. For clarity, non-detects are not shown.
- 6. "NS" indicates that RW-3D was not sampled in March 2022.

Concentrations of PCE, TCE, DCE, and VC at Recovery Well RW-8S

NYSDEC COSCO Site Spring Valley New York

- 1. The sum of cis-1,2-dichloroethene and trans-1,2-dichloroethene is plotted.
- 2. The Class GA Standard of 2 micrograms per liter (ug/L) for vinyl chloride is shown.
- 3. The Class GA Standard of 5 ug/L for tetrachloroethene and trichloroethene is shown.
- 4. To be conservative, the individual Class GA Standard is plotted for cis-1,2-dichloroethene and trans-1,2-dichloroethene, 5 ug/L.
- 5. For clarity, non-detects are not shown.

APPENDIX G QUARTERLY OPERATING SUMMARY REPORTS

July 11, 2021

Robert Strang, E.I.T.
New York State Department of Environmental Conservation
Remedial Section D, Bureau E
Division of Environmental Remediation
625 Broadway
Albany, NY 12233-7014

RE: First and Second Quarter 2021 Operating Summary Report – Cosco Site Site Number 344035

Mr. Strang,

LaBella Associates (LaBella) has prepared the following correspondence to summarize the operation and maintenance (O&M) activities and laboratory analytical results for the New York State Department of Environmental Conservation (NYSDEC) COSCO site located in Spring Valley, New York. The activities summarized within this report include the first and second quarters of 2021 operation and maintenance O&M, and system sampling events conducted by LaBella. Typical tasks performed during O&M activities include:

- System performance readings (flow, pressure, control settings);
- Well gauging;
- Monthly system sampling and laboratory analysis;
- System maintenance;
- Grounds maintenance.

Non-routing O&M activities include:

- Annual SSDS inspection;
- Semi-annual site-wide sampling

Non-routine 0&M activities are reported in separate reports.

Site Background

The site is located in the Village of Spring Valley, Rockland County, New York. The site is bordered by a Conrail right of way to the north, West Central Avenue to the south, West Street to the east. The western end of the site is bounded by the intersection between the Conrail right of way and West Central Avenue (**Figure 1**).

The Consolidated Stamp Company (COSCO) historically used trichloroethlyne (TCE) in a vapor degreasing process as part of their operation and also discharged wastewater containing TCE into a drainage feature known as the "Reach B Diversion".

The remedial objective for groundwater at the COSCO site (as per the August 1999 Amendment to the Record of Decision) is to contain the site related contaminants by extracting groundwater from overburden and bedrock, treat the groundwater onsite to remove volatile organic compounds

(VOC's), and discharge the treated groundwater. The primary contaminants of concern (COCs) are TCE, tetrachloroethlyne (PCE) and Cis-1-2-dicloroethene (DCE), and degradation byproducts.

The site includes eight (8) groundwater monitoring and/or recovery wells from which monitoring of groundwater quality can be conducted. Five (5) of these wells are completed within the shallow unconsolidated deposits and three (3) are completed within the bedrock.

The current groundwater extraction and treatment (GWE&T) system became operational at the site in January, 2012. This system has extracted groundwater from the overburden via recovery wells RW-1S and RW-8S, and from the bedrock via well RW-3D. The GWE&T system currently extracts groundwater from the bedrock lift well RW-3D. Extracted groundwater is conveyed via underground piping from the recovery well(s) to the treatment system shed located in the area along the Conrail right of way north of the COSCO building. The extracted groundwater is temporarily held in a 1,500-gallon polyethylene batch tank prior to treatment. Treatment is via two (2) bag filter units (connected in a parallel configuration) followed by air stripping. Once air stripping is completed, the treated water is discharged to the "Reach B Diversion" via underground piping.

Procedures

The GWE&T system O&M is via a combination of daily e-mails from the systems programmable logic controller (PLC), and bi-weekly site visits. The daily emails include specific system performance readings (flows, pressures, etc.) that help to evaluate system performance and anticipate O&M tasks to be performed during the bi-weekly site visits.

- System Performance Readings:
 - System Flow system flow rate and flow total data is transmitted daily via email.
 Data includes flow rate from active recovery well(s) (currently RW-3D) and flow total.
 The emails also include data regarding system operational status and system alarms.
 - System Pressure –Pressure readings are recorded during site inspections. Pressure readings are recorded at: the transfer pump; at each bag filter, and; at the effluent pump. Pressure readings are also monitored via the daily emails at each bag filter and the air stripper.
 - Control Settings Transfer pump, effluent pump and air stripper blower variable frequency drive (VFD) readings are recorded during bi-weekly site inspections. This data is monitored to ensure that the system motors are operating within prescribed parameters.
- Well Gauging The eight (8) site wells are gauged during site visits to determine the depth to groundwater using an electronic water level meter graduated in 0.01 foot intervals. Groundwater measurements are taken from the top of well casings. The wells are gauged: while the remedial system is running; immediately after the system is shutdown, and; 30 minutes after the system is shutdown. The system is restarted when gauging is completed.
- Monthly System Sampling and Laboratory Analysis The system influent and effluent (post-treatment) is sampled monthly for laboratory analysis using EPA Method 624. The samples are also analyzed for total dissolved solids (TDS) and acidity (pH). Influent samples are collected from a sample port located on the RW-3D influent line. No other wells are being utilized for groundwater extraction at this time. Effluent samples are collected from a sample port located after the air stripper discharge pump. The samples are delivered under chain of custody protocols to Test America Laboratories, Inc. Laboratory reports are attached.
- System Maintenance typical routine system maintenance includes: bag filter changes, valve maintenance/cleaning. Frequent non-routine maintenance typically includes: pump and blower repairs/replacement; valve replacement; air stripper cleaning.

System Flow

During the first and second quarters of 2021, a total of 5,419,401 gallons were treated at an average flow rate of approximately 29,941 gallons per day.

Operation and Maintenance Site Inspections

Compiled below is a summary of significant O&M tasks and events pertaining to the COSCO site. These tasks were completed during site visits completed by Aztech for the time period reported herein.

January 2021 (Non-Sampling)

The system was down upon arrival for the first site visit of January. The system was restarted. No samples were collected. Bag filters were changed, and an effluent pump was installed. The system was operational upon departure.

January 2021 (Sampling)

The system was operational upon arrival for the second site visit of January. Samples were collected. The system was operational upon departure.

February 2021 (Non-Sampling)

During the February site visit, the effluent pump was inoperable. This caused the system to be down upon arrival. This visit was prompted by the necessity of assisting Ramboll with the deployment of passive diffusion sampling bags in the RW-3D well. In order to deploy the bags, the pump, electrical, and control items were removed from RW-3D prior to deployment. The system remained down upon departure.

March 2021 (Non-Sampling)

During the March site visit, the system was down upon arrival, again due to the effluent pump being inoperable. A replacement pump was installed, and the system was restarted. Additionally, during this visit LaBella assisted Ramboll in operating a drawdown test. The system was operational upon departure.

April 2021 (Sampling)

The system was operational upon arrival for the first site visit of April. Samples were collected. The system was operational upon departure.

April 2021 (Non-Sampling)

During the second April site visit, no samples were collected. Bag filters were changed. The system was operational upon arrival and departure.

May 2021 (Sampling)

The system was down upon arrival for the first site visit of May. The discharge pump was cleaned, and the system was restarted. Samples were taken. The system was operational upon departure.

May 2021 (Non-Sampling)

During the second May site visit, no samples were collected. Bag filters were changed. The system was operational upon arrival and departure.

June 2021 (Sampling)

The system was operational upon arrival for the first site visit of June. Samples were collected. The system was operational upon departure.

June 2021 (Non-Sampling)

During the second May site visit, no samples were collected. Bag filters were changed and a replacement fire hydrant was installed (the prior had expired). The system was operational upon arrival and departure.

Summary and Recommendations

Site visits and system sampling continue on a bi-monthly basis. During each non-sampling site visit, bag filters are replaced and valves are cleaned. Additionally, system performance readings as well as water level readings are taken. Samples are collected from the RW-3D, and effluent sampling ports at the first site visit of the month.

LaBella recommends continuing the treatment of recovered groundwater at the site utilizing air stripper treatment system. Further recommendations are outlined in the sites periodic review.

LaBella would like to thank you for the opportunity to offer our services for this site.

If you have any questions or comments regarding the information contained herein, please contact our office at 518-885-5383.

Respectfully submitted,

LaBella Associates

Balrina a. Campfield

Sabrina Campfield Project Manager

ATTACHMENTS:

Laboratory Analytical Reports

Figure 1

January 2021 Analytical Data

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-180405-1 Client Project/Site: COSCO #344035

For:

New York State D.E.C. 625 Broadway 12th Floor Albany, New York 12233-7017

Attn: Robert Strang

Joseph V. giacomagga

Authorized for release by: 1/28/2021 2:08:18 PM
Joe Giacomazza, Project Manager I

joe.giacomazza@testamericainc.com

Designee for

Judy Stone, Senior Project Manager (484)685-0868
Judy.Stone@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

_

6

8

9

11

12

4

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

4

Joseph V. giveonogen

Į

Joe Giacomazza Project Manager I

1/28/2021 2:08:18 PM

6

0

10

11

13

14

Table of Contents

Cover Page	1
Table of Contents	3
Definitions	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	9
QC Sample Results	10
QC Association	14
Chronicle	15
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	20

_

1

5

9

11

13

14

Definitions/Glossary

Client: New York State D.E.C. Job ID: 480-180405-1

Project/Site: COSCO #344035

Qualifiers

GC/MS VOA
Qualifier Qualifier Description

H Sample was prepped or analyzed beyond the specified holding time

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier Qualifier Description

HF Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

4

5

7

8

4.6

11

12

15

Eurofins TestAmerica, Buffalo

Case Narrative

Client: New York State D.E.C.

Project/Site: COSCO #344035

Job ID: 480-180405-1

Job ID: 480-180405-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-180405-1

Comments

No additional comments.

Receipt

The sample was received on 1/20/2021 9:00 AM; the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.0° C.

GC/MS VOA

Method 624.1: The following sample was diluted to bring the concentration of target analytes within the calibration range: RW-3D (480-180405-1). Elevated reporting limits (RLs) are provided.

Method 624.1: Reanalysis of the following sample was performed outside of the analytical holding time due to the sample E-Flagging during initial analysis: RW-3D (480-180405-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Methods 9040C, SM 4500 H+ B: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following sample has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: RW-3D (480-180405-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

2

4

5

6

8

9

10

12

16

Detection Summary

Client: New York State D.E.C. Job ID: 480-180405-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D

Lab Sample ID: 480-180405-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac [Method	Prep Type
1,2-Dichloroethene, Total - DL	220	Н	50	16	ug/L	5	624.1	Total/NA
Tetrachloroethene - DL	410	Н	25	1.7	ug/L	5	624.1	Total/NA
Trichloroethene - DL	410	Н	25	3.0	ug/L	5	624.1	Total/NA
pH	7.39	HF	0.100	0.100	SU	1	9040C	Total/NA
Temperature	15.5	HF	0.00100	0.00100	Degrees C	1	9040C	Total/NA
Total Dissolved Solids	796		10.0	4.0	mg/L	1	SM 2540C	Total/NA

4

<u>ر</u>

7

0

10

12

Client Sample Results

Client: New York State D.E.C. Job ID: 480-180405-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D Date Collected: 01/19/21 10:30

Date Received: 01/20/21 09:00

Lab Sample ID: 480-180405-1

Matrix: Water

Method: 624.1 - Volatile Organic Compounds	(GC/I	VIS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			01/21/21 14:12	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			01/21/21 14:12	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			01/21/21 14:12	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			01/21/21 14:12	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			01/21/21 14:12	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			01/21/21 14:12	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			01/21/21 14:12	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			01/21/21 14:12	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			01/21/21 14:12	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			01/21/21 14:12	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			01/21/21 14:12	1
Acrolein	ND		100	17	ug/L			01/21/21 14:12	1
Acrylonitrile	ND		50	1.9	ug/L			01/21/21 14:12	1
Benzene	ND		5.0	0.60	ug/L			01/21/21 14:12	1
Bromodichloromethane	ND		5.0	0.54	ug/L			01/21/21 14:12	1
Bromoform	ND		5.0	0.47	ug/L			01/21/21 14:12	1
Bromomethane	ND		5.0	1.2	ug/L			01/21/21 14:12	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			01/21/21 14:12	1
Chlorobenzene	ND		5.0	0.48	ug/L			01/21/21 14:12	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			01/21/21 14:12	1
Chloroethane	ND		5.0	0.87	ug/L			01/21/21 14:12	1
Chloroform	ND		5.0	0.54	ug/L			01/21/21 14:12	1
Chloromethane	ND		5.0	0.64	ug/L			01/21/21 14:12	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			01/21/21 14:12	1
Ethylbenzene	ND		5.0	0.46	ug/L			01/21/21 14:12	1
Methylene Chloride	ND		5.0	0.81	ug/L			01/21/21 14:12	1
Toluene	ND		5.0	0.45	ug/L			01/21/21 14:12	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			01/21/21 14:12	1
Vinyl chloride	ND		5.0	0.75	ug/L			01/21/21 14:12	1

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		68 - 130	-		01/21/21 14:12	1
4-Bromofluorobenzene (Surr)	97		76 - 123			01/21/21 14:12	1
Dibromofluoromethane (Surr)	106		75 - 123			01/21/21 14:12	1
Toluene-d8 (Surr)	100		77 - 120			01/21/21 14:12	1

Method: 624.1 - Volatile Organic Compounds (GC/MS) - DL

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethene, Total	220	H	50	16	ug/L			01/25/21 12:48	5
Tetrachloroethene	410	H	25	1.7	ug/L			01/25/21 12:48	5
trans-1,2-Dichloroethene	ND	Н	25	2.9	ug/L			01/25/21 12:48	5
Trichloroethene	410	Н	25	3.0	ug/L			01/25/21 12:48	5

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		68 - 130	_		01/25/21 12:48	5
4-Bromofluorobenzene (Surr)	103		76 - 123			01/25/21 12:48	5
Dibromofluoromethane (Surr)	101		75 - 123			01/25/21 12:48	5
Toluene-d8 (Surr)	101		77 - 120			01/25/21 12:48	5

Eurofins TestAmerica, Buffalo

Page 7 of 20

6

Δ

6

8

10

12

1 /

Client Sample Results

Client: New York State D.E.C. Job ID: 480-180405-1

Project/Site: COSCO #344035

Date Received: 01/20/21 09:00

Client Sample ID: RW-3D Lab Sample ID: 480-180405-1 Date Collected: 01/19/21 10:30

Matrix: Water

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	796		10.0	4.0	mg/L			01/22/21 14:20	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.39	HF	0.100	0.100	SU			01/23/21 11:05	1
Temperature	15.5	HF	0.00100	0.00100	Degrees C			01/23/21 11:05	1

Surrogate Summary

Client: New York State D.E.C. Job ID: 480-180405-1 Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

				Percent Su	rrogate Rec
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(68-130)	(76-123)	(75-123)	(77-120)
480-180405-1	RW-3D	105	97	106	100
480-180405-1 - DL	RW-3D	99	103	101	101
LCS 480-566858/5	Lab Control Sample	99	110	100	105
LCS 480-567101/6	Lab Control Sample	105	106	105	104
MB 480-566858/7	Method Blank	108	102	107	104
MB 480-567101/8	Method Blank	110	102	106	101

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Eurofins TestAmerica, Buffalo

1/28/2021

Page 9 of 20

Client: New York State D.E.C. Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS)

MB MB

Lab Sample ID: MB 480-566858/7

Matrix: Water

Analysis Batch: 566858

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	MD		5.0	0.39	ug/L			01/21/21 11:54	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			01/21/21 11:54	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			01/21/21 11:54	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			01/21/21 11:54	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			01/21/21 11:54	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			01/21/21 11:54	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			01/21/21 11:54	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			01/21/21 11:54	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			01/21/21 11:54	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			01/21/21 11:54	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			01/21/21 11:54	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			01/21/21 11:54	1
Acrolein	ND		100	17	ug/L			01/21/21 11:54	1
Acrylonitrile	ND		50	1.9	ug/L			01/21/21 11:54	1
Benzene	ND		5.0	0.60	ug/L			01/21/21 11:54	1
Bromodichloromethane	ND		5.0	0.54	ug/L			01/21/21 11:54	1
Bromoform	ND		5.0	0.47	ug/L			01/21/21 11:54	1
Bromomethane	ND		5.0	1.2	ug/L			01/21/21 11:54	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			01/21/21 11:54	1
Chlorobenzene	ND		5.0	0.48	ug/L			01/21/21 11:54	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			01/21/21 11:54	1
Chloroethane	ND		5.0	0.87	ug/L			01/21/21 11:54	1
Chloroform	ND		5.0	0.54	ug/L			01/21/21 11:54	1
Chloromethane	ND		5.0	0.64	ug/L			01/21/21 11:54	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			01/21/21 11:54	1
Ethylbenzene	ND		5.0	0.46	ug/L			01/21/21 11:54	1
Methylene Chloride	ND		5.0	0.81	ug/L			01/21/21 11:54	1
Tetrachloroethene	ND		5.0	0.34	ug/L			01/21/21 11:54	1
Toluene	ND		5.0	0.45	ug/L			01/21/21 11:54	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			01/21/21 11:54	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			01/21/21 11:54	1
Trichloroethene	ND		5.0	0.60	ug/L			01/21/21 11:54	1
Vinyl chloride	ND		5.0	0.75	ug/L			01/21/21 11:54	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108	-	68 - 130		01/21/21 11:54	1
4-Bromofluorobenzene (Surr)	102		76 - 123		01/21/21 11:54	1
Dibromofluoromethane (Surr)	107		75 - 123		01/21/21 11:54	1
Toluene-d8 (Surr)	104		77 - 120		01/21/21 11:54	1

Lab Sample ID: LCS 480-566858/5

Matrix: Water

Analysis Batch: 566858

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	15.7		ug/L		78	52 - 162	
1,1,2,2-Tetrachloroethane	20.0	16.2		ug/L		81	46 - 157	
1,1,2-Trichloroethane	20.0	16.6		ug/L		83	52 - 150	

Eurofins TestAmerica, Buffalo

Page 10 of 20

1/28/2021

Client: New York State D.E.C. Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-566858/5

Matrix: Water

Analysis Batch: 566858

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS LCS			%Rec.	
Analyte	Added	Result Qualifier	Unit	D %Rec	Limits	
1,1-Dichloroethane	20.0	15.0	ug/L	75	59 - 155	
1,1-Dichloroethene	20.0	15.5	ug/L	77	1 - 234	
1,2-Dichlorobenzene	20.0	15.5	ug/L	77	18 - 190	
1,2-Dichloroethane	20.0	16.5	ug/L	82	49 - 155	
1,2-Dichloropropane	20.0	15.5	ug/L	77	1 _ 210	
1,3-Dichlorobenzene	20.0	16.0	ug/L	80	59 ₋ 156	
1,4-Dichlorobenzene	20.0	16.0	ug/L	80	18 - 190	
2-Chloroethyl vinyl ether	20.0	16.8 J	ug/L	84	1 _ 305	
Benzene	20.0	15.7	ug/L	78	37 _ 151	
Bromodichloromethane	20.0	15.3	ug/L	77	35 _ 155	
Bromoform	20.0	16.6	ug/L	83	45 _ 169	
Bromomethane	20.0	17.2	ug/L	86	1 - 242	
Carbon tetrachloride	20.0	15.9	ug/L	80	70 - 140	
Chlorobenzene	20.0	15.9	ug/L	80	37 _ 160	
Chlorodibromomethane	20.0	17.3	ug/L	86	53 _ 149	
Chloroethane	20.0	17.1	ug/L	85	14 - 230	
Chloroform	20.0	15.9	ug/L	79	51 - 138	
Chloromethane	20.0	19.2	ug/L	96	1 _ 273	
cis-1,3-Dichloropropene	20.0	15.8	ug/L	79	1 _ 227	
Ethylbenzene	20.0	15.7	ug/L	79	37 _ 162	
Methylene Chloride	20.0	15.7	ug/L	78	1 _ 221	
Tetrachloroethene	20.0	16.1	ug/L	80	64 - 148	
Toluene	20.0	16.0	ug/L	80	47 _ 150	
trans-1,2-Dichloroethene	20.0	15.2	ug/L	76	54 ₋ 156	
trans-1,3-Dichloropropene	20.0	17.0	ug/L	85	17 - 183	
Trichloroethene	20.0	15.9	ug/L	80	71 ₋ 157	
Vinyl chloride	20.0	17.6	ug/L	88	1 - 251	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		68 - 130
4-Bromofluorobenzene (Surr)	110		76 - 123
Dibromofluoromethane (Surr)	100		75 - 123
Toluene-d8 (Surr)	105		77 - 120

Lab Sample ID: MB 480-567101/8 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 567101

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			01/25/21 11:17	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			01/25/21 11:17	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			01/25/21 11:17	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			01/25/21 11:17	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			01/25/21 11:17	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			01/25/21 11:17	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			01/25/21 11:17	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			01/25/21 11:17	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			01/25/21 11:17	1

Eurofins TestAmerica, Buffalo

Page 11 of 20

Client: New York State D.E.C. Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-567101/8

Matrix: Water

Analysis Batch: 567101

Client Sample ID: Method Blank

Prep Type: Total/NA

7 maryoro Batom Go. 101	МВ	МВ							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			01/25/21 11:17	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			01/25/21 11:17	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			01/25/21 11:17	1
Acrolein	ND		100	17	ug/L			01/25/21 11:17	1
Acrylonitrile	ND		50	1.9	ug/L			01/25/21 11:17	1
Benzene	ND		5.0	0.60	ug/L			01/25/21 11:17	1
Bromodichloromethane	ND		5.0	0.54	ug/L			01/25/21 11:17	1
Bromoform	ND		5.0	0.47	ug/L			01/25/21 11:17	1
Bromomethane	ND		5.0	1.2	ug/L			01/25/21 11:17	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			01/25/21 11:17	1
Chlorobenzene	ND		5.0	0.48	ug/L			01/25/21 11:17	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			01/25/21 11:17	1
Chloroethane	ND		5.0	0.87	ug/L			01/25/21 11:17	1
Chloroform	ND		5.0	0.54	ug/L			01/25/21 11:17	1
Chloromethane	ND		5.0	0.64	ug/L			01/25/21 11:17	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			01/25/21 11:17	1
Ethylbenzene	ND		5.0	0.46	ug/L			01/25/21 11:17	1
Methylene Chloride	ND		5.0	0.81	ug/L			01/25/21 11:17	1
Tetrachloroethene	ND		5.0	0.34	ug/L			01/25/21 11:17	1
Toluene	ND		5.0	0.45	ug/L			01/25/21 11:17	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			01/25/21 11:17	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			01/25/21 11:17	1
Trichloroethene	ND		5.0	0.60	ug/L			01/25/21 11:17	1
Vinyl chloride	ND		5.0	0.75	ug/L			01/25/21 11:17	1

MR	MR
IVID	IVID

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		68 - 130	 	01/25/21 11:17	1
4-Bromofluorobenzene (Surr)	102		76 - 123		01/25/21 11:17	1
Dibromofluoromethane (Surr)	106		75 - 123		01/25/21 11:17	1
Toluene-d8 (Surr)	101		77 - 120		01/25/21 11:17	1

Lab Sample ID: LCS 480-567101/6

Matrix: Water

Analysis Batch: 567101

Client Sample ID: Lab Control Sample	
Prep Type: Total/NA	

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	20.0	21.4		ug/L		107	52 - 162
1,1,2,2-Tetrachloroethane	20.0	20.5		ug/L		103	46 - 157
1,1,2-Trichloroethane	20.0	21.2		ug/L		106	52 - 150
1,1-Dichloroethane	20.0	20.4		ug/L		102	59 ₋ 155
1,1-Dichloroethene	20.0	20.2		ug/L		101	1 - 234
1,2-Dichlorobenzene	20.0	20.3		ug/L		101	18 - 190
1,2-Dichloroethane	20.0	21.8		ug/L		109	49 - 155
1,2-Dichloropropane	20.0	20.8		ug/L		104	1 - 210
1,3-Dichlorobenzene	20.0	20.4		ug/L		102	59 ₋ 156
1,4-Dichlorobenzene	20.0	20.4		ug/L		102	18 - 190
2-Chloroethyl vinyl ether	20.0	22.6	J	ug/L		113	1 _ 305
Benzene	20.0	20.6		ug/L		103	37 ₋ 151

Eurofins TestAmerica, Buffalo

Page 12 of 20

9

3

8

9

11

13

14

Client: New York State D.E.C.

Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-567101/6 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 567101

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromodichloromethane	20.0	21.6		ug/L		108	35 - 155	
Bromoform	20.0	21.6		ug/L		108	45 - 169	
Bromomethane	20.0	19.4		ug/L		97	1 - 242	
Carbon tetrachloride	20.0	21.5		ug/L		107	70 - 140	
Chlorobenzene	20.0	20.5		ug/L		102	37 - 160	
Chlorodibromomethane	20.0	21.1		ug/L		105	53 - 149	
Chloroethane	20.0	19.0		ug/L		95	14 - 230	
Chloroform	20.0	20.2		ug/L		101	51 ₋ 138	
Chloromethane	20.0	20.1		ug/L		100	1 _ 273	
cis-1,3-Dichloropropene	20.0	20.8		ug/L		104	1 _ 227	
Ethylbenzene	20.0	21.2		ug/L		106	37 _ 162	
Methylene Chloride	20.0	20.5		ug/L		102	1 - 221	
Tetrachloroethene	20.0	20.4		ug/L		102	64 - 148	
Toluene	20.0	20.8		ug/L		104	47 _ 150	
trans-1,2-Dichloroethene	20.0	19.9		ug/L		100	54 ₋ 156	
trans-1,3-Dichloropropene	20.0	21.4		ug/L		107	17 - 183	
Trichloroethene	20.0	20.5		ug/L		103	71 - 157	
Vinyl chloride	20.0	19.2		ug/L		96	1 _ 251	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	105		68 - 130
4-Bromofluorobenzene (Surr)	106		76 - 123
Dibromofluoromethane (Surr)	105		75 - 123
Toluene-d8 (Surr)	104		77 - 120

Method: 9040C - pH

Lab Sample ID: LCS 480-567066/1

Matrix: Water

Analysis Batch: 567066

	Spik	e LCS	LCS				%Rec.	
Analyte	Adde	d Result	Qualifier	Unit	D	%Rec	Limits	
рН	7.0	7.050		SU		101	99 - 101	

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 480-567032/1 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 567032

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D		Prepared	Analyzed	Dil Fac
Total Dissolved Solids	ND		10.0	4.0	mg/L		_		01/22/21 14:20	1

Lab Sample ID: LCS 480-567032/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 56/032								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Dissolved Solids	503	500.0		mg/L		99	85 - 115	 -

Eurofins TestAmerica, Buffalo

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Page 13 of 20

QC Association Summary

Client: New York State D.E.C. Job ID: 480-180405-1 Project/Site: COSCO #344035

GC/MS VOA

Anal	veie	Ratch:	566858

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-180405-1	RW-3D	Total/NA	Water	624.1	
MB 480-566858/7	Method Blank	Total/NA	Water	624.1	
LCS 480-566858/5	Lab Control Sample	Total/NA	Water	624.1	

Analysis Batch: 567101

Lab Sample ID 480-180405-1 - DL	Client Sample ID RW-3D	Prep Type Total/NA	Matrix Water	Method 624.1	Prep Batch
MB 480-567101/8	Method Blank	Total/NA	Water	624.1	
LCS 480-567101/6	Lab Control Sample	Total/NA	Water	624.1	

General Chemistry

Analysis Batch: 567032

Lab San	nple ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-180	405-1	RW-3D	Total/NA	Water	SM 2540C	
MB 480-	567032/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 480)-567032/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Analysis Batch: 567066

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-180405-1	RW-3D	Total/NA	Water	9040C	
LCS 480-567066/1	Lab Control Sample	Total/NA	Water	9040C	

Lab Chronicle

Client: New York State D.E.C. Job ID: 480-180405-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D

Lab Sample ID: 480-180405-1

Matrix: Water

Date Collected: 01/19/21 10:30 Date Received: 01/20/21 09:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	566858	01/21/21 14:12	WJD	TAL BUF
Total/NA	Analysis	624.1	DL	5	567101	01/25/21 12:48	WJD	TAL BUF
Total/NA	Analysis	9040C		1	567066	01/23/21 11:05	KMF	TAL BUF
Total/NA	Analysis	SM 2540C		1	567032	01/22/21 14:20	CSS	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

5

7

10

12

Accreditation/Certification Summary

Client: New York State D.E.C.

Project/Site: COSCO #344035

Job ID: 480-180405-1

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Pro	gram	Identification Number	Expiration Date
lew York	NE	LAP	10026	03-31-21
The following analytes	are included in this report, bu	t the laboratory is not certifi	ied by the governing authority. This list ma	ay include analytes fo
the agency does not off Analysis Method	fer certification. Prep Method	Matrix	Analyte	
0 ,		Matrix Water	Analyte 1,2-Dichloroethene, Total	
Analysis Method				

7

9

11

14

Method Summary

Client: New York State D.E.C.

Project/Site: COSCO #344035

Job ID: 480-180405-1

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF
9040C	рН	SW846	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

4

J

8

11

16

14

Sample Summary

Client: New York State D.E.C. Project/Site: COSCO #344035

Job ID: 480-180405-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-180405-1	RW-3D	Water	01/19/21 10:30	01/20/21 09:00	

3

0

9

11

13

14

Seurofins Environment Testing America N. None
O. Ashao2
P. Na204S
G. Na254S
G. Na25503
S. H2SO4
T. TSP Dodecahydrain
U. Acatane
W. PH 4.5
Z. other (specify) Special Instructions/Note: Ver: 11/01/2020 Sepany Control Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon COC No: 480-149113-21656.1 Preservation Codes: Page: Page 1 of 1 Job#: 480-180405 Chain of Custody が井一九石 **3**F 里湖 尉 / 是 壁 119/2 Method of Shipment: Carrier Tracking No(s): State of Origin: ار الحرار الم Analysis Requested Coaler Temperatura(s) "C and Other Remarks: Special Instructions/QC Requirements: Lab PM: Stone, Judy L E-Mail: Judy: Stone@Eurofinset.com S4.1_PREC - (MOD) Priority Pollutant Volatiles Received by: Chain of Custody Record Company Company Company Water Water Radiological (C=comp. 1350 G=grab) Type 2007 PWSID: Garcett Corles Compliance Project: A Yes A No 1/19/2020 1030 Sample Date-Time: 1919000 Unknown Date: TAT Requested (days): Due Date Requested: Po #: CallOut 136146 119/21 Sample Date Project #: 48005266 SSOW#: #Q% Poison B Skin Imitent Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No.: Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991 Flammable Possible Hazard Identification Empty Kit Relinquished by: Aztech Technologies Inc Custody Seals Intact: A Yes A No atalbot@aztechenv.com Sample Identification Client Information Carret 5 McCrea Hill Road Non-Hazard Project Name: COSCO #344035 Andrew Talbot **Ballston Spa** State, Zip: NY, 12020 RW-3D

Eurofins TestAmerica, Buffalo

10 Hazelwood Drive

Client: New York State D.E.C. Job Number: 480-180405-1

Login Number: 180405 List Source: Eurofins TestAmerica, Buffalo

List Number: 1 Creator: Kolb, Chris M

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	AZTECH
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

March 2021 Analytical Data

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-181811-1 Client Project/Site: COSCO #344035

For:

New York State D.E.C. 625 Broadway 12th Floor Albany, New York 12233-7017

Attn: Robert Strang

Wyst Bloton

Authorized for release by: 3/19/2021 1:14:00 PM Wyatt Watson, Project Management Assistant I Wyatt.Watson@Eurofinset.com

Designee for

Judy Stone, Senior Project Manager (484)685-0868

Judy.Stone@Eurofinset.com

results through
Total Access

Review your project

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

9

10

12

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Wyatt Watson

Wigatt Bloton

Project Management Assistant I

3/19/2021 1:14:00 PM

2

4

__

_

7

8

9

4 4

12

14

Table of Contents

Cover Page	1
Table of Contents	3
Definitions	4
Case Narrative	5
Detection Summary	6
Client Sample Results	8
Surrogate Summary	17
QC Sample Results	18
QC Association	25
Chronicle	28
Certification Summary	30
Method Summary	31
Sample Summary	32
Chain of Custody	33
Receint Checklists	34

Δ

5

7

9

10

12

11

Definitions/Glossary

Client: New York State D.E.C.

Project/Site: COSCO #344035

Job ID: 480-181811-1

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier Qualifier Description

MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins TestAmerica, Buffalo

3/19/2021

Page 4 of 34

•

9

4

5

6

1

10

11

12

11

Case Narrative

Client: New York State D.E.C.

Job ID: 480-181811-1

Project/Site: COSCO #344035

Project/Site: COSCO #344035

Job ID: 480-181811-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-181811-1

Comments

No additional comments.

Receipt

The samples were received on 3/9/2021 10:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.3° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: DW-1-030821 (480-181811-1), GW-4S-030821 (480-181811-2), GP-4D-030821 (480-181811-3) and DUP-001-030821 (480-181811-4). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

5

6

7

8

12

13

14

Client: New York State D.E.C. Job ID: 480-181811-1

Project/Site: COSCO #344035

Client Sample ID: DW-1-030821

Lab Sample ID: 480-181811-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	0.58	J	5.0	0.34	ug/L		_	624.1	Total/NA
Calcium	36.4		0.50	0.10	mg/L	1		6010C	Total/NA
Potassium	1.3		0.50	0.10	mg/L	1		6010C	Total/NA
Magnesium	7.4		0.20	0.043	mg/L	1		6010C	Total/NA
Sodium	140		1.0	0.32	mg/L	1		6010C	Total/NA
Iron	0.065		0.050	0.019	mg/L	1		6010C	Dissolved
Manganese	0.0031	В	0.0030	0.00040	mg/L	1		6010C	Dissolved
Chloride	211		2.5	1.4	mg/L	5		300.0	Total/NA
Sulfate	10.4		10.0	1.7	mg/L	5		300.0	Total/NA
Nitrate as N	1.1		0.050	0.020	mg/L	1		Nitrate by calc	Total/NA
Alkalinity, Total	122		5.0	0.79	mg/L	1		SM 2320B	Total/NA
Total Organic Carbon	0.49	J	1.0	0.43	mg/L	1		SM 5310D	Total/NA

Client Sample ID: GW-4S-030821

Lab Sample ID: 480-181811-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	5.8		5.0	0.60	ug/L	1	_	624.1	Total/NA
Calcium	49.0		0.50	0.10	mg/L	1		6010C	Total/NA
Potassium	1.7		0.50	0.10	mg/L	1		6010C	Total/NA
Magnesium	10.1		0.20	0.043	mg/L	1		6010C	Total/NA
Sodium	121		1.0	0.32	mg/L	1		6010C	Total/NA
Iron	0.15		0.050	0.019	mg/L	1		6010C	Dissolved
Manganese	0.54	В	0.0030	0.00040	mg/L	1		6010C	Dissolved
Chloride	184		2.5	1.4	mg/L	5		300.0	Total/NA
Sulfate	17.3		10.0	1.7	mg/L	5		300.0	Total/NA
Nitrate as N	0.45		0.050	0.020	mg/L	1		Nitrate by calc	Total/NA
Alkalinity, Total	170		5.0	0.79	mg/L	1		SM 2320B	Total/NA
Total Organic Carbon	1.6		1.0	0.43	mg/L	1		SM 5310D	Total/NA

Client Sample ID: GP-4D-030821

Lab Sample ID: 480-181811-3

Analyte	Result 0	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	47.8		0.50	0.10	mg/L	1	_	6010C	Total/NA
Potassium	1.2		0.50	0.10	mg/L	1		6010C	Total/NA
Magnesium	8.4		0.20	0.043	mg/L	1		6010C	Total/NA
Sodium	173		1.0	0.32	mg/L	1		6010C	Total/NA
Iron	0.046 J	J	0.050	0.019	mg/L	1		6010C	Dissolved
Manganese	0.0023 J	JB	0.0030	0.00040	mg/L	1		6010C	Dissolved
Chloride	243		2.5	1.4	mg/L	5		300.0	Total/NA
Sulfate	19.7		10.0	1.7	mg/L	5		300.0	Total/NA
Nitrate as N	3.4		0.050	0.020	mg/L	1		Nitrate by calc	Total/NA
Alkalinity, Total	147		5.0	0.79	mg/L	1		SM 2320B	Total/NA
Total Organic Carbon	0.71 J	J	1.0	0.43	mg/L	1		SM 5310D	Total/NA

Client Sample ID: DUP-001-030821

Lab Sample ID: 480-181811-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	47.6		0.50	0.10	mg/L	1	_	6010C	Total/NA
Potassium	1.3		0.50	0.10	mg/L	1		6010C	Total/NA
Magnesium	8.3		0.20	0.043	mg/L	1		6010C	Total/NA
Sodium	171		1.0	0.32	mg/L	1		6010C	Total/NA
Iron	0.26		0.050	0.019	mg/L	1		6010C	Dissolved

This Detection Summary does not include radiochemical test results.

Page 6 of 34

Eurofins TestAmerica, Buffalo

Detection Summary

Client: New York State D.E.C. Job ID: 480-181811-1

Project/Site: COSCO #344035

Client Sample ID: DUP-001-030821 (Continued)

Lab	Sample	ID: 48	0-181	1811-4
-----	--------	--------	-------	--------

Analyte	Result C	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Manganese	0.012 B	3	0.0030	0.00040	mg/L	1	_	6010C	Dissolved
Chloride	243		2.5	1.4	mg/L	5		300.0	Total/NA
Sulfate	19.6		10.0	1.7	mg/L	5		300.0	Total/NA
Nitrate as N	3.4		0.050	0.020	mg/L	1		Nitrate by calc	Total/NA
Alkalinity, Total	146		5.0	0.79	mg/L	1		SM 2320B	Total/NA
Total Organic Carbon	0.75 J	l	1.0	0.43	mg/L	1		SM 5310D	Total/NA

Client Sample ID: TRIPBLANK-030821

Lab Sample ID: 480-181811-5

No Detections.

10

11

13

14

15

3/19/2021

Client: New York State D.E.C. Job ID: 480-181811-1

Project/Site: COSCO #344035

Client Sample ID: DW-1-030821

Date Collected: 03/08/21 11:40 Date Received: 03/09/21 10:00 Lab Sample ID: 480-181811-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			03/09/21 13:51	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			03/09/21 13:51	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			03/09/21 13:51	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			03/09/21 13:51	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			03/09/21 13:51	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			03/09/21 13:51	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			03/09/21 13:51	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			03/09/21 13:51	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			03/09/21 13:51	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			03/09/21 13:51	1
1,4-Dichlorobenzene	ND		5.0	0.51				03/09/21 13:51	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			03/09/21 13:51	1
Acrolein	ND		100	17	ug/L			03/09/21 13:51	1
Acrylonitrile	ND		50		ug/L			03/09/21 13:51	1
Benzene	ND		5.0	0.60				03/09/21 13:51	1
Bromodichloromethane	ND		5.0	0.54	ug/L			03/09/21 13:51	1
Bromoform	ND		5.0	0.47	•			03/09/21 13:51	1
Bromomethane	ND		5.0		ug/L			03/09/21 13:51	1
Carbon tetrachloride	ND		5.0		ug/L			03/09/21 13:51	1
Chlorobenzene	ND		5.0	0.48	•			03/09/21 13:51	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			03/09/21 13:51	1
Chloroethane	ND		5.0		ug/L			03/09/21 13:51	1
Chloroform	ND		5.0		ug/L			03/09/21 13:51	1
Chloromethane	ND		5.0	0.64	•			03/09/21 13:51	1
cis-1,3-Dichloropropene	ND		5.0		ug/L			03/09/21 13:51	1
Ethylbenzene	ND		5.0	0.46	-			03/09/21 13:51	1
Methylene Chloride	ND		5.0	0.81	ug/L			03/09/21 13:51	1
Tetrachloroethene	0.58		5.0		ug/L			03/09/21 13:51	1
Toluene	ND		5.0	0.45	·			03/09/21 13:51	1
trans-1,2-Dichloroethene	ND		5.0		ug/L			03/09/21 13:51	1
trans-1,3-Dichloropropene	ND		5.0		ug/L			03/09/21 13:51	1
Trichloroethene	ND		5.0	0.60	•			03/09/21 13:51	1
Vinyl chloride	ND		5.0	0.75	•			03/09/21 13:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		68 - 130			•		03/09/21 13:51	1
4-Bromofluorobenzene (Surr)	99		76 - 123					03/09/21 13:51	1
Dibromofluoromethane (Surr)	98		75 - 123					03/09/21 13:51	1
Toluene-d8 (Surr)	105		77 - 120					03/09/21 13:51	

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	ND ND	4.0	1.0	ug/L			03/10/21 18:46	1
Ethane	ND	7.5	1.5	ug/L			03/10/21 18:46	1
Ethene	ND	7.0	1.5	ug/L			03/10/21 18:46	1

Method: 6010C - Metals (ICP)	
--------------------------	------	--

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	36.4		0.50	0.10	mg/L		03/10/21 09:47	03/11/21 01:19	1
Potassium	1.3		0.50	0.10	mg/L		03/10/21 09:47	03/11/21 01:19	1

Eurofins TestAmerica, Buffalo

Page 8 of 34 3/19/2021

2

3

_

6

8

11

13

14

Client: New York State D.E.C. Job ID: 480-181811-1

Project/Site: COSCO #344035

Client Sample ID: DW-1-030821

Lab Sample ID: 480-181811-1 Date Collected: 03/08/21 11:40 **Matrix: Water**

Date Received: 03/09/21 10:00

Method: 6010C - Metals (ICP)	(Continued)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Magnesium	7.4		0.20	0.043	mg/L		03/10/21 09:47	03/11/21 01:19	1
Sodium	140		1.0	0.32	mg/L		03/10/21 09:47	03/11/21 01:19	1
- Method: 6010C - Metals (ICP)	- Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.065		0.050	0.019	mg/L		03/10/21 09:47	03/10/21 23:28	1
Manganese	0.0031	В	0.0030	0.00040	mg/L		03/10/21 09:47	03/10/21 23:28	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorido	244		2.5	1 /	ma/l			03/11/21 17:43	

General Chemistry						_		
Analyte	Result Qualif	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	211	2.5	1.4	mg/L			03/11/21 17:43	5
Sulfate	10.4	10.0	1.7	mg/L			03/11/21 17:43	5
Nitrite as N	ND	0.050	0.020	mg/L			03/09/21 18:50	1
Nitrate as N	1.1	0.050	0.020	mg/L			03/09/21 18:50	1
Alkalinity, Total	122	5.0	0.79	mg/L			03/09/21 19:54	1
Sulfide	ND	1.0	0.67	mg/L			03/14/21 13:50	1
Total Organic Carbon	0.49 J	1.0	0.43	mg/L			03/10/21 08:14	1

Client: New York State D.E.C. Job ID: 480-181811-1 Project/Site: COSCO #344035

Client Sample ID: GW-4S-030821 Lab Sample ID: 480-181811-2 Date Collected: 03/08/21 14:30

Matrix: Water

Date Received: 03/09/21 10:00

Analyte	Result Qu	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	5.0	0.39	ug/L			03/09/21 14:15	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			03/09/21 14:15	1
1,1,2-Trichloroethane	ND	5.0	0.48	ug/L			03/09/21 14:15	1
1,1-Dichloroethane	ND	5.0	0.59	ug/L			03/09/21 14:15	1
1,1-Dichloroethene	ND	5.0	0.85	ug/L			03/09/21 14:15	1
1,2-Dichlorobenzene	ND	5.0	0.44	ug/L			03/09/21 14:15	1
1,2-Dichloroethane	ND	5.0	0.60	ug/L			03/09/21 14:15	1
1,2-Dichloroethene, Total	ND	10	3.2	ug/L			03/09/21 14:15	1
1,2-Dichloropropane	ND	5.0	0.61	ug/L			03/09/21 14:15	1
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			03/09/21 14:15	1
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			03/09/21 14:15	1
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			03/09/21 14:15	1
Acrolein	ND	100	17	ug/L			03/09/21 14:15	1
Acrylonitrile	ND	50	1.9	ug/L			03/09/21 14:15	1
Benzene	ND	5.0	0.60	ug/L			03/09/21 14:15	1
Bromodichloromethane	ND	5.0	0.54	ug/L			03/09/21 14:15	1
Bromoform	ND	5.0	0.47	ug/L			03/09/21 14:15	1
Bromomethane	ND	5.0	1.2	ug/L			03/09/21 14:15	1
Carbon tetrachloride	ND	5.0	0.51	ug/L			03/09/21 14:15	1
Chlorobenzene	ND	5.0	0.48	ug/L			03/09/21 14:15	1
Chlorodibromomethane	ND	5.0	0.41	ug/L			03/09/21 14:15	1
Chloroethane	ND	5.0	0.87	ug/L			03/09/21 14:15	1
Chloroform	ND	5.0	0.54	ug/L			03/09/21 14:15	1
Chloromethane	ND	5.0	0.64	ug/L			03/09/21 14:15	1
cis-1,3-Dichloropropene	ND	5.0	0.33	ug/L			03/09/21 14:15	1
Ethylbenzene	ND	5.0	0.46	ug/L			03/09/21 14:15	1
Methylene Chloride	ND	5.0	0.81	ug/L			03/09/21 14:15	1
Tetrachloroethene	ND	5.0	0.34	ug/L			03/09/21 14:15	1
Toluene	ND	5.0	0.45	ug/L			03/09/21 14:15	1
trans-1,2-Dichloroethene	ND	5.0	0.59	ug/L			03/09/21 14:15	1
trans-1,3-Dichloropropene	ND	5.0	0.44	ug/L			03/09/21 14:15	1
Trichloroethene	5.8	5.0	0.60	ug/L			03/09/21 14:15	1
Vinyl chloride	ND	5.0	0.75	ug/L			03/09/21 14:15	1
Surrogate	%Recovery Qu	alifier Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92	68 - 130			_		03/09/21 14:15	1
4-Bromofluorobenzene (Surr)	112	76 - 123					03/09/21 14:15	1
Dibromofluoromethane (Surr)	99	75 - 123					03/09/21 14:15	1
Toluene-d8 (Surr)	103	77 - 120					03/09/21 14:15	1

Method: RSK-175 - Dissolved Gas	ses (GC)
---------------------------------	----------

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	ND ND	4.0	1.0	ug/L			03/10/21 19:05	1
Ethane	ND	7.5	1.5	ug/L			03/10/21 19:05	1
Ethene	ND	7.0	1.5	ug/L			03/10/21 19:05	1

Method:	6010C - I	Metais (ICP)
---------	-----------	----------	------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	49.0		0.50	0.10	mg/L		03/10/21 09:47	03/11/21 01:37	1
Potassium	1.7		0.50	0.10	mg/L		03/10/21 09:47	03/11/21 01:37	1

Eurofins TestAmerica, Buffalo

Page 10 of 34

Client: New York State D.E.C. Job ID: 480-181811-1 Project/Site: COSCO #344035

Client Sample ID: GW-4S-030821

Date Collected: 03/08/21 14:30 Date Received: 03/09/21 10:00

Lab Sample ID: 480-181811-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Magnesium	10.1		0.20	0.043	mg/L		03/10/21 09:47	03/11/21 01:37	1
Sodium	121		1.0	0.32	mg/L		03/10/21 09:47	03/11/21 01:37	1
Method: 6010C - Metals (IC	P) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.15		0.050	0.019	mg/L		03/10/21 09:47	03/10/21 23:32	1
Manganese	0.54	В	0.0030	0.00040	mg/L		03/10/21 09:47	03/10/21 23:32	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	184		2.5	1.4	mg/L			03/11/21 17:58	5
Sulfate	17.3		10.0	1.7	mg/L			03/11/21 17:58	5
Nitrite as N	ND		0.050	0.020	mg/L			03/09/21 18:51	1
Nitrate as N	0.45		0.050	0.020	mg/L			03/09/21 18:51	1
Alkalinity, Total	170		5.0	0.79	mg/L			03/09/21 20:09	1
Sulfide	ND		1.0	0.67	mg/L			03/14/21 13:50	1
Total Organic Carbon	1.6		1.0	0.43	mg/L			03/10/21 08:31	

Client: New York State D.E.C. Job ID: 480-181811-1 Project/Site: COSCO #344035

Client Sample ID: GP-4D-030821 Lab Sample ID: 480-181811-3 Date Collected: 03/08/21 14:30

Matrix: Water

Date Received: 03/09/21 10:00

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	5.0	0.39	ug/L			03/09/21 14:39	
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			03/09/21 14:39	
1,1,2-Trichloroethane	ND	5.0	0.48	ug/L			03/09/21 14:39	
1,1-Dichloroethane	ND	5.0	0.59	ug/L			03/09/21 14:39	
1,1-Dichloroethene	ND	5.0	0.85	ug/L			03/09/21 14:39	
1,2-Dichlorobenzene	ND	5.0	0.44	ug/L			03/09/21 14:39	•
1,2-Dichloroethane	ND	5.0	0.60	ug/L			03/09/21 14:39	
1,2-Dichloroethene, Total	ND	10	3.2	ug/L			03/09/21 14:39	•
1,2-Dichloropropane	ND	5.0	0.61	ug/L			03/09/21 14:39	
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			03/09/21 14:39	
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			03/09/21 14:39	
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			03/09/21 14:39	
Acrolein	ND	100	17	ug/L			03/09/21 14:39	
Acrylonitrile	ND	50	1.9	ug/L			03/09/21 14:39	
Benzene	ND	5.0	0.60	ug/L			03/09/21 14:39	
Bromodichloromethane	ND	5.0	0.54	ug/L			03/09/21 14:39	
Bromoform	ND	5.0	0.47	ug/L			03/09/21 14:39	
Bromomethane	ND	5.0	1.2	ug/L			03/09/21 14:39	
Carbon tetrachloride	ND	5.0	0.51	ug/L			03/09/21 14:39	
Chlorobenzene	ND	5.0	0.48	ug/L			03/09/21 14:39	
Chlorodibromomethane	ND	5.0	0.41	ug/L			03/09/21 14:39	
Chloroethane	ND	5.0	0.87	ug/L			03/09/21 14:39	
Chloroform	ND	5.0	0.54	ug/L			03/09/21 14:39	
Chloromethane	ND	5.0	0.64	ug/L			03/09/21 14:39	
cis-1,3-Dichloropropene	ND	5.0	0.33	ug/L			03/09/21 14:39	
Ethylbenzene	ND	5.0	0.46	ug/L			03/09/21 14:39	
Methylene Chloride	ND	5.0	0.81	ug/L			03/09/21 14:39	
Tetrachloroethene	ND	5.0	0.34	ug/L			03/09/21 14:39	
Toluene	ND	5.0	0.45	ug/L			03/09/21 14:39	
trans-1,2-Dichloroethene	ND	5.0	0.59	ug/L			03/09/21 14:39	
trans-1,3-Dichloropropene	ND	5.0	0.44	ug/L			03/09/21 14:39	
Trichloroethene	ND	5.0	0.60				03/09/21 14:39	
Vinyl chloride	ND	5.0	0.75	ug/L			03/09/21 14:39	
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	88	68 - 130			-		03/09/21 14:39	
4-Bromofluorobenzene (Surr)	94	76 - 123					03/09/21 14:39	
Dibromofluoromethane (Surr)	96	75 - 123					03/09/21 14:39	
Toluene-d8 (Surr)	95	77 - 120					03/09/21 14:39	

				_	
Method:	RSK ₋ 1	75 - C)issolved	Gases	(GC)

Method. Nort-170 - Dissolved	Cases (CC)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	ND	4.0	1.0	ug/L			03/10/21 19:43	1
Ethane	ND	7.5	1.5	ug/L			03/10/21 19:43	1
Ethene	ND	7.0	1.5	ug/L			03/10/21 19:43	1

Marthaga	J. 0040	NO 14-	4-1- /	
Method	a: 6010	JC - IVIE	tais (i	CPI

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	47.8		0.50	0.10	mg/L		03/10/21 09:47	03/11/21 01:41	1
Potassium	1.2		0.50	0.10	mg/L		03/10/21 09:47	03/11/21 01:41	1

Eurofins TestAmerica, Buffalo

Page 12 of 34

Client: New York State D.E.C. Job ID: 480-181811-1

Project/Site: COSCO #344035

Client Sample ID: GP-4D-030821

Date Collected: 03/08/21 14:30 Date Received: 03/09/21 10:00 Lab Sample ID: 480-181811-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Magnesium	8.4		0.20	0.043	mg/L		03/10/21 09:47	03/11/21 01:41	1
Sodium	173		1.0	0.32	mg/L		03/10/21 09:47	03/11/21 01:41	1
Method: 6010C - Metals (ICF	P) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.046	J	0.050	0.019	mg/L		03/10/21 09:47	03/11/21 00:01	1
Manganese	0.0023	JB	0.0030	0.00040	mg/L		03/10/21 09:47	03/11/21 00:01	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	243		2.5	1.4	mg/L			03/11/21 19:25	5
Sulfate	19.7		10.0	1.7	mg/L			03/11/21 19:25	5
Nitrite as N	ND		0.050	0.020	mg/L			03/09/21 18:53	1
Nitrate as N	3.4		0.050	0.020	mg/L			03/09/21 18:53	1
Alkalinity, Total	147		5.0	0.79	mg/L			03/09/21 20:22	1
Sulfide	ND		1.0	0.67	mg/L			03/14/21 13:50	1
Total Organic Carbon	0.71		1.0	0.43	mg/L			03/10/21 08:47	

Client: New York State D.E.C. Job ID: 480-181811-1 Project/Site: COSCO #344035

Client Sample ID: DUP-001-030821

Lab Sample ID: 480-181811-4 Date Collected: 03/08/21 00:00 Date Received: 03/09/21 10:00

Matrix: Water

Method: 624.1 - Volatile Organic Compounds (GC/MS) Result Qualifier RL **MDL** Unit **Analyte** D Prepared Analyzed Dil Fac 1,1,1-Trichloroethane ND 5.0 0.39 ug/L 03/09/21 15:02 ND 5.0 1,1,2,2-Tetrachloroethane 0.26 ug/L 03/09/21 15:02 1,1,2-Trichloroethane ND 5.0 0.48 ug/L 03/09/21 15:02 ND 5.0 0.59 ug/L 1,1-Dichloroethane 03/09/21 15:02 1,1-Dichloroethene ND 5.0 0.85 ug/L 03/09/21 15:02 1,2-Dichlorobenzene ND 5.0 0.44 ug/L 03/09/21 15:02 1,2-Dichloroethane ND 5.0 0.60 ug/L 03/09/21 15:02 1,2-Dichloroethene, Total ND 10 03/09/21 15:02 3.2 ug/L 1,2-Dichloropropane ND 5.0 0.61 ug/L 03/09/21 15:02 1,3-Dichlorobenzene ND 5.0 0.54 ug/L 03/09/21 15:02 1,4-Dichlorobenzene ND 5.0 0.51 ug/L 03/09/21 15:02 2-Chloroethyl vinyl ether ND 25 1.9 ug/L 03/09/21 15:02 Acrolein ND 100 17 ug/L 03/09/21 15:02 Acrylonitrile ND 50 1.9 ug/L 03/09/21 15:02 Benzene ND 5.0 0.60 ug/L 03/09/21 15:02 Bromodichloromethane ND 5.0 0.54 ug/L 03/09/21 15:02 Bromoform ND 5.0 0.47 ug/L 03/09/21 15:02 Bromomethane ND 5.0 1.2 ug/L 03/09/21 15:02 Carbon tetrachloride ND 5.0 0.51 ug/L 03/09/21 15:02 Chlorobenzene ND 5.0 0.48 ug/L 03/09/21 15:02 Chlorodibromomethane ND 5.0 0.41 ug/L 03/09/21 15:02 Chloroethane ND 5.0 0.87 ug/L 03/09/21 15:02 Chloroform ND 5.0 0.54 ug/L 03/09/21 15:02 Chloromethane ND 5.0 0.64 ug/L 03/09/21 15:02 cis-1,3-Dichloropropene ND 5.0 0.33 ug/L 03/09/21 15:02 ND Ethylbenzene 5.0 0.46 ug/L 03/09/21 15:02 Methylene Chloride ND 5.0 0.81 ug/L 03/09/21 15:02 Tetrachloroethene ND 0.34 ug/L 5.0 03/09/21 15:02 ND 5.0 0.45 ug/L Toluene 03/09/21 15:02 trans-1,2-Dichloroethene ND 5.0 0.59 ug/L 03/09/21 15:02 trans-1,3-Dichloropropene ND 5.0 0.44 ug/L 03/09/21 15:02 Trichloroethene ND 5.0 0.60 ug/L 03/09/21 15:02 Vinyl chloride ND 5.0 0.75 ug/L 03/09/21 15:02

ı	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1,2-Dichloroethane-d4 (Surr)	82		68 - 130	03	3/09/21 15:02	1
	4-Bromofluorobenzene (Surr)	104		76 - 123	03	3/09/21 15:02	1
	Dibromofluoromethane (Surr)	95		75 - 123	03	3/09/21 15:02	1
	Toluene-d8 (Surr)	97		77 - 120	03	3/09/21 15:02	1

	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Methane	ND		4.0	1.0	ug/L			03/10/21 20:01	1
	Ethane	ND		7.5	1.5	ug/L			03/10/21 20:01	1
l	Ethene	ND		7.0	1.5	ug/L			03/10/21 20:01	1

Mothod	: 6010C ·	- Motale	(ICD)
MELITO		- INICIAIS	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	47.6		0.50	0.10	mg/L		03/10/21 09:47	03/11/21 01:45	1
Potassium	1.3		0.50	0.10	mg/L		03/10/21 09:47	03/11/21 01:45	1

Eurofins TestAmerica, Buffalo

Page 14 of 34

Client: New York State D.E.C. Job ID: 480-181811-1 Project/Site: COSCO #344035

Client Sample ID: DUP-001-030821

Lab Sample ID: 480-181811-4 Date Collected: 03/08/21 00:00

Matrix: Water

03/09/21 18:54

03/09/21 18:54

03/09/21 20:28

03/14/21 13:50

03/10/21 09:02

Date Received: 03/09/21 10:00

Nitrite as N

Sulfide

Nitrate as N

Alkalinity, Total

Total Organic Carbon

Method: 6010C - Metals (ICP) (C	Continued)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Magnesium	8.3		0.20	0.043	mg/L		03/10/21 09:47	03/11/21 01:45	1
Sodium	171		1.0	0.32	mg/L		03/10/21 09:47	03/11/21 01:45	1
Method: 6010C - Metals (ICP) -	Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.26		0.050	0.019	mg/L		03/10/21 09:47	03/11/21 00:05	1
Manganese	0.012	В	0.0030	0.00040	mg/L		03/10/21 09:47	03/11/21 00:05	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	243		2.5	1.4	mg/L			03/11/21 19:40	5
Sulfate	19.6		10.0	1.7	mg/L			03/11/21 19:40	5

0.050

0.050

5.0

1.0

1.0

0.020 mg/L

0.020 mg/L

0.79 mg/L

0.67 mg/L

0.43 mg/L

ND

3.4

146

ND

0.75 J

Client: New York State D.E.C. Job ID: 480-181811-1 Project/Site: COSCO #344035

Client Sample ID: TRIPBLANK-030821

Date Received: 03/09/21 10:00

Lab Sample ID: 480-181811-5 Date Collected: 03/08/21 00:00

Matrix: Water

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			03/09/21 15:26	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			03/09/21 15:26	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			03/09/21 15:26	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			03/09/21 15:26	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			03/09/21 15:26	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			03/09/21 15:26	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			03/09/21 15:26	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			03/09/21 15:26	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			03/09/21 15:26	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			03/09/21 15:26	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			03/09/21 15:26	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			03/09/21 15:26	1
Acrolein	ND		100	17	ug/L			03/09/21 15:26	1
Acrylonitrile	ND		50	1.9	ug/L			03/09/21 15:26	1
Benzene	ND		5.0	0.60	ug/L			03/09/21 15:26	1
Bromodichloromethane	ND		5.0	0.54	ug/L			03/09/21 15:26	1
Bromoform	ND		5.0	0.47	ug/L			03/09/21 15:26	1
Bromomethane	ND		5.0	1.2	ug/L			03/09/21 15:26	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			03/09/21 15:26	1
Chlorobenzene	ND		5.0	0.48	ug/L			03/09/21 15:26	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			03/09/21 15:26	1
Chloroethane	ND		5.0	0.87	ug/L			03/09/21 15:26	1
Chloroform	ND		5.0	0.54	ug/L			03/09/21 15:26	1
Chloromethane	ND		5.0	0.64	ug/L			03/09/21 15:26	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			03/09/21 15:26	1
Ethylbenzene	ND		5.0	0.46	ug/L			03/09/21 15:26	1
Methylene Chloride	ND		5.0	0.81	ug/L			03/09/21 15:26	1
Tetrachloroethene	ND		5.0	0.34	ug/L			03/09/21 15:26	1
Toluene	ND		5.0	0.45	ug/L			03/09/21 15:26	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			03/09/21 15:26	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			03/09/21 15:26	1
Trichloroethene	ND		5.0	0.60	ug/L			03/09/21 15:26	1
Vinyl chloride	ND		5.0	0.75	ug/L			03/09/21 15:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1 2-Dichloroethane-d4 (Surr)	99		68 - 130					03/09/21 15:26	

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	68 - 130		03/09/21 15:26	1
4-Bromofluorobenzene (Surr)	100	76 - 123		03/09/21 15:26	1
Dibromofluoromethane (Surr)	103	75 - 123		03/09/21 15:26	1
Toluene-d8 (Surr)	93	77 - 120		03/09/21 15:26	1

Surrogate Summary

Client: New York State D.E.C. Job ID: 480-181811-1 Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

				ercent Surro	•
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(68-130)	(76-123)	(75-123)	(77-120)
480-181811-1	DW-1-030821	99	99	98	105
480-181811-2	GW-4S-030821	92	112	99	103
480-181811-3	GP-4D-030821	88	94	96	95
480-181811-4	DUP-001-030821	82	104	95	97
480-181811-5	TRIPBLANK-030821	99	100	103	93
LCS 480-571782/5	Lab Control Sample	87	90	95	88
MB 480-571782/7	Method Blank	92	98	106	98

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Client: New York State D.E.C. Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-571782/7

Matrix: Water

Analysis Batch: 571782

Client Sample ID: Method Blank

Prep Type: Total/NA

/ manyone Zatom or moz	MB I	MB							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND		5.0	0.39	ug/L			03/09/21 11:00	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			03/09/21 11:00	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			03/09/21 11:00	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			03/09/21 11:00	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			03/09/21 11:00	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			03/09/21 11:00	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			03/09/21 11:00	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			03/09/21 11:00	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			03/09/21 11:00	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			03/09/21 11:00	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			03/09/21 11:00	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			03/09/21 11:00	1
Acrolein	ND		100	17	ug/L			03/09/21 11:00	1
Acrylonitrile	ND		50	1.9	ug/L			03/09/21 11:00	1
Benzene	ND		5.0	0.60	ug/L			03/09/21 11:00	1
Bromodichloromethane	ND		5.0	0.54	ug/L			03/09/21 11:00	1
Bromoform	ND		5.0	0.47	ug/L			03/09/21 11:00	1
Bromomethane	ND		5.0	1.2	ug/L			03/09/21 11:00	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			03/09/21 11:00	1
Chlorobenzene	ND		5.0	0.48	ug/L			03/09/21 11:00	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			03/09/21 11:00	1
Chloroethane	ND		5.0	0.87	ug/L			03/09/21 11:00	1
Chloroform	ND		5.0	0.54	ug/L			03/09/21 11:00	1
Chloromethane	ND		5.0	0.64	ug/L			03/09/21 11:00	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			03/09/21 11:00	1
Ethylbenzene	ND		5.0	0.46	ug/L			03/09/21 11:00	1
Methylene Chloride	ND		5.0	0.81	ug/L			03/09/21 11:00	1
Tetrachloroethene	ND		5.0	0.34	ug/L			03/09/21 11:00	1
Toluene	ND		5.0	0.45	ug/L			03/09/21 11:00	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			03/09/21 11:00	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			03/09/21 11:00	1
Trichloroethene	ND		5.0	0.60	ug/L			03/09/21 11:00	1
Vinyl chloride	ND		5.0	0.75	ug/L			03/09/21 11:00	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared Analy	zed Dil Fac
1,2-Dichloroethane-d4 (Surr)	92	68 - 130	03/09/21	11:00
4-Bromofluorobenzene (Surr)	98	76 - 123	03/09/21	1 11:00 1
Dibromofluoromethane (Surr)	106	75 - 123	03/09/21	1 11:00 1
Toluene-d8 (Surr)	98	77 - 120	03/09/21	1 11:00 1

Lab Sample ID: LCS 480-571782/5

Matrix: Water

Analysis Batch: 571782

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	18.5		ug/L		92	52 - 162	
1,1,2,2-Tetrachloroethane	20.0	21.0		ug/L		105	46 - 157	
1,1,2-Trichloroethane	20.0	18.7		ug/L		94	52 - 150	

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Page 18 of 34

Client: New York State D.E.C. Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-571782/5

Matrix: Water

Analysis Batch: 571782

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	20.0	18.4		ug/L		92	59 - 155	
1,1-Dichloroethene	20.0	20.5		ug/L		102	1 - 234	
1,2-Dichlorobenzene	20.0	20.7		ug/L		104	18 - 190	
1,2-Dichloroethane	20.0	18.4		ug/L		92	49 - 155	
1,2-Dichloropropane	20.0	19.0		ug/L		95	1 - 210	
1,3-Dichlorobenzene	20.0	20.3		ug/L		102	59 - 156	
1,4-Dichlorobenzene	20.0	19.8		ug/L		99	18 - 190	
2-Chloroethyl vinyl ether	20.0	18.7	J	ug/L		94	1 - 305	
Benzene	20.0	18.6		ug/L		93	37 - 151	
Bromodichloromethane	20.0	18.8		ug/L		94	35 - 155	
Bromoform	20.0	18.3		ug/L		91	45 - 169	
Bromomethane	20.0	18.6		ug/L		93	1 - 242	
Carbon tetrachloride	20.0	17.8		ug/L		89	70 - 140	
Chlorobenzene	20.0	19.6		ug/L		98	37 - 160	
Chlorodibromomethane	20.0	20.1		ug/L		101	53 - 149	
Chloroethane	20.0	18.9		ug/L		94	14 - 230	
Chloroform	20.0	18.3		ug/L		92	51 - 138	
Chloromethane	20.0	18.4		ug/L		92	1 - 273	
cis-1,3-Dichloropropene	20.0	19.4		ug/L		97	1 - 227	
Ethylbenzene	20.0	20.0		ug/L		100	37 - 162	
Methylene Chloride	20.0	19.5		ug/L		98	1 - 221	
Tetrachloroethene	20.0	18.6		ug/L		93	64 - 148	
Toluene	20.0	17.3		ug/L		87	47 - 150	
trans-1,2-Dichloroethene	20.0	20.2		ug/L		101	54 - 156	
trans-1,3-Dichloropropene	20.0	18.1		ug/L		91	17 - 183	
Trichloroethene	20.0	19.6		ug/L		98	71 - 157	
Vinyl chloride	20.0	17.9		ug/L		89	1 - 251	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	87		68 - 130
4-Bromofluorobenzene (Surr)	90		76 - 123
Dibromofluoromethane (Surr)	95		75 - 123
Toluene-d8 (Surr)	88		77 - 120

Method: RSK-175 - Dissolved Gases (GC)

Lab Sample ID: MB 480-572034/3

Matrix: Water

Analysis Batch: 572034

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 4.0 Methane ND 1.0 ug/L 03/10/21 15:15 Ethane ND 7.5 1.5 ug/L 03/10/21 15:15 Ethene ND 7.0 1.5 ug/L 03/10/21 15:15

Eurofins TestAmerica, Buffalo

Page 19 of 34

Client: New York State D.E.C. Project/Site: COSCO #344035

Method: RSK-175 - Dissolved Gases (GC) (Continued)

Lab Sample ID: LCS 480-572034/4 **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 572034

Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Methane 19.2 18.4 ug/L 96 85 - 120 Ethane 36.8 34.6 ug/L 94 79 - 120 Ethene 33.7 31.1 ug/L 85 - 120 92

Lab Sample ID: LCSD 480-572034/5 Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 572034

Prep Type: Total/NA

_	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methane	19.2	18.5		ug/L		96	85 - 120	1	50
Ethane	36.8	34.8		ug/L		95	79 - 120	1	50
Ethene	33.7	32.0		ug/L		95	85 - 120	3	50

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-571921/1-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 572143

Prep Type: Total/NA Prep Batch: 571921

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Calcium ND 0.50 03/10/21 09:47 03/11/21 01:01 0.10 mg/L ND 0.50 03/10/21 09:47 03/11/21 01:01 Potassium 0.10 mg/L 03/10/21 09:47 03/11/21 01:01 Magnesium ND 0.20 0.043 mg/L Sodium ND 1.0 0.32 mg/L 03/10/21 09:47 03/11/21 01:01

Lab Sample ID: LCS 480-571921/2-A **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 572143

Prep Type: Total/NA **Prep Batch: 571921**

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	10.0	9.57		mg/L		96	80 - 120	
Potassium	10.0	10.22		mg/L		102	80 - 120	
Magnesium	10.0	9.49		mg/L		95	80 - 120	
Sodium	10.0	10.04		mg/L		100	80 - 120	

Lab Sample ID: 480-181811-1 MS Client Sample ID: DW-1-030821

Matrix: Water

Analysis Batch: 572143

Prep Type: Total/NA **Prep Batch: 571921**

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	36.4		10.0	45.40		mg/L		90	75 - 125	_
Potassium	1.3		10.0	11.84		mg/L		106	75 - 125	
Magnesium	7.4		10.0	17.05		mg/L		96	75 - 125	
Sodium	140		10.0	150.3	4	mg/L		101	75 - 125	

3/19/2021

Client: New York State D.E.C. Job ID: 480-181811-1 Project/Site: COSCO #344035

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 480-181811-1 MSD

Matrix: Water

Analysis Batch: 572143

Client Sample ID: DW-1-030821

Prep Type: Total/NA

Prep Batch: 571921

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Calcium	36.4		10.0	45.32		mg/L		89	75 - 125	0	20
Potassium	1.3		10.0	11.90		mg/L		106	75 - 125	0	20
Magnesium	7.4		10.0	16.96		mg/L		96	75 - 125	1	20
Sodium	140		10.0	151.2	4	mg/L		110	75 - 125	1	20

Lab Sample ID: MB 480-571925/1-A

Matrix: Water

Analysis Batch: 572128

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 571925

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.050 ND 0.019 mg/L 03/10/21 09:47 03/10/21 23:20 Iron 0.00257 J 0.0030 0.00040 mg/L 03/10/21 09:47 03/10/21 23:20 Manganese

Lab Sample ID: LCS 480-571925/2-A

Matrix: Water

Analysis Batch: 572128

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 571925

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Iron 10.0 10.22 mg/L 102 80 - 120 Manganese 0.200 0.211 mg/L 105 80 - 120

Lab Sample ID: 480-181811-2 MS

Matrix: Water

Analysis Batch: 572128

Client Sample ID: GW-4S-030821

Prep Type: Dissolved Prep Batch: 571925

	Sample	Sample	Spike	IVIS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	0.15		10.0	10.15		mg/L		100	75 - 125	
Manganese	0.54	В	0.200	0.761		mg/L		110	75 - 125	

Lab Sample ID: 480-181811-2 MSD

Matrix: Water

Analyte

Manganese

Iron

Analysis Batch: 572128

Client Sample ID: GW-4S-030821

Prep Type: Dissolved

Prep Batch: 571925

Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit 10.0 10.03 mg/L 99 75 - 125 20 0.200 0.754 mg/L 106 75 - 125 20

Method: 300.0 - Anions, Ion Chromatography

0.15

0.54 B

Lab Sample ID: MB 480-572156/28

Matrix: Water

Analysis Batch: 572156

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared

Analyzed Dil Fac 0.50 0.28 mg/L Chloride ND 03/11/21 19:11 Sulfate ND 2.0 03/11/21 19:11 0.35 mg/L

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C.

Project/Site: COSCO #344035

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: MB 480-572156/4 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 572156

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac D **Prepared** Chloride ND 0.50 0.28 mg/L 03/11/21 13:20 Sulfate ND 2.0 0.35 mg/L 03/11/21 13:20

Lab Sample ID: LCS 480-572156/27 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 572156

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Chloride 50.0 50.06 mg/L 100 90 - 110 Sulfate 50.0 49.63 mg/L 99 90 - 110

Lab Sample ID: LCS 480-572156/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 572156

Spike LCS LCS %Rec. Added Result Qualifier Analyte Unit D %Rec Limits Chloride 50.0 49.82 mg/L 100 90 - 110 Sulfate 50.0 51 19 102 mg/L 90 - 110

Client Sample ID: GW-4S-030821 Lab Sample ID: 480-181811-2 MS Prep Type: Total/NA

Matrix: Water

Analysis Batch: 572156

Analysis Batch. 572100	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	184		250	419.2		mg/L		94	81 - 120		_
Sulfate	17.3		250	257.9		mg/L		96	80 - 120		

Method: 353.2 - Nitrogen, Nitrite

Lab Sample ID: MB 480-571898/3 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 571898

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrite as N	ND		0.050	0.020	mg/L			03/09/21 18:46	1

Lab Sample ID: LCS 480-571898/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 571898

Eurofins TestAmerica, Buffalo

Prep Type: Total/NA

Prep Type: Total/NA

62

60 - 140

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Client: New York State D.E.C.

Project/Site: COSCO #344035

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 480-571987/28 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 571987

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared 5.0 03/09/21 19:26 Alkalinity, Total ND 0.79 mg/L

Lab Sample ID: LCS 480-571987/29 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 571987

Spike LCS LCS %Rec. Added Result Qualifier Unit D %Rec Limits Analyte 100 90 - 110 Alkalinity, Total 98.24 mg/L 98

Lab Sample ID: 480-181811-1 MS Client Sample ID: DW-1-030821

Matrix: Water

Alkalinity, Total

Analysis Batch: 571987

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Limits Analyte Unit %Rec

100

Lab Sample ID: 480-181811-2 DU Client Sample ID: GW-4S-030821 **Prep Type: Total/NA**

184.5

mg/L

Matrix: Water

Analysis Batch: 571987

DU DU **RPD** Sample Sample Analyte Result Qualifier Result Qualifier Unit **RPD** Limit 168.7 Alkalinity, Total 170 mg/L 20

Method: SM 4500 S2 F - Sulfide, Total

Lab Sample ID: MB 480-572450/3

Matrix: Water

Analysis Batch: 572450

MB MB

122

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Sulfide ND 1.0 0.67 mg/L 03/14/21 13:50

Lab Sample ID: LCS 480-572450/4

Matrix: Water

Analysis Batch: 572450

LCS LCS Spike %Rec. Added Result Qualifier Analyte Unit %Rec Limits Sulfide 7.80 7.60 97 90 - 110 mg/L

Lab Sample ID: 480-181811-1 MS Client Sample ID: DW-1-030821 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 572450

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Sulfide ND 2.20 2.40 mg/L 109 40 - 150

Eurofins TestAmerica, Buffalo

3/19/2021

QC Sample Results

Client: New York State D.E.C. Job ID: 480-181811-1 Project/Site: COSCO #344035

Method: SM 5310D - Organic Carbon, Total (TOC)

Lab Sample ID: MB 480-572007/27 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 572007

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	ND		1.0	0.43	mg/L			03/10/21 03:45	1

Lab Sample ID: LCS 480-572007/28 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 572007

LCS LCS Spike %Rec. Added Result Qualifier Unit D %Rec Limits Total Organic Carbon 60.0 63.83 106 90 - 110 mg/L

Prep Type: Total/NA

QC Association Summary

Client: New York State D.E.C. Job ID: 480-181811-1 Project/Site: COSCO #344035

GC/MS VOA

Analysis Batch: 571782

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-181811-1	DW-1-030821	Total/NA	Water	624.1	
480-181811-2	GW-4S-030821	Total/NA	Water	624.1	
480-181811-3	GP-4D-030821	Total/NA	Water	624.1	
480-181811-4	DUP-001-030821	Total/NA	Water	624.1	
480-181811-5	TRIPBLANK-030821	Total/NA	Water	624.1	
MB 480-571782/7	Method Blank	Total/NA	Water	624.1	
LCS 480-571782/5	Lab Control Sample	Total/NA	Water	624.1	

GC VOA

Analysis Batch: 572034

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-181811-1	DW-1-030821	Total/NA	Water	RSK-175	
480-181811-2	GW-4S-030821	Total/NA	Water	RSK-175	
480-181811-3	GP-4D-030821	Total/NA	Water	RSK-175	
480-181811-4	DUP-001-030821	Total/NA	Water	RSK-175	
MB 480-572034/3	Method Blank	Total/NA	Water	RSK-175	
LCS 480-572034/4	Lab Control Sample	Total/NA	Water	RSK-175	
LCSD 480-572034/5	Lab Control Sample Dup	Total/NA	Water	RSK-175	

Metals

Prep Batch: 571921

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-181811-1	DW-1-030821	Total/NA	Water	3005A	
480-181811-2	GW-4S-030821	Total/NA	Water	3005A	
480-181811-3	GP-4D-030821	Total/NA	Water	3005A	
480-181811-4	DUP-001-030821	Total/NA	Water	3005A	
MB 480-571921/1-A	Method Blank	Total/NA	Water	3005A	
LCS 480-571921/2-A	Lab Control Sample	Total/NA	Water	3005A	
480-181811-1 MS	DW-1-030821	Total/NA	Water	3005A	
480-181811-1 MSD	DW-1-030821	Total/NA	Water	3005A	

Prep Batch: 571925

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-181811-1	DW-1-030821	Dissolved	Water	3005A	<u> </u>
480-181811-2	GW-4S-030821	Dissolved	Water	3005A	
480-181811-3	GP-4D-030821	Dissolved	Water	3005A	
480-181811-4	DUP-001-030821	Dissolved	Water	3005A	
MB 480-571925/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 480-571925/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
480-181811-2 MS	GW-4S-030821	Dissolved	Water	3005A	
480-181811-2 MSD	GW-4S-030821	Dissolved	Water	3005A	

Analysis Batch: 572128

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-181811-1	DW-1-030821	Dissolved	Water	6010C	571925
480-181811-2	GW-4S-030821	Dissolved	Water	6010C	571925
480-181811-3	GP-4D-030821	Dissolved	Water	6010C	571925
480-181811-4	DUP-001-030821	Dissolved	Water	6010C	571925
MB 480-571925/1-A	Method Blank	Total Recoverable	Water	6010C	571925
LCS 480-571925/2-A	Lab Control Sample	Total Recoverable	Water	6010C	571925

Eurofins TestAmerica, Buffalo

QC Association Summary

Client: New York State D.E.C.

Project/Site: COSCO #344035

Job ID: 480-181811-1

Metals (Continued)

Analysis Batch: 572128 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-181811-2 MS	GW-4S-030821	Dissolved	Water	6010C	571925
480-181811-2 MSD	GW-4S-030821	Dissolved	Water	6010C	571925

Analysis Batch: 572143

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-181811-1	DW-1-030821	Total/NA	Water	6010C	571921
480-181811-2	GW-4S-030821	Total/NA	Water	6010C	571921
480-181811-3	GP-4D-030821	Total/NA	Water	6010C	571921
480-181811-4	DUP-001-030821	Total/NA	Water	6010C	571921
MB 480-571921/1-A	Method Blank	Total/NA	Water	6010C	571921
LCS 480-571921/2-A	Lab Control Sample	Total/NA	Water	6010C	571921
480-181811-1 MS	DW-1-030821	Total/NA	Water	6010C	571921
480-181811-1 MSD	DW-1-030821	Total/NA	Water	6010C	571921

General Chemistry

Analysis Batch: 571898

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-181811-1	DW-1-030821	Total/NA	Water	353.2	
480-181811-2	GW-4S-030821	Total/NA	Water	353.2	
480-181811-3	GP-4D-030821	Total/NA	Water	353.2	
480-181811-4	DUP-001-030821	Total/NA	Water	353.2	
MB 480-571898/3	Method Blank	Total/NA	Water	353.2	
LCS 480-571898/4	Lab Control Sample	Total/NA	Water	353.2	

Analysis Batch: 571908

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-181811-1	DW-1-030821	Total/NA	Water	Nitrate by calc	
480-181811-2	GW-4S-030821	Total/NA	Water	Nitrate by calc	
480-181811-3	GP-4D-030821	Total/NA	Water	Nitrate by calc	
480-181811-4	DUP-001-030821	Total/NA	Water	Nitrate by calc	

Analysis Batch: 571987

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-181811-1	DW-1-030821	Total/NA	Water	SM 2320B	_
480-181811-2	GW-4S-030821	Total/NA	Water	SM 2320B	
480-181811-3	GP-4D-030821	Total/NA	Water	SM 2320B	
480-181811-4	DUP-001-030821	Total/NA	Water	SM 2320B	
MB 480-571987/28	Method Blank	Total/NA	Water	SM 2320B	
LCS 480-571987/29	Lab Control Sample	Total/NA	Water	SM 2320B	
480-181811-1 MS	DW-1-030821	Total/NA	Water	SM 2320B	
480-181811-2 DU	GW-4S-030821	Total/NA	Water	SM 2320B	

Analysis Batch: 572007

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-181811-1	DW-1-030821	Total/NA	Water	SM 5310D	
480-181811-2	GW-4S-030821	Total/NA	Water	SM 5310D	
480-181811-3	GP-4D-030821	Total/NA	Water	SM 5310D	
480-181811-4	DUP-001-030821	Total/NA	Water	SM 5310D	
MB 480-572007/27	Method Blank	Total/NA	Water	SM 5310D	
LCS 480-572007/28	Lab Control Sample	Total/NA	Water	SM 5310D	

Eurofins TestAmerica, Buffalo

2

5

6

8

10

12

14

QC Association Summary

Client: New York State D.E.C. Job ID: 480-181811-1 Project/Site: COSCO #344035

General Chemistry

Analysis Batch: 572156

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-181811-1	DW-1-030821	Total/NA	Water	300.0	
480-181811-2	GW-4S-030821	Total/NA	Water	300.0	
480-181811-3	GP-4D-030821	Total/NA	Water	300.0	
480-181811-4	DUP-001-030821	Total/NA	Water	300.0	
MB 480-572156/28	Method Blank	Total/NA	Water	300.0	
MB 480-572156/4	Method Blank	Total/NA	Water	300.0	
LCS 480-572156/27	Lab Control Sample	Total/NA	Water	300.0	
LCS 480-572156/3	Lab Control Sample	Total/NA	Water	300.0	
480-181811-2 MS	GW-4S-030821	Total/NA	Water	300.0	

Analysis Batch: 572450

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-181811-1	DW-1-030821	Total/NA	Water	SM 4500 S2 F	
480-181811-2	GW-4S-030821	Total/NA	Water	SM 4500 S2 F	
480-181811-3	GP-4D-030821	Total/NA	Water	SM 4500 S2 F	
480-181811-4	DUP-001-030821	Total/NA	Water	SM 4500 S2 F	
MB 480-572450/3	Method Blank	Total/NA	Water	SM 4500 S2 F	
LCS 480-572450/4	Lab Control Sample	Total/NA	Water	SM 4500 S2 F	
480-181811-1 MS	DW-1-030821	Total/NA	Water	SM 4500 S2 F	

Client: New York State D.E.C. Project/Site: COSCO #344035

Client Sample ID: DW-1-030821

Date Collected: 03/08/21 11:40 Date Received: 03/09/21 10:00 Lab Sample ID: 480-181811-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1			571782	03/09/21 13:51	OMI	TAL BUF
Total/NA	Analysis	RSK-175		1	572034	03/10/21 18:46	DSC	TAL BUF
Dissolved	Prep	3005A			571925	03/10/21 09:47	ADM	TAL BUF
Dissolved	Analysis	6010C		1	572128	03/10/21 23:28	AMH	TAL BUF
Total/NA	Prep	3005A			571921	03/10/21 09:47	ADM	TAL BUF
Total/NA	Analysis	6010C		1	572143	03/11/21 01:19	AMH	TAL BUF
Total/NA	Analysis	300.0		5	572156	03/11/21 17:43	IMZ	TAL BUF
Total/NA	Analysis	353.2		1	571898	03/09/21 18:50	ALT	TAL BUF
Total/NA	Analysis	Nitrate by calc		1	571908	03/09/21 18:50	ALT	TAL BUF
Total/NA	Analysis	SM 2320B		1	571987	03/09/21 19:54	KEB	TAL BUF
Total/NA	Analysis	SM 4500 S2 F		1	572450	03/14/21 13:50	MJB	TAL BUF
Total/NA	Analysis	SM 5310D		1	572007	03/10/21 08:14	CLA	TAL BUF

Client Sample ID: GW-4S-030821

Date Collected: 03/08/21 14:30 Date Received: 03/09/21 10:00 Lab Sample ID: 480-181811-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	571782	03/09/21 14:15	OMI	TAL BUF
Total/NA	Analysis	RSK-175		1	572034	03/10/21 19:05	DSC	TAL BUF
Dissolved	Prep	3005A			571925	03/10/21 09:47	ADM	TAL BUF
Dissolved	Analysis	6010C		1	572128	03/10/21 23:32	AMH	TAL BUF
Total/NA	Prep	3005A			571921	03/10/21 09:47	ADM	TAL BUF
Total/NA	Analysis	6010C		1	572143	03/11/21 01:37	AMH	TAL BUF
Total/NA	Analysis	300.0		5	572156	03/11/21 17:58	IMZ	TAL BUF
Total/NA	Analysis	353.2		1	571898	03/09/21 18:51	ALT	TAL BUF
Total/NA	Analysis	Nitrate by calc		1	571908	03/09/21 18:51	ALT	TAL BUF
Total/NA	Analysis	SM 2320B		1	571987	03/09/21 20:09	KEB	TAL BUF
Total/NA	Analysis	SM 4500 S2 F		1	572450	03/14/21 13:50	MJB	TAL BUF
Total/NA	Analysis	SM 5310D		1	572007	03/10/21 08:31	CLA	TAL BUF

Client Sample ID: GP-4D-030821

Date Collected: 03/08/21 14:30 Date Received: 03/09/21 10:00

.ab	Samp	le ID:	480-1	81811-3	3
			84-4	\ \ \ \ \ \ \	_

Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	571782	03/09/21 14:39	OMI	TAL BUF
Total/NA	Analysis	RSK-175		1	572034	03/10/21 19:43	DSC	TAL BUF
Dissolved	Prep	3005A			571925	03/10/21 09:47	ADM	TAL BUF
Dissolved	Analysis	6010C		1	572128	03/11/21 00:01	AMH	TAL BUF
Total/NA	Prep	3005A			571921	03/10/21 09:47	ADM	TAL BUF
Total/NA	Analysis	6010C		1	572143	03/11/21 01:41	AMH	TAL BUF
Total/NA	Analysis	300.0		5	572156	03/11/21 19:25	IMZ	TAL BUF

Eurofins TestAmerica, Buffalo

Page 28 of 34

2

5

7

9

44

10

14

Client: New York State D.E.C. Project/Site: COSCO #344035

Client Sample ID: GP-4D-030821

Date Collected: 03/08/21 14:30 Date Received: 03/09/21 10:00

Lab Sample ID: 480-181811-3

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	353.2		1	571898	03/09/21 18:53	ALT	TAL BUF
Total/NA	Analysis	Nitrate by calc		1	571908	03/09/21 18:53	ALT	TAL BUF
Total/NA	Analysis	SM 2320B		1	571987	03/09/21 20:22	KEB	TAL BUF
Total/NA	Analysis	SM 4500 S2 F		1	572450	03/14/21 13:50	MJB	TAL BUF
Total/NA	Analysis	SM 5310D		1	572007	03/10/21 08:47	CLA	TAL BUF

Client Sample ID: DUP-001-030821

Date Collected: 03/08/21 00:00 Date Received: 03/09/21 10:00

Lab Sample ID: 480-181811-4

Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1			571782	03/09/21 15:02	OMI	TAL BUF
Total/NA	Analysis	RSK-175		1	572034	03/10/21 20:01	DSC	TAL BUF
Dissolved	Prep	3005A			571925	03/10/21 09:47	ADM	TAL BUF
Dissolved	Analysis	6010C		1	572128	03/11/21 00:05	AMH	TAL BUF
Total/NA	Prep	3005A			571921	03/10/21 09:47	ADM	TAL BUF
Total/NA	Analysis	6010C		1	572143	03/11/21 01:45	AMH	TAL BUF
Total/NA	Analysis	300.0		5	572156	03/11/21 19:40	IMZ	TAL BUF
Total/NA	Analysis	353.2		1	571898	03/09/21 18:54	ALT	TAL BUF
Total/NA	Analysis	Nitrate by calc		1	571908	03/09/21 18:54	ALT	TAL BUF
Total/NA	Analysis	SM 2320B		1	571987	03/09/21 20:28	KEB	TAL BUF
Total/NA	Analysis	SM 4500 S2 F		1	572450	03/14/21 13:50	MJB	TAL BUF
Total/NA	Analysis	SM 5310D		1	572007	03/10/21 09:02	CLA	TAL BUF

Client Sample ID: TRIPBLANK-030821

Date Received: 03/09/21 10:00

Lab Sample ID: 480-181811-5 Date Collected: 03/08/21 00:00 **Matrix: Water**

		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
l	Total/NA	Analysis	624.1		1	571782	03/09/21 15:26	OMI	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: New York State D.E.C.

Project/Site: COSCO #344035

Job ID: 480-181811-1

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pro	ogram	Identification Number	Expiration Date
New York	NE	LAP	10026	03-31-21
The following analyte	a ara inalizalad in thia rana	rt but the leberatory is a		This B. 4
the agency does not		rt, but the laboratory is r	not certified by the governing authority.	This list may include analytes for w
,		Matrix	Analyte	I nis list may include analytes for w
the agency does not	offer certification.	•		I nis list may include analytes for w

4

6

9

11

40

14

Method Summary

Client: New York State D.E.C. Project/Site: COSCO #344035

Job ID: 480-181811-1

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF
RSK-175	Dissolved Gases (GC)	RSK	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
300.0	Anions, Ion Chromatography	MCAWW	TAL BUF
353.2	Nitrogen, Nitrite	MCAWW	TAL BUF
Nitrate by calc	Nitrogen, Nitrate-Nitrite	SM	TAL BUF
SM 2320B	Alkalinity	SM	TAL BUF
SM 4500 S2 F	Sulfide, Total	SM	TAL BUF
SM 5310D	Organic Carbon, Total (TOC)	SM	TAL BUF
3005A	Preparation, Total Metals	SW846	TAL BUF
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique, RSKSOP-175, Rev. 0, 8/11/94, USEPA Research Lab

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

-

5

_

8

40

11

12

Sample Summary

Client: New York State D.E.C. Project/Site: COSCO #344035

Job ID: 480-181811-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-181811-1	DW-1-030821	Water	03/08/21 11:40	03/09/21 10:00
480-181811-2	GW-4S-030821	Water	03/08/21 14:30	03/09/21 10:00
480-181811-3	GP-4D-030821	Water	03/08/21 14:30	03/09/21 10:00
480-181811-4	DUP-001-030821	Water	03/08/21 00:00	03/09/21 10:00
480-181811-5	TRIPBLANK-030821	Water	03/08/21 00:00	03/09/21 10:00

6

8

11

14

4 4

	RAMBGLL				NYSD	EC C	NYSDEC COSCO Site - Chain of Custody	Site	- Ch	ain	$^{ m of}$ C	usto	dy				ď	Page of		
			Site Name / Location	ation:		Sa	Sampling Program:			0		1						Lab Use Only	y	Γ
			COSCO Site / Spring Valley, NY	ing Valley, NY		ls.	1st SA GW Sampling Event	g Event		Sam	Samplegs;	Chris We	Weiman	so 💟	de Trav	2	ď	Project Number:	ber:	
~ [[Ramboll: Albany		Laboratory:						Preservatives: (see key at bottom)	es: (see ke	v at botto	a			ğ	3				
<u>-1 4</u>	10: Robert Hormung, Paul D'Annibale, April Fallon Address 01 Nom Expenditure Design of the control of the contr		Judy Stone					_	0	2	0 9	E	0 2	F	F	H		Lab ID:		T
-1	Additional State of New Nature (196, Albany, N.Y., 12203	2203	Eurofins - TestAn	Eurofins - TestAmerica (Buffalo) Laboratory		rirement:		(D)			poi		V.I			-				
<u> </u>	Phone: (518) 724-7272		10 Hazelwood Dive Suite #106	ve Suite #106	NYSDEC EDE	ony io Data Pack D	NASDEC EDD	siiso	Vd3	Vd	(8	,ansh						_
파 퍼 <	Fax. (315) 463-7554 Email: Robert Hornung@ramboll.com, Paul.DAnnibale@ramboll.com, April.Fallon@ramboll.com	gramboll.com,	Buffalo, New York 14228	14228	Project Number: 1940075217.004.200	Project Number: 1940075217.004.200		or Comp	USEPA Ma	1,8M) (1010)	itrite, nitrate yy USEPA i	SM20 5310	Kalinity by fron and fron and se by USEPA	O10D Gases (Metl M 7d (Snot)			15	ob Number:		T
1	Sample Identification		rnone: (716) 691-2600	2600	EDD Format	Signal de la compania del compania de la compania del compania de la compania del compania de la compania del compania de la compania de la compania del compani		D) deri	sD rojs1	(nA 10[sl	n (ate, n ulfide t		bodis	o bodis bovloss	:K-175					
					Sample	Sample		Filtered		N N	18	T N	M .	W.						
	Unique Field Sample ID	Sample Location	Sample Date (mm/dd/yy)	Sample Time (hh:mm)	Type (see key)		# of Containers	Reporting	J/8:	7/8u	J\gn	ე/8 ι	7/8: 7/8:	7/8						T
	1 DW-1-030821	DW-1	03/08/21	11:40	z		16	ű	_	\vdash	\vdash	+		+		+	1	Lab	Lab Sample ID	T
	2 GW-4S-030821	GW-4S	03/08/21	14:30	z	WG	16	ď		_	-	,	-	-		-				Т
	3 GP-4D-030821	GP-4D	03/08/21	14:30	z	<u>۳</u>	at a		-	-	\vdash	< ;	+	+						T
	4 DUP-001-030821	1	03/08/21	1	G	0,4	9		-	-	+	<	\perp	+						T
Pa	5 TripBlank-030821	1	03/00/21				0	وا	× ×	+	×	×	×	×		+	1			T
			7,00,00		20	Ø	2	O	×	+	+	-		-						
	0.								-							÷	_			
	7																			T
f 34	- ∞																			T
	6								+	+	-									T
	10								-	-	+	4	30-1818	311 Cha	480-181811 Chain of Custody	stody				
									-			1	+	-	F	-				
	12								+	-										
IN Y	Special Instructions: 1). Three days from sample collection to analysis for VOCs. 2). Report detections above the MDL, but below the PQL, as "I" flags. 3). Report in accordance with NVSDEC malvical 1.4.	collection to analysis	for VOCs. 2). Re	port detections above	the MDL, but	below the PQ	L, as "I" flags.	3). Reno	- In acco	- dance a				_		-				П
	(UShow Spr # 1449/680						•						y ucar ian	oratory c	an-out co	ntract. 4).	. Direct b	ill all invoi	ices to the	
_≃		Date 3/8 /21	Received by: FedEx	×		Ω	Date 7 16 17	Ĭ	Sondition:						-					\top
0	601/	Time /8 45	Tracking Number 80325 891 0062	C 2000 11 TAS C 5 US		<u> </u> E_									Comm	Comments or Notes:	res:			
=	Refinquished by:	Date	Received by:	Mule			Date 5/4)	00/	Justody Scals intact?	ils intact?:			Z.		Т	1	((
ा≃	of: Refinantshed by:	Date	off.	,		9	Imc)						CA	#	\sim	V		
		Date	Received by:			Ω	Date		Jooler Temperature	perature						_	١	1		
0 1	off	Time	of:			-T	Гипс													
n vi	Sample 1ype: N = Normal environmental sample, FD = field duplicate, EB = Equipment Blank, FB = Field Blank, Sample Matrix: SE = Sediment, SO = Soil, WG = Ground Water, WS = Surface Water, WW = Waste Water, WP = P	D = field duplicate, EB round Water, WS = Sur	= Equipment Blan face Water, WW =	nk, FB = Field Blank, Waste Water, WP = Po	TB = Trip Blank	c, MS = Lab M	TB = Trip Blank, MS = Lab Matrix Spike, Other (Specify):	ner (Speci	(y):						$\frac{1}{2}$					T
=1	Preservatives Code: 0 = none, 1 = HCL, 2 = HNO3, 3 = H2SO4, 4 = NaOH, 5 = Zn Acetate, 6 = MeOH, 7 = NaHSO4, 8 = Na2S2O3, 9 = Zn Acetate and NaOH, 10 = H3PO4.	3 = H2SO4, 4 = NaOl	H, 5 = Zn Acetate,	6 = MeOH, 7 = NaH	3O4, 8 = Na2S2	03, 9 = Zn Ace	ISO4, 8 = Na2S203, 9 = Zn Acetate and NaOH, 10 = H3PO4:	10 = H3I	04:	ient Aur,	ther (Spe	cify):								_

Job Number: 480-181811-1

Client: New York State D.E.C.

Login Number: 181811 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Stopa, Erik S

Creator: Stopa, Erik S		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and he COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
/OA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
f necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	RAMBOLL
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-181846-1 Client Project/Site: COSCO #344035

For:

New York State D.E.C. 625 Broadway 12th Floor Albany, New York 12233-7017

Attn: Robert Strang

Wyst Bloton

Authorized for release by: 3/19/2021 1:45:02 PM Wyatt Watson, Project Management Assistant I Wyatt.Watson@Eurofinset.com

Designee for

Judy Stone, Senior Project Manager (484)685-0868
Judy.Stone@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

10

46

13

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Wigatt Bloton

Wyatt Watson

Project Management Assistant I

3/19/2021 1:45:02 PM

Client: New York State D.E.C. Project/Site: COSCO #344035

Laboratory Job ID: 480-181846-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions	4
Case Narrative	5
Detection Summary	6
Client Sample Results	8
Surrogate Summary	16
QC Sample Results	17
QC Association	25
Chronicle	28
Certification Summary	30
Method Summary	31
Sample Summary	32
Chain of Custody	33
Receipt Checklists	34

5

0

10

12

13

14

Definitions/Glossary

Client: New York State D.E.C. Job ID: 480-181846-1

Project/Site: COSCO #344035

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

F2 MS/MSD RPD exceeds control limits

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

5

9

11

12

14

Case Narrative

Client: New York State D.E.C.

Project/Site: COSCO #344035

Job ID: 480-181846-1

Job ID: 480-181846-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-181846-1

Comments

No additional comments.

Receipt

The samples were received on 3/10/2021 9:30 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.6° C.

GC/MS VOA

Method 624.1: The following sample was diluted to bring the concentration of target analytes within the calibration range: RW-3D-030921 (480-181846-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following sample was diluted to bring the concentration of target analytes within the calibration range: RW-3D-030921 (480-181846-1). Elevated reporting limits (RLs) are provided.

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-18-030921 (480-181846-3) and RW-1S-030921 (480-181846-4). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC VOA

Method RSK-175: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-18-030921 (480-181846-3). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

2

3

4

5

6

Q Q

9

10

12

Client: New York State D.E.C. Job ID: 480-181846-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D-030921

Lab Sample ID: 480-181846-1

Analyte	Result Qu	ualifier RL	MDL	Unit	Dil Fac	D Method	Prep Type
1,2-Dichloroethene, Total	180	50	16	ug/L		624.1	Total/NA
Tetrachloroethene	260	25	1.7	ug/L	5	624.1	Total/NA
Trichloroethene	240	25	3.0	ug/L	5	624.1	Total/NA
Calcium	68.9	0.50	0.10	mg/L	1	6010C	Total/NA
Potassium	2.0	0.50	0.10	mg/L	1	6010C	Total/NA
Magnesium	21.2	0.20	0.043	mg/L	1	6010C	Total/NA
Sodium	163	1.0	0.32	mg/L	1	6010C	Total/NA
Chloride	272	2.5	1.4	mg/L	5	300.0	Total/NA
Sulfate	19.9	10.0	1.7	mg/L	5	300.0	Total/NA
Nitrate as N	2.3	0.050	0.020	mg/L	1	Nitrate by	calc Total/NA
Alkalinity, Total	206	5.0	0.79	mg/L	1	SM 2320B	Total/NA
Total Organic Carbon	0.72 J	1.0	0.43	mg/L	1	SM 5310D	Total/NA

Client Sample ID: EquipmentBlank-030921

Lab Sample ID: 480-181846-2

No Detections.

Client Sample ID: MW-18-030921

Lab Sample ID: 480-181846-3

								•	
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2-Dichloroethene, Total	8.4	J	10	3.2	ug/L	1	_	624.1	Total/NA
Tetrachloroethene	0.58	J	5.0	0.34	ug/L	1		624.1	Total/NA
Trichloroethene	1.3	J	5.0	0.60	ug/L	1		624.1	Total/NA
Vinyl chloride	8.6		5.0	0.75	ug/L	1		624.1	Total/NA
Methane	520		44	11	ug/L	11		RSK-175	Total/NA
Calcium	41.5		0.50	0.10	mg/L	1		6010C	Total/NA
Potassium	2.4		0.50	0.10	mg/L	1		6010C	Total/NA
Magnesium	7.4		0.20	0.043	mg/L	1		6010C	Total/NA
Sodium	135		1.0	0.32	mg/L	1		6010C	Total/NA
Iron	7.6		0.050	0.019	mg/L	1		6010C	Dissolved
Manganese	2.4		0.0030	0.00040	mg/L	1		6010C	Dissolved
Chloride	146		2.5	1.4	mg/L	5		300.0	Total/NA
Sulfate	11.2		10.0	1.7	mg/L	5		300.0	Total/NA
Nitrate as N	0.16		0.050	0.020	mg/L	1		Nitrate by calc	Total/NA
Alkalinity, Total	198		5.0	0.79	mg/L	1		SM 2320B	Total/NA
Total Organic Carbon	5.0		1.0	0.43	mg/L	1		SM 5310D	Total/NA
_									

Client Sample ID: RW-1S-030921

Lab Sample ID: 480-181846-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	3.4	J	5.0	0.34	ug/L	1	_	624.1	Total/NA
Trichloroethene	12		5.0	0.60	ug/L	1		624.1	Total/NA
Calcium	47.9		0.50	0.10	mg/L	1		6010C	Total/NA
Potassium	2.0		0.50	0.10	mg/L	1		6010C	Total/NA
Magnesium	7.7		0.20	0.043	mg/L	1		6010C	Total/NA
Sodium	158		1.0	0.32	mg/L	1		6010C	Total/NA
Iron	0.067		0.050	0.019	mg/L	1		6010C	Dissolved
Manganese	0.13		0.0030	0.00040	mg/L	1		6010C	Dissolved
Chloride	199		2.5	1.4	mg/L	5		300.0	Total/NA
Sulfate	19.6		10.0	1.7	mg/L	5		300.0	Total/NA
Nitrite as N	0.021	J	0.050	0.020	mg/L	1		353.2	Total/NA
Nitrate as N	2.2		0.050	0.020	mg/L	1		Nitrate by calc	Total/NA
Alkalinity, Total	168		5.0	0.79	mg/L	1		SM 2320B	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

3/19/2021

Page 6 of 34

2

3

6

8

10

12

1 A

Detection Summary

Client: New York State D.E.C. Job ID: 480-181846-1

Project/Site: COSCO #344035

Client Sample ID: RW-1S-030921 (Col	ntinued)
-------------------------------------	----------

Lab Sample ID: 480-181846-4

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Total Organic Carbon	2.0	1.0	0.43 mg/L		SM 5310D	Total/NA

Client Sample ID: TripBlank-030921 Lab Sample ID: 480-181846-5

No Detections.

4

5

7

10

12

11

4 E

This Detection Summary does not include radiochemical test results.

Client: New York State D.E.C. Job ID: 480-181846-1 Project/Site: COSCO #344035

Client Sample ID: RW-3D-030921

Lab Sample ID: 480-181846-1 Date Collected: 03/09/21 11:35 Date Received: 03/10/21 09:30

Matrix: Water

6

Method: 624.1 - Volatile Organic Compounds (GC/MS) Result Qualifier RL **MDL** Unit Dil Fac **Analyte** D Prepared Analyzed 25 1,1,1-Trichloroethane ND 1.9 ug/L 03/10/21 11:36 5 ND 25 5 1,1,2,2-Tetrachloroethane 1.3 ug/L 03/10/21 11:36 1,1,2-Trichloroethane ND 25 2.4 ug/L 03/10/21 11:36 5 ND 25 2.9 ug/L 5 1,1-Dichloroethane 03/10/21 11:36 1,1-Dichloroethene ND 25 4.3 ug/L 03/10/21 11:36 5 5 1.2-Dichlorobenzene ND 25 2.2 ug/L 03/10/21 11:36 1,2-Dichloroethane ND 25 3.0 ug/L 03/10/21 11:36 5 50 03/10/21 11:36 5 1,2-Dichloroethene, Total 180 16 ug/L 25 5 1,2-Dichloropropane ND ug/L 03/10/21 11:36 1,3-Dichlorobenzene ND 25 2.7 ug/L 03/10/21 11:36 5 5 1,4-Dichlorobenzene ND 25 2.5 ug/L 03/10/21 11:36 2-Chloroethyl vinyl ether ND 130 9.3 ug/L 03/10/21 11:36 5 Acrolein ND 500 87 ug/L 03/10/21 11:36 5 Acrylonitrile ND 250 9.5 ug/L 03/10/21 11:36 5 Benzene ND 25 5 3.0 ug/L 03/10/21 11:36 Bromodichloromethane 25 2.7 5 ND ug/L 03/10/21 11:36 Bromoform ND 25 2.3 ug/L 03/10/21 11:36 5 Bromomethane ND 25 6.0 ug/L 03/10/21 11:36 5 Carbon tetrachloride 25 5 ND 2.6 ug/L 03/10/21 11:36 Chlorobenzene ND 25 2.4 ug/L 03/10/21 11:36 5 Chlorodibromomethane ND 25 2.1 ug/L 03/10/21 11:36 5 25 5 Chloroethane ND 4.4 ug/L 03/10/21 11:36 Chloroform ND 25 2.7 ug/L 5 03/10/21 11:36 Chloromethane ND 25 3.2 ug/L 03/10/21 11:36 5 cis-1,3-Dichloropropene ND 25 1.7 ug/L 03/10/21 11:36 5 ND 25 2.3 5 Ethylbenzene ug/L 03/10/21 11:36 Methylene Chloride 25 ND 4.1 ug/L 03/10/21 11:36 5 **Tetrachloroethene** 25 1.7 5 260 ug/L 03/10/21 11:36 25 2.3 ug/L 5 Toluene ND 03/10/21 11:36 trans-1,2-Dichloroethene ND 25 2.9 ug/L 5 03/10/21 11:36 trans-1,3-Dichloropropene ND 25 2.2 ug/L 03/10/21 11:36 5 25 3.0 ug/L 03/10/21 11:36 5 **Trichloroethene** 240 Vinyl chloride ND 25 3.7 ug/L 03/10/21 11:36 5

Surrogate	%Recovery	Qualitier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		68 - 130	-		03/10/21 11:36	5
4-Bromofluorobenzene (Surr)	102		76 - 123			03/10/21 11:36	5
Dibromofluoromethane (Surr)	96		75 - 123			03/10/21 11:36	5
Toluene-d8 (Surr)	93		77 - 120			03/10/21 11:36	5

Method: RSK-175 - Dissolved Gases (GC) Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Methane $\overline{\mathsf{ND}}$ 4.0 1.0 ug/L 03/11/21 19:07 Ethane ND 7.5 1.5 ug/L 03/11/21 19:07 Ethene ND 7.0 03/11/21 19:07 1.5 ug/L

Method: 6010C - Metals (ICP) Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	68.9	0.50	0.10	mg/L		03/11/21 09:08	03/12/21 16:36	1
Potassium	2.0	0.50	0.10	mg/L		03/11/21 09:08	03/12/21 16:36	1

Eurofins TestAmerica, Buffalo

Page 8 of 34 3/19/2021

Client: New York State D.E.C. Job ID: 480-181846-1

Project/Site: COSCO #344035

Total Organic Carbon

Client Sample ID: RW-3D-030921 Lab Sample ID: 480-181846-1

0.72 J

Date Collected: 03/09/21 11:35 Matrix: Water Date Received: 03/10/21 09:30

Method: 6010C - Metals (I	CP) (Continued))							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Magnesium	21.2		0.20	0.043	mg/L		03/11/21 09:08	03/12/21 16:36	1
Sodium	163		1.0	0.32	mg/L		03/11/21 09:08	03/12/21 16:36	1
- Method: 6010C - Metals (I	CP) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		0.050	0.019	mg/L		03/11/21 09:11	03/17/21 05:02	1
Manganese	ND		0.0030	0.00040	mg/L		03/11/21 09:11	03/17/21 05:02	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	272		2.5	1.4	mg/L			03/12/21 06:07	5
Sulfate	19.9		10.0	1.7	mg/L			03/12/21 06:07	5
Nitrite as N	ND		0.050	0.020	mg/L			03/10/21 20:33	1
Nitrate as N	2.3		0.050	0.020	mg/L			03/10/21 20:33	1
Alkalinity, Total	206		5.0	0.79	mg/L			03/15/21 13:52	1
Sulfide	ND		1.0	0.67	mg/L			03/14/21 13:50	1

1.0

0.43 mg/L

3/19/2021

03/13/21 09:42

6

3

6

8

9

11

12

14

Client: New York State D.E.C. Job ID: 480-181846-1 Project/Site: COSCO #344035

Client Sample ID: EquipmentBlank-030921

Date Collected: 03/09/21 13:10

Date Received: 03/10/21 09:30

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Lab Sample ID: 480-181846-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L		-	03/10/21 12:00	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			03/10/21 12:00	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			03/10/21 12:00	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			03/10/21 12:00	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			03/10/21 12:00	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			03/10/21 12:00	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			03/10/21 12:00	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			03/10/21 12:00	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			03/10/21 12:00	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			03/10/21 12:00	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			03/10/21 12:00	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			03/10/21 12:00	1
Acrolein	ND		100	17	ug/L			03/10/21 12:00	1
Acrylonitrile	ND		50	1.9	ug/L			03/10/21 12:00	1
Benzene	ND		5.0	0.60	ug/L			03/10/21 12:00	1
Bromodichloromethane	ND		5.0	0.54	ug/L			03/10/21 12:00	1
Bromoform	ND		5.0	0.47	ug/L			03/10/21 12:00	1
Bromomethane	ND		5.0	1.2	ug/L			03/10/21 12:00	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			03/10/21 12:00	1
Chlorobenzene	ND		5.0	0.48	ug/L			03/10/21 12:00	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			03/10/21 12:00	1
Chloroethane	ND		5.0	0.87	ug/L			03/10/21 12:00	1
Chloroform	ND		5.0	0.54	ug/L			03/10/21 12:00	1
Chloromethane	ND		5.0	0.64	ug/L			03/10/21 12:00	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			03/10/21 12:00	1
Ethylbenzene	ND		5.0	0.46	ug/L			03/10/21 12:00	1
Methylene Chloride	ND		5.0	0.81	ug/L			03/10/21 12:00	1
Tetrachloroethene	ND		5.0	0.34	ug/L			03/10/21 12:00	1
Toluene	ND		5.0	0.45	ug/L			03/10/21 12:00	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			03/10/21 12:00	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			03/10/21 12:00	1
Trichloroethene	ND		5.0	0.60	ug/L			03/10/21 12:00	1
Vinyl chloride	ND		5.0	0.75	ug/L			03/10/21 12:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	83		68 - 130			-		03/10/21 12:00	1
4-Bromofluorobenzene (Surr)	101		76 - 123					03/10/21 12:00	1

03/10/21 12:00

03/10/21 12:00

75 - 123

77 - 120

90

Client: New York State D.E.C. Job ID: 480-181846-1 Project/Site: COSCO #344035

Client Sample ID: MW-18-030921

Date Received: 03/10/21 09:30

Lab Sample ID: 480-181846-3 Date Collected: 03/09/21 14:40

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			03/10/21 12:24	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			03/10/21 12:24	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			03/10/21 12:24	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			03/10/21 12:24	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			03/10/21 12:24	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			03/10/21 12:24	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			03/10/21 12:24	1
1,2-Dichloroethene, Total	8.4	J	10	3.2	ug/L			03/10/21 12:24	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			03/10/21 12:24	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			03/10/21 12:24	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			03/10/21 12:24	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			03/10/21 12:24	1
Acrolein	ND		100	17	ug/L			03/10/21 12:24	1
Acrylonitrile	ND		50	1.9	ug/L			03/10/21 12:24	1
Benzene	ND		5.0	0.60	ug/L			03/10/21 12:24	1
Bromodichloromethane	ND		5.0	0.54	ug/L			03/10/21 12:24	1
Bromoform	ND		5.0	0.47	ug/L			03/10/21 12:24	1
Bromomethane	ND		5.0	1.2	ug/L			03/10/21 12:24	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			03/10/21 12:24	1
Chlorobenzene	ND		5.0	0.48	ug/L			03/10/21 12:24	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			03/10/21 12:24	1
Chloroethane	ND		5.0	0.87	ug/L			03/10/21 12:24	1
Chloroform	ND		5.0	0.54	ug/L			03/10/21 12:24	1
Chloromethane	ND		5.0	0.64	ug/L			03/10/21 12:24	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			03/10/21 12:24	1
Ethylbenzene	ND		5.0	0.46	ug/L			03/10/21 12:24	1
Methylene Chloride	ND		5.0	0.81	ug/L			03/10/21 12:24	1
Tetrachloroethene	0.58	J	5.0	0.34	ug/L			03/10/21 12:24	1
Toluene	ND		5.0	0.45	ug/L			03/10/21 12:24	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			03/10/21 12:24	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			03/10/21 12:24	1
Trichloroethene	1.3	J	5.0	0.60	ug/L			03/10/21 12:24	1
Vinyl chloride	8.6		5.0	0.75	ug/L			03/10/21 12:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		68 - 130			-		03/10/21 12:24	1
4-Bromofluorobenzene (Surr)	104		76 - 123					03/10/21 12:24	1
Dibromofluoromethane (Surr)	97		75 - 123					03/10/21 12:24	1
Toluene-d8 (Surr)	99		77 - 120					03/10/21 12:24	1

Mothod: DSK 175 Discolved	Coope (CC)			
Toluene-d8 (Surr)	99	77 - 120	03/10/21 12:24	1
Dibromofluoromethane (Surr)	97	75 - 123	03/10/21 12:24	1
4-Bromofluorobenzene (Surr)	104	76 - 123	03/10/21 12:24	1
1,2-Dichloroethane-d4 (Surr)	92	68 - 130	03/10/21 12:24	1

Method: RSK-175 - Dissolved Gases (GC)								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	520	44	11	ug/L			03/11/21 19:26	11
Ethane	ND	83	17	ug/L			03/11/21 19:26	11
Ethene	ND	77	17	ug/L			03/11/21 19:26	11

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	41.5		0.50	0.10	mg/L		03/11/21 09:08	03/12/21 16:39	1
Potassium	2.4		0.50	0.10	mg/L		03/11/21 09:08	03/12/21 16:39	1

Eurofins TestAmerica, Buffalo

Page 11 of 34

Client: New York State D.E.C. Job ID: 480-181846-1 Project/Site: COSCO #344035

Client Sample ID: MW-18-030921

Lab Sample ID: 480-181846-3 Date Collected: 03/09/21 14:40

Matrix: Water

Date Received: 03/10/21 09:30

Method: 6010C - Metals (ICP) Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Magnesium	7.4		0.20	0.043	mg/L		03/11/21 09:08	03/12/21 16:39	1
Sodium	135		1.0	0.32	mg/L		03/11/21 09:08	03/12/21 16:39	1
- Method: 6010C - Metals (ICP)	- Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	7.6		0.050	0.019	mg/L		03/11/21 09:11	03/17/21 05:20	1
Manganese	2.4		0.0030	0.00040	mg/L		03/11/21 09:11	03/17/21 05:20	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	146		2.5	1.4	mg/L			03/12/21 02:07	5
Sulfate	11.2		10.0	1.7	mg/L			03/12/21 02:07	5
Nitrite as N	ND		0.050	0.020	mg/L			03/10/21 20:34	1
Nitrate as N	0.16		0.050	0.020	mg/L			03/10/21 20:34	1
Alkalinity, Total	198		5.0	0.79	mg/L			03/15/21 13:59	1
Sulfide	ND		1.0	0.67	mg/L			03/14/21 13:50	1
Total Organic Carbon	5.0		1.0	0.43	mg/L			03/13/21 09:58	1

Client: New York State D.E.C. Job ID: 480-181846-1 Project/Site: COSCO #344035

Client Sample ID: RW-1S-030921

Lab Sample ID: 480-181846-4 Date Collected: 03/09/21 14:45 Date Received: 03/10/21 09:30

Matrix: Water

Method: 624.1 - Volatile Organic Compounds (GC/MS) Result Qualifier **MDL** Unit **Analyte** RL D Prepared Analyzed Dil Fac 1,1,1-Trichloroethane ND 5.0 0.39 ug/L 03/10/21 12:48 ND F2 5.0 1,1,2,2-Tetrachloroethane 0.26 ug/L 03/10/21 12:48 1,1,2-Trichloroethane ND 5.0 0.48 ug/L 03/10/21 12:48 5.0 0.59 ug/L 1,1-Dichloroethane ND 03/10/21 12:48 1,1-Dichloroethene ND 5.0 0.85 ug/L 03/10/21 12:48 1,2-Dichlorobenzene ND 5.0 0.44 ug/L 03/10/21 12:48 1,2-Dichloroethane ND 5.0 0.60 ug/L 03/10/21 12:48 1,2-Dichloroethene, Total ND 10 03/10/21 12:48 3.2 ug/L 1,2-Dichloropropane ND 5.0 0.61 ug/L 03/10/21 12:48 1,3-Dichlorobenzene ND 5.0 0.54 ug/L 03/10/21 12:48 1,4-Dichlorobenzene ND 5.0 0.51 ug/L 03/10/21 12:48 2-Chloroethyl vinyl ether ND 25 1.9 ug/L 03/10/21 12:48 Acrolein ND 100 17 ug/L 03/10/21 12:48 Acrylonitrile ND 50 1.9 ug/L 03/10/21 12:48 Benzene ND 5.0 0.60 ug/L 03/10/21 12:48 Bromodichloromethane ND 5.0 0.54 ug/L 03/10/21 12:48 Bromoform ND 5.0 0.47 ug/L 03/10/21 12:48 Bromomethane ND 5.0 1.2 ug/L 03/10/21 12:48 Carbon tetrachloride ND 5.0 0.51 ug/L 03/10/21 12:48 Chlorobenzene ND 5.0 0.48 ug/L 03/10/21 12:48 Chlorodibromomethane ND 5.0 0.41 ug/L 03/10/21 12:48 Chloroethane ND 5.0 0.87 ug/L 03/10/21 12:48 Chloroform ND 5.0 0.54 ug/L 03/10/21 12:48 Chloromethane ND 5.0 0.64 ug/L 03/10/21 12:48 cis-1,3-Dichloropropene ND 5.0 0.33 ug/L 03/10/21 12:48 ND Ethylbenzene 5.0 0.46 ug/L 03/10/21 12:48 Methylene Chloride ND 5.0 0.81 ug/L 03/10/21 12:48 **Tetrachloroethene** 0.34 ug/L 3.4 5.0 03/10/21 12:48 5.0 0.45 ug/L Toluene ND 03/10/21 12:48 ND 5.0 0.59 ug/L trans-1,2-Dichloroethene 03/10/21 12:48 trans-1,3-Dichloropropene ND 5.0 0.44 ug/L 03/10/21 12:48 5.0 0.60 ug/L 03/10/21 12:48 **Trichloroethene** 12 Vinyl chloride ND 5.0 0.75 ug/L 03/10/21 12:48

Surrogate	%Recovery	Qualifier L	.imits	Prepared	Anaiyzea	DII Fac
1,2-Dichloroethane-d4 (Surr)	90		8 - 130		03/10/21 12:48	1
4-Bromofluorobenzene (Surr)	99	7	6 - 123		03/10/21 12:48	1
Dibromofluoromethane (Surr)	99	7	75 - 123		03/10/21 12:48	1
Toluene-d8 (Surr)	97	7	7 - 120		03/10/21 12:48	1

Method: RSK-175 - Dissolved Gases (GC)								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	ND —	4.0	1.0	ug/L			03/11/21 19:45	1
Ethane	ND	7.5	1.5	ug/L			03/11/21 19:45	1
Ethene	ND	7.0	1.5	ug/L			03/11/21 19:45	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	47.9		0.50	0.10	mg/L		03/11/21 09:08	03/12/21 16:43	1
Potassium	2.0		0.50	0.10	mg/L		03/11/21 09:08	03/12/21 16:43	1

Eurofins TestAmerica, Buffalo

Page 13 of 34

Client: New York State D.E.C. Job ID: 480-181846-1 Project/Site: COSCO #344035

Client Sample ID: RW-1S-030921

Lab Sample ID: 480-181846-4 Date Collected: 03/09/21 14:45

Matrix: Water

Date Received: 03/10/21 09:30

Method: 6010C - Metals (ICP)	(Continued))							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Magnesium	7.7		0.20	0.043	mg/L		03/11/21 09:08	03/12/21 16:43	1
Sodium	158		1.0	0.32	mg/L		03/11/21 09:08	03/12/21 16:43	1
Method: 6010C - Metals (ICP)	- Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.067		0.050	0.019	mg/L		03/11/21 09:11	03/17/21 05:24	1
Manganese	0.13		0.0030	0.00040	mg/L		03/11/21 09:11	03/17/21 05:24	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	199		2.5	1.4	mg/L			03/12/21 02:35	5
Sulfate	19.6		10.0	1.7	mg/L			03/12/21 02:35	5
Nitrite as N	0.021	J	0.050	0.020	mg/L			03/10/21 20:35	1
Nitrate as N	2.2		0.050	0.020	mg/L			03/10/21 20:35	1
Alkalinity, Total	168		5.0	0.79	mg/L			03/15/21 14:08	1
Sulfide	ND		1.0	0.67	mg/L			03/14/21 13:50	1
Total Organic Carbon	2.0		1.0	0.43	mg/L			03/13/21 10:14	1

Client: New York State D.E.C. Job ID: 480-181846-1 Project/Site: COSCO #344035

Client Sample ID: TripBlank-030921

Date Received: 03/10/21 09:30

Lab Sample ID: 480-181846-5 Date Collected: 03/09/21 00:00

Matrix: Water

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			03/10/21 13:12	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			03/10/21 13:12	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			03/10/21 13:12	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			03/10/21 13:12	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			03/10/21 13:12	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			03/10/21 13:12	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			03/10/21 13:12	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			03/10/21 13:12	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			03/10/21 13:12	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			03/10/21 13:12	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			03/10/21 13:12	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			03/10/21 13:12	1
Acrolein	ND		100	17	ug/L			03/10/21 13:12	1
Acrylonitrile	ND		50	1.9	ug/L			03/10/21 13:12	1
Benzene	ND		5.0	0.60	ug/L			03/10/21 13:12	1
Bromodichloromethane	ND		5.0	0.54	ug/L			03/10/21 13:12	1
Bromoform	ND		5.0	0.47	ug/L			03/10/21 13:12	1
Bromomethane	ND		5.0	1.2	ug/L			03/10/21 13:12	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			03/10/21 13:12	1
Chlorobenzene	ND		5.0	0.48	ug/L			03/10/21 13:12	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			03/10/21 13:12	1
Chloroethane	ND		5.0	0.87	ug/L			03/10/21 13:12	1
Chloroform	ND		5.0	0.54	ug/L			03/10/21 13:12	1
Chloromethane	ND		5.0	0.64	ug/L			03/10/21 13:12	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			03/10/21 13:12	1
Ethylbenzene	ND		5.0	0.46	ug/L			03/10/21 13:12	1
Methylene Chloride	ND		5.0	0.81	ug/L			03/10/21 13:12	1
Tetrachloroethene	ND		5.0	0.34	ug/L			03/10/21 13:12	1
Toluene	ND		5.0		ug/L			03/10/21 13:12	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			03/10/21 13:12	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			03/10/21 13:12	1
Trichloroethene	ND		5.0		ug/L			03/10/21 13:12	1
Vinyl chloride	ND		5.0		ug/L			03/10/21 13:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1 2-Dichloroethane-d4 (Surr)	97		68 - 130			-		03/10/21 13:12	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97	68 - 130		03/10/21 13:12	1
4-Bromofluorobenzene (Surr)	100	76 - 123		03/10/21 13:12	1
Dibromofluoromethane (Surr)	96	75 - 123		03/10/21 13:12	1
Toluene-d8 (Surr)	97	77 - 120		03/10/21 13:12	1

Surrogate Summary

Client: New York State D.E.C. Job ID: 480-181846-1

Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(68-130)	(76-123)	(75-123)	(77-120)
480-181846-1	RW-3D-030921	89	102	96	93
480-181846-2	EquipmentBlank-030921	83	101	90	93
480-181846-3	MW-18-030921	92	104	97	99
480-181846-4	RW-1S-030921	90	99	99	97
480-181846-4 MS	RW-1S-030921	98	101	99	99
480-181846-4 MSD	RW-1S-030921	97	95	100	100
480-181846-5	TripBlank-030921	97	100	96	97
LCS 480-571933/5	Lab Control Sample	91	102	93	91
MB 480-571933/7	Method Blank	92	100	100	101

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

8

4 4

12

13

a E

Client: New York State D.E.C. Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS)

MB MB

Lab Sample ID: MB 480-571933/7

Matrix: Water

Analysis Batch: 571933

Client Sample ID: Method Blank

Prep Type: Total/NA

	11.10	111.0							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			03/10/21 10:51	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			03/10/21 10:51	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			03/10/21 10:51	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			03/10/21 10:51	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			03/10/21 10:51	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			03/10/21 10:51	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			03/10/21 10:51	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			03/10/21 10:51	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			03/10/21 10:51	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			03/10/21 10:51	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			03/10/21 10:51	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			03/10/21 10:51	1
Acrolein	ND		100	17	ug/L			03/10/21 10:51	1
Acrylonitrile	ND		50	1.9	ug/L			03/10/21 10:51	1
Benzene	ND		5.0	0.60	ug/L			03/10/21 10:51	1
Bromodichloromethane	ND		5.0	0.54	ug/L			03/10/21 10:51	1
Bromoform	ND		5.0	0.47	ug/L			03/10/21 10:51	1
Bromomethane	ND		5.0	1.2	ug/L			03/10/21 10:51	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			03/10/21 10:51	1
Chlorobenzene	ND		5.0	0.48	ug/L			03/10/21 10:51	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			03/10/21 10:51	1
Chloroethane	ND		5.0	0.87	ug/L			03/10/21 10:51	1
Chloroform	ND		5.0	0.54	ug/L			03/10/21 10:51	1
Chloromethane	ND		5.0	0.64	ug/L			03/10/21 10:51	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			03/10/21 10:51	1
Ethylbenzene	ND		5.0	0.46	ug/L			03/10/21 10:51	1
Methylene Chloride	ND		5.0		ug/L			03/10/21 10:51	1
Tetrachloroethene	ND		5.0	0.34	ug/L			03/10/21 10:51	1
Toluene	ND		5.0		ug/L			03/10/21 10:51	1
trans-1,2-Dichloroethene	ND		5.0		ug/L			03/10/21 10:51	1
trans-1,3-Dichloropropene	ND		5.0		ug/L			03/10/21 10:51	1
Trichloroethene	ND		5.0		ug/L			03/10/21 10:51	1
Vinyl chloride	ND		5.0		ug/L			03/10/21 10:51	1
•					5				

MB	MB

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92	68 - 13	<u></u>	03/10/21 10:51	1
4-Bromofluorobenzene (Surr)	100	76 - 12	3	03/10/21 10:51	1
Dibromofluoromethane (Surr)	100	75 - 12	3	03/10/21 10:51	1
Toluene-d8 (Surr)	101	77 - 12	0	03/10/21 10:51	1

Lab Sample ID: LCS 480-571933/5

Matrix: Water

Analysis Batch: 571933

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	20.4		ug/L		102	52 - 162	
1,1,2,2-Tetrachloroethane	20.0	20.8		ug/L		104	46 - 157	
1,1,2-Trichloroethane	20.0	19.5		ug/L		97	52 - 150	

Eurofins TestAmerica, Buffalo

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Page 17 of 34

3/19/2021

Client: New York State D.E.C. Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-571933/5

Matrix: Water

Analysis Batch: 571933

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch. or 1000	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits
1,1-Dichloroethane	20.0	17.5		ug/L	87	59 - 155
1,1-Dichloroethene	20.0	17.5		ug/L	88	1 - 234
1,2-Dichlorobenzene	20.0	19.1		ug/L	95	18 - 190
1,2-Dichloroethane	20.0	16.6		ug/L	83	49 - 155
1,2-Dichloropropane	20.0	19.3		ug/L	97	1 - 210
1,3-Dichlorobenzene	20.0	19.2		ug/L	96	59 - 156
1,4-Dichlorobenzene	20.0	19.4		ug/L	97	18 - 190
2-Chloroethyl vinyl ether	20.0	19.2	J	ug/L	96	1 - 305
Benzene	20.0	18.7		ug/L	94	37 - 151
Bromodichloromethane	20.0	18.5		ug/L	93	35 - 155
Bromoform	20.0	19.6		ug/L	98	45 - 169
Bromomethane	20.0	18.1		ug/L	90	1 - 242
Carbon tetrachloride	20.0	18.6		ug/L	93	70 - 140
Chlorobenzene	20.0	19.3		ug/L	96	37 - 160
Chlorodibromomethane	20.0	19.7		ug/L	98	53 - 149
Chloroethane	20.0	19.0		ug/L	95	14 - 230
Chloroform	20.0	19.7		ug/L	98	51 - 138
Chloromethane	20.0	16.4		ug/L	82	1 - 273
cis-1,3-Dichloropropene	20.0	20.3		ug/L	101	1 - 227
Ethylbenzene	20.0	20.2		ug/L	101	37 - 162
Methylene Chloride	20.0	17.2		ug/L	86	1 - 221
Tetrachloroethene	20.0	18.9		ug/L	94	64 - 148
Toluene	20.0	19.4		ug/L	97	47 - 150
trans-1,2-Dichloroethene	20.0	17.4		ug/L	87	54 - 156
trans-1,3-Dichloropropene	20.0	19.0		ug/L	95	17 - 183
Trichloroethene	20.0	18.2		ug/L	91	71 - 157
Vinyl chloride	20.0	17.4		ug/L	87	1 - 251

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	91		68 - 130
4-Bromofluorobenzene (Surr)	102		76 - 123
Dibromofluoromethane (Surr)	93		75 - 123
Toluene-d8 (Surr)	91		77 - 120

Lab Sample ID: 480-181846-4 MS

Matrix: Water

Analysis Batch: 571933

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	ND		20.0	22.0		ug/L		110	52 - 162	
1,1,2,2-Tetrachloroethane	ND	F2	20.0	23.3		ug/L		116	46 - 157	
1,1,2-Trichloroethane	ND		20.0	21.7		ug/L		108	52 - 150	
1,1-Dichloroethane	ND		20.0	21.3		ug/L		106	59 - 155	
1,1-Dichloroethene	ND		20.0	22.4		ug/L		112	1 - 234	
1,2-Dichlorobenzene	ND		20.0	22.3		ug/L		112	18 - 190	
1,2-Dichloroethane	ND		20.0	21.9		ug/L		109	49 - 155	
1,2-Dichloropropane	ND		20.0	21.2		ug/L		106	1 - 210	
1,3-Dichlorobenzene	ND		20.0	21.7		ug/L		108	59 - 156	

Eurofins TestAmerica, Buffalo

Client Sample ID: RW-1S-030921

Prep Type: Total/NA

Page 18 of 34

Client: New York State D.E.C. Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-181846-4 MS

Matrix: Water

Analysis Batch: 571933

Client Sample ID: RW-1S-030921

Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dichlorobenzene	ND		20.0	22.3		ug/L		111	18 - 190	
2-Chloroethyl vinyl ether	ND		20.0	21.4	J	ug/L		107	1 - 305	
Benzene	ND		20.0	23.7		ug/L		118	37 - 151	
Bromodichloromethane	ND		20.0	21.6		ug/L		108	35 - 155	
Bromoform	ND		20.0	21.0		ug/L		105	45 - 169	
Bromomethane	ND		20.0	21.4		ug/L		107	1 - 242	
Carbon tetrachloride	ND		20.0	21.7		ug/L		109	70 - 140	
Chlorobenzene	ND		20.0	22.1		ug/L		110	37 - 160	
Chlorodibromomethane	ND		20.0	21.7		ug/L		109	53 - 149	
Chloroethane	ND		20.0	21.7		ug/L		108	14 - 230	
Chloroform	ND		20.0	22.8		ug/L		114	51 - 138	
Chloromethane	ND		20.0	20.2		ug/L		101	1 - 273	
cis-1,3-Dichloropropene	ND		20.0	22.2		ug/L		111	1 - 227	
Ethylbenzene	ND		20.0	22.8		ug/L		114	37 - 162	
Methylene Chloride	ND		20.0	21.0		ug/L		105	1 - 221	
Tetrachloroethene	3.4	J	20.0	25.3		ug/L		110	64 - 148	
Toluene	ND		20.0	22.5		ug/L		112	47 - 150	
trans-1,2-Dichloroethene	ND		20.0	22.1		ug/L		110	54 - 156	
trans-1,3-Dichloropropene	ND		20.0	21.5		ug/L		107	17 - 183	
Trichloroethene	12		20.0	34.0		ug/L		110	71 - 157	
Vinyl chloride	ND		20.0	21.6		ug/L		108	1 - 251	

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		68 - 130
4-Bromofluorobenzene (Surr)	101		76 - 123
Dibromofluoromethane (Surr)	99		75 - 123
Toluene-d8 (Surr)	99		77 - 120

Lab Sample ID: 480-181846-4 MSD

Matrix: Water

Analysis Batch: 571933

Client Sample ID: RW-1S-030921
Prep Type: Total/NA

-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		20.0	22.1		ug/L		111	52 - 162	0	15
1,1,2,2-Tetrachloroethane	ND	F2	20.0	19.2	F2	ug/L		96	46 - 157	19	15
1,1,2-Trichloroethane	ND		20.0	21.1		ug/L		105	52 - 150	3	15
1,1-Dichloroethane	ND		20.0	20.7		ug/L		104	59 - 155	3	15
1,1-Dichloroethene	ND		20.0	22.2		ug/L		111	1 - 234	1	15
1,2-Dichlorobenzene	ND		20.0	21.4		ug/L		107	18 - 190	4	15
1,2-Dichloroethane	ND		20.0	19.1		ug/L		96	49 - 155	13	15
1,2-Dichloropropane	ND		20.0	21.2		ug/L		106	1 - 210	0	15
1,3-Dichlorobenzene	ND		20.0	21.3		ug/L		107	59 - 156	2	15
1,4-Dichlorobenzene	ND		20.0	21.6		ug/L		108	18 - 190	3	15
2-Chloroethyl vinyl ether	ND		20.0	20.5	J	ug/L		103	1 - 305	4	15
Benzene	ND		20.0	22.6		ug/L		113	37 - 151	5	15
Bromodichloromethane	ND		20.0	20.7		ug/L		104	35 - 155	4	15
Bromoform	ND		20.0	20.4		ug/L		102	45 - 169	3	15
Bromomethane	ND		20.0	23.9		ug/L		120	1 - 242	11	15

Eurofins TestAmerica, Buffalo

Page 19 of 34

Client: New York State D.E.C. Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-181846-4 MSD

Matrix: Water

Analysis Batch: 571933

Client Sample ID: RW-1S-030921

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Carbon tetrachloride	ND		20.0	22.9		ug/L		114	70 - 140	5	15
Chlorobenzene	ND		20.0	21.6		ug/L		108	37 - 160	2	15
Chlorodibromomethane	ND		20.0	20.4		ug/L		102	53 - 149	6	15
Chloroethane	ND		20.0	24.1		ug/L		121	14 - 230	11	15
Chloroform	ND		20.0	21.3		ug/L		106	51 - 138	7	15
Chloromethane	ND		20.0	21.6		ug/L		108	1 - 273	6	15
cis-1,3-Dichloropropene	ND		20.0	22.0		ug/L		110	1 - 227	1	15
Ethylbenzene	ND		20.0	21.9		ug/L		109	37 - 162	4	15
Methylene Chloride	ND		20.0	20.3		ug/L		102	1 - 221	3	15
Tetrachloroethene	3.4	J	20.0	23.5		ug/L		101	64 - 148	7	15
Toluene	ND		20.0	21.1		ug/L		106	47 - 150	6	15
trans-1,2-Dichloroethene	ND		20.0	21.1		ug/L		105	54 - 156	5	15
trans-1,3-Dichloropropene	ND		20.0	21.4		ug/L		107	17 - 183	0	15
Trichloroethene	12		20.0	33.5		ug/L		108	71 - 157	1	15
Vinyl chloride	ND		20.0	22.7		ug/L		114	1 - 251	5	15

MSD MSD Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 97 68 - 130 4-Bromofluorobenzene (Surr) 95 76 - 123 Dibromofluoromethane (Surr) 100 75 - 123 100 Toluene-d8 (Surr) 77 - 120

Method: RSK-175 - Dissolved Gases (GC)

Lab Sample ID: MB 480-572179/3

Matrix: Water

Analysis Batch: 572179

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier Dil Fac **Analyte** RL **MDL** Unit Analyzed Prepared Methane ND 4.0 1.0 ug/L 03/11/21 12:42 Ethane ND 7.5 03/11/21 12:42 1.5 ug/L 7.0 03/11/21 12:42 Ethene ND 1.5 ug/L

Lab Sample ID: LCS 480-572179/4

Matrix: Water

Analysis Batch: 572179

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methane	19.2	18.7		ug/L		97	85 - 120	
Ethane	36.8	35.7		ug/L		97	79 - 120	
Ethene	33.7	33.1		ug/L		98	85 - 120	

Lab Sample ID: LCSD 480-572179/5

Matrix: Water

Analysis batch: 5/21/9									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methane	19.2	18.7		ug/L	_	97	85 - 120	0	50
Ethane	36.8	35.6		ug/L		97	79 - 120	0	50

Eurofins TestAmerica, Buffalo

Prep Type: Total/NA

Page 20 of 34 3/19/2021

Client: New York State D.E.C. Job ID: 480-181846-1 Project/Site: COSCO #344035

Method: RSK-175 - Dissolved Gases (GC) (Continued)

Lab Sample ID: LCSD 480-572179/5

Analysis Batch: 572179

Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

LCSD LCSD Spike %Rec. **RPD** Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit Ethene 33 7 33 4 ug/L 99 85 - 120 50

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-572092/1-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Prep Batch: 572092 Analysis Batch: 572512

		MB	MB							
Α	nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C	alcium	ND		0.50	0.10	mg/L		03/11/21 09:08	03/12/21 16:09	1
Р	otassium	ND		0.50	0.10	mg/L		03/11/21 09:08	03/12/21 16:09	1
М	agnesium	ND		0.20	0.043	mg/L		03/11/21 09:08	03/12/21 16:09	1
S	odium	ND		1.0	0.32	mg/L		03/11/21 09:08	03/12/21 16:09	1

Lab Sample ID: LCS 480-572092/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Prep Batch: 572092 Analysis Batch: 572512**

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Calcium 10.0 9.88 mg/L 99 80 - 120 Potassium 10.0 9.98 mg/L 100 80 - 120 Magnesium 10.0 9.65 mg/L 97 80 - 120 80 - 120 Sodium 10.0 10.78 mg/L 108

Lab Sample ID: MB 480-572101/1-A **Client Sample ID: Method Blank Matrix: Water Prep Type: Total Recoverable Prep Batch: 572101**

Analysis Batch: 572803

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac ND 0.050 0.019 mg/L 03/11/21 09:11 03/17/21 04:54 Iron

03/11/21 09:11 03/17/21 04:54 Manganese ND 0.0030 0.00040 mg/L

Lab Sample ID: LCS 480-572101/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable Analysis Batch: 572803 Prep Batch: 572101** Spike LCS LCS %Rec. Added **Analyte** Result Qualifier Unit %Rec Limits 10.0 10.03 Iron mg/L 100 80 - 120 0.200 0.209 80 - 120

Lab Sample ID: 480-181846-1 MS Client Sample ID: RW-3D-030921

mg/L

104

Manganese

Matrix: Water									Prep Typ	e: Dissolved
Analysis Batch: 572803									Prep Ba	atch: 572101
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	ND		10.0	10.01		mg/L		100	75 - 125	
Manganese	ND		0.200	0.208		mg/L		104	75 - 125	

Eurofins TestAmerica, Buffalo

3/19/2021

Client: New York State D.E.C. Job ID: 480-181846-1

Project/Site: COSCO #344035

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 480-181846-1 MSD Client Sample ID: RW-3D-030921

Matrix: Water

Analysis Batch: 572803

Prep Type: Dissolved Prep Batch: 572101

Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added Result Qualifier %Rec Limits RPD Limit Analyte Unit Iron ND 10.0 9.78 mg/L 98 75 - 125 2 20 Manganese ND 0.200 0.203 mg/L 102 75 - 125 2 20

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-572217/4 **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 572217

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Chloride 0.50 0.28 03/12/21 01:30 ND ma/L Sulfate ND 2.0 0.35 mg/L 03/12/21 01:30

Lab Sample ID: LCS 480-572217/3 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 572217

Spike LCS LCS %Rec. Added Result Qualifier D Limits Analyte Unit %Rec Chloride 50.0 50.22 mg/L 100 90 - 110 Sulfate 50.0 50.67 mg/L 101 90 - 110

Lab Sample ID: 480-181846-1 MS Client Sample ID: RW-3D-030921 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 572217

MS MS Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride 272 250 497.8 mg/L 90 81 - 120 Sulfate 19.9 250 255.1 mg/L 94 80 - 120

Lab Sample ID: MB 480-572230/4 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 572230

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Chloride ND 0.50 0.28 mg/L 03/12/21 01:39 Sulfate ND 2.0 03/12/21 01:39 0.35 mg/L

Lab Sample ID: LCS 480-572230/3 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 572230

Analysis Datch. 372230							
-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloride	50.0	48.68		mg/L		97	90 - 110
Sulfate	50.0	48 19		ma/l		96	90 - 110

Eurofins TestAmerica, Buffalo

3/19/2021

Client: New York State D.E.C. Job ID: 480-181846-1

Method: 353.2 - Nitrogen, Nitrite

Lab Sample ID: MB 480-572058/3 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 572058

Project/Site: COSCO #344035

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared 0.050 03/10/21 20:26 Nitrite as N ND 0.020 mg/L

Lab Sample ID: LCS 480-572058/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 572058

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Nitrite as N 1.50 1.58 mg/L 105 90 - 110

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 480-572606/4 Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 572606

MB MB

Result Qualifier RL **MDL** Unit Dil Fac Analyte Prepared Analyzed 5.0 03/15/21 13:18 Alkalinity, Total ND 0.79 mg/L

Lab Sample ID: LCS 480-572606/5 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 572606

LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit %Rec Limits

Alkalinity, Total 100 98.32 mg/L 98 90 - 110

Method: SM 4500 S2 F - Sulfide, Total

Lab Sample ID: MB 480-572450/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 572450

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.67 mg/L Sulfide ND 1.0 03/14/21 13:50

Lab Sample ID: LCS 480-572450/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 572450

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Sulfide 7.80 7.60 mg/L 90 - 110

Lab Sample ID: 480-181846-3 DU Client Sample ID: MW-18-030921 **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 572450

DU DU **RPD** Sample Sample Result Qualifier Result Qualifier Analyte Unit Limit Sulfide ND ND NC 20 mg/L

Eurofins TestAmerica, Buffalo

3/19/2021

Prep Type: Total/NA

QC Sample Results

Client: New York State D.E.C. Job ID: 480-181846-1 Project/Site: COSCO #344035

Method: SM 5310D - Organic Carbon, Total (TOC)

Lab Sample ID: MB 480-572434/27 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 572434

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	ND		1.0	0.43	mg/L			03/12/21 23:24	1

Lab Sample ID: MB 480-572434/51 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 572434

	IVID IVID						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	ND —	1.0	0.43 mg/L			03/13/21 05:45	1

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 480-572434/28 **Matrix: Water Prep Type: Total/NA Analysis Batch: 572434**

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit Limits D %Rec Total Organic Carbon 60.0 57.54 mg/L

Lab Sample ID: LCS 480-572434/52 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 572434

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Total Organic Carbon	 60.0	58.24		mg/L		97	90 - 110

QC Association Summary

Client: New York State D.E.C. Job ID: 480-181846-1 Project/Site: COSCO #344035

GC/MS VOA

Analysis Batch: 571933

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-181846-1	RW-3D-030921	Total/NA	Water	624.1	
480-181846-2	EquipmentBlank-030921	Total/NA	Water	624.1	
480-181846-3	MW-18-030921	Total/NA	Water	624.1	
480-181846-4	RW-1S-030921	Total/NA	Water	624.1	
480-181846-5	TripBlank-030921	Total/NA	Water	624.1	
MB 480-571933/7	Method Blank	Total/NA	Water	624.1	
LCS 480-571933/5	Lab Control Sample	Total/NA	Water	624.1	
480-181846-4 MS	RW-1S-030921	Total/NA	Water	624.1	
480-181846-4 MSD	RW-1S-030921	Total/NA	Water	624.1	

GC VOA

Analysis Batch: 572179

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-181846-1	RW-3D-030921	Total/NA	Water	RSK-175	
480-181846-3	MW-18-030921	Total/NA	Water	RSK-175	
480-181846-4	RW-1S-030921	Total/NA	Water	RSK-175	
MB 480-572179/3	Method Blank	Total/NA	Water	RSK-175	
LCS 480-572179/4	Lab Control Sample	Total/NA	Water	RSK-175	
LCSD 480-572179/5	Lab Control Sample Dup	Total/NA	Water	RSK-175	

Metals

Prep Batch: 572092

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-181846-1	RW-3D-030921	Total/NA	Water	3005A	
480-181846-3	MW-18-030921	Total/NA	Water	3005A	
480-181846-4	RW-1S-030921	Total/NA	Water	3005A	
MB 480-572092/1-A	Method Blank	Total/NA	Water	3005A	
LCS 480-572092/2-A	Lab Control Sample	Total/NA	Water	3005A	

Prep Batch: 572101

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-181846-1	RW-3D-030921	Dissolved	Water	3005A	
480-181846-3	MW-18-030921	Dissolved	Water	3005A	
480-181846-4	RW-1S-030921	Dissolved	Water	3005A	
MB 480-572101/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 480-572101/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
480-181846-1 MS	RW-3D-030921	Dissolved	Water	3005A	
480-181846-1 MSD	RW-3D-030921	Dissolved	Water	3005A	

Analysis Batch: 572512

Lab Sample ID 480-181846-1	Client Sample ID RW-3D-030921	Prep Type Total/NA	Matrix Water	Method 6010C	Prep Batch 572092
480-181846-3	MW-18-030921	Total/NA	Water	6010C	572092
480-181846-4	RW-1S-030921	Total/NA	Water	6010C	572092
MB 480-572092/1-A	Method Blank	Total/NA	Water	6010C	572092
LCS 480-572092/2-A	Lab Control Sample	Total/NA	Water	6010C	572092

Analysis Batch: 572803

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-181846-1	RW-3D-030921	Dissolved	Water	6010C	572101

Eurofins TestAmerica, Buffalo

QC Association Summary

Client: New York State D.E.C.

Job ID: 480-181846-1

Project/Site: COSCO #344035

Metals (Continued)

Analysis Batch: 572803 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-181846-3	MW-18-030921	Dissolved	Water	6010C	572101
480-181846-4	RW-1S-030921	Dissolved	Water	6010C	572101
MB 480-572101/1-A	Method Blank	Total Recoverable	Water	6010C	572101
LCS 480-572101/2-A	Lab Control Sample	Total Recoverable	Water	6010C	572101
480-181846-1 MS	RW-3D-030921	Dissolved	Water	6010C	572101
480-181846-1 MSD	RW-3D-030921	Dissolved	Water	6010C	572101

General Chemistry

Analysis Batch: 572058

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-181846-1	RW-3D-030921	Total/NA	Water	353.2	
480-181846-3	MW-18-030921	Total/NA	Water	353.2	
480-181846-4	RW-1S-030921	Total/NA	Water	353.2	
MB 480-572058/3	Method Blank	Total/NA	Water	353.2	
LCS 480-572058/4	Lab Control Sample	Total/NA	Water	353.2	

Analysis Batch: 572064

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-181846-1	RW-3D-030921	Total/NA	Water	Nitrate by calc	
480-181846-3	MW-18-030921	Total/NA	Water	Nitrate by calc	
480-181846-4	RW-1S-030921	Total/NA	Water	Nitrate by calc	

Analysis Batch: 572217

Lab Sample ID 480-181846-1	Client Sample ID RW-3D-030921	Prep Type Total/NA	Matrix Water	Method Prep Batc	h
MB 480-572217/4	Method Blank	Total/NA	Water	300.0	
LCS 480-572217/3	Lab Control Sample	Total/NA	Water	300.0	
480-181846-1 MS	RW-3D-030921	Total/NA	Water	300.0	

Analysis Batch: 572230

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-181846-3	MW-18-030921	Total/NA	Water	300.0	
480-181846-4	RW-1S-030921	Total/NA	Water	300.0	
MB 480-572230/4	Method Blank	Total/NA	Water	300.0	
LCS 480-572230/3	Lab Control Sample	Total/NA	Water	300.0	

Analysis Batch: 572434

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-181846-1	RW-3D-030921	Total/NA	Water	SM 5310D	
480-181846-3	MW-18-030921	Total/NA	Water	SM 5310D	
480-181846-4	RW-1S-030921	Total/NA	Water	SM 5310D	
MB 480-572434/27	Method Blank	Total/NA	Water	SM 5310D	
MB 480-572434/51	Method Blank	Total/NA	Water	SM 5310D	
LCS 480-572434/28	Lab Control Sample	Total/NA	Water	SM 5310D	
LCS 480-572434/52	Lab Control Sample	Total/NA	Water	SM 5310D	

Analysis Batch: 572450

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-181846-1	RW-3D-030921	Total/NA	Water	SM 4500 S2 F	
480-181846-3	MW-18-030921	Total/NA	Water	SM 4500 S2 F	

Eurofins TestAmerica, Buffalo

Page 26 of 34 3/19/2021

3

4

6

9

10

10

13

14

QC Association Summary

Client: New York State D.E.C. Job ID: 480-181846-1 Project/Site: COSCO #344035

General Chemistry (Continued)

Analysis Batch: 572450 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-181846-4	RW-1S-030921	Total/NA	Water	SM 4500 S2 F	
MB 480-572450/3	Method Blank	Total/NA	Water	SM 4500 S2 F	
LCS 480-572450/4	Lab Control Sample	Total/NA	Water	SM 4500 S2 F	
480-181846-3 DU	MW-18-030921	Total/NA	Water	SM 4500 S2 F	

Analysis Batch: 572606

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-181846-1	RW-3D-030921	Total/NA	Water	SM 2320B	
480-181846-3	MW-18-030921	Total/NA	Water	SM 2320B	
480-181846-4	RW-1S-030921	Total/NA	Water	SM 2320B	
MB 480-572606/4	Method Blank	Total/NA	Water	SM 2320B	
LCS 480-572606/5	Lab Control Sample	Total/NA	Water	SM 2320B	

Client: New York State D.E.C. Project/Site: COSCO #344035

Client Sample ID: RW-3D-030921

Date Collected: 03/09/21 11:35 Date Received: 03/10/21 09:30 Lab Sample ID: 480-181846-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		5	571933	03/10/21 11:36	WJD	TAL BUF
Total/NA	Analysis	RSK-175		1	572179	03/11/21 19:07	DSC	TAL BUF
Dissolved	Prep	3005A			572101	03/11/21 09:11	ADM	TAL BUF
Dissolved	Analysis	6010C		1	572803	03/17/21 05:02	AMH	TAL BUF
Total/NA	Prep	3005A			572092	03/11/21 09:08	ADM	TAL BUF
Total/NA	Analysis	6010C		1	572512	03/12/21 16:36	AMH	TAL BUF
Total/NA	Analysis	300.0		5	572217	03/12/21 06:07	IMZ	TAL BUF
Total/NA	Analysis	353.2		1	572058	03/10/21 20:33	ALT	TAL BUF
Total/NA	Analysis	Nitrate by calc		1	572064	03/10/21 20:33	ALT	TAL BUF
Total/NA	Analysis	SM 2320B		1	572606	03/15/21 13:52	DLG	TAL BUF
Total/NA	Analysis	SM 4500 S2 F		1	572450	03/14/21 13:50	MJB	TAL BUF
Total/NA	Analysis	SM 5310D		1	572434	03/13/21 09:42	CLA	TAL BUF

Client Sample ID: EquipmentBlank-030921

Date Collected: 03/09/21 13:10

Date Received: 03/10/21 09:30

Lab Sample ID: 480-181846-2

Lab Sample ID: 480-181846-3

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	571933	03/10/21 12:00	WJD	TAL BUF

Client Sample ID: MW-18-030921

Date Collected: 03/09/21 14:40

Date Received: 03/10/21 09:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	571933	03/10/21 12:24	WJD	TAL BUF
Total/NA	Analysis	RSK-175		11	572179	03/11/21 19:26	DSC	TAL BUF
Dissolved	Prep	3005A			572101	03/11/21 09:11	ADM	TAL BUF
Dissolved	Analysis	6010C		1	572803	03/17/21 05:20	AMH	TAL BUF
Total/NA	Prep	3005A			572092	03/11/21 09:08	ADM	TAL BUF
Total/NA	Analysis	6010C		1	572512	03/12/21 16:39	AMH	TAL BUF
Total/NA	Analysis	300.0		5	572230	03/12/21 02:07	IMZ	TAL BUF
Total/NA	Analysis	353.2		1	572058	03/10/21 20:34	ALT	TAL BUF
Total/NA	Analysis	Nitrate by calc		1	572064	03/10/21 20:34	ALT	TAL BUF
Total/NA	Analysis	SM 2320B		1	572606	03/15/21 13:59	DLG	TAL BUF
Total/NA	Analysis	SM 4500 S2 F		1	572450	03/14/21 13:50	MJB	TAL BUF
Total/NA	Analysis	SM 5310D		1	572434	03/13/21 09:58	CLA	TAL BUF

Eurofins TestAmerica, Buffalo

Lab Chronicle

Client: New York State D.E.C. Job ID: 480-181846-1

Project/Site: COSCO #344035

Client Sample ID: RW-1S-030921

Date Collected: 03/09/21 14:45 Date Received: 03/10/21 09:30 Lab Sample ID: 480-181846-4

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1			571933	03/10/21 12:48	WJD	TAL BUF
Total/NA	Analysis	RSK-175		1	572179	03/11/21 19:45	DSC	TAL BUF
Dissolved	Prep	3005A			572101	03/11/21 09:11	ADM	TAL BUF
Dissolved	Analysis	6010C		1	572803	03/17/21 05:24	AMH	TAL BUF
Total/NA	Prep	3005A			572092	03/11/21 09:08	ADM	TAL BUF
Total/NA	Analysis	6010C		1	572512	03/12/21 16:43	AMH	TAL BUF
Total/NA	Analysis	300.0		5	572230	03/12/21 02:35	IMZ	TAL BUF
Total/NA	Analysis	353.2		1	572058	03/10/21 20:35	ALT	TAL BUF
Total/NA	Analysis	Nitrate by calc		1	572064	03/10/21 20:35	ALT	TAL BUF
Total/NA	Analysis	SM 2320B		1	572606	03/15/21 14:08	DLG	TAL BUF
Total/NA	Analysis	SM 4500 S2 F		1	572450	03/14/21 13:50	MJB	TAL BUF
Total/NA	Analysis	SM 5310D		1	572434	03/13/21 10:14	CLA	TAL BUF

Client Sample ID: TripBlank-030921

Date Collected: 03/09/21 00:00

Date Received: 03/10/21 09:30

Lab Sample ID: 480-181846-5

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	571933	03/10/21 13:12	WJD	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Eurofins TestAmerica, Buffalo

2

4

5

9

10

12

Accreditation/Certification Summary

Client: New York State D.E.C. Job ID: 480-181846-1

Project/Site: COSCO #344035

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pro	ogram	Identification Number	Expiration Date
New York	NE	LAP	10026	03-31-21
The following analyte	o ara included in this rand	et but the leberatem is		This list was in about a small day for our
,	•	irt, but the laboratory is r	not certified by the governing authority.	This list may include analytes for wr
<u>, </u>	•	Matrix	Analyte	This list may include analytes for wr
the agency does not of Analysis Method	offer certification.	•	, , ,	This list may include analytes for wr

Method Summary

Client: New York State D.E.C. Project/Site: COSCO #344035

Job ID: 480-181846-1

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF
RSK-175	Dissolved Gases (GC)	RSK	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
300.0	Anions, Ion Chromatography	MCAWW	TAL BUF
353.2	Nitrogen, Nitrite	MCAWW	TAL BUF
Nitrate by calc	Nitrogen, Nitrate-Nitrite	SM	TAL BUF
SM 2320B	Alkalinity	SM	TAL BUF
SM 4500 S2 F	Sulfide, Total	SM	TAL BUF
SM 5310D	Organic Carbon, Total (TOC)	SM	TAL BUF
3005A	Preparation, Total Metals	SW846	TAL BUF
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique, RSKSOP-175, Rev. 0, 8/11/94, USEPA Research Lab

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

7

8

10

111

12

1/

Sample Summary

Client: New York State D.E.C. Project/Site: COSCO #344035

Job ID: 480-181846-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-181846-1	RW-3D-030921	Water	03/09/21 11:35	03/10/21 09:30
480-181846-2	EquipmentBlank-030921	Water	03/09/21 13:10	03/10/21 09:30
480-181846-3	MW-18-030921	Water	03/09/21 14:40	03/10/21 09:30
480-181846-4	RW-1S-030921	Water	03/09/21 14:45	03/10/21 09:30
480-181846-5	TripBlank-030921	Water	03/09/21 00:00	03/10/21 09:30

5

7

8

10

11

13

14

2

3

5

6

8

10

13

14

3/19/2021

Client: New York State D.E.C.

Job Number: 480-181846-1

Login Number: 181846 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Wallace, Cameron

eroutori francos, camoron		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	RAMBOLL
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

April 2021 Analytical Data

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-182791-1 Client Project/Site: COSCO #344035

For:

New York State D.E.C. 625 Broadway 12th Floor Albany, New York 12233-7017

Attn: Robert Strang

Authorized for release by: 4/15/2021 5:11:05 PM

Judy Stone, Senior Project Manager (484)685-0868 Judy.Stone@Eurofinset.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

3

5

6

0

9

10

12

13

14

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

4

Jee y

6

Judy Stone Senior Project Manager 4/15/2021 5:11:05 PM

8

40

11

40

14

Table of Contents

Cover Page	1
Table of Contents	3
Definitions	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	9
QC Sample Results	10
QC Association	13
Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

Definitions/Glossary

Client: New York State D.E.C. Job ID: 480-182791-1

Project/Site: COSCO #344035

Qualifiers

GC/MS VOA Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier Qualifier Description

Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit Contains No Free Liquid CNF

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) EDL LOD Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) LOQ

EPA recommended "Maximum Contaminant Level" MCL MDA Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry) MDC

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present Practical Quantitation Limit POI

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: New York State D.E.C.
Project/Site: COSCO #344035

Job ID: 480-182791-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-182791-1

Receipt

The samples were received on 4/3/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.2° C.

GC/MS VOA

Method 624.1: The following sample was diluted to bring the concentration of target analytes within the calibration range: RW-3D (480-182791-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Methods 9040C, SM 4500 H+ B: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples have been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: RW-3D (480-182791-1) and EFFLUENT (480-182791-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 480-182791-1

3

4

E

6

1

Ö

11

12

Detection Summary

Client: New York State D.E.C. Job ID: 480-182791-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D

Lab Sample ID: 480-18279

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2-Dichloroethene, Total	44		20	6.4	ug/L	2	_	624.1	Total/NA
Tetrachloroethene	97		10	0.68	ug/L	2		624.1	Total/NA
Trichloroethene	86		10	1.2	ug/L	2		624.1	Total/NA
pH	7.45	HF	0.100	0.100	SU	1		9040C	Total/NA
Temperature	21.0	HF	0.00100	0.00100	Degrees C	1		9040C	Total/NA
Total Dissolved Solids	617		10.0	4.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: EFFLUENT

Lab Sample ID: 480-182791-2

Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
рН	7.86	HF	0.100	0.100	SU	1	_	9040C	Total/NA
Temperature	21.3	HF	0.00100	0.00100	Degrees C	1		9040C	Total/NA
Total Dissolved Solids	637		10.0	4.0	mg/L	1		SM 2540C	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample Results

Client: New York State D.E.C. Job ID: 480-182791-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D Lab Sample ID: 480-182791-1 Date Collected: 04/02/21 11:00

Matrix: Water

Date Received: 04/03/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		10	0.77	ug/L			04/05/21 14:40	2
1,1,2,2-Tetrachloroethane	ND		10	0.52	ug/L			04/05/21 14:40	2
1,1,2-Trichloroethane	ND		10	0.96	ug/L			04/05/21 14:40	2
1,1-Dichloroethane	ND		10	1.2	ug/L			04/05/21 14:40	2
1,1-Dichloroethene	ND		10	1.7	ug/L			04/05/21 14:40	2
1,2-Dichlorobenzene	ND		10	0.89	ug/L			04/05/21 14:40	2
1,2-Dichloroethane	ND		10	1.2	ug/L			04/05/21 14:40	2
1,2-Dichloroethene, Total	44		20	6.4	ug/L			04/05/21 14:40	2
1,2-Dichloropropane	ND		10	1.2	ug/L			04/05/21 14:40	2
1,3-Dichlorobenzene	ND		10	1.1	ug/L			04/05/21 14:40	2
1,4-Dichlorobenzene	ND		10	1.0	ug/L			04/05/21 14:40	2
2-Chloroethyl vinyl ether	ND		50	3.7	ug/L			04/05/21 14:40	2
Acrolein	ND		200	35	ug/L			04/05/21 14:40	2
Acrylonitrile	ND		100	3.8	ug/L			04/05/21 14:40	2
Benzene	ND		10	1.2	ug/L			04/05/21 14:40	2
Bromodichloromethane	ND		10	1.1	ug/L			04/05/21 14:40	2
Bromoform	ND		10	0.94	ug/L			04/05/21 14:40	2
Bromomethane	ND		10	2.4	ug/L			04/05/21 14:40	2
Carbon tetrachloride	ND		10	1.0	ug/L			04/05/21 14:40	2
Chlorobenzene	ND		10	0.95	ug/L			04/05/21 14:40	2
Chlorodibromomethane	ND		10	0.83	ug/L			04/05/21 14:40	2
Chloroethane	ND		10	1.7	ug/L			04/05/21 14:40	2
Chloroform	ND		10	1.1	ug/L			04/05/21 14:40	2
Chloromethane	ND		10	1.3	ug/L			04/05/21 14:40	2
cis-1,3-Dichloropropene	ND		10	0.66	ug/L			04/05/21 14:40	2
Ethylbenzene	ND		10	0.93	ug/L			04/05/21 14:40	2
Methylene Chloride	ND		10	1.6	ug/L			04/05/21 14:40	2
Tetrachloroethene	97		10	0.68	ug/L			04/05/21 14:40	2
Toluene	ND		10	0.91	ug/L			04/05/21 14:40	2
trans-1,2-Dichloroethene	ND		10	1.2	ug/L			04/05/21 14:40	2
trans-1,3-Dichloropropene	ND		10	0.88	ug/L			04/05/21 14:40	2
Trichloroethene	86		10	1.2	ug/L			04/05/21 14:40	2
Vinyl chloride	ND		10	1.5	ug/L			04/05/21 14:40	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		68 - 130			_		04/05/21 14:40	
4-Bromofluorobenzene (Surr)	101		76 - 123					04/05/21 14:40	2
Dibromofluoromethane (Surr)	106		75 - 123					04/05/21 14:40	2
Toluene-d8 (Surr)	101		77 - 120					04/05/21 14:40	

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	617		10.0	4.0	mg/L			04/07/21 03:59	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.45	HF	0.100	0.100	SU			04/05/21 15:55	1
Temperature	21.0	HE	0.00100	0.00100	Degrees C			04/05/21 15:55	1

Eurofins TestAmerica, Buffalo

Page 7 of 19

Client Sample Results

Client: New York State D.E.C. Job ID: 480-182791-1

Project/Site: COSCO #344035

Client Sample ID: EFFLUENT

Lab Sample ID: 480-182791-2 Date Collected: 04/02/21 11:10 Matrix: Water

Date Received: 04/03/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			04/05/21 12:24	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			04/05/21 12:24	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			04/05/21 12:24	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			04/05/21 12:24	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			04/05/21 12:24	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			04/05/21 12:24	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			04/05/21 12:24	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			04/05/21 12:24	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			04/05/21 12:24	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			04/05/21 12:24	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			04/05/21 12:24	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			04/05/21 12:24	1
Acrolein	ND		100	17	ug/L			04/05/21 12:24	1
Acrylonitrile	ND		50	1.9	ug/L			04/05/21 12:24	1
Benzene	ND		5.0	0.60	ug/L			04/05/21 12:24	1
Bromodichloromethane	ND		5.0	0.54	ug/L			04/05/21 12:24	1
Bromoform	ND		5.0	0.47	ug/L			04/05/21 12:24	1
Bromomethane	ND		5.0	1.2	ug/L			04/05/21 12:24	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			04/05/21 12:24	1
Chlorobenzene	ND		5.0	0.48	ug/L			04/05/21 12:24	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			04/05/21 12:24	1
Chloroethane	ND		5.0	0.87	ug/L			04/05/21 12:24	
Chloroform	ND		5.0	0.54	ug/L			04/05/21 12:24	1
Chloromethane	ND		5.0	0.64	ug/L			04/05/21 12:24	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			04/05/21 12:24	1
Ethylbenzene	ND		5.0	0.46	ug/L			04/05/21 12:24	1
Methylene Chloride	ND		5.0	0.81	ug/L			04/05/21 12:24	1
Tetrachloroethene	ND		5.0	0.34	ug/L			04/05/21 12:24	1
Toluene	ND		5.0	0.45	ug/L			04/05/21 12:24	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			04/05/21 12:24	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			04/05/21 12:24	
Trichloroethene	ND		5.0	0.60	ug/L			04/05/21 12:24	1
Vinyl chloride	ND		5.0	0.75	ug/L			04/05/21 12:24	1
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		68 - 130					04/05/21 12:24	1
4-Bromofluorobenzene (Surr)	100		76 - 123					04/05/21 12:24	1
Dibromofluoromethane (Surr)	104		75 - 123					04/05/21 12:24	1
Toluene-d8 (Surr)	99		77 - 120					04/05/21 12:24	1

ı	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1,2-Dichloroethane-d4 (Surr)	104		68 - 130		04/05/21 12:24	1
	4-Bromofluorobenzene (Surr)	100		76 - 123		04/05/21 12:24	1
	Dibromofluoromethane (Surr)	104		75 - 123		04/05/21 12:24	1
	Toluene-d8 (Surr)	99		77 - 120		04/05/21 12:24	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	637		10.0	4.0	mg/L			04/07/21 03:59	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
will	7.86	UE	0.100	0.100	SU			04/05/21 16:01	1
pH	7.00	111	0.100	0.100	00			0 00.2	•

Page 8 of 19

Surrogate Summary

Client: New York State D.E.C.

Project/Site: COSCO #344035

Job ID: 480-182791-1

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

DCA BFB DBFM TOL Lab Sample ID (68-130) (76-123) (75-123) (77-120)
Lab Sample ID Client Sample ID (68-130) (76-123) (75-123) (77-120)
480-182791-1 RW-3D 101 101 106 101
480-182791-2 EFFLUENT 104 100 104 99
LCS 480-575000/6 Lab Control Sample 105 101 100 100
MB 480-575000/8 Method Blank 104 99 103 99

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

А

6

10

11

4.0

14

Job ID: 480-182791-1

Client: New York State D.E.C. Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS)

MB MB

Lab Sample ID: MB 480-575000/8

Matrix: Water

Analysis Batch: 575000

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	5.0	0.39	ug/L			04/05/21 11:14	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			04/05/21 11:14	1
1,1,2-Trichloroethane	ND	5.0	0.48	ug/L			04/05/21 11:14	1
1,1-Dichloroethane	ND	5.0	0.59	ug/L			04/05/21 11:14	1
1,1-Dichloroethene	ND	5.0	0.85	ug/L			04/05/21 11:14	1
1,2-Dichlorobenzene	ND	5.0	0.44	ug/L			04/05/21 11:14	1
1,2-Dichloroethane	ND	5.0	0.60	ug/L			04/05/21 11:14	1
1,2-Dichloroethene, Total	ND	10	3.2	ug/L			04/05/21 11:14	1
1,2-Dichloropropane	ND	5.0	0.61	ug/L			04/05/21 11:14	1
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			04/05/21 11:14	1
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			04/05/21 11:14	1
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			04/05/21 11:14	1
Acrolein	ND	100	17	ug/L			04/05/21 11:14	1
Acrylonitrile	ND	50	1.9	ug/L			04/05/21 11:14	1
Benzene	ND	5.0	0.60	ug/L			04/05/21 11:14	1
Bromodichloromethane	ND	5.0	0.54	ug/L			04/05/21 11:14	1
Bromoform	ND	5.0	0.47	ug/L			04/05/21 11:14	1
Bromomethane	ND	5.0	1.2	ug/L			04/05/21 11:14	1
Carbon tetrachloride	ND	5.0	0.51	ug/L			04/05/21 11:14	1
Chlorobenzene	ND	5.0	0.48	ug/L			04/05/21 11:14	1
Chlorodibromomethane	ND	5.0	0.41	ug/L			04/05/21 11:14	1
Chloroethane	ND	5.0	0.87	ug/L			04/05/21 11:14	1
Chloroform	ND	5.0	0.54	ug/L			04/05/21 11:14	1
Chloromethane	ND	5.0	0.64	ug/L			04/05/21 11:14	1
cis-1,3-Dichloropropene	ND	5.0	0.33	ug/L			04/05/21 11:14	1
Ethylbenzene	ND	5.0	0.46	ug/L			04/05/21 11:14	1
Methylene Chloride	ND	5.0	0.81	ug/L			04/05/21 11:14	1
Tetrachloroethene	ND	5.0	0.34	ug/L			04/05/21 11:14	1
Toluene	ND	5.0	0.45	ug/L			04/05/21 11:14	1
trans-1,2-Dichloroethene	ND	5.0	0.59	ug/L			04/05/21 11:14	1
trans-1,3-Dichloropropene	ND	5.0	0.44	ug/L			04/05/21 11:14	1
Trichloroethene	ND	5.0	0.60	ug/L			04/05/21 11:14	1
Vinyl chloride	ND	5.0	0.75	ug/L			04/05/21 11:14	1

Curronata	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Surrogate	76Kecovery	Qualifier	LIIIIII	Frepareu	Anaryzeu	DII Fac
1,2-Dichloroethane-d4 (Surr)	104		68 - 130		04/05/21 11:14	1
4-Bromofluorobenzene (Surr)	99		76 - 123		04/05/21 11:14	1
Dibromofluoromethane (Surr)	103		75 ₋ 123		04/05/21 11:14	1
Toluene-d8 (Surr)	99		77 - 120		04/05/21 11:14	1

Lab Sample ID: LCS 480-575000/6

Matrix: Water

Analysis Batch: 575000

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	 20.0	18.8		ug/L		94	52 - 162	
1,1,2,2-Tetrachloroethane	20.0	19.4		ug/L		97	46 - 157	
1,1,2-Trichloroethane	20.0	19.6		ug/L		98	52 ₋ 150	

Eurofins TestAmerica, Buffalo

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Page 10 of 19

Job ID: 480-182791-1

Client: New York State D.E.C.

Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-575000/6 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water Analysis Batch: 575000

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	20.0	19.4		ug/L		97	59 - 155	
1,1-Dichloroethene	20.0	18.7		ug/L		93	1 - 234	
1,2-Dichlorobenzene	20.0	19.0		ug/L		95	18 _ 190	
1,2-Dichloroethane	20.0	18.6		ug/L		93	49 - 155	
1,2-Dichloropropane	20.0	19.0		ug/L		95	1 _ 210	
1,3-Dichlorobenzene	20.0	18.8		ug/L		94	59 - 156	
1,4-Dichlorobenzene	20.0	18.8		ug/L		94	18 - 190	
2-Chloroethyl vinyl ether	20.0	19.7	J	ug/L		99	1 _ 305	
Benzene	20.0	18.9		ug/L		95	37 _ 151	
Bromodichloromethane	20.0	18.5		ug/L		92	35 _ 155	
Bromoform	20.0	18.0		ug/L		90	45 - 169	
Bromomethane	20.0	17.4		ug/L		87	1 - 242	
Carbon tetrachloride	20.0	17.0		ug/L		85	70 - 140	
Chlorobenzene	20.0	19.3		ug/L		97	37 - 160	
Chlorodibromomethane	20.0	18.5		ug/L		93	53 - 149	
Chloroethane	20.0	17.7		ug/L		88	14 - 230	
Chloroform	20.0	19.1		ug/L		96	51 - 138	
Chloromethane	20.0	17.6		ug/L		88	1 _ 273	
cis-1,3-Dichloropropene	20.0	18.6		ug/L		93	1 _ 227	
Ethylbenzene	20.0	19.4		ug/L		97	37 - 162	
Methylene Chloride	20.0	18.1		ug/L		91	1 _ 221	
Tetrachloroethene	20.0	18.9		ug/L		95	64 - 148	
Toluene	20.0	19.1		ug/L		96	47 - 150	
trans-1,2-Dichloroethene	20.0	18.5		ug/L		93	54 - 156	
trans-1,3-Dichloropropene	20.0	19.1		ug/L		96	17 - 183	
Trichloroethene	20.0	18.7		ug/L		93	71 - 157	
Vinyl chloride	20.0	17.3		ug/L		87	1 - 251	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	105		68 - 130
4-Bromofluorobenzene (Surr)	101		76 - 123
Dibromofluoromethane (Surr)	100		75 - 123
Toluene-d8 (Surr)	100		77 - 120

Method: 9040C - pH

Lab Sample ID: LCS 480-575109/23 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 575109

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	
pH	7.00	7.080	SU		101	99 - 101	

Lab Sample ID: LCS 480-575109/45 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 5/5109									
		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
pH		7.00	7.070		SU		101	99 - 101	

Eurofins TestAmerica, Buffalo

Page 11 of 19

QC Sample Results

Client: New York State D.E.C. Job ID: 480-182791-1 Project/Site: COSCO #344035

Method: 9040C - pH

Lab Sample ID: 480-182791-2 DU **Client Sample ID: EFFLUENT Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 575109

7 many one Date in the 100								
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
рН	7.86	HF	8.020		SU		2	5
Temperature	21.3	HF	21.11		Degrees C		0.9	10

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 480-575296/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 575296

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	ND		10.0	4.0	mg/L			04/07/21 03:59	1

Lab Sample ID: LCS 480-575296/2 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 575296

	Spike	LUS	LUG		MRC.	
Analyte	Added	Result	Qualifier Unit	%Rec	Limits	
Total Dissolved Solids	501	505.0	mg/L	 101	85 - 115	

QC Association Summary

Client: New York State D.E.C. Job ID: 480-182791-1 Project/Site: COSCO #344035

GC/MS VOA

Analysis Batch: 575000

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-182791-1	RW-3D	Total/NA	Water	624.1	
480-182791-2	EFFLUENT	Total/NA	Water	624.1	
MB 480-575000/8	Method Blank	Total/NA	Water	624.1	
LCS 480-575000/6	Lab Control Sample	Total/NA	Water	624.1	

General Chemistry

Analysis Batch: 575109

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-182791-1	RW-3D	Total/NA	Water	9040C	
480-182791-2	EFFLUENT	Total/NA	Water	9040C	
LCS 480-575109/23	Lab Control Sample	Total/NA	Water	9040C	
LCS 480-575109/45	Lab Control Sample	Total/NA	Water	9040C	
480-182791-2 DU	EFFLUENT	Total/NA	Water	9040C	

Analysis Batch: 575296

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-182791-1	RW-3D	Total/NA	Water	SM 2540C	
480-182791-2	EFFLUENT	Total/NA	Water	SM 2540C	
MB 480-575296/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 480-575296/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Lab Chronicle

Client: New York State D.E.C. Job ID: 480-182791-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D

Date Received: 04/03/21 08:00

Lab Sample ID: 480-182791-1 Date Collected: 04/02/21 11:00

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		2	575000	04/05/21 14:40	WJD	TAL BUF
Total/NA	Analysis	9040C		1	575109	04/05/21 15:55	KEB	TAL BUF
Total/NA	Analysis	SM 2540C		1	575296	04/07/21 03:59	SRW	TAL BUF

Client Sample ID: EFFLUENT

Lab Sample ID: 480-182791-2

Matrix: Water

Date Collected: 04/02/21 11:10 Date Received: 04/03/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	575000	04/05/21 12:24	WJD	TAL BUF
Total/NA	Analysis	9040C		1	575109	04/05/21 16:01	KEB	TAL BUF
Total/NA	Analysis	SM 2540C		1	575296	04/07/21 03:59	SRW	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Eurofins TestAmerica, Buffalo

Accreditation/Certification Summary

Client: New York State D.E.C. Job ID: 480-182791-1

Project/Site: COSCO #344035

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Pro	ogram	Identification Number	Expiration Date	
ew York		LAP	10026	04-01-22	
The following analytes are included in this repo the agency does not offer certification.		t the laboratory is not certifi	ed by the governing authority. This list ma	ay include analytes for	
0 ,		Matrix	Analyte		
the agency does not of Analysis Method 624.1	fer certification. Prep Method	Matrix Water	Analyte 1,2-Dichloroethene, Total		
Analysis Method					

- 5

4

7

11

12

4 /

Method Summary

Client: New York State D.E.C.

Project/Site: COSCO #344035

Job ID: 480-182791-1

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF
9040C	рН	SW846	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

Δ

5

6

Q

10

13

14

Sample Summary

Client: New York State D.E.C. Project/Site: COSCO #344035

Job ID: 480-182791-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Ass
480-182791-1	RW-3D	Water	04/02/21 11:00	04/03/21 08:00	
480-182791-2	EFFLUENT	Water	04/02/21 11:10	04/03/21 08:00	

3

4

6

0

9

4 4

12

. .

Euroillis TestAllierica, Dullaio				💸 eurofins
	Albany Chain of Custody Record	Record		Environment lesting America
dX. 7 10-09 1-7 99 1	0/20000	Lab PM:	Carrier Tracking No(s):	COC No:
	DEMETRIC	Stone, Judy L		480-156750-34562.1
Client Contact: Andrew Talbot		E-Mail: Judy Stone@Eurofinset.com	State of Origin:	Page 1 of 1
Company: Aztech Technologies Inc	PWSID.	Analysis Requested	quested	Job #;
Address: 5 McCrea Hill Road	Due Date Requested:			ĕ
City: (Baliston Spa	TAT Requested (days):			B NaOH N - None C - Zn Acetate O - AsNaO2
State, Zip NY, 12020	Compliance Project: Δ Yes Δ No	səlibes		
Phone	PO # CallOut 136146	et.		Ф
Email: ataibot@LaBellaPC.com	WO #:	(ol		
Project Name. COSCO #344035	Project #: 48005266	1 10 86 evloss		W - pH 4-5 Z - other (specify)
Site:	SSOW#	(V) (QS id leso q (QO)	Chain of Custody	
	Sample Matrix Type (wearing Type Sarold Sample Comm	d Filtered S form MS/M form MS/M DB - DH 1_PREC - (W	182791 Chami	
Sample Identification	G=grab) en	2540 2540	thoT	Special Instructions/Note:
Co Mid	7 Preservatio	X.		
KW-3D	2000	X :		
Effluent	412(7) (1:10 6/2/5 Water	X	2	
/	<i>)</i>	/		
		/		
		2		
	/			
			_	
		_		
ant	Poison B Unknown Radiological	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Mor	assessed if samples are retaine Disposal By Lab	stained longer than 1 month) Archive For Months
I, III, IV, Of		Special Instructions/QC Requirements	nts:	
Empty Kit Relinquished by:	Date:	Time:	Method of Shipment:	
Relinquished by:	Date/Time Company	99	Date/Time:	1430 Canon
Relinquished by	006/ 12/2	7	Date/Time:	Company
	Date/Time Company	Received by:	Date/Time.	OSOC Company
Custody Seals Intact: Custody Seal No∴ △ Yes △ No		Cooler Temperature(s) °C and Other Remarks:	,	
		1 1 1		Ver: 11/01/2020

💸 eurofins Environment Testing America

Albany Chain of Custody Record

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Job Number: 480-182791-1

Login Number: 182791 List Source: Eurofins TestAmerica, Buffalo

List Number: 1 Creator: Stopa, Erik S

Question Answer Comment
Radioactivity either was not measured or, if measured, is at or below background True
The cooler's custody seal, if present, is intact.
The cooler or samples do not appear to have been compromised or tampered with.
Samples were received on ice.
Cooler Temperature is acceptable. True
Cooler Temperature is recorded.
COC is present. True
COC is filled out in ink and legible.
COC is filled out with all pertinent information.
Is the Field Sampler's name present on COC?
There are no discrepancies between the sample IDs on the containers and the COC.
Samples are received within Holding Time (Excluding tests with immediate HTs)
Sample containers have legible labels.
Containers are not broken or leaking.
Sample collection date/times are provided.
Appropriate sample containers are used. True
Sample bottles are completely filled. True
Sample Preservation Verified True
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs
VOA sample vials do not have headspace or bubble is <6mm (1/4") in True diameter.
If necessary, staff have been informed of any short hold time or quick TAT True needs
Multiphasic samples are not present. True
Samples do not require splitting or compositing.
Sampling Company provided. True AZTECH
Samples received within 48 hours of sampling.
Samples requiring field filtration have been filtered in the field. N/A
Chlorine Residual checked. N/A

-2

5

0

4 4

12

May 2021 Analytical Data

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-184114-1 Client Project/Site: COSCO #344035

For:

New York State D.E.C. 625 Broadway 12th Floor Albany, New York 12233-7017

Attn: Robert Strang

Authorized for release by: 5/18/2021 5:30:09 PM

Judy Stone, Senior Project Manager (484)685-0868

Judy.Stone@Eurofinset.com

Review your project results through Total Access

Have a Question?

Ask The Expert

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

_

6

9

10

15

13

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

4

Judystone

Judy Stone Senior Project Manager 5/18/2021 5:30:09 PM

8

10

11

14

Client: New York State D.E.C. Project/Site: COSCO #344035

Laboratory Job ID: 480-184114-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	9
QC Sample Results	10
QC Association	16
Chronicle	17
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
Receipt Checklists	23

5

6

8

10

12

4

Definitions/Glossary

Client: New York State D.E.C. Job ID: 480-184114-1

Project/Site: COSCO #344035

Qualifiers

GC/MS VOA
Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

S1- Surrogate recovery exceeds control limits, low biased.

General Chemistry

HF Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

4

E

_

7

10

12

13

16

Eurofins TestAmerica, Buffalo

Case Narrative

Client: New York State D.E.C.

Job ID: 480-184114-1

Project/Site: COSCO #344035

Job ID: 480-184114-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-184114-1

Receipt

The samples were received on 5/4/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.4° C.

GC/MS VOA

Method 624.1: Four surrogates are used for this analysis. The laboratory's SOP allows one of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: RW-3D (480-184114-1). These results have been reported and qualified.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Methods 9040C, SM 4500 H+ B: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples have been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: RW-3D (480-184114-1) and EFFLUENT (480-184114-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

6

3

4

5

0

8

9

11

12

Detection Summary

Client: New York State D.E.C. Job ID: 480-184114-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2-Dichloroethene, Total	74		2.0	0.44	ug/L	1	_	624.1	Total/NA
Chloroform	0.51	J	1.0	0.33	ug/L	1		624.1	Total/NA
Methylene Chloride	0.49	J	1.0	0.32	ug/L	1		624.1	Total/NA
Tetrachloroethene	120		1.0	0.25	ug/L	1		624.1	Total/NA
trans-1,2-Dichloroethene	0.32	J	1.0	0.24	ug/L	1		624.1	Total/NA
Trichloroethene	140		1.0	0.31	ug/L	1		624.1	Total/NA
рН	7.11	HF	0.100	0.100	SU	1		9040C	Total/NA
Temperature	19.5	HF	0.00100	0.00100	Degrees C	1		9040C	Total/NA
Total Dissolved Solids	624		10.0	4.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: EFFLUENT

Lab Sample ID: 480-184114-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	0.45	J	1.0	0.32	ug/L	1	_	624.1	Total/NA
pH	7.77	HF	0.100	0.100	SU	1		9040C	Total/NA
Temperature	20.5	HF	0.00100	0.00100	Degrees C	1		9040C	Total/NA
Total Dissolved Solids	654		10.0	4.0	mg/L	1		SM 2540C	Total/NA

Client Sample Results

Client: New York State D.E.C. Job ID: 480-184114-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D

Lab Sample ID: 480-184114-1

Matrix: Water

Date Collected: 05/03/21 10:15 Date Received: 05/04/21 08:00 Method: 624.1 - Volatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			05/06/21 00:09	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			05/06/21 00:09	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			05/06/21 00:09	1
1,1-Dichloroethane	ND		1.0	0.26	ug/L			05/06/21 00:09	1
1,1-Dichloroethene	ND		1.0	0.12	ug/L			05/06/21 00:09	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			05/06/21 00:09	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			05/06/21 00:09	1
1,2-Dichloroethene, Total	74		2.0	0.44	ug/L			05/06/21 00:09	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			05/06/21 00:09	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			05/06/21 00:09	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			05/06/21 00:09	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			05/06/21 00:09	1
Acrolein	ND		4.0	1.1	ug/L			05/06/21 00:09	1
Acrylonitrile	ND		2.0	0.77	ug/L			05/06/21 00:09	1
Benzene	ND		1.0	0.43	ug/L			05/06/21 00:09	1
Bromoform	ND		1.0	0.54	ug/L			05/06/21 00:09	1
Bromomethane	ND		1.0	0.45	ug/L			05/06/21 00:09	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			05/06/21 00:09	1
Chlorobenzene	ND		1.0	0.38	ug/L			05/06/21 00:09	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			05/06/21 00:09	1
Chloroethane	ND		1.0	0.32	ug/L			05/06/21 00:09	1
Chloroform	0.51	J	1.0	0.33	ug/L			05/06/21 00:09	1
Chloromethane	ND		1.0	0.43	ug/L			05/06/21 00:09	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			05/06/21 00:09	1
Bromodichloromethane	ND		1.0	0.34	ug/L			05/06/21 00:09	1
Ethylbenzene	ND		1.0	0.30	ug/L			05/06/21 00:09	1
Methylene Chloride	0.49	J	1.0	0.32	ug/L			05/06/21 00:09	1
Tetrachloroethene	120		1.0	0.25	ug/L			05/06/21 00:09	1
Toluene	ND		1.0	0.38	ug/L			05/06/21 00:09	1
trans-1,2-Dichloroethene	0.32	J	1.0	0.24	ug/L			05/06/21 00:09	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			05/06/21 00:09	1
Trichloroethene	140		1.0	0.31	ug/L			05/06/21 00:09	1
Vinyl chloride	ND		1.0	0.34	ug/L			05/06/21 00:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	72		60 - 140			_		05/06/21 00:09	1
4-Bromofluorobenzene	70		60 - 140					05/06/21 00:09	1
Toluene-d8 (Surr)	52	S1-	60 - 140					05/06/21 00:09	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	72		60 - 140		05/06/21 00:09	1
4-Bromofluorobenzene	70		60 - 140		05/06/21 00:09	1
Toluene-d8 (Surr)	52	S1-	60 - 140		05/06/21 00:09	1
Dibromofluoromethane (Surr)	80		60 - 140		05/06/21 00:09	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	624		10.0	4.0	mg/L			05/07/21 11:27	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.11	HF	0.100	0.100	SU			05/17/21 18:47	1
Temperature	19.5	HF	0.00100	0.00100	Degrees C			05/17/21 18:47	1

Eurofins TestAmerica, Buffalo

Page 7 of 24

5/18/2021

Client Sample Results

Client: New York State D.E.C. Job ID: 480-184114-1 Project/Site: COSCO #344035

Client Sample ID: EFFLUENT

Lab Sample ID: 480-184114-2 Date Collected: 05/03/21 10:20 **Matrix: Water**

Date Received: 05/04/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			05/06/21 10:04	
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			05/06/21 10:04	•
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			05/06/21 10:04	
1,1-Dichloroethane	ND		1.0	0.26	ug/L			05/06/21 10:04	
1,1-Dichloroethene	ND		1.0	0.12	ug/L			05/06/21 10:04	•
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			05/06/21 10:04	•
1,2-Dichloroethane	ND		1.0	0.84	ug/L			05/06/21 10:04	
1,2-Dichloroethene, Total	ND		2.0	0.44	ug/L			05/06/21 10:04	
1,2-Dichloropropane	ND		1.0	0.35	ug/L			05/06/21 10:04	•
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			05/06/21 10:04	
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			05/06/21 10:04	•
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			05/06/21 10:04	•
Acrolein	ND		4.0	1.1	ug/L			05/06/21 10:04	
Acrylonitrile	ND		2.0	0.77	ug/L			05/06/21 10:04	•
Benzene	ND		1.0	0.43	ug/L			05/06/21 10:04	
Bromoform	ND		1.0	0.54	ug/L			05/06/21 10:04	
Bromomethane	ND		1.0	0.45	ug/L			05/06/21 10:04	
Carbon tetrachloride	ND		1.0	0.21	ug/L			05/06/21 10:04	
Chlorobenzene	ND		1.0	0.38	ug/L			05/06/21 10:04	
Chlorodibromomethane	ND		1.0	0.13	ug/L			05/06/21 10:04	
Chloroethane	ND		1.0	0.32	ug/L			05/06/21 10:04	
Chloroform	ND		1.0	0.33	ug/L			05/06/21 10:04	
Chloromethane	ND		1.0	0.43	ug/L			05/06/21 10:04	
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			05/06/21 10:04	
Bromodichloromethane	ND		1.0	0.34	ug/L			05/06/21 10:04	
Ethylbenzene	ND		1.0	0.30	ug/L			05/06/21 10:04	
Methylene Chloride	0.45	J	1.0	0.32	ug/L			05/06/21 10:04	
Tetrachloroethene	ND		1.0	0.25	ug/L			05/06/21 10:04	
Toluene	ND		1.0	0.38	ug/L			05/06/21 10:04	
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			05/06/21 10:04	
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			05/06/21 10:04	
Trichloroethene	ND		1.0	0.31	ug/L			05/06/21 10:04	
Vinyl chloride	ND		1.0	0.34	ug/L			05/06/21 10:04	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	90		60 - 140			_		05/06/21 10:04	
4-Bromofluorobenzene	88		60 - 140					05/06/21 10:04	-
Toluene-d8 (Surr)	88		60 - 140					05/06/21 10:04	
Dibromofluoromethane (Surr)	95		60 - 140					05/06/21 10:04	

Genera	Chem	istry
--------	------	-------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	654		10.0	4.0	mg/L			05/07/21 11:27	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.77	HF	0.100	0.100	SU			05/17/21 18:50	1
Temperature	20.5	HF	0.00100	0.00100	Degrees C			05/17/21 18:50	1

Surrogate Summary

Client: New York State D.E.C. Job ID: 480-184114-1

Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

				Percent Sui	rrogate Rec
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(60-140)	(60-140)	(60-140)	(60-140)
480-184114-1	RW-3D	72	70	52 S1-	80
480-184114-2	EFFLUENT	90	88	88	95
LCS 460-776048/4	Lab Control Sample	86	105	88	97
LCS 460-776142/4	Lab Control Sample	78	94	86	88
LCSD 460-776048/6	Lab Control Sample Dup	87	78	70	99
LCSD 460-776142/5	Lab Control Sample Dup	87	79	86	96
MB 460-776048/10	Method Blank	86	98	87	96
MB 460-776142/9	Method Blank	65	100	86	74

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Eurofins TestAmerica, Buffalo

Page 9 of 24

Job ID: 480-184114-1

Client: New York State D.E.C. Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 460-776048/10

Matrix: Water

Analysis Batch: 776048

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			05/05/21 21:52	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			05/05/21 21:52	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			05/05/21 21:52	1
1,1-Dichloroethane	ND		1.0	0.26	ug/L			05/05/21 21:52	1
1,1-Dichloroethene	ND		1.0	0.12	ug/L			05/05/21 21:52	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			05/05/21 21:52	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			05/05/21 21:52	1
1,2-Dichloroethene, Total	ND		2.0	0.44	ug/L			05/05/21 21:52	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			05/05/21 21:52	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			05/05/21 21:52	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			05/05/21 21:52	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			05/05/21 21:52	1
Acrolein	ND		4.0	1.1	ug/L			05/05/21 21:52	1
Acrylonitrile	ND		2.0	0.77	ug/L			05/05/21 21:52	1
Benzene	ND		1.0	0.43	ug/L			05/05/21 21:52	1
Bromoform	ND		1.0	0.54	ug/L			05/05/21 21:52	1
Bromomethane	ND		1.0	0.45	ug/L			05/05/21 21:52	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			05/05/21 21:52	1
Chlorobenzene	ND		1.0	0.38	ug/L			05/05/21 21:52	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			05/05/21 21:52	1
Chloroethane	ND		1.0	0.32	ug/L			05/05/21 21:52	1
Chloroform	ND		1.0	0.33	ug/L			05/05/21 21:52	1
Chloromethane	ND		1.0	0.43	ug/L			05/05/21 21:52	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			05/05/21 21:52	1
Bromodichloromethane	ND		1.0	0.34	ug/L			05/05/21 21:52	1
Ethylbenzene	ND		1.0	0.30	ug/L			05/05/21 21:52	1
Methylene Chloride	ND		1.0	0.32	ug/L			05/05/21 21:52	1
Tetrachloroethene	ND		1.0	0.25	ug/L			05/05/21 21:52	1
Toluene	ND		1.0	0.38	ug/L			05/05/21 21:52	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			05/05/21 21:52	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			05/05/21 21:52	1
Trichloroethene	ND		1.0	0.31	ug/L			05/05/21 21:52	1
Vinyl chloride	ND		1.0	0.34	ug/L			05/05/21 21:52	1

мв мв

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	86	60 - 140		05/05/21 21:52	1
4-Bromofluorobenzene	98	60 - 140		05/05/21 21:52	1
Toluene-d8 (Surr)	87	60 - 140		05/05/21 21:52	1
Dibromofluoromethane (Surr)	96	60 - 140		05/05/21 21:52	1

Lab Sample ID: LCS 460-776048/4

Matrix: Water

Analysis Batch: 776048

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	21.7		ug/L		108	70 - 130	
1,1,2,2-Tetrachloroethane	20.0	17.8		ug/L		89	60 _ 140	
1,1,2-Trichloroethane	20.0	19.7		ug/L		99	70 - 130	

Eurofins TestAmerica, Buffalo

Page 10 of 24

Job ID: 480-184114-1

Client: New York State D.E.C. Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-776048/4

Matrix: Water

Analysis Batch: 776048

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analyte Added Result Qualifier Unit 1,1-Dichloroethane 20.0 20.9 ug/L 1,1-Dichloroethene 20.0 22.7 ug/L 1,2-Dichlorobenzene 20.0 21.0 ug/L 1,2-Dichloroethane 20.0 21.1 ug/L 1,2-Dichloropethene, Total 40.0 44.2 ug/L 1,2-Dichloropropane 20.0 19.4 ug/L 1,3-Dichlorobenzene 20.0 20.9 ug/L 1,4-Dichlorobenzene 20.0 20.8 ug/L 2-Chloroethyl vinyl ether 20.0 17.9 ug/L	D %Rec 105 113 105 105 110 97 104 104 89	Timits 70 - 130 50 - 150 65 - 135 70 - 130 60 - 140 35 - 165 70 - 130 65 - 135	
1,1-Dichloroethene 20.0 22.7 ug/L 1,2-Dichlorobenzene 20.0 21.0 ug/L 1,2-Dichloroethane 20.0 21.1 ug/L 1,2-Dichloroethene, Total 40.0 44.2 ug/L 1,2-Dichloropropane 20.0 19.4 ug/L 1,3-Dichlorobenzene 20.0 20.9 ug/L 1,4-Dichlorobenzene 20.0 20.8 ug/L 2-Chloroethyl vinyl ether 20.0 17.9 ug/L	113 105 105 110 97 104	50 - 150 65 - 135 70 - 130 60 - 140 35 - 165 70 - 130	
1,2-Dichlorobenzene 20.0 21.0 ug/L 1,2-Dichloroethane 20.0 21.1 ug/L 1,2-Dichloroethene, Total 40.0 44.2 ug/L 1,2-Dichloropropane 20.0 19.4 ug/L 1,3-Dichlorobenzene 20.0 20.9 ug/L 1,4-Dichlorobenzene 20.0 20.8 ug/L 2-Chloroethyl vinyl ether 20.0 17.9 ug/L	105 105 110 97 104 104	65 - 135 70 - 130 60 - 140 35 - 165 70 - 130	
1,2-Dichloroethane 20.0 21.1 ug/L 1,2-Dichloroethene, Total 40.0 44.2 ug/L 1,2-Dichloropropane 20.0 19.4 ug/L 1,3-Dichlorobenzene 20.0 20.9 ug/L 1,4-Dichlorobenzene 20.0 20.8 ug/L 2-Chloroethyl vinyl ether 20.0 17.9 ug/L	105 110 97 104 104	70 - 130 60 - 140 35 - 165 70 - 130	
1,2-Dichloroethene, Total 40.0 44.2 ug/L 1,2-Dichloropropane 20.0 19.4 ug/L 1,3-Dichlorobenzene 20.0 20.9 ug/L 1,4-Dichlorobenzene 20.0 20.8 ug/L 2-Chloroethyl vinyl ether 20.0 17.9 ug/L	110 97 104 104	60 - 140 35 - 165 70 - 130	
1,2-Dichloropropane 20.0 19.4 ug/L 1,3-Dichlorobenzene 20.0 20.9 ug/L 1,4-Dichlorobenzene 20.0 20.8 ug/L 2-Chloroethyl vinyl ether 20.0 17.9 ug/L	97 104 104	35 ₋ 165 70 ₋ 130	
1,3-Dichlorobenzene 20.0 20.9 ug/L 1,4-Dichlorobenzene 20.0 20.8 ug/L 2-Chloroethyl vinyl ether 20.0 17.9 ug/L	104 104	70 - 130	
1,4-Dichlorobenzene 20.0 20.8 ug/L 2-Chloroethyl vinyl ether 20.0 17.9 ug/L	104		
2-Chloroethyl vinyl ether 20.0 17.9 ug/L		65 - 135	
	89		
		0.1 _ 225	
Acrolein 40.0 44.3 ug/L	111	10 - 150	
Acrylonitrile 200 207 ug/L	104	60 - 140	
Benzene 20.0 20.6 ug/L	103	65 - 135	
Bromoform 20.0 21.2 ug/L	106	70 - 130	
Bromomethane 20.0 32.8 ug/L	164	15 - 185	
Carbon tetrachloride 20.0 23.1 ug/L	116	70 - 130	
Chlorobenzene 20.0 22.2 ug/L	111	65 - 135	
Chlorodibromomethane 20.0 24.3 ug/L	121	70 - 135	
Chloroethane 20.0 30.2 ug/L	151	40 - 160	
Chloroform 20.0 22.0 ug/L	110	70 - 135	
Chloromethane 20.0 38.0 ug/L	190	0.1 _ 205	
cis-1,3-Dichloropropene 20.0 19.2 ug/L	96	25 - 175	
Bromodichloromethane 20.0 21.3 ug/L	106	65 - 135	
Ethylbenzene 20.0 19.3 ug/L	97	60 - 140	
Methylene Chloride 20.0 22.3 ug/L	112	60 - 140	
Tetrachloroethene 20.0 22.0 ug/L	110	70 - 130	
Toluene 20.0 20.1 ug/L	100	70 - 130	
trans-1,2-Dichloroethene 20.0 22.2 ug/L	111	70 - 130	
trans-1,3-Dichloropropene 20.0 18.4 ug/L	92	50 - 150	
Trichloroethene 20.0 21.8 ug/L	109	65 - 135	
Vinyl chloride 20.0 33.7 ug/L	168	5 - 195	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	86		60 - 140
4-Bromofluorobenzene	105		60 - 140
Toluene-d8 (Surr)	88		60 - 140
Dibromofluoromethane (Surr)	97		60 - 140

Lab Sample ID: LCSD 460-776048/6

Matrix: Water

Analysis Batch: 776048

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	20.0	21.0		ug/L		105	70 - 130	3	36
1,1,2,2-Tetrachloroethane	20.0	17.0		ug/L		85	60 - 140	5	61
1,1,2-Trichloroethane	20.0	14.9		ug/L		74	70 - 130	28	45
1,1-Dichloroethane	20.0	20.3		ug/L		102	70 - 130	3	40
1,1-Dichloroethene	20.0	22.3		ug/L		112	50 - 150	2	32
1,2-Dichlorobenzene	20.0	20.4		ug/L		102	65 - 135	3	57

Eurofins TestAmerica, Buffalo

Page 11 of 24

Job ID: 480-184114-1

Client: New York State D.E.C.

Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 460-776048/6

Matrix: Water

Analysis Batch: 776048

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Spike LCSD LCSD %Rec. RPD Added Result Qualifier %Rec Limits **RPD** Limit Analyte Unit D 1,2-Dichloroethane 20.0 20.5 ug/L 103 70 - 13049 1,2-Dichloroethene, Total 40.0 43.9 ug/L 110 60 - 140 50 20.0 35 - 165 1,2-Dichloropropane 19.4 ug/L 97 55 0 1,3-Dichlorobenzene 20.0 20.6 ug/L 103 70 - 130 2 43 20.0 20.2 101 57 1,4-Dichlorobenzene ug/L 65 - 1353 2-Chloroethyl vinyl ether 20.0 17.1 ug/L 85 0.1 - 225 71 40.0 41.7 104 Acrolein ug/L 10 - 150 6 60 Acrylonitrile 200 205 ug/L 102 60 - 14060 Benzene 20.0 14.8 ug/L 74 65 - 135 33 61 Bromoform 20.0 20.4 ug/L 102 70 - 130 4 42 Bromomethane 20.0 30.9 ug/L 154 15 - 185 6 61 20.0 Carbon tetrachloride 22.2 ug/L 111 70 - 130 41 Chlorobenzene 20.0 21.2 ug/L 106 65 - 135 5 53 Chlorodibromomethane 20.0 16.5 82 70 - 135 38 50 ug/L 20.0 26.7 134 40 - 160 78 Chloroethane ug/L 12 Chloroform 20.0 21.7 ug/L 108 70 - 13554 20.0 170 Chloromethane 34.1 ug/L 0.1 - 20511 60 cis-1,3-Dichloropropene 20.0 14 4 72 25 - 175 29 58 ug/L Bromodichloromethane 20.0 20.4 ug/L 102 65 - 135 4 56 Ethylbenzene 20.0 19.0 ug/L 95 60 - 14063 Methylene Chloride 20.0 22.3 ug/L 111 60 - 1400 28 Tetrachloroethene 20.0 16.9 ug/L 85 70 - 130 39 26 Toluene 20.0 14.7 ug/L 74 70 - 130 31 41 trans-1,2-Dichloroethene 20.0 21.8 ug/L 109 70 - 130 2 45 20.0 75 trans-1,3-Dichloropropene 14.9 ug/L 50 - 150 21 86 Trichloroethene 20.0 20.7 ug/L 104 65 - 135 5 48

31.6

ug/L

D

Prepared

LCSD LCSD

MB MB Result Qualifier

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	87		60 - 140
4-Bromofluorobenzene	78		60 - 140
Toluene-d8 (Surr)	70		60 - 140
Dibromofluoromethane (Surr)	99		60 - 140

Lab Sample ID: MB 460-776142/9

Matrix: Water

Analyte

Vinyl chloride

Analysis Batch: 776142

Client Sample ID: Method Blank

Analyzed

5 - 195

158

Prep Type: Total/NA

Dil Fac

6

66

1,1,1-Trichloroethane	ND	1.0 0.2	24 ug/L	05/06/21 09:19
1,1,2,2-Tetrachloroethane	ND	1.0 0.3	37 ug/L	05/06/21 09:19
1,1,2-Trichloroethane	ND	1.0 0.4	15 ug/L	05/06/21 09:19
1,1-Dichloroethane	ND	1.0 0.2	26 ug/L	05/06/21 09:19
1,1-Dichloroethene	ND	1.0 0.4	12 ug/L	05/06/21 09:19

20.0

ND 1.0 0.19 ug/L 05/06/21 09:19 1,2-Dichlorobenzene ND 1.0 1.2-Dichloroethane 0.84 ug/L 05/06/21 09:19 1,2-Dichloroethene, Total ND 2.0 0.44 ug/L 05/06/21 09:19 1,2-Dichloropropane ND 1.0 0.35 ug/L 05/06/21 09:19

RL

MDL Unit

Eurofins TestAmerica, Buffalo

Page 12 of 24

Job ID: 480-184114-1

Client: New York State D.E.C.

Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 460-776142/9

Matrix: Water

Analysis Batch: 776142

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			05/06/21 09:19	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			05/06/21 09:19	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			05/06/21 09:19	1
Acrolein	ND		4.0	1.1	ug/L			05/06/21 09:19	1
Acrylonitrile	ND		2.0	0.77	ug/L			05/06/21 09:19	1
Benzene	ND		1.0	0.43	ug/L			05/06/21 09:19	1
Bromoform	ND		1.0	0.54	ug/L			05/06/21 09:19	1
Bromomethane	ND		1.0	0.45	ug/L			05/06/21 09:19	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			05/06/21 09:19	1
Chlorobenzene	ND		1.0	0.38	ug/L			05/06/21 09:19	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			05/06/21 09:19	1
Chloroethane	ND		1.0	0.32	ug/L			05/06/21 09:19	1
Chloroform	ND		1.0	0.33	ug/L			05/06/21 09:19	1
Chloromethane	ND		1.0	0.43	ug/L			05/06/21 09:19	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			05/06/21 09:19	1
Bromodichloromethane	ND		1.0	0.34	ug/L			05/06/21 09:19	1
Ethylbenzene	ND		1.0	0.30	ug/L			05/06/21 09:19	1
Methylene Chloride	ND		1.0	0.32	ug/L			05/06/21 09:19	1
Tetrachloroethene	ND		1.0	0.25	ug/L			05/06/21 09:19	1
Toluene	ND		1.0	0.38	ug/L			05/06/21 09:19	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			05/06/21 09:19	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			05/06/21 09:19	1
Trichloroethene	ND		1.0	0.31	ug/L			05/06/21 09:19	1
Vinyl chloride	ND		1.0	0.34	ug/L			05/06/21 09:19	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	65		60 - 140		05/06/21 09:19	1
4-Bromofluorobenzene	100		60 - 140		05/06/21 09:19	1
Toluene-d8 (Surr)	86		60 - 140		05/06/21 09:19	1
Dibromofluoromethane (Surr)	74		60 - 140		05/06/21 09:19	1

Lab Sample ID: LCS 460-776142/4

Matrix: Water

Analysis Batch: 776142

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	20.0	18.6		ug/L		93	70 - 130
1,1,2,2-Tetrachloroethane	20.0	15.6		ug/L		78	60 - 140
1,1,2-Trichloroethane	20.0	17.2		ug/L		86	70 - 130
1,1-Dichloroethane	20.0	17.6		ug/L		88	70 - 130
1,1-Dichloroethene	20.0	21.2		ug/L		106	50 - 150
1,2-Dichlorobenzene	20.0	22.3		ug/L		111	65 - 135
1,2-Dichloroethane	20.0	16.6		ug/L		83	70 - 130
1,2-Dichloroethene, Total	40.0	37.3		ug/L		93	60 - 140
1,2-Dichloropropane	20.0	16.5		ug/L		82	35 - 165
1,3-Dichlorobenzene	20.0	18.5		ug/L		93	70 - 130
1,4-Dichlorobenzene	20.0	18.3		ug/L		91	65 - 135
2-Chloroethyl vinyl ether	20.0	16.4		ug/L		82	0.1 - 225

Eurofins TestAmerica, Buffalo

Page 13 of 24

Job ID: 480-184114-1

Client: New York State D.E.C.

Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-776142/4

Matrix: Water

Analysis Batch: 776142

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D 9	%Rec	Limits
Acrolein	40.0	31.8		ug/L		80	10 - 150
Acrylonitrile	200	190		ug/L		95	60 - 140
Benzene	20.0	17.8		ug/L		89	65 ₋ 135
Bromoform	20.0	18.6		ug/L		93	70 - 130
Bromomethane	20.0	24.8		ug/L		124	15 - 185
Carbon tetrachloride	20.0	18.8		ug/L		94	70 - 130
Chlorobenzene	20.0	18.4		ug/L		92	65 - 135
Chlorodibromomethane	20.0	19.3		ug/L		97	70 - 135
Chloroethane	20.0	23.9		ug/L		120	40 - 160
Chloroform	20.0	18.3		ug/L		91	70 ₋ 135
Chloromethane	20.0	29.5		ug/L		148	0.1 - 205
cis-1,3-Dichloropropene	20.0	16.9		ug/L		85	25 - 175
Bromodichloromethane	20.0	16.9		ug/L		84	65 _ 135
Ethylbenzene	20.0	17.7		ug/L		89	60 - 140
Methylene Chloride	20.0	19.1		ug/L		95	60 - 140
Tetrachloroethene	20.0	19.4		ug/L		97	70 - 130
Toluene	20.0	17.5		ug/L		88	70 - 130
trans-1,2-Dichloroethene	20.0	18.6		ug/L		93	70 - 130
trans-1,3-Dichloropropene	20.0	16.3		ug/L		81	50 - 150
Trichloroethene	20.0	17.7		ug/L		89	65 _ 135
Vinyl chloride	20.0	26.4		ug/L		132	5 - 195

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	78		60 - 140
4-Bromofluorobenzene	94		60 - 140
Toluene-d8 (Surr)	86		60 - 140
Dibromofluoromethane (Surr)	88		60 - 140

Lab Sample ID: LCSD 460-776142/5

Matrix: Water

Analysis Batch: 776142

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	20.0	20.8		ug/L		104	70 - 130	12	36
1,1,2,2-Tetrachloroethane	20.0	16.8		ug/L		84	60 - 140	7	61
1,1,2-Trichloroethane	20.0	19.9		ug/L		99	70 - 130	14	45
1,1-Dichloroethane	20.0	19.9		ug/L		99	70 - 130	12	40
1,1-Dichloroethene	20.0	21.9		ug/L		110	50 - 150	4	32
1,2-Dichlorobenzene	20.0	20.3		ug/L		101	65 - 135	9	57
1,2-Dichloroethane	20.0	19.2		ug/L		96	70 - 130	15	49
1,2-Dichloroethene, Total	40.0	43.9		ug/L		110	60 - 140	16	50
1,2-Dichloropropane	20.0	18.9		ug/L		95	35 - 165	14	55
1,3-Dichlorobenzene	20.0	20.4		ug/L		102	70 - 130	10	43
1,4-Dichlorobenzene	20.0	20.6		ug/L		103	65 - 135	12	57
2-Chloroethyl vinyl ether	20.0	19.0		ug/L		95	0.1 - 225	15	71
Acrolein	40.0	31.6		ug/L		79	10 - 150	1	60
Acrylonitrile	200	208		ug/L		104	60 - 140	9	60
Benzene	20.0	14.8		ug/L		74	65 - 135	18	61

Eurofins TestAmerica, Buffalo

Page 14 of 24

Job ID: 480-184114-1

Client: New York State D.E.C.

Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 460-776142/5 **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA

Analysis Batch: 776142

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bromoform	20.0	20.3		ug/L		101	70 - 130	9	42
Bromomethane	20.0	26.7		ug/L		133	15 - 185	7	61
Carbon tetrachloride	20.0	21.6		ug/L		108	70 - 130	14	41
Chlorobenzene	20.0	20.5		ug/L		102	65 - 135	11	53
Chlorodibromomethane	20.0	20.7		ug/L		104	70 - 135	7	50
Chloroethane	20.0	26.7		ug/L		133	40 - 160	11	78
Chloroform	20.0	20.8		ug/L		104	70 - 135	13	54
Chloromethane	20.0	32.0		ug/L		160	0.1 - 205	8	60
cis-1,3-Dichloropropene	20.0	19.7		ug/L		99	25 - 175	15	58
Bromodichloromethane	20.0	19.4		ug/L		97	65 - 135	14	56
Ethylbenzene	20.0	18.7		ug/L		94	60 - 140	5	63
Methylene Chloride	20.0	21.6		ug/L		108	60 - 140	12	28
Tetrachloroethene	20.0	20.6		ug/L		103	70 - 130	6	39
Toluene	20.0	20.4		ug/L		102	70 - 130	15	41
trans-1,2-Dichloroethene	20.0	22.2		ug/L		111	70 - 130	18	45
trans-1,3-Dichloropropene	20.0	18.9		ug/L		95	50 - 150	15	86
Trichloroethene	20.0	21.6		ug/L		108	65 - 135	20	48
Vinyl chloride	20.0	27.6		ug/L		138	5 - 195	5	66

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	87		60 - 140
4-Bromofluorobenzene	79		60 - 140
Toluene-d8 (Surr)	86		60 - 140
Dibromofluoromethane (Surr)	96		60 - 140

Method: 9040C - pH

Lab Sample ID: LCS 480-581389/1 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 581389

-	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier	Unit D	%Rec	Limits	
рН	7.00	7.030		SU	100	99 - 101	

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 480-579867/1 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 579867

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	ND		10.0	4.0	mg/L			05/07/21 11:27	1

Lab Sample ID: LCS 480-579867/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 5/966/								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Dissolved Solids	501	502.0		mg/L		100	85 - 115	

Page 15 of 24

QC Association Summary

Client: New York State D.E.C. Job ID: 480-184114-1 Project/Site: COSCO #344035

GC/MS VOA

Analysis Batch: 776048

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
480-184114-1	RW-3D	Total/NA	Water	624.1
MB 460-776048/10	Method Blank	Total/NA	Water	624.1
LCS 460-776048/4	Lab Control Sample	Total/NA	Water	624.1
LCSD 460-776048/6	Lab Control Sample Dup	Total/NA	Water	624.1

Analysis Batch: 776142

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-184114-2	EFFLUENT	Total/NA	Water	624.1	
MB 460-776142/9	Method Blank	Total/NA	Water	624.1	
LCS 460-776142/4	Lab Control Sample	Total/NA	Water	624.1	
LCSD 460-776142/5	Lab Control Sample Dup	Total/NA	Water	624.1	

General Chemistry

Analysis Batch: 579867

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-184114-1	RW-3D	Total/NA	Water	SM 2540C	
480-184114-2	EFFLUENT	Total/NA	Water	SM 2540C	
MB 480-579867/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 480-579867/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Analysis Batch: 581389

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-184114-1	RW-3D	Total/NA	Water	9040C	
480-184114-2	EFFLUENT	Total/NA	Water	9040C	
LCS 480-581389/1	Lab Control Sample	Total/NA	Water	9040C	

Lab Chronicle

Client: New York State D.E.C. Job ID: 480-184114-1 Project/Site: COSCO #344035

Client Sample ID: RW-3D Lab Sample ID: 480-184114-1 Date Collected: 05/03/21 10:15

Matrix: Water

Date Received: 05/04/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	776048	05/06/21 00:09	GXY	TAL EDI
Total/NA	Analysis	9040C		1	581389	05/17/21 18:47	KEB	TAL BUF
Total/NA	Analysis	SM 2540C		1	579867	05/07/21 11:27	CSS	TAL BUF

Lab Sample ID: 480-184114-2 **Client Sample ID: EFFLUENT**

Matrix: Water

Date Collected: 05/03/21 10:20 Date Received: 05/04/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	776142	05/06/21 10:04	CJM	TAL EDI
Total/NA	Analysis	9040C		1	581389	05/17/21 18:50	KEB	TAL BUF
Total/NA	Analysis	SM 2540C		1	579867	05/07/21 11:27	CSS	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Accreditation/Certification Summary

Client: New York State D.E.C. Job ID: 480-184114-1

Project/Site: COSCO #344035

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	P	rogram	Identification Number	Expiration Date
New York	N	IELAP	10026	04-01-22
The following analytes	are included in this report, b	out the laboratory is not certif	ied by the governing authority. This list ma	av include analytes fo
the agency does not of	fer certification.	•		.,
the agency does not of Analysis Method	fer certification. Prep Method	Matrix	Analyte	.,
0 ,		·	, , ,	

Laboratory: Eurofins TestAmerica, Edison

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
New York	NE	ELAP	11452	04-01-22
The following analytes	are included in this report by	it the laboratory is not certifi	ind by the governing outhority. This list ma	
0 ,	· '	it the laboratory is not certifi	ied by the governing authority. This list ma	ay include analytes for whi
the agency does not of Analysis Method	· '	Matrix	Analyte	ay include analytes for whi

4

5

7

8

9

11

12

4

Method Summary

Client: New York State D.E.C.
Project/Site: COSCO #344035

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL EDI
9040C	рН	SW846	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

2

Job ID: 480-184114-1

3

4

J

7

Ŏ

11

12

14

Sample Summary

Client: New York State D.E.C. Project/Site: COSCO #344035

Job ID: 480-184114-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset
480-184114-1	RW-3D	Water	05/03/21 10:15	05/04/21 08:00	
480-184114-2	EFFLUENT	Water	05/03/21 10:20	05/04/21 08:00	

3

4

5

7

Ō

10

111

13

14

Eurotins TestAmerica, Buffalo	Fibany	é
8-2298 0 Fax: 716-691-7991	#224 Chain of Custody Record	Environment Testing America
	CAn BUTTEIN Stone, Judy L	Carrier Tracking No(s): COC No: 480-140114. 21856 1
Client Contact: Andrew Talbot	E-Mail.	State of Origin: Page:
Company: Aztech Technologies Inc	PWSID: Analysis	rage 1 or 1
Address: 5 McCrea Hill Road	3	
Crty. Ballston Spa	TAT Requested (days):	A - HCL M - Hexane B - NaOdh N - None
State, Zip: NY, 12020	Δ Yes Δ No	
Phone:	ut 136146	
Email: atalbot@LaBellaPC.com	ON TO	9
Project Name: COSCO #344035	s or h	
Site:	eid isid is	480-184114 Chain of Custody
	Sample Matrix Sample Watrix Type (W-water, Filtened Sample (C=Comp.) Cassolid.	dmuV) li
Sample Identification	G=grab) BT=Tissue, A=Alr) III A. S 90	Special Instructions/Note:
RW-3D		
Effluent	1070 (
	7	
Possible Hazard Identification		
le Skin Irritant	Poison B Unknown Radiological	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For
Deliverable Requested: I, II, III, IV, Other (specify)	Specie	
Empty Kit Relinquished by:	Date: Time:	Method of Shipment:
Nemonated by Relinantshed by	12/ 1230 Company	Date/Time.
Relinquished by:	Dafe/Tinke: 3/21 1700 Churk Received by Company Received by	191
Custody Seals Intact: Custody Seal No.:	Cooler Temperature(s) *C and Other Remarks	10 Th
D ICO D NO		# (%;

Eurofins TestAmerica, Buffalo

Ver: 11/01/2020

Unconfirmed		Return To Client Disposal By Lab	y Lab Archive For
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	Special Instructions/QC Requirements:	
Empty Kit Relinguished by;	Date:	Time:	Method of Shipment:
Relinquished by: () MUNOW (IKO())	Date/Time/S/BUI 21 1706 Company	Received by Lanoffe Via Fador	9K Date/Time: 5/5/2 9:40 7
Relinquished by:	Date/Time: Company	Received by:	Date/Time: Com
Relinquished by:	Date/Time: Company	Received by:	Date/Time: Com
Custody Seals Intact: Custody Seal No.: 14 52 &	8 77	Cooler Temperature(s) °C and Other Remarks	4.2°C/3.7°C

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991	Chain of Custody Record			💸 eurofins Environment Testing America
Client Information (Sub Contract Lab)	Sampler	Lab PM: Stone, Judy L	Carrier Tracking No(s):	COC No: 480-63379.1
Client Contact: Shipping/Receiving	Phone:	E-Mail: Judy.Stone@Eurofinset.com	State of Origin: New York	Page: Page 1 of 1
Company: TestAmerica Laboratories, Inc.		Accreditations Required (See note): NELAP - New York		Job#: 480-184114-1
Address: 777 New Durham Road, ,	Due Date Requested: 6/3/2021	Analysis Requested	quested	
City: Edison State, Zip:	TAT Requested (days):			A - HCL M - Hexane B - NaOH N - None C - Zn Acetate O - AsNaO2 D - Nifric Acid P - Na2O4S E N-LICOA
NJ, 00617 Phone: 732-549-3900(Tel) 732-549-3679(Fax)	PO#:	Te line		
Email:	:*OM	(0)	8.	I - Ice J - DI Water
Project Name: COSCO #344035	Project #: 48005266	10 26	nenist	K - EDTA W - pH 4-5 L - EDA Z - other (specify)
Site:	SSOW#:	SD (Ye	of con	Other:
	Sample	eld Filtered S arform MS/M A.1_PREC/624 A.1_PREC/624	Ted Number	
Sample Identification - Client ID (Lab ID)	Sample Date Time G=grab) BT=Tissue, A=AIP	62 P)1)	Special Instructions/Note:
RW-3D (480-184114-1)		×	60	
	Eastern 10:20			
	Join Eastern water			
Note. Since laboratory accreditations are subject to change, Eurofins TestAmerica places the ownership of method, analyze & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica.	erica places the ownership of method, analyte & accreditation or thix being analyzed, the samples must be shipped back to the Et to date, return the signed Chain of Custody attesting to said co.	mpliance upon out subcontract laboratories. This sam rodins TestAmerica laboratory or other instructions will applicance to Eurofins TestAmerica.	pie shipment is forwarded under chain-of	f-custody If the laboratory does not currently for status should be brought to Eurofins
Possible Hazard Identification		Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	assessed if samples are retain	stained longer than 1 month)
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	Special Instructions/QC Requirements		
Empty Kit Relinguished by:	Date:	Time:	Method of Shipment:	
Relinquished by: () MW () W () () () Relinquished by:	Date/Times Specific 120 1404 Company	Received by:	V. a Fadax Date/Time: 55 2	Company Company
Relinquished by:	Date/Time:	Received by:	Date/Time:	Company
Custody Seals Intact: Custody Seal No.: 14 52&	448	Cooler Temperature(s) °C and Other Remarks	temarks 4.2°C / 2	704.
			,) 3	V 11/01/2020

Client: New York State D.E.C. Job Number: 480-184114-1

Login Number: 184114 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Wallace, Cameron

orontor. Wandoo, Jameron		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	AZTECH
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

2

5

6

0

10

12

4 1

Client: New York State D.E.C.

Job Number: 480-184114-1

Login Number: 184114 List Source: Eurofins TestAmerica, Edison List Number: 2

List Creation: 05/05/21 11:55 AM

Creator: Armbruster, Chris

Creator: Armbruster, Chris		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	1452877
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.7°C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins TestAmerica, Buffalo

June 2021 Analytical Data

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-185715-1 Client Project/Site: COSCO #344035

For:

New York State D.E.C. 625 Broadway 12th Floor Albany, New York 12233-7017

Attn: Robert Strang

Authorized for release by: 6/25/2021 5:24:26 PM

Judy Stone, Senior Project Manager (484)685-0868 Judy.Stone@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

5

5

6

R

9

11

12

М

4

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

gudystme

6

Judy Stone Senior Project Manager 6/25/2021 5:24:26 PM

8

10

11

12

14

Table of Contents	
Cover Page	1
Table of Contents	
Definitions	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	10
QC Sample Results	11
QC Association	15
Chronicle	16
Certification Summary	17
Method Summary	18
Sample Summary	19
Chain of Custody	20
Receipt Checklists	22

4

6

8

10

12

13

Definitions/Glossary

Client: New York State D.E.C. Job ID: 480-185715-1

Project/Site: COSCO #344035

Qualifiers

GC/MS VOA
Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

HF Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present
PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

6/25/2021

Eurofins TestAmerica, Buffalo

Page 4 of 23

Í

3

- 5

6

9

11

12

4.1

Case Narrative

Client: New York State D.E.C.
Project/Site: COSCO #344035

Job ID: 480-185715-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-185715-1

Receipt

The samples were received on 6/8/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.1° C.

GC/MS VOA

Method 624.1: The continuing calibration verification (CCV) associated with batch 460-783367 recovered outside acceptance criteria, low biased, for Bromoform. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Methods 9040C, SM 4500 H+ B: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples have been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: RW-3D (480-185715-1) and Effluent (480-185715-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 480-185715-1

2

Л

6

9

10

12

13

14

Detection Summary

Client: New York State D.E.C.

Job ID: 480-185715-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D

 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2-Dichloroethene, Total	30		2.0	0.44	ug/L	1	_	624.1	Total/NA
Chloroform	0.69	J	1.0	0.33	ug/L	1	(624.1	Total/NA
Tetrachloroethene	46		1.0	0.25	ug/L	1	(624.1	Total/NA
Trichloroethene	64		1.0	0.31	ug/L	1		624.1	Total/NA
pH	6.94	HF	0.100	0.100	SU	1	!	9040C	Total/NA
Temperature	20.6	HF	0.00100	0.00100	Degrees C	1	!	9040C	Total/NA
Total Dissolved Solids	695		10.0	4.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: Effluent

Lab Sample ID: 480-185715-2

Lab Sample ID: 480-185715-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2-Dichloroethene, Total	1.2	J	2.0	0.44	ug/L	1	_	624.1	Total/NA
Tetrachloroethene	0.57	J	1.0	0.25	ug/L	1		624.1	Total/NA
Trichloroethene	1.2		1.0	0.31	ug/L	1		624.1	Total/NA
pH	7.72	HF	0.100	0.100	SU	1		9040C	Total/NA
Temperature	21.0	HF	0.00100	0.00100	Degrees C	1		9040C	Total/NA
Total Dissolved Solids	689		10.0	4.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: Trip Blank

Lab Sample ID: 480-185715-3

No Detections.

Client Sample Results

Client: New York State D.E.C. Job ID: 480-185715-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D Date Collected: 06/07/21 10:15

Date Received: 06/08/21 08:00

Lab Sample ID: 480-185715-1

Matrix: Water

Method: 624.1	- Volatile (Organic (Compounds	(GC/MS)

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.24	ug/L			06/10/21 13:34	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.37	ug/L			06/10/21 13:34	1
1,1,2-Trichloroethane	ND	1.0	0.15	ug/L			06/10/21 13:34	1
1,1-Dichloroethane	ND	1.0	0.26	ug/L			06/10/21 13:34	1
1,1-Dichloroethene	ND	1.0	0.12	ug/L			06/10/21 13:34	1
1,2-Dichlorobenzene	ND	1.0	0.19	ug/L			06/10/21 13:34	1
1,2-Dichloroethane	ND	1.0	0.84	ug/L			06/10/21 13:34	1
1,2-Dichloroethene, Total	30	2.0	0.44	ug/L			06/10/21 13:34	1
1,2-Dichloropropane	ND	1.0	0.35	ug/L			06/10/21 13:34	1
1,3-Dichlorobenzene	ND	1.0	0.13	ug/L			06/10/21 13:34	1
1,4-Dichlorobenzene	ND	1.0	0.18	ug/L			06/10/21 13:34	1
2-Chloroethyl vinyl ether	ND	1.0	0.91	ug/L			06/10/21 13:34	1
Acrolein	ND	4.0	1.1	ug/L			06/10/21 13:34	1
Acrylonitrile	ND	2.0	0.77	ug/L			06/10/21 13:34	1
Benzene	ND	1.0	0.43	ug/L			06/10/21 13:34	1
Bromoform	ND	1.0	0.54	ug/L			06/10/21 13:34	1
Bromomethane	ND	1.0	0.45	ug/L			06/10/21 13:34	1
Carbon tetrachloride	ND	1.0	0.21	ug/L			06/10/21 13:34	1
Chlorobenzene	ND	1.0	0.38	ug/L			06/10/21 13:34	1
Chlorodibromomethane	ND	1.0	0.13	ug/L			06/10/21 13:34	1
Chloroethane	ND	1.0	0.32	ug/L			06/10/21 13:34	1
Chloroform	0.69 J	1.0	0.33	ug/L			06/10/21 13:34	1
Chloromethane	ND	1.0	0.43	ug/L			06/10/21 13:34	1
cis-1,3-Dichloropropene	ND	1.0	0.46	ug/L			06/10/21 13:34	1
Bromodichloromethane	ND	1.0	0.34	ug/L			06/10/21 13:34	1
Ethylbenzene	ND	1.0	0.30	ug/L			06/10/21 13:34	1
Methylene Chloride	ND	1.0	0.32	ug/L			06/10/21 13:34	1
Tetrachloroethene	46	1.0	0.25	ug/L			06/10/21 13:34	1
Toluene	ND	1.0	0.38	ug/L			06/10/21 13:34	1
trans-1,2-Dichloroethene	ND	1.0	0.24	ug/L			06/10/21 13:34	1
trans-1,3-Dichloropropene	ND	1.0	0.22	ug/L			06/10/21 13:34	1
Trichloroethene	64	1.0	0.31	ug/L			06/10/21 13:34	1
Vinyl chloride	ND	1.0	0.34	ug/L			06/10/21 13:34	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	124	60 - 140			_		06/10/21 13:34	1
4-Bromofluorobenzene	90	60 - 140					06/10/21 13:34	1
Toluene-d8 (Surr)	109	60 - 140					06/10/21 13:34	1

General	Chami	atm.
General	i Chemi	SIL

Dibromofluoromethane (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total Dissolved Solids	695		10.0	4.0	mg/L			06/09/21 13:53	1	
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac	
рН	6.94	HF	0.100	0.100	SU			06/10/21 10:01	1	
Temperature	20.6	HF	0.00100	0.00100	Degrees C			06/10/21 10:01	1	

60 - 140

121

06/10/21 13:34

Page 7 of 23

Client Sample Results

Client: New York State D.E.C. Job ID: 480-185715-1

Project/Site: COSCO #344035

Client Sample ID: Effluent

Lab Sample ID: 480-185715-2

Matrix: Water

Date Collected: 06/07/21 10:20
Date Received: 06/08/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			06/10/21 13:09	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			06/10/21 13:09	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			06/10/21 13:09	1
1,1-Dichloroethane	ND		1.0	0.26	ug/L			06/10/21 13:09	1
1,1-Dichloroethene	ND		1.0	0.12	ug/L			06/10/21 13:09	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			06/10/21 13:09	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			06/10/21 13:09	1
1,2-Dichloroethene, Total	1.2	J	2.0	0.44	ug/L			06/10/21 13:09	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			06/10/21 13:09	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			06/10/21 13:09	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			06/10/21 13:09	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			06/10/21 13:09	1
Acrolein	ND		4.0	1.1	ug/L			06/10/21 13:09	1
Acrylonitrile	ND		2.0	0.77	ug/L			06/10/21 13:09	1
Benzene	ND		1.0	0.43	ug/L			06/10/21 13:09	1
Bromoform	ND		1.0	0.54	ug/L			06/10/21 13:09	1
Bromomethane	ND		1.0	0.45	ug/L			06/10/21 13:09	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			06/10/21 13:09	1
Chlorobenzene	ND		1.0	0.38	ug/L			06/10/21 13:09	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			06/10/21 13:09	1
Chloroethane	ND		1.0	0.32	ug/L			06/10/21 13:09	1
Chloroform	ND		1.0	0.33	ug/L			06/10/21 13:09	1
Chloromethane	ND		1.0	0.43	ug/L			06/10/21 13:09	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			06/10/21 13:09	1
Bromodichloromethane	ND		1.0	0.34	ug/L			06/10/21 13:09	1
Ethylbenzene	ND		1.0	0.30	ug/L			06/10/21 13:09	1
Methylene Chloride	ND		1.0	0.32	ug/L			06/10/21 13:09	1
Tetrachloroethene	0.57	J	1.0	0.25	ug/L			06/10/21 13:09	1
Toluene	ND		1.0	0.38	ug/L			06/10/21 13:09	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			06/10/21 13:09	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			06/10/21 13:09	1
Trichloroethene	1.2		1.0	0.31	ug/L			06/10/21 13:09	1
Vinyl chloride	ND		1.0	0.34	ug/L			06/10/21 13:09	1
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	120		60 - 140			_		06/10/21 13:09	1
4-Bromofluorobenzene	84		60 - 140					06/10/21 13:09	1
Toluene-d8 (Surr)	104		60 - 140					06/10/21 13:09	1
Dibromofluoromethane (Surr)	117		60 - 140					06/10/21 13:09	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	689		10.0	4.0	mg/L			06/09/21 13:53	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte pH	Result 7.72			RL 0.100		_ <u>D</u> _	Prepared	Analyzed 06/10/21 10:04	Dil Fac

Eurofins TestAmerica, Buffalo

Page 8 of 23

9

4

6

8

10

12

14

6/25/2021

Client Sample Results

Client: New York State D.E.C. Job ID: 480-185715-1

Project/Site: COSCO #344035

Client Sample ID: Trip Blank

Lab Sample ID: 480-185715-3

Date Collected: 06/07/21 00:00 Matrix: Water Date Received: 06/08/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	MD		1.0	0.24	ug/L			06/10/21 12:33	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			06/10/21 12:33	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			06/10/21 12:33	1
1,1-Dichloroethane	ND		1.0	0.26	ug/L			06/10/21 12:33	1
1,1-Dichloroethene	ND		1.0	0.12	ug/L			06/10/21 12:33	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			06/10/21 12:33	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			06/10/21 12:33	1
1,2-Dichloroethene, Total	ND		2.0	0.44	ug/L			06/10/21 12:33	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			06/10/21 12:33	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			06/10/21 12:33	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			06/10/21 12:33	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			06/10/21 12:33	1
Acrolein	ND		4.0	1.1	ug/L			06/10/21 12:33	1
Acrylonitrile	ND		2.0	0.77	ug/L			06/10/21 12:33	1
Benzene	ND		1.0	0.43	ug/L			06/10/21 12:33	1
Bromoform	ND		1.0	0.54	ug/L			06/10/21 12:33	1
Bromomethane	ND		1.0	0.45	ug/L			06/10/21 12:33	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			06/10/21 12:33	1
Chlorobenzene	ND		1.0	0.38	ug/L			06/10/21 12:33	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			06/10/21 12:33	1
Chloroethane	ND		1.0	0.32	ug/L			06/10/21 12:33	1
Chloroform	ND		1.0	0.33	ug/L			06/10/21 12:33	1
Chloromethane	ND		1.0	0.43	ug/L			06/10/21 12:33	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			06/10/21 12:33	1
Bromodichloromethane	ND		1.0	0.34	ug/L			06/10/21 12:33	1
Ethylbenzene	ND		1.0	0.30	ug/L			06/10/21 12:33	1
Methylene Chloride	ND		1.0	0.32	ug/L			06/10/21 12:33	1
Tetrachloroethene	ND		1.0	0.25	ug/L			06/10/21 12:33	1
Toluene	ND		1.0	0.38	ug/L			06/10/21 12:33	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			06/10/21 12:33	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			06/10/21 12:33	1
Trichloroethene	ND		1.0	0.31	ug/L			06/10/21 12:33	1
Vinyl chloride	ND		1.0	0.34	ug/L			06/10/21 12:33	1
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	127		60 - 140					06/10/21 12:33	1
4-Bromofluorobenzene	89		60 - 140					06/10/21 12:33	1
Toluene-d8 (Surr)	110		60 - 140					06/10/21 12:33	1
Dibromofluoromethane (Surr)	124		60 - 140					06/10/21 12:33	1

Surrogate Summary

Client: New York State D.E.C. Job ID: 480-185715-1 Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Reco					
		DCA	BFB	TOL	DBFM		
Lab Sample ID	Client Sample ID	(60-140)	(60-140)	(60-140)	(60-140)		
480-185715-1	RW-3D	124	90	109	121		
480-185715-2	Effluent	120	84	104	117		
480-185715-3	Trip Blank	127	89	110	124		
LCS 460-783367/3	Lab Control Sample	118	87	108	115		
LCSD 460-783367/4	Lab Control Sample Dup	118	86	107	116		
MB 460-783367/8	Method Blank	123	87	111	121		

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Eurofins TestAmerica, Buffalo

Job ID: 480-185715-1

Client: New York State D.E.C. Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS)

MB MB

Lab Sample ID: MB 460-783367/8

Matrix: Water

Analysis Batch: 783367

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			06/10/21 09:37	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			06/10/21 09:37	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			06/10/21 09:37	1
1,1-Dichloroethane	ND		1.0	0.26	ug/L			06/10/21 09:37	1
1,1-Dichloroethene	ND		1.0	0.12	ug/L			06/10/21 09:37	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			06/10/21 09:37	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			06/10/21 09:37	1
1,2-Dichloroethene, Total	ND		2.0	0.44	ug/L			06/10/21 09:37	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			06/10/21 09:37	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			06/10/21 09:37	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			06/10/21 09:37	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			06/10/21 09:37	1
Acrolein	ND		4.0	1.1	ug/L			06/10/21 09:37	1
Acrylonitrile	ND		2.0	0.77	ug/L			06/10/21 09:37	1
Benzene	ND		1.0	0.43	ug/L			06/10/21 09:37	1
Bromoform	ND		1.0	0.54	ug/L			06/10/21 09:37	1
Bromomethane	ND		1.0	0.45	ug/L			06/10/21 09:37	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			06/10/21 09:37	1
Chlorobenzene	ND		1.0	0.38	ug/L			06/10/21 09:37	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			06/10/21 09:37	1
Chloroethane	ND		1.0	0.32	ug/L			06/10/21 09:37	1
Chloroform	ND		1.0	0.33	ug/L			06/10/21 09:37	1
Chloromethane	ND		1.0	0.43	ug/L			06/10/21 09:37	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			06/10/21 09:37	1
Bromodichloromethane	ND		1.0	0.34	ug/L			06/10/21 09:37	1
Ethylbenzene	ND		1.0	0.30	ug/L			06/10/21 09:37	1
Methylene Chloride	ND		1.0	0.32	ug/L			06/10/21 09:37	1
Tetrachloroethene	ND		1.0	0.25	ug/L			06/10/21 09:37	1
Toluene	ND		1.0	0.38	ug/L			06/10/21 09:37	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			06/10/21 09:37	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			06/10/21 09:37	1
Trichloroethene	ND		1.0	0.31	ug/L			06/10/21 09:37	1
Vinyl chloride	ND		1.0	0.04	ug/L			06/10/21 09:37	1

MB	MB

Surrogate	%Recovery G	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	123	60 - 140		06/10/21 09:37	1
4-Bromofluorobenzene	87	60 - 140		06/10/21 09:37	1
Toluene-d8 (Surr)	111	60 - 140		06/10/21 09:37	1
Dibromofluoromethane (Surr)	121	60 - 140		06/10/21 09:37	1

Lab Sample ID: LCS 460-783367/3

Analysis Batch: 783367

Matrix: Water

, , , , , , , , , , , , , , , , , , , ,	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	20.0	21.8		ug/L		109	70 - 130
1,1,2,2-Tetrachloroethane	20.0	22.9		ug/L		114	60 - 140
1,1,2-Trichloroethane	20.0	20.8		ug/L		104	70 - 130

Eurofins TestAmerica, Buffalo

Client Sample ID: Lab Control Sample

Page 11 of 23

6/25/2021

Prep Type: Total/NA

Job ID: 480-185715-1

Client: New York State D.E.C. Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-783367/3

Matrix: Water

Analysis Batch: 783367

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethane	20.0	26.1		ug/L		130	70 - 130
1,1-Dichloroethene	20.0	24.3		ug/L		121	50 - 150
1,2-Dichlorobenzene	20.0	18.6		ug/L		93	65 _ 135
1,2-Dichloroethane	20.0	22.9		ug/L		114	70 - 130
1,2-Dichloroethene, Total	40.0	48.7		ug/L		122	60 - 140
1,2-Dichloropropane	20.0	27.3		ug/L		136	35 _ 165
1,3-Dichlorobenzene	20.0	19.0		ug/L		95	70 - 130
1,4-Dichlorobenzene	20.0	17.8		ug/L		89	65 _ 135
2-Chloroethyl vinyl ether	20.0	28.3		ug/L		141	0.1 _ 225
Acrolein	40.6	57.1		ug/L		141	10 _ 150
Acrylonitrile	200	221		ug/L		110	60 - 140
Benzene	20.0	22.0		ug/L		110	65 - 135
Bromoform	20.0	15.1		ug/L		75	70 - 130
Bromomethane	20.0	11.3		ug/L		57	15 _ 185
Carbon tetrachloride	20.0	21.0		ug/L		105	70 - 130
Chlorobenzene	20.0	19.7		ug/L		98	65 _ 135
Chlorodibromomethane	20.0	17.7		ug/L		88	70 - 135
Chloroethane	20.0	21.7		ug/L		109	40 - 160
Chloroform	20.0	23.7		ug/L		119	70 _ 135
Chloromethane	20.0	21.6		ug/L		108	0.1 _ 205
cis-1,3-Dichloropropene	20.0	21.7		ug/L		109	25 _ 175
Bromodichloromethane	20.0	24.0		ug/L		120	65 - 135
Ethylbenzene	20.0	20.0		ug/L		100	60 - 140
Methylene Chloride	20.0	25.5		ug/L		128	60 - 140
Tetrachloroethene	20.0	16.4		ug/L		82	70 - 130
Toluene	20.0	20.6		ug/L		103	70 - 130
trans-1,2-Dichloroethene	20.0	24.7		ug/L		123	70 - 130
trans-1,3-Dichloropropene	20.0	20.3		ug/L		102	50 _ 150
Trichloroethene	20.0	24.6		ug/L		123	65 _ 135
Vinyl chloride	20.0	24.4		ug/L		122	5 - 195

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	118		60 - 140
4-Bromofluorobenzene	87		60 - 140
Toluene-d8 (Surr)	108		60 - 140
Dibromofluoromethane (Surr)	115		60 - 140

Lab Sample ID: LCSD 460-783367/4

Matrix: Water

Analysis Batch: 783367

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	20.0	21.8		ug/L		109	70 - 130	0	36
1,1,2,2-Tetrachloroethane	20.0	22.3		ug/L		111	60 - 140	3	61
1,1,2-Trichloroethane	20.0	20.4		ug/L		102	70 - 130	2	45
1,1-Dichloroethane	20.0	25.8		ug/L		129	70 - 130	1	40
1,1-Dichloroethene	20.0	24.5		ug/L		123	50 - 150	1	32
1,2-Dichlorobenzene	20.0	18.6		ug/L		93	65 - 135	0	57

Eurofins TestAmerica, Buffalo

6/25/2021

Page 12 of 23

Job ID: 480-185715-1

Client: New York State D.E.C. Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 460-783367/4

Matrix: Water

Analysis Batch: 783367

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichloroethane	20.0	22.4		ug/L		112	70 - 130	2	49
1,2-Dichloroethene, Total	40.0	47.5		ug/L		119	60 - 140	2	50
1,2-Dichloropropane	20.0	26.9		ug/L		135	35 - 165	1	55
1,3-Dichlorobenzene	20.0	18.6		ug/L		93	70 - 130	2	43
1,4-Dichlorobenzene	20.0	17.8		ug/L		89	65 - 135	0	57
2-Chloroethyl vinyl ether	20.0	27.3		ug/L		136	0.1 - 225	4	71
Acrolein	40.6	52.2		ug/L		129	10 - 150	9	60
Acrylonitrile	200	217		ug/L		109	60 - 140	2	60
Benzene	20.0	21.4		ug/L		107	65 - 135	3	61
Bromoform	20.0	14.7		ug/L		74	70 - 130	2	42
Bromomethane	20.0	12.4		ug/L		62	15 - 185	9	61
Carbon tetrachloride	20.0	21.2		ug/L		106	70 - 130	1	41
Chlorobenzene	20.0	19.1		ug/L		96	65 - 135	3	53
Chlorodibromomethane	20.0	17.7		ug/L		88	70 - 135	0	50
Chloroethane	20.0	21.4		ug/L		107	40 - 160	1	78
Chloroform	20.0	23.3		ug/L		117	70 - 135	2	54
Chloromethane	20.0	22.1		ug/L		110	0.1 - 205	2	60
cis-1,3-Dichloropropene	20.0	21.1		ug/L		106	25 - 175	3	58
Bromodichloromethane	20.0	24.1		ug/L		120	65 - 135	0	56
Ethylbenzene	20.0	19.3		ug/L		97	60 - 140	4	63
Methylene Chloride	20.0	24.7		ug/L		124	60 - 140	3	28
Tetrachloroethene	20.0	16.2		ug/L		81	70 - 130	2	39
Toluene	20.0	20.4		ug/L		102	70 - 130	1	41
trans-1,2-Dichloroethene	20.0	23.9		ug/L		120	70 - 130	3	45
trans-1,3-Dichloropropene	20.0	19.6		ug/L		98	50 - 150	4	86
Trichloroethene	20.0	24.3		ug/L		122	65 - 135	1	48
Vinyl chloride	20.0	24.4		ug/L		122	5 - 195	0	66

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	118		60 - 140
4-Bromofluorobenzene	86		60 - 140
Toluene-d8 (Surr)	107		60 - 140
Dibromofluoromethane (Surr)	116		60 - 140

Method: 9040C - pH

Lab Sample ID: LCS 480-584841/1

Matrix: Water

Analysis Batch: 584841

ı		Spike	LCS	LCS			%Rec.	
	Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	
	рН	7.00	7.050	SU		101	99 - 101	

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Page 13 of 23

QC Sample Results

Client: New York State D.E.C. Job ID: 480-185715-1

Project/Site: COSCO #344035

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 480-584667/1 Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA

Analysis Batch: 584667

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	MD		10.0	4.0	mg/L			06/09/21 13:53	1

Lab Sample ID: LCS 480-584667/2 Client Sample ID: Lab Control Sample

Matrix: Water Prep Type: Total/NA

Analysis Batch: 584667

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit D %Rec **Total Dissolved Solids** 501 498.0 mg/L 99 85 - 115

QC Association Summary

Client: New York State D.E.C. Job ID: 480-185715-1

Project/Site: COSCO #344035

GC/MS VOA

Analysis Batch: 783367

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-185715-1	RW-3D	Total/NA	Water	624.1	
480-185715-2	Effluent	Total/NA	Water	624.1	
480-185715-3	Trip Blank	Total/NA	Water	624.1	
MB 460-783367/8	Method Blank	Total/NA	Water	624.1	
LCS 460-783367/3	Lab Control Sample	Total/NA	Water	624.1	
LCSD 460-783367/4	Lab Control Sample Dup	Total/NA	Water	624.1	

General Chemistry

Analysis Batch: 584667

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-185715-1	RW-3D	Total/NA	Water	SM 2540C	
480-185715-2	Effluent	Total/NA	Water	SM 2540C	
MB 480-584667/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 480-584667/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Analysis Batch: 584841

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-185715-1	RW-3D	Total/NA	Water	9040C	
480-185715-2	Effluent	Total/NA	Water	9040C	
LCS 480-584841/1	Lab Control Sample	Total/NA	Water	9040C	

Eurofins TestAmerica, Buffalo

6/25/2021

Lab Chronicle

Client: New York State D.E.C.

Job ID: 480-185715-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D

Lab Sample ID: 480-185715-1

Metric: Weter

Matrix: Water

Date Collected: 06/07/21 10:15 Date Received: 06/08/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	783367	06/10/21 13:34	AAT	TAL EDI
Total/NA	Analysis	9040C		1	584841	06/10/21 10:01	JPS	TAL BUF
Total/NA	Analysis	SM 2540C		1	584667	06/09/21 13:53	JGO	TAL BUF

Client Sample ID: Effluent

Lab Sample ID: 480-185715-2

Matrix: Water

Date Collected: 06/07/21 10:20 Date Received: 06/08/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	783367	06/10/21 13:09	AAT	TAL EDI
Total/NA	Analysis	9040C		1	584841	06/10/21 10:04	JPS	TAL BUF
Total/NA	Analysis	SM 2540C		1	584667	06/09/21 13:53	JGO	TAL BUF

Client Sample ID: Trip Blank

Lab Sample ID: 480-185715-3

Matrix: Water

Date Collected: 06/07/21 00:00 Date Received: 06/08/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	783367	06/10/21 12:33	AAT	TAL EDI

Laboratory References:

 ${\sf TAL\;BUF=Eurofins\;TestAmerica,\;Buffalo,\;10\;Hazelwood\;Drive,\;Amherst,\;NY\;14228-2298,\;TEL\;(716)691-2600}$

 ${\sf TAL\;EDI=Eurofins\;TestAmerica,\;Edison,\;777\;New\;Durham\;Road,\;Edison,\;NJ\;08817,\;TEL\;(732)549-3900}$

Eurofins TestAmerica, Buffalo

2

4

7

9

11

12

14

Accreditation/Certification Summary

Client: New York State D.E.C. Job ID: 480-185715-1

Project/Site: COSCO #344035

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	P	rogram	Identification Number	Expiration Date	
New York	N	ELAP	10026	04-01-22	
The following analytes	are included in this report, b	ut the laboratory is not certif	ied by the governing authority. This list ma	av include analytes for wh	
the agency does not of	fer certification	,	, gg,-	.,,	
the agency does not of Analysis Method	fer certification. Prep Method	Matrix	Analyte	-,	
0 ,		·	, , ,		

Laboratory: Eurofins TestAmerica, Edison

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
New York	NI	ELAP	11452	04-01-22
The following analytes	are included in this report, bu	ut the laboratory is not certifi	ed by the governing authority. This list ma	ay include analytes for w
	for cortification			
the agency does not of	ier cerinication.			
the agency does not of				
the agency does not of Analysis Method	Prep Method	Matrix	Analyte	

Eurofins TestAmerica, Buffalo

Page 17 of 23

9

3

_

9

4 4

12

IR

1

6/25/2021

Method Summary

Client: New York State D.E.C.

Project/Site: COSCO #344035

Job ID: 480-185715-1

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL EDI
9040C	pH	SW846	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

2

3

4

J

7

8

44

12

. .

Sample Summary

Client: New York State D.E.C.

Project/Site: COSCO #344035

Job ID: 480-185715-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	As
480-185715-1	RW-3D	Water	06/07/21 10:15	06/08/21 08:00	
480-185715-2	Effluent	Water	06/07/21 10:20	06/08/21 08:00	
480-185715-3	Trip Blank	Water	06/07/21 00:00	06/08/21 08:00	

Eurofins TestAmerica, Buffalo

Environment Testing TSP Dodecahydrate Special Instructions/Note: P - Na204S Q - Na2S03 R - Na2S203 Months O - AsNaO2 W - pH 4-5 S - H2SO4 V - MCAA Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon COC No: 480-156752-34562.1 Preservation Codes: 480-185715 Chain of Custody H - Ascorbic Acid Nitric Acid NaHSO4 Page: Page 1 of 1 Zn Acetate DI Water A - HCL B - NaOH Total Number of containers 00 618121 Method of Shipment Carrier Tracking No(s) 3 State of Origin **Analysis Requested** Cooler Temperature(s) °C and Other Remarks Special Instructions/QC Requirements E-Mail. Judy.Stone@Eurofinset.com 624.1_PREC - (MOD) Priority Pollutant Volatiles Received by Chain of Custody Record sbiloS beviossiD latoT - balsa_20048 Lab PM. Stone, Judy L Perform MS/MSD (Yes or No) Field Filtered Sample (Yes or No) Azted Preservation Code: Water Water Matrix Decoto Radiological Cab Type (C=comp, Sample G=grab) 13:30 PWSID 120 Compliance Project: A Yes A No 02,01 Sample 10:15 Time Unknown (days): **Due Date Requested** CallOut 136146 Sample Date 1 Project # 48005266 SSOW# Poison B Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No. Phone: 716-691-2600 Fax: 716-691-7991 Flammable Possible Hazard Identification Amherst, NY 14228-2298 atalbot@LaBellaPC.com Custody Seals Intact:

Δ Yes Δ No Aztech Technologies Inc Empty Kit Relinquished Client Information Sample Identification 10 Hazelwood Drive 5 McCrea Hill Road Non-Hazard COSCO #344035 Client Contact Andrew Talbot Ballston Spa State, Zip NY, 12020 RW-3D Effluent

Environment Testing America

💸 eurofins

Chain of Custody Record

Eurofins TestAmerica, Buffalo

10 Hazelwood Drive

Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991		Cilalli oi custouy Record			America	Q
Client Information (Sub Contract Lab)	Sampler:	Lab PM: Stone,	Lab PM: Stone, Judy L	Carrier Tracking No(s):	COC No: 480-64352.1	
	Phone:	E-Mail: Judy	E-Mail: Judy Stone@Eurofinset.com	State of Origin:	Page:	
Company. TestAmerica Laboratories, Inc.			Accreditations Required (See note): NELAP - New York		Job #: 480-185715-1	
Address: 777 New Durtham Road.	Due Date Requested: 7/8/2021		Analysis Requested	auested	l#	
City: Edison	TAT Requested (days):				A - HCL M - Hexane B - NaOH N - None C - Zn Acetate O - AsNaO2	
State, Zip: NJ, 08817			Bolluts			
Phone: 732-549-3900(Tel) 732-549-3679(Fax)	# Od.					ydrate
Email:	WO#:		(0		I - Ice J - DI Water	
Project Name: COSCO #344035	Project #: 48005266		N 10 se	nanist	K - EDTA L - EDA	
Site:	SSOW#:		SD (Ye	000 jc	Other:	
Samula Idantification Cliant ID (1 ah ID)	Sample (C.		leid Filtered S 24. LPREC/624 24. Seles	TedmuN ls3o		
סמווילוני ומנוויווימיימיו - סוויווי ול (במי ול)	X	ation Code:	4 X		Special metachonismore.	
RW-3D (480-185715-1)		Water	×		9	
Effluent (480-185715-2)	6/7/21 10:20 Eastern	Water	×		9	
Trip Blank (480-185715-3)	6/7/21 Eastern	Water	×		2	
Note: Since Jahoratov acceditations are subject to chance Euroffing Tastlana	arica places the outperchip of mother analys	grilamon poistering	and the state of t	de constitution de constituti de constitution de constitution de constitution de constitution	source of the state of the stat	1
maintain acceptancy of a signature of the samples many of the samples are all the samp	once proces the ownership of metroo, alray trix being analyzed, the samples must be shi to date, return the signed Chain of Custody	per accretion to the Eurofins 1 attesting to said complican	or upon our succontract ractions. This seriestAmerica laboratory or other instructions will ce to Eurofins TestAmerica.	the suprient is to water under charity be provided. Any changes to accredita	or-custous. It the raboratory does not current ition status should be brought to Eurofins	Á
Possible Hazard Identification			ee may be	assessed if samples are retail	ned longer than 1 month)	
Oriconifined Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2		Special Instructions/QC Requirements:	oosal By Lab	Archive For Months	
Empty Kit Relinquished by:	Date:		Time:	Method of Shipment:		
Relinquished by: MMM OV (U.O.D.	Date/Tithe: (6/2/ 1769	Company	10,07	ester Daterime: /	19 40 Company T.A	
Relinquished by:	Date/Time.	Company	Received by:	Date/Time:	Company	
Relinquished by:	Date/Time:	Company	Received by:	Date/Time:	Company	
Custody Seals Infact: Custody Seal No. 15/3/2	4		Cooler Temperature(s) °C and Other Remarks	emarks:		

Client: New York State D.E.C. Job Number: 480-185715-1

Login Number: 185715 List Source: Eurofins TestAmerica, Buffalo

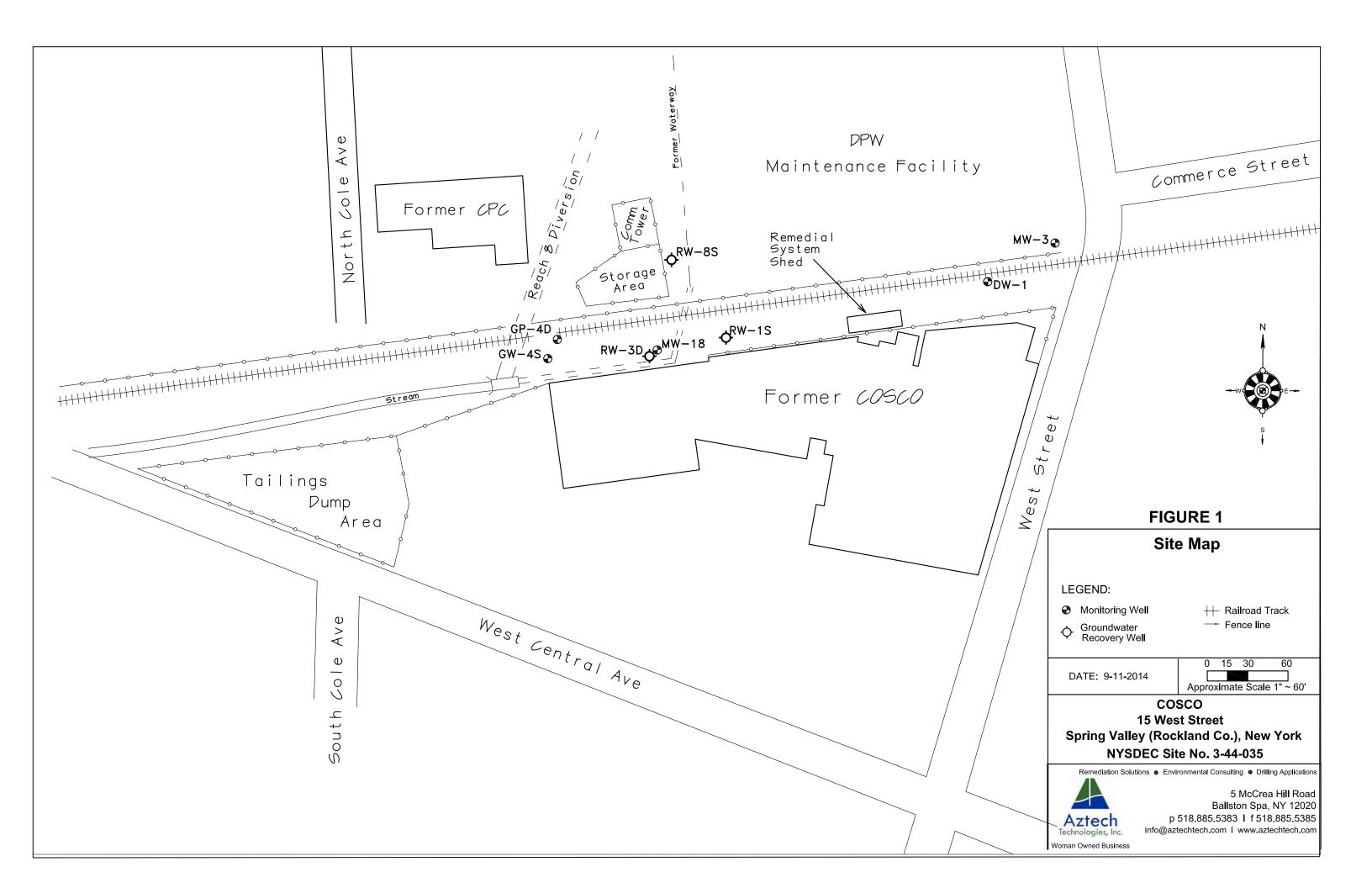
List Number: 1

Creator: Sabuda, Brendan D

Creator. Sabuda, Brendan D		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.1 #1 ICE
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	False	No: Received Trip Blank(s) not listed on COC.
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C.


Job Number: 480-185715-1

List Source: Eurofins TestAmerica, Edison
List Number: 2
List Creation: 06/10/21 11:09 AM

Creator: Mevers Gary

Creator: Meyers, Gary		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	1513127
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

Eurofins TestAmerica, Buffalo

January 11, 2021

Robert Strang, E.I.T.

New York State Department of Environmental Conservation
Remedial Section D, Bureau E
Division of Environmental Remediation
625 Broadway
Albany, NY 12233-7014

RE: Third and Fourth Quarter 2021 Operating Summary Report – Cosco Site Site Number 344035

Mr. Strang,

LaBella Associates (LaBella) has prepared the following correspondence to summarize the operation and maintenance (O&M) activities and laboratory analytical results for the New York State Department of Environmental Conservation (NYSDEC) COSCO site located in Spring Valley, New York. The activities summarized within this report include the third and fourth quarters of 2021 operation and maintenance O&M, and system sampling events conducted by LaBella. Typical tasks performed during O&M activities include:

- System performance readings (flow, pressure, control settings);
- Well gauging;
- Monthly system sampling and laboratory analysis;
- System maintenance;
- Grounds maintenance.

Non-routing O&M activities include:

- Annual SSDS inspection;
- Semi-annual site-wide sampling

Non-routine 0&M activities are reported in separate reports.

Site Background

The site is located in the Village of Spring Valley, Rockland County, New York. The site is bordered by a Conrail right of way to the north, West Central Avenue to the south, West Street to the east. The western end of the site is bounded by the intersection between the Conrail right of way and West Central Avenue (**Figure 1**).

The Consolidated Stamp Company (COSCO) historically used trichloroethlyne (TCE) in a vapor degreasing process as part of their operation and also discharged wastewater containing TCE into a drainage feature known as the "Reach B Diversion".

The remedial objective for groundwater at the COSCO site (as per the August 1999 Amendment to the Record of Decision) is to contain the site related contaminants by extracting groundwater from overburden and bedrock, treat the groundwater onsite to remove volatile organic compounds

(VOC's), and discharge the treated groundwater. The primary contaminants of concern (COCs) are TCE, tetrachloroethlyne (PCE) and Cis-1-2-dicloroethene (DCE), and degradation byproducts.

The site includes eight (8) groundwater monitoring and/or recovery wells from which monitoring of groundwater quality can be conducted. Five (5) of these wells are completed within the shallow unconsolidated deposits and three (3) are completed within the bedrock.

The current groundwater extraction and treatment (GWE&T) system became operational at the site in January, 2012. This system has extracted groundwater from the overburden via recovery wells RW-1S and RW-8S, and from the bedrock via well RW-3D. The GWE&T system currently extracts groundwater from the bedrock lift well RW-3D. Extracted groundwater is conveyed via underground piping from the recovery well(s) to the treatment system shed located in the area along the Conrail right of way north of the COSCO building. The extracted groundwater is temporarily held in a 1,500-gallon polyethylene batch tank prior to treatment. Treatment is via two (2) bag filter units (connected in a parallel configuration) followed by air stripping. Once air stripping is completed, the treated water is discharged to the "Reach B Diversion" via underground piping.

Procedures

The GWE&T system O&M is via a combination of daily e-mails from the systems programmable logic controller (PLC), and bi-weekly site visits. The daily emails include specific system performance readings (flows, pressures, etc.) that help to evaluate system performance and anticipate O&M tasks to be performed during the bi-weekly site visits.

- System Performance Readings:
 - System Flow system flow rate and flow total data is transmitted daily via email.
 Data includes flow rate from active recovery well(s) (currently RW-3D) and flow total.
 The emails also include data regarding system operational status and system alarms.
 - System Pressure –Pressure readings are recorded during site inspections. Pressure readings are recorded at: the transfer pump; at each bag filter, and; at the effluent pump. Pressure readings are also monitored via the daily emails at each bag filter and the air stripper.
 - Control Settings Transfer pump, effluent pump and air stripper blower variable frequency drive (VFD) readings are recorded during bi-weekly site inspections. This data is monitored to ensure that the system motors are operating within prescribed parameters.
- Well Gauging The eight (8) site wells are gauged during site visits to determine the depth to groundwater using an electronic water level meter graduated in 0.01 foot intervals.
 Groundwater measurements are taken from the top of well casings. The wells are gauged: while the remedial system is running; immediately after the system is shutdown, and; 30 minutes after the system is shutdown. The system is restarted when gauging is completed.
- Monthly System Sampling and Laboratory Analysis The system influent and effluent (post-treatment) is sampled monthly for laboratory analysis using EPA Method 624. The samples are also analyzed for total dissolved solids (TDS) and acidity (pH). Influent samples are collected from a sample port located on the RW-3D influent line. No other wells are being utilized for groundwater extraction at this time. Effluent samples are collected from a sample port located after the air stripper discharge pump. The samples are delivered under chain of custody protocols to Test America Laboratories, Inc. Laboratory reports are attached.
- System Maintenance typical routine system maintenance includes: bag filter changes, valve maintenance/cleaning. Frequent non-routine maintenance typically includes: pump and blower repairs/replacement; valve replacement; air stripper cleaning.

System Flow

During the third and fourth quarters of 2021, a total of 3,471,665 gallons were treated at an average flow rate of approximately 18,868 gallons per day.

Operation and Maintenance Site Inspections

Compiled below is a summary of significant O&M tasks and events pertaining to the COSCO site. These tasks were completed during site visits completed by Aztech for the time period reported herein.

July 8, 2021 (Sampling)

The system was down upon arrival. The system was restarted. Samples were collected and the system was operational upon departure.

July 13, 2021 (Non-Sampling)

The system was operational upon arrival. Bag filters were changed, and samples were not collected. The air stripper was taken apart and cleaned. The system was restarted and remained operational upon departure.

August 4, 2021 (Sampling)

The system was operational upon arrival. Samples were collected and the system was operational upon departure.

August 18, 2021 (Non-Sampling)

The system was operational upon arrival. Bag filters were changed, and samples were not collected. The system was operational upon departure.

September 22, 2021 (Sampling)

The system was down upon arrival due to the discharge pump seizing up. The pump was removed and cleaned, and the system was restarted. Samples were collected and the system was operational upon departure.

September 30, 2021 (Non-Sampling)

The system was operational upon arrival. Bag filters were changed, and samples were not collected. Air stripper trays were cleaned. The system was operational upon departure.

October 11, 2021 (Sampling)

The system was down upon arrival. Samples were taken and the system was turned off. Bag filters were removed for profiling (for drum removal) and replaced. The system was restarted and remained operational upon departure.

October 28, 2021 (Non-Sampling)

The system was operational upon arrival. The effluent pump stopped working and a replacement pump was installed. Bag filters were changed. Samples were not collected. The system was restarted and remained operational upon departure.

November 8, 2021 (Sampling)

The system was operational upon arrival. Samples were collected, and malfunctioning external lights were replaced. The system was operational upon departure.

November 18, 2021 (Non-Sampling)

The system was operational upon arrival. Bag filters were changed. Samples were not collected. The system was operational upon departure.

December 1, 2021 (Non-Sampling)

The system was down upon arrival. The system was restarted. Bag filters were changed. Samples were not taken. They system was operational upon departure.

December 16, 2021 (Sampling)

The system was operational upon arrival. Samples were collected. The system was operational upon departure.

Summary and Recommendations

Site visits and system sampling continue on a bi-monthly basis. During each non-sampling site visit, bag filters are replaced and valves are cleaned. Additionally, system performance readings as well as water level readings are taken. Samples are collected from the RW-3D, and effluent sampling ports at the first site visit of the month.

LaBella recommends continuing the treatment of recovered groundwater at the site utilizing air stripper treatment system. Further recommendations are outlined in the sites periodic review.

LaBella would like to thank you for the opportunity to offer our services for this site.

If you have any questions or comments regarding the information contained herein, please contact our office at 518-885-5383.

Respectfully submitted,

Sabrina a. Campfield

LaBella Associates

Sabrina Campfield Project Manager

ATTACHMENTS:

Laboratory Analytical Reports

Figure 1

July 2021 Analytical Data

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

Laboratory Job ID: 460-239698-1 Client Project/Site: COSCO #344035

For:

New York State D.E.C. 625 Broadway 12th Floor Albany, New York 12233-7017

Attn: Robert Strang

Authorized for release by: 7/30/2021 10:22:19 AM

Judy Stone, Senior Project Manager

(484)685-0868

Judy.Stone@Eurofinset.com

·····LINKS ·······

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

6

10

15

13

14

Client: New York State D.E.C. Project/Site: COSCO #344035

Laboratory Job ID: 460-239698-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	17
Lab Chronicle	18
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
Receipt Checklists	24

Definitions/Glossary

Client: New York State D.E.C.

Project/Site: COSCO #344035

Job ID: 460-239698-1

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

6

1

0

10

11

13

14

Case Narrative

Client: New York State D.E.C.

Project/Site: COSCO #344035

Job ID: 460-239698-1

Job ID: 460-239698-1

Laboratory: Eurofins TestAmerica, Edison

Narrative

Job Narrative 460-239698-1

Receipt

The samples were received on 7/28/2021 10:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.2° C.

Receipt Exceptions

The client requested that this sample ID be changed from what was listed on the chain of custody, from RW-1-072721 to RW-1S-072721. RW-1S-072721 (460-239698-4)

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

0600.4

2

3

4

5

6

8

9

10

12

13

Client: New York State D.E.C. Job ID: 460-239698-1

Project/Site: COSCO #344035

Client Sample ID: MW-3-072721 Lab Sample ID: 460-239698-1

No Detections.

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
1,2-Dichloroethene, Total	7.7	2.0	0.44 ug/L	1	624.1	Total/NA
Tetrachloroethene	0.89 J	1.0	0.25 ug/L	1	624.1	Total/NA
trans-1,2-Dichloroethene	0.24 J	1.0	0.24 ug/L	1	624.1	Total/NA
Trichloroethene	10	1.0	0.31 ug/L	1	624.1	Total/NA
Vinyl chloride	0.53 J	1.0	0.34 ug/L	1	624.1	Total/NA

Client Sample ID: RW-3D-072721

Analyte	Result Qualifier	RL	MDL U	Unit	Dil Fac	D	Method	Prep Type
1,2-Dichloroethene, Total	32	2.0	0.44 u	ug/L	1	_	624.1	Total/NA
Chloroform	0.53 J	1.0	0.33 u	ug/L	1		624.1	Total/NA
Tetrachloroethene	68	1.0	0.25 u	ug/L	1		624.1	Total/NA
Trichloroethene	69	1.0	0.31 u	ua/L	1		624.1	Total/NA

Client Sample ID: RW-1S-072721

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2-Dichloroethene, Total	1.5	J	2.0	0.44	ug/L	1	_	624.1	Total/NA
Tetrachloroethene	0.75	J	1.0	0.25	ug/L	1		624.1	Total/NA
Trichloroethene	6.4		1.0	0.31	ug/L	1		624.1	Total/NA

Client Sample ID: DW-1-072721

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloroform	0.37		1.0	0.33	ug/L	1	_	624.1	Total/NA
Tetrachloroethene	2.2		1.0	0.25	ug/L	1		624.1	Total/NA
Trichloroethene	1.9		1.0	0.31	ug/L	1		624.1	Total/NA

Client Sample ID: TripBlank2-072721

No Detections.

This Detection Summary does not include radiochemical test results.

7/30/2021

Lab Sample ID: 460-239698-3

Lab Sample ID: 460-239698-4

Lab Sample ID: 460-239698-5

Lab Sample ID: 460-239698-6

Job ID: 460-239698-1

Client: New York State D.E.C. Project/Site: COSCO #344035

Client Sample ID: MW-3-072721

Date Collected: 07/27/21 11:35 Date Received: 07/28/21 10:00 Lab Sample ID: 460-239698-1

Matrix: Water

	Method: 624.1	- Volatile	Organic	Compounds	(GC/MS)	
--	---------------	------------	----------------	-----------	---------	--

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			07/29/21 04:29	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			07/29/21 04:29	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			07/29/21 04:29	1
1,1-Dichloroethane	ND		1.0	0.26	ug/L			07/29/21 04:29	1
1,1-Dichloroethene	ND		1.0	0.12	ug/L			07/29/21 04:29	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			07/29/21 04:29	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			07/29/21 04:29	1
1,2-Dichloroethene, Total	ND		2.0	0.44	ug/L			07/29/21 04:29	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			07/29/21 04:29	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			07/29/21 04:29	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			07/29/21 04:29	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			07/29/21 04:29	1
Acrolein	ND		4.0	1.1	ug/L			07/29/21 04:29	1
Acrylonitrile	ND		2.0	0.77	ug/L			07/29/21 04:29	1
Benzene	ND		1.0	0.43	ug/L			07/29/21 04:29	1
Bromoform	ND		1.0	0.54	ug/L			07/29/21 04:29	1
Bromomethane	ND		1.0	0.45	ug/L			07/29/21 04:29	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			07/29/21 04:29	1
Chlorobenzene	ND		1.0	0.38	ug/L			07/29/21 04:29	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			07/29/21 04:29	1
Chloroethane	ND		1.0	0.32	ug/L			07/29/21 04:29	1
Chloroform	ND		1.0	0.33	ug/L			07/29/21 04:29	1
Chloromethane	ND		1.0	0.43	ug/L			07/29/21 04:29	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			07/29/21 04:29	1
Bromodichloromethane	ND		1.0	0.34	ug/L			07/29/21 04:29	1
Ethylbenzene	ND		1.0	0.30	ug/L			07/29/21 04:29	1
Methylene Chloride	ND		1.0	0.32	ug/L			07/29/21 04:29	1
Tetrachloroethene	ND		1.0	0.25	ug/L			07/29/21 04:29	1
Toluene	ND		1.0	0.38	ug/L			07/29/21 04:29	1
trans-1,2-Dichloroethene	ND		1.0	0.24				07/29/21 04:29	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			07/29/21 04:29	1
Trichloroethene	ND		1.0	0.31	ug/L			07/29/21 04:29	1
Vinyl chloride	ND		1.0	0.34	ug/L			07/29/21 04:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		60 - 140			-		07/29/21 04:29	1
4-Bromofluorobenzene	92		60 - 140					07/29/21 04:29	1

Client Sample ID: RW-8S-072721

Date Collected: 07/27/21 11:40 Date Received: 07/28/21 10:00

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Lab Sample ID: 460-239698-2

07/29/21 04:29

07/29/21 04:29

Matrix: Water

Method: 624.1 - Volatile Organic Compounds (GC/MS)

101

96

Method: 624.1 - Volatile Organic	Compou	nas (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			07/29/21 04:52	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			07/29/21 04:52	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			07/29/21 04:52	1
1,1-Dichloroethane	ND		1.0	0.26	ug/L			07/29/21 04:52	1

60 - 140

60 - 140

Eurofins TestAmerica, Edison

Page 6 of 24 7/30/2021

Job ID: 460-239698-1

Client: New York State D.E.C. Project/Site: COSCO #344035

Client Sample ID: RW-8S-072721

Lab Sample ID: 460-239698-2 Date Collected: 07/27/21 11:40 **Matrix: Water**

Date Received: 07/28/21 10:00

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.0	0.12	ug/L			07/29/21 04:52	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			07/29/21 04:52	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			07/29/21 04:52	1
1,2-Dichloroethene, Total	7.7		2.0	0.44	ug/L			07/29/21 04:52	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			07/29/21 04:52	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			07/29/21 04:52	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			07/29/21 04:52	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			07/29/21 04:52	1
Acrolein	ND		4.0	1.1	ug/L			07/29/21 04:52	1
Acrylonitrile	ND		2.0	0.77	ug/L			07/29/21 04:52	1
Benzene	ND		1.0	0.43	ug/L			07/29/21 04:52	1
Bromoform	ND		1.0	0.54	ug/L			07/29/21 04:52	1
Bromomethane	ND		1.0	0.45	ug/L			07/29/21 04:52	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			07/29/21 04:52	1
Chlorobenzene	ND		1.0	0.38	ug/L			07/29/21 04:52	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			07/29/21 04:52	1
Chloroethane	ND		1.0	0.32	ug/L			07/29/21 04:52	1
Chloroform	ND		1.0	0.33	ug/L			07/29/21 04:52	1
Chloromethane	ND		1.0	0.43	ug/L			07/29/21 04:52	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			07/29/21 04:52	1
Bromodichloromethane	ND		1.0	0.34	ug/L			07/29/21 04:52	1
Ethylbenzene	ND		1.0	0.30	ug/L			07/29/21 04:52	1
Methylene Chloride	ND		1.0	0.32	ug/L			07/29/21 04:52	1
Tetrachloroethene	0.89	J	1.0	0.25	ug/L			07/29/21 04:52	1
Toluene	ND		1.0	0.38	ug/L			07/29/21 04:52	1
trans-1,2-Dichloroethene	0.24	J	1.0	0.24	ug/L			07/29/21 04:52	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			07/29/21 04:52	1
Trichloroethene	10		1.0	0.31	ug/L			07/29/21 04:52	1
Vinyl chloride	0.53	J	1.0	0.34	ug/L			07/29/21 04:52	1
-									

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		60 - 140		07/29/21 04:52	1
4-Bromofluorobenzene	90		60 - 140		07/29/21 04:52	1
Toluene-d8 (Surr)	100		60 - 140		07/29/21 04:52	1
Dibromofluoromethane (Surr)	96		60 - 140		07/29/21 04:52	1

Client Sample ID: RW-3D-072721

Lab Sample ID: 460-239698-3 Date Collected: 07/27/21 10:40 **Matrix: Water**

Date Received: 07/28/21 10:00

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND —	1.0	0.24	ug/L			07/29/21 06:01	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.37	ug/L			07/29/21 06:01	1
1,1,2-Trichloroethane	ND	1.0	0.15	ug/L			07/29/21 06:01	1
1,1-Dichloroethane	ND	1.0	0.26	ug/L			07/29/21 06:01	1
1,1-Dichloroethene	ND	1.0	0.12	ug/L			07/29/21 06:01	1
1,2-Dichlorobenzene	ND	1.0	0.19	ug/L			07/29/21 06:01	1
1,2-Dichloroethane	ND	1.0	0.84	ug/L			07/29/21 06:01	1
1,2-Dichloroethene, Total	32	2.0	0.44	ug/L			07/29/21 06:01	1

Eurofins TestAmerica, Edison

Page 7 of 24 7/30/2021

Client: New York State D.E.C. Job ID: 460-239698-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D-072721

Date Collected: 07/27/21 10:40 Date Received: 07/28/21 10:00 Lab Sample ID: 460-239698-3

Matrix: Water

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND		1.0	0.35	ug/L			07/29/21 06:01	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			07/29/21 06:01	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			07/29/21 06:01	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			07/29/21 06:01	1
Acrolein	ND		4.0	1.1	ug/L			07/29/21 06:01	1
Acrylonitrile	ND		2.0	0.77	ug/L			07/29/21 06:01	1
Benzene	ND		1.0	0.43	ug/L			07/29/21 06:01	1
Bromoform	ND		1.0	0.54	ug/L			07/29/21 06:01	1
Bromomethane	ND		1.0	0.45	ug/L			07/29/21 06:01	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			07/29/21 06:01	1
Chlorobenzene	ND		1.0	0.38	ug/L			07/29/21 06:01	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			07/29/21 06:01	1
Chloroethane	ND		1.0	0.32	ug/L			07/29/21 06:01	1
Chloroform	0.53	J	1.0	0.33	ug/L			07/29/21 06:01	1
Chloromethane	ND		1.0	0.43	ug/L			07/29/21 06:01	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			07/29/21 06:01	1
Bromodichloromethane	ND		1.0	0.34	ug/L			07/29/21 06:01	1
Ethylbenzene	ND		1.0	0.30	ug/L			07/29/21 06:01	1
Methylene Chloride	ND		1.0	0.32	ug/L			07/29/21 06:01	1
Tetrachloroethene	68		1.0	0.25	ug/L			07/29/21 06:01	1
Toluene	ND		1.0	0.38	ug/L			07/29/21 06:01	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			07/29/21 06:01	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			07/29/21 06:01	1
Trichloroethene	69		1.0	0.31	ug/L			07/29/21 06:01	1
Vinyl chloride	ND		1.0	0.34	ug/L			07/29/21 06:01	1
					-				

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		60 - 140		07/29/21 06:01	1
4-Bromofluorobenzene	92		60 - 140		07/29/21 06:01	1
Toluene-d8 (Surr)	100		60 - 140		07/29/21 06:01	1
Dibromofluoromethane (Surr)	98		60 - 140		07/29/21 06:01	1

Client Sample ID: RW-1S-072721

Date Collected: 07/27/21 14:00 Date Received: 07/28/21 10:00

Lab Sample ID: 460-239698-4

Matrix: Water

Method: 624.1	- Volatile Organ	nic Compounds	(GC/MS)
MICHIOG. ULT. I	- Volatile Ol dai	nic Connibounius	100/110/

Method: 624.1 - Volatile Orga Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane		1.0	0.24	ug/L			07/29/21 05:15	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.37	ug/L			07/29/21 05:15	1
1,1,2-Trichloroethane	ND	1.0	0.15	ug/L			07/29/21 05:15	1
1,1-Dichloroethane	ND	1.0	0.26	ug/L			07/29/21 05:15	1
1,1-Dichloroethene	ND	1.0	0.12	ug/L			07/29/21 05:15	1
1,2-Dichlorobenzene	ND	1.0	0.19	ug/L			07/29/21 05:15	1
1,2-Dichloroethane	ND	1.0	0.84	ug/L			07/29/21 05:15	1
1,2-Dichloroethene, Total	1.5 J	2.0	0.44	ug/L			07/29/21 05:15	1
1,2-Dichloropropane	ND	1.0	0.35	ug/L			07/29/21 05:15	1
1,3-Dichlorobenzene	ND	1.0	0.13	ug/L			07/29/21 05:15	1
1,4-Dichlorobenzene	ND	1.0	0.18	ug/L			07/29/21 05:15	1
2-Chloroethyl vinyl ether	ND	1.0	0.91	ug/L			07/29/21 05:15	1

Eurofins TestAmerica, Edison

Page 8 of 24 7/30/2021 Client: New York State D.E.C. Job ID: 460-239698-1 Project/Site: COSCO #344035

Client Sample ID: RW-1S-072721

Lab Sample ID: 460-239698-4 Date Collected: 07/27/21 14:00

Matrix: Water

Date Received: 07/28/21 10:00

Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acrolein	ND ND	4.0	1.1	ug/L			07/29/21 05:15	1
Acrylonitrile	ND	2.0	0.77	ug/L			07/29/21 05:15	1
Benzene	ND	1.0	0.43	ug/L			07/29/21 05:15	1
Bromoform	ND	1.0	0.54	ug/L			07/29/21 05:15	1
Bromomethane	ND	1.0	0.45	ug/L			07/29/21 05:15	1
Carbon tetrachloride	ND	1.0	0.21	ug/L			07/29/21 05:15	1
Chlorobenzene	ND	1.0	0.38	ug/L			07/29/21 05:15	1
Chlorodibromomethane	ND	1.0	0.13	ug/L			07/29/21 05:15	1
Chloroethane	ND	1.0	0.32	ug/L			07/29/21 05:15	1
Chloroform	ND	1.0	0.33	ug/L			07/29/21 05:15	1
Chloromethane	ND	1.0	0.43	ug/L			07/29/21 05:15	1
cis-1,3-Dichloropropene	ND	1.0	0.46	ug/L			07/29/21 05:15	1
Bromodichloromethane	ND	1.0	0.34	ug/L			07/29/21 05:15	1
Ethylbenzene	ND	1.0	0.30	ug/L			07/29/21 05:15	1
Methylene Chloride	ND	1.0	0.32	ug/L			07/29/21 05:15	1
Tetrachloroethene	0.75 J	1.0	0.25	ug/L			07/29/21 05:15	1
Toluene	ND	1.0	0.38	ug/L			07/29/21 05:15	1
trans-1,2-Dichloroethene	ND	1.0	0.24	ug/L			07/29/21 05:15	1
trans-1,3-Dichloropropene	ND	1.0	0.22	ug/L			07/29/21 05:15	1
Trichloroethene	6.4	1.0	0.31	ug/L			07/29/21 05:15	1
Vinyl chloride	ND	1.0	0.34	ug/L			07/29/21 05:15	1
Surrogate	%Recovery Qua	alifier Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106	60 - 140			-		07/29/21 05:15	1
4-Bromofluorobenzene	90	60 - 140					07/29/21 05:15	1
Toluene-d8 (Surr)	101	60 - 140					07/29/21 05:15	1

Client Sample ID: DW-1-072721 Lab Sample ID: 460-239698-5 **Matrix: Water**

60 - 140

96

Date Collected: 07/27/21 14:40 Date Received: 07/28/21 10:00

Dibromofluoromethane (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			07/29/21 05:38	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			07/29/21 05:38	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			07/29/21 05:38	1
1,1-Dichloroethane	ND		1.0	0.26	ug/L			07/29/21 05:38	1
1,1-Dichloroethene	ND		1.0	0.12	ug/L			07/29/21 05:38	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			07/29/21 05:38	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			07/29/21 05:38	1
1,2-Dichloroethene, Total	ND		2.0	0.44	ug/L			07/29/21 05:38	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			07/29/21 05:38	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			07/29/21 05:38	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			07/29/21 05:38	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			07/29/21 05:38	1
Acrolein	ND		4.0	1.1	ug/L			07/29/21 05:38	1
Acrylonitrile	ND		2.0	0.77	ug/L			07/29/21 05:38	1
Benzene	ND		1.0	0.43	ug/L			07/29/21 05:38	1
Bromoform	ND		1.0	0.54	ug/L			07/29/21 05:38	1

Eurofins TestAmerica, Edison

07/29/21 05:15

Page 9 of 24 7/30/2021

Client: New York State D.E.C. Job ID: 460-239698-1

Project/Site: COSCO #344035

Client Sample ID: DW-1-072721

Date Collected: 07/27/21 14:40 Date Received: 07/28/21 10:00 Lab Sample ID: 460-239698-5

Matrix: Water

Method: 624.1 - Volatile Organic Co	ompounds (GC/MS)	(Continued)
-------------------------------------	------------------	-------------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromomethane	ND		1.0	0.45	ug/L			07/29/21 05:38	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			07/29/21 05:38	1
Chlorobenzene	ND		1.0	0.38	ug/L			07/29/21 05:38	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			07/29/21 05:38	1
Chloroethane	ND		1.0	0.32	ug/L			07/29/21 05:38	1
Chloroform	0.37	J	1.0	0.33	ug/L			07/29/21 05:38	1
Chloromethane	ND		1.0	0.43	ug/L			07/29/21 05:38	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			07/29/21 05:38	1
Bromodichloromethane	ND		1.0	0.34	ug/L			07/29/21 05:38	1
Ethylbenzene	ND		1.0	0.30	ug/L			07/29/21 05:38	1
Methylene Chloride	ND		1.0	0.32	ug/L			07/29/21 05:38	1
Tetrachloroethene	2.2		1.0	0.25	ug/L			07/29/21 05:38	1
Toluene	ND		1.0	0.38	ug/L			07/29/21 05:38	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			07/29/21 05:38	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			07/29/21 05:38	1
Trichloroethene	1.9		1.0	0.31	ug/L			07/29/21 05:38	1
Vinyl chloride	ND		1.0	0.34	ug/L			07/29/21 05:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4.0 Dialata and the area of 4.4 (O)	407					-		07/00/04 05:00	

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		60 - 140	_		07/29/21 05:38	1
4-Bromofluorobenzene	88		60 - 140			07/29/21 05:38	1
Toluene-d8 (Surr)	100		60 - 140			07/29/21 05:38	1
Dibromofluoromethane (Surr)	96		60 - 140			07/29/21 05:38	1

Client Sample ID: TripBlank2-072721

Date Collected: 07/27/21 00:00 Date Received: 07/28/21 10:00 Lab Sample ID: 460-239698-6

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			07/29/21 04:05	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			07/29/21 04:05	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			07/29/21 04:05	1
1,1-Dichloroethane	ND		1.0	0.26	ug/L			07/29/21 04:05	1
1,1-Dichloroethene	ND		1.0	0.12	ug/L			07/29/21 04:05	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			07/29/21 04:05	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			07/29/21 04:05	1
1,2-Dichloroethene, Total	ND		2.0	0.44	ug/L			07/29/21 04:05	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			07/29/21 04:05	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			07/29/21 04:05	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			07/29/21 04:05	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			07/29/21 04:05	1
Acrolein	ND		4.0	1.1	ug/L			07/29/21 04:05	1
Acrylonitrile	ND		2.0	0.77	ug/L			07/29/21 04:05	1
Benzene	ND		1.0	0.43	ug/L			07/29/21 04:05	1
Bromoform	ND		1.0	0.54	ug/L			07/29/21 04:05	1
Bromomethane	ND		1.0	0.45	ug/L			07/29/21 04:05	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			07/29/21 04:05	1
Chlorobenzene	ND		1.0	0.38	ug/L			07/29/21 04:05	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			07/29/21 04:05	1

Eurofins TestAmerica, Edison

Page 10 of 24

9

5

8

10

12

A A

Client Sample Results

Client: New York State D.E.C. Job ID: 460-239698-1 Project/Site: COSCO #344035

Client Sample ID: TripBlank2-072721

Lab Sample ID: 460-239698-6 Date Collected: 07/27/21 00:00

Matrix: Water

Date Received: 07/28/21 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroethane	ND		1.0	0.32	ug/L			07/29/21 04:05	1
Chloroform	ND		1.0	0.33	ug/L			07/29/21 04:05	1
Chloromethane	ND		1.0	0.43	ug/L			07/29/21 04:05	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			07/29/21 04:05	1
Bromodichloromethane	ND		1.0	0.34	ug/L			07/29/21 04:05	1
Ethylbenzene	ND		1.0	0.30	ug/L			07/29/21 04:05	1
Methylene Chloride	ND		1.0	0.32	ug/L			07/29/21 04:05	1
Tetrachloroethene	ND		1.0	0.25	ug/L			07/29/21 04:05	1
Toluene	ND		1.0	0.38	ug/L			07/29/21 04:05	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			07/29/21 04:05	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			07/29/21 04:05	1
Trichloroethene	ND		1.0	0.31	ug/L			07/29/21 04:05	1
Vinyl chloride	ND		1.0	0.34	ug/L			07/29/21 04:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			60 - 140			-		07/29/21 04:05	1
4-Bromofluorobenzene	88		60 - 140					07/29/21 04:05	1
Toluene-d8 (Surr)	101		60 - 140					07/29/21 04:05	1
Dibromofluoromethane (Surr)	95		60 - 140					07/29/21 04:05	1

Surrogate Summary

Client: New York State D.E.C. Job ID: 460-239698-1

Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surro	ogate Recovery (Ac	ceptance Limits)
		DCA	BFB	TOL	DBFM	
Lab Sample ID	Client Sample ID	(60-140)	(60-140)	(60-140)	(60-140)	
160-239698-1	MW-3-072721	105	92	101	96	
160-239698-2	RW-8S-072721	106	90	100	96	
460-239698-3	RW-3D-072721	104	92	100	98	
160-239698-4	RW-1S-072721	106	90	101	96	
160-239698-5	DW-1-072721	107	88	100	96	
160-239698-5 MS	DW-1-072721	103	91	101	95	
460-239698-5 MSD	DW-1-072721	104	91	101	97	
460-239698-6	TripBlank2-072721	110	88	101	95	
LCS 460-793132/5	Lab Control Sample	103	92	101	95	
MB 460-793132/9	Method Blank	107	89	100	96	

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Eurofins TestAmerica, Edison

Page 12 of 24

6

3

C

7

Q

10

10

13

Client: New York State D.E.C. Job ID: 460-239698-1 Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS)

MB MB

Lab Sample ID: MB 460-793132/9

Matrix: Water

Analysis Batch: 793132

Client Sample ID: Method Blank

Prep Type: Total/NA

	1410	141.0							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			07/28/21 22:19	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			07/28/21 22:19	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			07/28/21 22:19	1
1,1-Dichloroethane	ND		1.0	0.26	ug/L			07/28/21 22:19	1
1,1-Dichloroethene	ND		1.0	0.12	ug/L			07/28/21 22:19	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			07/28/21 22:19	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			07/28/21 22:19	1
1,2-Dichloroethene, Total	ND		2.0	0.44	ug/L			07/28/21 22:19	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			07/28/21 22:19	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			07/28/21 22:19	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			07/28/21 22:19	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			07/28/21 22:19	1
Acrolein	ND		4.0	1.1	ug/L			07/28/21 22:19	1
Acrylonitrile	ND		2.0	0.77	ug/L			07/28/21 22:19	1
Benzene	ND		1.0	0.43	ug/L			07/28/21 22:19	1
Bromoform	ND		1.0	0.54	ug/L			07/28/21 22:19	1
Bromomethane	ND		1.0	0.45	ug/L			07/28/21 22:19	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			07/28/21 22:19	1
Chlorobenzene	ND		1.0	0.38	ug/L			07/28/21 22:19	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			07/28/21 22:19	1
Chloroethane	ND		1.0	0.32	ug/L			07/28/21 22:19	1
Chloroform	ND		1.0	0.33	ug/L			07/28/21 22:19	1
Chloromethane	ND		1.0	0.43	ug/L			07/28/21 22:19	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			07/28/21 22:19	1
Bromodichloromethane	ND		1.0	0.34	ug/L			07/28/21 22:19	1
Ethylbenzene	ND		1.0	0.30	ug/L			07/28/21 22:19	1
Methylene Chloride	ND		1.0	0.32	ug/L			07/28/21 22:19	1
Tetrachloroethene	ND		1.0	0.25	ug/L			07/28/21 22:19	1
Toluene	ND		1.0	0.38	ug/L			07/28/21 22:19	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			07/28/21 22:19	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			07/28/21 22:19	1
Trichloroethene	ND		1.0		ug/L			07/28/21 22:19	1
Vinyl chloride	ND		1.0		ug/L			07/28/21 22:19	1
•					-				

MB MB %Recovery Qualifier Limits Prepared Surrogate Analyzed 1,2-Dichloroethane-d4 (Surr) 107 60 - 140 07/28/21 22:19 60 - 140 4-Bromofluorobenzene 89 07/28/21 22:19 Toluene-d8 (Surr) 100 60 - 140 07/28/21 22:19 Dibromofluoromethane (Surr) 60 - 140 07/28/21 22:19 96

Lab Sample ID: LCS 460-793132/5

Matrix: Water

Analysis Batch: 793132

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	18.0		ug/L		90	70 - 130	
1,1,2,2-Tetrachloroethane	20.0	25.6		ug/L		128	60 - 140	
1,1,2-Trichloroethane	20.0	23.8		ug/L		119	70 - 130	

Eurofins TestAmerica, Edison

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Page 13 of 24

7/30/2021

Spike

Job ID: 460-239698-1

LCS LCS

Client: New York State D.E.C. Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-793132/5

Matrix: Water

Analysis Batch: 793132

Client Sample ID: Lab Control Sample

%Rec.

Prep Type: Total/NA

	Spike	LUS	LUS				MRec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	20.0	21.2		ug/L		106	70 - 130	
1,1-Dichloroethene	20.0	16.6		ug/L		83	50 - 150	
1,2-Dichlorobenzene	20.0	21.6		ug/L		108	65 - 135	
1,2-Dichloroethane	20.0	19.9		ug/L		99	70 - 130	
1,2-Dichloroethene, Total	40.0	37.5		ug/L		94	60 - 140	
1,2-Dichloropropane	20.0	23.9		ug/L		119	35 - 165	
1,3-Dichlorobenzene	20.0	20.9		ug/L		104	70 - 130	
1,4-Dichlorobenzene	20.0	21.3		ug/L		107	65 - 135	
2-Chloroethyl vinyl ether	20.0	24.1		ug/L		120	0.1 - 225	
Acrolein	40.6	42.6		ug/L		105	10 - 150	
Acrylonitrile	200	256		ug/L		128	60 - 140	
Benzene	20.0	21.6		ug/L		108	65 - 135	
Bromoform	20.0	16.5		ug/L		83	70 - 130	
Bromomethane	20.0	17.2		ug/L		86	15 - 185	
Carbon tetrachloride	20.0	16.0		ug/L		80	70 - 130	
Chlorobenzene	20.0	20.7		ug/L		103	65 - 135	
Chlorodibromomethane	20.0	17.8		ug/L		89	70 - 135	
Chloroethane	20.0	16.7		ug/L		83	40 - 160	
Chloroform	20.0	19.9		ug/L		100	70 - 135	
Chloromethane	20.0	22.4		ug/L		112	0.1 - 205	
cis-1,3-Dichloropropene	20.0	21.6		ug/L		108	25 - 175	
Bromodichloromethane	20.0	20.1		ug/L		100	65 - 135	
Ethylbenzene	20.0	20.7		ug/L		104	60 - 140	
Methylene Chloride	20.0	18.5		ug/L		93	60 - 140	
Tetrachloroethene	20.0	18.1		ug/L		90	70 - 130	
Toluene	20.0	21.7		ug/L		108	70 - 130	
trans-1,2-Dichloroethene	20.0	18.4		ug/L		92	70 - 130	
trans-1,3-Dichloropropene	20.0	21.8		ug/L		109	50 - 150	
Trichloroethene	20.0	19.4		ug/L		97	65 - 135	
Vinyl chloride	20.0	19.8		ug/L		99	5 - 195	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		60 - 140
4-Bromofluorobenzene	92		60 - 140
Toluene-d8 (Surr)	101		60 - 140
Dibromofluoromethane (Surr)	95		60 - 140

Lab Sample ID: 460-239698-5 MS

Matrix: Water

Analysis Batch: 793132

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	ND		20.0	17.5		ug/L		88	52 - 162	
1,1,2,2-Tetrachloroethane	ND		20.0	25.6		ug/L		128	46 - 157	
1,1,2-Trichloroethane	ND		20.0	23.5		ug/L		118	52 - 150	
1,1-Dichloroethane	ND		20.0	21.3		ug/L		106	59 - 155	
1,1-Dichloroethene	ND		20.0	18.0		ug/L		90	0.1 - 234	
1,2-Dichlorobenzene	ND		20.0	20.5		ug/L		103	18 - 190	

Eurofins TestAmerica, Edison

Client Sample ID: DW-1-072721

Prep Type: Total/NA

Page 14 of 24

Job ID: 460-239698-1

Client: New York State D.E.C. Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 460-239698-5 MS

Matrix: Water

Analysis Batch: 793132

Client Sample ID: DW-1-072721

Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier U	nit	D	%Rec	Limits	
1,2-Dichloroethane	ND		20.0	19.6	uç	/L	_	98	49 - 155	
1,2-Dichloroethene, Total	ND		40.0	37.8	uç	/L		95	60 - 140	
1,2-Dichloropropane	ND		20.0	23.2	ug	/L		116	0.1 - 210	
1,3-Dichlorobenzene	ND		20.0	19.6	uç	/L		98	59 - 156	
1,4-Dichlorobenzene	ND		20.0	20.7	นดู	/L		104	18 - 190	
2-Chloroethyl vinyl ether	ND		20.0	22.7	ug	/L		113	0.1 - 305	
Acrolein	ND		40.6	45.8	uç	/L		113	10 - 150	
Acrylonitrile	ND		200	255	นดู	/L		127	40 - 160	
Benzene	ND		20.0	21.4	ug	/L		107	37 - 151	
Bromoform	ND		20.0	17.4	uç	/L		87	45 - 169	
Bromomethane	ND		20.0	18.0	ug	/L		90	0.1 - 242	
Carbon tetrachloride	ND		20.0	15.6	นดู	/L		78	70 - 140	
Chlorobenzene	ND		20.0	19.5	uç	/L		98	37 - 160	
Chlorodibromomethane	ND		20.0	17.6	ug	/L		88	53 - 149	
Chloroethane	ND		20.0	16.9	ug	/L		84	14 - 230	
Chloroform	0.37	J	20.0	20.0	uç	/L		98	51 - 138	
Chloromethane	ND		20.0	23.0	ug	/L		115	0.1 - 273	
cis-1,3-Dichloropropene	ND		20.0	20.8	ug	/L		104	0.1 - 227	
Bromodichloromethane	ND		20.0	19.5	uç	/L		98	35 - 155	
Ethylbenzene	ND		20.0	20.0	นดู	/L		100	37 - 162	
Methylene Chloride	ND		20.0	19.2	นดู	/L		96	0.1 - 221	
Tetrachloroethene	2.2		20.0	18.6	uç	/L		82	64 - 148	
Toluene	ND		20.0	20.9	นดู	/L		104	47 - 150	
trans-1,2-Dichloroethene	ND		20.0	18.7	นดู	/L		94	54 - 156	
trans-1,3-Dichloropropene	ND		20.0	20.9	uç	/L		105	17 - 183	
Trichloroethene	1.9		20.0	20.9	นดู	/L		95	70 - 157	
Vinyl chloride	ND		20.0	21.8	นดู	/L		109	0.1 - 251	

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	103		60 - 140
4-Bromofluorobenzene	91		60 - 140
Toluene-d8 (Surr)	101		60 - 140
Dibromofluoromethane (Surr)	95		60 - 140

Lab Sample ID: 460-239698-5 MSD

Matrix: Water

Analysis Batch: 793132

_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		20.0	19.0		ug/L		95	52 - 162	8	36
1,1,2,2-Tetrachloroethane	ND		20.0	25.3		ug/L		126	46 - 157	1	61
1,1,2-Trichloroethane	ND		20.0	23.7		ug/L		118	52 - 150	1	45
1,1-Dichloroethane	ND		20.0	22.3		ug/L		112	59 - 155	5	40
1,1-Dichloroethene	ND		20.0	20.6		ug/L		103	0.1 - 234	13	32
1,2-Dichlorobenzene	ND		20.0	21.4		ug/L		107	18 - 190	4	57
1,2-Dichloroethane	ND		20.0	20.3		ug/L		101	49 - 155	3	49
1,2-Dichloroethene, Total	ND		40.0	40.3		ug/L		101	60 - 140	6	50
1,2-Dichloropropane	ND		20.0	23.8		ug/L		119	0.1 - 210	2	55

Eurofins TestAmerica, Edison

Client Sample ID: DW-1-072721

Prep Type: Total/NA

Page 15 of 24

QC Sample Results

Client: New York State D.E.C. Job ID: 460-239698-1 Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 460-239698-5 MSD

Analysis Batch: 793132

Client Sample ID: DW-1-072721 Matrix: Water **Prep Type: Total/NA**

-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,3-Dichlorobenzene	ND		20.0	20.2		ug/L		101	59 - 156	3	43
1,4-Dichlorobenzene	ND		20.0	21.2		ug/L		106	18 - 190	2	57
2-Chloroethyl vinyl ether	ND		20.0	22.6		ug/L		113	0.1 - 305	0	71
Acrolein	ND		40.6	45.8		ug/L		113	10 - 150	0	60
Acrylonitrile	ND		200	253		ug/L		127	40 - 160	1	60
Benzene	ND		20.0	22.3		ug/L		111	37 - 151	4	61
Bromoform	ND		20.0	17.6		ug/L		88	45 - 169	1	42
Bromomethane	ND		20.0	19.1		ug/L		96	0.1 - 242	6	61
Carbon tetrachloride	ND		20.0	17.1		ug/L		86	70 - 140	10	41
Chlorobenzene	ND		20.0	20.6		ug/L		103	37 - 160	5	53
Chlorodibromomethane	ND		20.0	18.2		ug/L		91	53 - 149	3	50
Chloroethane	ND		20.0	18.9		ug/L		94	14 - 230	11	78
Chloroform	0.37	J	20.0	20.8		ug/L		102	51 - 138	4	54
Chloromethane	ND		20.0	24.7		ug/L		124	0.1 - 273	7	60
cis-1,3-Dichloropropene	ND		20.0	20.7		ug/L		103	0.1 - 227	1	58
Bromodichloromethane	ND		20.0	20.5		ug/L		103	35 - 155	5	56
Ethylbenzene	ND		20.0	21.5		ug/L		107	37 - 162	7	63
Methylene Chloride	ND		20.0	20.8		ug/L		104	0.1 - 221	8	28
Tetrachloroethene	2.2		20.0	20.2		ug/L		90	64 - 148	8	39
Toluene	ND		20.0	21.9		ug/L		109	47 - 150	5	41
trans-1,2-Dichloroethene	ND		20.0	20.3		ug/L		101	54 - 156	8	45
trans-1,3-Dichloropropene	ND		20.0	20.9		ug/L		104	17 - 183	0	86
Trichloroethene	1.9		20.0	21.7		ug/L		99	70 - 157	4	48
Vinyl chloride	ND		20.0	22.8		ug/L		114	0.1 - 251	4	66

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		60 - 140
4-Bromofluorobenzene	91		60 - 140
Toluene-d8 (Surr)	101		60 - 140
Dibromofluoromethane (Surr)	97		60 - 140

QC Association Summary

Client: New York State D.E.C.

Project/Site: COSCO #344035

Job ID: 460-239698-1

GC/MS VOA

Analysis Batch: 793132

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-239698-1	MW-3-072721	Total/NA	Water	624.1	
460-239698-2	RW-8S-072721	Total/NA	Water	624.1	
460-239698-3	RW-3D-072721	Total/NA	Water	624.1	
460-239698-4	RW-1S-072721	Total/NA	Water	624.1	
460-239698-5	DW-1-072721	Total/NA	Water	624.1	
460-239698-6	TripBlank2-072721	Total/NA	Water	624.1	
MB 460-793132/9	Method Blank	Total/NA	Water	624.1	
LCS 460-793132/5	Lab Control Sample	Total/NA	Water	624.1	
460-239698-5 MS	DW-1-072721	Total/NA	Water	624.1	
460-239698-5 MSD	DW-1-072721	Total/NA	Water	624.1	

3

4

5

7

0

9

11

40

14

10

Client: New York State D.E.C. Project/Site: COSCO #344035

Client Sample ID: MW-3-072721

Date Collected: 07/27/21 11:35 Date Received: 07/28/21 10:00 Lab Sample ID: 460-239698-1

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Batch Batch Dilution Batch Prepared
Prep Type Type Method Run Factor Number or Analyzed

Prep TypeTypeMethodRunFactorNumberor AnalyzedAnalystLabTotal/NAAnalysis624.1179313207/29/21 04:29MZSTAL EDI

Client Sample ID: RW-8S-072721 Lab Sample ID: 460-239698-2

Date Collected: 07/27/21 11:40 Date Received: 07/28/21 10:00

Batch Batch Dilution **Batch Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis 624.1 793132 07/29/21 04:52 MZS TAL EDI

Total/NA Analysis 624.1 1 793132 07/29/21 04:52 MZS TAL EDI

Client Sample ID: RW-3D-072721 Lab Sample ID: 460-239698-3

Date Collected: 07/27/21 10:40 Date Received: 07/28/21 10:00

Batch Batch Dilution Batch Prepared **Prep Type** Method **Factor** Number or Analyzed Type Run Analyst Lab TAL EDI Total/NA Analysis 624.1 793132 07/29/21 06:01 MZS

Client Sample ID: RW-1S-072721 Lab Sample ID: 460-239698-4

Date Collected: 07/27/21 14:00

Date Received: 07/28/21 10:00

Batch Batch Dilution Batch **Prepared Prep Type** Method Run Factor Number or Analyzed Type Analyst Lab Analysis 624.1 793132 07/29/21 05:15 MZS TAL EDI Total/NA

Client Sample ID: DW-1-072721 Lab Sample ID: 460-239698-5

Date Collected: 07/27/21 14:40 Date Received: 07/28/21 10:00

Batch Batch Dilution Batch Prepared Method Factor Number or Analyzed **Prep Type** Type Run Analyst Lab TAL EDI Total/NA Analysis 624.1 793132 07/29/21 05:38 MZS

Client Sample ID: TripBlank2-072721 Lab Sample ID: 460-239698-6

793132

07/29/21 04:05

MZS

TAL EDI

Date Collected: 07/27/21 00:00 Date Received: 07/28/21 10:00

Analysis

624.1

Batch Batch Dilution Batch Prepared
Prep Type Type Method Run Factor Number or Analysted Analyst Lab

Laboratory References:

Total/NA

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Accreditation/Certification Summary

Client: New York State D.E.C.

Job ID: 460-239698-1

Project/Site: COSCO #344035

Laboratory: Eurofins TestAmerica, Edison

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pro	ogram	Identification Number	Expiration Date
New York	NE	LAP	11452	04-01-22
The following analyte	s are included in this repo	rt, but the laboratory is r	not certified by the governing authority.	This list may include analytes for
The following analyte the agency does not	•	rt, but the laboratory is r	not certified by the governing authority.	This list may include analytes for
,	•	rt, but the laboratory is r Matrix	not certified by the governing authority. Analyte	This list may include analytes for

2

- 5

6

9

11

13

14

Method Summary

Client: New York State D.E.C. Project/Site: COSCO #344035

Job ID: 460-239698-1

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL EDI

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

_

7

0

10

11

12

14

Sample Summary

Client: New York State D.E.C. Project/Site: COSCO #344035

Job ID: 460-239698-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
460-239698-1	MW-3-072721	Water	07/27/21 11:35	07/28/21 10:00
460-239698-2	RW-8S-072721	Water	07/27/21 11:40	07/28/21 10:00
460-239698-3	RW-3D-072721	Water	07/27/21 10:40	07/28/21 10:00
460-239698-4	RW-1S-072721	Water	07/27/21 14:00	07/28/21 10:00
460-239698-5	DW-1-072721	Water	07/27/21 14:40	07/28/21 10:00
460-239698-5 MS	DW-1-072721	Water	07/27/21 14:40	07/28/21 10:00
460-239698-5 MSD	DW-1-072721	Water	07/27/21 14:40	07/28/21 10:00
460-239698-6	TripBlank2-072721	Water	07/27/21 00:00	07/28/21 10:00

RAMBGLL				[QSAN	EC CC	NYSDEC COSCO Site -	ite	- Ch	Chain of Custody	y	
		Site Name / Location:	uion:			Sampling Program:	١		Sampler(s) - Christopher Wennan	Weiman Charles Bruce	Project Number:
		COSCO Site / Spring Valley, NY	ing Valley, NY			1st SA GW Sampling	ımplin	5.0		- Chimbert	1000 800
Ramboll: Albany		Laboratory:		Analysis Holding Time	ding Time:		\vdash	Prese	Preservatives: (see key at bottom)		7037648
To: Robert Hornung, Paul D'Annibale		andy Stone		3 days from sa	3 days from sample collection to analysis	n to analysis		0			Lab ID:
Address: 94 New Karner Road, Suite 106, Albany, N.N., 12203	., 12203	Lurofins - Test Am	Lurofins - TestAmerica Buffalo Laboratory		uirement:						
Phone: (518) 724-7272		777 New Durham Rd,	Rel,	4-file EDD	gory is Data Fa	Full ASF Category B Data Package and EQUIS 4 file EDD					
Fax: (518) 869-2945		Edison, NJ 08817		Project Number:	ber:						Job Number.
Email: Robert Hornung@ramboll.com, Paul.DAnmbale@ramboll.com	c@ramboll.com	Phone: (716) 691 2600	2600	1940075217.004.200.8UB EDD Format: EQuIS 4	1940075217.004.200,SUB EDD Format: EQuIS 4 File		10 (0) 0	Filtered			
Sample Identification							-				
Unique Field Sample ID	Sample Location	Sample Date (mm/dd/yy)	Sample Time (bh:mm)	Sample Type (see key)	Sample Matrix (see key)	# of Containers	Reporting	J/gu			Lab Sample ID
1 MW-3-072721	MW-3	712712021	11:35	z	WG	3	ŋ	×	_		1
2 RW-8S-072721	RW-8S	712712021	11:40	z	MG	е	U	×			.76
3 RW-3D-072721	RW-3D	7/27/2021	10:40	z	WG	е	O	×			3
+ RW-1-072721	RW-1S	7/27/2021	14:00	z	WG	က	U	×			J
5 DW-1-072721	DW-1	7/27/2021	14:40	z	WG	г	ŋ	×	(pojs	Loay.	7
6 DW-1-MS-072721	DW-1	12712021	14:40	WS	W	ю	O	×	sn)	HSIL	N
DW-1-MSD-072721	DW-1	712712021	14:40	WS	WQ	ю	ŋ	×	o uje	K	5
к ТripBlank2-072721	1	7/27/2021	1	TB	WQ	2	O	×			7
6									86968		
10									EZ-09		
=							1		9t 		
12	le collection to analysis.	2). Report detect	ons above the MDL,	but below the	PQL, as "J"	flags. 3). Repor	r in acc	ordance v	with NYSDEC analytical labo	oratory call-out contract. 4). Direct b	oill all invoices to the NYSDEC.
Custody Seal #: 1632208											
Relinquished by MODOS Bree	Date: 7/27/21	Received by: Fed Ex	×			Date: 7/27/21	0	ondition		Comments or Notes	
B	Tranc/ 2/3	Teacking Number: 837 666-564-232	837 666 564 232			Time 1730					
Rehaquished by:	Date	Received by:	M (NOW)	West GA	11	192/L and	7	astody Scals intact	s intact Y N		
ot: Refinems hel la:	Date	Received by	KVV KV V	77	3	Date (UK)		ooker Tennarature	N.C. Direction	T	
Weinspieces of	Lime					Lime					
Sample Type: N = Normal environmental sample, FD = field duplicate, EB = Equipment Blank, FB = Field Blank, TB = Trip Blank, MS = Lab Matrix Spike, Other (Specify): Sample Matrix: SE = Sediment, SO = Soil, WG = Ground Water, WS = Surface Water, WW = Waste Water, WP = Potable Water, TA = Animal Tissue, TP = Plant Tissue, AA	FD = field duplicate, EB Ground Water, WS = Surf	= Equipment Blan ace Water, WW = "	k, FB = Field Blank, T Waste Water, WP = Po	TB = Trip Blantable Water, T.	k, MS = Lab P	Matrix Spike, Otherstee, TP = Plant	er (Spec Tissue,	ify): AA = Aml	nk, TB = Trip Blank, MS = Lab Matrix Spike, Other (Specify): = Potable Water, TA = Animal Tissue, TP = Plant Tissue, AA = Antbient Air, Other (Specify):		
Preservatives Code: 0 = none, 1 = HCL, 2 = HNO3, 3 = H2SO4, 4 = NaOH, 5 = Zn Acetate, 6 = MeOH, 7 = NaHSO4, 8 = Na2S2O3:	 3 = H2SO4, 4 = NaO1 	 5 = Zn Acetate. 	6 = MeOH, 7 = NaH	SCT 8 = 8.35	03:						

ılysis.	
24 hours prior to an	
d at least	7128/4
ce must be acidifie	Date:
out of complianc	
alysis which are	
es for Metal ana	Mr.
Sample	Initials:
	EDS-WI-038, Rev 4.1 10/22/2019
	EDS-WI-03

Number of Coolers: Cooler #1:2 Cooler #3:	1, 3. C. 2. 2. 3. C. Ammonia	COD	Nitrate Nitrite	R Gun #	Cooler #4: Cooler #5: Cooler #6:	Pest	Cooler Temperatures RAW: C C #5: C C #6: C C EPH or Phenois	tures Phenois	C C Sulfide	Cooler#7: Cooler#8: Cooler#9:	10C	CORRECTED C C C C C C C C C C C C C C C C C C	Total	Other
TALS Sample Number	(pH<2)	(pH<2)	(pH<2)	(pH<2)	(pH<2)	(bH 2-9)	(pH<2)	(pH<2)	(b44)	(pH<2)	(pH<2)	(pH>12)	(pH<2)	
													=	
	If pH adju	If pH adjustments are required record the information below:	are requi	ed record	the infor	mation be	elow:							
Sample No(s). adjusted:). adjusted:													
Preservative Name/Conc.:	ame/Conc.:					Volu	Volume of Preservative used (ml):	servative u	ised (ml):					

of

Eurofins TestAmerica Edison Receipt Temperature and pH Log

Job Number:

Client: New York State D.E.C.

Job Number: 460-239698-1

Login Number: 239698

List Source: Eurofins TestAmerica, Edison

List Number: 1

Creator: DiGuardia, Joseph L

Answer	Comment
N/A	
True	
N/A	
	N/A True True True True True True True True

August 2021 Analytical Data

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-187974-1 Client Project/Site: COSCO #344035

For:

New York State D.E.C. 625 Broadway 12th Floor Albany, New York 12233-7017

Attn: Robert Strang

Authorized for release by: 8/21/2021 10:43:41 AM

Judy Stone, Senior Project Manager (484)685-0868

Judy.Stone@Eurofinset.com

Judy Stone

Review your project results through Total Access

.....LINKS

Have a Question? Ask-

Visit us at: www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Judystone

6

Judy Stone Senior Project Manager 8/21/2021 10:43:41 AM 5

3

10

12

4 4

Table of Contents

Cover Page	1
Table of Contents	3
Definitions	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	9
QC Sample Results	10
QC Association	14
Chronicle	15
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	21

Definitions/Glossary

Client: New York State D.E.C. Job ID: 480-187974-1

Project/Site: COSCO #344035

Qualifiers

0		/ B. A	0	1/		A
G	G/	IVI	5	V	U	А

Qualifier

LCS and/or LCSD is outside acceptance limits, high biased.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

S1+ Surrogate recovery exceeds control limits, high biased.

Qualifier Description

General Chemistry

HF Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE) LOD LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCI MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NFG Negative / Absent POS Positive / Present PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

Relative Percent Difference, a measure of the relative difference between two points RPD

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins TestAmerica, Buffalo

Page 4 of 22

8/21/2021

Case Narrative

Client: New York State D.E.C.

Job ID: 480-187974-1

Project/Site: COSCO #344035

Job ID: 480-187974-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-187974-1

Comments

No additional comments.

Receipt

The samples were received on 8/5/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.6° C.

GC/MS VOA

Method 624.1: The continuing calibration verification (CCV) associated with batch 460-794855 recovered above the upper control limit for 1,2-Dichloroethane and Carbon tetrachloride. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method 624.1: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 460-794855 recovered outside control limits for the following analytes: 1,1,1-Trichloroethane, 1,1-Dichloroethane, 1,2-Dichloroethane and Carbon tetrachloride. These analytes were biased high in the LCS/LCSD and were not detected in the associated samples; therefore, the data have been reported.

Method 624.1: Four surrogates are used for this analysis. The laboratory's SOP allows one of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following the laboratory control sample duplicate (LCSD), method blank and samples contained an allowable number of surrogate compounds outside limits: RW-3D (480-187974-1), Effluent (480-187974-2), (LCSD 460-794855/6) and (MB 460-794855/10). These results have been reported and qualified.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Methods 9040C, SM 4500 H+ B: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples have been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: RW-3D (480-187974-1) and Effluent (480-187974-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

2

4

5

0

0

9

4 4

12

13

14

Detection Summary

Client: New York State D.E.C. Job ID: 480-187974-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Met	nod	Prep Type
1,2-Dichloroethene, Total	24		2.0	0.44	ug/L	1	624	1	Total/NA
Chloroform	0.73	J	1.0	0.33	ug/L	1	624	1	Total/NA
Tetrachloroethene	56		1.0	0.25	ug/L	1	624	1	Total/NA
Trichloroethene	58		1.0	0.31	ug/L	1	624	1	Total/NA
рН	7.46	HF	0.100	0.100	SU	1	904	C	Total/NA
Temperature	20.7	HF	0.00100	0.00100	Degrees C	1	904	OC .	Total/NA
Total Dissolved Solids	624		10.0	4.0	mg/L	1	SM	2540C	Total/NA

Client Sample ID: Effluent

Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
рН	8.22	HF	0.100	0.100	SU	1	_	9040C	Total/NA
Temperature	20.9	HF	0.00100	0.00100	Degrees C	1		9040C	Total/NA
Total Dissolved Solids	641		10.0	4.0	mg/L	1		SM 2540C	Total/NA

Lab Sample ID: 480-187974-1

Lab Sample ID: 480-187974-2

Client Sample Results

Client: New York State D.E.C. Job ID: 480-187974-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D Date Collected: 08/04/21 10:40

Date Received: 08/05/21 08:00

General Chemistry

Total Dissolved Solids

Analyte

Analyte

Temperature

Lab Sample ID: 480-187974-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	*+	1.0	0.24	ug/L			08/06/21 14:20	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			08/06/21 14:20	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			08/06/21 14:20	1
1,1-Dichloroethane	ND	*+	1.0	0.26	ug/L			08/06/21 14:20	1
1,1-Dichloroethene	ND		1.0	0.12	ug/L			08/06/21 14:20	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			08/06/21 14:20	1
1,2-Dichloroethane	ND	*+	1.0	0.84	ug/L			08/06/21 14:20	1
1,2-Dichloroethene, Total	24		2.0	0.44	ug/L			08/06/21 14:20	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			08/06/21 14:20	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			08/06/21 14:20	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			08/06/21 14:20	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			08/06/21 14:20	1
Acrolein	ND		4.0	1.1	ug/L			08/06/21 14:20	1
Acrylonitrile	ND		2.0	0.77	ug/L			08/06/21 14:20	1
Benzene	ND		1.0	0.43	ug/L			08/06/21 14:20	1
Bromoform	ND		1.0	0.54	ug/L			08/06/21 14:20	1
Bromomethane	ND		1.0	0.45	ug/L			08/06/21 14:20	1
Carbon tetrachloride	ND	*+	1.0	0.21	ug/L			08/06/21 14:20	1
Chlorobenzene	ND		1.0	0.38	ug/L			08/06/21 14:20	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			08/06/21 14:20	1
Chloroethane	ND		1.0	0.32	ug/L			08/06/21 14:20	1
Chloroform	0.73	J	1.0	0.33	ug/L			08/06/21 14:20	1
Chloromethane	ND		1.0	0.43	ug/L			08/06/21 14:20	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			08/06/21 14:20	1
Bromodichloromethane	ND		1.0	0.34	ug/L			08/06/21 14:20	1
Ethylbenzene	ND		1.0	0.30	ug/L			08/06/21 14:20	1
Methylene Chloride	ND		1.0	0.32	ug/L			08/06/21 14:20	1
Tetrachloroethene	56		1.0	0.25	ug/L			08/06/21 14:20	1
Toluene	ND		1.0	0.38	ug/L			08/06/21 14:20	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			08/06/21 14:20	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			08/06/21 14:20	1
Trichloroethene	58		1.0	0.31	ug/L			08/06/21 14:20	1
Vinyl chloride	ND		1.0	0.34	ug/L			08/06/21 14:20	1
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	146	S1+	60 - 140					08/06/21 14:20	1
4-Bromofluorobenzene	105		60 - 140					08/06/21 14:20	1
Toluene-d8 (Surr)	101		60 - 140					08/06/21 14:20	1
Dibromofluoromethane (Surr)	128		60 - 140					08/06/21 14:20	1

Eurofins TestAmerica, Buffalo

Analyzed

08/10/21 10:39

Analyzed

08/06/21 13:36

08/06/21 13:36

Prepared

Prepared

D

Page 7 of 22

10.0

RL

0.100

0.00100

MDL Unit

4.0 mg/L

RL Unit

0.00100 Degrees C

0.100 SU

624

Result Qualifier

Result Qualifier

7.46 HF

20.7 HF

Dil Fac

Client Sample Results

Client: New York State D.E.C. Job ID: 480-187974-1

Project/Site: COSCO #344035

Client Sample ID: Effluent

Lab Sample ID: 480-187974-2

Matrix: Water

Date Collected: 08/04/21 10:30 Date Received: 08/05/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	*+	1.0	0.24	ug/L			08/06/21 13:57	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			08/06/21 13:57	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			08/06/21 13:57	1
1,1-Dichloroethane	ND	*+	1.0	0.26	ug/L			08/06/21 13:57	1
1,1-Dichloroethene	ND		1.0	0.12	ug/L			08/06/21 13:57	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			08/06/21 13:57	1
1,2-Dichloroethane	ND	*+	1.0	0.84	ug/L			08/06/21 13:57	1
1,2-Dichloroethene, Total	ND		2.0	0.44	ug/L			08/06/21 13:57	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			08/06/21 13:57	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			08/06/21 13:57	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			08/06/21 13:57	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			08/06/21 13:57	1
Acrolein	ND		4.0	1.1	ug/L			08/06/21 13:57	1
Acrylonitrile	ND		2.0	0.77	ug/L			08/06/21 13:57	1
Benzene	ND		1.0	0.43	ug/L			08/06/21 13:57	1
Bromoform	ND		1.0	0.54	ug/L			08/06/21 13:57	1
Bromomethane	ND		1.0	0.45	ug/L			08/06/21 13:57	1
Carbon tetrachloride	ND	*+	1.0	0.21	ug/L			08/06/21 13:57	1
Chlorobenzene	ND		1.0	0.38	ug/L			08/06/21 13:57	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			08/06/21 13:57	1
Chloroethane	ND		1.0	0.32	ug/L			08/06/21 13:57	1
Chloroform	ND		1.0	0.33	ug/L			08/06/21 13:57	1
Chloromethane	ND		1.0	0.43	ug/L			08/06/21 13:57	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			08/06/21 13:57	1
Bromodichloromethane	ND		1.0	0.34	ug/L			08/06/21 13:57	1
Ethylbenzene	ND		1.0	0.30	ug/L			08/06/21 13:57	1
Methylene Chloride	ND		1.0	0.32	ug/L			08/06/21 13:57	1
Tetrachloroethene	ND		1.0	0.25	ug/L			08/06/21 13:57	1
Toluene	ND		1.0	0.38	ug/L			08/06/21 13:57	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			08/06/21 13:57	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			08/06/21 13:57	1
Trichloroethene	ND		1.0	0.31	ug/L			08/06/21 13:57	1
Vinyl chloride	ND		1.0	0.34	ug/L			08/06/21 13:57	1
Surrogate	%Recovery	Qualifier	Limits			=	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	144	S1+	60 - 140					08/06/21 13:57	1
4-Bromofluorobenzene	103		60 - 140					08/06/21 13:57	1
Toluene-d8 (Surr)	101		60 - 140					08/06/21 13:57	1
Dibromofluoromethane (Surr)	127		60 - 140					08/06/21 13:57	1

General	Chemistry
---------	-----------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total Dissolved Solids	641		10.0	4.0	mg/L			08/10/21 10:39	1	
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac	
рН	8.22	HF	0.100	0.100	SU			08/06/21 13:34	1	
Temperature	20.9	HF	0.00100	0.00100	Degrees C			08/06/21 13:34	1	

Eurofins TestAmerica, Buffalo

Page 8 of 22

3

5

0

10

12

4 4

Surrogate Summary

Client: New York State D.E.C. Job ID: 480-187974-1 Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

				Percent Sur	rogate Rec
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(60-140)	(60-140)	(60-140)	(60-140)
480-187974-1	RW-3D	146 S1+	105	101	128
480-187974-2	Effluent	144 S1+	103	101	127
LCS 460-794855/5	Lab Control Sample	135	109	104	125
LCSD 460-794855/6	Lab Control Sample Dup	142 S1+	113	107	127
MB 460-794855/10	Method Blank	141 S1+	107	100	127

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Job ID: 480-187974-1

Client: New York State D.E.C. Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 460-794855/10

Matrix: Water

Analysis Batch: 794855

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 1,1,1-Trichloroethane ND 1.0 0.24 ug/L 08/06/21 12:03 1,1,2,2-Tetrachloroethane ND 1.0 08/06/21 12:03 0.37 ug/L 1,1,2-Trichloroethane ND 1.0 0.15 ug/L 08/06/21 12:03 0.26 ug/L 1,1-Dichloroethane ND 1.0 08/06/21 12:03 ND 1.1-Dichloroethene 1.0 0.12 ug/L 08/06/21 12:03 1,2-Dichlorobenzene ND 1.0 0.19 ug/L 08/06/21 12:03 1,2-Dichloroethane ND 1.0 0.84 ug/L 08/06/21 12:03 1,2-Dichloroethene, Total ND 2.0 0.44 ug/L 08/06/21 12:03 1.0 1,2-Dichloropropane ND 0.35 ug/L 08/06/21 12:03 1,3-Dichlorobenzene ND 1.0 0.13 ug/L 08/06/21 12:03 1.4-Dichlorobenzene ND 1.0 0.18 ug/L 08/06/21 12:03 2-Chloroethyl vinyl ether ND 1.0 0.91 ug/L 08/06/21 12:03 ND Acrolein 4.0 ug/L 08/06/21 12:03 1.1 Acrylonitrile ND 2.0 0.77 ug/L 08/06/21 12:03 Benzene ND 1.0 0.43 ug/L 08/06/21 12:03 Bromoform ND 1.0 0.54 ug/L 08/06/21 12:03 0.45 ug/L Bromomethane ND 1.0 08/06/21 12:03 Carbon tetrachloride ND 1.0 0.21 ug/L 08/06/21 12:03 Chlorobenzene ND 1.0 0.38 ug/L 08/06/21 12:03 Chlorodibromomethane ND 1.0 0.13 ug/L 08/06/21 12:03 Chloroethane ND 1.0 0.32 ug/L 08/06/21 12:03 Chloroform ND 1.0 0.33 ug/L 08/06/21 12:03 Chloromethane ND 1.0 0.43 ug/L 08/06/21 12:03 ND 1.0 08/06/21 12:03 cis-1,3-Dichloropropene 0.46 ug/L Bromodichloromethane ND 1.0 0.34 ug/L 08/06/21 12:03 Ethylbenzene ND 1.0 0.30 ug/L 08/06/21 12:03 Methylene Chloride ND 1.0 0.32 ug/L 08/06/21 12:03 Tetrachloroethene ND 1.0 0.25 ug/L 08/06/21 12:03 Toluene ND 1.0 0.38 ug/L 08/06/21 12:03 trans-1,2-Dichloroethene ND 1.0 0.24 ug/L 08/06/21 12:03 ND trans-1,3-Dichloropropene 1.0 0.22 ug/L 08/06/21 12:03 ND 1.0 Trichloroethene 0.31 ug/L 08/06/21 12:03 Vinyl chloride NΠ 1.0 0.34 ug/L 08/06/21 12:03

MB MB

	IVIB	IVIB						
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	141	S1+	60 - 140			08/06/21 12:03	1	
4-Bromofluorobenzene	107		60 - 140			08/06/21 12:03	1	
Toluene-d8 (Surr)	100		60 - 140			08/06/21 12:03	1	
Dibromofluoromethane (Surr)	127		60 - 140			08/06/21 12:03	1	
	4-Bromofluorobenzene Toluene-d8 (Surr)	4-Bromofluorobenzene 107 Toluene-d8 (Surr) 100	4-Bromofluorobenzene 107 Toluene-d8 (Surr) 100	4-Bromofluorobenzene 107 60 - 140 Toluene-d8 (Surr) 100 60 - 140	4-Bromofluorobenzene 107 60 - 140 Toluene-d8 (Surr) 100 60 - 140	4-Bromofluorobenzene 107 60 - 140 Toluene-d8 (Surr) 100 60 - 140	4-Bromofluorobenzene 107 60 - 140 08/06/21 12:03 Toluene-d8 (Surr) 100 60 - 140 08/06/21 12:03	4-Bromofluorobenzene 107 60 - 140 08/06/21 12:03 1 Toluene-d8 (Surr) 100 60 - 140 08/06/21 12:03 1

Lab Sample ID: LCS 460-794855/5

Matrix: Water

Analysis Batch: 794855

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	26.0		ug/L		130	70 - 130	
1,1,2,2-Tetrachloroethane	20.0	18.2		ug/L		91	60 - 140	
1,1,2-Trichloroethane	20.0	20.5		ug/L		103	70 - 130	

Eurofins TestAmerica, Buffalo

Page 10 of 22

3

<u>+</u>

b

8

10

12

Job ID: 480-187974-1

Client: New York State D.E.C. Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-794855/5

Matrix: Water

Analysis Batch: 794855

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	20.0	25.6		ug/L		128	70 - 130	
1,1-Dichloroethene	20.0	24.0		ug/L		120	50 - 150	
1,2-Dichlorobenzene	20.0	19.4		ug/L		97	65 - 135	
1,2-Dichloroethane	20.0	27.1	*+	ug/L		136	70 - 130	
1,2-Dichloroethene, Total	40.0	48.2		ug/L		120	60 - 140	
1,2-Dichloropropane	20.0	23.6		ug/L		118	35 - 165	
1,3-Dichlorobenzene	20.0	19.9		ug/L		100	70 - 130	
1,4-Dichlorobenzene	20.0	20.3		ug/L		101	65 - 135	
2-Chloroethyl vinyl ether	20.0	20.9		ug/L		104	0.1 _ 225	
Acrolein	40.6	40.4		ug/L		100	10 - 150	
Acrylonitrile	200	224		ug/L		112	60 - 140	
Benzene	20.0	20.7		ug/L		104	65 - 135	
Bromoform	20.0	18.6		ug/L		93	70 - 130	
Bromomethane	20.0	25.9		ug/L		129	15 - 185	
Carbon tetrachloride	20.0	25.7		ug/L		128	70 - 130	
Chlorobenzene	20.0	20.7		ug/L		103	65 - 135	
Chlorodibromomethane	20.0	20.7		ug/L		103	70 - 135	
Chloroethane	20.0	27.0		ug/L		135	40 - 160	
Chloroform	20.0	26.0		ug/L		130	70 - 135	
Chloromethane	20.0	22.1		ug/L		110	0.1 - 205	
cis-1,3-Dichloropropene	20.0	19.5		ug/L		97	25 - 175	
Bromodichloromethane	20.0	24.5		ug/L		122	65 - 135	
Ethylbenzene	20.0	19.5		ug/L		97	60 - 140	
Methylene Chloride	20.0	24.6		ug/L		123	60 - 140	
Tetrachloroethene	20.0	22.9		ug/L		114	70 - 130	
Toluene	20.0	20.5		ug/L		102	70 - 130	
trans-1,2-Dichloroethene	20.0	24.4		ug/L		122	70 - 130	
trans-1,3-Dichloropropene	20.0	19.4		ug/L		97	50 - 150	
Trichloroethene	20.0	23.7		ug/L		119	65 - 135	
Vinyl chloride	20.0	26.5		ug/L		133	5 - 195	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	135		60 - 140
4-Bromofluorobenzene	109		60 - 140
Toluene-d8 (Surr)	104		60 - 140
Dibromofluoromethane (Surr)	125		60 - 140

Lab Sample ID: LCSD 460-794855/6

Matrix: Water

Analysis Batch: 794855

Client Sample	ID:	Lab	Control	Sample	Dup
			Pron Ty	me: Tota	al/NΙΔ

Spike	LCSD	LCSD				%Rec.		RPD
Analyte Added	l Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane 20.0	26.9	*+	ug/L		135	70 - 130	4	36
1,1,2,2-Tetrachloroethane 20.0	19.0		ug/L		95	60 - 140	5	61
1,1,2-Trichloroethane 20.0	21.5		ug/L		107	70 - 130	5	45
1,1-Dichloroethane 20.0	26.8	*+	ug/L		134	70 - 130	4	40
1,1-Dichloroethene 20.0	25.5		ug/L		127	50 - 150	6	32
1,2-Dichlorobenzene 20.0	20.4		ug/L		102	65 - 135	5	57

Eurofins TestAmerica, Buffalo

Page 11 of 22

Job ID: 480-187974-1

Client: New York State D.E.C.

Lab Sample ID: LCSD 460-794855/6

Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water Analysis Batch: 794855

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichloroethane	20.0	28.3	*+	ug/L		142	70 - 130	4	49
1,2-Dichloroethene, Total	40.0	49.9		ug/L		125	60 - 140	3	50
1,2-Dichloropropane	20.0	25.1		ug/L		125	35 - 165	6	55
1,3-Dichlorobenzene	20.0	20.3		ug/L		102	70 - 130	2	43
1,4-Dichlorobenzene	20.0	20.6		ug/L		103	65 - 135	2	57
2-Chloroethyl vinyl ether	20.0	21.6		ug/L		108	0.1 - 225	3	71
Acrolein	40.6	43.6		ug/L		107	10 - 150	8	60
Acrylonitrile	200	231		ug/L		116	60 - 140	3	60
Benzene	20.0	21.5		ug/L		107	65 - 135	4	61
Bromoform	20.0	19.1		ug/L		96	70 - 130	3	42
Bromomethane	20.0	26.1		ug/L		131	15 - 185	1	61
Carbon tetrachloride	20.0	27.1	*+	ug/L		135	70 - 130	5	41
Chlorobenzene	20.0	21.2		ug/L		106	65 - 135	3	53
Chlorodibromomethane	20.0	21.3		ug/L		107	70 - 135	3	50
Chloroethane	20.0	28.9		ug/L		144	40 - 160	7	78
Chloroform	20.0	26.9		ug/L		134	70 - 135	4	54
Chloromethane	20.0	23.3		ug/L		117	0.1 - 205	6	60
cis-1,3-Dichloropropene	20.0	20.0		ug/L		100	25 - 175	3	58
Bromodichloromethane	20.0	25.0		ug/L		125	65 - 135	2	56
Ethylbenzene	20.0	20.1		ug/L		101	60 - 140	3	63
Methylene Chloride	20.0	25.7		ug/L		128	60 - 140	4	28
Tetrachloroethene	20.0	23.4		ug/L		117	70 - 130	2	39
Toluene	20.0	21.1		ug/L		105	70 - 130	3	41
trans-1,2-Dichloroethene	20.0	25.0		ug/L		125	70 - 130	2	45
trans-1,3-Dichloropropene	20.0	19.7		ug/L		99	50 - 150	1	86
Trichloroethene	20.0	25.1		ug/L		126	65 - 135	6	48
Vinyl chloride	20.0	28.1		ug/L		141	5 - 195	6	66

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	142	S1+	60 - 140
4-Bromofluorobenzene	113		60 - 140
Toluene-d8 (Surr)	107		60 - 140
Dibromofluoromethane (Surr)	127		60 - 140

Method: 9040C - pH

Lab Sample ID: LCS 480-592052/23

Matrix: Water

Analysis Batch: 592052

		Spike	LCS	LCS			%Rec.	
	Analyte	Added	Result	Qualifier	Unit D	%Rec	Limits	
l	рН	7.00	7.074		SU	101	99 - 101	

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Page 12 of 22

QC Sample Results

Client: New York State D.E.C. Job ID: 480-187974-1

Project/Site: COSCO #344035

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 480-592326/1 Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 592326

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	ND		10.0	4.0	ma/l			08/10/21 10:39	1

Lab Sample ID: LCS 480-592326/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 592326

	Spike	LCS	LCS					%Rec.	
Analyte	Added	Result	Qualifier	Unit	- 1	D	%Rec	Limits	
Total Dissolved Solids	503	487.0		ma/L			97	85 ₋ 115	

MR MR

QC Association Summary

Client: New York State D.E.C. Job ID: 480-187974-1 Project/Site: COSCO #344035

GC/MS VOA

Analysis Batch: 794855

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-187974-1	RW-3D	Total/NA	Water	624.1	
480-187974-2	Effluent	Total/NA	Water	624.1	
MB 460-794855/10	Method Blank	Total/NA	Water	624.1	
LCS 460-794855/5	Lab Control Sample	Total/NA	Water	624.1	
LCSD 460-794855/6	Lab Control Sample Dup	Total/NA	Water	624.1	

General Chemistry

Analysis Batch: 592052

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-187974-1	RW-3D	Total/NA	Water	9040C	
480-187974-2	Effluent	Total/NA	Water	9040C	
LCS 480-592052/23	Lab Control Sample	Total/NA	Water	9040C	

Analysis Batch: 592326

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-187974-1	RW-3D	Total/NA	Water	SM 2540C	
480-187974-2	Effluent	Total/NA	Water	SM 2540C	
MB 480-592326/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 480-592326/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Lab Chronicle

Client: New York State D.E.C. Job ID: 480-187974-1 Project/Site: COSCO #344035

Client Sample ID: RW-3D

Lab Sample ID: 480-187974-1

Matrix: Water

Date Collected: 08/04/21 10:40 Date Received: 08/05/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	794855	08/06/21 14:20	MZS	TAL EDI
Total/NA	Analysis	9040C		1	592052	08/06/21 13:36	JPS	TAL BUF
Total/NA	Analysis	SM 2540C		1	592326	08/10/21 10:39	JGO	TAL BUF

Client Sample ID: Effluent

Lab Sample ID: 480-187974-2

Matrix: Water

Date Collected: 08/04/21 10:30 Date Received: 08/05/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	794855	08/06/21 13:57	MZS	TAL EDI
Total/NA	Analysis	9040C		1	592052	08/06/21 13:34	JPS	TAL BUF
Total/NA	Analysis	SM 2540C		1	592326	08/10/21 10:39	JGO	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Accreditation/Certification Summary

Client: New York State D.E.C. Job ID: 480-187974-1

Project/Site: COSCO #344035

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Pi	rogram	Identification Number	Expiration Date
ew York	N	ELAP	10026	04-01-22
The following analytes	are included in this report, by	ut the laboratory is not certif	ied by the governing authority. This list ma	v include analytes for whi
the agency does not of	•	,	, gg,.	.,
the agency does not of Analysis Method	•	Matrix	Analyte	,,
0 ,	fer certification.	,		

Laboratory: Eurofins TestAmerica, Edison

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
New York	NE	ELAP	11452	04-01-22
The following analytes	are included in this report bu	it the laboratory is not certif	ied by the governing authority. This list ma	av include analytes for y
0 ,	' '	it the laberatory to flot cortin	iod by the governing dutienty. This list me	ay morado dilarytoo ioi
the agency does not of				
the agency does not of	ler certification.			
the agency does not of Analysis Method	Prep Method	Matrix	Analyte	

Method Summary

Client: New York State D.E.C.

Project/Site: COSCO #344035

Job ID: 480-187974-1

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL EDI
9040C	рН	SW846	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

3

4

7

10

11

1 4

14

Sample Summary

Client: New York State D.E.C. Project/Site: COSCO #344035

Job ID: 480-187974-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-187974-1	RW-3D	Water	08/04/21 10:40	08/05/21 08:00
480-187974-2	Effluent	Water	08/04/21 10:30	08/05/21 08:00

	Sampler, C	,		Lab	M			Carrier Tracking Np(s)	VD(S)	COC No.	
Client Information	CHILD	Carter		Stor	Stone, Judy L.			n		480-156754-34562.1	4562.1
Andrew Talbot	Phone			E-Mail: Judy.	Stone@E	E-Mail: Judy: Stone@Eurofinset.com	E	State of Origin:		Page:	
Company: Aztech Technologies Inc			PWSID:)		nalveis	Requirected		Job #	
Address 5 McCrea Hill Road	Due Date Requested,	ed.						nancanh		Preservation Codes:	:sapo
City: Ballston Spa	TAT Requested (days):	ays):						-		A - HCL B - NaOH	
State, Zip: NY 12020						50				C - Zn Acetate D - Nitric Acid	
Phone:	PO#	A res A	ON			litsloV			_	E - NaHSO4 F - MeOH	
Email:	VO#:									G - Amchlor H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydrate
ataboti@Labeliar C.com Project Name:	Project #				(oN .					_	V-MCAA
COSCO #344035 Site	48005266				10 50/				_		Z - ather (specify)
	2SOW#				N) OSI					of con	
Samula Idantification		Sample	Sample Type (C=comp,	Matrix (w=water, S=solid, O=wastefoll,	beld Filtered MSM myoth From MS/M	40B - PH				s) Number o	
	Sample Date	Lime	G=grab) BT=Tissue, A=/	BT=Tissue, A=Air)	Pd .	06					Special Instructions/Note:
RW-3D	0.10.4.1	1000	,	Mater	-	2				X.	
Effluent	RIVER	0202	9	Marie	2 -	7				00	
	8/1/2/	200	0	water	7	/				00	
	/					1					
/		/					/				
/			/				7				
	/			/							
	/				/						
	/					/	480-18	480-187974 Chain of Custody	Sustody		
	/	1				Z	-				
ceible Haraed Identification							/				
Obliverable Rennested: 1 III W Other Goods A	☐ Poison B ☐ Unknown		Radiological		Samp	le Disposal (A f Return To Client	(A fee may be	assessed if sam Disposal By Lab	nples are ret	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon	1 month) Months
Emark Kit Delizacijehod hug					Specia	I Instruction	Special Instructions/QC Requirements:	S = 17			
Reinoushed by		Date.			Time:			Method of Shipment	Shipment		
Relinquished With	\$1412	81418		Company	a N	X	out		>	8147 12	Company
You faolu-	8/4/21	120	2	Company	- 5	Received by:			Date/Time:		Company
				Company	Xe.	Received by:	The state of the s		Date/Time:	21 nan	Company
Custody Seals Intact: Custody Seal No.:									1 1 1		

Eurofins TestAmerica, Buffalo

Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991		nain	or cus	Chain of Custody Record	ecord					America
Client Information (Sub Contract Lab)	Sampler			Lab PM Stone,	Lab PM: Stone, Judy L.		Carrier Tracking No(s)	g No(s)	COC No: 480-65623.1	
	Phone			E-Mail Judy.	E-Mail Judy, Stone@Eurofinset.com	ofinset.com	State of Origin New York		Page 1 of 1	
Company. TestAmerica Laboratorica, Inc.				-	Accreditations Required	Accreditations Required (See note)			Job#: 480-187974-1	
Address: 777 New Durtham Road, ,	Due Date Requested: 9/4/2021	:pa			3		Analysis Requested		Preservation Codes:	les:
City. Edison State, Zip. NJ, 08817	TAT Requested (days):	ays);			Instullo				B - NaOH C - Zn Acetate D - Nitric Acid E - NaHSO4	M - Hexane N - None O - AsNaO2 P - Na2O4S O - Na2SO3
Phone: 732-549-3679(Fax)	#Od#								F - MeOH G - Amchlor	R - Na2S2O3 S - H2SO4
Email:	#OM				(0					U - Acetone
Project Name: COSCO #344035	Project #. 48005266				N 10 86				K-EDTA L-EDA	W - pH 4-5 Z - other (specify)
Site:	#MOSS				SD (Y				of con	
Sample Identification - Client ID (Lab ID)	Sample Date	Sample	Sample Type (C=comp, G=grab)	Matrix (Wrwater, Essolid, Orwasololi, BTC layer Analy)	Field Filtered S Perform MS/M: S24.1_PREC/624 Volstiles				Todambl IstoT	Special Instructions/Note:
	\ \ \	X	T CO		\times					
RW-3D (480-187974-1)	8/4/21	10:40 Factorn		Water	×				9	
Effluent (480-187974-2)	8/4/21	10:30		Water	×				9	
		Caster								
										y.
Note: Since laboratory accreditations are subject to change, Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not analysis/fests/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmerica alaboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica.	stAmerica places the ownershi simatrix being analyzed, the si urrent to date, return the signe	p of method, ar amples must be d Chain of Cust	nalyte & accred s shipped back ody attesting to	of method, analyte & accreditation compliance upon out subcontract lab mples must be shipped back to the Eurofins Teskmerica laboratory or of Chain of Custody attesting to said complicance to Eurofins Teskmerica.	e upon out sut restAmerica lab ce to Eurofins T	bconfract laborate poratory or other in TestAmerica	of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently mples must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Chain of Custody attesting to said complicance to Eurofins TestAmerica.	orwarded under chai	in-of-custody. If the labor	atory does not currently rought to Eurofins
Possible Hazard Identification					Sample	Disposal (A f	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	samples are ret	ained longer than 1	month)
Unconfirmed Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	able Rank: 2			Special Ir	Return To Client al Instructions/QC	Special Instructions/QC Requirements:	1	Archive For	Months
Empty Kit Relinquished by:		Date:			Time:		Wethod	Method of Shipment:		
Reinquished by MMKoW Clucib	Date/Times / S	121/17	B	Louisany	Received by	ed by:	N. HOMEX	Date/Time	151 100	Company
Reinquished by	Date/Time			Company	Received by	ed by:		Date/Time:		Company
Custody Seals Intact: Custody Seal No.: 15 1349 C	130				Cooler	Temperature(s)	Cooler Temperature(s) °C and Other Remarks:	1.20/3	T OF	29
					1			*	>	Var. 04.001.2031

Login Sample Receipt Checklist

Client: New York State D.E.C. Job Number: 480-187974-1

Login Number: 187974 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Sabuda, Brendan D

Quaction	Answer	Comment
Question Padicactivity either was not recovered or if measured is at at helew	True	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.6 #1 ICE
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

3

4

6

8

10

12

13

Client: New York State D.E.C.

List Source: Eurofins TestAmerica, Edison

List Creation: 08/06/21 11:28 AM

Job Number: 480-187974-1

Login Number: 187974 List Number: 2

Creator: Armbruster, Chris

Creator: Armbruster, Chris		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	1513430
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.7°C IR9
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins TestAmerica, Buffalo

September 2021 Analytical Data

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-190023-1 Client Project/Site: COSCO #344035

For:

New York State D.E.C. 625 Broadway 12th Floor Albany, New York 12233-7017

Attn: Robert Strang

d f

Authorized for release by: 10/5/2021 5:05:06 PM Rebecca Jones, Project Management Assistant I Rebecca.Jones@Eurofinset.com

Designee for

Steve Hartmann, Project Manager I (413)572-4000 Steve.Hartmann@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

+

6

0

9

11

4.0

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

The

Rebecca Jones Project Management Assistant I 10/5/2021 5:05:06 PM

4

5

6

Q

10

12

13

4 5

10/5/2021

ory Job ID: 480-190023-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	10
QC Sample Results	11
QC Association	14
Chronicle	15
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	20

3

4

6

8

46

11

13

14

Definitions/Glossary

Client: New York State D.E.C. Job ID: 480-190023-1

Project/Site: COSCO #344035

Qualifiers
GC/MS VOA

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

HF Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present
PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

4

5

6

7

10

10

13

L

Case Narrative

Client: New York State D.E.C.

Project/Site: COSCO #344035

Job ID: 480-190023-1

Job ID: 480-190023-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-190023-1

Comments

No additional comments.

Receipt

The samples were received on 9/24/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.8° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Methods 9040C, SM 4500 H+ B: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: RW-3D (480-190023-1) and Effluent (480-190023-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

4

5

6

1

10

4 4

12

13

Detection Summary

Client: New York State D.E.C.

Job ID: 480-190023-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D

Lab Sample ID: 480-190023-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2-Dichloroethene, Total	36		10	3.2	ug/L	1	_	624.1	Total/NA
Tetrachloroethene	79		5.0	0.34	ug/L	1		624.1	Total/NA
Trichloroethene	72		5.0	0.60	ug/L	1		624.1	Total/NA
pH	7.33	HF	0.100	0.100	SU	1		9040C	Total/NA
Temperature	18.8	HF	0.00100	0.00100	Degrees C	1		9040C	Total/NA
Total Dissolved Solids	631		10.0	4.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: Effluent

Lab Sample ID: 480-190023-2

Analyte	Result (Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
рН	8.28	HF	0.100	0.100	SU	1	_	9040C	Total/NA
Temperature	19.2 I	HF	0.00100	0.00100	Degrees C	1		9040C	Total/NA
Total Dissolved Solids	656		10.0	4.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: TB

Lab Sample ID: 480-190023-3

No Detections.

This Detection Summary does not include radiochemical test results.

10/5/2021

Client: New York State D.E.C. Job ID: 480-190023-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D Date Collected: 09/22/21 11:35

Date Received: 09/24/21 08:00

Lab Sample ID: 480-190023-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			09/24/21 14:40	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			09/24/21 14:40	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			09/24/21 14:40	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			09/24/21 14:40	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			09/24/21 14:40	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			09/24/21 14:40	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			09/24/21 14:40	1
1,2-Dichloroethene, Total	36		10	3.2	ug/L			09/24/21 14:40	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			09/24/21 14:40	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			09/24/21 14:40	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			09/24/21 14:40	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			09/24/21 14:40	1
Acrolein	ND		100	17	ug/L			09/24/21 14:40	1
Acrylonitrile	ND		50	1.9	ug/L			09/24/21 14:40	1
Benzene	ND		5.0	0.60	ug/L			09/24/21 14:40	1
Bromodichloromethane	ND		5.0	0.54	ug/L			09/24/21 14:40	1
Bromoform	ND		5.0	0.47	ug/L			09/24/21 14:40	1
Bromomethane	ND		5.0	1.2	ug/L			09/24/21 14:40	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			09/24/21 14:40	1
Chlorobenzene	ND		5.0	0.48	ug/L			09/24/21 14:40	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			09/24/21 14:40	1
Chloroethane	ND		5.0	0.87	ug/L			09/24/21 14:40	1
Chloroform	ND		5.0	0.54	ug/L			09/24/21 14:40	1
Chloromethane	ND		5.0	0.64	ug/L			09/24/21 14:40	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			09/24/21 14:40	1
Ethylbenzene	ND		5.0	0.46	ug/L			09/24/21 14:40	1
Methylene Chloride	ND		5.0	0.81	ug/L			09/24/21 14:40	1
Tetrachloroethene	79		5.0	0.34	ug/L			09/24/21 14:40	1
Toluene	ND		5.0	0.45	ug/L			09/24/21 14:40	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			09/24/21 14:40	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			09/24/21 14:40	1
Trichloroethene	72		5.0	0.60	ug/L			09/24/21 14:40	1
Vinyl chloride	ND		5.0	0.75	ug/L			09/24/21 14:40	1
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		68 - 130			-		09/24/21 14:40	1
4-Bromofluorobenzene (Surr)	97		76 - 123					09/24/21 14:40	1
Dibromofluoromethane (Surr)	102		75 - 123					09/24/21 14:40	1
Toluene-d8 (Surr)	100		77 - 120					09/24/21 14:40	1

Genera	Chemi	istry
--------	-------	-------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	631		10.0	4.0	mg/L			09/24/21 15:00	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.33	HF	0.100	0.100	SU			09/28/21 15:18	1
Temperature	18.8	HF	0.00100	0.00100	Degrees C			09/28/21 15:18	1

Eurofins TestAmerica, Buffalo

Page 7 of 20

Client: New York State D.E.C. Job ID: 480-190023-1

Project/Site: COSCO #344035

Client Sample ID: Effluent

Lab Sample ID: 480-190023-2 Date Collected: 09/22/21 11:30

Matrix: Water

Date Received: 09/24/21 08:00

Analyte	Result Qua	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0	0.39	ug/L			09/24/21 15:03	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			09/24/21 15:03	1
1,1,2-Trichloroethane	ND	5.0	0.48	ug/L			09/24/21 15:03	1
1,1-Dichloroethane	ND	5.0	0.59	ug/L			09/24/21 15:03	1
1,1-Dichloroethene	ND	5.0	0.85	ug/L			09/24/21 15:03	1
1,2-Dichlorobenzene	ND	5.0	0.44	ug/L			09/24/21 15:03	1
1,2-Dichloroethane	ND	5.0	0.60	ug/L			09/24/21 15:03	1
1,2-Dichloroethene, Total	ND	10	3.2	ug/L			09/24/21 15:03	1
1,2-Dichloropropane	ND	5.0	0.61	ug/L			09/24/21 15:03	1
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			09/24/21 15:03	1
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			09/24/21 15:03	1
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			09/24/21 15:03	1
Acrolein	ND	100	17	ug/L			09/24/21 15:03	1
Acrylonitrile	ND	50	1.9	ug/L			09/24/21 15:03	1
Benzene	ND	5.0	0.60	ug/L			09/24/21 15:03	1
Bromodichloromethane	ND	5.0	0.54	ug/L			09/24/21 15:03	1
Bromoform	ND	5.0	0.47	ug/L			09/24/21 15:03	1
Bromomethane	ND	5.0	1.2	ug/L			09/24/21 15:03	1
Carbon tetrachloride	ND	5.0	0.51	ug/L			09/24/21 15:03	1
Chlorobenzene	ND	5.0	0.48	ug/L			09/24/21 15:03	1
Chlorodibromomethane	ND	5.0	0.41	ug/L			09/24/21 15:03	1
Chloroethane	ND	5.0	0.87	ug/L			09/24/21 15:03	1
Chloroform	ND	5.0	0.54	ug/L			09/24/21 15:03	1
Chloromethane	ND	5.0	0.64	ug/L			09/24/21 15:03	1
cis-1,3-Dichloropropene	ND	5.0	0.33	ug/L			09/24/21 15:03	1
Ethylbenzene	ND	5.0	0.46	ug/L			09/24/21 15:03	1
Methylene Chloride	ND	5.0	0.81	ug/L			09/24/21 15:03	1
Tetrachloroethene	ND	5.0	0.34	ug/L			09/24/21 15:03	1
Toluene	ND	5.0	0.45	ug/L			09/24/21 15:03	1
trans-1,2-Dichloroethene	ND	5.0	0.59	ug/L			09/24/21 15:03	1
trans-1,3-Dichloropropene	ND	5.0	0.44	ug/L			09/24/21 15:03	1
Trichloroethene	ND	5.0	0.60	ug/L			09/24/21 15:03	1
Vinyl chloride	ND	5.0	0.75	ug/L			09/24/21 15:03	1
Surrogate	%Recovery Qua	lifier Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96	68 - 130			_		09/24/21 15:03	1
4-Bromofluorobenzene (Surr)	99	76 - 123					09/24/21 15:03	1
Dibromofluoromethane (Surr)	96	75 - 123					09/24/21 15:03	1
Toluene-d8 (Surr)	100	77 - 120					09/24/21 15:03	1

_		
Genera	l Chem	nistrv

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	656		10.0	4.0	mg/L			09/24/21 15:00	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	8.28	HF	0.100	0.100	SU			09/28/21 15:19	1
Temperature	19.2	HF	0.00100	0.00100	Degrees C			09/28/21 15:19	1

Page 8 of 20

Client: New York State D.E.C. Job ID: 480-190023-1

Project/Site: COSCO #344035

Client Sample ID: TB

Toluene-d8 (Surr)

Lab Sample ID: 480-190023-3

Matrix: Water

Date Collected: 09/22/21 00:00 Date Received: 09/24/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			09/24/21 15:26	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			09/24/21 15:26	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			09/24/21 15:26	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			09/24/21 15:26	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			09/24/21 15:26	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			09/24/21 15:26	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			09/24/21 15:26	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			09/24/21 15:26	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			09/24/21 15:26	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			09/24/21 15:26	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			09/24/21 15:26	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			09/24/21 15:26	1
Acrolein	ND		100	17	ug/L			09/24/21 15:26	1
Acrylonitrile	ND		50	1.9	ug/L			09/24/21 15:26	1
Benzene	ND		5.0	0.60	ug/L			09/24/21 15:26	1
Bromodichloromethane	ND		5.0	0.54	ug/L			09/24/21 15:26	1
Bromoform	ND		5.0	0.47	ug/L			09/24/21 15:26	1
Bromomethane	ND		5.0	1.2	ug/L			09/24/21 15:26	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			09/24/21 15:26	1
Chlorobenzene	ND		5.0	0.48	ug/L			09/24/21 15:26	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			09/24/21 15:26	1
Chloroethane	ND		5.0	0.87	ug/L			09/24/21 15:26	1
Chloroform	ND		5.0	0.54	ug/L			09/24/21 15:26	1
Chloromethane	ND		5.0	0.64	ug/L			09/24/21 15:26	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			09/24/21 15:26	1
Ethylbenzene	ND		5.0	0.46	ug/L			09/24/21 15:26	1
Methylene Chloride	ND		5.0	0.81	ug/L			09/24/21 15:26	1
Tetrachloroethene	ND		5.0	0.34	ug/L			09/24/21 15:26	1
Toluene	ND		5.0	0.45	ug/L			09/24/21 15:26	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			09/24/21 15:26	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			09/24/21 15:26	1
Trichloroethene	ND		5.0	0.60	ug/L			09/24/21 15:26	1
Vinyl chloride	ND		5.0	0.75	ug/L			09/24/21 15:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		68 - 130			-		09/24/21 15:26	1
4-Bromofluorobenzene (Surr)	98		76 - 123					09/24/21 15:26	1
Dibromofluoromethane (Surr)	99		75 ₋ 123					09/24/21 15:26	1

09/24/21 15:26

77 - 120

Surrogate Summary

Client: New York State D.E.C.

Project/Site: COSCO #344035

Job ID: 480-190023-1

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pero				
		DCA	BFB	DBFM	TOL		
Lab Sample ID	Client Sample ID	(68-130)	(76-123)	(75-123)	(77-120)		
480-190023-1	RW-3D	103	97	102	100		
480-190023-2	Effluent	96	99	96	100		
480-190023-3	ТВ	102	98	99	101		
LCS 480-597744/5	Lab Control Sample	97	102	100	103		
MB 480-597744/7	Method Blank	100	100	100	102		

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

_

6

7

8

9

10

12

14

Job ID: 480-190023-1

Client: New York State D.E.C. Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS)

MB MB

Lab Sample ID: MB 480-597744/7

Matrix: Water

Analysis Batch: 597744

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	5.0	0.39	ug/L			09/24/21 12:42	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			09/24/21 12:42	1
1,1,2-Trichloroethane	ND	5.0	0.48	ug/L			09/24/21 12:42	1
1,1-Dichloroethane	ND	5.0	0.59	ug/L			09/24/21 12:42	1
1,1-Dichloroethene	ND	5.0	0.85	ug/L			09/24/21 12:42	1
1,2-Dichlorobenzene	ND	5.0	0.44	ug/L			09/24/21 12:42	1
1,2-Dichloroethane	ND	5.0	0.60	ug/L			09/24/21 12:42	1
1,2-Dichloroethene, Total	ND	10	3.2	ug/L			09/24/21 12:42	1
1,2-Dichloropropane	ND	5.0	0.61	ug/L			09/24/21 12:42	1
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			09/24/21 12:42	1
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			09/24/21 12:42	1
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			09/24/21 12:42	1
Acrolein	ND	100	17	ug/L			09/24/21 12:42	1
Acrylonitrile	ND	50	1.9	ug/L			09/24/21 12:42	1
Benzene	ND	5.0	0.60	ug/L			09/24/21 12:42	1
Bromodichloromethane	ND	5.0	0.54	ug/L			09/24/21 12:42	1
Bromoform	ND	5.0	0.47	ug/L			09/24/21 12:42	1
Bromomethane	ND	5.0	1.2	ug/L			09/24/21 12:42	1
Carbon tetrachloride	ND	5.0	0.51	ug/L			09/24/21 12:42	1
Chlorobenzene	ND	5.0	0.48	ug/L			09/24/21 12:42	1
Chlorodibromomethane	ND	5.0	0.41	ug/L			09/24/21 12:42	1
Chloroethane	ND	5.0	0.87	ug/L			09/24/21 12:42	1
Chloroform	ND	5.0	0.54	ug/L			09/24/21 12:42	1
Chloromethane	ND	5.0	0.64	ug/L			09/24/21 12:42	1
cis-1,3-Dichloropropene	ND	5.0	0.33	ug/L			09/24/21 12:42	1
Ethylbenzene	ND	5.0	0.46	ug/L			09/24/21 12:42	1
Methylene Chloride	ND	5.0	0.81	ug/L			09/24/21 12:42	1
Tetrachloroethene	ND	5.0	0.34	ug/L			09/24/21 12:42	1
Toluene	ND	5.0	0.45	ug/L			09/24/21 12:42	1
trans-1,2-Dichloroethene	ND	5.0	0.59	ug/L			09/24/21 12:42	1
trans-1,3-Dichloropropene	ND	5.0	0.44	ug/L			09/24/21 12:42	1
Trichloroethene	ND	5.0	0.60	ug/L			09/24/21 12:42	1
Vinyl chloride	ND	5.0	0.75	ug/L			09/24/21 12:42	1

MB	MB

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	68 - 130		09/24/21 12:42	1
4-Bromofluorobenzene (Surr)	100	76 - 123		09/24/21 12:42	1
Dibromofluoromethane (Surr)	100	75 - 123		09/24/21 12:42	1
Toluene-d8 (Surr)	102	77 - 120		09/24/21 12:42	1

Lab Sample ID: LCS 480-597744/5

Matrix: Water

Analysis Batch: 597744

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	19.7		ug/L		99	52 - 162	
1,1,2,2-Tetrachloroethane	20.0	20.7		ug/L		104	46 - 157	
1,1,2-Trichloroethane	20.0	20.4		ug/L		102	52 _ 150	

Eurofins TestAmerica, Buffalo

10/5/2021

Page 11 of 20

Job ID: 480-190023-1

Client: New York State D.E.C.

Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-597744/5

Matrix: Water

Analysis Batch: 597744

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	20.0	20.3		ug/L		102	59 - 155	
1,1-Dichloroethene	20.0	19.1		ug/L		96	1 - 234	
1,2-Dichlorobenzene	20.0	20.4		ug/L		102	18 - 190	
1,2-Dichloroethane	20.0	19.7		ug/L		99	49 - 155	
1,2-Dichloropropane	20.0	20.8		ug/L		104	1 _ 210	
1,3-Dichlorobenzene	20.0	19.9		ug/L		100	59 - 156	
1,4-Dichlorobenzene	20.0	20.0		ug/L		100	18 - 190	
2-Chloroethyl vinyl ether	20.0	19.9	J	ug/L		99	1 _ 305	
Benzene	20.0	20.0		ug/L		100	37 _ 151	
Bromodichloromethane	20.0	20.2		ug/L		101	35 - 155	
Bromoform	20.0	23.2		ug/L		116	45 - 169	
Bromomethane	20.0	18.6		ug/L		93	1 - 242	
Carbon tetrachloride	20.0	21.7		ug/L		108	70 - 140	
Chlorobenzene	20.0	19.9		ug/L		99	37 _ 160	
Chlorodibromomethane	20.0	21.9		ug/L		110	53 - 149	
Chloroethane	20.0	17.9		ug/L		90	14 - 230	
Chloroform	20.0	19.7		ug/L		98	51 - 138	
Chloromethane	20.0	18.0		ug/L		90	1 _ 273	
cis-1,3-Dichloropropene	20.0	20.0		ug/L		100	1 _ 227	
Ethylbenzene	20.0	20.6		ug/L		103	37 _ 162	
Methylene Chloride	20.0	20.0		ug/L		100	1 _ 221	
Tetrachloroethene	20.0	18.9		ug/L		94	64 - 148	
Toluene	20.0	19.9		ug/L		99	47 - 150	
trans-1,2-Dichloroethene	20.0	19.6		ug/L		98	54 - 156	
trans-1,3-Dichloropropene	20.0	19.8		ug/L		99	17 - 183	
Trichloroethene	20.0	18.4		ug/L		92	71 ₋ 157	
Vinyl chloride	20.0	19.1		ug/L		95	1 - 251	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		68 - 130
4-Bromofluorobenzene (Surr)	102		76 - 123
Dibromofluoromethane (Surr)	100		75 - 123
Toluene-d8 (Surr)	103		77 - 120

Method: 9040C - pH

Lab Sample ID: LCS 480-598253/1

Matrix: Water

Analysis Batch: 598253

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier Unit	t D	%Rec	Limits	
рН	7.00	7.028	SU		100	99 - 101	

Eurofins TestAmerica, Buffalo

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Page 12 of 20

QC Sample Results

Client: New York State D.E.C. Job ID: 480-190023-1

Project/Site: COSCO #344035

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 480-597837/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 597837

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	ND		10.0	4.0	mg/L			09/24/21 15:00	1

Lab Sample ID: LCS 480-597837/2 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 597837

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit D %Rec **Total Dissolved Solids** 502 471.0 mg/L 94 85 - 115

QC Association Summary

Client: New York State D.E.C. Job ID: 480-190023-1

Project/Site: COSCO #344035

GC/MS VOA

Analysis Batch: 597744

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-190023-1	RW-3D	Total/NA	Water	624.1	
480-190023-2	Effluent	Total/NA	Water	624.1	
480-190023-3	ТВ	Total/NA	Water	624.1	
MB 480-597744/7	Method Blank	Total/NA	Water	624.1	
LCS 480-597744/5	Lab Control Sample	Total/NA	Water	624.1	

General Chemistry

Analysis Batch: 597837

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-190023-1	RW-3D	Total/NA	Water	SM 2540C	
480-190023-2	Effluent	Total/NA	Water	SM 2540C	
MB 480-597837/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 480-597837/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Analysis Batch: 598253

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-190023-1	RW-3D	Total/NA	Water	9040C	
480-190023-2	Effluent	Total/NA	Water	9040C	
LCS 480-598253/1	Lab Control Sample	Total/NA	Water	9040C	

3

1

5

7

q

10

11

13

14

Lab Chronicle

1

597837 09/24/21 15:00 JGO

Client: New York State D.E.C.

Job ID: 480-190023-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D

Lab Sample ID: 480-190023-1

Matrix: Water

Date Collected: 09/22/21 11:35 Date Received: 09/24/21 08:00

Client Sample ID: Effluent

Analysis

SM 2540C

Total/NA

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	597744	09/24/21 14:40	LCH	TAL BUF
Total/NA	Analysis	9040C		1	598253	09/28/21 15:18	JPS	TAL BUF

Lab Sample ID: 480-190023-2

TAL BUF

Matrix: Water

Date Collected: 09/22/21 11:30
Date Received: 09/24/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	597744	09/24/21 15:03	LCH	TAL BUF
Total/NA	Analysis	9040C		1	598253	09/28/21 15:19	JPS	TAL BUF
Total/NA	Analysis	SM 2540C		1	597837	09/24/21 15:00	JGO	TAL BUF

Client Sample ID: TB Lab Sample ID: 480-190023-3

Date Collected: 09/22/21 00:00 Matrix: Water

Date Received: 09/24/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	597744	09/24/21 15:26	LCH	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

6

7

10

12

14

Accreditation/Certification Summary

Client: New York State D.E.C. Job ID: 480-190023-1

Project/Site: COSCO #344035

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Pro	gram	Identification Number	Expiration Date
lew York	NE	LAP	10026	04-01-22
The following analytes	are included in this report, but	t the laboratory is not certif	ied by the governing authority. This list ma	y include analytes for which
the agency does not off Analysis Method		Matrix	Analyte	
the agency does not off Analysis Method 624.1	fer certification . Prep Method	Matrix Water	Analyte 1,2-Dichloroethene, Total	
Analysis Method				

4

5

7

Q

11

14

Method Summary

Client: New York State D.E.C.

Project/Site: COSCO #344035

Job ID: 480-190023-1

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF
9040C	рН	SW846	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

-

4

5

0

8

9

11

12

14

Sample Summary

Client: New York State D.E.C.

Project/Site: COSCO #344035

Job ID: 480-190023-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-190023-1	RW-3D	Water	09/22/21 11:35	09/24/21 08:00
480-190023-2	Effluent	Water	09/22/21 11:30	09/24/21 08:00
480-190023-3	ТВ	Water	09/22/21 00:00	09/24/21 08:00

3

4

5

Q

10

13

14

TestAmerica Buffalo

10 Hazelwood Drive, Suite 106 Amherst, New York 14228

Albany Service Center

25 Kraft Avenue Albany, NY 12205

Chain of Custody Record

Phone (716) 691-2600 #22 4	Phone (518) 42															THE LEADER IN ENVIRONMENTAL TESTING	
Client Information Client Contact:	Sampler:	Berch	_		.ab PM: Judy Sto	one					Carrier T	rackin	g No(s):			COC No:	
Sabrina Campfield	Phone: E					ield@labellapc.com										Page:	
Company: LaBella Associates									Ana	alysis Re	queste	 d				Job#:	
Address: 5 McCrea Hill Rd.	Due Date Request	ed:											П			Preservation Codes: A - HCL J - DI Water	
City: Ballston Spa NY	TAT Requested (d	ays):)						olatile							B - NaOH M - Hexane	
State, Zip: New York	1						وا	2	ant V							D - Nitric Acid P - Na2O4S	
Phone: 845 866 1335	Quote #:							spiloe	Pollut							E - NaHSO4 Q - Na2SO3 F - MeOH R - Na2S2SO3 H - Ascorbic Acid S - H2SO4	
Email: scampfield@labellapc.com	PO #: CallOut 136146					П	7	na Aen	ority I							1 - Ice Z - other (specify)	
Project Name/number: COSCO #344035	WO #:					2		000) Pri						ine	Regulatory programs: MCP GW1/S1 GW1/S1 CT RSR	
Site:	SSOW#:				s	ample	201	<u>a</u>	- (MOD) Priority Pollutant Volatiles							RCP CT RSR DEP Form EDD Required	
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matri. (W=wate S=solid O=wastel BT=Tissu A=Air)	oil, le,	Field Filtered S	Perform MS/MSD?	9040B - pH	REC 1						Total Number of	Special landward and the	
		><	Preserva	ation Code:	X	X	X								Ż	Special Instructions/Note:	
RW-3D	4-28-21	11:35	6	Wate	er 65	N	N !	K X							5		
Effluent	9-22-21	11:30	G	Wate	er 65	N	₩.	KX	J. J.						5		
				N		\sqcup	_									-	
					\	H		-	+		+						
			RZ		+	H		+		-	+						
					+	H	1	+				48	30-1900	23 Cha	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	f Custody	
												1	H			uelody	
Possible Hazard Identification						Sam	ple D	ispos	Sal (A	fee may h	A associ	od if	cample	C 272 -	2	ned longer than 1 month)	
Non-Hazard Flammable Skin Irritant Poi	son B Unkr	nown 🗀	Radiologica	n/			Ret	urn To	o Clien	t L] Disposa	al By	Lab		Arc	thive For Months	
Deliverable Requested: I, II, III, IV, Other (specify)						Spe	cial In	structi	ions/Q	C Require	ments: pl	ease	send c	opy to			
Relinguished Survell	Date/Time: 9-22-1	15:	94	Company		F	Receive	d by:	nl	Local			Date/Ti	me:	1-	1 0450 Company	
Relinquished by Karl Lachne	Date/Time: 91231:			Company	ohei	F	Receive		,	- COCO	w		Date/Ti	me:	2	Company	
Relinquished by:	Date/Time:			Company		F	Receive	d by:	1	2	55		Date/Ti	ne: 124	10	Company TAB	
Custody Seal No.: A Yes A No WIGA 010 rev 6							Cooler	Temper	rature(s)	°C and Othe	Remarks:	2	2.8		12	I ICE	

Client: New York State D.E.C.

Job Number: 480-190023-1

Login Number: 190023 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Sabuda, Brendan D

ordator. Gubada, Brondan B		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.8 #1 ICE
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	False	No: Received Trip Blank(s) not listed on COC.
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

Eurofins TestAmerica, Buffalo

Page 20 of 20

A

5

6

0

10

46

13

14

October 2021 Analytical Data

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-190769-1 Client Project/Site: COSCO #344035

For:

New York State D.E.C. 625 Broadway 12th Floor Albany, New York 12233-7017

Attn: Robert Strang

Authorized for release by: 10/26/2021 12:35:47 PM Judy Stone, Senior Project Manager

(484)685-0868

Judy.Stone@Eurofinset.com

Designee for

Steve Hartmann, Project Manager I (413)572-4000

Steve.Hartmann@Eurofinset.com

..... Links

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

0

10

12

13

14

2

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Judystone

6

Judy Stone Senior Project Manager 10/26/2021 12:35:47 PM

8

9

10

12

14

Client: New York State D.E.C. Project/Site: COSCO #344035

Laboratory Job ID: 480-190769-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	10
QC Sample Results	11
QC Association	16
Chronicle	17
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
Receipt Checklists	22

Definitions/Glossary

Client: New York State D.E.C. Job ID: 480-190769-1

Project/Site: COSCO #344035

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
*+	LCS and/or LCSD is outside acceptance limits, high biased.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier	Qualifier Description
*+	LCS and/or LCSD is outside acceptance limits, high biased.
^+	Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.
HF	Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

Glossary

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number

NC Not Calculated

MQL

Not Detected at the reporting limit (or MDL or EDL if shown) ND

Method Quantitation Limit

NEG Negative / Absent POS Positive / Present PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Eurofins TestAmerica, Buffalo

Page 4 of 22

Case Narrative

Client: New York State D.E.C.

Project/Site: COSCO #344035

Job ID: 480-190769-1

Job ID: 480-190769-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-190769-1

Comments

No additional comments.

Receipt

The samples were received on 10/12/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.2° C.

GC/MS VOA

Method 624.1: The following sample was diluted to bring the concentration of target analytes within the calibration range: RW-3D (480-190769-1). Elevated reporting limits (RLs) are provided.

Method 624.1: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 480-599984 recovered outside control limits for the following analyte: Acrolein. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Methods 9040C, SM 4500 H+ B: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following sample has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: RW-3D (480-190769-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Λ

-

6

7

8

9

4 4

12

16

4.

Detection Summary

Client: New York State D.E.C.

Job ID: 480-190769-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D

Lab Sample ID: 480-190769-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2-Dichloroethene, Total	52		10	3.2	ug/L	1	_	624.1	Total/NA
Trichloroethene	96		5.0	0.60	ug/L	1		624.1	Total/NA
Tetrachloroethene - DL	83		10	0.68	ug/L	2		624.1	Total/NA
рН	8.12	HF	0.100	0.100	SU	1		9040C	Total/NA
Temperature	19.7	HF	0.00100	0.00100	Degrees C	1		9040C	Total/NA
Total Dissolved Solids	668		10.0	4.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: Effluent

Lab Sample ID: 480-190769-2

Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
рН	8.13	HF *+	0.100	0.100	SU	1	_	9040C	Total/NA
Temperature	17.2	HF	0.00100	0.00100	Degrees C	1		9040C	Total/NA
Total Dissolved Solids	679		10.0	4.0	mg/L	1		SM 2540C	Total/NA

8

4.0

11

13

14

Client: New York State D.E.C. Job ID: 480-190769-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D Date Collected: 10/11/21 11:05 Lab Sample ID: 480-190769-1

Matrix: Water

Date Received: 10/12/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			10/12/21 18:37	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/12/21 18:37	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/12/21 18:37	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			10/12/21 18:37	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			10/12/21 18:37	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/12/21 18:37	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/12/21 18:37	1
1,2-Dichloroethene, Total	52		10	3.2	ug/L			10/12/21 18:37	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/12/21 18:37	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/12/21 18:37	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/12/21 18:37	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/12/21 18:37	1
Acrolein	ND	*+	100	17	ug/L			10/12/21 18:37	1
Acrylonitrile	ND		50	1.9	ug/L			10/12/21 18:37	1
Benzene	ND		5.0	0.60	ug/L			10/12/21 18:37	1
Bromodichloromethane	ND		5.0	0.54	ug/L			10/12/21 18:37	1
Bromoform	ND		5.0	0.47	ug/L			10/12/21 18:37	1
Bromomethane	ND		5.0	1.2	ug/L			10/12/21 18:37	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/12/21 18:37	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/12/21 18:37	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			10/12/21 18:37	1
Chloroethane	ND		5.0	0.87	ug/L			10/12/21 18:37	1
Chloroform	ND		5.0	0.54	ug/L			10/12/21 18:37	1
Chloromethane	ND		5.0	0.64	ug/L			10/12/21 18:37	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/12/21 18:37	1
Ethylbenzene	ND		5.0	0.46	ug/L			10/12/21 18:37	1
Methylene Chloride	ND		5.0	0.81	ug/L			10/12/21 18:37	1
Toluene	ND		5.0	0.45	ug/L			10/12/21 18:37	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			10/12/21 18:37	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/12/21 18:37	•
Trichloroethene	96		5.0	0.60	ug/L			10/12/21 18:37	1
Vinyl chloride	ND		5.0	0.75	ug/L			10/12/21 18:37	1
Surrogate	%Recovery	Qualifier	Limits			=	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		68 - 130			_		10/12/21 18:37	1
4-Bromofluorobenzene (Surr)	99		76 - 123					10/12/21 18:37	1

Method: 624.1	- Volatile Organic	Compounds	(GC/MS) - DL
---------------	--------------------	-----------	--------------

100

104

Result Qualifier

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Analyte

Tetrachloroethene	83	10	0.68 ug/L		10/13/21 13:53	2
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	68 - 130			10/13/21 13:53	2
4-Bromofluorobenzene (Surr)	99	76 - 123			10/13/21 13:53	2
Dibromofluoromethane (Surr)	100	75 - 123			10/13/21 13:53	2
Toluene-d8 (Surr)	104	77 - 120			10/13/21 13:53	2

RL

MDL Unit

D

Prepared

75 - 123

77 - 120

10/12/21 18:37

10/12/21 18:37

Analyzed

Page 7 of 22

Dil Fac

Client Sample Results

Client: New York State D.E.C. Job ID: 480-190769-1

Project/Site: COSCO #344035

Date Received: 10/12/21 08:00

Client Sample ID: RW-3D Lab Sample ID: 480-190769-1 Date Collected: 10/11/21 11:05

Matrix: Water

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	668		10.0	4.0	mg/L			10/12/21 14:25	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	8.12	HF	0.100	0.100	SU			10/14/21 09:12	1
Temperature	19.7	HF	0.00100	0.00100	Degrees C			10/14/21 09:12	1

Client Sample Results

Client: New York State D.E.C. Job ID: 480-190769-1

Project/Site: COSCO #344035

Client Sample ID: Effluent

Lab Sample ID: 480-190769-2 Date Collected: 10/11/21 10:55

Matrix: Water

Date Received: 10/12/21 08:00

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0	0.39	ug/L			10/12/21 19:01	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			10/12/21 19:01	1
1,1,2-Trichloroethane	ND	5.0	0.48	ug/L			10/12/21 19:01	1
1,1-Dichloroethane	ND	5.0	0.59	ug/L			10/12/21 19:01	1
1,1-Dichloroethene	ND	5.0	0.85	ug/L			10/12/21 19:01	1
1,2-Dichlorobenzene	ND	5.0	0.44	ug/L			10/12/21 19:01	1
1,2-Dichloroethane	ND	5.0	0.60	ug/L			10/12/21 19:01	1
1,2-Dichloroethene, Total	ND	10	3.2	ug/L			10/12/21 19:01	1
1,2-Dichloropropane	ND	5.0	0.61	ug/L			10/12/21 19:01	1
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			10/12/21 19:01	1
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			10/12/21 19:01	1
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			10/12/21 19:01	1
Acrolein	ND *+	100	17	ug/L			10/12/21 19:01	1
Acrylonitrile	ND	50	1.9	ug/L			10/12/21 19:01	1
Benzene	ND	5.0	0.60	ug/L			10/12/21 19:01	1
Bromodichloromethane	ND	5.0	0.54	ug/L			10/12/21 19:01	1
Bromoform	ND	5.0	0.47	ug/L			10/12/21 19:01	1
Bromomethane	ND	5.0	1.2	ug/L			10/12/21 19:01	1
Carbon tetrachloride	ND	5.0	0.51	ug/L			10/12/21 19:01	1
Chlorobenzene	ND	5.0	0.48	ug/L			10/12/21 19:01	1
Chlorodibromomethane	ND	5.0	0.41	ug/L			10/12/21 19:01	1
Chloroethane	ND	5.0	0.87	ug/L			10/12/21 19:01	1
Chloroform	ND	5.0	0.54	ug/L			10/12/21 19:01	1
Chloromethane	ND	5.0	0.64	ug/L			10/12/21 19:01	1
cis-1,3-Dichloropropene	ND	5.0	0.33	ug/L			10/12/21 19:01	1
Ethylbenzene	ND	5.0	0.46	ug/L			10/12/21 19:01	1
Methylene Chloride	ND	5.0	0.81	ug/L			10/12/21 19:01	1
Tetrachloroethene	ND	5.0	0.34	ug/L			10/12/21 19:01	1
Toluene	ND	5.0	0.45	ug/L			10/12/21 19:01	1
trans-1,2-Dichloroethene	ND	5.0	0.59	ug/L			10/12/21 19:01	1
trans-1,3-Dichloropropene	ND	5.0	0.44	ug/L			10/12/21 19:01	1
Trichloroethene	ND	5.0	0.60	ug/L			10/12/21 19:01	1
Vinyl chloride	ND	5.0	0.75	ug/L			10/12/21 19:01	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	68 - 130					10/12/21 19:01	1
4-Bromofluorobenzene (Surr)	100	76 - 123					10/12/21 19:01	1
Dibromofluoromethane (Surr)	101	75 - 123					10/12/21 19:01	1
Toluene-d8 (Surr)	105	77 - 120					10/12/21 19:01	1

Contra Chombay	General	I Chemistry
----------------	---------	-------------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	679		10.0	4.0	mg/L			10/12/21 14:25	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	8.13	HF *+	0.100	0.100	SU			10/13/21 17:54	1
Temperature	17.2	HF	0.00100	0.00100	Degrees C			10/13/21 17:54	1

Eurofins TestAmerica, Buffalo

Surrogate Summary

Client: New York State D.E.C. Job ID: 480-190769-1

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

				Percent Sui	rrogate Rec
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(68-130)	(76-123)	(75-123)	(77-120)
480-190769-1	RW-3D	101	99	100	104
480-190769-1 - DL	RW-3D	101	99	100	104
480-190769-2	Effluent	98	100	101	105
LCS 480-599984/5	Lab Control Sample	104	102	102	104
LCS 480-600190/5	Lab Control Sample	101	102	98	103
MB 480-599984/7	Method Blank	99	100	101	104
MB 480-600190/7	Method Blank	98	99	104	106

Surrogate Legend

Project/Site: COSCO #344035

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

7

8

9

10

46

13

Client: New York State D.E.C. Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS)

MB MB

Lab Sample ID: MB 480-599984/7

Matrix: Water

Analysis Batch: 599984

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	5.0	0.39	ug/L			10/12/21 11:52	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			10/12/21 11:52	1
1,1,2-Trichloroethane	ND	5.0	0.48	ug/L			10/12/21 11:52	1
1,1-Dichloroethane	ND	5.0	0.59	ug/L			10/12/21 11:52	1
1,1-Dichloroethene	ND	5.0	0.85	ug/L			10/12/21 11:52	1
1,2-Dichlorobenzene	ND	5.0	0.44	ug/L			10/12/21 11:52	1
1,2-Dichloroethane	ND	5.0	0.60	ug/L			10/12/21 11:52	1
1,2-Dichloroethene, Total	ND	10	3.2	ug/L			10/12/21 11:52	1
1,2-Dichloropropane	ND	5.0	0.61	ug/L			10/12/21 11:52	1
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			10/12/21 11:52	1
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			10/12/21 11:52	1
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			10/12/21 11:52	1
Acrolein	ND	100	17	ug/L			10/12/21 11:52	1
Acrylonitrile	ND	50	1.9	ug/L			10/12/21 11:52	1
Benzene	ND	5.0	0.60	ug/L			10/12/21 11:52	1
Bromodichloromethane	ND	5.0	0.54	ug/L			10/12/21 11:52	1
Bromoform	ND	5.0	0.47	ug/L			10/12/21 11:52	1
Bromomethane	ND	5.0	1.2	ug/L			10/12/21 11:52	1
Carbon tetrachloride	ND	5.0	0.51	ug/L			10/12/21 11:52	1
Chlorobenzene	ND	5.0	0.48	ug/L			10/12/21 11:52	1
Chlorodibromomethane	ND	5.0	0.41	ug/L			10/12/21 11:52	1
Chloroethane	ND	5.0	0.87	ug/L			10/12/21 11:52	1
Chloroform	ND	5.0	0.54	ug/L			10/12/21 11:52	1
Chloromethane	ND	5.0	0.64	ug/L			10/12/21 11:52	1
cis-1,3-Dichloropropene	ND	5.0	0.33	ug/L			10/12/21 11:52	1
Ethylbenzene	ND	5.0	0.46	ug/L			10/12/21 11:52	1
Methylene Chloride	ND	5.0	0.81	ug/L			10/12/21 11:52	1
Tetrachloroethene	ND	5.0	0.34	ug/L			10/12/21 11:52	1
Toluene	ND	5.0	0.45	ug/L			10/12/21 11:52	1
trans-1,2-Dichloroethene	ND	5.0	0.59	ug/L			10/12/21 11:52	1
trans-1,3-Dichloropropene	ND	5.0	0.44	ug/L			10/12/21 11:52	1
Trichloroethene	ND	5.0	0.60	ug/L			10/12/21 11:52	1
Vinyl chloride	ND	5.0	0.75	ug/L			10/12/21 11:52	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		68 - 130		10/12/21 11:52	1
4-Bromofluorobenzene (Surr)	100		76 - 123		10/12/21 11:52	1
Dibromofluoromethane (Surr)	101		75 - 123		10/12/21 11:52	1
Toluene-d8 (Surr)	104		77 - 120		10/12/21 11:52	1

Lab Sample ID: LCS 480-599984/5

Matrix: Water

Analysis Batch: 599984

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	21.7		ug/L		108	52 - 162	
1,1,2,2-Tetrachloroethane	20.0	25.1		ug/L		125	46 - 157	
1,1,2-Trichloroethane	20.0	22.4		ug/L		112	52 - 150	

Eurofins TestAmerica, Buffalo

Client Sample ID: Lab Control Sample

Page 11 of 22

Prep Type: Total/NA

Client: New York State D.E.C. Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-599984/5

Matrix: Water

Analysis Batch: 599984

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS I	LCS				%Rec.	
Analyte	Added	Result (Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	20.0	22.6		ug/L		113	59 - 155	
1,1-Dichloroethene	20.0	22.9		ug/L		115	1 - 234	
1,2-Dichlorobenzene	20.0	22.0		ug/L		110	18 - 190	
1,2-Dichloroethane	20.0	20.5		ug/L		103	49 _ 155	
1,2-Dichloropropane	20.0	23.1		ug/L		115	1 _ 210	
1,3-Dichlorobenzene	20.0	22.0		ug/L		110	59 ₋ 156	
1,4-Dichlorobenzene	20.0	21.9		ug/L		110	18 - 190	
2-Chloroethyl vinyl ether	20.0	20.9	J	ug/L		105	1 _ 305	
Benzene	20.0	22.5		ug/L		113	37 _ 151	
Bromodichloromethane	20.0	21.7		ug/L		109	35 _ 155	
Bromoform	20.0	24.7		ug/L		124	45 _ 169	
Bromomethane	20.0	22.7		ug/L		113	1 - 242	
Carbon tetrachloride	20.0	22.8		ug/L		114	70 - 140	
Chlorobenzene	20.0	21.3		ug/L		107	37 _ 160	
Chlorodibromomethane	20.0	22.9		ug/L		115	53 _ 149	
Chloroethane	20.0	24.8		ug/L		124	14 - 230	
Chloroform	20.0	21.4		ug/L		107	51 - 138	
Chloromethane	20.0	22.1		ug/L		110	1 _ 273	
cis-1,3-Dichloropropene	20.0	21.1		ug/L		105	1 _ 227	
Ethylbenzene	20.0	22.1		ug/L		111	37 _ 162	
Methylene Chloride	20.0	24.3		ug/L		121	1 _ 221	
Tetrachloroethene	20.0	20.0		ug/L		100	64 - 148	
Toluene	20.0	21.5		ug/L		107	47 _ 150	
trans-1,2-Dichloroethene	20.0	22.5		ug/L		112	54 - 156	
trans-1,3-Dichloropropene	20.0	20.8		ug/L		104	17 _ 183	
Trichloroethene	20.0	20.7		ug/L		104	71 _ 157	
Vinyl chloride	20.0	23.4		ug/L		117	1 - 251	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		68 - 130
4-Bromofluorobenzene (Surr)	102		76 - 123
Dibromofluoromethane (Surr)	102		75 - 123
Toluene-d8 (Surr)	104		77 - 120

Lab Sample ID: MB 480-600190/7

Matrix: Water

Analysis Batch: 600190

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			10/13/21 12:27	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/13/21 12:27	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/13/21 12:27	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			10/13/21 12:27	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			10/13/21 12:27	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/13/21 12:27	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/13/21 12:27	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			10/13/21 12:27	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/13/21 12:27	1

Eurofins TestAmerica, Buffalo

Page 12 of 22

Client: New York State D.E.C. Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-600190/7

Matrix: Water

Analysis Batch: 600190

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3-Dichlorobenzene	MD		5.0	0.54	ug/L			10/13/21 12:27	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/13/21 12:27	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/13/21 12:27	1
Acrolein	ND		100	17	ug/L			10/13/21 12:27	1
Acrylonitrile	ND		50	1.9	ug/L			10/13/21 12:27	1
Benzene	ND		5.0	0.60	ug/L			10/13/21 12:27	1
Bromodichloromethane	ND		5.0	0.54	ug/L			10/13/21 12:27	1
Bromoform	ND		5.0	0.47	ug/L			10/13/21 12:27	1
Bromomethane	ND		5.0	1.2	ug/L			10/13/21 12:27	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/13/21 12:27	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/13/21 12:27	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			10/13/21 12:27	1
Chloroethane	ND		5.0	0.87	ug/L			10/13/21 12:27	1
Chloroform	ND		5.0	0.54	ug/L			10/13/21 12:27	1
Chloromethane	ND		5.0	0.64	ug/L			10/13/21 12:27	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/13/21 12:27	1
Ethylbenzene	ND		5.0	0.46	ug/L			10/13/21 12:27	1
Methylene Chloride	ND		5.0	0.81	ug/L			10/13/21 12:27	1
Tetrachloroethene	ND		5.0	0.34	ug/L			10/13/21 12:27	1
Toluene	ND		5.0	0.45	ug/L			10/13/21 12:27	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			10/13/21 12:27	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/13/21 12:27	1
Trichloroethene	ND		5.0	0.60	ug/L			10/13/21 12:27	1
Vinyl chloride	ND		5.0	0.75	ug/L			10/13/21 12:27	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Pre	pared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	98		68 - 130			10/13/21 12:27	1	
4-Bromofluorobenzene (Surr)	99	;	76 - 123			10/13/21 12:27	1	
Dibromofluoromethane (Surr)	104	;	75 - 123			10/13/21 12:27	1	
Toluene-d8 (Surr)	106		77 - 120			10/13/21 12:27	1	

Lab Sample ID: LCS 480-600190/5

Matrix: Water

Analysis Batch: 600190

Client Sample ID: Lab Control Sample Prep Type: Total/NA

•	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	20.0	21.7		ug/L		109	52 - 162
1,1,2,2-Tetrachloroethane	20.0	24.4		ug/L		122	46 - 157
1,1,2-Trichloroethane	20.0	22.3		ug/L		111	52 - 150
1,1-Dichloroethane	20.0	22.6		ug/L		113	59 - 155
1,1-Dichloroethene	20.0	22.7		ug/L		114	1 - 234
1,2-Dichlorobenzene	20.0	22.2		ug/L		111	18 - 190
1,2-Dichloroethane	20.0	19.8		ug/L		99	49 - 155
1,2-Dichloropropane	20.0	22.8		ug/L		114	1 - 210
1,3-Dichlorobenzene	20.0	22.1		ug/L		110	59 - 156
1,4-Dichlorobenzene	20.0	22.2		ug/L		111	18 - 190
2-Chloroethyl vinyl ether	20.0	19.8	J	ug/L		99	1 - 305
Benzene	20.0	22.3		ug/L		111	37 - 151

Eurofins TestAmerica, Buffalo

Page 13 of 22

Client: New York State D.E.C.

Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-600190/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 600190

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromodichloromethane	20.0	21.6		ug/L		108	35 - 155	
Bromoform	20.0	24.5		ug/L		122	45 - 169	
Bromomethane	20.0	22.3		ug/L		111	1 - 242	
Carbon tetrachloride	20.0	23.3		ug/L		116	70 - 140	
Chlorobenzene	20.0	21.4		ug/L		107	37 - 160	
Chlorodibromomethane	20.0	23.0		ug/L		115	53 - 149	
Chloroethane	20.0	24.6		ug/L		123	14 - 230	
Chloroform	20.0	20.9		ug/L		104	51 ₋ 138	
Chloromethane	20.0	21.4		ug/L		107	1 - 273	
cis-1,3-Dichloropropene	20.0	21.1		ug/L		105	1 - 227	
Ethylbenzene	20.0	22.6		ug/L		113	37 - 162	
Methylene Chloride	20.0	22.7		ug/L		114	1 - 221	
Tetrachloroethene	20.0	20.6		ug/L		103	64 - 148	
Toluene	20.0	21.5		ug/L		108	47 - 150	
trans-1,2-Dichloroethene	20.0	21.9		ug/L		110	54 - 156	
trans-1,3-Dichloropropene	20.0	20.9		ug/L		104	17 - 183	
Trichloroethene	20.0	21.0		ug/L		105	71 - 157	
Vinyl chloride	20.0	23.6		ug/L		118	1 _ 251	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		68 - 130
4-Bromofluorobenzene (Surr)	102		76 ₋ 123
Dibromofluoromethane (Surr)	98		75 - 123
Toluene-d8 (Surr)	103		77 - 120

Method: 9040C - pH

Lab Sample ID: LCS 480-600361/23 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 600361

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
pH	7.00	7.126	*+ ^+	SU		102	99 - 101	

Lab Sample ID: LCS 480-600361/45 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 600361

randijolo Zatom cocco.								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
pH	7.00	7.084	^+	SU		101	99 - 101	

Lab Sample ID: 480-190769-2 DU Client Sample ID: Effluent **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 600361									
	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	Ri	PD	Limit
pH	8.13	HF *+	8.241	^+	SU			1	5
Temperature	17.2	HF	16.70		Degrees C			3	10

Page 14 of 22

QC Sample Results

Client: New York State D.E.C. Job ID: 480-190769-1

Project/Site: COSCO #344035

Method: 9040C - pH (Continued)

Lab Sample ID: LCS 480-600378/1

Matrix: Water

Analysis Batch: 600378

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier Uni	t D	%Rec	Limits	
pH	7.00	7.038	SU		101	99 - 101	

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 480-600105/1

Matrix: Water

Analysis Batch: 600105

MB MB

Dil Fac Result Qualifier MDL Unit RL Prepared Analyzed Total Dissolved Solids 10.0 10/12/21 14:25 ND 4.0 mg/L

Lab Sample ID: LCS 480-600105/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 600105

%Rec. Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits Total Dissolved Solids 500 506.0 mg/L 101 85 - 115

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

QC Association Summary

Client: New York State D.E.C.

Project/Site: COSCO #344035

Job ID: 480-190769-1

GC/MS VOA

Analysis Batch: 599984

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-190769-1	RW-3D	Total/NA	Water	624.1	
480-190769-2	Effluent	Total/NA	Water	624.1	
MB 480-599984/7	Method Blank	Total/NA	Water	624.1	
LCS 480-599984/5	Lab Control Sample	Total/NA	Water	624.1	

Analysis Batch: 600190

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-190769-1 - DL	RW-3D	Total/NA	Water	624.1	
MB 480-600190/7	Method Blank	Total/NA	Water	624.1	
LCS 480-600190/5	Lab Control Sample	Total/NA	Water	624.1	

General Chemistry

Analysis Batch: 600105

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-190769-1	RW-3D	Total/NA	Water	SM 2540C	
480-190769-2	Effluent	Total/NA	Water	SM 2540C	
MB 480-600105/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 480-600105/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Analysis Batch: 600361

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
480-190769-2	Effluent	Total/NA	Water	9040C
LCS 480-600361/23	Lab Control Sample	Total/NA	Water	9040C
LCS 480-600361/45	Lab Control Sample	Total/NA	Water	9040C
480-190769-2 DU	Effluent	Total/NA	Water	9040C

Analysis Batch: 600378

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-190769-1	RW-3D	Total/NA	Water	9040C	
LCS 480-600378/1	Lab Control Sample	Total/NA	Water	9040C	

2

4

6

9

11

12

13

14

Lab Chronicle

Client: New York State D.E.C. Job ID: 480-190769-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D

Lab Sample ID: 480-190769-1

Matrix: Water

Date Collected: 10/11/21 11:05 Date Received: 10/12/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	599984	10/12/21 18:37	ATG	TAL BUF
Total/NA	Analysis	624.1	DL	2	600190	10/13/21 13:53	ATG	TAL BUF
Total/NA	Analysis	9040C		1	600378	10/14/21 09:12	KEB	TAL BUF
Total/NA	Analysis	SM 2540C		1	600105	10/12/21 14:25	JGO	TAL BUF

Lab Sample ID: 480-190769-2

Client Sample ID: Effluent Date Collected: 10/11/21 10:55 **Matrix: Water**

Date Received: 10/12/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	599984	10/12/21 19:01	ATG	TAL BUF
Total/NA	Analysis	9040C		1	600361	10/13/21 17:54	KEB	TAL BUF
Total/NA	Analysis	SM 2540C		1	600105	10/12/21 14:25	JGO	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: New York State D.E.C. Job ID: 480-190769-1

Project/Site: COSCO #344035

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Pr	ogram	Identification Number	Expiration Date	
New York		LAP	10026	04-01-22	
The following analytes	are included in this report, bu	t the laboratory is not certifi	ied by the governing authority. This list ma	ay include analytes fol	
the agency does not off Analysis Method	er certification. Prep Method	Matrix	Analyte		
		Matrix Water	Analyte 1,2-Dichloroethene, Total		
Analysis Method					

2

- - -

4

5

7

4 4

10

-

Method Summary

Client: New York State D.E.C.

Project/Site: COSCO #344035

Job ID: 480-190769-1

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF
9040C	рН	SW846	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

Δ

5

6

10

11

12

14

Sample Summary

Client: New York State D.E.C.

Project/Site: COSCO #344035

Job ID: 480-190769-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received		
480-190769-1	RW-3D	Water	10/11/21 11:05	10/12/21 08:00		
480-190769-2	Effluent	Water	10/11/21 10:55	10/12/21 08:00		

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Job Number: 480-190769-1

Login Number: 190769 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Sabuda, Brendan D

Answer	Comment
True	
True	2.2 #1 ICE
True	
	True True True True True True True True

Eurofins TestAmerica, Buffalo

November 2021 Analytical Data

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-192049-1 Client Project/Site: COSCO #344035

For:

New York State D.E.C. 625 Broadway 12th Floor Albany, New York 12233-7017

Attn: Robert Strang

Authorized for release by: 11/29/2021 5:45:00 PM Judy Stone, Senior Project Manager (484)685-0868 Judy.Stone@Eurofinset.com

Designee for

Steve Hartmann, Project Manager I (413)572-4000

Steve.Hartmann@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

4

O

0

9

IU

12

13

Judy Stone

Senior Project Manager 11/29/2021 5:45:00 PM

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Table of Contents

Cover Page	1
Table of Contents	3
Definitions	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	9
QC Sample Results	10
QC Association	13
Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

11

12

14

Definitions/Glossary

Client: New York State D.E.C. Job ID: 480-192049-1

Project/Site: COSCO #344035

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

*+ LCS and/or LCSD is outside acceptance limits, high biased.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

HF Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

4

5

7

8

10

13

14

Case Narrative

Client: New York State D.E.C.

Project/Site: COSCO #344035

Job ID: 480-192049-1

Job ID: 480-192049-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

ob Narrative 480-192049-1

Comments

No additional comments.

Receipt

The samples were received on 11/9/2021 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.0° C.

GC/MS VOA

Method 624.1: The continuing calibration verification (CCV) associated with batch 480-604014 recovered above the upper control limit for Acrolein. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: RW-3D (480-192049-1) and EFFLUENT (480-192049-2).

Method 624.1: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 480-604014 recovered outside control limits for the following analyte: Acrolein. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Methods 9040C, SM 4500 H+ B: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples have been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: RW-3D (480-192049-1) and EFFLUENT (480-192049-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

5

6

0

9

10

12

13

14

Detection Summary

Client: New York State D.E.C.

Job ID: 480-192049-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D

Lab Sample ID: 480-192049-1

Analyte	Result C	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2-Dichloroethene, Total		<u> </u>	10	3.2	ug/L	1	_	624.1	Total/NA
Tetrachloroethene	47		5.0	0.34	ug/L	1		624.1	Total/NA
Trichloroethene	42		5.0	0.60	ug/L	1		624.1	Total/NA
pH	7.40 H	I F	0.100	0.100	SU	1		9040C	Total/NA
Temperature	22.8 H	4F	0.00100	0.00100	Degrees C	1		9040C	Total/NA
Total Dissolved Solids	676		10.0	4.0	mg/L	1		SM 2540C	Total/NA

Client Sample ID: EFFLUENT

Lab Sample ID: 480-192049-2

Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
рН	8.18	HF	0.100	0.100	SU	1	_	9040C	Total/NA
Temperature	22.9	HF	0.00100	0.00100	Degrees C	1		9040C	Total/NA
Total Dissolved Solids	642		10.0	4.0	ma/l	1		SM 2540C	Total/NA

8

9

10

12

13

This Detection Summary does not include radiochemical test results.

Client Sample Results

Client: New York State D.E.C. Job ID: 480-192049-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D Date Collected: 11/08/21 10:30

Date Received: 11/09/21 08:00

Lab Sample ID: 480-192049-1

Matrix: Water

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			11/09/21 13:27	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			11/09/21 13:27	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			11/09/21 13:27	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			11/09/21 13:27	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			11/09/21 13:27	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			11/09/21 13:27	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			11/09/21 13:27	1
1,2-Dichloroethene, Total	19		10	3.2	ug/L			11/09/21 13:27	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			11/09/21 13:27	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			11/09/21 13:27	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			11/09/21 13:27	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			11/09/21 13:27	1
Acrolein	ND	*+	100	17	ug/L			11/09/21 13:27	1
Acrylonitrile	ND		50	1.9	ug/L			11/09/21 13:27	1
Benzene	ND		5.0	0.60	ug/L			11/09/21 13:27	1
Bromodichloromethane	ND		5.0	0.54	ug/L			11/09/21 13:27	1
Bromoform	ND		5.0	0.47	ug/L			11/09/21 13:27	1
Bromomethane	ND		5.0	1.2	ug/L			11/09/21 13:27	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			11/09/21 13:27	1
Chlorobenzene	ND		5.0	0.48	ug/L			11/09/21 13:27	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			11/09/21 13:27	1
Chloroethane	ND		5.0	0.87	ug/L			11/09/21 13:27	1
Chloroform	ND		5.0	0.54	ug/L			11/09/21 13:27	1
Chloromethane	ND		5.0	0.64	ug/L			11/09/21 13:27	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			11/09/21 13:27	1
Ethylbenzene	ND		5.0	0.46	ug/L			11/09/21 13:27	1
Methylene Chloride	ND		5.0	0.81	ug/L			11/09/21 13:27	1
Tetrachloroethene	47		5.0	0.34	ug/L			11/09/21 13:27	1
Toluene	ND		5.0	0.45	ug/L			11/09/21 13:27	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			11/09/21 13:27	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			11/09/21 13:27	1
Trichloroethene	42		5.0		ug/L			11/09/21 13:27	1
Vinyl chloride	ND		5.0	0.75	ug/L			11/09/21 13:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		68 - 130			_		11/09/21 13:27	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Anaiyzea	DII Fac
1,2-Dichloroethane-d4 (Surr)	97		68 - 130		11/09/21 13:27	1
4-Bromofluorobenzene (Surr)	99		76 - 123		11/09/21 13:27	1
Dibromofluoromethane (Surr)	103		75 - 123		11/09/21 13:27	1
Toluene-d8 (Surr)	104		77 - 120		11/09/21 13:27	1

General Chemistry

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	676		10.0	4.0	mg/L			11/11/21 09:30	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
рН	7.40	HF	0.100	0.100	SU			11/15/21 11:04	1
Temperature	22.8	HE	0.00100	0.00100	Degrees C			11/15/21 11:04	1

Eurofins TestAmerica, Buffalo

2

6

8

10

12

Client Sample Results

Client: New York State D.E.C. Job ID: 480-192049-1

Project/Site: COSCO #344035

Client Sample ID: EFFLUENT

Lab Sample ID: 480-192049-2

Date Collected: 11/08/21 10:45 Matrix: Water Date Received: 11/09/21 08:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			11/09/21 13:50	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			11/09/21 13:50	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			11/09/21 13:50	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			11/09/21 13:50	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			11/09/21 13:50	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			11/09/21 13:50	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			11/09/21 13:50	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			11/09/21 13:50	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			11/09/21 13:50	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			11/09/21 13:50	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			11/09/21 13:50	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			11/09/21 13:50	1
Acrolein	ND	*+	100	17	ug/L			11/09/21 13:50	1
Acrylonitrile	ND		50	1.9	ug/L			11/09/21 13:50	1
Benzene	ND		5.0	0.60	ug/L			11/09/21 13:50	1
Bromodichloromethane	ND		5.0	0.54	ug/L			11/09/21 13:50	1
Bromoform	ND		5.0	0.47	ug/L			11/09/21 13:50	1
Bromomethane	ND		5.0	1.2	ug/L			11/09/21 13:50	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			11/09/21 13:50	1
Chlorobenzene	ND		5.0	0.48	ug/L			11/09/21 13:50	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			11/09/21 13:50	1
Chloroethane	ND		5.0	0.87	ug/L			11/09/21 13:50	1
Chloroform	ND		5.0	0.54	ug/L			11/09/21 13:50	1
Chloromethane	ND		5.0	0.64	ug/L			11/09/21 13:50	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			11/09/21 13:50	1
Ethylbenzene	ND		5.0	0.46	ug/L			11/09/21 13:50	1
Methylene Chloride	ND		5.0	0.81	ug/L			11/09/21 13:50	1
Tetrachloroethene	ND		5.0	0.34	ug/L			11/09/21 13:50	1
Toluene	ND		5.0	0.45	ug/L			11/09/21 13:50	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			11/09/21 13:50	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			11/09/21 13:50	1
Trichloroethene	ND		5.0	0.60	ug/L			11/09/21 13:50	1
Vinyl chloride	ND		5.0	0.75	ug/L			11/09/21 13:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		68 - 130			_		11/09/21 13:50	1
4-Bromofluorobenzene (Surr)	99		76 - 123					11/09/21 13:50	1
Dibromofluoromethane (Surr)	104		75 - 123					11/09/21 13:50	1
Toluene-d8 (Surr)	102		77 - 120					11/09/21 13:50	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	642		10.0	4.0	mg/L			11/11/21 09:30	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	8.18	HF	0.100	0.100	SU			11/15/21 11:05	1
Temperature	22.9	and the	0.00100	0.00400	Degrees C			11/15/21 11:05	4

Eurofins TestAmerica, Buffalo

Page 8 of 19

Surrogate Summary

Client: New York State D.E.C.

Project/Site: COSCO #344035

Job ID: 480-192049-1

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)							
		DCA	BFB	DBFM	TOL				
Lab Sample ID	Client Sample ID	(68-130)	(76-123)	(75-123)	(77-120)				
480-192049-1	RW-3D	97	99	103	104				
480-192049-2	EFFLUENT	99	99	104	102				
LCS 480-604014/6	Lab Control Sample	94	101	100	101				
MB 480-604014/8	Method Blank	98	99	105	103				

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

3

4

5

8

9

10

12

14

Job ID: 480-192049-1

Client: New York State D.E.C. Project/Site: COSCO #344035

Method: 624.1 - Volatile Organic Compounds (GC/MS)

MB MB

Lab Sample ID: MB 480-604014/8

Matrix: Water

Analysis Batch: 604014

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	5.0	0.39	ug/L			11/09/21 12:48	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			11/09/21 12:48	1
1,1,2-Trichloroethane	ND	5.0	0.48	ug/L			11/09/21 12:48	1
1,1-Dichloroethane	ND	5.0	0.59	ug/L			11/09/21 12:48	1
1,1-Dichloroethene	ND	5.0	0.85	ug/L			11/09/21 12:48	1
1,2-Dichlorobenzene	ND	5.0	0.44	ug/L			11/09/21 12:48	1
1,2-Dichloroethane	ND	5.0	0.60	ug/L			11/09/21 12:48	1
1,2-Dichloroethene, Total	ND	10	3.2	ug/L			11/09/21 12:48	1
1,2-Dichloropropane	ND	5.0	0.61	ug/L			11/09/21 12:48	1
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			11/09/21 12:48	1
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			11/09/21 12:48	1
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			11/09/21 12:48	1
Acrolein	ND	100	17	ug/L			11/09/21 12:48	1
Acrylonitrile	ND	50	1.9	ug/L			11/09/21 12:48	1
Benzene	ND	5.0	0.60	ug/L			11/09/21 12:48	1
Bromodichloromethane	ND	5.0	0.54	ug/L			11/09/21 12:48	1
Bromoform	ND	5.0	0.47	ug/L			11/09/21 12:48	1
Bromomethane	ND	5.0	1.2	ug/L			11/09/21 12:48	1
Carbon tetrachloride	ND	5.0	0.51	ug/L			11/09/21 12:48	1
Chlorobenzene	ND	5.0	0.48	ug/L			11/09/21 12:48	1
Chlorodibromomethane	ND	5.0	0.41	ug/L			11/09/21 12:48	1
Chloroethane	ND	5.0	0.87	ug/L			11/09/21 12:48	1
Chloroform	ND	5.0	0.54	ug/L			11/09/21 12:48	1
Chloromethane	ND	5.0	0.64	ug/L			11/09/21 12:48	1
cis-1,3-Dichloropropene	ND	5.0	0.33	ug/L			11/09/21 12:48	1
Ethylbenzene	ND	5.0	0.46	ug/L			11/09/21 12:48	1
Methylene Chloride	ND	5.0	0.81	ug/L			11/09/21 12:48	1
Tetrachloroethene	ND	5.0	0.34	ug/L			11/09/21 12:48	1
Toluene	ND	5.0	0.45	ug/L			11/09/21 12:48	1
trans-1,2-Dichloroethene	ND	5.0	0.59	ug/L			11/09/21 12:48	1
trans-1,3-Dichloropropene	ND	5.0	0.44	ug/L			11/09/21 12:48	1
Trichloroethene	ND	5.0	0.60	ug/L			11/09/21 12:48	1
Vinyl chloride	ND	5.0	0.75	ug/L			11/09/21 12:48	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		68 - 130		11/09/21 12:48	1
4-Bromofluorobenzene (Surr)	99		76 - 123		11/09/21 12:48	1
Dibromofluoromethane (Surr)	105		75 - 123		11/09/21 12:48	1
Toluene-d8 (Surr)	103		77 - 120		11/09/21 12:48	1

Lab Sample ID: LCS 480-604014/6

Matrix: Water

Analysis Batch: 604014

Client Sample ID: Lab Control Sam	nple
Prep Type: Total	/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	21.0		ug/L		105	52 - 162	
1,1,2,2-Tetrachloroethane	20.0	22.0		ug/L		110	46 - 157	
1,1,2-Trichloroethane	20.0	20.9		ug/L		104	52 - 150	

Eurofins TestAmerica, Buffalo

Page 10 of 19

Job ID: 480-192049-1

Project/Site: COSCO #344035

Client: New York State D.E.C.

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-604014/6 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 604014

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethane	20.0	19.9		ug/L		100	59 - 155
1,1-Dichloroethene	20.0	19.1		ug/L		96	1 - 234
1,2-Dichlorobenzene	20.0	20.9		ug/L		105	18 - 190
1,2-Dichloroethane	20.0	19.4		ug/L		97	49 - 155
1,2-Dichloropropane	20.0	21.4		ug/L		107	1 _ 210
1,3-Dichlorobenzene	20.0	21.1		ug/L		105	59 - 156
1,4-Dichlorobenzene	20.0	21.0		ug/L		105	18 - 190
2-Chloroethyl vinyl ether	20.0	22.1	J	ug/L		110	1 _ 305
Benzene	20.0	21.3		ug/L		106	37 - 151
Bromodichloromethane	20.0	21.9		ug/L		110	35 _ 155
Bromoform	20.0	26.6		ug/L		133	45 - 169
Bromomethane	20.0	10.3		ug/L		52	1 - 242
Carbon tetrachloride	20.0	23.8		ug/L		119	70 - 140
Chlorobenzene	20.0	20.9		ug/L		104	37 - 160
Chlorodibromomethane	20.0	24.0		ug/L		120	53 - 149
Chloroethane	20.0	13.3		ug/L		66	14 - 230
Chloroform	20.0	20.2		ug/L		101	51 - 138
Chloromethane	20.0	5.96		ug/L		30	1 - 273
cis-1,3-Dichloropropene	20.0	21.1		ug/L		105	1 _ 227
Ethylbenzene	20.0	21.3		ug/L		107	37 - 162
Methylene Chloride	20.0	20.3		ug/L		102	1 - 221
Tetrachloroethene	20.0	21.4		ug/L		107	64 - 148
Toluene	20.0	21.0		ug/L		105	47 _ 150
trans-1,2-Dichloroethene	20.0	20.2		ug/L		101	54 ₋ 156
trans-1,3-Dichloropropene	20.0	20.9		ug/L		104	17 - 183
Trichloroethene	20.0	20.5		ug/L		102	71 - 157
Vinyl chloride	20.0	7.65		ug/L		38	1 - 251

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	94		68 - 130
4-Bromofluorobenzene (Surr)	101		76 - 123
Dibromofluoromethane (Surr)	100		75 - 123
Toluene-d8 (Surr)	101		77 - 120

Method: 9040C - pH

Lab Sample ID: LCS 480-605019/1 **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 605019

Analysis Batch. 000010								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ha	7.00	6.991		SU		100	99 - 101	

Prep Type: Total/NA

QC Sample Results

Client: New York State D.E.C. Job ID: 480-192049-1

Project/Site: COSCO #344035

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 480-604402/1 **Client Sample ID: Method Blank Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 604402

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	ND		10.0	4.0	ma/L			11/11/21 09:30	1

Lab Sample ID: LCS 480-604402/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 604402

	Бріке	LCS	LCS					%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%	Rec	Limits	
Total Dissolved Solids	502	451.0		mg/L			90	85 - 115	

QC Association Summary

Client: New York State D.E.C. Job ID: 480-192049-1

Project/Site: COSCO #344035

GC/MS VOA

Analysis Batch: 604014

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-192049-1	RW-3D	Total/NA	Water	624.1	
480-192049-2	EFFLUENT	Total/NA	Water	624.1	
MB 480-604014/8	Method Blank	Total/NA	Water	624.1	
LCS 480-604014/6	Lab Control Sample	Total/NA	Water	624.1	

General Chemistry

Analysis Batch: 604402

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-192049-1	RW-3D	Total/NA	Water	SM 2540C	
480-192049-2	EFFLUENT	Total/NA	Water	SM 2540C	
MB 480-604402/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 480-604402/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Analysis Batch: 605019

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-192049-1	RW-3D	Total/NA	Water	9040C	
480-192049-2	EFFLUENT	Total/NA	Water	9040C	
LCS 480-605019/1	Lab Control Sample	Total/NA	Water	9040C	

Lab Chronicle

Client: New York State D.E.C. Job ID: 480-192049-1

Project/Site: COSCO #344035

Client Sample ID: RW-3D

Date Received: 11/09/21 08:00

Lab Sample ID: 480-192049-1 Date Collected: 11/08/21 10:30

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA 624.1 604014 ATG Analysis 11/09/21 13:27 TAL BUF Total/NA Analysis 9040C 605019 11/15/21 11:04 DLG TAL BUF TAL BUF Total/NA Analysis SM 2540C 604402 11/11/21 09:30 EJL 1

Client Sample ID: EFFLUENT

Lab Sample ID: 480-192049-2

Matrix: Water

Date Collected: 11/08/21 10:45 Date Received: 11/09/21 08:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	604014	11/09/21 13:50	ATG	TAL BUF
Total/NA	Analysis	9040C		1	605019	11/15/21 11:05	DLG	TAL BUF
Total/NA	Analysis	SM 2540C		1	604402	11/11/21 09:30	EJL	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: New York State D.E.C. Job ID: 480-192049-1

Project/Site: COSCO #344035

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		ogram	Identification Number	Expiration Date	
ew York	NE	LAP	10026	04-01-22	
The following analytes	are included in this report, bu	t the laboratory is not certifi	ied by the governing authority. This list ma	ay include analytes for	
the agency does not of Analysis Method	fer certification. Prep Method	Matrix	Analyte		
0 ,		Matrix Water	Analyte 1,2-Dichloroethene, Total		
Analysis Method					

1

4

9

11

40

14

Method Summary

Client: New York State D.E.C.

Project/Site: COSCO #344035

Job ID: 480-192049-1

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF
9040C	рН	SW846	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

7

8

4 C

11

40

14

Sample Summary

Client: New York State D.E.C.

Project/Site: COSCO #344035

Job ID: 480-192049-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-192049-1	RW-3D	Water	11/08/21 10:30	11/09/21 08:00
480-192049-2	EFFLUENT	Water	11/08/21 10:45	11/09/21 08:00

•

Л

6

8

11

12

1/

Client: New York State D.E.C.

Job Number: 480-192049-1

Login Number: 192049 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Wallace, Cameron

oroatori francos, samoron		
Question	Answer Comment	
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Page 19 of 19 11/29/2021

December 2021 Analytical Data

December 30, 2021

Sabrina Campfield LaBella

RE: Project: COSCO #344035 - 12/16

Pace Project No.: 70198509

Dear Sabrina Campfield:

Enclosed are the analytical results for sample(s) received by the laboratory on December 18, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Melville

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lea Sherman lea.sherman@pacelabs.com (631)694-3040 Project Manager

Enclosures

cc: Robert Strang, NYDEC

(631)694-3040

CERTIFICATIONS

Project: COSCO #344035 - 12/16

Pace Project No.: 70198509

Pace Analytical Services Long Island

575 Broad Hollow Rd, Melville, NY 11747 Connecticut Certification #: PH-0435 Delaware Certification # NY 10478 Maryland Certification #: 208

Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987 New Jersey Certification #: NY158

New York Certification #: 10478 Primary Accrediting Body

Pennsylvania Certification #: 68-00350 Rhode Island Certification #: LAO00340

Virginia Certification # 460302

ANALYTICAL RESULTS

Project: COSCO #344035 - 12/16

Pace Project No.: 70198509

Date: 12/30/2021 06:44 PM

Parameters	Results							
		Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
624.1 Volatile Organics	Analytical Met	thod: EPA 62	4.1					
_	Pace Analytic	al Services -	Melville					
Benzene	<1.0	ug/L	1.0	1		12/21/21 11:53	71-43-2	
Bromodichloromethane	<1.0	ug/L	1.0	1		12/21/21 11:53	75-27-4	M1
Bromoform	<1.0	ug/L	1.0	1		12/21/21 11:53	75-25-2	L2,M0
Bromomethane	<1.0	ug/L	1.0	1		12/21/21 11:53	74-83-9	•
Carbon tetrachloride	<1.0	ug/L	1.0	1		12/21/21 11:53	56-23-5	L2,M0
Chlorobenzene	<1.0	ug/L	1.0	1		12/21/21 11:53	108-90-7	
Chloroethane	<1.0	ug/L	1.0	1		12/21/21 11:53	75-00-3	
Chloroform	<1.0	ug/L	1.0	1		12/21/21 11:53	67-66-3	
Chloromethane	<1.0	ug/L	1.0	1		12/21/21 11:53	74-87-3	
Dibromochloromethane	<1.0	ug/L	1.0	1		12/21/21 11:53	124-48-1	M1
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		12/21/21 11:53	95-50-1	
1,3-Dichlorobenzene	<1.0	ug/L	1.0	1		12/21/21 11:53	541-73-1	
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		12/21/21 11:53	106-46-7	
Dichlorodifluoromethane	<1.0	ug/L	1.0	1		12/21/21 11:53	75-71-8	v3
1.1-Dichloroethane	<1.0	ug/L	1.0	1		12/21/21 11:53		
1,2-Dichloroethane	<1.0	ug/L	1.0	1		12/21/21 11:53		
1,1-Dichloroethene	<1.0	ug/L	1.0	1		12/21/21 11:53		
cis-1,2-Dichloroethene	1.1	ug/L	1.0	1		12/21/21 11:53	156-59-2	
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		12/21/21 11:53		
1,2-Dichloropropane	<1.0	ug/L	1.0	1		12/21/21 11:53		
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		12/21/21 11:53		
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		12/21/21 11:53		M1,v3
Ethylbenzene	<1.0	ug/L	1.0	1		12/21/21 11:53		, -
Methylene Chloride	<1.0	ug/L	1.0	1		12/21/21 11:53		
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		12/21/21 11:53		
Tetrachloroethene	<1.0	ug/L	1.0	1		12/21/21 11:53		
Toluene	<1.0	ug/L	1.0	1		12/21/21 11:53		
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		12/21/21 11:53		L2,M0
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		12/21/21 11:53		LL,IIIO
Trichloroethene	1.0	ug/L	1.0	1		12/21/21 11:53		
Trichlorofluoromethane	<1.0	ug/L	1.0	1		12/21/21 11:53		
Vinyl chloride	<1.0	ug/L	1.0	1		12/21/21 11:53		
Xylene (Total)	<1.0	ug/L	1.0	1		12/21/21 11:53		
Surrogates	71.0	ug/ L	1.0	•		12/21/21 11:00	1000 20 1	
4-Bromofluorobenzene (S)	91	%	80-110	1		12/21/21 11:53	460-00-4	
Toluene-d8 (S)	96	%	87-120	1		12/21/21 11:53		
1,2-Dichloroethane-d4 (S)	92	%	76-127	1		12/21/21 11:53		
2540C Total Dissolved Solids	Analytical Met	thod: SM22 2	540C					
	Pace Analytica							
Total Dissolved Solids	678	mg/L	20.0	1		12/23/21 15:12		
9040 Corrosivity-pH >20% water	Analytical Met	thod: EPA 90	40C					
	Pace Analytic	al Services -	Melville					
рН	8.0	Std. Units	0.10	1		12/22/21 13:51		H3,H6, N3

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

(631)694-3040

ANALYTICAL RESULTS

Project: COSCO #344035 - 12/16

Pace Project No.: 70198509

Date: 12/30/2021 06:44 PM

Sample: RW-3D	Lab ID: 70°	98509001	Collected: 12/16/2	21 10:10	Received: 12	2/18/21 10:45 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
9040 Corrosivity-pH >20% water	Analytical Me							
Temperature, Water (C)	18.1	deg C	0.10	1		12/22/21 13:51		H3,H6

ANALYTICAL RESULTS

Project: COSCO #344035 - 12/16

Pace Project No.: 70198509

Date: 12/30/2021 06:44 PM

Parameters	.							
	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
324.1 Volatile Organics	Analytical M	ethod: EPA 62	4.1					
	Pace Analyt	ical Services -	Melville					
Benzene	<1.0	ug/L	1.0	1		12/21/21 12:1:	2 71-43-2	
Bromodichloromethane	<1.0	ug/L	1.0	1		12/21/21 12:1:		
Bromoform	<1.0	ug/L	1.0	1		12/21/21 12:1:		L2
Bromomethane	<1.0	ug/L	1.0	1		12/21/21 12:1:		
Carbon tetrachloride	<1.0	ug/L	1.0	1		12/21/21 12:1:		L2
Chlorobenzene	<1.0	ug/L	1.0	1		12/21/21 12:1:	2 108-90-7	
Chloroethane	<1.0	ug/L	1.0	1		12/21/21 12:1:		
Chloroform	<1.0	ug/L	1.0	1		12/21/21 12:1:		
Chloromethane	<1.0	ug/L	1.0	1		12/21/21 12:1:		
Dibromochloromethane	<1.0	ug/L	1.0	1		12/21/21 12:1:		
,2-Dichlorobenzene	<1.0	ug/L	1.0	1		12/21/21 12:1:		
,3-Dichlorobenzene	<1.0	ug/L	1.0	1		12/21/21 12:1:		
,4-Dichlorobenzene	<1.0	ug/L	1.0	1		12/21/21 12:1:		
Dichlorodifluoromethane	<1.0	ug/L	1.0	1		12/21/21 12:1:		v3
,1-Dichloroethane	<1.0	ug/L	1.0	1		12/21/21 12:1:		••
,2-Dichloroethane	<1.0	ug/L	1.0	1		12/21/21 12:1:		
,1-Dichloroethene	<1.0	ug/L	1.0	1		12/21/21 12:1:		
sis-1,2-Dichloroethene	12.9	ug/L	1.0	1		12/21/21 12:1:		
rans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		12/21/21 12:1:		
,2-Dichloropropane	<1.0	ug/L	1.0	1		12/21/21 12:1:		
is-1,3-Dichloropropene	<1.0	ug/L ug/L	1.0	1		12/21/21 12:12		
rans-1,3-Dichloropropene	<1.0	ug/L ug/L	1.0	1			2 10061-02-6	v3
Ethylbenzene	<1.0	ug/L	1.0	1		12/21/21 12:1:		VO
Methylene Chloride	<1.0	ug/L	1.0	1		12/21/21 12:12		
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		12/21/21 12:12		
etrachloroethene	40.3	ug/L ug/L	1.0	1		12/21/21 12:12		
oluene	<1.0	ug/L	1.0	1		12/21/21 12:1:		
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		12/21/21 12:12		L2
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		12/21/21 12:12		LZ
Frichloroethene	35.1	ug/L ug/L	1.0	1		12/21/21 12:12		
richlorofluoromethane	<1.0	ug/L	1.0	1		12/21/21 12:12		
/inyl chloride	<1.0	ug/L ug/L	1.0	1		12/21/21 12:12		
Kylene (Total)	<1.0	ug/L	1.0	1		12/21/21 12:12		
Surrogates	<1.0	ug/L	1.0	'		12/21/21 12.12	2 1330-20-7	
4-Bromofluorobenzene (S)	93	%	80-110	1		12/21/21 12:1:	2 460-00-4	
Foluene-d8 (S)	99	%	87-120	1		12/21/21 12:1:		
,2-Dichloroethane-d4 (S)	91	%	76-127	1		12/21/21 12:1:		
2540C Total Dissolved Solids	Analytical M	ethod: SM22 2	2540C					
	-	ical Services -						
Total Dissolved Solids	692	mg/L	20.0	1		12/23/21 15:12	2	
9040 Corrosivity-pH >20% water	Analytical M	ethod: EPA 90	40C					
	Pace Analyt	ical Services -	Melville					
	•					40/00/04 45 =	_	По По
ρΗ	7.2	Std. Units	0.10	1		12/22/21 13:5	<u> </u>	H3,H6 N3

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

(631)694-3040

ANALYTICAL RESULTS

Project: COSCO #344035 - 12/16

Pace Project No.: 70198509

Date: 12/30/2021 06:44 PM

Sample: EFFLUENT	Lab ID: 70	198509002	Collected: 12/16/2	21 10:40	Received: 12	2/18/21 10:45	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
9040 Corrosivity-pH >20% water	Analytical Method: EPA 9040C Pace Analytical Services - Melville							
Temperature, Water (C)	17.4	deg C	0.10	1		12/22/21 13:5	2	H3,H6

Project: COSCO #344035 - 12/16

Pace Project No.: 70198509

Date: 12/30/2021 06:44 PM

QC Batch: 237882 Analysis Method: EPA 624.1
QC Batch Method: EPA 624.1 Analysis Description: 624.1 MSV

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70198509001, 70198509002

METHOD BLANK: 1201634 Matrix: Water

Associated Lab Samples: 70198509001, 70198509002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/L	<1.0	1.0	12/21/21 10:20	
1,1,2,2-Tetrachloroethane	ug/L	<1.0	1.0	12/21/21 10:20	
1,1,2-Trichloroethane	ug/L	<1.0	1.0	12/21/21 10:20	
1,1-Dichloroethane	ug/L	<1.0	1.0	12/21/21 10:20	
1,1-Dichloroethene	ug/L	<1.0	1.0	12/21/21 10:20	
1,2-Dichlorobenzene	ug/L	<1.0	1.0	12/21/21 10:20	
1,2-Dichloroethane	ug/L	<1.0	1.0	12/21/21 10:20	
1,2-Dichloropropane	ug/L	<1.0	1.0	12/21/21 10:20	
1,3-Dichlorobenzene	ug/L	<1.0	1.0	12/21/21 10:20	
1,4-Dichlorobenzene	ug/L	<1.0	1.0	12/21/21 10:20	
Benzene	ug/L	<1.0	1.0	12/21/21 10:20	
Bromodichloromethane	ug/L	<1.0	1.0	12/21/21 10:20	
Bromoform	ug/L	<1.0	1.0	12/21/21 10:20	
Bromomethane	ug/L	<1.0	1.0	12/21/21 10:20	
Carbon tetrachloride	ug/L	<1.0	1.0	12/21/21 10:20	
Chlorobenzene	ug/L	<1.0	1.0	12/21/21 10:20	
Chloroethane	ug/L	<1.0	1.0	12/21/21 10:20	
Chloroform	ug/L	<1.0	1.0	12/21/21 10:20	
Chloromethane	ug/L	<1.0	1.0	12/21/21 10:20	
cis-1,2-Dichloroethene	ug/L	<1.0	1.0	12/21/21 10:20	
cis-1,3-Dichloropropene	ug/L	<1.0	1.0	12/21/21 10:20	
Dibromochloromethane	ug/L	<1.0	1.0	12/21/21 10:20	
Dichlorodifluoromethane	ug/L	<1.0	1.0	12/21/21 10:20	v3
Ethylbenzene	ug/L	<1.0	1.0	12/21/21 10:20	
Methylene Chloride	ug/L	<1.0	1.0	12/21/21 10:20	
Tetrachloroethene	ug/L	<1.0	1.0	12/21/21 10:20	
Toluene	ug/L	<1.0	1.0	12/21/21 10:20	
rans-1,2-Dichloroethene	ug/L	<1.0	1.0	12/21/21 10:20	
rans-1,3-Dichloropropene	ug/L	<1.0	1.0	12/21/21 10:20	v3
Trichloroethene	ug/L	<1.0	1.0	12/21/21 10:20	
Trichlorofluoromethane	ug/L	<1.0	1.0	12/21/21 10:20	
Vinyl chloride	ug/L	<1.0	1.0	12/21/21 10:20	
Xylene (Total)	ug/L	<1.0	1.0	12/21/21 10:20	
1,2-Dichloroethane-d4 (S)	%	89	76-127	12/21/21 10:20	
4-Bromofluorobenzene (S)	%	92	80-110	12/21/21 10:20	
Toluene-d8 (S)	%	95	87-120	12/21/21 10:20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: COSCO #344035 - 12/16

Pace Project No.: 70198509

Date: 12/30/2021 06:44 PM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits Quali	fiers
,1,1-Trichloroethane	ug/L	20	13.2	66	70-130 L2	
,1,2,2-Tetrachloroethane	ug/L	20	16.0	80	60-140	
1,2-Trichloroethane	ug/L	20	19.1	96	70-130	
,1-Dichloroethane	ug/L	20	18.5	92	70-130	
1-Dichloroethene	ug/L	20	20.8	104	70-130	
2-Dichlorobenzene	ug/L	20	19.6	98	65-135	
2-Dichloroethane	ug/L	20	19.2	96	70-130	
,2-Dichloropropane	ug/L	20	20.2	101	35-165	
3-Dichlorobenzene	ug/L	20	20.0	100	70-130	
4-Dichlorobenzene	ug/L	20	20.2	101	65-135	
enzene	ug/L	20	18.9	95	65-135	
romodichloromethane	ug/L	20	16.9	84	65-135	
romoform	ug/L	20	12.3	61	70-130 L2	
romomethane	ug/L	20	16.4	82	15-185	
arbon tetrachloride	ug/L	20	11.5	57	70-130 L2	
nlorobenzene	ug/L	20	21.7	109	65-135	
nloroethane	ug/L	20	27.5	137	40-160	
nloroform	ug/L	20	18.3	91	70-135	
lloromethane	ug/L	20	12.1	60	10-205	
-1,2-Dichloroethene	ug/L	20	17.9	90	77-121	
-1,3-Dichloropropene	ug/L	20	14.6	73	25-175	
oromochloromethane	ug/L	20	15.6	78	70-135	
chlorodifluoromethane	ug/L	20	8.7	43	10-131 v3	
hylbenzene	ug/L	20	20.9	105	60-140	
ethylene Chloride	ug/L	20	19.8	99	60-140	
trachloroethene	ug/L	20	22.0	110	65-135	
luene	ug/L	20	20.2	101	70-130	
ns-1,2-Dichloroethene	ug/L	20	16.9	85	70-130	
ans-1,3-Dichloropropene	ug/L	20	12.2	61	50-150 v3	
ichloroethene	ug/L	20	18.9	95	65-135	
richlorofluoromethane	ug/L	20	19.0	95	50-150	
nyl chloride	ug/L	20	17.3	87	5-195	
rlene (Total)	ug/L	60	63.6	106	77-121	
2-Dichloroethane-d4 (S)	%			88	76-127	
Bromofluorobenzene (S)	%			94	80-110	
luene-d8 (S)	%			95	87-120	

MATRIX SPIKE SAMPLE:	1201859						
Parameter	Units	70198509001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
1,1,1-Trichloroethane	ug/L	<1.0	20	12.3	62	70-130	M0
1,1,2,2-Tetrachloroethane	ug/L	<1.0	20	13.3	67	60-140	
1,1,2-Trichloroethane	ug/L	<1.0	20	16.9	85	70-130	
1,1-Dichloroethane	ug/L	<1.0	20	15.9	79	70-130	
1,1-Dichloroethene	ug/L	<1.0	20	18.4	92	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: COSCO #344035 - 12/16

Pace Project No.: 70198509

MATRIX SPIKE SAMPLE:	1201859						
		70198509001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits Qua	lifiers
1,2-Dichlorobenzene	ug/L	<1.0	20	17.0	85	65-135	
1,2-Dichloroethane	ug/L	<1.0	20	15.2	76	70-130	
1,2-Dichloropropane	ug/L	<1.0	20	17.9	90	35-165	
1,3-Dichlorobenzene	ug/L	<1.0	20	18.5	92	70-130	
1,4-Dichlorobenzene	ug/L	<1.0	20	17.5	88	65-135	
Benzene	ug/L	<1.0	20	18.3	92	65-135	
Bromodichloromethane	ug/L	<1.0	20	12.2	61	65-135 M1	
Bromoform	ug/L	<1.0	20	7.6	38	70-130 M0	
Bromomethane	ug/L	<1.0	20	11.7	59	15-185	
Carbon tetrachloride	ug/L	<1.0	20	9.7	49	70-130 M0	
Chlorobenzene	ug/L	<1.0	20	20.0	100	65-135	
Chloroethane	ug/L	<1.0	20	23.2	116	40-160	
Chloroform	ug/L	<1.0	20	15.6	78	70-135	
Chloromethane	ug/L	<1.0	20	10.4	52	10-205	
cis-1,2-Dichloroethene	ug/L	1.1	20	17.9	84	66-136	
cis-1,3-Dichloropropene	ug/L	<1.0	20	9.5	48	25-175	
Dibromochloromethane	ug/L	<1.0	20	10.2	51	70-135 M1	
Dichlorodifluoromethane	ug/L	<1.0	20	7.4	37	10-146 v3	
Ethylbenzene	ug/L	<1.0	20	20.5	103	60-140	
Methylene Chloride	ug/L	<1.0	20	14.9	74	60-140	
Tetrachloroethene	ug/L	<1.0	20	22.8	114	65-135	
Toluene	ug/L	<1.0	20	19.7	99	70-130	
rans-1,2-Dichloroethene	ug/L	<1.0	20	15.1	76	70-130	
rans-1,3-Dichloropropene	ug/L	<1.0	20	7.9	40	50-150 M1,v3	
Trichloroethene	ug/L	1.0	20	20.4	97	65-135	
Trichlorofluoromethane	ug/L	<1.0	20	18.2	91	50-150	
Vinyl chloride	ug/L	<1.0	20	14.8	74	5-195	
Xylene (Total)	ug/L	<1.0	60	60.8	101	72-141	
1,2-Dichloroethane-d4 (S)	%				90	76-127	
4-Bromofluorobenzene (S)	%				95	80-110	
Toluene-d8 (S)	%				97	87-120	

Date: 12/30/2021 06:44 PM

Parameter	Units	70198509002 Result	Dup Result	RPD	Qualifiers
1,1,1-Trichloroethane	ug/L	<1.0	<1.0		
1,1,2,2-Tetrachloroethane	ug/L	<1.0	<1.0		
1,1,2-Trichloroethane	ug/L	<1.0	<1.0		
1,1-Dichloroethane	ug/L	<1.0	<1.0		
1,1-Dichloroethene	ug/L	<1.0	<1.0		
1,2-Dichlorobenzene	ug/L	<1.0	<1.0		
1,2-Dichloroethane	ug/L	<1.0	<1.0		
1,2-Dichloropropane	ug/L	<1.0	<1.0		
1,3-Dichlorobenzene	ug/L	<1.0	<1.0		
1,4-Dichlorobenzene	ug/L	<1.0	<1.0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: COSCO #344035 - 12/16

Pace Project No.: 70198509

Date: 12/30/2021 06:44 PM

SAMPLE DUPLICATE: 1201860					
		70198509002	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Benzene	ug/L	<1.0	<1.0		
Bromodichloromethane	ug/L	<1.0	<1.0		
Bromoform	ug/L	<1.0	<1.0		
Bromomethane	ug/L	<1.0	<1.0		
Carbon tetrachloride	ug/L	<1.0	<1.0		
Chlorobenzene	ug/L	<1.0	<1.0		
Chloroethane	ug/L	<1.0	<1.0		
Chloroform	ug/L	<1.0	<1.0		
Chloromethane	ug/L	<1.0	<1.0		
cis-1,2-Dichloroethene	ug/L	12.9	14.1	9	
cis-1,3-Dichloropropene	ug/L	<1.0	<1.0		
Dibromochloromethane	ug/L	<1.0	<1.0		
Dichlorodifluoromethane	ug/L	<1.0	<1.0	,	v3
Ethylbenzene	ug/L	<1.0	<1.0		
Methylene Chloride	ug/L	<1.0	<1.0		
Tetrachloroethene	ug/L	40.3	41.1	2	
Toluene	ug/L	<1.0	<1.0		
trans-1,2-Dichloroethene	ug/L	<1.0	<1.0		
trans-1,3-Dichloropropene	ug/L	<1.0	<1.0	,	v3
Trichloroethene	ug/L	35.1	35.8	2	
Trichlorofluoromethane	ug/L	<1.0	<1.0		
Vinyl chloride	ug/L	<1.0	<1.0		
Xylene (Total)	ug/L	<1.0	<1.0		
1,2-Dichloroethane-d4 (S)	%	91	94		
4-Bromofluorobenzene (S)	%	93	95		
Toluene-d8 (S)	%	99	99		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: COSCO #344035 - 12/16

Pace Project No.: 70198509

QC Batch: 238238

QC Batch Method: SM22 2540C

Analysis Method:

SM22 2540C

Analysis Description:

2540C Total Dissolved Solids

Laboratory:

Pace Analytical Services - Melville

Associated Lab Samples: 70198509001, 70198509002

METHOD BLANK: 1203417 Matrix: Water

Associated Lab Samples: 70198509001, 70198509002

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L ND 5.0 12/23/21 14:46

LABORATORY CONTROL SAMPLE: 1203418

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** 500 516 103 85-115 mg/L

MATRIX SPIKE SAMPLE: 1203420

MS % Rec 70198340001 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers 74.0 **Total Dissolved Solids** mg/L 300 375 100 75-125

MATRIX SPIKE SAMPLE: 1203422

70198340002 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers Total Dissolved Solids 77.0 mg/L 300 375 99 75-125

SAMPLE DUPLICATE: 1203419

Parameter Units 70198340001 Dup Result RPD Qualifiers

Total Dissolved Solids mg/L 74.0 73.0 1

SAMPLE DUPLICATE: 1203421

Date: 12/30/2021 06:44 PM

 Parameter
 Units
 70198340002 Result
 Dup Result
 RPD
 Qualifiers

 Total Dissolved Solids
 mg/L
 77.0
 79.0
 3

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: COSC

COSCO #344035 - 12/16

Pace Project No.:

70198509

QC Batch:
QC Batch Method:

238113

EPA 9040C

Analysis Method:

EPA 9040C

Analysis Description:

9040 pH

Laboratory:

Pace Analytical Services - Melville

Associated Lab Samples: 70198509001, 70198509002

SAMPLE DUPLICATE: 1202654

Date: 12/30/2021 06:44 PM

		70198622001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
рН	Std. Units	7.9	7.9	C	H3,H6,N3
Temperature, Water (C)	deg C	15.2	15.3	1	H3,H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: COSCO #344035 - 12/16

Pace Project No.: 70198509

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

SAMPLE QUALIFIERS

Sample: 70198509001

2-Chloroethylvinyl ether not reportable due to improper sample preservation.

Sample: 70198509002

[1] 2-Chloroethylvinyl ether not reportable due to improper sample preservation.

ANALYTE QUALIFIERS

Date: 12/30/2021 06:44 PM

H3 Sample was received or analysis requested beyond the recognized m	method holding time.
--	----------------------

H6 Analysis initiated outside of the 15 minute EPA recommended holding time.

L2 Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

N3 Accreditation is not offered by the relevant laboratory accrediting body for this parameter.

v3 The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: COSCO #344035 - 12/16

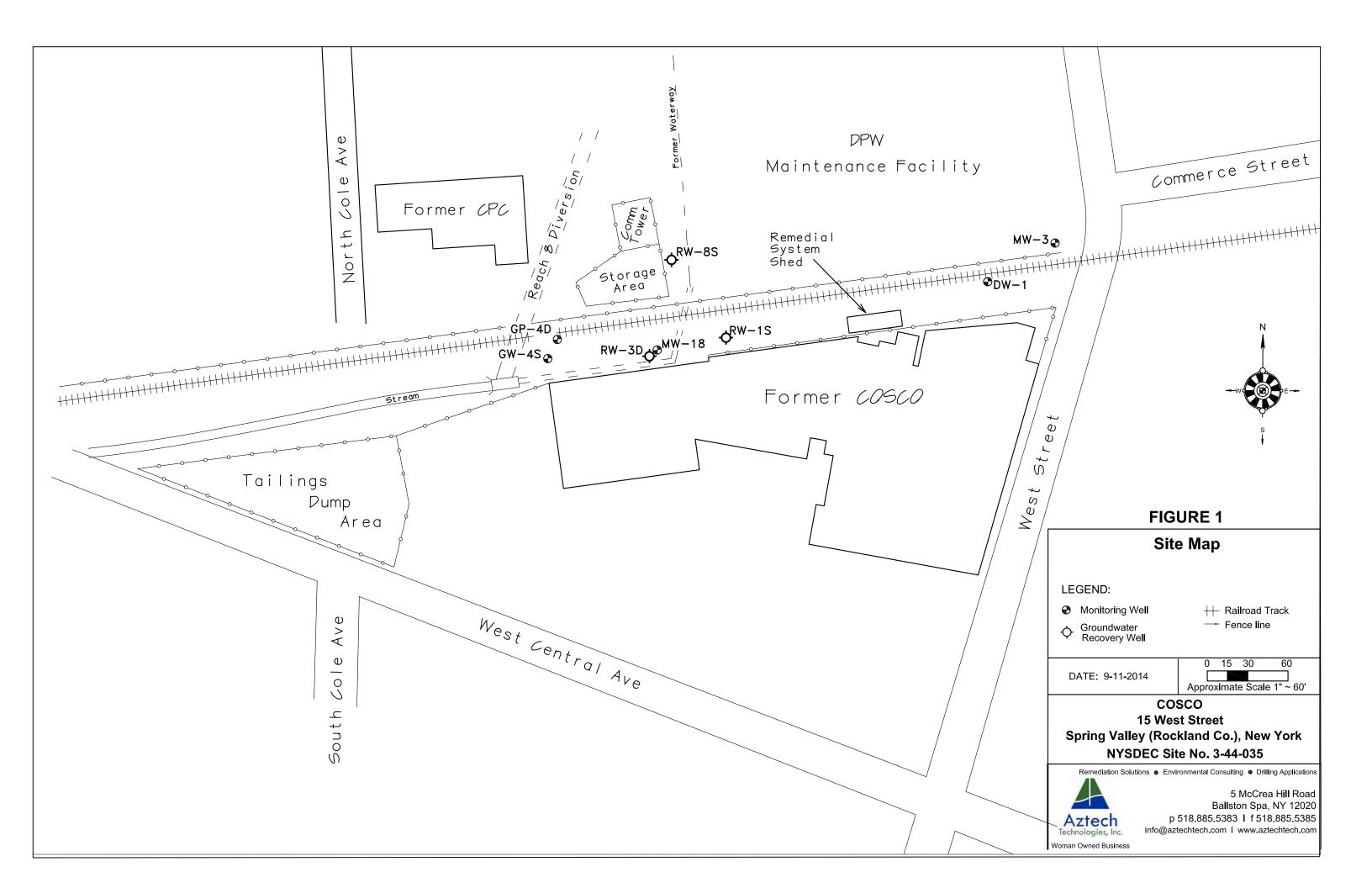
Pace Project No.: 70198509

Date: 12/30/2021 06:44 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
70198509001 70198509002	RW-3D EFFLUENT	EPA 624.1 EPA 624.1	237882 237882		
70198509001 70198509002	RW-3D EFFLUENT	SM22 2540C SM22 2540C	238238 238238		
70198509001 70198509002	RW-3D EFFLUENT	EPA 9040C EPA 9040C	238113 238113		

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document


The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately,

Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.pacelabs.com/hubfs/pas-standard-terms.pdf

ntact (Y/V) Samples (N/A) SAMPLE CONDITIONS Cooler ŏ belsed Custody Regulatory Agency State / Location (N/A) əo Received on ž MO#: 70198509 Residual Chlorine (Y/N) TEMP in C B 10:45 TIME 12-11-21 12-17-51 17/8/1 DATE 70198509 DATE Signed: 2.46 624.1_PREC - (MOD) Priori × × ACCEPTED BY / AFFILIATION Hd - 80+06 × 2540C - Total Dissolved Sol 3 JeeT sesylenA N/A Other Methanol reckir. Na2S2O3 Preservatives HOEN ace Project Manager: HCI Invoice Information: Attention: EONH Company Name Pace Profile #: ₽OSZH ace Quote: 14.0 Address: TIME Unpreserved # OF CONTAINERS SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER: SAMPLE TEMP AT COLLECTION 12.17.21 DATE 500 250 TIME END 22/15 1216 DATE de COLLECTED RELINQUISHED BY / AFFILIATION 407 TIME 34 င် COSCO #344035 START Sabrina Campfield Required Project Information: Report To: Sabrina Campfiel <u>2</u> 7 ^ SAMPLE TYPE (G=GRAB C=COMP) Purchase Order #: M ₹ MATRIX CODE (see valid codes to left) Project Name: Copy To: Project # CODE DW WT WW SI OL WP AR AR MATRIX
Uninking Water
Waster
Waste water
Product
Soil/Soild
Oil
Wipe
Air
Other
Tissue ADDITIONAL COMMENTS One Character per box. (A-Z, 0-9 / , -)
Sample Ids must be unique Fax SAMPLE ID mail: scampfield@labellapc com LaBella Associates 5 McCrea Hill Rd (845)866-1335 Required Client Information: Jaliston Spa, NY 12020 Requested Due Date RW-3D Effluent Company: Address: Page 15 of 16 42 9 Ŧ 2 0 # WELL က 9 00

	S	amnle	Conditi	on Upon Rec	WO#: 701	98509
	Ü	ampio			PM: LS1 D	ue Date: 01/05/22
Pace Analytical	Client N	lame:		Projec	CLIENT: AZTECH-L	
Courier: Feetx UPS USPS Client	Comm	nercial 🗀	ace 🗇th	er		
Tracking #: 5064 52/0	5 -	3/1/	5			
Custody Seal on Cooler/Box Present: Ye	s rann	Spals in	tact: TYe	s No N/A	Temperature Blank	Present: Yes No
Packing Material: Bubble Wrap Bubble					Type of Ice: Wet	
Thermometer Used: TH091			0.		Samples on ice, cooling	
Cooler Temperature(°C): 2, 6			re Correct		Date/Time 5035A kit	
Temp should be above freezing to 6.0°C	- 000101	Tomporati	10 001100	00(0),		2 / I
USDA Regulated Soil (XN/A, water sample))			Date and Initials o	f person examining conte	ents: 10/12/18
Did samples originate in a quarantine zone wi	thin the U	United State	es: AL, AR, CA	A, FL, GA, ID, LA, MS, NC	, Did samples orignate	from a foreign source
NM, NY, OK, OR, SC, TN, TX, or VA (check map)?		es 🗆 No			including Hawaii and	Puerto Rico)? 🛛 Yes 🗆 No
If Yes to either question, fill out a Regulate			-LI-C-010) a	and include with SCU		
Troo to ottior quodion, in out a Rogarate	,,,				COMMENTS:	
Chain of Custody Present:	res	□No		1.		
Chain of Custody Filled Out:	✓Yes	□No		2.		
Chain of Custody Relinquished:	Vives	□No		3.		
Sampler Name & Signature on COC:	Yes	□No	□N/A	4.		
Samples Arrived within Hold Time:	⊠Yes	□No		5.		
Short Hold Time Analysis (<72hr):	□Yes	ZNo		6.		
Rush Turn Around Time Requested:	□Yes	⊠No		7,		
Sufficient Volume: (Triple volume provided for	I Yes	□No		8.		
Correct Containers Used:	Yes	□No		9.	~	
-Pace Containers Used:	dyes dives	□No				
Containers Intact:	Yes	□No		10.		
Filtered volume received for Dissolved tests	□Yes	□No	ZÍN/A	11. Note if	sediment is visible in the dis	ssolved container,
Sample Labels match COC:	E Yes	□No		12.		
-Includes date/time/ID, Matrix: SL/W	DIL					
All containers needing preservation have been	n □Yes	□No	ΦN/A	13. □ HNO ₃	☐ H _z SO ₄ ☐ NaOh	l □ HCl
checked?						
pH paper Lot #						
All containers needing preservation are found				Sample #		
in compliance with method recommendation				1		
(HNO ₃ , H ₂ SO ₄ , HCl, NaOH>9 Sulfide,	□Yes	□No	□N/A	1		
NAOH>12 Cyanide)			1	1		
Exceptions: VOA, Coliform, TOC/DOC, Oil and G	rease,			Initial when comple	ted: Lot # of added	Date/Time preservative
DRO/8015 (water).				Imitial when comple	preservative:	added:
Per Method, VOA pH is checked after analysis		CINI o	QN/A	14.	pi esei vative.	lauueu.
Samples checked for dechlorination:	□Yes	□No	JIN/A	14.		
KI starch test strips Lot #				Positive fo	or Res. Chlorine? Y N	
Residual chlorine strips Lot #	□Yes	□No	□M/A	15.	or Res. Officiale: 1 1	
SM 4500 CN samples checked for sulfide?	Lites		LIN/A		or Sulfide? Y N	
Lead Acetate Strips Lot # Headspace in VOA Vials (>6mm):	□Yes	□No	□N/A	16.	or dando:	
Trip Blank Present:	□Yes	ZONO	□N/A	17.		
Trip Blank Custody Seals Present	□Yes	□No	ØN/A			
Pace Trip Blank Lot # (if applicable):	□103		40,711			
Client Notification/ Resolution:				Field Data Required	? Y / N	
Person Contacted:				Date/Ti	·	
Comments/ Resolution:				2010/11	K-	
Common Noodudon						

^{*} PM (Project Manager) review is documented electronically in LIMS.

April 18, 2022

Robert Strang, E.I.T.

New York State Department of Environmental Conservation
Remedial Section D, Bureau E
Division of Environmental Remediation
625 Broadway
Albany, NY 12233-7014

RE: First Quarter 2022 Operating Summary Report – Cosco Site Site Number 344035

Mr. Strang,

LaBella Associates (LaBella) has prepared the following correspondence to summarize the operation and maintenance (O&M) activities and laboratory analytical results for the New York State Department of Environmental Conservation (NYSDEC) COSCO site located in Spring Valley, New York. The activities summarized within this report include the first quarter of 2022 operation and maintenance O&M, and system sampling events conducted by LaBella. Typical tasks performed during O&M activities include:

- System performance readings (flow, pressure, control settings);
- Well gauging;
- Monthly system sampling and laboratory analysis;
- System maintenance;
- Grounds maintenance.

Non-routing O&M activities include:

- Annual SSDS inspection;
- Semi-annual site-wide sampling

Non-routine 0&M activities are reported in separate reports.

Site Background

The site is located in the Village of Spring Valley, Rockland County, New York. The site is bordered by a Conrail right of way to the north, West Central Avenue to the south, West Street to the east. The western end of the site is bounded by the intersection between the Conrail right of way and West Central Avenue (**Figure 1**).

The Consolidated Stamp Company (COSCO) historically used trichloroethlyne (TCE) in a vapor degreasing process as part of their operation and also discharged wastewater containing TCE into a drainage feature known as the "Reach B Diversion".

The remedial objective for groundwater at the COSCO site (as per the August 1999 Amendment to the Record of Decision) is to contain the site related contaminants by extracting groundwater from overburden and bedrock, treat the groundwater onsite to remove volatile organic compounds

(VOC's), and discharge the treated groundwater. The primary contaminants of concern (COCs) are TCE, tetrachloroethlyne (PCE) and Cis-1-2-dicloroethene (DCE), and degradation byproducts.

The site includes eight (8) groundwater monitoring and/or recovery wells from which monitoring of groundwater quality can be conducted. Five (5) of these wells are completed within the shallow unconsolidated deposits and three (3) are completed within the bedrock.

The current groundwater extraction and treatment (GWE&T) system became operational at the site in January, 2012. This system has extracted groundwater from the overburden via recovery wells RW-1S and RW-8S, and from the bedrock via well RW-3D. The GWE&T system currently extracts groundwater from the bedrock lift well RW-3D. Extracted groundwater is conveyed via underground piping from the recovery well(s) to the treatment system shed located in the area along the Conrail right of way north of the COSCO building. The extracted groundwater is temporarily held in a 1,500-gallon polyethylene batch tank prior to treatment. Treatment is via two (2) bag filter units (connected in a parallel configuration) followed by air stripping. Once air stripping is completed, the treated water is discharged to the "Reach B Diversion" via underground piping.

Procedures

The GWE&T system O&M is via a combination of daily e-mails from the systems programmable logic controller (PLC), and bi-weekly site visits. The daily emails include specific system performance readings (flows, pressures, etc.) that help to evaluate system performance and anticipate O&M tasks to be performed during the bi-weekly site visits.

- System Performance Readings:
 - System Flow system flow rate and flow total data is transmitted daily via email.
 Data includes flow rate from active recovery well(s) (currently RW-3D) and flow total.
 The emails also include data regarding system operational status and system alarms.
 - System Pressure Pressure readings are recorded during site inspections. Pressure readings are recorded at: the transfer pump; at each bag filter, and; at the effluent pump. Pressure readings are also monitored via the daily emails at each bag filter and the air stripper.
 - Control Settings Transfer pump, effluent pump and air stripper blower variable frequency drive (VFD) readings are recorded during bi-weekly site inspections. This data is monitored to ensure that the system motors are operating within prescribed parameters.
- Well Gauging The eight (8) site wells are gauged during site visits to determine the depth to groundwater using an electronic water level meter graduated in 0.01 foot intervals.

 Groundwater measurements are taken from the top of well casings. The wells are gauged: while the remedial system is running; immediately after the system is shutdown, and; 30 minutes after the system is shutdown. The system is restarted when gauging is completed.
- Monthly System Sampling and Laboratory Analysis The system influent and effluent (post-treatment) is sampled monthly for laboratory analysis using EPA Method 624. The samples are also analyzed for total dissolved solids (TDS) and acidity (pH). Influent samples are collected from a sample port located on the RW-3D influent line. No other wells are being utilized for groundwater extraction at this time. Effluent samples are collected from a sample port located after the air stripper discharge pump. The samples are delivered under chain of custody protocols to Test America Laboratories, Inc. Laboratory reports are attached.
- System Maintenance typical routine system maintenance includes: bag filter changes, valve maintenance/cleaning. Frequent non-routine maintenance typically includes: pump and blower repairs/replacement; valve replacement; air stripper cleaning.

System Flow

During the first quarter of 2022, a total of1,959,857 gallons were treated at an average flow rate of approximately 21,776 gallons per day.

Operation and Maintenance Site Inspections

Compiled below is a summary of significant O&M tasks and events pertaining to the COSCO site. These tasks were completed during site visits completed by Aztech for the time period reported herein.

January 4, 2022 (Sampling)

The system was operational upon arrival. Samples were collected. A keyed hasp lock was installed at the front door. The system was operational upon departure.

January 21, 2022 (Non-Sampling)

The system was operational upon arrival. Bag filters were changed, and samples were not collected. The air stripper was not cleaned due to extremely frigid weather. The system was restarted and remained operational upon departure.

February 1, 2022 (Sampling)

The system was operational upon arrival. Samples were collected and the system was operational upon departure.

February 16, 2022 (Non-Sampling)

The system was operational upon arrival. Bag filters were changed, and samples were not collected. The system was operational upon departure.

March 3, 2022 (Sampling)

The system was down upon arrival and was restarted. Samples were collected and the system was operational upon departure.

March 28, 2022 (Non-Sampling)

The system was down upon arrival due to power loss. Bag filters were changed, and samples were not collected. Air stripper trays were cleaned. The system was operational upon departure.

Summary and Recommendations

Site visits and system sampling continue on a bi-monthly basis. During each non-sampling site visit, bag filters are replaced and valves are cleaned. Additionally, system performance readings as well as water level readings are taken. Samples are collected from the RW-3D, and effluent sampling ports at the first site visit of the month.

LaBella recommends continuing the treatment of recovered groundwater at the site utilizing air stripper treatment system. Further recommendations are outlined in the sites periodic review.

LaBella would like to thank you for the opportunity to offer our services for this site.

If you have any questions or comments regarding the information contained herein, please contact our office at 518-885-5383.

Respectfully submitted,

LaBella Associates

Sabrina Campfield Project Manager

ATTACHMENTS:

Laboratory Analytical Reports

Salrina a. Campfield

Figure 1

January 2022 Analytical Data

January 12, 2022

Sabrina Campfield LaBella

,

RE: Project: COSCO SPILL #344035 - 1/4

Pace Project No.: 70199989

Dear Sabrina Campfield:

Enclosed are the analytical results for sample(s) received by the laboratory on January 06, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Melville

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lea Sherman lea.sherman@pacelabs.com (631)694-3040 Project Manager

Enclosures

cc: Robert Strang, NYDEC

(631)694-3040

CERTIFICATIONS

Project: COSCO SPILL #344035 - 1/4

Pace Project No.: 70199989

Pace Analytical Services Long Island

575 Broad Hollow Rd, Melville, NY 11747 Connecticut Certification #: PH-0435 Delaware Certification # NY 10478 Maryland Certification #: 208

Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987 New Jersey Certification #: NY158

New York Certification #: 10478 Primary Accrediting Body

Pennsylvania Certification #: 68-00350 Rhode Island Certification #: LAO00340

Virginia Certification # 460302

ANALYTICAL RESULTS

Project: COSCO SPILL #344035 - 1/4

Pace Project No.: 70199989

Date: 01/12/2022 08:57 AM

Sample: RAW=3D	Lab ID: 701	99989001	Collected: 01/04/2	22 09:00	Received: 0	1/06/22 10:20 M	fatrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
624.1 Volatile Organics	Analytical Method: EPA 624.1								
-	Pace Analytica	al Services - I	Melville						
Benzene	<1.0	ug/L	1.0	1		01/06/22 19:25	71-43-2		
Bromodichloromethane	<1.0	ug/L	1.0	1		01/06/22 19:25	75-27-4		
Bromoform	<1.0	ug/L	1.0	1		01/06/22 19:25	75-25-2		
Bromomethane	<1.0	ug/L	1.0	1		01/06/22 19:25	74-83-9		
Carbon tetrachloride	<1.0	ug/L	1.0	1		01/06/22 19:25	56-23-5	L2,v3	
Chlorobenzene	<1.0	ug/L	1.0	1		01/06/22 19:25	108-90-7		
Chloroethane	<1.0	ug/L	1.0	1		01/06/22 19:25	75-00-3		
Chloroform	<1.0	ug/L	1.0	1		01/06/22 19:25	67-66-3		
Chloromethane	<1.0	ug/L	1.0	1		01/06/22 19:25	74-87-3		
Dibromochloromethane	<1.0	ug/L	1.0	1		01/06/22 19:25	124-48-1		
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		01/06/22 19:25	95-50-1		
1,3-Dichlorobenzene	<1.0	ug/L	1.0	1		01/06/22 19:25			
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		01/06/22 19:25	106-46-7		
Dichlorodifluoromethane	<1.0	ug/L	1.0	1		01/06/22 19:25		v3	
1,1-Dichloroethane	<1.0	ug/L	1.0	1		01/06/22 19:25	75-34-3		
1.2-Dichloroethane	<1.0	ug/L	1.0	1		01/06/22 19:25	107-06-2		
1,1-Dichloroethene	<1.0	ug/L	1.0	1		01/06/22 19:25			
cis-1,2-Dichloroethene	27.2	ug/L	1.0	1		01/06/22 19:25	156-59-2		
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		01/06/22 19:25			
1,2-Dichloropropane	<1.0	ug/L	1.0	1		01/06/22 19:25			
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		01/06/22 19:25			
trans-1,3-Dichloropropene	<1.0	ug/L	1.0	1		01/06/22 19:25			
Ethylbenzene	<1.0	ug/L	1.0	1		01/06/22 19:25			
Methylene Chloride	<1.0	ug/L	1.0	1		01/06/22 19:25			
1,1,2,2-Tetrachloroethane	<1.0	ug/L	1.0	1		01/06/22 19:25			
Tetrachloroethene	57.6	ug/L	1.0	1		01/06/22 19:25			
Toluene	<1.0	ug/L	1.0	1		01/06/22 19:25			
1,1,1-Trichloroethane	<1.0	ug/L	1.0	1		01/06/22 19:25			
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		01/06/22 19:25		IC	
Trichloroethene	59.5	ug/L	1.0	1		01/06/22 19:25		.0	
Trichlorofluoromethane	<1.0	ug/L	1.0	1		01/06/22 19:25			
Vinyl chloride	<1.0	ug/L	1.0	1		01/06/22 19:25			
Xylene (Total)	<1.0	ug/L	1.0	1		01/06/22 19:25			
Surrogates	4.10	ag, L	1.0	•		01/00/22 10:20	1000 20 1		
4-Bromofluorobenzene (S)	84	%	80-110	1		01/06/22 19:25	460-00-4		
Toluene-d8 (S)	100	%	87-120	1		01/06/22 19:25			
1,2-Dichloroethane-d4 (S)	110	%	76-127	1		01/06/22 19:25			
	A		5400						
2540C Total Dissolved Solids	Analytical Met Pace Analytica								
Total Dissolved Solids	650	mg/L	20.0	1		01/10/22 12:08			
9040 Corrosivity-pH >20% water	Analytical Met	hod: EPA 904	40C						
	Pace Analytica	al Services - I	Melville						
nH	7.2	Std. Units	0.10	1		01/10/22 12:02		H3,H6,	
рН	1.2	Siu. Units	0.10	1		01/10/22 12.02		N3	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

(631)694-3040

ANALYTICAL RESULTS

Project: COSCO SPILL #344035 - 1/4

Pace Project No.: 70199989

Date: 01/12/2022 08:57 AM

Sample: RAW=3D	Lab ID: 70	199989001	Collected: 01/04/2	22 09:00	Received: (01/06/22 10:20	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
9040 Corrosivity-pH >20% water	Analytical Me Pace Analytic							
Temperature, Water (C)	22.3	deg C	0.10	1		01/10/22 12:0)2	H3,H6

ANALYTICAL RESULTS

Project: COSCO SPILL #344035 - 1/4

Pace Project No.: 70199989

Date: 01/12/2022 08:57 AM

Sample: EFFLUENT	Lab ID: 701	199989002	Collected: 01/04/2	22 09:10	Received: 0	1/06/22 10:20 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
624.1 Volatile Organics	Analytical Met	thod: EPA 624	4.1					
	Pace Analytic	al Services -	Melville					
Benzene	<1.0	ug/L	1.0	1		01/06/22 19:07	71-43-2	
Bromodichloromethane	<1.0	ug/L	1.0	1		01/06/22 19:07	75-27-4	
Bromoform	<1.0	ug/L	1.0	1		01/06/22 19:07	75-25-2	
Bromomethane	<1.0	ug/L	1.0	1		01/06/22 19:07	74-83-9	
Carbon tetrachloride	<1.0	ug/L	1.0	1		01/06/22 19:07		L2,v3
Chlorobenzene	<1.0	ug/L	1.0	1		01/06/22 19:07	108-90-7	•
Chloroethane	<1.0	ug/L	1.0	1		01/06/22 19:07	75-00-3	
Chloroform	<1.0	ug/L	1.0	1		01/06/22 19:07		
Chloromethane	<1.0	ug/L	1.0	1		01/06/22 19:07		
Dibromochloromethane	<1.0	ug/L	1.0	1		01/06/22 19:07		
1,2-Dichlorobenzene	<1.0	ug/L	1.0	1		01/06/22 19:07		
1,3-Dichlorobenzene	<1.0	ug/L	1.0	1		01/06/22 19:07		
1,4-Dichlorobenzene	<1.0	ug/L	1.0	1		01/06/22 19:07		
Dichlorodifluoromethane	<1.0	ug/L	1.0	1		01/06/22 19:07		v3
1.1-Dichloroethane	<1.0	ug/L	1.0	1		01/06/22 19:07		••
1,2-Dichloroethane	<1.0	ug/L	1.0	1		01/06/22 19:07		
1,1-Dichloroethene	<1.0	ug/L	1.0	1		01/06/22 19:07		
cis-1,2-Dichloroethene	1.2	ug/L	1.0	1		01/06/22 19:07		
trans-1,2-Dichloroethene	<1.0	ug/L	1.0	1		01/06/22 19:07		
1,2-Dichloropropane	<1.0	ug/L	1.0	1		01/06/22 19:07		
cis-1,3-Dichloropropene	<1.0	ug/L	1.0	1		01/06/22 19:07		
trans-1,3-Dichloropropene	<1.0 <1.0	ug/L	1.0	1		01/06/22 19:07		
Ethylbenzene	<1.0	ug/L	1.0	1		01/06/22 19:07		
Methylene Chloride	<1.0	ug/L	1.0	1		01/06/22 19:07		
1,1,2,2-Tetrachloroethane	<1.0 <1.0	ug/L	1.0	1		01/06/22 19:07		
Tetrachloroethene	<1.0 <1.0	ug/L	1.0	1		01/06/22 19:07		
Toluene	<1.0 <1.0	ug/L	1.0	1		01/06/22 19:07		
1,1,1-Trichloroethane	<1.0 <1.0	ug/L	1.0	1		01/06/22 19:07		
1,1,2-Trichloroethane	<1.0	ug/L	1.0	1		01/06/22 19:07		IC
Trichloroethene	<1.0	ug/L	1.0	1		01/06/22 19:07		Ю
Trichlorofluoromethane	<1.0 <1.0	ug/L ug/L	1.0	1		01/06/22 19:07		
Vinyl chloride	<1.0 <1.0	ug/L ug/L	1.0	1		01/06/22 19:07		
Xylene (Total)	<1.0	ug/L	1.0	1		01/06/22 19:07		
Surrogates	<1.0	ug/L	1.0	'		01/00/22 19.07	1330-20-7	
4-Bromofluorobenzene (S)	80	%	80-110	1		01/06/22 19:07	460-00-4	
Toluene-d8 (S)	101	%	87-120	1		01/06/22 19:07		
1,2-Dichloroethane-d4 (S)	104	%	76-127	1		01/06/22 19:07		
1,2 Biomorocarane d4 (6)	104	70	70 121	•		01/00/22 10:07	17000 07 0	
2540C Total Dissolved Solids	Analytical Met Pace Analytica							
Total Dissolved Solids	658	mg/L	20.0	1		01/10/22 12:09		
9040 Corrosivity-pH >20% water	Analytical Met	thod: EPA 904	40C					
55 15 Soliosithy pil 220/6 Water	Pace Analytical							
рН	8.0	Std. Units	0.10	1		01/10/22 12:02		H3,H6,
۲' '	0.0	Ota. Offits	0.10			31/10/22 12.02		N3

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS

Project: COSCO SPILL #344035 - 1/4

Pace Project No.: 70199989

Date: 01/12/2022 08:57 AM

Sample: EFFLUENT	Lab ID: 70	199989002	Collected: 01/04/2	22 09:10	Received: 01	1/06/22 10:20 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
9040 Corrosivity-pH >20% water	Analytical Me Pace Analytic							
Temperature, Water (C)	22.5	deg C	0.10	1		01/10/22 12:02	2	H3,H6

Project: COSCO SPILL #344035 - 1/4

Pace Project No.: 70199989

Date: 01/12/2022 08:57 AM

QC Batch: 239699 Analysis Method: EPA 624.1
QC Batch Method: EPA 624.1 Analysis Description: 624.1 MSV

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70199989001, 70199989002

METHOD BLANK: 1210992 Matrix: Water

Associated Lab Samples: 70199989001, 70199989002

7.0000iatou Lab Gampico.	70199909001, 70199909002				
		Blank	Reporting		0 115
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/L	<1.0	1.0	01/06/22 13:44	
1,1,2,2-Tetrachloroethane	ug/L	<1.0	1.0	01/06/22 13:44	
1,1,2-Trichloroethane	ug/L	<1.0	1.0	01/06/22 13:44	IC
1,1-Dichloroethane	ug/L	<1.0	1.0	01/06/22 13:44	
1,1-Dichloroethene	ug/L	<1.0	1.0	01/06/22 13:44	
1,2-Dichlorobenzene	ug/L	<1.0	1.0	01/06/22 13:44	
1,2-Dichloroethane	ug/L	<1.0	1.0	01/06/22 13:44	
1,2-Dichloropropane	ug/L	<1.0	1.0	01/06/22 13:44	
1,3-Dichlorobenzene	ug/L	<1.0	1.0	01/06/22 13:44	
1,4-Dichlorobenzene	ug/L	<1.0	1.0	01/06/22 13:44	
Benzene	ug/L	<1.0	1.0	01/06/22 13:44	
Bromodichloromethane	ug/L	<1.0	1.0	01/06/22 13:44	
Bromoform	ug/L	<1.0	1.0	01/06/22 13:44	
Bromomethane	ug/L	<1.0	1.0	01/06/22 13:44	
Carbon tetrachloride	ug/L	<1.0	1.0	01/06/22 13:44	v3
Chlorobenzene	ug/L	<1.0	1.0	01/06/22 13:44	
Chloroethane	ug/L	<1.0	1.0	01/06/22 13:44	
Chloroform	ug/L	<1.0	1.0	01/06/22 13:44	
Chloromethane	ug/L	<1.0	1.0	01/06/22 13:44	
cis-1,2-Dichloroethene	ug/L	<1.0	1.0	01/06/22 13:44	
cis-1,3-Dichloropropene	ug/L	<1.0	1.0	01/06/22 13:44	
Dibromochloromethane	ug/L	<1.0	1.0	01/06/22 13:44	
Dichlorodifluoromethane	ug/L	<1.0	1.0	01/06/22 13:44	v3
Ethylbenzene	ug/L	<1.0	1.0	01/06/22 13:44	
Methylene Chloride	ug/L	<1.0	1.0	01/06/22 13:44	
Tetrachloroethene	ug/L	<1.0	1.0	01/06/22 13:44	
Toluene	ug/L	<1.0	1.0	01/06/22 13:44	
trans-1,2-Dichloroethene	ug/L	<1.0	1.0	01/06/22 13:44	
trans-1,3-Dichloropropene	ug/L	<1.0	1.0	01/06/22 13:44	
Trichloroethene	ug/L	<1.0	1.0	01/06/22 13:44	
Trichlorofluoromethane	ug/L	<1.0	1.0	01/06/22 13:44	
Vinyl chloride	ug/L	<1.0	1.0	01/06/22 13:44	
Xylene (Total)	ug/L	<1.0	1.0	01/06/22 13:44	
1,2-Dichloroethane-d4 (S)	%	96	76-127	01/06/22 13:44	
4-Bromofluorobenzene (S)	%	89	80-110	01/06/22 13:44	
Toluene-d8 (S)	%	103	87-120	01/06/22 13:44	
, ,					

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: COSCO SPILL #344035 - 1/4

Pace Project No.: 70199989

Date: 01/12/2022 08:57 AM

LABORATORY CONTROL SAMPLE:	1210993					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L		14.6	73	70-130	
1,1,2,2-Tetrachloroethane	ug/L	20	18.4	92	60-140	
1,1,2-Trichloroethane	ug/L	20	19.3	96	70-130	IC
1,1-Dichloroethane	ug/L	20	16.5	83	70-130	
1,1-Dichloroethene	ug/L	20	16.9	84	70-130	
1,2-Dichlorobenzene	ug/L	20	18.4	92	65-135	
1,2-Dichloroethane	ug/L	20	18.3	92	70-130	
1,2-Dichloropropane	ug/L	20	18.1	90	35-165	
1,3-Dichlorobenzene	ug/L	20	18.4	92	70-130	
1,4-Dichlorobenzene	ug/L	20	18.0	90	65-135	
Benzene	ug/L	20	17.7	88	65-135	
Bromodichloromethane	ug/L	20	17.9	90	65-135	
Bromoform	ug/L	20	16.2	81	70-130	
Bromomethane	ug/L	20	16.7	84	15-185	
Carbon tetrachloride	ug/L	20	13.9	69	70-130	L2,v3
Chlorobenzene	ug/L	20	18.4	92	65-135	
Chloroethane	ug/L	20	17.0	85	40-160	
Chloroform	ug/L	20	17.1	86	70-135	
Chloromethane	ug/L	20	17.8	89	10-205	
cis-1,2-Dichloroethene	ug/L	20	17.5	87	77-121	
cis-1,3-Dichloropropene	ug/L	20	19.1	96	25-175	
Dibromochloromethane	ug/L	20	18.6	93	70-135	
Dichlorodifluoromethane	ug/L	20	16.0	80	10-131	v3
Ethylbenzene	ug/L	20	18.7	94	60-140	
Methylene Chloride	ug/L	20	18.9	94	60-140	
Tetrachloroethene	ug/L	20	17.0	85	65-135	
Toluene	ug/L	20	18.5	92	70-130	
trans-1,2-Dichloroethene	ug/L	20	17.1	85	70-130	
trans-1,3-Dichloropropene	ug/L	20	20.1	101	50-150	
Trichloroethene	ug/L	20	16.0	80	65-135	
Trichlorofluoromethane	ug/L	20	14.1	70	50-150	
Vinyl chloride	ug/L	20	17.4	87	5-195	
Xylene (Total)	ug/L	60	59.8	100	77-121	
1,2-Dichloroethane-d4 (S)	%			99	76-127	
4-Bromofluorobenzene (S)	%			91	80-110	
Toluene-d8 (S)	%			100	87-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

COSCO SPILL #344035 - 1/4 Project:

Pace Project No.: 70199989

QC Batch Method:

QC Batch: 239970

SM22 2540C

Analysis Method:

SM22 2540C

Analysis Description:

2540C Total Dissolved Solids

Laboratory:

Pace Analytical Services - Melville

Associated Lab Samples: 70199989001, 70199989002

METHOD BLANK: 1212525

Parameter

Associated Lab Samples:

70199989001, 70199989002

Blank

Matrix: Water

Result

Reporting Limit

Analyzed

Qualifiers

Total Dissolved Solids

Units mg/L

Units

mg/L

mg/L

ND

5.0 01/10/22 11:41

LABORATORY CONTROL SAMPLE: 1212526

Parameter

Spike Conc.

LCS Result

246

LCS % Rec % Rec Limits

Qualifiers

MATRIX SPIKE SAMPLE:

Parameter

Total Dissolved Solids

1212528

Units

70199765005 Result

500

Spike Conc.

600

512

MS Result

832

439

2

3

102

MS % Rec

98

96

85-115

% Rec Limits

75-125

75-125

Qualifiers

MATRIX SPIKE SAMPLE:

Total Dissolved Solids

1212530

Parameter Units Total Dissolved Solids mg/L 70199669004 Result 150 Spike Conc. 300

MS Result

MS % Rec % Rec Limits

Qualifiers

Total Dissolved Solids

Total Dissolved Solids

Date: 01/12/2022 08:57 AM

SAMPLE DUPLICATE: 1212527

Parameter

Parameter

70199765005 Units Result

Dup Result

246

RPD

250

Qualifiers

SAMPLE DUPLICATE: 1212529

Units mg/L

mg/L

70199669004 Result 150

Dup Result 154

RPD

Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: COSCO SPILL #344035 - 1/4

Pace Project No.: 70199989

QC Batch: 239989 Analysis Method: EPA 9040C
QC Batch Method: EPA 9040C Analysis Description: 9040 pH

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70199989001, 70199989002

SAMPLE DUPLICATE: 1212573

Date: 01/12/2022 08:57 AM

		70199989001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
рН	Std. Units	7.2	7.2		0 H3,H6,N3
Temperature, Water (C)	deg C	22.3	22.4		0 H3,H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: COSCO SPILL #344035 - 1/4

Pace Project No.: 70199989

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

SAMPLE QUALIFIERS

Sample: 70199989001

[1] 2-Chloroethylvinyl ether not reportable due to improper sample preservation.

Sample: 70199989002

[1] 2-Chloroethylvinyl ether not reportable due to improper sample preservation.

ANALYTE QUALIFIERS

Date: 01/12/2022 08:57 AM

H3 Sample was received or analysis requested beyond the recognized m	method holding time.
--	----------------------

H6 Analysis initiated outside of the 15 minute EPA recommended holding time.

IC The initial calibration for this compound was outside of method control limits. The result is estimated.

L2 Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.

N3 Accreditation is not offered by the relevant laboratory accrediting body for this parameter.

V3 The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: COSCO SPILL #344035 - 1/4

Pace Project No.: 70199989

Date: 01/12/2022 08:57 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
70199989001 70199989002	RAW=3D EFFLUENT	EPA 624.1 EPA 624.1	239699 239699		
70199989001 70199989002	RAW=3D EFFLUENT	SM22 2540C SM22 2540C	239970 239970		
70199989001 70199989002	RAW=3D EFFLUENT	EPA 9040C EPA 9040C	239989 239989		

Pace Analytical "

Phone: 612-607-6400 Fax: 612-607-6344

CHAIN OF CUSTODY RECORD (New York)

https://www.pacelabs.com/

Doc # 380 Rev 1_03242017

Minneapolis, MN 55414 1800 Elm Street SE

ō

Page

Dissolved Metals Samples GW = Ground Water WW = Waste Water DW = Drinking Water Preservation Codes: = Sodium Hydroxide Sodium Bisulfate Summa Canister 0 = Other (please 3 Container Codes: T = Tedlar Bag O = Other (please 0 = Other (please Von Soxhlet A = Amber Glass PCB ONLY Matrix Codes = Sulfuric Acid Soxhlet ² Preservation Code N = Nitric Acid Field Filtered Field Filtered SL = 5ludge M = Methanol Lab to Filter Container Code Lab to Filter SOL = Solid ST = Sterile = Sodium **Thiosulfate** # of Containers Plastic 3 = Glass A = Air S = Soil / = Vial define) H= HCL = Iced define) NY Regulatory EDD NY Regs Hits-Only EDD NYSDEC EQUIS EDD EQuIS (Standard) EDD Please use the following codes to indicate possible sample concentration within Enhanced Data Package NELAC and Allha-LAP, LLC Accredited Chromatogram AIHA-LAP, LLC H - High; M - Medium; L - Low; C - Clean; U - Unknown ANALYSIS REQUESTED Other the Conc Code column above: WRTA Other: Volatiles MO#: 70199989 624.1_PREC - (MOD) Priority Pollutant MWRA 9040B - PH MBTA 2540C - Total Dissolved Solids Conc Code christopher.weiman@ramboll.com; paul.dannibale@ramboll.com; scampfield@labellapc.com; robert.strang@dec.ny.gov; april.fallon@ramboll.com Requested Turnaround Time □ NY TOGS □ NY CP-51 > Standard TOT roval Required 'Matrix Code Water Water Municipality Brownfield 70199989 Data Deliver 10-Day ✓ EXCEL 3-Day 4-Day CLP Like Data Pkg Required: Grab Part 360 GW (Landfill) **NYC Sewer Discharge** Composite NY Unrestricted Use NY Restricted Use PDF NY Part 375 Government AWQ STDS 1/4 090 11, 090 Due Date: Date/Time 1/4 500 1/1,591 Email To: Ending Fax To #: Format: Federal 7-Day -Day 2-Day Other: City Project Entity Beginning Date/Time Contact: https://www.pacelabs.com/contact-us/contact-environmental-sciences/ Other: 5 McCrea Hill Road, Ballston Spa, NY 12020 15 West Street, Spring Valley, NY 300 1/5/24 10:42 Date/Time: LaBella Associates Sabrina Campfield COSCO #344035 COSCO #344035 Client Sample ID / Description 845-866-1335 [[] Date/Time: Date/Time: 16/22 Date/Time: Jate/Time: Date/Time: 15122 Effluent CACL POCE Pace Analytical Quote Name/Number Relinguished by: (signature) 5. Candulshed by: (ségnature) go Relinquished by: (signature) Pace Analytical रक्टerved by: (signature) Received by: (signature) Work Order# by-(signature) 011110 Invoice Recipient: Project Location: Project Manager: Project Number: Sampled By: Comments: Address: Phone:

	Sample Condition Upon Receivo#: 70199989							
Pace Analytical "	Client M	ama.		Pr	ojec			
/ 1 4007 41419 415011	Client Name: LABELLA				Ojco	PM: LS1		
Courier: ☐ Fed Ex ☐ UPS ☐ USPS ☐ Client				r		CLIENT:	AZTECH-LAE	SEL
Tracking #: SCI04 52		371	7					
Custody Seal on Cooler/Box Present: Yes				S□ No □ N/A		Temper	ature Blank Pr	esent: Yes No
Packing Material: Bubble Wrap Bubble	Rans C					-	Ice: Wet BI	
Thermometer Used: TH091	Correct	ion Factor	0.0	30				process has begun
Cooler Temperature(°C): G. V			ure Correct		6			placed in freezer
Temp should be above freezing to 6.0°C	- 000.01	i omporar			-			vi villa
USDA Regulated Soil N/A, water sample]			Date and Init	ials o	f person exa	mining content	ts: VIN 1921
Did samples originate in a quarantine zone wi		nited Stati	es: Al. AR. CA	. FL. GA. ID. LA. N	4S, NC	. Did sam	ples orignate fr	om a foreign source
NM, NY, OK, OR, SC, TN, TX, or VA (check map)?		s \square No	30. 114 1.14 0.1	, , _, _, , , , , , , , , , , , , , , ,		includin	Ig Hawaii and Pu	ierto Rico)? ☐ Yes🗹 No
If Yes to either question, fill out a Regulate	ad Soil Ch	ecklist (F	-LI-C-010) a	nd include wit	h SCU			
Thes to either question, thi out a regulate	20 0011 01	ioonnot (i				(COMMENTS:	
Chain of Custody Present:	☑Yes	□No		1.				
Chain of Custody Filled Out:	ZiYes	□No		2.				
Chain of Custody Relinquished:	∕⊠Yes	□No		3.				
Sampler Name & Signature on COC:	⊠Ýes	□No	□N/A	4,			+	
Samples Arrived within Hold Time:	ØYes	□No		5.				
Short Hold Time Analysis (<72hr):	□Yes	ZÍNO		6.				
Rush Turn Around Time Requested:	□Yes	ZNo		7.				
Sufficient Volume: (Triple volume provided for	1 Yes	□No		8.				
Correct Containers Used:	õYes	□No		9.				
-Pace Containers Used:	ØYes	□No						
Containers Intact:	√⊆Yes	□No		10.				
Filtered volume received for Dissolved tests	□Yes	□No	ZIN/A		ote if	sediment is vi	sible in the diss	olved container.
Sample Labels match COC:	⊠Yes	□No		12.				
-Includes date/time/ID, Matrix: SL (W)	OIL							
All containers needing preservation have been	n □Yes	□No	A/NA	13.	HNO₃	₃ □ H _z SO	₄ □NaOH	□ HCI
checked?								
pH paper Lot #				Sample #				
All containers needing preservation are found to be				Sattiple #				
in compliance with method recommendation		No	DN/A					
(HNO ₃ , H ₂ SO ₄ , HCl, NaOH>9 Sulfide,	□Yes	□No	LIN/A	W.				
NAOH>12 Cyanide)	rooco			1				
Exceptions: VOA, Coliform, TOC/DOC, Oil and G	i ease,			Initial when o	omole	eted: Lot # o	f added	Date/Time preservative
DRO/8015 (water). Per Method, VOA pH is checked after analysis				The control of		preserv		added:
Samples checked for dechlorination:	□Yes	□No	/□N/A	14.				
KI starch test strips Lot #	_103		1,					
Residual chlorine strips Lot #				Pos	sitive f	or Res. Chlori	ne? Y N	
SM 4500 CN samples checked for sulfide?	□Yes	□No	/DN/A	15.				
Lead Acetate Strips Lot #			×	Pos	sitive f	or Sulfide?	YN	
Headspace in VOA Vials (>6mm):	□Yes	₽No	□N/A	16.				
Trip Blank Present:	□Yes	ØNo	□N/A	17.				
Trip Blank Custody Seals Present	□Yes	√No	ZN/A					
Pace Trip Blank Lot # (if applicable):								
Client Notification/ Resolution:				Field Data Re	quire	d?	Y / N	
Person Contacted:					late/T	ime:		
Comments/ Resolution:								
<u> </u>								

^{*} PM (Project Manager) review is documented electronically in LIMS.

February 2022 Analytical Data

February 9, 2022

Sabrina Campbell NYDEC_Labella Associates - Ballston Spa, NY 5 McCrea Hill Road Ballston Spa, NY 12020

Project Location: COSCO #344035

Client Job Number: Project Number: 344035

Laboratory Work Order Number: 22B0134

Enclosed are results of analyses for samples as received by the laboratory on February 2, 2022. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mike Buttrick Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
22B0134-01	5
22B0134-02	8
Sample Preparation Information	11
QC Data	12
Volatile Organic Compounds by GC/MS	12
B300355	12
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	14
B300313	14
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Dissolved)	15
B300521	15
Flag/Qualifier Summary	16
Certifications	17
Chain of Custody/Sample Receipt	19

NYDEC_Labella Associates - Ballston Spa, NY

5 McCrea Hill Road

Ballston Spa, NY 12020 PURCHASE ORDER NUMBER: 142773

ATTN: Sabrina Campbell

REPORT DATE: 2/9/2022

PROJECT NUMBER: 344035

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 22B0134

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: COSCO #344035

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
RW-3D	22B0134-01	Water		624.1	
				SM21-23 2540C	
				SM21-23 4500 H B	
Effluent	22B0134-02	Water		624.1	
				SM21-23 2540C	
				SM21-23 4500 H B	
				SM21-23 2540C SM21-23 4500 H B 624.1 SM21-23 2540C	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

624.1

Qualifications:

PR-10

pH of sample (pH 7) is outside of method specified preservation criteria.

Analyte & Samples(s) Qualified:

22B0134-01[RW-3D]

SM21-23 4500 H B

Qualifications:

H-05

Holding time was exceeded. pH analysis should be performed immediately at time of sampling. Nominal 15 minute holding time was exceeded.

exceeded.
Analyte & Samples(s) Qualified:

pН

22B0134-01[RW-3D], 22B0134-02[Effluent]

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative

Project Location: COSCO #344035 Sample Description: Work Order: 22B0134

Date Received: 2/2/2022
Field Sample #: RW-3D

Sampled: 2/1/2022 12:00

96.4

107

102

70-130

70-130

70-130

Sample ID: 22B0134-01
Sample Matrix: Water

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Toluene-d8

Sample Matrix: Water Sample Flags: PR-10			Volat	ile Organic Com	pounds by G	GC/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	< 0.200	1.00	0.200	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
Bromodichloromethane	< 0.180	2.00	0.180	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
Bromoform	< 0.383	2.00	0.383	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
Bromomethane	<1.54	2.00	1.54	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
Carbon Tetrachloride	< 0.165	2.00	0.165	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
Chlorobenzene	< 0.105	2.00	0.105	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
Chlorodibromomethane	< 0.222	2.00	0.222	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
Chloroethane	< 0.320	2.00	0.320	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
Chloroform	< 0.168	2.00	0.168	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
Chloromethane	< 0.522	2.00	0.522	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
1,2-Dichlorobenzene	< 0.122	2.00	0.122	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
1,3-Dichlorobenzene	< 0.118	2.00	0.118	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
1,4-Dichlorobenzene	< 0.130	2.00	0.130	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
1,2-Dichloroethane	< 0.308	2.00	0.308	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
1,1-Dichloroethane	< 0.142	2.00	0.142	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
1,1-Dichloroethylene	< 0.141	2.00	0.141	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
trans-1,2-Dichloroethylene	< 0.169	2.00	0.169	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
1,2-Dichloropropane	< 0.181	2.00	0.181	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
cis-1,3-Dichloropropene	< 0.158	2.00	0.158	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
trans-1,3-Dichloropropene	< 0.168	2.00	0.168	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
Ethylbenzene	< 0.215	2.00	0.215	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
Methyl tert-Butyl Ether (MTBE)	< 0.172	2.00	0.172	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
Methylene Chloride	< 0.235	5.00	0.235	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
1,1,2,2-Tetrachloroethane	< 0.127	2.00	0.127	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
Tetrachloroethylene	1.17	2.00	0.187	μg/L	1	J	624.1	2/3/22	2/3/22 16:37	MFF
Toluene	< 0.224	1.00	0.224	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
1,1,1-Trichloroethane	< 0.169	2.00	0.169	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
1,1,2-Trichloroethane	< 0.183	2.00	0.183	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
Trichloroethylene	1.54	2.00	0.189	μg/L	1	J	624.1	2/3/22	2/3/22 16:37	MFF
Trichlorofluoromethane (Freon 11)	< 0.176	2.00	0.176	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
Vinyl Chloride	< 0.208	2.00	0.208	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
m+p Xylene	< 0.459	2.00	0.459	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
o-Xylene	< 0.230	1.00	0.230	μg/L	1		624.1	2/3/22	2/3/22 16:37	MFF
Surrogates		% Reco	very	Recovery Limit	s	Flag/Qual				

2/3/22 16:37

2/3/22 16:37

2/3/22 16:37

Project Location: COSCO #344035 Sample Description: Work Order: 22B0134

Date Received: 2/2/2022
Field Sample #: RW-3D

Sampled: 2/1/2022 12:00

Sample ID: 22B0134-01
Sample Matrix: Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
pH @20.8°C		7.2		pH Units	1	H-05	SM21-23 4500 H B	2/2/22	2/2/22 20:20	CB2

Project Location: COSCO #344035 Sample Description: Work Order: 22B0134

Date Received: 2/2/2022
Field Sample #: RW-3D

Sampled: 2/1/2022 12:00

Sample ID: 22B0134-01
Sample Matrix: Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Dissolved)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Total Dissolved Solids	660	10	mg/L	1		SM21-23 2540C	2/7/22	2/7/22 13:10	LL

Project Location: COSCO #344035 Sample Description: Work Order: 22B0134

Date Received: 2/2/2022

Field Sample #: Effluent

Sampled: 2/1/2022 12:05

Sample ID: 22B0134-02
Sample Matrix: Water

Volatile	Organic	Compounds by	GC/MS
voiatiic	Organic	Compounds by	GC/IVID

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	<0.200	1.00	0.200	μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
Bromodichloromethane	< 0.180	2.00	0.180	μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
Bromoform	< 0.383	2.00	0.383	μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
Bromomethane	<1.54	2.00	1.54	μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
Carbon Tetrachloride	< 0.165	2.00	0.165	μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
Chlorobenzene	< 0.105	2.00	0.105	μg/L	1		624.1	2/3/22	2/3/22 16:13	MFF
Chlorodibromomethane	< 0.222	2.00	0.222	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:13	MFF
Chloroethane	< 0.320	2.00	0.320	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:13	MFF
Chloroform	0.550	2.00	0.168	$\mu g/L$	1	J	624.1	2/3/22	2/3/22 16:13	MFF
Chloromethane	< 0.522	2.00	0.522	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:13	MFF
1,2-Dichlorobenzene	< 0.122	2.00	0.122	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:13	MFF
1,3-Dichlorobenzene	< 0.118	2.00	0.118	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:13	MFF
1,4-Dichlorobenzene	< 0.130	2.00	0.130	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:13	MFF
1,2-Dichloroethane	< 0.308	2.00	0.308	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:13	MFF
1,1-Dichloroethane	< 0.142	2.00	0.142	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:13	MFF
1,1-Dichloroethylene	< 0.141	2.00	0.141	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:13	MFF
trans-1,2-Dichloroethylene	< 0.169	2.00	0.169	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:13	MFF
1,2-Dichloropropane	< 0.181	2.00	0.181	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:13	MFF
cis-1,3-Dichloropropene	< 0.158	2.00	0.158	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:13	MFF
trans-1,3-Dichloropropene	< 0.168	2.00	0.168	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:13	MFF
Ethylbenzene	< 0.215	2.00	0.215	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:13	MFF
Methyl tert-Butyl Ether (MTBE)	< 0.172	2.00	0.172	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:13	MFF
Methylene Chloride	< 0.235	5.00	0.235	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:13	MFF
1,1,2,2-Tetrachloroethane	< 0.127	2.00	0.127	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:13	MFF
Tetrachloroethylene	57.5	2.00	0.187	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:13	MFF
Toluene	< 0.224	1.00	0.224	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:13	MFF
1,1,1-Trichloroethane	< 0.169	2.00	0.169	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:13	MFF
1,1,2-Trichloroethane	< 0.183	2.00	0.183	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:13	MFF
Trichloroethylene	54.8	2.00	0.189	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:13	MFF
Trichlorofluoromethane (Freon 11)	< 0.176	2.00	0.176	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:13	MFF
Vinyl Chloride	< 0.208	2.00	0.208	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:13	MFF
m+p Xylene	< 0.459	2.00	0.459	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:13	MFF
o-Xylene	< 0.230	1.00	0.230	$\mu g/L$	1		624.1	2/3/22	2/3/22 16:13	MFF

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	96.7	70-130		2/3/22 16:13
Toluene-d8	107	70-130		2/3/22 16:13
4-Bromofluorobenzene	103	70-130		2/3/22 16:13

Project Location: COSCO #344035 Sample Description: Work Order: 22B0134

Date Received: 2/2/2022
Field Sample #: Effluent

Sampled: 2/1/2022 12:05

Sample ID: 22B0134-02 Sample Matrix: Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
рН @20°C		8.1		pH Units	1	H-05	SM21-23 4500 H B	2/2/22	2/2/22 20:20	CB2

Project Location: COSCO #344035 Sample Description: Work Order: 22B0134

Date Received: 2/2/2022
Field Sample #: Effluent

Sampled: 2/1/2022 12:05

Sample ID: 22B0134-02 Sample Matrix: Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Dissolved)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Total Dissolved Solids	650	10	mg/L	1		SM21-23 2540C	2/7/22	2/7/22 13:10	LL

Sample Extraction Data

Prep Method: SW-846 5030B Analytical Method: 624.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
22B0134-01 [RW-3D]	B300355	5	5.00	02/03/22
22B0134-02 [Effluent]	B300355	5	5.00	02/03/22

SM21-23 2540C

Lab Number [Field ID]	Batch	Initial [mL]	Date
22B0134-01 [RW-3D]	B300521	50.0	02/07/22
22B0134-02 [Effluent]	B300521	50.0	02/07/22

SM21-23 4500 H B

Lab Number [Field ID]	Batch	Initial [mL]	Date
22B0134-01 [RW-3D]	B300313	50.0	02/02/22
22B0134-02 [Effluent]	B300313	50.0	02/02/22

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B300355 - SW-846 5030B										
Blank (B300355-BLK1)				Prepared &	Analyzed: 02	//03/22	•			
Benzene	ND	1.00	μg/L							
Bromodichloromethane	ND	2.00	$\mu g/L$							
Bromoform	ND	2.00	$\mu g/L$							
Bromomethane	ND	2.00	μg/L							
Carbon Tetrachloride	ND	2.00	μg/L							
Chlorobenzene	ND	2.00	μg/L							
Chlorodibromomethane	ND	2.00	μg/L							
Chloroethane	ND	2.00	μg/L							
Chloroform	ND	2.00	μg/L							
Chloromethane	ND	2.00	μg/L							
1,2-Dichlorobenzene	ND	2.00	μg/L							
1,3-Dichlorobenzene	ND	2.00	μg/L							
1,4-Dichlorobenzene	ND	2.00	μg/L							
1,2-Dichloroethane	ND	2.00	μg/L							
1,1-Dichloroethane	ND	2.00	μg/L							
1,1-Dichloroethylene	ND	2.00	μg/L							
trans-1,2-Dichloroethylene	ND	2.00	μg/L							
1,2-Dichloropropane	ND	2.00	μg/L							
cis-1,3-Dichloropropene	ND	2.00	μg/L							
trans-1,3-Dichloropropene	ND	2.00	μg/L							
Ethylbenzene	ND	2.00	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	2.00	μg/L							
Methylene Chloride	ND	5.00	μg/L							
1,1,2,2-Tetrachloroethane	ND	2.00	μg/L							
Tetrachloroethylene	ND	2.00	μg/L							
Toluene	ND	1.00	μg/L							
1,1,1-Trichloroethane	ND	2.00	μg/L							
1,1,2-Trichloroethane	ND	2.00	μg/L							
Trichloroethylene	ND	2.00	μg/L							
Trichlorofluoromethane (Freon 11)	ND	2.00	μg/L							
Vinyl Chloride	ND	2.00	μg/L							
m+p Xylene	ND	2.00	μg/L							
o-Xylene	ND	1.00	μg/L							
Surrogate: 1,2-Dichloroethane-d4	23.8		$\mu g/L$	25.0		95.3	70-130			
Surrogate: Toluene-d8	26.7		$\mu g/L$	25.0		107	70-130			
Surrogate: 4-Bromofluorobenzene	26.2		$\mu g/L$	25.0		105	70-130			
LCS (B300355-BS1)				Prepared &	Analyzed: 02	/03/22				
Benzene	23	1.00	$\mu g/L$	20.0		117	65-135			
Bromodichloromethane	22	2.00	$\mu g/L$	20.0		112	65-135			
Bromoform	21	2.00	$\mu g/L$	20.0		103	70-130			
Bromomethane	18	2.00	μg/L	20.0		91.4	15-185			
Carbon Tetrachloride	23	2.00	μg/L	20.0		116	70-130			
Chlorobenzene	24	2.00	μg/L	20.0		121	65-135			
Chlorodibromomethane	22	2.00	μg/L	20.0		108	70-135			
Chloroethane	24	2.00	μg/L	20.0		122	40-160			
Chloroform	22	2.00	μg/L	20.0		111	70-135			
Chloromethane	19	2.00	μg/L	20.0		97.2	20-205			
1,2-Dichlorobenzene	23	2.00	μg/L	20.0		113	65-135			
1,3-Dichlorobenzene	23	2.00	$\mu g/L$	20.0		117	70-130			
1,4-Dichlorobenzene	22	2.00	$\mu g/L$	20.0		110	65-135			
1,2-Dichloroethane	20	2.00	$\mu g/L$	20.0		99.6	70-130			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B300355 - SW-846 5030B										
LCS (B300355-BS1)				Prepared &	Analyzed: 02	/03/22				
1,1-Dichloroethane	22	2.00	μg/L	20.0		111	70-130			
1,1-Dichloroethylene	24	2.00	$\mu g/L$	20.0		118	50-150			
trans-1,2-Dichloroethylene	22	2.00	$\mu g/L$	20.0		111	70-130			
1,2-Dichloropropane	22	2.00	$\mu g/L$	20.0		110	35-165			
cis-1,3-Dichloropropene	23	2.00	$\mu g/L$	20.0		113	25-175			
trans-1,3-Dichloropropene	22	2.00	$\mu g/L$	20.0		111	50-150			
Ethylbenzene	23	2.00	$\mu g/L$	20.0		116	60-140			
Methyl tert-Butyl Ether (MTBE)	22	2.00	$\mu g/L$	20.0		109	70-130			
Methylene Chloride	21	5.00	$\mu g/L$	20.0		104	60-140			
1,1,2,2-Tetrachloroethane	20	2.00	$\mu g/L$	20.0		101	60-140			
Tetrachloroethylene	24	2.00	$\mu g/L$	20.0		122	70-130			
Toluene	24	1.00	$\mu g/L$	20.0		118	70-130			
1,1,1-Trichloroethane	23	2.00	$\mu g/L$	20.0		115	70-130			
1,1,2-Trichloroethane	22	2.00	$\mu g/L$	20.0		112	70-130			
Trichloroethylene	24	2.00	μg/L	20.0		120	65-135			
Trichlorofluoromethane (Freon 11)	23	2.00	$\mu g/L$	20.0		116	50-150			
Vinyl Chloride	24	2.00	$\mu g/L$	20.0		118	5-195			
m+p Xylene	46	2.00	$\mu g/L$	40.0		116	70-130			
o-Xylene	23	1.00	$\mu g/L$	20.0		117	70-130			
Surrogate: 1,2-Dichloroethane-d4	23.9		μg/L	25.0		95.6	70-130			
Surrogate: Toluene-d8	27.2		$\mu g/L$	25.0		109	70-130			
Surrogate: 4-Bromofluorobenzene	25.6		μg/L	25.0		102	70-130			

pН

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

		Reporting		Spike	Course		%REC		RPD	
Analyte	Result	Limit	Units	Level	Source Result	%REC	Limits	RPD	Limit	Notes

Batch B300313 - SM21-23 4500 H B	
LCS (B300313-BS1)	Prepared & Analyzed: 02/02/22

pH Units

6.00

100

90-110

6.00

QUALITY CONTROL

$Conventional\ Chemistry\ Parameters\ by\ EPA/APHA/SW-846\ Methods\ (Dissolved)-Quality\ Control$

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B300521 - SM21-23 2540C										
Blank (B300521-BLK1)				Prepared &	Analyzed: 02	2/07/22				
Total Dissolved Solids	ND	10	mg/L							
LCS (B300521-BS1)				Prepared &	Analyzed: 02	2/07/22				
Total Dissolved Solids	260		mg/L	293		87.7	64 9-119			

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
H-05	Holding time was exceeded. pH analysis should be performed immediately at time of sampling. Nominal 15 minute holding time was exceeded.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
PR-10	pH of sample (pH 7) is outside of method specified preservation criteria.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
624.1 in Water	
Benzene	CT,NY,MA,NH,RI,NC,ME,VA
Bromodichloromethane	CT,NY,MA,NH,RI,NC,ME,VA
Bromoform	CT,NY,MA,NH,RI,NC,ME,VA
Bromomethane	CT,NY,MA,NH,RI,NC,ME,VA
Carbon Tetrachloride	CT,NY,MA,NH,RI,NC,ME,VA
Chlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
Chlorodibromomethane	CT,NY,MA,NH,RI,NC,ME,VA
Chloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Chloroform	CT,NY,MA,NH,RI,NC,ME,VA
Chloromethane	CT,NY,MA,NH,RI,NC,ME,VA
1,2-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,3-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,4-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,2-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1-Dichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
trans-1,2-Dichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
1,2-Dichloropropane	CT,NY,MA,NH,RI,NC,ME,VA
cis-1,3-Dichloropropene	CT,NY,MA,NH,RI,NC,ME,VA
trans-1,3-Dichloropropene	CT,NY,MA,NH,RI,NC,ME,VA
Ethylbenzene	CT,NY,MA,NH,RI,NC,ME,VA
Methyl tert-Butyl Ether (MTBE)	NY,MA,NH,NC
Methylene Chloride	CT,NY,MA,NH,RI,NC,ME,VA
1,1,2,2-Tetrachloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Tetrachloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
Toluene	CT,NY,MA,NH,RI,NC,ME,VA
1,1,1-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1,2-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Trichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
Trichlorofluoromethane (Freon 11)	CT,NY,MA,NH,RI,NC,ME,VA
Vinyl Chloride	CT,NY,MA,NH,RI,NC,ME,VA
m+p Xylene	CT,NY,MA,NH,RI,NC
o-Xylene	CT,NY,MA,NH,RI,NC
SM21-23 2540C in Water	
Total Dissolved Solids	CT,MA,NH,NY,RI,NC,ME,VA
SM21-23 4500 H B in Water	
pH	CT,MA,RI

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2024
MA	Massachusetts DEP	M-MA100	06/30/2022
CT	Connecticut Department of Publile Health	PH-0165	12/31/2022
NY	New York State Department of Health	10899 NELAP	04/1/2022
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2023
RI	Rhode Island Department of Health	LAO00373	12/30/2022
NC	North Carolina Div. of Water Quality	652	12/31/2022
NJ	New Jersey DEP	MA007 NELAP	06/30/2022
FL	Florida Department of Health	E871027 NELAP	06/30/2022
VT	Vermont Department of Health Lead Laboratory	LL720741	07/30/2022
ME	State of Maine	MA00100	06/9/2023
VA	Commonwealth of Virginia	460217	12/14/2022
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2022
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2022
NC-DW	North Carolina Department of Health	25703	07/31/2022
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2022
MI	Dept. of Env, Great Lakes, and Energy	9100	09/6/2022

72109KG

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical

(N/A)ntact Samples SAMPLE CONDITIONS (N/A Cooler ŏ (poisu Regulatory Agency State / Location (N/A) по БеуіесеЯ ž Residual Chlorine (Y/N) DividMBI 143. 15 11:06 TME 221212 2.2.4 DATE 700 DATE Signed: 0 esa: 1_PREC - (MOD) Priori PACE ACCEPTED BY / AFFILIATION Hq - 80406 oS beviossiO latoT - 00ASS N/A Analyses Test Methanol Preservatives N9525O3 HOEN нсі Pace Project Manager Invoice Information: EONH Company Name: Pace Profile #: #OSZH Pace Quote: Section C Address: Unpreserved # OF CONTAINERS SAMPLER NAME AND SIGNATURE 2-22 PRINT Name of SAMPLER: SIGNATURE of SAMPLER: SAMPLE TEMP AT COLLECTION DATE 212121 TIME 8 DATE COLLECTED RELINQUISHED BY / AFFILIATION 05:2 d(ftd[25% TIME HIEL COSCO #344035 START <u>ਹੁ</u> Required Project Information: Sabrina Campfield (е=евув с=сому) Purchase Order #. ž MATRIX CODE (see valid codes to left) ₹ Section B Report To: Copy To: CODE DWV WYV WYV OLL OLL AR OT TS MATRIX
Drinking Water
Water
Water
Waste Water
Product
Soil/Solid
Oil
Wipe
An
An
Tissue ADDITIONAL COMMENTS One Character per box. (A-Z, 0-9 / , -) Sample lds must be unique SAMPLE ID Email: scampfield@labellapc.com LaBella Associates 5 McCrea Hill Rd Phone: (845)866-1335 Requested Due Date: Required Cilent Information: Ballston Spa, NY 12020 Effluent RW-3D Company: Address F N 9 2 # M31 ø œ o Page 19 of 20 I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Kecel	ved By	_OK		Date	2-2-	22	Time	15 30	
How were t	he samples	In Cooler		No Cooler		On Ice	7	No Ice	
recei	ved?	Direct from Sam	olina			Ambient		Melted Ice	
			By Gun #	<u> </u>		Actual Tem			
Were sam	•	-7	-					<u>- U </u>	_
Temperati		1111	By Blank #			Actual Tem			-
	S Custody Se				-	Tampered		NA_	••••
	S COC Relin	•			Chain Agr	ee With Sa	mples?		_
		eaking/loose caps	s on any sam	· -					
	nk/ Legible?	(iples receiv		olding time?		·
Did COC		Client		Analysis		•	er Name		_
pertinent in		Project		ID's		Collection	Dates/Times	3 <u> </u>	
=		out and legible?			`				
	b to Filters?		+			notified?			_
Are there R						notified?			-
Are there Sh		•			Who was	notified?			
	ugh Volume			_		4			
s there Hea	idspace whe	re applicable?	<u> </u>		MS/MSD?		•		
Proper Med	ia/Container					samples red	quired?		_
Proper Med Vere trip bla	anks receive	d?			is splitting s On COC?	samples red	•		-
Proper Med Vere trip bla Do all samp		d?	FNA			samples red	quired? - Base		-
Proper Med Vere trip bla Do all samp /ials	anks receive les have the	d? proper pH? Containers:	F NA	Acid _	On COC?	samples red	•		
Proper Med Vere trip bla Do all samp Vals Jnp-	anks receive les have the	d? proper pH? Containers: 1 Liter Amb.	F NA	Acid	On COC?	F	Base	Z Amb.	- - #
Proper Med Were trip bla Do all samp /ials Jnp- HCL-	anks receive les have the	d? proper pH? Containers: 1 Liter Amb. 500 mL Amb.	P NA	Acid 1 Liter F 500 mL	On COC? Plastic Plastic	#	Base 16 oz 8oz An	nb/Clear	#
Proper Med Vere trip bla Do all samp Vials Jnp- HCL- Veoh-	anks receive les have the	d? proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb.	F NA	Acid 1 Liter F 500 mL 250 mL	On COC? Plastic Plastic Plastic	F	Base 16 oz 8oz An 4oz An	nb/Clear nb/Clear	#
Proper Med Were trip bla Do all samp Vials Jnp- HCL- Meoh- Bisulfate-	anks receive les have the	d? proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint	F NA #	Acid 1 Liter F 500 mL 250 mL Col./Ba	On COC? Plastic Plastic Plastic cteria	1	Base 16 oz 8oz An 4oz An 2oz An	nb/Clear nb/Clear nb/Clear	#
Proper Med Were trip bla Do all samp Vials Jnp- HCL- Meoh- Bisulfate- DI-	anks receive les have the	d? proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass	TNA #	Acid 1 Liter F 500 mL 250 mL Col./Ba Other P	On COC? Plastic Plastic Plastic cteria	#	Base 16 oz 8oz An 4oz An 2oz An	nb/Clear nb/Clear	#
Proper Med Vere trip bla Do all samp Vials Jnp- HCL- Meoh- Bisulfate- DI-	anks receive les have the	d? proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit	F NA	1 Liter F 500 mL 250 mL Col./Ba Other P	Plastic Plastic Plastic cteria Plastic Bag	1	Base 16 oz 8oz An 4oz An 2oz An	nb/Clear nb/Clear nb/Clear	#
Proper Med Were trip bla Do all samp Vials Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate-	anks receive les have the	d? proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass	F NA	Acid 1 Liter F 500 mL 250 mL Col./Ba Other P	Plastic Plastic Plastic cteria Plastic Bag	1	Base 16 oz 8oz An 4oz An 2oz An	nb/Clear nb/Clear nb/Clear	#
Proper Med Were trip bla Do all samp Vials Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-	anks receive les have the	d? proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate	T NA	1 Liter F 500 mL 250 mL Col./Ba Other P	Plastic Plastic Plastic cteria Plastic Bag ock	1	Base 16 oz 8oz An 4oz An 2oz An	nb/Clear nb/Clear nb/Clear	#
Proper Med Were trip bla Do all samp //als Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-	anks receive les have the	d? proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers:	F NA	1 Liter F 500 mL 250 mL Col./Ba Other P Plastic Ziplo Unused M	Plastic Plastic Plastic cteria Plastic Bag ock	1	Base 16 oz 8oz An 4oz An 2oz An	nb/Clear nb/Clear nb/Clear	#
Proper Med Were trip bla Do all samp Vials Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials	anks receive les have the	d? proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb.	*	1 Liter F 500 mL 250 mL Col./Ba Other P Plastic Ziplo Unused M	Plastic Plastic Cteria Plastic Bag ock ledia	2	Base 16 oz 8 oz An 4 oz An 2 oz An En	nb/Clear nb/Clear nb/Clear	#
Proper Med Vere trip bla Do all samp Vials Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials Jnp- HCL-	anks receive les have the	d? proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb.	*	1 Liter F 500 mL 250 mL Col./Ba Other P Plastic Ziplo Unused M 1 Liter F 500 mL	Plastic Plastic Cteria Plastic Bag ck ledia Plastic	2	Base 16 oz 8oz An 4oz An 2oz An En Frozen:	nb/Clear nb/Clear nb/Clear core	#
Proper Med Vere trip bla Do all samp Vials Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials Jnp- HCL- Meoh-	anks receive les have the	d? proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb.	*	Acid 1 Liter F 500 mL 250 mL Col./Ba Other P Plastic Ziplo Unused M 1 Liter F 500 mL I 250 mL I	Plastic Plastic Plastic Cteria Plastic Bag ock Pledia Plastic Plastic Plastic	2	Base 16 oz 8oz An 4oz An 2oz An En Frozen: 16 oz 8oz An 4oz An	nb/Clear nb/Clear nb/Clear core	#
Proper Med Vere trip bla Do all samp //als Jnp- HCL- Meoh- Bisulfate- DI- Chiosulfate- Gulfuric- //als Jnp- HCL- Meoh- Bisulfate- Bisulfate- Bisulfate- Bisulfate- Bisulfate- Bisulfate- Bisulfate- Bisulfate-	anks receive les have the	d? proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria	*	1 Liter F 500 mL 250 mL Col./Ba Other P Plastic Ziplo Unused M 1 Liter F 500 mL I 250 mL I Flashp	Plastic Plastic Plastic Cteria Plastic Bag ock ledia Plastic Plastic Plastic Plastic Plastic	2	Base 16 oz 8oz An 4oz An 2oz An Frozen: 16 oz 8oz An 4oz An 2oz An	nb/Clear nb/Clear nb/Clear core	#
Proper Med Vere trip bla Do all samp Vials Jnp- HCL- Meoh- Bisulfate- DI- Chiosulfate- Sulfuric- Vials Jnp- HCL- Meoh- Bisulfate- DI-	anks receive les have the	d? proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic	*	Acid 1 Liter F 500 mL 250 mL Col./Ba Other P Plastic Ziplo Unused M 1 Liter F 500 mL I 250 mL I Flashp Other C	Plastic Plastic Plastic Cteria Plastic Bag ock ledia Plastic Plastic Plastic Plastic Plastic Plastic Plastic Plastic Plastic	2	Base 16 oz 8 oz An 4 oz An 2 oz An Frozen: 16 oz 8 oz An 4 oz An 2 oz An En	nb/Clear nb/Clear nb/Clear core	#
Proper Med Vere trip bla Do all samp Vials Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials Jnp- HCL- Meoh-	anks receive les have the	d? proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria	*	1 Liter F 500 mL 250 mL Col./Ba Other P Plastic Ziplo Unused M 1 Liter F 500 mL I 250 mL I Flashp	Plastic Plastic Plastic Cteria Plastic Bag ock ledia Plastic	2	Base 16 oz 8oz An 4oz An 2oz An Frozen: 16 oz 8oz An 4oz An 2oz An	nb/Clear nb/Clear nb/Clear core	#

March 2022 Analytical Data

March 10, 2022

Sabrina Campbell NYDEC_Labella Associates - Ballston Spa, NY 5 McCrea Hill Road Ballston Spa, NY 12020

Project Location: COSCO Client Job Number: Project Number: 344035

Laboratory Work Order Number: 22C0450

Enclosed are results of analyses for samples as received by the laboratory on March 7, 2022. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mike Buttrick Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
22C0450-01	5
22C0450-02	8
Sample Preparation Information	11
QC Data	12
Volatile Organic Compounds by GC/MS	12
B302730	12
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	15
B302677	15
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Dissolved)	16
B302697	16
Flag/Qualifier Summary	17
Certifications	18
Chain of Custody/Sample Receipt	20

NYDEC_Labella Associates - Ballston Spa, NY

5 McCrea Hill Road

PURCHASE ORDER NUMBER: 142773

REPORT DATE: 3/10/2022

Ballston Spa, NY 12020 ATTN: Sabrina Campbell

PROJECT NUMBER: 344035

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 22C0450

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: COSCO

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
RW-3D	22C0450-01	Water		624.1	
				SM21-23 2540C	
				SM21-23 4500 H B	
Effluent	22C0450-02	Water		624.1	
				SM21-23 2540C	
				SM21-23 4500 H B	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SM21-23 4500 H B

Qualifications:

H-05

Holding time was exceeded. pH analysis should be performed immediately at time of sampling. Nominal 15 minute holding time was exceeded.

exceeded.
Analyte & Samples(s) Qualified:

nН

22C0450-01[RW-3D], 22C0450-02[Effluent]

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative

Project Location: COSCO Sample Description: Work Order: 22C0450

Date Received: 3/7/2022

Field Sample #: RW-3D

Sampled: 3/7/2022 10:30

Sample ID: 22C0450-01
Sample Matrix: Water

Volatile Organic Compounds by GC/M	Volatile	Organic	Compounds by	GC/MS
------------------------------------	----------	---------	--------------	-------

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	<0.200	1.00	0.200	μg/L	1	g	624.1	3/8/22	3/8/22 13:49	LBD
Bromodichloromethane	< 0.180	2.00	0.180	μg/L	1		624.1	3/8/22	3/8/22 13:49	LBD
Bromoform	< 0.383	2.00	0.383	μg/L	1		624.1	3/8/22	3/8/22 13:49	LBD
Bromomethane	<1.54	5.00	1.54	μg/L	1		624.1	3/8/22	3/8/22 13:49	LBD
Carbon Tetrachloride	< 0.165	2.00	0.165	μg/L	1		624.1	3/8/22	3/8/22 13:49	LBD
Chlorobenzene	< 0.105	2.00	0.105	μg/L	1		624.1	3/8/22	3/8/22 13:49	LBD
Chlorodibromomethane	< 0.222	2.00	0.222	μg/L	1		624.1	3/8/22	3/8/22 13:49	LBD
Chloroethane	< 0.320	2.00	0.320	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
Chloroform	0.720	2.00	0.168	$\mu g/L$	1	J	624.1	3/8/22	3/8/22 13:49	LBD
Chloromethane	< 0.522	2.00	0.522	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
1,2-Dichlorobenzene	< 0.122	2.00	0.122	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
1,3-Dichlorobenzene	< 0.118	2.00	0.118	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
1,4-Dichlorobenzene	< 0.130	2.00	0.130	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
1,2-Dichloroethane	< 0.308	2.00	0.308	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
1,1-Dichloroethane	< 0.142	2.00	0.142	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
1,1-Dichloroethylene	< 0.141	2.00	0.141	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
trans-1,2-Dichloroethylene	< 0.169	2.00	0.169	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
1,2-Dichloropropane	< 0.181	2.00	0.181	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
cis-1,3-Dichloropropene	< 0.158	2.00	0.158	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
trans-1,3-Dichloropropene	< 0.168	2.00	0.168	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
Ethylbenzene	< 0.215	2.00	0.215	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
Methyl tert-Butyl Ether (MTBE)	< 0.172	2.00	0.172	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
Methylene Chloride	< 0.235	5.00	0.235	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
1,1,2,2-Tetrachloroethane	< 0.127	2.00	0.127	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
Tetrachloroethylene	91.8	2.00	0.187	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
Toluene	< 0.224	1.00	0.224	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
1,1,1-Trichloroethane	< 0.169	2.00	0.169	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
1,1,2-Trichloroethane	< 0.183	2.00	0.183	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
Trichloroethylene	86.0	2.00	0.189	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
Trichlorofluoromethane (Freon 11)	< 0.176	2.00	0.176	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
Vinyl Chloride	< 0.208	2.00	0.208	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
m+p Xylene	< 0.459	2.00	0.459	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD
o-Xylene	< 0.230	1.00	0.230	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:49	LBD

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	90.6	70-130		3/8/22 13:49
Toluene-d8	96.0	70-130		3/8/22 13:49
4-Bromofluorobenzene	110	70-130		3/8/22 13:49

Sample Description: Work Order: 22C0450

Project Location: COSCO
Date Received: 3/7/2022
Field Sample #: RW-3D

Sampled: 3/7/2022 10:30

Sample ID: 22C0450-01
Sample Matrix: Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
рН @19°C		7.2		pH Units	1	H-05	SM21-23 4500 H B	3/7/22	3/7/22 20:45	CB2

Sample Description: Work Order: 22C0450

Project Location: COSCO
Date Received: 3/7/2022
Field Sample #: RW-3D

Sampled: 3/7/2022 10:30

Sample ID: 22C0450-01
Sample Matrix: Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Dissolved)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Total Dissolved Solids	600	10	mg/L	1		SM21-23 2540C	3/8/22	3/8/22 13:04	LL

Project Location: COSCO Sample Description: Work Order: 22C0450

Date Received: 3/7/2022
Field Sample #: Effluent

Sampled: 3/7/2022 11:00

Sample ID: 22C0450-02
Sample Matrix: Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	<0.200	1.00	0.200	μg/L	1	1 mg/ 2 mm	624.1	3/8/22	3/8/22 13:23	LBD
Bromodichloromethane	< 0.180	2.00	0.180	μg/L	1		624.1	3/8/22	3/8/22 13:23	LBD
Bromoform	< 0.383	2.00	0.383	μg/L	1		624.1	3/8/22	3/8/22 13:23	LBD
Bromomethane	<1.54	5.00	1.54	μg/L	1		624.1	3/8/22	3/8/22 13:23	LBD
Carbon Tetrachloride	< 0.165	2.00	0.165	μg/L	1		624.1	3/8/22	3/8/22 13:23	LBD
Chlorobenzene	< 0.105	2.00	0.105	μg/L	1		624.1	3/8/22	3/8/22 13:23	LBD
Chlorodibromomethane	< 0.222	2.00	0.222	μg/L	1		624.1	3/8/22	3/8/22 13:23	LBD
Chloroethane	< 0.320	2.00	0.320	μg/L	1		624.1	3/8/22	3/8/22 13:23	LBD
Chloroform	< 0.168	2.00	0.168	μg/L	1		624.1	3/8/22	3/8/22 13:23	LBD
Chloromethane	< 0.522	2.00	0.522	μg/L	1		624.1	3/8/22	3/8/22 13:23	LBD
1,2-Dichlorobenzene	< 0.122	2.00	0.122	μg/L	1		624.1	3/8/22	3/8/22 13:23	LBD
1,3-Dichlorobenzene	< 0.118	2.00	0.118	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
1,4-Dichlorobenzene	< 0.130	2.00	0.130	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
1,2-Dichloroethane	< 0.308	2.00	0.308	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
1,1-Dichloroethane	< 0.142	2.00	0.142	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
1,1-Dichloroethylene	< 0.141	2.00	0.141	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
trans-1,2-Dichloroethylene	< 0.169	2.00	0.169	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
1,2-Dichloropropane	< 0.181	2.00	0.181	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
cis-1,3-Dichloropropene	< 0.158	2.00	0.158	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
trans-1,3-Dichloropropene	< 0.168	2.00	0.168	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
Ethylbenzene	< 0.215	2.00	0.215	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
Methyl tert-Butyl Ether (MTBE)	< 0.172	2.00	0.172	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
Methylene Chloride	< 0.235	5.00	0.235	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
1,1,2,2-Tetrachloroethane	< 0.127	2.00	0.127	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
Tetrachloroethylene	0.270	2.00	0.187	$\mu g/L$	1	J	624.1	3/8/22	3/8/22 13:23	LBD
Toluene	< 0.224	1.00	0.224	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
1,1,1-Trichloroethane	< 0.169	2.00	0.169	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
1,1,2-Trichloroethane	< 0.183	2.00	0.183	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
Trichloroethylene	0.550	2.00	0.189	$\mu g/L$	1	J	624.1	3/8/22	3/8/22 13:23	LBD
Trichlorofluoromethane (Freon 11)	< 0.176	2.00	0.176	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
Vinyl Chloride	< 0.208	2.00	0.208	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
m+p Xylene	< 0.459	2.00	0.459	$\mu g/L$	1		624.1	3/8/22	3/8/22 13:23	LBD
o-Xylene	< 0.230	1.00	0.230	μg/L	1		624.1	3/8/22	3/8/22 13:23	LBD

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	88.9	70-130		3/8/22 13:23
Toluene-d8	90.4	70-130		3/8/22 13:23
4-Bromofluorobenzene	98.9	70-130		3/8/22 13:23

Sample Description: Work Order: 22C0450

Project Location: COSCO
Date Received: 3/7/2022
Field Sample #: Effluent

Sampled: 3/7/2022 11:00

Sample ID: 22C0450-02
Sample Matrix: Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
рН @18.2°C		8.1		pH Units	1	H-05	SM21-23 4500 H B	3/7/22	3/7/22 20:45	CB2

Sample Description: Work Order: 22C0450

Project Location: COSCO
Date Received: 3/7/2022
Field Sample #: Effluent

Sampled: 3/7/2022 11:00

Sample ID: 22C0450-02
Sample Matrix: Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Dissolved)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Total Dissolved Solids	580	10	mg/L	1		SM21-23 2540C	3/8/22	3/8/22 13:04	LL

Sample Extraction Data

Prep Method: SW-846 5030B Analytical Method: 624.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
22C0450-01 [RW-3D]	B302730	5	5.00	03/08/22
22C0450-02 [Effluent]	B302730	5	5.00	03/08/22

SM21-23 2540C

Lab Number [Field ID]	Batch	Initial [mL]	Date
22C0450-01 [RW-3D]	B302697	50.0	03/08/22
22C0450-02 [Effluent]	B302697	50.0	03/08/22

SM21-23 4500 H B

Lab Number [Field ID]	Batch	Initial [mL]	Date
22C0450-01 [RW-3D]	B302677	50.0	03/07/22
22C0450-02 [Effluent]	B302677	50.0	03/07/22

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B302730 - SW-846 5030B										
Blank (B302730-BLK1)				Prepared &	Analyzed: 03	/08/22				
Benzene	ND	1.00	$\mu g/L$							
Bromodichloromethane	ND	2.00	$\mu g/L$							
Bromoform	ND	2.00	$\mu g/L$							
Bromomethane	ND	2.00	$\mu g/L$							
Carbon Tetrachloride	ND	2.00	$\mu g/L$							
Chlorobenzene	ND	2.00	$\mu g/L$							
Chlorodibromomethane	ND	2.00	$\mu g/L$							
Chloroethane	ND	2.00	$\mu g/L$							
Chloroform	ND	2.00	μg/L							
Chloromethane	ND	2.00	$\mu g/L$							
1,2-Dichlorobenzene	ND	2.00	μg/L							
1,3-Dichlorobenzene	ND	2.00	μg/L							
1,4-Dichlorobenzene	ND	2.00	μg/L							
1,2-Dichloroethane	ND	2.00	μg/L							
1,1-Dichloroethane	ND	2.00	μg/L							
1,1-Dichloroethylene	ND	2.00	μg/L							
rans-1,2-Dichloroethylene	ND	2.00	μg/L							
,2-Dichloropropane	ND	2.00	μg/L							
cis-1,3-Dichloropropene	ND	2.00	μg/L							
rans-1,3-Dichloropropene	ND	2.00	μg/L							
Ethylbenzene	ND	2.00	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	2.00	μg/L							
Methylene Chloride	ND	5.00	μg/L							
1,1,2,2-Tetrachloroethane	ND	2.00	μg/L							
Fetrachloroethylene	ND	2.00	μg/L							
Toluene	ND	1.00	μg/L							
1,1,1-Trichloroethane	ND	2.00	μg/L							
1,1,2-Trichloroethane	ND	2.00	μg/L							
Frichland flygram others (Frager 11)	ND	2.00	μg/L							
Frichlorofluoromethane (Freon 11)	ND	2.00	μg/L							
Vinyl Chloride	ND	2.00	μg/L μg/I							
n+p Xylene o-Xylene	ND	2.00 1.00	μg/L μg/I							
-	ND	1.00	μg/L							
Surrogate: 1,2-Dichloroethane-d4	23.2		μg/L	25.0		92.9	70-130			
Surrogate: Toluene-d8	23.9		μg/L	25.0		95.6	70-130			
Surrogate: 4-Bromofluorobenzene	24.6		μg/L	25.0		98.3	70-130			
LCS (B302730-BS1)			~		Analyzed: 03					
Benzene	20	1.00	μg/L	20.0		100	65-135			
Bromodichloromethane	22	2.00	μg/L	20.0		109	65-135			
Bromoform	20	2.00	μg/L	20.0		101	70-130			
Bromomethane	27	2.00	μg/L	20.0		133	15-185			
Carbon Tetrachloride	23	2.00	μg/L	20.0		114	70-130			
Chlorobenzene	21	2.00	μg/L	20.0		103	65-135			
Chlorodibromomethane	22	2.00	μg/L	20.0		108	70-135			
Chloroethane Chloroform	22	2.00	μg/L	20.0		110	40-160			
Chloromethane	21	2.00	μg/L μg/I	20.0		107	70-135			
1,2-Dichlorobenzene	8.1	2.00	μg/L μg/I	20.0		40.3	20-205			
	19	2.00	μg/L μg/I	20.0		96.6	65-135			
1,3-Dichlorobenzene	20	2.00	μg/L	20.0		101	70-130			
1,4-Dichlorobenzene	20	2.00	μg/L	20.0		98.8	65-135			
1,2-Dichloroethane	23	2.00	μg/L	20.0		113	70-130			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B302730 - SW-846 5030B										
LCS (B302730-BS1)				Prepared & A	Analyzed: 03/	/08/22				
1,1-Dichloroethane	22	2.00	μg/L	20.0		108	70-130			
1,1-Dichloroethylene	25	2.00	$\mu g/L$	20.0		127	50-150			
rans-1,2-Dichloroethylene	22	2.00	μg/L	20.0		111	70-130			
1,2-Dichloropropane	21	2.00	$\mu g/L$	20.0		105	35-165			
cis-1,3-Dichloropropene	20	2.00	$\mu g/L$	20.0		100	25-175			
rans-1,3-Dichloropropene	21	2.00	μg/L	20.0		104	50-150			
Ethylbenzene	20	2.00	μg/L	20.0		102	60-140			
Methyl tert-Butyl Ether (MTBE)	20	2.00	μg/L	20.0		99.8	70-130			
Methylene Chloride	21	5.00	μg/L	20.0		104	60-140			
1,1,2,2-Tetrachloroethane	19	2.00	μg/L	20.0		92.9	60-140			
Tetrachloroethylene	24	2.00	μg/L	20.0		118	70-130			
Toluene	21	1.00	μg/L	20.0		105	70-130			
1,1,1-Trichloroethane	22	2.00	μg/L	20.0		111	70-130			
1,1,2-Trichloroethane	21	2.00	μg/L	20.0		106	70-130			
Frichloroethylene	22	2.00	μg/L	20.0		111	65-135			
Frichlorofluoromethane (Freon 11)	21	2.00	μg/L μg/L	20.0		107	50-150			
Vinyl Chloride	19	2.00	μg/L μg/L	20.0		92.6	5-195			
n+p Xylene	43	2.00	μg/L μg/L	40.0		107	70-130			
o-Xylene	43 20	1.00	μg/L μg/L	20.0		107	70-130			
<u> </u>		1.00								
Surrogate: 1,2-Dichloroethane-d4	22.3		μg/L	25.0		89.3	70-130			
Surrogate: Toluene-d8	23.9		μg/L	25.0		95.5	70-130			
Surrogate: 4-Bromofluorobenzene	24.9		μg/L	25.0		99.6	70-130			
LCS Dup (B302730-BSD1)				Prepared & A	Analyzed: 03/	/08/22				
Benzene	20	1.00	μg/L	20.0		102	65-135	1.88	20	
Bromodichloromethane	22	2.00	$\mu g/L$	20.0		112	65-135	2.62	20	
Bromoform	21	2.00	$\mu g/L$	20.0		106	70-130	4.64	20	
Bromomethane	30	2.00	μg/L	20.0		152	15-185	13.0	20	
Carbon Tetrachloride	23	2.00	μg/L	20.0		115	70-130	0.613	20	
Chlorobenzene	21	2.00	μg/L	20.0		106	65-135	3.20	20	
Chlorodibromomethane	22	2.00	μg/L	20.0		112	70-135	3.37	20	
Chloroethane	21	2.00	μg/L	20.0		106	40-160	3.38	20	
Chloroform	22	2.00	μg/L	20.0		108	70-135	0.418	20	
Chloromethane	8.1	2.00	μg/L	20.0		40.4	20-205	0.124	20	
1,2-Dichlorobenzene	20	2.00	μg/L	20.0		98.5	65-135	2.00	20	
1,3-Dichlorobenzene	20	2.00	μg/L	20.0		103	70-130	2.31	20	
1,4-Dichlorobenzene	20	2.00	μg/L μg/L	20.0		103	65-135	2.50	20	
,2-Dichloroethane		2.00	μg/L μg/L	20.0		115	70-130	1.67	20	
,1-Dichloroethane	23	2.00	μg/L μg/L	20.0		109	70-130	1.01	20	
1,1-Dichloroethylene	22	2.00	μg/L μg/L	20.0						
rans-1,2-Dichloroethylene	25	2.00	μg/L μg/L			127	50-150 70-130	0.118	20	
,2-Dichloropropane	23			20.0		114	70-130	2.35	20	
	22	2.00	μg/L μg/I	20.0		109	35-165	4.02	20	
ris-1,3-Dichloropropene	21	2.00	μg/L	20.0		104	25-175	3.48	20	
rans-1,3-Dichloropropene	21	2.00	μg/L	20.0		107	50-150	3.60	20	
Ethylbenzene	21	2.00	μg/L	20.0		103	60-140	1.07	20	
Methyl tert-Butyl Ether (MTBE)	20	2.00	μg/L	20.0		102	70-130	2.18	20	
Methylene Chloride	21	5.00	μg/L	20.0		105	60-140	1.10	20	
1,1,2,2-Tetrachloroethane	19	2.00	μg/L	20.0		96.5	60-140	3.80	20	
[etrachloroethylene	23	2.00	μg/L	20.0		117	70-130	0.640	20	
Toluene	21	1.00	μg/L	20.0		107	70-130	1.46	20	
			-							
,1,1-Trichloroethane	22	2.00	$\mu g/L$	20.0		110	70-130	0.909	20	

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B302730 - SW-846 5030B										
LCS Dup (B302730-BSD1)	Prepared & Analyzed: 03/08/22									
Trichloroethylene	23	2.00	μg/L	20.0		114	65-135	2.88	20	
Trichlorofluoromethane (Freon 11)	22	2.00	$\mu g/L$	20.0		108	50-150	1.03	20	
Vinyl Chloride	18	2.00	μg/L	20.0		90.6	5-195	2.29	20	
m+p Xylene	42	2.00	$\mu g/L$	40.0		104	70-130	2.20	25	
o-Xylene	21	1.00	$\mu g/L$	20.0		103	70-130	1.51	20	
Surrogate: 1,2-Dichloroethane-d4	22.2		μg/L	25.0		88.9	70-130			
Surrogate: Toluene-d8	23.9		$\mu g/L$	25.0		95.7	70-130			
Surrogate: 4-Bromofluorobenzene	24.5		$\mu g/L$	25.0		98.0	70-130			

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

										1	1
		Reporting		Spike	Source		%REC		RPD		ı
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Batch B302677 - SM21-23 4500 H B					
LCS (B302677-BS1)		Prepared &	Analyzed: 03/07/22		
pН	5.97	pH Units 6.00	99.6	90-110	

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Dissolved) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B302697 - SM21-23 2540C										
Blank (B302697-BLK1)				Prepared & A	Analyzed: 03	/08/22				
Total Dissolved Solids	ND	10	mg/L							
LCS (B302697-BS1)				Prepared & A	Analyzed: 03	/08/22				
Total Dissolved Solids	200		mg/L	293		67.2	64.9-119			
Duplicate (B302697-DUP1)	Sourc	Source: 22C0450-01		Prepared & A	Analyzed: 03	/08/22				
Total Dissolved Solids	620	10	mg/L		600	1		2.29	5	

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
H-05	Holding time was exceeded. pH analysis should be performed immediately at time of sampling. Nominal 15 minute holding time was exceeded.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
624.1 in Water	
Benzene	CT,NY,MA,NH,RI,NC,ME,VA
Bromodichloromethane	CT,NY,MA,NH,RI,NC,ME,VA
Bromoform	CT,NY,MA,NH,RI,NC,ME,VA
Bromomethane	CT,NY,MA,NH,RI,NC,ME,VA
Carbon Tetrachloride	CT,NY,MA,NH,RI,NC,ME,VA
Chlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
Chlorodibromomethane	CT,NY,MA,NH,RI,NC,ME,VA
Chloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Chloroform	CT,NY,MA,NH,RI,NC,ME,VA
Chloromethane	CT,NY,MA,NH,RI,NC,ME,VA
1,2-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,3-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,4-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,2-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1-Dichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
trans-1,2-Dichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
1,2-Dichloropropane	CT,NY,MA,NH,RI,NC,ME,VA
cis-1,3-Dichloropropene	CT,NY,MA,NH,RI,NC,ME,VA
trans-1,3-Dichloropropene	CT,NY,MA,NH,RI,NC,ME,VA
Ethylbenzene	CT,NY,MA,NH,RI,NC,ME,VA
Methyl tert-Butyl Ether (MTBE)	NY,MA,NH,NC
Methylene Chloride	CT,NY,MA,NH,RI,NC,ME,VA
1,1,2,2-Tetrachloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Tetrachloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
Toluene	CT,NY,MA,NH,RI,NC,ME,VA
1,1,1-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1,2-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Trichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
Trichlorofluoromethane (Freon 11)	CT,NY,MA,NH,RI,NC,ME,VA
Vinyl Chloride	CT,NY,MA,NH,RI,NC,ME,VA
m+p Xylene	CT,NY,MA,NH,RI,NC
o-Xylene	CT,NY,MA,NH,RI,NC
SM21-23 2540C in Water	
Total Dissolved Solids	CT,MA,NH,NY,RI,NC,ME,VA
SM21-23 4500 H B in Water	
pH	CT,MA,RI

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2024
MA	Massachusetts DEP	M-MA100	06/30/2022
CT	Connecticut Department of Publile Health	PH-0165	12/31/2022
NY	New York State Department of Health	10899 NELAP	04/1/2022
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2023
RI	Rhode Island Department of Health	LAO00373	12/30/2022
NC	North Carolina Div. of Water Quality	652	12/31/2022
NJ	New Jersey DEP	MA007 NELAP	06/30/2022
FL	Florida Department of Health	E871027 NELAP	06/30/2022
VT	Vermont Department of Health Lead Laboratory	LL720741	07/30/2022
ME	State of Maine	MA00100	06/9/2023
VA	Commonwealth of Virginia	460217	12/14/2022
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2022
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2022
NC-DW	North Carolina Department of Health	25703	07/31/2022
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2022
MI	Dept. of Env, Great Lakes, and Energy	9100	09/6/2022

3707E

CHAIN-OF-CUSTODY / Analytical Request Document

Samples (Y/N) SAMPLE CONDITIONS (N/A) Cooler ŏ belse2 Custody Regulatory Agency State / Location (N/A) Received on ⋖ The Chain-of-Custody is a LEGAL UOCUMENT. All relevant metro must be constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info.pacelabs.com/hubfs/pas-standard-terms.pdf.

Section C

Section C Residual Chlorine (Y/N) Page : TEMP in C 15.5 TIME 13:38 2 3/0/pe 3-7-5 3/7122 (dr DATE いじかり DATE Signed: 3 624.1_PREC - (MOD) Priori 9040B - pH ACCEPTED BY ! AFFILIATION × 2540C - Total Dissolved Sol × N/A Analyses Test Офрец lonsriteM Na2S203 Preservatives S IN S HOBN Pace Project Manager нсі Invoice Information: **EONH** Company Name. Pace Profile #: Pace Quote +OSZH 31/1/2 1644 13:3% Address Опргезегуед # OF CONTAINERS SAMPLER NAME AND SIGNATURE 3-7-24 PRINT Name of SAMPLER: SIGNATURE of SAMPLER: SAMPLE TEMP AT COLLECTION 317122 DATE 317122 욻 DATE COLLECTED LIGHTON TIME 0 enter of the second START COSCO #344035 Sabrina Campfield DATE SAMPLE TYPE (G=GRAB C=COMP) ₹ Purchase Order# MATRIX CODE (see valid codes to left) ₹ Project Name. Report To: CODE DW WY P P P P OL OL WP AR OT TS Sopy MATRIX
Drinking Water
Water
Water
Waste Water
Product
SolitBoild
Oil
Wipe
An
Other
Tissue One Character per box. (A-Z, 0-9 /, -) Sample Ids must be unique ADDITIONAL COMMENTS SAMPLE ID Email: scampfield@labellapc.com LaBella Associates 5 McCrea Hill Rd Required Client Information: (845)866-1335 Ballston Spa, NY 12020 Requested Due Date RW-3D Effluent Sompany: Address: 10 암 # Mali N m Ю ø ø 80 Page 20 of 21 I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False
Statement will be brought to the attention of the Client - State True or False

Client		ella	 		21-11	43	T*	Hate Ce	
Receiv	ed By		***************************************	Date	-2 / Y		Time	1644	
How were th	•	in Cooler		No Cooler		On Ice		No Ice	
recei	/ed?	Direct from Samp	oling			Ambient		Melted Ice	
Were sam	nlee within		By Gun#	2		Actual Tem	p- 2.0		
Temperatu		1	By Blank #			Actual Tem	ıp -		
-	Custody S	eal Intact?	MA	Wei	e Sample:	s Tampered		NB	
	COC Relin		7	-	-	ree With Sa		7	÷
		eaking/loose caps	on any sam	•	F				
Is COC in in			_		ples recei	ved within h	olding time?	1	
Did COC i	-	Client	· T	Analysis	T	Sampl	er Name	7	
pertinent In	formation?	Project	T	ID's	T	Collection	Dates/Times		
Are Sample	labels filled	d out and legible?	T					·	
Are there La	b to Filters?	?	F		Who was	s notified?			
Are there Ru	shes?		<u> </u>	-	Who was	s notified?			
Are there Sh	ort Holds?		<u> </u>	•	Who was	s notified?	Cassic		
Is there eno	ıgh Volume	?	+			- -			
Is there Hea	dspace whe	ere applicable? 🔄	- F	İ	MS/MSD?			- .	
Proper Medi	a/Container	s Used?	T		s splitting	samples rec	guired? /		.' .
Were trip bla	ınks receive	ed?	F		On COC?	<u> </u>			
Do all sampl	es have the	proper pH?	M	Acid _			Base		
Maries -		Condition	// //						
Unp-		1 Liter Amb.	A SAN CONTRACTOR OF THE SAN CONTRACTOR OF T	1 Liter F	Plastic	27 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	16 oz	Amb.	
HCL-	4	500 mL Amb.		500 mL	Plastic		8oz Am	b/Clear	
Meoh-		250 mL Amb.		250 mL	Plastic	ス	4oz Am		
Bisulfate-		Flashpoint		Col./Ba	cteria		2oz Am		
DI-		Other Glass		Other F		a	End	ore	
Thiosulfate-		SOC Kit		Plastic			Frozen:		
Sulfuric-		Perchlorate		Ziplo	ck				
				Unused N	ledia				
Melic	- 1	Employee.							
Unp-		1 Liter Amb.		1 Liter F			16 oz		
HCL-		500 mL Amb.		500 mL			8oz Am		
Meoh-		250 mL Amb.		250 mL			4oz Am		
Bisulfate-		Col./Bacteria		Flash			2oz Am		
DI-		Other Plastic		Other (Enc	ore	
Thiosulfate-		SOC Kit		Plastic			Frozen:		
Sulfuric-		Perchlorate		Ziplo	CK				
Comments:									

ATTACHMENTS

ATTACHMENT 1
ENGINEERING CONTROLS – STANDBY CONSULTANT/CONTRACTOR
CERTIFICATION FORM

Enclosure 1 Engineering Controls - Standby Consultant/Contractor Certification Form

Site Details Site No. 344035	Box 1	
Site Name COSCO		
Site Address: 15 West Street Zip Code: 10977 City/Town: Spring Valley County: Rockland Site Acreage: 0.3		
Reporting Period: April 04, 2021 to April 04, 2022		
	YES NO	
Is the information above correct?	X	
If NO, include handwritten above or on a separate sheet.		
To your knowledge has some or all of the site property been sold merged, or undergone a tax map amendment during this Reportir		
3. To your knowledge has there been any change of use at the site Reporting Period (see 6NYCRR 375-1.11(d))?	during this $\hfill\Box$ \hfill	
 To your knowledge have any federal, state, and/or local permits (discharge) been issued for or at the property during this Reporting 		
If you answered YES to questions 2 thru 4, include documenthat documentation has been previously submitted with this		
5. To your knowledge is the site currently undergoing development?	? \(\sum_{\text{X}}	
	Box 2	
	YES NO	
Is the current site use consistent with the use(s) listed below?Commercial and Industrial		
7. Are all ICs/ECs in place and functioning as designed?	$\overline{\mathbf{x}}$	
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date DEC PM regarding the development of a Corrective Measures Work		
Signature of Standby Consultant/Contractor	Date	

SITE NO. 344035 Box 3

Description of Institutional Controls

<u>Parcel</u> <u>Owner</u> <u>Institutional Control</u>

57.46-1-1 WEST CENTRAL ASSOCIATES L P

Monitoring Plan O&M Plan

1999 Record of Decision

Box 4

Description of Engineering Controls

<u>Parcel</u> <u>Engineering Control</u>

57.46-1-1

Groundwater Treatment System

Vapor Mitigation Cover System

A cover system consisting of asphalt to prevent human exposure to remaining contaminated soil/fill remaining at the site; A SSDS at an off-site structure to prevent potential exposure to soil vapor intrusion; Air stripper groundwater extraction and treatment system

Box	5
	J

 I certify by checking "YES" below that: a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification, including data and material prepared by previous contractors for the current certifying period, if any; b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true: (a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department; (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment; (c) nothing has occurred that would constitute a failure to comply with the Site Management Plan or equivalent if no Site Management Plan exists. 	
reviewed by, the party making the certification, including data and material prepared by previous contractors for the current certifying period, if any; b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. YES NO If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true: (a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department; (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;	
are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. YES NO If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true: (a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department; (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment; (c) nothing has occurred that would constitute a failure to comply with the Site Management Plan.	
 If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true: (a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department; (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment; (c) nothing has occurred that would constitute a failure to comply with the Site Management Plan. 	n
 If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true: (a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department; (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment; (c) nothing has occurred that would constitute a failure to comply with the Site Management Plan. 	
or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true: (a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department; (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment; (c) nothing has occurred that would constitute a failure to comply with the Site Management Plan.	
since the date that the Control was put in-place, or was last approved by the Department; (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment; (c) nothing has occurred that would constitute a failure to comply with the Site Management Plan.	al .
the environment; (c) nothing has occurred that would constitute a failure to comply with the Site Management Plan.	
	b
or equivalent if the offer management i fair exists.	٦,
YES NO	
f X	
IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and contact the DEC PM regarding the development of a Corrective Measures Work Plan to address these issues.	
Signature of Standby Consultant/Contractor Date	

IC/EC CERTIFICATIONS

Qualified Environmental Professional Signature

I certify that all information in Boxes 2 through 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I <u>Douglas M. Crawford</u> at print name

Ramboll

94 New Karner Road, Suite 106

Albany, New York 12203,

(print business address)

am certifying as a Qualified Environmental Professional.

Signature of Qualified Environmental Professional

Stamp (Required for PE)

Date

Daugh M. any L

05/06/2022